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SUMMARY

An analytic solution of the Boltzmann equation for the problem of
a gas {lowing between two parallel, infinite plates, applicable for
all flow regimes; has been developed for three different molecular models,
The molecular models are the Krook, hard sphere, and Maxwellian models.
The full-range and half-range moment methods, with the Willis iteration
method,; were used in the analysis. The purpose of this dissertation was
to make a meaningful comparison of the volume flow rate with the existing
experimental data, and to adequately describe the minimum in the volume
flow rate which occurs in the transition regime,

The physical problem is that of a gas flowing through a long,
wide channel at low speed. The mathematical problem has been idealized
to consider a one-component gas flowing between two parallel, infinite
plates. As a result of this idealization the mass velocity profiles are
considered fully developed. Although the theoretical analysis ignores
the end effects present in a finite channel, the quantity of interest
is the volume flow rate which remains the same regardless which section
of the channel is considered. Thus, the mathematical problem suitably
describes the conditions -- as far as the volume flow rate is concerned --
existing near the mid-pecint of a long channel.

I'he theoretical analysis was based on the following assumptions:

l. There was no density variation between the plates at any
civen lengitudinal station.

2. The flow field and plates were at the same temperature and
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were isothermal.

3. In position-space, the mass velocity varied only in the dire:-
tion normal to the plates.

4, The pressure gradient was constant.

The Boltzmann equation with the Krook model was first solved using
the full-range moment method. In this method, the perturbation of the dis-
tribution function is expanded in a polynomial in € the normal velouity
component., The coefficients are functions of position and are determined
by the solution of the moment equations obtained from the Boltzmann equa-
tion. The moments are defined over the full velocity range, from -
to 40, The first three approximations for the full-range method were
obtained. Since the convergence was slow and no minimum was obtained in
the transition regime, the solution was not carried further by this
method.

After applying the full-range method and not achieving satis-
factory results, the half-range moment method was appiied to the Boltzmann
equation using the Krook model. The method is similar to the full-range
method, except that the perturbation of the distribution function is
explicitly divided into two streams. In addition, the moments are
defined over the half ranges;, -« to 40, The first three approximation:
by the half-range method were obtained, The third approximation yielded
the desired minimum in the transition regime. For the transition, slip.
and continuum regimes there was very good agreement with the experimenta.
data. However, in the near-free-molecular regime the theoretical analysis
yielded poor results., Thus, the Willis iteration method was sppiied to

improve the results in this region.



This method consists of developing, from the basic¢ integrodiffer-
ential equation, a relation for the volume flow rate in terms of a first
guess of the volume flow rate. Once a first guess is known, the firs:
iteration zan be computed. As a first guess, the first approximation for
the Krook mode: was used, The result of the first iteration showed tiie
correct limit for free-molecular flow, indicating good agreement with
the experimental data.

The Boltzmann equation with the hard spnere model was solved by
the half-range method for two approximations. The second approximation
yielded a minimum in the voiume flow rate in the transition regime. Data
for helium, hydrogen, and carkon dioxide were¢ compared to the theoretical
results and good agreement was obtained in ail but the near-free-molecular
region.

The last anaiysls was that of the Maxwellian model using *he half-
range method. Thne first three upproximations were solved, and the third
yielded the desired minimum in the volume flow rate in the transition
region. Data for helium, hydrogen, and carbon dioxide were compared
with the theory and good agreement was obtained for 21l but the ncar-free-
molecular region., It was necessary =0 calculate values of five bracket
integrals, whick have not been previcusly calculated, for the third
approxima2tion,

The consistently unsatisfactoryv agreement in the near-free-moleculax
region for all the molecular modsls is a result of the polynomia. approx:
mation method. [he volume flow rate exhibits a non-analyiic benavior
for near-free-molecular conditions, and it is impossible to obtain

this behavior from a finite number of terms in a polynomial.



It was concluded that the half-range method yielded good resul:is

for the transition, slip, and continuum regions. By using the Willis

iteration, this good agreement with the experimentzl data was extends=d

4

to all of the flow regimes, <fhe Krook model was a satisfactory approxi
mation to the collision integral of the Boltzmann equation, yielding

better results than the hard sphere or Maxwellian models.



NOMENCLATURE

Symbol
¢ . -8
A Angstrom unit, 10 cm.
A; see equation (9)
a molecular diameter
;
Bi see equation (28)
e nondimensional velocity, BV
< g vy
d plate separation distance
f distribution function
fo local Maxwellian distribution function
fnq equilibrium distribution function
fm(x) see equation (56)
Hi Hermite polynomials
h perturbation of distribution function
R nondimensional perturbation, h/Kd
I bracket integral, see equation (67)

JO) collision integral, see equation (61)

k Beltzmann constant

L? orthogonzl polynomial, see equation (C.3)
M molecular weiaht

M, full-range moments, see equation (10)

m molecular mass



Symbol
) numker density
N local numker densizty
P pressure
Py inlet pressure
Py local pressure
Q volume flow rate
o] nondimensional mass velocity
q, average veiocity at any cross-section
avg
Rl force constant for Maxwellian molecules
T temperature
t time
u mass velocity
v volume
v molecular velocity
2} velocicty of one molecule in a binary collision
v, velocity of center of mass in a binary collision
v relative velocity between molecules in =z binary collision

Lad
-

X,¥,2 position coordinates

Greek Symbols

a constant, see equation (D.9)

B m/2kT

) inverse Knudsen number, Krook model

o inverse Knudsen number, Maxwellian modsl
5 inverse Knudsen numcer, hard sphere model



Greek Symbols

Ole.
17

Kronecker delta function

€ angle, see equation (58)

n nondimensional coordinate, x/d

n viscosity

a scattering angle, see equation (58)
o (dp/dz)/p,

A mean free path, Krook model, a]/BnO
i constant = 3,14159265359

o tangential accommodation coefficient
9y nfdl = collision frequency

U hu/cz

Superscripts

+ indicates positive and negative direction of
Subscripts

X,y,z direction components

C

X

xiii



CHAPTER I

INTRODUCTION AND HISTORICAL BACKGROUND

Purpose and Scope of Work

Discussion of the Problem

The solution of the parallel-plate geometry flow problem is of
interest, first, because deviations from the continuum theory have been
found in the experimental data for low pressures, and, second., because
the simple geometry of the problem provides a further test for the powerfu.
methods of solution recently developed and appiied to similar problems,

The problem consists of determining the volume flow rate of a
rarefied gas between two parallel, infinite plates. The geometry of the
problem is shown in Figure 1, page 2. The physical problem is that of a
gas flowing through a long, wide channel (such that the height-to-width
ratio is very small) at low speed. The mathematical problem has been
ldealized to consider a one-component gas flowing between two parallel,
infinite plates, As a result of this idealization the velocity profiles
are "fully" developed (that is, there is no change in the macroscopic
velocity in the longitudinal direction). Although the mathematical prob-
lem ignores the end effects present in a finite channel, the quantiiy of
interest 315 the volume flow rate wnich remains the same regardless which
section of the finite channel is considered, Thus, the idealized mathe-
matical problem suitably describes the conditions -~ as far as the volume

flow rate is concerned - existing near the mid-point of a long channei.
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Figure 1. Geometry of the Problem.



Purpose

The purpose of the present work is:

1, To solve the Bolitzmann equation, analytically, for the distr:i-
bution function of a gas flowing between two infinite, parallel plates ftor
three different molecular models, i.e., the Krook, hard sphere, and
Maxwellian models.

2. To make a meaningful comparison of the volume flow rate with
the existing experimental data for several aifferent gases,

3. To demonstrate that it is possible to obtain a satisfactory
solution of the volume flow rate for the free-moliecular, transiftion, siip,
and continuum flow regimes.

Scope of the Investigation

The Boltzmann equation using the Krook model is first solved by
the full-range moment method (described in Gross, Jackson, and Ziering, (1)).
and then by the half-range moment method {(1). The solution by the half-
range moment method is then iterated once following the method of Willis
(2). The results of these soiutions are then compared with Cercignani's
(3) numerical results and Dong's (4) experimental data tor the volume fiow
rate, Next, tne Boltzmann equation using the hard sphere model is soived
by the half-range method, and the results are compared with the experiments
of Dong. Last, the Boltzmann equation using the Maxwelliian model 1s solved
by the half -range method, and the results are compared with the experiments

of Dong.

Historicai Background

The earliest work on parallel plates and the related problem of



rarefied gas flow in tubes was that of Knudsen. He developed, in 1909,
an equation for the volume flow rate in long, circular tubes for free-
molecular flow (5). In the same paper he presented an eguation for the
volume flow rate in finite length, rectangular channeis under the condi-
tion of free-molecular flow. Both of these equations were derived from a
consideration of the momentum flux and the pressure forces. Knudsen also
presented some results of his experiments with long tubes in this paper,
and demonstrated that a minimum in the volume flow rate exists in the
transition regime. He showed thst this minimum could be observed only
by reducing the pressure in the system to one mm, of mercury or less,
Further work on Knudsen's part substantiated the existence of the minimum
(6) . Knudsen described nis early work in a short monograph {(7), which,
unlike his previous works, was written in English,

Knudsen's derivations of the flow rate equations were somewhat
inaccurate because of some non-rigorous assumptions on his part. Von
Smoluchowski (8) rigorously derived an expression for the voiume flow
rate in a long cylinder for free-molecular flow, Besides extending
Knudsen's work to any cross section, he introduced tne possibility of
non-diffuse reflection of the molecules from the tuke walls.

Further experimental work with parallel-plate geometry was carried
out by Gaede (9) in 1913. His work further verified tne existence of a
minimum in the volume fiow rate. OCaede used two parallel plates,

4 x 10m4 cm. aparti the width of the siit was 3.4 ¢m.3; the dimension
in the direction of flow was 0.12 cm. Thus, he worked with essentially
a two-dimensional slit. Gaede observed that the volume flow rate at the

minimum was about fifty percent below the theoretical free-molecular value.



Clausing (10), :n nis work of 1932, derived an expressicn for the
volume flow rate between parzilel plates in free-moiecular conditions. He
considered the slit <o te infinitely wides zonsequently., only the length
of the plates and the distance between the plates were parameters in his
equation. His equation is applicable for botn long and shor:i plates.

Tn 1937, Rasmussen [11) carried out experiments to determine the
volume flow rate for parallel-plate geometry for low pressures. on these
experiments, Rasmussen usec two glass plates, 1.82 x 10_:3 m. apart., The
width of the slit was 1.32 cm., and the dimension in the direciion of tlow
was 0.9863 cm. He observed a minimum in the volume flow rate near a
Knudsen number of unity.

These early experiments established that a minimum existed in the
volume flow rate at very low pressures. This minimum was not predi:tea by
the continuum-flow theory, and, furthermore, no <theory was available *o
predict the minimum,

Certainly, a need existed for a theory to adequately predict the
properties of “he gas flow betwesn parallel piates (and tubes) for the
entire Knudsen number range. A review of the attempts to adequately
determine the volume flow rate for the parallel plate geometry 1s pre

seated i, the next section.

Review of Recent Literature

After the work of the early investigators, 1%t was not until 1952
that a theoretical analysis was preseanted to determine the volume flow rate
between parallel plates. Hiby and Pahl (12), following the work that

Pollard and Present (13} had presented on circular tubes, derived an



expression for the volume flow rate in a rectangular channel of infinite
length for near-free-molecular flow., Unfortunately, they considered only
the self-diffusion component of the flow rate; and did not include the
component resulting from the presence of a pressure drop. Consequently,
their results did not agree with the available experimental data and did
not indicate the existence of a minimum.

