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SUMMARY 

This thesis proposes a computationally effective analytical approach to automated 

material handling system (AMHS) performance modeling for a simple closed loop 

AMHS, such as is typical in supporting a 300mm wafer fab bay.  In this system, due to 

the significant impact of vehicle blocking, a straightforward queueing network model 

which treats the material handling system as a central server can be very inaccurate.  On 

the other hand, discrete-event simulation can produce accurate assessments of the 

production performance, including the contribution by the automated material handling 

systems (AMHS).  However, the corresponding simulation models are both expensive 

and time-consuming to construct, and require long execution times to produce 

statistically valid estimates.  These attributes render simulation ineffective as a decision 

support tool in the early phase of system design, where requirements and configurations 

are likely to change often.  We propose an alternative model that estimates the MHS 

performance considering the possibility of vehicle-blocking.  Such models are useful in 

the design of vehicle-based AMHS and correctly estimate the throughput capacity and 

move request delay of the AMHS.   

A probabilistic model is developed, based on a detailed description of AMHS 

operations, and the system is analyzed as an extended Markov chain.  The model tracks 

the operations of all the vehicles on the closed-loop considering the possibility of vehicle-

blocking.  Steady-state analysis provides estimates of empty-vehicle flows, which are 

essential to accurately estimate other metrics such as the transport time and throughput 

capacity.  The resulting large-scale model provided reasonably accurate estimates; 

however, it presented some computational challenges. 
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These computational challenges motivated the development of a second model 

that also analyzes the system as an extended Markov chain but with a much reduced state 

space because the model tracks the movement of a single vehicle in the system with 

additional assumptions on vehicle-blocking.  This reduced-state model offers 

computationally fast, fairly accurate estimates of the AMHS throughput capacity. 

Neither model is a conventional Markov Chain model because they combine the 

conventional Markov Chain analysis of the AMHS operations with additional constraints 

on AMHS stability and vehicle-blocking that are necessary to provide a unique solution 

to the steady-state behavior of the AMHS. 

Based on the throughput capacity model, an analytical approach is developed to 

approximate the expected response time of the AMHS to move requests.  The expected 

response times are important to measure the performance of the AMHS and for 

estimating the required queue capacity at each pick-up station.  The derivation is not 

straightforward and especially complicated for multi-vehicle systems.  The 

approximation relies on the assumption that the response time is a function of the 

distribution of the vehicles along the tracks and the expected length of the path from 

every possible location to the move request location.     

The proposed analytical approach is novel because it models mutli-vehicle 

material handling systems considering practical issues that have not been previously 

addressed.  Moreover, the semiconductor industry can benefit from such models because 

it proposes and demonstrates the capability of computationally fast and reusable analytic 

models that provide accurate and reliable estimates of AMHS performance necessary for 

the design stage. 
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 CHAPTER 1 

INTRODUCTION 

 

Semiconductor technology is the building block of information technology, which 

touches most aspects of contemporary life.  It is central to such areas as computers, 

communications systems, and consumer products.  Moreover, the semiconductor industry 

has become a vital contributor to the world economy, with $227.5 billion in sales 

worldwide in 2005, as stated by the Semiconductor Industry Association (SIA1) press 

room (SIA report, 2005). 

Within the past decade, the semiconductor industry has transitioned from 200mm 

to 300mm wafer fabrication.  This transition is expected to produce 2.5 times more chips 

per wafer (Bonora and Feindel, 2001), at a cost 1.4 times more than the 200mm wafer 

(Jones, 2003).   

The transition to automated material handling in the 300mm wafer era is required 

to maximize the productivity of the capital, to satisfy ergonomic restrictions caused by 

the weight and volume of 300mm wafer lot carriers, and to reduce the particle 

contamination and vibrational shocks on the wafers (Nadoli and Pillai, 1994).  

Furthermore, AMHS is at the center of full factory automation, which depends 

                                                 

 
 
1 The SIA was created in 1977 by five innovators in the industry of microelectronics. Currently, the SIA 

has 15 board member companies. They are Advanced Micro Devices, Agere Systems, Altera, Analog 

Devices, Conexant Systems, Cypress Semiconductor, IBM, Intel, Intersil, LSI Logic, Micron Technology, 

Motorola, National Semiconductor, Texas Instruments and Xilinx. http://www.sia-online.org.  
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fundamentally on automated material handling systems (AMHS) as the medium through 

which factory operations control is implemented. 

Most fabs use a bay layout (Cardarelli and Pelagagge, 1995), and each bay 

contains a group of process tools.  During the manufacturing process, wafers make many 

trips between the bays, creating a large amount of “interbay” traffic.  Wafers are 

manufactured in groups of twenty-five, called “lots” that travel together.  Each lot has a 

route, which is a list of steps that must be performed on the wafers before completion of 

the final product.  As a lot flows through the fab, it is processed by the process tools 

listed in its route.   

An AMHS in a 300mm fab typically consists of an overhead track with vehicles, 

stockers, and load/unload ports for interactions with the process tools and storage units 

(stockers).  A stocker is located in each bay to store work-in-process (WIP), when the 

process tool required for a lot is unavailable when the lot arrives to the bay. 

In our research, we explore the use of queuing network models to approximate the 

performance of a discrete vehicle-based material handling system.  These models for 

design and control of AMHS are scarce, and the semiconductor industry would benefit 

from the development and use of analytic modeling tools that have not been previously 

explored. 

1.1. Problem domain 

The process of semiconductor manufacturing typically consists of several stages, 

during which thousands of integrated circuits (ICs) are formed on a single wafer.  The 

first stage produces a wafer, which is a thin round slice of a semiconductor material, 

usually silicon.  Integrated circuits are formed on wafers in the wafer fabrication stage, 
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which is performed inside the fab (cleanroom).  The fabrication process involves a series 

of standard steps: diffusion, ion implantation, oxidation, depositions of metals and 

insulators, etching, and most importantly photolithography.  These steps are repeated 

several times until the last layer is completed.  The final stages of probing and assembly 

are then completed outside the cleanroom where the wafers are tested and sliced into 

single chips (dies).  This research focuses on the stage of wafer production inside the 

cleanroom, which is the most complicated stage in terms of scheduling and routing, 

creating a rich opportunity for improvement. 

1.2. Motivation 

Constructing a 300mm fab is projected to cost $2-3 billion, (Jones, 2003), and the 

AMHS represents a significant share of the investment cost, as much as 3 to 5% of the 

total fab cost (Arzt and Bulcke, 1999).  Even though the cost of AMHS is small relative 

to the total capital investment, AMHS performance is critical to achieving the planned 

return on investment (ROI) for the total capital investment.  In other words, it is not 

AMHS cost, it is the AMHS impact on performance that is crucial.  AMHS may 

introduce lot delays or cause tool idle time by failing to move lots in the planned and 

allotted time.  In fact, according to the International Technology Roadmap for 

Semiconductors2 (ITRS report, 2005), the key focus areas and issues for 2005 and 

                                                 

 
 
2 The International Technology Roadmap for Semiconductors (ITRS) periodically lays out a technology 
plan to guide the semiconductor industry in the coming decades. The latest study is summarized in the 
ITRS 2005 annual report.  It provides the current estimates for research and development that is required 
over the next decade to meet the historical numbers in performance growth, size reductions, cost, etc. 
http://public.itrs.net.  
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beyond is to increase throughput for AMHS, reduce average delivery times, and improve 

its reliability. 

Fundamentally, the role of the AMHS is to serve the production system, and the 

two systems interact at the lot transfer points in the facility.  Essentially, the AMHS 

should be able to perform the move requests generated by the production system. Once 

this basic level of service is achieved, AMHSs are distinguished from each other through 

their cost and performance.  Tradeoffs are usually between these two measures.  AMHS 

Performance usually is measured in terms of its throughput (number of moves per unit 

time) and response time; a MHS that responds faster to the move requests is generally 

more preferred.  We say “generally” because it might be the case that a faster delivery 

will not affect the production cycle time, if the destination tool is not ready to start 

processing upon lot arrival.   Material handling operations are non-value adding, so the 

goal is to minimize their cost while satisfying their performance requirements.  The 

AMHS should be transparent, i.e. it should not constitute a bottleneck to the production 

system (McGinnis et al., 1992). 

Estimating AMHS performance in IC fabs is difficult, because of the complexity 

of the systems.  The International Technology Roadmap for Semiconductors (ITRS 

report, 2001) characterizes the AMHS as having several vehicles, operating on a network 

with loops, intersections, spurs, and short-cuts, serving many different pick-up/deposit 

stations.  The movement requirements appear to be random, and although they exhibit 

some temporal correlations, these correlations are not strong enough to permit precise 

scheduling of the AMHS resources.  
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AMHS design is important because a reduction in material handling cycle times 

can reduce inventory cost through reduced Work in Process (WIP) and increase revenue 

through better on-time delivery performance and increased market share. Poor AMHS 

design and/or inefficient operations can drastically affect these key performance 

indicators.  There is, therefore, a need to understand the role and evaluate the impact of 

AMHS on the production system performance.  

Contemporary simulation technology can produce accurate assessments of fab 

production performance, including the contribution by the AMHS.  However, the 

corresponding simulation models are both expensive and time-consuming to construct, 

and require long execution times to produce statistically valid estimates.  These attributes 

render simulation ineffective as a decision support tool in the early phase of system 

design, where system configurations are likely to change often. 

1.3. AMHS description 

A typical 300mm AMHS has a spine layout, illustrated in Figure 1-1, with a 

central material handling spine and loops branching on both sides to serve production 

equipment.  There are two distinct operating scenarios: (1) the spine and the loops are 

decoupled, and vehicles are dedicated to the spine or to one of the loops; or (2) the spine 

and the loops are integrated, and vehicles may move freely between them (Pillai et al. 

1999).  In this research, we consider only the first case, which means a wafer lot moving 

from a tool on one loop to a tool on a different loop must travel through the main spine, 

and will use three different vehicles, one in each loop and one in the spine.  Automated 

storage units, referred to as stockers, are used to provide both temporary buffering for 

work-in-process and transfer between the bay and spine transport systems.   
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Figure 1.1 Closed-loop unidirectional interbay and intrabay AMHSs 

 

Because of the space restrictions in the 300mm wafer fab bays, vehicle travel is 

on a unidirectional closed loop without the ability for vehicles to pass each other, even 

when a vehicle stops to drop-off/pick-up a lot at the input/output port of a process tool or 

a stocker (SEMATECH report, 1997).  Thus, failure to carefully synchronize vehicle 

movements on a given loop can lead to significant amounts of vehicle blocking and the 

possibility of lot delay as well as induced vehicle idle time. 

The closed loop overhead hoist transport (OHT) system serves the move requests 

originating from the stocker(s) and the processors (also referred to as production 

equipment or production tools) in the bay.  Each machine —either stocker or tool has two 
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load ports:  an input port where loads are dropped off by the vehicle and an output port 

where loads are picked up by the vehicle to be delivered to their next destinations.  Each 

port can accommodate one vehicle at a time.  We use the term station to refer to the input 

and output ports of the machines.  Thus, a loop serving M machines, denoted by mi, 

consist of s = 2m stations.  Without loss of generality, we assume that the loops start at 

the stocker (m1), and the vehicles’ route is assumed to be m1, m2,.., mi, mi+1,…, mM, m1, 

m2,.. 

Machine mi has two stations: the drop-off station s
d
i , and the pick-up station s

p
i .  

We model an OHT system configured as a simple loop, in which vehicles continuously 

travel the loop, when a vehicle approaches an mi , it passes through the drop-off 

station s
d
i , then travels to the pick-up station s

p
i .  Loads are served by vehicles based on 

the First-Encountered-First-Served (FEFS) rule.  FEFS is a decentralized policy, first 

presented by Bartholdi and Platzman (1989).  In FEFS, the vehicles are constantly 

circulating on the unidirectional loop.  When an empty vehicle approaches an mi, it 

inspects the output buffer, if there is a load (job) waiting at s
p
i , the vehicle picks it up, 

which requires time delay l for loading the job and then delivers it to its destination, say 

machine mj, visiting machines mi+1, mi+2,…, mj-1, and finally the load’s destination the 

drop-off station of mj, denoted by s
d
j .  The vehicle does not stop at machines mi+1, mi+2,…, 

mj-1 unless it is blocked by other vehicles.  If the output port s
p
i is empty, the vehicle 

travels to s
d
i 1+ , then inspects the output port s

p
i 1+   and so forth until it encounters a waiting 

load. 

In order to estimate the throughput accurately, we need to estimate the blocking 

delays at each machine—either stocker or tool.  The main objective of the models to be 
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developed is to quantify the duration of this type of delay as a function of the layout of 

the transportation system, the demand rates, the speed of the vehicles and the number of 

vehicles circulating the loop.   

1.4. Proposed analysis method 

In this thesis, a queuing network type model is developed, based on a detailed 

description of AMHS operations, and the model is analyzed as an extended Markov 

chain.  With this approach we are able to estimate both AMHS throughput and move 

request delays.  

The analysis of AMHS is complex because: 

1. The service rate of stations is state-dependent.  A vehicle arriving at a 

station may stop for service to pick-up or drop-off loads, or may just pass 

through the station without stopping, or in the case of blocking, the vehicle 

might have to stop unnecessarily until the vehicle blocking its way moves 

on.  

2. It is not possible to analyze each station independently.  Stations have 

limited buffer capacity, and in many cases a station (including the track 

segment leading to it) cannot accommodate more than one vehicle at a 

time.  In such systems, the number of vehicles queued at one station 

impacts the service rate of other stations. 

We propose to model the vehicles’ movements between stations as a discrete time 

Marko chain (DTMC).  This keeps track of vehicles’ loading/unloading and blocking; the 

discrete set of states simplifies the model by avoiding the continuous traveling process.  

We consider only those points in time when a vehicle is located at a station.  Specifically, 
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in the state space we do not consider the state of a vehicle traveling on a track segment in 

between stations.  

We characterize a state by specifying the condition and location of vehicles in the 

network.  The location of a vehicle specifies the station at which the vehicle is receiving 

service or arriving.  The condition of the vehicle specifies whether it is loaded, empty, 

blocked while empty, blocked while loaded, or receiving service (picking-up or 

dropping-off a load).  The system transition between the possible states is assumed to be 

Markovian, i.e., the next state of the system depends only on the current state, and not on 

the path taken to reach the current state.  

The complexity of modeling a material handling system stems from its 

dependency on the move requests generated by the production equipment, but mostly 

from the nature of its operation where each service has two components: the response 

time to a move request that depends on the location of the vehicle, and the transport time 

that depends on the origin and destination of the move request.  Therefore, the transitions 

between states in the Markov chain depends on the move requests generated by the 

machines and on the current state of the AMHS, and we need to match the AMHS state 

transitions with the generation of move requests by the machines.  Some of the state 

transition probabilities are unknown, and hence the proposed extended Markov chain.   

Figure 1-2 illustrates the modeling approach.  The production and storage systems 

consist of physical elements: production tools, stockers, and products (lots), and of 

informational elements: products routes, and release rates.  The material handling system 

consists of physical elements: vehicles, tracks, etc., and of informational elements: 

dispatching policies, and vehicle velocity.  The interaction point between these two 



10 

systems is the machines’ loadports: in-port (drop-off station), and out-port (pick-up 

location).   

In our approach, the production and storage systems description provides the 

from-to matrix for lot transport and the AMHS description provides the from-to travel 

time matrix and fleet size to the extended Markov chain queuing model.  Based on the 

queuing model, we analyze the steady-state behavior of the vehicles by estimating the 

percentage of time vehicles spend at each station in each of their possible conditions.  

This analysis answers the following questions: 

• Will the AMHS, on average, be able to handle the move requests imposed 

by the production and storage systems?   

• If the system is feasible, what is the throughput capacity of the AMHS?  

• How much of this capacity is lost to vehicle blocking?  

• What is the utilization of the out-port station?   

• This last question helps in designing the storage area at the machine.   
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Figure 1.2 Modeling Framework 

 

Two extended Markov chain models are developed in this thesis.  The first model 

tracks the location and condition of the vehicles, simultaneously.  Thus, a state will 

characterize the location and condition of every vehicle in the AMHS.  This model is 

presented in Chapter three; the transition between the states is discussed along with the 

necessary conditions for coordinating the load drop-offs and pick-ups by the AMHS with 

the generation of the move requests by machines.  Because the model tracks each vehicle, 

a modeling “trick” is employed to create a discrete-time Markov Chain (DTMC) 

representation of the state space and transitions.  This model is quite accurate but the 

number of states grows exponentially with the problem size. 
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The second model discussed in Chapter four is an approximation of the first 

model. For the second model, we propose a different approach that creates one Markov 

chain for each vehicle separately, which reduces the size of the Markov chain drastically, 

but creates a challenge for modeling vehicle blocking.  In addition to the issues we 

discuss in the first model, we demonstrate how to approximate vehicle-blocking 

probabilities for a single vehicle that operates on a multi-vehicle loop.  The second model 

has two key advantages relative to the first:  it has a much more compact state space, thus 

is more computationally tractable; and since it is a single-vehicle model, it does not 

require any modeling tricks to develop the DTMC model.  However, there is a trade-off 

in terms of approximation error. 

1.5. Thesis objective 

The objective of this thesis is to develop computationally effective analytical 

models, useful in the design of vehicle-based AMHS to support semiconductor 

manufacturing and correctly estimate the throughput capacity and move request delay of 

the AMHS.   

The developed analytical model answers the following questions: 

• Given the AMHS design and production requirements, is the AMHS 

feasible? 

• What is the number of vehicles that will provide the highest throughput 

capacity of the AMHS? 

• What is the impact of changing the sequence of machines in the loop on 

the AMHS performance? 
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• What is the relationship between release rates and AMHS throughput 

capacity? In other words, what is the operating characteristics curve for 

the system? 

This thesis makes a contribution to the research literature by proposing a novel 

approach to model multi-vehicle material handling systems that considers practical issues 

that have not been considered concurrently in the literature.  First, we consider the state-

dependent service rate of move request, whereas, in most analytical models of such 

systems, the material handling system is modeled by defining a “virtual” workstation 

between the processing tools in a product’s route.  The conventional approach assumes 

that the response time of the AMHS to a move request does not depend on the location of 

the load, nor on the vehicle distribution across the network.  Second, we consider vehicle 

blocking and the resulting blocking delays in order to get good approximations of both 

the actual throughput of the AMHS and the average response time to move requests; an 

issue that is almost always ignored in the available analytical models. 

The research is valuable to the semiconductor industry because it proposes and 

demonstrates the capability of computationally fast and reusable analytic models to 

provide accurate and reliable estimates of fab-level AMHS performance.  These models 

are especially valuable for evaluating preliminary solutions to the AMHS design 

problem, where using simulation models is not a practical approach, because they take 

too long to develop, and require multiple lengthy executions to produce statistically valid 

estimates.  

The organization of the thesis is as follows: Chapter two reviews literature on 

analytic and simulation-based models of the AMHS in semiconductor manufacturing, and 
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previous research on queuing model of vehicle-based material handling systems.  

Chapters three and four present, respectively, the large-scale multi-vehicle extended 

Markov chain and the reduced-state extended Markov chain models.  Both models are 

developed, discussed, and validated using discrete-event simulation.  Chapter five 

presents an analytical approach to approximating the expected response time by the 

AMHS to move requests, the model is then validated using simulation.  Chapter six 

evaluates the extended Markov chain model for throughput capacity estimation and the 

expected response time approximation using a detailed simulation model of international 

SEMATECH generic hypothetical fab. 
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 CHAPTER 2 

LITERATURE 

2.1. Models of 300mm material handling 

Throughout the literature, the importance of AMHS in 300mm wafer fabs has 

been repeatedly addressed, and research in this area can be broadly categorized into: (1) 

design optimization, targeting the guide path network layout design and calculating a 

feasible fleet size, and (2) performance evaluation of various AMHS methods or different 

AMHS configurations via simulation modeling. 

2.1.1.   Design optimization 

Peters and Yang (1997) propose a network flow formulation to determine the 

number and location of shortcuts for the interbay transport system in a spine layout fab.  

The objective function minimizes the tradeoff between the increase in shortcut 

construction cost and the decrease in material handling costs.  The authors also propose a 

space filling curve procedure to first determine the layout of the departments in the fab.  

The two procedures for determining the layout arrangement and material handling system 

design are embedded into an iterative steepest descent pair-wise interchange to solve the 

overall integrated problem. 

Ting and Tanchoco (2000) propose an analytical procedure to construct a 

unidirectional circular layout for the interbay system in 300mm fabs under the 

assumption that not all the stockers can be connected by a simple loop.  They describe the 

circular layout to consist of a central loop, shortcuts and loop additions; the final guide 

path connects all the stockers in the system.  They propose a two-stage approach, in the 
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first stage candidate layouts for the main loop are constructed using a heuristic that takes 

into account the construction costs and flow requirements.  In the second stage, loop and 

shortcuts are added to connect the remaining stockers and eliminate flows on high-flow 

segments.  A dynamic programming procedure is proposed to minimize the construction 

and operating cost in the second stage.  In a later publication, Ting and Tanchoco (2001) 

use an analytical approach to develop a single and double rectilinear spine layout for 

overhead track layout design that connects the tools loadport to stocker loadports in an 

open ballroom layout bay for a 300mm fab.  The objective function is to minimize the 

total loaded travel distances.  

Steele (2002) proposes an algorithm to roughly estimate the performance of an 

automated material handling system during the design process. Each AMHS design is 

modeled as a network of nodes where a node may provide the transfer capability from/to 

wafer lot buffers, may enable vehicles to move to another branch of track, or may enable 

vehicles to recharge their batteries while waiting for a new move task. The algorithm 

computes the required loaded traffic flow, and the unloaded traffic flow. Using the total 

traffic flow, the AMHS is modeled as a network of queues.  Finally, the algorithm can 

estimate the minimum number of vehicles required to deliver the required number of 

wafer lots and the average delivery times between each pair of source and destination 

nodes. The author applied the algorithm to a small-scale interbay material handling 

problem and compared the results of the algorithm to the results of a discrete event 

simulation. However, the algorithm assumes infinite capacity queues and thus does not 

consider blocking, as a result it is not sufficiently accurate to predict AMHS 

performance. 
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2.1.2. Simulation-based performance evaluation 

To date, discrete event simulation has been the only methodology shown to give 

reliable estimates of fab-level AMHS performance.  At the system design stage, however, 

large scale, high-fidelity simulation models are not a practical approach, because they 

take too long to develop, and require multiple lengthy executions to produce statistically 

valid estimates.  Mackulak and Savory (2001) describe a study in which the AMHS 

experiments took over 250 hours of simulation time.  Different approaches have been 

taken to overcome this problem.  For example, Mackulak et al. (1998) propose 

developing a generic model that can be reconfigured according to the specific problem at 

hand, thereby reducing the model building time.  Gaxiola and Mackulak (1999) describe 

the use of simple deterministic calculations in situations where the process requirements 

have not yet stabilized. 

Pillai et al. (1999) discuss the issue of linking the interbay and intrabay tracks for 

a 300-mm fab layout.  Rust et al. (2002) and Mackulak and Savory (2001) investigate the 

same problem by focusing on the impact of this decision on several AMHS performance 

measures.   

Lin et al. (2003) propose using four different vehicle types to carry out the 

transport tasks from tool to tool.  Type A vehicles move in an intrabay system and deliver 

the lots within the bay.  Type B vehicles carry lots between the stockers.  Type C vehicles 

carry lots from a tool in any bay to a stocker in the lot’s destination bay.  Type D vehicles 

move lots from a tool in any bay to a tool in any other bay.  Three different transport 

methods using combinations of the four vehicle types were examined.   
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The conclusions in most of the simulation studies depend on the specifications of 

the fab being modeled, and thus do not constitute generic design guidelines.  At the 

system design stage, therefore, large scale, high-fidelity simulation models are not a 

practical approach and system designers are limited in the range of alternatives they can 

expect to evaluate in detail. 

