
AN INVESTIGATION OF PRESSURE DRAG IN TRANSONIC 

FLOW BY THE METHOD OF HYDRAULIC ANALOGY / > / 

A THESIS 

Presented to 

the Faculty of the Graduate Division 

Georgia Institute of Technology 

In Partial Fulfillment 

of the Requirements for the Degree 

Master of Science in Aeronautical Engineering 

by 

Robert Thomas Standi 

July, 195k 



t 

"In presenting the dissertation as a partial fulfillment 
of the requirements for an advanced degree from the Georgia Insti
tute of Technology, I agree that the Library of the Institution 
shall make it available for inspection and circulation in accordance 
with its regulations governing materials of this type, I agree that 
permission to copy from, or to publish from, this dissertation may be 
granted by the professor under whose direction it was written, or such 
copying or publication is solely for scholarly purposes and does not 
involve potential financial gain, It is understood that any copying 
from, or publication of, this dissertation which involves potential 
financial gain will not be allowed without written permission, 

n 



•f 

AN INVESTIGATION OF PRESSURE DRAG IN TRANSONIC 

FLOW BY THE METHOD OF HYDRAULIC ANALOGY 

Approved: 

> 

U V ^ ' W i r , v 

t* 
Date Approved by Chairman: 3o XCLA tJS~4-



ii 

ACKKOWIEDCSMERirS 

The author is particularly indebted to Dr. R. G. Fleddermann 

for the suggestion of the topic and his invaluable assistance in the 

completion of the problem* Thanks must also be extended to Professor 

M« R. Carstens and Professor H. W. S. LaVier for their suggestions 

and constructive criticisms, 



TABLE OF CONTENTS 

Page 

ACKNOWLEDGMENTS ii 

LIST OF SYMBOLS iv 

LIST OF ILLUSTRATIONS vi 

SUMMARY , vii 

Chapter 

I. INTRODUC TION 1 

II. THEORY 3 

I I I . EQUIPMENT 17 

I V . PROCEDURE 20 

V. DISCUSSION OF RESULTS 2 1 

V I . CONCLUSIONS , 2£ 

V I I . RECOMMENDATIONS 26 

APPENDIX „ 27 

BIBLIOGRAPHY 



:: v 

LIST OF SYMBOLS 

a = Speed of sound in gas 

a& = Speed of sound in gas at the point where the velocity equals the 

speed of sound 

Cp = Local pressure coefficient 

Cd = Section drag coefficient 

Cp = Specific heat of gas at constant pressure 

c v = Specific heat of gas at constant volume 

V = Adiabatic gas constant, ratio of Cp to c v 

d = Water depth 

t> = Wedge angle in radians 

g = Acceleration due to gravity 

h = Enthalpy of gas 

co = Infinity 

M = Mach number 

p = Pressure of gas 

P = Density of gas 

T = Absolute temperature of gas 

V = Velocity of flow 

(p = Velocity potential in two-dimensional flow 

& ~ Angle of inclination of the velocity vector 

0 o = fT/2. 

Xjj - Rectangular coordinates in the flow plane 

u,v = Components of flow velocity in x and y directions, respectively 

u = u - a* 



V 

LIST OF SYMBOLS (CON'T) 

Subsc r ip t s 

No s u b s c r i p t = Local value of v a r i a b l e 

o • Value a t s t a g n a t i o n 

s • Value in und i s tu rbed s t ream 

max • Maximum value of v a r i a b l e 

x - P a r t i a l d e r i v a t i v e wi th r e s p e c t to x 

e.j. A = | | 6 =^A 
a " x 2>X > » x x -&x 

y = Partial derivative with respect to y 



LIST OF ILLUSTRATIONS 

Figure Page 

1. Pressure Drag Coefficient for a 15 Wedge 

at Zero Angle of Attack 2'; 

