
A Floorplan-Aware Dynamic Inductive Noise Controller
for Reliable 2D and 3D Microprocessors

Fayez Mohamood Michael B. Healy Sung Kyu Lim Hsien-Hsin S. Lee

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, GA 30332
{fayez, mbhealy, limsk, leehs}@ece.gatech.edu

ABSTRACT
Power delivery is a growing reliability concern in micropro-
cessors as the industry moves toward feature-rich, power-
hungrier designs. To battle the ever-aggravating power con-
sumption, modern microprocessor designers or researchers
propose and apply aggressive power-saving techniques in the
form of clock-gating and/or power-gating in order to operate
the processor within a given power envelope. However, these
techniques often lead to high-frequency current variations,
which can stress the power delivery system and jeopardize
reliability due to inductive noise (L di

dt
) in the power sup-

ply network. In addition, with the advent of 3D stacked IC
technology that facilitates the design of processors with much
higher module density, the design of a low impedance power-
delivery network can be a daunting challenge. To counteract
these issues, modern microprocessors are designed to operate
under the worst-case current assumption by deploying ade-
quate decoupling capacitance. With the lowering of supply
voltages and increased leakage power and current consump-
tion, designing a processor for the worst case is becoming
less appealing.

In this paper, we propose a new dynamic inductive-noise
controlling mechanism at the microarchitectural level that
will limit the on-die current demand within predefined bounds,
regardless of the native power and current characteristics of
running applications. By dynamically monitoring the ac-
cess patterns of microarchitectural modules, our mechanism
can effectively limit simultaneous switching activity of close-
by modules, thereby leveling voltage ringing at local power-
pins. Compared to prior art, our di/dt controller is the first
that takes the processor’s floorplan as well as its power-pin
distribution into account to provide a finer-grained control
with minimal performance degradation. Based on the evalu-
ation results using 2D and 3D floorplans, we show that our
techniques can significantly improve inductive noise induced
by current demand variation and reduce the average current
variability by up to 7 times with an average performance
overhead of 4.0% (2D floorplan) and 3.8% (3D floorplan).

1. INTRODUCTION
High-performance, power-conscious microprocessors exhibit

varying current demands depending on the execution char-
acteristics of a given program. For a high frequency micro-
processor, any abrupt change in current demand (referred
to as di/dt) will result in high-frequency inductive noise

that leads to voltage ringing in the power-supply network,
thereby posing a serious issue in circuit reliability. This
is especially a concern in high-frequency processors where
the supply-voltage needs to respond and stabilize to vary-
ing current demands without violating stringent timing con-
straints. In the worst case, overshoot or undershoot in the
power supply network can adversely flip data values in the
data path, resulting in incorrect computation. To address
this reliability issue, processors are often over-designed, typ-
ically with the use of an excessive amount of decoupling
capacitors (decap) that can warrant reliable operations un-
der the worst case current consumption scenario. However,
for increasingly complex processors, inserting an overly ex-
cessive amount of decaps enlarges the chip area and at the
same time exacerbates the leakage power. Moreover, signifi-
cant design effort and cost of worst-case design is inevitable
for managing the infrequent cases where programs exhibit
the maximum level of varying current demands during the
course of execution.

Traditional technology scaling for CMOS is one reason
that causes a high variability in current flow within a pro-
cessor. As the dimension of devices keeps shrinking, the
supply voltage is reduced as well in order to meet the gate-
oxide reliability requirement. This lowered supply voltage
imposes a smaller absolute noise margin, exacerbating the
inductive noise issue. On the other hand, the increasing
number of available transistors on chip as well as the pursuit
of ever-higher operating frequencies result in more power
consumption. To mitigate power consumption and its ensu-
ing thermal management problems, aggressive power-saving
techniques such as clocking gating and/or power gating were
widely studied and applied. Processors such as the Intel
Pentium 4, Pentium M and IBM Power5 [14, 19, 3] use differ-
ent levels of clock gating schemes to dynamically disable por-
tions of the circuits that do not change states. At the mean-
while, the industry has acknowledged the di/dt issue due to
the extensive application of clock-gating and responded with
architectural solutions. For instance, the L2 cache in the
Power5 processor uses progressive clock-gating in different
cache banks to mitigate the di/dt effect [14]. This is also one
reason why ideal clock-gating, limiting power dissipation in
active modules, is difficult to attain in practical designs.

Conventionally, the worse-case current consumption can
be profiled and gauged by exercising power virus programs [10].
These programs were written with a goal in mind — varying

1

the execution behavior from extremely high activity to al-
most none for inducing drastic fluctuation of the current de-
mands to stress the power-delivery network. Such exercises
provide an approximation of the maximal supply-voltage
overshoot or undershoot conceivable in a design. Designers
then allocate the appropriate amount of decaps needed to
manage this worst-case voltage ringing, in a repetitive pro-
cess until a given module is within the noise margin. The
drawback in such a design lies in the fact that a significant
amount of chip area (in the form of decaps) is devoted to
the coverage of those infrequent corner cases. For example,
the Alpha 21264 reports that roughly 15 to 20% of the die
area is occupied by decaps [9] and the trend is going up.
Also note that, these decaps will contribute a considerable
amount of leakage power in future deep submicron proces-
sors. Clearly, the trade-off in future processor designs can
be rather complicated in determining the degree of gating
sustainable by a chip, the area overheard, and additional
leakage due to decaps.

To address these shortcomings present in the worst-case
design methodology, we propose a low-cost di/dt control-
ling mechanism embedded into the microarchitecture that
will dynamically limit high-frequency di/dt below a prede-
fined threshold. Our design is intended to be integrated in
the early microarchitecture planning stages in order to facil-
itate the design of a processor for the average-case current
consumption scenario. The main contributions of this work
include the following.

• We present the use of decay counters as a simple mecha-
nism to monitor the access pattern of each microarchitec-
tural module in order to prevent unsteady self-switching
activity.

• We propose a novel microarchitectural technique using a
queue-based dynamic di/dt controller to avoid overly pre-
scribed simultaneous (or correlated) gating of modules
that share the same local power-pins on the processor’s
power delivery network.

• To simultaneously avoid performance loss as well as re-
duce high-frequency di/dt effect, we present the inte-
gration of Preemptive ALU Gating into our queue-based
dynamic di/dt controller.

• Finally, to achieve fine-grained di/dt control for large
modules, we present an enhancement to perform progres-
sive clock-gating without violating the current demand
threshold.

Unlike prior techniques [10, 15, 16, 22, 23, 24, 25, 26]
that largely aim at providing chip-level di/dt control, our
technique monitors and controls di/dt by leveraging spatial
information of modules obtained from a given floorplan and
its power-pin distribution. Inductive noise is highly de-
pendent on the chip floorplan which determines the relative
location of functional modules and their distance from the
power-pins. Since power-pins will be stressed non-uniformly
across the power supply network, certain modules will have
a higher susceptibility to inductive noise than the others.
Hence, a solution at the chip-level is too coarse-grained and
cannot account for the fact that certain power pins are un-
affected by a distant module. For the same reason, such
designs are also likely to generate many false alarms, result-
ing in undesired performance degradation. In contrast, by
guaranteeing the prevention of simultaneous gating of mod-
ules that share the same power-pins, our proposed technique

can accurately limit the current demands to be within des-
ignated bounds.

The rest of the paper is organized as follows. We begin
with an outline of prior art and their limitations in Sec-
tion 2. Section 3 describes power delivery issues faced by
modern processor designs and the inefficacy of worst-case
design. Section 4 describes the design of our dynamic di/dt
controller for 2D and 3D stacked IC processors. Section 5
discusses our experimental methodology and setup followed
by the evaluation in Section 6. Finally, Section 7 concludes.

2. RELATED WORK
The microarchitecture community has recently paid no-

table attention to di/dt issues due largely to power-saving
techniques such as clock-gating, and have proposed solutions
to characterize and address them. The work done by Gro-
chowski et al. [10] at Intel was one of the first thrusts to illus-
trate the criticality of di/dt and propose solutions from the
perspective of architects. Their work showed that applica-
tions exhibit varying current characteristics in a large range
and outlined the fact that a microarchitectural solution can
be used to improve current demands with a feedback con-
trol mechanism. The objective of their proposed mecha-
nism is to dynamically estimate supply noise violations by
performing current-to-voltage calculations on the chip and
throttle instruction fetch or issue upon the detection of a
reliability emergency. This work, however, addressed the
mid-frequency di/dt problem at the chip-level and the ar-
chitecture presented is incapable of altering current demands
over a small clock-cycle interval (e.g. less than 25 clock cy-
cles). In contrast, our work is targeted at mitigating the
high-frequency di/dt issue in order to enable average-case
microprocessor design and reduce the on-die decap budget.

In [15, 16], Joseph et al. analyzed power supply response
and control voltage emergencies in a processor via microar-
chitectural techniques. They concentrated on the worst case
di/dt issue which occurs at the resonance frequency of the
power supply, and proposes a solution to mitigate the mid-
frequency di/dt problem in the range of 50-100 MHz. Sim-
ilarly, Powell and Vijaykumar also proposed solutions to
mitigate the reliability issues caused by resonant frequency.
In [26], their technique exploits the resonant behavior of
the power supply whereby the processor current is dynami-
cally altered to a non-resonant frequency to avoid the worst
case voltage drops and spikes. Another technique Pipeline
Damping they proposed in [24] throttles microarchitectural
activity at the front-end and the back-end to alter the cur-
rent surges at the resonant frequency.