2.2. Analytical models of material handling systems 

In the literature, analytical models of AMHS are usually based either on 

deterministic optimization models or queuing models.  The former fails to capture 

queuing in the system which is essential to accurately estimate the key performance 

measures.  Often, in analytical factory modeling, the material handling system is modeled 

by defining a “virtual” workstation between the processing tools in a product’s routing.  

The delay associated with material handling is approximated by the processing time on 

this virtual workstation, which has a capacity equal to the number of vehicles available.  

This approach is appealing because it exploits well-understood queuing models.  

However, it has some inherent weaknesses.  First, it assumes that the response time of the 

AMHS to a move request does not depend on the location of the load, nor on the vehicle 

distribution across the network.  Second, it fails to capture the impact of vehicle-to-

vehicle blocking, which, by consuming some of the available vehicle time, will degrade 

the capacity of the AMHS.  Vis (2004) provides a survey of work in this area.   

The objective of many of the analytic models of multi-vehicle systems is to 

estimate the minimum number of unit load capacity vehicles required to satisfy a given 

level of move requests.  The fleet size is determined by the travel requirements for the 

system, which includes loaded and empty vehicle travel times, loading and unloading 
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times, and blocking delays.  Loaded travel can be directly estimated given the guidepath 

network layout, the production volumes, product mixes and routings.  Estimating the 

empty travel requirements and blocking delays is more complicated because it depends 

on the system dynamic behavior, which is highly influenced by operational policies for 

the system like scheduling of loads and vehicle dispatching rules. 

Maxwell and Muckstadt (1982) were the first to propose a transportation problem 

formulation to estimate the empty vehicle travel time.  They compute the net flow at each 

pickup/drop-off location as the difference between the total number of loads delivered 

and the total number of loads picked up from that location.  The empty vehicle travel 

between every pair of pickup/drop-off locations is assigned so as to minimize the total 

empty vehicle travel in the system. 

Kuhn (1983) presents a more realistic estimation method to determine the empty 

vehicle travel, using a factoring method that considers the total number of loads delivered 

to a pickup/drop-off location as the number of empty trips originating from that location.  

The allocation of empty vehicles from one location to other locations is proportional to 

the total loads picked up at those other locations.   

Egbelu (1987) compares four analytical methods for estimating the vehicles 

requirements, where each model uses assumptions concerning empty travel and vehicle 

blocking.  The first method assumes that the empty travel is equal to the loaded travel.  

The second method includes blocking and idle time factors.  The third method first 

computes the net flow into each P/D location, and then the total empty travel is computed 

by multiplying the average loaded traveled distance by the total net flow for all locations.  

The fourth method is based on the same reasoning used by Kuhn (1983) where the 
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number of empty trips from location i to location j depends on the proportion of 

deliveries to i and the number of pickups from j.  The four methods are compared to 

simulation results for a range of dispatching rules.  Significant differences are reported 

between the simulation and the first three methods under most of the dispatching 

scenarios.   

Tanchoco et al. (1987) propose a method based on the Computerized Analysis of 

Networks (CAN-Q) model; a queuing model, used for analyzing workflows through a 

manufacturing system based on the steady-state behavior.  Empty vehicle travel is not 

considered in the model.  The results for the minimum vehicle requirements from the 

CAN-Q model are compared to the simulation model results.  The results indicate that 

CAN-Q underestimates the number of vehicles required.  They conclude that this model 

should only be used as an approximation tool to get a lower bound on the vehicle 

requirements.      

Mahadevan and Narendran (1990) propose an analytical method to estimate the 

number of vehicles required for a flexible manufacturing system (FMS), the main feature 

of their model is the consideration of routing flexibility and limited buffer capacity at the 

stations, by associating fixed probabilities with these events.  However, the model does 

not consider empty vehicle travel.  Later in Mahadevan and Narendran (1993), the empty 

vehicle flow is included in the total requirements under the assumption that vehicles do 

not deliver and pick up from the same pickup/drop-off location.   

Malmborg (1990) proposes an approach to compute a lower bound and an upper 

bound on the empty vehicle travel.  The lower bound is computed by a model similar to 

the one developed by Maxwell and Muckstadt (1983).  The upper bound is computed 
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from a similar model, except that the frequency of empty trips is based on total number of 

loads delivered at or pick up from each location, rather than on net flows.  Furthermore, 

the objective is to maximize the empty vehicle trips, implying that after each vehicle 

delivers its load, it is routed to the farthest location. Malmborg argues that the actual 

empty travel is a convex combination of the two bounds, where the weights depend on 

the vehicle dispatching and load selection policies defined for the system.   Malmborg 

also proposes a control-zone concept to model the vehicle-based system, in which one 

vehicle at a time is allowed to travel through a zone.  The control-zone model is used to 

approximate the effects of vehicle blocking using an M/M/n queueing model to predict 

the performance of a system with n zones.   

Sinriech and Tanchoco (1992) suggest a model that combines the system 

performance and the costs in the optimization model to determine the number of vehicles.  

The system performance is measured by the vehicles throughput.  The approach taken in 

their study is a multi-criteria optimization model with two goals.  First, the target values 

for these goals are calculated, then weights are defined for each goal.  The objective 

function is to minimize the deviation from the target values  

Rajotia et al. (1998) propose a similar model to the one developed by Maxwell 

and Muckstadt (1983), using the total flows instead of the net flows, and they introduce 

additional constraints on the empty flow from the drop-off to the pick-up locations for a 

single station. Empirical approximation of vehicle blocking and waiting times factors are 

incorporated into the vehicle requirements calculations.   

Johnson and Brandeau (1995) develop and solve an analytic model for the design 

of a multi-vehicle system that carries loads from a central storage depot to a shop floor 
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works centers.  The objective is to determine which workstations to include in the 

network and how many vehicles are needed to service those workstations so as to 

maximize the benefit, defined as the savings in labor minus the cost of operating and 

acquiring the vehicles.  Constraints are imposed on the waiting times, which are 

approximated using an M/G/c queueing model.   

Bakkalbasi (1990) develops analytic models to approximate the empty vehicle 

travel times for the following dispatching rules: First Come First Served (FCFS), Closest 

Load First, Closest Load with Time Priority, and Furthest Load First.  Srinivasan et al. 

(1994) develop an analytic model to determine the throughput capacity of a network with 

single vehicle and multiple vehicles, under a modified FCFS dispatching rule, the 

modified rule overrides the FCFS rule whenever a move request is present at the 

vehicle’s current location.  

Sharp and Liu (1990) propose a multi-commodity network model formulation to 

examine the cost and effectiveness of adding shortcuts to an exiting guide path network 

and spurs to workstations.  The objective is to minimize the cost of constructing the 

shortcuts and spurs and the cost of vehicle travel and congestion delays.  Before the 

model is formulated, cost functions that represent spur construction and vehicle time as a 

function of the total vehicle traffic at a workstation are developed assuming a Poisson 

process for the arrival of vehicles.  The authors apply queueing models to estimate the 

waiting times for different types of vehicles at diverging and merging nodes in the 

network. 

Johnson (2001) develops expressions for empty vehicle travel using FCFS policy 

and Nearest Vehicle Rule (NVR).  Johnson (2001), Johnson and Brandeau (1994, 1995), 
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and Kobza et al. (1998) analyze AMHS using M/G/c queuing models; these models give 

good approximations provided vehicle assignments are based on a First Come First 

Served (FCFS) discipline.  However, queuing results deviate considerably from 

simulation results when the vehicle dispatching is system state-dependent, such as 

Nearest Vehicle Rule (NVR).  Benjafaar (2002) presents a G/G/1 approximation to model 

a single-device MHS for selecting among alternative layouts to minimize the expected 

WIP in the system.  In Johnson (2001), a queuing model is used to estimate the 

performance of a multi-vehicle AMHS with NVR Dispatching.  Johnson first develops an 

approximation for the distribution of the empty vehicles among the stations, then uses an 

M/G/c model to estimate the waiting time of loads.  The latter results tend to be 

inaccurate because of the assumption of state-independent service time.  Curry et al. 

(2003) propose a more accurate service-dependent queuing network model that generates 

approximations that are close to the simulation results but the time to solve the analytic 

model grows exponentially with the number of vehicles.     

Hodgson et al. (1987) have attempted to model single-vehicle systems using 

Markov decision processes. Due to the large number of states in even a relatively simple 

AGVS, several constraints were applied to make the Semi-Markov problem tractable.  

Srinivasan et al. (1994) propose a single-vehicle queuing model to estimate the 

throughput of the vehicle where the vehicle dispatching to move request is based on a 

modification of the FCFS rule.  In Bozer, et al. (1994), the throughput approximation is 

used to estimate the waiting time of move requests at each station; their estimates are 

quite close to the simulation results.  The authors propose an extension of their model to 

multi-vehicle systems by adjusting the travel times assuming that an AMHS that has K 
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vehicles can be replaced by a single device that travels K times faster.  Results indicate 

good throughput estimates but significant errors in waiting time estimates because 

congestion and blocking delays are not modeled.   

Roeder et al. (2004) propose a simulation of a simplified closed queueing network 

to model intrabay AMHS in semiconductor manufacturing.  The approach has fewer data 

requirements than an explicit detailed simulation model of the system.  The authors use 

an information taxonomy to quantify the differences between the explicit AMHS 

simulation and the queueing network approximation.  The approximation captures the 

movement of the vehicles, interaction of the vehicles with the machine loadports, and 

processing of lots at machines.  Vehicle blocking is not modeled and the paper does not 

provide detailed empirical results.  None of the above models consider blocking of 

vehicles due to the inability to pass each other, which is a signifcant portion of the travel 

time in systems where there are no offline-docking locations (spurs).  

In short, the past literature offers accurate models of discrete vehicle-based 

material handling systems that are simulation-based, which is impractical given the 

development, execution and maintenance times needed to have an accurate representation 

of the system.  In the context of the system we analyze in this thesis, the analytic models 

offered in the literature have one or more of the following shortcomings: 

• assume that system operates in a deterministic manner and therefore rely 

on network flow problems to estimate the optimal fleet size. 

• fail to consider empty vehicle travel, and thus their models are 

oversimplified and provide optimistic estimates of the fleet size 

requirements. 
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• are developed for single-vehicle systems, which has limited applications in 

practice.  

• use central server models that oversimplify the service time of the material 

handling system. 

• assume ample capacity for vehicles at the pick-up and drop-off stations 

and thus can analyze the stations independently. 

For the material handling system described in this research, the move request 

arrival process is stochastic, multiple vehicles operate on the tracks, the pick-up and 

drop-off stations have finite capacity that leads to significant vehicle-blocking.  

Assuming deterministic flow rates fails to capture the inherent queuing in the system due 

to the high variability of the production system.  The ample loadports capacity for 

vehicles ignore vehicle-blocking in multi-vehicle systems, an essential aspect of the 

system we study, where blocking and queuing of vehicles is not only possible but very 

likely.  Modeling the AMHS as a single server oversimplifies the system because it 

assumes that every move request has the same response and travel time.   

In short, analytical models developed under one or more of the above assumptions 

fail to represent the actual system with acceptable accuracy.  Estimates for AMHS 

throughput capacity and/or response times based on such models will generate designs 

that deviate significantly from the actual system.  
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 CHAPTER 3 

MARKOV CHAIN MODEL OF  

VEHICLE-BASED CLOSED-LOOP AMHS 

 

Contemporary simulation technology can produce accurate assessments of 

integrated circuit factory (fab) production performance, including the contribution by the 

automated material handling systems (AMHS).  However, the corresponding simulation 

models are both expensive and time-consuming to construct, and require long execution 

times to produce statistically valid estimates.  These attributes render simulation 

ineffective as a decision support tool in the early phase of system design, where 

requirements and configurations are likely to change often.  In this paper, we describe an 

analytical approach to AMHS performance modeling for a simple closed loop AMHS, 

such as is typical in supporting a 300mm wafer fab bay.  In this system, due to the 

significant impact of vehicle blocking, a straightforward queueing network model which 

treats the material handling system as a central server can be very inaccurate.  We 

propose an alternative model that estimates the MHS performance considering the 

possibility of vehicle-blocking.  While the resulting large-scale model presents some 

computational challenges, it promises reasonably accurate estimates with computation 

times that are acceptable in a design environment. 

3.1.   Introduction 

Within the past decade, the semiconductor industry has transitioned from 200mm 

to 300mm wafer fabrication.  This transition is expected to produce 2.5 times more chips 

per wafer (Bonora and Feindel, 1998), at a cost 1.4 times more than the 200mm wafer 
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(Jones, 2003).  The shift to 300mm wafers is a challenging and expensive transition.  Full 

factory automation, required to maximize the productivity of the capital, to satisfy 

ergonomic restrictions caused by the weight and volume of 300mm wafer lot carriers, and 

to reduce the particle contamination and vibrational shocks on the wafers (Nadoli and 

Pillai, 1994), depends fundamentally on automated material handling systems (AMHS) as 

the medium through which factory operations control is implemented. 

Constructing a 300mm fab is projected to cost $2-3 billion, (Jones, 2003), and the 

AMHS represents a significant share of the investment cost, as much as 3 to 5% of the 

total fab cost (Arzt and Bulcke, 1999).  As IC manufacturers drive to reduce 

manufacturing cycle times in 300mm fabs, the performance of AMHS becomes a critical 

factor.  AMHS may introduce lot delays or cause tool idle time by failing to move lots in 

the planned and allotted time.   

Estimating AMHS performance in IC fabs is difficult, because of the complexity 

of the systems.  The International Technology Roadmap for Semiconductors (ITRS3,) 

characterizes the AMHS as having several vehicles, operating on a network with loops, 

intersections, spurs, and short-cuts, serving many different pick-up/deposit stations.  The 

movement requirements appear to be random, and although they exhibit some temporal 

correlations, these correlations are not strong enough to permit precise scheduling of the 

AMHS resources. 

                                                 

 
 
3 The International Technology Roadmap for Semiconductors (ITRS) periodically lays out a technology 
plan to guide the semiconductor industry in the coming decades. The latest study is summarized in the 
ITRS 2003 annual report.  It provides the current estimates for research and development that is required 
over the next decade to meet the historical numbers in performance growth, size reductions, cost, etc. 
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A typical 300mm AMHS has a spine layout, illustrated in Figure 3.1, with a 

central material handling spine and loops branching on both sides to serve production 

equipment.  There are two distinct operating scenarios: (1) the spine and the loops are 

decoupled, and vehicles are dedicated to the spine or to one of the loops; or (2) the spine 

and the loops are integrated, and vehicles may move freely between them (Pillai et al. 

1999).  In this paper, we consider only the first case, which means a wafer lot moving 

from a tool on one loop to a tool on a different loop must travel through the main spine, 

and will use three different vehicles, one in each loop and one in the spine.  Automated 

storage units, referred to as stockers, are used to provide both temporary buffering for 

work-in-process and transfer between the bay and spine transport systems.   

 
Figure 3.1 Closed-loop unidirectional interbay and intrabay AMHSs 

 

Because of the space restrictions in the 300mm wafer fab bays, OHT vehicle 

travel is on a unidirectional closed loop without the ability for vehicles to pass each other, 

even when a vehicle stops to drop-off/pick-up a lot from the input/output port of a 
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process tool or a stocker (SEMATECH report, 1997).  Thus, failure to carefully 

synchronize vehicle movements on a given loop can lead to significant amounts of 

vehicle blocking and the possibility of lot delay as well as induced vehicle idle time. 

3.2. Literature 

3.2.1. Models of 300mm material handling 

Throughout the literature, the importance of AMHS in 300mm wafer fabs has 

been repeatedly addressed, and research in this area can be broadly categorized into: (1) 

design optimization, targeting the guide path network layout design and calculating a 

feasible fleet size, and (2) performance evaluation of various AMHS methods or different 

AMHS configurations via simulation modeling. 

In the area of design optimization, Peters and Yang (1997) propose a network 

flow formulation to determine the number and location of shortcuts for the interbay 

transport system in a spine layout fab.  The objective function minimizes the tradeoff 

between the increase in shortcut construction cost and the decrease in material handling 

costs.   

Ting and Tanchoco (2000) propose an analytical procedure to construct a 

unidirectional circular layout for the interbay system in 300mm fabs under the 

assumption that not all the stockers can be connected by a simple loop.  First, candidate 

layouts for the main loop are constructed, and then, loop and shortcuts are added to 

connect the remaining stockers and eliminate flows on high-flow segments.  In a later 

paper, Ting and Tanchoco (2001) use an analytical approach to develop a single and 

double rectilinear spine layout for overhead track layout design that connects tools to 
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stockers in an open ballroom layout bay for a 300mm fab.  The objective is to minimize 

the total loaded travel distances.  

Steele (2002) proposes an algorithm to estimate the performance of an AMHS 

during the design process.  Each design alternative is modeled as a network of nodes.  

The algorithm estimates the minimum number of vehicles required to deliver the required 

number of wafer lots and the average delivery times between each pair of source and 

destination nodes.  The algorithm assumes infinite capacity queues and thus does not 

consider blocking. 

To date, discrete event simulation has been the only methodology shown to give 

reliable estimates of fab-level AMHS performance.  At the system design stage, however, 

large scale, high-fidelity simulation models are not a practical approach, because they 

take too long to develop, and require multiple lengthy executions to produce statistically 

valid estimates.  Mackulak and Savory (2001) describe a study in which the AMHS 

experiments took over 250 hours of simulation time.  Different approaches have been 

taken to overcome this problem.  For example, Mackulak et al. (1998) propose 

developing a generic model that can be reconfigured according to the specific problem at 

hand, thereby reducing the model building time.  Gaxiola and Mackulak (1999) describe 

the use of simple deterministic calculations in situations where the process requirements 

have not yet stabilized. 

Pillai et al. (1999) discuss the issue of linking the interbay and intrabay tracks for 

a 300-mm fab layout.  Rust et al. (2002) and Mackulak and Savory (2001) investigate the 

same problem by focusing on the impact of this decision on several AMHS performance 

measures.   
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Lin et al. (2003) propose using four different vehicle types to carry out the 

transport tasks from tool to tool.  Type A vehicles move in an intrabay system and deliver 

the lots within the bay.  Type B vehicles carry lots between the stockers.  Type C vehicles 

carry lots from a tool in any bay to a stocker in the lot’s destination bay.  Type D vehicles 

move lots from a tool in any bay to a tool in any other bay.  Three different transport 

methods using combinations of the four vehicle types were examined.   

The conclusions in most of the studies depend on the specifications of the fab 

being modeled, and thus do not constitute generic design guidelines.  At the system 

design stage, therefore, large scale, high-fidelity simulation models are not a practical 

approach and system designers are limited in the range of alternatives they can expect to 

evaluate in detail. 

3.2.2. Analytical models of material handling systems 

In the literature, analytical models of AMHS are usually based either on 

deterministic optimization models or queuing models.  The former fails to capture 

queuing in the system which is essential to accurately estimate the key performance 

measures.  Often, in analytical factory modeling, the material handling system is modeled 

by defining a “virtual” workstation between the processing tools in a product’s routing.  

The delay associated with material handling is approximated by the processing time on 

this virtual workstation, which has a capacity equal to the number of vehicles available.  

This approach is appealing because it exploits well-understood queuing models.  

However, it has some inherent weaknesses.  First, it assumes that the response time of the 

AMHS to a move request does not depend on the location of the load, nor on the vehicle 

distribution across the network.  Second, it fails to capture the impact of vehicle-to-
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vehicle blocking, which, by consuming some of the available vehicle time, will degrade 

the capacity of the AMHS.  Vis (2004) provides a survey of work in this area.  Johnson 

(2001), Johnson and Brandeau (1994, 1995), and Kobza et al. (1998) analyze AMHS 

using M/G/c queuing models; these models give good approximations provided vehicle 

assignments are based on a First Come First Served (FCFS) discipline.  However, 

queuing results deviate considerably from simulation results when the vehicle dispatching 

is system state-dependent, such as Nearest Vehicle Rule (NVR).  Benjafaar (2002) 

presents a G/G/1 approximation to model a single-device MHS for selecting among 

alternative layouts to minimize the expected WIP in the system.  In Johnson (2001), a 

queuing model is used to estimate the performance of a multi-vehicle AMHS with NVR 

Dispatching.  Johnson first develops an approximation for the distribution of the empty 

vehicles among the stations, then uses an M/G/c model to estimate the waiting time of 

loads.  The latter results tend to be inaccurate because of the assumption of state-

independent service time.  Curry et al. (2003) propose a more accurate service-dependent 

queuing network model that generates approximations that are close to the simulation 

results but the time to solve the analytic model grows exponentially with the number of 

vehicles.  Bakkalbasi (1990) develops analytic models to approximate the empty vehicle 

travel times for the following dispatching rules: FCFS, Closest Load First, Closest Load 

with Time Priority, and Furthest Load First.  Srinivasan et al. (1994) propose a single-

vehicle queuing model to estimate the throughput of the vehicle where the vehicle 

dispatching to move request is based on a modification of the FCFS rule.  In Bozer, et al. 

(1994), the throughput approximation is used to estimate the waiting time of move 

requests at each station; their estimates are quite close to the simulation results.  The 
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authors propose an extension of their model to multi-vehicle systems by adjusting the 

travel times assuming that an AMHS that has K vehicles can be replaced by a single 

device that travels K times faster.  Results indicate good throughput estimates but 

significant errors in waiting time estimates because congestion and blocking delays are 

not modeled.  Roeder et al. (2004) propose a simulation of a simplified closed queueing 

network to model intrabay AMHS in semiconductor manufacturing.  The approach has 

fewer data requirements than an explicit detailed simulation model of the system.  The 

authors use an information taxonomy to quantify the differences between the explicit 

AMHS simulation and the queueing network approximation.  The approximation 

captures the movement of the vehicles, interaction of the vehicles with the machine 

loadports, and processing of lots at machines.  Vehicle blocking is not modeled and the 

paper does not provide detailed empirical results.  None of the above models consider 

blocking of vehicles due to the inability to pass each other, which is a signifcant portion 

of the travel time in systems where there are no offline-docking locations (spurs).  

In this paper, we propose an analytic approach to evaluating AMHS performance 

in an IC fab.  We consider vehicle-based systems, of which contemporary hoist-based 

overhead systems (OHT) are an example.  We develop a queuing network type model, 

based on a detailed description of OHT operations, and propose to analyze the model as a 

large-scale Markov chain.  With this approach we are able to estimate both AMHS 

throughput and move request delays.  We model an OHT system configured as a simple 

loop, in which vehicles continuously travel the loop, and loads are served based on the 

First-Encountered-First-Served (FEFS) rule.  FEFS is a decentralized policy, first 

presented by Bartholdi and Platzman (1989).  In the FEFS, an empty OHV circulating the 
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loop inspects the output buffer of a station (stocker or processor); if there is a lot waiting, 

the vehicle picks it up and delivers it to its destination.  If the output buffer is empty, the 

vehicle travels to the next station and so forth until it encounters a waiting lot.  An OHV 

carrying a lot (loaded/full) might pass other input and output buffers and experience 

delays if it has to wait while other vehicles drop-off or pick-up loads at those buffers.  

Our goal is to estimate these blocking delays in order to get a good approximations of 

both the actual throughput of the OHT system and the average response time to move 

requests.  Bozer, et al. (1991) also use FEFS dispatching for a single-vehicle analytic 

model to approximate the throughput capacity of the vehicle.  Our model differs because 

it is developed for multiple vehicles, where queuing and blocking of vehicles is possible. 

3.3. Modeling approach 

Our objective is to estimate the expected throughput capacity of the AMHS for a 

given set of input parameters expressed by the move requirements, the travel times, the 

layout of the stations on the AMHS closed loop track, and the fleet size.  The analytical 

model provides estimates of a specific set of AMHS output variables that are essential to 

calculate the throughput capacity.  These output variables are the proportion of time the 

vehicles spend traveling (empty and loaded), in service (loading and unloading), and 

being blocked (empty and loaded).    