The analysis of Hiby and Pahl was corrected by Dong (4) in 1956.

He accounted for the flow due to the pressure gradient. As a result of
the correction, Hiby and Pahl's theoretical work presented a minimum in
the transition region, and agreed with Dong's experimental work. However,
this solution is inaccurate for Knudsen numbers less than unity, so that
the continuum-flow solution is not predictable. Dong determined the vol-
ume flow rate for a gas moving between two parallel plates 0.324 cm. apart,
22.86 cm. wide, and 61.0 cm, long. The experiments were run with H2, He.
air, C02, and freon-12.

Neither Hiby and Pahl nor Dong were able to calculate any quantity
other than the volume flow rate, since their analyses were not carried out
by solving the Boltzmann equation and determining the distribution function.
Their solutions were found by considering the flux of particles leaving
the walls of the channel and the flux of particles leaving points of
collision in the gas. Both investigators assumed that only one molecule-
molecule collision occurred between collisions with the wall.

Thus, there are two drawbacks to the work of these investigators:
One, only the volume flow rate was determined; two, the analyses were not
applicable throughout the entire Knudsen number range.

Takao (14), in 1960, was able to solve the Boltzmann equation

(using the Krook model for the collision term) and to obtain a minimum in



his solution of the volume flow rate for the parailel-plate geometry
problem. His solution is applicable for the entire Knudsen number range
from zontinuum to free molezular flow., Takao's method consisted of dividing
the distribution function at zny point in the channel into two partsg
those molecules passing the poin%t which have not suffered a collision
since their reflection from the wall, and those molecules which have
collided with other molecules since their reflection. Since this approach
is quite involved, [akao found it necessary to make physical and mathemat-
ical assumptions which were not rigorously supported. Also, Takzo found
that it was not possible to distinguish between gases. Consequentiv, the
vaiidity of his results {as far as quantitative results are concerned; is
questionable and the resul<s are limited.

Ziering (15), in 1960, soived tnis same problem for the distribution
function and, subsequentiy. obtained the volume flow rate. However, niu
solution did not exhibit the desired minimum becsuse he omitted a texm in
the Boltzmann equation.

Cercignani {(3), (16), in 1962, pointed out corrections %o Takso's
work, and numerically solved the Bolizmann equation (with the Krook model)
for the volume flow rate throughout the entire Knudsen number range. He
first assumed the distribution fun:stion to be perturbed slightly from
its equilibrium value. After developing the Boltzmann equation in terms
of the perturbation, he carried out certain integratiocns ito obtain an
integral equation for the velocity and then integrated tne velocity betwezn
the two plates to obtain tne volume flow rate. Cercignani used a numericai
method to solve the integral equation for the velocity and, subsequentiy,

the volume flow rate., Although his results were in reasonable agreement



with the experimental data, the numerical procedure was complicated and
only the volume flow rate for the Krook model was determined. Because of
the use of the Krook model, there was no distinction between gases.
Cercignani's solution was based on the assumptions of zompletely diffuse
reflection of the molecules from the plates and of a constant pressure
gradient.

The method used in the present work to solve the Boltzmann equa-
tion is the half-range moment method. A good description of this method
is given in Gross, Jackson, and Ziering (1), where the method was used to
solve the Boltzmann equation for the Couette flow problem. Briefly, the
hal f-range moment method assumes that tne flow is divided into two streazms,
one stream leaving the wall, and one stream approaching the wall. The
perturbation of the distribution function is then expanded in a series
of orthogonal polynomials which are orthogonai over the veiocity half-
ranges, -© < V< 0 and 0< v <%, It is theun possible to determine the
solution of the Boltzmann equation for the perturbation of the distribu-
tion function.

This concept of dividing the flow into two streams, with ortho-
gonality conditions imposed over the half-range, is accredited to Yvon,
as discussed by Kourganoff and Busbridge (17) on page 101 of their work.
The method arose from an investigation on neutron diffusion, and was sub-
sequently used by Gross and Ziering (18) in 1956, in the Miline problem
for a plane gray atmosphere with isotropic radiation., 7These problems,
and that of flow between parallel plates, have as a basic equation a
similar integrodifferential equation. Furthermore, an interaction oueurs

at the boundary of each problem such that the incoming stream is alzered



upon reflection from the boundary, Thus. there is a discontinuity at the
boundary which only the haif-range method suitably describes, The simi -
larities between the gasdynamic Boltzmann equation and the radiative Miine
equation and their respective boundary conditions are discussed by Huang
and Giddens (35).

The half-range method has been successfully applied by Gross,
Jackson, and Ziering to the Couette flow problem in a series of reports
(1),(19),(20), (21). These reports deal with the Couette problem using
the Krook model, hard sphere modei, and Maxwellian model in the collision
integral of the Boltzmann equation. They solve both the momentum and hest
transfer problems with satisfactory results,

The intent of this study is to extend the previous work by
analytically solving the Boltzmann equation, using the full-range and hait-
range moment methods, for three different molecular models. The results
for the volume flow rate are compared to the experimental data of

Rasmussen and Dong.
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CHAPTER 11

METHOD OF SOLUTION

Krook Model

General

The problem consists of a fully developed flow between two parailel,
infinite plates as shown in Figure 1. The plate separation distance 1is
d and the flow is in the z-direction.

As in all rarefied gas dyunaml¢ problemsy the Boltzmann equation is
the basic transport equation. In the absence of external forces and

time variation of properties, the Boltzmann eguation is

<
o
=

= (§5) (1)

e

=
s

where the right-hand side of the eguation expresses the total wariation
of f due to molecular collisions. One of the simplest expressions
thus far devised for *h. collision term is the Bhatnager, Gross, and
Krook linearized model (22),

(9f4y . & .-y (5
‘dt }m g (feq £, (2)
" 1

where feq is the local Maxwellian equilibrium distribution function.
The linearization of feq follows that of reference (1) and will not ke
repeated here,

The mathematical anaiysis in this study 15 based upon the



following assumptions:

l. There is no density variation between the plates at any given
longitudinal station.

2, The flow field and plates are at the same temperature and are
isothermal.

3. Ln position-space, the mass velocity is a function only of x.

4. The pressure gradient is constant.

In the succeeding sections, the solution for the distribution
function by means of the full-range moment method and the half-range moment
method is considered. The distrisution function for the Kroox modeli is
first determined by the full-range moment method, and then by the halif-
range moment method.

Full-range Moment Method

Basic Equations. Appendix A presents a detailed derivation of the

equations involved in the solution by the full-range method. Only the
major equations are presented and discussed in this sectiion. The deriva-
tion of the equations closelv follows that of reference (1) where ths full-
range method was used to solve the Couette problem.

The distribution function is assumed to be perturbed slightly from

the Maxwellian distribution such that
f£=f(1+hn), (3)

where

/%2 (4)



i2

and

= = 5 : fes
n, = poj&T pi(l + xz) /kT {5;

The constant "x " (Appendix A, equation A.5) is proportional to the pres-
sure gradient., Using the previous equations and assumptions and intro-

ducing dimensionless variables;, the Boltzmann equation becomes

e 9B g 4 an* =28 q, s (8)

wnere & = dA is the inverse Knudsen number, A = dlfﬁno is the mean

free path, and

20 ‘:2
qz(n) =‘?t=3/2j mk’:z h!G‘:L’ d3".:¢ (T}

Substituting h*(q) &= cz¢ {n) 1into equation (6) and integrating over Cy

and c, yvields

oo
P

g g}k+l+b¢ '—"-ﬂ%:j te Xdc_ . (8}
% 21 e e -

in order to obtain soluticns for the veiocitv profiles, q?(n)g and

the volume flow rate, it is nesessary to solve eguation (8) for %{n). The

first step is to assume the solution is of the form

2
—

(=]
* _ N,
wn,c) = ) o) A (n) . (
n=o0

where



X ‘ + .
vin) =% {n) for ¢ >0

pin) = (n) for oy < 0.

The full-range moments are defined

1 okt
Moo= == Kote Xac . (10}
/7% d
k _=S% |
Multiplying equation (8) by c. © X qur and integrating ¢, over ths

full velocity range yields the following set of moment equations

dM
l £y
dn = 1 ik)
aM
2 _ _
mdq b M]_ vLZ)
dM
3. .1 2 ‘
an =73 & M2+ 5 Mo 113)
dM
e & o B etc, {14)
dn 3 *
Comkbining equations (9) and {10) vields
oo I ,‘2
o “ly
M, = z [An fq;f c;+k g de
ko8 I PR
\2 )
+ Im ntk e X ] (
+ A_(q) < e - ’ '185)
n 0 X b= Xj

it is now possibie to solve eguetions (11) - (14) for the M, in terms
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of f, It is also possibie to write the Mi in terms of the Af using

equation (10). From these sets of equations, the A? are determined as
functions of ¢.

In order to determine the arbitrary constants arising from the
solution of equations (11) = (14), the number of boundary conditions

The boundary condition requires

necessary must equal the number of Mo

that the distribution function at the plates be composed of two parts:
One part is the fraction of molecules reflected diffusely and the other

is the fraction reflected specularly.

(16)

diffusely is denoted by d. Thus,
fi(x ) +% 9 Cx) . f0<1 & s;gn c£>
+{1 - 4g) f:F (x = 3 % . =cx) .
In terms of ¢ this is
w*h==$%ya§)=(1=6)¢ﬂnxli%ywxﬁ
If o =1, equation (17) becomes
A} (3) = 0.

The fraction of molecules reflected

(17)

(18)

To be consistent with the
dient;, only the case ¢ = 1.0
the approximations already made,
g

very near unity.

With the solution of the

shouid ke considered.

assumption of a constant pressure gra-
However, considering
the results should be nearly correct for

Ai complete, % (g) can be determined.



Then, qz{q} can be found and, subsequently, Q(3), the volume flow
rate, The derivation of Q(&) appears in Appendix A. The first three
approximations for the full-range method of the Krook model are discussed
in the next three sections.