In contrast to purely hardware-based techniques, Hazel-
wood and Brooks proposed a hybrid hardware/software so-
lution to address the mid-frequency di/dt issue [11]. Their
solution is meant to be an add-on to existing mid-frequency
di/dt controllers. Since purely hardware-based di/dt con-
troller techniques incur a performance impact in the case
of an emergency, their work aimed at addressing this de-
ficiency by performing dynamic optimization to alter the
program codes that induce large di/dt oscillation. By us-
ing compiler-based solutions, they illustrated that existing
compiler techniques, e.g., software pipelining, code motion
and instruction padding can modify program behavior that
causes di/dt at the resonance frequency, while avoiding per-
formance overhead.

It is important to distinguish that that all the above men-

2

tioned work tackles the mid-frequency di/dt issue (50-100
MHz) and assumes the availability of adequate on-chip de-
cap to counter high frequency di/dt effects. In contrast, the
focus of our work lies in mitigating high-frequency di/dt that
requires immediate response, thus rendering the above so-
lutions inappropriate. Our primary objective is to advocate
average-case design and alleviate the application of a grow-
ing large size of on-die decaps, which not only increase the
overall chip area but also aggravate leakage power. Toward
this effort, Powell and Vijaykumar also proposed a microar-
chitectural technique called Pipeline Muffling [25] by con-
trolling instruction issue and limiting the number of used
resources. However, high-frequency di/dt problem is ex-
tremely dependent on the spatial distribution of modules
across the floorplan and their distances from the power-pins
on a power supply grid. In addition, the high-frequency
di/dt problem is not only dependent on a given module’s ac-
tivity, but also correlated to gating events that stress nearby
power-pins. Existing works in this area do not account for
this fact, that could result in either violated current demand
guarantees, or many false alarms. Besides this, Tang et al.
in [31] proposed controlled ramping of Floating Point Units
alone through scanning the Instruction Fetch Queue for up-
coming instructions. This work has two limitations. First,
it only deals with FPUs. Second, di/dt effect of an instruc-
tion vary depending on how it proceeds through different
pipeline stages. In addition, similar to the other works in
this area, floorplan or power-pins are not considered.

Outside the microarchitecture domain, several solutions
were proposed at the circuits level to address high frequency
di/dt [6, 21, 32]. The main objective in most of these tech-
niques is to reduce the impedance path to individual mod-
ules in a processor, minimizing the voltage surges and dips.
Floorplanning algorithms with the objective of minimizing
inductive noise were studied recently [20, 6, 7]. However,
these are completely static solutions. Although they can
improve the average-case noise problem, the chip still needs
to be guaranteed the worst-case events. This is mainly due
to the fact that static solutions cannot exploit or react to
program behavior. It is an extremely important to note
that our technique is complementary to such circuit solu-
tions that try to improve the average-case voltage swing. An
ideal design will involve optimizing a floorplan and its power
supply network for the average-case inductive noise and in-
tegrating our dynamic controller to prevent the worst-case
current demand at a given power pin domain. Since worst-
case program behavior is infrequent, our low-overhead tech-
nique can trade off nominal performance in order to meet
the current demand threshold.

3. HIGH-FREQUENCY INDUCTIVE NOISE
ISSUES

To address inductive noise issues that result from abrupt
changes in the dynamic current demands, designers typically
target a low-impedance power delivery network by deploy-
ing adequate decoupling capacitors.1 In order to meet the
impedance target across a wide range of frequencies, multi-
stage decoupling capacitors are necessary. High-frequency
noise is handled by decaps that are distributed through-
out the die. Medium-frequency decaps are typically placed
on the land side of the package, as close as possible to the

1Current designs target at sub-milliohm impedance.

motherboard, to facilitate the lowest possible impedance.
Finally, bulk capacitors on the motherboard address the
low-frequency current fluctuations. Since our work targets
the the high-frequency di/dt issue, this section will describe
some key aspects that are responsible for exacerbating high-
frequency di/dt in future designs.

3.1 Sources of High-Frequency Inductive Noise
General purpose processors run a wide variety of appli-

cations; the current profile for each application varies de-
pending on many factors. Generally, applications with high
ILP will exhibit constant use of all modules across the pro-
cessor, resulting in less current variability. In contrast, ap-
plications that oscillate between high and low level activi-
ties display a more irregular current profile. With dynamic
clock-gating for idle functional units, the abrupt current
variation is even more prominent. The current profile also
correlates closely to program phases. For instance, a pro-
gram might consistently performs simple arithmetic opera-
tions in a certain phase, leaving little activity in the caches.
However, from a fine-grained perspective, even consecutive
instructions can vary the current demands substantially if
the functional units they exercise are completely different.
Although a program appears to be in a consistent phase
with a regular instruction profile for thousands of cycles,
minute irregularity in-between consecutive instructions can
still cause an unexpected current surge or dip, resulting in
detrimental voltage spikes. Furthermore, the exact same
instruction can generate a different current profile due to
dynamic effects like cache misses. For instance a LOAD in-
struction that hit in the cache versus the same instruction
that misses the next time will create different module access
patterns and clock-gating activity. Therefore, understand-
ing and exploiting current profiles of applications requires a
much finer grained control.

Microarchitectural modules have non-uniform current de-
mands and it is critical to create a low impedance path to
modules demanding high current. Similarly, modules that
induce high current fluctuation can create a greater bur-
den on the power supply, if they are placed close to each
other and have a high probability of switching simultane-
ously. Note that simultaneous switching events along the
same direction raises a major issue to power delivery. A
floorplan that is resistant to inductive noise tries to gener-
ate a well balanced layout to distribute the current demand
in a more regular manner across the power-supply grid [21,
20, 7]. However, floorplanning is a static solution. While a
noise-aware floorplan can mitigate di/dt effects to a certain
extent, it is still unable to completely eliminate the dynamic
reliability emergency due to high frequency inductive noise.

3.2 Implications of Inductive Noise in 3D-IC
Processors

The emerging 3D-IC technology enables multiple die to
be stacked up in the vertical direction with high-density in-
terconnect vias. The pitch of these vertical die-to-die vias
can be as short as a few microns [8], thus substantially re-
duce the communication latency, in particular for the global
interconnects. The 3D stacking can be done either through
face-to-face (F2F) or face-to-back (F2B) bonding [4]. F2F
bonding allows higher density interconnects since vias are
masked and deposited on top of the metal layer using con-
ventional manufacturing technologies. On the other hand,

3

F2B requires vias to be etched through the backside, how-
ever, it facilitates an arbitrary number of die to be stacked.
Both F2F and F2B bonding in 3D-IC technology permit
higher density and fast interconnects enabling more func-
tionality to be packed in a given area.

For high-performance microprocessor designs, 3D stack-
ing is a promising and appealing solution for the worsening
scalability of global communication on die. For instance,
future multi-core or tera-scale integration designs can lever-
age 3D-IC technology to fabricate functional units such as
caches, ALUs, or instruction schedulers on distinct layers in
order to facilitate uniform access times [18, 27, 28, 29]. The
important point to note is that the module density is much
higher in a 3D-IC within a smaller die footprint. Since the
number of power/ground layers is limited to the shrunk die
area that can grow in the third dimension, it makes the de-
sign of a well balanced 3D floorplan even more challenging.
Furthermore, the traditional techniques of designing for the
worst-case are counter-intuitive in 3D-IC design. This is be-
cause of the fact over-designing 3D-ICs using decaps that
consume considerable chip area will automatically negate
the inherent benefits such as area and lower wire power pro-
vided by 3D-IC technology.

3.3 Quantifying Module Activity
To effectively manage and prevent the high-frequency volt-

age ringing at the microarchitectural level, it is imperative
to understand the simultaneous switching behavior among
different microarchitectural blocks and their relative loca-
tions to each other (i.e. the sharing of power-pins) on a
given floorplan. To understand switching behavior of mi-
croprocessor modules, we quantified two metrics, namely
the self-switching activity and correlated or simultaneous-
switching activity of modules. Self-switching measurement
is used to quantify the number of gating occurrences in the
processor for a benchmark during the profiling period. Both
gating on and off are considered as likely events to cause cur-
rent fluctuation. The objective of this metric is to isolate
the microarchitectural modules of high switching activity.
In addition, the intensity of the gating activity also depends
on the current consumption of each module. In other words,
even if a module switches less frequently than the others, it
still can potentially induce intolerable noise if it draws a sig-
nificant amount of current. The number of switching events
and the current consumption per cycle called intensity of
switch are combined into a single weight. If swi represents
the raw number of switching events for module i and Ii is
the intensity of the switch, then the self-switching factor αi

is represented by the following relationship.

Self-switching factor, αi = swi × Ii (1)

2

6

6

6

6

6

4

α1
1

2

“

X12

sw1

+ X21

sw2

”

. . . 1

2

“

X1n

sw1

+ X
n1

swn

”

0 α2 . . . 1

2

“

X2n

sw2

+ X
n2

sw
n−1

”

. .

