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SUMMARY

We consider a class of queueing systems that consist of server pools in parallel

and multiple customer classes. Customer service times are assumed to be exponentially

distributed. We study the asymptotic behavior of these queueing systems in a heavy traffic

regime that is known as the Halfin and Whitt many-server asymptotic regime. Halfin and

Whitt [32] consider an M/M/N system and fix the steady state probability that all servers

are busy so that the probability an arriving customer must wait for service exceeds 0 and

is strictly greater than one, while letting the arrival rate and the number of servers grow to

infinity.

Our main contribution is a general framework for establishing state space collapse results

in the Halfin and Whitt many-server asymptotic regime for parallel server systems having

multiple customer classes. In our work, state space collapse refers to a decrease in the

dimension of the processes tracking the number of customers in each class waiting for

service and the number of customers in each class being served by various server pools. We

define and introduce a “state space collapse” function, which governs the exact details of

the state space collapse. Our notion of state space collapse contrasts with that in Harrison

and Van Mieghem [36], which establishes a deterministic relationship between a lower-

dimensional workload process and the queue length processes. Our methodology is similar in

spirit to that in Bramson [13]; however, Bramson studies an asymptotic regime in which the

number of servers is fixed and Bramson does not require a “state space collapse” function.

We illustrate the applications of our results in three different parallel server systems. The

first system is a distributed parallel server system under the minimum-expected-delay faster-

server-first (MED-FSF) or minimum-expected-delay load-balancing (MED-LB) policies. We

prove that the MED-FSF policy minimizes the stationary distribution of total number

of customers in the system. However, under the MED-FSF policy all the servers in our

distributed system except those with the lowest service rate experience 100% utilization
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but under the MED-LB policy, on the other hand, the utilizations of all the server pools are

equal. We also show that under both policies the system performs as well as a corresponding

single queue system. The second system we consider is known as the N-model. We show

that when the service times only depend on the server pool providing service a static priority

rule is asymptotically optimal. The optimality is in terms of stochastically minimizing linear

holding costs over any finite time interval. Finally, we study two results conjectured in the

literature for V-systems. First, we prove a state space collapse result conjectured in Armony

and Maglaras [3]. Then, we propose a policy whose asymptotic performance is arbitrarily

close to the conjectured performance of the policy proposed by Milner and Olsen [53] and

prove a state space collapse result under this policy. We show for all of these systems that

the conditions on the hydrodynamic limits can easily be checked using the standard tools

that have been developed in the literature to analyze fluid models.
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CHAPTER I

INTRODUCTION

Multi-class queueing networks have been extensively used to model queueing systems arising

in manufacturing and service industries [34]. A special class of these networks, parallel

server systems that are commonly used to model service systems with many servers; see

[28], [47], [48], [49], and [57] for different applications, are of current interest. In a parallel

server system, customers are handled by a set of server pools and leave the system after

service. We also restrict our attention to systems with exponential service times. Similar

to multiclass queueing networks, exact analysis of parallel server systems is limited. Even

when available, results from classical queueing theory provide limited insight on the general

properties of the performances of these systems and rarely can be used for optimization

purposes.

An alternative tool for analyzing multiclass queueing networks is diffusion approxima-

tions. For heavily loaded networks, conventional heavy traffic approximations have been

shown to provide accurate approximations for the system performance; see [15] and [65].

Under a conventional heavy traffic analysis almost all the customers are delayed in queue

before their service starts. This is not the case in many systems that are especially seen in

the service sector. For instance, a typical call center consists of many agents catering to

a high volume of customers. A common performance target for call center managers is to

have only a small percentage of customers delayed in queue before their service starts while

keeping server utilizations high. It is empirically observed that this can be achieved when

the number of servers in the system is large; see Section 4.1.2 in Gans et. al [28]. These

systems are said to be operating under the quality and efficiency driven (QED) regime [28].

Starting with the seminal paper by Halfin and Whitt [32], these systems are analyzed under

the Halfin and Whitt many-server limiting regime, which is also known as the QED regime

since high utilization of the servers is achieved together with a high quality of service. It
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has been shown that the Halfin and Whitt regime is the right asymptotic regime to study

the service systems with many servers that are QED, that is, this regime captures the gain

from economies of scale which cannot be captured by conventional heavy traffic analysis;

see Garnett et al. [29] and Gans et al. [28]. Staffing rules such as the square-root safety rule

has been established using these analyses which have not been observed from the classical

queueing theory results such as the Erlang-C formula.

General procedures to establish the validity of conventional heavy traffic and many-

server diffusion limits are different. To establish a conventional heavy traffic limit a sequence

of systems having mean service times and inter-arrival times that become close for one or

more stations in the network is considered. The number of servers are taken to be fixed for

each system. Then, a heavy traffic limit theorem is established by studying the convergence

of the stochastic processes associated with each system. On the other hand, a many-server

diffusion limit is established by considering a sequence of systems with all servers having

fixed service rates. The number of servers and the arrival rates grow to infinity in a way

that the traffic intensity of one or more server pools converge to one.

In two companion papers, Bramson [13] and Williams [69], sufficient conditions are given

under which a conventional heavy traffic limit theorem holds for a general class of multiclass

queueing networks. The framework in Bramson [13] is also of independent interest; it

enables one to show a state collapse (SSC) result by checking whether a similar SSC result

holds for the hydrodynamic limits. His framework has been used to show SSC results in

conventional heavy traffic diffusion limits for different multiclass queueing networks; see

Bramson and Dai [14], Stolyar [61], Mandelbaum and Stolyar [52], Dai and Lin [21]. In

these papers, the SSC results enabled the authors to establish the diffusion limits of the

systems under consideration.

A general theory to prove many-server limit theorems have not been established yet.

Due to the differences in the procedures to obtain diffusion limits under the conventional

heavy traffic and many-server asymptotic regimes, the results of Williams and Bramson

cannot be readily extended to the many-server asymptotic analysis. In this study, we
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extend the framework in Bramson [13] to show that multiplicative SSC results in many-

server diffusion limits can be established by checking that the associated hydrodynamic

limits satisfy certain conditions. Hydrodynamic limits are generalizations of fluid limits and

their structure is determined using a functional weak law of large numbers. Our framework

presents a relatively easy and a general method to establish SSC results in many-server

diffusion limits, as Bramson’s framework does in conventional heavy traffic diffusion limits.

Before we summarize our framework, we give the details of the Halfin and Whitt limiting

regime. In [32], they consider a sequence of GI/M/n systems. Let λn denote the arrival

rate to the system with n servers, µ be the service rate of each server and ρn = λn/(nµ)

denote the traffic intensity. They show that the steady state probability that there is at least

one customer in the queue waiting for service converges to a limit 0 < α < 1 if and only if

√
n(1−ρn) → θ, for some θ > 0, as n→ ∞. LetXn(t) denote the total number of customers,

including those in service, in the nth system at time t. They show that the properly scaled

number of customers in the system process, X̂n(·) = (Xn(·)−n)/
√
n, converges to a diffusion

process if X̂n(0) converges weakly. They also show that the steady state distribution of the

queue length converges to the steady state distribution of the limiting diffusion process. This

fact makes the use of diffusion limits attractive to approximate the steady state performance

measures of these systems.

The current literature focuses on generalizing the analysis in Halfin and Whitt to other

parallel server systems. However, this line of research is still in its early stages and only for a

few systems with special topological properties similar diffusion limits have been established.

Recent papers; see, for example, Armony [1], Armony and Maglaras [3, 2], Gurvich et al. [31],

Maglaras and Zeevi [47, 48, 49], establish diffusion limits of certain classes of parallel server

systems. As stated in Section 4 of Gans et al. [28], many-server asymptotic analysis is one

of the most promising research directions in the analysis of parallel server systems with

many servers, more specifically for the analysis and optimal control of call centers.

In this study, we begin with presenting a unifying framework for the analysis of parallel

server systems. First, we determine the queueing equations that must be satisfied by a

parallel server system. Then, we formulate a static planning problem which is similar to
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that in Harrison [35]. Using this formulation we characterize a general many-server heavy

traffic condition. The solution of this problem reveals the long-run proportion of servers

that must be allocated to each customer class. Also, we obtain conditions under which

the queue lengths will not grow without bound and restrict our attention to systems that

satisfy these conditions. This is achieved by considering control policies that achieve the

optimal long-run allocation proportions that is necessary for stability. We present a general

fluid model framework that can be used to check if a control policy achieves these long-run

allocations. It will be shown that for a policy that satisfy these conditions it is enough to

check that a set of deterministic equations satisfy certain conditions in order to prove a SSC

result.

Once we formulate the many-server heavy traffic condition we focus on establishing a

framework to prove SSC results. As discussed above, SSC results play an important role in

establishing conventional heavy traffic approximations as shown by Williams [69] and it is

apparent from the current literature; see [1], [2], [3], and [31], that they are also crucial for

establishing many-server diffusion limits.

The SSC framework established in Bramson hinges upon the observation that by slowing

down the clock of the diffusion scaled processes, achieved by working with the hydrodynamic

scaling, the events that happen instantaneously in the diffusion limits can be observed in

more detail. The motivation behind using the hydrodynamic limits to study an SSC result

in the current setting is based on this observation. We use the hydrodynamic scaling which

is obtained by slowing down the time in the diffusion scaling used by Halfin and Whitt.

Using this scaling we obtain the structure of the hydrodynamic limits. By utilizing the

connection between the hydrodynamic limits and the diffusion limits, we show that certain

conditions on hydrodynamic limits imply an SSC result in the diffusion limit.

In short, we show that in order for a state space collapse result to hold in the diffusion

limit it must hold eventually for the hydrodynamic limits. The general structure and defini-

tion of hydrodynamic limits are complicated. It is not clear how one can check the required

condition on hydrodynamic limits by directly using the definition. We overcome this hurdle

by showing that the hydrodynamic limits of a general parallel server system must satisfy
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a set of deterministic equations which we call the hydrodynamic model equations. These

equations possess some of the nice properties of the fluid model equations but they are

different. We illustrate how fluid model tools can be used to show that the SSC results for

the hydrodynamic limits of three systems, to be explained below, hold.

Our results differ from Bramson’s in several aspects. As described above, we focus on

systems under the Halfin–Whitt many-server regime whereas Bramson focused on systems

under conventional heavy-traffic. The main technical difficulty in extending Bramson’s re-

sult to the many-server asymptotic regime stems from the number of servers going to infinity

because it is assumed to be fixed at a finite value in the conventional heavy traffic analysis.

Also, the class of SSC results we consider here is different than those considered by Bram-

son. Bramson [13] focused on establishing a relationship between the workload and queue

length processes of a system. Although this relationship plays an important role in the con-

ventional heavy traffic analysis, studying the workload process does not seem to help in the

many-server asymptotic analysis. Loosely speaking, we use the term “state space collapse”

to refer to a decrease in the dimension in the limit of the queueing processes associated with

the system studied. To mathematically characterize such a result we introduce the notion

of SSC functions which has not been used in the literature. Therefore, some of the results

presented here does do not have corresponding counterparts in Bramson’s framework. In

addition, the hydrodynamic limits established in this study for the many-server setting are

new.

We present the applications of our main result in three different parallel server systems.

The first system we study is a distributed parallel server (DPS) system. A DPS system

consists of a single customer class and multiple server pools. Each customer must be

routed to a server pool or a queue at his arrival time following a routing policy. We focus

on two control policies; the minimum-expected-delay–faster-server-first (MED–FSF) policy

and the minimum-expected-delay–load-balancing (MED–LB) policy. Under both policies,

if all servers are busy when a customer arrives at the system, the customer is routed to the

queue that has the minimum expected delay. If there is an idle server at his arrival time,

then under the MED–FSF policy the customer is routed to the fastest available pool and
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under the MED–LB to the least utilized available pool. We show that the MED-FSF policy

achieves complete resource pooling in the diffusion limit, that is, the many-server diffusion

limit and its stationary distribution of a DPS system under the MED-FSF policy is equal in

distribution to the corresponding system that has a single queue where all customers wait

for service. However, under the MED–FSF policy all the servers in our DSP system except

those with the lowest service rate experience 100% utilization. A common goal in call center

management is to have all the servers to be utilized “fairly”. The MED–LB policy achieves

this objective. We show that the MED–LB policy asymptotically balances the load of the

servers.

The second system we study is an N-system. An N-model consists of two customer

classes and two server pools. The servers in the first pool can only serve class 1 customers

whereas the second pool can serve either class. We assume that the second server’s service

rate is the same for both classes. We show that a static priority rule is asymptotically

optimal for such N-models with many servers. The optimality is in terms of stochastically

minimizing linear holding costs.

Finally, we illustrate the strength of our framework by solving two open problems from

the literature. Both of these results are for a a parallel server system with a V-design, V-

system for short. A V-system consists of a single server pool and multiple customer classes.

We will focus on the case with two customer classes and assume that service rates of the

customer classes are equal. The first policy we consider is a threshold policy proposed in

Armony and Maglaras [3]. We prove that under their policy, the SSC result they conjecture

holds. The second policy we consider is a more complicated threshold policy proposed by

Milner and Olsen [53]. We first discuss why the SSC result they conjectured cannot be shown

in standard function spaces used for the asymptotic analysis of queueing systems. Then,

we propose a policy whose asymptotic performance is arbitrarily close to the conjectured

performance of the policy proposed by Milner and Olsen. We prove a SSC result that is

similar to that conjectured in Milner and Olsen under this policy.

The rest of this proposal is organized as follows. In the following section we review the

related literature. We introduce the notation used in this thesis in Section 1.2. In Chapter 2
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we introduce the parallel server systems and present the set of queueing equations that must

be satisfied by these systems. In Chapter 3 we define the hydrodynamic limits and present

our main results. Applications of our main results are presented in Chapter 4. The reader

who wants to see the applications before the abstract theory can skip Chapter 3 and read

Chapter 4 first. We conclude with some remarks and future research directions in Chapter 5.

1.1 Previous Work

In this chapter we review the literature. Standard references on conventional heavy traffic

analysis include Harrison [34], Chen and Yao [15], and Whitt [65]. Results from classical

queueing theory for the analysis of parallel server systems can be found on several textbooks;

see, for example, Ross [59] and Gross and Harris [30].

Early many-server diffusion approximations had appeared in Borovkov [12], Iglehart [42],

and Whitt [64], with the limiting traffic intensity of the system converging to a values less

than one, before Halfin and Whitt [32] studied the regime explained above. We restrict the

rest of our review to the literature on the Halfin-Whitt many-server asymptotic analysis.

The analysis of Halfin and Whitt has been extended in several directions. Garnett et al. [29]

studied the asymptotic analysis of an M/M/n system with impatient customers and they

have established similar results to those in Halfin and Whitt. Puhalski and Reiman [56] es-

tablished the diffusion limit of a G/PH/n system, where PH stands for a phase type service

time distribution. They have also established the many-server diffusion limits of a V-model

parallel server system under a static priority policy. To the best of our knowledge, the first

SSC result in the Halfin and Whitt regime appeared in Puhalski and Reiman [56]. Whitt [67]

studies the many-server diffusion limit of a G/H∗
2/n/m system, where H∗

2 indicates that the

service time distribution is an extremal distribution among the class of hyperexponential

distributions. He later uses this analysis in [66] to approximate G/GI/n/m systems.

Armony and Maglaras studied an M/M/n system with two customer classes in [3,

2]. The hydrodynamic scaling we introduce in this study is similar to the scaling that is

used in that paper. This scaling was also used in previous studies by Maglaras [50] and

Fleming et al. [25] in different settings. Yet, the hydrodynamic scaling in the many-server
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setting arises naturally from that in the conventional heavy traffic setting that is introduced

by Bramson [13].

Gurvich et al. [31] studies a V-parallel server system with impatient customers. They

show that a static buffer priority policy with a threshold policy is asymptotically optimal.

Armony [1] studies an inverted-V-parallel server system and shows that the faster-server-first

(FSF) policy is asymptotically optimal. The SSC results established in Gurvich et al. [31]

and Armony [1] can be easily proved by using our main results.

Another approach to construct effective control policies is to formulate a Brownian

control problem by mimicking the analysis in the conventional heavy traffic; see Harrison [33]

for an introduction and Harrison [40] and Harrison and Williams [37] for current research

in this field.

Harrison and Zeevi [38] and Atar et al. [7] study a V-parallel server system with impatient

customers in the QED regime and find asymptotically optimal control policies. Atar [6, 5]

follows a similar approach to that in [7] to find asymptotically optimal policies for tree-like

systems. In a related recent paper by Atar et al. [8] discusses the null controllability of

parallel server systems.

Although an analog of the framework in Williams [69] and Bramson [13] has not been

built for the many-server regime, diffusion limits of some general Markovian queueing sys-

tems have been established. Mandelbaum et al. [51] and Pats [54] provided the diffusion

limits for Markovian queueing network systems with exponential interarrival and service

times in different settings. However, our approach differs from theirs in several aspects. We

base our results on a multiclass queueing network setting and consider the control policies

to be a part of the queueing system formulation. They do not consider control policies

explicitly but assume that it can be incorporated in their “Markovian” service network for-

mulation. Since the control policies are not explicitly studied they do not explicitly define

the class of control policies that satisfy this assumption, but they illustrate the applications

of their results in several multiclass parallel server systems. Not considering the control

policies explicitly allows them to consider service and arrival processes whose rates can be

time and state dependent.
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1.2 Notation

The set of non-negative integers is denoted by N. For an integer d ≥ 1, the d-dimensional

Euclidean space is denoted by R
d and R+ denotes [0,∞). Let |x| denote the max norm on

R
d given by |x| = maxi=1,2...,d{|xi|}. We also use |x| to denote the max norm on R

d1×d2 , for

d1 > 0 and d2 > 0. We use {xn} to denote a sequence whose nth term is xn. For a function

f : R → R, we say that t is a regular point of f if f is differentiable at t and use ḟ(t) to

denote its derivative at t.

For each positive integer d, D
d[0,∞) denotes the d-dimensional Skorohod path space;

see [24]. For x, y ∈ D
d[0,∞) and T > 0 we set

‖x(t) − y(t)‖T = sup
0≤t≤T

|x(t) − y(t)|.

The space D
d[0,∞) is endowed with the J1 topology and the weak convergence in this space

is considered with respect to this topology. For a sequence of functions {xn} ∈ D
d[0,∞),

the sequence is said to converge uniformly on compact sets to x ∈ D
d[0,∞) as n → ∞,

denoted by xn → x u.o.c., if for each T > 0

‖xn(t) − x(t)‖T → 0 as n→ ∞.

The term FSLLN stands for functional strong law of large numbers and FCLT stands for

functional central limit theorem; see [15] for details.

We assume that all the random variables are defined in the same probability space

(Ω,F , P ). A stochastic process can be viewed as a function from Ω× [0,∞) to R. In several

occasions, we will need to analyze the sample paths of stochastic processes. In those cases,

we will explicitly express the dependence by writing X(·, ω) for the sample path associated

with ω ∈ Ω of a stochastic process X. If the sample paths of a subset of Ω is analyzed, we

omit ω from the notation.
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CHAPTER II

PARALLEL SERVER SYSTEMS

We consider a system with parallel server pools and several customer classes. A server pool

consists of several servers whose service capacities and service capabilities are the same.

Customers arrive to the system exogenously and upon arrival they are routed to one of the

buffers (or queues). Two customers that are routed to the same buffer are said to be in the

same class. Each customer is only served by one of servers. Once the service of a customer is

completed by one of the servers, he leaves the system. We refer to these systems as parallel

server systems.

We use I to denote the number of arrival streams, J to denote the number of server

pools, and K to denote the number of customer classes. For notational convenience, we

define I = {1, . . . , I} the set of arrival streams, J = {1, . . . , J} the set of server pools, and

K = {1, . . . ,K} the set of customer classes.

We denote the arrival rate for the ith stream by λi. The customers arriving in the ith

stream are called type i customers and customers that are routed to buffer k are called the

class k customers. We assume that the set of pools that can handle class k customers is

fixed and denote it by J (k). Similarly, we assume that the set of queues that servers in

pool j can handle is fixed and denote it by K(j).

Once a customer joins a queue he cannot swap to other queues nor can he renege. After

the customer is routed to a queue, say queue k, he proceeds directly to service if there

is an available server in one of the pools in J (k). We assume that the service time of a

class k customer by a server in pool j is exponentially distributed with rate µjk > 0 for

all k ∈ J (k). We denote the number of servers in pool j by Nj , for j ∈ J and we set

N = (N1, N2, . . . , NJ ). We denote the total number of servers in the system by |N |.

In order to operate a multiclass parallel server system control policies must also be

given. A control policy must specify a routing policy that can be used to route an arriving
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customer to one of the buffers and a scheduling policy that can be used to dispatch a server

to serve a customer. Such dispatching is needed in two circumstances. First, whenever a

server completes the service of a customer and there exist multiple customers in different

classes that the server can handle. Second, whenever a customer arrives and there exist

one or more idle servers who can handle that customer class. One can imagine a countless

number of policies to serve these purposes. We restrict our attention to control policies that

are head-of-the-line and non-idling. A scheduling policy is said to be non-idling if a server

never idles when there is a customer waiting in one of the queues that can be served by that

server and head-of-the-line (HL) if each server can only serve one customer at any given

time and the customers in the same queue are served on a first-in-first-out (FIFO) basis.

We assume that the control policy is non-preemptive; once the service of a customer starts

it can not be interrupted before it is finished. We do not make any assumptions about

the routing policy. We call a control policy non-idling and HL if the associated scheduling

policy is non-idling and HL.

We also focus on Markovian policies that use information on the queue-length and

number of customers in service to allocate servers to customer classes at the time of an

arrival to or a departure from the system. We define a strictly increasing sequence {σl}∞l=0

that specifies the successive times at which an arrival occurs to, or a departure occurs from,

some class in the network. These time points naturally depend on the policy and can be

constructed as described below. We assume that a policy takes action only when the state

of the system is changed via an arrival or a departure. Therefore, the server allocations

remain constant between [σn, σn+1) for n ≥ 1. The new allocations for the next interval

[σn+1, σn+2) are assigned based on the state of the system during the previous interval

[σn, σn+1) and the event happened at time σn+2. Let ei denote the I dimensional ith unit

vector and Ejk denote the J ×K matrix with all of its entries equal to 0 except its jkth

entry equal to 1. Also e0 and E0 denote the zero matrices, i.e., all of their entries are equal

to zero, with dimensions I and J ×K, respectively.

Let Q(t) = (Qk(t); k ∈ K), where Qk(t) denotes the number of class i customers in

queue at time t and Z(t) = (Zjk(t); i ∈ I, j ∈ J (i)), where Zjk(t) denotes the number
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of class k customers being served by a server in server pool j at time t. To specify the

allocation scheme we assume that with each policy π there exists a measurable function

fπ : N
I × N

J×K × N
I × N

J×K → N
I × N

J×K such that

fπ (Q(σn), Z(σn), e, E) = (Q(σn+1), Z(σn+1)) (2.1)

gives the new allocations, where e = ei, E = E0 if the event at time σn+1 is an arrival to

class i, e = e0, E = Ejk if it is a class k departure from server pool j. We call fπ the

transition function for policy π and we say that a policy is admissible if it is non-idling, HL,

non-preemptive, and has the Markovian structure described above.

A few issues must be addressed in our policy description. First, more than one event

may occur at the same time. In that case we order the occurrence times of the events

arbitrarily and let policy π make successive allocations at a time point. Also, a policy must

satisfy some physical constraints, e.g.; it cannot allocate more servers from a server pool

than the number of servers available. These constraints are formulated in the next section

within the system equations.

2.1 The dynamics of parallel server systems

In this section we describe the dynamics of a parallel server system. Actually, we will de-

scribe in detail the dynamics of a “perturbed” system. The perturbed system is closely

related to the parallel server system, and it allows us to write down queueing network equa-

tions that are similar to the ones in the standard multiclass queueing networks. Specifically,

the number of service completions in the perturbed system is more amenable to analysis

than it is in the original system. The equivalence of these two systems, under the exponen-

tial service time assumption, will be discussed at the end of this section. Note that a control

policy for routing and server scheduling is needed to operate the perturbed system. Like

the parallel server system, we assume that each control policy for the perturbed system is

non-preemptive, HL, and non-idling. We denote a generic non-idling and HL control policy

by π.

The perturbed system is identical to the parallel server system except that its service

mechanism is modified as follows. At any given time, when n ≥ 1 servers in pool j serve
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n class k customers, the n servers work on a single class k customer, where as in the

original system each customer in service receives service from a server. The remaining n−1

customers are said to be locked for service; they do not receive any service even though they

have left queue k. The single customer in service, called the active customer, can be chosen

arbitrarily among the n customers. We assume that the service efforts from the n servers

are additive in that service of the active customer is completed when the total time spent

by all servers on the customer reaches the service requirement of the customer. When the

service of the active customer is completed, the customer departs the system, and one of the

servers working on that customer is freed. At this point, the remaining n−1 servers choose

a new active customer, and the freed server is either assigned to a class, say k′, or stays

idle following a non-idling scheduling policy. In the former case, the server locks a class k′

customer, with a given service requirement, for service. If there is an active customer that

is currently being served by n′ servers in pool j that are working on class k′ customers, the

new server joins the service efforts of these n′ servers on the active customer. Otherwise,

the locked class k′ becomes an active customer, served by the new server.

The object of study in this paper is a stochastic process X = (A,Aq, As, Q,Z, T, Y,B,D),

where X is defined via the perturbed system and each of its components is explained in

the next few paragraphs. The notation used in this section is inspired by that used in

Puhalskii and Reiman [56] and Armony [1].

The first component is A = (Ai : i ∈ I), where Ai(t) denotes the total number of arrivals

by time t for type i customers. We give more details about the structure of the arrival

process in the next section. Here, we just mention that it is a delayed renewal process (see

Ross [59]). The second component is Aq = {Aik; i ∈ I, k ∈ K}, where Aik(t) denotes the

total number of type i customers who are routed to queue k at the time of their arrival and

who had to wait in the queue prior to receiving service and arrived at the system before

time t. The third component is As = (Aijk; i ∈ I, k ∈ K, j ∈ J (k)), where Aijk(t) denotes

the total number of type i customers who have been routed to queue k and started their

service immediately after their arrival at server pool j before time t. The component B is

(Bjk : j ∈ J , k ∈ J (k)), where Bjk(t) denotes the total number of class k customers who
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are delayed in the queue and whose service started in pool j before time t.

The components Z and Q are (Zjk : j ∈ J , k ∈ K(j)) and Q = (Qk : k ∈ K), respec-

tively, where we use Zjk(t) to denote the total number of servers in pool j that serve class

k customers and Qk(t) to denote the total number of customers in queue k at time t.

The components T , D and Y are (Tjk : j ∈ I, k ∈ J (j)), (Djk : j ∈ J , k ∈ K(j)), and

(Yj : j ∈ J ), respectively, where Tjk(t) denotes the total time spent serving class k cus-

tomers by all Nj servers of pool j, Djk(t) denotes the total number of class k customers

whose service is completed by a server in pool j by time t, and Yj(t) denotes the total idle

time experienced by servers of pool j up to time t. Note that Tjk ≤ Njt.

Let {Sjk, j = 1, . . . , I, k = 1, 2, . . . , J} be a set of independent Poisson processes with

each process Sjk having rate µjk > 0. We set S = (Sjk) and µ = (µjk). For the perturbed

system, we model the total number of class k customers whose service is completed by

servers in pool j via

Djk(t) = Sjk(Tjk(t)), t ≥ 0. (2.2)

The process X depends the control policy used in the perturbed system. In order to

emphasize the dependence on the control policy π used, we use Xπ to denote the process.

Clearly, each component of A, Aq, As, B, T , D, and Y is a nondecreasing process, and each

component of Q and Z is nonnegative. Furthermore, the process Xπ satisfies the following
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equations for all t ≥ 0.

Ai(t) =
∑

k∈K
Aik(t) +

∑

k∈K

∑

j∈J (k)

Aijk(t), for all i ∈ I, (2.3)

Qk(t) = Qk(0) +
∑

i∈I
Aik(t) −

∑

j∈J (k)

Bjk(t), for all k ∈ K, (2.4)

Zjk(t) = Zjk(0) +
∑

i∈I
Aijk(t) +Bjk(t) −Djk(t), for all j ∈ J and k ∈ K(j), (2.5)

∑

k∈K(j)

Zjk(t) ≤ Nj, (2.6)

Djk(t) = Sjk(Tjk(t)), for all j ∈ J and k ∈ K(j), (2.7)

Tjk(t) =

∫ t

0
Zjk(s)ds, for all j ∈ J and k ∈ K(j), (2.8)

Yj(t) = Njt−
∑

k

Tjk(t), (2.9)

Qk(t)





∑

j∈J (k)



Nj −
∑

l∈K(j)

Zjl(t)







 = 0, for all k ∈ K, (2.10)

∫ t

0

∑

j∈J (k)



Nj −
∑

l∈K(j)

Zjl(s)



 dAik(s) = 0, for all i ∈ I and k ∈ K, (2.11)

Equations associated with the control policy π. (2.12)

Equation (2.7) is identical to (2.2). The interpretation of (2.8) is that the busy time for

server pool j working on class k at time t accumulates with rate equal to the total number

of servers from pool j working on class k customers at time t. Equation (2.10) implies

that there can be customers in the queue only when all the servers that can serve that

queue are busy. It is called the non-idling condition and indicates that a server can only

idle when there is no customer waiting in the queues that he can serve. Equation (2.11)

implies that an arriving customer is delayed in the queue only if there is no idle server that

can serve that customer at the time of his arrival. Equation (2.12) forces the routing and

scheduling decisions to be made according to the selected routing and scheduling policies.

Other conditions are self explanatory.

We call Xπ the π-parallel server system process (or just π-parallel server system), al-

though Xπ is a process defined through the perturbed system. We denote the dimensions

of Xπ and Z by d and dz, respectively.

Note that for given a control policy π, and the associated function fπ; see (2.1), it can be
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applied to both the parallel server system and the perturbed system. For the parallel system,

one can define the corresponding process X
′
π = (A′, A′

q, A
′
s, Q

′, Z ′, T ′, Y ′, B′,D′) with each

component having the same interpretation as in the perturbed system. Clearly, A′ = A. But

careful readers have noticed that the corresponding equation (2.7) for the departure process

does not hold. Indeed, X
′
π is sample pathwise different from the corresponding process Xπ,

although X
′
π satisfies all equations (2.3)–(2.12) except (2.7). We have the following result

on the equivalence of two processes.

Theorem 2.1. Under an admissible policy π, Xπ is equal to X
′
π in distribution when they

are given the same initial condition.

The proof that is placed in Appendix B uses the description of the primitive process

presented in the next section and we therefore recommend the reader go over the next

section first.

2.2 Primitive processes

The main goal of this thesis is to study state space collapse results in many server diffusion

limits. Therefore, we analyze a sequence of systems indexed by r such that the arrival

rates grow to infinity as r → ∞. The number of servers also grows to infinity to meet the

growing demand. We append “r” to the processes that are associated with the rth system,

e.g., Qr
k(t) is used to denote the number of class k customers in the queue in the rth system

at time t. The arrival rate for the ith arrival stream in the rth system is given by λr
i and

we set λr = (λr
1, . . . , λ

r
I). We assume that

λr
i → ∞, i = 1, . . . , I, (2.13)

as r → ∞. We also assume that all the customer types are asymptotically significant and

the growth rate of the arrival rate for each type is proportional, that is,

λr
i /
∑

i∈I
λr

i → ai, (2.14)

as r → ∞, for some ai > 0 and all i ∈ I.
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Let {Sjk, j = 1, . . . , J, k = 1, 2, . . . ,K} be as given in the previous section and {vjk(l) :

l = 1, 2, . . .} be the sequence of interarrival times of the process {Sjk(t) : t ≥ 0}. Since Sjk

is a Poisson process, {vjk(l) : l = 1, 2, . . .} is a set of independent and identically distributed

exponential random variables. We define Vjk : N → R by

Vjk(m) =

m
∑

l=1

vjk(l), m ∈ N,

where, by convention, empty sums are set to be zero. The term Vjk(m) is the total service

requirement of the 1st m class k customers that are served by pool j servers, and Vjk is

known as the cumulative service time process. By the duality of Sjk and Vjk, one has

Sjk(t) = max{m : Vjk(m) ≤ t}, t ≥ 0.

It follows from (2.7) that

Vjk(D
r
jk(t)) ≤ T r

jk(t) ≤ Vjk(D
r
jk(t) + 1), for all j ∈ J and k ∈ K(j). (2.15)

This condition is identical to the HL condition in a standard multiclass queueing network,

where each station has a single server; see, for example, Dai [18].

Next, we give the details of the primitive arrival processes. Let Ei = {Ei(t) : t ≥ 0} be

a delayed renewal process with rate 1 and E = {Ei : i ∈ I}. Let

Ar
i (t) = Ei(λ

r
i t). (2.16)

Let {ui(l) : l = 1, 2, . . .} be the sequence of interarrival times that are associated with

the process Ei. Note that they are independent and {ui(l) : l = 2, 3, . . .} are identically

distributed. We define Ui : N → R by

Ui(m) =
m
∑

l=1

ui(l), m ∈ N,

and so

Ei(t) = max{m : Ui(m) ≤ t}.

We require that the interarrival times of the arrival processes satisfy the following con-

dition that is similar to condition (3.4) in Bramson [13].

E
[

ui(2)
2+ǫ
]

<∞, for all i ∈ I and for some ǫ > 0. (2.17)
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Condition (2.17) is automatically satisfied by the service times since they are assumed be

exponentially distributed. For the rest of the paper, we assume that the primitive processes

of a parallel server system satisfy (2.17). We also assume that Qr(0), Zr(0), S, and E are

independent.

We require that the number of servers in the rth system in each pool is selected so that

lim
r→∞

N r
j

|N r| = βj , for all j ∈ J and for some βj > 0 and (2.18)

lim
r→∞

λr
i

|N r| = λi, for all i ∈ I and for some 0 < λi <∞. (2.19)

We assume that {|N r|} is strictly increasing in r and we set λ = (λ1, . . . , λI).

The process Ar
i can be taken to be a more general process than the one considered

here. One can also consider more general service processes, for example, by taking a series

of Poisson processes with the same rate or even with rates converging to a constant in

certain manner; i.e., the processes Sij’s may depend on r. We see no potential gain in the

applications by doing so; besides, (2.15) and (2.16) allow us to use the established bounds

on the primitive processes by Bramson [13] without any modification.

2.3 The static planning problem and asymptotic framework

The static planning problem (SPP) has been used in the literature to determine the optimal

nominal allocations of servers’ capacities for the service of customer classes; see Harrison [35]

and Dai and Lin [20]. Nominal allocations determine the long-run proportion of servers’ ef-

fort allocated to each class. We take a similar approach to determine the nominal proportion

of servers in a server pool that will be allocated to serve each class.
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The static planning problem is defined as

min ρ

s.t.

∑

k∈K
αik = λi, for all i ∈ I,

∑

j∈J (k)

βjµjkxjk =
∑

i∈I
αik, for all k ∈ K,

∑

k∈K(j)

xjk ≤ ρ, for all j ∈ J ,

xjk, αik ≥ 0, for all j ∈ J , k ∈ K, and i ∈ I.

(2.20)

The quantity αik/λi can be thought of as the long-run proportion of type i customers

that are routed to queue k and xjk as the long-run proportion of servers in server pool

j that are allocated to serve class k customers. We set α = {αik : i ∈ I, j ∈ K} and

x = {xjk : j ∈ J , k ∈ K}.

The objective of the SPP is to minimize the total proportion of required servers in each

pool. From this formulation it is clear that referring to x as proportions is a misnomer since

∑

k∈K(j) xjk may be greater than 1. We use the term “proportion” because of Assumption 1

below.

The main difference between our formulation of the SPP and the one in Harrison [35] is

that we model routing of customers to queues explicitly as in Stolyar [60]. We pay the price

by having one more constraint than his formulation. The main constraint is to be able to

serve all the incoming customers. This is formulated in the first and the second constraints.

The first constraint assures that all the arriving customers are routed to one of the queues

and the second constraint is needed to guarantee that enough service capacity is allocated

to all customer classes.

Let (ρ∗, x∗, α∗) be an optimal solution to the SPP. If ρ∗ > 1, it can be easily shown

that the queue length process is not bounded under the fluid limit for r large enough (fluid

limits are defined in Appendix A). We will assume for the rest of this paper that ρ∗ ≤ 1.

Now, consider the sequence of parallel server systems described in the previous section,
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and the associated SPP with the rth system;

min ρr

s.t.

