
Scalable RTI-Based Parallel Simulation of Networks 

Kalyan S. Perumalla 

Alfred Park 

Richard M. Fujimoto 

College of Computing, Georgia Tech 

Atlanta, Georgia, USA 30332-0280 

{kalyan,park,fujimoto}@cc.gatech.edu

George F. Riley 

Department of Electrical and Computer 

Engineering, Georgia Tech 

Atlanta, Georgia, USA 30332 

riley@ece.gatech.edu

Abstract

Federated simulation interfaces such as the High Level 
Architecture (HLA) were designed for interoperability, 

and as such are not traditionally associated with high-

performance computing.  In this paper, we present results 
of a case study examining the use of federated simulations 

using runtime infrastructure (RTI) software to realize 

large-scale parallel network simulators.  We examine the 
performance of two different federated network 

simulators, and describe RTI performance optimizations 

that were used to achieve efficient execution.  We show 
that RTI-based parallel simulations can scale extremely 

well and achieve very high speedup.  Our experiments 

yielded more than 80-fold scaled speedup in simulating 
large TCP/IP networks, demonstrating performance of up 

to 6 million simulated packet transmissions per second on 

a Linux cluster.  Networks containing up to two million 
network nodes (routers and end systems) were simulated. 

1. Introduction 

The parallel discrete event simulation community has 

traditionally realized high-performance simulators using a 

monolithic approach where the parallel simulator is 

constructed “from scratch” and all simulation software is 

designed specifically for a particular simulation 

environment. Examples of parallel network simulators 

using this approach include GloMoSim [1], TeD [2, 3], 

SSFNet [4], DaSSFNet [5], TeleSim [6], and the ATM 

simulator described in [7].  One advantage of this 

approach is that the software can be tailored to execute 

efficiently in a specific environment.  A disadvantage is 

the models must be developed “from scratch,” leading to 

much duplication of effort and lengthy delays in realizing 

the parallel simulator. 

Another approach to parallel/distributed simulation is 

to interconnect existing simulators.  These federated 

simulations may include multiple copies of the same

simulator (modeling different portions of the system), or 

entirely different simulators. The individual simulators 

that are to be linked may be sequential or parallel.  

SIMNET was perhaps the first system utilizing this 

approach to realize distributed training simulations [8].  

An approach linking multiple copies of the commercial 

CSIM simulator is described in [9].  Industry standards for 

linking simulations have been developed, notably the 

Distributed Interactive Simulation (DIS) [10, 11] and the 

High Level Architecture (HLA) [12] standards.  The 

federated approach offers the benefits of model and 

software reuse, and the potential of rapid parallelization of 

sequential simulators.  It also offers the ability to exploit 

models and software from different simulators in one 

system [13]. 

This paper is concerned with the use of federated 

distributed simulation techniques using industry-wide 

standards to realize scalable parallel network simulations, 

thereby offering the potential to enjoy the benefits of both 

software reuse and high performance.  The effectiveness 

of the federated approach for large-scale network 

simulations has not previously been proven.  Of particular 

concern are the performance overheads incurred due to the 

runtime infrastructure (RTI) software that links the 

simulators, especially for network simulators that have 

fine-grained event computations on the order of 10 

microseconds or less for each event. 

2. Related Work 

Efforts to realize federated simulations for high 

performance computing include the SF-Express project 

that realized a DIS-based system using ModSAF [14], and 

a parallel version of CSIM that was developed for 

simulating queuing networks [9].  Our work differs from 

SF-Express in our focus on network simulations that 

require time synchronization of small granularity events.   

Our work differs from the CSIM system in our focus on 

industry-wide standards and network simulation.  The 

latter introduces significant complexities concerning 

interoperability that do not arise in queuing network 

simulations, e.g., see [15].  Other related work includes the 

backplane software described in [13, 16], and parallel 

simulators based on Opnet [15], and an aviation 

simulation called TAAM [18].  These efforts focus on 

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03) 
1087-4097/03 $17.00 © 2003 IEEE 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarly Materials And Research @ Georgia Tech

https://core.ac.uk/display/4687667?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


interoperability issues, however, and do not address the 

question of large-scale network simulation. 

3. Background

We briefly review implementation features of the 

monolithic and federated approaches to parallel 

simulation, and highlight some of the performance-critical 

aspects of the federated approach. 

