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SUMMARY

A numerical simuletion of atmospheric turbuwlent diffusion is
presented in which marked fluid points and peoint pairs are followed as
they undergo three dimensiocnal random walks in a background field of
space=time correlated turbulent accelerations. A hybrid Bulerian-
Legrangian technique is employed in which fluid aceelerations at each
time gstep are evaluated at the position of the fluid point using an
Eulerian analysis; the fiuid point trajectory and position coordinstes
for the subsequent time interval are then evaluasted in Tagrangian
coordinates. Included in the fluid point equations of motion are the
effects of a linear mean wind shear and potential temperature gradient
and a Stokes type viscous damping. The correlated raendom accelerations
are taken to represent the turbulent pressure force terms of these
equations of motion and are determined from a stationary, homogeneous,
isotropic Eulerian space-time correlation function with Gaussian time
and longitudinal spatial correlations. The distribution function of
the random accelerations is teken to be Gaussian. Cross correlations
between different acceleration components at the same time are neglected.

Various statistical characteristics of the resulting particle
dispersion are presented and compared with corresponding characteristics
of turbulent diffusion as proposed by previocus researchers.

Observed results indicate that the technique successfully
similates stably-stratified shear=dependent atmospheric turbulent

diffusion and should prove to be a useful tool for studying the dispersal
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of pollutants in the earth's atmosphere as well as the general problem
of the relation between Lagrangian and Eulerian statistics.

Evidence is presented regarding the effects of vertical gradients
of the horizontal mean winds, temperature stratification, initial
separation (for the point pair studies) and the space and time scale of
the acceleration correlstions upon the characteristics of the modeled
diffusion., Several major conclusions are drawn.

1. DBoth the short and the long time behavior of the fluid
point displacements in a neutrally stratified atmosphere with uniform
mean winds were successfully modeled. The turbulent velocity components
vwere observed to have a Lagrangian time correlation scale somewhat
greater than the Eulerian time correlation scale of the acceleration
field and to be stationary for asppropriate choices for the viscous
damping parameter and the mean square initial velocity component magni-
tude. The influence of the initial conditions 4id no% appear to extend
as far in time for the relative dispersal of two fluid points as for
the single fluid point. This effect is due to the influence of the
initial correlation between the two fluid peoints. An intermediate
time transition period was evident in thesge gtudies which appeared to
be the result of the combination of the influences of Lagrengian
acceleration correlations (tending to result in mean-square particle
separations varying as the fourth power of the time) and a Richardson-
type diffusion (tending to result in mean-square separations varying as

the cube of the time),
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2., Mean wind shears tended to increase the diffusion in the
direction controlled by shear such that the mean square particle
displacements in that direction varied as the cube of the time for
times after release longer than the correlation time scale.

3. Stable temperature stratifications resulted in decreased
diffusion in the wvertical. Sufficiently stable stratifications were
observed to completely inhibit the wvertical diffusion and led to a
"leveling off" of the vertical mean square particle displacements at
values which decreased with further increases in stability. This
buoyancy=induced effect was also evident in the vertical component of
the mesn square turbulent velocity and appeared to result in decreased
diffusion in the direction dominated by shear and increased cross shear
diffusion. Sufficiently stable temperature stratifications appeared to
reduce the t3 dependence of these components back toward the eddy
diffusion otherwise expected.

L. The inhibited vertical dispersion due to stable stratifica-
tion and the enhanced horizontal dispersion due to mean wind shears
thus both contribute to a highly anisotropic diffusion, despite the

model assumption of an isotropic turbulent pressure acceleration field.



CHAPTER I

INTRODUCTION

Degeription of Turbulent Diffusion

- Turbulent fluid flows are characterized generally by unsteady,
dissipative, rotational motions, which may be considered as a super=
position of eddies of widely wvarying scales. The turbulent wvelocity
field exhibits random yet continucus variations which have derivatives
in both space and time and correlations over length and time scales
comparable with the characteristic lengths and times of the flow. This
wide continuous variation of scale, or spectrum, of turbulent motions
gives rise to a diffusion of mixing process which appears to be the
result of a continuum phencmenon, in contrast to the Brownian motion
underlying molecular diffusion, and which is much more vigorous and
effective than molecular diffusion.

Now, a complete solution of the full non-linear eguations of
motion for turbulent flow has never been obtained; and the turbulent
velocity and pressure fields of no laboratory experiment have ever been
deseribed in detail, For these reasons and because for most purposes
one does not require detailed information of the flow, one relies on
statistical methods of desecription., Thus, sny discussion of turbulence
would involve statistical averages of pertinent £luid flow parameters.
To be most meaningful, these sghould be ensemble averages, teken over a

nutber of realizations of the flow field with identical macrozcopic



conditions.

There are various ways of categorizing turbulent flows. One
system 1s based on the way the turbulence is generated. Turbulence can
be generated in shear layers, either along solid boundaries or between
layers of fluid with different velocitles. These would be called, re-
spectively, wall, shear turbulence and free, shear turbulence. Turbu-
lence may also be generated through unstable fluid stratification,
called instability turbulence, and through the flow of a stream through
a grid of bars, called grid turbulence. Only shear-induced turbulence
can sustain itself.

Another meaningful method of categorizing turbulence is through
the statistical properties of the turbulent velocity field. Turbulent
flow fields in which the statistical properties are independent of the
particular position in the field are called homogeneous. If the
statistical field properties are independent of direction, the turbulence
is isotropic. If the mean velocity field has a gradient, a mean shear
stress is produced and the turbulence cannot be strictly isotropici but,
if the mean shear is constant, the turbulence may be homogeneous. If
the statistical properties are Iindependent of time, the turbulence is
stationary.

Turbulence occurring in the atmosphere is generally non-
stationary, nonhomogenecus, nonisotropic, free, shear turbulence.

The statistical properties of the turbulent mixing which resuits
from a particular field of turbulence should depend on the statistical

properties of the turbulence and may alsc depend on certain properties



of the mean flow, for example, gradients in the mean velocity; in this
case in particular mean wind shears could stretch parcels of fluid and
contribute significantly to the dispersion. This double action is a
commonly observed characteristic of turbulent dispersion and has been
noticed sinece Reynolds original dbsérvations of turbulent pipe flow.
In the atmosphere other phenomena, such as the density stratification,
may also significantly alter the observed turbulent diffusion. Since
these phenomena generally have a preferred direction associated with
them, it is to bhe expected that one of their most significant effects
would bhe to contribute to the anisotropy of the diffusion.

Any fluid flow field is most simply analyzed in an Eulerisn
coordinate system, in which flow properties are considered at fixed
points in space. EFulerian time correlations describe changes at a fixed
point with time, and Bulerian space correlations relate changes at two
fixed points in the field. The most straightforward anslysis of
diffusion, however, uses a lagrangian approach, in which a marked fluid
element is followed in its wandering through the flow field. Lagrangian
time correlations describe changes in the fluid element velocity with
time as the fluid element travels along its trajectory. Lagrangian
space~time correlations would describe changes with time in the correla-
tions of the veloeities of two fluid elements as each wandered along its
streamline, Both the Lagrangian time and space-time correlations
apparently combine features of the Eulerian space and time correlations.
However, no general relation linking Fulerian and Lagrangian correlations

has ever been deduced, nor is it inbuitively obvicus that such a relation



should exist in the general case of non-stationary, nonhomogeneous
turbulence.

Recent interest in envirommental pollution control has made a
basic knowledge of turbulent atmospheric dispersion a critical need.
In particular, information is needed on such parameters as the space and
time scaleg for transition between various modes of diffusion, the
lagrangian velocity correlations, and large scale eddy diffusion coeffi=-
cients. The dependence of these parameters on such characteristics of
the turbulent field as its space and time scales and such mean flow
characteristics as the density stratification and mean wind profile need

clarification.

Methods of Previous Research

The inherent three-dimensional, unsteady, non-linear nature of
the equations of moticn of a fHurbulent fluid has prompted previcus
research into the simple examples of turbulence. However, even in the
case of stationary homogeneous isotroplie turbulence in an incompressible
fluid, complete solutions have not been obtained for the correlation and
energy spectrum functions, nor for their variations with time.

Taylor [1920) developed a fundamental approach to the statisti-
cal theory of turbulent diffusion and derived relations for the mean
square particle displacements in the limiting cases of very small and
very large times after release, Taylor considered the turbulent
velocity correlations of a single fluid point, released with some initigl
velocity into a homogeneous isotropie medium and found that the mean

square displacement should increase with the square of the time for



small times after release and with the first power of time for times
after release larger than an integral time scale TL of the velocity

correlation R

£’
t

T, = 1lim Ry dE (1.1)
L t~eo 'cl: 5

and found that an eddy diffuslon coefficient D could be defined by

<x° >=2Dt (t >> TL) (1.2)

where
D=<u">T (1.3)

with <« u? > the mean square fluid point wveloeity.

Batchelor [1950] applied the similarity theory of Kolmogorov
[1941] to the problem of the relative dispersion of two fluid points
released a distance Lo apart in a field of homogeneous isotropic
turbulence and found that in a suitably intermediate range of eddy sizes
and times after release, the mean square particle separation should vary
as the product of the wviscous dissipation with the cube of the time, or,
alternatively that the relative diffusion coefficient should vary as the
4/3 power of the scale of diffusion. This relation has been known as
Richardson's law of dispersion since Richardson [1926] deduced it from
several sets of empirical observations of atmospheric diffusion.

This statistical analysis, begumn by Taylor, provides some



insight into the problem, but provides no infermation about the effects
of many impcrtant mean flow characteristics on the diffusion, such as
mean velocity and temperature gradients.

Recent attempts have been made to analyze the diffusion problem
which inelude some of thege mean flow characteristics by numerically
integrating the full nonlinear Navier-Stokes equations; e.g.,

Harlow and Amsden [1968]. However, because of size and time limitations

of even the largest and fastest computers now available, it appears
that fully-developed turbulence cannot be calculated without the
introduetion of comstitutive relations, which relate averages of the

turbulent quantities to mean flow quantities [Harlow and Nakayems, 1967;

Amsden and Harlow, 19687.

A different but more promising approach is that of recent attempts
at simulating certain aspects of the turbulent field. One of the
earlier attempts was that of Brier [1950] who considered the correlations
between two particles undergoing discrete motion in one dimension. Both

ILumley and Corrsin [1959] and Patterson and Corrsin [1965] have described

computer similations of diffusion in one dimension in which a binary
random velocity field (i.e., velocity components = + 1) was constructed
on a grid in two dimensional x-space., Kraichnan [1970] simulated
divergenceless, stationary, homogenecus, isotropic turbulent diffusion
of two fluid partiecleg with velocity fields determined from assumed
spectrum functions.

Deardorff and Peskin [1970] have described a method which seems

to combine features of the sbove simulstion attempts with some of the

techniques of the aforementioned integration of the Navier-Stokes



equations for the case of two fluid points difusing in a large Reynolds
mumber shear flow., A semiempirical exponential form was constructed
for the two point velocity correlations, and sub-grid scale Reynolds
stresses were simlated by spatially and temporally variable eddy
coefficients. Results iIndicated a t3 or steeper dependence for down~
stream mean square separation in the case of strong shear and Reynolds

stress:

< (Xa - Xb)2 >= ¢t (1.4)

where the coefficient C appeared to cbey

¢ (2—2)2 < > T, (1.5)

The single point and point pair velocity correlations were also computed;
results indicated that the relationship between the single point
Tagrangian time scale and downstream Eulerian length scale was (using
Taylor's hypothesis) in good agreement with the ratic of Lagrangian
time scale to Eulerian fixed point time scale (B = 4) found by Hay and
Pasquill [1959]. Results also indicatea that the two particle velocity
correlations for the same time decayed very slowly, with a time constant
at least five times the Lagrangian single particle time scale, A point
of possible criticism of this method is the exponential form of the
assumed Fulerian wveloeity correlaticn function,.which would appear to
lead to infinite fluid point accelerations. (This would follow from

the relation between the mean square turbulent acceleration and the



correlation microscale [Iumley and Panofsky, 19647 and the fact that the

exponential correlation function would have no definsble microscale).

