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PREFACE

This thesis is a compilation of papers which I have written with my advisor, Professor Renato

Monteiro, over the past two years. Other coauthors include Professor Takashi Tsuchiya,

Professor Arkadi Nemirovski, and fellow Ph.D. student Zhaosong Lu.

The first portion of Chapter 2, discussing the maximum weight basis preconditioner, is

joint work with my advisor and Takashi Tsuchiya published in [44]. The second portion

of that chapter, discussing the application of the MWB preconditioner to LP, is given in

a technical report published with my advisor in [42]. Chapter 3 is work which has been

done with my advisor and Zhaosong Lu. The first portion of Chapter 3 is presented in

a technical report in [33] which has been conditionally accepted for publication in SIAM’s

Journal on Optimization. The second portion of Chapter 3 is given in [34]. Finally, Chapter

4 details work done with my advisor and Arkadi Nemirovski; the results are published in

the technical report given in [43].
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SUMMARY

Over the last 25 years, interior-point methods (IPMs) have emerged as a viable

class of algorithms for solving various forms of conic optimization problems. Most IPMs

use a modified Newton method to determine the search direction at each iteration. The

system of equations corresponding to the modified Newton system can often be reduced to

the so-called “normal equation,” a system of equations whose matrix AD2AT is positive

definite, yet often ill-conditioned. In this thesis, we first investigate the theoretical prop-

erties of the maximum weight basis (MWB) preconditioner, and show that when applied

to a matrix of the form AD2AT , where D ∈ Rn×n is positive definite and diagonal, the

MWB preconditioner yields a preconditioned matrix whose condition number is uniformly

bounded by a constant depending only on A. Next, we incorporate the results regarding

the MWB preconditioner into infeasible, long-step, primal-dual, path-following algorithms

for linear programming (LP) and convex quadratic programming (CQP). In both LP and

CQP, we show that the number of iterative solver (“inner”) iterations of the algorithms can

be uniformly bounded by n and a condition number of A, while the algorithmic (“outer”)

iterations of the IPMs can be polynomially bounded by n and the logarithm of the desired

accuracy. We also expand the scope of the LP and CQP algorithms to incorporate a family

of preconditioners, of which MWB is a member, to determine an approximate solution to

the normal equation.

For the remainder of the thesis, we develop a new preconditioning strategy for solving

systems of equations whose associated matrix is positive definite but ill-conditioned. Our

so-called “adaptive preconditioning” strategy allows one to change the preconditioner dur-

ing the course of the conjugate gradient (CG) algorithm by post-multiplying the current

preconditioner by a simple matrix, consisting of the identity matrix plus a rank-one update.

Our resulting algorithm, the Adaptive Preconditioned CG (APCG) algorithm, is shown to

xii



have polynomial convergence properties. Numerical tests are conducted to compare a vari-

ant of the APCG algorithm with the CG algorithm on various matrices.
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CHAPTER I

INTRODUCTION AND PREVIOUS WORK

1.1 Motivation

The purpose of this thesis is to explore the use of iterative linear solvers within interior-

point methods (IPMs). The development of IPMs dates back to the 1960s, where different

methods from nonlinear programming were proposed to tackle linear programming (LP)

and related problems. The reasoning behind such methods stems from the fact that, at

its core, the optimality conditions for LP, known also as the Karush-Kuhn-Tucker (KKT)

conditions, can be written in the form {z : F (z) = 0, G(z) ≥ 0}, where F (·) and G(·)
are maps and z is a vector. Interior point methods are iterative algorithms generating a

sequence of points {zj} lying in the interior of the set {z : G(z) ≥ 0} (hence the name),

and which converge to a point z∗ satisfying the KKT conditions.

An early drawback to the use of IPMs for LP was the fact that no theoretical convergence

properties, in terms of the data of the problem, were known. (An example of an early IPM

is Dikin’s method; see [15].) Thus it was impossible to compare the complexity of an IPM

with the Simplex Method, a well-known method for LP. The Simplex Method has been

shown to be extremely efficient in practice, often requiring ∼ 3m iterations to achieve an

optimal solution, where m is the number of linear constraints (see e.g. [13]). However, it is

not known whether the Simplex Method is a polynomial-time algorithm in theory; indeed,

it has been shown to be an exponential-time algorithm for most well-known pivoting rules,

as shown via problems such as the Klee-Minty problem [27].

A breakthrough for the problem of complexity came in 1984, in a paper written by Kar-

markar [24]. In this paper, he proved that an interior-point method for LP had provable

polynomial convergence properties; his algorithm required O(n3.5 log ε−1) arithmetic opera-

tions to achieve an ε-solution to LP, where n is the length of the decision vector. More recent

advances, most notably those by Renegar [50], Gonzaga [19], and Nesterov and Nemirovski
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[47], have reduced the arithmetic complexity as low as O(n3 log ε−1). (An even more recent

advance by Anstreicher reduced the complexity even further, to O((n3/ log n) log ε−1) arith-

metic operations; see [4]. For a thorough discussion of IPM algorithms and their theoretical

convergence properties, see [52].)

In addition to their polynomial convergence properties, another strength of IPMs lies in

their ability to solve more complex classes of problems. Specifically, IPMs can be used to

solve conic programming problems of the form

min{cT x : Ax− b ∈ K}, (1)

where K is a closed, convex, pointed cone with non-empty interior (see e.g. [7, 52]). The

most well-known classes of conic problems for which IPMs have been developed are

1. LP: K = Rn
+ = {x ∈ Rn : xi ≥ 0 for all i = 1, ..., n},

2. Second-order cone programming (SOCP): K = K1 × · · · ×Kp, where each

Ki =
{

x ∈ Rni : xni ≥
√

x2
1 + ·+ x2

ni−1

}
, and

3. Semidefinite programming (SDP): K = {X ∈ Rn×n : X = XT , yT Xy ≥ 0 for all y ∈
Rn}.

It it straightforward to show (see e.g. [7]) that through some simple changes of variables,

LP ⊂ SOCP ⊂ SDP.

A class of problems which we will consider extensively in this thesis is the class of convex

quadratic programming (CQP) problems. CQP is an extension of LP in that a quadratic

term is added to the objective function. The CQP problem we will consider in this thesis

takes the form

min
{

1
2
xT Qx + cT x : Ax = b, x ≥ 0

}
, (2)

where the matrix Q is positive semidefinite. It is easy to show the following:

Proposition 1.1.1 LP ⊂ CQP ⊂ SOCP.

Proof: The first inclusion follows by noting that the standard form for LP is precisely

(2) with Q = 0. For the second inclusion, we use a method explained in [7]. Specifically,

2



let a factorization Q = V V T be given. It is clear that (2) is equivalent to the problem

min
{

cT x +
t

2
: Ax = b, x ≥ 0, ‖V T x‖2 ≤ t

}
.

Since

t =
(

t + 1
2

)2

−
(

t− 1
2

)2

,

this is equivalent to

min

{
cT x +

t

2
: Ax = b, x ≥ 0, ‖V T x‖2 +

(
t− 1

2

)2

≤
(

t + 1
2

)2
}

,

i.e.

min





cT x +
t

2
: Ax = b, x ≥ 0,

∥∥∥∥∥∥∥




V T x

t−1
2




∥∥∥∥∥∥∥
≤ t + 1

2





.

Through a simple substitution of variables z1 = V T x, z2 = (t − 1)/2, and z3 = (t + 1)/2,

we see that the desired problem is an example of SOCP, as desired.

Because of this result, all SOCP algorithms can solve the equivalent CQP problem.

CQP also falls within another class of well-known problems, the so-called complementary

problems. CQP is a specific case of a mixed linear complementary problem (mLCP) (see

[67]). In the next section, we will turn to a class of IPM algorithms which can be used to

solve CQPs.

1.2 IPMs for CQP

In this section, we consider a class of IPM algorithms which can be used to solve the CQP

problem. We begin by noting that the primal and dual problems of CQP are

min
{

1
2
xT Qx + cT x : Ax = b, x ≥ 0

}
, (3)

max
{
−1

2
x̂T Qx̂ + bT y : AT y + s−Qx̂ = c, s ≥ 0

}
, (4)

where the data are the n × n positive semidefinite matrix Q, the matrix A ∈ Rm×n, and

the vectors b ∈ Rm and c ∈ Rn. A point (x, x̂, s, y) ∈ Rn
+×Rn×Rn

+×Rm is optimal for (3)

3



and (4) if and only if it satisfies the following KKT conditions:

Ax = b, (5)

AT y + s−Qx̂ = c, (6)

Xs = 0, (7)

Q(x− x̂) = 0, (8)

where X is a diagonal matrix having the vector x along its diagonal (i.e. X = Diag(x)). From

these conditions, it is clear that if x and (x̂, s, y) are optimal for (3) and (4), respectively,

then (x, s, y) is optimal for (4) as well. As a result, most IPMs solve the problem (4) with

x̂ replaced by x, so that the data of the problem is w := (x, s, y) ∈ Rn
+ × Rn

+ × Rm. Given

this fact, if x and (x, s, y) are feasible solutions of (3) and (4), respectively, we have the

following simple result relating the objective functions of (3) and (4).

Proposition 1.2.1 Let w ∈ Rn
+×Rn

+×Rm be feasible for (3) and (4), respectively. Then,

the difference between the objective functions is precisely nµ, where µ := µ(x, s) = xT s/n.

Proof: By using the linear relations in (3) and (4), it is straightforward to show that

the difference between the objective functions is

xT Qx + cT x− bT y = xT Qx + cT x− (Ax)T y = xT (c−AT y + Qx) = xT s,

as desired.

The function µ(x, s) is known as the “duality gap” between the primal and dual objective

function values.

IPMs for CQP develop a sequence of iterates wk := (xk, sk, yk) ∈ Rn
++ × Rn

++ × Rm,

i.e. (xk, sk) > 0. It is clear that these points lie in the interior of the cone K = {(x, s, y) :

(x, s) ≥ 0}. Given a current iterate w ≡ wk as above, most of these methods seek to

determine a solution to the Newton system of equations

A∆x = b−Ax =: −rp, (9)

AT ∆y + ∆s−Q∆x = c−AT y − s + Qx =: −rd, (10)

X∆s + S∆x = −Xs + σµe =: −rxs, (11)

4



Table 1: Iteration Complexity Results for CQPs

Initial point Neighborhood Complexity
Feasible Narrow O(

√
n log ε−1)

Feasible Wide O(n log ε−1)
Infeasible Narrow O(n log ε−1)
Infeasible Wide O(n2 log ε−1)

where S = Diag(s), σ ∈ [0, 1] is a user-defined “centering parameter,” and µ is the duality

gap. One then determines an appropriate step length α ∈ (0, 1] (chosen so that w + α∆w

lies in the interior of K), then updates w ← w + α∆w.

When σ = 0, the system (9)–(11) reduces to the exact Newton system for determining

the direction ∆w := (∆x,∆s,∆y) at w; in this case, the search direction is known as an

“affine scaling” or “predictor” direction. In contrast, when σ = 1 the search direction

allows one to approach the “central path” of the problem, where the central path is the set

of points w(ν) := (x(ν), s(ν), y(ν)) ∈ Rn
++×Rn

++×Rm which satisfy (5), (6), and Xs = νe,

where e is a vector of all ones and ν > 0; in this case, the search direction is known as a

“centering” direction. IPMs require that all iterates wk lie in some neighborhood of this

central path. Two common neighborhoods are the “narrow” and “wide” neighborhoods,

which are defined as

• Narrow:
{
w ∈ Rn

++ × Rn
++ × Rm : ‖Xs− µe‖ ≤ βµ

}
, where β ∈ (0, 1); and

• Wide:
{
w ∈ Rn

++ × Rn
++ × Rm : Xs ≥ (1− γ)µe

}
, where γ ∈ (0, 1).

The complexity results for CQP vary, depending on whether the initial point w0 is

feasible for the affine constraints and on the size of neighborhood allowed for the iterates

wk. Table 1 details the iteration complexity results which have been proven for various

types of IPM algorithms. (Note that these algorithms must be multiplied by O(n3) to

obtain arithmetic complexity results.) The justification for this table comes from Chapter

8 of [67] and from [72].

The results in this chapter assumed that we could determine a search direction ∆w

satisfying (9)–(11). In Subsection 1.2.1, we detail two methods for determining this search

5



direction.

1.2.1 Determining the Search Direction for CQP

In this subsection, we briefly discuss two methods for determining a search direction ∆w

satisfying (9)–(11). Throughout, we will assume that the current iterate (x, s, y) satisfies

(x, s) > 0, and that the matrix A has full row rank. We begin by removing the variable ∆s

from the system of equations. By solving for ∆s in (10), then substituting it into (11), we

obtain

−D−2∆x + AT ∆y = X−1rxs − rd, (12)

where D := (Q + X−1S)−1/2 is positive definite, hence invertible. Equivalently, we obtain

the following system of equations, known as the augmented system, in ∆x and ∆y:


−D−2 AT

A 0







∆x

∆y


 =




X−1rxs − rd

−rp


 . (13)

The matrix in this system is quasidefinite (see [64]), and hence has a unique solution which

can be determined through various means, including Cholesky-like factorizations. Once ∆x

and ∆y are determined through this means, ∆s can be determined via equation (10).

We can reduce the system of equations (13) even further by eliminating the variable

∆x. We do this by multiplying (12) by AD2 and using equation (9) to obtain the so-called

normal equation

AD2AT ∆y = −rp + AD2(X−1rxs − rd). (14)

We then determine ∆x and ∆s according to the formulas

∆x = D2(rd + AT ∆y −X−1rxs), (15)

∆s = −rd −AT ∆y + Q∆s.. (16)

It is clear that ∆w satisfies (10) in view of (16). Moreover, the definition of D implies that

X∆s + S∆x = X(−rd −AT ∆y + Q∆x) + S∆x

= −Xrd −XAT ∆y + XD−2∆x = −rxs,
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and we observe that

A∆x = AD2AT ∆y + AD2(rd −X−1rxs) = −rp,

so equations (9) and (11) are also satisfied. We should note that for the specific case of

LP, i.e. Q = 0, the normal equation matrix AD2AT has the property that D2 = XS−1 is

diagonal.

Under the assumptions given at the beginning of this subsection, the matrix AD2AT in

(14) is positive definite. As a result, numerous algorithms exist for determining a solution to

(14). Generally, these algorithms can be classified into one of two forms: direct and iterative

methods. Direct methods (such as Cholesky factorization and Gaussian elimination) create

a factorization of the matrix to determine a solution to (14). These methods have been

shown to work well on many classes of CQP problems; however, they can be expensive

to compute, both in terms of CPU time (Θ(m3) operations, where m is the length of the

vector ∆y), and memory (Θ(m2) bytes), since a factorization of AD2AT must be computed

to determine ∆y.

In contrast, iterative methods for solving a system of the form (14) develop a sequence

of points {uj} which converge to ∆y. These methods can be significantly faster than direct

methods on some problems; moreover, they do not require that a factorization of AD2AT

be obtained, hence they require less memory than direct methods.

Iterative methods possess two significant drawbacks when compared with direct meth-

ods. The first is that they only obtain approximate solutions to Hu = h. If u is only an

approximate solution to (14), it is easy to see that the resulting search direction ∆w can

only satisfy (9)–(11) only approximately. Next, and potentially even more significant, is that

the convergence rate for iterative methods depends on the condition number of the matrix

AD2AT . For degenerate CQP problems, the condition number of AD2AT tends to “blow

up” as one approaches an optimal solution (see [32]). Thus, iterative methods can become

increasingly slow and unstable when applied to the system (14) in interior-point methods.

For a detailed discussion of iterative methods, see [25] and the references contained therein.

One particular iterative method, the so-called Conjugate Gradient (CG) method, is
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discussed repeatedly in this thesis. In the next section, we present the major theoretical

results pertaining to this method.

1.3 The Conjugate Gradient Method

The CG method is an iterative method which determines an approximate solution to the

system Hu = h, where H is a positive-definite matrix and h is a vector. A good introduction

to the CG method can be found in [56]. In this section, we present the CG method and

detail the main theoretical results which have been obtained for it.

The CG method is normally implemented with a “preconditioner” matrix Z, chosen so

that the condition number of ZT HZ is significantly smaller than the condition number of

H. In this case, the algorithm is known as the preconditioned CG (PCG) algorithm. The

details of the algorithm are given below.

PCG Algorithm:

Start: Given H Â 0, h ∈ Rm, an invertible matrix Z ∈ Rm×m, and u0 ∈ Rm.

1. Set g0 = Hu0 − h, d0 = −ZZT g0, and γ0 = ‖ZT g0‖2.

2. For i = 0, 1, . . . do

(a) ui+1 = ui + αidi, where αi = γi/(dT
i Hdi)

(b) gi+1 = gi + αiHdi

(c) γi+1 = ‖ZT gi+1‖2

(d) di+1 = −ZZT gi+1 + βi+1di, where βi+1 = γi+1/γi

end (for).

Before presenting the main theoretical results associated with the PCG algorithm, we
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define the following notation.

Ĥ := ZT HZ, (17)

ĝi := ZT gi, (18)

Ŝi := span{ĝ0, . . . , Â
iĝ0}, (19)

Si := ZŜi = {Zv : v ∈ Ŝi}. (20)

One well-known property of the PCG method is that the sequence of points {ûi} defined as

ûi := Z−1ui is the sequence generated by the standard CG algorithm applied to the system

Ĥû = ĥ, where Ĥ is defined in (17) and ĥ := ZT h. Moreover, the gradient of the energy

function Φ bH(u) := (u − u∗)T Ĥ(u − u∗) associated with this system at ûi is equal to ĝi as

defined in (18).

The following proposition follows from the above observations and the properties of the

standard CG algorithm:

Proposition 1.3.1 Each step i of the PCG algorithm possesses the following properties:

(a) Ŝi = span{ĝ0, . . . , ĝi};

(b) ĝT
i ĝj = 0 for all i < j;

(c) ĝT
i Ĥĝj = 0 for all i ≤ j − 2; and

(d) ui = argmin{ΦH(u) : u ∈ u0 + Si−1}.

Proof: See e.g. pages 295-7 of [62].

From the above results, it is clear that under exact arithmetic, the PCG algorithm

terminates in at most m iterations, where H ∈ Rm×m. However, the results in Proposition

1.3.1 often fail to hold under finite-precision arithmetic. Indeed, the properties of the PCG

algorithm depend heavily on property (b) above. Under finite precision arithmetic, the

gradients ĝj often fail to lose their orthogonality, and may even become linearly dependent.

For a detailed discussion of the effects of finite-precision arithmetic on the PCG method,

see [20].
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Another error bound for the PCG method is based on the application of Chebyshev

polynomials (see [56] for an introduction to Chebyshev polynomials). The bound states

that, at each iteration of the PCG method, we have

ΦH(uj) ≤ 4

(√
κ(ZT HZ)− 1√
κ(ZT Hz) + 1

)2j

ΦH(u0).

Since (t− 1)/(t + 1) = 1− 2/(t + 1) and 1 + ω ≤ eω for all ω ∈ R, it is easy to see that

ΦH(uj) ≤ 4 exp
{ −4j√

ZT HZ + 1

}
ΦH(u0),

and hence an ε-solution satisfying ΦH(uj) ≤ εΦH(u0) can be obtained in at most

O(
√

κ(ZT HZ) log ε−1) (21)

iterations. It is this bound which we will employ throughout this thesis, in part because

bounds similar to this one appear to hold under finite-precision arithmetic (see [20]).

One drawback to the bound (21) is that it is not a polynomial-time bound. Indeed,

the condition number of a matrix is well-known to be exponential in the size of the matrix

(see [55]). In Chapter 4, we will present a new iterative method which is based on the CG

algorithm, but which possesses polynomial convergence properties.

In the next section, we present the main results of our thesis. The results detail the use

of iterative methods, including CG, within interior point algorithms for LP and CQP. In

addition, the results offer a new approach, based on the CG algorithm, for determining an

ε-solution to the system Hu = h.

1.4 Major Results of the Thesis

In this section we detail the major results of our thesis. The results can be divided into two

areas. First, we present new theoretical complexity results for IPMs for LP and CQP, where

the search directions are computed approximately by means of appropriately preconditioned

iterative linear solvers. The second set of results pertain to a new iterative method for

solving a system of equations whose matrix is positive definite.

10



1.4.1 New IPM Complexity Results for LP and CQP

In Chapters 2 and 3, we present new algorithmic approaches for LP and CQP whose search

directions are computed by means of an iterative linear solver. We begin by discussing a well-

known preconditioner, the so-called maximum weight basis (MWB) preconditioner. The

MWB B is determined from a vector d > 0 and a corresponding matrix A of full row rank.

Given this pair (A, d), the matrix B is formed from columns of A, giving higher priority to

columns corresponding to larger elements of d; we then form the MWB preconditioner T

according to the formula T := D−1
B B−1. In Section 2.2, we show that the preconditioned

normal matrix TAD2AT T T has a condition number which is uniformly bounded by m and

a condition number of A. It is important to note that our bound given in Section 2.2 does

not depend on the values of the diagonal matrix D.

In the remainder of Chapter 2, we use the MWB preconditioner to precondition the

normal equation in an inexact, long-step, path-following, primal-dual IPM algorithm for

LP. We show that the iterative linear solver, preconditioned with the MWB preconditioner,

can obtain a suitable approximate solution to the normal equation within a uniformly

bounded number of iterations. Since the iterative solver determines only an approximate

solution to the normal equation, we show one method to distribute the error in the search

direction so as to ensure polynomial convergence in the number of outer iterations. As we

will show, the number of outer iterations required by our algorithm is O(n2 log ε−1), the

same as for the exact methods discussed in Subsection 1.2.1.

In Chapter 3, we extend the results in Chapter 2 from LP to CQP. The extension from

LP to CQP is not immediately apparent at first, since the MWB preconditioner used in

LP requires that the matrix D2 be diagonal, which does not necessarily hold for CQP. In

Section 3.2, we remedy this difficulty by presenting a new equation, the so-called augmented

normal equation (ANE), for determining a portion of the search direction in CQP. The ANE

is constructed in such a manner as to be able to use the MWB preconditioner described

in Subsection 2.2. Again, we show that the number of iterative solver iterations can be

uniformly bounded, while the iterations of the IPM are bounded by O(n2 log ε−1) as before.

In Section 3.6, we extend the results even further to allow for a class of preconditioners to
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be used. We detail the results for two of the preconditioners in this class, namely the MWB

preconditioner and the partial update method preconditioner. The iterative solver iteration

bounds that we obtain for the MWB preconditioner are exactly the same as the bound

given in Section 3.3, while the bound for the partial update method is within a logarithmic

factor of bounds given in [4] and [47]. Moreover, the method presented in Section 3.8 gives

a stopping criterion for the iterative solver which may be checked, allowing us to stop the

iterative solver once a suitable approximate solution has been reached. (In contrast, the

methods given in [4] and [47] require that a prescribed number of iterative solver iterations

must be performed at each step of the IPM to ensure convergence; see Section 3.8 for

details.)

1.4.2 The Adaptive PCG (APCG) Method

In Chapter 4, we turn our attention to the solution of a system of equations Hu = h

whose matrix H is positive definite but may be extremely ill-conditioned. We present a new

approach which allows one to change the preconditioner in the PCG method throughout the

course of the algorithm to speed convergence. We introduce this adaptive preconditioning

procedure by applying it first to the steepest descent algorithm. Then, the same techniques

are extended to the PCG algorithm, and convergence to an ε-solution in O(log det(A) +
√

n log ε−1) iterations is proven, where det(A) is the determinant of the matrix.
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CHAPTER II

THE MAXIMUM WEIGHT BASIS PRECONDITIONER

AND ITS USE IN AN INEXACT LP ALGORITHM

2.1 The Maximum Weight Basis: Introduction

Consider the linear programming (LP) problem min{cT x : Ax = b, x ≥ 0}, where A ∈ Rm×n

has full row rank. Interior-point methods for solving this problem require that systems

of linear equations of the form AD2AT ∆y = r, where D is a positive diagonal matrix,

be solved at every iteration. It often occurs that the “normal” matrix AD2AT , while

positive definite, becomes increasingly ill-conditioned as one approaches optimality. In fact,

it has been proven (e.g., see Kovacevic and Asic [32]) that for degenerate LP problems,

the condition number of the normal matrix goes to infinity. Because of the ill-conditioned

nature of AD2AT , many methods for solving the system AD2AT ∆y = r become increasingly

unstable. The problem becomes even more serious when conjugate gradient methods are

used to solve this linear system. Hence, the development of suitable preconditioners which

keep the condition number of the coefficient matrix of the scaled system under control is of

paramount importance. We should note, however, that in practice, the ill-conditioning of

AD2AT generally does not cause difficulty when the system AD2AT ∆y = r is solved using

a backward-stable direct solver (see e.g. [66, 70] and references contained therein).

In the first section of this chapter, we analyze a known preconditioner for the normal

matrix AD2AT , the so-called maximum weight basis (MWB) preconditioner, that has been

proposed by Vaidya [63] in the context of the minimum cost network flow problem and

subsequently by Oliveira and Sorensen [48] for general LP problems. The preconditioning

consists of pre- and post-multiplying AD2AT by D−1
B B−1 and its transpose, respectively,

where B is a suitable basis of A and DB is the corresponding diagonal submatrix of D.

Roughly speaking, B is constructed in such a way that columns of A corresponding to
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larger diagonal elements of D have higher priority to be in B. Our main result is that

such preconditioner yields coefficient matrices with uniformly bounded condition number

regardless of the value of the diagonal elements of D. In the context of interior-point

methods, this means that the condition number of the preconditioned normal matrix has a

bound that does not depend on the current iterate, regardless of whether it is well-centered.

We also show that when applied to network flow-based LPs, the condition number of the

preconditioned normal matrix is bounded by m(n−m+1), where m and n are the number

of nodes and arcs of the network.

2.2 The Maximum Weight Basis Preconditioner

In this section, we describe the MWB preconditioner and establish its main properties.

We first describe a procedure, which given an n× n diagonal matrix D ∈ D++, finds a

suitable basis of a full row rank matrix A ∈ Rm×n obtained by giving higher priority to the

columns of A with larger corresponding diagonal elements of D. The use of this basis as a

way to obtain preconditioners of matrices of the form AD2AT was originally proposed by

Vaidya [63] in the context of minimum cost network flow problems and was subsequently

extended by Oliveira and Sorensen [48] to the context of general LP problems. Note that

when this procedure is used in the context of the minimum cost network flow interior point

methods, it produces a maximum spanning tree for the network whose arc weights are given

by the diagonal elements of D.

Algorithm for determining MWB B: Let a pair (A, d) ∈ Rm×n × Rn
++ be given such

that rank(A) = m. Then:

1. Order the elements of d such that d1 ≥ ... ≥ dn; order the columns of A accordingly.

2. Let B = ∅ and set l = 1.

3. While |B| < m, do

(a) If Al is linearly independent of {Aj : j ∈ B}, set B ← B ∪ {l}.

(b) l ← l + 1.
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4. Return to the original ordering of A, and determine the set B according to this order-

ing.

5. Let N = {1, ..., n} \B, B = AB, and N = AN .

We will refer to a basis B produced by the above scheme as a MWB associated with

the pair (A, d) ∈ Rm×n × Rn
++. We begin with a technical, but important lemma.

Lemma 2.2.1 Let (A, d) ∈ Rm×n × Rn
++ be given such that rank(A) = m. Suppose that

B is a MWB associated with the pair (A, d) and define D ≡ Diag(d) and DB ≡ Diag(dB).

Then, for every j = 1, . . . , n:

dj ‖D−1
B B−1Aj‖ ≤ ‖B−1Aj‖. (22)

As a consequence, we have:

‖D−1
B B−1AD‖ ≤ ‖D−1

B B−1AD‖F ≤ ‖B−1A‖F . (23)

Proof: We first prove (22). For every j ∈ B, both sides of (22) are the same and hence

(22) holds as equality in this case. Assume now that j ∈ N . We consider the following two

distinct cases: i) Aj was not considered to enter the basis B in step 3 of the above scheme,

and ii) Aj was a candidate to enter the basis but it failed to make it. Consider first case

i). In this case, we have dj ≤ min(dB) since the dk’s are arranged in nonincreasing order at

step 1 of the above scheme. Thus, we have

dj ‖D−1
B B−1Aj‖ ≤ dj

min(dB)
‖B−1Aj‖ ≤ ‖B−1Aj‖.

Consider now case ii). Suppose that Aj was a candidate to become the r-th column of B.

Since it failed to enter B, it must be linearly dependent on the first r − 1 columns of B.

Hence,

B−1Aj =




u

0


 ,
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for some u ∈ Rr−1. Hence, using the fact that dBi ≥ dj for every i = 1, . . . , r − 1, we

conclude that

dj ‖D−1
B B−1Aj‖ ≤ dj

(
r−1∑

i=1

u2
i

d2
Bi

)1/2

≤
(

r−1∑

i=1

u2
i

)1/2

= ‖u‖ = ‖B−1Aj‖.

We next prove (23). The first inequality of (23) is well-known. The second inequality

follows from (22), the identity ‖R‖2
F =

∑n
j=1 ‖Rj‖2 for every R ∈ Rm×n, and the fact that

the j-th column of D−1
B B−1AD is djD

−1
B B−1Aj .

Given a pair (A, d) ∈ Rm×n × Rn
++ such that rank(A) = m, we next consider a precon-

ditioner for a system of equations of the form AD2AT p = r, where D ≡ Diag(d). Pre- and

post-multiplying its coefficient matrix by an invertible matrix T ∈ Rm×m, we obtain the

following equivalent system

T (AD2AT )T T p̃ = Tr,

where p̃ = T−T p. The following results give a suitable choice of T for which the condition

number of the coefficient matrix of the above system is uniformly bounded as d varies over

Rn
++.

Lemma 2.2.2 Let (A, d) ∈ Rm×n × Rn
++ be given such that rank(A) = m. Suppose that

B is a MWB associated with the pair (A, d) and define D ≡ Diag(d), DB ≡ Diag(dB) and

T ≡ D−1
B B−1. Then,

κ(TAD2AT T T ) ≤ ‖B−1A‖2
F .

Proof: By Lemma 2.2.1, we have ‖TAD‖ ≤ ‖B−1A‖F . Hence,

λmax(TAD2AT T T ) = ‖TAD‖2 ≤ ‖B−1A‖2
F .

Moreover, since

T (ADAT )T T = D−1
B B−1(BD2

BBT + ND2
NNT )B−T D−1

B = I + WW T ,

where W ≡ D−1
B B−1NDN and DN ≡ Diag(dN ), we conclude that

λmin(TAD2AT T T ) ≥ 1.
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Hence, the lemma follows.

We will refer to the preconditioner T described in Lemma 2.2.2 as a MWB precondi-

tioner. For the purpose of stating the next result, we now introduce some notation. Let us

define

ϕA := max{‖B−1A‖F : B is a basis of A}. (24)

The constant ϕA is related to the well-known condition number χ̄A (see [65]), defined as

χ̄A := sup{‖AT (AEAT )−1AE‖ : E ∈ Diag(Rn
++)}.

Specifically, ϕA ≤ m1/2χ̄A, in view of the facts that ‖C‖F ≤ m1/2 ‖C‖ for any matrix

C ∈ Rm×n and, as shown in [60] and [65],

χ̄A = max{‖B−1A‖ : B is a basis of A}.

From the lemma above, we arrive at our main result for the MWB preconditioner.

Theorem 2.2.3 Let (A, d) ∈ Rm×n × Rn
++ be given such that rank(A) = m. Suppose that

B is a MWB associated with the pair (A, d) and define D ≡ Diag(d), DB ≡ Diag(dB) and

T ≡ D−1
B B−1. Then,

κ(TAD2AT T T ) ≤ ϕ2
A ≤ m χ̄2

A.

Another important consequence of Lemma 2.2.2 is the following result.

Theorem 2.2.4 Let A ∈ Rm×n denote the node–arc incidence matrix of a connected di-

rected graph with one of its rows deleted. Suppose that B is a MWB associated with the

pair (A, d), for some d ∈ Rn
++. Letting D ≡ Diag(d), DB ≡ Diag(dB) and R ≡ D−1

B B−1,

we have

κ(TAD2AT T T ) ≤ m(n−m + 1).

Proof: Using the structure of A, it is easy to see that ‖B−1A‖2
F ≤ m + (n −m)m =

m(n−m + 1). The result now follows directly from Lemma 2.2.2.
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2.3 The Maximum Weight Basis: Concluding Remarks

As mentioned earlier, using a maximum weight basis preconditioner in the context of net-

work flow problems yields a maximum spanning tree preconditioner first proposed by Vaidya

[63]. In such a case, Judice et al. [22] have attempted to show that the condition number of

the preconditioned matrix is bounded. However, their proof is incomplete, in that it deals

only with three out of four possible cases, the neglected case being the most difficult and in-

teresting one. Our proof does not attempt to correct theirs; rather, it is based on an entirely

different approach. Moreover, our approach also holds for general LP problems in standard

form, and shows that the derived bounds on the condition number of the preconditioned

normal matrices T (AD2AT )T T hold for any D ∈ D++. In the context of interior-point

methods, this means that the condition number of the preconditioned normal matrix has a

bound that does not depend on the current iterate, regardless of whether it is well centered.

