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ABSTRACT
MacKenzie and Soukoreff have previously introduced a
Fitts’ Law–based performance model of expert two–thumb
text entry on mini–QWERTY keyboards [4]. In this work
we validate the original model and update it to account
for observed behavior. We conclude by corroborating our
updated version of the model with our empirical data. The
result is a validated model of two-thumb text entry that can
inform the design of mobile computing devices.
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INTRODUCTION
Mini-QWERTY keyboards are miniature versions of the
traditional desktop QWERTY keyboard and are used in
many mobile devices. MacKenzie and Soukoreff introduced
a Fitts’ Law–based performance model of two–thumb text
entry on mini–QWERTY keyboards [4]. Such a model can
help inform the design of new mini-QWERTY keyboards
by providinga priori predictions of expert performance. We
have previously reported the results of a longitudinal study
of typing rates on these kinds of keyboards [1]. In this paper
we examine the original model in light of that study, suggest
an alteration to improve its accuracy, and corroborate the
updated model against our empirical data. The result is a
validated model of expert two–thumb text entry, which may
be a useful tool for mobile device designers.

Fitts’ Law [2] is a performance model for aimed movement
when users are experts at a given pointing task and cognitive
overhead is not relevant. Silfverberget al. used Fitts’ Law
to develop a model for expert text entry on a standard 12-
key mobile phone keypad [6]. MacKenzie and Soukoreff
proposed a similar model for two-thumb text entry on
miniature keyboards [4]. They provide a general description
of user/keyboard interaction and predicted an expert rate of

Figure 1. The mini–QWERTY keyboards used in our
previous studies: Targus (left) and Dell (right).

60.74 words per minute (wpm) for their example keyboard.
However, they provide no empirical validation of this figure.

In our previous experiment [1], participants used either a
Dell or Targus brand mini-QWERTY keyboard for twenty
20-minute typing sessions to obtain empirical typing data.
The Mackenzie and Soukoreff model predicts an expert rate
of 57.88 wpm with the specifications of our Dell keyboard.
At first glance, this seems to align relatively well with
our study results: the mean typing rate after 400 minutes
of practice for the Dell participants was 59.32 wpm, a
difference from the model of less than 3%. However, a
closer look at the results reveals discrepancies between
the predicted and observedinter-key times—the time span
between consecutive key presses.

TWO-THUMB TYPING MODEL OVERVIEW
Before discussing the details of the inter-key timing diffe-
rences, the reader my find a brief review of the the MacKen-
zie and Soukoreff model helpful. The model takes as inputs
a representation of a two–thumb keyboard layout, a word
corpus and a key–thumb assignment table and produces a
value representing the typing rate for an average expert user.
The representation of the keyboard encodes the physical
layout of the keys on the device. The word corpus can be
any representative body of sentences, such as MacKenzie
and Soukoreff’s own corpus [5].

The model employs two fundamental times. The first time
calculation represents the time for a thumb to move from one
key to the next and is derived from Fitts’ Law, using Fitts’
Law coefficients from related work [6]. These transition
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times are denotedtfitts. The second time employed is the
minimum time between keystrokes using opposite thumbs
(88 ms, denotedtmin). This time is half of the key repeat
rate (176 ms) and is the minimum time it takes to press the
same key twice in a row. The model uses these times together
to calculate the time to press a sequence of keys.

The model begins by assigning a time to the first letter in
a word. This time depends on which side of the keyboard
the first letter is on and which thumb pressed the preceding
space key. Using the British National Corpus, MacKenzie
and Soukoreff calculated that the right thumb is used to press
the space key 70.49% of the time. If the first key of a word
is assigned to the right thumb, the time it takes to move from
the space key to the first letter of the word will be the Fitts–
modeled transition. If the left thumb pressed the space key,
the right thumb can move in parallel but still takes at least
tmin. When the first character is assigned to the left thumb,
the weighting factors are simply reversed.Tn represents the
predicted time for a word up to thenth character.