A quite similar analysis [Iilly, 19667 considered the dispersion
of fluid points in a field of large scale turbulence, such as might be
encountered in the atmosphere. As a first-order approximstion, the
sub~grid scale Reynold's stresses were simuwlated, through an eddy
viscosity hypothesis, by a product of the strain of the mean flow with
a coefficient of eddy viscosity. The hypothesis is analogous to that
in the mixing length theories, for the case of constant eddy viscosity.

Another similar theoretical analysis was that of Kao [1968] who
considered the dispersion of partiecles in stratified atmospheres. The
viscous force terms in the equations of motion were approximated by a
Stokes frictional damping, and the buoyancy force terms were approxi-
nmated by products of the vertical particle displacement with the negative
of the (assumed constant) logarithmic potential temperature gradient
T = (g/e) 38/32. The Boussinesq approximation was used in that density
fluctuations were assumed important only in the buoyancy force terms,
Kao found that the temperature stratification was very important for the
long time vertical diffusion. He found that the stratification effect
leads to constant mean square particle displacements ("zero diffusion’)
for the stably stratified atmosphere (I » 0), produces displacements
proportional to time after release in the neutrally-stratified case
(T' = 0), and makes for exponentially - increasing displacements in the
unstable case (" < 0).

A different approach to the statistical analysis begun by Taylor

has been described by Lin [1960 a,b], who considered the correlated



turbulent accelerations of fluid points in homogenecus turbulence, in
a manner similar to Taylor's work with correlated velocities. Lin's
results indicated that, for the relative diffusion of two fluid points
released with zero initial welocity, the mesn square relative displece-
ment was gero for very small times after release; and varied as the
cube of the time for suitably intermediate times after release, or,
alternatively, that the relative diffusion coefficient varled as the
4/3 power of the scale of diffusion in these intermediate times,
essentially obeying Richerdson's law of dispersion. The negligible
diffugion at very smell times after release appears to be directly
attributable to the fact that non~zero initial fluid point velocities

could not be considered in Iin's analysis.

Purposes and Methods of Present Research

Tt was recognized from the analysis of Richardson [1926] that
certain similarities exist between the random motions of molecules and
randem fluctuations in turbulence, even though turbulent diffusion is
several factors of ten more effective than molecular diffusion., Attempts
to analyze turbulence by considering the similarities with molecular
processes and by the use of eddy parameters (e.g., Prandtl [1926])
suggest that a model of turbulent diffusion might be constructed which
is based on the model of molecular diffusion. One of the basic differ-
ences in the two models, however, would be the non-gero correlations of
the turbulent veloeity fluctuations over time and length scales compar-
able to the characteristic times and lengths of the modeled turbulent

flow.
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Now, there is a striking similarity between Lin's work and
pioneering work in Brownian motion theory by Einstein [1905] who
congidered the random walk of molecules subjected to a completely random

(uncorrelated) fluctuating force F(t) described by the equation

mn

FlE

= P(t) - fu (1.6)

where u ig the fluctuating velocity of the molecule of mass m and
where «fu 1is a frictional damping term proportional to the molecular
veloeity.

It would appear, then, that a model of turbulent diffusion might
be constructed, in a manner similar to that in Brownian motion, if the
motions of certain marked fluid elements were considered to be described
by equations analogous to the sbove. The term corresponding to F(t)
would then be taken as the correlated fluctuating turbulent pressure
force. Single fluid points or point pairs could then be followed as
they undergo three dimensional random walks in a background field of
space~time correlated turbulent accelerstions for which an Eulerian
correlation has been modeled.

If shear-induced convective accelerations and buoyancy forces
were included in the fluid point equations of motion, the model could be
used to evaluate the effects upon the diffusion properties of various
profiles and magnitudes of wind shears and potential temperature gra-
dients, and the results of this study could prove useful in developing
better models for dispersal of atmospheric pollutants in the earth's

atmosphere. This study should also provide information on the effects



on the diffusion of the space and time scales of the acceleration
correlations, the initial separation of the particle pairs, and the
nmegnitude of viscous damping., The study should also be useful in the
general prcblem of the relation between the lagrangian and Eulerian

correlations.



CHAPTER TII

DYNAMICS OF TURBUIENT DIFFUSION MODEL

In a lagrangian analysis of diffusion, we consider the motions
of clusters of marked fluid points. We shall assume that the marked
fluid points are dynamically indistinguishable from the surrounding
fluid. According to a classical theorem of mechanics, the motion of
such a cluster of marked fluild points may be resclved into the motion
of the center of mass of the system of particles and the motion of
individval particles relative to the center of mass., It is evident
that the motion of the center of mass describes the motion of the
cloud of particles as a whole, while the relative motion of the fluid
points determines the change in shape of the cloud. The change of
shape of the cluster is independent of the motion of its centroid.

To illustrate how the motion of a marked cluster could be
resolved into the motion of its eentroid plus the motion of particles
relative to the centroid,.consider for the moment the simple case of
the one-dimensicnal motion of a cloud of N fluid points in a field
of uniform flow with mean veloeity U. ILet the velocity of the i-th

particle during the r~th time interval be given by

U ; =U0+u, (i =12, ... O) (2.1)
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The total distance X " traveled by the i-th particle in n

i
intervals is given by

= + + + +oee. tu . .
Xpg SHU F Uyt Uty Y3 (2.2)

where, for convenience, the time interval has been taken as unity.

At the end of n unit time intervals, define the standard deviation

Sy of the N particles by

N
22t (x - <X >)2 (2.3)
T N-1 ni n '
i=
where
N
<X >=% )X (2.4)
n N ni :
i=1
It may be easily shown that Equation (2.3) may be written as
> 1 © T 2
% = BW(N~1) Lo (Ru- an) (2.5)

i=1 j=1

Thus, if any two particles i and J have a relative separation
%1 = Xni -X nj from each other at the end of n time intervals, the

quantity


nNZ_.ni

1k

2 - (- ) -

can be used as an estimate of anz. Study of the change of crne with
time is identical with study of how the mean square particle separation
Rn2 changes with time.

Thus it is evident that the motion of the cluster of N
particles may be resolved into the motion of the centroid, described by
<X n and the motions of particles relative to the centroid, described
by T, It should also be evident that the motion of the centroid may
be studied by analyzing the motion of a single fluid point, while the
relative motions may be studied by analyzing the relative behavior of
two fluid points,

Consider the trajectories of small elements of fluid ("fluid
points™) thi'ough a statistically stationary, homogeneous, isotropic,
Bulerian space-time correlation acceleration fleld. Fluid point
positions and veleoeities will be computed relative to a rectangular
coordinate system translating with the mean wind velocity at the point
of release, The coordinate system is assumed to be oriented such that
the mean wind velocity lies in the x-y plane. The fluid is assumed to
be "nearly incompressible" and to have constant vertical gradients of
the potential temperature and horizontal mean wind components., The term
"nearly incompressible” is taken here to characterize a flow having a
divergenceless velocity field but a mean vertical density gradient such

that wandering fluid elements may experience buoyancy accelerations.

This approach is related to the Boussinesq approximation discussed by
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Dutton and Fichtl [1969]. The veloeity of each fluid point will vary

according to

(2.7)

D

= P
1l

i

where F 1is the sum of the forces acting on the fluid point, which may

include pressure, viscous damping and gravity. Thus

|
E-_--E VP"‘\JVH‘EE (2-8)

Since the mean wind‘g is assumed to have a linear varistion, the mean
components of the viscous tern are zero. We assume, in a manner similar
to that of Kao [1968], that the turbulent viscous term may be adequately
modeled by a Stokes friction damping, i.e., assume that the wandering of
each fluid point from the surrounding mean wind is resisted by a force
proportional to the fluid point's veloeity relative to the surrounding

mean wind veloecity:

\Ngg = \NZB = - w (LJ - g) = -0 (2.9)

The use of the Stokes-type hypothesis for the viscous term, which may
gppear to be plausible as a first approximation, is, in the final analysis,
a mathematical convenience and an aid to the solution of the equation of

motion, However, the magnitude of the coefficient ¢ 1is fixed by the



magnitude of the viscous dissipation ¢ as w = ¢/< w’ > . Then by
writing the velocity, pressure and density as sums of mean plus
fluctuating parts, and expanding the substantial derivative, we may

show that Equation (2.8) becomes (assuming p' << po)

%(§+E)+(ﬁj+uj)%@+ﬂ)= (2.10)

woa wm g
Pl Uj §§5+ < u 5§5> = - ES-V P, - &k (2.11)

The lagt term on the left can be written, in the case of divergenceless
flow, as the gradient of the Reynolds stresses, which are spatially
invarient for homogeneous turbulent fields., Then, the vertical component

of Equation (2.11) becomes (if we assume the vertical to be the only

non-zero shear component):

3l al ap

3,5 3..1 0
=== = (2.12)

3t 3 ax3 Po ax3

If we assume hydrostatic equilibrium for the mean state, the right
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hand side of Equation (2.12) 1s zero., Thus,

20 3l
D b T e =
5=+ U 5, 0 (2.13)
The general solution to Equation (2.13) is
) Kx, + A
Ué(xs’t) "Xt +B (2.1%)

wvhere K 1is some constant of separation and where A and B are

constants of integration. Since we assume

A (xé,to) =0 (2.15)

then ﬁs must remain zero for all time. Equation (2.11}, for zero

horizontal mean pressure gradients, is then

o/

U,
N
= =0

o

(3 = 1,2) (2.16)

Then, from Equations (2.15) and (2.16)

pi 30 CYl) a0
E=§:E'+Uja—%=u3§'% (2.17)

Then, subtracting Equations (2.11) from (2.10) gives an equation for



the turbulent velocities:

Du 3l ¢ p" 1 (2.18)
— 4 = 4 — = e — gk - —vygp - an 2.1
2t Y3 axg Y3 axé Po fo ~
or
Du i) 1 , p’ R ( )
—_— e U - - — v - —_ k - 2.1

If use is made of the perfect gas equation of state and classi=-
cal assumptions with regard to the pressure fluctuations{see, e.g., p. 60

of Inmley and Panofsky [1959]), the buoyancy acceleration of Equation

(2.19) becomes

(2.20)

o
s

n
I—]lli

"]
'

Now, the rate of increase with altitude of the difference T’ between
the temperature of a wandering fluid parcel and the temperature of the
surrounding medium is equal to the lapse rate vy of the ambient
temperature T minus the rate of decrease of the parcel temperature.
For small temperature fluctustions, the fluid parcel will move in a

nearly dry adiabatic fashion with lapse rate Fd = g/cp. Then

L
il._. =Y - T (2.21)
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Now the potential temperature 8 1is defined as

g =T (l) (2.22)