∑

k∈K
αr

ik = λr
i , for all i ∈ I,

∑

j∈J (k)

N r
j µjkx

r
jk =

∑

i∈I
αr

ik, for all k ∈ K,

∑

k∈K(j)

xr
jk ≤ ρr, for all j ∈ J ,

xr
jk, α

r
ik ≥ 0, for all j ∈ J , k ∈ K, and i ∈ I.

(2.21)

Let (ρr,∗, xr,∗, αr,∗) be an optimal solution to (2.21). We formulate the many server heavy

traffic condition as follows.

Assumption 1. The SPP (2.20) has a unique optimal solution (ρ∗, x∗, α∗) with λ given by

(2.19) and that solution has ρ∗ = 1 and
∑

k∈K(j) x
∗
jk = 1 for all j ∈ J . Moreover,

√

|N r|(1 − ρr,∗) → θ,

for some θ ∈ R as r → ∞.

Even when the SPP (2.20) has an optimal solution with ρ∗ ≤ 1, it is not a trivial task

to come up with a control policy that will achieve the optimal allocations in the long-run.

If ρ∗ is close to one, small deviations from the optimal allocations may again cause the

queue length to grow without a bound. This phenomenon is closely related to the stability

of a control policy in a multiclass queueing network setting. In this paper we only consider

control policies that satisfy the following assumption.

Assumption 2. For a control policy π,

T r
jk(·)/|N r| → T ∗

jk(·) u.o.c. a.s., (2.22)

as r → ∞, if (Qr(0)/|N r|, Zr(0)/|N r|) → (0, z) a.s., as r → ∞, where T ∗
jk(t) = βjx

∗
jkt,

z = (zjk, j ∈ J , k ∈ K(j)), and zjk = βjx
∗
jk.

20



We provide a general framework that can be used to check that a control policy satisfies

Assumption 2 in Appendix A.

In general, the diffusive scaling is defined in a way that allows one to study the fluctua-

tions of the queue length process around its long-run average. Implicitly given in Assump-

tion 2 and elaborated in Appendix A is that

Qr(·)/|N r | → 0 and Zr(·)/|N r | → z(·) u.o.c. a.s.,

as r → ∞, where z(t) = z, for t ≥ 0. Hence, we define the diffusive scaling as follows;

Q̂r(t) =
Qr(t)
√

|N r|
and Ẑr

jk(t) =
Zr

jk(t) − x∗jkN
r
j

√

|N r|
, for t ≥ 0. (2.23)
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CHAPTER III

MAIN RESULTS

In this section, we present a general framework to prove a state space collapse result in the

many server diffusion limit of a π-parallel server system process. We first introduce the

hydrodynamic model equations. The solutions of these equations play an important role in

the general SSC framework. We present our main results in Section 3.2. Naturally, some

of the hydrodynamic equations depend on the policy used. We will present the additional

hydrodynamic equations for the policies discussed in Chapter 4, here we just note that they

can be obtained via standard arguments.

3.1 Hydrodynamic model equations

Consider the process X̃π = (Ã, Ãq, Ãs, Q̃, Z̃, B̃) and the following set of equations:

λit =
∑

k∈K Ãik(t) +
∑

k∈K
∑

j∈J (k) Ãijk(t), for all i ∈ I, (3.1)

Q̃k(t) = Q̃k(0) +
∑

i∈I Ãik(t) −
∑

j∈J (k) B̃jk(t), for all k ∈ K, (3.2)

Q̃k(t) ≥ 0, for all k ∈ K, (3.3)

Ãik, Ãijk, B̃jk are nondecreasing for all i ∈ I, j ∈ J , and k ∈ K, (3.4)

Z̃jk(t) = Z̃jk(0) +
∑

i∈I Ãijk(t) + B̃jk(t) − µjkzjkt, for all j ∈ J and k ∈ J (k), (3.5)

∑

k∈K(j) Z̃jk(t) ≤ 0, for all j ∈ J , (3.6)

Q̃k(t)
(

∑

j∈J (k)

∑

l∈K(j) Z̃jl(t)
)

= 0, for all k ∈ K, (3.7)

∫ t
0

∑

j∈J (k)

(

∑

l∈K(j) Z̃jl(s)
)

dÃik(s) = 0, for all i ∈ I and k ∈ K, (3.8)

Additional equations associated with the control policy π, (3.9)

where λi is defined as in (2.19) and zij as in Assumption 2. Equations (3.1)-(3.9) are

called the hydrodynamic model equations, and they define the hydrodynamic model of the

π-parallel server system. Any process X̃π satisfying (3.1)-(3.9) for all t ≥ 0 is called a

hydrodynamic model solution.
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Hydrodynamic model solutions are similar to the fluid model solutions; they are deter-

ministic and absolutely continuous. However, comparison of hydrodynamic model equations

(3.1)-(3.9) with the fluid model equations (A.2)-(A.9) reveals major differences. The hy-

drodynamic counterpart of number of servers in pool j working on class k customers, Z̃jk,

can assume negative values unlike the corresponding fluid model process Z̄jk, which is al-

ways nonnegative. Also, the departure process D (and related processes T and Y ) are

missing from the hydrodynamic model equations. The reason will become clear when we

present the mathematical origins of hydrodynamic model equations but it is also obvious

from (3.5) that D̃jk(t) = µjkzjkt, T̃jk(t) = zjkt, and Ỹj(t) = 0 for all t ≥ 0. This reveals

the importance of Assumption 2. Similar to the “efficient” policy concept in conventional

heavy traffic, under a policy that does not satisfy this assumption for large enough r fluid

scaled queue lengths will be unbounded. Also, the hydrodynamic model solution T̃ cannot

be easily characterized for those policies.

The most important property of hydrodynamic model equations is that the hydrody-

namic limits satisfy these equations under certain general assumptions. This is similar to

the relationship between the fluid model equations and the fluid limits; see Dai [18]. Equa-

tion (3.9) is obtained from the policy π. It has to be justified mathematically that the

hydrodynamic limits satisfy this equation.

3.2 State space collapse in the diffusion limits

We need a machinery to define a state space collapse in mathematical terms, for this we use

a function with the following properties. Let g : R
K+dz → R

+ be a nonnegative function

that satisfies the following homogeneity condition;

g(αx) = αcg(x), (3.10)

for all x ∈ R
K+dz , 0 ≤ α ≤ 1, and for some c > 0. We call g an SSC-function. Nonnegativity

assumption is made for notational convenience and one can always consider |g| in order to

have a nonnegative function if g can take negative values. We make the following assumption

about the SSC-function.
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Assumption 3. The function g : R
K+dz → R

+ satisfies (3.10) and is continuous on R
K+dz .

Assumption 3 is needed for a simple reason; we will consider a sequence of stochastic

processes that converges to another one and we would like to show that the sequence that

consists of the values of g evaluated for each process converges to the value of g evaluated

at the limiting process. Assumption 3 makes this possible by virtue of the Continuous

Mapping Theorem; see [15]. Condition (3.10) will be needed when we translate the results

from hydrodynamic scaled processes to diffusive scaled processes. The class of functions

that satisfy Assumption 3 is large enough for most purposes, however, this class can be

extended as discussed in Chapter 3.3.

As the machinery to state an SSC result has been set, we are ready to state the conditions

on the hydrodynamic model solutions that imply that an SSC result holds in the diffusion

limit. The following assumption is analogous to Assumption 3.2 in Bramson [13].

Assumption 4. Let g be a function that satisfies Assumption 3. There exists a function

H(t) with H(t) → 0 as t→ ∞ such that

g(Q̃(t), Z̃(t)) ≤ H(t) for all t ≥ 0 (3.11)

for each hydrodynamic model solution X̃π. Furthermore, for each hydrodynamic model so-

lution X̃π with g(Q̃(0), Z̃(0)) = 0, g(Q̃(t), Z̃(t)) = 0 for t ≥ 0.

We are ready to state the main result of this thesis.

Theorem 3.1. Let {Xr
π} be a sequence of π-parallel server system processes. Suppose that

Assumption 1 holds, π satisfies Assumption 2, g satisfies Assumption 3, the hydrodynamic

model of π-parallel server system satisfies Assumption 4, and

g(Q̂r(0), Ẑr(0)) → 0 in probability (3.12)

as r → ∞. Then, for each T > 0,
∥

∥

∥
g(Q̂r(t), Ẑr(t))

∥

∥

∥

T
(∥

∥

∥Q̂r(t)
∥

∥

∥

T
∨
∥

∥

∥Ẑr(t)
∥

∥

∥

T
∨ 1
)c → 0 in probability, (3.13)

as r → ∞, where c > 0 is given as in (3.10).
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Remark 3.2. The result of Theorem 3.1 is still valid if it is only assumed that hydrodynamic

limits, not the hydrodynamic model, satisfy Assumption 4. This relaxes the assumption

because it will be shown that every hydrodynamic limit over a finite time interval [0, L], for

some L > 0, is a hydrodynamic model solution on [0, L]. The set of hydrodynamic model

solutions may contain processes that are not hydrodynamic limits.

Remark 3.3. The SSC result as stated in Theorem 3.1 is called the multiplicative state

space collapse. If (Q̂r, Ẑr) also satisfies

lim
R→∞

lim sup
r→∞

P
{∥

∥

∥
Q̂r(·)

∥

∥

∥

T
∨
∥

∥

∥
Ẑr(·)

∥

∥

∥

T
> R

}

= 0 (3.14)

for all T > 0, then one can use this property to remove the denominator from (3.13) and

obtain a strong state space collapse that is more suitable for applications.

The condition (3.12) can be relaxed as in Theorem 3 in Bramson [13] to only require

that Q̂r(0) and Ẑr(0) are stochastically bounded. The state space collapse result in this

case however does not hold initially at time 0.

Theorem 3.4. Let {Xr
π} be a sequence of π parallel server system processes. Suppose that

Assumption 1 holds, π satisfies Assumption 2, g satisfies Assumption 3, the hydrodynamic

model of π-parallel server system satisfies Assumption 4, and
∣

∣

∣Q̂r(0)
∣

∣

∣ ∨
∣

∣

∣Ẑr(0)
∣

∣

∣ is stochas-

tically bounded. Then, for some Lr = o(
√

|N r|) with Lr → ∞ as r → ∞, and for every

T > 0 and ǫ > 0,

P











sup
Lr/

√
|Nr |≤t≤T

∣

∣

∣g(Q̂r(t), Ẑr(t))
∣

∣

∣

sup
Lr/

√
|Nr |≤t≤T

(∣

∣

∣
Q̂r(t)

∣

∣

∣
∨
∣

∣

∣
Ẑr(t)

∣

∣

∣
∨ 1
)c > ǫ











→ 0, (3.15)

as r → ∞, where c > 0 is given as in (3.10).

Remark 3.5. Let {Xr
π} be a sequence of π-parallel server system processes that satisfy the

conditions of Theorem 3.4. If in addition H, given as in Assumption 4, is bounded, then

lim
R→∞

lim sup
r→∞

P

{

∥

∥

∥g(Q̂r(t), Ẑr(t))
∥

∥

∥

Lr/
√

|Nr|
> R

}

= 0. (3.16)

The result (3.16) may be used in verifying that

lim
R→∞

lim sup
r→∞

P







sup
Lr/

√
|Nr|≤t≤T

(∣

∣

∣Q̂r(t)
∣

∣

∣ ∨
∣

∣

∣Ẑr(t)
∣

∣

∣

)

> R







= 0. (3.17)
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Then, similar to Remark 3.3, one can deduce a strong state space collapse result from

Theorem 3.4 using (3.17).

3.3 Extensions

In this section we discuss possible extensions of our SSC result. These extensions involve

relaxing the condition (3.10).

3.3.1 A weaker homogeneity condition

Theorem 3.1 can be generalized by relaxing condition (3.10) on the class of SSC functions.

We replace condition (3.10) with the following condition: there exist c1 > 0 and c2 > 0 such

that

αc1g(x) ≤ g(αx) ≤ αc2g(x) (3.18)

for all x ∈ R
K+dz and 0 ≤ α ≤ 1. Under (3.18) Theorem 3.1 holds with c is replaced with

c1.

3.3.2 When the homogeneity condition does not hold

In this section we only assume that the SSC function g satisfies the following condition.

Assumption 5. Function g : R
K+dz → R

+ is a nonnegative function and continuous on

R
K+dz .

When the SSC function g only satisfies Assumption 5 but not Assumption 3 we need the

following additional condition on the queue length and busy number of servers processes.

Assumption 6. For every T > 0 (3.14) holds.

For T > 0 we define

Ar
R(T ) =

{(∥

∥

∥Q̂r(·)
∥

∥

∥

T
∨
∥

∥

∥Ẑr(·)
∥

∥

∥

T

)

≤ R
}

(3.19)

Remark 3.6. In the current setting we establish the relation between the hydrodynamic

limits of the sample paths of ω ∈ Ar
R(T ) and a state space collapse result. Therefore, the

hydrodynamic limits, hydrodynamic model equations and hydrodynamic model solutions
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will depend on R and T . To make this dependence explicit we refer to these hydrodynamic

limits, hydrodynamic model equations and hydrodynamic model solutions as the hydrody-

namic limits, hydrodynamic model equations and hydrodynamic model solutions on Ar
R(T ).

One can show that hydrodynamic model equations (3.1)-(3.8) are still satisfied by all hy-

drodynamic limits. However, the policy dependent hydrodynamic model equations depend

on R and T .

Since the hydrodynamic limits are dependent on R and T we need to modify Assump-

tion 4 as follows.

Assumption 7. For every T > 0, there exists R0(T ) such that for every R > R0(T ), there

exists a function HR,T (t) with HR,T (t) → 0 as t→ ∞ such that

g
(

R
(

Q̃(t), Z̃(t)
))

≤ HR,T (t) for all t ≥ 0 (3.20)

for each hydrodynamic model solution X̃π on Ar
R(T ).

Furthermore, for each hydrodynamic hydrodynamic solution X̃π on Ar
R(T ) with

g
(

R
(

Q̃(0), Z̃(0)
))

= 0, g
(

R
(

Q̃(t), Z̃(t)
))

= 0, for t ≥ 0.

We are ready to state the main result of this section.

Theorem 3.7. Let {Xr
π} be a sequence of π-parallel server system processes. Suppose that

Assumption 1 holds, π satisfies Assumption 2, g satisfies Assumption 5, Assumption 6

holds, the hydrodynamic model of π-parallel server system satisfies Assumption 7, and

g(Q̂r(0), Ẑr(0)) → 0 in probability (3.21)

as r → ∞. Then, for each T > 0,

∥

∥

∥g(Q̂r(t), Ẑr(t))
∥

∥

∥

T
→ 0 in probability, (3.22)

as r → ∞.

3.4 State space collapse framework

In this section we prove Theorems 3.1 and 3.4. We begin with introducing the hydrody-

namic scaling that will be used to define the hydrodynamic limits. Once we establish the
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relationship between the hydrodynamic scaled processes and the hydrodynamic limits we

translate condition (3.11) to a condition on the diffusive scaled processes. We finally show

that this latter condition implies the desired SSC result in the diffusion limit.

3.4.1 Hydrodynamic scaling and bounds

The hydrodynamic scaling is used by Bramson [13] to establish a relationship between the

hydrodynamic and the diffusion limits in conventional heavy traffic asymptotic analysis.

We consider a similar time scaling that slows the process down. This allows us to analyze

the events that happen instantaneously in the diffusive scale in more detail. This can be

achieved by using a scaling similar to the diffusion scaling as given in (2.23) but also scaling

the time by 1/
√

|N r|. However, this scaling is not suitable for our purposes. We need the

more refined scaling which we call the hydrodynamic scaling. For any nonnegative integer

m, let

xr,m =

∣

∣

∣

∣

∣

Qr

(

m
√

|N r|

)∣

∣

∣

∣

∣

2

∨
∣

∣

∣

∣

∣

Zr

(

m
√

|N r|

)

− ~N rx∗
∣

∣

∣

∣

∣

2

∨ |N r|, (3.23)

where ~N r is a diagonal matrix with ~N r
jj′ = N r

j if j = j′ and 0 otherwise for j ∈ J and

x∗ = (xjk, j ∈ J , k ∈ K) is given as in Assumption 2. Hence, Zr(t) − ~N rx∗ is a J × K

matrix with its (j, k)th entry equal to Zr
jk(t) − x∗jkN

r
j if k ∈ K(j) and zero otherwise. We

define the hydrodynamic scaling by shifting and scaling the processes of X
r as follows;

Ar,m(t) =
1

√
xr,m

(

Ar

(√
xr,mt

|N r| +
m

√

|N r|

)

−Ar

(

m
√

|N r|

))

,

Ar,m
s (t) =

1
√
xr,m

(

Ar
s

(√
xr,mt

|N r| +
m

√

|N r|

)

−Ar
s

(

m
√

|N r|

))

,

Ar,m
q (t) =

1
√
xr,m

(

Ar
q

(√
xr,mt

|N r| +
m

√

|N r|

)

−Ar
q

(

m
√

|N r|

))

,
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Br,m(t) =
1

√
xr,m

(

Br

(√
xr,mt

|N r| +
m

√

|N r|

)

−Br

(

m
√

|N r|

))

,

Dr,m(t) =
1

√
xr,m

(

Dr

(√
xr,mt

|N r| +
m

√

|N r|

)

−Dr

(

m
√

|N r|

))

,

T r,m(t) =
1

√
xr,m

(

T r

(√
xr,mt

|N r| +
m

√

|N r|

)

− T r

(

m
√

|N r|

))

,

Y r,m(t) =
1

√
xr,m

(

Y r

(√
xr,mt

|N r| +
m

√

|N r|

)

− Y r

(

m
√

|N r|

))

,

Qr,m(t) =
1

√
xr,m

(

Qr

(√
xr,mt

|N r| +
m

√

|N r|

))

, and

Zr,m(t) =
1

√
xr,m

(

Zr

(√
xr,mt

|N r| +
m

√

|N r|

)

− ~N rx∗
)

.

(3.24)

We define

V r,m
jk (Dr,m

jk (t), b) =
1

√
xr,m

(

Vjk

(

Dr
jk

(√
xr,mt

|N r| +
m

√

|N r|

)

+ b1

)

−Vjk

(

Dr
jk

(

m
√

|N r|

)

+ b2

))

, (3.25)

for b = (b1, b2) ∈ R
2. By (2.15),

V r,m
jk (Dr,m

jk (t), (0, 1)) ≤ T r,m
jk (t) ≤ V r,m

jk (Dr,m
jk (t), (1, 0)). (3.26)

Let X
r,m = (Ar,m, Ar,m

s , Ar,m
q , Br,m, T r,m, Y r,m, Qr,m, Zr,m). We call X

r,m hydrodynamic

scaled process. From the definition of xr,m we have that

|Xr,m(0)| ≤ 1.
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It can easily be checked that X
r,m satisfies the following equations for all t ≥ 0.

Ar,m
i (t) =

∑

k∈KA
r,m
ik (t) +

∑

k∈K
∑

j∈J (k)A
r,m
ijk (t),∀i ∈ I, (3.27)

Qr,m
k (t) = Qr,m

k (0) +
∑

i∈I A
r,m
ik (t) −∑j∈J (k)B

r,m
jk (t),∀k ∈ K, (3.28)

Zr,m
jk (t) = Zr,m

jk (0) +
∑

i∈I A
r,m
ijk (t) +Br,m

jk (t) −Dr,m
jk (t),∀j ∈ J and k ∈ J (k), (3.29)

Dr,m
jk (t) =

Sjk(
√

xr,mT r,m
jk

(t)+T r
jk

(m/
√

|Nr|))−Sjk(T r
jk

(m/
√

|Nr|))
√

xr,m
,∀j ∈ J and k ∈ J (k),(3.30)

T r,m
jk (t) =

Nr
j x∗

jk

|Nr| t+
√

xr,m

|Nr|
∫ t
0 Z

r,m
jk (s)ds,∀j ∈ J and k ∈ K(j), (3.31)

Y r,m
j (t) can only increase when

∑

k∈K(j)Z
r,m
jk (t) < 0, for all j ∈ J , (3.32)

Qr,m
k (t)

(

∑

j∈J (k)

∑

k′∈K(j) Z
r,m
jk′ (t)

)

= 0,∀k ∈ K, (3.33)

∫ t
0

∑

j∈J (k)

(

∑

k′∈K(j)Z
r,m
jk′ (s)

)

dAr,m
ik (s) = 0,∀i ∈ I and k ∈ K. (3.34)

We have the following estimates that are similar to those established in Proposition 5.1 in

Bramson [13].

Proposition 3.8. Let {Xr
π} be a sequence of π parallel server system processes. Assume

that Assumption 1 holds and π satisfies Assumption 2. Fix ǫ > 0, L > 0 and T > 0. Then,

for large enough r,

P

{

max
m<

√
|Nr|T

∥

∥

∥

∥

Ar,m(t) − λr

|N r| t
∥

∥

∥

∥

L

> ǫ

}

≤ ǫ, (3.35)

P

{

max
m<

√
|Nr|T

sup
t1,t2≤L

|Dr,m(t1) −Dr,m(t2)| > N |t1 − t2| + ǫ

}

≤ ǫ, and (3.36)

P

{

max
m<

√
|Nr|T

∥

∥

∥

∥

V r,m
jk

(

Dr,m
jk (t), b

)

− 1

µjk
Dr,m

jk (t)

∥

∥

∥

∥

L

> ǫ

}

≤ ǫ, (3.37)

for all j ∈ J , k ∈ K(j) and for b = (0, 1) or (1, 0).

The proof is given in Appendix 3.5.1.1. Using this proposition, one can show that X
r,m is

almost Lipschitz as given in the next proposition. In this section and for the remainder of

this paper N without a superscript is reused to denote a general constant.

Proposition 3.9. Let {Xr} be a sequence of π parallel server system processes. Assume

that Assumption 1 holds and π satisfies Assumption 2. Fix ǫ > 0, L > 0 and T > 0. Then,

for large enough r,

P

{

max
m<

√
|Nr|T

sup
t1,t2≤L

|Xr,m(t1) − X
r,m(t2)| > N |t1 − t2| + ǫ

}

≤ ǫ, (3.38)
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where N <∞ and only depends on (I, J,K, λ).

The proof is given in Appendix 3.5.1.2. For convenience, we assume for the rest of the paper

that N ≥ 1 and L ≥ 1. Let

Kr
0 =

{

max
m<

√
|Nr|T

sup
t1,t2≤L

|Xr,m(t1) − X
r,m(t2)| ≤ N |t1 − t2| + ǫ(r)

}

, (3.39)

where L,N , and T are fixed as before and ǫ(r) with ǫ(r) → 0 as r → ∞ is a sequence of

real numbers. Similarly, we can replace ǫ in (3.35) and (3.37) by ǫ(r). We denote these

new inequalities obtained from (3.35) and (3.37) by (3.35′) and (3.37′). Let Kr denote

the intersection of Kr
0 with the complements of the events in (3.35′) and (3.37′). As in

Bramson [13], when ǫ(r) → 0 sufficiently slowly as r → ∞, one can show that P (Kr) → 1

as r → ∞.

We summarize the above discussion in the following corollary for future reference.

Corollary 3.10. Let {Xr
π} be a sequence of π parallel server system processes. Assume

that Assumption 1 holds and π satisfies Assumption 2. Fix L > and T > 0, and choose N

and ǫ(r) as above. Then, for Kr defined as above

lim
r→∞

P (Kr) = 1. (3.40)

3.4.2 Hydrodynamic Limits of π-parallel server systems

In this section, we define the hydrodynamic limits of π-parallel server systems. First,

we define a set of functions which contains all the hydrodynamic limits. The following

definitions are similar to those in Section 6 of Bramson [13] and the notation is adapted

from that paper.

Fix L > 0. Let Ẽ be the set of right continuous functions with left limits, x : [0, L] → R
d.

Let E′ denote those x ∈ Ẽ that satisfies

|x(0)| ≤ 1

and

|x(t2) − x(t1)| ≤ N |t2 − t1| for all t1, t2 ∈ [0, L],
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where constant N is chosen as in Proposition 3.9. We set

Er = {Xr,m,m <
√

|N r|T, ω ∈ Kr}

and

E = {Er : r ∈ N},

where T is fixed, and Kr is defined as in the previous section. (These quantities are not

correlated to the external arrival processes E introduced in Chapter 2.2.)

We define a hydrodynamic limit x of E to be a point x ∈ Ẽ such that for all ǫ > 0 and

r0 ∈ N, there exist r ≥ r0 and y ∈ Er, with ‖x(·) − y(·)‖L < ǫ.

Since

|Xr,m(0)| ≤ 1 (3.41)

for all m <
√

|N r|T and r ∈ N, the following result is a corollary of Proposition 4.1 in

Bramson [13] and is similar to Proposition 6.1 in that paper. It shows that the hydrodynamic

limits are “rich” in the sense that for r large enough every hydrodynamic scaled process is

close to a hydrodynamic limit.

Corollary 3.11. Let {Xr
π} be a sequence of π parallel server system processes. Assume

that Assumption 1 holds, π satisfies Assumption 2. Let Ẽ, Er, and E be as specified above.

Fix ǫ > 0, L > 0 and T > 0, and choose r large enough. Then, for ω ∈ Kr and any

m <
√

|N r|T
∥

∥

∥
X

r,m(·) − X̃(·)
∥

∥

∥

L
≤ ǫ (3.42)

for some hydrodynamic limit X̃(·) of E with X̃(·) ∈ E′.

The next result is mainly needed to translate the condition on the hydrodynamic model

solutions to hydrodynamic limits given in Assumption 4. It also reveals the origin of hy-

drodynamic model equations.

Proposition 3.12. Let {Xr
π} be a sequence of π parallel server system processes. Assume

that Assumption 1 holds and π satisfies Assumption 2. Choose L > 0 and let X̃π be a

hydrodynamic limit of E over [0, L]. X̃π satisfies the hydrodynamic model equations (3.1)-

(3.9) on [0, L].
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The proof is given in Appendix 3.5.4.

Observe that by (3.10) and definitions of hydrodynamic and diffusion scalings

∣

∣g
(

Qr,0(0), Zr,0(0)
)∣

∣ ≤
∣

∣

∣g
(

Q̂r(0), Ẑr(0)
)∣

∣

∣ . (3.43)

If condition (3.12) holds, (3.43) implies that g
(

Qr,0(0), Zr,0(0)
)

→ 0 in probability as r →

∞. Therefore, we can choose ǫ(r) with ǫ(r) → 0 as r → ∞ such that for Lr = Kr ∩ Gr,

where

Gr =
{∣

∣g
(

Qr,0(0), Zr,0(0)
)∣

∣ ≤ ǫ(r)
}

,

we have

lim
r→∞

P (Lr) = 1. (3.44)

We set

Er
g =

{

X
r,0(·, ω), ω ∈ Lr

}

and

Eg =
{

Er
g , r ∈ N

}

.

The following proposition is similar to Proposition 6.4 in Bramson [13].

Proposition 3.13. Let {X
r
π} be a sequence of π parallel server system processes. Assume

that Assumption 1 holds, π satisfies Assumption 2, g satisfies Assumption 3, the hydrody-

namic model of the π-parallel server system satisfies Assumption 4. Fix ǫ > 0, L > 0 and

T > 0, and assume that r is large. Then, for ω ∈ Kr

g(Qr,m(t), Zr,m(t)) ≤ H(t) + ǫ (3.45)

for all t ∈ [0, L], and m <
√

|N r|T , with H(·) is given in Assumption 4.

Furthermore, for ω ∈ Lr

∥

∥g(Qr,0(t), Zr,0(t))
∥

∥

L
≤ ǫ. (3.46)

If, in addition, condition (3.12) holds, then (3.44) holds.

The proof is given in Appendix 3.5.2.1.
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3.4.3 State space collapse in the diffusion limits

In this section we change the scaling from hydrodynamic to diffusion to prove Theorem 3.1.

Once the scaling is changed, a few complications needs to be dealt with regarding the change

in the range of the time variable.

We begin with changing the scaling. One can check by employing (2.23) and (3.24) that

Qr,m
k (t) =

√

|N r|
xr,m

Q̂r
k

(√
xr,mt

|N r| +
m

√

|N r|

)

=
1

yr,m
Q̂r

k

(

1
√

|N r|
(yr,mt+m)

)

and

Zr,m
jk (t) =

√

|N r|
xr,m

Ẑr
jk

(√
xr,mt

|N r| +
m

√

|N r|

)

=
1

yr,m
Ẑr

jk

(

1
√

|N r|
(yr,mt+m)

)

,

(3.47)

where

yr,m =

√

xr,m

|N r| =

∣

∣

∣

∣

∣

Q̂r

(

m
√

|N r|

)∣

∣

∣

∣

∣

∨
∣

∣

∣

∣

∣

Ẑr

(

m
√

|N r|

)∣

∣

∣

∣

∣

∨ 1. (3.48)

By changing the scaling in Proposition 3.13 as above, we can rephrase (3.45) and (3.46).

However, the domain of the time scales will change and the domain 0 ≤ t ≤ L for the

arguments on the left hand side of (3.47) will correspond to

m
√

|N r|
≤ t ≤ 1

√

|N r|
(yr,mL+m) (3.49)

for the arguments on the right.

Proposition 3.14. Let {Xr} be a sequence of π parallel server system processes. Assume

that Assumption 1 holds, π satisfies Assumption 2, g satisfies Assumption 3, the hydrody-

namic model of the π-parallel server system satisfies Assumption 4, and (3.12) holds. Fix

ǫ > 0, L > 0 and T > 0, and assume that r is large. Then, for ω ∈ Kr and for H(·) given

as in Assumption 4

g
(

Q̂r(t), Ẑr(t)
)

≤ yc
r,mH

(

1

yr,m
(
√

|N r|t−m)

)

+ ǫyc
r,m (3.50)

for all t ∈ [0, T ] and m satisfying (3.49).

If condition (3.12) holds, then

∥

∥

∥g
(

Q̂r(t), Ẑr(t)
)∥

∥

∥

Lyr,0/
√

|Nr|
≤ ǫyc

r,0 (3.51)

for ω ∈ Lr.
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Proof. The bounds (3.50) and (3.51) are obtained from (3.45) and (3.46), respectively, by

applying (3.47) and using (3.10).

If we can show that (
√

|N r|t−m)/yr,m is large, where |N r| is the total number of agents

in the rth system, we can conclude the proof of Theorem 3.1 by using the convergence

property of H(·) as given in Assumption 4. It will be shown that it is enough to have
√

|N r|t−m and L large.

Since the value of L is a matter of choice, we can take L sufficiently large and redefine

Kr with the reselected L. Let H be given as in Assumption 4. Since H(t) → 0 as t → ∞,

independent of L, for ǫ > 0 fixed, there exists s∗(ǫ) > 1 such that for t > s∗(ǫ), H(t) < ǫ.

We assume for the rest of the paper that

L ≥ 6Ns∗(ǫ), (3.52)

where N is chosen as in (3.39).

In order to make
√

|N r|t −m large, for a fixed t ∈ [0, T ], we take the smallest m that

satisfies (3.49), which we denote by mr(t). We need the following lemmas, whose proofs are

given in Appendix 3.5.3, to show that
√

|N r|t−mr(t) is large.

Lemma 3.15. Let {Xr} be a sequence of π parallel server system processes. Assume that

Assumption 1 holds and π satisfies Assumption 2. For fixed L > 0 and T > 0, and large

enough r

yr,m+1 ≤ 3Nyr,m (3.53)

for ω ∈ Kr and m <
√

|N r|T , with the constant N chosen as in (3.39).

Let yr(mr(t)) = yr,mr(t).

Lemma 3.16. Let {Xr} be a sequence of π parallel server system processes. Assume that

Assumption 1 holds and π satisfies Assumption 2. For fixed L > 0 and T > 0, and large

enough r

√

|N r|t−mr(t) ≥ Lyr(mr(t))/6N (3.54)

for ω ∈ Kr and t ∈
(

Lyr,0/
√

|N r|, T
]

, with the constant N chosen as in (3.39).
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Proof of Theorem 3.1. Assume that Assumption 1 holds, π satisfies Assumption 2, g

satisfies Assumption 3, the hydrodynamic model of the π-parallel server system satisfies

Assumption 4, and condition (3.12) holds.

Fix ξ > 0. By (3.40) and (3.44), there exists r0 > 0 such that

P (Kr) ≥ P (Lr) > 1 − ξ/2 (3.55)

for all r > r0. Fix ǫ > 0 and take L ≥ 6Ns∗(ǫ). Then, by (3.50) and Lemma 3.16, for

ω ∈ Kr, t ∈
(

Lyr,0/
√

|N r|, T
]

, and r large enough

g
(

Q̂r(t), Ẑr(t)
)

≤ 2ǫ (yr(mr(t)))
c . (3.56)

But, by (3.48),

yr(mr(t)) =

∣

∣

∣

∣

∣

Q̂r

(

mr(t)
√

|N r|

)∣

∣

∣

∣

∣

∨
∣

∣

∣

∣

∣

Ẑr

(

mr(t)
√

|N r|

)∣

∣

∣

∣

∣

∨ 1 ≤
∥

∥

∥Q̂r (·)
∥

∥

∥

T
∨
∥

∥

∥Ẑr (·)
∥

∥

∥

T
∨ 1. (3.57)

From (3.51) and (3.57), for t ∈
[

0, Lyr,0/
√

|N r|
]

and ω ∈ Lr

g
(

Q̂r(t), Ẑr(t)
)

≤ ǫ(yr,0)
c ≤ ǫ

(∥

∥

∥Q̂r (·)
∥

∥

∥

T
∨
∥

∥

∥Ẑr (·)
∥

∥

∥

T
∨ 1
)c
. (3.58)

Combining (3.56), (3.57), and (3.58) gives

g
(

Q̂r(t), Ẑr(t)
)

≤ 2ǫ
(∥

∥

∥
Q̂r (·)

∥

∥

∥

T
∨
∥

∥

∥
Ẑr (·)

∥

∥

∥

T
∨ 1
)c

(3.59)

for all t ∈ [0, T ] and ω ∈ Lr. Finally, by (3.55) and (3.59), for large enough r,

P











∥

∥

∥g
(

Q̂r(·), Ẑr(·)
)∥

∥

∥

T
(∥

∥

∥
Q̂r (·)

∥

∥

∥

T
∨
∥

∥

∥
Ẑr (·)

∥

∥

∥

T
∨ 1
)c > 2ǫ











< ξ.

This clearly implies (3.13) since ǫ > 0 and ξ > 0 are arbitrary.

Proof of Theorem 3.4. Suppose that Assumption 1 holds, π satisfies Assumption 2, g

satisfies Assumption 3, the hydrodynamic model of the π-parallel server system satisfies

Assumption 4, and
∣

∣

∣
Q̂r(0)

∣

∣

∣
∨
∣

∣

∣
Ẑr(0)

∣

∣

∣
is stochastically bounded.

Let

ur,max = max
i∈I

{ui(m),m = 1, 2, . . . : Ui(m− 1) ≤ 2|N r||λ|L} ,
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where λ = (λ1, . . . , λI) is given by (2.19). In words, ur,max is an upper bound, for r large

enough, for the maximum interarrival time for those events that started before time L of

the process {Ai : i ∈ I}, since λr
i < 2|N r||λ| for large enough r. Assume for the moment

that

ur,max/
√

|N r| → 0 in probability as r → ∞ (3.60)

and that for some sequence {Lr} that satisfies the conditions given in the theorem
∣

∣

∣

∣

∣

g

(

Q̂r

(

Lr

√

|N r|

)

, Ẑr

(

Lr

√

|N r|

))∣

∣

∣

∣

∣

→ 0 in probability as r → ∞. (3.61)

Consider the sequence of processes {Yr} defined by Y
r(·) = X

r( Lr√
|Nr |

+ ·). Then, {Yr}

satisfies (3.12) by (3.61). Also by (3.60), distributions of the first interarrival times of the

processes A and S after Lr/
√

|N r| satisfy the conditions needed for Proposition 3.8 to be

valid. Since the other conditions of Theorem 3.1 are satisfied by {Yr}, the proof above can

be repeated to show that (3.13) holds for {Yr}. But, this shows that (3.15) holds for {Xr}.

Hence, it suffices to show that (3.60) and (3.61) hold.

The limits (3.60) are proven in Lemma 3.17.

Next we prove (3.61). We show that there exists a sequence {Lr} with Lr → ∞ as

r → ∞ and Lr = o(
√

|N r|) such that for any ǫ > 0 and ξ > 0, there exists r′ such that

P

{∣

∣

∣

∣

∣

g

(

Q̂r

(

Lr

√

|N r|

)

, Ẑr

(

Lr

√

|N r|

))∣

∣

∣

∣

∣

> ǫ

}

< ξ, (3.62)

for all r > r′.