Certain computational issues arise from our analysis. When determining the maximum

weight basis B, one must determine whether a set of columns in A is linearly independent.

This process tends to be sensitive to roundoff errors. Once the set B is determined, the

matrix T can be computed in a stable fashion, since the condition numbers for all possible

bases B are uniformly bounded and multiplication by the diagonal matrix D−1
B can be done

in a componentwise manner.

The authors believe that the preconditioner studied in this section will be computa-

tionally effective only for some special types of LP problems. For example, the papers

[22, 53] developed effective iterative interior-point methods for solving the minimum cost

network flow problem based on maximum spanning tree preconditioners. Another class of

LP problems for which iterative interior-point methods based on maximum weight basis

preconditioners might be useful are those for which bases of A are sparse but the normal

matrices AD2AT are dense; this situation generally arises in the context of LP problems

for which n is much larger than m. Investigation of the many classes of LP problems which

would benefit from the application of such methods is certainly an important area for future

research.
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2.4 Inexact LP using the MWB: Introduction

Consider the standard-form linear programming (LP) problem

min{cT x : Ax = b, x ≥ 0} (25)

which we refer to as the primal problem, and its associated dual problem

max{bT y : AT y + s = c, s ≥ 0}, (26)

where the data consists of (A, b, c) ∈ Rm×n×Rm×Rn and the primal-dual variable consists

of (x, s, y) ∈ Rn × Rn × Rm.

This section deals with interior-point (IP) algorithms for solving the pair of LP problems

(25) and (26) whose search directions are computed by means of iterative linear solvers.

We refer to such algorithms as iterative IP methods. An outer iteration of an iterative IP

algorithm is similar to that of an exact IP method, except that the Newton search directions

are computed approximately by means of an iterative linear solver. In this context, the

iterations of the linear solver will be referred to as the inner iterations of the iterative

IP method. We will consider an iterative version of the long-step primal-dual infeasible

IP algorithm considered in [28, 72] and show that its total number of inner iterations is

polynomially bounded by m, n and a certain condition number associated with A, while

the number of outer iterations is bounded by O(n2 log ε−1), where ε is a given relative

accuracy level.

Given a current iterate (x, s, y) in a generic primal-dual IP algorithm, one usually solves

for the Newton search direction (∆x,∆s,∆y) using one of two well-known approaches. In

the first approach, one solves an augmented system for (∆x,∆y), which then immediately

yields ∆s. In the second one, one solves the normal equation system

AD2AT ∆y = p, (27)

for some appropriate p ∈ Rm, where D2 = S−1X. Our method is based on the second

approach where we solve (27) using an iterative solver.

Most IP solvers using the normal equation usually solve (27) via a direct solver which

computes a factorization of AD2AT to obtain ∆y. The use of an iterative linear solver to
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solve (27) has two main potential advantages: (i) it can be significantly faster than a direct

solver in some LP instances (see e.g. [48, 53]); and (ii) it can take complete advantage of

the sparsity of the matrix A. However, iterative solvers possess two potential drawbacks

when compared with direct solvers: (a) they solve (27) less accurately than direct methods;

and (b) they may have slow convergence if the coefficient matrix AD2AT is ill-conditioned.

The effect of item (a) above is that the search direction (∆x,∆s,∆y) can only satisfy

the Newton system approximately, regardless of the choice of ∆x and ∆s. In our approach,

we will choose these components so that the equations of the Newton system corresponding

to primal and dual feasibility are satisfied exactly, while the equation corresponding to the

centrality condition is violated. This way of choosing the search direction is crucial for us

to establish that the number of outer iterations of our method is polynomially bounded (see

Section 2.5.4).

Item (b) has been a significant problem for those wishing to use iterative methods to

solve (27). It is well-known that in degenerate cases, the condition number of AD2AT

“blows up” as we approach an optimal solution, even if our iterates (x, s, y) lie on the

central path (see e.g. [32]). A cure to this problem is to use a preconditioner T so as to

make the condition number of TAD2AT T T small. One such preconditioner was introduced

by Resende and Veiga [53] in the context of the minimum cost network flow problem, and

later generalized by Oliveira and Sorensen [48] for general LP problems. The proof that

the above preconditioner makes the condition number of TAD2AT T T uniformly bounded

regardless of the values of the diagonal elements of D was proved by Monteiro, O’Neal, and

Tsuchiya [44]. In view of this nice property, we will use this preconditioner in our algorithm.

Global convergence analysis of algorithms using inexact search directions has been pre-

sented in several papers (see e.g. [17, 28, 31, 39]). Several authors have also used iterative lin-

ear solvers to compute an approximate Newton search direction (see e.g. [6, 31, 48, 49, 53]).

In particular, Resende and Veiga [53] and Oliveira and Sorensen [48] used an iterative solver

in conjunction with the above preconditioner to compute (27) inexactly for network-flow

problems and general LP problems, respectively. Their computational results show that

iterative IP methods can be extremely useful in practice. To our knowledge, though, no one
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to date has obtained strong theoretical arithmetic complexities for iterative IP methods.

The remainder of this chapter is organized as follows. Subsection 2.4.1 describes the

terminology and notation used throughout the rest of this chapter. Section 2.5 gives the

main results we have obtained for LP, and is divided into five parts. Section 2.5.1 describes

an exact variant of an infeasible-interior-point algorithm on which the algorithm we study

in this chapter is based. Section 2.5.2 discusses the preconditioner T mentioned above

and gives some background results. Section 2.5.3 states the convergence results about a

generic iterative method for solving (27). Section 2.5.4 gives our algorithm and main results,

and Section 2.5.5 discusses the application of our algorithm to network flow problems. In

Section 2.6, we prove the results stated in Section 2.5. Finally, some concluding remarks

are presented in Section 2.7.

2.4.1 Terminology and Notation

Throughout the remainder of the chapter, upper-case Roman letters denote matrices, lower-

case Roman letters denote vectors, and lower-case Greek letters denote scalars. For a matrix

A, A ∈ Rm×n means that A is an m×n matrix with real entries; while for a vector x, x ∈ Rn

means that x is an n-dimensional real vector. More specifically, x ∈ Rn
+ means that x ∈ Rn

and xi ≥ 0 for all i, while x ∈ Rn
++ means that x ∈ Rn and xi > 0 for all i. Next, the vector

|v| is the vector whose ith component is |vi|. Also, given a vector v, Diag(v) is a diagonal

matrix whose diagonal elements are the elements of v, i.e. (Diag(v))ii = vi for all i.

Five matrices bear special mention: the matrices X, S, D, ∆X, and ∆S all in Rn×n.

These matrices are diagonal matrices having the elements of the vectors x, s, d, ∆x, and

∆s respectively, along their diagonals (i.e. X = Diag(x), etc.). The symbol 0 will be used

to denote a scalar, vector, or matrix of all zeroes; its dimensions should be clear from the

context. Also, the vector e is the vector of all 1’s, whose dimension is implied by the context.

If a matrix W ∈ Rm×m is symmetric (W = W T ) and positive definite (has all positive

eigenvalues), we write W Â 0. The condition number of W , denoted κ(W ), is the ratio

between its maximum eigenvalue divided by its minimum eigenvalue. We will denote sets

by upper-case script Roman letters (e.g. B, N ). For a set B, we denote the cardinality of
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the set by |B|. Given a matrix A ∈ Rm×n and a set B ⊆ {1, . . . , n}, the matrix AB is the

submatrix consisting of the columns {Ai : i ∈ B}. Similarly, given a vector v ∈ Rn and a

set B ⊆ {1, . . . , n}, the vector vB is the subvector consisting of the elements {vi : i ∈ B}.
We will use several different norms throughout the chapter. For a vector z ∈ Rn,

‖z‖ =
√

zT z is the Euclidian norm, and ‖z‖∞ = maxi=1,...,n |zi| is the “infinity norm”.

For a matrix V ∈ Rm×n, ‖V ‖ denotes the operator norm associated with the Euclidian

norm: ‖V ‖ = maxz:‖z‖=1 ‖V z‖. Finally, ‖V ‖F denotes the Frobenius norm: ‖V ‖F =

(
∑m

i=1

∑n
j=1 V 2

ij)
1/2.

2.5 Inexact LP using the MWB: Main Results

The main results of the chapter are stated in this section, which is divided into five parts.

Section 2.5.1 gives some background and motivation for the method proposed in the chapter.

Section 2.5.2 describes the maximum weight basis preconditioner. Section 2.5.3 considers a

generic iterative linear solver and derives an upper bound on the number of iterations for

it to obtain a reasonably accurate solution of (27). Section 2.5.4 describes how the overall

search direction is obtained and states the main algorithm. Finally, Section 2.5.5 describes

a tighter complexity for the algorithm when applied to network flow problems.

2.5.1 Preliminaries and Motivation

In this subsection, we discuss a well-known infeasible primal-dual long-step IP algorithm

(see for example [28] and [72]) which will serve as the basis for the iterative IP method

proposed in this chapter. We also state the complexity results which have been obtained

for this algorithm. For the sake of concreteness, we have chosen to work with one specific

primal-dual IP method. We note, however, that our analysis applies to other long-step

variants as well as to short-step IP methods.

As stated in the introduction, we will be working with the pair of LPs (25) and (26).

Letting S denote the set of primal-dual optimal solutions (x, s, y) ∈ R2n × Rm of (25) and
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(26), it is well-known that S consists of the triples (x, s, y) ∈ R2n × Rm satisfying

Ax = b, x ≥ 0 (28)

AT y + s = c, s ≥ 0 (29)

Xs = 0. (30)

Throughout the chapter, we will make the following assumptions:

Assumption 1 A has full row rank.

Assumption 2 The set S is nonempty.

For a point (x, s, y) ∈ R2n
++ × Rm+l, let us define

µ = µ(x, s) := xT s/n,

rp = rp(x) := Ax− b,

rd = rd(s, y) := AT y + s− c,

r = r(x, s, y) := (rp, rd).

Moreover, given γ ∈ (0, 1) and an initial point (x0, s0, y0) ∈ R2n
++ × Rm, we define the

following neighborhood of the central path:

N (γ) :=
{

(x, s, y) ∈ R2n
++ × Rm : Xs ≥ (1− γ)µe,

‖r‖
‖r0‖ ≤

µ

µ0

}
, (31)

where r0 := r(x0, s0, y0) and µ0 := µ(x0, s0). Here, we use the convention that ν/0 is equal

to 0 if ν = 0 and ∞ if ν is positive.

The infeasible primal-dual algorithm which will serve as the basis for our iterative IP

method is as follows:

Algorithm IIP

1. Start: Let ε > 0, γ ∈ (0, 1), (x0, s0, y0) ∈ N (γ) and 0 < σ < σ < 1 be given. Set

k = 0.

2. While µk := µ(xk, sk) > ε do
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(a) Let (x, s, y) := (xk, sk, yk) and w := (x, s, y); choose σ ∈ [σ, σ]

(b) Let ∆w := (∆x,∆s,∆y) denote the solution of the linear system

X∆s + S∆x = −Xs + σµe, (32)

A∆x = −rp, (33)

AT ∆y + ∆s = −rd. (34)

(c) Let

α̃ = argmax
{
α ∈ [0, 1] : w + α′∆w ∈ N (γ), ∀α′ ∈ [0, α]

}
.

(d) Let ᾱ = argmin{(x + α∆x)T (s + α∆s) : α ∈ [0, α̃]}.

(e) Let (xk+1, sk+1, yk+1) = w + ᾱ ∆w, and set k ← k + 1.

end (while)

The main complexity result for Algorithm IIP (see for example [28] and [72]) is as

follows:

Theorem 2.5.1 Assume that the constants γ, σ and σ are such that

max
{

γ−1 , (1− γ)−1 , σ−1 , (1− σ)−1
}

= O(1),

and that the initial point (x0, s0, y0) ∈ R2n
++ × Rm+l satisfies (x0, s0) ≥ (x̄, s̄) for some

(x̄, s̄, ȳ) ∈ S. Then, Algorithm IIP finds an iterate (xk, sk, yk) ∈ R2n
++ × Rm+l satisfying

µk ≤ εµ0 and ‖rk‖ ≤ ε‖r0‖ within O (
n2 log(1/ε)

)
iterations.

One way of computing the solution (∆x,∆s,∆y) of (32)-(34) is to first solve for ∆y

using the following equation, known as the normal equation:

AD2AT ∆y = −rp − σµAS−1e + Ax−AD2rd, (35)

where D2 = S−1X, and then compute ∆s and ∆x using the following formulae:

∆s = −rd −AT ∆y, (36)

∆x = −x + σµS−1e−D2∆s. (37)
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Theorem 2.5.1 assumes that we can solve (32)-(34), and hence (35), exactly. Normally,

the exact solution of (35) is obtained via a Cholesky factorization of AD2AT . Instead of

this, we would like to use an iterative solver to obtain an approximate solution of (35).

However, as mentioned in the introduction, the condition number of AD2AT may “blow

up” as we approach an optimal solution, making the use of iterative methods for solving

(35) undesirable. One cure is to use a preconditioner T such that the condition number

κ(TAD2AT T T ) remains bounded and hopefully small. One such preconditioner will be

described in the next subsection, and will play an important role in our main algorithm

described in Section 2.5.4.

2.5.2 Preconditioner

In this subsection, we will describe the preconditioner T that we will use to solve (35), and

we will state the main results for this preconditioner, as given in [44].

Our proposed approach consists of solving the preconditioned system of linear equations:

Wz = q, (38)

where

W := TAD2AT T T , (39)

q := −Trp − σµTAS−1e + TAx− TAD2rd, (40)

and T is the preconditioner matrix (which we refer to as the maximum weight basis precon-

ditioner) determined by the following algorithm:

Maximum Weight Basis Algorithm

Start: Given A ∈ Rm×n and d ∈ Rn
++,

1. Order the elements of d so that d1 ≥ . . . ≥ dn; order the columns of A accordingly.

2. Let B = ∅, l = 1.

3. While |B| < m do

(a) If Al is linearly independent of {Ai : i ∈ B}, set B ← B ∪ {l}.
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(b) l ← l + 1.

4. Return to the original ordering of A and d; determine the set B according to this

ordering and set N := {1, . . . , n}\B.

5. Set B := AB, N := AN , DB := Diag(dB) and DN := Diag(dN ).

6. Let T := D−1
B B−1.

end

This preconditioner was originally proposed by Resende and Veiga in [53] in the context

of network flow problems. In this case, A is a node-arc incidence matrix of a connected

directed graph (with one row deleted to ensure that A has full row rank), and the elements

of d are weights on the edges of the graph. Using this algorithm, we see that the set B
created by the algorithm above defines a maximum spanning tree on the digraph. Oliveira

and Sorensen [48] later proposed the use of this preconditioner for general matrices A.

For the purpose of stating the next result, we now introduce some notation. Let us

define

ϕA := max{‖B−1A‖F : B is a basis of A}. (41)

It is easy to show that ϕA ≤
√

mχ̄A, where χ̄A is a well-known condition number (see [65])

defined as

χ̄A := sup{‖AT (ADAT )−1AD‖ : D ∈ Diag(Rn
++)}.

Indeed, this follows from the fact that ‖C‖F ≤ √
m‖C‖ for any matrix C ∈ Rm×n with

m ≤ n and that an equivalent characterization of χ̄A is

χ̄A := max{‖B−1A‖ : B is a basis of A}, (42)

as shown in [60] and [65].

Recently, Monteiro, O’Neal and Tsuchiya showed the following result in [44].

Proposition 2.5.2 Let a full row rank matrix A ∈ Rm×n and d ∈ Rn
++ be given. Let

T = T (A, d) be the preconditioner determined according to the Maximum Weight Basis

Algorithm, and define W := TAD2AT T T . Then, ‖TAD‖ ≤ ϕA and κ(W ) ≤ ϕ2
A.
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Table 2: Values of c(κ) and f(κ) for Well-Known Iterative Solvers

Solver c(κ) f(κ)
SD

√
κ (κ + 1)/2

CG 2
√

κ (
√

κ + 1)/2

Note that the bound ϕ2
A on κ(W ) is independent of the diagonal matrix D and depends

only on A. In the next subsection, we derive bounds on the number of iterations needed by

an iterative solver to solve (38) to a desired accuracy level.

2.5.3 Iteration Complexity for the Iterative Solver

In this subsection, we will develop a bound on the number of iterations that an iterative

linear solver needs to perform to obtain a suitable approximate solution to (38). Instead of

focusing on one specific solver, we will assume that we have a generic iterative linear solver

with a prescribed rate of convergence. More specifically, we will assume that the generic

iterative linear solver when applied to (38) generates a sequence of iterates {zj} satisfying

the following condition:

‖q −Wzj‖ ≤ c(κ)
[
1− 1

f(κ)

]j

‖q −Wz0‖, ∀ j = 0, 1, 2, . . . , (43)

where c and f are positive functions of κ ≡ κ(W ). For our purposes, we will also assume

that the initial iterate z0 = 0, so that q −Wz0 = q.

Examples of solvers which satisfy (43) include the steepest descent (SD) and conjugate

gradient (CG) methods, with the following values for c(κ) and f(κ):

The justification for the table above follows from Section 7.6 and Exercise 10 of Section

8.8 of [35].

Before we give the main convergence result, we state the following lemma, which we will

prove in Section 3.1:

Lemma 2.5.3 Assume that T = T (A, d) and the initial point (x0, s0, y0) is such that s0 ≥
|c − AT y0| and (x0, s0) ≥ (x̄, s̄) for some (x̄, s̄, ȳ) ∈ S. Suppose also that (x, s, y) ∈ N (γ)

and that r = ηr0 for some η ∈ [0, 1]. Then, the vector q defined in (40) satisfies ‖q‖ ≤ Ψ
√

µ,
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where

Ψ :=
9nϕA√
1− γ

+
√

nϕA + σϕA

√
n

1− γ
. (44)

The following result gives an upper bound on the number of iterations that the generic

iterative linear solver needs to perform to obtain an iterate zj satisfying ‖q−Wzj‖ ≤ ρ
√

µ,

for some constant ρ > 0.

Theorem 2.5.4 Suppose that the conditions of Lemma 2.5.3 are met and (1−γ)−1 = O(1).

Then, a generic iterative solver with a convergence rate given by (43) generates an iterate

zj satisfying ‖q −Wzj‖ ≤ ρ
√

µ in

O
(

f(κ) log
(

c(κ)nϕA

ρ

))
(45)

iterations, where κ := κ(W ).

Proof: Let j be any index satisfying

j ≥ f(κ) log
(

c(κ)Ψ
ρ

)
. (46)

Using the fact that log(1+x) ≤ x for all x > −1 and the above inequality, we conclude that

log (ρ
√

µ) ≥ log (c(κ)Ψ
√

µ)− j

f(κ)

≥ log (c(κ)Ψ
√

µ) + j log
(

1− 1
f(κ)

)
.

This together with the assumption that z0 = 0, relation (43) and Lemma 2.5.3 imply that

ρ
√

µ ≥ c(κ)
[
1− 1

f(κ)

]j

Ψ
√

µ ≥ c(κ)
[
1− 1

f(κ)

]j

‖q‖ ≥ ‖q −Wzj‖.

Since Ψ = O(nϕA) in view of Lemma 2.5.3, it follows that the right hand side of (46) is

majorized by (45), from which the result follows.

We will refer to an inner iterate zj satisfying ‖q − Wzj‖ ≤ ρ
√

µ to as ρ-approximate

solution of (38). In our interior-point algorithm in the next subsection, we will choose the

constant ρ as ρ = γσ/(4
√

n). As a consequence of Proposition 2.5.2, we obtain the following

corollary.
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Corollary 2.5.5 Suppose that the conditions of Lemma 2.5.3 are met and that max{σ−1, γ−1, (1−
γ)−1} = O(1). If ρ = γσ/(4

√
n), then the SD and CG methods generate a ρ-approximate

solution in O(ϕ2
A log(nϕA)) and O(ϕA log(nϕA)) iterations, respectively.

Proof: This result follows immediately from the assumptions, Theorem 2.5.4, Table 2

and Proposition 2.5.2.

Note that the inner-iteration complexity bounds derived in Corollary 2.5.5 are not poly-

nomial in general, since they depend on ϕA. However, these bounds will be polynomial if

ϕA is polynomial. We will discuss this impact for general matrices A at the end of Section

2.5.4. In Section 2.5.5, we will consider a specific case when ϕA is polynomial, namely when

A is the node-arc incidence matrix of a directed graph.

2.5.4 The Iterative IP Algorithm

In this subsection, we describe our main algorithm. It is essentially the IIP algorithm,

except that the search direction (∆x,∆s,∆y) is computed approximately with the use of

iterative methods applied to (38).

Notice that under exact computations, the primal and dual residuals rk = (rk
p , rk

d)

corresponding to the k-th iterate of Algorithm IIP always lie on the line segment between 0

and r0 because of (33) and (34). It is well known that this property plays an important role

in the convergence analysis of infeasible interior point methods. We will now show that it

is still possible to ensure that rk lies on the segment between 0 and r0, even when ∆y is an

approximate solution of (35). Indeed, consider an approximate solution ∆y which satisfies

the following equation:

AD2AT ∆y = −rp − σµAS−1e + Ax−AD2rd + f (47)

where f is some error vector. Next, we solve for ∆s using (36), so that (∆s,∆y) satisfies

(34).

The usual approach for choosing ∆x is to use (37). However, this does not ensure that

(33) is satisfied. To ensure that (33) is satisfied, we use the following equation:

∆x = −x + σµS−1e−D2∆s− S−1v (48)
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where v is a perturbation vector satisfying

AS−1v = f. (49)

Condition (49) is necessary and sufficient for ∆x given by (48) to satisfy (33), since

A∆x = A (−x + σµS−1e−D2∆s− S−1v)

= −Ax + σµAS−1e−AD2∆s−AS−1v

= −Ax + σµAS−1e + AD2rd + AD2AT ∆y −AS−1v

= −rp + f −AS−1v, (50)

due to (48), (36) and (47). Note from (48) that (32) is satisfied exactly if and only if v = 0,

which in turn satisfies the necessary and sufficient condition AS−1v = f if and only if f = 0,

i.e. when ∆y is an exact solution of (35).

There are numerous choices for v. An obvious choice for v is to choose the least squares

solution, i.e., to choose the optimal solution to min{‖v‖ : AS−1v = f}. However, this is

the type of computation we wish to avoid when using an iterative solver. A more effective

choice for v is to choose a basis B̃ of A and let

v = (vB̃, vÑ ) = (SB̃B̃−1f , 0), (51)

where (B̃, Ñ ) is the index partition corresponding to the basis B̃.

It turns out that an obvious choice for B̃ in our approach is to let B̃ be equal to the

maximum weight basis B corresponding to (A, d). More specifically, recall that in our

algorithm, we compute ∆y approximately using the preconditioned system Wz = q. Let

∆̃y denote the final iterate zj in the approximate solution of Wz = q, and let f̃ = W ∆̃y−q.

Letting ∆y = T T ∆̃y, it is easy to see that ∆y is an approximate solution satisfying (47)

with error f = T−1f̃ = BDBf̃ . Using this expression for f and letting B̃ = B in (51), we

obtain

v = (SB̃B̃−1f , 0) = (SBB−1BDBf̃ , 0) = ((XBSB)1/2f̃ , 0). (52)

Note that by (48), we have X∆s + S∆x = −XSe + σµe − v, i.e. (32) is satisfied only

approximately. To ensure convergence of our method, it turns out that it is important to
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keep ‖f̃‖, and hence ‖v‖, small. In our algorithm below, we require that

‖f̃‖ ≤ γσ

4
√

n

√
µ (53)

so as to ensure that the number of outer iterations of our method is still polynomially

bounded.

We now present our main algorithm:

Algorithm IIP-IS:

1. Start: Let ε > 0, γ ∈ (0, 1), (x0, s0, y0) ∈ N (γ) and 0 < σ < σ < 4/5 be given. Set

k = 0.

2. While µk := µ(xk, sk) > ε do

(a) Let (x, s, y) := (xk, sk, yk), and choose σ ∈ [σ, σ].

(b) Set d = S−1/2X1/2e, rp = Ax− b, rd = AT y + s− c, and r = (rp, rd).

(c) Build the preconditioner T = T (A, d) using the Maximum Weight Basis Algo-

rithm.

(d) Find an approximate solution ∆̃y of (38) such that f̃ = W ∆̃y − q satisfies (53).

(e) Let v be computed according to (52). Set ∆y = T T ∆̃y, and compute ∆s and

∆x by (36) and (48), respectively.

(f) Compute α̃ := argmax{α ∈ [0, 1] : w + α′∆w ∈ N (γ), ∀α′ ∈ [0, α]}, where

w := (x, s, y) and ∆w := (∆x,∆s,∆y).

(g) Compute ᾱ := argmin{(x + α∆x)T (s + α∆s) : α ∈ [0, α̃]}.

(h) Let (xk+1, sk+1, yk+1) = w + ᾱ∆w, and set k ← k + 1.

end (while)

Using this algorithm, we obtain nearly the exact same polynomial convergence result as

Theorem 2.5.1. The results for Algorithm IIP-IS are summarized in the following theorem,

which we will prove in Section 3.2.
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Theorem 2.5.6 Assume that the constants γ, σ and σ are such that

max

{
γ−1 , (1− γ)−1 , σ−1 ,

(
1− 5

4
σ

)−1
}

= O(1), (54)

and that the initial point (x0, s0, y0) ∈ R2n
++ × Rm+l satisfies (x0, s0) ≥ (x̄, s̄) for some

(x̄, s̄, ȳ) ∈ S. Then, Algorithm IIP-IS generates an iterate (xk, sk, yk) ∈ R2n
++ × Rm+l

satisfying µk ≤ εµ0 and ‖rk‖ ≤ ε‖r0‖ within O (
n2 log(1/ε)

)
iterations.

Note that while the number of “outer” iterations is polynomial for our algorithm, the

overall complexity is not, due to the total number of “inner” iterations. To see this, con-

sider a given iteration of our algorithm with the CG solver. It is easy to see that steps

(a), (b), and (e) through (h) can be carried out in O(mn) flops. Let us now examine the

other two steps (c) and (d). The sorting part of the Maximum Weight Basis algorithm

can be done in O(n log n) with a quick sorting algorithm. Computing T and its corre-

sponding LU factorization can be done in O(m2n) flops. Hence, the entire step (c) takes

O(nmax{m2, log n}) flops. Now, notice that each step of the CG solver requires O(mn)

flops. Since O(ϕA log(nϕA)) iterations of the CG solver are required, we conclude that step

(d) takes O(mnϕA log(nϕA)) flops. Thus, the number of flops per iteration of Algorithm

IIP-IS is O(n max{mϕA log(nϕA), m2}).
In the next subsection, we will consider a specific case where ϕA is polynomial, namely

when A is the node-arc incidence matrix of a directed graph.

2.5.5 Application to Network Flows

Consider a standard network flow problem of the form (25). In this case, A is the node-arc

incidence matrix of a simple connected directed graph G, with one row deleted to ensure

that A has full row rank. We will show that for this particular problem, Algorithm IIP-IS is

indeed a polynomial-time algorithm. The key result comes from the following observation:

since A is a node-arc incidence matrix, it is totally unimodular so that every element of

B−1A is 1, 0, or -1. Thus, ϕA ≤
√

mn, as can be seen from definition (41) of ϕA.

Additional savings in the complexity of our algorithm can be obtained by using the

special structure of the matrix A. Indeed, consider a single iteration of Algorithm IIP-IS

32



using the CG solver. Steps (a), (b), and (e) through (h) now take O(n) flops since A has

only 2n nonzero entries. Since a maximum weight basis is now a maximum spanning tree on

G, it can be found with O(n log n) flops using either Prim’s or Kruskal’s algorithm (see e.g.

[14]). The basis matrix B, under a suitable ordering, will be upper triangular, so we do not

need to form B−1 explicitly; thus step (c) requires O(n log n) flops. Next, Corollary 2.5.5

and the fact that ϕA ≤
√

mn imply that the CG method takes O(
√

mn log n) iterations to

find a suitably accurate solution of (38). As each step of the CG method takes O(n) flops,

step (d) requires O(m1/2n3/2 log n) flops. Thus, a single outer iteration of Algorithm IIP-IS

applied to a minimum-cost network flow problem requires O(m1/2n3/2 log n) flops.

2.6 Inexact LP using the MWB: Proofs

In this section, we give detailed proofs for the results given in Sections 2.5.3 and 2.5.4.

Section 2.6.1 will be devoted to the proofs of the results in Section 2.5.3, while Section 2.6.2

will give the proofs for the results in Section 2.5.4.

2.6.1 Results for the Iterative Solver

Consider a generic iterative solver which solves (38), and suppose that this solver satisfies

(43) at each iteration. We will seek to get ‖q − Wzj‖ ≤ ρ
√

µ for some term ρ > 0. We

begin with some technical lemmas:

Lemma 2.6.1 Let (x0, s0, y0) and (x, s, y) be points such that r(x, s, y) = ηr(x0, s0, y0) for

some η ∈ R, and let (x̄, s̄, ȳ) be a point such that r(x̄, s̄, ȳ) = 0. Then,

0 = η2x0T
s0 + (1− η)2x̄T s̄ + xT s + η(1− η)(x0T

s̄ + x̄T s0)

−η(x0T
s + xT s0)− (1− η)(x̄T s + xT s̄). (55)

Proof: Using the definition of r, it is easy to see that

A(x− ηx0 − (1− η)x̄) = 0

(s− ηs0 − (1− η)s̄) + AT (y − ηy0 − (1− η)ȳ) = 0
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Multiplying the second relation by [x − ηx0 − (1 − η)x̄]T on the left and using the first

relation, we get

[x− ηx0 − (1− η)x̄]T [s− ηs0 − (1− η)s̄] = 0. (56)

Expanding this equality, we obtain (55).

Lemma 2.6.2 Let (x0, s0, y0) ∈ R2n
++×Rm+l be a point such that (x0, s0) ≥ (x̄, s̄) for some

(x̄, s̄, ȳ) ∈ S. Then, for any point (x, s, y) ∈ R2n
++ × Rm+l such that r = ηr0 for some

η ∈ [0, 1] and η ≤ xT s/x0T
s0, we have that η(x0T

s + s0T
x) ≤ 3nµ.

Proof: By assumption, there exists (x̄, s̄, ȳ) ∈ S such that x̄ ≤ x0 and s̄ ≤ s0. Since

r = ηr0 and (x̄, s̄, ȳ) ∈ S, the points (x, s, y), (x0, s0, y0), and (x̄, s̄, ȳ) satisfy the assumption

of the previous lemma. Hence, by equation (55), along with the facts that η ≤ xT s/x0T
s0,

x̄T s̄ = 0, (x, s) ≥ 0, (x̄, s̄) ≥ 0, (x0, s0) ≥ 0, η ∈ [0, 1], x̄ ≤ x0, and s̄ ≤ s0, we conclude that

η(x0T
s + s0T

x) ≤ η2x0T
s0 + xT s + η(1− η)(x0T

s̄ + s0T
x̄)

≤ η2x0T
s0 + xT s + 2η(1− η)x0T

s0

≤ 2ηx0T
s0 + xT s ≤ 3xT s.

Next, we turn to the proof of Lemma 2.5.3:

Proof of Lemma 2.5.3: By (40) and the triangle inequality for norms, we have

‖q‖ ≤ ‖Trp‖+ ‖σµTAS−1e‖+ ‖TAx‖+ ‖TAD2rd‖. (57)

We will now bound each of the terms in the right hand side of (57). Let (x̄, s̄, ȳ) ∈ S
and (x0, s0, y0) satisfy the assumptions of Lemma 2.5.3, so that x0 ≥ x̄, s0 ≥ s̄ and s0 ≥
|c−AT y0|. Using these inequalities, the assumption that (x, s, y) ∈ N (γ) and Lemma 2.6.2,

we obtain

η‖S(x̄− x0)‖ ≤ η‖Sx0‖ ≤ ηsT x0 ≤ 3nµ (58)

η‖X(s0 + AT y0 − c)‖ ≤ 2η‖Xs0‖ ≤ 2ηxT s0 ≤ 6nµ. (59)
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Thus, using the relations r = ηr0, b = Ax̄, (58) and (59), the fact that (x, s, y) ∈ N (γ) and

Proposition 2.5.2, we obtain

‖Trp‖ = η ‖Tr0
p‖ = η ‖T (b−Ax0)‖ = η ‖TA(x̄− x0)‖ = η ‖(TAD)(XS)−1/2S(x̄− x0)‖

≤ η ‖TAD‖ ‖(XS)−1/2‖ ‖S(x̄− x0)‖ ≤ ϕA
1√

(1− γ)µ
3nµ =

3nϕA√
1− γ

√
µ

and

‖TAD2rd‖ ≤ ‖TAD‖ ‖Drd‖ = η‖TAD‖ ‖Dr0
d‖ = η‖TAD‖ ‖D(s0 + AT y0 − c)‖

≤ η‖TAD‖ ‖(XS)−1/2‖ ‖X(s0 + AT y0 − c)‖

≤ ϕA
1√

(1− γ)µ
6nµ =

6nϕA√
1− γ

√
µ.

