
Abstract— The ad-hoc methodology that is prevalent in today’s

testing and evaluation of network intrusion detection algorithms

and systems makes it difficult to compare different algorithms

and approaches. After conducting a survey of the literature on

the methods and techniques being used, it can be seen that a new

approach that incorporates an open source testing methodology

and environment would benefit the information assurance

community. After summarizing the literature and presenting

several example test and evaluation environments that have been

used in the past, we propose a new open source evaluation

environment and methodology for use by researchers and

developers of new intrusion detection and denial of service

detection and prevention algorithms and methodologies.

Index Terms—Intrusion Detection Testing, Network Security,

Network Attack Generation, Hacker Tools

I. INTRODUCTION

Beginning in 1998, DARPA initiated the Intrusion Detection

Evaluation [8-12] program. These evaluations involved

generating background traffic interlaced with malicious

activity so that intrusion detection systems and algorithms

could be tested and compared. Although these tests and the

resulting data were very valuable, after 1999 this evaluation

environment and methodology has not been continued. In

2000, the Lincoln Adaptable Real-time Information Assurance

Test-bed (LARIAT) effort was initiated. This effort resulted

in custom software that emulates network traffic from a small

network connected to the Internet. By 2001, LARIAT had the

ability to perform approximately 50 attacks against 9

operating systems [26]. Unfortunately, LARIAT is only

available for use under special circumstances, thus it is not

available to the Information Assurance community as a whole.

Since neither LARIAT nor an updated DARPA

environment is openly available, inventors of new information

assurance algorithms and techniques have no accepted,

standard method for evaluating their algorithms and

implementations. The most common methodology is to create

a small test network and release malicious activity in that self-

contained small network environment. The network

architecture, complexity and capabilities are totally

unspecified in general, and no standard comprehensive

recommendations appear to exist. A second methodology also

used is to capture network traffic from an existing production

network and play it back on a test network segment using

tools such as “tcpreplay” [47]. The disadvantage of this

second approach is that new attacks are not easily inserted into

the existing traffic data files. Neither of these approaches has

been widely effective in evaluating intrusion detection or

intrusion prevention systems, due to the inability to generate

network traffic data from a large variety of environments and

conditions.

The use of “complete traffic” is necessary for realistic

information assurance system testing [22]. In general the issue

of traffic generation is one of the most difficult ones to tackle.

Synthetic traffic does not represent the realities of an actual

network. Synthetic load generators, like SmartBits hardware

traffic generators, were designed for load-testing bridges and

routers, which typically do not examine packet payloads [22].

They produce pseudo-random TCP frames. The traffic

generated by these tools is usually not suitable for use in

information assurance evaluation environments, since actual

traffic is not random. Statistical models that take into account

daily patterns of computer usage with random deviations may

be used to describe user behavior, and have been be used to

extrapolate the traffic produced by legitimate users. However,

the user models produced to date have been site and

application specific and do not carry the generality necessary

to be useful for evaluation purposes.

Software testing approaches have used scripting tools to

create synthetic “Web browsers”, as well as FTP and Telnet

users. Their sessions last random periods of time. These

methods seldom model actual user behavior, and thus this

approach is nearly equivalent to the random packet generation

approach. Traffic generators designed for testing web servers

have more realistic profiles because the type of traffic created

is by design like Internet traffic [22]. In testing web servers,

the offered load becomes an issue because overloading a

server resembles a DOS attack. More over, types of URL and

data returned from the server influence the response of the

traffic generation system. Scripting tools are commonly used

to emulate users engaging in browsing the Internet.

Reviewing the intrusion detection system testing and

benchmarking literature, it becomes clear that present

approaches to testing are inadequate. A large number of

unrelated tests, such as [29,3,32,34-39,43-45], can be brought

into use. Most of these tests assess susceptibility to a single

Intrusion Detection Testing and Benchmarking

Methodologies

Nicholas Athanasiades, Randal Abler, John Levine, Henry Owen, and George Riley

School of Electrical and Computer Engineering

Georgia Institute of Technology

Atlanta, Georgia 30332-0250 USA

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

weakness or single weakness area. We do not believe that

there is ever going to be a comprehensive test nor a single

methodology that would examine an intrusion detection

system for every attack, verify its abilities and identify all its

weaknesses [28]. This in essence would categorically solve

the problem of intrusion detection. However, it is possible to

improve on the existing practices employed in the field. In

particular, a common framework for testing, as in this paper,

would greatly simplify and expedite running a wide variety of

test scenarios.

II. EXISTING TOOLS AND TESTING METHODOLOGIES

The predominant open source philosophy for testing

intrusion detection systems in 2002 is to create an

individualized test environment. This means searching for

existing exploits (attacks) and then embedding these exploits

into the individualized test networks. Background traffic is

mixed with the exploits to hide the exploits in benign

environments. Volume and traffic data rates are controlled so

as to have the ability to determine at which points the

intrusion detection algorithm or platform begins to have

trouble keeping up the total traffic. While not presenting an

exhaustive list of these environments or individual tools, the

next subsections summarize a few of the tools and

environments used for creating intrusion detection evaluation

environments. A more comprehensive list of tools may be

found at [49] which is a list of the 50 most popular network

security tools.

A. DARPA Environment

The DARPA 1998 and 1999 intrusion detection evaluations

represent the first significantly systematic effort to test

intrusion detection systems. Their focus was not on testing

complete systems but evaluating technical approaches [26]. In

the first evaluations in 1998, the state of intrusion detection

was unknown. The designers of the environment had to

overcome the considerable problem of no pre-existing effort.

No previous effort meant that there were no standard

comparison metrics, standard attacks, standard background

traffic or existing methodology [10].

The general approach to testing was the following. An

off-line and an on-line evaluation were executed. In the off-

line evaluation, a set of seven weeks of training data was

provided to vendors. This consisted of sessions, which were

marked as normal, or as attacks. The off line training data

was intended to use as a tool for the intrusion detection system

experts to tune and optimize their systems [11]. A second set

of two weeks of data was generated which was to be used for

actual testing. The tool tcpreplay was used to feed the traffic

to the evaluation systems. The results were analyzed and

presented to participants at a workshop [10].

The test designers were faced with three options when

deciding how to generate the traffic. The first option was to

collect real operational data and attack an actual organization.

