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Summary 
 
 

The evaluation of freeway service quality is crucial work, and thus, transportation 

professionals have developed numerous measures including traffic volume, speed, and 

density.  However, recent research efforts have indicated that such traditional measures 

may not fully reflect the quality of roadway service from the perspective of individual 

drivers, necessitating the development of alternative approaches that complement or 

replace the current service quality measures.  As an alternative approach, the speed 

variation of a vehicle has been suggested as a promising indicator of traffic flow quality 

perceived by individual drivers.  In particular, acceleration noise, defined by the 

standard deviation of the acceleration of a vehicle, has been often studied as a measure 

of the degree of speed variation.  However, previous studies have been limited to the 

experimental level due to the difficulty in collecting high-resolution vehicle speed 

profiles for computing acceleration noise.   

 In this dissertation, the characteristics of speed variation, measured by 

acceleration noise, are investigated using the rich set of GPS data collected from the 

instrumented vehicles driven by the participants of the Commute Atlanta research 

program.  The employment of the real-world vehicle activity data, composed of every 

second of vehicle operation, renders this research effort unique and provides an 

opportunity to investigate the various aspects of acceleration noise in the real-world 

context.  The investigation is performed by relating acceleration noise to its three 

influential factors: traffic conditions, roadway, and driver/vehicles.  In addition, a fuzzy 

inference system-based methodology, combining vehicle speed and acceleration noise 
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from instrumented vehicles, is proposed as an approach to evaluating traffic flow 

quality.              

 As a result, this research effort found that acceleration noise is affected by traffic 

conditions, roadway characteristics, and driver/vehicle characteristics.  In general, the 

worse traffic congestion or poor roadway conditions increase acceleration noise.  In 

addition, the various aspects of interactions between roadway characteristics and traffic 

conditions were also found, which has not yet been examined in the previous studies.  

By comparing with vehicle speed, this research effort found that under free-flow 

conditions (LOS A-to-C ranges), acceleration noise is more sensitive to traffic than 

speed, indicating the usefulness of acceleration noise for evaluating traffic flow quality 

under these ranges.  Finally, the application of the fuzzy inference system-based 

approach successfully demonstrated its potential capability to evaluate traffic flow 

quality using GPS-equipped instrumented vehicles.   
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Chapter 1 

Introduction 
 

Background 

Effective and efficient planning and operation of freeway systems should be based on 

the adequate evaluation of roadway service quality.  For such an evaluation, 

transportation professionals have used numerous measures including traffic volume, 

travel time, speed, and density.  In particular, density, measured by the number of 

vehicles per mile per lane, is the primary measure for evaluating the level of service of 

freeway systems.  However, recent studies have indicated that such traditional measures 

might not fully represent the level of service perceived by drivers (Choocharukul et al. 

2004; Flannery et al. 2006).  Along with this study, factors affecting the perceptions of 

the quality of service are being actively studied (Hostovsky and Hall 2003; Hostovsky 

et al. 2004; Pecheux et al. 2004; Pfefer 1999; Washburn et al. 2004).  A common claim 

of these studies is that the quality of service should be determined by incorporating the 

perspective of road-users, not relying solely on effectiveness measures developed by 

system managers or experts.  The incorporation of road-user perception requires the 

development of alternative approaches that supplement or replace the current service 

quality measures.  

 An example of the alternative measures is the degree of speed variation, which 

describes the degree of speed changes of a vehicle and the smoothness of traffic flow 

over a roadway segment.  A proposal of this measure for the quality of service was 

based on the notion that drivers tend to maintain their desired speeds unless traffic or 
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roadway conditions restrict their maneuverability.  In general, the higher degree of 

speed variation indicates poorer quality of service, and thus, driver discomfort.  

Recognition of the importance of speed variation is found in the following statement:   

“…motion in the form of speed and the magnitude and frequency of speed changes is an 

important measure of level of service from the point of view of the individual driver” 

(Drew and Keese 1965).  This statement suggests that the degree of speed variation can 

be effectively linked to road-user-oriented service measures.   

As suggested in the Highway Capacity Manual (HCM), a good service measure 

should encompass various aspects of service quality such as travel time and speed, 

freedom to maneuver, traffic interruptions, and comfort and convenience.  In this sense, 

the use of speed variation seems to have merit because it includes additional elements of 

service quality perceived by drivers.  In addition, speed variation is associated with the 

values of system managers.  In fact, the degree of speed variation is directly or 

indirectly related to driver satisfaction, safety, traffic conditions, vehicle operation cost, 

emissions (Eisele et al. 1996; Yoon et al. 2005), and fuel consumption (Chang and 

Morlok 2005), as depicted in Figure 1.  This characteristic, a multi-variable capturing 

capability, was the reason for the proposal of the service indices incorporating the 

degree of speed variation (Platt 1963).  
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Figure 1: Speed Variation and Related Factors 
 

Another reason for the proposal of speed variation as a service measure is that a 

mere examination of speed cannot fully reveal the quality of service over a roadway 

segment.  Figure 2 provides an example, in which two freeway speed profiles with the 

same average speed of 65mph were plotted with corresponding second-by-second 

acceleration profiles.  The speed profiles, obtained from two different vehicles which 

traveled on a 0.5-mile freeway segment with a speed limit of 65 mph, indicate that the 

driver of Vehicle A drove smoothly around the speed limit (65mph) while the driver of 

Vehicle B attempted to drive at a higher speed.  As suggested by the acceleration 

profiles, the speed variation of Vehicle B seems higher than that of Vehicle A.  In fact, 

the standard deviations of acceleration are 0.20 and 1.29 mph/s for Vehicle A and 

Vehicle B, respectively, implying a smoother and more comfortable traffic flow for 

Vehicle A.  Consequently, this example demonstrates that roadway service quality 

should not be represented by speed alone.  Another example can be found in a speed-
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density curve, in which speed decreases only marginally until traffic conditions reach 

the capacity (i.e., LOS E) of the road (TRB 2000).   
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Figure 2: Vehicle Speed and Acceleration Profiles Obtained from Trips with the Same Average 

Speed 
     

As a measure of speed variation, the standard deviation of acceleration, known 

as acceleration noise, was proposed nearly a half century ago (Herman et al. 1959) and  

applied to measuring traffic flow quality for two basic reasons: 1) its dependency on the 

three basic elements of the traffic stream: driver, road, and traffic conditions and 2) its 

capability to measure the smoothness of traffic flow (Drew 1968; Herman et al. 1959).  

Attempting to prove these characteristics, researchers have found that acceleration noise 

indeed depends on various traffic and roadway conditions.  In addition, their findings 

suggest that driver behavior could affect the values of acceleration noise.  However, 

previous research efforts have been limited to the experimental level, and thus, more 

extensive studies are needed to be carried out so that the understanding of acceleration 

noise can be enhanced.  Without a proper understanding of acceleration noise, its 

applications will be limited.      

The application of any performance measure should be supported by proper data, 

and data availability may determine the degree of the applicability of the measure.  
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Unfortunately, acceleration noise requires high resolution speed profiles such as a 

second-by-second level, for which data collection has proven difficult, particularly in 

the past, when only vehicles instrumented with special equipment could provide speed 

profiles.  However, the recent advancement of global positioning system (GPS) 

technology has significantly facilitated speed profile data collection, rendering the 

application of acceleration noise more practical.  In addition, given the rapid integration 

of GPS and communication systems into new vehicles, speed profile data will become 

much more readily available in the near future.  These developments provide an 

opportunity for more active research efforts on acceleration noise, particularly those 

using the speed profiles from GPS devices.   Ultimately, such research efforts should 

contribute to the improvement of freeway operations by helping transportation 

engineers appropriately measure the quality of service.   

 

Research Objectives 

This research effort is motivated by the finding that little research has been conducted 

on the characteristics of speed variation, in particular acceleration noise, and the 

measurement of traffic flow quality using instrumented vehicle data.  Instrumented 

vehicle data will be much more available in the near future due to the advancement of 

technology.  Above all, this research effort is motivated by the opportunity provided by 

the rich set of GPS data obtained from the Commute Atlanta project, an instrumented 

vehicle research program deployed in the metro Atlanta region.  The research program 

has monitored more than 1.5 million vehicle trips (as of May 2006) on a second-by-

second basis.  
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Thus, this research effort aims to investigate acceleration noise as one speed 

variation measure.  In particular, the relationships between acceleration noise and traffic 

conditions, roadway characteristics, and driver/vehicle characteristics were closely 

examined using the data from the Commute Atlanta project.  This examination is 

expected to enhance the understanding of acceleration noise characteristics and 

complement the findings obtained from previous research efforts.  In addition, a 

methodology for measuring traffic flow quality using GPS-equipped vehicles is 

proposed.  Along with these main research objectives, the sensitivities of the values of 

acceleration noise to computation approaches and data frequencies are also examined.  

In summary, major research objectives of this research effort are as follows: 

• An investigation of the relationships between acceleration noise and traffic 

conditions, 

• An investigation of the relationships between acceleration noise and roadway 

characteristics, 

• An investigation of the relationships between acceleration noise and 

driver/vehicle characteristics, and 

• The development of a methodology for measuring the quality of traffic flow 

using instrumented vehicles 

 

Research Methods 

Data 

Unlike previous research efforts which have relied primarily on experiments employing 

a small number of vehicles under controlled conditions, this study utilizes the GPS data 
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obtained from the instrumented vehicles employed in the metro Atlanta region.  The 

vehicle activity data cover the whole metro Atlanta region and a long time period more 

than two years, indicating a huge amount of accumulated data (more than 1.5 million 

vehicle trips over the period of October 2003 and May 2006).  The use of the whole 

data set is impractical in terms of data management and analysis.  Based on this notion, 

this study utilizes only a subset of the instrumented vehicle data limited to a specific 

corridor and a time period.  In addition to the instrumented vehicle data, Georgia 

Department of Transportation (GDOT) Transportation Management Center (TMC) data 

are utilized to capture parallel macroscopic freeway traffic conditions under which the 

instrumented vehicles traveled.  Finally, roadway characteristics data, obtained from 

several sources such as GDOT Roadway Characteristics database, Digital Elevation 

Model (DEM), and high-resolution aerial photos, are also utilized.        

 

Statistical Methods 

This study utilizes various statistical methods, including the Gaussian kernel density 

estimation technique, Kolmogorov-Smirnov (KS) test, and random coefficient models.  

In particular, random coefficient models are used as a key statistical tool to evaluate the 

effects of roadway conditions and drivers/vehicles characteristics on acceleration noise, 

reflecting the feature of the instrumented vehicle data, repeated measurements.  In 

addition, a fuzzy inference system is applied to generate indices of traffic flow quality 

incorporating both acceleration noise and speed.  
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Research Contributions 

This research effort is expected to contribute to the field of traffic operations in several 

ways.  First, this study uses the largest data set to date to understand the characteristics 

of speed variation, measured by acceleration noise, of a vehicle.  In particular, this study 

is the first study to be able to investigate the potential effects of roadway conditions and 

drivers/vehicles on acceleration noise.  Ultimately, the results of this study are expected 

to provide numerous insights into the application of the speed variation measures to 

measuring traffic flow quality.  Second, this study begins to reveal the characteristics of 

freeway traffic flow interacting with roadway conditions and drivers/vehicles, which 

cannot be captured without the help of the instrumented vehicle data and corresponding 

traffic data (TMC data) accumulated over a long time period and a freeway corridor.  

Third, this study provides the framework for the evaluation of traffic flow quality 

measured by both acceleration noise and speed.  The framework may result in a 

significant contribution in that it utilizes multiple measures that complement each other, 

rather than relying on a single measure.  The use of the multiple measures is attractive 

since it is generally regarded as a better approach to reflecting various users’ 

perceptions.  Fourth, this study demonstrates methods and procedures for the data 

collection and management of second-by-second vehicle activity data for use in 

roadway performance evaluation and illustrates the useful characteristics of the GPS 

data.  This demonstration provides researchers who plan to perform studies utilizing 

GPS technologies with helpful guidelines.                
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Dissertation Outline 

Following this introductory chapter, Chapter 2 reviews the existing research efforts on 

roadway service quality measures incorporating the degree of speed variation.  In 

addition, a comprehensive literature review focuses on acceleration noise.  Chapter 3 

discusses the data set and study site employed in this study.  Chapter 4 evaluates the 

quality of GPS data employed in this study and reports procedures for the data 

management.  Chapter 5 analyzes the sensitivity of acceleration noise values to its 

computation approaches and data sampling rates with an aim to better understand 

acceleration noise.  Chapters 6, 7 and 8 analyze how acceleration noise is influenced by 

traffic, roadway, and drivers/vehicles, respectively.  Chapter 9 proposes a methodology 

for evaluating traffic flow quality by incorporating both acceleration noise and vehicle 

speed.  Finally, Chapter 10 summarizes the findings from this research effort and 

suggests future research directions.    
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Chapter 2 

Literature Review 
 

Roadway Service Quality and Speed Variation 

Several research efforts have attempted to measure roadway service quality that reflects 

the degree of speed variation.  One example is the “Quality index” of traffic flow 

(Greenshields 1961).  The quality index was formulated as a function of speed, speed 

changes per mile, and expressed as follows:   

 

fS
KSQ

Δ
= , 

where   Q = quality index 

S = average speed in miles per hour 

ΔS = absolute sum of speed changes per mile 

f  = number of speed changes per mile 

   K = 1000, a constant. 

As can be seen in this equation, the quality index increases as travel speed increases, 

and it decreases as the amount of speed changes increases.  The terms ΔS and f were 

introduced to reflect the “frustration” factors experienced by individual drivers.  The 

research effort suggested that the proposed index could be applied to the development 

of cost factors for vehicle operation.  

 In another research effort, which incorporated various driver inputs such as 

speed change rate, steering wheel reversal rate, accelerator reversal rate, and brake 
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application rate, the “Level of Traffic Service Index (LSI)” was proposed (Platt 1963).  

The index was conceptualized in human factors as follows: 

LSI = Quality of Traffic Flow + 
Effort Driver

onSatisfacti Driver  - Driver Annoyance Due to Delay. 

This concept was then formulated using the relevant variables that could be obtained 

from the special devices developed by the author and his colleagues.  The formulation 

follows: 

⎥
⎥
⎦

⎤
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⎠
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⎣

⎡
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⎦

⎤
⎢
⎣

⎡
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= 1
]2[)1.0)((

3

43
1

2 RT
TTC

BARARRSRRSCR
SC

GYRCSCR
SCLSI , 

where  S = Average speed in miles per hour 

SCR = Speed change rate 

GYR = Gyroscopic rate 

SRR = Steering reversal rate 

ARR = Accelerator reversal rate 

BAR = Brake application rate 

TT = Travel time 

RT = Running time (time the vehicle is in motion) 

C1, C2, C3, C4 = Constants.  

In this equation, the speed change rate (SCR) is the absolute sum of vehicle acceleration 

and deceleration and aimed to measure the degree of the smoothness of motion.  In 

addition, the gyroscopic rate (GR) represents the radius of vehicle turns per minute due 

to lane changes, curves, and turns.  

 These research efforts are some of the first to introduce methodologies for 

incorporating the degree of speed variation into a traffic flow quality measure in a 
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quantitative manner.  In addition, they provided the relationships between the proposed 

indices and conventional traffic parameters, suggesting the effectiveness of the speed 

variation-based measures.   

  

Measures of Speed Variation  

A literature review revealed that existing studies have used various measures to quantify 

speed variation, depending on their applications, such as vehicle emissions analysis, 

safety analysis, and congestion index development.  For example, Babu and Pattnaik 

(1997) investigated the relationship between traffic congestion and several speed 

variation measures including acceleration noise, the standard deviation of speed, and the 

coefficient of variation of speed.  The standard deviation of speed ( vσ ) for a single 

vehicle can be formulated as follows: 

1

)(
1

2

−

−
=

∑
=

n

vv
n

i
i

vσ ,                         

  
where iv  is the second-by-second speed at time i, n is the number of observations, and 

v is the average speed for the given link or segment.  The coefficient of variation (CV) 

is defined by the normalized standard deviation by the average speed and expressed as 

follows:   

 

CV = 
v

vσ
.  

 
Positive kinetic energy (PKE) is a measure of acceleration kinetic energy per unit 

distance and defined as  
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PKE = 
d

vvpos
n

i
ii∑

−

=
+ −

1

1

22
1 )(

, 

where the function pos returns only the positive values of its result, and d is the distance 

traveled along the given roadway segment.  This parameter was incorporated in an 

urban fuel consumption model as a predictor variable (TRB 1975).  In addition, Barth et 

al. (1996) investigated the relationship between PKE and macroscopic traffic 

parameters by collecting GPS second-by-second speed data using a test vehicle.  Total 

absolute second-by-second speed differences divided by travel distance (TAD) was also 

used as a speed variation measure (Barth et al. 1996).  This statistic increases whenever 

speed changes, regardless of positive or negative changes in a given speed profile.  Its 

mathematical expression follows: 

TAD = 
d

vv
n

i
ii∑

−

=
+ −

1

1
1 ||

. 

In addition to these measures, acceleration noise, which will be discussed in detail in the 

next section, and mean velocity gradient (MVG), normalized acceleration noise by 

average speed, were also adopted as speed variation measures (D'Este et al. 1999; 

Underwood 1968).  The mathematical definition of MVG follows: 

MVG = 
v
σ , 

where σ indicates acceleration noise.  Among other measures, acceleration noise has 

been the most often studied and suggested as a traffic parameter capable of representing 

traffic flow quality from a microscopic perspective.    
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Acceleration Noise 

Acceleration noise was proposed nearly a half century ago as a parameter that might be 

employed to characterize the driver-car-road complex under various conditions 

(Herman et al. 1959).  In the proposal of acceleration noise, it was defined as “the root-

mean-square deviation of the acceleration of the car.”  The definition can be formulated 

as follows (Jones and Potts 1962): 

                        2

0

22

0

2 )()(1])([1
av

TT

av adtta
T

dtata
T

−=−= ∫∫σ ,          

where  )]0()([1)(1

0

vTv
T

dtta
T

a
T

av −== ∫ . 

In the equations above, σ indicates acceleration noise, and v(t) and a(t) are the speed 

and acceleration of a car at time t.  In addition, T is the total time spent moving.  This 

definition was simplified by assuming v(T) and v(0) are equal (i.e., the starting speed = 

ending speed), and thus, the second term in the first equation above was set to zero 

(Jones and Potts 1962).  The simplified approach measures the fluctuation of 

acceleration around origin while the original definition measures it around the mean 

acceleration.  These two different approaches may produce different acceleration noise 

values because the starting and ending speeds are not always the same.  However, 

researchers have used acceleration noise in both ways without noting the potential 

difference.    

 Researchers in the 1960’s asserted that acceleration noise could be influenced by 

traffic and roadway conditions, and vehicle/driver behavior.  To demonstrate these 

aspects, researchers implemented experiments and found that speeding behavior 
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increased acceleration noise (Herman et al. 1959; Jones and Potts 1962).  In addition, 

acceleration noise measured on roadways with worse geometric conditions tends to 

increase (Drew et al. 1967; Jones and Potts 1962).  The effects of roadway grade and 

trucks, on urban freeway, were also investigated, resulting in increasing acceleration 

noise on a grade and inadequacy of acceleration noise for evaluating the effects of 

trucks on the level of service (Humphreys 1969).  Upon examining the relationship 

between acceleration noise and vehicle position in a queue (Herman and Rothery 1962), 

acceleration noise of following cars was found to be larger than that of the freely-

moving lead car, as shown in Figure 3.   

Vehicle Position in a Platoon
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cceleration N
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0.01

0.03

0.02

0.04

Source: Herman and Rothery (1962)
 

Figure 3: Relationship between Acceleration Noise and Vehicle Position 
 

More importantly, numerous research efforts, attempting to identify the 

relationship between acceleration noise and traffic conditions (or level of service), 

concluded that acceleration noise, in general, increases with traffic congestion (Babu 

and Pattnaik 1997; Croft and Clark 1985; Jones and Potts 1962; Kim et al. 2003).  

Based on this conclusion, researchers suggested that acceleration noise could be a 
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potential traffic parameter reflecting traffic flow quality or level of service.  Associated 

with the level of service, acceleration noise was theoretically related to the freeway 

level of service using the energy-momentum theory (Drew 1968; Drew et al. 1967).  In 

the research effort, acceleration noise was theoretically linked to macroscopic traffic 

parameters: speed, volume, and density.  By assuming that the energy for the traffic 

stream over a section of road is conserved, Drew and his colleagues established a 

relationship, total energy (T) = kinetic energy (E) + internal energy (I), formulated as 

follows: 

T = αku2 + σ, 

where α, k, and u represent parameter, density, and speed of the traffic stream, 

respectively, and σ indicates acceleration noise.  The parameter α serves to adjust 

kinetic energy (E) and internal energy (I) so that their sum is equal to total energy T.  

The equation suggests that internal energy (I) is represented by acceleration noise.  By 

combining this relationship and the well-known linear relationships among macroscopic 

traffic flow parameters (speed (u), volume (q), and density (k)), the researchers (Capelle 

1966; Drew et al. 1967) suggested the following theoretical relationships linking 

acceleration noise to traffic flow parameters (see Appendix A for details): 

- Acceleration noise as a function of speed 
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- Acceleration noise as a function of density 
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- Acceleration noise as a function of flow 
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In the equations above, σmax indicates the maximum acceleration noise observed when 

kinetic energy (E) is zero, and uf , kj, and qm represent free-flow speed, jam 

concentration, and the maximum flow, respectively.  These relationships are graphically 

illustrated in Figure 4, which indicates that acceleration noise generally increases as 

speed decreases or density increases although such a trend does not continue under high 

speed or low density.     
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Figure 4: Relationships between Acceleration Noise and Speed and Density 
 

 An important feature of the energy model developed by Drew is that the model 

has the capability of quantifying roadway level of service from the perspective of 

acceleration noise.  His concept can be visualized using Figure 5, which compares the 

typical flow-speed relationship with the energy-speed relationship.  The figure suggests 
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that the maximum satisfaction of drivers can be achieved at a speed of 2/3uf, whereas 

the optimum speed from the maximization of flow is 1/2 uf,. Hence, the maximization of 

driver satisfaction occurs at speeds higher than those observed at the maximum flow 

rate.  Although the relationship between drivers’ maximum satisfaction and flow 

smoothness (lower acceleration noise) should be established in a further research effort, 

the model throws insights into the concept of level of service that should be interpreted 

from the perspective of roadway users, drivers.       
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Figure 5: Quantitative Approach to Level of Service Using Acceleration Noise 
 

After the concept of the energy model was published, research on acceleration 

noise continued on, and several researchers attempted to apply acceleration noise to 

measure roadway level of service (Croft and Clark 1985; Ryden 1976; Torres 1969).  