First Approximation. For the first approximation assume ¢t(q)= Az(q)

and use the first two moment equations. The first approximation is solved
in detail in Appendix B and only the solution is presented in this sec-

tion. The solution [or the velocity is

_ b 2 Nm 2 -0 o
gt sgn” ity e s (19)
and the volume flow rate is
#9_ o T 2 -d,
QiE] = g & B (5 (20)

Second Approximation. The perturbation of the distribution func-

tion 1s assumed to be proportional to

I+

95(n) = AZ(n) + AT(n) ¢ - (21)

The method of solution for qz(q) follows that described for the first

apprcximation. In this case, four moment equations are used to solve for

Ag and AT. For the case ¢ = 1, the velocity between the plates is

b

given by

nallfeg
+
———y
"
[ L
]
6]
(g
o
Hyl
=4
nalor iroloe
+
™
i
(¥
b=
s
o
Nl rolor
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The flow rate is

- b b"
2 cosh = + ,/m sinh =
glsh s L .- 24 |x 4 20E 2 2
6 8 B 2 sinh LI m cosh >
2 2 -
i sink 2 ¢
+% 2+4;E ® - 5 |° (23)
| {2 sinh 5 + ,/m cosh 5
Third Approximation. In this case,
+ At + + 2
v(n) = A (n) +A(n) c +An) (24)

The first six moment equations are used to solve for the Aiu The fifth

and sixth moment equations are, respectively,

dMm
>S. .3 3
Rk M, + 7 oM (25)
dMm
6 _
df] = _bME) a (26)

Since the third approximation does not yield a satisfactory solution,

and since the expressions for qz(q) and Q(&) are very complicated,
only tabulated values of Q(&) wversus & are presented. These data

are given in Table 1, page 44"

Hal f-range Moment Method

Basic Equations. Beginning with equation (6), it is possible to

formulate a method of solution which exhibits convergence faster than the

#*
All numerical calculations for this study were carried out on a
Burroughs B5500 computer.
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full-range method for all velocity moments investigated. Rather than

—c2
c ]
multiply equation {6) by ct e X/ofmn and integrate over the full

velocity range to obtain the moment equations; the equation is multiplied

~

by a similar term and integrated over the half-ranges - <c <0 and

0 < €y < @, The result of this operation is a set of differential equa-
+
tions in the variable h*‘g which is the perturbation of the distribution
function for the half-range method. The "+" sign indicates Sy > 03 the
n.n ~
sign, Sy < 0,
Appendix C contains a complete derivation of the basic egquations

used in the half-range solution, so only a few of the equations are pre-

sented in this section. The basic integrodifferential equation is

¥+
dh ~ #t 2 . JP 2t =T 3 £ 5
Cy ?;r— + c, + 3h ~ = ;373 LI czh e d7 e, (27)

Following reference (l)ﬁ it is assumed that h“i can be expanded in

terms of Hermite polynomials such that

h** = E: B, () L;(c

Sk ) Hj(cy} H (c)) . (28)

X Z

ijk

Hj and H_ are the usual Hermite polynomials, and L;(cx) is an

orthogonal polynomial of Sy whose coefficients are determined by the

Gram-Schmidt process. 5

By multiplying each term of equation (27) by L;(cx)Hm(cy)Hn(cz}e

and integrating over the half-ranges, the fellowing differential recurrence

relation is determined:
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a, B B s B
i (B o Bi( e ) B
U e | 34 %4 B BS

+
+ 8B, = [
1

The a, and Bi are the known coefficients of the polynomial Li‘(cx)o

+
In terms of the unknown function BE , the boundary conditions are

(B: + B;) - ;—j_—_ ] fo * (29)

njoe

Bﬁ (3 %} = (1 =e){-0)} Bﬁ (35 (30)

N+

Furthermore, the symmetry of the physical problem indicates that

+ i+
B,(n) = (-1)" B, (-n). (31)
The flow velocity is given by
- _.];._ + =
a,(n) = s (B, +B_) (32)
and the volume flow rate as
1
a(s) = -2 2 q,(n) an. (33)
1
2

It is not possible to solve equation (29) by the method used by
Gross, Jackson, and Ziering (1) due to the presence of the term l/2~/§“
in the right-hand side. This term does not appear in their equations since
the driving force for the Couette flow is the movement of the walls; not

a pressure drop. It is possible to solve equation (29) for any approxi-



mation (i.e., for the p i approximation, all Bi =0, k >%) by
assuming a particular solution of the non-homogeneous equation, which
is a polynomial, and then solving the homogeneous equation in a manner
similar to that of Gross, Jackson, and Ziering (1).

The first, second; and third approximations for the Krook model
are presented in the next three sections. The solution for the first
approximation is relatively simple and is presented in full. The second
approximation is presented in detail in Appendix D. The solution for the
third approximation, due to its length, is presented in a brief form.

The iteration method of Willis (2) is presented in the fourth section.

First Approximation. In this approximation, i = 0, and

h** = BX(q) LY (c) =, (34)

where Li(cx) = &2 ., Thus, equation (29) becomes

—jﬂ:a%B;+%Bo=%B;=;-lr—2—f (35)
“"L'J;E%B;+%B;=%B:“$° (36)
Differentiating (35) yields
a8y
-d-ﬂ—z—-mzszﬁa (37)
Solving, and using the symmetry condition yields
B:(q) =y —N— q2 + an + a, (38)

v
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s 2 3y
B (n) =38 L n“-an+a,. (39)
? 4.z 8

The expression for a; is obtained by substituting equations (38) and

(39) into (35). The result is

The expression for a, is found by applying the boundary condition,

sl | _ = . :
Bo W ?) = (1 -d) BO (" 2) ° (4(})
Thus,
32 - = n 5 - ’\/‘E_ (2;O)° (41)
1642 42
Hence
+ g 2
B (n) = T bq2+%,/§q= z a-ﬁ,(:’),(flz)
4,/ 16,/2  44/2
and
yoR, 2 _ . Mx 2-0
qz('”'af’ﬂ ~ rEl§ o (P g (43)
The volume flow rate is
. SR, S )
Q(s) = 5 B A ( = & (44)

Second Approximation. For this approximation, all B? =0, 1> 2

Equation (29) yields



+ +
dB~ - dBJ -
s R = R B BV P o ] (
g IV gt 8(By B} =¥ 3 /3 (45)
= 2/3 98 2n .t
3 32 an w2 %% 70 (48)
L (r-2) 1

These four equations, with the b oundary conditions for Bz and Bis

-+
are used to solve for the four unknowns, B: 5 Bo” Bl’ 1

details are presented in Appendix D,

flow rate is

and B. , The

For diffuse reflection, the volume

& 8

+1, ® 2 &9
Q(3) = 0.5642 + 0.16678 + g, |2-8284e +7.5593 ¢
o) b 3
a = -0 =
) 592232 (e 2.6 2 )J ) (47)
where a = 1.8808 and
+ 0.1507 + 0.4680/s
0.2804 e T+ 2.4943 e
Third Approximation. In this case, Bj, Bf, and B; are the

+ R
only non-zero terms in the expznsion of h¥* . The expression for h ~
is equivalent to a second-degree polynomial in Sy in which all terms

are multiplied by C,s ice.

#+

h = [cl(ri) + Cg(’) cx+c3fr;} Ci] CZ 2

The six equations used to solve for the six unknowns aze
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+ +
dB™ dB’
0 n-2 1, Ju + S
& i a G YT sy - B =53 (48)
* .
By, (2,32 /3453 d_ gt
dn = 'r=2 dy (“~2)3/2 dq "2
M ot
tJ5 8B =0 (49)
dB? 2 dB:
L or=d) 2 =2 3B. = 0, (50)

1{ <
+ ey
P P TR -l -

After determining the particular solutions for the B; » the non-homo-
geneous terms in the equations are dropped and the solution is determined
in a manner similar to that of the second approximation presented in Appen-
dix D. Following the notation used in the solution of the second approxi-

mation, it was found that

a, = 3.7853 a, = 0.6421
%1 = 3,9389 82 = 1,6284
m1 = -0,4129 m,2 = =0,1757
ny = 4.3029 n, = 1.0074
p, = 0.1556 p, = 0.0361

q) = 2.4603 d, = -2.1690 .

The solution for the velocity distribution between the plates is

_ 1.2 + +
q,(n) = V2 b, * 30" +4.9389 gy (e, +e,) +2.6284 g (e +e,) , (51)
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where

1]
i

. = exp(-ulbq) exp(-a26q)

D
I
@

1}

exp(albq) A exp(a2bﬂ)

™ Elel + dez-+dﬂlel)

[}
(]

1.+
b = = [gm(el + £192

+

(e

+ ﬂgea -e, -4.e_+oe +d€2e

T )
%02 ‘€3 4~ V%3 4 3

+ 0,1995 (2 - ) + 0.088458] ,

+ -
and 901 and 99, 2re determined by the solution of the following

matrix equation

K, K, ggl 0.4680(2 - #) + - 0.1507 &
g Byl o - 0.1761 2
K, = [ml - (1 - ﬂ)nl]el - [nl - (1 - n)ml]92
K, = [m2 - (1 - d)nz]e3 - [n2 - (1 - n)m2]e4

K = [pl - (1 = ﬁ)quel ok [ql - (1 - d)pl]ez
K4 = [p? - (l = d)q2]ea + [:q2 - {l = d)pzjed
The volume flow rate is obtained by applying equation (33) to

qz(q}. The results of this integration are presented in Table 2, page

4¢, where Q(s) is tabulated as a function of 5.
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Iteration of the First Approximation. Equation (27) can be rewritten

as

+ 28¢C c
dh* 5 . wt _ z z
an + == h" = —=q () - =. (52)
X X X

Following the approach of Willis in reference 2, this equation is solved

for h*i. The solution is

+ n . [ ‘(ﬂ“ﬂ')?)/c
W=y [ Zag () e %
Fl ox
2

EE e dn' , (53)
X

where the integrating factor for equation (52) is exp (qb/cx), and the
constant of integraticn was found to be zero after applying the boundary
condition h*t( F % ) = 0.

Using the definition of the velocity from equation (7), it is

found that
e -c? 1 -(n-n')8/c
1 1 S ¥ = X g4 4
q.(q) = - — e 23 q (n*)e dn
: 2,/?{ j‘o Cx J‘}_ z
2
N (n-n*)8/cx ® ) -c? -(n-n")8/c
-I e dn'|dc_ + — e X|2% q.(n') X dy'
1 j; “x I‘L & !
2 2
N <(n-n')s/c
o LA Y dcx} . (54)
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Equation (54) is in a form which requires a first guess for qz(q‘)u
Once this first guess is made; the first iteration of qz(q) can be
calculated. This procedure can be carried out for any number of iter-
ations. Furthermore, it is possible to show, in a manner similar to
that presented by Willis (2), that the iteration is convergent.

Only one iteration is calculated here, and as a first guess the

first approximation for the Krook model is used. Thus, for o = 1.0,

L[] _j_t, l2.,E_  —
a,(n’) =7 n 6%~ a4 ¢

After carrying out the integrations in equation (54) based on this first

guess, the result is

a,(n) =% 30 - k- “-/—-f-— - %"E—[fz(xl) +£,(x) - '/—2£] (55)

1 1 :
S T )+ £ () + (G S La ) 0g) /7],

where

f (x) ’.[ u" e du (56)

1 1 i
and X, = (5 - )8, Xy = (q + 3 )8 . The integrals fm(x) are those
defined by Abramowitz (23). The values of the integrals over the range

of x were obtained from a Gauss-Hermite numerical quadrature (35). Since
the quadrature method proved inaccurate for x < 0.5, the expansion used

by Willis (24) for x < 2.0 was used. The accuracy of these methods is

discussed in Chapter III.
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After obtaining values for qz(q) at any number of specified points

between the plates, the Simpson rule is used to obtain Q(3) where

qz(n) dn . (57)

Q(s) = -2q, = -2‘[

avg

The values of Q(3) are tabulated in Table 3, page 50.
An asymptotic expression (independent of the initial guess of

qz(q) for small &) for Q(8) for small 3 is developed in Appendix E.

