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SUMMARY 

The compressible unsteady laminar flow of air in long slender 

tubes subjected to a step function increase in the inlet air temperature 

is considered in terms of both an experimental investigation and the 

formulation of an appropriate theoretical analysis to supplement the 

experiment. The experiments deal with flow in copper tubes of fixed 

diameter with length to internal diameter ratios of 400, 600, 800, and 

1000, a waI I thickness to internal diameter ratio of 0.3, and with the 

tube external surface free to cool to its surroundings by natural con­

vection and radiation. It was found that laminar flow in the tubes 

could be obtained for Reynolds numbers less than 1250. A suitably de­

signed furnace at the tube inlet provided inlet gas temperatures up to 

approximately 1000 F. Each of the test tubes was instrumented to ob­

tain results for the centerline gas and tube wall temperature distri­

butions from entrance to exit and the experimental setup was designed 

to allow measurements of the tube overall pressure drop. The mass flow 

through the test tube was measured by means of the pressure drop across 

a calibrated Poiseuille tube attached to the exit end of the test tube. 

Execution of the experimental investigation was divided into two 

essential parts. First, each test tube was utilized in a series of runs 

with cold flow (flow at the temperature of the ambient surroundings) 

that encompassed the range of Reynolds numbers from 100 to 1250 in order 

to provide accurate details of the pressure drop that could be expected 

for cold flow. The second portion of the experiments for each tube 
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consisted of hot flow runs for Reynolds numbers of approximately 850 and 

1200 with gas inlet temperatures of approximately 600, 800, and 950 F, 

the highest temperature being attainable only for the high Reynolds num­

ber flow. Each hot flow run was initiated by allowing the air at ele­

vated temperature from the furnace to flow through the test tube which 

was initially at a temperature equal to that of its ambient (room temp­

erature) surroundings, thus, with ensuing,time the tube heats up, the 

gas temperatures increase, and the tube pressure drop is increased. 

During the course of the run the gas inlet temperature and the mass 

flow through the tube, as measured by the Poiseuille tube downstream of 

the test tube, were held constant insofar as manual control of these 

vari abIes all owed. 

These hot flow runs provided measurements of pressure drop and 

gas and wall temperatures during the time interval between initiation 

of the run and approximate attainment of equilibrium flow. The experi­

ment was not, however, designed to provide detailed measurements of the 

small time transients occuring immediately following the beginning of a 

run and pertaining to the movement through the tube of a thermal contact 

discontinuity which originates at the tube entrance. These initial 

transients should be of a duration of the order of a second, whereas 

the significant time increments pertinent to the experiments were con­

sidered to be of the order of one-half minute or larger. 

The experimental results indicate that the tube pressure drop is 

significantly influenced by the gas inlet temperature and that this de­

pendence is more pronounced at the higher Reynolds numbers. The exper­

imental temperature distributions likewise are dependent on the gas 
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inlet temperature and Reynolds number but show, within experimental 

accuracy,..no dependence on the tube length. Correspondingly, the change 

in the tube pressure drop showed no significant dependence on tube length 

for the lengths of tube utilized. In all cases the tube lengths were 

sufficiently long to ensure that the gas temperature at the tube exit 

was for all practical purposes equal to the ambient temperature of the 

tube surroundings. Evaluation of the experimental results! in terms of 

precise observations of the dependence of the flow variables on the 

various parameters of the problem; w.as made difficult by the limited 

number of experiments that could be conducted in a reasonable time and 

the inability to closely control the mass flow and inlet temperature 

both during a run and for purposes of repeating a run at the same value 

of these parameters. 

A theoretical analysis of the flow problem defined by the exper­

imental phase of the investigation is presented together with compari­

sons with the experiment and predictions of the dependence of the tube 

pressure drop on time, length to diameter ratio, mass flow, inlet temp­

erature, and thickness to diameter ratio. The theory is based on a 

derivation of the governing equations for the flow and a tube wall ther­

mal energy balance which follow from application of the general integral 

equations for conservation of mass, momentum, and energy. In this deri­

vation the problem is formulated in terms of a one-dimensional repre­

sentation of all variables as dependent upon only the longitudinal 

position. The fluid flow difference equations appropriate to this de­

scription are then simplified by noting that the flow can be assumed to 

be quasi-steady and that the Mach number is essentially zero. The wall 
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thermal energy equation is given in terms of a one-dimensional repre­

sentation of a heat balance which includes forced convection heating 

from the gas, longitudinal conduction in the wall, and cooling due to 

natural convection and radiation to the external ambient surroundings. 

With the application of flow boundary conditions corresponding to a con­

stant inlet temperature, exit mass flow, and exit pressure, together 

with the assumption that the ends of the tube are insulated, the com­

plete problem is presented in a form suitable for numerical computation. 

As a consequence of the quasi-steady nature of the fluid flow the dif­

ference equations for the fluid are ordinary equations but are coupled 

to the wall equation through the wall temperature. Thus the wall equa­

tion, which is of a parabolic nature, provides the essential mechanism 

for unsteadiness in the problem. 

A solution of the system of difference equations is effected by 

utilizing a six-point implicit difference scheme for the wall energy 

equation together with a standard Runge-Kutta method for integration of 

the fluid equations. In order to carry out the solution information 

pertaining to the fluid flow friction factor and Nusselt number are re­

quired as inputs. Accordingly, a friction factor formula is postulated 

by representing the analytical results of Langhaar (J. Appl. Mech., 2> 

55, 1942) in terms of a hyperbola with a friction factor parameter which 

is determined empirically from the cold flow experimental results, for 

each test tube. A constant value of the Nusselt number that matches 

the theoretical predictions to the hot flow pressure drop results ob­

tained experimentally for the short test tube is found and utilized for 

all theoretical predictions. 
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The theoretical computation procedure is applied for the hot flow 

conditions pertaining to each experiment and a comparison of theory and 

experiment shows good agreement for the range of the parameters inves­

tigated. Based on this agreement the theory is utilized to investigate 

the dependence of the tube pressure drop on the various parameters in­

volved; it is found that the dependence of the tube pressure drop on the 

primary parameter, the gas inlet temperature, is linear over the range 

of temperatures investigated. Whereas the tube length shows no appre­

ciable influence on the change in the pressure drop due to hot flow, the 

tube wall thickness is found to possess significant influence. For 

small values of the wall thickness to diameter ratio, corresponding to 

thin walled tubes, the time response of the flow is shorter and the 

pressure drop effects are larger corresponding to the higher gas temp­

eratures attained. An essential limitation of the validity of the 

theory is encountered for very thin walled tubes due to violation of 

the quasi-steady assumption. On the other hand, the theory is also 

limited to tube walls that are not too thick due to neglect of radial 

variations of the wall temperatures. 

Based on the experimental and theoretical findings, it is con­

cluded that the major portion of the hot flow influence on the tube 

pressure drop arises from effects in the flow development region near 

the tube entrance. 
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CHAPTER I 

INTRODUCTION 

The consideration of laminar flow in tubes has its origin in the 

classical literature of the past century. In its simplest formulation 

it is one of the relatively few viscous flow problems that produce an 

exact solution. In terms of a less restrictive formulation, such as 

may be demanded in modern applications, it is, at best, a formidable 

problem which is not amenablie to exact analytical solution and which 

doubtfully can be handled by numerical techniques on even the most cap­

able of present day computers. In view of the magnitude of the general 

problem it is obvious that a great deal of pertinent research would be 

directed toward consideration of various smaller facets of a compli­

cating nature to the general problem. Whereas some of this work, which 

will be reviewed briefly in subsequent sections, is instructive, it is 

generally not applicable piecewise to the general problem due to the 

restrictive assumptions that are necessary to make these analyses 

tractable. On the other hand, there exists the possibility that a gen­

eral analysis may be formulated by approximate means if one is willing 

to forego extreme details of the problem in favor of an overall or 

averaged result. Such an analysis may be referred to as an "engineer­

ing approach" and it is the intent of the present work to present such 

an approach to a fairly general problem dealing with the laminar flow 

of air in tub i ng. 
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Review of the Literature 

The problem of flow in tubes, although undoubtedly an early con­

sideration in the subject of hydraulics, first appears in the literature 

in serious form during the first half of the nineteenth century. Since 

that time the accumulation of literature dealing specifically with the 

problem has become extensive. While much of the literature is old, it 

is interesting to note many new additions in recent years, which serve 

to increase our understanding of the general tube flow problem and to 

point out the shortcomings of our present state of knowledge with re­

gards to it. 

The first appearance in the literature of any concrete investiga­

tion of the tube flow problem is usually credited to Hagen (I)*. In an 

experimental investigation he successfully correlated the flow rate of 

water through narrow tubes to the tube pressure drop, length, and radius. 

Almost simultaneously, Poiseuille (2), in dealing with capillar tubes, 

arrived at similar conclusions. The result of these investigations is 

the well-known fundamental law for fully developed laminar flow in 

tubes, the Hagen-Poiseui I Ie law. The work of Reynolds (3) added essen­

tial details to a more general understanding of the problem with defini­

tive experiments on transition to turbulence and the importance of the 

Reynold's number in both transition studies as well as correlation of 

experimental results. 

The restrictions, as evidenced by experiment, on the applicabil-

i ty of the Hagen-Poi seu i I Ie I aw to on Iy a fuI Iy developed I ami nar fIow 

* Numbers in parentheses refer to references appearing in the Literature 
Cited. 
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were well known prior to the twentieth century. The character of the 

development of the flow from an initially uniform velocity distribution 

at the tube inlet was, likewise, at least partially understood, having 

been accounted for by Hagen as a kinetic energy term in his correlation 

of experimental results. Poiseuille, on the other hand, only noted that 

his correlation formula did not work for short tubes. Subsequent work, 

dealing with the flow development due to friction downstream of the 

tube inlet is summarized by Goldstein (4). He credits Boussinesq (5) 

with the first theoretical treatment of the inlet development and gives 

details of the boundary-Iayer-I ike approaches to the development region 

due to Schiller (6) and the unpublished work of Atkinson and Goldstein. 

The latter works are generally conceded to be somewhat superior to 

Boussinesq's results very near the tube inlet when compared to the ex­

perimental results of Nikuradse presented by Prandtl and Tietjens (7). 

Typical of the development problem, the preceding works yield 

results for the longitudinal pressure distribution, the longitudinal 

velocity distribution across a tube section, and an estimate of the 

development length. They are, however, somewhat unwieldy in that they 

utilize a boundary layer approach with subsequent series solutions. A 

fairly recent analysis by Langhaar (8) circumvents this difficulty by 

a linearizing approximation to the Navier-Stokes equation and subse­

quent authors have favored Langhaar's results for both comparative pur­

poses and extensions of the development problem to include thermodynamic 

considerations. Without the use of Langhaar's linearization, Hornbeck 

(9) has presented an interesting numerical solution which essentially 

verifies Langhaar's results for the pressure distribution but seems to 
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indicate that the linearization is not well justified for the generation 

of velocity profiles. It may be fairly stated that a typical charac­

teristic of the inlet development problem at this point is its essen­

tial ly parabolic nature as evidenced by the success of the boundary-

layei—like approach. On the other hand the preceding work is restricted 

to steady, laminar, incompressible flow without heat transfer at the 

tube walIs. 

A natural extension or generalization of the hydrodynamic problem 

is the consideration, in addition to viscous effects, of the effects of 

heat transfer through the tube walI. An early result for heat transfer 

in fully developed laminar flow with constant wall temperature was given 

by Graetz (10) with the same solution rediscovered twenty-five years 

later by Nusselt (II). An excellent evaluation of this work is given 

by Jakob (12) who also summarizes the small amount of available experi­

mental data and notes that the neglect of radial flow components may be 

a probable source for the discrepancy between experiment and the analyt­

ical results of Graetz. A more recent review is given by Sellars, 

Tri bus, and Klein (13). 

In an attempt to extend the thermodynamic problem to include the 

development region, Kays (14) has presented a numerical solution for 

the laminar flow heat transfer with simultaneously developing velocity 

and temperature profiles. He, however, neglects radial velocity compo­

nents and utilizes Langhaar's results for the velocity profiles in order 

to solve for the temperature profiles from a parabolic boundary-Iayer-

I ike energy equation. That is, longitudinal conduction is considered 

negligible in comparison to convection. He obtains solutions for the 
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heat transfer in terms of Nusselt numbers for the conditions of constant 

wall temperature, constant heat flux, and constant temperature differ­

ence between the tube wall and the flowing fluid, and illustrates good 

comparisons with experimental results (15). A refinement of Kays' work 

to include the radial component of velocity in the entrance region by 

utilizing Langhaar velocity profiles together with the continuity equa­

tion is given by Ulrichson and Schmitz (16). Their results indicate a 

significant ovei—estimate of the Nusselt number in the development re­

gion due to the neglect, as in Kays' work, of the radial velocity 

component. 

The obvious restrictions of the previous work are their common 

assumption of constant physical properties and consideration of only 

highly specialized thermal boundary conditions at the tube wall. Exten­

sions to discard these restrictions have been presented. Tribus and 

Klein (17) give a review of the problem of dealing with the thermal 

boundary conditions and present an incompressible, constant properties 

analysis for non-isothermaI surfaces. With large radial temperature 

gradients, the effects of variable properties are discussed by Deissler 

(18) who considers fully developed flow, by Sze (19) who neglects radial 

velocity components but considers flow development, and by Davenport 

and Leppert (20) who postulate a radial velocity component and by nu­

merical solutions give results which indicate that the effects of radial 

velocity components are significant to estimates of the local friction 

factor. 

Without regard to transient phenomena, it is evident that a de­

tailed treatment of the general steady-state laminar tube flow problem 
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is a very difficult one. Even with the assumptions of a boundary-layei— 

like system of governing equations and restrictions to certain specified 

simple thermal boundary conditions at the tube wall, accurate treatment 

of the development region, variable properties, and radial flow effects 

seem to demand utilization of rather complicated numerical schemes. 

When the additional complications of unsteadiness due to either varying 

flow conditions or coupling with a tube wall of finite thickness and 

heat capacity are introduced, even the numerical approach begins to 

appear unrealistic in its magnitude. As in the extension of the tube 

flow problem to include the effects of heat transfer, first attempts 

at incorporating the complication of unsteadiness are made with the 

simplest possible realistic flow model. 

In an attempt to provide practical calculation tools for consid­

eration of transient temperature problems, Dusinberre (21) has presented 

a compact numerical method with example applications to three typical 

types of problems. By means of a heat balance between the flowing 

fluid and the tube wall and finite difference approximations he pro­

vides formulae for calculation of the time dependent tube wall and gas 

temperatures. His approach is essentially a one-dimensional formulation 

in that variations of the problem variables with radial position are 

not specified. Further, inasmuch as the hydrodynamics of the problem 

are specified, no flow response, that is, the effect of the changing 

temperatures upon flow variables, is investigated. His analysis, how­

ever, lays the ground rules for the calculation of the unsteady flow 

problem in terms of a formulation of a realistic magnitude. 
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Following the Dusinberre method, Rooks (22) has examined the more 

complicated problem including the coupling of the flow with the tran­

sient heat balance between the fluid and tube wall. In addition, Rooks 

specifies natural boundary conditions exterior to the tube wall, allow­

ing the tube wall to be cooled by natural convection and radiation to 

the surrounding ambient atmosphere. The coupling considered by Rooks 

is provided only through the friction factor term in a steady one-

dimensional fluid momentum equation, inasmuch as he assumes the flow is 

essentially incompressible and fully developed insofar as the tube pres­

sure drop is concerned. Further, a natural simplification is employed 

in assuming that the fluid flow energy equation is representabIe in 

terms of a quasi-steady heat balance whereas the tube wall heat balance 

dictates the unsteadiness in the problem. 

Nature of the Investigation 

The present investigation is concerned with the response of a 

laminar flow of air through long slender tubes to an appreciable step 

function increase of inlet air temperature. The tube wall is made of 

conducting material and is free to absorb heat from the internal tube 

flow as well as to be cooled externally in a natural manner by natural 

convection and radiation to the surrounding atmosphere. 

Inherently, the response problem is a compressible unsteady flow 

problem. The unsteady effects which dictate the response may, however, 

be described in terms of three separate mechanisms. These are the ini­

tial transient effects connected with the movement of a thermal contact 

discontinuity down the tube following the elevation of inlet air 



8 

temperature, the unsteadiness induced by the changing wall temperatures, 

and any unsteadiness incorporated in the flow boundary conditions. In 

the present work the initial transients are of very short duration and 

the boundary conditions placed on the tube flow are independent of time, 

so that the only unsteadiness effects to be considered are the large-

time effects due to heating up of the tube wall. 

The boundary conditions stipulated for the flow provide that the 

temperature of the air at the tube inlet after the initial step function 

increase, the mass flow rate at the tube exit, and the pressure at the 

tube exit all remain constant during the course of each experiment. 

The initial conditions describe the flow before the step function in­

crease of inIet air temperature to consist of a "cold" flow through a 

"cold" tube. The "cold" flow designation is utilized to imply a flow 

at the same temperature as the ambient surroundings as opposed to the 

"hot" flow which ensues as a result of the inlet temperature increase. 

Purpose of the Research 

The purpose of the present investigation is to formulate a sim­

plified approach to the laminar, compressible, unsteady flow of air in 

tubes which are subjected to natural thermal boundary conditions and 

which involve unsteadiness due to changes in temperature at the tube 

i nIet. 

A specific objective of the experimental portion of this work is 

to provide a limited amount of experimental data involving consideration 

of three primary parameters of the tube flow problem. These are the 

mass flow rate, the tube length to diameter ratio, and the inlet air 

temperature. 
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The specific objectives of the analytical work contained in this 

thesis are, first, to formulate the approximate governing equations for 

the tube and the flow in the tube within the framework of a one-

dimensional description, second, to consider solutions to these equa­

tions subject to further simplifying assumptions, and finally, to exam­

ine the theoretical effects of variations in the three primary tube 

flow parameters plus an additional parameter, the tube wall thickness 

to diameter ratio. 

The problem as described and treated in the present work orig­

inated from studies concerned with flow in tubes conducted in the 

School of Aerospace Engineering at The Georgia Institute of Technology 

(22, 23, 24). Emphasis in these studies has been placed on the need 

for good engineering estimates of the overall performance of tube sys­

tems. Due to the utility of its application, an adequate simple analy­

sis is considered superior in this respect to a more detailed analysis 

which generally would be more cumbersome in its application to compli­

cated systems. This philosophy is not only desirable but is practically 

demanded in the present work if answers for the generalized tube flow 

problem are desired. 
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CHAPTER I I 

EXPERIMENTAL EQUIPMENT AND INSTRUMENTATION 

Complete Experimental Setup 

The basic experimental apparatus and instrumentation are shown 

in the schematic representation of Figure I. Air at a line pressure of 

approximately 125 psig. is regulated to 30 psig. in the surge tank and 

the subsequent air flow into the furnace is metered by means of a fine 

micro-needle valve. After leaving the furnace the hot air is fed di­

rectly into a small air reservoir and then into the test tube. Down­

stream of the test tube is positioned a calibrated Poiseuille tube for 

accurate measurement of the mass flow rate of air passing through the 

test tube. The air exits from the Poiseuille tube into the atmosphere. 