. .
0 0 . . . αn

3

7

7

7

7

7

5

Figure 1: Correlated Switching Matrix

Correlated switching events are gating events in the same

direction i.e. both modules are clock-gated ON or OFF si-
multaneously. To measure correlation, we capture the inter-
cycle gating direction of each module in the profiling pro-
cess. Then each module is paired with every other module
in the processor, and checked for simultaneous gating, in the
same direction. The result is an upper triangular correla-
tion matrix with each location representing the number of
simultaneous gating events encountered. An illustration of
the calculation process of correlated switching events that is
relative to the modules, is shown in Figure 1. In the matrix,
Xij is the number of raw correlated switches that occurred
over the profiling duration and swi is the number of self-
switching events for module i. It is to be noted that the
correlation metric Xij isolates only the modules in consid-
eration. The upper bound of 100 indicates a perfect corre-
lation, i.e. both modules i and j switched simultaneously
every single time. The forward diagonal in the same matrix
represents the self-switching factor, αi, for each module.

Using eight SPEC2000 INT benchmark programs,2 Ta-
ble 1 shows the switching correlation as a matrix for 23 mi-
croarchitectural modules considered in our processor model.
The diagonal (shaded) in the matrix represents the amount
of self-switching factor. As observed from Table 1, cer-
tain modules switch far more frequent than others. On
the other hand, the weights of the modules that are likely
to be accessed every cycle (turned on mostly) such as the
L1 I-Cache and the I-TLB are lower. Some modules with
smaller weights are dormant, e.g. floating-point register file
(Freg),3 only accessed once in a long while. In addition, as
expected, branch predictor and BTB, I-Cache and I-TLB
and D-Cache and D-TLB are all highly correlated modules.
In addition, it is also observed that the first six ALU mod-
ules are also highly correlated, since concurrency exists in
integer instructions. The design of our high-frequency dy-
namic di/dt controller is mainly based around the intrinsic
switching behavior of microarchitectural modules.

LSQ
RUU
BTB
L2$
IRF
L1D$
ALU1
ALU2
ALU3
ALU4
ALU5
ALU6
L1I$
Bpred
DTLB
ITLB
FALU1
FALU2
Freg

LSQ
 28
 0
 20
 13
 20
 2
 10
 10
 10
 10
 10
 10
 11
 20
 0
 11
 10
 10
 12

RUU
 0
 26
 8
 4
 13
 2
 0
 0
 0
 0
 0
 0
 5
 8
 2
 5
 0
 0
 5

BTB
 20
 8
 18
 7
 29
 17
 13
 13
 13
 13
 13
 13
 37
 100
 17
 37
 13
 13
 13

L2$
 13
 4
 7
 16
 14
 28
 12
 12
 12
 12
 12
 12
 21
 7
 26
 21
 4
 4
 7

IRF
 20
 13
 29
 14
 10
 17
 7
 7
 7
 7
 7
 7
 23
 29
 17
 23
 8
 8
 24

L1D$
 2
 2
 17
 28
 17
 7
 6
 6
 6
 6
 6
 6
 11
 17
 93
 11
 5
 5
 6

ALU0
 10
 0
 13
 12
 7
 6
 3
 100
 100
 100
 100
 100
 15
 13
 6
 15
 66
 66
 4

ALU1
 10
 0
 13
 12
 7
 6
 100
 3
 100
 100
 100
 100
 15
 13
 6
 15
 66
 66
 4

ALU2
 10
 0
 13
 12
 7
 6
 100
 100
 3
 100
 100
 100
 15
 13
 6
 15
 66
 66
 4

ALU3
 10
 0
 13
 12
 7
 6
 100
 100
 100
 3
 100
 100
 15
 13
 6
 15
 66
 66
 4

ALU4
 10
 0
 13
 12
 7
 6
 100
 100
 100
 100
 3
 100
 15
 13
 6
 15
 66
 66
 4

ALU5
 10
 0
 13
 12
 7
 6
 100
 100
 100
 100
 100
 3
 15
 13
 6
 15
 66
 66
 4

L1I$
 11
 5
 37
 21
 23
 11
 15
 15
 15
 15
 15
 15
 3
 37
 12
 100
 11
 11
 5

Bpred
 20
 8
 100
 7
 29
 17
 13
 13
 13
 13
 13
 13
 37
 3
 17
 37
 13
 13
 13

DTLB
 0
 2
 17
 26
 17
 93
 6
 6
 6
 6
 6
 6
 12
 17
 2
 12
 5
 5
 6

ITLB
 11
 5
 37
 21
 23
 11
 15
 15
 15
 15
 15
 15
 100
 37
 12
 1
 11
 11
 5

FALU0
 10
 0
 13
 4
 8
 5
 66
 66
 66
 66
 66
 66
 11
 13
 5
 11
 1
 100
 5

FALU1
 10
 0
 13
 4
 8
 5
 66
 66
 66
 66
 66
 66
 11
 13
 5
 11
 100
 1
 5

Freg
 12
 5
 13
 7
 24
 6
 4
 4
 4
 4
 4
 4
 5
 13
 6
 5
 5
 5
 0

Table 1: Self and Correlated Switching Weights of
All Modules

Our technique addresses the high-frequency inductive noise
issues directly caused by clock-gating. Clock-gating is a well
established method in dealing with the increasing power con-
cern and thermal pressure. The main issue in reliability as-
sociated with clock-gating is that there is no deterministic or
predictive way for determining whether it is reliable to gate

2Since correlation profiling was compute intensive, we
used the following subset of benchmarks for this motiva-
tional data:256.bzip, 186.crafty, 252.eon, 254.gap, 164.gzip,
181.mcf, 253.perl and 300.twolf.
3Because Table 1, used a demonstration, only profiled re-
sults of integer benchmark programs.

4

off modules without inducing hazardous current surges. In
addition, conventional clock gating techniques do not have
any knowledge of adjacent modules and the extent of cor-
related clock-gating activity. Our microarchitectural level
high-frequency di/dt controller is based on such fundamental
observations on the clock-gating activity of modules, their
correlation with adjacent modules, the module locations in
a floorplan, and the power-pin distribution of the chip.

4. A FLOORPLAN-AWARE, QUEUE-BASED
DYNAMIC DI/DT CONTROLLER

In order to address inductive noise issues due to high
switching activity in the processor, we now present the de-
sign of our dynamic di/dt controller that aims to improve the
current profile of a processor regardless of program behavior.
Our design is easily customizable, in order to enable a given
design achieve the right balance among dynamic di/dt con-
trol, power consumption, and performance overhead. The
primary components of the di/dt controller include the fol-
lowing:

• A low-overhead modular decay counter-based clock-gating
mechanism. The objective of the decay counters is to
throttle excessive self-gating activity of modules.

• A floorplan-aware clock-gating queue that selectively dis-
ables simultaneous switching of modules in the same di-
rection. The queue-based controller is designed to limit
the maximum current surge or dip for a given set of
power-pins shared by several modules on the power sup-
ply grid.

• Preemptive activation of ALUs through pre-decoding for
simultaneous di/dt and performance enhancement.

• An enhancement to queue controller in order to enable
progressive clock-gating on large modules like L2 cache
banks.

4.1 Decay Counter based Clock-Gating
The key to avoiding clock-gating induced noise lies in iden-

tifying program phases to see whether it is reliable, at a
particular moment, to gate off an entire microarchitecture
module. Although, certain elaborate techniques can accu-
rately predict module requirement patterns, clock-gating re-
quire low-overhead mechanisms to justify the extra hard-
ware cost [19]. To allow a dynamic clock-gating technique
that is low-overhead, and yet provide a tunable form of
di/dt control, we propose the use of decay counters. By us-
ing low-resolution decay counters to monitor module access
patterns, we can choose to save power only during long-
stretches of inactivity. To illustrate this, we illustrate an
example that quantifies fine-grained module access patterns
of certain processor modules over a small simulation period
in Figure 2. The figure shows an example of access pattern
profile for the branch predictor, the L1 I-Cache, an Integer
ALU and the Integer Register File for the bzip benchmark.
The 200 cycle interval is shown here to illustrate the poten-
tial high-frequency di/dt effects from a fine-grained perspec-
tive. It is to be noted that the decay counter does not require
a specific access patten to eliminate unnecessary switching
activity, such as the ones presented in the figure. The 200-
cycle access pattern for different modules with varying ac-
cess patterns is merely used to illustrate the significance of
employing decay counters in our design. Typically, it is ob-

served that a module that is inactive for more than 10-12
cycles is likely to remain dormant for an extended period of
time. Clearly, there is a threshold cycle count beyond which
a module can be gated-off reliably with the least likelihood
of encountering high frequency inductive noise. Almost al-
ways, it can be seen that when a module is not accessed for
less than 5-10 cycles, it is highly likely to be accessed soon
in subsequent few cycles. A decay counter is employed to
exploit this behavior by enabling clock-gating activity only
when a minimum turn-off threshold has exceeded. We use a
4-bit decay counter for each microarchitecture module inside
the processor that only permits clock-gating of a module if
it has not been accessed during the last 16 cycles. For any
given module, the counter decays unless there is an access
made to that particular module, in which case the decay
counter is reset back to the maximum.

