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Abstract 

 

A variety of mass spectrometry experiments have been performed with the aim of further 

understanding of the ionisation processes involved and the gas-phase behaviour of various 

organic molecules within two ionisation techniques: Matrix-Assisted Laser Desorption 

Ionisation (MALDI) and Electrospray Ionisation (ESI). 

The majority of the studied compounds were C60 derivatised in various ways, either with 

addition of a ligand, or by the creation of an orifice within the cage structure with 

heteroatoms – Open-Cage Fullerenes (OCFs). 

The DCTB-MALDI investigations into the OCFs revealed a possible correlation between 

orifice size and the heteroatoms present in the orifice, to how the OCF behaved under 

elevated laser fluence. 

An extended investigation into the smallest hydrofullerene, C60H2, established for the first 

time decomposition-free conditions for its analysis, so that its oxidation over time, which has 

been controversial in the literature, could be studied. 

The use of pencil lead as a matrix was compared to the traditional matrix for fullerenes, 

DCTB. Pencil lead was found to be inferior as a matrix, however, proved an exceptionally 

easy way of creating sodium and potassium adducts, which was found to be useful in the 

differentiation of isomers of some of the OCFs. 

The formation of polyaromatic hydrocarbons adducts to C60 were synthesized and analysed 

with both MALDI and ESI-MS. These complexes are notoriously labile, yet a larger 

C60PAH:C60 peak intensity ratio was achieved than had been previously reported. 

The use of silver in ESI experiments was explored in depth. Initially, heterodimers of amino 

acids bound by silver (I) ions were created and fragmented in order to ascertain relative 

silver binding affinities, by use of the kinetic method. The same technique was applied to 

compounds that have been traditionally difficult to ionise with ESI-MS. These included pure 

fullerenes, fullerene derivatives, and various fullerene precursors. These compounds have 

been successfully arranged into order of their silver-ion affinities. 
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Chapter 1: Introduction 

 

Fullerenes 

History 

The search for cyanopolyÿnes, long carbon chains terminated at either end by a hydrogen 

and a nitrogen atom and which are believed to be responsible for interstellar bands, started 

in the late 1970’s and resulted in the discovery of the fullerenes in September 1985
1-4

. The 

fullerenes – the third allotrope of carbon – were first discovered in laser ablation experiments 

of graphite which were conducted at Rice University (Texas, USH) by H. W. Kroto, R. E. 

Smalley, J. R. Heath, S. C. O’Brien, and R. F Curl
1
. Prior to its physical discovery, different 

groups had speculated on the existence of C60 as far back as 1970
2, 3

. Theoretical 

calculations on the stability of C60 had also been performed
2, 5, 6

. Creation of the fullerenes 

had in fact occurred prior to the elucidation of the structures; in 1984 by a group at Exxon 

Research and Engineering Co
7
. However, the slight prominence of the signals for C60 and 

C70 could not be explained and no significance was attached to them. 

In 1990, W. Kratschmer, D. Huffman, K. Fostiropoulos, and L. Lamb developed a method to 

produce macroscopic quantities of fullerenes (mainly C60) which provided a broader 

community access to the new material
8
. Other synthetic methods have also been 

developed
9
. 

The most stable and well known of the fullerenes is Buckminsterfullerene, C60. Its stability is 

derived from its configuration
10-12

. There are 1760 ways of arranging 60 atoms in a sphere, 

yet there is only one configuration with total symmetry, in which none of the pentagon 

structures are adjacent. This configuration has essentially the form of a football.  

 

Figure 1.1: Structure of C60 
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Proof of the structure came when a 
13

C-NMR spectrum was obtained of C60 which consisted 

of a single line
13, 14

. Further confirmation of the structures came from the 
13

C-NMR spectrum 

of C70, which consisted of five lines. Field Ion Microscopy has also confirmed the 

structures
15

. 

Fullerene molecules are composed of adjoining pentagon and hexagon structures. As 

pentagons do not contain any double bonds, two adjacent pentagons will interrupt the 

alternation of double bonds in the sphere, which reduces stability (isolated pentagon rule). 

C60 is the smallest fullerene which obeys the rule of no adjacent pentagons. Progressing 

through the fullerenes, by formally adding C2 to C60, C70 is the next fullerene with no 

adjacent pentagons, and is the second most stable fullerene after C60. It has the following 

structure: 

 

Figure 1.2: Structure of C70 

C70 also has a fairly symmetrical structure, as it is an elongated C60 with a band of hexagons 

around its centre. Technically the smallest fullerene is C20, which would have a structure 

composed entirely of twelve adjoining pentagons. This is confirmed by Euler’s Law which 

states that compounds of these configurations consist of twelve pentagon structures and any 

number of hexagon structures. The derived equation also explains why fullerenes always 

consist of an even number of carbon atoms – number of carbon atoms (vertices) = 20 + 2xH 

(number of hexagon structures present). 

Derivatised Fullerenes 

Fullerenes have been derivatised in a number of ways in order to create new uses for these 

compounds, for example for biological and medicinal purposes
16-24

. 

There exist four different ways to modify a fullerene: 

o Endohedral doping – by placing an atom or molecule inside of the cage 
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o Substitutional doping – by substituting a carbon within the framework at the sphere 

by another atom 

o Exohedral doping – by attaching a ligand to the outside of the cage 

o Cage opening – by creating an orifice into the cage through implementation of 

heteroatoms 

After the initial discovery, attempts were made to place atoms and small molecules inside 

the cage structure, for example lanthanum
3, 25, 26

. This was part of the process which proved 

C60 has a closed shell structure - a lanthanum atom was placed inside the cage by 

impregnating graphite with lanthanum and vaporising with a laser
2, 25-27

. Additionally, a 

potassium atom was placed inside the cage to create K@C60. The cage was “shrink-

wrapped” by activation of K@C60 with laser light, which removed C2 units, essentially 

shrinking the cage
28

. It was possible to shrink the cage down to C44, creating K@C44. The 

fact that further C2 units could not be removed demonstrated that the structure was a closed 

shell and the potassium atom inside was restricting further shrinkage. When caesium was 

inserted into the cage, the laser activation only reduced the cage to Cs@C48, due to the 

caesium atoms larger size. 

Exohedral doping is achieved by a chemical reaction with the carbon atoms of the cage. For 

a better understanding of these reactions it is essential to look at the bonding situation of the 

carbon atoms of the cage and the reactions that can be conducted. The hybridisation of 

carbon in C60 is mainly sp
2
; however, because of the curvature of the cage, there is some 

slight sp
3
 character present too. With increasing fullerene size, the curvature decreases and 

the fullerenes tend towards graphitic behaviour. 

Initially it was believed that C60 would behave as an aromatic compound, however, it actually 

behaves more like an alkene. This is because the pentagons present in the cage structure 

prevent delocalisation of the π electrons, and the double bonds remain localised on their 

specific sites. The double bonds prefer not to be part of a pentagon, because of the increase 

in strain. As a result, this leaves few sites which will react. There are three main possibilities 

for the location of two pentagons around a hexagon
29

, as shown below: 



 

 

Figure 1.3: Arrangements of pentagon and hexagons, L

The most likely configuration where reaction will occur is the meta arrangement on the left, 

as there are no double bonds located on either pentagon.

C60 is electrophilic and easily reduced, 

agent. It undergoes a variety of reactions

o Halogenation 

o Cycloaddition 

o Polymerisation 

o Hydrogenation 

o Alkylation 

o Amination 

Bridging reactions occur either between two hexagons, or between a hexagon and a 

pentagon, as shown below:

Figure 1.4: Location of bridges on a fullerene surface

One C60 derivative with a bridge has shown activity against HIV

  

There are two types of cycloaddition reactions, [4+2] 

reactions. 

In [4+2] cycloaddition reactions, four electrons are provided by a conjugated diene and two 

from the C60, reacting as the dienophile which underlies the slight electron deficient 

character of the double bond in C

 

3: Arrangements of pentagon and hexagons, L-R: meta, para, ortho

The most likely configuration where reaction will occur is the meta arrangement on the left, 

as there are no double bonds located on either pentagon. 

is electrophilic and easily reduced, and as such can be employed as a mild oxidising 

agent. It undergoes a variety of reactions
29-32

: 

 

 

Bridging reactions occur either between two hexagons, or between a hexagon and a 

entagon, as shown below: 

 

Figure 1.4: Location of bridges on a fullerene surface

derivative with a bridge has shown activity against HIV-1 protease

There are two types of cycloaddition reactions, [4+2] - a Diels-Alder reaction, and [2+2] 

In [4+2] cycloaddition reactions, four electrons are provided by a conjugated diene and two 

, reacting as the dienophile which underlies the slight electron deficient 

character of the double bond in C60. 
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R: meta, para, ortho 

The most likely configuration where reaction will occur is the meta arrangement on the left, 

and as such can be employed as a mild oxidising 

Bridging reactions occur either between two hexagons, or between a hexagon and a 

Figure 1.4: Location of bridges on a fullerene surface 

1 protease
21, 23

. 

Alder reaction, and [2+2] 

In [4+2] cycloaddition reactions, four electrons are provided by a conjugated diene and two 

, reacting as the dienophile which underlies the slight electron deficient 



 

 

[4+2] reactions occur as fo

[2+2] additions can occur, for example, between two fullerene cages, resulting in:

 

 

 

Many of the compounds studied in the course of this thesis are fullerenes that have been 

derivatised by exohedral doping.

The majority of the derivatives have been studied in conjunction with Professor Michael 

Orfanopoulos at the University of Crete. His group is engaged with the synthesis of a variety 

of novel derivatised fullerenes, including some 

created in the cage structure using strategically placed heteroatoms. These unique 

compounds could be of interest for transporting molecules.

Besides the method development for the structure elucidation of such com

spectrometry, experiments were performed with the aim to fragment and coalesce particular 

precursors in order to study the formation of larger entities, similar to research by Beck et 

al
33

. Both these approaches involved predominantly laser 

which differed in the extent of the excitation of the target materials.

Further experiments were concerned with the attachment of silver cations to adducts of 

polyaromatic hydrocarbons to C

binding to such species was studied. The aim was here to use this interaction analytically 

and to provide thermochemical insight into preferred interactions of the silver cation and the 

respective π-electron system.

In addition to laser desorption methods, these experiments also used electrospray ionisation 

(ESI). 

[4+2] reactions occur as follows:  

Figure 1.5: [4+2] reaction 

[2+2] additions can occur, for example, between two fullerene cages, resulting in:

Figure 1.6: [2+2] addition reaction 

Many of the compounds studied in the course of this thesis are fullerenes that have been 

ised by exohedral doping. 

The majority of the derivatives have been studied in conjunction with Professor Michael 

Orfanopoulos at the University of Crete. His group is engaged with the synthesis of a variety 

of novel derivatised fullerenes, including some open cage fullerenes, for which a hole is 

created in the cage structure using strategically placed heteroatoms. These unique 

compounds could be of interest for transporting molecules. 

Besides the method development for the structure elucidation of such com

spectrometry, experiments were performed with the aim to fragment and coalesce particular 

precursors in order to study the formation of larger entities, similar to research by Beck et 

. Both these approaches involved predominantly laser desorption/ionisation methods, 

which differed in the extent of the excitation of the target materials. 

Further experiments were concerned with the attachment of silver cations to adducts of 

polyaromatic hydrocarbons to C60. In these experiments the character of the silver cation 

binding to such species was studied. The aim was here to use this interaction analytically 

and to provide thermochemical insight into preferred interactions of the silver cation and the 

electron system. 

In addition to laser desorption methods, these experiments also used electrospray ionisation 
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[2+2] additions can occur, for example, between two fullerene cages, resulting in: 

Many of the compounds studied in the course of this thesis are fullerenes that have been 

The majority of the derivatives have been studied in conjunction with Professor Michael 

Orfanopoulos at the University of Crete. His group is engaged with the synthesis of a variety 

open cage fullerenes, for which a hole is 

created in the cage structure using strategically placed heteroatoms. These unique 

Besides the method development for the structure elucidation of such compounds by mass 

spectrometry, experiments were performed with the aim to fragment and coalesce particular 

precursors in order to study the formation of larger entities, similar to research by Beck et 

desorption/ionisation methods, 

Further experiments were concerned with the attachment of silver cations to adducts of 

er of the silver cation 

binding to such species was studied. The aim was here to use this interaction analytically 

and to provide thermochemical insight into preferred interactions of the silver cation and the 

In addition to laser desorption methods, these experiments also used electrospray ionisation 
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Finally, the use of silver ions in ESI led to a comprehensive investigation into the formation 

of silver clusters by electrospray ionisation. The role of an amino acid as aid for the 

formation of mixed and pure silver clusters was studied and insight into the structure of 

cluster ions was obtained in MS/MS experiments. 
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Techniques 

Mass spectrometry has been used for the analysis of fullerenes since their discovery
34-45

, 

and is the analytical technique of choice for this research. Two different ionisation 

techniques have been used, and are presented below. 

 

MALDI (Matrix-Assisted Laser Desorption Ionisation) 

This mass spectrometry-based ionisation method, developed in the late 1980’s
46-48

, is very 

useful for the analysis of large, thermally labile compounds, in particular for biomolecules 

such as peptides
49-51

. Coupled with time-of-flight detection, this gentle ionisation method 

provides a valuable tool to detect very large masses
52

. 

 

Ionisation Mechanism 

The analyte is mixed with a matrix compound in solution or in the solid state. The matrix is a 

low mass compound chosen for having a λmax close to the wavelength of the laser light and 

is in excess. The mixture is applied to a sample holder slide, allowed to dry if a solution, and 

inserted into the ion source of the instrument.  Laser light is fired in pulses at the mixture. 

The excess matrix absorbs the laser light and is energised. This causes localised 

sublimation and ionisation of the matrix, which expands into the gas phase, carrying the 

analyte with it. 

Photoionisation of the matrix can occur as follows
53, 54

: 

−+ +→+ eMhM υ  

Often matrix ions are observed even though the ionisation energy of its molecular 

constituent exceeds the energy of one laser light photon. Up to two photons can hit one 

molecule to result in ionisation but the probability of a three photon accumulation to result in 

ionisation is so low that this process can be discounted as a responsible mechanism of 

ionisation. However, it is not uncommon to observe matrix ions even though three photons 

are needed for the removal of the electron. For such cases which exclude direct photo-

ionisation alternative mechanisms are proposed. This includes for instance the reaction of 

two matrix molecules 

−•+∗ ++→→ eMMMMMM  
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Ionisation can occur via an excited intermediate: 

−+∗ +→→+ eMMhM υ  

 υhM +→ ∗
 

BA+→  

Where A and B can be neutral, or an ion pair. 

The excited intermediates can also react with other matrix molecules: 

+−∗ ++−→+ )()( HMHMMM  

 The actual ionisation or ion formation processes of the analyte can be very different in 

nature and are often the subject of intense research; especially as it is thought that 

ionisation of the analyte will occur at any time within the plume. The analyte may be ionised 

directly by the laser, however this will usually result in fragmentation, as is the case with 

direct LDI – Laser Desorption/Ionisation, where no matrix is present to protect the sample. 

The various processes of analyte ion formation may include
55-57

: 

o Gas-phase proton transfer 

o Gas-phase cationisation 

o Gas-phase photoionisation 

o Excited state proton transfer 

o Ion-molecule reactions 

o Desorption of pre-formed ions. 

The main process is widely believed to be gas-phase proton transfer. In this process the 

matrix will exchange a proton with the sample in the gas phase: 

++ +→+ AHMAMH  

−− −+→+− )()( HAMAHM  

Other reactions involve an excited matrix molecule: 

−•+ ++→+ eAMMAMM *
 

+−∗ +−→+ AHHMAM )(  

Ion-molecule reactions may involve
55-57

: 

o Charge transfer/transfer of an electron 

o Charge transfer followed by dissociation 
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o Transfer of heavy ions 

o Transfer of heavy ions followed by dissociation 

o Transfer of neutral groups 

In the following, examples of key reactions are given. 

Charge transfer: 

++ +→+ CDABCDAB  

++ ++→+ DCABCDAB  

Transfer of heavy ions: 

++ +→+ CDHABCDABH  

++ ++→+ DHCABCDABH  

++ +→+ CDABHCDHAB  

++ ++→+ DCABHCDHAB  

Transfer of neutral groups: 

CDXABCDABX +→+ ++
 

CDABXCDXAB +→+ ++
 

Where X is usually hydrogen, but can also be nitrogen, oxygen, iodine, chlorine, bromine 

and various alkyl groups. 

The mechanisms described above apply mainly to large biological molecules. 

 

Ionisation Mechanism for Fullerenes 

The MALDI ion formation mechanism for fullerene differs from the one for biological 

molecules and occurs through electron transfer reactions with matrix-derived ions. 

Examples of fairly standard matrices for the MALDI analysis of common biological analytes 

include: 

o α-HCCA: α-cyano-4-hydroxycinnamic acid: 

 

OH

OH

O

N  

o Sinapinic acid: 3,5-dimethoxy-4-hydroxycinnamic acid: 



Introduction 
 

10 
 

MeO

OH

OMe

OH

O

 

o HABA 2-(4-Hydroxyphenylazo)benzoic acid 

N
N

OHO OH

 

o DHB 2,5-Dihydroxybenzoic acid 

OH

OH

OH

O

 

All of these matrix materials contain loosely bound hydrogen atoms which can be easily 

converted into protons for the protonation of the analyte upon laser activation. 

 

The best matrix for MALDI analysis of fullerenes has been found to be DCTB, 2-[(2 E)-3-(4-

tert-butylphenyl)-2-methylprop-2-enylidene] malononitrile, which has a λmax of 355nm. 

 

 

 

 

Figure 1.7: Structure of DCTB 

This compound was found to outperform the previous standard fullerene matrix – 9-

nitroanthracene, in both positive and negative mode, producing more abundant analyte ions 

at lower laser powers, and leading to less fragmentation
42, 58

. 

Comparison with the protonating matrices shown above reveals the entire absence of acidic 

hydrogen atoms in DCTB. Protonation can be consequently discounted when DCTB is used 

as a matrix and in fact instead of producing the protonated (or diprotonated) analyte 

normally the molecular cation (or anion) of the analyte is observed. 

Fullerenes are ionised in both positive and negative-ion mode as the result of electron 

transfer reactions. It has been demonstrated that electron transfer with DCTB ions is 

N

N
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favourable with analytes within the thermochemical frame provided by the respective 

ionisation energies and electron affinities involved
59

. 

To form positive ions, DCTB and the analyte might react as below, assuming that the 

ionisation energy of DCTB is greater than the ionisation energy of the analyte: 

DCTBAADCTB +→+ •+•+
 

To form negative ions, DCTB and the analyte may react as below, assuming that the 

electron affinity of the analyte exceeds the electron affinity of DCTB: 

DCTBAADCTB +→+ •−•−
 

The adiabatic ionisation energy of DCTB has been calculated as 8.05 ± 0.05 eV, and the 

vertical ionisation energy has been measured by PE spectroscopy as 8.54 ± 0.05 eV. The 

electron affinity has been calculated to lie between 2.0 and 2.3 eV
59

. This means that 

positive ion MALDI is achievable with any sample with an ionisation energy below 8.54 eV, 

and negative ion MALDI with samples with an electron affinity greater than 2.3 eV.  

For standard fullerenes, such as C60 and C70, the ionisation energies are 7.58 eV and 7.61 

eV, respectively, and their electron affinities are 2.65 ± 0.05 eV and 2.72 eV, respectively. 

These are within the required parameters to be ionised using DCTB as the matrix. For 

polycyclic aromatic hydrocarbons (PAHs) with ionisation energies below 8.54 eV and 

electron affinities below 2.3 eV it was shown that as expected only positively charged 

analyte ions could be formed from DCTB-MALDI while negative ions remained (also as 

expected) absent. 

For fluorofullerenes, such as C60F46/48, the ionisation energy is 12 eV, and the electron 

affinity is 4.06 ± 0.25 eV
39

. As expected from the thermochemistry these fluorofullerenes are 

not observed in positive-ion mode, only in negative-ion mode.  

 

Matrix Suppression 

One of the drawbacks in MALDI mass spectrometry is that matrix peaks will often obscure 

the lower mass range. Moreover, being the primary absorbant of the laser light the matrix 

may also entirely fragment.  DCTB, for example, has a RMM (relative molecular mass) of 

250.34 g mol
-1

.  This means that any peak below m/z 250 cannot be confidently assigned to 

the sample, as it is more likely to be caused by the matrix.  DCTB dimers can also be 
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formed, resulting in peaks at m/z 500. DCTB can occasionally add to the sample, creating, 

for example, [C60DCTB] ions. However, under certain circumstances matrix peaks can be 

suppressed in the MALDI experiment. 

Matrix suppression occurs only occasionally, leading to spectra that have little or no matrix 

peaks visible.  This is advantageous for the analysis of small molecules as the matrix peaks 

could otherwise obscure the sample peaks
60-62

.  It is thought that matrix suppression occurs 

when all of the matrix ions donate their charge to the sample, leaving itself neutral and 

therefore undetected. The reaction of analyte and matrix ions is so efficient that matrix ions 

will not survive under these conditions. The optimum conditions for matrix suppression 

include the laser power being low, and close to the threshold for ion formation.  It appears 

that the ratio of analyte:matrix also plays an important role, as does the preparation of the 

slide (mixed solution of matrix and analyte applied versus solutions applied separately in 

layers). DCTB is the first matrix that shows suppression in both ion modes.  Normally, matrix 

suppression is observed either in positive or negative ion mode for a particular matrix.  This 

is because earlier investigations covered only proton-transfer matrices
61-63

, where it is 

difficult to both protonate and de-protonate the analytes, or vice versa. DCTB is an electron-

transfer matrix, which can produce analyte ions in both ion modes. The thermochemical 

boundaries in which this is possible were outlined above. Matrix suppression in both ion 

modes simultaneously is observed for the first time in the course of our investigation with the 

DCTB matrix and in turn underlines the effectiveness of the charge transfer reactions with 

this matrix. 

 

Time-of-Flight Mass Analyser and Detection 

As the laser light is pulsed, analysis is usually with time-of-flight (ToF) mass spectrometry, 

which is ideally suited for the recording of pulsed ion beams. The ToF measurement needs a 

start and end point for the flight time of the ion of interest. The start is provided by the laser 

pulse, which generates the ion and the time measurement is stopped when the ion is 

registered by the detector. ToF spectra are recorded either in linear (using a linear flight 

tube) or in reflectron mode (using an ion mirror to improve the resolution). 
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In linear detection, ions are formed in the ion source, accelerated to a certain kinetic energy, 

and then allowed to drift in a field free region within a linear flight tube, until they hit a 

detector
53, 54

:  

 

Figure 1.8: Schematic of linear time-of-flight detector 

The masses of the ions are calculated as follows. 

The ions are accelerated by a potential, V. They fly a distance, d, in a certain time, t, before 

reaching the detector, and are in possession of a kinetic energy given by: 

2

2

1
mvEkin =  

The total charge of the ion, q: 

zeq =  

zeVqVmvEkin === 2

2

1
 

t

d
v

v

d
t =→=  

V is the accelerating voltage, and z is the charge on the ion. 

Rearranging results in the following equations: 
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So knowing the time taken for the ion to reach the detector, the length of the flight tube, and 

the accelerating voltage, the m/z value can be calculated. 

Detection after reflectron analysis improves the resolution, as the reflectron compensates for 

the intrinsic velocity and therefore energy spread that accompanies the ionisation process 
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and which with a linear flight tube only would result in ions of the same mass being detected 

at different times, and therefore leading to a low resolution signal. The reflectron introduces 

an electric potential gradient, which deflects ions according to their kinetic energy
53, 54

. 

 

Figure 1.9: Schematic of reflectron time-of-flight detection 

Ions of the same kinetic energy and m/z will penetrate the reflectron to the same extent and 

spend the same time in it.  Ions of higher or lower kinetic energy but with the same m/z will 

spend longer or shorter times in the reflectron, so that kinetic energy differences are 

compensated for, and ions of the same m/z reach the detector after leaving the reflectron at 

the same time. 

Linear time-of-flight analysers theoretically have no upper mass limit and frequently detect 

very large proteins and polymers of up to tens of thousands of Daltons. The reflectron, 

however, limits the upper mass to several ten thousands of Daltons, beyond which the ion 

becomes too large/heavy to be successfully transferred through the reflectron. 

 

The detector commonly employed for time-of-flight mass analysers is the Ion-Electron 

Multiplier. There are two types of dynode, the discrete and the continuous dynode. 

The discrete dynode is a series of 12 to 20 beryllium-copper dynodes, which are situated as 

shown below to allow detection by multiplication of the signal. 

 

Figure 1.10: Schematic of a discrete dynode 
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The dynodes are connected electrically through a resistive network. A positive ion will hit the 

first dynode, which is held at a negative potential, with an energy of between 5,000 and 

10,000 eV. This will release between 2 and 3 secondary electrons, which are accelerated by 

the applied voltage, and will hit the second dynode, releasing more secondary electrons, 

which hit the next detector, and so forth. 

By the final electrode, as many as 10
6
 electrons have been formed for each ion that hits the 

first dynode. These electrons then reach the collector plate, which converts the output 

current into a voltage that is suitable for recording. 

For detection of negative ions, a conversion dynode is placed prior to the initial dynode. It is 

held at a positive potential, and when negative ions hit it, positive ions are released, and hit 

the first dynode, which releases electrons, and so forth. 

Continuous dynodes, or Continuous Channel Multipliers, are curved tubes made from lead 

doped glass, which have a voltage applied to them. 

They have good secondary emission properties and are electrically resistive. The voltage 

creates a uniform field along the length of the tube. An ion will hit the wall of the tube, which 

releases secondary electrons, which are accelerated by the field, and will then hit the wall 

further down, releasing further electrons, and so forth. 

 

Figure 1.11: Schematic of a continuous dynode 

At the end of the tube, the electrons will hit a collector plate, as is the case for the discrete 

dynodes. 
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Very often the tube will have an elongated bell-shaped end piece preceding it, through which 

the ions traverse initially. This design prevents slow moving and neutral ions from creating 

false signals. 

 

Instrumentation 

Two MALDI instruments were used in the course of this research; the Kratos (now 

Shimadzu) Kompact MALDI IV, purchased in the early 1990’s; and the Bruker Ultraflex II, 

purchased in September 2006. Both instruments have several distinct differences. The most 

notable being the length of the flight tube, the types of reflectron and the types of laser used. 

As a consequence, the more recent MALDI instrument shows higher sensitivity at markedly 

enhanced resolving power (resolution). 

The resolving power (resolution) is the ability to produce distinct signals for ions with a 

particular mass difference. It is, for example, desirable to be able to detect a molecular ion of 

interest isotopically resolved, so that in addition to the mass the resolved isotopic pattern 

may be used to elucidate the elemental composition. Another important issue which is 

concerned with the resolution is the ability to separate ions that have different elemental 

compositions but show the same nominal mass (so-called isotopic ions). 

For two peaks to be considered resolved, the valley between the two peaks must be only 

10% of the height of the less intense peak. (10% valley definition) 

A numerical value for resolution can be calculated either by using two peaks, with masses of 

m and m + δm, where δm is the mass difference between the two as below: 

m

m
R

δ
=  

Or, the same equation can also be applied to individual peaks, where δm is the peak width 

at half the height. This is the FWHM – full width at half maximum method. 
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Kratos Kompact MALDI IV (now Shimadzu) 

This instrument is a desktop mass spectrometer, built in the early 1990’s. It is equipped with 

a Nitrogen laser with a wavelength of 337 nm and a pulse length of 3 ns.  

The machine allows detection of ions in linear and reflectron mode. Unfortunately, the 

resolving power is very low, even in reflectron mode – i.e., well below 1000. With its 

continuous acceleration voltage it does not employ delayed extraction to further improve the 

resolution. 

The machine allows the recording of daughter-ion spectra of selected precursor ions 

(tandem MS, MS/MS, post source decay) through the use of an ion gate for the selection of 

the parent ion and the use of a reflectron for the daughter ion anaylsis. 

The reflectron is a curved-field ion mirror which allows the simultaneous detection of all 

daughter ions without the need of variation of the reflectron potentials. However, although 

the acquisition speed in MS/MS experiments is advantageous, the low resolution is 

problematic for the reliable assignment of even relatively low masses. 

 

Figure 1.12: Photo of the Kratos Kompact MALDI IV 
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Figure 1.13: Schematic of the Kratos Kompact MALDI IV 

 

 

Figure 1.14: Photo of the inside of the Kratos Kompact MALDI IV 
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Bruker Ultraflex II 

Purchased in September 2006, this MALDI mass spectrometer has an Nd:YAG laser with a 

wavelength of 355 nm and a variable repetition rate of between 1 and 200 Hz. 

 

Figure 1.15: Photo of the Bruker Ultraflex II 

 

Figure 1.16: Schematic of the Bruker Ultraflex II 

 

P1 – this is the target plate, on which the sample is located inside the source. 

P2 – this is a plate which is used for delayed extraction to improve the resolution. When the 

laser is fired at the sample, the ions are produced with a range of kinetic energies. As a 

consequence ions of the same m/z will arrive at the detector at different times, resulting in 
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poorly resolved peaks. Therefore, continuous extraction, which introduces a static electrical 

field to accelerate the ions directly after formation, leads to mass spectra of only poor 

resolution. However, delayed extraction employs a voltage on P2, which initially prevents 

acceleration of the ions. These travel for a few nanoseconds without or with a very low 

potential difference towards P2. After passing through a hole in P2, the ions will experience 

the full acceleration voltage. The delay in extraction, that is, the field-free drift between P1 

and P2 has the effect that the initial velocity spread is compensated so that the ions will 

reach the detector in a more simultaneous manner. 

There are two methods of applying the voltage to P2 – Pulsed Ion Extraction, PIE, and 

Panoramic Extraction, PAN. 

For PIE a sharp pulse is applied to P2. This allows very high resolution, however only over a 

small m/z range. For PAN the pulse is “softened” (applied over a longer time span, gradually 

increasing and decreasing) and a moderately high resolution is achieved over a larger m/z 

range. 

P2 is followed by a ground plate for the acceleration, and a lens plate for the focus of the 

ions. Located after these plates is the collision cell. Here the ions are collided with an inert 

collision gas. In the present Collision-Induced Dissociation (CID) experiments argon was 

commonly used as the collision gas. 

The following items will be discussed later in the context of tandem mass spectrometry 

experiments. These include: 

PCIS –the Pre-Cursor Ion Selector, 

LIFT optics – essential part of the daughter ion analysis. 

PLMS – Post LIFT Metastable Suppressor, a final stage to LIFT. 

The Reflectron is an ion mirror consisting of several plates and is held at a potential in order 

to “mirror” ions in reflectron mode. 

Detectors – there are two, one for the linear mode, and one for the reflectron mode. 

The linear detector consists of two single multi channel plate detectors. The reflectron 

detector consists of a single, tiltable multi channel plate cartridge. 
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A unique feature of the Bruker Ultraflex is LIFT
64

, a method to achieve the fragmentation of 

one selected precursor ion and the detection of all resulting fragment ions without the time-

consuming variation of the reflectron potentials. 

The problem of any fragmentation ion detection in reflectron mode is that the kinetic energy 

of the parent ion is distributed between the neutral and the charged fragment. The fragment 

ion kinetic energy is therefore always lower than that of the parent ion and given by: 

����,���	
�� ��� = �ln �������	
�� ���ln ��������� ��� � ����,����� ��� 

The reflectron for the Bruker Ultraflex II, however, is only able to focus fragment ions if their 

kinetic energy is not lower than 70% of the 100% value of the parent ion. Daughter ions of 

lower Ekin will not reach the detector. 

LIFT solves this problem by “lifting” the energies of the fragments, so that all the ions formed 

will have a kinetic energy within 70% of the parent ion. 

The parent ions are initially accelerated with only 8kV, compared to between 22 and 25kV in 

the normal operating mode. This means the fragments can have energies of between 0 and 

8kV. When they pass through the LIFT mechanism, the fragments and parent ions receive 

another 19kV, altering the range of energies from 0 – 8kV, to 19 – 27kV. 19kV is 70.37% of 

27kV, so all the fragments can be focussed by the reflector and detected. 

The actual LIFT process can be summarised in detail as follows: 

The sample is ionised and accelerated by a voltage of 8kV. The ions traverse through to the 

PCIS. The PCIS is an ion gate, which is held at a positive potential which deflects the ions 

until the selected ion family passes through, at which point the voltage is switched off, and 

shortly afterwards, typically between 50 and 100 ns, the potential will switch back to the 

opposite polarity. The total change in polarity allows very short switching times, which results 

in a very precise mass selection. The PCIS consists of a series of deflection plates which 

are parallel to the flight path of the ions. 

The ions then enter the LIFT ion optics. This part consists of four electrodes, whose voltages 

are altered in order to add the 19kV as the selected ion family passes through. As the ions 

pass the first electrode they experience a high voltage which is applied to the first and the 

second electrodes. As the family pass the second electrode they experience the potential on 

the third electrode which is reduced to start the second acceleration.  
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The lifted ions then pass through the PLMS. This is another ion gate which is timed to 

deflect the parent ion. It is held at ground whilst the fragments pass, yet raised to a high 

potential when the parent reaches it. It is important to deflect the parent ion, as the second 

acceleration may encourage further fragmentation – post LIFT decay. The resulting 

fragments from this second acceleration would have differing kinetic energies to the 

fragments of the same m/z, and this would decrease the resolution. LIFT experiments could 

be performed with or without the collision cell active. It has been shown that the collisions 

the ions undergo do not always affect the dissociation spectra (i.e. no extra fragmentations 

peaks observed)
65

, and this was also seen in some of the experiments presented here. 

 

ESI (ElectroSpray Ionisation) 

Electrospray Ionisation is another soft ionisation method particularly suited to analyse large 

biomolecules and biomolecular complexes
66-69

. The link with biologically important molecules 

and complexes is particularly prominent as the analysis can be performed on aqueous 

solutions and as the softness of the process reduces fragmentation, without the need for a 

matrix. Therefore, ESI can be utilised to study non covalent interactions of complexes
70

.  

Developed in the early 1980’s
71-77

, prompted by research in the late 1960’s
78, 79

, it involves 

the direct injection of a solution at atmospheric pressure through a charged needle. 

 

Ionisation Mechanism 

The sample is dissolved in a volatile solvent, and this solution is slowly pumped through a 

stainless steel capillary. A typical flow is in the range of several µl per minute. This capillary 

is held at a potential of around 3-4 kV, resulting in a spray of highly charged droplets. 

There is a counter electrode, held at ground potential and positioned 1 to 3 cm away from 

the exit of the capillary. It is also possible to leave the capillary at ground potential and put a 

potential onto the counter electrode. The net effect is the same. Both types of sources are 

commercially available and a particular preference is mainly determined by patent 

regulations. The counter electrode has a hole in its centre so that ions can traverse further 

into the mass spectrometer. 
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As the voltage increases, the shape of the nascent drop at the very tip of the capillary will 

change. This is due to the repulsion between the ions overcoming the surface tension. The 

sphere will elongate and eventually expand into the Taylor cone, (as shown in the figure 

below on the far right) breaking into a mist of highly charged droplets which are at most 

10µm in diameter. 

 

Figure 1.17: Nascent drop at tip of electrospray needle 

These droplets carry multiple charges. The droplets shrink and decay, first through solvent 

evaporation, which is aided by a stream of nitrogen gas at 300˚C, and also by charge 

repulsion as the coulombic forces come close to the cohesion forces (Rayleigh equation
80

). 

This decay process produces smaller and smaller drops, until finally the electric field on the 

surface of the drop becomes large enough that ions desorb from the surface - the Ion 

Evaporation (Desorption) Model
81-83

. Alternatively, the Charged Residue Model involves 

coulomb explosions of the droplets when their charge density becomes too high to be 

retained by the droplet
53, 54, 84, 85

. Both models predict basically the same ions as the result of 

the spray process, and some research suggests both models apply
86, 87

. 

Most large molecules, generally with masses above 1000Da, will become multiply charged, 

i.e. through the attachment of many protons as the charge carriers. One benefit of the 

multiple protonation process is the reduction of the m/z value into a mass range that can be 

accessed by even less sophisticated mass spectrometers.  

Finally ions travel through a small hole in the counter electrode into a pre vacuum section. 

As the ionisation occurs at atmospheric pressure, and the mass analyser is held at a high 

vacuum, the ions must traverse regions of decreasing pressure. A stainless steel skimmer 

removes any last solvent molecules prior to mass analysis. 
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Figure 1.18: Schematic of an electrospray instrument 

The ion formation process in ESI has similarities with processes occurring in an 

electrochemical cell. If positive ions are being detected, then these will be pushed to the 

front of the capillary, into the nascent tip and the negative charges will be “pumped” away. 

This idea of electrophoretic charging, where there is a partial separation of positive ions from 

negative ions due to the imposed electric field and leading to the excess of a positive charge 

on the surface of the liquid, which then destabilises the surface leading to the emission of 

droplets, assumes that ions are already present in the solution. 

While the electric current is achieved by movement of electrons through the wire that 

provides the potential for the electrodes, the current in solution is achieved by the movement 

of ions. Therefore, there must be an electrochemical conversion of electrons to ions at the 

liquid-metal interface of the capillary tip. 

If an oxidation reaction occurs at the tip, this will create the required excess of ions by 

removing electrons from negatively charged ions, and creating positively charged ions. 

This was confirmed by constructing a capillary with a tip made of a metal with a favourable 

oxidation potential, which would therefore produce ions which could be detected in the 

spray. The chosen metal was Zinc, and when the zinc tip was at the very end of the 

capillary, Zn
2+

 ions were seen in the resulting spectra. To confirm that it was not just a 

corrosion of the zinc tip that was creating these ions, the zinc tip was placed in the tubing 

prior to the start of the capillary, and was electrically insulated from the rest of the system. It 

was found as expected that in this situation, no zinc ions were formed
88

.  

These reactions that occur at the tip – oxidation for the detection of positive ions and 

reduction for the detection of negative – create a current that limits the number of ions that 

will go through to the detector. It is called the limiting current, IM, and generally will not 

exceed 1µA, and is only dependent on concentration of the sample, not the flow rate. 
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For ions of both polarities, ions of an analyte, A, are desorbed from the droplets producing a 

theoretical current
54

: 

[ ]AkI AA =  

Where kA is a rate constant, dependent on A. 

If another analyte, B, will form ions: 

[ ]BkI BB =  

The total current produced, IT: 

( )BAT III +=  

As this current is limited by the process at the capillary tip: 

IM = IT 

The current for each ion is proportional to their relative desorption rate, as below: 
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Consider the following scenario. If the concentration of B remains constant, and the 

concentration of A varies. 
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Therefore, the intensity of the signal for A will be proportional to its concentration and the 

sensitivity will be inversely proportional to the concentration of B. It appears that the limiting 

current in this situation is dependent upon B. 

If the scenario is reversed, with kB[B] << kA[A], then: 
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In this situation, the total current is almost entirely dependent on A, quantitation of the 

concentration of A is impossible, and the intensity of the signal for B will decrease with 

increasing concentration of A. 

This partially demonstrates how many variables are involved in achieving repeatable, 

accurate ESI spectra. 

 

Ionisation Mechanism for Fullerenes 

The ionisation mechanism of fullerenes by ESI is still under investigation. Typically, non 

polar compounds are very difficult to ionise with ESI as these contain neither a pre-formed 

charge, nor heteroatoms that could easily protonate. Previous experiments have been 

performed by either altering the fullerenes with a polar ligand, or by adding salts to the 

solution
89-92

.  

The properties of the ESI source acting as an electrochemical cell can be exploited for 

ionising fullerenes and other non polar compounds
41

, however, the redox potentials have to 

lie between the values of -0.8 to +1.0 V
92

. For C60 and C70, molecular ions could only be 

found in negative mode. Otherwise, off line electrolysis had to be used to produce the ions 

prior to injection into the ESI. Of course, this only works if the oxidised or reduced species 

are stable for the period of time it takes to produce them and analyse them. 

In the course of this research conditions have been found in which ionisation of the raw 

compounds has been achieved. 

 

Ion-Trap Mass Analyser and Detection 

The Ion Trap mass analyser is based upon the quadrupole mass analyser which was 

developed in 1953
93

. It consists of four perfectly formed and perfectly aligned parallel rods: 
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Figure 1.19: Schematic of a quadrupole mass analyser 

The rods have a potential applied across them, with opposite rods bearing the same charge. 

The idea is that an ion travelling through the quadrupole, along the z-axis, will be attracted to 

the oppositely charged rod. If the potential changes rapidly, the ion will be deflected away, 

and will then be attracted to one of the rods either side. Then the polarity will change again, 

and the ion will change direction. As long as the ion does not reach one of the rods and 

discharge, it will make its way through to the detector. 

The voltage applied to the rods consists of a direct potential and a radio frequency voltage. 

Ions travelling along the z-axis are subject to this electric field: 

( )tVUo ωcos−−=Φ
 
and ( )tVUo ωcos−+=Φ  

Φo = potential applied to rod 

ω = angular frequency, rad s
-1

, = 2πυ, where υ = frequency of the radio frequency, RF, field 

V = zero to peak amplitude of RF voltage – this alternates from 0 – 3000 V (-3000 to +3000) 

U = direct potential – typically 500 to 2000 V 

The ions are accelerated in the z – direction and maintain this velocity between the poles. 

The accelerations in the x and y directions induced by the electric fields are calculated as 

follows: 
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Where z is the charge on the ion and F is the field. 

Ф is a function of Фo, and is given by: 
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Where ro is the radius of the gap between the rods. Derivatising leads to: 
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The trajectory is stable as long as x and y remain less than ro. 

The above equations correspond nicely with the Mathieu equation, used to study the 

propagation of waves in membranes: 
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Taking into account that the potential along y is the opposite of that along x: 
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For a quadrupole, ro is constant. ω = 2πυ is also constant, which leaves U and V as the 

variables. 

Plotting "a" vs. "q" gives two stability plots, one for x and one for y. Overlapping the two plots 

gives areas where the values of a and q will allow safe trajectory through the quadrupole. 

Rearrangement of the equations allows for more clearly seeing the effect of U and V on a 

and q: 
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are constant for any given quadrupole analyser, any change in U and 

V will change a and q for any given m/z. Also, different m/z values will have different a and q 

values at any given voltage. 

Therefore, changing voltages allows only certain ions to have a stable trajectory through the 

quadrupole, with other ions discharging on the rods. This allows for separation of the ions. 

 

Quadrupole Ion Traps are based upon the design for the Quadrupole, however, they consist 

of a circular, or ring electrode, with two end caps
94

. Typically, the potential is only applied to 

the ring electrode.  

 

Figure 1.20: Schematic of an ion trap 

Initially, however, with both instruments, only ions of a single m/z value could be held within 

the trap; all others were ejected and wasted. As such, their potential for mass spectrometry 

and chemical purposes were not realised until 1984, where two improvements to the design 

were made
95

. The first was that ions could be ejected from the trap sequentially in the order 

of their m/z values with subsequent detection through a mode of operation called “Mass-

Selective Instability”. The second development was that the introduction of gaseous helium 
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into the trap improved the resolution, by reducing the kinetic energies of the ions through 

terminating collisions and constricting their orbits. 

 

Ions enter the trap and the voltage applied to the ring electrode causes the ions to oscillate 

in an orbit inside the trap. Increasing the RF voltage increases ion motion along the z-axis 

which causes the orbits to destabilise. Ions with a low m/z will start to exit, 50% through the 

entrance electrode and 50% through the exit electrode through to the detector. With 

increasing RF amplitude, the larger m/z ions are ejected. 

Low pressure helium gas is present to decrease the kinetic energy of the ions through 

collisions, which increases the probability of the ions staying trapped. As many ions are 

present, they will constantly repel one another, causing the oscillations to increase in size. 

Helium-induced collisions help in preventing this. 

The same principle of rapid field reversal in Quadrupole analysers is applied to Ion Traps. 

The ions are alternately accelerated and decelerated in the z direction, and vice versa in the 

radial – x and y combined – direction. Mathieu plots are again used to determine the a and q 

values in which the orbits are stable. 

Because of the cylindrical symmetry inside a trap, it follows that: 

222 ryx =+  

Therefore movement can be expressed in terms of zo and ro and the Quadrupole equations 

can be adapted as follows: 
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Instrumentation 

The main body of the ESI research was carried out on a quadrupole ion trap mass 

spectrometer (Bruker esquire2000), with a few experiments performed on an ESI orthogonal 

time-of-flight mass spectrometer (Bruker MicrOTOF). 

 

Bruker esquire2000 

 

Figure 1.21: Photo of the Bruker esquire2000 

The Bruker Esquire2000 is equipped with an ion trap mass analyser with an upper mass 

limit of 2200 m/z. 
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Figure 1.22: Schematic of the Bruker esquire2000 

For this particular mass spectrometer, the spray direction is at right angles to the capillary. 

The spray is formed at the charged needle. Between the end cap and the metal end caps of 

the capillary, a potential is held which creates an electrostatic gradient to help the ions into 

and through the capillary. For the ions to pass through the end cap, it is held at a lower 

potential than the needle. In addition, the entrance and exit caps of the capillary are held at a 

lower potential than the end cap and the needle. 

Heated nitrogen gas helps to evaporate the solvents, and also heats up part of the capillary 

as it flows past it into the source. 