We use HLA terminology throughout this paper.  

Specifically, a parallel/distributed simulation is referred to 

as a federation, which is composed of a number of 

simulators (termed federates) that interact through services 

provided by runtime infrastructure (RTI) software.  The 

RTI is middleware software that lies between the 

operating system and the federates.  It implements a set of 

services defined in the HLA Interface Specification 

(IFSpec).  For our purposes, the most important are the 

Object Management services that provide communication 

primitives, and the Time Management services that 

support synchronization.  See [12, 17] for an introduction 

to the HLA and IFSpec services. 

3.1. Monolithic vs. Federated

In traditional parallel simulators, the simulator kernel 

directly handles inter-processor communication.  

Typically, the kernel is also closely coupled with time 

synchronization algorithms tailored specifically for that 

parallel simulator and computation platform.  Such direct 

communication and close coupling can potentially result 

in an optimized, high-performance implementation. 

However, in federated simulation, the RTI acts as an 

intermediate layer that decouples the federation from 

specific implementations of message passing and time 

synchronization protocols.  Event exchange is generally 

achieved via indirect communication using multicast 

group semantics.  This permits both destination naming 

independence as well as messaging optimizations in multi-

destination communication.  Time synchronization is also 

decoupled from the simulators, and implemented within 

the RTI, thus making the federation less dependent on any 

specific time synchronization protocol. 

Further, the RTIs supporting standards such as the 

HLA must accommodate a variety of simulators and 

support different synchronization protocols including time 

stepped, and conservative and optimistic event driven 

execution, possibly all within the same federation 

execution.  While any given federation typically uses only 

a subset of these options, the RTI must support all of 

them, leading to increased implementation complexity.  

Due to the general nature of a standard such as the HLA, 

the RTI cannot exploit application specific characteristics, 

e.g., a static topology among simulation processes.  Other 

potential optimizations, such as lookahead between 

specific pairs of processes, are difficult to define in a 

general way, and hence are not supported in the HLA.  

Thus, certain performance optimizations that might be 

possible in a monolithic simulation environment are 

difficult or impossible to realize in a general standard. 

Our performance study is based on two different 

network simulators: pdns and GTNetS.  Each of these two 

simulators is parallelized by self-federating the simulator 

with itself.  In other words, the parallel version of pdns is 

essentially a federation of multiple copies of sequential ns
(and similarly for GTNetS).

For our current purpose, namely, evaluating RTI-based 

parallelization approach, we focus on homogeneous 

federations (self-federation), and do not consider a mixture 

of dissimilar simulators. 

3.2. Federated Implementation 

1. TimeAdvanceGrant(T) { 
 2.          granted = true; grantedtime = T; 
 3.   } 
 4. SendEventToGroup (Event e, Group g) { 
 5.           e->timestamp = Now + LA; 
 6. Update(e, g); 
 7.   } 
 8. Reflect(Event e, Group g) { 
 9.            Now = e->timestamp; 
10. ProcessEvent(e); 
11.   } 
12. MainLoop() { 
13. SetLookAhead(LA); 
14.           While (not end of simulation) { 
15.                   e = local min time-stamped event 
16.                   If (e->timestamp <= grantedtime) { 
17. Dequeue(e); 
18.                            Now = e->timestamp; 
19. ProcessEvent(e);
20.                    } else { 
21.                            t = e->timestamp; 
22. NextEventRequest(t); 
23.                            granted = false; 
24.                            While(not granted) RTITick();
25.                    } 
26.            } 
27.    } 

Figure 1: Outline of NER-based approach.  RTITick() 

results in zero or more calls to Reflect() to transfer 

events from RTI to federate, followed by a call to 

TimeAdvanceGrant() to the next safe time.  Update() is 

called by the federate during event processing to send 

events to other processors via group communication. 

An HLA RTI must support multiple primitives for 

advancing simulation time to accommodate different time 

flow mechanisms.  Despite the multitude of primitives, 

they can be implemented over a single, shared core 

functionality, based on the computation of a value called 

Lower Bound on Time Stamp (LBTS). 

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03) 
1087-4097/03 $17.00 © 2003 IEEE 



Here we focus on the NextEventRequest primitive 

(abbreviated as NER), which is used by pdns and GTNetS.