The packets would be real, however it was unacceptable to

attack an actual organization. Furthermore, releasing private

e-mails, passwords and user identities was not realistic. The

next option was to actually go ahead and sanitize the data

collected and then introduce the attacks directly in the

sanitized data [5]. This approach was cumbersome and prone

to artifacts since attacks would be merged into real collected

traffic. There was no other realistic option other than to

synthesize all sessions from scratch. This option would

generate non-sensitive traffic similar to that seen on an

operational network. Data could be distributed without fear of

breaching security. More over, it lent itself to automating

traffic generation. In order to recreate realistic traffic four

months of data from Hanscom Air Force Base and 50 other

bases were analyzed [10].

The network traffic in this environment was Unix focused.

It included the following protocol/traffic activity: HTTP, X

Windows, SQL, SMTP, DNS, FTP, POP3, Finger, Telnet,

IRC, SNMP, and Time [10]. Thousands of hosts contributing

to background traffic were simulated but the number of

simulated users representing secretaries, programmers,

workers and so on were in the hundreds. In the cases where

traffic was too complex to model with automata, human actors

were utilized to generate background traffic. The actual

content of FTP, HTTP and SMTP transfers was created

through statistical similarity to live traffic or was sampled

from public–domain sources [5]. A number of e-mails in the

network traffic were taken from public domain mail list

servers. The rest maintained word and two-word sequence

statistics derived from a sample of 10,000 e-mails filtered with

a 40,000 word dictionary to remove names. Telnet sessions

were recreated via statistical profiles of users. These profiles

included the frequency of UNIX commands executed, typical

login times, session duration times, source and destination

addresses. Some of the computers maintained fixed IP

addresses while others changed addresses during the test [5].

Expect was used to control most of the automated sessions.

Human actors performed more complicated tasks such as

installing software. In order to complete the testing

environment, attacks needed to be interjected into a volume of

background traffic. 120 different attacks spanning 38 attack

categories were introduced into the traffic [10]. Figure 1

presents the attacks launched against each victim.
Solaris SunOs Linux

Denial of

Service

(11 types,

43 instances

Back,Neptune,

Ping of death,

Smurf, syslog,

Land, apache2,

Mailbomb,

Process table,

UDP storm

Back,Neptune,

Ping of death,

Smurf,

Land, apache2,

Mailbomb,

Process table,

UDP storm

Back,Neptune,

Ping of death,

Smurf, teardrop,

Land, apache2,

Mailbomb,

Process table,

UDP storm

Remote to

Local

(14 Types,

17 Instances)

Dictionary,

ftp-write,

guest, phf,

http tunnel,

xlock,xsnoop

Dictionary,

ftp-write,

guest, phf,

http tunnel,

xlock,xsnoop

Dictionary,

ftp-write,

guest, imap, phf,

named,

http tunnel,

sendmail,

xlock,xsnoop

User to Root

(7 types,

38 Instances)

Eject, ffbconfig,

Fdformat,ps

Loadmodule, ps Perl,xterm

Surveillance/

Probe

Eject, nmap,

Port sweep,

Eject, nmap,

Port sweep,

Eject, nmap,

Port sweep,

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

(6 types,

22 Instances)

Satan, mscan,

saint

Satan, mscan,

saint

Satan, mscan,

saint

Figure 1 Attacks in the 1998 DARPA evaluation [10]

In addition to the methodology of using known attacks,

novel attacks were developed in order to test systems’

effectiveness against never-seen before attacks [10]. Many of

the attacks were analyzed beforehand to verify that they

function in the test bed. That information was later used

further to improve on these attacks by making them stealthier

[5].

The suggestions collected during the 1998 test shaped the

1999 DARPA test. The goals of the evaluation shifted to

testing complete systems and the reasons they miss novel

attacks. There were a number of changes and additions

summarized below [8]:

1. Victim Windows NT machines were added.

2. New stealthy attacks were added to avoid intrusion

detection system detection.

3. Two new types of analysis were performed:

a. An analysis of misses and high-scoring false alarms

to determine the cause of detection misses and false

alarms.

b. Participants were allowed to submit information

aiding in the identification of many attacks and their

appropriate response.

4. Another major point of focus was detection of novel

attacks without first training.

Scoring was restructured for the 1999 test. The list files as

generated for the 1998 test made it difficult for the vendors to

submit easily scored alerts because of the complex nature of

alert generation. Alerts were true positives if they occurred at

the time of attack and the correct victim’s IP was identified.

A 60 second grace period was allowed to account for network

latencies. Intrusion detection systems were not penalized for

attacks for which they were not designed to detect [8].

The DARPA tests have been criticized extensively. The

environment was build to test passive intrusion detection

systems. The off-line part was very difficult to adapt for

systems that query network equipment and respond by

changing their configuration. Furthermore, the information

recorded for the off-line test was simply not enough for

certain intrusion detection systems. In general, recording

packet streams have proven inflexible as a testing method.

The complexity of packet streams necessary to test correlation

systems makes the DARPA approach not extendable [26].

The DARPA data generation methodologies have been

critiqued because one of the expressed goals of the DARPA

evaluation was to create useable data for further testing by

others. Criticisms included [15]:

1. No effort was made to validate its false alarm

characteristics. It is unknown how many false alarms

background traffic alone would generate.

2. Neither the statistics of the real traffic nor the statistics

that the generated traffic was supposed to match, or the

methodology for proving the statistics correct, were ever

published.

3. Data rates and their variation with time was never a

variable in the DARPA tests. What is more troublesome

is that there is suspicion that data rates in the order of

kilobits may have been used.

4. The attacks were evenly distributed throughout the

background traffic. Each attack type was used the same

amount. Both choices do not reflect network reality.

5. There are inconsistencies in the documentation found on

the DARPA tests.

6. There was no control group employed in the testing.

7. The types of attacks used could guide one’s detection

focus on operating systems vulnerable to interactive

attacks.

8. The size of training data may have been insufficient.

There is no proof that it presented intrusions to any

degree of realism or even that such data can be

constructed.

9. Some attacks had TTL characteristics that did not match

the background traffic.

In spite of these criticisms, the DARPA tests and

methodology were a significant contribution to the

information assurance community and made significant

contributions toward identifying the complexities and

difficulties in testing and evaluating intrusion detection

algorithms. Test data is still used at present in 2002.