The resolution of the decay counter provides the trade-off
between high frequency inductive noise control and power
dissipation. A large decay counter will further smooth out
current spikes over time but at a cost of higher average power
consumption due to the fact that modules will be gated off
only after a long interval of inactivity. The opportunity
for power saving is also dependent on the module access
pattern. In Figure 2, it can be seen that certain modules
like the branch predictor or I-ALU exhibit larger potential
for power savings than others that display high activity like
the Integer Register File.

4.2 A Floorplan-aware Queue Based di/dt Con-
troller

Even though the decay counter can provide a smoother
current profile for each module by eliminating unwanted
switching activity, it is inherently incapable of avoiding di/dt
issues caused by simultaneous gating of modules that share
common power pins. To address these shortcomings, we
propose a queue-based controller based on the processor’s
floorplan and power-pin distribution. In the processor’s
power-delivery network, a module usually draws more cur-
rent from spatially closer power pins, in other words, fol-
lowing the path(s) with lowest impedance. Consequently,
adjacent modules will unreliably stress local power-pins, if
they switch simultaneously in the same direction. There-
fore, in order to guarantee the maximum current ramp at
a given time, it is necessary to be able to dynamically al-
ter simultaneous gating of modules that will stress the same
power-pin(s). The proposed queue based controller is de-
signed to overcome unreliable simultaneous switching of ad-
jacent modules. The salient features of the controller are
described as follows.

• A static queue with an entry for each module sharing the
same power-pin domain. Ideally, there will be no more
than eight entries in a queue resulting in a 3-bit module
identification number that is local to each queue4.

• Every queue-entry has the corresponding state of the
module that indicates either the current state or any re-
quested clock-gating transition event. This will require
2 bits for the ON/OFF states as well as the ON→OFF
and OFF→ON transitions. The state is used to drive
the pre-wired clock-gating signals to the corresponding
modules.

4The number of entries are limited to minimize the perfor-
mance loss as explained in Subsection 4.2

5

L1 Instruction Cache

0

1

1
 51
 101
 151

Cycles

Integer Register File

0

1

1
 51
 101
 151

Cycles

Integer ALU

0

1

1
 51
 101
 151

Cycles

Branch Predictor

0

1

1
 51
 101
 151

Cycles

Power

Saving

Window

Figure 2: Module Access Patterns

Module
 State/Transition
 Weight

I-Cache
 ON
 3

Bpred
 OFF ON
 2

ALU-1
 OFF
 ON
 1

ALU-2
 OFF
 1

ALU-3
 OFF
 1

Module
 Decay

I-Cache
 4

Bpred
 16

ALU-1
 1

ALU-2
 0

ALU-3
 0

ALU Instruction

Pre-decoder

&
0

0

0

&
0

0

0

&
0

0

0

To Pipeline Stall Logic

Pipeline throttling logic is needed for

every pipeline-stage based on

necessary modules.

Clock-Gate Enable Signal

As shown, the queue drivers pre-

wired clock-gate logic signals for

modules in the same power-pin

domain.

Pre-emptive ALU Gating

Prevents unnecessary ALU

gating through instruction pre-

decode

Module Decay Counters
 di/dt Queue Controller

Power-Pin

2D/3D Chip Floorplan
 Access Pattern

Feedback

Bpred

I$

ALU-3

ALU-2

ALU-1

Figure 3: di/dt Controller Architecture

• Every queue entry that represents a module also has an
associated integer weight that is proportional to the cur-
rent consumed by the corresponding module. We use a
two bit integer to represent one of the four different cur-
rent consumption levels. Since weights are use to com-
pute and check for current demand violations, integer
weights are appropriate for faster current demand calcu-
lations. Fast calculations are essential for quick response
to high-frequency di/dt.

The high frequency di/dt controller architecture is de-
picted in Figure 3. The ”+” signs on the chip floorplan (left-
hand side) indicate the power-pins locations on the power
delivery network. For simplicity, we illustrate only four
power-pins. The queue based controller works in the fol-
lowing manner. The decay counters will signal a transition
event, i.e. ON→OFF for a given module in the queue. Let
δ be the current demand threshold that is permitted for a
given power-pin domain. At any given time, a head pointer
is always pointed to one single module in the queue. Ev-
ery cycle, the queue is traversed by a window size which
has a total weight of γ. The value of γ is the largest sum
of weights of consecutive modules that are in the transition
states (ON→OFF or OFF→ON), such that γ ≤ δ. Since
integer weights can be negative as well5, the sliding window
will attempt to permit the maximum allowed transitions
without violating the maximum current demand constraint.

To better understand the di/dt queue-controller mecha-
nism, we use an example based the instantaneous state of
the controller as shown in Figure 3. Let us assume that the
value of the current demand threshold, δ = 3. In the fig-
ure shown, ALU-2 and ALU-3 are gated off (indicated by
the bold arrow that is the output of the queue controller).
Both Bpred and ALU-1 have an activation request indicated
by the OFF→ON state. Therefore, the combined weight

5OFF→ON is a positive switch while ON→OFF represents
a negative switch

of the sliding window, γ = 3.6 The queue-controller will
therefore permit both module gating events to occur, since
the threshold constraint is not violated in this case. After
servicing the transition, the head pointer will traverse two
entries and point to the ALU-2 entry in the queue. In con-
trast, consider an alternate case where ALU-1 had a higher
weight that resulted in the weight of the sliding window to
exceed the current threshold budget. In this case, only the
Bpred transition will be serviced by the queue-controller.
Also, the head pointer will traverse only one module entry
to ALU-1, so that it can be serviced in the next cycle. Fur-
thermore, consider yet another example where the ALU-1
requires an ON→OFF transition which represents a nega-
tive weight. In this case, γ=1, thus still permitting both
Bpred and ALU-1 to perform their transitions. However,
in this case, the sliding window threshold is still below the
threshold, δ, and the queue-controller can potentially gate
the next ALU-2 module, if it requires a transition. These
examples are provided to illustrate how the sliding window
adjusts dynamically based on the worst-case current demand
that can be sustained in a given power-pin domain.

The example di/dt queue in Figure 3 show the modules in
the descending order of weights. It is to be noted that the
di/dt controller will enforce the current demand threshold
regardless of the order in which they are in the queue. How-
ever, the ordering of modules does affect the performance
overhead imposed by the design. For instance, clustering
modules in the queue that have high weights will create a
larger performance overhead since multiple modules will not
be permitted to transition because they consistently violate
the current demand threshold. The ordering of modules in
the queue is static and presents a design choice that needs
to be made by an architect for a given floorplan.

Note that the queue in our di/dt controller is different
from a typical queue structure like the Instruction Fetch

6Please note that in a real implementation, the sliding win-
dow will have an upper limit in terms of how many modules
weights can be computed in a given cycle.

6

Queue, a memory structure allocated at run-time. In con-
trast, the entries in the di/dt controller queue are pre-wired
for each module at the design phase in order to simplify the
logic for driving clock-gating signals directly to the mod-
ules7. However, functional-wise the controller works like
a circular queue that traverses as many modules as deter-
mined by the sliding window threshold. It is to be noted that
the maximum hardware overhead of each microarchitectural
module is merely 11 bits (including the decay counter). This
is rather negligible in terms of additional power dissipated
and the extra current drawn by the controller itself.

4.3 Preemptive ALU Gating
Preemptive ALU clock-gating through pre-decoding in-

structions is another technique we propose to prevent unnec-
essary gating activity. It is to be noted that decay counter
based clock-gating allows gating events to occur based on
the history of module accesses. However, decay counters by
itself will be unable to predict the requirement of a module
if it is required in the immediate future for a recently fetched
instruction. For instance, it will be detrimental to perfor-
mance if an ALU is going to be gated off due to a saturated
decay-counter, when in fact an incoming ALU instruction
has just been fetched. Furthermore, if an ALU instruction
is on its way, it makes sense to leave the unit “on” even
from a di/dt perspective. To achieve this goal, we include
preemptive turn-on gating of ALU modules by pre-decoding
instructions. In a typical RISC ISA, the opcode can be de-
termined by observing the first few bits of the instruction8,
allowing us to pre-decode this information simultaneously
with the instruction fetch. In the case that an ALU instruc-
tion has been detected early on, it is used to override the
decay-counter turn-off request. In CISC ISA, it might not
be easily possible to perform a simple pre-decode due to
variable length instructions, but even so, other techniques
such as storing pre-decode information in the L1 Instruction
Cache [2] can be used to achieve this effect.

4.4 Enhanced Progressive Gating of Large Mod-
ules

Even though simultaneous gating of multiple modules can
be prevented completely by selective gating for a given set
of power-pins in a power-delivery network, some monolithic
modules like the L2 cache can still consume large current re-
sulting in unreliable voltage swing. For this reason, certain
processors employ progressive gating of large modules like
the L2 cache, in order to mitigate di/dt effects [14]. How-
ever, ad-hoc progressive gating does not prevent other ad-
jacent modules from switching simultaneously and can still
result in unreliable di/dt surges. To counteract this issue,
our queue-based controller can be used to generate multiple
clock-gating domains for even a single monolithic module by
merely replicating multiple entries for a module with smaller
weights. For instance, for a banked L2 cache, there can be
as many entries as the number of banks within the queue

7Since the queue-entries are pre-wired to the clock gating
output, it is possible to apply certain heuristics to the order
of modules in the queue with asymmetric weights, in order
to permit the maximum possible transition at a given time.
Such optimizations however are out of the scope of this work
8For example, Alpha and PowerPC ISA uses the prefix 6
bits for opcode.

with proportionally lower weights.9 Since the queue inher-
ently throttles simultaneous switching activity, it presents
a much more effective progressive gating mechanism than
current solutions. Thus, the queue-based controller can en-
able efficient progressive gating of such modules, while main-
taining the noise-tolerant current demand threshold through
mitigation of simultaneous switching effects.