NER is the primitive designed for use by conservative 

event driven federates, so is the most natural choice for 

these implementations.  The pseudo code for the main 

simulation loop using NER is shown in Figure 1.  

Equivalent implementations using other RTI primitives, 

namely, TimeAdvanceRequest (TAR) and 

FlushQueueRequest (FQR), are possible.  Nevertheless, 

among the different alternatives, NER is the most critical 

with respect to runtime overhead, since it is normally 

invoked prior to every local event. 

The optimizations we will describe later in the paper 

are based on the core LBTS functionality, and hence are 

generic in nature.  Thus, it is important to note that our 

approach is not necessarily limited to the 

NextEventRequest primitive, although further work is 

needed to more thoroughly evaluate the performance on 

the rest of the primitives. 

3.3. RTI Overhead 

After initialization is completed and the main 

simulation loop is entered, the federate periodically enters 

the RTI for (a) sending events (b) receiving events, and (c) 

synchronizing virtual time. In line 6 of Figure 1 the 

Update RTI primitive is used by the federate to send 

events.  Events are received by the federate using the Re

flect callback on line 8.  On line 22, the federate uses 

NextEventRequest to request delivery of events and to 

advance simulation time.  This service will cause the RTI 

to deliver the smallest time stamped event from another 

federate (if any) that has a timestamp earlier than the 

minimum timestamp of any event in the calling federate’s 

local event list.  The RTI is given CPU cycles on line 24 

using the RTITick call (henceforth abbreviated as Tick).  

The RTI performs time synchronization and network 

processing during this call, and provides incoming 

event(s) to the federate via the Reflect callback, and grants 

time advances via the TimeAdvanceGrant callback 

(henceforth abbreviated as TAG). 

Clearly, when inter-federate communication is sparse, 

the bulk of the RTI overhead occurs within lines 22 to 24. 

4. Performance Optimization 

When we began to examine the performance of the 

federated pdns and GTNetS simulators, we observed that a 

simple 2-processor pdns run exhibited disappointing 

performance.  This experiment scaled the size of the 

simulated network in proportion to the number of 

processors.  The metrics observed in the initial 2-CPU 

pdns run are shown in Table 1. 

While we expected to see negligible RTI overhead, and 

hence near-linear speedup, we instead observed an average 

RTI overhead of over 3.6 microseconds per event. 

CPUs Nodes 

/ CPU 

Events/CPU 

(millions) 

Run 

Time (s) 

Mics/

Event 

1 3766 73.7 485    6.58 

2 3766 73.7 751  10.19 

Table 1: Initial performance of pdns on baseline RTI. 

Although an RTI overhead of 3.6 microseconds per 

event is negligible for traditional RTI-based applications, 

it is significant for the fine-grained pdns federation.  The 

RTI overhead was almost 55% of sequential event 

execution time, even with little inter-processor 

communication, warranting a closer look at the overhead. 

Upon investigation, we discovered different sources of 

overhead that, although contributing minor amounts, 

eventually added up to the cumulative overhead that was 

observed.  We now describe each of these sources, and 

outline the solutions we adopted to eliminate them and 

substantially improve the parallel performance.  For 

example, in the 2-CPU run of Table 1, as we will see, we 

were able to optimize the RTI to reduce the overhead 

down from 3.6us (55%) to just 1.2us (18%) per event. 

4.1. NLBTS

 One of the first problems we noticed was that the RTI 

spent a significant portion of the time trying to advance 

simulation time in small increments.  The RTI computes a 

quantity called Lower Bound on Time Stamp (LBTS) of 

future events that may be received by a processor in order 

to implement HLA’s timestamp-ordered message delivery 

service.  The RTI software used in this study computes 

LBTS values asynchronously, in the background with 

other federate computations.  When a federate needs to 

advance its simulation time, the RTI initiates an LBTS 

computation if the last computed LBTS value is not large 

enough to issue the TAG. However, in the presence of a 

load imbalance where a lightly loaded processor has 

advanced ahead of the others in simulation time, this 

processor can inundate the more heavily loaded processor 

with LBTS computations.  This phenomenon can happen 

despite the presence of a large lookahead, and despite the 

fact that eventually all processors are loaded similarly.  

The fact that one processor is ahead in simulation time of 

the others is sufficient to initiate this problem.  We have 

noticed this phenomenon not only in pdns and GTNetS,

but also in other network simulator federations. 