2. General View of the Water Channel 28 

3. Transonic Flow Around a Wedge Airfoil.... 29 

it. Wedge Airfoil Model 30 

$• Meniscus Effect 31 

6. Pressure Distributions Over a 15 Wedge 

at Zero Angle of Attack 



Vll 

SUMMARY 

This thesis was undertaken in an effort to compare the pressure 

drag coefficients in the transonic range of velocities obtained by the 

hydraulic analogy with the values predicted by theory and substantiated 

by shock tube experiments. A 15 wedge airfoil was tested at zero angle 

of attack at transonic speeds in the Georgia Institute of Technology 

twenty foot by four foot water channel. The water depth distributions 

along the side of the model were obtained by the probe method. By appli

cation of the hydraulic analogy, pressure distributions were found and 

from these pressure distributions the drag coefficients were calculated, 

According to the theory the stagnation point at the nose of the 

airfoil causes a large pressure increase at that pointy and the pressure 

falls off gradually toward the rear of the airfoil. In this investi

gation all tests were made either with no bow wave (subsonic flow) or 

with a detached bow wave. Thus in all cases a stagnation point is 

present at the nose. The results of this investigation did not show the 

expected high pressures over the front of the model, particularly at the 

higher speeds. It was concluded that the effect of vertical accelerations 

which are neglected in the theory of the hydraulic analogy was responsible 

for the fact that the water depths did not reach the expected height. 

Thus the hydraulic analogy for Kach numbers in the transonic range or 

greater does not give accurate results in the neighborhood of a stagnation 

point, 

The drag coefficients calculated by means of the hydraulic analogy 

follow the general trend predicted by the theory but because of the error 
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in the pressure distribution, which was discussed above, the drag coeffi

cients obtained from the hydraulic analogy do not compare accurately with 

the theoretical and shock tube results although the trend of the data is 

the same as for the other results. 
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CHAPTER I 

INTRODUCTION 

The problem of flow around bodies at transonic velocities has been 

troublesome to deal with, either theoretically or experimentally. An 

exact theoretical solution has not yet been found because: first, the 

partial differential equation is of the mixed type and is nonlinear; 

second, the locations of the boundaries of the transonic zone are not 

known at the start but must be determined as part of the solution; and 

third, the flow in the transonic zone for MS>1, having passed through 

the curved bow wave, is necessarily rotational. Experimental solutions 

have been difficult because of wind tunnel choking at speeds close to the 

speed of sound. 

Theoretical investigations of the flow around a symmetrical wedge 

airfoil at transonic velocities by means of transonic perturbations by 

Cole^, Guderly and Yoshihara^, and Vincenti and Wagoner3, have provided 

an approximate theory which bridges the gap between the theory for pure 

subsonic flow and that for pure supersonic flow. Also experimental 

knowledge has recently been increased by a shock tube study of the 

transonic flow over symmetrical wedges by Griffith^. The experimental 

data of Griffith agrees with the approximate theory. The main result of 

both theory and experiment appears to be the invariance of local Mach 

number. 

The fact that choking of the flow can easily be eliminated makes 

the hydraulic analogy applicable to transonic flow. This practical 
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consideration and the fact that it assumes a negligible effect of 

viscosity and rotationality immediately suggest the possibility of 

using it for comparison with the approximate theory which also neglects 

viscosity and rotationality. 
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CHAPTER II 

THEORY 

Hydraulic Analogy-

Theoretical work on the analogy between flow of water with a free 

surface and compressible gas flow was first presented by Riabouchinsky^ 

in 1932. Since that time, further extensions of this theory and 

practical applications have been made by such leaders in the field as 

Ernst Preiswerk^, Binnie and Hooker? in England^ the National Advisory 

Committee for Aeronautics3, and North American Aviation Incorporated^, 

and Massachusetts Institute of Technology* Preiswerk's proof and expla

nations of the application of gas dynamics methods to the flow of water 

with a free surface are probably the foremost in the field. He conclu

sively proved the validity of the hydraulic analogy as it stands today. 

North American Aviation and the National Advisory Committee for 

Aeronautics were leaders in experimental applications of the hydraulic 

analogy. Their -work indicated that with the proper equipment and methods 

accurate quantitative as well as qualitative results could be expected 

from the water channel experiments. 