Some researchers pointed out that Drew’s energy model had a weakness, that is, it could 

not explain boundary conditions and that acceleration noise might not represent a good 

indication of internal energy (Lee and Yu 1973; Winzer 1981).  Another research effort 
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indicated that acceleration noise might not be a good measure of congestion because of 

its non-linear relationship with travel time and suggested that MVG might be a better 

indicator of traffic congestion (Underwood 1968).  In addition, some researchers 

pointed out that the relationship between acceleration noise and  traffic conditions was 

not as pronounced on urban arterials as on freeways (Rowan 1967; Ryden 1976).  This 

situation may provide a reason why most research efforts on acceleration noise have 

focused on freeway traffic.  

The literature review revealed that studies on acceleration noise did not actively 

continue in spite of the numerous initial research efforts in the late 1950’s and 1960’s, 

probably due to the difficulty of speed profile data collection.  In fact, most of these  

studies relied upon vehicle speed monitored by special devices; in some cases, speed 

profile data were obtained from aerial photos taken from an aircraft (Humphreys 1969; 

Lee and Yu 1973).  However, the difficulty of data collection has been alleviated with 

GPS devices, which are easy to install and provide accurate speed profiles.  Recent 

research efforts that have deployed instrumented vehicles equipped with GPS devices 

for collecting speed profile data have concluded that acceleration noise could be more 

usefully utilized for traffic studies with GPS technology (D'Este et al. 1999; Taylor et al. 

2000). 

Research efforts on acceleration noise were chronologically summarized in 

Table 1, which contains such information as topics of research, methods of data 

collection, and the definition of acceleration noise for each study.  The summary covers 

the years when acceleration noise was first proposed to those when a simulation study 

(Kim et al. 2003) that evaluates several roadway service measures including 
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acceleration noise on rural freeways was implemented.  As suggested in the table, the 

previous studies employed only a small number of test vehicles at an experimental level, 

implying limitations in reflecting real-world vehicle activities.  In particular, the use of 

a computer simulation model may be problematic since the acceleration behavior 

embedded in the simulation model is likely to fail to represent drivers’ accelerating 

behavior observed in the real-world context (Hallmark and Guensler 1999).  
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Table 1: Summary of Research on Acceleration Noise 

Year Authors Facility 
Type Location Research Topic 

Data 
Collection 
Method 

Equipment Acceleration 
Noise Definition 

1959 Herman, et 
al 

Research 
Laboratory Detroit Proposal of 

Acceleration noise 
Experimental 

measurements Accelerometer 
Standard 

deviation of 
acceleration 

1962 Jones and 
Potts 

Urban/subu
rban Roads 

Adelaid 
Hills, 

Australia 

Effects of road, 
driver, and traffic 

Experimental 
measurements Tachograph 

Root-mean-
square of 

acceleration 

1962 
Herman 

and 
Rothery 

Research 
Laboratory Detroit 

Relationship with 
vehicle position in 

a platoon 

Experimental 
mesurement 

Instrumented 
Vehicle Not clear 

1965 Drew and 
Keese 

Urban 
Freeway NA 

Introduction of 
energy-

momentum theory 
NA NA NA 

1966 Capelle Urban 
Freeway 

Chicago, 
Illinoise 

Relationship with 
traffic praramters 

Average car 
method Tachograph 

Root-mean-
square of 

acceleration 

1967 Drew, et al Urban 
Freeway 

Houston, 
Texas 

Relationship with 
LOS 

Floating car by 
a single driver 

Speed 
recorder  

Root-mean-
square of 

acceleration 

1968 Underwood Urban 
Streets 

Victoria, 
Austrailia 

Acceleration 
Noise, Mean 

velocity gradient, 
and congestion 

Test car Speedometer 
reading 

Root-mean-
square of 

acceleration 

1969 Humphreys Urban 
Freeway 

Houston, 
Texas 

Effects of trucks 
on grade Aerial photo 35-mm aerial 

films 

Root-mean-
square of 

acceleration 

1969 Torres Urban 
Freeway 

Ventura 
Freeway 

(CA) 

Relationship with 
traffic parameter 

One test car by 
six drivers Accelerometer 

Standard 
deviation of 
acceleration 

1969 Rowan Arterial 
College 
Station, 
Texas 

Energy model for 
major streets 

Average car 
method 

Speed 
recorder  

Root-mean-
square of 

acceleration 

1973 Lee and Yu unknown unknown 
Acceptable 

parameters for the 
internal energy of 

traffic flow 

Aerial photo Not clear Not clear 

1976 Ryden Urban 
Streets 

St. Louis, 
Missouri 

Application of 
energy-

momentum 
techniques to city 

street 

Test car Traffic 
analyzer 

Root-mean-
square of 

acceleration 

1981 Winzer 
Suburban 
Freeway 

(Autobahn) 
Germany Relationship with 

traffic parameters Test car 

electronic 
speedometer, 
tachograph, 

accelerometer 

Standard 
deviation of 
acceleration 

1985 Croft and 
Clark 

Urban 
Freeway 

Louisville, 
Kentucky 

Relationship with 
traffic parameters 

Floating car by 
a single driver 

Traffic 
analyzer 

Standard 
deviation of 
acceleration 

1997 Babu and 
Pattnaik 

Urban 
Streets 

Madras, 
India 

Various speed 
variation 

measures and 
LOS 

Test car 

Manual 
recording of 
speed at an 
interval of 30 

seconds 

Not clear 

1999 D'Este, et al Urban 
Streets 

Adelaid, 
Australia 

GPS technology 
and traffic 

parameters 
Test car GPS 

Root-mean-
square of 

acceleration 

2000 Taylor, et al Expressway
/City street 

Adelaid, 
Australia 

GPS and 
congestion index  

One probe 
vehicle GPS 

Root-mean-
square of 

acceleration 

2003 Kim, et al Rural 
Freeway 

Hypothetical  
Acceleration noise 
and LOS of rural 

freeway 

Simulation 
(CORSIM) NA 

Standard 
deviation of 
acceleration 
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Chapter 3 

Data 

Instrumented Vehicle Data 

Commute Atlanta Project 

Instrumented vehicle data obtained from the Commute Atlanta project, a research 

program undertaken by the researchers of the Georgia Institute of Technology, are the 

main data source for this research.  The purpose of the Commute Atlanta project, 

funded by the Federal Highway Administration (FHWA) Office of Value Pricing 

Programs and the Georgia Department of Transportation (GDOT), is to assess the 

effects of converting fixed automotive insurance costs into variable driving costs.  To 

this end, the research team recruited 275 households in the metro Atlanta, Georgia, 

based on the random stratified sampling approach considering household income, size, 

and vehicle ownership (Ogle 2005; Ogle et al. 2005).  The spatial distribution of the 

recruited households is illustrated in Figure 6.  Then, the research team instrumented 

485 vehicles from the households with the GT Trip Data Collectors (GT-TDC) to 

monitor the second-by-second speed and positions of the vehicles.  Currently, the 

research team is assessing the impacts of mileage-based incentives based on variable 

cent/mile rates, from 5 cents/mile up to 15 cents/mile.  In the research effort, the 

households reducing their miles of travel relative to the baseline year mileage will 

receive credits based on the cent/mile rate.  In the next stage, the research team will 

investigate the impacts of real-time congestion pricing strategies by communicating 

prices into the participating vehicles through onboard equipment.   
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Figure 6: Location of the Commute Atlanta Project Participating Households 
 

Vehicle Instrumentation 

The vehicles participating in the Commute Atlanta project were equipped with GT-TDC 

shown in Figure 7.  The instrumentation package includes: 

- 386 Linux computer 

- 12V Power, 3mA draw 

- Ignition Sensor 

- Vehicle Speed Sensor 

- Global Positioning System (GPS) receiver (SirfStarIIe/LP) 

- Onboard Diagnostics (OBD) Connection 

- Cellular Transceiver 

- 6 on/off sensors 

- 1 open serial port for optional systems 
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For each engine ignition, the equipment starts and records a trip file until the vehicle 

stops and the driver shuts off the engine.  The trip file records second-by-second vehicle 

operations including speed, heading, and vehicle position (latitude and longitude) 

provided by the GPS system.  Then, the trip file is transmitted to Georgia Tech sever via 

short message service (SMS) provided by a cellular system.  The data collection system 

deployed in the Commute Atlanta project is illustrated in Figure 8.    

 

   

Figure 7: GT Trip Data Collector and Wiring Harnesses and Antennas 

 

GT Server

Cellular
Network  

Figure 8: Data Collection System for the Commute Atlanta Project 
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Study Area  

The Commute Atlanta project provides instrumented vehicle data for the whole metro 

Atlanta area and provides an opportunity to investigate the characteristics of 

acceleration noise under various roadway conditions.  However, this research focuses 

on only a single freeway corridor as a test case.  The main reason for the use of a single 

corridor is to facilitate the data collection efforts, in particular for roadway geometric 

data such as grade and curvature, for which no available and reliable data source was 

found.  Some factors were considered to select the study corridor as follows:        

• Availability of traffic data,   

• The amount of instrumented vehicle data, 

• The presence of various traffic conditions,  

• The presence of various roadway geometrics, 

• The non-presence of HOV lane, and 

• Low truck traffic. 

The traffic data are indispensable for this study since they provide the information on 

the general traffic conditions that the instrumented vehicles experienced.  Thus, the 

study corridor should be under TMC coverage, for which traffic data are available.  In 

addition, the study objectives require that the instrumented vehicle trips be obtained 

from various drivers/vehicles and from roadways with various characteristics.  Also, 

various traffic conditions should be observed for the trips.  These conditions will 

provide more meaningful results from the analyses planned in this study.  In addition, 

the presence of HOV lanes should be considered since the operational characteristics of 

HOV lanes are likely to be considerably different from the regular lanes, in particular 
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during congested time periods.  Thus, the selection of a corridor without HOV lanes 

may remove the complexity of data interpretations.  Finally, truck traffic was 

considered since the presence of trucks can significantly influence the speed profiles 

(Grant 1998).  Thus, the selection of a corridor with significant truck traffic would 

require an additional data collection effort for the truck traffic, rendering data collection 

and analysis more complicated.  In this situation, the selection of a corridor with a 

minimum amount of truck traffic would be desirable for ease of analysis.         

Considering these factors, this study selected the 12-mile GA400 corridor 

outside interstate 285, as shown in Figure 9.  For this corridor, TMC data aggregated in 

20 seconds were available, and a considerable amount of the instrumented vehicle data 

could be observed under various traffic conditions, due to its serving as a major 

commute corridor.  In addition, various roadway conditions—two speed limits (55mph 

and 65mph); and two-, three-, and four-lane roadways—can be observed over the 

corridor, allowing an opportunity to more effectively investigate the effects of roadway 

characteristics.  The absence of HOV lanes and low truck traffic on this corridor also 

provided reasons for the selection.  The truck traffic on this corridor is relatively low, as 

shown in Figure 9.  In fact, the data from the Highway Performance Monitoring System 

(HPMS) indicate that the truck percentage of this corridor ranges between 3 and 6%.  
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Figure 9: Study Area 

 

 
Source: Atlanta Regional Commission, Mobility 2030, Regional Transportation Plan, 2004. 

Figure 10: Annual Truck Loads in the Atlanta Region 
 



 

28 
 

Study Time Frame 

The study time frame for this research is between October 2003 and August 2004 

(eleven months).  The starting point of the time period is when the full instrumentation 

was completed, as shown in Figure 11.  The figure shows that it took several months to 

install the GT-TDCs for the Commute Atlanta project and that the number of installed 

GT-TDCs stabilized after September 2003.   Meanwhile, the ending point of the study 

period was decided based on the time period of a road construction project performed in 

the study corridor beginning in September 2004, as the roadwork was likely to affect 

the vehicle activity.  Consequently, August 2004 was decided as the ending point of the 

study time period, which prevents the complexity of data analysis.     
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Figure 11: Number of Installed GT-Trip Data Collectors during 2003 
 

Macroscopic Traffic Data 

In addition to the instrumented vehicle data, TMC data, collected from video detection 

system (VDS) cameras on GA400, were employed to capture macroscopic traffic 

conditions associated with the instrumented vehicle trips.  For the mainline (excluding 

ramps) of the GA400 corridor, 77 VDS stations, 39 stations for southbound and 38 
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stations for northbound, provide lane-by-lane traffic data, including traffic speed, 

volume, and density, in 20-second intervals (http://www.georgianavigator.com).  For 

this study, these traffic data were aggregated into one-minute intervals on a station-by-

station basis.  Thus, the lane-by-lane data were combined into the station level data, and 

three 20-second observations were aggregated into one observation.   

 

Roadway Characteristics Data 

The study corridor was segmented into smaller sections, minimizing the occurrence of 

composite roadway characteristics.  The roadway characteristics considered were the 

number of lanes, speed limit, grade, facility type, and curvature, all of which are likely 

to affect the speed profiles of a vehicle.  Data sources used for determining the roadway 

characteristics are summarized in Figure 12, indicating that three major data sources—

Roadway Characteristics (RC) table, Digital Elevation Model (DEM), and U.S. 

Geological Survey (USGS) aerial photo—were utilized for the determination.  Detailed 

explanations about the geometric data collection processes will be provided in the 

following sections.  As a result of the segmentation, 89 segments (42 for northbound 

and 47 for southbound) were obtained (Figure 14).  The average, minimum, and 

maximum lengths of the segments are 0.28, 0.20, and 0.39 miles, respectively.  Figure 

13 illustrates the distribution of segment lengths, indicating that a majority of segments 

are between 0.25 and 0.3 miles. 
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Digital Elevation 
Model (DEM)

USGS Aerial 
Photo

 
Figure 12: Factors for Roadway Segmentation  
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Figure 13: Distribution of Segment Lengths 

 
 
Number of Lanes and Speed Limit 

The number of lanes and speed limit information were obtained from the GDOT RC file, 

which contains roadway characteristics for all roadways in the state.  The RC file 

indicated that the study corridor is composed of roadway segments with 2, 3, and 4 
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lanes and 55 and 65mph speed limits.  Figure 14 indicates that 65mph and four lanes are 

the prevailing speed limit and the number of lanes in this corridor, respectively.  In fact, 

the segments with a speed limit of 65mph occupy 79% of the study corridor, and 61% 

of the corridor contains four lanes.  The speed limit of the segments with two or three 

lanes is only 65mph while four-lane segments have a speed limit of 55mph or 65mph, 

depending on the locations.  
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Figure 14: Number of Lanes and Speed Limit 
 

Grade 

The grade of roadway segments was measured using USGS 7.5-minute DEM data, 

which contain arrays of regularly-spaced elevation values.  According to the USGS, 

90% of the 7.5-minute DEM data have a vertical accuracy of 7-meter root-mean-square 

error or better, and 10% are in the 8- to 15-meter range 
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(http://erg.usgs.gov/isb/pubs/factsheets/fs04000.html).  In the process of the grade 

calculation, the DEM data file (an image file) was converted to a polygon feature using 

the tool of the spatial analyst in ArcGIS.  The generated polygons were then overlaid on 

the roadway network, resulting in an identification of polygons that the study corridor 

passes through.  Figure 15 illustrates the DEM data and converted polygons for a small 

segment of the study corridor.  The elevation difference between two end points of a 

segment and the segment length were used for the grade estimation (i.e., grade (%) = 

elevation difference/segment length×100).  The resulting grade ranges from -3.7 to 

+3.4% for the 89 segments (for both directions), and among them, 74 segments have a 

grade within a ±3% range. 

 

Fulton County DEM Vectorized DEM

* elevation in feet

 
Figure 15: Digital Elevation Model Data for Grade Estimation 

 
 

In the calculation of roadway grade using DEM, care was taken near the bridge 

sections since the altitude obtained from DEM is based on the surface of the water, if 
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the bridge is over a river.  As an illustration, Figure 16 shows DEM, aerial photo, and 

vectorized DEM near Chattahoochee River, indicating the DEM-based altitude of the 

bridge is the same with that of the river.  Thus, the use of the altitude for the grids 

where a bridge is located may exaggerate the slope.  Based on this notion, the grade 

near the bridge was computed using the altitudes at the ends of the bridge.  

 

400

Chattahoochee River

Altitude at the 
surface of the water

Altitude at the surface of 
the roadway

 
Figure 16: DEM, Aerial Photo, and Vectorized DEM near Chattahoochee River 

 

Curvature 

The degree of curvature was measured based on the radius of the circle which fits the 

segment.  The radius of curvature was then calculated using the relationships among 

radius, chord, and arc in the circle.  A graphic illustration of these elements is shown in 

Figure 17 in which the region (a-b-c-a) is a segment of a circle and no larger than a 

semi-circle.  Using the notations in the figure, their relationship can be formulated as 

follows:      

222 )
2

()( XHRR +−=  , 
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where R, X, and H are the radius, the chord length, and the height, respectively. Thus, 

the radius of a circle can be computed using  

H
HXR

2
)2/( 22 +

= . 

An application of this equation requires accurate information about the shape of the 

roadways, which can be observed in the high-resolution USGS aerial photos.  Under the 

GIS framework, points were superimposed on the aerial photo along the middle lane of 

the study corridor for each direction, and these points were used for measuring the 

chord length (X) and the height (H).  Based on the chord length and the height, the 

radius of a curve were computed using the equation above.  The resulting radii of curves 

were large numbers for most freeway segments, and the minimum radius (2,515 feet) 

was found at southbound Segment 5 between Old Milton Parkway and Haynes Bridge 

Road.  
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Figure 17:  Relationships Among Radius, Arc, and Chord in a Circle 
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Facility Type 
 
Freeway facilities can be classified into three types: basic, on/off ramp, and weaving 

segments.  These three types have different operational characteristics, and thus, the 

HCM suggests different analysis approaches for each type.  Figure 18 illustrates the 

facility type and indicates that ramp influence areas extend to 1,500 feet upstream from 

a physical diverge point and to 1,500 feet downstream from a physical merge point.  In 

particular, lanes 1 and 2 (from the right-most lane), including acceleration and 

deceleration lanes, are the areas most significantly affected by the entering or exiting 

vehicles.  Based on this situation, this study classified the segments of the study corridor 

into basic, on-ramp, and off-ramp segments.  Note that the study corridor does not 

contain weaving sections.  In the classification effort, USGS aerial photos were utilized 

to locate merge or diverge points.   

 

Basic Basic BasicOff OnWeavingBasic

1500 ft 1500 ft

Diverge Influence Area Merge Influence Area

 
Figure 18:  Freeway Facility Types 

 
 
 
Relationship Among Roadway Characteristics 

The relationships among the roadway characteristics, which can be easily correlated due 

to roadway design guidelines, were examined, and the scatter plots revealing potential 
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relationships were illustrated in Figure 19.  The figure compares grade and the degree of 

curvature (represented by 10,000 divided by the radius of the curve in feet) with the 

number of lanes, speed limit, and facility type, indicating weak correlations among the 

grade and the roadway characteristics.  However, the higher degrees of curvature were 

found in the segments with two lanes or a 65mph speed limit.  In fact, the average 

degrees of curvature are 0.93, 0.54, and 0.52 for segments with two, three, and four 

lanes, respectively.  For facility types, segments affected by on-ramps tend to have a 

lower degree of curvature.  The average degrees of curvature are 0.67, 0.30, and 0.54 

for basic, on-ramp, and off-ramp segments, respectively.  As a whole, however, 

significant correlations were not found among the roadway characteristics.  In addition, 

the correlation between the grade and the degree of curvature were examined, as shown 

in Figure 20, indicating a weak correlation between the two geometric variables. 
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Figure 19:  Relationships among Roadway Characteristics 
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Figure 20: Scatter Plot of Grade and Curvature 

 



 

38 
 

Chapter 4 

GPS Data Quality and Processing 

GPS Data 

Background  

The main data source for this research effort is GPS devices which provide second-by-

second vehicle speed and position.  GPS was originally developed for military purposes, 

but it is now being expanded to numerous civilian applications including vehicle 

navigation systems.  In particular, in 2000, the removal of Selective Availability (SA), 

an intentional degradation of the GPS signal, significantly improved the accuracy of 

GPS data.  The determination of the position of GPS receivers follows the principle of 

trigonometry which requires at least four of the 24 satellites in six orbital paths circle 

the earth twice a day.  This constellation of satellites continuously transmits signals 

containing positional and timing information at high frequencies (approximately 

1,500MHz).  These signals are picked up by GPS receivers with an antenna, and they 

are utilized for computing the coordinates of antenna positions and speed.  For the 

speed calculation, GPS receivers use the Doppler shift of the GPS signals, independent 

of the position calculation (Czerniak and Reilly 1998; Hofmann-Wellenhof et al. 1994; 

Zito et al. 1995).  

 Since the calculations of position and speed rely on signals from the satellites, 

the reliability of the GPS data can be affected by factors obstructing or reflecting the 

signals in the urban environment (e.g., building and tunnel), rural environment (e.g., 

trees) and weather.  The reliability of GPS data is usually measured by the number of 

satellites and the positional dilution of precision (PDOP).  In general, reliable GPS data 
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points can be obtained when at least four satellites are in view and the PDOP value lies 

between 1 and 8 (Ogle 2005).  Although these parameters provide a good guidance for 

the identification of reliable GPS data points, random errors imbedded in the GPS 

outputs still require additional data processing that minimizes the errors.        

 

Quality of Study Data 

The quality of GPS data used in this study was examined using 264,973 segmented trips 

collected over the study corridor during the study period (October 2003 to August 2004).  

For the examination, potentially bad one-second GPS data points were identified based 

on two criteria: the number of satellites in view and PDOP.  If a GPS data point 

(second-by-second speed) does not satisfy both the criteria (i.e., at least four satellites 

and a PDOP value between 1 and 8), the data point was regarded as a bad data point.  

Based on this rule, a bad data rate for a segmented trip was computed from dividing the 

number of bad data points by the total number of data points for the trip.  The 

distribution of the bad data rates for the instrumented vehicle trips (n = 264,973) were 

obtained as shown in Figure 21.  The figure indicates that 70% of the trips do not have 

even a single bad data point and that 5% of the trips have bad data rates larger than 0.5.  

Note that the data quality of the trips is expected to be much better than any other trips 

since the trips were obtained from only freeway segments where obstructed GPS signals 

are less likely to occur.  In addition, during the freeway operation, the chances of cold 

(or warm) starts of GPS receivers may be significantly low.  In case of cold (receivers 

were off for several days) or warm (receivers were off for less than a day) starts, it takes 

time for receivers to acquire satellites signals, and thus, the GPS data during the time 
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period are subject to be unreliable.  However, in spite of the good circumstances on 

freeways, the occurrence of bad GPS data points still requires additional data smoothing 

or filtering processes.     
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Figure 21: Cumulative Distribution of Bad Data Ratio for a Trip (n = 264,973) 
 

GPS Data Smoothing Using the Kalman Filter 

Associated with GPS data smoothing approaches, a research effort reported that GPS 

random errors could be effectively mitigated using the Kalman filter (Jun et al. 2006).  

