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SUMMARY 

As CMOS technology continuous to be aggressively scaled, it approaches a point where classical 

physics is insufficient to explain the behavior of a MOSFET. At this classical physics limit, a quantum 

mechanical model becomes necessary to provide thorough assessment of the device performance and 

scaling. This thesis describes advanced modeling of nanoscale bulk MOSFETs incorporating critical 

quantum mechanical effects such as gate direct tunneling and energy quantization of carriers.  

In the gate tunneling analysis, an explicit expression of gate direct tunneling for thin gate 

oxides has been developed by solving the Schrödinger equation analytically. In addition, the impact of 

different gate electrode as well as gate insulation materials on the gate direct tunneling is explored. 

This results in an analytical estimation of the potential solutions to excessive gate leakage current. 

The energy quantization analysis involves the derivation of a quantum mechanical charge 

distribution model by solving the coupled Poisson and Schrödinger equations. Based on the newly 

developed charge distribution model, threshold voltage and subthreshold swing models are obtained. A 

transregional drain current model which takes into account the quantum mechanical correction on 

device parameters is derived. Results from this model show good agreement with numeric simulation 

results of both long-channel and short-channel MOSFETs, thus validating the analysis  

The models derived here are used to project MOSFET scaling limits. These limits of bulk 

MOSFETs are predicted according to various criteria, including circuit power and delay, device 

leakage current and the system uniformity requirement. Tunneling and quantization effects cause large 

power dissipation, low drive current, and strong sensitivities to process variation, which greatly limit 

CMOS scaling. Developing new materials and structures is imminent to extend the scaling process.  
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CHAPTER 1   

INTRODUCTION 

1.1 Introduction and Background 

For the last three decades, the semiconductor industry has strived to miniaturize 

the structure of the MOSFET, which is shown in Figure 1.1. Following Moore’s Law [1], 

the size of the transistor is reduced by a factor of 0.7 each technology generation. 

According to the International Technological Roadmap for Semiconductors (ITRS) [2], 

the gate length ( GL ) of the MOSFET transistor will shrink to 30 nm in 2008, leading to 5 

billion MOSFETs on one application-specific integrated circuit (ASIC) chip.  
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Figure 1.1 
Structure of a bulk MOSFET transistor. 

 
 

There are many reasons to pursue miniaturization including: (1) the cost per 

transistor is reduced as a MOSFET occupies less area; (2) more transistors can be 
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integrated on the chip, therefore, it can perform more complex functions; (3) capacitances 

are reduced, which in turn reduces the time and power required to switch a MOSFET. 

Despite its potential advantages, miniaturization presents a series of challenges to device 

design. 

First, the power consumption of a system increases dramatically at 

high-frequency operation. Therefore, the heat generation by a high frequency silicon chip 

is tremendously high, and the cooling of the chip becomes difficult and, sometimes, 

practically impossible for some low-power applications. Supply voltage ( ddV ) reduction 

is an effective method to reduce the power consumption per device. However, lowering 

power supply voltage reduces the operational speed of MOSFETs. Hence, controlling 

power consumption has been a primary concern in MOSFET scaling. It has been found 

that in order to maintain the switching speed of a MOSFET, its threshold voltage ( THV ) 

should be reduced at the same rate the supply voltage is reduced. However, low threshold 

voltage can lead to excessive subthreshold leakage current in a MOSFET. In addition, the 

threshold voltage is reduced by decreasing the oxide layer thickness ( oxt ) in a bulk 

MOSFET, which causes leakage through the gate oxide. Thus, the relationship between 

power consumption and operation speed is critical in obtaining optimal scaled devices.  

Second, the MOSFET characteristics degrade with the reduction in size. Two key 

characteristics are threshold voltage ( THV ) and subthreshold swing ( S ), known as 

short-channel effects (SCEs). Threshold voltage decreases and subthreshold swing 

increases because of two-dimensional (2-D) electrostatic charge sharing between the gate 

and the source-drain regions. Consequently, the on-to-off current ratio is reduced 

substantially, which results in a significant increase in standby power and compromised 
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overall performance. Additionally, SCEs exacerbate susceptibility to process variations. 

To scale down the channel length ( L ) without excessive SCEs, both the oxide thickness 

( oxt ) and the gate-controlled depletion depth ( d ) should be reduced. For the 90 nm 

technology node, oxt  is 1.2 nm, corresponding to six atomic layers of silicon oxide [2, 

3]. Further reducing oxt  is increasingly more difficult and will cause severe gate leakage 

[4-6].  

Finally, classical physics is insufficient to understand fully the behavior of 

MOSFETs at small dimensions. The channel length of modern MOSFETs is approaching 

the mean distance between carrier collisions, with the oxide layer thickness reaching the 

dimension of a few atomic layers [4-7]. In this situation, significant deviation from the 

classical calculation is observed in the behavior of MOSFETs, which must be explained 

by quantum theory. 

1.2 Origin of the Problem 

The fundamental distinction of quantum theory from classical physics is that 

infinitely small particles are treated as waves. Unlike the “solid billiards” with definite 

positions and velocities assumed in classical theory, particles in quantum theory are 

waves dispersed in space. This quantum mechanical description of a particle is 

represented by the wave function ( )rψ , such that the probability of finding the particle 

in the volume 3dr  is equal to ( ) 2 3r drψ . The wavefunction of a carrier in a 

semiconductor satisfies the Schrödinger Equation [8, 9]: 

 ( ) ( ) ( )
2

2

0

( )
2 C EU r V r r E r

m
ψ ψ ψ− ∇ + + =⎡ ⎤⎣ ⎦ , (1.1) 
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where 34/ 1.054 10h J Sπ −= = × i  is the reduced Planck constant, 27
0 0.911 10  m g−= ×  

is the electron rest mass, ( )CU r  is the periodic internal crystalline potential, ( )EV r  is 

the external potential resulting from an applied electric field, and E is the energy of the 

carrier. If the dimension of the crystal is large compared to the atomic dimension, the 

external potential can be considered a small perturbation on the crystalline potential. 

Considering the crystalline potential only results in  

 ( ) ( )
2

2

0

( )
2 C C C CU r r E r

m
ψ ψ ψ− ∇ + = . (1.2) 

From Bloch’s Theorem [9, 10], since ( )CU r  is periodic with the periodicity of 

the lattice, ( ) ( )C CU r U r R= + , there exists a wavevector k  (in 1[ ]cm− ) in the 

reciprocal lattice and a periodic function ( )k rϕ  such that ( ) ( )k kr r Rϕ ϕ= +  and Cψ  

is of the form 

 ( ) ( ) ( )exp ,C kr ik r k rψ ϕ= ⋅ . (1.3) 

The solution of equations (1.2) and (1.3) gives the relationship of energy versus the 

wavevector ( E k−  relationship) and, thereby, the band structure of semiconductors [9]. 

The movement of carriers follows the E k−  relationship, so that they can be considered 

as classical particles with the effective mass *m  (in [ ]g ) given by  

 
12

*
2 2

1 d Em
dk

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (1.4) 

With the effective mass, the motion of carriers under the applied field is handled by the 

classical method as 
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 * dvF qE m
dt

= − = , (1.5) 

where the force F  (in [ ]N ) is caused by the applied electric field, 191.602 10  q C−= ×  

is the electron charge, E  (in [ /V cm ]) is applied electric field, v  (in [ / ]cm s ) is the 

velocity of an electron, and t  (in [ ]s ) is the time. Therefore, in a relatively weak 

external field, carriers comply with the classical theory from a macroscopic view and the 

quantum nature of the carriers is concealed by the effective mass approximation [9]. In 

this way, equation (1.1) is solved by two steps: numerically solving equation (1.2) for the 

E k−  relationship and the effective mass, and applying equation (1.5) for the motion of 

carriers in the external field.  

However, such simplification does not apply when the dimension is extremely 

small and the external field is large. In this case, the external field cannot be considered 

as a small perturbation. Carriers exhibit their quantum mechanical properties in the 

external field and the wave-like behavior, such as tunneling through a potential barrier 

and energy quantization in a potential well, can be directly observed. Corrections should 

be introduced to account for these quantum-mechanical effects (QMEs) in the places 

where potential energy changes sharply. For that reason, it is necessary to deal with the 

external field quantum mechanically, which is given by [9] as 

 ( ) ( ) ( )
2

2
*2 E E E EV r r E r

m
ψ ψ ψ− ∇ + = . (1.6) 

Equation (1.1) is then simplified into two equations as 

 ( ) ( )
2

2

0

( )
2 C C C CU r r E r

m
ψ ψ ψ− ∇ + = , (1.7) 

and 
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 ( ) ( ) ( )
2

2
*2 E E E EV r r E r

m
ψ ψ ψ− ∇ + = . (1.8) 

Therefore, the quantum effects induced by the external fields can be handled separately 

from crystalline potential, and the simplicity of effective mass approximation is 

preserved.  

As MOSFETs are scaled down for Giga-Scale Integration (GSI) [11], quantum 

effects need to be considered in MOSFET design and modeling [2]. In today's CMOS 

technology, the gate oxide thickness of a MOSFET is less than 1.5 nm, and the channel is 

doped as high as 1e18 cm-3 [3, 12]. For MOSFETs with heavily doped channels and 

ultra-thin oxide layers, the field in the oxide can reach a maximum of 5 MV/cm, while the 

field in the silicon region routinely exceeds 1 MV/cm [6]. The combination of the 

ultra-thin oxide layer and the heavily doped channel invalidates the accurate modeling of 

MOSFETs solely by classical physics, and the QMEs of the device must be taken into 

account. The ultra-thin oxide layer reduces the width of the energy barrier that separates 

the gate from the channel, thus making it easier for electrons to tunnel through the 

insulator layer [13-20]. Tunneling also occurs at the source/drain extension region 

overlapping with the gate, making a leakage in addition to the subthreshold current, as 

shown in Figure 1.2. This direct gate tunneling current could be the dominant source of 

device leakage, leading to faulty circuit operation and the increase in standby power in 

the MOSFET. Additionally, band-to-band tunneling (BTBT) is caused by electrons 

crossing a reverse biased p-n junction from the p-side valence band to the n-side 

conduction band [21, 22]. In a MOSFET it is manifested both as gate-induced drain 

leakage (GIDL) in the drain-gate overlap region and reverse-biased junction leakage in 

the halo-implanted region [23, 24]. As the channel length is scaled down to 10 nm and 
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below, it is expected that the source-to-drain tunneling will dramatically affect 

performance. Theoretical studies and simulations show that the source-to-drain tunneling 

dominates off-current at 10 L nm<  and sets an ultimate scaling limit [25, 26].  

 
 
 

 

Figure 1.2 
Tunneling current in a MOSFET. Igs: tunneling between gate and source; Igc: 
tunneling between gate and channel; Igd: tunneling between gate and drain. 

 

 

In addition, energy quantization occurs in the channel near the interface of the 

oxide layer and the silicon channel because of the presence of the strong electric field [5, 

6, 27, 28]. As illustrated by Figure 1.3, quantization leads to the splitting of the 

continuous energy band and the formation of subbands with a two-dimensional (2-D) 

density of states in each one [4, 6, 28-31]. Because of the smaller density of states in the 

2-D system, the net sheet charge density of carriers in the channel is lower than that 

calculated from the classical (3-D) case, as shown in Figure 1.4 [32]. Thus, it requires a 
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larger gate voltage to generate the same charge sheet density in the 2-D inversion layer as 

that in the corresponding 3-D case. Consequently, the threshold voltage increases when 

energy quantization is considered [29, 33]. The laws of quantum mechanics force the 

carrier density to vanish at the silicon/silicon oxide interface, whereas the carrier density 

reaches its peak value at the interface according to classical theory. Therefore, the overall 

distribution of carriers is effectively displaced toward the substrate by the quantization 

effect. This displacement results in a capacitance in series with the oxide layer 

capacitance. In sub-90 nm technologies, where the finite inversion layer thickness can be 

a significant fraction of the physical oxide thickness, the inversion layer capacitance 

causes a considerable discrepancy between the oxide capacitance and the measured gate 

capacitance [2]. For a MOSFET in the superthreshold region, the reduced gate 

capacitance [34] lowers the transconductance and the drive currents [35]. For MOSFETs 

in the subthreshold region, the reduced gate capacitance resulting from QME increases 

the short-channel effects. Therefore, since device behavior is noticeably affected, it is 

important to account for the quantum-mechanical effects in the design of sub-90 nm 

devices [36-39]. In this operational regime, classical models are inadequate and will lead 

to erroneous and misleading predictions of critical device structure and electrical 

behavior parameters, such as the physical oxide thickness, threshold voltage, drive 

current, gate capacitance, and subthreshold swing. 
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Figure 1.3 
Discrete energy levels due to quantization. 

 
 
 

 

 
 
 

 
Figure 1.4 

Electron density profile calculated classically and quantum mechanically by 
SCHRED [32]. 
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1.3 Historical Review of QME Modeling 

Accurately modeling tunneling and quantization in MOSFETs requires the 

multidimensional solution of the Schrödinger and Poisson equations. A lot of work [4, 5, 

13, 40-45] has been devoted to develop algorithms for accurate numeric solutions of 

these equations. However, from a circuit modeling point of view, a one-dimensional 

analytical solution is sufficient to account for the quantum-mechanical correction in the 

classical transport framework of drift-and-diffusion models [46, 47]. Furthermore, 

analytical solutions are preferable because of their simplicity in format and fast 

computational speed. With these analytical solutions, compact physical models can be 

obtained that estimate QMEs on the device comprehensively, making it easy to predict 

device scalability and circuit performance for future technology generations. 

1.3.1 Gate Direct Tunneling 

The gate direct tunneling problem in MOSFETs was first addressed by H. S. 

Momose et al. [48] in 1994 when a high-performance MOSFET was fabricated with a 1.5 

nm thin oxide layer. Although high transconductance is obtained by reducing the gate 

oxide thickness in this device, large gate direct tunneling current is observed. Therefore, 

it is important to investigate the reduction of gate oxide thickness below the tunneling 

limit in small gate length MOSFETs, as it pertains to better current drive and 

transconductance [48].  

Various gate direct tunneling models were developed using numeric methods such 

as Bardeen’s approach [18], the resonant transfer matrix method [4, 5], and 

transparency-based approximations [16, 49]. All results reveal the exponential 

dependence of the gate direct tunneling on gate oxide thickness and show how the 
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standby power consumption restricts the gate direct tunneling current, presenting a severe 

limitation on the gate oxide thickness [6]. Although these models qualitatively indicate 

that excessive leakage aroused by gate direct tunneling potentially degrades circuit 

performance, their time-consuming numeric computations makes them impractical for a 

circuit simulation. Choi [13] studied in detail the impact of the tunneling current in 

different CMOS circuits by applying the macro-circuit model, which relies on the 

extracted tunneling current data from the device simulation of a single MOSFET. The 

results show increased delay and power consumption in both static and dynamic logic 

CMOS circuits. They also show erroneous switching in dynamic logic circuits caused by 

gate tunneling current. However, this model is inadequate for providing further 

information on how to optimize circuit and device design because of the time-consuming 

device simulation. Instead of using data extraction from numeric simulations, the 

semi-empirical tunneling model given in [14, 15, 50] is formulated as an analytical 

expression of terminal voltages. Although this model provides excellent accuracy for a 

large variety of operating conditions and is therefore convenient for circuit simulation 

and design, the empirical parameters are not consistent among technology generations. 

The deficiency of the detailed physics of tunneling makes these models unsuitable for 

long-term projection of the impact of gate direct tunneling on device scaling [51]. 

1.3.2 Energy Quantization 

The phenomenon of inversion charge quantization has been observed for decades, 

but its influence on device performance has been addressed only recently. Early research 

on quantization in the 1970s [52] focused on the computation of electron energy levels 

and the inversion charge distribution of the 2-D gas on subbands. Fang and Howard [53] 
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use the single-electron assumption that all electrons in the channel are deemed equal and 

the energy levels of the electron gas are the same as those of one electron by accounting 

for the applied field and electron-electron repulsion. This approach simplifies the 

calculation and the problem is reduced to calculating the single electron energy levels in a 

potential well. They also approximate the channel as a triangular potential well to 

simplify the calculation of the quantized levels, regardless of the fact that the triangular 

shape does not resemble the potential distribution in the channel in a MOSFET. Stern 

[52] uses a more accurate variational method to solve the coupled Schrödinger and 

Poisson’s equations, giving the analytical expression of the quantized energy levels. 

Their results show the two distinctive differences of between the quantum-mechanical 

solution and the classical models: (1) the channel carriers are distributed among discrete 

energy levels with 2-D density of states instead of the single continuous energy band with 

3-D density of states; (2) the peak of the space carrier concentration is located some 

distance away from the surface of the substrate, which leads to a finite thickness of 

inversion layer. Although these works elucidate the fundamental changes in the carrier 

distribution induced by the quantization effect, it is unclear how the performance of a 

MOSFET is affected. Further research is needed to extend this physical analysis into 

MOSFET voltage and current models for device and circuit design. Consequently, it is 

necessary to incorporate quantization analysis in the capacitance-voltage (C V− ) and 

current-voltage ( I V− ) characteristics. 

1.3.3 Gate Capacitance Degradation 

Inversion charges are characterized by the inversion layer capacitance invC  (in 

[ 2/F cm ]), which is defined as the variation of the inversion charge sheet density invQ  
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(in [C/cm2]) with respect to the surface potential of the channel sφ  (in [ ]V ), i.e. 

inv
inv

s

QC
φ

∂
=

∂
. Classical theory assumes that inversion charges are concentrated beneath 

the gate oxide forming a very thin layer, so that invC  is much larger than the gate oxide 

capacitance oxC  (in [ 2/C cm ]). Consequently, the gate capacitance gC  (in 2[ / ]C cm ), 

the series combination of invC  and oxC , is almost equal to oxC . However, it has been 

observed that gC  could be notably smaller than oxC  in MOSFETs with the ultra-thin 

oxide layers [28, 31, 35, 54]. This discrepancy can be explained by the highly reduced 

invC , which is induced by the finite inversion layer thickness, observed on the quantum 

mechanical analysis. It is proven by Takagi’s experiments [54] that in strong inversion, 

invC  changes linearly with only 1/3
invQ , 1/ 3

inv invC Q∝ , not following inv invC Q∝  as 

predicted by the classical model [10]. The simulation results by Hareland [27, 55] 

coincide with the experiments. The gate capacitance attenuation in the superthreshold 

region is often referred to as transconductance ( mg ) degradation [6, 31, 54-56], since mg  

is approximately m g
Wg C
L

µ= . Similarly, gC  reduction is observed in the subthreshold 

region [30, 57, 58]. As a result, subthreshold swing ( S ) becomes larger, indicating worse 

turn-off characteristics.  

An “effective oxide thickness” is introduced to compensate for the absence of 

inversion layer capacitance in current circuit simulation tools [2, 55, 59]. However, this 

effective oxide thickness is obtained from the measurement of the manufactured 

MOSFET and therefore it is difficult to project the future scalability of the device. 

Furthermore, such simplification fails to take into account the fact that invC  varies with 



 14

gate voltage. An accurate physical model of invC , including the quantization effect, 

yields valuable insights, allowing for projections of the optimal scaling of device 

parameters such as voltage and oxide layer.  

1.3.4 Threshold Voltage Shift  

The 2-D carrier distribution of the subbands and discrete energy levels lead to a 

reduced charge sheet density compared to the classical calculation. Therefore, extra band 

bending is required for an increase in channel carrier density. Van Dort [29] found that 

the calculated threshold voltage in highly doped MOSFETs deviates from experiments. 

He observed that this threshold voltage deviation results from the energy quantization in 

the highly doped channel. Specifically, he observed that the lowest quantized energy 

states for inversion charges rise up from the conduction band bottom, causing an effective 

“band-gap broadening” [29]. Although this model properly attributes the threshold 

voltage shift to the energy quantization, it still treats the inversion charges as a 3-D 

system. The decreased density of states for inversion charge, i.e., from the higher 3-D 

density to the lower 2-D density, has not been accounted for in his model. 

1.3.5 Short-Channel Effects and Quantum Mechanical Effects 

When the channel length of the MOSFET is reduced, depletion charges in the 

channel region are apt to be influenced by the drain as much as by the gate, as shown in 

Figure 1.5. The barrier preventing the carriers in the source from leaking into the channel 

is lowered by the drain voltage, which is usually referred to as drain-induced barrier 

lowering (DIBL) [60, 61]. Because of the undesirable coupling between the channel and 

the drain region, the threshold voltage is reduced, and the subthreshold swing is increased 
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for a transistor with shorter channel length. Such short-channel effects, which degrade the 

off-state performance of MOSFETs and increase the sensitivity to dimensional variations, 

are critical to modern device design [6, 62, 63].  
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Figure 1.5 
Depletion charge distribution influenced by the source/drain in the 

short-channel MOSFET. 

 

 

The analysis of SCEs in miniaturized devices demands the 2-D electrostatic 

potential profile, which is obtained by solving the 2-D Poisson equation. Previous 

analytical solutions, without considering the QMEs [61, 63], indicate that the DIBL is 

highly dependent on the depletion depth and the gate oxide thickness. The energy 

quantization of carriers increases the depletion depth required at the threshold condition, 

giving rise to greater DIBL effects [64]. Although the 1-D solution of Poisson’s equation 

and Schrödinger’s equation leads to the predictive result that SCEs are influenced by the 
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presence of QMEs, quantitative analysis should deal with the 2-D Poisson equation while 

simultaneously considering the charge distribution quantum mechanically. The majority 

of the research on QMEs is based on the solution of the coupled 1-D Poisson equation 

and 1-D Schrödinger equation that does not handle the 2-D geometry of short-channel 

devices. Numeric solutions of the 2-D Poisson equation and Schrödinger equation [40, 

44] provide results showing that QMEs aggravate SCEs quantitatively. However, there is 

still not enough insight into the interrelationship of QMEs and SCEs and their 

dependency on physical parameters.  

1.3.6 I-V Characteristics 

Because of prominent changes in device characteristics resulting from QMEs, it is 

useful to develop a compact MOSFET drain current ( I V− ) model for circuit simulations 

which accounts for the underlying QMEs. Recent numerical simulations [41, 44, 57, 65] 

as well as theoretical studies [56] clearly show that QMEs change the charge distribution 

and, thereby, play an important role in drain current for a state-of-the-art MOSFET. 

Unfortunately, these works fail to provide an explicit expression for the drain current, 

making them difficult to employ for the circuit simulation of future technology 

generations. These works, however, show no obvious alteration for electron transport 

resulting from QMEs. Thus, it is reasonable to develop a quantum-mechanical I V−  

model by combining the quantum mechanical carrier distribution with the classical 

carrier transport based on the Boltzmann transport equation [46, 47, 66]. 

1.3.7 Scaling Limits Projection 

As predicted by the ITRS roadmap [67], the MOSFET must be scaled down by 

various modes to meet the continuous demand for higher speed, integratability, and lower 
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power consumption, etc. The ITRS [67] specifies the different design targets as low 

power, high speed, low standby power for different applications of future systems. 

Different scaling methodologies have been developed for each criterion. The Minimum 

Power Methodology [68] has been proposed to minimize the power consumption under 

the constraint of circuit delay. Frank [62] found the multiple device scaling limits by 

minimizing SCEs with various constraints of low, medium, and high power consumption. 

Following these methodologies and criteria, the device parameters in future technology 

generations can be predicted according to the projected circuit/system performance.  

The absence of QMEs in the previous scaling methodologies makes them 

inappropriate for the projection of sub-90 nm technologies, in which QMEs become 

dominant impeditive factors. Energy quantization reduces the control of SCEs, leading to 

degradation of the performance including worse system uniformity and severe leakage in 

the VLSI system [6]. The conventional scaling method, shrinking the insulator layer to 

suppress SCEs [6, 11, 62, 63], induces the prohibitively large gate tunneling current in 

MOSFETs. Therefore, the circuit/system functionality and performance in future 

generations must be re-examined, including the influence of QMEs. New technologies, 

such as high-permittivity (high-κ) dielectrics, proposed to cope with excessive tunneling 

current and to extend the scaling limit of MOSFETs, can also be evaluated through 

quantum-mechanical models.  

1.4 Scope and Organization 

With MOSFET scaling being challenged by quantum mechanical effects, 

nanoscale device modeling which incorporates them is critical to assist in device design 

as well as to understand the scaling limits. The compact physical model provides insight 
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into both the characteristics of modern semiconductor device and circuit performance 

under the influence of QMEs. Simulation based on the compact physical models reduces 

the cost of developing a novel technology and shortens the time-to-market. They may 

also be utilized to explore innovative device structures. 

This thesis focuses on critical QMEs of bulk MOSFETs in the sub-90 nm regime. 

The main objective is to develop physics-based MOSFET device models including direct 

gate direct tunneling and energy quantization of the carriers. By applying the physical 

device models, we are able to investigate the impact of QMEs on device characteristics 

and circuit/system performance and therefore reveal the remaining potential of CMOS 

technologies under QMEs.  