A simple solution is to have each processor participate 

in an LBTS computation only when it itself needs a time 

advance, thereby forcing the processor that is ahead to 

wait.  Even if a lightly loaded processor initiates an LBTS 

computation, the other processors refrain from eagerly 

responding to that computation, but instead participate 

only when they themselves run out of local computation.  

This simple rule not only tends to reduce the load 

imbalance, but also evens out any transient imbalances in 

an otherwise well-balanced federation. 

The correctness of this optimization is ensured by the 

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03) 
1087-4097/03 $17.00 © 2003 IEEE 



fact that every federate eventually reaches its most 

recently granted time, and hence will initiate another 

LBTS computation in order to make progress.  Due to this 

effect, it is impossible for any federate to wait indefinitely, 

and overall progress is ensured in the federation. 

Of course, a drawback to this solution is that processors 

could potentially waste some amount of time waiting for a 

time advance.  However, the waiting time is not 

significant in federates that advance their time at roughly 

identical pace. 

4.2. Short Circuiting Tick Calls 

Another significant portion of the overhead is incurred 

by the federates due to the NER and Tick call combination 

required before processing each local event.  Note that the 

RTI keeps an ordered list of timestamp-ordered (TSO) 

events, so that they could be delivered in timestamp order 

according to NER semantics.  The minimum timestamped 

event in the RTI’s TSO event list is referred to as 

TSOMin.  The RTI also keeps the most recently computed 

LBTS value in a variable named LBTS.  Figure 2 shows 

the actions performed for each NER and Tick call. 

1. NextEventRequest(T) { 
 2.           Check for error conditions; 
 3.           Set up NER pending request state; 
 4.           Compute & update new local RTI time; 
 5.           Initiate a new LBTS if necessary; 
 6.   } 
 7. RTITick() { 
 8.           Check incoming network messages; 
 9.           Process LBTS messages; 
10.          While (there is a deliverable TSO event e) { 
11.                  Reflect(e); 
12.          } 
13.          If (can issue a time advance grant) { 
14.                  T = grantable time; 
15.                  TimeAdvanceGrant(T); 
16.          } 
17.   } 

Figure 2: NER and Tick implementation within RTI. 

Although the individual operations within NER and 

Tick are relatively simple and efficient, it is clear that they 

can accumulate if invoked very frequently.  For example, 

the check for incoming messages takes less than 0.5 

microseconds with our shared memory communication 

implementation.  Similarly, the time to process LBTS 

messages is also insignificant when considered in 

isolation.  However, together they add up to more than 3 

microseconds on a 2-CPU execution.  Furthermore, the 

overhead increases significantly when TCP 

communication is used. 

In order to address this problem, we analyzed how 

often each of the operations was indeed required, and how 

often the operations were superfluous.  It was found that in 

the vast majority of Tick calls, no incoming messages 

needed to be processed. 

Thus, an effective optimization is to short-circuit Tick 

calls to optimize the common case.  We call this approach 

the “fast-path” implementation of NER and Tick calls. It 

optimizes for the case where there are no “deliverable” 

events in the RTI’s TSO event queue, and when the 

previously computed LBTS is beyond the time advance 

requested in the NER call.  In other words, in the most 

frequent case, NER and Tick are effectively no-ops, doing 

nothing more than checking for the no-op condition and 

issuing a grant to the requested NER time. 

Figure 3 shows the “fast-path” optimization code pre-

pended to their function bodies. 

 1. NextEventRequest(T) { 
 2.           If (T < TSOMin and T < LBTS) { 
 3.                   Mark pending request as NER(T); 
 4.                   return; 
 5.           } 
 6.           Execute as usual; 
 7.   } 
 8. RTITick() { 
 9.           If (NER(T) is pending and 
10.               T < TSOMin and T < LBTS) { 
11.                   TimeAdvanceGrant(T); 
12.                   return; 
13.           } 
14.          Execute as usual ; 
15.   } 

Figure 3: Fast path optimization for NER and Tick 

implementation within the RTI. 

The lines 2-5 and 9-13 of Figure 3 correspond to the 

fast path optimizations.  Notice that, as a result of the fast 

path code, both the functions return immediately upon 

detecting the fast path condition, which is that no RTI 

TSO events can be delivered (T < TSOMin), and no new 

LBTS computation is required (T < LBTS).  The net effect 

of this optimization is that the NER, Tick and TAG calls 

together degenerate to a fast sequence of three short 

function calls. 

