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SUMMARY 

An analytic solution of the Boltzmann equation for the problem of 

a gas flowing between two parallel, infinite plates, applicable for 

all flow regimeSj has been developed for three different molecular models^ 

The molecular models are the Krook, hard sphere, and Maxwellian models,, 

The full-range and half-range moment methods, with the Willis iteration 

methods were used in the analysis. The purpose of this dissertation was 

to make a meaningful comparison of the volume flow rate with the existing 

experimental data, and to adequately describe the minimum in the volume 

flow rate which occurs in the transition regime, 

The physical problem is that of a gas flowing through, a long, 

wide channel at low speedo The mathematical problem has been idealized 

to consider a one-component gas flowing between two parallel, infinite 

plates. As a result of this idealization the mass velocity profiles are 

considered fully developed. Although the theoretical analysis ignores 

the end effects present in a finite channel, the quantity of interest 

is the volume flow rate which remains the same regardless which section 

of the channel is considered,. Thus, the mathematical problem suitably 

describes the conditions •-- as far as the volume flow rate is concerned --

existing near the mid-point of a long channel, 

The theoretical analysis was based on the following assumptions: 

1. There was no density variation between the plates at any 

given longitudinal station. 

20 The flow field and plates were at the same temperature and 
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were isothermalQ 

3o In position-spaces, the mass velocity varied only in the direc­

tion normal to the plates0 

40 The pressure gradient was constanto 

The Boltzmann equation with the Krook model was first solved using 

the full-range moment methoda In this method9 the perturbation of the dis­

tribution function is expanded in a polynomial in c 9 the normal velocity 

componento The coefficients are functions of position and are determined 

by the solution of the moment equations obtained from the Boltzmann equa-

tiono The moments are defined over the full velocity range5 from -°° 

to -+°°0 The first three approximations for the full-range method were 

obtainedo Since the convergence was slow and no minimum was obtained in 

the transition regime, the solution was not carried further by this 

methodc 

After applying the full-range method and not achieving satis­

factory results^ the half-range moment method was applied to the Boltzmann 

equation using the Krook models The method is similar to the full-range 

method? except that the perturbation of the distribution function is 

explicitly divided into two streams0 In addition, the moments are 

defined over the half rangess -°° to -+°°o The first three approximations 

by the half-range method were obtainedo The third approximation yielded 

tne desired minimum in the transition regime,, For the transition, slip^ 

and continuum regimes there was very good agreement with the experimental 

data0 Howevery in the near-free-molecular regime the theoretical analysis 

yielded poor resultSo Thus>; the Willis iteration method was applied to 

improve the results in this region0 
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This method consists of developing,:, from the basic integrodiffer-

ential equation,, a relation for the volume flow rate in terms of a first 

guess of the volume flow rate0 Once a first guess is known,, the first 

iteration can be computed0 As a first guess9 the first approximation for 

the Krook model was usedo The result of the first iteration showed the 

correct limit for free-molecular flow,, indicating good agreement with 

the experimental data0 

The Boltzmann equation with the hard sphere model was solved Dy 

the half-range method for two approximations,, The second approximation 

yielded a minimum in the volume flow rate in the transition regime0 Data 

for heliumy hydrogens and carbon dioxide were compared to the theoretical 

results and good agreement was obtained in ail but the near-free-molecular 

region.. 

The last analysis was that of the Maxwellian model using the half 

range method0 The first three approximations were solved, and the third 

yielded the desired minimum in tne volume flow rate in the Transition 

region* Data for helium j, hydrogen^ and carbon dioxide were compared 

with the theory and good agreement was obtained for all but the ntar free-

molecular region., It was necessary TO calculate values of five bracket 

integrals,, which have not been previously calculated,, for the third 

approximationo 

The consistently unsatisfactory agreement in the ne.ar-free-molecuiar 

region for all the molecular models is a result of the polynomial approxi­

mation methodo The volume flow rate exhibits a non-analytic behavior 

for near-free-molecular conditions, and it is impossible to obtain 

this behavior from a finite number of terms in a polynomial 



It was concluded that the half-range method yielded good results 

for the transition, slip, and continuum regionso By using the Willis 

iteration̂ , this good agreement with the experimental data was extended 

to all of the flow regimes0 The Krook model was a satisfactory approxi 

mation to the collision integral of the Boltzmann equation^ yielding 

better results than the hard sphere or Maxwellian models0 
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NOMENCLATURE 

Symbol 

_ Q 

A Angstrom unit, 10 cm. 

A7 see equation (9) 

a molecular diameter 

B7 see equation (28) 

c" nondimensional velocity, p v 

c i P V I 

d plate separation distance 

f distribution function 

f local Maxwellian distribution function 
o 

f equilibrium distribution function 
eq M 

f (x) see equation (56) 

H„ Hermite polynomials 

n perturbation of distribution function 

h nondimensional perturbation, h/ K.d 

I. bracket integral, see equation (67) 

j( ) collision integral, see equation (61) 

k Boltzmann constant 

L7 orthogonal polynomial, see equation (C.3) 

M molecular weight 

M, full-range moments, see equation (10) 

m molecular mass 



Symbol 

n number density 

n local number density 
o 1 

p pressure 

p„ inlet pressure 

p local pressure 

Q volume flow rate 

q nondimensional mass velocity 

q^ average velocity at any cross-section 
"avg 

R, force constant for Maxwellian molecules 

T temperature 

t time 

u mass velocity 

V volume 

v molecular velocity 

v. velocity of one molecule in a binary collision 

v^ velocity of center of mass in a binary collision 

vr relative velocity between molecules in a binary 

Xj,y^z position coordinates 

Greek Symbols 

a constant«, see equation (Do 9) 

p m/2kT 

5 inverse Knudsen number, Krook model 

5 inverse Knudsen numbers Maxwellian model m 

hn inverse Knudsen numbery hard sphere model 
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Greek Symbols 

b. . Kronecker delta function 

e angle, see equation (58) 

f) nondimensionai coordinate, x/d 

n viscosity 

0 scattering angle, see equation (58) 

K- (dp/dz)/Pi 

X mean free path, Krook model, d,/(3n 

it constant = 3.14159265359 

a tangential accommodation coefficient 

o", n/rt-, = collision frequency 

Tj) hV C 

' z 

Superscripts 

± indicates positive and negative direction of ct 

Subscripts 

x,y3z direction components 
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CHAPTER I 

INTRODUCTION AND HISTORICAL BACKGROUND 

Purpose and Scope of Work 

Discussion of the Problem 

The solution of the parallel^plate geometry flow problem is of 

interest, first^ because deviations from the continuum theory have been 

found in the experimental data for low pressures,, and, second,, because 

the simple geometry of the problem provides a further test for the powerful 

methods of solution recently developed and applied to similar problems., 

The problem consists of determining the volume flow rate of a 

rarefied gas between two parallel9 infinite platesQ The geometry of the 

problem is shown in Figure 1., page 2o The physical problem is that of a 

gas flowing through a long, wide channel (such that the height=to-width 

ratio is very small) at low speeds The mathematical problem has been 

idealized to consider a one-component gas flowing between two parallel, 

infinite plates0 As a result of this idealization the velocity profiles 

are "fully" developed (that is,, there is no change in the macroscopic 

velocity in the longitudinal direction)„ Although the mathematical prob­

lem ignores the end effects present in a finite channel,, the quantity of 

interest is the volume flow rate which remains the same regardless which 

section of the finite channel is consideredo Thus,, the idealized mathe­

matical problem suitably describes the conditions «=• as far as the volume 

flow rate is concerned • existing near the mid-point of a long channel. 
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\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 

X,T] 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 

Figure 1. Geometry of the Problem. 
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Purpose, 

The purpose of the present work iss 

lo To solve the Boltzmann equation,,, analytically^, for the distri 

bution function of a gas flowing between two infinitey parallel plates for 

three different molecular models,,, i°e05, the Krook9 hard sphere,,, and 

Maxwellian modelso 

2o To make a meaningful comparison of the volume flow rate with 

the existing experimental data for several different gases0 

3o To demonstrate that it is possible xo obtain a satisfactory 

solution of the volume flow rate for the free-moleculary transition^ slip,, 

and continuum flow regimesc 

Scope of the Investigation 

The Boltzmann equation using the Krook model is first solved by 

the full-range moment method (described in Gross, Jackson,, and Zierings (i)K 

and then by the half-range moment method (l)0 The solution by the half-

range moment method is then iterated once following the method of Willis 

(2)o The results of these solutions are then compared with Cercignani's 

(3) numerical results and Dong's (4) experimental data for the volume flow 

rateD Nexty the Boltzmann equation using the hard sphere model is solved 

by the half-range method, and the results are compared with the experiments 

of Dong0 Last,, the Boltzmann equation using the Maxwellian model is solved 

by the half-range method,, and the results are compared with the experiments 

of Dong0 

Historical Background 

The earliest work on parallel plates and the related problem of 



4 

rarefied gas flow in tubes was that of Knudser.o He developed,; in 1909 

an equation for the volume flow rate in long;, circular tubes for free = 

molecular flow (5)a In the same paper he presented an equation for the 

volume flow rate in finite length, rectangular channels under the condi­

tion of free-molecular flow0 Both of these equations were derived from a 

consideration of the momentum flux and the pressure forces0 Knudsen also 

presented some results of his experiments with long tubes in this paperv 

and demonstrated that a minimum in the volume flow rate exists in the 

transition regimeo He showed that this minimum could be observed only 

by reducing the pressure in the system to one mmD of mercury or lessQ 

Further work on Knudsen°s part substantiated the existence of the minimum 

(6)o Knudsen described his early work in a short monograph (?),, which, 

unlike his previous works,; was written in Englisho 

Knudsen*s derivations of the flow rate equations were somewhat 

inaccurate because of some non-rigorous assumptions on his parto Von 

Smoluchowski (8) rigorously derived an expression for the volume flow 

rate in a long cylinder for free-molecular flow,. Besides extending 

Knudsen's work to any cross section.? he introduced the possibility of 

non-diffuse reflection of the molecules from the tube walls0 

Further experimental work with parallel-plate geometry was carried 

out by Gaede (9) in 1913° His work further verified tne existence of a 

minimum in the volume flow rateQ Gaede used two parallel platess, 

~4 
4 x 10 cm0 apart$ the width of the slit was 3o4 cmG^ the dimension 

in the direction of flow was 0„12 cm0 ThuSj, he worked with essentially 

a two-dimensional slito Gaede observed that the volume flow rate at the 

minimum was about fifty percent below the theoretical free-molecular valueo 
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Clausing (i0)9 in his work of 1932s, derived an expression for the 

volume flow raxe between parallel plates in free-molecular conditions,, He 

considered the slit to be infinitely wide^ consequently., only the length 

of the plates and the distance between the plates were parameters in his 

equation,, His equation is applicable for both long and short platesc 

In 1937^ Rasmussen (ll) carried out experiments to determine the 

volume flow rate for parallel-plate geometry for low pressures*, In these 

experiments;, Rasmussen usee two glass plates, lo82 x 10 cm0 aparto The 

width of the slit was 1*32 cnu a:nd the dimension in the direction of flow 

was 0o963 cm, He observed a minimum in the volume flow rate near a 

Knudsen number of unity0 

These early experiments established that a minimum existed in the 

volume flow rate at very low pressures.. This minimum was not predicted by 

the continuum-flow theory,, and,, furthermore,, no theory was available to 

predict the minimum,, 

Certainly, a need existed for a theory to adequately predict the 

properties of the gas flow between parallel plates (and tubes) for the 

entire Knudsen number range,, A review of the attempts to adequately 

determine the volume flow rate for the parallel plate geometry is pre 

sented in the next section,, 

Review of Recent Literature 

After the work of the early investigators,, it was not until 1952 

that a theoretical analysis was presented to determine the volume flow rate 

between parallel plates,, Hiby and Pahi (.12),, following the work that 

Pollard and Present (13) had presented on circular tubes, derived an 
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expression for the volume flow rate in a rectangular channel of infinite 

length for near-free-molecular flowa Unfortunately, they considered only 

the self-diffusion component of the flow rate? and did not include the 

component resulting from the presence of a pressure dropa Consequently, 

their results did not agree with the available experimental data and did 

not indicate the existence of a minimum, 

The analysis of Hiby and Pahl was corrected by Dong (4) in 1956o 

He accounted for the flow due to the pressure gradient* As a result of 

the correction, Hiby and Pahl°s theoretical work presented a minimum in 

the transition region, and agreed with Dong's experimental work. However, 

this solution is inaccurate for Knudsen numbers less than unity,, so that 

the continuum-flow solution is not predictable,, Dong determined the vol­

ume flow rate for a gas moving between two parallel plates 0=324 cm0 apart, 

22086 cmo wide, and 61.0 cm. long- The experiments were run with H9> He-

air, CCL, and freon-120 

Neither Hiby and Pahl nor Dong were able to calculate any quantity 

other than the volume flow rate, since their analyses were not carried out 

by solving the Boltzmann equation and determining the distribution function^ 

Their solutions were found by considering the flux of particles leaving 

the walls of the channel and the flux of particles leaving points of 

collision in the gas0 Both investigators assumed that only one molecule-

molecule collision occurred between collisions with the wall, 

Thus, there are two drawbacks to the work of these investigators: 