In particular, the research effort showed that the performance of the filtering process 

could be improved using the GPS data quality parameters: the number of satellites and 

PDOP.  These two parameters are the indicators of GPS signal qulaity, and thus, they 

could help the researchers effectively adjust the amount of error variances in the 

Kalman filter processes.  The Kalman filter process is composed of two recursive 

processes: prediction and correction steps.  In the prediction step, the next value is 

estimated based only on the past measurements, and then, the correction step refines the 
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value of the estimate using the current value.  Based on these processes, the GPS speed 

data used in this study were filtered as an attempt to reduce the random errors.    

 

Quality of Filtered GPS Data 

Vehicle Speed Sensor Data 

The data quality of filtered GPS-based acceleration profiles was examined using the 

vehicle speed sensor (VSS) included in the GT Trip Data Collector (GT-TDC).  The 

VSS measures the number of revolutions of the transmission using magnetic sensors 

and updates the number every ¼ seconds.  Using this number, vehicle speeds can be 

estimated by multiplying appropriate factors, for which vehicle manufacturers use 

standard revolution counts such as 2,000, 4,000, or 8,000 wheel-tick/mile, depending on 

sensor spacing (Ogle 2005).  However, the factors may not reflect the true activity of a 

vehicle since tire sizes and pressures can vary depending on vehicles and driving 

conditions.  For example, a vehicle may not be equipped with standard tires for the 

vehicle, and surrounding temperatures can change the pressure of tires.  In spite of these 

uncertainties imbedded in VSS speeds, acceleration profiles obtained from VSS were 

assumed to be reliable, and they were compared with the speed profiles from GPS 

devices.   

 

Accuracy of Acceleration from Vehicle Speed Sensor 

The accuracy of speed and acceleration from the VSS can be identified based on 

standard revolution counts and data frequency.  The characteristics of the VSS data 

employed in this study dictated that the standard revolution count is generally 8,000 
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wheel-tick/mile and that the data frequency is 4 Hz (i.e., wheel-tick count is updated 

every quarter second).  These 4 Hz data were aggregated on a second-by-second basis 

to match with the GPS data stream, resulting in a data frequency of 1 Hz.  Thus, the 

travel distance for one wheel-tick during one second becomes 1/8,000 miles.  Then, the 

speed for one wheel-tick over a second can be calculated as follows: 

Speed/wheel-tick = 
hour 
mile 

3600/1
8000/1  = 0.45 mph. 

Technically, the wheel-tick number is counted only when the transmission shaft finishes 

revolving, meaning that incomplete revolutions during a specific time interval are not 

reflected in the number of wheel-ticks.  This situation incurs an error for the measured 

number of wheel-ticks, and the true value lies between the measured number and the 

measured number+1.  In particular, when the aggregation process is considered, the 

error occurs only at the boundaries of the aggregation time interval.  This concept was 

represented in Figure 22, in which 4Hz speed data are aggregated into 1Hz data.  As 

suggested in the figure, the range of true value (W) becomes w ≤ W ≤ w + 2, in which w 

is the aggregated wheel-tick number on a second-by-second basis.  As a result, the 

accuracy of an acceleration rate obtained from speed differences becomes ±2 wheel-tick 

numbers as follows:   

2111 +≤≤ wWw , 

2222 +≤≤ wWw , 

and 22 121212 +−≤−≤−− wwWWww , 

in which the subscripts 1 and 2 indicate the time when the values are measured.  The ±2 

wheel-tick numbers can be converted into ±0.90 mph by applying the rate of 
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0.45mph/wheel-tick.  Thus, based on the conditions stated earlier, the accuracy of VSS-

based acceleration is equivalent to ±0.90 mph/s (the upper and lower bounds of the 

errors).  A notable aspect of this accuracy is that it is directly affected by the standard 

revolution count and the aggregation time interval.  In other words, as the standard 

revolution count becomes lower and/or the aggregation time interval shorter, the 

measurement error becomes greater.  Again, the specific number ±0.90 mph/s is 

founded on a mathematical ground, and thus, it should be carefully interpreted and 

applied.    

 

a b c d

a  ≤ A < a + 1 d  ≤ D < d + 1

a, b, c, and d = measured number of wheel-ticks
A, D, and W = true numbers for a, d, and w

w = a + b + c + d

w  ≤ W < w + 2

t0 t0+2/4 t0+3/4 t0+1 t0+5/4t0+1/4T0-1/4

(e.g., a is the measured number of revolutions during the 
time period between t0 and t0+1/4. )  

Figure 22: Illustration of Potential Errors from Vehicle Speed Sensor 
 

Speed Profile Comparisons 

Speed profiles from GPS devices and VSS were compared using the data obtained from 

six VSS-equipped instrumented vehicles which traveled on the study corridor GA400 

during March 2004.  Not all the vehicles participated in the Commute Atlanta project 

were equipped with VSS, and only the six VSS-equipped vehicles were observed to 

travel the study corridor during the time period.  The comparisons made in this study 
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focused on only freeway trips, which have more chances to contain reliable GPS data 

because obstructed satellite signals and the cold/warm starts of GPS receivers are less 

likely to occur, as mentioned before.   

As an example, Figure 23 illustrates three speed profiles—raw GPS, Kalman 

filtered GPS, and VSS speed profiles—from the same vehicle over a 60-second period.  

As can be expected, the three speed profiles follow the same trend.  In fact, the average 

speeds of the three speed profiles are 70.8, 70.9, and 70.8 mph, indicating little 

difference in average speeds.  The figure indicates that some peaks found in the raw 

GPS speed profile were smoothed after the Kalman filtering.  For more objective 

comparisons, two metrics—the mean of the absolute errors (MAE) and the variance of 

the errors (VE)—were calculated for the speed profiles in Figure 23 in the following 

ways: 

n

YYabs
MAE

n

i
ii∑ −

=
)ˆ(

 

)ˆ( ii YYVarVE −= , 

where n, iY , and iŶ  represent sample size, true value, and estimated value, respectively.  

By taking the VSS-based speeds as true values, MAE and VE for the raw GPS profile 

were computed, resulting in 0.66 for MAE and 0.34 for VE.  Meanwhile, for the filtered 

GPS profile, MAE and VE are 0.65 and 0.32, respectively, indicating the speeds from 
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the filtered GPS data are slightly closer to those of the VSS data with less variance.              
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Figure 23: Comparison of Speed Profiles (Raw GPS, Kalman Filtered GPS, and VSS) 
 

In addition, MAE and VE were computed for a larger data set composed of 

13,865 second-by-second speeds obtained from the trips over GA400 study corridor.  

As a result, the raw GPS data exhibited 1.28 and 2.99 for MAE and VE, respectively, 

while those are 1.29 and 3.03 for filtered GPS data.  Although the raw GPS second-by-

second speeds are slightly closer to VSS second-by-second speed with less variance, the 

result indicated little difference between the raw and filtered GPS speeds.   

 

Acceleration Profile Comparisons 

Using the same speed profile data in Figure 23, acceleration profiles were obtained 

based on the backward difference approach (subtraction of the previous speed from the 

current speed).  The comparison of the acceleration profiles indicates that GPS-based 

accelerations are smoother than VSS-based accelerations.  Note that the VSS-based 

acceleration rates change at a constant rate such as 0.45 mph/s because of its data 

characteristics, as previously described.  This feature might contribute to the bumpy 
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speed changes in the VSS-based acceleration profile.  By taking the VSS-based 

accelerations as true values, MAE and VE for the raw GPS profiles were computed, 

resulting in 0.61 for MAE and 0.53 for VE.  Meanwhile, for the filtered GPS profiles, 

MAE and VE are 0.58 and 0.43, respectively, indicating the values of acceleration from 

the filtered GPS data reflect the VSS-acceleration profile more closely with less 

variance. 
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Figure 24: Comparison of Acceleration Profiles (Raw GPS, Kalman Filtered GPS, and VSS) 
 

In addition, MAE and VE were computed for a larger data set composed of 

12,834 acceleration values obtained from the trips over GA400 study corridor.  The 

results coincided with the example case above.  Raw GPS data produced 0.92 and 2.02 

for MAE and VE, respectively, while the values are 0.83 and 1.77 for the filtered GPS 

data.  Again, the filtering of GPS data showed smaller errors with less variance, 

supporting the use of GPS speed data smoothing.   
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Average Speed Comparisons 

The average speeds for segmented trips were compared for the three different speed 

profiles.  In this effort, speed profiles were obtained over quarter-mile segments, 

consistent with the length of the roadway segments (average segment length = 0.28 

miles) used in this study.  Thus, the trip length for each speed profile used in this 

comparison is 0.25 miles.  In total, 1,031 segmented trips, composed of 13,865 second-

by-second speeds (equivalent to a driving distance of 258 miles), were obtained.   

Based on the trips, scatter plots showing the relationships between the average 

speeds from the three different speed profiles were obtained, as shown in Figure 25.  

The figure exhibits little difference between them, implying that the filtering process 

has little effect on speed profiles.  This result may be reasonable since the GPS second-

by-second speeds from freeway trips are generally reliable, and thus, the filtering 

process tends to be implemented at a minimum level.        
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Figure 25: Comparisons of Average Speeds from Raw GPS, Filtered GPS, and VSS (n=1,031) 
 

Acceleration Noise Comparisons 

Using the 1,031 segmented trips, a comparison of acceleration noise from raw and 

filtered GPS data was performed, as shown in Figure 26.  The figure indicates that 
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acceleration noise from the raw GPS data is greater than that from the filtered GPS data.  

In addition, the figure implies that the values of acceleration noise from the filtered data 

are reduced by approximately 25%, as indicated by the estimated slope of the regression 

line.  In addition, the figure indicates that the variance of the differences of acceleration 

noise values from the two different data sets increases as acceleration noise increases.       
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Figure 26: Comparison of Acceleration Noise from Raw and Filtered GPS Data 

 

In addition, acceleration noise was computed using the VSS-based data.  One 

notable phenomenon in the computation results is zero acceleration noise, not observed 

in the calculations of GPS-based acceleration noise.  The VSS-based zero acceleration 

noise was found for 108 trips (10.5% of the sampled trips), and their corresponding 

GPS-based acceleration noise was always greater than zero.  The distributions of the 

GPS-based acceleration noise values for the trips with the VSS-based zero acceleration 

noise were obtained, as shown in Figure 27.  The figures indicate that the raw GPS-

based acceleration noise has a larger variance, as suggested by the long tail of the 

histogram and that the variance was mitigated after the filtering process.  This 
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phenomenon can also be illustrated by cumulative distributions, which suggest that 90% 

of the trips with VSS-based zero acceleration noise have the values of acceleration 

noise less than 0.8 for the filtered GPS data, however the 90% acceleration noise value 

becomes 1.3 for the raw GPS data. 

A formal test can be simply carried out using the VSS-based acceleration 

accuracy, ±0.9 mph/s, implying that the true acceleration noise values for the zero VSS-

based acceleration noise lie between 0 and 0.9 mph/s.  The zero lower bound can be 

observed when speeds do not change at all.  Meanwhile, the upper bound (0.9 mph/s) 

can be observed when two distinct extreme acceleration rates, +0.9 mph/s and -

0.9mph/s are recorded the same number of times.  For this situation, acceleration noise, 

calculated from the population standard deviation, becomes exactly 0.9 mph/s.  When 

the number of acceleration observations is an odd number, acceleration noise becomes 

slightly smaller than 0.9, however, it is still very close to 0.9 mph/s.  For example, given 

eleven acceleration observations, the upper bound becomes 0.896 mph/s.  The 

application of the range with 0 and 0.9 mph/s for lower and upper bounds resulted that 

20% of the trips with zero VSS-based acceleration noise have implausible acceleration 

noise values for the raw GPS data.  However, the implausible trip rate was reduced to 

6% for the filtered GPS data, which can be illustrated using the cumulative distribution 

function in Figure 27.  As a result, the filtering process contributed to reducing the 

occurrences of unreliable acceleration noise values.    
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Figure 27: Distributions of GPS-Based Acceleration Noise Values for the Trips with Zero 
Acceleration Noise 

 

Summary 

The comparison results indicate that the Kalman-filtered GPS speed profiles have more 

preferable characteristics than the raw GPS speed profiles since the acceleration values 

from the filtered data are closer to the VSS-based ones assumed to be more accurate 

with less error variance.  In addition, the filtering process seemingly prevents the 

occurrence of unreliable acceleration noise values, as illustrated in the analysis of the 

VSS-based zero acceleration noise.  However, note that the filtering process has no 

capability to discern the abrupt speed changes due to unreliable GPS signals from those 

due to real situations.  In other words, the filtering process may introduce a drawback 

which incurs a lost of information associated with a higher degree of speed changes, as 

the process eliminates even the real high acceleration rates.  Meanwhile, second-by-

second speeds are not significantly affected by the filtering process, at least for the data 

set obtained from the freeway trips.    
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Map-Matching Process 

The selection of instrumented vehicle trips which passed through the roadway segments 

of interest requires a map-matching process.  For this process, this study applied the 

point-in-polygon approach, in which all the GPS data points within a specified polygon 

were captured and processed for further analyses.  This approach was relatively easy to 

apply compared to other map-matching algorithms such as route-based approaches 

since its decision-making process is simple.  However, the point-in-polygon approach 

has a disadvantage that it is not practical for the areas where roadway networks are 

dense.  In these areas, the creation of a polygon which does not overlap with other 

polygons is difficult since the roadway network is likely to be too close.  However, this 

issue was not critical for this study since the study area is a freeway corridor which 

generally has a sufficient distance from other roadways.  The captured freeway GPS 

data points based on the point-in-polygon approach are illustrated in Figure 28, which 

shows only southbound vehicle movements.  The differentiation of the moving direction 

was possible by examining the coordinate changes.  Alternatively, the moving direction 

can be identified through the values of heading provided by GPS receivers.  
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Figure 28: Illustration of Selected GPS Data Points within Freeway Polygons 
 

Based on the captured GPS data from the point-in-polygon approach, additional 

data processing steps were implemented to obtain average speed and acceleration noise 

values.  The values were calculated for each segment and incorporated in a database 

with trip time information, the degree of data reliability (represented by the bad data 

ratio), weather information and so on.  Trip-by-trip speed profiles and vehicle 

trajectories are illustrated in Figure 29, for which trips made over a GA400 NB segment 

during March 2004 were utilized.  The figure indicates that the segment have 

experienced various traffic conditions, from congested conditions to free-flow 

conditions, during the data collection time period.  
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Figure 29: Speed Profiles from Instrumented Vehicles over a Segment (NB12, March 2004) 
 

Combination of GPS and TMC Data 

Method 

The GPS trip database was combined with TMC data to acquire the information about 

the macro-level traffic conditions that instrumented vehicles experienced.  The data 

combining process was implemented spatially and temporally.  For the spatial 

combination, appropriate VDS cameras for each roadway segment were identified using 

the camera coverage map (in GIS format) provided by the GDOT.  When a roadway 

segment straddles two neighboring VDS cameras, combined traffic data from the two 

cameras were utilized for the roadway segment.  For the temporal combination, the 

midpoint of instrumented vehicle trips over a segment was designated as the reference 

time, and the reference time was compared with the data collection time period of the 

TMC data aggregated in one-minute intervals.  If the reference time is contained in the 

traffic data collection time period, the two data sources were considered to be matched.        
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Combined Data Size 

The data combining process was implemented for the instrumented vehicle trips 

collected over the time period between October 2003 and August 2004 (eleven months), 

during which 264,973 segmented trips (SB - 139,099 trips over 47 segments; NB - 

125,874 trips over 42 segments) were collected.  The total travel distance for the whole 

initial trips is 73,995 miles, which is equivalent to 1,374 hours of driving.  Of these trips, 

205,505 trips (77.6% of total initial trips) could be matched the TMC data.  The 

remaining trips could not be matched due to temporary TMC data outages.  In an 

extreme case, for northbound Segment 23, TMC traffic data were not available for 

seven months.  The instrumented vehicle trip data sizes before and after the matching 

are illustrated in Figure 30, in which a cell contains the information for both a month 

and a segment.  The figure indicates that the number of trips is relatively smaller for the 

northern part of the study corridor.            
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Figure 30: Instrumented Vehicle Trip Data Size Before and After the Matching with TMC Data 
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Comparison of Instrumented Vehicle and TMC Data 

After the process for data joining was completed, the TMC data and the matched 

instrumented vehicle data were compared using a subset of the combined data.  The 

subset data were extracted from the instrumented vehicle trips traveled northbound 

during March 2004.  For the initially selected 12,525 segmented trips (equivalently, 

3,619 vehicle-miles), GPS data quality in terms of the number of satellites and PDOP 

was examined.  In the examination, bad data points were identified if the number of 

satellites was less than four, or PDOP was outside a range of one to eight (Ogle 2005).  

Based on the bad data points, segmented trips with a bad data rate (number of bad data 

points/total number of data points) of 0.5 or greater were discarded from the data set 

because such trip data were likely to be collected from the vehicles with a bad GPS unit 

and antenna.  Since the original speed data were filtered using Kalman filters, and thus, 

major data errors had been fixed, this approach should be reasonable (Jun et al. 2006).  

Consequently, 10,465 trips (84% of initial data size; 3,037 vehicle-miles and 

equivalently 60.7 vehicle-hours) from 112 vehicles were used in this comparison.   

Figure 31 illustrates the comparison results, indicating that speeds from the two 

data sources match with the R2 value of 0.75 (for a linear equation, instrumented vehicle 

speed = 0.81×TMC speed + 2.92) and that instrumented vehicle speed decreases as 

density increases.  This situation indicates that the data combining process was properly 

implemented although some outliers and scatters are found.  Note that the variation 

found in Figure 31 is likely to be larger than those in other research efforts in which 

drivers were trained or directed to follow the general traffic stream.  In addition, the 

data shown in the figure were obtained from various locations (41 segments), and thus, 
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they may contain wider variability due to localized traffic conditions.  Note that the 

variability may be more pronounced to some degree due to traffic monitoring sensors.  

A research effort showed that the quality of TMC data depends on the measurement 

locations, as some traffic monitoring sensors seem to require site-oriented calibrations 

(Lee et al. 2006).     

 

Figure 31: Comparison of Instrumented Vehicle Speeds and Macroscopic Traffic Parameters (N = 
10,465) 
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Chapter 5 

Sensitivity of Acceleration Noise 

Sensitivity to Computation Approaches 

Background 

Acceleration noise, originally proposed as a potential measure to characterize the 

driver-car-road complex under various conditions, is defined as the root-mean-square 

deviation of the acceleration (Herman et al. 1959).  In practice, acceleration noise has 

been computed from the population standard deviation (the original definition of 

acceleration noise) or the root-mean-square of acceleration.  These approaches can be 

simply represented using the following equations, in which acceleration noise is 

denoted by σ, and T is the total time spent moving.  In addition, a(t) and a  represent the 

acceleration of a car at time t and average acceleration for the trip, respectively. 

 

∑ −=
T

SD ata
T 1

22 ))((1σ : Population standard deviation of acceleration 

∑=
T

RMS ta
T 1

22 )(1σ : Root-mean-square of acceleration 

 

As suggested by the equations, the two approaches can produce the same results when 

a  is zero, which can be observed when the initial and final speeds of the trip are the 

same.  Based on this fact, researchers have used either definition with little regard for 

the potential differences induced by the different approaches, simply assuming that the 
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amount of  a  should be small and can be neglected in most cases (Jones and Potts 

1962).    

 Note that the assumption that acceleration noise computed from the two 

approaches should be approximately the same is likely to be violated on a real-world 

road segment, in particular, when gradual speed changes occur at a constant rate of 

acceleration.  In this case, the standard deviation of acceleration is zero while the root-

mean-square of acceleration is equal to the constant acceleration rate.  Not realizing this 

situation, researchers may fail to adequately compare various research results in 

establishing acceleration noise-based criteria for evaluating traffic flow quality.    

Unfortunately, this issue has seldom been addressed in the research even though 

researchers assert the value of acceleration noise as a potential traffic parameter with the 

advancement of in-vehicle data collection technology such as GPS.  This study 

analyzed the differences between the results from the two different approaches—root-

mean-square (RMS)-based and population standard deviation (SD)-based approaches—

by comparing their resulting distribution characteristics.  The analysis also considers the 

effects of traffic conditions using traffic density data obtained from traffic surveillance 

cameras installed along the study corridor.  The consideration of traffic conditions is 

meaningful becasue acceleration noise has been related to traffic congestion, and thus, 

such consideration can provide insights for researchers to properly interpret research 

outcomes obtained from various sources.   

 

 

 



 

59 
 

Data 

For this sensitivity analysis, northbound instrumented vehicle trips obtained during 

March 2004 were utilized.  Unreliable trip data, in terms of the number of satellites and 

PDOP, were screened out from the data set (refer to Chapter 4), and 10,465 trips were 

finally selected for this analysis. The segment-by-segment distributions of numbers of 

trips and vehicles are shown in Figure 32.   
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Figure 32: Segment-by-Segment Distributions of Numbers of Trips and Vehicles (N = 10,465) 
 

Analytical Methods 

As mentioned before, this study investigates the differences between the results from 

the RMS- and SD-based acceleration noise computation approaches in terms of their 

distribution characteristics.  The differences between distributions were investigated 

using two nonparametric statistical techniques, the Gaussian kernel density estimation 

and the Kolmogorov-Smirnov (KS) two-sample test.  These nonparametric techniques 

have an advantage in that researchers do not need to impose assumptions about the 



 

60 
 

distributions inherent in the data set.  Brief descriptions of these statistical techniques 

follow.  

 

Gaussian Kernel Density Estimation: A convenient way to examine the form of 

distributions is to use histograms.  However, irregular and bumpy patterns in the 

histograms may introduce difficulties in judging the shape of the distributions.  The 

difficulties can be addressed by applying the kernel density estimation technique 

(Hastie et al. 2001).  Let’s suppose that N samples x1, …, xN, are drawn from a 

probability density fx(x), and  fx is to be estimated at point x0.  Then, density estimate 

Xf̂  can be obtained using the following equation: 
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where λ is the bandwidth, and p is the dimension of the data.  In the equation above, the 

kernel function takes the form of the Gaussian function which is the most popularly 

used kernel function.  In the kernel density estimation, the selection of a bandwidth is 

critical since too narrow a bandwidth can result in spurious details while too wide a 

bandwidth can be less sensitive to the curvature of the true density.  An optimal 

bandwidth was suggested and successfully applied to real-world data as follows 

(Kharoufeh and Goulias 2002):  

λ = 0.9⋅min(s, interquartile range/1.34)⋅N-1/5, 
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where s is the sample standard deviation.  This study used this optimal bandwidth when 

estimating the probability density functions (pdf) of acceleration noise.    