Hard Sphere Model

General

For the hard sphere model, the collision term of the Boltzmann

equation is

2n 2
dfy . [ 4° 8 s Y -
(dt)c _'f d Vl'[o de J' 5 9in € 8 v (E°F) <£F) (58]

where 6 1is the scattering angle, a 1is the molecular diameter, v,
is the relative velocity between molecules, and the "primes" denote the
distribution function after collision. If it is assumed that f= f0(1+h*z),

the Boltzmann equation becomes

#t
B gs—— tc =s I, (59)

where L is the inverse Knudsen number for hard spheres defined as

) =dn0./2_ r 8t , (60)
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and J(h*i) is the collision term as a function of the perturbation

which is defined by

+ 1 "Ef 3 x T
J(n*%) = ——ﬁ-— e d~c de sin 6df ¢
4 q@? KS ‘ k 0 o %
- (h** + ht" - h* - ) . (61)

The approach that is used to solve equation (59) differs slightly
from that used in the previous section. Here, it will be assumed that

n-1

+ + i
h*" = c, E: ai(q)cx g N = T2 (62)

i=o
where n indicates the order of the approximation. Thus, for the first
approximation; n = 13 for the second, n = 2, etc. In other words; h**
will not be developed in terms of orthogonal polynomials.

In the next two sections; the first and second approximations for
the solution of the hard sphere mocdel are presented. The first approxima-
tion, due to its brevity, is presented in full. The second approximation
is presented in detail in Appendix F.

First Approximation

The perturbation of the distribution function assumes the form

h* = az(n) ¢ . (63)

Following reference (19), it is possible to write the perturbation as



and

where

23

(64)

{63)

ol - (P - I S0
X
sign ¢ {‘
= _1 ] Cc < 0 o
? X
c2
Multiply equation (59) by cz(l + sign cx)e X and integrate. The result
is
-d-i**ﬁ_=éll(a+u -3 (66}
dn %o ~ s = ‘Yo %o ¢ .
where Ii is called the bracket integral defined by
"m QEQ 3
I = [A,B) =f AJ(B) e”¢ d¢ . (67)
w00
In this case
# = s (6
I, [cz sign ¢, ¢, sign Cx] (68)
I is a pure number and can always be calculated if the law of interac-

i

tion for the molecules is known.

Ziering, reference (25), clearly explains

the use of the bracket integrals and carries out the integration of Il

in detail.

Jeans, reference (26).

The velocities after collision can be determined by referring ¢

If the center of mass coordinate system is used
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(reference 27), in which

9 '\7 = b » :: 'ﬁg‘ )

a 2
2 P

vfol

where VC is the velocity of the center of mass and Vr is the relative
velocity, the equations for the velocities after collision are

v

. 1 [2 2
c' =v + —=2cos B -2 [v7 - v sinB cos ¢ (70)
X c 2 2 T T
1 X X
v v X
T r. T
e:z’ = A +—2—zcose+§ sin @ cos ¢
1 z 2 2
v -
T T
V. Vv
i = & i
5 ———JY—— 5in 6 sin g . (71)
2 2
vVr T Vr
pe
2 2 2 2
In the above equations, Vi Wy + v + LA In order to carry out the
X Yy z

integration of the bracket integrals for the hard sphere model, it is most
convenient to use cylindrical polar coordinates for FC and spherical
coordinates for ;rn

The solution of equation (66) for a: and a; is straightforward.
The velocity qz(q) is defined as in equation (7) and, for this first

approximation, is equal to
_ 1 + -
a,(n) =3 (a  +a) . (72)

Since the first approximation does not yield suitable results, only the

case ¢ =1 1is considered. For this case,
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qz(n) = .=t b 11q2 P I8, - '@— (73)
2 W 8./n
and
_ 1 v
Q(bs) = - I & E=2S s (74)

6 /n

The value of I first determined by Ziering (25) and checked for

19

this work, is Il = -1.,0059 = ,

Second Approximation

For this case, the perturbation is assumed to be given by

h”t = ai c.+a,¢c ¢ . (75)

The details of the second approximation are presented in Appendix F.
Consequently, only the results of this approximation are presented here.

The following bracket integrals are used in the second approxima-

tion,
Iy = [cz sign c_, czcx] (76)
I, = [czcx g czcx] (77)
T = [czcx sign c_, czcxsigncx]u (78)

The values, which were first obtained by Ziering (25) and which were

checked for this work, are

I2 = -0,4345 (79)



~0,4000 nt {80

-
li

-1.6982 x (81)

—
il

The solution for the velocity is

=1 X o 2
qz(q) = 5 b+ 0.08179 ;s + 0.4508 5 _ 1
il (1 +14 + - )(el + e2) 3 (82)
where
e, = exp (-a bsﬂ) e, = exp (a bsﬂ)
a = 7.8b698 m = -1,5262
! = -4.3806 n = =4,5452
b = l-(mo.03152(‘2--a} - 0,2254¢ 3
o g . E s

v [&-1)(e, o) -y +te]} (83)

0.2899 (2 - &) gL-+ 0.9644 ¢

t 8 ; (84}

g = = =
o (n m)(el-+e2) - d(me2 nel)
The volume flow rate is
. , — !
Q(s) = “b_ = 0.1636 b = 0,07513 &,

. ad /2  -ad_/2 )
- E%# g: (1+ + =By (e & e 5 ), (85)
=1 Lt



Q(s,) versus 3 i3 tabulated in Tabie 4, page 53.

Maxwellian Model

5eneral
The only major difference in the development of the solution for
the Maxwellian model compared to the hard sphere model is the evaluation

of the bracket integrals. Otherwise, <he basic equation is

_ dh**
“x dq

+ 2 =3 JO" , (88)
z m

where & = dn_ 6 S A,(5) ./R17k“r and

=2 2n 18
wopp W 1 m el 43. g -
J(h™7) - f2ﬂ1 J e d~e, jo de fo 51n59F(9yR1)d6

61:2A2{5)

#y ¥y #* #-

A2(5) is a pure number, evaluated by Maxwell (36), equal to 0.43%, Ry

is the force constant for the inverse force law,
Ry _
Force = -5 , 88)
r

which Maxwell molecules obey. FE(8, R is a function of the szattzring

1)

angle such that
vr: (Vr9 )

where Vi is the relative velocity between two coiliding molecules and

I(vr,e) is the scattering :cross section,



33

Three approximations for the Maxwellian modeli are caiculazted, The

bracket integrals Ilg I i,., and I4 have been previously calculated

2" 73

by Ziering (21), and have been checked for this work. The values are

Il = =2,31875
12 = -0,696041
13 = -0.616850
I4 = -0.318338 .

The bracket integrals I, and I, must be caicuiazed by a numerical

1

scheme, It is possible to carry out all of the integrations except the

integration over 6. After integrating over ail variabies except 6, I.

and T

I, can be written in the form

1 m ® . G
I, = / sin & F(B,R ) G, (0} do (89)
* 6n2A2(5) 2R1 fo e >

where Gi(e) is different for each bracket integral. Following Wang Cnang
and Uhlenbeck (28),
F(6,R)) sin ® a6 =f£—- v_bdb (20}

2Rl T ?

where b is the impact parameter in a binary collision. Ry defining

a = (mvf/2R1)1f4b9 equation (90) can be rewritten as

.....TE_. ;| - { )
/2R1 F(B,Hl) sin © d6 ada . 191)

) 4 . .
If the substitution a = 2 cot 2¢ is made, then
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I FERY st B Al m aJT ey (92)
2R " ™
1 sin” 2¢
From the collision dynamics (26), it is known that
& =1 - 2 ,Jcos 29 K(sin g) , (93)

where

n/2 -
FRRRIN, s S

9 4& ~sin2m 5in2¢

is the complete elliptic integral of the first kind. Using equation {52)

in equation (89), the bracket integrals become

1 n/4 Gi(e)
e e
Loen A2(5) ) sin® 2¢
The expression Gi(e) can be calculated for any ¢ wusing equation (93).
The values for Ii’ which were found numerically, were obtained by using

the Simpson rule.

First Approximation

Following the development for the hard sphere model. the wvelocity,

where ¢ = 1,0, 1is given by

2 [

q (ﬂ) = ] 4 e - o {"55}
z ,/“. o l BMF- l m 4
Also, the volume flow rate is
Qs ) = - =15+, (96}
m & i m
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Second Approximation

The method of solution is identical to that presented in Appendix
F, where only the values of the bracket integrals change. The solution

for the velocity is

_ !-_ _1_ 2 .}L + a m-n
qz(q) =5 b, +1.3920 ;= + 0.2216 & n° + 3 go(l-rc + Mr_)(el-rez), (97)
m T
where
e, = exp (-a bmq) e, = exp (ubmn)
a = 1.8368 m = -0.7222
L = 2.3%46 n = 2.2507
b =L4¢.0.110808 + g [(d-1)(e, ~e.) -ale,+de )]
o] o] ’ m o 1 2 ) 2 1

4.9345(2 - o) EL + 1.0000
+ m

o (n-m)(el-+e2)-+d(me

9

5 = ney)

The volume flow rate is

1
Q(bm) = -b0 - 2,7839 ol 0.03693 6
m
) o)
o i -
2

+: m-
o or(1+4+ :Z? J(e © - ) . (98)

The tabulated values of Q(bm) Versus bm are presented in Table 5,
page 62.

Third Approximation

In this case,



v

n** = {ai +a, sz +a {29}

(g

[
>
i+
®
3]

The moment equations are obtained in a manner similar to that used in the

second approximation. The three basic differential equations are

+ + -+
da’ -~ day  dal
o . am_ 1 2 L R PR S
dn 2 dy tay tun = pl1lay) +a) +3y(a) - a)
+ Is(a2 - &2Jn (100)
da;, o @8 gd8;, 5 s
Gt —d tia = o liley v )
1 Aﬁl'- n b Ty N
+ o~ - + - + — + = o i Y 3
+ az(a - ao) + ib.(a2 - ay) ;5(32 + 32J + 14(31 al)J CroL)
da” - da da_ -
_g B L, 2w L b
Gt a tiE t el ey
= + ” + = .+ -
+ 15(31 -~ a,) + Ié(al + al) + :-:B{ao -8 ) * Tglay = a?) T £102)

The five additional bracket integrals are defined as

I

8

and

I

9

L
[
A

15 = (e, sign ¢, ¢, C, ]
. 2 =
g = [csz sign ¢, 2 C ]
2 2 -

Iy = [”zcx AN
o= [e.é® o nc ¢ sign ¢ ]
tg = LGy PAOR Gy 9y BlgD Gy

& Fa &2 ien & ¥ %
Ig = [e,e) sign o, ¢ ol sign c, ] -

must be calculated numerically in the same manner as -y @and
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I See Appendix G for the calculation of I8 (the calculation of I9

40

is similar)., Their values are
I. = -0.464027
I, = -0,696041
I, = -0.822467
I, = -0.49656
I, = -0.8530 .

The solution of the determinant of the coefficient matrix for the homo-
geneous set of equations yields a, = 0.1338 and a, = 4,5108, The solu-

tion for the velocity is

b b g+
_l, L1 2,1 % ,1% %0
a,n) =35 b, +3b, 80"+ i tas vt iy
2 /; m m
m, = n p; t g g+
9
y 2 1+12 1)(92+el)+--§-=(l+‘ﬁa
e
m, = n p, t a
§ 2 2 4 “2 2)(e4+93) : (103)
&
whare=
e, = exp(-a, bmq) e, = exp(—nQbmﬂ)
e, = exp(ql bmq) ey = exp(n2 gnn)
%1 = -0.3857 %Q = 2,9984
m, = -4,072¢ m. = -1.5340



+ 1
90, =L (5 by -
b = )
902 = L (5 by
= U e
Ky = (mpey
&
€5
by
b,
b,

The volume flow rate is

= -6.1927 n, = 5.702:
= -2,8537 p, = 0.5411
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Values of the volume flow rate as a function of bn are tabulated in

Table 6, page 03,
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CHAFTER III

DISCUSSION OF RESULTS

Experimental Data

The earliest experimental work available is fthat of Gaede (9);
carried out in 1913. Since the accuracy of the data is uncertain and
since the results disagree considerabiy with the two later sets of data.
Gaede's work is not included in the comparison or experimsntal data and
theoretical results.