Similarly, we have

‖σµTAS−1e‖ ≤ σµ‖TAD‖ ‖(XS)−1/2‖ ‖e‖ ≤ σµϕA
1√

(1− γ)µ

√
n = σϕA

√
n

1− γ

√
µ

and

‖TAx‖ = ‖TAD(XS)1/2e‖ ≤ ‖TAD‖ ‖(XS)1/2e‖ ≤ ϕA
√

nµ,

where in the last inequality we used the fact that ‖(XS)1/2e‖ =
√

nµ. The result now

follows by combining the four bounds obtained above with (57).

2.6.2 Convergence Results for Algorithm IIP-IS

In this subsection, we will provide the proof of Theorem 2.5.6.

For the sake of future reference, we note that (∆x,∆s,∆y) satisfies

A∆x = −rp (60)

AT ∆y + ∆s = −rd (61)

X∆s + S∆x = −Xs + σµe− v (62)

by equations (49), (50), (36), and (48), respectively. Throughout this section, we use the
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following notation:

(x(α), s(α), y(α)) := (x, s, y) + α(∆x,∆s,∆y),

µ(α) := x(α)T s(α)/n,

r(α) := r(x(α), s(α), y(α)) = (Ax(α)− b, AT y(α) + s(α)− c).

Lemma 2.6.3 Assume that (∆x,∆s,∆y) satisfies (60)-(62) for some σ ∈ R, v ∈ Rn and

(x, s, y) ∈ R2n
++ × Rm+l. Then, for every α ∈ R, we have:

(a) X(α)s(α) = (1− α)Xs + ασµe− αv + α2∆X∆s;

(b) µ(α) = [1− α(1− σ)]µ− αvT e/n + α2∆xT ∆s/n;

(c) r(α) = (1− α)r.

Proof: Using (62), we obtain

X(α)s(α) = (X + α∆X)(s + α∆s)

= Xs + α(X∆s + S∆x) + α2∆X∆s

= Xs + α(−Xs + σµe− v) + α2∆X∆s

= (1− α)Xs + ασµe− αv + α2∆X∆s,

thereby showing that a) holds. Left multiplying the above equality by eT and dividing the

resulting expression by n, we easily conclude that b) holds. Statement c) can be easily

verified by means of (60) and (61).

Lemma 2.6.4 Assume that (∆x,∆s,∆y) satisfies (60)-(62) for some σ > 0, (x, s, y) ∈
R2n

++ × Rm+l and v ∈ Rn satisfying vT e/n ≤ σµ/2. Then, for every scalar α satisfying

0 ≤ α ≤ min
{

1 ,
σµ

2 ‖∆X∆s‖∞

}
, (63)

we have
‖r(α)‖
‖r‖ ≤ µ(α)

µ
. (64)
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Proof: Using Lemma 2.6.3(b) and the assumption that vT e/n ≤ σµ/2, we conclude for

every α satisfying (63) that

µ(α) = [1− α(1− σ)]µ− αvT e/n + α2∆xT ∆s/n

≥ [1− α(1− σ)]µ− 1
2

ασµ + α2∆xT ∆s/n

≥ (1− α)µ +
1
2

ασµ− α2‖∆X∆s‖∞

≥ (1− α)µ.

The result now follows from the last relation and Lemma 2.6.3(c).

Lemma 2.6.5 Assume that (∆x,∆s,∆y) satisfies (60)-(62) for some σ > 0, (x, s, y) ∈
N (γ) with γ ∈ [0, 1], and v ∈ Rn satisfying ‖v‖∞ ≤ γσµ/4. Then, (x(α), s(α), y(α)) ∈ N (γ)

for every scalar α satisfying

0 ≤ α ≤ min
{

1 ,
γσµ

4 ‖∆X∆s‖∞

}
. (65)

Proof: Since the assumption that γ ∈ [0, 1] and ‖v‖∞ ≤ γσµ/4 imply that vT e/n ≤
σµ/2, it follows from Lemma 2.6.4 that (64) holds for every α satisfying (63), and hence

(65). Thus, for every α satisfying (65), we have

‖r(α)‖
‖r0‖ =

‖r(α)‖
‖r‖

‖r‖
‖r0‖ ≤

µ(α)
µ

µ

µ0
=

µ(α)
µ0

. (66)

Now, it is easy to see that for every u ∈ Rn and τ ∈ [0, n], there holds ‖u− τ(uT e/n)e‖∞ ≤
(1 + τ)‖u‖∞. Using this inequality twice, the fact that (x, s, y) ∈ N (γ) and statements (a)
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and (b) of Lemma 2.6.3, we conclude for every α satisfying (65) that

X(α)s(α)− (1− γ) µ(α)e

= (1− α) [Xs− (1− γ)µe] + αγσµe− α

[
v − (1− γ)

(
vT e

n

)
e

]

+ α2

[
∆X∆s− (1− γ)

(
∆xT ∆s

n

)
e

]

≥ α

[
γσµ−

∥∥∥∥v − (1− γ)
vT e

n
e

∥∥∥∥
∞
− α

∥∥∥∥∆x∆s− (1− γ)
∆xT ∆s

n
e

∥∥∥∥
∞

]
e

≥ α (γσµ− 2‖v‖∞ − 2α‖∆X∆s‖∞) e ≥ α

(
γσµ− 1

2
γσµ− 1

2
γσµ

)
e ≥ 0.

We have thus shown that (x(α), s(α), y(α)) ∈ N (γ) for every α satisfying (65).

Next, we consider the minimum step length allowed under our algorithm:

Lemma 2.6.6 In every iteration of Algorithm IIP-IS, the step length ᾱ satisfies

ᾱ ≥ min

{
1,

min{γσ, 1− 5
4σ}µ

4 ‖∆X∆s‖∞

}
(67)

and

µ(ᾱ) ≤
[
1−

(
1− 5

4
σ

)
ᾱ

2

]
µ. (68)

Proof: Using (52) and (53), we conclude that

‖v‖∞ = ‖(XBSB)1/2f̃‖∞ ≤ ‖XBSB‖1/2‖f̃‖∞ ≤ √
nµ

γσ

4
√

n

√
µ =

1
4
γσµ. (69)

Hence, by Lemma 2.6.5, the quantity α̃ computed in step (g) of Algorithm IIP-IS satisfies

α̃ ≥ min
{

1,
γσµ

4 ‖∆X∆s‖∞

}
. (70)

Moreover, by (69), it follows that the coefficient of α in the expression for µ(α) in Lemma

2.6.3(b) satisfies

−(1− σ)µ− vT e

n
≤ −(1− σ)µ + ‖v‖∞ ≤ −(1− σ)µ +

1
4

γσµ = −
(

1− 5
4

σ

)
µ < 0, (71)

since σ ∈ (0, 4
5). Hence, if ∆xT ∆s ≤ 0, it is easy to see that ᾱ = α̃, and hence that (67)

holds in view of (70). Moreover, by Lemma 2.6.3(b) and (71), we have

µ(ᾱ) ≤ [1− ᾱ(1− σ)]µ− ᾱ
vT e

n
≤

[
1−

(
1− 5

4
σ

)
ᾱ

]
µ ≤

[
1−

(
1− 5

4
σ

)
ᾱ

2

]
µ,
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showing that (68) also holds. We now consider the case where ∆xT ∆s > 0. In this case,

we have ᾱ = min{αmin , α̃}, where αmin is the unconstrained minimum of µ(α). It is easy

to see that

αmin =
nµ(1− σ) + vT e

2∆xT ∆s
≥ nµ(1− σ)− 1

4σnµ

2∆xT ∆s
≥ µ(1− 5

4σ)
2 ‖∆X∆s‖∞ .

The last two observations together with (70) imply that (67) holds in this case too. More-

over, since the function µ(α) is convex, it must lie below the function φ(α) over the interval

[0, αmin], where φ(α) is the affine function interpolating µ(α) at α = 0 and α = αmin. Hence,

µ(ᾱ) ≤ φ(ᾱ) = [1− (1− σ)
ᾱ

2
]µ− ᾱ

vT e

2n
≤

[
1−

(
1− 5

4
σ

)
ᾱ

2

]
µ, (72)

where the second inequality follows from (71). We have thus shown that ᾱ satisfies (68).

Our next task will be to show that the stepsize ᾱ remains bounded away from zero. In

view of (67), it sufficient to show that the quantity ‖∆X∆s‖∞ remains bounded. The next

lemma addresses this issue.

Lemma 2.6.7 Let (x0, s0, y0) ∈ R2n
++ × Rm+l be such that (x0, s0) ≥ (x̄, s̄) for some

(x̄, s̄, ȳ) ∈ S, and let (x, s, y) ∈ N (γ) be such that r = ηr0 for some η ∈ [0, 1]. Then,

the search direction (∆x,∆s,∆y) generated by Algorithm IIP-IS satisfies

max(‖D−1∆x‖, ‖D∆s‖) ≤
(

1− 2σ +
σ2

1− γ

)1/2√
nµ +

6n√
1− γ

√
µ +

γσ

4
√

n

√
µ.

Proof: Relations (60) and (61) and the assumption r = ηr0 imply that

A(∆x + η(x0 − x̄)) = 0

AT (∆y + η(y0 − ȳ)) + (∆s + η(s0 − s̄)) = 0,

from which it follows that (∆x + η(x0 − x̄))T (∆s + η(s0 − s̄)) = 0. Multiplying (62) on

the left by (XS)−1/2, we obtain D−1∆x + D∆s = H(σ) − (XS)−1/2v, where H(σ) :=

−(XS)1/2e + σµ(XS)−1/2e. Equivalently, we have that

D−1(∆x + η(x0 − x̄)) + D(∆s + η(s0 − x̄))

= H(σ) + η(D(s0 − s̄) + D−1(x0 − x̄))− (XS)−1/2v.
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Using the fact that the two terms on the left hand side of the above identity are orthog-

onal, along with the fact that ‖(XS)−1/2v‖ = ‖f̃‖ by (52), we obtain

max
(‖D−1(∆x + η(x0 − x̄))‖, ‖D(∆s + η(s0 − s̄)‖)

≤ ‖H(σ) + η(D(s0 − s̄) + D−1(x0 − x̄))− (XS)−1/2v‖

≤ ‖H(σ)‖+ η
(‖D(s0 − s̄)‖+ ‖D−1(x0 − x̄)‖) + ‖f̃‖.

This, together with the triangle inequality and the definition of D, imply that

max(‖D−1∆x‖, ‖D∆s‖) ≤ ‖H(σ)‖+ 2η
(‖D(s0 − s̄)‖+ ‖D−1(x0 − x̄)‖) + ‖f̃‖

≤ ‖H(σ)‖+ 2η‖(XS)−1/2‖ (‖X(s0 − s̄)‖+ ‖S(x0 − x̄)‖) + ‖f̃‖

≤ ‖H(σ)‖+
2η√

(1− γ)µ

(‖X(s0 − s̄)‖+ ‖S(x0 − x̄)‖) + ‖f̃‖.(73)

It is well-known that

‖H(σ)‖ ≤
(

1− 2σ +
σ2

1− γ

)1/2√
nµ. (74)

Moreover, using the fact that s̄ ≤ s0 and x̄ ≤ x0 along with Lemma 2.6.2, we obtain

η‖X(s0 − s̄)‖+ ‖S(x0 − x̄)‖ ≤ η(s0T
x + x0T

s) ≤ 3nµ. (75)

The result now follows by incorporating inequalities (74), (75) and (53) into (73).

We are now ready to prove Theorem 2.5.6.

Proof of Theorem 2.5.6: Let (∆xk, ∆sk, ∆yk) denote the search direction, and let

rk = r(xk, sk, yk) and µk = µ(xk, sk), at the k-th iteration of Algorithm IIP-IS. Clearly,

(xk, sk, yk) ∈ N (γ), and using Lemma 2.6.3, it is easy to see that rk = ηr0 for some

η ∈ (0, 1). Hence, using Lemma 2.6.7, assumption (54) and the inequality

‖∆Xk∆sk‖∞ ≤ ‖∆Xk∆sk‖ ≤ ‖(Dk)−1∆xk‖ ‖Dk∆sk‖,

we easily see that ‖∆Xk∆sk‖∞ = O(n2)µk. Using this conclusion together with assumption

(54) and Lemma 2.6.6, we see that, for some universal constant β > 0, we have

µk+1 ≤
(

1− β

n2

)
µk, ∀k ≥ 0.
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The conclusion of the theorem now follows by using the above inequality, the fact that

‖rk‖/‖r0‖ ≤ µk/µ0 for all k ≥ 0, and some standard arguments (see, for example, Theorem

3.2 of [68]).

2.7 Inexact LP using the MWB: Concluding Remarks

We have shown in this chapter that the outer iteration complexity of Algorithm IIP-IS is the

same as that of its direct counterpart, namely Algorithm IIP. We strongly believe that, using

approaches similar to ours, it is possible to develop iterative versions of other primal-dual

IP methods whose outer iteration complexities match those of their direct counterparts.

As we showed in Section 2.5.4, an inexact ∆y leads to an error in the Newton equation

(33) corresponding to primal feasibility. We have addressed this problem by introducing the

vector v in equation (48) defining ∆x. This correction term v can be used, not only in the

context of iterative methods, but also in connection with direct methods, as was pointed out

in Section 2.5.4. It would be interesting to see how the addition of this correction term v in

the context of direct methods could help handle LP problems which are extremely hard to

solve due to the ill-conditioning of AD2AT . Clearly, a certain overhead exists in computing

v, but it might be worthwhile in such a case.

In order to satisfy the polynomial convergence of our methods, we have imposed stringent

conditions on f̃ . In a practical situation, it may be more appropriate to monitor v directly.

Indeed, as long as v satisfies the requirements in Lemmas 2.6.4 and 2.6.5, the outer iteration

convergence analysis used in this chapter remains valid. Moreover, weaker requirements

than those imposed on v in the two lemmas above might be more advantageous from the

practical point of view. This is certainly a topic that deserves further investigation.
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CHAPTER III

INEXACT CQP ALGORITHMS USING THE MWB AND

OTHER PRECONDITIONERS

3.1 CQP Algorithm Using the MWB: Introduction

In this chapter we develop an interior-point long-step primal-dual infeasible path-following

(PDIPF) algorithm for convex quadratic programming (CQP) whose search directions are

computed by means of an iterative linear solver. We will refer to this algorithm as an inexact

algorithm, in the sense that the Newton system which determines the search direction will

only be solved approximately at each iteration. The problem we consider is

min
x

{
1
2
xT Qx + cT x : Ax = b, x ≥ 0

}
, (76)

where the data are Q ∈ Rn×n, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn, and the decision vector

is x ∈ Rn. We also assume that Q is positive semidefinite, and that a factorization Q =

V E2V T is explicitly given, where V ∈ Rn×l, and E is a l × l positive diagonal matrix.

A similar algorithm for solving the special case of linear programming (LP), i.e. problem

(76) with Q = 0, was developed by Monteiro and O’Neal in [42]. The algorithm studied in

[42] is essentially the long-step PDIPF algorithm studied in [28, 72], the only difference being

that the search directions are computed by means of an iterative linear solver. We refer to

the iterations of the iterative linear solver as the inner iterations and to the ones performed

by the interior-point method itself as the outer iterations. The main step of the algorithm

studied in [28, 42, 72] is the computation of the primal-dual search direction (∆x,∆s,∆y),

whose ∆y component can be found by solving a system of the form AD2AT ∆y = g, referred

to as the normal equation, where g ∈ Rm and the positive diagonal matrix D depends on

the current primal-dual iterate. In contrast to [28, 72], the algorithm studied in [42] uses an

iterative linear solver to obtain an approximate solution to the normal equation. Since the

condition number of the normal matrix AD2AT may become excessively large on degenerate
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LP problems (see e.g. [32]), the maximum weight basis (MWB) preconditioner T introduced

in [48, 53, 63] is used to better condition this matrix and an approximate solution of the

resulting equivalent system with coefficient matrix TAD2AT T T is then computed. By

using a result obtained in [44], which establishes that the condition number of TAD2AT T T

is uniformly bounded by a quantity depending on A only, Monteiro and O’Neal [42] show

that the number of inner iterations of the algorithm in [42] can be uniformly bounded by a

constant depending on n and A.

In the case of CQP, the standard normal equation takes the form

A(Q + X−1S)−1AT ∆y = g, (77)

for some vector g. When Q is not diagonal, the matrix (Q + X−1S)−1 is not diagonal, and

hence the coefficient matrix of (77) does not have the form required for the result of [44] to

hold. To remedy this difficulty, we develop in this chapter a new linear system, referred to

as the augmented normal equation (ANE), to determine a portion of the primal-dual search

direction. This equation has the form ÃD̃2ÃT u = w, where w ∈ Rm+l, D̃ is an (n+l)×(n+l)

positive diagonal matrix and Ã is a 2× 2 block matrix of dimension (m+ l)× (n+ l) whose

blocks consist of A, V T , the zero matrix and the identity matrix (see equation (96)). As

was done in [42], a MWB preconditioner T̃ for the ANE is computed and an approximate

solution of the resulting preconditioned equation with coefficient matrix T̃ ÃD̃2ÃT T̃ T is

generated using an iterative linear solver. Using the result of [44], which claims that the

condition number of T̃ ÃD̃2ÃT T̃ T is uniformly bounded regardless of D̃, we obtain a uniform

bound (depending only on Ã) on the number of inner iterations performed by the iterative

linear solver to find a desirable approximate solution to the ANE (see Theorem 3.3.5).

Since the iterative linear solver can only generate an approximate solution to the ANE, it

is clear that not all equations of the Newton system, which determines the primal-dual search

direction, can be satisfied simultaneously. In the context of LP, Monteiro and O’Neal [42]

proposed a recipe to compute an inexact primal-dual search direction so that the equations

of the Newton system corresponding to the primal and dual residuals were both satisfied.

In the context of CQP, such an approach is no longer possible. Instead, we propose a way to
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compute an inexact primal-dual search direction so that the equation corresponding to the

primal residual is satisfied exactly, while the one corresponding to the dual residual contains

a manageable error which allows us to establish a polynomial bound on the number of

outer iterations of our method. Interestingly, the presence of this error on the dual residual

equation implies that the primal and dual residuals go to zero at different rates. This is

a unique feature of the convergence analysis of our algorithm in that it contrasts with the

analysis of other interior-point PDIPF algorithms, where the primal and dual residuals are

required to go to zero at the same rate.

The use of inexact search directions in interior-point methods has been extensively

studied in the context of cone programming problems (see e.g. [4, 5, 17, 31, 39, 47, 73]).

Moreover, the use of iterative linear solvers to compute the primal-dual Newton search

directions of interior-point path following algorithms has also been extensively investigated

in [4, 6, 8, 17, 31, 47, 48, 49, 53]. For feasibility problems of the form {x ∈ H1 : Ax =

b, x ∈ C}, where H1 and H2 are Hilbert spaces, C ⊆ H1 is a closed convex cone satisfying

some mild assumptions, and A : H1 → H2 is a continuous linear operator, Renegar [51] has

proposed an interior-point method where the Newton system that determines the search

directions is approximately solved by performing a uniformly bounded number of iterations

of the conjugate gradient (CG) method. To our knowledge, no one has used the ANE system

in the context of CQP to obtain either an exact or inexact primal-dual search direction.

The first part of this chapter is organized as follows. In Subsection 3.1.1, we give the

terminology and notation which will be used throughout the first part of the chapter. Section

3.2 describes the outer iteration framework for our algorithm and the complexity results we

have obtained for it, along with presenting the ANE as a means to determine the search

direction. In Section 3.3, we discuss the use of iterative linear solvers to obtain a suitable

approximate solution to the ANE and the construction of an inexact search direction based

on this solution. Section 3.4 gives the proofs of the results presented in Sections 3.2 and

3.3. Finally, we present some concluding remarks in Section 3.5.
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3.1.1 Terminology and Notation

Throughout this chapter, upper-case Roman letters denote matrices, lower-case Roman

letters denote vectors, and lower-case Greek letters denote scalars. We let Rn, Rn
+ and Rn

++

denote the set of n- vectors having real, nonnegative real, and positive real components,

respectively. Also, we let Rm×n denote the set of m × n matrices with real entries. For a

vector v ∈ Rn, we let |v| denote the vector whose ith component is |vi|, for every i = 1, . . . , n,

and we let Diag(v) denote the diagonal matrix whose i-th diagonal element is vi, for every

i = 1, . . . , n. In addition, given vectors u ∈ Rm and v ∈ Rn, we denote by (u, v) the vector

(uT , vT )T ∈ Rm+n.

Certain matrices bear special notation, namely the matrices X, ∆X, S, D, and D̃.

These matrices are the diagonal matrices corresponding to the vectors x, ∆x, s, d, and d̃,

respectively, as described in the previous paragraph. The symbol 0 will be used to denote

a scalar, vector, or matrix of all zeroes; its dimensions should be clear from the context.

Also, we denote by e the vector of all 1’s, and by I the identity matrix; their dimensions

should be clear from the context.

For a symmetric positive definite matrix W , we denote its condition number by κ(W ),

i.e. its maximum eigenvalue divided by its minimum eigenvalue. We will denote sets by

upper-case script Roman letters (e.g. B, N ). For a finite set B, we denote its cardinality

by |B|. Given a matrix A ∈ Rm×n and an ordered set B ⊆ {1, . . . , n}, we let AB denote

the submatrix whose columns are {Ai : i ∈ B} arranged in the same order as B. Similarly,

given a vector v ∈ Rn and an ordered set B ⊆ {1, . . . , n}, we let vB denote the subvector

consisting of the elements {vi : i ∈ B} arranged in the same order as B.

We will use several different norms throughout the chapter. For a vector z ∈ Rn, ‖z‖ =
√

zT z is the Euclidian norm, ‖z‖1 =
∑n

i=1 |zi| is the “1-norm”, and ‖z‖∞ = maxi=1,...,n |zi|
is the “infinity norm”. For a matrix V ∈ Rm×n, ‖V ‖ denotes the operator norm associated

with the Euclidian norm: ‖V ‖ = maxz:‖z‖=1 ‖V z‖. Finally, ‖V ‖F denotes the Frobenius

norm: ‖V ‖F = (
∑m

i=1

∑n
j=1 V 2

ij)
1/2.
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3.2 CQP Algorithm Using the MWB: Outer Iteration Frame-
work

In this section, we introduce our PDIPF algorithm based on a class of inexact search di-

rections and discuss its iteration complexity. This section is divided into two subsections.

In Subsection 3.2.1, we discuss an exact PDIPF algorithm, which will serve as the basis for

the inexact PDIPF algorithm given in Subsection 3.2.2, and we give its iteration complexity

result. We also present an approach based on the ANE to determine the Newton search

direction for the exact algorithm. To motivate the class of inexact search directions used by

our inexact PDIPF algorithm, we describe in Subsection 3.2.2 a framework for computing

an inexact search direction based on an approximate solution to the ANE. We then intro-

duce the class of inexact search directions, state a PDIPF algorithm based on it, and give

its iteration complexity result.

3.2.1 An Exact PDIPF Algorithm and the ANE

Consider the following primal-dual pair of CQP problems:

minx

{
1
2
xT V E2V T x + cT x : Ax = b, x ≥ 0

}
, (78)

max(x̂,s,y)

{
−1

2
x̂T V E2V T x̂ + bT y : AT y + s− V E2V T x̂ = c, s ≥ 0

}
, (79)

where the data are V ∈ Rn×l, E ∈ Diag(Rl
++), A ∈ Rm×n, b ∈ Rm and c ∈ Rn, and the

decision variables are x ∈ Rn and (x̂, s, y) ∈ Rn × Rn × Rm. We observe that the Hessian

matrix Q is already given in factored form Q = V E2V T .

It is well-known that if x∗ is an optimal solution for (78) and (x̂∗, s∗, y∗) is an optimal

solution for (79), then (x∗, s∗, y∗) is also an optimal solution for (79). Now, let S denote

the set of all vectors w := (x, s, y, z) ∈ R2n+m+l satisfying

Ax = b, x ≥ 0, (80)

AT y + s + V z = c, s ≥ 0, (81)

Xs = 0, (82)

EV T x + E−1z = 0. (83)

46



It is clear that w ∈ S if and only if x is optimal for (78), (x, s, y) is optimal for (79),

and z = −E2V T x. (Throughout this chapter, the symbol w will always denote the

quadruple (x, s, y, z), where the vectors lie in the appropriate dimensions; similarly, ∆w =

(∆x,∆s,∆y, ∆z), wk = (xk, sk, yk, zk), w̄ = (x̄, s̄, ȳ, z̄), etc.)

We observe that the presentation of the PDIPF algorithm based on exact Newton search

directions in this subsection differs from the classical way of presenting it in that we in-

troduce an additional variable z as above. Clearly, it is easy to see that the variable z is

completely redundant and can be eliminated, thereby reducing the method described below

to the usual way of presenting it. The main reason for introducing the variable z is due to

the development of the ANE presented at the end of this subsection.

We will make the following two assumptions throughout the chapter:

Assumption 3 A has full row rank.

Assumption 4 The set S is nonempty.

For a point w ∈ R2n
++ × Rm+l, let us define

µ := µ(w) = xT s/n, (84)

rp := rp(w) = Ax− b, (85)

rd := rd(w) = AT y + s + V z − c, (86)

rV := rV (w) = EV T x + E−1z, (87)

r := r(w) = (rp(w), rd(w), rV (w)). (88)

Moreover, given γ ∈ (0, 1) and an initial point w0 ∈ R2n
++ × Rm+l, we define the following

neighborhood of the central path:

Nw0(γ) :=
{

w ∈ R2n
++ × Rm+l : Xs ≥ (1− γ)µe, r = ηr0 for some 0 ≤ η ≤ min

[
1,

µ

µ0

]}
,(89)

where r := r(w), r0 := r(w0), µ := µ(w), and µ0 := µ(w0).

We are now ready to state the PDIPF algorithm based on exact Newton search direc-

tions.

Exact PDIPF Algorithm
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1. Start: Let ε > 0 and 0 < σ ≤ σ < 1 be given. Let γ ∈ (0, 1) and w0 ∈ R2n
++ × Rm+l

be such that w0 ∈ Nw0(γ). Set k = 0.

2. While µk := µ(wk) > ε do

(a) Let w := wk and µ := µk; choose σ := σk ∈ [σ, σ].

(b) Let ∆w = (∆x,∆s,∆y, ∆z) denote the solution of the linear system

A∆x = −rp, (90)

AT ∆y + ∆s + V ∆z = −rd, (91)

X∆s + S∆x = −Xs + σµe, (92)

EV T ∆x + E−1∆z = −rV . (93)

(c) Let α̃ = argmax {α ∈ [0, 1] : w + α′∆w ∈ Nw0(γ), ∀α′ ∈ [0, α]}.

(d) Let ᾱ = argmin
{
(x + α∆x)T (s + α∆s) : α ∈ [0, α̃]

}
.

(e) Let wk+1 = w + ᾱ∆w, and set k ← k + 1.

End (while)

A proof of the following result, under slightly different assumptions, can be found in

[72].

Theorem 3.2.1 Assume that the constants γ, σ, and σ are such that

max
{
γ−1, (1− γ)−1, σ−1, (1− σ)−1

}
= O(1),

and that the initial point w0 ∈ R2n
++ × Rm+l satisfies (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S.

Then, the Exact PDIPF Algorithm finds an iterate wk ∈ R2n
++ × Rm+l satisfying µk ≤ εµ0

and ‖rk‖ ≤ ε‖r0‖ within O(n2 log(1/ε)) iterations.

A few approaches have been suggested in the literature for computing the Newton search

direction (90)-(93). Instead of using one of them, we will discuss below a new approach,

referred to in this chapter as the ANE approach, that we believe to be suitable not only for

direct solvers but especially for iterative linear solvers as we will see in Section 3.3.
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Let us begin by defining the following matrices:

D := X1/2S−1/2, (94)

D̃ :=




D 0

0 E−1


 ∈ R(n+l)×(n+l), (95)

Ã :=




A 0

V T I


 ∈ R(m+l)×(n+l). (96)

Suppose that we first solve the following system of equations for (∆y, ∆z):

ÃD̃2ÃT




∆y

∆z


 = Ã




x− σµS−1e−D2rd

0


 +




−rp

−E−1rV


 =: h. (97)

This system is what we refer to as the ANE. Next, we obtain ∆s and ∆x according to:

∆s = −rd −AT ∆y − V ∆z, (98)

∆x = −D2∆s− x + σµS−1e. (99)

Clearly, the search direction ∆w = (∆x,∆s,∆y, ∆z) computed as above satisfies (91) and

(92) in view of (98) and (99). Moreover, it also satisfies (90) and (93) due to the fact that

by (95), (96), (97), (98) and (99), we have that

Ã




∆x

E−2∆z


 = Ã



−D2∆s− x + σµS−1e

E−2∆z




= Ã




D2rd + D2AT ∆y + D2V ∆z − x + σµS−1e

E−2∆z




= Ã




D2AT ∆y + D2V ∆z

E−2∆z


 + Ã




D2rd − x + σµS−1e

0




= ÃD̃2ÃT




∆y

∆z


 + Ã




D2rd − x + σµS−1e

0




=




−rp

−E−1rV


 . (100)
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Theorem 3.2.1 assumes that ∆w is the exact solution of (97), which is usually obtained

by computing the Cholesky factorization of the coefficient matrix of the ANE. In this

chapter, we will consider a variant of the Exact PDIPF Algorithm whose search directions

are approximate solutions of (97) and ways of determining these inexact search directions

by means of a suitable preconditioned iterative linear solver.

3.2.2 An Inexact PDIPF algorithm for CQP

In this subsection, we describe a PDIPF algorithm based on a family of search directions

that are approximate solutions to (90)–(93) and discuss its iteration complexity properties.

Clearly, an approximate solution to the ANE can only yield an approximate solution to

(90)–(93). In order to motivate the class of inexact search directions used by the PDIPF

algorithm presented in this subsection, we present a framework for obtaining approximate

solutions to (90)–(93) based on an approximate solution to the ANE.

Suppose that the ANE is solved only inexactly, i.e. that the vector (∆y, ∆z) satisfies

ÃD̃2ÃT




∆y

∆z


 = h + f (101)

for some error vector f . If ∆s and ∆x were computed by (98) and (99), respectively, then

it is clear that the search direction ∆w would satisfy (91) and (92). However, (90) and (93)

would not be satisfied, since by an argument similar to (100), we would have that

Ã




∆x

E−2∆z


 = . . . = ÃD̃2ÃT




∆y

∆z


+Ã




D2rd − x + σµS−1e

0


 =




−rp

−E−1rV


+f.

Instead, suppose we use (98) to determine ∆s as before, but now we determine ∆x as

∆x = −D2∆s− x + σµS−1e− S−1p, (102)

where the correction vector p ∈ Rn will be required to satisfy some conditions which we will

now describe.
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To motivate the conditions on p, we note that (98), (101), and (102) imply that

Ã




∆x

E−2∆z


 +




rp

E−1rV




= Ã



−D2∆s− x + σµS−1e− S−1p

E−2∆z


 +




rp

E−1rV




= Ã




D2rd + D2AT ∆y + D2V ∆z − x + σµS−1e− S−1p

E−2∆z


 +




rp

E−1rV




= ÃD̃2




AT ∆y + V ∆z

∆z


 + Ã




D2rd − x + σµS−1e

0


− Ã




S−1p

0


 +




rp

E−1rV




= ÃD̃2ÃT




∆y

∆z


 + Ã




D2rd − x + σµS−1e

0


− Ã




S−1p

0


 +




rp

E−1rV




= f − Ã




S−1p

0


 . (103)

Based on the above equation, one is naturally tempted to choose p so that the right hand

side of (103) is zero, and consequently (90) and (93) are satisfied exactly. However, the

existence of such p cannot be guaranteed and, even if it exists, its magnitude might not

be sufficiently small to yield a search direction which is suitable for the development of a

polynomially convergent algorithm. Instead, we consider an alternative approach where p

is chosen so that the first component of (103) is zero and the second component is small.

More specifically, by partitioning f = (f1, f2) ∈ Rm × Rl, we choose p ∈ Rn such that

AS−1p = f1. (104)

It is clear that p is not uniquely defined. Note that (96) implies that (104) is equivalent to

f = Ã




S−1p

E−1q


 , (105)

51



where q := E(f2 − V T S−1p). Then, using (96), (103), and (105), we conclude that

Ã




∆x

E−2∆z


 +




rp

E−1rV


 = f − Ã




S−1p

E−1q


 + Ã




0

E−1q




= Ã




0

E−1q


 =




0

E−1q


 , (106)

from which we see that the first component of (103) is set to 0 and the second component

is exactly E−1q.