However, at present, the information assurance community

frowns upon further results and comparisons made with this

data. This is due largely to the fact that the time value of the

actual data has depreciated both through new and different

attacks today as well as having more time to customize and

calibrate intrusion detection algorithms. This means that it is

not fair to compare to results from algorithms used during the

time pressure of the DARPA tests. It is undesirable that there

is no presently publicly available existing equivalent

environment or methodology available for researchers to use

to evaluate the new generation of algorithms and

methodologies. These DARPA tests were a very positive

influence on the information assurance community.

B. LARIAT Environment

A recently developed follow on methodology and

environment is the Lincoln Adaptive Real-time Information

Assurance Test-bed (LARIAT) [23]. The motivation for

creating LARIAT was to provide “tools to assist in the

evaluation and configuration of information assurance (IA)

technologies” [23]. This was part of a larger effort to develop

a comprehensive testing environment for intrusion detection

systems, firewalls and access control lists. It came about after

the DARPA 1999 IDS evaluation with the first release

becoming available in 2000. In 2001, its capabilities had been

extended to include high throughput capabilities, attack

scenarios and Windows traffic in addition to being real-time,

deployable and fully automated.

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

LARIAT “emulates the network traffic from a small

organization connected to the Internet” [23]. The user first

selects profiles for background traffic and attacks. The attack

profiles include the type and strike time of the attack. The

system goes through a network discovery phase during which

it verifies that everything is ready before the test begins. In

the future, test engineers will not have to configure LARIAT

in order to specify the capabilities of the network. The system

will do that by itself [23]. Then, it initializes the network

(clears logs and process table, removes old traffic and resets

accounts, etc.) and configures the hosts. During the next step

the test’s conditions are set up. Traffic and attack scripts are

generated. Attacks are scheduled and logging services are

started. The software allows the configuration of the

aggregate traffic generation including the attack distribution,

rate and amount of traffic. Subsequently the test is run.

LARIAT allows the user to monitor the testing progress in

“real-time”. After completion of the test the attack logs are

examined and their success evaluated. The final stage consists

of clean up. All corrupted files and polluted process tables

are reinstated. Services and other conditions necessary for the

test’s execution are terminated [23]. The system is fully

automated so after clean up the system will start the next

attack scenario by repeating the process from step two.

Traffic generation in LARIAT is done through the use of

defined service models. Some examples of the protocols used

are http, smtp, ftp, telnet and much more. Further more the

system takes into account interactions between protocols.

Traffic volumes can be varied from 0-100Mbps according to

need. In 2001, there were 50 attacks available for 9 different

operating systems.

The system takes a unique approach to background traffic

generation. The developers have modified a Linux Kernel

that would allow their software to generate traffic. The traffic

emulates many hosts on the Internet. There is a web interface

that allows evaluators to configure the traffic generation

between individual tests [26]. The traffic used is similar to

that used by the DARPA 1999 evaluations. The user is

allowed to adjust the arrival rate and distribution of sessions

of each type [26]. More over, there are traffic profiles, on/off

time switches and zones can be added or removed. Zones are

Internet domains or sub domains which contain real or virtual

hosts, sources and destinations. All this information is

supplied to traffic generators in order to adjust their traffic

profiles. In conjunction with the ability of LARIAT to set a

victim machine to a particular state (certain users, accounts

and directories), the aggregate content of background traffic

can be completely specified permitting the emulation of a

wide variety of environments.

LARIAT was generated as part of a government project and

is not publicly available. LARIAT is a very sophisticated and

advanced test and evaluation environment and serves as an

excellent reference for ideas that need to be incorporated into

an open source tool that is widely available to all information

assurance researchers and developers.

C. Nidsbench and IDS Wakeup

Nidsbench is a Network Intrusion Detection System Test

Suite that has not been significantly changed or updated since

it was first released in 1999. It is a tool kit that was intended

for use in testing network intrusion systems and algorithms. It

assumes that the systems under test are passive. In other

words, the intrusion detection systems do not respond to the

network traffic by adjusting the configuration of system [38].

Nidsbench is made up of the components tcpreplay, idtest and

fragrouter. Fragrouter was used to detection if an attacker

could evade the IDS as it is described in [30]. Tcpreplay’s

purpose was to provide the background traffic by replaying

prerecorded traffic. Idtest is the strength of this tool in that it

actually attempts exploits as opposed to vulnerability scanners

that look for only for attack symptoms [38].

D. IDSwakeup

IDSwakeup is another group of tools built to test intrusion

detection systems [43] very much like Nidsbench. It

generates false attacks, which resemble well known attacks in

order to determine if the systems will produce false alarms. It

should be clear that this is not a scanner but a false positive

test utility [44]. It is published under a BSD-style license [43].

The program consists of IDSwakeup and utilizes hping and

iwu. IDSwakeup is the starting script and allows the user to

choose which attack or attacks to imitate. Hping is used to

send arbitrary packets. Iwu sends a buffer as a datagram.

Source and destination addresses and TTL are changeable.

E. Flame Thrower

Flame Thrower is commercial load stress tool used to

identify network infrastructure weaknesses. It produces actual

transactions in order to test network infrastructure and

applications. It supports HTTP/HTTPS 1.0, 1.1 and SSL with

over 32,000 URL definitions. It can emulate over two million

IP addresses [25]. FirewallStressor, which is part of the Flame

Thrower environment, will measure throughput under attack

conditions such as SYN Flood Attack, IP Spoofing Attack,

CRC Error Packets, ICMP attack, LAND attack, Ping of

Death attack, Trin00, Short Frame Packets, Tear Drop Attack,

Illegal TCP/IP Packets, and Long Frame Packets. Flame

Thrower is intended for testing firewalls [25].

F. WebAvalanche/WebReflector

WebAvelanch and WebReflector are two commercial

network appliances, which are used in the testing of intrusion

detection systems [24]. The former is a stress-testing

appliance while the latter emulates the behavior of large Web,

application and data server environments [39].

WebAvelanche and WebReflector support protocols such

as HTTP 1.0/1.1, SSL, RTSP/RTP and FTP while allowing

for the modeling of user behavior. The environment can

maintain over a million connections, which will appear to

come from different IP addresses. The environment will

measure percent dropped packets, latencies, maximum number

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

of users and new user arrival rates [39].