The data collected by Rasmussen in 1937 (11) are more reliable and
are used in this study to evaluate the theoreticali resuits. Rasmussen
measured the flow rate between two glass plates; 1.82 x 10.'3 cm. apart.
The width of the slit was 1.32 ¢m., and the dimension in the direction
of flow was 0.963 cm. His apparatus consisted of two tanks sach cornected
to one end of the glass plates. Mcleod gauges and mancmeters were con=
nected to each tank. Xnowing the wvolume of the tanks and the time it
took for the gas to flow from one tank {at a specified pressure} to <he
other tank; Rasmussen was able to calculate the .werage volume flew rate.
If Qr is the volume flow rate, 1'..1 is the initial time, t2 is the final
time, ( )' denotes the conditions in the first tank, and ( )" denotes

the conditions in the second tank, then the volume fiow rate observed by

Rasmussen was found by the following equation:

5. m o] <vvv" ) .m/Pi ) Pé)
— - 0 1 ' n _ pt o
b t2 tl + V Pl P2




Rasmussen used only hydrogen in his experiments with paraiiel plates, The
mean free path and volume flow rate used by Rasmussen have beer ccnverted
to the corresponding quantities calculated ir the theoretical analyszis of
this dissertation. The results are plotted in Figure 4.

The latest available experimental data is that of Dong (4), com-
pleted in 1956. His apparatus consisted of two parallel steel plates,
0.324 cm. apart. The width of the slit was 22.86 e¢m. The inlet and exit
were 127.00 cm. apart; however, the initial pressure tap and final pressure
tap were 61.0 cm. apart; located 33.0 cm. from the iniet and exit, re-
spectively. After introducing the gas into the system, the moisture was
removed; and the gas was passed through a heat exchanger. Then, after
passing across two flowmeters, the gas entered the test section through
a series of needle valves. The pressure was meassured at two points along
the axis of the test section by McLeod gauges. A pumping unit was con-
nected to the exit of the test section. Dong measured his volume flow
rate by increasing the pressure in the system to a predetermined wvalue,
closing the system, and allowing the gas to pass from the flowmeter through
the test section. The time for the pressure in the flowmeter to c¢hange
from the predetermined value to the final value was then recorded. From
this information he calculated the volume flow rate. Dong carried cut
his experiments with the gases H2, He, air, CO2ﬂ and freon-12.

There is some disagreement between Dong’s and Rasmussen’s data in
the trancsition and near-free-molecular regicns. The disagreement in the uear
free-molecular region can most likely be attributed to the experimental
apparatus. Rasmussen's apparatus more closely approximates the infinite

paraliel plate geometry. For this reason, Rasmussen's data are probably
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to be preferred in the near-free-molecular regicn. Furthermcre, in his
paper, Rasmussen calculated the free-molecular vaiue for the voiume ficw
rate for a three-dimensional channel (using an equation developed by
Clausing). He found this limiting value to be thirty percent higher than
his maximum observed value, and attributed the difference to the geometry
of his apparatus.

On the other hand, Dong‘s data might be preferred when comparing
experiment and theory because of his locaxrion of pressure taps. By locat-
ing the pressure taps out of the region cf the end effects, Dong's data
should furnish better agreement with the theory, since the theoretical
development is based upon the assumption of constant pressure gradient.
The validity of this idea is established in Figures 2, 3, and 4.

Although Dong’s data indicate a smalli variation in minimum valuesg
of the volume flow rate for different gases, this minimum effect is bet-
ter illustrated by the experimental work of Hanley and Steele (29) in 1964.
Their work, although carried out for long tubes, shows very cleariy the
effect of the gas on the minimum volume flow rate. The trend of their
data is the same as Dong's; however, a comparison cannot be made because

of the different geometries.

Krook Model

Full-Range Method

Even before results are available for the solution by the full-
range method; it is not expected that the solution will adequately describe
the velocity moments in the near-free-molecular flow regime. This is be-
cause the full-range method does not exactly specify the molecular boundary

conditions, which require that the distribution function be discontinuous
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at the walls. That is, for the near-free-molecular flow, the distribution
function should be explicitly divided into two streams. This belief is
validated by the results of the first, second, and third approximations
shown in Figure 2.

The volume flow rate for the first approximation is obtained from
equation (20); for the second approximation, equation (23). The tabulated
values of the volume flow rate for the third approximation are given in
Table 1. Also, Cercignani's numerical solution of equation (6) is pre-
sented. If the polynomial approximation is correct, it should converge
to Cercignani’s results, as it does., Dong's results for helium are also
plotted in Figure 2 to indicate the comparison with experimental data.
Since neither the first, second, or third approximations show a minimum
in the transition regime, no higher approximations were carried out. The
results of similar work using the full-range method for Couette flow (1)
also indicate a slow convergence, and it was not considered worthwhile
to pursue the solution by this method.

Hal f-Range Method

From the experience of previous investigators using the half-range
method (1) (19) (20) (21), it is expected that, for the same approximation,
a better solution will be obtained by this method than by the full-range
method. That this is so, is seen in Figure 3. The volume flow rate for
the first approximation is obtained from equation (44); the second approx-
imation, from equation (47). The volume flow rate for the third approxi-
mation is obtained from equation (%51), tabulated in Table 2, and plotted
in Figure 3. Cercignani's numerical results are also presented in Figure 3

to illustrate the convergence of the solution by the polynomial approximation



44

Table 1. Volume Flow Rate Versus Inverse Knudsen Number
for the Third Approximation by the Full-Range
Method for the Krook Model

3 Q ) Q
0.0 1.4090 1.70 1.5360
0.0% 1.4090 1.80 1.5473
0.10 1.4092 1.90 1.5588
G420 1.4112 2.00 1.5706
0.30 1.4146 2.50 1.6318
0.40 1.4193 3.00 1.6966
0.50 1,4250 3.50 1.7644
0.5C 1.4315 4,00 1.8345
0.70 1.4388 5.00 1.9799
0.80 1.4467 6.00 2.1306
0.90 1.4551 7,00 2,2846
1.00 1.4640 8.00 2.4412
Is10 1.4734 9,00 2.5995
1.20 1.4831 10.00 2,7591
1.30 1.4931 15.00 3.5692
1,40 1.5034 20,00 4,3894
154 1.5140 25,00 5,.2143

1.60 1.5248 30.00 6.0418
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Figure 2. Volume Flow Rate versus Inverse Knudsen Number for
the Krook Model, Full-Range Moment Method.



Table 2.

Volume Flow Rate Versus Inverse Knudsen Number

for the Third Approximation by the Half-Range

Method for the Krook Model

46

& Q ) Q
.01 1.5993 1.70 1.5864
0.05 1.6035 1.80 1.5930
0.10 1.6066 1.90 1.6004
0.20 1.6076 2,00 1.6084
0.30 1.6039 2.50 1.6567
0.40 1.5979 3.00 1.7146
0,50 1.5910 3.50 1.7787
0,60 1.5842 4,00 1.8469
0.70 1.5782 5.00 1,9910
0.80 1.5733 6.00 2.1413
0.90 1.5698 7.00 2.,2954
1.00 1.5675 8,00 2,4519
1.10 1.5667 9.00 2,6101
1.20 1.5672 10.00 2.7696
1.30 1.5689 15,00 3.5789
1,40 15717 20.00 4,3985
1,50 1.5757 25.00 5.2231
1.60 1.5806 30.00 6.0503
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Figure 3. Volume Flow Rate versus Inverse Knudsen Number
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method to his results.

As seen in the figure, the third approximation successfully yields
the desired minimum in the transition region. Because the convergence of
the half-range method is very slow in the near-free-molecular region, the
third approximation exhibits a relative maximum at 3 = 0.20. This maxi-
mum occurs because the convergence is somewhat faster in the transition
region than in the free-molecular region. The reason for the slow con-
vergence is that the free-molecular limit has a non-analytic character,
as shown by Cercignani (16), wﬁich cannot be adequately represented by a
finite number of terms in a polynomial approximation. This has been
pointed out by Gross and Jackson in reference 30.

In addition to the theoretical results presented in Figure 3, Dong's
data for helium and carbon dioxide are presented. His data for the other
gases differ little from that presented.

It is possible to obtain the free-molecular value for the volume
flow rate by solving the basic moment equations for each approximation
where & 1is set equal to zero. This is equivalent to setting the colli-
sion integral equal to zero, which is the case for free-molecular flow.

The results of this procedure are

lim Q = 0.886 (first)
5= 0

Lim Q= 1.314 (second)
5> 0

lim Q = 1.598 (third)

8> 0



As an extension of this idea, it is seen that these are also the 1imit:
values for any other molecular model since the law of interaction for
free-molecular flow cannot affect the flow properties.

The behavior in the continuum region is exhibited by the foliow-

ing limits:

lim Q = 0.2618 » + 0.8862 (first)
—> o

lim Q = 0.1667 5 + 1.0209 (second)
5 — o

lim Q = 0.1667 & + 1.0170 (third).
5= o

The convergence of the solution in the continuum region is very fast,
the solution being essentially correct in the second approximation.

Cercignani (3) found

lim Q = 0.1667 5 + 1.0161
&= o

for his numerical results.

Iteration Method

The results of the numerical integration of equation (55) to find
the volume flow rate are tabulated in Table 3 and plotted in Figure 4.
Cercignani's numerical results and the data from Dong's paper for helium
and carbon dioxide are also presented. In addition, Rasmussen’s results
for hydrogen are included.

In order to integrate equation (55), it was necessary to know the

integrals fm(x) for any x. It is possible to use Abramowitz'’'s work to



Table 3. Volume Flow Rate Versus Inverse Knudsen Number
for the First Iteration of the Krock Medel by
the Willis Method

) Q b Q
0.0001 5.5552 1.30 1.329C
0.001 4,2592 1.40 1.3433
0.01 2.9856 1.50 1.3590
0.02 2.6173 1.60 1.3759
0.03 2.4088 1.70 1,3939
0.04 2.2652 1,80 1.4128
0.05 2.1569 1.90 1.432%
0.06 2.0706 2.00 1.4529
0.07 1.9995 2.50 1.5621
0.08 1.9394 3.00 1.6795
0.09 1.8877 3.50 1.8017
0.10 1.8425 4,00 1.9268
0.20 1.5755 4.50 2.,0539
0.30 1.4508 5.00 2.1822
0.40 1,3806 6.00 2.4411
0.50 1.3388 7.00 2.7017
0.60 1.3140 8.00 2.9632
0.70 1.3003 9.00 3.2252
0.80 1.2945 10.00 3.4874
0.90 1.2944 15.00 4,7992
1.00 1,2987 20,00 6.1106
1.10 1,3063 25.00 7.4213

1.20 1.3166 30.00 8.7315
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find asymptotic expressions for all fm(x) for large x and small x, but
this does not give a complete solution over the entire Knudsen number
range. Consequently, the Gauss-Hermite numerical quadrature was used.