In view of (98), (102), and (106), the above construction yields a search direction ∆w

satisfying the following modified Newton system of equations:

A∆x = −rp, (107)

AT ∆y + ∆s + V ∆z = −rd, (108)

X∆s + S∆x = −Xs + σµe− p, (109)

EV T ∆x + E−1∆z = −rV + q. (110)

As far as the outer iteration complexity analysis of our algorithm is concerned, all we

require of our inexact search directions is that they satisfy (107)–(110) and that p and q be

relatively small in the following sense:

Definition 1 Given a point w ∈ R2n
++ × Rm+l and positive scalars τp and τq, an inexact

direction ∆w is referred to as a (τp, τq)-search direction if it satisfies (107)–(110) for some

p and q satisfying ‖p‖∞ ≤ τpµ and ‖q‖ ≤ τq
√

µ, where µ is given by (84).

We next define a generalized central path neighborhood which is used by our inexact

PDIPF algorithm. Given a starting point w0 ∈ R2n
++×Rm+l and parameters η ≥ 0, γ ∈ [0, 1],

and θ > 0, define the following set:

Nw0(η, γ, θ) =





w ∈ R2n
++ × Rm+l :

Xs ≥ (1− γ)µe, (rp, rd) = η(r0
p, r

0
d),

‖rV − ηr0
V ‖ ≤ θ

√
µ, η ≤ µ/µ0





, (111)

where µ = µ(w), µ0 = µ(w0), r = r(w) and r0 = r(w0). The generalized central path
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neighborhood is then given by

Nw0((1− α)η, γ, θ) =
⋃

η∈[0,1]

Nw0(η, γ, θ). (112)

We observe that the neighborhood given by (112) agrees with the neighborhood given by

(89) when θ = 0.

We are now ready to state our inexact PDIPF algorithm.

Inexact PDIPF Algorithm:

1. Start: Let ε > 0 and 0 < σ ≤ σ < 4/5 be given. Choose γ ∈ (0, 1), θ > 0 and

w0 ∈ R2n
++ × Rm+l such that w0 ∈ Nw0((1− α)η, γ, θ). Set k = 0.

2. While µk := µ(wk) > ε do

(a) Let w := wk and µ := µk; choose σ ∈ [σ, σ].

(b) Set

τp = γσ/4 and (113)

τq =
[√

1 + (1− 0.5γ) σ − 1
]
θ. (114)

(c) Set rp = Ax− b, rd = AT y +s+V z− c, rV = EV T x+E−1z, and η = ‖rp‖/‖r0
p‖.

(d) Compute a (τp, τq)-search direction ∆w.

(e) Compute α̃ := argmax{α ∈ [0, 1] : w +α′∆w ∈ Nw0((1−α)η, γ, θ), ∀α′ ∈ [0, α]}.

(f) Compute ᾱ := argmin{(x + α∆x)T (s + α∆s) : α ∈ [0, α̃]}.

(g) Let wk+1 = w + ᾱ∆w, and set k ← k + 1.

End (while)

The following result gives a bound on the number of iterations needed by the Inexact

PDIPF Algorithm to obtain an ε-solution to the KKT conditions (80)–(83). Its proof will

be given in Subsection 3.4.2.
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Theorem 3.2.2 Assume that the constants γ, σ, σ and θ are such that

max

{
γ−1 , (1− γ)−1 , σ−1 ,

(
1− 5

4
σ

)−1
}

= O(1), θ = O(
√

n), (115)

and that the initial point w0 ∈ R2n
++ × Rm+l satisfies (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S.

Then, the Inexact PDIPF Algorithm generates an iterate wk ∈ R2n
++ × Rm+l satisfying

µk ≤ εµ0, ‖(rk
p , rk

d)‖ ≤ ε‖(r0
p, r

0
d)‖, and ‖rk

V ‖ ≤ ε‖r0
V ‖ + ε1/2θµ

1/2
0 within O (

n2 log(1/ε)
)

iterations.

3.3 CQP Algorithm using the MWB: Determining an In-
exact Search Direction Via an Iterative Solver

The results in Subsection 3.2.2 assume we can obtain a (τp, τq)-search direction ∆w, where

τp and τq are given by (113) and (114), respectively. In this section, we will describe a way

to obtain a (τp, τq)-search direction ∆w using a uniformly bounded number of iterations of

a suitable preconditioned iterative linear solver applied to the ANE. It turns out that the

construction of this ∆w is based on the recipe given at the beginning of Subsection 3.2.2,

together with a specific choice of the perturbation vector p.

This section is divided into two subsections. In Subsection 3.3.1, we introduce the MWB

preconditioner which will be used to precondition the ANE. In addition, we also introduce

a family of iterative linear solvers used to solve the preconditioned ANE. Subsection 3.3.2

gives a specific approach for constructing a pair (p, q) satisfying (105), and an approximate

solution to the ANE so that the recipe described at the beginning of Subsection 3.2.2 yields

a (τp, τq)-search direction ∆w. It also provides a uniform bound on the number of iterations

that any member of the family of iterative linear solvers needs to perform to obtain such a

direction ∆w when applied to the preconditioned ANE.

3.3.1 MWB Preconditioner and a Family of Solvers

In this subsection we introduce the MWB preconditioner, and we discuss its use as a pre-

conditioner in solving the ANE via a family of iterative linear solvers. Since the condition

number of the ANE matrix ÃD̃2ÃT may “blow up” for points w near an optimal solution,

the direct application of a generic iterative linear solver for solving the ANE without first
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preconditioning it is generally not effective. We discuss a natural remedy to this problem

which consists of using a preconditioner T̃ , namely the MWB preconditioner, such that

κ(T̃ ÃD̃2ÃT T̃ T ) remains uniformly bounded regardless of the iterate w. Finally, we analyze

the complexity of the resulting approach to obtain a suitable approximate solution to the

ANE.

We start by describing the MWB preconditioner. Its construction essentially consists

of building a basis B of Ã which gives higher priority to the columns of Ã corresponding

to larger diagonal elements of D̃. More specifically, the MWB preconditioner is determined

by the following algorithm:

Maximum Weight Basis Algorithm

Start: Given d̃ ∈ R(n+l)
++ , and Ã ∈ R(m+l)×(n+l) such that rank(Ã) = m + l,

1. Order the elements of d̃ so that d̃1 ≥ . . . ≥ d̃n+l; order the columns of Ã accordingly.

2. Let B = ∅, j = 1.

3. While |B| < m + l do

(a) If Ãj is linearly independent of {Ãi : i ∈ B}, set B ← B ∪ {j}.

(b) j ← j + 1.

4. Return to the original ordering of Ã and d̃; determine the set B according to this

ordering and set N := {1, . . . , n + l}\B.

5. Set B := ÃB and D̃B := Diag(d̃B).

6. Let T̃ = T̃ (Ã, d̃) := D̃−1
B B−1.

end

Note that the above algorithm can be applied to the matrix Ã defined in (96) since this

matrix has full row rank due to Assumption 1. The MWB preconditioner was originally

proposed by Vaidya [63] and Resende and Veiga [53] in the context of the minimum cost

network flow problem. In this case, Ã = A is the node-arc incidence matrix of a connected
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digraph (with one row deleted to ensure that Ã has full row rank), the entries of d̃ are

weights on the edges of the graph, and the set B generated by the above algorithm defines

a maximum spanning tree on the digraph. Oliveira and Sorensen [48] later proposed the

use of this preconditioner for general matrices Ã. Boman et. al. [9] have proposed variants

of the MWB preconditioner for diagonally dominant matrices, using the fact that they can

be represented as D1 + AD2A
T , where D1 and D2 are nonnegative diagonal and positive

diagonal matrices, respectively, and A is a node-arc incidence matrix.

For the purpose of stating the next result, we now introduce some notation. Let us

define

ϕÃ := max{‖B−1Ã‖F : B is a basis of Ã}. (116)

The constant ϕÃ is related to the well-known condition number χ̄Ã (see [65]), defined as

χ̄Ã := sup{‖ÃT (ÃẼÃT )−1ÃẼ‖ : Ẽ ∈ Diag(R(n+l)
++ )}.

Specifically, ϕÃ ≤ (n + l)1/2χ̄Ã, in view of the facts that ‖C‖F ≤ (n + l)1/2 ‖C‖ for any

matrix C ∈ R(m+l)×(n+l) and, as shown in [60] and [65],

χ̄Ã = max{‖B−1Ã‖ : B is a basis of Ã}.

The following result, which establishes the theoretical properties of the MWB precon-

ditioner, follows as a consequence of Lemmas 2.1 and 2.2 of [44].

Proposition 3.3.1 Let T̃ = T̃ (Ã, d̃) be the preconditioner determined according to the

Maximum Weight Basis Algorithm, and define W := T̃ ÃD̃2ÃT T̃ T . Then, ‖T̃ ÃD̃‖ ≤ ϕÃ

and κ(W ) ≤ ϕ2
Ã
.

Note that the bound ϕ2
Ã

on κ(W ) is independent of the diagonal matrix D̃ and depends

only on Ã. This will allow us to obtain a uniform bound on the number of iterations needed

by any member of the family of iterative linear solvers described below to obtain a suitable

approximate solution of (97). This topic is the subject of the remainder of this subsection.

Instead of dealing directly with (97), we consider the application of an iterative linear

solver to the preconditioned ANE:

Wu = v, (117)
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Table 3: Values of c(κ) and ψ(κ) for Well-Known Iterative Solvers

Solver c(κ) ψ(κ)
SD

√
κ (κ + 1)/2

CG 2
√

κ (
√

κ + 1)/2

where

W := T̃ ÃD̃2ÃT T̃ T , v := T̃ h. (118)

For the purpose of our analysis below, the only thing we will assume regarding the iterative

linear solver when applied to (117) is that it generates a sequence of iterates {uj} such that

‖v −Wuj‖ ≤ c(κ)
[
1− 1

ψ(κ)

]j

‖v −Wu0‖, ∀ j = 0, 1, 2, . . . , (119)

where c and ψ are positive, nondecreasing functions of κ ≡ κ(W ).

Examples of solvers which satisfy (119) include the steepest descent (SD) and CG meth-

ods, with the following values for c(κ) and ψ(κ):

The justification for the table above follows from Section 7.6 and Exercise 10 of Section

8.8 of [35].

The following result gives an upper bound on the number of iterations required by any

iterative linear solver satisfying (119) needs to perform to obtain a ξ-approximate solution

of (117), i.e. an iterate uj such that ‖v −Wuj‖ ≤ ξ
√

µ for some constant ξ > 0:

Proposition 3.3.2 Let u0 be an arbitrary starting point. Then, a generic iterative linear

solver with a convergence rate given by (119) generates an iterate uj satisfying ‖v−Wuj‖ ≤
ξ
√

µ in

O
(

ψ(κ) log
(

c(κ)‖v −Wu0‖
ξ
√

µ

))
(120)

iterations, where κ ≡ κ(W ).

Proof: Let j be any iteration such that ‖v −Wuj‖ > ξ
√

µ. We use relation (119) and

the fact that 1 + ω ≤ eω for all ω ∈ R to observe that

ξ
√

µ < ‖v −Wuj‖ ≤ c(κ)
[
1− 1

ψ(κ)

]j

‖v −Wu0‖ ≤ c(κ) exp
{ −j

ψ(κ)

}
‖v −Wu0‖.
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Rearranging the first and last terms of the inequality, it follows that

j < ψ(κ) log
(

c(κ)‖v −Wu0‖
ξ
√

µ

)
,

and the result is proven.

From Proposition 3.3.2, it is clear that different choices of u0 and ξ lead to different

bounds on the number of iterations performed by the iterative linear solver. In Subsection

3.3.2, we will describe a suitable way of selecting u0 and ξ so that (i) the bound (120) is

independent of the iterate w and (ii) the approximate solution T̃ T uj of the ANE, together

with a suitable pair (p, q), yields a (τp, τq)-search direction ∆w through the recipe described

in Subsection 3.2.2.

3.3.2 Computation of the Inexact Search Direction ∆w

In this subsection, we use the results of Subsections 3.2.2 and 3.3.1 to build a (τp, τq)-search

direction ∆w, where τp and τq are given by (113) and (114), respectively. In addition,

we describe a way of choosing u0 and ξ which ensures that the number of iterations of

an iterative linear solver satisfying (119) applied to the preconditioned ANE is uniformly

bounded by a constant depending on n and ϕÃ.

Suppose that we solve (117) inexactly according to Subsection 3.3.1. Then our final

solution uj satisfies Wuj − v = f̃ for some vector f̃ . Letting



∆y

∆z


 = T̃ T uj , (121)

we easily see from (118) that (101) is satisfied with f := T̃−1f̃ . We can then apply the

recipe of Subsection 3.2.2 to this approximate solution, using the pair (p, q) which we will

now describe.

First, note that (105) with f as defined above is equivalent to the system

f̃ = T̃ Ã




S−1p

E−1q


 = T̃ ÃD̃




(XS)−1/2 0

0 I







p

q


 . (122)

Now, let B = (B1, . . . ,Bm+l) be the ordered set of basic indices computed by the MWB

Algorithm applied to the pair (Ã, d̃) and note that, by step 6 of this algorithm, the Bi-th
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column of T̃ ÃD̃ is the ith unit vector for every i = 1, . . . , m + l. Then, the vector t ∈ Rn+l

defined as tBi = f̃i for i = 1, . . . , m + l and tj = 0 for every j /∈ {B1, . . . ,Bm+l} clearly

satisfies

f̃ = T̃ ÃD̃ t. (123)

We then obtain a pair (p, q) ∈ Rn × Rl satisfying (105) by defining



p

q


 :=




(XS)1/2 0

0 I


 t. (124)

It is clear from (124) and the fact that ‖t‖ = ‖f̃‖ that

‖p‖ ≤ ‖XS‖1/2‖f̃‖, ‖q‖ ≤ ‖f̃‖. (125)

As an immediate consequence of this relation, we obtain the following result.

Lemma 3.3.3 Suppose that w ∈ R2n
++ × Rm+l and positive scalars τp and τq are given.

Assume that uj is a ξ-approximate solution of (117), or equivalently f̃ ≤ ξ
√

µ, where

ξ := min{n−1/2τp, τq}. Let ∆w be determined according to the recipe given in Subsection

3.2.2 using the approximate solution (121) and the pair (p, q) given by (124). Then ∆w is

a (τp, τq)-search direction.

Proof: It is clear from the previous discussion that ∆w and the pair (p, q) satisfy

(107)–(110). Next, relation (125) and the facts that ξ ≤ n−1/2τp and ‖XS‖1/2 ≤ √
nµ

imply that

‖p‖∞ ≤ ‖p‖ ≤ ‖XS‖1/2‖f̃‖ ≤ √
nµ ξ

√
µ ≤ τpµ.

Similarly, (125) and the fact that ξ ≤ τq imply that ‖q‖ ≤ τq
√

µ. Thus, ∆w is a (τp, τq)-

search direction as desired.

Lemma (3.3.3) implies that, to construct a (τp, τq)-search direction ∆w as in step 2(d) of

the Inexact PDIPF Algorithm, it suffices to find a ξ-approximate solution to (117), where

ξ := min
{

γσ

4
√

n
,

[√
1 +

(
1− γ

2

)
σ − 1

]
θ

}
. (126)
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We next describe a suitable way of selecting u0 so that the number of iterations required

by an iterative linear solver satisfying (119) to find a ξ-approximate solution of (117) can

be uniformly bounded by a universal constant depending only on the quantities n and ϕÃ.

First, compute a point w̄ = (x̄, s̄, ȳ, z̄) such that

Ã

(
x̄

E−2z̄

)
=

(
b

0

)
, AT ȳ + s̄ + V z̄ = c. (127)

Note that vectors x̄ and z̄ satisfying the first equation in (127) can be easily computed once

a basis of Ã is available (e.g., the one computed by the Maximum Weight Basis Algorithm

in the first outer iteration of the Inexact PDIPF Algorithm). Once ȳ is arbitrarily chosen,

a vector s̄ satisfying the second equation of (127) is immediately available. We then define

u0 = −η T̃−T




y0 − ȳ

z0 − z̄


 . (128)

The following lemma gives a bound on the size of the initial residual ‖Wu0 − v‖. Its proof

will be given in Subsection 3.4.1.

Lemma 3.3.4 Assume that T̃ = T̃ (Ã, d̃) is given and that w0 ∈ R2n
++ × Rm+l and w̄ are

such that (x0, s0) ≥ |(x̄, s̄)| and (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S. Further, assume that

w ∈ Nw0((1 − α)η, γ, θ) for some γ ∈ [0, 1] and θ > 0, and that W , v and u0 are given by

(118) and (128), respectively. Then, the initial residual in (119) satisfies ‖v−Wu0‖ ≤ Ψ
√

µ,

where

Ψ :=
[
7n + θ2/2√

1− γ
+ θ

]
ϕÃ. (129)

As an immediate consequence of Proposition 3.3.2 and Lemmas 3.3.3 and 3.3.4, we can

bound the number of inner iterations required by an iterative linear solver satisfying (119)

to yield a (τp, τq)-search direction ∆w.

Theorem 3.3.5 Assume that ξ is defined in (126), where σ, γ, θ are such that

max{σ−1, γ−1, (1− γ)−1, θ, θ−1}
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is bounded by a polynomial of n. Assume also that w0 ∈ R2n
++ × Rm+l and w̄ are such that

(x0, s0) ≥ |(x̄, s̄)| and (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S. Then, a generic iterative linear

solver with a convergence rate given by (119) generates a ξ-approximate solution, which

leads to a (τp, τq)-search direction ∆w, in

O
(
ψ(ϕ2

Ã
) log

(
c(ϕ2

Ã
)nϕÃ

))
(130)

iterations. As a consequence, the SD and CG methods generate this approximate solution

uj in O(ϕ2
Ã

log(nϕÃ)) and O(ϕÃ log(nϕÃ)) iterations, respectively.

Proof: The proof of the first part of Theorem 3.3.5 immediately follows from Proposi-

tions 3.3.1 and 3.3.2 and Lemmas 3.3.3 and 3.3.4. The proof of the second part of Theorem

3.3.5 follows immediately from Table 3 and Proposition 3.3.1.

Using the results of Sections 3.2 and 3.3, we see that the number of “inner” iterations

of an iterative linear solver satisfying (119) is uniformly bounded by a constant depending

on n and ϕÃ, while the number of “outer” iterations in the Inexact PDIPF Algorithm is

polynomially bounded by a constant depending on n and log ε−1.

3.4 CQP Algorithm using the MWB: Technical Results

This section is devoted to the proofs of Lemma 3.3.4 and Theorem 3.2.2. Subsection 3.4.1

presents the proof of Lemma 3.3.4, and Subsection 3.4.2 presents the proof of Theorem

3.2.2.

3.4.1 Proof of Lemma 3.3.4

In this subsection, we will provide the proof of Lemma 3.3.4. We begin by establishing

three technical lemmas.

Lemma 3.4.1 Suppose that w0 ∈ R2n
++ × Rm+l, w ∈ Nw0(η, γ, θ) for some η ∈ [0, 1],

γ ∈ [0, 1] and θ > 0, and w∗ ∈ S. Then

(x− ηx0 − (1− η)x∗)T (s− ηs0 − (1− η)s∗) ≥ −θ2

4
µ. (131)
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Proof: Let us define w̃ := w − ηw0 − (1 − η)w∗. Using the definitions of Nw0(η, γ, θ),

r, and S, we have that

Ax̃ = 0

AT ỹ + s̃ + V z̃ = 0

V T x̃ + E−2z̃ = E−1(rV − ηr0
V ).

Multiplying the second relation by x̃T on the left, and using the first and third relations

along with the fact that w ∈ Nw0(η, γ, θ), we see that

x̃T s̃ = −x̃T V z̃ = [E−2z̃ − E−1(rV − ηr0
V )]T z̃ = ‖E−1z̃‖2 − (E−1z̃)T (rV − ηr0

V )

≥ ‖E−1z̃‖2 − ‖E−1z̃‖‖rV − ηr0
V ‖ =

(
‖E−1z̃‖ − ‖rV − ηr0

V ‖
2

)2

− ‖rV − ηr0
V ‖2

4

≥ −‖rV − ηr0
V ‖2

4
≥ −θ2

4
µ.

Lemma 3.4.2 Suppose that w0 ∈ R2n
++×Rm+l such that (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S.

Then, for any w ∈ Nw0(η, γ, θ) with η ∈ [0, 1], γ ∈ [0, 1] and θ > 0, we have

η(xT s0 + sT x0) ≤
(

3n +
θ2

4

)
µ. (132)

Proof: Using the fact w ∈ Nw0(η, γ, θ) and (131), we obtain

xT s− η(xT s0 + sT x0) + η2x0T
s0 − (1− η)(xT s∗ + sT x∗)

+η(1− η)(x∗
T
s0 + s∗

T
x0) + (1− η)2x∗

T
s∗ ≥ −θ2

4
µ.

Rearranging the terms in this equation, and using the facts that η ≤ xT s/x0T
s0, x∗T

s∗ = 0,
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(x, s) ≥ 0, (x∗, s∗) ≥ 0, (x0, s0) > 0, η ∈ [0, 1], x∗ ≤ x0, and s∗ ≤ s0, we conclude that

η(xT s0 + sT x0) ≤ η2x0T
s0 + xT s + η(1− η)(x∗

T
s0 + s∗

T
x0) +

θ2

4
µ

≤ η2x0T
s0 + xT s + 2η(1− η)x0T

s0 +
θ2

4
µ

≤ 2ηx0T
s0 + xT s +

θ2

4
µ

≤ 3xT s +
θ2

4
µ =

(
3n +

θ2

4

)
µ.

Lemma 3.4.3 Suppose w0 ∈ R2n
++ × Rm+l, w ∈ Nw0(η, γ, θ) for some η ∈ [0, 1], γ ∈ [0, 1]

and θ > 0, and w̄ satisfies (127). Let W , v and u0 be given by (118) and (128), respectively.

Then,

Wu0 − v = T̃ Ã



−x + σµS−1e + η(x0 − x̄) + ηD2(s0 − s̄)

E−1(rV − ηr0
V )


 . (133)

Proof: Using the fact that w ∈ Nw0(η, γ, θ) along with (96), (111) and (127), we easily

obtain that



rp

E−1rV


 =




ηr0
p

ηE−1r0
V + E−1(rV − ηr0

V )




= ηÃ




x0 − x̄

E−2(z0 − z̄)


 + Ã




0

E−1(rV − ηr0
V )


 , (134)

s0 − s̄ = −AT (y0 − ȳ)− V (z0 − z̄) + r0
d. (135)
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Using relations (95), (96), (118), (111), (128), (134) and (135), we obtain

Wu0 − v = T̃ ÃD̃2ÃT T̃ T u0 − T̃ Ã




x− σµS−1e−D2rd

0


 + T̃




rp

E−1rV




= −ηT̃ ÃD̃2ÃT




y0 − ȳ

z0 − z̄


− T̃ Ã




x− σµS−1e− ηD2r0
d

0


 + T̃




rp

E−1rV




= −ηT̃ Ã




D2AT (y0 − ȳ) + D2V (z0 − z̄)−D2r0
d

E−2(z0 − z̄)




− T̃ Ã




x− σµS−1e

0


 + T̃




rp

E−1rV


 ,

= −ηT̃ Ã



−D2(s0 − s̄)

E−2(z0 − z̄)


− T̃ Ã




x− σµS−1e

0




+ ηT̃ Ã




x0 − x̄

E−2(z0 − z̄)


 + T̃ Ã




0

E−1(rV − ηr0
V )


 ,

which yields equation (133), as desired.

We now turn to the proof of Lemma 3.3.4.

Proof of Lemma 3.3.4: Since w ∈ Nw0((1− α)η, γ, θ), we have that xisi ≥ (1− γ)µ

for all i, which implies

‖(XS)−1/2‖ ≤ 1√
(1− γ)µ

. (136)

Note that ‖Xs − σµe‖, when viewed as a function of σ ∈ [0, 1], is convex. Hence, it is

maximized at one of its endpoints, which, together with the facts ‖Xs − µe‖ < ‖Xs‖ and

σ ∈ [σ, σ] ⊂ [0, 1], immediately implies that

‖Xs− σµe‖ ≤ ‖Xs‖ ≤ ‖Xs‖1 = xT s = nµ. (137)

Using the fact that (x0, s0) ≥ |(x̄, s̄)| together with Lemma 3.4.2, we obtain that

η‖S(x0 − x̄) + X(s0 − s̄)‖ ≤ η
{‖S(x0 − x̄)‖+ ‖X(s0 − s̄)‖} ≤ 2η

{‖Sx0‖+ ‖Xs0‖}

≤ 2η(xT s0 + xT s0) ≤
(

6n +
θ2

2

)
µ. (138)
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Since w ∈ Nw0((1 − α)η, γ, θ), there exists η ∈ [0, 1] such that w ∈ Nw0(η, γ, θ). It is clear

that the requirements of Lemma 3.4.3 are met, so equation (133) holds. By (94), (95) and

(133), we see that

‖v −Wu0‖ =

∥∥∥∥∥∥∥
T̃ ÃD̃




(XS)−1/2{Xs− σµe− η[S(x0 − x̄) + X(s0 − s̄)]}
rV − ηr0

V




∥∥∥∥∥∥∥

≤ ‖T̃ ÃD̃‖
{
‖(XS)−1/2‖

[
‖Xs− σµe‖+ η‖X(s0 − s̄) + S(x0 − x̄)‖

]

+ ‖rV − ηr0
V ‖

}
,

≤ ϕÃ

{
1√

(1− γ)µ

[
nµ +

(
6n +

θ2

2

)
µ

]
+ θ

√
µ

}
= Ψ

√
µ,

where the last inequality follows from Proposition 3.3.1, relations (136), (137), (138), and

the assumption that w ∈ Nw0((1− α)η, γ, θ).

3.4.2 “Outer” Iteration Results – Proof of Theorem 3.2.2

In this subsection, we will present the proof of Theorem 3.2.2. Specifically, we will show

that the Inexact PDIPF Algorithm obtains an ε-approximate solution to (80)–(83) in

O(n2 log(1/ε)) outer iterations.

Throughout this section, we use the following notation:

w(α) := w + α∆w, µ(α) := µ(w(α)), r(α) := r(w(α)).

Lemma 3.4.4 Assume that ∆w satisfies (107)-(110) for some σ ∈ R, w ∈ R2n+m+l and

(p, q) ∈ Rn × Rl. Then, for every α ∈ R, we have:

(a) X(α)s(α) = (1− α)Xs + ασµe− αp + α2∆X∆s;

(b) µ(α) = [1− α(1− σ)]µ− αpT e/n + α2∆xT ∆s/n;

(c) (rp(α), rd(α)) = (1− α)(rp, rd);

(d) rV (α) = (1− α)rV + αq.
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Proof: Using (109), we obtain

X(α)s(α) = (X + α∆X)(s + α∆s)

= Xs + α(X∆s + S∆x) + α2∆X∆s

= Xs + α(−Xs + σµe− p) + α2∆X∆s

= (1− α)Xs + ασµe− αp + α2∆X∆s,

thereby showing that (a) holds. Left multiplying the above equality by eT and dividing the

resulting expression by n, we easily conclude that (b) holds. Statement (c) can be easily

verified by means of (107) and (108), while statement (d) follows from (110).

Lemma 3.4.5 Assume that ∆w satisfies (107)-(110) for some σ ∈ R, w ∈ R2n
++ × Rm+l

and (p, q) ∈ Rn × Rl such that ‖p‖∞ ≤ γσµ/4. Then, for every scalar α satisfying

0 ≤ α ≤ min
{

1 ,
σµ

4 ‖∆X∆s‖∞

}
, (139)

we have
µ(α)

µ
≥ 1− α. (140)

Proof: Since ‖p‖∞ ≤ γσµ/4, we easily see that

|pT e/n| ≤ ‖p‖∞ ≤ σµ/4. (141)

Using this result and Lemma 3.4.4(b), we conclude for every α satisfying (139) that

µ(α) = [1− α(1− σ)]µ− αpT e/n + α2∆xT ∆s/n

≥ [1− α(1− σ)]µ− 1
4

ασµ + α2∆xT ∆s/n

≥ (1− α)µ +
1
4

ασµ− α2‖∆X∆s‖∞

≥ (1− α)µ.
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Lemma 3.4.6 Assume that ∆w is a (τp, τq)-search direction, where τp and τq are given by

(113) and (114), respectively. Assume also that σ > 0 and that w ∈ Nw0((1−α)η, γ, θ) with

w0 ∈ R2n
++ × Rm+l, γ ∈ [0, 1] and θ ≥ 0. Then, w(α) ∈ Nw0((1− α)η, γ, θ) for every scalar

α satisfying

0 ≤ α ≤ min
{

1 ,
γσµ

4 ‖∆X∆s‖∞

}
. (142)

Proof: Since w ∈ Nw0((1−α)η, γ, θ), there exists η ∈ [0, 1] such that w ∈ Nw0(η, γ, θ).

We will show that w(α) ∈ Nw0((1 − α)η, γ, θ) ⊆ Nw0((1 − α)η, γ, θ) for every α satisfying

(142).

First, we note that (rp(α), rd(α)) = (1−α)η(r0
p, r

0
d) by Lemma 3.4.4(c) and the definition

of Nw0(η, γ, θ). Next, it follows from Lemma 3.4.5 that (140) holds for every α satisfying

(139), and hence (142) due to γ ∈ [0, 1]. Thus, for every α satisfying (142), we have

(1− α)η ≤ µ(α)
µ

η ≤ µ(α)
µ

µ

µ0
=

µ(α)
µ0

. (143)

Now, it is easy to see that for every u ∈ Rn and τ ∈ [0, n], there holds ‖u− τ(uT e/n)e‖∞ ≤
(1 + τ)‖u‖∞. Using this inequality twice, the fact that w ∈ Nw0(η, γ, θ), relation (113) and

statements (a) and (b) of Lemma 3.4.4, we conclude for every α satisfying (142) that

X(α)s(α)− (1− γ) µ(α)e

= (1− α) [Xs− (1− γ)µe] + αγσµe− α

[
p− (1− γ)

(
pT e

n

)
e

]

+ α2

[
∆X∆s− (1− γ)

(
∆xT ∆s

n

)
e

]

≥ α

[
γσµ−

∥∥∥∥p− (1− γ)
pT e

n
e

∥∥∥∥
∞
− α

∥∥∥∥∆X∆s− (1− γ)
∆xT ∆s

n
e

∥∥∥∥
∞

]
e

≥ α (γσµ− 2‖p‖∞ − 2α‖∆X∆s‖∞) e ≥ α

(
γσµ− 1

2
γσµ− 1

2
γσµ

)
e = 0.

Next, by Lemma 3.4.4(d), we have that

rV (α) = (1− α)rV + αq = (1− α)ηr0
V + â,

where â = (1 − α)(rV − ηr0
V ) + αq. To complete the proof, it suffices to show that ‖â‖ ≤

θ
√

µ(α) for every α satisfying (142). By using equation (114) and Lemma 3.4.4(b) along
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with the facts that ‖rV − ηr0
V ‖ ≤ θ

√
µ and α ∈ [0, 1], we have

‖â‖2 − θ2µ(α) = (1− α)2‖rV − ηr0
V ‖2 + 2α(1− α)[rV − ηr0

V ]T q + α2‖q‖2 − θ2µ(α)

≤ (1− α)2θ2µ + 2α(1− α)θ
√

µ‖q‖+ α2‖q‖2

− θ2

{
[1− α(1− σ)]µ− α

pT e

n
+ α2 ∆xT ∆s

n

}

≤ α2‖q‖2 + 2αθ
√

µ‖q‖ − αθ2σµ + αθ2 pT e

n
− α2θ2 ∆xT ∆s

n

≤ α
[
‖q‖2 + 2θ

√
µ‖q‖ −

(
1− γ

4

)
θ2σµ + θ2α‖∆X∆s‖∞

]

≤ α
[
‖q‖2 + 2θ

√
µ‖q‖ −

(
1− γ

2

)
θ2σµ

]
≤ 0,

where the last inequality follows from the quadratic formula and the fact that ‖q‖ ≤ τq,

where τq is given by (114).

Next, we derive a lower bound on the stepsize of the Inexact PDIPF Algorithm.