Air Furnace 

The details of construction of the furnace used to heat the air 

prior to entry into the test tube are shown in Figure 2. It would be 

desirable for stability purposes during constant temperature operation 

to construct a furnace of heavy, high heat capacity material. It was 

found, however, that such a furnace, which was initially employed, re­

quired excessive times to reach equilibrium and to effect changes in 

temperature for subsequent experiments. The furnace used therefore 

represents a compromise between stability and the ability to change 

operation to a different temperature without wasted time. 
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The basic ingredient of the furnace is a 1500 watt General Elec­

tric Calrod heating element capable of continuous operation at tempera­

tures up to 1500 F. This Calrod element, which may be bent without 

internal damage to a radius of bend equal to the rod sheath diameter 

(0.260 in.), was wound upon itself to yield a cylinder of active ele­

ment approximately 12 inches long and something under one inch in dia­

meter. This unit was inserted into a stainless steel tube and sealed 

at both ends by steel caps. The rear cap contains provisions for a 

sealed extension of the Calrod terminals and admission of air from the 

metering valve. The forward cap provides for exit of the hot air into 

an affixed air reservoir constructed of lightweight steel and insulated 

on the outside with approximately 3/8 inches of asbestos wrapping. In­

terior to the reservoir and at its forward end are provided two 1/4 

inch thick asbestos washers which provide a fairly snug fit for inser­

tion of the test tube. Small leaks at this junction are considered 

negligible inasmuch as the tube mass flow is measured downstream of the 

test tube, and are preferred to a heat-conducting sealed joint which 

would be contrary to the objective of the experiment. After assembly 

the entire furnace body was packed in granulated asbestos to a minimum 

depth of three inches on any side within an outer cover of asbestos 

board. 

Test Tubes 

The test tubes were constructed of hard drawn copper with an in­

ternal diameter of 0.00975 feet, a thickness to internal diameter ratio 

of 0.3, and length to internal diameter ratios of 400, 600, 800, and 
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1000. Appropriate physical properties, dimensions, and locations for 

both gas and wall temperature thermocouples are given in Table I. 

Instrumentation 

The instrumentation employed in the experiments may be broken 

down into the required components for measurement of pressures and temp­

eratures . 

Pressure Measuring System 

The pressure drop across the test tube was measured, as indicated 

in Figure I, by means of a manifolded bank of four differential pressure 

transducers with I inear ranges of ± 0.01 , ± 0.05, ± 0.20, and ± 0.50 

psid, respectively. Clamps were provided for the high and low sides of 

each of the first three transducers in order to isolate them from the 

system if the operating differential pressure exceeded their capacity. 

A similar bank of two differential pressure transducers with ranges of 

± 0.01 and ± 0.05 psid was employed to measure the pressure drop across 

the calibrated Poiseuille tube. Transducer signals were amplified by a 

Consolidated Electrodynamics Type 5-114 recording oscillograph. Also 

as shown in Figure I, the pressure p~ at the downstream end of the test 

tube and the pressure p, at the first tap of the Poiseuille tube were 

measured by means of vertical and inclined Alcohol manometers with re­

spective sensitivities of 4.3200 and 0.4026 psf/in. Al. 

Temperature Measuring System 

Gas and tube wall temperatures were measured by means of chromel-

alumel thermocouples. The gas thermocouples were of a shielded variety 
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Table I. Test Tube Physical Properties and Characteristic Dimensions 

Physical Properties * 

Materi a I : copper 

Density: p = 559 lb/ft3 

Conductivity: k = 222 Btu/hr ft °F 
1 w 

Specific Heat: c = 0.0915 Btu/lb °F r w 

Thermal Diffusivity: a = 4.353 ft2/hr 

Emissivity (oxidized): e = 0.725 

Geometrical Dimensions 

Diameter, inside: Dj =0.00975 ft 

Diameter, outside: DQ = 0.01562 ft 

Thickness to Internal Diameter Ratio: t/Dj = 0.3 

Lengths: L = 46.875 in., 70.125 in., 93.562 in., 117.000 in. 

Length to Diameter Ratios: L/D = 400, 600, 800, 1000 

Thermocouple Locations from Tube Entrance 

Gas Thermocouples L/D - 400 L/D = 600 L/D = 800 L/D = 1000 

T. x/D... = 
I i 

T 

TJ' 
T 9 2 

T ^ 
94 

WaI I ThermocoupIes 

T x/D. = 
w i 

T 
w 
2 

T 

T"3 

I"4 

W5 

-1 .00 -1 .00 -1 .00 -1 .00 

19.24 19.02 19.52 19.70 

48.24 48.54 49.36 49.10 

146.80 147.42 1 47.20 1 47.40 

400.00 600.00 800.00 1000.00 

5.97 5.98 4.48 6.60 

29.48 28.86 29.44 29.40 

58.94 58.80 58.96 59.40 

98.36 98.40 98.00 98.30 

96.00 197.22 196.24 196.00 

* Reference (25), p. 498 
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(Baldwin-Lima-Hamilton HT micro-miniature, Type TCA-IP-200) and were in­

serted through the tube wall to a depth such that the tip was located on 

the tube centerline. They were then silver soldered in this position. 

The wall thermocouples were fabricated from chromel-a Iumel thermocouple 

wire and were seated into the tube wall to half the wall thickness. 

These were likewise silver soldered in place. All thermocouple signals 

were amplified by means of Kintel DC amplifiers and recorded along with 

the pressure signals. The only exception was the gas inlet temperature 

which was read by means of a Leeds Northrup 8687 volt potentiometer. 

Control 

Only two provisions for control of the experiment were provided. 

The first of these was the manual micro-needle valve for air flow con­

trol and the second was a variable voltage AC transformer to control 

the power input to the furnace. The latter was likewise manually 

operated. 

Cal i brat ion 

A complete calibration of the pressure drop and temperature in­

strumentation was found to be necessary at the beginning of each day's 

operation. Calibration of the pressure drop system consisted of uti­

lizing the Poiseuille tube to generate successively higher pressure 

drops which were fed to both transducer banks and recorded while making 

simultaneous measurements with the vertical and inclined manometers. 

The instrumentation channels for temperature measurement were 

calibrated by using the Leeds Northrup volt potentiometer to generate 
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accurate digital voltages which were applied to each temperature channel 

and recorded. 

Experimental Accuracy 

An evaluation of the overall accuracy of the experimental mea­

surements must entail consideration not only of the instrumentation 

utilized to obtain the pressure drops and temperatures but also of the 

method of control provided for the unsteady flow experiments. With 

regards to the instrumentation, care was exercised in the choice of 

transducers, amplifiers, and recorder to provide a high degree of poten­

tial accuracy for the measurement of both pressure drops and tempera­

tures. Likewise, the calibration of these systems was carefully carried 

out. 

The accuracy of the pressure drop measurements, including cali­

bration, zero drifts, and interpretation of oscillograph records is es­

timated to be well within an experimental accuracy of 5 per cent. For a 

sufficiently large number of carefully controlled runs all of these 

errors would enter in a random fashion and the steady cold flow runs, 

which by their nature are closely controlled, demonstrate very good 

accuracy well within the 5 per cent estimate. 

The accuracy of measurement of the temperatures may be discussed 

in two parts corresponding to the tube wall temperatures and the gas 

temperatures. The tube wall temperatures are estimated to be within 

3 per cent generally. It is difficult, however, to estimate the accu­

racy of the gas temperature measurements inasmuch as the thermocouples 

utilized for these measurements are of a shielded variety and are 
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exposed along their length to the radial temperature distribution of the 

tube fluid flow. As a consequence, the accuracy of measurement of the 

gas temperatures should not be considered to be better than approxi­

mately 5 per cent. Aside from accuracy of measurement, the gas temp­

eratures obtained represent the tube centerline values as opposed to 

the theoretical bulk temperatures utilized for the analytical study of 

one-dimensional flow in Chapter V. Strictly speaking then the measured 

gas temperatures are not to be interpreted as an accurate experimental 

representation of the theoretically computed temperatures. 

An occasional possible exception to the above statements of accu­

racy for the temperatures may be due to exceeding the linear range of 

the DC amplifiers utilized in the temperature measurement system. In 

the course of the calibration these amplifiers were found to perform to 

only approximately 70 per cent of their specified linear range and even 

though an attempt was made to compensate for this in the selection of 

appropriate gain settings, some overshoot would be possible due to the 

multiplicity of readings made. 

The method of manual control provided for the furnace temperature 

and the mass flow rate introduces a possible source of significant error 

in the unsteady hot flow experiments. As mentioned previously, the fur­

nace temperature was not perfectly stable and compensation for drift had 

to be effected manually. Also, inasmuch as the test tube pressure drop 

increases with time during the course of each hot flow run, the mass 

flow rate through the tube system, as observed on the inclined mano­

meter, tends to decrease unless proper compensation is provided by 

means of the manual mass flow control needle valve. This compensation 
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was hindered by the slow response of the inclined manometer and is 

deemed to be the major significant error incorporated in the hot flow 

experiments. A certain degree of skill was accomplished in handling 

this compensation procedure; uncertainty, however, requires that an es­

timate of accuracy for the hot flow runs be set at approximately 10 per 

cent maximum error in pressure drop. 
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CHAPTER I I I 

EXPERIMENTAL PROCEDURE 

The procedure of the experiments performed in the present inves­

tigation may be explained in terms of the two different types of experi­

mental runs conducted. The first of these, referred to as cold flow 

runs, corresponds to the flow of air at ambient temperature through the 

tubes. The second type of experiment, the hot flow runs, deals with 

flow at elevated inlet temperatures. 

Cold Flow 

The cold flow experiments, which are steady state flows, were 

designed to provide a description of the pressure drop and friction 

factor which could be expected from each of the test tubes, L/D. = 400, 

600, 800, and 1000, for the range of laminar flow investigated as repre­

sented by the flow Reynolds number. Preliminary trial runs on each test 

tube allowed a calibration of the inclined manometer (as shown in Figure 

I to measure p.,) readings which correspond to the flow Reynolds number 

or the mass flow through the system. This calibration, which did not 

include provision for ambient temperature changes, was utilized to se­

lect approximately a series of five flow rates descriptive of and re­

stricted to laminar flow, as well as to predict which of the transducers 

in each of the two manifolded banks would be applicable to any mass flow 

setti ng. 
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The cold flow tests were then conducted by recording the two 

pressure drops and two pressures, as described previously in the de­

scription of the experimental setup, corresponding to each mass flow 

setting on the inclined manometer for each test tube. Simultaneous 

readings of ambient temperature and pressure were also made and repeti­

tive runs were performed to insure repeatability of the results. 

Hot Flow 

The hot flow experiments utilized the same experimental setup as 

employed for the cold flow, with the exception of the added instrumen­

tation for gas and wall temperatures. In these experiments the time 

history or response of the test tube pressure drop, gas temperatures, 

and wall temperatures are recorded following the introduction of hot air 

into an initially cold tube. The procedure followed to accomplish this 

consisted of first adjusting the manual mass flow and furnace tempera­

ture controls to give a steady flow through the test tube corresponding 

to the selected mass flow rate and inlet air temperature of the run. 

Without change in these control settings the test tube was then pulled 

out from its snug seat in the air reservoir on the forward end of the 

furnace and a short length of substitute tubing was inserted. This 

piece of substitute tube was pinched down to represent a restriction to 

the flow similar to that provided by the actual test tube. In its dis­

connected state the test tube was then cooled to ambient conditions 

with the aid of a sponge, cold water, and a time lapse of approximately 

10 minutes. At this time the mass flow control was turned down slightly 

to correspond to the lower pressure drop anticipated initially for the 
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hot flow run and the run was commenced by starting the recording oscil­

lograph and inserting the cold test tube into its seat in the air resei— 

voir. The duration of each run was limited to 5.5 minutes, such time 

being sufficient to .approximate!y reach an equilibrium steady state hot 

f I ow. 

Inasmuch as the pressure drop across the test tube changes with 

time due to increasing gas temperatures, it was necessary to visually 

monitor the flow rate by means of the inclined manometer and make neces­

sary adjustments in the flow rate with the needle valve upstream of the 

furnace. Simultaneously, any drift in the furnace temperature, as evi­

denced by changes in the inlet temperature, were manually opposed by 

adjustment of the furnace power transformer. Due to the method of com­

mencing the hot flow runs and the manual control of mass flow rates for 

small times, the experiments inherently afforded measurements correspond­

ing only to the quasi-steady flow ensuing after initial transients. Re­

cordings of pressure drops and temperatures during the run interval 

were thus obtained on the oscillograph while simultaneously reading the 

two appropriate pressures and the gas inlet temperature at preselected 

time intervals corresponding to 0.25, 0.50, 0.75, 1.0, 1.25, 3.5, and 

5.5 minutes. This procedure was then repeated for each of the selected 

mass flow rates, inlet temperatures, and test tubes. 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

The experimental results obtained for the cold flow and hot flow 

runs with the four test tubes are shown in Table A-I and Table A-2, re­

spectively, of Appendix A. Comments pertinent to these tables, sample 

graphical presentations, and a discussion of general observations re­

garding the results are presented separately in the present section for 

the cold and hot flow experiments. Further discussion of the specific 

physical behavior characteristics of the results will be included in 

Chapter VII, Presentation and Discussion of Results. 

Cold Flow 

The cold flow pressure drops for the four test tubes, L/D = 400, 

600, 800, and 1000, are given in Table A-I. For each tube length the 

series of pressure drops, corresponding to the five selected mass flow 

rates, were repeated four times as shown in the table. Corresponding 

to each pressure drop the Reynolds number and the friction factor, based 

on ambient conditions, were calculated and are likewise shown in the 

table. For details of these calculations the reader is referred to 

Appendix B. 

As a representative example of the experimental cold flow results, 

Figure 3 illustrates a plot of the friction factor versus the Reynolds 

number for the short test tube, L/D = 400. For purposes of comparison, 

the theoretical fully developed friction factor 
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is also shown in the figure. The experimental friction factors are, as 

expected, higher than the theoretical values corresponding to fully de­

veloped flow primarily due to the higher local friction factors in the 

development region near the entrance of the experimental test tube. 

Likewise, the experimental values include the pressure drop due to the 

jump in kinetic energy at the tube inlet and the increase in kinetic 

energy in the development region. These latter contributions are small 

in comparison to the contribution due to the development region friction 

factor, but are not negligible at the higher Reynolds numbers. 

The upper limit for the laminar flow Reynolds number in the ex­

perimental test tubes was established at approximately 1250. Higher 

values indicated definite evidence of transition to turbulent flow and 

accordingly were not included in the scope of the experimental 

i nvesti gation. 

It is observed that the cold flow experiments result in data 

which is sufficiently repeatable. In this respect, the purpose of the 

cold flow experiments, which was to provide a good indication of the 

appropriate initial conditions for an unsteady hot flow response study, 

was considered to have been adequately fulfilled. A systematic repre­

sentation of the cold flow results is deferred until Chapter VII. 

Hot Flow 

The hot flow pressure drops and the gas and wall temperatures for 

the four lengths of test tube are given in Table A-2. For each tube 
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length five combinations of the Reynolds number, based on ambient temp­

erature, and the inlet temperature were selected to cover the laminar 

flow range of the tubes and the inlet temperature capability of the fur­

nace. These combinations consisted of runs at an approximate inlet 

temperature of 600 F with Reynolds numbers of approximately 850 and 

1200, an inlet temperature of approximately 800 F with Reynolds num­

bers of 850 and 1200, and an inlet temperature of 950 F with a Reynolds 

number of 1200. The calculation of the ambient Reynolds number (Rey = 
a 

GD./u, ), as indicative of the mass flow, was carried out in the same 
i a 

manner as for the cold flow as explained in Appendix B. A hot flow 

friction factor was not calculated due to the lack of a suitable time 

invariant reference dynamic pressure as utilized in conventional defi­

nitions of the friction factor. 

A representative example of the time dependence of the pressure 

drop for the short test tube is shown in Figure 4 for the five different 

combinations of Reynolds number and inlet temperature tested. Generally 

speaking, it is observed that the response of the pressure drop to the 

increased inlet temperature is a smooth function of time. Some incon­

sistency of the data for times less than one minute are observable and 

may be attributed primarily to the combination of manual mass flow con­

trol and slow response of the inclined manometer utilized to monitor 

the mass flow rate. It has been pointed out that the hot flow runs were 

commenced with a setting of the mass flow control valve slightly below 

that required for an equilibrium hot flow run at the selected mass flow 

and inlet temperature. In effect then, for small times the experimental 

pressure drops may be either above or below the correct values for the 
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selected mass flow rate due to inaccuracy of the initial setting. For 

times in the neighborhood of one minute, some scatter should be evident 

due to efforts to compensate for the changing tube pressure drop and 

the magnitude of the measured pressure drop should generally be less 

than or equal the correct value. Finally, due to the preceding, the 

pressure drops at large times prior to establishment of steady equili­

brium hot flow should lag the correct values by some finite time incre­

ment. This lag time due to accumulated errors in starting the hot flow 

runs, while difficult to evaluate, should not exceed approximately 0.25 

minutes and consequently the accuracy of the hot flow experiments may 

generally be estimated to be within a conservative 10 per cent value. 

The accuracy of the hot flow runs insofar as repeatability is 

concerned cannot be demonstrated from the experiments. While each of 

the hot flow runs were repeated either two or three times for each com­

bination of mass flow and inlet temperature, the results were not com­

parable in that the flow conditions differed due to the lack of ability 

to manually control the mass flow and inlet temperature simultaneously 

to close limits. As a consequence, only one of the attempted repetitive 

hot flow runs is included in Table A-2 and Figure 4. In each case the 

included run was selected on the basis of a minimum variation during 

the run of the Reynolds number based on ambient conditions. 

Examples of the measured gas and wall temperatures for an inlet 

temperature of 801 F and a Reynolds number of 1207 are shown in Figures 

5 and 6. These results display, as may be expected, large changes in 

temperature initially near the tube inlet with a relatively fast ap­

proach to equilibrium there, whereas changes further down the tube 
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appear to be delayed somewhat, with a consequent slower approach to 

equilibrium. One may expect this characteristic of the experimental 

results from analysis of theory which will be discussed later in Chapt 

VI I . 
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CHAPTER V 

THEORETICAL APPROACH 

The theoretical approach utilized to describe the response of an 

initially cold laminar flow through a long slender tube to a step func­

tion increase of the inlet temperature will be formulated in the sec­

tions that follow. This formulation entails a description of the equa­

tions of continuity, momentum, and energy for the fluid flow, as well 

as the energy equation for the tube wall, which will be treated as part 

of the boundary conditions imposed on the flow. 

Consistent with the formidable complexity of the unsteady flow 

problem coupled by heat transfer to a finite tube wall, which in turn 

experiences natural cooling to its surroundings, the mathematical repre­

sentation of the problem is restricted first of all to a general one-

dimensional formulation. Within this formulation, use is also made of 

an assumption similar to those employed in boundary layer methods, 

wherein the flow is assumed to possess predominantly a parallel flow 

character. In other words, the viscous and heat conduction transport 

mechanism effects are considered to be significant only in the direction 

normal to the tube axis, insofar as the fluid is concerned. This as­

sumption, employed in a number of similar problems successfully, is 

actually based on order of magnitude arguments and results in the impli­

cation that the longitudinal transport or forced convection of momentum 

and energy predominate, at least by two orders of magnitude, over the 
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comparable longitudinal diffusion processes due to viscosity and con­

ductivity. To the author's knowledge, all significant treatments of 

the tube gas flow problem available in the literature utilize this as­

sumption of a boundary-Iayer-I ike flow. On the other hand, such an 

assumption is not inherently permissible with regards to the wall energy 

equation in which longitudinal conduction is a significant, if not pre­

dominant, term. 