One, only the volume flow rate was determined; two, the analyses were not 

applicable throughout the entire Knudsen number range0 

Takao (14), in 1960, was able to solve the Boltzmann equation 

(using the Krook model for the collision term) and to obtain a minimum in 
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his solution of the volume flow rate for the parallel-plate geometry 

problemo His solution Is applicable for the entire Knudsen number range 

from continuum to free molecular flow0 Takao's method consisted of dividing 

the distribution function at any point in the channel into two parts % 

those molecules passing the point which have not suffered a collision 

since their reflection from the wall, and those molecules which have 

collided with other molecules since their reflection. Since this approach 

is quite involved, fakao found it necessary to make physical and mathemat­

ical assumptions which were not rigorously supported,, Also, Takao found 

that it was not possible to distinguish between gases0 Consequently,, the 

validity of his results (as far as quantitative results are concerned) is 

questionable and the resales are limitedo 

Ziering (15)^ in I960, solved this same problem for the distribution 

function and, subsequently, obtained the volume flow rate0 However., nib 

solution did not exhibit the desired minimum because he omitted a term in 

the Boltzmann equation0 

Cercignani (3), (16), in 1962, pointed out corrections to Takao's 

work, and numerically solved the Boltzmann equation (with the Krook model) 

for the volume flow rate throughout the entire Knudsen number rangeQ H& 

first assumed the distribution function to be perturbed slightly from 

its equilibrium value0 After developing the Boltzmann equation in terms 

of the perturbation, he carried out certain integrations to obtain an 

integral equation for the velocity and then integrated tne velocity between 

the two plates to obtain the volume flow rateQ Cercignani used a numerical 

method to solve the integral equation for the velocity and, subsequently, 

the volume flow rateQ Although his results were in reasonable agreement 
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with the experimental data,, the numerical procedure was complicated and 

only the volume flow rate for the Krook model was determined,, Because of 

the use of the Krook models there was no distinction between gases0 

Cercignani's solution was based on the assumptions of completely diffuse 

reflection of the molecules from the plates and of a constant pressure 

gradiento 

The method used in the present work to solve the Boltzmann equa­

tion is the half-range moment methodo A good description of this method 

is given in Gross,, Jackson^ and Ziering (l)^ where the method was used to 

solve the Boltzmann equation for the Couette flow probiem0 Briefly,, the 

half-range moment method assumes that the flow is divided into two streams 

one stream leaving the wall;, and one stream approaching the walla The 

perturbation of the distribution function is then expanded in a series 

of orthogonal polynomials which are orthogonal over the velocity half-

ranges,, •*«> < V < 0 and 0 < v < °°0 It is then possible to determine the 

solution of the Boltzmann equation for the perturbation of the distribu­

tion function,, 

This concept of dividing the flow into two streams,, with ortho­

gonality conditions imposed over the half-range, is accredited to Yvon,, 

as discussed by Kourganoff and Busbridge (17) on page 101 of their worko 

The method arose from an investigation on neutron diffusion,, and was sub­

sequently used by Gross and Ziering (18) in 1956,, in the Milne problem 

for a plane gray atmosphere with isotropic radiation^ These problems,, 

and that of flow between parallel plates,, have as a basic equation a 

similar integrodifferential equation Furthermorey an interaction occurs 

at the boundary of each problem such that the incoming stream is altered 
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upon reflection from the boundary,, Thus, there is a discontinuity at the 

boundary which only the half-range method suitably describes,, The simi­

larities between the gasdynamic Boltzmann equation and the radiative Milne 

equation and their respective boundary conditions are discussed by Huang 

and Giddens (35)a 

The half-range method has been successfully applied by Grosss 

Jackson^ and Ziering to the Couette flow problem in a series of reports 

(1),(19),(20), (2l)o These reports deal with the Couette problem using 

the Krook model, hard sphere model^ and Maxwellian model in the collision 

integral of the Boltzmann equation,. They solve both the momentum and heat 

transfer problems with satisfactory results,, 

The intent of this study is to extend the previous work by 

analytically solving the Boltzmann equation,, using the full-range and halt-

range moment methods,, for three different molecular modelso The results 

for the volume flow rate are compared to the experimental data of 

Rasmussen and Dongc 
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CHAPTER II 

METHOD OF SOLUTION 

Krook Model 

General 

The problem consists of a fully developed flow between two parallel 

Infinite plates as shown in Figure lo The plate separation distance is 

d and the flow is In the z-direction0 

As in all rarefied gas dynamic problems^ the Boltzmann equation is 

the basic transport equation In the absence of external forces and 

time variation of properties, the Boltzmann equation is 

v • ̂  - $ ) (I) 
dx d c c 

where the right-hand side of the equation expresses the total variation 

of f due to molecular coiVisionso One of the simplest expressions 

thus far devised for th*; collision term is the Bhatnager,, Gross j, and 

Krook linearized model (22)$ 

f ) - ~ (f -f) » (2) 
dt « tf.. eq y 

where f is the local Maxwellian equilibrium distribution functionc 
eq M 

The linearization of f follows that of reference (l) and will not be 
eq ' 

repeated here0 

The mathematical analysis in this study is based upon the 
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following assumptions^ 

lo There is no density variation between the plates at any given 

longitudinal station 

2o The flow field and plates are at the same temperature and are 

isothermalo 

3o in position-space?, the mass velocity is a function only of x0 

40 The pressure gradient is constanto 

In the succeeding sections^, the solution for the distribution 

function by means of the full=range moment method and the half-range moment 

method is considereda The distribution function for the Krook model is 

first determined by the full-range moment method,, and then by the half-

range moment method0 

Full-range Moment Method 

Basic Equations,, Appendix A presents a detailed derivation of 

equations involved in the solution by the full-range methodo Only the 

major equations are presented and discussed in this sectiono The deriva­

tion of the equations closely follows that of reference (l) where the full-

range method was used to solve the Couette problem., 

The distribution function is assumed to be perturbed slightly from 

the Maxwellian distribution such that 

f - fQ(l + h) , (3) 

where 

. 0 3 =B2 v 2 , 3/2 / A v 
fo = no P '" 9 ^ 
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and 

% = P0AT = Pi(l + Kz)/kT „ (5) 

The constant "*" (Appendix Â  equation A05) is proportional to the pres­

sure gradiento Using the previous equations and assumptions and intro­

ducing dimensionless variables^ the Boltzmann equation becomes 

c ~ ~ + c + 6h* = 26c q , (6) 
x df| z zMz y 

where b = dA i s the inverse Knudsen number,, X * d. / f in i s the mean 1 r * o 

free pathj, and 

*2 
-3 /2 f . * =c ,3 , „ , 

- it / J c^ h e d c o (7) 
qz 

=.00 

Substituting h (i\) - c $ (i\) into equation (6) and integrating over c 
z y 

and c yields z J 

CO 2 

c ^* + 1 + b^ = -*- f *e" C* dc o (8) 

In order to obtain solutions for the velocity profiles,, q (T\) 9 and 

the volume flow rate, it is necessary to solve equation (8) for ^(f|)0 The 

first step is to assume the solution is of the form 

% , c x ) - I e* A* <„) , (9) 
n=o 

where 
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i> (v - i (?)) for c > o 

i|j(fi) « ^ for c < 0 
x 

The full-range moments are defined 

M. . i f ĉ *."e«d- 10) 
=00 

2 
Multiplying equation (8) by c e x /vV a^d integrating c over the 

full velocity range yields the following set of moment equations 

dM 

drj" * 1 (11) 

dM9 

17 " ^6M1 (12) 

dM 

•KT"8 - 2 " 6 M 2 + 2 M o (13; 

dM4 

d ^ = ^ V etc* (14) 

Combining equations (9) and (10) yields 

M. * 

1-0 •-

E k<i\f n+k e * 
x /— x 

+ A 
; < - > / 

n+k e x 

/—= "x 
VTT 

(15) 

It is now possible to solve equations (11) - (14) for the MtS, in terms 



14 

of f]o It is also possible to write the M„ in terms of the A" using 

equation (l0)o From these sets of equations,, the AT are determined as 

functions of ?)<= 

In order to determine the arbitrary constants arising from the 

solution of equations (ll) •= (14)9 the number of boundary conditions 

necessary must equal the number of M0„ The boundary condition requires 

that the distribution function at the plates be composed of two partss 

One part is the fraction of molecules reflected diffusely and the other 

is the fraction reflected specularly0 The fraction of molecules reflected 

diffusely is denoted by o 0 Thusj; 

± d (l ± Siqn Zx\ 
f (x - + 5 . cx) - d f 0 ^ — T - , ) 

+ {1 - o) f+ (x = + | , ^cx) 0 (16) 

In terms of rj> this is 

**(*! = + I » cx) « (1 - d) **(i| - + \ , -cx), (17) 

If d = 19 equation (17) becomes 

A* (+ | ) « 0 o (18) 

To be consistent with the assumption of a constant pressure gra-

dientp only the case d = lo0 should be consideredo However9 considering 

the approximations already made9 the results should be nearly correct for 

d very near unity0 
+ -f 

With the solution of the A7 complete^ tj>~(»j) can be determined,, 
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Then, q (r,) can be found and, subsequently, Q(&), the volume flow 
z 

rate. The derivation of Q(&) appears in Appendix Ao The first three 

approximations for the full-range method of the Krook model are discussed 

in the next three sectionsa 

First Approximation. For the first approximation assume $ ~(r\) = A~{r\) 

and use the first two moment equationSa The first approximation is solved 

in detail in Appendix B and only the solution is presented in this sec­

tion* The solution for the velocity is 

/ \ 6 2 *JK ,2 -6 S 

qJi) = o i + T" (~r~) -
(19) 

and the volume flow rate is 

Q(6) - Z + — (—, (20) 

Second Approximation, The perturbation of the distribution func­

tion is assumed to be proportional to 

ljJ
±(T]) = A*(n) + A*(TJ) C (21 

The method of solution for q (r\) follows that described for the first 

approximation In this case, four moment equations are used to solve for 

4 ± 

A and A., For the case 6=1. the velocity between the plates is 
o 1 ' ' 

g i v e n by 

/ \ b 2 
q (t]j = - r] + 2 cosh &T| 

Z A 

2 /T 

+ - - 1 + 
5 8 

8 s i n h ^ + 4 j / iTcosh 77 

1 hR 
2 cosh ~ + I/K s i n h — 

2 s i n h - + /ir cosh — 
f 2 2 > 
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The flow rate i s 

Q U ) - ! 1 +-T^ 
0 

2 cosh r + JK sinh -x 

\j2 s inh - + JTI cosh - J 

• * 
2 + 

4 /K 
sinh -

b /— 6 
[2 sinh r + y/n cosh - J 

23) 

Third Approximation. In this case, 

¥*(!)) = A*(TI) + A*(TJ) cx + A*(rj) cx
2 (24) 

The first six moment equations are used to solve for the A„0 The fifth 

and sixth moment equations are, respectively, 

d M5 3 3 
T-2 = - 7 - 6M„ + 7 6M 
df| 4 4 4 o 

(25) 

dM, 

T^ = ~bK 
dt] 5 

(26) 

Since the third approximation does not yield a satisfactory solution, 

and since the expressions for q (rj) and Q(&) are very complicated, 

only tabulated values of Q{b) versus 6 are presented* These data 

are given in Table 1, page 440 

Half-range Moment Method 

Basic Equationsc Beginning with equation (6), it is possible to 

formulate a method of solution which exhibits convergence faster than the 

All numerical calculations for this study were carried out on a 
Burroughs B5500 computer 
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full-range method for all velocity moments investigated,. Rather than 

multiply equation (6) by c e X/«/K and integrate over the full 

velocity range to obtain the moment equations^ the equation is multiplied 

by a similar term and integrated over the half-ranges -°° < c < 0 and 

0 < c < °°o The result of this operation is a set of differential equa-
— x — 

tions in the variable h 9 which is the perturbation of the distribution 

function for the half-range methodo The "+" sign indicates c > 0§ the 

"-" sign, c < Oo 
3 * x 

Appendix C contains a complete derivation of the basic equations 

used in the half-range solution^ so only a few of the equations are pre­

sented in this section,, The basic integrodifferential equation is 

*+ -2 
c ~ — + c + &h = ~j^ he c h*" e d c o (27) 

z J z 
x dn z 3/2 ~z J z 

• -TT <> It 

Following reference (1), it is assumed that h can be expanded in 

terms of Hermite polynomials such that 

h*f = Y B* (ij) Lf(c ) H.(c ) H. (c ) 0 u ijk ' I x j y k z 
ijk 

28) 