Chapter 2 is devoted to a thorough examination of gate tunneling in ultra-thin 

oxide MOSFETs. Gate tunneling equations are derived from the solution of the 

Schrödinger equation. This model considers both electron and hole tunneling in 

MOSFETs. In addition, the impact of the polysilicon gate depletion and high-κ  gate 

insulators on gate tunneling is discussed.  

Chapter 3 describes the energy quantization of the carriers in the channel. The 

quantization model is based on the analytical solution of coupled Schrödinger and 

Poisson equations by the variational method. Enforced by the quantiztion effect, carriers 

are distributed on the discrete subbands instead of the continuous energy band depicted 

by classical theory. This deviation from the classical theory critically affects the 

relationship between the density profile of inversion charges and the gate electrode 

voltage. A compact model of the C-V characteristic is presented by considering the 

energy quantization effect on carrier distribution.  
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In Chapter 4, compact models of various device parameters incorporated with the 

energy quantization effect are derived. Key device parameters, such as threshold voltage 

and subthreshold swing, are rederived based on the quantum-mechanical distribution of 

carriers. Their susceptibility to energy quantization effects is discussed in long and short 

channel MOSFETs. The influence of the energy quantization on SCEs is revealed by 

comparing the performance of short-channel and long-channel devices. These models are 

subsequently integrated into the comprehensive I-V model.  

In Chapter 5, the different criteria according to various limiting factors in 

MOSFET scaling are exploited to predict the minimum size of MOSFETs. The 

hierarchical scaling limits at the device, circuit, and system levels are investigated using a 

quantum mechanical model. Predictions based on the classical and quantum models are 

compared to unveil the roles played by QMEs in future technological generations. The 

high-κ  gate dielectric, which could potentially be used to reduce the tunneling current, 

is examined against silicon dioxide in MOSFET scaling. Extension of the scalability of 

bulk MOSFETs by adopting new materials and structures is also discussed.  

Chapter 6 summarizes the findings of this research and suggests possible areas for 

further investigation. 
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CHAPTER 2   

TUNNELING 

2.1 Introduction and Background 

 MOSFETs are scaled down with the purpose of enhancing performance and 

accommodating more devices within the same solid-state real estate. This increases the 

device capacity per wafer, which cuts the manufacturing cost per transistor resulting in 

higher profits. For over thirty years, the feature size of a MOSFET has been reduced 

thanks to the progress in lithography at the rate of 0.7×  every three years [1, 39]. Such 

aggressive scaling of CMOS technology is becoming progressively more difficult 

because of undesirable physical effects in small devices.  

The scaling of MOSFETs is performed in both the vertical and the lateral 

directions. The lateral shrinking is performed to obtain a shorter gate length and a higher 

packing density, while the vertical scaling is necessary to maintain the MOSFET’s 

functionality in view of lateral scaling. When bulk CMOS technology evolves from one 

generation to the next, the channel doping concentration is increased and the gate oxide 

thickness is reduced to mitigate subthreshold leakage currents and manage SCEs [5, 69, 

70]. This process of scaling CMOS has worked well for over the last couple of decades. 

For gate lengths below 90 nm, the gate oxide thickness is estimated to be less than 2 nm 

[2]. In a MOSFET with such ultra-thin oxides, the direct tunneling current is expected to 

contribute significantly to the leakage current [48].  

In this chapter, an analytical model of gate direct tunneling is developed, for both 

electrons tunneling in the conduction band and the holes tunneling in the valence band. 

Section 2.2 introduces the basic theory of tunneling. In Section 2.3, the gate tunneling 
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model in an MOS structure for both n-MOSFETs and p-MOSFETs is derived. Section 

2.4 presents the detail tunneling profile in a MOSFET, specifying the tunneling in the 

channel region and the source/drain region. In Section 2.5, the tunneling currents of metal 

gate and polycrystalline silicon gates are compared. Section 2.6 examines the tunneling 

current in a MOSFET with a high-permittivity gate dielectric expected to be used in 

future technology generations. Section 2.7 investigates junction tunneling such as the 

band-to-band tunneling and the gate-induced drain leakage in MOSFETs. The conclusion 

is given in Section 2.8.  

2.2 Tunneling Theory 

The quantum-mechanical concept states that all matter, including electrons, 

behaves like both particles and waves [8]. Particles can be described by a wavefunction 

ψ ( , , )x y z , such that the probability of finding a particle in the volume dxdydz  is equal 

to ψ ( , , )x y z dxdydz2 . The electron wave function satisfies the Schrödinger equation,  

 ( ) ( ) ( )
2

2 , , ( , , ) , , , ,
2

x y z U x y z x y z E x y z
m

ψ ψ ψ− ∇ + = , (2.1) 

where π2/h=  is the reduced Planck constant, m is the electron mass, U  is the 

potential energy, and E  is the energy of the particle. The quantitative analysis of 

tunneling should be based on the solution of the Schrödinger equation. Figure 2.1 shows 

the simplest case where an electron of energy E  is in the space with the rectangular 

potential barrier, where the barrier height is bE  (in [eV]) and the width is d  (in [cm]). 

In the x direction, the Schrödinger equation can be written in different regions as follows:  

 2 2 2/ 0Id dx kψ ψ+ =  for x < 0     (2.2) 
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 2 2 2/ 0IId dx kψ ψ+ =  for 0 ≤ ≤x d    (2.3) 

 2 2 2/ 0IIId dx kψ ψ+ =  for x d≥     (2.4) 

where 

 2 2
2

2
I III

mEk k= = ,  

 2 2 2
II b Ik n k= ,  

and 
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E En
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−
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Figure 2.1 
Particle tunneling through a rectangular potential barrier of height Eb and 

thickness d. 
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From the solution of the Schrödinger equation (see Appendix B), the tunneling 

probability is given by 

 ( ) [ ]1/ 22 2 ( )
exp bm E E d

D E
⎧ ⎫− −⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

. (2.5) 

This formula shows that greater values of barrier height and width help to prevent 

tunneling, and particles with higher kinetic energy are more likely to tunnel through the 

barrier. 

2.3 Tunneling in MOSFET 

According to the tunneling theory, the width of the potential barrier is an 

important parameter determining the magnitude of the tunneling probability. In 

MOSFETs, the gate dielectric plays the role of a potential barrier separating the carriers 

in the channel from the gate. With a thick gate dielectric layer, the wavefunction of 

carriers cannot extend to the gate by penetrating the potential barrier. However, in 

MOSFET scaling the thickness of the gate dielectric must be decreased along with the 

channel length to enhance the gate control, avoiding short-channel effects and 

transconductance degradation. As devices continue to scale down, tunneling through the 

thin oxide has become a limiting factor. For the conventional bulk MOSFET using SiO2 

as the gate dielectric, with oxides thinner than 2 nm, massive numbers of carriers can 

tunnel through and form a significant gate current. While the gate leakage current may be 

negligible compared to the drain current of a device, it will substantially increase the chip 

standby current [2, 6]. Moreover, gate tunneling occurs not only in the channel region, 

but also in the regions where gate overlaps with the source/drain regions. When the 

MOSFET is in the off-state, there is still considerable tunneling current along the leakage 
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path between the biased drain and gate electrodes. Such a leakage greatly degrades the 

performance of CMOS circuits [13, 15]. 

Figure 2.2 shows the three gate tunneling components as electron conduction 

band (ECB) tunneling, electron valence band (EVB) tunneling, and hole valence band 

(HVB) tunneling [14, 15]. ECB tunneling in the n-MOSFET and HVB tunneling in the 

p-MOSFET are the dominant tunneling sources, because electrons and holes are majority 

carriers in the inverted n-MOSFET and p-MOSFET channels, respectively [14]. EVB 

tunneling takes place only when the valence band transmitting the electrons overlaps with 

the conduction band receiving electrons, as indicated by Figure 2.2. The overlap requires 

a high gate voltage, exceeding the normal operating voltage of digital CMOS circuits [14, 

15, 17], which makes EVB tunneling negligible for circuit simulation. Based on this 

reason, EVB tunneling is not included in the work presented in this thesis. For simplicity, 

ECB and HVB tunneling are simply referred to as electron and hole tunneling, 

respectively. 
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Figure 2.2 
Energy band diagram for tunneling components in an MOS structure. 

 

 

2.3.1 Electron Tunneling in MOS Structure 

In this section, electron tunneling is analyzed from the channel to the gate in a 

metal-gate n-MOSFET. Tunneling in a polycrystalline silicon gate is discussed in section 

2.5. The schematic potential diagram for electron tunneling is shown in Figure 2.3. The 

electron affinity, which is the energy difference between the conduction band edge ( CE ) 

and the vacuum level, is smaller for the oxide layer than for silicon and metal [18]. 

Therefore, the oxide layer is a potential barrier for electrons in the gate and channel 

regions. The potential barrier height at the Si/SiO2 interface is denoted by χ  

( 3.1 Vχ = ) [16, 17], so that qχ  is the required energy to excite an electron from the 

silicon conduction band edge to the silicon oxide conduction band edge. Because of the 
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voltage drop across the gate oxide oxV  (in [V]), the potential barrier shape is trapezoidal. 

Therefore, as shown in Figure 2.4, oxV  is given by  

 ox gs FB sV V V φ= − − , (2.6) 

where gsV  (in [V]) is the gate voltage referenced to the source, FBV  (in [V]) is the flat 

band voltage, and Sφ  (in [V]) is the surface potential of the channel. In addition, the gate 

bias gsV  causes a difference in the Fermi energy of the silicon channel FsE  (in [eV]) 

and the Fermi energy of the metal FmE  (in [eV]), which is determined by  

 gs Fs FmqV E E= − . (2.7) 
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Figure 2.3 
Energy band diagram for electron tunneling in an MOS structure. 
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Figure 2.4 
Potential distribution in the gate-to-channel direction for a metal-gate 

MOSFET. 

 

 

Through the WKB method (see Appendix A), the tunneling probability associated 

with the trapezoidal potential barrier can be obtained from the integral 

 ( ) ( )( )
2

1

2exp 2
x

x ox b x
x

D E m E x E dx
⎛ ⎞

= − −⎜ ⎟⎜ ⎟
⎝ ⎠

∫  (2.8) 

where 00.35oxm m=  [71] is the effective electron mass in the oxide, and xE  is the 

electron kinetic energy in the x  direction. As shown in Figure 2.3 and Figure 2.4, the 

turning points 1x  and 2x  are 1 oxx t= −  and 2 0x = , and the trapezoidal potential 

barrier is given by 

 ( )b ox
ox

xE x q qV
t

χ= + ⋅  (2.9) 

The average barrier height BE  (in [eV]) over x  can be expressed by  



 28

 ( )
2

1

1 1
2

x

B b ox
ox x

E E x dx q qV
t

χ= = −∫ . (2.10) 

Thus, the integral in equation (2.8) can be approximated by 

 ( )( ) ( )
2

1

0

2 2
ox

x

b x B x
x t

m E x E dx m E E dx
−

− ≈ −∫ ∫ . (2.11) 

Substituting equation (2.11) into equation (2.8) results in  

 { }1/ 2( ) exp ( )x B xD E E Eγ= − − , (2.12) 

where  

 
4 2ox oxt m

h
π

γ = . (2.13) 

Unlike the single-particle-tunneling case, there are a number of electrons 

distributed on both sides of the potential barrier in a MOSFET. In such a 

multiple-electron system, the complexity of the tunneling problem increases because 

electrons have various energies varying from 0 to ∞ . The electrons’ contribution to 

tunneling must be statistically accounted. This multiple-particle system is characterized 

by its degrees of freedom, which is the number of parameters completely describing the 

movement of each particle. These degrees of freedom for a system determine the density 

of available states for particles to fill in. From the basic law of statistical physics, the 

density of states is m
h

 for every two degrees of freedom in the space characterized by 

the particle position (x, y, z) and velocity (vx, vy, vz). For example, there are six degrees of 

freedom for a three-dimensional electron gas, namely, x, y, z, vx, vy, and vz, implying 

3

3 x y z
m dxdydzdv dv dv
h

 states in a volume x y zdxdydzdv dv dv . For a two dimensional system 
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confined in the x-y plane, there are 
2

2 x y
m dxdydv dv
h

 states in a volume x ydxdydv dv . 

These states are available for particles to occupy; however, not every state is occupied by 

particles. For electrons, the states are filled as described by the Fermi-Dirac distribution,  

 1( )
1 exp( )F

f E E E
kT

=
−

+
, (2.14) 

where the distribution function ( )f E  is the probability that an available state at the 

energy E  will be occupied by an electron, k  is the Boltzmann constant, T  is the 

absolute temperature, and FE  is the Fermi energy of the electrons. 

The tunneling current density smJ  (in [A/cm2]) is formed by the tunneling 

electrons moving from the channel to the gate (in x direction). Similar to the flow of 

electrons in a metal and the flow of carriers in a semiconductor, the tunneling current 

density is written as 

 sm xJ qv n= , (2.15) 

where q  is the electron charge, xv  (in [cm/s]) is the average electron tunneling 

velocity in x direction, and n is the tunneling electron density (number of electrons 

tunneling through the oxide per unit volume, measured in [cm-3]). Noticing that the 

tunneling probability and the electron distribution in energy states vary with the 

electron’s velocity (or kinetic energy) as in equations (2.14) and (2.19), the contribution 

of electrons at different velocities to the tunneling current must be determined 

statistically. In the velocity range from vx to vx+dvx, the total number of electrons per unit 

volume in the channel can be written as 
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 ( ) ( )
*3

3

2 e
x s y z

mn v f E dv dv
h

= ∫∫ , (2.16) 

where n(vx) (in [cm-2/s]) is the volume of density of electrons associating with the vx, 

*3 32 /em h  is the state density, the effective electron mass *
00.19em m=  is used to 

account for the silicon crystal structure’s influence on electron state density [10], the 

factor 2 accounts for electron spin, and fs(E) is the Fermi-Dirac distribution function in 

the silicon channel given by  

 1( )
1 exp( )

s
Fs

f E E E
kT

=
−

+
, (2.17) 

in which EFs is the Fermi energy of the channel. Electrons in the channel can undergo a 

tunneling process with the prerequisite that there exists a vacancy state associated with 

exactly the same energy at the gate side. For the distribution function ( )mf E  in the 

metal gate,  

 1( )
1 exp( )

m
Fm

f E E E
kT

=
−

+
, (2.18) 

where FmE  is the Fermi energy in the metal gate. The probability to find an empty 

energy state is ( )1 mf E− . We can express the overall probability for an electron with 

energy E  to tunnel from channel to gate as 

 ( ) ( ) ( )1x mP E D E f E= −⎡ ⎤⎣ ⎦ , (2.19) 

where D(Ex) is the single electron tunneling probability given in equation (2.12). 

Therefore, the volume density of tunneling electrons in the velocity range vx to vx+dvx is 

given by n(vx)P(E) dvx. The total volume density of the tunneling electrons n is 
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0

( ) ( )x xn n v P E dv
∞

= ∫ , (2.20) 

and the average tunneling velocity is  

 0

0

( ) ( )

( ) ( )

x x x

x

x x

v n v P E dv
v

n v P E dv

∞

∞=
∫

∫
. (2.21) 

By substituting expressions of n and vx into equation (2.15), smJ  is then given by 

 
0

( ) ( )sm x x xJ qv n v P E dv
∞

= ∫ , (2.22) 

which becomes,  

 ( )( )
*3

3
0

2 ( ) ( ) 1e
sm x x s m y z x

qmJ v D E f E f E dv dv dv
h

∞

∞

= −∫ ∫∫ , (2.23) 

which accounts for the tunneling current density from channel to gate. Similarly, the 

tunneling current density Jms (in [A/cm2]) from the gate to the channel is obtained as  

 ( )( )
*3

3
0

2 ( ) ( ) 1e
ms x x m s y z x

qmJ v D E f E f E dv dv dv
h

∞

∞

= −∫ ∫∫ . (2.24) 

The net tunneling current density TJ  (in [A/cm2]) includes both components as  

 T sm msJ J J= − , (2.25) 

or 

 ( ) ( )( )
*3

3
0

2 ( )e
T x x s m y z x

qmJ v D E f E f E dv dv dv
h

∞

∞

= −∫ ∫∫ . (2.26) 

Tunneling direction is determined by the larger one of the two components. The 

Fermi-Dirac distribution function in equation (2.14) can be approximated by the 

Maxwell-Boltzmann distribution function on the condition that ( )FE E kT− >> . Thus, 
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 ( ) exp( )FE Ef E
kT
−

= − , (2.27) 

and the total tunneling current density is written as 

 
*3

3
0

2 exp( ) exp( ) ( ) exp( )e Fs Fm
T x x y z x

qm E E EJ v D E dv dv dv
h kT kT kT

∞

∞

⎡ ⎤= − −⎢ ⎥⎣ ⎦∫ ∫∫ . (2.28) 

Noticing that total kinetic energy has three components corresponding to the x, y, z 

directions, 

 x y zE E E E= + + , (2.29) 

and 21
2x xE mv= , 21

2y yE mv= , and 21
2z zE mv= , the double integral in equation (2.28) 

can be written as  

 
2 2 21 1 1

2 2 2exp( ) exp( )
x y z

y z y z

mv mv mvE dv dv dv dv
kT kT∞ ∞

+ +
− = −∫∫ ∫∫ . (2.30) 

Equation (2.30) can be separated as two integrals with respect to vx and vy as 

 2 2

0 0

1 1exp( ) exp exp / exp /
2 2

x
y z y y z z

EE dv dv mv kT dv mv kT dv
kT kT

∞ ∞

∞

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− = − − ⋅ −⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠∫∫ ∫ ∫ .(2.31) 

From ( )2

0

exp x dx π
∞

− =∫ , we have 

 2exp( ) exp( )x
y z

EE kTdv dv
kT m kT

π

∞

− = −∫∫ . (2.32) 

Therefore, the total tunneling current density is given by 

 ( )
*2

3
0

4 exp( ) exp( ) exp( )e x Fs Fm x
T x x

m qkTv E E EJ D E dv
h kT kT kT

π ∞ −⎡ ⎤= −⎢ ⎥⎣ ⎦ ∫ . (2.33) 

Since 21
2x xE mv=  and { }1/ 2( ) exp ( )x B xD E E Eγ= − − , we have  
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 { }
*

1/ 2
3

0

4 exp( ) exp( ) exp( )exp ( )e Fs Fm x
T B x x

m qkT E E EJ E E dE
h kT kT kT

π γ
∞ −⎡ ⎤= − − −⎢ ⎥⎣ ⎦ ∫ . (2.34) 

The integral over xE  in equation (2.34) cannot be solved directly, however, it 

can be simplified. The term { }1/ 2exp ( )B xE Eγ− −  increases with xE , implying that 

electrons with higher energy are more likely to tunnel. However, the density of electrons 

exponentially decreases with increasing of xE , which is indicated by exp( )xE
kT
− . 

Typical magnitudes of these two terms are shown in Figure 2.5. We find that electrons 

with low xE  dominate electrons with high xE  in tunneling, because of the fast drop 

rate of { }1/ 2exp( )exp ( )x
B x

E E E
kT

γ−
− − . From a physical view, electron density decreases 

with xE  exponentially, while tunneling probability increases with xE  moderately. 

Thus, it is safe to consider the tunneling contribution of electrons concentrating near CE  

only, where xE  is close to zero.  

Therefore, the term { }1/ 2exp ( )B xE Eγ− −  can be expanded around 0xE =  by 

the Taylor series as  

 { } ( )1/ 2 1exp ( ) 1 exp
2B x x B

B

E E E E
E
γγ γ

⎛ ⎞
− − ≈ + −⎜ ⎟⎜ ⎟

⎝ ⎠
. (2.35) 

 



 34

0.0 0.2 0.4 0.6 0.8 1.0
10-20

10-10

100

T=300 oK
Vox=1 V

exp(-E
x
/kT)exp{-γ(E

B
-E

x
)1/2}

exp{-γ(EB-Ex)
1/2}

exp(-E
x
/kT)

Va
lu

e

Ex (eV)

 
Figure 2.5 

Comparison of two terms in the tunneling integral of equation (2.34). 
 
 
 

Substituting the above equation in (2.34) gives 

{ } ( )1/ 2

0 0

exp( )exp ( ) exp exp( ) 1
2

x x
B x x B x x

B

E EE E dE E E dE
kT kT E

γγ γ
∞ ∞ ⎛ ⎞− −

− − ≈ − +⎜ ⎟⎜ ⎟
⎝ ⎠

∫ ∫ .(2.36) 

The integral above breaks into the summation of two integrals as 

 
0 0 0

exp( ) 1 exp( ) exp( )
2 2

x x x
x x x x x

B B

E E EE dE dE E dE
kT kT kTE E

γ γ∞ ∞ ∞⎛ ⎞− − −
+ = +⎜ ⎟⎜ ⎟

⎝ ⎠
∫ ∫ ∫ . (2.37) 

These integrals can be solved separately as 

 
0

exp( )x
x

E dE kT
kT

∞ −
=∫ , (2.38), 

and  

 ( ) ( )2

0 00

exp( ) exp exp( )x x x
x x x x

E E EE dE kT E kT dE kT
kT kT kT

∞∞ ∞− −⎛ ⎞= − − − − =⎜ ⎟
⎝ ⎠∫ ∫ . (2.39) 
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Hence, equation (2.36) becomes 

 { } ( )1/ 2

0

exp( )exp ( ) 1 exp
2

x
B x x B

B

E kTE E dE kT E
kT E

γγ γ
∞ ⎛ ⎞−

− − ≈ + −⎜ ⎟⎜ ⎟
⎝ ⎠

∫ . (2.40) 

Therefore, the tunneling current density can be expressed as  

 ( ) ( )
*

2
3

4 exp( ) exp( ) 1 exp
2

e Fs Fm
T B

B

m q E E kTJ kT E
h kT kT E

π γ γ
⎛ ⎞⎡ ⎤= − + −⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

. (2.41) 

To turn on an n-MOSFET, a positive voltage gsV  is applied on the gate, leading 

to shifts of the Fermi energy level in the gate FmE  to values lower than the Fermi energy 

FsE  of the channel by gsqV , 

 Fs Fm gsE E qV− = . (2.42) 

Noticing that FsE  is referenced to the EC at the surface silicon channel, its expression  

 / 2Fs s B gE q q Eφ φ= − −  (2.43) 

can be derived from Figure 2.3, where Bqφ  is the energy difference from Fermi level to 

the middle band gap at flat-band condition and ln A
B

i

NkT
q n

φ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 [10], gE  (in [eV]) is 

the energy band gap, AN  (in [cm-3]) is the channel doping concentration, and in  (in 

[cm-3]) is the intrinsic electron density. Thus,  

 
/ 2

exp( ) exp( ) 1 exp( ) exp( )gs s B gFs Fm qV q q EE E
kT kT kT kT

φ φ− −⎡ ⎤
− = − −⎢ ⎥

⎣ ⎦
. (2.44) 

Then the electron tunneling density in the n-MOSFET can be expressed as an explicit 

function of the gate voltage as 
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*
2

3

4 ( ) (1 ) 1 exp( )
2

/ 2
exp( )exp( )

gse
T

B

s B g
B

qVm q kTJ kT
h kTE

q q E
E

kT

π γ

φ φ
γ

⎡ ⎤
= + − −⎢ ⎥

⎣ ⎦
− −

⋅ −

, (2.45) 

with  

 
4 2ox oxt m

h
π

γ = , (2.46) 

and 

 1
2B oxE q qVχ= − . (2.47) 

Figure 2.6 shows that results from this model agree well with data from 

measurements and numeric simulations [4-6]. The gate tunneling current increases 

drastically when the thickness of gate oxide is reduced. As oxt  is reduced from 3.6 nm to 

1.5 nm, the tunneling current density increases in magnitude by the order of 109. At 

1.5 oxt nm=  and 1 gsV V= , the tunneling current density amounts to 1 A/cm2, which is 

considered too much to handle in circuit design [4, 6]. Figure 2.6 also shows that 

tunneling current density is very sensitive to gate voltage. Gate voltage is given by 

gs ox FB sV V V φ= + +  as indicated in Figure 2.4, so that the increase in gate voltage leads to 

larger Vox and sφ , consequently raising JT as indicated by equations (2.45) to (2.47). 

From a physical perspective, larger Vox induces a lower barrier and larger sφ  resulting in 

higher electron density in the channel. Both effects magnify electron tunneling.  
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Figure 2.6 

Validation of the compact tunneling current model against numeric 
simulation and measurement [4, 5]. 