Based upon the preceding concept of the character of the flow 

the general integral conservation equations for mass, momentum, and en­

ergy of the fluid flow may be applied to the simplest choice of a con­

trol volume, which is a stationary volume enclosed by two parallel 

cross-sectional planes, normal to the tube axis, and a surface coinci­

dent with the internal surface of the tube wall. A similar simple con­

trol volume for the wall energy equation formulation is specified by the 

two cross-section planes and interior and exterior tube wall surfaces. 

A brief development of the conservation equations for the fluid, appro­

priate to the selected control volume, is presented in Appendix C. 

These equations may be termed the generalized one-dimensional tube flow 

equations. Inasmuch as the wall energy equation is treated as a part 

of the imposed boundary conditions on the flow, its formulation will 

follow in the text of the present chapter at an appropriate time. 

In addition to the foregoing assumptions regarding the formula­

tion of the problem as a whole, it is appropriate to mention that speci­

fic physical assumptions are also employed. These consist of the usual 

assumptions of constant pressure over the tube cross-section, neglect 

of body forces, constant specific heat and Prandtl number of the gas, 
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and power law representations of the gas viscosity and conductivity de­

pendence on temperature. Also, with reference to the tube itself, it 

is assumed that all tube properties, such as specific heat, conducti­

vity, and emissivity, are constant. Other assumptions, of all kinds, 

are more appropriately noted when it becomes convenient or necessary to 

include them in the development. 

Discussion of Solvability of Problem 

Subject to the simplifications and approximations mentioned, the 

governing equations for tube flow in terms of one-dimensional variables 

are equations (C.24) through (C.27) of Appendix C: 

dp d 
— + — pu = 0 (2) 
at dx K 

d — d 2 d£ 4 — pu + — pu + r^ + — T = 0 (3) 
dt r dx K dx D. w 

^ — s Su 4 _ . .. 
TT pe + — peu + p ~ + — q = 0 (4) 
hi Sx K Sx D. Mw 

p = pT R (5) 

In addition the average internal energy per unit volume may be defined 

for a calorically perfect gas as 

pe = (c - R) pT (6) 
P 

which provides a set of five equations to determine the ten dependent 

variables: u, p, pu, pu , pe, peu, p, T , q , and pT. In principle 
w w 
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then, solution of the problem in its present form is not possible. This 

situation has been created obviously by neglecting to consider details 

of the radial solution, which would provide information pertaining to 

the coupling between the various cross-section average terms as well as 

the form of appropriate stress and heat flux quantities. Without resort 

to the radial solution, any useful progress within a theoretical formu­

lation must proceed by a reduction in the number of unknown variables, 

which may be accomplished by specification, rather than determination, 

of the coupling between cross-section average variables. The simplest 

possible description, which still retains some realism, is obviously 

that of an idealized one-dimensional flow, whose character and conse­

quences are discussed in the following section. 

Idealized One-Dimensional Flow 

If the tube flow is assumed to be ideally one-dimensional then 

all flow properties are assumed to be invariant with radial position, 

that is, constant over the tube cross-section. Consequently, the bar 

notation for cross-section average properties is superfluous inasmuch as 

each individual component in the mean values is, in itself, a mean 

value; it follows likewise that the mean value of a product of these 

components is identically equal to the product of the means. Then the 

notation may be simplified by letting 

P = P 

u = U > (7) 

pu = pU = G 
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2 ..2 
pu = pU 

pe = (c - R) pT 
P 

peu = (c - R) pUT 
P 

pT = pT 

so that the resulting governing equations for an idealized one-

dimensional flow, equations (2) - (5), become 

& * £ P " - ° 

> (7) 

(8) 

r^ pU + r ^ pU2 + ^ + T ^ T = 0 (9) 
bf dx r dx D. w 

^ p(c - R) T + T̂ - pU (c - R) T + p f^ + ~ q = 0 (10) 
St r p dx r p dx D. Mw 

p = pRT (II) 

Due to the assumption of an idealized one-dimensional flow the 

governing equations of conservation of mass, momentum, and thermal en­

ergy and the equation of state, equations (8) - (II), respectively, com­

prise a system of four equations governing the six variables p, U, p, T, 

T , and q . Thus it still remains necessary to eliminate two unknowns. 
w ^w r 

Consistent with the one-dimensional representation of the problem, in­

formation pertaining to the shear stress and heat flux vector, which are 

inherently associated with the actual two-dimensional character of the 



37 

flow, is necessarily required. The form of the specification of these 

variables will be examined further in the following sections after form­

ulating the problem, as it now stands, into a useful system of diffe­

rence equations and examining the influence of the boundary conditions 

upon the specification of the problem. 

Fluid Flow Difference Equations 

The governing equations of the fluid flow, equations (8) - (II), 

have been restricted to an idealized one-dimensional flow of a perfect 

gas. In spite of the great simplification afforded by this viewpoint 

the equations are still too complicated, due to coupling and nonlinear-

ity, to yield closed form analytical solutions. Resort to numerical 

methods for solution is then acknowledged and the equations are appro­

priately given in a general finite difference form by introducing the 

approximations: 

au. V 2 
3t ** At 

(12) 

2LL_l h s L l 
dx w Ax 

Subject to the notation and approximations given by equations (12), the 

governing conservation equations (8) - (10) become 

A,(p)Ax + UA (p)At + pA (U)At = 0 (13) 
T X X 

pA,(U)Ax + pUA (U)At + A (p)At + 77^ T AxAt = 0 (14) 
T X X U. W 

I 
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p ( c -R)A 4 . (T )Ax + pU(c -R)A ( T ) A t + pA ( U ) A t r p t K p x x 
(15) 

+ - qw AtAx = 0 

Similarly the equation of state in difference form may be written as 

A (p) = RTA (p) + RpA (T) 
X X X 

(16) 

It is convenient to introduce at this point the following definitions 

for the wall friction, heat transfer, and the specific heat ratio 

T - f * £ 
w 2 

(17) 

q = h.(T-T ) 
^w i w 

(18) 

c 
Y = P, (c -R) 

P 

(19) 

where f denotes the friction factor and h. the wall heat transfer film 
i 

coefficient. The wall heat transfer may be expressed in terms of appro­

priate dimension I ess parameters by introducing the Nusselt, Reynolds, 

and Prandtl numbers as 

Nu. = 
h.D. 

i i 
(20) 

Rey = 
PUD. 

(21 ) 

Pr = 
M.C, 

(22) 



39 

which allows equation (18) to be rewritten as 

Nu. 
q = o — o P U c (T_T > (23) 

Mw Rey Pr ^ p w 

The governing equations (13) - (16) involve the spatial depen­

dence of p, U, p, and T as well as the time dependence of p, U, and T. 

Regarding the spatial differences as unknowns, these equations may be 

written in the form of a set of nonhomogeneous linear difference equa-

2 
tions by dividing each equation, (13) - (16), by pU, pU , pU, and p 

respectively, and collecting the unsteady differences, wall friction, 

and wall heat transfer terms on the right. This rearrangement, together 

with the use of the definitions, equations (17), (19), and (23), yields 

A x (p ) Ax(U) A+ (p) , A x 

~ + -T- = -~UZ7 (24) 

Ax(U) A x (p ) A+(U) , 

~U~ + —T = • ^ T " u AT - 4f 2 A( / D i > (25) 

pU 

A (U) . A (T) . LAT) . A Nu. (T-T ) 
_x , I x I t I Ax v . . i . :• . wy . - x / n , Inc.s 

— - — + ; — = - : — 77 TT ~ ~" , 4 — — A( / D . ) (26) 
U Y"1 T Y~ T U At Y~ ReY P r T i 

A (p) A (p) A (T) 
- * + - i V ~ = 0 (27) 

D P T 

The governing equations, (24) through (27), may be solved expli­

citly for the spatial differences most readily by an elimination proce­

dure. Equations (24) through (26) may be utilized to eliminate A (p)/p, 

A (p)/p, and A (T)/T from the equation of state, equation (27), leaving 
X X 
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it expressed in terms of A (U)/U, time differences, and the wall heat 
X 

transfer and stress terms. If, in addition, the definition of the I oca 

Mach number 

U 

\̂ yRT (28) 

is introduced, the equation of state by the above elimination procedure 

yi elds 

Ax(U) Nu. 

-M 2 Rey Pr T 

(T-T ) 
A ( X / D . ) (29) 

-Mz 

Ax *< ' Ar></n , A t ( P ) ' Ax V U ) 

4f I A ( / D . ) - _ _ ; j _ + - i r - u Lf 
pU 

Briefly then, the equation of state, equation (29), is employed to elim­

inate the velocity difference A (U)/U from the continuity, momentum, and 

energy equations, (24)-(26), respectively, and to allow the explicit 

forms for the density, pressure, and temperature differences to be given 

as: 

Ax(p) 

P ,_M2 Rey Pr T 

4 Nu. (T-T ) 
W A(X/D.) + ^ 

2 

-M 
- 4f 4- A( /D.) (30) 

2 i 

M u > i A , A.(p) , A 
t I Ax j_ t r 1 Ax. 
U " U At + 2 " .,2 U At pU 

A+(p) 1 Ax 
U At 

yp' 
Pu

2 -M 

4 Nu. (T-T ) 
i w 

Rey Pr T 
A(X/D.) - 4f ̂  A(X/D.) (31) 

i 2 i 
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¥ U ) I Ax 
U U At 

I2 V P ) I Ax 
M 2 I I 2 U A + 

-M pU 

A (T) / M2 x _ yM -

-M 

4 Nu. (T-T ) A , (T ) , . 
! * - A(X/D ) - - 1 -1 ^ 

Rey Pr T ^ ' i T U At (32) 

-M' 
(Y-l ) A , I w x / n , M p ) I Ax V U ) I Ax 

- 4 f - A ( / D . ) + - ^ - U Z T - ^ U I T 
pU 

where the pressure unsteadiness 

A+(p) = pRAf(T) + RTA+(p) (33) 

has been introduced for the sake of brevity into the equations. 

The explicit form of the governing equations, as provided by 

equations (29) - (32), incorporates no additional restrictions beyond 

those already employed in setting forth equations (8) - (II); that is, 

they pertain to an idealized, one-dimensional, unsteady, compressible 

flow in a tube. While having retained these general characteristics of 

the problem, the equations have, however, been set forth with some defi­

nite subsequent intentions in mind. It is significant that the degree 

of influence of wall friction, heat transfer, and unsteadiness on the 

density, pressure, and temperature differences is affected by the mag­

nitude of the Mach number which appears in the coefficients of these 

terms. These observations lead systematically to a further simplifi­

cation of the governing equations consistent with the physics of the 

problem which is the subject of the present work. 



42 

Quasi-Steady Mach Number Zero Flow 

The governing equations (29) - (32) in their present form repre­

sent a set of four nonhomogeneous first order difference equations in 

two independent variables. With reference to previous discussion, how­

ever, they contain six dependent variables: p, U, p, T, f, and Nu.. 

The first four of these variables may be readily associated with cross-

section average properties whereas the latter two are the dimension I ess 

representations of the wall friction and heat transfer and are inti­

mately associated with details of the two-dimensional character of an 

actual physical flow by means of the velocity and temperature gradients 

normal to the tube wall. Consequently, for purposes of a general treat­

ment of the flow dynamics by the one-dimensional approach, it would seem 

to be the most natural procedure to regard the wall friction factor and 

Nusselt number as specified or prescribed from other sources of infor­

mation. This viewpoint, which is adopted in the present work, may en­

tail consideration of experimental results, analytical results of other 

investigators, or in the absence of these, simply a reasonable estimate 

of appropriate values. The specification of these variables will be 

considered in subsequent sections of this thesis. 

Regarding the density, velocity, pressure, and temperature as the 

variables whose solution is sought from equations (29) - (32), one is 

still faced with a difficult formulation of the difference equations in 

terms of the two independent variables, x and t. It is possible, how­

ever, to simplify the equations in the case of the present problem by 

invoking two physical approximations which will lead to consideration 

of a quasi-steady Mach number zero flow. 
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First, in typical examples of the experimental portion of the 

present work, the maximum value of the velocity experienced in the tube 

is approximately 20 fps. The obvious conclusion then is that in all 

cases considered in the present work the Mach number is small and the 

flow may consequently be approximated as a Mach number zero flow (26). 

This logical assumption produces an amazing simplification of the gov-

2 

erning equations in that all terms involving M directly in their coef­

ficients are considered negligible. The resulting equations for an 

unsteady Mach number zero flow then follow from equations (29) - (32) as 

A (U) x 
Nu. (T-T ) 

= - 4 Rey Pr T 
A( /D.) (34) 

A (p) Nu. (T-T ) A,(p) , A 
^— - 4 ,r-Lr- - ^ " A(X/D. ) - ±t- - I M 

Rey Pr T p U At 
(35) 

A (p) Nu. (T-T ) . A.(U) , A 
x i w A /x / n . „, I A,x/r. , t I Ax 

T~ ~ 4 n 5 T A( /°-) " 4f~A( /D.) - — - — 77 — 
,,2 Rey Pr T i 2 i U U At pU 

7 7 ^ (36) 

A (T) Nu. (T-T ) A.(T) . A 
= - 4 TT-^T- — ^ A(X/D. ) - f- l ^ T Rey Pr T T U At 

(37) 

As an alternative, the continuity equation (35) could be replaced by an 

equivalent statement in terms of the mass flux pU by adding equations 

(34) and (35) to yield 

A (pU) x K 

pU 
VP> 1 M 

U At 
(38) 
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The governing equations, which are taken as equations (34), (36), 

(37), and (38) for Mach number zero flow, show the influence of unstead­

iness on the pressure, temperature, and mass flow rate in terms of the 

time differences of the velocity, temperature, and density. Each of 

these time differences appears as a product of the ratio of the time 

I Ax 
difference to the local value times a dimension I ess quantity 77 7T • 

Accordingly, it may be argued that the ratio of the time difference term 

to the spatial difference term is small provided 

U ^ f J - » ^ T 1 (39) 
bx dt 

or in terms of the original partial differential equations, (8) - (10), 

this amounts to the assumption that the time derivatives are negligibly 

small in comparison to the convective terms. When this is true the flow 

is termed a quasi-steady flow. In the present problem the time vari­

ations of all fluid flow variables are in fact small in comparison to 

the convective changes except perhaps for an initial transient condition 

associated with the passage of a thermal contact discontinuity down the 

tube. This transient condition which will be discussed with the speci­

fication of the flow initial conditions is, however, of little 

consequence. 

Accordingly, the differential inequality, equation (39), is 

assumed to be valid for the present problem and the corresponding quasi-

steady implications in the difference representation of the governing 

equations are given by 

A C ) A C ) 
y l T > J — C40) 
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With the assumption of a quasi-steady flow the governing difference 

equations for the Mach number zero flow then reduce, with application 

of equation (40), to 

A (U) Nu (T-T ) 
= - 4 - — — r^-A(/D.) (41) 

U Rey Pr T i 

A (p) Nu. (T-T ) , 
= 4 - — l - ^ - A(X/D. ) - 4f ± A( /D. ) (42) 

,,2 Rey Pr T " i 2 
pU 

A (T) Nu. (T-T ) 

-V- = ~ 4 ̂ —^ T ^ A( /D. ) (43) 
T Rey Pr T i 

A(pU) 
-2L-I— = 0 (44) 

pU 

Hence the governing equations, (41) - (44), for quasi-steady Mach number 

zero flow are ordinary difference equations and may be integrated read­

ily by numerical methods. An attempt at solution of these equations 

then only requires specification of the proper boundary conditions, as 

well as the friction factor and Nusselt number, for the present problem. 

Inasmuch as the time does not appear explicitly in these equations, due 

to the quasi-steady assumption, the resulting flow will be unsteady only 

insofar as the boundary conditions dictate unsteadiness. The formula­

tion of the rather complicated boundary conditions for the present prob­

lem is discussed in the following sections. 

Boundary Conditions 

The boundary conditions appropriate to the solution of the gov­

erning equations (41) - (44) for the quasi-steady Mach number zero flow 
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are dictated by the experimental setup and procedure. These conditions 

are most clearly discussed separately as follows. 

Fluid Flow Boundary Conditions 

The boundary conditions imposed on the fluid flow in the test 

tube consist of specification at the tube inlet of the gas temperature 

and specification at the tube exit of the static pressure and mass flow 

rate. That is 

T = T, at X/D. = 0 
I i 

p = pc at X/D. = L/D. (45) 
E I I 

pU = (PU)E = G at X/D. = L/D. 

The invariance with time of the inlet temperature and the exit mass 

flow rate is enforced as part of the experimental procedure which was 

discussed in Chapter III; the exit pressure is held constant as a con­

sequence of the constant mass flow rate and constant ambient temperature 

of the gas flow through the Poiseuille tube downstream of the test tube. 

In consequence of the fact that there are four governing equations, 

(41) - (44), each of which is first order, it would seem that an addi­

tional boundary condition would be required. Such is not the case, 

inasmuch as the thermodynamic variables must obey the equation of state 

(II).so that specification of T and p at the inlet and exit, respect­

ively, suffice to implicitly define the density. 



47 

Tube Wall Thermal Boundary Condition 

The formulation of the approximate governing equations (41) - ( 

(44) for the quasi-steady tube flow shows that the heating term is the 

only significant contributing factor to the temperature and velocity 

variations, and further, that it contributes a significant influence 

together with the wall friction to the tube pressure drop. This heat­

ing term is, in turn, completely dependent on specification of some con­

dition regarding the wall temperature, wall heat flux, or an energy 

balance for the tube wall. In the major portion of the problems consid­

ered in the literature this heating term is given by specification of 

the wall temperature or heat flux. In the present problem, however, due 

to the permissible natural cooling of the wall by radiation and natural 

convection to the surrounding atmosphere and due to the fact that the 

wall is a conducting material, the proper form of the wall boundary con­

dition to be applied must evolve from a statement of conservation of 

thermal energy for the tube wall. 

Consistent with the application of the fundamental conservation 

principles for the fluid flow to a control volume of elemental length 

dx and tube inside diameter D., the statement of conservation of thermal 
i 

energy for the tube wall is applied to an annular tube control volume 

with inside diameter D., outside diameter D , and the same elemental 
i o 

length dx. Likewise consistent with the idealized one-dimensional ap­

proach to the fluid flow description, the temperature of the tube wall 

is assumed independent of radial position or a function only of longi­

tudinal position and time. This assumption is conventional for thin 

walIed tubes. 
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In terms of the notation of equation (C.8), conservation of ther­

mal energy for the tube wall control volume requires 

V 
dt 

(p . c . T..) dV = - I q . n . dA 
JA J J 

(46) 

where V and A refer to the tube wall control volume which is shown in 

Figure C-1 together with the corresponding tube fluid control volume. 