Lemma 3.4.7 In every iteration of the Inexact PDIPF Algorithm, the step length ᾱ satis-

fies

ᾱ ≥ min

{
1,

min{γσ, 1− 5
4σ}µ

4 ‖∆X∆s‖∞

}
(144)

and

µ(ᾱ) ≤
[
1−

(
1− 5

4
σ

)
ᾱ

2

]
µ. (145)

Proof: We know that ∆w is a (τp, τq)-search direction in every iteration of the Inexact

PDIPF Algorithm, where τp and τq are given by (113) and (114). Hence, by Lemma 3.4.6,

the quantity α̃ computed in step (g) of the Inexact PDIPF Algorithm satisfies

α̃ ≥ min
{

1,
γσµ

4 ‖∆X∆s‖∞

}
. (146)

Moreover, by (141), it follows that the coefficient of α in the expression for µ(α) in Lemma

3.4.4(b) satisfies

−(1−σ)µ− pT e

n
≤ −(1−σ)µ+‖p‖∞ ≤ −(1−σ)µ+

1
4

γσµ = −
(

1− 5
4

σ

)
µ < 0, (147)
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since σ ∈ (0, 4/5). Hence, if ∆xT ∆s ≤ 0, it is easy to see that ᾱ = α̃, and hence that (144)

holds in view of (146). Moreover, by Lemma 3.4.4(b) and (147), we have

µ(ᾱ) ≤ [1− ᾱ(1− σ)]µ− ᾱ
pT e

n
≤

[
1−

(
1− 5

4
σ

)
ᾱ

]
µ ≤

[
1−

(
1− 5

4
σ

)
ᾱ

2

]
µ,

showing that (145) also holds. We now consider the case where ∆xT ∆s > 0. In this case,

we have ᾱ = min{αmin , α̃}, where αmin is the unconstrained minimum of µ(α). It is easy

to see that

αmin =
nµ(1− σ) + pT e

2∆xT ∆s
≥ n[µ(1− σ)− 1

4σµ]
2∆xT ∆s

≥ µ(1− 5
4σ)

2 ‖∆X∆s‖∞ .

The last two observations together with (146) imply that (144) holds in this case too.

Moreover, since the function µ(α) is convex, it must lie below the function φ(α) over the

interval [0, αmin], where φ(α) is the affine function interpolating µ(α) at α = 0 and α = αmin.

Hence,

µ(ᾱ) ≤ φ(ᾱ) = [1− (1− σ)
ᾱ

2
]µ− ᾱ

pT e

2n
≤

[
1−

(
1− 5

4
σ

)
ᾱ

2

]
µ, (148)

where the second inequality follows from (147). We have thus shown that ᾱ satisfies (145).

Our next task will be to show that the stepsize ᾱ remains bounded away from zero. In

view of (144), it suffices to show that the quantity ‖∆X∆s‖∞ can be suitably bounded.

The next lemma addresses this issue.

Lemma 3.4.8 Let w0 ∈ R2n
++×Rm+l be such that (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S, and

let w ∈ Nw0((1 − α)η, γ, θ) for some γ ≥ 0 and θ ≥ 0. Then, the inexact search direction

∆w used in the Inexact PDIPF Algorithm satisfies

max(‖D−1∆x‖, ‖D∆s‖) ≤
(

1− 2σ +
σ2

1− γ

)1/2√
nµ

+
1√

1− γ

(
γσ

4
√

n + 6n +
θ2

2

)√
µ + θ

√
µ. (149)

Proof: Since w ∈ Nw0((1−α)η, γ, θ), there exists η ∈ [0, 1] such that w ∈ Nw0(η, γ, θ).

Let ∆̃w := ∆w + η(w0 − w∗). Using relations (107), (108), (110), and the fact that w ∈
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Nw0(η, γ, θ), we easily see that

A∆̃x = 0 (150)

AT ∆̃y + ∆̃s + V ∆̃z = 0, (151)

V T ∆̃x + E−2∆̃z = E−1(q − rV + ηr0
V ). (152)

Pre-multiplying (151) by ∆̃x
T

and using (150) and (152), we obtain

∆̃x
T
∆̃s = −∆̃x

T
V ∆̃z = [E−2∆̃z − E−1(q − rV + ηr0

V )]T ∆̃z

= ‖E−1∆̃z‖2 − (q − rV + ηr0
V )T (E−1∆̃z)

≥ ‖E−1∆̃z‖2 − ‖q − rV + ηr0
V ‖ ‖E−1∆̃z‖ ≥ −‖q − rV + ηr0

V ‖2

4
. (153)

Next, we multiply equation (109) by (XS)−1/2 to obtain D−1∆x + D∆s = H(σ) −
(XS)−1/2p, where H(σ) := −(XS)1/2e + σµ(XS)−1/2e. Equivalently, we have that

D−1∆̃x + D∆̃s = H(σ)− (XS)−1/2p + η
[
D(s0 − s∗) + D−1(x0 − x∗)

]
=: g.

Taking the squared norm of both sides of the above equation and using (153), we obtain

‖D−1∆̃x‖2 + ‖D∆̃s‖2 = ‖g‖2 − 2∆̃x
T
∆̃s ≤ ‖g‖2 +

‖q − rV + ηr0
V ‖2

2

≤
(
‖g‖+

‖q‖+ ‖rV − ηr0
V ‖√

2

)2

≤ (‖g‖+ θ
√

µ)2 ,

since ‖q‖+ ‖rV − ηr0
V ‖ ≤

[√
2− 1

]
θ
√

µ+ θ
√

µ =
√

2θ
√

µ by (111), (114), and the fact that

1 + (1− γ/2)σ ≤ 2. Thus, we have

max(‖D−1∆̃x‖ , ‖D∆̃s‖) ≤ ‖g‖+ θ
√

µ

≤ ‖H(σ)‖+ ‖(XS)−1/2‖ ‖p‖+ η
[‖D(s0 − s∗)‖+ ‖D−1(x0 − x∗)‖] + θ

√
µ.

This, together with the triangle inequality, the definitions of D and ∆̃w, and the fact that

w ∈ Nw0(η, γ, θ), imply that

max(‖D−1∆x‖, ‖D∆s‖)

≤ ‖H(σ)‖+ ‖(XS)−1/2‖ ‖p‖+ 2η
[‖D(s0 − s∗)‖+ ‖D−1(x0 − x∗)‖] + θ

√
µ

≤ ‖H(σ)‖+ ‖(XS)−1/2‖ ‖p‖+ 2η‖(XS)−1/2‖ [‖X(s0 − s∗)‖+ ‖S(x0 − x∗)‖] + θ
√

µ

≤ ‖H(σ)‖+
1√

(1− γ)µ

[‖p‖+ 2η
(‖X(s0 − s∗)‖+ ‖S(x0 − x∗)‖)] + θ

√
µ. (154)
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It is well-known (see e.g. [30]) that

‖H(σ)‖ ≤
(
1− 2σ + σ2

1−γ

)1/2√
nµ. (155)

Moreover, using the fact that s∗ ≤ s0 and x∗ ≤ x0 along with Lemma 3.4.2, we obtain

η
(‖X(s0 − s∗)‖+ ‖S(x0 − x∗)‖) ≤ η(sT x0 + xT s0) ≤

(
3n +

θ2

4

)
µ. (156)

The result now follows by noting that ‖p‖ ≤ √
n‖p‖∞, and by incorporating inequalities

(155), (156) and (113) into (154).

We are now ready to prove Theorem 3.2.2.

Proof of Theorem 3.2.2: Let ∆wk denote the search direction, and let rk = r(wk)

and µk = µ(wk), at the k-th iteration of the Inexact PDIPF Algorithm. Clearly, wk ∈
Nw0((1− α)η, γ, θ). Hence, using Lemma 3.4.8, assumption (115) and the inequality

‖∆Xk∆sk‖∞ ≤ ‖∆Xk∆sk‖ ≤ ‖(Dk)−1∆xk‖ ‖Dk∆sk‖,

we easily see that ‖∆Xk∆sk‖∞ = O(n2)µk. Using this conclusion together with assumption

(115) and Lemma 3.4.7, we see that, for some universal constant β > 0, we have

µk+1 ≤
(

1− β

n2

)
µk, ∀k ≥ 0.

Using this observation and some standard arguments (see, for example, Theorem 3.2 of [68]),

we easily see that the Inexact PDIPF Algorithm generates an iterate wk ∈ Nw0((1−α)η, γ, θ)

satisfying µk/µ0 ≤ ε within O (
n2 log(1/ε)

)
iterations. The theorem now follows from this

conclusion and the definition of Nw0((1− α)η, γ, θ).

3.5 CQP Algorithm using the MWB: Concluding Remarks

We have shown that the long-step PDIPF algorithm for LP based on an iterative linear

solver presented in [42] can be extended to the context of CQP. This was not immediately

obvious at first since the standard normal equation for CQP does not fit into the mold

required for the results of [44] to hold. By considering the ANE, we were able to use the
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results about the MWB preconditioner developed in [44] in the context of CQP. Another

difficulty we encountered was the proper choice of the starting iterate u0 for the iterative

linear solver. By choosing u0 = 0 as in the LP case, we obtain ‖v −Wu0‖ = ‖v‖, which

can only be shown to be O(max{µ,
√

µ}). In this case, for every µ > 1, Proposition 3.3.2

would guarantee that the number of inner iterations of the iterative linear solver is

O
(
ψ(ϕ2

Ã
)max

{
log

(
c(ϕ2

Ã
)nϕÃ

)
, log µ

})
,

a bound which depends on the logarithm of the current duality gap. On the other hand,

Theorem 3.3.5 shows that choosing u0 as in (128) results in a bound that does not depend

on the current duality gap.

We observe that under exact arithmetic, the CG algorithm applied to Wu = v generates

an exact solution in at most m + l iterations (since W ∈ R(m+l)×(m+l)). It is clear, then,

that the bound (130) is generally worse than the well-known finite termination bound for

CG. However, our results in Section 3.3 were given for a family of iterative linear solvers,

only one member of which is CG. Also, under finite precision arithmetic, the CG algorithm

loses its finite termination property, and its convergence rate behavior in this case is still an

active topic of research (see e.g. [20]). Certainly, the impact of finite precision arithmetic

on our results is an interesting open issue.

Clearly, the MWB preconditioner is not suitable for dense CQP problems since, in this

case, the cost to construct the MWB is comparable to the cost to form and factorize ÃD̃2ÃT ,

and each inner iteration would require Θ((m + l)2) arithmetic operations, the same cost as

a forward and back substitution. There are, however, some classes of CQP problems for

which the method proposed in this chapter might be useful. One class of problems for which

PDIPF methods based on MWB preconditioners might be useful are those for which bases

of Ã are sparse but the ANE coefficient matrices ÃD̃2ÃT are dense; this situation generally

occurs in sparse CQP problems for which n is much larger than m + l. Other classes of

problems for which our method might be useful are network flow problems. The paper

[53] developed interior-point methods for solving the minimum cost network flow problem

based on iterative linear solvers with maximum spanning tree preconditioners. Related
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to this work, we believe that the following two issues could be investigated: (i) will the

incorporation of the correction term p defined in (104) in the algorithm implemented in [53]

improve the convergence of the method? (ii) whether our algorithm might be efficient for

network flow problems where the costs associated with the arcs are quadratic functions of

the arc flows? Identification of other classes of CQP problems which could be efficiently

solved by the method proposed in this chapter is another topic for future research.

Regarding the second question above, it is easy to see (after a suitable permutation of

the variables) that V T =
(

I 0

)
and E2 is a positive diagonal matrix whose diagonal

elements are the positive quadratic coefficients. In this case, it can be shown that Ã is

totally unimodular, hence ϕ2
Ã
≤ (m + l)(n−m + 1) by Cramer’s Rule (see [44]).

The usual way of defining the dual residual is as the quantity

Rd := AT y + s− V E2V T x− c,

which, in view of (86) and (87), can be written in terms of the residuals rd and rV as

Rd = rd − V ErV . (157)

Note that, along the iterates generated by the Inexact PDIPF Algorithm, we have rd = O(µ)

and rV = O(
√

µ), implying that Rd = O(
√

µ). Hence, while the usual primal residual

converges to 0 according to O(µ), the usual dual residual does so according to O(
√

µ). This

is a unique feature of the convergence analysis of our algorithm in that it contrasts with the

analysis of other interior-point PDIPF algorithms, where the primal and dual residuals are

required to go to zero at the same rate. The convergence analysis under these circumstances

is possible due to the specific form of the O(
√

µ)-term present in (157), i.e. one that lies in

the range space of V E.

CQP problems where V is explicitly available arise frequently in the literature. One

important example arises in portfolio optimization (see [12]), where the rank of V is often

small. In such problems, l represents the number of observation periods used to estimate the

data for the problem. We believe that the Inexact PDIPF Algorithm could be of particular

use for this type of application.
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3.6 CQP Algorithm for a Class of Preconditioners: Intro-
duction

In this paper we develop an interior-point long-step primal-dual infeasible path-following

(PDIPF) algorithm for solving convex quadratic programming (CQP) based on inexact

search directions. The CQP problem we consider has the form

min
x

{
1
2
xTQx + cT x : Ax = b, x ≥ 0

}
, (158)

where the data are Q ∈ Rn×n, A ∈ Rm×n, b ∈ Rm, and c ∈ Rn, and the decision vector is

x ∈ Rn. We assume that Q is given in the form Q = V E2V T + Q, where V ∈ Rn×l, E is a

l × l positive diagonal matrix, and Q is a n× n positive semidefinite matrix.

In [33], the authors also developed an inexact PDIPF algorithm for solving (158). This

inexact PDIPF algorithm is essentially the infeasible long-step primal-dual path-following

algorithm in [28, 72], the only difference being that the search directions are computed by

means of an iterative linear solver. We refer to the iterations of the iterative linear solver as

the inner iterations, and the iterations performed by the actual interior-point method as the

outer iterations. The main step in the inexact PDIPF algorithm in [33] is the computation

of a primal-dual search direction (∆x,∆s,∆y, ∆z), whose subvector (∆y, ∆z) can be found

by solving the so-called augmented normal equation, or ANE. This ANE is of the form

ÃD̃2ÃT (∆y, ∆z) = g, where D̃ is a positive diagonal matrix and Ã is a 2× 2 block matrix

whose blocks consist of A, V T , the zero matrix and the identity matrix. In contrast to

direct methods, the inexact PDIPF algorithm in [33] assumes that an approximate solution

to the ANE is obtained via an iterative linear solver. Since the condition number of the

ANE matrix may become excessively large on degenerate QP problems (see e.g. [32]), the

maximum weight basis (MWB) preconditioner T introduced in [48, 53, 63] is used to better

precondition the matrix. A suitable approximate solution can then be determined within

a uniformly bounded number of iterations of an iterative linear solver. Since the ANE is

solved only approximately, it cannot yield a search direction which satisfies all equations

of the primal-dual Newton system. Thus, we developed a recipe in [33] for determining

an inexact search direction, based on an approximate solution to the ANE and the MWB
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preconditioner, which accomplishes the following two goals: (i) problem (158) can be solved

within a polynomial number of iterations, and (ii) the required approximate solution to the

ANE can be found within a uniformly bounded number of inner iterations.

This paper extends the authors’ previous work [33] in the following two ways. The first

extension which we present in this paper is to introduce a new linear system, which we refer

to as the hybrid augmented normal equation (HANE), as a means to determine the search

directions for the PDIPF algorithm studied in this paper. The development of the HANE

stems from the desire to take into account the structure of Q, given by Q = V E2V T + Q,

in the computation of the search direction. To motivate the approach based on the HANE,

we will assume in this paragraph that Q is nonnegative diagonal. Consider the two extreme

cases where V = 0 or Q = 0. In the first case, since Q = Q is diagonal, the search

directions can be effectively computed via the standard normal equation, since the latter

has a structure similar to that of a linear programming problem. In the second case, the

approach based on the ANE developed in [33] provides a viable alternative for computing

the search direction. The approach based on the HANE combines the ideas involved in

these two extreme cases in order to handle the mixed structure of Q as stated above. The

second extension, which is the major contribution of this paper, is to show that a large

class of preconditioners can be used in place of the MWB preconditioner in the recipe for

determining inexact search directions proposed in [33]. In this regard, this extension will be

done in the more general context of the HANE equation, rather than in the context of the

ANE used by [33]. We will also discuss the situation where the preconditioned conjugate

gradient method is used in conjunction with the partial update preconditioner proposed

by Karmarkar in [24] (see also [19, 29, 40]) and derive the corresponding inner iteration

complexity bound.

We observe that the use of iterative linear solvers to compute the primal-dual Newton

search directions of interior-point path following algorithms has been extensively studied

in [4, 6, 8, 17, 31, 47, 48, 49, 53]. The use of inexact search directions in interior-point

methods has been investigated in the context of conic programming problems (see e.g.

[4, 5, 17, 31, 39, 47, 73, 61]). For feasibility problems of the form {x ∈ H1 : Ax = b, x ∈ C},

75



where H1 and H2 are Hilbert spaces, C ⊆ H1 is a closed convex cone satisfying some mild

assumptions, and A : H1 → H2 is a continuous linear operator, Renegar [51] has proposed

an interior-point method where the Newton system that determines the search directions

is approximately solved by performing a uniformly bounded number of iterations of the

conjugate gradient (CG) method.

Our paper is divided into five sections. In Subsection 3.6.1, we present some terminology

and notation which will be used throughout this paper. In Section 3.7, we present an inexact

PDIPF algorithm based on a class of inexact search directions, and we also partially describe

a recipe based on the HANE for determining an inexact search direction suitable for this

algorithm. In Section 3.8, we introduce the class of preconditioners used in a crucial step

of the above recipe for constructing a vector of a required size, thereby providing the final

details of the recipe that were left undetermined in Section 3.7. Section 3.9 gives proofs of

some of the results presented in Section 3.8. Finally, some concluding remarks are given in

Section 3.10.

3.6.1 Terminology and Notation

Throughout this paper, upper-case Roman letters denote matrices, lower-case Roman letters

denote vectors, and lower-case Greek letters denote scalars. We let Rn, Rn
+ and Rn

++

denote the set of n- vectors having real, nonnegative real, and positive real components,

respectively. Also, we let Rm×n denote the set of m × n matrices with real entries, and

let Sn
+ denote the set of n × n positive semidefinite real symmetric matrices. For a vector

v ∈ Rn, we let |v| denote the vector whose ith component is |vi|, for every i = 1, . . . , n,

and we let Diag(v) denote the diagonal matrix whose ith diagonal element is vi, for every

i = 1, . . . , n. In addition, given vectors u ∈ Rm and v ∈ Rn, we denote by (u, v) the vector

(uT , vT )T ∈ Rm×n.

If a matrix Z ∈ Rm×m has all positive eigenvalues, we denote by κ(Z) its spectral

condition number, i.e. its maximum eigenvalue divided by its minimum eigenvalue. Also,

if a matrix W ∈ Rm×m is symmetric (W = W T ) and positive definite (resp., positive

semidefinite), we write W Â 0 (resp., W º 0). The range space of W , denoted R(W ),
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is the set {Wv : v ∈ Rm}. Certain matrices bear special mention, namely the matrices

X and S. These matrices are the diagonal matrices corresponding to the vectors x and s,

respectively, as described in the previous paragraph. The symbol 0 will be used to denote

a scalar, vector, or matrix of all zeroes; its dimensions should be clear from the context.

Also, we denote by e the vector of all 1’s, and by I the identity matrix; their dimensions

should be clear from the context.

We will use several different norms throughout the paper. For a vector z ∈ Rn, ‖z‖ =
√

zT z is the Euclidean norm and ‖z‖∞ = maxi=1,...,n |zi| is the “infinity norm”. Also, given a

matrix C Â 0, we define the norm ‖z‖C =
√

zT Cz. Finally, given a matrix V ∈ Rm×n, ‖V ‖
denotes the operator norm associated with the Euclidean norm: ‖V ‖ = maxz:‖z‖=1 ‖V z‖.

3.7 CQP Algorithm for a Class of Preconditioners: Outer
Iteration Framework

In this section, we introduce an inexact PDIPF algorithm based on a class of inexact search

directions and discuss its iteration complexity. The algorithm is essentially equivalent to

the one presented in [33]. This section is divided into subsections. In Subsection 3.7.1, we

introduce the class of inexact search directions, state the inexact PDIPF algorithm based

on it, and give its iteration complexity result. In Subsection 3.7.2, we will discuss how the

HANE naturally appears as a way of computing the exact search direction. We will also

describe how an approximate solution to the HANE can be used to compute an inexact

search direction which is suitable for the inexact PDIPF algorithm.

3.7.1 An Inexact PDIPF Algorithm for CQP

Consider the following primal-dual pair of QP problems:

minx

{
1
2
xTQx + cT x : Ax = b, x ≥ 0

}
, (159)

max(x̂,s,y)

{
−1

2
x̂TQx̂ + bT y : AT y + s−Qx̂ = c, s ≥ 0

}
, (160)

where the data are Q ∈ Sn
+, A ∈ Rm×n, b ∈ Rm and c ∈ Rn, and the decision variables

are x ∈ Rn and (x̂, s, y) ∈ Rn × Rn × Rm. We will assume that Q is given in the form
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Q = V E2V T + Q for some V ∈ Rn×l, E ∈ Diag(Rl
++) and Q ∈ Sn

+. In addition, we will

make the following two assumptions throughout the paper:

Assumption 5 rank(A) = m < n.

Assumption 6 The set of optimal solutions of (159) and (160) is nonempty.

It is well-known that if x∗ is an optimal solution for (159) and (x̂∗, s∗, y∗) is an optimal

solution for (160), then (x∗, s∗, y∗) is also an optimal solution for (160). Now, let S denote

the set of all vectors w := (x, s, y, z) ∈ R2n+m+l satisfying

Ax = b, x ≥ 0, (161)

AT y + s + V z −Qx = c, s ≥ 0, (162)

Xs = 0, (163)

EV T x + E−1z = 0. (164)

It is clear that w ∈ S if and only if x is optimal for (159), (x, s, y) is optimal for (160),

and z = −E2V T x. (Throughout this paper, the symbol w will always denote the quadruple

(x, s, y, z), where the vectors lie in the appropriate dimensions; similarly, ∆w = (∆x,∆s,∆y, ∆z),

wk = (xk, sk, yk, zk), etc.)

For a point w ∈ R2n
++ × Rm+l, let us define

µ := µ(w) = xT s/n, (165)

rp := rp(w) = Ax− b, (166)

rd := rd(w) = AT y + s + V z −Qx− c, (167)

rV := rV (w) = EV T x + E−1z, (168)

r := r(w) = (rp(w), rd(w), rV (w)). (169)

Given a point u ∈ R(Q), it is easy to show that the function tT Qt is constant over the

manifold {t ∈ Rn : Qt = u}. Hence, the function ||| · |||Q : R(Q) 7→ R+ given by

|||u|||Q =
√

tT Qt for any t ∈ Rn such that Qt = u (170)

is well-defined. The following proposition shows that this function is a norm on R(Q).
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Proposition 3.7.1 Let ||| · |||Q be as defined in (170), and let u ∈ R(Q). Then, the

following statements hold:

1. Given a factorization Q = Ṽ Ṽ T , where Ṽ has full column rank, we have that |||u|||Q =

‖v‖, where v is the unique vector satisfying Ṽ v = u;

2. ||| · |||Q defines a norm on R(Q); and

3. ‖u‖ ≤ ‖Q‖1/2 |||u|||Q.

Proof: Let u ∈ R(Q) be given, and let t be a vector such that Qt = u. If we define

v := Ṽ T t, then the assumption that Q = Ṽ Ṽ T along with (170) implies that

|||u|||Q =
√

tT Qt = ‖Ṽ T t‖ = ‖v‖. (171)

Since u = Qt = Ṽ Ṽ T t = Ṽ v and Ṽ has full column rank, it is clear that v is uniquely

determined by the formula v = [Ṽ T Ṽ ]−1Ṽ T u, and statement 1 is proven.

Using the above formula for v and statement 1, it is easy to see that |||·|||Q is a seminorm

on R(Q). It is indeed a norm, since, in view of (171), |||u|||Q = 0 implies that v = 0, and

hence that u = Ṽ v = 0.

To prove the third statement, let t be a vector such that Qt = u. Then (170) implies

that

‖u‖ = ‖Qt‖ ≤ ‖Q1/2‖ ‖Q1/2t‖ = ‖Q‖1/2
√

tT Qt = ‖Q‖1/2 |||u|||Q.

Next, given a point w ∈ R2n
++ × Rm+l and scalars σ ∈ [0, 1], τp > 0, and τq > 0, we will

say that a search direction ∆w is a (τp, τq)-search direction at w (with centrality parameter

σ) if ∆w satisfies

A∆x = −rp, (172)

AT ∆y + ∆s + V ∆z −Q∆x = −rd − g, (173)

X∆s + S∆x = −Xs + σµe− p, (174)

EV T ∆x + E−1∆z = −rV + q (175)
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for some (g, p, q) ∈ R(Q)× Rn × Rl such that

‖p‖∞ ≤ τpµ, |||g|||2Q + ‖q‖2 ≤ τ2
q µ, (176)

where µ is given by (165). Note that while p and q can vary over the whole Euclidean spaces

Rn and Rl, respectively, the error g is required to be in R(Q).

We will now point out the relationship between the definition above and the definition

of a (τp, τq)-search direction given in paper [33]. It is clear that system (32)-(35) in [33] for

determining an inexact search direction can be viewed as a special case of system (172)-(175)

by setting Q = 0, which also implies that g = 0 due to the fact that g ∈ R(Q). However,

it is also possible to transform system (172)-(175) into a system of the form specified by

equations (32)-(35) of [33] (see the proof of Theorem 3.7.2 in Subsection 3.9.1). Hence, these

two systems for defining inexact search directions are essentially equivalent. We consider

system (172)-(175) in this paper because it naturally lends itself to the development of the

HANE as a means to determine the search direction ∆w (see Subsection 3.7.2).

Next, given η ∈ [0, 1], γ ∈ (0, 1), θ > 0, and an initial point w0 ∈ R2n
++×Rm+l, we define

the following set:

Nw0(η, γ, θ) :=





w ∈ R2n
++ × Rm+l :

Xs ≥ (1− γ)µe, rp = ηr0
p, η ≤ µ/µ0,

rd − ηr0
d ∈ R(Q),

|||rd − ηr0
d|||2Q + ‖rV − ηr0

V ‖2 ≤ θ2µ.





, (177)

where µ = µ(w), µ0 = µ(w0), r = r(w) and r0 = r(w0). The central path neighborhood

used by the inexact PDIPF algorithm described below is given by

Nw0((1− α)η, γ, θ) =
⋃

η∈[0,1]

Nw0(η, γ, θ). (178)

We are now ready to state the inexact PDIPF algorithm.

Inexact PDIPF Algorithm:

1. Start: Let ε > 0 and 0 < σ ≤ σ < 4/5 be given. Choose γ ∈ (0, 1), θ > 0 and

w0 ∈ R2n
++ × Rm+l such that w0 ∈ Nw0((1− α)η, γ, θ). Set k = 0.
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2. While µk := µ(wk) > ε do

(a) Let w := wk and µ := µk; choose σ := σk ∈ [σ, σ].

(b) Set

τp = γσ/4 and (179)

τq =
[√

1 + (1− 0.5γ) σ − 1
]
θ. (180)

(c) Compute a (τp, τq)-search direction ∆w := ∆wk.

(d) Compute α̃ := argmax{α ∈ [0, 1] : w +α′∆w ∈ Nw0((1−α)η, γ, θ), ∀α′ ∈ [0, α]}.

(e) Compute ᾱ := argmin{(x + α∆x)T (s + α∆s) : α ∈ [0, α̃]}.

(f) Let wk+1 = w + ᾱ∆w, and set k ← k + 1.

End (while)

The following result gives a bound on the number of iterations needed by the inexact

PDIPF algorithm to obtain an ε-solution to the KKT conditions (161)–(164). Its proof will

be given in Subsection 3.9.1.

Theorem 3.7.2 Assume that the constants γ, σ, σ and θ are such that

max

{
γ−1 , (1− γ)−1 , σ−1 ,

(
1− 5

4
σ

)−1
}

= O(1), θ = O(
√

n), (181)

and that the initial point w0 ∈ R2n
++ × Rm+l satisfies (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S.

Then, the inexact PDIPF algorithm generates an iterate wk ∈ R2n
++×Rm+l satisfying µk ≤

εµ0, ‖rk
p‖ ≤ ε‖r0

p‖, ‖rk
d‖ ≤ ε‖r0

d‖ + ε1/2θ‖Q‖1/2µ
1/2
0 and ‖rk

V ‖ ≤ ε‖r0
V ‖ + ε1/2θµ

1/2
0 within

O (
n2 log ε−1

)
iterations.

It is possible to show that if w0 is a strictly feasible point, i.e. w0 ∈ R2n
++×Rm+l and r0 =

0, then the iteration complexity of the above algorithm is bounded byO(n log ε−1) iterations.

It is also possible to develop a primal-dual short-step path-following algorithm based on the

inexact search directions introduced above, which would have iteration complexity bounds

O(n log ε−1) and O(
√

n log ε−1) for infeasible and feasible starting points, respectively. One
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interesting characteristic of the feasible algorithms discussed in this paragraph is that,

although the algorithms start with a primal- and dual-feasible point w0, the algorithms

only maintain primal feasibility throughout, while the dual residuals satisfy ‖rd‖ = O(
√

µ).

For the sake of brevity, we will only deal with the long-step PDIPF algorithm stated above.

3.7.2 Framework for Computing an Inexact Search Direction

In this subsection we will provide a framework for computing inexact search directions and

give sufficient conditions for them to be (τp, τq)-search directions.

We begin by defining the following matrices:

D := (Q + X−1S)−1/2, (182)

D̂ :=




D 0

0 E−1


 ∈ R(n+l)×(n+l), (183)

Â :=




A 0

V T I


 ∈ R(m+l)×(n+l), (184)

H := ÂD̂2ÂT , (185)

and the vector

h := Â




D2(s− σµX−1e− rd)

0


−




rp

E−1rV


 . (186)

One approach to compute an exact search direction, i.e. a direction ∆w satisfying (172)–

(175) with (g, p, q) = 0, is as follows. First, we solve the following system of equations for

(∆y, ∆z):

H




∆y

∆z


 = h.

This system is what we refer to as the HANE. (We observe that if V = 0, i.e. Q = Q,

then this system reduces to the standard normal equation for QP, while if Q = 0, i.e.

Q = V E2V T , it reduces to the ANE in [33].) Once (∆y, ∆z) is determined, we obtain ∆x

and ∆s according to formulas (188) and (189) below with g = p = 0.
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Suppose now that the HANE is solved only inexactly, i.e. that the vector (∆y, ∆z)

satisfies

H




∆y

∆z


 = h + f (187)

for some error vector f . We then compute ∆x and ∆s according to the following formulas:

∆x = D2
(
rd + AT ∆y + V ∆z − s + σµX−1e + g −X−1p

)
, (188)

∆s = −rd −AT ∆y + Q∆x− V ∆z − g, (189)

where the pair of correction vectors (g, p) ∈ R(Q) × Rn will be required to satisfy some

conditions which we describe below. Clearly, the search direction ∆w = (∆x,∆s,∆y, ∆z)

computed as above satisfies (173) in view of (189). Moreover, (174) is satisfied, since

equations (182), (188), and (189) imply that

X∆s + S∆x = −Xrd −XAT ∆y −XV ∆z −Xg + (XQ + S)∆x

= −Xrd −XAT ∆y −XV ∆z −Xg + XD−2∆x

= −Xs + σµe− p.

To motivate the conditions we will impose on the pair (g, p) ∈ R(Q)×Rn, we note that

equations (183)–(189) imply that

Â




∆x

E−2∆z


 +




rp

E−1rV




= Â




D2
(
(AT ∆y + V ∆z) + (−s + σµX−1e + rd) + (g −X−1p)

)

E−2∆z


 +




rp

E−1rV




= ÂD̂2




AT ∆y + V ∆z

∆z


− h− Â




D2(X−1p− g)

0




= H




∆y

∆z


− h− Â




D2(X−1p− g)

0


 = f − Â




D2(X−1p− g)

0


 . (190)

Our strategy will be to choose the pair (g, p) ∈ R(Q) × Rn so that the first component of

(190) is zero, and hence that (172) is satisfied. Specifically, let us partition f = (f1, f2) ∈
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Rm × Rl. We will choose (g, p) ∈ R(Q)× Rn such that

AD2(X−1p− g) = f1. (191)

Observe that g and p are not uniquely defined. Letting

q = E
(
f2 − V T D2(X−1p− g)

)

and using (184), we easily see that (191) is equivalent to

f = Â




D2(X−1p− g)

E−1q


 . (192)

Then, using (184), (190), and (192), we conclude that

Â




∆x

E−2∆z


 +




rp

E−1rV


 = f − Â




D2(X−1p− g)

E−1q


 + Â




0

E−1q




= Â




0

E−1q


 =




0

E−1q


 , (193)

from which we see that the first component of (190) is set to 0 and the second component

is exactly E−1q. We have thus shown that the above construction yields a search direction

∆w satisfying equations (172)–(175).