Set δn = 1/n and L̃n = (Nn)1/4 for all n = 1, 2, . . .. Define Kr
L̃n

as in Section 3.4.1; see

(3.39) and the discussion succeeding to (3.39), with L being replaced with L̃n. Note that,

by the definition of Kr
L̃n

and Proposition 3.14, there exists rn such that for r > rn

P
{

Kr
L̃n

}

> 1 − 1/n (3.63)

and

g
(

Q̂r(t), Ẑr(t)
)

≤ yc
r,mH

(

1

yr,m
(
√

|N r|t−m)

)

+ δny
c
r,m (3.64)

holds for all t ∈ [0, T ] and m satisfying (3.49).
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Set Lr = L̃1 and K̃r = Kr
L̃1

for r ≤ r2, L
r = L̃n and K̃r = Kr

L̃n
for r ∈ (rn, rn+1], and

for n = 2, 3, . . .. Note that Lr = o(
√

|N r|), and Lr → ∞ as r → ∞. Furthermore,

lim
r→∞

P (K̃r) = 1.

Fix ǫ, ξ > 0. Let

Ur
R =

{∣

∣

∣
Q̂r(0)

∣

∣

∣
∨
∣

∣

∣
Ẑr(0)

∣

∣

∣
< R

}

. (3.65)

Choose r0 and R > 1 such that for r ≥ r0

P (Ur
R) > 1 − ξ/2.

We fix R to this value for the rest of the proof.

Let r1 be the smallest integer greater than r0 that satisfies δr1
< ǫ/(2Rc). Choose

r2 > r1 such that for all r > r2, L
r > 2s∗(δr1

)R, where s∗ is defined as in (3.52).

For t ∈ [R−1Lryr,0/
√

|N r|, Lryr,0/
√

|N r|], mr(t) = 0 from (3.49) and

√

|N r|t ≥ R−1Lryr,0.

Hence, for r > r2, by (3.64),

g
(

Q̂r(t), Ẑr(t)
)

≤ 2δr1
yc

r,0 < ǫ (3.66)

for all t ∈ [R−1Lryr,0/
√

|N r|, Lryr,0/
√

|N r|] and ω ∈ K̃r ∩ Ur
R.

Now observe that for ω ∈ K̃r ∩ Ur
R, Lr/

√

|N r| ∈ [R−1Lryr,0/
√

|N r|, Lryr,0/
√

|N r|] for

all r ≥ 1. Hence, there exits r′ > r2 such that for r > r′

P
{

g
(

Q̂r(Lr/
√

|N r|), Ẑr(Lr/
√

|N r|)
)

> ǫ
}

< ξ. (3.67)

This gives (3.62), thus completes the proof of (3.61).

Proof of Remark 3.5. Assume that {Xr
π} is a sequence of π-parallel server system pro-

cesses that satisfy the conditions of Theorem 3.4. Also, assume that g
(

Q̂r(0), Ẑr(0)
)

is

stochastically bounded and H is bounded.

Fix L > 0. By assumption there exists a constant B0 > 0 such that supt∈[0,∞)H(t) < B0.

By (3.45)

g(Qr,m(t), Zr,m(t)) < 2B0
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for all t ∈ [0, L]. This implies, similar to (3.50), that

‖g(Q̂r(t), Ẑr(t))‖
Lyr,0/

√
|Nr| < 2B0y

c
r,0. (3.68)

for all ω ∈ Kr. Let Ur
R be defined as in (3.65). Since |Q̂r(0)| ∨ |Ẑr(0)| is stochastically

bounded by assumption, for ǫ > 0 fixed, there exists R > 0 and r1 > 0 such that P (Ur
R) >

1 − ǫ, for all r > r1. For each fixed L, on Ur ∩ Kr

‖g(Q̂r(t), Ẑr(t))‖
L/
√

|Nr | ≤ ‖g(Q̂r(t), Ẑr(t))‖
Lyr,0/

√
|Nr | ≤ R.

Now choose the sequence {Lr} as in the previous proof. Then,

lim sup
r→∞

P
{

‖g(Q̂r(t), Ẑr(t))‖
Lr/

√
|Nr| > R

}

< ǫ.

Since ǫ and R is arbitrary, this completes the proof.

3.5 Proofs of the results in Section 3.4

3.5.1 Proofs of the results in Section 3.4.1

3.5.1.1 Proof of Proposition 3.8

We observe as in Bramson [13] that it is enough to investigate the processes with index

m = 0 and then to multiply the ensuing error bounds by the number of processes in each

case;
√

|N r|T . To see this, note that

Ar,m
i (t) =

1
√
xr,m

(

Ei

(

λr
i

|N r|(
√
xr,mt+

√

|N r|m)

)

− Ei

(

λr
i

|N r|
√

|N r|m
))

.

Let ur,m
i (1) be the first residual interarrival time of Ei after time

λr
i

|Nr|
√

|N r|m.

P

{∥

∥

∥

∥

Ar,m
i (t) − λr

i

|N r|t
∥

∥

∥

∥

L

> 2ǫL

}

= P

{

∥

∥

∥

∥

1
√
xr,m

(

Ei

(

t+
√

|N r|m λr
i

|N r|

)

− Ei

(

λr
i

|N r|
√

|N r|m
))

− t
√
xr,m

∥

∥

∥

∥

L
√

xr,mλr
i /|Nr |

> 2ǫL

}

≤ P

{

∥

∥

∥

∥

Ei

(

t+
√

|N r|m λr
i

|N r|

)

− Ei

(

λr
i

|N r|
√

|N r|m
)

− (t− ur,m
i (1))

∥

∥

∥

∥

L
√

xr,mλr
i /|Nr |

>
√
xr,mǫL

}

+ P

{

ur,m
i (1)
√
xr,m

> ǫL

}

. (3.69)
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We show below that the first term on the right hand side is bounded by ǫ/(L
√

|N r|). So

it remains to be shown that the second term goes to zero as r → ∞. That is, we need to

show that {ur,m
i (1), i ∈ I} satisfies

ur,m
i (1)/

√

|N r| → 0 in probability as r → ∞, for all i ∈ I (3.70)

for all m <
√

|N r|T .

For each departure process, we have

Dr,m
jk (t) =

1
√
xr,m

(

Sjk

(

T r
jk

(√
xr,m

|N r| t+
m

√

|N r|

))

− Sjk

(

T r
jk

(

m
√

|N r|

)))

(3.71)

for j ∈ J , k ∈ K(j). Hence, by restarting the process at time m/
√

|N r|, we have that the

only condition to be checked is whether the residual time of the first arrival for Sjk after

time T r
jk

(

m√
|Nr|

)

∈ [0, |N r|T ] satisfies a similar condition to (3.70).

The following lemma, taken from Bramson [13], shows that (2.17) holds. Let

ur,T,max
i = max{|ui(l)| : Ui(l − 1) ≤ 2|λ||N r|T}, for all i ∈ I and

vr,T,max
jk = max{|vjk(l)| : Vjk(l − 1) ≤ |N r|T}, for all j ∈ J and k ∈ K(j).

Lemma 3.17. Assume that (3.70) holds and that λr/|N r| is bounded. Then, for given T ,

ur,T,max
i /

√

|N r| → 0 in probability as r → ∞, for all i ∈ I and

vr,T,max
jk /

√

|N r| → 0 in probability as r → ∞, for all j ∈ J and k ∈ K(j).

Proof. The proofs immediately follow by taking r =
√

2|λ||N r| and r =
√

|N r|, respectively,

in Lemma 5.1 of Bramson [13].

Fix ǫ > 0, L > 0, and T > 0. We prove each bound separately.

Proof of (3.35). Fix i ∈ I. Similar to (5.31) in Bramson [13], using Lemma 3.17, for

given ǫ > 0 and large enough r,

P
(

‖Ei(t) − t‖2|λ|L√
xr,0

≥ 2|λ|ǫL√xr,0

)

≤ ǫ

|2λ|L√xr,0
.
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And for r large enough,

1
√
xr,0

‖Ei(t) − t‖2|λ|L√
xr,0

≥

∥

∥

∥

∥

∥

∥

Ar
i (

√
xr,0t

|Nr| )
√
xr,0

− λr
i

|N r| t

∥

∥

∥

∥

∥

∥

L

=

∥

∥

∥

∥

Ar,0
i (t) − λr

i

|N r| t
∥

∥

∥

∥

L

.

Hence,

P

{∥

∥

∥

∥

Ar,0
i (t) − λr

i

|N r|t
∥

∥

∥

∥

L

> 2ǫL

}

≤ ǫ

2|λ|L√xr,0
≤ 2ǫ

L
√

|N r|

and so

P

{∥

∥

∥

∥

Ar,0(t) − λr

|N r|t
∥

∥

∥

∥

L

> ǫL

}

≤ 2Iǫ

2|λ|L
√

|N r|
.

Multiplying the error bounds by ⌈
√

|N r|T ⌉ and enlarging ǫ by a factor of 2I(L∨ T ) we

obtain (3.35).

Proof of (3.36). Fix j ∈ J and k ∈ K(j) . We first show that for r large enough

P

{

sup
0≤t1≤t2≤L

(

Sjk

(

2βj
√
xr,0t2

)

− Sjk

(

2βj
√
xr,0t1

))

≥ 2βj
√
xr,0

(t2 − t1)

µjk
+ 4

√
xr,0βjLǫ

}

≤ 4ǫ

βjL
√

|N r|
. (3.72)

By Proposition 4.3 of Bramson [13] and Lemma 3.17, for large enough r,

P

{

∥

∥

∥

∥

Sjk(t) −
t

µjk

∥

∥

∥

∥

2βjL
√

xr,0

≥ 2βjL
√
xr,0ǫ

}

≤ 2
ǫ

βjL
√
xr,0

.

Then,

P

{

sup
0≤t1≤t2≤L

((

Sjk

(

2βj
√
xr,0t2

)

−
2βj

√
xr,0t2

µjk

)

−
(

Sjk

(

2βj
√
xr,0t1

)

−
2βj

√
xr,0t1

µjk

))

≥ 4
√
xr,0βjLǫ

}

≤ 4ǫ

βjL
√
xr,0

≤ 4ǫ

βjL
√

|N r|
.

This gives (3.72). Next, we show that

P

{

sup
0≤t1≤t2≤L

(

Sjk

(

Tjk

(√
xr,0t2

|N r|

))

− Sjk

(

Tjk

(√
xr,0t1

|N r|

)))

≥ βj
√
xr,0

(t2 − t1)

µjk
+ 5

√
xr,0βjLǫ

}

≤ 5ǫ

Lβj
√
xr,0

.

(3.73)
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We prove (3.73) by showing that the event in (3.73) is included in (3.72). Assume that for

ω ∈ Ω

Sjk

(

Tjk

(√
xr,0t2

|N r|

))

− Sjk

(

Tjk

(√
xr,0t1

|N r|

))

≥ βj
√
xr,0

(t2 − t1)

µjk
+ 4

√
xr,0βjLǫ (3.74)

for some 0 ≤ t1 ≤ t2 ≤ L. Let

τl = Tjk

(√
xr,0tl

|N r| , ω

)

for l = 1, 2. Then, for r large enough

0 ≤ τ1 ≤ τ2 ≤ 2L
√
xr,0βj and (3.75)

τ2 − τ1 ≤ 2
√
xr,0βj(t2 − t1). (3.76)

By (3.74) and (3.76)

Sjk

(

2βj
√
xr,0

τ2
2βj

√
xr,0

)

− Sjk

(

2βj
√
xr,0

τ1
2βj

√
xr,0

)

≥2βj
√
xr,0

τ2
2βj

√
xr,0

− τ1
2
√

βjxr,0

µjk

+ 4
√
xr,0βjLǫ.

By (3.75), 0 ≤ τ1
2βj

√
xr,0

≤ τ2
2βj

√
xr,0

≤ L . Using this and (3.76), we get that ω also satisfies

the inequality in (3.69). Thus we have (3.73). By (3.71), this implies, by reselecting ǫ, that

P

{

sup
t1,t2∈[0,L]

∣

∣Dr,0(t2) −Dr,0(t1)
∣

∣ ≥ N |t2 − t1| + ǫ

}

≤ ǫ
√

|N r|
, (3.77)

with N = maxj∈J ,k∈K(j){βj/µjk}. Multiplying the exceptional probability by ⌈
√

|N r|T ⌉

and enlarging ǫ appropriately we obtain (3.36).

Proof of (3.37). By setting ǫ = 1, t2 = L, and t1 = 0 in (3.77), we have that

P

{

Dr
jk

(√
xr,0

|N r| L
)

≥ 2NL
√
xr,0

}

≤ ǫ
√

|N r|
. (3.78)

Off of the exceptional set given in (3.78)

Dr
jk

(√
xr,0

|N r| L
)

+ 1 ≤ 3NL
√
xr,0.
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Let a = 0 or 1. It follows from Proposition 4.2 of Bramson [13] that for large enough n

P

{∥

∥

∥

∥

Vjk(l) −
l

µjk

∥

∥

∥

∥

n

≥ ǫn

}

≤ ǫ

n
.

By setting n = 3NL
√
xr,0, we get

P







∥

∥

∥

∥

∥

Vjk(D
r
jk(t) + a) −

Dr
jk(t)

µjk

∥

∥

∥

∥

∥

√
xr,0

|Nr | L

≥ 3NL
√
xr,0ǫ







≤ 2ǫ

3NL
√
xr,0

≤ B2
ǫ

√

|N r|

for B2 ≥ 2/3NL. By enlarging ǫ appropriately, we get for b̃ = (1, 0) or (0, 0)

P

{∥

∥

∥

∥

∥

V r,0
jk (Dr,0

jk (t), b̃) −
Dr,0

jk (t)

µjk

∥

∥

∥

∥

∥

L

≥ ǫ

}

≤ ǫ
√

|N r|
.

Multiplying the exceptional probability by ⌈
√

|N r|T ⌉ and enlarging ǫ appropriately we

obtain

P

{

max
m<

√
|Nr |T

∥

∥

∥

∥

∥

V r,m
jk (Dr,m

jk (t), b̃) −
Dr,m

jk (t)

µjk

∥

∥

∥

∥

∥

L

≥ ǫ

}

≤ ǫ. (3.79)

For b = (0, 1) and b̃ = (0, 0), by (3.25)

P

{

max
m<

√
|Nr|T

∥

∥

∥V
r,m
jk (Dr,m

jk (t), b̃) − V r,m
jk (Dr,m

jk (t), b)
∥

∥

∥

L
≥ ǫ

}

≤

P

{

max
m<

√
|Nr|T

∣

∣

∣

∣

∣

Vjk

(

Dr
jk

(

m
√

|N r|

))

− Vjk

(

Dr
jk

(

m
√

|N r|

)

+ 1

)∣

∣

∣

∣

∣

≥ √
xr,mǫ

}

. (3.80)

Observe that, by (2.15), Vjk

(

Dr
jk

(

m√
|Nr|

))

≤ |N r|T and by Lemma 3.17

P
{

vr,T,max
jk ≥ √

xr,mǫ
}

≤ ǫ (3.81)

for large enough r. Thus, we get (3.77) by combining (2.15) with (3.79)-(3.81).

3.5.1.2 Proof of Proposition 3.9

Proof. We use the bounds established in (3.35)-(3.37). Fix L, T , and ǫ > 0. Choose r large

enough so that (3.35)-(3.37) hold with ǫ/(3d). Let Vr be the intersection of the complements

of the events given in (3.35)-(3.37), so P{Vr} > 1− ǫ. We show that for r large enough and

all ω ∈ Vr

max
m<

√
|Nr |T

sup
t1,t2≤L

|Xr,m(t1) − X
r,m(t2)| ≤ Ñ |t1 − t2| + ǫ (3.82)
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for some Ñ that only depends on (I, J,K, λ). We fix ω ∈ Vr for the rest of the proof and so

omit it from the notation. Let t1, t2 ∈ [0, T ] and m ≥ 0. We first show that for any j ∈ J ,

and k ∈ K(j)

∣

∣

∣Z
r,m
jk (t2) − Zr,m

jk (t1)
∣

∣

∣ ≤ N0|t2 − t1| + ǫ (3.83)

for some N0 > 0. Since Br,m
jk is nondecreasing we have by (3.29) that

0 ≤ Br,m
jk (t2) −Br,m

jk (t1) ≤
∑

l∈K(j)

(

Dr,m
jl (t2) −Dr,m

jl (t1)
)

. (3.84)

Combining (3.84) with (3.29) yields

∣

∣

∣Z
r,m
jk (t2) − Zr,m

jk (t1)
∣

∣

∣ ≤ K |Dr,m(t2) −Dr,m(t1)| + I |Ar,m(t2) −Ar,m(t1)| .

By (3.35), |Ar,m(t2) −Ar,m(t1)| < 2|λ||t2 − t1| + ǫ for r large enough. By setting N0 =

KN + 2I|λ| and using (3.36), we get (3.83). Equation (3.84) gives that

∣

∣

∣B
r,m
jk (t2) −Br,m

jk (t1)
∣

∣

∣ ≤ N0|t2 − t1| + ǫ.

Combining this with (3.28) gives

∣

∣Qr,m
k (t2) −Qr,m

k (t1)
∣

∣ ≤ N1|t2 − t1| + ǫ,

for N1 = (I + J)N0. Observe that for any i ∈ I, k ∈ K, and j ∈ J (k)

|Ar,m
ik (t2) −Ar,m

ik (t1)| ≤ |Ar,m
i (t2) −Ar,m

i (t1)|,

|Ar,m
ijk (t2) −Ar,m

ijk (t1)| ≤ |Ar,m
i (t2) −Ar,m

i (t1)|.

Also, for any j ∈ J and k ∈ K(j) and for r large enough

‖T r,m
jk (t2) − T r,m

jk (t1)‖L ≤ 2βj |t2 − t1| and ‖Y r,m
j (t2) − Y r,m

j (t1)‖L ≤ 2βj |t2 − t1|.

Note that, by the definition of Vr, the inequalities above hold for all m <
√

|N r|T . This

shows that (3.82) holds, for r large enough, with Ñ = N1 ∨ 2.
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3.5.2 Proofs of the results in Section 3.4.2

3.5.2.1 Proof of Proposition 3.13

Proof. Assume that Assumption 1 holds, π satisfies Assumption 2, g satisfies Assumption

3, and the hydrodynamic model of the π-parallel server systems satisfies Assumption 4.

Fix L > 0 and let X̃ be a hydrodynamic limit of E . Note that since X̃ is a limit

of hydrodynamically scaled processes |X̃(0)| ≤ 1 by (3.41). Also, by Proposition 3.12, X̃

satisfies the hydrodynamic model equations (3.1)-(3.8) for all t ∈ [0, L]. Thus, using (3.1),

(3.2), (3.5), and the fact that |X̃(0)| ≤ 1, one can show that there exists RL > 0 such that

‖X̃(t)‖L ≤ RL. (3.85)

Fix ǫ > 0. Since g is continuous, there exists δ > 0 such that

|g(x) − g(y)| < ǫ (3.86)

if |x− y| < δ and x, y ∈ [−2RL, 2RL]I+dz .

Fix 0 < δ < RL as given above and choose r large enough so that (3.42) holds for all

ω ∈ Kr and any m <
√

|N r|T , that is;

∥

∥

∥X
r,m(·) − X̃(·)

∥

∥

∥

L
≤ δ (3.87)

for some hydrodynamic limit X̃ of E . Hence, by (3.85),

‖Xr,m(t)‖L ≤ 2RL. (3.88)

By (3.85)-(3.88) and Assumption 4 we have for all t ∈ [0, L] that

g (Qr,m(t), Zr,m(t)) ≤ H(t) + ǫ.

Result (3.46) is proven similarly. Let X̃ be a hydrodynamic limit of Eg. Then, there

exits a sequence {Xrk,0}, where {rk} is a subsequence of {r}, such that

‖Xrk,0(·) − X̃(·)‖ → 0 (3.89)

as k → ∞. But by definition of Eg, g
(

Q̃rk,0(0), Z̃rk ,0(0)
)

→ 0. This implies by the continu-

ity of g and (3.89) that g
(

Q̃(0), Z̃(0)
)

= 0. Thus, by the last statement in Assumption 4,

∥

∥

∥
g
(

Q̃(t), Z̃(t)
)∥

∥

∥

L
= 0. (3.90)
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This shows that (3.90) holds for every hydrodynamic limit of Eg

One can show as in Corollary 3.11 that hydrodynamic limits of Eg are rich in Eg. Hence,

for large enough r and ω ∈ Lr

∥

∥

∥X
r,0(·) − X̃(·)

∥

∥

∥

L
≤ δ

for some hydrodynamic limit X̃ ∈ E of Eg. Using (3.86) we have

g
(

Qr,0(t), Zr,0(t)
)

≤ ǫ

for all t ∈ [0, L].

The validity of (3.44) when (3.12) holds is already proved before the proposition.

3.5.3 Proofs of the results in Section 3.4.3

3.5.3.1 Proof of Lemma 3.15

Proof. For ω ∈ Kr and r chosen large enough it follows from (3.39) that

|Qr,m(t2) −Qr,m(t1)| ≤ N |t2 − t1| + 1

for t1, t2 ∈ [0, L] and m <
√

|N r|T . Setting t1 = 0 and t2 = 1/yr,m and applying (3.48) to

the above inequality gives
∣

∣

∣

∣

∣

Qr

(

m+ 1
√

|N r|

)

−Qr

(

m
√

|N r|

)∣

∣

∣

∣

∣

≤ √
xr,m

N

yr,m
+
√
xr,m

and so
∣

∣

∣

∣

∣

Q̂r

(

m+ 1
√

|N r|

)∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

Q̂r

(

m
√

|N r|

)∣

∣

∣

∣

∣

≤ N + yr,m ≤ 2Nyr,m.

The same argument gives
∣

∣

∣

∣

∣

Ẑr

(

m+ 1
√

|N r|

)∣

∣

∣

∣

∣

−
∣

∣

∣

∣

∣

Ẑr

(

m
√

|N r|

)∣

∣

∣

∣

∣

≤ 2Nyr,m.

Hence

yr,m+1 ≤
(∣

∣

∣

∣

∣

Q̂r

(

m
√

|N r|

)∣

∣

∣

∣

∣

∨
∣

∣

∣

∣

∣

Ẑr

(

m
√

|N r|

)∣

∣

∣

∣

∣

∨ 1

)

+ 2Nyr,m

≤ 3Nyr,m,

which yields (3.53).
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3.5.3.2 Proof of Lemma 3.16

Proof. Let t ∈
(

Lyr,0/
√

|N r|, T
]

. It follows from the definition of mr(t) that mr(t) ≥ 1.

So,

√

|N r|t− (mr(t) − 1) ≥ Lyr(mr(t) − 1).

Setting m = mr(t) − 1 in Lemma 3.15, one has

√

|N r|t−mr(t) ≥ Lyr(mr(t) − 1) − 1 ≥ L

3N
yr(mr(t)) − 1 ≥ L

6N
yr(mr(t))

assuming L ≥ 6N as in (3.52).

3.5.4 Proof of Proposition 3.12

We need the following lemma to prove that the departure process of a hydrodynamic limit

satisfies the associated hydrodynamic model equation. Recall that we denote by A the

largest subset of Ω whose elements satisfy (A.14) and P (A) = 1.

Lemma 3.18. Let {Xr} be a sequence of π parallel server system processes. Assume that

Assumption 1 holds and π satisfies Assumption 2. Fix ε > 0, L > 0 and T > 0. Then, for

large enough r and ω ∈ A

max
m<

√
|Nr |T

√
xr,m

|N r|

∫ L

0

∣

∣

∣
Zr,m

jk (s)
∣

∣

∣
ds < ε, ∀ j ∈ J and k ∈ K(j).

Proof. Fix ω ∈ A and ε > 0. Let z be given as in Assumption 2. For m <
√

|N r|T , by

(3.23),

√
xr,m

|N r| ≤
∥

∥

∥

∥

Qr(t)

|N r|

∥

∥

∥

∥

T

∨
∥

∥

∥

∥

∥

Zr(t)

|N r| −
~N r

|N r|x
∗
∥

∥

∥

∥

∥

T

∨ 1
√

|N r|
.

By Lemma A.3, lim supr→∞

∥

∥

∥

Qr(t)
|Nr |

∥

∥

∥

T
∨
∥

∥

∥

Zr(t)
|Nr | −

~Nr

|Nr|x
∗
∥

∥

∥

T
= 0. Hence, for r large enough

√
xr,m

|N r| ≤ ε. (3.91)

Similarly for r large enough

∥

∥

∥

∥

Qr(t)

|N r|

∥

∥

∥

∥

Lε+T

∨
∥

∥

∥

∥

∥

Zr(t)

|N r| −
~N r

|N r|x
∗
∥

∥

∥

∥

∥

Lε+T

<
ε

L
. (3.92)
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Choose r large enough so that (3.91) and (3.92) hold. Then, for such r and for j ∈ J ,

k ∈ K(j)

max
m<

√
|Nr |T

1
|Nr |

∫ L
0

∣

∣

∣

∣

Zr
jk

(√
xr,m

|Nr| s+ m√
|Nr|

)

− x∗jkN
r
j

∣

∣

∣

∣

ds ≤ L

∥

∥

∥

∥

Zr(t)

|N r| − x∗jk
N r

j

|N r|

∥

∥

∥

∥

Lε+T

< ε.

Remark 3.19. Let {ǫ(r)} be a sequence with ǫ(r) → 0 as r → ∞. Define

Θr =

{

max
m<

√
|Nr |T

√
xr,m

|N r|

∫ T

0

∣

∣

∣
Zr,m

jk (s)
∣

∣

∣
ds < ǫ(r)

}

.

For ǫ(r) → 0 slowly enough as r → ∞, limr→∞ P (Θr) = 1, by Lemma 3.18. Hence,

lim
r→∞

P (Θr ∩ Kr) = 1, (3.93)

by Corollary 3.10, where Kr defined as in Section 3.4.1. With a slight abuse of notation,

we set Kr = Θr ∩ Kr for simplicity.

Proof of Proposition 3.12. Proof is similar to that of Proposition 6.2 in Bramson [13].

Assume that Assumption 1 holds, π satisfies Assumption 2, g satisfies Assumption 3, and

(3.12) holds.

Fix ω ∈ Kr and let X
r,m be given as in Section 3.4.1. By (3.35′), we have for large

enough r that

∥

∥

∥

∥

Ar,m(t) − λr

|N r|t
∥

∥

∥

∥

L

≤ ǫ(r). (3.94)

Combining (3.26) with (3.37′) gives

∥

∥

∥

∥

T r,m
jk (t) − 1

µjk
Dr,m

jk (t)

∥

∥

∥

∥

L

≤ ǫ(r). (3.95)

Recall that zjk = βjx
∗
jk. Using (3.93), (3.31) and Remark 3.19 gives

∥

∥

∥T
r,m
jk (t) − zjkt

∥

∥

∥

L
≤ ǫ(r). (3.96)

Now select any hydrodynamic limit X̃ of E . For given δ > 0, choose (r,m) so that, ǫ(r) ≤ δ,

∥

∥

∥
X̃(t) − X

r,m(t, w)
∥

∥

∥

L
≤ δ, (3.97)
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and

∣

∣

∣

∣

λr

|N r| − λ

∣

∣

∣

∣

≤ δ. (3.98)

It follows from (3.94) and (3.98) that

∥

∥

∥Ã(t) − λt
∥

∥

∥

L
≤ 2δ (3.99)

and from (3.95) and (3.96) that

∥

∥

∥
D̃jk(t) − µjkzjkt

∥

∥

∥

L
≤ 2δ. (3.100)

By combining (3.97), (3.99), (3.27), and (3.28), we get

∥

∥

∥λi −
∑

k∈K Ãik(t) −
∑

k∈K,j∈K(k) Ãijk(t)
∥

∥

∥

L
≤ 2KJδ and (3.101)

∥

∥

∥Q̃k(t) − Q̃k(0) −
∑

i∈I Ãik(t) +
∑

j∈J (k) B̃jk(t)
∥

∥

∥

L
≤ 4IJδ. (3.102)

By combining (3.97) with (3.100) and (3.29), we get

∥

∥

∥

∥

∥

Z̃jk(t) − Z̃jk(0) −
∑

i∈I
Ãijk(t) − B̃jk(t) + µjkzjkt

∥

∥

∥

∥

∥

L

≤ 6Iδ. (3.103)

Equations (3.100)-(3.103) show that the hydrodynamic limits satisfy (3.1), (3.2), and (3.5).

Equations (3.3) and (3.4) are clearly satisfied by the hydrodynamic limits.

The fact that the hydrodynamic limits satisfy (3.7) and (3.8) is proved similarly to

the fact that the fluid limits satisfy the fluid analogs of those equations. Hence, we only

illustrate the proof of (3.7).

Fix a hydrodynamic limit X̃. By the definition of a hydrodynamic limit, there exists a

sequence (rl,ml, ωl), with ωl ∈ Kl for all l ≥ 0, such that

X
rl,ml(·, ωl) → X̃(·) (3.104)

u.o.c. as l → ∞. Fix t > 0. If Q̃k(t) = 0, (3.7) holds trivially. Now we assume that

Q̃k(t) > a for some a > 0. By (3.104), there exists an l0 such that

Qrl,ml

k (t, ωl) > a/2
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for all l > l0. This implies, by (3.33), that

∑

j∈J (k)

∑

l∈K(j)

Z̃rl,ml

jl (t, ωl) = 0.

Hence

Qrl,ml

k (t, ωl)
∑

j∈J (k)

∑

l∈K(j)

Z̃rl,ml

jl (t, ωl) = 0. (3.105)

Convergence in (3.104) implies that

Qrl,ml

k (t, ωl)
∑

j∈J (k)

∑

l∈K(j)

Z̃rl,ml

jl (t, ωl) → Q̃k(t)
∑

j∈J (k)

∑

l∈K(j)

Z̃jl(t) as l → ∞.

This gives (3.7) by (3.105).

3.6 Proof of Theorem 3.7

In the rest of this section we assume that Assumption 1 holds, π satisfies Assumption 2,

g satisfies Assumption 5, the hydrodynamic limits of π-parallel server system satisfies As-

sumption 7, Assumption 6 holds and

g(Q̂r(0), Ẑr(0)) → 0 in probability

as r → ∞.

3.6.1 Hydrodynamic Limits on Ar
R

Fix T > 0 and ǫ > 0. We will show that for r large enough

P
{∥

∥

∥
g(Q̂r(t), Ẑr(t))

∥

∥

∥

T
> ǫ
}

< η,

where η > 0 is arbitrary. Note that this implies the conclusion of Theorem 3.7. Hence, we

also fix η > 0 for the rest of the proof.

Choose r0 and R > R0 large enough so that for all r > r0

P (Ar
R(T )) > 1 − η/2.

Fix R > 0 to this value.
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For any nonnegative integer m <
√

|N r|T , let

xr,m =

∣

∣

∣

∣

∣

Qr

(

m
√

|N r|

)∣

∣

∣

∣

∣

2

∨
∣

∣

∣

∣

∣

Zr

(

m
√

|N r|

)

− ~N rx∗
∣

∣

∣

∣

∣

2

∨ (R2|N r|)

The difference between this definition and the definition (3.23) is the last term.

We note that

xr,m = R2|N r| (3.106)

on Ar
R(T ) for m <

√

|N r|T . We define the hydrodynamic scaling as in (3.24) and (3.25).

Observe that equations (3.27)-(3.34) are still valid. Fix L > 0. The results in Proposition 3.8

still hold, hence so does the result in Proposition 3.9.

We redefine Kr(T ) to be the intersection of Kr
0 with Ar

R(T ) and complements of (3.35′)

and (3.37′). As in Corollary 3.10

lim
r→∞

P (Kr(T )) > 1 − η/2.

Let

Er = {Xr,m,m <
√

|N r|T,w ∈ Kr(T )}.

Corollary 3.11 holds on Kr(T ) with Er defined as above and

E = {Er : r ∈ N}.

since (3.41) holds. As described in Remark 3.6, we call the hydrodynamic limits in this case

the hydrodynamic limits on Ar
R(T ). Observe that the hydrodynamic limits on Ar

R(T ) also

satisfy hydrodynamic model equations (3.1)-(3.8) by Proposition 3.12.

Next we establish a similar result to Proposition 3.13. First note that on Kr(T )

g

(

Q̂r

(√
xr,mt

|N r| +
m

√

|N r|

)

, Ẑr

(√
xr,mt

|N r| +
m

√

|N r|

))

=

g

(
√

xr,m

|N r| (Qr,m (t) , Zr,m (t))

)

= g (R (Qr,m (t) , Zr,m (t))) (3.107)

for m <
√

|N r|T by (3.106) since Kr(T ) ⊂ Ar
R(T ).
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Therefore

g
(

Q̂r (0) , Ẑr (0)
)

= g
(

R
(

Qr,0 (0) , Zr,0 (0)
))

on Kr(T ).

Let Lr(T ) = Kr(T )
⋂Gr where

Gr =
{∣

∣g
(

R
(

Qr,0(0), Zr,0(0)
))∣

∣ ≤ ǫ(r)
}

,

with ǫ(r) → 0 slowly enough as r → 0 so that

lim
r→∞

P (Lr) > 1 − η/2.

As in Proposition 3.13, using (3.11) and the continuity of g we have for r > r0 large

enough that

g (R (Qr,m (t) , Zr,m (t))) ≤ HR,T (t) + ǫ, t ∈ [0, L] (3.108)

on Kr(T ). Using the second part of Assumption 7, similar to (3.46) we have

∥

∥g
(

R
(

Qr,0(t), Zr,0(t)
))∥

∥

L
≤ ǫ (3.109)

on Lr(T ) for r large enough.

3.6.2 State space collapse in diffusion limits

Let

yr,m =

√

xr,m

|N r|

We begin with changing the scaling using (3.107). As in Proposition 3.14 we have from

(3.108) and (3.107) that

g (Qr (t) , Zr (t)) ≤ HR,T

(

1

yr,m
(
√

|N r|t−m)

)

+ ǫ

for w ∈ Kr(T ), r large enough and

m
√

|N r|
≤ t ≤ 1

√

|N r|
(yr,mL+m). (3.110)
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Also by (3.109) we have that

∥

∥

∥g
(

Q̂r(t), Ẑr(t)
)∥

∥

∥

Lyr,0/
√

|Nr |
≤ ǫ

on Lr(T ) for r large enough.

Let mr(t) be the smallest m that satisfies (3.110) with t and yr(mr(t)) = yr,mr(t). Note

that on Kr(T )

Lyr,n = Lyr,m for all n,m <
√

|N r|T.

Now observe that if t ∈ [Lyr,0/
√

|N r|, T ] then mr(t) ≥ 1 hence

√

|N r|t− (mr(t) − 1) > Lyr(mr(t) − 1) = Lyr(mr(t)).

Therefore

√

|N r|t−mr(t) > Lyr(mr(t)) − 1 >
L

2
yr(mr(t)).

for L > 2.

Since the value of L is a matter of choice, we can take L sufficiently large and redefine

Kr(T ) with the reselected L. Let HR,T be given as in Assumption 7. Since HR,T (t) → 0 as

t → ∞ is independent of L, for ǫ > 0 fixed, there exists s∗(ǫ) > 1 such that for t > s∗(ǫ),

HR,T (t) < ǫ. So we set

L ≥ 6s∗(ǫ).

The proof is completed similar to proof of Theorem 3.1.
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CHAPTER IV

APPLICATIONS

In this chapter we present applications of our main results discussed in the previous chapter

in three different parallel server systems. First, we study the optimal control of distributed

parallel server systems. The discussion is based on the results presented in Tezcan [62].

In Section 4.2 we focus on a class of N-systems. We show that a static priority policy is

asymptotically optimal. In Section 4.3 we focus on a V-system with two customer class and

prove two SSC results conjectured by Armony and Maglaras [2] and Milner and Olsen [53].

4.1 Optimal control of distributed parallel server systems

In this section, we consider a distributed parallel server (DPS) system where customers

arrive at the system according to a Poisson process. A DPS system consists of a single

customer class and multiple server pools. Each customer must be routed to a server pool

or a queue at his arrival time following a routing policy. Under a routing policy, when there

are idle servers in the pool, the customer may be routed for service immediately; otherwise,

the customer is routed to the selected queue waiting to be served later. For notational

convenience we set µj = µjj and assume that

µ1 < µ2 < . . . < µJ . (4.1)

Once a customer receives service, he leaves the system. The service times at each server

pool are assumed to be i.i.d. and exponentially distributed. A DPS system is illustrated in

Figure 1.