5. Performance Study 

We now present a performance analysis of federated 

execution, to demonstrate the relevance of RTI-based 

federated approaches to high-performance 

parallel/distributed simulation.  We do this using the two 

network simulators mentioned previously, namely, pdns

and GTNetS, each of which has been parallelized using our 

HLA RTI implementation.  The HLA software in question 

implements a subset of the HLA Interface Specification 

(version 1.3).  It utilizes one notable simplification of the 

IFSpec: attribute-handle-value pair sets are not 

implemented, in favor of a simpler mechanism to pass 

attribute values to the RTI. 

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03) 
1087-4097/03 $17.00 © 2003 IEEE 



5.1. Network Configuration 

The network topology, traffic, and parameters were 

based on the benchmark specification developed by the 

research group at Dartmouth College [4].  The 

benchmarks were developed as a set of baseline models 

for the network modeling and simulation community. The 

benchmark configurations were developed with the 

intention of facilitating the demonstration of network 

simulator scalability.  To aid in scalability studies, 

replication and expansion can be used on the original 

smaller network topology to easily create larger sized 

networks. 

Topology 

Each portion of the network is referred to as a Campus 

Network (CN).  Figure 4 shows the schematic for a typical 

CN.  Each CN consists of 4 servers, 30 routers, and 504 

clients for a total of 538 nodes.  The CN is comprised of 4 

separate networks.  Net 0 consists of 3 routers, where node 

0:0 is the gateway router for the CN.  Net 1 is composed 

of 2 routers and 4 servers.  Net 2 consists of 7 routers, 7 

LAN routers, and 294 clients.  Net 3 contains 4 routers, 5 

LAN routers, and 210 clients. 

Figure 4: Basic campus network (CN) model. 

Net 0 is connected to Net 2 and Net 3 via standalone 

routers.  Net 1 is connected directly to Net 0 through a 

single link.  All non-client links have a bandwidth of 

2Gb/s and have a propagation delay of 5ms with the 

exception of the Net 0 to Net 1 links, which have a 

propagation delay of 1ms.  Clients are connected in a 

point-to-point fashion with their respective LAN router 

and have links with 100Mb/s bandwidth and 1ms delay. 

Multiple CNs may be instantiated and connected 

together to form a ring topology.  This aspect of the 

network allows the baseline model to be easily scaled to 

arbitrarily large sizes.  Multiple CNs are interconnected 

through a high latency 200ms 2Gb/s link via their Net 0 

gateway router. 

Traffic

In our performance study, we focus on pure TCP traffic 

requested by clients from server nodes.  All TCP traffic is 

“external” to the requesting CN clients, i.e., all the clients 

generate TCP traffic to/from servers in an adjacent CN in 

the ring (CN i communicates with CN i+1, etc.).  Also, we 

use the short transfer case of the baseline model, in which 

clients request 500,000 bytes from a random Net 1 server.  

The TCP sessions start at time selected from a uniform 

distribution over the interval from 100 and 110 seconds of 

simulation time. 

5.2. Scaling Methodology 

The experiments described here scale the size of the 

simulated network in proportion to the number of 

processors used.  This is a widely accepted approach for 

scalability studies in the high performance computing 

community.  It also circumvents the problem of having a 

sequential machine with enough memory to execute the 

entire model, which would not be possible for the large 

simulations that are considered here. 

A principal performance metric used here is the number 

of simulated “packet hops” that can be processed by the 

simulator in one second of wallclock time.  A “packet 

hop” represents the transmission of a packet from one 

node (a router or end node system) to another over a link 

in the network.  Network simulators will typically require 

more than one event to simulate a packet hop.  For 

example, pdns and GTNetS both require exactly two 

simulator events to model a packet hop. 

5.3. Simulation Platform 

All our experiments are executed on a large Linux 

cluster consisting of 16 machines. Each machine is a 

Symmetric Multi-Processor (SMP) machine with eight 

550MHz Pentium III XEON processors.  The eight CPUs 

of each machine share 4 GB of RAM. Each processor 

contains 32KB (16KB Data, 16KB Instruction) of non-

blocking L1 cache and 2MB of full-speed, non-blocking, 

unified L2 cache. An internal core interconnect utilizes a 

5-way crossbar switch connecting two 4-way processor 

buses, two interleaved memory buses, and one I/O bus.

