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Abstract— Distributed event detection using wireless sensor networks
has received growing interest in recent years. In such applications, a
large number of inexpensive and unreliable sensor nodes are distributed
in a geographical region to make firm and accurate local decisions about
the presence or absence of specific events based on their sensor readings.
However, sensor readings can be unreliable, due to either noise in the
sensor readings or hardware failures in the devices, and may cause
nodes to make erroneous local decisions. We present a general fault-
tolerant event detection scheme that allows nodes to detect erroneous
local decisions based on the local decisions reported by their neighbors.
This detection scheme does not assume homogeneity of sensor nodes and
can handle cases where nodes have different accuracy levels. We prove
analytically that the derived fault-tolerant estimator is optimal under the
maximum a posteriori (MAP) criterion. An equivalent weighted voting
scheme is also derived. Further, we describe two new error models that
take into account the neighbor distance and the geographical distributions
of the two decision quorums. These models are particularly suitable
for detection applications where the event under consideration is highly
localized. Our fault-tolerant estimator is simulated using a network of
1024 nodes deployed randomly in a square region and assigned random
probability of failures.

I. INTRODUCTION

A sensor network consists of a set of sensing elements powered
by batteries and collaborating to perform sensing tasks in a given
environment. It may contain one or more sink nodes (base stations)
to collect sensed data and relay it to a central processing and storage
system. These networks have potential for use in many military and
civilian applications [1].

One particular application that has received a growing amount of
attention in the recent years is event detection [2], [3], [4], [5], [6].
In such an application, nodes are tasked to determine whether a
particular event of interest is occurring in their sensing range. Such an
event could be, for example, a volcanic eruption at specific site [5], or
the presence of a specific target [6]. An event could be detected from
a high value of the sensor reading, for example. Each sensor node
first determines if its sensor reading indicates the presence of an event
before sending this information to its neighbors or to a sink node.
However, in case of failure the sensor can produce a false positive or
a false negative. That is, a high reading indicating an event occurred
when it did not or a low reading indicating the absence of event when
one did occur.

Event detection is commonly performed using a large number
of unreliable low-cost sensor nodes. These nodes can each have
a very high probability of errors (misses and false-positives). It
is, therefore, important to develop fault-tolerant mechanisms that
can detect detection faults and take appropriate actions. A possible
solution is to provide a high degree of redundancy to compensate for
faulty nodes. However, the cost sensitivity and energy limitation of
sensor networks make such an approach impractical [7].

In this environment, collaboration between neighboring nodes can
be used to increase the reliability of the detection decisions. This
is valid if we assume that failures at neighboring nodes are not

correlated, yet there is a spatial correlation between occurrences of
detected events at local nodes. In other words, a failure at node n is
independent from failures at any of its neighbors. On the other hand,
the presence of the detected event (e.g., a chemical agent) at node n

is highly correlated with the situation at its neighbors.
Here, we address fault-tolerance in the context of distributed binary

detection. A node n is trying to decide whether or not a specific event
is present within its coverage range. A binary variable is used to code
this decision, with a value of 1 when an event is detected, and a value
of 0 otherwise. In its decision scheme, the node uses the sensed data
obtained by its local sensor as well as the decisions at its neighboring
nodes, assuming spatial correlations.

Distributed fault-tolerance for event detection using the assumption
of spatial correlation was first considered in [8]. The algorithm in [8]
assumes that all nodes in the network have the same detection error
probability and that this rate is known prior to the deployment. These
are unrealistic assumptions. In fact, a node can become faulty with
time either because of a lower energy level or because of aging or
unsuitable environmental or operating conditions, thereby increasing
its error probability. We can also have a heterogeneous sensor network
with nodes that have different operational capabilities and accuracy
levels. Moreover, the proposed algorithm in [8] is not well suited
for highly localized events where the event region is very small. In
fact, all nodes within a node communication range are given identical
weights in the decision scheme regardless of their distances .

The work in [8] has been followed by two other publications deal-
ing with the same problem of event region detection. In reference [9],
the authors provide comments on the original paper and correct some
of the mistakes in the theoretic analysis section. In [10], the authors
extend the model in [8] to account for the fact that sensor errors
have two different sources. An error could be noise-related or coming
from a sensor fault. They also discuss the choice of the appropriate
neighborhood size. However, they assume again that neighboring
nodes of n at any distance have the same accuracy as estimators
of the real situation at n. In such a case, the failure probability
of the distributed decision scheme can be reduced by increasing
the neighborhood size. Again, this is an unrealistic assumption and
will introduce a large number of new errors in the case of a highly
localized event. In reference [10] as in [8], it is assumed that nodes
all have the same probability of failure and that this probability is
known prior to the deployment.