The distributed parallel server systems we study is closely related to inverted-V-systems

studied in Armony [1]. An inverted-V-system, or ∧-system, also consists of multiple server

pools and a single customer class. Unlike a distributed server pool system, in an ∧-system

there is only one queue and each server can serve a customer waiting in that queue. Since

there is only one queue, there is no routing decision to make in an ∧-system when an arriving
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Figure 1: A DPS-parallel server system

customer finds all servers busy. Our main goal is to construct efficient routing policies so

that despite the fact that customers are routed upon arrival the system works as efficiently

as as a similar ∧-system where customers wait for service in a central queue. This fact is

referred as the complete resource pooling in the conventional heavy traffic literature, see,

for example, Reiman [58].

We focus on two routing policies: the minimum-expected-delay–faster-server-first (MED–

FSF) policy and the minimum-expected-delay–load-balancing (MED–LB) policy. The minimum-

expected-delay (MED) routing policy is a widely studied and used policy in different appli-

cations. Under the MED routing policy, when a customer finds all the servers busy at the

time of his arrival, he is routed to the queue with the minimum delay, otherwise he is routed

to one of the server pools with idle servers. Kogan et al. [44] demonstrates numerically that

the distributed pools system with the MED policy is not inferior to the corresponding sys-

tem with a central queue with respect to the stationary waiting time distribution. The MED

policy (and a simpler version, join the shortest queue policy) has been shown to achieve

complete resource pooling in distributed parallel server systems under conventional heavy

traffic, see Foschini and Salz [26], Reiman [58] and Laws [46]. Winston [70] and Weber [63]

showed that when the service times are exponential or have increasing failure rate then it is

optimal to assign the job to the shortest queue. Whitt [68], however, showed that for other

service-time distributions, join the shortest queue rule need not be optimal. As noted in

Section 5.3 of Gans et al. [28], “while there is a fairly extensive literature on load balancing,
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little of it appears to be directly applicable to distributed parallel server systems with many

servers.”

Under both MED-FSF and MED-LB policies, if all servers are busy when a customer

arrives at the system, the customer is routed to the queue that has the minimum expected

delay. If there is an idle server at his arrival time, then under the MED–FSF policy the

customer is routed to the fastest available pool and under the MED–LB to the least utilized

available pool.

We analyze DPS systems working under these policies in the Halfin-Whitt many server

heavy traffic regime. We consider a sequence of systems indexed by r. The arrival rate to

the rth system, λr, is equal to r. For simplicity we assume that

N r
j = ⌈βj |N r|⌉, for all j ∈ J , (4.2)

where βj > 0 is given for each j ∈ J with
∑J

j=1 βj = 1, and for a real number x, ⌈x⌉ is the

least integer greater than or equal to x. (It is actually enough to assume that N r
j /|N r| → βj

as r → ∞ for all j ∈ J for the results in this section to hold.) We define the average service

rate µ̄ across all the servers by

µ̄ =

J
∑

j=1

βjµj. (4.3)

Let the traffic intensity for the rth system be defined by

ρr =
λr

∑

j∈J N
r
j µj

.

We assume that

√

|N r|(1 − ρr) → θ/µ̄ (4.4)

for some θ > 0 as r → ∞. Assumption (4.4) implies that the system reaches heavy traffic

as r → ∞. It can easily be checked that Assumption 1 holds by (4.4).

Armony [1] shows that the faster-server-first (FSF) policy is asymptotically optimal in

the QED regime in the sense that it minimizes the stationary distribution of the waiting

time and queue length processes in the limit as the arrival rate goes to infinity. In this
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section, we show that the MED–FSF policy is also asymptotically optimal in the QED

regime for our distributed systems. Our optimality result is weaker than that in Armony [1]

where it is shown that the FSF policy achieves the minimum stationary queue length and

waiting time distribution. Here, we show that MED-FSF policy minimizes the stationary

queue length distribution and the probability that a customer gets delayed in the queue

before his service starts.

Although the MED–FSF is asymptotically optimal in minimizing the queue lengths in a

call center, all the servers in our distributed system except those with the lowest service rate

experience 100% utilization as the offered load gets large. Therefore, this policy punishes

those servers who work more efficiently. Employee burnout increases with overwork and

employee turnout may increase if there is a sense of unfairness in a work environment. In

addition to these problems, a company using MED–FSF is likely to loose its most efficient

agents since they are the ones being overworked. Therefore, MED–FSF policy may increase

the operating costs of a call center in the long-run. One solution to this problem is to

overstaff those faster pools and give them more breaks to lower the utilization of faster

servers to an acceptable level. However, this adds another level of decision making procedure

to call center management.

Considering these disadvantages of the MED–FSF policy, we propose the MED–LB

policy which routes the calls among call centers “fairly”. We show that the MED–LB

policy asymptotically balances the load of the servers; i.e., the utilizations of all the servers

in the system become equal as the offered load gets large. We further show that, operating

under the MED–LB policy, the distributed system achieves the resource pooling effect in

that the stationary distribution of the total queue length and the waiting time processes

are approximated by those in an M/M/n system. The arrival rate and the total number of

servers in the latter system are the same as those in the distributed system. However, the

service rate for each server is equal to the average rate among all servers in the distributed

system. The performance of distributed systems is usually approximated by this single

server pool system in practice. It is shown here for the first time that this approximation

is asymptotically correct. The same result also holds for the ∧-systems under the LB
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policy. One can come up with other policies that would yield balanced utilizations across

server pools in our distributed system but the MED–LB policy is easy to implement and its

performance can be accurately estimated using the Erlang C formula. We also discuss how

the MED–LB policy can be modified to distribute the total available idle time in desired

proportions among all the server pools.

Using our asymptotic results, we derive approximations for the performances of the

systems under the MED–FSF and MED–LB policies. Since all our results are asymptotic

results, we conduct simulation experiments to illustrate the accuracy of our results. We

compare the performance of the distributed systems under the MED–FSF and MED–LB

policies with that of the corresponding ∧-systems and test the accuracy of the approxima-

tions obtained from the asymptotic analysis in several distributed systems. We conduct

additional simulation experiments to test if the MED–LB and LB policies balance the uti-

lizations of the servers in relatively small systems. The simulation results show that our

asymptotic results are also observed in systems with sizes comparable to existing call cen-

ters and the asymptotic approximations provide accurate estimates for the stationary delay

probability and expected waiting time.

The main results of this section can be summarized as follows.

1. Under the MED–FSF policy, the stationary delay probability and stationary queue

lengths are asymptotically minimized among all adapted policies. Furthermore, under

the MED–FSF policy, the distributed system performs as good as a corresponding ∧-

system.

2. The MED–LB policy in a distributed system asymptotically balances the utilizations

of the server pools. Also, under the MED–LB policy, a distributed system performs as

good as the corresponding ∧-system. Both systems perform as good as a corresponding

M/M/n system.

3. As above results are derived through many server diffusion limits, we obtain formulas

for approximate performance analysis of a distributed system under both the MED–

FSF and MED–LB policies.
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While establishing the diffusion limits, we use Theorem 3.1 to prove a state space collapse

(SSC) result in the many server heavy traffic analysis of parallel server systems.

4.1.1 The queueing model and the asymptotic framework

As described in the previous section we consider a distributed parallel server system that

consists of J ≥ 2 server pools and a single customer class. Server pool j consists of Nj

homogeneous servers and has its own dedicated queue. Customers arrive at the system

according to a Poisson process with rate λ. Each customer must be routed to a server pool

or a queue at his arrival time following a certain routing policy. Under a routing policy,

an arriving customer may be routed to an idle server if there are idle servers at the time

of his arrival or to a queue waiting to be served later. Once a customer receives service he

leaves the system. The service time of each server in pool j is assumed to be exponentially

distributed with rate µj. A server residing in server pool j can only handle customers who

are routed to the jth queue. Once a customer joins a queue he cannot swap to other queues

nor can he renege. Customers in the same queue are served on a first-in-first-out (FIFO)

basis. We refer to such a system as a distributed parallel server system or a distributed

system. The corresponding ∧-system of a distributed system has the same parameters with

the distributed system except that it has only one queue and a customer who finds all the

servers busy at the time of his arrival is routed to this queue waiting to be served by one

of the servers in the system later.

The customers that are routed to the jth queue or server pool are called the class j

customers. For notational convenience, we define J = {1, . . . , J} the set of server pools.

Since each customer class is associated with a unique server pool this set will also give the

set of indices for the customer classes. Since there is only one customer type we omit the

subscript “1” from the notation in this section, e.g., Qi(t) denotes the total number of type

1 customers waiting in the ith queue.

We focus on two non-idling routing policies: the MED–LB and the MED–FSF policies.

Under the MED policy when a customer arrives to the system to find all the servers busy he

is routed to the queue with the minimum expected delay (or waiting time). The expected
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waiting time in queue j at time t is taken to be given by Qj(t)/(Njµj), which actually turns

out to be asymptotically correct. Under both the MED–LB and the MED–FSF policies, if

all servers are busy when a customer arrives at the system, the customer is routed to one

of the queues according to the MED policy. If there is an idle server at his arrival time,

then under the MED–FSF policy the customer is routed to the fastest available pool and

under the MED–LB to the least utilized available pool, where the utilization of the server

pool j at time t is given by Zj(t)/Nj . We assume that ties are broken arbitrarily. In an ∧-

system there is only one queue hence there is no routing decision to make when an arriving

customer finds all servers busy. Thus, the MED–FSF and MED–LB routing policies in our

distributed system reduces to the FSF and LB policies in the corresponding ∧-system.

We use Xr(t) to denote the total number of customers in the system at time t and we

set Xr = {Xr(t), t ≥ 0}. The diffusion-scaled total number of customers in the system, X̂r,

is defined by

X̂r(t) =
Xr(t) − |N r|
√

|N r|
. (4.5)

In order to gain insight on DPS systems’ performance we analyze the weak limits of Q̂r, Ẑr

and X̂r as r → ∞.

Let W r(t) denote the amount of time a customer will wait before his service starts if

he arrives at time t and W r = {W r(t) : t ≥ 0}. The process W r is known as the virtual

waiting time process. We define the diffusion-scaled virtual waiting time process Ŵ r by

Ŵ r(t) =
√

|N r|W r(t). (4.6)

We are also interested in the asymptotic behavior of the stationary distribution of

(Q̂r, Ẑr, X̂r, Ŵ r) as r → ∞. For a routing policy π, we denote the stationary probabil-

ity distribution of (Q̂r, Ẑr, X̂r, Ŵ r) by Pπr when it exists. For notational convenience, we

denote by

(Q̂r(∞, π), Ẑr(∞, π), X̂r(∞, π), Ŵ r(∞, π))

a random variate that has the distribution Pπr . We call P(W r(∞) > 0) the stationary delay

probability in the rth system. If a stationary distribution of a process Y does not exist, we
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set

P{Y (∞) > x} = 1, (4.7)

for all x ∈ R.

4.1.2 Main Results

Our main results are based on the asymptotic analysis of the stochastic process (Q̂r, Ẑr, X̂r, Ŵ r)

and its stationary behavior as r → ∞. The proofs of the results in this section are presented

in Section 4.1.4.4.

We first focus on the MED–FSF policy and show that it minimizes the stationary distri-

bution of the queue lengths and the stationary delay probability among all adapted policies

as described in the following theorem.

Theorem 4.1.1. Consider a sequence of MED–FSF distributed server systems. Assume

that (4.2) and (4.4) hold. Then, for any adapted routing policy π

lim
r→∞

P{X̂r(∞,MED–FSF) > x} ≤ lim inf
r→∞

P{X̂r(∞, π) > x}, (4.8)

for all x ∈ R and

lim
r→∞

P{Ŵ r(∞,MED–FSF) > 0} ≤ lim inf
r→∞

P{Ŵ r(∞, π) > 0}, (4.9)

In Theorem 4.1.1 we only require that π is adapted and do not assume that it is non-

idling or serves the customers on a FIFO basis. Theorem 4.1.1 is proved by comparing

the limit of the sequence of the stationary distributions of the distributed systems with

that of the corresponding ∧-system. We show that the MED–FSF policy achieves the

same asymptotic performance as it does in an identical ∧-system. Using this result and

the asymptotic optimality of the FSF policy in an ∧-system we prove that the MED–FSF

policy is asymptotically optimal as described in Theorem 4.1.1.

Let Xr
∧(t) be the number of customers in the corresponding ∧-system at time t and

X̂r
∧(t) =

Xr
∧(t) − |N r|
√

|N r|
(4.10)
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We denote the the virtual waiting time process in these systems by W r
∧ and define the

diffusion-scaled waiting process by Ŵ r
∧(t) =

√

|N r|W r
∧(t). The proof of Theorem 4.1.1 also

yields the following result.

Theorem 4.1.2. Consider a sequence of MED–FSF distributed server systems and the

sequence of corresponding FSF ∧-systems. Assume that (4.2) and (4.4) hold. Then

lim
r→∞

P{X̂r(∞,MED–FSF) > x} = lim
r→∞

P{X̂r
∧(∞,FSF) > x} = F (x), (4.11)

for all x ∈ R and

lim
r→∞

P{Ŵ r(∞,MED–FSF) > w} = lim
r→∞

P{Ŵ r
∧(∞,FSF) > w} = F (µ̄w), (4.12)

for all w ≥ 0, where F (x) =
∫ x
−∞ f(u)du and f is the density function defined by

f(x) =















θ√
µ̄

exp{−θx/√µ̄}α, if x ≥ 0q
µ1
µ̄

φ
�q

µ1
µ̄

x+ θ√
µ1

�
Φ
�

θ√
µ1

� (1 − α), if x < 0
(4.13)

where

α =

[

1 +
θ/

√
µ1Φ

(

θ/
√
µ1

)

φ
(

θ/
√
µ1

)

]−1

= P {X(∞) > 0} . (4.14)

Remark 4.1. [1] shows that the FSF routing policy is asymptotically optimal for the ∧-

systems in the sense that

lim
r→∞

P{Ŵ r(∞,FSF) > w} ≤ lim inf
r→∞

P{Ŵ r(∞, π) > w}, (4.15)

for all w ≥ 0 and any adapted HL policy π. Note that this is stronger than (4.9) since

our result only holds for w = 0. The main reason is that for ∧-systems working under an

HL policy (4.9) implies (4.15) since customers are served on a FIFO basis. In a distributed

system a server can idle even though there are customers in other queues and a customer

arriving at that instant overtakes the customers that are already in queue and starts his

service before them. Therefore, customers in a distributed system under, for example, a

non-idling routing policy are not served on a FIFO basis. Hence, (4.9) does not imply (4.15)

for distributed systems.
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Next we obtain approximations for the performance of the rth system under the FSF

and MED–FSF policies using (4.11) and (4.12).

Corollary 1. Consider a sequence of MED–FSF distributed server systems. Under the

assumptions of Theorem 4.1.2

P(W r(∞) > 0) → α and

∣

∣

∣

∣

∣

E[Ŵ r(∞)] − α

√

|N r|µ̄√
rθ

∣

∣

∣

∣

∣

→ 0 (4.16)

as r → ∞, where α is given by (4.14) and µ̄ is given by (4.3).

Remark 4.2. The results in (4.16) also hold for the sequence of corresponding FSF ∧-

systems, see Lemma 4.1 in Armony [1].

The last result we obtain for the MED–FSF DSP systems involves the differences be-

tween the utilizations of server pools.

Theorem 4.1.3. Consider a sequence of MED–FSF distributed server systems. Under the

assumptions of Theorem 4.1.2, for i = 2, 3, . . . , J

limr→∞
√

|N r|E
[

Zr
i (∞)
Nr

i

]

= 1 and (4.17)

limr→∞
√

|N r|E
[

Zr
1
(∞)

Nr
1

]

= 1 − (1−α)
β1

(

φ(θ/
√

µ1)
Φ(θ/

√
µ1)

+
θ
√

µ̄
µ1

)

(4.18)

where x− = min{x, 0} and X(∞) is a random variable with distribution F defined in The-

orem 4.1.2.

Now we focus on the distributed systems operating under the MED–LB policy and the

corresponding ∧-systems. We have the following result on the utilizations of the server

pools under the MED–LB policy.

Theorem 4.1.4. Consider a sequence of MED–LB distributed server systems. Assume that

(4.2) and (4.4) hold. Then

lim
r→∞

√

|N r|
∣

∣

∣

∣

∣

E

[

Zr
i (∞)

N r
i

−
Zr

j (∞)

N r
j

]∣

∣

∣

∣

∣

= 0. (4.19)

for i, j ∈ J . If in addition

(

Q̂r(0), Ẑr(0)
)

⇒
(

Q̂(0), Ẑ(0)
)

, (4.20)
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as r → ∞ for a random vector (Q̂(0), Ẑ(0)) and

∣

∣

∣

∣

∣

Ẑr
j (0)

βj
−
Ẑr

j′(0)

βj′

∣

∣

∣

∣

∣

→ 0 (4.21)

for all j, j′ ∈ J in probability as r → ∞, then for any T > 0

√

|N r|
∥

∥

∥

∥

∥

Zr
i (t)

N r
i

−
Zr

j (t)

N r
j

∥

∥

∥

∥

∥

T

→ 0 in probability as r → ∞ (4.22)

in probability as r → ∞ for i, j ∈ J .

Remark 4.3. The results of Theorem (4.1.4) also hold for the sequence of corresponding

LB ∧-systems.

We next prove that, under the MED–LB policy, a distributed system performs as well as

the corresponding ∧-system and both systems performs as good as a corresponding M/M/n

system.

Consider a sequence of M/M/n systems with the arrival rate and the number of servers

in the rth system is equal to those of the rth distributed system. Assume that the service

rate of each server in this system is equal to the average service rate µ̄ in the distributed

system given by (4.3). Let Xr(t) denote the the total number of customers in the rth

M/M/n system at time t. We define the diffusion-scaled total number of customers process

in these systems by

X̂
r
(t) =

Xr(t) − |N r|
√

|N r|
. (4.23)

We use X̂
r
(∞) denote the weak limit of X̂

r
(t) as t → ∞, which exists for each r by (4.4)

and standard results on the existence of a stationary distribution of an M/M/n system. Let

W r(t) denote the virtual waiting time for the rth single server system, Ŵ
r
(t) =

√

|N r|W r(t)

and W r(∞) denote the weak limit of W r(t) as t→ ∞.

Theorem 4.1.5. Consider a sequence of MED–LB distributed systems and the sequence of

corresponding LB ∧-systems. Assume that (4.2) and (4.4) hold. Let Xr and W r be defined

as above. Then,

lim
r→∞

P{X̂r(∞) > x} = lim
r→∞

P{X̂r
∧(∞) > x} = lim

r→∞
P{X̂r

(∞) > x} = F (x) (4.24)
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for all x ∈ R and

lim
r→∞

P{Ŵ r(∞) > w} = lim
r→∞

P{Ŵ r
∧(∞) > w} = lim

r→∞
P{Ŵ r

(∞) > w} = F (µ̄w), (4.25)

for all w ≥ 0, where F (x) =
∫ x
−∞ f(u)du and f is the density function defined by

f(x) =















θ√
µ̄

exp{−θx/√µ̄}α, if x ≥ 0

φ
�
x+ θ√

µ̄

�
Φ
�

θ√
µ̄

� (1 − α), if x < 0
(4.26)

where

α =

[

1 +
θ/

√
µ̄Φ (θ/

√
µ̄)

φ (θ/
√
µ̄)

]−1

= P {X(∞) > 0} . (4.27)

.

Remark 4.4. The results of Corollary 1 also hold for the distributed systems operating

under the MED–LB policy and the corresponding ∧-systems with α given by (4.27).

4.1.3 Simulation Experiments

Since the results presented in Section 4.1.2 are asymptotical results, in this section we

conduct simulation experiments to evaluate the quality of those results. We consider five

cases. In each case, we simulate a distributed system and the corresponding ∧-system.

The parameters of all five cases are displayed in Table 1 (the time unit is taken to be one

minute.)

The first four cases correspond to systems that have three server pools and the last

case corresponds to a system that has eight server pools. The parameters of the first three

cases are selected to investigate the effect of the offered load, defined by λ/µ̄, on the quality

of our results. We set the arrival rate in the second and the third case to be 10 and 40

times the arrival rate in the first case, respectively, to observe this effect. Balanced server

assignment among all pools may affect the quality of our asymptotic results. In order to

observe the effect of unbalanced server staffing, in the fourth case, one of server pools is set

to have significantly fewer servers than the other pools. Finally, in the last case, we consider

a system with eight pools to observe the effect of the number of pools on the quality of our

results.
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Case J λ N µ

1 3 50 (13,7,9) (1.48, 1.77, 2.4)
2 3 500 (125,63,89) (1.48, 1.77, 2.4)
3 3 2000 (497,255,347) (1.48, 1.77, 2.4)
4 3 500 (195 95 22) (1.48, 1.77, 2.4)
5 8 500 (45,45,68,70,76,81,112,126) (0.72,0.95,0.85,0.8,0.86,0.9,0.88,0.67)

Table 1: The simulation data to evaluate asymptotic results.

In all the simulation experiments, each performance measure estimate is presented with

its 95% confidence interval. The length of each simulation run is selected to allow 12 million

customers to arrive to the system. Also a warm-up period of 1.2 million customer arrivals

is used. We divide the total simulation length to ten time intervals of equal length to apply

batch means technique, see [45]. The confidence intervals that are reported along with

the estimates are obtained using the batch means. Also, when two or more policies are

compared the simulations are run using common random number generators so that the

interarrival times and the service requirement of the nth customers in all the simulations

are the same for n = 1, 2, . . ..

4.1.3.1 Simulation results of the MED–FSF policy

In this section, we focus on the FSF routing policy. Theorem 4.1.2 says that when the

offered load is high, a distributed system operating under the MED-FSF routing policy

has a similar performance to the corresponding ∧-system operating under the FSF routing

policy. In this section we test this result in five systems with different parameters.

Table 2 displays simulation results as well as analytical approximations for all five cases.

The results under the MED-FSF policy are displayed in the left half of Table 2. (The results

under the MED-LB policy, displayed in the right half of Table 2, will be discussed in the

next section.) For each case, the simulation estimates of the delay probability (P(W >

0)), in percentage, and the average waiting time (E[W ]) in seconds are presented for the

distributed system, in Row DS, and for the corresponding ∧-system, in Row ∧. The half-

widths of confidence intervals are presented in parentheses next to the simulation estimates.

The differences between the estimates from the distributed system and the ones from the
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MED-FSF MED-LB
Case P(W > 0)(%) E[W ] P(W > 0)(%) E[W ]

1 DS 61.60 (0.43) 12.14 (0.31) 66.53 (0.27) 13.38 (0.15)
∧ 63.88 (0.41) 11.87 (0.30) 65.80 (0.29) 12.09 (0.14)
DS − ∧ -3.60 0.27 1.10 1.29
Approx. 61.50 11.60 63.89 12.24
DS − Approx. 0.16 0.54 4.0 1.14

2 DS 60.64 (0.88) 3.64 (0.16) 64.83 (1.27) 3.76 (0.31)
∧ 61.60 (0.89) 3.63 (0.16) 65.68 (1.28) 3.72 (0.30)
DS − ∧ -1.60 0.01 -1.30 0.04
Approx. 60.84 3.65 64.24 3.85
DS − Approx. -0.33 0.01 0.91 0.09

3 DS 61.52 (1.71) 1.83(0.20) 64.48 (1.77) 1.92 (0.19)
∧ 61.02 (1.77) 1.83 (0.20) 65.01 (1.76) 1.92 (0.19)
DS − ∧ 0.80 0 -0.82 0
Approx. 61.65 1.89 64.97 1.99
DS − Approx. -0.21 -0.06 -0.75 -0.07

4 DS 61.88 (0.93) 3.92 (0.18) 63.12 (0.92) 3.99 (0.18)
∧ 62.88 (0.90) 3.91 (0.18) 64.10 (0.92) 3.98 (0.18)
DS − ∧ -1.60 0.01 -1.50 0.01
Approx. 62.64 3.97 64.15 4.07
DS − Approx. -1.20 -0.05 -1.60 -0.08

5 DS 43.95 (1.06) 2.80 (0.16) 46.97 (1.04) 2.99 (0.16)
∧ 47.00(1.08) 2.78(0.16) 50.11 (1.00) 2.95 (0.16)
DS − ∧ -6.50 0.02 -6.20 0.04
Approx. 46.32 2.75 50.19 2.98
DS − Approx. -5.10 0.05 -6.40 0.01

Table 2: The results of simulation experiments.

corresponding ∧-system are presented in Row DS − ∧.

We first note that as the offered load gets high the performance of the distributed

system under the MED–FSF becomes very close to that of the corresponding ∧-system. In

the first case the percentage difference between the estimated delay probability in these two

models is around 3.6%, in the second case it decreases to 1.5% and decreases to less than

1% in the third case. The differences of the expected waiting times are even smaller. By

comparing the results of the fourth case with those of the second case we observe that having

a significantly smaller server pool does not affect the percentage differences. However, the

number of server pools in the system has a big impact. The percentage difference between

the delay probabilities are twice as much as the difference in the first case, which is the
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second largest difference among all the cases.

Formulas in (4.16) give analytical approximations for delay probability and average

waiting time. For each parameter case, these approximate values are presented in Row

Approx. The differences between the analytical approximations and simulate estimates

from the distributed systems are presented in Row DS − Approx. In first three cases, the

percentage difference of delay probability is at most 0.33%. Even in Case 4 when the

server pools are not balanced, the approximation for delay probability is quite close to the

simulation estimate (the difference is 1.2%). In Case 5 when there are eight server pools, and

the arrival rate is equal to 500 as in the second case, the approximation performs significantly

worse, 5.1% in percentage difference. Overtaking as described in Remark 4.1 also explains

why the quality of the approximation for the delay probability in the distributed systems

diminishes when the number of server pools is increased because as the number of server

pools increases so does the probability that an arriving customer will find an idle server

given that there are customers waiting in the system. Note that the difference in the average

waiting times is only 0.05 seconds.

From the simulation results it is clear that the distributed systems operating under the

MED–FSF policy do perform as good as the corresponding ∧-systems in terms of the delay

probability and average waiting time in the queue.

4.1.3.2 Simulation results of the MED–LB policy

In this section, we focus on the MED-LB routing policy. Recall that the simulation results

for the distributed systems operating under the MED-LB routing policy and for the corre-

sponding ∧-systems operating under the LB routing policy are presented in the right half

of Table 2.

Theorem 4.1.5 asserts that when the offered load is high the performance of a distributed

system operating under the MED-LB policy is similar to that of the corresponding ∧-system

under the LB policy. This is clearly observed in the first four cases; the largest percentage

difference between delay probabilities is 1.5% and the largest difference between average

waiting times is 1.14 seconds. In cases 2-4 the difference in waiting times is less than 0.1
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seconds. The number of server pools has a big impact on the percentage difference of the

delay probability for the systems under MED–LB as well; the percentage difference is 6.2%

in Case 5, four times more than the second largest difference. However, the difference in

waiting time is again very small, only 0.01 seconds.

Next we assess the quality of the approximations provided by Remark 4.4 and (4.16)

using the simulation results. First we note that in cases 2-5 the differences between the

average waiting times estimated for the distributed system and the ones provided by the

approximation are less than 0.1 seconds. This difference is 1.14 seconds in the first experi-

ment. Therefore, in terms of the average waiting time approximations provide very accurate

estimates. The percentage difference of the delay probabilities is less than 1.7% in first four

cases, but in case 5 it is significantly larger (6.4%). Again, this is due to overtaking that is

explained in Remark 4.1.

We conclude that the distributed systems operating under the MED-LB policy performs

as good as the corresponding ∧-systems operating under the LB policy.

Theorem 4.1.5 asserts that the difference between the utilizations of the servers is

o(1/
√

|N r|) when the offered load is high for the distributed systems operating under the

MED–LB policy. To evaluate the quality of this asymptotic result we conduct additional

simulation experiments. Also, to illustrate that the difference between the utilizations of

server pools is high under MED–FSF policy we simulate the same systems under this policy.

We consider three cases with two server pools. The parameters of these experiments are

selected to investigate the effects of different service rates and unbalanced staffing levels on

the difference of the utilizations. The values of the parameters for these cases is displayed in

Table 3. The first case is a homogeneous system in the sense that the number of servers in

each pool is the same and the service rates of all the servers are equal. We do not simulate

this system under the FSF policy since the service times for both pools are equal. In the

second case we set the service rate of the first server pool to be 2/3 of the service rate of

the second server pool. In the third case, we set the number of servers in the first pool to

be significantly less than that in the second pool, and set the service rates as in the second

case.
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Case J λ N µ

6 2 97 (50, 50) (1,1)
7 2 97 (50, 50) (0.8, 1.2)
8 2 97 (29, 64) (0.8, 1.2)

Table 3: The simulation data to test Theorem 4.1.4

MED-FSF MED-LB
Case ∧ DS ∧ DS

6 NA NA 0.30 (0.01) 0.33 (0.01)
7 5.20 (0.11) 5.15 (0.11) 0.55 (0.01) 0.58 (0.01)
8 6.93 (0.15) 6.81 (0.15) 0.67 (0.02) 0.72 (0.03)

Table 4: The percentage differences between utilizations.

Table 4 presents the results of the simulation experiments. We also consider the corre-

sponding ∧-model in each case. We display the percentage difference between the average

utilization of the first and second server pools in ∧-systems under the ∧ column and for the

distributed systems under the DS column. For all estimates, we show the half-width of the

95% confidence intervals.

Observe that under the LB and MED–LB policies the percentage differences between

the utilizations of the servers in all the systems are very small; less than 0.8%. Hence, even

for these relatively small systems the LB policy seems to balance the load of the server

pools. We observe that the differences in the utilizations are more in the systems with

different service rates and unbalanced staffing levels than that in the homogenous system.

Also the differences are slightly lower in ∧-systems than those in the distributed systems.

When we compare the percentage differences under the FSF and MED–FSF policies with

the LB and MED–LB policies, we see that they increase about 10 times. This verifies once

again how the FSF policy may be unfair in routing calls to server pools.

4.1.4 Proofs of the main results

In this section we prove the results stated in Section 4.1.2. In Section 2.1 we discuss

the dynamics of distributed systems to mathematically characterize the behavior of these

systems. and introduce the notation used in the rest of this section.

In Section 4.1.4.2 we provide asymptotic upper bounds for Qr(t) and N r
j − Zr

j (t) in a
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sequence of distributed systems operating under a non-idling routing policy. These bounds

are later used to show that Q̂r(t) and Ẑr(t), as defined in (2.23), are stochastically bounded.

Also, geometric Lyapunov functions are built using these results; see Section 4.1.4.4. In Sec-

tion 4.1.4.3, we analyze the limits of the fluid scaled processes, Qr(·)/|N r | and Zr(·)/|N r|,

as r → ∞. We establish the invariant states of the fluid limits. This result is needed

to justify that the diffusion scaling is properly defined, to use the results of [22] and to

establish the diffusion limits. In Section 4.1.4.4 we study the weak limits of the diffusion

scaled processes Q̂r(·) and Ẑr(·) of a distributed system operating under the MED–FSF or

the MED–LB policies as r → ∞. We also show that the stationary distribution of X̂r con-

verges weakly to the stationary distribution of the corresponding diffusion limit as r → ∞.

Finally, we provide the proofs of Theorems 4.1.1, 4.1.2, 4.1.4 and 4.1.5 and Corollary 1 in

Section 4.1.4.4 using the results in Sections 4.1.4.2-4.1.4.4.

4.1.4.1 The dynamics of distributed parallel server systems

We next present the additional equations that must be satisfied by the distributed systems

operating under the MED–FSF and MED–LB policies. First we focus on the non-idling

routing policies.

For a non-idling routing policy π, in addition to equations (2.2)-(2.12) in [22], Xπ must

also satisfy the following condition:

∫ ∞

0
1







J
∑

j=1

Zr
j (s) < N r







dAq,r(s) = 0. (4.28)

This condition implies that an arriving customer who finds idle servers will be routed to

one of the idle servers. In addition to (4.28) we assume that for π ∈ Π, there exists ar
π > 0,

for each r > 0, such that

Aq,r
j (t) can only increase when Qr

j(t) ≤ ar
πQ

r
j′(t) for all j′ ∈ J . (4.29)

This implies that as long as the number of customers in one of the queues is more than ar
π

times the queue length of another queue, arriving customers are not routed to the former

queue. Note that the MED–FSF and MED–LB policies satisfy (4.29).
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Recall that we assume that the service rates are increasing with the index of the server

pool as stated in assumption (4.1). Under the MED–FSF policy the following must hold.

Aq,r
j (t) can only increase when

Qr
j (t)+Zr

j (t)−Nr
j

Nr
j µj

≤ minj′∈J

{

Qr
j′(t)+Zr

j′ (t)−Nr
j′

Nr
j′µj′

}

(4.30)

and

As,r
j (t) can only increase when

J
∑

j′=j+1

(

Zr
j′(t) −N r

j

)

= 0 for j ∈ J . (4.31)

By the non–idling condition (4.28), Aq,r
j (t) can only increase when all the servers are busy.

Hence, (4.30) is invoked when there are no idle servers in the system. And if Zr
j (t) = N r

j ,

then Qr
j(t)/(N

r
j µj) gives the expected delay time of a customer joining the jth queue before

his service starts. The condition (4.31) implies that customers can be routed to server pool

j only when all the faster servers in the system, servers in pools j + 1 through J , are busy.

Under the MED–LB policy the following must hold in addition to (4.30).

As,r
j (t) can only increase when

Zr
j (t)

Nr
j

≤ minj′∈J

{

Zr
j′ (t)

Nr
j′

}

. (4.32)

In this case, Zr
j (t)/N r

j gives the proportion of busy servers. Hence, (4.32) implies that the

server pool with the lowest proportion of busy servers receives the arrival. The ties in (4.30)

and (4.32) are broken arbitrarily.

We set µmin = minj∈J {µj}, N r
min = minj∈J {N r

j },

S̆j(t) = Sj(t) − t and Ăr
j(t) = Ar

j(t) − λrt. (4.33)

For T > 0, we define

M∩
T = ∩∞

r=1

(

{‖Ar(t) −Ar(t−)‖T ≤ 1} ∩J
j=1

{

‖Sj(t) − Sj(t−)‖|Nr |T ≤ 1
})

. (4.34)

The set M∩
T is the set of sample paths for which only one arrival or departure at any given

instant in [0, T ] from the system can happen. By Lemma 9,

P
(

M∩
T

)

= 1 for any T > 0. (4.35)
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Let

λ = lim
r→∞

λr/|N r|.

By (4.4),

λ =
J
∑

j=1

βjµj = µ̄.

Notation: We denote the set of non-idling routing policies that satisfy (4.29) by Π

and, with a slight abuse of terminology, we also refer to these routing policies as non-idling

routing policies. We use the convention

inf{∅} = ∞ and sup{∅} = −∞.

We also use the big and little-o notation: For two sequences {xn} and {yn}, we say xn is

O(yn) and write xn = O(yn), if there exists n0 and M such that |xn| ≤ M |yn| for n > n0.

We say xn is o(yn) and write xn = o(yn), if limn→∞ |xn|/|yn| = 0. For two random two

random variables Υ1 and Υ2, Υ1 ∼ Υ2 means they have the same distribution.

4.1.4.2 Asymptotic bounds on Qr and Zr under a non-idling routing policy

In this section we derive asymptotic bounds on Qr and Zr. These bounds are used to show

that Q̂r and Ẑr are stochastically bounded in each finite interval [0, T ] which is required in

Section 4.1.4.4 to prove our SSC results. They are also used to define Lyapunov functions

that are used to prove the convergence of stationary distributions in Section 4.1.4.4.

Let x = (x1, . . . , xJ) ∈ R
J . We define ϕr

i : R
J → R, for i = 1, 2, by

ϕr
1(x) =

J
∑

j=1

(

N r
j − xj

)

and ϕr
2(x) =

J
∑

j=1

xj . (4.36)

Clearly ϕr
1(Z

r
j (t)) ≥ 0 and ϕr

2(Q
r
j(t)) ≥ 0 for all t ≥ 0. We present bounds for ϕr

1(Z
r
j (t)) and

ϕr
2(Q

r
j(t)) in terms of their initial states and certain functions of primitive processes. The

proofs of the results in this section are placed in Appendix C.1. First we present bounds

for ϕr
1(Z

r
j (t)). Recall that M∩ is defined by (4.34).
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Theorem 4.1.6. Let X
r be a distributed parallel server system operating under a non-idling

routing policy. Assume that (4.2) and (4.4) hold. Then, there exists r0 such that for every

t0 > 0, ω ∈ M∩ and r > r0 if

ϕr
1(Z

r(0)) >
4θ

√
λr(t0 ∨ 1)

µmin ∧ 1
, (4.37)

then

ϕr
1(Z

r(t0)) ≤ϕr
1(Z

r(0)) − θ
√
λrt0 + |o(

√

|N r|)| + 2

J
∑

j=1

‖Sj(t) − µjt‖|Nr|t0

+ 2 ‖Ar(t) − λrt‖t0
,

(4.38)

otherwise

ϕr
1(Z

r(t0)) ≤2J + ϕr
1(Z

r(0)) + θ
√
λrt0 + |o(

√

|N r|)| + 2
J
∑

j=1

‖Sj(t) − µjt‖|Nr|t0

+ 2 ‖Ar(t) − λrt‖t0
.