The capillary acts as a barrier between the source, which is held at atmospheric pressure 

and the rest of the system which is held at vacuum. The pressure gradient across it also 

helps guide ions through the capillary, and means the ions leave the capillary as a subsonic 

jet flow. 

The exit cap of the capillary is held at a higher voltage than the skimmer, so the ions are 

attracted to the skimmer. As the ions pass through, the skimmer removes the bulk of the 

drying gas. The ions then pass through the octopoles, which focus and guide the ions into 

the ion trap for analysis. From this they may exit into the detector, which for this instrument 

is based on a conversion dynode. 

The scan rate of this machine is 1 mass unit every 76 µs. This is equivalent to 13,158 mass 

units per second. 

Fragmentation experiments can be performed on this machine. Initially, the ion of interest 

the precursor ion - has to be selected and isolated. This is achieved in the ion trap. Each 
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mass will have its own resonance, and by synthesizing a range of frequencies, except the 

one for the precursor ion, all other ions will be ejected from the trap. This broadband 

frequency spectrum is generated by the electronics system. 

Once isolated, the energy of the ion is increased through resonance excitation with the 

dipole field. With increased energy, the ion will collide with the helium background gas and 

fragment. This whole process takes between 20 and 60 ms. 

There is a drawback – if the RF level is too high, then all the low mass fragments will be 

ejected. If it is too low, then the ions will not be excited enough for fragmentation. In order to 

compromise, there is a lower mass limit of ion detection, at one third of the mass of the 

precursor ion. 

One advantage over quadrupole MS/MS experiments is that in the ion trap, only the parent 

ions are sufficiently excited to fragment. Therefore only the parent ions will dissociate and 

successive dissociations from the fragment ions can be mostly discounted as these will not 

have enough energy to participate in follow up dissociations. In contrast, CID in the 

quadrupole often leads to grand-daughter ions because of successive reactions occurring 

under the multiple collision conditions. 

After a certain time, the RF level is ramped back up, in order to either obtain the spectrum, 

or to excite fragment ions to perform further MS
n
 experiments. 

With the present instrument, up to MS
4
 can be performed; however, there is a loss of signal 

with each stage of the dissociation. If a signal is strong enough, the method can be useful for 

the elucidation of fragmentation pathways. 

The possibility to perform MS
n
 experiments (n > 2) with one analyser is the other advantage 

that the ion trap (including FT-ICR) possesses over other mass spectrometers as these 

would require one additional analyser for each additional selection step. 

 

Bruker MicrOTOF 

The Bruker MicrOTOF employs the same ESI source as the esquire2000. It has, however, 

theoretically no upper mass limit and provides over a mass range a sufficiently medium high 

resolution and mass accuracy to allow the establishment of the elemental composition. The 

analyser consists of an orthogonal time-of-flight mass spectrometer without MS/MS 
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capability. In the present study, the instrument was used when it was necessary to extend 

the limited mass range covered by the esquire2000 ion trap. 

  



Introduction 
 

35 
 

References 

1. Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E., Nature 1985, 

318, 162. 

2. Baggott, J. E., Perfect symmetry: the accidental discovery of Buckminsterfullerene. 

Oxford University Press: Oxford, 1994; p ix,315p. 

3. Aldersey-Williams, H., The most beautiful molecule: the discovery of the buckyball. 

J. Wiley: New York; Chichester, 1995; p ix, 340 p. 

4. Kroto, H.; Allaf, A.; Balm, S., Chemical Reviews 1991, 91 (6), 1213-1235. 

5. Haymet, A., Journal of the American Chemical Society 1986, 108 (2), 319-321. 

6. Davidson, R., Theoretica Chimica Acta 1981, 58 (3), 193-231. 

7. Rohlfing, E.; Cox, D.; Kaldor, A., Journal of Chemical Physics 1984, 81 (7), 3322-

3330. 

8. Kratschmer, W.; Lamb, L.; Fostiropoulos, K.; Huffman, D., Nature 1990, 347 (6291), 

354-358. 

9. Chen, Y.; Zhang, H.; Zhu, Y.; Yu, D.; Tang, Z.; He, Y.; Wu, C.; Wang, J., Materials 

Science and Engineering B-Solid State Materials for Advanced Technology 2002, 95 

(1), 29-32. 

10. Klein, D.; Schmalz, T.; Hite, G.; Seitz, W., Journal of the American Chemical Society 

1986, 108 (6), 1301-1302. 

11. Schmalz, T. G.; Seitz, W. A.; Klein, D. J.; Hite, G. E., Chemical Physical Letters 

1986, 130 (3), 203. 

12. Newton, M.; Stanton, R., Journal of the American Chemical Society 1986, 108 (9), 

2469-2470. 

13. Taylor, R.; Hare, J.; Abdulsada, A.; Kroto, H., Journal of the Chemical Society-

Chemical Communications 1990, (20), 1423-1424. 

14. Kroto, H., Angewandte Chemie-International Edition in English 1992, 31 (2), 111-

129. 

15. Ohmae, N.; Tagawa, M.; Umeno, M., Journal of Physical Chemistry 1993, 97 (44), 

11366-11367. 



Introduction 
 

36 
 

16. Ungurenasu, C.; Airinei, A., Journal of Medicinal Chemistry 2000, 43 (16), 3186-

3188. 

17. Katz, A.; Redlich, M.; Rapoport, L.; Wagner, H.; Tenne, R., Tribology Letters 2006, 

21 (2), 135-139. 

18. Simon, F.; Peterlik, H.; Pfeiffer, R.; Bernardi, J.; Kuzmany, H., Chemical Physics 

Letters 2007, 445 (4-6), 288-292. 

19. Innocenzi, P.; Brusatin, G., Chemistry of Materials 2001, 13 (10), 3126-3139. 

20. Bosi, S.; Da Ros, T.; Spalluto, G.; Prato, M., European Journal of Medicinal 

Chemistry 2003, 38 (11-12), 913-923. 

21. Friedman, S.; Decamp, D.; Sijbesma, R.; Srdanov, G.; Wudl, F.; Kenyon, G., Journal 

of the American Chemical Society 1993, 115 (15), 6506-6509. 

22. Schinazi, R.; Sijbesma, R.; Srdanov, G.; Hill, C.; Wudl, F., Antimicrobial Agents and 

Chemotherapy 1993, 37 (8), 1707-1710. 

23. Sijbesma, R.; Srdanov, G.; Wudl, F.; Castoro, J.; Wilkins, C.; Friedman, S.; Decamp, 

D.; Kenyon, G., Journal of the American Chemical Society 1993, 115 (15), 6510-

6512. 

24. Prassides, K., Current Opinion in Solid State & Materials Science 1997, 2 (4), 433-

439. 

25. Billups, W. E.; Ciufolini, M. A., Buckminsterfullerenes. VCH: New York; London, 

1993; p xv, 339p. 

26. Heath, J.; OBrien, S.; Zhang, Q.; Liu, Y.; Curl, R.; Kroto, H.; Tittel, F.; Smalley, R., 

Journal of the American Chemical Society 1985, 107 (25), 7779-7780. 

27. Weltner, W.; Vanzee, R., Chemical Reviews 1989, 89 (8), 1713-1747. 

28. Curl, R.; Smalley, R., Science 1988, 242 (4881), 1017-1022. 

29. Hirsch, A.; Brettreich, M., Fullerenes: chemistry and reactions. Wiley-VCH: 

Weinheim, 2005; p xvii, 423 p. 

30. Taylor, R.; Walton, D., Nature 1993, 363 (6431), 685-693. 

31. Wang, S.; Jansen, S., Journal of Physical Chemistry 1995, 99 (21), 8556-8561. 

32. Miller, G., Comptes Rendus Chimie 2006, 9 (7-8), 952-959. 



Introduction 
 

37 
 

33. Beck, R.; Weis, P.; Hirsch, A.; Lamparth, I., Journal of Physical Chemistry 1994, 98 

(39), 9683-9687. 

34. McElvany, S.; Ross, M., Journal of the American Society for Mass Spectrometry 

1992, 3 (4), 268-280. 

35. Saldi, F.; Marie, Y.; Gao, Y.; Simon, C.; Migeon, H.; Begin, D.; Mareche, J., 

European Mass Spectrometry 1995, 1 (5), 487-492. 

36. Campbell, E. E. B.; Ulmer, G.; Busmann, H. G.; Hertel, I. V., Chemical Physics 

Letters 1990, 175 (5), 505-510. 

37. Ulmer, G.; Campbell, E. E. B.; Kühnle, R.; Busmann, H. G.; Hertel, I. V., Chemical 

Physics Letters 1991, 182 (2), 114-119. 

38. Cordero, M.; Cornish, T.; Cotter, R., Journal of the American Society for Mass 

Spectrometry 1996, 7 (6), 590-597. 

39. Cozzolino, R.; Belgacem, O.; Drewello, T.; Kaseberg, L.; Herzschuh, R.; Suslov, S.; 

Boltalina, O., European Mass Spectrometry 1997, 3 (6), 407-414. 

40. Gross, J.; Giesa, S.; Kratschmer, W., Rapid Communications in Mass Spectrometry 

1999, 13 (9), 815-820. 

41. Barrow, M.; Feng, X.; Wallace, J.; Boltalina, O.; Taylor, R.; Derrick, P.; Drewello, T., 

Chemical Physics Letters 2000, 330 (3-4), 267-274. 

42. Brown, T.; Clipston, N.; Simjee, N.; Luftmann, H.; Hungerbuhler, H.; Drewello, T., 

International Journal of Mass Spectrometry 2001, 210 (1-3), 249-263. 

43. Streletskii, A.; Ioffe, I.; Kotsiris, S.; Barrow, M.; Drewello, T.; Strauss, S.; Boltalina, 

O., Journal of Physical Chemistry A 2005, 109 (4), 714-719. 

44. Kotsiris, S.; Vasil'ev, Y.; Streletskii, A.; Han, M.; Mark, L.; Boltalina, O.; Chronakis, 

N.; Orfanopoulos, M.; Hungerbuhler, H.; Drewello, T., European Journal of Mass 

Spectrometry 2006, 12 (6), 397-408. 

45. Markov, V.; Aleshina, V.; Borschevskiy, A.; Khatymov, R.; Tuktarov, R.; Pogulay, A.; 

Maximov, A.; Kardashev, S.; Ioffe, I.; Avdoshenko, S.; Dorozhkin, E.; Goryunkov, A.; 

Ignat'eva, D.; Gruzinskaya, N.; Sidorov, L., International Journal of Mass 

Spectrometry 2006, 251 (1), 16-22. 

46. Karas, M.; Hillenkamp, F., Analytical Chemistry 1988, 60 (20), 2299-2301. 



Introduction 
 

38 
 

47. Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T., Rapid 

Communications in Mass Spectrometry 1988, 2 (8), 3. 

48. Tanaka, K.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T., Second Japan-China Joint 

Symposium on Mass Spectrometry Abstract 1987, 4. 

49. Tang, K.; Allman, S.; Jones, R.; Chen, C., Analytical Chemistry 1993, 65 (15), 2164-

2166. 

50. Chen, H.; He, M.; Pei, J.; He, H., Analytical Chemistry 2003, 75 (23). 

51. Trimpin, S.; Keune, S.; Rader, H.; Mullen, K., Journal of the American Society for 

Mass Spectrometry 2006, 17 (5), 661-671. 

52. Williams, J.; Chapman, T.; Hercules, D., Analytical Chemistry 2003, 75 (13), 3092-

3100. 

53. Chapman, J. R., Practical organic mass spectrometry: a guide for chemical and 

biochemical analysis. 2nd ed. ed.; Wiley: 1993. 

54. Hoffmann, E. d.; Stroobant, V., Mass spectrometry: principles and applications. 2nd 

ed.; John Wiley: Chichester, 2001; p xii, 407 p. 

55. Ion-Molecule Reactions: Volume 1. Butterworth & Co.: New York, 1972; Vol. 1. 

56. Knewstubb, P. F., Mass spectrometry and ion-molecule reactions. Cambridge U.P.: 

London, 1969; p vii, 136 p. 

57. Knochenmuss, R.; Stortelder, A.; Breuker, K.; Zenobi, R., Journal of Mass 

Spectrometry 2000, 35 (11), 1237-1245. 

58. Ulmer, L.; Mattay, J.; Torres-Garcia, H.; Luftmann, H., European Journal of Mass 

Spectrometry 2000, 6 (1), 49-52. 

59. Vasil'ev, Y. V.; Khvostenko, O. G.; Streletskii, A. V.; Boltalina, O. V.; Kotsiris, S. G.; 

Drewello, T., The Journal of Physical Chemistry A 2006, 110 (18), 5967-5972. 

60. Cohen, L.; Gusev, A., Analytical and Bio analytical Chemistry 2002, 373 (7), 571-

586. 

61. Donegan, M.; Tomlinson, A.; Nair, H.; Juhasz, P., Rapid Communications in Mass 

Spectrometry 2004, 18 (17), 1885-1888. 

62. McCombie, G.; Knochenmuss, R., Analytical Chemistry 2004, 76 (17), 4990-4997. 



Introduction 
 

39 
 

63. Smirnov, I.; Zhu, X.; Taylor, T.; Huang, Y.; Ross, P.; Papayanopoulos, I.; Martin, S.; 

Pappin, D., Analytical Chemistry 2004, 76 (10), 2958-2965. 

64. Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A., 

Analytical and bioanalytical chemistry 2003, 376 (7), 952-965. 

65. Moneti, G.; Francese, S.; Mastrobuoni, G.; Pieraccini, G.; Seraglia, R.; Valitutti, G.; 

Traldi, P., Journal of mass spectrometry : JMS 2007, 42 (1), 117-126. 

66. Smith, R.; Loo, J.; Edmonds, C.; Barinaga, C.; Udseth, H., Analytical Chemistry 

1990, 62 (9), 882-899. 

67. Snyder, A., Biochemical and Biotechnological Applications of Electrospray Ionization 

Mass Spectrometry 1996, 619, 1-20. 

68. Fenn, J.; Mann, M.; Meng, C.; Wong, S.; Whitehouse, C., Science 1989, 246 (4926), 

64-71. 

69. Manisali, I.; Chen, D.; Schneider, B., Trac-Trends in Analytical Chemistry 2006, 25 

(3), 243-256. 

70. Pramanik, B.; Bartner, P.; Mirza, U.; Liu, Y.; Ganguly, A., Journal of Mass 

Spectrometry 1998, 33 (10), 911-920. 

71. Yamashita, M.; Fenn, J., Journal of Physical Chemistry 1984, 88 (20), 4451-4459. 

72. Yamashita, M.; Fenn, J., Journal of Physical Chemistry 1984, 88 (20), 4671-4675. 

73. Whitehouse, C.; Dreyer, R.; Yamashita, M.; Fenn, J., Analytical Chemistry 1985, 57 

(3), 675-679. 

74. Smith, R.; Barinaga, C.; Udseth, H., Analytical Chemistry 1988, 60 (18), 1948-1952. 

75. Smith, R.; Olivares, J.; Nguyen, N.; Udseth, H., Analytical Chemistry 1988, 60 (5), 

436-441. 

76. Vanberkel, G.; Glish, G.; Mcluckey, S., Analytical Chemistry 1990, 62 (13), 1284-

1295. 

77. Fenn, J. B., Journal of Biomolecular Techniques 2002, 13 (3), 18. 

78. Dole, M.; Mack, L. L.; Hines, R. L.; Mobley, R. C.; Ferguson, L. D.; Alice, M. B., The 

Journal of Chemical Physics 1968, 49 (5), 10. 

79. Mack, L. L.; Kralik, P.; Rheude, A.; Dole, M., The Journal of Chemical Physics 1970, 

52 (10), 10. 



Introduction 
 

40 
 

80. Peters, J. M. H., European Journal of Physics 1980, 1 (3), 4. 

81. Iribarne, J.; Thomson, B., Journal of Chemical Physics 1976, 64 (6), 2287-2294. 

82. Thomson, B.; Iribarne, J., Journal of Chemical Physics 1979, 71 (11), 4451-4463. 

83. Fenn, J., Journal of the American Society for Mass Spectrometry 1993, 4 (7), 524-

535. 

84. Kebarle, P., Journal of Mass Spectrometry 2000, 35 (7), 804-817. 

85. de la Mora, J., Analytica Chimica Acta 2000, 406 (1), 93-104. 

86. Wang, G.; Cole, R., Analytica Chimica Acta 2000, 406 (1), 53-65. 

87. Gamero-Castano, M.; de la Mora, J., Analytica Chimica Acta 2000, 406 (1), 67-91. 

88. Blades, A.; Ikonomou, M.; Kebarle, P., Analytical Chemistry 1991, 63 (19), 2109-

2114. 

89. Wilson, S.; Wu, Y., Journal of the American Society for Mass Spectrometry 1993, 4 

(7), 596-603. 

90. Wilson, S.; Wu, Y., Journal of the Chemical Society-Chemical Communications 

1993, (9), 784-786. 

91. Wilson, S.; Wu, Y., Journal of the American Chemical Society 1993, 115 (22), 

10334-10337. 

92. Dupont, A.; Gisselbrecht, J.; Leize, E.; Wagner, L.; Vandorsselaer, A., Tetrahedron 

Letters 1994, 35 (33), 6083-6086. 

93. Paul, W., Angewandte Chemie-International Edition in English 1990, 29 (7), 739-

748. 

94. March, R., Journal of Mass Spectrometry 1997, 32 (4), 351-369. 

95. Stafford, G.; Kelley, P.; Syka, J.; Reynolds, W.; Todd, J., International Journal of 

Mass Spectrometry and Ion Processes 1984, 60 (SEP), 85-98. 

 



Experimental 
 

41 
 

Chapter 2: Experimental 

 

Sample Preparation 

For the majority of the MALDI-MS and all of the ESI-MS experiments, solutions of the 

samples were prepared. To decrease the risk of contamination a clean glass pipette was 

used to measure out each individual compound, which was disposed of after use. The 

samples were weighed using a Precisa Gravimetrics AG Precisa 125 weighing balance. 1ml, 

200µl and 20µl Gilson pipettes and the corresponding tips were used to measure 

solvents/solutions. A 10µl Barky µltipette was used for pipetting solutions onto the MALDI 

target slide. Each tip was used only once. 

Solutions were thoroughly dissolved via vibrations created by a Fisherbrand Whirlimixer. 

For solid state LDI/MALDI-MS, samples were ground into finer particles using a marble 

pester and mortar. Double sided tape was used to attach the powders to the target slide. For 

solid state MALDI-MS, DCTB and the sample were weighed prior to being ground, and were 

ground together to ensure that the DCTB and sample were evenly dispersed. It was vital to 

ensure no loose powder remained on the target plate, as this would disturb the vacuum 

inside the source or result in contamination of the ion source with sample material. 

Therefore, the target plate was placed in an air stream prior to analysis in order to remove 

material that was only loosely attached. 

 

Common Samples/Solvents 

The samples and solvents used most frequently are listed below with supplier and purity 

information. Information on other samples is mentioned in the relevant chapters. 

Sample Supplier Purity/Grade 

C60 Term-USA 99.5% 

C70 Southern Chemical Group, LLC 98% 

C84 Laboratory stock Not known 

Fullerene Mixture Laboratory stock Not known 

DCTB Fluka (Sigma-Aldrich) 99%, HPLC grade 
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Toluene Fisher Chemicals 99%, Laboratory reagent grade 

Dichloromethane Fisher Chemicals 99.8%, HPLC grade 

Methanol Acros Organics 99.9% 

Methanol Fisher Chemicals 99.99%, HPLC grade 

Water Fisher Chemicals HPLC grade 

Table 2.1: Information on mostly used samples/solvents 

 

MALDI 

Bruker Ultraflex II 

The MALDI-ToF could be operated in 6 modes –  

Positive-ion or negative-ion mode with Reflectron analysis 

Positive-ion or negative-ion mode with Linear analysis 

Positive-ion or negative-ion mode LIFT 

The Ultraflex II was supplied with several generic methods that had been optimised for 

standard use, mainly for large molecular weight polymers and proteins. Due to the lack of 

specific fullerene/low mass methods, the standard methods optimised for fairly low m/z 

ranges were further optimised to produce fullerene signals with a good resolution and 

accurate isotopic pattern.  

For the recording of “normal” mass spectra and of LIFT mass spectra (MS/MS experiments 

which have been discussed in detail in the introduction) the optimised instrumental 

parameters are listed below separately. 

Parameters altered included: 

“IS1”, Ion Source 1, is the potential applied to the target plate, P1. 

“IS2”, Ion Source 2, is the potential applied to P2. 

“Lens” is the voltage applied to the lens plate located directly after P2. 

“Ref1” and “Ref2” refer to the reflectron when reflectron analysis is used. 

“LIFT1” and “LIFT2” refer to the LIFT optics. 

PIE, Pulsed Ion Extraction, is the time a sharp pulse is applied to P2. 
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P and N refer to positive-ion and negative-ion mode; L and R refer to linear and reflectron 

detection respectively. 

Method IS1 / kV IS2 / kV Lens / kV Ref1 / kV Ref2 / kV PIE / ns 

PR 25 21.3 9 26.3 13.8 40 

PL 25 23.8 6.5 - - 40 

NR 20 17 7 21 11 20 

NL 20 19 5.4 - - 20 

Table 2.2: Instrument parameters of the Bruker Ultraflex II (“normal” mass spectra) 

 

The LIFT methods are optimised by the manufacturer and internally calibrated. The 

parameters cannot be changed without invalidating the calibration. 

 

IS1 / kV IS2 / kV Lens / 
kV 

Ref1 / kV Ref2 / kV LIFT1 / 
kV 

LIFT2 / 
kV 

PIE / ns 

8 7.2 3.6 29.5 13.85 19 3.80 0 

Table 2.3: Instrument parameters for the LIFT methods (positive and negative ions) on the 

Bruker Ultraflex II 

 

The laser parameters are identical between the “normal” methods and the LIFT methods 

and are as follows: 

 Variables Normal Methods LIFT methods 

 Offset 66% 66% 

Laser attenuator Range 15% 20% 

 Set 3_medium 4_large 

 Offset 1% 1% 

Laser Focus: Range 98% 98% 

 Value 35% 16% 

Table 2.4: Laser parameters for the Bruker Ultraflex II 

This means that for every group of spectra obtained, the only variable in the laser is the % 

power. 
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The offset and range in the laser attenuator section refer to objects, for example mirrors, in 

the path of the laser, which can increase or decrease the amount of laser light getting 

through to the sample. 

The target plate to which samples are applied has 384 individual target spots arranged in 16 

rows and 24 columns. The rows are lettered A to P and the columns are arranged 1 - 24; a 

photo is shown below: 

 

Figure 2.1: Photo of the MALDI slide 

The standard plate is the MTP 384 target plate ground steel T F. 

Made of stainless steel, it has to be mounted in a holder prior to insertion into the machine. 

 

ESI 

esquire2000 

The sample solution can be introduced to the esquire2000 in two different ways. The first 

way involves an automated sampling system, which allows for fast throughput yet has 

limited access to the many variables that can be changed. The second option is manual 

injection, which is more time consuming but allows for a greater control and real time 

optimisation of the method. 

Certain parameters of the mass spectrometer remained constant whether the automated 

sampler or manual injection was used and these are listed below. The parameters are 

separated according to the tab (left column) under which they are found in the software 

which controls the esquire2000: 
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Mode Save Spectra 

Scan Mode 

Threshold 

Divert Valve 

Yes 

Normal 

1000 

To Source 

Tune Nebulae 

Dry Gas 

Trap Drive Level 

Optimise 

10.0 phi 

5.0 l/min 

100% 

Normal 

Optimise Smart Ramp 

Ramp Range 

Adapt Scan Range 

Averages 

Capillary 

-4500.0 to -1500.0 V 

Yes 

1 

Polarity/Spectra Link Edit 

ICC 

Target 

Max. Ace Time 

Averages 

Yes 

Yes 

20000 

200.00 ms 

7 

Table 2.5: Parameters for the Bruker esquire2000 

When using the autosampler, pre-set methods have to be used which vary: polarity, 

compound stability (at set values between 20 and 100%) and the mass optimization range 

(in ranges of 500 m/z, for example: m/z 0 - 500, m/z 500 – 1000). The drying gas 

temperature was usually set at 300ºC. Another pre-requisite of these methods was that the 

sample had to be dissolved in 80:20 v/v acetonitrile:water. 

When using the manual injection, the main variables altered were as follows: 

Polarity Positive or Negative 

Dry Temperature (temperature of the drying gas) Between 100 and 300ºC 

Target Mass (enhanced sensitivity for a certain m/z) Chosen m/z between 1 and 2200 

Scan (selected m/z range to scan) Between m/z 1 and 2200 

Compound Stability (source voltage) Between 0 and 1000% 

Table 2.6: Variables on the Bruker esquire2000 
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The option of using solvents other than acetonitrile and water was another reason that 

manual injection was preferable, as the fullerenes and related compounds analysed here 

dissolve preferably in non-polar solvents. With ESI some solvents cannot be used, for 

example dichloromethane cannot be used alone as it is too volatile and no signal is 

produced, however, if mixed with methanol the signal improves. Toluene, the primary 

solvent for the fullerenes, is another solvent which cannot be used, due to its non-polar 

nature. Another factor for consideration of solvent choice is that the solvent should not erode 

parts of the equipment, such as the PTFE tubing that transfers the sample from the injection 

needle to the ESI needle. 

 



Chapter 3 
 

47 
 

Chapter 3: Study of Novel Fullerene Derivatives 

 

Introduction 

Open Cage Fullerenes 

Fullerenes can be derivatised in many ways as explained in the introduction. One 

derivatisation of interest involves creating an orifice within the fullerene shell by introducing 

new atoms to the structure, such as nitrogen, oxygen and sulphur. These fullerene 

derivatives are called Open-Cage Fullerenes (OCFs). 

Open-cage fullerenes are potentially interesting because they can be used to encapsulate 

small atoms and compounds within the cage structure. They are of interest as they resemble 

hemicarplexes, a host-guest complex where the host molecule has a small portal within its 

structure, which enables entry of the guest molecule. Hemicarplexes have several possible 

uses ranging from medicinal purposes to catalysts
1
. Medicinal functions could include the 

time release of drugs, or the entrapment of salts of radioactive materials to help with 

radiation diagnosis or therapy. 

The environment within these hemicarplexes is totally unique. They can be used to provide 

very selective reaction sites, and as such can act as catalysts, where only compounds that 

are present within the complex would react. Another use would be as transport mechanisms 

across membranes – if the host can insert itself into a membrane it can easily trap and then 

release the guest across the membrane. The guests within the hosts are protected from the 

outside world, as they usually cannot escape without the escape being initiated by, for 

instance, higher temperatures or electrically. 

 

The theoretical applications of OCFs are similar to those mentioned for hemicarplexes, and 

they have also been considered as a possible means of hydrogen storage. Computer 

modelling of H2 within the C60 cage has shown that encapsulation should be possible, and 

that the H2 would be unhindered enough to be able to rotate freely inside the cage, with 

negligible distortion of the fullerene cage
2
. 
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The first OCF was created in 1995 by Wudl et al
3
. The reaction of C60 with azides affords 

[5,6]azafulleroids, in which a C-C bond is cleaved and the C=C bonds adjacent to the 

nitrogen atom are susceptible to the formation of bisazafulleroids. 

The orifice on this first OCF consisted of 11 members and has ketolactam functionality:  

 

Figure 3.1: First OCF created 

The creation of this OCF is fairly straightforward, with N-methoxyethoxymethyl(MEM)-

substituted [5,6]azafulleroid being dissolved in 1,2-dichlorobenzene and subjected to a light 

source for 3 hours at between 25 and 30ºC. 

As there is an obvious potential for these molecules to entrap molecules easily through the 

orifice, attempts were made to increase the size of the orifice. It was assumed that a larger 

orifice would increase the ease of entrapment. 

The energy barriers to the helium entry and exit into a 13-membered ring orifice OCF were 

calculated and compared to an OCF with a smaller orifice. It was easier for the OCF with the 

larger orifice to encapsulate the helium
4
. 

A 12-membered ring orifice OCF was formed by reacting C60 with 4,6-dimethyl-1,2,3-triazine, 

in o-dichlorobenzene for 24 hours at 180ºC. This formed two products – an 

azacyclohexadiene-fused derivative and an OCF with an 8-membered ring orifice. This 

orifice was enlarged to 12 members by simply leaving the compound dissolved in CS2, 

exposed to air and room light for one hour. The reaction involved oxidative cleavage of the 

double bond leading to the larger orifice
5
. 

A 12-membered ring orifice OCF without organic addends on the rim was first created in 

2004 by G. C. Vougioukalakis et al by creating a 12-membered ring orifice OCF with an N-

MEM protective group attached, which was removed by heating in a degassed ODCB 

solution at 150°C in the presence of p-toluenesulfonic acid monohydrate
6
. 

13-membered ring orifice OCFs were developed by enlarging existing OCFs through 

different reaction stages. To start, an 8-membered ring orifice OCF was created by reacting 
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C60 with a 1,2,4-triazine derivative in o-dichlorobenzene for 17 hours at 180ºC. 

Photochemical oxidation of this 8-membered ring orifice OCF gave two products – a 10-

membered and a 12-membered ring orifice OCF. Interestingly, the same group observed 

that reacting C60 with phthalazine by two different methods - one solid state with a high-

speed vibration milling technique, the other solution state; resulted in production of a C60 

dimer with the high-speed vibration milling technique and an OCF using a one-pot synthetic 

reaction
7
. 

The 12-membered ring orifice OCF was then enlarged to a 13-membered ring orifice OCF 

via sulphur insertion into an activated C-C bond
8
. 

Using the original 11-membered ring orifice OCF created by Wudl “et al”. 15-membered ring 

orifice OCFs have been developed using various phenyl hydrazine derivatives, in a fairly 

straightforward one pot synthesis. The different functional groups present from the various 

phenyl hydrazine derivatives allow for further regioselective reaction to create new OCFs
9
. 

The synthesis of ten 16-membered ring orifice OCFs has been reported by our collaborators 

on this project
10

. Two isomeric 12-membered ring orifice OCFs were reacted with phenyl 

hydrazine, p-Br-phenylhydrazine, p-MeO-phenylhydrazine, diphenylhydrazine and 

benzophenone hydrazone, to create the ten different 16-membered ring orifice OCFs. The 

reaction times for the reactions with the phenylhydrazine derivatives varied between 2 and 9 

hours, and were performed either at room temperature or at 60ºC. For the reaction with 

benzophenone hydrazone, the reaction was performed at 100ºC for 18 hours. 

With synthesis of OCFs with large orifices possible, encapsulation of various small 

molecules has been attempted. 

The initial attempt to trap H2 and He gases within an OCF resulted in yields of the trapped 

gases of 1.5% for He and 5% for H2
11

. 

Entrapment of the gases involves fairly forceful conditions. For He encapsulation it involved 

heating the OCF as a powder at around 300ºC, with a He pressure of 475 atm for 7.5 hours. 

For H2, the conditions involved heating at 400ºC for 48 hours, under a H2 pressure of 100 

atm. 

The OCF in question was synthesized by reacting C60 with diazidobutadiene at 55ºC under 

argon for 4 days in o-dichlorobenzene. It had an 14-membered elliptical ring orifice
12

.  
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Unfortunately it was also discovered that these gases readily escaped at elevated 

temperatures of around 150ºC. 

It was because of this that steps have been devised to perform “molecular surgery” - a 

procedure involving several steps which would allow the capture and retention of various 

small molecules. The initial step is to create the orifice within the cage structure. The second 

step is to trap the small molecule or atom, and the third step is to re-heal the cage structure, 

back to a pure fullerene, with the small molecule trapped inside. 

So with the success of producing OCFs with large enough orifices to incorporate a variety of 

small molecules, the next step was to increase the encapsulation. 

A 13-membered ring orifice OCF was treated with a H2 pressure of 800 atm at 200ºC for 8 

hours, which produced H2@OCF in a much greater yield than previously seen
13

. 
1
H-NMR 

verified the structure to be H2@OCF. HPLC of the H2@OCF and the empty OCF showed no 

difference, which also suggests the H2 has not attached in an exohedral manner to the 

outside of the OCF. 

MALDI was performed on the H2@OCF complex, and as well as molecular ion peaks for 

H2@OCF, and the empty OCF, there was also a peak at m/z 722 assigned to H2@C60. It 

appeared that the laser rehealed the OCF of the H2@OCF complex to its original fullerene 

form, trapping the H2 inside. To check that it was not exohedral C60H2 that had been formed, 

MALDI was performed on a sample of exohedral C60H2 under the same conditions, which 

produced m/z 720 and 721 but the molecular ion of C60H2 at m/z 722 was not observed. 

Using various 19-membered ring orifice OCFs, H2O was encapsulated
14

. The original 19-

membered ring orifice OCF was created by enlarging a previous OCF through the reaction 

with o-phenyldiamene, pyridine and PhCl at 80ºC. The various side groups on the 19-

membered ring orifice OCF could be altered through various reactions, and so the water 

molecule encapsulation was tested on 3 of these variants. And although all three could 

encapsulate the water molecule, the various side groups appeared to affect the ability of the 

OCF to encapsulate the water. 

A yield of 83% H2 encapsulation was achieved using an OCF with a 16-membered ring 

orifice, with an H2 pressure of 13.5 MPa at 100ºC. To test the effect of temperature and 

pressure on the encapsulation the pressure of the H2 ranged from 0.6 – 13.5 MPa (≈6 - 133 
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atm), and the temperature varied between 50 and 150ºC. These two variables had a great 

effect on the efficiency of the encapsulation
15

. 

Carbon monoxide is another compound that has been inserted into an OCF. The 

encapsulation of CO was produced by dissolving a mixture of H2O@OCF and the empty 

OCF in 1,1,2,2-tetrachloroethane and heating under a CO pressure of 9 MPa (≈89 atm). 

The resulting CO@OCF complex was confirmed by 
13

C-NMR, ESI mass spectrometry and 

IR spectroscopy. The gradual leakage of CO from the OCF resulted in the spontaneous 

formation of H2O@OCF, which suggests that H2O somehow interacts more strongly within 

the cage of the OCF
16

. 

The position of the compound within the cage is another matter of interest. X-ray diffraction 

patterns taken of an OCF with and without an encapsulated H2 molecule demonstrated that 

the H2 sits almost exactly in the centre of the internal dimensions of the OCF
17

.  

With increasing yields of encapsulation of the molecules of interest, the next step was to 

perform “molecular surgery” to close the orifice, whilst avoiding loss of the encapsulated 

molecule. Obviously the encapsulated molecules tend to exit the OCF when the temperature 

exceeds 150ºC, so the “surgery” must be performed at lower temperatures. 

One example is of H2 encapsulated in a 13-membered ring orifice OCF
18

. With the H2 

encapsulated a series of reactions were performed to close the cage. The first was the 

oxidation of a sulphide unit on the orifice, which was performed at room temperature. The 

second reaction was the removal of the SO unit by a photochemical reaction, also at room 

temperature. The third reaction was to reductively couple two carbonyl groups on the rim 

using Ti(0) at 80ºC. At this stage, the orifice had been reduced to 8 members. The final step 

was to heat at 340ºC under vacuum for 2 hours, which led to the creation of H2@C60. 

As the orifice had been reduced in size, the application of such a high temperature meant 

that very little H2 escaped. 

H2@C60 was found to be almost as stable as C60 and even when it was heated for 10 

minutes at 500ºC, the H2 did not escape. 

Using methods for the verification of the entrapment, other than mass spectrometry is vital, 

when the fact that laser ablation of various fullerene derivatives can also form C59N, which 

has essentially the same m/z as H2@C60 is taken into consideration. 
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To differentiate between H2@C60, or even C60H2 and C59N would require an extremely high 

resolution. C59N was found to form when fullerene derivatives, which had an organic ligand 

bound to the carbon cage through a nitrogen atom, were analysed with positive-ion mode 

LDI, with an elevated laser power
19

. The nitrogen atom linkage replaced a single C-C bond 

(represented as a dashed line in figure 3.2, below) shared by a 6-membered and 5-

membered ring on the fullerene cage: 

 

Figure 3.2: Nitrogen atom linkage replacing a C-C bond 

Of the fullerene derivatives with these organic ligands ablated with a high laser power, all 

formed both C60 and C59N as fragments, and two of these formed C60 in preference to C59N. 

Using a high resolution mass spectrometer, it was proved that m/z 722 was composed 

primarily of 
12

C59
14

N, with a very minor contribution from 
12

C58
13

C2. 
12

C60H2 was not present. 

(C59N)2 was also studied, and CID of the C59N monomer unit demonstrated that the nitrogen 

is incorporated into the cage, as the resultant fragments did not contain nitrogen. The C-N 

unit was lost first, followed by the typical fragmentation pattern of C2 units lost by C60.  

C60N2MEM2 was also studied and showed similar behaviour: 

 

Figure 3.3: Structure of C60N2MEM2 
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Experimental 

All samples were synthesized by Manolis Tzirakis and Professor Mike Orfanopoulos at the 

University of Crete, and were used as received. 

 

Open-Cage Fullerenes: 

  

1.1 – C68H9O3NS 1.2 – C68H9O3N 

 

 

1.3 -  C70H17N3O4 1.4 -  C64H9NO4S2 

 
 

1.5 – C61H2O2NSCl 1.6 – C67H7O4NS 
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2.1 – C86H22N4O2 2.2 -  C86H22N4O2 

  

2.3 -  C86H21N4O2Br 2.4 -  C86H21N4O2Br 

  

2.5 -  C87H24N4O3 2.6 -  C87H24N4O3 
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Table 3.1: Structures of the OCFs 

  

  

2.7 -  C92H26N4O2 2.8 -  C92H26N4O2 

  

2.9 -  C93H26N4O2 2.10 -  C93H26N4O2 

 

 

2.11 -  C60HNO2S2 2.12 -  C77H21N3O4S 
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Other Fullerene Derivatives 

Other novel fullerene derivatives synthesized included the formal exchange of a carbon for a 

nitrogen atom in the sphere and then addition of a ligand: 

 

N

Cl

 

1.7 – C66H7NO 1.8 - C65H4ClN 

N

H
H

 

N

H

H
H

 

3.3 – C65H11N 3.4 - C64H9N 

N

H

 

N

H

H

 

3.5 - C65H9N 3.6 - C65H11N 

N

O

 

 

3.7 - C63H3NO 4.7 – C68H8 

Table 3.2: Structures of monoligated azafullerenes 

Note that compound 4.7 is displayed here although it does not belong to the class of 

monoligated azafullerenes. However, compound 4.7 is a cycloaddition [60] fullerene 
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derivative which was also synthesised in collaboration by the Orfanopoulos group as an 

important target molecule for our silver cation experiments (chapter 8). 

Formally replacing the nitrogen atom in compounds 1.7, 1.8, 3.3 – 3.7 leads to [60] fullerene 

derivatives with one hydrogen and one organic ligand attached to the sphere: 

 

 

 

3.8 – C67H8 3.9 – C67H7NO2 

H

Br  

H

CH3 

3.10 – C67H7Br 3.11 – C68H10 

H

OH3CO  

H

OCH3  

3.12 – C69H10O2 3.13 – C68H10O 

H

NO2
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H

CH3

O

 

H

O

 

3.14 – C68H10O 3.15 – C67H8O 

H

O

OCH3  

H

O

Br  

4.1 – C68H10O2 4.2 – C67H7Obr 

H

O

NO2 

H

CH3

CH3

 

4.3 – C67H7NO3 4.4 – C69H12 

H

S

 

H

O O

CH3

 

4.5 – C67H8S 4.6 – C69H10O2 
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D(H)

 

D(H)

O

 

5.1 – C67H7D 5.2 – C67H7DO 

H

O

 

H

H

 

5.3 – C72H18O 5.4 – C60H2 

H

CH3

O CH3

 

H

O

 

5.5 – C64H10O 6.1 – C67H6O 

H

O

OCH3  

H

O

CH3 

6.2 – C68H8O2 6.3 – C68H8O 

In compound 5.4, the organic ligand was replaced by another hydrogen, leading to C60H2 
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H

O  

H

O  

6.5 - C65H10O 6.6 - C65H10O 

H
O

 

H

 

7.1 - C67H12O 7.2 - C64H10 

H

 

H

O  

7.3 - C68H10 7.4 - C64H6O 

H

O  

H

O

O

H

 

7.5 - C70H10O 7.6 - C68H6O2 

H

N H

O  

H

O
 

7.7 - C63H7NO 7.8 - C68H8O 

H

O  

H

O  

8.1 - C70H12O 8.2 - C68H16O 
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H

 

H

O
 

8.3 - C67H16 8.4 - C64H6O 

H

OH

OH
 

 

H

OH
 

8.5 - C62H6O2 8.6 - C67H8O 

H

OH
 

H

OH
 

8.7 - C62H6O 8.8 - C63H8O 

H

OH
 

H

S
 

8.9 - C61H4O 8.10 - C64H8S 

H

O
 

H

O

O

 

8.11 - C64H8O 8.12 - C64H8O2 
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H

O

O
O

O

O
O

 

 

8.13 - C72H24O6  

Table 3.3: Structures of the remaining fullerene derivatives 

The numbering system is of no real importance and is related to the order in which sets of 

compounds were received. As a result there may appear to be “missing samples”: samples 

3.1 and 3.2 are purified versions of samples 2.5 and 2.8 respectively. Sample 6.4 was the 

same as sample 3.8. Hence, these samples are not listed above. 

 

For all MALDI experiments, DCTB was used as the matrix. 

A fullerene mixture was used to calibrate the Bruker Ultraflex. It consisted mainly of C60 and 

C70, with small amounts of C84, C90, C96. 

Sample and matrix were both dissolved in toluene, individually. DCTB was prepared in a 10 

mg/ml solution. 

The sample and matrix were mixed in an approximately 1:50 molar ratio. As the amount of 

DCTB solution to add was based on what the molecular weight of the sample was thought to 

be, if a sample had not been synthesized as expected, then the molecular ratio of 

DCTB:sample would not be 50:1. A typical sample preparation is listed below: 

Sample 5.3, R.M.M 898 Da, was dissolved in an approximately* 1 mg/ml concentration 

solution, and thoroughly dissolved using a Whirlimixer. (*Due to the very small amounts of 

sample received, less than a milligram, weighing the sample would not have been as 

accurate as for larger amounts.) 

10µl of the 1 mg/ml solution of sample 5.3, was mixed with 14 µl of a 10 mg/ml DCTB 

solution, thoroughly mixed with the Whirlimixer, and then applied to the MALDI slide using a 

1-10µl Barky µltipipette. Typically between 3 and 5µl was applied per target spot. The 

solution was applied a drop at a time, which was allowed to dry between each application. 

The drying was assisted by a MALDI IV slide drying machine, which blew a stream of room 
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temperature air over the surface of the target slide. The calibration mixture was applied in 

close proximity to the sample spots. Machine calibration occurred at the start of the 

experiment and after every two samples that had been analysed. A final calibration was 

performed on the spectra after acquisition, as part of the processing. 

The spectra were saved and processed collectively after data acquisition had finished. 

Processing included the final calibration, and the production of a mass list which labelled all 

the peaks with their m/z value to at least 3 decimal places. 

For collision induced dissociation experiments, LIFT mode was employed on the Bruker 

Ultraflex II. Samples were prepared as normal. 
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Results 

 

MALDI Analysis 

As a first step the identity of the synthetic samples was checked by applying DCTB-MALDI 

in both ion modes.  The majority of the compounds had been synthesized as expected and a 

summary is presented in the table below. The experiments provided also evidence of the 

applicability of DCTB-MALDI with open cage fullerenes, as a means to generate molecular 

ions with only little fragmentation. In general, molecular ion peaks were seen using both ion 

modes. Negative-ion mode generally produced cleaner spectra, with the intensity of the 

molecular ion peak being more abundant than that of any fragmentation. Most negative-ion 

spectra showed reduced fragmentation. The possible oxidation of the samples was also 

better seen for negative ions. If both polarities are listed in the table below, then the 

molecular ion was clearly present and mostly abundant for both, however, the polarity listed 

first produced spectra of a slightly higher quality. Few samples were only successfully 

analysed in one ion-mode and if so, this tended to be in negative-ion mode. 