We propose a new approach that considers the case where nodes
can have different failure probability levels. This allows us to handle
various types of failures including noise-related failures, biased
measurement, drift over time, stuck-at failures, calibration-related
failures, environment-related failures, etc. Our approach can be used
as a general distributed fault-tolerance mechanism for any application
where nodes may have different accuracy levels. These differences
can result from different locations, heterogeneous operating con-
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ditions (different sensors, different hardware conditions), different
deployment times, etc.

We also consider two new distributed error models that take into
account the location and relative position of sensor nodes. The
first model takes into account the fact that nodes that are closer
to each other have a higher spatial correlation than nodes that are
farther apart. The second model accounts for the importance of the
relative geographical distributions of the two voting quorums (the two
subsets of neighbors deciding the presence of an event or its absence,
respectively). In this model, if a node has 50% of its neighbors
reporting the same decision (e.g., ’1’: event detected) there is a
difference in terms of the value of such a decision depending on
whether these neighbors are geographically distributed around the
node or are all on the same side. This comes from the observation
that an event detected in all sides of a node is more likely to be
present at the node itself than an event that was detected by nodes
only on one side of the node.

The remainder of the paper is as follows. Section II formulates
the fault-tolerance problem and describes our approach to solve
this problem. Section III presents a distance-based error model.
Section IV presents an error model that accounts for the relative
geographical distribution of the decision quorums. Section V presents
some simulation results. Section VI concludes the paper.

II. THE DISTRIBUTED FAULT-TOLERANCE SOLUTION WITH
DIFFERENT PROBABILITIES OF FAILURE

In this section we describe our solution used to provide fault-
tolerance for distributed event detection while taking into account the
possibility of nodes having different accuracy levels. The accuracy
levels can differ for several reasons:

1) Nodes may have heterogeneous sensors with different quality
levels. This leads to different probability of failures (miss
probability and false alarm probability) at different nodes

2) Some nodes may suffer degradations during the deployment
process. For example, in the case of a forest where the sensor
network is deployed by dropping nodes from the air, nodes
may suffer different impact effects degrading the quality of the
sensor readings. This can result in different detection failure
probabilities between neighboring nodes

3) Failure probabilities may be a function of the node distance
from the detected object. In this case, if a node n is imple-
menting fault-tolerance using the correlation between its local
decision and those of its neighbors, it is possible that the
neighbors closer to n give a more accurate estimate (lower
probability of failure) of the real situation at n than would the
neighbors located farther from n

4) Failure probabilities may be function of the sensor age. In this
case, the sensor performance degrades over time and the sensor
may become biased or suffer a gradual drift. The sensor can
also remain stuck at the same value independently of the event
reality. If using a reconfiguration mechanism, such as the one
in [11], nodes that have been active for different periods of
time will have different failure probability levels

5) Nodes accuracy may be affected differently in the presence of
changing environment conditions such temperature, rain, snow,
etc.

In this paper, we assume that a node n has a way of learning,
through estimation, the different failure probabilities at its neighbor-
ing nodes. We have proposed a simple method that allows nodes to
learn their probability of failure in [12]. Future work will address this
issue. Further, our solution does not assume a specific probability

distribution of the faulty sensor readings such as Gaussian as is
assumed in [8], [10]. We also do not assume that the accuracy level of
a specific node remains constant over time or that all nodes have the
same accuracy levels. Relaxing these assumptions makes our solution
more realistic and enables it to handle all sources of failures as long
as nodes in a specific region are not all faulty.

A. Problem Formulation

We consider a sensor network composed of N nodes distributed
over a detection field. Each node has a sensor and is tasked to
detect the presence of a specific event. This decision is made
using the node’s sensor reading compared to a fixed threshold. For
simplification, we consider that the presence of an event corresponds
to a high sensor reading, while a low reading indicates its absence.
An error occurs when a high reading is reported in the absence of an
event (false positive) or when a low reading is obtained even though
an event is occurring (detection miss). Errors could be due to noisy
measurements or a faulty sensor [10]. Here, we treat errors as a single
group regardless of the error origin.