G. Tcpreplay

Tcpreplay is a utility that allows captured traffic to be

played back on a network at different speeds. According to

[47] “this program was written in the hopes that a more

precise testing methodology might be applied to the area of

network intrusion detection, which is still a black art at best”.

Tcpreplay replays files captured in tcpdump or snoop formats.

H. Fragrouter

This is an attack generation tool. It is recommended for

testing anti-evasion techniques and fragmentation queues [24].

“Fragrouter is a program for routing network traffic in such a

way as to elude most network intrusion detection systems”

[24]. In [24] techniques using fragmentation to elude

intrusion detection systems were explained.

I. Hping2

Hping2 is a command-line packet assembler and analyzer

[29]. Hping2 is distributed under GNU GPL license for

Linux, FreeBSD, NetBSD, OpenBSD and Solaris platforms.

Hping2 allows one to create and transmit custom ICMP, UDP,

and TCP packets. Hping2 may be used to fingerprint remote

operating systems.

J. Iperf

Iperf measures bandwidth, delay jitter and datagram loss.

Measurements can be done using representative traffic

streams. Iperf may be used as a background traffic source for

intrusion detection environments [33,34].

III. ISSUES IN GENERATING REALISTIC EVALUATION

ENVIRONMENTS

The problem of traffic generation may be divided is into

two issues. The first is concerned with background traffic. It

consists of flows that do not carry malicious payload. The

second issue tackles the actual testing of intrusion detection

systems with attacks. These two types of flows are mixed and

presented to an intrusion detection system for processing. The

decoupling of the two types of flows has allowed intrusion

detection evaluators a great degree of flexibility. It is

generally accepted that the most optimal background traffic is

unprocessed, real flows encountered in an actual network. It

is abundant. It requires no effort from the tester to generate.

It could not be more realistic. It contains no harmful artifacts

such as duplicate addresses coming from different locations,

which would confuse some switches. It is easy to vary.

The attack traffic, on the other hand, is based on databases,

which serve as repositories for malicious flows [6,7][46].

These databases require effort to maintain and update. Attack

density can be changed real time, which is impossible with

canned traffic. There is real time generation. The traffic is

easy to vary. The insertion of “cessation times” is relatively

simple. Cessation times between attacks are relatively

important in order to distinguish between the effects of attacks

when those are similar. Again evaluators have full control of

the attack stream.

At the moment, it is very expensive to run an exhaustive

test of all attacks known. There are diminishing returns in the

confidence of an intrusion detection system after a certain

number of attacks have been attempted. A suggestion is to

attempt a representative subset of attacks from each category.

This is called equivalence partitioning [19]. However, that

introduces the problem of taxonomy [40]. Current work

seems to indicate that classification methods using

vulnerabilities, signatures and intrusion techniques to lead to

imperfect class definitions [19]. Both of the schemes would

ensure that a wide range of test cases would be selected.

Therefore, it is recommended to use the security policies

already in place as guidelines in the determining which attacks

to launch again the intrusion detection system under

evaluation. Existing taxonomies should be employed as a tool

to guarantee the variety of the attacks [18].

Another disadvantage has to do with regulatory restriction

on user traffic. The reason DARPA created “pseudo users”

was that actual traffic contained sensitive or classified

information. Privacy laws may require sanitizing traffic

before use for testing, thereby invalidating it’s utility.

 The authors of this paper requested permission from our

own academic organization to sniff and analyze the traffic on

our own subnet going into and out of our own research

laboratory network that consists of approximately 20

machines behind our own Ethernet switch. This request was

denied. Academic departmental computer support personnel

gave the reason as that of data “privacy”. Thus, we were

unable to gain access to our own machine’s traffic for the

purposes of network intrusion algorithm development.

There are a number of environmental factors which affect

evaluation results and which should be isolated as part of the

testing methodology. The effect of networking applications

such as firewalls, proxy servers and shared networks restrict

the types of traffic encountered in the network. A system

whose attributes are to be evaluated should be tested in

different network environments. For example in some

network environments, non-symmetrical routing may be in

use. In this type of network environment, only inbound or

outbound traffic may be seen. This will radically affect a

network intrusion detection algorithm’s capability. In any

event the network architecture and topology used in the

evaluation must be selected carefully. Different algorithms

and methodologies will perform differently in different

network topologies [13].

An environment related suggestion is to avoid using hosts

which carry the intrusion detection systems under test as

victims. If the use of the host running the intrusion detection

system as a victim is necessary, multiple tests varying the

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

underlying operating system are suggested. It is conceivable

that the performance would vary as well. However, the

proposition is based on the fact that current operating systems

lack basic security mechanisms (trusted path and protected

path [28]), which imply that security software level on the

application is built on “sand” [28]. Attacks could cause the

intrusion detection systems crash and thus incomplete testing.

Furthermore, attacks could change the environment the

intrusion detection system operates in by effecting other

network equipment such as router and firewall [28] [13].

Currently testing is limited to case-by-case scenarios.

Components and specific situations can be evaluated but true-

life performance conclusions would not be advised. The use

of real network data as background to injected attacks

provides closer to reality response and is highly recommended

as an alternative to pseudo traffic generators. The 1998 and

1999 DARPA approach was a significant effort to intrusion

detection benchmarking unmatched in its attempt to provide a

realistic environment for evaluation. However, it has

inadequacies and is not a good approach by itself. The traffic

traces generated from that effort and later published required a

lot of rework in order to be reused by others. In addition, the

statistical models for the users that created the background

traffic were approximations that do not generalize well.

In an effort to side step the high cost of creating new user

models every time a new test is needed, tests attempted to

reuse the traffic traces from previous tests. More specifically,

an attacking machine replays the traffic (using a tool such as

tcpreplay) recorded during a live test. A number of sites on

the Internet published traces of attack traffic from

“hackathons” and other tests. One of those sites is [42].

According to [8] more than 90 sites downloaded all or part of

the 1998 packet traces from the Lincoln Labs website with the

intension to use it as aid to new product development. Speeds

for traffic generation are limited by hard drive access times.

High-speed problems occur beyond the 100 MB traffic

because of the bandwidth of hard drives. Problems start at 20-

40 MB/sec [22]. It is not possible to conduct high speed, high

volume tests with these tools. Additionally, it is hard to use

this type of traffic when the network contains components that

respond to changing conditions on the network by adjusting

the configuration of different equipment. Changes in

configuration would have no effect given that the traffic

stream is fixed [11][26].