(4.39)

Next we present bounds for ϕr
2(Q

r
j(t)). One of the terms in these bounds is ζr that is

defined by

ζr(t0) = sup
s1≤s2∈[0,t0]

υ1,...,υJ∈[0,t0]
υj+(s2−s1)≤t0

{

(

θ
√
λr −N r

minµmin

)

(s2 − s1) +
∣

∣

∣
Ăr(s2) − Ăr(s1)

∣

∣

∣

+

J
∑

j=1

∣

∣

∣
S̆j (|N r| (υj + (s2 − s1))) − S̆j (|N r|υj)

∣

∣

∣

}

, (4.40)

where S̆j and Ă are given by (4.33).

Theorem 4.1.7. Let X
r be a distributed parallel server system operating under a non-idling

routing policy. Assume that (4.2) and (4.4) hold. Then, there exists r0 such that for every

t0 > 0, ω ∈ M∩ and r > r0, if

ϕr
2(Q

r(0)) > θ
√
λr(t0 ∨ 1), (4.41)

then

ϕr
2(Q

r(t0)) ≤ ϕr
2(Q

r(0)) − θ
√
λrt0 + |o(

√

|N r|)| + 2t0(µmax ∨ 1)(J + ζr(t0))

+4

J
∑

j=1

‖Sj(t) − µjt‖|Nr|t0 + 2 ‖Ar(t) − λrt‖t0
, (4.42)
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otherwise

ϕr
2(Q

r(t0)) ≤ ϕr
2(Q

r(0)) + 2J + 2(t0 ∨ 1)(µmax ∨ 1)(J + ζr(t0)) + |o(
√

|N r|)|

+4

J
∑

j=1

‖Sj(t) − µjt‖|Nr |t0 + 2 ‖Ar(t) − λrt‖t0
(4.43)

Remark 4.5. In an ∧-system there is only one queue, hence, the processes A,Aq, Q are one

dimensional and so have only one subsrcipt but otherwise all the components of (Ar, Ar
q, A

r
s, Q

r, Zr, T r, Y r, B

have the same interpretations they have for the distributed systems.

The results of Theorems 4.1.6 and 4.1.7 also hold for an ∧-system X
r
∧ = (Ar, Ar

q, A
r
s, Q

r, Zr,

T r, Y r, Br,Dr) operating under a non-idling and HL routing policy with ϕr
2 : R → R is de-

fined by ϕr
2(x) = x.

4.1.4.3 Fluid limits

In this section we study the fluid limits of the distributed systems. The results in this

section are needed to show that the diffusion scaling introduced in Section 4.1.1 is properly

defined. By using the result on the invariant states of the fluid limits in this section we

verify that when (4.20) holds the fluid limits are time-invariant. The results in this section

are used in the proofs of our SSC results to verify that Assumption 1 of [22] holds and in

proving the weak convergence of X̂r.

The fluid scaling X̄
r(·) is defined by X̄

r(·) = X
r(·)/|N r|. The following notation and

definitions are introduced in [22] but we repeat them here for completeness. The process

X̄(·) is called a fluid limit of {Xr} if there exists a sequence {rl}, with rl → ∞ as l → ∞,

and ω ∈ A such that X̄
rl(·, ω) converges u.o.c. to X̄(·, ω), where A ⊂ Ω is taken as in

Theorem A.1 in [22] and P{A} = 1. The existence of the fluid limits are established and

the fluid model equations that are satisfied by every fluid limit are presented in Theroem A.1

in Dai and Tezcan [22]. We call the vector (q, z) an invariant state of the fluid limits if for

any fluid limit X̄, Q̄(0) = q and Z̄(0) = z implies Q̄(t) = q and Z̄(t) = z for all t > 0.

The following result characterizes the invariant states of the fluid limits of the MED–FSF

and MED–LB distributed server pool systems.
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Lemma 1. Let {Xr} be a sequence of MED–FSF or MED–LB distributed server pool sys-

tems. Assume that (4.2) and (4.4) hold and that {Q̄r(0)} is bounded a.s. as r → ∞. Let

q1(a) = a, for a ≥ 0, qj(a) = aµjβj/(µ1β1), q(a) = (q1(a), q2(a), . . . , qJ(a)), zj = βj and

z = (z1, . . . , zJ ). Then M = {(q(a), z) : a ≥ 0} is the set of all the invariant states of the

fluid limits of {Xr}.

A proof is presented in Appendix C.2.

Remark 4.6. It can similarly be proved that if {Xr} is a sequence of LB or FSF ∧-systems

and {Q̄r(0)} is bounded a.s. as r → ∞, then M = {(a, z) : a ≥ 0} is the set of all the

invariant states of the fluid limits of {Xr}.

4.1.4.4 Diffusion limits

In this section we establish the weak limits of Q̂r, Ẑr and Ŵ r as r → ∞. By (4.20),

Q̄r(0) → 0 and Z̄r(0) → z as r → ∞, where z is given as in Lemma 1. Hence, the diffusion

scalings defined in (2.23) give the fluctuations around the fluid limits.

In the following section we establish two SSC results for the distributed systems oper-

ating under the MED–FSF and MED–LB policies. Then in Section 4.1.4.4 we establish the

diffusion limits using these SSC results. We focus on the stationary distributions of these

processes in Sections 4.1.4.4 and 4.1.4.4.

State space collapse We first give an intuitive explanation of our SSC results and

illustrate the results in a distributed system with two server pools. These results are proven

to hold for systems with arbitrary number of server pools. The proofs of the propositions

in this section are presented in Appendix C.3.1.

The MED policy routes the customers to the queue with the minimum expected delay

when all the servers are busy, where the expected delay of a queue, say j, at time t is defined

by Qr
j(t)/(µjN

r
j ). Assume that all the servers are busy at time t and

Qr
1(t)/(µ1N

r
1 ) ≪ Qr

2(t)/(µ2N
r
2 ). (4.44)

Since the arrival rate is greater than the total service rate of servers in the first pool, one

would expect to see that the number of customers in queue 1 will increase and the number of
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customers in queue 2 will decrease starting from time t, barring, of course, some stochastic

fluctuations. Hence, the value of Qr
2(t)/(µ2N

r
2 )−Qr

1(t)/(µ1N
r
1 ) is expected to decrease and

as long as (4.44) holds. Under the MED–FSF policy, if a server in pool 2 becomes available

in a two pool distributed system at time t then he receives the next arriving customer after

time t ( recall that we assume µ1 ≤ µ2). Since λr ≫ µ2N
r
2 for r large enough the idle time

of servers in higher priority pools becomes “very” small for r large enough. In general we

have the following result.

Proposition 4.7. Let {Xr} be a sequence of MED–FSF distributed server pool systems.

Assume that (4.2), (4.4) and (4.20) hold. Then, for some Lr = o(
√

|N r|) with Lr → ∞ as

r → ∞, and for every T > 0 and ǫ > 0,

P







sup
Lr/

√
|Nr |≤t≤T

∣

∣

∣

∣

∣

Q̂r
j(t)

βjµj
−
Q̂r

j′(t)

βj′µj′

∣

∣

∣

∣

∣

∨

∣

∣

∣

∣

∣

∣

J
∑

j=2

Ẑr
j (t)

∣

∣

∣

∣

∣

∣

> ǫ







→ 0, (4.45)

as r → ∞.

If in addition
∣

∣

∣

∣

∣

∣

J
∑

j=2

Ẑr
j (0)

∣

∣

∣

∣

∣

∣

→ 0 (4.46)

and

∣

∣

∣

∣

∣

Q̂r
j(0)

βjµj
−
Q̂r

j′(0)

βj′µj′

∣

∣

∣

∣

∣

→ 0 (4.47)

in probability as r → ∞ for j, j′ ∈ J , then for every T > 0

∥

∥

∥

∥

∥

Q̂r
j(t)

βjµj
−
Q̂r

j′(t)

βj′µj′

∥

∥

∥

∥

∥

T

∨

∥

∥

∥

∥

∥

∥

J
∑

j=2

Ẑr
j (t)

∥

∥

∥

∥

∥

∥

T

→ 0 (4.48)

for all j, j′ ∈ J in probability as r → ∞.

Remark 4.8. It can be similarly shown that if {Xr} is a sequence of FSF ∧-systems and

(4.2),(4.4) and (4.20) hold, then for some Lr = o(
√

|N r|) with Lr → ∞ as r → ∞, and for

every T > 0 and ǫ > 0,

P







sup
Lr/

√
|Nr |≤t≤T

∣

∣

∣

∣

∣

∣

J
∑

j=2

Ẑr
j (t)

∣

∣

∣

∣

∣

∣

> ǫ







→ 0,
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as r → ∞. If in addition (4.46) holds, then for every T > 0

∥

∥

∥

∥

∥

∥

J
∑

j=2

Ẑr
j (t)

∥

∥

∥

∥

∥

∥

T

→ 0

in probability as r → ∞.

Next we consider the SSC under the MED–LB policy. In a distributed parallel server

system with two server pools under the MED–LB policy if the percentage of busy servers

in the first pool is less than that in the second pool, the differences will decrease since the

server pool with higher percentage of busy servers will not receive any arrivals. We have

the following result for the distributed systems under the MED-LB policy.

Proposition 4.9. Let {Xr} be a sequence of MED–LB distributed server pool systems.

Assume that (4.2),(4.4) and (4.20) hold. Then, for some Lr = o(
√

|N r|) with Lr → ∞ as

r → ∞, and for every T > 0 and ǫ > 0,

P







sup
Lr/

√
|Nr|≤t≤T

∣

∣

∣

∣

∣

Q̂r
j(t)

βjµj
−
Q̂r

j′(t)

βj′µj′

∣

∣

∣

∣

∣

∨
∣

∣

∣

∣

∣

Ẑr
j (t)

βj
−
Ẑr

j′(t)

βj′

∣

∣

∣

∣

∣

> ǫ







→ 0, (4.49)

as r → ∞.

If in addition (4.21) and (4.47) hold, then for every T > 0

∥

∥

∥

∥

∥

Q̂r
j(t)

βjµj
−
Q̂r

j′(t)

βj′µj′

∥

∥

∥

∥

∥

T

∨
∥

∥

∥

∥

∥

Ẑr
j (t)

βj
−
Ẑr

j′(t)

βj′

∥

∥

∥

∥

∥

T

→ 0 (4.50)

for all j, j′ ∈ J in probability as r → ∞.

Remark 4.10. It can be similarly shown that if {Xr} is a sequence of LB ∧-systems and

(4.2),(4.4) and (4.20) hold, then for some Lr = o(
√

|N r|) with Lr → ∞ as r → ∞, and for

every T > 0 and ǫ > 0,

P







sup
Lr/

√
|Nr|≤t≤T

∣

∣

∣

∣

∣

Ẑr
j (t)

βj
−
Ẑr

j′(t)

βj′

∣

∣

∣

∣

∣

> ǫ







→ 0,

as r → ∞. If in addition (4.21) holds, then for every T > 0
∥

∥

∥

∥

∥

Ẑr
j (t)

βj
−
Ẑr

j′(t)

βj′

∥

∥

∥

∥

∥

T

→ 0

for all j, j′ ∈ J in probability as r → ∞.
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Diffusion limits of the total queue length and the virtual waiting time pro-

cesses: The SSC results established in (4.48) and (4.50) reveal that under the MED–FSF

and MED–LB policies the individual queue lengths and number of customers in service in

each pool can be estimated from the total number of customers in the system with an error

that goes to zero in probability as r → ∞. Hence, it is enough to focus on the total num-

ber of customers in the system instead of analyzing each queue and number of customers

in service in a server pool separately. To this end let X̂r(t) be defined as in (2.23) and

X̂r = {Xr(t) : t ≥ 0}. We have the following weak limits for X̂r under the MED–FSF and

MED–LB policies. The proofs of these theorems are presented in Appendix C.3.2.

Proposition 4.11. Let {Xr} be a sequence of MED–FSF distributed server pool systems.

Assume that (4.2),(4.4), (4.20) and (4.48) hold. Then

X̂r ⇒ X̂, as r → ∞,

where X̂ is the unique solution to the following stochastic differential equation (SDE)

dX̂(t) = h(X̂)dt+
√

2µdb(t), (4.51)

where b is a standard Brownian Motion and

h(x) =











−θ√µ, if x ≥ 0,

−θ√µ− µ1x, if x < 0.

Remark 4.12. By Theorem 11.4.5 in [65] and by Theorem 4.7, under the conditions of

Proposition 4.11,

(Q̂r, Ẑr) ⇒ (Q̂, Ẑ),

where Q̂ = (Q̂1, . . . , Q̂J) and Ẑ = (Ẑ1, . . . , ẐJ ) with

Q̂j(t) =
µjβj

∑J
ℓ=1 µℓβℓ

(X̂(t))+ for j ∈ J . (4.52)

Ẑ1(t) = (X̂(t))− and Ẑj(t) = 0 for 2 ≤ j ≤ J. (4.53)

Proposition 4.13. Let {Xr} be a sequence of MED–LB distributed server pool systems.

Assume that (4.2),(4.4), (4.20) and (4.50) hold. Then

X̂r ⇒ X̂, as r → ∞,
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where X̂ is the unique solution to the following SDE

dX̂(t) = h(X̂)dt +
√

2µdb(t), (4.54)

where b is a standard Brownian Motion and

h(x) =











−θ√µ, if x ≥ 0,

−θ√µ− µx, if x < 0.
(4.55)

Remark 4.14. By Theorem 11.4.5 in [65] and Theorem 4.9, under the conditions of Propo-

sition 4.13,

(Q̂r, Ẑr) ⇒ (Q̂, Ẑ),

where Q̂ = (Q̂1, . . . , Q̂J) and Ẑ = (Ẑ1, . . . , ẐJ ) with

Q̂j(t) =
µjβj

∑J
ℓ=1 µℓβℓ

(X̂(t))+ for j ∈ J and (4.56)

Ẑj(t) =
βj

∑J
ℓ=1 µℓβℓ

(X̂(t))− for j ∈ J . (4.57)

Remark 4.15. It can be similarly shown that

1. if {Xr} is a sequence of FSF ∧-systems satisfying (4.2),(4.4), (4.20) and (4.49), then

X̂r
∧ ⇒ X̂, as r → ∞,

and (4.53) holds, where X̂r
∧ is given by (4.10) and X̂ is the unique solution to the

SDE (4.51).

2. if {Xr} is a sequence of LB ∧-systems satisfying (4.2),(4.4), (4.20) and (4.51) then

X̂r
∧ ⇒ X̂, as r → ∞,

and (4.57) holds, where X̂r
∧ is given by (4.10) and X̂ is the unique solution to the

SDE (4.54).

Next we focus on the virtual waiting time process. Let W r
j (t) be the virtual waiting time

for queue j at time t in the rth system, i.e., the time a customer would wait before its service
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is started if he joins queue j at time t under a HL routing policy, and W r
j = {W r

j (t) : t ≥ 0}

be the virtual waiting time process for the jth queue. Then

W r
j (t) = inf{s ≥ 0 : Dr

j (s + t) ≥ Qr
j(0) + Zr

j (0) +Aq,r
j (t) +Ar

j(t) − (N r
j − 1)}.

Let κr(t) denote the index of the server pool or the queue that a customer arriving at time

t would be routed to. Obviously, κr(t) depends on the routing policy. For example, under

the MED–LB policy

κr(t) =











{j : Qr
j(t)/(µjN

r
j ) < Qr

l (t)/(µlN
r
l ) for all l ∈ J \ j}, if

∑

j∈J Z
r
j (t) = |N r|,

{j : Zr
j (t)/N r

j < Zr
l (t)/N r

l for all l ∈ J \ j}, if
∑

j∈J Z
r
j (t) < |N r|.

From the definition of κr(t) it follows that

W r(t) = W r
κr(t)(t).

We show that weak limit of W r can be expressed as a simple function of X.

Theorem 4.1.8. Let {Xr} be a sequence of MED–FSF (MED–LB) distributed server pool

systems. Under the conditions of Proposition 4.11 (resp. Proposition 4.13)

Ŵ r ⇒

[

X̂
]+

µ
(4.58)

as r → ∞, where X̂ is the unique solution to the SDE (4.51) (resp. the SDE (4.54)).

Remark 4.16. It can be similarly shown that if {Xr} is a sequence of FSF (LB) ∧-systems

that satisfies the conditions of the first part (resp. second) of Remark 4.15 then (4.58)

holds with Ŵ r is replaced by Ŵ r
∧.

Stationary distributions of the diffusion limits: Our asymptotic optimality and

equivalence results are stated in terms of the stationary distributions. The main reason is

that the staffing decisions in call centers are usually made using stationary values of the per-

formance measures. Hence, it is of practical value to study the convergence of the stationary

probabilities of the queue length and waiting time processes. In this section we present the

steady state probabilities for X̂ , the limiting diffusion process in Propositions 4.11 and 4.13.
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Theorem 4.1.9. Let X̂(·) be the diffusion process that is the unique solution to the SDE

(4.51). Then the steady-state distribution of X̂(·) has a density f given by (4.13).

Theorem 4.1.10. Let X̂(·) be the diffusion process that is the unique solution to the SDE

(4.54). Then the steady-state distribution of X̂(·) has a density f given by (4.26).

Theorems 4.1.9 and 4.1.10 can be proven similarly to Proposition 3.5 in [1].

Convergence of stationary distributions: In this section we show that X̂r(∞)

converges weakly to the stationary distribution of its weak limit under the MED–FSF and

MED–LB policies as r → ∞. In order to prove the convergence we first show that the

stationary distribution exists and then show that the sequence of stationary distributions

are tight.

In order to show the existence of the stationary distribution of X̂r for each r, we consider

the stability of a distributed server pool system under a non-idling routing policy. We show

that (Qr, Zr) has a stationary distribution whenever a natural traffic condition is satisfied.

Theorem 4.1.11. Let π ∈ Π and X
r
π be a π distributed server pool system. If

λr <
∑

j∈J
µjN

r
j (4.59)

then the process (Qr, Zr) has a unique stationary distribution.

We present a proof in Appendix C.3.3.1. The proof is based on the relationship estab-

lished in [18] between the stability of the corresponding conventional fluid limit and the

positive recurrence of the underlying Markov chain.

Next we show that the sequence of the stationary distributions of the process {Q̂r, Ẑr}

is tight under any non-idling routing policy. Recall that a sequence of random variables,

{Lr}, taking values in a metric space (S, ̺) is said to be tight if for every ǫ > 0 there exists

a compact set K ⊂ S such that infr P{Lr ∈ K} > 1 − ǫ [24].

Theorem 4.1.12. Let π ∈ Π and {Xr
π} be a sequence of π distributed server pool systems.

If (4.2) and (4.4) hold, then the sequence {Q̂r(∞, π), Ẑr(∞, π)} is tight.
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A proof is presented in Appendix C.3.3.2. The proof is based on the results of [27]. In

particular, we define two functions and show that they are geometric Lyapunov functions

for these systems. Then, we use Theorem 5 in their paper to conclude the proof.

Recall that X̂r(∞) and Ŵ r(∞) denote the stationary distribution of the processes X̂r

and Ŵ r, respectively.

Theorem 4.1.13. Let {Xr} be a sequence of MED–FSF distributed server pool systems. If

(4.2) and (4.4) hold, then

X̂r(∞) ⇒ X̂(∞) and (4.60)

Ŵ r(∞) ⇒ [X(∞)]+

µ̄
, (4.61)

where X̂(∞) has the density given by (4.13).

Theorem 4.1.14. Let {Xr} be a sequence of MED–LB distributed server pool systems. If

(4.2) and (4.4) hold, then

X̂r(∞) ⇒ X̂(∞) and (4.62)

Ŵ r(∞) ⇒ [X(∞)]+

µ̄
, (4.63)

where X̂(∞) has the density given by (4.26).

The proofs of Theorems 4.1.13 and 4.1.14 are presented in Appendix C.3.3.3.

Remark 4.17. It can be similarly shown that

1. if {Xr} is a sequence of FSF ∧-systems that satisfy (4.2) and (4.4), then (4.60) and

(4.61) hold with X̂r and Ŵ r are replaced by X̂r
∧ and Ŵ r

∧, respectively,

2. if {Xr} is a sequence of LB ∧-systems that satisfy (4.2) and (4.4), then (4.62) and

(4.63) hold with X̂r and Ŵ r are replaced by X̂r
∧ and Ŵ r

∧, respectively.

Proofs of the results in Section 4.1.2: Next we prove Theorems 4.1.1, 4.1.2, 4.1.4

and 4.1.5 and Corollary 1.

Proof of Theorem 4.1.1. Consider a sequence of MED–FSF distributed server systems de-

scribed in Section 4.1.1. Assume that (4.2) and (4.4) hold.
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Fix an adapted routing policy π and consider a sequence of π distributed server systems

and a sequence of ∧-systems with the rth systems in both sequences having the same

arrival and service rates and number of servers in each pool. Let Qr
∧(t) denote the number

of customers in the queue and Zr
j,∧(t) denote the number of customers in service in the jth

pool at time t in the rth ∧-system. Recall that Qr = (Qr
1, . . . , Q

r
J ) and Zr = (Zr

1 , . . . , Z
r
J )

are the number of customers in the queue and in the service processes in a distributed

system.

We claim that there exists an adapted routing policy π′ for the ∧-systems such that for a

distributed system operating under the policy π and the corresponding ∧-system operating

under the policy π′

Qr
∧(∞, π′) ∼

∑

j∈J
Qr

j(∞, π) and Zr
j,∧(∞, π′) ∼ Zr

j (∞, π) for all j ∈ J . (4.64)

The policy π′ is constructed from the policy π as follows. Consider the distributed system

and the corresponding ∧-system and assume that the interarrival times of the customers to

each system is equal and the service requirement of the kth customer arriving to each system

is the same. The routing policy π dictates the order customers are served in the distributed

system. Assume that the system is initially empty. The customers in the ∧-system can

be served in the same order and in the same server pool as follows; start the service of

the kth arriving customer in the ∧-system when the kth arriving customer’s service in the

distributed system starts and in both systems route the customer to the same server pool.

Denote the routing policy in the ∧-system by π′. Then,

Qr
∧(·, π′) =

∑

j∈J
Qr

j(·, π) and Zr
j,∧(·, π′) = Zr

j (·, π) for all j ∈ J a.s. (4.65)

Hence, (4.64) holds. Also, π′ is adapted to (Qr
∧, Z

r
∧) since π is adapted to (Qr, Zr).

Let

X̂r
∧(t) = (Qr

∧(t) +
∑

j∈J
(Zr

j,∧(t) −N r
j ))/

√

|N r|

and X̂∧(∞, π′) be the weak limit of X̂∧(t, π′) as t → ∞ if it exists, and taken as in (4.7)

otherwise. Then, by (4.65), X̂r
∧(∞, π′) ∼ X̂r(∞, π).
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Now, consider the preemptive FSF (P–FSF) policy in the same sequence of ∧-systems.

A preemptive policy allows a customer to be handed-off to another server, who will resume

the service from the point it has been discontinued. Under the P-FSF policy in an ∧-system

if an arriving customer finds more than one available server he is served by the faster one.

Also slower servers hand off a customer whenever a faster server becomes available.

By Proposition 3.1 of [1] in an ∧-system

P{Xr
∧(∞,P–FSF) > x} ≤ P{Xr

∧(∞, π′) > x}

for any adapted policy π′ and for all x ∈ R. (In [1], π′ is assumed to be HL but it is not

required in the proof of their Proposition 3.1.) By Proposition 4.5 of [1], the argument

above, and Theorem 4.1.13, we get (4.8).

Observe from Theorem 4.1.13 that

lim
r→∞

P{Ŵ r(∞,MED–FSF) > 0} = lim
r→∞

P{Xr(∞,MED–FSF) > 0},

since X̂(∞) is a continuous random variable. We get (4.9) by combining the PASTA

property of an adapted policy [71] with (4.8).

Proof of Theorem 4.1.2. The result follows from Proposition 4.11, Remark 4.15, Theo-

rem 4.1.8, Remark 4.16, Theorem 4.1.9, Theorem 4.1.13 and Remark 4.17.

Proof of Corollary 1. Note that by (4.12) we have that

P(W r(∞) > 0) → α

as r → ∞, where α is given by (4.14). Now consider E[Qr(∞)], the expected queue length

in the steady state. By (4.1.13) and (C.55)

E[Qr(∞)/
√

|N r|] → E[(X̂(∞))+] (4.66)

as r → ∞, where

E[(X̂(∞))+] = α

√
µ̄

θ
(4.67)
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by Theorem 4.1.9. By combining (4.66), (4.67), (4.58), (4.2) and (4.4), we obtain

∣

∣

∣

∣

∣

E[Ŵ r(∞)] −
√

|N r|E[(X̂(∞))+]√
r

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

E[Ŵ r(∞)] − α

√

|N r|µ̄√
rθ

∣

∣

∣

∣

∣

→ 0,

where α is given by (4.14).

Proof of Theorem 4.1.3. For i ≥ 2, by Proposition 4.7 and Theorem 4.1.12

∣

∣

∣

∣

∣

Ẑr
i (∞)

βi

∣

∣

∣

∣

∣

→ 0 in probability as r → ∞.

and

∣

∣

∣
Ẑr

1(∞)
∣

∣

∣
→
(

X̂(∞)
)−

in probability as r → ∞.

By (C.55) the sequence

{∣

∣

∣

∣

∣

Ẑi(∞)

βi

∣

∣

∣

∣

∣

}

is uniformly integrable. This yields (4.17) by Theroem 4.5.4 of [16].

Proof of Theorem 4.1.4. The convergence in (4.22) follows from Proposition 4.9. Next

we prove (4.19). For i, j ∈ J define

Υr
ij =

∣

∣

∣

∣

∣

Ẑr
i (∞)

βi
−
Ẑr

j (∞)

βj

∣

∣

∣

∣

∣

.

Observe that by Proposition 4.9 and Theorem 4.1.12

Υr
ij → 0 in probability as r → ∞. (4.68)

By (C.55) the sequence {Υr
ij} is uniformly integrable. This yields (4.19) by (4.68) and

Theroem 4.5.4 of [16].

Proof of Theorem 4.1.5. The last equality in (4.24) follows from Theorem 1 of [32]

and the last equality in (4.25) can be proved using arguments similar to those in the proof

of Theorem 3 in [29]. The first and the second equalities in (4.24) and (4.25) follows

from Proposition 4.13, Remark 4.15, Theorem 4.1.8, Remark 4.16, Theorem 4.1.10, Theo-

rem 4.1.14 and Remark 4.17.

86



4.1.5 Concluding Remarks

Under the FSF policy all the servers except those with the lowest service rate are utilized

100% and under the LB policy the utilizations of all the servers are equal. The LB policy

can be modified to distribute the available percentage of idle time, which is equal to (1−ρr)

in the rth system, in desired proportions among all the server pools. To illustrate this let

d = (d1, . . . , dJ ). Under the modified LB with parameter d (MLBd) policy (also under the

MED–MLBd policy) when there are idle servers in the system a customer arriving arriving

to the system at time t is routed to the server pool with minimum

Zr
j (t) −N r

j

djN r
j

.

Note that if d1 = d2 = . . . = dJ this policy reduces to the original LB policy. If dj < dk for

k, j ∈ J , the utilization of the server pool j will be more than the utilization of the server

pool k . Therefore, the utilizations of all servers can be controlled by assigning appropriate

values to d. One can show similar to (4.22) that

√

|N r|
∥

∥

∥

∥

∥

Zr
i (t) −N r

i

diN r
i

−
Zr

j (t) −N r
j

djN r
j

∥

∥

∥

∥

∥

T

→ 0 in probability as r → ∞.

Similar results that are established for the systems operating under the LB and MED–LB

routing policies in Section 4.1.2 can also be shown to hold under the MLBd and MED–MLBd

routing policies. In particular, under the MLBd and MED–MLBd routing policies (4.16)

hold with

α =

[

1 +
θ/

√
µ̃Φ
(

θ/
√
µ̃
)

φ
(

θ/
√
µ̃
)

]−1

,

where

µ̃ =

∑J
j=1 djβjµj
∑J

j=1 βjµj

.

Let the limiting stationary delay probability under a policy π be denoted by απ. If 1 =

d1 ≥ d2 ≥ . . . ≥ dJ , then it can easily be shown under the assumption (4.1) that

αFSF ≤ αMLBd
≤ αLB. (4.69)
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If µ1 < µ2 ≤ µ3 ≤ . . . ≤ µJ and 1 = d1 > d2 ≥ . . . ≥ dJ , then the inequalities in (4.69) are

strict and as d2 ↓ 0, αMLBd
↓ αFSF, and as dJ ↑ 1, αMLBd

↑ αLB.

In some applications one or more pools have significantly fewer servers than the other

pools. In this case our approximations may perform poorly because our results are based on

the asymptotic analysis when all the server pools have significantly many servers. Extensions

of the MED–LB routing policy shall be considered for these systems.

The minimum expected delay-longest idle agent (MED–LI) routing policy is a commonly

used policy to balance utilizations of the servers in call center industry. Under the MED–LI

policy an arriving customer who finds idle servers upon arrival is routed to the agent who

has been idle the longest at the decision instant. If all the servers are busy at the time of an

arrival, the customer is routed to the queue with the minimum expected delay. The MED–

LI policy is available by default in most commercial automatic call distributers; see, for

example, Cisco Intelligent Contact Management [17]. In future research, the performance

of the MED–LB policy will be compared with that of the MED–LI policy.

4.2 Asymptotically optimal control policies for N-systems

In this section we consider parallel servers systems with an N-design, or N-systems for short,

with many servers. An N-system consists of two customer classes and two server pools. The

servers in the first pool can only serve class 1 customers whereas the second pool can serve

either class. An N-system is illustrated in Figure 2. We assume that all the service times are

exponentially distributed and µ11 < µ21 = µ22. For the rest of this section we set µ11 = µ1

and µ21 = µ22 = µ2.

Our objective is to minimize the total holding cost during a finite time interval. Let

hi denote the holding cost for each unit time a customer is held in queue i. We assume

that h1 > h2; i.e.; it costs more to have a class 1 customer wait in the queue than a class 2

customer. The objective function we consider is

min
π∈Π

∫ T

0
(h1Q1(t) + h2Q2(t))dt.

Above, Π denotes the class of admissible policies described in Section 2.1.
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Figure 2: An N-system

We focus on N-systems where the first server pool cannot handle all the load from class

1 customers and needs help from the second server pool. For the admissible scheduling

policies described in Section 2.1, a server from the second pool can be assigned to serve a

class 1 customer in two situations: first, when a class 1 customer arrives to the system to

find idle agents in that pool and second, when a server in pool 2 finishes service and finds

a customer in the first queue.

Consider the following static priority policy, which we denote by π∗ in the rest of this

section;

a. If Qr
1(t) ≥ 1, servers in pool 2 give priority to class 1 customers, i.e.; whenever a server

finishes a service and finds a customer waiting in class 1 queue he starts serving the

class 1 customer who has been waiting the longest. If there are no customers in class

1 at that instant then he checks class 2 queue.

b. For class 1 customers, server pool 2 has priority over server pool 1, i.e.; upon arrival

if a class 1 customer finds idle servers in both pools he starts his service in the second

server pool.

c. Servers do not idle when there is a customer they can handle is waiting in the queue.

The main result of this section is that π∗ is asymptotically optimal for the N-systems under

the Halfin-Whitt many server regime.

Although, the class of N-systems we consider in this section is admittedly seems to be
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arbitrary and constrained to satisfy certain conditions, our results can be extended in several

directions that we do not explore here. For example, if the service rate of the first server

pool is greater than that of the second server pool and h2 > h1 then another static priority

policy can be shown to be asymptotically optimal. However, our analysis technique cannot

be used when µ21 6= µ22. The main objective of this section is to show that how our SSC

framework can be used to identify asymptotically optimal policies for parallel server systems

with many servers. In conventional heavy traffic analysis, N-systems provided an important

stepping stone for the analysis of more general systems, see Harrison and Lopez [41], Bell

and Williams [10], and Ata and Kumar [4]. Future research will address extending our

analysis in this section to more general parallel server systems.

The rest of this section is organized as follows. In the following section we review the

related literature and motivate our results. We give a detailed description of N-systems

we study in Section 4.2.2. In Section 4.2.3, we present our main results. The remaining

sections are devoted to the proofs of our main results.

4.2.1 Previous Work and motivation

N-systems have been analyzed under the conventional heavy traffic in the literature ex-

tensively. In Harrison [39], it is shown through simulation experiments that the policy π∗

explained above can be unstable even when the system have enough capacity to serve all

the customers. Surprisingly, we show that this policy is asymptotically optimal under the

Halfin-Whitt many server regime.

Next, we present the results of a simulation experiment that is similar to Harrison’s to

illustrate this phenomenon. Let N1 = N2 = 1, λ1 = 1.4ρ, λ2 = 0.7ρ, µ1 = 0.7, and µ2 = 1.

We take the unit time to be one minute. Theoretically, if ρ < 1 then the system has enough

capacity to be stable. However, under the static priority policy described above this will

not be the case. We set ρ = 95% and simulate this N-system for 1000 hours. Figure 4.2.1

shows the queue lengths from this simulation as a function of time. It is clearly seen from

this figure that the static priority policy is not even stable in this case.

On the other hand, the static priority policy performs a lot better in the presence of
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Figure 3: Behavior of the N-system with one server in each pool under π∗.
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Figure 4: Behavior of the N-system with 20 servers in each pool under π∗.
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many servers than it does in a single server setting. To illustrate, we simulate a similar

N-system with many servers. For this simulation experiment, we multiply the arrival rates

in the system simulated above by 20 and set the number of servers in both pools equal to

20. Note that the total load on the system divided by the total capacity of the system is

the same with that of the model simulated previously. Figure 4.2.1 shows the queue lengths

from this simulation as a function of time. It is clear from this figure that this realization

of the system is stable. Also, the number of customers in the first queue is very small. As

illustrated by this example, even when the number of servers and the arrival rates in the

system are increased by only 20 times the N-system under the static priority policy becomes

stable.

Remark 4.18. We do not claim that the static priority policy is stable for an N-system

with many servers whenever ρ < 1. In fact, for each N -system with multiple servers one

can find a value ρ̄ such that for ρ̄ < ρ < 1 that system is unstable. However, we conjecture

that
√

|N r|(1 − ρ̄) → 0 as the number of servers go to infinity.

For N-systems under conventional heavy traffic, Harrison [39] proposed a discrete-review

policy to minimize the holding costs and proved that it is asymptotically optimal in the

conventional heavy traffic limit. Harrison and Lopez [41] extended his results to parallel

server systems.

To mitigate the problems with the static priority policy, Bell and Williams [9] proposed

a threshold type static priority policy and showed that it is also asymptotically optimal

in conventional heavy traffic limit. They extend their results to more general systems in

Bell and Williams [10]. Their policy requires a threshold value and only when the number

of customers in the first queue exceeds this value servers in the second pool give priority

to the customer in the first queue. They show that the threshold value can be taken to

be in the order of log(1/(1 − ρ)), where ρ is the optimal solution to the static planning

problem that is similar to (2.21). To illustrate the performance of their policy, we simulate

the N-system with one server in each pool we considered above with threshold value equal

to 5. Figure 4.2.1 shows the queue lengths from this simulation as a function of time. As

opposed to the N-system under the static priority policy, the number of customers in the
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Figure 5: Behavior of the N-system with one server in each pool under Bell-Williams policy.

second queue in this case does not present a growing trend. Our result reveals that one

does not need a threshold when the number of servers get large. However, in the light of

Remark 4.18 one may want to use a threshold value in the order of log(1/(1 − ρ)). It can

be shown that the static priority policy with a threshold value that is o(
√

1/(1 − ρ)) is still

asymptotically optimal

As mentioned above, we show that π∗ is asymptotically optimal for the N-systems un-

der the Halfin-Whitt regime. Other policies, which are more complicated than π∗, have

been shown to be asymptotically optimal for similar systems. Harrison and Zeevi [38] and

Atar et al. [7] studied V-systems and Atar [6, 5] studied tree-like parallel server systems.