1de _14dr _K dp

where 6, T, and p are the mean (altitude-dependent) properties of

the atmosphere. For an atmesphere in hydrostatic equilibrium

l d _ 1 /4T
s o - T lam e (2.24)
1
-~z (v-1)
Thus, we have
I ! I
b o X _ (4L
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g d8_ as a constant logarithmic wvertical potential temperature

0 dx3

gradient T, an assumption which is not entirely unrealistic and which

Take

is commonly used in the literature [e.g., Kao, 1968]. It may be seen
from Equation (2.24) that this corresponds to assuming a logarithmie

temperature profile for the atmosphere. Then

- f’? =-T [x3(t) - x3(t0)] (2.26)

The assuption p" << Po limits the range of validity of the buoyancy
acceleration model of Equation (2.26) to atmospheres having small

potential temperature gradients; i.e., we require
o i
T <g/ < (a%)" > (2.27)
The pressure force components of Equation (2.19) are modeled by
random space-time correlated acceleratlonsg 3. assumed constant over

each time step. The mean wind shears Bﬁi/3x3 are taken constant and

equal to K,. Equation (2.19) thus is

Duy
—L-a -k u T, [X3(t) - x3(t0)] - wu, (2.28)

which, when summed with the mean velocity equation from (2.17),

(2.29)
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gives an equation for the total acceleration on the fluid element,

DU,
1T 4Ty [Xs(t) B XS(to):' Ty (2.30)

The shear terms have important influence, however, on the variation of
the particle veloclty through the viscous terme in this equation; the
viscous ferms provide a link between the shear effects and the particle
trajectory. Therefore, the consideration of a finite fluid viscosity is
necessary for an understanding of the physically meaningful character-
istics of the diffusion model, Furthermore, since the shear effects
would have a length scale of the order of the characteristic lengths of
the flow, it may be concluded that the effects of these viscous terms
would not be restricted to any inertial range of eddies. These con-
clusions regarding the importance and length scales of the viscous terms
are in contrast to the minor role given the fluid wviscosity in much of
the literature on the dynamical theories of turbulent diffusion.

Now, Equations (2.28), (2.29) and (2.30) may be solved for the
turbulent, mean and total fluid point velocity components, and hence
the particle separation components, by expanding the accelerstions on
the right hand sides of the three equations in Taylor serles and
integrating with a finite difference approximation technique, which
would yield infinite series solutions in the time step. We should,
in general, require that the orders of the spproximations to the
quantities of most physical significance, namely the fiunid point

displacement and total velocity components, all he equal, say to order n.



22

Also, we require that the fluid point mean velocity be equal to the
velocity of the surrounding mean wind, whose value is the product of

the constant mean wind shear with the vertical component of the fluid
point displacement. Thus, the series approximation of the mean velocity

should also be of order n. But, from Equation (2.29)

Se1

ACHMERACH RS N IR (.31)
B

Thus, we see that for the approximation of ﬁi(t) be of order n, the
series expansion of u3(t) should be of order (n-1l). No such special
conditions are evident, however, on the horizontal turbulent velocity
components,

Thus, for example, if it were desired to include terms of
second order in the displacement and total veloeity approximations, it
would be necessary to include second order terms in the mean and
turbulent horizontal velocity approximations. But the requirement that
the mean fluid point veloeity be equal to the velocity of the surrounding
mean wind would require that the series expansion for the vertical
turbulent velocity be truncated at first order. This is equivalent to
assuming a cohstant acceleration on the right hand side for the
vertical component of Equation (2.28)

Expansion of the accelerations of Equations (2.28), (2.29) and
(2.30) and integration, keeping terms in the total velocity of second

order, ylelds
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W () = wy () +{a, () - Byug(e) - wmy (b)) (5 - 6)  (2.32)

S F KAL) (b - t)® (1=1,2)
Uy (tyeyg) = Tyt) + Kpua(ty) (b - &) (2.34)

+3E A (L) (b, =107 (L =12)

Oy (tyyy) = O (2.35)
Uy (bg) = U (8 + 4,080 (5, - %) (1=1,2) (2.36)
Ug(byyg) = Ug(ty) + A58 (b, = %) (2.37)

where A, may be found from Equation (2.30).

That Equations (2.32) through (2.37) are a consistent set of
relations may be seen by addition of Equations (2.32) and (2.34) to
arrive at the total horizontal velocities of Equation (2.36), and by
addition of Equations (2.33) and (2.35) to arrive at the total vertical
velocity of Equation (2.37). Also, we note that Equation {2.31) is

satisfied exactly, as we required.
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Integration of the total ILagrangisn velocity from Equations

(2.36) and (2.37) yields

i (tpg) = % (5) + U () (b, = %) (2.38)
F2A(4) (b, - 807 (1=1,2)
XB(tk+1) = X3(tk) + u3(tk) (teyq ~ &) (2.39)

5 A6 (b - £)°

Again, we note that Equation (2.3%) is the same as Equation
{2.39) multiplied through by K;» as it must if the mean Lagrangian
velocity is to be equal to the velocity of the surrounding mean wind.

Equations (2.32) through (2.39) constitute the working set of
equations from which the fluid point displacement and Legrangian

velocity correlation characteristics are found.
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CHAPTER III

ANAIXSIS OF SPACE-TIME CORRETATED TURBUIENT ACCEIERATION FIEID

Analysis of the Relative Motion of Two Fluid Points

At the time of release, assume that one fluid point is at the
origin of an n-dimensional (n = 1, 2 or 3) orthogonal coordinate system
which moves with the mean wind velocity at the point of release. The
second fluid point is assumed to be located one (non-dimensional) unit
distance from the first, with the (initial) separation vector To -

We assume that the (constant, turbulent) fluid point acceleration

components v during each unit (non-dimensional) time interval may

iJ

be written in terms of previous components aij as

Vi1 T %1 841 F %o 840 T ¥y3 Yy (3.1)

Vip = Bjy 849 F Bys 840 t By3 ¥y F By 24

where ¥y and z, are randem {uncorrelated) mubers drawn from a
normal distribution with zero mean and standard deviation ¢ , and

the a,.'s are the previous turbulent acceleration components for the

ij

two particles, and the «.

4 T .
i3 s and Bij 8 are to be determined. The

‘numbers vy and z, were computed using a pseudoerandom normsl deviate

generator employing the "chi-squared projection” technique [Bell, 19687.



We assume that the fluid point acceleration components Viq

and Vio 8re correlated with each other and previous components as

1
< a - (< 812 > < 8" )2 (3.2)
8i1 %420 > T Pio i1 > <%p 2 .
<V a > = (<\J 2><a 2'?)%
il ™1 P11 il 11
ey
< a > o= (< 2 < a 2>)2
Vi1 %42 Pio \" Vi1 = = %4p

%

_ 2 2
io 12 > "pn(<%2><am >)

1

< > = (( 2><a 2>)2
v i1~ T Pik Vio i1

i

1

<V v > = ((\} 2><\) 2>)2
11 Vip Pis 11 i

where the pij's are the Eulerian auto-correlations between the i-th
components of the respective accelerations and where, for homogeneous,
igotropic, stationary turbulent acceleration fields, we agsume

< vije > =< 3132 > = (3.3)

In these studies, the cross correlations between different acceleration
components are neglected. This is partially Justified by the fact that
crogs correlations between different components at the same time are
zero in the isotropic case. The major effect of the assumption of

igsotropy for the turbulent acceleration field and the neglect of the
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¢ross correlations is to reduce the coefficients aij of Equation
(3.1) from tensor to vector quantities.

Thus,

_ 2 _

<8y 8,> = piyC (3.4)
< a, - = 02

Vi1 %51 Pi1
< a = 2

Vil 3o ¥ T Pip ©
< a » = 02

Vis ®io P33
SvVip #4717 T Py ©
< > = 2

Vi1 Vip Pis

where the magnitude of the p's will depend on the particular space~time
separation concerned and may be computed from an assumed form for the
Eulerian correlation function as discussed later,

Performing the multiplications and averaging required by (3.4),

with conditions (3.3), noting that
<yyzy> = 0 (3.5)

gives seven requirements on the seven a's and B's



and Equations (3.10) and (3.11) used

28

2 2 2 _
@) Ty Y2y @ pge 51 (3.6)
2 2 2 2
Bil + BiQ +2 B:'|_1 512 Pio + 313 + Bih =1 (3.7
%1 * %o Pig T P13 (3.8)
%1 Pig T ¥p T Py (3.9)
Bi1 * Bin Pip = Pi3 (3.10)
Bi1 P10 T Pio T Py (3.11)
Equations (3.8) and (3.9) may then be used to find oy, and
C.‘{i2 as
Psq = Pim Pas
N il io Fi2 (3.13)
11 .. 2
P10
Pisr = Pig P
P27 P10 Py (3.14)
iz
-
Pio

to find B, and Bjo &S
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Pin = Pig Ps
Byq = —2——i0 2 (3.15)
1= pi0
P = Pig P
1= 0

Then, with o o Bi2 considered known, the remaining

110 %22 Byi»
parameters may be found from Equations (3.6), (3.7) and (3.12) as

1

- 2 2 2
%33 (l -4y -y, -2 “&19&2910) (3.17

Py " %Py T (“11512 * “izBil)pio = %5840
Byz = (3.18)

i3 2,
4

- 2 2

Bill- - (l - Bj_]_ = 612 -2 Bﬂsiepio = 8132) (3.19)

Thus, the "new" turbulent acceleration components, assumed
constant over the next unit interval, are given by (3.1) with the o's
and the B's given by Equations (3.13) through (3.19).

To compute the turbulent acceleration components for the
initial time step, assume that the coefficients ®31s  Uyp0 ﬁil’ and

812 are zero.

Analysis of the Motion of a Single Fluid Point

The general technique implemented in the computer programs

permits consideration of cases where the instantaneous fluid point
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acceleration is assumed to be a linear combination of either the
immediately preceding acceleration or of the two immediately preceding
accelerations (plus random fluctuations). These two cases are discussed
separately below.

We may assume that at time t = 0 the single fluid point is at
the origin of an n-dimensional (n < 3) orthogonal coordinate system
which translates at a speed equal to the average fluid wvelcocity at the
point of release.

Expliecit Correlation Over QOne Time Interval

The n turbulent acceleration components v; are assumed to
be given by
Vi T %y 8 T,y (3.20)
where a; is the immediately preceding i-th acceleration component and
¥ is a random number drawn from a normal distribution with zero mean
and standard deviation e.

Assuming stationary, homogeneous turbulent acceleration fields,

we write

I
A
o

< vig > = 2 >=c (3.21)

1l
o
[
P
A
<
=

. &,
<vl J.>

We will have two conditions on the two unknowns &35 and %ot
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+ o, =1 (3.22)

& iz

i1
i1 Pi

which require that the instantaneous fluid point acceleration be
written as

~
vy =py o +(1-07) 7 (3.23)

The correlations Py may be computed from an assumed form for the
Eulerian correlation field and previously computed fluid peint separa-
tions. The acceleration components during the first time step are
entirely random and are equal to ¥y

Explicit Correlation Over Two Time Intervals

The n turbulent acceleration components at time + + At in
terms of the preceding accelerations (at times t and t - At) are

assumed to be

\Ji(t‘ + ﬂt‘) = ail ai(t - ﬁt) + Q’ig ai(t) + °'i3yi (3-214-)

Again, assume homogeneous, stationary acceleration fieldsi the

correlations among the accelergtion components may be written as
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_ 2
< ai(t - At) ai(t) > = pig © (3.25)
< a,(t=- at) v.{t +4at) > = o2
i i P11
< a,(t) v,{t +at) >= 2
i i Pip

where c2 is the mean square turbulent acceleration component magnhitude,
<af>=<cv’>=0 (3.26)

Equations (4.25) and (4.26) yield three conditions on the three

unknowns «'s. These may be solved to give

P41 “ Pip Pio
ail - 2 (3»27)

1 - p40

o, = d2 ~ Pio P11
i2 2
Pi0

- 2 2 2 ( ) 2)
@53 ° (1 “Pio T P11 T Pip T 2Pi0 P p12)/ 1- 04

Again, the correlations Pij may be computed from an assumed form for
the Eulerian correlation function and the particular space-time separa=
tion concerned.