Ho and H, are the usual Hermite polynomials,, and L„(c ) is an 
J K X X 
orthogonal polynomial of c whose coefficients are determined by the 

Gram-Schmidt processo 

By multiplying each term of equation (27) by Lj(c )H (c )H (c )e 
\i x m y n z 

and integrating over the half-ranges,, the following differential recurrence 

relation is determined^ 

2 
=-c 
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_d_ 
dr, 

a a 
B^ _i=L ± B± ( P_i±i . h)+ B± _ ^ _ 

1 - 1 a i ' V i + i a iV 1 + 1 a i+i 

+ i B7 = 
1 

k (B+ + B") . _ i _ 

. 2V?. 10 
(29) 

The a. and p. are the known coefficients of the polynomial L„(c ) 

+ 
In terms of the unknown function B. , the boundary conditions are 

B± (+|) = (1 -aH-1) 1 B+ (+±) (30) 

Furthermore, the symmetry of the physical problem indicates that 

B*(f|) - (-D1 B+(-n) (31) 

The flow velocity i s given by 

q z ( l ) - ^ - (B+ + B" ) 
V2 ° ° 

(32) 

and the volume flow rate as 

Q(fc) = "2 J qz(t|)
 d1 (33) 

It is not possible to solve equation (29) by the method used by 

Gross, Jackson, and Ziering (l) due to the presence of the term 1/2//2 

in the right-hand side. This term does not appear in their equations since 

the driving force for the Couette flow is the movement of the walls, not 

a pressure drop. It is possible to solve equation (29) for any approxi-
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mation (ioe0, for the i approximation, all B~ = 09 k > i) by 

assuming a particular solution of the non-homogeneous equation, which 

is a polynomialj, and then solving the. homogeneous equation in a manner 

similar to that of Gross, Jackson, and Ziering (l)„ 

The first, second, and third approximations for the Krook model 

are presented in the next three sections0 The solution for the first 

approximation is relatively simple and is presented in fullo The second 

approximation is presented in detail in Appendix D„ The solution for the 

third approximation, due to its length, is presented in a brief form0 

The iteration method of Willis (2) is presented in the fourth sectionc 

First Approximation In this approximation, i = 0, and 

h*1 = B"(f)) Li: (c ) c (34) 
O ' O X Z 

where L~(c ) = v T . Thus, equation (29) becomes 

1 d B+ + * B* - | B" - - i - (35) 
• 7 d i ° 2 ° 2 ° 2v^ 

1 d B- + | Bl - I B+ - - L - . (36) 
• 7 d 1 ° 2 ° 2 ° 2^2 

Differentiating (35) yields 

dt,2 It/7 

Solvings and using the symmetry condition yields 

d2B+ 

°- 6 - * - . (3?) 

B+(,) = t, - S - , 2 + a i f | + a2 

4,/2" 
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B
nW = & ~^r n ~ a n + a2 0 4 ^ 

The expression for a. is obtained by substituting equations (38) and 

(39) into (35)„ The result is 

a. = - VTt/8 „ 

The expression for a~ is found by applying the boundary condition^ 

B+ (- § ) = (1 - o ) BQ (- i ) a (40) 

Thus, 

a ^ fc _ V ^ (2^1) o ( 4 1 ) 
2 16-/2 4v^ d 

Hence 

and 

B0(n) = - 7 : M + 5 / 2 *> " ~ 7 1 6 " ^ ( ~ ) ? ( 4 2 ) 
0 V 2 ^ ^ 16/2 4 / 2 d 

Q z ( n ) - | M 2 - f s * - ^ ^ • ( 4 3 ) 

The volume flow rate is 

Q(») • n *+ 4" ^ • (44) 

Second Approximationo For this approximation, all B7 = 09 i > 2< 

Equation (29) yields 
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dB" 
__j 

dfl df| 
<\At ±-f^Bo - v = *yi (45) 

dB' ( 
dr) 

2 < / 2 dB: 
2it 

6 B : = o ( ^ 2 ) 3 / 2 dr) V ^ 2 1 
(46) 

These four equations^ with the b oundary conditions for B and B„ 9 

are used to solve for the four unknowns., B 9 B 9 B. „ and B. 0 The 
9 o J ô  Is 1 

details are presented in Appendix Do For diffuse reflection, the volume 

flow rate is 

Q(&) = 0o5642 + 0ol6676 + g+ 2o8284e 2 + 7o5593e 2 

5o5232 , a 2 ' a 2 N 

~T~ (e " e } (47) 

where a = lo8808 and 

0ol507 + 0o468p/ft 
ft b 

-a 5 a 5 
0,2804 e + 2o4943 e 

Third Approximation,, In this case, B" 

** 

and B» are the 

only non-zero terms in the expansion of h „ The expression for h 

is equivalent to a second=degree polynomial in in which all terms 

are multiplied by c p i0e. 

h " = [c^-,) + c2('.) cx + c3(r,) cx] c. 

The six equations used to solve for the six unknowns are 
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dB" dB; 
+ FEI ! ! i + £-/ ^ ^ + ^ - &(B

+ -iT) - - i / | 
2 6f\ 2 o o 2V 2 

(48) 

dB" 2 3/2 dBi , , / 2 ^ 3 d ni 
(~) dr| TC~2 dt] (*-2) 3/2 dt) B2 

+ M^ &B7 = o 
V 1C~2 1 

(49) 

dB; 
+ -

(ic-4) dB 
2 + * 

df1 " 2K ( * - 3 ) 3 / 2 dT1 «£~ ^ 
b B" = 0 (50) 

After determining the particular solutions for the B~ ? the non-homo-

geneous terms in the equations are dropped and the solution is determined 

in a manner similar to that of the second approximation presented in Appen­

dix D0 Following the notation used in the solution of the second approxi­

mation, it was found that 

a1 = 3o7853 a 2 
— 0c6421 

l1 = 3c9389 l2 
= 1o6284 

m 1 = ~0„4129 m2 = - 0 o l 7 5 7 

n. = 4o3029 n 2 = 1.0074 

P l 
= 0 o l 5 5 6 p 2 

- 0o0361 

q l 
= 2o4603 q 2 = - 2 o l 6 9 0 

The solution for the velocity distribution between the plates is 

1 2 
q (f|) * ii/5" b + j t i ^ + 4.9389 g 0 1 ( e 1 + e 2 ) + 2.6284 g ( e 3 + e4) , (51) 
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where 

e1 = exp(-a16r)) e 3 = exp(-a 2&n) 

e 2 = exp(a 6T)) e^ = exp{a2br\) 

1 , + 
o = - , - [ g 0 1 ( e l + V 2 " e2 " V l + * e 2

+ t 5 V l ) 

+ g02 ( e 3 + l2QA - e 4 " *2 e 3 + d e 4 + f 1 V 3
) 

+ 0.1995 (2 - n) + 0.0884d 6] , 

and g and g^ are determined by the solution of the following 

matrix equation 

K l K2 

K3 K4J 

h + I 

'oi 

+ 
L^Q2J 

0.4680(2 - n) f - 0.1507 d 
o 

0.1761 f 
0 

x = [m1 - (1 - n ) n 1 ] e 1 - [ r^ - ( l - rOm^e, K, = 

K2 = ^m2 " ^ " ^ ) n
2 ] e 3 ' Cn2 " ^ " rt^m2^e4 

3 = [ p 1 - (1 - d ) q 1 ] e 1 + [q x - ( l - «)p1]e2 K„ = 

K4 = [ p 2 - (1 - rt)q2]e3 + [ q 2 - ( l - d ) p 2 ] e 4 

The volume flow rate is obtained by applying equation (33) to 

q (TJ). The results of this integration are presented in Table 2, page 

46, where Q(&) is tabulated as a function of 6. 
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Iteration of the First Approximation,, Equation (27) can be rewritten 

as 

dh* 1 + 2 f t c. 
+ — h 

df) q2(n) - ^ (52) 

Following the approach of Willis in reference 2, this equation is solved 

#± 
for h o The solution is 

h*4 "*l\r <z<"'>e 

+ 1 x 

2 

-(r|-ri')ft/c 
x d V 

J.i r e d^ (53) 

+ 2 X 

where the integrating factor for equation (52) is exp (i\b/c ) , and the 

constant of integration was found to be zero after applying the boundary 

condition h ~( + ^ ) = °« 

Using the definition of the velocity from equation (7)^ it is 

found that 

qz(l) — w - e x 2?> J qz(t|*)e dt| 

f 
J 1 

n (n-tiOft/cx 
dt,-

.2 
p 1 -c 

dc + — e x 

X J C 
0 X 

26 f q(n«)e 
1_ 2 

" 2 

(t|-f|')*/c , , x d?j( 

n -(ti-nMfc/c, 
I. 
2 

J " e *<,,• dc >4) 
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Equation (54) is in a form which requires a first guess for q (r)g)» 

Once this first guess is mades the first iteration of q («j) can be 

calculated., This procedure can be carried out for any number of iter­

ations,, Furthermore, it is possible to show,, in a manner similar to 

that presented by Willis (2), that the iteration is convergent., 

Only one iteration is calculated here, and as a first guess the 

first approximation for the Krook model is usedo Thus, for 6 = 1°0V 

^•)=!*n- 2-f^ 4 

After carrying out the integrations in equation (54) based on this first 

guess, the result is 

q (n) » | M 2 - ^ » - T - ^ t W +f2(x2> - i 1 ] (55) 

- 4 " [fi(xi5 + f i M + { 4 + -p - ) [ f 1 (^ 1 )+f 1 (x 2 ) - y r j . 
2 / / JT b 

where 

2 x 
>u - -f (x) = f um e U du (56) 

m J 

and x. = (o - n ) 6 » x = (q + -)ft o The integrals f (x) are those 

defined by Abramowitz (23)o The values of the integrals over the range 

of x were obtained from a Gauss-Hermite numerical quadrature (35)o Since 

the quadrature method proved inaccurate for x < 0.5, the expansion used 

by Willis (24) for x < 2o0 was usedo The accuracy of these methods is 

discussed in Chapter III„ 
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After obtaining values for q {r\) at any number of specified points 

between the plates, the Simpson rule is used to obtain Q(&) where 

I 
Q(ft) = -2q7 = -2 f 2 q M dn . (57) 

z u . z 
avg 1_ 

"2 

The values of Q(&) are tabulated in Table 3, page 50. 

An asymptotic expression (independent of the initial guess of 

q (r\) for small b) for Q(&) for small b is developed in Appendix E. 