4.5 Pipeline Design Implications
The employment of any dynamic di/dt controller requires

an appropriate performance throttling mechanism to guar-
antee program correctness even if certain necessary proces-
sor components are unavailable when needed. For instance,
instruction scheduler needs to be accurately aware of the
ALU availability before issuing the operations. The inte-
gration of a di/dt controller into a conventional architecture
will require the pipeline logic to be accurately aware of the
clock-gating state of the module as well, in order to issue
operations without affecting correctness. For this reason, it
is essential that the di/dt controller not impose impractical
design implications on the processor pipeline.

Our queue-based high-frequency di/dt controller can be
easily built into a conventional out-of-order pipeline with-
out significant additional complexity. Conventional proces-
sor modules are already capable of correctly operating under
resource contention. In the events of resource hazards such
as over-subscription of ports in register file, caches, or load-
store queue, the selection logic will appropriately delay cer-
tain operations from issuing. As indicated in Figure 3, our
queue has static entries and pre-wired logic that indicates
the availability of any given module. This makes it efficient
to integrate the additional resource availability constraint
into existing selection logic in the pipeline. Since resource
availability can be directly interpreted from the output of
the queue-based controller, an enhanced pipeline with the
di/dt controller merely needs to ensure that the resource
availability constraint overrides all conventional hazards for
correct functionality.

5. EXPERIMENTAL METHODOLOGY
Due to the fact that our design leverages spatial informa-

tion of modules and power-pins from a given chip-floorplan,
we will now briefly describe the floorplanning algorithms we
employed to create our 2D and 3D-IC floorplans. The spe-
cific floorplans we used are independent of running applica-
tions, i.e. no profile-guided optimizations were employed in
the floorplanning algorithms. The obtained floorplans along
with the predefined power-pin distribution determined the
configuration of the queue entries in the dynamic di/dt con-
troller.

5.1 Floorplanning for 2D and 3D-IC Proces-
sors

Although the design of our dynamic di/dt controller is
general enough to be independent of any floorplan, the queue
configuration is determined by module locations relative to
power-pins. However, the architecture of the queue-based
controller is universally applicable to any given floorplan
to achieve reliable di/dt fluctuation. To gain more insight
into our floorplanning process and the module placement,

9Typically, L2 cache banks are in separate clock-gating do-
mains.

7

(a) (b) (c) (d) (e)

Figure 4: Illustration of our 3D floorplanning. (a) Initial block list, (b) Layer partitioning, (c-d) LP-based
3D slicing floorplan, (e) Floorplan refinement.

we briefly describe the basics of the floorplans and provides
details on how they were obtained. We assume the same set
of microarchitecture modules for our 2D and 3D floorplans.
Both floorplans contain 23 modules whose areas are deter-
mined by the machine configuration presented in Table 2.
Since the procedures of floorplanning a processor onto a 2D
and 3D plane are radically different, the techniques used in
each case are described separately. The objective function
used in all cases was a weighted combination of wirelength
and area.

The goal of floorplanning is to determine the width, height,
and x/y location (for 2D) or x/y/z (for 3D) of the mi-
croarchitectural modules. The objective is to minimize a
weighted sum of the maximum module temperature, overall
footprint area, and the total length of interconnects connect-
ing the modules. We use the same two-step approach for
both 2D and 3D floorplanning: Linear Programming (LP)
based floorplan construction followed by Simulated Anneal-
ing (SA) [17] based floorplan refinement. The only difference
lies in the fact that in 3D floorplanning, we perform layer
partitioning before the LP-based floorplan construction. We
describe our 3D floorplanning in what follows.

We first partition the modules into layers (= die) and then
floorplan these layer. The goal during our layer partition-
ing is to minimize the number of inter-layer interconnect,
whereas our floorplanning optimizes the temperature, foot-
print area, and intra-layer wirelength simultaneously. We
use the following rules during our layer partitioning: (1) we
assign a layer to each module such that the number of inter-
layer interconnect is minimized; (2) we split pairs of modules
that communicate frequently each other into different lay-
ers. The goal is to vertically overlap them during the subse-
quent floorplanning step to achieve better performance; (3)
we split highly active modules into different layers such that
the shorter vertical interconnect connected to these modules
help reduce the dynamic power; (4) we separate the modules
with large area such as the RUU into different layers to help
minimize the footprint area and reduce the amount of white
space.

Our LP-based floorplanning is based on slicing floorplan-
ning to handle multiple layers simultaneously. The basic
idea is to perform recursive bi-partitioning until each par-
tition contains a single module as illustrated in Figure 4.
In our approach the slicing operation determines the overall
relative location among the modules, while an LP fine-tunes
the location and determines the dimension of the modules.
Moreover, we insert each slicing cutline to cut all layers si-
multaneously (note that in 2D floorplanning we deal with a
single layer). Upon each slicing, we perform thermal analy-
sis to obtain new module temperature. We then use LP to
simultaneously optimize the performance and thermal distri-

bution under the target frequency and leakage constraints.
Since the layer partitioning has already addressed the inter-
layer wire issues, we do not allow the modules to move to
other layers during the LP floorplanning.

Once we obtain a 3D floorplanning solution, we perform
a stochastic refinement based on Simulated Annealing. The
basic approach is to perturb the current floorplanning by
swapping a pair of modules or rotate a module by 90 de-
gree. If the quality of the perturbed solution improves, we
accept this new solution. Otherwise, we rely on the concept
of annealing temperature to probabilistically accept worse
quality solution as explained in [17]. We compute the initial
annealing temperature by setting the probability of accept-
ing bad moves to a low value. This reduces the runtime
required for the annealing process significantly and focuses
on results that are near the LP based result, which is as-
sumed to be fairly close to optimal.

Our final floorplan along with their power pin locations
are shown in Figure 5. The left-hand side shows the 2D
floorplan. The black dots “•” in alternating columns rep-
resent the power-pin locations on the power grid.10 The
right-hand side of the figure shows the 3D floorplan that we
used. The 3D floorplan uses the same number of modules
separated across four different layers.11

The basic objective of our dynamic di/dt controller is to
minimize the burden on power-pin(s) caused by adjacent
modules to a reliable level. Therefore, for any given floor-
plan and power-pin configuration, the design objective of the
di/dt controller is to place queues for effective di/dt control
in a distinct section of the floorplan. For this work, we di-
vided the floorplan into four quadrants, with each quadrant
representing a distinct power-pin domain. Note that certain
power-pins can be in multiple domains. For instance, in the
2D floorplan, quadrant based module separation will result
in 5 power-pins per quadrant, because the power pins on
the borders of the quadrants exist in multiple domains. The
number of distinct power-pin domains is a design choice in-
fluenced by the degree of di/dt control that is required. A
high number of power-pin domains results in a larger num-
ber of queues and finer grained control. On the other hand,
too few power domains will result in larger queues impacting
performance, because of the fact that the worst-case delay
in transition is higher. For both floorplans, a queue was
assigned to each quadrant for all the modules placed in it.
Since the floorplan determines the queue configuration, dif-
ferent floorplans will have different performance impact as

10This is a type of power-pin configuration that certain flip-
chip IC designs use.

11An exception is the RUU, which is split on multiple layers
since this is a module that consumes a large area.

8

bpred btb

lsq

irf

frf

il1

itlb

dl1

dl2

dtlb

ruu

alu1

alu2

alu3

alu4

alu5

alu6

alu7

alu8

falu1

falu2

falu3

falu4

dl2 ruu_0
lsq

alu3

alu5

alu7 ruu_3

irf

il1

dl1

alu4

alu6

fpu1

fpu4

ruu_2

bpred

btb

frf

itlb
dtlb

alu1

alu2

alu8

fpu2
fpu3

ruu_1

2D Floorplan 3D Floorplan

layer4

layer2layer1

layer3

Figure 5: Floorplans. Black dots denote power pin locations.

well as distinctive di/dt characteristics.

5.2 Simulation Framework
Our simulation framework is based on SimpleScalar 3.0

and Wattch [5] running SPEC2000 INT and FP benchmark
suite. To understand the access patterns of individual mod-
ules that motivated the solution of this work, we include
various profiling and instrumentation facilities in our simula-
tor. For the implementation of the dynamic di/dt controller
we extended SimpleScalar/Wattch to incorporate floorplan
aware queue configuration. We also implemented a detailed,
floorplan-dependent performance throttling model and queue
configuration for studying the performance impact of our
technique. The primary simulation parameters used in our
simulations are shown in Table 2. The power and current
consumption metrics were based on a 5GHz processor de-
veloped using a 70nm process technology [1]. Each simula-
tion was fast-forwarded by 4 billion instructions and simu-
lated for 1 billion instructions. The current signature that
was chosen to evaluate the dynamic di/dt controller was ob-
tained by profiling for the worst-case overall module activity
over the entire simulation period. To study the thermal im-
pact of our di/dt controller, we integrated Hotspot 3.0 [30]
into our simulators. Hotspot assumed the same process tech-
nology parametric as mentioned earlier. The heat-sink and
heat spreader modules were obtained from the default model
and the initial temperatures were set to 300 kelvins.