 

Kolmogorov-Smirnov (KS) Two-Sample Test: The Kolmogorov-Smirnov (KS) two-

sample test performs the hypothesis test whether two independent samples may have 

been drawn from the same population (Conover 1980).  The two-tailed test statistic for 

the KS test is given by 

)()( 21 xSxSMaxT Qx −= ∈ , 

where S1(x) and S2(x) are the empirical cumulative distribution functions for the two 

independent samples, and Q is the set of points at which the distribution functions are 

evaluated.  T is the maximum difference over all x values, and thus, the larger T 

indicates that the two samples compared are less likely to be drawn from the same 

population.  For larger sample sizes m, n, the critical values for two-sided tests can be 

approximately computed by 
mn

nm +36.1 at a significance level of 0.05.  Alternatively, 

p-values can be used to draw conclusions for the test and approximated in a recursive 

manner for larger samples (Gibbons and Chakraborti 2003).  

 

Preliminary Analysis 

A preliminary analysis was conducted by comparing the RMS- and SD-based 

acceleration noise without considering the effects of traffic conditions.  Figure 33 

illustrates a scatter plot and an empirical cumulative distribution function for the 

acceleration noise differences, which indicate that the RMS-based acceleration noise is 
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always equal to or larger than the SD-based acceleration noise.  This phenomenon is 

intuitively reasonable since the RMS-based acceleration noise is the degree of deviation 

from zero while in the SD-based acceleration noise, the deviation is measured from the 

mean acceleration, and thus, the RMS-based acceleration noise is greater unless the 

mean acceleration is zero.  In fact, the SD-based acceleration noise ( SDσ ) can be 

mathematically represented using the RMS-based acceleration noise ( RMSσ ), as follows: 

222 aRMSSD −= σσ . 

Thus, the SD-based acceleration noise cannot be larger than the RMS-based 

acceleration noise.  

The cumulative distribution function in Figure 33 indicates that approximately 

90% of segmented trips have differences less than 0.25 mph/s (0.37 ft/s/s) and that 

approximately 30% of the total segmented trips under study have little difference 

between the two approaches.  In other words, the assumption of zero mean acceleration 

for a trip cannot be applied to about 70% of total segmented trips.   
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Figure 33: Comparison of Root-Mean-Square-Based and Standard Deviation-Based Acceleration 
Noise (N=10,465) 
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The scatter plot in Figure 33 also indicates that some trips have considerably 

different acceleration noise, depending on the approaches adopted.  As a purpose of 

examining in what situations such big differences occur, the speed profiles of top five 

trips with the greatest differences were captured and illustrated in Figure 34.  These five 

trips were obtained from five different vehicles and segments, and the differences of 

acceleration noise are 2.39, 1.78, 1.48, 1.47, and 1.39 mph/s, respectively.  As expected, 

the speeds of the five trips generally continue increasing or decreasing, and the 

differences between the initial and final speeds are subject to be significant, resulting in 

a non-negligible average acceleration.  Indeed, the average acceleration rates of the five 

trips are -3.16, -3.02, -2.45, +1.85, and -1.71 mph/s, respectively.   
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Note: In the legend, “3.29  0.90” means the RMS-based value is 3.29 while the SD-based value is 0.90. 

Figure 34: Speed Profiles of Trips with High Difference (Top 5 Cases out of 10,465 Cases) 
 

Distribution Comparison Results 

The distributions of acceleration noise were compared and tested for the entire data set 

whether they are statistically different or not.  In addition, 95% confidence intervals 
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around the mean were computed.  Figure 35 illustrates the distributions and descriptive 

statistics, including confidence intervals.  The pdf of RMS-based acceleration noise 

shifts relatively toward right and has a lower peak, implying a higher average value and 

a higher degree of dispersion than those of SD-based acceleration noise.  In fact, the 

average RMS-based acceleration noise is larger by 0.1 mph/s (0.15 ft/s/s), as is the 

standard deviation.  In addition, the KS test result (p-value = 0.000) and confidence 

intervals indicated that the two distributions are significantly different. 
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Figure 35: Comparison of Estimated pdfs for Root-Mean-Square-Based and Standard Deviaiton-
Based Acceleration Noise 

 

Distribution Comparisons by Level of Service (LOS) 

The comparison of distributions, considering traffic conditions, was conducted by 

segmenting the data set into six groups (A to F) based on the density-based freeway 

LOS suggested in the Highway Capacity Manual (HCM) 2000.  The estimated pdfs are 
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illustrated in Figure 36, which indicates that the distributions of the RMS-based 

acceleration noise shift relatively toward right (i.e., higher average values) and have 

lower peaks (i.e., a smaller degree of dispersion) for all LOS ranges except LOS F.  

Under LOS F range, the distribution of the SD-based acceleration noise has a higher 

peak than that of the RMS-based acceleration noise.  In addition, the figure indicates 

that the difference between the two distributions is relatively prominent under LOS E, 

which is supported by the largest difference in average acceleration noise values under 

this range.  The differences of average values are 0.08, 0.09, 0.09, 0.10, 0.15, and 0.10 

mph/s for LOS A-to-F, respectively.  On average, the difference becomes more 

significant as traffic increases, but the difference downturns when traffic conditions 

reach LOS F.  Note that the difference of 0.1 mph/s (0.15 ft/s/s) can be significant when 

acceleration noise is used as a measure of traffic conditions.  For example, the 

acceleration noise of 0.35 mph/s can be interpreted as the traffic condition of LOS A 

when the criteria adopted are established based on the RMS-based approach.  However, 

the same level of acceleration noise (0.35 mph/s) is more likely to reflect LOS B 

condition when SD-based criteria are used since the average SD-based acceleration 

noise under LOS A is 0.28 (Figure 36).  This fact implies that the use of acceleration 

noise without considering the computation approach may lead to misinterpretation of 

the results.  
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Figure 36: Comparisons of Estimated pdfs for Root-Mean-Square-Based and Standard Deviaiton-
Based Acceleration Noise 
 

 The KS test results by LOS ranges are summarized in Table 2, which indicates 

that the distributions from the two approaches are significantly different for all LOS 

ranges as suggested by small p-values.  The KS statistics (T) in Table 2 also indicate 
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that LOS E has the largest difference while LOS A and F have relatively smaller 

differences, which is consistent with the findings from the visual inspection of 

estimated pdfs.  Thus, the difference between results from the two approaches is 

seemingly more significant under LOS E conditions, suggesting that a more careful 

interpretation of acceleration noise should be taken under the range.  

 

Table 2: KS Test Results for the Acceleration Noise Distributions from RMS- and SD-Based 
Approaches 

LOS N KS Statistic (T) p-value 

A 1,055 0.120 0.0000 

B 1,505 0.165 0.0000 

C 2,701 0.146 0.0000 

D 1,971 0.151 0.0000 

E 956 0.181 0.0000 

F 2,277 0.104 0.0000 

 

Comparisons of Difference Distributions by LOS 

The distributions of difference (subtraction of the SD-based acceleration noise from the 

RMS-based acceleration noise) for LOS A-to-F were estimated and compared to 

examine in what LOS ranges the difference is more significant.  The results are shown 

in Figure 37, which indicates that LOS A has the smallest difference while LOS E has 

the largest difference compared to other distributions.  In particular, the distribution 

under LOS E has a heavier tail and a lower peak compared to other distributions, 

implying higher degrees of variance and difference.  This fact implies that the average 

acceleration of a vehicle under LOS E is less likely to be zero since the higher 

difference means the higher absolute value of average acceleration, as suggested by the 

relationship between the RMS-based and SD-based acceleration noise.  The higher 
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absolute average acceleration reflects the situation in which vehicles tend to slow down 

or speed up: a phenomenon that can be observed under unstable traffic conditions like 

before- or after-breakdowns of traffic flow.   
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Figure 37: Estimated Difference Distributions by LOS 
 

 

Similar patterns previously observed are found in the results of the pair-wise KS 

test, as shown in Table 3.  The KS statistics in the table indicate that the difference 

distributions of LOS A and E are more significantly different from other distributions, 

as supported by the large KS statistics in the pairs involving LOS A or E.  The test 

results also show that the difference distributions under LOS B and C are not 

significantly different and that those under LOS B and D are not significantly different 
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at the significance level of 0.01.  Except for these pairs, all the pairs were found to have 

significantly different distributions, as suggested by low p-values.    

 
Table 3: KS Statistics (T) and p-Values for the Pairwise Comparisons of Difference Distributions 

LOS  A B C D E F 

- 0.129 0.142 0.178 0.270 0.110 A 
 (.000) (.000) (.000) (.000) (.000) 

 - 0.016 0.050 0.146 0.064 
B 

  (.967) (.028) (.000) (.000) 

  - 0.049 0.139 0.073 
C 

   (.008) (.000) (.000) 

   - 0.104 0.089 
D 

    (.000) (.000) 

    - 0.173 
E 

     (.000) 
     - 

F 
            

Note:  p-values are inside parenthesis. 

 

Summary 

The sensitivity of acceleration noise computation approaches— RMS-based and SD-

based acceleration noise—was analyzed in this section by examining the distribution 

characteristics of computed acceleration noise values.  Findings from the analysis can 

be summarized as follows.     

- The RMS-based acceleration noise is always equal to or larger than the SD-

based acceleration noise, which is supported by the mathematical relationship 

between the two approaches. The average difference is 0.1 mph/s, which means 

that the RMS-based acceleration noise is 19% larger than the SD-based 

acceleration noise. 
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- Only 30% of the data employed in this study satisfy the assumption that average 

acceleration should be approximately zero.  Thus, the assumption about zero 

average acceleration for a trip is not true for most cases (at least for the data set 

employed in this study).   

- The greatest differences between the two approaches occur when vehicle speeds 

have a tendency to continue increasing or decreasing across a segment.  

- The two approaches produce statistically different distributions of acceleration 

noise, and the RMS-based acceleration noise tends to have more variation.  

These findings are also generally true for the data sets segmented by the density-

based LOS.  

- The difference between the two approaches becomes significant as traffic 

congestion increases over the range of LOS A-to-E.  In particular, LOS E shows 

the highest difference.   

 

These findings indicate that the differences between the two approaches may be 

significant, and thus, some values of acceleration noise in one approach can be 

interpreted in a different way in the other approach in terms of traffic conditions that the 

value represents.  Thus, when establishing acceleration noise-based criteria, researchers 

should note the computation approach that they adopt. 

The SD-based approach seems to have an advantage in applying acceleration 

noise as a traffic parameter due to its smaller variance compared with the RMS-based 

approach.  The smaller variance can make the measure more preferable in a statistical 

meaning.  Furthermore, in a sense, the RMS-based approach can be regarded as a 
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special case of the SD-based approach with zero average acceleration.  Based on this 

notion, hereafter, all the acceleration noise values were computed based on the 

population standard deviation approach.  

On the other hand, the RMS-based approach has a desirable additive property 

(Drew et al. 1967).  If the values of acceleration noise are known together with travel 

time over consecutive segments, the RMS-based acceleration noise can easily be 

combined over multiple segments.  Thus, acceleration noise obtained over shorter 

segments can easily be extended to a longer section.  In contrast, the SD-based 

acceleration noise requires additional information on average acceleration for the 

combining process, rendering the process less practical.  Consequently, considering 

these properties, researchers should select an appropriate approach for their purposes.  

However, note that the findings reported in this study are limited to the case of 112 

vehicles participated in the Commute Atlanta project and a 12-mile freeway corridor 

segmented into shorter sections within a range of 0.28 to 0.39 miles.  Further research 

efforts would be desirable to confirm the findings in other areas and other driver groups 

considering more variables including roadway lengths and geometrics.    

 

Sensitivity to Speed Data Sampling Rates 

Background 

Although this study uses second-by-second GPS data, the data type can be varied 

depending on data collection devices and study purposes.  One such case is the data 

sampling rate, or number of samples per second denoted by hertz (Hz).  The sampling 

rate can affect the magnitude of acceleration noise values because speed profiles with a 
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lower sampling rate, equivalently a longer sampling period, are more likely to be 

smoothed.  This study attempted to measure the sensitivity of acceleration noise to the 

sampling rate, in particular to the sampling rates of 1Hz, 1/3Hz, and 1/5Hz as test cases.  

 

Data 

Instrumented Vehicle Trip Data: The data employed in this sensitivity analysis are 

the same as the previous analysis.  However, among the selected 10,465 segmented trips 

over specific freeway segments, 386 segmented trips were additionally excluded since 

the number of second-by-second speed observations for the trips was less than ten.  For 

these short time trips, 5-second sampling periods provide only a single data point, and 

thus, the computation of acceleration noise becomes meaningless.  As a result, in total, 

10,079 instrumented vehicle trips (segmented trips obtained over northbound GA400 

study corridor) were employed in this analysis.  

 

Generation of Lower Sampling Rate Data: Based on the original 1Hz data, 

acceleration profiles with a lower sampling rate were generated.  In this effort, each data 

point in the new acceleration profiles was set to represent the average acceleration rate 

over the given sampling period.  For example, given a sampling rate of 1/3Hz (i.e., a 

sampling period of 3 seconds), each data point in a new acceleration profile represents 

the average acceleration rate over the sampling time period of 3 seconds.  This process 

can be formulated using the following equation:  

∑
=

+−=
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m
mis

s
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s
ib  = ith acceleration rate for the acceleration profile with 1/s sampling 

rate 

ai = ith acceleration rate for the second-by-second acceleration profile  

s = sampling period (e.g., 3 or 5 seconds) 

k = rounded value of n/s to the nearest integer less than or equal to n/s (n 

is initial data size). 

 

This equation indicates that the initial acceleration rate ai and the generated acceleration 

rate bi is the same when s = 1.  However, as s increases, the number of data points 

decreases since i is always less than or equal to k, which is inversely proportional to s.  

In other words, the longer sampling period means the smaller number of data points in 

the generated acceleration profile.  Table 4 illustrates an example of the process for 

generating lower sampling rate data from an 1Hz acceleration profile with 10 

observations.  In the process, the number of data points decreases from 10 to 3, and then 

2, as the sampling rate decreases from 1Hz to 1/3Hz, and then 1/5Hz.      

 

Table 4: Data Generation Example (From 1Hz Data to 1/3 and 1/5 Hz data)  
Time 1Hz 1/3Hz 1/5Hz 

1 0.09   
2 0.55   
3 0.81 0.48  
4 0.84   
5 0.83  0.62 
6 0.15 0.61  
7 1.21   
8 0.70   
9 0.39 0.77  
10 0.48  0.59 

Acceleration Noise 0.33 0.12 0.02 
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Results 

Using the three different data sets (i.e., the original 1Hz data, generated 1/3Hz and 

1/5Hz data), the values of acceleration noise (using SD-based approach) were compared 

as shown in Figure 38, which indicates that the acceleration noise values from the 1Hz 

data are greater than those from the other data sets, as expected.  In addition, compared 

to the 1/5Hz data, the acceleration noise values from the 1/3Hz data are closer to thoes 

from 1Hz data, supported by the R2 values of 0.95 and 0.88 for 1/3Hz and 1/5Hz data, 

respectively.  These findings clearly indicate that the data with lower sampling 

frequencies tend to produce lower acceleration noise values.  However, the differences 

seem to be smaller as acceleration noise values increases, implying that the differences 

may depend on traffic conditions.     
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Figure 38: Comparison of Acceleration Noise from the Data with Different Sampling Rates 

 

The acceleration noise values were compared by average speed levels using 10 

mph bins.  For each bin, acceleration noise values were combined, and 95% confidence 

intervals were obtained, as illustrated in Figure 39.  Consistent with the previous finding, 

the figure indicates that the data with the lower sampling frequencies produce lower 

acceleration noise across all speed ranges.  In addition, the non-overlapping confidence 

intervals except for the less than 10mph bin suggest that the acceleration noise values 

from the three data sets are significantly different.  Table 5, summarizing the average 

acceleration noise values for each speed range, also reveals the trend: the larger 

differences for higher speed ranges.  For example, in case of the comparison between 

1Hz and 1/3Hz data sets, the percent decreases of average acceleration noise values for 
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the speed ranges of 10-20 mph and 70-80 mph are 8.0% and 25.9%, respectively.  With 

respect to the 1Hz data, the overall acceleration noise values were reduced by 17.3% 

and 32.7% for the 1/3Hz data and the 1/5Hz data, respectively.   
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Figure 39: Comparison of Acceleration Noise by Speed Level and Data Sampling Rate 
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Table 5: Average Acceleration Noise Values for Each Speed Range 
1Hz 1/3Hz 1/5Hz Speed 

(mph) N Acceleration 
Noise 

Acceleration 
Noise 

% 
decrease 

Acceleration 
Noise % decrease 

<10 64 1.10 0.99 (10.3) 0.87 (21.6) 
10 - 20 425 1.35 1.24 ( 8.0) 1.13 (16.3) 
20 - 30 586 1.26 1.15 ( 8.9) 1.04 (17.3) 
30 - 40 598 0.97 0.86 (11.1) 0.77 (20.8) 
40 - 50 567 0.74 0.63 (14.0) 0.54 (26.8) 
50 - 60 1,031 0.54 0.44 (18.6) 0.35 (34.6) 
60 - 70 3,237 0.41 0.32 (22.0) 0.24 (42.2) 
70 - 80 3,266 0.33 0.25 (25.8) 0.17 (47.1) 

>80 305 0.38 0.28 (25.9) 0.20 (47.4) 
Overall 10,079 0.54 0.45 (17.3) 0.36 (32.7) 

* % decrease was computed with respect to the acceleration noise of 1Hz data. 
 

 In addition to the average speed level of the instrumented vehicles, LOS was 

considered as a covariate affecting the differences, and distributions for each LOS were 

estimated, as illustrated in Figure 40.  Similar to the previous findings, the acceleration 

noise distributions from the lower frequency data tend to shift toward left with higher 

peaks across all LOS ranges, yielding the lower acceleration noise and the lower 

variance.  For the test whether the distributions of acceleration noise from the three data 

sets with the different sampling frequencies have been drawn from the same population, 

the KS test was implemented, as summarized in Table 6.  The results indicate that the 

three distributions are significantly different (all p-values are 0.000) and that the 

differences become smaller under LOS F range, as indicated by the relatively small K 

statistics.    
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Table 6: KS Test Results by LOS 
1Hz vs. 1/3Hz 1/3Hz vs. 1/5Hz 1Hz vs. 1/5Hz 

LOS N 
K p-value K p-value K p-value 

A 977 0.204 0.000 0.180 0.000 0.357 0.000 
B 1,389 0.204 0.000 0.217 0.000 0.390 0.000 
C 2,559 0.212 0.000 0.202 0.000 0.383 0.000 
D 1,935 0.201 0.000 0.196 0.000 0.365 0.000 
E 944 0.185 0.000 0.177 0.000 0.337 0.000 
F 2,275 0.093 0.000 0.087 0.000 0.173 0.000 

Overall 10,079 0.153 0.000 0.282 0.000 0.423 0.000 
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Figure 40: LOS-Based Comparisons of Acceleration Noise Distributions from the Data with 
Different Sampling Frequencies 

 

Summary 

The sensitivity of acceleration noise to the data sampling frequency was analyzed in this 

section using the three different data sets, among which 1/3Hz and 1/5Hz data were 

generated based on the 1Hz initial speed profiles.  The analysis results clearly indicated 

that the lower frequency data tend to exhibit lower acceleration noise values, probably 
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due to the smoothing effect inherent in the lower frequency data.  With respect to the 

1Hz data, the overall acceleration noise values were reduced by 17.3% and 32.7% for 

the 1/3Hz data and the 1/5Hz data, respectively.  In addition, the differences in the 

acceleration noise values were more pronounced under the higher speed or better LOS 

ranges.  This phenomenon may be due to the smaller number of GPS data points for the 

given segment under the better traffic conditions.  Note that acceleration noise is 

defined over a specific roadway segment, and thus, the higher speed means the fewer 

data points for the segment.  Therefore, when the sampling frequency becomes lower, 

the effect of the data size reduction becomes more critical for the trips with higher 

speeds.  The reduced data size, in turn, results in a smaller acceleration noise because 

the variation of acceleration is less likely to be captured for the speed profile with 

smaller data size.   

These findings suggest that the understanding of data characteristics such as the 

sampling frequency would be important to properly apply and interpret the resulting 

acceleration noise values.  In addition, acceleration noise from different research efforts 

should be carefully compared since they might collect data using different data sources, 

thus different sampling frequencies.   
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Chapter 6 

Acceleration Noise and Traffic Congestion 

Study Objectives and Data 

Background 

A major issue associated with acceleration noise is whether the parameter can 

accurately reflect traffic congestion.  To answer this question, several research efforts 

have employed floating car methods to measure acceleration noise under various traffic 

conditions (Babu and Pattnaik 1997; Croft and Clark 1985).  Based on the efforts, the 

researchers concluded that acceleration noise is associated with traffic congestion.  

More specifically, they found that acceleration noise increases as traffic congestion 

worsens.  In this chapter, their conclusion is to be affirmed using the instrumented 

vehicle data which render this research effort unique; unlike previous research efforts in 

which real-world drivers’ behavior could not be observed.  In addition, this study 

compares acceleration noise with vehicle speeds from the viewpoint of the effectiveness 

in measuring traffic congestion.  

   

Data 

This chapter employs the instrumented vehicle trips obtained from 12 segments on 

northbound GA400 between January 2004 and June 2004 (six months).  All the selected 

segments are basic segments with a speed limit of 65mph and four lanes, minimizing 

the variation induced by roadway characteristics.  In addition, trips were excluded from 

the data set if the trips were obtained from vehicles which entered or exited the roadway 

within 0.5 miles on the study segment so that any potential weaving effects were 
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minimized.  The exclusion of entering and exiting trips also prevents the data set from 

containing accelerating or decelerating vehicle activities not associated with 

surrounding traffic or roadway characteristics.  For such an effort, extended segments, 

adding 0.5 miles from the both ends of the segment of interest, were established, and 

only the trips which completely traveled over the extended segments were selected.  In 

addition, weather conditions were also considered since they may affect driver 

acceleration behavior.  To this end, archived hourly precipitation data (obtained from 

National Climatic Data Center of National Oceanic and Atmospheric Administration) of 

the nearest station from the study site were utilized, and trips made during any time 

period with a record of precipitation were excluded from the data set.  Finally, daylight 

conditions were considered.  In the consideration, trips made between 7:00am and 

7:00pm during a daylight savings time period or between 8:00am and 6:00pm during a 

non-daylight savings time period were designated as trips under daylight conditions.  