IV. EXAMPLES OF INTRUSION DETECTION EVALUATION

ENVIRONMENTS

In the following subsections, we summarize five

environments that have been used to evaluate intrusion

detection systems. While these are not all of the example

environments that we are aware of, they are representative of

the techniques being used.

A. DARPA Like Environment

In the first example, a comparison of a signature based

system and a DARPA research system relying on statistical

techniques was desired. The environment focused on DOS

attacks. The evaluation environment was trying to answer the

following questions:

• Are there regions of operation where the attack

tools can degrade performance while escaping

detection? [3]

• Does the intrusion detection system with the

statistical techniques have an advantage over the

signature base system?

• In the case that the intrusion detection system had

the ability to respond would it be effective?

The dependent variables used were:

• Sufficiency of information provided by the system

for diagnostic purposes.

• Proper identification of attack source.

The test set up consisted of 5 components:

• Traffic was generated in the same way as in the

DARPA 1998 test bed [4].

• The victim machine was “an anonymous FTP

server running on a Sun UltraSparc-1 using a

Solaris 2.5 operating system.” [3]

• Attack Injection programs placed attacks on the

network in a scalable and predictable manner

degrading the performance of the victim machine

proportionally to the level of the attack. An in

house tool was used which opened up connections

on the server without closing them. The rate of

attacks was adjustable in order to test of minimum

level of detection [3].

• The in house reference programs counted the

number of hung connection at the victim server as

a measure of attack effectiveness. They used a

metric called virulence. Virulence described the

intensity of an attack situation [3].

• The evaluation method was to use 10, 15, 30, 40

and 60 attacking hosts each utilizing rates of

varying rates of attacks per second. The two

systems were evaluated under 20 test conditions.

In permutations the percentage of detected hosts

was measured [3].

B. Custom Software

In the second example, a software platform was developed

that simulates intrusions and tests IDS effectiveness [18].

This approach to the problem was to evaluate an intrusion

detection system just like any another application. The

evaluation criteria that were used included [18]:

• Broad Detection Range: measured the ability of

the system to detect different type of intrusions.

• Economy in resource usage: measured

consumption of computer resources by the

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

intrusion detection system.

• Resilience to stress: looked at operational

impairment in the case of high computing activity.

The benchmark platform was base on Expect and Tool

Command Language Distributed Programming (TCL-DP)

package. Expect was used to simulate users performing basic

operations such as Telnet and FTP. In addition, a record-and-

replay feature supplemented the creation of tests through the

replay of script execution. Close attention was placed on

concurrency and control in order to produce repeatable tests

and results [18]. The intrusion detection system was installed

on a Sun workstation that was connected to a LAN segment.

The testers performed attack identification tests during stress

tests. Some of the attacks involved password file transmission

to remote hosts, password cracking, and password dictionary

attacks and exploits go gain super user access [18].

C. Advanced Security Audit Trail Analysis on Unix

The third example was part of an experiment concerning

the evaluation of distributed intrusion detection systems called

Advanced Security audit trail Analysis on uniX (ASAX). The

purpose of the evaluation was to assess the reliability and

efficiency of ASAX [1]. The test is interesting for two

reasons. The test network was part of an actual network. The

tests took place at a student cluster of Unix computers.

Secondly, ASAX performed only the analysis of the data not

the actual collection. The test consisted of the following

scenarios [1]:

• Trojan horse: executable files with commands

accessing unauthorized paths.

• Attempted break-ins: unsuccessful connection

attempts.

• Masquerading: many identity changes.

• Suspicious network connections: connections

received from

• Black listed addresses.

• Nosing: numerous moves through directories.

• Privilege abuse: remote connections reading files

such as netrc.

• Exploitation of an lpr flaw.

• Leakage: consultation of certain files.

Measurements concentrated on a central machine.

Performance was determined with and without the intrusion

detection system for the duration of a month. The detection

ability of the system was evaluated based on the intrusions the

testers tried.

D. Vendor Independent Testing Lab

 The fourth example is an environment created by the NSS

group, an independent network and security testing facility.

They perform Intrusion Detection Systems testing and have

issued a test report, which contain information on 16 IDS

systems [41]. NSS tests a broad range of features of intrusion

detection systems. They look at convenience, which include

ease of installation, deployment and management. Moreover,

they are interested in the user interface; how is the reporting

occurring and alerts delivered. Part of the evaluation is the

enforcement of the company’s security policy through the

IDS. Attack signatures are important for many systems, so a

portion of their tests is dedicated to finding how many are

supported, whether custom ones are allowed and how these

are updated. Some systems provide corrective action during

an attack. Thus NSS tests the effectiveness of the

methodology responses. Emphasis is placed on a related issue

such as forensics. The abilities of an intrusion detection

system to capture, provide protocol and record an attack are

appraised. Accuracy and depth of prevention advice is

another metric. Finally, peripheral issues like licensing,

documentation and log management are looked at [41].

The NSS’s test set up consisted of Pentium III 1GHz PCs

each with 768 MB RAM running Windows 2000 SP2,

FreeBSD 4.4 or Red Hat 6.2/7.1 were used for the tests. Each

machine was clean installed after each test from a Symantec

Ghost image. The computers were connected via 100Mbit

Ethernet with CAT 5 cabling, Intel NetStructure 40T routing

Switches and Intel auto-sensing 10/100 network cards. Intel

provided all the necessary drivers. Each intrusion detection

system was installed on a dual-homed PC on each subnet as

the vendor instructed. No firewalls were used to protect each

subnet. Intrusion detection sensors were connected on

interface of the PC in order to monitor traffic. If the system

supported stealth operation, it was enabled. On a second

interface was connected a management console. These

interfaces were aggregated on a separate network to ensure

communication with the sensors even under heavy network

loads. There were many intrusion detection systems placed

under multiple subnets connected to a router and an open

firewall in order to test management features [41]. NSS

performed five types of tests described below [41]:

• Attack recognition: during which a range of

exploits and scans were run using various

commercial and “underground utilities” such as

nmap, targa, netcat, hping, aggressor, nessus and

many more including in house programs in C. The

attacks used covered’ port scans, denial of service,

Trojans, web, FTP, SMTP, POP3, ICMP and

finger. Attacks were aimed at a variety of

machines with different operating systems and

were initiated internally to the subnet the intrusion

detection system was on with the exception of

fragrouter. The problem of a baseline was

addressed with the establishment of certain

assumptions. First assumption was that the system

should be able to detect the attack in the absence

of background traffic and IP fragmentation. Of

course, all necessary target applications and

servers were installed so as to create victim

responses and thus aid detection. NSS dealt with

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

the problem of which and how many attacks to

launch by selecting a representative sample. The

selection criteria were how common, well

publicized an attack was as well as if there were

already existing tools which employed it. Future

work is done to include attacks from SAN top 20

and/or ICAT top 10 vulnerability lists. This is

expected to increase focus on latest, never seen

before attacks, which require new information-

gathering and analysis techniques.