Before ending this subsection, we provide a framework for computing a triple (g, p, q) ∈
R(Q)× Rn × Rl satisfying (192). First, choose a vector v := (v1, v2) ∈ Rn × Rl satisfying

Âv = f. (194)

Next, we choose the triple (g, p, q) ∈ R(Q)× Rn × Rl according to

g := −Qv1, p := Sv1, q := Ev2. (195)

Then (182), (194), and (195) imply that

Â




D2(X−1p− g)

E−1q


 = Â




D2(X−1S + Q)v1

v2


 = Âv = f,
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i.e. (g, p, q) ∈ R(Q)×Rn×Rl satisfies (192). Note that in view of Assumption 5 and (184),

system (194) has multiple solutions. Strategies for choosing a specific vector v satisfying

(194) will be discussed in Subsection 3.8.1.

The following result relates the size of D̂−1v with the magnitude of the triple (g, p, q) ∈
R(Q)×Rn×Rl, and gives a sufficient condition for the search direction described above to

be a (τp, τq)-search direction.

Proposition 3.7.3 Let w ∈ R2n
++ × Rm+l be given, and consider the vector v ∈ Rn+l and

the triple (g, p, q) ∈ R(Q)× Rn × Rl as defined in (194) and (195). Then, we have

‖p‖ ≤ √
nµ ‖D̂−1v‖, |||g|||2Q + ‖q‖2 ≤ ‖D̂−1v‖2. (196)

As a consequence, if ‖D̂−1v‖ ≤ ξ
√

µ, where ξ is defined as

ξ := min{n−1/2τp, τq}, (197)

then the corresponding inexact search direction ∆w as described above is a (τp, τq)-search

direction.

Proof: Using (182) and the fact that (x, s) > 0, we conclude that Q ¹ Q+X−1S = D−2.

Next, the second identity in (195) along with (170) implies that |||g|||2Q = vT
1 Qv1. Using

these facts along with (183) and (195), we obtain

|||g|||2Q+‖q‖2 = vT
1 Qv1+‖Ev2‖2 ≤ vT

1 D−2v1+‖Ev2‖2 = ‖D−1v1‖2+‖Ev2‖2 = ‖D̂−1v‖2.

Similarly, we have X−1S ¹ D−2, which clearly implies that D2 ¹ XS−1. This result, along

with the fact that xisi ≤ nµ for all i, implies that SD2S ¹ XS ¹ nµI, and hence that

‖SD‖ = ‖SD2S‖1/2 ≤ √
nµ. We use this result along with (183) and the first relation in

(195) to obtain

‖p‖ = ‖Sv1‖ ≤ ‖SD‖ ‖D−1v1‖ ≤ √
nµ ‖D−1v1‖ ≤ √

nµ ‖D̂−1v‖.

Thus (196) is proven. The second part of the proposition follows from the fact that (196),

(197), and the assumption that ‖D̂−1v‖ ≤ ξ
√

µ imply that (176) holds.
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3.8 CQP Algorithm for a Class of Preconditioners: Inner
Iteration Complexity

In this section, we complete the description of the recipe given in Subsection 3.7.2 to de-

termine a (τp, τq)-search direction ∆w. The section is divided into two subsections. In

Subsection 3.8.1, we derive a uniform upper bound on the number of iterations a generic

iterative linear solver requires to obtain a sufficiently accurate solution (∆y, ∆z) to the

HANE, which will then yield a (τp, τq)-search direction ∆w, as required in step 2(d) of

the inexact PDIPF algorithm. One of the key ideas in this paper, which is described in

Subsection 3.7.1, is the use of a suitable approximation F of D̂2 to define the vector v as

a linear function of u. In Subsection 3.7.2, we present two examples of matrices F which

are suitable approximations of D̂2. We also obtain specific expressions for the iteration

complexity developed in Subsection 3.7.1 when the iterative solver used to obtain an ap-

proximate solution to the HANE is the preconditioned conjugate gradient (PCG) method

with preconditioner given by ÂF ÂT .

3.8.1 Inner Iteration Complexity Analysis

In this subsection, we will complete the description of the recipe given in Subsection 3.7.2

to determine a (τp, τq)-search direction ∆w. For simplicity of notation, in this section we

will denote the variable of unknowns in the HANE by u, so that the HANE takes the

form Hu = h, where H and h are given by (185) and (186), respectively. Recall that

the only thing that was unspecified in the recipe of Subsection 3.7.2 was the choice of

a vector v satisfying (194). Recall also from Lemma 3.7.3 that by choosing v such that

‖D̂−1v‖ ≤ ξ
√

µ, where ξ is given by (197), the corresponding inexact search direction ∆w is

guaranteed to be a (τp, τq)-search direction, simply by choosing (g, p, q) according to (195).

One of the key ideas in this paper, which is described in this subsection, is the use of a

generic preconditioner for H to define the vector v as a linear function of u. This subsection

also discusses the iteration complexity of a generic iterative solver to obtain an iterate u

so that the corresponding v = v(u) satisfies the condition ‖D̂−1v‖ ≤ ξ
√

µ. We also discuss

an appropriate choice of the starting point u0 and conditions on the generic preconditioner
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for H which guarantee that the inner iteration complexity bound is uniformly bounded

throughout the iterations of the inexact PDIPF algorithm.

We will first discuss the criterion we use to measure the complexity of an iterative solver

to obtain an approximate solution to a system of the form Hu = h. A common way of

measuring the closeness of u to u∗ := H−1h is by the distance ‖u − u∗‖H = ‖f(u)‖H−1 ,

where f(u) := Hu−h. Many algorithms for solving the system Hu = h produce a sequence

of iterates which decrease this distance at every step (see [20, 25, 35]). Other equivalent

distances could be used in our discussion below, but we will only consider the one above

without any loss of generality. We will say that the complexity of an iterative solver (with

respect to the above distance) is bounded above by a nondecreasing function Υ : [1,∞) 7→
Z+ if, for any δ ≥ 1, Υ(δ) denotes an upper bound on the number of iterations required

by the iterative solver, started at any u0, to obtain an iterate u such that ‖f(u)‖H−1 ≤
δ−1‖f(u0)‖H−1 .

Next, we will discuss a way of choosing a vector v satisfying (194) and the condition

‖D̂−1v‖ ≤ K‖f(u)‖H−1 (198)

for some suitable constant K ≥ 1. For fixed f(u), consider the ideal case for which we set

v = vLS , where vLS = argmin{‖D̂−1v‖ : Âv = f(u)}. It is straightforward to show that

vLS = D̂2ÂT H−1f(u) = D̂2ÂT (ÂD̂2ÂT )−1f(u), (199)

where H is given by (185). Thus we have that

‖D̂−1vLS‖ =
√

f(u)T (ÂD̂2ÂT )−1f(u) = ‖f(u)‖H−1 , (200)

and hence that (198) is satisfied with K = 1. Unfortunately, the computation of vLS

requires the computation of H−1f(u), or equivalently the solution of a system of linear

equations with the same coefficient matrix as the HANE we are trying to solve. To remedy

this problem, we will approximate D̂2 by a matrix F º 0 such that G := ÂF ÂT Â 0 and

G−1f(u) is much cheaper to compute than H−1f(u). We then replace D̂2 in (199) by F to

obtain a vector v according to

v := v(F, u) = FÂT G−1f(u) = FÂT (ÂF ÂT )−1f(u). (201)
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It is clear that v defined in this manner satisfies (194). By imposing some conditions on

the approximation F according to the definition below, v will also satisfy (198) for some

constant K ≥ 1. We will require that F approximate D̂2 in the following sense.

Definition 2 Let constants 0 < λL ≤ λU be given. We will say that a matrix F is a

(λL, λU )-approximation of D̂2 if 0 ¹ F ¹ λU D̂2 and ÂF ÂT º λL ÂD̂2ÂT .

Using the above definition, we can now state the following result.

Lemma 3.8.1 Suppose that a matrix F is a (λL, λU )-approximation of D̂2. Then the vector

v given by (201) satisfies (198) with K =
√

λU/λL.

Proof: Let G = ÂF ÂT , and recall the definition of H in (185). Using the assumption

that F is a (λL, λU )-approximation of D̂2 and Definition 2, we have that G−1 ¹ λ−1
L H−1

and D̂−1FD̂−1 ¹ λUI. Using these inequalities along with (201), we conclude that

‖D̂−1v‖ ≤ ‖D̂−1F 1/2‖ ‖F 1/2ÂT G−1f(u)‖ = ‖D̂−1F 1/2‖
√

f(u)T G−1(ÂF ÂT )G−1f(u)

= ‖D̂−1FD̂−1‖1/2
√

f(u)T G−1f(u) ≤
√

λU/λL

√
f(u)T H−1f(u)

=
√

λU/λL‖f(u)‖H−1 .

Note that if u is a point such that ‖f(u)‖H−1 ≤ δ−1‖f(u0)‖H−1 , and if v is formed

according to (201), where F is a (λL, λU )-approximation of D̂2, we have

‖D̂−1v‖
‖f(u0)‖H−1

≤
√

λU/λL
‖f(u)‖H−1

‖f(u0)‖H−1

≤ δ−1
√

λU/λL (202)

in view of Lemma 3.8.1. The issues to be considered now are (i) the choice of the starting

point u0 and (ii) the choice of δ. Regarding (i), we will show that a starting point u0 can

always be chosen so that

‖f(u0)‖H−1 ≤ Ψ
√

µ (203)

for some universal constant Ψ. Assuming this fact, the constant δ in issue (ii) can be chosen

as

δ = (Ψ/ξ)
√

λU/λL, (204)
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where ξ is given by (197). Indeed, by (202)–(204), it follows that the resulting vector v

satisfies ‖D̂−1v‖ ≤ ξ
√

µ, as desired.

We will now concentrate our attention on the construction of a starting point u0 sat-

isfying (203). First, compute a point w′ = (x′, y′, s′, z′) satisfying the following system of

linear equations:

Â

(
x′

E−2z′

)
=

(
b

0

)
, AT y′ + s′ + V z′ −Q2x

′ = c. (205)

We then define

u0 = −η




y0 − y′

z0 − z′


 , (206)

where η = ‖rp‖/‖r0
p‖. Notice that all of the starting points generated by the above formula

are multiples of the same vector, which can be computed once at the beginning of the

inexact PDIPF algorithm. Moreover, if the starting point w0 of the algorithm is feasible

to (159) and (160), then we may choose w′ = w0, and hence u0 = 0. The following lemma

gives a bound on ‖f(u0)‖H−1 .

Lemma 3.8.2 Assume that w0 and w′ are such that (x0, s0) ≥ |(x′, s′)| and (x0, s0) ≥
(x∗, s∗) for some w∗ ∈ S. Further, assume that w ∈ Nw0((1− α)η, γ, θ) for some γ ∈ [0, 1]

and θ > 0, and that H, h and u0 are given by (185), (187) and (206), respectively. Then,

f(u0) satisfies (203), where µ is given by (165) and Ψ is defined as

Ψ :=
6√

1− γ
n +

(
1− 2σ +

σ2

1− γ

)1/2√
n +

θ2

2
√

1− γ
+ θ. (207)

The proof of this lemma will be given in Subsection 3.9.2. Our next lemma provides

insight into the size of the ratio Ψ/ξ in (204).

Lemma 3.8.3 Suppose that max{σ, σ−1, γ−1, (1 − γ)−1, θ−1} = O(1) and θ = O(
√

n) in

the inexact PDIPF algorithm, and that τp, τq, ξ and Ψ are as defined in (179), (180), (197)

and (207), respectively. Then, we have that Ψ/ξ = O(n3/2).

Proof: Under the assumptions above, it is easy to see that Ψ = O(n) and ξ−1 = O(
√

n),
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and the result follows immediately.

We summarize the results of this subsection in the following theorem.

Theorem 3.8.4 Suppose that the conditions of Lemmas 3.8.1–3.8.3 are met. Then, an

iterative solver with complexity bounded by Υ(·) generates an iterate u such that v = v(F, u)

satisfies ‖D̂−1v‖ ≤ ξ
√

µ in at most

Υ
(
O

(
n3/2

√
λU/λL

))

iterations.

It is important to observe that, although the requirements given in this subsection are

sufficient to ensure that the resulting ∆w is a (τp, τq)-search direction, they are not necessary.

Indeed, it is only necessary to check the sizes of ‖p‖∞ and |||g|||2Q + ‖q‖2 to ensure that

the resulting ∆w is a (τp, τq)-search direction. Once a candidate vector v is generated, then

(g, p, q) ∈ R(Q) × Rn × Rl (and their corresponding magnitudes) can be easily computed

according to (195).

3.8.2 Specific Applications

In this subsection, we present two examples of matrices F which are (λL, λU )-approximations

of D̂2, and an estimation of their corresponding constants λL and λU . As a consequence,

we will obtain specific expressions for the iteration complexity developed in Theorem 3.8.4

when the iterative solver used to obtain an approximate solution to the HANE is the pre-

conditioned conjugate gradient (PCG) method with preconditioner given by ÂF ÂT .

The first example of a matrix F we will consider in this subsection is the maximum

weight basis (MWB) preconditioner originally proposed by Vaidya [63] (see also [53]). For

the purposes of this example only, we will assume that Q is diagonal, which clearly implies

that D̂ is also diagonal. The MWB is a basis B of Â formed by giving higher priority to

columns of Â corresponding to larger diagonal elements of D̂. The MWB preconditioner

is then given by T̂−1T̂−T , where T̂ = D̂−1
B B−1 and D̂B is the diagonal submatrix of D̂

corresponding to the columns of B. (See [44] for a complete description of the MWB). Note
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that this preconditioner can be written as

G = BD̂2
BBT = Â




D̂2
B 0

0 0


 ÂT = ÂF ÂT ,

where

F =




D̂2
B 0

0 0


 .

It is clear from this definition that 0 ¹ F ¹ D̂2. Next, Lemma 2.1 in [44] implies that

‖T̂ ÂD̂‖ ≤ ϕ bA, where ϕ bA is defined as

ϕ bA := max{‖B−1Â‖F : B is a basis for Â}.

It follows that T̂HT̂ T = T̂ (ÂD̂2ÂT )T̂ T ¹ ϕ2bAI, which implies that G º ϕ−2bA H. In view of

definition 2, we have thus shown that F is a (ϕ−2bA , 1)-approximation of D̂2.

Another way of obtaining an approximation of D̂2 is by using the partial updating

strategy which was first proposed by Karmarkar [24] (see also Gonzaga [19]) in the context

of primal-only interior-point methods, and extended by Monteiro and Adler [40] and Kojima

et. al. [29] to the context of primal-dual path-following methods. At each iteration of a path-

following algorithm, the strategy consists of generating a diagonal matrix D̄ satisfying

ρ−1 si

xi
≤ D̄ii ≤ ρ

si

xi
, for all i = 1, ..., n (208)

for some constant ρ ≥ 1, and using

F :=




(Q + D̄)−1 0

0 E−2


 (209)

as the approximation for D̂2. The current approximation D̄ is obtained by updating the

approximation used at the previous iterate in the following manner. If the ith diagonal

element of D̄ used at the previous iterate violates (208), then it is changed to si/xi; otherwise

it is left unchanged. Using (182), (183), (208), and (209), we easily see that ρ−1D̂2 ¹ F ¹
ρD̂2, which implies that G = ÂF ÂT º ρ−1H. Hence F is a (ρ−1, ρ)-approximation of D̂2.

In the remainder of this subsection, we will obtain specific expressions for the itera-

tion complexity developed in Theorem 3.8.4 when the iterative solver used to obtain an
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approximate solution to the HANE is the PCG method with preconditioner ÂF ÂT , where

F is obtained via the MWB and partial update methods, respectively. It should be noted

that under exact arithmetic, the PCG algorithm is in fact a finite termination algorithm,

achieving an exact solution to the HANE in at most m + l iterations, since H ∈ Sm+l
++

(see for example [25, 35]). For our purposes, we will view the PCG method as an itera-

tive method, which is known to satisfy the following convergence property: if G ∈ Sm+l
++

is used as a preconditioner for the HANE, then the method obtains an iterate u such that

‖f(u)‖H−1 ≤ δ−1‖f(u0)‖H−1 in at most

Υ(δ) = O
{√

κ(G−1H) log δ
}

(210)

iterations, where we recall that κ(·) represents the spectral condition number of (·). The

following lemma gives a bound on the spectral condition number of G−1H when G = ÂF ÂT

and F is a (λL, λU )-approximation of D̂2.

Lemma 3.8.5 Suppose that F is a (λL, λU )-approximation of D̂2, and define G := ÂF ÂT .

Then, κ(G−1H) ≤ λU/λL.

Proof: Let L be an invertible matrix such that LLT = G−1. We observe that G−1H and

LT HL are similar, and hence κ(LT HL) = κ(G−1H). Since F is a (λL, λU )-approximation

of D̂2, we have that F ¹ λUD̂2 and G º λLH. These relations, along with (185) and the

definition of G, imply that λLH ¹ G ¹ λUH. This observation together with the fact

that G = L−T L−1 then implies that λ−1
U I ¹ LT HL ¹ λ−1

L I, and hence that κ(G−1H) =

κ(LT HL) ≤ λU/λL.

Using Lemma 3.8.5 along with (210), we see that Theorem 3.8.4 yields the iteration

complexity bound

O
{√

λU/λL log(n λU/λL)
}

(211)

for the PCG method with preconditioner G = ÂF ÂT , where F is a (λL, λU )-approximation

of D̂2. For the MWB and partial update preconditioners, this bound becomesO(ϕ bA log(nϕ bA))

and O(ρ log(nρ)) iterations, since the respective matrices F are (ϕ−2bA , 1)- and (ρ−1, ρ)-

approximations of D̂2, respectively. We observe that the resulting bound for the MWB

92



preconditioner is precisely the same as the one obtained in [33].

In the remaining part of this subsection, we will make a few observations about the

inner iteration complexity bound (211). As mentioned in Subsection 3.7.1, it is possible to

develop a short-step method based on the inexact search directions introduced in Subsection

3.7.1. When this method is started from a feasible point, then it can be shown that the

inner iteration complexity bound is the same as (211), but with the factor n removed from

the logarithm. Recall that the term log n in (211) follows from the fact that the ratio Ψ/ξ

in Lemma 3.8.3 is O(n3/2), which in turn follows from the fact that Ψ in Lemma 3.8.2 and

ξ−1 in (197) satisfy Ψ = O(n) and ξ−1 = O(
√

n). In the context of a short-step feasible

method, it is possible to show that for an appropriate choice of σ, γ, and θ, Ψ = O(1) and

ξ−1 = O(1). The latter follows from the fact that the bound derived in (196) for ‖p‖ can

be reduced by a factor of O(
√

n), and hence that ξ can be chosen as Θ(min{τp, τq}).
In view of the discussion in the previous paragraph, the short-step variant of the inex-

act PDIPF algorithm, started from a feasible point, has inner iteration complexity bound

O(ρ log ρ) if the partial update preconditioner is used to solve the HANE. It is interesting to

compare this bound with the inner iteration complexity bound of the inexact path-following

method presented by Anstreicher in [4]. His paper presents a short-step, dual-only, path-

following method with feasible starting point, where the normal equation is solved by the

PCG method using the partial update preconditioner. It shows that the outer and inner

complexity bounds are O(
√

n log ε−1) and O(ρ) iterations, respectively. In order to mini-

mize the overall arithmetic complexity of his method, including the work of updating the

preconditioner through a series of rank-one updates, Anstreicher shows that the best choice

for ρ is ρ = O(mβ) for some β ∈ (0, 1/2), which yields the optimal arithmetic complexity

of O((n3/ log n) log ε−1).

Note that the inner iteration complexity bound in [4] is a factor of log ρ = O(log(λU/λL))

better than the same bound in our method. The main reason for this difference is that,

while Anstreicher’s method generates an iterate u satisfying

‖f(u)‖H−1

‖f(u0)‖H−1

≤ δ−1, (212)
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where δ = O(1), our method generates an iterate u such that ‖D̂−1v(F, u)‖/(ξ
√

µ) ≤ 1.

Noting that Lemmas 3.8.1 and 3.8.2 imply that

‖D̂−1v(F, u)‖
ξ
√

µ
=

Ψ
ξ
· ‖D̂

−1v(F, u)‖
Ψ
√

µ
≤ KΨ

ξ

‖f(u)‖H−1

‖f(u0)‖H−1

,

where K =
√

λU/λL, our requirement on the iterate u can be accomplished by enforcing

(212) with δ = KΨ/ξ. Since, for a short-step method with a feasible starting point, we

have that this choice of δ satisfies δ = O(ρ), it follows that our inner iteration complexity

has an additional log δ = O(log ρ) factor compared to the complexity of [4]. Note that

if the ideal choice of v = vLS given by (199) is made, then K = 1 in view of (200) and

δ = O(1). Then we would have an inner iteration complexity bound of O(ρ), the same

as in [4]. Hence, the dual-only method in [4] can be thought of as being comparable, in

terms of the number of inner iterations, to the inexact PDIPF algorithm proposed in this

paper, with this ideal (but expensive) choice of inexact search direction. Note that, since

the left hand side of (212) cannot be computed, and hence cannot be used to check for

early termination of the PCG method, exactly Υ(δ) iterations of the PCG method must

be performed at each outer iteration of Anstreicher’s algorithm, where Υ(δ) is given by

(210). In this respect, our approach is preferable to the one in [4], since it has a measurable

termination criterion, namely ‖D̂−1v(F, u)‖/(ξ
√

µ) ≤ 1. It is possible to incorporate a

measurable stopping criterion into Anstreicher’s approach, but in that case, the resulting

inner iteration complexity bound would increase to O(ρ log ρ), the same bound as in our

method.

3.9 CQP Algorithm for a Class of Preconditioners: Tech-
nical Results

In this subsection, we present the proof of Theorem 3.7.2 and Lemma 3.8.2. Subsection

3.9.1 presents the proof of Theorem 3.7.2, while Subsection 3.9.2 gives the proof of Lemma

3.8.2.
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3.9.1 Proof of Theorem 3.7.2

In this subsection, we prove Theorem 3.7.2 by showing that the inexact PDIPF algorithm

of Subsection 3.7.1 is completely equivalent to the algorithm presented in [33], and hence

has similar convergence properties as the latter one.

Proof of Theorem 3.7.2: Let Ṽ be a matrix of full column rank such that Q = Ṽ Ṽ T .

It is clear that we may write Q = VE2VT , where

V :=
(

V Ṽ

)
, E :=




E 0

0 I


 .

Note that Q has the form required for the inexact PDIPF algorithm in [33]. Recall that the

algorithm in [33] generates a sequence of iterates wk = (xk, sk, yk, (zk, z̃k)) to approximate

a solution of the equivalent reformulation of the optimality conditions (161)–(164):

Ax = b, x ≥ 0,

AT y + s + V z + Ṽ z̃ = c, s ≥ 0,

Xs = 0,

EV T x + E−1z = 0,

Ṽ T x + z̃ = 0.

More specifically, the algorithm in [33] generates a sequence of points wk which lie in the

neighborhood Nw0(γ, θ) := ∪η∈[0,1]Nw0(η, γ, θ), where

Nw0(η, γ, θ) :=





w ∈ R2n
++ × Rm+l+l̃ :

Xs ≥ (1− γ)µe, (rp, r̃d) = η(r0
p, r̃

0
d), η ≤ µ/µ0,

‖rV − ηr0
V ‖2 + ‖reV − ηr0eV ‖2 ≤ θ2µ





,

and the residuals r̃d and reV are defined as

r̃d := AT y + s + V z + Ṽ z̃ − c,

reV := Ṽ T x + z̃.

Given a point w ∈ Nw0(γ, θ), the inexact algorithm in [33] generates a (τp, τq)-search

direction ∆w = (∆x,∆s,∆y, (∆z, ∆̃z)), which in that context means a search direction
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satisfying

A∆x = −rp,

AT ∆y + ∆s + V ∆z + Ṽ ∆̃z = −r̃d,

X∆s + S∆x = −Xs + σµe− p,

EV T ∆x + E−1∆z = −rV + q,

Ṽ T ∆x + ∆̃z = −reV + q̃,

for some vectors p, q, and q̃ satisfying ‖p‖∞ ≤ τpµ and ‖(q, q̃)‖ ≤ τq
√

µ, where τp and τq are

defined in (179) and (180), respectively. The inexact PDIPF algorithm in [33] determines

a stepsize α in the exact same manner as steps (d) and (e) of the inexact algorithm in

Subsection 3.7.1, but with w, ∆w and Nw0((1−α)η, γ, θ) replaced by w, ∆w and Nw0(γ, θ),

respectively, and determines the next iterate w+ according to w+ = w + α∆w.

It is straightforward to show that the inexact PDIPF algorithm in Subsection 3.7.1,

started at w0 is completely equivalent to the inexact PDIPF algorithm in [33], started at

w0 = (x0, s0, y0, (z0, z̃0)), where z̃0 = −Ṽ T x0, due to the following claims:

1. A vector w = (x, s, y, z) ∈ Nw0(η, γ, θ) if and only if there exists a vector z̃ such that

w = (x, s, y, (z, z̃)) ∈ Nw0(η, γ, θ), in which case z̃ is unique; and

2. If w and w are related as in statement 1 above, a search direction ∆w = (∆x,∆s,∆y, ∆z)

is a (τp, τq)-search direction at w if and only if there exists a vector ∆̃z such that the

search direction ∆w = (∆x,∆s,∆y, (∆z, ∆̃z)) is a (τp, τq)-search direction at w (in

the sense of [33]), in which case ∆̃z is unique.

The proofs of claims 1 and 2 are based on the following observations, which are valid under

the assumption that z̃0 = −Ṽ T x0:

- If w ∈ Nw0(η, γ, θ), let t be the unique vector such that Ṽ t = rd − ηr0
d, and define

z̃ = −Ṽ T x− t. Then w ∈ Nw0(η, γ, θ).

- If w ∈ Nw0(η, γ, θ), then we have that r̃d = ηr̃0
d = ηr0

d = rd + Ṽ reV . Thus rd − ηr0
d ∈

R(Q), and statement 1 of Proposition 3.7.1 and the fact that r0eV = 0 imply that

|||rd − ηr0
d|||Q = ‖reV ‖ = ‖reV − ηr0eV ‖. It follows that w ∈ Nw0(η, γ, θ).
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- Let ∆w be a (τp, τq)-search direction with error terms (g, p, q) ∈ R(Q)×Rn×Rl, let q̃

be the unique vector such that Ṽ q̃ = g, and let ∆̃z be given by ∆̃z = −Ṽ T ∆x−reV + q̃.

Then ∆w is a (τp, τq)-search direction at w with error terms (p, (q, q̃)).

- Let ∆w be a (τp, τq)-search direction at w with error terms (p, (q, q̃)), and let g = Ṽ q̃.

It follows that ∆w is a (τp, τq)-search direction with error terms (g, p, q) ∈ R(Q) ×
Rn × Rl.

We leave a detailed proof of claims 1 and 2 to the reader.

Given ε > 0, Theorem 2.2 of [33] claims that the inexact algorithm in [33] finds a point

wk ∈ Nw0(γ, θ) satisfying µk ≤ εµ0 in at mostO(n2 log ε−1) iterations. Translated to the in-

exact PDIPF algorithm in Subsection 3.7.1, this means that a point wk ∈ Nw0((1−α)η, γ, θ)

satisfying µk ≤ εµ0 can be found in at most O(n2 log ε−1) iterations. The remaining con-

ditions on wk in our theorem follow from the definition of Nw0((1− α)η, γ, θ) in (178), the

fact that µk ≤ εµ0, and statement 3 of Proposition 3.7.1.

3.9.2 Proof of Lemma 3.8.2

In this subsection, we present the proof of Lemma 3.8.2. We first present some technical

lemmas.

Lemma 3.9.1 Suppose that w0 ∈ R2n
++×Rm+l such that (x0, s0) ≥ (x∗, s∗) for some w∗ ∈ S.

Then, for any w ∈ Nw0(η, γ, θ) with η ∈ [0, 1], γ ∈ [0, 1] and θ > 0, we have

η(xT s0 + sT x0) ≤
(

3n +
θ2

4

)
µ.

Proof: Recall from Subsection 3.9.1 that any point w ∈ Nw0(η, γ, θ) can be mapped

into a point w ∈ Nw0(η, γ, θ), such that the x and s components of w and w are precisely

the same. The result now follows by applying Lemma 4.1 of [33] to w.

Lemma 3.9.2 Let H be defined as in (185), and suppose that (x, s, y, z) ∈ R2n
++ × Rm+l.

Then, for any w ∈ Rn+l we have that ‖ÂD̂w‖H−1 ≤ ‖w‖.

Proof: Observe that D̂ÂT H−1ÂD̂ is a projection matrix, which implies that D̂ÂT H−1ÂD̂ ¹
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I. Thus, for any w ∈ Rn+l we have that

‖ÂD̂w‖H−1 =
√

wT (D̂ÂT H−1ÂD̂)w ≤
√

wT w = ‖w‖.

For the purpose of the next proof, let us define

J(σ) := −(XS)1/2e + σµ(XS)−1/2e. (213)

Lemma 3.9.3 Suppose w0 ∈ R2n
++ × Rm+l, w ∈ Nw0(η, γ, θ) for some η ∈ [0, 1], γ ∈ [0, 1]

and θ > 0, and w′ satisfies (205). Let H, h and u0 be given by (185), (187) and (206),

respectively. Then,

Hu0−h = ÂD̂




DX−1/2S1/2J(σ) + ηDX−1
[
X(s0 − s′) + S(x0 − x′)

]
+ D(rd − ηr0

d)

rV − ηr0
V


 .

(214)

Proof: Using the fact that w ∈ Nw0(η, γ, θ) along with (177), (184) and (205), we easily

obtain that



rp

E−1rV


 =




ηr0
p

ηE−1r0
V + E−1(rV − ηr0

V )




= ηÂ




x0 − x′

E−2(z0 − z′)


 + Â




0

E−1(rV − ηr0
V )


 (215)

s0 − s′ = −AT (y0 − y′) + Q(x0 − x′)− V (z0 − z′) + r0
d. (216)

From (213), we easily see that

−s + σµX−1e = X−1/2S1/2J(σ). (217)

Equation (182) implies that

I −D2Q = D2(D−2 −Q) = D2X−1S. (218)
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Using relations (177), (183), (184), (185), (186), (206), (215) and (216), we obtain

Hu0 − h = ÂD̂2ÂT u0 − Â




D2(s− σµX−1e− rd)

0


 +




rp

E−1rV




= −ηÂD̂2ÂT




y0 − y′

z0 − z′


− Â




D2(s− σµX−1e− ηr0
d − (rd − ηr0

d))

0




+




rp

E−1rV




= −ηÂ




D2
(
AT (y0 − y′)−Q(x0 − x′) + V (z0 − z′)− r0

d

)

E−2(z0 − z′)




− Â




D2
(
ηQ(x0 − x′)− (rd − ηr0

d)
)

0


− Â




D2(s− σµX−1e)

0




+




rp

E−1rV




= −ηÂ



−D2(s0 − s′)

E−2(z0 − z′)


− Â




D2
(
ηQ(x0 − x′)− (rd − ηr0

d)
)

0




− Â




D2(s− σµX−1e)

0


 + ηÂ




x0 − x′

E−2(z0 − z′)


 + Â




0

E−1(rV − ηr0
V )




= Â



−D2(s− σµX−1e) + ηD2(s0 − s′) + η(I −D2Q)(x0 − x′) + D2(rd − ηr0

d)

E−1(rV − ηr0
V )




which together with (183), (217), and (218) yields (214), as desired.

We now turn to the proof of Lemma 3.8.2.