 
 
 

Equation (2.41) can be applied to the electron tunneling in a p-MOSFET: 

 ( ) ( )
*

2
3

4 exp( ) exp( ) 1 exp
2

e Fm Fs
T B

B

m q E E kTJ kT E
h kT kT E

π γ γ
⎛ ⎞⎡ ⎤= − + −⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠

, (2.48) 

where FmE  and FsE  now represent Fermi energy levels in the gate side and the 

channel of the p-MOSFET, respectively. In p-MOSFETs, gate electrodes are biased to a 

lower voltage with respect to the source potential ( 0gsV < ), so that the net flux for 

electron tunneling is from the gate side to the substrate side. When the channel is 

inverted, the Fermi energy level in the channel FsE  is close to the valence band,  

 ~Fs gE E≈ − . (2.49) 

Therefore,  

 exp exp 1 exp expgs gFm Fs qV EE E
kT kT kT kT

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− ≈ − −⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

. (2.50) 
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Thus, the electron tunneling in the p-MOSFET can be written as 

 ( ) ( )
*

2
3

4 1 exp exp 1 exp
2

gs ge
T B

B

qV Em q kTJ kT E
h kT kT E

π γ γ
⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞

= − − + −⎜ ⎟⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎝ ⎠
. (2.51) 

At room temperature, 300 K , the band gap gE =1.1 eV which is almost 40kT . With 

the additional term exp gE
kT

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 in equation (2.51) as compared to equation (2.45), the 

magnitude of electron tunneling current density in a p-MOSFET is 8 1510 ~ 10  times 

smaller than it is in an n-MOSFET. Hence, in CMOS circuits consisting of equal numbers 

of n-MOSFETs and p-MOSFETs, the electron tunneling in the p-MOSFETs is virtually 

negligible.  

2.3.2 Hole Tunneling in MOS Structure 

The mechanism of the electron tunneling process in the conduction band is the 

same as that for holes in the valence band, as indicated by Figure 2.3. A most significant 

difference between electron tunneling and hole tunneling lies in the average barrier 

height. Holes face a barrier from the valence band edge of silicon to the valence band 

edge of gate oxide, which is 4.5 eV high, as shown in Figure 2.2. In contrast, this value 

for electrons is only 3.1 eV. Beside the barrier height, other parameters that differ are 

listed in Table 2.1. In spite of the different properties of the two kinds of carriers, the 

analysis for electron tunneling can be applied to hole tunneling. It leads to a similar 

equation for hole tunneling current as was derived for electron tunneling in equation 

(2.45). Thus, the hole tunneling current can be expressed as 
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*
2

3

4 ( ) (1 ) 1 exp( )
2

/ 2
exp( )exp( )

gsh
T

B

s B g
B

Vm q kTJ kT
h kTE

q q E
E

kT

π γ

φ φ
γ

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
− −

⋅ −

. (2.52) 

 

Table 2.1 
Parameters for electron tunneling and hole tunneling. 

  

 Effective mass in 

silicon 

Effect mass in 

oxide 

Barrier height 

Electron tunneling *
00.19em m=  00.32Im m=  3.1B oxE eV qV= −  

Hole tunneling  *
00.45hm m=  00.30Im m=  4.5B oxE eV qV= −  

 

 

Results from the hole tunneling model shown in Figure 2.7 are validated by 

measurements [15] and an empirical model [14, 15, 17]. It can be shown that the current 

density of hole tunneling is typically smaller than that of the electron tunneling by an 

order of magnitude. The lower hole tunneling density is primarily due to the higher 

potential barrier for holes.  
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Figure 2.7 
Tunneling in the p-MOSFET (substrate doping 34 17 DN e cm−= , 

300 T K= ). The direct tunneling model is compared with an empirical 
model [15, 17] and measurement [15]. 

 

 

2.4 Tunneling in Different Regions 

In a typical deep-submicron MOSFET, the heavily doped shallow drain extends 

underneath the gate. The overlap region between the gate and drain can be a path for 

tunneling current as shown in Figure 1.2. In short-channel devices, the length of the 

source and drain extension (SDE) area is comparable to the channel length [2], resulting 

in considerable leakage. Moreover, as will be shown, SDE tunneling causes leakage in 

the off-state of a MOSFET, under which condition the gate tunneling to the channel 
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region does not exist. Therefore, SDE tunneling is an important leakage source and must 

be considered in circuit design [13].  
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Figure 2.8 
Energy band diagram from the gate to the source/drain of an n-MOSFET. 

 

 

The band diagram for the gate-to-SDE tunneling is shown in Figure 2.8. Noticing 

that the gate and source/drain are both heavily doped by the same type of dopant, Fermi 

levels at both ends are approximately at the bottom of the conduction band in an 

n-MOSFET. Moreover, the voltage drop inside the source/drain is negligible because of 

heavy doping. As shown in Figure 2.9, voltage drop on the gate oxide is equal to the 

gate-to-source voltage,  

 ox gsV V=  (2.53) 

The tunneling model for the MOS structure can be applied to SDE tunneling, by treating 

the source/drain as a highly doped channel. Denoting the Fermi energy levels in gate and 
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source/drain by 1FE  and 2FE  (both referenced to EC at source/drain), equation (2.50) 

can be modified as 

 1 2exp( ) exp( ) 1 exp( )gsF F
qVE E

kT kT kT
⎡ ⎤

− ≈ −⎢ ⎥
⎣ ⎦

. (2.54) 
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Figure 2.9 
Potential distribution from gate to source/drain. 

 

 

For a p-MOSFET, the source/drain is p-type doped and hole tunneling is 

dominant. SDE tunneling current density, denoted by /S DJ , can be modified from the 

tunneling model in equation (2.41) as  

 
*

2
/ 3

4 ( ) (1 ) 1 exp( ) exp( )
2

gsh
S D B

B

q Vm q kTJ kT E
h kTE

π γ γ
⎡ ⎤

= + − − −⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.55) 

For an n-MOSFET, electron tunneling is dominant, and SDE tunneling current 

density is given by  
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*

2
/ 3

4 ( ) (1 ) 1 exp( ) exp( )
2

gse
S D B

B

q Vm q kTJ kT E
h kTE

π γ γ
⎡ ⎤

= + − − −⎢ ⎥
⎢ ⎥⎣ ⎦

. (2.56) 

In equation (2.55) and (2.56), EB and γ  are defined by parameters for holes and 

electrons according to Table 2.1. 

The magnitude of the tunneling current density in the channel region ChannelJ , 

which is given by equations (2.45) and (2.52) for n-MOSFETs and p-MOSFETs 

respectively, are compared with the magnitudes of SDE tunneling in Figure 2.10. 

Because electrons tunnel through the gate oxide more easily than holes, in an 

n-MOSFET, the electron tunneling current density in SDE region is comparable to hole 

tunneling current density in the channel of a p-MOSFET.  

The total tunneling current in the MOSFET can be expressed in terms of the 

tunneling currents of the channel region and the SDE regions. As a MOSFET is turned 

off, which refers to either the low voltage on the gate for an n-MOSFET or the high 

voltage on the gate of a p-MOSFET, the only tunneling path is between the drain and the 

gate. The off-state tunneling current ,tunnel offI  is given by 

 , /tunnel off S D overlapI J L W= ⋅ ⋅ , (2.57) 

where overlapL  is the length of overlap region, and W  is the width of the MOSFET.  
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Figure 2.10 
Comparison of tunneling density in channel and source/drain region. 

 
 
 

If the device is turned on, the electrons can tunnel through the gate oxide layer to 

the channel as well as to the source and the drain. The overall on-state tunneling current 

,tunnel onI  is given by accounting for both components as  

 , /2tunnel on Channel S D overlapI J L W J L W= ⋅ ⋅ + ⋅ ⋅ ⋅ . (2.58) 

The different tunneling current components in a CMOS inverter with input “0” and “1” 

are shown in Figure 2.11 and Figure 2.12, respectively. The input “0” represents a low 

voltage in CMOS circuits, which turns the p-MOSFET on and the n-MOSFET off. 

Correspondingly, the input “1” represents a high voltage, which turns the p-MOSFET off 

and the n-MOSFET on. The tunneling current in CMOS circuits is obtained from 

equations (2.57) and (2.58), according to the on and off states of the devices. 
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Figure 2.11 
Tunneling current in a CMOS inverter with a “0” input. 
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Figure 2.12 

Tunneling current in a CMOS inverter with a “1” input. 
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2.5 Tunneling with Polysilicon Gate  

For devices with a polysilicon gate, the voltage drop inside the gate must be 

considered. The electric field depletes the surface of electrons and forms a thin 

space-charge region in the polysilicon gate. Illustrated by Figure 2.13, voltage drops 

inside the gate and bands in the n+-polysilicon gate bend upward near the interface of the 

polycrystalline silicon and the oxide. This effect leads to a lower voltage drop over the 

gate oxide that can be expressed as 

 ox gs FB S pV V V Vφ= − − − , (2.59) 

where pV  is the voltage drop in the polysilicon. This polysilicon potential drop is given 

by  
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Figure 2.13 
Potential diagram for the poly-silicon gate MOSFET. 
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 21
2p Gate Gate

Si

qV N X
ε

= , (2.60) 

where Siε  is the permittivity of silicon, GateN  is the doping concentration of the 

polysilicon gate, and GateX  is the gate depletion depth. When gs TV V> , GateX  is 

derived as [71], 

 
( )2

2

2
1 1ox gs FB sSi

Gate ox
ox Gate Si ox

V V
X t

qN t
ε φε

ε ε

⎧ ⎫− −⎛ ⎞ ⎪ ⎪= + −⎨ ⎬⎜ ⎟
⎝ ⎠ ⎪ ⎪⎩ ⎭

, (2.61) 

where oxε  is the permittivity of SiO2. When the poly-depletion effect is accounted for, 

the potential drop on the gate oxide layer is reduced. For this reason, the tunneling 

current density in the polysilicon gate is less than it is in its metal counterpart at the same 

gate voltage level. This is shown in Figure 2.14.  
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Figure 2.14 
Comparison of tunneling current density for aluminum gate and 

polycrystalline silicon gate. 
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2.6 High-κ Gate Dielectrics  

In order to limit the direct tunneling current and also to avoid reliability concerns 

[6, 48, 70], the physical thickness of the gate dielectric must be increased. However, the 

ultra-thin SiO2 layer is utilized to generate a high electrical field in the vertical direction, 

which is critical to control SCEs and ensure sufficient drive current in bulk MOSFETs. 

Hence, the electrical thickness of the gate dielectric must be reduced while the physical 

thickness should be at least sustained. The only possible solution is replacing the silicon 

oxide with high dielectric constant (high-κ ) materials for gate insulation. 

Among various high-κ  materials, 2HfO  and 4HfSiO  appear to be the most 

promising candidates for replacing silicon oxide [72, 73]. These high-κ  dielectrics 

exhibit a trend of decreasing barrier height with increasing dielectric constant [72]. The 

dielectric constant and band gap offset referenced to silicon for high-κ  dielectrics are 

shown in Figure 2.15 and Table 2.2. An equivalent oxide thickness (EOT) can be 

introduced for the high-κ  dielectrics. It defines an equivalent thickness of silicon oxide 

needed to obtain the same gate capacitance as the one obtained by high-κ  dielectrics,  

 
0

ox
IEOT tε

κε
= ⋅  (2.62) 

where κ  and tI are the dielectric constant and physical thickness of high-κ  dielectrics. 

Figure 2.16 gives the simulation results showing the reduction of tunneling current 

density by the 2 ~ 3  orders of magnitude with the utilization high-κ  gate dielectrics. 
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Figure 2.15 

Band gaps of high-κ  materials and silicon oxide [72]. 
 
 
 

 

Table 2.2 
Summary of gate dielectric parameters [74]. 

 

Material SiO2 HfO2 HfSiO4 

Permittivity 3.9 0ε  22 0ε  12 0ε  

Conduction band 
offset (eV) 

3.1 1.5 1.5 

 
 
 
Although the gate tunneling current density is reduced by high-κ  materials, new 

processing issues and device design concerns come into play. These include 

fringing-induced barrier lowering (FIBL) [70, 74] and interface defects [75, 76]. FIBL 

causes the off-state leakage current to increase and degrades the subthreshold 
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characteristics [77]. The interface defects reduce mobility in the channel and the drive 

current is decreased [76]. The trade-offs should be considered in device design [74, 78]. 
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Figure 2.16  
Comparison of tunneling currents in different gate insulation materials: SiO2, 

HfSiO4, and HfO2. 
 
 
 

2.7 Band-to-Band tunneling (BTBT) in MOSFET 

Figure 2.17 shows electron tunneling from the valence band into the conduction 

band when a reverse bias is applied. Tunneling occurs when the voltage drop across the 

junction is sufficiently large that  

 g
app b

E
V

q
φ+ >  (2.63) 
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where Vapp (in [V]) is the applied reverse bias, bφ  (in [V]) is the build-in potential for the 

p-n junction and Eg is the bandgap. BTBT of an electron through a p-n junction is 

formally the same as that of a particle tunneling through a triangular barrier, as shown in 

Figure 2.18. The tunneling density is given by [79]  

 
3/ 2* 3 *

3 2 1/ 2

2 4 2exp
4 3

field app g
BTBT

g field

E V Em q mJ
E q Eπ

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (2.64) 

where Efield (in [V/cm]) is the electric field at the junction, and m* is the effective mass of 

the electron. In a MOSFET, the BTBT usually occurs at the p-n junction formed by the 

drain and the substrate, inducing the substrate current. Furthermore, BTBT causes the 

leakage mechanism at the drain, which is referred to as gate induced drain leakage 

(GIDL).  
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Figure 2.17 
Electron tunneling through the p-n junction from conduction band to valence 
band. EFn and EFp are referred to as Fermi energy levels in n-side and p-side 

semiconductors, respectively. 
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Figure 2.18 
Potential energy diagram for BTBT tunneling. 

 
 
 

GIDL occurs at the drain region of a MOSFET, where the gate overlaps the drain 

because of lateral diffusion. With the gate grounded and the drain biased in an 

n-MOSFET, the silicon surface is depleted, as shown in Figure 2.19 and Figure 2.20. 

Since the drain is heavily doped n+, the depletion region is very small and the band 

bending is confined to a small spatial region. A very high field exists at the overlap 

region. An electron can tunnel from the valence band near the surface into the conduction 

band, leaving a hole behind, as shown in Figure 2.20. This is a carrier generation 

mechanism, with the holes swept into the bulk and the electrons into the drain, where 

they appear as a leakage current.  
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Figure 2.19 
Carriers generated by BTBT forming GIDL. 
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Figure 2.20 
Origins of gate-induced drain leakage: BTBT at the gate overlap of the 

heavily doped drain. 
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At the normal operating mode of the MOSFET, BTBT and GIDL are not 

significant leakage components as gate direct tunneling and subthreshold leakage 

dominate [80, 81]. However, BTBT and GIDL can charge the substrate, inducing the 

body effect and coupling between isolated devices. BTBT is the major constraint for 

halo-doped MOSFETs [79, 81] and CMOS circuits employing reverse substrate bias [82].  

2.8 Conclusion  

In this chapter, an analytical model of gate direct tunneling is developed, for both 

electron tunneling in the conduction band and hole tunneling in the valence band. 

Electron and hole tunneling are dominant in n-MOSFETs and p-MOSFETs, respectively. 

In an n-MOSFET, the tunneling current density can be as high as 1.0 A/cm, when the gate 

voltage is 1.0 V and the oxide thickness is 1.5 nm. The hole tunneling current density in a 

p-MOSFET is smaller than the electron tunneling current density in an n-MOSFET by a 

decade, because of the high barrier height and large effective mass for holes 

The gate tunneling in a MOSFET is specified as the tunneling in the channel 

region and source/drain region in the bulk side. In CMOS circuits, the gate-to-channel 

and gate-to-source tunneling occur in the on-state and gate-to-drain tunneling usually 

occurs in the off-state of the devices.  

The magnitude of tunneling current changes greatly with different materials. The 

use of a metal gate vs. a polycrystalline silicon gate makes a huge difference in gate 

tunneling because of the poly-depletion effect. High-permittivity dielectrics, which could 

potentially replace SiO2 for gate insulation, can greatly reduce the tunneling current 

density at the same EOT as SiO2. High-κ dielectrics provide a possible solution for the 

excessive tunneling current.  



 55

Besides gate tunneling, BTBT and GIDL cause considerable leakage in 

MOSFETs. They must be carefully considered in low-power designs.  
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CHAPTER 3   

QUANTIZATION MODEL 

3.1 Introduction and Background 

To control SCEs, modern device technology uses the highly-doped channel and 

ultra-thin gate oxides in MOSFETs [36-39, 62]. In some cases, an even higher density of 

dopants is implanted in the channel near the source/drain regions, forming a halo 

structure [6]. All these methods used to control SCEs result in a high electric field in the 

direction vertical to the silicon/silicon oxide interface. Although the high electric field in 

the vertical direction can keep the charges in the channel under gate control against the 

influence of drain potential, it confines the movement of carriers in a narrow potential 

well. From quantum theory, the energy of the channel carriers can only take discrete 

values and not a continuous energy distribution as described by classical device physics 

[8]. Moreover, quantization also causes a redistribution of carrier density close to the 

Si/SiO2 interface as compared to that of the classical prediction. Thus, it is critical to 

model accurately this quantization effect in the MOSFET and understand the relationship 

between the charge density and the gate bias. 

The concept of quantization is explained in Section 3.2, and energy levels of the 

subbands are calculated in Section 3.3 by solving the Schrödinger and Poisson equations 

simultaneously. In Section 3.4, the relationship between charge density and gate bias is 

derived based on the solution obtained in Section 3.3. The gate capacitance models based 

on the classical theory and the quantum mechanics are compared in Section 3.4. Section 

3.5 presents some concluding remarks. 
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3.2 Basic Concept of Quantization  

When electrons are confined in a space comparable in size to the de Broglie 

wavelength, the quantum size effect becomes very relevant [8, 83]. In such confined 

space, quantum mechanics predicts that it is physically impossible to measure 

simultaneously the exact position and momentum of a particle. This principle of quantum 

mechanics was first introduced by physicist Werner Heisenberg and is known as the 

Heisenberg uncertainty principle [8]. Assuming that the uncertainties of measuring 

position and momentum are x∆  and p∆ , respectively, the uncertainty principle can be 

written as 

 
2

p x∆ ⋅ ∆ ≥ . (3.1) 

The above equation generalizes the uncertainty principle in quantum mechanics. If the 

uncertainty of measuring the position of a particle is very small, then the uncertainty for 

measuring its momentum must be large and vice-versa. This is because their product has 

a non-zero value. Furthermore, the uncertainties do not arise from random and systematic 

errors, but from the quantum structure of matter. 

Consider an electron confined in a box as shown in Figure 3.1. Classically, the 

lowest allowed energy of the electron could be zero [9]. However, quantum mechanics 

doesn’t allow the ground state to be zero [8]. If we assume that an electron has zero 

minimum energy and that we are able to locate its exact position in the box, then 

automatically we know its momentum is zero. That is a clear violation of the uncertainty 

principle. 
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Figure 3.1 

A confined particle in an infinite potential well. 
 
 
 

The potential energy inside and outside the box is described by  

 ( )
    0

0    0
   

x
U x x L

x L

∞ <⎧
⎪= < <⎨
⎪∞ >⎩

. (3.2) 

The wavefunction of the particle ( )xψ  (in [cm-1/2]) satisfies the time independent 

Schrödinger Equation  

 
2

2 2

2 0d mE
dx

ψ ψ+ = , (3.3) 

and the boundary condition 

 ( ) ( )0 0Lψ ψ= = . (3.4) 

The solution for the equation (3.3) is  

 ( ) 2 sin      1,2,3,...   xx n n
L L

ψ π⎛ ⎞= =⎜ ⎟
⎝ ⎠

. (3.5) 

The nth energy states En in the box is given by 
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2 2 2

22n
nE

mL
π

= . (3.6) 

The above equation shows the non-zero ground-state energy due to spatial confinement 

as 

 
2 2

1 22
E

mL
π

= . (3.7) 

Generally, if a particle is confined by a potential well of any shape, the particle 

can only take discrete energy levels and the ground energy level is not zero. This energy 

quantization is applicable to carriers in MOSFETs, when a strong confinement is induced 

by the electric field. In this situation, carriers have discrete energy levels, and the lowest 

allowable energy level is above the conduction band. 

3.3 Quantization in MOSFET 

The potential distribution ( ),x yφ  in the channel shown in Figure 3.2 can be 

described by the 2-D Poisson equation as 

 
( ) ( ) ( ) ( )( )

2 2

2 2

, ,
,A

Si

x y x y q N x n x y
x y

φ φ
ε

∂ ∂
+ = +

∂ ∂
, (3.8) 

where AN  (in [cm-3]) is the depletion charge density, and ( ),n x y  (in [cm-3]) is the 

inversion charge density. In classical physics, the ( ),n x y  is given by [10]  

 ( ) ( )
2

, exp /i

A

nn x y q kT
N

φ= − . (3.9) 
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Figure 3.2 

Schematic view of MOSFET channel region. 

 

 

The boundary conditions of equation (3.8) are determined by the bias voltage on 

the four MOSFET electrodes, namely source, drain, gate, and substrate. Equation (3.9) is 

based on the assumption that particles are distributed on a continuous energy band, which 

is only valid for a slowly varying potential [9]. In comparison, the potential varies 

tremendously near the semiconductor-insulator interface in a MOSFET, where a potential 

well is formed by the interface barrier and the electrostatic potential in the 

semiconductor. In modern devices with highly doped channels and ultra-thin oxides, the 

potential well is as narrow as a few nanometers [27]. Consequently, carrier motion in the 

direction perpendicular to the interface (x direction) is confined, which results in energy 

quantization of carriers in the channel. The continuous conduction band is now split into 

subbands, according to the discrete energy values of the carriers. As a result, the volume 

density of inversion charges accounting for all the subbands can be expressed as  

 2,( , ) ( , )inv i
i

i

Q
n x y x y

q
ψ= −∑ , (3.10) 
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where ,inv iQ  is the inversion charge sheet density (in [C/cm2]) of the ith subband, and 

( ),i x yψ  is the carrier wavefunction on the ith subband. The wavefunction of each 

subband is given by the Schrödinger equation as 

 ( ) ( ) ( ) ( )
2

2 , , , ,
2 i i i ix y q x y x y E x y

m
ψ φ ψ ψ− ∇ − = , (3.11) 

and the eigenvalue iE  is the energy level associated with wavefunction iψ . Noticing 

that the confinement is most significant in the direction perpendicular to the gate, the 

one-dimensional Schrödinger equation is sufficient for the problem [27, 42]. In a 

systematic approach, an MOS structure with uniform potential distribution in the y 

direction is first assured. By removing variable y in equation (3.8) and (3.11), the 

problem is reduced to coupled one-dimensional Poisson and Schrödinger equations as  

 
( ) ( )2

2,
2 ( )inv iA

i
iSi Si

Qd x qN x
x

dx q
φ

ψ
ε ε

= − ∑ , (3.12) 

and 

 ( ) ( ) ( ) ( )
22

22
d x

q x x E x
m dx

ψ
φ ψ ψ− − = , (3.13) 

where φ  is related to gate voltage Vgs by 

 ( )0 gs FB oxV V Vφ = − − . (3.14) 

Figure 3.3 compares the electron density distribution determined by both the classical and 

the quantum mechanical approaches. 
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Figure 3.3 

Illustration of quantum and classical electron distributions along the channel 
depth direction using numeric simulation from SCHRED [32]. 

 
 
 

In the Schrödinger equation (3.13), m  is the effective mass of electrons, which 

is determined by the crystal orientation and band structure of the silicon. We assume that 

the Si-SiO2 interface is parallel to the [100] plane of the silicon, by which MOSFETs 

obtain best performance. In this orientation, the constant-energy surface of electrons 

forms six ellipsoids, as shown in Figure 3.4. Two of them are along the <100> axis with 

the longitudinal mass 00.916lm m=  and the other four are transverse to the <100> axis 

with the transverse mass 00.19tm m= . The subband energy varies according to the 

effective mass of the electrons. 

 

 



 63

<100>

kx

kykz

 
Figure 3.4 

Constant-energy surface forming six ellipsoids in a cubic crystal cell. 

 
 

As shown in Figure 3.5, subbands associated with 1 00.916m m=  are grouped as 

valley one and a degeneracy of 1 2g =  is used to count for the two ellipsoids on the 

<100> axis. In addition, subbands associated with 2 00.19m m=  and a degeneracy 

2 4g =  are grouped as valley two, corresponding to the other four ellipsoids. The energy 

levels in the two valleys are denoted as 1,1 2,1,  ,  ...E E  and 1,2 2,2,  ,  ...E E  for valley one 

and valley two, respectively. The Schrödinger equations for valley one and valley two 

can be written as  

 ( ) ( ) ( ) ( )
22

,1
,1 ,1 ,12

12
i

i i i

d x
q x x E x

m dx
ψ

φ ψ ψ− − = , (3.15) 

and 
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Figure 3.5 
Illustration of different effective electron masses in two conduction band valleys.  