The volume integral in equation (46) may then be written as 

a rRo 
2TT r-T p c T r dr dx 

dt J Kw w w 
K 

corresponding to the tube control volume. The negative integral over 

the volume surface, the right hand side of equation (46), consists of 

four terms due to forced convection heating from the fluid, longitudinal 

conduction along the tube wall, natural convection cooling, and radia­

tion, each corresponding to an appropriate portion of the control volume 

surface. The forced convection heating term is the same as found in the 

fluid energy equation (C.I9), except for sign change, and is given as 

q rr D. dx 
^ w i 

The contribution due to longitudinal conduction along the tube wall is 

_ _JL T, rRo ST. 
2TT - k 

Bx L J D w dx 
K 

r dr dx 

In the presence of the surrounding ambient atmosphere at temperature 
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T , the tube outside waI I is subject to a heat flux due to natural con-
a 

vection cooling, which is expressed in terms of a convective heat trans­

fer coefficient h as 

o 

- h (T -T )TT D dx o w a o 

and a radiation cooling term, which is given as 

4 4 - ea (T -T )TT D dx w a o 

with e, the wall em.issivity, and 9", the Stephan-Bol tzmann constant. 

Collecting these results, together with the assumptions of inde­

pendence of wall temperatures on radial position and constant wall pro­

perties, allows the wall thermal energy equation (46) to be expressed 

as folIows: 

ST 4 D. . d2T ..... 
p c w = i q + k w (47) 
rw w — — — ^w w 

dt n Z n Z Z 
D -D. dx 
o i 

4 D 4 D A A 
0 h (T -T ) - — r - ^ co- (T 4-T 4) 

D 2-D. 2 ° W a D 2-D. 2 W a 

o i o i 

For purposes of discussion and convenience in the manipulations that 

follow, equation (47) is expressed in a general difference form as were 

the fluid flow equations (13) - (16). In the present case, however, 

there are no arguments for the deletion of the local or time derivatives 

of the wall internal energy in comparison to the other terms present, 

as a matter of fact, the time difference of the wall temperature is the 
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primary source of unsteadiness in the quasi-steady flow problem. Ac­

cordingly, equation (47) in difference form is given as 

A^(T ) 4 D. q k Ax2(T ) 
t W I ^W W • W , „ „ , 

— — — = — + (48) 
At ^ 2 ^ 2 0 0 p c . 2 

D -D. Kw w Kw w Ax 
o i 

4 D h 4 D n A A 
(T -T ) - - — 2 - - S 2 — ( T 4 - T 4 ) ~ 2 ~ 2 p c w a r-.2r.2pc w a 

D -D. Fw w D -D. Hw w 
o i o i 

In order to write this result in terms of suitable dimension I ess 

parameters reference is made to the work of Rooks (22). In his analysis 

of the wall boundary condition., Rooks considered the effects of the same 

terms as represented in equation (48) with the exception of longitudinal 

conduction in the wall. Thus, although one of the dimens ion I ess para­

meters he introduced was, in fact, the wall thermal diffusivity a , it 
1 w 

should be emphasized that the diffusion or longitudinal conduction term 

was neglected in his analysis. This is made clear if one considers the 

forced convection heating term in equation (48) which, upon introduction 

of the definitions of the convective heat transfer and the fluid Nusselt 

number, equations (18) and (20), respectively, together with the defini­

tion of the thermal diffusivity of the wall 

k 
a = — * — (49) 
w o e 

*w w 

and the wall thickness 

D -D. 
t = ̂ - L (50) 

r-.2r.2pc


51 

may be written as 

QJ 

4 D.h. (T-T ) k/k Nu. W/D. 2 

i i w w i \ , . . 
9 9 = ~+ + ( T~ Tw 5 (5' ) 

(D -D. )p c YD. (1 + YD. ) 
O I r W W I I 

This result shows that the combination of terms in the numerator of the 

coefficient is actually representative of the dimension I ess quantity 

IMu.(k/p c ) and not Nu.a . On the other hand the coefficient of the 
i Kw w i w 

diffusion term in equation (48) is, according to the definition, equa­

tion (49), simply a and is representative of the true effect of thermal 
w 

d i ffusion. 

The present wall thermal energy equation (48), as expressed in 

finite difference form, also differs from Rooks' equation in that the 

difference formulae Rooks used were of a complicated form suggested by 

Dusinberre (21). The difference formulae to be used in equation (48) 

need not be specified as yet, but an intuitively more accurate scheme 

than that suggested by Dusinberre will be utilized. It might also be 

mentioned that the Dusinberre formulae do not lend themselves readily 

to treatment of the parabolic equation (48). The different treatment 

of the differences do not, however, alter the form of the coefficients. 

In spite of previous objections to Rooks' analysis, his formulation of 

the coefficients of his wall thermal energy equation is well done and 

extremely handy, so the present treatment parallels that of Rooks. 

The form of the coefficients for the forced convection heating 

term and the diffusion term have already been given. It remains to de­

fine the Nusselt number for the natural convection cooling as 



52 

h D 
Nu =~^ (52) 
o k o 

where k denotes the conductivity of the mean ambient air surroundinq 
o " ^ 

the tube, that is, a conductivity based on the mean temperature 

T +T 
T = ^ ^3) 
o 2 

Utilizing equations (52) and (49), the remaining coefficients of the 

thermal energy equation are easily formulated and the equation is given 

in f i naI form as 

A+(T )
 k/k Nu. W/D. 2 A 2(T ) 

^ 7 7 ^ - = — * L " 1~ (T-T ) + a -*^*- (54) 
A t +/D. (I+

+/D.) W W Ax2 

i i 

k a „ ea D a 
°/k Nu W/D. 2 - ^ W/D. 2 . , 

w o L_ (T _T ) _ kw L_ (T 4_T 4} 

f/D. (I++/D.) W a f/D. (I++/D.) W a 

I I I I 

In addition to specification of physical and geometrical con­

stants, equation (54) requires knowledge of how the fluid thermal con­

ductivity depends on temperature and knowledge of the free convection 

Nusselt number. Inasmuch as the Prandtl number has been assumed con­

stant, the thermal conductivity follows the same equation for variation 

with temperature as does the coefficient of viscosity, which is given 

by a power law representation 

0.68 
% = ( V T ) (55) 

^a a 
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so that the conductivity is expressed as 

k/k = (T/T ) 
a a 

0.68 
(56) 

For the special cases dealing with k and u, , the temperature T in equa­

tions (55) and (56) refer to the mean film temperature T . 

The free convection Nusselt number, Nu , has been extensively in­

vestigated for long horizontal cylinders with longitudinally uniform 

temperature distribution. In the present analysis it is assumed that 

the local value of Nu corresponds to that experienced by such a cylin­

der if it were subjected uniformly to the local value of the wall temp­

erature T . This assumption explicitly ignores the effect of the devi­

ation of the wall temperature from a uniform value; however, this as­

sumption should not be in serious error inasmuch as the slope of the 

wall temperature distribution is not large in the present case except 

possibly near the entrance end of the tube. 

Typical correlation results for long cylinders subject to uniform 

temperature distributions are given in reference (27). These results 

correlate the free convection Nusselt number Nu in terms of the pro-
o r 

duct of the Grashof number 

Gr = 
o 

D o 3 9 * ' 

/ 
(T -T ) w a 

(56) 

and the Prandtl number, where the fluid properties are evaluated at the 

mean film temperature, equation (53). In the present case, the tube 

wall temperatures observed experimentally are such that one expects 
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Gr Pr < 10 
o 

(57) 

As a consequence, experimental results are sufficiently well represented 

by the equation, due to Rooks (22), 

Nu = 0.95 (Gr Pr) 
o o 

0.2 
(58) 

It follows then from the definition, equation (56), the viscosity rela­

tion, equation (55), and use of a constant pressure relation for the 

variation of density with temperature in the ambient surroundings that 

equation (58) may be written as 

Nu = 0.95 
o 

(~D 3 g Pr 
0 . 2 _ 

\2 

7 P a l u 

11 

L 

4.36 
0.2 

(59) 

+ 1/ 

Finally, the thermal energy equation (54) may be rewritten sub­

ject to the definitions and values of its various coefficient variables 

and parameters pertinent to the present problem. This step is deferred, 

however, to the next chapter, wherein the formulation of the entire 

problem is assembled together and the procedure for execution of a so­

lution is discussed in some detail. 

Initial Cond it ions 

Description of the tube flow initial conditions consists of 

prescribing an initial steady cold flow which is consistent with the 

one-dimensional representation of the flow as already given. The ther­

modynamic initial conditions appropriate to the present problem are 
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given as 

T = T at t = 0 
a 

(60) 

T = T at t = 0 
w a 

corresponding to a cold flow. The fluid dynamics are specified by the 

constant mass flux 

pU = G for t ss 0 (61 ) 

together with specification of the initial pressure distribution along 

the tube and the equation of state. Actually, since the fluid flow 

equations, (41) - (44), as set forth for quasi-steady Mach number zero 

flow, do not contain the time explicitly as a dependent variable and 

sincethe mass flux, equation (61), is time invariant, no initial pres­

sure distribution is formally required as an initial condition. The 

existence of a cold flow, however, implies an initial pressure distri­

bution which is equivalent to saying that the friction factor must be 

specified for any flow, whether hot or cold. Likewise, in order to pro­

ceed with a solution the Nusselt number must also be known. 

Specification of Friction Factor and Nusselt Number 

These two specifications which were mentioned earlier as being 

required for solution of the idealized one-dimensional flow are treated 

separately in the following paragraphs. 
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Friction Factor 

The specification of a friction factor applicable to the tube 

flow follows from details of the flow dependence on both the radial and 

longitudinal coordinates in the case of a developing flow. A convenient 

reference for this purpose is the analytical work of Langhaar (8), who 

by means of a linearizing approximation to the Naviei—Stokes equations 

for incompressible flow, has obtained a solution for the steady flow in 

the development length of a straight tube. The velocity profiles, de­

fined in terms of Bessel functions, allow calculation of a dimensionless 

pressure function P by means of mechanical energy considerations. In 

terms of the present notation, the pressure drop measured from an as­

sumed stagnation condition ahead of the tube entrance to a position x in 

the tube is given by 

Ap = j pU2 + (p - p) (62) 

The dimension I ess pressure function of Langhaar is then 

P = Y^T (63) 

7 P u 

where P i s a function of the dimens ion I ess variable 

4 X/D. 
a = — - — L (64) 

Rey 

The tabulated results of Langhaar are shown in Figure 7 as a plot of 

P vs. a. In this figure it may be noted that for large values of a, 
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Figure 7. Langhaar Pressure Function 
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that is far from the tube entrance, the slope dP/da approaches a value 

of 16 which corresponds to the friction factor 

f = ^ (65) 
Rey 

for fully developed flow. 

In the present analysis the cold tube flow may be prescribed 

approximately in terms of an isothermal flow with a pressure distribu­

tion given by representing the Langhaar pressure function, P, in terms 

of a hyperbola. Such a hyperbola may be conveniently defined by intro­

ducing new coordinates P" and o~' whose origin is at the center of the 

hyperbola or that point where the asymptotes of the hyperbola cross its 

transverse axis as shown in Figure 7. The equation of the matching hy­

perbola is then given by 

a'2 P'2 

2 " 2 = ' (66) 

a b 

and the corresponding equation for its asymptote is 

P' = - a1 (67) 
a 

The slope b/a of the asymptote, in order to agree with the friction 

factor for fully developed flow, must be 16. As a consequence, the 

equation for the hyperbola, equation (66), may be expressed as 

2 2 2 
P' = 256 (a' - a ) 

or, i nasmuch as 
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a' = o + a 

the pressure function P' is given by 

P» = 16 (a2 + 2aa)2 (68) 

and obviously, since P = I is the transverse axis of the hyperbola, 

P = P' + I 

or 

o i 
P = I + 16 (a + 2aa)2 (70) 

The result, equation (70), of matching a hyperbola to Langhaar's 

pressure function leaves one parameter, a, to be determined experiment­

ally. This parameter is specified by matching the pressure function P 

of equation (70) to the experimental results for the cold flow in each 

test tube, where the experimental value of P corresponds to the total 

length of the test tube or a length parameter of 

4 L/D. 
ov = D ' (71) 
E Rey 

As a consequence, a value for the parameter, a, is found for each test 

tube specified by its particular L/D.. The results of this evaluation 

are given in the discussion of the cold flow in the section on theoreti­

cal results. 

The pressure distribution for the initial cold flow is then given 

by equations (62) and (63) as 
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p = p. + i PU
2 (I - P) 

The inlet pressure p. is expressible, by this result applied at the exit, 

in terms of p and P so that it is more convenient to write 

p = pE + j pU2 (PE - P) (72) 

where according to equation (45), p is known and the dynamic pressure 

2 2 
1/2 pU is given as G /2p . The pressure functions P and P are given 

by equation (70) for appropriate values of a defined by equation (64). 

The Reynolds number expressed in terms of the mass flux is 

GD. 
Rey = L (73) 

M-

with the coefficient of viscosity, \x, taken to be equal to its local 

value which would be p, in the case of a cold flow. 

The complete prescription of the initial steady cold flow cor­

responding to a mass flux G, an ambient temperature T , and an exit 
a 

pressure p is then given in terms of the pressure distribution by equa­

tion (72), a constant temperature corresponding to ambient conditions, 

and a density distribution satisfying the equation of state. Inasmuch 

as the maximum pressure drops across the tube are of the order of 0.01 

atmospheres, the corresponding density variations along the tube are for 

all practical purposes negligible for the case of a cold flow. Corres­

ponding to the pressure function P, equation (70), and the momentum 

equation (42) applied to the cold flow, the local friction factor may 

be speci f i ed as 
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. £4_ (a + a) 4 

R e^ (a2 + 2aa)? 

In the case of a hot flow, it is assumed that the local friction 

factor is likewise given by equation (74) subject to calculations based 

on the local values of the Reynolds number which in the case of quasi-

steady flow will be entirely temperature dependent. 

Nusselt Number 

Due to the lack of both analytical and experimental information 

pertaining to hot flows with arbitrary temperature distribution, the 

specification of a correct representation of the forced convection heat 

transfer or the fluid Nusselt number remains, at best, a rather crude 

semi-empirical guess. Kays (14), as a result of numerical solutions for 

idealized boundary conditions such as constant wall temperature, con­

stant heat flux, or constant temperature difference between gas and 

wall, gives empirical correlation equations for the local Nusselt number 

in terms of the parameter (x/D.)/Rey Pr. Rooks (22) utilized Kays' 

constant heat flux equation for his analysis of the present problem; 

there is, however, no evidence to suggest that it is the proper 

speci fi cation. 

In view of the essential difficulty in specifying the Nusselt 

number, the viewpoint taken in the present work is that the Nusselt num­

ber will be regarded as a semi-empiricaI parameter which must be speci­

fied in such a way that the theoretical predictions for the tube pres­

sure drop agree with the experiments. The conclusion of this specifi­

cation will be discussed later in the section on theoretical results. 
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CHAPTER VI 

THEORETICAL PROCEDURE 

The purpose of a discussion of the theoretical procedure employed 

in the present work is to explain the mechanical details of the execu­

tion of a solution of the unsteady tube flow problem as described in the 

preceding chapter. 

A complete mathematical description of the problem is provided by 

the governing difference equations for the fluid, equations (41) - (44), 

the difference equation for the wall thermal energy, equation (54), the 

fluid flow boundary conditions (45), the fluid and wall initial condi­

tions, equations (60) and (61), specification of the friction factor by 

equation (74), and knowledge of the Nusselt number as an empirical 

parameter. 

Fluid Flow 

Actually, due to the assumption of a quasi-steady flow and the 

constant mass flow specification at the tube exit, the mathematical de­

scription may be expressed in somewhat simpler terms. The constant mass 

flux G at the tube exit, equation (45), together with the continuity 

equation (44) dictates that the mass flux is invariant with both posi­

tion and time. Also the equation of state may be employed in its orig­

inal form so that for calculation purposes the flow problem may be sum­

marily represented as follows: 
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U = G/p (75) 

A (p) - ^ 
x p 

2„ r 4 Nu 
^ (T*-T *)A(X/D. ) - T T M f ^ A(X/D. ) 

.Rey Pr w i a 2 i . 
(76) 

4 Nu. 
A (T*) = - ~ - 1 (T*-T *)A(X/D.) 
x Rey Pr w i 

(77) 

p= P/RT*T. (78) 

with the boundary conditions 

T* = T * at /D. = 0 
I i 

p = pc at X/D. = L/D 

(79) 

where the gas and wall temperatures have been nondimensionaI ized, as 

indicated by the ( )* superscript, with reference to the ambient temp­

erature. In order to execute a solution for that portion of the problem 

pertaining to the fluid flow it is necessary to perform an integration 

of equations (76) and (77). Due to the nature of the equations and the 

boundary conditions, this integration is readily performed by a standard 

Runge-Kutta process (28) by first integrating the energy equation (77) 

down the tube from entrance to exit to obtain the gas temperature dis­

tribution. Then the momentum equation (76) may be integrated back up 

the tube from exit to entrance determining the pressure distribution 

while simultaneously employing equations (78) and (75) to calculate the 

local density and velocity. The pressure drop may then be determined as 
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the sum of the integrated pressure change in the tube plus the kinetic 

energy jump at the tube inlet based on the hot flow density and velocity 

in the tube entrance. For calculation purposes it was found sufficiently 

accurate (within one per cent) to utilize a spatial step size of A( /D.) 

= I; this fine a step size actually being required only due to the large 

temperature gradients near the tube inlet. 

The above procedure is carried out as a quasi-steady calculation 

inasmuch as the only dependence on time is reflected in the wall temp­

eratures. The wall temperature time history is thus fundamental to the 

unsteadiness or response of the fluid flow to a step function increase 

of the inlet temperature. In fact, if the wall temperatures vary rapid­

ly, corresponding to a very thin tube walls of small heat capacity, then 

the quasi-steady representation of the fluid flow may be invalid. On 

the other hand, as mentioned previously, one would expect that in re­

sponse to a step function increase of the gas temperature at the inlet, 

there will ensue a transient flow corresponding to the passage down the 

tube of a thermal contact discontinuity. Whereas this transient flow 

represents an unsteadiness that could not be termed quasi-steady, there 

are other physical considerations which allow this transient to be en­

tirely ignored in the present problem. Not only would the thermal con­

tact discontinuity be smeared out with time due to the thermal diffusi-

vity of the gas (which is not accounted for in the present problem), but 

the magnitude of the temperature rise across the discontinuity would 

decay rapidly with passage down the tube due to the heat transfer to a 

wall of large heat capacity. Further, the elapsed time required for the 

discontinuity to traverse even the entire length of tube is of the order 
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of a fraction of a second with velocities of the order of 20 fps. Con­

sequently, in this short period of time no appreciable change in the 

wall temperature occurs due to its relatively high heat capacity and 

bulk. 

In view of the preceding arguments, it is assumed for purposes of 

calculating the flow response in the present work that the proper ini­

tial specifications for the flow consist of a constant wall temperature 

at ambient value and a gas temperature distribution which is readily 

calculated by equation (77), corresponding to this constant wall temp­

erature. Subsequent response of the fluid flow is then quasi-steady and 

is dictated by the wall temperature changes with time as governed by the 

wall thermal energy equation. 