Rather than tracking the location of every vehicle while keeping a record of all the 

events that change the location and status of the vehicles, we focus on a subset of vehicle 

operations;  operations that vehicles go through only at the drop-off  and pick-up stations, 

eliminating the travel operations that occur on the track segments.  Next, we enumerate 

the vehicle conditions relevant to our analysis.  We choose to include the vehicle 
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conditions that identify whether the vehicle has just arrived at the station (empty or 

loaded), is in service (loading/unloading), or is blocked (empty or loaded).   

We then use a transition matrix to track the changes in the locations and the 

conditions of the vehicles.  In the matrix, each possible location-condition-vehicle 

combination is identified as a state.  The transition between the states is probabilistic and 

depends on the move requests rate, the number of vehicles, and the sequence of the 

machines on the AMHS loop.  

Including the states when vehicles are located at stations simplifies the model, but 

creates a problem when the vehicles arrive at stations asynchronously.  This problem is 

addressed by creating virtual locations to synchronize the vehicles’ movements.  For 

instance, if the travel time between two consecutive stations is half the loading/unloading 

time, we add one virtual station to each drop-off and pick-up station, and we make all the 

loading/unloading times equal to the travel times. 

Assumptions on the arrival process of move requests allow us to analyze the 

transition between the states as a Markov chain. Some of the transition probabilities are 

known because they are easily calculated from the given problem parameters (such as the 

probability that a loaded vehicle will be dropping off its load at some station), but other 

transition probabilities are only partially determined by the problem parameters, but also 

influenced by the output variables that we are trying to calculate, specifically the arrival 

rate of empty-vehicles to stations.   

Next, we present necessary conditions that ensure that the AMHS is able to meet 

the required throughput imposed by the machines.  These conditions provide constraints 

on the unknown variables in the Markov chain.  The resulting model is not a conventional 
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Markov chain, and hence the name Extended Markov Chain model, because it combines 

the Markov chain with a set of constraints that are necessary to solve for the unknown 

variables in the matrix and the AMHS output variables.  The extended model provides a 

full rank system of equations that can be solved to give a unique set of estimates for the 

output parameters of the AMHS. 

3.4. Closed-loop vehicle based AMHS 

Figure 3.2 illustrates an example of a closed loop overhead transport system 

serving the stocker(s) and the processors (also referred to as production equipment or 

production tools) in the bay.  Movement is unidirectional and  multiple vehicles can be 

traversing the loop but they cannot pass each other.    

 
Figure 3.2 Unidirectional closed loop overhead transport system 

 

In order to estimate the throughput accurately, we need to estimate the blocking 

delays at each machine—either stocker or tool.  The main objective of the model is to 

quantify the duration of the blocking delay as a function of the layout of the 

transportation system, the demand rates, the speed of the vehicles and the number of 

vehicles circulating the loop.   

Let L(n) refer to the OHT directed loop with n vehicles.  Let M be the set of 

machines in L(n).   Each machine has two load ports:  an input port where loads are 
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dropped off by the vehicle and an output port where loads are picked up by the vehicle to 

be delivered to their next destinations.  Each port can accommodate one vehicle at a time.  

We use the term station to refer to the input and output ports of the machines.  Thus, a 

loop serving m machines consist of s = 2m stations.  Let mi denote machine i; then mi has 

two stations: the drop-off station s
d
i , and the pick-station s

p
i . Figure 3.3 illustrates a 

network representation of the system in Figure 3.2 as a directed loop with stations 

represented as nodes, and the track segments as directed arcs. 

 
Figure 3.3 Network representation of the closed loop AMHS 

 

3.4.1. Logic description 

The vehicles are constantly circulating on the unidirectional loop.  As an empty 

vehicle approaches mi , it passes through the drop-off station s
d
i , then travels to the pick-

up station s
p
i .  If there is a load (job) waiting at s

p
i , the vehicle picks it up, which requires 

time delay l for loading the job and then delivers it to its destination, say machine mj, 

visiting machines mi+1, mi+2,…, mj-1, and finally the load’s destination the drop-off station 

of mj, denoted by s
d
j .  The vehicle does not stop at machines mi+1, mi+2,…, mj-1 unless it is 

blocked by other vehicles.  If the output port s
p
i is empty, the vehicle travels to s

d
i 1+ , then 

inspects the output port s
p
i 1+   and so forth until it encounters a waiting lot.  Vehicles cannot 

travel on the same track segment 



38 

3.5. Notation 

M: set of tools and stockers in the system. 

mi : machine i, which could be either a tool or a stocker, Mmi ∈ . 

s
p
i : pick-up station of mi, Mmi ∈ . 

s
d
i : drop-off station of mi, Mmi ∈ . 

U i : set of pick-up stations upstream of s
d
i . 

Di : set of drop-off stations downstream of s
d
i . 

pij : probability that a load which is picked up from s
d
i is destined to s

d
j . 

λi : mean arrival rate of move requests picked up from s
p
i .  

Λi  : mean arrival rate of move requests dropped at s
d
i . 

r i : probability that a loaded vehicle drops-off its load at s
d
i . 

qi
: probability that an empty vehicle encounters a waiting load at s

p
i . 

α d
i : rate of loaded vehicles arrivals to s

d
i . 

α p
i : rate of loaded vehicles arrivals to s

p
i . 

ε d
i : rate of empty vehicles arrivals to s

d
i . 

ε p
i : rate of empty vehicles arrivals to s

p
i  

θ : arrival rate of empty and loaded vehicles to stations.  

 

3.6. Model assumptions 

In manufacturing systems, demands for transportation depend on the jobs’ release 

rates, and the routing sequences for jobs.  The assumptions will be separated into system 
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assumptions and mathematical assumptions.  The system assumptions control the 

derivation of the analytical model while the mathematical sssumptions are necessary for 

model tractability.   

 System assumptions: 

1. Move rquests are given as steady-state values per time period. 

2. Flow is conserved at each machine and at the stocker (i.e. Miii ∈∀=Λ ,λ ). 

3. Each vehicle moves one load at a time operating under the FEFS rule. 

4. Travel times, and loading and unloading times are deterministic. 

Mathematical assumptions: 

5. Move requests rates occur according to a Poisson process.     

3.6.1. Disscussion of the assumptions 

Assumption (1) is necessary because the analytical model is based on the steady-

state behavior of the system.  Even though the fab is a dynamic environment and release 

rates change frequently, the design could be based on the worst case (highest) expected 

release rate, or on the value a fab designer would like to base the AMHS design on.  

Assumption (2) is valid because every load delivered is also picked up, and so we can 

assume that the flow is conserved at every machine.  In practice, this assumption is 

accurate for prcocessor tools but not necessarily for the stockers if the bay has multiple 

stockers and the same load can arrive to the bay and depart from two different stockers.  

This case can be included by small adjustments in the model but will not be pursued in 

this research. 

Assumption (4) is reaonable for highly automated systems as in 300mm wafer fab 

and we can safely assume deterministic travel and loading/unloading times. 
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If the loaded vehicle arrivals at a station follow a Poisson process, then 

assumption (5) would be theoretically justified.  It is an unlikely assumption since the 

travel times are expected to be determinisitic.  However, if the utilization of processing 

tools is high, the departure process variability out of the processing tools will be elevated 

(Hopp and Spearman, 2000), and as a result the from-to matrix induces a level of 

variability that makes the assumption of Poisson move requests arrivals acceptable. 

3.7. Markov chain model analysis 

In this section, we develop a probabilistic model of the system L(n).  We propose 

to analyze the system as a Markov chain.  Since the move request (load) arrivals follow a 

Poisson process, by the PASTA (Poisson Arrivals See Time Averages) property, (Wolff, 

1982), we assume that the instant at which a vehicle arrives to s
p
i is a random point in 

time (follows from assumptions 5), and the discrete Markov chain is embedded at the 

points in time when the vehicle just arrived or just finished service at a station.  The 

Markovian property is explained by the fact that Poisson arrivals occur completely 

random in time.  The system transition between the possible states is assumed to be 

Markovian, i.e., the next state of the system depends only on the current state, and not on 

the path taken to reach the current state. 

A vehicle can experience two types of delays: (a) Queuing delays occur at pick-up 

and drop-off stations due to the time needed for the other vehicles to clear the station, as 

illustrated in Figure 3.3. 

 
Figure 3.4 Queuing delay illustration 
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(b) Blocking delay is illstrated in Figure 3.4, and occurs when a vehicle has 

finished its service at its current station but cannot move because the downstream station 

does not have any space to accommodate it.   

 

Figure 3.5 Blocking delay illustration 
 

In this paper, we analyze systems that experience the second type; blocking 

delays.  A common control mechanism in vehicle-based system does not allow vehicles 

to travel simultaneously on the same track segment (SEMATECH report, 2001), as a 

result queuing delays are not possible.   

Due to the limited space for vehicles at stations, blocking of upstream stations is 

likely to occur.  It is not possible to analyze each station independently because the 

number of vehicles queued at one station impacts the service rate of other stations.  The 

analysis is complex because the service rate of stations is state-dependent, where the state 

is defined by every vehicle’s location and condition.  The location of a vehicle specifies 

the station at which the vehicle is receiving service or arriving.  The condition of the 

vehicle specifies whether it is loaded, empty, blocked while empty, blocked while loaded, 

or receiving service (picking-up or dropping-off a load), and we use f, e, b, k, and s to 

denote each of these states, respectively.  

In our model, we want to have a discrete set of states for the AMHS, simplifying 

the model by avoiding the continuous traveling process.  We propose to consider only 

those points in time where a vehicle is located at a station.  Specifically, in the state space 

we do not consider the state of a vehicle traveling on a track segment in between stations.  
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Although this assumption simplifies the model, it creates a problem when there are 

multiple vehicles, and the vehicles arrive at stations asynchronously, which raises the 

questions of how to determine what state the system is in, and what state it transitions to.   

If the travel time between every two consecutive locations as well as the loading and 

unloading times are all equal, we would not have this problem because the vehicles will 

always move synchronously.  To overcome this problem, we create virtual locations in 

order to synchronize the vehicles’ movements.  For instance, if the travel time between 

two consecutive stations is half the loading/unloading time, we add one virtual station to 

each drop-off and pick-up station, and we make all the loading/unloading times equal to 

the travel times.  In this case, if in some state r, one vehicle is at station s
d
i and needs to 

travel to s
p
i , while another vehicle is starting to unload at some other station s

d
j , ij ≠ , in 

the next state, the first vehicle will be arriving to s
p
i and the other vehicle will be 

unloading at the virtual station s
d
j .  

We characterize a state by specifying the condition and location of each vehicle.  

Each vehicle is defined by three characters: 

),,,,(),,(),,...,2,1,( skbfedpMimi =   

The first and second characters describe, respectively, the machine occupied by 

the vehicle and the station type (pick-up or drop-off), and the third character specifies the 

condition of the vehicle (empty, loaded, blocked/empty, blocked/loaded, and receiving 

service).  For example, consider a system with two machines and two vehicles.  There are 

two pick-up stations: ss
pp
21 ,  and two drop-off stations: ss

dd
21 , .  State 
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)},,1(),,,1{( fdsp indicates that there are two vehicles at m1, the first one is loading 

from s
p
1 and the other is arriving loaded at s

d
1 .   

3.7.1. The transition probabilities  

Consider the transition matrix R, which specifies the movement of the system 

between the states.  The position and type of every vehicle (e, f, b, k, or s) determines the 

system transitions.  An empty vehicle arriving to a drop-off station will certainly move to 

the next pick-up station, and so is the case for a loaded vehicle arriving to a pick-up 

station.  However, a loaded vehicle approaching a drop-off station s
d
i will leave loaded if 

the load was not destined to that station, this happens with probability (1-ri) which 

depends on the rate of moves destined to this station.  Similarly, an empty vehicle 

approaching a pick-up station s
p
i will leave empty if there was no load waiting at s

p
i , this 

happens with probability 1-qi which depends on the rate of moves originating at s
p
i  and 

on the rate of empty vehicle arrivals to s
p
i .  A vehicle receiving service at s

d
i must be 

dropping-off its load, and thus it will certainly move empty to s
p
i , and a vehicle receiving 

service at s
p
i must be picking a load and thus it will certainly move loaded to s

d
i 1+ .  We 

demonstrate the transitions through the following example. 

Example: consider a closed-loop OHT system with two vehicles (n=2) and five machines 

(10 pick-up and drop-off stations) (Figure 3.5). All stations and track segments have 

capacity for one vehicle, therefore if a vehicle is dropping-off a load at s
d
1  the vehicle 

behind it has to wait at s
p
5  until the first vehicle finished its drop-off.  
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m
1

 
Figure 3.6 A 5-machine 2-vehicle example 

 

Each state is defined by the string that specifies for each vehicle its condition and 

location.  Consider the states transition diagram partially illustrated in Figure 3.6.   

State )},,1(),,,1{( edep indicates that there is one empty vehicle at s
p
1 and one empty vehicle 

at s
d
1 . The transitions from this state depend on whether the first vehicle finds a load at s

p
1 , 

which happens with probability q1.  If the vehicle finds a load it starts receiving its 

service at s
p
1 while the second vehicle is blocked and empty, and the system enters 

state )},,1(),,,1{( bdsp .  The first vehicle does not find a load waiting with probability 1-q1, 

and in this case, the first vehicle moves empty to s
d
2 while the second vehicle moves 

empty to s
p
1 , and the system enters state )},,2(),,,1{( edep .  Consider the transition from 

state )},,2(),,,1{( fdep to state )},,2(),,,1{( sdsp , in the first state, one vehicle is arriving 

empty to s
p
1 , and the other is arriving loaded to s

d
2 , in the second state, both vehicles are 

receiving service at the same stations they were located.  This transition happens if the 

first vehicle finds a load waiting at s
p
1 with probability q1, and the second vehicle drops 

off its load at s
d
2 with probability r2.   
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Figure 3.7 Part of the states transition diagram for the 5-machine 2-vehicle example 

 

Now, consider the issue of asynchronous vehicle arrivals.  Suppose the travel time 

from a loading station s
p
i to the downstream unloading station s

d
i 1+ is equivalent to the 

loading and unloading times but is double the internal travel time from s
p
i to s

d
i .  We 

create a virtual station for each loading station and unloading station so that every vehicle 

movement is synchronized.  In this case, suppose the system was in 

state )},,2(),,,1{( edep , which is two empty vehicles one at s
p
1 and the other at s

d
2 .  If the 

first vehicle finds a load waiting, it transitions to ),,1( sp and since the other vehicle is 

empty at an input buffer, it will keep moving and transitions to ),,2( ep .  Hence, the 

system enters state )},,2(),,,1{( epsp .  Now, due to the unequal travel and loading times, 

we created a virtual loading station to which a vehicle moves to if it requires service, thus 

from this latest state )},,2(),,,1{( epsp , the system enters either state )},,2(),,,1{( spsp  or 

)},,2(),,,1{( edsp depending on whether the second vehicle finds a load at s
p
2 or not, 

respectively.  This way every state transition requires the same amount of time, which in 
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our example is the internal travel time from s
p
i to s

d
i .  It is important to point out that 

during implementation and computer programming in order to generate the states and the 

transition matrix, we used a different notation for each state, wherein the stations are 

labeled consecutively, disregarding whether the station is a pick-up, drop-off or a virtual 

station.  For example, in a system with five pick-up and five drop-off stations that 

requires five added virtual stations, there would be 15 unique stations labeled from 1 to 

15.  Therefore, during implementation, a state is defined by the string that specifies for 

each vehicle its condition and the unique station number where the vehicle is located. 

3.7.2. The Markov chain steady-state analysis 

Let υ={ υr} r=1, …, |R|, where νr denotes the steady state probability of visiting 

state r.  For a finite state, positive recurrent Markov Chain, the steady-state probabilities 

can be uniquely obtained by solving the square system of equations (Ross, 2000):  

υRυ =          (3.1) 

1=∑
∈∀ Rr

rυ          (3.2) 

The elements in the transition matrix are the transition probabilities between 

states, discussed earlier in Section 3.7.1.  Some of these probabilities are unknown, 

specifically, the load-encountering probabilities.  To see this, the probability that a loaded 

vehicle at some drop-off station will unload its load is determined entirely by the rate at 

which stations send loads to each other.  On the other hand, the probability that an empty 

vehicle will pick-up a load from some pick-up station depends on the rate of move 

requests and also on the rate of empty-vehicle visits to pickup stations, which in turn 
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depends on the number of vehicles in the system, and this relationship is not necessarily 

linear because of vehicle-blocking.   

Each element r xy , ||,...,2,1|,|,...2,1 RyRx == , denoting the transition probability 

from state x to state y in the transition matrix R can be written in terms of the unknown 

probabilities q = {qj} j=1, …, M as follows: 

( ) ||,...,2,1|,|,...2,1)1(
1

1
RyRxaqqr xy

M

j

hb

j

b

jxy

jxyjxyjxy ==∏ −=
=

−
  (3.3) 

Where b jxy  and h jxy , Mj ,...,2,1=  take values of either 0 or 1, and axy  

||,...,2,1|,|,...2,1 RyRx == are computed from the problem parameters.  The unknowns 

in expression (3.3) are the load encountering probabilities q j
, Mj ,...,2,1= , all the other 

parameters depend on the states x and y.   

The number of unknowns in equations (3.1) and (3.2) is |R| unknowns for the 

steady-state probabilities, plus |M| for the unknown load-encountering probabilities q .  In 

Section 3.7.3, we derive conditions that provide additional equations to solve for υ  and 

q . 

3.7.3. Conservation of vehicle flow 

Let θ denote the arrival rate of vehicles to stations.  Since the vehicles are 

circulating on a loop, the arrival rate θ is identical for all station and must satisfy: 

Mi
d

i

d

i ∈∀=+ θεα        (3.4a) 

Mi
p

i

p

i ∈∀=+ θεα        (3.4b) 

α d
i (α p

i ) denote the rate of loaded vehicles arrivals to s
d
i ( s

p
i ). ε d

i (ε p
i ) denote the 

rate of empty vehicles arrivals to s
d
i ( s

p
i ). The sd

i 'α values can be obtained by observing 
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that the loads carried by a vehicle passing through s
d
i are those that originate from stations 

upstream of s
d
i for delivery to those downstream of and including s

d
i .   

∑ ∑=
∈ ∈U sD

p
i

d

ii
j k

jkj
d
i

U
λα  , Mi ∈        (3.5) 

Since we assume a simple closed loop, and that every load dropped off at s
d
i will 

be picked up from s
p
i , the flow of loaded vehicles is equal for every station, thus αα dd

i = , 

Mi ∈∀ and the specific values can be calculated from: 

∑ ∑=
= =

M

j

j

k
jkj

d p
2 1

λα          (3.6) 

In the cases of more complex network configurations with shortcuts and 

intersections, the flow of loaded vehicles is not the same for every station and the general 

expression from (3.5) would be more appropriate. 

Λi denotes the rate of load arrivals to s
d
i , again because of conservation of flow at 

each machine, we have Miii ∈∀=Λ ,λ . 

We can now calculate the probability that a loaded vehicle drops-off its load at s
d
i , 

denoted by ri as: 

d

i
ir

α

Λ
= , Mi ∈∀         (3.7) 

Figure 3.7 illustrates how the empty and loaded vehicle arrival rates change as a 

vehicle travels between stations.  Empty vehicles arriving to s
d
i stay empty as they move 

to s
p
i , while the loaded vehicles arriving to s

d
i drop-off their load at a rate Λi .  Thus the 

rate of empty vehicle arrivals to s
p
i is: 

Λ+= i

d

i

p

i εε , Mi ∈∀         (3.8) 
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The rate of empty vehicle arrivals to s
d

i 1+ depends on the probability that an empty 

vehicle at the upstream pick-up station s
p
i  did not find a load waiting, denoted by qi

−1 , 

thus: 

εε
p

ii

d

i q )1(1 −=+ , Mi ∈∀        (3.9) 

 

3.7.4. Stability conditions 

For a stable system, the rate of pick-ups from s
p
i must equal the rate of move 

requests generated at s
p
i , which is λ i .  Also, the rate of pick-ups from s

p
i is the rate of 

empty vehicle arrivals to s
p
i (denoted byε p

i ) multiplied by the probability of finding a 

load waiting denoted by qi
 , thus: 

λε i
p
ii

q =  Mi ∈∀         (3.10) 

We now link the empty vehicle arrival rates to the Markov chain steady-state 

probabilities.  Let E
p
i be the set of states where a vehicle arriving to pick-up station s

p
i  is 

empty Mi ,...,1= . Let 
E

v p

i

denote the stationary probability of visiting state set E
p
i , which, 

conceptually, is the steady-state probability of empty vehicle visits to s
p
i , and can be 

obtained from: 

 

Figure 3.8 Conservation of vehicles’ flow 
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∑=
∈EE p

i

p

i r

rυυ , Mi ∈∀         (3.11) 

Since we have synchronized the movement of every vehicle, all transitions take 

the same amount of time, which is the least common denominator of all the possible time 

delays, denoted byT min .  The rate of visits to each state is T
E

p
i

min/υ .  The relationship 

between 
E

p
i

υ and ε p
i  is: 

ε

υ
p
i

T

E
p

i =
min

, Mi ∈∀         (3.12) 

From (3.11) and (3.13), we get the following necessary stability conditions:  

E

T
q

p

i

i

i υ

λ min= Mi ∈∀         (3.13) 

Combining equations (3.1), (3.2), (3.11), and (3.13) we have |R|+2|M| equations 

and |R|+2|M| unknowns, and we can find a unique solution to the system of equations and 

calculate the steady-state probability for every state, the blocking probabilities and other 

performance measures for the AMHS.  

Proposition 1: for the system of nonlinear equations: 

Mi

E
v

T
q

Mi

E

v
E

v

v

p

i

p

i

p

i

i

i

r

r

Rr
r

∈∀=

∈∀∑=

=∑

=

∈

∈∀

,

,

1

minλ

vRv   

 

There exists a unique solution for stationary probabilities v and the load-

encountering probabilities q if the AMHS is stable (i.e. the AMHS can handle all the 

move requests within the planning horizon). 
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Proof: 

The outline of the proof is as follows:  

1. If the unknown transition probabilities in the transition matrix are known, 

then there exists a solution to the stationary probabilities of the Markov 

chain states, assuming that the AMHS stable; this follows from the fact 

that the Markov chain is finite, irreducible, and positive recurrent. 

2. We then prove by contradiction that there cannot be two different sets of 

transition probabilistic for the same problem instance that will produce the 

same solution to the stationary probabilities of the Markov chain states. 

Formal proof: 

If the load-encountering probabilities q are known, and if the AMHS is stable, the 

Markov chain with transition matrix R is ergodic because it is finite and recurrent (Ross, 

2000).  For an ergodic Markov chain, there exists a unique solution to the stationary 

probabilities by solving the system of equations: 

1v1

vRv

=

=
 

Since the transition matrix R is a function of the unknown load-encountering 

probabilities q, we need to prove that there exists only one q for a given instance of the 

problem, where an instance is defined by L(n), the directed loop with n vehicles, M the 

set of machines in L(n), λ the arrival rate of move requests, and Tmin, the minimum 

transition time between states.  We now prove, by contradiction, that there is only one 

solution for v and q. 
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• Suppose there are two vectors q
1 and q

2, and two vectors v
1 and v

2 such that 

qq
21

≠ , vv
21 = , and both (q1

, v
1) and (q2

, v
2) satisfy the system of equations in 

Proposition 1. 

For each machine i, the load encountering probability is obtained from the 

expression: i

E
v

T
q

p

i

i

i
∀= minλ

 where ∑
∈

=
E

E p

i

p

i
r

rvv . 

If for some machine i, there are two solution q
i

1
and q

i

2
 where qq

ii

21
≠ , then 

vv
EE

p

i

p

i

21 ≠ but  ∑
∈

=
E

E p

i

p

i
r

rvv , therefore there is at least one state, say state k, E
p
ik ∈  such 

that vv kk
21 ≠ , which contradicts the initial assumption that there are two solutions such that 

qq
21

≠  and vv
21 = . ■ 

• Suppose there are two vectors q
1 and q

2, and two vectors v
1 and v

2 such that 

qq
21

= , vv
21 ≠ , and both (q1

, v
1) and (q2

, v
2) satisfy the system of equations in 

Proposition 1. 