• Performance under load: these are basic stress

tests. For example a simple Back Orifice ping is

utilized to send a stream of 10,000 Back Orifice

pings. In conjunction, a listening server is

installed in order to count the number of pings

received. The test compared the number of pings

sent with the number of pings detected under high

loads [41]. The actual test consisted of a baseline

test and repetition of the above procedure for a

number of network utilizations. The baseline

consisted of the ping test without any background

traffic. One would expect that all pings would be

detected if there were no background traffic.

Subsequently, background traffic was varied. 64-

byte packets with valid source and destination IP

addresses and ports were sent to evaluate the raw

sniffing capability of the intrusion detection

system. The test was repeated for network loads

of 25, 50, 75 and 100 per cent. For the same rates

mixed traffic utilizing a variety of packet sizes and

protocols was attempted. Finally, 1514-byte

packets were attempted again for the same variety

network loads. Traffic generation was achieved by

means of Adtech AX/4000 Broadband Test

System with 10/100Mbps modules and SmartBits

SMB6000 with LAN-3131A 10/100Mbps

SmartMetrics and LAN-3310A 10/100/1000Mbps

TeraMatrics cards.

• IDS evasion techniques: intrusion detection

systems were tested for their resistance to anti-

evasion techniques. The baseline was set through

IP forwarding common attacks across a router.

Then fragrouter was employed in order to attempt

evasion techniques including: ordered and out-of-

order 8-byte IP fragments, ordered and out-of-

order 8-byte IP fragments with duplicate

fragments. Additionally, whisker was used to run

basic WWW CGI scan of target machines. Some

of the attacks used were: URL encoding, fake

parameter, premature URL ending and / ./directory

insertion [41].

• Stateful operation test: tools such as stick and snot

were used to generate false alerts over a range of

protocols and valid source and destination

addresses. During that period real attacks were

launched in order to determine whether intrusion

detection systems could still detect real attacks in a

flood of false alarms [41].

• Host performance: Network load, CPU and

memory utilizations were monitored during high

alert attacks in order to estimate impact of the host

carrying the intrusion detection system [41].

E. Trade Magazine Evaluation

Finally we mention a trade magazine evaluation performed

on seven intrusion detection systems [27]. This test is

included here because of the interesting approach the

designers of the test took in implementing it. They placed the

intrusion detection systems in the production network of an

Internet service provider. Normal traffic on the ISP’s network

served as background traffic for testing. The average network

utilization was in the range of 9 to 12 Mbps traveling on nine

T1 lines. Instead of generating attacks, the testers deployed

four machines, which had old, unpatched versions of

Windows 2000 Server, Windows NT 4.0 Server, Red Hat

Linux 6.2 and Sun Solaris 2.6. These machines would attract

attackers who in turn would generate attack traffic. The

article authors reported that the machines were compromised

as soon as they were deployed [27].

The intrusion detection systems used covered a wide range

in terms of technology. The systems include appliance

intrusion detection systems, signature and anomaly detection

including open source as well as proprietary systems. Each

system had at least one sensor installed in order to monitor

traffic and generate alarms. Furthermore, the designers tried

to emulate the management methodology in production

networks where of the intrusion detection systems sensors

report to alerts to management consoles in other subnets [27].

The metrics used by the designers were accuracy, ease of

use, and uptime. Uptime was defined as the number of times

a system ceased to function in a period of 30 days. Accuracy

was the term used for true positive and negatives as opposed

to false positives and negatives. However, in this test the

definition of what constitutes a detectable attack is different.

They considered an attack to be any compromise of any

computing resource on the ‘protected’ network. This is not the

same as an attempted attack; if there was no compromise, the

intrusion detection system is essentially reporting a

vulnerability that does not exist [27]. Ease of use was

another metric they used. It was applied to the amount of

information supplied by the intrusion detection system for

each alert. How easy it was to figure out which alerts required

immediate attention was also considered [27]. No explanation

was given on the determination of the baseline. However

since this was a comparative test, the author conjecture that

the designers of the test were not interested in specific

measurements only on which system performed best relative

to the others [27].

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

V. CONCLUSION

Reviewing existing intrusion detection system testing and

benchmarking tools and methodologies, it becomes clear that

present approaches to comparative intrusion detection testing

and evaluation are inadequate. We do not believe that there is

ever going to be a comprehensive test nor a single

methodology that would examine an intrusion detection

system for every attack, verify its abilities and identify all its

weaknesses [28]. This in essence would be to categorically

solve the problem of intrusion detection. However, it is

possible to improve on the existing testing and evaluation

practices employed in the field. At present the philosophy is

still that the best way to evaluate any intrusion detection

algorithm is to use live or recorded real traffic from the site

where the algorithm is to be deployed [22]. Although this is a

valid component of test and evaluation, we believe that there

is a real need for a new public domain test and evaluation

methodology that may be used in a more uniform and

repeatable manner.

The 1998 and 1999 DARPA approach was a significant

effort toward intrusion detection benchmarking. That

approach attempted to provide a realistic evaluation

environment. However, in retrospect, it has inadequacies and

is not really a good environment. The traffic traces generated

from that effort and later published required a lot of rework in

order to be reused by others. In addition, the statistical

models used to create the background traffic were

approximations that do not generalize well.