The method is described by equation (25.4.46) of the Handbook of Mathe-

matical Functions (31), and the zeros of the Hermite polynomials are tab-

ulated to fifteen decimal places on page 924 of the same reference,
Because the quadrature method is accurate to only two decimal places for

3

x < 107 for the integral Fo(x), the more accurate method presented by

Willis (24) was used for x < 2.0. He used an expansion of the form
f (x) =g, + (x1n x) g,

where 9, and g, are polynomials depending on m, and are obtained
from Abramowitz®s work. Willis tabulates the 9, and =PY and the
accuracy of the expansion is such that the error is less than 1 x 1076,

As shown in Appendix E, the asymptote for & =0 1is given by

L Q& = !

5= 0 o/ 2/n

In & ,

no matter what approximation is used as a first guess for the iteration.
The satisfactory results of the iteration method are due to the
introduction of the non-analytic behavior of Fo(x) for small x. It is
this integral which dominates the behavior of Q(3) for small .
The results of the iteration method, shown in Figure 4, indicate
that the solution is satisfactory for all of the flow regimes, from free-
molecular to continuum. As explained earlier, Rasmussen's data (11) is

preferred for the free-molecular region, and Dong's data (4) is preferred
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for the transition region. The iteration method agrees closely with the
trend of the preferred data.

Although it is true mathematically that the correct solution of the
Boltzmann equation for this one-dimensional problem indicates an infinite
limit for & = 0, it is felt that if the two-dimensional problem were con-
sidered (i.e., include the z-dependent terms in the solution) a finite
limit for Q(&) would be obtained as & ¥ 0. After considering that the
volume flow rate for an infinite length tube is finite as & >0, it is
reasonable to expect the volume flow rate (based on a unit width of the
slit) for the parallel plates be finite as & = 0. This problem is pres-

ently being investigated by using the discrete ordinate method (35).

Hard Sphere Model

Although Dong's data are used in a comparison with the theory, it
is necessary to calculate the inverse Knudsen number based on the hard
sphere model. For hard spheres 65 = dn0r¢5 T aga n, can be written
as p/kt, where the average pressure between the two pressure taps is used,
Thus, bs = dpa2 ¢E?n /kT. The plate separation distance is 0.324 cm.,

T = 296 °K for all experiments, and k is Boltzmann's constant. Thus,

3 2 g ;
pa where p 1s the average pressure measured in

b, = 4,700 x 107
microns, and a 1s the molecular diameter measured in Angstrom units.

The average pressure is obtained from Dong's tabulations of each
experiment run. The molecular diameter can be obtained from the calcula-

tion of the viscosity coefficient based on the hard sphere model. The

derived relation is (reference 38)

JUNST

2 ;
a

n X 107 = 266.93
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where 17 1is measured in gm/%nhsec, M is the molecular weight, T is
the temperature in °K; and a is the molecular diameter measured in Angstrom

units. Using the data in reference 32 for viscosity yields

a, =2.721 &
H,

ay, = 2.170 2
3002 = 4.524 R .

Thus, it is possible to calculate by for each experiment in Dong's work.

The volume flow rate for the first approximation is obtained from
equation (74), the second approximation, from equation (85). Qfs) is
tabulated in Table 4 for the second approximation. The results for the
first and second approximations are plotted in Figures 5; 6, and 7 for
hydrogen, helium, and carbon dioxide, respectively.

As seen in each of Figures 5, 6, and 7, the second approximation
presents the desired minimum in the transition region. The minimum is
apparently well-placed with respect to the experimental data. Further-
more, the results in the continuum region exhibit very good agreement with
the data. The results also indicate that the half-range moment method,
applied to the hard sphere model; can suitably differentiate between gases.

Cercignani (33) has raised an objection to the solution of the
Boltzmann equation with the hard sphere model by the half-range moment
method. That is;, it is expected that the half-range character of the
distribution function will be destroyed away from the wall. For this to

occur he shows that the ratio 12/I3 must equal 1.128. For the hard
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Table 4. Volume Flow Rate Versus Inverse Knudsen Number
for the Second Approximation by the Half-Range
Method for the Hard Sphere Model

s Q b Q
0.01 1.2922 0.90 1.1581
0.02 1.2731 1.00 1.1684
0.03 1,2565 1,50 1.2275
0.04 1.2420 2.00 1.2934
0.05 1.2293 2.50 1.3627
0.06 1.2181 3.00 1.4338
0,07 1.2082 3.50 1.5060
0.08 1.1994 4,00 1.5788
0.09 1.1916 5.00 1.7259
0.10 1.1846 6.00 1.8739
0.20 1.1438 7.00 2.0226
0.30 1.1295 8.00 2. 1717
0.40 1.1261 9.00 2,3210
0.50 1.1281 10,00 2.4705
0.60 1.1331 15.00 3.2194
0.70 1.1402 20.C0 3.9696

0.80 1.1486 25.00 4.7201
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sphere model 12/13 = 1.086. Consequently, the half-range character does
not disappear away from the walls. In fact, Cercignani points out the
half-range character is destroyed only when the molecular model is the
Maxwellian one. To correct this observed discrepancy, he proposed the
following second-order approximation for the perturbation of the distri-

bution function:

+ +
h*= = a(n) c, +a

This form was proposed in order to yield agreement with the Chapman-
Enskog solution (34), which is valid away from the walls. Cercignani
developed the equations for the solution of the velocity for the Couette
flow problem, but did not carry out the calculations because of the com-
plications involved. He also pointed out that the corrections to the
half-range solution are probably small.

The objection, although a valid one, does not appear to be an im-
portant one. This is because the disappearance of the half-range char-
acter should be of importance only in the slip and continuum regions.

That is, in these regions; the half-range character must disappear away
from the walls because of the large number of molecule-molecule collisions
that occur. Therefore; the correction should be of greatest concern for

5 > 1.0 approximately. The correction should be of least importance in
the near-free-molecular region because, here; the half-range character is
preserved throughout the flow field. As seen from & study of the results,
the theory closely agrees with the experimental data for the slip and con-
tinuum regions. This agreement leads to the conclusion that the half-

range moment method as presented in this dissertation does adequately
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describe the slip and continuum flow regions for the hard sphere mole-

cules.

Maxwellian Model

First, it is necessary to correct the inverse Knudsen number for

the Maxwellian model. For this model; the inverse Knudsen number is given

R
by 3 = 64/ A2(5) E? d,/ E% g A2(5) is a pure number equal to 0.436,

p 1is the average pressure between the pressure taps for Dong‘'s work, T
is the temperature approximately equal to 296°K for all experiments, and
Rl is the force constant for the law of interaction. From Chapman and
Cowling (34), page 174, the expression for the coefficient of viscosity

for the Maxwellian molecules is

gl f2m kL
T 7 3¢ 1A2Z55 g

From this equation, R, can be found for any gas by first knowing the co-

1
efficient of viscosity. The following values were found by using the

viscosity from reference 32:

R, = 8.456 x 10744 dyne - cm>
H2

R, =3.410 x 10744 dyne - cm®
He

R, = 64,60 x 197 dyne - m .
co



61

Finally, the inverse Knudsen number for each gas is given by

bmH = 0.0717 p
2
b = 0.0454 p
Mie
5 = 0,1980 p
Mo
2

where p 1is the average pressure measured in microns. From this infor-
mation it is possible to convert Dong’s data to the inverse Knudsen num-
ber for Maxwellian molecules.

The results of the first approximation of the volume flow rate are
found from equation (96); the results of the second approximation, from
equation (98). Tabulated values of Q(3) for the second approximation are
given in Table 5. The results of the third approximation are obtained
from equation (104); the tabulated values are given in Table 6. All of
the results are plotted in Figures 8, 9, and 10 for the gases hydrogen;
helium, and carbon dioxide, respectively.

Although the second approximation presents a very slight minimum
in the transition regiony, it was felt that the solution was not complete.
Thus, a third approximation was calculated, which presents very good re-
sults for the transition, slip, and continuum regimes. The minimum is
well-placed with respect to the experimental data, although the near-free-
molecular results are unsatisfactory. It is expected that higher approx-
imations than the third will yield results that agree better with the

data in the free-molecular region. If it were possible to iterate the
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Table 5. Volume Flow Rate Versus Inverse Knudsen Number
for the Second Approximation by the Half-Range
Method for the Maxwellian Model

Q b Q

0.01 1.3210 2.60 1.7083
0.05 1.3464 2.70 1.7076
0.10 1.3766 2.80 1,7069
0.20 1.4321 2.90 1.7063
0.30 1.4809 3.00 1.7058
0.40 1.5233 ; 3.10 1.7055
0.50 1.,5597 3.20 1.7053
0.60 1.5907 3.30 1.7053
0.70 1.6167 3.40 1.7055
0.80 1.6382 3.50 1.7058
0.90 1.6559 3.60 1.7063
1.00 1.6702 3.70 1.7069
1.10 1.6817 3.80 1.7078
1.20 1.6907 3.90 1.7087
1.30 1.6976 4.00 1.7099
1.40 1.7029 4,50 1.7181
1.50 1.7067 5.00 1.7299
1.60 1.7094 6.00 1.7624
1.70 1.7111 7.00 1.8040
1.80 1.,7121 8,00 1.8522
1.90 1.7125 9.00 1.9053
2.00 1.7125 10.00 1.9619
2.10 1.7121 15.00 2.2765
2.20 1.7115 20.00 2.6168
2.30 1.7108 25.00 2.9682
2.40 1.7100 30.00 3.3252
2.50

1.7092 35.00 3.6857




Table 6. Volume Flow Rate Versus Inverse Knudsen Number
for the Third Approximation by the Half-Range
Method for the Maxwellian Model

Q b Q
0.01 1.6090 2,60 1.4947
0.05 1.6487 2,70 1.,4927
0.10 1.6890 2.80 1.4913
0.20 1.7421 2.90 1.4903
0.30 1.7659 3.00 1.4898
0.40 1.7692 3.10 1.4897
0.50 1.7595 3.20 1.4899
0.60 1.7422 3.30 1.4906
0.70 1.7210 3.40 1.4915
0.80 1.6984 3.50 1.4928
0.90 1.6758 3.60 1.4943
1.00 1.6541 3.70 1.4962
1.10 1.6337 3.80 1.4982
1.20 1.6151 3.90 1.5005
1.30 1.5981 4.00 1.5030
1.40 1.5827 4,50 1.5184
1.50 1.5690 5.00 1,5375
1.60 1.5567 6.00 1.5838
1.70 1.5459 7,00 1.6373
1.80 1.5363 8.00 1.6955
1.90 1.5280 9.00 1. 7570
2.00 1.5207 10.00 1.8209
2410 1.5143 15.00 2.1598
2,20 1.5089 20,00 2.5140
2.30 1.5043 25.00 2.8744
2.40 1.5004 30.00 3.2379
2.50 1.4972 35.00 3.6030
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Figure 8. Volume Flow Rate versus Inverse Knudsen Number
for the Maxwellian Model, Hydrogen.
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Figure 9. Volume Flow Rate versus Inverse Knudsen Number
for the Maxwellian Model, Helium.
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Figure 10. Volume Flow Rate versus Inverse Knudsen Number
for the Maxwellian Model, Carbon Dioxide.
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solution by the Willis method, the free-molecular 1imit should more closely
follow the data. This idea is based on the results of the investigation

of the Krook model by the iteration method.
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CHAPTER IV

-

CONCLUSIONS AND RECOMMENDATIONS

The Boltzmann equation has been analytically solved for the
problem of flow between two parallel, infinite plates using the half-
range moment method and the Willis iteration method. The study was made
for three different molecular models (Krook, hard sphere, and Maxwellian)
under the assumption of linear pressure change along the infinite parallel
plates. The conclusions are:

1. It is possible to analytically solve the Boltzmann equation for
the three different molecular models;, obtain a meaningful comparison with
the available experimental data, and demonstrate that a minimum exists in
the volume flow rate in the transition regime.