Consider that the mean value of the sensor reading in the presence
of an event is me, while in the absence of event the mean value is
mn. A reasonable threshold value is given by

th =
me + mn

2
(1)

We define the following three binary variables, similar to the ones
in [8].

• Tn(t): indicates the real situation at the node n and time t

(presence or not of an event)
• Sn(t): indicates the situation as obtained from the sensor reading

of node n. It could be wrong in the case of failure
• Rn(t): gives an estimate of the real value of Tn(t) using the

S(t) values of the node and its neighbors
The probability of detection error pn, at node n, is given by:

pn = P (Sn(t) = a|Tn(t) 6= a) (2)

For example, if we assume a Gaussian error term (e.g., noise-related
error) with a mean of 0 and variance of σ2

n at node n, then the
probability of detection error is given by:

pn = Q(
me − mn

2σn

) (3)

where Q is the tail probability of the Gaussian distribution.
The problem at hand is to define an estimator of the real situation at

node n that minimizes the detection error probability. This estimator
takes into account the local decision obtained from the node sensor
reading as well as the local decisions of the neighboring nodes. We
consider a sensor network, Ne = {1, 2, 3, ..., N − 1, N} containing
N sensor nodes. The nodes taken into account by a node n ∈ Ne

in its decision mechanism are all nodes within a fixed range, r.
This fault-tolerance range, r, should be fixed so as to minimize the
probability of error while keeping the communication energy cost
low and taking into account the expected size of the event region.
Below, we give a formal definition of this neighborhood.

Definition 1. We define the fault-tolerance neighborhood (FTNn)
as the set of nodes that a node n ∈ Ne takes into account in its
fault-tolerance decision mechanism. If we consider a fault-tolerance
range of r, this neighborhood is given by: FTNn = {ne ∈ Ne :
d(n, ne) ≤ r}, where d(n, ne) is the Euclidean distance between
the nodes n and ne. This set contains the node n itself.



Below, we define the decision vector taken into account by a node
n in its fault-tolerant mechanism. We also define the probability of
distributed detection error.

Definition 2. The estimation fault-tolerance vector (FTVn) is de-
fined as the vector containing all the Sn(t) of n and the Sj(t) of all
its fault-tolerance neighbors. FTVn contains K elements, where K is
the number of elements in FTNn. We have that FTV k

n (t) = Sm(t),
where m is the kth element of FTNn. This set contains, in particular
the value Sn(t) since n ∈ FTNn.

Definition 3. The probability of estimator detection error at node n

and time t is defined as:

Pen(t) = P (Rn(t) 6= Tn(t)|Tn(t), FTVn) (4)

Using these definitions, the problem at hand consists of finding an
estimation function that takes as an input the vector FTVn and gives
as an output Rn that minimizes the probability of error Pen.

B. Optimal Estimator for Fault-Tolerant Distributed Detection

To develop an optimal estimation function, we use the likelihood
test ratio (LRT) [13]; that is, to choose Rn(t) = j where j ∈ {0, 1}
that maximizes the probability P (Tn(t) = j|FTVn(t)).

Below, we define the power set containing all possible sets com-
posed of any subset of the neighbors of node n and the node n itself.

Definition 4. We define Pn as the set of all possible FTVn vectors.
Pn can be represented by the power set of the set FTNn, where
a value of 1 in the kth position of a vector v ∈ Pn indicates the
presence of the corresponding node (the kth node in FTNn) in the
subset.

Define the parameter p(t) as the probability of the true situation
being the presence of an event at time t.

P (Tn(t) = 1) = p(t)

P (Tn(t) = 0) = 1 − p(t)
(5)

Next, we define the following two functions on the set Pn.

Definition 5. The following two functions F0
n and F 1

n are defined as
follows:

F
j
n : Pn → R

+
, j ∈ {0, 1}

F
j
n(v) = P (Tn(t) = j)

Y

k|v(k)=j

1 − pFTNn(k)

pFTNn(k)

(6)

where v ∈ Pn is the current value of the FTVn vector, and v(k)
and FTNn(k) give the kth elements of the vectors v and FTNn,
respectively. Note that FTNn(k) corresponds to the kth node in the
FTNn set consisting n and its neighbors and pFTNn(k) is the local
detection error probability of this node defined in equation 2.