If qq
21

= , the transition matrix for both solutions is equal, thus 

RqRqR
1

== )()(
2

.  If vv
21 ≠ , the square system of linear equations: 

1=

=

∑
∈∀ Rr

rv

vvR
 

has two different solutions.  This contradicts the initial assumption that for an ergodic 

Markov chain, there is a unique solution to the steady-state probabilities v. ■ 

We have proved that if the AMHS is stable, and a solution to the system in 

proposition 1 exists, then this solution is unique.  We defined stability as the ability of the 

vehicles to handle all the move requests within the planning horizon.  We use 
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enumeration of the number of vehicles (n) in order to find the solution.  Let B denote the 

total number of vehicle buffers (locations vehicles can occupy).  The maximum number 

of vehicles on the loop, nmax, has to satisfy: 

1max −≤ Bn          (3.14) 

otherwise, there would be a deadlock situation.  We use the following algorithm 

to find the minimum number of vehicles for a stable AMHS: 

1. Set the number of vehicles n=1. 

2. Solve the system of equations in proposition 1: 

• If a solution exists, it is unique, exit the algorithm. 

• If a solution does not exist: 

o If n=B-1, a solution does not exist, the AMHS cannot 

satisfy the move requirements, regardless of fleet size. 

o If n<B-1, then set n=n+1, go back to step 2. ■ 

3.8. AMHS performance measures 

The vehicle dispatching policy for the AMHS analyzed in this research dictates 

that vehicles should constantly circulate on the loop whether or not there are jobs waiting 

for pickup, and this implies that the vehicles are not dispatched to pick-up loads but 

rather “encounter” these loads as they circle the loop.  This creates a dilemma when 

measuring the AMHS performance.  For instance, the percentage of time vehicles are idle 

is not a meaningful measure since the vehicles are not dispatched to the jobs and in some 

situations all the vehicles can be traveling empty even though there are loads waiting to 

be picked up.  Therefore, we choose to measure the performance using three metrics: 



54 

1. AMHS utilization (ρ): the percentage of time vehicles are dropping 

off/picking-up a load, and traveling loaded (including being blocked and 

loaded).  

Let S  be the set of states where a vehicle is starting service (drop-off, or pick-

up) at any station.  In some sense, this measures the effectivity of the AMHS 

because it presents the percentage of time vehicles are actually carrying loads. 

Let F be the set of states where a vehicle is arriving loaded to any station. 

Let K be the set of states where a vehicle is blocked while loaded at any station. 

Let 
S

υ ,
F

υ , and 
K

υ denote the stationary probability of visiting state sets S , F , 

and K , respectively.  ρ can be estimated from: 

∑
∪∪∈

=++=
KFSr
rKFS υυυυρ       (3.15) 

2. Percentage of time vehicles are blocked (β): Let B be the set of states where a 

vehicle is blocked while empty at any station, β can be estimated from: 

∑
∪∈

+=
BKr

rBK υυυβ         (3.16) 

3. Expected time between two consecutive empty vehicle arrivals to a pick-up 

station i, (
E

T p
i

), this measure is related to the throughput capacity of the 

AMHS.  We need to distinguish here between throughput capacity, which is 

the number of move requests the AMHS can handle in a given period, and the 

AMHS throughput, which is the number of moves the AMHS actually does 

handle in a given period.  As the time between two consecutive empty vehicle 

arrivals to each pick-up station decreases, the AMHS can handle more move 

requests.     
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E
T p

i

is estimated from the visit ratios to state set 
E

v p

i

as: 

E
E

p

i

p

i v
T

T
p

i

min1
==

ε
        (3.17) 

3.9. Numerical example 

We use the layout in Figure 3.5 to compare the analytical model estimates of 

AMHS utilization, blocking, and the time between empty vehicles arrival to each pick-up 

station to values obtained from discrete event simulation.  In Figure 3-5, we have 4 

processing equipment (m2 through m5) and one stocker (m1) for a bay that serves three 

products (pa, pb, pc).  The total arrival rate to the stocker is cba λλλλ ++= jobs per 

minute.  Each job type is released and processed according to the routes given in Table 

3.1.  The resulting from-to matrix is presented in Table 3.2.   

Table 3.1 Arrival rate and routing of products 

Product 
Type Routing Jobs/Hour 

pa 1-2-3-4-1 12 

pb 1-3-5-1 6 

pc 1-4-2-1 4 

 

Table 3.2 Flow matrix (Loads/hour) 

From/To 1 2 3 4 5 

1  12 6 4  

2 4  12   

3    12 6 

4 12 4    

5 6     

In this example, loads delivered to the stocker exit the system.  The processing 

times at each processing station are assumed to be deterministic, and the mean processing 

time is such that processors utilization is 60%.  The distance from the loading station, s
p
i  
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to the unloading station s
d
i 1+ , is 15 feet.  The distance from the unloading station s

d
i to the 

loading station s
p
i is 5 feet.  Each vehicle travels at a speed of 60 ft/min, empty or loaded, 

and it takes 15 seconds to pick-up or drop-off a load. 

We compare the interarrival times of empty vehicles at each pick-up station 

estimated from the analytic model and a simulation model, at two fleet sizes: two and 

three vehicles.  We also compare the estimates of AMHS utilization and proportion of 

time vehicles are blocked.  We used AutoMod simulation software to obtain simulated 

values for this performance measure based on 10 replications of 100 days each; we also 

made sure that the system reached steady state before we started collecting statistics.  In 

the simulation model, move requests arrive at the stocker according to a Poisson process.  

However, move request arrivals at processor stations are the result of lot arrival and 

operation times at the processor station, i.e. we did not force them to follow a Poisson 

process.   

The analytical and simulated expected interarrival time of empty vehicles are 

shown in Tables 3.3 and 3.4 at different combination of move requests arrival rate and 

fleet size.  The absolute error represents the difference between the analytical and the 

average obtained from the simulation.   
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Table 3.3 Analytical and simulated expected times between 
 empty vehicle interarrival times (sec.) n=2 vehicles λ=22 jobs/hr 

Station Tanalytic Tsimulation Rel. error 

1 89.63 91.52 -0.02 

2 105.78 107.21 -0.01 

3 99.83 102.35 -0.02 

4 105.85 107.18 -0.01 

5 151.47 155.51 -0.03 

Average abs. error  -0.02 

Proportion of 

blocking (β) 
6.9% 7.1% -0.02 

AMHS 

utilization(ρ) 
48.9% 45% 0.07 

 
Table 3.4 Analytical and simulated expected times between 

 empty vehicle interarrival times (sec.) n=3 vehicles λ=22 jobs/hr 

Station Tanalytic Tsimulation Rel. error 

1 54.36 56.14 -0.03 

2 60.20 61.65 -0.02 

3 58.16 60.06 -0.03 

4 60.25 61.64 -0.02 

5 73.43 75.16 -0.02 

Average abs. error  -0.03 

Proportion of 

blocking (β) 
15.8% 15.1% 0.01 

AMHS 

utilization(ρ) 
33.4% 33.1% 0.05 

 

 The analytical model performs reasonably well from a design perspective with 

acceptable error percentages.  Even though the processing times are deterministic, which 

was expected to weaken the Poisson assumption, the analytic results are still quite close 

to those from the simulation model.  We also performed the same type of analysis when 

the processors utilization is 90%, the results were still close to those from the simulation 

model with no increase in the error percentages. 
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3.10. Summary and future work 

In this paper, we have presented a Discrete Time Markov Chain model that can be 

used in assessing closed-loop AMHS performance.  The model is novel because it 

considers vehicle-blocking without the need to include detailed AMHS operations.  

Experimental comparisons of the model generated results with detailed simulation for a 

small example problem produced acceptable error margins.   

There are a number of issues to be explored in further research.  One issue is the 

size of the state space of the Markov Chain, which may pose computational challenges.  

Although the Markov Chain is highly structured and sparse, it may be possible to reduce 

the number of states by eliminating those states that are not needed to estimate the key 

performance measures.  A critical issue in state space dimensionality is the number of 

“places” where a vehicle can be, and particularly, the number of “virtual’ places.  One 

potential amelioration of the dimensionality problem is to modify the state transition 

probabilities to overcome the need for virtual stations that were used to account for the 

mismatched transition times.   

The simple loop structure of the presented model is an issue as recent 

enhancements to OHT systems in practice violate this assumption.  We believe the model 

can be extended to cover more general network configurations.  The extension will 

require the empty vehicles to be routed probabilistically.  With the FEFS policy used in 

the current model, empty vehicles are not dispatched to the loads but simply travel 

around the loop until they encounter a waiting load.   It will be interesting to explore the 

impact of these probabilities on the AMHS performance and how machines will be 

affected differently depending on their location in the network.  
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Simulation remains a key resource for AMHS designers and analysts, but they 

also need effective and fast models to use in phases of concept development, design, and 

analysis prior to investing in high-fidelity simulation studies.  The model presented here 

is a significant step toward meeting that need. 
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 CHAPTER 4 

REDUCED MARKOV CHAIN MODEL OF  

VEHICLE-BASED CLOSED-LOOP AMHS 

4.1. Introduction and motivation  

Chapter three presented an extended discrete time Markov chain model that can 

be used in assessing closed-loop AMHS performance.  Experimental comparisons of the 

model generated results with detailed simulation results for a small example problem 

produced acceptable error margins.  However, because the model tracks the movement of 

every vehicle in the system, the number of states grows exponentially with the problem 

size, and the model poses computational challenges.  For instance, the number of states 

for a simple system of 5 machines (10 loading and unloading stations) served by two 

vehicles has 405 states, and increases to 3,270 states with three vehicles and to 17,700 

with four vehicles.  

This chapter presents an approximation of the first model that trades off accuracy 

for providing quick solutions for the large-scale real-life applications of AMHS.  We 

propose a different modeling approach that creates one Markov chain for each vehicle 

separately; this reduces the size of the Markov chain drastically, but creates a challenge 

for modeling vehicle-blocking. 

4.2. Modeling approach 

The approach proposed here follows similar logic to the one presented in Chapter 

three but differs in that the Markov chain tracks one vehicle while assuming that there are 
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n vehicles operating in the AMHS but the move requests are equally distributed among 

these vehicles. 

The transition matrix tracks the changes in the locations and the conditions of one 

vehicle.  In the matrix, each distinct possible location-condition pair is identified as a 

state (in the previous model, a state is identified by location-condition-vehicle 

combination because every vehicle was tracked).  The transition between the states is 

probabilistic and depends on the move requests rate, the number of vehicles, the sequence 

of the machines on the AMHS loop, and on the possibility of vehicle-blocking.  

Assumptions on the arrival process of move requests allow us to analyze the transition 

between the states as a Markov chain.  

Similar to the previous model, some of the transition probabilities are known 

because they are easily calculated from the given problem parameters (such as the 

probability that a loaded vehicle will be dropping off its load at some station), while other 

transition probabilities are only partially determined by the problem parameters, but also 

influenced by the output variables that we are trying to calculate, specifically the arrival 

rate of empty-vehicles to stations.  We also have a new set of transition probabilities that 

will determine whether the vehicle will get blocked in the next state or not.  We did not 

need these in the previous model because the state specifies where every vehicle is 

located. 

Next, we present necessary conditions that ensure that the AMHS is able to meet 

the required throughput imposed by the machines.  These conditions provide constraints 

on some of the unknown variables in the Markov chain.  
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The blocking probabilities that are introduced in this model are estimated by 

assuming that the probability that a vehicle gets blocked increases linearly with the 

number of vehicles.    

One advantage of this model is that there is no need to create the virtual stations if 

the travel times and loading times are not equal in order to synchronize the vehicles’ 

movements.  However, this implies that unlike the previous model, the transition time 

between each pair of states is not equal.  Therefore, the next step in the new approach is 

to approximate the transition time between the states, which will depend on the transition 

probabilities and the given travel and service times. 

Again, the resulting model is not a conventional Markov chain, and has additional 

sets of unknown variables that were not present in the previous model.  However, the 

new model has a significantly smaller state-space, which does not grow with the number 

of vehicles in the system.  We call this model the reduced-state Extended Markov Chain 

model.  The reduced-state extended model provides a full rank system of equations that 

can be solved to give a unique set of estimates for the output parameters of the AMHS. 

4.3. Additional notation 

p
p

i
: probability that a vehicle is blocked by a vehicle occupying pick-up station 

s
p
i , Mmi ∈ . 

p
d

i
: probability that a vehicle is blocked by a vehicle occupying drop-off station 

s
d
i , Mmi ∈ . 

Cr : expected time between two consecutive visits to state r. 

)(tbE : expected time a vehicle stays blocked from travel. 
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T r : time from the instant the system enters state r until the instant it enters the 

next state. 

rπ : proportion of time that a vehicle spends in state r. 

4.4. Additional mathematical assumptions 

In addition to the assumptions in Section 3.6, the reduced extended Markov chain 

model assumes that: 

1. Loads are distributed evenly among the vehicles.  

2. The probability that a vehicle is blocked by the downstream station 

depends on the steady-state probability that the downstream station is 

occupied by a vehicle which increases linearly with the number of 

vehicles in the system (fleet size). 

Assumption (1) allows us to separate the Markov chain analysis of each vehicle, 

while assumption (2) simplifies the modeling of vehicle-blocking. 

4.5. The reduced state extended Markov chain model 

Similar to the detailed model in Chapter three, we propose to consider only those 

points in time where a vehicle is located at a station.  We characterize a state by 

specifying the condition and location of the vehicle, which is defined by three characters: 

),,,,(),,(),,...,2,1,( skbfedpMimi =   

The first and second characters describe, respectively, the machine occupied by 

the vehicle and the station type (pick-up or drop-off), and the third character specifies the 

condition of the vehicle (empty, loaded, blocked/empty, blocked/loaded, and receiving 

service).   
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4.5.1. Transition probabilities  

The reduced state model has an additional set of transition probabilities associated 

with the event that the vehicle gets blocked by the downstream station blocking.  

p
d

i 1+
denotes the probability that the vehicle will be blocked by a vehicle at s

d

i 1+  and 

cannot move from s
p

i to s
d

i 1+ , and let p
p

i
 denotes the probability that the vehicle will be 

blocked by s
p
i  and cannot move from s

d

i  to s
p

i .   There are also the same transition 

probabilities that were in the detailed model; qi
 the probability that an empty vehicle 

arriving at a pick-up station s
p

i  will find a load waiting, and r i  the probability that a 

loaded vehicle arriving at drop-off station s
d

i will drop off its load at s
d

i .  Based on these 

probabilities, we define the transition probabilities in the transition matrix R given by, 
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where xx −=1 . 

The transition matrix R specifies the movement of the vehicle between the states.  

The position and type of the vehicle (e, f, b, k, or s), the possibility of a vehicle blocking 

its path, and the presence of a load to be picked-up or dropped-off, determine the system 

transitions. In Figure 4.1 below, consider the transitions from state ),,( edi , an empty 

vehicle arriving to a drop-off station s
d
i will move empty to the next pick-up station s

p
i , 

entering state ),,( epi  if it was not blocked by another vehicle, which happens with 

probability p
p

i
.  With probability p

p

i
, the vehicle gets blocked and transitions to 

state ),,( bdi .  From state ),,( epi , the empty vehicle will leave empty if there was no load 
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waiting at s
p
i , which happens with probability q

i
, and also if there is no vehicle at s

d

i 1+  

blocking its way, with probability p
d

i 1+
, thus, the vehicle moves from state ),,( epi  to state 

),,1( edi +  with probability pq
d

ii 1+
, and to the blocked state ),,( bpi with 

probability pq
d

ii 1+
.  However, if the empty vehicle encounters a load at s

p

i , it moves to 

state ),,( spi and starts the pick-up process, with probability q
i
.  Similarly, a loaded 

vehicle arriving to a drop-off station s
d

i 1+ , a state denoted by ),,1( fdi + , will drop-off its 

load, thus entering state ),,1( sdi +  with probability ri 1+ , or move to states ),,1( fpi + and 

),,1( kdi +  with probabilities pr
p

ii 1+
 and pr

p

ii 1+
, respectively.   
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Figure 4.1 Part of the state transition diagram for the reduced-state extended Markov 
chain 

 

An empty vehicle arriving to a drop-off station will move to the next pick-up 

station provided that there was no other vehicle blocking its way, and so is the case for a 

loaded vehicle arriving to a pick-up station.   We assume that after a vehicle is blocked, it 

gets unblocked and moves to the downstream station with probability 1.  The justification 

for this assumption is that a vehicle gets blocked because somewhere downstream 

another vehicle is in service, this vehicle can be either the one directly downstream from 

the blocked vehicle or several stations downstream given that there are vehicles 

occupying all the station in between.  The vehicle does not get blocked twice at the same 
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station because the vehicle that was in service has finished its job and will move, 

unblocking all the vehicles that were waiting behind it.  

4.5.2. The reduced Markov chain steady-state analysis 

Let Cr be the expected time between two consecutive visits to state r, r=1,…,|R|.  

Without loss of generality, assume that C is the expected time between two visits to some 

reference state, say state ),,1( ep .  Let υ ={ υr} r=1, …, |R|, where υr denote the visit ratio 

to state r, which is the number of times the system visits state r between two successive 

visits to the reference state ),,1( ep , by this definition, 1),,1( =υ ep .  For a finite state, 

positive recurrent Markov Chain, the visit ratios can be uniquely obtained by solving the 

square system of equations (Ross, 2000):  

υRυ =           (4.1) 

1),,1( =υ ep          (4.2) 

The elements in the transition matrix are the transition probabilities between 

states, discussed earlier in Section 4.5.1.  Some of these probabilities are unknown, 

specifically, the load-encountering probabilities Miqi
,...,1},{ ==q , and the blocking 

probabilities Mipp
p
i

pd
i

,...,1},{},{ === pp
d . 

From equations (4.1), and (4.2), we get: 

)( ),,1(),,1(),,1(),,( υυυυ spifpi

d

ikpifdi p −−− ++=      (4.3a) 

υυ ),,(),,( fdii

p

ikdi rp=         (4.3b) 

υυ ),,(),,( fdiisdi r=         (4.3c) 

υυυ ),,1(1),,1(),,( epi

d

iibpiedi pq −−− +=       (4.3d) 
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)( ),,(),,(),,( υυυ edisdi

p

ibdi p +=        (4.3e) 

υυυ ),,(),,(),,( fdii

p

ikdifpi rp+=        (4.4a) 

)( ),,(),,(1),,( υυυ spifpi

d

ikpi p +=
+

       (4.4b) 

υυ ),,(),,( epiispi q=         (4.4c) 

)( ),,(),,(),,(),,( υυυυ edisdi

p

ibdiepi p ++=       (4.4d) 

υυ ),,(1),,( epi

d

iibpi pq +
=         (4.4e) 

Combining (4.3d), (4.3e), and (4.4d), (4.4e), we get the following expression for 

υ ),,( epi , 

υυυ ),,1(1),,(),,( epiisdiepi q −−
+=        (4.5) 

Note that in (4.3) and (4,4), the load-drop off probabilities at drop-off stations, 

Mir i ,...,1},{ ==r are obtained from the move rates as was demonstrated in Section 3.7.3 

using the expression: 

Mir d

i
i ∈∀= ,

α

λ
        (4.6) 

4.5.3. Stability conditions 

For a stable system, the expected number of loads delivered by a single vehicle to 

drop-off station s
d
i in a cycle of length C must equal the number of times a single vehicle 

enters state ),,( sdi  (unloads at s
d
i ) in the same period.  Let n denote the number of 

vehicles on the loop, then: 

n

Ci
sdi

λ
υ =),,( , Mi ∈∀         (4.7) 
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During a cycle of length C, each vehicle makesv epi ),,(  empty trips to s
p
i .  The 

vehicle picks up a load with probabilityq
i
, and moves to s

d
i 1+ if it does not get blocked 

with probability p
d
i 1+ .  Therefore, during a cycle, the expected number of loads picked up 

from s
p
i by each vehicle is υ ),,( epii

q .  For a stable system, this should equal nC i /λ ; the 

number of move requests per vehicle in a time period of length C.  Equating these terms 

we get the following necessary conditions for AMHS stability: 

n

C
q

epi

i

i

),,(υ

λ
= Mi ∈∀         (4.8) 

From (4.7) and (4.8), we get: 

),,(),,( epiisdi qv υ=         (4.9) 

Substituting (4.9) in (4.5), we get: 

υυ ),,1(
1

),,( epi

i

i
epi

q

q
−

−=         (4.10) 

Continuing to express υ ),,( epi  in terms of υυυ ),,1(),,2(),,1( ...,, epepiepi −− , we get 

),,1(
1

),,( ep

i

epi
q

q
υυ =          (4.11) 

From (4.2), we have that 1),,1( =epυ and thus, 

q

q

i

epi
1

),,( =υ , Mi ∈∀         (4.12) 

Substituting (4.12) in (4.8), and after some algebra we get: 

Cnq

C
q

i

i

i

λ

λ

+
=

1

Mi ∈∀        (4.13) 
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4.5.4. Vehicle blocking probabilities 

A vehicle is blocked when it attempts to move to the downstream station but finds 

that station occupied by another vehicle.  The downstream vehicle could be receiving 

service, traveling towards that station or is also blocked.   

Proposition 4-1: if the distance between the drop-off station and pick-up station 

of a machine is less than the distance between two machines, a vehicle at a drop-off 

station cannot get blocked by a vehicle traveling towards the downstream machine’s 

pick-up station. 

 

Proof: consider the Figure above, assume that it is possible for v2 to be blocked at 

s
d

i by v1 that is traveling to s
p
i .  For this case to happen, the moment v1 started leaving s

d
i , 

v2 must have been traveling towards s
d

i on the segment between s
p
i 1− and s

d
i , but this 

contradicts the initial control mechanism that does not allow a vehicle to travel towards a 

load port occupied by another vehicle. ■ 

Proposition 4-1 implies that a vehicle cannot be blocked at a drop-off station by a 

vehicle traveling towards the downstream pick-up station.  The opposite, however, could 

happen, i.e. a vehicle at a pick-up station can get blocked by a vehicle traveling towards 

the downstream drop-off station. 

Let υ ),( di  and υ ),( pi denote the visit ratios to the input buffer and the output buffer 

of machine i, respectively.  By this definition: 

υυυυυυ ),,(),,(),,(),,(),,(),( bdiedisdikdifdidi ++++=     (4.14a) 
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υυυυυυ ),,(),,(),,(),,(),,(),( bpiepispikpifpipi ++++=     (4.14b) 

From (4.3), (4.4), (4.6), and (4.12), while keeping in mind that the arrival rate of 

loaded vehicles is equal for every drop-off station, and after some algebra we can express 

visit ratios as: 

1

1
),,(

r

q
fdi =υ          (4.15a) 

p

iikdi pr
r

q

1

1
),,( =υ         (4.15b) 

1),,( q
q

q

i

i

sdi =υ          (4.15c) 

1),,( qedi =υ          (4.15d) 

1),,( q
q

p

i

p

i

bdi =υ         (4.15e) 

ifpi r
r

q

1

1
),,( =υ          (4.16a) 

d

i

i

i

ikpi pq
q

q
r

r

q
11

1

1
),,( )( ++=υ        (4.16b) 

1),,( q
q

q

i

i

spi =υ          (4.16c) 

i

epi
q

q1
),,( =υ          (4.16d) 

d

ibpi pq 11),,( +=υ         (4.16e) 
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In expressions (4.15) and (4.16) we assume, without loss of generality, that the 

first machine in the sequence of machines 1,2,…,M, must receive loads (i.e. 01 >r ).  We 

can now express ),( diυ  and ),( piυ  as: 

i

p

i

p

iidi
q

q
p

r

q
pr 1

1

1
),( )1()1( +++=υ       (4.17a) 

i

d

iii

d

idi
q

q
pqr

r

q
p 1

1

1

1
1),( )1()1( ++ ++++=υ      (4.17b) 

Recall that d

ip is the steady-state probability that the vehicle is blocked and cannot 

move to d

is , and p

ip denote the steady-state probability that the vehicle is blocked and 

cannot move to p

is .  A vehicle is blocked by drop-off station d

is  when there is another 

vehicle traveling to, receiving service, or also blocked at d

is .  A vehicle is blocked by 

pick-up station p

is  when there is another vehicle receiving service, or also blocked at p

is .  