T1 ≈
{

0.70 · tfitts + 0.30 · tmin if right thumb first

0.30 · tfitts + 0.70 · tmin if left thumb first

For subsequent characters, if the current and previous keys
are assigned to the same thumb, the prediction is increased
by the time to move the thumb,tfitts(keyn−1, keyn). When
the current and previous keys are assigned to opposite
thumbs, the current key may have been located in the time it
took for the opposite thumb to press the previous letter. The
time for the opposite thumb to move from its former location
(k keys ago) to the current key istfitts(keyn−k, keyn).
However, even if the thumb has reached the target, the time
to activate the key is at leasttmin:

Tn =


Tn−1 + tfitts(keyn−1, keyn) same

max

(
Tn−1+tmin,

Tn−k+tfitts(keyn−k,keyn)

)
opposite

(1)

INTER-KEY TIMING DISCREPANCIES
The model explicitly handles transitions between letters
assigned to the same thumb separately from those assigned
to different thumbs. As such, it is natural to assign inter-
key times into categories based on the thumb assigned to the
source and destination keys. There are four such categories:
Left→Left; Right→Right; Left→Right; Right→Left. Note
that the former two are modeled solely by Fitts’ Law while
the latter two are slightly more complex (see Eq. 1).

Thus, it may be useful to compare the differences between
predicted and actual inter-key times for each of these four
classes of transitions. Since the model is of expert use,
we limit our data source to error-free sentences from Dell
users’ sessions 16-20 collected from our previous work [1].
Table 1 shows the average deviations of the observed inter-
key times from the predicted values for each transition class
(e.g., L→R). To calculate the table entries we first find the
mean observed inter-key time and the model-predicted inter-
key time for every key pair. We then subtract the predicted
from the observed value for each key pair and average the
deviations within each transition class. The figures in Table 1

PPPPPPPSource
Dest.

Left Right

Left (24) 73
Right 126 (38)

Table 1. Average deviation (in ms) of empirical inter-
key times from predicted for each thumb transition type.
Parenthesized values are slower than observed.

are not weighted by frequency, but such an adjustment yields
similar results.

Table 1 shows the model consistently makes predictions
which are slower than observed for Fitts’ Law-modeled
transitions (L→L and R→R) and faster than observed for
cross-thumb transitions. Consequently, the model’s relative-
ly accurate prediction masks inaccuracies at a lower level; as
such it is worthwhile to investigate possible improvements.
One possibility is revisiting the assumption that each key is
statically assigned to a particular thumb.

VARIABLE THUMB-KEY ASSIGNMENTS
The original model assumes static thumb–key assignments:
the model designates the left thumb to press keys on the
left half of the keyboard and the right thumb to press keys
on the right half. While we did not collect direct evidence
of actual thumb usage patterns, informal observation and
anecdotal user comments suggest that keys in the middle
of the keyboard may be pressed by either thumb. We refer
to these keys and this kind of usage asdynamic, variable
or flexible. Alternating thumb use allows users to perform
thumb movements in parallel, which can increase typing
rates in certain circumstances. Given our knowledge of this
practice by users, we extended the model to incorporate the
concept of keys that can be operated by either thumb.

The basic structure of the updated model is similar to the
original. If the first character is not in the set of variably
assigned keys, the model proceeds according to the original
algorithm. If the first character is in the set of variably
assigned keys, the time istmin; since the right thumb is used
for the space key 70.49% of the time, we assume the left
thumb is used for the first character 70.49% of the time for
words beginning with a key from the variable set.

If both the current and previous keys may be pressed with
either thumb, we assume expert users take a greedy ap-
proach to optimizing their thumb assignment plans. Like
the original model, the total time the most recently used
thumb is chosen isTn−1 + tfitts(keyn−1, keyn). Similarly,
if the typist chooses the opposite thumb, the total time is
Tn−k + tfitts(keyn−k, keyn). Since we assume a greedy
approach, the typist will choose the shorter of these times:

min

(
Tn−1 + tfitts(keyn−1, keyn),
Tn−k + tfitts(keyn−k, keyn)

)
(2)