The function F0 represents the product of the elements 1−pk

pk

for
all nodes reporting a local decision of 0 in the set containing n and
its neighbors multiplied by the probability of non-occurrence of the
event. The function F1 gives the same product for nodes reporting
a local decision of 1. We can now define the optimal estimator that
minimizes the probability of detection error. This estimator is given
in the following definition.

Definition 6. We define the following fault-tolerant estimator for
distributed detection (FTEDD) as an estimator that declares Rn(t) =
0 if and only if F0(FTVn(t)) < F1(FTVn(t)). The estimator
declares Rn(t) = 1, otherwise.

The optimality of this estimator is proven in the next theorem.

Theorem 1. The FTEDD estimator is optimal with respect to the
maximum a posteriori (MAP) criterion.

Proof. For the two possible hypotheses, Tn(t) = 0 and Tn(t) = 1,
the conditional probability given FTVn(t) can be obtained using the
Bayes’ rule. The two posterior probabilities are given by:

P (Tn(t) = j|FTVn(t)) =
P (FTVn(t)|Tn(t) = j)P (Tn(t) = j)

P (FTVn(t))
(7)

where j ∈ {0, 1}. The value of P (FTVn(t)), the probability of
occurrence of the current value of FTVn(t) is given by:

P (FTVn(t)) =

1
X

j=0

P (FTVn(t)|Tn(t) = j)P (Tn(t) = j) (8)

We have that the local detection decision for a node k ∈ FTNn is
correct with a probability of 1 − pk. Using this information and the
fact that the events of errors in the local decisions are independent, it
is clear that when the real situation is Tn(t) = j, the nodes reporting
a local decision of Sk(t) = j are correct, while the others are faulty.
This gives the following conditional probabilities:

P (FTVn(t)|Tn(t) = 0) =
Y

k|k∈FTNn

p
Sk(t)
k (1 − pk)1−Sk(t)

P (FTVn(t)|Tn(t) = 1) =
Y

k|k∈FTNn

p
1−Sk(t)
k (1 − pk)Sk(t)

(9)

These equations multiply the correctness probability (1 − pk) for
nodes reporting the correct value (j) by the error probability for
nodes reporting the opposite value.

We can now compute the posteriori probabilities as follows:

P (Tn(t) = 1|FTVn(t)) =
P (FTVn(t)|Tn(t) = 1)P (Tn(t) = 1)

P (FTVn(t))

=
p(t)

Q

k|k∈FTNn
p
1−Sk(t)
k (1 − pk)Sk(t)

P (FTVn(t))
(10)

and:

P (Tn(t) = 0|FTVn(t)) =
P (FTVn(t)|Tn(t) = 0)P (Tn(t) = 0)

P (FTVn(t))

=
(1 − p(t))

Q

k|k∈FTNn
p

Sk(t)
k (1 − pk)1−Sk(t)

P (FTVn(t))
(11)

We can now compute the likelihood ratio as:

γ =
P (Tn(t) = 0|FTVn(t))

P (Tn(t) = 1|FTVn(t))

γ =
(1 − p(t))

Q

k|k∈FTNn
p

Sk(t)
k (1 − pk)1−Sk(t)

p(t)
Q

k|k∈FTNn
p
1−Sk(t)
k (1 − pk)Sk(t)

(12)

It can be easily seen that:

γ =
1 − p(t)

p(t)

Y

k|k∈FTNn

(
pk

1 − pk

)Sk (
1 − pk

pk

)1−Sk(t)
(13)

This equation can be re-written as:

γ =
1 − p(t)

p(t)

Y

k|k∈FTNn

( 1−pk

pk

)1−Sk(t)

( 1−pk

pk

)Sk(t)

γ =
(1 − p(t))

Q

k|k∈FTNn
( 1−pk

pk

)1−Sk(t)

p(t)
Q

k|k∈FTNn
( 1−pk

pk

)Sk(t)

(14)



Since 1−Sk(t) = 0 when Sk(t) = 1, the numerator in the previous
equation can be written as follows:

(1 − p(t))
Y

k|k∈FTNn

(
1 − pk

pk

)1−Sk(t)

= (1 − p(t))
Y

k|v(k)=0

1 − pFTNn(k)

pFTNn(k)
= F0(v)

(15)

where v = FTVn(t). Similarly, the denominator corresponds to
F1(v). We can, therefore, re-write γ as:

γ =
F0(FTVn(t))

F1(FTVn(t))
(16)

The estimator minimizes the error if it estimates Rn(t) = 0
when γ > 1 [13], which is equivalent to deciding based on the
maximum a posteriori (MAP) criterion. This corresponds to the case
of F0(FTVn(t)) > F1(FTVn(t)). This completes the proof of the
optimality of the FTEDD estimator.