 
 
 

 ( ) ( ) ( ) ( )
22

,2
,2 ,2 ,22

22
i

i i i

d x
q x x E x

m dx
ψ

φ ψ ψ− − = , (3.16) 

where 1 00.916m m=  and 2 00.19m m=  for valley one and two respectively. For the ith 

energy level, ,1 ,2i iE E<  because of the larger effective mass of valley one as calculated 

from equation (3.6). Subbands in the conduction band are schematically shown in Figure 

3.6. 
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Figure 3.6 

Schematic diagram of typical subbands formation for electrons with different 
effective masses. 

 
 
 

Figure 3.7-Figure 3.10 show the numeric solution of equations (3.12), (3.15), and 

(3.16). Figure 3.7 shows the band bending, given by ( )q xφ− , forming a steep potential 

well near the channel surface. While Figure 3.8 shows the calculated subband energy 

levels in the conduction band, Figure 3.9 shows wavefunctions of first three subbands, 

where 1,1ψ  and 2,1ψ  are the wavefunctions of the first and second subbands in valley 

one and 1,2ψ  is the wavefunction of the lowest subband in valley two [32].  
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Figure 3.7 
Numerical results for conduction band bending in the x direction  

from SCHRED [32]. 
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Figure 3.8 
Numerical results for subband energy levels from SCHRED [32]. 
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Figure 3.9 
Wavefunctions of subbands from simulation results of SCHRED [32]. 
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Figure 3.10 
Numerical results for carrier population on lowest two subbands from 

SCHRED [32]. 
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It is very difficult to give an analytical solution to the coupled Schrödinger and 

Poisson equations. However, numerical simulation [32] conveys several prospects. Most 

carriers reside on the two lowest subbands. For gsV  variations from 0-3 V, the electron 

population on the lowest two subands accounts for 80-95% of the total carrier population, 

as shown in Figure 3.10. Therefore, it is sufficient to consider only the lowest energy 

level in each valley in order to obtain an accurate analytical solution [27]. With this 

assumption, the Poisson and Schrödinger equations are reduced to  

 ( ) ( )2
2 2,1 ,2

1,1 1,22 ( ) ( )inv invA

Si Si Si

Q Qd x qN x
x x

dx q q
φ

ψ ψ
ε ε ε

= + + , (3.17) 

 
( ) ( ) ( ) ( )

22
1,1

1,1 1,1 1,12
12

d x
q x x E x

m dx
ψ

φ ψ ψ− − = , (3.18) 

and 

 ( ) ( ) ( ) ( )
22

1,2
1,2 1,2 1,22

22
d x

q x x E x
m dx

ψ
φ ψ ψ− − =  (3.19) 

where Qinv,1 and Qinv,2 (in [C/cm2]) are the electron charge sheet densities for valley one 

and two, respectively. 

3.3.1 Boundary Conditions 

The depletion region charges are considered as uniformly distributed in a 

depletion charge layer of depth, d  (in [cm]), as  

 ( )       0
         0          

A AN x N x d
x d

= ≤ ≤

= >
. (3.20) 

The boundary condition for the Poisson equation (3.17) at the Si-SiO2 interface is that the 

normal component of displacement density vector is continuous across the Si-SiO2 

interface [10] such that,  
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0

Si ox ox
x

d E
dx
φε ε

=

⎛ ⎞
− =⎜ ⎟

⎝ ⎠
, (3.21) 

where Eox (in [V/cm]) is the vertical oxide dielectric field. For an applied gate voltage 

gsV , Eox is given by 

 ox
ox

ox

VE
t

= . (3.22) 

According to equation (3.14) and Figure 2.4, Eox can be written as  

 
( )0gs FB

ox
ox

V V
E

t
φ− −

= . (3.23) 

Substituting (3.23) into equation (3.21), we can write the boundary condition at the 

Si-SiO2 interface as  

 
( )( )

0

0ox gs FB
Si

x ox

V Vd
dx t

ε φφε
=

− −⎛ ⎞
− =⎜ ⎟

⎝ ⎠
. (3.24) 

In the neutral substrate, the electrostatic potential stays constant. For convenience, it is 

chosen to be the reference potential. Thus, the potential boundary condition at infinity is 

given by 

 ( ) 0xφ = ∞ = . (3.25) 

According to quantum mechanics, the wavefunctions for particles in the potential 

well are real [8]. Because the potential barrier at the oxide/silicon interface is relatively 

high (3.1 eV referred to the bottom of conduction band) for electrons in the potential well, 

it could be approximated as infinity [43, 55, 57]. This assumption simplifies the boundary 

condition at 0x =  for the Schrödinger equation as  

 ( )0 0xψ = = . (3.26) 
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Moreover, inversion charges distribute near the surface of the channel, which 

indicates that both the wavefunction and its derivative should vanish in the infinite 

distance. This results in boundary conditions for the wavefunction at x = ∞  given by 

 ( ) 0xψ = ∞ = , (3.27) 

and 

 0
x

d
dx
ψ

=∞

= . (3.28) 

3.3.2 Solution by Variational Method 

Using variational method (see Appendix C), electron wavefunctions for valley 

one and two are assumed to be ( ) ( ) ( )1/ 23
1,1 1 12 expx x xψ α α= −  and 

( ) ( ) ( )1/ 23
1,2 2 22 expx x xψ α α= −  with the undetermined parameters being 1α  and 2α , 

respectively. These wavefunctions satisfy boundary conditions given by equations (3.26), 

(3.27) and (3.28). Moreover, these trial wavefunctions have similar forms with 1,1ψ  and 

1,2ψ  as shown in Figure 3.9, ensuring good accuracy for the calculated energy levels. 

Noticing that  

 
( ) ( ) ( ) ( ) ( )

2

1,1 3 4 2
1 1 1 12 exp 2 4 exp 2

d x
x x x x

dx
ψ

α α α α= − − −  (3.29) 

leads to  

 
( )

1

2

1,1

1
2

0
x

d x
dx

α

ψ

=

= , (3.30) 
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it is found that these trial wavefunctions result in the electron density peak at 
1

1
2α

 and 

2

1
2α

 for valley one and valley two, respectively. 

Given wavefunctions 1,1ψ  and 1,2ψ , integrating equation (3.17) from the bulk 

toward the surface leads to 

 ( ) 2 2,1 ,2 2
1,1 1,2

0

( ) ( )inv invA

Si Si Si

Q QqNx x x dxφ ψ ψ
ε ε ε∞→

⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
∫∫ . (3.31) 

The terms of qNA, Qinv,1 and Qinv,2 are the depletion charge density, and inversion charge 

densities from valley one and valley two, respectively. Specifying their contributions to 

the total potential as deplφ , ,1invφ , and ,2invφ  leads to  

 ( ) ,1 ,2depl inv invxφ φ φ φ= + +  (3.32) 

In equation (3.32), deplφ  is the electrostatic potential generated by depletion charges  

 
( )21    0

2
0   

A

Sidepl

qN d x x d

x d
εφ

⎧ − ≤ ≤⎪= ⎨
⎪ >⎩

. (3.33) 

1invφ  is the potential induced by inversion charges in valley one, which is associated with 

wavefunction 1,1ψ  in Figure 3.9 and given by 

 ( ) ( ),1 2 2
,1 1 1 1

1

1 3 4 2 exp 2
2

inv
inv

Si

Q
x x xφ α α α

α ε
= + + − , (3.34) 

and 2invφ  is the potential induced by inversion charges in valley two, which is associated 

with wavefunction 1,2ψ  in Figure 3.9, and given by 

 ( ) ( ),2 2 2
,2 2 2 2

2

1 3 4 2 exp 2
2

inv
inv

Si

Q
x x xφ α α α

α ε
= + + − . (3.35) 
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The lowest energy level is given by the expectation value of the Hamiltonian of the 

wavefunction (see Appendix C). For valley one,  

 1,1 1,1 1,1E Hψ ψ
∧

= . (3.36) 

As shown in Appendix C, equation (3.36) can be replaced by the integral 

 ( ) ( ) ( ) ( )
2

2
1,1 1,1 1,1 1,12

10 02
dE x x dx q x x dx

m dx
ψ ψ φ ψ

∞ ∞

= +∫ ∫ . (3.37) 

Substituting the expression ( ) ( ) ( )1/ 23
1,1 1 12 expx x xψ α α= −  into equation (3.37) leads to  

 

( )

2 2 2
,11

1,1
1 1 1 1

4 3 2 2 3 4
,2 1 1 2 1 2 1 2 2

5
1 2

113 1 3
2 2 2 16

5 10 53
2

invA

Si Si

inv

Si

qQq NE d
m

qQ

α
ε α α ε α

α α α α α α α α
ε α α

⎛ ⎞
= + − +⎜ ⎟

⎝ ⎠
+ + + +

+
+

. (3.38) 

As shown in Figure 3.7, the magnitude of depletion depth is in the order of hundreds of 

nanometers [10]. While Figure 3.3 and Figure 3.9 show that the peak of the electron 

density lies a few nanometers beneath the channel surface, namely 
1 2

1 1 and d
α α

>> , we 

can approximate 

 
1

1d d
α

− ≈ . (3.39) 

Letting  

 2 1α γα=  (3.40) 

and  

 ( )
( )

4 3 2

5
16 5 10 5 1
11 1

f γ γ γ γγ
γ

+ + + +
=

+
, (3.41) 

equation (3.38) can be rewritten as 
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 ( )
2 2 2

,1 ,21
1,1

1 1 1 1

11 113 3 3
2 2 2 16 2 16

inv invA

Si Si Si

qQ qQq N dE f
m
α γ

ε α ε α ε α
= + + + . (3.42) 

Likewise, the lowest energy in the valley two can be expressed as 

 ( )
2 2 2

,2 ,12
1,2

2 2 2 2

11 113 3 3
2 2 2 16 2 16

inv invA

Si Si Si

qQ qQq N dE g
m
α γ

ε α ε α ε α
= + + + , (3.43) 

where 

 ( ) ( )
( )

4 3 2

5

5 10 5 116
11 1

g
γ γ γ γ γ

γ
γ

+ + + +
=

+
. (3.44) 

The parameters 1α  and 2α  should minimize the energy level by the variational 

method, so that 

 1,1

1

0
dE
dα

=  (3.45) 

and  

 1,2

2

0
dE
dα

= . (3.46) 

Parameters 1α  and 2α  are obtained from equation (3.45) and (3.46) as 

 ( )
1/3

1
1 ,1 ,22

3 11 11
2 16 16depl inv inv

Si

m q Q Q f Qα γ
ε

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (3.47) 

and 

 ( )
1/3

2
2 ,2 ,12

3 11 11
2 16 16depl inv inv

Si

m q Q Q g Qα γ
ε

⎡ ⎤⎛ ⎞= + +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

. (3.48) 

Therefore, γ  is determined from equations (3.40), (3.47), and (3.48) as  
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( )

( )

,2 ,1
3 2

1
,1 ,2

11 11
16 16
11 11
16 16

depl inv inv

depl inv inv

Q Q g Qm
m Q Q f Q

γ
γ

γ

+ +
=

+ +
. (3.49) 

The range of possible values of γ  is given by considering two extreme situations. At 

low gate voltage, the conduction band bending in the channel is small, and depletion 

charges overwhelm inversion charges in equation (3.49). The equation is simplified as 

 3 2

1

m
m

γ = , (3.50) 

which gives 0.59γ =  by substituting 1 00.916m m=  and 2 00.19m m= . In the extreme 

situation that Qinv,1 dominates Qdepl and Qinv,2, the contribution of Qdepl and Qinv,2 in 

equation (3.49) can be ignored. This extreme case corresponds to a MOSFET at high 

operating bias, in which inversion charges outnumber depletion charges. Meanwhile, 

Figure 3.10 shows that electrons in valley two become a smaller portion of the total 

inversion charges at high gate bias. By ignoring Qdepl and Qinv,2, equation (3.49) becomes  

 ( )3 2

1

m g
m

γ γ= . (3.51) 

Equation (3.51) can be solved, resulting in 0.51γ = . Considering the two extreme cases 

0.59γ =  and 0.51γ = , the value of γ  is in the range 0.51~0.59. Evidently, γ  does 

not vary much with Qinv,1, Qdepl and Qinv,2. Furthermore, Figure 3.11 shows ( )f γ  and 

( )g γ  only change slightly in γ  variance range. Approximating γ  as the average of 

the two extreme cases results in  

 0.545γ ≈ , (3.52) 

and 
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1/3

1
1 2

3 11
2 16depl inv

Si

m q Q Qα
ε

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

. (3.53) 

From equation (3.40), it is known that 

 2 10.545α α= ,  (3.54) 

Therefore, E1,1 is obtained as 

 ( )2 2
1,1 1 13 / 2E mα= . (3.55) 

Energy level E1,2 is similarly obtained, using equations (3.43) and (3.54), as 

 ( )2 2
1,2 2 2 1,13 / 2 1.432E m Eα= ≈  (3.56) 

 
 
 

 
Figure 3.11 

Range of values for ( )f γ  and ( )g γ . 
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Figure 3.12 shows good agreement between the derived model and the numerical 

Poisson-Schrödinger solver for MOSFETs operating in the range of 1 ~ 3gsV V= . In 

equation (3.55) and (3.56), E1,1 E1,2 are given by the inversion charge and depletion 

charge density instead of gate voltage. For comparison purposes, Qinv, Qdepl are extracted 

from the numerical simulation. The relationship between charge densities Qinv, Qdepl and 

gate voltage is shown in the following section. From equation (3.56) and Figure 3.12, the 

separation between the energy levels of the two lowest subbands is enlarged at high bias, 

which explains the rapid increase of the relative occupation ratio ( ,1 /inv invQ Q ) in the 

subband 1,1E  as shown in Figure 3.10.  
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Figure 3.12 
Comparison of the quantized energy levels given by the model and by 

numerical simulation from SCHRED [32]. 
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3.4 Quantum Mechanical C-V Model 

Although the charge profile in a MOSFET can be obtained from the subband 

energy levels, they do not explicitly describe how charge density responds with the 

applied gate voltage. The C-V characteristic [10] becomes a necessary tool for describing 

MOSFET behavior.  

From the quantization effect analysis, it becomes clear that the distribution of 

inversion charge is quite different from that predicted by classical analysis. For example, 

in the classical model, inversion charge changes with potential exponentially, resulting in 

a maximum concentration at the channel surface [59]. In quantum mechanics, by 

considering the potential barrier of the gate oxide, the wavefunction diminishes at the 

interface, leading to zero charge density as shown in Figure 3.9. As a result, the density 

peak of inversion charges shifts away from the interface, which is shown in Figure 3.3. 

Meanwhile, inversion charges are distributed on the split subbands instead of having a 

continuous distribution, as shown in Figure 3.8. In the quantum analysis, inversion charge 

can be described as a two-dimensional gas at discrete energy levels [52, 84]. 

The appropriate charge profile must be considered for an accurate gate 

capacitance model. Through a gate capacitance model that incorporates the energy 

quantization effect, a better understanding of the behavior of MOSFETs in different 

operational regions can be achieved. Device parameters justified quantum mechanically 

can be further studied based on the gate capacitance model. 

3.4.1 Gate Capacitance Components 

Charges in the channel consist of depletion charges and inversion charges, namely 

 T depl invQ Q Q= + , (3.57) 
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where QT (in [C/cm2]) is the total charge sheet density in the channel. By assuming all 

voltages are referenced to the source of the MOSFET and the substrate is connected to 

the source, a MOSFET can be analyzed as an MOS capacitor with two electrodes: gate 

and grounded substrate. According to the variance of the charge density with respect to 

the channel surface potential sφ  (in [V]), two capacitances can be defined: inversion 

layer capacitance per unit area invC  (in [F/cm2]) and depletion layer capacitance per unit 

area dC  (in [F/cm2]), which are given by 

 inv
inv

s

QC
φ

∂
=

∂
, (3.58) 

and  

 depl
d

s

Q
C

φ
∂

=
∂

. (3.59) 

The depletion layer capacitance be expressed as [9] 

 Si
dC

d
ε

= , (3.60) 

where d [cm] is the depletion depth. Surface potential sφ  varies with gate voltage Vgs 

conforming with  

 ( )T ox gs s FBQ C V Vφ= − − , (3.61) 

where Cox (in [F/cm2]) is the oxide layer capacitance per unit area given by [9]  

 ox
ox

ox

C
t
ε

= . (3.62) 

The total gate capacitance per unit area Cg (in [F/cm2]) is defined by  

 T
g

gs

QC
V

∂
=

∂
. (3.63) 
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Therefore, by combining equation (3.57) to (3.63),  

 
1

1 1
g

ox inv d

C
C C C

−
⎛ ⎞

= +⎜ ⎟+⎝ ⎠
 (3.64) 

is obtained as illustrated in Figure 3.13. 
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Figure 3.13 
Schematic view of the generic gate capacitance model. 

 
 
 

3.4.2 Classical Gate Capacitance Model  

The inversion charge density described by classical physics is 

 ( ) ( )
2

, exp /i

A

nn x y q kT
N

φ= − . (3.65) 

The total electron sheet density Qinv can be expressed as 

 ( )2

0

expi
inv

A

q xnQ dx
N kT

φ∞ −⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∫ , (3.66) 

where ( )xφ  can be given solely by Poisson’s equation (3.8), and Cinv can be obtained as 
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 inv
inv

s

QC
φ

∂
=

∂
. (3.67) 

In the classical model (See Appendix D), the inversion layer capacitance is invqQ
kT

 and 

2
invqQ

kT
 in the weak and strong inversion regions, respectively. 

In the classical model, the inversion layer capacitance is intentionally ignored, 

because it assumes that inversion charges concentrate at the surface of the channel, which 

causes the inversion layer capacitance to be much larger than oxC . However, in sub-90 

nm devices, the inversion charge density peak is located inside the channel, and Cinv 

needs to be specified taking energy quantization into consideration. This results in a finite 

inversion layer capacitance. In cases when the oxide layer is thick and the inversion layer 

capacitance is much larger than the oxide layer capacitance, the error in total gate 

capacitance by ignoring the inversion layer capacitance is negligible [59]. However, 

oxide thickness is greatly reduced in sub-90 nm MOSFETs, where the oxide layer 

capacitance becomes comparable to the inversion layer capacitance. In this situation, the 

gate capacitance will be noticeably reduced by taking into account the quantum-induced 

inversion layer capacitance, which is demonstrated in Figure 3.14. 
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Figure 3.14 
Comparison of gate capacitance as predicted by the classical and quantum 

simulations with SCHRED [32]. A metal gate n-MOSFET with Fermi energy 
-4.0 eV referenced to vacuum is used here. 

 
 
 

3.4.3 Quantum Gate Capacitance Model  

A quantum mechanical gate capacitance model accounts for the wave nature of 

carrier distribution. From the quantum mechanical carrier distribution on subbands, 

electron volume density in the inversion charge is described by 

 2,( ) ( )inv i
i

i

Q
n x x

q
ψ= −∑  (3.68) 

The distinction between the quantum mechanical and classical distributions has been 

clearly shown in Figure 3.3. 
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As previous sections state, most inversion charges stay in the lower subbands 

associated with effective masses of 1 00.916m m=  and 2 00.19m m= . The invQ  is 

divided into two parts,  

 ,1 ,2inv inv invQ Q Q= +  (3.69) 

where ,1invQ  and ,2invQ  correspond to the inversion charge sheet density associated with 

valley one and valley two, respectively. By definition, inversion layer capacitance is the 

variance of invQ  with respect to sφ  

 inv
inv

s

QC
φ

∂
=

∂
. (3.70) 

Substituting equation (3.69) into the Cinv definition leads to  

 ,1 ,2inv inv
inv

s s

Q Q
C

φ φ
∂ ∂

= +
∂ ∂

. (3.71) 

Inversion charges on subbands follow the two-dimensional distribution. As 

mentioned in Section 2.3.1, there are 
2

2 y z
m dydzdv dv
h

 states in a volume y zdydzdv dv . 

From the Boltzmann distribution,  

 ( ) exp( )FE Ef E
kT
−

= − , (3.72) 

inversion charges sheet density ,1invQ  and ,2invQ  can be given as  

 
* 2

1 1 1
,1 2

0

expd F
inv y z

g m E EQ q dydzdv dv
h kT

∞ −⎛ ⎞= −⎜ ⎟
⎝ ⎠∫  (3.73) 

and  

 
* 2

2 2 2
,2 2

0

expd F
inv y z

g m E EQ q dydzdv dv
h kT

∞ −⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ , (3.74) 
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where the degeneracy of states g1 and g2 are taken into account, and E1 and E2 are the 

energies of the inversion charges in valley one and valley two. Electron masses *
1dm  and 

*
2dm  are effective density-of-states masses in the y-z plane for valley one and valley two, 

respectively. From Figure 3.4, *
1 00.19d tm m m= =  and *

2 00.42d t lm m m m= =  [43]. 

The energies E1 and E2 in equations (3.73) and (3.74) can be written as the 

summation of their x, y, z components as 

 1 1,1 y zE E E E= + +  (3.75) 

and 

 2 1,2 y zE E E E= + +  (3.76) 

where E1,1 and E1,2 are given by equations (3.55) and (3.56) respectively, and yE  and 

zE  are kinetic energy components varying from zero to infinity. For inversion charges in 

valley one, * 2
1

1
2y d yE m v=  and * 2

1
1
2z d zE m v= . Thus, equation (3.73) can be written as  

* 2
1,1 * 2 * 21 1

,1 1 12
0

1 1exp exp exp
2 2

Fd
inv d y d z y z

E Eg mQ q m v m v dv dv
h kT kT kT

∞−⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ . (3.77) 

From ( )2

0

exp x dx π
∞

− =∫ , we have 

 
*

1,11 1
,1 2 exp Fd

inv

E EkTg mQ q
kTπ
−⎛ ⎞

= −⎜ ⎟
⎝ ⎠

. (3.78) 

The Fermi energy level EF is referenced to the conduction band edge at the channel 

surface. According to equation (2.43) and Figure 2.3, it is given by  

 / 2F s B gE q q Eφ φ= − − . (3.79) 

Therefore, ,1invQ  can be expressed as  
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* 1,1

1 1
,1 2

2exp
g

B s
d

inv

E
q q EkTg mQ q

kT

φ φ

π

⎛ ⎞
+ − +⎜ ⎟

= −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. (3.80) 

In a manner identical to that used for ,1invQ , ,2invQ  is found as 

 
* 1,2

2 2
,2 2

2exp
g

B s
d

inv

E
q q EkTg mQ q

kT

φ φ

π

⎛ ⎞
+ − +⎜ ⎟

= −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

. (3.81) 

By substituting equation (3.80) and (3.81) into (3.71), inversion layer capacitance is 

obtained as 

 

* 1,1
1 1
2

* 1,2
2 2
2

2exp

2exp

g
B s

d

inv
s g

B s
d

E
q q EqkTg m

kT

C
E

q q EqkTg m
kT

φ φ

π

φ
φ φ

π

⎡ ⎤⎛ ⎞
+ − +⎢ ⎥⎜ ⎟

−⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥∂ ⎝ ⎠= ⎢ ⎥∂ ⎛ ⎞⎢ ⎥+ − +⎜ ⎟⎢ ⎥
+ −⎜ ⎟⎢ ⎥

⎜ ⎟⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

, (3.82) 

which can be simplified as  

 1,1 1,2
,1 ,2

1 1
inv inv inv

s s

E Eq qC Q Q
kT kT kT kTφ φ

∂ ∂⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

. (3.83) 

Using equation (3.53) and (3.55), 1,1E  can be written as  

 
2/32

1
1,1 2

1

33 11
2 2 16depl inv

Si

m qE Q Q
m ε

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

. (3.84) 

Therefore, 

 
2/3 1/32

1,1 1
2

1

33 2 11 11
2 3 2 16 16

depl inv
depl inv

s Si s s

QE Qm q Q Q
mφ ε φ φ

− ∂∂ ⎛ ⎞ ⎡ ⎤∂⎛ ⎞= + +⎜ ⎟ ⎢ ⎥⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎣ ⎦
. (3.85) 
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The above equation can be simplified by substituting 
1/3

1
1 2

3 11
2 16depl inv

Si

m q Q Qα
ε

⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

 

as 

 1,1

1

3 11
2 16

depl inv

s Si s s

QE Qq
φ α ε φ φ

∂∂ ⎛ ⎞ ⎡ ⎤∂
= +⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎣ ⎦

. (3.86) 

From equation (3.56), 1,2 1,11.432E E= . Therefore, the above equation can be modified for 

1,2E  as 

 1,2

1

3 111.432
2 16

depl inv

s Si s s

QE Qq
φ α ε φ φ

∂∂ ⎛ ⎞ ⎡ ⎤∂
= +⎜ ⎟ ⎢ ⎥∂ ∂ ∂⎝ ⎠ ⎣ ⎦

. (3.87) 

By applying expressions (3.86) and (3.87) to equation (3.83), the inversion layer 

capacitance is obtained as 

 

,1

1

,2

1

3 11
2 16

3 111.432
2 16

deplinvinv inv
inv

Si s s

deplinv inv

Si s s

QQqQ QqC
kT kT

QQ Qq
kT

α ε φ φ

α ε φ φ

∂⎛ ⎞ ⎡ ⎤∂
= − +⎜ ⎟ ⎢ ⎥∂ ∂⎝ ⎠ ⎣ ⎦

∂⎛ ⎞ ⎡ ⎤∂
− +⎜ ⎟ ⎢ ⎥∂ ∂⎝ ⎠ ⎣ ⎦

. (3.88) 

Defining the effective inversion layer thickness effX   

 ,1 ,2

1

1.43233 1
32

inv inv
eff

inv

Q Q
X

Qα
+

= , (3.89), 

equation (3.88) transforms to  

 16
11

eff depl effinv inv inv inv
inv

Si s Si s

X Q XqQ qQ qQ QC
kT kT kTε φ ε φ

∂ ∂
= − −

∂ ∂
. (3.90) 

The terms invqQ
kT

 and Si

effX
ε  can be considered as two equivalent capacitors denoted by 

CWI and CSI,  
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 inv
WI

qQC
kT

=  (3.91) 

and 

 Si
SI

eff

C
X
ε

= . (3.92) 

Also noticing depl
d

s

Q
C

φ
∂

=
∂

 and inv
inv

s

QC
φ

∂
=

∂
, equation (3.90) becomes 

 16
11

WI WI
inv WI d inv

SI SI

C CC C C C
C C

= − − . (3.93) 

Solving equation (3.93) for Cinv results in  

 

161
11

1 1

d

SI
inv

WI SI

C
CC

C C

−
=

+
. (3.94) 

From the definitions of Cd and CSI in equation (3.60) and (3.92), it is known that  

 
Si

effd

SiSI

eff

XC d
C d

X

ε

ε= = . (3.95) 

Referencing to equation (3.89), it can be easily found that Xeff and 
1

1
α

 are of the same 

order of magnitude. Comparing magnitudes of d and Xeff, as we have already done for d 

and 
1

1
α

 in Section 3.3.1, it is concluded that 1effd

SI

XC
C d

= << . For this reason, equation 

(3.94) is replaced with 

 ( ) 11 1
inv WI SIC C C

−− −= + . (3.96) 
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This expression is analogous to the case of two capacitors in series, as shown in Figure 

3.15. This Cinv model is formulated in terms of charge densities: Qinv, Qinv,1, Qinv,2, Qdepl, 

and the relationship between Cinv and gate voltage is not explicitly given. Derived from 

equation (3.58), (3.59) and (3.61), charge densities are related to the gate voltage as 

 depl inv
gs FB s

ox

Q Q
V V

C
φ

+
= + + , (3.97) 

 inv inv sQ C dφ= ∫ , (3.98) 

and 

 depl d sQ C dφ= ∫ . (3.99) 

 
 
 

SIC

oxC

dC

g sV

sφ

Gnd

WIC

SIC

oxC

dC

g sV

sφ

Gnd

WIC

 

Figure 3.15 
Inversion layer capacitance Cinv modeled as CWI and CSI in series. 