We also assumed in Section 4.4 that the blocking probabilities increase linearly with the 

fleet size (n), since a vehicle gets blocked if any of the n-1 vehicles is occupying the 

downstream station, we can therefore estimate d

ip  and p

ip  from: 

d

i

Mj
pjdj

did

i snp ∀
+

−=
∑
∈∀

,)1(
),(),(

),(

υυ

υ
      (4.18a) 

p

i

Mj
pjdj

bpikpispip

i snp ∀
+

++
−=

∑
∈∀

,)1(
),(),(

),,(),,(),,(

υυ

υυυ
     (4.18b) 

From (4.17) and (4.18) 



74 

∑
∈∀
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The total number of unknowns we have is 4|M|+1:  

• |M| unknowns for the visit ratios, Miepi ,...,2,1},{ ),,( == υυ e)(p, . 

• |M| unknowns for the load-encountering probabilities at pick-up 

stations: Miq
i

,...,1},{ ==q ,  

• |M| unknowns for the vehicle-blocking probabilities by drop-off stations: 

Mip
d

i
,...,1},{ ==p

d
. 

• |M| unknowns for the vehicle-blocking probabilities by pick-up stations: 

Mip
p

i

p
,...,1},{ ==p . 

• One unknown for the cycle length C. 

We still need another equation that links C with the visit ratios as will be shown in 

Section 4.5.5. 

4.5.5. Transition times 

Because this model tracks the movement of a single vehicle, it has an advantage 

over the earlier model developed in Chapter Three, because there is no need for the 

virtual stations in order to synchronize the vehicles’ movement, when the travel times and 

loading times are not equal.  However, this implies that unlike the previous model, the 
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transition times between pairs of states are not equal.  In this section, we develop 

expressions for the expected state transition time, which is the expected time from the 

instant the vehicle enters state r until the instant it enters the next state. 

A discussion on the expected blocking times is necessary before we derive the 

expressions for the transition times.  Let tb denote the time that a vehicle is blocked, 

which is the time the vehicle blocking its ways needs before it finishes service 

(loading/unloading) or travel.   

The time that a vehicle spends while blocked depends on the percentage of time 

the vehicle is traveling and the expected time the vehicle spends loading/unloading.  As 

the number of vehicles increase, the proportion of the blocking time due to 

loading/unloading operations is less significant and is mostly caused by the traveling or 

other blocked vehicles.  Therefore, we develop the expression to estimate the average 

blocking time that depends on the expected visit rate to each state in the Markov chain. 

We should also consider that when a vehicle becomes blocked, the time it takes 

for the vehicle blocking its way to finish its service is not necessarily the entire service 

time.  In fact, the average remaining service time, )(S rE , of a vehicle as seen by a 

randomly arriving vehicle (Kleinrock, 1975) is: 

2

)1)((
)(

2 +
=

CSE
SE s

r   

Where E(S) is the service time and 2
C s is the coefficient of variation of service 

time.  It is reasonable to assume that loading/unloading and travel times are all 

deterministic, 02 =C s  and thus, 

2

)(
)(

SE
E S r =   
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Taking this into consideration in addition to the earlier discussion of the blocking 

time, we can use the following expression to estimate the expected blocking time  
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where it  is the travel time from the drop-off station to the pick-up station of 

machine i, 1, +iit  is the travel time from the pick-up station of machine i to the drop-off 

station of machine i+1, and l is the loading/unloading time.  The first term in expression 

(4.20) is the average blocking time caused by pick-up stations, and the second term is the 

average blocking time caused by drop-off stations.  Our estimate for the average blocking 

time assumes that: 

1. The expected blocking time is aggregated in one expression rather than separating the 

blocking time for each station; this is justified because neither the location nor the 

type of service is known for the vehicle that is causing the blocking.  Recall that when 

a vehicle is blocked, the blocking is not necessarily caused by the vehicle occupying 

the immediate downstream station. 

2. Loading/unloading time are larger than travel times from the drop-off to the pick-up 

station within the same machine, if this was not true, then a vehicle cannot get 

blocked by a loading/unloading vehicle. 

From expressions (4.15)-(4.17), )(tbE can be written as  
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We can now develop the expressions for the state transition times, let T r denote 

the time from the instant the vehicle enters state r until the instant it enters the next state.  

We can develop an expression for the cycle length C by considering the transition time 

from one state to the next. C was defined as the expected time between two successive 

visits to the reference state ),,1( ep , and can thus be obtained from: 

∑
∈∀

=
Rr

rr TEC )(υ         (4.22) 

The terms )(TE r , Rr ∈ can be determined based on the transition probabilities.  

For instance, consider state ),,( epi ,which is an empty vehicle arriving at some pickup 

station s
p
i , the time that the vehicle spends in this state depends on the probability of 

encountering a load at s
p
i and on the probability of being blocked at s

p
i  by s

d
i 1+ . Thus 

with probability qi
, the vehicle will find a load and the next state is ),,( spi ; the transition 

time in this case is the loading time l.  If the vehicle does not encounter a load but is 

blocked from moving to s
d
i 1+ , from the discussion above, we estimate this transition time 

to be )(tbE , and this happens with probability pq
d
ii 1+ .  However, with probability pq

d
ii 1+ , 

the vehicle does not encounter a load and is not blocked from moving; the transition time 

in this case is the time to travel from s
p
i  to s

d
i 1+ , denoted by t ii 1, + , thus the expected time 

spent in state ),,( epi is: 

( ) tpqtpqq ii
d

iib
d

iiiepi ElTE 1,11),,( )(. +++
++=      (4.23a) 

Using the same logic, we can derive the expected transition time for the other 

possible states of a vehicle at s
p
i : 

( ) 1,11),,( )( +++ += ii

d

ib

d

ifpi tptEpTE       (4.23b)  
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( ) 1,),,( += iikpi tTE         (4.23c) 

( ) 1,),,( += iibpi tTE         (4.23d) 

( ) 1,11),,( )( +++ += ii

d

ib

d

ispi tptEpTE       (4.23e) 

For a vehicle at s
d
i , we can also derive the expected transition times as follows: 
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From (4.12), (4.15), (4.16), (4.22), (4.23), and (4.24), we have 
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Combining equation sets (4.13), and (4.20) with equations (4.21) and (4.25), we 

have 3|M|+2 equations and 3|M|+2 unknowns, and we can find the solution to the system 

of equations and calculate the visit ratio to every state, and the blocking probabilities. 

Proposition 4-2: Consider the system of nonlinear equations: 
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If the AMHS is stable (i.e. the AMHS can handle all the move requests within the 

planning horizon), there exists a unique solution for the load-encountering probabilities at 

pick-up stations q, the vehicle-blocking probabilities by drop-off stations, p
d , the 

vehicle-blocking probabilities by pick-up stations, p
p , the expected blocking time )(tbE , 

and the cycle length C, and this solution provides the unique solution to the steady-state 

visit ratios, υ to states of the Markov chain R.  

Proof 

The outline of the proof is as follows:  

1. If the unknown transition probabilities in the transition matrix are known, then there 

exists a solution to the stationary visit ratios to the Markov chain states,  v, assuming 

that the AMHS is stable; this follows from the fact that the Markov chain is finite, 

irreducible, and positive recurrent. 

2. We then prove by contradiction that for every set of unknowns in the system of 

equations we solve, there cannot be two different vectors that will generate the same 
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solution for v.  The unknowns are the set of load-encountering probabilities q, the set 

of vehicle-blocking probabilities by drop-off stations,p
d , the set of vehicle-blocking 

probabilities by pick-up stations, p
p , the expected blocking time )(tbE , and the cycle 

length C.   

This is accomplished in the following sequence: 

• Starting with the cycle length C, we show that there cannot be two different 

values for C that will generate the same solution for v.   

• We then show that there cannot be two sets of the load encountering 

probabilities q that will generate the same cycle length C. We combine this 

result with the previous one we draw the conclusion that two different vectors 

of q cannot generate the same v. 

• Similarly, we show that there cannot be two sets of the blocking probabilities 

that will generate the same set of the load encountering probabilities q. 

• Finally, we show that since the expected blocking time )(tbE is a function of 

the load encountering probabilities, and since we have already established that 

the load encountering probabilities have to be unique, we assert that )(tbE also 

must be unique.  

Formal proof: 

If the load-encountering probabilities q, the vehicle-blocking probabilities by 

drop-off stations, p
d , the vehicle-blocking probabilities by pick-up stations, p

p , the 

expected blocking time )(tbE , and the cycle length C are known, and if the AMHS is 

stable, the Markov chain with transition matrix R is ergodic because it is finite and 
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recurrent (Ross, 2000).  For an ergodic Markov chain, there exists a unique solution to 

the steady-state visit ratios by solving the system of equations: 

11 =

=

υ

υυR
 

Since the transition matrix R is a function of q, p
d ,p

p , )(tbE  and C, we need to 

prove that there exists only one q, p
d ,p

p , )(tbE  and C, for a given instance of the 

problem, where an instance is defined by L(n), the directed loop with n vehicles, M the 

set of machines in L(n), λ the arrival rate of move requests, and T, the travel time matrix, 

and l the loading/unloading times.  We now prove, by contradiction, that there is only one 

solution for υ, q,p
d ,p

p , )(tbE  and C. 

a) Suppose there are two scalars 1
C and 2

C , and two vectors υ1 and υ2 such that 

21
CC ≠ , υυ 21 = , and both solutions satisfy the system of equations in the 

Proposition. 

From expression (4.7):  

 Mi
n

Ci
sdi ∈∀= ,),,(

λ
υ , 

If 21
CC ≠ , then Mi

sdisdi
∈∀≠ ,2

),,(
1

),,( υυ , which contradicts the initial 

assumption that there are two solutions such that 21
CC ≠ , υυ 21 = . 

b) Suppose there are two vectors q1 and q2, and two vectors υ1 and υ2 such that 

qq
21 ≠ , υυ 21 = , and both solutions satisfy the system of equations in the 

Proposition. 

From expression (4.8), the load encountering probabilities are obtained 

from: 
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Since we already established that 21
CC = , then if qq

21 ≠ , there is at least 

one machine Mi ∈ , such that ),,(
2

),,(
1

epiepi υυ ≠ , which contradicts the 

initial assumption that there are two solutions such that qq
21 ≠  and 

υυ 21 = . 

c) Suppose there are two vectors 
1

p
p and 

2
p

p , and two vectors υ1 and υ2 such 

that 
21

pp
pp

≠ , υυ 21 = , and both solutions satisfy the system of equations in 

the Proposition.  

We already established that for υυ 21 = , we must have 21
CC = and qq

21
= .  

If qq
21

= , then from expression (4.12): 

q

q

i

epi
1

),,( =υ  , we must have Miepiepi ∈∀= ,),,(
2

),,(
1 υυ , combining this 

result along with expression (4.15e): 

1),,( q
q

p

i

p

i

bdi =υ ,  

we conclude that if 
21

pp
pp

≠ , there is at least one machine Mi ∈ , such 

that ),,(
2

),,(
1

bdibdi υυ ≠ , which contradicts the initial assumption that there 

are two solutions such that 
21

pp
pp

≠  and υυ 21 = . 



83 

d) Similarly, suppose there are two vectors 
1

p
d and 

2
p

d , and two vectors υ1 and 

υ
2 such that 

21
pp

dd
≠ , υυ 21 = , and both solutions satisfy the system of 

equations in the Proposition. 

We already established that for υυ 21 = , we must have 21
CC = and 

qq
21

= .  If qq
21

= , then from expression (4.12): 

q
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),,( =υ  , we must have Miepiepi ∈∀= ,),,(
2

),,(
1 υυ , combining this 

result along with expression (4.16b): 
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We conclude that if 
21

pp
dd

≠ , there is at least one machine Mi ∈ , such 

that ),,(
2

),,(
1

kpikpi υυ ≠ , which contradicts the initial assumption that there 

are two solutions such that 
21

pp
dd

≠  and υυ 21 = . 

e) We already established that for υυ 21 = , we must have 21
CC = , qq

21
= , then 

from expression (4.21): 
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we must have 21 )()( tt bb EE = .   

From (a), (b), (c), (d), and (e), we conclude that there cannot exist two solutions 

that satisfy the set of equations in the proposition such that  
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21
CC ≠ , or qq

21 ≠ , or 
21

pp
pp

≠ , or  
21

pp
dd

≠ or 21 )()( tt bb EE ≠ and υυ 21 = ■ 

We have proved that if the AMHS is stable, and a solution to the system in the 

proposition exists, then this solution is unique.  We defined stability as the ability of the 

vehicles to handle all the move requests within the planning horizon.  We use 

enumeration of the number of vehicles (n) in order to find the solution.  Let B denote the 

total number of vehicle buffers (locations vehicles can occupy).  The maximum number 

of vehicles on the loop, nmax, has to satisfy: 

1max −≤ Bn          (4.26) 

otherwise, there would be a deadlock situation.  We use the following algorithm to find 

the minimum number of vehicles for a stable AMHS: 

1. Set the number of vehicles n=1. 

2. Solve the system of equations in proposition 1: 

• If a solution exists, it is unique, exit the algorithm. 

• If a solution does not exist: 

o If n=B-1, a solution does not exist, the AMHS cannot satisfy 

the move requirements, regardless of fleet size. 

o If n<B-1, then set n=n+1, go back to step 2. 

4.5.6. Steady-state probabilities of the Markov chain 

The previous analysis provides us with the relative frequency with which each 

state occurs in the embedded Markov chain.  We can now find the proportion of time that 

a vehicle spends in each state.  We defined rυ  as the relative frequency with which state 
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r is visited, let rπ denote the proportion of time that a vehicle spends in state r, which can 

be obtained from: 

∑
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kk
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TE

TE

)(

)(
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υ
π         (4.27) 

4.6. Numerical example 

We use two layouts, L1 and L2, to compare the analytical model estimates of the 

average time between empty-vehicle arrivals to pick-up stations to values obtained from 

discrete-event simulation.  Layout 1 (L1) in Figure 4.2, is a bay that has one stocker (m1) 

and 7 process tools (m2 through m8).  Layout 2 (L2) (Figure 4.3) has one stocker (m1) and 

14 process tools (m2 through m15). Both L1 and L2 serve five products (pa, pb, pc, pd, pe).  

The total arrival rate to the stocker is edcba λλλλλλ ++++=  jobs per minute.  Each 

job type is released and processed according to the routes given in Table 4.1 and Table 

4.2 for L1 and L2, respectively.  The resulting from-to matrices are presented in Table 4.3 

and Table 4.4.   

Loading Port

Unloading Port

Production Tool/

Processor

Vehicle

 
Figure 4.2 L1: An 8-machine example 
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Figure 4.3 L2: A 15-machine example 

 

Table 4.1 Arrival rate and routing of products for L1 
Product 

Type Routing Jobs/Hour 

pa 1-2-3-4-1 12 
pb 1-3-5-7-1 6 
pc 1-4-8-1 4 
pd 1-7-6-1 3 
pe 1-3-5-8-1 2.4 

 

Table 4.2 Arrival rate and routing of products for L2 
Product 

Type Routing Jobs/Hour 

pa 1-2-4-10-12-1 12 
pb 1-3-15-1 6 
pc 1-5-11-14-1 4 
pd 1-7-9-6-1 3 
pe 1-3-5-8-13-1 2.4 

 

Table 4.3 Flow matrix (Loads/hour) for L1 
From/To 1 2 3 4 5 6 7 8 

1  12 8.4 4   3 0 
2   12      
3    12 8.4    
4 12       4 
5       6 2.4 
6 3        
7 6     3   
8 6.4        
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Table 4.4 Flow matrix (Loads/hour) for L2 
From/To 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1  12 8.4  4  3         
2    12            
3     2.4          6 
4          12      
5        2.4   4     
6 3               
7         3       
8             2.4   
9      3          

10            12    
11              4  
12 12               
13 2.4               
14 4               
15 6               

 

In both L1 and L2, loads delivered to the stocker exit the system.  In L1, the 

processing times at each process tool are assumed to be deterministic, and the mean 

processing time is such that processors utilization is 60%.  The distance from the loading 

station, s
p
i  to the unloading station s

d
i 1+ , is 15 feet.  The distance from the unloading 

station s
d
i to the loading station s

p
i is 5 feet.  Each vehicle travels at a speed of 60 ft/min, 

empty or loaded, and it takes 15 seconds to pick-up or drop-off a load. 

In L2, we tested the analytic model results for three different processing time 

distributions at processing stations: deterministic, exponential, and triangular; the 

parameters were chosen so that the average processing time is the same for all three 

cases, and the mean processing time is such that processors utilization is 60%.  The 

distance from the loading station, s
p
i  to the unloading station s

d
i 1+ , is 10 feet.  The distance 
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from the unloading station s
d
i to the loading station s

p
i is 5 feet.  Each vehicle travels at a 

speed of 60 ft/min, empty or loaded, and it takes 15 seconds to pick-up or drop-off a load. 

In both layouts, we compare the interarrival times of empty vehicles at each pick-

up station estimated from the analytic model and a simulation model, at multiple fleet 

sizes starting with the minimum fleet size that can handle the expected move requests (3 

vehicles for L1, and 5 vehicles for L2) up to the maximum fleet size that does not cause 

AMHS deadlock, 15 vehicles for L1, and 29 vehicles for L2.  We used AutoMod 

simulation software to obtain simulated values for this performance measure based on 10 

replications of 10 days each; we also made sure that the system reached steady state 

before we started collecting statistics.  In the simulation model, move requests arrive at 

the stocker according to a Poisson process.  However, move request arrivals at processor 

stations are the result of lot arrival and operation times at the processor station, i.e. we did 

not force them to follow a Poisson process.   

For comparison purposes, we took the average interarrival time of empty vehicles 

at all the pick-up stations.  The analytical and simulated expected interarrival time of 

empty vehicles are shown in Table 4-5 and Table 4-6 for L1 and L2, respectively.  The 

relative error represents the difference between the analytical and the average obtained 

from the simulation.   

Table 4.5 Analytical and simulated average expected time between two empty vehicle 
arrivals 

Fleet size Tanalytic Tsimulation rel. error 

3 6.49 7.01 -7% 

4 5.10 5.74 -11% 

5 4.59 5.24 -12% 

6 4.36 4.86 -10% 

7 4.25 4.59 -7% 

8 4.21 4.45 -5% 
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 Table 4.5 Continued  

Fleet size Tanalytic Tsimulation rel. error 

9 4.20 4.35 -3% 

10 4.23 4.33 -2% 

11 4.27 4.40 -3% 

12 4.33 4.55 -5% 

13 4.40 4.83 -9% 

14 4.47 5.19 -14% 

15 4.56 5.70 -20% 

 

Table 4.6 Analytical and simulated average expected time between two empty vehicle 
arrivals 

Fleet size Tanalytic 
Tsimulation 

(Determinstic) 

Tsimulation 

(Exponential) 

Tsimulation 

(Triangular) 

Average rel. 

error 

5 8.19 9.48 8.88 9.50 13.5% 

6 7.19 8.45 7.90 8.37 14.3% 

7 6.86 7.81 7.23 7.78 11.0% 

8 6.38 7.37 7.15 7.31 13.2% 

9 6.19 7.05 6.57 7.00 11.2% 

10 6.08 6.78 6.35 6.73 9.0% 

11 6.02 6.58 6.15 6.47 6.4% 

12 6.00 6.33 6.02 6.30 4.1% 

13 5.99 6.22 5.95 6.14 1.8% 

14 6.01 6.07 5.84 6.01 -0.4% 

15 6.04 6.02 5.80 5.91 -2.2% 

16 6.08 5.98 5.77 5.84 -3.7% 

17 6.13 5.95 5.76 5.80 -4.7% 

18 6.19 5.96 5.78 5.80 -5.4% 

19 6.26 5.97 5.83 5.81 -6.1% 

20 6.33 6.02 5.91 5.87 -6.1% 

21 6.41 6.09 6.01 5.96 -5.9% 

22 6.49 6.19 6.15 6.08 -5.4% 

23 6.57 6.34 6.32 6.24 -4.1% 

24 6.66 6.53 6.55 6.44 -2.2% 

25 6.75 6.76 6.78 6.69 -0.1% 

26 6.84 7.04 7.07 6.97 2.8% 

27 6.94 7.39 7.44 7.33 6.6% 

28 7.04 7.89 7.97 7.86 12.4% 

29 7.14 8.87 8.92 8.85 24.6% 
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At the early design stages when the system requirements have not yet stabilized, 

testing alternative designs with simulation would be time-consuming and for those early 

phases the analytical model would be a good choice given that it performs reasonably 

well with acceptable error percentages.  Based on the test results of the two numerical 

examples, the following conclusions can be drawn: 

• The accuracy of the model deteriorates at low and high fleet sizes.  This is due to 

the inability of the model to handle the complexity of estimating vehicle-blocking 

caused by chain-blocking (many vehicles blocking each other).  It is expected that 

chain-blocking occurs when the number of vehicles is large since even when a 

single vehicle stops to perform service, many vehicles behind it will be blocked.  

When the number of vehicles is small, chain-blocking is likely to occur because the 

amount of loading and unloading per vehicle is high and vehicles make frequent 

stops.   

• The processing times distribution does not seem to impact the analytical model 

Etimates of the expected throughput capacity of the AMHS. 

4.7. Summary and future work 

In this chapter, we have presented a reduced-state Discrete Time Markov Chain 

model that can be used in assessing closed-loop AMHS performance.  The model deals 

with the computational challenges that were observed in the more detailed model 

discussed in Chapter three.  The growth of the state space dimensionality is polynomial 

as opposed to the exponential growth of the previous model.   

Experimental comparisons of the model generated results with detailed simulation 

for small and medium example problems produced acceptable error margins and the 
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results are obtained very quickly.  In fact, in simulation modeling, the execution time 

increases exponentially with the number of vehicles because of the drastic increase in the 

number of events that the model has to track.  The analytical model execution time is a 

function of the number of stations only. 

One issue that needs to be investigated is the value of the model in practice to 

AMHS designers and analysts.  This can be done by solving a larger instance using the 

SEMATECH data set for a virtual fab and test the model accuracy. 
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 CHAPTER 5 

EXPECTED RESPONSE TIMES AT LOADING  

STATIONS OF VEHICLE-BASED CLOSED LOOP AMHS 

5.1. Introduction and motivation  

Chapters three and four presented two extended Markov chain models that can be 

used in estimating the throughput capacity of a closed-loop vehicle-based material 

handling system.  Experimental comparisons of the analytical model with detailed 

simulation produced acceptable error margins with regard to this performance metric.  

This chapter uses the parameters estimated from the extended Markov chain model to 

derive an approximation of the expected response time by the material handling system to 

a move request from the production system.  The response time is essentially the waiting 

time of loads at loading stations. 

The expected response times are important because they impact fab-level 

performance metrics (such as the production cycle time) and are used to estimate the 

work-in-process (WIP) at the output buffers.  If the response times are too large, the 

production cycle times are inflated by a non value-adding operation (material handling) 

and in this case, the performance of the AMHS could become a bottleneck, an 

unacceptable situation in general and for wafer fabs in particular.  Moreover, having good 

estimates of the WIP levels helps support design decisions that set the capacity of the 

buffers for the processor tools and/or the stocker.  Insufficient buffer capacity leads to an 

often-occupied buffer, and causes blocking and starvation of processor tools, also an 

unacceptable situation because it leads to under-utilization of the expensive production 

tools.  
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Response time to a load move request is defined as the time until an empty 

vehicle responds to the move request by traveling to, then picking up the load from the 

output buffer (loading station).  The derivation of the expected response times is 

complicated by many factors.  First, we must know the distribution of the vehicles on the 

loop at the time the load arrived.  Second, there is a possibility that currently empty 

vehicles pick-up other loads at other stations before they reach the station for a newly 

arrived load.  Third, we must consider the expected number of loads waiting ahead of the 

move request at the same station. 