WalI Temperatures 

The wall thermal energy equation (54) may be given in a more com­

pact form by nondimensionaI ization of the temperatures with reference 

to the ambient value and use of equations (56) and (59) to yield 

A (T *) A (T *) 
— — = K. Nu. (T*) (T*-T * ) + K0  

At I , w 2 A ( x / D _ ) 2 

(80) 

K ( T * _ | } l . 2 ( y * + ) ) 0.192 _ ^ 4 

3 w w 4 w 

w i t h 

K, = 

kr/k ° V 2 
w i 

7T 

0.68 

ri 

f / D . ( I + + / D . ) 
(81a) 



K, = W/D. 2 

2 i 

Q\ 

K 3 -

W/D. 2 

W I 

kr/k V D 

10.68 

V2T 
r / 

f/D. (l+f/D.) 
(0.95) 

D 3g Pr 
o a 

M-: 
v P s 

0.2 

(2) 
0.872 

(81b) 

(81c) 

eg Dp aw 

K„ = k / D . 2 T 3 

w i a 
+/D. (l+f/D.) 

i i 

(8ld) 

where T denotes a gas reference temperature for evaluation of the gas 

conductivity k . 
r 

The difference equation (80) may be solved numerically by appli­

cation of methods appropriate to parabolic equations. Utilizing super­

scripts to denote time and subscripts for position, the time difference 

is represented as a forward difference 

A.(T *) = T * n + l- T * n 

t w w . w , 
J J 

(82) 

and the second order spatial difference corresponding to longitudinal 

conduction in the wall may be replaced by a general time weighted cen­

tered spatial difference 

A
 2 ( T * ) = e 

f-T * n + l - 2 T * n + l 
+ T * 

X W W . . w . w . . 1 J+l J J-l 

(83) 

+ (1-0) T * n - 2T "*n + T *n 

w . w . w . 
I J+1 J J"1/ 

where 9 is a positive constant. Various values of 9 give either 
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expI icit or impI icit schemes; 9 = 0 gives a four-point expI icit scheme 

with forward time difference, 9 = I gives a four-point implicit scheme 

with backward time difference, and the value of 9 employed in the pre­

sent work, 9 = £ , gives a six point scheme with centered time differ­

ence. The primary reasons for this choice of 9 = { are the intuitively 

simple representation of the centered time difference and the avoidance 

of stability problems such as are encountered in the simpler explicit 

representat i on. 

Consistent with the representation of the second order spatial 

difference by equation (83), all functions of the gas or wall tempera­

ture on the right hand side of equation (80) are also represented in 

terms of the general time weighted scheme with 9 = 2. For example, the 

last term is represented as 

4 4 n+l 4 n 
(T * -I) = 6 (T * -I) + (l-9)(T * -I) (84) 
w w . w 

J J 

and similarly for the other terms. Substitution of the representations 

given by equations (82) and (83) together with treatment of all the 

terms on the right hand side of equation (80), as in equation (84), and 

rearrangement allows equation (80) to be written as 

- K & t - 9 T* n + I + T* n + I (85) 
2A( X/D.) 2 W j+l w j 

n +i 0.68 n +i A-j- n +i 

+ K. At 9 Nu. (T* ) (T * ) + 2Kn ^ — - 9 T * 
I 1 . w . 2 . ,x /r, . 2 w . 

J J A( /D ) j 



68 

+ K3 At 9 
I ? -f) I Q? 

(T *-l) (T *+l) 
w w 

i n+ 

J J 

+ K 4
 A t T * 

w 

n+l 

J 

- K 9
 At - e T *n+ 

2 A( X/D.) 2 W j-

,0.68 , 
K. At 9 Nu. (T* ) (T * n + ) - K, At 9 
I i . w . 4 

J J 

T * n + K. At (1-9) 
w . I 

J 

Nu. ( T * ) 0 - 6 8 (T*-T *) i w 
•J J 

+ K At 
2 A( X/D.) 2 

(1-9) T * n - 2T * n + T ^n 

w . . w . w . 
J+l J J-l 

- K3 At (1-9) 
1 2 -0 192 

(T *-l) (T *+l) * 
w w 

f 4 i n 
- K. At (1-9) T * -

4 w 

The presence of the nonlinear bracketed terms in T * at time n+l is not 
w 

desirable and may be eliminated by linearizing these terms as follows. 

Letti ng 

i n+ I 9 _n iQ? 
(T *-l) ' (T *+l) 
w w 

= f ( T * ) " + l 

w 
J J 

(86) 

then by a Taylor series expansion 

f (T * ) n + l « f (T * ) n + f' (T * ) n (T * n + l - T * n) (87) 
w w . w . w . w . 

J J J J J 
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and evaluating the derivative f'(T *) yields 
3 w ' 

f' (T * ) n = 
w 

J 

-0 IQ? D 7 
(T *+| ) u' '^ (I .2)(T *-l ) 
w w 

(88) 

-I 192 1 2 
(0.192)(T *+l) (T *-l) 

w w J J 

Si mi IarIy 

T * 
w 

n+l n n 
= (T * ) + 4 (T * ) (T *)° + 

w . w . w 
J J J J J 

(89) 

- 4 (T * ) (T * ) P 

w . w . 
J J 

Use of the linearization procedure for these two terms then allows equa­

tion (85) to be rewritten after considerable rearrangement in the form 

A. T *n+l + B. T *n+l - C. T *n+l = D. 
J w j + | j w . j w j H j 

(90) 

wi th 

A. = K„ 
J 2 

At 

A( X/D.) 2 

i 

(91) 

O fifl n+l 
I. = I + K. At 9 Nu. (T* ) 4- 2A. 
j i i j J 

(92) 

+ K3 At 9 
-0.192 0.2 

I.2 (T * n+l) (T * n-l) 
w . w . 

J J 
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-I J 92 1.2 
0.192 (T *n+l) (T *n-l) 

w . w . 
J J 

3 
+ 4K. At 0 (T * ) 

4 w . 
J 

C. = A. 
J J 

(93) 

D. = T * + K, At 
j w I 

(l-0)Nu. (T*R) 

j 

0.68 
(T*R-T * n) 

w . 
J J 

(94) 

0.68 
+ 9 Nu. (T* ) T*n+ 

J J 

+ A ( l~ 9 ) T * n - 2T *° + T * n 

w . , w . w . 
- J+l J J-

-0.192 1.2 
- Kx At (T *

n ) (T ^n-l) 
3 w . . w . 

J+l J 

+ K3 At 9 I.2 (T *n+l) 
w . 

J 

-0.192 
(T *n-l) 
w . 

J 

0.2 

0.192 (T *n+l) 
w 

J 

-I.192 
(T *n-l) 
w . 

J 

I .2 
T * n - K, At 
w . 4 

J 

(T * n) (1-49) 
w . 

J 

The difference equation (90) together with the coefficients, 

equations (91) - (94), thus represents the wall thermal energy equation 

in terms of a six-point difference scheme in space and time. The coef­

ficients are regarded as known, which upon inspection requires that the 

temperatures of the waI I T * and the gas T* be known at time n for a I I 

J J 
positions j. In addition, it is required that the gas temperatures 
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T* . be known corresponding to the time n+I. Letting n = 0 correspond 
J 

to the time t = 0, the gas and waI I temperatures are prescribed by the 

initial conditions, equations (60). Then, neglecting the initial tran­

sients that occur for small times while a thermal contact discontinuity 

is swept through the tube, it is assumed that the gas temperatures T*. 
J 

reach an initial equilibrium distribution corresponding to a solution 

of equation (77) with a cold waI I , T * = I , during the first time in-

j 

crement. The staggered computing scheme is continued by solving equa­

tion (90) for the new waI I temperatures at time n = I , and repeated use 

of first equation (77) and then equation (90) to find the gas and wall 

temperatures following each new time increment. 

A solution to equation (90) may be effected subject to specifi­

cation of two boundary conditions on the wall temperatures and the fact 

that the equation must possess a one-parameter family of solutions (29). 

The exact wall temperature boundary conditions appropriate to the tube 

experiments of the present work are not known. It is assumed, however, 

that due to the small exposed cross-sectional area of the tube ends in 

comparison to the exposed internal surface area, the overall effect of 

any heat transfer at the tube ends must be small in comparison to the 

internal or convective heat transfer to the tube interior surface. Con­

sequently, it may be assumed that the tube ends are insulated to longi­

tudinal heat conduction. If j = I and j = M respectively represent the 

entrance and exit positions in the tube, the boundary conditions appro­

priate to the insulated ends may be given as 

T * n = T * n (95) 
w w . 
o I 
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T *
n = T *n 

M+l M 

(96) 

A one-parameter solution of equation (90) may be represented in 

the form 

_ „nf _ _ „n+1 _ . ., 
j * = E . T * + F . ; j = M , 
w . i w . . j 

J J J+l J 

(97) 

and due to the boundary condition at the tube inlet, equation (95), it 

must folIow that 

E = I , F = 0 
o o 

(98) 

The solution given by equation (97) may be assured to represent the de­

sired solution from equation (90) by substituting 

T * = E T * + F w . . w . . . 
J-l J"' J J"1 

from equation (97) into equation (90). The equivalence of these two 

equations thus demands that 

A 
E = J— 
j B. - C. E. J J J J' 

(99) 

F. = 
J 

D. + C. F. . 
,1 ,1 izi 

B. - C. E. 
J J J-l 

(100) 

With the aid of equations (99) and (100), the inlet boundary condition 

in the form of equations (98), and knowledge of the coefficients A., B., 



73 

C , and D., it is then possible to calculate the E. and F. for all posi­

tions down the tube. At the tube exit, however, equation (96) demands 

from equation (97) that 

T * 
w 
n+l F 

M 
- E, 

(101 ) 

and inasmuch as F.. and E.„ are known from equations (99) and (100), the 
M M ^ 

exit wall temperature is determined. Finally then, equation (97) allows 

determination of the wall temperatures proceeding backwards down the 

tube from j = M-I to j = I. 

The aforegoing treatment of the wall energy equation coupled with 

the fluid flow analysis for a quasi-steady Mach number zero flow allows 

a solution of the physical problem of the present investigation to be 

obtained. The only additional specifications required at this point are 

the appropriate gas physical constants and reference values together 

with the tube wall constants already given in Table I. The gas con­

stants are accordingly given as follows: 

R = 1718 ft-lb/slug °F 

Pr = 0.72 

k = 0.01516 Btu/hr ft °F at 80 °F 
r 



74 

CHAPTER VI I 

PRESENTATION AND DISCUSSION OF RESULTS 

Introducti on 

The results of the present investigation consist of experimental 

and theoretical descriptions of tube pressure drops, gas temperatures, 

and wall temperatures for various tube lengths (L/D = 400, 600, 800, 

1000) at selected mass flow rates (as represented by Rey ) and inlet gas 
a 

temperature ratios ( T * ) . Thus the primary variables of interest, the 

pressure drop and temperatures, may be defined as functions of position, 

time, and the other variables that were investigated. It is to be noted 

that whereas the pressure drop, by definition, depends on the overall 

length of the tube, the temperatures inherently depend only on position 

as measured from the tube inlet, a result that is consistent with the 

Mach number zero assumption. For clarity, the primary variables may be 

expressed in terms of functional relations pertinent to the present work 

as folIows 

Ap = fcn(t,L/D.,Rey ,T*) 
i a i 

(102) 

Tw*, Tg* = fcns(t,x/D.,Reya,T,*) 

In the general case the primary variables are of course dependent upon a 

number of additional variables such as wall material properties, wall 

thickness to diameter ratio, etc., which were not investigated. 
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The number of variables involved in the present investigation, as 

given by equations (102), is sufficiently large to dictate an unreason­

able amount of experimentation in order to describe completely the 

effects of just these variables. Thus the experimental results obtained 

do not encompass such a description and reliance must be placed on 

theory to fair in the results for a complete description. On the other 

hand, the theory as it has been presented, is incomplete in that it must 

rely on some experimental observations for the determination of a satis­

factory friction factor and Nusselt number in order that it can give 

reasonable predictions. For these reasons it is deemed appropriate to 

present the experimental and theoretical results together. 

The order of presentation to follow will involve the following 

considerations: first, the use of experiment to determine an appropri­

ate friction factor parameter and Nusselt number for the theory, second, 

theoretical predictions of the pressure drop dependence on the various 

variables given by equation (102), third, comparisons of theory and ex­

periment with regard to pressure drops, fourth, comparisons for the gas 

and wall temperatures, and finally, theoretical predictions for the tube 

pressure distribution and the effect of various wall thickness ratios on 

the tube pressure drop. 

Semi-EmpiricaI Experimental Results 

The experimentally measured pressure drops for each test tube 

were employed together with predictions of the theory to allow a choice 

of friction factor parameter, a, and Nusselt number, Nu., appropriate 

for use in the theory. 



76 

Friction Factor Parameter 

The friction factor parameter, as required by equation (74), was 

determined from the cold flow experimental results for each test tube; 

these results which encompass the range of Reynolds numbers from approx­

imately 100 to 1250 are shown in Figure 8. Pertinent to each of the test 

tubes the theoretical pressure drop may be calculated using the defini­

tion of equation (63), equation (70), and equation (71) in the form 

for different values of the friction factor parameter, a, until a suit­

able value is found which marches the experimental results. Accordingly, 

values of a = 0.300, 0.375, 0.425, and 0.4613 were selected correspond-* 

ing to values of L/D = 400, 600, 800, and 1000, respectively. The theo­

retical pressure drops using these values are also shown in Figure 8 for 

comparison and a good representation of the cold flow pressure drop by 

the theory must be acknowledged. 

An interesting comparison with the results of Langhaar (8) for 

the friction factor in the development region of the tube may be made by 

utilizing equation (103) together with Langhaar's results for the pres­

sure function P, given by equation (63). For a small value of a, corre­

sponding to a position in the flow development region near the tube 

inlet, a value of the friction parameter, a, may be calculated. As an 

example, for 4 ~/Rey = 0.0715, Langhaar's tabulated results together 

with equation (103) yield for the friction factor parameter, a = 0.0952. 

The values of the friction factor parameter, and consequently also the 

4L/D 
Rey / 

(103) 
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friction factor, as determined from the cold flow experiments of the 

present work are larger than those predicted from Langhaar's analysis 

throughout the development region. This result is physically logical 

inasmuch as Langhaar's analysis pertains to an ideal, smoothly rounded 

tube inlet whereas the tubes of the present work are cut straight across 

perpendicular to the tube axis with no attempt at smoothing the inlet. 

Consequently the pressure drop and friction factors associated with 

these tubes should be significantly higher than those of tubes with 

smooth inlets. 

The flow development length, as given by Boussinesq (5), 

[7H . , . = 0.065 Rey (104) 
\D.Idevelopment ' 

is less than the overall length of any one of the four test tubes em­

ployed in the present work. Accordingly, in the analysis of the experi­

mental results and their theoretical representation in terms of the 

friction factor, equation (74), and the pressure drop, equation (103), 

two significant facts should be examined. First, for tube lengths 

greater than the development length, the effect of additional length, 

such as the addition of 200 diameter increments to the short (L/D = 400) 

test tube, should be evidenced by equal increments of pressure drop cor­

responding to fully developed flow in that additional length. This 

result is verified by the experimental results shown in Figure 8 and the 

theory is matched to these results with the different values for the 

friction factor parameter for each test tube. 
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The second fact to be examined is the requirement that the local 

friction factor in the development region be independent of the added 

length or the total L/D. The friction factor as given by equation (74), 

does not satisfy this latter statement unless the friction factor para­

meter, a, is independent of the tube length. In summary, the present 

theory satisfies the first requirement if it agrees with the experimental 

total tube pressure drop, an agreement which is obtained by using diffe­

rent values of a, but it does not satisfy the second requirement by 

virtue of this choice of different values for a. 

The explanation of the preceding apparent contradiction is obvi­

ously the fact that the friction factor equation, equation (74), is not 

an exact representation of the actual friction factor, which is not read­

ily described in terms of such a simple expression. That this choice of 

representation for the friction factor does not satisfy the second re­

quirement exactly is not a serious objection inasmuch as the range of 

values chosen for the friction factor parameter, 0.300 <. a £ 0.4613, 

causes a significant variation in the local friction factor only for 

very small values of a. Thus, inasmuch as the present work is concerned 

primarily with the tube overall pressure drop and must rely on experi­

mental measurements of this quantity, rather than the tube pressure dis­

tribution, to represent implicitly a local friction factor, the diffe­

rent selected values for the friction factor parameter for each tube are 

used together with the definition of the friction factor based on the 

local Reynolds number in all subsequent theoretical predictions. 

Nusselt Number 

The Nusselt number appropriate to the hot flow theory of the 
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present investigation is not known and cannot be accurately predicted 

from any experimental or theoretical analysis known to the author. Due 

to the complicated wall boundary conditions imposed on the heat transfer, 

this problem is not readily amendable to theoretical analysis and would 

pose a difficult experiment due to the large number of parameters 

i nvolved. 

It is acknowledged that the proper Nusselt number, in all likeli­

hood, would pose an even more complicated functional relation than those 

of the primary variables of the present problem, as given by equations 

(102). An attempt was made to formulate a three parameter Nusselt number 

of the form 

Nu. = 3.66 + / x./r, \ 2 (105) 

similar to the correlation formulae of Kays (17). The value 3.66 corre­

sponds to the fully developed Graetz solution for constant wall tempera­

ture with parabolic velocity distribution and the other term of the for­

mula represents an attempt to assign the proper distribution of Nu. in 

the development region. For various choices of G C and G the 

theory was applied to the series of hot flows in the short tube, L/D = 

400, and comparisons of the pressure drop, gas temperatures, and wall 

temperatures were made with their corresponding experimental values, 

These attempts did not meet with success, primarily due to the relatively 

large number of parameters and variables involved in the problem and lack 

of knowledge of the nature of the influence of the significant parameters 
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As an alternative to the above efforts it was found that by spec­

ification of a constant Nusselt number of appropriate magnitude, the the­

oretical predictions of the tube overall pressure drop, as a function of 

time, could be made to describe the experimental results for the short 

test tube (L/D = 400) with very good accuracy, A comparison of these 

results for the theory and experiment is shown in Figure 9 for a theoret­

ical Nusselt number of I I. This value was chosen to allow the theory to 

duplicate the experimental pressure drop at 5.5 minutes for the short 

tube runs with inlet temperature ratios of approximately 2.4. Inasmuch 

as the temperature distribution, as given by equation (43), should not 

be dependent on the tube length, this value of the Nusselt number is 

specified and employed for all of the hot flow runs in all four test 

tubes. Thus for purposes of the theory the Nusselt number is chosen 

semi-emp i r i caI Iy as 

Nu. =11 (106) 

It is acknowledged that the preceding treatment of the Nusselt 

number is not exact since the analysis is based on details of the tube 

pressure drop rather than consideration of the temperature distribu­

tions. With regard to the pressure distribution, as determined from 

equation (42), the primary Nusselt number effects are restricted to the 

region near the tube inlet where the temperature difference T - T is 

significant and the temperature T is high. Consequently, a good first 

approximation of the Nusselt number effect need only specify an average 

Nusselt number appropriate to the tube inlet region. The value given by 

equation (106) while large in comparison to the fully developed value of 
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the Graetz solution (3.66), is of comparable magnitude to the values 

given by Kays (14) for the inlet region. 

Theoretical Pressure Drop 

The agreement of the theoretical and experimental pressure drops 

for the short test tube (L/D = 400), as shown in Figure 9, is within 

approximately 5 per cent. Assuming that this agreement should also be 

representative of the longer tube experiments, an attempt is now made to 

fair in the limited experimental results by means of the theory, and to 

predict the dependence of the pressure drop on the variables and para­

meters given in equation (102). 