This study employed only the trips under daylight conditions.  As a summary, the data 

set used in this analysis includes only: 

• Trips without entering/exiting activities,  

• Trips under potentially non-raining conditions, and 

• Trips under daylight conditions.  

As a result, 11,500 trips from 177 instrumented vehicles were selected for this analysis, 

and their statistics by LOS were summarized in Table 7, which indicates that 

acceleration noise increases with traffic congestion.  The estimation of LOS was 

performed using the one-minute level density data obtained from the synchronized 

TMC data. 
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Table 7: Summary Statistics by LOS 

LOS N Number of 
Vehicles 

Average Speed 
(mph) 

Average Acceleration 
Noise (mph/s) 

A 225 51 73.3 0.25 
B 1,827 146 72.5 0.29 
C 4,329 159 71.5 0.33 
D 2,467 123 68.1 0.41 
E 1,083 76 60.3 0.51 
F 1,569 75 38.1 0.94 

Overall 11,500 177 65.4 0.44 
 

Result 

Acceleration Noise, Instrumented Vehicle Speed, and Traffic Density 

Acceleration noise was related with instrumented vehicle speeds and traffic density 

using the whole data set (n = 11,500), as shown in Figure 41.  The figure indicates that 

acceleration noise is negatively correlated with vehicle speeds and positively correlated 

with density, as suggested by the results of simple linear regression models.  Compared 

to the previous research efforts, the R2 values for these regression lines appear to be low.  

For example, a study reported a R2 value of 0.70 for a linear regression line representing 

the relationship between acceleration noise and speed from freeway trips (Eisele et al. 

1996).  In another study, the R2 value for the linear relationship between acceleration 

noise and traffic density on freeways was 0.47 (Croft and Clark 1985).  In contrast, the 

R2 values shown in Figure 41 are limited to only 0.44 and 0.36 for vehicle speeds and 

density, respectively.  These low correlations may be partly due to the data 

characteristics: the involvement of various vehicles (177 vehicles) and roadway 

segments (12 basic segments with 65mph speed limit and four lanes).  The effects of 
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roadway characteristics and driver/vehicle will be investigated in detail later in this 

dissertation.            
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Figure 41: The Relationship among Acceleration Noise, Instrumented Vehicle Speed, and Density 
(n=11,500) 

   

 The relationship was examined on a segment-by-segment basis.  In this 

examination, cubic polynomial regression models, theoretical relationships proposed by 

Drew (1968), were computed in addition to linear models, and their results (R2) are 

summarized in Table 8.  The R2 values for the relationship with vehicle speeds lie 

between 0.35 and 0.60 for the linear models while the cubic polynomial models 

exhibited R2 values between 0.38 and 0.63.  The increases of the R2 values for the cubic 

polynomial models can be expected since the more explanatory variables provide more 

explanatory powers for the model.  However, the test using the adjusted R2 values, for 

which the number of parameters is incorporated, and the models with more variables are 

penalized, indicated that the effect of the increased number of explanatory variables is 

negligible, implying that the cubic polynomial fitting may be more appropriate for the 

relationships, as proposed by Drew (1968).  This phenomenon was also found for the 

relationships between density and acceleration noise, but their relationships exhibited 

lower R2 values than those for the relationships between vehicle speed and acceleration 

noise.     
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Table 8: Coefficients of Determination for Linear and Cubic Regression Models 
Vehicle Speed vs. Acceleration Noise Density vs. Acceleration Noise 

Segment N 
Linear Cubic Linear Cubic 

NB10 924 0.44 0.50 0.41 0.44 
NB11 982 0.35 0.38 0.28 0.30 
NB12 1,018 0.40 0.48 0.38 0.39 
NB13 929 0.44 0.49 0.36 0.38 
NB14 892 0.39 0.42 0.38 0.40 
NB15 921 0.39 0.41 0.33 0.35 
NB17 923 0.39 0.43 0.40 0.44 
NB19 891 0.43 0.46 0.36 0.38 
NB20 1,034 0.36 0.41 0.30 0.33 
NB21 1,047 0.48 0.54 0.40 0.44 
NB22 1,044 0.54 0.58 0.42 0.50 
NB24 895 0.60 0.63 0.46 0.52 

Overall 11,500 0.44 0.48 0.36 0.40 
 

Comparison with the Energy Model 

The energy model proposed by Drew (1968) established the theoretical relationships 

among acceleration noise, speed, and density.  The results of the energy model were 

examined by comparing them with the relationships obtained from the instrumented 

vehicle data.  For the comparison, scatter plots which show the relationships among 

acceleration noise, vehicle speed, and density were obtained for a single segment (NB 

24, n = 895) so that a clearer relationship should be observed by eliminating the 

segment-by-segment variation.  The relationship is illustrated in Figure 42, in which the 

estimated cubic polynomial regression models are also reported.  In contrast to the 

energy model, acceleration noise seems to stay or decrease, rather than continue 

increasing, when vehicle speeds are significantly low (i.e., less than 20mph).  Similarly, 

the regression line representing the relationship between acceleration noise and density 

more clearly indicates that the values of acceleration noise may downturn after some 
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point (e.g., about 130 veh/mile/lane in Figure 42).  This observation of downturn may 

be plausible since vehicle movements can be extremely restricted under severe traffic 

conditions, and thus, the speed changes of the vehicle can be minimal under the 

conditions.  These findings imply that the relationships dictated by the energy model 

may not be maintained under the boundary conditions imposed by the extremely heavy 

traffic conditions, as argued by Winzer (1981).   
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Figure 42: Relationships among Acceleration Noise, Vehicle Speed, and Density for the Trips on 
NB24 (N = 895) 

 
 

 For a further examination, trips from only three vehicles, top 3 vehicles showing 

the highest number of trips among 149 vehicles observed on segment NB24, were 

selected so that vehicle-by-vehicle variation can be examined.  Using these trips, the 

relationships among acceleration noise, speed, and density were obtained, as shown in 

Figure 43, in which totally 158 trips (Vehicle 1: 48; Vehicle 2: 50; and Vehicle 3: 59) 

were utilized.  Similar trends observed in the previous analysis were found in the plots, 

and the phenomenon of the downturn seemed more pronounced for the trips of Vehicle 
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1, as suggested by the fitted cubic polynomial regression lines.  However, Vehicles 2 

and 3 show a trend that acceleration noise continues increasing as speed decreases or 

density increases.  However, this phenomenon may be attributed to the data range, and 

thus, the use of more congested data (i.e., vehicle speed less than 20 mph) would 

provide clearer ideas about the trends.  In addition to the shapes of the curves, the varied 

magnitudes of acceleration noise for the same level of traffic conditions indicate that 

drivers may differently respond to the surrounding traffic conditions.  These findings 

suggest that the factors induced by driver/vehicle affect the values of acceleration noise.  
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Figure 43: Relationships among Acceleration Noise, Vehicle Speed, and Density for the Trips on 

NB24 from Three Vehicles (48, 51, and 59 Trips for Vehicles 1, 2, and 3) 
 
 
Acceleration Noise Distributions by LOS range 

The distributions of acceleration noise by LOS ranges were examined.  In this 

examination, speed distributions were also examined for comparison.  At first, 95% 
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confidence intervals for the mean for each LOS range were obtained, as shown in 

Figure 44.  The figure clearly indicates that acceleration noise increases and speed 

decreases as traffic congestion worsens.  None of the confidence intervals overlap 

except for the speed confidence intervals of LOS A and B ranges, indicating no 

significant difference of mean speeds for the ranges at a significance level of 0.05.  This 

situation can be expected since speed is not sensitive to traffic conditions under the free-

flow conditions.  Indeed, HCM 2000 suggests that the minimum speeds for LOS A and 

B are exactly the same if the free-flow speed for the basic segment is less than 70mph.  

Even in the case of the segment with a free-flow speed of 75mph, the minimum speeds 

for LOS A and B are 75.0 and 74.8mph, respectively, and thus, they show little 

difference.  However, the acceleration noise confidence intervals reveal significant 

differences between LOS ranges, implying its capability to discern traffic conditions 

even for LOS A and B ranges.              
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Figure 44: Confidence Intervals for Means of Acceleration Noise and Vehicle Speeds by LOS 
Ranges 

 

 In addition to the confidence interval analysis, a KS test was performed in an 

attempt to quantify the magnitude of differences among distributions.  The resulting KS 

statistics and p-values for each LOS pair are summarized in Table 9.  The table 

indicates that all the distributions are significantly different for both acceleration noise 

and speed distributions at a significance level of 0.05, as suggested by the low p-values 

in parentheses.  However, the p-value of 0.036 for the pair of LOS A and B of speed 

distributions suggests the two distributions may not be significantly different at a higher 
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significance level (i.e., 1%).  In fact, the lowest KS statistics 0.099 for the pair implies 

that the two distributions are closer than any other pairs.  An examination of KS 

statistics reveals that acceleration noise may be more indicative of traffic conditions 

under LOS A-to-C, which is supported by the larger KS statistics for the pairs of 

acceleration noise distributions under LOS A-to-C ranges.  In contrast, speed seems to 

be more indicative of traffic conditions under LOS D-to-F ranges for the same reason.  

This finding is interesting since a combination of acceleration noise with speed may 

enhance the capability of the probe vehicle-based traffic congestion monitoring systems, 

which have relied on solely speed data.         

 

Table 9: KS Statistics and p-Values for the Pairwise Comparisons of Acceleration Noise and Speed 
Distributions by LOS Ranges 

 LOS A B C D E F 
A - 0.122 0.220 0.336 0.455 0.726 
   (0.005) (0.000) (0.000) (0.000) (0.000) 
B  - 0.115 0.239 0.365 0.683 
    (0.000) (0.000) (0.000) (0.000) 
C   - 0.151 0.279 0.628 
     (0.000) (0.000) (0.000) 
D    - 0.134 0.530 
      (0.000) (0.000) 
E     - 0.436 

A
cc

el
er

at
io

n 
N

oi
se

 

            (0.000) 
        

 LOS A B C D E F 
A - 0.099 0.172 0.371 0.705 0.952 
   (0.036) (0.000) (0.000) (0.000) (0.000) 
B  - 0.081 0.302 0.649 0.920 
    (0.000) (0.000) (0.000) (0.000) 
C   - 0.238 0.602 0.902 
     (0.000) (0.000) (0.000) 
D    - 0.442 0.863 
      (0.000) (0.000) 
E     - 0.713 

V
eh

ic
le

 S
pe

ed
 

            (0.000) 
Note: p-values are inside parenthesis. 
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Confidence Regions for Acceleration Noise and Vehicle Speed by LOS 

As mentioned before, a combination of acceleration noise and vehicle speed may 

provide more helpful information about traffic conditions.  Thus, an examination of 

unified acceleration noise and speed was performed as an attempt to better understand 

their relationships with traffic conditions.  In this study, their relationships were 

identified based on the confidence region analysis, a multivariate statistical analysis 

technique.  In the technique, the confidence region for the mean μ of a p-dimensional 

normal population can be derived from: 

ααμμ −=⎥
⎦

⎤
⎢
⎣

⎡
−

−
≤−− −

− 1)(
)(
)1()()'( ,

1
pnpF

pn
npxSxnP , 

where n, x , and S represent sample size, a vector of sample mean, and covariance 

matrix, respectively (Johnson and Wichern 1992).  Thus, a 100(1-α)% confidence 

region for the mean μ of a p-dimensional normal population is the set determined by all 

μ  such that: 

)(
)(
)1()()'( ,

1 αμμ pnpF
pn

npxSxn −
−

−
−

≤−− . 

As suggested in the assumptions for constructing confidence regions, each variable (in 

this case, acceleration noise and speed) should be normally distributed.  However, an 

examination of acceleration noise distributions revealed that they may not be normally 

distributed.  Fortunately, the violation of the normal distribution assumption could be 

mitigated by taking log, for which detailed explanations will be provided in the next 

chapter.   

The constructed confidence regions based on the 895 instrumented vehicle trips 

from NB24 were illustrated in Figure 45, in which six confidence ellipses represent the 
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confidence regions for six LOS ranges, and the centroid for each region was marked by 

the corresponding letter, A-to-F.  The confidence regions clearly indicate that the lower 

acceleration noise and the higher speed are more likely to be experienced for better 

traffic conditions.  However, the distinctions between LOS ranges do not appear to be 

clear because of the significant overlaps, implying a large amount of variation for 

acceleration noise and vehicle speed within or between HCM LOS ranges.  In particular, 

the confidence region for LOS D range overlaps with all the other confidence regions.  

These findings suggest that the current HCM LOS system may not effectively reflect 

drivers’ experience, represented by acceleration noise and speed.       
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Figure 45: 90% Confidence Regions for Acceleration Noise and Vehicle Speed (NB24) 
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Summary 

In this chapter, the relationships between acceleration noise and traffic congestion 

measured by traffic density and vehicle speed were investigated.  The investigation 

suggested that acceleration noise can be an indicator of traffic conditions, in particular 

for LOS A-to-C ranges.  Under the free-flow conditions, vehicle speed is only a weak 

indicator of traffic conditions since speed changes marginally under the ranges.  

However, acceleration noise appears to be non-linearly correlated with traffic 

conditions, and thus, a sole use of acceleration noise for measuring traffic conditions 

may mislead researchers, in particular for highly congested conditions.  Consequently, 

this study suggests that a combined use of acceleration noise with speed may be more 

effective for measuring traffic conditions.  In addition, the confidence region analysis 

indicated that the current HCM LOS system may not effectively reflect the drivers’ 

experience represented by speed and acceleration noise.  Thus, the use of speed and 

acceleration noise may be able to provide another perspective for the traffic flow quality 

experienced by drivers.         
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Chapter 7 

Acceleration Noise and Roadway Characteristics 

Study Objectives and Data  

Background 

Roadway characteristics, including the number of lanes, speed limit, grade, curvature, 

and operational type (e.g., basic, on/off ramp segments), affect acceleration noise.  

Although some research efforts have attempted to identify the relationship between 

acceleration noise and roadway characteristics, their efforts were limited to the 

experimental level, and thus, their findings may not truly reflect real-world situations 

experienced by real-world drivers.  In the real world, the effects may be interactive.  In 

other words, their effects may vary by traffic condition, requiring a more systematic 

approach to identify the relationships.  In addition, the previous research efforts have a 

weakness in that the data employed in the studies were obtained from a single or just a 

few test vehicles, not from real-world vehicles.  Although the test vehicles might 

represent the general driver/vehicles and control variability introduced by drivers, it is 

still suspected whether they could truly represent the general public.  This study 

attempts to establish the relationship between acceleration noise and roadway 

characteristics using statistical models based on the instrumented vehicle data driven by 

real-world drivers.  In particular, such models were developed by LOS range, and thus, 

the interaction of roadway characteristics and traffic conditions is expected to be 

revealed.  
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Data 
 
The initial instrumented vehicle data for this study were collected over all segments (89 

segments) of GA400 during the time period between March and May 2004 (three 

months period).  However, TMC data for two segments (SB5 and NB23) were not 

available during the time period, and thus, the data from the two segments could not be 

used in this study.  In addition, a visual examination of data quality revealed that the 

TMC data from the camera station covering the segment of SB40 might not be reliable 

because of the suspect data clustered at the right-bottom corner in Figure 46, which 

illustrates TMC speed versus instrumented vehicle speed.  The erroneous data are likely 

to be associated with equipment errors or malfunctions for the camera station.  The data 

from the suspect camera station were also utilized to obtain the macroscopic traffic data 

for the segment SB39, and thus, the TMC data for SB39 was also expected to be 

unreliable.  Consequently, the two segments were also excluded from the analysis.  

Finally, preliminary analyses were implemented as an attempt to capture segments 

inducing abnormal vehicle activities, resulting an exclusion of ten additional three-lane 

segments (northbound only) located between four-lane and two-lane roadways.  Vehicle 

activities on the three-lane segments were significantly influenced by lane-reduction in 

addition to the general roadway characteristics.  Consequently, 14 segments were 

excluded from the analysis, and thus, instrumented vehicle trips from 75 segments were 

utilized for this analysis.  
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Figure 46: Visual Examination of Data Quality 

 

 In addition to the segment-wise data screening, night-time trips, entering and 

exiting trips, and trips under potentially raining conditions were also excluded (see 

Chapter 6).  Consequently, 31,916 trips from 174 vehicles over 75 segments were 

employed in this analysis.  Table 10 summarizes the selected trip data by LOS range, 

and Figure 47 illustrates the changing pattern of the average instrumented vehicle speed 

and acceleration noise by LOS range, indicating that vehicle speed decreases and 

acceleration noise increases as traffic congestion worsens.      

 
Table 10: Data Summary by LOS Range 

LOS N Number of 
vehicles 

Number of 
segments 

Speed 
(mph) 

Acceleration Noise 
(mph/s) 

A 502 55 74 73.2 0.27 
B 4,369 142 75 72.2 0.30 
C 12,403 165 75 70.4 0.34 
D 7,390 164 75 66.7 0.42 
E 2,779 127 75 60.0 0.52 
F 4,473 109 75 36.1 0.97 
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Figure 47: Average Instrumented Vehicle Speed and Acceleration Noise by LOS Ranges 

 

Model Development  

Methodology - Random Intercept Model 

An important feature of the data set used in this study is that the sampled trips are 

repeated measurements from the sampled drivers/vehicles, indicating potential 

correlations among observations from the identical driver/vehicle.  Thus, statistical 

models with a capability of handling the correlation or cluster effects by subject (in this 

case, driver/vehicle) should be applied.  Considering this circumstance, this study uses 

random coefficient models, which are similar to ordinary regression models except that 

the random coefficient model contains an additional term to help explain the within-

cluster correlation (random effects).  Thus, the random coefficient model is composed 

of two parts: fixed and random effects.  When the functional form of the model is 

assumed to be linear, and the random effects can be represented by random intercepts, 

the model (random intercept model) can be represented by  

ijjijij xy εδβα +++= , 
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where yij is the ith response variable for subject j, and xij represents explanatory 

variables for the ith observation from subject j.  In addition, β represents the vector of 

fixed-effect parameters to be estimated, and δj and εij are mutually independent samples 

from N(0, τ2) and N(0, σ2), respectively (Longford 1993).  The variances σ2 and τ2 are 

referred to as elementary- and cluster-level variance components, and this random 

intercept model becomes identical to an ordinary regression model when τ2 = 0.  The 

random intercepts for subject j are represented by the term δj.  If two observations in the 

same cluster are correlated:  

22)var( τσ +=ijy  , 

2
', )cov( τ=jiij yy   )'( ii ≠ . 

The correlation of two outcomes from the same subject is represented by 

22

2

τσ
τρ
+

= , 

which is referred to as the variance component ratio and indicates the fraction of the 

residual variance attributed to between-cluster variation.  

 The parameters can be obtained from the maximum likelihood (ML) estimation 

or alternatively the restricted maximum likelihood (REML).  The REML estimation was 

proposed to mitigate the problem of the biased estimator of the residual variance in the 

ML estimation.   However, in most cases, the results of ML and REML estimation 

almost coincide unless the number of parameters with respect to the sample size is 

comparatively large (Longford 1993).  The model parameter estimation was 

implemented using REML in this study. 
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Acceleration Noise Data Transformation 

Like the ordinary regression model, the random intercept model also requires the 

normally distributed dependent variables.  Thus, acceleration noise distributions were 

examined to determine whether they are normally distributed.  The examination 

revealed that the distributions are closer to the log-normal distributions, rather than the 

normal distributions, requiring an appropriate data transformation.  Thus, the original 

acceleration noise data were transformed by taking log, and the resulting distributions 

were re-examined, as shown in Figure 48.  The distributions obtained from the 

transformation appear to be closer to normal distributions.  The transformation effects 

were measured through one-sample normal KS tests as shown in Table 11, which 

suggests that the degree of normality was significantly enhanced after the 

transformation, in particular for LOS A and B ranges.  The enhancement of normality is 

supported by the smaller test statistics (K) after the transformation, although the test 

results suggest that even the log-transformed distributions for LOS C, D, and F ranges 

are still significantly different from normal distributions.  Note that the KS test applies 

the stricter threshold with the sample size. (The data sizes for LOS C and D ranges are 

relatively large.)           
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Figure 48: Log Transformation of Acceleration Noise Data 
 
 
Table 11. Results of One-Sample Normal KS Tests for Before and After Log-Transformation 

Before After 
LOS 

K p-value K p-value 
A 0.153 0.000 0.033 0.662 
B 0.112 0.000 0.018 0.102 
C 0.104 0.000 0.016 0.004 
D 0.118 0.000 0.023 0.001 
E 0.123 0.000 0.028 0.026 
F 0.066 0.000 0.051 0.000 

 

Model Specification 

The models to be developed in this chapter use log-transformed acceleration noise as 

the dependent variable.  For their explanatory variables, the models use five roadway 

characteristics: facility type (basic segment, on-ramp, and off-ramp), grade, curvature, 

speed limit (55 and 65 mph), and number of lanes (2, 3, and 4 lanes).  Naturally, such 

variables as facility type, speed limit, and number of lanes were treated as discrete 

variables.  In addition, grade and curvature were also treated as discrete variables by 

binning them.  For binning grade, two break points (i.e., -2 and +2%) were used, 

resulting in three grade groups: less than -2%, -2 – +2%, and greater than +2%.  The use 
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of the break points (±2%) is based on the fact that HCM defines level terrain as the 

segments which include short grades of no more than 2 percent (TRB 2000).  In 

addition, the grade range for the study data set (-3.7 - 3.4%) implies that the breakpoints 

may be appropriate in terms of the potential data size for each grade bin.  In case of 

curvature, a single breakpoint (1.5 in a unit of 10000/radius of curvature) was used, 

resulting in two curvature groups.  The determination of the breakpoint was based on 

the results of the regression tree analysis, a statistical tool splitting data into partitions 

with minimizing the sum of the squared deviations from the means in the partitioned 

groups (Breiman et al. 1984).  In particular, the result from the data set under LOS A 

condition was referred because the LOS A data provided better fitting results than the 

other data sets.  The breakpoint of 1.5 appears to be reasonable in terms of the curvature 

range for the data set (0.04 and 3.00).  