These papers considered dynamic control in the Halfin-Whitt regime. They focused on a

formal derivation of a diffusion control problem (DCP) and obtain optimal control policies.

However, specification of the optimal policies uses the solution of a set of partial differential

equations (PDE’s) and this set of PDE’s can only be solved numerically. Also, the param-

eters of these PDE’s depend on the system parameters therefore the control policies they

obtain is sensitive to the changes in these parameters. In Atar et al. [7] and Atar [6, 5],
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they derive control policies for the actual system from the optimal control of the DCP and

prove that these policies are asymptotically optimal. Since the policies can only be speci-

fied numerically, approximations to the system performance cannot be obtained under these

policies. Our purpose is to come up with a simple optimal policy that can also be used to

approximate the optimal system performance.

4.2.2 Model description

As noted above, we analyze a sequence of N-systems indexed by r under the Halfin-Whitt

regime. Recall that λr = (λr
1, λ

r
2) denotes the arrival rates to each class, N r = (N r

1 , N
r
2 )

denotes the number of servers in each server pool and |N r| denote the total number of

servers in the rth system in this sequence.

We assume that the system reaches heavy traffic as r gets large. We also assume that

the total capacity of the servers in pool 1 is not enough to handle all class 1 customers.

Therefore, second server pool must serve some of the class 1 customers for stability of the

system. Specifically, we assume that there exist λi > 0, k = 1, 2, βj > 0, j = 1, 2, such that

λr
k

|N r| → λk, as r → ∞ for k = 1, 2 and N r
j = |N r|βj , (4.70)

and x21, x22 > 0 that satisfy x21 + x22 = 1 and

λ1 = β1µ1 + β2x21µ2, λ2 = β2x22µ2. (4.71)

In addition we assume that

λr
1 = µ1N

r
1 + µ2x21N

r
2 −

√

|N r|θ1 and (4.72)

λr
2 = µ2x22N

r
2 −

√

|N r|θ2. (4.73)

for θ1, θ2 ∈ R and we set θ = θ1 + θ2. Under assumptions (4.70)-(4.73), Assumption 1 in

Section 2.3 holds.

Since there is no routing we only use one subscript with each queue. The notation used

in this section differs from that introduced in Chapter 2 only in that we omit the subscript

“i′′ in the notation used in this section. For example, instead of A121(t) we use A21(t) to

denote the number of class 1 customers whose service started in the second server pool
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immediately at the time of their arrival who arrived to the system by time t. For notational

convenience we denote the total number of class k customers in the system at time t by

Xr
k(t) hence

Xr
k(t) = Qr

k(t) +
∑

j∈J(k)

Zr
jk(t).

By (4.70)-(4.73), the diffusion scaling defined at the end of Section 2.3 becomes

Ẑr
11(t) =

Zr
11(t) −N r

1
√

|N r|
, Ẑr

21(t) =
Zr

21(t) − x21N
r
2

√

|N r|
, Ẑr

22(t) =
Zr

22(t) − x22N
r
2

√

|N r|
For the rest this chapter we assume that

(Q̂r(0), Ẑr(0)) ⇒ (Q̂(0), Ẑ(0)) and (Q̄r(0), Z̄r(0)) → (Q̄(0), Z̄(0)) a.s. (4.74)

as r → ∞, where Q̄(0) = (0, 0) and Z̄(0) = (β1, x21β2, x22β2).

4.2.3 Main results

As mentioned above we focus on minimizing the linear holding cost in the queues. The

instantaneous diffusion scaled holding cost at time t under policy π is defined by

Hr,π(t) =
∑

i∈I
hiQ̂

r
i (t)

We define the cumulative cost process under an admissible policy π by

ζr,π(t) =

∫ t

0
Hr,π(s)ds for t ≥ 0.

Let the process Y ∗ be the solution of the following SDE

Y ∗(t) = X̂1(0) + X̂2(0) − θt+ r1W1(t) + r2W2(t) + µ1

∫ t

0
(Y ∗(s))−ds, t ≥ 0,

where

ri = (λiC
2
U,i + λi)

1/2 (4.75)

and C2
U,i is the coefficient of variation of the interarrival times of the process Ei defined in

Chapter 2.2 and for real x x− = (−x) ∧ 0 and x+ = x ∧ 0. We define

ζ∗(t) =

∫ t

0
h2(Y

∗(s))+ds. (4.76)

The following result shows that ζ∗ provides a lower bound for the cumulative holding

costs under any admissible policy as r → ∞.
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Theorem 4.19. Let π be an admissible policy and {Xr,π} be a sequence of N-systems

working under π. Assume that (4.70)-(4.74) hold. Then for each fixed x > 0

lim inf
r→∞

P{ζr,π(T ) > x} ≥ P{ζ∗(T ) > x}.

With Theorem 4.19 the following result shows that π∗ is asymptotically optimal.

Theorem 4.20. Let {Xr,π∗} be a sequence of N-systems working under the static priority

policy π∗. Assume that (4.70)-(4.74) hold. For each fixed t > 0 and x > 0

lim
r→∞

P{ζr,π∗
(t) > x} = P{ζ∗(t) > x}. (4.77)

In the proof of Theorem 4.20 we use the SSC framework established in Chapter 3 to

prove that in the limit as r → ∞

i. the queue length process for the first queue is always zero,

ii. the servers in the second pool never idle,

iii. the servers in the first pool may only idle if there are no customers in either queue.

Using the last two SSC results we will show that the total number of customers in the

system is minimized. The first SSC result ensures that customers are held only in the cheap

queue.

4.2.4 Analysis of an admissible policy

In this section we prove Theorem 4.19. The proof consists of two steps. First, we define a

mapping which we use to obtain a lower bound for the total number of customers in the

system. In the second step, we prove that this mapping indeed provides a lower bound for

the total cost under any admissible policy.

4.2.4.1 A minimizing mapping

In this section, we define a mapping on D[0,∞) that we use to obtain a lower bound on

the total number of customers in the system. For x ∈ D[0,∞), the mapping ψ : D[0,∞) →

D[0,∞) is defined by

ψ(x) = y
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where

y(t) = x(t) + µ1

∫ t

0
(y(s))−ds. (4.78)

Next we establish the basic properties of ψ

Lemma 4.21. For each x ∈ D[0,∞) there exists a unique y that satisfies (4.78). Further-

more, ψ is Lipschitz continuous.

Proof. Let x ∈ D[0,∞) and µ1 > 0. For n ≥ 0, let

yn+1(t) = x(t) + µ1

∫ t

0
(yn(s))−ds (4.79)

and

Y (n)(t) = ‖yn+1(s) − yn(s)‖t.

This gives us

Y (n+1)(t) = ‖yn+1(s) − yn(s)‖t ≤ µ1

∫ t

0

∣

∣yn+1(s) − yn(s)
∣

∣ ds = µ1

∫ t

0
Y (n)(s)ds.

Hence, by Lemma 11.3 in Mandelbaum et. al [51],

Y n+1(t) ≤ µ1
T n

n!
sup

0≤s≤t
Y (0)(s)

Therefore, similar to (11.22) in Mandelbaum et. al [51], {yn(·)} is a Cauchy sequence hence

converges to a limit y uniformly on compact sets. This proves existence.

To prove continuity, assume that xi(t) ∈ D[0,∞) for i = 1, 2. Then for any T > 0

|ψ(x1)(t) − ψ(x2)(t)| ≤ |x1(t) − x2(t)| + µ1

∫ t

0
|ψ(x1)(s) − ψ(x2)(s)|ds

By Corollory 11.2 in in Mandelbaum et. al [51],

‖ψ(x1)(t) − ψ(x2)(t)‖T ≤ µ1‖x1(t) − x2(t)‖T e
T .
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Next we show that, for each x ∈ D[0,∞), y is the minimum function that satisfies

ceratin conditions. In the following section we deal with the total time allocated to each

class. Let Ti ∈ C[0,∞), i = 1, 2 and

Ti(t; s) = Ti(t) − Ti(s).

In the next section we use T̂jk(t) to denote the diffusion scaled deviation of the total time

allocated from the jth server pool to the kth customer class from its nominal value xjkβjt.

Given x ∈ D[0,∞), and µ1 < µ2 assume that (ỹ, T1, T2) ∈ D3[0,∞) satisfy

ỹ(t) = x(t) − µ1T1(t) − µ2T2(t) (4.80)

T1(t; s) ≤ 0, T2(t; s) ≤ 0 (4.81)

T1(t; s) + T2(t; s) ≤ −
∫ t

s
(ỹ(s))−ds (4.82)

for all t ≥ 0.

Theorem 4.22. Let x ∈ D[0,∞) and assume that (ỹ, T1, T2) ∈ D[0,∞)×C[0,∞)×C[0,∞)

satisfy (4.80)-(4.82), then for each fixed T > 0

sup
0≤t≤T

{ψ(x)(t) − ỹ(t)} ≤ 0. (4.83)

In particular,

∫ T

0
ψ(x)(t)dt ≤

∫ T

0
ỹ(t)dt.

Proof. Let x ∈ D[0,∞) and assume that ỹ ∈ D[0,∞) and (T1, T2) ∈ C2[0,∞) satisfy

(4.80)-(4.82).

First we show that

ψ(x)(t) − ψ(x)(t−) = ỹ(t) − ỹ(t−) for all t ∈ [0, T ]. (4.84)

We prove (4.83) using this result.

Fix T > 0. Since x ∈ D[0,∞), by Lemma 1 in Billingsley [11], there exists M > 0 such

that

‖x(t)‖T < M.
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By (4.78)

ψ(x)(t) ≥ x(t) > −M.

Therefore,

‖ψ(x)(t)‖T ≤ ‖x(t)‖T + µ2

∫ T

0
|(ψ(x)(s))−|ds ≤ (M + µ2M)T

This gives that

µ1

∫ t

0
(ψ(x)(s))−ds

is continuous on [0, T ]. Since T1 and T2 are continuous (4.84) holds.

Now assume that there exists t0 ∈ [0, T ] such that

ỹ(t0) < ψ(x)(t0). (4.85)

Let

s0 = sup{0 ≤ s ≤ t : ỹ(s) − ψ(x)(s) = 0},

so that

ỹ(t) < ψ(x)(t) for all t ∈ (s0, t0], and ỹ(s0) = ψ(x)(s0) (4.86)

since ỹ(s) − ψ(x)(s) is continuous by (4.84) and x ∈ D[0,∞).

Then,

ỹ(t0) − ψ(x)(t0) = µ1

∫ t0

s0

(ψ(x)(s))−ds− µ1T1(t0, s0) − µ2T2(t0, s0)

≥ µ1

∫ t0

s0

(ψ(x)(s))−ds− µ1 (T1(t0, s0) + T2(t0, s0))

≥ µ1

∫ t0

s0

(ψ(x)(s))− − (ỹ(s))−ds

≥ 0.

by (4.86). This contradicts with (4.85).
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4.2.4.2 Proof of Theorem 4.19

Fix an admissible policy π. Note that by our definition of an admissible policy Zr
jk ∈ D[0,∞)

a.s. for each r. Let

T̂ r
jk(t) =

√

|N r|
(

T r
jk(t)

|N r| − xjkβjt

)

=

∫ t

0
Ẑr

jk(s)ds.

Observe that T̂ r
jk satisfies the following conditions; for all 0 ≤ s ≤ t

−N r
1 (t− s)/

√

|N r| ≤ T̂ r,π
11 (t; s) ≤ 0 (4.87)

−N r
2 (t− s)/

√

|N r| ≤ T̂ r,π
21 (t; s) + T̂ r,π

22 (t; s) ≤ 0 (4.88)

T̂ r,π
11 (t; s) + T̂ r

21(t; s) ≤
∫ t

s
X̂r,π

1 (u)du (4.89)

T̂ r,π
22 (t; s) ≤

∫ t

s
X̂r,π

2 (u)du. (4.90)

Proof of Theorem 4.19. The idea of the proof is similar to that of Proposition 2 in Ata

and Kumar [4]. Fix an admissible policy π > 0, T > 0 and x > 0. Choose a subsequence rj

such that

lim
rj→∞

P{ζrj ,π(T ) > x} = lim inf
r→∞

P{ζr,π(T ) > x}

Let {T r,π} be the sequence of allocation processes under policy π. Since

T̄ r,π
jk (t) − T̄ r,π

jk (s) ≤
N r

j

|N r|(t− s),

the sequence

{(

Ârj (·), Ŝrj (·), T̄ r,π(·)
)}

is tight and any weak limit of this sequence has continuous paths almost surely. In particular,

the limit is of the following form

(

Â∗(·), Ŝ∗(·), T̄ π(·)
)

, (4.91)

where Â∗ and Ŝ∗(·) are driftless Brownian motions of appropriate dimension, T̄ π is a non-

decrasing process with

T̄ π(t) − T̄ π(s) ≤ (t− s)e, for 0 ≤ s ≤ t a.s.
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for all t ≥ 0.

Let {T̄ r′,π} be a further subsequence of {T̄ rj ,π} which converges weakly to a limit as in

(4.91). By appealing to the Skorohod representation theorem, we may choose an equivalent

distributional representation (which we will denote by putting a “ ∼ ” above the symbols)

such that the sequence of random processes

(

˜̂
Ar′,π(·), ˜̂

Sr′,π(·), ˜̄T r′,π(·)
)

,

as well as the limit

(

˜̂
A∗(·), ˜̂

S∗(·), ˜̄T π(·)
)

are defined on a new probability space, say
(

Ω̃, F̃ , P̃
)

, so that P̃ a.s.

(

˜̂
Ar′,π(·), ˜̂

Sr′,π(·), ˜̄T r′,π(·)
)

→
(

˜̂
A∗(·), ˜̂

S∗(·), ˜̄T π(·)
)

, (4.92)

u.o.c. as r′ → ∞. We can also assume without loss of generality that there exists a sequence

of random vectors in (Q̃r(0), Z̃r(0)) in this new space that is independent from all stochastic

processes in 4.92 such that (Q̃r(0), Z̃r(0)) has the same distribution with (Qr(0), Zr(0)).

We define the following processes on this new probability space:

˜̄Ar′,π
k (t) =

1
√

|N r|
˜̂
Ar′,π

k (t) +
λr

kt

|N r| (4.93)

˜̄Sr′,π
jk (t) =

1
√

|N r|
˜̂
Sr′,π

jk (t) + µjkt. (4.94)

˜̂
T r′,π

jk (t) =
√

|N r|
(

˜̄T r′,π
jk (t) − βixjkt

)

(4.95)

˜̂
Xr′,π

1 (t) =
˜̂
Xr

1(0) +
˜̂
Ar′,π

1 (t) − ˜̂
Sr′,π

11 ( ˜̄T r′,π
11 (t)) − ˜̂

Sr′,π
21 ( ˜̄T r′,π

21 (t))

− µ1
˜̂
T r′,π

11 (t) − µ2
˜̂
T r′,π

21 (t) (4.96)

˜̂
Xr

2 (t) =
˜̂
Xr

2(0) +
˜̂
Ar′,π

2 (t) − ˜̂
Sr′,π

22 ( ˜̄T r′,π
22 (t)) − µ2

˜̂
T r′,π

22 (t), (4.97)

where

˜̂
Xr

1 (0) =
˜̂
Qr

1(0) +
˜̂
Zr

11(0) +
˜̂
Zr

21(0),

˜̂
Xr

2 (0) =
˜̂
Qr

2(0) +
˜̂
Zr

22(0)
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and

˜̂
Qr

k(0) = Q̃r
k(0)/

√

|N r| and
˜̂
Zr

jk(0) =
Z̃r

jk(0) − xjkβj
√

|N r|

We note that processes defined by (4.93)-(4.97) have the same joint distribution as the corre-

sponding scaled processes in the original probability space for each r. Also, since in the origi-

nal space T̂ r,π satisfies (4.87)-(4.90) and
(

X̂r,π
1 (·), X̂r,π

2 (·), T̂ r,π(·)
)

and
(

˜̂
Xr,π

1 (·), ¯̂
Xr,π

2 (·), ˜̄T r,π(·)
)

are equal in distribution, we have

˜̄T r,π(·) is nondecreasing a.s.

˜̄T r,π(t; s) ≤ (t− s)e for s ≤ t a.s.

and ˜̄T r,π satisfies (4.87)-(4.90) with X̂r,π
1 and X̂r,π

2 are replaced by
˜̂
Xr,π

1 and
˜̂
Xr,π

2 , respec-

tively:

−N r
1 (t− s)/

√

|N r| ≤ ˜̂
T r,π

11 (t; s) ≤ 0 (4.98)

−N r
2 (t− s)/

√

|N r| ≤ ˜̂
T r,π

21 (t; s) +
˜̂
T r,π

22 (t; s) ≤ 0 (4.99)

˜̂
T r,π

11 (t; s) +
˜̂
T r

21(t; s) ≤
∫ t

s

˜̂
Xr,π

1 (u)du (4.100)

˜̂
T r,π

22 (t; s) ≤
∫ t

s

˜̂
Xr,π

2 (u)du. (4.101)

We have that

(

˜̄Sr′,π(·), ˜̄Ar′,π(·)
)

→ (µ(·), λ(·)) (4.102)

where

µ(t) = (µ1t, µ2t, µ2t) and

λ(t) = (λ1t, λ2t)
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for all t ≥ 0. We also define

˜̄Xr,π
1 (t) =

1
√

|N r|
(

˜̂
Xr,π

1 (t)
)

+ β1 + x21β2

= ˜̄Xr
1 (0) + ˜̄Ar′,π

1 (t) − ˜̄Sr′,π
11

(

˜̄T r′,π
11 (t)

)

− ˜̄Sr′,π
21

(

˜̄T r′,π
21 (t)

)

− λr
1t

|N r| + β1µ1 + x21β2µ2

˜̄Xr,π
2 (t) =

1
√

|N r|
(

˜̂
Xr,π

2 (t)
)

+ x22β2

= ˜̄Xr
2 (0) + ˜̄Ar′,π

2 (t) − ˜̄Sr′,π
22

(

˜̄T r′,π
22 (t)

)

− λr
2t

|N r| + x22β2µ2

Observe that this scaling corresponds to the fluid scaling in the original probability space.

By (4.102) and (4.92)

˜̄Xr,π
i (·) → ˜̄Xπ

i (·)

a.s. u.o.c., where

˜̄Xπ
1 (t) = ˜̄X1(0) + λ1t− µ1

˜̄T π
11(t) − µ2

˜̄T π
21(t)

˜̄Xπ
2 (t) = ˜̄X2(0) + λ2t− µ2

˜̄T π
22(t).

We note that

˜̄T π
11(t) ≤ β1

˜̄T π
21(t) + ˜̄T π

22(t) ≤ β2 (4.103)

by (4.98) and (4.99). Also, by (4.74)

˜̄X1(0) = β1 + β2x21 and ˜̄X2(0) = β2x22 (4.104)

Let

x̃r,π(t) =
˜̂
Xr

1(0) +
˜̂
Ar′,π

1 (t) − ˜̂
Sr′,π

11 ( ˜̄T r′,π
11 (t)) − ˜̂

Sr′,π
21 ( ˜̄T r′,π

21 (t)) +
˜̂
Xr

2(0) (4.105)

+
˜̂
Ar′,π

2 (t) − ˜̂
Sr′,π

22 ( ˜̄T r′,π
22 (t)),

Ỹ r,π(t) =
˜̂
Xr,π

1 (t) +
˜̂
Xr,π

2 (t) = x̃r,π(t) − µ1
˜̂
T r′,π

11 (t) − µ2

(

˜̂
T r′,π

21 (t) +
˜̂
T r′,π

22 (t)
)

,(4.106)

and

ξ̃r,π(T ) =

∫ T

0

(

Ỹ r,π(s)
)+

ds.
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Also, we define

˜̄T ∗
11(t) = x11β1t,

˜̄T ∗
22(t) = x21β2t,

˜̄T ∗
22(t) = x22β2t,

x̃r,∗(t) =
˜̂
Xr

1 (0) +
˜̂
Ar′,π

1 (t) − ˜̂
Sr′,π

11 ( ˜̄T ∗
11(t)) − ˜̂

Sr′,∗
21 ( ˜̄T ∗

21(t)) +
˜̂
Xr

2 (0)

+
˜̂
Ar′,π

2 (t) − ˜̂
Sr′,π

22 ( ˜̄T ∗
22(t)),

Ỹ r,∗(t) = ψ(x̃r,∗)(t),

and

ξ̃r,∗(T ) =

∫ T

0

(

Ỹ r,∗(s)
)+

ds. (4.107)

We have by (4.92) that

˜̂
Ar′,π

1 (·) − ˜̂
Sr′,π

11 ( ˜̄T ∗
11(·)) − ˜̂

S∗
21(

˜̄T ∗
21(·)) → ˜̂

A∗
1(·) − ˜̂

S∗
11(

˜̄T ∗
11(·)) − ˜̂

S∗
21(

˜̄T ∗
21(·)),

˜̂
Ar′,π

2 (·) − ˜̂
Sr′,π

22 ( ˜̄T r′,∗
22 (·)) → ˜̂

A∗
2(·) − ˜̂

S∗
22(

˜̄T ∗
22(·))

P̃ -a.s. u.o.c.

Let process Ỹ ∗ be the solution of the following SDE

Ỹ ∗(t) = X̂1(0) + X̂2(0) +
˜̂
A∗

1(t) − ˜̂
S∗

11(
˜̄T ∗
11(t)) − ˜̂

S∗
21(

˜̄T ∗
21(t))

+
˜̂
A∗

2(t) − ˜̂
S∗

22(
˜̄T ∗
22(t)) + µ1

∫ t

0
(Y ∗(s))−ds, t ≥ 0,

We define

H̃∗(t) = h2(Ỹ
∗(t))+, t ≥ 0,

and

ζ̃∗(t) =

∫ t

0
H̃∗(s)ds, t ≥ 0.

Clearly, ζ̃∗ has the same distribution with ζ∗ defined by (4.76). Also

h2ξ̃
r,∗(T ) → ζ̃∗(T )

P̃ -a.s. as r → ∞ by Lemma 4.21 and the continuous mapping theorem.
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Next, we divide the sample paths into two sets based on their fluid limits. By (4.103)

and (4.104)

˜̄Xπ
1 (T ) ≥ β1 + x21β2 and ˜̄Xπ

2 (T ) ≥ x22β2.

Define

VT =
{

w ∈ Ω̃ : ˜̄Xπ
1 (T ) = β1 + x21β2,

˜̄Xπ
2 (T ) = x22β2

}

.

Observe that for w ∈ Ω̃ and 0 ≤ t ≤ T

˜̄T π
11(t) = x11β1t,

˜̄T π
21(t) = x21β2t,

˜̄T π
22(t) = x22β2t.

Next we apply Theorem 4.22 to Ỹ r,π,
˜̂
T r′,π

11 , and
˜̂
T r′,π

2 (·) =
˜̂
T r′,π

21 (·) +
˜̂
T r′,π

22 (·). By (4.98)

and (4.99), (4.81) holds. By (4.106), (4.80) holds. By (4.100) and (4.101),

˜̂
T r,π

11 (t; s) +
˜̂
T r

2 (t; s) ≤
∫ t

s

(

˜̂
Xr,π

1 (u) +
˜̂
Xr,π

2 (u)
)

du.

Combining this with (4.98) and (4.99) yields

˜̂
T r,π

11 (t; s) +
˜̂
T r

2 (t; s) ≤ +

∫ t

s

(

˜̂
Xr,π

1 (u) +
˜̂
Xr,π

2 (u)
)−

du.

Therefore, (4.82) holds as well.

Since ψ is continuous by Lemma 4.21, by using Theorem 4.22, we have that for all

ω ∈ VT

lim
r′→∞

ξ̃r′,π(T ) ≥ lim
r′→∞

ξ̃r′,∗(T ). (4.108)

Next we define

UT = Ω̃ \ VT .

Fix ω ∈ UT . By continuity of ˜̄Xπ
1 and ˜̄Xπ

2 we can choose T0 such that

˜̄Xπ
1 (t) + ˜̄Xπ

2 (t) − (β1 + x21β2 + x22β2) > 0 (4.109)

for all t ∈ [T0, T ]. Then,

ξ̃r,π(T ) =
√

|N r′ |
∫ T

0

(

˜̄Xr′,π
1 (s) + ˜̄Xr′,π

2 (s) − (β1 + x21β2 + x22β2)
)+

ds
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Combining this with (4.109), we have that

lim inf
r′→∞

ξ̃r,π(T ) = ∞

for all ω ∈ UT . Finally, this with (4.108) gives that

lim inf
r′→∞

ξ̃r′,π(T ) ≥ lim
r′→∞

ξ̃r,∗(T ) (4.110)

P̃ -a.s.

Define

ξr,π(T ) =

∫ T

0
(Y r,π(s))+ ds

and note that ξr,π and ξ̃r,π have the same distribution. Also,

ζr,π(T ) =

∫ T

0

(

h1Q̂
r,π
1 (s) + h2Q̂

r,π
2 (s)

)

ds ≥ h2ξ
r,π(T ).

Hence, for every x > 0

lim
r′→∞

P
{

ζr′,π(T ) > x
}

≥ lim
r′→∞

P̃ {h2ξ
r,π(T ) > x} = lim

r′→∞
P̃
{

h2ξ̃
r,π(T ) > x

}

= lim
r′→∞

Ẽ
[

1{h2ξ̃
r,π(T ) > x}

]

≥ Ẽ

[

lim inf
r′→∞

1{h2ξ̃
r,π(T ) > x}

]

≥ Ẽ

[

lim inf
r′→∞

1{h2ξ̃
r,∗(T ) > x}

]

= P̃
{

ζ̃∗(T ) > x
}

4.2.5 Analysis of the static priority policy

In this section we prove Theorem 4.20. We begin with analyzing the fluid limits of the

static priority policy. Then, we establish a SSC result using the framework in Chapter 3.

Finally, we prove the asymptotic optimality of π∗ using these two results.

First note that, by (4.74)

Q̄r,π∗
(0) → 0, Z̄r,π∗

11 (0) → β1, Z̄
r,π∗
21 (0) → x21β2, Z̄

r,π∗
22 (0) → x22β2

a.s. as r → ∞. the following result establishes the fluid limits N-systems working under π∗.
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Proposition 4.23 (Fluid limits). Let {Xr,π∗} be a sequence of N-systems working under

the static priority policy π∗. Assume that {Q̄r(0)} is bounded a.s. as r → ∞. Let q = (0, 0)

and z = (z11, z21, z21) = (β1, x21β2, x22β2). Then, (q, z) is an invariant state of the fluid

limits of {Xr,π∗}.

The proof is placed in Section 4.2.5.1. Next we prove three SSC results that will be used

for the optimality proof.

Proposition 4.24 (State Space Collapse). Let {Xr,π∗} be a sequence of N-systems working

under the static priority policy π∗. Assume that (4.70)-(4.73) hold. Then for each T > 0,

there exists Lr = o(
√

|N r|) with Lr → ∞ as r → ∞, such that

i.
∥

∥

∥
Q̂r,π∗

(·)
∥

∥

∥

Lr/
√

|Nr|
∨
∥

∥

∥
Ẑr,π∗

(·)
∥

∥

∥

Lr/
√

|Nr|
(4.111)

satisfies the compact containment condition,

ii.
∣

∣

∣X̂r,π∗
(Lr/

√

|N r|)
∣

∣

∣⇒
∣

∣

∣X̂r,π∗
(0)
∣

∣

∣ , (4.112)

as r → ∞,

iii.

sup
Lr/

√
|Nr|≤t≤T

{

∣

∣

∣Q̂
r,π∗

1 (t)
∣

∣

∣ ∨
∣

∣

∣Ẑ
r,π∗

11 (t) + (X̂r,π∗

1 (t) + X̂r,π∗

2 (t))−
∣

∣

∣

∨
∣

∣

∣
Ẑr,π∗

21 (t) + Ẑr,π∗
22 (t)

∣

∣

∣

}

→ 0, (4.113)

in probability as r → ∞.

Now we are ready to prove Theorem 4.20.

Proof of Theorem 4.20. Assume that the assumptions of Proposition 4.28 hold. We

omit pi∗ from the notation below. Let xr(t) be defined by

xr(t) = X̂r
1(0) + X̂r

2 (0) + Âr
1(t) + Âr

2(t) − Ŝr
11

(

T̄ r
11(t)

)

− Ŝr
21

(

T̄ r
21(t)

)

− Ŝr
22

(

T̄ r
22(t)

)

− θt. (4.114)
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and

Ŷ r(t) = X̂r
1(t) + X̂r

2(t).

For a process yr associated with the rth system, we set

yr(t) = yr

(

t+
Lr

√

|N r|

)

Note that

ζr,π∗
(T ) = ζr,π∗

(

Lr

√

|N r|

)

+ ζr,π∗

(

T − Lr

√

|N r|

)

. (4.115)

We first handle the first term on the right hand side above.

ζr,π∗

(

Lr

√

|N r|

)

=

∫ Lr√
|Nr |

o
(h1Q̂

r,π∗

1 (t) + h2Q̂
r,π∗

2 (t))dt

≤
(

h1‖Q1(t)‖ Lr√
|Nr |

+ h2‖Q2(t)‖ Lr√
|Nr |

)

Lr

√

|N r|
.

This shows by (4.111) that

ζr,π∗

(

Lr

√

|N r|

)

→ 0 (4.116)

as r → ∞.

Next, we handle the second term on the R.H.S. of (4.115). By (4.112)

X̂
r
(0) ⇒ X̂r(0).

as r → ∞. Hence,

xr ⇒W

as r → ∞, where W is a Brownian motion with drift θ and variance r1 + r2, see (4.75).

By (4.113)

Ẑr
21(·) + Ẑr

22(·) ⇒ 0 and (4.117)

(Ẑr
11(·) + (X̂r

1(·) + X̂r
2(·))−) ⇒ 0 (4.118)

as r → ∞. Therefore, by continuity of ψ we have that

Ŷ
r,π∗

(·) ⇒ Y ∗(·)
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as r → ∞. Also, since Q̂r,π∗
1 (·) ⇒ 0 as r → ∞ and by (4.117) and (4.118)

h1Q̂
r,π∗

1 (·) + h2Q̂
r,π∗

2 (·) ⇒ h2Y
∗(·)

as r → ∞. By the continuity of the integration operator, see Theorem 11.5.1 Whitt [65],

we have

ζr,π∗
(T ) ⇒ ζ∗(T ) (4.119)

as r → ∞. By Theorem 4.4 in Billingsley [11], (4.116), and (4.119)

ζr,π∗

(

T +
Lr

√

|N r|

)

⇒ ζ∗(T )

as r → ∞. This yields the desired result by Theorem 4.19, since

ζr,π∗
(T ) ≤ ζr,π∗

(

T +
Lr

√

|N r|

)

a.s.

4.2.5.1 Fluid Limits of N-systems under π∗

Before we establish the fluid limits of N-systems working under π∗ we first provide a few

properties of the policy π∗. We first note that policy π∗ is non-idling so X
r also satisfies

equation (2.10). In addition, from the description of π∗, under π∗ X
r satisfies the following

system equations.

Recall that under our static priority policy class 1 customers have priority over class

2 customers in the second server pool. Hence, a class 2 customer in the queue can start

receiving service if there are no class 1 customers waiting in the queue for service. Recall

that Br
jk(t) denote the number of class k customers who started their service in server pool

j before time t after waiting in the queue. Therefore

Br
22(t) can only increase when Qr

1(t) = 0. (4.120)

Since the second server pool has priority over the first server pool, an arriving customer

will start his service in the first server pool only when all the servers in the second pool
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are busy. Recall that Ar
jk(t) denote the number of class k customers whose service started

immediately at the time of their arrival in server pool j by time t. Hence

Ar
11(t) and Br

11(t) can only increase when Zr
21(t) + Zr

22(t) = N r
2 , (4.121)

If there are class 2 customers waiting in the queue to receive service then all the servers

in the second pool should be busy at that instant since the static priority policy is non-

idling. We showed in Lemma 3 ( see Appendix B) that only one event can happen at any

instant w.p. 1. Therefore, when a class 1 customer arrives to the system at an instant when

there are class 2 customers waiting in the queue, his service cannot start in the second pool

immediately. Therefore, for s < t

If Qr
2(τ) > 0 for all τ ∈ [s, t], then Ar

21(t) −Ar
21(s) = 0. (4.122)

w.p. 1.

We first characterize the fluid model equations of π∗ and then establish the invariant

states of the fluid limits.

Proposition 4.25. Let {Xr,π∗} be a sequence of N-models working under the static priority

policy π∗. Assume that {Q̄r(0)} is bounded a.s. as r → ∞. Then, every fluid limit X̄
π∗

of {Xr,π∗} satisfies the following equations in addition to the fluid model equations (A.2)-

(A.11). For every regular point t > 0 of X̄
π∗

˙̄B21(t) = β2µ2 if Q̄1(t) > 0 (4.123)

˙̄B11(t) = β1µ1 if Q̄1(t) > 0 (4.124)

˙̄A21(t) + ˙̄A22(t) = λ1 + λ2 if Z̄21(t) + Z̄22(t) < β2 (4.125)

˙̄B22(t) = β2µ2 if Z̄11(t) < β1 and Q̄2(t) > 0. (4.126)

Remark 4.26. Intuitive explanations of these fluid model equations can be given as follows.

Equation (4.123) ((4.124)) implies that all the servers in the second pool (resp., first pool)

serve a class 1 customer as soon as they finish serving the current customer. It can be

shown that (4.123) follows from (4.120) and (4.124) follows from the non-idling condition.
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Equation (4.125) implies that when there are idle servers in the second pool all the

arriving customers will start their service in the second pool. It can be shown that (4.125)

follows from (4.121) and the non-idling condition.

Equation (4.126) implies that when there are class 2 customers in the queue and there

are idle servers in the first pool, servers in the second pool serve class 2 customers as soon

as they finish service. We show below that (4.126) follows from (4.122).

Proof of Proposition 4.25. We restrict our attention to the set of sample paths that do not

have a service completion from server pool 2 and an arrival to class 1 together at any time

instant. Again by Lemma 3 in Appendix B the set that satisfy this condition has probability

one.

We only give the proof of (4.126), other fluid model equations are proved similarly.

Let X̄
π∗

be a fluid limit of {Xr,π∗} and assume that {Q̄r(0)} is bounded a.s. as r → ∞.

Also assume that

Z̄11(t) < β1 − ǫ and Q̄2(t) > ǫ

for a regular point t > 0 of X̄
π∗

and for some ǫ > 0.

Since X̄
π∗

is a fluid limit of {Xr,π∗}, there exists a subsequence, which we denote again

by r for notational convenience, such that ω ∈ Ω such that

X̄
r,π∗

(·, ω) → X̄
π∗

(·) u.o.c. (4.127)

as r → ∞ and X̄
π∗

satisfies fluid model equations (A.2)-(A.11). Then, there exists δ > 0

and r0 such that

Zr
11(s) < N r

1 (β1 − ǫ/2) and Q̄r
2(s) > ǫ/2 (4.128)

for all s ∈ [t− δ, t + δ] and for r > r0. Therefore, by (2.10) in Section 2.1

Qr,π∗
1 (s) = 0 (4.129)

for all s ∈ [t− δ, t + δ] and for r > r0. Hence, by (4.122),

Ar
21(t+ δ) −Ar

21(t− δ) = 0
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for all r > r0, since Q̄r
2(s) > ǫ/2. Therefore, by (4.127)

˙̄A21(t) = 0. (4.130)

Also

Br
21(t+ δ) −Br

21(t− δ) = 0

for r > r0, by (4.129) and non-negativity of Qr,π∗
1 (·). Hence,

˙̄B21(t) = 0. (4.131)

Since π∗ is non-idling and Q̄2(t) > ǫ, by (A.8)-(A.11)

˙̄Z21(t) + ˙̄Z22(t) = 0.

By (A.4)

˙̄Z21(t) + ˙̄Z22(t) = ˙̄B21(t) + ˙̄A21(t) + ˙̄B22(t) + ˙̄A22(t) − ˙̄D21(t) − ˙̄D22(t).

Hence, (4.131) and (4.130) imply that

˙̄B22(t) = ˙̄D21(t) + ˙̄D22(t).

And so

˙̄B22(t) = β2µ2,

by (A.8) and the fact that Q̄2(t) > 0.

Proof of Proposition 4.23. By Definition A.2, we need to show that if (Q̄(0), Z̄(0)) =

(q, z), then (Q̄(t), Z̄(t)) = (q, z) for all t ≥ 0.

Let {Xr,π∗} be a sequence of N-models working under the static priority policy π∗.

Assume that {Q̄r(0)} is bounded a.s. as r → ∞. Also assume that (Q̄(0), Z̄(0)) = (q, z).