6. QUANTITATIVE ANALYSIS
In order to evaluate the effectiveness and overhead of our

dynamic di/dt controller under different scenarios, we ap-
plied our technique to both 2D and 3D floorplans. The
results presented include current profiles on a baseline ma-
chine without a di/dt controller versus our technique and
the average current variability across all benchmarks. Since
di/dt is a reliability issue, we also quantify any potential re-
liability impact due to our technique in the form of thermals.
Finally and most importantly, we present the performance
overhead incurred due to our dynamic di/dt controller.

6.1 Current Profile of Applications
To demonstrate the effectiveness of our controller in im-

Parameters Values

Fetch/Decode width 8-wide
Issue/Commit width 8-wide

Combining: 16K entry Metatable
Branch predictor Bimodal: 16K entries

2-Level: 14 bit BHR, 16K entry PHT
BTB 4-way, 4096 sets

L1 I- and D-Cache 16KB 4-Way 64B line
I- and D-TLB 128 Entries

L2 Cache 256KB, 8-way, Unified, 64B line
L1/L2 Latency 1 cycle / 6 cycles

Main Memory Latency 500 cycles
LSQ Size 64 entries
RUU Size 256 entries

Functional Units 8 IntAlu (only 2 can be used for IntMult)
4 FPAlu (only 2 can be used for FPMult)

Table 2: Microarchitecture Parameters

proving high-frequency di/dt effect, we now present the cur-
rent profile of the whole chip as well as for each queue cluster
for the 2D floorplan. Note that the effectiveness of a di/dt
controller is evaluated by observing its effect on the worst-
case current profile of a given application which represents
the maximum switching activity of modules. Due to the
staggeringly huge amount of current profiles of all bench-
mark programs, we epitomize their representative charac-
teristics using two types of benchmark programs for this
specific study as a demonstration of our analysis. Note that
the crucial information conveyed in this section is to show
the effectiveness of our proposed mechanism.

To explain the current profiles, we profiled one high-ILP
benchmark (164.gzip) and another low-ILP (181.mcf, memory-
bound) benchmark. The current profiles shown in Figure 6
and Figure 7 were obtained by profiling for the worst-case
switching activity during the course of execution. A 4-bit
decay counter was used for each module in all experiments.12

Each graph shows the current profile for both the processor
with ideal clock-gating as well as the decay counter based
clock-gating mechanism. We also provide their close-up ver-
sions of the representative, highly active region of the graph
for better visibility.

12The resolution of the decay counter was based on the mo-
tivational data discussed in Section 3.

9

gzip Current Profile

0

5

10

15

20

25

1
 501
 1001
 1501
 2001
 2501
 3001
 3501
 4001
 4501

Cycles

Cu
rr

en
t (

am
ps

)

Ideal Clock-Gating
 Decay Counter Clock-Gating

gzip Current Profile (Zoomed View)

0

5

10

15

20

25

1
 51
 101
 151

Cycles

Cu
rr

en
t (

am
ps

)

Ideal Clock-Gating
 Decay Counter Clock-Gating

Figure 6: High ILP Benchmark Current Profile (164.gzip)

mcf Current Profile

0

5

10

15

20

25

30

35

1
 501
 1001
 1501
 2001
 2501
 3001
 3501
 4001
 4501

Cycles

Cu
rr

en
t (

am
ps

)

Ideal Clock-Gating
 Decay Counter Clock-Gating

mcf Current Profile (Zoomed View)

0

5

10

15

20

25

30

35

1
 51
 101
 151

Cycles

Cu
rr

en
t (

am
ps

)

Ideal Clock-Gating
 Decay Counter Clock-Gating

Figure 7: Low ILP Benchmark Current Profile (181.mcf)

It can be seen that both gzip and 181.mcf exhibit a repet-
itive current profile during the worst-case switching period.
This is especially prominent in the current profile of mcf
where there is a period of high activity for a few hundred
cycles, followed by a stable current profile for approximately
500 cycles. This is due to the long-familiar cache misses to
main memory that occur in mcf. During which period most
modules are inactive and can be clock-gated off to save dy-
namic power. The effectiveness of the di/dt controller in im-
proving the current ramp is obvious in the zoomed versions
of the graphs. It shows that with the decay counter, our
system (shown in dashed lines) successfully prevents unnec-
essary oscillating swing in the current profile and produces a
much smoother down-ramp. For gzip in Figure 6, we observe
large current variation in the ideal-clock gating scheme due
to high activity across all modules. Since there is no signif-
icant duration of time where reasonable power savings are
possible Because that modules are never inactive for ex-
tended periods of time, the decay counters rarely clock-gate
off most modules. The current profile is extremely stable
for this reason. In short, the decay-counter based technique
finds the optimal power envelope right above the ideal clock-
gating mechanism and allows clock-gating only when there is
a significant likelihood that the given modules will unlikely
be accessed again soon.13

Next, we present the current profile with the integration
of the complete queue-based controller for the 2D floorplan.

13Note that the chip level current is with the decay-counter
based technique alone, which alone does not prevent simul-
taneous switching. Large upward ramps are resolved by the
queue-based controller.

Note that this is the complete controller that incorporates
prevention of simultaneous switching, decay-counter based
feedback for clock-gating, preemptive ALU gating and pro-
gressive gating of L2 cache banks. Figure 8 shows the cur-
rent profile for all four queues for the 2D floorplan for gzip
and mcf. In all cases it can be observed that the cur-
rent profile is significantly improved by eliminating exces-
sive switching activity. In addition, it can be observed that
both the upward ramp and downward ramp effects due to
multiple modules in the same power pin domain (i.e. us-
ing the same module queue) are spread out across multiple
cycles. This is more prominent in the upward ramp of the
current with the di/dt controller between cycle 20 and cycle
50 for Queue 1 in mcf. For Queue 3 in mcf we observe a dif-
ferent trend whereby the di/dt controller ramps up current
repeatedly compared to the baseline, which is stable. This
is due to the preemptive ALU gating effect that ramps up
additional ALUs which are otherwise unused in the baseline
clock-gating scheme due to low ILP. We observe a repetitive
pattern where ALUs are gated preemptively only to later de-
cay after approximately 20-25 clock cycles. However, these
ramps are still spread out over many cycles and do not vi-
olate the current demand threshold. In the case of Queue
4, although there is a significant current decay towards the
end, it is to be noted that the simultaneous gating is pre-
vented even in this case (the slope of the drop is less steep,
which is not obvious in the graph due to the scale). For
gzip, where there is high ILP/switching activity, we notice
that the queue-based controller ramps up to the required
current levels and do not saturate the decay counters for
long enough. For this reason, the queue current profile is

10

gzip - Queue 1 Current Profile

0

1

2

3

4

5

6

7

1
 51
 101
 151
 201

Cycles

Cu
rr

en
t (

am
ps

)

Baseline
 High Frequency di/dt Controller

gzip - Queue 2 Current Profile

0

0.5

1

1.5

2

2.5

3

3.5

4

1
 51
 101
 151

Cycles

Cu
rr

en
t (

am
ps

)

Baseline
 High Frequency di/dt Controller

gzip - Queue 3 Current Profile

8.5

9

9.5

10

10.5

11

11.5

1
 51
 101
 151
 201

Cycles

Cu
rr

en
t (

am
ps

)

Baseline
 High Frequency di/dt Controller

gzip - Queue 4 Current Profile

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1
 51
 101
 151
 201

Cycles

Cu
rr

en
t (

am
ps

)

Baseline
 High Frequency di/dt Controller

(a) High ILP Benchmark Queue Controller
Current Profile (164.gzip)

mcf - Queue 1 Current Profile

0

1

2

3

4

5

6

7

1
 51
 101
 151
 201

Cycles

Cu
rr

en
t (

am
ps

)

Baseline
 High Frequency di/dt Controller

mcf - Queue 2 Current Profile

0

0.5

1

1.5

2

2.5

3

3.5

4

1
 51
 101
 151

Cycles

Cu
rr

en
t (

am
ps

)

Baseline
 High Frequency di/dt Controller

mcf - Queue 3 Current Profile

7

9

11

13

1
 51
 101
 151
 201

Cycles

Cu

rr
en

t (
am

ps
)

Baseline
 High Frequency di/dt Controller

mcf - Queue 4 Current Profile

0

0.2

0.4

0.6

0.8

1

1
 51
 101
 151
 201

Cycles

Cu
rr

en
t (

am
ps

)

Baseline
 High Frequency di/dt Controller

(b) Low ILP Benchmark Queue Controller
Current Profile (181.mcf)

Figure 8: Queue Controller Current Profile

Current Variability

0

0.5

1

1.5

2

2.5

3

bz
ip

cra
fty

eo

n

ga

p

gz

ip
 pe
rl

pa
rse

r

twolf

am
mp

ap
plu

ap

si
 art

eq
ua

ke

fac
ere

c

fm
a3

d

ga
lge

l

luc

as

mes
a

mgri
d

six
tra

ck

sw

im

wup
wise

INT M
ea

n

FP M
ea

n

de
lta

-I
pe

r c
yc

le

Baseline
 HF di/dt Controller

Figure 9: Current Variability

11

Thermal Analysis

305

310

315

320

325

330

335

340

Bpre
d

BTB

LS

Q

IRF

FRF

I-L

1

I-T

LB

D-L1

D-L2

D-TLB

RUU

IALU
-1

IALU
-2

IALU
-3

IALU
-4

IALU
-5

IALU
-6

IALU
-7

IALU
-8

FALU
-1

FALU
-2

FALU
-3

FALU
-4

Te
m

pe
ra

tu
re

 (K
)

2D Baseline
 2D HF di/dt Controller
 3D Baseline
 3D HF di/dt Controller

Figure 10: Thermal Impact of Dynamic di/dt Controller

almost always stable, except for the few cases where the de-
cay counters decay long enough to enable clock-gating. It
is important to note that this does not mean that there is
no opportunity for power-savings in such a design without
di/dt control. The presented phase of gzip is the highest
ILP portion in our simulation and it is simply not worth
it to clock-gate elements during this phase because of the
di/dt as well as the performance penalty.