For the calculation of the acceleration components during the

initial time intervals, assume that the coefficients o and o

i1 i2
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are zeroj for the second time interval, assume that %4 is zero.
Then, the "new" turbulent acceleration components are given

by (3.24) and the o's found from (3.27).

Analysis of the Eulerian Correlations

The of the preceding discussion are the Bulerian

Pyj'S
correlations between the components of the respective accelerations and
are determined from a stationary, homogeneous, isotroplc Eulerian
space=time correlation function. The acceleration correlations between
two points are basically characterized by the directions of the
acceleration components relative to the wector joining the two points,
since there iz no preferred direction of coordinate system in the
isotropic case., Therefore, it is convenient to consider a longitudinal

correlation f. defined by (see Figure 1).

1

2 _ :
< a > fl(r) =<a a’'> (3.28)

and a transverse correlation f2(r) defined by

<& > f2(r) = <a, at' > (3.29)

for two parallel aceeleration components perpendicular to the vector
Jjoining the points, Isotropy requires that this transverse correlation
be independent of the particnlar pair of parallel components considered.

An acceleration correlation tensor may be defined by the 9 correlstions
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Iongitudinal and Transverse Displacements

1.0 T T
£, (r) or g(t)
0.5 b .
£,(r)
0.0
\"\‘__ ’,z’

"0.2 i - 1

0 1 2 3

r , integral length scales
or t , integral time scales

Assumed Gaussian Form for the Iongitudinal Correlation f.(r) and Time
Correlation g(t) and Corresponding Form of the Transverse Correlation fz(r)

Pigure 1. BEulerian Acceleration Correlation Functions
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between the 3 acceleration components at each point. Isotropy again

7

would require that the cross correlation (e.g., < a. a, ' ») be zero.

t

’ 5} can then be expressed

Arbitrary auto-correlations (i.e., < 8, 8

in terms of the two basic correlation fl(r) and f2(r) as

2 |
oi(zo ) = {00 - 5,@] (D) +L@}e@ G

Bquation (3.30) is essentially the same as that derived by von Karman
[1937] for veloecity correlations but has in addition the provision for
the consideration of time correlations g(r)}. The longitudinal spatial
correlation fl(r) and the time correlation g(r) are taken as Guassian.
Batchelor [19%53] shows that the trahsverse correlation mey be found in
terms of the longitudinal as

ar. (r)
£y(r) = £,(x) +§ —— (3.31)

Thus, if the longitudinal correlation is written as

£,(x) = exp (=m®/41%) (3.32)

where Lb is the integral length scale

=]

[ #ymar =1, (3.33)

e
o
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then the transverse correlation may be written as

£,(r) = (2 - h"Lgﬁ exp(- nr’/4 1) (3.34)
=1

1
It is noticed that the transverse correlation has a zero at 2/112 times
the Fulerian length scale Lb' This fact is used later as a relatively
simple determination of the Lagrangian integral scale. The time

correlation may be written as

g(r) = exp(- mr/k T_%) (3.35)

where Te is the integral time scale

o

T, = [ &) ar (3.36)

=4
o

In the study of the single particle, the displacement wvector
r is the distance traveled over either one or two time steps and -~
can be either one or two time Intervals. In the study of the particle '
pair, correlations are maintained over particle pair separation at the
same time (v = 0) and over displacement distances at the successive
time steps (r = 1 time step interval). The distribution function of

the random accelerations is taken to he Gaussian.
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CHAPTER IV

OBSERVED CHARACTERISTICS OF THE DIFFUSION
STMULATION AND COMPARISON WITH PREVIOUS RESULTS

The finite difference numerical simulation technigue, consisting
essentially of Equations (2.32 — 2,39}, has been used in digital comput-
ing machinery to investigate certain characteristics of the random walks
of single fluid points and point pairs, whose motions describe certain
aspects of the diffusion of a cluster of marked fluld particles which
is both spreading about its centroid and "meandering" as a whole as
discussed in Chapter II. These parcels were followed as they wandered
through flow flelds in which a turbulent pressure field was simulated
by correlated random accelerations having some (stationary, isotropic,
homogeneous) mean sguare magnitude 02 and space and time correlation
integral scales Lb and Te’ in which buoyancy accelerations were
analyzed through the use of a constant logarithmie vertical potential
temperature gradient T, and in which the effects of velecity gradients
were studied through the use of constant wvertical shears Ki of the
horizontal mean winds.

Now, parameters which were of primary interest in the considera-
tion of the flnid point's random welk are the mean square displacement
components (for the single fluid point analysis) and separation components
(for the point pair analysis) as functions of the time t after release.

Values for these parameters and a measure of thelr accuracy may be found
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from the values Xij of the geparation components computed in each of

the N runs through the mathematical program as

N

< XiQ(t) > = I—J&- E [Xij(t)]e (4.1)
j=1

N N N
o0 -7 {37 [y®] -3 [w])}
3=1 J=1

where Xij (t) is the i-th component of particle displacement computed
in the j-th run at arbitrary time +t, oy is the standard deviation of
the i-th displacement components Xij about the root mean square

2

1
displacement component < Xi »?, and N is the total number of runs

(realizations) considered.

A parameter which plays an important role in molecular diffusion

ig the diffusivity D, as shown in the well<known formuls

< s »=2D% (k.2)

where s 1s the displacement of a particle due to molecular diffusion,
In the mixing length approach to turbulence, the eddy diffusivity D
Pplays a similaer role, A measure of the eddy diffusivity was computed
from the present investigation by considering the long time behavior
of the fluid points. The diffusivity was computed as one half the
factor of proportionality of the linear relstionship asymptotically

approached in the wvariation of the mean square point displacement versus
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time. In the event that no line of unit slope could be fitted to the
long time behavior of a particular run, it was surmised that other
effects (e.g., & shear-induced effect) over=-shadowed the eddy diffusion
which would otherwise be exhibited at long times after release, and an
attempt was made to explain the over-shadowing effect.

Other parameters of considerable interest are the Lagrangian
velocity correlations exhibited by the particles as they move through
the Eulerian acceleration correlation background. For the single fluid
point analysis, the interesting parameters were the lagrangian time
correlations of the turbulent components at a particular time r with
the corresponding components at later times + + kAt., For stationary
turbulent veloecity fields, these correlations would not depend on the
particular value of t but only on the time separation kxat. These
correlations were computed by storing the product of iﬁitial turbulent
velocity components with subsequently computed velocity components; and

by the use of

Ry (kat) = <uy(v) uy(r +kat) >/ { <uB(r) > <uPlraar) >} (4.3)

N
Y [y gy (r + )]
3=1

=N N 1
{z uije('r) z uijz('r + ka‘t)}a
=1 j=1
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where uij is the i-th velocity component computed in the j-th of XN
total runs. The assumed stationarity of the turbulent fields permits

this to be written as

N
1
R, (kat) = s Z:—l [245(0) vy, (aat) ] (.1)

For the two fluid point =znslysis, the Lagrangisn space~time
correlations between the turbulent velocity components of the two
particles would also be interesting. These correlations could never
be stationary, however, because of the inherent wandering apart of the
two particles. Thus, these correlations should be computed for several
interesting times after release. A prudent choice of the number of
correlations studied would have to be made to keep the required
computing time within limits. The two peint Lagrangian space-time

correlations were found from

N

R (r kat) = —= [8352(7) vyl +108) ] (4.5)

2

for only the single time T = Q.

The integral time scales of the Iagrangian correlations were
estimated in those cases where the results permitted, from the initial
zero crossing of the transverse components (cf. Equation (3.34)).

Following the fluid points through an n-dimensional random

walk over the Bulerian correlation background corresponds to observing
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one realization of the modeled turbulence. Significant insight into
the characteristics of the diffusion were found from ensemble averages
of the pertinent parameters, which were taken over a number of realizs-
tions with identical macroscopic initial conditions, both on the f£luid
point parameters (such as the initial separation and initial mean
relative velocity) as well as on the fluid flow parameters (such as the
level and scales of the turbulence, mean wind shears, and potential
temperature gradients), Such identical initial conditions would be
difficult to achieve in an actual turbulent flow experiment, and
assumptions must be made as to the equivalance of averages over time and
space to ensemble averages. In this "mathematical" experiment, however,
identical initial conditions may be specified exactly, and averages of
the pertinent parameters over several runs through the mathematical
programs would truly be ensemble averages.

Reliability statistics indicate that the standard deviations of
these averages would vary as the inverse square root of the number of
realizations, This, to double the reliability of an estimate, i.e.,
halve its standard deviation, the number of realizations was roughly
quadrupled. This reasoning, along wilth the fact that the necessary
computing time was roughly proportional to the number of realizations,
made a prudent choice of the statistical deviations that would be
tolerated in the results an absolute necessity. Preliminsry runs
indicated that 15 reglizations led to standard deviationg in the mean
square particle displacements of the order of 10% of the averages come
puted, To achieve comparsable accuracy in the results for the Lagrangian

velocity correlations, preliminary runs indicated that 150 realizations
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would be necessary.

The number of time steps after release to be computed was
another important consideration. Enough times had to be considered so
that the true long-time characteristics of the diffusion were found; but
again, the required computing time was roughly proportional to the
number of times considered, Preliminary runs indicated that the time
elapsed before the long-time behavior became clearly evident was strongly
dependent on such parameters as the time and length scales of the
turbulence, but it appeared that a time interval per run equal to 500
times the integral time scale was sufficlent and not overly time con-
suming, when paired with the previously-mentioned 15 runs necessary to
establish a relisble average. This combination of runs and time intervals
considered required spproximastely one minute of computing time for the
single fluid point anelysis and two minutes for the point pair analysis.