We proceed in several steps:

(1) We first show that Q̄1(t) = 0 for all t > 0. Note that whenever Q̄1(t) > 0

˙̄Q1(t) = λ1 − µ1β1 − µ2β2 = −µ2x22β2
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by (4.123). Hence

Q̄1(t) = 0 for all t ≥ 0. (4.132)

(2) Next we show that Z̄21(t) + Z̄22(t) = β2 for all t ≥ 0. Similar to part (1), if

Z̄21(t) + Z̄22(t) < β2, then

˙̄Z21(t) + ˙̄Z22(t) = λ1 + λ2 − µ2β2 = µ1β1

by (4.125). Since Z̄21(t) + Z̄22(t) ≤ β2 this proves that

Z̄21(t) + Z̄22(t) = β2 for all t ≥ 0. (4.133)

(3) Now we show that (Z̄11(t) − β1)Q̄2(t) = 0 for all t > 0. If (Z̄11(t) − β1)Q̄2(t) < 0

then Z̄11(t) < β1 and Q̄2(t) > 0. First note that Q̄1(t) = 0 by (A.6). Also, by (4.126)

˙̄Q2(t) = λ2 − µ2β2 = −µ2x21β2

and ˙̄A21(t) = 0. This gives that ˙̄A11(t) = λ1 by (A.2). Hence, by (A.4)

˙̄Z11(t) = λ1 − Ḋ11(t) > λ1 − µ1β1 = µ2x21β2.

These imply that

d

dt

(

(Z̄11(t) − β1)Q̄2(t)
)

= ˙̄Z11(t)Q̄2(t) + (Z̄11(t) − β1)
˙̄Q2(t)

> µ2x21β2(Q̄2(t) + (β1 − Z̄11(t)).

If (β1−Z̄11(t))Q̄2(t) > 1 then (Q̄2(t)+(β1−Z̄11(t)) ≥ 1. Otherwise, if (β1−Z̄11(t))Q̄2(t) ≤ 1,

then (Q̄2(t) + (β1 − Z̄11(t)) ≥ (β1 − Z̄11(t))Q̄2(t). Thus, if (Z̄11(t) − β1)Q̄2(t) < 0, then

d

dt

(

(Z̄11(t) − β1)Q̄2(t)
)

> 0.

Therefore

(Z̄11(t) − β1)Q̄2(t) = 0 for all t ≥ 0. (4.134)

(4) Now assume that Z̄22(t) < x22β2 − ǫ for some ǫ > 0. Since

Q̇2(t) = λ2 − µ2Z̄22(t)
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this implies by the continuity of X̄, (A.3) and (A.4) that

Q̄2(t) > 0.

By (4.133) and (4.134) this implies

Z̄21(t) = x21β2 + ǫ,

Z̄11(t) = β1.

Also, by continuity of Q̄2(t) and (4.135), there exists δ > 0 such that Q̄2(s) > 0 for all

s ∈ [t− δ, t+ δ]. Therefore, again by (4.134),

Z̄11(s) = β1,

for all s ∈ [t− δ, t + δ]. Hence,

˙̄Z11(t) = 0.

However, by (4.132), (A.3) and (A.4)

˙̄Z21(t) + ˙̄Z11(t) = λ1 − µ1Z̄11(t) − µ2Z̄21(t) < −ǫµ2.

And so, by using (4.133) we have that

˙̄Z22(t) > ǫµ2.

This implies that whenever Z̄22(t) < x22β2,
˙̄Z22(t) > 0. Hence Z̄22(t) ≥ x22β2.

It can be shown similarly that Z̄21(t) ≥ x21β2. Thus, Z̄21(t) = x21β2 and Z̄22(t) = x22β2

for all t ≥ 0.

(5) Since Z̄22(t) = x22β2 for all t ≥ 0, Q̄2(t) = 0 for all t ≥ 0 by (A.3) and (A.4).

(6) Finally, since Z̄21(t) ≥ x21β2 and Q̄1(t) = 0 for all t ≥ 0, Z̄11(t) ≥ β1.

4.2.5.2 Hydrodynamic Limits

Let X
r,m be the hydrodynamically scaled version of X

r,π∗
, see Chapter 3.4.1, X̃

π∗
denote

a hydrodynamic limit of X
r,π∗

. In this section we establish the additional hydrodynamic

equations that must be satisfied by the hydrodynamic limits of X
r,π∗

.
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From (4.120)-(4.122), it is readily obtained that the components of X
r,m satisfy the

following equations in addition to equations (3.24)-(3.26),

Br,m
22 (t) can only increase when Qr,m

1 (t) = 0, (4.135)

Ar,m
11 (t) and Br,m

11 (t) can only increase when Zr,m
21 (t) + Zr,m

22 (t) = 0, (4.136)

If Qr,m
2 (τ) > 0 for all τ ∈ [s, t], then Ar,m

22 (t) −Ar,m
22 (s) = 0 (4.137)

Proposition 4.27. Let {Xr,π∗} be a sequence of N-models working under the static priority

policy π∗. Assume that (4.74) holds. Then, every hydrodynamic limit X̃
π∗

of {Xr,π∗} sat-

isfies the following equations in addition to the hydrodynamic model equations (3.1)-(3.8).

For every regular point t > 0 of X̃
π∗

˙̃B21(t) = µ2β2 if Q̄1(t) > 0, (4.138)

˙̃B11(t) = µ1β1 if Q̄1(t) > 0, (4.139)

˙̃A21(t) + ˙̃A22(t) = λ1 + λ2 if Z̃21(t) + Z̃22(t) < 0, (4.140)

˙̃B22(t) = µ2β2 if Z̃11(t) < 0 and Q̃2(t) > 0. (4.141)

Proof. We only give a proof of (4.141). The other hydrodynamic equations are proved

similarly.

Let {Xr,π∗} be a sequence of N-models working under the static priority policy π∗.

Assume that (4.74) holds. Let X̃
π∗

be a hydrodynamic limit of {Xr,π∗}.

Fix t > 0. Assume that Z̃11(t) < 0 Q̃2(t) > 0. Then, by the continuity of X̃
π∗

, there

exists an ε > 0 and a τ > 0 such that Q̃2(s) > ε and Z̃11(t) < −ε for all s ∈ [t− τ, t+ τ ].

Fix 0 < δ < ǫ/2 and choose r large enough, together with an integer m and ω ∈ Kr, so that

(3.97) holds for δ.

It follows from (3.97) that

Zr,m
11 (t) < −ε/4 and Qr,m

2 (s) > ε/4 (4.142)

for all s ∈ [t− τ, t+ τ ]. By (3.7), this implies

Qr,m
1 (s) = 0 (4.143)

115



for all s ∈ [t− τ, t+ τ ]. Hence, by (4.137),

Ar,m
21 (t+ τ) −Ar,m

21 (t− τ) = 0.

This implies that

˙̃A21(t) = 0.

Also, by (3.28), (4.142) and (4.143) imply that

˙̃B21(t) = 0.

Combining this with (3.1)-(3.8) we get the the desired result.

4.2.5.3 State Space Collapse Result

Using the results established in the previous section about the hydrodynamic limits and

Theorem 3.1, we first prove a multiplicative state space collapse result. Before we prove

Proposition 4.24, we establish an intermediate result as a corollary to the multiplicative

state space collapse results. Proposition 4.24 readily follows from this corollary. We define

X̃1(t) = Q̃1(t) + Z̃11(t) + Z̃21(t) and (4.144)

X̃2(t) = Q̃2(t) + Z̃22(t) (4.145)

Proposition 4.28 (Multiplicative SSC result). Let {Xr,π∗} be a sequence of N-models work-

ing under the static priority policy π∗. Assume that (4.74) holds. Then for each T > 0,

there exists Lr = o(
√

|N r|) with Lr → ∞ as r → ∞, such that for

BT (Lr) = sup
Lr/

√
|Nr |≤t≤T

(∣

∣

∣Q̂r(t)
∣

∣

∣ ∨
∣

∣

∣Ẑr(t)
∣

∣

∣ ∨ 1
)

sup
Lr/

√
|Nr |≤t≤T

∣

∣

∣
Q̂r

1(t)
∣

∣

∣

BT (Lr)
→ 0

sup
Lr/

√
|Nr |≤t≤T

(∣

∣

∣

∣

Ẑr
11(t) +

(

X̂r
1(t) + X̂r

2(t)
)−
∣

∣

∣

∣

)

BT (Lr)
→ 0

sup
Lr/

√
|Nr |≤t≤T

(

|Ẑr
21(t) + Ẑr

22(t)|
)

BT (Lr)
→ 0

in probability as r → ∞.
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Proof. As mentioned before, we use Theorem 3.4 to prove this result. We focus on the

term in the middle and comment at the end of the proof how the other two terms can be

handled.

Let {Xr,π∗} be a sequence of N-models working under the static priority policy π∗.

Assume that (4.74) holds. Let g : R
5 → R

+ be defined by

g(q, z) = |z1 + (q1 + q2 + z1 + z2 + z3)
−|

where q = (q1, q2) ∈ R
2 and z = (z1, z2, z3). Recall that Q̂r(t) = (Q̂r

1(t), Q̂
r
2(t)) and

Ẑr(t) = (Ẑr
11(t), Ẑ

r
21(t), Ẑ

r
22(t)). Therefore,

g(Q̂r(t), Ẑr(t)) =

∣

∣

∣

∣

Ẑr
11(t) +

(

X̂r
1(t) + X̂r

2(t)
)−
∣

∣

∣

∣

We next show that assumptions of Theorem 3.4 hold. Assumption 1 holds by (4.70)-

(4.73). Assumption 2 holds by Proposition 4.23 above and Lemma A.3. Also for α ∈ (0, 1)

g(αq, αz) = |αz1 + α(q1 + q2 + z1 + z2 + z3)
−| = αg(q, z).

Since g is clearly continuous, g satisfies Assumption 3. It remains to be shown that hydro-

dynamic limits of {Xr,π∗} and g satisfies Assumption 4.

Let {X̃π∗} be a hydrodynamic limit of {Xr,π∗}. We note that by (3.3) and (3.6)

Q̃(t) ≥ 0, Z̃11(t) ≤ 0 and Z̃21(t) + Z̃22(t) ≤ 0. (4.146)

By (4.144)

X̃1(t) + X̃2(t) = Q̃1(t) + Q̃2(t) + Z̃11(t) + Z̃21(t) + Z̃21(t). (4.147)

By (3.1)-(3.6), for every regular point t > 0 of {X̃π∗},

˙̃X1(t) + ˙̃X2(t) = 0. (4.148)

Assume that for a regular point t > 0 of {X̃π∗}

g(Q̃(t), Z̃(t)) > 0. (4.149)

We next show that if (4.149) holds

ġ(Q̃(t), Z̃(t)) < −ǫ. (4.150)
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We fix a regular point t > 0 and handle two possible cases separately.

(1) First assume that

Z̃11(t) +
(

X̃1(t) + X̃2(t)
)−

> 0. (4.151)

By (4.147), (4.151) and (4.146) imply that

Z̃21(t) + Z̃22(t) < 0. (4.152)

Therefore, by (3.7)

Q̃1(t) = 0 and Q̃2(t) = 0. (4.153)

Combining (4.140) with (4.152), (4.153) and (3.6) yields that

˙̃Z11(t) = −µ1β1.

This with (4.148) gives that

ġ(Q̃(t), Z̃(t)) = ˙̃Z11(t) +
d

dt

(

X̃1(t) + X̃2(t)
)−

= −µ1β1 (4.154)

(2) Now assume that

Z̃11(t) +
(

X̃1(t) + X̃2(t)
)−

< 0. (4.155)

By (4.147) and (3.7), (4.155) and (4.146) imply that

Z̃11(t) < 0 and Q̃2(t) > 0.

Therefore, by (3.7),

Q̃1(t) = 0 and Z̃21(t) + Z̃21(t) = 0.

Using (4.141) we have that

˙̃Z11(t) = λ1 − µ1x1 = µ2x2β2.

This with (4.148) and (4.155) gives that

ġ(Q̃(t), Z̃(t)) = − ˙̃Z11(t) +
d

dt

(

X̃1(t) + X̃2(t)
)−

= −µ2β2.
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This with (4.154) gives (4.150). Hence, g and the hydrodynamic limits of {Xr,π∗} satisfy

Assumption 4. This proves the result for the middle term.

To handle the first term we define g : R
5 → R

+ by

g(q, z) = |q1|,

where q = (q1, q2) ∈ R
2 and z = (z1, z2, z3) and use (4.138) and (4.139) to verify that

Assumption 4 holds for this g and the hydrodynamic limits of {Xr,π∗}.

To handle the last term we define g : R
5 → R

+ by

g(q, z) = |z2 + z3|,

where q = (q1, q2) ∈ R
2 and z = (z1, z2, z3) and use (4.140) to verify that Assumption 4

holds for this g and the hydrodynamic limits of {Xr,π∗}.

The following result is obtained by algebraic manipulations and the proof is placed at

the end of this section

Corollary 4.29. Under the assumptions of Proposition 4.28, for T > 0 and Lr is given as

in Proposition 4.28 and

B̃T (Lr) = sup
Lr/

√
|Nr|≤t≤T

(∣

∣

∣X̂r(t)
∣

∣

∣ ∨ 1
)

,

sup
Lr/

√
|Nr|≤t≤T

∣

∣

∣Q̂r
1(t)
∣

∣

∣

B̃T (Lr)
→ 0,

sup
Lr/

√
|Nr|≤t≤T

(∣

∣

∣

∣

Ẑr
11(t) +

(

X̂r
1 (t) + X̂r

2 (t)
)−
∣

∣

∣

∣

)

B̃T (Lr)
→ 0, and

sup
Lr/

√
|Nr|≤t≤T

(

|Ẑr
21(t) + Ẑr

22(t)|
)

B̃T (Lr)
→ 0

in probability as r → ∞.
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Proof of Corollary 4.29. Fix T > 0 assume that assumptions of Proposition 4.28 hold.

Then, there exists a sequence ǫr → 0 as r → ∞ such that

P

{

sup
Lr/

√
|Nr |≤t≤T

∣

∣

∣
Q̂r

1(t)
∣

∣

∣

BT (Lr)
∨

sup
Lr/

√
|Nr|≤t≤T

(∣

∣

∣

∣

Ẑr
11(t) +

(

X̂r
1(t) + X̂r

2(t)
)−
∣

∣

∣

∣

)

BT (Lr)

∨
sup

Lr/
√

|Nr|≤t≤T

(

|Ẑr
21(t) + Ẑr

22(t)|
)

BT (Lr)
> ǫr

}

< ǫr. (4.156)

Let Dr denote the complement of the event in the above expression. We assume that

sup
Lr/

√
|Nr|≤t≤T

(∣

∣

∣Q̂r(t)
∣

∣

∣ ∨
∣

∣

∣Ẑr(t)
∣

∣

∣

)

> 1,

as otherwise the result follows immediately. For notational simplicity for all the processes

above, with a slight abuse of notation, we set xr(t) = xr

(

t+ Lr√
|Nr |

)

and T r = T − Lr√
|Nr|

.

Choose r large enough so that ǫr < 1/100. Then on Dr

ǫr >

∥

∥

∥Q̂r
1(t)
∥

∥

∥

T r
∥

∥

∥Q̂r(t)
∥

∥

∥

T r
∨
∥

∥

∥Ẑr(t)
∥

∥

∥

T r

>

∥

∥

∥Q̂r
1(t)
∥

∥

∥

T r
∥

∥

∥Q̂r
2(t)
∥

∥

∥

T r
∨
∥

∥

∥Ẑr(t)
∥

∥

∥

T r

.

Therefore, on Dr

∥

∥

∥
Q̂r

1(t)
∥

∥

∥

T r
< ǫr

(∥

∥

∥
Q̂r

2(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr(t)

∥

∥

∥

T r

)

. (4.157)

Next we establish a bound for Ẑr
11. By (4.156) and (4.157) on Dr

∥

∥

∥

∥

Ẑr
11(t) +

(

X̂r
1 (t) + X̂r

2 (t)
)−
∥

∥

∥

∥

T r

< ǫr

(∥

∥

∥Q̂r
2(t)
∥

∥

∥

T r
∨
∥

∥

∥Ẑr(t)
∥

∥

∥

T r

)

If
∥

∥

∥
Ẑr

11(t)
∥

∥

∥

T r
≥
∥

∥

∥
Q̂r

2(t)
∥

∥

∥

T r
∨
∥

∥

∥
Ẑr(t)

∥

∥

∥

T r
, then

∥

∥

∥
Ẑr

11(t)
∥

∥

∥

T r
< 2

(∥

∥

∥
X̂r

1(t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2 (t)
∥

∥

∥

T r

)

for r large enough. Hence, in this case

∥

∥

∥

∥

Ẑr
11(t) +

(

X̂r
1(t) + X̂r

2(t)
)−
∥

∥

∥

∥

T r

< 2ǫr

(∥

∥

∥X̂r
1(t)

∥

∥

∥

T r
+
∥

∥

∥X̂r
2(t)

∥

∥

∥

T r

)

.

Therefore,

∥

∥

∥

∥

Ẑr
11(t) +

(

X̂r
1(t) + X̂r

2(t)
)−
∥

∥

∥

∥

T r

<

2ǫr

(∥

∥

∥
X̂r

1(t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2(t)
∥

∥

∥

T r
+
∥

∥

∥
Q̂r

2(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

21(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

22(t)
∥

∥

∥

T r

)

.(4.158)
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Combining this with (4.157) we get

∥

∥

∥Q̂r
1(t)
∥

∥

∥

T r
< 3ǫr

(∥

∥

∥X̂r
1(t)

∥

∥

∥

T r
+
∥

∥

∥X̂r
2 (t)

∥

∥

∥

T r
+
∥

∥

∥Q̂r
2(t)
∥

∥

∥

T r
+
∥

∥

∥Ẑr
21(t)

∥

∥

∥

T r
+
∥

∥

∥Ẑr
22(t)

∥

∥

∥

T r

)

.(4.159)

Next we establish a bound for ‖Q̂r
2(t)‖T r . By (2.23),

Q̂r
2(t) = X̂r

1(t) + X̂r
2(t) − Q̂r

1(t) − Ẑr
11(t) − Ẑr

21(t) − Ẑr
22(t).

Since π∗ is non-idling, Ẑr
21(t) + Ẑr

22(t) = 0 if Q̂r
2(t) > 0. Therefore,

0 ≤ Q̂r
2(t) ≤

(

X̂r
1 (t) + X̂r

2 (t) − Q̂r
1(t) − Ẑr

11(t)
)

∨ 0. (4.160)

We have by (4.158) and (4.159) that

X̂r
1(t) + X̂r

2 (t) − Q̂r
1(t) − Ẑr

11(t) < X̂r
1(t) + X̂r

2(t) +
(

X̂r
1(t) + X̂r

2(t)
)−

5ǫr

(∥

∥

∥

∥

√

X̂r
1 (t)

∥

∥

∥

∥

T r

+
∥

∥

∥X̂r
2(t)

∥

∥

∥

T r
+
∥

∥

∥Q̂r
2(t)
∥

∥

∥

T r
+
∥

∥

∥Ẑr
21(t)

∥

∥

∥

T r
+
∥

∥

∥Ẑr
22(t)

∥

∥

∥

T r

)

.

This gives by (4.160) for r large enough that

‖Q̂r
2(t)‖T r ≤ 2

∥

∥

∥
X̂r

1 (t)
∥

∥

∥

T r
+ 2

∥

∥

∥
X̂r

2(t)
∥

∥

∥

T r

+ 10ǫr

(∥

∥

∥
X̂r

1(t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

21(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

22(t)
∥

∥

∥

T r

)

.

Combining this with (4.158) and (4.159) yields

∥

∥

∥

∥

Ẑr
11(t) +

(

X̂r
1(t) + X̂r

2(t)
)−
∥

∥

∥

∥

T r

< 4ǫr

(∥

∥

∥X̂r
1 (t)

∥

∥

∥

T r
+
∥

∥

∥X̂r
2(t)

∥

∥

∥

T r
+
∥

∥

∥Ẑr
21(t)

∥

∥

∥

T r
+
∥

∥

∥Ẑr
22(t)

∥

∥

∥

T r

)

and (4.161)
∥

∥

∥
Q̂r

1(t)
∥

∥

∥

T r
< 4ǫr

(∥

∥

∥
X̂r

1 (t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

21(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

22(t)
∥

∥

∥

T r

)

(4.162)

for r large enough.

Next we establish a bound for ‖Ẑr
21(t)‖T r . Observe that

Ẑr
21(t) = X̂r

1 (t) − Ẑr
11(t) − Q̂r

1(t).

This gives by (4.161) and (4.162) that

‖Ẑr
21(t)‖T r ≤ 2‖X̂r

1 (t)‖T r + 2‖X̂r
1 (t)‖T r

+ 4ǫr

(∥

∥

∥
X̂r

2 (t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

21(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

22(t)
∥

∥

∥

T r

)

.
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Hence, for r large enough

‖Ẑr
21(t)‖T r ≤ 4‖X̂r

1 (t)‖T r + 4‖X̂r
1 (t)‖T r

+ 8ǫr

(∥

∥

∥
X̂r

1(t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2 (t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

22(t)
∥

∥

∥

T r

)

. (4.163)

Combining this with (4.161) and (4.162) yields

∥

∥

∥

∥

Ẑr
11(t) +

(

X̂r
1 (t) + X̂r

2(t)
)−
∥

∥

∥

∥

T r

< 20ǫr

(∥

∥

∥
X̂r

1(t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

22(t)
∥

∥

∥

T r

)

(4.164)
∥

∥

∥Q̂r
1(t)
∥

∥

∥

T r
< 20ǫr

(∥

∥

∥X̂r
1(t)

∥

∥

∥

T r
+
∥

∥

∥X̂r
2 (t)

∥

∥

∥

T r
+
∥

∥

∥Ẑr
22(t)

∥

∥

∥

T r

)

(4.165)

‖Q̂r
2(t)‖T r ≤ 2

∥

∥

∥X̂r
1(t)

∥

∥

∥

T r
+ 2

∥

∥

∥X̂r
2 (t)

∥

∥

∥

T r

+ 50ǫr

(∥

∥

∥
X̂r

1 (t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

22(t)
∥

∥

∥

T r

)

. (4.166)

Finally, by (4.156), on Dr

‖Ẑr
21(t) + Ẑr

22(t)‖T r < ǫr

(∥

∥

∥Q̂r(t)
∥

∥

∥

T r
+
∥

∥

∥Ẑr(t)
∥

∥

∥

T r

)

.

Thus, by (4.164)-(4.166)

‖Ẑr
22(t)‖T r < 10

∥

∥

∥
X̂r

1(t)
∥

∥

∥

T r
+ 10

∥

∥

∥
X̂r

2 (t)
∥

∥

∥

T r
+ 100ǫr

(∥

∥

∥
X̂r

1(t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2(t)
∥

∥

∥

T r
+
∥

∥

∥
Ẑr

22(t)
∥

∥

∥

T r

)

.

Therefore,

‖Ẑr
22(t)‖T r < 20

∥

∥

∥X̂r
1 (t)

∥

∥

∥

T r
+ 20

∥

∥

∥X̂r
2(t)

∥

∥

∥

T r
.

This combined with (4.163)-(4.166) yields the desired result.

Using this result we can now prove that the compact containment condition is satisfied

by
∥

∥

∥
X̂r(t)

∥

∥

∥

T
for each T > 0.

Proposition 4.30. Under the assumptions of Proposition 4.28,

{

∥

∥

∥
X̂r(t)

∥

∥

∥

Lr/
√

|Nr |

}

satis-

fies the compact containment condition, where Lr is taken as in Proposition 4.28.

Proof. Assume that assumptions of Proposition 4.28 hold. We omit π∗ from the notation

below for simplicity. Fix T > 0.
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By (3.5),

{‖Q̂r
1(t)‖Lr/

√
|Nr |}, {‖Ẑr

11(t) +
(

X̂r
1 (t) + X̂r

2 (t)
)−

‖
Lr/

√
|Nr|}, and

{‖Ẑr
21(t) + Ẑr

22(t)‖Lr/
√

|Nr|}, (4.167)

satisfy the compact containment condition, since for each SSC function used to prove the

SSC result H is a decreasing function. Therefore, we can find sequence of random variables

{Γr} that satisfies the compact containment condition such that

|Ẑr
11(t)| ≤ Γr + |X̂r

1 (t)| + |X̂r
2 (t)| (4.168)

for all t ∈ [0, Lr/
√

|N r|].

Observe that by definition of fluid and diffusion scalings and (4.70)-(4.73)

X̂r
1 (t) + X̂r

2 (t) = xr(t) − µ1

∫ t

0
Ẑr

11(s)ds − µ2

∫ t

0

(

Ẑr
21(s) + Ẑr

22(s)
)

ds, (4.169)

where xr(t) is defined by (4.114).

Using (4.169) and (4.168) we get for all t ∈ [0, Lr/
√

|N r|

|X̂r
1 (t)| + |X̂r

2 (t)| ≤ |xr(t)| + µ1

∫ t

0

(∣

∣

∣X̂r
1 (s)

∣

∣

∣+
∣

∣

∣X̂r
2(s)

∣

∣

∣+ Γr(s)
)

ds

+ µ2

∫ t

0

(

|Ẑr
21(s) + Ẑr

22(s)|
)

ds

≤ |xr(t)| + µ1

∫ t

0

(∣

∣

∣X̂r
1 (s)

∣

∣

∣+
∣

∣

∣X̂r
2(s)

∣

∣

∣

)

ds+
Lr

√

|N r|
µ2‖Ẑr

21(s) + Ẑr
22(s)‖Lr/

√
|Nr|

+
Lr

√

|N r|
µ1Γ

r.

By Gronwall’s inequality, see [51],

sup
0≤t≤ Lr√

|Nr |

{

|X̂r
1(t)| + |X̂r

2 (t)|
}

≤

(

‖xr(t)‖ Lr√
|Nr |

+
Lr

√

|N r|
(

µ2‖Ẑr
21(s) + Ẑr

22(s)‖Lr/
√

|Nr| + µ1Γ
r
)

)

exp

{

µ1
Lr

√

|N r|

}

.

Thus,
∥

∥

∥X̂r(t)
∥

∥

∥

Lr/
√

|Nr |
satisfies the compact containment condition by (4.167) and (4.168).
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Proposition 4.31. Under the assumptions of Proposition 4.28,

{

∥

∥

∥
Q̂r(t)

∥

∥

∥

Lr/
√

|Nr|

}

and

{

∥

∥

∥
Ẑr(t)

∥

∥

∥

Lr/
√

|Nr |

}

satisfy the compact containment condition, where Lr is taken as in Proposition 4.28.

Proof. Assume that assumptions of Proposition 4.28 hold. We omit π∗ from the notation

below for simplicity. Fix T > 0.

{

∥

∥

∥
Q̂r

1(t)
∥

∥

∥

Lr/
√

|Nr |

}

(4.170)

satisfies the compact containment condition by (4.167) and

{

∥

∥

∥Ẑr
11(t)

∥

∥

∥

Lr/
√

|Nr|

}

(4.171)

satisfies the compact containment condition by Proposition 4.30 and (4.167). Since

Ẑr
21(t) = X̂r

1 (t) − Q̂r
1(t) − Ẑr

11(t)
{

∥

∥

∥Ẑr
21(t)

∥

∥

∥

Lr/
√

|Nr|

}

satisfies the compact containment condition by Proposition 4.30, (4.170) and (4.171). Then,

{

∥

∥

∥
Ẑr

22(t)
∥

∥

∥

Lr/
√

|Nr|

}

satisfies the compact containment condition by (4.167). Finally,

{

∥

∥

∥Q̂r
2(t)
∥

∥

∥

Lr/
√

|Nr |

}

satisfies the compact containment condition by Proposition 4.30.

Proposition 4.32. Under the assumptions of Proposition 4.28,

X̂r

(

Lr

√

|N r|

)

⇒ X̂(0)

as r → ∞, where Lr is taken as in Proposition 4.28
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Proof. Assume that assumptions of Proposition 4.28 hold. We omit π∗ from the notation

below for simplicity. Fix T > 0.

X̂r
1

(

Lr

√

|N r|

)

− X̂r
1(0) = Âr

1

(

Lr

√

|N r|

)

− Ŝr
11

(

T̄ r
11

(

Lr

√

|N r|

))

− Ŝr
21

(

T̄ r
21

(

Lr

√

|N r|

))

− µ1

∫ Lr√
|Nr |

0
Ẑr

11(s)ds − µ2

∫ Lr√
|Nr |

0
Ẑr

21(s)ds

+ Lr

(

λr
1

|N r| − µ1β1 − µ2x21β2

)

.

The first three terms on the RHS above go to zero in probability since Âr
1(·), Ŝr

11

(

T̄ r
11 (·)

)

,

and Ŝr
21

(

T̄ r
21 (·)

)

converge weakly to Brownian motions jointly. Also, since

{

‖Ẑr
11(s)‖ Lr√

|Nr |

}

and

{

‖Ẑr
21(s)‖ Lr√

|Nr |

}

satisfy the compact containment condition, and Lr√
|Nr|

→ 0, terms in

the second line goes to zero. The last term goes to zero by (4.72). Hence

∣

∣

∣

∣

∣

X̂r
1

(

Lr

√

|N r|

)

− X̂r
1(0)

∣

∣

∣

∣

∣

→ 0

in probability as r → ∞. We get the desired result by (4.74) and Theorem 4.1 in Billings-

ley [11].

Proposition 4.33. Under the assumptions of Proposition 4.28,
{∥

∥

∥
X̂r(t)

∥

∥

∥

T

}

satisfies the

compact containment condition.

Proof. Assume that assumptions of Proposition 4.28 hold. We omit π∗ from the notation

below for simplicity. Fix T > 0.

Recall that x(t; s) = x(t) − x(s) for a process x. By definition of fluid and diffusion

scalings and (4.70)-(4.73)

X̂r
1(t) + X̂r

2(t) = X̂r
1

(

Lr

√

|N r|

)

+ X̂r
2

(

Lr

√

|N r|

)

+ xr

(

t;
Lr

√

|N r|

)

− µ1

∫ t

Lr√
|Nr |

Ẑr
11(s)ds− µ2

∫ t

Lr√
|Nr |

(

Ẑr
21(s) + Ẑr

22(s)
)

ds. (4.172)

where xr(t) is defined by (4.114). Recall that

yr(t) = yr

(

t+
Lr

√

|N r|

)
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for a sequence of processes {yr(·)}. For notational convenience we set

T r = T − Lr

√

|N r|
.

Choose ǫri (t), for i = 1, 2 such that

Ẑr
21(t) + Ẑr

22(t) = ǫr1(t)
(∥

∥

∥
X̂r

1(t)
∥

∥

∥

T r
+
∥

∥

∥
X̂r

2(t)
∥

∥

∥

T r
+ 1
)

(4.173)

Ẑr
11(t) = −

(

X̂r
1(t) + X̂r

2(t)
)−

+ ǫr2(t)
(∥

∥

∥X̂r
1 (t)

∥

∥

∥

T r
+
∥

∥

∥X̂r
2(t)

∥

∥

∥

T r
+ 1
)

(4.174)

for all t ∈
[

Lr√
|Nr|

, T

]

. Note that, by Corollary 4.29, for i = 1, 2

‖ǫri (t)‖T r → 0 (4.175)

in probability as r → ∞. Let

x̆r(t) = X̂r
1

(

Lr

√

|N r|

)

+ X̂r
2

(

Lr

√

|N r|

)

+ xr

(

t;
Lr

√

|N r|

)

Using (4.172), (4.173) and (4.174) we get

|X̂r
1 (t)| + |X̂r

2 (t)| ≤ x̆r(t) + µ1

∫ t

Lr√
|Nr |

∣

∣

∣

∣

(

X̂r
1 (s) + X̂r

2(s)
)−
∣

∣

∣

∣

ds

+
(

µ1‖ǫr1(t)‖T r + µ2‖ǫr2(t)‖T r

)(

‖X̂r
1 (t)‖T r + ‖X̂r

2 (t)‖T r + 1
)

T

≤ |x̆r(t)| + µ1

∫ t

Lr√
|Nr |

(∣

∣

∣
X̂r

1(s)
∣

∣

∣
+
∣

∣

∣
X̂r

2 (s)
∣

∣

∣

)

ds

+
(

µ1‖ǫr1(t)‖T + µ2‖ǫr2(t)‖T r

)(

‖X̂r
1 (t)‖T r + ‖X̂r

2 (t)‖T r + 1
)

T

By Gronwall’s inequality, see [51],

sup
Lr√
|Nr |

≤t≤T

{

|X̂r
1(t)| + |X̂r

2 (t)|
}

≤

(

‖x̆r(t)‖T +
(

µ1‖ǫr1(t)‖T r + µ2‖ǫr2(t)‖T

)(

‖X̂r
1 (t)‖T r + ‖X̂r

2 (t)‖T r + 1
)

T

)

exp{µ1T}

Since

sup
Lr√
|Nr |

≤t≤T

{

|X̂r
1 (t)| + |X̂r

2 (t)|
}

≥ 0.5
(

‖X̂r
1 (t)‖T r + ‖X̂r

2 (t)‖T r

)

,

we have

(

0.5 −
(

µ1‖ǫr1(t)‖T + µ2‖ǫr2(t)‖T

)

T exp{µ1T}
)(

‖X̂r
1(t)‖T r + ‖X̂r

2 (t)‖T r

)

≤
(

‖x̆r(t)‖T +
(

µ1‖ǫr1(t)‖T + µ2‖ǫr2(t)‖T

)

T
)

exp{µ1T}
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By (4.175), for arbitrary ǫ > 0 we can choose R large enough so that, for r > r0(ǫ,R)

P

{

µ1‖ǫr1(t)‖T + µ2‖ǫr2(t)‖T >
1/4

T exp{µ1T}

}

< ǫ/4 and

Similary, by (4.114), Proposition 4.23, Proposition 4.30, we have for r > r1(ǫ,R) that

P {‖x̌r(t)‖T exp{µ1T} > (R− 1)/4} < ǫ/4.

Hence, for r > r0(ǫ,R) ∨ r1(ǫ,R)

P
{

‖X̂r
1 (t)‖T + ‖X̂r

2 (t)‖T r > R
}

< ǫ.

Combining this with Proposition 4.30 gives the desired result.

Proof of Proposition 4.24. We proved part (i) in Proposition 4.31, part (ii) in Proposi-

tion 4.32. Part (iii) follows from Propositions 4.28 and 4.33 and Remark 3.3.

4.3 Open problems from the literature

In this section we illustrate two applications of Theorem 3.4 in a V-model parallel server

system that is studied in Armony and Maglaras [3] and Milner and Olsen [53]. A V-model

consists of a single server pool and multiple customer classes. We will focus on the case

with two customer classes and assume that service rates of the customer classes are equal.

A V-model parallel server system is illustrated in Figure 6.

λr

2
λr

1

Nr

µ µ

Figure 6: A V-model parallel server system
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4.3.1 Armony-Maglaras threshold policy

Armony and Maglaras [3] uses a V-model system to study a contact center with two chan-

nels, one for real-time telephone service, and another for a postponed call-back service

offered with a guarantee on the maximum delay until a reply is received. We assume that

the second customer class consists of those customers who call for the call-back option.

Armony and Maglaras [3] proposed the following policy.

Threshold Rule. If Q2(t) >
√

|N r|θ, give priority to class 2, otherwise give priority

to class 1.

Let

λr = |N r|µ(1 − β
√

|N r|
). (4.176)

We assume that the arrival rates for each customer class is given according to

λr
1 = ηλr and λr

2 = (1 − η)λr. (4.177)

for some η ∈ (0, 1). Let

X̂r(t) = Q̂r
1(t) + Q̂r

2(t) + Ẑr
11(t) + Ẑr

21(t). (4.178)

We assume that

(Q̂r(0), Ẑr(0)) ⇒
(

Q̂(0), Q̂(0)
)

(4.179)

By Theorem 2 in Halfin and Whitt [32], X̂r converges weakly to a diffusion process X as

r → ∞.

We show that the following SSC collapse result, Proposition 3.1 in Armony and Maglaras [3],

holds.

Proposition 4.34. Let {Xr} be a sequence of V-parallel server system processes working

under the Armony-Maglaras threshold policy. Assume that (4.179) holds and

(Q̂r
1(0), Q̂

r
2(0)) ⇒

(

(X(0) − θ)+, (X(0)+ ∧ θ)
)

(4.180)

as r → ∞. Then

(Q̂r
1(·), Q̂r

2(·)) ⇒
(

(X(·) − θ)+, (X(·)+ ∧ θ)
)
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as r → ∞.