Since presenting detailed current profile is infeasible for
all benchmarks, we now present the current variability per
cycle for the complete duration of the benchmark execution.
Unlike the worst case profile that was presented earlier, this
metric presents the average variability of current per cycle
for both the baseline and the processor with our dynamic
di/dt controller. Figure 9 shows the comparison for various
SPEC2000 INT and FP benchmark programs. The cur-
rent variability is calculated by measuring inter-cycle cur-
rent fluctuations (in absolute value of the swing) over the
entire simulation period, as a fraction of the total number
of simulation cycles. It can be observed that the baseline ar-
chitecture shows a higher degree of current variability across
the board. The daata show that 186.crafty exhibits the high-
est variability whereas 171.swim has the lowest variability.
In any case, regardless of the native current variability, our
dynamic di/dt controlling mechanism can significantly mit-
igate the dynamic oscillating behavior of current profile of
running applications. The di/dt controller pushes the cur-
rent variability below 0.5 amps/cycle for all the benchmark
programs we studied. Note that, a traditional power-virus
will no longer be able to stress the power delivery network
in the presence of our di/dt controller.

6.2 Thermal Impact
In typical high-performance processor design, high-frequency

inductive noise issue is handled through the worst-case de-
sign method. In contrast, the goal of our technique is to
guarantee this reliability by enabling an average-case de-
sign, while meeting the stringent reliability requirements via
dynamic control mechanisms. Therefore, it is critical that
our di/dt controller must not induce other forms of reliabil-
ity vulnerability. Since our technique provides fine-grained
di/dt control at the expense of increased power consump-
tion, it is necessary to quantify any potential adverse ther-

mal effect due to our technique. Thermal issues are par-
ticularly critical in 3D-IC processors for their higher power
density as well as the greater difficulty in dissipating heat
across multiple die layers.

We used Hotspot 3.0 [30] to evaluate the thermal impact
of our high-frequency di/dt controller for both the 2D and
3D floorplans. We compared our architecture against the
baseline 2D and 3D designs using ideal-clock gating, which
represents the scenario of the least power and current con-
sumption. Figure 10 presents the thermal analysis for all 23
modules in our processor model for SPEC2000 benchmark
suite.14

Overall, we observe nominal thermal impact across all
modules for both the 2D and 3D floorplans. The 2D cases
show an average temperature increase of 3.15 kelvins over
their baseline counterparts. The highest temperature rise
(over 5 kelvins) is observed in the L1 Data Cache, Branch
Predictor, BTB and LSQ modules. Majority of the remain-
ing modules exhibit an average temperature increase below
3 kelvins. We also notice a similar average temperature rise,
around 3.74 kelvins, for most of the modules in the 3D floor-
plan although some modules do experience higher thermal
impact. IALU-3 and IALU-5 are the worst with an average
temperature rise of 10.11 kelvins and 15.75 kelvins. On this
note, we also observe that these modules are located close to
each other on the second layer. However, we do not observe
a high temperature increase in IALU-7, which is also very
close on the same layer. The reason for this is that none of
the benchmark programs exhibit enough parallelism to uti-
lize more than 6 ALUs at the same time, leaving IALU-7 and
IALU-8 inactive and being clock-gated off for an extended
period of time. All the remaining modules in the 3D floor-
plan exhibit a temperature rise less than 6.5 kelvins. Note
that it is possible to further mitigate these worst-case ther-
mal effects by using a thermal-aware floorplanner described
in [12, 13], however this is outside the scope of this paper.
(Our floorplans were generated with a goal of minimum to-
tal wirelength and die area.) Our thermal analysis results
indicate that the integration of the di/dt controller does not
pose any large adverse thermal effect to either a 2D or a 3D

14For presentation purposes, the RUU in the 3D floorplan is
the average temperature of all RUU partitions.

12

Performance Analysis

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

9.00%

10.00%

bz
ip

cra
fty

eo

n

ga

p

gz

ip
 pe
rl

pa
rse

r

twolf

am
mp

ap
plu

ap

si
 art

eq
ua

ke

fac
ere

c

fm
a3

d

ga

lge
l

luc
as

mes

a

mgri

d

six
tra

ck

sw

im

wup
wise

Avg
. IN

T

Avg
. F

P

IP
C

De
gr

ad
at

io
n

2D_didt
 2D_didt w/Pre
 3D_didt
 3D_didt w/Pre

Figure 11: Performance Degradation of dynamic di/dt controller

floorplan.

6.3 Performance Impact
We now present the performance analysis of our di/dt

controlling mechanism for both the 2D and 3D floorplans.
Figure 11 shows the normalized IPC for SPEC2000 INT and
FP benchmark suite with the di/dt controller over the base-
line machines without any di/dt control. Results for both
2D and 3D floorplans are shown. The 2D-w/Pre and 3D-
w/Pre configurations show the queue controller with pre-
emptive ALU gating turned on in order to differentiate the
type of applications that can benefit from pre-decoding ALU
instructions. The remaining two bars show the same con-
troller without preemptive ALU gating. Progressive gating
in the L2 cache was applied to all cases.

In general, we observe minimal performance degradation
for most of the benchmark programs for both the 2D and
3D floorplans. Note that the performance overhead is de-
pendent on the floorplan because it affects the queue con-
figuration. A more optimized floorplan will result in a bet-
ter balanced queue configuration. However, if the floorplan
results in a configuration where one queue carries a signifi-
cantly larger number of modules than the others, IPC will be
adversely affected due to the fact that the worst-case mod-
ule activation time is longer. This is the reason that the
3D floorplan shows a slightly less overhead at about 3.8%
on average, compared to the 2D floorplan which shows an
average performance overhead of 4.0%. The worst perfor-
mance degradation is shown in 252.eon, at 9.2% and 9.5%
for the 2D and 3D floorplans, respectively, for the controllers
without preemptive ALU gating. One explanation for the
increased performance impact is due to the fact that the ray-
tracing algorithm in eon is ALU intensive. Since modules in
the floorplan are asymmetric, both the 2D and 3D floorplans
result in locally clustered ALUs that are not symmetrically
distributed in all queues. Highly ALU intensive applica-
tions will suffer a performance loss in such cases, since a
quick ramp up of modules will take longer if most of the
ALUs are clustered in the same queues. A strong indicator
of this fact is evident from the higher sensitivity eon shows
to preemptive ALU gating, compared with the other bench-
marks. Most of the other benchmarks only exhibit little
performance loss that is less than 5.7%, overall.

We also observe that preemptive gating of ALUs improves
the performance for certain benchmark programs such as
252.eon, 254.gap, 253.perl and 168.wupwise. This is due in
part to the fact that the 4-bit decay counter saturates con-
sistently for ALUs (resulting in turning off the module) right
before ALU instructions are issued. It is in these scenarios,
that the preemptive gating provides simultaneous perfor-
mance and di/dt benefits. The decay counters predict future
likelihood of module access solely based on the past activity
profile. In contrast, preemptive gating can ”look-ahead” and
override unnecessary gating that the decay counters them-
selves cannot prevent, thereby inhibiting unnecessary per-
formance loss. The minimal IPC overhead illustrates the
practical potential of employing a low-overhead technique
to control high-frequency di/dt.

7. CONCLUSION
The exponential increase in current consumption by newer

generations of processors coupled with aggressive power sav-
ing techniques have exacerbated the high-frequency di/dt
issue that forces designers to elongate the design time in the
analysis and implementation of the power delivery network.
As long as the current trends in process and performance
scaling continue, ad-hoc solutions to mitigate di/dt effects
using an adequate decoupling capacitance will not suffice
eventually. Decaps not only occupy considerable chip area
but also but also contribute the already problematic leakage
power issue. Current microarchitecture based solutions are
inadequate for deep submicron designs where high-frequency
di/dt is intricately intertwined with the chip floorplan as
well as the power-pin distribution. In addition, the high
module density facilitated by 3D-IC designs will stress the
power delivery network even further, worsening operational
reliability due to di/dt. Design afterthoughts in the form
of higher decaps also negate the advantages such as areas
and lower wire power that the emerging 3D-IC technology
inherently provide.