The operating system is Red Hat Linux 7.3 running a 

customized 2.4.18-10smp kernel.

The 16 SMP machines are connected to each other via 

a Dual Gigabit Ethernet switch with EtherChannel 

aggregation.  Our RTI software uses shared memory for 

communications within an SMP, and TCP/IP for 

communication across SMPs. 

Note that, in the following sections, the performance 

metrics are consistent across multiple runs, and hence 

error bars are not shown. 

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03) 
1087-4097/03 $17.00 © 2003 IEEE 



5.4. RTI Primitive Timings 

Execution times for key RTI primitives are shown in 

Table 2.  The first two lines report the time required for 

each invocation of NER and Tick, as discussed earlier.  

UpdateAttributeValues is an HLA service to send a 

message.  ReflectAttributeValues is a callback from the 

RTI that is invoked to deliver a message to the federate.  

The reported times indicate the execution time required in 

the RTI to deliver the message, and the amount of time in 

the federate (for pdns) to process incoming event. 

Primitive Portion Average Time 

(microsecs) 

NextEventRequest RTI   1.99 

RTITick RTI   3.03 

UpdateAttributeValues RTI 36.61 

ReflectAttributeValues RTI 21.28 

ReflectAttributeValues pdns 37.13 

Table 2: Micro timing measures with pdns on 16 CPUs, 

7 CN/CPU, for RTI primitives after optimizations. 

5.5. Performance after Optimizations 

 The individual and cumulative performance 

improvements provided by the NLBTS and fast path 

optimizations are shown in Figure 5 and Figure 6 for pdns,

and in Figure 7 for GTNetS.  The 1-processor data point in 

the figures corresponds to executing the parallel version 

on a single CPU. 

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8

Number of Processors

A
v

e
ra

g
e

 R
T

I 
o

v
e

rh
e

a
d

 p
e

r 
e

v
e

n
t 

(u
s

)

Unoptimized Fastpath
NLBTS Fastpath+NLBTS

Figure 5: Decrease in overhead per pdns event with 

each optimization on a single 8-CPU machine with 

shared memory inter-processor communication. 

The benefits of NLBTS optimization are more 

pronounced when all communication is performed via 

shared memory, as seen in Figure 5.  In this case, due to 

the high speed of shared memory messaging, each LBTS 

computation completes rapidly, and hence provides more 

opportunity for the lightly loaded processor to initiate 

many more LBTS computations.  However, this effect is 

less severe when TCP communication is introduced when 

scaling to a large number of processors, as see in Figure 6.  

The number of LBTS computations is automatically 

reduced due to longer messaging delay, and hence the 

reduction in overhead is negligible beyond 16 processors. 

On the other hand, the fast path optimization fetches 

significant savings in overhead in all processor 

configurations.  The savings are in fact greater on a larger 

number of processors, partly because it avoids the high 

cost frequent network polling. 

Similar performance improvement trends are seen with 

GTNetS as well, as shown in Figure 7. 

0

10

20

30

40

50

16 32 48 64 80 96 112 128

Number of Processors

A
v

g
. 

R
T

I 
o

v
e

rh
e

a
d

 p
e
r 

e
v
e

n
t 

(u
s
)

Unoptimized Fastpath
NLBTS Fastpath+NLBTS

Figure 6: Decrease in overhead per pdns event with 

each optimization on multiple 8-CPU machines. 

0

5

10

15

20

25

30

0 20 40 60 80

Number of Processors

A
v
g

. 
R

T
I 

o
v
e
rh

e
a
d

 p
e
r 

e
v
e
n

t 
(u

s
)

Unoptimized Fastpath
NLBTS Fastpath+NLBTS

Figure 7: Decrease in overhead per GTNetS event with 

each optimization on multiple 8-CPU machines. 

It is clear from the data that the optimizations are 

necessary in order to lower the overall amortized runtime 

overhead of each event.  As a net result, the RTI overhead 

levels off at around 3-4 microseconds per event, even 

when the number of processors is increased up to the 

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03) 
1087-4097/03 $17.00 © 2003 IEEE 



maximum available number of processors. 