Sample Expected R.M.M Present in Spectra Best Polarity 

1.1 919 Yes Negative and Positive 

1.2 887 Yes Negative 

1.3 963 No - 

1.4 919 No - 

1.5 847.5 (Cl) Yes Positive and Negative 

1.6 921 Yes Negative 

1.7 829 Yes Negative 

1.8 833.5 (Cl) Yes Positive and Negative 

2.1 1142 Yes Negative 

2.2 1142 Yes Negative 

2.3 1221 (Br) Yes Negative 

2.4 1221 (Br) Yes Negative 

2.5 1172 Yes Negative and Positive 
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2.6 1172 Yes Negative 

2.7 1218 Yes Positive and Negative 

2.8 1218 Yes Negative and Positive 

2.9 1230 Yes Negative 

2.10 1230 Yes Negative 

2.11 831 Yes Negative 

2.12 1083 Yes Negative 

3.3 805 No - 

3.4 791 No - 

3.5 803 No - 

3.6 805 No - 

3.7 789 Yes Positive and Negative 

3.8 812 Yes Negative and Positive 

3.9 857 Yes Negative and Positive 

3.10 891 Yes Negative and Positive 

3.11 826 Yes Negative and Positive 

3.12 870 Yes Negative and Positive 

3.13 842 Yes Negative and Positive 

3.14 842 Yes Negative and Positive 

3.15 828 Yes Negative and Positive 

4.1 858 Yes Negative and Positive 

4.2 907 Yes Negative and Positive 

4.3 873 Yes Negative and Positive 

4.4 840 No - 

4.5 844 Yes Negative and Positive 

4.6 870 Yes Negative 

4.7 824 Yes Positive and Negative 

5.1 813 (D) Yes Negative and Positive 

5.2 829 (D) Yes Negative and Positive 
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5.3 898 Yes Negative and Positive 

5.4 722 Yes Positive and Negative 

5.5 794 Yes Negative and Positive 

6.1 826 Yes Negative and Positive 

6.2 856 Yes Negative 

6.3 840 Yes Negative 

6.5 806 Yes Negative and Positive 

6.6 806 Yes Negative and Positive 

7.1 832 Yes Negative and Positive 

7.2 778 Yes Negative and Positive 

7.3 826 Yes Negative and Positive 

7.4 790 Yes Negative and Positive 

7.5 866 Yes Negative and Positive 

7.6 854 Yes Negative and Positive 

7.7 793 Yes Negative and Positive 

7.8 840 Yes Negative and Positive 

8.1 868 Yes Negative and Positive 

8.2 848 Yes Negative and Positive 

8.3 820 Yes Negative and Positive 

8.4 790 Yes Negative and Positive 

8.5 782 Yes Negative and Positive 

8.6 828 Yes Negative 

8.7 766 Yes Negative and Positive 

8.8 780 Yes Negative 

8.9 752 Yes Negative and Positive 

8.10 808 No - 

8.11 792 Yes Negative and Positive 

8.12 808 Yes Negative and Positive 

8.13 984 Yes Negative and Positive 

Table 3.4: Results of DCTB-MALDI analysis of all samples in both ion modes 
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With the exception of samples 1.3, 1.4, 3.3, 3.4, 3.5, 3.6, 4.4 and 8.10, all samples produced 

molecular ion peaks at the expected m/z values.  

The samples were not purified prior to analysis, as was evidenced by the appearance of a 

peak at m/z 1034 in the spectra of the open cage fullerenes in set 2 (samples labelled 2.x) – 

this was the mass of the precursor molecule in the synthesis. 

For compounds that contained an element with distinctive isotopes, the isotopic pattern was 

very useful in showing that synthesis had been successful through comparison with the 

calculated pattern. 

 

A few representative MALDI mass spectra are displayed and discussed below. The 

remaining spectra can be found in the appendix. 

 

1.2 – C68H9O3N 

 

Figure 3.4: Structure and negative-ion mode MALDI spectrum of 1.2 

The molecular ion peak is the most intense in the spectrum, at m/z 887.2. The peak at m/z 

249.7 is DCTB
-
, and the peak at m/z 1138.3 is [C68H9O3N-DCTB-H]

-
. Some oxidation of the 

molecular ion is evident. The spectrum was obtained in negative-ion mode with linear 

detection. 
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1.5 – C61H2O2NSCl 

 

Figure 3.5: Structure and negative-ion mode MALDI spectrum of 1.5 

 

In this spectrum the DCTB
-
 peak at m/z 249.7 is the most intense, followed by the molecular 

ion at m/z 847.0. The spectrum was obtained in negative-ion mode, with linear detection.  By 

enlarging the molecular ion region, the isotopic pattern is clearly displayed. A simulated 

pattern of the isotopic pattern, created by Bruker software – Bruker Daltonics IsotopePattern, 

shows the excellent match with the measured isotopic pattern, further confirmation that the 

empirical formula is correct and that the true molecular ion had been obtained, as opposed 

to the deprotonated (negative-ion mode) or the protonated species (positive-ion mode). 

 

 

Figure 3.6: Enhanced molecular ion region of 1.5, left, and simulated mass spectrum of 1.5, 

right 
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2.3 -  C86H21N4O2Br 

 

Figure 3.7: Structure and negative-ion mode spectrum of 2.3 

 

In this negative-ion mode spectrum obtained with linear detection, the molecular ion peak at 

m/z 1222.0, is the most intense. DCTB
-
 is also present. Examination of the isotopic pattern 

demonstrates the presence of bromine, and matches the simulated (Bruker software) 

isotopic pattern.  

 

 

Figure 3.8: Enhanced molecular ion region of 2.3, left, and simulated mass spectrum of 2.3, 

right 

There is a slight hydrogen loss evident, as can be observed by the appearance of a peak at 

m/z 1219. This could also explain the slight enhancement of the peak at m/z 1221, in 

relation to the peak at m/z 1220. 
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2.12 -  C77H21N3O4S 

 

Figure 3.9: Structure and negative-ion mode MALDI spectrum of 2.12 

 

The molecular ion of sample 2.12, at m/z 1083.1, is the most prominent peak in the 

spectrum. DCTB
-
 is also present in this negative-ion mode spectrum. Two peaks, spaced 

196 mass units either side of the molecular ion peak, suggest that this sample had an 

additional –N-N=CPh2 group attached in very small quantities and that the –N-N=CPh2 is 

easily lost from the open-cage fullerene. Oxidation is evident for all of these compounds, 

through the appearance of additional signals at the high mass end spaced by 16 mass units 

(additional oxygen atoms) These were also observed for the smaller peaks either side of the 

molecular ion. This suggests that these compounds were present in the sample, and not 

produced during the experiment. 

 
  



Chapter 3 
 

71 
 

3.10 - C67H7Br 

H

Br  

Figure 3.10: Structure and negative-ion mode MALDI spectrum of 3.10 

 

In this negative-ion mode spectrum, detected with the reflectron detector, the most intense 

peak is the molecular ion peak, at m/z 891.9. The C60
-
 fragment is present at m/z 720. 

DCTB
-
 is present at m/z 250.1. 

Comparison of the molecular ion peak to the simulated isotopic pattern is shown below. The 

isotopic pattern clearly demonstrates the presence of bromine and is a perfect match to the 

simulated pattern. There is a very small peak at m/z 889, which represents the loss of a 

hydrogen atom. 

 

 

Figure 3.11: Enhanced molecular ion region of 3.10, left, and simulated mass spectrum of 

3.10, right 
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5.2 - C67H7DO 

D(H)

O

 

Figure 3.12: Structure and negative-ion mode MALDI of 5.2 

 

The molecular ion is present at m/z 829.0, with DCTB
-
 at m/z 250.1, and C60

-
 at m/z 719.9. 

Enhancement of the molecular ion peak, shown below, demonstrates the isotopic pattern of 

C60DCH2OC6H5, with the dominant peak at m/z 829.065. The m/z values from 830 to 832 

represent the normal isotopic pattern of this compound. The peak at m/z 828 is from the un-

deuterated molecule as only about 70% of the product was successfully deuterated in the 

synthesis. The peak at m/z 827 is loss of either the hydrogen or deuterium. 

 

 

Figure 3.13: Enhanced molecular ion region of 5.2 
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8.13 - C72H24O6 

 

Figure 3.14: Structure and negative-ion mode MALDI of 8.13 

 

The molecular ion peak is at m/z 984.1, with prominent fragmentation in the form of C60
-
 at 

719.9, and DCTB addition (with the loss of a hydrogen from 8.13) at m/z 1233.3. Studying 

the isotopic pattern of the molecular ion from m/z 984 to 987, demonstrates the loss of one 

hydrogen atom with the peak at m/z 983. 

 

 

Figure 3.15: Enhanced molecular ion region of 8.13 
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Cage re-healing by “harsh” MALDI and direct LDI 

Activation of the compounds under study by increasing the laser fluence was used in order 

to deliberately induce fragmentation. In the case of the open cage fullerenes, it was hoped 

that the laser activation would reheal the cage back to either C60 or even C59N. 

Previous MALDI experiments with increased laser power have shown that fullerene 

derivatives with an exohedral nitrogen tend to fragment to C59N as well as C60, with C59N 

occasionally being produced in greater quantities
19

. This has interesting implications for 

experiments where helium has been trapped in an open cage fullerene which has then been 

rehealed to C60 via laser irradiation
13

. As He@C60 and C59N have almost exactly the same 

m/z, this would require an extremely high resolution and mass accuracy to distinguish 

between the two species. 

Provided that for future experiments OCF’s with an endohedral guest were available, the 

present experiments would indicate how the cage would close upon activation.  Starting with 

an open cage C60 fullerene with endohedral guest, laser treatment could trap the endohedral 

guest within a C59N cage to which the OCF has collapsed. 

The resulting cage closures applying MALDI and LDI experiments with increased laser 

fluence are described in the table below: 

OCF Positive LDI Negative LDI Positive MALDI Negative MALDI 

1.1 C59N C59N C60 C60 and C59N 

1.2 Mainly C59N C59N C59N Mainly C59N 

1.5 Mainly C59N Mainly C59N C59N Mainly C59N 

1.6 Mainly C59N Mainly C59N C59N Mainly C59N 

2.1 Mainly C59N C60 and C59N C60 and C59N C60 

2.2 Mainly C59N C60 and C59N Mainly C59N C60 

2.3 Mainly C59N C60 and C59N Mainly C60 C60 

2.4 Mainly C59N C60 and C59N C60 C60 

2.5 Mainly C59N Mainly C60 C60 C60 

2.6 Mainly C59N C60 and C59N C60 C60 

2.7 Mainly C59N C60 and C59N C60 and C59N C60 
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2.8 Mainly C59N Mainly C60 C60 and C59N C60 

2.9 Mainly C59N C60 and C59N Mainly C59N C60 

2.10 Mainly C59N Mainly C59N C60 and C59N C60 

2.11 C59N C59N Mainly C59N C59N 

2.12 C59N, C58N2 C58N2,low C59N C59N, C58N2 C59N, C58N2 

Table 3.5: Results of increased laser fluence on the OCFs 

 

The above table shows results that were obtained by activation of the sample at elevated 

laser fluences under normal operating conditions; that is neither LIFT nor CID were applied 

in these experiments (no MS/MS at this stage). 

The experiments lead to interesting observations; linking original structure with the resulting 

healed fragment; also MALDI and LDI lead to different results. For example, LDI of samples 

2.1 to 2.10 leads predominantly to the formation of C59N, while MALDI leads to C60 as the 

dominant or only fragment. 

Sample 2.12 produced an entirely unexpected result in the formation of what appeared to be 

mainly C58N2, with small amounts of C59N and even less, if any, amounts of C60. This was 

the case for both MALDI and LDI. This was not a matter of calibration, as the mass 

spectrometer was carefully calibrated in between the study of each sample, using a fullerene 

mixture located on a target spot adjacent to the sample. 

In the following the observations made when harshly activating the sample to close the open 

cage fullerene are correlated with structural features of the sample molecules.  

Samples 1.1, 1.2, 1.5, 1.6 and 2.11 behave identically, fragmenting predominantly to C59N in 

all modes, with the exception of sample 1.1 when studied with positive-ion mode MALDI. 

Studying their structure reveals similarities: all of these samples have a ring orifice with a 

maximum of 13 atoms forming the opening. Sample 1.2 has a ring orifice of 11 members, 

samples 1.1, 1.5 and 1.6, possess ring orifices of 12 members, and 2.11 has a ring orifice of 

13 members. The arrangement of heteroatoms around the rim is very similar in this group of 

compounds. Also, these samples contain only one nitrogen atom at most and therefore 

cannot induce more than one nitrogen atom into the sphere upon activation. 
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Samples 1.1, 1.2, 1.5, 1.6 and 2.11 are shown below in numerical order: 

 

1.1 

 

1.2 

 

 

1.5 

 

1.6 

 

 

2.11 

 

Table 3.6: Structures of OCFs with ring orifices containing less than 13 atoms 

 

In contrast, samples 2.1 through to 2.10 and 2.12 have ring orifices of 16 members and, 

perhaps even more importantly, the arrangement of the heteroatoms that keep the sphere 

open are arranged in a completely different manner to the first set of samples, but are very 

similar within this group. Samples 2.1 through 2.10 also behave similarly with raised laser 

fluence, fragmenting predominantly to C60 under MALDI conditions, and C59N under LDI 

conditions. 
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Samples 2.1 to 2.10 are shown below in numerical order: 

 

2.1 

 

2.2 

 

2.3 

N Ph
Py

Ph

O

O

H

HN

NH

Br  

2.4 

 

2.5 

 

2.6 

 

2.7 

 

2.8 

 

2.9 
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2.10 

  

Table 3.7: Structures of OCFs with ring orifices containing 16 members 

 

Although it cannot be predicted which products may result from the starting material, it is 

nevertheless obvious that structural elements determine the outcome of the decay.  The two 

sets of samples discussed above show within the groups that posses a similar fragmentation 

behaviour also similarities in their structures.  One must assume that the formation of C60 is 

of lower energy requirement than the production of C59N, as C60 is only formed preferentially 

when MALDI is applied. 

Sample 2.12, shown below, behaves in an entirely different fashion to the other samples. It 

has a ring orifice with 16 members, much like samples 2.1 through 2.10 and features an 

arrangement of heteroatoms at the rim which shows motifs of both the sets of samples 

studied above. Sample 2.12 does not fragment to C59N or C60, its main fragment appears to 

be C58N2. 

 

Figure 3.16: Structure of 2.12 
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The reason why sample 2.12 behaves differently from the other 16 membered ring orifice 

OCFs must be due to its structure – it is the only 16-membered ring orifice OCF with an 

additional sulfur atom present in the orifice. Obviously, the different design at the rim 

facilitates the insertion of a second nitrogen atom into the shell. 

Unfortunately, further mechanistic insight into the fragmentation cannot be obtained from the 

present experiments. Future work in the form of laser ablation experiments on differently 

structured OCFs may shed more light on the role of the atom arrangement at the rim 

influencing the formation of C60, C59N and C58N2. Computational investigations into the 

mechanism could also be helpful to enhance the understanding of the processes involved.  

 

Appendix of related experimental efforts  

 

C60:C59N formation from C60N2MEM2 and CID experiments with C60N2MEM2, C60 

and Open Cage Fullerenes 

In an earlier investigation it had been noted that C60N2MEM2 (figure 3.3) produces C59N and 

C60 when laser activated
19

. As the present instrument is more sensitive and much higher 

resolving, these experiments were conducted here in more detail for comparison 

The present experiments showed for positive-ion mode MALDI and LDI, and for negative 

ion-mode LDI, that at low laser fluence, C60N2MEM2 predominantly fragments to C59N with 

very small quantities of C60 (the intensity of the C60 peak was less than 5% of the C59N peak 

in positive-ion mode LDI). At higher laser fluences, both C59N and C60 are formed; however 

with increasing laser power the ratio of C59N:C60 falls, with both being produced in almost 

equal amounts at high laser powers (for negative-ion mode LDI, the ratio of C60:C59N is 

75:100). 

For negative-ion mode MALDI, the situation was reversed. C60 is the dominant fragment at 

low laser powers, with the amount of C59N increasing with increasing laser fluence, until 

again both were formed in almost equal amounts. 

The spectra shown below contrast the ratio of C60:C59N at low laser power (figure 3.20) and 

higher laser power (figure 3.21) for each ion mode. 
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For the higher laser power spectra the peaks are broader than and not as resolved as the 

peaks in the spectra at lower powers. This is due to the much higher internal energy of the 

parent ion, C60N2MEM2. At higher laser fluences the fragments have a wider range of 

energies compared to at lower laser fluences; therefore they will be detected over a wider 

m/z range. Even though reflectron detection is designed to prevent this, and was employed 

for the detection of the spectra below, the spread of energies is too enhanced and leads to a 

decrease in resolution. 

 

Figure 3.17:  Low laser fluence, target: C60N2MEM2 

At low laser fluence, above, it is obvious that in the negative-ion mode MALDI spectrum, 

shown bottom right, there is very little, if any C59N present. The signal at m/z 722 is most 

likely from 
13

C2
12

C58. 
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Figure 3.18: High laser fluence, target: C60N2MEM2 

Spectra were obtained at a range of laser powers. What could be observed from these is 

that the ratio of C60:C59N alters with increasing laser fluence. This can be demonstrated 

graphically, as below: 

 

Figure 3.19: Plot of C60/C59N peak intensity ratio vs. laser power for experiments in both ion 

modes, with or without a matrix (DCTB) present 
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The above graph clearly demonstrates the increase of the C60:C59N ratio for negative-ion 

and positive-ion mode LDI and MALDI with increasing laser power. The decreasing C60:C59N 

ratio is also very apparent for the negative-ion mode MALDI. 

Measurements were only taken from 15 to 30% laser power for the LDI spectra, and up to 

40% laser power for the MALDI spectra. At even higher laser powers, LDI spectra become 

saturated and the intensities of the peaks were not accurate anymore. 

Overall, the behaviour of C60N2MEM2 is similar to what has been previously reported, with 

the exception of the experiments performed in negative-ion mode LDI. 

Another interesting observation that can be made due to the enhanced resolution is that the 

already known loss of CN from the cage followed by further cage shrinkage through C2 loss, 

is accompanied by C2 losses from C59N without CN loss. The resolved pattern of the 

fragment ions shows the presence of nitrogen in fragments that were as small as C43N (for 

negative-ion mode LDI). However, CN loss is the favoured fragmentation pathway, as can 

be seen by the decreasing amounts of nitrogen containing fragments relative to the “all-

carbon” fragments. The graph below shows the ratio of the peak intensities versus the 

number of atoms remaining in the fragment ions. 

 

Figure 3.20: Plot of the ratio of N containing peaks: All C containing peaks vs. the number of 

atoms present in the fullerene fragment 

The graph illustrates that the ratio of nitrogen containing fragment peaks to “all-carbon” 

fragment peaks decreases with decreasing size. Only the initial loss of 2 atoms shows in the 



Chapter 3 
 

83 
 

case of negative-ion mode spectra an actual increase, which suggests that for the first 

fragmentation, C2 is preferentially lost. 

This graph also demonstrates how much greater the impact of direct LDI is on the extent of 

fragmentation, allowing the detection of much smaller fragments compared to the MALDI 

spectra obtained at the same laser fluence. 

The Cx-1N peaks were of too low intensity to allow their distinction from the standard isotopic 

pattern of the corresponding Cx fragments beyond the following lower mass fragment sizes:  

52 atoms for the negative-ion mode MALDI spectra, 50 atoms for the positive-ion mode 

MALDI spectra, 46 atoms for the positive-ion mode LDI spectra and 44 atoms for the 

negative-ion mode LDI spectra,. 

For this graph, no corrections were made for the contribution to the nitrogen containing peak 

from the 
13

C2
12

C(x-2) peak, as this correction would not have affected the shape of graph. 

For a second set of experiments C60N2MEM2 functioned as a model compound to test the 

experimental performance. The experimental idea was to change the standard collision gas 

argon to helium with the intention to insert helium into the open cage fullerenes (OCFs) in 

CID/Lift experiments. However, as the OCFs were available in only very low amounts, 

C60N2MEM2 was used for the initial tests. Unfortunately, when CID was performed on 

C60N2MEM2 with helium as the collision gas, a parent ion peak could not be detected to 

perform CID on and subsequently no spectra were obtained.  The LIFT method requires a 

detectable amount of ions; otherwise the experiment cannot be performed. The conditions 

for ion formation are different in CID/LIFT mode. Occasionally the peak formation/detection 

was difficult in LIFT mode and sometimes even impossible. The negative result with 

C60N2MEM2 meant that its molecular ion completely dissociated prior to the experiment. 

Often in CID experiments, a very high laser power is required to obtain sufficient amounts of 

a particular parent ion. The reason for this has to be seen in the different ion source 

conditions compared to “normal” mass spectra, for instance, the acceleration voltage is only 

8kV and cannot be changed, as this would have effects on the validation of the calibration. 

As a consequence, severe decomposition may sometimes be the result for labile starting 

ions. Since the OCFs were available in so low amounts that they could only be studied after 

prior optimisation of the CID/LIFT experiment by the C60N2MEM2 model compound, the 
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helium insertion experiments could not be conducted. “Standard” CID/Lift experiments using 

argon as collision gas were possible with the OCFs and are discussed in chapter 5 in 

comparison with metal attachment experiments using the pencil lead matrix. 

CID experiments with helium gas were, however, possible and performed with the much 

more stable C60 fullerene, for which the formation of a parent ion was abundant. However, 

the resulting fragment ions were of only weak abundances and fewer were formed 

compared to what is obtained in “normal” LDI spectra of C60. The resulting CID/LIFT spectra 

using both argon and helium as collision gases are shown below. 

 

Figure 3.21: CID spectra of C60 using either Helium or Argon gas as the collision gas 

When argon is used as the collision gas, the close up of the fragments (bottom right 

spectrum, above) verifies the standard fragmentation pattern of C60. For the use of helium as 

the collision gas, it is observed that only a small amount of fragmentation has been induced. 

It is also noteworthy that for the helium CID experiments, the laser power had to be much 

higher to induce any fragmentation. In the spectra shown above, when helium was used; the 

laser power was set at 40%, for the CID experiments with argon; the laser power was set at 

25%.  
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Conclusion 

Various fullerene derivatives have been successfully analysed using DCTB-MALDI-MS, and 

in the majority of cases unwanted fragmentation could be reduced. Negative-ion mode was 

found to produce cleaner spectra. 

Experiments with increased laser power were performed with open-cage fullerenes and 

cage re-healing was studied, leading to C60, C59N, or for the case of one of the 16-

membered ring orifices, to the formation of C58N2. 

Future research would involve the analysis of a wider range of OCF’s, to determine the 

influence of orifice size and connectivity of the atoms at the rim onto the outcome of the 

laser-induced cage re-healing process. 

A second dissociation path of C59N was established by the enhanced resolving power of the 

instrument. It was found that C2 loss can compete with the preferred CN loss, leading to 

several nitrogen containing fragment ions.  

Attempts to incorporate helium inside the open cage fullerenes by using the LIFT method on 

the Bruker Ultraflex II and re-healing them to He@C60, He@C59N or He@C58N2 were 

unsuccessful.  The required source conditions for parent ions were too harsh to allow their 

intact survival and experiments with C60 showed only minute fragmentation in collisions with 

helium.  
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Chapter 4: An Investigation into C60H2 using MALDI and LDI 

mass spectrometry 

 

Introduction 

This study was inspired by a recent comprehensive review covering the synthesis and 

characterization of hydrogenated fullerenes
1
. It was noted that C60H2, the smallest 

hydrofullerene, has been successfully characterised applying LDI
2
. In contrast, C60H36 

suffered such tremendous decomposition when studied by the softer ionisation method of 

MALDI that a characterisation was initially difficult.  

As LDI involves using the laser directly on the sample with no protective matrix, it is a lot 

more destructive than MALDI. This in turn appears to imply that C60H2 is of such a greater 

stability than C60H36 that direct laser ablation leads successfully to desorption and ionisation 

whereas even matrix assistance could not prevent the decay of C60H36.  This assumption 

seems further corroborated by the fact that the CH bond in C60H2 (70.5 kcal mol
-1

) is 

stronger than in C60H36 (66.7 kcal mol
-1

) 
3
. 

Following earlier investigations into the gas phase behaviour of C60H36 and C60H18 it would 

be of interest to evaluate these assumptions through dedicated LDI and MALDI experiments 

with C60H2. 

C60H2 is of interest as it, along with other hydrogenated fullerenes, may be utilised for 

hydrogen storage, especially as hydrogen atoms can be attached via both endohedral and 

exohedral means
4
.  

For C60H2 it has been found that the lowest energy conformation has two hydrogen atoms 

attached to adjacent carbon atoms which are part of the same 6-membered ring
5
.  

Despite the close proximity of the hydrogen atoms, dehydrogenation does not appear to 

occur via a one step concerted mechanism, rather via a multiple step radical chain reaction
6
.  

Hydrogenated fullerenes can be synthesized in various ways. For example, transfer 

hydrogenation via 9,10-dihydroanthracene, catalysed by [7H]benzanthrene, results in 

production of C60Hx and C70Hx, where x is between 0 - 36 for both C60 and C70, and 42-44 for 
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C60
7
. Without [7H]benzanthrene present, there is still hydrogenation when C60 is heated with 

9,10-dihyrdoanthracene to produce C60H36 and C60H18
8
. 

Another example - exposing C60 in powder form to a temperature of 300˚C with various high 

H2 pressures, for between 20 and 119 hours created C60Hx, where x was between 2 and 18
4
. 

Heating fullerenes with a polyamine, such as diethylenetriamine or triethylenetetramine, was 

also found to create hydrogenated fullerenes, for C60, C70 and larger fullerenes such as C84 

and C96
9
.  

Rhodium can be used to catalyse the reaction between C60 and H2, with C60H2 as the main 

hydrogenated fullerene present
10

. 

C60H2 has been studied with a comprehensive array of ionisation methods, including 

negative-ion fast atom bombardment (FAB)
5, 11, 12

, atmospheric pressure chemical ionisation 

(APCI), electron ionisation (EI), field desorption / field ionisation (FD/FI) as well as LDI and 

MALDI.   Common to these different attempts towards gas-phase ionisation is that C60H2 

shows tremendous degradation into C60, so that C60H2 was only identified through a 

combination of methods. For instance a separation of C60H2 prior to its ionisation excludes 

the possibility of having C60 and higher hydrogenated fullerenes in the sample. 

A study using negative-ion mode MALDI-MS had a confusing mass assignment
13

. It reported 

peaks with their respective intensities and assignments as follows: 

724 (87%) – 
13

C
12

C59H2 

723 (100%) – 
12

C60H2  

722 (93%) – 
13

C
12

C59 

721 (68%) – 
12

C60 

Disregarding the calibration, the intensities of the 
13

C peaks at m/z 722 and 724 are far 

higher than they should be for the assignment. The peak at m/z 724 should be 

approximately 66%, and the peak at m/z 722 should be at approximately 45%. This study 

also suggested that C60H2 can be stored for several weeks in solution without degradation, 

and for even longer as a solid. It was reported however, that C60H2 rapidly degrades to C60 

when in contact with alumina. 

FD was found to produce less fragmentation of higher hydrogenated fullerenes, such as 

C60H18 and C60H36, when compared to EI
14

. Although not tested directly on C60H2, as FD 
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produced almost fragmentation free spectra for C60H36, which is known to fragment 

extensively under even soft conditions, this method should have produced fragmentation 

free spectra for C60H2. 

However, as negative-ion FAB accompanied the first syntheses of C60H2,
5
 this became the 

mass spectrometric method of choice for analysis of hydrogenated fullerenes. In this work, 

the reaction of C60 with BH3:tetrahydrofuran was employed to produce C60H2 which was 

obtained in yields of 10 to 30%. HPLC was used to separate the unreacted C60 from C60H2. 

In the negative-ion FAB experiments more than half of the initial C60H2 undergoes hydrogen 

loss so that the resulting spectrum is dominated by the C60
-
 anion at m/z 720 and its 

isotopomers, figure 4.1, shown below: 

 

Figure 4.1: Negative-ion mode FAB spectrum of C60H2 from the first reported synthesis
5
  

 

C60H2
-
 is identified through the enhancement of the signal at m/z 722 (composed of 

12
C58

13
C2 

and 
12

C60H2). The fairly extensive fragmentation makes it difficult to apply this approach to 

quantitation of C60H2 or to identify accurately small amounts of C60 impurities that might be 

present in unpurified samples. Also small amounts of C60Hn with n>2 could remain 

undetected while contributing through fragmentation.   

In retrospect it is evident that negative-ion mass spectrometry has to be used with great 

caution for the identification of hydrofullerenes.  The tendency to accept an extra electron 

decreases with increasing hydrogen content, so that for C60Hn with n in the range of 10 or 
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12, the electron affinity turns positive and anions become unstable. C60H18 represents an 

exception, possessing an EA of between 1.4 and 1.6 eV
15

 and stable molecular anions. 

Previous reports on the application of LDI and MALDI are particularly intriguing.  In one 

study C60H2 was identified in LDI experiments by its accurate mass
2
. Unfortunately, no 

details about the experiment were given, except that the experiment was performed in 

positive-ion mode. No spectra were provided that may have shown fragmentation. In the 

likely case that dissociation into C60 had occurred, the separation of C60H2 and 
13

C2
12

C58 

would have afforded a resolving power in excess of 80000.  A further study applied direct 

LDI to characterise C60H2 as produced by sonochemistry
16

. The detection by FT-ICR was, 

however, affected by a space charge phenomenon that led to peak coalescence. The 

occurrence of this phenomenon, which can be prevented through the use of stronger fields, 

led to mass spectra in which the C60H2 signal could neither be separated isotopically (too 

low resolution), nor would it appear at the expected nominal m/z values (too low mass 

accuracy).  C60H2 was also identified by electron transfer negative-ion MALDI, but the data 

were not more conclusive compared to the early negative-ion FAB experiments.  

In the present investigation, C60H2 is studied by LDI and MALDI in both ion modes with a 

view to evaluate the usefulness of these methods in achieving the formation of molecular 

ions and reducing fragmentation.  

  



Chapter 4 
 

92 
 

Experimental 

C60H2 was synthesized by Manolis Tzirakis of the Orfanopoulos group at the University of 

Crete
17

.  Initially, C60H2 was part of the set of samples discussed in the previous chapter.  

When it became obvious that MALDI would provide an appropriate means to generate 

molecular ions free of dissociations, a dedicated sample was prepared for the investigation 

covered in this chapter and in particular great care was taken to purify the C60H2 by 

chromatographic means to avoid the presence of any impurity. 

The sample was synthesised on July 14
th
 2007. The crude reaction mixture was kept under 

argon for ten days, and then purified on July 24
th
, using a semipreparative HPLC technique, 

on a Marathon III instrument equipped with a Cosmosil 5PBB column (10 x 250 mm, Nacalai 

Tesque) with detection at 310 nm. The eluent was a 4:1 v/v mixture of toluene and 

acetonitrile, and the flow rate was 5 ml/min. 

The samples were posted on the 25
th
 July, and received on 31

st
 July 2007. 

DCTB was used as the matrix material in MALDI, and was mixed with the sample as a 50:1 

molar ratio, respectively. 

MALDI and LDI experiments were performed on the Bruker Ultraflex II, in both ion modes. 

For the experiments where C60H2 was monitored over time to observe degradation, the 

C60H2 was kept as a solid in the dark at room temperature. It was analysed twice a week, for 

4 weeks. Day 0 was the day the sample was received, and the first analysis performed. 

Subsequent analysis was performed on days 3, 7, 10, 14, 17, 21, 24 and 28. 

Due to the time involved in receiving the sample, analysis was initially performed one week 

after purification, with subsequent analyses performed 10, 14, 17, 21, 24, 28, 31 and 35 

days after purification. 

Spectra were obtained several times for each ion mode, at a variety of different laser powers 

(marked in percentages). 
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Results and Discussion 

Figure 4.2 displays the mass spectra resulting from the initial laser desorption experiments 

with C60H2.  

 

Figure 4.2: C60H2 direct laser desorption/ionization mass spectra: a) negative-ion and b) 

positive-ion mode.  Pure C60 for comparison: c) positive-ion LDI.  C60H2 MALDI mass spectra 

(DCTB as matrix, analyte-to-matrix ratio 1:50): d) negative-ion mode and e) positive-ion 

mode 

 

LDI of C60H2 led in the negative-ion mode to the pattern shown in Fig. 4.2 a) and in the 

positive-ion mode to a distribution shown in Fig. 4.2 b).  The comparison with Fig. 4.2 c), 

which shows LDI of pure C60 in positive ion mode, reveals that LDI of C60H2 leads 

predominantly to the formation of C60.  The pattern obtained for negative-ion LDI of C60H2 is 

within experimental error identical to the isotopic pattern of pure C60.  In the positive ion 

mode, m/z 721 and 722 appear enhanced indicating the formation of C60H
+
 and minute 

amounts of C60H2
+
.  Although the observation of C60H2

+
 is in line with earlier LDI studies, it 

becomes also evident that the tremendous degree of fragmentation is problematic.  As is the 

case with all other previous approaches, identification and quantitation of C60H2 is 

complicated and for unpurified samples, the influence of impurities such as C60 or 
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hydrofullerenes with a slightly higher hydrogen content than C60H2 would not be obvious.  

Consequently, LDI is not suited as a reliable tool to quantify or even identify C60H2. 

Very similar considerations are true when MALDI is used in the negative-ion mode. 

Figure 4.2 d) shows the molecular ion region for negative-ion MALDI of C60H2 using DCTB 

as the matrix material.  However, the molecular anion at m/z 722 is now clearly evident.  The 

high degree of fragmentation is similar to the extent observed in the pioneering negative-ion 

FAB experiments. Finally, Fig. 4.2 e) shows the outcome of the positive-ion DCTB-MALDI 

experiment. The molecular ion C60H2
+
 at m/z 722 is formed practically without dissociation. 

As explained previously, the ionisation energy of DCTB was recently determined as 8.54 eV 

and computational estimations locate the electron affinity at about 2 – 2.3 eV. The analyte 

C60H2 has an estimated ionisation energy of 7.28 eV and electron affinity estimations lie in a 

range of 2.45 - 2.68 eV.  Consequently, C60H2 would transfer an electron in reaction with the 

DCTB cation radical and accept an electron in reaction with the DCTB anion radical.   

Although these data clearly support the thermochemical feasibility of ion formation through 

electron transfer, a more comprehensive description of the thermochemistry surrounding the 

C60H2 ions is necessary to obtain more detailed insight. For instance, the current data would 

imply that C60H2 cations are formed with greater excess energy than the C60H2 anions.  

However, positive-ion DCTB-MALDI generates C60H2
+
˙ free of dissociations while the 

corresponding anions suffer severe decomposition.  Depending on the energetics involved, 

these two findings are not necessarily contradictory. 

The sensitivity of C60H2 towards oxygen has been controversial.  Therefore, it was decided 

to evaluate this question through the use of MALDI.  A purified C60H2 sample of several mg 

in weight was kept at room temperature as a solid in a small glass vial in the dark.  Twice a 

week, as explained in the experimental section, the vial was opened and material removed 

for analysis. The corresponding positive and negative-ion DCTB-MALDI mass spectra are 

shown in Fig. 4.3, below. 
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Figure 4.3: C60H2 ageing monitored by negative-ion DCTB MALDI: a) seven days, b) ten and 

c) twenty-one days after purification.  d) same as c) but positive-ion DCTB MALDI 

 

Despite the successful characterisation of C60H2 by positive-ion MALDI, previous work on 

fullerene oxides would suggest a more sensitive approach in the negative ion mode when 

oxidation products are of interest.  The sample was studied in both ion modes, confirming 

these assumptions. 

The negative-ion MALDI mass spectra of the ageing C60H2 sample are displayed in Fig. 4.3 

a) seven days after purification, in Fig. 4.3 b) when the sample had aged ten days and Fig. 

4.3 c) after twenty-one days.  

 It is clearly visible that the oxygen attainment increases with time.  This is true for both the 

number of oxygen atoms attached to the fullerene and the amount of oxidised material.  

While shortly after the synthesis oxides were barely observed, the attachment of up to five 

oxygen atoms was evident after ten days and the overall amount of these oxides increased 

with further ageing. The sample was investigated for up to thirty-five days after purification, 

but the overall appearance of the spectra was similar to the one obtained after twenty-one 

days, although the overall oxide abundance seemed lower for samples that were older than 
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twenty-one days.  A typical example of the positive ion MALDI experiment, which was run in 

parallel, is shown in Fig. 4.3 d) with the sample being twenty-one days old.  In line with other 

investigations, oxidation products are less abundantly observed by this approach and only 

the attainment of up to two oxygen atoms is just about detected.  However, the positive-ion 

mass spectrum shows hardly any signs of C60, the signal of which is increasingly observed 

over time in the negative mode.  It follows that the C60 formation is not caused by hydrogen 

release from the C60H2 sample over time, but through dissociations of anions in the 

negative-ion experiment.  In general, there seems very little decomposition of the sample in 

terms of hydrogen loss or cage shrinkage.  The latter is corroborated by the very low 

abundances of C58 or C59 ions in both ion modes (not shown), which would be indicative of 

cage shrinkage. 

Even though our analysis is not quantitative and lacks comparison with pure C60, the fact 

that the attachment of up to 5 oxygen atoms can be monitored in a matter of days clearly 

indicates that solid C60H2 is susceptible to oxidation. 

 

Conclusion 

Previous research into the mass spectrometry of C60H2 was particularly affected by 

unwanted decomposition.  Positive-ion mode DCTB-MALDI has been demonstrated here to 

allow for fragmentation-free formation of molecular ions of C60H2. Negative-ion mode DCTB-

MALDI has shown the degradation of C60H2 through addition of up to five oxygen atoms 

when the solid is kept under ambient conditions. It has also demonstrated how rapidly 

oxygenation of the sample occurs.  Hydrogen loss and cage shrinkage are not evident.  
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Chapter 5: Investigation into MALDI Matrices 

 

Introduction 

As outlined previously, the matrix is a low molecular weight compound used in MALDI 

analysis for the protection of the sample, but also as a promoter of soft gas-phase transfer 

and ionisation of the sample. Ideally its absorption maximum is very close to the wavelength 

of the laser light. It enables soft ionisation of the sample by absorbing the majority of the 

energy from the laser, ionising and desorbing into the gas phase. The sample of interest will 

also desorb into the gas phase, and it is within this plume that matrix – sample interactions 

will ionise the sample. Generally ionisation is by protonation or deprotonation, however, 

some matrices work by electron transfer. 

Unfortunately there is not a single matrix material that is suitable for every compound 

analysed with MALDI. For different analytes the interaction with a given matrix material may 

be different and structural features may afford a particular way of ion formation.  

Consequently, the features of the matrix and the analyte must complement each other. 

There are, however, some matrices whose usage is fairly prevalent. These include: 

• 2,5-dihydroxybenzoic acid, DHB 

• α-cyano-4-hydroxycinnamic acid, α-HCCA 

• 3,5-dimethoxy-4-hydroxycinnamic acid, Sinapinic acid 

• 9-nitroanthracene, 9-NA 

Prior to the use of DCTB, the MALDI analysis of fullerenes and their derivatives was typically 

performed employing 9-NA as the matrix. DCTB was first used as a matrix for various 

fullerene derivatives in 1999
1, 2

. DCTB led to more abundantly observed molecular ions in 

both positive-ion and negative-ion mode and the degree of fragmentation was markedly 

reduced. 

 

DCTB 

DCTB was first studied seriously in 2000, by comparing it to the traditional fullerene matrix 9-

NA, and the universally used matrix, DHB
3
. Using the substituted fullerene: bis(4-methoxy-



Chapter 5 
 

100 
 

phenyl)methano[60]fullerene, positive-ion and negative-ion mode spectra were obtained. 

The matrices and samples were mixed in 100/1 to 1000/1 molecular ratios. In negative-ion 

mode, clean spectra with a dominant molecular ion peak were obtained. In positive-ion 

mode, the molecular ion peak was also the most intense signal, however, there was also 

adduct formation of the type [M+H]
+
, [M+Na]

+
 and [M+K]

+
; and loss of a methyl group – [M-

CH3]
+
. 

When the other matrices were used, however, there was fragmentation of the sample and 

the most intense peaks in the spectra resulted from the matrices. 

A more in depth study of suitable matrices for fullerenes and their derivatives appeared in 

2001, with 14 different matrices, including DCTB being tested
4
. These matrices were: 

• 9-NA 

• DHB 

• Sudan Orange G 

• α-HCCA 

• Sinapinic Acid 

• 5-Methoxysalicylic Acid, MSA 

• 2-(4-hydroxyphenylazo)benzoic Acid, HABA 

• DCTB 

• 6 related β-carboline alkaloids: 

• Norharmane 

• Harmane 

• Harmine 

• Harmol 

• Harmalol 

• Harmaline 

This study was aimed at finding a replacement matrix for the fullerene standard 9-NA, as this 

compound has the following drawbacks: 

• It easily transfers oxygen to the analyte, which is problematic if one is not sure about 

the oxygen content of the analyte. 

• At higher laser fluence the matrix clusters and this can obscure peaks of interest. 
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The matrices behaved differently depending on the polarity of the instrument.  In positive-ion 

mode, only two of the matrices produced an intact molecular ion peak – these were DCTB 

and 9-NA. 

In negative-ion mode, only 3 of the possible candidates did not produce an intact molecular 

ion – harmalol, MSA, and HABA.  Of the remaining 11 matrices only 3 gave an abundant ion 

signal – DCTB, norharmane, and harmane. Of these 3, only DCTB produced a clean 

spectrum with very little fragmentation. 

It appeared from this study that DCTB gave the best performance as a fullerene matrix for 

both ion modes. 

From this and previous studies DCTB was identified as an electron transfer matrix, as there 

was no protonation/deprotonation of the sample and only the radical ions of the analyte were 

observed. This was confirmed by a study into the thermochemistry of DCTB
5
. 

If DCTB does indeed ionise the samples via electron transfer, then the following reactivities 

can be expected: 

In positive-ion mode: 

�����∙ + ! → ���� + !�∙ 

This reaction will occur provided IEDCTB > IEA. 

In negative-ion mode: 

����#∙ + ! → ���� + !#∙ 

This reaction will occur provided EADCTB < EAA. 

The vertical ionisation energy of DCTB was obtained by photo-electron spectroscopy as 

8.54 ± 0.05 eV, which is in excellent agreement with the calculated value of 8.47 eV (AM1 

calculations). The electron affinity has only been obtained so far by quantum chemical 

calculations to lie between 2.31 eV and 2.0 eV, depending on the method used. 

Using these values, DCTB was used as a matrix for the following samples: 

• Phenanthrene: IE = 7.9 eV  

• Anthracene: EA = 530 ± 5 meV 

• C60F46/48: IE = 12 eV, EA = 4.06 ± 0.25 eV 

Using the calculated values for the IE and EA of DCTB, it is possible to predict the 

appearance of the spectra for the aforementioned analytes: 
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Phenanthrene: 

IEphenanthrene < IEDCTB  � Molecular ions should be detected in positive-ion mode MALDI  

Anthracene: 

EAanthracene < EADCTB  � Molecular ions should not be detected in negative-ion mode MALDI 

C60F46/48: 

IEC60F46/48 > IEDCTB    � Molecular ions should not be detected in positive-ion mode MALDI 

EAC60F46/48 > EADCTB � Molecular ions should be detected in negative-ion mode MALDI 

The actual experiments performed reflected the above predictions, as tabulated below: 

Phenanthrene Positive LDI No M
+
 

 Positive MALDI Intense M
+
 

Anthracene Negative LDI M
-
 

 Negative MALDI No M
-
 

C60F46/48 Positive LDI No M
+
 

 Positive MALDI No M
+
 

 Negative LDI M
-
, fragmentation 

 Negative MALDI M
-
, low degree of fragmentation 

Table 5.1: Results of using DCTB as a matrix for various compounds 

As a result it was shown that MALDI analysis with DCTB proceeds in fact within the 

boundaries of this thermodynamic frame provided by the respective ionisation energies and 

electron affinities. 

 

Pencil Lead 

Graphite has been used in various forms as a matrix for MALDI; however, it is typically very 

difficult to apply to the target plate as well as to achieve an even reproducible surface 

coverage. Graphite particles were combined in solution with more common matrix materials 

and such suspensions were used for MALDI analysis in an attempt to alleviate the 

application problems. 

Graphite has been shown to be an effective matrix material for various analytes, such as 

peptides, proteins and polymers, so it is therefore desirable to find an easy way of using 

graphite as a MALDI matrix. 
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Pencil lead consists of graphite mixed with clay and varying levels of oils and waxes. It is 

produced in different levels of hardness and blackness - ranging from 9H, which is the very 

hardest and creates a very light grey mark upon paper, to 9B, which is very soft and will 

leave a very dark mark upon paper. Generally the softer the pencil, the more graphite it 

contains. There are many reasons why pencil lead would be a desirable matrix – its usage is 

safe, cheap and quick and easy to prepare – one would just have to draw on the target 

plate. Also, there are no solvent compatibility issues, and the hydrophobic surface tends to 

help in producing a sweet spot: as the sample solution is applied, it will dry in one place. 

Also, there are benefits from the additives in pencils – the wax appears to help with ensuring 

an even reproducible coverage of graphite on the surface. 

Pencil lead was first used as a matrix in 2006, in the analysis of various samples including 

peptides such as substance P, polymers, actinide metals such as uranium, and terfanadine
6
.  

The results were impressive, in particular, as a matrix for Uranium. The laser power could be 

reduced from 100% for LDI, to 50% with pencil lead, and a better signal-to-noise ratio was 

achieved. There was also complete matrix suppression, so that no unwanted matrix signals 

had to be considered. 

In cases where the matrix was not suppressed, it was found that the matrix produced carbon 

cluster peaks in the low mass range, ranging from C9 to C24, which could then be used for 

calibration. 

Interestingly enough, when used as a matrix for Substance P, fragment ions were produced 

which were adducted by sodium and potassium. This demonstrated that the pencil lead had 

partially protected the sample and aided the ion formation, since if the fragments had been 

formed as a direct result of laser irradiation, they would be lacking these adducts.  

For this study a range of pencil grades were tested, ranging from 4H to 6B. It was found that 

6B gave the best performance and this was assumed to be caused by it having the highest 

graphite content of all the pencils tested.  Moreover, the softness of the pencil, which led to 

easier application and a more even coverage, appeared to offer a better reproducibility. 