5.2. Modeling approach 

The approach followed to derive the expected response time analyzes each pick-

up station separately.  We follow a load that just arrived at the pick-up station and 

condition on whether or not there are other loads waiting in the queue at the same station.  

The main details are in deriving the response time for the first-in-line load because its 

pick-up time depends on the location of the vehicles at the time of its arrival and the 

possibility of other loads being picked-up (dropped-off) from (to) other stations while the 

vehicles are traveling towards the waiting load’s location.  

The main idea is to consider each state, and to compute the average length of the 

path from each vehicle’s location to the load’s location, then condition on the state of a 

vehicle at the time the load arrived.  The state-dependent response time is a random 

variable that has a probability function which is derived from the AMHS steady-state 

analysis developed in chapter four.   

To account for having multiple vehicles, we must consider that the vehicle that 

eventually picks up the load is the one that uses the shortest time path among the paths 
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the vehicles might take.  We use the order statistic of the state-dependent response time 

and the adjusted probability function.  Using the order statistic probability function, the 

expected response time at each station is estimated. 

5.2.1.  Additional assumptions 

In addition to the assumptions in sections 3.6 and 4.4, the derivation of the 

expected response time is based on the following assumptions: 

1. Jobs that queue at a machine requesting transportation are processed in 

FCFS order.  

2. The number of loads at the other stations is irrelevant, the only relevant 

factor is whether or not there is a waiting load.   

3. Vehicles are traveling independently and the correlation among the 

vehicles is ignored. 

We need assumption (1) to make the expected response time approximation 

model tractable.  Assumption (2) is based on the FEFS rule dictating that a load at some 

station is not picked up according to its order of arrival in the system but only when an 

empty vehicle encounters it.  Assumption (3) simplifies the analysis because we can 

ignore the interaction among the vehicles.  In the numerical tests based on simulation, 

assumption (3) will yield some errors in estimating the expected response time, and later 

we propose an approach to include correlation among the vehicles. 
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5.3. Relevant parameters from the extended Markov chain model 

Suppose load x completed processing at machine i and joined the queue of loads 

at pick-up station s
p
i waiting for an empty vehicle.  The waiting time of load x will be 

influenced by the following factors: 

• The number of loads waiting ahead of x at s
p
i .   

• The location and condition of each vehicle: vehicles’ states.   

• The transition probabilities between states.   

• The possibility of loads waiting at other pick-up stations.  

• The interarrival time between empty vehicles at s
p
i . If there are loads waiting 

ahead of x at s
p
i , it is important to know the expected time between pickups. 

The extended Markov chain model developed in chapter four provides estimates 

of all the parameters that determine the above factors: 

• The visit ratios of each state r, denoted by ||,...,2,1, Rrr =υ , where state r is 

expressed as r = (m, n, c), m = machine },...,2,1{ M∈ , n = station },{ dp∈ , 

c=condition },,,,{ skbfe∈ . 

• The transition probabilities between the states, which are functions of: 

o load-drop off probabilities Mir i ,...,1},{ ==r , 

o load-encountering probabilities Miqi
,...,1},{ ==q , and 

o vehicle-blocking probabilities Mipp
p
i

pd
i

,...,1},{},{ === pp
d . 

• The expected interarrival time between empty vehicles to each pick-up station   

.,...,1},{ MiTi ==T  
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5.4.  Expected response time model 

5.4.1.  Notation 

s
p
i : pick-up station of machine i. 

iλ  : arrival rate of loads to machine i. 

iq  : probability that an empty vehicle encounters and picks up a load from 

machine i. 

iφ :  probability that the vehicle arriving to s
p
i  is empty. 

P
S  : set of states in which a vehicle picks-up a load. 

P
E  : set of states in which a vehicle is arriving empty at a pick-up station. 

iT : expected interarrival time between empty vehicles to station s
p
i . 

T: expected interarrival time between vehicles (empty or loaded) to any station. 

iR  : expected time until an empty vehicle arrives to s
p
i . 

)(LRi : expected response time for to a move request given that L loads are 

waiting in queue when the load arrives. 

)(Lpi : probability that L loads are waiting in the queue at s
p
i . 

)0(iR ; response time to the first-in-line load at s
p
i . 

rπ : steady-state probability that a vehicle is in state r 

rkt : transition time of a vehicle from state r to state k. 

)( )(rtE : time left before the vehicle leaves state r. 

i

rR : expected time until a vehicle arrives empty at s
p
i given that it is currently in 

state r. 
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jiτ : probability that a vehicle picks-up a load from machine j and delivers it to 

some station other than and passing through s
p
i  

),,( spjs j =  a state in which a vehicle is picking-up a load at machine j.  

),,( epje j =  a state in which a vehicle is empty at the pick-up station of machine j. 

jeω : expected time until a vehicle in state je  arrives empty at s
p
i  to pick-up the 

first waiting load. 

5.4.2.   Model derivation 

The expected response time depends, among other factors, on the station at which 

the move request originates.  Using a central server model, such as M/G/c, to 

approximate the response time to a move request at any station; a common approach in 

the literature for AMHS (Johnson, 2001), (Johnson and Brandeau, 1994), and (Kobza et 

al., 1998), is not appropriate for the AMHS analyzed in this research.  First, the vehicles 

are constantly moving, and thus it is not obvious how to calculate an average trip time 

(necessary to estimate the distribution of the generalized service times).   Second, 

because the response time for each move request depends on the station where it 

originates, there is a wide range of possible response time values and lumping them all 

under an average response will mask these differences.  Third, for design purposes it is 

important to analyze each station separately to accurately estimate the required buffer 

capacity. 

We will use the “tagged” load approach discussed in Bozer et al. (1994), where 

load x is the tagged load.  The tagged load x arrives at the queue of pick-up station p

is , 

since loads are assumed to arrive according to a Poisson process, load x sees the steady-
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state distribution of loads at p

is .  Let L denote the number of loads waiting at p

is at the 

time load x arrives.  If L = 0, the response time to load x, denoted by iR  is the expected 

time until an empty vehicle arrives to p

is .  If L > 0, iR is the expected time until all L+1 

loads are picked up plus the time left for the first load in queue to be picked up.  Let 

)(LRi denote the response time for load x given that L loads are waiting in queue when x 

arrives, and let )(Lpi  denotes the probability that L loads are waiting in the queue at p

is , 

then the expected response time to load x at p

is is estimated by: 

∑
∞

=

=
0

)()(
L

iii LPLRR         (5.1) 

We first consider the case L > 0.  For this case, )(LRi  is the expected response 

time to the first-in-line load and the expected time for the remaining L-1 loads plus load x 

itself.  The expected response time for each load other than the first-in-line is simply the 

expected interarrival time between empty vehicles to station p

is , denoted by iT , thus: 

iii TLRLR .)0()( +=         (5.2) 

Substituting Equation (5.2) into (5.1), we get: 

∑
∞

=

+=
0

)()..)0((
L

iiii LPTLRR   

∑ ∑
∞

=

∞

=

+=
0 0

)()()0(    
L L

iiiii LPTLLPR   

∑
∞

=

+=
0

)()0(    
L

iii LLPTR        (5.3) 

The term ∑
∞

=0

)(
L

i LLP  in (5.3) is the WIPi, the expected work-in-process at station 

p

is , and from Little’s law, iii RWIP λ=   thus: 
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iiiii RTRR λ+= )0(   

ii

i

T

R

λ−
=

1

)0(
             (5.4) 

Expression (5.4) is consistent with the expression developed in Bozer et al. (1994) 

for a single-vehicle system.  iλ  is the arrival rate of loads to machine i, which is already 

given as a parameter for each problem instance.  iT  is the expected interarrival time 

between empty vehicle visits to station p

is , which we estimate using the extended Markov 

chain model from chapter four.  The only unknown is )0(iR ; the response time to the 

first-in-line load at p

is ; its derivation is presented in Section 5.4.3. 

5.4.3.  Expected response time to the first-in-line load 

In this section, we derive the expected response time to the first-in-line move 

request at pick-up station p

is , which is essentially the time until the first vehicle to 

respond enters state ),,( epi .  We will next study )0(iR  under two approaches.  The first 

approach is quite simple and relies on the rate of empty vehicle arrivals to p

is .  The 

second approach is more complex and is based on the expected length of the path from 

each vehicle’s state to the waiting load location. 

Approach 1 

Suppose T is the expected time between two vehicle arrivals to p

is and iφ  is the 

probability that the arriving vehicle is empty.  The expected time until a vehicle arrives 

at p

is from the moment the first-in-line load arrived is T/2, if this vehicle is empty, the 

load will be picked up, otherwise, the load will wait for the next vehicle to arrive, which 
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takes T time units and if this second vehicle is empty, the load is picked up, otherwise, it 

has to wait for the next vehicle to arrive, and so forth.  Based on this logic, we obtain the 

expected response time from: 

.))))(........1(4)(1(3)(1(2)(1(
2

)0( iiiiiiiii TTT
T

R φφφφφφφφ −+−+−+−+=  

∑
∞

=

−++=
1

)1()1(
2 z

z

iii Tz
T

φφφ       (5.5) 

We can show that 
2

2

1

1
)1)(1(

i

i

z

z

iz
φ

φ
φ

−
=−+∑

∞

=

, and thus )0(iR is calculated from: 













 −
+=

i

ii

i TR
φ

φφ
2

1

2
)0(        (5.6) 

T and iφ  are both obtained from the analysis results of the extended Markov chain 

model developed earlier in chapter four as follows.  Recall from chapter four that ),,( epiυ , 

and ),,( fpiυ  are the visit ratios to states ),,( epi and ),,( fpi , respectively, in a cycle of 

length C.  Since the vehicle either arrives loaded or empty, then the arrival rate of 

vehicles is ( ) Cnfpiepi /),,(),,( υυ + , where n is the number of vehicles.  T can be obtained 

from: 

( )n
C

T
fpiepi ),,(),,( υυ +

=        (5.7) 

And iφ , the probability that the arriving vehicle is empty can be estimated from: 

),,(),,(

),,(

fpiepi

epi

i
υυ

υ
φ

+
=         (5.8) 
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Unfortunately, this approach is not supported by the numerical tests based on 

simulation, and as we show later, it yields significant errors in estimating the expected 

response time. 

Approach 2 

Consider the partial transition diagram in Figure 5.1.  A transition probability and 

transition time is associated with each state transition.  The second approach to estimating 

the time until a vehicle enters state (i, p, e), (i.e. a vehicle arrives empty to s
p
i ), is to 

compute the average length of the path from each state to state ),,( epi .  Later, because 

the AMHS has more than one vehicle, the vehicle that eventually picks-up the first-in-

line load from s
p
i is the first one that arrives empty to s

p
i .  We therefore need to use the 

order statistics of each expected path length.  We divide this approach into two parts: 

deriving the expected path length from each state, and the probability associated with 

each path. 

(i-1,d,e)

(i-1,p,s)

(i-1,d,b)

(i-1,p,b)(i-1,p,e)

(i-1,p,k)

(i,d,e)

(i,d,f)

ppi-1

1- ppi-1

qi-1

(1-qi-1) p
d
i

(1-qi-1)(1-p
d
i)

1

(i,d,s)

(i,d,k)

(i,p,f)

1
(1-ri ) p

p
i

ri 

(1-ri )(1-p
p
i)

1

1-p
d
i

1

p
d
i

(i,p,e)1-ppi

(i-1,d,b)

p
p
i

1

1 - ppi

p
p
i

 
Figure 5.1 A partial transition diagram that demonstrates some of the paths  

leading to state (i, e, p) 
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Expected path length derivation 

Let rkp  denote the transition probability from state r to state k, let rkt denote the 

transition time from state r to state k.  Let i
rR denote the expected time until a vehicle 

arrives empty at p

is given that it is currently in state r , which we compute using 

∑ +=
∈∀ Rk

i

krkrk

i

r RtpR )(        (5.11) 

The problem with this simplified approach arises when the vehicle enters a state 

that requires it to pick-up a load from a station other than p

is and deliver it to a station 

beyond p

is ; in this case the 
ir

R values get inflated.  For example, suppose that the vehicle 

is arriving empty at station p

is 1− .  If the vehicle does not find a load, it travels to d

is  then to 

p

is and picks-up the waiting load.  However, if the vehicle does find a load at p

is 1− that is 

headed to a station beyond p

is , this particular vehicle will take a long time until it arrives 

empty at p

is and most likely, another vehicle will pick-up the waiting load, thus 

considering these pick-ups will inflate the expected response time from p

is 1−  to p

is .   

We address this problem as follows: suppose that the vehicle under consideration 

is empty at machine j.  If it finds a load at j that will not be dropped off before it arrives 

to p

is , the next closest vehicle, which arrives at j after jT  time units, becomes the 

candidate vehicle to pick-up the load at p

is , and if this vehicle also finds a load that will 

not be dropped off before it arrives to p

is , the next vehicle becomes a candidate and so 

forth. 
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Therefore, let P
S  denote the set of states where a vehicle picks-up a load, and let 

jiτ  denote the probability that a vehicle picks-up a load from machine j and delivers it to 

a station passing through p

is , these jiτ values can be computed from the release rates as: 

P

k

k

ij
kjki Sk ∈∀= ∑

−

+=

,/
1

1

λλτ         (5.12) 

Let PE  denote the set of states where a vehicle is arriving empty at pick-up 

stations.  We will now modify the expression for the expected response time for the states 

in PE .  Let ),,( epje j =  refer to the state that a vehicle is empty at the pick-up station of 

machine j.  Let ),,( spjs j =  be a state in which a vehicle picks-up a load at machine j.  

jq  is the probability that an empty vehicle encounters and picks up a load from 

machine j.  The vehicle in state je  picks-up the load at p

is , if and only if, it does not find 

a load at j, (with probability jq−1 ) or it finds a load that will be dropped off before p

is , 

with probability )1( jijq τ− , or it finds a load that will be dropped off after p

is  , with 

probability jijq τ , and when this last case happens, this vehicle does not pick up the load 

and the same logic is repeated for the next vehicle that arrives empty at machine j, which 

happens after time delay Tj.  For the first two cases, the expected time until the empty 

vehicle at machine j picks up the load from p

is  is, donated by
jeω , is obtained from: 

∑
∈∀

+++−=
j

jjjjjj
sRk

i

kkeke

i

ssejije RtpRtq
/

)())(1( τω     (5.13) 

Adding the last case yields the following approximation for i
e j

R : 

)(......)))3(2(( jijejjijejjijejjije

i

e qTqTqTqR
jjjjj

τωτωτωτω +++++++=  
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We can now estimate the expected response time by a vehicle coming from any 

state using expressions (5.11) and (5.15) as follows: 
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   (5.15) 

 

Where j refers to the station associated with state r, and jiτ , and 
jeω , are obtained 

from expressions (5.12), and (5.13), respectively.  

For M machines, the number of i

rR values that we need to compute is equal to 

10M.  From expression (5.15), we have 10M linear equations, one for each i

rR , where 

0=i

iR .  The equations in (5.15) provide a unique solution for i

rR as long as the AMHS is 

stable.  The uniqueness of the solution can be established since the coefficients of the 

unknown i

rR  are the transition probabilities of the discrete time Markov chain that 

models the vehicle’s state transitions.  It was already demonstrated in chapter four that if 

the AMHS is stable, the Markov chain is finite and irreducible, and hence the transition 

matrix has full rank (Ross, 2000).   
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Path probability derivation 

We now derive the expression for i

rπ , which is the probability that a vehicle in 

state ),,( cnjr =  will pick-up the first-in-line load from p

is .  Recall that rπ denotes the 

steady-state probability of a vehicle being in state r and was estimated using the extended 

Markov chain model developed in chapter four.  State ),,( cnjr =  implies that the 

vehicle is currently at machine j.  In order for a vehicle in state r to arrive empty at p

is , it 

must not pick-up loads on its way to p

is unless these loads will be dropped-off before the 

vehicle arrives to p

is .  We thus obtain i

rπ  from: 

∏ −=
−

=

1

)1(
i

jk
kikr

i

r q τππ         (5.16) 

The term ∏ −
−

=

1

)1(
i

jk
kikq τ  in expression (5.16) is the probability that the vehicle does 

not pick-up loads from the machines it encounters on its way to p

is  unless they will be 

dropped off before p

is . 

Since the first empty vehicle that reaches the load is the one that picks it up, we 

need the ordered values of the random variable i

rR .  Given that i

rR , r = 1, 2, ..., |R| is the 

expected time to respond to a load at p

is starting from state r, with probability mass 

function i

rπ , then i

R

ii
RRR )()2()1( ... <<<  is the order statistic.  We must now take into 

account that there are n vehicles. Let )()( n
i

rπ  denote the probability that one of the n 

vehicles will come from state r to pick-up the load at p

is , which is the probability that one 

vehicle uses the path from state r and that none of the other n-1 vehicles is using this path 

or a shorter path: 
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The first term in expression (5.17) is the probability that one out of n vehicles will 

arrive to pick-up the load starting from state r, the second term is the probability that 

none of the n-1 vehicles used a shorter time path than the one that starts at state r, and N 

is determined by the normalization condition that 1)()( =∑
∈∀ Rr

i

r nπ .  The expected response 

time to the first-in-line load at p

is is: 

( )∑
=

+=
)(

1)(
)()()( )()()0(    

R

r
r

i

r

i

ri tERnR π       (5.18) 

)( )(rtE denotes the time left before the vehicle leaves state r.  Since travel times 

and loading/unloading times are deterministic, we estimate )( rtE from: 

2
)( )(

t r
rtE =          (5.19) 

Where rt is the time from the moment a vehicle enters state r until it transitions to 

the next state.  For instance, if state r is an empty (or loaded) travel from station i to 

station i+1, then 1, += iir tt . 

Substituting (5.18) into (5.4), we get the following expression for the expected 

response time to a load just arriving at p

is : 
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      (5.20) 

A numerical example is provided in the next section to test and compare the 

analytical and the simulation results. 
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5.5. Numerical example 

We use layout L2 from Section 4.5 to compare the analytical model estimates of 

the average response time to values obtained from discrete-event simulation.  Layout 2 

(L2) re-illustrated in Figure 5.2 has one stocker (m1) and 14 process tools (m2 through 

m15) and five products (pa, pb, pc, pd, pe).  The total arrival rate to the stocker is 

edcba λλλλλλ ++++=  jobs per minute.   
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Figure 5.2 L2 A 15-machine example 

 

We used the AutoMod simulation model to obtain the simulated values for the 

expected response time to move requests at each pick-up station.  Simulation results are 

based on 10 replications and 10 days per replication.  The analytical and simulated 

expected response times for each station are presented for three different fleet sizes: 6, 

17, and 26 vehicles, shown in Tables 5.1, 5.2, and 5.3, respectively. The “Rel. error” 

column represents the relative difference between the analytical result and the sample 

mean obtained from simulation.  In the simulation model, we experimented with two 

distributions for processing times at the processor tools: exponential and deterministic, 

and the comparisons with the analytical results are also reported in Tables 5.1-5.3.   
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Table 5.1 Analytical and simulated expected response time (secs) results for n = 6 

Analytical Rel. error Rel. error 

Machine Approach 

1 

Approach 

2 

Sim. 

(Exp.) 
Approach 

1 

Approach 

2 

Sim. 

(Det.) 
Approach 

1 

Approach 

2 

1 46.0 81.6 87.0 -48% -6% 100.2 -54% -19% 

2 61.3 93.8 104.1 -42% -10% 110.4 -44% -15% 

3 64.4 99.6 106.9 -39% -7% 96.9 -34% 3% 

4 61.3 97.1 104.3 -42% -7% 111.8 -45% -13% 

5 66.0 103.0 111.7 -43% -8% 80.9 -18% 27% 

6 68.6 104.6 117.2 -39% -11% 112.0 -39% -7% 

7 68.6 103.1 115.0 -37% -10% 109.3 -37% -6% 

8 69.0 101.1 115.1 -37% -12% 110.9 -38% -9% 

9 68.6 95.8 114.5 -44% -16% 116.8 -41% -18% 

10 61.3 105.8 99.4 -40% 6% 102.2 -40% 3% 

11 67.8 112.2 113.4 -42% -1% 111.5 -39% 1% 

12 61.3 101.7 101.3 -39% 0% 108.8 -44% -6% 

13 69.0 107.2 118.5 -40% -10% 117.0 -41% -8% 

14 67.8 102.3 114.6 -42% -11% 119.3 -43% -14% 

15 66.3 108.2 106.2 -39% 2% 80.2 -17% 35% 

 

Table 5.2 Analytical and simulated expected response time (secs) results for n = 17 
Analytical Rel. error Rel. error 

Machine Approach 

1 

Approach 

2 

Sim. 

(Exp.) 
Approach 

1 

Approach 

2 

Sim. 

(Det.) 
Approach 

1 

Approach 

2 

1 12.0 18.7 17.1 -31% 10% 18.2 -39% 5% 

2 13.8 19.9 18.8 -24% 6% 23.0 -24% 10% 

3 14.2 19.6 19.6 -30% 0% 15.4 -38% 15% 

4 13.8 19.2 19.7 -29% -3% 22.4 -10% 25% 

5 14.4 19.4 21.2 -33% -8% 24.2 -36% 14% 

6 14.8 18.9 21.7 -33% -13% 21.3 -39% 22% 

7 14.8 18.4 20.3 -29% -9% 20.6 -31% 14% 

8 14.8 19.4 19.4 -23% 0% 19.1 -28% 6% 

9 14.8 18.5 19.1 -27% -3% 13.7 -23% 3% 

10 13.8 19.7 17.0 -19% 16% 18.7 1% 44% 

11 14.7 19.6 18.7 -28% 5% 14.1 -21% 5% 

12 13.8 18.8 18.1 -24% 4% 18.2 -2% 34% 

13 14.8 19.1 19.5 -30% -2% 17.8 -19% 5% 

14 14.7 18.5 18.8 -25% -2% 19.8 -18% 4% 

15 14.4 18.7 17.8 -17% 5% 19.6 -27% 6% 
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Table 5.3 Analytical and simulated expected response time (secs) results for n = 26 
Analytical Rel. error Rel. error 

Machine Approach 

1 

Approach 

2 

Sim. 

(Exp.) 
Approach 

1 

Approach 

2 

Sim. 

(Det.) 
Approach 

1 

Approach 

2 

1 12.0 11.2 10.9 -22% 3% 11.0 -22% 2% 

2 13.8 11.7 12.0 -18% -2% 8.9 8% 32% 

3 14.2 11.5 12.1 -20% -5% 11.2 -12% 3% 

4 13.8 11.3 11.8 -21% -4% 8.7 10% 30% 

5 14.4 11.3 11.7 -11% -3% 9.7 2% 16% 

6 14.8 11.1 11.2 -14% -1% 9.3 9% 19% 

7 14.8 10.9 10.6 -13% 3% 8.8 15% 25% 

8 14.8 11.7 10.6 -5% 10% 9.3 9% 25% 

9 14.8 11.1 10.6 -2% 4% 8.8 15% 26% 

10 13.8 11.8 10.1 -5% 17% 9.0 7% 32% 

11 14.7 11.5 11.2 -8% 2% 10.3 -2% 12% 

12 13.8 11.1 10.9 -13% 2% 9.8 -2% 14% 

13 14.8 11.3 11.7 -12% -4% 10.3 -2% 9% 

14 14.7 11.0 11.3 -14% -3% 9.5 6% 16% 

15 14.4 11.2 11.3 -13% 0% 9.1 9% 23% 

 

Figure 5.3 shows the average expected time to a move request averaged over all 

the stations obtained from the analytical model and the simulation model.  “Sim-Exp.” 

refers to the model with exponential processing.  
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Figure 5.3 Average response time to a move request 

 

We make the following observations based on the test results of the numerical 

example.  The simple approach (approach 1) always underestimates the expected 

response time and yields significant errors.  Recall that approach 1 estimates the response 

time by conditioning on whether or not the arriving vehicle is loaded, and we used the 

average interarrival time between two vehicles to do so.  Vehicles are not evenly 

distributed around the loop, and taking the average interarrival time hides the variability 

in the arrival rate of vehicles.  In fact, when the vehicles are displaying train-like 

behavior (vehicles are traveling close to each other), the variability in the interarrival time 

is very large.   