The following corollaries give the detection error probability of
the FTEDD estimator and determine whether it is biased or not.

Corollary 1. The probability of detection error at node n and time
t is given by:

Pen(t) = pn(t)
X

v∈Ω0

Y

k|k∈FTNn

p
1−Sk(t)
k (1 − pk)Sk(t)

+(1 − pn(t))
X

v∈Ω1

Y

k|k∈FTNn

p
Sk(t)
k (1 − pk)1−Sk(t)

(17)

where Ω0 = {v ∈ Pn : F0(v) > F1(v)} and Ω1 = {v ∈ Pn :
F1(v) > F0(v)}.

Proof. An error occurs when the estimator decides a value Rn(t) that
is different from the real value Tn(t). The probability of detection
error is therefore given by:

Pen(t) = P (Rn(t) 6= Tn(t)|Tn(t), FTVn(t))

= P (Tn(t) = 1)P (Rn(t) = 0|Tn(t) = 1, FTVn(t))

+P (Tn(t) = 0)P (Rn(t) = 1|Tn(t) = 0, FTVn(t))

(18)

If v = FTVn(t), the conditional probabilities are computed as
follows:

P (Rn(t) = 0|Tn(t) = 1, v) = P (F0(v) > F1(v)|Tn(t) = 1, v)

=
X

v∈Ω0

Y

k|k∈FTNn

p
1−Sk(t)
k (1 − pk)Sk(t)

(19)
In a similar way, we have:

P (Rn(t) = 1|Tn(t) = 0, v) = P (F1(v) > F0(v)|Tn(t) = 0, v)

=
X

v∈Ω1

Y

k|k∈FTNn

p
Sk(t)
k (1 − pk)1−Sk(t)

(20)
And since P (Tn(t) = 1) = pn(t) and P (Tn(t) = 0) = 1 − pn(t),
we obtain the desired result.

Corollary 2. Suppose that for all nodes k ∈ Ne, the probability
of local detection error 0 < pk < 1

2
, then the FTEDD estimator is

biased. However, the estimator is asymptotically unbiased.

Proof. This corollary comes from the observation that because 0 <

pk < 1
2

, we will always have a non-null probability of error:
Pen(t) = P (Rn(t) 6= Tn(t)|Tn(t), FTVn(t)) > 0 for a finite

number of neighbors. The expected value of the estimator decision
is given by:

E(Rn(t)|Tn(t), FTVn(t)) = Tn(t)P (Rn(t) = Tn(t)|Tn(t), FTVn(t))

+(1 − Tn(t))P (Rn(t) 6= Tn(t)|Tn(t), FTVn(t))
(21)

Since P (Rn(t) 6= Tn(t)|Tn(t), FTVn(t)) > 0, we have that
E(Rn(t)|Tn(t), FTVn(t)) 6= Tn(t). The estimator is, therefore,
biased. However, as the number of elements in the FTNn increases,
the probability of error gets closer to 0 since pk < 1

2
for all nodes

in the network. In this case, E(Rn(t)|Tn(t), FTVn(t)) approaches
the real situation, Tn(t), and the estimator becomes unbiased.

The next theorem allows the expression of the FTEDD estimator as
a weighted voting scheme [14] and provides the corresponding node
weights. This is in contrast with the majority and k − out − of − n

schemes used in [8].