 

Model Estimation Results 

Six random intercept models for each LOS range were estimated, as shown in Tables 

12-14.  The validity of the estimated model can be examined through the residual 

distributions, which is supposed to be normally distributed by the model assumption, 

and the reasonableness of the estimated parameters.  First, the normality of residuals 

was examined through the Q-Q plots of residuals as shown in Figure 49, which 

indicates the residuals do not significantly deviate from the normal distribution except 

for the residuals of LOS F model.  Second, the sign of the estimated parameters were 

examined.  For all six models, the sign of the estimated parameter seems to be 

intuitively correct.  For example, the negative signs for the variable of the basic segment 
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indicate that basic segments tend to induce less acceleration noise, compared to off-

ramp segments.  As an another example, the positive signs for the variable of the 

segments with two lanes mean that such segments tend to induce larger acceleration 

noise, compared to the segments with four lanes.  Finally, the significant variances for 

the random intercepts, suggested by the low p-values for the variables, justify the use of 

the random intercept models, implying the importance of driver/vehicle effects.  If the 

variance of the random intercept is not significant, the ordinary regression model would 

be enough for the data set.  Consequently, the estimated model was concluded to be 

valid from these perspectives.     

 Meanwhile, the estimated models resulted in considerably low coefficients of 

determination (R2) which ranges from 0.09 (LOS F) to 0.20 (LOS A), implying the low 

explanatory power of the employed independent variables.  This situation can be 

expected as the developed models are unlikely to remove all the variances induced by 

various drivers/vehicles and localized traffic conditions (e.g., interaction with other 

vehicles, location within a platoon, etc.).  In addition, within the same LOS range, 

different levels of traffic conditions may induce variances, in particular for LOS F range 

defined by a wider traffic density range, simply larger than 45veh/mile/lane.  However, 

the estimated models seem to be sufficient to identify the effects of roadway 

characteristics on acceleration noise.             
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Table 12: Model Estimation Results for LOS A and B Ranges 
LOS A (N = 502 )    

Variables Estimate t Sig. 
Intercept -1.518* -4.369 0.000 

Basic Segment -0.073 -0.960 0.337 
On-ramp area -0.011 -0.116 0.907 Facility Type 
Off-ramp area       
Less than -2% 0.053 0.731 0.465 

Greater than +2% -0.039 -0.540 0.589 Grade 
Between -2 and +2%    

Greater than 1.5 0.189* 2.328 0.020 Curvature (10000/radius 
of curvature in feet) Less than or equal to 1.5    

2 lanes 0.294* 2.408 0.016 
3 lanes -0.053 -0.624 0.533 Number of lanes 
4 lanes       
55 mph 0.185* 2.368 0.018 

Speed limit 
65 mph       

Variance of residual 0.322  0.000 
Variance of random intercept 0.112  0.003 
Coefficient of determination 0.20 

     
LOS B (N = 4,369 )    

Variables Estimate t Sig. 
Intercept -1.392* -5.062 0.000 

Basic Segment -0.107* -4.067 0.000 
On-ramp area -0.031 -0.976 0.329 Facility Type 
Off-ramp area       
Less than -2% 0.058* 2.391 0.017 

Greater than +2% -0.038 -1.562 0.118 Grade 
Between -2 and +2%    

Greater than 1.5 0.018 0.640 0.522 Curvature (10000/radius 
of curvature in feet) Less than or equal to 1.5    

2 lanes 0.307* 7.029 0.000 
3 lanes 0.010 0.371 0.711 Number of lanes 
4 lanes       
55 mph 0.150* 5.965 0.000 

Speed limit 
65 mph       

Variance of residual 0.302  0.000 
Variance of random intercept 0.074  0.000 
Coefficient of determination 0.17 

 
* indicates the estimated parameter is significant at a 0.05 level. 
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Table 13: Model Estimation Results for LOS C and D Ranges 

Variables Estimate t Sig. 

Intercept -1.321* -5.266 0.000 
Basic Segment -0.040* -2.602 0.009 
On-ramp area 0.012 0.591 0.554 Facility Type 
Off-ramp area       
Less than -2% 0.037* 2.582 0.010 

Greater than +2% -0.018 -1.302 0.193 Grade 
Between -2 and +2%    

Greater than 1.5 -0.012 -0.765 0.444 Curvature (10000/radius 
of curvature in feet) Less than or equal to 1.5    

2 lanes 0.261* 10.859 0.000 
3 lanes 0.008 0.531 0.595 Number of lanes 
4 lanes       
55 mph 0.136* 9.633 0.000 

Speed limit 
65 mph       

Variance of residual 0.303  0.000 
Variance of random intercept 0.062  0.000 
Coefficient of determination 0.17 

     
LOS D (N = 7,390)    

Variables Estimate t Sig. 

Intercept -1.176* -5.148 0.000 
Basic Segment -0.011 -0.579 0.562 
On-ramp area 0.143* 5.294 0.000 Facility Type 
Off-ramp area       
Less than -2% -0.040* -2.255 0.024 

Greater than +2% 0.002 0.105 0.917 Grade 
Between -2 and +2%    

Greater than 1.5 -0.012 -0.579 0.563 Curvature (10000/radius 
of curvature in feet) Less than or equal to 1.5    

2 lanes 0.182* 7.072 0.000 
3 lanes 0.004 0.180 0.857 Number of lanes 
4 lanes       
55 mph 0.035* 2.047 0.041 

Speed limit 
65 mph       

Variance of residual 0.318  0.000 
Variance of random intercept 0.051  0.000 
Coefficient of determination 0.14 

 
* indicates the estimated parameter is significant at a 0.05 level. 
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Table 14: Model Estimation Results for LOS E and F Ranges 

Variables Estimate t Sig. 

Intercept -0.796* -3.192 0.003 
Basic Segment -0.114* -4.073 0.000 
On-ramp area 0.321* 6.148 0.000 Facility Type 
Off-ramp area       
Less than -2% -0.190* -6.500 0.000 

Greater than +2% 0.040 1.271 0.204 Grade 
Between -2 and +2%    

Greater than 1.5 0.058 1.590 0.112 Curvature (10000/radius 
of curvature in feet) Less than or equal to 1.5    

2 lanes 0.033 0.856 0.392 
3 lanes -0.016 -0.341 0.733 Number of lanes 
4 lanes       
55 mph -0.132* -4.286 0.000 

Speed limit 
65 mph       

Variance of residual 0.342  0.000 
Variance of random intercept 0.060  0.000 
Coefficient of determination 0.17 

     
LOS F (N = 4,473 )    

Variables Estimate t Sig. 

Intercept -0.228 -1.210 0.235 
Basic Segment -0.017 -0.700 0.484 
On-ramp area 0.153* 4.850 0.000 Facility Type 
Off-ramp area       
Less than -2% -0.080* -3.647 0.000 

Greater than +2% 0.070* 3.002 0.003 Grade 
Between -2 and +2%    

Greater than 1.5 0.033 1.183 0.237 Curvature (10000/radius 
of curvature in feet) Less than or equal to 1.5       

2 lanes 0.024 0.726 0.468 
3 lanes 0.000 0.009 0.993 Number of lanes 
4 lanes       
55 mph -0.083* -3.812 0.000 

Speed limit 
65 mph       

Variance of residual 0.324  0.000 
Variance of random intercept 0.034  0.000 
Coefficient of determination 0.09 

 
* indicates the estimated parameter is significant at a 0.05 level. 
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Figure 49: Normal Q-Q Plots of Residuals for Acceleration Noise Models 
 

Interpretation of the Estimated Parameters 

The interpretation of the estimated parameters in the model is not straightforward since 

the dependent variable, acceleration noise, was taken with logs, and thus, the effect of a 

unit change in independent variables varies depending on the location of the starting 

point of the independent variables, as in the case of logistic regression models (Neter et 

al. 1996).  This aspect can be mathematically demonstrated using a fitted simple 
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regression function, bxay +=)ln( .  Based on this function, an initial value, when x=x1, 

can be expressed in the following way: 

11)ln( bxaY += . 

In addition, the value reflecting a unit change in the independent variable can be 

expressed as: 

)1()ln( 12 ++= xbaY . 

Thus, )exp( 11 bxaY += , and )exp( 12 bbxaY ++= .  Using these equations, the 

difference between Y2 and Y1 becomes: 

).1(12 −=−=− ++++ bbxabxabbxa eeeeYY  

Consequently, the effect of the unit increase is a function of x, which implies that the 

effect depends on the magnitude of x, and thus, the interpretation of the estimated 

parameter becomes difficult.  However, the ratio of Y2 to Y1 can cancel out the term that 

includes x and produces a meaningful value indicating the percent change in 

acceleration noise for each additional unit of independent variables.  The percent 

change can be expressed as follows:    

100)1(10011001
1

2 ×−=×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=×⎟⎟

⎠
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⎝

⎛
− +

++
b

bxa

bbxa

e
e

e
Y
Y  . 

For example, when the estimated parameter for a variable is 0.5, the percent change of 

acceleration noise contributed by the variable is 100)1( 5.0 ×−e , that is 65%.  When the 

estimated parameter is zero, the percent change reasonably becomes zero.  The 

corresponding metric to the percent change is odds ratio in logistic regression models 

(Neter et al. 1996).   
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Effects of Roadway Characteristics on Acceleration Noise 

Based on the percent change approach, the effects of facility type were examined by 

LOS range, as shown in Figure 50, in which the reference variable is off-ramp segment, 

and thus, it does not appear in the graph.  The graph suggests that the effects of facility 

type vary, depending on traffic conditions.  For example, on-ramp segments seldom 

affect acceleration noise under LOS A-to-C ranges, but they significantly increase 

acceleration noise after LOS D conditions.  This situation may justify the introduction 

of ramp-metering after LOS D conditions as an attempt to prevent the traffic flow 

quality of the mainline from degrading because of entering vehicles.  The graph also 

suggests that basic segments tend to exhibit lower acceleration noise than on/off ramp 

segments.    
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* indicates the variable is significant at a level of 0.05. 

Figure 50: Effects of Facility Type on Acceleration Noise (Reference Variable = Off-ramp) 
 

The percent change approach was also applied for capturing the impacts of 

grade, as shown in Figure 51.  The figure indicates that roadway grades can affect 

acceleration noise in an opposite manner, depending on traffic conditions.  Downhill 

grades (in this study, less than -2%) increase acceleration noise under LOS A-to-C 
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conditions while they decrease acceleration noise under LOS D-to-F conditions.  A 

possible explanation for this phenomenon is that under free-flow conditions on 

downgrades, drivers are likely to adjust their speeds to avoid gaining too much speed 

and running out of control, resulting in an increase of speed fluctuations.  Jones and 

Potts (1962) also reported the trend of increasing acceleration noise for the downhill 

runs using the data collected during off-peak period, thus free-flow conditions.  In 

contrast, under forced-traffic conditions restricting high-speeding operations, the 

downgrades may help the traffic flow smoothly move.  In case of upgrades (> +2%), the 

estimated parameter was significant under only LOS F condition, indicating greater 

acceleration noise for uphill driving with respect to the level terrain (-2 - +2%).  This 

phenomenon appears to reasonably reflect traffic flow quality experienced by drivers 

because uphill grades generally induce more speed fluctuations under congested 

conditions, thus low-speed driving.  Note that the study corridor contains grades only 

between -3.7 – 3.4%, meaning that the use of different data set with steeper grades may 

exhibit different results.      
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* indicates the variable is significant at a level of 0.05. 

Figure 51: Effects of Grade on Acceleration Noise (Reference Variable = Grade between -2 - +2%) 
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The effects of curvature were also analyzed, as shown in Figure 52, indicating 

that the degree of curvature plays a significant role under only LOS A conditions.  This 

phenomenon seems reasonable because speeding, requiring a negotiation with roadway 

curvature, is more likely to occur under LOS A. 
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* indicates the variable is significant at a level of 0.05. 

Figure 52: Effects of Curvature on Acceleration Noise (Reference Variable = Curvature ≤ 1.5) 
 

In addition, the effects of the number of lanes were analyzed, as shown in Figure 

53.  The figure indicates that three-lane and four-lane segments have little difference 

while two-lane segments tend to considerably increase acceleration noise under LOS A-

to-D conditions.  However, the effects of the number of lanes seemingly disappear 

under LOS E and F conditions.    
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Reference variable is 4 lanes
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* indicates the variable is significant at a level of 0.05. 

Figure 53: Effects of the Number of Lanes on Acceleration Noise (Reference Variable = 4 lanes) 
 

Finally, the effect of speed limit was examined, as illustrated in Figure 54.  The 

figure indicates that the segments with a speed limit of 55 mph tend to increase 

acceleration noise under LOS A-to-D ranges, as can be expected.  However, this 

phenomenon reverses under LOS E and F ranges, in which speed limit may have little 

effects on vehicle operations because of the constrained traffic conditions.  One possible 

reason for this phenomenon is the relative traffic flow quality with respect to speed limit.  

In other words, for the same travel speed below speed limit, the relative traffic flow 

quality would be better for the trips made under the segments with a lower speed limit.  

An important implication associated with this fact (the better traffic flow quality for the 

lower speed limits under LOS E and F ranges) is that the postponement of the onset of 

system breakdown may be possible by lowering speed limit.  However, the verification 

of this conjecture requires more detailed investigation.       



 

113 
 

Reference variable is 65 mph
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* indicates the variable is significant at a level of 0.05. 

Figure 54: Effects of Speed Limit on Acceleration Noise (Reference Variable = 65mph) 
 

LOS-by-LOS Effects 

In the previous section, the effects of roadway characteristics were examined on a 

variable-by-variable basis, revealing the dynamics of the effects depending on traffic 

conditions.  Such dynamics was examined as shown in Figure 55, which displays the 

changing pattern of percent changes depending on LOS ranges for all the variables 

considered in the models.  The figure indicates that the number of lanes is the most 

significant factor under LOS A-to-C conditions, implying that acceleration noise tends 

to considerably increase on two-lane roadway segments.  In addition, the graph reveals 

that number of lanes (i.e., two-lane segments) and facility types (i.e., on-ramp 

segments) are almost equally the most significant factors under LOS D range.  However, 

under LOS E and F ranges, facility types (i.e., on-ramp segments) appear to be the most 

significant factor while the significance of the number of lanes becomes noticeably 

weak.  In addition to the number of lanes and facility type, speed limit seems significant 

under LOS A-to-C ranges, implying that operational characteristics of the roadway are 

more influential than roadway geometrics such as grade and curvature, at least for the 
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study corridor.  This phenomenon may be reasonable in that the study area is a freeway 

corridor of which geometric conditions cannot be severely poor due to its higher 

roadway design standards.      
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Figure 55: LOS-by-LOS Effects of Roadway Characteristics 

 
 

Summary  

In this chapter, the effects of roadway characteristics were analyzed using the random 

intercept models developed for six LOS ranges, with the aim of investigating their 

varied effects depending on traffic conditions.  Models were successfully developed 

although their explanatory power appeared to be low, as suggested by the low R2 values 

(e.g., at most 0.20 for the LOS A model).  The estimated parameters appeared to be 

intuitively correct, and they reflected the effects of considered variables depending on 

traffic conditions.  The findings obtained from the analysis can be summarized as 

follows: 
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• In general, basic segments provide better traffic flow compared to on/off-ramp 

areas. However, the differences among the facility types do not appear under 

LOS A conditions.  

• As traffic conditions become unstable, traffic flows on on-ramp areas are 

detrimentally degraded.  In fact, the effects of on-ramp areas under LOS E 

conditions showed the greatest effects in terms of the metric, percent change.   

• For the study data set, no difference was found between four-lane and three-lane 

segments.  However, two-lane roadways appeared to significantly increase 

acceleration noise under LOS A-to-D ranges.  

• The effects of curvature are only pronounced under LOS A condition, implying 

that only high-speeding vehicles may be affected by the degree of curvature.  As 

the degree of curvature increases, acceleration noise tends to increase. 

• Grade effects appeared to be complex, as suggested by the change of the 

direction of effects.  This aspect may require a more detailed analysis for the 

grade effects.  However, the grade effects were found to be minimal compared 

to other variables for the study site.   

• The operational characteristics (number of lanes, speed limit, and facility type) 

of freeway were found to be more influential than roadway geometry (i.e., grade 

and curvature). 

The analysis results suggest that the effects of roadway characteristics can interact with 

traffic conditions, implying that the consideration of the interaction effects may enhance 

the understanding of traffic flow characteristics.  
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Chapter 8 

Acceleration Noise and Driver/Vehicle Characteristics 
 

Study Objectives  

Researchers have argued that acceleration noise is affected by vehicle/driver as well as 

by traffic conditions and roadways.  However, the evidence of this aspect has not yet 

been satisfactorily provided, mainly due to the difficulty in recruiting various 

drivers/vehicles for such study.  In fact, previous research efforts employed only a small 

number of vehicles/drivers, and thus, could not effectively and objectively identify 

driver/vehicle effects on acceleration noise.  The instrumented vehicle data employed in 

this study provide a unique research opportunity to effectively examine the effects of 

vehicle/driver characteristics using the larger driver/vehicle group.  Thus, based on the 

instrumented vehicle data, this study attempts to develop statistical models showing the 

relationships between acceleration noise and such variables as driver age, gender, 

household income, vehicle body type, and vehicle age.  In addition to the acceleration 

models, speed models were also developed so that the question—how differently the 

driver/vehicle characteristics affect speed and acceleration noise—can be examined by 

comparing the two models.  In the model development, the data set was segmented by 

LOS ranges, and separate models for each LOS range were developed, in an attempt to 

capture the various behavioral responses of drivers to the different level of traffic 

conditions.  In the attempt, only LOS A-to-D ranges were considered since driver and 
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vehicle behavioral differences are less likely to appear under the forced traffic 

conditions, LOS E and F.  

 

Data  

Data Collection Time Period and Roadway Segments 

The initial data set for this analysis of driver/vehicle effects was obtained from four 

segments of GA400 during the time period between October 2003 and August 2004 

(excluding trips under potentially raining conditions, see Chapter 7).  Only four 

segments were selected for the following reasons.  First, the data size for the entire 

segments was far too large to handle.  In fact, approximately 265,000 segmented trips 

were collected over the 89 segments during the eleven months, and thus, computational 

burden was expected for the use of the entire data set.  Second, the use of trip data from 

various roadway segments complicates the analysis.  As suggested by the analysis 

results reported in the previous chapter, acceleration noise can be affected by roadway 

characteristics, requiring an isolation of geometric effects for a proper assessment of 

driver/vehicle effects.  The four segments were selected based on the following criteria: 

1) two sites per direction, 2) a mixture of different roadway characteristics, 3) basic 

segments only, 4) minimal grade and curvature, and 5) maximizing sample size.  Items 

1 and 2 pursue the even distribution of segments in terms of location and characteristics, 

and items 3 and 4 pursue the minimization of geometric disturbances that might affect 

acceleration noise.  Unlike other studies in which test vehicles travel along designated 

routes during specific time periods, the data collection approach of this study is less 

controlled but yields a large data set.  
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Exclusion of Shared Vehicles 

As dictated by the study objective of this chapter, the appropriate identification of the 

driver for any specific instrumented vehicle is critical.  However, the identification 

becomes difficult if the vehicle is significantly shared by multiple persons in the 

household.  To avoid this problem, this research referred to the vehicle sharing 

percentages obtained from the survey in which the project participants were asked to list 

each household vehicle, provide the primary driver of the vehicle, any secondary drivers, 

and the estimated amount of driving by each driver (Ogle 2005).  Based on this reported 

vehicle sharing information, this research excluded the trips made by the vehicles with 

the primary drivers’ driving time percentages lower than 90%.  This data screening 

criteria resulted in reducing the number of vehicles by 7% (6% for the number of trips).     

 

Data Summary 

Table 15 summarizes the characteristics of the selected four segments.  As mentioned 

earlier, the table indicates that two basic segments for each direction and two 3-lane and 

two 4-lane segments were selected.  Table 16 summarizes data size, average speed and 

acceleration noise for each LOS range, indicating the data set is composed of 6,271 trips 

from 224 instrumented vehicles.   
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Table 15: Characteristics of Selected Segments 

Segment Length 
(mile) 

Speed Limit 
(mph) 

Grade 
(%) Curvature Number of 

Lanes 
Facility 
Type 

SB13 0.25 65 +1.35 0.2 3 Basic 

SB35 0.32 65 +1.78 0.5 4 Basic 

NB17 0.20 65 -0.20 0.4 4 Basic 

NB34 0.23 65 +1.00 1.5 3 Basic 
* Curvature was computed as 10,000/radius of curvature in feet.  

Table 16: Average Values of Speed and Acceleration Noise and Sample Size by LOS 

LOS Average Speed 
(mph) 

Average Acceleration 
Noise (mph/s) Sample Size Number of 

Vehicles/Drivers 

A 71.5 0.23 965 136 
B 71.4 0.26 1,983 194 
C 70.9 0.30 2,297 183 
D 65.9 0.37 1,026 125 

Overall   6,271 224 

 

Driver/Vehicle Distributions 

The sampled driver/vehicle distributions are illustrated in Figure 56 and they are briefly 

compared with the national average.  The comparison with the national percentages of 

licensed drivers by age group indicates that the sample size for the age group under 25 

is smaller (7% vs. national average 13%) while the sample size for the age group of 35-

45 seems larger (28% vs. national average 21%).   However, the general pattern does 

not significantly deviate from the national average.  In case of gender, the distribution is 

close to the national trend which indicates that the number of male drivers is slightly 

higher than that of female drivers (50.1% versus 49.9%).  (The values of the national 

average are based on (FHWA 2003)  In case of household income, the sampled data 

illustrate that the proportion of high income households is large while the proportion of 

low income households is small.  Thus, the income distribution for the selected data set 

is biased toward high income households (Ogle et al. 2005).  
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 In case of vehicle body type, passenger cars occupy the largest portion (i.e., 

about 59%).  This proportion is similar to the national average 56.8% (based on the 

vehicle file of the 2001 National Household Travel Survey published by the U.S. 

Department of Transportation), and the proportion of vans (9% vs. national average 

9.1%) is also similar.  However, the percentages of SUVs (18%) and pick-ups (14%) 

show somewhat different values from the national average (SUVs- 11.9%; pick-ups – 

18.3%).  The distribution of vehicle age was compared with the national distribution 

used in the MOBILE6 model, an emissions analysis tool developed by the 

Environmental Protection Agency (EPA).  The comparison indicates that the sampled 

data contain fewer older vehicles.  For example, the percentages of vehicles older than 

10 years are 17% and 33% for the sampled data and the national average, respectively.  

The major reason for the smaller portion of old vehicles is because only vehicles 

traveled more than 3,000 miles/year were instrumented in the Commute Atlanta project 

(Ogle et al. 2006), and thus, older vehicles in the participants’ households are likely to 

be removed from the target of the instrumentation.  However, the general patterns of the 

vehicle age distributions are not significantly different from the national average.  