The dependence of the tube pressure drop on time has been depicted 

according to the theory and experiment for the short tube hot flow in 

Figure 9. It is noted that the trend of the theory, with regard to this 

time dependence, agrees well with the experiment if one discounts the 

experimental results for small times, as was explained earlier, due to 

inadequate control of the experimental system. Consequently, for put— 

poses of presenting and discussing the theoretically predicted pressure 

drops with brevity, only the results at a time corresponding to 5.5 min­

utes of elapsed time (approximately the time for the tube wall to reach 

thermal equilibrium) following the inlet temperature jump will be given. 

The dependence of the theoretical pressure drop on the remaining para­

meters of equation (102) will be presented in the order of the following 

sect i ons. 

Reynolds Number Dependence 

The theoretical results for the pressure drop after 5.5 minutes 
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of hot flow are depicted as a function of Reynolds number in Figure 10 

for the short test tube (L/D = 400). The figure is given in the form 

of the ratio of the hot flow pressure drop to the corresponding cold 

flow pressure drop which was presented in Figure 8. 

It is observed that the higher inlet temperatures exert their 

greatest influence at the higher Reynolds numbers, a trend which is con­

sistent with the larger magnitude of convected heat and longer flow de­

velopment region for high Reynolds number flow. Correspondingly, for 

low Reynolds numbers the development region with its high friction fac­

tors is so short that the pressure drop tends to become less sensitive 

to Reynolds number. 

Inlet Temperature Dependence 

The theoretical pressure drop ratios at 5.5 minutes, given in 

Figure 10, are shown in Figure I I as a function of the gas inlet temp­

erature ratio. These results clearly demonstrate that according to the 

theory the pressure drop is essentially a linear function of the inlet 

temperature ratio for any given mass flow rate in the laminar flow 

range. In view of the complicated dependence of the pressure drop and 

temperature distribution on a wall thermal energy balance, this result 

is somewhat surprising. 

Likewise, due to these complications, the essential character of 

the problem which produces this result is not discernible by simple 

analytical means. This conclusion is evident if one attempts to derive 

a hot flow pressure drop formula comparable to the cold flow formula, 

equation (103). Such a derivation proceeds by recourse to the governing 

equations for quasi-steady Mach number zero flow, equations (41) through 
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(44). Using equations (41) and (44), the momentum equation (42) may be 

expressed as 

Ax(p) = - A (PU
2) - 4 ^ - fA(X/D.) (107) 

and integration from the tube entrance to exit, together with the addi­

tion of the kinetic energy jump at the tube inlet yields the overall 

tube pressure drop 

Ap = q + 2(q -q.) + JE 4qfd(X/D.) (108) 

If the dynamic pressure terms are rearranged in the form q + (q - q ) 

then equation (108) shows that the additional pressure drop for a hot 

flow due to the higher dynamic pressure at the tube inlet is compensated 

for by the loss in kinetic energy as the gas cools in passing to the tube 

exit. Then if the weak dependence of the dynamic pressure on the local 

pressure, as indicated by equation (78) for the local density, is ne­

glected, the dynamic pressure terms in equation (108) are seen to be 

essentially linear functions of temperature. This result follows from 

the equality of the right hand sides of equations (41) and (43) and the 

boundary condition, equation (45), imposed on the mass flow. 

On the other hand, the integral term in equation (108) may be ex­

plicitly defined in terms of equation (74) for the friction factor. 

Utilizing the exit dynamic pressure as a reference, equation (108) then 

is gi ven as 

£2. -= I + \ \ 4 I - | 4 _ (cr + a) d(x 

E/ J! TE Rey (a2 + 2aa)* T 
(109) 



where 

a = 

4 X/D. 

Rey 
(I 10) 

and the Reynolds number depends upon the local temperature by virtue of 

the dependence of the viscosity on temperature. In the case of the cold 

flow, the integral term in equation (109) may be evaluated and inasmuch 

as the dynamic pressure is constant, the cold flow pressure drop is 

given by 

^ - i + 
64 L 
Rey D 

+ 2 Rev 
L 

1 n 

a 

14 VD/ J 
(III) 

For the hot flow, however, the integral must be evaluated numerically 

and its linear character cannot be demonstrated analytically. Likewise, 

slight departures from this essentially linear character, which, may be 

observed in Figure II for the higher Reynolds numbers and temperature 

ratios, cannot be readily attributed to any specific cause analytically. 

Length to Diameter Ratio Dependence 

The dependence of the hot flow pressure drop at 5.5 minutes on 

the tube length to diameter ratio is given in Figure 12. Results of the 

theory for two inlet temperature ratios of 1.0 and 3.0, corresponding to 

a cold flow and a hot flow, are given for the entire range of Reynolds 

number investigated. 

Comparison of the cold flow and hot flow results for a given Rey­

nolds number shows that the increase in the pressure drop due to elevated 

inlet temperature is practically independent of the tube length. Figure 

12 shows, however, that for hot flows in tubes shorter than approximately 
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Figure 12. Effect of L/D on Theoretical Pressure Drop 
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600 diameters at the higher Reynolds numbers a slight downward trend of 

the pressure drop occurs with decreasing L/D, This nonI inearity, as 

mentioned previously, was not attributable analytically to a specific 

cause. However, inasmuch as the nonlinearity is not evident for the 

longer tubes in Figure 12, some physical reasoning applied to the pres­

sure drop equation (109) indicates a probable explanation. First, in 

the integral term of equation (109) the local gas temperatures and fric-

tional effects in the development region should be essentially indepen­

dent of L/D. Thus if the shortest test tube (L/D = 400) is longer than 

the thermodynamic development length required for the gas temperature 

to be cooled to an ambient value, it should follow that longer tube ! ; 

lengths are equivalent to the addition of lengths of cold fully devel­

oped flow at the tube exit. Hence the dependence of the pressure drop 

on L/D for these longer tubes should be linear. Inasmuch as the short 

tube (L/D = 400) is, in fact, longer than the thermodynamic development 

length, the only plausible explanation for the existing nonlinearity in 

the theory is attributable to the choice of the different friction fac­

tor parameters for the various tubes so that the nonlinearity is a 

peculiarity of the inexactness of the theory, 

Comparison of Experimental and Theoretical Pressure Drops 

Based upon a choice of friction factor parameters and Nusselt 

number, theoretical predictions of the dependence of the tube pressure 

drop on Reynolds number, inlet gas temperature ratio, and tube length 

to diameter ratio have been given for the entire ranges of these para­

meters that were experimentally investigated. With this knowledge in 
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mind, a more complete comparison of the theoretical and experimental 

pressure drops is now given. Figure 9 gives such a comparison for the 

short test tube, L/D = 400, and similar comparisons for the longer tubes 

are presented in Figures 13, 14, and 15. It is immediately apparent 

from these latter figures that the comparison between experiment and 

theory is not as good for the longer tubes as was the case for the 

shorter tube. In some cases the theory and experiment agree well while 

in other cases the theory may be either above or below the experiment in 

its predictions. In any case, however, the discrepancy between the two 

is at most only about 10 per cent for the longer tubes as compared to 5 

per cent for the short tube,, 

In view of the good agreement obtained for the short tube, Figure 

9, and the realization that the tube length for the longer tubes should 

not significantly influence the change in the pressure drop from a cold 

to a hot flow, some suspicion may be placed on the experimental results. 

This is emphasized by close examination of Figures 13 through 15. The 

fact that the theory very accurately describes the trend of the experi­

mental results with time may be demonstrated by comparing the experiment 

and theory with reference to the pressure drop at 5.5 minutes. The re­

sults of this comparison for the different test tubes are shown in Fig­

ures 16, 17, 18, and 19 in terms of the ratio of Ap/Ap,_ c . versus 
v r5.5 min. 

time. Considering the magnification utilized in the ordinates of these 

plots it is seen that the maximum discrepancy is only of the order of 

four per cent. Thus the trend of the theoretical predictions is acknow­

ledged to be excellent. 
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The additional 5 per cent discrepancy between the theory and ex­

periment for the longer tubes as compared to the results for the short 

test tube may be accounted for satisfactorily in. terms of several con­

siderations pertinent to the experiments. First, the short tube was 

utilized as a model in the perfection of the experimental setup and the 

final runs for this tube were conducted carefully. In the case of the 

runs for the longer tubes, care was exercised but these experiments were 

completed somewhat more quickly than those for the short tube. As a 

consequence, the long tube results, as given in Table A-2, show gener­

al ly more variation in the Reynolds number and inlet temperature ratio 

during a run than is the case for the short tube. These variations are, 

however, not large and at most should not effect discrepancies of more 

than two per cent judging by the percentage variation of the Reynolds 

number during a run. On the other hand, the presence of this type of 

variation in the experiment makes it difficult to choose the correct 

nominal value for the Reynolds number, in particular, for use in the 

theory. Thus uncertainty in the correct theoretical input to check the 

experimental results may contribute an additional error of several per 

cent depending upon the magnitudes of the variations in the Reynolds 

number and inlet temperature ratio. 

Comparison of Experimental and Theoretical 

Gas and Wall Temperatures 

The theory and experiments pertaining to the short tube, L/D = 

400, are compared in Figures 20-24 and Figures 25-29 corresponding to 

the gas temperatures and wall temperatures, respectively. In each figure 
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results are shown in the form of temperature ratios versus position for 

times corresponding to 0.5, 1.0, 2.5, and 5.5 minutes of elapsed time 

from initiation of the hot flow run. Practically the same results are 

obtained for the temperature distributions of the longer tubes, so these 

results are not illustrated graphically. For reference purposes, how­

ever, all experimental results are given in Appendix A. 

Due to the large number of variables and parameters, as well as 

the assumptions, utilized in the present investigation, it is difficult 

to make a definite and concise criticism of the comparisons of the temp­

erature distributions. Based upon both analytical and experimental ex­

perience with the problem, however, it is generally observed that the 

comparisons are good. 

Specific observations as they pertain to, first, the gas tempe­

ratures and then the wall temperatures, are given as follows. 

Gas Temperatures 

The gas temperature ratio distributions shown in Figures 20-24 

demonstrate general tendencies for the theory to overpredict results 

near the tube inlet for large times and to underpredict results further 

down the tube for small times. In view of the complications of coupling 

with the wall, it is difficult to explain why this happens; however, it 

should be pointed out that the experimental results corresponding to gas 

v 

temperatures at about /D. = 20 sre low in comparison to those obtained 

with the longer tubes. Also it may be noted that for large times the 

results for the first three gas temperatures at /D. = 20, 50, and 150 

lie on either a straight line or a curve with negative curvature, which 

is not to be expected. This result may be attributable to an amplifier 
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nonl inearity, inasmuch as several of the DC amplifiers experienced this 

difficulty, and attempts were made to remedy this situation in the tests 

for the longer tubes. If allowance is made, in the comparison, for this 

inaccuracy, better comparison should be expected near the tube inlet. 

The trend of the gas temperatures along the test tube according 

to both theory and experiment shows that with time the temperatures near 

the tube inlet increase rapidly for small times with a relatively early 

approach to their equilibrium value. The gas temperatures further down 

the tube, on the other hand, change slowly at small times and appear to 

undergo the significant part of their change after the temperatures near 

the tube inlet have already approximately reached equilibrium. 

WalI Temperatures 

The wall temperature distributions, Figures 25-29, illustrate 

that the theory underpredicts all wall temperatures for small times and 

those further down the tube for larger times. Attempts were made to 

analyze these results and alter them by use of a Nusselt number distri­

bution, as discussed previously, with some small improvement in the wall 

temperature distributions near the tube inlet, poorer agreement further 

down the tube, and a sacrifice of gas temperature agreement near the 

inlet. Rather than attempt to improve on these results by what may be 

referred to as computer experimentation, efforts at improvement must in­

volve some accurate physical knowledge of the Nusselt numbers for the 

forced convection and also for the free convection external to the tube 

in the presence of a varying wall temperature. 

In general the wall temperatures show a time and spatial depend­

ence similar to the gas temperatures, evidence suggesting that the role 
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played by longitudinal conduction in the tube wall is secondary to the 

forced convection heating interior to the tube. At the tube inlet, the 

influence of the boundary condition corresponding to an insulated end is 

observed only over a very small length of the tube and it is concluded 

that this influence is for practical purposes insignificant. 

Tube Pressure Distribution 

From the preceding examination of the tube gas and wall tempera­

tures some observations regarding the contributing factors to the tube 

pressure drop and pressure distribution may be made. The contribution 

to the increase in the tube pressure drop, for hot flow, due to the ki­

netic energy jump at the tube inlet has already been examined and was 

found to be directly proportional to the inlet temperature for all prac­

tical purposes. Likewise, it was pointed out that this contribution was 

compensated for by the gas cooling as it passed through the tube. This 

cooling term is given in terms of the gas and wall temperatures and the 

Nusselt number in the equation for the pressure difference, equation 

(42). Inasmuch as the local dynamic pressure varies directly with the 

temperature, the cooling contribution alleviates the pressure differ­

ence, A ( p ) , in proportion to the quantity Nu.(T - T )/Rey. Examination 

x i w 

of the tube gas and wall temperatures, Figures 20 through 29, shows that 

the temperature difference is large only very near the tube inlet and 

consequently the relatively large magnitude of the Nusselt number is 

appropriate to this term, as mentioned previously. Likewise the gas 

temperatures are large near the inlet, so that a significant portion of 

the contribution of the cooling term should come from the inlet region. 
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Further down the tube the temperature difference and the gas temperature 

are smaller and a significant contribution from this portion of the tube 

is accounted for as an accumulation of smaller values. 

In opposition to the cooling contribution, the frictional term in 

equation (42) increases the local pressure gradient throughout the region 

of elevated temperatures. Again, however, the major contribution of the 

friction term to the increase in the tube pressure drop due to hot flow 

comes from the development region where the higher friction factors are 

magnified by the high temperatures. Likewise, further down the tube the 

accumulated contributions due to essentially fully developed flow at 

elevated temperatures are significant. 

The net result of these effects may be observed in Figure 3 0 , 

which presents a sample pressure distribution for various times for the 

short test tube at high Reynolds number and inlet temperature ratio. 

The development length, according to Boussinesq ( 5 ) , is shown in the 

figure and good agreement with the cold flow theory development length 

is evidenced by the slope of the pressure distribution for t = 0. As a 

consequence, it is observed that for small times all of the increase in 

the pressure drop is due to the altered pressure distribution in the de­

velopment region and for large times the major portion (approximately 

5/6) of the increase is also due to development region effects. 

Dependence of Pressure Drop on Wall Thickness Ratio 

Besides the parameters already discussed, the only other para­

meter which may be easily investigated by means of the theory is the 

tube wall thickness to internal diameter ratio. The results of a series 
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of computer runs for the short tube, L/D = 400, with a mass flow rate 

corresponding to Rey = 1200 and inlet temperature ratio of T * = 3.0 

are presented in Figure 31 for thickness ratios from 0.05 to 0.90. These 

values, corresponding to a range from very thin to thick walled tubes, 

bracket the experiments of the present investigation in which t/D. = 0.3. 

As would be expected the very thin walled tubes demonstrate a 

much faster response to an elevated inlet temperature with consequent 

shorter time to approach equilibrium and higher pressure drops due to 

the higher gas temperatures that would result due to the decreased heat 

capacity of the waI I . Just the opposite performance would occur for the 

th i ck waI Ied tubes. 

An interesting observation is made for the very thin walled tubes 

at small times. The results of Figure 31 show very high rates of change 

of the pressure drop and consequently the pressures with time and thus 

indicate that the quasi-steady assumption applied to the gas flow would 

decrease in its validity for thin walled tubes. On the other hand, as 

the wall thickness is increased without limit, the theory is likewise 

invalid due to the assumption of a finite control volume and constant 

wall temperature radially. The theory would predict incorrectly in this 

case no change in wall temperature and no change in pressure drop after 

the initial transients of the flow. 

Inasmuch as no experimental verification of these results were 

sought in the present work, the dependence on the wall thickness ratio 

in the neighborhood of t/D. = 0.3 should be utilized with care. 
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CHAPTER VI I I 

CONCLUSIONS AND RECOMMENDATIONS 

The time dependent flow of air in long slender tubes subjected to 

a step function increase in gas inlet temperature with natural cooling 

of the wall to the surrounding atmosphere has been investigated analyti­

cally and experimentally. The results of this study lead to the follow-

i ng cone I us i ons: 

1. The assumption of an idealized one-dimensional quasi-steady 

Mach number zero flow allows the governing equations for a compressible 

gas to be simplified to a finite difference form which is very amenable 

to calculation and which is of such a magnitude as to be readily handled 

on a large digital computer. 

2. With regard to the theory, the complications of natural cool­

ing of a conducting tube wall to its surroundings pose no essential dif­

ficulty to the formulation of the overall problem. 

3. A comparison of the theory with experiment shows good overall 

accuracy in the ability of the theory to predict tube pressure drop and 

gas and wall temperature distributions for the range of parameters 

i nvest i gated. 

4. Based on the correlation of the experiment and the theory, 

the tube wall, in terms of a thermal energy balance, provides the entire 

mechanism for unsteadiness in the presence of steady boundary conditions 

after an initial transient flow of short duration, subject to the 
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limitation that the wall thickness to diameter ratio or wall iheat capa­

city is not smaI I . 

5. The change in the pressure drop for a hot flow initiated by 

a step function increase in the gas inlet temperature depends on time in 

a manner typical of solutions to parabolic equations and is for all prac­

tical purposes a linear function of the gas inlet temperature ratio for 

the range of parameters investigated in this thesis. 

6. Engineering predictions of pressure drop and gas and wall 

temperature distributions are not demanding of accurate information per­

taining to the Nusselt number distribution but require only good esti­

mates appropriate to the flow development region inasmuch as the major 

portion of the elevated temperature effects derive from this region. 

The difficulties encountered in the present work lead to the 

following recommendations: 

1. Experimental and analytical work dealing with the determi­

nation of the forced convection Nusselt number distribution correspond­

ing to an arbitrary wall temperature distribution in the flow develop­

ment region should be carried out. 

2. Experimental and theoretical results pertaining to free con­

vection heat transfer from long cylinders with arbitrary temperature 

distribution are desired from the standpoint of the proper formulation 

of the boundary conditions for any problem dealing with hot flow in 

tubes subjected to natural cooling. 

3. As a matter of interest the problems dealing with the fast 

unsteady flow in very thin walled tubes and the quasi-steady flow in 

very thick walled tubes should be considered inasmuch as these limit 

cases are not far removed from the present problem. 
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APPENDIX A 

EXPERIMENTAL RESULTS 
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Table A-I. Experimental Cold Flow Pressure Drops and Friction Factors 

L/D = 400 

Exp e r i m e n t C- 1 
a 

Rey 
' a 

Ap, 4 f 

108.25 1 .047 0 .6610 
320 .70 3 .256 0 .2344 
605 .48 6 .077 0 . 1228 
8 9 0 . 4 8 9 .023 0 0844 
203 .45 13.541 0 0695 

Exp e r i m e n t C- 1 
c 

Rey 
' a A P | 4 f 

112.42 1 .061 0 6214 
320 .70 3 .270 0 .2354 
596 .30 5 .932 0 . 1236 
8 8 1 . 3 0 8 .976 0 0857 
249.41 13.592 0.0647 

Rey. 
a 

I 10.34 
320.70 
605.48 
88 I .30 
1249.41 

Exper iment 

Ap 

C-

I 
I ,056 
3.239 
6.060 
9.006 

13.622 

Rey. 
a 

I 12.42 
329.03 
595.45 
889.63 
1239.37 

Exper i ment 

Ap, 

C-l 

I .051 
3.314 
5.949 
8.993 
13.51 I 

4f 

0.6421 
0.2332 
0.1225 
0.0860 
0.0648 

4f 

0.6157 
0.2266 
0.I 243 
0.0843 
0.0653 

L/D = 600 

Experiment C-2. 