However, as with the original implementation, each key will
take at leasttmin to depress. As a result, we use the larger of
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Figure 2. Updated model computation for the wordnags.

tmin and the output from Eq. 2 as our final estimate:

Tn = max

 Tn−1 + tmin,

min

(
Tn−1+tfitts(keyn−1,keyn),

Tn−k+tfitts(keyn−k,keyn)

)  (3)

Updated Model Example
Consider the model’s treatment of the wordnagswhere the
letterg is a variably assigned key which may be pressed by
either thumb. Figure 2 is a visual representation of the key
sequence where the total time to enter the word is given by
T4. Character entry is left-to-right; the lines represent the
activities of the left and right thumbs. Dark circles represent
statically assigned keys and the gray circle indicates a thumb
usage choice made by the model. The first two letters are
calculated as they would be with the original model. The
lettern is pressed by the right thumb; the lettera is assigned
to the left thumb, which moves from the space key it pressed
at T0. It may have reached thea key in the time it has taken
the right thumb to pressn, but the time increment should be
at leasttmin:

T2 = max(T1 + tmin, T0 + tfitts(< space >, a))

At this point the procedure diverges from the original model,
in which theg key would have been statically assigned to
the left thumb and the left thumb would move immediately
from a to g, a time given byT2 + tfitts(a, g). However, the
right thumb has previously hitn which is close tog. In the
updated model, we examine the possibility that using the
right thumb might be faster. The time to move fromn to
g is T1 + tfitts(n, g). Assuming the user adopts a greedy
optimization strategy, she will choose the lesser of these two
values, with the final time increment being at leasttmin.
Hence, from Eq. 3:

T3 = max

 T2 + tmin,

min

(
T2 + tfitts(a, g),
T1 + tfitts(n, g)

) 
We use the original model process to calculate the time for
the final letter since the updated model has made the explicit
choice to press the preceding key with the right thumb. Thus:

T4 = max(T3 + tmin, T2 + tfitts(a, s))

The speed increase suggested by the modified model is
readily apparent. For the above example, the original model
predicts an expert entry time of 1.11 seconds withg being
statically assigned to the left thumb. In the updated model
consideringg as a variably assigned key predicts an expert
entry time of 0.57 seconds.

Establishing Thumb-Key Assignments
The updated model as described is independent of the
specific thumb–key assignments, so we must still determine
which keys should be variably assigned. We collected no di-
rect evidence of specific policies in our original experiments,
so we instead examine the inter–key timing data for evidence
of dual–thumb usage.

The existence of flexible key use is most likely to manifest
itself in the data in the form of faster-than-expected inter–
key timings. Specifically, time intervals between keys assi-
gned to the same thumb that are consistently faster than Fitts’
Law predicts are likely candidates. We measured this by
comparing the mean deviation between letters typed by the
same thumb to the predicted times. We computed 26 mean
intervals (one for each letter) in this manner. The average
deviation was 37 ms (σ = 41 ms); two letters had average
deviations faster than oneσ below the mean:v andb.

However,v is a significant outlier: transitions beginning with
v were 187 ms faster than predicted, while the the next
lowest value was 97 ms (forb). The standard deviation
excluding this outlier wasσ′ = 28 ms. Theg and y keys
(in additionv andb) were faster thanσ′ below the interval
mean. We concluded from this analysis that a reasonable set
of variably-assigned keys wasv, b, g and y. The updated
model predicts an expert speed for our Dell keyboard of
60.51wpm (2% faster than the mean Dell session 20 rate)
using these keys as our flexibly assigned set.

MODEL VALIDATION
The updated model prediction is not radically different from
the original, but as we noted the original prediction masked
lower-level inaccuracies. We validate the updated model via
two methods. First, we use an error metric similar to the
procedure discussed above, which compares the predicted
inter–key transition times with the empirical data. Second,
we validate the model using data from the second keyboard
in our previous study (Targus brand). Since we have not
examined the Targus data in the context of the theoretical
model, it has not influenced the model’s evolution and
provides an unbiased data set against which to gauge the
updated model’s performance.