Proof of Lemma 3.8.2: The fact that w ∈ Nw0((1 − α)η, γ, θ) implies that w ∈
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Nw0(η, γ, θ) for some η ∈ [0, 1]. By Lemmas 3.9.2 and 3.9.3, we have that

‖Hu0 − h‖H−1

=

∥∥∥∥∥∥∥
ÂD̂




DX−1/2S1/2J(σ) + ηDX−1
[
X(s0 − s′) + S(x0 − x′)

]
+ D(rd − ηr0

d)

rV − ηr0
V




∥∥∥∥∥∥∥
H−1

≤

∥∥∥∥∥∥∥




DX−1/2S1/2J(σ) + ηDX−1
[
X(s0 − s′) + S(x0 − x′)

]
+ D(rd − ηr0

d)

rV − ηr0
V




∥∥∥∥∥∥∥

≤ ‖DX−1/2S1/2‖ ‖J(σ)‖ + η‖DX−1‖ ‖S(x0 − x′) + X(s0 − s′)‖

+

∥∥∥∥∥∥∥




D(rd − ηr0
d)

rV − ηr0
V




∥∥∥∥∥∥∥
. (219)

We will examine each norm in (219) in turn. First, since w ∈ Nw0((1− α)η, γ, θ), we have

that xisi ≥ (1− γ)µ for all i. It follows from a well-known result (see e.g. [30]) that

‖J(σ)‖ ≤
(

1− 2σ +
σ2

1− γ

)1/2√
nµ. (220)

Moreover, using (182) and the facts that Q º 0 and xisi ≥ (1−γ)µ for all i, we obtain that

‖DX−1‖ = ‖X−1D2X−1‖1/2 = ‖X−1(Q + X−1S)−1X−1‖1/2

≤ ‖(XS)−1‖1/2 ≤ 1√
(1− γ)µ

. (221)

Similarly, we have

max{‖DX−1/2S1/2‖, ‖DQ1/2‖} ≤ 1. (222)

Using the fact that (x0, s0) ≥ |(x′, s′)| and (x0, s0) ≥ (x∗, s∗) together with Lemma 3.9.1,

we obtain that

η‖S(x0 − x′) + X(s0 − s′)‖ ≤ η
(‖S(x0 − x′)‖+ ‖X(s0 − s′)‖) ≤ 2η

(‖Sx0‖+ ‖Xs0‖)

≤ 2η(xT s0 + xT s0) ≤
(

6n +
θ2

2

)
µ. (223)

The fact that ‖DQ1/2‖ ≤ 1 implies that Q1/2D2Q1/2 ¹ I, which in turn implies that

QD2Q ¹ Q. Next, the fact that w ∈ Nw0((1 − α)η, γ, θ) implies that rd − ηr0
d = Qt for
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some vector t. We use these facts along with (170) to observe that
∥∥∥∥∥∥∥




D(rd − ηr0
d)

rV − ηr0
V




∥∥∥∥∥∥∥
=

[
tT (QD2Q)t + ‖rV − ηr0

V ‖2
]1/2

≤ [
tT Qt + ‖rV − ηr0

V ‖2
]1/2

=
[|||rd − ηr0

d|||2Q + ‖rV − ηr0
V ‖2

]1/2 ≤ θ
√

µ. (224)

The result now follows by combining bounds (220)–(224) into (219).

3.10 CQP Algorithm for a Class of Preconditioners: Con-
cluding Remarks

In this paper, we presented two important extensions to the results of [33]. First, we

extended the available choices of preconditioners in the recipe for constructing inexact search

directions to a whole class of preconditioners which includes the MWB preconditioner used

in [33] as a special case. These preconditioners are indexed by a positive semidefinite matrix

F , and convergence using these preconditioners depends on how well F approximates D̂2.

Second, we presented the HANE as a new method to determine an approximate search

direction in the inexact PDIPF algorithm.

In the specific case of LP, the results presented in this paper can be simplified consid-

erably. First, the HANE reduces to the standard normal equation, since Q = 0. It follows

that the residual rV disappears, as does (175) and the constant g in (173). These facts

imply that the constant τq is unnecessary, and hence we may set ξ := γσ/(4
√

n) in (197).

It also follows that the last inequality in the definition of Nw0(η, γ, θ) in (177) disappears,

and hence we may choose θ = 0. It follows that the constants Ψ and Ψ̂ in Lemma 3.8.2

can be tightened by removing terms containing θ. Finally, it is clear that one may use the

starting point u0 = 0 for the iterative solver. This follows from the fact that only the first

component of u0 in (206) is involved in LP, and that s′ may be chosen so that y′ = y0.

One added benefit of the MWB preconditioner T̂ discussed in Subsection 3.8.2 is the

fact that T̂HT̂ T º I, as was shown in [44]. Thus the Adaptive PCG (APCG) method

in [43] may be used as the iterative solver to determine an approximate solution to the
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preconditioned HANE. The APCG method, applied to the preconditioned HANE with

initial preconditioner T̂ , determines a solution u such that ‖f‖H−1 ≤ δ−1‖f0‖H−1 in at

most

O(log det(T̂HT̂ T ) + (m + l)1/2 log δ)

iterations (see [43]). Since

log det(T̂HT̂ T ) ≤ (m + l) log λmax(T̂HT̂ T ) ≤ 2(m + l) log ϕ bA,

it follows that a suitable approximate solution to the HANE can be found in at most

O((m + l) log ϕ bA + (m + l)1/2 log(nϕ bA)) (225)

iterations of the APCG method. One unique feature of the APCG method is that the

preconditioner T̂ is updated to better condition the preconditioned matrix. The bound (225)

assumes that we form v according to (201) using the preconditioner G = T̂−1T̂−T employed

at the beginning of the APCG method. It would be interesting to investigate whether v

could be formed using the preconditioner after it is updated during the APCG method.

One question which would need to be addressed is whether the updated preconditioner fits

into the form G = ÂF ÂT required for the results in Section 3.8 to hold. Exploring adaptive

preconditioning strategies, such as the one employed by the APCG method, for generating

inexact search directions in the context of the inexact PDIPF algorithm is certainly an

interesting area for future research.
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CHAPTER IV

THE ADAPTIVE PRECONDITIONED CONJUGATE

GRADIENT ALGORITHM

4.1 Introduction

In this chapter, we will present a new procedure for determining the solution x∗ to the

system Ax = b, where A is a real, positive definite n×n matrix and b is a real n-dimensional

vector. Solution methods for this classic problem are varied and wide-ranging; some of these

methods date back centuries (e.g. Gaussian elimination), while others are more recent.

However, all methods for solving the above system of equations fall into one of two primary

categories: direct methods and iterative methods. Direct methods first build a factorization

of A, then perform a series of substitutions to determine x∗. In contrast, iterative methods

create a sequence of points {xj} which converge to x∗.

Iterative methods possess several advantages when compared with their direct counter-

parts, including (1) the development of intermediate, “approximate” solutions, (2) faster

performance on sparse, well-conditioned systems, and (3) lower memory storage require-

ments. On the other hand, iterative methods have a convergence rate which depends on the

condition number of the matrix A. This, combined with the cumulative effects of roundoff

errors in finite-precision arithmetic, may make iterative methods ineffective when employed

on extremely ill-conditioned systems.

The most well-known of the iterative methods is the conjugate gradient (CG) method.

This method is known to have excellent theoretical properties, to include n-step finite

termination. However, under finite arithmetic these properties are lost, and the CG method

behaves similarly to other iterative methods, with a convergence rate proportional to the

square root of the condition number of A.

In this chapter, we will adapt the CG method so that our convergence rate depends,
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not on the square root of the condition number of A, but on the logarithm of the deter-

minant of A. We do this by using an adaptive preconditioning strategy, one which first

determines the quality of our preconditioner matrix at the current iterate. If the quality of

the preconditioner is good, then we use it to perform a standard CG iteration. If the pre-

conditioner is of poor quality at the current iterate, the preconditioner will be updated by

multiplying it by a rank-one update matrix. This update matrix, which incorporates ideas

from the Ellipsoid Method (see e.g. [26, 46]) and is reminiscent of the update matrices used

in space dilation methods (see e.g. [57, 58]), reduces the determinant of the preconditioned

matrix, while keeping the minimum eigenvalue bounded away from zero. We note that our

algorithm places one key restriction on A, namely that the minimum eigenvalue of A be at

least one.

The early development of the CG method dates to the 1950’s, particularly to the seminal

work of Hestenes and Stiefel [21]. CG methods based on preconditioners, known as pre-

conditioned CG (PCG) methods, we first proposed in the early 1960’s. Since then, a wide

array of preconditioners have been suggested, many for specific classes of problems. For

descriptions of preconditioners currently employed with the PCG algorithm, see [20, 54].

The early history of the PCG method is detailed in the survey work by Golub and O’Leary

[18]. The PCG method has been widely used in optimization; see for example [42, 53].

Finally, for those unfamiliar with the PCG method, a good introduction is presented in

[56].

Our chapter is organized as follows. Subsection 4.1.1 presents terminology and notation

which are used throughout the chapter. Section 4.4 introduces the adaptive preconditioning

strategy in the context of the steepest descent method in order to avoid obfuscating its

main ideas due to the challenges inherent in the analysis of the PCG method. Section 4.3

is devoted to two sets of results pertaining to the PCG method. In Subsection 4.3.1, some

classical theoretical results are reviewed, and in Subsection 4.3.2, some new convergence

rate results are obtained in the case where the preconditioner matrix is of good quality

over the first j iterates. In Section 4.4, the adaptive preconditioning strategy is extended

to the context of the PCG method and as a result, an adaptive PCG method is developed

104



and corresponding convergence results are derived. Some numerical results regarding the

APCG method are given in Section 4.5, and concluding remarks are presented in Section

4.6.

4.1.1 Terminology and Notation

Throughout this chapter, uppercase Roman letters denote matrices, lowercase Roman letters

denote vectors, and lowercase Greek letters denote scalars. The set Rn×n denotes the set of

all n×n matrices with real components; likewise, the set Rn denotes the set of n-dimensional

vectors with real components. Linear operators (except matrices) will be denoted with script

uppercase letters.

Given a linear operator F : E 7→ F between two finite dimensional inner product

spaces (E, 〈·, ·〉E) and (F, 〈·, ·〉F ), its adjoint is the unique operator F∗ : F 7→ E satisfying

〈F(u), v〉F = 〈u,F∗(v)〉E for all u ∈ E and v ∈ F . A linear operator G : E 7→ E is called

self-adjoint if G = G∗. Moreover, G is said to be positive semidefinite (resp. positive definite)

if 〈G(u), u〉E ≥ 0 for all u ∈ E (resp., 〈G(u), u〉E > 0 for all 0 6= u ∈ E).

Given a matrix A ∈ Rn×n, we denote its eigenvalues by λi(A), i = 1, . . . , n; its maximum

and minimum eigenvalues are denoted by λmax(A) and λmin(A), respectively. If a symmetric

matrix A is positive semidefinite (resp. positive definite), we write A º 0 (resp., A Â 0);

also, we write A º B to mean A − B º 0. Given A Â 0, the condition number of A,

denoted κ(A), is equal to λmax(A)/λmin(A). The size of the matrix A, denoted size(A), is

the number of bits required to store the matrix A. The identity matrix will be denoted by I;

its dimensions should be clear from the context. The notation ‖x‖ denotes Euclidean norm

for vectors, i.e. ‖x‖ =
√

xT x. The function log α denotes the natural logarithm of α. Finally,

the set B(0, 1) denotes the Euclidean ball centered at the origin, i.e. B(0, 1) := {z : ‖z‖ ≤ 1}.

4.2 The Adaptive Steepest Descent Algorithm

In this section, we introduce the concept of adaptive preconditioning in the context of the

preconditioned steepest descent (PSD) algorithm to develop an adaptive PSD algorithm.

The section is divided into two subsections. In Subsection 4.2.1, we motivate the concept

of adaptive preconditioning by discussing the PSD algorithm and showing how a generic
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update matrix F , applied to the original preconditioner matrix C, can improve the conver-

gence of the algorithm. In Subsection 4.2.2, we present the update matrix F and prove that

it has the properties required for the Adaptive PSD Algorithm in Subsection 4.2.1.

4.2.1 Motivation from the Steepest Descent Method

In this subsection, we discuss the motivation behind adaptive preconditioning procedures.

Let x∗ = A−1b denote the unique solution to Ax = b. The following “energy” function

will play an important role in the analysis of the algorithms discussed in this chapter:

ΦA(x) :=
1
2
(x− x∗)T A(x− x∗). (226)

Notice that the gradient of this function is

∇ΦA(x) = Ax− b =: g(x).

The methods described in this chapter reduce the energy function (226) at each step. We

note, however, that this function is never evaluated in the course of our algorithms. Rather,

it just serves as an analytic tool in the complexity analysis of the algorithms discussed in

this chapter.

All methods in this chapter are gradient methods. Recall that a gradient method (for

minimizing ΦA(·)) is a method which generates a sequence of iterates {xk} according to

xk+1 = xk + αkdk, where dk is a search direction satisfying dT
k g(xk) < 0 and αk > 0 is a

stepsize chosen so that ΦA(xk+1) < ΦA(xk) (see page 25 in Bertsekas [?]). In this chapter,

we will only discuss gradient methods in which the sequence of stepsizes {αk} is chosen

using the minimization rule, i.e. αk = argmin{ΦA(xk + αdk) : α ≥ 0}.
The following definition provides a means for determining “good” search directions in

gradient methods.

Definition 3 Given a constant ζ > 0 and a point x ∈ Rn such that g := g(x) 6= 0, we say

that a search direction 0 6= d ∈ Rn is ζ-scaled at x if

√
(gT A−1g)(dT Ad) ≤ −

√
ζ(gT d). (227)
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It turns out that if d is ζ-scaled at x, then minimizing ΦA along the ray {x+αd : α ≥ 0}
yields a significant reduction in ΦA(·). Indeed, Definition 1 ensures that d is a descent

direction at x, since the left hand side of (227) is strictly positive. Moreover, it can be

shown that

αnew := argmin{ΦA(x + αd) : α ≥ 0} = − dT g

dT Ad

and
ΦA(x)− ΦA(xnew)

ΦA(x)
=

(gT d)2

(gT A−1g)(dT Ad)
,

where xnew = x + αnewd (see Chapter 7.6 in Luenberger [35]). Hence, if d is ζ-scaled at x,

Definition 1 implies that the next iterate xnew satisfies

ΦA(xnew) ≤
(

1− 1
ζ

)
ΦA(x). (228)

Thus, if all search directions of a gradient method are ζ-scaled at their respective iterates,

the method will obtain an iterate xk such that ΦA(xk) ≤ εΦA(x0) in at most O(ζ log ε−1)

iterations.

We now give a sufficient condition for a search direction d of the form d = −CCT g(x),

where C ∈ Rn×n is an invertible matrix, to be well-scaled at x. We first give a definition.

Definition 4 For a given constant ν > 0, a matrix C ∈ Rn×n is called a ν-preconditioner

at x if C is invertible and gT C(CT AC)CT g ≤ ν‖CT g‖2, where g = g(x).

Proposition 4.2.1 If CT AC º ξI for some ξ > 0, and if C is a ν-preconditioner at a

point x such that g = g(x) 6= 0, then d = −CCT g is (ν/ξ)-scaled at x.

Proof: Note first that d 6= 0 since g 6= 0 and C is invertible. The assumption CT AC º
ξI implies that (CT AC)−1 ¹ ξ−1I, and hence

gT A−1g = (CT g)T (CT AC)−1(CT g) ≤ ξ−1(gT CCT g) = −ξ−1gT d.

The assumptions that C is a ν-preconditioner at x and d = −CCT g clearly imply that

dT Ad ≤ −ν(gT d). The conclusion that d = −CCT g is (ν/ξ)-scaled at x follows by noting

Definition 1 and combining the above two inequalities.

We will now outline a basic step of our adaptive preconditioned steepest descent (APSD)
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algorithm under the assumption that A º I. At every iteration of this method, we generate

preconditioners C satisfying Definition 4 and CT AC º I. For reasons that will become

apparent later, we assume from now on that ν > n. Suppose that x is the current iterate

and C is an invertible matrix such that CT AC º I. (If x is the first iterate, we can set

C = I since we are assuming that A º I; otherwise, we can let C be the preconditioner

used to compute the search direction at the previous iterate.) If C is a ν-preconditioner

at x, we can use it to generate a search direction at x according to Proposition 4.2.1. If

C is not a ν-preconditioner at x, we can obtain a ν-preconditioner at x by successively

post-multiplying the most recent C by an invertible matrix F satisfying the following three

properties:

P1. F = σ1I + σ2ppT for some vector p ∈ Rn and constants σ1 and σ2,

P2. F (CT AC)F = (CF )T A(CF ) º I, and

P3. detF ≤ η(ν) :=
√

n/ν exp{(1− n/ν)/2} < 1.

We will describe how to construct a matrix satisfying properties P1–P3 in Subsection 4.2.2.

The process of replacing C by CF will be referred to as an update of C. For now, we will

make a few observations regarding these updates. Property P2 ensures that the updated

matrix CF still satisfies the requirement that (CF )T A(CF ) º I. Moreover, properties

P2 and P3 together ensure that after a finite number of updates of the form C ← CF , a

ν-preconditioner C at x will be obtained. Indeed, since

det F (CT AC)F = (detF )2 det CT AC ≤ η(ν)2 detCT AC, (229)

we see that detCT AC decreases by a factor of η(ν)2 each time an update C ← CF is

performed. Since by property P2, detCT AC ≥ 1 for every preconditioner C generated, it

is clear that only a finite number of updates can be performed.

Finally, property P1 ensures that the process of updating C to CF is a simple process

requiring O(n2) flops if C is kept in explicit form. On the other hand, if C is kept in factored

form (i.e., C = F1 · · ·Fl, where l is the total number of updates performed throughout the
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method), then each matrix Fj requires O(n) units of storage, and multiplying Fj by a vector

requires O(n) flops.

We are now ready to state the main algorithm of this section using the above ideas.

Algorithm APSD

Start: Given A º I, x0 ∈ Rn, b ∈ Rn, and constants ν > n and ε > 0.

1. Set i = 0, g0 = Ax0 − b, and C = I.

2. While ΦA(xi) > εΦA(x0) do

(a) d = −CCT gi

(b) α = −gT
i d/(dT Ad)

(c) If α < ν−1 then

• Create an update matrix F satisfying properties P1–P3 above

• Set C = CF and go to step 2(a)

end (if)

(d) xi+1 = xi + αd

(e) gi+1 = gi + αAd

(f) Set i = i + 1

end (while).

Let us make a few observations about the above algorithm. First, if ν ≥ λmax(A),

then it is clear that no updates will be performed and that the algorithm reduces to the

standard SD algorithm. Hence, the novel and interesting case to consider is when ν is

chosen so that ν < λmax(A). Second, notice that the test α < ν−1 performed in step 2(c)

of Algorithm APSD is equivalent to testing whether C is a ν-preconditioner at xj . This

follows by inserting the definition of d given in 2(a) into the formula for α in 2(b). Finally,

observe that whenever the test in step 2(c) is satisfied, an update is made to the matrix C.

The following theorem details the main convergence results for Algorithm APSD.
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Theorem 4.2.2 Assume that A º I and that ν < λmax(A) in Algorithm APSD. Then, the

following statements hold:

(a) The number of updates is bounded by Nψ := (log detA)/(ψ−1 − 1 + log ψ), where

ψ := ν/n.

(b) The number of iterates xi generated by the algorithm cannot exceed dν log ε−1e.

(c) The algorithm has an arithmetic complexity of O(n2(Nψ +ν log ε−1)) flops if C is kept

in explicit form, and O(max{nNψ, n2}(Nψ + ν log ε−1)) flops if C is kept in factored

form.

Proof: For the proof of (a), let Ck denote the preconditioner matrix in Algorithm

APSD after k updates have been performed. In view of (229), we have that det(CT
k ACk) ≤

η(ν)2k detA. Also, property P2 implies that det(CT
k ACk) ≥ det(I) = 1. Combining these

two inequalities yields 1 ≤ η(ν)2k det A. By taking logarithms on both sides of this equa-

tion, we get that k ≤ [log detA]/[2 log(1/η(ν))]. Statement (a) follows by substituting the

definition of η(ν) given in P3 into this inequality.

For (b), notice that we require α ≥ ν−1 at iterate xj before we generate a new iterate

xj+1. Equivalently, we ensure that the matrix C is a ν-preconditioner at iterate xj before

generating xj+1. The assumption that A º I and property P2 ensure that CT AC º I;

hence Proposition 4.2.1 implies that the search direction d used to generate xj+1 is ν-scaled

at xj . As a result, ΦA(xj+1) ≤ (1 − ν−1)ΦA(xj) by (228), and the result follows by using

standard arguments.

For the proof of (c), we begin by claiming that the process used to create an update

matrix F requires O(n2) flops if C is kept in explicit form, and O(max{nNψ, n2}) flops if C

is kept in factored form. (The proof of this fact follows immediately from Theorem 4.2.6 and

equation (235) in Subsection 4.2.2.) Based on this result, it is clear that a single iteration or

update of Algorithm APSD requiresO(n2) flops if C is kept explicitly andO(max{nNψ, n2})
flops if C is kept in factored form. The result follows from this observation and statements

(a) and (b).

It is interesting to examine how Nψ varies for ψ ∈ (1, λmax(A)/n). Note that Nψ is a
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strictly decreasing function of ψ, since the function ψ−1 − 1 + log ψ is strictly increasing

for all ψ > 1. Moreover, it is easy to see that Nψ → ∞ as ψ ↓ 1. Next, if we denote the

eigenvalues of A by λi(A), we see that

log detA = log

(
n∏

i=1

λi(A)

)
=

n∑

i=1

log λi(A) ≤ n log λmax(A).

Hence, if ψ ↑ λmax(A)/n, then we have

Nψ ≤ n log λmax(A)
log ψ − 1

= O
(

n log λmax(A)
log λmax(A)− log n− 1

)
= O(n).

Hence, the value of Nψ decreases from infinity toO(n) as ψ increases from one to λmax(A)/n.

While the SD algorithm is not necessarily polynomial in n and the size of A, the

following lemma shows that Algorithm APSD is, under some reasonable assumptions on

ψ ∈ (1, λmax(A)/n).

Lemma 4.2.3 Let ψ := ν/n, and assume that max{ψ, (ψ − 1)−1} = O(p(n)) for some

polynomial p(·). Assume also that A is a rational matrix such that A º I. Then, the

arithmetic complexity of Algorithm APSD is polynomial in n and the sizes of A and ε−1.

Proof: Let us first get an upper bound on h(ψ) := [ψ−1 − 1 + log ψ]−1. If ψ > 3/2,

then it is clear that h(ψ) = O(1), so assume that ψ ≤ 3/2. Using the assumption that

(ψ − 1)−1 = O(p(n)) and the fact that log ψ ≥ (ψ − 1)− (ψ − 1)2/2 for all ψ ≥ 1, we have

that

[ψ−1 − 1 + log ψ]−1 ≤
[
1− ψ

ψ
+ (ψ − 1)− (ψ − 1)2

2

]−1

=
[
(ψ − 1)2

(
1
ψ
− 1

2

)]−1

≤
[
(ψ − 1)2

(
2
3
− 1

2

)]−1

= 6(ψ − 1)−2 = O(p2(n)).

Hence, we see that Nψ = O(p2(n) log det A). Next, Theorem 3.2 of [55] shows that

size(detA) ≤ 2 size(A). Using this result along with the fact that log detA = O(size(detA))

and the bound on Nψ, we have that Nψ = O(p2(n)size(A)). It is clear that the assumption

ψ = O(p(n)) implies that ν = ψn = O(np(n)). The result follows from these facts and

Theorem 4.2.2(c).
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4.2.2 The Ellipsoid Preconditioner

In this subsection, we will show how we can construct a matrix F which satisfies properties

P1–P3.

Our first lemma gives necessary and sufficient conditions for F to satisfy P2.

Lemma 4.2.4 Let Â Â 0 and F ∈ Rn×n be given. Then, FÂF º I if and only if E(Â) ⊆
E(F ), where

E(F ) := {Fu : u ∈ B(0, 1)},

E(Â) := {z : zT Âz ≤ 1}.

Proof: Let U denote the boundary of B(0, 1), i.e. U := {u : uT u = 1}. We have

E(Â) ⊆ E(F ) ⇔ Fu /∈ int E(Â), ∀ u ∈ U

⇔ (Fu)T Â(Fu) = uT (FÂF )u ≥ 1, ∀ u ∈ U

⇔ FÂF º I.

Our update matrix F possesses the following special property: its ellipsoid E(F ) is the

minimum volume ellipsoid containing a certain “stripe” Π intersected with the unit ball.

The next lemma provides the details surrounding the construction of F .

Lemma 4.2.5 Let a unit vector p ∈ Rn and a constant τ < 1 be given, and consider the

stripe Π := Π(p, τ) = {z : |zT p| ≤ τ}. Then, the smallest volume ellipsoid containing

Π ∩B(0, 1) is E(F ), where

F = F (p, τ) := µ(I − ppT ) + θppT , (230)

with

θ = θ(τ) := min{τ√n, 1}, and (231)

µ = µ(τ) :=

√
n− θ2

n− 1
. (232)
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Moreover, if τ < n−1/2, we have

detF ≤ τ
√

n exp{(1− τ2n)/2} < 1. (233)

Proof: For the proof of the first part of the lemma, see Theorem 2(ii) in [59]. We will

only prove equation (233). Since p is a unit vector, it is clear that p is an eigenvector of

F with eigenvalue θ. In addition, any vector perpendicular to p is also an eigenvector of

F with eigenvalue µ. Since detF is equal to the product of its eigenvalues, it follows that

det F = θµn−1. Also, the assumption that τ < n−1/2 and (231) imply that θ = τ
√

n < 1.

Using the above observations together with the fact that 1 + ω ≤ exp(ω) for all ω ∈ R, we

obtain

det F = θµn−1 = θ

[
n− θ2

n− 1

]n−1
2

= θ

[
1 +

1− θ2

n− 1

]n−1
2

≤ θ

[
exp

{
1− θ2

n− 1

}]n−1
2

= θ exp{(1− θ2)/2} = τ
√

n exp{(1− τ2n)/2} < 1,

where the last inequality is due to the facts that f(s) = s exp[(1 − s2)/2] is a strictly

increasing function over the interval [0, 1] and f(1) = 1.

We will now show how to construct a matrix F satisfying P1–P3 under the assumptions

that Â = CT AC º I, ν > n, and C is not a ν-preconditioner at x. First, we observe that

since Â º I, we have E(Â) ⊆ B(0, 1). Suppose now that a unit vector p and a scalar τ are

chosen so that E(Â) ⊆ Π, where Π = Π(p, τ) is the stripe defined in Lemma 4.2.5. Then,

the matrix F = F (p, τ) given by (230) clearly satisfies property P1 and, by Lemma 4.2.5,

we have

E(Â) ⊆ Π ∩B(0, 1) ⊆ E(F ).

This together with Lemma 4.2.4 implies that F satisfies property P2.

We will now show how to construct a unit vector p and a scalar τ so as to ensure that

E(Â) ⊂ Π(p, τ) and that property P3 also holds under the assumptions above. Indeed, since

C is not a ν-preconditioner at x, it follows from Definition 2 that w := CT g(x) satisfies

wT Âw > ν‖w‖2. (234)
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Figure 1: Vector p normal to boundary of E(Â); stripe Π.

Now, letting y := w/
√

wT Âw, we have that yT Ây = 1, that is, y lies on the boundary of

E(Â). As Figure 1 illustrates, the boundary of our stripe Π will consist of the hyperplanes

tangent to the boundary of E(Â) at y and −y. It is easy to show that Π = {z : |zT p| ≤ τ},
where

p :=
Âw

‖Âw‖
=

Ây

‖Ây‖
and τ :=

√
wT Âw

‖Âw‖
. (235)

We note that the formula for p follows from the fact that the vector Ây is normal to the

boundary of E(Â) at the point y, since the gradient of the function zT Âz at y is 2Ây. This

construction clearly implies that E(Â) ⊆ Π.

It remains for us to show that the matrix F satisfies property P3. Indeed, by (233) and

the fact that f(s) = s exp{(1−s2)/2} is strictly increasing on the interval [0, 1], we conclude

that F satisfies property P3 whenever the condition τ
√

n ≤
√

n/ν < 1 holds. The latter

inequality holds due to the assumption that ν > n, while the first inequality is due to the

fact that relations (234) and (235) and the Cauchy-Schwartz inequality imply that

τ =

√
wT Âw

‖Âw‖
=

wT Âw

‖Âw‖
√

wT Âw
≤ ‖w‖√

wT Âw
< ν−1/2.

Notice that the construction above does not use the facts that Â = CT AC and w =

CT g(x), but only the facts that Â º I and (234) hold. Hence in the discussion above we

have established the following more general result.
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Theorem 4.2.6 Let Â º I be given, and let ν > n be a given constant. Suppose that a

vector w ∈ Rn satisfies (234), and let p, τ , and F = F (p, τ) be determined by equations

(235) and (230), respectively. Then, the matrix F satisfies properties P1–P3, i.e.

(P1) F = µI + (θ − µ)ppT , where µ and θ are given by (231) and (232), respectively;

(P2) FÂF º I; and

(P3) detF ≤
√

n/ν exp{(1− n/ν)/2} < 1.

Before we end this section, we will briefly motivate the remaining part of this chapter.

Note that in Algorithm APSD, we either perform a standard SD iteration or an update of the

preconditioner matrix C at each step. These two sets of computations require roughly the

same number of arithmetic operations in view of Theorem 4.2.2(c), and hence may be consid-

ered equivalent from a complexity standpoint. For the purpose of the discussion in this para-

graph, we will refer to both sets of computations as iterations of the whole algorithm. Recall

that the standard SD algorithm has an iteration-complexity of O(κ(A) log ε−1). In view of

our assumption that λmin(A) ≥ 1, this implies that the SD algorithm has an iteration-

complexity of O(λmax(A) log ε−1), and that all search directions in the SD algorithm are

λmax(A)-scaled. By contrast, Algorithm APSD forces its search directions to be ν-scaled

at every iteration; as a result, the algorithm achieves an improved iteration-complexity of

O(Nψ + ν log ε−1). On the other hand, the conjugate gradient (CG) algorithm is known to

possess an iteration-complexity of O(
√

κ(A) log ε−1) ≤ O(
√

λmax(A) log ε−1). Hence, it is

natural to conjecture whether we can reduce its iteration-complexity to O(Nψ +
√

ν log ε−1)

by means of an adaptive preconditioning scheme. We will show that this is indeed possible.

The development of an adaptive PCG (APCG) algorithm and the proof of its convergence

properties is the subject of the remainder of this chapter.

4.3 The Conjugate Gradient Method Revisited

In this section, we examine the conjugate gradient algorithm in detail. The section is

divided into two subsections: Subsection 4.3.1 is devoted to a review of classical results,
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while Subsection 4.3.2 presents new convergence rate results obtained under the assumption

that the preconditioner matrix is a good preconditioner at iterates x0, . . . , xj .

4.3.1 Review of the Classical Conjugate Gradient Algorithm

In this subsection, we review the classical preconditioned conjugate gradient (PCG) algo-

rithm and some of its well-known theoretical properties.

The PCG algorithm is an iterative algorithm which generates a sequence {xi} of ap-

proximate solutions to the system Ax = b, where A Â 0. The PCG algorithm, which is

stated next, uses an invertible matrix Z ∈ Rn×n as a preconditioner.

PCG Algorithm:

Start: Given A Â 0, b ∈ Rn, an invertible matrix Z ∈ Rn×n, and x0 ∈ Rn.

1. Set g0 = Ax0 − b, d0 = −ZZT g0, and γ0 = ‖ZT g0‖2.

2. For i = 0, 1, . . . do

(a) xi+1 = xi + αidi, where αi = γi/(dT
i Adi)

(b) gi+1 = gi + αiAdi

(c) γi+1 = ‖ZT gi+1‖2

(d) di+1 = −ZZT gi+1 + βi+1di, where βi+1 = γi+1/γi

end (for).

To present the main theoretical results associated with the PCG algorithm, we introduce

the following notation.

Â := ZT AZ, (236)

ĝi := ZT gi, (237)

Ŝi := span{ĝ0, . . . , Â
iĝ0}, (238)

Si := ZŜi = {Zv : v ∈ Ŝi}. (239)

A well-known interpretation of the PCG method is that the sequence of points {x̂i} defined

as x̂i := Z−1xi is the one that is generated by the standard CG algorithm applied to the
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system Âx̂ = b̂, where Â is defined in (236) and b̂ := ZT b. Moreover, the gradient of the

energy function Φ bA(·) associated with this system at x̂i is equal to ĝi as defined in (237).

The following proposition follows from the above observations and the properties of the

standard CG algorithm:

Proposition 4.3.1 Each step i of the PCG algorithm possesses the following properties:

(a) Ŝi = span{ĝ0, . . . , ĝi};

(b) ĝT
i ĝj = 0 for all i < j;

(c) ĝT
i Âĝj = 0 for all i ≤ j − 2; and

(d) xi = argmin{ΦA(x) : x ∈ x0 + Si−1}.

Proof: See e.g. pages 295-7 of [62].

We note that these properties may fail to hold under finite arithmetic. Indeed, the PCG

method relies heavily on the fact that the search directions d̂i in the transformed space

are conjugate to one another (i.e. d̂T
i Âd̂j = 0 for i 6= j). However, under finite-precision

arithmetic, it is well-known that the search directions will often lose conjugacy and may

become linearly dependent (see e.g. [20]). As a result, the PCG algorithm tends to perform

poorly on extremely ill-conditioned systems.

On the other hand, when Â is well-conditioned, the PCG algorithm performs reasonably

well. As we will see in the next subsection, a weaker condition for the PCG algorithm to

perform well at iterates x0, . . . , xj is for Z to be a good preconditioner at these iterates.

4.3.2 Revisiting the Performance of the PCG Algorithm

In this subsection, we examine the rate of convergence of the iterates x0, . . . , xj of the PCG

algorithm under the assumption that Z is a good preconditioner at those iterates.