A follow up study tested a wider range of pencils on a selection of 50 small molecules, which 

included peptides, polymers, steroids and sugars. This included such molecules as α-

cyclodextrin, atropine, caffeine, cocaine, disopyramide, and haloperidol.  This study led to 
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slightly differing results. Here, the 2B pencil was found to give the best results for the range 

of samples tested
7
. 

Of the 50 molecules tested, pencil lead did not work as a matrix for six of them. This study 

also found that the 6B pencil gave only poor ionisation, possibly as a result of too much 

graphite being deposited on the surface. 

Of course the differences could also have arisen from the different brands of pencil used, as 

the additives differ both in what is added and the amounts used. However, in both studies a 

wide range of pencil brands were employed as matrices and were tested on all the different 

samples. 

Pencil lead was considered in further detail as a matrix for polymers in a study looking 

specifically at silyl hydride functionalised polystyrenes, which are particularly sensitive to the 

preparation methods commonly used in MALDI for polymers
8
. 

The common method for MALDI analysis of polymers is to use dithranol as the matrix, with 

silver trifluoroacetate (AgTFA) as an additive. If this method is used for the derivatised 

polystyrenes, then the silane moiety is oxidised. 

Mass spectra of non-functionalised polystyrene were obtained using a 6B pencil as a matrix, 

with and without AgTFA as an additive. The sample was successfully ionised and sufficiently 

protected. With the AgTFA additive present, the peaks were the most intense of all the 

spectra obtained, with a good signal-to-noise ratio, with the silver adducted peaks the most 

intense of all. Without the AgTFA additive, the most intense peaks present were sodiated. It 

was found that using AgTFA and pencil lead as the matrix, better spectra were obtained 

than for the typical method of dithranol/AgTFA. 

To apply this to the silyl hydride functionalised polystyrene, spectra were obtained and 

compared using as a matrix either a 6B pencil, or dithranol, with the additives lithium 

trifluoroacetate (LiTFA) and AgTFA, respectively. 

It was important to find conditions under which the integrity of the end groups could be 

preserved, as they easily underwent side reactions using dithranol/AgTFA. 

It was found that using pencil lead and LiTFA, there were no side reactions, and the only 

adducts formed were lithium adducts. 
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In summary, pencil lead is looking promising as a new matrix with a broad range of 

applications.  In the present investigation, several fullerene derivatives were tested with the 

use of pencil lead in order to test the suitability of it as a matrix material for this class of 

compounds.  Comparison was made with DCTB as the benchmark matrix and samples were 

chosen which would allow easy cationisation by the pencil lead matrix. 
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Experimental 

The fullerene derivatives studied in this chapter are below. (Note the abbreviations 

underneath the structures, which were used throughout to characterise the sample) 

 

 

 

 

Figure 5.1: Structure of “Isopropyl Mono” 

  

 

 

 

Figure 5.2: Structure of “Mono” 

 

 

 

 

Figure 5.3: Structure of “Bis” 

 

  

 

 

 

 

 

 

 

Figure 5.4: Structure of “Tris” 
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These compounds were isomerically pure.  Since these compounds are already several 

years old they showed slight signs of ox

present investigation. 

Some of the open cage fullerenes from chapter 3 were also studied. Here the following 

isomers were of interest:

 

Figure 5.5: Structures of 2.1 (above left) and 2.2 (above right)

Figure 5.6: Structures of 2.3 (above left) and 2.4 (above right)

These compounds were isomerically pure.  Since these compounds are already several 

years old they showed slight signs of oxidation. This, however, was of no relevance to the 

Some of the open cage fullerenes from chapter 3 were also studied. Here the following 

isomers were of interest: 

 

Figure 5.5: Structures of 2.1 (above left) and 2.2 (above right)

 

Figure 5.6: Structures of 2.3 (above left) and 2.4 (above right)
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These compounds were isomerically pure.  Since these compounds are already several 

idation. This, however, was of no relevance to the 

Some of the open cage fullerenes from chapter 3 were also studied. Here the following 

Figure 5.5: Structures of 2.1 (above left) and 2.2 (above right) 

Figure 5.6: Structures of 2.3 (above left) and 2.4 (above right) 



 

 

Figure 5.7: Structures of 2.5 (above left) and 2.6 (above right)

A typical sample preparation method involved dissolving the sample in toluene at a 1 mg/ml 

concentration. A Whirlimixer w

DCTB was prepared in a 10 mg/ml solution, which was added to the sample as required, 

typically in a 1:50 sample:DCTB molar ratio.

6B and 8B Staedtler branded Mars Lumograph pencils were used throughout and were 

applied individually on the target spots. A Grafix branded HB pencil 

pressure equivalent to writing was used to transfer pencil lead to the target plate, except in 

the experiments where the pressure used to apply was harder or lighter, in an 

increase and decrease the amount of pencil lead on the target plate. The entire slide was 

held in an air stream to remove any loose pencil lead prior to sample application.

The sample solutions were applied one drop at a time using a 1

allowed to dry between applications. Typically 5

spot. 

For the DCTB experiments, the DCTB solution and sample were mixed and applied together 

and typically 5 µl of this solution was used per target spot.

 

 

Figure 5.7: Structures of 2.5 (above left) and 2.6 (above right)

A typical sample preparation method involved dissolving the sample in toluene at a 1 mg/ml 

concentration. A Whirlimixer was used to ensure complete dissolution. 

DCTB was prepared in a 10 mg/ml solution, which was added to the sample as required, 

typically in a 1:50 sample:DCTB molar ratio. 

6B and 8B Staedtler branded Mars Lumograph pencils were used throughout and were 

ed individually on the target spots. A Grafix branded HB pencil 

pressure equivalent to writing was used to transfer pencil lead to the target plate, except in 

the experiments where the pressure used to apply was harder or lighter, in an 

increase and decrease the amount of pencil lead on the target plate. The entire slide was 

held in an air stream to remove any loose pencil lead prior to sample application.

The sample solutions were applied one drop at a time using a 1-10 µl Bar

allowed to dry between applications. Typically 5µl of the solution was applied to each target 

For the DCTB experiments, the DCTB solution and sample were mixed and applied together 

l of this solution was used per target spot. 
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Figure 5.7: Structures of 2.5 (above left) and 2.6 (above right) 

A typical sample preparation method involved dissolving the sample in toluene at a 1 mg/ml 

DCTB was prepared in a 10 mg/ml solution, which was added to the sample as required, 

6B and 8B Staedtler branded Mars Lumograph pencils were used throughout and were 

ed individually on the target spots. A Grafix branded HB pencil was also tested. A 

pressure equivalent to writing was used to transfer pencil lead to the target plate, except in 

the experiments where the pressure used to apply was harder or lighter, in an attempt to 

increase and decrease the amount of pencil lead on the target plate. The entire slide was 

held in an air stream to remove any loose pencil lead prior to sample application. 

l Barky µltipipette and 

l of the solution was applied to each target 

For the DCTB experiments, the DCTB solution and sample were mixed and applied together 
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Results 

 

Pencil as a matrix 

As an initial step, test experiments were performed to evaluate the viability of pencil as a 

matrix for derivatised fullerenes.  Experiments were performed in both ion modes and in 

comparison with direct LDI and DCTB-MALDI.  The methano-bridged [60]fullerenes: 

isopropyl mono, mono, bis and tris (all displayed in the introduction to this chapter) were 

chosen as the test compounds, as their behaviour under LDI and MALDI conditions has 

been described in detail earlier
4
. 

 

Isopropyl Mono 

Isopropyl mono was chosen as an ideal representation of a fullerene derivative with which to 

test the use of pencil as a matrix, as it severely dissociates under direct LDI conditions, but 

delivers a molecular ion almost free of decomposition when protected under true MALDI 

conditions. Comparing standard DCTB-MALDI and LDI spectra of isopropyl mono, below, 

shows how important a matrix is in order to achieve a molecular ion peak: 

 

Figure 5.8: Positive-ion and negative-ion mode LDI and DCTB-MALDI of Isopropyl mono 
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It was noted that the laser power had to be markedly enhanced for LDI compared to MALDI, 

in order to obtain a molecular ion peak, however, this also results in extensive 

fragmentation. By comparing actual intensity values it is obvious how few ions are produced 

with the LDI method, there is also a smaller signal-to-noise ratio when compared to DCTB-

MALDI. 

Initial positive-ion mode spectra of isopropyl mono on 6B and 8B pencil are below. The 

fragmentation peaks at m/z 720 (C60) and 733 (C61H) are immediately obvious. Also, there is 

not an obvious peak at m/z 906, but peaks are present at m/z 929 and 945, which indicate 

addition of sodium and potassium. 

 

Figure 5.9: Spectra of isopropyl mono on 6B and 8B pencil 

 

Varying the application of the pencil 

The matrix-to-analyte ratio is of crucial influence to the outcome of a MALDI experiment.  

Therefore, it was decided to test how different applications of the pencil might affect its 

ability to behave as a matrix. For the majority of experiments, the pencil was applied at a 

normal writing pressure. For the present experiments the pencil was either lightly scraped 

over or heavily pressed across the surface of the target plate, leaving less or more pencil 

lead attached to the target plate, respectively, the excess material was blown from the target 

plate with an air stream.  The light or heavy application of pencil lead was obvious to the 

eye. Spectra of isopropyl mono were obtained in both positive-ion and negative-ion mode, 

with linear detection, at a range of laser powers. 

The positive-ion mode spectra are shown below. It can be observed that there are no great 

differences between the spectra. This is the case when comparing either between light and 
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heavy application, or between the hardness of pencil (6B vs. 8B). All spectra below were 

obtained at 40% laser power. 

 

Figure 5.10: Light and heavy application of pencil as a matrix for isopropyl mono 

There is extensive fragmentation. The dominant peak in each spectrum is K
+
. The molecular 

ion peak at m/z 906 is of very low abundance, however, it can be noted that there is 

abundant sodium and potassium ion attachment to the isopropyl mono at m/z 929 and 945.  

Clearly, variation of the amount of pencil lead has little influence on the appearance of the 

positive-ion mode spectra. 

The following are the corresponding spectra in negative-ion mode, all at 50% laser power. 
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Figure 5.11: Light and heavy application of pencil as a matrix for isopropyl mono 

Here a slight difference can be observed between light and heavy application – the ratio of 

the C60 fragment to the molecular ion peak increases when going from light to heavy 

application. The trend is the same for both the 6B and the 8B pencils, suggesting that this 

pattern is real and not just a random event. It appears that the light application protects the 

sample more; the fragmentation signals are less intense than the molecular ion peak. It is 

clear that metal ion attachment is not a mechanistic option for the ion production in the 

negative-ion mode.  Two mechanisms may be operative in this case.  On the one hand, 

there can be electron attachment to desorbed molecules which may be also followed by 

fragmentation and on the other hand there can be fragment ion formation by direct laser 

desorption ionisation.  Both of these processes may contribute to a different extent when the 

pencil lead loading is varied.  The observation that a higher pencil lead loading leads to 

spectra that would result from harsher conditions could, for instance, be explained by 

assuming that ionisation through electron attachment becomes less favoured.  Too much 

pencil lead may hinder the release of electrons from the surface that would be needed for 

the ion formation and direct laser ablation may be more prominent, leading to more fragment 

ions. Alternatively, with more pencil lead on the target, each laser pulse would release more 

matrix into the plume, which would alter the heating and cooling processes within leading to 

fragmentation. 
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A heavier loading of the 6B pencil seems to enhance the overall ion yield, whereas the use 

of the 8B pencil seems to have the opposite effect. At this point it can only be speculated if 

this is caused by the different composition of the two types of pencil.  

Although the spectra are much cleaner than in the positive-ion mode, there are still low mass 

ions abundantly observed which have their origin in the pencil lead and thus would interfere 

with analyte-derived ion signals. Also, the fragment ion production in the negative-ion mode 

is as severe as in the positive-ion mode.  In comparison with negative-ion MALDI using 

DCTB, one has to conclude that the pencil has some protecting effect, but does not match 

the high quality spectra obtainable in negative-ion MALDI. 

In summary, it appears that the use of pencil lead as matrix for negative ion analysis has 

some major disadvantages compared to the application of DCTB-MALDI. However, pencil 

lead may more successfully compete in the positive-ion mode with conventional MALDI, as 

ion formation through metal cation attachment is clearly the dominating mechanism by which 

positive ions are formed. In order to accurately compare the matrix performance of pencil 

lead a careful comparison of 6B and 8B pencil lead to direct LDI and DCTB-MALDI was 

performed in the following.  The four different types of targets were tested while the 

activating laser power was varied. 

 

Pencil lead performance check against LDI and (conventional) DCTB-

MALDI 

Isopropyl mono was again chosen as the test compound and comparison was made for the 

four different targets: direct LDI (no matrix), DCTB-MALDI, 6B and 8B pencil. To ensure a 

“fair” testing, the same isopropyl mono solution was used and all experiments were 

performed at the same time (“in one sitting” on the same day) to ensure that machine 

conditions could not alter the results. The spectra were obtained in positive-ion mode, using 

reflectron detection and over a wide range of laser powers. The laser powers chosen ranged 

from 4% to 24% changed in intervals of 4%.  

Below 4% it was difficult to obtain a signal for any method and above 24% the spectra did 

not alter much with higher laser fluences. 

The spectral data were analysed and the results are summarised in the following table. 
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Laser 

Power % 
LDI DCTB-MALDI 6B Pencil MALDI 8B Pencil MALDI 

4 No signal 
Intense peak at 

m/z 906 
No signal No signal 

8 No signal 
Intense peak at 

m/z 906 
No signal No signal 

12 
Small peak at 

m/z 720 

Intense peak at 

m/z 906. Small 

peaks at m/z 

720, 796, 805, 

818, 949, 1026, 

1156 

Small peak at m/z 

733 
No signal 

16 

Small peaks at 

m/z 720 and 

733 

Most dominant 

peak still at m/z 

906, other 

fragmentation 

increasing 

Peaks at m/z 23, 

39, 720 and 733 

Peak at m/z 39 

dominant. Smaller 

peaks at m/z 23, 

720, 733, 804, 945. 

20 

Peaks at m/z 

720, 733, 778, 

745, 804 

Most dominant 

peak at m/z 906, 

extensive 

fragmentation 

Peak at m/z 39 

dominant, other 

peaks at m/z 23, 

720, 733, 778, 804, 

929, with smaller 

peaks at m/z 906 

and 945. Extensive 

fragmentation 

between m/z 250 – 

500. 

Peak at m/z 39 

dominant. Smaller 

peaks at m/z 23, 

720, 733, 745, 778, 

804, and 906. 

Slightly larger 

peaks at m/z 929 

and 945. 

Fragmentation 

between m/z 250 – 

500 

24 
Peaks at m/z 

720, 733, 778, 

Most dominant 

peak at m/z 906, 

Peak at m/z 39 

dominant, other 

Peak at m/z 39 

dominant. Smaller 
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745, 804 extensive 

fragmentation 

peaks at m/z 23, 

720, 733, 778, 804, 

929, with smaller 

peaks at m/z 906 

and 945. Extensive 

fragmentation 

between m/z 250 – 

500. 

peaks at m/z 23, 

720, 733, 745, 778, 

804, 906 and 945. 

Slightly larger peak 

at m/z 929. 

Fragmentation 

between m/z 250 - 

500 

Table 5.2: LDI, 6B-, 8B- and DCTB-MALDI of Isopropyl Mono at different laser powers 

Example spectra are shown below, showing the four methods at three of the different laser 

powers. The first set depicted at 8%, shows a clear molecular ion peak when DCTB is used 

as the matrix. The spectra for LDI and where 6B and 8B pencils are used as matrices show 

only noise. The y-axis displays actual intensities, rather than relative intensities as 

percentages to the dominant peak. This allows for comparison between each method. In the 

LDI, 6B and 8B pencil spectra, the peaks are not higher than 20 (intensity units). 

Comparison to the DCTB-MALDI spectrum, where the isopropyl mono peak is at a value of 

approximately 19000, shows the effectiveness of the DCTB-MALDI performance. 

 

Figure 5.12: LDI, 6B-, 8B-, DCTB-MALDI spectra of isopropyl mono at 8% 

At 16% laser power, shown below, peaks are present in all spectra; however, for the LDI, 6B 

and 8B pencil spectra, these peaks are only due to fragmentation and the molecular ion or 
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quasi-molecular ion is not observed. The peaks at m/z 720 (C60
+
) and m/z 733 (C61H

+
) are 

fragment ions, which either arise from complete decomposition of directly ionised isopropyl 

mono or through ionisation of fragments that result from decomposition of neutral isopropyl 

mono. In any case, these ions indicate that only fairly drastic conditions prevail. 

 

Figure 5.13: LDI, 6B-, 8B-, DCTB-MALDI spectra of isopropyl mono at 16% 

In the DCTB-MALDI spectrum the molecular ion is still the base peak, although additional 

signals appear.  The peaks at lower masses than m/z 906 may result from fragmentation 

(besides those derived from the matrix) and higher mass signals can be attributed to the 

addition of DCTB to the analyte molecule.  However, important is that the fragmentation 

down to C60 is still rather minute with the molecular analyte ion representing the most 

abundant peak.  
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Figure 5.14: LDI, 6B-, 8B-, DCTB-MALDI spectra of isopropyl mono at 20% 

The 20% laser power mass spectra are shown above. The main difference is that at this 

laser power, the sodium and potassium adducts of the analyte are starting to appear in the 

pencil spectra. The fragmentation peaks are, however, of a greater intensity than the sodium 

and potassium adducts. K
+
 dominates each of the pencil spectra. 

The LDI spectrum is still only producing fragmentation peaks. The DCTB-MALDI spectrum 

shows extensive matrix peaks and fragmentation, yet the dominant signal is still the 

molecular ion. The overall intensity is far greater with MALDI than with the other methods, 

which demonstrates how efficient desorption and soft ion formation is using DCTB-MALDI. 

In summary, using isopropyl mono as the analyte, pencil lead is inefficient as a MALDI 

matrix.  The formation of quasi-molecular ions is observed in the form of sodium and 

potassium adducts to the analyte.  However, the formation of such quasi-molecular ions 

occurs at such enhanced laser powers that severe fragmentation is always observed as 

well.  There is also a low abundant molecular ion present, however, the production of which 

is rather minute. Fragmentation is already abundantly observed at lower laser powers than 

needed to observe the quasi-molecular ions.  Therefore, a large fraction of the fragmentation 

may be caused by direct laser activation of analyte that remains unprotected through the 



Chapter 5 
 

118 
 

pencil matrix. DCTB comes out as a far superior matrix, producing a molecular ion peak at 

low laser powers, with much reduced or no fragmentation at all. 

Finally, positive-ion and negative-ion mass spectra of the 6B and 8B pencil lead are shown 

without the presence of the analyte.  Sodium and potassium ions are abundantly observed in 

the positive-ion mode, identifying the pencil lead as the source of these ions. There is little 

difference between 6B and 8B when considering either positive or negative polarity. 

Positive-ion mode spectra are dominated by the potassium peaks, more so in 8B than 6B.  

The latter is also corroborated by more pronounced potassium adducts when analytes are 

present and 8B pencil is used. 

It is also obvious that there are many interfering signals produced from the pencil lead which 

were observed in the experiments above and which are actually counterproductive for a 

straightforward analysis.  These unwanted impurity signals were observed in both modes at 

enhanced laser powers.  Unfortunately, the sodiated and potassiated molecular ions also 

occurred at such enhanced laser powers that wanted and unwanted signals co-exist in these 

spectra. The spectra below were obtained of just the pencil lead, and were the result of 35% 

laser power for positive, and 50% laser power for negative: 

 

Figure 5.15: Positive and negative-ion mode LDI spectra of 6B and 8B pencil 



Chapter 5 
 

119 
 

Sodium and Potassium adduct formation with different analytes using 

pencil lead 

One of the key features of using pencil lead as target substrate or “MALDI matrix” is the 

abundant formation of sodiated and potassiated analyte molecules.  Despite the 

shortcomings that were identified in the preceding sections connected with the use of pencil 

lead, sodium and potassium cation addition is comparatively easily achieved.  Conventional 

MALDI approaches would afford the preparation of an additional salt layer to the target if the 

formation of sodiated or potassiated analyte ions were the aim of the experiment.  In 

summary, the relative ease by which these adducts seem to be formed carries a certain 

attraction.  In the following, this type of adduct formation is investigated for a variety of 

different analytes with the aim to learn more about the attachment of alkali metal cations 

from pencil lead as a means of ion formation in laser desorption experiments.  

 

Fullerene derivative with Crown Ether ligand 

Initial tests of sodium and potassium addition were conducted with one of the compounds 

analysed in chapter 2, compound 8.13: 

H

O

O
O

O

O
O

 

Figure 5.16: Structure of 8.13 

This compound was thought to be interesting to study potassium and sodium attachment, 

due to the presence of the 18-crown-6 ether, which is known for its high affinity for 

potassium ions
9
. 

A similar crown ether adduct to [60]fullerene was used earlier as a model compound in 

electrospray ionisation of fullerenes. The idea was at the time to link the fullerene 

synthetically to a crown ether which then would act as the target for cationisation with 
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sodium or potassium ions
10

.  Therefore it is interesting to elucidate the behaviour of this 

model compound for a successful ESI experiment under MALDI conditions.   

8.13 was applied to 6B and 8B, and laser activated.  The resulting mass spectra are shown 

below for both ion modes. 

 

Figure 5.17: Positive and negative-ion mode LDI of 8.13 on 6B and 8B pencil 

Enhancement of the molecular ion region is shown below: 

 

Figure 5.18: Positive and negative-ion mode LDI of 8.13 on 6B and 8B pencil 
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In the positive-ion mode spectra on the left, there is prominent sodium and potassium 

addition at m/z values 1007 and 1023, respectively.  The bare molecular ion peak, at m/z 

984, is at an extremely low intensity for both ion modes.  All spectra are dominated by the 

C60 fragment ion, suggesting that pencil is not a very effective matrix for this compound. 6B 

and 8B pencil are again differentiated by the differences in intensity between the sodium and 

potassium adducts. The peaks at m/z 1039 and 1055 could be from oxygen addition. m/z 

1039 could be either [8.13-K-O]
+
, or [8.13-Na-O2]

+
. m/z 1055 could be either [8.13-K-O2]

+
, or 

[8.13-Na-O3]
+
. The negative-ion spectra also confirm addition of up to 2 oxygen atoms.  Most 

likely, the sample has oxidised over time by adding a certain amount of oxygen.  Depending 

on the softness of the experiment, these oxidation products were either observed or not.  

This is also supported by the DCTB-MALDI spectrum of sample 8.13 (shown in Chapter 3, 

figure 3.17), which clearly identifies the attachment of several oxygen atoms to the 

compound. 

In summary, efficient sodium and potassium addition can be observed, but the overall 

appearance of the pencil spectra confirms that this approach is not comparable in softness 

and cleanliness compared to conventional MALDI.  Having produced the cationised ions, 

MS/MS experiments (LIFT) are of interest to elucidate their fragmentation behaviour.  

Therefore, LIFT experiments were conducted with these quasi-molecular ions in the positive-

ion mode.    

Positive-ion mode LIFT–MS were obtained, resulting in the following spectra: 
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Figure 5.19: Positive-ion mode LIFT of the Na and K adducts of 8.13 on 6B and 8B pencil 

At first sight, the daughter ion spectra of the alkali adducts show an unusual appearance.  In 

particular, there is only the merest hint of a peak at m/z 720, corresponding to C60
+
, and this 

can only be found in the LIFT spectra of the potassium adducts. In other words, the fullerene 

is not observed as fragment ion, which is indeed unusual, as dissociations of fullerene 

derivatives are often characterised by the loss of the ligand leading to a C60 fragment ion, 

which may fragment even further.  Upon closer inspection, however, the present candidates 

do not behave differently; the distinct appearance of the spectra is caused by the unusual 

charge distribution of the compound.  The charge is firmly located on the crown ether, so 

that charge migration to C60 is not occurring and C60 is in this case the neutral (uncharged) 

component of the fragmentation.  

In order to elucidate this in more detail, the enhancement of the low mass region of the 

spectra is shown below, as the only region with a sizeable amount of fragment ions. 
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Figure 5.20: Positive-ion mode LIFT of the Na and K adducts of 8.13 on 6B and 8B pencil 

The LIFT spectra of both the [8.13-Na]
+
 and the [8.13-K]

+
 adduct are almost identical with 

the only obvious difference being the dominating K
+
 fragment ion in the spectra of the 

potassium adduct. However, the similarity of both spectra is an artefact and the less obvious 

difference of both provides a clue for the assignment of the signals: the highest mass in the 

low mass ion series of the [8.13-Na]
+
 adduct is m/z 287 and the highest mass in the low 

mass ion series of the [8.13-K]
+
  adduct is m/z 303. Both these ions correspond to the 

respective alkali ion adduct to the crown ether.  In the dissociation, the cationised crown 

ether ligand is separated from the fullerene, whereby the hydrogen atom moves from the 

fullerene to the crown ether, which continues to carry the charge and C60 is lost as the 

neutral fragment.  The low mass region is then dominated by fragment ions that result from 

further dissociations of the sodiated crown ether.  Also the potassium adduct spectrum is 

dominated by the fragmentation pattern of the sodiated crown ether which explains why both 

spectra do literally contain the same ions, demonstrated by the spectra below: 
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Figure 5.21: Fragmentation - [Crown+Na]
+
 (m/z 287) and [Crown+K]

+ 
(m/z

 
303) during LIFT 

The main (and almost only) fragment ion from the potassiated crown ether is in fact K
+
.  This 

interpretation is in perfect agreement with the findings of Maleknia and Brodbeldt, who 

investigated the fragmentation behaviour of crown ether/alkali metal adducts and found that 

all metals show the same fragmentation behaviour while metal ion loss was enhanced with 

increasing size of the metal
11

.  Perfectly in line with these considerations it is found that the 

sodiated crown ether fragment ion dissociates by the loss of small neutrals with very little 

Na
+
 being formed, while the corresponding potassiated crown almost entirely dissociates 

into K
+
.  The seemingly absurd observation of sodiated crown ether in the dissociation 

spectrum of the selected potassium adduct can be explained by shortcomings of the ion 

gate. The resolving power (selectivity) of the ion gate is not high enough to achieve a 

complete separation of the sodiated and the potassiated species in this mass range.  

Consequently, both species will contribute to their respective daughter ion spectra, for 

instance, Na
+ 

and K
+
 ions are present in the LIFT spectra of both adducts.  As far as the 

relative contributions are concerned, the LIFT spectra of [8.13-Na]
+
 are clearly less 

contaminated by contributions of [8.13-K]
+
. There are several reasons for this. For the LIFT 

of either adduct on the 6B surface, there is much lower production of [8.13-K]
+
 on this 

surface.  On the 8B surface, [8.13-K]
+
 is much more abundant than [8.13-Na]

+
, but 



Chapter 5 
 

125 
 

contributions to the LIFT of [8.13-Na]
+
 are much less severe as the [8.13-K]

+
 adduct has a 

much lower tendency to fragment compared with [8.13-Na]
+
. This is obvious when 

comparing the LIFT spectra of both ions; the [8.13-K]
+
  adduct shows less fragmentation and 

a huge signal of [8.13-K]+
 is evident as comparatively more species survive the LIFT 

experiment intact.  Consequently, [8.13-K]
+
  produces less interfering signals when 

contributing to the LIFT spectrum of [8.13-Na]
+
  on 8B.  Comparing the LIFT spectra of [8.13-

K]
+
 obtained on 6B and 8B pencil, it becomes obvious that the interfering contributions of co-

selected [8.13-Na]
+
  are markedly reduced in the 8B experiment as [8.13-Na]

+
  is produced 

in lower abundance. 

 The enhancement of the area around the molecular ion peak confirms, with a peak at m/z 

1007, the sodium contribution to the potassium adduct.  Furthermore, the 6B spectra show a 

series of ions spaced by C2 losses, indicating fullerene fragmentation. These signals are due 

to coalescence of the target into larger fullerenes (at around C84 (m/z 1008)).  These are 

produced upon laser activation of less protected target areas and are co-selected in the 

present experiment.  Because of their much lower tendency to fragment, there are no 

fragment ions of pure fullerenes in the lower part of these LIFT spectra. 

 

Figure 5.22: Positive-ion mode LIFT of the Na and K adducts of 8.13 on 6B and 8B pencil 
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Analytically it is important to note that the spectra obtained with the 6B pencil are of slightly 

better quality than the 8B pencil spectra, leading to larger peak intensities. This was another 

trend observed throughout the experiments. This trend has also been noted previously, with 

other groups reporting that lower B number rated pencils produced better spectra. A smaller 

B number has less graphite and more clays and waxes, to give a harder lead. This may 

have implications as to which component of the pencil is providing the matrix effect of 

analyte protection. 

In summary, pencil lead provides a less efficient means of MALDI compared with the 

conventional use of a matrix.  However, the ease of formation of sodiated and potassiated 

adducts with certain analytes makes it an interesting tool for the generation of these species.  

In the case of crown ether attached fullerenes an unusual fragmentation pattern is obtained 

without the usual occurrence of fullerene fragment ions, since the cationising metal resides 

firmly on the crown ether, leading to the loss of a neutral fullerene. This type of charge 

localisation implies that compound 8.13 is a crown ether with a fullerene ligand attached to 

it, rather than representing a fullerene with a crown ether ligand. 

 

Mono, Bis and Tris – Fullerene Derivatives by “Pencil-MALDI” 

Pencil was tested as a matrix for three fullerene derivatives with different numbers of the 

same ligand – mono, bis and tris, the structures of which were shown in the experimental 

section  of this chapter. These derivatives are structurally closely related to Isopropyl mono. 

They incorporate an ethyl ester instead of the isopropyl ester. Their MALDI and LDI 

behaviour is very similar to that of isopropyl mono. The three derivatives allow testing of the 

use of pencil lead for quantitation. A 1:1:1 molar ratio of mono:bis:tris was tested with 6B 

and 8B pencil lead to evaluate the recovery of these analytes when laser activated. The 

resulting spectra are shown below: 



Chapter 5 
 

127 
 

 

Figure 5.23: Mono, bis and tris on 6B and 8B pencil 

The huge signal at m/z 720, representing fragmentation of mono, bis and tris into C60 

provides yet another indication of how unsuitable pencil lead is as a MALDI matrix for 

fullerene derivatives, beyond isopropyl mono and the crown ether adduct to C60, compound 

8.13. Enhancement of the m/z region of 800 to 1300 shows the molecular ions and the 

sodium and potassium adducts: 

 

Figure 5.24: Enhancement of the molecular regions of mono, bis, tris on 6B and 8B pencil 

Again, mono, bis and tris were mixed in a 1:1:1 molar ratio to form a single solution, which 

was thoroughly shaken prior to application to the target plate to ensure the ratio on the target 

plate was as close to the solution ratio as possible. In previous DCTB-MALDI experiments 

the molecular ions were detected from a 1:1:1 target and the ratio of the peak intensities has 

been observed to be approximately 1:2:3 in positive-ion mode for mono:bis:tris, and 3:2:1 in 

negative-ion mode. Quantitation in MALDI is possible, but involves the time consuming 

recording of calibration curves for every component. In our DCTB-MALDI experiments the 

ratios obtained for the molecular ions remained constant over a wide range of laser powers 

and from one experiment to the next. As a consequence, one could have used DCTB-
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MALDI in principle for the quantitation of mono, bis and tris, for instance to check their 

relative yields in a synthesis. 

Perhaps even more important than reproducibility for the applicability of quantitation is the 

fact that DCTB-MALDI produced molecular ions free of fragmentation. Therefore, the rates 

by which the three compounds would decompose into C60 are not important, as no 

dissociation occurs. This is in contrast to the use of pencil lead, where the C60 fragment was 

dominant. It is not likely that the C60 fragment ion originates from the alkali adducts of mono, 

bis or tris, as the charge would reside with any metal containing fragment. However, the 

neutral compounds could decompose to C60 followed by ionisation and the relative rates for 

these reactions are not known. Therefore, pencil lead is not suited for the quantitation of 

fullerene derivatives of the type studied here. 

Furthermore, in the experiments above the relative abundances of mono, bis and tris do not 

follow the previously observed ratio, and indeed the uptake of potassium or sodium ion 

differs greatly. Mono, with the molecular ion at m/z 878 shows very little sodium and even 

less potassium adduct formation, yet for tris, with the molecular ion at m/z 1194, there is a 

huge sodium adduct formed at m/z 1217 and a considerable potassium adduct at m/z 1233, 

increased when on 8B pencil. Bis at m/z 1036 does not appear to form any potassium 

adducts with the 6B pencil, only a sodium adduct at m/z 1059, which appears reduced 

relative to the molecular ion when 8B pencil is used. 

The only tendency obvious in these experiments is again a more pronounced potassium 

uptake when the 8B pencil lead is used. However, other more general tendencies cannot be 

deduced as the metal adduct formation seems rather random. One might conclude that tris 

shows more metal attachment than the other two compounds but some kind of indication of 

the quantitative composition of the target are absent from the data. Consequently, the alkali 

attachment occurs but shows more irregularities than general trends, so that any effort into 

the direction of using this approach for quantitation will be much more complicated than the 

use of DCTB-MALDI. Furthermore, adduct formation gave such low absolute abundances 

that LIFT experiments could not be conducted. 
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Use of adduct formation to distinguish isomers 

Building on the ease of alkali metal addition to the crown ether derivative 8.13, the following 

investigation was aimed at the distinction of isomeric OCFs through the dissociations of their 

sodiated and potassiated isomers. Isomer OCFs provide almost identical DCTB-MALDI 

spectra without any indication as to which isomer was responsible for the data. As will be 

shown below, the same is true for the LIFT spectra of the molecular ions. The motivation of 

this investigation comes from the speculative idea that sodium and/or potassium may attach 

to the heteroatoms at the rim of each isomer in a distinct manner, so that dissociations 

would lead to the release of different entities. The investigations were conducted with three 

of the isomeric OCF pairs, including the pairs 2.1, 2.2, as well as 2.3, 2.4 and 2.5, 2.6. The 

corresponding DCTB-MALDI experiments were discussed in chapter 3 and the structures 

are again depicted below. 

 

 

Compounds 2.1, left, and 2.2, right: 
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Compounds 2.3, left, and 2.4, right: 

 

 

Compounds 2.5, left, and 2.6, right: 

 

 

The three pairs of the isomeric OCFs were studied as follows. LIFT spectra of the molecular 

ions were obtained using DCTB-MALDI as a method of ion production. LIFT experiments of 

the sodiated and potassiated quasi-molecular ions were recorded by employing 6B, 8B and 

HB pencil lead as ablation surfaces in different sets of experiments for all six compounds. 

Tandem and “normal” mass spectra therefore included a minimum set of 36 different 

experiments. Further experiments were conducted in which the HB pencil lead was spiked 

with DCTB; together with repeat experiments the actual volume of experiments was much 

greater. All data from these experiments were carefully considered in the elucidation of the 

gas-phase dissociation behaviour of the cationised OCFs and it was concluded to lead the 
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argument in the following way based only on the set of data that were obtained for the OCF 

pair 2.3 and 2.4. Two reasons are responsible for this procedure. Firstly, the three pairs 

show a common dissociation scheme which can be explained by discussing just one of the 

pairs. Secondly, the OCF pair 2.3 and 2.4 gave the “best” set of spectra; “best” in this 

context means free of contributions of unwanted ions. The LIFT experiments of the crown 

ether adduct 8.13 already revealed that the ion gate is not able to separate the sodiated and 

the potassiated complexes when studying their respective dissociation. Both adducts had 

contributions from the other adduct in their LIFT spectra. The same situation was observed 

for the three pairs of OCFs. While mass resolution and accuracy were perfectly suited to 

identify the daughter ions, the separation of parent ions could not be sufficiently achieved. 

Therefore, interference-free daughter ion spectra (LIFT) could only be obtained in those 

cases where the unwanted parent ion was initially produced in too low abundances to 

interfere. Such conditions were coincidentally achieved for the 2.3/2.4 pair. While the DCTB-

MALDI experiments did not produce any sodiated and potassiated adducts that would 

contribute to the LIFT of the molecular ions, in LIFT of the sodiated adduct the potassiated 

adduct was not generated in a high enough abundance to contribute and vice versa. 

Following the discussion of the dissociation behaviour, illustrative examples of LIFT spectra 

with such unwanted contributions will be shown. 

The LIFT spectra of the molecular ions of OCFs 2.3 and 2.4 are shown below: 

 

Figure 5.25: LIFT of molecular ions of 2.3 and 2.4 with DCTB-MALDI 
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Figure 5.26: Enhancement of fragment peaks from LIFT of molecular ions of 2.3 and 2.4 

The LIFT spectra of the OCF pair 2.3 and 2.4 are representative for all three pairs 

investigated in that two major daughter ions are observed at m/z 1049 and m/z 1036. There 

is no isomer specific intensity order so that both ions are found abundantly with one or the 

other dominating. Since the three OCF pairs differ through the par substituent on the 

benzene unit ligated to the rim, the observation that a set of identical daughter ions is 

generated from the different OCFs means that the ligand which differentiates the three pairs 

is lost in the dissociation. The mass difference from the respective molecular ion to m/z 1049 

indicates that in each case one additional hydrogen atom was transferred to the released 

ligand, so that each pair lost a H2N-C6H4-X moiety with X = H for the 2.1/2.2 pair, X = Br for 

the 2.3/2.4 pair and X = OMe for the 2.5/2.6 pair. The other peak at m/z 1036 corresponds to 

loss of the NNHC6H4X ligand of each compound. In summary, the dissociations of the 

molecular ions of all six compounds involve the hydrazone ligand without providing a 

distinction between them. 

The following spectra were obtained for samples 2.3 and 2.4 on 6B and 8B pencil: 
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Figure 5.27: 2.3 and 2.4 on 6B and 8B pencil 

As a first impression, the spectra are dominated by unwanted signals that originate from the 

pencil lead. The molecular ion region is enlarged in order to view more clearly the relative 

ratios of molecular ion versus sodiated and potassiated quasi molecular ion: 

 

Figure 5.28: Enhancement of molecular ion region of 2.3 and 2.4 on 6B and 8B pencil 

As seen in the previous experiments the 8B pencil produces potassium adducts in far 

greater quantities than the 6B pencil surface. 
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The empirical formula for 2.3 and 2.4 is C86H21N4O2Br, with relative molecular mass of 1221 

Da (1220 Da includes the 
79

Br isotope). The molecular ions are only present in minute 

abundances. The presence of bromine influences the isotopic patterns seen above. The 

sodium adducts are centred at m/z 1245 (1243 Da includes the 
79

Br isotope) and the 

potassium adducts are centred at m/z 1261 (1259 Da includes the 
79

Br isotope). 

Similar results were obtained for all three pairs with marginal differences. Also the normal 

pencil spectra do not provide a means of distinguishing the isomers of each pair. 

After ascertaining that sodium and potassium adducts could be formed with the isomeric 

open cage fullerenes, in the next stage positive-ion mode LIFT experiments were performed. 

The dissociation behaviour of the sodiated and potassiated adducts of compounds 2.3 and 

2.4 is provided by the positive-ion LIFT mass spectra obtained on 8B pencil. The complete 

spectra are shown below: 

 

Figure 5.29: Positive-ion mode LIFT of Na and K adduct of 2.3 and 2.4 

Enhancement of the m/z region 1000 to 1300 provides closer insight into the main fragment 

ions: 
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Figure 5.30: Positive-ion mode LIFT of Na and K adduct of 2.3 and 2.4 on 8B pencil 

The LIFT spectra of the sodium and potassium adduct of 2.3 and 2.4 were recorded from the 

quasi molecular ion incorporating the 
81

Br isotope. The sodium adduct of isotope 2.3 shows 

two fragment ions. The fragment ion at m/z 1073 is caused by the loss of a neutral of 172 

mass units which is given by the NH-C6H4-Br entity of the hydrazone ligand. This 

assignment is also corroborated by the fact that the LIFT spectrum of potassiated 2.3 

displays the same fragmentation through the corresponding mass shifted ions. Notably, the 

fragmentation of the sodium adduct involves the loss of a radical (odd electron species) 

whereby the molecular ion shows only losses of closed shell neutrals (even electron 

species). The same fragmentation is the only reaction that occurs for the alkali adducts of 

isomer 2.4. The LIFT experiment brings with it the first “clear-cut” distinction between the two 

isomers, through a very pronounced additional fragmentation which is not observed for the 

2.4 isomer. The distinguishing fragmentation shows the loss of a neutral of mass 78. There 

are two options for this fragmentation: loss of C6H6 or loss of C5H4N˙. Without specific 

labelling experiments a distinction of these two options cannot be achieved, so that the 

current assignment must remain speculative. Since the other fragmentation of the metal 

cationised isomers features the loss of an odd electron species and while in contrast the 
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molecular ions lose only closed shell neutrals, it seems likely to assume that the C5H4N˙ 

radical is lost. 

The dissociation behaviour for sodium and potassium adducts is the same. The change of 

the metal cation does not induce a distinct behaviour, however, the metal ion induces a 

distinction between the two isomeric OCF forms, which is not observed in dissociations of 

the true molecular ions. This behaviour may be explained through the coordination of the 

cation to the heteroatoms of the rim. In those isomers that show the additional loss of the 

pyridyl radical, the heteroatoms are more situated around this ligand. In the other type of 

isomers, the pyridin moiety is further away from the heteroatoms. It is tempting to spectulate 

that the cation interaction may occur with several of the heteroatoms simultaneously and  

may cause in isomers 2.1, 2.3 and 2.5 a repulsion that pushes the ligand away from the rim. 

In the isomers 2.2, 2.4 and 2.6 the complexes cation is located further away from the pyridyl 

ligand and the repulsive interaction is therefore reduced. 

Obviously, cationisation leads to a clear distinction of OCF isomers through their 

fragmentation behaviour, yet the structural interactions that cause these effects must remain 

speculative. Future work may involve computational approaches to provide more insight into 

the interaction of the cation and the atoms at the rim. 

As an example of the kind of interferences that occurred in many of the spectra of this study, 

the LIFT spectra of compounds 2.1 and 2.2 are shown below as obtained on 6B pencil. All 

spectra are dominated by the presence of the potassiated isomers. The LIFT spectrum of 

2.1-Na
+
 shows the same signals as seen in the 2.1-K

+
 and 2.2-Na

+
 shows the same major 

fragment ion seen in the decomposition of 2.2-K
+
. The potassium adduct spectra possess a 

slight mass inaccuracy due to a slightly inaccurate calibration and the signals in the sodiated 

adduct spectra are clearly shifted to lower masses. This latter mass shift is probably a result 

of the origin of these signals as interferences that were co-selected as potassiated adducts 

at the masses of the sodiated adducts. 
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Figure 5.31: Positive-ion mode LIFT of the Na and K adducts of 2.1 and 2.2 

 

Comparison of 6B, 8B and HB pencil lead spiked with DCTB 

The motivation to examine the HB pencil in addition to 6B and 8B results from the fact that it 

was reported previously that lower B rated pencils provide better spectra. The motivation to 

add DCTB to the HB pencil resulted from the observation that the alkali adducts were always 

accompanied by a substantial degree of fragmentation signals. It was hoped the DCTB 

would aid the gentle desorption of the species into the gas-phase and thus increase the 

softness of the process (minimise neutral decomposition), so that cationisation could still 

take place, induced by the pencil lead, but with much reduced decomposition. 

The results are summarised as follows: 

None of the pencil applications could compete with DCTB-MALDI regarding the cleanliness 

of spectra, the abundant production of molecular ions and the reduction of fragmentation. 6B 

and 8B generated minute amounts of the molecular ions, however, sodium and potassium 

addition was predominantly observed. 8B produced commonly more pronounced potassium 

adducts. HB did not enhance the performance. There was still pronounced fragmentation. 

The molecular ions were enhanced with HB and the alkali adducts less abundant than with 

6B or 8B. The addition of DCTB to HB pencil did not enhance the performance in terms of a 
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softer, more pronounced production of the alkali adducts. DCTB addition to the pencil 

resulted in a change of ion formation mechanism: self protonation of the analytes in contrast 

to metal attachment or charge exchange. 

To illustrate the above summarised findings, HB pencil spectra (without DCTB) of some of 

the isomeric OCF pairs are shown below. The full spectra illustrate the dominant presence of 

impurities from the pencil lead and of fragments of the alkali adducts. 

 

Figure 5.32: 2.1 and 2.2 on HB pencil 

The enlarged molecular ion region shows that the molecular ion peak is stronger in relation 

to the adduct peaks. The overall formation of molecular ions is not comparable to the use of 

DCTB. 

 

Figure 5.33: 2.1 and 2.2 on HB pencil 

Experiments were also performed by mixing DCTB with the compounds prior to application 

to the pencil, in an attempt to increase the production of the adducts. The presence of DCTB 
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could have hindered adduct formation, so the amount of DCTB was reduced relative to 

“normal” experiments, to ensure some protection, without hopefully reducing adduct 

formation. The experimental results are illustrated initially by the spectra of the isomeric 

open cage fullerenes 2.5 and 2.6: 

These isomeric open cage fullerenes have the empirical formula C87H24N4O3, and a relative 

molecular mass of 1172 Da. 

 

Figure 5.34: 2.5 and 2.6 with DCTB on Pencil 

Adduct formation is demonstrated when the m/z region 1180 to 1220 is enhanced, below: 

 

Figure 5.35: 2.5 and 2.6 with DCTB on Pencil 

All six OCFs show a similar behaviour in their DCTB-spiked HB pencil analysis. Neither the 

metal adduct formation, nor charge transfer as in DCTB-MALDI is the dominant process. 