Recently there has been increased activity in the

development of attack generation tools for intrusion detection

system testing. Along with that development has been the

creation of tools to be used to assist with the analysis of the

evaluation results [13-23]. We think that the initial

benchmarking of intrusion detection algorithms will move

away from placement on network segments with live actual

network traffic to an all-one-environmental approach once

sophisticated enough tools exit. An example of a recent

attempt at this is Thor [48]. Thor automatically launches

attacks and collects the alarms that the intrusion detection

system generates. Thor has the ability to vary the attacks so as

to try to evade the intrusion detection system. This new

methodology has many obvious advantages over the

traditional methodologies including repeatability and common

test metrics that may be applied by a wide range of intrusion

detection implementers and evaluators.

A new and more capable open source evaluation

methodology is needed in the intrusion detection community.

This new methodology must be able to generate realistic

network background traffic through artificial generation as

well as merging capability with existing or live network

traffic. The synthetic component of background traffic must

be generated as realistic traffic streams that included full

payloads. Typical network simulators like ns do not at present

incorporate the ability to generate realistic data from the

standpoint of full traffic stream generation, thus the most

popular open source network simulation tool will require

major enhancements if it is to be used as the basis for traffic

generation. In addition, the massive amounts of traffic that

must be generated require a parallel and distributed simulator

in order to be able to generate the large amounts of traffic

required. The ability to merge in existing traffic trace files

either from previous generation runs or actual traffic capture

files is also required. This allows the continued use of live

network traffic which to date is still the most prevalent test

methodology. This proposed new methodology requires a

strictly controlled and repeatable component and yet also

requires a live environment component capability. The live

environment component must include the ability to inject

attacks in the live traffic component so that a library of attacks

may be injected along with the live traffic component. For

obvious reasons it is not desirable to inject these library

attacks into the actual live network traffic segment, injection

must occur in an isolated test environment that includes the

live traffic component. The capability of the proposed test

environment to generate and respond to traffic in real time

will allow the new methodology to be inserted into existing

test beds. The proposed environment should work

simultaneously with real network segments as well as

captured network segment traffic. The background traffic

generator will require the ability to parse existing traffic traces

and then merge additional background or attack traffic into

repeatable trace files. All of this must occur in real time since

intrusion detection algorithms may adapt or provide feedback

into the network environment. The traffic generation

capabilities must include gigabit traffic generation capability.

Realistic user models and network activity must be

incorporated. The ability to use actual machines along with

simulated machines is also required. As an example, Linux

based machines that act as multiple independent traffic

generators already exist. Servers offering actual services

should be able to be placed into the proposed environment.

The ability to insert real platforms with standard operating

systems is a requirement since the only way to see

vulnerabilities is to use the actual system under stressful

environments.

Attacks should be maintained in an attack repository such

that they may be inserted into the background traffic activity.

Standard attack and evaluation tools that already exist should

be a part of this attack repository, and they should be able to

execute in the same manner that the tools execute when run in

a traditional stand-alone configuration. An automated method

for managing attacks is also required. This automated method

would have the ability to inject the attacks at specific times or

as a result of specific network conditions. For each attack

executed, the environment should have the ability to report the

reactions of the intrusion detection algorithms.

The tools and methodologies needed for uniform testing of

intrusion detection systems do not yet exist in the public

domain at a level necessary for performing the necessary

comparative tests and evaluations of new algorithms. There is

a great need for an open source traffic generation and attack

insertion environment that may be uniformly used for

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

intrusion detection evaluations. The end result of a new

methodology having the capabilities we have proposed would

be a uniform test and evaluation capability that could be used

to make meaningful comparisons between various intrusion

detection algorithms and systems. At present, this does

capability does not exist.

REFERENCES

[1] Abily, V. and Ducasse, M., “Benchmarking a distributed intrusion

detection system based on ASAX: Preliminary results” Extended

abstract presented at RAID 2000.

[2] Zhnag, K. “A Methodology for Testing Intrusion Detection Systems,”

M.S. Thesis, University of California at Davis, May 1993.

[3] Champion, Terrence and Denz, Mary L., “A Benchmark Evaluation

Network Intrusion Detection Systems”, IEEE 2001.

[4] Champion, Terrence G. and Durst, Robert S. “Air Force Intrusion

Detection System Evaluation”, www.raid-symposiom.org

[5] Cunningham, R. K.; Lippmann, R. P.; Fried, D. J.; Garfinkel, S. L.; Graf,

I., Kendal, K. R.; Webster, S. E.; Wyschogrod, D. and Zissman, M. A.

“Evaluating Intrusion Detection Systems without Attacking your

Friends: The 1998 DARPA Intrusion Detection Evaluation”, In

Proceedings of the Third Conference and Workshop on Intrusion

Detection and Response (SANS 1999).

[6] Kendall, K., “A Database of Computer Attacks for the Evaluations of

Intrusion Detection Systems”, M.S. Thesis, MIT Department of

Electrical Engineering and Computer Science, June 1999.

[7] Korba, J., “Windows NT Attacks for the Evaluation of Intrusion

Detection Systems” M. S. Thesis, MIT Department of Electrical

Engineering and Computer Science, June 2000.

[8] Lippman, Richard; Haines, Joshua W.; Fried, David J. and Korba,

Jonathan, “The 1999 DARPA Off-Line Intrusion Detection Evaluation”

[9] Lippman, Richard; Haines, Joshua W.; Fried, David J.; Korba, Jonathan

and Das, K., “The 1999 DARPA Off-Line Intrusion Detection

Evaluation”, Computer Network, 34(4):579-595.

[10] Lippmann, Richard P.; Cunnigham, Robert K.; Fried, David J.; Graf,

Isaac; Kendall, Kris R.; Webster, Seth E.; Zissman, Marc A. “Results of

the DARPA 1998 Offline Intrusion Detection Evaluation”,

www.ll.mit.edu/IST/pubs.

[11] Lippmann, Richard P.; Fried, David J.; Gaf, Isaac; Haines, Joshua W.;

Kendall, Hristopher R.; McClung, David; Weber, Dan; Webster, Seth E;

Wyschogrod, Day; Cunningham, Robert K. and Zissman, Marc A.,

“Evaluating Intrusion Detection Systems: The 1998 DARPA Off-Line

Intrusion Detection Evaluation”, In Proceeding of the DARPA

Information Survivability Conference and Exposition: DISCEX-

200,.Volume 2. Los Alamitos, California: IEE Computer Society , 25-27

January 2000, pp. 12-26, Hilton Head Island, South Carolina.