 

 

Using equations (3.98)-(3.97) and the Cinv model in (3.96), the capacitance and 

charge density variations with gate voltage can be calculated. Figure 3.16 shows the 

inversion charge density calculation from the quantum mechanical Cinv point of view. 

Figure 3.17 illustrates the two components of WIC  and SIC  in the quantum mechanical 
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Cinv model. In Figure 3.17, WIC  is dominant in the weak inversion region, and SIC  is 

the major contributor to invC  in strong inversion. At lower Vgs, the MOSFET is in weak 

inversion, and the inversion charge is vanishingly small, as shown in Figure 3.16. 

According to equation (3.91), WIC  is proportional to the inversion charge sheet density 

Qinv, and has a small value in this situation. Since WIC  and SIC  are connected in series, 

the relatively small WIC  dominates SIC  in the total Cinv. At higher gate voltage, when 

the number of inversion charges increases and the channel surface is in strong inversion, 

WIC  becomes larger than SIC , leading to inv SIC C≈ . By incorporating the Cinv described 

by equation (3.96) into Cg, the total gate capacitance is obtained as  

 
( )( ) 11

1
/

g

ox d WI SI WI SI

C
C C C C C C

−−
=

+ + +
. (3.100) 

The analytical model of total gate capacitance is compared with numerical simulation 

[32] in Figure 3.18. A significant deviation of Cg from Cox in the strong inversion region 

(i.e. at high Vgs) can be observed in Figure 3.18.  
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Figure 3.16 

Electron sheet density in the channel vs. Vgs for n-MOSFET with metal gate 
workfunction -4.0 eV. Both substrate and drain are grounded. 
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Figure 3.17 
Inversion layer capacitance Cinv and its components, CWI and CSI. An 

n-MOSFET with metal gate of -4.0 eV workfunction is considered here. Both 
substrate and drain are grounded. The Cinv model is compared with simulation 

results from SCHRED [32]. 
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Figure 3.18 
Total gate capacitance Cg dependency on gate voltage Vgs, validated by 

SCHRED [32].  

 

 

 

3.5 Conclusion 

In this chapter, the quantization effects on carrier distribution are studied. The 

carrier energy quantization leads to discrete subbands in the inversion layer of a 

MOSFET. Electrons are grouped into two conduction band valleys, owing to different 

effective masses. In each valley, the absolute majority of electrons is located on the 

lowest subband. By simultaneously solving the Schrödinger and the Poisson equations, 

the analytical expressions for energy levels of two lowest subbands are obtained. The 

relationship between charge density and gate bias in MOSFETs is then derived based on 

the subband energy levels. Results from the quantum mechanical model show that 
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classical theory greatly overestimates the value of inversion layer capacitance. This 

overestimation in turn results in the overestimation of gate capacitance in short-channel 

MOSFETs. 
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CHAPTER 4   

QUANTUM MECHANICAL MOSFET MODEL 

4.1 Introduction and Background 

The presence of energy quantization significantly influences the manner in which 

electrons respond to the bias at electrodes. Levitated electron energy levels effectively 

reduce the inversion charge density, requiring extra gate voltage for the threshold 

condition. In addition, gate control of inversion charges is weakened, which is specified 

by the reduced inversion layer capacitance in the gate capacitance model considering 

quantization effect. Hence, device parameters, such as the threshold voltage and 

subthreshold swing, need to be adjusted by taking energy quantization into account. As 

channel lengths are reduced, devices become more susceptible to energy quantization. 

Suppression of SCEs is even more challenging, as gate control is weakened by both 

energy quantization and two-dimensional geometry. For this reason, QMEs must be 

considered in addition to the two-dimensional electrostatic potential distribution in the 

analysis of short-channel devices. By including key QMEs on device parameters, a 

comprehensive I-V characteristics model can be achieved that is appropriate for circuit 

simulation. 

In the remainder of this chapter, threshold voltage and subthreshold swing models 

for long-channel MOSFETs are developed in Section 4.2 and 4.3, respectively. In Section 

4.4, the quantization effect on SCEs is investigated. Section 4.5 develops an I-V 

characteristic model integrating key QMEs. An example of applying the developed model 

to study a CMOS circuit is given later, resulting in extra delays when QMEs are 

considered. 
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4.2 VTH Model for Long-Channel MOSFET 

The threshold voltage ( THV ) is the most important parameter in MOSFETs. It 

determines in which region of operation a MOSFET is functioning, namely the 

subthreshold (off-state) or the superthreshold (on-state) region. In the subthreshold 

region, there are only a few mobile charges in the channel, and fixed depletion charges 

are dominant. It can be assumed that the surface potential is determined solely by 

depletion charges. In the superthreshold region, there is a considerable amount of mobile 

charges due to surface inversion in the channel, and significant current can flow from the 

source to the drain. Inversion charges become dominant, while the number of depletion 

charges only varies slightly with gate voltage.  

In classical models, the threshold voltage VTH,CL is defined as the gate voltage 

corresponding to the condition that the surface potential sφ  equals 2 Bφ , where Bφ  is 

the Fermi potential defined as 

 ln A
B

i

NkT
q n

φ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. (4.1) 

As a consequence, the inversion charge density at the surface, (see equation (3.65)), 

 ( )
2

0 expi s

A

n qn x
N kT

φ⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (4.2) 

is equal to the doping concentration at the threshold  

 ( )
,

0
gs TH CL

AV V
n x N

=
= = . (4.3) 

Thus, beyond this point, the channel surface is inverted [85]. 

The lowest subband energy level is well above the bottom of the conduction band 

when energy quantization is considered. Therefore, the density of inversion charges is 
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much lower than with the classical assumption, at the condition of surface potential 

2s Bφ φ= . In order to invert the channel, the band bending required is larger than 2 Bφ . 

The extra gate voltage to generate the band bending can be considered as the threshold 

voltage shift. This becomes the quantum correction to the classical model for threshold 

voltage [45, 65].  

The threshold condition of 2s Bφ φ=  is not appropriate in the quantum model. 

Instead, the threshold condition is defined by counting inversion charges in the channel. 

For consistency with the classical model, the threshold voltage in the quantum 

mechanical model is defined as the gate voltage at which the inversion charge reaches the 

amount predicted by classical theory at 2s Bφ φ= . This change can be expressed as 

 ( ) ( ), , , ,inv QM gs TH QM inv CL gs TH CLQ V V Q V V= = =  (4.4) 

where Qinv,QM and Qinv,CL (both in [C/cm2]) are the inversion charge number per unit area 

calculated by quantum and classical theory, respectively, and the quantum and classical 

threshold voltages are denoted as VTH,QM and VTH, CL, respectively. The shift caused by the 

quantization effect is given by 

 , , ,TH shift TH QM TH CLV V V∆ = − . (4.5) 

In the classical model, the inversion charge is given by  

 
2

,
0

expi
inv CL

A

qn qQ dx
N kT

φ∞ ⎛ ⎞= −⎜ ⎟
⎝ ⎠∫ , (4.6) 

where the potential φ  can be obtained from the one-dimensional Poisson equation as 

 ( ) ( ) ( )2 2

2 expA i

Si Si A

d x qN x q xqn
dx N kT
φ φ

ε ε
⎛ ⎞

= + −⎜ ⎟
⎝ ⎠

. (4.7) 

A rigorous derivation (See Appendix D) gives the inversion charge sheet density as,  
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 ( ) ( ) [ ]
1/ 22

1/ 2
,

2 expSi i
inv CL s s s s

D A

kT nQ
qL N

εφ βφ βφ βφ
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎢ ⎥= + −⎨ ⎬⎜ ⎟

⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

, (4.8) 

where /q kTβ =  and DL  is the Debye Length (in [cm]) defined as  

 Si
D

A

L
qN

ε
β

= . (4.9) 

At the onset of threshold, the surface potential in the equation (4.8) can be replaced by 

2 Bφ . Since ( )
2

expi
s s

A

n
N

βφ βφ
⎛ ⎞

>> ⎜ ⎟
⎝ ⎠

 in the subthreshold region, applying the Taylor 

expansion ( )1/ 2 11 1  ,  1
2

x x x+ ≈ + <<  to the above equation leads to 

 ( ) [ ] ( )2
1/ 2

,

exp2 1
2

sSi i
inv CL s s

D A s

kT nQ
qL N

βφεφ βφ
βφ

⎡ ⎤⎛ ⎞
⎢ ⎥= ⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

, (4.10) 

which can be simplified as  

 ( ) ( )
[ ]

2

, 1/ 2

exp2
2

sSi i
inv CL s

D A A s

kT nQ
qL N N

βφεφ
βφ

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎣ ⎦
. (4.11) 

With ( )2

( ) expi

A

q xnn x
N kT

φ⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, the inversion charge density becomes 

 ( ) ( )
[ ], 1/ 2

02
2inv CL s D

s

nqQ Lφ
βφ

= . (4.12) 

In the classical model, at the threshold, where the surface potential is 2s Bφ φ= ,  

 
2

,
gs TH

D
inv CL AV V

cl

qLQ N
d=

=  (4.13) 

with  
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 ( )2 2Si B
cl

A

d
qN

ε φ
= . (4.14) 

In contrast, using the quantum-mechanical model results in the inversion charge 

sheet density given as 

 1,1
,1 2 exp F

inv C

E E
Q qN

kT
−⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, (4.15) 

where  

 
*

1 1
2 2

d
C

kTg mN
π

=  (4.16) 

is the 2-D state charge sheet density, and 1g  is the degeneracy of the energy subband. 

From the band diagram, 1,1 FE E−  is determined by the band-bending and the quantized 

energy level as 

 1,1 1,12
g

F B s

E
E E q q Eφ φ− = + − + , (4.17) 

where 1,1E  is energy of the lowest subband with respect to the conduction band 

minimum. Substituting equation (4.17) into equation (4.15) leads to 

 ,1
1,1

2

ln
2

ginv
B s

C

EQ
kT q q E

qN
φ φ

⎛ ⎞
− = + − +⎜ ⎟

⎝ ⎠
, (4.18) 

where the surface potential is given by 

 
2

2
A

s
Si

qN dφ
ε

= , (4.19) 

the subband energy level is given by  

 
2

1,1
1

9
4

A

Si

q N dE
ε α

= , (4.20) 

and  
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1/3* 2

1 2

3
2 A qm

Si

m q N dα
ε

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
 (4.21) 

as derived in Chapter 3. Inversion charges are neglected in equations (4.19) and (4.20)

because at threshold, inversion charges are significantly lower than depletion charges 

and, consequently, subband energy levels and the surface potential are primarily set by 

depletion charges. This validates the simplification that is used in equations (4.19) and 

(4.20). Using the surface potential and the lowest energy level expressions, equation 

(4.18) changes to  

 
2

,12

1 2

9 ln
2 2 2

g invA
qm B

Si C

E Qq N d q kT
qN

φ
ε α

⎛ ⎞⎛ ⎞
− = + + ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
, (4.22) 

where the qmd  (in [cm]) is the depletion depth in the quantum-mechanical model. 

Correspondingly, similar analysis with classical physics leads to [10]  

 
2

2 ln
2 2

gA A
cl B

Si C

Eq N Nd q kT
N

φ
ε

⎛ ⎞
= + + ⎜ ⎟

⎝ ⎠
, (4.23) 

where cld  (in [cm]) is the depletion depth in the classical model, and CN  (in [cm-3]) is 

the density-of-states for the three-dimensional electron gas. Thus, the relationship 

between qmd  and cld  is given by the expression  

 
1

2 2
,12 2

2

9
ln

2 2 2
qm inv CA A

qm cl
Si Si A C

d Q Nq N q Nd d kT
qN Nε α ε

⎛ ⎞ ⎛ ⎞
− = +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

. (4.24) 

Noticing that Si
D

A

L
qN

ε
β

=  at threshold, equation (4.24) can be written as 

 ,12 2 2

1 2

9
2 ln

2
qm inv C

qm cl D
A C

d Q Nd d L
qN Nα

⎛ ⎞⎛ ⎞
− = + ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
. (4.25) 
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Equation (4.25) indicates the different depletion depths predicted by classical and 

quantum mechanical models. Although an explicit expression cannot be derived directly 

from equation (4.25), it can be further simplified based on several observations on the 

relative magnitudes of qmd , 1
1α − , and DL .  

First, from the previous discussion, the magnitude of 1
1α −  is only a few 

nanometers, and qmd  is the depletion depth, 
1

1
qmd

α
<< . We can approximate 

2

1

9
2

qm
qm

d
d

α
⎛ ⎞

−⎜ ⎟
⎝ ⎠

 by 
2

1

9
4qmd
α

⎛ ⎞
−⎜ ⎟

⎝ ⎠
 using a Taylor series expansion. 

Second, the difference between the classical depletion depth and quantum 

mechanical depletion depth is small compared with the depletion depth itself, 

1qm cl

cl

d d
d
−

<< . Hence, equation (4.21) can be written as 

 
1/3* 2

1 2

3
2 A cl

Si

m q N dα
ε

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. (4.26) 

Third, the Debye length LD is negligibly small compared with the depletion depth. 

In the term ,12

2

2 ln inv C
D

A C

Q NL
qN N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 in equation (4.25), 
2

,1 ~ D
inv A

cl

qLQ N
d

, CN , and 2CN  

depend on temperature only; DL  and cld  vary with the substrate doping. At room 

temperature and substrate doping concentration in the range 15 20 31 10 1 10  cm−× ×∼ , 

2
2

2

2 ln D A
D

cl C

L NL
d N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is no more than 5% of 2
cld , as shown in Figure 4.1. Obviously, the 

term ,12

2

2 ln inv C
D

A C

Q NL
qN N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 can be safely ignored in equation (4.25). 
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Figure 4.1 

Ratio of 
2

2

2

2 ln D A
D

cl C

L NL
d N

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and 2
cld  as a function of doping. 

 
 

With these approximations, the expression for the quantum mechanical depth can 

be simplified as 

 9
4qm cl

T

d d
α

≈ +  (4.27) 

where Tα  is the value of 1α  at threshold 

 
1/3* 2

2

3
2T A cl

Si

m q N dα
ε

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
  (4.28) 

Equation (4.27) implies that a greater depletion depth than what is predicted in classical 

analysis is required for the threshold condition. The extra depletion depth increases the 
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surface potential, allowing adequate inversion charges in the channel. The increase in the 

surface potential sφ∆  (in [V]) caused by the quantization effect is then given by 

 
2

9 2
2 4

A
s cl B

Si T

qN dφ φ
ε α

⎛ ⎞
∆ = + −⎜ ⎟

⎝ ⎠
. (4.29) 

Using this, the gate voltage shift can be obtained from the surface potential difference as 

 
2s B

gs
gs s

s

dV
V

d
φ φ

φ
φ

=

∆ = ∆ , (4.30) 

where  

 
2

11
2

s B

gs Si A

s ox B

dV qN
d C

φ φ

ε
φ φ

=

= + . (4.31) 

From equations (4.29) and (4.30), the threshold voltage shift is obtained as 

 ,
1 91 2

2 2 4
Si A A

TH shift cl B
ox B Si T

qN qNV d
C

ε φ
φ ε α

⎛ ⎞ ⎡ ⎤⎛ ⎞
∆ = + + −⎜ ⎟ ⎢ ⎥⎜ ⎟⎜ ⎟ ⎝ ⎠⎣ ⎦⎝ ⎠

, (4.32) 

where 

 
1/3* 2

2

3
2T A cl

Si

m q N dα
ε

⎡ ⎤
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⎣ ⎦
, (4.33) 

and  

 ( )2 2Si B
cl

A

d
qN

ε φ
= . (4.34) 

This result (4.32) agrees well with measurement data [29], as shown in Figure 4.2. 
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Figure 4.2 
Comparison of quantum mechanical threshold voltage shift model with 

measurement data [29]. 

 
 
 

4.3 S Model for Long-Channel MOSFET 

At gs THV V< , the MOSFET is in its off-state and only conducts a leakage current 

from the source to the drain through the weakly inverted channel surface. This is referred 

to as the subthreshold current. The subthreshold current is the key leakage source in 

MOSFETs and, hence, the reduction of subthreshold current is a major concern in device 

design [10, 69, 86]. It is known that subthreshold current increases exponentially with 

gate voltage [85]. To measure the changing rate of subthreshold current with respect to 

the gate voltage, the subthreshold swing (S) is defined as the gate voltage swing needed 

to change the subthreshold drain current by a decade. By this definition, S  is given by 
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 ( )
1

ln ln 10
gs

IS
V

−
⎛ ⎞∂

= ⎜ ⎟⎜ ⎟∂⎝ ⎠
. (4.35) 

Physically speaking, the magnitude of subthreshold swing reflects the gate control 

of inversion charges in the channel in subthreshold. The smaller value of S  devices 

show better subthreshold behavior reflected as lower leakage current. 

Since the subthreshold drain current is proportional to the total amount of mobile 

charges diffusing to the drain invI Q∝ , then 

 lnln inv

gs gs

QI
V V

∂∂
=

∂ ∂
. (4.36) 

Classical physics describes the inversion charge as 

 ( )2

0

expi
inv

A

q xnQ dx
N kT

φ∞ ⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∫ . (4.37) 

Thus, the subthreshold swing can be expressed as (See Appendix D),  

 
( ) ( )1 ln 10 ln 10inv s s

inv s gs gs

Q kTS
Q V q V

φ φ
φ

∂ ∂ ∂
= =

∂ ∂ ∂ . (4.38) 

For a long-channel MOSFET, 1s d

gs ox

C
V C
φ ⎛ ⎞∂

= +⎜ ⎟∂ ⎝ ⎠
, and the subthreshold swing is simplified 

as 

 ( )1 ln 10d

ox

C kTS
C q

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. (4.39) 

This expression can be described by the charge sheet model in which inversion charges at 

the bulk surface are determined by the ratio of the gate oxide and depletion layer 

capacitances.  
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In a quantum-mechanical model, the peak of inversion charges is displaced from 

the bulk surface, which reduces gate control. The subthreshold swing can be calculated 

from the expressions of inversion charges in equation (3.80) and (3.81). The total 

inversion charge amount is obtained by accounting for electrons in the two valleys as 

 ,1 ,2inv inv invQ Q Q= + . (4.40) 

By definition, 

 ( ) ( ) 1

,1 ,21ln 10 inv inv

inv gs

Q Q
S

Q V

−
⎛ ⎞∂ +

= ⎜ ⎟⎜ ⎟∂⎝ ⎠
 (4.41) 

which can be written as 

 ( )
1

,1 ,21ln 10 gs inv inv

inv s s s

V Q Q
S

Q φ φ φ

−
∂ ∂ ∂⎛ ⎞

= +⎜ ⎟∂ ∂ ∂⎝ ⎠
. (4.42) 

In the same manner as equation (3.88) is derived, equation (4.42) becomes 

 ( )
1

,1 ,2

1 2

3ln 10 1
2

g inv inv
d

s Si inv inv

V Q QkTS C
q Q Qφ ε α α

−
⎛ ⎞∂ ⎛ ⎞

= − +⎜ ⎟⎜ ⎟⎜ ⎟∂ ⎝ ⎠⎝ ⎠
 (4.43) 

In the subthreshold region, the variational parameters 1α  and 2α  can be simplified as 

 
1/3

1
1 2

3
2 depl

Si

m q Qα
ε

⎡ ⎤
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⎣ ⎦
 (4.44) 

and 

 
1/3

2
2 2

3
2 depl

Si

m q Qα
ε

⎡ ⎤
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⎣ ⎦
. (4.45) 

Letting 

 ,1 ,2

1 2

3
2

inv inv
CS

inv inv

Q Q
X

Q Qα α
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

, (4.46) 
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the subthreshold swing is then given by 

 
1

2.3 1 1d CS d

ox Si

C X CkTS
q C ε

−
⎛ ⎞⎛ ⎞

= + −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

. (4.47) 

If the effective depletion layer and the effective oxide layer capacitances are defined as 

 ,
si

d eff
qm CS

C
d X

ε
=

−
 (4.48) 

and  

 
1

,
1 CS

ox eff
ox si

XC
C ε

−
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

, (4.49) 

then, the subthreshold swing can be written as 

 ( ) ,

,

ln 10 1 d eff

ox eff

CkTS
q C

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
, (4.50) 

which is a similar form to that of equation (4.39). The only significant difference between 

the two models is that the inversion “charge sheet" is displaced from the surface into the 

substrate by the depth of CSX , where CSX  can be considered as the average inversion 

charge depth. Conforming with the classical charge-sheet model, the EOT can be 

effectively visualized by an increase of CS ox

Si

X ε
ε

. As shown in Figure 4.3, the increased 

EOT varies from 0.4 nm~ 1.1 nm in the doping concentration range from 16 310  cm−  to 

18 35 10  cm−× . As for modern MOSFETs, the effectively increased EOT by energy 

quantization is considerable, compared with the EOT of the insulation layer, which is less 

than 1.5 nm in the sub-90 nm technologies [10, 36-38, 67].  
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Figure 4.3 
Increased EOT from energy quantization of inversion charges. 

 

 

4.4 SCE Model for Short-Channel MOSFET 

As the channel length is reduced, device threshold voltage decreases and the 

subthreshold swing increases because of drain induced barrier lowering (DIBL). To study 

the dependence of threshold voltage on channel length and other device parameters, it is 

essential to develop an expression for the two-dimensional channel potential distribution 

in the subthreshold region.  

In the subthreshold region, the uniformly doped p-type silicon channel is virtually 

depleted of mobile carriers. The potential in the depleted region is determined by the 2-D 

Poisson equation, 

 
2 2

2 2
A

Si

qN
x y
φ φ

ε
∂ ∂

+ =
∂ ∂

. (4.51) 
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Taking the channel intrinsic level under flat band condition as the reference 

potential, the boundary conditions are described below [61]. 