5.6. Scalability Study 

We now consider the scalability of the federations 

using the optimized version of the RTI.  As described in 

the scaling methodology earlier, the network is scaled with 

the number of processors for all our scalability 

experiments.  Scalability is tested along two fronts: (a) 

simulation runtime/speed (b) maximum network size that 

can be simulated.  Initialization time is excluded in 

simulation runtime. 

As can be expected with any set of different simulators, 

pdns and GTNetS exhibit slightly different speed and 

memory characteristics.  pdns events execute faster since 

they model slightly lesser amount of detail than GTNetS
events, while GTNetS is more memory-efficient than pdns.

Parallel Speedup 

The parallel speedup afforded by the simulators is 

shown in Figure 8.  Both simulators scale very well with 

increasing number of processors.  pdns exceeds a speedup 

of 80 on 128 processors (16 8-CPU machines), while 

GTNetS reaches 80-fold speedup on 120 processors (15 8-

CPU machines). 

Packet Hop Rate 

The simulation speed of pdns is shown in Figure 9 for 

simulating 7-CN per CPU.  pdns achieves a speed 

exceeding 6 million packet hops per second when 

executing on 128 processors.  GTNetS clocks 

approximately 3 million packet hops per second on 120 

processors for the same network model. 

0

10

20

30

40

50

60

70

80

90

0 16 32 48 64 80 96 112 128

Number of Processors

S
p

e
e

d
u

p

pdns GTNetS

Figure 8: Scalability of runtime. 

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

0 32 64 96 128
Number of Processors

P
a
c
k
e
t 

h
o

p
s
 p

e
r 

s
e
c
o

n
d

Figure 9: Scalability of pdns showing over 6 million 

packet hops per second on 128 processors. 

0

100000

200000

300000

400000

500000

0 16 32 48 64 80 96 112 128
Number of Processors

T
o

ta
l 

s
im

u
la

te
d

 n
o

d
e
s

Figure 10: Scalability of pdns showing almost half a 

million simulated nodes on 128 processors.  

0

500000

1000000

1500000

2000000

2500000

0 16 32 48 64 80 96 112 128

Number of Processors

T
o

ta
l 
s
im

u
la

te
d

 n
o

d
e

s

Figure 11: Scalability of GTNetS showing nearly 2 

million simulated nodes on 120 processors. 

Network Size 

The increasing network sizes shown in Figure 10 and 

Figure 11 are interesting when considered in conjunction 

with packet hop rates shown in Figure 9.  Not only the 

packet hop rate but also the network size increases linearly 

with number of processors.  This demonstrates scalability 

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03) 
1087-4097/03 $17.00 © 2003 IEEE 



along each dimension without affecting the scalability 

along the other dimension. 

pdns reaches the memory limit (4GB) on each 8-CPU 

box when simulating one 7-CN (3766 nodes) per CPU.  

GTNetS simulates over 20,000 nodes per CPU. 

6. Future Work 

The fast path optimization method could potentially be 

applied to other RTI primitives.  For example, the FQR 

primitive could be optimized for optimistic simulations 

such as TeD and Telesim, and the TAR primitive could be 

tuned for efficient time-stepped simulations such as 

vehicular traffic simulations. 

More generally, the fast path and NLBTS optimizations 

are examples of the types of improvements that can be 

performed on an RTI implementation.  We believe it is 

possible to generalize such optimizations, and make them 

automatically detected and tuned by the RTI at runtime, 

depending on the dynamics of the executing federation.  

We are investigating adaptive mechanisms for 

automatically tuning different optimizations based on 

performance monitoring at runtime. 

7. Conclusions

We have demonstrated that HLA-like federated 

simulation interfaces, although originally defined for 

interoperability and ease of integration, can also be 

efficiently implemented for high performance.  The 

parallel execution performance can rival that of monolithic 

approaches, delivering extremely good speedups even in 

the challenging case of fine-grained event processing.  

Using our optimized RTI implementation, we are able to 

achieve some of the largest packet-level network 

simulations to date. 

An interesting corollary to our work is that the use of 

un-optimized RTI implementations can convey the 

incorrect notion that RTI-based federated execution is 

inherently slow.  Our initial performance runs using an un-

optimized RTI implementation substantiate such a false 

notion.  Our subsequent optimizations and the resulting 

excellent speedup demonstrate that federated simulation 

interfaces can indeed be implemented efficiently. 