Some of the advantages obtained through application of the 

hydraulic analogy and use of the water channel may be summarized as 

follows'. 

(1) The relative cost is low compared with the wind tunnel or 

flight tests, 

(2) Visual observations for the purposes of research or 
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instruction of such phenomena as shock wave formation, 

vorticesj turbulence, and flow patterns are possible. 

(3) High supersonic Mach numbers are obtained at model speeds 

of a few feet per minute. 

(h) Any Mach number can be achieved by a simple speed setting 

while a relatively complicated nozzle change is required 

in wind tunnel work. 

(5) Since choking can be easily eliminated, transonic obser

vations are just as simple as for subsonic and supersonic 

speeds in the movable model type of water channel. 

The present investigation is largely concerned with (5) above, 

since the tests were conducted at Î ach numbers close to unity. Super

sonic and subsonic test results have proved the water channel experi

mental values to be reliable. By virtue of this fact it was expected 

that the transonic water channel results would also be reliable, 

The theory of the hydraulic analogy as presented by Ernst 

Preiswerk^ will be reviewed here. 

This theory of the analogy between water flow with a free surface 

and the two-dimensional compressible gas flow depends on the following 

assumptions: 

(1) The flow is irrotational. 

(2) The vertical acceleration of the water is negligible 

compared with the acceleration due to gravity so that 

pressures in the fluid depend only on the height of the 

free surface above the point in question. 

(3) There are no viscous losses, thus excluding the conversion 
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of energy into heat or internal energy. 

The energy equations for water and for gas give the relations 

shown below in terms of velocity, 

For water this equation gives 

V2 . 2 g ( d^ - d ) 

vmax = / 2 £do 

and for gas 

V2 = 2 g cD ( T0 - T ) 

vmax ~ J ^ g CpT0 

It can be seen that V/Vmax for water and air are equal if 

T0 - T „ d0 - d 

T d xo uo 

or, if 

d = T 
do To (1) 

This comparison of the depth ratio, d/d0, to the gas temperature 

ratio, T/T0, in the consideration of velocity is the first step in the 

proof of the analogy. 

The equations of continuity are now compared. For steady two-

dimensional gas flow, this equation is 

M u P ) ..My) = o 
'Z x1 T ^ y[ 



6 

and for water 

> (. u d ) >(y d) = 0 

from these equations, a further step in the analogy is evolved as 

d = p_ 

By comparing equation (1) and (2 ) , i t i s seen that the analogy 

holds only i f the following equation i s sa t i s f i ed by the gas in question. 

T = p 
~o ~7T (3) 

However, the temperature and pressure of the gas must also con

form to the principles of the adiabatic relation (assumption 3)s 

(xt> -^ • co 
An inspection of equations (3) and (h) reveals that they are 

satisfied simultaneously only if T » 2. 

Thus, the flow of water is analogous to the flow of a gas having 

f- 2. Since <5" for air is l.h, this appears to be rather loose com

parison. However, many characteristics of gas flow do not depend strongly 

on JT . The significance of this statement will be further illustrated. 

Consider now the adiabatic relation and the preceding numbered 

equations, 

-t - (f.)'- as 
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o -n 

(*)• ~£T W J (S) 

The differential equation of the velocity potential for water is 

as follows; 

Txxl' f T ; + ? > ! ) l ' - j t ; fc Txy - p i - - O ( 6 ) 

and the corresponding equation for gas is 

U«--p*^0-£)-*+.yJ£ =0 . 
Equations (6) and (7) are identical if 

gd = a2 

2gd0 2gh0 

(7) 

From this relation it is seen that j gd corresponds to the pressure 

propagation velocity or velocity of sounds a, in gas flow. The 

expression J gd is the basis wave propagation velocity in shallow water 

with a free surface as proved by Leigh Page.H 

In water flowing at speeds above J gd the velocity of the flow 

may rapidly decrease for short distances and the depth may increase. An 

unsteady motion of this type is called a hydraulic jump5 and corresponds 

to a shock wave in a gas. 