Rey 7a 
115.10 
332.38 
600.I 9 
886.67 
1247.46 

AP, 

I .532 
4.41 I 
8.523 
13.046 
19.934 

Rey. 
a 

99.90 
321.52 
598.55 
885.04 
I 236.58 

Experi ment 

AP, 

C-2 

I .479 
4.543 
8.756 
13.384 
19.963 

4f 

0.5790 
0.200 I 
0.I 187 
0.0834 
0.0645 

4f 

0.7421 
0.2202 
0.I 227 
0.0858 
0.0657 

Exf ) e r i m e n t C-
"2b 

Reya AP, 4f 

102.07 1 . 162 0 5585 
323 .69 4 .490 0 .2148 
591 .50 8 .705 0 1248 
887 .21 13.228 0 0844 

1248.00 20 .013 0 0647 

Exf ) e r i m e n t C-
" 2d 

Rey 7a AP, 4 f 

104.24 1 .664 0 7667 
3 2 5 . 8 6 4 . 5 1 6 0 2132 
612 .13 8 .731 0 1 169 
8 8 9 . 3 8 13.254 0 0842 

1240.94 20.039 0.0655 
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Tab Ie A - I . Conti nued 

L/D = 800 

Exp e r i m e n t C-3 
a 

Reya A P | 4 f 

119.41 2 .036 0 5364 
3 3 8 . 4 5 6 .052 0 . 1987 
6 2 1 . 2 4 11.442 0 1117 
9 0 4 . 2 5 17.044 0 0786 

1272.53 24 .575 0 0574 

Exp e r i m e n t C-3 
c 

Reya Ap, 4 f 

106.15 1 .909 0 6364 
3 3 4 . 0 3 6 .030 0 2033 
616.81 11.632 0 1 152 
8 9 9 . 8 2 17.234 0 0803 

1277.53 24 .765 0 0574 

Exp e r i m e n t C-3, 
b 

Reya Ap, 4 f 

108.36 2 .087 0 .6677 
329 .60 6 . 103 0 21 13 
631 .23 11.705 0 1 106 
9 1 4 . 2 4 17.517 0 0791 

1282.53 25.551 0 0587 

Exp e r i m e n t C - 3 , 
d 

Reya Ap, 4 f 

108.36 2 .010 0 6433 
331 .81 6 .027 0 2058 
605 . 18 11.417 0 1 174 
888 .18 17.124 0 0819 

1275.32 25 .409 0 0591 

L/D = 1000 

Exf ) e r i m e n t C-4 
a 

Reya Ap, 4 f 

109.76 2 .367 0 .5839 
3 2 9 . 4 0 7 .334 0 .2012 
603.71 13.993 0 . 1 145 
8 6 9 . 0 9 20 .968 0 0829 

1226.33 3 0 . 0 4 4 0 0598 

E x p e r i m e n t C-4 
c. 

Reya A P , 4 f 

107.57 2 .443 0 6276 
331 .60 7 .516 0 2034 
615 .05 1 4 .280 0 1 126 
9 0 7 . 8 6 21 .679 0 0786 

1246.83 3 1 . 0 0 6 0 0597 

Exp e r i m e n t C-
• \ 

Rey 
' a AP, 4 f 

1 14. 16 2.341 0 .5340 
3 3 3 . 7 9 7 .203 0 1924 
6 1 7 . 2 4 13.967 0 1093 
891 .78 21 .365 0 0803 
249 .03 3 0 . 6 9 3 0 0589 

Exp e r i m e n t C-
• \ 

Reya A P | 4f 

105.37 2.621 0 7017 
3 2 9 . 4 0 7 .483 0 2053 
603.71 14.353 0 1 174 
8 8 7 . 3 8 21 .751 0 0825 

I 244.63 31.331 0.0606 
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Table A-2. Experimental Hot Flow Pressure Drop and Temperatures 

Experiment No. H-I 

L/D = 400 

Nominal Rey = 1222.4 

p = 735.0 mm Hg 
a 

T = 70 °F 
a 

Nominal T, = 612 °F 

Time Ap, 
(mi n) (psi ) _a_ 

T, T 

I 9 

0 25 14.63 1231 6 612 168 135 72 71 216 1 19 78 71 
0 50 14.63 1231 6 - 218 163 74 71 259 162 88 72 
0 .75 14.73 1222 .4 612 247 189 77 72 283 187 97 74 
1 00 14.82 1213 .2 - 263 207 79 72 296 208 108 76 
1 25 15.32 1222 4 612 280 224 83 72 310 230 120 79 
1 75 15.81 1231 6 612 300 246 89 72 327 245 139 83 
2 50 16.00 1222 4 612 312 266 98 73 334 261 160 93 
3 50 16.40 1231 6 612 317 275 107 75 337 263 176 103 
5 50 16.59 1231 .6 612 325 284 1 13 77 341 273 184 1 12 

Experiment No. H-2 

L/D = 400 

Nomi nal Rey = 854.3 

p = 735.0 mm Hq ra 3 

T = 7 0 F a 

Nominal T = 610 F 

Time Ap| 
(mi n) (psi ) 

Rey. 
T, T 

0 25 9 03 854.3 607 149 1 15 72 71 199 106 73 70 
0 50 9 13 854.3 - 192 135 73 70 242 145 79 72 
0 75 9 23 845. 1 607 220 157 74 70 266 168 85 72 
1 .00 9 43 845. 1 - 239 176 76 71 279 185 92 73 
1 25 9 62 854.3 609 254 189 77 70 293 204 99 73 
1 75 9 82 854.3 609 268 209 80 71 306 220 1 13 77 
2 50 9 92 854.3 609 280 222 86 71 310 230 128 81 
3 50 10 12 854.3 61 1 290 237 92 71 324 243 143 86 
5 50 10 31 854.3 615 293 242 98 72 324 239 152 95 
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Table A-2. Continued 

Experiment No. H-3 Pa = 735. 0 mm Hg 

L/D = 400 T = 
a 

71 ° 

Nomi na1 Rey ;a 
= 1207. 3 Nomi nal T =801 °F 

Ti me 
(mi n) 

A P| 

(psi ) 
Rey 

7 3 

Tj T 
9I 

T 
92 

T 
93 

T 
94 

T 
W| 

T T 
w w 
2 3 

T 
W4 

T 

0.25 15.32 1216.4 799 200 151 73 72 267 133 84 73 
0.50 15.22 1216.4 - 272 190 77 72 331 188 95 77 
0.75 15.32 1 198. 1 799 316 225 82 72 336 227 108 79 
1 .00 15.42 1189.0 - 341 251 84 72 386 253 121 81 
1 .25 16.40 1216.4 801 365 279 91 73 403 280 133 84 
1 .75 16.70 1207.3 801 385 306 97 74 423 303 158 92 
2.50 17. 19 1207.3 801 405 329 108 75 430 327 185 102 
3.50 17.58 1207.3 802 409 338 1 17 77 440 327 201 1 14 
5.50 18.07 1216.4 802 414 347 124 79 447 337 214 125 

Experiment No. H-4 

L/D = 400 

Nomi nal Rey = 841 .0 

p = 735.0 mm Hg 

T = 71 °F 
a 

Nominal T, = 832 °F 

Time Ap, 
(mi n) (psi ) la 

T, T 

0.25 9 53 850. 1 827 176 124 73 72 243 117 78 68 
0.50 9 53 84 .0 - 243 155 75 72 307 166 84 72 
0.75 9 62 84 .0 827 281 186 75 72 345 201 92 73 
1 .00 9 72 83 .8 - 31 1 212 80 72 369 233 00 74 
1 .25 10 12 84 .0 829 281 229 69 72 386 253 1 1 76 
1 .75 10 31 84 .0 831 350 256 84 72 403 283 28 79 
2.50 10 61 84 .0 832 375 283 93 72 423 307 48 85 
3.50 10 80 83 .8 832 385 292 100 73 423 313 66 92 
5.50 1 1 10 84 .0 835 400 315 108 74 444 324 82 100 
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Table A-2. Continued 

Experiment No. H-5 

L/D = 400 

Nominal Rey = 1207.3 
'a 

p = 7 3 5 . 0 mm Hg 

T = 71 °F 
a 

Nominal T, = 973 °F 

Time Ap 
, . , , . , Rey 
(mi n) ( p s i ) _a_ 

T i T 

I 9 

0 . 2 5 15 71 1207 3 967 233 173 75 72 3 1 5 150 8 3 72 
0 . 50 15 71 1207 3 - 321 221 80 72 397 217 96 76 
0 75 16 1 1 1 198 1 967 3 7 5 265 82 72 4 4 3 27 1 1 12 79 

1 0 0 16 40 1 189 0 - 405 297 86 72 4 7 3 301 127 82 
1 25 17 3 8 121 6 4 970 434 3 2 9 9 3 73 4 9 3 3 3 2 147 83 
1 75 17 97 1207 3 971 4 5 8 361 102 74 5 1 3 3 6 2 175 91 
2 50 18 46 1207 3 971 4 8 2 3 9 2 1 15 72 5 3 3 3 8 7 209 105 
3 50 19 0 5 1207 3 9 7 3 4 9 2 401 126 77 5 3 8 3 9 2 230 1 15 
5 50 19 54 1207 3 9 7 5 5 0 2 4 1 5 137 80 5 3 3 407 2 4 2 132 

Experiment No. H-6 

L/D = 600 

Nominal Rey = 1218.9 7a 

p = 740.4 mm Hg 

T = 69 °F 
a 

Nominal T, = 604 °F 

Time 
(mi n) 

Ap, 

( p s i ) 
Rey 

' a 
T i 

T 
9 I 

T 
9 2 

T 
9 3 

T 
g 4 

T 
W | 

T T T 
w w w 

2 3 4 
T 

W5 

0 . 2 5 21 . 8 9 1 2 2 8 . 1 6 0 3 174 127 73 70 2 0 8 124 75 72 
0 . 5 0 21 . 8 9 1 2 2 8 . 1 - 227 158 78 70 257 167 85 74 
0 . 7 5 2 2 . 10 1 2 2 8 . 1 6 0 3 2 5 5 184 8 2 70 2 8 3 201 9 3 74 
1 . 0 0 2 2 . 2 0 1 2 1 8 . 9 - 280 206 87 70 3 0 3 2 2 5 104 77 
1 . 2 5 2 2 . 4 1 1 2 1 8 . 9 6 0 2 294 2 2 3 93 70 319 240 1 14 78 
1 . 7 5 2 2 . 8 2 1 2 1 8 . 9 6 0 2 309 241 102 70 3 2 4 255 129 8 3 
2 . 5 0 2 3 . 0 3 1 2 1 8 . 9 6 0 4 3 2 4 259 1 15 71 3 3 9 269 148 91 
3 . 5 0 2 3 . 13 1 2 0 9 . 6 6 0 2 3 2 9 2 7 2 126 71 3 4 4 279 160 98 
5 . 5 0 2 3 . 6 4 1 2 1 8 . 9 604 3 3 4 277 137 71 349 289 173 109 
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Tab le A - 2 . C o n t i n u e d 

Experiment No . H-7 Pa = 
740. 4 mm Hg 

L/D = 600 T = 
a 

69 C F 

Nomina1 Rey 
'a 

= 858.7 Nomi nal T ! = 642 °F 

Ti me 
(mi n) 

AP| 
(psi ) 

Rey 7a 
T! 

T 
9I 

T 
92 

T 
93 

T 
9 4 

T 
W| 

T 
w 
2 

T 
w 3 

T 
W4 

T 
W5 

0.25 13.98 858.7 638 156 109 73 70 198 109 83 73 71 
0.50 13.98 858.7 - 203 136 76 70 242 148 99 79 74 
0.75 14.08 858.7 638 231 158 78 70 268 177 1 16 83 71 
1 .00 14.08 858.7 - 250 171 82 70 288 201 132 91 75 
1 .25 14.29 858.7 638 265 188 85 70 303 215 148 99 75 
1 .75 14.39 858.7 638 285 210 91 70 319 240 168 1 10 78 
2.50 14.80 858.7 641 294 223 98 70 324 249 188 124 83 
3.50 14.80 849.5 642 304 237 107 70 339 264 204 135 88 
5.50 15.11 858.7 647 319 245 1 17 71 344 269 207 145 92 

Experiment No. H-8 

L/D = 600 

Nomi nal Rey = I 171 .I 
'a 

p = 740.4 mm Hg 

T = 71 °F 
a 

Nominal T, = 795 °F 

Time Ap, 
(mi n) ( psi ) _a_ 

T, T 

0 .25 21 59 
0 .50 21 59 
0 75 21 90 
1 .00 22 00 
1 .25 23 13 
1 75 23 44 
2 50 23 95 
3 50 24 67 
5 50 24 77 

71 
71 
71 
71 
71 
71 
71 

171.I 796 439 342 158 73 461 364 286 202 120 

790 223 146 75 72 267 143 99 79 72 
- 286 190 80 72 328 204 132 90 76 
790 331 221 86 72 369 250 163 103 77 
- 360 251 90 72 393 286 188 1 15 80 
791 380 274 100 72 410 303 21 1 128 82 
792 405 306 1 13 72 430 330 246 152 88 
793 424 324 128 72 444 350 268 176 96 
795 434 338 141 72 457 367 282 193 104 
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Experiment No. H-9 

L/D = 600 

Nomi nal Rey =818.9 

p = 740.4 mm Hg 

T = 72 °F 
a 

Nominal T, = 7 9 9 °F 

Time Api 
(mi n) ( ps i ) _a_ 

T, T 

0.25 13.77 818.9 795 191 121 74 72 237 131 90 79 74 
0.50 13.77 818.9 - 248 151 78 72 298 179 1 1 1 84 75 
0.75 13.88 809.8 795 287 178 81 72 329 218 135 91 76 
1 .00 13.98 809.8 - 317 200 83 72 349 244 154 100 77 
1 .25 14.39 818.9 796 337 221 87 72 370 264 176 1 1 1 79 
1 .75 14.60 809.8 796 356 248 96 73 394 287 201 123 82 
2.50 14.91 809.8 799 376 270 105 73 407 31 1 226 142 86 
3.50 15.1 1 809.8 801 391 288 1 16 73 418 328 244 157 92 
5.50 15.32 818.9 806 396 297 129 73 431 338 255 172 100 

Experiment No. H-I 0 

L/D = 600 

Nomi nal Rey = I 168.8 7a 

p = 7 4 0 . 4 mm Hg 

T - 73 °F 
a 

Nominal T = 955 °F 

Time Ap| 
(mi n) ( p s i ) 

Rey. 
T, T 

0.25 22.92 168.8 947 259 
0.50 22.92 168.8 - 343 
0.75 23.23 159.7 947 392 
1 .00 23.64 150.6 - 427 
1 .25 24. 16 186.9 951 456 
1 .75 25.29 168.7 950 480 
2.50 26.01 168.7 951 499 
3.50 26.83 177.8 955 514 
5.50 26.52 168.7 959 518 

80 74 317 176 1 10 83 75 
86 74 394 253 149 95 76 
91 74 445 309 192 1 12 79 
100 74 475 354 224 129 82 
1 1 1 74 500 379 250 143 84 
124 74 515 414 291 172 93 
143 74 525 434 321 202 104 
162 75 550 454 348 227 1 19 
180 76 555 459 348 238 134 
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Tab le A - 2 . C o n t i n u e d 

E x p e r i m e n t No. H-1 

L/D = 800 

Nominal Rev = 1229.4 
' a 

p = 737.4 mm Hg 

T = 6 9 F 
a 

Nominal T, = 597 °F 

Time 
(mi n) 

Ap, 
(psi ) 

Rev 
a 

Ti T 
gl 

T 
92 

T 
93 

T 
94 

T 
W| 

T 
w 
2 

T 
w3 

T 
W 4 

T 
W 5 

0.25 25. 10 1229.4 590 189 1 18 77 70 198 1 1 1 85 75 71 
0.50 25. 10 1229.4 - 231 149 81 70 238 146 105 82 72 
0.75 25.36 1210.6 590 260 171 85 70 265 173 124 90 73 
1 .00 25. 10 1 191 .8 - 280 193 90 70 282 192 144 99 75 
1 .25 26. 1 1 1229.4 593 299 212 96 70 295 207 159 109 76 
1 .75 26.61 1229.4 594 316 237 106 70 309 225 181 126 80 
2.50 26.86 1229.4 596 331 254 1 19 70 323 237 200 146 87 
3.50 27.36 1229.4 597 339 263 131 70 329 246 210 159 95 
5.50 27.61 1229.4 597 346 275 142 70 336 254 219 168 103 

Experiment No. H-I 2 

L/D = 800 

Nomi nal Rey = 8 5 8 . 7 

p = 7 3 7 . 4 mm Hg 
a 3 

T = 70 °F 
a 

Nominal T, = 624 °F 

Time Api 
t • ^ i • \ R e Y (mi n) (ps i ) _a_ 

T, T 

0 25 17 76 858.7 608 166 104 74 71 173 100 78 75 71 
0 50 17 76 858.7 - 204 126 77 71 209 131 90 79 71 
0 75 17 65 840.0 608 230 145 80 71 225 154 108 84 72 
1 00 17 65 849.4 - 247 161 82 71 239 170 121 90 72 
1 25 18 60 868.0 615 263 178 85 71 255 185 135 97 73 
1 75 18 50 868.0 617 283 198 92 71 259 197 155 108 75 
2 50 18 81 868.0 620 303 220 101 71 289 224 176 125 79 
3 50 19 02 868.0 624 310 233 1 10 71 293 230 191 137 84 
5 50 19 34 858.7 629 322 244 121 71 303 239 201 147 90 
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Table A-2 . Conti nued 

Experiment No. H-1 3 Pa = 737. 4 mm Hg 

L/D = 800 T = 
a 

70 ° F 

Nominal Rey = 1232. 7 Nominal T i = 8 16 °F 

Time 

(mi n) 

Ap, 

(psi ) 
Rey 7a 

Tj T 
9I 

T 
92 

T 
93 

T 
94 

T 
W| 

T 
w 2 

T 
w3 

T 
W4 

T 
W5 

0.25 26.36 1232.7 793 237 137 79 70 245 132 96 80 76 
0.50 26.36 1232.7 - 300 180 85 70 300 181 123 88 77 

0.75 26.86 1223.4 793 340 215 90 70 334 223 153 100 80 

1 .00 26.86 1195.3 - 369 242 96 70 354 252 180 1 13 82 
1 .25 27.61 1223.4 800 394 268 105 71 368 276 205 125 85 
1 .75 28.37 1232.7 805 418 300 1 18 70 389 302 236 150 89 

2.50 28.87 1232.7 81 1 443 332 136 71 405 329 263 178 98 

3.50 29.12 1232.7 816 457 350 153 71 416 336 273 196 107 

5.50 29.87 1242.0 826 472 364 170 71 429 349 291 207 123 

Experiment No . H-14 pa = 737. 4 mm Hg 

L/D = 800 T = 
a 

71 ° F 

Nominal Rey = 873.1 Nomi na1 T ! = 815 °F 

Ti me 
(mi n) 

Ap, 

(psi ) 
Rey^ 

a 
T! 