Using approach 2, the analytical model estimates of the expected response time 

are reasonably accurate when the processor tools have exponential (rather than 

deterministic) processing times.  This is expected since one of the main assumptions of 

the analytical model is that vehicles visit stations at random points in time.  When the 

processing times are exponential, the randomness in vehicles’ movement is somewhat 

justified because the arrival rate of move requests is exponential and as a result vehicles 
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transition between states is random.  When the vehicles’ arrival process is Poisson, then 

we can assume that when load x arrives at the queue of a pick-up station, the remaining 

time of service for the first-in-line load is independent of the arrival time of load x.  It 

also seems that this assumption is more important when estimating the response time than 

when estimating the throughput capacity.   

The analytical model ignores the correlation between the vehicles’ location and 

condition and to some extent this explains the deviation of the analytical model results 

from the simulation.  More specifically, the vehicles are often clustered together and 

display train-like behavior, and when this happens, there is a correlation between the 

location of one vehicle and the rest of the fleet.  The correlation increases when the 

proportion of empty travel increases because empty vehicles are more likely to cluster 

behind a vehicle in service.  One would expect that as the number of vehicles increases, 

the AMHS utilization decreases, and the clustering behavior will increase.  In fact, this 

will not be the case but rather two or more trains of vehicles will form.  To see this, 

suppose there was a fleet of three vehicles that travel in a train and whenever this train 

approaches a loading station, the first vehicle picks up the waiting load and the next move 

request arrives at the station just after the third vehicle has passed.  Now suppose that 

three more vehicles were added.  Because of the time gap between the first vehicle and 

the fourth vehicle, it is more likely that by the time the fourth vehicle arrives at the 

loading station, a load has arrived, and this will break the train.   

Ignoring the correlation between vehicles is also behind the considerable 

deviation of the analytical results from the deterministic processing time model.  With 

deterministic processing, the randomness of move requests arrival process decreases but 
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randomness would have led to breaking the trains of vehicles and reducing the 

correlation. 

5.6. Summary and future work 

In this chapter, we have presented an approach to derive the expected response 

time of the AMHS to a move request for each pick-up station separately.  The response 

time depends on the location of the vehicles at the time of its arrival and the possibility of 

other loads being picked-up (dropped-off) from (to) other stations while the vehicles are 

traveling towards the waiting load’s location. 

The derivation is not straightforward and especially complicated for multi-vehicle 

system because the vehicle that picks up the load is not necessarily the closest to its 

location but it is the one that takes the shortest time path.  We based our calculations on 

the expected length of the path from each vehicle’s state to the load’s location, then we 

conditioned on the state of a vehicle at the time the load arrived.  For multi-vehicle 

systems, we assumed that the vehicles are moving independently on the loop and the state 

of a vehicle has no impact on the other vehicles’ states.   

Experimental comparisons of the model generated results with detailed simulation 

for one example problem produced acceptable error margins and the results are obtained 

very quickly.  The model performs well mostly when there is a sufficient level of 

randomness in the arrival process of vehicles to pick-up and drop-off stations.  

Otherwise, low variability in the AMHS arrival process increases the correlation among 

the vehicles and increases the deviation of the analytic results from the simulation.   

The model can be further improved if we incorporate the correlation among the 

vehicles into the model such that when a vehicle is in some state, the distribution of the 
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other vehicles among the remaining states is adjusted.  This enhancement of the current 

model will be pursued in future work in addition to conducting a study of the impact of 

machines’ sequence along the loop on the expected response time.  If the technological 

constraints allow the fab designer to allocate the processing equipment anywhere on the 

loop, achieving the right sequence might lead to significant improvement in performance 

metrics and cost savings. 

One more issue that needs to be investigated, which is the topic of the next 

chapter is the value of the model in practice to AMHS designers and analysts.  This will 

be done by solving a larger instance using international SEMATECH data set for a virtual 

300mm fab and test the model accuracy. 
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 CHAPTER 6 

COMPUTATIONAL STUDY – SEMATECH FAB 

 

The primary focus of this chapter is to evaluate the extended Markov chain model 

for throughput capacity estimation and the expected response time model using a detailed 

simulation model of a generic virtual fab, (International SEMATECH, 2001).   

Ideally, the evaluation of the analytical models is based on the data set of an 

actual physical system.  It is difficult, however, to get actual data, and therefore in this 

research we rely on simulation, under the assumption that the simulation model is 

equivalent to the real system.  If the analytical model has a comparable accuracy to the 

simulation, we can assume that it also has a comparable accuracy to the real system.  

6.1. SEMATECH fab model  

The simulation model has two components: production and material handling.  

The production component describes the products, process routes, production tools and 

models the logical flow of material in the fab and the assignment of production 

equipment to products.  The material handling component describes the layout, vehicles, 

stockers and models the physical material transport.  The software used for simulation is 

AutoSched AP (ASAP) 7.0 in conjunction with AutoMod 9.1; both are products of Brooks 

Automation Inc. 

The SEMATECH fab has 24 bays and we apply the analytical models to one 

photolithography bay (bay seven) that holds a set of photolithography, inspection and 

measurement tools.  This particular bay was selected because it has the highest 

percentage of intrabay traffic, because it holds the photolithography tools; the most 
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expensive equipment in the fab with the highest utilization, and because there is a wide 

range of utilization values across the tools. 

The modeled photolithography bay consists of four groups of production tools: 

• Photolithography (Litho). 

• Critical dimension (CD) measurement tools (Meas_CD). 

• Overlay measurement tools (Meas_Overlay). 

• Ply inspection tool (Insp_Ply). 

Figure 6.1 illustrates the layout of bay 7 and Tables 6.1 and 6.2 summarize the 

details of the model.  One product family fabrication is modeled in the simulation, which 

is SEMATECH’s 300mm aluminum process flow for 180nm technology with six metal 

layers, and 21 masks.  For this single product family, ten products are constantly released 

into the facility and they all follow similar process plans (routings) with little differences 

during the photolithography operations.  The wafers travel in lots of 25, and the release 

rate is 20,000 wafers/month (wpm) (800 lots/month).   

Each lot visits the modeled bay six times throughout its production cycle.  Each 

time a lot of 25 wafers enters bay seven it starts at the incoming-lots stocker (stocker 1) 

visits the processor tools following the sequence: Litho –> Meas_Overlay –> Insp_Ply –

> Meas_CD.  After the last step, the lot travels back to the outgoing-lots stocker (stocker 

2), travels to other bays to undergo other operations then comes back to bay 7.   
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Figure 6.1 SEMATECH Fab: Photolithography bay 7 
 

The modeled bay is 105 ft long and the aisle that separates the production 

equipment is five feet wide.  There are two stockers that connect bay 7 to the interbay 

system, one is used to store the incoming lots to the bay and the other is for the outgoing 

b7 
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lots.  The AMHS intrabay loop of bay 7 has a series of 53 control points that divide the 

loop into zones.  Vehicles circle the loop in search of work and only one vehicle can be at 

a control point at a time, if a vehicle stops at a control point for any reason, all the 

vehicles behind it stop at the preceding control points on the track.  A vehicle cannot 

leave a control point unless it can claim the next one in the track, which implies that only 

one vehicle can be occupying the track segment between two control segments.  These 

control points represent the loading/unloading stations for stockers and tools, or points 

where a vehicle may stop and wait until the vehicle blocking the control point ahead of it 

clears the way.   

Table 6.1 Bay 7 information- processor tools 

Production Equipment (Processor tools) 

Processor tool group 

Number of 

identical 

tools 

Utilization 
Distribution of 

processing times 

Photolithography (Litho) 7 60% Deterministic 

Meaure CD 2 25% Deterministic 

Meaure Overlay 3 32% Deterministic 

Insp. Ply 1 15% Deterministic 

 

Table 6.2 Bay 7 information- AMHS 
AMHS 

Number of vehicles 3 

Effective vehicle speed 3 ft/sec 

Loading/unloading time 15 sec 

Dispatching policy FEFS 
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6.2. Experiments 

This study is concerned with evaluating the analytical model at a wide range of 

operating scenarios.  The performance metrics that will be compared are the AMHS 

throughput capacity and the expected response time to a move request.  Before 

conducting the experiments, we did not know which factors will have an impact on the 

analytical results but we anticipated that the important factors might be those that control 

or affect the AMHS throughput capacity and response time.  We decided to keep the 

processing time distributions, the process routings and the physical location of the 

equipment, unchanged and we investigated the impact of the factors listed in Table 6.3 at 

different levels.  The factors we studied are: 

1. The average release rate of products (λ) 

The base setting for the average release rate is 20,000 wpm.  Increasing this 

number will increase the utilization of the production equipment and the requirements 

from the AMHS.  

2. Single vs. multiple bottlenecks 

The modeled bay currently has the photolithography as the highest utilized tool 

group.  We will create scenarios by changing the processing times of the other tool 

groups so that all the tools in the modeled bay are equally utilized. 

3. Capacity of the queue at each tool 

The analytical model assumes that the stockers and the processor tools have 

infinite queue capacity.  Therefore, it is anticipated that this factor will impact the model 

performance.  The stockers will always have ample capacity but we will experiment with 

two levels of the queue capacity at the processor tools. 
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4. AMHS fleet size 

In the problems we studied in Chapters 4 and 5, it was obvious that the number of 

vehicles has a significant impact on the deviation of the analytical results from the 

simulation results.  SEMATECH virtual fab has three vehicles in bay 7 and we will vary 

this factor between 3 and 6. 

5. Vehicle travel velocity 

The AMHS utilization (the percentage of loaded travel) will increase when the 

vehicles are slower and vice versa.  The current value of this factor is 3 ft/sec and we 

consider two more levels. 

Table 6.3 Levels of factors in the computational study 
Factor Levels 

Release rate 15,000, 20,000, 22,500, and 24,000 wpm 

Bottleneck tools Single vs. multiple bottlenecks 

Queue capacity 4, and 10 lots 

AMHS Fleet size 3, 4, 5, and 6 vehicles 

Vehicles’ travel velocity 1, 3, and 4.5 ft/sec 

 

6.2.1.  Simulation model experiments 

There are 192 unique combinations of the selected factors.  The simulation model 

runs until it reaches steady-state before collecting the performance statistics.  For each 

combination of the factors the simulation is executed with five replications, each runs for 

100 days.  For each combination we collect two metrics: the throughput capacity of the 

AMHS and the expected response time to a move request.  
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6.2.2.  Analytical model experiments 

The analytical model output will not be impacted by the queue capacity or the 

processing time of the processor tools.  Recall that the inputs to the analytical model are 

the layout of the bay, the from-to release rates, the from-to travel times and the 

loading/unloading times.  Therefore, the total number of analytical model experiments is 

48.   

6.3. Comparison results 

Table 6.3 presents the differences in average throughput capacity and average 

response time at each factor combination.  The columns labeled “sim.” represent the 

simulation model results and the columns labeled “ana.” refer to the analytic results.  The 

columns labeled “rel. error” present the relative difference between the analytical result 

and the sample mean obtained from simulation.  In this comparison, we take the average 

response time across all the stations for ease of demonstration and because, unlike the 

example in chapter five, the relative errors for each station were close so that taking the 

average does not mask the individual errors.  When the vehicle speed is at the lowest 

level 1 ft/sec, the relative errors are different for different tool groups. 

F1 is the release rate factor, F2 is the single (S) vs. multiple (M) bottleneck factor, 

F3 refers to the queue capacity, F4 refers to the AMHS fleet size, and F5 refers to the 

vehicles’ travel velocity. 
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Table 6.4 Simulation and analytical models outputs comparison 

Throughput (moves/month) 
Response Time 

(seconds) 
F1 F2 F3 F4 F5 

sim. ana. 
rel. 

error 
sim. ana. 

rel. 

error 

24K S 10 3 1 30,349 30,765 1% 117.0 105.3 -10% 

24K S 10 4 1 41,377 41,495 0% 83.3 71.3 -14% 

24K S 10 5 1 52,002 51,807 0% 63.5 54.8 -14% 

24K S 10 6 1 63,011 61,714 -2% 49.9 45.1 -10% 

24K M 10 3 1 30,349 30,765 1% 115.7 105.3 -9% 

24K M 10 4 1 41,377 41,495 0% 86.8 71.3 -18% 

24K M 10 5 1 52,002 51,807 0% 66.5 54.8 -18% 

24K M 10 6 1 63,011 61,714 -2% 50.1 45.1 -10% 

24K S 4 3 1 30,349 30,765 1% 120.7 105.3 -13% 

24K S 4 4 1 41,377 41,495 0% 89.0 71.3 -20% 

24K S 4 5 1 52,002 51,807 0% 67.8 54.8 -19% 

24K S 4 6 1 63,011 61,714 -2% 51.4 45.1 -12% 

24K M 4 3 1 30,349 30,765 1% 119.1 105.3 -12% 

24K M 4 4 1 41,377 41,495 0% 87.6 71.3 -19% 

24K M 4 5 1 52,002 51,807 0% 67.6 54.8 -19% 

24K M 4 6 1 63,011 61,714 -2% 49.7 45.1 -9% 

24K S 10 3 3 85,133 86,394 1% 34.0 30.5 -10% 

24K S 10 4 3 112,196 113,051 1% 29.0 23.2 -20% 

24K S 10 5 3 141,942 137,143 -3% 24.1 19.3 -20% 

24K S 10 6 3 173,086 158,954 -8% 20.0 16.9 -16% 

24K M 10 3 3 82,490 86,394 5% 36.2 30.5 -16% 

24K M 10 4 3 111,378 113,051 2% 30.4 23.2 -24% 

24K M 10 5 3 138,293 137,143 -1% 26.2 19.3 -26% 

24K M 10 6 3 169,896 158,954 -6% 20.8 16.9 -19% 

24K S 4 3 3 84,607 86,394 2% 33.6 30.5 -9% 

24K S 4 4 3 112,972 113,051 0% 29.1 23.2 -20% 

24K S 4 5 3 141,579 137,143 -3% 23.8 19.3 -19% 

24K S 4 6 3 171,172 158,954 -7% 20.3 16.9 -17% 

24K M 4 3 3 83,653 86,394 3% 35.7 30.5 -15% 

24K M 4 4 3 111,622 113,051 1% 30.1 23.2 -23% 

24K M 4 5 3 139,997 137,143 -2% 25.7 19.3 -25% 

24K M 4 6 3 170,911 158,954 -7% 20.8 16.9 -19% 

24K S 10 3 4.5 122,200 123,712 1% 24.3 20.5 -16% 



122 

     Table 6.4 Continued     

Throughput (moves/month) 
Response Time 

(seconds) 
F1 F2 F3 F4 F5 

sim. ana. 
rel. 

error 
sim. ana. 

rel. 

error 

24K S 10 5 4.5 205,738 189,121 -8% 18.2 14.0 -23% 

24K S 10 6 4.5 248,441 215,653 -13% 15.7 12.6 -20% 

24K M 10 3 4.5 119,984 123,712 3% 24.7 20.5 -17% 

24K M 10 4 4.5 163,410 158,717 -3% 20.7 16.3 -21% 

24K M 10 5 4.5 206,947 189,121 -9% 17.0 14.0 -18% 

24K M 10 6 4.5 243,207 215,653 -11% 15.1 12.6 -16% 

24K S 4 3 4.5 122,200 123,712 1% 24.3 20.5 -16% 

24K S 4 4 4.5 164,217 158,717 -3% 21.5 16.3 -24% 

24K S 4 5 4.5 205,738 189,121 -8% 18.2 14.0 -23% 

24K S 4 6 4.5 248,441 215,653 -13% 15.7 12.6 -20% 

24K M 4 3 4.5 119,984 123,712 3% 24.7 20.5 -17% 

24K M 4 4 4.5 163,410 158,717 -3% 20.7 16.3 -21% 

24K M 4 5 4.5 206,947 189,121 -9% 17.0 14.0 -18% 

24K M 4 6 4.5 243,207 215,653 -11% 15.1 12.6 -16% 

22.5K S 10 3 1 30,574 31,006 1% 113.8 100.5 -12% 

22.5K S 10 4 1 41,191 41,732 1% 84.1 69.1 -18% 

22.5K S 10 5 1 51,674 52,040 1% 64.9 53.5 -17% 

22.5K S 10 6 1 63,252 61,943 -2% 49.0 44.3 -10% 

22.5K M 10 3 1 29,821 31,006 4% 112.5 100.5 -11% 

22.5K M 10 4 1 40,510 41,732 3% 85.2 69.1 -19% 

22.5K M 10 5 1 51,524 52,040 1% 66.1 53.5 -19% 

22.5K M 10 6 1 63,613 61,943 -3% 48.9 44.3 -9% 

22.5K S 4 3 1 30,452 31,006 2% 115.3 100.5 -13% 

22.5K S 4 4 1 41,528 41,732 0% 82.9 69.1 -17% 

22.5K S 4 5 1 52,277 52,040 0% 63.4 53.5 -16% 

22.5K S 4 6 1 63,160 61,943 -2% 49.1 44.3 -10% 

22.5K M 4 3 1 30,131 31,006 3% 110.9 100.5 -9% 

22.5K M 4 4 1 40,731 41,732 2% 86.5 69.1 -20% 

22.5K M 4 5 1 50,937 52,040 2% 67.1 53.5 -20% 

22.5K M 4 6 1 63,405 61,943 -2% 49.3 44.3 -10% 

22.5K S 10 3 3 85,772 87,076 2% 33.2 29.2 -12% 

22.5K S 10 4 3 115,090 113,704 -1% 27.9 22.5 -19% 

22.5K S 10 5 3 147,056 137,768 -6% 22.2 18.8 -15% 

22.5K S 10 6 3 172,250 159,553 -7% 19.9 16.5 -17% 



123 

     Table 6.4 Continued     

Throughput (moves/month) 
Response Time 

(seconds) 
F1 F2 F3 F4 F5 

sim. ana. 
rel. 

error 
sim. ana. 

rel. 

error 

22.5K M 10 4 3 113,299 113,704 0% 29.4 22.5 -24% 

22.5K M 10 5 3 145,478 137,768 -5% 23.4 18.8 -20% 

22.5K M 10 6 3 173,228 159,553 -8% 20.2 16.5 -18% 

22.5K S 4 3 3 84,987 87,076 2% 33.4 29.2 -13% 

22.5K S 4 4 3 114,899 113,704 -1% 27.8 22.5 -19% 

22.5K S 4 5 3 143,596 137,768 -4% 23.4 18.8 -20% 

22.5K S 4 6 3 174,291 159,553 -8% 19.5 16.5 -15% 

22.5K M 4 3 3 84,947 87,076 3% 35.0 29.2 -17% 

22.5K M 4 4 3 113,107 113,704 1% 29.7 22.5 -24% 

22.5K M 4 5 3 143,865 137,768 -4% 24.5 18.8 -23% 

22.5K M 4 6 3 174,415 159,553 -9% 20.0 16.5 -17% 

22.5K S 10 3 4.5 123,844 124,691 1% 24.3 20.3 -17% 

22.5K S 10 4 4.5 165,515 159,635 -4% 20.8 16.2 -22% 

22.5K S 10 5 4.5 206,185 189,985 -8% 18.1 13.9 -23% 

22.5K S 10 6 4.5 251,255 216,469 -14% 15.5 12.5 -20% 

22.5K M 10 3 4.5 122,845 124,691 2% 24.0 20.3 -15% 

22.5K M 10 4 4.5 165,650 159,635 -4% 20.4 16.2 -21% 

22.5K M 10 5 4.5 206,977 189,985 -8% 17.1 13.9 -19% 

22.5K M 10 6 4.5 249,352 216,469 -13% 14.7 12.5 -15% 

22.5K S 4 3 4.5 123,202 124,691 1% 24.4 20.3 -17% 

22.5K S 4 4 4.5 166,042 159,635 -4% 21.2 16.2 -24% 

22.5K S 4 5 4.5 209,296 189,985 -9% 17.9 13.9 -22% 

22.5K S 4 6 4.5 248,397 216,469 -13% 15.7 12.5 -20% 

22.5K M 4 3 4.5 123,274 124,691 1% 23.9 20.3 -15% 

22.5K M 4 4 4.5 161,732 159,635 -1% 20.8 16.2 -22% 

22.5K M 4 5 4.5 205,088 189,985 -7% 17.6 13.9 -21% 

22.5K M 4 6 4.5 246,011 216,469 -12% 15.2 12.5 -18% 

20K S 10 3 1 31,126 31,408 1% 111.0 95.8 -14% 

20K S 10 4 1 41,975 42,127 0% 82.3 67.4 -18% 

20K S 10 5 1 53,135 52,428 -1% 62.9 52.5 -16% 

20K S 10 6 1 63,859 62,324 -2% 48.3 43.5 -10% 

20K M 10 3 1 30,336 31,408 4% 110.9 95.8 -14% 

20K M 10 4 1 40,761 42,127 3% 85.0 67.4 -21% 

20K M 10 5 1 52,004 52,428 1% 65.9 52.5 -20% 
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     Table 6.4 Continued     

Throughput (moves/month) 
Response Time 

(seconds) 
F1 F2 F3 F4 F5 

sim. ana. 
rel. 

error 
sim. ana. 

rel. 

error 

20K M 10 6 1 63,524 62,324 -2% 48.5 43.5 -10% 

20K S 4 3 1 30,893 31,408 2% 110.5 95.8 -13% 

20K S 4 4 1 41,623 42,127 1% 81.2 67.4 -17% 

20K S 4 5 1 52,992 52,428 -1% 61.3 52.5 -14% 

20K S 4 6 1 64,228 62,324 -3% 47.1 43.5 -8% 

20K M 4 3 1 30,100 31,408 4% 110.1 95.8 -13% 

20K M 4 4 1 40,993 42,127 3% 86.1 67.4 -22% 

20K M 4 5 1 51,697 52,428 1% 65.2 52.5 -19% 

20K M 4 6 1 63,681 62,324 -2% 48.4 43.5 -10% 

20K S 10 3 3 87,532 88,214 1% 32.3 28.4 -12% 

20K S 10 4 3 117,395 114,792 -2% 27.1 22.1 -19% 

20K S 10 5 3 147,374 138,810 -6% 22.3 18.5 -17% 

20K S 10 6 3 177,886 160,553 -10% 18.9 16.3 -14% 

20K M 10 3 3 86,098 88,214 2% 33.6 28.4 -15% 

20K M 10 4 3 116,888 114,792 -2% 27.8 22.1 -21% 

20K M 10 5 3 145,078 138,810 -4% 23.9 18.5 -22% 

20K M 10 6 3 175,733 160,553 -9% 19.5 16.3 -16% 

20K S 4 3 3 87,251 88,214 1% 32.6 28.4 -13% 

20K S 4 4 3 116,437 114,792 -1% 27.3 22.1 -19% 

20K S 4 5 3 148,651 138,810 -7% 21.9 18.5 -16% 

20K S 4 6 3 178,548 160,553 -10% 18.7 16.3 -13% 

20K M 4 3 3 86,511 88,214 2% 33.8 28.4 -16% 

20K M 4 4 3 116,182 114,792 -1% 28.0 22.1 -21% 

20K M 4 5 3 146,554 138,810 -5% 23.3 18.5 -20% 

20K M 4 6 3 178,640 160,553 -10% 18.9 16.3 -14% 

20K S 10 3 4.5 128,092 126,322 -1% 22.9 19.5 -15% 

20K S 10 4 4.5 172,295 161,165 -6% 20.0 15.7 -21% 

20K S 10 5 4.5 213,811 191,425 -10% 17.4 13.6 -22% 

20K S 10 6 4.5 257,231 217,828 -15% 14.9 12.3 -18% 

20K M 10 3 4.5 126,307 126,322 0% 22.9 19.5 -15% 

20K M 10 4 4.5 170,551 161,165 -6% 19.5 15.7 -19% 

20K M 10 5 4.5 212,921 191,425 -10% 16.7 13.6 -19% 

20K M 10 6 4.5 258,802 217,828 -16% 13.9 12.3 -11% 

20K S 4 3 4.5 127,204 126,322 -1% 23.6 19.5 -17% 
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     Table 6.4 Continued     