Hard Sphere Model 

General 

For the hard sphere model, the collision term of the Boltzmann 

equation is 

2ir 2 

<ai) - J V v J *JVsin9devr(rf;.ffl) (58) 

where 9 is the scattering angle, a is the molecular diameter, v 

is the relative velocity between molecules, and the "primes" denote the 

*±\ distribution function after collision. If it is assumed that f = f (l+h ), 
o 

the Boltzmann equation becomes 

*± 
c ^ — + c = b J(h#±) , (59) 
x df) z s ' 

where b is the inverse Knudsen number for hard spheres defined as 
s r 

b = dn JT TT a , (60) 
s o N 
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and j(h* ) is the collision term as a function of the perturbation 

which is defined by 

-c? - « 2TI „ * 

J ^ ^ — S T T J ^ ld%J dE 
A pr Tj2 J i J 
4^2 it ' o 

sin 6 d6 c 
r o 

- (h*° + h~° - h* - h*) . (61) 

The approach that is used to solve equation (59) differs slightly 

from that used in the previous section0 Here, it will be assumed that 

n-1 

£ *\W\ P n = 1,2,..o (62) 

i=o 

h* = c 
2 

where n indicates the order of the approximation Thus, for the first 

approximation, n = 1? for the second^ n = 2, etc0 In other words, h ± 

will not be developed in terms of orthogonal polynomials« 

In the next two sections, the first and second approximations for 

the solution of the hard sphere model are presentedo The first approxima­

tion, due to its brevity, is presented in full* The second approximation 

is presented in detail in Appendix F0 

First Approximation 

The perturbation of the distribution function assumes the form 

h*1 = a±(ri) c o (63) 
o z 

Following reference (19), it is possible to write the perturbation as 



28 

and 

h"* " i^) \ + C ^ ) Cz Si"̂ Cx . <"> 

J(h*±) = \ ^ ~ J J(c ) + (^hH2- )j(c sign c ), (65) 

where 

sign c ^ x 

= +1 9 Cx > 0 

•1 , c < 0 J x 

-C2 
Multiply equation (59) by c (l ± sign c )e x and integrateQ The result • z x 

is 

T- a" ± A/JT = 6 — (a -- a") „ (66) 
0.T] O S It 0 0 

where I. is called the bracket integral defined by 

•+°° —2 
I = [A,B] = f AJ(B) e~C d3c o (67) 

J -oo 

In this case 

Ix = [cz sign cx, c^ sign cx] „ (68) 

I, is a pure number and can always be calculated if the law of interac­

tion for the molecules is known<> Ziering, reference (25), clearly explains 

the use of the bracket integrals and carries out the integration of I. 

in detail. The velocities after collision can be determined by referring to 

Jeans, reference (26). If the center of mass coordinate system is used 
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(reference 27), in which 

- c. - c. - c , 1 «. c 1 f ca-< 
vc - T + - , vr = — - y , ,69) 

where v is the velocity of the center of mass and v is the relative c ' r 

velocity*, the equations for the velocities after collision are 

v 

c' = v + — ~ cos 6 - r /v - v sin 9 cos e (70) x, c 2 2 A/ r r 1 x x 

v v x 
r r r 

c ' = v + -7T cos 9 + ^ —- X z sin 0 cos e 
Zl Cz 2 2 

HT 2 7v - v v r r 

v v 
1 r r 

+ 5 Y - sin 0 sin e o (71) 
nr 2 
/V " V 

V r r 

2 2 2 2 In the above equations, v = v + v + v „ In order to carry out the 
x y z 

integration of the bracket integrals for the hard sphere model, it is most 

convenient to use cylindrical polar coordinates for v and spherical 
c 

coordinates for v „ 
r 

The solution of equation (66) for a and a is straightforward,, 

The velocity q (TJ) is defined as in equation (7) and, for this first 

approximation, is equal to 

«z<i> • \ (ao + * ; > • ( 7 2 > 

Since the first approximation does not yield suitable results, only the 

case a = 1 is considered., For this case, 
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q (n) = - _L_ 6 i „2 + _ L - i 6 - 4 - (73) 
Z ^ 2 ^ S X 8 ^ l S 4 

and 

«<>s> • - " V J i 6 s + f- • ^ 
6 IJK 

The value of I., first determined by Ziering (25) and checked for 

this work, is I. = - 1 O 0 0 5 9 T C C 

Second Approximation 

For this case, the perturbation is assumed to be given by 

*± ± ± / * 
h = a c + a . c c 0 (.75; 

o z 1 x z 

The details of the second approximation are presented in Appendix F. 

Consequently, only the results of this approximation are presented here,, 

The following bracket integrals are used in the second approxima­

tion, 

I 0 = [c sign c , c c ] (76^ 
2 L z ' x* z xJ 

I. = [c c , c c ] (77) 
3 L z x 9 z xJ 

I . = [c c s ign c , c c s ign c 10 (78) 
4 L z x ^ x* z x ^ x J 

The v a l u e s , which were f i r s t obtained by Zie r ing (25) and which were 

checked for t h i s work, are 

I 2 = - 0 . 4 3 4 5 n (79) 



I = =0o4000it (80) 

I4 = -1..6982 * (81) 

The solution for the velocity is 

where 

q (f|) = h b + 0o08179 =~ + 0 , 4 5 0 8 5 n2 
Mz ' 2 0 6 s ' 

s 

+ j g I ( i t U ^ ) ( e 1 + e 9 ) 9 (82) 
Vlt 

e. = exp (=a 6 -n) e» = exp ( a 6 ti) 
1 s ^ • i 

a = 7o8698 m = -lo5262 

I = =4o3806 n = =4,5452 

o d 
b^ = ~ | - 0 o 0 3 1 5 2 ( 2 - d ) - 0 o 2 2 5 4 d 6 

+ 9* [tf-D^-e,,) ^(e2+^ei)]] 

0o2899 (2 » d) r^ + 0o9644d 
o 

+ S 

The volume f low r a t e i s 

Q(&) = ~b - 0 o l 6 3 6 ~ - 0 o 07513 6 0 6 s 
S 

a6 o /—* 
j/TC 

(83) 

(84) 

1 + f , .LJ> L ̂  > f a t ^ 2 " a 6 s / 2 X / Q ^ 
7 - 9« (1 + £ + — ) (e - e ) o (85J 

s 
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Q(& ) versus 6 is tabulated in Table 49 page !35o 

Maj<wejLlian_Modej. 

General 

The only major difference in the development of the solution for 

the Maxwellian model compared to the hard sphere model is the evaluation 

of the bracket integralSo Otherwise, the basic equation is 

c ^ + c = 6 J(h#±) v (86) 
x d?] z m v 

where 6 = dn 6 */TT A0(5) i/KT/kl and m o *- J. 

J(h>±) = T^V W e"X ^ "̂  f ^ ^ V ^ 
6it A«(5) 1 o o 

* . * T [ h x ° + !i - h* - h ] „ (87) 

A (5) is a pure numbers, evaluated by Maxwell (36) v equal to 0o436o R, 

is the force constant for the inverse force law, 

R 
Force = -± s (88) 

r 

which Maxwell molecules obey0 F(9, R.) is a function of the scattering 

angle such that 

F(e,Rl) . / j T vr: (vrS e) 

where v is the relative velocity between two colliding molecules and 

l(v s9) is the scattering cross section 
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Three approximations for the Maxwellian model are calculated^ The 

bracket integrals I., 1^ !„<• and I, have been previously calculated 

by Ziering (2l)s and have been checked for this worko The values are 

Ix = -=2o31875 

l2 = =0< ,696041 

h s -0, ,616850 

T 

"4 
= -Oc ,318338 o 

The bracket integrals I. and I. must be calculated by a numerical 

schemeo It is possible to carry out all of the integrations except the 

integration over 0O After integrating over all variables except 61; ;,, 

and IA can be written in the form 4 

h • - 2—7^7! "sin ° F ( 9 » V V 9 * d e <*» 
6% A2(5) " 1 o 

where G„(0) is different for each bracket integralo Following Wang Chang 

and Uhlenbeck (28), 

Fte.Rp sin 9 d9 = J^~ vrbdb s (90) 

where b is the impact parameter in a binary collision By defining 

a = (mv /2R.)'L/"*b, equation (90) can be rewritten as 

m F(9,R ) sin 6 d9 = ada . (91) 

4 
If the substitution a - 2 cot 2® is made* then 



J - FCG.R^ sin 0 d6 = ~/2 — | — d<p 
1 sin 2q> 

(92) 

From the collision dynamics (26)9 it is known that 

9 = n - 2 4/co's 2«p K(sin q>) (93) 

where 

«/2 
K(sin̂ ) « f — ^ _ 

Jo / ~ : 2 ; 2, 
Vl ••- sin cp sin tp 

/^v. 

is the complete elliptic integral of the first kind0 Using equation (92) 

in equation (89)s the bracket integrals become 

i " , 2 A ',c, J 
*/4 M 0) 

d e 
6rc A (5) 0 sin 2«p 

The expression G.(0) can be calculated for any ep using equation (93)0 

The values for I„, which were found numerically^ were obtained by using 

the Simpson rule,, 

First Approximation 

Following the development for the hard sphere model0 the velocity 

where a = lo0, is given by 

q (t)) = - - * - * " n2 + — 1,6 - 4 " 
^z ' ^ r - m l 1 „/— l m 4 

2Vrc 8//it 

Also, the volume flow r a t e i s 

Q(0 
m 6 </TIC 

r 6 + L̂ 
* l m 2 

(96) 



35 

Second Approximation 

The method of solution is identical to that presented in Appendix 

F> where only the values of the bracket integrals change0 The solution 

for the velocity is 

qz(t)) = \ bQ + 1.3920 ̂  + 0.2216 &mf»
2 + ~ ĝ (l +^ + ̂  ^ + e,,), (97) 

wnere 

el = exp (-a 6 ^ ) e 2 = exp ( a & j ) 

a = 1.8368 m = -0.7222 

I = 2.3546 n = 2.2507 

bo = 6 y0°ll0&a b
m

 + %t (^- l ) ( e ! -e
2
) - « ( e 2

+ * e l ) ] 

4.9345(2 - rt) -^- + loOOOO 6 
+ _ 6m 

9o "" rn-m)(e + e ) +"n(me2 -: n e ^ 

The volume flow rate is 

Q(6 ) = -b - 2.7839 ~- - 0.03693 6 
m o 6 m 

m 

b 6 
m m 

--l
r%H +1 +^)(ea 2 - e"° 2 ) . (98) 
m vit 

The tabulated values of Q(6 ) versus 6 are presented in Table 5, 
m m 

page 620 

Third Approximation 

In this case, 
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h*~ ^ (a~ + a7 c + a" c~) c (99 
o 1 x 2 x ; z 

The moment equa t ions are obtained in a manner s imi l a r to t h a t used in the 

second approximation* The t h r e e bas i c d i f f e r e n t i a l equa t ions are 

da /-= da, d 
o . Vic 1 , 2 , / = l r T / + j . = = N j . - / + => 

. ± _ + + ^ = _ [ l 2 ( a + a ) + ( a _ a ) 

+ I Q (a t - a l ) l (100) 

dr) 2 drj dt] 

+ I 8 ( a 2 - «.2yj 

^ + _2_ ^ ! i + 3 ^ 2 _ 2 _ 2 r ( + , -, 
dn ^ dt, 2 dr, ^ " . K ^ U 3 8 1 *1 

+ I 2 (a^ - a~) + I 6 ( a 2 - a°) ± I ^ a * + a~) ± X ^ a ^ - a ^ j (101) 

. o 2 , y it 1 r T y + , -• \ 

~ + 2d^*-T*« [ x i 7 u 2 + a2) 

da _ /— da, da 0 /— . 
0 • 3«\ _ _ i + o —— + ^ = -

df) dt] ~ 2 it 

+ -x _ / + ' x _ / + - . _ + 

dr] 4 df) 

± I 5 ( a | - a p + I 6 ( a [ + a*) + Ig(a^ •• a~) + I ^ a ^ - a°) > (102) 

The f ive a d d i t i o n a l b racke t i n t e g r a l s a re defined as 

r 2 -
L = c c s ign c „ c c i 

b L z x ^ Xs z x J 

r 2 „ 
L = Ic c sign c y c c i 
6 L z x * x* z xJ 

r 2 2 ~ 
X 7 " tCzCx > V x J 

I 8 = [ c ^ sign c x , c z s ign C]£J 

J Q ~ [ c c~ sign c * c c s ign c ] „ 

I Q and I n must be ca lcu la t ed numerica l ly in the same manner as I . and 
o y I 



37 

I.. See Appendix G for the calculation of IQ (the calculation of I( 4 

is similar), Their values are 

I„ = -0.464027 o 

I, = -0.696041 
6 

I = -0.822467 

I„ = -0.49656 

Iq = -0.8530 . 