This completes the analogy which is summarized in the following 

table of corresponding quantities and characteristics. 



fl 

Two-Eimensional Compressible 
Gas Flow, r •-= 2 

Analogous Liquid Flow 

Temperature r a t i o , T/T0 Water-depth r a t i o , d /d 0 

Densi ty r a t i o , f / f o Water-depth r a t i o , d /d 0 

Pressure r a t i o , p/po Square of wa te r depth r a t i o , (<J/lJ 

Veloc i ty of sound, a - J - ^ - Wave v e l o c i t y , J > d 

Mach number, v / a Froude number, V/ ^ gd 

1 Shock Wave Hydraul ic jump 

The application of the analogy as it Will be used in this investi

gation will be listed in the paragraphs which follow. 

The Mach number of the free stream will be calculated as 

Ms = F E = V, 

3 (8) 

which by virtue of the hydraulic analogy will be referred to as Mach 

number hereafter in this discussion. 

The standard equation for the pressure coefficient at any point 

on an airfoil as defined as 

Since 

r r. v< 

JLZXM-
JL p V 1 

z. rs s 
(9) 

- \ 

- i r. 

tsK - jr 
2. 
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equation (9) simplifies to 

cr =
 7M; !_"% " U 

From equation ($) 

ft * ^ 

Therefore, in the present case (̂ "-2.°), equation (9) becomes 

c -*[«)*-'] (10) 

To compare the results from the hydraulic analogy with values 

for air a conversion to I = l.U is necessary. The conversion below was 

previously used at Georgia Tech by Ryle1^ and is based on the work of 

Orlin, Linder and Bitterly^. 

"^'liftwfS^.jft) 'J . ci» *;IWS-.,A vr^wjiv u . 

Thus by virtue of the hydraulic analogy applicable equations are 

set forth for the pressure coefficients from which airfoil characteristics 

data is obtained. 

Transonic Flow over the Front Part of a Finite Wedge 

General.—In subsonic flow the velocity will be zero at a sharp concave 

corner. Conversely, in subsonic flow at a sharp convex corner the theo

retical velocity would approach infinity. But the upper limit of the 

subsonic range is finite so that a perfect fluid cannot flow about a 
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sharp convex corner without entering the supersonic range. From the zero 

value of velocity at the nose of the wedge the flow is accelerated to the 

sonic velocity at the shoulder. The fact that the entrance to a super

sonic region requires a convex contour and the theoretical result that a 

sharp convex corner of a body necessarily makes the velocity exceed the 

subsonic range, lead tu a most reliable fact about the flow around a 

wedge. The only possibility is that the sonic line starts at the 

shoulder (see Figure 3) and is followed by an expansion fan composed of 

an infinite series of Mach lines. The sonic line is at first perpen

dicular to the side of the wedge and is then bent around the corner. 

The problem has been attacked in three parts: free-stream Mach 

number greater than one, equal to one, and less than one. These three 

parts of the problem are intimately related by the fact that the local 

Mach number distribution is independent of Ms when Ms is near unity. 

It is well known that the Mach number downstream of a weak, normal shock 

is as much below unity as the Mach number upstream is above unity. Thus 

there exists a certain symmetry about Ms = 1. For Ms very near unity the 

detached shock wave is far away from the wedge and is nearly normal; the 

Mach number just downstream of the shock is slightly subsonic* For the 

Mach number distribution on the wedge it is thus irrelevant whether this 

subsonic Mach at large distances is due to the presence of a shock wave 

or due to the fact that the velocity at infinity is slightly below sonic. 

Measurements by Griffith^ indicate that the Mach number distribution over 

the body is independent of the free-stream Mach number even for finite, 

small differences from Ms = 1* Mathematically, we have 
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('£L = =• o 
(12) 

"where M is the local and Ks the free-stream Mach number. 