Preliminary results also indicated that the Lagrangian velocity
correlations fell to zero within approximately ten to fifteen integral
time scales of the turbulent acceleration correlation function. There~
fore, computing time was saved, in those cases where only information
regarding the Lagrangian veloeity correlations was desired, by consider-
ing only times out to twenty integral time scales after release. This
permitted the consideration of the 150 realizations in the statistical
averages of the velocity correlations which were necessary to achieve

reasonable sccuracy.
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Simulation of One and Two Dimensional Eddy Diffusion

The simulation of one~and two~dimensional diffusion would not
include the full three~dimensional character of turbulence, nor would
the analysis provide fhe opportunity to include the effects of mean
wind shear or density stratificstion. The anslysis did provide however
the opportunity of checking out the basic technique and led to several
interesting conclusions concerning it. In the case of fluid points
releaged with zero veleceity into a field of turbulent accelerations with
small correlation length and time scales (i.e., when the characteristic
lengths and times of the flow were taken as much larger than the
correlation scales), it was found that the anticipated eddy diffusion
could he suecessfully simulated if the characteristie viscous damping
time were taken as approximstely one integral time scale. This cholce
for the viscous damping coefficient led to approximately stationary
mean square turbulent velocities after an initial period during which
the velocities "puilteup"” from their zerc initial values. This period
in which the wvelocities built up was characterized by the mean square
displacements varying as th, the result of the predominance of
Iagrangian acceleration correlations. It was found that if the particles
were released with some random initial velocity with mean square value
equal to that observed at long times after release, the turbulent
velocities remained spproximately stationary from the point of release
onward, while if the particles were released with initial velocities with
mean square values larger than the value observed at long times, a periocd
was observed in which the mean square turbulent velocities decayed from

their initial wvalue to the long time value, apparently as a result of
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viscous effects. This period in which the mean square turbulent
velocities either built up or decayed from their initial wvalues to the
long time behavior was also evident 1ln the behavior of the particle
displacements versus time. Finite initial particle velocities led to
mean square displacements and separations proportional to the square
of the time for very small times after release, A transition period,
during which the proportionality changed to linear 1in time, was cbserved.
The characterigtic time to transition seemed to increase with increas-
ing mean square initial velocity. This behavior was evidently due to
the non=-zero lagrangian velocity correlations, which would result in
these cases dve to finite initial wvelocities in spite of the zero
turbulent acceleration correlations. Even fhis simple analysis, then
illustrates certain aspects of the relationship between the turbulent
acceleration and lagrangian wvelocity correlations.

These comments on the viscous damping coefficient and mean
gquare initial velocity appeared to remain valid in the more complex
cases of three-dimensionsal acceleration fields with finite length and
time scales. Thus to similate stationary turbulence velocity fields,
the characteristie time of the viscous damping was held equal to one
time integral scale for all of the cases considered, and the initial
mean square turbulent velocity was set equal to the mean square value
observed at long times.

"Trapping" effects, similar to those noted by Kraichrnan [19701],
were Observed for one-and two-dimensional acceleration fields with
finite correlation scales. These appeared to be related to the proba-

bility of both fluid peints arriving at some point in the field at the
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same time, Probability theory [Knapp, 1965] indicates that for infinite
times of particle meandering this will heppen infinitely meny times in
one or two dimensions. When this does happen, the basic technique of
Equations (3.1), (3.20) and (3.2L4) evidently ceases to be valid;
specifically, certain of the «'s and B's defined there become
infinite. Probability theory indicetes that in three-dimensions, the
particles are most likely to wander apart permanently, and the trapping

effects are not observed in the three-dimensional cases considered.

Simulation of Three=Dimensional Turbulent Diffusion

Single Fluid Point Analysis

Neutral Density Stratification (T = 0). The generalization of

the aforementioned analysis, with zero length and time correlation
scales, to the three dimensional random walk of a single particle
resulted in the isotropic eddy diffusion of Figure 2. The range in
which the influence of the initial velocity was felt is evident from
the slopes of two at very small times after release, The isotropy of
the diffusion was also evident in the mean square particle velocities,
which in addition exhibited statistical stationarity throughout the timg
interval considered.

Cases in which the turbulent acceleration field exhibited
finite Eulerian space-time correlations were then considered. The
Eulerien length scale was taken as 10 times the characteristic length
of the flow (L = 10 in the tables below) while the Fulerian time scale
was taken as 10 times the time step increment (TL = 10). Eulerian

correlations were explicitly maintained over one time step. The result-
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ing three-dimensional, isotropic mean square particle separations
versus time are shown in Figure 3., The initial time interval, over
which the effects of the initial random veloecity is felt, is clearly

L ) at small times

shown by the slopes of two (indlcating < X,
after release. A transition to large scale eddy diffusion is seen at
approximately 10 time scales (100 time step increments) after release,
when the mean square particle separation is approximately 10 length
scales. All of the eddy diffusivities Di are approximately equal and
appesr to have an order of magnitude of 1 (length scale)2 per time scale.
This behavior was in agreement with the particle dispersion predicted
for small and large times after release into a uniform, neutral atmos-
phere by Taylor [1920].

The Lagrangian time correlations of each of the three particle
velocity components for this case are shown in Figure 4. Several
interesting conclusions seem apparent. The isotropy of the diffusion
is evidenced here in that all three correlations are approximately equal.
The correlations do no appear to have & cusp at time + =0 and thus
more closely cbey a Gaussian than an exponential decay. In spite of
relatively large random fluctustions at small correlstion values, it
appears that the correlations take on negative values approximately
10 time scales after release and thereafter decay to zero. From the
analysis of Taylor [1920] and others, these negative correlation values
appear to result in the transition from the initial behavior (as
evidenced by slopes of 2 in Figure 3) to eddy diffusion (as evidenced
by slopes of unity). The time interval of negative correlations and

the time scale for transition to eddy diffusion appear to be in agree=-
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ment,

Some typical effects of shears in the mean winds are evident
from Figure 5, which is the result of including a moderate vertical
shear of the x~component of the mean wind (K, = 1.0 (time scale)'l)
in the aforementioned analysis. The major effect appears to be a t3
dependence at long times after release for the component dominated by
shear, which leads to relatively large particle displacements in that
direction. Indeed, the x~component of the mean square particle

separation at time + = 500 time scales ( <¥ > ) has been increased

500
by a factor of grester than lOu over what it was in the previous case of
uniform mean wind. As could be anticipated from Equation (2.19), wherein
is shown the direct effect of mean shear on the turbulent velocity com-
ponents, the x-component of the mean square turbulent veloecity 1s also
increased in this analysis. Thus, the resulting diffusion is decidedly

anisotropic in these cases. Both Riley and Corrsin [1971] and Thompson

[(1971] have noticed similar dependences for shear-dominated particle
dispersion components in numerical simulstions of turbulent shear flows.

3

The coefficient Cx of the t3 dependence, defined by

<X > = ¢33 ,t-e (4.6)

appears to increase with the magnitude of the shear, as shown in Figure 6

and Table 1. The varilation appears to be well approximated by

=< > (3 1, (4.7)
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Table 1.

Statistical Properties of the Diffusion of a Single Fluid Point
(L=10, TL=10, @ = 1, uI=O.7)

r K, B, ¢ <P >500 D P o
(1572) (rs™) (18%/157) (15%) (15%/5) (15%/25")
0 0.0 1 2.6 3.0 x 103 1.8 1 2.k

0.1 3 8.9 x 1072 1.5 x 10° 3.1 1 3.5
0.2 3 5.0x 1072 3.5 x 10° 1.0 1 2.6
0.5 3 1.6 x 1071 1.3 x 107 5.6 x 1007 1 1.3
1.0 3 2.9x 1070 3.2 x107 4.3 x10°Y 1 8.7 x 107t
2,0 3 6.9 x 10°T 4.9 x 107 1.6 x 107t 1 3.3 x 107t
5.0 3 1.5 1.6 x 10° 1.0 x 107+ 1 2.0 x 107t
107" 1.0 3 2.1x10°F 2.8x0 5.0 x 1007 1 1.0
1073 0.0 1 4.5 1.8 x 10° 4.6 1 2.2
0.1 3 5.0 x 1073 1.4 x 10° 2.6 1 5.1
0.2 3 2.7 x 1072 2.0 x 10° 1.3 1 1.0
0.5 3 1.0x 100 7.k x 108 5.5 x 1007 1 6.8 x 10~1
1.0 3 2.0 1071 1.3 x 107 1.3 1 4.1 x 107F
2.0 3 5.0 x 107t 2.9 x 107 5.5 x 10T 1 2.6 x 107t
5.0 3 1.32 1.k x 108 2.4 x 1070 1 1.5 x 1071
TS = Integral Time Scales of the Eulerian Acceleration Correlations
IS = Integral length Scales of the Eulerian Acceleration Correlations

134
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as suggested by Deardorff [1970].

It shovld be emphasized that even though this shear~induced
effect appears to follow the same power law as the Richardson diffusion,
it is not restricted to intermediate times after release nor is it the
result of eddies in any apparent inertial range. In spite of this,
Deardorff concluded that the coefficient of the shear-induced t3
dependence may he proportional to the viscous dissipation e , the
coefficient of the Richardson law. Also, the coefficients of observed
particle dispersions with t3 dependence have been used to evaluate
viscous dissipation fates {e.g., Ball, 1961], The viscous dissipation
for the diffusion model would be equal to the product of the viscous
damping coefficient @ with the mean square turbulent velocity magnitude
< u2 >. Preliminary studies indicated (for values of w for which the
turbulent velocity field appeared relatively stationary) that < u2 >
varied almost inversely with o , causing the viscous dissipation to
remain relatively inveriant. Thus, it appeared that the coefficient
Cx3 was not directly related to e.

Secondary effects of the mean shear appear to include g decreasze
of the eddy diffusivities, in the directions not dominated by shear,
as shown in Table 1 and Figure 7. This effect is evidently due %o a
complex intersction between displacement components coupled through the
acceleration correlations. A pessibly over-gimplified statement of the
effect would be that the mean shear tends to increase the total particle

displacement which tends to decrease the Fulerian acceleration correla-

tions. The decreased Eulerian acceleration correlations :esult in
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decreases in the Legrangian velocity correlation integral scale and
hence the eddy diffusivity.

The anisctropy induced by the mean wind shear is evident in the
turbulent veloelity component ratios plotted versus the shear magnitude
in Figure 8. The anisotropy is also evident in Table 2 where the
velocity cross-correlation P is shown. The relatively large negative
values for this product indicate an increasingly large contribution to
the turbulent energy by shear production.

Stable Density Stratification (T' > 0). The mean square particle

displacements and turbulent velocities also showed a decidedly aniso-
tropic behavior when stable density stratifications were considered.

The mean square particle displacement components for the case
of uniform mean wind (Kx = 0) and a moderately stable potential tempera-
ture gradient (I' = 0.01 (time scales)-e) are shown in Figure 9, The
major effect of the buoyancy term appears as a "leveling off" of the
vertical component of diffusion, somewhere near 100 (length scales)z.

The horizontal particle displacements appear to be relatively unchanged
from their corresponding values in the neutrally~stratified enalysis;
there does seem to be a very slight increase, however, in the horizontal
eddy diffusivities with increasingly stable stratification, as illustrated
for the y~component in Figure 7.

Effects of the buoyancy terms are also felt in the particle
turbulent velocities., Table 2 1llustrates a slight damping effect on
the vertical mean square turbulent velocity magnitude with inecreasing T.