Instead, all six molecules are protonated. Since the amount of DCTB was reduced in these 

experiments, and since normal DCTB-MALDI does not show the protonation, it can be 

assumed that the ion formation is the result of self protonation of the analytes. The present 

data suggest that DCTB provides a soft gas phase transfer followed by self protonation as 

DCTB is not present in abundant amounts to allow for charge exchange to occur. A detailed 
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investigation into this interesting change in ion formation mechanism is beyond the scope of 

this work and will be followed up in future studies. 

 

Laser Activation of (Z)- and (E)-acenaphthylene dimer (“Cis” and “Trans”) on 

Pencil 

Inspired by the distinction of OCFs through the fragmentation behaviour of their alkali metal 

adducts, this part of the investigation of the use of pencil lead surface is aimed to elucidate 

the laser ablation of a pair of isomeric hydrocarbons. While silver cations are well known to 

strongly interact with the π-system of unsaturated hydrocarbons, alkali metal cations are not 

particularly renowned for this type of interaction, as these tend to more readily attach to 

heteroatoms. A detailed investigation into the interaction with silver cations follows in chapter 

8, where the species were investigated by electrospray ionisation. However, the ease of 

pencil lead MALDI led us to check if alkali interactions could be seen as well. The two 

isomers were the (Z)- and (E)-acenaphthylene dimer, which were termed in the following as 

“cis” and “trans” and which were provided by Professor Helena Grennberg, Uppsala 

University, Sweden. The structures of both are as follows: 

 

Figure 5.36: Structure of “cis”, left, and "trans", right  

The positive-ion mode spectra below demonstrate “cis” and "trans" individually analysed with 

either 6B or 8B pencil. 
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Figure 5.37: “Cis” and “trans” on 6B and 8B pencil 

 

The molecular ion of “cis” and “trans” would appear at m/z 304, the sodium and potassium 

adducts as m/z 327 and m/z 343 respectively. The spectra only show the mass range from 

m/z 200 upwards as there were enormously abundant signals of unattached sodium and 

potassium ions, which dominated the spectra. The tail of the potassium peak is still very 

obvious in the spectrum of “trans” on 8B pencil. The intensities of the peaks shown are 

relative to the potassium peak at 100%, the values of the peak intensities in the above 

spectra demonstrate just how large the contribution from potassium was. 

Focussing on the m/z region between 300 and 400 portrays the molecular ion peaks and the 

adduct formation: 



Chapter 5 
 

142 
 

 

Figure 5.38: “Cis” and “Trans” on 6B and 8B pencil 

For “cis”, on 6B and 8B pencil, the same peaks are present; however, the ratio of the 

intensity alters. The peak at m/z 327 is the sodium adduct of “cis”. The peak at m/z 343 is 

the potassium adduct of “cis”.  The increased potassium addition on 8B pencil is a trend that 

was observed in all experiments comparing 6B to 8B pencil. Obviously “cis” is readily 

sodiated and potassiated. This is also corroborated by the collision-induced dissociation 

(CID) spectra of these ions, which reveal sodium and potassium cations as the only 

daughter ions of these adducts. The charge resides 100% with the metal cation. 

 

Figure 5.39: Positive-ion mode of the Na and K adducts of “cis” 
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With “trans”, the alkali adducts are not readily formed. Only a tiny potassium adduct was 

obtained on 8B pencil and identified through its CID spectrum which gave the same result as 

for the “cis” adduct. The signals observed for “trans” in the region just above m/z 300 and 

the m/z 600 are “impurities” that result from the pencil lead and are produced when pencil is 

alone on the target. 

Both isomers gave unexpectedly poor results with DCTB-MALDI. CID experiments of m/z 

304 ions did not show the expected dissociation into two halves, so that one cannot be 

certain that molecular ions were formed at all. Since thermochemical data such as IP, EA or 

dissociation energies of “cis” and “trans” are currently not available, the reasons for this 

failure remain unclear. 

As indicated above, the behaviour of “trans” showing practically no alkali metal addition is 

the expected case and the relative readiness by which adduct formation occurs with “cis” is 

unexpected. One may assume that the commonly weak interaction between the system and 

the alkali cation is strengthened in “cis” by the fact that the two sides of the molecule may 

interact simultaneously with the cation. In summary, the two isomers show a distinct 

behaviour in reactions with sodium and potassium cations whereby “cis” shows some 

addition and “trans” almost no addition at all. CID of the adducts would not provide a 

distinction of the isomers as shown by the potassiated adducts produced for both isomers 

which gave the potassium cation as the only daughter ion. This fairly unspectacular 

behaviour has to be seen in relation to the rich and illustrative behaviour when silver is used 

as the cationising metal, as will be discussed in chapter 8. 

  



Chapter 5 
 

144 
 

Conclusion 

Pencil has been shown to be an unsatisfactory matrix for fullerenes and their derivatives, 

especially when compared to the benchmark of DCTB-MALDI. There is extensive 

fragmentation and the production of the molecular ion peak is commonly of low intensity. In 

general, higher laser fluences are needed than in DCTB-MALDI. Analytically valuable is the 

addition of sodium and potassium to analytes with heteroatoms. This could be used for 

identification, but also can be useful as a means to produce such adducts for further 

experiments. 

As an example isomeric OCFs could be distinguished through a clearly different fragment 

ion ratio in dissociations of their sodiated and potassiated adduct ions, indicating that the 

cation interaction is distinct and brings about a differentiation, which could not be achieved in 

DCTB-MALDI and in dissociations of isomeric molecular ions. Direct alkali cation addition 

was also able to distinguish a model pair of isomeric hydrocarbons. 

The difference between 6B and 8B pencil was not pronounced in terms of matrix 

performance, however 8B spectra produced higher quantities of potassium addition. Use of 

the 8B pencil did also occasionally seem to hinder ion production, resulting in lower quality 

spectra overall. 

HB pencil appeared to produce bare molecular ion peaks in somewhat greater intensity 

relative to the adduct peaks. DCTB-spiked HB pencil experiments lead to self protonation of 

the analytes, a process that will be followed up in future work. Analysis in the negative-ion 

mode is not successful.  

In summary, pencil lead-MALDI does not match the quality of DCTB-MALDI regarding 

softness, cleanliness of spectra and sensitivity, but could have its merits as a facile 

approach to generate sodium and potassium adducts of structurally suited fullerene 

derivatives. 
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Chapter 6: Synthesis of C60 Polycyclic Aromatic Hydrocarbon 

(PAH) Complexes and Analysis with MALDI and ESI 

 

Introduction 

C60 and other fullerenes react with polycyclic aromatic hydrocarbons (PAHs) to produce a 

range of complexes, which, due to their very labile nature are interesting fullerene 

derivatives to study with mass spectrometry. The lability of these adducts represents the 

benchmark to test the softness of the ionisation method applied. Adduct formation of 

anthracene to C60 was initially reported in 1992
1
, however, these adducts were not analysed 

in any depth until 1993, when the structures of it and related complexes were confirmed 

using 
1
H-NMR, 

13
C-NMR,

2,3
 thermal gravimetric analysis (TGA), UV-Vis and IR 

spectroscopy
2
. The compounds are difficult to observe with mass spectrometry, due to the 

tendency of the complex to undergo a retro Diels-Alder reaction to leave C60 and anthracene 

as separate entities. 

The research performed in this context is primarily concerned with the complexes of C60 with 

anthracene, tetracene and pentacene. The PAHs are shown below: 

 

Figure 6.1: The structure of anthracene, C14H10 

 

Figure 6.2: The structure of tetracene (2,3-Benzanthracene), C18H12 

 

Figure 6.3: The structure of pentacene, C22H14 

Part of this research was performed in conjunction with a third year undergraduate student, 

ManTo (Henry) Chan, as part of his third year laboratory project. These projects have only 
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15 days of laboratory time devoted to them, and in this instance was used for the synthesis 

of the different complexes and the initial MALDI mass spectrometric analysis. The ESI 

analysis and subsequent in-depth MALDI mass spectrometric analysis, discussed in chapter 

8, were performed after the project’s completion, without the assistance of ManTo Chan. 

 

Synthesis 

Various synthetic methods of the C60-anthracene (C60(C14H10)) complex have been 

employed previously, the most prevalent being the refluxing of the reagents for several 

hours. 

Initial attempts at synthesis involved dissolving C60 and anthracene in toluene in a 1:10 

molar ratio (respectively) and refluxing for 3 days
2
. C60-anthracene was produced, and found 

to be stable in a freezer at -10ºC for several weeks. 

A second method developed in 1993 dissolved C60 and anthracene in a 5:6 molar ratio 

(respectively) in benzene, then refluxed for 12 hours under N2. The reaction was performed 

at different temperatures and production of the mono-adduct was found to be inversely 

affected by increasing temperature
3
. At room temperature the yield of the mono-adduct 

C60anthracene was 25%, with the yield of the di-adduct, C60anthracene2, 24%. It was found 

that heating the mono-adduct at greater than 60ºC produced the reactants, confirming that 

the reaction is easily reversible. 

C60anthracene has also been formed by dissolving a 1:1 molar ratio of C60 and anthracene in 

naphthalene and stirring at 200ºC whilst sealed in a pyrex glass tube under vacuum for 2 

days. The complex was produced in a 67% yield
4
.  

A rapid method of production involves the modification of a domestic microwave oven
5
. It 

produced C60anthracene in a yield of 35%, in only 15 minutes. Similar to reflux experiments, 

the C60 and anthracene were mixed in a 1:10 molar ratio (respectively) and dissolved in 

toluene. The power of the microwave oven was set to 800 W. 

High Speed Vibration Milling (HSVM) is another fairly rapid method of producing 

C60anthracene
6
. This is a solvent free method that is assumed to work with localised high 

pressure spots activating local reaction sites. Due to the lack of solvent molecules the 

reacting species can come into a very close proximity, which can be assumed to help 
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promote the reaction. C60 and anthracene were vibrated in a 5:6 molar ratio (respectively) in 

a stainless steel capsule, for 1 hour at 3500 cycles per minute. A stainless steel milling ball 

was also present inside the capsule. It produced C60anthracene in a 55% yield, and 

C60anthracene2 in a 19% yield. 

This method of production was also applied to the reaction between C60 and pentacene, and 

produced the following complexes: C60pentacene in 19% yield, (C60)2pentacene in 11% 

yield, and C60pentacene2 in 15% yield. The synthesis was also applied to C60 and tetracene, 

producing the mono adduct in a 61% yield. 

The synthetic method employed for this experiment is listed in the experimental section of 

this chapter. It is based on the method developed by Schlueter et al
2
.  

 

Reaction Pathway 

The reaction between C60 and anthracene, tetracene and pentacene proceeds via a Diels-

Alder, or [4+2] cycloaddition reaction. For the reaction between C60 and anthracene, the 

reaction has been confirmed as a concerted Diels-Alder reactions
7
. C60 undergoes a wide 

range of cycloaddition reactions, of which the [4+2] has been most studied. The C60-PAH 

complexes easily undergo the retro Diels-Alder reaction, hence the difficulty in analysing 

these complexes using mass spectrometry. Even very soft mass spectrometric techniques 

result in the separation of the PAH from the C60.  Prior to the present investigation, ratios of 

intact molecular ions of C60anthracene complexes relative to the C60 fragment ion were 

typically only a few per cent (typically around 3%), even when soft ionisation methods such 

as Fast Atom Bombardment (FAB) were used
8
. 

The Diels-Alder reaction proceeds as follows: 

 

 

 

Figure 6.4: Mechanism of a Diels-Alder reaction 

Naturally, the resultant effect of the reaction to the C60PAH complexes is disruption to the 

delocalisation of the PAH aromatic π system. The structures of the complexes formed are 

shown below: 
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Figure 6.5: Left to right, the structures of C60anthracene, C60tetracene, C60pentacene 

 

For the PAH, addition will always be located across a central ring. Proof for the structure of 

C60anthracene was confirmed by 
1
H-NMR, TGA, UV-Vis and IR spectroscopy

2
. 

The
 1

H-NMR spectrum also confirmed that anthracene adds across a reactive 6-6 ring 

junction on C60, as is expected of most addition reactions to C60.  

TGA confirmed that C60 and anthracene were bound. Comparison of the UV-Vis spectra of 

C60, anthracene, and the C60anthracene complex showed that the aromatic system of the 

anthracene had been destroyed by binding with C60, whereas C60 was largely unchanged; a 

similar outcome was obtained by analysis of the IR spectra.  

The C60tetracene adduct is slightly different from the C60anthracene and the C60pentacene 

adducts in that the PAH ligand is composed of an even number of benzene rings, however 

the addition still occurs as close to the centre as possible. Proof of its structure came from 

1
H-NMR, UV-Vis spectroscopy and Atmospheric Photo Chemical Ionisation (APCI) MS

6
. The 

crystal structure of C60pentacene was obtained in 2003
9
, and confirms quite clearly that 

addition occurs across the central benzene ring. 

 

Previous Attempts at Mass Spectrometry 

The first attempt to study C60anthracene with mass spectrometry was in 1993, when LD-ToF 

was performed
10

. It was apparent that the synthesis had been successful, as after the 

reaction an insoluble brown substance precipitated out of the solution. However, the mass 

spectrum resulted in only a single peak at m/z 720 for C60. 
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The next attempt at mass spectrometry utilised negative-ion mode FAB, which produced a 

very small molecular ion peak for C60anthracene at m/z 898. m-Nitrobenzyl alcohol was used 

as the matrix, and the Xe beam had an energy of 8 kV
3
. There was also a weak signal for 

C60Anthracene2, the dianthracene adduct. The strongest signal by far, however, was for C60. 

A related compound, the anthracene adduct to C70Ph8 was studied using EI and FAB mass 

spectrometry resulting in spectra that resembled those of C70Ph8 alone. The synthesis had 

been successful in this case as well, as the anthracene addition had been confirmed with 

1
H- and 

13
C-NMR

11
. FAB-MS has also been used in conjunction with 

1
H-NMR and UV/Vis to 

study the bis adducts of the reaction between C60 and anthracene
12

. The use of EI-MS to 

study the adduct of anthracene to C60F18 resulted only in fragmentation peaks for C60F18 and 

anthracene
13

. 

Electrospray mass spectrometry has been used for the analysis of similar [4+2] adducts. 

During a 30 hour reflux in benzene of C60 with a crown ether substituted diene, aliquots were 

removed, diluted with toluene and methanol, and potassium acetate added. These aliquots 

were sprayed in positive-ion mode, and the progression of the reaction monitored. The only 

peak in the spectrum was the potassium adduct of the desired molecular ion
14

. Electrospray 

is a much softer ionisation method than FAB, which could explain the lack of fragmentation. 

It could also be that the C60-crown ether substituted diene adduct is less labile than the 

C60PAH adducts being studied here.  

 

Electrospray of “bare” fullerene derivatives has always been difficult to achieve as non-polar 

molecules tend to be “ESI inactive”. Generally, either polar molecules or solutions with 

already pre-formed ions are best suited for ESI-MS analysis. 

Nevertheless, it has been observed that conditions can be achieved inside the ESI source 

that would mimic an electrochemical cell
15

, and that it is possible to obtain C60 and C70 ions 

in negative-ion mode through reduction with careful optimisation of the conditions.  However, 

the formation of positive ions could still not be achieved
16

. 

To overcome this issue, C60 has been tagged with a crown ether to produce the C61-fulleroid 

shown below, on the right:  
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Figure 6.6: C60 tagged with a crown ether 

In positive-ion mode ESI, crown ethers become charged through either sodium or potassium 

cation attachment, depending on the salt solutions added. A typical preparation for the C61-

fulleroid includes dissolving in benzene and mixing with a 10
-3

 mol dm
-3

 potassium acetate in 

methanol solution to create a solvent ratio of 4:1 benzene: methanol. 

The resulting spectra produced a single peak of the potassiated molecular ion: [M+K]
+
. 

There was no fragmentation. When this method of tagging with the crown ether was 

performed on a C60/C70 mixture, peaks were produced for the C61-fulleroid with potassium 

and the C71-fulleroid with potassium
17

. The method of tagging with a crown ether and 

addition of a cation to it for ion formation in ESI was also found to work for other neutral 

organic molecules such as vitamin D, carboxylic acids, cholesterol and amino acids
18

.  

The crown ether C61-fulleroid was used to monitor C60 reactivity by ESI.  The idea here has 

been that the C61-fulleroid would be used in reactions in place of pure C60, mimicking its 

reactivity and the attached crown ether would allow ESI analysis through metal attachment.  

One illustrative example was the Diels-Alder reaction with vitamin D. This was followed with 

ESI, and it was found that two vitamin D molecules attach consequentially to the C60
18

.  

The research group involved with the tagging of fullerenes with crown ethers for positive-ion 

detection in ESI also developed an interesting approach for negative-ion detection. The 

authors found that methoxy ions in solutions with bare fullerenes would create molecular 

ions of the fullerenes in negative-ion mode without optimisation of the conditions inside the 

ESI source
19

. 
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Using a solution of C60 in toluene, and adding to this sodium methoxide in methanol to 

create a solution with a 1:1 toluene:methanol by volume, negative-ion mode ESI was 

performed. A range of compounds were formed, including C60
-
, C60O

-
, C60(OCH3)n

-
 and 

C60O(OCH3)n
-
, where n was an odd number up to 5, C60O3(OCH3)3

-
, and C60O2(CH2C6H5)

-
. 

Other solvent combinations were also tested, such as toluene/ethanol, benzene/methanol, 

and ethylbenzene/methanol. It appeared that toluene/methanol produced the best spectra. 

The method was also tested with C70, and similar adducts were produced as for C60. 

One issue with these experiments, however, is that they were performed with an instrument 

of only low resolution, and as such the isotopic pattern is not easily distinguishable. 

However, simply enlarging the published spectra seems to reveal that the [M+1]
-
 peak is 

actually more abundant than the M
-
 peak for the majority of the peaks in the spectrum below: 

 

Figure 6.7: Spectrum from Detection of Methoxylated anions of Fullerenes by Electrospray-

Ionization Mass-Spectrometry, Journal of the American Chemical Society, 1993, 115 (22), 

10334-10337 

The findings obtained in this thesis clearly show that the formal addition of hydrogen (or 

hydride) to create MH
-
 is significant in addition to production of the “bare” anions. 

This “methoxide” method was applied to the C61-fulleroid compound shown in figure 6.6, in 

positive-ion and negative-ion mode. In negative-ion mode, peaks for M
-
, M(OCH3)

-
, 

M(OCH3)3
-
 and M(OCH3)5

-
 were produced. In positive-ion mode, both odd and even numbers 

of methoxy groups added to the C61-fulleroid. However, for odd numbers of methoxy groups 
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added, 2 sodium cations also attached. For even numbers of methoxy groups, only 1 sodium 

cation attached, to produce: 

[M(OCH3)nNa2]
+
, where n is 1, 3, 5. 

[M(OCH3)nNa]
+
, where n is 2, 4, 6. 

The sodium adduct of the molecular ion peak was also found, [MNa]
+
. 

A demonstration of how conditions within the ESI source affect ionisation through redox 

reactions comes from the study of dianions of higher fullerenes, in particular C84 and C90
20

. 

These experiments also emphasised how important the properties of the analytes 

themselves are. For instance the electron affinity, as well as solution concentration and 

choice of solvent also affect the formation of ions. The fullerene mixture was analysed in 

negative-ion mode and was dissolved in a variety of different solvents and solvent 

combinations. The sample contained 41% C84, 5% C90, and other fullerenes of between 60 

and 96 carbon atoms, all at around 5% intensity each. In the resulting spectra C90 

dominated, due to it possessing a higher electron affinity. Dianions were also formed, 

however, only from C90 and C84. The negative-ion ESI-MS was performed without additives 

and used such solvents as benzene, o-dichlorobenzene; either alone or mixed with 

methanol or dimethyl sulphoxide. 

A similar technique to ESI, nanospray, involves modification of the electrospray source. This 

technique analyses much smaller amounts than used for ESI-MS to produce similar quality 

spectra. It has been utilised for the detection of non derivatised fullerenes in both positive 

and negative mode, without the addition of salts, and found to be successful
21

. Modifications 

included altering the stainless steel capillary to a gold/palladium coated glass needle which 

is kept at ground potential. There is also the introduction of a pyrex tube with nickel end 

caps, held at different potentials, directly after the spray formation. The spray goes through 

this tube prior to analysis and subsequent detection.  It appears that such modifications 

promote the ability of the source to function as an electrochemical cell. 

Another benefit is that the fullerenes could be dissolved and analysed in toluene, which 

cannot be used in traditional ESI-MS. There was no protonation or deprotonation of the 

sample, and molecular ion peaks of C60 and various other fullerene derivatives were 

observed in both ion modes, with no or very little fragmentation. 
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However, this technique does involve the modification of an ESI source, which is not always 

an option. Ideally, it is desirable that conditions are found where the C60-PAH complexes can 

be analysed with reduced or no fragmentation, and that the intensity of the molecular ion can 

be increased. In this chapter the both most promising soft ionisation methods MALDI and 

ESI were applied to the analysis of the C60PAH adducts. The experiments conducted are 

beyond a simple testing of the suitability of the ionisation methods, they rather represent the 

method development to make the ionisation methods work for the analytes under 

investigation. 

 

Cis-bis[60]fullerene adduct of 6,13-diphenylpentacene 

This complex was synthesized by Prof. Glen Miller of the University of New Hampshire 

(USA) and is composed of two C60 molecules which attach in a cis fashion across the 6,13-

diphenylpentacene backbone
9, 22

:  

 

Figure 6.8: Structure of cis-bis[60]fullerene adduct of 6,13-diphenylpentacene 

This structure is stabilised by van der Waals interactions between the two fullerenes – each 

fullerene has a five-membered ring directly opposite a five-membered ring of the other 

fullerene. These five-membered rings, however, are not exactly aligned with one another
9
. 

Although the structure has been confirmed with a single crystal x-ray, the molecular ion peak 

has never been seen in mass spectrometry, due to the ease with which the compound loses 

the C60 molecules. The molecule can be expected to be even more labile than the C60PAH 

complexes also being studied for this chapter. As such, it is an excellent test molecule of 
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which to attempt MALDI and ESI-MS analysis of, in order to test the softness of the methods 

developed. 
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Experimental 

 

Synthesis of C60Anthracene, C60Tetracene and C60Pentacene 

50mg C60 and the PAH of interest: anthracene, tetracene or pentacene, (Acros Organics 

98%) were dissolved in a 1:10 molar ratio in 15ml of toluene in a 100 ml round bottomed 

flask. The flask was covered with foil to exclude light, and the mixture stirred using a 

magnetic stirrer and hot plate without heating for an hour to ensure complete dissolution of 

the reactants. The solution was then refluxed for 72 hours at 50ºC. A guard tube containing 

CaCl2 was attached to the end of the condenser. 

At the end of the 72 hours the solvent was removed by a rotary evaporator, with care taken 

to ensure the water bath was kept below 30ºC to prevent the retro Diels-Alder reaction. Due 

to time constraints the sample was analysed as formed without further purification. The 

products were stored in a refrigerator. 

 

MALDI Analysis 

The solid samples were dissolved in toluene to make a 1 mg/ml solution. 

DCTB was dissolved in toluene to make a 10 mg/ml solution. 

DCTB and the sample were mixed in an approximately 1:50 molar ratio, the calculation was 

based on the assumption of 100% yield, and applied to the target spot. Typically, 5µl was 

applied per spot. The fullerene calibration mixture was applied to spots adjacent to the 

sample spots. The samples were analysed in positive-ion and negative-ion mode with the 

Bruker Ultraflex II, with both linear and reflectron time-of-flight analysis used. 

 

ESI Analysis 

0.5mg product was dissolved in 2ml DCM. 400µl of this solution was diluted by addition of 

1600µl DCM, to form solutions with concentrations of approximately 50µM. 1ml of this 

solution was mixed with 1ml methanol for ESI analysis. The final concentrations for ESI 

analysis, the calculation based on 100% yield, were C60anthracene: 27.8µM, C60tetracene: 

26.3µM and C60pentacene: 25.0µM. In practise the actual concentration would have been 
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lower. It should be emphasized that no methoxy salt was added, so that the C60PAHs were 

sprayed directly from a DCM/methanol solution. 
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Results 

 

Analysis of C60PAH complexes by MALDI and ESI 

As confirmation of a successful synthesis of the C60PAH complexes, both MALDI and ESI 

were utilised.  For MALDI the most promising matrix: DCTB was employed and for ESI 

spraying a solvent combination in the negative-ion mode was tested, as outlined in the 

introduction to this chapter. The C60PAH complexes are abbreviated in the following as C60A, 

C60T and C60P, representing the raw product of the respective addition reaction of 

anthracene, tetracene and pentacene with C60.   

 

MALDI 

MALDI was employed in both ion modes, however; only in the negative-ion mode could 

molecular ions be obtained: 

 

Figure 6.9: Negative-ion mode MALDI spectra of C60A, left, C60T, centre, C60P, right 

The molecular ions can be seen at m/z 898, 948 and 998, respectively. 

Enhancing the molecular ion region of the spectra shows in more detail the isotopic pattern 

of each compound: 

 

Figure 6.10: Negative-ion mode MALDI spectra of C60A, left, C60T, centre and C60P, right 

For all three ions, the isotopic abundances differ slightly from the expected appearance for 

molecular ions. The M+1 peak is too high in intensity compared to the M peak. The 
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theoretical intensity ratios of M:M+1 peaks are calculated below (based on the 
12

Cn-1
13

C 

peak intensity equalling 1.1n% of the intensity of the 
12

Cn peak, set at 100%). 

C60Anthracene: 100%:81.4% 

C60Tetracene: 100%:85.8% 

C60Pentacene: 100%:90.2% 

The reason for the deviation of the observed isotopic pattern from what is expected for the 

pure molecular ions is most probably due to the very low intensity at which these signals are 

obtained. At very low intensities, we have observed in several other experiments on the 

Bruker Ultraflex II that the isotopic pattern is not always obtained accurately.  We discount 

the possibility of protonation as the experiments are run in the negative-ion mode. 

Positive-ion mode MALDI does not produce a molecular ion peak of the complexes. Only 

peaks for the corresponding PAH and C60 are seen, indicating that decomposition is 

complete under these conditions. 

 

Figure 6.11: Positive-ion mode MALDI spectra of C60A, left, C60T, centre and C60P, right 

The dominant peak in each spectrum is the signal of the PAH. This would be due in part to 

dissociation of the synthesized product; however, an even higher contribution would result 

from the fact that the PAHs were in excess during the synthesis. This also explains why the 

polyaromatic hydrocarbon peaks are at a far greater intensity than the C60 peak, although it 

cannot be excluded that the charge may reside preferably on the PAH. 

The absence of a molecular ion peak for the C60-PAH in positive-ion mode is demonstrated 

by enhancing the m/z region 700 - 1100: 
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Figure 6.12: Positive-ion mode MALDI spectra of C60A, left, C60T, centre and C60P, right 

 

ESI 

The C60PAH complexes were also examined by ESI spraying from DCM/methanol solution 

in the negative-ion mode on the Bruker esquire2000 as outlined in the experimental section.  

As ESI is in general a softer ionisation technique than MALDI, it was hoped that this would 

decrease the appearance of fragmentation and increase the intensity of the molecular ion 

peak. 

C60Anthracene: 

 

Figure 6.13: Negative-ion mode ESI spectrum of C60A  
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Despite a considerable amount of noise in the low mass region, the quasi-molecular ion 

peak for C60A and the related fragmentation peaks are present. 

The enhancements of the respective mass regions below, clearly indicate that the observed 

masses are accurate and that the peaks observed at m/z 721.1 and m/z 899.2 are in fact 

due to C60+1 and C60A+1, i.e. each plus one additional mass. 

Enhancement of the m/z region 700 to 900 shows the most important peaks: 

 

Figure 6.14: Negative-ion mode ESI spectrum of C60A, demonstrating the C60+1 / +31 and 

C60A+1 / +31 peaks 
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Figure 6.15: Isotopic patterns in the C60 region, left, and in the C60A region, right 

 

This indicates addition of a hydrogen atom.  Mechanistically it seems likely that the ion 

formation occurs through the addition of hydride (H
-
) to C60 and C60A. However, there are 

also peaks at 30 mass units higher for both C60+1and C60A+1. These would represent the 

formal addition of OCH3, to the M+1 species, in other words: methanol addition to the 

molecular anions.  At present, it can only be speculated about the actual mechanism by 

which these ions are formed. Since ESI was conducted without methoxy salt addition, the 

most likely source for both anionic attachments to the fullerene seems to be the solvent.  

The fact remains, however, that the C60A-containing ions are more abundant than the 

fragments, indicating that the overall process is much softer than DCTB-MALDI.  For the 

observed ions there is no obvious formation mechanism at hand and its elucidation was not 

the prime focus of this investigation.  Therefore, future experiments are planned to elucidate 

in more detail the actual ion formation mechanism.  

For C60Tetracene the following results were obtained when electrosprayed under the same 

conditions: 
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Figure 6.16: Negative-ion mode ESI spectrum of C60T  

 

As for C60A, the spectrum produced is noisy; however, peaks for C60+1 and C60Tetracene+1 

are present. The most intense peak in the isotopic pattern in the C60 region is at m/z 722 

(C60+2) and for the C60T region, the most intense peak is at m/z 949.2 (C60T+1).    

The m/z region of 700 to 975 is enlarged in the following: 
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Figure 6.17: Negative-ion mode ESI spectrum of C60T, showing the C60+1 and C60T+1 peaks 

The two peaks are again enlarged in the following: 

 

Figure 6.18: Isotopic patterns of C60, left and C60T, right 

It seems likely that the low abundance of the ions leads to the observed inaccuracy of the 

isotope pattern in the C60+1 region.  For all three compounds, C60T gave the weakest ions 
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and this was the only slight deviation from the C60+1 and C60PAH+1 pattern. For C60T no 

peaks appear at 30 m/z unit higher for either of the important peaks. This is most likely due 

to the decreased signal to noise ratio compared to the C60A spectrum.  

C60P gave the following ESI data when sprayed under identical conditions: 

The negative-ion mode ESI spectrum of C60P appears cleaner and shows greater intensity 

signals than the spectra for C60A and C60T. At first glance, no signals seem to be present in 

the C60 region, but a small peak in the m/z 1000 region could be indicative of C60P: 

 

Figure 6.19: Negative-ion mode ESI spectrum of C60P 

Enlarging the m/z region 700 to 1015 allows for a better inspection of the peaks in question. 

C60+1 is observed at m/z 720.9 in this spectrum and is of very low abundance.  As for C60A 

and C60T the C60P+1 signal is clearly observed: 
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Figure 6.20: Negative-ion mode ESI spectrum demonstrating the C60 and C60P peaks 

It is obvious that the C60Pentacene peak is much more intense than the C60 peak. The ratio 

is an indication of how much softer this ESI method is compared to MALDI-MS. The isotopic 

patterns of the C60 and C60Pentacene region, displayed in more detail below, again 

demonstrate the addition of one mass unit, respectively. 

 
Figure 6.21: Isotopic pattern of C60+1, left and C60P+1, right 
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The ESI spectra reveal that this ionisation method is even softer than MALDI.  However, the 

C60PAHs produce fewer ions in ESI. The fragmentation into C60 appears much reduced in 

ESI. One must also keep in mind that C60 ions would be present regardless, because of the 

lack of purification.  As the present spectra were obtained from the raw products, the C60 

peak present in these spectra could be entirely due to the unreacted reactant. Methanol 

addition was only seen for C60Anthracene. This is perhaps due to the more intense signal 

produced for C60Anthracene compared with the other C60PAH complexes. 

The most interesting observation of these ESI experiments is the addition of one additional 

mass unit in the ion formation. The calibration of the esquire2000 is very accurate, and does 

not change over the course of an experiment. It is therefore certain that the peaks appear at 

1 m/z value higher than they would do if the anions were formed only by reduction through 

electron attachment.  Often a small peak for the pure anions is seen in the enlarged isotope 

pattern confirming the existence of the more abundant “plus-one-peaks”. Unfortunately, 

MS/MS experiments could not be performed at a high enough resolution that would shed 

more light on the ion formation mechanism. To obtain detailed insight into the ion formation 

mechanism was beyond the scope of this investigation.  The present data suggest that 

hydride (H
-
) addition and in the case of C60A also methoxy (

–
OCH3) addition may be the way 

by which the ions were formed. This may involve predominantly the solvent.  However, only 

future experiments will bring clarity.  

 

Testing the Validity of MALDI as soft ionisation approach 

The MALDI spectra of the PAH raw products indicated extensive fragmentation into C60. This 

is also expected as the compounds are well-known for their lability. However, as the 

samples had not been purified prior to analysis the extent of fragmentation in relation to the 

presence of unreacted C60 was not clear. To test the validity of MALDI as a soft ionisation 

method for analysis of these compounds, a purified sample of C60P, provided by Glen Miller 

from the University of New Hampshire (USA), was subjected to the same analytical 

conditions as the samples synthesized for this project. 

The purified C60P sample was analysed with MALDI in negative-ion mode over a range of 

laser powers. Two example spectra are shown below: 
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Figure 6.22: Negative-ion mode MALDI of C60P at laser powers: 6%, left, and 11%, right 

The above spectra were obtained at different laser powers. The laser power is given in 

arbitrary units. These percent values are not converted to laser power or laser fluence 

values with units that would have a physical meaning, as the laser power is used here only 

qualitatively. In other words, if the laser power percentage increases, more energy is 

deposited into the sample; the sample is energetically more activated.  For the purified C60P, 

the negative-ion DCTB-MALDI is shown with 6% laser power (LP), displayed on the left and 

with 11% LP, displayed on the right. In the 6% LP spectrum, the intensity of the C60 peak at 

m/z 720 is almost equal to the C60P peak at m/z 998.  The peak at m/z 254 is due to the 

DCTB matrix and can be ignored. A ratio this large has not been observed or published 

previously, and suggests that the MALDI method employed here is more efficient at 

protecting the sample than previous methods. There is still fragmentation into C60, and 

increasing the laser power merely increases the fragmentation as would be expected. A 

close up of the C60 and C60P peaks in the 6%  LP spectrum is below: 
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Figure 6.23: Negative-ion mode MALDI of purified C60P at 6% laser 

For a low laser power, adjusted at the threshold of ion formation, the signal-to-noise ratio is 

also low. This is evident by the “grass” present in the spectrum. Unfortunately the low laser 

power is necessary in order to reduce fragmentation that will produce a strong C60P signal 

relative to C60. The actual measured intensities of the peaks are 913 for 
12

C60, and 616 for 

12
C60P. This corresponds to a ratio of 100:67.5. This is greater than has been observed 

previously by other MS approaches in the literature.  This confirms negative-ion DCTB-

MALDI as an appropriate soft ionisation approach for the analysis of these compounds.  

Finally, in comparison with our ESI experiments employing the negative-ion mode, even less 

fragmentation of the raw product C60P into C60 was obtained.  However, the spectrum 

showed much more noise and less ion abundances when compared to MALDI, so that 

MALDI would be the method of choice to apply to the C60PAH analysis.  One must, however, 

keep in mind that both ESI and MALDI experiments were performed on different instruments 

and the influence of the analyser on the sensitivity of the experiment is important but not 

known in this context. 
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Other Observations 

Several other observations were made throughout these investigations which are discussed 

in the following. 

 

C60T2 

It was observed during the MALDI analysis of the raw products that a small peak, 

corresponding to the addition of two tetracene molecules to C60 had occurred. This was not 

observed for the C60A or C60P complexes and was also not observed in ESI experiments. 

 

Figure 6.24: Negative-ion mode MALDI of C60T 

The small peak at m/z 1177.218 is close to the expected m/z of [C60Tetracene2]
-
. 

To confirm that this peak was [C60Tetracene2]
-
, negative-ion mode LIFT was performed on 

both m/z 948 (left spectrum, below) and m/z 1177 (right spectrum, below). The resulting 

spectra show that for LIFT of m/z 948, one fragment peak is obtained at m/z 720 - the loss of 

tetracene. For LIFT of m/z 1177, there are two peaks, at m/z 720 and m/z 948, 

corresponding to C60 and C60T, respectively, demonstrating consecutive tetracene loss: 
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Figure 6.25: Negative-ion mode LIFT of C60T and C60T2 

The peaks are shifted by approximately 0.5 m/z from the correct values due to the internal 

calibration of the LIFT method.  Nevertheless, these experiments confirm that a bis adduct 

was produced when tetracene reacted with C60.  It must be assumed that the bis adduct 

formation is coincidental, as the structural difference of tetracene compared to anthracene 

and pentacene do not allow to explain a preference for the bis addition.  However, it is 

evident that negative-ion DCTB-MALDI is more sensitive than the negative-ion ESI 

experiment, which did not show the bis adduct. 

 

Appearance of C60PAH at High Laser Fluences 

The initial synthetic paper
2
 on the initial production of C60A claimed identification of the 

compound through the detection of a small molecular ion in positive-ion direct laser 

desorption ionisation.  In light of the lability of C60A it seems amazing that even a small 

molecular ion should be observable without the use of an appropriate matrix molecule. In 

order to elucidate the validity of such claims, LDI experiments were performed on each 

C60PAH compound at a range of laser powers, in both positive and negative-ion mode, with 

linear and reflectron detection. At the lower laser powers decomposition appeared to be in 

fact complete, as molecular ion peaks for the complexes were absent in the LDI spectra. At 

high laser powers, however, it was observed that there appeared to be small signals, 

corresponding to the relevant C60PAH under investigation. These peaks were small but 

distinct from the fragmentation peaks. This was observed for both negative-ion and positive-

ion mode. 
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It is somewhat unexpected that tiny molecular ions are seen when the laser power is 

increased, as one would tentatively assume that if fragmentation prevails already at low 

laser fluences, this should be especially the case at higher laser powers. 

One possible explanation of this observation could involve fragmentation of the C60PAH in 

combination with recombination of the fragments.  

To test this theory, C60 and each of the PAHs were mixed individually and analysed under 

the same conditions as operative for the detection of molecular ions from the C60PAH 

compounds. If molecular ion peaks relating to C60PAH were observed in the experiments 

where C60 and the PAH were simply mixed, then this would be the result of the C60 and the 

PAH reacting inside the source. The LDI spectra of the C60PAH complexes which gave rise 

to the initial observation are shown below first, starting with C60A: 
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Figure 6.26: Positive and negative-ion mode LDI spectra with linear and reflectron detection 

of C60A at elevated laser fluences 
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The possible molecular ion peak at m/z 898 is of very small intensity relative to the other 

peaks. Enhancing the molecular ion region demonstrates this: 

 

Figure 6.27: Positive and negative-ion mode LDI spectra with linear and reflectron detection 

of C60A at elevated laser fluences 

Peaks at approximately the correct m/z for C60A (m/z 898) are present in all of the above 

spectra. Most molecular ion signals are only very low abundant relative to the surrounding 
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noise. The combination of low ion abundances and high laser fluences can result in the 

inaccuracies in the observed m/z values.  

C60T and C60P behaved very similar to C60A. All three provide low abundant signals in the 

molecular ion region. Only the data for C60T are shown here, the C60P spectra are shown in 

the appendix. 

 

Figure 6.28: Positive and negative-ion mode LDI spectra with linear and reflectron detection 

of C60T at elevated laser fluences 

The molecular ion region for C60T enhanced; the molecular ion is expected at m/z 948: 
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Figure 6.29: Positive and negative-ion mode LDI spectra with linear and reflectron detection 

of C60T at elevated laser fluences 

All three complexes provide low abundant peaks at approximately the correct m/z values 

under the harsh conditions of LDI mass spectrometry, and even in positive-ion mode. Since 
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all three C60PAH compounds have molecular ions at different m/z values it can be excluded 

that the observed peaks are coincidental.  

The next step of this project was to study the mixed samples of C60 and the respective PAH 

under the same conditions. The C60 and PAHs were mixed in a 1:1 molar ratio. Initially, C60 

and anthracene were studied: 

 

Figure 6.30: Positive and negative-ion mode LDI spectra with linear and reflectron detection 

of C60 and Anthracene at elevated laser fluences 

Enhancement of the molecular ion region: 
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Figure 6.31: Positive and negative-ion mode LDI spectra with linear and reflectron detection 

of C60 and Anthracene at elevated laser fluences 

The background noise is high in these spectra, as would be expected from the harsh 

condition. There are, however, some tiny signals at approximately the right m/z values which 

could be attributed to the possible formation of C60A. These signals are greatly reduced 

compared to the C60A peaks in the LDI spectra of the reacted C60A complex.  
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The peak at m/z 980, found when the spectra are obtained in negative-ion mode with 

reflectron detection, is present regardless of the compound being analysed, which suggests 

it is either linked to the C60 or is an artefact of the analytical method. It is an addition of 260 

Daltons to C60, assuming the peak is singly charged. 

The experiments with C60 and tetracene and pentacene did not reveal the formation of the 

respective C60PAH complexes.  The data for tetracene are shown below; the pentacene data 

are displayed in the appendix. 
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Figure 6.32: Positive and negative-ion mode LDI spectra with linear and reflectron detection 

of C60 and Tetracene at elevated laser fluences 

Enhancement of the m/z region for the C60T complex (m/z 948): 
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Figure 6.33: Positive and negative-ion mode LDI spectra with linear and reflectron detection 

of C60 and Tetracene at elevated laser fluences 
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For C60 mixed with either tetracene or pentacene there are no signals that are obvious 

above the noise. This suggests that there has been no formation of the C60-PAH compound 

through laser-induced fusion of fullerene and PAH within the source. 

The experiments with the C60 and the unattached PAHs were performed at the same laser 

power as the original experiments with the synthesised complexes. Given that the conditions 

were very similar, the formation of the C60PAH complex could be expected if the complex 

was being reformed in the source. The conditions were not entirely identical, however, as 

C60 and the PAH were mixed in a 1:1 molar ratio for the experiments with “separate” 

moieties. In the original synthesis the concentration of the PAH was ten times that of C60, 

and there was no purification prior to analysis. 

Future work could involve the same experiments with differing ratios of C60 to the PAH. 

In summary, C60A, C60T and C60P produce minute but intact molecular ions under harsh 

laser desorption conditions.  Only C60 and anthracene combine under these conditions to a 

low amount of the complex.  This seems to indicate that recombination of the separated 

moieties is not the prevailing mechanism of complex formation.  At present it can be only 

speculated about the way in which the intact complex survives the harsh activation. A further 

option may involve cooling and/or protection within the ablated material plume.  If one 

assumes that enhanced laser activation increases the amount of material that is ablated 

from the target.  This could lead to protection of a small amount of species that may survive 

the ablation/ionisation process intact, provided the laser power is high enough.  



Chapter 6 
 

183 
 

Conclusion 

C60Anthracene, C60Tetracene and C60Pentacene have been successfully synthesized and 

characterized using MALDI-MS and ESI-MS.  In particular the negative-ion analysis has 

suffered less from fragmentation. 

The approximate 1:0.7 ratio of the C60:C60Pentacene peaks observed in negative-ion mode 

DCTB-MALDI-MS of the purified C60Pentacene sample is higher than any ratio reported 

previously.  Only negative-ion ESI produces less fragmentation, but with an overall lower 

abundance of the quasi-molecular ion. Additionally, the appearance of the ions in negative-

ion mode ESI-MS is highly dependent on the conditions within the source. This makes 

MALDI the more appropriate approach, although ESI is softer.  The enhanced sensitivity of 

DCTB-MALDI is also confirmed through the detection of a tetracene bis adduct, which 

escapes the detection by ESI.  While DCTB-MALDI produces ions through electron transfer, 

leading to the true molecular ions of the analyte, the ion formation in negative ESI will be the 

topic of future investigations.  At present, there is indication of ion formation through hydride 

attachment (H-) as the main process, leading to M+1 quasi-molecular ions.  Future 

investigations are aimed at the elucidation of the role of the solvent in the ion formation 

mechanism, as in addition to hydride addition, there is occasional methoxy attachment. Both 

anionic attachments seem to result from the solvent. 

Investigation into the possible appearances of C60PAH complexes at high laser powers, in 

both ion modes under LDI conditions has demonstrated that all complexes under 

investigation provide low abundant but intact molecular ions. The complexes are not 

fragmenting and recombining inside the source. The reason for the appearance of the 

complexes at high laser fluence is still to be determined. We currently assume that from a 

certain laser power onwards the amount of material ablated is functioning as cooling and/or 

protecting environment in which the complexes may survive the harsh conditions. 
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Chapter 7: Formation of Amino Acid – Silver Complexes in 

ESI 

 

Introduction 

In recent ESI experiments it has been observed that the amino acid tryptophan can form 

clusters with silver. MS/MS experiments showed that these complexes can be dissociated 

into either smaller clusters, or “bare” silver clusters – silver nanoparticles
1
. 

The motivation of the work presented in this chapter is twofold. Firstly, a dedicated analysis 

of the cluster composition and the investigation of their dissociation behaviour is conducted 

to obtain a better understanding of the principles that determine the formation of these 

aggregates regarding both their electronic and geometric structure. Secondly, the 

experimental conditions are evaluated for the production of mixed molecule/silver and of 

pure silver clusters, aiming at the development of new ways to generate silver nanoparticles 

or clusters in a controlled fashion. 