Free-stream Mach number greater than one.—To handle the problem 

analytically, the flow must be determined in the transonic zone bounded 

by the bow wave, the wedge profile, and the separating Mach wave (see 

Figure 3a)# The separating Mach wave is the particular expansion wave 

which meets the sonic line and the bow wave at their common point. Any 

disturbance introduced ahead of the separating wave can travel alone a 

Mach wave to the sonic line and into the subsonic region, thereby influ

encing the shape of the boundaries. 

The solution of the problem is complicated by the fact that the 

governing partial differential equation is of mixed type and non-linear. 

•u 0 " 7= ) + *«('-£)-*+,,*? =<> (13) 

Moreover, the locations of the bow wave and the separating Mach wave 

are not known at the start but must be determined as part of the solution. 

The flow, having passed through the curved bow wave, is necessarily 

rotational which makes potential flow theory impossible to apply except 

as a perturbation. An additional practical complication arises from the 

fact that any rigorous solution must be a function of three independent 

variables, Ms, t/c, and fi« 

Vineenti and Wagoner3 transformed the flow from the physical 

plane to the hodograph plane and introduced the assumption of small dis

turbances « Physically, this implies that the results are restricted to 
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thin airfoils at flight Mach numbers not far removed from unity. The 

transformation causes the bow wave to go over into a known shock polar, 

while the separating Mach wave transforms into one of the fixed 

epicycloids which make up the characteristic net in the hodograph. The 

terms representing fluid rotation turn out to be of the same order as 

other terms which are neglected in the analysis and they may be neg

lected, Now the differential equation, though still of the mixed type, 

takes on a specially simple form (the Tricomi equation) which has been 

the subject of considerable mathematical study. 

* - ^ = * ~ . ^ v r (Hi) 

where u « a* + uf and <f is a function of JC , the transformed potential. 

Equation (lU) is linear and can easily be solved by separation of 

variables. The solution of the problem becomes a function of a single 

parameter which involves all three of the individual variables previously 

discussed. This parameter is known as the transonic similarity parameter. 

It can be written in several forms, as, for example: 

e = M<*~ ' 
* " Lmi)(x/iY\V3 . ( 1 5 ) 

Likewise, Karmanl3 showed that the perturbation equations hold 

for arbitraiy vales of t/c, T , and M if 

M ^ - I 

i s considered as the transonic s imi la r i ty parameter. Karman's theory i s 



based on the existence of a potential flow, thus viscosity ana rotation 

are neglected. 

In the work of Vincenti and Wagoner^ the supersonic portion is 

replaced by an equivalent integral relation which must be satisfied 

everywhere along the sonic line. The differential equation becomes 

purely elliptic. By means of finite-difference approximations, the 

boundary value problem for the partial differential equation is reduced 

to a system of simultaneous algebraic equations. The latter problem is 

solved in normal fashion by relaxation techniques. Calculations have 

been carried out for sufficient values of £a to bridge the gap between 

the findings of Guderley and Yoshihara at Ms = 1 (f — O) and the 

analytical results which are available when the bow wave is attached 

and the flow is everywhere supersonic ( f = 1.26). These results are 

o 
included in Figure 1 for the case of a 15 wedge in air. 

Free-stream Mach number equal to one.—The formulation of the boundary 

value problem in the hodograph plane does not present great difficulty. 

Guderley and Yoshihara^ introduce the quantity t\ by means of the 

relation 

,, , f r , . ) * ( ^ 

and the differentat ion equation for the transformed poten t ia l assumes 

the form 

+ .,,, " >\ 4ee ' ° (16) 
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which is Trice-mi's equation. The singularity at the point of the 

hodograph which corresponds to the free-stream velocity has previously 

been investigated1-^. The transformation to the hodograph is order-

reversing for lines of y = constant, A line representing y, for 

y, < y2 will be affected more by the wedge, and its plot in the hodo-

graph will be farther removed from the free-stream velocity than the 

line representing y2« From the behavior of y on the line v = 0, namely 

y = 0 u -d a* , y ::: oo u = a* 

and from the behavior of the lines y • constant near u = a-M- it can be 

inferred that locally y has a doublet singularity. A family of 

particular solutions suitable to fulfill the boundary conditions by 

superposition is easily found. However, a direct attempt to carry out 

this superposition leads to an infinite system of equations. Guderley 

and Xoshihara found that an attempt to satisfy this system by taking a 

finite number of terms was too satisfactory. They showed how to overcome 

this difficulty. First, the boundary value problem is changed in such a 

way that the solution remains the same while the supersonic part of the 

boundary is more conveniently located. This change reduced considerably 

the amount of work required to establish the infinite system of equations. 