Figure 56 also indicates that LOS-by-LOS distributions do not significantly differ.   
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(c) Household Income (unit: $1000)                                          (d) Vehicle Body Type  

 
 

 
(e) Vehicle Age 

Figure 56: Distributions of Driver and Vehicle (N = 224) 
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Relationships Among Driver/Vehicle Characteristics 

The relationships among driver and vehicle characteristics were examined for the 

selected 224 drivers/vehicles by obtaining distributions or scatter plots.  First, the 

relationship between driver gender and vehicle type was examined, as shown in Figure 

57.  The figure, illustrating the distributions of the number of male and female drivers 

by vehicle type, indicates that vans are more likely to be driven by female drivers and 

that a majority of pick-up trucks in the data set were driven by male drivers.  In fact, the 

data set contains only two female drivers out of 32 pick-up truck drivers.  This situation 

seems to coincide with the general expectations associated with the pattern of vehicle 

usage, indicating the appropriateness of the selected data set.   
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Figure 57: Distributions of Number of Male and Female Drivers by Vehicle Body Type (N=224) 

 
 
 Second, the relationships between vehicle type, driver age, and vehicle age were 

examined by obtaining scatter plots, as shown in Figure 58.  The figure indicates that 
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vans or pick-up trucks are less likely to be driven by younger drivers (i.e., younger than 

35 years old).  However, significant correlations are not found between vehicle type and 

driver age.  The scatter plot showing the relationship between vehicle type and vehicle 

age also indicates that they have no significant correlations.  Third, the relationship 

between driver age and gender was examined (Figure 59), suggesting no significant 

correlations between the two driver characteristics.  The mean ages are 50 and 45 years 

old for male and female drivers, respectively.  In addition, any significant correlations 

between the other driver/vehicle characteristics were not found although their scatter 

plots are not reported in this dissertation.    
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Figure 58: Relationships between Vehicle Type, Driver Age, and Vehicle Age (N=224) 
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Figure 59: Relationship between Driver Age and Gender (N=224) 

 
 

Model Development  

Explanatory and Response Variables 

The explanatory variables of the statistical model developed in this analysis are driver 

age, gender, annual household income, vehicle body type, and vehicle age.  Among 

them, annual household income was aggregated into three categories: less than $50,000; 

$50,000 - $100,000; and greater than $100,000.  This aggregation was performed since 

the initial nine classes, requiring eight parameters to be estimated, were considered 

excessive, and the sample size of the low-income group was too small.  In addition, 

driver age and vehicle age were also aggregated into four (younger than 20, 20 – 39, 40 

– 59, and older than or equal to 60 years old) and three categories (younger than 5, 5 – 9, 

and older than or equal to 10 years old), respectively, and thus, these variables were 

used as discrete variables, rather than continuous variables.  This data binning is based 

on the notion that the variables (driver age and vehicle age) may not be linearly related 
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to dependent variables (vehicle speed or acceleration noise).  For example, an increase 

in driver age by one may have different effects on driver speeding behavior, depending 

on the reference ages (e.g., from 19 to 20 years old vs. from 59 to 60 years old).       

For the model development, only main effects were considered, and thus, 

interaction effects between explanatory variables were not included in the model.  The 

consideration of interaction effects is not practical because of the following two 

reasons: 1) complexity of model development and interpretation and 2) occurrence of 

missing factor combinations.  For example, a consideration of interaction effects 

between driver age and vehicle type introduces additional 15 variables (four driver age 

groups × four vehicle types – one reference variable), resulting in a complex model 

output and correspondingly complicated interpretations.  In addition, the limited number 

of drivers/vehicles may produce zero degrees of freedom (no data) for some factor 

combinations.  In fact, the selected data set does not include even a single trip made by 

female pick-up drivers under LOS A condition.  As another example, the data set does 

not include van or pick-up drivers younger than 20 years old (Figure 58), resulting in 

zero degrees of freedom for the combinations of such driver age group and van (or pick-

up).  Although the exclusion of interaction effects may not fully describe the causal 

relationships between the independent and dependent variables, general ideas may be 

obtained by considering the main effects only.                 

In addition to the variables associated with driver/vehicle characteristics, 

daylight conditions, which may affect vehicle speed profiles, were also considered as an 

explanatory variable.  In a simple manner as explained in the previous chapter, if a trip 

was made between 7:00am and 7:00pm during a daylight savings time period or 
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between 8:00am and 6:00pm during a non-daylight savings time period, the trip was 

designated as a trip under daylight conditions.  Otherwise, the trip was designated as a 

non-daylight trip.  The location of a trip was also considered since different geometrics 

can affect vehicle speed profiles.  Thus, in an attempt to isolate the geometric effects 

from the model, each segment was employed as a dummy variable.   

As a response variable, acceleration noise was taken with a natural log so that its 

distribution would be closer to normal, as shown in Figure 60.  In fact, the 

transformation enhanced the normality of the data set, as suggested in Table 17.  The 

table exhibits the results of one-sample KS normal tests, indicating that the log-

transformed data are not significantly different from normal distributions at a level of 

0.05.    
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Figure 60: Log Transformation of Acceleration Noise 
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Table 17: Results of One-Sample Normal KS Tests for Before and After Log-Transformation 
Before After 

LOS 
K p-value K p-value 

A 0.134 0.000 0.027 0.506 

B 0.119 0.000 0.022 0.302 

C 0.121 0.000 0.021 0.271 

D 0.124 0.000 0.036 0.146 

 

Model Results 

In total, eight random intercept models (acceleration noise and speed models for each 

LOS A-to-D ranges) were developed.  For these models, the normality of residuals was 

examined by plotting normal Q-Q plots for residuals, as shown in Figure 61.  Although 

the figure indicates that the residuals for the speed model under LOS D appear to have a 

large number of outliers, which may be attributed to the instability of traffic conditions 

under the range, it generally supports the normality assumption.  In addition to the 

residual plots, the variances for random intercepts were examined.  As a result, they 

were found to be highly significant, as suggested by the low p-values, supporting the 

validity of random intercept models.  If the variances are not significant, the application 

of random intercept model becomes meaningless, and thus, the ordinary regression 

model is enough to evaluate the causal relationships between acceleration noise and the 

independent variables.   

The explanatory power of the models was examined by the coefficients of 

determination (R2).  The R2 values were within the range of 0.18 – 0.22 and 0.27 – 0.42 

for the acceleration noise and speed models, respectively.  These low R2 values, in 

particular for the acceleration noise models, may suggest that vehicle speed profiles 

were affected by numerous factors in addition to the variables considered in the models. 
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Table 18: Model Estimation Results for LOS A Range 

LOS A (N = 965)      

Variables Log (Acceleration 
Noise) Speed 

Intercept -1.795* (0.000) 68.092* (0.000) 

< 20 -0.112 (0.600) 10.004* (0.000) 

20 - 39 -0.071 (0.567) 6.141* (0.000) 

40 - 59 0.026 (0.814) 4.247* (0.000) 
Driver Age 

(years) 

≥ 60   .   . 

Male 0.034 (0.713) 1.441 (0.072) 
Gender 

Female  .  . 

< 50 0.030 (0.811) -0.253 (0.813) 

50 - 100 -0.080 (0.404) -0.697 (0.393) Household Income 
($1,000’s) 

> 100   .   . 

Van -0.147 (0.270) -1.754 (0.129) 

SUV -0.125 (0.278) -0.780 (0.431) 

Pick-up -0.304* (0.023) 1.315 (0.250) 
Vehicle Type 

Passenger Car  .  . 

0 - 4 0.127 (0.259) -0.470 (0.625) 

5 - 9 0.089 (0.368) -0.711 (0.401) Vehicle Age 
(years) 

≥ 10   .   . 

SB13 -0.004 (0.962) -0.389 (0.534) 

NB17 0.067 (0.358) 0.173 (0.750) 

NB34 0.189* (0.012) -1.459* (0.008) 
Segment 

SB35   .   . 

No -0.018 (0.731) -1.669* (0.000) 
Daylight Condition 

Yes   .   . 

Variance of residual 0.393 (0.000) 20.878 (0.000) 

Variance of random intercept 0.097 (0.000) 8.814 (0.000) 

Coefficient of determination 0.22 0.27 
 
Note: p-values are inside parentheses, and * indicates that the estimated parameter is significant at a 0.05 

level. 
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Table 19: Model Estimation Results for LOS B Range 
LOS B (N = 1,983)      

Variables Log (Acceleration 
Noise) Speed 

Intercept -1.769* (0.000) 71.127* (0.000) 

< 20 0.382* (0.026) 5.720* (0.000) 

20 - 39 0.089 (0.310) 3.805* (0.000) 

40 - 59 0.122 (0.128) 0.983 (0.182) 
Driver Age 

(years) 

≥ 60   .   . 

Male 0.061 (0.357) 1.271* (0.040) 
Gender 

Female  .  . 

< 50 -0.031 (0.728) -1.427 (0.082) 

50 - 100 -0.078 (0.256) -0.133 (0.833) Household Income 
($1,000’s) 

> 100   .   . 

Van -0.002 (0.983) -0.603 (0.505) 

SUV 0.047 (0.573) -0.765 (0.323) 

Pick-up -0.114 (0.221) -0.796 (0.357) 
Vehicle Type 

Passenger Car  .  . 

0 - 4 -0.021 (0.805) 0.437 (0.569) 

5 - 9 0.129 (0.088) -0.135 (0.846) Vehicle Age 
(years) 

≥ 10   .   . 

SB13 -0.077 (0.110) -2.516* (0.000) 
NB17 -0.019 (0.624) -1.074* (0.001) 
NB34 0.087 (0.055) -4.482* (0.000) 

Segment 

SB35   .   . 

No -0.011 (0.733) -2.014* (0.000) 
Daylight Condition 

Yes   .   . 

Variance of residual 0.355 (0.000) 21.746 (0.000) 

Variance of random intercept 0.085 (0.000) 8.614 (0.000) 

Coefficient of determination 0.18 0.32 
 
Note: p-values are inside parentheses, and * indicates that the estimated parameter is significant at a 0.05 

level. 
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Table 20: Model Estimation Results for LOS C Range 
LOS C (N = 2,297)     

Variables Log (Acceleration 
Noise) Speed 

Intercept -1.593* (0.000) 69.336* (0.000) 
< 20 0.290 (0.169) 5.523* (0.003) 

20 - 39 0.174 (0.058) 4.015* (0.000) 
40 - 59 0.080 (0.325) 1.945* (0.007) 

Driver Age 
(years) 

≥ 60   .   . 
Male 0.071 (0.298) 0.921 (0.126) 

Gender 
Female  .  . 

< 50 -0.057 (0.542) -0.878 (0.287) 
50 - 100 -0.003 (0.965) 0.403 (0.504) Household Income 

($1,000’s) 
> 100   .   . 
Van -0.227* (0.025) -1.179 (0.188) 
SUV -0.065 (0.454) -0.618 (0.421) 

Pick-up -0.284* (0.003) 0.100 (0.906) 
Vehicle Type 

Passenger Car  .  . 
0 - 4 0.177* (0.045) -0.003 (0.997) 
5 - 9 0.098 (0.195) -0.375 (0.575) Vehicle Age 

(years) 
≥ 10   .   . 
SB13 -0.103* (0.005) -2.280* (0.000) 
NB17 -0.034 (0.256) -1.550* (0.000) 
NB34 0.166* (0.016) -6.391* (0.000) 

Segment 

SB35   .   . 
No 0.042 (0.225) -1.344* (0.000) 

Daylight Condition 
Yes   .   . 

Variance of residual 0.329 (0.000) 24.534 (0.000) 
Variance of random intercept 0.080 (0.000) 6.490 (0.000) 
Coefficient of determination 0.19 0.30 

 
Note: p-values are inside parentheses, and * indicates that the estimated parameter is significant at a 0.05 

level. 
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Table 21: Model Estimation Results for LOS D Range 
LOS D (N = 1,026)     

Variables Log (Acceleration 
Noise) Speed 

Intercept -1.217* (0.000) 66.088* (0.000) 
< 20 0.313 (0.385) 3.846 (0.286) 

20 - 39 0.015 (0.905) 3.244* (0.010) 
40 - 59 -0.015 (0.889) 1.164 (0.263) 

Driver Age 
(years) 

≥ 60   .   . 
Male 0.076 (0.398) -0.108 (0.903) 

Gender 
Female  .  . 

< 50 -0.071 (0.564) -1.804 (0.145) 
50 - 100 0.045 (0.620) 1.251 (0.163) Household Income 

($1,000’s) 
> 100   .   . 
Van -0.104 (0.397) 0.438 (0.715) 
SUV -0.015 (0.891) -0.958 (0.377) 

Pick-up -0.421* (0.001) 1.293 (0.278) 
Vehicle Type 

Passenger Car  .  . 
0 - 4 -0.003 (0.980) 1.479 (0.179) 
5 - 9 0.046 (0.646) 0.906 (0.355) Vehicle Age 

(years) 
≥ 10   .   . 
SB13 -0.145* (0.014) -1.435* (0.020) 
NB17 -0.100* (0.029) -4.316* (0.000) 
NB34 0.727* (0.000) -22.430* (0.000) 

Segment 

SB35   .   . 
No -0.032 (0.539) -1.897* (0.001) 

Daylight Condition 
Yes   .   . 

Variance of residual 0.331 (0.000) 36.657 (0.000) 
Variance of random intercept 0.081 (0.001) 7.042 (0.002) 
Coefficient of determination 0.21 0.42 

 
Note: p-values are inside parentheses, and * indicates that the estimated parameter is significant at a 0.05 

level. 
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Figure 61: Normal Q-Q Plots of Residuals for Acceleration Noise and Speed Models 
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Effects of Driver Characteristics 

The estimated results indicate that driver age is the most important variable among the 

driver characteristics.  Also, the significance levels indicate that the effect of age is 

more pronounced for speed for all considered LOS ranges while the effect of age on 

acceleration noise is significant only for the LOS B model.  The acceleration noise 

model for LOS B range implies that the young drivers (less than 20 years old) exhibit 

higher acceleration noise than the other age groups.  The signs and magnitudes of the 

driver age parameters imply that the younger drivers tend to drive faster than the other 

age groups.  For example, the speed model for LOS A indicates that drivers younger 

than 20 years old tend to drive faster than drivers older than 60 years old by 10 mph on 

average.  In addition, the effects of driver age on speed appear to diminish as traffic 

conditions become worse, as suggested by the magnitude of the parameters (i.e., for the 

age group less than 20 years old, LOS A: 10.0; LOS B: 5.7; LOS C: 5.5; and D: 3.8).  

This finding implies that the developed models appropriately reflect the interactions of 

driver behavior and traffic conditions.  Meanwhile, gender is insignificant for all models 

at a level of 0.05 except for the LOS B speed model. The model indicates that male 

drivers tend to drive faster than female drivers by 1.3 mph on average.  Any significant 

differences between male and female drivers are not found for acceleration noise.  In 

case of household income, the variable is insignificant in all models, indicating little 

associations between household income and speed/acceleration behavior.  This 

phenomenon may be partly attributed to the biased sample toward high-income group.    

 The changing patterns of p-values by LOS levels were illustrated in Figures 62 

and 63, in which the variable is considered significant at a significance level of 0.05 if 
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p-value is less than 0.05.  Figure 62 clearly suggests that the variable of age is 

significant for all speed models while the variable is insignificant for all acceleration 

noise models except for LOS B range.  Meanwhile, gender is significant at a level of 

0.05 only for the speed model of LOS B, indicating that gender is not a significant 

variable for acceleration noise, at least for the data set.  These findings imply that 

acceleration noise may be less sensitive to drivers’ characteristics than speed.    
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Figure 62: Changing Patterns of p-values for Age Groups by LOS Range 
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Figure 63: Changing Patterns of p-values for Gender by LOS Range 
 

Effects of Vehicle Characteristics 

In case of vehicle characteristics, the developed speed models imply that speed is less 

sensitive to vehicle characteristics.  Indeed, variables related to vehicle characteristics 

are insignificant for all speed models.  In contrast, acceleration noise appears to be more 

affected by vehicle characteristics.  For example, acceleration noise of passenger cars 

tends to be larger than any other types, as shown in Figure 64.  In particular, this 

situation appears to be more pronounced in LOS C and D ranges than LOS A and B 

ranges, under which acceleration or deceleration vehicle activities are less likely to 

occur compared to worse traffic conditions.  The figure also suggests that no significant 

differences exist between passenger cars and SUVs for all LOS ranges.  Meanwhile, 

older vehicles exhibited lower acceleration noise under LOS C condition, which is the 

only traffic condition in which vehicle age appears to be significant.  More specifically, 

the resulting parameter (i.e., 0.177 for vehicle age 0 – 4 years old) in the LOS C 

acceleration noise model implies that vehicles less than 5 years old tend to exhibit 19% 

(i.e., (e0.177 – 1)×100) higher acceleration noise values than vehicles older than 9 years.     
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Figure 64: Effects of Vehicle Type on Acceleration Noise 

 

The findings noted in the previous section suggest that vehicle performance 

associated with acceleration capabilities may be closely related with the magnitude of 

acceleration noise.  As an attempt to verify this aspect, the power-to-weight ratio, which 

is regarded as a measure of vehicle performance (a vehicle with a higher ratio is 

expected to accelerate faster than a vehicle with a lower value), was calculated for a 

portion of the instrumented vehicles (154 vehicles out of 224 vehicles, 69%) for which 

vehicle specifications are available.  In the calculation, curb weight (the total weight of 

a vehicle with standard equipment, oil, lubricants, coolant, a full tank of fuel and not 

loaded with either passengers or cargo) was used for the vehicle weight.  As a result, the 

average power-to-weight ratios, measured in horsepower per ton (hp/t), were 131, 107, 

101, and 100 for passenger cars, SUVs, pick-ups, and vans, respectively.  This finding 

suggests that acceleration noise may be closely correlated with vehicle performance, 

although the modeling results indicate that vans tend to have greater acceleration noise 

values than pick-ups unlike their similar power-to-weight ratios.  Note that the actual 
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vehicle weight depends on loaded passengers and cargo, and thus, the power-to-weight 

ratio can be changed depending on situations.         

 

Variance Component Ratio 

Variance component ratio (ρ), the fraction of the residual variance attributed to 

between-driver/vehicle variation, was compared by models, as shown in Figure 65.  

This graph indicates that the ratio for speed models decreases with congestion, 

suggesting smaller between-driver variances under worse traffic conditions.  In other 

words, as traffic congestion increases, drivers are less likely to have the chance to select 

their desired speed, and thus, speed differences between drivers becomes smaller.  

However, the variance component ratio for acceleration noise models is relatively stable 

regardless of traffic congestion levels, and the ratio is always smaller than that of speed 

except for LOS D, suggesting that acceleration noise is less likely determined by the 

characteristics of driver/vehicle than speed at least under LOS A-to-C ranges.  In 

addition, the less dependency on drivers/vehicles may be attributed to the fact that 

acceleration noise is more affected by numerous localized traffic conditions such as 

traveling lanes and positions in a platoon. 
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Figure 65: Variance Component Ratio by LOS 

 

Stability in Acceleration and Speed Behavior  

An investigation of the degree of stability in acceleration/deceleration can provide 

insights into driver behavior.  To this end, the correlation between two acceleration 

noise values and speeds obtained from any two randomly selected trips from the same 

vehicles was examined, as shown in Figure 66.  In the sample selection, trips under only 

free-flow conditions (LOS A) were considered so that the effects of traffic should be 

minimized for the selection of speed or acceleration noise.  The resulting coefficients of 

correlation were 0.2 and 0.38 for acceleration noise and speed, respectively.  Compared 

to an existing study in which speed correlation coefficients lie within a range between 

0.49 and 0.81 (Haglund and Aberg 2002), the correlation coefficient 0.38 for speed is 

rather low.  Figure 66 indicates that acceleration noise is less consistent for a driver than 

speed.  This phenomenon implies that acceleration noise is more likely to be determined 

by factors other than driver/vehicle, even under free-flow conditions, supporting the 

findings from the variance component ratio analysis. 
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Figure 66: Correlation of Speed and Acceleration Noise Obtained from Randomly Selected Two 
Free-Flow Trips 

 

Summary  

In this chapter, the effects of driver/vehicle characteristics on acceleration noise were 

analyzed using the instrumented vehicle data obtained from the four segments of 

GA400 over eleven months.  The data were employed for developing LOS-by-LOS (A-

to-D) random intercept models, for which driver age, gender, household income, 

vehicle type, and vehicle age were used for explanatory variables, and log-transformed 

acceleration noise was used as the response variable.  In addition to the acceleration 

noise models, speed models, based on the same data set and the same explanatory 

variables as acceleration noise models, were also developed for comparison.   

The developed models indicated that driver age is the most significant variable 

among the driver characteristics for both acceleration noise and speed models.  The 

modeling results indicated that the younger drivers generally tend to drive faster with 

greater acceleration noise.  However, driver age appeared to more strongly influence 

speed than acceleration noise, as suggested by the significance levels (p-values).  

Drivers’ gender seemed not important for acceleration noise model for all LOS ranges, 
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while speed is influenced by gender under LOS A and B ranges at a significance level 

of 0.1.  The modeling results indicated that male drivers tend to drive faster than female 

drivers.   

In contrast to the driver characteristics, acceleration noise appeared to be more 

influenced by vehicle characteristics than speed, in particular under LOS C and D 

ranges.  Generally, passenger cars and SUVs tend to exhibit greater acceleration noise, 

indicating the correlation between acceleration noise and vehicle performance, as 

verified by the examination of power-to-weight ratio.  In addition, the analysis of 

variance component ratio was performed, suggesting that acceleration noise is less 

affected by driver/vehicle characteristics than speed under LOS A-to-C ranges.  This 

aspect was also confirmed by the correlation analysis using the two-sampled trips from 

the same vehicles under LOS A conditions.  The analysis indicated that drivers’ speed 

choice is more consistent than acceleration noise. 

However, the weak explanatory power of the developed models, as suggested by 

the low R2 values, implies that vehicle speed profiles may be affected by numerous 

factors other than the explanatory variables employed in this study.  Potentially, 

localized traffic conditions, including vehicle positions in a platoon and interactions 

with heavy vehicles, might play a role for the unexplained variability.  In addition, the 

purpose of driving (e.g., commuting, sales, leisure, etc) might influence the speed 

profiles because drivers’ attitude can be affected by such factors.  The consideration of 

such variables is expected to produce interesting results, enhancing the explanatory 

power for the relationship between acceleration noise and driver/vehicle characteristics.                    
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Chapter 9 

Measurement of Traffic Flow Quality Using GPS-
Equipped Vehicles 

 

Composite Index 

Previous analysis results suggested that the degree of speed variation, measured by 

acceleration noise, appears to have a potential for evaluating the traffic flow quality 

experienced by drivers.  For example, acceleration noise was more sensitive to traffic 

conditions and less sensitive to drivers/vehicles than speed under LOS A-to-C ranges.  