In favor of the RTI-based approach, it is also 

noteworthy that the same optimized RTI implementation 

was easily reusable for parallelizing multiple different 

simulators.  We were able to realize efficient parallel 

implementations of both pdns and GTNetS simply by 

linking the exact same library of our RTI software into 

both simulators.  While reuse of optimizations is not 

nearly as straightforward across different monolithic 

parallel simulators, the RTI reuse was natural in our 

federated approach. 

References 

1. Zeng, X., R. Bagrodia, and M. Gerla, GloMoSim: A Library 

for Parallel Simulation of Large-Scale Wireless Networks, 

in Proceedings of the 1998 Workshop on Parallel and 

Distributed Simulation. 1998. p. 154-161. 

2. Perumalla, K., R. Fujimoto, and A. Ogielski, TeD - A 

Language for Modeling Telecommunications Networks. 

Performance Evaluation Review, 1998. 25(4).

3. Poplawski, A.L. and D.M. Nicol, Nops: A Conservative 

Parallel Simulation Engine for TeD, in 12th Workshop on 

Parallel and Distributed Simulation. 1998. p. 180-187. 

4. Cowie, J.H., D.M. Nicol, and A.T. Ogielski, Modeling the 

Global Internet. Computing in Science and Engg., 1999. 

5. Liu, J. and D.M. Nicol, DaSSF 3.0 User's Manual. 2001. 

6. Unger, B., The Telecom Framework: a Simulation 

Environment for Telecommunications, in Proceedings of 

the 1993 Winter Simulation Conference. 1993. 

7. Pham, C.D., H. Brunst, and S. Fdida, Conservative 

Simulation of Load-Balanced Routing in a Large ATM 

Network Model, in Proceedings of the 12th Workshop on 

Parallel and Distributed Simulation. 1998. p. 142-149. 

8. Miller, D.C. and J.A. Thorpe, SIMNET: The Advent of 

Simulator Networking. Proceedings of the IEEE, 1995. 

83(8): p. 1114-1123. 

9. Nicol, D. and P. Heidelberger, Parallel Execution for Serial 

Simulators. ACM Transactions on Modeling and Computer 

Simulation, 1996. 6(3): p. 210-242. 

10. IEEE Std 1278.1-1995, IEEE Standard for Distributed 

Interactive Simulation -- Application Protocols. 1995, New 

York, NY: Institute of Electrical and Electronics Engineers. 

11. IEEE Std 1278.2-1995, IEEE Standard for Distributed 

Interactive Simulation -- Communication Services and 

Profiles. 1995, New York, NY: Institute of Electrical and 

Electronics Engineers Inc. 

12. Kuhl, F., R. Weatherly, and J. Dahmann, Creating 

Computer Simulation Systems: An Introduction to the High 

Level Architecture for Simulation. 1999: Prentice Hall. 

13. Perumalla, K., et al., Experiences Applying Parallel and 

Interoperable Network Simulation Techniques in On-Line 

Simulations of Military Networks, in Proceedings of the 

16th Workshop on Parallel and Distributed Simulation. 

2002. p. 97-104. 

14. Brunett, S., et al., Implementing Distributed Synthetic 

Forces Simulations in Metacomputing Environments. 1998, 

California Institute of Technology, Center for Advanced 

Computing Research (CACR-158). 

15. Wu, H., R. Fujimoto, and G. Riley, Experiences 

Parallelizing a Commercial Network Simulator, in 

Proceedings of the Winter Simulation conference. 2001. 

16. Riley, G., et al. Distributed Network Simulations using the 

Dynamic Simulation Backplane. in International 

Conference on Distributed Computer Systems. 2001. 

17. Fujimoto, R.M., Time Management in the High Level 

Architecture. Simulation, 1998. 71(6): p. 388-400. 

18. Bodoh, D., and F. Weiland. Self Federating an Aviation 

Simulation using HLA: Is it Feasible? in Proceedings of the 

Workshop on Distributed Simulation and Real-Time 

Applications, 2001. 

Proceedings of the Seventeenth Workshop on Parallel and Distributed Simulation (PADS’03) 
1087-4097/03 $17.00 © 2003 IEEE 


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