 

Amino Acids 

Amino acids are compounds containing an amino group and a carboxylic acid group, which 

are attached to adjacent carbon atoms: 

O

NH2 OH

R  

Figure 7.1: Basic structure of an Amino Acid 

There are 20 α-amino acids; all are chiral with the exception of glycine and they all naturally 

occur in the L configuration. They generally exist as zwitterions through the transfer of the 

hydrogen atom from the carboxylic acid to the amino group. Essential for human survival, 

they are used principally by the body for protein synthesis. Individually, some amino acids 

also have other specific roles. As has been discussed in the introduction, ESI-MS is 

exceptionally suited for the analysis of biological compounds; and amino acids have been 

found to form ions through the ion evaporation (desorption) model as discussed in the 

introduction
2
. 
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Tryptophan, (s)-2-amino-3-(1H-indol-3-yl)-propanoic acid, C11H12N2O2, R.M.M. = 204.23 g 

mol
-1

, is the amino acid studied for this chapter. It is a precursor for the neurotransmitter 

serotonin, the hormone melatonin and vitamin B3, niacin. 

O

NH2NH

OH

 

Figure 7.2: Structure of Tryptophan 

 

Silver 

Silver is a metallic element with two naturally occurring isotopes – 
107

Ag (106.9 g mol
-1

) and 

109
Ag (108.9 g mol

-1
). These are found in an approximately 1:1 ratio, with 

107
Ag being slightly 

more abundant. 

Silver has been used for a variety of different applications throughout history.  A recent 

observation concerns its toxicity to bacteria
3
. In the bacteria, silver forms complexes with 

sulphur, nitrogen and oxygen atoms present in the functional groups of organic compounds. 

This interaction results in: 

• Defects in the cell wall resulting in loss of plasma 

• Disturbance of the metabolism of the bacteria 

Both of these effects are fatal for the cell. Silver can also interact with DNA, preventing 

reproduction. 

Recently, research has also focused on medical applications of silver nano-clusters. 

For example, silver nano-clusters have been found to be effective in controlling proliferation 

of peripheral blood mononuclear cells. Allergies and infectious inflammation cause an 

increase in cytokine production and the production of the peripheral blood mononuclear 

cells. Silver nanoclusters were found to inhibit the proliferation in doses that were not large 

enough to be cytotoxic and therefore could possibly be used as anti-inflammatories
4
. The 

production of such silver nano-clusters follows a complex mechanism, essential; however, is 

the chemical reduction of the silver ion. The nano-clusters produced were typically 1.5 nm in 

size. 
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Silver nanoparticles are even more effective than silver alone in their antimicrobial impact. 

Polyamide 6, a material which is used in the production of wound sutures, artificial tendons 

and medical packaging, was spiked with either silver nanoparticles or silver
5
. 

Polyamide 6 containing 0.06 wt % of silver nanoparticles killed 100% of the E.Coli bacteria 

within 24 hours. 

Polyamide 6 containing 1.9 wt % silver ions killed only 80% of the E. Coli bacteria within 24 

hours. 

It appeared that silver ions are released faster from the silver nanoparticles and are able to 

attack the bacteria more effectively, despite the relatively reduced amount of silver present. 

Several approaches made use of silver nanoclusters that were mounted on a carrier, from 

which silver ions escape over time to fight bacteria.  In one instance the silver nanoclusters 

were created in sizes of 3 to 5 nm inside a semi-IPN hydrogel
6
. Another example mounts it 

onto a nano SiO2 carrier, which was also found to be effective against bacteria
7
. 

 

ESI of Silver and Amino Acids 

Previously, silver and amino acids have been electrosprayed with the aim of studying the 

gas-phase interactions of these molecules with the silver cation. After desorption of the 

solvent molecules, an environment is created which allows the study of the interaction of the 

silver ions and the amino acids free of any other interactions (no solvent effects).  Silver (I) 

bound heterodimers of various amino acids were produced in 1998 by electrospraying a 

solution of silver ions and the two amino acids under study
8
. This enabled the evaluation of 

the relative silver (I) binding energies of 19 of the α-amino acids, by the kinetic method, 

which shall be discussed in more detail in chapter 8. 

More recent studies showed that water, and to a lesser extent methanol, can form adducts 

with the amino acid-silver complex
9, 10

. 

The different amino acids studied initially
9
 were: 

• Phenylalanine 

• Tyrosine 

• Tryptophan 

• 4-fluorophenylalanine 



Chapter 7 
 

189 
 

• Alanine 

• Valine 

• tert-Leucine 

• α-aminocyclohexanepropionic acid 

These were electrosprayed individually with silver nitrate, both dissolved in 1:1 

methanol:water. When the amino acid-silver complex was formed, the individual complexes 

were selected and stored in the ion trap for between 3 and 3000 ms, without any activation. 

The most intense peak in the normal spectra was from the amino acid-silver complex, 

however other complexes that formed included (where AA stands for amino acid): 

[AA--Ag--AA]
+
 

[AA+H]
+
 

Ag
+
 

Amino acids with aliphatic side chains produced the following complexes in addition to those 

listed above: 

[AA--Ag--OH2]
+
 

[AA--Ag--MeOH]
+ 

Collision induced dissociation (CID) experiments on these adducts restored the amino acid-

silver complex.  Evidently, all earlier investigations revealed the preference of the silver 

cation to bind two intact molecules. 

 

In a recent investigation, solutions of tryptophan and silver nitrate were electrosprayed 

together and led to mostly unexpected complexes of the following forms
1
: 

[Trp+Ag]
+ 

[Trp+Ag3]
+
 

[Trp-H+Agn]
+
, where n = 2,4,6,8 

[Trp-2H+Agn]
+
, where n = 5,7,9. 

In particular aggregates were composed of several silver atom and one tryptophan molecule 

that had lost one or two hydrogen atoms. These complexes have an even number of 

electrons, and it was deduced that the silver had not replaced the hydrogen atoms lost by 
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the tryptophan, as tryptophan has a total of four exchangeable hydrogen atoms and only up 

to two were absent from these complexes. 

Dissociating these complexes followed similar patterns, and it was found that loss of the 

tryptophan was in competition with the loss of a neutral Ag2, if the silver cluster was smaller 

than Ag7. For [Trp-Ag7]
+
 and larger, the tryptophan was released, leading to a pure silver 

cluster. 

If the resultant silver cluster contained an even number of silver atoms, then one neutral 

silver atom would be lost, to generate a cluster with an odd number of silver atoms, as these 

have an even number of electrons and are more stable than the even numbered clusters. 

For example, multi stage dissociation of [Trp-2H+Ag9]
+
  was observed as follows: 

MS/MS:  [Trp-2H+Ag9]
+
 � Ag9

+ 

MS(3):  Ag9
+
 � Ag8

+
 + Ag7

+
 

MS(4):  Ag8
+
 � Ag7

+
 

MS(5):  Ag7
+
 � Ag5

+
 

MS(6):  Ag5
+
 � Ag3

+
 

The formation of the clusters was dependent on the difference between the capillary and the 

tube lens. Formation was not affected by other source conditions, which suggests that 

clustering occurs within the capillary, and that they are not present in the solution initially. 

To confirm this, a UV-Vis spectrum was obtained of the solution, and this showed no sign of 

nanoparticles formation. Interestingly, the silver clusters did not form if tryptophan was not 

present, which suggested it plays an integral part in the formation of these clusters. 

 These initial findings were followed by a series of investigations by the same researchers 

whereby it was tried to shed more light on the structural features of these clusters.  These 

studies employed collision-induced (CID) and photo-fragmentation in combination with 

quantum chemical calculations
11-14

. However, these studies were performed on a very 

limited amount of clusters and the reported findings are also in part somewhat confusing.  

For instance, while initially the [Ag9Trp-2H]
+
 cluster was reported as the CID precursor for 

Ag9
+
, later work refers to a Ag9Trp cluster without hydrogen deficiency (i.e. the tryptophan 

was intact) and with very different fragmentation behaviour in CID. 
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The motivation for the work of this chapter was therefore to conduct clarifying experiments 

into this new form of mixed metal and bio-molecular clusters. In summary, the present 

investigation provides a much more comprehensive insight into a greatly enlarged 

population of silver/tryptophan aggregates.  
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Experimental 

D,L-Tryptophan (Sigma (Sigma-Aldrich), 99%) was dissolved in water to produce a solution 

with a concentration of 200µM. 

Silver nitrate (AgNO3, VWR BDH Prolab, 99.5%) and silver trifluoroacetate (AgTFA, Aldrich 

(Sigma-Aldrich), 98%) were dissolved in methanol to make a concentration of 1mM. 

The tryptophan solution and one of the silver solutions were mixed in a 1:1 ratio, giving final 

concentrations of 100µM for tryptophan, and 500µM for the silver. 

Silver was electrosprayed alone, in this instance the 1ml of the silver solution was mixed 

with 1ml of water, to ensure the same concentration and solvent ratio as for the tryptophan 

and silver experiments. 

Various conditions on the ESI were altered including the target mass, compound stability, 

the drying temperature and the length of time the spectrum was collected. The average 

spectrum was collected for three minutes; however, some experiments such as MS/MS were 

collected for longer due to the reduced signal intensity. 

For some experiments a drop of formic acid (3% solution, laboratory stock) was added. 
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Results 

 

Tryptophan-Silver Cluster Production 

Tryptophan and silver clusters were produced using the conditions described in the 

experimental section. In contrast to the earlier work by Dugourd and co-workers the present 

study reveals a much richer distribution of the silver/tryptophan hybrids.  In particular larger 

clusters could be produced more abundantly than in previous investigations. Other 

interesting observations concern the number of hydrogen atoms that were lost from the 

tryptophan molecules according to the size of the silver cluster attached and to the number 

of tryptophan molecules present. 

The spectrum displayed below demonstrates the full range of cluster formation and includes 

some pure silver clusters: 

 

Figure 7.3: Full positive-ion mode ESI spectrum of Tryptophan and AgTFA 

The list of tryptophan-silver clusters discovered using the esquire2000 is given below. It is 

arranged in series of increasing tryptophan molecules. The column entitled “m/z” refers to 

the m/z value of the central or most intense peak in the isotopic pattern. Due to the presence 
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of the two silver isotopes, the isotopic pattern of these clusters is complex, particularly when 

larger cluster sizes are involved. 

The isotopic pattern was important in confirming the number of tryptophan molecules and 

silver atoms involved in each cluster, and also demonstrated that there has been apparent 

hydrogen loss. The number of neutral hydrogen atoms lost is displayed in the third column, 

and was deduced by comparing the actual to the simulated isotopic pattern for each cluster. 

Series m/z Hydrogen atoms lost 

AgTrp 311.0 0 

Ag2Trp 418.9 1 

Ag3Trp 526.8 0 

Ag4Trp 634.7 1 

Ag5Trp 742.5 0 

Ag6Trp 850.5 1 

Ag7Trp 956.4 2 

Ag8Trp 1064.3 1 

Ag9Trp 1172.3 2 

Ag10Trp 1282.0 1 

Ag11Trp 1388.0 2 

Ag12Trp 1496.6 2 

Ag13Trp 1604.4 2 

Ag14Trp 1712.3 2 

Ag15Trp 1818.2 2 

Ag16Trp 1928.3 2 

Ag17Trp 2036.2 Unclear 

   

Ag3Trp2 728.9 2 

Ag4Trp2 836.8 3 

Ag5Trp2 942.7 4 

Ag6Trp2 1052.6 3 



Chapter 7 
 

195 
 

Ag7Trp2 1158.5 4 

Ag8Trp2 1268.3 3 

Ag9Trp2 1374.3 4 

Ag10Trp2 1482.1 3 

Ag11Trp2 1591.9 4 

Ag12Trp2 1699.8 3 

Ag13Trp2 1805.9 4 

Ag14Trp2 1915.7 3 

Ag15Trp2 2022.5 Unclear 

Ag16Trp2 2130.4 Unclear 

   

Ag4Trp3 1040.9 3 

Ag5Trp3 1146.7 4 

Ag6Trp3 1254.7 5 

Ag7Trp3 1360.6 6 

Ag8Trp3 1470.4 5 

Ag9Trp3 1576.3 6 

Ag10Trp3 1686.1 5 

Ag11Trp3 1792.2 6 

Ag12Trp3 1902.1 5 

Ag13Trp3 2008.0 6 

Ag14Trp3 2117.9 5 

   

Ag8Trp4 1672.5 7 

Ag9Trp4 1780.3 8 

Ag10Trp4 1886.2 7 

Ag11Trp4 1994.1 8 

Ag12Trp4 2103.9 7 
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Ag10Trp5 2090.2 9 

Ag11Trp5 2196.3 10 

Table 7.1: Full listing of the Trp-Ag clusters formed, with their associated hydrogen loss 

 

For the larger clusters, the signal abundance was sometimes so low that the isotopic pattern 

was nearly indistinguishable from the surrounding background peaks. This resulted in the 

occasional “unclear” labels which appear in the “hydrogen atoms lost” column in the above 

table. However, for these cases it can be assumed that the hydrogen loss pattern follows the 

alternations found for the preceding and more abundantly observed clusters. 

Some example spectra are shown below. For comparison the corresponding simulated 

isotopic pattern is provided. Clusters [Ag3Trp2 minus 2H]
+
 and Ag7

+
 are displayed in the 

spectrum below at m/z 728.9 and 754.3, respectively: 

 

Figure 7.4: Positive-ion mode ESI spectrum of Trp and AgTFA 
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Figure 7.5: Simulated isotopic pattern of [Trp2Ag3 minus 2H]
+
, left, and Ag7

+
, right 

 

Clusters [Ag5Trp3 minus 4H]
+
, [Ag7Trp2 minus 4H]

+
, [Ag9Trp minus 2H]

+
 and Ag11

+
 are 

displayed at m/z 1146.9, 1158.6, 1172.3 and 1186, respectively: 

 

Figure 7.6: Positive-ion mode ESI spectrum of Trp and Ag 
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Figure 7.7: Simulated isotopic pattern of [Ag5Trp3 minus 4H]
+
, left, and [Ag7Trp2 minus 4H]

+
, 

right 

 

 

   

Figure 7.8: Simulated isotopic pattern of [Ag9Trp minus 2H]
+
, left, and Ag11

+
, right 
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Clusters [Ag11Trp4 minus 8H]
+
 and [Ag13Trp3 minus 6H]

+
 are displayed at m/z 1994.3 and 

2008 respectively: 

Figure 7.9: Positive-ion mode ESI spectrum of Trp and AgTFA 

 

  

Figure 7.10: Simulated isotopic pattern of [Ag11Trp4 minus 8H]
+
, left, and [Ag13Trp3 minus 

6H]
+
, right 

 

Hydrogen Loss 

The table reveals that a maximum of 2 hydrogen atoms can be lost per tryptophan molecule 

when a part of the cluster. The silver content seems to determine the extent of the hydrogen 

loss.  In general, the hydrogen loss increases with increasing silver content up to the 
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maximum hydrogen loss possible (that is two hydrogen atoms per tryptophan molecule). An 

even numbered silver content results in a loss of an odd number of hydrogen atoms and vice 

versa.  Only in the case of one tryptophan molecule attached to increasing amounts of silver, 

does the odd/even-alternation seem to fade for the large silver contents and consequentially 

two hydrogen atoms are “missing” continuously. It seems that the clusters with more than 

one tryptophan molecule do not reach a high enough silver content for the odd/even-

alternation to become unimportant. 

To answer the question as to whether these clusters are formed in solution or in the ESI 

process, control experiments with MALDI were conducted. Positive-ion mode MALDI spectra 

were obtained with the DCTB matrix. DCTB functions as a soft electron transfer matrix and 

would not destroy a potential cluster through protonation.  No sign of any tryptophan-silver 

clusters were produced; merely Ag
+
, Ag2

+
 and Ag3

+
 could be observed. 

This provides further support for the assumption that silver and tryptophan do not cluster 

prior to injection, but that the conditions within the ESI source are responsible for cluster 

formation. 

Further proof that the formation of the clusters is dependent upon conditions inside the 

source, results from variation of the parameters that control the conditions. Optimisation of 

the ESI method to produce the clusters was time-consuming, as a variety of different 

parameters needed adjustment. However, the most important factor was found to be the 

value of the “compound stability”. This refers to the voltage difference between the capillary 

end cap and the skimmer inside the source. The voltage difference is referred to as cone-

skimmer voltage in the literature and is used to induce collisions in that transfer region in 

order to dissociate the ions. A high “compound stability” parameter implies a higher voltage 

difference and more collisions. The “compound stability” (CS) for the majority of experiments 

performed on the ESI is between 20 and 100%. For production of the clusters the compound 

stability had to be set at 500%. This equates to a fairly high voltage. At 100% CS, only small 

clusters would form, for example Ag3
+
, which is a very stable silver cluster, an example 

spectrum is shown below: 
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Figure 7.11: Positive-ion mode ESI spectrum of AgTFA and Trp at 100% compound stability 

Ag3
+
 has been reported previously in ESI-MS spectra of aqueous solutions of AgNO3

15
, 

which suggests that the optimised source conditions are perhaps only necessary for the 

larger clusters. 

The addition of formic acid was also found to be unnecessary.  

 

Production of Pure Silver Clusters 

In the pioneering publication
1
 in which tryptophan and silver clusters were first observed, 

pure silver clusters could only be produced through dissociation of a tryptophan-silver 

cluster. These dissociations were accomplished through collision inside an ion trap mass 

analyser. The experiments discussed above indicate that pure silver cluster ions can be 

generated through the increase of the “compound stability” parameter. In other words, pure 

silver clusters can be produced from the tryptophan/silver hybrid clusters through collision 

induced dissociation inside the ESI ion source. This is a gradual improvement of the initial 

approach as no ion trap is necessary to produce pure silver clusters, so that these silver 

clusters are already produced in the ESI ion source as opposed to their production further on 

in the initial analyser. 
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However, the pure silver clusters are still accompanied by undissociated tryptophan/silver 

cluster ions. Advantageous would be a situation that allowed the production of pure silver 

clusters without any unwanted or interfering by-products. 

Exactly this was achieved in the following experiments when pure AgNO3 or AgO2CCF3 

(Silver trifluoroacetic acid) solutions were sprayed without the addition of tryptophan, but 

under exactly those ion source conditions which were optimised for the production of silver 

clusters from the tryptophan/silver experiments. The result obtained when a pure AgTFA 

solution is sprayed under such condition is shown below: 

 

Figure 7.12: Positive-ion mode ESI spectrum of AgTFA 

A spectrum is obtained which only contains pure silver cluster ions without any contributing 

signals beyond Ag3
+
. Obviously, conditions are achieved whereby silver clusters are formed 

through stabilising conditions. The production of these silver clusters from pure silver salt 

solutions was somewhat “temperamental” in that under seemingly identical conditions silver 

clusters would sometimes not form. It cannot be excluded that these pure silver clusters are 
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generated by a similar mechanisms being operative in the tryptophan/silver case, however, 

triggered by compounds that are only present in trace amounts. These could aid the cluster 

formation through their presence but would not appear in the spectrum because of the 

minute abundance.  

The ESI spectrum obtained when AgTFA is sprayed under harsh conditions shows the 

following features: Ag3
+
 dominates at m/z 322.8. All other clusters appear at less than half 

the intensity of the Ag3
+
 peak. Ag13

+
 at m/z 1401.9 and Ag9

+
 at m/z 970.3 are particularly 

dominant. The odd numbered clusters produced signals of greater abundance than the even 

clusters, which is most likely a sign of enhanced stability. A few even numbered clusters are 

apparent including Ag2
+
, Ag8

+
, and Ag14

+
. Only vaguely present are Ag12

+
, Ag16

+
, Ag18

+
 and 

Ag20
+
, their assignment is, however, tentative. When the spectrum is displayed over a wide 

m/z range as above, it is apparent that there are small peaks present at the correct m/z 

values for these even-numbered clusters. However, when enhancing the m/z regions it 

becomes obvious that the isotopic patterns do not appear very distinct above the 

background noise, which hinders a confident assignment. 

The silver clusters produced by this method are listed below, including the even-numbered 

clusters of low intensity. The m/z column refers to the dominant peak in the isotopic pattern: 

Cluster m/z 

Ag 109.3 

Ag2 216.9 

Ag3 322.8 

Ag5 538.5 

Ag7 754.4 

Ag8 861.3 

Ag9 970.3 

Ag11 1188.1 

Ag12 1298.0 

Ag13 1401.9 

Ag14 1510.8 

Ag15 1617.7 
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Ag16 1728.6 

Ag17 1833.4 

Ag18 1940.0 

Ag19 2051.2 

Ag20 2156.1 

Table 7.2: Silver clusters produced in positive-ion mode ESI 

Examples with the related simulated isotopic patterns are shown below. The simulated 

isotopic pattern is generated within the Bruker Compass software, and is displayed below 

the actual mass spectrum. 

For Ag3
+
 and Ag9

+
, the actual isotopic pattern and the simulated isotopic pattern are 

identical, demonstrating that the identification of these clusters is correct. 

By enhancing the m/z regions of the respective clusters, in particular Ag17
+
 and Ag20

+
, it 

becomes apparent just how little of the larger clusters is produced. Obviously the conditions 

within the source favour the production of smaller clusters preferably with an odd number of 

silver atoms. The resulting mass spectrum seems to reflect the harsh conditions within the 

source. 

 

Ag3
+
:      Ag9

+
: 

 

Figure 7.13: Actual (top) and simulated (bottom) isotopic pattern of Ag3
+, 

left, and Ag9
+
, right 
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Ag11
+
:      Ag13

+
: 

 

Figure 7.14: Actual (top) and simulated (bottom) isotopic pattern of Ag11
+
, left, and Ag13

+
, 

right 

 

Ag17
+
:      Ag20

+
: 

 

Figure 7.15: Actual (top) and simulated (bottom) isotopic pattern of Ag17
+
, left and Ag20

+
, right 

 

In order to ascertain whether the silver clusters were a result of conditions inside the source, 

or whether formation had occurred in the initial solution, MALDI-MS was performed. The 

silver solution was applied to a target plate which had previously a DCTB solution applied to 

it. Positive and negative-ion mode MALDI-MS was employed, using both linear and 

reflectron detection. The resulting spectra demonstrate each set of conditions: 
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Figure 7.16: Positive and negative-ion mode MALDI with linear and reflectron detection of 

AgTFA 

Enhancing the m/z region 300 to 700 in the positive-ion spectra allows study of the dominant 

peaks: 

 

Figure 7.17: Positive-ion mode MALDI of AgTFA with linear and reflectron detection 

There is no sign of any silver clusters in that region, which would appear centred at m/z 

values 324 (Ag3
+
), 432 (Ag4

+
), 540 (Ag5

+
) and 648 (Ag6

+
). 

These spectra support the idea that the cluster formation is entirely a result of the conditions 

within the ESI source. For clusters formed in solution there is a high probability that the 

MALDI experiment would have shown some signs of silver clusters as well. 

The conditions within the source have to be precisely set as mentioned previously; altering 

the “compound stability” parameter greatly reduced the size of the clusters produced. 
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However, external factors also appeared to affect the formation of the clusters – once the 

conditions had been optimised, still some experimental runs would lead to no cluster 

formation at all. Compared to AgNO3, the production of pure silver clusters was always more 

pronounced when AgTFA was used. 

 

MS/MS Experiments 

MS/MS experiments were conducted in which a parent ion of choice was selected and 

allowed to fragment following collisional activation. The motivation here was to obtain 

structural information about the clusters through their fragmentation behaviour. 

 

Tryptophan-Silver Clusters 

MS/MS experiments were performed with the majority of the clusters ions produced. If the 

signal was intense enough, MS
3
 experiments were performed on the fragments, in order to 

establish fragmentation pathways even further. The fragmentation of a selected cluster ion is 

characterised by the composition of the daughter ion and its abundance. The dissociation is 

caused by low energy collisions with He inside the ion trap. As a result, the MS/MS spectrum 

will feature fragment ions that are energetically accessible in such collisions. The MS/MS 

experiments aims at the elucidation of the parent ion structure through the analysis of its 

dissociations.  

An example is the actual appearance of such spectra; the MS/MS experiment of [Ag11Trp3-

6H] is shown below for the selection and dissociation of m/z 1792.0 and 1794.0, 

respectively. 

 

Figure 7.18: MS/MS of 1792.0, left, and 1794.0, right 
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The two parent ions are the most abundant ions of the corresponding isotope pattern. The 

difference between m/z 1794.0 and m/z 1792.0 is that one 
107

Ag is replaced by one 
109

Ag, 

which increases the mass by two mass units. Both MS/MS spectra feature the successive 

loss of 202 mass units and corresponding daughter ions are also shifted by two mass units, 

which indicates that the isotope composition of the silver in the cluster has not been 

changed in the dissociation. As a result, the experiment features the loss of two of the three 

tryptophan-2H units in that cluster.  

The table below lists the parent cluster ion of choice and the major fragment ions that 

resulted from its dissociation. The actual MS/MS spectra are shown in the appendix. 

 

MS/MS of m/z Cluster Main Fragment Second fragment Other fragments 

418.9 Ag2Trp No fragments - - 

528.7 Ag3Trp AgTrp Ag3 m/z 266/268, 483.7 

634.7 Ag4Trp Ag2Trp m/z 480/482, 374  524, 588,265/267 

728.8 Ag3Trp2 Ag3Trp Ag3, AgTrp Ag2Trp 

740.6 Ag5Trp Ag3Trp - - 

836.7 Ag4Trp2 Ag4Trp Ag2Trp - 

850.0 Ag6Trp Ag4Trp Ag2Trp - 

942.7 Ag5Trp2 Ag3Trp Ag5Trp, Ag7? AgTrp, Ag3 

958.4 Ag7Trp Ag7 m/z 885 - 

1040.8 Ag4Trp3 Ag4Trp2 - - 

1056.6 Ag6Trp2 Ag6Trp - - 

1064.3 Ag8Trp Ag6Trp Ag4Trp - 

1146.7 Ag5Trp3 Ag5Trp2 - - 

1158.5 Ag7Trp2 Ag7Trp Ag7 Ag5Trp2 

1170.6 Ag9Trp Ag9 Ag7Trp - 

1254.7 Ag6Trp3 Ag6Trp2 Ag6Trp Ag5Trp2, 382 

1268.4 Ag8Trp2 Ag8Trp Ag6Trp2 Ag9, Ag6Trp 

1282.0 Ag10Trp m/z 1236 Ag10 Ag8Trp, Ag9 
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1361.6 Ag7Trp3 Ag7Trp2 Ag7Trp Ag7 

1376.2 Ag9Trp2 Ag9Trp Ag9 - 

1388.7 Ag11Trp Ag11 - - 

1470.5 Ag8Trp3 Ag8Trp2 Ag8Trp Ag6Trp 

1482.1 Ag10Trp2 Ag10Trp - - 

1496.6 Ag12Trp Ag12 Ag10Trp, m/z 1092 Ag10, m/z 876 

1578.1 Ag9Trp3 Ag9Trp2 Ag9Trp Ag9 

1591.9 Ag11Trp2 Ag11Trp m/z 1518 Ag11 

1604.4 Ag13Trp Ag13 Ag11Trp m/z 1198 

1672.5 Ag8Trp4 Ag8Trp3 Ag8Trp2 - 

1699.8 Ag12Trp2 Ag12Trp Ag10Trp - 

1712.3 Ag14Trp Ag14 m/z 1308 - 

1780.3 Ag9Trp4 Ag9Trp3 Ag9Trp2 - 

1792.0 Ag11Trp3 Ag11Trp2 Ag11Trp - 

1818.2 Ag15Trp Ag15 m/z 1414 - 

1886.2 Ag10Trp4 Ag10Trp3 Ag10Trp2 - 

1928.1 Ag16Trp No fragments - - 

1994.1 Ag11Trp4 Ag11Trp3 Ag11Trp2 Ag11Trp 

2036.1 Ag17Trp No fragments - - 

2090.2 Ag10Trp5 No fragments - - 

2103.9 Ag12Trp4 No fragments - - 

Table 7.3: Daughter ion analysis through MS/MS experiments of Ag-Trp clusters. Note that 

the hydrogen deficiency has been ignored for simplicity in the table.  As indicated earlier, 

one Trp has lost up to 2 hydrogen atom. 

 

For the majority of the clusters in the table above, the dominant fragmentation channel is the 

loss of one tryptophan molecule. The smaller clusters in the series of clusters with one 

tryptophan appear to lose two silver atoms preferentially. This is the case for Ag3Trp, 

Ag4Trp, Ag5Trp, Ag6Trp and Ag8Trp. For some reason, Ag7Trp dissociates into Ag7. This 

would suggest that the smaller silver clusters, up to Ag8, are stabilised by the presence of 
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tryptophan, the exception being Ag7 which is stable without tryptophan. The fact that Ag7 has 

a greater stability is also seen in the dissociation of silver clusters, explored in more detail 

later in this chapter. 

MS
3
 experiments, for which a fragment ion resulting from an MS

2
 (MS/MS) experiment is 

selected and fragmented further, were performed. MS
3
 experiments can only be performed 

when the initial fragment ion is abundantly enough generated in MS/MS step and usually 

results in spectra of very low quality. 

MS/MS Cluster MS
3
 Cluster Main fragment Other fragments 

728.9 Ag3Trp2 526.7 Ag3Trp AgTrp Ag3 

836.7 Ag4Trp2 634.6 Ag4Trp Ag2Trp Ag3Trp 

850.0 Ag6Trp 634.5 Ag4Trp Ag2Trp - 

1064.3 Ag8Trp 848.4 Ag6Trp Ag4Trp Ag2Trp 

1254.6 Ag6Trp3 850.5 Ag6Trp Ag4Trp Ag2Trp 

1254.6 Ag6Trp3 1052.6 Ag6Trp2 Ag6Trp Ag4Trp 

1482.1 Ag10Trp2 1280.1 Ag10Trp m/z 1234 m/z 1103, Ag9 

1496.6 Ag12Trp 1292.5 Ag12 m/z 1092 Ag10, 876 

1576.3 Ag9Trp3 1374.2 Ag9Trp2 Ag9Trp Ag9 

1591.9 Ag11Trp2 1390.0 Ag11Trp Ag11 - 

1604.4 Ag13Trp 1401.6 Ag13 Ag12 Ag11 

1672.5 Ag8Trp4 1467.4 Ag8Trp3 m/z 1394 Ag8Trp2 

1699.8 Ag12Trp2 1497.9 Ag12Trp Ag10Trp - 

1712.3 Ag14Trp 1511.4 Ag14 
109

Ag12 * - 

1780.3 Ag9Trp4 1374.3 Ag9Trp2 Ag9Trp Ag9 

1780.3 Ag9Trp4 1577.3 Ag9Trp3 Ag9Trp2 m/z 1502 

1792.0 Ag11Trp3 1590.0 Ag11Trp2 Ag11Trp - 

1818.2 Ag15Trp 1615.4 Ag15 No fragments - 

1886.2 Ag10Trp4 1482.0 Ag10Trp2 Ag10Trp - 

1994.1 Ag11Trp4 1791.0 Ag11Trp3 Ag11Trp2 Ag11Trp 

Table 7.4: Fragment peaks resulting from MS
3
 experiments of Trp-Ag clusters. As before, 

the hydrogen deficiency has been ignored for simplicity in the table. 
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 * There appears to be a small contribution from an all 
109

Ag cluster at m/z 1308. The mass 

of 
109

Ag12Trp2 is 1712 is the same as for 
107

Ag8
109

Ag6Trp, which was the ion of interest for 

the MS/MS experiment. Obviously both ions were selected together and contributed to the 

MS/MS spectrum. This may also be the explanation for the appearance of peaks of unknown 

origin in other spectra.  Some of these contributions are evident through a silver composition 

that differs from the selected one. 

With these considerations in mind, the fragmentation behaviour of the different clusters can 

be analysed.  Two major dissociation pathways are evident: the simultaneous loss of two 

silver atoms and the loss of one tryptophan molecule. As discussed above, the latter species 

may show a hydrogen deficiency of up to two hydrogen atoms. 

The majority of these clusters prefer to lose a tryptophan molecule initially. For the larger 

clusters, the tryptophan is preferentially lost until the bare silver cluster is obtained. For the 

smaller clusters, tryptophan is preferentially lost until one tryptophan remains with the silver 

cluster, and then two silver atoms are lost. 

This confirms the observation that for smaller silver clusters, it is preferable that one 

tryptophan molecule remains with the cluster. Again, it seems that clusters which contain up 

to 8 silver atoms will prefer to retain the tryptophan molecule, and that larger silver clusters 

lose tryptophan preferentially. Some example spectra are shown below. 

MS/MS: 728.8, MS
3
: 526.7:   MS/MS: 850.0, MS

3
: 634.5: 

 

Figure 7.19: MS/MS of Ag3Trp2, MS
3
 of Ag3Trp, left. MS/MS Ag6Trp, MS

3
 Ag4Trp, right 
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MS/MS: 1254.6, MS
3
: 1052.6:   MS/MS: 1576.3, MS

3
: 1374.2: 

 

Figure 7.20: MS/MS of Ag6Trp3, MS
3
 of Ag6Trp2, left. MS/MS Ag9Trp3, MS

3
 Ag9Trp2, right 

 

MS/MS: 1591.0, MS
3
: 1390.0:   MS/MS: 1994.1, MS

3
: 1791.0: 

 

Figure 7.21: MS/MS Ag11Trp2, MS
3
 of Ag11Trp, left; MS/MS Ag11Trp4, MS

3
 Ag11Trp3, right 

 

In summary, the observed fragmentation behaviour would indicate that the silver/tryptophan 

hybrid clusters are composed of a silver cluster which contains at its periphery a certain 

amount of tryptophan moieties, as these are preferably evaporated leading to pure silver 

clusters. 

Experiments have been performed in conjunction with the project student Chris Hart.  These 

were aimed at the elucidation of the origin of the hydrogen atoms that are lost in these 

hybrid clusters.  In D2O solution, all four exchangeable hydrogen atoms in tryptophan were 
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exchanged by deuterium. When this Trp(4D) was used to produce the hybrid clusters with 

silver, it was found that only D and no H was lost in the production of these clusters. 

 

Figure 7.22: Structure of tryptophan demonstrating the position of exchangeable hydrogen 

These experiments confirm that the hydrogen atoms lost in the initial clusters were from the 

above locations on the tryptophan, and not from the aromatic rings. 

 

Silver Clusters 

The fragmentation pathways of pure silver clusters were also analysed by MS/MS and MS
3
 

experiments. 

m/z Cluster Main fragment Other fragments 

538.4 Ag5
+
 Ag3

+
 - 

756.3 Ag7
+
 Ag5

+
 Ag3

+
 

863.1 Ag8
+
 Ag7

+
 - 

972.1 Ag9
+
 Ag8

+
 Ag7

+
 

1188.0 Ag11
+
 Ag9

+
 - 

1401.6 Ag13
+
 Ag12

+
 Ag11

+
 

1617.5 Ag15
+
 Ag14

+
 Ag13

+
 

1831.5 Ag17
+
 Ag16

+
 Ag15

+
 

Table 7.5: MS/MS experiments with Ag clusters: parent and daughter ions 

Larger silver clusters show the loss of one silver atom, followed by a second loss, to 

ultimately produce an odd-numbered silver cluster.  MS/MS/MS (MS
3
) experiments below 

show that the even silver cluster daughter ion is an intermediate on the way to the more 

stable odd-numbered fragment ion.  Smaller clusters do not even show this even-numbered 

intermediate fragment. Ag7
+
 dissociates directly into Ag5

+
, and Ag5

+ 
fragments further into 

Ag3
+

.  Ag3 is a particularly stable cluster, which was abundantly in most ESI experiments.  
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Ag8
+
 was the only even numbered silver cluster which had a large enough intensity to 

perform MS/MS. Ag8
+
 undergoes the loss of only one silver atom, to create Ag7

+
. Ag9

+
 

fragments into Ag8
+
 and then into Ag7

+
 – the fragment ion intensities seem to indicate that 

Ag7
+
 has an enhanced stability compared to other smaller clusters. 

In summary, these MS/MS experiments provide further proof that the odd numbered silver 

clusters are much more stable than their even numbered counterparts. Some example 

spectra are depicted below. 

 

Figure 7.23: Positive-ion mode MS/MS of Ag7
+
, left, Ag9

+
, right 

 

 

Figure 7.24: Positive-ion mode MS/MS of Ag13
+
, left, and Ag15

+
, right 

 

MS
3
 experiments were performed on the above clusters when the signal strength would 

allow to do so: 
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MS/MS Cluster MS
3
 Cluster Main fragment 

754.4 Ag7
+
 538.5 Ag5

+
 Ag3

+
 

972.2 Ag9
+
 863.2 Ag8

+
 Ag7

+
 

972.2 Ag9
+
 756.3 Ag7

+
 Ag5

+
 

1401.8 Ag13
+
 1294.8 Ag12

+
 Ag11

+
 

Table 7.6: MS
3
 experiments with the pure Ag clusters 

 

The MS/MS/MS experiments confirm that the odd numbered silver clusters are the stable 

end product of the dissociations, whereby even numbered fragment clusters are 

intermediates in dissociations of large clusters, while small clusters show the direct loss of 

Ag2 without even numbered intermediate. 

An example MS
3
 spectrum is shown below: 

 

Figure 7.25: Positive-ion mode MS/MS of Ag9
+
, followed by MS

3
 of Ag8

+
 

246.6
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MS/MS of m/z 972.2, Ag9
+
, followed by MS

3
 of m/z 863.2, Ag8

+
, results in a doublet peak at 

m/z 754/756.2, representing Ag7
+
. The peak at m/z 972.2 is composed of 4 

106.9
Ag, and 5 

108.9
Ag. The peak at m/z 863.2 has lost one 

108.9
Ag. Therefore, the selected Ag8

+
 now 

contains an equal mixture of the two silver isotopes. When it decays it loses either a 
106.9

Ag, 

resulting in the m/z 756.2 peak, or a 
108.9

Ag, resulting in the m/z 754.2 peak. The resulting 

MS
3
 spectrum confirms these considerations by displaying the expected 1:1 doublet of Ag7

+
.  
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Conclusion 

Clusters of silver and tryptophan molecules have been produced using specific conditions 

within the ESI source. Pure silver clusters have been produced in the same way and it has 

been confirmed through MS/MS and MS
3
 experiments that odd numbered pure silver 

clusters are more stable than their even numbered counterparts.  

For silver / tryptophan hybrid clusters it was found that the tryptophan molecule loses up to 

two hydrogen atoms to stabilise the silver cluster electronically through the formation of 

closed shell ions.  An even number of silver atoms is relatively instable as a pure cluster, but 

is clearly stabilised through the interaction with tryptophan in such clusters.  The 

fragmentation behaviour of the mixed clusters indicates that their structure is in fact 

composed of a silver cluster which contains the tryptophan molecules attached to it. 

In the present study, larger clusters than previously reported have been created. Even larger 

sizes are also feasible – the largest cluster produced here - Ag11Trp5, is shown at m/z 2196.  

This cluster had a fairly strong signal; however, the detection was at the upper mass limit of 

the esquire2000: 

 

Figure 7.26: Positive-ion mode ESI of AgTFA and Tryptophan, m/z region 2150 - 2200 

This suggests that with an instrument with a larger mass range, larger clusters may be 

detected. 
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Future work involves cluster formation with different amino acids, with the aim to evaluate 

further the role of the amino acid in the production of such hybrid clusters.  

The study of the interactions of amino acids with other metals, such as gold, is another goal. 

This could prove difficult, as although previous research has demonstrated that gold binds in 

a similar fashion as silver to amino acids, further optimisation of the source conditions would 

be necessary and time consuming
16

. 

Structure elucidation of these clusters would also be desirable. From the results it is 

expected that the tryptophan molecules reside on the outside of the clusters. Tryptophan is 

preferentially lost unless required for stabilisation of the smaller clusters. Additionally, the 

more tryptophan molecules present in a cluster, the larger the size of the attached silver 

cluster. This would suggest that a certain number of silver is required per tryptophan 

molecule wishing to attach. A previous study of silver clusters suggests that for clusters of 

less than 5 silvers, the silvers are arranged in a planar fashion, but for silver clusters ≥ 5, the 

structure is three dimensional
17

. It would be logical to assume that a three dimensional 

cluster formation would allow for the binding of more tryptophan molecules. 
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Chapter 8: Use of Silver as a cationising agent, and ESI as 

an analytical tool for the analysis of pure fullerenes and 

unpolar fullerene derivatives 

 

Introduction 

The silver cation is well-known to form a bond with the π electrons in unsaturated 

hydrocarbons. As discussed in chapter 7, amino acid-silver complexes were created using 

ESI-MS. It was hoped to use the same technique to create silver bound fullerene dimers, 

and dissociate these using CID. If successful, it was thought that silver-bound hetero-dimers 

could be created, using different fullerenes and related compounds. Using the relative 

intensities of the fragment peaks, the relative silver binding affinities of the fullerenes and 

related compounds could be evaluated according to the kinetic method. 

It was also hoped that conditions within the ESI source could be optimised for the analysis of 

“bare” fullerenes, without the addition of salts, derivatisation of the sample, or pre-ionisation. 

 

The Kinetic Method 

The kinetic method involves the dissociation of a hetero-dimer bound by a charge carrying 

species in the gas phase whereby the intensities of the resulting fragments are used to 

calculate each monomer’s affinity for the binding charged species. This can be used to 

calculate, for example, proton affinities, metal ion binding affinities and ionisation energies
1
. 

In this instance, it is the relative silver binding affinity that is being sought: 

k1         k2 

M1Ag
+
 + M2  M1--Ag

+
--M2  M2Ag

+
 +M1 

k1 and k2 are the rate constants for the competing dissociation reactions. 

If you assume that there are no isomers of the activated cluster ion, that there are negligible 

differences in entropy requirements and negligible reverse activation energies, then the 

following is true: 

$% &'&( = $% [�'!*]�
[�(!*]� ≈ ∆(∆!*)

0��11  
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Teff is the effective temperature of the activated hetero-dimer. The ratio of the intensities of 

the fragment ions is related to the difference in silver ion binding affinity. Teff has been set 

arbitrarily to 555K.  This value is within the Teff range that has been determined by other 

experiments in the group using the kinetic method with the ion trap. The actual Teff may in 

fact be different.  However, since the measurements need to be compared with each other, 

the Teff has to be set to a certain value to allow the comparison of the systems under 

investigation. This approach is valid as only a relative silver ion affinity order is to be 

established and not absolute values. 

The hetero-dimers are formed, isolated from other ions and dissociated to find the relative 

abundances of the fragment ions. Because of this, it is not necessary to have totally pure 

samples, as the bound hetero-dimers are isolated prior to fragmentation, meaning any 

impurities are discarded. This method also has the advantage of being a measurement of 

relative ion abundances, which means that sources of error that would apply to both 

fragments would cancel. 

There are drawbacks; to begin with, at least two reference samples are required of known 

affinity to the charge carrier to be able to establish the absolute ion affinities of an unknown. 

Also, if the reference data is inaccurate, then the resulting determination will also be 

inaccurate. 

There are other issues to take into consideration – if there are multiple binding sites, if there 

is an entropic barrier not accounted for, or if dynamic factors alter the fragmentation; then 

these will all affect the ion abundance appearance and not give an accurate measurement of 

the relative binding affinities. 

To calculate the relative silver binding affinities requires a rearrangement of the above 

equation: 

∆(∆!*�) = $% [�'!*]�
[�(!*]� . 0��11 

M1 is usually the unknown, with M2 being the series of reference samples. 

 

Silver bound dimers of Fullerenes and Fullerene Derivatives 

Fullerenes have a tendency to form dimers; in particular the oxygen bound C60 dimer, C120O, 

is formed easily by C60 even when in the solid state at an ambient temperature, in as little as 
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40 hours
2
. This dimer is not easily seen using mass spectrometry; EI-MS produced only a 

peak for C60. 

ESI-MS of C60 dimers is difficult to perform, as is the case for standard fullerene derivatives 

as discussed in previous chapters. For example, the molecular ion peak of a 

tetrathiafulvalene bound C60 dimer could only be found through careful alteration of the 

skimmer voltage
3
. 

Silver-bound dimers of fullerenes and their derivatives have been produced and studied 

previously, however, not as a means to establish the relative silver binding energies. 

Silver complexes with C60 were initially produced in the gas phase using a laser vaporisation 

cluster source
4
. A silver rod was coated with C60 through sublimation, and a XeCl excimer 

laser operating at a wavelength of 308nm was used to create the gas phase complexes. The 

power of the laser played an important role – if too low, only C60 was observed, if too high, 

only pure silver clusters were formed. Complexes produced were mainly C60 with a silver 

cluster of between 1 and 5 silver atoms; however, a silver-bound C60 dimer was also 

produced. 

From photodissociation experiments of the [(C60)2Ag]
+
 complex, it was deduced that it has a 

sandwich structure, of: [C60--Ag--C60]
+
, as fragments of both C60

+
, and [C60Ag]

+
 were 

produced. As both C60 and silver have very similar ionisation energies, it was expected that 

the charge was delocalised. 

C60 has been derivatised using a phenathroline in order to create a silver-bound dimer
5
: 

N

N

 

Figure 8.1: Structure of C60 derivatised with a phenathroline 

The above compound was mixed with an excess solution of silver ions, and stirred at room 

temperature under argon overnight. The silver ion was complexed by the four nitrogen 

atoms to form the dimer. The two planar ligands were at 90º angles with respect to each 

other. 
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Synthesis of the derivative was confirmed by IR spectroscopy, 
1
H-NMR, FD-MS and UV-Vis 

spectroscopy. Production of the silver bound dimer was confirmed using 
1
H-NMR, UV-Vis 

spectroscopy, and positive-ion mode ESI-MS. 