However, the analysis showed that acceleration noise may have weaknesses in that it is 

non-linearly correlated with traffic conditions, as suggested by the potential downturn 

under the highly congested conditions.  These observations suggest that the combination 

of acceleration noise and speed may generate a better measure than either one by 

complementing each other.  Thus, this study proposes a composite index, representing 

the traffic flow quality experienced by drivers, using acceleration noise and speed 

together, as suggested in Figure 67.     

Vehicle Speed Acceleration 
Noise

Traffic Flow Quality

 
Figure 67: Concept of Proposed Traffic Flow Quality 
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 The proposed approach seems to be consistent with the concept of LOS defined 

by HCM, which states that 

“Level of service (LOS) is a quality measure describing operational conditions 

within a traffic stream, generally in terms of such service measures as speed and 

travel time, freedom to maneuver, traffic interruptions, and comfort and 

convenience” (TRB 2000). 

Since acceleration noise is closely associated with the degree of freedom to maneuver, 

traffic interruptions, and comfort and convenience, the proposed approach combining 

acceleration noise and speed matches well with the concept of LOS in the HCM.  

  

Fuzzy Inference System 

As an approach to combining two measures (speed and acceleration noise), the fuzzy 

inference system was proposed in the previous section.  The fuzzy logic was initially 

proposed by Zadeh 1965 and has been applied to solve various real-world problems 

including transportation (Klir and Yuan 1995; Teodorovic and Vukadinovic 1998).  The 

main reason why fuzzy logic is popular for solving the real-world problems is its feature 

for handling uncertainties often observed in the real world.  The uncertainty may lie in 

the evaluation of traffic conditions, which is more or less subjective and depends on the 

perception of individuals.  Thus, finite ranges, dividing acceptable and unacceptable 

traffic conditions, may not exist.  Furthermore, an aggregation of different measures 

induces greater uncertainty.  Based on this notion, researchers have attempted to apply 

the fuzzy inference system when combining multiple congestion indices and proved that 
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the approach could be an effective methodology (Hamad and Kikuchi 2002; Vaziri 

2002).  

In this study, the purpose of the fuzzy inference system is to map two crisp 

inputs (acceleration noise and speed) into a crisp output (composite traffic flow quality 

index).  The mapping can be achieved through four steps: the fuzzification of inputs, the 

application of fuzzy rules, the aggregation of outputs, and deffuzificaiton.  The first step, 

the fuzzification of inputs, is to take the values of acceleration noise and speed and 

determine the degree for each pre-specified fuzzy sets through membership functions.  

The second step, the application of fuzzy rules, is to evaluate the degree of traffic flow 

quality based on fuzzy rules.  The fuzzy rules, called if-then rules, take the following 

form:  

If (acceleration noise is x) and (speed is y), then (the degree of traffic flow quality) 

is z,   

where x, y and z represent linguistic values such as “Good” or “Bad”.  The fuzzy 

inference system is usually composed of multiple rules, and each pair of input elements 

is evaluated for every rule.  Then, the outputs generated by the rules are aggregated via 

specified operators such as maximum, probabilistic or, and sum.  These operators 

provide the approach how the outputs are combined, resulting in a single combined 

fuzzy set.  In the last step, the aggregated output, encompassing a range of values, is 

converted into a crisp number, which is called defuzzification.  The defuzzification can 

be performed by several methods such as centroid method, mean of maximum, largest 

of maximum, smallest of maximum, and so on.  Among them, the centroid method is 
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the most popular and used in this study.  The structure of the fuzzy inference system is 

summarized in Figure 68.   

Fuzzifier

Rules

Inference

Defuzzifier
Crisp inputs Crisp output

Fuzzy input sets Fuzzy output sets

 
Source: (Mendel 2001) 

Figure 68: Structure of Fuzzy Inference System 
 
 

Application 

Membership Functions for Acceleration Noise and Speed 

The application of the fuzzy inference system requires the establishment of membership 

functions for the two inputs: acceleration noise and speed.  In general, the membership 

functions can be established using opinion surveys asking the drivers’ perceived traffic 

flow quality under various traffic conditions.  However, in this study, no such survey 

could be implemented due to the constraints of cost and time.  Thus, as an alternative, 

the acceleration noise and speed distributions obtained from the instrumented vehicle 

trips, collected over the segments with four lanes and a speed limit of 65mph on 

northbound GA400 (see chapter 6), were utilized.  In particular, the distributions were 

obtained for each LOS range using the Gaussian kernel density estimation technique, as 
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shown in Figure 69.  The distributions suggest the ranges of acceleration noise and 

speed values for each LOS range and relative occurrence probabilities for specific 

values.  For example, the acceleration noise value of 1.5 mph/s is much less likely to be 

observed under LOS A-to-E ranges while the value is more likely to be observed under 

LOS F range, as suggested by the pdfs.  As an attempt to quantify this probability over 

the whole range, normalized probability curves were obtained by assuming the normal 

and log-normal distributions for vehicle speed and acceleration noise, respectively, as 

shown in Figure 70.  These assumptions, reflecting the shapes of the pdfs in Figure 69, 

facilitated the calculations of the probabilities across all ranges.  The curves obtained 

indicate that the acceleration noise value of 2.0, for example, is most likely to be 

observed under LOS F condition with a probability of 0.85.  However, the probability 

becomes 0.1 under LOS E, and then, it becomes only marginal for the other LOS ranges, 

A-to-D.  Note that the summation of the probabilities from the six LOS ranges for any 

specific values of acceleration noise is equal to one, indicating that they are the relative 

occurrence probabilities.  In the same manner, the curves for vehicle speed indicate that 

the speed of 30mph is only observed under LOS F with a probability of one.  Thus, such 

feature of the normalized probability curves could be utilized for establishing the 

membership functions for acceleration noise and vehicle speed.   
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Figure 69: LOS-by-LOS Estimated pdfs for Acceleration Noise and Vehicle Speed 
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Figure 70: Normalized Probability Curves for Acceleration Noise and Vehicle Speed 

 

 Based on the normalized curves, membership functions for acceleration noise 

and speed were established as shown in Figure 71, in which four linguistic values—

“Best”, “Good”, “Bad”, and “Worst”—were adopted.  The membership function of 

acceleration noise for the linguistic value “Best” approximates the normalized 

probability curve for LOS A condition while the speed membership function for “Best” 

approximates the curves of LOS A-to-C conditions.  For speed, the membership 
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functions for “Good”, “Bad”, and “Worst” reflects the pattern of the normalized 

probability curves for LOS D, E, and F, respectively.  Meanwhile, the membership 

function of “Good” for acceleration noise approximates the curves of LOS B and C, and 

the “Bad” membership function approximates the curves for LOS D and E.  Similarly, 

the membership function of “Worst” for acceleration noise approximates the shape of 

the LOS F curve.  All the established membership functions were formed using straight 

lines, simplifying the shape of the functions.  The established membership functions 

indicate that traffic flow quality should be the worst when acceleration noise is larger 

than 2.5 or vehicle speed is less than 40mph, approximating the normalized probability 

curves in Figure 70.    
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Figure 71: Membership Functions for Acceleration Noise and Vehicle Speed 
 

Membership Functions for Traffic Flow Quality 

The membership functions for the traffic flow quality, represented by four linguistic 

values (“Best”, “Good”, “Bad”, and “Worst”), were established in a simple manner by 

applying four triangular membership functions with the same size, as shown in Figure 

72.       
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Figure 72: Membership Functions for Traffic Flow Quality 
 

Fuzzy Rules 

In the fuzzy inference system, 13 if-then rules, formulating the conditional statements, 

were established as shown in Table 22.  The table indicates that if both acceleration 

noise and speed are “Best”, then the traffic flow quality is also regarded as “Best”.  

However, it also indicates that even when speed is “Best”, traffic flow quality can be 

“Bad” if acceleration noise is “Bad” or “Worst”, reflecting the more weights to 

acceleration noise under this traffic condition.  This rule is consistent with the finding 

that speed is less sensitive to traffic under LOS A-to-C conditions.  Meanwhile, if speed 

is too low (“Worst” condition), the traffic flow quality is regarded as “Worst” regardless 

of acceleration noise values.  This rule reflects the finding that acceleration noise may 

downturn as traffic conditions extremely worsen.     
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Table 22: Established Fuzzy Rules 
  Acceleration Noise 

  Best Good Bad Worst 

Best Best Good Bad Bad 

Good Good Good Bad Bad 

Bad Bad Bad Bad Worst 

S
peed 

Worst Worst Worst Worst Worst 

 

Summary of the Fuzzy Inference System  

The adopted fuzzy inference system for the measurement of traffic flow quality is 

represented in Figure 73, which indicates that the system is composed of two inputs and 

one output.  In addition, the system contains 13 if-then rules supporting Mamdani-type 

fuzzy inference system.  The Mamdani-type fuzzy inference system is distinguished by 

the linguistic if-then rules (Mendel 2001).       

 

ACN (4)

Speed (4)

Quality (4)

index

(mamdani)

13 rules

Acceleration Noise
(4 membership functions)

Vehicle Speed
(4 membership functions)

Traffic Flow Quality Index
(4 membership functions)

Mamdani

(13 rules)

Input Output

 

Figure 73: Fuzzy Inference System Applied for Evaluating Traffic Flow Quality 
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Based on the membership functions and the fuzzy rules specified in the previous 

sections, the traffic flow quality index, ranging from 0.2 to 0.8, is determined, as shown 

in Figure 74.  The figure illustrates how the traffic flow quality index is affected by the 

two inputs: acceleration noise and speed.  As can be expected, the higher speed 

combined with the lower acceleration noise results in a higher traffic flow quality index.  

In contrast, the lower speed and the higher acceleration noise result in the lower value 

of the traffic flow quality index.         
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Figure 74: Relationship among Acceleration Noise, Speed, and Traffic Flow Quality Index 
 

Application to a Single Segment 

The proposed fuzzy inference system was applied to the instrumented vehicle data 

collected over one segment (NB24), as an illustration purpose.  The resulting traffic 
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flow quality index was compared with acceleration noise and speed, as shown in Figure 

75.  The figure indicates that the traffic flow quality index is generally proportional to 

speed and inversely proportional to acceleration noise.  However, a large amount of 

variation is found in the plot, implying that the index is not determined by either speed 

or acceleration noise alone.  In particular, the variation is notable for high-speed trips.  

For example, the range of traffic flow quality index for the trips with speed higher than 

65 mph is between 0.3 and 0.7.  In addition, the relationship between the traffic flow 

quality index and the HCM LOS was illustrated in Figure 76, in which the distributions 

of the index values and the confidence intervals for the means of the index values were 

plotted.  The plots suggest that the index generally agrees with the LOS system and that 

a significant amount of variation exists at the same time, consistent with the findings 

provided by the confidence region analysis in chapter 6.     
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Figure 75: Relationships between Acceleration Noise, Vehicle Speed, and Traffic Flow Quality 
Index 
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Figure 76: Relationships between Level of Service and Traffic Flow Quality Index 

 
 

Application to Freeway Network 

The developed methodology was applied to the wider freeway network in the metro 

Atlanta area using the instrumented vehicle data obtained during the weekdays over 

three months (January to March 2006).  For the application, a freeway polygon system, 

composed of 1,451 polygons created around 209 centerline-miles of freeway networks, 

was developed.  Based on the polygons (each polygon covers both directions), the 

locations of instrumented vehicles were identified, and speed and acceleration noise 

were computed over the polygons, of which average length is 0.14 miles.  Then, the 

fuzzy inference system was applied to each polygon.  Although the instrumented 

vehicle data were not available for all the segments, the traffic flow quality for the most 

major corridors could be identified, as shown in Figure 77.  The figure graphically 

illustrates the estimated levels of traffic flow quality (multiplied by 100 for a display 

purpose) for morning (7 to 8am) and afternoon (5 to 6pm) peak times.  The patterns 

shown in the figure generally coincide with the expectation.   
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Figure 77: Traffic Flow Quality Measured from the Fuzzy Inference System 

 
 

In addition to the traffic flow quality maps, the average traffic flow quality index 

was computed by averaging the resulting indices across all the segments, as shown in 

Figure 78.  The figure clearly shows that traffic flow quality experienced by the 

instrumented vehicle drivers were worse during peak hours.  The map suggests that the 
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peak hours are 7 to 9 am and 5 to 7 pm.  In contrast, traffic flow quality appears to be 

better during 11 am to 2 pm.  
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Figure 78: Average Traffic Flow Quality Index by Time of Day 

 

Summary 

A fuzzy inference system-based approach, combining vehicle speed and acceleration 

noise obtained from GPS-equipped instrumented vehicles, was proposed for evaluating 

traffic flow quality on freeways.  The composite index appears to be advantageous in 

that the two measures can complement each other.  For example, under free-flow 

conditions (i.e., LOS A-to-C), acceleration noise may complement vehicle speed which 

is insensitive to traffic conditions.  Meanwhile, speed can complement the weakness of 

acceleration noise (i.e., potential downturn) under congested conditions.  In fact, this 

aspect was incorporated into the fuzzy rules in the application step.  The application 

results indicated that the proposed approach may be practical and promising for 

evaluating traffic flow quality.  In particular, the application to a larger freeway network 
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produced reasonable outcomes, providing general insights into the network-wide traffic 

flow conditions experienced by the instrumented drivers.  However, more detailed 

analyses are required so that the characteristics of the resulting index should be fully 

understood.              

 Further research work is required to understand the drivers’ perception about 

traffic flow quality.  Although this research effort assumes that the speed variation of a 

vehicle and speed can measure the degree of traffic flow quality experienced by drivers, 

the assumption needs to be closely investigated whether the measures truly reflect the 

traffic flow quality.  The investigation should be designed to identify critical factors 

determining the level of perceived traffic flow quality and breakpoints (in the factors) 

partitioning acceptable and unacceptable traffic flow quality.      
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Chapter 10 

Conclusions 
 

Summary and Contributions 

Summary 

This study analyzed the characteristics of speed variation, in particular measured by 

acceleration noise which has been considered as a traffic parameter representing traffic 

flow quality from the perspective of individual drivers.  In addition, this study proposed 

a fuzzy inference system-based approach that generates the index of traffic flow quality, 

combining vehicle speed and acceleration noise.  This work utilized a rich set of the 

GPS-equipped instrumented vehicle data which provide second-by-second speed and 

location over a 12-mile freeway corridor, GA400 in Atlanta, Georgia.  The employment 

of the real-world instrumented vehicle data rendered this work unique, compared to 

previous research efforts which have been limited to the experimental level.  As a result 

of this unique research effort, various aspects of acceleration noise were revealed in a 

quantitative manner.  Such findings can be summarized as follows.  

• Acceleration noise depends on traffic, roadway, and driver/vehicle.  

Seemingly, traffic is the most influential factor among the three factors.  

Although their relative explanatory powers for acceleration noise were not 

closely examined, the resulting R2 values imply this aspect. 

• Other than the three major factors, acceleration noise may be also affected 

by various factors associated with localized traffic conditions such as vehicle 
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positions in a queue.  This aspect may be suggested by the large variance or 

the low R2 values of the models developed in this study.      

• Traffic conditions and acceleration noise may not be linearly correlated, as 

suggested by the downturn under heavily congested conditions.  This aspect 

indicates the weakness of acceleration noise as a measure of traffic 

conditions.  

• Acceleration noise may be a better measure for measuring traffic conditions 

under LOS A-to-C ranges than speed, which was supported by the greater 

sensitivity of acceleration noise under the ranges.  This finding is important 

since it implies that the capability of probe vehicle-based traffic congestion 

monitoring system can be enhanced by incorporating acceleration noise as a 

complementing measure.   

• Roadway characteristics, including geometrics, capacity and facility type, 

can affect the magnitude of acceleration noise.  Interestingly, the roadway 

conditions can interact with traffic conditions.  For example, acceleration 

noise on on-ramp areas becomes notably larger under LOS E conditions, 

compared to the other LOS ranges.   

• Acceleration noise is less sensitive to driver/vehicle characteristics than 

speed under LOS A-to-C ranges, as clearly suggested by the results of 

variance component ratio and correlation analyses.  This aspect implies that 

acceleration noise may be more desirable as a measure of traffic conditions 

under the ranges.     
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• Consequently, the combined measure utilizing both speed and acceleration 

noise may produce a better measure for evaluating the traffic flow quality 

experienced by individual drivers.  

• The fuzzy inference system, as an approach to combining the two measures, 

may be effectively applied to measuring traffic flow quality.  

 

In addition to these findings, sensitivity analyses indicate that the values of acceleration 

noise can be affected by computation approaches and data types (e.g., data sampling 

rate), requiring the careful interpretation of the actual values of acceleration noise.  In 

other words, an attachment of too much significance to the actual values of acceleration 

noise may not be safe.    

 

Contributions 

This research work takes advantage of a rich set of the instrumented vehicle data 

collected from real-world drivers and vehicles.  In particular, the instrumented vehicle 

data were synchronized with TMC data so that the macro-level traffic conditions which 

the instrumented vehicles experienced can be captured.  The employment of the unique 

data set enables this research work to contribute in several ways which has not yet been 

shown in existing studies.  The major contributions of this research work can be briefly 

summarized as follows: 

 

• Demonstrate the application of GPS-equipped instrumented vehicle data for 

the evaluation of traffic flow conditions 
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• Provide various analysis results about the characteristics of acceleration 

noise 

• Provide new perspectives for the evaluation of traffic conditions (traffic flow 

quality) 

• Provide the fuzzy inference system-based framework for the evaluation of 

traffic flow quality.    

 

Recommendation for Future Work  

User perceptions about traffic flow quality 

In this research work, the traffic flow quality was assumed to be proportional to speed 

and inversely proportional to acceleration noise.  Although this assumption may be 

generally reasonable, the degree of user satisfaction for a specific range of acceleration 

noise or speed should be fully understood.  In particular, the relationship between 

acceleration noise and the degree of satisfaction should be carefully investigated since 

acceleration noise, unlike speed, is a rather unfamiliar concept to the general public.  

The lack of the understanding of the user perception may mislead the acceleration 

noise-based evaluation of roadway service quality.          

 

Expansion to Other Sites 

This research work focused on only one freeway corridor, GA400 in Atlanta, Georgia.  

Thus, the observable characteristics of roadway and drivers/vehicles are limited to this 

corridor, resulting in a loss of generality to some degree in some aspects.  This 

limitation may be overcome by expanding the study site to other areas which contain 



 

160 
 

different characteristics.  The expansion is likely to provide an opportunity to 

investigate the characteristics of speed variation using a wider range of variables, and 

thus, meaningful outcomes enhancing the understanding of traffic flow characteristics 

can be expected.       

 

Expansion to Arterials 

Although this research work was conducted focusing only on freeway, the same 

research framework can be applied to arterials.  In the application, more variables 

should be considered since vehicle activities on arterials are subject to be significantly 

influenced by various factors, including signals and roadside activities by pedestrian 

and parked cars.  Although the effective consideration of the numerous variables can 

pose a challenge, it may provide an opportunity to explore the characteristics of speed 

variation and traffic flow quality under various traffic/roadway conditions.       
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APPENDIX A 

Drew’s Energy Momentum Theory 
 

The purpose of this appendix is to provide detailed mathematical background for the 

Drew’s energy momentum theory introduced in Chapter 2.  In particular, the 

relationship between acceleration noise and speed is mathematically established based 

on Drew (1968)’s work.  Although this appendix provides only the acceleration noise-

speed relationship, such relationships for other parameters—density and volume—also 

easily obtained in the similar manner.   

 

Relationship between Density and Kinetic Energy 

Let’s assume that the kinetic energy in a traffic flow system can be represented by 2kuα , 

which is the correspondence of  2

2
1 vρ  in the hydrodynamic system.  In the equation, α, 

k, and u represent the kinetic energy correction factor, density, and speed, respectively.  

In addition, ρ and v are the counterparts of k and u, respectively.  Again, the kinetic 

energy (E) is defined by: 

E = 2kuα . 

Meanwhile, the well-known generalized equations of state obtained from the principle 

of fluid mechanics dictate that  
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and thus,  



 

162 
 

fkukuq ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

+
2

1

1

n

jk
k  , n > -1. 

In the equations above, uf and kj represent free-flow speed and jam density, respectively.  

In addition, n determines the shape the curves illustrating the relationships among speed, 

density, and volume.  For example, when n = 1, Greenshields’ linear model is obtained 

while parabolic model is obtained when n = 0.  In addition, exponential model is 

obtained when n = -1.  Such model names follow the shape of the u-k curves.         

Now, the kinetic energy can be represented as follows: 

E = 2kuα  
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Using the equation above, the following curve, showing the relationship between 

density and the kinetic energy, is obtained.  
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Figure 79: Relationship between Density and Kinetic Energy 
 

Now, the value of 'mk  can be computed by differentiating the equation above with 

respect to density and setting as zero.  That is,  
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Thus, the condition, 0=
dk
dE

, can be achieved when jkk = .  However, when jkk ≠ , k 

should satisfy the following condition:   
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Thus, by solving the equation above, 'mk  at which the kinetic energy is maximized is 

obtained as follows: 
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In addition, 'mu  at which the kinetic energy is maximized is computed using the 

following relationship:  
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In the equation above, the replacement of k with 'mk  results in 'mu , which depends on 

free-flow speed as follows:  
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Relationship between Acceleration Noise and Speed 

Two assumptions—1) total energy (T) in a traffic stream is a sum of kinetic energy (E) and 

internal energy (I) and 2) the internal energy is expressed by acceleration noise σ—

generates the following equations: 
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IET +=  

σα += 2ku . 

The equation dictates that T = E when 0=σ .  Note that the zero acceleration noise 

means the optimum condition of the traffic flow and that it can be achieved when the 

kinetic energy is maximized.  Thus, total energy when acceleration noise is zero can be 

represented using 'mk  and 'mu  as follows: 
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Thus, when n = 1 (equivalent to the assumption of the linear relationship between speed 

and density),  
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Meanwhile, when the kinetic energy is zero, acceleration noise is maximized, and thus, 

max0 σ==ET .  Under this condition,  

σα +==
2

0 kuTE  

maxσ= . 

Consequently, acceleration noise can be represented as follows: 

2
max kuασσ −= . 
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The replacement of k with 
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relationship between acceleration noise and speed.  
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Again, when n = 1, the equation above becomes: 
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In this equation, α can be obtained by equating TE=0 and Tσ=0, which is based on the 

energy conservation rule.  That is: 
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Thus, the kinetic energy correction factor is expressed as follows:  
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Finally, by replacing α, the relationship between acceleration noise and speed can be 

expressed as follows: 
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Now, the optimum speed which minimizes acceleration noise can be obtained by 

differentiating the equation with respect to u and setting it as zero, as follows: 
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Thus, acceleration noise is minimized when fuu
3
2

= , which is equal to 'mu  only if n = 1.  
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