2. The full-range method, for the free-molecular to transition
regimes, does not yield satisfactory results for the Krook model.

3. The half-range method yields suitable results for the volume
flow rate in all flow regimes but the free-molecular. The method gives
a minimum in the transition region for the Krook model in the third
approximations for the hard sphere model, in the second approximation;
and for the Maxwellian model, in the third approximation.

4. The iteration method of Willis provides very good results
for all flow regimes when the first approximation by the half-range
method is used as the first guess.

It is recommended that the following be considered for future



investigation:

l. Do not drop the =z-dependent terms in the basic integro-
differential equation, and solve the problem using boundary conditions
at the inlet of the parallel plates.

2. Carry out an extensive experimental program using several
different gases and several different parallel-plate geometries. That

is, determine the influence of the geometry on the experimental data.
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APPENDIX A

DERIVATION OF EQUATIONS USED IN THE FULL-RANGE

METHOD FOR THE KROOK MODEL

Following the analysis of reference (3)y the Boltzmann eguation

with the Krook model is

af of . n .

Vx ax ¥ Vz 5z S, (feq £) (A.1)
where n/dl is the tollision frequency and feq is the Maxwellian
equilibrium distribution function defined as

3 Dipes  win 2
_ B’ -B5(V - 1)
feq - 3 2 e [} (Aaz)

b1 8

Following reference (1) and assumptions 1 and 2 on page 11, equation

(A.2) becomes

i I
feq = f [1+2(v - 9)p° ], (A.3)
where
P 3 2.2
= i B BV
t, = F (1 + Iﬁz)ﬁzﬁ e , (A.4)
and
-2
- vieV 03v 5



Py is the inlet pressure, and K 1is defined as

After approximating the distribution function by a linearized expres-
sion, f = fo(l + h), and after introducing a dimensionless velocity,

T =PfvVv, the Boltzmann equation becomes

ah l +h ah
Cx dx * czK %,+ﬁz )+ cz dz
nO _
=B g. [2(T « §) - n] ., (A.6)
1
where
o2

€ a¥e . (A.7)

. - e
qunmjche d

Since it is not possikie, at the present, to determine the
dependence of h on z, it is assumed that the properties do not vary
in the z-direction. Letting A\ = OI/BnO , where A%\ is the mean free
path, and noting that the term (1 + h) is of the order of unity, equa-

tion (A.6) becomes
+ Ko o+ % = f ¢ q (A.8)
where

q (x) = 11;“’3/2.]. czhekc a e
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Equation (A.8) can be written in a more compact form by defining the
inverse Knudsen number & = d/A, wusing a nondimensional position

coordinate, n = x/d, and defining R = h/ Kd:

#

dh # _ A ,
€y an + <, + sh” = 2vc.q, (A.9)
where
0r® w3 3
a,(n) = W i ch e dc. (A.10)
=00

The boundary condition for equation (A.9) is developed in equations
(16) and (17) of the text,
The volume flow rate is found by first calculating the average

velocity at any cross=-section,

The volume flow rate per unit width of the slit is given by F, such

that F =d =K~dqz . The nondimensional volume flow rate is given by
avg

i |

BEE [ 5 1 g ] =2 ["“‘"]
.44 L dp - kg2
d = Kd

where the factor "2" is used to agree with Cercignani'’s expression for

the volume flow rate. Thus,

Q) = -2q, 5 (A.11)
avg
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This is identical to the expression given by Cercignani (3).
In order to develop the moment equations for the full-range

method, assume h* = cgbo Equation (A.9) becomes
LG
c{ilp-+1+bmb=—§-—j b e Xdc (A.12)
x dn -

with the boundary condition
v (n = § % c) =(lL-al” (g =% 1 -c_) (A.13)
3 T 2 3 X ¥ *

where the "+" sign indicates s > 0; the "-" sign, gy < 0. The sym-

metry condition for the parallel-plate geometry requires that

+ +
Y (ﬂ’ C)() =1 ('ﬂs -CX)
The full-range moments are defined
7
oo K "‘cx
Mk = f c P g dc (A.14)
ok = X

After multiplying equation (A.12) by ciexp(-ci)/wﬁr and then inte-

grating, the following moment equations are found:



5

dM

k+1 kq 1v3050c0(k-])
dn * [l + (1) ] (ﬁ)kﬂ + ka
= o[1 + (-1)k] 2350 (kel) (A.15)

Polynomial solutions for ¥ are sought, and are expressed in the

form
blny c ) =97, ) = z:cz Ai(n) o (A.16)
n=o

The half-range character of the A 1is necessary in order to satisfy the

molecular boundary condition. Combining equations (A.14) and (A.15)

yields
o 5 mci
_ - ntk e
My = E An(n)f_mcx = de,
VT
n=o0
-
S HON R P (A.17)
o) e

The boundary condition can now be expressed as

GH = a-an G, (A:18)

Equations (A.15) - (A.18) are used to solve for the velocity

which is given by

L e, -c2
q.(q)= ~— $- e Xdc (A.19)

The volume flow rate is given by equation (A.11).
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APPENDIX B

SOLUTION OF THE FIRST APPROXIMATION FOR THE
FULL-RANGE MOMENT METHOD USING

THE KROOK MODEL

Assume ¥¥ = AE(“)' It is necessary to use the first two

+ =
unknowns, AO and Aoo The equations are

dMl
& * «1 (B.1)
dM
2
il B M, (B.2)
The solution for Ml and M? is
My = -0 + ¢ (B.3)
M, =289 ~c b +c (B.4)
253081 e T :
According to equation (A.17),
1 + %
My (Ao - Ao) (B.5)
2./r
M, = & AT+ &) (B.6)
2 4 0 0 a o

After combining equations (B.3) - (B.6) it is possible to solve for A;

and A_,
o
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-+

A, = qu - (2&31 +fn )+ Mg-cl + 2¢, . (B.7)

The arbitrary constants, < and C,, are determined from the boundary

conditions,

e -a-adad. (B.8)
The result is
b al e ng? g s B (B28 - L, (B.9)
The velocity is given by equation (A.19) as
q,(n) = % 6q2=*£§:-(gj}g) - % b . (B.10)

5 1 (B.11)
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APPENDIX C

DERIVATION OF EQUATIONS USED IN THE HALF-RANGE

METHOD FOR THE KROOK MODEL

The basic integrodifferential equation is {(A.9),

#t
e W ve @ sh** = 2ﬂu3/25 c f ¢ B &% g, (e1)
x dn z z z

Following reference (1), assume h** can be expanded in terms of Hermite

polynomials,

i _ x t

=Y By (1) Lile,) Hole)) Hle)) . (c.2)
ijk

H, and H_ are the usual Hermite polynomials. L:(cx) is an orthogonal

polynomial such that
# ok =Gy _ - = "Cy _ |
Io Li Lf. & dCx -.Jq-m Li Lt e dcx =47 61£o (Ca3)

The polynomials are developed by the Gram-Schmidt process and the first

few are

g
- 14
li
=]

—
(s]
4+t
-5
—

T
Ky 1+

= qa c2 ¥ ﬁzcx + Y2 g ©tCay
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where

&y = N2
a, = Nan/(x - 2)

Va(x =2)/(n - 3)

=1
n

2
ﬁ}_ = 4/4/(1'( - 2)

B, = Jan/(x - 2) (x - 3)

T, = (4-n)/ /DT -3

Again following reference (1), multiply equation (C.l) by

+ 2
+ _ . " .
Ly (Cx) Hm(cy) Hn(cz) exp(-c), use equation (C.2), and integrate over

the appropriate half-ranges to obtain

d Jpr Mol e (Pin PiY, e Y
dq | i-1 a, ~ “i\ae,,, « i+l a
" i i+ %4 141

-

* [ + - 1
+ 8B, = |2 (B. +B ) « ——— |3, (C.4)
i 2 o o] 2uf§ io

The subscripts j and k are dropped since it is a requirement that

b
j =0, k=1, for a non-trivial solution. This requirement means that

#t

the expansion of  h takes the form

st + *
h™" = 2¢c, % Bi(q) Li(bx)

which is a polynomial in €. similar to the full-range expansion.
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The expression for qz(q) is found by substituting equation (C.2)

into equation (A.10). The result is

2
- -3/2 Z J‘ J: -Cx
z( 1Jk 1 d “x
ijk
2
N oy T (
fﬂw Hj cy}e d cy Idm c H (e, le d c, - C.5)

It can be shown by computing the last two integrals that if j £ O,

k #1, then qz(ﬂ) =0, Thus, for j =0, k=1,

2 o5 2

- O - +
= X X
qu, = ) ' .le dcx+}31fo L, e de |- (C.6)

1
-

By carrying out the integration in equation (C.6 ), it is possible to

demonstrate that the velocity is given by

a,(n) = ;%; (B! +8) . (.7

As in the full-range method, Q%) = —2qz o
avg

The symmetry condition for the physical problem is

h*t( R T

N Cx) = x

which reduces to

BE(q) = (-1} B (-n) . (C.8)



81

The boundary condition is similar to that of the full-range method,

This reduces to

85(: 3 = (1-a)(-1)? Bf:“ (i . (C.10)
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APPENDIX D

SOLUTION OF THE SECOND APPROXIMATION FOR THE
HALF-RANGE MOMENT METHOD USING

THE KROOK MODEL

From Appendix C, equation (C.4), four equations are obtained when

all By =0, 12

+
as? - ap?
e Y TR w1 (D.1)
dn 2 dn 2 ] o] 2 /3
dB” dB} ores
) Sal7 1) N/Zéa‘ +
dn * 3/2 dn | Wm-2 8B =0 (D.2)

(m-2)

The particular solution is obtained by assuming Bz and Bi are poly-
nomials in n. In general, it is not necessary to assume that terms
higher than the second order are present. For example, if it were
assumed that BZ were given by a tenth-order polynomial, it would be

4
found that the coefficients of qap N, etc., were all zero. By follow-

ing this procedure, it is assumed that

+ , ?)

BT = bz bmn + bgn (D.3)
+

Bl =% by +b,n , (D.4)

where the symmetry condition is used to find B; and BIa After
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substituting equations (D.3) and (D.4) into equations (D.l) and (D.2),

the particular solution is found to be

b, = -1/ vox (D.5)
b, = /2 8/4 (D.6)
b, = 1/(28 J/x-2) (D.7)
b, = - /(x-2)/2x . (D.8)

b~ must be determined by one of the boundary conditions after the com-
plete solution is found.