Theorem 2. When the presence or absence of an event are equally
likely (pn(t) = 1

2
), the FTEDD estimator is equivalent to a weighted

voting scheme of the nodes in FTNn. A node k ∈ FTNn has the
following weight:

wk = ln
1 − pk

pk

, ∀k ∈ FTNn (22)

Proof. We have that when 1 − pn(t) = pn(t) = 1
2

, the likelihood
ratio is given by:

γ =
Y

k|k∈FTNn

(
pk

1 − pk

)Sk (
1 − pk

pk

)1−Sk(t)
(23)

Since 1−pk

pk

= ewk , we can write γ in the following form:

γ =
Y

k|k∈FTNn

(
1

ewk

)Sk (ewk )1−Sk(t) =
Y

k|k∈FTNn

(ewk )1−2Sk(t)

=
Y

k|k∈FTNn

e
wk(1−2Sk(t)) = e

(
P

k|k∈F TNn
wk(1−2Sk(t)))

(24)
It is clear that γ > 1 is equivalent to

P

k|k∈FTNn
wk(1 − 2Sk(t)) >

0. This sum can be written in the following way by replacing the
values of 1 − 2Sk(t) with 1 or −1 depending on the values of Sk

n:
X

k|k∈FTNn

wk(1 − 2Sk(t))

=
X

k∈FTNn|Sk(t)=0

wk −
X

k∈FTNn|Sk(t)=1

wk

(25)

So γ > 1 is equivalent to
P

k∈FTNn|Sk(t)=0 wk >
P

k∈FTNn|Sk(t)=1 wk. This corresponds to a weighted majority vote
in favor of the hypothesis of Tn(t) = 0. This completes the proof of
the theorem.

III. DISTANCE-BASED ERROR MODEL FOR FAULT-TOLERANT
DISTRIBUTED DETECTION

In this section, we present a new fault-tolerant event detection
scheme that uses a distance-based error model. This scheme allows
us to account for the fact that the evidences coming from two different
neighbors of n do not necessarily have the same importance when
used to estimate the real situation at node n. In fact, the correlation
between the real situation at node n and the situation at a node
n1 ∈ FTNn is higher than the correlation with the situation n2

when d(n, n1) < d(n, n2). Here, d(n, ni) is the Euclidean distance
between the two nodes.



We use a model inspired by the distance-based signal model
in [15]. Consider a node nk at distance d from an event site. If
the true sensor reading of a node collocated at the event site is e0,
then the average sensor reading at nk can be modeled as:

e =
be0

da
(26)

where the parameters a and b represent the attenuation factors and
are function of the event propagation characteristics, size of the event
region and the deployment terrain properties. Example values are b =
1 and a = 2 in the absence of obstacles. However, the values of a and
b depend on terrain characteristics and propagation properties [15].

To take the neighbor distance into account, we define a new
weighted voting model that gives a weight factor to each neighbor
that is a function of its relative distance to n compared to other
neighbors.

Definition 7. We define the distance weight wdk as the weight given
to the node k ∈ FTNn as follows:

wdk = 1 +
d(n, k)

P

m|m∈FTNn
d(n, m)

(27)

And the node weight in the voting scheme is given by:

wnk = wdkwk (28)

where wk represents the original node weight, defined previously in
theorem 2.

This node is not ideal, since it does not give to each neighbor
k a weight corresponding to the exact probability of detection error
when using a node k ∈ FTNn to estimate the real situation at node
n. The computation of this probability requires the assumption that
the sensor readings follow a specific probability distribution model,
which is not assumed here for the purpose of generality. For example
if we assume a Gaussian error term of mean 0 and variance σ2

n, then
the probability of detection error when using a node k ∈ FTNn to
estimate the real situation at node n is given in the next proposition.

Proposition 1. Assuming a Gaussian error term, the probability of
error when an event occurring at node n is detected by a node k ∈
FTNn is given by:

p
n
k = Q(

bme

σk(d(n, k))a
− Q

−1(pk)) (29)

where me is the mean value in the presence of event and d(n, k) is
the distance between the two nodes.

Proof. This proposition comes from the assumption that the node k

uses the threshold defined in equation 1. In this case an error occurs
when an event occurs and is not detected or an event is detected when
no event did occur. These two probabilities are equal. Using the mean
sensed value in presence of event me instead of e0 in equation 26.
The detection error is therefore:

p
n
k = Q(

bme

d(n,k)a − th

σk

) = Q(

bme

d(n,k)a − (me−mn

2
)

σk

)

= Q(

bme

d(n,k)a

σk

− me − mn

2σk

)

(30)

And since me−mn

2σk

= Q−1(pk), we obtain the result in the proposi-
tion.

We note that by using this Gaussian error model, different nodes
have different perceived error probabilities for a node n depending
on their distances from n. These probabilities are normally different

from the local probability at n. In this scheme, the error probabilities
pn

k can be used instead of the values of pk by node n to compute
each neighbor weight for the decision scheme in definitions 5 and 6
and theorem 2.