Left: 

 
( )

( ) ( )2

,0     0

2          
2

b j

A bA
s j b s j

Si Si

x x x

qNqN x x x x

φ φ

φα φ α
ε ε

= ≤ ≤

= − + − −
 (4.52) 

 Right: 

 
( )

( ) ( )2

,  +    0

2          
2

b ds j

A bA
d j b ds d j

Si Si

x L V x x

qNqN x x V x x

φ φ

φα φ α
ε ε

= ≤ ≤

= − + + − −
 (4.53) 

 Top: 

 
( )

( )
0,

0, 'ox ox
G

y Si Si

C Cy V
x
φ φ

ε ε
∂

− = −
∂

 (4.54) 

 'G gs FBV V V= −  (4.55) 

 Bottom: 

 
( ),

0
d yx

φ∂
=

∂
 (4.56) 

where jx  (in [cm]) is the junction depth, bφ  (in [V]) is the built-in potential of the 

one-side abrupt junction between substrate and source/drain, and dsV  (in [V]) is the 

applied drain voltage. The fitting parameters sα  and dα  are used to account for the 

higher electric field at the source/drain junction corners, which depend only on the drain 

voltage and can vary as much as 1.12-1.47 for the drain voltage variation of 0-1.5 V [60, 

61]. 
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Equation (4.51) can be solved by superposition and separation of variables, 

resulting in [60, 61]  

 ( ) ( ) ( ), ,x y U x x yφ ϕ= + , (4.57) 

where 

 ( ) 2 '
2

A A A
G

Si Si ox

qN qN d qN dU x x x V
Cε ε

= − + −  (4.58) 

and 
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ε λϕ λ λ

λ λ

∞
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⎝ ⎠

× − + − −⎡ ⎤⎣ ⎦

∑
, (4.59) 

with  
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2

1 ' ,

1 1
2

A
b G n j b

n Si n
n

Si si n
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and 
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Here, sd  and dd  are the depletion depth at the source and the drain, respectively, as 

described by  

 2 Si b
s

A

d
qN
ε φ

= , (4.62) 

and 

 ( )2 Si b ds
d

A

V
d

qN
ε φ +

= . (4.63) 

The nC  is calculated by replacing nD  with nC , ( )n bB φ  with ( )n b dsB Vφ + , sd  with 

dd , bφ  with b dsVφ + , and sα  with dα  in equation (4.60) and (4.61). The eigenvalues 

of nλ  are from the solutions of 

 ( )tan ox
n

Si n

Cdλ
ε λ

= . (4.64) 

The most important terms in the ϕ  series (4.59) are the lowest ones associated 

with 1λ , because the exponential terms decay too fast in the higher order series to have a 

significant effect on the channel potential. The term 1Lλ  is a fundamental measurement 

of DIBL in a MOSFET. For 1 1Lλ >> , the MOSFET will behave ideally like a 1-D long 

channel device, but for small values of 1Lλ  there will be strong SCEs. From the 

previous analysis of the long-channel devices, the quantization effect tends to increase 

the depletion depth at threshold as 

 9
4cl

T

d d
α

= + . (4.65) 
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The larger depletion depth in the quantum mechanical model leads to the decrease of 1λ , 

as shown in Figure 4.4, which means worse gate controllability when compared to the 

classical model.  
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Figure 4.4 
Comparison of Lλ1 magnitudes in the quantum mechanical model and the 

classical model as a function of L. 

 

 

4.4.1 Short-Channel VTH Model 

In the classical model [60, 61], threshold voltage of a short-channel MOSFET is 

defined as the gate voltage at which the minimum surface potential in the channel is the 

same as channel potential at the threshold for a long-channel device, i.e. at threshold,  

 ( )0, 2m Byφ φ=  (4.66) 
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where my  is the minimum surface potential point in the channel. Using this definition, 

the short-channel threshold roll-off in the classical model [61] is given by 

 ( )

( )
1

2 1
1

4 exp / 2

1 2exp
2

TH
ox d

d ox

AB L
V

C C L A Bd
C C B A

λ
λλ

−
∆ =

−⎛ ⎞ ⎡ ⎤+ + − +⎜ ⎟ ⎢ ⎥⎣ ⎦⎝ ⎠

, (4.67) 

where  
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12
1

12 4 ,d
b ds B B j b ds

ox

CA V B x V
Cd

φ φ φ φ
λ

⎡ ⎤⎛ ⎞
⎢ ⎥= + − + − + +⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
, (4.68) 

and 
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1/ 2

12
1

12 4 ,d
b B B j b

ox

CB B x
Cd

φ φ φ φ
λ

⎡ ⎤⎛ ⎞
⎢ ⎥= − + − +⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
. (4.69) 

From the previous discussion, in the subthreshold region, the depletion depth is increased 

by 9 / 4 Tα  owing to QME. Moreover, the finite inversion layer capacitance induces the 

quantum-mechanical adjustment for the classical model as 

 si
d

qm

C
d
ε

→  (4.70) 

and  

 2 2B s Bφ φ φ+ ∆ → . (4.71) 

Figure 4.5 shows the effective threshold voltage including the long-channel threshold 

voltage and the short-channel threshold voltage roll-off, which is validated against 

numerical simulator ISE TCAD [87].  
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Figure 4.5 
Comparison of quantum mechanical threshold voltage model with simulation 

data from ISE TCAD as a function of L [87]. 

 

 

4.4.2 Short-Channel S Model 

In the classical model, charges in the channel are determined by the surface 

potential, and gate controllability is reflected by the surface potential change with change 

in gate voltage. Assuming that the short-channel MOSFET satisfies 

 ( )2gs TH S s BV V θ φ φ− = −  (4.72) 

where the THV  is the short channel threshold voltage and Sθ  is given by 

 1

gs TH

S

S gs V V
V
φ

θ
=

∂
=

∂
, (4.73) 

the subthreshold swing S  is then given by 
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 ( )ln 10S
kTS
q

θ= . (4.74) 

The surface potential for the short channel MOSFET is given as [61]: 

 ( ) ( )1 1
1 1

2
0 exp

2
Si

Ls y
ox

LU C D
C

ε λ λφ
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⎛ ⎞= + − +⎜ ⎟
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 (4.75) 

where  
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and 
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qNV V
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, (4.77) 

with 1λ  is the smallest λ  from 

 tan ox

Si

Cdλ
ε λ

= . (4.78) 

The surface potential can be simplified as 

 ( )
2

11
2

2 1

2 '
0 exp

2 1 1
2

A
b G ds

Si
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ox Si

Si ox

qNV V
LU

C dd
C

φ
ε λλφ

ε λ
ε
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⎛ ⎞⎡ ⎤
− + +⎜ ⎟⎢ ⎥

⎛ ⎞ ⎣ ⎦⎜ ⎟= + −⎜ ⎟⎜ ⎟⎡ ⎤⎝ ⎠ + +⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

. (4.79) 

A simplified expression for the Sθ  can be written as 



 114

 

( )1

2
1

2
1 1 1 1 13

1

exp / 21

1

2 2

1

42 '' ' ' 2 4 '

ox

ox dS ox d

d ox

A
b ds TS

Si

ox d

d ox

ox d d A

d ox ox Si

LC
C CC C
C C

qNV V

C C
C C

C C C qNdL L d
C C d C

λ
θ

φ
ε λ

λ λ λ λ λ
ε λ

−
= −

+ + +

⎧ ⎫+ − +⎪ ⎪
⎪ ⎪
⎪ ⎪+ +⎨ ⎬
⎪ ⎪

⎡ ⎤⎪ ⎪⎛ ⎞⎛ ⎞+ + + + − −⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦⎩ ⎭

i , (4.80) 

where  

 1'
SiA
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qN d

C
ε

ε
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⎛ ⎞
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, (4.81) 

and  
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'
1
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'

cosox

Si

d
Cd d

λλ
λ

ε λ

= −
+

. (4.82) 

From the previous discussion, the inversion charge density can be calculated as a charge 

sheet at the average inversion depth XCS by the quantum mechanical model. Therefore, 

Cox,eff and Cd,eff must replace the oxide and depletion capacitances in the classical model, 

respectively. Moreover, the increased depletion depth at the threshold voltage increases 

the SCE. Taking the SCE into account, equation (4.72) is modified as 

 ( ), 2gs TH QM S s B sV V θ φ φ φ− = − − ∆ , (4.83) 

in which sφ∆  is the surface potential difference at threshold for classical and quantum 

mechanical models defined by equation (4.29). In summary, the classical expression in 

equation (4.80) must be modified by replacing parameters ,ox eff oxC C→ , ,d eff dC C→ , 

2 2B s Bφ φ φ+ ∆ → , ,TH QM THV V→ , as QMEs are taken into account. 
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Figure 4.6 and Figure 4.7 show that the new model shows close agreement with 

the numerical simulation results obtained from Dessis® of ISE TCAD [87] for 

short-channel MOSFETs with effective channel length down to 20 nm. For the 20 nm 

MOSFET with EOT=0.5 nm, QMEs cause S to increase from 74 mV/decade to 105 

mV/decade, as shown in Figure 4.7. Meanwhile, with decreasing L , the value of 

subthreshold swing increases more rapidly when the QMEs are taken into account. 

Classical models underestimate MOSFETs’ susceptibility to SCEs according to the 

effectively increased EOT from QMEs. 
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Figure 4.6 
S model including QMEs for short-channel devices of EOT=1.2 nm as 2004 

technology. Simulation data from ISE TCAD [87]. 
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Figure 4.7 
S model including QMEs for short-channel devices of EOT=0.5 nm as 2008 

technology. Simulation data from ISE TCAD [87]. 
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4.5 QME on I-V Characteristics 

In order to evaluate the QMEs in circuit performance, an I-V characteristic model 

incorporating key QMEs is essential. The I-V model integrates two aspects of the charge 

density profile and carrier transport. Evidence [56, 88] shows that carriers following the 

quantum mechanical distribution conform with classical transport theory. In the 

following section, the charge density expression and device parameters with quantum 

corrections are substituted into the physical transregional model [89] to include QMEs in 

the MOSFETs' I-V characteristic. 

4.5.1 Mobility Model 

The transport behavior of the carriers in a MOSFET is affected by both the 

transverse and longitudinal electric fields. The transverse electric field in the vertical 

direction, which is caused by applied gate bias, has the effect of decreasing carrier 

mobility. The degraded mobility, denoted by the effective mobility effµ  (in [cm2/V·s]), 

can be described by [89] 

 
( )

( )( ) ( )

0

0

                                    

               
1

eff gs TH c

gs TH c
gs TH c

V V

V V
V V

µ µ φ

µ φ
θ φ

= <

= >
+ −

, (4.84) 

where 0µ  (in [cm2/V·s]) is the low field mobility, gsV  is the voltage applied to gate, cφ  

(in [V]) is the channel potential given by the potential difference between the electron 

quasi-Fermi level and bulk Fermi level, ( )TH cV φ  is the threshold voltage along the 

channel with different channel potential cφ , and θ  is the normal-field mobility 

degradation factor described as 
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 0

2 ox normt v
µθ = , (4.85) 

where normv  is a constant determined as 

 92.2 10 /normv cm s= × . (4.86) 

The longitudinal field induced by the drain potential causes the velocity saturation 

effect. As the drain voltage Vds reaches the saturation voltage Vdsat, the carrier velocity 

departs from its linear relationship with the lateral field and becomes the constant 

saturation velocity satv . The carrier velocity dependence on the longitudinal field E(y) (in 

[V/cm]) is described by [89] 

 
( )
( )( )

1
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Cr

E y
v y

E y
E

µ
=

+
, (4.87) 

where CrE  is the critical field, as determined by 
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V V
E E V V

V

= ≤
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⎢ ⎥⎣ ⎦

, (4.88) 

where 

 0
sat

Cr
eff

vE
µ

= . (4.89) 

4.5.2  Quantum Mechanical Charge Model 

As previously described, gate bias determines the region of operation of the MOS 

structure. The inversion charge density depends on which region the device is operating.  

In the subthreshold, or off, region, the inversion charge density can be written as  
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 ( ) ( )exp
ln10gs TH

inv gs inv gs THV V

S qQ V Q V V
kT=

⎡ ⎤= −⎢ ⎥⎣ ⎦
, (4.90) 

as derived from equation (4.35). The threshold voltage is given by  

 ( )
( ),

, ,

2 Si A c s qm
TH QM c FB s qm c

ox

q N
V V

C

ε φ φ
φ φ φ

+
= + + +  (4.91) 

where ,s qmφ  is the surface potential at threshold given by the quantum model as  

 ,

2

,
92

2 4B s qm
T

A
s qm cl

Si

qN dφφ φ
ε α

⎛ ⎞
+ ∆ = ⎜ ⎟

⎝ ⎠
= + . (4.92) 

Denoting the inversion charge density at threshold by THQ ,  

 ( )TH inv gs THQ Q V V= = , (4.93) 

the inversion charge density in the subthreshold region is expressed as  

 ( ) ( )( ),exp
ln10inv gs TH gs TH QM C

S qQ V Q V V
kT

φ⎡ ⎤= −⎢ ⎥⎣ ⎦
. (4.94) 

In the strong inversion region, the variance of the surface potential is small, and 

the inversion layer capacitance is nearly a constant. Therefore, from the first order 

approximation the inversion charge can be written as  

 ( ) ( ),inv s TH inv s c s qmQ Q qCφ φ φ φ= + − − . (4.95) 

From the C-V relationship in the previous chapter, the inversion charge density is given 

as a function of applied gate voltage, 

 ( ) ( ) ( ),
d inv ox

inv gs TH gs TH QM c
d inv ox

C C C
Q V Q q V V

C C C
φ

+
⎡ ⎤= + −⎣ ⎦+ +

. (4.96) 

In the classical model, the inversion capacitance is much larger than the oxide 

capacitance, and, thus, ignored in the inversion charge expression. In the quantum model, 
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because of the energy level quantization, the inversion capacitance is limited by the finite 

inversion layer thickness. The inversion capacitance is given by 

 Si
inv

eff

C
X
ε

= . (4.97) 

By ignoring the small depletion capacitance and QTH in equation (4.96), the inversion 

charge density in the strong inversion region is given by 

 ( ),
ox

inv inv gs TH QM c
inv ox

CQ C V V
C C

φ⎡ ⎤= −⎣ ⎦+
. (4.98) 

In a summary, a simplified charge model incorporating the quantization effect is 

obtained as 

 ( ),exp
ln10inv TH gs TH QM c

S qQ Q V V
kT

φ⎧ ⎫⎡ ⎤= −⎨ ⎬⎣ ⎦⎩ ⎭
 (4.99) 

in the weak inversion region and  

 ( ),
inv ox

inv gs TH QM c
inv ox

C CQ q V V
C C

φ⎡ ⎤= −⎣ ⎦+
 (4.100) 

in the strong inversion region. The expressions above indicate that the inversion charge 

density keeps its exponential dependency on gate voltage at weak inversion and a linear 

dependency on the gate voltage at strong inversion.  

4.5.3 Drain Current in the Triode Region 

In the triode region, the channel is strongly inverted and the drain potential is less 

than the saturation voltage. The drain current can be written as 

 ( ) ( ),ds triode invI WQ y v y=  (4.101) 
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where W  is the width of the device, ( )v y  is the carrier velocity along the channel 

given by (4.87), and ( )invQ y  is the charge in the inversion layer under strong inversion. 

The inversion layer charge is expressed in the charge sheet model as: 

 ( ),
inv ox

inv gs TH QM c
inv ox

C CQ q V V
C C

φ⎡ ⎤= −⎣ ⎦+
. (4.102) 

Substituting equation (4.87) into equation (4.101), the drain current can be written as 

 ( ) ( )
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1
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E y
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µ
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+
. (4.103) 

The lateral electric field is given by 

 ( )
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µ
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−
, (4.104) 

and the drain voltage referenced to the source is Vds (in [V]). The drain current can be 

obtained from the above equation as 

 ( ),
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1

dsV

ds triode eff inv c c
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Cr

WI Q dV L
LE

µ φ φ=
+

∫ . (4.105) 

Substituting the inversion charge expression into equation (4.105), the drain 

current in the triode region can be written as 
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, (4.106) 



 122

where ,BO qmQ  (in [C/cm2]) is the depletion charge sheet density at the threshold 

condition 

 ,
9

4BO qm A cl
T

Q N d
α

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. (4.107) 

4.5.4  Drain Current in the Saturation Region 

The saturation voltage can be obtained by solving  

 , 0
ds dsat

ds triode

ds V V

dI
dV

=

= , (4.108) 

which leads to the equation [89] 
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. (4.109) 

The saturation voltage is given as 
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. (4.110) 

For the saturation region ds dsatV V> , the current is determined by both drift and diffusion 

[89].  
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. (4.111) 

4.5.5 Drain Current in the Subthreshold Region 

In the subthreshold region, ,gs TH QMV V< , the inversion charge density is given by  

 ( ),exp
ln10inv TH gs TH QM c

S qQ Q V V
kT

φ⎧ ⎫⎡ ⎤= −⎨ ⎬⎣ ⎦⎩ ⎭
. (4.112) 

The subthreshold drain current can be derived in a similar manner as in [89]  

 [ ]{ }, 0 ,2 1 exp expds off ox ds gs TH QM
WI C V V V
L

η β ηµ β
β η β

⎡ ⎤⎛ ⎞
= − − − −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
, (4.113) 

where the subthreshold slope factor η  is defined as 

 
1

ln10
Sη

−
⎛ ⎞= ⎜ ⎟
⎝ ⎠

. (4.114) 

By the quantum mechanical charge model, η  is given by 

 ,

,

1 d eff

ox eff

C
C

η = + . (4.115) 

The formulas of the quantum-mechanical I-V characteristic are listed in Figure 4.8. This 

model is consistent with the numerical simulation [87], as shown in Figure 4.9 and Figure 

4.10, for long-channel devices as well as short-channel devices. Significant drain current 

reduction in the quantum mechanical model is observed, which results from the threshold 

voltage shift and gate capacitance degradation. 
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Figure 4.8 

Transregional current-voltage model [89] with quantum-mechanical 

modifications. 
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Figure 4.9 
Quantum mechanical drain current model compared with simulation data from 

ISE TCAD [87]. 
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Figure 4.10 
Quantum mechanical drain current model compared with simulation data from 

ISE TCAD [87]. 
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4.5.6 Case Study 

The drain current model is applied to estimate the performance degradation in a 

simple circuit from QMEs. As illustrated by Figure 4.11, an inverter with a load 

capacitance of 50 fF is analyzed for two technology generations with 4.0 oxt nm=  and 

1.0 oxt nm= , respectively. In the two cases, the excess propagation delays caused by 

QMEs are about the same: 1.0 ps and 1.1 ps, as shown in Figure 4.12 and Figure 4.13 

respectively. However, for 4.0 oxt nm=  technology, the extra delay time amounts to 

only a 19% increase in the total delay while for 1.0 oxt nm=  it represents an increase of 

115%. Therefore, for integrated circuits in future technology generations, performance 

degradation resulting from QMEs must be considered in advance to avoid large deviation 

from design. 

 
 
 

 

Figure 4.11 

Study of the inverter delay. 
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Figure 4.12 
Input/output waveform of the inverter with tox=4.0 nm driving a fixed load 
capacitor. Propagation delay is measured as fall time from Vdd to 0.5Vdd. 

 

 

 

Figure 4.13 
Input/output waveform of the inverter with tox=1.0 nm driving a fixed load 
capacitor. Propagation delay is measured as fall time from Vdd to 0.5Vdd. 
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4.6 Conclusion 

In this chapter, compact device models are developed to incorporate the energy 

quantization effect in device electrical parameters. Energy quantization causes the 

threshold voltage to shift to a greater value and an increase in effective oxide thickness, 

leading to a greater S value in long-channel MOSFETs. Short-channel VTH and S models 

are derived including both two-dimensional electrostatic potential analysis and quantum 

correction to depletion depth, surface potential, etc. Increases in VTH roll-off and S roll-up 

are observed by comparing the quantum mechanical model and the classical model, 

demonstrating that short-channel devices are more susceptible to the energy quantization. 

An I-V characteristic model integrating key QMEs is developed, showing great drive 

current loss due to the quantization effect. A case study using a CMOS inverter circuit 

shows extra delays as high as 115% are obtained when QMEs are included in the I-V 

model for very thin oxide technology generation. 
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CHAPTER 5   

MOSFET SCALING LIMIT 

5.1 Introduction and Background 

The semiconductor industry has been engaged in MOSFET scaling for over three 

decades. The minimum feature size, which is the smallest lateral geometric size of 

devices on an IC, has shrunk considerably over the past three decades. Consequently, the 

number of transistors on a chip increases over technology generations. Such trend is 

stated by Moore’s law as the number of transistors per chip doubles every 18 months [1]. 

As a consequence, the channel length, the oxide thickness and the width of a MOSFET 

are simultaneously reduced [6]. 

When device dimensions are scaled down, not only the number of transistors per 

chip is increased, but also the performance of the devices is enhanced. The smaller area 

means that capacitance is also reduced, which enables the devices to be 

charged/discharged with less energy. This results in faster switching and reduced power 

dissipation [1].  

However, the scaling process is challenged by several limiting factors [11, 90]. 

For MOSFET device design for digital applications, scaling challenges include 

controlling the leakage and SCEs, keeping or even increasing the drive current while 

reducing supply voltage, and maintaining the uniformity of device parameters within a 

chip and from chip to chip. These issues cannot be dealt without considering QMEs. Gate 

direct tunneling has become a significant source of leakage and greatly increased power 

dissipation. The carrier energy quantization effectively increases the oxide thickness, 

leading to less drive current and worse SCE control. Moreover, quantization effects 
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increase the threshold voltage dependency on channel length and substrate doping, which 

implies greater device sensitivities to process variations. 

This chapter investigates the impact of QMEs on the MOSFET scaling, by 

various criteria, accommodating to the requirements on device, circuit, and system. 

Following this introduction, Section 5.2 briefly reviews the traditional scaling 

methodology and the criteria for estimating the scalability of bulk MOSFETs using 

QMEs. Section 5.3 discusses the device scaling limits from both SCE control and gate 

tunneling. Section 5.4 investigates the power and performance of CMOS circuits in future 

generations. Section 5.5 studies the QMEs on device parameter variation. Section 5.6 lists 

a few new materials and advanced structures of MOSFETs, which are proposed to extend 

the scaling process. Conclusion is given in Section 5.7.  

5.2 Traditional Scaling Methods  

MOSFETs are scaled down for size-reduction as well as performance 

improvement. The size-reduction is usually described by the scaling parameter (ξ ). It is 

the pre-factor by which dimensions are reduced. For example, the channel length 

reduction from technology generation L to technology generation 'L  can be denoted as 

 'L Lξ= . (5.1) 

The performance improvement is roughly measured by the gate delay τ  (in [s]) 

 g dd

drive

C V
I

τ =  (5.2) 

where gC  is the gate capacitance, ddV  is the supply voltage, and driveI  is the drive 

current of the MOSFETs.  
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Historically, two scaling methods have been used: constant voltage scaling and 

constant field scaling [91]. A brief comparison between these two scaling methods is 

given in Table 5.1. For constant voltage scaling, the applied voltage maintains constant, 

while the dimensions of the MOSFET, including L , oxt , and W  are scaled. This 

method keeps /gC W  constant. The performance enhancement results primarily from 

the improvement of the drive current. Since the threshold voltage is scaled by the 

reduction of the oxide thickness, the resulting overdrive of dd THV V−  in turn increases 

the drive current. However, since the supply voltage remains constant as the dimensions 

decrease, the electric fields increases with the size reduction. High fields and high 

currents tend to damage the gate oxide and lead to device deterioration. Thus, a main 

technology concern is to design reliable MOSFETs. Constant voltage scaling ended at 

0.5 gL mµ=  and oxt  near 10 nm because of the problems described above [91].  

For constant field scaling, the supply voltage is scaled along with the oxide such 

that the electric field in the oxide remains constant. The drive current per width remains 

constant, and the performance gain stems from the decreasing supply voltage. Gate delay 

decreases by 30% per technology generation, nearly the same trend with constant voltage 

scaling [91]. However, this performance gain comes with a price: much higher off-state 

leakage due to the threshold voltage reduction [62, 90].  
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Table 5.1 
Traditional scaling methods [91].  

 
 

Parameter Constant Voltage Scaling  Constant Field Scaling 

Dimensions (W, L) ξ  ξ  

Vdd 1 ξ  

Fields 1ξ −  1 

VTH 1 ξ  

/driveI W  2ξ −  1 

/gC W  1 1 

τ  2ξ  ξ  

Power/circuit 1ξ −  2ξ  

 

As MOSFET scaling continues, several factors weigh heavily against it. As more 

and more transistors are integrated onto a single chip and the operating frequency is 

increased, the overall power dissipation grows significantly Since there are so many 

transistors on a chip, the requirement on the power dissipation of a single MOSFET is 

stringent. A short-channel MOSFET tends to have large leakage current. Keeping the 

leakage/off-state power to a tolerable level is imperative in such devices in succeeding 

technology generations. In addition, highly scaled MOSFETs suffer from severe 

short-channel effects, namely, the threshold voltage roll-off and the subthreshold roll-up. 