Then in the case of zero angle of attack the problem can be formulated in 

terms of an integral equation 

-2 (i*f£ fi<*) «"*& " <« J!^L F/v) 
(17) 

where O f t £ %/2 and Q±(eo-&)*Q>/2, t i s a variable of in tegra t ion , and 
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F]_(V) is a previously determined function. The kernel of equation (17) 

in a close approximation corresponds to that appearing in the theory of 

a thin airfoil in an incompressible flow. Thus the solution finally 

requires only a suitable Fourier analysis of the boundary conditions. 

The result for a 1$ wedge in air is shown in Figure 1. 

Free-stream Mach number less than one.—The problem of the wedge moving 

at Mach numbers slightly less than one has been solved by Cole-*-. Steady, 

isentropic motion in a perfect, non-viscous gas is assumed; also, it is 

assumed that the flow field is perturbed about uniform flow at sonic 

velocity. If we let 

U = - -7*" u. 

yf = ^ r 
A. 

the equations are 

UUX - Vy = 0 (18) 

Uy + Vx = 0 . (19) 

When U < 0 the flow is supersonic and the system of equations (18) and 

(19) is hyperbolic. When U > 0 the flow is subsonic and the system is 

e l l ip t ic . Thus the system is of mixed type and is nonlinear. 

In the hodograph plane the system of equations becomes linear and 

reduces to Tricomi's equation. 

U^w + vuu = ° (20) 
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With the boundary conditions of uniform flow at infinity (represented 

by a doublet singularity), flow tangent to the body, symmetry, sonic 

velocity at the beginning of the corner, and the stagnation condition 

of the linearized theory, and with the assumption that in turning the 

corner the flow is locally of the type investigated by Prandtl-Meyer, 

the equation can be solved mathematically, 

However, other non-singular solutions will have to be added to 

the present one in order to satisfy the conditions in the supersonic 

region. These solutions, being non-singular, are likely to be of small 

magnitude. This solution is actually the solution to a problem where 

x/c = 1 on the sonic line. Replacing the sonic line by x/c = 1; should 

be a good approximation in the subsonic case, as far as the solution 

over the front part of the wedge is concerned. 

For the linearized theory the pressure coefficient can be 

approximated as a linear function of the velocity and the drag 

coefficient can be found be integrating the pressure coefficient over 

the surface of the wedge. 

CP = "2 u " us 
(21) 

CD = G0ftr J (x/c) (22) 

Cole !s r e su l t s for the case of a l£ wedge in a i r are included in 

Figure 1. 
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CHAPTER in 

EQUIPMENT 

There are two types of water channels suitable for application of 

the hydraulic analogy* The less expensive of these is the type in which 

the model is moved through static water. The other arrangement is one in 

which the model remains stationary while water flows past it. The former 

is in use at Georgia Tech and the Aerophysics Laboratory of Worth 

American Aviation, Incorporated' while the latter is employed by the 

National Advisory Committee for Aeronautics at Langley Field, Virginia°. 

Other advantages of the movable model type include easy acceler

ation of the flow, simple construction, and no boundary layer effect from 

the sides and bottom of the channel. Its biggest disadvantage, which is 

not present in the stationary model arrangement, is the difficulty of 

measuring the water depth along the model. 

A general view of the water channel is shown in Figure 2. The 

frame is of bolted structural steel supporting a channel four feet wide, 

twenty feet long, and approximately one and one fourth inches in depth. 