Model Error Metric
As before, we analyzed the timing data from the set of error–
free sentences in sessions 16-20 where our participants had
over 300 minutes of experience. Both the model and the
empirical data yield a 26× 26 matrix of transition times
between each possible combination of any two key presses
(the space key is excluded since the original model works
at the word level). There are a total of 20,713 transitions,
ranging from 1 (i→q) to 527 (t→h) occurrences.

To correct for sampling frequency, we weight individual
cells in each matrix by their frequency of occurrence in the
empirical data. We then compute an error metric by sum-
ming the squares of the differences between corresponding
entries in the model and empirical matrices. Stated more
formally, we weight a matrix of empirical transition times
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denotedt[kn,km] and a matrix of modeled transition times
m[kn,km] using a matrix of transition frequenciesf[kn,km]:

T[kn,km] = t[kn,km]/f[kn,km]

M[kn,km] = m[kn,km]/f[kn,km]

Our error metric E is then:

E =
n,m∑
i,j=0

(T[ki,kj ] −M[ki,kj ])
2 (4)

We use this metric (in which lower is better) to evaluate the
relative fitness of the model variations. The score for the
original model is 37.1, while the the{v,b} and {v,b,g,y}
versions of the updated model score 34.4 and 33.3, respec-
tively: the latter—the final form of the updated model—is
more than 10% improved over the original.

Targus Data
The original model assumes that each character is entered
by a single key. However, the Targus keyboard used in our
study has two space keys (Figure 1). Updating the model
to account for both spaces is relatively straightforward and
does not affect the model’s overall structure—the model
works at the word level and the space key is already a special
case. Changing the model for the case of multiple keys for
the same letter would require more extensive modifications.

The updated model predicts an expert rate of 60.62 wpm
versus an original prediction of 57.95 wpm. Targus users, in
comparison, had a mean session 20 rate of 58.74 wpm. The
error metric score (Eq. 4) for the updated model is 47.67, 8%
lower than the original score of 52.01.

FUTURE WORK
There are a number of avenues for future research in this
area. Additional studies on mini-QWERTY keyboard use
can help refine the model further and empirically examine
factors like flexible key use. Examinations of more unique
keyboard designs could test applicability of the model to less
standard key layouts.

There is also ample opportunity for more basic Fitts’ Law
research. Although the standard Fitts model addresses large
target regions and area cursor work [3] covers large selection
regions, we are not aware of any work on their combination.
Presumably, both non-trivial cursor (thumb) and target (key)
widths may have some effect on motor performance, but
research is needed to confirm or deny this supposition. Such
work would have implications on the two–thumb model by
providing more data on appropriate methods for calculating
the effective key width. But this research also addresses
more fundamental motor capabilities that are applicable to
a wide variety of research (such as area cursors). Finally, we
are also not aware of any research examining how aimed mo-
vement tasks are affected by crowded target environments.
Whether Fitts’ Law accurately models these situations or can
be modified to do so is an open question, and one which has
obvious implications for typing on miniature keyboards.

CONCLUSIONS
The original Mackenzie and Soukoreff two–thumb model
provides a reasonable prediction of expert speed. However,
our analysis of empirical data indicates that at a lower-level
the model’s predictions are consistently slower or faster for
different classes of thumb transitions. This fact led us to
re-examine the static thumb-key assignment assumption of
Mackenzie and Soukoreff’s original model and to extend its
formulation to account for flexible key usage. This exten-
sion has its basis in both experimental data and anecdotal
user reports. The altered model makes slightly faster wpm
predictions with 8–10% lower error scores.

Analytic models like the two-thumb model can be powerful
HCI tools: predictive statements about prospective designs
have great utility. Comparing design alternatives, for exam-
ple, can be done at very early stages of the design process
using these models. Thus, their verification by empirical
observation is a crucial bookend to their development. Apart
from the improvements to the two-thumb model made in this
work, the model’s validation by our corpus of user data is
a useful contribution to its development. As we have seen,
the validation process not only provides an empirical basis
for confidence in a model’s predictions, but also can reveal
opportunities for improvement and refinement.
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