IV. GROUP-BASED ERROR MODEL FOR FAULT-TOLERANT
DISTRIBUTED DETECTION

In this section, we develop an error model that takes into account
in the fault-tolerance mechanism the geographical distribution of
the group of neighbors reporting a specific detection decision. To
illustrate this idea, we consider the following examples. We assume,
for simplification, that all nodes have the same probability of error
p. In the first example, nodes 1, 2, 3 in Figure 1 report a detection
decision of 1. In the second example, nodes 2, 4, 6 report the same
decision. The idea here is that even though the same number of
neighbors of n reported a decision of 1 in the two examples, the
second decision is more reliable. This is because if all nodes reporting
a decision of 1 are on one side of n it is conceivable that these nodes
are at the border of the event region. In this case, the node n is outside
of the event region and no event should be detected. On the other
hand, if nodes from different sides of n report a decision of 1, it is
very likely that an event is also present at n. This is specially true
in the case of a convex event region.

n

1

2
3

4

5

6

Fig. 1. Group-based error model

To take the geographical distribution into account, we define a new
weighted voting model that gives a weight factor to each neighbor that
is a function of the geographical distribution of the decision group
to which they belong. There are two decision groups G0 = {k ∈
FTNn \ n : Sk(t) = 0} and G1 = {k ∈ FTNn \ n : Sk(t) = 1}.

Definition 8. We define the weight wgj as the weight given to the
decision group Gj with j ∈ {0, 1}. This group weight is given by:

wgj =
r − d(n, mj)

r
(31)

where mj is the geographical centroid of nodes in Gj , d(n, mj) is
the distance between n and mj and r is the fault-tolerance range.

This weight is higher when mj is closer to n. In fact, the centroid
of the group is closer to n when nodes are distributed around n than
when the nodes are on the same side while having the same distances
from n.

We can now compute the node weight that is a function of both its
individual local detection error and its group weight. The new node
weight of a neighbor k ∈ Gj is given by:

wnk = wgjwk (32)



where wk represents the original node weight, defined previously in
theorem 2.

Using these new weights, we can now compute the probability of
detection error when using a node k ∈ FTNn \ n to estimate the
real situation at node n. This probability is given in the following
proposition.

Proposition 2. The probability of error when an event occurring at
node n is detected by a node k ∈ FTNn is given by:

p
n
k =

1

1 + ewnk

(33)

Proof. This error probability is obtained by inverting the relationship
in theorem 2 and using the new wnk instead of wk.

We can now use these new probabilities of detection errors in the
decision scheme instead of the original ones in definitions 5 and 6.

Note that this group-based error model can be used in combination
with the distance-based one presented in the last section. In such
a case, the detection error probability values are used to compute
the original neighbor weights (wk) to obtain new weights. These
distance-based weights are then used to compute the node weight in
this model.

V. SIMULATION RESULTS

In this section, we present a set of simulation results that are
intended to demonstrate some of the capability of our fault-tolerant
estimator (FTEDD). In particular, the estimator is compared to the
approach proposed in [8]. The simulations were conducted using the
Georgia Tech Sensor Network Simulator (GTSNetS) [16], [12].

We simulated a sensor network of 1024 nodes randomly deployed
(uniform distribution) in a region of 680 meters by 680 meters. The
communication range was set to 23 meters. The parameter r defining
the fault-tolerance range was set such that each interior node has 4
neighbors that are used in the distributed decision mechanism. One
source (sensed object) was placed at the lower left corner of the region
of interest. The sensing range was set to 93 meters. All simulation
results were obtained by averaging over 1000 runs.

To reduce the size of the exchanged messages, we run an initial
neighbors discovery phase prior to the execution of the fault-tolerance
algorithm. This avoids having to send node locations along with every
sensor reading message, which greatly reduces the sensor message
size. This helps to reduce the energy cost of the algorithm, but
requires the existence of an identification mechanism [17]. Every
node communicates only with nodes in its fault-tolerance range. In
this specific simulation, this range is less than the communication
range. Nodes, therefore, broadcast their messages to the neighboring
nodes and there is no need for any routing protocol.