The bottom of this channel is of plate glass in two five foot sections 

and one ten foot section. The transverse steel members are spaced at 

thirty inch intervals and are supported by screw jacks enabling the glass 

surface, over which the model slides, to be leveled within 0.001 inch in 

all points. This leveling is accomplished through the use of a transit. 

A drain is provided at one end of the channel. 
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The model carriage is oi* welded steel tubing cons true tion, It is 

moved along the channel on four rubber wheels which transfer the weight 

of the carriage to the upper horizontal steel member of the frame, 

serving also as rails. Four rubber wheels with vertical axes located at 

the carriage frame corners prevent any relative sidewise motion of the 

carriage. The model is supported behind the carriage by a vertically 

free acting mount producing the towing force and permitting the model 

weight to act on the channel bottom• This mount is also radially adjust

able. Safety stops are placed at the ends of the carriage track to 

prevent overrunning of the carriage and model« 

The carriage is driven by a one quarter horse-power, single phase, 

alternating current electric motor through a 3/32 inch continuous steel 

cable. A reversing mechanism and a "Speed-Ranger" device enable control 

of motion in either direction and at varied speeds. An auxiliary power 

unit is available for high speed and accelerating and decelerating runs* 

This consists of a 19*5 ampere, 2k volt direct current series wound 

motor which drives the cable through a set of reduction gears. 

The combination of these two drive units provides speeds of from 

0.5 to 5*5 feet per second. 

The correct timing for accurate speed adjustment of the model is 

accomplished by means of a microswitch placed on the track. A cam 2.925 

feet in length attached to the carriage trips this switch which auto

matically operates an electric timer. The timer is located on the control 

panel at the side of the water channel. This panel also contains the 

instruments and switches for starting, reversing and operating the drive 

mechanism, 
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When experimental work was first begun in the Georgia Tech water 

channel; photographs were taken of the models to determine the water 

depth distribution around the model. The method and equipment used in 

this work are described by Hatch -^ Photographic interpretation of 

these results was not particularly accurate so another method of 

measuring water depth was developed. 

The model is fitted with a plexiglas bracket from which are 

suspended steel needle probes alongside the model. These probes are 

attached to adjustable brass screws, which are mounted in the plexiglas 

bracket* Copper contacts are provided for each probe. Contact of the 

probe with the water completes the grid circuit of a vacuum tube causing 

a relay to operate a signal light. As the model is moved through the 

water, the probe is adjusted vertically until it just touches the water, 

The status of the signal light determines the contact position of the 

probe point and the water surface. This is done for each of the probes 

and the probe heights from the bottom of the model are then measured by 

means of a height gage and surface plate to within an accuracy of 0,001 

inch. 

The model was chosen because of the availability of shock tube 

data. The model is a wedge airfoil and is constructed of aluminum. A 

descriptive diagram is shown in Figure lu 
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CHAPTER IV 

PROCEDURE 

Preliminary runs were made for the purpose of aligning the model. 

The model was set at zero angle of attack by measuring the water depth 

at similar points on each side of the model and adjusting the model 

until the two readings were identical* 

The meniscus effect of the water was measured and recorded for 

use in correcting the water depths to the actual values caused by the 

hydraulic analogy. These measurements were made with the model 

stationary. 

The water depth was set before each run by means of a probe 

which was adjusted to 0*250 inch* The model speed was regulated to the 

desired value by the use of the electric timer. The probes were then 

adjusted until they indicated the local depths of the water alongside 

the model; they were left slightly out of the water to prevent inter

ference with the flow pattern. The probe heights were measured and 

recorded for use in calculating the pressure coefficients. Tests were 

conducted at Mach numbers of 0.852, 0.Q73 1.08, and 1.20. 
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CHAPTER V 