[12] Lippmann, Richard P.; Graf, Isaac; Wyschogrod, Dan; Webster, Seth E.;

Weber, Dan J. and Gorton, Sam, "The 1998 DARPA/AFRL Off-Line

Intrusion Detection Evaluation," First International Workshop on Recent

Advances in Intrusion Detection (RAID), Louvain-la-Neuve, Belgium,

1998.

[13] Maxion, Roy A. and Tan, Kymie M.C., “Benchmarking Anomaly-Based

Detection Systems”, 1st International conference on Dependable Systems

& Networks. New York, New York, USA: IEEE, 25-28 June 2000,

pp.623-630.

[14] Maxion, Roy A., “Measuring Intrusion Detection Systems. Web

proceedings of the First International Workshop on Recent Advances in

Intrusion Detection (RAID’98), www.raid-symposium.org/raid98

[15] McHugh, John, “Testing Intrusion Detection Systems: A Critique of the

1998 and 199 DARPA Intrusion Detection System Evaluations as

Performed by Lincoln Laboratory”, ACM Transactions on Information

and System Security, Vol. 3, no. 4, November 2000, pp. 262-294.

[16] Me, Ludovic and Michel, Cedric, “Intrusion Detection: A

Bibliography”, Technical Report SSIR-2001-01, September, 2001.

[17] Mell, P. “Acquiring and Deploying Intrusion detection Systems”,

National Institute of Standards and technology’s Information

Technology Laboratory bulletin.

[18] Puketza, Nicholas J.; Chung, Mandy; Olsson, Ronald A and Mukherjee,

Biswanath, “A Software Platform for Testing Intrusion Detection

Systems”, IEEE Software, September/October, 1997, 43-51.

[19] Puketza, Nicholas J.; Zhang, Kui; Chung, Mandy; Mukherjee,

Biswanath and Olsson, Ronald A., “A methodology for Testing

Intrusion Detection Systems” 17thNatrional Computer Security

Conference: Baltimore, MD, October, 1994.

[20] Puketza, Nicholas J.; Zhang, Kui; Mukherjee, Biswanath and Olsson,

Ronald A., “Testing Intrusion Detection Systems: Design Methodologies

and Results from an Early Prototype” Proc. 17thNatrional Computer

Security Conference, Vol. 1, pp.1-10, October, 1994.

[21] Puketza, Nicholas J.; Zhang, Kui; Chung, Mandy; Mukherjee,

Biswanath and Olsson, Ronald A., “A methodology for Testing

Intrusion Detection Systems”, IEEE Transactions on Software

Engineering, 22, 1996, pp. 719-729.

[22] Ranum, Marcus J., “Experiences Benchmarking Intrusion detection

Systems”, www.nfr.com, 5 May 2002.

[23] Rossey, Lee M.; Rabek, Jesse C.; Cunningham, Robert K.; Fried, David

J.; Lippmann, Rich P. and Zissman, Marc A. “ LARIAT: Lincoln

Adaptive Real-time Information Assurance Testbed”, presentation in

RAID 2001, 10 October 2001.

[24] http://www.der-keiler.de/Mailing-Lists/securityfocus/focus-ID

system/2002-01/0081.html (7/2/2002)

[25] http://www.antara.net/home.html (7/2/2002)

[26] Haines, Joshua W., Rossey, Lee M., Lippman, Richard P., Cunningham,

Robert K., “Extending the DARPA Off-Line Intrusion Detection

Evaluations”, In the Proceedings of DISCEX 2001, June 11-12,

Anaheim, CA.

[27] http://www.nwfusion.com/techinsider/2002/0624security1.html

(7/1/2002)

[28] Loscocco, Peter A, ; Smalley, Stephen D.; Muckelbauer, Patrick A.;

Taylor, Ruth C.; Turner; S. Jeff and Farell, John F. “The inevitability of

Failure: The Flawed Assumption of Security in Modern Computing

Environments”, National Security Agency

[29] http://www.hping.org/ (7/5/2002)

[30] Ptacek, Thomas H. and Newsham, Timothy N. “ Insertion, Evasion, and

Denial of Service: Eluding Network Intrusion Detection”

http://www.robertgraham.com/mirror/Ptacek-Newsham-Evasion-

98.html#cit6 (7/5/2002)

[31]

http://securityresponse.symantec.com/avcenter/security/Content/2000_0

6_01.html (7/5/2002)

[32] http://www.roland-riegel.de/nload/index_en.html (7/5/2002)

[33] www.netpref.org (7/5/2002)

[34] http://dast.nlanr.net/Projects/Iperf/ (7/5/2002)

[35] http://www.webattack.com (7/6/2002)

[36] http://www.hackingexposed.com/tools/tools.html (7/6/2002)

[37] http://www.physnet.uni-

hamburg.de/physnet/security/vulnerability/synk4.html (7/6/2002)

[38] http://packetstormsecurity.nl/UNIX/IDS/nidsbench/nidsbench.html

(7/6/2002)

[39] http://www.cawnetworks.com/product/index.shtml (7/6/2002)

[40] http://www.shmoo.com/mail/ids/oct99/msg00474.html (6/30/2002)

[41] “Intrusion Detection Systems: Group Test (Edition 2)” The NSS Group,

Oakwood House, Wennington, Cambridge, PE28 2LX, England, UK:

www.nss.co.uk (7/12/2002)

[42] http://www.shmoo.com/cctf/ (7/16/2002)

[43] http://www.hsc.fr/ressources/outils/idswakeup/index.html.en

(7/16/2002)

[44] http://archives.neohapsis.com/archives/sf/ids/2001-q2/0316.html

(7/16/2002)

[45] http://cebu.mozcom.com/riker/iptraf/about.html (7/16/2002)

[46] Das, J. Kumar “Attack Development for Intrusion Detection Evaluation

“ M. S. Thesis, MIT Department of Electrical Engineering and Computer

Science, June 2000.

[47] http://tcpreplay.sourceforge.net/

[48] [Marty, Raffael, “THOR: A Tool to Test Intrusion Detection Systems by

Variation of Attacks”, Diploma Thesis Swiss Federal Institute of

Technology Zurich, March 2002.

[49] http://www.insecure.org/tools.html (7/2/2002

Proceedings of the First IEEE International Workshop on Information Assurance (IWIA’03)
0-7695-1886-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