Throughput (moves/month) 
Response Time 

(seconds) 
F1 F2 F3 F4 F5 

sim. ana. 
rel. 

error 
sim. ana. 

rel. 

error 

20K S 4 4 4.5 172,300 161,165 -6% 20.3 15.7 -23% 

20K S 4 5 4.5 211,564 191,425 -10% 17.4 13.6 -22% 

20K S 4 6 4.5 260,642 217,828 -16% 14.3 12.3 -14% 

20K M 4 3 4.5 126,061 126,322 0% 23.1 19.5 -16% 

20K M 4 4 4.5 170,678 161,165 -6% 19.3 15.7 -19% 

20K M 4 5 4.5 210,215 191,425 -9% 16.8 13.6 -19% 

20K M 4 6 4.5 257,390 217,828 -15% 14.0 12.3 -12% 

15K S 10 3 1 31,852 32,213 1% 104.1 83.3 -20% 

15K S 10 4 1 43,192 42,917 -1% 74.8 60.9 -19% 

15K S 10 5 1 54,295 53,204 -2% 57.9 48.6 -16% 

15K S 10 6 1 65,837 63,086 -4% 44.6 40.9 -8% 

15K M 10 3 1 31,575 32,213 2% 101.1 83.3 -18% 

15K M 10 4 1 42,552 42,917 1% 81.9 60.9 -26% 

15K M 10 5 1 53,510 53,204 -1% 61.5 48.6 -21% 

15K M 10 6 1 64,993 63,086 -3% 44.9 40.9 -9% 

15K S 4 3 1 31,582 32,213 2% 105.2 83.3 -21% 

15K S 4 4 1 42,952 42,917 0% 76.0 60.9 -20% 

15K S 4 5 1 54,122 53,204 -2% 58.0 48.6 -16% 

15K S 4 6 1 65,776 63,086 -4% 42.8 40.9 -5% 

15K M 4 3 1 31,453 32,213 2% 102.0 83.3 -18% 

15K M 4 4 1 42,688 42,917 1% 82.2 60.9 -26% 

15K M 4 5 1 53,875 53,204 -1% 60.3 48.6 -19% 

15K M 4 6 1 65,416 63,086 -4% 43.7 40.9 -6% 

15K S 10 3 3 92,009 90,489 -2% 29.2 26.0 -11% 

15K S 10 4 3 124,512 116,968 -6% 24.0 20.7 -14% 

15K S 10 5 3 154,424 140,894 -9% 20.3 17.6 -13% 

15K S 10 6 3 184,933 162,551 -12% 17.1 15.6 -9% 

15K M 10 3 3 91,881 90,489 -2% 31.0 26.0 -16% 

15K M 10 4 3 122,782 116,968 -5% 25.4 20.7 -19% 

15K M 10 5 3 153,313 140,894 -8% 21.5 17.6 -18% 

15K M 10 6 3 186,369 162,551 -13% 17.3 15.6 -10% 

15K S 4 3 3 91,877 90,489 -2% 29.6 26.0 -12% 

15K S 4 4 3 123,401 116,968 -5% 24.4 20.7 -15% 

15K S 4 5 3 154,265 140,894 -9% 20.2 17.6 -13% 
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     Table 6.4 Continued     

Throughput (moves/month) 
Response Time 

(seconds) 
F1 F2 F3 F4 F5 

sim. ana. 
rel. 

error 
sim. ana. 

rel. 

error 

15K S 4 6 3 186,077 162,551 -13% 16.8 15.6 -7% 

15K M 4 3 3 91,099 90,489 -1% 31.2 26.0 -17% 

15K M 4 4 3 122,608 116,968 -5% 25.3 20.7 -18% 

15K M 4 5 3 154,156 140,894 -9% 20.9 17.6 -16% 

15K M 4 6 3 183,782 162,551 -12% 17.7 15.6 -11% 

15K S 10 3 4.5 134,887 129,584 -4% 21.5 18.0 -16% 

15K S 10 4 4.5 181,249 164,226 -9% 18.6 14.8 -20% 

15K S 10 5 4.5 229,451 194,306 -15% 15.3 13.0 -15% 

15K S 10 6 4.5 270,181 220,547 -18% 13.5 11.8 -12% 

15K M 10 3 4.5 135,072 129,584 -4% 20.9 18.0 -14% 

15K M 10 4 4.5 181,020 164,226 -9% 18.1 14.8 -18% 

15K M 10 5 4.5 226,397 194,306 -14% 15.1 13.0 -14% 

15K M 10 6 4.5 272,899 220,547 -19% 12.1 11.8 -2% 

15K S 4 3 4.5 134,186 129,584 -3% 21.7 18.0 -17% 

15K S 4 4 4.5 180,052 164,226 -9% 18.8 14.8 -21% 

15K S 4 5 4.5 224,756 194,306 -14% 15.8 13.0 -18% 

15K S 4 6 4.5 272,347 220,547 -19% 13.4 12.5 -7% 

15K M 4 3 4.5 135,458 129,584 -4% 21.0 18.8 -10% 

15K M 4 4 4.5 181,093 164,226 -9% 18.0 15.6 -14% 

15K M 4 5 4.5 228,415 194,306 -15% 15.1 13.7 -9% 

15K M 4 6 4.5 274,536 220,547 -20% 12.3 12.5 1% 

 

As was mentioned earlier, each simulation result is the average of the measured 

metric (response time or throughput capacity) taken over five replications.  Examining 

the 90% confidence interval (C.I.), we observe that the ratio of the half width of the 

confidence interval to the mean for all the experiments, as illustrated in Figure 6.2, range 

mostly between 1.2% - 2.0%. 
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Figure 6.2 Simulation experiments half width results for 90% confidence 
 

Now that we have established that the simulation results have reasonably narrow 

confidence intervals, we will compare the analytical result to the mean result of the 

simulation experiments.  The comparison results are satisfactory and the error 

percentages are acceptable for both estimates of the throughput capacity and the average 

response time, despite the deterministic processing time distributions that violate the 

assumption of exponential arrival rate of loads at pick-up stations.  The worst relative 

error in response time is -26% and in throughput capacity is -20%.   

Figures 6.3 and 6.4 illustrate the frequency of the relative error percentages in the 

experiments for throughput capacity and average response time estimates, respectively. 
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Figure 6.3 Distribution of the relative errors of throughput capacity estimates 
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Figure 6.4 Distribution of the relative errors of average response time estimates 
 

We observe that the relative errors in estimating the throughput capacity are 

mostly between -10% and 10% with few scenarios for which the errors ranged between -

10% and -20%.  For estimating the average response time, the analytical model mostly 

underestimates this metric; most of the scenarios generated errors ranging between -20% 

and -5%. 
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Figure 6.5 illustrates the impact of the individual factors on the relative error in 

estimating the throughput capacity. 
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Figure 6.5 Effects of the individual factors on the relative errors in estimating the 
throughput capacity 

 

Figure 6.5 shows that the analytical model accuracy in estimating the throughput 

capacity is influenced by both the fleet size and the vehicles’ velocity.  However, when 

examining the effect of the vehicles’ velocity combined with the fleet size (Figure 6.6), 

we see the fleet size impacts the throughput capacity error only at high velocity values.  

In fact, the error is linear in the number of vehicles.  Looking back at the reduced-state 

extended Markov chain model that was developed in chapter four, we made the 

assumption that the vehicle-blocking probabilities are linear in the number of vehicles.  

As a result, we observe that as the number of vehicles increase, the analytical model 

overestimates the percentage of time vehicles are blocked and this is possibly the source 
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of underestimating the throughput capacity at large fleet sizes.  To overcome this 

approximation error, we may consider a different relationship between the number of 

vehicles and the blocking probabilities.  More specifically, the probability that a vehicle 

is blocked at some station j is the probability that there is a vehicle traveling to or 

receiving service at station j+1, or there that there is a vehicle traveling to station j+1 and 

another vehicle traveling to or receiving service at station j+2 and so forth; the number of 

terms is the number of vehicles minus one.  For instance, for a four-vehicle fleet, the 

probability that a vehicle gets blocked at station j, denoted by j
bp  is: 

322112111 ))(()( +++++++++ +++++= jj

f

j

e

j

f

j

e

jj

f

j

e

jj

bp υυυυυυυυυ   (6.1) 

Where 1+jυ  denotes the probability that a vehicle is traveling to or receiving 

service at station j+1 and )( 11 ++ + j

f

j
e υυ  is the probability that a vehicle is traveling (empty 

or loaded) to station j+1.  Preliminary tests of this alternative model at large fleet sizes 

indicate a reduction in the throughput capacity estimation errors. 
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Figure 6.6 Interaction effect of vehicles’ velocity and fleet size factors on error in 
estimating throughput capacity 
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Figure 6.7 illustrates the impact of the individual factors on the relative error in 

estimating the average response time.  We observe that the analytical model accuracy in 

estimating the average response time is influenced by the release rate, fleet size and the 

vehicles’ velocity.  The analytical model consistently underestimates the response time, 

and we notice that although the negative difference becomes more significant as the fleet 

size increases from 3 to 4 to 5, but at 6 vehicles the estimates starts to get closer to the 

simulation result.  The source of this behavior is the throughput capacity estimates.  As 

we see in Figure 6.5, when the number of vehicles increases, the throughput capacity is 

underestimated.  The response time is derived from, and inversely related to, the 

throughput capacity, and thus when the analytical model is underestimating the 

throughput capacity, the estimated response time tends to increase.  
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Figure 6.7 Effects of the individual factors on the relative errors in estimating the average 

response time 
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We can also argue that even though the relative errors can get large, the absolute 

errors remain reasonable, for instance when the relative error is -26%, the absolute error 

is -7 seconds.  The designer or analyst who will be using the model will decide whether 

an error of 7 seconds is acceptable and is worth the significant time reduction achieved 

by avoiding building a more detailed simulation model.  Moreover, when comparing two 

different designs using the analytic model, the results can be trusted to indicate which 

design is better even if they do not tell what exactly the performance will be.  For 

instance, we compare two different fleet size scenarios while keeping the other factors at 

SEMATECH’s original factor levels: vehicles are traveling at 3ft/s, the release rate is 

20,000 wpm, all the processors have finite capacity queues, and the photolithography is 

the only bottleneck in the bay.  If the number of vehicles is three, the expected response 

time to moves at one of the photolithography tools is 29 sec. (analytic estimate) vs. 33 

sec. (simulation estimate), the relative error is -13%, but both estimates will recommend 

that the output buffer queue capacity should be at least one lot.   

As mentioned earlier in this section, the errors across the machines were quite 

close except for when the vehicle speed is 1ft/sec.  We observed that at this low speed, 

the impact of single vs. multiple bottlenecks factor has a significant impact on the error, 

and the analytical model works better when the processor tools are equally utilized, and 

not very well otherwise, regardless of the queue capacity, the release rates or the fleet 

size.  In fact, as shown in Table 6.5, the simulation results are very different when all the 

tools are equally utilized from when they have different utilization values.  The analytical 

results, however, are not affected by the utilization of the processor tools.  For instance, 

the analytical estimate of the response time for Insp_Ply is 119sec, which would lead to a 
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6% relative error when compared with the multiple bottlenecks scenarios, and to a -17% 

relative error for the single bottleneck scenario.  These differences were not observed at 

higher travel velocities and this is probably due to the lower utilization of the AMHS at 

higher speeds.  We know from simple factory physics that when the utilization of a 

machine decreases, the impact of its performance variability decreases and thus at higher 

velocities, the impact of the AMHS delivery time variability has less impact on the 

arrival process to the processor tools, which in turn reduces the variability of the 

departures from the processor tools and so forth, leading to a lower variability all over the 

system.  

The above discussion emphasizes that the analytical model for estimating the 

response time works best when there is a sufficient level of variability in the arrival 

process of the vehicles to pick-up or drop-off loads.  

Table 6.5 An illustration of the different simulation model estimates of response time at 
different processor tools utilizations 

Response time 
Release 

rate 

Single vs. 

multiple 

Queue 

capacity 

Fleet 

size 

Vehicle 

velocity Stocker Litho M e a s _ O v e r l a y Insp_Ply Meas_CD 

24K S 10 3 1 97 116 140 143 84 

24K M 10 3 1 102 123 103 113 109 

  

6.4. Comparison of dispatching rules 

To validate the analytical model, we implemented FEFS dispatching policy for 

the modeled photolithography bay of SEMATECH simulation model.  The original 

policy, however, is modified first come first served (ModFCFS); a centralized policy 

because, unlike FEFS, it partially depends on the local station information but also on the 

global waiting list of loads.  Specifically, in ModFCFS dispatching, when an empty 
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vehicle arrives at some machine, it searches for any waiting loads at that machine and if it 

finds a load it picks it up, but if there were no loads waiting at the current machine, the 

vehicle is assigned to the oldest load in the system even if there is a closer load that can 

be picked up and dropped off before the vehicle arrives to its assigned load.  Although 

this rule is simple, it is more complicated implementation-wise than FEFS because of its 

dependency on global information.   

Using simulation, we compare the AMHS performance metrics for FEFS and 

ModFCFS at SEMATECH’s original factor levels: three vehicles each traveling at 3ft/s, 

the release rate is 20,000 wpm, all the processors have finite capacity queues, and the 

photolithography is the only bottleneck in the bay.   

Simulation results indicate that the AMHS theoretical throughput capacity under 

ModFCFS policy is higher than under the FEFS policy by 7% (93,700 vs. 87,250 

moves/month).  The expected response time, however, is significantly lower under the 

FEFS policy as shown in Figure 6.8 that compares the expected response time at each 

station under each policy.   

The throughput capacity is theoretical because almost certainly it would never be 

achieved; the current required throughput is around 800 moves/month.  The system can 

never go up to 90,000 moves/month keeping the current bay configuration and 

production system specifications unchanged; the photolithography equipment currently 

has 60% utilization and increasing the release rate will require adding more equipment, 

which will change the configuration of the bay.  Therefore, higher throughput capacity 

does not make the ModFCFS rule superior to the FEFS. 
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It might be counterintuitive that under FEFS, the AMHS has shorter response 

times but higher throughput capacity than under ModFCFS.  The explanation is as 

follows: under ModFCFS, the vehicles are dispatched to the oldest load and thus each 

vehicle makes fewer stops in one loop traversal and so it travels faster and hence the 

higher throughput capacity.  On the other hand, the vehicle might be ignoring loads that 

could have been picked up and dropped off before the vehicle reaches the oldest load and 

thus the longer waiting time for these loads inflates the average response time. 

Examining the variability of response times, we notice that the FEFS rule has a 

slightly higher coefficient of variability at 0.55 versus 0.44 under the ModFCFS. 
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Figure 6.8 Comparison of the expected response time using ModFCFS vs. FEFS 
dispatching 

 

6.5. Concluding remarks 

The analytical model was tested on a realistic data set of SEMATECH 

hypothetical 300mm fab.  The validation of the model was conducted through a 

comprehensive set of experiments over a wide range of values for the AMHS and the 

production system parameters that might influence the accuracy of the analytical results. 
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The comparison results indicated that the analytical model performs very well for 

estimating the throughput capacity and is reasonably accurate for estimating the expected 

response time.   

The simple decentralized dispatching policy FEFS was compared to a more 

common centralized policy (ModFCFS), and for the numerical test, FEFS significantly 

outperformed ModFCFS by generating shorter response times, which leads to 

questioning the added value of smart yet more expensive and less robust dispatching. 

The analytical model is superior to simulation in terms of development and 

execution times, and is a valuable tool to material handling system designer and fab 

analysts particularly at the early stages of design.  Instead of relying on simulation, this 

model provides quick estimates of the AMHS operating parameters, and the required on-

tool storage capacity as a starting point for building a more detailed simulation model. 
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 CHAPTER 7 

CONCLUSION 

This research focuses on developing models for analysis and design of automated 

material handling systems specifically designed for the highly automated 300mm wafer 

fabrication facilities.  An Extended Discrete Time Markov Chain model is developed that 

estimates the throughput capacity of the AMHS in terms of the number of moves per 

period that the AMHS can handle.  The model considers multiple vehicles operating in 

simple closed loop configurations, and it considers vehicle-blocking without the need to 

include detailed AMHS operations.   

Two models were developed to estimate the throughput capacity of the AMHS; 

the first model tracks the movement of every vehicle in the system.  Although this model 

displayed very accurate results in comparison to simulation, the state space of the Markov 

Chain posed computational challenges for realistic implementations.  This computational 

challenge was the motivation behind developing the second model that tracks a single 

vehicle with simplifying assumptions on vehicle-blocking.   

A closely monitored AMHS performance metric is the expected response time of 

the AMHS to move requests at pick-up stations.  An approach to derive this important 

metric was developed based on the expected time it takes an empty vehicle to arrive at 

the location of the waiting load by conditioning on the location of the vehicle at the 

moment the move request arrived.  The derivation is not straightforward and especially 

complicated for multi-vehicle systems because the vehicle that picks up the load is not 

necessarily the closest to its location but it is the one that takes the shortest time path.   
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Experimental comparisons of the throughput capacity and response time models 

were conducted using a hypothetical 300mm fab from International SEMATECH.  The 

validation of the model was conducted through a comprehensive set of experiments over 

a wide range of values for the AMHS and the production system parameters that might 

influence the accuracy of the results.  The analytic results were consistent with the 

simulation results with reasonable error margins, particularly for the throughput capacity 

estimates.  The response time comparisons were acceptable but the model performs better 

when the arrival rates of move requests is random and error rates are larger when arrival 

rates of move requests are deterministic. 

This research is novel because it is the first to propose an analytical approach to 

model multi-vehicle material handling systems while considering several practical issues 

that have not been considered concurrently in the literature.  First, we model the state-

dependent service rate of move request, whereas, in most analytical models of such 

systems, the material handling system is modeled by defining a “virtual” workstation 

between the processing tools in a product’s route.  Second, we consider vehicle blocking 

and the resulting blocking delays in order to get good approximations of both the actual 

throughput of the AMHS and the average response time to move requests; an issue that is 

almost always ignored in the available analytical models.  Moreover, the response time 

derivation approach is unique because, unlike conventional models, we assume that the 

response time of the AMHS to a move request depends on the location of the load, and on 

the vehicles’ distribution across the network. 

The specific contributions in this thesis include: 
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1. A robust analytic model of simple loop vehicle-based material handling 

systems that provides fast and accurate estimates of the steady-state performance 

measures.  In the context of the system analyzed in this thesis, the proposed model is 

accurate for early design phases.  There are no analytical models in the literature that 

simultaneously capture essential aspects of the AMHS: the limited available physical 

space for vehicles that leads to blocking of vehicles at stations, the inherent queuing in 

the AMHS due to variability, and the impact of empty vehicle travel. 

2.  A novel approach based on extended Markov chains, to modeling vehicle-

blocking in mutli-vehicle material handling systems.  In the rare cases that previously-

developed analytic models considered the effect of blocking, it was included as a factor 

to inflate the capacity that was initially calculated without consideration to blocking. 

Additionally, the proposed approach holds promise for systems with configurations 

beyond simple loops and possibly with alternative dispatching policies besides FEFS. 

3. A vehicle state-based approach that is also derived from the extended Markov 

chain model, to approximate material handling systems’ response time.  In the current 

literature, reasonably accurate approximations of response times are either developed for 

single-vehicle systems, which has limited application in practice, or for multi-vehicle 

systems that rely on modeling the AMHS as a single server, which oversimplifies and 

does not accurately represent the system described in this thesis.  The proposed 

approximation goes further than single server models and is a significant step towards 

building more accurate response time approximations for configurations beyond those 

analyzed in this research. 
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Although simulation remains the key resource for AMHS design and analysis, the 

semiconductor industry is in need for analytical models such as the ones proposed in this 

research to provide an computationally fast and reasonably accurate approach to use in 

phases of concept development, design, and analysis prior to investing in high-fidelity 

simulation studies.     

 

Future research 

There are a number of issues to be pursued in further research.  The analytic 

model is based on the assumption that machines have separate pick-up and drop-off 

stations.  In some systems, pick-ups and drop-offs can be done at the same point; these 

systems require smarter control mechanisms.  An extension to the model would be to 

include the possibility of vehicles picking up and dropping off from the same station.  

Another trivial extension of the proposed model is to relax the “balanced machines” 

assumptions; the number of pickups equals the number of drop-offs.  This is a valid 

assumption for processor tools but it is not necessarily true for stockers if the bay has 

multiple stockers. 

The current model does not consider a case where an unplanned move to the 

stockers takes place.  For instance, if a lot is ready to be moved to another tool that has a 

full buffer, the model assumes that this lot will stay in the current tool, which could 

possibly lead to blocking the processing tool, where it is waiting.  In reality, the lot would 

be moved temporarily to the stocker until its destination tool has space in its buffer.  The 

analytical model may be adjusted to reflect these “induced moves”; the challenge is to 

estimate the fraction of lots that require this extra workload on the AMHS.  
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The response time model can be further improved if we incorporate the 

correlation among the vehicles into the model so that when a vehicle is in some state, the 

distribution of the other vehicles among the remaining states is adjusted.   Currently, we 

assume that the vehicles are independent so that the location of a vehicle does not impact 

the other vehicles’ locations.  Relaxing this assumption would be to condition on the state 

and location of the closest vehicle to the load (the first in the train of vehicles) and say: if 

the first vehicle is in state r occupying station j, then the second vehicle is more likely to 

be occupying the upstream station j-1, and the third vehicle is also closely traveling 

upstream from the second vehicle and so forth.  The average response time calculated 

using this approach is different from the one we obtain if we assume that each vehicle can 

be anywhere on the loop. 

The response times at different stations are not necessarily equal and when 

technological constraints allow the fab designer to allocate the processing equipment 

anywhere on the loop, it would be interesting to look for the best arrangement of the 

machines along the loop in terms of reducing the response time.  A computationally 

efficient and fairly accurate analytical model would be the preferred tool to aid the 

designer in evaluating different layouts and possibly finding the optimal arrangement of 

tools along the loop.  

The analytical model is built for a simple loop track.  While many systems are 

simple loops, there are also more general network configurations with shortcuts and 

spurs.  The subject of future work would be to adjust the model for these complex 

configurations.  A simple extension can be implemented for a system that has off-line 

spurs at each machine, so that a vehicle can be diverted into the station spur if there is a 
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pick-up or drop-off at that station.  The extension will require an adjustment to the 

transition probabilities of the vehicles’ states.  More complex configurations with 

shortcuts are more difficult to model because the extension will require the empty 

vehicles to be routed probabilistically to decide which track the vehicle takes at 

intersection points.  With the FEFS policy used in the current model, empty vehicles are 

not dispatched to the loads but simply travel around the loop until they encounter a 

waiting load.   It will be interesting to explore the impact of these routing probabilities on 

the AMHS performance and how machines will be affected differently depending on 

their location in the network.  

We may also consider a modification to the FEFS rule that makes it smarter.  

Rather than make the vehicle pick-up the load it encounters immediately, the rule can be 

adjusted so that when an empty vehicle is closely followed by another empty vehicle, the 

load is not picked up because the second vehicle can pick it up and a blocking situation is 

avoided.  This will be more difficult to analyze but investigating and testing this type of 

smarter dispatching is the subject of future research. 

Many modern fabs are now installing a new concept of storage called “under 

track storage” (ITRS report, 2005), in which small storage units are added around the 

AMHS loop and serve as temporary buffers that are closer to the tools than the main 

stocker.  A vehicle can pick-up the load and drop it at the closest under-rail storage 

location until the destination tool has a space in its buffer to receive the load, in which 

case possibly another vehicle picks-up the load and delivers it to its destination.  For 

these systems, the analytical model can be used by including the storage locations as 

additional stockers, but the challenge is to estimate which loads and how often these 



143 

loads need to be stored at these under-rail storages.  This will also be a subject of future 

research. 
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