The solution of the determinant of the coefficient matrix for the homo­

geneous set of equations yields a = 0.1338 and a = 4.5108. The solu­

tion for the velocity is 

, + 
( \ 1 u 1 u * 2

 J 1 4 1 8 JL
 9 0 1 , . p 

q 2 ( l ) = 2 bo + 2 b2 V + 7 7 r + 4r + T ( l + l l 
2 / 1 1 m m 

, m l - n l , P l + q l w , 9 0 2 , . . 
+ — — + 2 ) ( e 2 e l } T ~ ( 1 ^ 2 

V IT: 

+ _ ^ _ 2 + _2__2)(e4 + e 3 ) ^ ( 1 Q 3 ) 

wnere 

e l = ^ ^ l V 5 e
3

 = e x P<- n
2 V , ) 

e 2 = e x p ( a 1 6 ^ ) e 4 = e x p t n ^ T ] ) 

I = - 0 . 3 8 5 7 £ = 2 .9984 

m = - 4 . 0 7 2 6 m = - 1 . 5 3 4 0 
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nx = -6ol927 n = 5*7021 

px = ~2o8537 p2 = 0o5411 

qx -*= =4.8581 q2 = 2 0 2366 

b0 • I b! + T »m " 90!
(ei + V2> " 4{63 + *2e4> 

901 " t (l b5 " r > (p2e3 + V P = <5 b9 " T ) ̂ 2e3 
m m 

4 -1 ( i b9 - 5 s ' ( v i - v P • ( l bs - r } (Piei 
m m 

+ Q i e ^ l / K j 

K i = (miei - V2 ) (P2
e3+VP " ( v ^ V ^ t p ^ i + V ^ 

e^ = e x p ( - a 1 6 m / 2 ) e^ = e x p ( - a 2 6 m / 2 ) 

e^ = e x p ( a 1 6 m / 2 ) e^ = e x p ( a 2 6 m / 2 ) 

b. = 0o00001 bR - =2o0001 
1 5 

b 0 = Oo00044 bQ = 3o3850 

b 4 = 0o00013 b = Oo00006 

The volume f low r a t e i s 



Q(»B) - b0 -JZ \ r - | b8 f - i b2 6m + g^d + ̂  

+ 
m1 - n1 pl + q2 

v^r 
+ _L_-1)(.. .,.)+g+ (l+ta 

m„ - n p + q 
+ ^ _ _ 2 + « 2 _ _ 2 ) ( e , _ ̂  _ 

H/K 

109) 

Values of the volume flow rate as a function of 6 are tabulated if 
m 

Table 69 page 63o 
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CHAPTER III 

DISCUSSION OF RESULTS 

Experimental Data 

The earliest experimental work available is that of Gaede (9)s 

carried out in 1913- Since the accuracy of the data is uncertain and 

since the results disagree considerably with the two later sets of data,; 

Gaede°s work is not included in the comparison of experimental data and 

theoretical resultSo 

The data collected by Rasmussen in 1937 (ll) are more reliable and 

are used in this study to evaluate the theoretical results*, Rasmussen 

measured the flow rate between two glass plates, lo82 x 10 cm0 aparto 

The width of the slit was 1„32 cm0 „ and the dimension in the direction 

of flow was 0o963 cm0 His apparatus consisted of two tanks each connected 

to one end of the glass plateso McLeod gauges and manometers were con­

nected to each tanko Knowing the volume of the tanks and the time it 

took for the gas to flow from one tank (at a specified pressure; to the 

other tankj Rasmussen was able to calculate the average volume flew rate, 

If Q is the volume flow rate,, t, is the initial time., t 0 is the final r i * 2. 

time, ( )° denotes the conditions in the first tank^ and ( )" denotes 

the conditions in the second tank> then the volume flow rate observed by 

Rasmussen was found by the following equations 

1 ( VV" ) . f Pl "' P2) 

^ " t2 - tx Vv° + v y in \j>« - P£ J ° 
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Rasmussen used only hydrogen in his experiments with parallel plates. The 

mean free path and volume flow rate used by Rasmussen have been converted 

to the corresponding quantities calculated in the theoretical analysis of 

this dissertation The results are plotted in Figure 40 

The latest available experimental data is that of Dong (4), com­

pleted in 1956o His apparatus consisted of two parallel steel plates, 

0<>324 cm. aparto The width of the slit was 22o86 cmu The inlet and exit 

were 127o00 cm0 apart5 however, the initial pressure tap and final pressure 

tap were 61 oO cnu apart? located 33^0 cm. from the inlet and exit, re­

spectively,, After introducing the gas into the systems, the moisture was 

removed, and the gas was passed through a heat exchanger., Then,,, after 

passing across two flowmeters^ the gas entered the test section through 

a series of needle valvesa The pressure was measured at two points along 

the axis of the test section by McLeod gaugeso A pumping unit was con­

nected to the exit of the test section Dong measured his volume flow 

rate by increasing the pressure in the system to a predetermined values 

closing the system, and allowing the gas to pass from the flowmeter through 

the test section The time for the pressure in the flowmeter to change 

from the predetermined value to the final value was then recorded* From 

this information he calculated the volume flow rateo Dong carried out 

his experiments with the gases H y He, air, CO P and freon~120 

There is some disagreement between Dong's and Rasmussen's data in 

the transition and near-free-molecular regionsu The disagreement in the near-

free-molecular region can most likely be attributed to the experimental 

apparatuso Rasmussen's apparatus more closely approximates the infinite 

parallel plate geometry., For this reason, Rasmussen0 s data are probably 
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to be preferred in the near-free-molecular region„ Furthermore, in nis 

paper> Rasmussen calculated the free-molecular value for the volume flew 

rate for a three-dimensional channel (using an equation developed by 

Clausing)o He found this limiting value to be thirty percent higher than 

his maximum observed value, and attributed the difference to the geometry 

of his apparatus, 

On the other hand5 Dong
ss data might be preferred when comparing 

experiment and theory because of his location of pressure taps., By locat­

ing the pressure taps out of the region of the end effects^ Dong's data 

should furnish better agreement with the theory^ since the theoretical 

development is based upon the assumption of constant pressure gradientu 

The validity of this idea is established in Figures 2, 3S and 40 

Although Dong's data indicate a small variation in minimum values 

of the volume flow rate for different gases, this minimum effect is bet­

ter illustrated by the experimental work of Hanley and Steele (29) in 1964. 

Their work„ although carried out for long tubes,,, shows very clearly the 

effect of the gas on the minimum volume flow rate* The trend of their 

data is the same as Dong's; however$ a comparison cannot be made because 

of the different geometries. 

Krook Model 

Full-Range Method 

Even before results are available for the solution by the full-

range method, it is not expected that the solution will adequately describe 

the velocity moments in the near-free-molecular flow regime,, This is be­

cause the full-range method does not exactly specify the molecular boundary 

conditions^ which require that the distribution function be discontinuous 
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at the walls, That is, for the near-free-molecular flow, the distribution 

function should be explicitly divided into two streams. This belief is 

validated by the results of the first, second, and third approximations 

shown in Figure 20 

The volume flow rate for the first approximation is obtained from 

equation (20); for the second approximation, equation (23), The tabulated 

values of the volume flow rate for the third approximation are given in 

Table 1. Also, Cercignani's numerical solution of equation (6) is pre-

sentedo If the polynomial approximation is correct, it should converge 

to Cercignani's results, as it does0 Dong's results for helium are also 

plotted in Figure 2 to indicate the comparison with experimental data0 

Since neither the first, second, or third approximations show a minimum 

in the transition regime, no higher approximations were carried out. The 

results of similar work using the full-range method for Couette flow (l) 

also indicate a slow convergence, and it was not considered worthwhile 

to pursue the solution by this method, 

Half-Range Method 

From the experience of previous investigators using the half-range 

method (l) (19) (20) (21), it is expected that, for the same approximation, 

a better solution will be obtained by this method than by the full-range 

methoda That this is so, is seen in Figure 3° The volume flow rate for 

the first approximation is obtained from equation (44) ; the second approx­

imation, from equation (47). The volume flow rate for the third approxi­

mation is obtained from equation (51), tabulated in Table 2, and plotted 

in Figure 3D Cercignani's numerical results are also presented in Figure 3 

to illustrate the convergence of the solution by the polynomial approximation 
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Table 1. Volume Flow Rate Versus Inverse Knudsen Number 
for the Third Approximation by the Full-Range 
Method for the Krook Model 

0.01 1.4090 1.70 1.5360 

0,05 1,4090 1.80 1.5473 

0.10 1.4092 1.90 1.5588 

0.20 1.4112 2.00 1.5706 

0.30 1.4146 2.50 1.6318 

0.40 1.4193 3.00 1.6966 

0.50 1.4250 3.50 1.7644 

0,6C 1.4315 4.00 1.8345 

0.70 1.4388 5.00 1.9799 

0.80 1.4467 6.00 2.1306 

0.90 1.4551 7.00 2.2846 

1.00 1.4640 8.00 2.4412 

1.10 1.4734 9.00 2.5995 

1.20 1.4831 10.00 2.7591 

1.30 1.4931 15.00 3.5692 

1,40 1.5034 20.00 4„3894 

1,50 1.5140 25.00 5.2143 

1.60 1.5249 30.00 6.0418 



b - INVERSE KNUDSEN NUMBER 

Figure 2. Volume Flow Rate versus Inverse Knudsen Number for 
the Krook Model, Full-Range Moment Method. 
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Table 2. Volume Flow Rate Versus Inverse Knudsen Number 
for the Third Approximation by the Half-Range 
Method for the Krook Model 

& Q 6 Q 

0 . 0 1 1,5993 1,70 1.5864 

0 . 0 5 1,6035 1,80 1,5930 

0 . 1 0 1.6066 lo90 lo6004 

0 , 2 0 1,6076 2 .00 1.6084 

0 . 3 0 1.6039 2„50 1,6567 

0 . 4 0 1.5979 3 .00 1.7146 

0 , 5 0 1,5910 3 . 5 0 1.7787 

0 . 6 0 1.5842 4 o 0 0 1.8469 

0 , 7 0 1.5782 5o00 l o 9 9 1 0 

0 . 8 0 1 .5733 60OO 2 . 1 4 1 3 

0 , 9 0 1 ,5698 7 . 0 0 2 0 2954 

1.00 1.5675 80OO 2 .4519 

1.10 1.5667 9 . 0 0 2o6101 

1.20 1,5672 1 0 . 0 0 2 .7696 

1.30 1.5689 1 5 . 0 0 3 .5789 

1.40 1.5717 2 0 . 0 0 4 . 3 9 8 5 

U 5 0 1.5757 2 5 . 0 0 5 .2231 

1.60 1,5806 3 0 . 0 0 6 . 0 5 0 3 
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Figure 3. Volume Flow Rate versus Inverse Knudsen Number 
for the Krook Model, Half-Range Moment Method. 
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method to his results. 

As seen in the figure, the third approximation successfully yields 

the desired minimum in the transition region*, Because the convergence of 

the half-range method is very slow in the near-free-molecular region, the 

third approximation exhibits a relative maximum at 6 = 0.20. This maxi­

mum occurs because the convergence is somewhat faster in the transition 

region than in the free-molecular region,, The reason for the slow con­

vergence is that the free-molecular limit has a non-analytic character,, 

as shown by Cercignani (16)., which cannot be adequately represented by a 

finite number of terms in a polynomial approximation* This has been 

pointed out by Gross and Jackson in reference 30. 

In addition to the theoretical results presented in Figure 3S Dong's 

data for helium and carbon dioxide are presented. His data for the other 

gases differ little from that presented. 

It is possible to obtain the free-molecular value for the volume 

flow rate by solving the basic moment equations for each approximation 

where b is set equal to zero» This is equivalent to setting the colli­

sion integral equal to zero, which is the case for free-molecular flow. 

The results of this procedure are 

lim Q = 0.886 (first) 

&-> 0 

lim Q = 1.314 (second) , 

6 -» 0 

lim Q = 1.598 (third) 

b -» 0 
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As an extension of this idea^ it is seen that these are also the limit 

values for any other molecular model since the law of interaction for 

free-molecular flow cannot affect the flow propertieso 

The behavior in the continuum region is exhibited by the follow­

ing limits: 

lim Q =» 0o2618 6 + 0o8862 (first) 
&—> oo 

lim Q = 0ol667 b + 1.0209 (second) 
6 —* oo 

lim Q = 0.1667 6 + lo0170 (third), 
& -» oo 

The convergence of the solution in the continuum region is very fast,, 

the solution being essentially correct in the second approximation* 

Cercignani (3) found 

lim Q = 0ol667 b + lo0161 
& -> oo 

for his numerical resultso 

Iteration Method 

The results of the numerical integration of equation (55) to find 

the volume flow rate are tabulated in Table 3 and plotted in Figure 40 

Cercignani's numerical results and the data from Dong's paper for helium 

and carbon dioxide are also presentedo In addition, Rasmussen's results 

for hydrogen are included <= 

In order to integrate equation (55), it was necessary to know the 

integrals f (x) for any x* It is possible to use Abramowitz°s work to 



Table 3. Volume Flow Rate Versus Inverse Knudsen Number 
for the First Iteration of the Krook Model by 
the Willis Method 