The ESI spectrum produced peaks corresponding to the silver-bound dimer, silver attached 

to one molecule of the C60 derivative, and hydrogen addition to the C60 derivative. 

For polycyclic aromatic hydrocarbons, similar to those attached to C60 in chapter 6, silver 

has been found to interact with the delocalised π electrons
6
.  

Using the kinetic method and positive-ion mode ESI-MS, the relative gas phase silver (I) ion 

affinities of the following PAHs were studied
7
: 

Benzene 

Napthalene 

Phenanthranene 

Anthracene 

Fluoranthracene 

Pyrene 

Triphenylene 

Chrysene 

Benz(a)anthracene

The affinities were calculated relative to benzene. Silver-bound heterodimers of the PAHs 

were produced with positive-ion mode ESI-MS, and dissociated with CID to produce the 

relative fragments. 

Silver ion cationisation and positive-ion mode ESI-MS were also used in differentiating 

between isomers of various PAHs, by forming silver (I) bound heterodimers of the individual 

PAHs, and dissociating them
8
. CID was not performed in the usual way, where ions are 

subjected to a collision with gas in a collision cell inside the mass analyser. In-source CID, 

where collisions occur prior to the mass analyser and where the collision gas is the drying 

gas, was utilised in its place. 

It was discovered, as with the fullerene dimers, that the voltages inside the ESI source play 

an important role. With higher cone voltages, only the PAH ion is seen. At lower voltages, 

the silver bound PAH dimer is the most abundant, with the [PAH-Ag]
+
 complex tending to be 

the most intense at medium voltages. Depending on which isomers were tested, the ratio of 

the [PAH]
+
 : [PAH-Ag]

+
 : [(PAH)2-Ag]

+
 peaks altered, and as long as the ESI conditions were 

kept identical, differentiation between the isomers was possible. 
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Another example of electrospraying silver and PAHs together comes from the study of the 

effect of substituents on four different PAHs: anthracene, phenanthrene, pyrene and 

cyclo[a]phenanthrene
9
. 

Solutions of individual PAHs were sprayed with silver ions in positive-ion mode, producing 

the following complexes: 

[(PAH)2-Ag]
+
 

[PAH-Ag]
+ 

[PAH-Ag-OH2]
+ 

[PAH]
+
 

Increasing the skimmer voltage decreased the abundance of the dimers. 

When two PAHs were sprayed with silver, the complexes produced included: 

[PAH-Ag-PAH’]+ 

[(PAH)2-Ag]
+ 

[(PAH’)2-Ag]
+ 

[PAH-Ag]
+ 

[PAH’-Ag]
+ 

[PAH-Ag-OH2]
+ 

[PAH’-Ag-OH2]
+ 

Again, the appearance of the dimers was dependent on the skimmer voltage settings. 

It has been demonstrated that it is possible to create silver (I) bound dimers of PAHs using 

ESI-MS. Using ESI for this project, it was hoped that silver-bound dimers could be produced 

of fullerenes, and the C60PAH complexes synthesised previously (chapter 6), and to study 

these using the kinetic method. 

 

ESI as an analytical tool for fullerenes 

As discussed in chapter 6, ESI is traditionally difficult for the analysis of fullerenes and their 

derivatives if they were equally unpolar, as conditions need to be found where the 

electrospray acts as an electrochemical cell. It was hoped that by utilising the optimised ESI 

settings found for the C60PAH derivatives in chapter 6, that standard fullerenes could be 

analysed without the need for addition of salts or for derivatisation prior to analysis. 
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Experimental 

 

Positive Ion Silver ESI-MS 

Compounds analysed for this section include: 

• C60, C70, C84, (C59N)2 

• An isomer pair from Professor Helena Grennberg, Uppsala University, Sweden, C24H16, 

colloquially called “cis” (below left) and “trans” (below right): 

 

Figure 8.2: Structures of “cis”, left and “trans”, right 

• Coronene (C24H12), Corannulene (C20H10), Pentaindeno Corannulene (C50H20), 

Cyclopenta[bc]coronene (C26H12) and Benzo[a]coronene (C28H14) provided by Professor 

Lawrence Scott at Boston College, MA. 

 

Figure 8.3: Structure of C50H20 

• C60A, C60T, C60P, synthesized by us (chapter 6) 

• C60C8H8, from Prof. Mike Orfanopoulos and Manolis Trikakis of the University of Crete 

• (C60)2C22H14(C6H5)2 (cis-bis[60]fullerene adduct of 6,13-diphenylpentacene) supplied by 

Professor Glen P. Miller at the University of New Hampshire, NH. 
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Figure 8.4: Structures of C60C8H8, left and cis-bis[60]fullerene adduct of 6,13-

diphenylpentacene, right 

For C60, C70, C60Anthracene, C60Tetracene and C60Pentacene, solution preparation involved 

dissolving in dichloromethane (DCM) to produce solutions at the concentrations listed below: 

C60 69.4µM 

C70 69.4µM 

C24H16, cis and trans 69.4µM 

C60Anthracene 55.7µM 

C60Tetracene 52.7µM 

C60Pentacene 50.1µM 

C60C8H8 69.4µM 

(C60)2C22H14(C6H5)2 69.4µM 

Table 8.1: Final concentrations of samples initially dissolved in dichloromethane 

For the remaining compounds, the samples were dissolved initially in a 1:1 v/v toluene:DCM 

mixture, and then further diluted with DCM to produce the following concentrations: 

C84 138.8µM 

Coronene (C24H12) 69.4µM 

Corannulene (C20H10) 69.4µM 

Pentaindeno Corannulene (C50H20) 69.4µM 

C26H12 69.4µM 

C28H14 69.4µM 

(C59N)2 69.4µM 

Table 8.2: Final concentrations of samples initially dissolved in 1:1 toluene:dichloromethane 
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Silver trifluoroacetate (AgTFA, Aldrich (Sigma-Aldrich), 98%) was dissolved in methanol to 

make a concentration of 1mM. 

The sample solutions were mixed with the silver solution in a 1:1 v/v ratio, to give final 

concentrations of 500µM silver and half the concentration of the sample solutions – for most 

of the solutions this was 34.7µM. For C84 the concentration was doubled, for reasons 

explained in the results section. 

When two samples were mixed to form the hetero-dimers, the concentrations of the final 

sample dilutions were doubled. 0.5ml of the double concentrated sample solutions were 

mixed with 1ml of the silver solution, to give the same concentrations of each part as in the 

“one sample” solutions, usually 34.7µM for each sample, and 500µM for the silver. This also 

allowed the solvent ratio to stay constant at 1:1 DCM:Methanol. 

For the reaction of C60, anthracene and silver where C60 and anthracene had not been 

reacted to form the complex, the C60 was in the same concentration as in all other reactions, 

34.7µM, the silver was also in the same concentration of 500µM, and anthracene was in 

excess of C60, at a concentration of 70.2µM. Again, this mixture had the same solvent ratio 

as all the other reactions, of 1:1 DCM:Methanol. 

 

Positive-ion and Negative-ion mode ESI-MS without Silver 

As C60A, C60T and C60P could be observed in ESI-MS without the addition of salts (chapter 

6) the same ESI source conditions were tested on the other compounds. This method was 

compared to the method where sodium acetate is added to the solution to form the sodiated 

ion. For the sodium acetate method, isopropyl mono was used: 

O

O

O

O
CH3

CH3

CH3

CH3
 

Figure 8.5: Structure of Isopropyl Mono 

The positive and negative-ion mode method developed for the C60PAH complexes was also 

tested on C84 and (C60)2C22H14(C6H5)2 (cis-bis[60]fullerene adduct of 6,13-

diphenylpentacene). 
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Results 

 

Positive-ion Mode Silver ESI with Fullerenes and Related Compounds 

Initial experiments were performed on C60. It was electrosprayed with a silver solution in 

order to optimise the conditions for silver attachment. The spectra show formation of a silver 

bound C60 dimer, with various other permutations of C60 bound with silver. An example 

spectrum is shown below: 

 

Figure: 8.6: Positive-ion mode ESI spectrum of C60 with AgTFA 

The peaks in the above spectrum have been identified and tabulated below. 

m/z Identification 

109.3 Ag
+
 

720.0 C60
+
 

846.9 [C60AgH2O]
+
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1048.9 [C60AgAgTFA]
+
 

1548.9 [C60AgC60]
+
 

1768.8 [C60AgC60AgTFA]
+
 

Table 8.3: Identification of the peaks in the C60 and AgTFA positive-ion mode ESI spectrum 

 

Confirmation of the production of a silver bound C60 dimer came from study of the isotopic 

pattern and by obtaining an MS/MS spectrum of the peak: 

 

Figure 8.7: Positive-ion mode MS/MS spectrum of 1548.8 

The peaks present in this spectrum are identified below: 

m/z Identification 

844.9 [C60AgH2O]
+
 

826.9 [C60Ag]
+
 

720.0 C60
+
 

Table 8.4: Identification of peaks in the MS/MS spectrum of 1548.8 
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The peak at m/z 955.9 is of unknown origin, it could possibly be addition of trifluoroacetate to 

the C60AgH2O complex. Addition of trifluoroacetate had been observed with other 

compounds; however, it was usually addition of an entire AgTFA unit. 

After successful production of a silver-bound C60 dimer had been achieved, the other 

compounds of interest were also electrosprayed individually with AgTFA. The resulting 

spectra were similar to the one obtained for C60, in that dimers and other complexes with 

silver were observed. 

A few example spectra are shown below: 

(C59N)2 with AgTFA: 

 

Figure 8.8: Positive-ion mode ESI spectrum of (C59N)2 with AgTFA 

For (C59N)2 with AgTFA, the signal for the silver bound dimer of C59N, at m/z 1552.8, is at a 

very low abundance and obscured by larger peaks. Enhancing the m/z region and simulating 

the isotopic pattern allows the confirmation of its production. The measured and simulated 

isotopic pattern is displayed below in the following figure: 
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Figure 8.9: Measured, top, and simulated, bottom, isotopic pattern of [(C59N)2Ag]
+
 

Coronene (C24H12) with AgTFA: 

 

Figure 8.10: Positive-ion mode ESI mass spectrum of C24H12 with AgTFA 
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As can be seen above, the peak for C24H12
+
 dominates the spectrum. Other peaks are 

present, including the silver bound homo-dimer, shown with the simulated isotopic pattern: 

 

Figure 8.11: Measured, top, and simulated, bottom, isotopic pattern of [(C24H12)2Ag]
+
 

There is a clear match of the simulated isotopic pattern and the actual mass spectrum, the 

peak at m/z 707 therefore represents the formation of a silver bound C24H12 dimer. 

For the majority of samples, the silver bound homo-dimer was produced using ESI-MS. In 

the case of C84, however, it was very difficult to obtain any peaks for either C84 or the silver 

bound C84 dimer. In order to overcome this problem different concentrations of C84 were 

tested. When a peak was successfully created, the concentration of C84 was twice the 

standard concentration for the other experiments. When a signal was produced, it was at a 

much lower intensity when compared to the other compounds analysed. The positive-ion 

mode spectrum of C84 and AgTFA is shown below. 
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Figure 8.12: Positive-ion mode ESI spectrum of (C84)2Ag 

Enhancing the molecular ion region for C84 demonstrates the low signal-to-noise ratio of the 

molecular ion peak at m/z 1008: 

 

Figure 8.13: The molecular ion peak of C84 in the positive-ion mode ESI spectrum 

Enhancing the m/z region of the silver bound dimer, at m/z 2125, also demonstrates the low 

signal-to-noise ratio. When compared to the simulated isotopic pattern for [(C84)2Ag]
+
, shown 

below the measured spectrum in figure 8.14, the difficulty in creating silver bound dimers of 

C84 becomes apparent: 
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Figure 8.14: Measured, top, and simulated, bottom, isotopic pattern of [(C84)2Ag]
+
 

 

Performing MS/MS experiments on the silver bound homo-dimers produced similar 

compounds to the MS/MS of the experiment with C60 shown previously. The MS/MS of 

[(C84)2Ag]
+
 is shown below: 

 

Figure 8.15: Positive-ion mode MS/MS spectrum of m/z 2125.1 
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Peaks present in the above spectrum: 

m/z Identification 

1007.9 C84
+
 

1132.7 [C84AgH2O]
+
 

2126.2 [(C84)2Ag]
+
 

Table 8.5: Peaks from the MS/MS spectrum of m/z 2125.1 

There is a very small peak at approximately the correct m/z for [C84Ag]
+
, but due to the very 

low intensity, it cannot be positively identified as this. 

The fragmentation pattern observed here was seen throughout the MS/MS experiments of 

the silver bound homo-dimers. It is further confirmation that the gas-phase silver cation 

prefers to bind two ligands. Again water addition is apparent when one of the two initial 

ligands is lost through fragmentation. 

 

Hetero-dimer formation 

Once homo-dimers had been successfully formed and characterised, hetero-dimers were 

formed by spraying solutions of mixed compounds, with AgTFA. Two series of compounds 

were electrosprayed with the intention of evaluating relative silver binding affinities. Every 

possible combination of two compounds within the series was electrosprayed with AgTFA: 

Series 1: C60, C70, C84, (C59N)2 

Successful formation and MS/MS of a hetero-dimer: 

 C60 C70 C84 (C59N)2 

C60  � � � 

C70 �  � � 

C84 � �  � 

(C59N)2 � � �  

Table 8.6: Formation and MS/MS spectra of the hetero-dimers of series 1 

For C84 and (C59N)2 formation of a hetero-dimer proved elusive. Additionally, the homo-

dimers were not present. The experiment was repeated on several occasions without 

success. The lack of formation of a hetero-dimer could be due to the fact that neither C84, 

nor (C59N)2 attach the silver cation in substantial quantities within the ESI source.  The low 
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solubility of both compounds is also problematic, but was accounted for through the use of 

sufficiently high concentrations. 

Some example spectra of the hetero-dimer formation are shown below: 

 

Figure 8.16: Positive-ion mode ESI spectrum of C60, C70 and AgTFA 

Peaks present and identified in the above spectrum are tabulated below: 

m/z Identification 

720.1 C60
+
 

846.9 [C60AgH2O]
+
 

967.0 [C70AgH2O]
+
 

1048.9 [C60AgAgTFA]
+
 

1169.9 [C70AgAgTFA]
+
 

1549.0 [(C60)2Ag]
+
 

1669.0 [C60AgC70]
+
 

1789.0 [(C70)2Ag]
+
 

1889.8 [C60AgC70AgTFA]
+
 

Table 8.7: Peaks from the positive-ion mode ESI spectrum of C60, C70 and AgTFA 
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As can be observed in the “normal” ESI mass spectrum, it appears that C60 has the greater 

silver affinity, due to the greater intensity of the silver bound C60 dimer when compared to 

the C70 containing complex peaks. However, as different compounds appear in different 

intensities dependant on conditions inside the source, MS/MS of the hetero-dimer is 

necessary to determine which fullerene truly has the larger silver binding affinity. 

 

DCTB-MALDI-MS was also performed on mixed solutions of the fullerenes with silver, to 

provide a comparison to ESI. The fullerenes were mixed as follows: C60 and C70, C60 and 

C84, C70 and C84, and C60, C70 and C84. The resulting spectra are below: 

 

Figure 8.17: Positive-ion mode DCTB-MALDI spectra of fullerene combinations with AgTFA 

The dominant peaks in all spectra are those of the bare fullerene ions. Enhancing the m/z 

region of the respective dimers shows the lack of formation of the silver bound dimers within 

the MALDI source: 
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Figure 8.18: Enhancement of the [FullereneA-Ag-FullereneB]
+
 m/z region of the DCTB-MALDI 

spectra of fullerenes and AgTFA 

 

Contrasting the DCTB-MALDI-MS and ESI-MS spectra of the fullerene mixtures with silver, it 

becomes apparent how important the conditions in the ion source are for the formation of the 

silver bound dimers.  Adjusting the right conditions in the electrospray creates the ideal 

environment in which these complexes are stabilised. 

The second series of compounds being analysed for formation of silver bound hetero-dimers 

are small, non-caged potential fullerene precursors. C60 was also analysed in this series, to 

provide a link to the first series. 

 

Series 2: C60, Coronene (C24H12), C20H10, C26H12, C28H14 

Successful formation and MS/MS of a hetero-dimer: 

 C60 C24H12 C20H10 C26H12 C28H14 

C60  � � � � 

C24H12 �  � � � 
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C20H10 � �  � � 

C26H12 � � �  � 

C28H14 � � � �  

Table 8.8: Formation and MS/MS spectra of the hetero-dimers of series 2 

 

As can be seen from the above table, C20H10 did not form any hetero-dimers with any other 

sample. A possible explanation is that the silver affinity of the larger compounds was much 

higher, as there was always formation of the silver bound homo-dimer of the other species in 

solution when C20H10 was present.  When electrosprayed with just silver, silver bound dimers 

of C20H10 did form, however, at a very low intensity. If, as with C84, a stronger concentration 

of sample was required, this could not be tested as there was not enough material supplied 

for additional experiments.  

The full spectrum is displayed below. The C20H10 peak dominates the spectrum; this was the 

case for all of the spectra of these smaller compounds when electrosprayed with silver.  

 

Figure 8.19: Full positive-ion mode ESI spectrum of C20H10 with AgTFA 



Chapter 8 
 

241 
 

Enhancing the m/z region in which [(C20H10)2Ag]
+
 was assumed, and simulating the isotopic 

pattern, it can be seen that the dimer signal is very weak and probably also contains 

contributions from unwanted ions . 

 

Figure 8.20: Measured, top, and simulated isotopic pattern, bottom, of [(C20H10)2Ag]
+
 

MS/MS of this peak produced the following spectrum: 

 

Figure 8.21: MS/MS positive-ion mode ESI spectrum of [(C20H10)2Ag]
+
 

The important peaks present in this spectrum are: m/z 356.9 identified as [C20H10
107

Ag]
+
, and 

m/z 374.8, identified as [C20H10
107

AgH2O]
+
. The intensity of the fragment peaks are small 

and give an indication of how little of the silver-bound dimer is produced initially. 
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An example spectrum of a successful hetero-dimer formation for series 2 is below.  

 

Figure 8.22: Positive-ion mode ESI spectrum of C24H12 (coronene), C26H12 and AgTFA 

C24H12 and C26H12 dominate the spectrum. However, there was dimer formation and both 

homo-dimers and the hetero-dimer were clearly seen. The measured and simulated isotopic 

patterns of the hetero-dimer are shown below: 

 

Figure 8.23: Measured, top, and simulated, bottom, isotopic pattern of [C24H12AgC26H12]
+
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Collision Induced Dissociation 

MS/MS experiments were performed on the silver bound dimers to dissociate them into 

silver bound monomers. From the relative peak intensities of the monomeric fragment ions, 

it was intended to evaluate the relative binding affinities, using the kinetic method. 

Because of the water addition to the fragment ions, it is important to include the intensities of 

the water adducts in the calculations, as their abundance is part of the initial intensity of the 

monomeric fragment ion. The water addition occurs after formation through dissociation of 

the dimeric precursor. 

Series 1: C60, C70, C84, (C59N)2, m/z values of the dimers: 

 C60 C70 C84 (C59N)2 

C60  1669 1836 1550 

C70 1669  1957 1668 

C84 1836 1957  � 

(C59N)2 1550 1668 �  

Table 8.9: m/z values of the hetero-dimers of series 1 

Series 2: C60, Coronene (C24H12), C26H12, C28H14, m/z values of the dimers: 

 C60 C24H12 C26H12 C28H14 

C60  � 1153 1178.9 

C24H12 �  733 759 

C26H12 1153 733  783 

C28H14 1178.9 759 783  

Table 8.10: m/z values of the hetero-dimers of series 2 

C20H10 is intentionally excluded from series 2, as a dimer could not be formed with any of the 

other samples, as discussed above.  

 

Relative Silver Binding Affinity 

By using one sample from each set of samples as a reference for which the silver ion affinity 

was set to zero, the silver binding affinities relative to this reference can be calculated.  

For series 1, the reference sample was C60. For series 2, the reference sample was C28H14. 

Also for series 2, C60 would have been the preferred reference sample; however, as it did 
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not form a hetero-dimer with C24H12, the calculation would not have been possible. C28H14 

has formed hetero-dimers with all of the other compounds in the series, and was selected as 

the reference compound. 

Series 1: 

[C60-Ag-X]
+
 dissociation gave the following intensities: 

   Fragment  Intensities   

X [C60]
 +

 [C60Ag]
 +

 [C60AgH2O]
 +

 [X]
 +

 [XAg]
 +

 [XAgH2O]
 +

 

C70 10.27 4.86, 2.73 18.89, 10.50 30.30 12.05, 9.18 100, 56.21 

C84 2.29 0.49, 0.43 4.81, 3.38 100 0.68, 1.18 60.61, 54.06 

C59N 11.50 0.24, 0 1.64, 0 16.99 6.21, 5.50 57.11, 53.53 

Table 8.11: Fragment intensities of series 1 

The intensities were recorded of the lowest carbon isotope peak, and as percentages of the 

dominant peak set at 100%. For peaks containing silver, the intensities recorded are for the 

107
Ag containing peak and the 

109
Ag peak, with the lowest carbon isotope. 

For C59N and C60, the peaks often overlapped. For the peaks containing C60 and a 
109

Ag or 

C59N and a 
107

Ag, which would be at approximately the same m/z value, the isotope pattern 

in separate peaks were observed. For the overlapping peaks, it was assumed that the peaks 

belonged to the C59N
107

Ag containing fragments, as the C60
107

Ag peaks were very small, and 

the C59N
109

Ag containing peaks had similar intensities to the peaks under study. 

Series 2: 

[C28H14-Ag-X’]+ dissociation gave the following intensities: 

   Fragment  Intensities   

X’ [C28H14]
 +

 [C28H14Ag]
 +

 [C28H14AgH2O]
 +

 [X’]
+
 [X’Ag]

 +
 [X’AgH2O]

+
 

C60 100 4.26, 4.28 27.55, 47.32 9.01 0.31, 

0.63 

1.76, 6.11 

C24H12 70.61 4.98, 14.64 21.94, 100 74.66 1.71, 

2.33 

8.25, 25.27 

C26H12 67.66 19.20, 

23.54 

24.97, 89.70 100 6.49, 

11.77 

23.14, 

83.94 

Table 8.12: Fragment intensities of series 2 
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In order to use these intensities to establish the relative silver binding affinities, the kinetic 

method must be employed. 

∆(∆!*�) = $% [�'!*]�
[�(!*]� . 0��11 

Teff is assumed to be 555K as explained previously. M1 is the reference sample, and M2 the 

unknown. R is the gas constant, 8.314 472 J K−1 mol
−1

 

[M1Ag]
+
 and [M2Ag]

+
 refers to all the related fragmentation peaks, including the signals for  

the water addition. The total intensities are listed below: 

Series 1: 

X C60 fragments X fragments ∆Ag
+
 / J mol

-1
 * ∆Ag

+
 / Kcal mol

-1
 * 

C70 47.25 207.74 -6833.36 -1.633 

C84 11.4 216.53 -13585.72 -3.246 

C59N 13.38 139.34 -10812.57 -2.583 

Table 8.13: Total fragment intensities of series 1 (*relative to C60 set at 0) 

 

Series 2: 

X’ C28H14 fragments X’ fragments ∆Ag
+
 / J mol

-1
 * ∆Ag

+
 / Kcal mol

-1
 * 

C60 183.41 17.82 10758.33 2.570 

C24H12 212.17 112.22 2939.12 0.702 

C26H12 225.07 225.34 -5.53 -1.32 x 10
-3

 

Table 8.14: Total fragment intensities of series 2 (*relative to C28H14 set at 0) 

The values for the relative silver affinities may not be correct (Teff etc); however, a qualitative 

silver-ion affinity can be obtained from the study of the total fragment intensities. 

For series 1: 

C84 > C59N > C70 > C60 

For series 2: 

C26H12 ≈ C28H14 > C24H12 > C60 

The affinity order in these series can be checked by the study of the MS/MS experiments 

with the remaining series members. 

For example, series 1: MS/MS spectra of C70 with C84 and C59N are shown below: 
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Figure 8.24: MS/MS of [C70AgC59N]
+
, left, MS/MS of [C70AgC84]

+
, right 

For [C70AgC59N]
+
, the C70 containing peaks can be observed as being far more intense than 

the peaks for C59N. This is at odds with the obtained affinity order from the above 

measurements. From the present experiment, the relative silver-ion binding affinities for 

series 1 would follow the following order: 

C84 > C70 > C59N > C60 

Unfortunately, as C60 and C59N differ by two mass units and as the silver isotopes also differ 

by two mass units, it follows that combinations of all four species can lead to overlap of 

different species of the same nominal mass, which cannot be resolved with the present ion 

trap. In fact, for the combination of C60 and C59N with the two silver isotopes both mixed 

silver-bound hetero-dimers overlap with ions of other composition but of same nominal 

mass: for instance: at m/z 1549 [C60
107

AgC59N]
+
 overlaps with [C60

109
AgC60]

+
 and at m/z 

1551 [C60
109

AgC59N]
+
 overlaps with [C59N

107
AgC59N]

+
.  However, the ion of [C60

107
AgC60]

+
  at 

m/z 1549 cannot be contributed to by any C59N containing ions and since it was very low in 

abundance, it was thought that C59N would be the main contributor to the overlapping ions. 

In the hetero-dimer with C70, [C59N
107

AgC70]
+
 and [C60

109
AgC70]

+
 overlap at m/z 1669.  

Unfortunately, [C59N
109

AgC70]
+
 cannot be contributed to by any C60 containing ions, but is too 

low in abundance to be studied.   

In summary, it must be concluded that the experiments with C59N were not successful. A 

possible reason for this is that there may not have been enough C59N in solution.  The 

(C59N)2 dimer is most likely less soluble than C60 due to its size and it would have to 

dissociate initially to provide the monomer before silver bound dimers could be formed. The 
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possible ion [(C59N)2AgC60]
+
 is beyond the mass range of the instrument. However, the 

positive outcome of the above experiments is the establishment and confirmation of the Ag
+
 

ion affinity order of the pure fullerenes: 

C84 > C70 > C60 

 

Series 2: MS/MS spectra of C26H12 with C60 and C24H12: 

 

Figure 8.25: MS/MS of [C26H12AgC60]
+
, left and [C26H12AgC24H12]

+
, right 

In the case of C26H12 electrosprayed with C60 and silver, the only fragments produced relate 

to C26H12 when MS/MS is being performed on the silver bound hetero-dimer. For C26H12 and 

C24H12, it can be observed that the peak intensities are similar, with the C26H12 peaks being 

slightly higher in intensity, confirming its higher silver-ion affinity. 

It could be argued that the calculations relative to C60 would give inaccurate results, due to 

the dissimilarity of C60 to the remaining compounds within the series. However, it is clear that 

qualitatively C60 has a smaller silver-ion affinity compared to C24H12, C26H12 and C28H14. 

 

C60PAHs and Silver 

Working along the same principles as for the fullerenes and smaller organic compounds 

studied, it was thought to electrospray the synthesized C60PAHs with silver and calculate the 

relative silver binding affinity of the polyaromatic hydrocarbons using C60 as the reference 

sample. As has been previously described in the introduction to this chapter, ESI-MS has 

been employed to study the relative silver binding affinity of polyaromatic hydrocarbons. It 

was hoped that silver would insert between the C60 and the polyaromatic hydrocarbon and 
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that MS/MS experiments of the [C60-Ag-PAH]
+
 complex would result in [C60-Ag]

+
 and [PAH-

Ag]
+
 fragments. 

The samples analysed were the synthesised C60A, C60T and C60P from chapter 5, C60C8H8 

from the University of Crete, and (C60)2C22H12(C6H5)2 from the University of New Hampshire. 

Example spectra of the compounds electrosprayed with AgTFA are below, starting with C60A 

and AgTFA: 

 

Figure 8.26: Positive-ion mode ESI spectrum of C60A with AgTFA 

The spectrum of C60A plus AgTFA has many peaks present which can be attributed to the 

following: 

m/z Identification 

846.9 [C60AgH2O]
+
 

1007.1 [C60-Ag-A]
+
 

1227.0 [(C60A)AgTFA]
+
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1405.1 [(C60A2)AgTFA]
+
 

1549.0 [(C60)2Ag]
+
 

1727.1 [(C60A2)Ag]
+
 

1905.2 [(C60A)2Ag]
+
 

2084.1 [(C60A)Ag(C60A2)]
+
 

Table 8.15: Table of peaks for the ESI spectrum of C60A with AgTFA 

All peaks present are related to C60A complexing with AgTFA. There is also the presence of 

C60A2, which was not seen in the MALDI spectra.  Note that for all ions silver has acquired 

two ligands.  Proof that the silver has inserted as: [C60-Ag-A]
+
 comes from the observation 

that this ion cannot attach an additional water molecule, as observed with [C60AgH2O]
+
. 

Confirmation of the peak identity comes from MS/MS experiments, and study of the isotopic 

pattern. The simulated isotopic pattern of [(C60A)Ag(C60A2)]
+
 is shown below the measured 

mass spectrum, and demonstrates an almost exact match: 

 

Figure 8.27: Measured, top, and simulated, bottom, isotopic pattern of [(C60A)Ag(C60A2)]
+
 

 

DCTB-MALDI-MS was also performed on the synthesized C60PAH compounds with silver, to 

see if a comparable result could be found: 
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Figure 8.28: DCTB-MALDI of the C60PAH’s with AgTFA 

Enhancement of the m/z region of the respective [C60PAH-Ag]
+
 complexes demonstrates 

their formation: 

 

Figure 8.29: The m/z regions of [C60PAH-Ag]
+
 complexes 

As can be seen from the MALDI spectra, there is addition of one silver per C60PAH 

molecule. There is no dimer formation as can be seen in the ESI spectra. Conditions within 

the ESI source are clearly more favourable for promoting addition of silver to the 

compounds. 
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The ESI spectrum of C60C8H8 and AgTFA is below: 

 

Figure 8.30: Positive-ion mode ESI spectrum of C60C8H8 and AgTFA 

Due to this sample bring purified after synthesis, there are fewer peaks present than for the 

samples synthesized here. They can be identified as: 

m/z Identification 

931.1 [C60C8H8Ag]
+
 

1757.2 [(C60C8H8)2Ag]
+
 

1978.0 [(C60C8H8)2Ag2TFA]
+
 

Table 8.16: Peaks from the ESI spectrum of C60C8H8 and AgTFA 

Confirmation of identity comes from MS/MS experiments and comparison of the isotopic 

pattern with the simulated isotopic pattern. The simulated isotopic pattern of (C60C8H8)2Ag is 

shown below the measured mass spectrum: 
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Figure 8.31: The measured, top, and simulated, bottom, isotope pattern of [(C60C8H8)2Ag]
+
 

Again, DCTB-MALDI-MS of C60C8H8 with silver was performed, resulting in the following 

spectrum: 

 

Figure 8.32: Positive-ion mode MALDI of C60C8H8 and AgTFA 

Enhancing the molecular ion region displays the isotopic pattern: 
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Figure 8.33: Molecular ion region of [C60C8H8Ag]
+
 

Again, there is only addition of one silver per molecule of C60C8H8, unlike in the ESI 

spectrum, which demonstrates dimer formation as well. Dimer formation was expected to be 

the prominent complex formation of this compound, as the ligand is attached through a 

stronger bond than anthracene, tetracene and pentacene are attached to C60. 

The ESI spectrum of (C60)2C22H12(C6H5)2 and AgTFA is below: 

 

Figure 8.34: Positive-ion mode ESI spectrum of (C60)2C22H12(C6H5)2 and AgTFA 
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The peaks present in this spectrum can be identified as the following: 

m/z Identification 

278.0 Pentacene 

1259.2 C60C22H14(C6H5)2Ag 

1549.0 (C60)2Ag 

1979.1 (C60)2C22H12(C6H5)2Ag 

Table 8.17: Peaks of the ESI spectrum of (C60)2C22H12(C6H5)2 and AgTFA 

 

Positive-ion mode DCTB-MALDI-MS with silver was performed on this compound, producing 

the following spectrum: 

 

Figure 8.35: Positive-ion mode DCTB-MALDI of (C60)2C22H12(C6H5)2 with AgTFA 

 

Enhancing the m/z region 1256 to 1262 demonstrates the isotopic pattern of a peak with a 

very low intensity. The silver addition has occurred to the compound but is always 

accompanied by a loss of one C60. There is no evidence of the intact, undissociated 

compound with silver.  
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Figure 8.36: The isotopic pattern of C60C22H12(C6H5)2Ag
+
 

With the silver bound C60PAH complexes formed, the next step was to fragment them, to 

see which ligand the silver preferentially binds to, and to calculate a silver binding affinity 

relative to C60 for the PAH’s. 

An example MS/MS spectrum, of [C60TAg]
+
 is below: 

 

Figure 8.37: Positive-ion mode MS/MS spectrum of m/z 1057.0 
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This table has the intensities of each fragment peak relating to either C60 or the PAH, 

measured from the ESI MS/MS spectra, which can be found in the appendix. 

MS/MS C60Ag C60AgH2O PAHAg PAHAgH2O 

C60A 0.18, 1.30 14.39, 100 2.68, 2.56 2.37, 2.53 

C60T 2.82 100 4.28 19.07 

C60P 0.90 100 0.65 26 

Table 8.18: Intensities of the fragments resulting from MS/MS of [C60PAHAg]
+
 complexes 

 

Where both isomers of silver were present, the intensity of both was recorded. The intensity 

of the 
107

Ag peak is listed first in the table. 

 

Total intensities and preliminary calculations are presented below: 

 C60 Fragments PAH fragments Ln(PAH/C60) 

C60A 115.87 10.14 -2.436 

C60T 102.82 23.35 -1.477 

C60P 100.90 26.65 -1.331 

Table 8.19: Intensities of C60 fragments and PAH fragments 

 

It can be observed that a qualitative order of silver-ion binding affinity can be noted as: 

 pentacene > tetracene > anthracene 

In the case of ESI, C60 appears to have a greater silver binding affinity than all three 

polyaromatic hydrocarbons tested. Using C60 as the reference compound for silver binding 

affinity, and setting the silver binding affinity of C60 at 0, the relative silver binding affinities of 

anthracene, tetracene and pentacene can be calculated as follows: 

∆(∆!*�) = $% [�'!*]�
[�(!*]� . 0��11 

Positive-ion mode LIFT on the Bruker Ultraflex II of the C60AgPAH complexes was also 

obtained. Although MALDI is considered too unreliable for quantification, it was decided to 

compare the resulting relative silver-ion affinities from MALDI with ESI. The resulting spectra 

for C60A, C60T and C60P are as follows: 
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Figure 8.38: DCTB-MALDI spectra of the C60PAH complexes with AgTFA 

The spectra are different from those produced using ESI-MS. There is no water addition, as 

would be expected from the different detection techniques. The fragmentation using LIFT is 

also comparatively stronger, as both C60 and the PAH can be seen without Ag. 

In summary, the peaks produced in all four MALDI spectra are of either C60 or the 

polyaromatic hydrocarbons, with and without Ag. 

In spite of the supposed unreliability of MALDI for quantification purposes, the same pattern 

of relative silver binding affinity can be seen as from the ESI spectra:  

pentacene > tetracene > anthracene 

However, there are differences, in that from the MALDI spectra it appears that C60 has a 

stronger affinity than anthracene, but a smaller affinity than tetracene and pentacene. From 

the ESI spectra, it appears that C60 has a stronger silver affinity than all three PAHs. The 

actual intensity measurements from the spectra are below. 

LIFT C60 C60Ag PAH PAHAg 

C60A 97 419, 594 21 133, 241 

C60T 506 2632, 3510 672 2873, 4548 

C60P 1649 5218, 7009 31204 4600, 7077 

Table 8.20: Fragment intensities of LIFT experiments of [C60-Ag-PAH]
+
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The total fragment intensities and preliminary calculations are presented below: 

 C60 Fragments PAH fragments Ln(PAH/C60) 

C60A 1110 395 -1.033 

C60T 6648 8093 0.197 

C60P 13876 42881 1.128 

Table 8.21: Total intensities of C60 fragments and PAH fragments 

 

The MS/MS of the related C60PAH compounds were interesting. C60C8H8Ag fragmented as 

follows: 

 

Figure 8.39: Positive-ion mode MS/MS spectrum of m/z 931.1 

There is considerable fragmentation into C60, which is not seen in ESI with the C60A, C60T 

and C60P samples analysed. There is also no sign of bare silver or of C8H8 with or without 

silver. 
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Enhancement of the main cluster of peaks shows that at around m/z 825, there are two sets 

of peaks – C60C8H8 at m/z 824, and C60Ag at m/z 827. 

The C60C8H8 fragmentation is less intense than that of C60Ag and C60AgH2O combined, and 

suggests that loss of C8H8 is the preferential fragmentation route. However, the fact that 

C60C8H8 does remain intact, even if in small quantities, is further evidence that C8H8 has 

stronger bonding to C60 than the polyaromatic hydrocarbons. 

 

Figure 8.40: The m/z region 822 to 850 of the ESI spectrum of C60C8H8 and AgTFA 

Positive-ion mode LIFT with MALDI conditions of C60C8H8Ag gave the spectrum below:  
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Figure 8.41: Positive-ion mode LIFT spectrum of m/z 933 

The peaks present are C60 at m/z 719.9 and C60Ag at m/z 828.9. This is similar to the ESI 

spectrum in that there is no evidence of C8H8 retaining the silver. Enhancing the m/z region 

822 to 834: 

 

Figure 8.42: m/z region 823 to 833 of the positive-ion mode LIFT spectrum of m/z 933 

There are peaks present which indicate formation of C60C8H8, however, the preferential 

fragmentation route is to lose C8H8, as is the case for ESI. 
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The MS/MS spectrum of (C60)2C22H12(C6H5)2Ag is below: 

 

Figure 8.43: Positive-ion mode MS/MS spectrum of m/z 1979.1 

The dominant fragment at m/z 1258.1 is loss of one of the C60 molecules. 

LIFT was performed under MALDI conditions. Even though DCTB was present, the 

conditions appeared too harsh for the retention of both C60 molecules, and as such the LIFT 

had to be performed on the silver adduct of the compound missing one C60, at m/z 1259: 

(C60)C22H12(C6H5)2Ag.  The resulting spectrum: 
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Figure 8.44: Positive-ion mode LIFT spectrum of m/z 1259 

These peaks can be identified as: 

m/z 429.9 - [C22H12(C6H5)2] 

m/z 538.7 - [C22H12(C6H5)2Ag] 

The corresponding MS/MS ESI spectrum of m/z 1259 is below: 

 

Figure 8.45: Positive-ion mode MS/MS spectrum of m/z 1259.1 
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The ESI spectrum has the same fragments and some additional peaks at m/z 353 and 405. 

 

C60, Silver and Anthracene 

It was thought to attempt the creation of the silver bound complex of [C60AgA] using C60 and 

anthracene that had not been reacted together. This experiment was performed employing 

both MALDI and ESI-MS. 

As can be seen from the positive-ion mode ESI spectrum below, the affinity of C60 is so 

much greater than that of anthracene that there is only formation of the silver bound C60 

dimer. 

 

Figure 8.46: Positive-ion mode ESI spectrum of C60, Anthracene and AgTFA 

The MALDI spectrum is below: 
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Figure 8.47: Positive-ion mode MALDI spectrum of C60, Anthracene and AgTFA 

When MALDI conditions are employed there is no silver addition to anthracene or C60. The 

peak at m/z 357 is of silver addition to DCTB. m/z 609 is silver addition to two DCTB 

molecules. However, enhancing the m/z region 1004 to 1010 demonstrates the possible 

formation of [C60AgA], at an extremely low intensity: 

 

 

Figure 8.48: Positive-ion mode MALDI of C60, Anthracene and AgTFA 



Chapter 8 
 

265 
 

To check if formation of the complex had occurred, LIFT was performed on the peak:

 

Figure 8.49: Positive-ion mode LIFT spectrum of m/z 1005 

There is no indication of C60, or anthracene. Therefore the peak at m/z 1005 cannot be 

assigned as the [C60AgA] complex, despite the isotopic pattern being an almost exact match. 

It is apparent that the peak appears at a very low intensity, and perhaps this is why no 

fragments can be found. The fragments in the LIFT spectrum are most likely due to 

something at a similar m/z value, which has managed to pass through the initial parent ion 

selection. 

 

“Cis”, “trans” and Silver 

It was thought to bind silver to “cis” and “trans”, the two stereoisomers supplied by Professor 

Helena Grennberg at Uppsala University, Sweden. It was hoped that the stereoisomers 

could be differentiated by exploiting the tendency of silver to attach two ligands in the gas 

phase. The structure of “cis” would allow silver to form two bonds within one “cis” molecule, 

if interaction occurs with the aromatic rings, as would be expected. 

Initially, the compounds were electrosprayed without silver, in order to check that ionisation 

and detection was possible. The resulting negative-ion mode spectra did not appear to give 

any indication of “cis” and “trans” and were very noisy, much like the MALDI spectra. The 
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spectra shown below were obtained at 100% compound stability, which appeared to give a 

better signal than at 500% compound stability. 

 

“Cis”: 

 

Figure 8.50: Positive-ion mode ESI spectrum of “cis”, enhanced molecular ion region on right 

 

“Trans”: 

Figure 8.51: Positive-ion mode ESI spectrum of “trans”, enhanced molecular ion region on 

right 

 

Regardless, “cis” and “trans” were electrosprayed with AgTFA, resulting in the following 

spectra: 
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“Cis” and AgTFA: 

 

Figure 8.52: Positive-ion mode ESI spectrum of “cis” and AgTFA 

 

In contrast to the spectrum of just “cis”, the spectrum of “cis” with silver is cleaner with a 

definite dominant peak at m/z 413.0, with a slightly less intense peak at m/z 411.0. These 

peaks corresponds to the expected m/z value of [“cis”Ag]
+
. 

MS/MS confirms this and demonstrates an initially unexpected fragmentation pathway: 
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MS/MS of “cis” and AgTFA: 

 

Figure 8.53: Positive-ion mode of “cis” and AgTFA, MS/MS of m/z 413.0 

 

The MS/MS spectrum shows the same two peaks that are also present in the initial MS 

spectrum, at m/z 261.0 and 278.8. Both of these peaks contain one silver, demonstrated by 

the isotopic pattern. The 
109

Ag containing peaks are much larger than the 
107

Ag containing 

peaks. The peak that was selected for MS/MS was 413 – the 
109

Ag“cis” compound. Due to 

its proximity to the selected mass, some of the 
107

Ag“cis” compound would also have 

fragmented, however not in as great quantities as the 
109

Ag“cis” complex. 

The two peaks at m/z 261.0 and 278.8, when the silver is removed, have mass values of 

152 Da, and 170 Da respectively. They are separated by 18 mass units. 

152 Da is half the mass of “cis” and “trans”. It appears that for “cis”, the silver inserts itself in 

between the aromatic rings. When it fragments, “cis” appears to break exactly in half, with 

the silver retaining one half of the molecule. As silver preferentially binds two ligands, it then 
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binds a water molecule in the ion trap, leading to the identification of the two fragment peaks 

as: 

m/z 261.0 – [C12H8Ag]
+
 

m/z 278.8 – [C12H8AgH2O]
+
 

For “trans”, the story is similar to “cis”. The standard MS spectrum of “trans” and AgTFA is 

shown below: 

 

Figure 8.54: Positive-ion mode ESI spectrum of “trans” and AgTFA 

The isotopic pattern of the peak at m/z 717.1 is enhanced overleaf: 
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Figure 8.55: The isotopic pattern of the peak at m/z 717.1 from the ESI spectrum of “trans” 

and AgTFA 

From the isotopic pattern it is clear that this compound contains one silver. The m/z values 

are the expected m/z values of [(“trans”)2Ag]
+
. MS/MS was performed on this peak, resulting 

in the following spectrum: 

MS/MS of [(“trans”)2Ag]
+
: 

 

Figure 8.56: Positive-ion mode spectrum of “trans” and AgTFA, MS/MS of m/z 717.1 



Chapter 8 
 

271 
 

In this spectrum, the same peaks are present as in the MS/MS of “cis” and AgTFA, at m/z 

261 and 279. The peaks have been identified as below: 

m/z Identification 

260.9 [C12H8Ag]
+
 

278.9 [C12H8AgH2O]
+
 

412.9 [“trans”Ag]
+
 

430.9 [“trans”AgH2O]
+
 

565.0 [“trans”Ag C12H8]
+
 

Table 8.22: Peaks in the positive-ion mode spectrum of “trans” and AGTFA, MS/MS of m/z 

717.1 

It appears that, similar to “cis”, the “trans” molecule breaks in half in preference to losing the 

silver ion. The two spectra also demonstrate the different ways that silver has interacted with 

the two compounds inside the ESI source, and is further proof that silver preferentially binds 

two ligands. In the case of “trans”, as it cannot bind twice with the same molecule, it has to 

bind two molecules. When it loses one of those, it binds water, which can be found inside 

the ion trap. 