To address the high-frequency di/dt issues and maintain
high reliability while alleviating the design cost of creating
a low impedance power delivery network, we propose a dy-
namic queue-based di/dt controller for both 2D and 3D-IC
processors. By using decay counters to limit clock-gating

13

activity based on module access patterns and by using this
feedback in a queue-based di/dt controller, we show how
current demands can be guaranteed for modules in the same
power-pin domain. In addition, we also present a preemptive
ALU gating mechanism as a performance enhancement tech-
nique and integrate an enhanced progressive gating tech-
nique for large modules (L2 cache) into our queue-based con-
trol mechanism, without violating current demand thresh-
olds due to simultaneous switching. In addition, we also
explain how the di/dt architecture can be implemented in a
conventional out-of-order pipeline in a complexity-effective
manner. The experimental results show that our di/dt con-
troller can improve the current variability of applications by
an average of 7x with a mere 4.0% and 3.8% IPC degrada-
tion for a 2D and 3D floorplan, respectively.

The high-frequency di/dt noise will keep deteriorating due
to the continuing CMOS scaling trend that drives down
the operating voltage while simultaneously increasing peak
power consumption. In overall, our design provides a realis-
tic microarchitectural approach that can be used to alleviate
the effort of design afterthoughts and reduce the use of ex-
tensive decoupling capacitors that consume larger chip area.
Our technique also incurs little performance overhead and
does not have any adverse thermal impact.

8. ACKNOWLEDGMENT
This research was supported by the MARCO C2S2 and

GSRC Centers.

9. REFERENCES

[1] International Technology Roadmap for
Semiconductors. 2004.

[2] T. M. Austin and G. S. Sohi. Zero-cycle Loads:
Microarchitecture Support for Reducing Load
Latency. In Proceedings of the 28th annual
International Symposium on Microarchitecture, pages
82–92, 1995.

[3] B. Bentley. Validating the Intel Pentium4
Microprocessor. In Proceedings of the 2001
International Conference on Dependable Systems and
Networks, pages 493–500, 2001.

[4] B. Black, D. Nelson, C. Webb, and N. Samra. 3D
Processing Technology and Its Impact on iA32
Microprocessors. In Proceedings of the 22nd
International Conference on Computer Design, pages
316–318, 2003.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis
and Optimizations. In Proceedings of the 27th annual
International Symposium on Computer Architecture,
2000.

[6] H.-M. Chen, L.-D. Huang, I.-M. Liu, and M. D. F.
Wong. Simultaneous Power Supply Planning and
Noise Avoidance in Floorplan Design. IEEE
Transactions on Computer Aided Design of Integrated
Circuits and Systems, 24(4):578–587, 2005.

[7] Y. Chen, K. Roy, and C.-K. Koh. Current Demand
Balancing: a Technique for Minimization of Current
Surge in High Performance Clock-gated
Microprocessors. IEEE Transactions on Very Large
Scale Integration Systems, 13(1):75–85, 2005.

[8] S. Das, A. Chandrakasan, and R. Reif.
Three-Dimensional Integrated Circuits: Performance,

Design Methodology, and CAD Tools. In Proceedings
of the IEEE Annual Symposium on VLSI, 2003.

[9] M. K. Gowan, L. L. Biro, and D. B. Jackson. Power
Considerations in the Design of the Alpha 21264
Microprocessor. In Proceedings of the 35th Design
Automation Conference, pages 726–731, 1998.

[10] E. Grochowski, D. Ayers, and V. Tiwari.
Microarchitectural Simulation and Control of
di/dt-induced Power Supply Voltage Variation. In
Proceedings of the 8th International Symposium on
High-Performance Computer Architecture, 2002.

[11] K. Hazelwood and D. Brooks. Eliminating Voltage
Emergencies via Microarchitectural Voltage Control
Feedback and Dynamic Optimization. In Proceedings
of the 2004 International Symposium on Low power
Electronics and Design, pages 326–331, 2004.

[12] M. Healy, M. Vittes, M. Ekpanyapong,
C. Ballapuram, S. K. Lim, H.-H. S. Lee, and G. H.
Loh. Microarchitectual Floorplanning Under
Performance and Temperature Tradeoff. In
Proceedings of the Design, Automation and Test in
Europe, pages 1288–1293, 2006.

[13] M. Healy, M. Vittes, M. Ekpanyapong,
C. Ballapuram, S. K. Lim, H.-H. S. Lee, and G. H.
Loh. Multi-Objective Microarchitectural
Floorplanning For 2D and 3D ICs. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and
Systems, 2006.

[14] H. Jacobson, P. Bose, Z. Hu, A. Buyuktosunoglu,
V. Zyuban, R. Eickemeyer, L. Eisen, J. Griswell,
D. Logan, B. Sinharoy, and J. Tendler. Stretching the
Limits of Clock-Gating Efficiency in Server-Class
Processors. In Proceedings of the IEEE Symposium on
High-Performance Computer Architecture, pages
238–242, 2005.

[15] R. Joseph, D. Brooks, and M. Martonosi. Control
Techniques to Eliminate Voltage Emergencies in High
Performance Processors. In Proceedings of the 9th
International Symposium on High-Performance
Computer Architecture, 2003.

[16] R. Joseph, Z. Hu, and M. Martonosi. Wavelet
Analysis for Microprocessor Design: Experiences with
Wavelet-Based dI/dt Characterization. In Proceedings
of the 10th International Symposium on High
Performance Computer Architecture, 2004.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi.
Optimization by Simulated Annealing. Science, pages
671–680, 1983.

[18] F. Li, C. Nicopoulos, T. Richardson, Y. Xie,
N. Vijaykrishnan, and M. Kandemir. Design and
Management of 3D Chip Multiprocessors using
Network-in-Memory. In Proceedings of the
International Symposium on Computer Architecture,
2006.

[19] H. Li, S. Bhunia, Y. Chen, K. Roy, and T. N.
Vijaykumar. DCG: Deterministic Clock-gating for
Low-power Microprocessor Design. IEEE Transactions
on VLSI Systems, 12(3):245–254, 2004.

[20] F. Mohamood, M. B. Healy, S. K. Lim, and H.-H. S.
Lee. Noise-Direct: A Technique for Power Supply
Noise Aware Floorplanning Using Microarchitecture
Profiling. In Proceedings of the 12th Asia and South
Pacific Design Automation Conference, 2007.

[21] M. D. Pant, P. Pant, and D. S. Wills. On-chip
Decoupling Capacitor Optimization using

14

Architectural Level Prediction. IEEE Transactions on
VLSI Systems, 10(3):319–326, 2002.

[22] M. D. Pant, P. Pant, D. S. Wills, and V. Tiwari. An
Architectural Solution for the Inductive Noise
Problem due to Clock-gating. In Proceedings of the
International Symposium on Low Power Electronics
and Design, 1999.

[23] M. D. Pant, P. Pant, D. S. Wills, and V. Tiwari.
Inductive Noise Reduction at the Architectural Level.
In Proceedings of the International Conference on
VLSI Design, 2000.

[24] M. D. Powell and T. N. Vijaykumar. Pipeline
Damping: a Microarchitectural Technique to Reduce
Inductive Noise in Supply Voltage. In Proceedings of
the 30th International Symposium on Computer
Architecture, pages 72–83, 2003.

[25] M. D. Powell and T. N. Vijaykumar. Pipeline muffling
and a priori current ramping: architectural techniques
to reduce high-frequency inductive noise. In
Proceedings of the 2003 International Symposium on
Low Power Electronics and Design, pages 223–228,
2003.

[26] M. D. Powell and T. N. Vijaykumar. Exploiting
resonant behavior to reduce inductive noise. In
Proceedings of the 31st annual International
Symposium on Computer Architecture, 2004.

[27] K. Puttaswamy and G. H. Loh. Implementing Caches
in a 3D Technology for High Performance Processors.
In Proceedings of the International Conference on
Computer Design, 2005.

[28] K. Puttaswamy and G. H. Loh. Dynamic Instruction
Schedulers in a 3-Dimensional Integration Technology.
In Proceedings of the ACM/IEEE Great Lakes
Symposium on VLSI, 2006.

[29] K. Puttaswamy and G. H. Loh. The Impact of
3-Dimensional Integration on the Design of Arithmetic
Units. In Proceedings of the International Symposium
on Circuits and Systems, 2006.

[30] K. Skadron, M. R. Stan, K. Sankaranarayanan,
W. Huang, S. Velusamy, and D. Tarjan.
Temperature-aware Microarchitecture: Modeling and
Implementation. ACM Transactions on Architecture
and Code Optimization, 1(1):94–125, 2004.

[31] Z. Tang, N. Chang, S. Lin, W. Xie, S. Nakagawa, and
L. He. Ramp up/down Floating Point Unit to Reduce
Inductive Noise. In Workshop on Power-Aware
Computer Systems, 2000.

[32] S. Zhao, C. Koh, and K. Roy. Decoupling Capacitance
Allocation and Its Application to Power Supply Noise
Aware Floorplanning. IEEE Transactions on
Computer-Aided Design, pages 81–92, 2002.

15