Table 2 also indicates the wvariation of the velocity temperature

cross correlstion Poz which indicate the importance of the buoyancy
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Table 2. Continued
T 1{,x <u2> <v2> <w2> T P pvw pzw

(157%™ @) @) s ()

211073 0.0 6.05x10°1  6.16x10"7  5.96x07F  » 1.22x1072  -2.40x107%  4.52x1072
0.1 6.28x10°F  4.87x107%  4.68x10"1 * -1.03x10'1 -1.69x10'2 3.85::10'2
0.2 5.90610°F  h.69x10”%  b.box10™t * —1.33:0°  -2.04x1073  3.13x1072
0.5 B.U8x07F  2.76x10™% 2.56x10™F * 2.73x0™ 1 -1.58x1073  3.36x1072
1.0 3.12x107F  L.azxio”t 1o7x0”t x hs6x10”t bL73x107° 2,06x107°
2.0 3.61x107t  8.94x10™°  8.65x1072 *  <6.56x10"%  -h.40x10™2  2.55%1072
5.0 9.91x10'1 6.58x10> 6.50x10'2 * -7.53x10"% -5.93x10 "2 4.00x10™2

55107 0.0 6.0310° " 6.08x107" 5.94x10°% 2.5  -2.21x1072  -7.24x1075  2.84x1072
0.1 6.70610°F  s.u1x10"  s.17x0l % -B.56x107°  -9.53x10™F  1.29x1072
0.2 6.48x10"%  4.83x10™Y  h.61x0”t % 1Mol S5.18x1073  2.43x107°
0.5 4.83x10"0  2.90x1071  3.15x1077  *  —2.9bx107t =8.09x1070  7T.65x1070
1.0 B.48x10"1  1.98x107%  1.97x0t % Wh.61x107F -h.05x1072  1.08x1072
2.0 4.62x107F  1,11x107F  1.05x107F % «6.60x10"F  -3.12x1072  8.40x1073
5.0 1,0k 7.08x1072  6.60x1072 %  -7.54x10"%  -4.38x1072  7,71x1073

1072 0.0 6.0x0° 1 6.16x1077  5.92:071 4.0 L.3TXI0C -2.86x1072  2.32x1072
0.1 6.72x10°% 572021070 s.hox1o™t 3.2 -0.12x10° -3.18x107%  1.88x1072

¥ Value not computed

<9



Table 2. Continued
T Kx <u2> <v2> <w2> T Puwr p ]
VW ZW
(578  (w™hH  asPes®)  (srs®) s¥rs®) (1)
1072 0.2 6.57x10'1 5,36x1070  5.32x10°1 3.4 -1.31x107T  -3.72:x2073 1.88x1073
0.5 5.75x1077  3.73x07  3.75x0”t 3.0 -3kex107t 6.31x1070 3.17x1073
1.0 5.88x10°7  2.53x107T  2.57x0°% 2.9 -6.03x10"0  2.56x107° 2.57%102
2.0 6.17x10° % 1L.ehx10t 15161071 2.9 -6.60x107F  -3.62x1072  4.26x1073
5.0 1.39 8.52x10%  8.64x107% 2,1 -7.70x10™1  -h.76x10"°  2,05x1070
2x10™2 0.0 6.01x10"1  6.06x10™F 5.70x10-l' * -2.70x10™2 -1.06x107° 3.79x10‘3
0.1 6.55x10"F  5.83x10"%  5.63x107" -9.78x107°  -3,73x10"°  9.41x1073
0.2 6.75x10°F  5.67x10"1  s5.51x107T  * 1413107 C1kix10? 6.63x207"
0.5 6.67x20°F  4.81x10™%  4.68x10°1 % —2.68x107 1  -8.38x1073  -2.73x207"
1.0 6.07:10°  3.22¢1077  2.9ox10l ¢ usx10”l 1.o5x1072  -9.50x107"
2.0 7.80x107%  1.89x1071  1.94x107t % 6.52x107% -1.50x1072  -b.hox10™3
5.0 1.7 Loka0™  Lokxiot % 7.66x107r  h71aa0™® —6.27x1073
5%1072 1.0 7.89x10°7 k03071 3.65x10™1 ¥ —h.68x107F 1.76x1072  -6.98x1073
107t 1.0 8.57x10°%  4.68x101  h.3sxa0”t x h.78x10”Y 4.33x1072  -1.80x1072
107 0.0 6.04x10°7  6.17x10"F  5.99x107% # 1.65x1072  -2.18x1072 6.95x10°
-1072 1.0 8.80x10°  6.37x10%  8.91x0" x  20.75x10"Y -1.61x1072  9.87x107t

€9
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term in the particle turbulent energy balance. It appears that the
observed cross products are no larger than the statistical error
(indicated by the value at T = 0) for moderate T but take on (statis~
tically) significant negative values for larger T'. These negative
values would indicate that the buoyancy model is acting as a source of
energy at these larger values of T , through the mathematics of the
simulation, This unrealistic behavior is apparently the consequence of
the model assumption that p’/po << 1 (or, T << gﬁXB) and permits a fairly
accurate estimate to be made on the upper limit to (physically reasonsble)
values for T. Tt appeared that potential temperature gradients of up to
sbout 0,02 (time scales)™> could be considered in the simlation,

Shears in the horizontal mean winds again tended to result
in mean square displacements varying as the cube of the time for the
duration of the observations, but sufficiently stable temperature strati=-
fications seemed ultimately to reduce the diffusion to a lower power law,
bringing the displacements closer to an eddy diffusion at those times.
Figure 10 illustrates a typical result for the mean square displa.ce:
ments, considering a moderste shear of the x~component of the mean
wind (Kx = 1.0 (time scale)'l) and a moderately stable temperature
stratification (T = 0.01 (time scale)'z). The Lagrangian velocity
correlations appeared similar to those observed in the neutrally-
stratified casé, as shown in Figure 11. In fact, there did not appear
to be any well-defined trends in the effects of mean shear and tempera-
ture stratification on the Ilegrangian integral scale, An average over
all of the single fluid point results gave a value of the lagrangilan

integral scale of 3.1 Eulerian time scales. The effects of the buoyancy
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term were evident in the vertical component of the mean square turbulent
velocity and appear to result in decreased diffusion in the direction
dominated by shear from the t3 power law toward the eddy diffusion
otherwise expected. The observation that the shear-dominated component
does not obey any one power law for all intermediaste values of T seems
to be the result of continuous decreases in < w2 > with increasgsing

stability. The shear-induced dispersion, which appears to ohey
at, 2
2 2 i 3
<x°>w<w >(dz) Tt (6= w) (4.8)

as discussed previously, and which appears to completely over-shadow
the eddy diffusion terms in the case of neutral stebility, might
decreage and possibly cbey no one power law if the wvertical wvelocity

< w2 > were decreased by the use of intermediate walues of stability.
51ightly more stable temperature stratificatiéns appear to cause a
transition at intermediate times (approximately 10 time scales) from the
shear-induced dispersion cbeying the t3 power law to a dispersion
obeying a t2 power law, which seems to be the result of the combined
effects of mean wind shear and mean square vertical displacement (in
contrast with the mean square vertical velocity of the 3 law). As

shown in Figure 12 and Table 1, this dispersion appears to be given by
af,
2 i 2 2
<x® @) >a($F) <P > 7 (5= (4.9)

where < 22 > is the value at which the mean square vertical
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displacement levels off. This effect apparently completely over=
shadowed the eddy diffusion terms also.

Increasingly strong stable temperature stratifications resulted
in the vertical diffusion leveling off at continmually smaller mean
square values. GQuite large values of T' appeared to result in values
of the coefficient (dﬁi/dz)z < z° >_ which were sufficiently small
that the eddy diffusion was no longer overshadowed. The particle
dispersions at long times after release in these cases exhibited a
linear variation with time. These cases, however, sppeared to lie in
the region where the buoyancy acceleration terms began to act as sources
in the turbulent energy eqpations, as evidenced by the increasingly
negative values cobserved for the temperature-velocity cross correlation
Pow discussed previously and shown in Table 2, Thus, insufficient
information could be gathered here to formulate the results in complete
generdlity.

Unstable Density Stratification (T" < 0). Consideration of

negative potential temperasture gradients resulted in an unstzble behavior
with respect to the vertical components of the particle displacement and
mean square turbulent velocity magnitude. The vertical diffusion, as
shown in Figure 13, sppeared to be reasonably approximated at long

times by an exponential increase, in agreement with Kao [19687.

In cases where a mean wind shear was also considered, the
exponential increase in the vertical led to quite vigorous diffusion in
the direction dominated by shear, with the mesn square particle dis=
placements varying with at least the cube of the time for long times

after release.
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Analysis Maintaining Explicit Eulerian Correlations Over Two

Time Step Increments. No qualitative nor significant quantitative

changes were observed in the diffusion when the time interval over which
Eulerian acceleration correlstions were maintained was increased to two
time gtep increments from the single time step considered in the pre-
ceding discussions., Comparison of Figure 10 and 1k illustrates the
similarity between the results of the two analyses for s typical set

of parameters discussed above, with moderate shear and.potential temn-
perature gradient magnitudes. Table 3 illustrates the similarity in the
results for the mean square turbulent velocity component magnltudes

2

<u; > and cross correlations Puw®  Pyw? and Ppre” Compariscon of

—
Figures 11 and 15 illustrates the similarities in the ILagrangian time
correlations for the turbulent velocity components of the two analyses.
(Figure 15 also illustrates, by the smaller magnitude of the random
fluctuations, the effects of including 500 realizations in the averages
as compared with only 150 realizations in the other Legrangian velocity
correlation analyses).

These similarities in the two analyses seemed to indicate that
the model which maintains Eulerian correlations over one time step
gimilated the pertinent characteristics of turbulent diffusion as
successfully as the model which maintains the correlations over two
time steps. Thus, it seemed more desirable to consider more variations
in the set of input parameters using one or the other of the two analyses

than to consider the same combinstions of parameters with both analyses.

Preliminary runs indicated that the two time astep analysis required
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Table 3. Comparison of the Statistical Characteristics
of the Diffusion of a Single Fluid Point for
CI=land CI=2 ("= 10" s K, =1)
Statistic Result for CI =1 Result for CI = 2
P 2 2
X
1
cf; 9.5 1.0 x 10
6 6
<X2>50o 3.1 x 10 1.9 x 10
: -1
D 1.1 8.6 x 10
¥
P 0 0
2
c 3.1 x 10% 2.4 x 10t
<> 5.88 x 107t 3.33 x 10~%
<v"> 2.53 x 107% 1.58 x 207t
<> 2.57 % 107t 1.61 x 10°%
- - 6.03 x 107t - 3.65 x 107t
D e 2.56 x 10™° - 2,07 x 1072
0 o 2.57 x 107% 1.17 x 1072
T 2.9 2.5
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approximately 75% more computing time than the single time step
analysis, due to the required increases in storage requirements and
numbers of operations. Thus it was deemed advisable to restriet the
study to the single step analysis. This reasoning alsc was a justifica-
tion for maintaining Eulerian acceleration correlations over only one
time step increment in the particle pair analysis.

Point Pair Analysis

Several similarities were observed between the results of the
single particle and particle pair analyses that were anticipated from
physical considerations of the problem. For example. in cases where a
uniform mean wind (Kx = 0) and neutral density stratification (I = 0)
were considered, the space and time scales for transition to eddy
diffusion in the particle pair analysis appeared to be the same as the
corresponding scales in the single particle analysis and the observed
particle separations for the relative dispersion of the two particles
were sbout twice the particle displacements obsgerved at long times in
the single particle analysis. This result was anticipated since the
two particles would be dispersing quite independently of each other at
long times after release,

Other similarities were observed in the behavior of the wvertical
component of diffusion with varlations in the temperature stratification.
A "leveling-off" of the relative vertical dispersion was observed for
approximately the same moderately stable stratifications which resulted
in the inhibition of the vertiecal diffusion of the single fluid point
previously discussed. Another physically reasoneble observed character-

istic was that the relative pair disperslon leveled off at approximately
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twice the mean square single partlcle value.