0.0001 5.5552 1.30 1.3290 

0.001 4.2592 U40 1,3433 

0,01 2.9856 1.50 lo3590 

0c02 2.6173 1.60 1.3759 

0.03 204088 1.70 lc3939 

0.04 2o2652 lo80 1.4128 

0.05 2,1569 U90 1.4325 

0.06 2.0706 2.00 1.4529 

0.07 lo9995 2o50 1.5621 

0.08 1.9394 3.00 lo6795 

0c09 1.8877 3o50 1.8017 

OolO 1,8425 4.00 109268 

0.20 1.5755 4.50 2.0539 

0o30 1.4508 5o00 2„1822 

0o40 la3806 6o00 2o4411 

0.50 1.3388 7.00 2.702 7 

0.60 1.3140 8c00 2.9632 

0.70 1.3003 9.00 3.2252 

0.80 1.2945 10o00 3o4874 

0.90 1.2944 15.00 4o7992 

1.00 1.2987 20o00 6.1106 

1.10 1.3063 25o00 7.4213 

1.20 1.3166 30.00 8.7315 
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Figure 4. Volume Flow Rate versus Inverse Knudsen Number 
for the Krook Model, Willis Iteration Method. 
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find asymptotic expressions for all f (x) for large x and small x, but 

this does not give a complete solution over the entire Knudsen number 

range0 Consequently, the Gauss-Hermite numerical quadrature was used0 

The method is described by equation (25*4.46) of the Handbook of Mathe­

matical Functions (31), and the zeros of the Hermite polynomials are tab­

ulated to fifteen decimal places on page 924 of the same referenceo 

Because the quadrature method is accurate to only two decimal places for 

-3 
x < 10 for the integral f (x), the more accurate method presented by 

Willis (24) was used for x < 2o0a He used an expansion of the form 

fm(x) = 91 + (x In x) g2 

where g. and g._ are polynomials depending on m, and are obtained 

from Abramowitz's work, Willis tabulates the g and g , and the 

accuracy of the expansion is such that the error is less than 1 x 10 

As shown in Appendix E, the asymptote for 6 -> 0 is given by 

lim Q = — — — - In b , 
6-» 0 2 /it 2/it 

no matter what approximation is used as a first guess for the iteration, 

The satisfactory results of the iteration method are due to the 

introduction of the non-analytic behavior of f (x) for small xc It is 

this integral which dominates the behavior of Q(&) for small 6o 

The results of the iteration method, shown in Figure 4, indicate 

that the solution is satisfactory for all of the flow regimes, from free-

molecular to continuum. As explained earlier, Rasmussen's data (ll) is 

preferred for the free-molecular region, and Dong's data (4) is preferred 
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for the transition region. The iteration method agrees closely with the 

trend of the preferred dataa 

Although it is true mathematically that the correct solution of the 

Boltzmann equation for this one-dimensional problem indicates an infinite 

limit for 6 -> 0, it is felt that if the two-dimensional problem were con­

sidered (i.e0, include the z-dependent terms in the solution) a finite 

limit for Q(b) would be obtained as 6 -* 0. After considering that the 

volume flow rate for an infinite length tube is finite as 6 -> 0, it is 

reasonable to expect the volume flow rate (based on a unit width of the 

slit) for the parallel plates be finite as b -> 0. This problem is pres­

ently being investigated by using the discrete ordinate method (35), 

Hard Sphere Model 

Although Dong's data are used in a comparison with the theory, it 

is necessary to calculate the inverse Knudsen number based on the hard 

sphere model. For hard spheres 6 = dn v 2 it a „ n can be written r r s o o 

as p/kt, where the average pressure between the two pressure taps is usedo 

Thus, 6 = dpa ,/2 ic/kT. The plate separation distance is 0.324 cm*, 

T — 296 °K for all experiments, and k is Boltzmann's constanto Thus, 

-3 2 
6 = 4o700 x 10 pa where p is the average pressure measured in 

microns, and a is the molecular diameter measured in Angstrom unitSc 

The average pressure is obtained from Dong's tabulations of each 

experiment run» The molecular diameter can be obtained from the calcula­

tion of the viscosity coefficient based on the hard sphere model. The 

derived relation is (reference 38) 

i n 7 n<L<L n o y vM / T 
T) x 10 = 266.93 ^—— , 

a 
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w here T] is measured in gm/cm-sec, M is the molecular weight, T is 

the temperature in °K, and a is the molecular diameter measured in Angstrom 

units* Using the data in reference 32 for viscosity yields 

au = 2„721 X 
H2 

au = 2U170 X He 

ann = 4c524 % . 
G°2 

Thus, it is possible to calculate 6 for each experiment in Donggs work. 

The volume flow rate for the first approximation is obtained from 

equation (74), the second approximation, from equation (85)„ Q(6) is 

tabulated in Table 4 for the second approximation„ The results for the 

first and second approximations are plotted in Figures 5, 6, and 7 for 

hydrogen, helium, and carbon dioxide, respectively« 

As seen in each of Figures 5, 6, and 7, the second approximation 

presents the desired minimum in the transition regiona The minimum is 

apparently well-placed with respect to the experimental data0 Further­

more, the results in the continuum region exhibit very good agreement with 

the datau The results also indicate that the half-range moment method, 

applied to the hard sphere model, can suitably differentiate between gases 

Cercignani (33) has raised an objection to the solution of the 

Boltzmann equation with the hard sphere model by the half-range moment 

methodo That is, it is expected that the half-range character of the 

distribution function will be destroyed away from the wall* For this to 

occur he shows that the ratio I /i must equal ld28o For the hard 
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Table 4. Volume Flow Rate Versus Inverse Knudsen Number 
for the Second Approximation by the HaIf-Range 
Method for the Hard Sphere Model 

0,01 1.2922 0o90 lu1581 

0.02 1.2731 1.00 1.1684 

0.03 1.2565 1.50 1.2275 

0.04 1.2420 2.00 1.2934 

0.05 1.2293 2o50 1.3627 

0.06 1.2181 3.00 1.4338 

0.07 1.2082 3.50 1.5060 

0.08 1.1994 4.00 1.5788 

0.09 1.1916 5.00 1.7259 

0.10 1.1846 6.00 1.8739 

0.20 1.1438 7.00 2.0226 

0.30 1.1295 8.00 2.1717 

0.40 1.1261 9.00 2.3210 

0.50 1.1281 10o00 2.4705 

0.60 1.1331 15.00 3.2194 

0.70 1.1402 20.00 3.9696 

0.80 1.1486 25.00 4„7201 
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Figure 5. Volume Flow Rate versus Inverse Knudsen Number 
for the Hard Sphere Model, Hydrogen. 
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Figure 6. Volume Flow Rate versus Inverse Knudsen Number 
for the Hard Sphere Model, Helium. 



t i i 11 i 1 — i — i l i n n 1 i i i ii i n i i r i i i i n 1 » i 

I—i i i 11 I I _ J — • ' ' ' " ! ' i i i i • • il . | i i i i. .1 i . . 

.01 .1 1 10 

6S - INVERSE KNUOSEN NUMBER 
sco2 

Figure 7. Volume Flow Rate versus Inverse Knudsen Number 
for the Hard Sphere Model. Carbon Dioxide. 



59 

sphere model I9A0 - 1*086, Consequently, the half-range character does 

not disappear away from the walls0 In fact, Cercignani points out the 

half-range character is destroyed only when the molecular model is the 

Maxwellian one. To correct this observed discrepancy, he proposed the 

following second-order approximation for the perturbation of the distri­

bution function: 

h*1 = ao(tl) c z + a* (fl)
 b ^ c

x
c
z • 

This form was proposed in order to yield agreement with the Chapman-

Enskog solution (34), which is valid away from the wallso Cercignani 

developed the equations for the solution of the velocity for the Couette 

flow problem, but did not carry out the calculations because of the com­

plications involved* He also pointed out that the corrections to the 

half-range solution are probably smallu 

The objection, although a valid one, does not appear to be an im­

portant oneu This is because the disappearance of the half-range char­

acter should be of importance only in the slip and continuum regions» 

That is, in these regions, the half-range character must disappear away 

from the walls because of the large number of molecule-molecule collisions 

that occur. Therefore, the correction should be of greatest concern for 

6 > 1,0 approximately. The correction should be of least importance in 

the near-free-molecular region because, here, the half-range character is 

preserved throughout the flow field„ As seen from a study of the results, 

the theory closely agrees with the experimental data for the slip and con­

tinuum regionso This agreement leads to the conclusion that the half-

range moment method as presented in this dissertation does adequately 
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describe the slip and continuum flow regions for the hard sphere mole­

cules., 

Maxwellian Model 

First, it is necessary to correct the inverse Knudsen number for 

the Maxwellian modelu For this model9 the inverse Knudsen number is given 

[*i 
by 6 6>fk~ A2(5) £= d J r r : „ A (5) i s a pure number equal to 0o436, 

p is the average pressure between the pressure taps for Dong°s work, T 

is the temperature approximately equal to 296°K for all experiments^ and 

R. is the force constant for the law of interaction,. From Chapman and 

Cowling (34), page 174, the expression for the coefficient of viscosity 

for the Maxwellian molecules is 

JL [M kT 
*> " 3K J Rx A2(5) 

From this equation, R can be found for any gas by first knowing the co­

efficient of viscosity. The following values were found by using the 

viscosity from reference 32s 

-44 5 
R. = 8o456 x 10 dyne - cm 

\ 

R = 3U410 x 10"
44 dyne - cm5 

XHe 

R. = 64„60 x 10"44 dyne - cm5 u 

co2 
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Finally, the inverse Knudsen number for each gas is given by 

6 = 0„0717 p 
% 

5 = 0c0454 p 
mHe 

6 = 0..1980 p , 
mco 2 

where p is the average pressure measured in micronsc From this infor­

mation it is possible to convert Dong*s data to the inverse Knudsen num­

ber for Maxwellian moleculeso 

The results of the first approximation of the volume flow rate are 

found from equation (96); the results of the second approximation, from 

equation (98). Tabulated values of Q(&) for the second approximation are 

given in Table 5» The results of the third approximation are obtained 

from equation (104); the tabulated values are given in Table 6. All of 

the results are plotted in Figures 83 9, and 10 for the gases hydrogen, 

helium, and carbon dioxide, respectively,, 

Although the second approximation presents a very slight minimum 

in the transition region, it was felt that the solution was not complete., 

Thus, a third approximation was calculated,, which presents very good re­

sults for the transition, slip, and continuum regimes<> The minimum is 

well-placed with respect to the experimental datas although the near-free-

molecular results are unsatisfactory., It is expected that higher approx­

imations than the third will yield results that agree better with the 

data in the free-molecular region If it were possible to iterate the 



Table 5. Volume Flow Rate Versus Inverse Knudsen Number 
for the Second Approximation by the Half-Range 
Method for the Maxwellian Model 

b Q 6 Q 

0.01 1„3210 2.60 1.7083 
0.05 1.3464 2.70 1.7076 
CLIO 1.3766 2.80 1.7069 
0.20 1.4321 2.90 1.7063 
0.30 1.4809 3.00 1.7058 
0o40 1.5233 3.10 1.7055 
0.50 1.5597 3.20 1.7053 
0.60 1.5907 3.30 1.7053 
0.70 1.6167 3.40 1.7055 
0.80 1.6382 3.50 1.7058 
0.90 1.6559 3.60 1.7063 
1.00 1.6702 3.70 1.7069 
1-10 1.6817 3.80 1.7078 
1.20 1.6907 3.90 1.7087 
1.30 1.6976 4.00 1.7099 
1.40 1.7029 4.50 1.7181 
1.50 1.7067 5.00 1*7299 
1.60 1.7094 6.00 1o 7624 
1.70 1.7111 7.00 1.8040 
1.80 1.7121 8.00 1.8522 
1.90 1.7125 9.00 1.9053 
2.00 1,7125 10*00 1,9619 
2.10 1.7121 15.00 2.2765 
2.20 1.7115 20.00 2.6168 
2.30 1.7108 25.00 2.9682 
2.40 1.7100 30.00 3,,3252 
2.50 1.7092 35.00 3.6857 
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Table 6. Volume Flow Rate Versus Inverse Knudsen Number 
for the Third Approximation by the Half-Range 
Method for the Maxwellian Model 

6 Q 6 Q 

0.01 1.6090 2o60 1.4947 
0.05 1.6487 2.70 1.4927 
0.10 1.6890 2.80 1.4913 
0.20 1.7421 2,90 1.4903 
0.30 1.7659 3.00 1.4898 
0.40 1.7692 3.10 1.4897 
0.50 1.7595 3.20 1.4899 
0.60 1.7422 3.30 1.4906 
0.70 1.7210 3.40 1.4915 
0.80 1.6984 3o50 1.4928 
0o90 1.6758 3.60 1.4943 
1,00 1.6541 3.70 1.4962 
1.10 1.6337 3.80 1.4982 
1.20 1.6151 3.90 1.5005 
1.30 1.5981 4.00 1.5030 
1.40 1.5827 4.50 1.5184 
1.50 1.5690 5.00 1.5375 
1.60 1.5567 6.00 1.5838 
lu70 1.5459 7e00 1.6373 
1.80 1.5363 8.00 1.6955 
lo90 1.5280 9.00 1.7570 
2.00 1.5207 10.00 1.8209 
2.10 1.5143 15.00 2.1598 
2.20 1.5089 20.00 2*5140 
2-30 1.5043 25.00 2.8744 
2.40 1.5004 30.00 3.2379 
2U50 1.4972 35.00 3.6030 
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Volume Flow Rate versus Inverse Knudsen Number 
for the Maxwellian Model, Helium. 
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67 

solution by the Willis method, the free-molecular limit should more closely 

follow the data. This idea is based on the results of the investigation 

of the Krook model by the iteration method. 
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CHAPTER IV 

.* 

CONCLUSIONS AND RECOMMENDATIONS 

The Boltzmann equation has been analytically solved for the 

problem of flow between two parallel, infinite plates using the half-

range moment method and the Willis iteration method*. The study was made 

for three different molecular models (Krook<> hard sphere,, and Maxwellian) 

under the assumption of linear pressure change along the infinite parallel 

plates* The conclusions ares 

1. It is possible to analytically solve the Boltzmann equation for 

the three different molecular models^ obtain a meaningful comparison with 

the available experimental data, and demonstrate that a minimum exists in 

the volume flow rate in the transition regime„ 

2. The full-range method^ for the free-molecular to transition 

regimes, does not yield satisfactory results for the Krook model0 

3o The half-range method yields suitable results for the volume 

flow rate in all flow regimes but the free-molecular0 The method gives 

a minimum in the transition region for the Krook model in the third 

approximation? for the hard sphere models in the second approximation? 

and for the Maxwellian model9 in the third approximation 

40 The iteration method of Willis provides very good results 

for all flow regimes when the first approximation by the half-range 

method is used as the first guessD 

It is recommended that the following be considered for future 



f C* 

OV 

investigation: 

1. Do not drop the z-dependent terms in the basic integro-

differential equation̂ , and solve the problem using boundary conditions 

at the inlet of the parallel plates. 