For “cis”, silver can bind twice within one molecule, and as such does not bind water, until 

the molecule has fragmented in half, and silver only has one ligand. From these it can be 

conjectured that the silver inserts in between the aromatic rings for “cis”, and it is to the 

aromatic rings that silver binds to the respective molecules: 

 

Figure 8.57: Structure of “cis”, left, and “trans”, right 
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Positive-ion mode MALDI-MS and LDI-MS was performed on these compounds with silver, 

to see if the same result could be achieved. LDI-MS was also performed due to the small 

size of the samples, as matrix peaks could obscure the sample peaks. 

 

Figure 8.58: LDI and MALDI spectra of “cis” and “trans” with AgTFA 

 

Enhancing the m/z region of 406 to 420 demonstrates addition of one silver to either “cis” or 

“trans”, displayed below: 
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Figure 8.59: Positive-ion mode LDI and MALDI of “cis” and “trans” with AgTFA 

As can be seen from the intensity values there is greater addition in LDI-MS compared to 

MALDI-MS. There is less addition to “trans” than to “cis”, it is almost non-existent in the 

MALDI spectrum of “trans”. This could be due to silver preferring to bind two ligands, in 

which case for “trans”, one silver would attach two “trans” molecules: 

 

Figure 8.60: Positive-ion mode LDI of “trans” with AgTFA, m/z region 712 to 721 

It appears that two sets of peaks are overlapping in the enhancement of the m/z region of 

[“trans”2Ag]. It cannot be said with any certainty that [“trans”2Ag] is present, as the isotopic 

pattern does not match the simulated pattern, unless it is the smaller of the two sets of 

peaks, and is therefore obscured by the larger peaks. 
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LIFT experiments were performed on the silver complexes, with and without DCTB present: 

 

Figure 8.61: Positive-ion mode LIFT of 411 for “cis” and “trans” with AgTFA, LDI and MALDI 

The same fragmentation pattern can be seen in the MALDI and LDI LIFT spectra of m/z 411, 

for both “cis” and “trans”. It is also identical to the ESI spectra, in that “cis” and “trans” 

appear to break in half with one half retaining the silver. In the “trans” spectra there is, 

however, also some evidence of the silver being lost and the “trans” remaining whole and 

retaining the charge, with small peaks at approximately m/z 304. 

 

C60, C60PAH and Gold 

An extension of the research was to test if other metals could be encouraged to form 

complexes with the fullerenes and related compounds. Initial tests were performed using 

gold. A gold solution was mixed with C60A, under the same conditions as for silver. Positive-

ion mode ESI and positive and negative-ion mode MALDI-MS were performed. 

The positive-ion mode ESI spectrum of C60A with Au is below:  
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Figure 8.62: Positive-ion mode ESI spectrum of C60A with AuCl3 

 

The expected m/z value of [C60AAu] is 1095. The expected m/z of a gold bound C60A dimer 

would be at 1993. There is a peak at m/z 1993.7; however, it is of such a low intensity as to 

be indistinguishable from the noise. There is no sign of a peak at m/z 1095. 

 

MS/MS was performed on m/z 2121.9: 
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Figure 8.63: Positive-ion mode MS/MS spectrum of m/z 2121.9 

There are no indications of C60A, or gold in any of the fragment peaks in the MS/MS 

spectrum. m/z 2121.9 was presumably just a contaminant inside the ESI. The machine is 

open access, and although a large volume of solvent was flushed through the system prior 

to starting the experiments, some particularly strong contaminants were always present. 

The positive and negative-ion MALDI-MS spectra for C60A are below: 

 

Figure 8.64: Positive and negative-ion mode MALDI of C60A with Au 
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In positive-ion mode, there are peaks indicating anthracene and C60. In negative-ion mode 

there are peaks for Au and C60. 

Enhancing the m/z region 1088 to 1104 shows a series of peaks at the expected value for 

[C60AAu] in negative-ion mode. In positive-ion mode there is also a very small peak at the 

correct m/z value: 

 

Figure 8.65: Positive and negative-ion mode MALDI of C60A and Au, m/z region 1088 to 

1104 

The intensities of the possible C60AAu peak for both positive and negative-ion mode are very 

low, below 1% intensity of the dominant peak in their respective spectra. 

Initial attempts at producing gold bound dimers or even a gold-C60A complex have failed. 

The intensity of the possible C60AAu peaks are too low in MALDI. As negative-ion mode 

appeared to produce a cleaner peak, and a peak for gold, which was absent in positive-ion 

mode, perhaps negative-ion mode ESI would be more successful. It seems further 

optimisation would be required, which could not be performed during the course of this PhD 

due to time constraints. 

 

Standard ESI of Fullerenes 

Both positive and negative-ion mode methods have been reported that produce ions of 

fullerenes and fullerene derivatives in ESI. 

Initially attempts were made to replicate the positive-ion mode work performed by Wilson et 

al
10

. Instead of potassium acetate, sodium acetate was used. Additionally, instead of tagging 

the fullerene with a crown ether, the assumption was made that isopropyl mono, as a 
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fullerene derivatised with a ligand, should ionise within the ESI source. Sodium acetate was 

added to the solution, in order to produce a peak of the sodium adduct of the molecular ion. 

It was immediately obvious that altering the target mass of the machine drastically altered 

the appearance of the spectra. With the target mass set at m/z 2200, the following spectrum 

was produced: 

 

Figure 8.66: Positive-ion mode ESI spectrum of isopropyl mono with sodium acetate  

 

With the target mass set at m/z 1400, the following spectrum was produced: 
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Figure 8.67: Positive-ion mode ESI spectrum of isopropyl mono with sodium acetate 

In the first spectrum, the peak at m/z 929 is extremely low in intensity, especially when 

compared to the peak at m/z 1836. In the second spectrum, the peak at m/z 929 is larger in 

intensity. 

The peak at m/z 929 corresponds to the sodium adduct of isopropyl mono. The peak at m/z 

1836 is more interesting in that it appears to be a sodium bound dimer of isopropyl mono. 

The isotopic patterns of the two peaks are displayed below, with m/z 929 shown left, and 

1836, right. 
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Figure 8.68: Isotopic pattern from the measured mass spectrum of m/z 929, left, and m/z 

1836, right 

For the sodium-bound dimer, the peak at m/z 1836 is higher in intensity than the peak at m/z 

1835. This is due entirely to the presence of carbon-13. The isotopic pattern is identical to 

the simulated pattern for [(C69O4H14)2Na)]. 

MS/MS of the peaks at m/z 1836 confirmed the identity of the peaks. MS/MS of m/z 1836 is 

shown below: 

 

Figure 8.69: Positive-ion mode ESI spectrum of isopropyl mono and sodium, MS/MS of m/z 

1836.2 
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The peak at 1836.2 loses one isopropyl mono molecule to produce the peak at 929.1. 

 

The method for producing negative-ion mode spectra of fullerenes has also been repeated. 

Addition of sodium methoxide is reported to produce signals for C60
-
 and the addition of odd 

numbered methoxy groups, such as C60(OCH3)
-
, C60(OCH3)3

-
, and so forth. Minor signals for 

oxidised products, such as C60O
-
 and C60O(OCH3)3

-
, were also produced. The experiments 

were repeated here with C60, and produced the following spectrum: 

 

Figure 8.70: Negative-ion mode ESI spectrum of C60 with sodium methoxide 

The peaks produced here have been identified as below: 

m/z Identification 

720 C60
-
 

721 C60H
- 
? 

737 C60OH
-
 

751 C60OCH3
-
 

781 C60(OCH3)2
-
 - H 

811 C60(OCH3)3
-
 - 2H 

Table 8.23: Peaks from the negative-ion mode ESI spectrum of C60 and Sodium Methoxide 
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The peak at m/z 721 has a larger intensity than would be expected of 
12

C59
13

C, and has 

been tentatively identified as C60H
-
. As was been discussed in chapter 6, the negative ESI 

spectra of the C60PAHs also demonstrated a massively enhanced m/z 721 peak. Addition of 

a negative hydrogen appears to be the most likely scenario, however, further experiments 

are required in order to ascertain the ionisation processes involved. 

In summary, previously reported methods for ionising fullerene samples have been repeated 

here. Both successfully produced ions, however many additional ions were also created. 

This may prove confusing with determining which peak is the molecular ion peak in the case 

of samples with unknown masses.  

 

It has been found that simply optimising conditions within the ESI source allowed for the 

production of underivatised fullerenes in both ion modes without the addition of salts. 

The following negative-ion mode spectra of C84 are examples: 

 

Figure 8.71: Negative-ion mode ESI spectrum of C84 at 100% Compound Stability 
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Figure 8.72: Negative-ion mode ESI spectrum of C84 at 500% Compound Stability 

 

As seen in previous spectra, the compound stability has a drastic effect on the quality of the 

spectra. The two spectra of C84 were obtained at 100% and 500% compound stability. All 

other source settings were constant – the drying gas temperature at 100°C and the target 

mass was set at 1250 Da. The compound stability, as explained previously, is the voltage 

gradient that affects the ions after they exit the capillary. The lower the compound stability, 

the smaller the voltage gradient and the softer the field the ions face. In the case of 

fullerenes, it appears harder conditions are required for ionisation. However, in both spectra 

the intensity of the C84 peaks are relatively similar, it is the absence of other peaks in the 

500% CS spectrum that makes it appear cleaner. This could be explained as the fullerenes 

being fairly resilient to the voltage gradient, but the molecules creating the background noise 

in the first spectrum not surviving the harsh conditions in the second spectrum. Either way, 

further optimisation of the conditions is required in order to produce cleaner spectra of a 

greater intensity. 
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Conclusion 

In this chapter it has been demonstrated that the use of silver in electrospray experiments 

can assist in the formation of positive-ions from traditionally difficult to ionise samples, such 

as fullerenes and non-polar organic molecules. 

Attempts have been made to determine the relative silver binding affinity of these various 

fullerenes and related compounds, however as has been demonstrated with C59N and C60, 

where there are differences in the ability of a sample to form ions in ESI, there will be an 

inaccurate calculation. At present, only a relative order of binding affinity can be presented 

for the samples, rather than actual figures. 

It appears the larger the molecule in a series, the higher silver affinity it has: 

 

C84 > C70 > C59N > C60 

 

C26H12 ≈ C28H14 > C24H12 > C60 

 

Pentacene > Tetracene > Anthracene 

 

Additionally, it has been found that optimisation of the conditions within the ESI source is 

sufficient to ionise traditionally difficult to ionise samples, without the need for addition of 

salts, or silver. This helps to produce clearer spectra in the sense that there are fewer peaks 

produced, however, the signal-to-noise ratio is fairly low, resulting in spectra of low quality. 

There is also the occasional addition of one mass unit in negative ion mode, which could 

suggest addition of a negative hydrogen ion.  

Further optimisation of the conditions should help produce cleaner spectra; however, further 

experiments are required in order to ascertain the ionisation process that results in the plus 

one addition to the molecular ion peaks. 

The experiments with “cis”, “trans” and silver produced some spectacular spectra which 

demonstrated beyond doubt that silver (I) in the gas phase preferentially binds two ligands. 

Fragmentation of [“trans”2Ag]
+
 showed how the molecules will split in half, with silver 

retaining one half, and subsequently attaching a water molecule. The exception being the 
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original complex, in which silver already has two ligands. The two molecules also confirmed 

the location of the interaction with silver being through the aromatic rings, as in the case of 

“cis”, silver could interact twice with the same molecule, and subsequently did not attach two 

“cis” molecules or a water molecule. Due to the separation of the aromatic rings in the case 

of “trans”, silver could not interact twice with the same molecule, demonstrated by the 

abundant dimer formation.  
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Chapter 9: Conclusion 

 

The gas-phase behaviour of a variety of different fullerene derivatives and related 

compounds has been studied using the ionisation techniques of MALDI and ESI. 

Performing MALDI-MS on the various fullerene derivatives including the open-cage 

fullerenes provided more than just confirmation of synthesis. The open-cage fullerenes were 

found to reheal the cage differently under elevated laser fluences. The size of the orifice and 

the elements present within the orifice appear to have a direct relation to the caged structure 

that the open-cage fullerene rehealed to. 

An in depth study of C60H2 demonstrated how easily this molecule oxidises over time, yet is 

relatively stable as a powder under ambient conditions, with no degradation or cage 

shrinkage over the course of the four weeks for which it was studied. Key to this 

investigation was the establishment of MALDI conditions that would not lead to 

decomposition of C60H2. This was achieved and for the first time a meaningful mass 

spectrum of this compound was obtained. 

Using pencil as an efficient matrix compound for fullerene derivatives proved unsuccessful. 

DCTB, the standard fullerene matrix was, however, proved to be far superior for fullerene 

derivatives in producing fragmentation-free, clean spectra. With the pencil lead, however, 

the very easy addition of sodium and potassium to the compound was observed, which 

appeared to increase stability of the target compound when compared to the behaviour of 

the same compound under LDI conditions. Attempts to utilise the extraordinarily easy 

sodium and potassium addition to distinguish isomeric compounds was successful for the 

open-cage fullerenes. Sodiated isomers showed the same fragment ions, but in distinctly 

different abundances, which allowed to distinguish them. Attempts to create sodium and 

potassium adducts in the past have relied upon the addition of a salt layer to the target slide, 

using pencil, however, is just as successful, but easier and cheaper. 

C60 and polyaromatic hydrocarbon complexes were successfully synthesised and 

characterised using MALDI and ESI. A purified sample of C60P (P = pentacene), obtained 

from Glen Miller at the University of New Hampshire, allowed demonstration of the softness 

of the ionisation techniques for producing a molecular ion peak. Notoriously labile, the peak 
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intensities of C60 and C60P were almost equal using DCTB-MALDI-MS, with the molecular 

ion peak larger than previously reported. 

The presence of silver ions when studying various compounds with the ESI-MS led to many 

interesting results. 

Cluster formation, with and without the amino acid tryptophan, presented cluster sizes larger 

than those previously seen with ESI-MS. Indeed, the formation of pure silver clusters in ESI-

MS without tryptophan had not been published before. Dissociation of the mixed tryptophan-

silver clusters revealed many interesting facts – tryptophan is preferentially lost for all cluster 

sizes, unless the silver clusters had 8 or less silver atoms present, as these appeared to be 

stabilised by the presence of one tryptophan molecule. If only one tryptophan molecule was 

present, then two silver atoms were lost in preference. The exception to this rule was Ag7
+
, 

and to some extent Ag3
+
, which were stable without tryptophan. The larger cluster sizes lost 

the tryptophan molecules initially, and preferentially, until the bare silver cluster was 

produced. 

Study of the hydrogen loss of the tryptophan molecules within the cluster through MS/MS 

experiments produced some generic tendencies, however, some exceptions were observed. 

The main tendency appeared to be that each tryptophan molecule would lose at most two 

hydrogen atoms. This is in line with the general observation that for each cluster, the 

maximum number of hydrogen atoms lost was two per tryptophan present. Some clusters 

appeared to show loss of the occasional tryptophan molecule with 4 hydrogen atoms 

missing. This could, however, be a consequence of the inability of the ion trap used to select 

precisely one exact m/z, and that clusters of the same composition but with different silver 

isotopes are present. Additionally, there could be hydrogen transfer within the clusters. Initial 

observations have shown that smaller silver clusters can be stabilised by one tryptophan 

molecule that has lost only one hydrogen atom. In the case of these smaller clusters, the 

number of hydrogen atoms that is lost from the entire cluster has not reached the maximum 

hydrogen loss. In this case tryptophan molecules missing two hydrogen atoms are lost first, 

leaving tryptophan molecules lacking only one hydrogen atom in the cluster. Although there 

are other competitive dissociations, the main mechanisms involve loss of either a tryptophan 

molecule or two silver atoms. A less preferred pathway, seen with a few of the clusters is the 
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loss of one silver atom and one tryptophan; it is assumed they are lost as one unit. This 

dissociation tends to be observed for larger clusters with an even number of silver atoms 

present, presumably as the result of this dissociation is an odd-numbered silver cluster. 

Odd-numbered silver clusters are, due to the even number of electrons, more stable than 

their even-numbered counterparts. These complexes have produced many interesting 

results, but have also raised many questions that are beyond the scope of this thesis. These 

will be subject of further study in the group.  

With the success of utilising silver ions in ESI-MS with tryptophan, the kinetic method was 

attempted on several fullerenes and smaller compounds to calculate the relative silver 

binding affinities. The differences between MALDI and ESI were obvious in the case of the 

synthesised C60 and polyaromatic hydrocarbon complexes. The use of silver ions was 

effective in helping to produce ions of compounds that typically cannot be analysed with ESI-

MS, such as the family of pure fullerenes. The fact that these silver-bound dimers have been 

produced, and then subsequently dissociated is already exciting. Even if absolute values for 

the silver ion affinities are still elusive and experiments with C59N were not successful, a 

relative order of silver-ion affinities of the compounds studied was obtained. 

Silver was also used successfully where sodium and potassium had failed, in the 

differentiation of the small organic compounds, “cis” and “trans”. 

Many of the experiments confirmed the observation that silver tends to bind two ligands in 

the gas-phase. Dissociation of the silver-bound hetero- and homo-dimers under ESI 

conditions demonstrated that when silver lost one of the ligands, it acquired a water 

molecule from the ion trap in order to fulfil its need for two ligands. The differentiation 

experiments with “cis” and “trans” were successful due to the location at which the silver ion 

interacted with the compounds – the polyaromatic rings. With “cis”, silver could insert in 

between the polyaromatic parts of the molecule, forming two bonds with one molecule. With 

“trans”, silver had to bind two “trans” molecules, as the polyaromatic parts of the “trans” 

molecule were too far apart for silver to successfully interact with only one molecule. Further 

evidence of the bi-dentate character of gas-phase silver complexes comes from MS/MS 

experiments of the “cis”/”trans” complexes with silver. These fragment through the loss of 

one half of the “cis” or “trans” molecule. In this case, the silver would again acquire a water 
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molecule. The “trans” molecule can also show ligand dissociations retaining two ligands on 

silver, which cannot add water in the trap. 

“Bare” fullerenes have also been studied using ESI-MS without any addition of an ion 

forming agent. Anions were successfully formed by the addition of one mass unit, however, 

the signal-to-noise ratio was low, and further studies are required to ascertain the ion 

formation mechanism. “Bare” fullerenes appear to produce spectra of a better quality in 

negative-ion mode; however, both ion modes still need further optimisation for the 

production of better quality spectra with a greater signal-to-noise ratio of the molecular ion 

peaks. 
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Sample 1.7, negative-ion mode MALDI
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Sample 2.1, negative-ion mode MALDI

Sample 2.2, negative-ion mode MALDI
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Sample 2.4, negative-ion mode MALDI

Sample 2.4, negative-ion mode MALDI, isotopic pattern
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Sample 2.5, negative-ion mode MALDI

Sample 2.6, negative-ion mode MALDI
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Sample 2.7, negative-ion mode MALDI

Sample 2.8, negative-ion mode MALDI
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Sample 2.9, negative-ion mode MALDI
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Sample 2.11, negative-ion mode MALDI

Sample 3.7, positive-ion mode MALDI
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Sample 3.8, negative-ion mode MALDI
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Sample 3.11, negative-ion mode MALDI

Sample 3.12, negative-ion mode MALDI
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Sample 3.13, negative-ion mode MALDI

Sample 3.14, negative-ion mode MALDI
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Sample 3.15, negative-ion mode MALDI

 

Sample 4.1, negative-ion mode MALDI
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Sample 4.2, negative-ion mode MALDI
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Sample 4.5, negative-ion mode MALDI

 

Sample 4.6, negative-ion mode MALDI
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Sample 4.7, negative-ion mode MALDI

 

Sample 5.1, negative-ion mode MALDI
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Sample 5.3, negative-ion mode MALDI

 

Sample 5.5, negative-ion mode MALDI
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Sample 6.1, negative-ion mode MALDI

 

Sample 6.2, negative-ion mode MALDI
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Sample 6.3, negative-ion mode MALDI

 

Sample 6.5, negative-ion mode MALDI
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Sample 6.6, negative-ion mode MALDI

 

Sample 7.1, negative-ion mode MALDI
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Sample 7.2, negative-ion mode MALDI
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Sample 7.4, negative-ion mode MALDI
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Sample 7.6, negative-ion mode MALDI

 

Sample 7.7, negative-ion mode MALDI
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Sample 7.8, negative-ion mode MALDI

 

Sample 8.1, negative-ion mode MALDI
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Sample 8.2, negative-ion mode MALDI

 

Sample 8.3, positive-ion mode MALDI
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Sample 8.4, negative-ion mode MALDI

 

Sample 8.5, negative-ion mode MALDI
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Sample 8.6, negative-ion mode MALDI

 

Sample 8.7, negative-ion mode MALDI
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Sample 8.7, negative-ion mode M

 

Sample 8.8, negative-ion mode MALDI
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Sample 8.9, positive-ion mode MALDI

 

Sample 8.11, negative-ion mode MALDI
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Sample 8.12, negative-ion mode MALDI
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High Laser power MALDI spectra of OCF’s

Sample 1.1, top to bottom 

mode MALDI, positive-ion mode MALDI

Sample 1.2, top to bottom 

mode MALDI, positive-ion mode MALDI

High Laser power MALDI spectra of OCF’s 

Sample 1.1, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 
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ion mode LDI, negative-ion 

 

ion mode LDI, negative-ion 



 

 

Sample 1.5, top to bottom 

mode MALDI, positive-ion mode MALDI

Sample 1.6, top to bottom 

mode MALDI, positive-ion mode MALDI

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 
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ion mode LDI, negative-ion 

 

ion mode LDI, negative-ion 



 

 

Sample 2.1, top to bottom 

mode MALDI, positive-ion mode MALDI

Sample 2.2, top to bottom 

mode MALDI, positive-ion mode MALDI

.1, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 
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n mode LDI, negative-ion 

 

ion mode LDI, negative-ion 



 

 

Sample 2.3, top to bottom 

mode MALDI, positive-ion mode MALDI

Sample 2.4, top to bottom 

mode MALDI, positive-ion mode MALDI

, top to bottom – positive-ion mode LDI, negative-ion mode

ion mode MALDI 

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 
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ion mode LDI, negative-ion 

 

ion mode LDI, negative-ion 



 

 

Sample 2.5, top to bottom 

mode MALDI, positive-ion mode MALDI

Sample 2.6, top to bottom 

mode MALDI, positive-ion mode MALDI

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, 

ion mode MALDI 

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 
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ion mode LDI, negative-ion 

 

ion mode LDI, negative-ion 



 

 

Sample 2.7, top to bottom 

mode MALDI, positive-ion mode MALDI

Sample 2.8, top to bottom 

mode MALDI, positive-ion mode MALDI

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negati

ion mode MALDI 

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 
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ion mode LDI, negative-ion 

 

ion mode LDI, negative-ion 



 

 

Sample 2.9, top to bottom 

mode MALDI, positive-ion mode MALDI

Sample 2.10, top to bottom 

mode MALDI, positive-ion mode MALDI

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 
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ion mode LDI, negative-ion 

 

ion mode LDI, negative-ion 



 

 

Sample 2.11, top to bottom 

mode MALDI, positive-ion mode MALDI

Sample 2.12, top to bottom 

mode MALDI, positive-ion mode MALDI

 

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 

, top to bottom – positive-ion mode LDI, negative-ion mode LDI, negative

ion mode MALDI 
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ion mode LDI, negative-ion 

 

ion mode LDI, negative-ion 
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Chapter 5 Additional Spectra 

 

Additional OCF on pencil spectra 

Compounds 2.1 and 2.3 on 6B and 8B Pencil 

Enhancement of the molecular ion region for compounds 2.1 and 2.2 
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Positive-ion mode LIFT of the Na and K adducts of 2.1 and 2.2 on 6B pencil 

 

Enhancement of the fragment peaks for the LIFT experiments of the Na and K adducts of 

2.1 and 2.2 on 6B pencil 
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Positive-ion mode LIFT of the “bare” and the Na adducts of 2.1 and 2.2 on HB pencil with 

DCTB present 

 

Enhancement of the fragment ions of the positive-ion mode LIFT of the “bare” and the Na 

adducts of 2.1 and 2.2 on HB pencil with DCTB present 
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Positive-ion mode LIFT of the “bare” and the Na adducts of 2.3 and 2.4 on HB pencil with 

DCTB present 

 

Enhancement of the fragment ion region of the positive-ion mode LIFT of the “bare” and the 

Na adducts of 2.1 and 2.2 on HB pencil with DCTB present 
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Additional (Z)- and (E)-acenaphthalene (“Cis” and “Trans”) Spectra 

 

Enhancement of the higher mass range for “Trans” on 6B and 8B pencil 

 

Various CID experiments of “Trans” on pencil 

 

More CID experiments of “Trans” on pencil 
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Chapter 6 Additional Spectra 

 

C60P Spectra at elevated Laser Fluences 

 

Full range spectra of the LDI experiments on C60P at elevated Laser Fluences 
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Enhancement of the molecular ion region for the LDI experiments with elevated laser 

fluences on C60P 
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Spectra of the LDI experiments with separate C60 and pentacene at elevated laser fluences 
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Spectra of the LDI experiments of separate C60 and pentacene at elevated laser fluences, 

enhancement of the quasi-molecular ion region  
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Chapter 7 Additional Spectra 

 

Actual and Simulated Isotopic pattern of the different Clusters 

Individual clusters with the simulated isotopic patterns displayed below the actual mass 

spectrum. The simulated isotopic pattern has the “intact” version of tryptophan i.e. the 

hydrogen atom loss is not simulated, which is why the simulated and actual do not align. 
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[Ag2Trp]
+
 cluster, actual, top and simulated, bottom 
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[Ag5Trp]
+
 cluster, actual, top and simulated, bottom 
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[Ag6Trp2]
+
 cluster, actual, top and simulated, bottom 

938.8

940.8

941.7

942.7

943.7

944.8

945.8

946.8

947.8

948.8

949.8

950.8

951.8

952.8

953.8

954.5

+MS, 0.0-25.0min #(1-1020)

942.7

943.7

944.7

945.7

946.7

947.7

948.7

949.7

950.7

951.7
952.7

(C11H12N2O2)2Ag5 ,942.71
0

1000

2000

3000

4000

Intens.

0

500

1000

1500

2000

938 940 942 944 946 948 950 952 954 m/z

1046.8

1048.7

1049.7

1050.7

1051.7

1052.7

1053.7

1054.6

1055.7

1056.7

1057.7 1058.8

1060.9

1062.4

+MS, 0.0-25.0min #(1-1020)

1049.6

1051.6

1052.6

1053.6

1054.6

1055.6

1056.6

1057.6

1058.6

1059.6

1060.6
1061.6

(C11H12N2O2)2Ag6 ,1049.61
0

500

1000

1500

2000

2500

Intens.

0

500

1000

1500

2000

1048 1050 1052 1054 1056 1058 1060 1062 m/z



Appendix 
 

347 
 

 

[Ag8Trp2]
+
 cluster, actual, top and simulated, bottom 

 

[Ag9Trp2]
+
 cluster, actual, top and simulated, bottom 

1261.8

1262.5

1263.7

1264.5

1265.5

1266.5

1267.5

1268.5

1269.5

1270.4

1271.5

1272.4

1273.5

1274.5

1275.3

1276.2

1276.7

1278.2

1279.1

1280.2

+MS, 0.0-25.0min #(1-1020)

1265.4

1266.4

1267.4

1268.4

1269.4

1270.4

1271.4

1272.4

1273.4

1274.4

1275.4

1276.4 1277.4

1278.4

(C11H12N2O2)2Ag8 ,1263.42
0

1000

2000

3000

4000

5000

Intens.

0

500

1000

1500

2000

1262 1264 1266 1268 1270 1272 1274 1276 1278 1280 m/z

1367.6
1368.6

1369.6

1370.3

1371.3

1372.3

1373.3

1374.3

1375.3

1376.3

1377.3

1378.3

1379.3

1380.3

1381.4

1382.2

1383.4

1384.1

1385.0

1386.1

1386.9

1388.0

+MS, 0.0-25.0min #(1-1020)

1372.3

1374.3

1375.3

1376.3

1377.3

1378.3

1379.3

1380.3

1381.3

1382.3

1383.3

1384.3

1385.3 1386.3

(C11H12N2O2)2Ag9 ,1370.33
0.0

0.2

0.4

0.6

0.8

1.0

4x10

Intens.

0

500

1000

1500

2000

1368 1370 1372 1374 1376 1378 1380 1382 1384 1386 m/z



Appendix 
 

348 
 

 

[Ag10Trp2]
+
 cluster, actual, top and simulated, bottom 

 

[Ag11Trp2]
+
 cluster, actual, top and simulated, bottom 

1477.5

1478.2

1480.2

1481.2

1482.2

1483.2

1484.2

1485.2

1486.2

1487.2

1488.2

1489.2

1490.2

1491.0

1492.0

1492.6

1493.9

1494.7
1495.9

1496.7

+MS, 0.0-25.0min #(1-1020)

1479.2

1481.2

1482.2

1483.2

1484.2

1485.2

1486.2

1487.2

1488.2

1489.2

1490.2

1491.2

1492.2

1493.2

1494.2 1495.2

(C11H12N2O2)2Ag10 ,1477.23

1000

2000

3000

4000

5000

Intens.

0

500

1000

1500

2000

1478 1480 1482 1484 1486 1488 1490 1492 1494 1496 m/z

1584.3

1585.4

1586.1

1587.0

1588.1

1589.1

1590.1

1591.1

1592.1

1593.1

1594.1

1595.1

1596.1

1597.1

1598.0

1598.9

1600.6

1602.6

1603.8
1604.6

+MS, 0.0-25.0min #(1-1020)

1586.1

1588.1

1589.1

1590.1

1591.1

1592.1

1593.1

1594.1

1595.1

1596.1

1597.1

1598.1

1599.1

1600.1

1601.1
1602.1

(C11H12N2O2)2Ag11 ,1584.14

2000

4000

6000

Intens.

0

500

1000

1500

2000

1585.0 1587.5 1590.0 1592.5 1595.0 1597.5 1600.0 1602.5 1605.0 m/z



Appendix 
 

349 
 

 

[Ag12Trp2]
+
 cluster, actual, top and simulated, bottom

 

[Ag13Trp2]
+
 cluster, actual, top and simulated, bottom 

1691.3

1692.3

1693.3

1694.0

1696.0

1697.0

1698.0

1699.0

1700.0

1701.0

1702.0

1703.0

1704.0

1705.0

1705.9

1706.9

1707.8

1708.5
1709.7

1710.5

1711.7

1712.5

+MS, 0.0-25.0min #(1-1020)

1695.0

1696.0

1697.0

1698.0

1699.0

1700.0

1701.0

1702.0

1703.0

1704.0

1705.0

1706.0

1707.0

1708.0

1709.0

1710.0 1711.0

(C11H12N2O2)2Ag12 ,1691.04

500

1000

1500

2000

2500

3000

3500

Intens.

0

500

1000

1500

2000

1692.5 1695.0 1697.5 1700.0 1702.5 1705.0 1707.5 1710.0 1712.5 m/z

1798.2

1799.2

1800.1

1801.1

1801.9

1802.9

1803.9

1804.7

1805.9

1806.8

1807.9

1808.9

1809.9

1810.9

1811.9

1814.3

1815.4

1816.4

1817.4

1818.4

1819.5

1820.4

1822.4

+MS, 0.0-25.0min #(1-1020)

1801.9

1803.9

1804.9

1805.9

1806.9

1807.9

1808.9

1809.9

1810.9

1811.9

1812.9

1813.9

1814.9

1815.9

1816.9

1817.9

1818.91819.9

(C11H12N2O2)2Ag13 ,1797.95

1000

2000

3000

4000

Intens.

0

500

1000

1500

2000

1797.5 1800.0 1802.5 1805.0 1807.5 1810.0 1812.5 1815.0 1817.5 1820.0 m/z



Appendix 
 

350 
 

 

[Ag14Trp2]
+
 cluster, actual, top and simulated, bottom 

 

[Ag15Trp2]
+
 cluster, actual, top and simulated, bottom 

1908.1

1909.1

1910.0

1910.5 1911.8

1912.6

1913.8

1914.6

1915.7

1916.6

1917.7

1918.7

1919.8

1921.6

1922.2

1923.1

1924.2

1925.2

1926.3

1927.2

1928.3

1929.3

+MS, 0.0-25.0min #(1-1020)

1908.8

1910.8

1911.9

1912.8

1913.9

1914.8

1915.9

1916.8

1917.9

1918.8

1919.9

1920.8

1921.9

1922.8

1923.9

1924.8

1925.9
1926.8

(C11H12N2O2)2Ag14 ,1904.85

400

600

800

1000

1200

1400

Intens.

0

500

1000

1500

2000

1907.5 1910.0 1912.5 1915.0 1917.5 1920.0 1922.5 1925.0 1927.5 m/z

2014.0

2014.9

2016.0

2017.7

2018.4

2020.5
2021.6

2022.5

2023.6

2024.5 2025.7

2026.6

2027.7

2029.3

2030.2

2031.3

2032.2

2033.2

2034.2

2035.3

2036.2

2037.3

2038.2

2039.0

+MS, 0.0-25.0min #(1-1020)

2017.8

2018.8

2019.8

2020.8

2021.8

2022.8

2023.8

2024.8

2025.8

2026.8

2027.8

2028.8

2029.8

2030.8

2031.8

2032.8

2033.8

2034.82035.8

(C11H12N2O2)2Ag15 ,2011.76

400

600

800

1000

Intens.

0

500

1000

1500

2000

2015.0 2017.5 2020.0 2022.5 2025.0 2027.5 2030.0 2032.5 2035.0 2037.5 m/z



Appendix 
 

351 
 

 

[Ag16Trp2]
+
 cluster, actual, top and simulated, bottom 

 

[Ag4Trp3]
+
 cluster, actual, top and simulated, bottom 

2122.9 2123.9

2124.9

2126.4

2127.6

2128.4 2129.5

2130.4

2131.5

2132.4

2133.6

2134.5
2135.6

2136.3

2138.0

2139.1

2140.1

2142.1

2143.0

2144.0

2145.2

2146.1

+MS, 0.0-25.0min #(1-1020)

2124.7

2126.7

2127.7

2128.7

2129.7

2130.7

2131.7

2132.7

2133.7

2134.7

2135.7

2136.7

2137.7

2138.7

2139.7

2140.7

2141.7

2142.7

2143.7 2144.7

(C11H12N2O2)2Ag16 ,2118.66

300

400

500

600

700

800

Intens.

0

500

1000

1500

2000

2122.5 2125.0 2127.5 2130.0 2132.5 2135.0 2137.5 2140.0 2142.5 2145.0 m/z

1037.0

1037.9

1039.0

1039.9

1041.0

1041.9

1042.9

1044.0

1044.9

1046.0
1046.8

1048.7

1049.7

+MS, 0.0-25.0min #(1-1020)

1039.9

1040.9

1041.9

1042.9

1043.9

1044.9

1045.9

1046.9

1047.9

1048.9

(C11H12N2O2)3Ag4 ,1039.89
0.0

0.2

0.4

0.6

0.8

4x10

Intens.

0

500

1000

1500

2000

1038 1040 1042 1044 1046 1048 1050 m/z



Appendix 
 

352 
 

 

[Ag6Trp3]
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 cluster, actual, top and simulated, bottom 
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[Ag8Trp3]
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 cluster, actual, top and simulated, bottom 
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[Ag10Trp3]
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 cluster, actual, top and simulated, bottom 
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[Ag12Trp3]
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 cluster, actual, top and simulated, bottom 
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[Ag8Trp4]
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 cluster, actual, top and simulated, bottom 
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[Ag10Trp4]
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 cluster, actual, top and simulated, bottom 

 

[Ag12Trp4]
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 cluster, actual, top and simulated, bottom 
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[Ag10Trp5]
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 cluster, actual, top and simulated, bottom 
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MS/MS of Trp-Ag clusters, positive-ion mode ESI spectra 

 

MS/MS of Ag2Trp, m/z 418.9 

 

MS/MS of Ag3Trp, m/z 528.7 

132.3

159.3

265.0

+MS2(418.9), 0.1-4.0min #(2-67)

0

250

500

750

1000

1250

1500

Intens.

100 150 200 250 300 350 400 m/z

268.0

313.0

324.7

483.7

+MS2(528.7), 0.1-3.0min #(2-50)

0

200

400

600

800

Intens.

150 200 250 300 350 400 450 500 550 m/z



Appendix 
 

360 
 

 

MS/MS of Ag4Trp, m/z 634.7 

 

MS/MS of Ag3Trp2, m/z 728.8 
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MS/MS Ag5Trp, m/z 740.6 

 

MS/MS of Ag4Trp2, m/z 836.7 
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MS/MS of Ag6Trp, m/z 850.0 

 

MS/MS of Ag5Trp2, m/z 942.7 
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MS/MS of Ag7Trp, m/z 958.4 

 

MS/MS of Ag4Trp3, m/z 1040.8 
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MS/MS of Ag6Trp2, m/z 1056.6 

 

MS/MS of Ag8Trp, m/z 1064.3 
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MS/MS of Ag5Trp3, m/z 1146.7 

 

MS/MS of Ag7Trp2, m/z 1158.5 
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MS/MS of Ag9Trp, m/z 1170.6 
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MS/MS of Ag8Trp2, m/z 1268.4 

 

MS/MS of Ag10Trp, m/z 1282.0 
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MS/MS of Ag7Trp3, m/z 1361.6 

 

MS/MS of Ag9Trp2, m/z 1376.2 

756.4

958.6

1158.7

1250.8

1364.7

+MS2(1361.6), 0.0-3.0min #(2-71)

0

1

2

3

4

5

6

4x10

Intens.

200 400 600 800 1000 1200 1400 1600 m/z

733.3

972.1

1174.2

+MS2(1376.2), 0.1-3.0min #(2-50)

0

10

20

30

40

Intens.

200 400 600 800 1000 1200 1400 1600 m/z



Appendix 
 

369 
 

 

MS/MS of Ag11Trp, m/z 1388.7 
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MS/MS of Ag12Trp, m/z 1496.6 
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MS/MS of Ag11Trp2, m/z 1591.9 
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MS/MS of Ag8Trp4, m/z 1672.5 

 

MS/MS of Ag12Trp2, m/z 1699.8 
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MS/MS of Ag14Trp, m/z 1712.3 
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MS/MS of Ag15Trp, m/z 1818.2 

 

MS/MS of Ag10Trp4, m/z 1886.2 

1412.2

1413.2

1414.2

1415.2

1416.2

+MS2(1818.2), 0.1-4.0min #(2-67)

0

10

20

30

40

Intens.

1410 1412 1414 1416 1418 1420 m/z

1482.0

1682.1

1888.0

+MS2(1886.2), 0.1-3.3min #(2-55)

0

25

50

75

100

125

Intens.

200 400 600 800 1000 1200 1400 1600 1800 2000 m/z



Appendix 
 

375 
 

 

MS/MS of Ag16Trp, m/z 1928.1 

 

MS/MS of Ag11Trp4, m/z 1994.1 
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MS/MS of Ag17Trp, m/z 2036.1 

 

MS/MS of Ag10Trp5, m/z 2090.2 
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MS/MS of Ag12Trp4, m/z 2103.9 

MS/MS of Silver clusters, positive-ion mode ESI spectra 
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MS/MS of Ag8 

 

MS/MS of Ag11 
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MS/MS of Ag17 

 

MS(3) of the Trp-Ag clusters, positive-ion mode ESI spectra 
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MS/MS of Ag8Trp, m/z 1064.3; MS(3) of  Ag6Trp, m/z 848.4 
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MS/MS of Ag10Trp2, m/z 1482.1; MS(3) of  Ag10Trp, m/z 1280.1 

 

MS/MS of Ag12Trp, m/z 1496.6; MS(3) of  Ag12, m/z 1292.5 
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MS/MS of Ag13Trp, m/z 1604.4; MS(3) of  Ag13, m/z 1401.6 
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MS/MS of Ag12Trp2, m/z 1699.8; MS(3) of  Ag12Trp, m/z 1497.9 

 

MS/MS of Ag14Trp, m/z 1712.3; MS(3) of  Ag14, m/z 1511.4 

1278.6

1280.1

1281.1

1282.1

1283.1

1284.1

1285.7

+MS3(1699.8->1497.9), 0.1-3.0min #(2-42)

0

20

40

60

80

100

120

Intens.

1276 1278 1280 1282 1284 1286 1288 m/z

1308.3

+MS3(1712.3->1511.4), 0.0-4.0min #(1-55)

0

10

20

30

40

50

Intens.

200 400 600 800 1000 1200 1400 1600 1800 2000 m/z



Appendix 
 

384 
 

 

MS/MS of Ag9Trp4, m/z 1780.3; MS(3) of  Ag9Trp2, m/z 1374.3 
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MS/MS of Ag11Trp3, m/z 1792.0; MS(3) of  Ag11Trp2, m/z 1590.0 
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MS/MS of Ag10Trp4, m/z 1886.2; MS(3) of  Ag10Trp2, m/z 1482.0 

MS(3) of Silver clusters, positive-ion mode ESI spectra 
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MS/MS of Ag7, m/z 754.4; MS(3) of Ag5, m/z 538.5

 

MS/MS of Ag9, m/z 972.2, MS(3) of Ag7, m/z756.3 
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Chapter 8 Additional Spectra 

 

Homo-dimer formation with silver, positive-ion mode ESI spectra 

C26H12: 

 

 

Top left: full spectrum; top right: spectrum from m/z 350; bottom: actual and simulated mass 

spectrum of [C26H12AgC26H12]
+
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C28H14: 

 

 

Top left: full spectrum; top right: spectrum from m/z 450; bottom: actual and simulated 

spectrum of [C28H12AgC28H12]
+ 

 

  

350.1

476.9

+MS, 0.0-3.0min #(1-121)

0.0

0.5

1.0

1.5

2.0

2.5

5x10

Intens.

200 400 600 800 1000 1200 1400 1600 1800 2000 m/z

476.9

678.8

771.3

809.1

847.1

1028.8

1158.3

1250.0

1507.6

1600.2

1728.5

1873.2

1949.4
2094.9 2167.7

+MS, 0.0-3.0min #(1-121)

0

1000

2000

3000

4000

5000

6000

Intens.

600 800 1000 1200 1400 1600 1800 2000 m/z

807.1

808.1

809.1

810.0

811.0

812.0

+MS, 0.0-3.0min #(1-121)

807.1

808.1

809.1

810.1

811.1

812.1

(C28H14)2Ag ,807.12
0

1000

2000

3000

4000

5000

Intens.

0

500

1000

1500

2000

802 804 806 808 810 812 814 816 m/z



Appendix 
 

391 
 

Hetero-dimer formation with silver, positive-ion mode ESI spectra 

C60, C84 and Ag: 

 

Top: full spectrum; bottom: Isotopic pattern of [C60AgC84]
+
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C60, C59N and Ag: 

 

 

Top: full spectrum; bottom: isotopic pattern of [C60AgC59N]
+
, with simulated patterns top to 

bottom: [(C59N)2Ag], [(C60)2Ag]
+
, [C60AgC59N]
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C70, C84 and Ag: 

 

 

Top: full spectrum, bottom: actual and simulated isotopic pattern of [C70AgC84]
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C70, C59N and Ag: 

 

 

Top: full spectrum, bottom: actual and simulated pattern of [C59NAgC70]
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Coronene (C24H12), C60 and Ag: 

 

 

Top: full mass spectrum of C60 and coronene, bottom, actual and simulated mass spectrum 

of [C60AgC24H12]
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Coronene, C28H14 and Ag: 

 

 

Top: full mass spectrum, bottom: actual and simulated mass spectrum of [C24H12AgC28H14]
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C60, C26H12 and Ag: 

 

 

Top: full mass spectrum, bottom: actual and simulated mass spectrum of [C60AgC24H12]
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C60, C28H14 and Ag: 

 

 

Top: full mass spectrum, bottom: actual and simulated mass spectrum of [C60AgC28H14]
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C26H12, C28H14 and Ag: 

 

 

Top: full mass spectrum, bottom: actual and simulated mass spectrum of [C26H12AgC28H14]
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CID of the silver bound hetero-dimers, positive-ion mode ESI spectra 

C60, C70, and Ag: 
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C60, C84 and Ag: 

 

MS/MS of [C60AgC84]
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C60, (C59N)2 and Ag: 

 

MS/MS of [C60AgC59N]
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C60, C28H14 and Ag: 

 

MS/MS of [C60AgC28H14]
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Coronene, C26H12 and Ag: 

 

MS/MS of [C24H12AgC26H12]
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Coronene, C28H14 and Ag: 

 

MS/MS of [C24H12AgC28H14]
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C26H12, C28H14 with Ag: 

 

MS/MS of [C26H12AgC28H14]
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C60PAH’s and AgTFA positive-ion mode ESI spectra 

Positive-ion mode C60Tetracene with AgTFA 

 

 

Top: full mass spectrum of C60T with AgTFA, bottom left: actual and simulated mass 

spectrum of [C60AgT]
+
, bottom right: actual and simulated mass spectrum of [(C60T)2Ag]

+
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Top: full positive-ion mode spectrum of C60P with AgTFA, bottom left: actual and simulated 

mass spectrum of [C60AgP]
+
, bottom right: isotopic pattern of [(C60P)2Ag]
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Positive-ion mode MS/MS ESI spectra of C60A with AgTFA 
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Positive-ion mode MS/MS ESI spectra of C60P with AgTFA 

 

MS/MS of [C60AgP]
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