Several differences were alsc anticipated and observed in
the resultsz of the two anslyseg. TFor example, the correlstions hetween
the initial velocity components of the particle pair led to a relatively
small value for the relative velocity between the two particles. Thus
the effects of & given value for the mean square turbulent wvelocity
magnitude would be lessened in the two particle analysis and were
not observed to extend to the space and time scales of the corresponding
effects in the single particle analysis. As shown in Figure 16, this
early decay of the influence of the initial velocity exposed an
intermediate time scale behavior which may have been masked by the
initial velocity influence in the single particle analysis and which
was characterized by mean gsquare particle separations varying with
at least the cube of the time in this intermediste time range after
release, This effect is evidently the result of the scale of the
aceeleration correlatlons being greater than the scale of the initial
velocity effect in these studies. It is not completely clear what
relationship this behavior has to the diffusion in an inertial scale of
eddies which would follow the Richardson law of dispersion discussed
previously, but it is interesting that the conditicns necessary for
the two phencmena to be observed are quite simllar.

There were observed other differences in the results of the two
analyses that could not have been anticipated in detail from the results
of the single particle analysis, Tt is here that the juatification for
considering the two particle analysis actually lay, and it is these

differences that form the interesting results of this analysis. The
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congequences of the lessened effects of the initial particle wvelocity
discussed sbove might be put in this category. Other differences form

the major part of the discussion following.

Neutrally Stratified Atmospheres. Consideration of the relstive

dispersion of two fluid points as each wandered through a neutrally
stratified (C = 0) uniform (Kx = 0} field resulted in the mean=-square
relative particle separation versus time of Figure 16. Note that it is
the separation components of the particles relative to their initial
separation components that are plotted, Three time intervals with
apparently distinct processes AIB evident in this graph, for each of
the separation components. An initial time interval extends to times
after release of the order of one~half of the integral time scale, in
which is apparent the effects of the initial relative turbulent velocity

components, In this interval, the displacements are well approximated by

< Rie (£) > o t° (k.10)

where the constant of proportionality is of the order of 8 x 10"5 for
each of the three components, The slight decrease in the constant for
the y=component relative to the other two is evidently the result of
the initial (longitudinal) correlation in y (the direction of the
initial separation vector) being slightly greater than the initial
{transverse) correlations in x and =z. The major conclusion to be
drawn here is that the effects of the initial velocity are (correctly,
as discussed above) simulated as having smaller space and time scales

in the particle pair analysis than in the single particle analysis.



79

An intermediate time interval in which effects of the accelera-
tion correlations are clearly felt is evident to times of the order of
5 to 10 integral time scales. The mean square separations vary with
at least the cube of the time in this rangej but this period is clearly
one of transition and the separations do not actually follow any one
power law here. The space and time scales of this behavior are similar
to those of the Richardson diffusion; here, the particle separations and
times are such that the influence of the initial conditions has been
lost but the influence of the acceleration correlations is still
evident. Particle displacements in an apparent inertial range have

been noted by Byzova, et al. [1970] in observations of smoke plumes as

having space and time scales in good agreement with those noted here.
The particle trajectories in this time range appear to be influenced by
both Lagrangian acceleration correlations (tending to result in

< Rie(t) > e« tlL ) and a Richardson-type diffusion. The combining of
these effects could result in the transition regime observed.

The final phase of particle dispersion is clearly an iscotropic
eddy diffusion extending from approximately 10 integral time scales to
the limit of the time range considered. In this range, the influences
of both the initial conditions and the Lagrangian correlations are
negligible and the particles are dispersing independently. This is
evidenced in the plot of the Lagrangian velocity correlations of
Figure 17 and the measured eddy diffusivities of Table 4., There did
not appear to be any well-def'ined influence of mean shear or temperature

stratification on the Lagrangian velocity correlations. An average over
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Table L,

Statistical Properties of the Relative Diffusion of Two Fluid Points

(L =10, TL =10, @ = 1, up = 0.7, 1y = (0, 1, 0))

r K, P, cz <K >500 D, p ci
(1578) (zs™h) (15°/75%) (15°) (15%/5) (15%/15")
0 0.0 1 1.0 x 10" 4,5 x 10° 1.9 1 7.5

0.1 3 1.8 x 1072 3.0 x 10° 2.0 1 8.1
0.2 3 4.7 x 107° 7.6 x 10° 2.5 1 3.5
0.5 3 2.3 x 1072 1.9 x 107 5.0 x 107% 1 1.6
1.0 3 3.8 x 107t 3.0 x 107 2.2 x 107F 1 9.0 x 10~
5.0 3 8.4 x 107t 8.1 x 107 7.7 x 1072 1 3.4 x 10°
5.0 3 4.3 5.7 X 108 1.7 x 1071 1 6.8 x 107
107 1.0 3 5.0 x 10™% 2.9 x 107 2.5 x 1077 1 1.0
1073 0.0 1 8.9 5.1 x 103 2,2 1 8.7
0.1 3 1.3 x 1072 1.k x 10° 2.5 1 5.0
0.2 3 3.4 x 1072 5.0 x 10° 8.5x10°r 1 3.4
0.5 3 1.1 x 1078 1.3 x 107 3.5 x 107% 1 1.4
1.0 3 5.0 x 1071 2.7 % 107 2.5 x 1071 1. 9.0 x 10”
2.0 3 9.0 x 10™1 b x 107 2.2 x 107t 1 4,3 x 10°
TS = Integral Time Scales of the Bulerian Acceleration Correlations
18 = Integral length Scales of the Eulerian Acceleration Correlations

18



Table 4. Continued
r K, P QM <K >e00 D, P ow

(18”2) (zs™t (15%/s%) (1s2) (15%/15) (18%/ms%)
1073 5.0 3 2.3 2.2 x 100 1.2 x 107t 1 2.2 x 107%
2 x1073 0.0 1 7.4 5.1 x 105 1.8 1 7.4

0.1 3 1.0 x 1072 1.2 x 100 2.0 1 b2

0.2 3 3.4 x 1072 3.6 x Bm 8.5 x 1071 1 3.4

0.5 3 1.0 x 207t 8.1 x 10° 8.5 x 1071 1 1.1

1.0 > 6.2 x 10° 1.5 x 107 k.5 x 070 o 1.1 x 102

2.0 2 1.2 x 10° 3.7 x 107 Lhx0r o 5.5 x 10T

5.0 2 2.0 x 10° 1.2 x 10° 9.5 x 102 0 4.0 x 10°
5x 1075 0.0 1 1.0 x 10" 5.7 x 10 2.5 1 4.0

0.1 3 1.8 x 1072 1.3 x 16° 2.5 1 2.l

0.2 2 6.8 1.6 x 10° 2,1 0 5.0 x 10°

0.5 2 1.2 x 10T h.7 x 10° 9.0 x 071 o 2.2 x 10°

1.0 2 3,9 x 107 1.1 x 107 3.7x10°F 0 7.9 x 10°

2.0 2 7.1 x 10° 2.7 x 107 2.1x107t o 5.8 x 10°

5.0 2 1.9 x 10° 6.8 x 107 1.2x 107 o 2.8 x 10t
102 0.0 1 7.4 4.6 x 105 1.8 0 5.0 x 10°

cg



Table 4. Continued
r K, P, Ci <32>500 D, 3 cz
(157%) (ts™h) (15%/1sT) (15%) (16%/19) (15%/2s")
1072 0.1 2 9.5 x 107t 1.9 x 107 2.5 0 h.0 x 10°
0.2 5 2.5 6.2 x 107 2.2 0 2.3 x 10°
0.5 2 9.0 2.2 x 10° 1.2 0 1.4 x 10°
1.0 2 1.6 x 10t 5.0 x 10° 8.0x10t o 6.3 x 10°
2.0 2 6.6 x 107 1.2 x 10 3.2x10t o 3.5 x 10°
5.0 2 1.2 x 10° 2.5 x 107 1.2x07% o 1.5 x 10°
2x10° 0.0 1 9.0 5.7 x 10° 3.5 0 2.9 x 10°
0.1 2 b x 2078 5.3 x 10% 2,1 0 1.8 x 10°
0.2 2 1.6 2.0 x 10° 1.9 0 1.3 x 10°
0.5 2 4.6 8.6 x 10° 1.7 0 8.3 x 10°
1.0 2 1.1 % 100 2.2 x 106 8.0 x 2071 0 5.0 x 10
2.0 2 3.3 x 107 5.3 x 10° b2 x 1070 0 2.6 x 10°
5.0 2 6.3 x 0% 1.4 x 107 1.6 x 0°Y o 1.2 x 10T
5 x 1072 1.0 2 4.2 b4 x 107 1.6 0 2.5 x 10t
0™t 1.0 2 1.3 1,5 x 10° 1.8 1.6 x 10°
-5x10° 0.0 1 7.1 3.8 x 105 1.8 (exponential)

€8
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all of the point palr results gave a value for the Lagrangian space-

time correlation time scale of 2.7 Euleriasn time scales.

The inclusion of a small vertical shear of the x-component of
the mean wind (Kx = 1.0 (time scales)'l) in the sbove analysis has the
dramatic effect of replacing the eddy diffusion in the shear-dominated
component by a more vigorous dispersion, varying as the cube of the
time as shown in Figure 18. This effect has much the same space and
time scales as <the corresponding effect in the single particle analysis
and has the same secondary effect of decreasing slightly the eddy
diffusivities in the directions not controlled by shear, The variation

of CXB, defined by

<R () > = cx3 3 (4 - w) (4.11)

with the magnitude of the shear dU/dx is showm in Figure 19 to be well

approximated by

3 2 mo 2
Co =<w > (dU/ax) T, (4.12)

as suggested by Deardorff [19707. This shear-induced behavior was not
restricted to intermediate times after release nor was it the result
of eddies in any apparent inertial range. The coefficient Cx? was
not directly related to the viscous dissipation. As in the single
particle analysis, relatively large negative values for the velocity
cross correlation p  shown in Teble 5, are indicated for inereasing

shear magnitudes and describe inereasingly large contributions to the



< R_2 > , (integral length scales)2

1

| " |
10? —
" Ry ]
————R
106 [ _ 2 —
5
- a t -
10* [ —
10° |- —
" /
'
102 |- e
B / _
vy
7
10 /J —
n Y -
{
1 - / —
L f -
-1 Iy
107 f- / —
-2 Relative Point
107° |— ; Pair Dispersion —
; Kx =1
103 [/ r =0 _
/
lo-ll' 7 | L L
0t 1 10 10°

t , integral time scales

Figure 18,

Point Pair Dispersion Through
Field with Moderate Shear

85



10 T T T ] T

~

]
[

Cz , (length scales)e/(time sca.le)3
B

-2 -l 1

sz < > Tpo (length sca.les)2/(time sca.le)3

Figure 19, Variation of C;Bc with Shear, Point Pair Analysis

10



Table 5.