2. Carry out an extensive experimental program using several 

different gases and several different parallel-plate geometries. That 

is? determine the influence of the geometry on the experimental data* 
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APPENDIX A 

DERIVATION OF EQUATIONS USED IN THE FULL-RANGE 

METHOD FOR THE KROOK MODEL 

Following the analysis of reference (3)3 the Boltzmann equation 

with the Krook model is 

v 9 £ + v M = J L ( f ^ f ) (A i ) 
x 3 x V z 5 z <JjL

 K eq 1} » K*ai) 

where n/d, is the collision frequency and f is the Maxwellian 

equilibrium distribution function defined as 

f « nfil e " P 2 ^ " ̂  (A 2) 
eq ^ 2 e ° {JKo2) 

Following reference (l) and assumptions 1 and 2 on page lls equation 

(A.2) becomes 

feq * f0 [ 1 + 2(v - u ) p 2 ] 9 (A.3) 

where 

2_2 
f o ^ ( 1 + ^ J 7 5 e " M » (A-4) 

and 

•v2 , 3 
^ 2 / v f 3/2 
it ' 
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p. is the inlet pressure,, and K is defined as 

H - i & (Ao5) 
pi 

After approximating the distribution function by a linearized expres-

siony f = f (l + h)y and after introducing a dimensionless velocitys 

c = f v , the Boltzmann equation becomes 

ah + , * fii.h u r fife c 2 I 1 + C K ( i-X-ii ) + c Oil 
Cx 9x + c z * 4 + « z ; z 8z 

n 
= p -2 [2(c • q) - h] f (A.6) 

where 

s ~3?2 I ^ h e " ° d 3 ° ° ^Ao7) 

Since it is not possible<, at the presenty to determine the 

dependence of h on zp it is assumed that the properties do not vary 

in the z-direction.. Letting X = d./pn 9 where X is the mean free 

path9 and noting that the term (l + h) is of the order of unityy equa­

tion (A06) becomes 

d h . „ . h 2 * / A O > 
C x d I + K c

Z
 +X = x V * ( A ' 8 ) 

where 

2 
#/ N - 3 / 2 f u ~c .3 

q (x) = it ' c h e d c 
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Equation (A.8) can be written in a more compact form by defining the 

inverse Knudsen number b = d/X, using a nondimensional position 

coordinate, r\ = x/d^ and defining h = h/ K.d: 

c ~~ + c + 6h* = 2 6 c q 
x df) z z^z (A.9) 

where 

-2 
c ^ ~3/2 P u* "c ^3 
(f|) = n ' c h e d c 

«J z 
(A.10) 

The boundary condition for equation (A„9) is developed in equations 

(16) and (17) of the text, 

The volume flow rate is found by first calculating the average 

velocity at any cross-section, 

~* 1 
% = d 

2 * / \ 
q (x) dx = \[d q 

d z z avg 

The volume flow rate per unit width of the slit is given by F, such 

that F = d ° |̂  dq „ The nondimensional volume flow rate is given by 
avg 

Q = 2 
„d2 J. dp. 

p. dz-
l 

= 2 
HdZJ 

where the factor "2" is used to agree with Cercignani's expression for 

the volume flow rate0 Thus, 

Q(6) = -2q (A.11 
'avg 
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This is identical to the expression given by Cercignani (3), 

In order to develop the moment equations for the full-range 

method^ assume h = c i!> 0 Equation (A.9) becomes 

x d 
^ + 1 + 1 + 6i|) = 

JV 
\|) e x d c (A.12) 

with the boundary condition 

V±(f, = + ̂  , c ) = (1 -n>j)+ (T, = + \ , - c ) , (A,13) 

where the "+" sign indicates c > 0; the "-" sign, c < 0, The sym­

metry condition for the parallel-plate geometry requires that 

^ (tb cv) = ̂  (--n, -cv) . 

The fu l l - r ange moments are defined 

oo 

• J «£* d c o 
i / iT 

(A.14) 

After multiplying equation (A,12) by c exp(-c )/'JK and then inte­

grating,, the following moment equations are found: 



7b 

k+1 . r , . / , \ k-| l"3°5°°°(k-i) 
-gjj— +[1 + (-1) ] ( v^ k+2'

 /, + 6Mk 

•6[lM-l)k31'3'!;^k-1?-M0 (A.15) 

Polynomial solutions for tf> are sought̂  and are expressed in the 

form 

*(n, cx) «+*(!,, cx) = [ cx A*(i,) . (A.16) 

n=o 

The half-range character of the A7 is necessary in order to satisfy the 

molecular boundary condition.. Combining equations (A*14) and (Aol5) 

yields 

00 r -c2 

v-Ekwj'rM", 
n=o L 

+ Â ,) / V * ^ d c l (A.17) 
o /it J 

The boundary condition can now be expressed as 

i u | ) • a - o A+, A; (+ i) = (1 -a) A^ (+i) . (A,18) 

Equations (Aol5) - (A„18) are used to solve for the velocity 

which is given by 

•c? 
q,(f|) = — F ** e" x dc . (A.19) 
z 2jsTJ ~oo x 

The volume flow rate is given by equation (A»ll)0 
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APPENDIX B 

SOLUTION OF THE FIRST APPROXIMATION FOR THE 

FULL-RANGE MOMENT METHOD USING 

THE KROOK MODEL 

Assume tp- = A (^). It is necessary to use the first two 

unknowns, A and A~0 The equations are 

dM. 
T-i- = -1 (B.l) 
d^ 

dM 
• — = •- b M. o (Bo 2) 
ui] 1 

The solution for M. and M~ i s 

M = -rj + c. (B.3) 

1 2 
M2 = ^ M ~ ^ bi\ + c 2 o (B .4 ) 

According to equation (Aol7)., 

M, = — ^ - (A+ - A" ) (B.5) 
1 2,/^"° ° 

M2 = ? ( A o + Ao> ' (B'6) 

After combining equations (B..3) - (B,6) it is possible to solve for A 

and A 
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A* = 6f| - (26 c1 ± </TT)I\ ± VTTC1 + 2c 2 . (Bo7) 

The arbitrary constants,, c and c «, are determined from the boundary 

conditions^ 

Ao (+ l } * (1 'a) Al (+ 2 } ' (Bo8) 

The result is 

4± = A± = M
2 *,£, - ^ ( ^ "i» (B.9) 

2 N (J ' 4 

The velocity is given by equation (A„19) as 

qz(i) - 5 5 i 2 - 4 - ( E 7 £ ) ' I 6 - (B'10) 

Finally, the volume flow rate is found by the use of equation (A0ll) 

Q(fc) = | 6 + ^ ( ^ - ~ ) 0 (B.ll) 
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APPENDIX C 

DERIVATION OF EQUATIONS USED IN THE HALF-RANGE 

METHOD FOR THE KROOK MODEL 

The basic integrodifferential equation is (A09)y 

#+ 2 
dh i «u*± o "3/2 P ,*± ~c ,3 /P ,v 

c T — — + c + &h = 2* ' a c c h e d c „ (C01) x dt] z zJ z 

Following reference (l)y assume h*~ can be expanded in terms of Hermite 

polynomials j. 

h # ± - Z B i j k ^ Li^Cx) W VCz) • <C'2> 
i j k 

H. and H, are the usual Hermite polynomialso L7(c ) is an orthogonal 

polynomial such that 

2 „ 2 

I t \ L| e"Cx dcx = J ° U q e'°* dcx - ̂ T 6l4 . (C.3) 

The polynomials are developed by the Gram-Schmidt process and the first 

few are 

+ 
L~ = a o o 

Li ' aicx + h 

L2 = °2Cx + P 2 C x + Y 2 ' etC°> 
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where 

a = V2~ o 

ax = */4x/(n - 2) 

*-2)/(* -3) 

px = AA/U - 2) " 

p2 = Ac/(* - 2) (ic - 3) 

T 2 = (4 -*)/•(* -2)(* -3) . 

Again following reference (l)., multiply equation (CM) by 

Ln (c ) H (c ) H (c ) exp(-c ), use equation (C<2), and integrate over 

the appropriate half-ranges to obtain 

_d_ 
d,, 

± / P i + l P i B? , - ^ ± BT 
i - l a i v a 

a 

° i / 1 + 1 a i + l 

+ 6B~ = » » : * • ? - ^ ' io 
(C4) 

The subscripts j and k are dropped since it is a requirement that 

j = 0, k = 1, for a non-trivial solution,, This requirement means that 

*± the expansion of, h takes the form 

n*1 - 2c z B:U) L:(C ) 
z i i ' i x 

which is a polynomial in c y similar to the full-range expansion. 
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The expression for q {r\) is found by substituting equation (C„2) 

into equation (A.10). The result is 

-c 
(r,) = *~3/2 J B± f L7(c ) e" x d 

LJ ljk J _ 1 x 
-' -no 

ijk 

uu — U J _ p 

H.(c )e Y d c f c H. (c )e z d c „ (C.5) 

It can be shown by computing the last two integrals that if j f 0, 

k / 1, then q (?|) = 0. Thus, for j = 0, k = 1, 

r 2 oo 2 

U ) = — y B7 f L 7 e x d c + B + f L + e x d c 
' / L j l J l X l J l 

v^ i L "°° ° 

( C . 6 ) 

By carrying out the integration in equation (C.6 ) , i t i s possible to 

demonstrate that the velocity i s given by 

q (f]) = — ( B + + B"; 
Z sfT ° ° 

( C 7 ) 

As in the full-range method, Q(&) = -2q_ 

avg 

The symmetry condition for the physical problem is 

h* U , cx) = h (-rj, -cx) , 

which reduces to 

B7(ti) = (-D1 B+ (-*) (C8) 
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The boundary condition is similar to that of the full-range method, 

h^d, = + § , cx) = (1 -d)h*+ (T, = + |, -cx) . (C.9) 

This reduces to 

B±(; i) = (1 -oK-i)1 B+ (; |) . (cio) 
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APPENDIX D 

SOLUTION OF THE SECOND APPROXIMATION FOR THE 

HALF-RANGE MOMENT METHOD USING 

THE KROOK MODEL 

From Appendix C, equation (C04)y four equations are obtained when 

a l l B* = 0 , i > 2s 

dB~ I—™ dB7 
0 / i t - 2 1 Vic / „ + 0 - N - Vit + T ^ I a _ ft (B+ - B") = + - » - (D„l) 

dt) V 2 di] 2 ' 0 ° 2 / 2 

d B ° - ^ d B i . / i T , B * 0 . ( D .2 ) 
df] f ~ 7 t "„ 2 )3 /2 df| + Vn-2 h B l 

The particular solution is obtained by assuming B~ and B~ are poly­

nomials in fi„ In general<, it is not necessary to assume that terms 

higher than the second order are presento For example^ if it were 

assumed that B were given by a tenth-order polynomial9 it would be 

3 4 

found that the coefficients of r\ ,, T) , etc, were all zero. By follow­

ing this procedure,, it is assumed that 

B~ = b ± b.n + b.rj2 (D.3) 

B* = ± b 3 + b4fj , (Do4) 

where the symmetry condition is used to find B and B „ After 
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substituting equations (D,3) and (D04) into equations (D„l) and (D<>2) 

the particular solution is found to be 

bl = -l/v^2? (D.5) 

b 2 = y2"&/4 (D.6) 

b3 - 1/(26 J^2) (D.7) 

b4 = - y(x-2)/<C . (D.8) 

b must be determined by one of the boundary conditions after the com­

plete solution is found-

The homogeneous set of equations is obtained from (D«l) and (Do2) 

by setting the right-hand side of equation (D„l) equal to zero* The 

The solution is assumed to be 

B- - I g-. e J . (D.9) 