The homogeneous set of equations is obtained from (D.1) and (D.2)
by setting the right-hand side of equation (D.i) equal to zero. The

The solution is assumed to be

B

el

G.bin!
- Zg;—'j g (D.9)
J

Substituting equation (D.9) into the homogeneous set yields

+ -2 + + -

@ g * EE_ a g # !%: (go - go) =0 (D.10)
+ 2./2 + [ x

@ g 1‘(—.“':2—)?5(1 9, +'/t—_§ 9; = 0 % (D.11)

If a solution of the above set of equations exists, then the determinant
of the coefficient matrix must be zero. This condition yields the values

of a:
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i@ = b2 B . (D.12)

It is now possible to solve for three of the four unknowns in terms of
—_— - _ oyt : S -+

the remaining unknown. Let g —‘Ego s 9y =my and g, =ng_ .

Any three of the equations (D.10) and (D.l11) can be used to solve for

I, my and n. The results are { = 2,6726, m = -0.2804, and

n = 2.4943, Finally, the complete solution for the unknowns is expressed

as the sum of the particular solution and the homogeneous solution,

o +ad

+ _ 2, 4+ + tadn

B, = bo * bln +bq" + 9, © + P.goe (D.13)
+ + *abdn + +abdq

B] = xb3 +ba ¢ mg, e F ng e 5 (D,14)

The boundary condition, equation (C.9), is used to determine the

two unknowns b0 and gzo They are

b
- - L
+ 2 3
g = (D.15)
¢ e 6/2_4 nel 5/2
b b
_l 2 4+, -0a/2 abd/2
b v oy et -9, (e +4e ) . (D.16)

The velocity is determined by equation (C.6),

a,(n) = ;%: (B: +B) .

The volume flow rate is Q(3) = ~2qz é
avg
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APPENDIX E

DERIVATION OF THE FREE-MOLECULAR LIMIT FOR
THE VOLUME FLOW RATE USING THE WILLIS

ITERATION METHOD

A property of the solutions by the half-range moment method is
that
lim q_(n) = const. ,
3>0 -
where the constant is different for each approximation. Using this
property, it is possible to examine the Willis iteration procedure in
the limit as & = 0. Thus, assume qz(q') = const. = ¢, for a first

guess, After substitution of this first guess into equation (54) of

the text, the first iteration for qz(q‘) can be written

© .2
qz(q) = 2}{[]0 e X (4c1 - 2/6) de_ (Ba1)
o 2 =il % - l.h 3
T e (TR o Y /°*)dcj.,
(o]

After carrying out the integration, the result is

1 a

(2./,}'5 Jx

- s
qz(q) B C1 26 +

) [fo(xl) + fo(x2)] 5 (E.2)

where



8o

To examine qz(q) as d = 0, it is necessary to study the limit
of fo(x) for small x. Abramowitz gives the limit

v

lim f (x) = 2~ 4 x 1n x
x>0 g €

Using this limit in equation (E.2), the velocity becomes

1 9 1 1 1 1
= a(g+2) In(q+35) +38(5-9) In(5-q) +8 1nd].
2/78 i 2 2 2

qz(ﬂ) = (

(E.4)

The average velocity at any cross-section is obtained by integrating

qz(q) from ¢ = -1/2 to ¢ = +1/2. Then; the volume flow rate is given

by Q(s) = -2q, o Thus,
avg

L ~—'1—1r16+cl[-9—_'(21nb»1)]o (E.5)

2/ S bid

a(d =+ 0) =

The 1limit of the term in the square brackets is zero as & - 0. Thus,
Q(d 3 0) is independent of the first guess used in the iteration scheme.

The volume flow rate is
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Qs » 0) = ——. L 1ns, (E.6)
2/ ST
For very small &,
Q(b-»0)=--i— Ind ,
/x

which agrees with the asymptotic expression derived by Cercignani (3).
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APPENDIX F

SOLUTION OF THE SECOND APPROXIMATION FOR THE
HALF-RANGE MOMENT METHOD USING THE

HARD SPHERE MODEL

The basic equation is (59) in the text,

tc = J(n*Y) (F.1)

where J(h*%) is defined by equation (61) of the text and the inverse

Knudsen number is bs = dnoNfE s ago For the second approximation; assume

W e w b 4 af 6 w (F.2)

. a + a aI + a
J(h"7) = = J(cz) + 2 He c,)
¥ - ¥ -
ao-ao al“al
+ —— i + — a o
> J(cz sign cx) 5 J(czcx sign Cx) (F.3)

-2

After multiplying equation (F.1) by cz(l + sign cx)e ¢ , using equa-
tions (F.2) and (F.3), and integrating, the following equation is obtained:
da

W 1 + - + -
g"{- 5 Tiﬁ St [12(81 + al) + Il(ao - ao)] . (F.4)

o I+



(93]
N

_2
After multiplying equation (F.l1) by ¢S (1 + sign cx)m»'-_-"'c and following

the same procedure as above, the second equation is

+
da” da7
8 g ofu ok g o 2 [1,(a] + a))

an e M e sl .

T U TPt
+ 1, (a0 «a ) % ;.4(a1 - al)j ’ (F.5)

where I19 12, 13, and 1, are the bracket integrals discussed in the

text., Their values are

I1 = -1,00%9 n
12 = ~0,4345x
13 = -0,4000 «

I4 = “"1069821{ ]

Equations (F.4) and (F.5) are solved for ai and ai in a manner
similar to that presented in Appendix D for the Krook model.

The particular solution is assumed to be

2
=b, b +b,n (F.6)

[+ 1]
I+
|

i+
L B
n

£ by + b, (F.7)

After substituting equations (F.6) and (F.7) into equations (F.5) and

(F.4), the particular solution is found to be



an

b, = ~0.06304
b, = + 0.90153_
by = # 002899/55
b, = ~1.9289 .

b0 is determined by one of the boundary conditions after the complete

solution is found,

The homogeneous set of equations is obtained from equations (F.4)
and (F.5) by dropping the terms + V= and * 2/ Jw . respectively. The
solution is assumed to be of the form

. a.b g
+ * %%
a = E: 955 © i (F.8)
3

Substituting equation (F.8) into the homogeneous set yields

I I
R & T2 4 ey TL e
89, = 599y =3 (gl ¥ gl) T ( o 58yl ® K (F.9)
s 2 2 + 2 + -
ag_. + ——ag, - —— 1_(g. +g.) I,(g -g)
o} ME- x J?' 371 1 o 0 270 o}
5 2 + -
¥ I1,{(g, - g,) =0 (F.10)
KJJ? 471 1

Setting the determinant of the coefficient matrix equal to zero vyields

+7,8698. Following Appendix D, { = -4,3806, m = -1,5262, and

Ii

a

n =-4,5452,
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The complete solution for the unknowns is

+ 2 +, tad_q Fos g
= + .
g = Py tbynt b+ go(e s L e s) (F.11)
* + *tnd 0 _ Fod 1
L = byt hyw & go(m e s ne st (F.12)
b0 and gz are found from the boundary conditionsy
+, 1 -, 1 +, 1 - 1
S By =P = - s 28wl - :
ao( 2) \l c)ao( 2)9 al( 2) (l d) al( 2) 2 (F 13)

. ) *
The equations for bo and 9, are presented in the text, equations (83)

and (84).

The velocity is given by

Ll F L e L
qz(q) =7 a, ta, . (F.14)

o} o] ,/1-'[——

The expressions for qz(n) and Q(bs) are presented in equations (82)

and (85) of the text.
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APPENDIX G

THE CALCULATION OF 18 FOR THE MAXWELLIAN MODEL

Since the calculation of IB is quite long, only the major points

of the solution are presented, The calculation of I9 is similar, but
much longer.
. 2 : " _ 2 . .
The bracket integral 18 is defined IB = [czcx sign ¢, ¢, 51gncx]°
Following equation (67) of the text, 18 is written

1 B -(Cf-+c2} | 3
Ig= —5 /2R ur e d”c, d cj1 sin @ F(B,Rl)dB de
6 A2(5) 1

s C c2 sign ¢ [c‘ signc' +c'signc’ -
Z X x|z Xy z X

czl sign cx1 - ¢, sign Cx] (Gl

where A (5) = 0.436, F(B,Hl) is defined

2
F(O,R,) = /—%; v Iv, 8) , (G.2)

and

s p ™ itc
sign ¢_ = - 4L-I e X %} ; (G.3)
X nd
In order to simplify the integration of equation (G.l), divide

the integration into four parts such that I, =1 + 1 + 1 * T
8 8a Bb 8C 8d



where I is the integration over cé sign c; , etc. The follow-

ing relaf?ons can be obtained from a stidy of the iquations for c;19
cxl, c;l, czl:
IBb(e) = IBa(e 4 m)
180(9) = Iaa(e = 0) (G.4)
Isd(e) = Iaa(g = 1)

Thus, it is necessary to calculate only 18 . 18 is equal to

- oo oo Lo 4]
.1 [ | L p¥dtTdsy 2) v d
Ig == 2R 2.[ t j s J exp R A
a bmn A2(5) 1 B8 -0 -0 o
[} o] ; cqzn
» I exp(-v2/2)v d ‘{ dvc'exp(w2v2 )I ‘exp(-v2 /2)dv
r TV Y o ] T T
o r = X e X X

2n 2n 21 T 5
a i n Y
j a [ a8 [ e[ sin® F(6,R)dE c_cio
o} o 0 (o}

1

- exp (itc ) exp {itc! )] 5 (G.5)
X X)

c; and c£ are defined in equations (70) and (71) of the text.
1 :
Polar coordinates are used for Ve and v such that
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<
]

v cos B v. =v_ zosbH
r r o

<
0]

v_sin 6 v =v sin b
T r c

The integrations are most easily carried out in the following order:

GC, Gr, Ver Bs Vi Vos Vo Sy t, and the final numerical inte-
X X
gration over 6, After integration over SC and BT, Ig 1is equal to
- a
o an [« a]
Ig = 2"52 ,/22 / %I d?sf exp(-2v2)v v,
a  6m A2(5) 1 -o0 w0 o ¢
= 2 - 2 % 2
o j exp(-vr/2) vrdvr‘f exp(»2vc ) dv, f exp(—vr /2)dvr
o =0 X x ¥ o X X
o % 2 1.2 1
o jo de Io sin 6 F(Q,Rl)de (vc ~ Z Vg €08 2] iy vrvrx51n9 COSE )

. (vc + v, )2 exp[i(s + t)v_ ] exp[ - % (t -~ s cos Q)Vr ]
X X VX X

- exp [ - % s v, sin @ cos e] (G.6)

The integrals over s and t are found in reference 37. The results

after integration over all variables except 8 is

-1 m (3¢ ™ . s
1, = —5—— /5 [«°] sin® F(@,R) G_(8) do (G,7)
a  6n A2(5) 1 o @

where



- 2 1.2 1 2
G_(8) = -b(sin b)+-———-—-—-.—[--ab -=>ab +b
7 ] 4 [ 1 2 1 1
+ —a - b| + a = ==a - == ab
16 (1 =-b2)3/2 128 32 32
1 2
+ 1% ab ] (G.8)

and

I8 is now written

3 T
I = 1 -nj sinOF(8,R ) G(8)dd |, (6.9)
(o]

where G(R) = Gafe) + Ga(B +m) - Ga(O) = Ga(n), In order to deter-
mine Ga(ﬂ), go back to the integration over s and t, set 9 ==x
and then carry out the integration.

The remainder of the calculation is straightforward and is

illustrated by equations (89) -~ (94) of the text. The procedure is the

same for each bracket integral which must be calculated numerically.
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