In this simulation scenario, we are assuming a Gaussian error term.
However, our decision scheme does not require this assumption. In
fact, nodes are not required to know the specific distribution of the
error term prior to the deployment or to have the same distribution.
The error is assumed to have a mean of 0. We simulate the case of
nodes having different error probability levels by assigning to a node
k a random standard deviation σk. This standard deviation varies
uniformly in a range of plus or minus a fixed percentage of the
average standard deviation σ. This fixed percentage is referred to as
the variation percentage in the rest of this section. The error level
corresponding to the average σ is referred to as the nominal error
probability in the rest of this section. The error probability pk is then
computed using the expression in equation 3. With me = 32 and

mn = 0. The tail function was approximated using the erfc (error
complementary) function using the following expression.

Q(x) =
1

2
erfc(

x√
2
) (34)

The following metrics, defined in [8] are used to compare our
algorithm the algorithm proposed in [8] which uses a majority voting
scheme.

• Number of errors corrected: number of original sensor errors
detected and corrected by the algorithm

• Number of errors uncorrected: number of original sensor errors
undetected and uncorrected by the algorithm

• Number of errors introduced by the solution: number of new
errors introduced by the algorithm

• Reduction in errors: overall reduction in number of errors, taking
into account the original errors and the ones introduced by the
algorithm
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Fig. 2. Normalized number of corrected errors vs. nominal error probability
for 20% and 50% percentage variations

The effects of two parameters on these metrics are studied. These
parameters are the nominal local detection error probability levels
and the variation percentage. In Figure 2, the normalized number of
original errors detected and corrected using the FTEDD estimator
is plotted as a function of the nominal error rate for two different
values of the variation percentage. This graph shows that the estimator
corrects a large percentage of errors caused by the inaccuracy of
the local node decision scheme. The estimator corrects more than
85% of the local errors for an error level as high as 15%. The
plot shows also that the FTEDD estimator maintains a high level of
performance as the heterogeneity of the sensor nodes, represented by
the variation in standard deviation, increases. In fact, the percentage
of corrected errors remains relatively unchanged when the variation
goes from 20% to 50%. The slightly better performance obtained
for a percentage variation of 50% comes from the fact we vary
the standard deviation σ and not the error probability itself. As the
variation increases, the average error probability decreases due to
the nature of erfc function. In fact, as this probability increases the
variation in σ translates into less significant variation around the



nominal probability of error. This is due to the decreasing rate of
increase of p as a function of σ given in equation 34.

The normalized number of uncorrected errors can be readily
computed from the normalized number of corrected errors, since the
two sum up to 1.
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Fig. 3. Normalized number of introduced errors vs. nominal error probability
for 20% and 50% percentage variations

Figure 3 gives the number of errors introduced by the use of the
FTEDD estimator as a function of the nominal probability. This
normalized percentage is computed as the number of introduced
errors divided by the number of errors present when the estimator
is not used. As the figure shows, the number of introduced errors
remains relatively small, e.g., less than 5% for a nominal error
probability of up to 15%. Again, the performance of the estimator
remains very stable with respect to the level of variation. In particular,
the normalized number of introduced errors does not change much
between the cases 20% and 50% variation.

The normalized reduction in errors shows that the estimator reduces
greatly the level of errors. At a nominal error level of 15%, the
estimator reduces the average number of decision error by more
than 80% as shown in Figure 4. Again, there is a slightly better
performance when the percentage variation increases from 50% to
20%.

Our simulations demonstrate that the FTEDD estimator performs
better than the majority voting scheme of [8]. The two estimators
give similar results of the normalized number of corrected errors.
However, FTEDD introduces fewer new errors than does the ma-
jority voting scheme as shown in Figure 5. The difference is even
greater when we increase the level of variation around the nominal
probability level. For a variation of 50%, for example, the number of
errors introduced by the majority voting scheme is more than three
times the number introduced by FTEDD for an error probability level
of up to 15% as shown in Figure 6.

VI. CONCLUSION

We presented an optimal fault-tolerant estimator for distributed
detection in sensor networks with sensor nodes of different accuracy
levels. This estimator is proven to be equivalent to a weighted voting
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scheme. We also provided two new error models that account for
the node distance and the geographical quorum distribution in the
distributed detection decision scheme.

In addition to the theoretical analysis, the proposed fault-tolerance
event detection scheme was tested and gave good performance under
various simulation settings. It was found, for example, that this
scheme can detect and correct more than 85% of original detection
errors, while introducing only less than 5% of new errors.
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