Both of these effects result in a net increase in subthreshold leakage. Moreover, the 

severe short-channel effects cause the threshold voltage to be very sensitive to the 
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channel length variation. The non-uniformity of the devices on a wafer causes penalties 

in integration scale or results in requiring an increased supply voltage to ensure the delay 

time lies within the acceptable range. 

Quantum mechanical effects must be addressed in MOSFET scaling issues 

associated with power dissipation, SCE control, and uniformity. Along with the required 

channel length reduction, oxide thickness needs to be shrunk aggressively in order to 

control SCE and threshold voltage scaling. However, this causes a sharp increase in 

tunneling current. The excessive tunneling current increases the stand-by power of 

MOSFETs, and even causes improper logic operations in circuits. Meanwhile, the 

effective oxide thickness becomes larger than the physical oxide thickness, because of 

energy quantization effect. The compact physical model developed in the previous 

chapter, which incorporates the quantum effect, is necessary to predict the scaling limit of 

the MOSFET.  

Given the above facts, the prevailing scaling rules are not appropriate for scaling 

MOSFETs in and beyond the sub-90 nm regime [69, 92]. Instead, new scaling methods 

are needed to avoid excessive power dissipation and SCEs. In the past, different criteria 

have been proposed as benchmarks to project scaling limits [62]. In this work, these 

criteria are applied to investigate the role of QMEs in the MOSFET scaling problem, 

providing guidelines for the future technology developments. 

5.3 Scaling Limit by Device Leakage 

The scaling limit of bulk MOSFETs discussed in this section is based on two 

considerations: the SCE controllability and the tunneling current density constraint, 

which arises from the demand to control the subthreshold and tunneling leakage current. 
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The SCE control requires keeping S<100 mV/decade, which leads to the reduction of 

EOT along with the evolvement of technology towards shorter channel lengths [6, 62, 

63]. The maximum allowed tunneling current density is specified by the ITRS as 

10 /Tunnel subJ I L<  [2], where Isub (in [A/cm]) is the subthreshold leakage current per 

width. Because it is desired to continue usage of SiO2 as a gate oxide in order to delay a 

major technology transition to high- κ  material, accurate EOT scaling projection 

incorporating QME is a must for exploring the ultimate scaling limit of SiO2. As 

illustrated by Figure 5.1, for a 30 nm MOSFET with the tolerable SCE as S<100 

mV/decade and tunneling current density as 10 /Tunnel subJ I L< , the appropriate range for 

SiO2 EOT is only 0.1 nm. This value is less than the thickness of one atomic layer of 

SiO2. This indicates that the fundamental “atom layer exhaustion limit” prevents further 

scale-down from using SiO2 as the gate insulation in bulk MOSFETs. High-κ  materials 

should be used to extend the scaling of the MOSFET beyond the 30 nm technology 

generation, as shown in Figure 5.2. As the requirements of S<100 mV/decade and 

10 /Tunnel subJ I L<  are applied for high-κ  gate dielectric, the relaxed limitation from gate 

tunneling enables a larger suitable range of EOT for MOSFETs. Moreover, the insulation 

layer made by high-κ  dielectrics has more atomic layer resources for scaling. 
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Figure 5.1 
Design space for conventional MOSFETs in future technology generations. 
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Figure 5.2 
Design space for MOSFETs using high-κ  gate dielectric in future technology 

generations. 
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5.4 Scaling Limit by Circuit Performance and Power Dissipation 

The analysis contained in this section uses a total power minimization 

methodology [68] to determine optimal design parameters ( ,  ,  , dd TH oxV V t W ) for 

specified technology generations. The methodology minimizes the power dissipation for 

a critical path consisting of seven stages of two-input static CMOS NAND gates with an 

average fan-out of three. The total power dissipation can be divided into static and 

dynamic components as  

 total dynamic staticP P P= + . (5.3) 

The dynamic power is the energy consumed by the charging and discharging capacitor 

when CMOS circuit switch between “0” and “1” and is described by 

 21
2dynamic L dd clkP aC V f= , (5.4) 

where activity factor a  is the average switching rate or the probability of a binary 

transition. This value is assumed to be 10% for random logic networks. The load 

capacitance,  

 L W D GC C C C= + +  (5.5) 

is the sum of the wiring, and device capacitance. The wiring capacitance WC  is based on 

an average interconnect length derived from a statistical distribution [12]. DC  is the 

drain capacitance and represents the device capacitance of an unloaded static logic gate. 

It is comprised of the n-MOSFET and p-MOSFET gate-drain overlap capacitance, the 

drain bottom junction capacitance, and the drain sidewall junction capacitance. GC  is 

the fan-out gate capacitance of the next logic stage, computed from the product of the 
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fan-out and the MOSFET gate capacitances of the n-MOSFET and p-MOSFET devices 

connected at the output. 

The static component of power results from the MOSFET subthreshold leakage 

current and oxide tunneling current and is described as 

 static sub tunnelP P P= + . (5.6) 

In more detail, the subthreshold leakage power and the tunneling power can be written as 

 sub sub ddP I V= ⋅  (5.7) 

and 

 tunnel tunnel ddP I V= ⋅ , (5.8) 

where subI  is the subthreshold leakage current, and tunnelI  is the tunneling current. 

As shown in Table 5.2, the technology evolvement including shorter channel 

length, higher transistor density and clock frequency is given by the ITRS [2]. The 

minimum power methodology [68] is employed to predict the power dissipation under 

transistor size and system performance constraints. Figure 5.3 shows the minimum total 

power consumed on the critical path that satisfies the requirement for circuit delay. From 

the results, it can be deduced that quantum effects induce significant increases in the 

projected total power (39%~65%), device aspect ratio (21%~100%), and necessary 

supply voltage (36%~81%) as shown in Figure 5.3, Figure 5.5, and Figure 5.6 

respectively. In order to maintain the circuit performance, greater device area and supply 

voltage are necessary to compensate for the drive current loss and threshold voltage shift 

caused by quantum mechanical effects. Accordingly, larger gate area and higher supply 

voltage result in further power consumption. Figure 5.4 illustrates the scaling trend in 

oxide layer thickness as predicted by the quantum model and the classical model. 
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Decreasing the oxide thickness provides less circuit delay and subthreshold leakage. 

However, gate tunneling imposes a limit on the reduction of oxide thickness. The 

optimum oxide thickness is the result of the tradeoff between performance improvement 

and tunneling power increase. A higher optimum oxide thickness is projected by the 

quantum model than that predicted by the classical one (i.e., 1.5 nm vs. 1.0 nm in 65 nm 

node). This implies the gate capacitance reduction due to the quantization effect. The 

performance degradation induced by quantization is another important QME on oxide 

scaling in addition to gate tunneling. It is worth mentioning that even if high- κ  

dielectrics are used to suppress the gate tunneling current, the diminishing performance 

enhancement with EOT reduction will remains a challenge for high performance and low 

power CMOS circuit design. 

 

Table 5.2 
CMOS scaling predicted by the ITRS [2]. 

 
 

Year Technology 
node (nm) 

Physical gate 
length (nm) 

Transistor 
density 
(M/cm2) 

Local clock 
frequency 

(MHz) 
2001 150 65 38.6 1684 

2002 130 53 48.6 2317 

2003 107 45 61.2 3088 

2004 90 37 77.2 3990 

2005 80 32 97.2 5173 

2006 70 28 122.5 5631 

2007 65 25 154.3 6739 
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Figure 5.3 
Minimum total power Ptotal (µw/gate) projected by the 

performance-constrained Minimum Power Methodology [68]. 

 

 

 

Figure 5.4 
Optimum gate oxide thickness projected by the performance-constrained 

Minimum Power Methodology [68]. 

 



 140

 

Figure 5.5 
Optimum aspect ratio projected by the performance-constrained Minimum Power 

Methodology [68]. 

 

 

Figure 5.6 
Optimum supply voltage projected by the performance-constrained Minimum Power 

Methodology [68]. 
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For the 65 nm node and beyond, high-κ dielectrics are projected to replace the 

silicon oxide for the continuation of scaling. Scaling goals of increasing the transistor 

density and clock frequency are listed in Table 5.3. By applying the minimum power 

methodology [68], the minimum power dissipation to fulfill the performance requirement 

is specified in Figure 5.7 and Figure 5.8 corresponding to SiO2 and HfO2 gate dielectrics, 

respectively. With the SiO2 gate dielectric, a significant 2.2×  increase in power 

consumption from the 57 nm node to the 40 nm node is predicted, as shown in Figure 5.7. 

Gate tunneling makes a greater contribution to the power increase than other components. 

Tunneling power is only 9% of the total power at the 57 nm node and increases to 29% at 

the 40 nm node. Comparing Figure 5.7 with Figure 5.8, we find the power consumption 

can be greatly reduced, if the high-κ dielectric is used to suppress the gate tunneling. By 

employment of the high-κ dielectric, the total power can be cut by 40% and 73% at the 57 

nm and the 40 nm nodes, respectively. As shown in Figure 5.9, gate tunneling strongly 

limits the reduction of the silicon oxide layer thickness, which is imperative to 

subthreshold leakage control. With high-κ dielectrics, the EOT can be further scaled 

down, seeking for better SCE and subthreshold control without the tunneling problem.  
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Table 5.3 
CMOS scaling beyond 65 nm [67]. 

 
 

Year Technology 
node (nm) 

Physical gate 
length (nm) 

Transistor 
density 
(M/cm2) 

Local clock 
frequency 

(MHz) 
2008 57 23 194 9285 

2009 50 20 245 10972 

2010 45 18 309 12369 

2011 40 16 389 15079 
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Figure 5.7 
Power dissipation prediction for bulk MOSFETs with silicon oxide. 
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Figure 5.8 
Power dissipation predictions for bulk MOSFETs with high-κ dielectrics. 
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Figure 5.9 
EOT scaling with SiO2 and HfO2 gate dielectrics. 
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5.5 Scaling Limits due to Parameter Variation 

IC fabrication processes introduce variations in MOSFET dimensions and doping 

concentrations. As a result, the device electrical parameters, such as threshold voltage, 

subthreshold swing, subthreshold leakage current and superthreshold drain current, 

deviate from their nominal design values [67, 69, 93, 94]. With the continued aggressive 

scaling of MOSFET dimensions, statistical process variations have been the dominant 

factor in reducing the product yield and reliability. In device design, tolerance to process 

variations is an essential requirement particularly for gigascale integration [6, 62, 63]. 

Quantum mechanical THV  models are hereby utilized to predict the limitations 

caused by parameter variations. Assuming 10% variation in channel length and doping 

concentration, the variation in THV  should not exceed 70 mV. As shown in Figure 5.10 

and Figure 5.11, greater threshold voltage variations are predicted by the quantum 

mechanical model (equations (4.32) and (4.67)) than by the classical model. At a channel 

length of 20 nm, the 10% change in channel length causes a variation in threshold voltage 

of 70 mV, while for the 10% change in doping concentration of 35 18 e cm− , the threshold 

variation is 35 mV. After a comprehensive examination of the fluctuations of L  and 

AN , the minimum channel length satisfying the constraint of system reliability is around 

45 nm with EOT=1.5 nm.  
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Figure 5.10 
Threshold voltage changes with 10% channel doping variation. 
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Figure 5.11 
Threshold voltage changes with 10% channel length variation. 
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5.6 CMOS Scaling with Advanced Materials and Structures 

The rapid pace of MOSFET scaling makes it highly challenging in pursuing 

solutions to high drive current, low power consumption, tight control to SCE and device 

variations. Bulk MOSFET scaling entails an increase in vertical electrical field, leading to 

aggressively reduced gate oxide and increased channel doping. In current technology, as 

the gate insulation layer consists of only a few atomic layers of silicon oxide, gate direct 

tunneling and energy quantization pose stringent constraints on this approach. The ITRS 

has accelerated the introduction of new technologies including material enhancements 

and structural improvement to extend the scaling limit [67]. It is expected that numerous 

innovations on materials will be implemented in less than a decade [67, 78].  

These new materials include those applied in the gate stack (high-κ dielectrics and 

metal electrodes), those used in the channel to boost carrier transport properties, and new 

materials used in the source/drain regions with reduced resistance and improved injection 

properties. High-κ gate dielectrics are utilized to prevent excessive gate tunneling and 

retain the high electric field in the vertical direction. Transport enhancement refers to the 

approaches to increase transistor drive current and improve circuit performance by 

enhancing the velocity and mobility of carriers in the channel. Alternative materials used 

to increase the mobility include strained-silicon [95-99], in which channel layers are 

mechanically strained, and high-mobility material such as silicon-germanium [100], 

germanium [101, 102] or III-V compound semiconductors [103]. Research on 

source/drain materials is proposed to address the issue that the source/drain resistance is 

an increasing fraction of the channel resistance as the channel length reduces. Metallic 

source/drain electrodes, which form low Schottky barrier heights in contact with silicon, 
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can be employed to reduce the parasitic series resistance and provide a sharp junction 

[104-108]. An overview for these materials is given in Table 5.4. 

 

Table 5.4 
New materials for MOSFET transistor. 

 
 

 High-κ material Transport enhanced 
material 

Schottky 
Source/Drain 

Concept High dielectric 
constant material for 
gate insulation 

Strained silicon, SiGe, 
Ge, or III-V 
semiconductor to 
improve carrier 
mobility 

Metal source/drain 
electrodes forming a 
low Schottky barrier 
with silicon 

Advantage • Reducing gate 
leakage  

• No need for device 
structure 
modification 

 

• High carrier 
mobility  

• No need for device 
architecture 
change 

• Low source/drain 
resistance 

• No need for 
abrupt S/D 
doping 

• No need for 
ultra-shallow 
S/D 

Weakness • Incompatibility 
with silicon and 
poly silicon 

• Metal gate required 
• Interfacial defects 

causing mobility 
degradation 

• Material defects 
• Process 

compatibility and 
thermal budget 

• Operation 
temperature 

• Metal or silicide 
material not 
available for 
n-MOSFETs  

 

 

In addition to the solution from new materials, new transistor structures, as 

alternatives to classical planar bulk MOSFETs, are investigated as possible approaches to 

successfully scale MOSFETs and meet device performance requirements. The new 

MOSFET structures offer better electrostatic properties, reduction of the gate control 
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dependency on the gate oxide layer, and improved drive current. Referred to as 

non-classical MOSFETs, these structural solutions include ultra-thin body (UTB) 

silicon-on-insulator (SOI), and various types of double-gate and multiple-gate MOSFET 

[67, 78]. 

The UTB SOI MOSFET [109-111], as shown in Figure 5.12, consists of a very 

thin (usually <10 nm) fully depleted (FD) transistor body to ensure good electrostatic 

control of the channel by the gate in the off-state. Typically, the ratio of the channel 

length to the channel thickness (tSi) will be 3≥ . It is shown that UTB SOI MOSFETs 

can be scaled down to 18 nm gate length with an extremely thin (tSi<5 nm) Si channel 

[112]. A lightly doped silicon body overcomes VTH variations due to statistical dopant 

fluctuations and provides enhanced carrier mobility for higher drive current. This 

structure benefits from both a deep source/drain contact for low sheet resistance and the 

feature of improved electrostatics in SOI technologies [2]. 

 
 
 

Gate

DrainSource

Buried oxide
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Figure 5.12 
Schematic of UTB SOI MOSFET structure. 
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Several double-gate structures have been proposed to improve the electrostatics 

integrity and, in some cases, provide adjustable threshold voltage by isolated gates for 

low-power applications. The FinFet [113-116] is a tied double-gate, sidewall conduction 

structure, as shown in Figure 5.13. The width of the vertical silicon fin is smaller than the 

channel length to provide adequate control of short-channel effects. Implementation of a 

FinFET can take advantage of the bulk-like layout and process [114]. In fact, this 

structure can be realized on a bulk silicon substrate [115, 117]. However, the thin fins 

need to be a fraction (one third to one-half) of the gate length, thus requiring 

sub-lithographic techniques.  

 
 
 

Source Drain 

Gate 

 

Figure 5.13 
FinFET structure. 

 

 

The second double-gate structure is the independently switched double gate 

(ground-plane) FET [118, 119], as shown in Figure 5.14. This structure is a planner FET, 

with the top and bottom gate electrodes electrically isolated to provide independent 
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biasing. The independent double gate MOSFET is attractive for dynamic threshold 

design, in which the top gate is typically used to switch the transistor on and off, and the 

bottom gate is used for threshold voltage adjustment [67, 120]. The presence of two gates 

helps to reduce SCE, which significantly reduces subthreshold leakage. 
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Figure 5.14 
Planer double-gate structure. 

 

 

Multiple-gate MOSFET structures [121-123], as shown in Figure 5.15, have been 

proposed and demonstrated to help manage electrostatic integrity in ultra-scaled CMOS. 

The large number ( 3≥ ) of gates provides for improved electrostatic control of the 

channel, so that the silicon body thickness and width can be larger for multiple-gate 

MOSFETs than that for the UTB SOI or double-gate FET structures. The principle 

advantage of the structure resides in the relaxation of the needs on the thickness of the 

silicon body or the vertical fin. The challenge is in slightly poorer electrostatic integrity 

than with double-gate structures, particularly in the corner regions of the channel [124].  
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Figure 5.15 
Tri-gate structure. 

 

 

In spite of the performance enhancement by material and structure changes, QME 

is still a limiting factor in highly scaled MOSFETs. Although non-classical structures 

relax the stringent requirement for ultra thin gate oxide, gate tunneling is difficult to 

control without high-κ material in bulk MOSFETs as well as in non-classical MOSFETs 

[77]. Energy quantization, induced by the channel potential wells in bulk MOSFETs, can 

also be problematic in the non-classical structures. The ultra-thin channel layer results in 

spatial confinement to carriers [125, 126], similar to the case of a one-dimensional 

infinite potential well mentioned in Chapter 3. It has been demonstrated that threshold 

voltage of UTB SOI and double-gate MOSFETs is very sensitive to thickness variation of 

the silicon body. The statistical variation of the body thickness is projected to be a key 

issue for ultra-thin body MOSFET devices. 

Successful realization of future ultra-scaled MOSFETs require advanced process 

technology to implement the material solution together with structure changes, i.e. the 

combination high-κ material and strained silicon with UTB SOI, the incorporation of 
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Schottky source/drain regions along with the FinFET to compensate the high series 

resistance in thinned source/drain [108]. The ITRS projects high-κ material and metal 

gate electrodes being required around year 2008 [67]. The UTB SOI MOSFETs could be 

introduced as early as year 2008 of the 57 nm technology node and scaled down to the 25 

nm node in year 2015 [67]. Near mid-gap metal gate electrodes will be desirable to set 

the threshold voltage for UTB SOI. Following the UTB SOI, the double-gate MOSFET is 

predicted to be first manufactured in the 40 nm technology node in 2011 [67]. Eventually, 

toward the end of the roadmap or beyond, high transport channel materials, such as 

germanium, III-V semiconductors, carbon nanotubes or nanowires, along with the 

non-classical structures will be utilized. 

5.7 Conclusions 

MOSFET scaling is challenged by power dissipation, short-channel effects, and 

parameter variations in a chip. QMEs on scaled MOSFETs are discussed, at the device, 

circuit, and system levels. It is observed that tunneling and quantization effects cause 

large power dissipation, low drive current and strong sensitivities to process variations, 

greatly limiting CMOS scaling. From the SCE controllability and tunneling power 

consumption requirement, the appropriate range of EOT for SiO2 is only 0.1 nm and less 

than the thickness of one atomic layer of SiO2 in a 30 nm channel length MOSFET. In a 

circuit performance analysis, for 65 nm technology, quantum effects cost 39% increase in 

power dissipation and 41% increase in device area compared with classical projections. 

Tunneling power reaches 29% of the total power consumption at the 40 nm node, which 

is higher than the subthreshold leakage power. Total power consumption can be greatly 

reduced by 73% at the 40 nm node, if the high-κ dielectric is used to suppress the gate 
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tunneling. Quantum models predict a greater variation in threshold voltage due to process 

variations than classical models do. The results suggest a minimum channel length of 45 

nm with EOT=1.5 nm by evaluating the threshold voltage instability induced by 

variations in both L  and AN . Developing new materials and structures offering better 

electrostatic properties, reducing the gate control dependency on the gate oxide layer, and 

improving drive current is imminent to extend MOSFET scaling. 
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CHAPTER 6   

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

6.1 Conclusions 

6.1.1 Introduction 

Traditionally, advances in CMOS technology have been obtained through 

continuous miniaturization of the devices. According to the scaling theory of MOSFETs, 

reduction of the channel length requires correspondent decrease in the gate dielectric 

thickness, in order to suppress SCEs and to achieve threshold voltage scaling. As 

MOSFETs are scaled down to the sub-90 nm range, the suitable equivalent oxide 

thickness is only about 1.2 nm.For such thin oxides, gate leakage due to direct tunneling 

becomes unacceptably large. Gate tunneling gives rise to power consumption and results 

in less logic operating margins in CMOS circuits. 

In addition, energy quantization leads to a significant increase in effective oxide 

thickness for an ultra-thin oxide layer. Consequently, the driving ability and electrostatic 

integrity of a MOSFET is degraded. Since the increased effective oxide thickness is 

non-scalable with the reduction of the physical oxide thickness, it is particularly 

important to consider the energy quantization effect in short-channel devices with 

ultra-thin gate dielectrics. For these reasons, quantum mechanical effects of gate 

tunneling and energy quantization have become critical issues in MOSFET scaling.  

Modeling plays an important role in overcoming challenges brought by quantum 

mechanical effects. In this thesis, quantum mechanical effects on MOSFET scaling are 
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investigated by a modeling approach. Compact physical models are built from device 

physics and utilized for device design and technology projection. 

6.1.2 Tunneling 

As MOSFET gate oxide thicknesses rapidly approach their limit, accurate 

modeling of direct tunneling in ultra-thin oxides is essential. Both types of carriers, 

electrons and holes, can be involved in gate direct tunneling. The electron tunneling from 

the conduction band and hole tunneling from the valence band are the most significant 

tunneling components in an n-MOSFET and a p-MOSFET, respectively. A direct 

tunneling model for circuit simulation is developed from the solution of the Schrödinger 

equation. Simulated gate currents from this analytical model demonstrate good agreement 

with the results from a numerical solver and measured data for gate oxides with 

thicknesses ranging between 1.0-3.5 nm. It was observed that the gate current density 

exceeds 1.0 A/cm2 for tox=1.5 nm and Vdd=1.0 V in an n-MOSFET. The hole tunneling in 

p-MOSFETs is typically lower than electron tunneling in n-MOSFETs by an order of 

magnitude, which is due to the higher barrier and larger effective mass in hole tunneling. 

Besides gate-to-channel tunneling, the source/drain extension region provides the 

additional tunneling path in the source/drain-gate overlap. In short-channel devices, the 

length of the source and drain extension area can be comparable with the length of the 

channel itself, resulting in considerable leakage. Replacing silicon oxide with high 

dielectric constant material in the gate dielectric is the leading projected solution to 

reduce gate tunneling current to a tolerable level. By utilizing high-κ  gate dielectrics, 

such as HfO2 and HfSiO4, the gate tunneling current density can be reduced by 2~3 orders 

of magnitude.  
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6.1.3 Energy Quantization 

By energy quantization, carriers comply with a distribution on discrete subbands, 

instead of the continuous energy band assumed by the classical theory. The variational 

approach is applied to solve the coupled Schrödinger and Poisson equations for the 

quantized energy levels. Accordingly, carrier density on each subband can be computed 

from the subband energy levels and the two-dimensional state distribution function. From 

numerical simulation results, it is known that carriers on the lowest two subbands 

dominate the total electron population. Therefore, it is appropriate to obtain the total 

carrier density by considering the lowest two subbands only. A new MOS C-V model that 

accounts for the carrier energy quantization is developed based on the carrier distribution 

on subbands. From the quantum mechanical C-V model, it is observed that the inversion 

layer capacitance is much smaller than the value predicted in the classical model. As the 

inversion layer capacitance becomes comparable to the oxide layer capacitance, gate 

capacitance significantly deviates from the value predicted classically. 