DISCUSSION OF RESULTS 

The meniscus effect on the side of the model as measured with the 

model stationary is shown in Figure 5. Since the effect close to the 

side of the model is of the order of 0,020 to O.OhO inch, it is clearly 

not a negligible quantity,, 

The calculated pressure coefficients, shown in Figure 6, do not 

o 
have the same shape as predicted "by the theory and verified by shock 

tube experiments'4, The theoretical curves have an appreciable slope 

whereas the water channel results indicate an almost constant pressure 

coefficient from about x/c = 0.2 to x/c - 0.8, 

It is felt that the pressure coefficient curve does not have the 

predicted shape, because of the effect of vertical accelerations in the 

water channel. In the theory of the hydraulic analogy, vertical acceler

ations are neglected* If the water channel were to follow the predictions 

of the theory, the water depth at the nose of the wedge should reach the 

stagnation value at speeds below the speed at which the bow wave attaches 

to the nose. Consider the equation for the stagnation depth-'-6. 

For Ms = 0.8, d0 = 1.32ds and for a static water depth of 0.25 inch the 

increase to stagnation value is only 0.03 inch. This increase can be 

almost fully realized without a large vertical acceleration. But for 
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Ms = 1.2, d0 * 1.72 d.s , and for a static depth of 0.25 inch the 

difference in static and stagnation depth is 0.18 inch. An appreciable 

vertical acceleration is required for the depth to increase by almost 

three-fourths of its original depth. The results of Laitone and Kielsen^? 

obtained by hydraulic analogy also show a depth at the nose of the wedge 

which is appreciably less than the stagnation depth in the transonic 

range of velocities. 

From Figure 6 it is obvious that of the four pressure coefficient 

distributions the one at the lowest Mach number (0.852) most nearly 

approaches the theoretical shape in that it shows an appreciable pressure 

rise at the nose of the airfoil, 

Except for ¥ - 0.97 the values of CD on the rear portion of the 

airfoil agree well with the theory and the experimental results in air^0*. 

For M = 0.97 it appears that the channel is not long enough to allow 

°teady state to be reached; i.e., for the bow wave which is formed in 

starting the model to disappear upstream, and therefore the pressures 

Treasured are slightly larger than they should be. 

The drag coefficients obtained by integrating the pressure 

coefficient times the tangent of the semi-wedge angle along the chord 

are shown in Figure 1. The value for Ms = 0.852 is within the experi

mental accuracy at this condition. The experimental accuracy is not 

too good because, as discussed below, the depth ratios are near unity. 

The value for Ms = 0.97 is high because it is believed that steady state 

was not reached. The values for M^ = 1.08 and 1.20 are low because the 

effect of the vertical accelerations prevents the proper pressure increase 

at the nose of the wedge. 
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The values of the pressure coefficient, and therefore the drag 

coefficient, are subject to error because of the nature of the equation 

used to calculate Cp. 

cr^[((^ff-U(T/-'] (11) 

A small error is d/ds, particularly for values close to unity, will 

cause a considerable error in Cp. The if correction is possibly a 

source of small error, but the error should not be great since it 

depends on values taken from Figure 1 of the National Advisory Committee 

for Aeronautics Technical Note 1185.^ 
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CHAPTER VI 

CONCLUSIONS 

1. The effect of the meniscus along the side of the model is 

sizable, and must be taken into account when evaluating water channel 

test data. 

2. For investigations at Froude (Hach) numbers slightly below 

1.0, the moving model and. static water arrangement does not allow 

steady state to be reached in a short run and does not give reliable 

results. 

3. For Mach numbers greater than approximately 0.3 the 

hydraulic analogy does not give accurate results in the vicinity of a 

stagnation point. 

U. The drag coefficients obtained in the transonic range by 

this investigation do not provide a valid, accurate comparison with 

the theory, 
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CHAPTER VII 

HECOJffiEEHDATIOES 

1* A more accurate method of adjusting the probe to the water 

level than tha t used a t present a t Georgia Tech would provide greater 

experimental accuracy for the water channel. 

2 . A more complete and accurate invest igat ion of the meniscus 

effect would add to the usefullness of the water channel as a research 

t oo l . 
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APPENDIX 
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Figiflfc g, General View o£ the Waier Channel 
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Probe posi t ions 

Figure 4. Wedge Air fo i l 1-Iodel 
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