First, assume that Z is a ν-preconditioner at xi and that ZT AZ º ξI for some positive

constants ν and ξ. Let x̃i+1 be the point obtained by taking a step of the PSD algorithm

at xi using Z as preconditioner. Using the fact that, by Lemma 4.2.1, d = −ZZT gi is
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ν/ξ-scaled at xi along with (228) and statements (a) and (d) of Proposition 4.3.1, we have

that

ΦA(xi+1) ≤ ΦA(x̃i+1) ≤
(

1− 1
χ

)
ΦA(xi), (240)

where χ := ν/ξ. Hence, if Z is a ν-preconditioner at x0, . . . , xj−1, we obtain

ΦA(xj) ≤
(

1− 1
χ

)j

ΦA(x0).

It turns out that we can derive a convergence rate stronger than the one obtained above,

as the following theorem states.

Theorem 4.3.2 Assume in Algorithm PCG that Z is a ν-preconditioner at xi for all i =

0, . . . , j, and that Â º ξI. Further, let us define χ := ν/ξ. Then,

ΦA(xj) ≤ 4χ

(√
3χ− 1√
3χ + 1

)2j

ΦA(x0).

The proof of this theorem will be given at the end of this subsection after we present

some technical results.

We begin with some important definitions. First, consider the linear operator Bj : Ŝj 7→
Ŝj defined as

Bj(u) := PbSj
(Âu), (241)

where PbSj
denotes the orthogonal projection operator from Rn onto Ŝj . Since for all u, v ∈

Ŝj ,

uTBj(v) = uT PbSj
(Âv) = (PbSj

u)T Âv = uT Âv, (242)

and Â Â 0, it follows that Bj is self-adjoint and positive definite, and hence invertible. Next,

define the function Ψj : x0 + Sj−1 7→ R as

Ψj(x) :=
1
2
[ZT g(x)]TB−1

j [ZT g(x)]. (243)

Before continuing, we need to show that Ψj(·) is well-defined on the affine space x0 + Sj−1,

i.e. that ZT g(x) ∈ Ŝj for all x ∈ x0 +Sj−1. In fact, this assertion follows from the inclusion

ĝ0 + ÂŜj−1 ⊆ Ŝj , which holds in view of (238), and the following technical result.
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Lemma 4.3.3 Define

Pj := {Pj : Pj is a polynomial of degree at most j such that Pj(0) = 1}. (244)

Then, the following statements are equivalent:

i) x ∈ x0 + Sj−1;

ii) ZT g(x) ∈ ĝ0 + ÂŜj−1;

iii) ZT g(x) ∈ Pj(Â) ĝ0 for some Pj ∈ Pj.

Proof: The equivalence between ii) and iii) is obvious in view of (238) and the definition

of Pj . Now, (236), (237), and (239) imply that

x ∈ x0 + Sj−1 ⇔ x− x0 ∈ ZŜj−1 ⇔ ZT A(x− x0) ∈ ÂŜj−1

⇔ ZT (g(x)− g0) ∈ ÂŜj−1 ⇔ ZT g(x) ∈ ĝ0 + ÂŜj−1,

i.e. i) and ii) are equivalent.

The relevance of the function Ψj is revealed by the following lemma, which relates the

functions ΦA(·) and Ψj(·) on the space x0 + Sj−1.

Lemma 4.3.4 Let x ∈ x0 + Sj−1, and let xj+1 be the j + 1-st iterate of the PCG method.

Then

ΦA(x)− ΦA(xj+1) = Ψj(x). (245)

Proof: Let u ∈ Ŝj be given, and define v := B−1
j (u) ∈ Ŝj . By the definition of Bj ,

u = Bj(v) = Âv + p for some unique vector p = p(u) ∈ Ŝ⊥j . Thus,

Â−1u = v + Â−1p. (246)

Multiplying (246) by pT and using the facts that v ∈ Ŝj and p ∈ Ŝ⊥j , we obtain

uT Â−1p = vT p + pT Â−1p = pT Â−1p. (247)
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On the other hand, multiplying (246) by uT and using (247), we see that

uT Â−1u = uT v + uT Â−1p = uTB−1
j (u) + uT Â−1p = uTB−1

j (u) + pT Â−1p. (248)

Now, let x ∈ x0 + Sj−1 be given. We will show that (248) with u = ZT g(x) implies

(245). Indeed, first note that ZT g(xj+1) ∈ Ŝ⊥j in view of (237) and statements (a) and (b)

of Proposition 4.3.1. Moreover, since x, xj+1 ∈ x0 + Sj , it follows from Lemma 4.3.3 that

ZT g(x) − ZT g(xj+1) ∈ ÂŜj . These two observations together imply that if u = ZT g(x)

then p(u) = ZT g(xj+1). The result now follows from equality (248) with u = ZT g(x)

and p = ZT g(xj+1), the definition of Ψj and the fact that ΦA(x) = 1
2g(x)T A−1g(x) =

1
2(ZT g(x))T Â−1(ZT g(x)) for every x ∈ Rn.

Lemma 4.3.5 Assume in Algorithm PCG that Z is a ν-preconditioner at xj, and that

ZT AZ º ξI. Then,
ΦA(xj)
ΦA(x0)

≤ χ
Ψj(xj)
Ψj(x0)

,

where χ := ν/ξ.

Proof: Since Z is a ν-preconditioner at xj , equation (240) holds for i = j. By rear-

ranging the terms in (240) and invoking Lemma 4.3.4 with x = xj , we see that

ΦA(xj) ≤ χ[ΦA(xj)− ΦA(xj+1)] = χΨj(xj). (249)

Moreover, Lemma 4.3.4 along with the facts that x0 ∈ x0 + Sj−1 and ΦA(xj+1) ≥ 0 imply

that ΦA(x0) ≥ Ψj(x0). Combining this inequality with (249) yields the desired result.

Observe that Theorem 4.3.2 gives an upper bound on the ratio ΦA(xj)/ΦA(x0). In view

of Lemma 4.3.5, such an upper bound can be obtained by simply developing an upper bound

for the ratio Ψj(xj)/Ψj(x0), which will be accomplished in Lemma 4.3.7 below. First, we

establish some bounds on the eigenvalues of Bj in the following result.

Lemma 4.3.6 Assume in Algorithm PCG that Z is a ν-preconditioner at every xi for

i = 0, . . . , j, and that ZT AZ º ξI. Then, all of the eigenvalues of Bj lie in the interval
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[ξ, 3ν].

Proof: Since Bj is self-adjoint, its eigenvalues are all real-valued. To prove the con-

clusion of the lemma, it suffices to prove that ξuT u ≤ uTBj(u) ≤ 3ν(uT u) for all u ∈ Ŝj .

However, in view of (242), we have that uTBju = uT Âu for all u ∈ Ŝj . Thus, it suffices to

prove that

ξuT u ≤ uT Âu ≤ 3ν(uT u) for all u ∈ Ŝj . (250)

To that end, let u ∈ Ŝj be given. Since Â º ξI, we have that ξuT u ≤ uT Âu, proving the

first inequality in (250). Next, by Proposition 4.3.1(a), there exist α0, . . . , αj ∈ R such that

u =
∑j

i=0 αiĝi. Using Proposition 4.3.1(b), we see that

uT u =

(
j∑

i=0

αiĝi

)T (
j∑

i=0

αiĝi

)
=

j∑

i=0

α2
i ‖ĝi‖2. (251)

The fact that Z is a ν-preconditioner at xi implies that ĝT
i Âĝi ≤ ν‖ĝi‖2 for i = 0, . . . , j. Us-

ing this fact, along with Proposition 4.3.1(c), the Cauchy-Schwartz inequality, and equation

(251), we have that

uT Âu =

(
j∑

i=0

αiĝi

)T

Â

(
j∑

i=0

αiĝi

)
=

j∑

i=0

α2
i ĝT

i Âĝi + 2
∑

0≤i<l≤j

αiαl ĝT
i Âĝl

= ν

j∑

i=0

α2
i ĝ

T
i ĝi + 2

j−1∑

i=0

αiαi+1ĝ
T
i Âĝi+1,

≤ ν

j∑

i=0

α2
i ‖ĝi‖2 + 2

j−1∑

i=0

|αi||αi+1|
√

ĝT
i Âĝi

√
ĝT
i+1Âĝi+1,

≤ ν

j∑

i=0

α2
i ‖ĝi‖2 + 2

j−1∑

i=0

|αi| |αi+1| (
√

ν‖ĝi‖)(
√

ν‖ĝi+1‖),

≤ ν

j∑

i=0

α2
i ‖ĝi‖2 +

j−1∑

i=0

(
να2

i ‖ĝi‖2 + να2
i+1‖ĝi+1‖2

)
,

≤ 3ν

j∑

i=0

α2
i ‖ĝi‖2 = 3ν(uT u),

where in the second to last inequality we use the fact that 2βγ ≤ β2 + γ2 for all β and γ.

Thus, the second inequality in (250) holds.

The following lemma provides a bound on the ratio Ψj(xj)/Ψj(x0).
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Lemma 4.3.7 Assume in Algorithm PCG that Â º ξI, and that Z is a ν-preconditioner

at every xi for i = 0, . . . , j. Then,

Ψj(xj)
Ψj(x0)

≤ 4
(√

3χ− 1√
3χ + 1

)2j

.

Proof: Let λ0, . . . , λj denote the eigenvalues of Bj . We begin by observing that since

Bj is self-adjoint, it has an orthonormal basis of eigenvectors v0, . . . , vj associated with its

eigenvalues λ0, . . . , λj , which all lie in the interval [ξ, 3ν] by Lemma 4.3.6. Using the fact

that ZT g0 = ĝ0 clearly belongs to Ŝj in view of (237) and (238), we conclude that there

exist α0, . . . , αj ∈ R such that ZT g0 =
∑j

i=0 αivi. By equation (243), we have that

Ψj(x0) =
1
2

(
j∑

i=0

αivi

)T

B−1
j

(
j∑

i=0

αivi

)
=

1
2

(
j∑

i=0

αivi

)T (
j∑

i=0

αi

λi
vi

)
=

1
2

j∑

i=0

α2
i

λi
.

Next, let x ∈ x0 + Sj−1 be given. In view of Lemma 4.3.3, there exists Pj ∈ Pj such that

ZT g(x) = Pj(Â)ĝ0. Using (238) and the fact that Âu = Bj(u) for all u ∈ Ŝj , we easily see

that

ZT g(x) = Pj(Â)ĝ0 = Pj(Bj)(ĝ0) = Pj(Bj)

(
j∑

i=0

αivi

)
=

j∑

i=0

αiPj(λi)vi.

Thus, in view of (243), we have

Ψj(x) =
1
2

(
j∑

i=0

αi[Pj(λi)]vi

)T

B−1
j

(
j∑

i=0

αi[Pj(λi)](vi)

)

=
1
2

(
j∑

i=0

αi[Pj(λi)]vi

)T (
j∑

i=0

αi[Pj(λi)]B−1
j (vi)

)

=
1
2

(
j∑

i=0

αi[Pj(λi)]vi

)T (
j∑

i=0

αi

λi
[Pj(λi)]vi

)
=

1
2

j∑

i=0

α2
i

λi
[Pj(λi)]2

≤
{

max
i=0,...,j

[Pj(λi)]2
}

Ψj(x0) ≤ max
λ∈[ξ,3ν]

[Pj(λ)]2Ψj(x0),

where the last inequality is due to the fact that λi ∈ [ξ, 3ν] for all i = 0, . . . , j. The last

relation together with Lemma 4.3.3 then imply

min
x∈x0+Sj−1

Ψj(x) ≤
[

min
Pj∈Pj

{
max

λ∈[ξ,3ν]
[Pj(λ)]2

}]
Ψj(x0) ≤ 4

(√
3χ− 1√
3χ + 1

)2j

Ψj(x0),
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where the last inequality is well-known (see for example pages 55-56 of [56]). The result

now follows by noting that Proposition 4.3.1(d) and the fact that, by Lemma 4.3.4, Ψj(·)
and ΦA(·) differ only by a constant on x0 + Sj−1, imply that Ψj(xj) = minx∈x0+Sj−1 Ψj(x).

We now note that Theorem 4.3.2 follows as an immediate consequence of Lemma 4.3.5

and Lemma 4.3.7.

4.4 An Adaptive PCG Algorithm

In this section, we will develop an algorithm which incorporates the adaptive preconditioning

scheme from Section into the PCG method. We start by discussing a step of our adaptive

PCG (APCG) algorithm. A step falls into one of the following three categories: (i) a

standard PCG iteration, (ii) an update of the preconditioner matrix Z followed by a one-

step backtrack in the PCG algorithm if possible, or (iii) an update of the preconditioner

matrix Z followed by a restart of the PCG algorithm. To describe a general step of the

APCG algorithm, suppose that we have already generated the jth iteration of the PCG

algorithm using Z as a preconditioner. Assume that Z satisfies ZT AZ º ξI for some

ξ ∈ (0, 1], and that Z is a ν-preconditioner at the PCG iterates x0, . . . , xj−1 for some

constant ν > n. (In the first step of the APCG algorithm, we assume that A º I; hence we

may choose Z = I and ξ = 1.) We will split our discussion into two cases, depending on

whether Z is a ν-preconditioner at xj .

If Z is a ν-preconditioner at xj , then we simply perform a PCG iteration with Z as the

preconditioner, which corresponds to a step of type (i). Assume from now on that Z is not

a ν-preconditioner at xj . In this case, the step of the APCG algorithm consists of updating

Z and ξ, then either backtracking one PCG iteration if possible (i.e., a type (ii) step) or

restarting the PCG algorithm with ξ reset to one (i.e., a type (iii) step). More specifically,

let C := ξ−1/2Z, and note that Â := CT AC º I. The facts that Z is not a ν-preconditioner

at xj and that ξ ≤ 1 imply that

gT
j C(CT AC)CT gj =

1
ξ2

gT
j Z(ZT AZ)ZT gj >

1
ξ2

ν‖ZT gj‖2 =
ν

ξ
‖CT gj‖2 ≥ ν‖CT gj‖2.
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Hence w := CT gj satisfies equation (234); as a result, we may use Theorem 4.2.6 to generate

an update matrix F satisfying properties P1–P3. Next, let H := F/µ, where µ is given by

(232). It is important to observe that H takes the following form:

H = I + ζppT ,

where p is parallel to Âĝj and ζ is a constant. By Proposition 4.3.1(c), we have that p ⊥ ĝi

for all i ≤ j − 2, and as a result, Hw = w for all w ∈ Ŝj−2. Using this fact, it is easy to see

that

1. The PCG algorithms corresponding to Z and ZH are completely identical up to step

j − 2 and generate the same iterate xj−1, and

2. ZH is a ν-preconditioner at x0, . . . , xj−2.

Moreover, the preconditioner ZH satisfies

(ZH)T A(ZH) = µ−2(ZF )T A(ZF ) = ξµ−2CT AC º ξµ−2I.

Hence, by performing the updates Z ← ZH and ξ ← ξµ−2, we have that ZT AZ º ξI. Also,

by condition 2 above, if we replace j by max{j−1, 0}, we have the conditions assumed at the

beginning of this step. The process of replacing Z by ZH, ξ by ξµ−2, and j by max{j−1, 0}
is a type (ii) step of the APCG algorithm. Note that a backtrack is possible if and only if

j > 0.

The above description of a step would be complete were it not for the fact that ξ might

get too small, which would adversely affect the rate of convergence of the PCG algorithm

in view of Theorem 4.3.2. To prevent this from occurring, we perform a type (iii) step

whenever ξ becomes too small. More specifically, fix a constant δ ∈ (0, 1). Perform the

updates Z ← ZH and ξ ← ξµ−2 as before (in the case where Z is not a ν-preconditioner at

the current iterate xj). Next, check to see whether ξ > δ. If it is, we complete a type (ii)

step by replacing j ← max{j − 1, 0} as in the previous paragraph. Otherwise, if ξ ≤ δ, we

complete a type (iii) step by restarting the PCG algorithm (with j = 0) using the last PCG

iterate as the starting point with the preconditioner Z updated to ξ−1/2Z and ξ updated to
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1 in this exact order. Note that these last two updates preserve the fact that ZT AZ º ξI

and also prevents ξ from becoming too small by resetting it to one. Note also that if j is

set to zero in a type (ii) step, the PCG algorithm clearly restarts, but ξ is not reset to one

as is done in a type (iii) step.

We are now ready to state our main algorithm.

Algorithm APCG:

Start: Given A º I, b ∈ Rn, x0 ∈ Rn, and constants ν > n, δ ∈ (0, 1), and ε > 0.

1. Set Φ0 = ΦA(x0) and Z = I.

2. Set i = 0, ξ = 1, g0 = Ax0 − b, d−1 = 0, β0 = 0, and γ0 = ‖ZT g0‖2.

3. While ΦA(xi) > εΦ0 do

(a) While gT
i Z(ZT AZ)ZT gi > νγi do

i. Build a matrix F per Theorem 4.2.6 with w := ξ−1/2ZT gi and Â := ξ−1ZT AZ

ii. Set Z = ZF/µ and ξ = ξµ−2, where µ is given by (232)

iii. If ξ ≤ δ then go to Step 2 with Z := ξ−1/2Z and x0 := xi

iv. Set i = max{i− 1, 0}

end (while)

(b) di = −ZZT gi + βidi−1, where βi = γi/γi−1

(c) xi+1 = xi + αidi, where αi = γi/(dT
i Adi)

(d) gi+1 = gi + αiAdi

(e) γi+1 = ‖ZT gi+1‖2

(f) Set i = i + 1

end (while).

Note that in the above algorithm, xi may denote several ith iterates of the PCG method,

since the latter may be restarted several times during the course of Algorithm APCG. We

now present the main convergence result we have obtained for Algorithm APCG, which

shows that an ε-solution to Ax = b can be obtained in O(Nψ +
√

n log ε−1) steps.
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Theorem 4.4.1 Assume that the starting conditions of Algorithm APCG are met, and that

ν = O(n) and max{(1 − δ)−1, δ−1} = O(1). Then, Algorithm APCG generates a point xi

satisfying ΦA(xi) ≤ εΦ0 in

O (
Nψ +

√
n log ε−1

)

steps, where Nψ is defined in Theorem 4.2.2(a).

Proof: For the purposes of this proof, we say that a cycle begins whenever step 2

of Algorithm APCG occurs, or equivalently, whenever ξ is reset to one, and that a cycle

ends whenever a new one begins. Consider any iterate xi in Algorithm APCG such that

ΦA(xi) > εΦ0, and let l denote the cycle number in which this iterate occurs. Also, for

any cycle r < l, let ir and yr denote the last PCG iterate number and last PCG iterate,

respectively, of that cycle. Finally, we define

t := i +
l−1∑

r=1

ir.

(The index t denotes the “current” PCG iterate number, if the iterate count is not reset to

0 when a restart occurs.)

Recall that at the beginning of this section, we divided the steps in Algorithm APCG

into types (i)–(iii). Our objective is to bound the number of these steps required to get

to iterate xi. Let us first consider the number of type (ii) and (iii) steps. If we define

C := ξ−1/2Z, it is clear that C = F1 · · ·Fk, where the matrices Fj , j = 1, . . . , k, are the

ones obtained via Theorem 4.2.6. Thus, an argument similar to the one given in Theorem

4.2.2(a) can be used to show that the number of updates is bounded by Nψ. Since each

type (ii) and (iii) step requires that an update be performed, the number of type (ii) and

(iii) steps is bounded by Nψ.

Let us now consider the number of type (i) steps required to get to iterate xi. We

observe that when a type (ii) step occurs, one PCG iteration may be lost; thus, the total

number of type (i) steps cannot exceed t plus the number of type (ii) steps. Hence, we have

the following bound on the total number of steps:

Total steps ≤ t + (number of type (ii) steps) + Nψ = t +O(Nψ). (252)
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It remains for us to determine a valid bound on t. To that end, let us examine the perfor-

mance of the PCG iterates within a given cycle. In particular, consider the final step of the

first cycle; it is clear that the current PCG iterate for this step is y1 = xi1 . At the beginning

of this step, we have a preconditioner Z which is a ν-preconditioner at x0, . . . , x(i1−1) and

which satisfies ZT AZ º ξI. Hence, we apply Theorem 4.3.2 with j = i1 − 1 and use the

fact that ΦA(xi1) ≤ ΦA(x(i1−1)) by Proposition 4.3.1(d) to obtain

ΦA(y1) = ΦA(xi1) ≤ ΦA(x(i1−1)) ≤ 4χ

(
1− 2√

3χ + 1

)2(i1−1)

Φ0.

Now y1 also serves as the starting iterate for the second cycle; as a result, we have that

ΦA(y2) ≤ 4χ

(
1− 2√

3χ + 1

)2(i2−1)

ΦA(y1) ≤ (4χ)2
(

1− 2√
3χ + 1

)2(i1+i2−2)

Φ0.

By induction, it follows that

ΦA(xi) ≤ (4χ)l

(
1− 2√

3χ + 1

)2t−2l

Φ0.

We use this result along with the fact that ΦA(xi) > εΦ0 to observe that

ε < (4χ)l

(
1− 2√

3χ + 1

)2t−2l

≤ (4χ)l exp
{−4t + 4l√

3χ + 1

}
.

By taking logarithms on both sides of this inequality, we obtain

t <
1
4

[(√
3χ + 1

) (
l log(4χ) + log ε−1

)]
+ l = O (

l
√

χ log χ +
√

χ log ε−1
)
. (253)

We will now show that l = O(Nψ/n). Observe that since (1−δ)−1 = O(1), we have that

log δ−1 ≥ ω for some constant ω > 0. Suppose that since the beginning of a cycle, we have

performed k updates on the preconditioner Z, and assume that k < ω(n − 1). It follows

that k < (n − 1) log δ−1, and by rearranging terms, we have that δ < exp{−k/(n − 1)}.
However, notice that in step 3(a)ii of Algorithm APCG, we have by (232) that

µ2 =
n− θ2

n− 1
≤ n

n− 1
= 1 +

1
n− 1

≤ exp
{

1
(n− 1)

}
,

i.e., µ−2 ≥ exp{−1/(n − 1)}. Hence, our current ξ ≥ exp{−k/(n − 1)}, which implies

that ξ > δ. Thus, we can still perform another update within the same cycle. This

127



shows that the number of updates in a complete cycle is ≥ ω(n − 1), which implies that

l ≤ Nψ/[ω(n− 1)] + 1 = O(Nψ/n).

To obtain a bound on χ, we observe that at each type (i) step, ξ > δ. In view of the

assumptions that δ−1 = O(1) and ν = O(n), it follows that χ = νξ−1 < νδ−1 = O(n). We

incorporate the bounds on l and χ into (253) to conclude that

t = O
(

Nψ log n√
n

+
√

n log ε−1

)
= O(Nψ +

√
n log ε−1). (254)

The result follows by incorporating this bound into (252).

It is important to observe that by using analysis similar to Lemma 4.2.3, it can be shown

that Algorithm APCG is also a polynomial-time algorithm under the same assumptions as

those given in that lemma.

We conclude the section by discussing some computational aspects of Algorithm APCG.

It is important to note that if step 3(a) occurs repeatedly, we may find ourselves regressing

through the PCG iterates. As a result, we need to either keep all of the PCG data in

memory or determine a way to recreate the data as needed. When lack of memory is an

issue, the latter option is the only viable alternative. In such a case, it is easy to see that

all of the iterates and search directions generated by the PCG algorithm can be recreated

by only storing the constants βi in memory and by simply reversing the PCG algorithm.

4.5 Numerical Results

In this section, we provide numerical results for testing we have done using the APSD/APCG

algorithms. All tests were run in Linux on a Pentium 4M 1.9 GHz processor with 1.0 GB

RAM, using MATLAB Student Version 6, Release 12.

We conducted a series of preliminary tests on various algorithms, including APSD,

APCG, APCG with limited preconditioners, and combinations of the above. The best

algorithm from a practical standpoint, and the one whose results are presented below, is

apsd to pcg.m. This algorithm begins by setting the preconditioner C = I, then performs

the APSD algorithm from Subsection 4.2.1 until either the desired accuracy is reached, or

until SD ≥ P + 20, where SD is the number of steepest descent steps and P is the number
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of preconditioners created. If the desired accuracy has not yet been reached, the algorithm

then transitions to the standard PCG method, using the preconditioner created in the

APSD algorithm. It should be noted that the APSD algorithm in apsd to pcg.m varies

from the one given in Subsection 4.2.1 to allow for matrices of the form A º δI. Specifically,

the following changes are made to step 2(c) to the APSD algorithm:

• Change the test from α < ν−1 to α < (νδ)−1, and

• Change the definition of τ in (235) to τ :=
√

δ · wT Âw/‖Âw‖.

The tests below compare the convergence of Algorithm apsd to pcg.m with the standard

MATLAB PCG algorithm without preconditioners. For each test, we also present the

accuracy of the solution x obtained via a direct method, namely Cholesky factorization, for

comparison with our method. It should be noted that on better-conditioned matrices in the

tests below, Cholesky gives a much more accurate solution than our method. This follows

from the fact that our method terminates once the desired accuracy of 10−6 is reached. We

should also point out that the PCG portion of Algorithm apsd to pcg.m may terminate

prior to obtaining a solution of accuracy 10−6, for various reasons (for example, the PCG

algorithm will terminate if a constant fails to satisfy required bounds, or if the algorithm

stalls).

The matrices A and vectors x0 and b were determined according to the following algo-

rithms:

• Matrix A: Given user-defined dimension n and constant const, for i = 1 : n, set

d(i) = consti × rand(1) and [Q, R] = qr(rand(n)). Next, define A = Q ∗ diag(d) ∗ Q′;
then set A = A + A′ (to ensure symmetry); and finally set A = A/trace(A).

• Vector x0: set x0 = zeros(n,1).

• Vector b: set b = rand(n, 1).

Throughout the tests below (except as noted), the user-defined constants were set to

the values shown in Table 4. Table 5 presents notation used in Tables 6–8, and Tables 6, 7,

and 8 present the numerical results for test matrices 1–5, 6–10, and 11–15, respectively. In
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Table 4: User-Defined Values for Algorithm apsd to pcg.m with A ∈ Rn×n

Constant Value
ν 2n
δ 2−40

max precond 1.5n
ε 1e− 6

Table 5: Notation for Tables 6–8

Notation Description
κ(A) Condition number of A

CH acc. Accuracy of Cholesky Factorization Method
ATP acc. Accuracy of Algorithm apsd to pcg.m (ATP)

#SD Number of steepest descent steps taken by ATP
#PCG Number of PCG steps taken by ATP

#P Number of updates made to the preconditioner C in ATP
CG acc. Accuracy obtained by best CG iterate after 10000 iterations

many tests, the value for CG accuracy is 1e0; this indicates that the best iteration found by

CG was the starting vector x0. Some additional comments regarding Table 8 are required

here:

* Test #11: The CG method converged within the desired tolerance of 10−6 in 2899

iterations; in all other tests, the CG method failed to converge in 10000 iterations.

** Test #15: Algorithm apsd to pcg.m failed to converge using δ = 2−40; the results

shown are for δ = 2−50.

The following observations can be deduced from the results in Tables 6–8. First, it is

Table 6: Results of tests: n = 100, const = 1.3

Test κ(A) CH acc. ATP acc. #SD #PCG #P CG acc.
1 1.624e+12 2.187e-6 5.266e-6 100 83 80 1e0
2 6.724e+11 1.301e-5 2.218e-5 101 72 81 1e0
3 2.287e+12 1.039e-5 1.379e-5 100 113 80 6.238e-1
4 1.169e+12 3.213e-6 1.227e-5 102 93 82 6.994e-1
5 1.624e+12 2.922e-6 3.364e-6 101 78 81 6.561e-1
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Table 7: Results of tests: n = 200, const = 1.1

Test κ(A) CH acc. ATP acc. #SD #PCG #P CG acc.
6 4.761e+9 2.330e-9 9.328e-7 83 0 200 2.393e-2
7 1.017e+9 6.637e-9 6.407e-7 83 0 200 1.514e-2
8 7.166e+9 1.600e-8 1.722e-7 98 0 200 6.718e-1
9 2.813e+9 1.139e-8 8.435e-7 87 0 199 1.262e-1
10 1.163e+9 6.385e-9 8.445e-7 88 0 201 1.231e-2

Table 8: Results of tests: n = 500, const varies

Test const κ(A) CH acc. ATP acc. #SD #PCG #P CG acc.
11* 1.02 6.407e+6 6.415e-12 9.415e-7 68 0 505 7.618e-7
12 1.03 1.113e+8 3.350e-10 9.753e-7 98 0 504 2.374e-2
13 1.04 3.626e+10 3.966e-8 3.323e-7 470 3 450 1e0
14 1.05 1.133e+12 2.930e-6 7.863e-6 386 502 366 1e0

15** 1.06 2.185e+14 2.922e-4 3.141e-4 449 196 429 1e0

clear that the APSD algorithm creates an excellent preconditioner C = F1 · · ·Fk, normally

after about k = O(n) updates. (For example, in tests 14 and 15, the final preconditioned

matrices CT AC have condition number 8.804e+3 and 1.803e+3, respectively.) Once the

preconditioner is created, the PCG algorithm tends to converge quickly. Second, when the

matrix is better conditioned, as in tests 6–12 in Tables 7–8, the APSD algorithm will often

find a solution within the desired tolerance, without ever passing to the PCG Algorithm.

Finally, the choice of δ seems to be quite important, as note (**) for test 15 indicates.

Indeed, the APSD algorithm as implemented assumes that A º δI, hence λmin(A) ≥ δ. If

δ is chosen much larger than λmin(A), then the updates created by the algorithm are still

valid; however, the APSD algorithm may not create a sufficient number of updates, and

the PCG algorithm may fail to converge as a result. We can almost always guarantee a

reasonable level of convergence, simply by choosing δ sufficiently small.

We should mention one unfortunate aspect of the algorithm: it does appear that the

algorithm must create almost all of the required preconditioners before quick convergence

in PCG can be ensured. This fact, along with the observation that the vectors p in (235)

are likely to be dense, implies that the method as currently implemented will not work as
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effectively on sparse matrices as it will on dense matrices. Investigating possible extensions

of our algorithm to sparse matrices is certainly an important area for future research.

4.6 Concluding Remarks

It is well-known that under exact arithmetic, the standard CG algorithm terminates in at

most n iterations. However, in finite-precision arithmetic, the standard CG algorithm loses

this property and instead possesses an iteration-complexity bound of O(
√

κ(A) log ε−1).

Our algorithm also loses its theoretical properties under finite arithmetic; indeed, Lemma

4.3.6 relies heavily on statements (b) and (c) of Proposition 4.3.1, which only hold under

exact arithmetic. Nevertheless, one may hope to gain significant reductions in the number

of CG iterations using our algorithm in finite-precision arithmetic, since the update matrices

Fj have the effect of making the preconditioned matrix ZT AZ better conditioned as the

algorithm progresses.

One important assumption in our algorithm is the requirement that A º I. It is possible

to ensure that this assumption holds for matrices for which A Â 0, simply by premultiplying

A by some large positive constant ω ≥ (λmin(A))−1. In a future paper, we wish to relax

the requirement that A º I, as well as provide further computational results measuring the

performance of our approach.
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CHAPTER V

CONCLUSION

The results in this thesis have been primarily in two areas. In IPMs, we were able to prove

theoretical complexity results for inexact PDIPF algorithms for LP and CQP. It is clear

that the inner iteration results obtained for those algorithms depend on two key facts: (1)

the initial energy and desired final energy of the residual for the normal equation, and (2)

the properties of the preconditioner used in the preconditioned iterative solver and in the

computation of the correction term v. For the outer iteration results, we were able to show

that by distributing the error from the normal equation in a suitable manner, we were still

able to obtain polynomial convergence in a manner similar to the exact algorithms given in

[68] and [72].

With regard to the APCG method, we were able to take an algorithm with iteration

complexity O(
√

κ(A) log ε−1) and reduce its complexity to O(log detA +
√

n log ε−1) iter-

ations through the use of adaptive preconditioning. In practice, the algorithm appears to

produce k ≤ n updates to the preconditioners, where k denotes the number of “large”

eigenvalues of A; once these updates are built, the PCG algorithm with this preconditioner

performs extremely well.

Numerous extensions to this research are possible. With regard to IPMs, the most

likely extension of our results lies in the area of semidefinite programming (SDP). In SDP,

numerous problems arise for which it is much easier to multiply by the normal equation

operator AE−1FA∗ than it is to form and factorize it as a matrix. In this case, iterative

methods such as in Chapter 4 might be extremely useful in obtaining an approximate

solution to the normal equation. Distributing the error from the normal equation would

then ensure polynomial convergence in the outer iterations, as we have proven for LP and

CQP.

One of the current drawbacks of the APCG method lies in the fact that numerous
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updates must be created before substantial improvement is seen in the number of CG iter-

ations. This can create substantial memory issues on large, sparse problems. Two possible

solutions are (1) developing a new method for finding the vectors w which strengthens the

updated preconditioner and (2) making the vectors p sparse, thus making it easier to store

and multiply by the vectors. These possibilities are certainly important areas for potential

research.
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