Compact models of device parameters incorporating the energy quantization 

effect are derived. Quantum mechanical models for the key parameters such as threshold 

voltage and subthreshold swing are also developed for both long-channel and 

short-channel MOSFET devices. In the long-channel device, the elevated energy level 

from the bottom of the conduction band requires a higher gate voltage to produce enough 

carrier density at threshold, exhibited as a larger value of THV , than the prediction from 

classical models. The subthreshold swing in a quantum mechanical model can be written 

in a similar form as that obtained from the classical model, by moving the position of the 

inversion charge sheet from the channel surface to its centroid below the surface. The 
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shift of the charge sheet position leads to the increase of the EOT, which in turn results in 

a corresponding increase in S . In short-channel devices, energy quantization weakens 

the gate control of the two-dimensional electrostatic potential distribution. Short-channel 

THV  and S models are developed by incorporating the quantization effect into the 

electrostatic potential solution from the two-dimensional Poisson equation. It is observed 

that for the 20 nm channel length MOSFET with an EOT of 0.5 nm, QMEs lead to the 

increase of S  from 74 mV/decade to 105 mV/decade. These models are subsequently 

incorporated into a transregional MOSFET I-V characteristic model, with the purpose of 

understanding the quantum mechanical impact on CMOS logic circuit performance. 

Results show that a significant drive current loss arises from the quantum mechanical 

effects. In a study of an inverter driving a load capacitance of 50 fF for two technology 

generations with 4.0 oxt nm=  and 1.0 oxt nm= , 19% and 115% differences in delay 

time are shown by simulation results from classical and quantum models. For integrated 

circuits with the ultra-thin oxide layer MOSFETs, the quantization effect must be 

included in device models to avoid large deviations from design. 

6.1.4 MOSFET Scaling 

MOSFETs are scaled down according to various requirements including power 

dissipation, SCE control and device uniformity. Complicated by quantum mechanical 

effects, these requirements have competing demands for device design. Traditional 

methods of constant voltage scaling and constant field scaling are unable to fulfill all the 

goals in MOSFET scaling. A more elaborate way is developing different criteria by 

constraints from device, circuit, and system levels, evaluating the MOSFET scaling limits 
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comprehensively. Quantum mechanical models are exploited to investigate the scaling 

limit, and assess the potential solutions to challenges in MOSFET scaling. 

At the device level, constraints from SCE controllability and tunneling power 

consumption are investigated. Results show that for 30 nm gate length MOSFETs with 

tolerable SCE and tunneling current density, the appropriate range of EOT for SiO2 is 

only 0.1 nm and less than the thickness of one atomic layer of SiO2. High-κ gate 

dielectrics must be used for scaling of bulk MOSFETs beyond the 30 nm technology 

generation. 

In a circuit performance analysis, it is found that for the 65 nm technology, 

quantum effects induce a 39% increase in power dissipation and a 41% increase in device 

area when compared with the classical projection. It shows that the limits on the tox 

scaling from quantum mechanical effects become a critical constraint in high 

performance and low power CMOS circuit design. Beyond the 65 nm technology, scaling 

trends with SiO2 and high-κ gate dielectrics are compared. Tunneling power reaches 29% 

of the total power consumption at the 40 nm node, which is higher than the subthreshold 

leakage power. Total power consumption can be greatly reduced, if the high-κ dielectric 

is used to suppress the gate tunneling. By the employment of high-κ dielectrics, the total 

power is cut by 73% at the 40 nm node, which is benefited from the EOT reduction 

without the tunneling power increase. 

When considering the system variations, quantum models predict greater shifts in 

threshold voltage. Results suggest a minimum channel length of 45 nm by evaluating the 

threshold voltage instability induced by variations in both L  and AN .  
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Various innovations on materials and MOSFET structures are projected to be 

implemented in less than a decade. These new materials include those applied in the gate 

stack, those used in the channel to boost carrier transport properties, and new materials 

used in the source/drain regions with reduced resistance and improved injection 

properties. Moreover, non-classical MOSFET structures, including UTB SOI, 

double-gate and multiple-gate MOSFETs, are proposed to offer better electrostatic 

properties, reduce the gate control dependency on the gate oxide layer, and improve drive 

current. Solutions from new materials and structures are mandatory for prolongation of 

MOSFET scaling. 
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6.2 Recommendations for Future Work 

There are various modeling issues that await exploration in nanoscale MOSFETs, 

which include gate induce drain leakage (GIDL) and gate edge direct tunneling. Both of 

these affect off-state leakage current. Since GIDL is determined by both the vertical and 

lateral electric fields along the gate and the drain overlap region, the relationship between 

GIDL and direct tunneling current must be understood. In addition, along with the 

existing commercial device simulators that use band-to-band tunneling formulations, it is 

necessary to determine the appropriate model for trap-assisted tunneling and its 

dependence on processing, bias and ambient conditions.  

The demand for new materials and technologies increases in the nanometer 

CMOS regime. Therefore, the understanding of mobility enhancement in germanium 

strained silicon, reliability and mobility degradation in high-κ  gate dielectrics, and 

various device parameters for metal electrodes are required. Scaling CMOS toward the 

25 nm channel length generation requires innovative device structures to circumvent 

barriers due to the fundamental physics in conventional bulk MOSFETs. These may 

include UTB SOI, back-gate FETs, double gate FETs and FinFETs. Fundamental issues 

for these structures, such as the physics of the carrier transport in very thin silicon 

channels, must be further understood.  
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APPENDIX A  

WKB METHOD 

A.1 Hamilton-Jacobi Equation 

Starting from the time-dependent Schrödinger equation [8] for a single particle in 

a potential well 

 ( ) ( ) ( )
2 2

2, ,
2

i x t U x x t
t m x
ψ ψ

⎡ ⎤∂ ∂
= − +⎢ ⎥∂ ∂⎣ ⎦

 (A.1) 

and using ( ) ( ), /, iS x tx t eψ = : 

 ( ) ( )2 21
2 2

S iS S U
t m m

ψ ψ∂ ⎡ ⎤− = ∇ − ∇ +⎢ ⎥∂ ⎣ ⎦
 (A.2) 

is obtained. Assuming 0ψ ≠ , this leads to an equation 

 
2 2

2

1
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S S i S U
t m x m x

⎛ ⎞∂ ∂ ∂⎛ ⎞− = − +⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠
. (A.3) 

Taking the formal limit 0→ , equation (A.3) becomes the same as the classical 

Hamilton–Jacobi equation 

 
21

2
S S U
t m x

∂ ∂⎛ ⎞− = +⎜ ⎟∂ ∂⎝ ⎠
 (A.4) 

A.2 Classical Limit 

To simplify the equation (A.4), we can use separation of variables as 

 ( ) ( ), ,S x t S x E Et= −  (A.5) 

for the case where the Hamiltonian does not depend explicitly on time. The inverse 

Legendre transformation says 
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 ( ),S x E
t

E
∂

=
∂

. (A.6) 

This condition can be viewed as an implicit equation to determine the position of the 

particle x  as a function of time t . To form a wave packet, waves of slightly different 

energies need to be put together. It results in 

 ( ) ( ) ( )( ), /, i S x E Etx t g E e dEψ −= ∫ . (A.7) 

The wave function is sizable only at special points where the phase factor is stationary 

with respect to E . Therefore, the position of the wave packet is determined by the 

stationary condition 

 ( )( ) ( ),
, 0

S x E
S x E Et t

E E
∂∂

− = − =
∂ ∂

. (A.8) 

Thus, the wave packet follows the classical equation of motion. 

A.3  Expansion 

Since  is small, it can be assumed that equation (A.4) is exact as long as 

0ψ ≠ . Using a Taylor series expansion yields, 

 ( ) 2
0 1 2, ...    S x t S S S= + + + . (A.9) 

This is an expansion in , and hence called -expansion or the semi-classical 

expansion. Expanding equation (A.4) results in 
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, (A.10) 
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, (A.11) 
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and similarly for higher terms in . The leading equation has only 0S , and it is the same 

as the Hamilton–Jacobi equation. Once these iS  equations are solved, the wave function 

is obtained as a systematic expansion in . 

There is an important difference between the “classical limit” and the idea of 

expansion in . In the classical limit, 0S  is real. However, in the case of an expansion 

in , we do not know if 0S  has to be real. In fact, in many interesting cases, 0S  turns 

out to be complex. 

A.4 WKB Approximation 

The Wentzel, Kramers, and Brillouin (WKB) Approximation, keeps terms up to 

( )O  in the -expansion. It is used mostly for the time-independent case, for an 

eigenstate of energy E . In this case, the wavefunction has the ordinary time dependence 

/iEte− . This is also restricted to the one-dimensional problem. In terms of S , this 

corresponds to 

 ( ) ( ),S x t S x Et= − . (A.12) 

Therefore, only 0S  has the time dependence ( ) ( )0 0,S x t S x Et= − , while higher order 

terms ( )i iS S x=  for 0i ≠  do not depend on time. 

The lowest order term 0S  satisfies the Hamilton–Jacobi equation,  

 ( ) ( )2
0

1 '
2

E S U x
m

= + . (A.13) 

The differential equation can be solved immediately as 

 ( ) ( )( ) ( )0 2 ' ' ' ' '
x x

S x m E U x dx p x dx= ± − =∫ ∫  (A.14) 
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up to an integration constant, which can be determined only after imposing a boundary 

condition on the wavefunction. The notation ( ) ( )( )2p x m E U x= ± −  is used because 

it is the momentum of the particle in the classical sense. Once 0S  is known, 1S  can be 

solved for. Starting from equation (A.11), and using 1 / 0S t∂ ∂ = , it is found that 

 0 1 02 ' ' ''S S iS= , (A.15) 

which has a solution given by 

 ( ) ( )
( ) ( )0

1
0

'' '
' ln constant

2 ' ' 2
x S x iS x i dx p x

S x
= = +∫ . (A.16) 

Therefore, the general solution to the Schrödinger equation up to this order is 
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x t e e

ic m E U x dx e
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ψ + −

−

=

⎛ ⎞= ± −⎜ ⎟
⎝ ⎠∫

, (A.17) 

and the overall constant c  is undetermined from this analysis. This solution makes it 

immediately clear that this approximation breaks down when ( )p x  goes to zero. In 

other words, the approximation is not appropriate where the classical particle stops and 

turns because of the potential. Such points are called “classical turning points”. 

A.5 Validity of the WKB Approximation 

Using only the 0S  and 1S  terms,  expansion is valid only when 1S  is much 

smaller than 0S . In particular, it is required that 

 ( )2 2S S∇ ∇ . (A.18) 

In the one-dimensional time-independent case discussed above, this becomes 



 165

 ( ) ( )2 'p x p x . (A.19) 

Using the definition of ( ) ( )( )2p x m E U x= ± − , it is found that 

 

( )

( )( ) ( )
1

2

dU x
dx

E U x p x−
. (A.20) 

Thus, the WKB approximation breaks down close to the classical turning point 

( )U x E=  (e.g., ( ) 0p x = ). For example, in a harmonic oscillator ( ) 2 21
2

U x m xω= . In 

this case, the validity condition equation (A.20) can be viewed as 

 ( )
3

22 2 2 218
2

E m x m xω ω ω−  (A.21) 

This inequality is always satisfied exactly at the origin 0x = , but once away from the 

origin, it is impossible to satisfy unless E ω . In this sense, we are indeed in the 

classical regime. However, even for a large E ω , the approximation is not valid 

close to the classical turning point of 2 21
2

E m xω= . Conversely, the validity condition 

equation (A.20) may be satisfied even in the region where the particle cannot enter 

classically ( )E U x< . For example, with the harmonic oscillator, the validity condition 

is always satisfied for large 22 /x E mω  for any value of E . In other words, the 

WKB approximation is good away from the classical turning points both where a 

classical particle exists and where a classical particle cannot exist. Thus, the WKB 

approximation is not really a classical limit as applies in the purely quantum mechanical 
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regime. In the classically forbidden region, the solution equation (A.17) needs to be 

modified to 

 
( ) ( ) ( )( )

( )( )( )
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ψ + −

−

=
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∫
 (A.22) 

by following the same steps as in the classically allowable region. 

A.6 Matching 

The WKB approximation can be good both in the region ( )E U x>  and the 

region ( )E U x<  but it is not good in regions close to the classical turning point 

( )cE U x= . In order to utilize the WKB approximation, this limitation must be 

overcome. The standard method is to expand the Taylor series around cx  and solve for 

the wave function exactly. Then, the WKB solutions can be matched away from cx  to 

determine the entire wavefunction. The common method is to approximate the potential 

around the classical turning point cx  by a linear function as 

 ( ) ( ) ( ) ( ) ( )2'c c c cU x U x U x x x O x x= + − + −  (A.23) 

and ignore the second order term. By definition, ( )cU x E= . Therefore, the Schrödinger 

equation around this point is, 

 ( ) ( ) ( )
2 2 2 2

2 2 ' 0
2 2 c c
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m dx m dx

ψ ψ
⎛ ⎞ ⎛ ⎞
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. (A.24) 

Using the new variable 

 ( ) ( )
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, (A.25) 
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the differential equation simplifies to 
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2 0d u
du

ψ
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⎝ ⎠

. (A.26) 

The solution to this equation is known as the Airy function and it can be written as  

 ( ) 3

0

1 1cos
3

Ai u t ut dt
π

∞ ⎛ ⎞= +⎜ ⎟
⎝ ⎠∫ . (A.27) 

This can be verified as follows. By substituting the differential operator in equation 

(A.26) on the definition of the Airy function, we find 
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du dtπ
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∫ . (A.28) 

The boundary term at 0t =  obviously vanishes. The behavior at t = ∞  is not so 

apparent. The argument of the sin grows as 3t  and oscillates more and more rapidly as 

t → ∞ . Therefore, for any infinitesimal interval of large t , the oscillation cancels the 

integrand except for a “left-over” that goes down as 2~ 1/ t . Therefore the boundary term 

for t → ∞  can also be dropped. It can be shown that the asymptotic behavior of the Airy 

function smoothly matches to WKB solutions. The asymptotic behavior is given by 
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. (A.29) 

Note first that, for 0u , the asymptotic behavior is 
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Here, we used the linear expansion ( ) ( )( )' c cU x E U x x x= + −  to relate powers of u  

to ( )2m E U− . This expression is consistent with the WKB solution for a particular 

choice of the overall constant. Similarly, for 0u , the Airy expansion becomes 

 ( ) ( )
( )

( )
1/ 21/322 '/1 1exp 2 '

2 2 c

x

x

mU
Ai u m E U dx

m E Uπ

⎛ ⎞
⎛ ⎞⎜ ⎟= − −⎜ ⎟⎜ ⎟ ⎝ ⎠−⎝ ⎠

∫ . (A.31) 

A.7 Tunneling 

For the study of the tunneling process, there are three regions, a classically 

allowed region I, x a< , where the particle initially exists, a classically forbidden region 

II a x b< < , and a classically allowed region III, x b>  to where the particle tunnels. 

We follow the same matching procedure as in the bound state example. The boundary at 

x a=  is obtained as 
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and 
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The matching at x b= , on the other hand, becomes 
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and 
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The overall normalization factor C  is determined by the requirement that the behavior 

of the wave function is consistent for a x b< <  between two matching procedures. We 

therefore find 
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⎛ ⎞ ⎛ ⎞= − − −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

∫ . (A.36) 

Comparing the two classically allowed regions, and taking advantage of a further 

normalization change, the matching reduces to 

 
( )

( )1/ 4
1 1cos 2 '

42

a

x
m E U dx x a

m E U
πψ ⎛ ⎞− − + <⎜ ⎟

⎝ ⎠−⎡ ⎤⎣ ⎦
∫ , (A.37) 

and 

 ( )
( )( )

( )

1/ 4
1 1 1exp 2
2 2

1sin 2 '
4

b

a

x

b

m U x E dx
m E U

m E U dx x b

ψ

π

⎛ ⎞− −⎜ ⎟
⎝ ⎠−⎡ ⎤⎣ ⎦

⎛ ⎞− − + >⎜ ⎟
⎝ ⎠

∫

∫
. (A.38) 

In other words, the amplitude in the region x b>  due to tunneling from region x a>  is 

suppressed by  

 ( )( )1 1exp 2
2

b

a
m U x E dx⎛ ⎞− −⎜ ⎟

⎝ ⎠∫ , (A.39) 

Therefore 

 ( )( )1exp 2 2
b

a
m U x E dx⎛ ⎞− −⎜ ⎟

⎝ ⎠∫  (A.40) 
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Is a transmission coefficient normally referred to as a suppression factor for the 

tunneling rate (square of the amplitude).  
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APPENDIX B  

TUNNELING THROUGH RECTANGULAR BARRIER 

The electron wave function satisfies the Schrödinger equation, such that 

 ( ) ( ) ( )
2

2 , , ( , , ) , , , ,
2

x y z U x y z x y z E x y z
m

ψ ψ ψ− ∇ + = . (B.1) 

Figure B.1 shows the simplest case where a particle of energy E  in space with a 

rectangular potential barrier of height bE  and width d . In one dimension, the 

Schrödinger equation can be written in different regions as follows  

 
 
 

 

Figure B.1 
Diagram of wavefunction of a particle with energy E tunneling through a rectangular 

potential barrier of height Eb and thickness d 
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 2 2 2/ 0Id dx kψ ψ+ =  for x < 0     (B.2) 

 2 2 2/ 0IId dx kψ ψ+ =  for 0 ≤ ≤x d    (B.3) 

 2 2 2/ 0IIId dx kψ ψ+ =  for x d≥ ,   (B.4) 

where 

 2 2
2

2
I III

mEk k= = ,  

 2 2 2
II b Ik n k= ,  

and 

 2 ( )b
b

E En
E
−

= .  

In the region I, the solution of equation (B.2) can be written as 

 'I Iik x ik x
I Ae A eψ −= + . (B.5) 

Similarly, in 0 x d≤ ≤ , 

 'II IIik x ik x
II Be B eψ −= +  (B.6) 

and in x d>  

 'I Iik x ik x
III Ce C eψ −= + . (B.7) 

In the region with x d> , there is no particle moving in the negative direction, thus 

 ' 0C = . (B.8) 

To satisfy the continuity condition at 0x = , it is required that  

 ' 'A A B B+ = + . (B.9) 

From 
0 0

I II

x x

d d
dx dx
ψ ψ

= =

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

 ' 'I I II IIk A k A k B k B− = − . (B.10) 
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From II IIIx d x d
ψ ψ

= =
= , 

 'II II Iik d ik d ik dBe B e Ce−+ = , (B.11) 

and from II III

x d x d

d d
dx dx
ψ ψ

= =

⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

 'II II Iik d ik d ik d
II II Ik Be k B e k Ce−− = . (B.12) 

By solving the equations (B.9), (B.10), (B.11) and (B.12), it is obtained that  

 
( ) ( ) ( )2 2

2
sinh 2 cosh

Iik d
I II

I II II I II II

k k eC A
k k ik d k k ik d

−

=
− − + −

. (B.13) 

For the case that bE E< , IIk  is a virtual number. The tunneling probability is  

 
( ) ( )

2 2 2

2 22 2 2 2 2

4

sinh 4
I II

I II II I II

C k kD
A k k idk k k

−
= =

− − −
. (B.14) 

If the energy of the particle is small and satisfies 1IIdk >> , then II IIk d k de e−>>  and 

( )sinh IIik d−  can be approximated by 21
4

IIik de− , or 

 ( ) 22 1sinh
2 4

II II
II

ik d ik d
ik d

II
e eik d e

−
−⎛ ⎞−

− = ≈⎜ ⎟
⎝ ⎠

. (B.15) 

Thus, equation (B.14) can be written as  

 
( )22 2

2
2 2

4

1 4
4

III II idk

I II

D
k k

e
k k

−

=
−

− +

. (B.16) 

Since the magnitudes of Ik  and IIk  are of the same order, and 2 4IIik de− >>  for 

1IIdk >> , the expression above can be written as  

 
( )2 22

0 0
b

II
m E E dik dE D e D e

− −−= = , (B.17) 
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where 0D  is a constant whose order of magnitude is 1. 
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APPENDIX C  

VARIATION METHOD 

The variation method in quantum mechanics is used to obtain an approximate 

solution of the ground state for a given system described by Schrödinger equation  

 ( ) ( ) ( ) ( )
22

22
d x

U x x E x
m dx

ψ
ψ ψ− − = . (C.1) 

The solution is a series of eigenstates given by orthogonal wavefunctions 1ψ , 2ψ … with 

the eigen-energies E1, E2, … By definition, the eigen-energy state is given by the 

Hamiltonian of the wavefunction, which is obtained by applying the Hamiltonian 

operator on the given states. The Hamiltonian operator is denoted by H and the operation 

is denoted by Hψ ψ . This is obtained from  

 ( ) ( ) ( )
2

*
22

dH x U x x dx
m dx

ψ ψ ψ ψ
+∞

−∞

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∫ , (C.2) 

and the energy states E1, E2, …are given by  

 i i iE Hψ ψ= . (C.3) 

Starting with a trial wavefunction Tψ  that satisfies all boundary conditions of (C.1). The 

potential can be denoted as a linear combination of different Hamiltonian eigenstates as  

 ( ) ( )T i i
i

x c xψ ψ= ∑ , (C.4) 

with normalized coefficients ic  satisfying  

 2 1i
i

c =∑ , (C.5) 

so that  
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 2 1Tψ = . (C.6) 

The expectation value of the energy with this trial wavefunction is  

 2 2 2 2
1 1 1 1 1 1

1 1
T T i i i

i i
E H c E c E c E c E Eψ ψ

> >

= = + ≥ + =∑ ∑ . (C.7) 

Thus, the expectation value must be always greater than or equal to the ground state 

energy. This provides an upper limit value for the ground state energy.  

Given this observation, the ground state can be obtained by introducing 

parameters in the trial wavefunction, ( )Tψ λ . The expectation value of energy for 

( )Tψ λ  is given by 

 ( ) ( ) ( )T TE Hλ ψ λ ψ λ= . (C.8) 

Looking for the lowest possible expectation value, 

 ( ) 0
dE

d
λ

λ
=  (C.9) 

is solved for a particular value of λ . The success of this method depends greatly on 

having a good trial wavefunction and good parameter choices.  
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APPENDIX D  

CLASSICAL CHARGE MODEL 

The potential distribution ( )xφ  in the channel can be given by the 1-D Poisson 

equation: 

 
( ) ( )

2

2 A
Si

d x q N n
dx
φ

ε
= +  (D.1) 

where AN  is the volume density of depletion charges and ( )n x  is the volume density 

inversion charges. In classical physics, the ( )n x  is given by  

 ( ) ( )
2

exp /i

A

nn x q kT
N

φ= − . (D.2) 

The Poisson’s equation changes to  

 ( )2 2

2 expi
A

Si A

d x nq qN
dx N kT
φ φ

ε
⎛ ⎞⎛ ⎞= +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
. (D.3) 

Noting that 

 ( ) ( )2

2

d x d xd d
dx d dx dx
φ φ φ

φ
⎛ ⎞

= ⋅⎜ ⎟
⎝ ⎠

, (D.4) 

Equation (D.3) can be rewritten as  

 ( ) 22 expi
A

Si A

d x nd q qd N d
dx dx N kT

φφ φ φ
ε

⎛ ⎞ ⎛ ⎞⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

. (D.5) 

Integrating (D.5) from the bulk toward the surface leads to  

 
2

0 0

2 exp
d

idx
A

Si A

nd d q qd N d
dx dx N kT

φ φφ φ φ φ
ε

⎛ ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

∫ ∫ . (D.6) 
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Given the relationship between the electric field and the potential φ , /fieldE d dxφ= − , 

the electric field can be obtained from equation (D.6) as 

 ( )( )
1/ 222 exp 1i

Field A
Si A

nqE N
N

βφ βφ
ε β

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
, (D.7) 

where /q kTβ = . By Gauss’ law, the total charge density is given by 

 
0T depl inv Si Field x

Q Q Q Eε
=

= + = − . (D.8) 

With depletion charge density given by  

 2depl Si sQ qε φ= , (D.9) 

the inversion charge density can be obtained as 

 ( )( ) ( )
1/ 22

1/ 2
2

2 exp 1Si A i
inv s s s

A

q N nQ
N

ε βφ βφ βφ
β

⎧ ⎫⎡ ⎤⎪ ⎪= + − −⎨ ⎬⎢ ⎥
⎣ ⎦⎪ ⎪⎩ ⎭

, (D.10) 

In the weak inversion region, 2B s Bφ φ φ< < , ( )
2

2 expi
s s

A

n
N

βφ βφ
⎛ ⎞

>> ⎜ ⎟
⎝ ⎠

, invQ  is 

approximated by 

 ( )
2

2 exp
2
Si A i

inv s
s A

q N nQ
N

ε βφ
φ

= , (D.11) 

and inversion layer capacitance is given by  

 inv
inv inv

s

QC Qβ
φ

∂
= ≈

∂
. (D.12) 

In the strong inversion region, 2s Bφ φ> , ( )
2

2 expi
s s

A

n
N

βφ βφ
⎛ ⎞

>>⎜ ⎟
⎝ ⎠

, invQ  is 

approximated by 
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 ( )
2

exp
2

Si i
inv s

A

q nQ
N

ε βφ
β

= , (D.13) 

and inversion layer capacitance is given by  

 1
2

inv
inv inv

s

QC Qβ
φ

∂
= =

∂
. (D.14) 
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