= 0.7, r, = (0, 1, 0))

Lagrangian Veloeity Characteristics of the Relative Diffusion of Two Fluid Points
(L=10, TL=10, w=1, u

1
r K, <u2> <v2> <w2> T Py P P ot

s (wsh  (s¥r®)  (ms®) (5f/ns®) (me)

0 0.0 5.92x10™ % 5.95x10‘1 5.96x10 1.6 h.hlxlo-h -2.26x1073 7.50%x10"2
0.1 6.23x107%  L.41x10”t  4.51x1071 1.9 -1.02%107T -6.17x1070  6.64x107°
0.2 5441071 3.60x107%  3.62x1071 1.5 -1.67x107t  6.72x073  6.21x1072
0.5 3.31x10"0  1.73x10°%  L.7ax10™t 6.9 -2.72x10"% -2.65x107°  4.84x1072
1.0 2.80x10"F  1.28x1071  1.28x10”7 2.2 <h.61x10”Y  2.24x1073 Llopx107
2.0 3.24x1077  7.94x10™°  7.73x10™2 7.0 -6.54x10™C  —2.20x10°  3.73x107°
5.0 8.66x10""  6.0bx10™%  5.91x107° 2.9  <7.73x10°T  -L.76x1072  L.31x10°°

10'h 1.0 2.20x10™+ 9.02x10‘2 9.51x107% 1.7  -6.63x10"%  -1.68x107%  Lh.hhx10~2

1073 0.0 5.91x10"  5.92x10”%  5.91x10™% 2.0 2.87x10"3 8.19::10'h 5.24x10™2
0.1 6.59x10:i 5.03x107%  5.04x1070 1.8 -9.40x10°  -1.20x10™2  5.31x10™2
0.2 5.58x10 3.57x10 T 3.67x10" 1.5 3.00%10™7  -6.43x10™°  3.96x10™2
0.5 3.82x1070  2.05:071  2.05x01 2.3 5.00x107° -1.57x1072  3.1kx1072
1.0 o.77x10~1  1.17x0™t  1.19x107t 2.2 ~7.14x0”t 2.05x107%  2.90x1072
2.0 3.30x10"0  8.71x1072  8.00x1072 2.4 6,300 -3.86x107F  2.78x1072
5.0 8.80x10™1 6.33x107°  6.07x10™2 3.0 -7.70x10~t 1.93%10™%  2.76x107°

T8 = Integral Time Scales of the Fulerian Acceleration Correlations

IS = Integral Iength Scales of the Eulerian Acceleration Correlations

Lg
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Table 5. Continued
r HH Ac.mv Aqmv Asm > T Pagw Py P
(Ts™2) (rs™h  (%/15%) (%8 (15B/es®) (mo)
1072 0.0 5.87x10™0  5.89x10™%  5.76x10™1 2.7  -5.01x1073  -L.6sx10™3  1.87m1072
0.1 6.69x10™T 5.63x10°%  5.55x107% 3.5  -8.86x1072 -8.91x10™> 1.20x10™2
0.2 6.87x10F 5,080 5.00x10™1 2.3 -1.45x10”%  -4.35%1073 1.87x1072
0.5 5.66x1071  3.u47xo™t 3Tkt 1.8 oo™t <6.1kx10™3 9.30x1073
1.0 4.93x1070  2.33:071  2.28x1071 Lo <h.sexioml -1.37x107° 1.28x1072
2.0 5.25x10"1  1.35x107% 1.32x10"r 2.0 -6.25x10"1  -1.30x1072 7.34x1073
5,0 1.18 7.6761072  7.x1072 2.3 -T.82x1071  -2,0020°%  7.09x1073
2x102 0.0 5.87x1071  5.90x107%  s5.62x1070 % —9.35x1073  -1.09x10™2  1.80x102
0.1 6.46x10""  5.80x0" L 5.59x10 * -8.69x107%  -1.14x10° 3.58x10™
0.2 6.98x1071  5.30x1070  s5.200101 * ~numao™l —1.01x107% h.1hx1073
0.5 6.72x10°%  h.oo6x107t  n.19x10™t % —3.00x107  2.77x1073 7.29%1073
1.0 6.35x10"F  2.80x101  2.86x107F #  hegxi0™r 3.15x1072  3.37x1073
2.0 7.23x107%  1.8200" 1  L.76x01 % 6.lexi0l 3.93wm0™3  L.39x1073
5.0 1.51 9.75x10™2  9.28x107° * -7.72x10~t 1,97x10™2 2,86x1073
5x10™2 1.0 8.01x0°t  y,02007t 37100072 * 4.88x1070  -1.34x072 -o.m:xpo-r
107t 1.0 8.95x10°%  L.B6x101  h.19x10”l % 5.67x107F  3.05x1072  -8.22x1073
511073 0.0 5.8ux10°0  5,0000™1  6.93x10™1 *  _1.25x107%  -2.00x1072  3.67x107%
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turbulent energy balance by shear production.

Stably Stratified Atmospheres, The effects of stable tempera=

ture stratifications (I > 0)'0n the dispersion of the two particles
were very similar to the corresponding effects in the single fluid
point analysis. Slightly stable stratifications tended to reduce the
vertical eddy diffusivity as shown in Table 4; at moderately large
positive values for T, the vertical diffusion was completely inhibited
and the mean square particle separation "leveled off." The value at
which the vertical dispersion leveled off appeared to decrease with
increasingly strong stable stratifications, as shown in Table 4, Very
large values for T, however, led to unrealistic negative values for the
cross product <« zw > , Indicating the buoyancy accelerations were
acting as a source of turbulent energy at these wvalues of T'. As in
the single particle analysis, it appeared the buoyancy simulation was
invalid for values of T much sbove 0.03 (time scales) 2, Again,
this appeared to be the consequence of the model assumption of small
densgity fluctuations becoming unrealistic. Within the range of wvalues
for which the buoyancy acceleration model sppears valid, the relative
vertical dispersion of the two particles levels off at approximately
the same stable stratifications as the wvertical diffusion of the single
particle and at a mean square balue about twice the single particle
result, as shown by a comparison of Tables 1 and L.

Consideration of both stable temperature stratifications and
vertical shears of the horizontal mean wind led to results that were
qualitatively very similar to corresponding results of the single

fluid point analysis. As illustrated in Figure 20, mean wind shears
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tended to cause rapid particle dispersion in the direction controlled
by shear at long times after release obeying a £3 power law (with
coefficient Cx? given in Table 4 and Figure 19) while increasingly
stable temperature stratifications tended to reduce the dispersion
back toward the eddy diffusion (linear in time) that would otherwise be
expected. Moderately strong stratification tended to result in com-
pletely inhibited vertical dispersicn end dispersion in the direction

controlled by shear obeying

2
<rRZ ) >« () <f5 t° (4.13)

as shown in Table 4 and Figure 21. ‘The same space and time scales were
observed for this phenomenon in the particle pair and single particle
analyses, and the same physical process appeared to be dominating
the results,

The effects of varying the initial particle separation zb
are evident in the short time behavior of cases in which mean shears
were considered. In particular, finite initial displacements in the
vertical lead to slight increases in the coefficient of the t2 power
law at short times for the component controlled by shear. This effect
does not appear to be inconsistent with the relation proposed by

Justus [19697,

<R () >« (2—2)2 (se,) (4. 18)
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but is evident only during small times after release (out to

approximately one time scale) and appears to be overshadowed by the
intermediate time behavior discussed above thereafter, as illustrated
by a comparison of Figures 20 and 22.

Unstably Stratified Atmospheres, The consideration of unstable

temperature stratifications (I' < 0) in the two particle analysis led
to results very similar to corresponding results in the single particle
analysis., The vertical component of relative point separation appesred
to increase rapidly, after an initial period, in an approximately
exponential fashion. This increase was also evident in the wvertical
mean square turbulent velocity. These increases led to very rapid
increases in the particle separation components which were controlled

by shear.
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CHAPTER V

CONCLUSIONS AND RECOMMENDAT IONS

The present study was an attempt to determine if a numerical
model, based on a random walk process ln a background space~time
correlated acceleration field, could successfully simulate certain
characteristics of atmospheric turbulent diffusion. Various statistical
aspects of the resulting particle dispersion have bheen compared with
corresponding features of turbulent diffusion as proposed by previous
researchers.

The ohserved results indicate that the technique successfully
simulateé nearly incompressible, stably-stratified, shear dependent
atmospheric turbulent diffusion and should prove to be a useful tool
for studying the dispersal of pollutants in the earth's atmosphere as
well as the general problem of the relation between Lagrangian and
Eulerian statistics,

Both the short and the long time behavior of the fluld point
displacements in a neutrally stratified atmosphere with uniform mean
winds were successfully modeled. The turbulent velocity components were
observed to have a Lagrangian time correlation scale somewhat greater
than the Eulerian acceleration time correlation scale and to be station-
ary for appropriste choices for the viscous damping parameter and the

mean square initial veloecity component magnitude., The influence of the



97

initial cornditions did not appear to extend as far in time in the study
of the relative dispersal of two fluld points as in the study of the
single fluid point, due to the influence of the initial correlation
between the two fluid pelnts. An intermediate time transition period
was evident in these studies which appeared to be the result of the
combination of the influences of Lagrangian acceleration correlations
(tending to result in <« Riz (t) » = th) and a Richardson-type
diffusion (tending to result in < Ri2 (t) >« t3).

Mean wind shears tended to increase the diffusion in the
direction controlled by shear such that the mean square particle dis=-
placements in that direction varied as the cube of the time for times
after release longer than the correlation time seale.

Stable temperature stratifications resulted in decreased
diffusioﬁ in the wvertical. Sufficiently stable stratifications were
observed to completely inhibit the vertical diffusion and led to a
"leveling=-off" of the vertical mean square particle displacements at
values which decreased with further increases in stability. This
buoyancy-induced effect was also evident in the vertical component of
the mean square turbulent velocity and appeared to result in decreased
diffusion in the direction dominated by shear. Sufficiently stable

3 dependence of

temperature stratifications appeared to reduce the t

these components back toward the eddy diffusion otherwise expected.
An unsteble condition resulted, in which the vertical mean

square displacement component increased exponentially, when negative

potential temperature gradients were considered.

Thus, the model appears capable of simulating a number of
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important aspects of highly anisotropic turbulent diffusion, in spite
of the model agsumption of an isotropic background acceleration field,

As 1s usually the case, several interesting possibilities for
additional research were suggested by the preliminary results. One of
the possibly more important areas where further work might be fruitful
ig that of modeling the density fluctunation p’ of Equation (2.4).
The present model ineludes essentially first order terms in p"/pO <« 1
and allows only fairly moderate vertical temperature gradients to be
considered, as discussed dbdve. A more sophisticated model for these
density fluctustions might eliminate the unrealistically negative
values for the cross product < zw > observed for larger values of T,
which again revealed that the buoyancy accelerations were acting as
if they were a source of turbulent energy in that region.

Further investigation of the general problem of the turbulent
energy balance of the diffusion model should also be interesting and
useful. Turbulent energy equations may be derived from the turbulent

momentum Equations, (2.28), as

1
§<ui>=<uiai>-Ki<uiu3> (5.1)

< ui X.>»=w«< u.2 >

- T 3 1

i

where repeated indices do not imply summation. The first term on the
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right is the turbulent pressure force term - l/po <y 3p'fax; > .

The remsaining terms on the right are the Reynolds stress, the buoyancy
term and the viscous dissipation. Stationary turbulent velocity fields
would require that the left hand side be zero, It should be straight-
forward to investigate the balance of the four terms on the right to
determine the changes in the relative importances of the various
contributions resulting from wvariations in the several input parameters,
and to investigate in more detail the stationarity of the computed
turbulent veloeity, In this connection, values of @ might be found
which would improve any observed deviation from stetionarity, These
studies would alsc he important in simulating a decaying field of
atmospheric turbulence,

Ancther topic in the area of more detailed similation of some
of the observed features of agtmospheric turbulence would be additional
research on the effects of more realistic mean wind and potential
temperature profiles, These might be matched with observed characteristics
of the earth's boundary layer or upper atmosphere.

Also, it would be interesting to see the effects of the
inelusion of a Coriolis term in the particle equations of motion and
the consideration of the geostrophic wind (which is a result of a
balance between mean pressure gradient and Coriolis forces) as the
mean wind of the discussion above., The Coriclis effects would become
important in the large scale eddy diffusion of the general atmsopherice

circulation.
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