J 

Substituting equation (D„9) into the homogeneous set yields 

a 9o V T a 9i * T" (9o " 9o) = ° (D ,10 ) 

2J/2 ..± , / aT a % * T~$j2a 9i +m 9i • ° • ( D- n ) 

If a solution of the above set of equations exists,, then the determinant 

of the coefficient matrix must be zero. This condition yields the values 

of a s 
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a = ± Ji (f-ff) . (D.12) 

It is now possible to solve for three of the four unknowns in terms of 

the remaining unknown., Let g = t g , g. = mg , and g = ng « 

Any three of the equations (D„10) and (D.ll) can be used to solve for 

,y m s and n0 The r e s u l t s a r e I = 2<,67265/ m = - 0 . 2 8 0 4 , and 

n = 2.4943o Finally, the complete solution for the unknowns is expressed 

as the sum of the particular solution and the homogeneous solution^ 

+ 2 + ±abf\ a + +abi\ , 
B~ = b ± b.ri + b^fj + g e + ! g e (D.13) 

O 0 1 ' V:' r O O ' 

B- = ± b 3 + b4i | ± m g Q e + f | g o e ^ . (D,14) 

The boundary condition? equation (C„9), is used to determine the 

two unknowns b and g „ They are 
o 3o 7 

^ - b 
+ = . 2 _ — 2 _ (D.15) 
o -a 6/2 a 6/2 

me ' - ne ' 

b , 4 4 - < ( ' V 2 + t ' a ' / 2 ' • (D-I6) 

The velocity is determined by equation (C.6) 

q (t|) = -i- (B+ + B") 
z JT ° ° 

The volume flow rate is Q(&) = -2q 
avg 
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APPENDIX E 

DERIVATION OF THE FREE-MOLECULAR LIMIT FOR 

THE VOLUME FLOW RATE USING THE WILLIS 

ITERATION METHOD 

A property of the solutions by the half-range moment method is 

that 

lim q (TI) - consto , 
b -» 0 Z 

where the constant is different for each approximation. Using this 

property, it is possible to examine the Willis iteration procedure in 

the limit as 6 -¥ Oo Thus? assume q (T] ') - consto = c for a first 

guess. After substitution of this first guess into equation (54) of 

the text, the first iteration for q (rj1) can be written 

q (t,) - - L -
2fi 

J e" x (4c - 2/6) dcx (E.l) 
o 

"cx / / w "^+2^/cx -(i"^ 6/^, e x (-2c. +l/6)(e ^ x + e z x)dc 
J l x. 

oo 

0 

After carrying out the integration, the result is 

«z (i> • c i - 2 T + «rV: - -prnf0^) + y * 2 ) ] , (E.2) 
2 //it 6 / i t 

where 
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oo 2 

• f \ r - u - x / u 
: (x) = J e / du 

xx = (»| + 5) 6 

X2 = ^2 ~ ^ b 

To examine q (fj) as 6-^0., it is necessary to study the limit 

of f (x) for small x» Abramowitz gives the limit 
o 

lim f (x) = —x 1- x In x 
x ->0 

Using this limit in equation (E.2),, the velocity becomes 

Q 

qz(tl) = ("*"- " - —i")C*(t|+5 ) ln(fi+|) + 5(5-11) lnt^-t,) + & ln&] 
2jH 6 tfiT 

(E.4) 

The average velocity at any cross-section is obtained by integrating 

q (t|) from t\ = -l/2 to i) = +l/2o Then^ the volume flow rate is given 

by Q(&) = ~2q 0 Thus, 
avg 

Q(& •* 0) = — i — - — In 6 + c [ — (2 In & - l)] <, (E.5) 
2 n/ic */rc V^T 

The limit of the term in the square brackets is zero as 6 •> 0, Thus3 

Q(& -* 0) is independent of the first guess used in the iteration scheme,, 

The volume flow rate is 



Q(6 -> 0) = - In 6 
2 /it ^iT 

(E-6) 

For very small 6 

Q(6 •* 0) = - — In 6 

which agrees with the asymptotic expression derived by Cercignani (3). 
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APPENDIX F 

SOLUTION OF THE SECOND APPROXIMATION FOR THE 

HALF-RANGE MOMENT METHOD USING THE 

HARD SPHERE MODEL 

The basic equation is (59) in the text, 

c xlr^.".^). ^ 
where j(h* ) is defined by equation (61) of the text and the inverse 

Knudsen number is 6 = dn A/ 2 it a „ For the second approximation,, assume 

h*1 = a1 c + a* c c „ (F.2) 
o z 1 z x x ; 

Following reference (19) 

a + a a + a. 
J(h#±) = ̂ - F -

£ J(c2) + -1-5-i J(czcx) 

+ + 
a - a a - a. 

+ _°_-—° j(c^ s i g n c^) + _ _ J( c
z
c
x
 s i9 n c

x) ' (F°3) 

_-2 
After multiplying equation (F.l) by c (l ± sign c )e , using equa-

Z X 

tions (F.2) and (F.3)? and integrating, the following equation is obtained: 

^f^^^ii^^^vv^' ™ 



89 

„ ~ 2 

After multiplying equation (FJ) by c c (l ± sign c )e and following 

the same procedure as abovev the second equation is 

dao 2 dal 2 2 rT , + , -. 

di j* di jr * ^ 3 l * 

+ i 2 <ao - a o 5 * : 4 ( a i • a i ) ] > ( F ° 5 ) 

where I., I?, I , and I. are the bracket integrals discussed in the 

text. Their values are 

I = -1,0059 it 

X2 = -0.4345x 

I3 = -0,4000* 

I4 = -1.6982n 

Equations (F.4) and (F.5) are solved for a" and a" in a manner 

similar to that presented in Appendix D for the Krook model. 

The particular solution is assumed to be 

ao = bo ± bl^ + b 2 ^ ( F o 6 ) 

a* = ± b3 + b4t| . (F.7) 

After substituting equations (F.6) and (F.7) into equations (F.5) and 

(F.4) j, the particular solution is found to be 



0̂ 

b = =0*06304 

b = + 0.9015 &„ 

b = + 0o2899/& 

b4 = -lo9289 o 

b is determined by one of the boundary conditions after the complete 

solution is found0 

The homogeneous set of equations is obtained from equations (F»4) 

and (F„5) by dropping the terms ± *hT and ± 2/ v̂ t <, respectively,, The 

solution is assumed to be of the form 

-J - I 4, ."\ (F.8) 
j 

Substituting equation (F„8) into xhe homogeneous set yields 

/ — I I 
ago ± _ 8 g - T (g + g ) - - (g - g ) = 0 (F.9) 

«% ± -™ »9j = " ~ 13(9} + g p - - £ = i 2 (g* - g 
/ / I T -JC A/TC i t A / IT 

;> 

- 2 - 1 (g+ - g") = 0 (F.10) 
Tt ATK 

•4^1 *1 

Setting the determinant of the coefficient matrix equal to zero yields 

a = ±7o86980 Following Appendix D, I = =4„3806» m = -105262, and 

n = =405452o 
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The complete solution for the unknowns is 

a" = b ± b,T] + b 0 n 2 + g + ( e ± a 5 s T 1 + I e+° b s*) ( F . l l ) 
o o 1 ' 2 o 

a* = ±b3 + b4r, ± g+(n> r ' S ' - n e ^ 6 s") . (F.12) 

b and g are found from the boundary conditions; 
o ^o 7 ' 

a+(- i) • (1 -«)a;(- | ) , aj(- ±) - (l - «) a^(- |) . (F.13) 

The equations for b and g are presented in the text, equations (83) 

and (84), The velocity is given by 

qz(n) - 4 
+ - 4 " ai 
a + a + — 
o o ^ ~ 

(F.14) 

The expressions for q (̂ ) and Q(& ) are presented in equations (82) 

and (85) of the texto 
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APPENDIX G 

THE CALCULATION OF I_ FOR THE MAXWELLIAN MODEL 
o 

Since the calculation of IQ is quite long, only the major points 
o 

of the solution are presented,, The calculation of Ig is similar, but 

much longer, 
The bracket integral' IQ is defined I0 = [c c sign c , c sign c ] 

O O Z X X Z X 

Following equation (67) of the text, IQ is written 

I„ = I . yGTf 
V(5) '2 R1 J 

2 . 2 - ( c , +c ) o 
i J J 

6* A2 (5) 
d3c d 3 c j s in Q F(8,R )dGde 

c c sign c z x x c ' s ign c • + c ' s ign c • 
z. x. z x 

c sign c - c sign c 
z. x, z ' x (G. l ) 

wh ere A (5) = 0.436, F(6,R ) i s def in ed 

^ V -v/S: v r I ( v 9 ) 

1 

(G.2) 

and 

s ign c = 
^ x 

- J 
i t c x dt (G.3) 

In order to s impli fy the i n t e g r a t i o n of equat ion ( G . l ) , d iv ide 

t h e i n t e g r a t i o n in to four p a r t s such t h a t I Q = I Q + I + I Q + IQ , 
a b e d 
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where I is the integration over c' sign c' , etc0 The follow-
8a 21 Xl 

ing relations can be obtained from a study of the equations for ce , 
xl' 

C r * r • 
0 \^ a \s m 

x r z i z i 

i8 (0) = i8 (e + *) 
b a 

i8 W = i8 (e - o) 
c a 

(G.4) 

I 8 (9) = I 8 (B = *) 
d a 

Thus, it is necessary to calculate only I . I is equal to 
8 a 8 a 

= _ J _ _ _ /J£_ 
*a 6n 2 A 0 ( 5 ) ^ 2 R 1 

00 . . _ CO 

-\1 fl f! MP(-^)VC-V, 
TZ -co -to 

co oo ec\ 

J exp(-v r /2)v rdv J dvc exp(»2vc ) j *exp(-v2 /2)dV] 
=̂ 00 X X -oo 

- 2* 2* 2* * 9 

J d B c J d 9 r J d £ J s in e F (9 > R l )de c z c x c -
0 0 0 0 1 

exp (i t c ) exp (i t c' ) (G.5) 

c' and c1 are defined in equations (70) and (71) of the text 
xl zl 

Polar coordinates are used for v and v such that 
c r 

2 2 2 2 
V = V + V + V 
r r r r 

x y z 

2 2 2 2 
V = V + V + V 
c c c c 

x y z 

v = v 
r r 
X X 

V = V 
c c 
X X 
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v = v cos 9 
r r r 
Y 

v = v cos 9 

v = v sin « 
r r r 
z 

v = v sin 
c c 
z 

The integrations are most easily carried out in the following order 

C r' c 
v , e » v , v s> ^ $ s9 ts and the final numerical inte 

r ' c r 
x x 

gration over 90 After i n t e g r a t i o n over 9 and 9 , I i s equal to 

~2 
8a 6ir2 A2(5) V 2 R i 'V 1 I -co «eo n -oo «<» o 

oo oo oo 

J e x p ( - v r / 2 ) v r d v r J exp(-2v^ ) dv c j exp( -v 2 / 2 ) d v r 

X X -oo 

.271 „ 7t 

f de J s in 9 F(0SR )d9 (v 2 - ~ vf cos 9 - 1 v r v r s i n 9 c o s e ) 

(v + v ) e x p [ i ( s + t ) v ] exp[ - - ( t - s cos 9)v ] c r o, A r 
X X 

e x P [" o s v s * n ® c o s £ ] 2 " r 
(G.6) 

The integrals over s and t are found in reference 37o The results 

after integration over all variables except 9 is 

-1 
8a 6n2 A2(5) V 2 R 1 

TI J s in 9 F(e ,R 1 ) Ga(0) (Go?) 

where 
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G (0) = -blsin"1 b) + -
a (l-b2)V2 

1 . 2 1 . , . 2 
T ab - ̂  ab + b 
4 o 

+ r^a 
(l-b*) 27372 128 32 a - 32 ab 

1 u2 
+ I6 ab (G.8) 

and 

a = sin 
2 e 

, b = sin -

I~ is now written 

1 
8 6«2A2(5)V

2R1 
/ — " -7T3 J sineF(e,R ) G(9)d9 

N 1 o 
(G.9) 

where G(9) = G {6) + G (9 + it) - G (0) - G (it) , In order to deter-
a a a a 

mine G (it), go back to the integration over s and t? set 9 = it 
a 

and then carry out the integration* 

The remainder of the calculation is straightforward and is 

illustrated by equations (89) « (94) of the texto The procedure is the 

same for each bracket integral which must be calculated numerically^ 
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