T 
9I 

T 
92 

T 
93 

T 

g 4 

T 
Wl 

T 
W2 

T 
W3 

T 
W4 

T 
W5 

0.25 18.39 873. 1 807 214 1 16 75 72 233 1 17 87 75 72 
0.50 18.39 873. 1 - 272 146 77 72 287 166 107 82 72 
0.75 18.50 873. 1 807 31 1 173 80 72 31 1 198 126 89 73 

1 .00 18.60 863.8 - 336 199 84 72 335 221 146 96 74 

1 .25 19.02 873. 1 808 355 221 89 72 345 243 167 107 76 

1 .75 19.24 873. 1 808 385 251 97 72 366 270 194 124 79 

2.50 19.55 854.5 81 1 400 274 108 72 379 286 217 144 82 

3.50 20.08 873. 1 815 414 292 121 72 396 303 235 161 88 

5.50 20.40 873. 1 820 434 310 137 72 406 317 243 173 99 
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Table A-2. Continued 

Experiment No . H-15 Pa = 733. 1 mm Hg 

L/D = 1000 T = 
a 

70 ° F 

Nominal Rey : 

a 
= 1192. 5 Nominal T = 603 °F 

Ti me 
(mi n) 

Ap, 
(psi ) 

Rey 
a 

Ti T 
9I 

T 
92 

T 
93 

T 
94 

T 
W| 

T 
w 
2 

T 
w3 

T 
W4 

T 
W5 

0.25 31 .01 183.4 601 218 1 13 86 70 202 123 90 77 72 
0.50 31 .01 183.4 - 256 141 94 70 252 170 1 12 85 73 
0.75 31 .01 183.4 601 283 167 100 71 279 202 133 93 75 
1 .00 31 .01 174.3 - 298 187 107 70 303 228 153 102 77 
1 .25 32.02 20 1 .6 603 315 207 1 16 71 317 245 170 1 12 79 
1 .75 32.02 192.5 602 340 228 127 71 330 267 193 129 85 
2.50 32.52 192.5 602 349 246 139 71 337 281 208 146 91 
3.50 32.77 192.5 603 359 257 153 71 251 293 224 159 100 
5.50 33.28 192.5 605 367 266 153 71 358 301 232 169 1 1 1 

Experiment No. H-I 6 

L/D = 1000 

p = 733.I mm Hg 

T = 71 °F 
a 

Nomi nal Rey = 860.I 7 a Nomi nal T =612 F 

Time Ap, 
(mi n) (psi ) _a 

T, T 

I 9 92 93 9/i w 34 W4 W5 

0 .25 22 51 851 . 603 193 98 78 71 184 1 10 81 74 72 
0 50 22 51 851 . - 231 1 18 80 71 226 149 97 80 72 
0 .75 22 62 851 . 603 255 138 81 71 256 176 1 14 86 73 
1 00 22 72 351 . - 272 157 84 71 270 196 126 91 74 
1 .25 22 83 860. 604 286 173 86 71 287 213 142 99 74 
1 .75 22 93 860. 605 303 192 90 71 304 232 161 1 10 77 
2 .50 23 15 860. 607 316 207 96 71 314 250 179 124 88 
3 .50 23 57 851 . 612 323 218 100 71 324 258 188 134 94 
5 .50 23 99 860. 616 333 229 109 71 331 268 198 144 92 
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Table A-2. Continued 

Experiment No. H-I 7 

L/D = 1000 

Nominal Rey = I 198.9 7 a 

p = 733.1 mm Hq 
'a a 

T = 72 °F 
a 
Nominal T =811 °F 

Ti me 
(mi n) 

Api 
(psi ) 

Rey 
a 

T! 
T 
9I 

T 
9 2 

T 
93 

T 
94 

T 
W| 

T 
w2 

T w3 
T 
W4 

T 
w 
5 

0.25 33.53 1 198.9 807 282 130 89 72 260 150 102 84 74 
0.50 33.53 1 198.9 - 346 173 103 72 335 218 137 95 77 
0.75 33.78 1 189.9 807 386 213 1 1 1 72 370 267 168 108 79 
1 .00 34.03 1 180.9 - 410 244 122 72 401 304 195 123 82 
1 .25 34.79 1 180.9 807 - - - - - - - - -
1 .75 35.54 1 189.9 807 454 302 150 72 431 358 253 165 92 
2.50 36.05 1 198.9 809 474 329 172 72 458 382 283 188 103 
3.50 36.55 1 198.9 81 1 483 343 183 72 465 392 297 208 1 14 
5.50 37.31 1 198.9 812 493 352 202 72 475 415 295 219 130 

Experiment No . H-18 Pa = 733. 1 mm Hg 

L/D = 1000 Ta = 72 ° F 

Nominal Rey 
'a 

= 819.9 Norn i na 1 T , = 814 °F 

Ti me 
(m i n) 

Ap| 
(psi ) 

Rey 
a 

T i T 
9I 

T 
92 

T 
93 

T 
94 

T 
W| 

T 
w 
2 

T 
w3 

T 
W 4 

T 
W5 

0.25 23.04 819.9 809 239 1 12 83 72 244 131 92 73 73 
0.50 23.04 819.9 - 297 147 87 72 312 192 1 15 79 73 
0.75 23.36 819.9 809 332 160 94 72 343 231 139 86 73 
1 .00 23.46 810.9 - 361 204 100 72 370 261 162 93 75 
1 .25 23.99 819.9 809 381 226 105 72 387 287 185 101 76 
1 .75 24.20 819.9 810 401 257 1 16 72 401 31 1 210 1 13 80 
2.50 24.63 828.9 812 420 279 131 72 424 335 236 135 84 
3.50 24.73 828.9 814 430 297 146 72 438 351 255 149 93 
5.50 25. 15 819.9 817 444 31 1 161 72 445 362 263 160 104 
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Table A-2. Continued 

Experiment No. H-I 9 

L/D = 1000 

Nominal Rey = I 189.9 
a 

p = 733.I mm Hq 
a a 

T = 72 °F 
a 

Nominal T, = 956 °F 

Ti me 
(mi n) 

Ap, 
(psi ) 

Rey 
'a 

Ti T 
9I 

T 
92 

T 
93 

T 
g 4 

T 
w, 

T 
w 
2 

T 
w3 

T 
w 
4 

T 
W5 

0.25 34.79 1 189.9 946 337 147 98 72 301 165 108 82 72 
0.50 34.79 1 189.9 - 415 200 109 72 393 252 148 95 75 
0.75 35.04 1 180.9 946 459 248 122 72 439 312 190 1 13 78 
1 .00 36.05 1 189.9 - 493 284 135 72 469 353 226 130 81 
1 .25 36.30 1 189.9 946 517 31 1 146 72 494 383 256 147 86 
1 .75 37.06 1 189.9 948 541 348 165 72 514 418 293 174 93 
2.50 37.56 1 189.9 951 560 379 187 72 534 443 323 204 104 
3.50 38,32 1 198.9 956 574 398 206 72 . 549 453 344 225 1 16 
5.50 39.08 1 189.9 956 584 416 230 72 563 473 357 247 137 
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APPENDIX B 

EXPERIMENTAL REYNOLDS NUMBERS AND FRICTION FACTORS 

For the tube flow experiments, the Reynolds number based on am­

bient conditions is defined as 

GD. 
Rey = 

a (JL. 
(B.I) 

The friction factor for the calibrated Poiseuille tube is given for 

fully developed flow as 

4f = 
6 4 ^ 2p3 Ap2 

P GP°P Gp
2(L/D)p 

(B.2) 

where G and Ap denote the mass flux and pressure drop, respectively, 

of the Poiseuille tube. Equating the total mass flow rates through both 

tubes gives 

G D ' 
r - p p 

(B.3) 

and substituting for G from equation (B.2) gives the mass flux in the 

test tube as 

G = 
P3Ap2 

r D 2 D 
_E E. 
D 2 32(L/D)p 

L. j 

(B.4) 
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Then from equation (B.I) and (B.4) the Reynolds number for the flow in 

the test tube is given as 

P3
 A p2 

Rey = K 0 (B.5) 
7 a 2 

wi th 

D 4 

32D.L 
i P 

The Poiseuille tube used in these experiments had a length of 100.00 

inches and an internal diameter of 0.198 inches, which together with the 

test tube diameter, given in Table I, yields 

K = 2.85077 x 10 8 ft2 (B.6) 

Finally, the viscosity coefficient is found from the linear formula 

u, = (340.0 + 0.57 T ) 10 9 (B.7) 
a a 

The friction factor is defined in terms of the mass flux in the 

test tube as 

2P| AP| 
4f = — ^ L (B.8) 

GZ L/D 

which is readily found from the measured test tube pressure drops and 

equati on (B.4). 

In all of the tube flow experiments of the present work the flow 

in the Poiseuille tube is cold, that is, the temperature corresponds to 
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ambient or room temperature. Consequently the density p is for all 

practical purposes the same as the ambient density p . Likewise, for 
a 

cold flow in the test tube, the density p. is the same as p . Thus 

equations (B.5) and (B.8) for the Reynolds number based on ambient temp­

erature and the cold flow friction factor may be utilized in the present 

work in the following forms: 

P Ap 
Rey = K — — ^ (B.9) 

a z 
a 

2pR Ap 
4f = 7 (B.10) 

G L/D 
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APPENDIX C 

INTEGRAL TUBE FLOW GOVERNING EQUATIONS 

The governing equations for the flow of a viscous, heat conduct­

ing, compressible fluid through a tube are the statements of conserva­

tion of mass, momentum, and energy together with an equation of state. 

Inasmuch as these statements may be found in the literature in a variety 

of different forms, often subjected to some restrictions, it is consid­

ered appropriate to present here a brief development of the equations 

from first principles to a general form appropriate to the present 

probI em. 

Inteqral Equations 

The general formulation of the conservation laws may be refer­

enced to a stationary control volume V with enclosing surface A. An 

element of area of A is given by n.dA where n., the unit normal to A, is 

taken positive outward. The surface force acting on this area element 

is P.dA with P., the stress vector, conventionally defined by 

P. = (-P 6 i k + T j k ) n k (C.I) 

The heat flux through the area element is likewise given as q.n.dA where 

q. represents the heat flux vector. 

The conservation laws as referenced to the control volume may 

then be stated in terms of integral equations (26) as follows by uti­

lizing the definition (C.I): 
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I t£ d v + I P u .n . dA = 0 (C.2) 

iv
 dt

 JA
 J J 

ft r ' 
I T (P u . J d V + 

V ' , ^ A ' J J JV 

TT (P u.JdV + / p u .u .n . dA = p f. dV (C.3) 
St K i J A " J J Jv i 

p n. dA + / T . , n. dA 
JA ' JA , k k 

^7 [p (e+7: u. u. )]dV + / p (e+Jr u. u. )u .n .dA (C.4) 
dt 2 k k J r 2 k k j j 

/ p f . u . d V - / p u. n. dA 
-V k k

 - 'A
 k k 

+ T . . u . n . dA - q .n .dA 
J A J k J k -;

A J J 

The energy equation (C.4) is commonly referred to as the total 

energy equation as opposed to the thermal energy equation which is more 

suitable for problems, like the present one, involving heat transfer. 

The thermal energy equation is formulated in a conventional way by ob­

taining the mechanical energy equation from the momentum equation (C.3) 

and subtracting this result from the total energy equation (C.4). First 

it is convenient to rewrite equations (C.3) and (C.4) after transforming 

the surface integrals into their corresponding volume integrals with the 

aid of the divergence theorem to yield 

f a r ,: 
/ TT (P u.)dV + l ~~ (p u.u.)dV = i p f.dV (C.5) 
.<' v O T I „-v O X j I J .. y I 
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v a? [p (e+ I Vk ) ] d V +JV ̂ ] [p (e+2 Vk' u j ] d V (C.6) 

' p f k v v - J v a ^ ( p v d v 

(T ., u .)dV 
V >̂<k jk j 

f!li 
v S xJ 

dV 

The mechanical energy equation is then obtained from the momentum equa­

tion (C.5) by dotting it with the velocity vector u. which gives 

I u . u . \ 

St dV + / r~- jp - J — L
 u :*dV = ? p u . f .dV 

A, & x j r J / 7,, i i 

>v d x i 

V w J 

(p u.)dV + / p 

V 

du 

V d x i 
dV 

+ / -^~ (u . T . , )dV - / 
du. 

V i k d x k 
dV 

(C .7 ) 

and finally the mechanical energy equation (C.7) is subtracted from the 

total energy equation (C.6) to leave 

/ ^ 7 (pe)dV + / •—- (peu .)dV 

du . 
dV - r^ 

v d x j 
dV 

This equation, termed the thermal energy equation, may be expressed in 

a more convenient form by utilizing the divergence theorem again to 

transform the last integral on each side of the equation back into its 

corresponding area integral. This gives 
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/ 
ST (pe)dV + / pe u .n .dA (C.8) 

v at JA j j 

du . r 

- - / P ̂ — dV ~ I q -n -1 

The continuity, momentum, and thermal energy equations (C.2), 

(C.3), and (C.8), respectively, together with the equation of state con­

stitute the general governing laws as applied to the tube flow problem 

by specification of a control volume, use of appropriate nomenclature 

for the tube flow, and incorporation of the assumption of an essentially 

boundary-Iayer-I ike flow. 

Tube Flow Integral Equations 

The method of approximate treatment of viscous flow problems as 

applied to tube flow requires the governing laws for conservation of 

mass, momentum, and energy to be satisfied with reference to the simple 

cylindrical tube control volume shown in Figure C-I. The volume so 

chosen is enclosed by two cross-sectional area elements A. normal to the 

tube axis and the differential area element dA? comprising a length dx 

of the tube inner wall. This choice of control volume is obviously con­

sistent with physical reasoning aimed at maximum simplification of the 

governing equations utilizing the approximately parallel character of 

the tube flow. 

The boundary-layer-I ike character of the flow is essentially an 

approximation which is incorporated, as in the derivation of the Prandtl 

boundary layer equations, to delete the longitudinal transport of momen­

tum and energy by the diffusion processes associated with viscosity and 
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Tube Wall Control Volume 

Tube Fluid Control Volume 

T 
(e'u'T'lx<=p> 

<t 
r A 

7 C=>(P,u,T)|x+dx 

->- x 

dA2 

U - dx 

A 

D. D 
i o 

TTD 

A, = Ai ^ = ~ r 
I'x I'x+dx 4 

dA0 = nD.dx 2 t 

£ q, 

Long i tudi naI 

Convection O ^y_A 

pA 

Natural Convection + Radiation 

— > qw 

p*Si — pA 

"b h 

Longi tud i na I i 
Convection 

x+dx 

— > ~ x 

x+dx 

q,,d A
2 

T dA0 w 2 

-t> "̂ v $ 

V 

Figure C-I. Tube Control Volume 



140 

thermal conductivity. This characteristic of the flow together with the 

neglect of body forces allows one to simplify the general integral equa­

tions ( C 2 ) , ( C 3 ) , and (C.8) by considering that only the forces and 

heat fluxes shown in Figure O I are significant. Under these assump­

tions the transverse momentum equations are of higher order, the radial 

variation of pressure is negligible, and the governing equations reduce 

to 

!>*"' L p u dA. = 0 (C.9) 

/ ~ (pu)dV + / p u 2 dA = / p dA ( C I O ) 
'A, A, A, A 

J. w dA 
A2 

/ ^7 (pe)dV + / peu dA. ( C M ) 
V d t ^A,A, ' 

= -[>t^-f 
A
 w 2 

A 2 

These equations constitute a one-dimensional representation of 

unsteady tube flow inasmuch as the integrals may be regarded as the de­

pendent variables and are functions of the independent variables x and t 

alone. The dependence of the cross-section area integrals on x may be 

demonstrated by expansions in Taylor's series and the resulting equa­

tions, after neglecting higher order terms, are the corresponding 
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differential equations governing the integraI-variabIes. These equa­

tions are examined individually in the following sections. 

Conservation of Mass 

The conservation of mass principle, equation (C.9), applied to 

the tube control volume of Figure C-I may be expanded to yield 

, ^ fR , ^ ^ 3 
2 n 3? p r d r d x + 3^ 

J o 

' rR 

2TT p u r d r 
J o 

dx = 0 ( C . I 2 ) 

Interpretation of the integral quantities in equation (C.I2) as 

the dependent variables is consistent with the definition of their equi­

valent cross-section average values given by 

R 
p u A . = 2 T T | p u r d r ( C . I 3 ) 

and 

R 
p A, = 2TT[ p r d r 

o 
(C .14 ) 

so that equation (C.I2) may be expressed as 

nD L_ ££. nD d — 
4 9t 4 dx 

^7 Pu = 0 (C.15) 

Conservation of Momentum 

The principle of conservation of longitudinal momentum, given by 

equation (CIO), when expanded in terms of the momentum fluxes, the 

longitudinal pressure gradient, and the wall shear stress corresponding 



142 

to the tube control volume becomes, after neglecting higher order terms, 

o a fR H A ° 2TT dTI p u r d r d x + dx" 
J o 

•R 

J o 

' fK 2 

2TT pu rdr Idx (C. 16) 

* \ ^ i t OP , 
•" T^ d x 7 
I dx 4 

2 

T TT D. dx 
w 

The cross-section average momentum flux defined as 

R 
2 I ,v 2 

pu A. = 2TT pu rdr (C.17) 

together with equation (C.I3), then allows equation (C.I6) to be ex­

pressed as 

2 2 2 
nD, ^ TTD. -, — - TTD, -, 

7~ TT PU + — T~ PU + — ^f- + TT D, T = 0 
4 St 4 dx r 4 ox I w 

(C.18) 

Conservation of Energy 

The energy conservation principle, equation ( C M ) , for the tube 

control volume, following the expansion procedure for the previous equa­

tions, similarly yields 

a r R d 
2TT T T ' per d r dx + T -

o t i r ox 
- o 

2TT I peur dr 
Jo 

dx (C 19) 

-R 
du 

= - 2TT p — r d r d x - q T T D . dx 
dx ^w I 

o r 
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2 2 2 
TTD. ^ TTD. . TTD, - , -

I d — I d I du T~ sT pe + — T a7 peu + ~T p a X 
(C .20 ) 

+ TT D . q = 0 
I Mw 

with app rop r i a te averages def ined by 

- fR 

pe A. = 2TT per dr ( C . 2 I ) 
o 

•R 

peu A. = 2rr I peur dr (C .22 ) 

rR 
u A. = 2TT I u r d r (C .23 ) 

Governing Equations 

The governing equations (C.I5), (C.18), and (C.20) provide a 

description of tube flow in terms of the one-dimensional variables u, 

p, pu, pu , pe, peu, p, T , and q which in general are dependent on 

longitudinal position and time. From the one-dimensional viewpoint, 

the equation of state is also averaged over the cross-section, thus in­

troducing the additional variable pT. For reference purposes these 

equations are collected together and given as follows after division by 

the cross-sectional area A,: 

| £ + -r Pu = 0 (C.24) 
dt dx 

d '— d 2 dp 4 
— pu + r- pu + T ^ + 7T"T = 0 (C.25) 
dt dx v dx Di w 
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a — a du 4 
— pe + — peu + p r~ + 7— q 
d t dx ox D, ^w = 0 (C.26) 

p = pT R (C.27) 
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