The proof presented in Armony and Maglaras [3] contains a step that cannot be rigor-

ously proved, see inequality (29) in that paper. In this study, we will present an alternative

proof using Theroem 3.4. Using Proposition 4.34 one can prove the asymptotic optimality

of the threshold policy, see Proposition 3.4 in Armony and Maglaras [3].

4.3.1.1 Analysis of Armony-Maglaras threshold policy

Let {Xr} be a sequence of V-systems working under the Armony-Maglaras threshold policy.

We start our analysis by presenting the additional equations that must be satisfied by X
r.

Since class 2 jobs get priority when the number of class 2 jobs in the queue exceeds
√

|N r|θ,

Br
11(t) +Ar

11(t) can only increase when Q2(t)
r <

√

|N r|θ. (4.181)

Also

Br
21(t) can only increase when Q2(t)

r ≥
√

|N r|θ. (4.182)

The following proposition characterizes the fluid limits of the V-parallel server systems

working under the Armony-Maglaras threshold policy.

Proposition 4.35. Let {Xr} be a sequence of V-parallel server system processes working

under the Armony-Maglaras threshold policy. Assume that the conditions of Theorem A.1

are satisfied.

i. In addition to the fluid limit equations (A.2)-(A.9), each fluid limit X̄ of X
r satisfies

˙̄A11(t) + ˙̄B11(t) = 0 when Q̄2(t) > 0,

ii. Let ~qr = (q1, q2), where q1 = r ≥ 0 and q2 = 0 and z = {z11, z12}, where z1i = λi

µi
for

i = 1, 2. Then, M = {(~qr, z) : r ≥ 0} is the set of all the invariant states of the fluid

limits of X
r.
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Proof is placed in Section 4.3.1.2.

By (4.179),

(Q̄r(0), Z̄r(0)) ⇒ (0, z)) , (4.183)

where z = (λ1/µ1, λ2/µ2), hence X
r satisfies Assumption 2. Note that, X

r satisfies Assump-

tion 1 by (4.176) and (4.177).

We prove the SSC result using Theorem 3.7. Therefore, we next show that Assumption 6

holds. The following result is established by Halfin and Whitt [32].

Theorem 4.36. Let {Xr} be a sequence of V-parallel server system processes working under

the Armony-Maglaras threshold policy and X̂r be defined as in (4.178). If (4.179) holds then

X̂r(·) ⇒ X̂(·)

where

X̂(t) = X̂(t) +W (t) − βt− µ

∫ t

0
(X̂(s))−ds

and W is a Borwnian motion with sero drift and variance 2µ.

It can be easily showed using Theorem 4.36 that

lim
R→∞

lim
r→∞

P
{∥

∥

∥X̂r(t)
∥

∥

∥

T
> R

}

= 0. (4.184)

Next, we show that Assumption 6 holds using this result.

Proposition 4.37. Let {Xr} be a sequence of V-parallel server system processes working

under the Armony-Maglaras threshold policy.

lim
R→∞

lim
r→∞

P
{∥

∥

∥Q̂r(t)
∥

∥

∥

T
∨
∥

∥

∥Ẑr(t)
∥

∥

∥

T
> R

}

= 0, (4.185)

i.e., {Xr} satisfies Assumption 6.

A proof is presented in Section 4.3.1.2.

Now we define the SSC function for this setting. Let q = (q1, q2) ∈ R
2, z = (z1, z2) ∈ R

2,

x = q1 + q2 + z1 + z2 and g : R
4 → R be defined by

g(q, z) = q1 − (x− θ)+

Clearly |g| is continuous but it does not satisfy (3.10). Therefore, we use Theorem 3.7.
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Proof of Proposition 4.34. Let {Xr} be a sequence of V-parallel server system processes

working under the Armony-Maglaras threshold policy. Assume that (4.176), (4.177), (4.179)

and (4.180) holds.

From the results above and definition of g in order to invoke Theorem 3.7 it is enough

to show that Assumption 7 holds.

We first establish the additional hydrodynamic equations that must be satisfied by {Xr}.

First note that, by (4.181) and (4.182)

Br
11(t) +Ar

11(t) can only increase when

g
(

Q̂r(t), Ẑr(t)
)

= Q̂r
1(t) − (X̂r(t) − θ)+ > 0 (4.186)

and

Br
21(t) can only increase when g

(

Q̂r(t), Ẑr(t)
)

= Q̂r
1(t) − (X̂r(t) − θ)+ ≤ 0, (4.187)

since, if Q̂r
1(t) > (X̂r(t)− θ)+, then X̂r(t) = Q̂r

1(t)+ Q̂r
2(t), because the policy is non-idling.

Therefore, Q̂r
2(t) ≤ θ in this case. Similary, if Q̂r

1(t) ≤ (X̂r(t) − θ)+ and Q̂r
2(t) > 0, then

Q̂r
2(t) ≥ θ.

Equations (4.186) and (4.187) imply that

Br,m
11 (t) +Ar,m

11 (t) can only increase when

g

(
√

xr,m

|N r| (Qr,m(t), Zr,m(t))

)

> 0 and (4.188)

Br,m
21 (t) can only increase when g

(
√

xr,m

|N r| (Qr,m(t), Zr,m(t))

)

≤ 0, (4.189)

where the hydrodynamic scaled process X
r,m is defined by (3.24).

Fix R > 0 and T > 0 and let Ar(T ) be defined as in (3.19). Let X̃ be a hydrody-

namic limit on Ar
R(T ). Recall that we have showed that X̃ satisfies (3.1)-(3.8). We next

characterize the additional equations associated with the policy. We claim that

˙̃B11(t) = µ when g
(

R
(

Q̃(t), Z̃(t)
))

> 0 and Q̃1(t) > 0 (4.190)

˙̃B12(t) = µ when g
(

R
(

Q̃(t), Z̃(t)
))

< 0 and Q̃2(t) > 0. (4.191)

To show this assume that

g
(

R
(

Q̃(t), Z̃(t)
))

> 2ǫ and Q̃1(t) > 2ǫ (4.192)
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for some ǫ > 0. By continuity of g and X̃ there exists δ > 0 such that

g
(

R
(

Q̃(s), Z̃(s)
))

> ǫ and Q̃1(s) > ǫ

for all s ∈ [t− δ, t + δ].

Pick r large enough together with an integer m and w ∈ Ar(T ) so that

‖X̃(t) − X
r,m(t)‖ < ǫ/2.

This gives that

g (R (Qr,m(s), Zr,m(s))) > ǫ/2 and Qr,m
1 (s) > ǫ/2,

since
√

xr,m

|Nr| = R on Ar(T ). By (4.188)

Br,m
12 (t+ δ) −Br,m

12 (t− δ) = 0,

and so

˙̃B12(t) = 0,

Now, by (3.5)

˙̃Z12(t) = −(1 − η)µ and

˙̃Z11(t) = ˙̃B11(t) − µηµ.

Equations (3.5), (3.8) and (4.192) give that

˙̃Z11(t) + ˙̃Z11(t) = 0.

Hence

˙̃B11(t) = µ.

Condition (4.191) is proved similarly.

Next we prove that

d

dt
|g
(

Q̂r(t), Ẑr(t)
)

| < 0 (4.193)
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for every regular point t of |g| whenever |g
(

Q̂r(t), Ẑr(t)
)

| > 0.

Let X̃i(t) = Q̃i(t) + Z̃1i(t) and X̃(t) = X̃1(t) + X̃2(t). Then, by (3.5) and (3.5), X̃i(t) =

X̃i(0) for all t ≥ 0, hence

˙̃X(t) = 0 for all t ≥ 0. (4.194)

First assume that g1

(

R
(

Q̃(t), Z̃(t)
))

> 0. Then, by (4.190)

˙̃Q1(t) = λ1 − µ = −(1 − η)t.

Hence,

ġ1

(

R
(

Q̃(t), Z̃(t)
))

= R ˙̃Q1(t) −
d

dt
(RX̃(t) − θ)+ = −(1 − η)t.

by (4.194).

Similarly, if g1

(

R
(

Q̃(t), Z̃(t)
))

< 0 then

ġ1

(

R
(

Q̃(t), Z̃(t)
))

= ˙̃Q1(t) = ηt.

This proves (4.193). By (4.193) Assumption 7 holds and this completes the proof.

4.3.1.2 Proofs of Propositions 4.35 and 4.37

Proof of Proposition 4.35. We prove the proposition in two parts.

i. Let X̄ be a fluid limit and for notational convenience assume that {X̄r(·, ω)}, for some

ω ∈ A, where A is defined as in proof of Theorem A.1 that satisfies (A.14), converges u.o.c.

to X̄. Assume that Q̄2(t) > 0.

By the continuity of Q̄ there exists ε > 0 and δ > 0 such that Q̄2(s) > ε for all

s ∈ [t− δ, t+ δ]. Since {X̄r(·, ω)} converges u.o.c. to X̄, Q̄r
2(s) > ε/4 for all s ∈ [t− δ, t+ δ]

and r large enough. Hence, Ar
11(·, ω) and Br

11(·, ω) are flat on [t− δ, t+ δ] by (4.181). Hence

˙̄A11(t) + ˙̄B11(t) = 0. (4.195)

ii. Fix (~qr, z) ∈ M. We show that if Q̄(0) = ~qr and Z̄(0) = z then Q̄(t) = ~qr and

Z̄(t) = z for all t > 0. So assume that Q̄(0) = ~qr and Z̄(0) = z for a fluid model solution.
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We start by showing that Z̄12(t) ≥ z12. Let f1(t) = (Z̄12(t)−z12)−. It is enough to show,

by virtue of Lemma 5.2 of Dai [18], that ḟ1(t) ≤ 0 whenever f1(t) > 0 for a regular point

t > 0. Assume that f1 is differentiable at time t > 0 and that f1(t) > 0, i.e., Z̄12(t) < z12.

Note that by (A.4),

˙̄Z12(t) = ˙̄B12(t) + ˙̄A212(t) − µ12Z̄12(t).

If Q̄2(t) > 0, then by (4.195) , (A.4) and (A.8), ˙̄A212(t) + ˙̄B12(t) = ˙̄D11(t) + ˙̄D12(t) =

µ1Z̄11(t)+µ2Z̄21(t). Also Q̄2(t) > 0 implies Z̄11(t)+ Z̄12(t) = 1, by (A.6). Hence, ˙̄A212(t)+

˙̄B12(t) > µ12Z̄12(t), which implies ˙̄Z12(t) > 0 and ḟ1(t) < 0. If Q̄2(t) = 0, then we claim

that ˙̄A212(t) + ˙̄B12(t) = λ2. If Z̄11(t) + Z̄12(t) < 1, this trivially follows from (A.6). If

Z̄11(t) + Z̄12(t) = 1 then we use the fact that ˙̄Q2(t) = 0, since it achieves its minimum at

t. This implies by (A.3) that ˙̄A212(t) + ˙̄B12(t) = λ2. Hence, if Q̄2(t) = 0 and Z̄12(t) < z12,

then ḟ1(t) ≤ 0. Hence, if Z̄12(0) ≥ z12 then Z̄12(t) ≥ z12 for all t ≥ 0.

Next, we show that if Q̄2(0) = 0 and Z̄12(0) ≥ z12 then Q̄2(t) = 0 and Z̄12(t) ≥ z12 for

all t ≥ 0. Assume that Q̄2(0) = 0 and Z̄12(0) ≥ z12 and that Q̄2(t) > 0. By the previous

argument we have that Z̄12(t) ≥ z12. By (A.3) and (A.4), ˙̄Q2(t)+ ˙̄Z12(t) ≤ λ1−µ12Z̄12(t) ≤

0. By (4.195), ˙̄Z12(t) ≥ 0 when Q̄2(t) > 0. Hence, if Q̄(t) > 0 and it is differentiable at

t > 0 then ˙̄Q(t) ≤ 0. Hence, if Q̄2(0) = 0 and Z̄12(0) ≥ z12 then Q̄2(t) = 0 and Z̄12(t) ≥ z12

for all t ≥ 0.

Now we are ready to show that if Q̄2(0) = 0 and Z̄12(0) = z12 then Q̄2(t) = 0 and

Z̄12(t) = z12 for all t ≥ 0. Assume that Q̄2(0) = 0, Z̄12(0) = z12, and Z̄12(t) > z12 for a

regular point t > 0. By the previous paragraph Q̄2(t) = 0, hence ˙̄Q2(t) = 0 by a similar

argument above. If Z̄11(t) + Z̄12(t) = 1, ˙̄A212(t) + ˙̄B12(t) = λ1 by the fact that ˙̄Q2(t) = 0,

and by equations (A.2) and (A.3). If Z̄11(t) + Z̄12(t) < 1, then ˙̄A212(t) + ˙̄B12(t) = λ1

by (A.2),(A.3), (A.5), and (A.9). Since ˙̄Z12(t) = ˙̄A212(t) + ˙̄B12(t) − µ12Z̄12(t), by (A.4),

˙̄Z12(t) < 0 if Z̄12(t) > z12. Hence, if Q̄2(0) = 0 and Z̄12(0) = z12 then Q̄2(t) = 0 and

Z̄12(t) = z12 for all t ≥ 0.

Next we show that if Q̄2(0) = 0, Z̄12(0) = z12, and Z̄11(t) = z11 then Q̄2(t) = 0,

Z̄12(t) = z12, and Z̄11(t) = z11 for all t ≥ 0. Let t > 0 be a regular point. By the
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arguments above, we have that Q̄2(t) = 0 and Z̄12(t) = z12. Hence, Z̄11(t) ≤ z11 by the

definition of the fluid scaling. So assume that Z̄11(t) < z11. This implies Q̄11(t) = 0. Hence,

˙̄A111(t)+
˙̄B11(t) = λ1. This gives that ˙̄Z11(t) > 0, since ˙̄Z11(t) = ˙̄A111(t)+

˙̄B11(t)−µ11Z̄11(t).

Finally, we show that if Q̄2(0) = 0, Z̄12(0) = z12, Q̄1(0) = r, and Z̄11(0) = z11 then

Q̄2(t) = 0, Z̄12(t) = z12, Q̄1(t) = r, and Z̄11(t) = z11 for all t ≥ 0. Let t > 0 be

a regular point. By the arguments above, we have that Q̄2(t) = 0, Z̄12(t) = z12, and

Z̄11(t) = z11. Assume that Q̄1(t) > r. Then ˙̄Q1(t) = ˙̄A11(t) − ˙̄B11(t) = 0, since by (A.2)

˙̄A11(t) + ˙̄A111(t) = λ1 and by (A.4) ˙̄A111(t) + ˙̄B11(t) = µ11z11 = λ1, when Z̄11(t) = z11,

Z̄12(t) = z12, and Q̄12(t) = 0.

Proof of Proposition 4.37. Proof is similar to that of Lemma 3.2 of Puhalskii and Reiman [56].

Let

X̂r
k(t) =

Qr
k(t) + Zr

1k(t) − |N r|λk/µ
√

|N r|
(4.196)

for k = 1, 2. We claim that

|Ẑr
1k(t)| ≤ |X̂r

k(t)| +
(

X̂r(t)
)+

. (4.197)

To prove this assume that Ẑr
1k(t) < 0, otherwise the result is obvious. If Ẑr

11(t)+ Ẑ
r
12(t) < 0,

then Q̂r
k(t) = 0 so the result follows. Assume that Ẑr

11(t) + Ẑr
12(t) = 0. Without loss of

generality we can assume that k = 1 . Since Ẑr
11(t) < 0, Ẑr

12(t) = −Ẑr
11(t) and Q̂r

2(t) ≥ 0,

so (4.197) follows.

By (4.196), for k = 1, 2

X̂r
k(t) = X̂r

k(0) +

(

Ar
k(t) − λr

kt
√

|N r|

)

−
√

|N r|





S1k

(

|N r|
∫ t
0 Z̄

r
1k(s)ds

)

|N r| − µ1k

∫ t

0
Z̄r

1k(s)ds





+
√

|N r|t
(

λr
k

|N r| − λk

)

− µ1k

∫ t

0
Ẑr

1k(s)ds.

Let

Âr
k(t) =

Ar
k(t) − λr

kt
√

|N r|
and Ŝr

k(t) =
√

|N r|





S1k

(

|N r|
∫ t
0 Z̄

r
1k(s)ds

)

|N r| − µ

∫ t

0
Z̄r

1k(s)ds



 .

Note that

Âr
k(·) ⇒W a

k (·) and Ŝr
k(t) ⇒W s

k (·) (4.198)
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as r → ∞ by Proposition 4.35, (4.183), and Donsker’s Theorem, see Billingsley [11], where

W a
k and W b

k are Brownians motion with zero drift and variance λk.

Now observe that

|Xr
1 (t)| + |Xr

2 (t)| ≤ |X̂r
1 (0)| + |X̂r

2 (0)| +
∣

∣

∣Âr
1(t) + Ŝr

1(t)
∣

∣

∣+
∣

∣

∣Âr
2(t) + Ŝr

2(t)
∣

∣

∣

+ µ

∫ t

0

(

|Ẑr
11(s)| + |Ẑr

21(s)|
)

ds

≤ |X̂r
1 (0)| + |X̂r

2 (0)| +
∣

∣

∣Âr
1(t)
∣

∣

∣+
∣

∣

∣Âr
2(t)
∣

∣

∣+
∣

∣

∣Ŝr
1(t)

∣

∣

∣ +
∣

∣

∣Ŝr
2(t)

∣

∣

∣

+ 3µ

∫ t

0
(|Xr

1(s)| + |Xr
2 (s)|) ds,

where the last inequality follows from (4.197). This with Gronwall’s inequality and (4.198)

gives

lim
R→∞

lim
r→∞

P
{∥

∥

∥
X̂r

1(t)
∥

∥

∥

T
∨
∥

∥

∥
X̂r

2(t)
∥

∥

∥

T
> R

}

= 0.

This gives (4.185) since Q̂r
i (t) ≥ 0 for all t ≥ 0, r ≥ 0, and k = 1, 2.

4.3.2 Milner-Olsen threshold policy

In Milner and Olsen [53], a call center with contract and non-contract customers is studied.

The first customer class consist of those customers under contract who are given a guarantee

for the percentile of delay. The second customer class is not given a guarantee on the service

level. In the model studied in Armony and Maglaras [3], the service level guarantee for the

second customer class is based on the waiting time not the percentile of the delay. We again

assume that (4.176),(4.177) and (4.179) hold.

The following policy is proposed by Milner and Olsen [53] and they conjecture that it

satisfies the service level guarantee for the first customer class and minimize the expected

waiting time of the customers in the second class.

Milner-Olsen Policy: Let 0 < QL < QH . When a server becomes available if QL <

Q̂r
1(t) and Q̂r

1(t) + Q̂r
2(t) < QH then class 1 customers are served if available, otherwise

class 2 customers (if any) are served. However, if when a server becomes available either

Q̂r
1(t) ≤ QL, Q̂r

1(t)+ Q̂r
2(t) ≤ QL, or Q̂r

1(t)+ Q̂r
2(t) ≥ QH then class 2 customers are served,

if possible, otherwise class 1 customers (if any) are routed to the free server.
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The Milner-Olsen policy can also be defined as follows. Let q = (q1, q2) ∈ R
2, z =

(z1, z2) ∈ R
2, Q = q1 + q2 and g1 : R

4 → R be defined by

g1(Q) =























Q if Q ≤ QL

QL if QL < Q < QH

Q if QL ≤ Q

Then, if Q̂r
1(t) > g1(Q̂

r
1(t) + Q̂r

2(t)) give priority to class 1 customers otherwise class 2

customers get priority.

As in the previous section, by Theorem 2 in Halfin and Whitt [32], X̂r converges weakly

to a diffusion process X̂ as r → ∞ if X̂r(0) converges weakly, see Theorem 4.36. Let

Q̂1(t) = g1(X̂(t)).

We claim Q̂1 is not in D[0,∞). To see this assume that X̂(0) = QH . Then, on any finite

interval [0, T ], X̂(0) − QH changes sign infinitely many times with positive probability,

see Section 3.5.C and Problem 2.7.8 in Karatzas and Shreve [43]. Hence, Q̂1 has no right

limit at 0. Therefore, in order to study the convergence of Q̂r
1 to Q̂1 a broader space than

D[0,∞) must be considered with an appropriate metric. Instead, we study another policy

to approximate the performance of the policy proposed by Milner and Olsen which ensures

that Q̂1 ∈ D[0,∞).

We define a new function gǫ
1 for ǫ > 0 as follows.

gǫ
1(Q) =



































Q if Q(t) ≤ QL

QL if QL < Q ≤ QH − ǫ

QL + QH−QL

ǫ (Q−QH + ǫ) if QH − ǫ < Q < Q

Q if QL ≤ Q

We define a new policy using gǫ
1 as follows. Let

gǫ(q, z) = q1 − gǫ
1(Q).

If Q̂r
1(t) > gǫ

1(Q̂
r(t), Ẑr(t)) > 0 give priority to class 1 customers otherwise give priority to

class 2 customers. We call this policy the Milner-Olsenǫ threshold policy.
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g1(Q)

Q

QH

QHQL

QL

Figure 7: Graph of g1

gǫ

1
(Q)

Q

QH

QH − ǫ QHQL

QL

Figure 8: Graph of gǫ
1
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Figure 4.3.2 shows Q versus g1(Q) and Figure 4.3.2 shows Q versus gǫ
1(Q). Clearly, g1

is not continuous but gǫ
1(Q) is. We show that by continuity of gǫ

1 Q̂
ǫ
1 is in D[0,∞).

We will prove the following state space collapse result using Theroem 3.4.

Proposition 4.38. Let {Xr} be a sequence of V-parallel server system processes working

under the Milner-Olsenǫ threshold policy. Assume that

(Q̂r
1(0), Q̂

r
2(0)) ⇒

(

gǫ
1

(

Q̂1(0) + Q̂2(0)
)

, Q̂1(0) + Q̂2(0) − gǫ
1

(

Q̂1(0) + Q̂2(0)
))

as r → ∞. Then

(

Q̂r
1(·), Q̂r

2(·)
)

⇒
(

gǫ
1

(

X̂(·)+
)

, X̂(·)+ − gǫ
1

(

X̂(·)+
))

as r → ∞.

Remark 4.39. It can be shown that; see Corollary 2 in Halfin and Whitt [32], for every

η > 0, there exists ǫ > 0 such that

P
{

g1(Q̂(t)) − gǫ
1(Q̂(t)) > 0

}

≤ η.

4.3.2.1 Analysis of Milner-Olsenǫ threshold policy

Let {Xr} be a sequence of V-systems working under the Milner-Olsenǫ threshold policy. We

start our analysis by presenting the additional equations that must be satisfied by X
r.

According to the Milner-Olsenǫ policy for all s ≤ t

Br
11(t) −Br

11(s) = Dr
11(t) +Dr

12(t) −Dr
11(s) −Dr

12(s)

if gǫ
(

Q̂r(u), Ẑr(u)
)

> 0 for all u ∈ [s, t] (4.199)

and

Br
21(t) −Br

21(s) = Dr
11(t) +Dr

21(t) −Dr
11(s) +Dr

21(s)

if gǫ
(

Q̂r(u), Ẑr(u)
)

< 0 for all u ∈ [s, t]. (4.200)

The following proposition characterizes the fluid limits of V-parallel server systems working

under the Milner-Olsenǫ threshold policy.
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Proposition 4.40. Let {Xr} be a sequence of V-parallel server system processes working

under the Milner-Olsenǫ threshold policy. Assume that the conditions of Theorem A.1 are

satisfied.

i. In addition to the fluid limit equations (A.2)-(A.9), each fluid limit X̄ of X
r satisfies

˙̄B11(t) = 0 if Q̄1(t) + Q̄2(t) > 0,

ii. Let ~qr = (q1, q2), where q1 = r ≥ 0 and q2 = 0 and z = {z11, z12}, where z1i = λi

µi
for

i = 1, 2. Then, M = {(~qr, z) : r ≥ 0} is the set of all the invariant states of the fluid

limits of X
r.

The proof is similar to that of Proposition 4.35 hence it is omitted.

By (4.179),

(Q̄r(0), Z̄r(0)) ⇒ (0, z)) ,

where z = (λ1/µ1, λ2/µ2), hence X
r satisfies Assumption 2. Note that, X

r satisfies Assump-

tion 1 by (4.176) and (4.177).

We again prove the SSC result using Theorem 3.7. Therefore, we next show that As-

sumption 6 holds. We first note that the Milner-Olsenǫ threshold policy is non-idling. There-

fore, the results of Theorem 4.36 and (4.184) hold for X̂r in the current model too. Using

these results we can also show that Proposition 4.37 also holds under the Milner-Olsenǫ

threshold policy. Now we are ready to prove Proposition 4.38.

Proof of Proposition 4.38. Let {Xr} be a sequence of V-parallel server system processes

working under the Milner-Olsenǫ threshold policy.

We define the SSC function for this model by |gǫ|(·) = gǫ(·). Note that |gǫ| is continuous.

Therefore, it satisfies Assumption 5. Also, X
r satisfies Assumption 1 by (4.176) and (4.177).

Also, by Proposition 4.40 Assumption 2 holds. In addition, {Xr} satisfies Assumption 6 by

Proposition 4.37. Therefore, it remains to check that {Xr} satisfies Assumption 7.

First we establish the hydrodynamic limits. Equations (4.199) and (4.200) imply that,

140



for all s ≤ t

Br,m
11 (t) −Br,m

11 (s) = Dr,m
11 (t) +Dr,m

12 (t) −Dr,m
11 (s) +Dr,m

12 (s)

if gǫ

(
√

xr,m

|N r|
(

Q̂r,m(u), Ẑr,m(u)
)

)

> 0 for all u ∈ [s, t] (4.201)

Br
12(t) −Br

12(s) = Dr
11(t) +Dr

12(t) −Dr
11(s) +Dr

12(s)

if gǫ

(
√

xr,m

|N r|
(

Q̂r,m(u), Ẑr,m(u)
)

)

< 0 for all u ∈ [s, t] (4.202)

where the hydrodynamic scaled process X
r,m is defined by (3.24).

Fix R > 0 and T > 0 and let Ar(T ) be defined as in (3.19). Let X̃ be a hydrody-

namic limit on Ar
R(T ). Recall that we have showed that X̃ satisfies (3.1)-(3.8). We next

characterize the additional equations associated with the policy. We claim that

˙̃B11(t) = µ when gǫ
(

R
(

Q̃(t), Z̃(t)
))

> 0 (4.203)

˙̃B12(t) = µ when gǫ
(

R
(

Q̃(t), Z̃(t)
))

< 0 and . (4.204)

To see this assume that

gǫ
(

R
(

Q̃(t), Z̃(t)
))

< −2η

for some η > 0. By continuity of gǫ and X̃ there exists δ > 0 such that

gǫ
(

R
(

Q̃(s), Z̃(s)
))

< −η

for all s ∈ [t− δ, t + δ].

Pick r large enough together with an integer m and w ∈ Ar(T ) so that

‖X̃(t) − X
r,m(t)‖ < ǫ/2.

This gives that

gǫ (R (Qr,m(s), Zr,m(s))) < −η/2,

since
√

xr,m

|Nr| = R on Ar(T ). By (4.201)

Br,m
12 (t+ δ) −Br,m

12 (t− δ) = 0,
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and so

˙̃B12(t) = 0,

Now, by (3.5)

˙̃Z12(t) = −(1 − η)µ and

˙̃Z11(t) = ˙̃B11(t) − µηµ.

Equations (3.5), (3.8) and (4.192) give that

˙̃Z11(t) + ˙̃Z11(t) = 0.

Hence

˙̃B11(t) = µ.

Condition (4.204) is proved similarly.

Next we prove that

d

dt
|gǫ|

(

Q̂r(t), Ẑr(t)
)

| < 0 (4.205)

whenever |gǫ|
(

Q̂r(t), Ẑr(t)
)

| > 0. We first note that (4.194) also holds for this case.

First assume that gǫ
(

R
(

Q̃(t), Z̃(t)
))

< 0. Then, by (4.203)

˙̃Q1(t) = λ1 − µ = −(1 − η)t.

Hence,

ġǫ
(

R
(

Q̃(t), Z̃(t)
))

= R ˙̃Q1(t) −
d

dt
(RX̃(t) − θ)+ = (1 − η).

by (4.194).

Similarly, if g1

(

R
(

Q̃(t), Z̃(t)
))

> 0 then

ġǫ
(

R
(

Q̃(t), Z̃(t)
))

= ˙̃Q1(t) = −η.

This proves (4.205). By (4.205) Assumption 7 holds and this completes the proof.
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CHAPTER V

CONCLUSIONS

In this thesis, we focused on the asymptotic analysis of parallel server systems under the

Halfin-Whitt regime. Parallel server systems we studied are quite general and can be used

to analyze systems with many servers that are especially seen in the service sector.

The main contribution of this study is two-fold; (i) we take the first step to establish

a general theory to validate many-server approximations and establish a framework for

showing SSC results that should facilitate the asymptotic analysis of multiclass parallel

server systems and (ii) we prove new SSC results for three parallel server systems.

Before studying many-server diffusion limits of parallel server systems, we first formu-

lated the many-server heavy traffic regime using a static planning problem (SPP) similar

to that in Harrison [35]. Using this formulation we found the optimal allocation of servers’

capacities to customer classes. We also provided a basic result based on fluid limits to check

if allocations under a policy is in accordance with the solution of that SPP. We focused our

attention to those policies whose allocations are optimal in this sense. Using these alloca-

tions, we also were able to define a general diffusion scaling under which meaningful limits

can be obtained.

Once we set the background for more detailed diffusion analysis, we provided a neces-

sary condition for a multiplicative SSC result to hold in the diffusion limits. This necessary

condition is related to the hydrodynamic limits. Hydrodynamic limits have similar prop-

erties to the fluid limits but they are different. Most importantly, they are deterministic

and almost everywhere differentiable. These properties enable one to check whether the

necessary condition for a SSC holds in a straightforward manner. We also provided two

extensions to our main result. These extensions involve relaxing the homogeneity condition

on the space collapse function.
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SSC results play an important role in establishing diffusion limits both under the con-

ventional heavy traffic and the Halfin-Whitt many-server diffusion limits. We illustrate

the application of our results in three different systems and prove several SSC results. To

the best of our knowledge, these results are new and our framework made the asymptotic

analysis of these systems possible.

We first focus on a distributed parallel server system operating under two different

policies; MED–FSF and MED–LB policies. We proves that the MED-FSF policy is asymp-

totically optimal in the sense that it stochastically minimizes the stationary distribution

of the number of customers in the system and the stationary probability that a customer

gets delayed in the queue. However, all the servers in our distributed system except those

with the lowest service rate experience 100% utilization. Under the MED-LB policy, on the

other hand, the utilizations of all the server pools are equal. We also showed that under

both policies the system performs as well as a corresponding single queue system.

The second system we consider is known as the N-system. These systems have been

extensively studied in the literature under the conventional heavy traffic and served as a

stepping stone for the analysis of more general parallel server systems. We showed that

when the service times only depend on the server pool providing service a static priority

rule is asymptotically optimal in an N-system. The optimality is in terms of stochastically

minimizing linear holding costs during a finite time interval.

Finally, we study two results conjectured in the literature for V-systems. First, we prove

a state space collapse result conjectured in Armony and Maglaras [3]. Then, we propose a

policy whose asymptotic performance is arbitrarily close to the conjectured performance of

the policy proposed by Milner and Olsen [53] and prove a state space collapse result under

this policy.

The results presented in this thesis can be extended in several directions. The conditions

for a SSC result we provided here are only sufficient. It is important to establish necessary

and sufficient conditions for a SSC result. Another direction that will be explored in the

future is to establish a deterministic relationship between waiting times and queue lengths.

Distribution of waiting times are commonly used to measure the performance of service
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systems. However, in many-server diffusion analysis, queue length processes are easier to

analyze than waiting time processes. Also, we provided a necessary condition only for a

multiplicative SSC result. Generally, a strong SSC result is needed in diffusion analysis.

Sufficient conditions for a policy to satisfy the compact containment condition will also help

facilitate the many-server diffusion analysis.

In our analysis of DPS systems, we assumed that all the server pools are large. A current

trend in call center industry is to employ agents working from home. In one extreme case,

a DPS system becomes totally distributed in the sense that as the number of servers go to

infinity so does the number of queues that customers are routed to. In this case we believe

that more sophisticated load balancing policies, which involve periodic load balancing, would

be needed. The systems that fall in between these two extreme cases are also of practical

importance.

We showed that a static priority policy is asymptotically optimal for N-systems that

satisfy certain conditions. However, this analysis can be extended to other N-systems as

long as service rates only depend on the server pool providing the service. Also, when service

rates of two customer classes from the second server pool only differ by a “reasonable”

amount, the “perturbation approach” in Maglaras and Zeevi [48] can be used to provide

close approximations for the system performance.

Extending our optimality result to more general parallel server system is another im-

portant extension and is currently being pursued. Another interesting direction that could

be explored is to establish necessary condition for the stability of a static priority policy

when the number of servers is fixed. This would be important in applications as to see for

what utilization levels a threshold value should be used.
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APPENDIX A

FLUID LIMITS OF PARALLEL SERVER SYSTEMS

In this chapter we study the fluid limits and present the fluid model equations of parallel

server systems. We establish a general framework that can be used to check if Assumption 2

is satisfied by a control policy.

Let {Xr
π} be a sequence of π parallel server system processes and

X̄
r
π(t) = X

r
π(t)/N r. (A.1)

We call this scaling the fluid scaling and X̄
r
π the fluid scaled process. X̄π is called a fluid

limit of {Xr
π} if there exists an ω ∈ Ω and a sequence {rl} with rl → ∞ as l → ∞, such

that X̄
rl
π (·, ω) converges u.o.c. to X̄π as l → ∞. The following theorem is analogous to

Theorem 4.1 in Dai [18].

Theorem A.1. Let {Xr
π} be a sequence of π parallel server system processes. Assume that

(2.18) and (2.19) hold and
{

Q̄r(0)
}

is bounded a.s. as r → ∞. Then, {X̄r
π} is a.s. pre-

compact in the Skorohod space D
d[0,∞) endowed with the u.o.c. topology. Thus, the fluid
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limits exist and each fluid limit, X̄π, of
{

X̄
r
π

}

satisfies the following equations for all t ≥ 0.

λit =
∑

k∈K Āik(t) +
∑

k∈K
∑

j∈J (k) Āijk(t), for all i ∈ I, (A.2)

Q̄k(t) = Q̄k(0) +
∑

i∈I Āik(t) −
∑

j∈J (k) B̄jk(t), for all k ∈ K, (A.3)

Z̄jk(t) = Z̄jk(0) +
∑

i∈I Āijk(t) + B̄jk(t) − µjkT̄jk(t), for all j ∈ J and k ∈ K(j)(A.4)

T̄jk(t) =
∫ t
0 Z̄jk(s)ds, for all j ∈ J and k ∈ K(j), (A.5)

Q̄k(t)
(

∑

j∈J (k)

(

βj −
∑

l∈K(j) Z̄jl(t)
))

= 0, for all k ∈ K, (A.6)

Ȳj(t) = βjt−
∑

k∈K(j) T̄jk(t), for all j ∈ J , (A.7)

∫ t
0

∑

k∈K(j) Q̄j(s)dȲj(s) = 0, for all j ∈ J , (A.8)

∫ t
0

∑

j∈J (k)

(

βj −
∑

l∈K(j) Z̄jl(s)
)

dĀik(s) = 0, for all i ∈ I and k ∈ K (A.9)

Ā, Āq, Ās, T̄ , Ȳ , and B̄ are nondecreasing, (A.10)

Q̄(t) ≥ 0, Z̄jk(t) ≥ 0, and
∑

k∈K(j) Z̄jk(t) ≤ βj , for all j ∈ J and k ∈ K(j). (A.11)

Definition A.2. We call the vector (q, z) a steady state of the fluid limits if for any fluid

limit X̄π, Q̄(0) = q and Z̄(0) = z implies Q̄(t) = q and Z̄(t) = z for all t > 0.

We denote the set of all the steady states of the fluid limits of {Xr
π} by Mπ. The

following result presents a condition that is equivalent to Assumption 2.

Lemma A.3. Let {Xr
π} be a sequence of π parallel server system processes that satisfies the

conditions of Theorem A.1 and Assumption 1. A control policy π satisfies Assumption 2 if

and only if (0, z) ∈ Mπ, where zjk = βjx
∗
jk and x∗ is given as in Assumption 1.

Proof. Assume that π satisfies Assumption 2 and that (Qr(0)/N r, Zr(0)/N r) → (0, z) a.s.

as r → ∞. By (2.22), (A.4), and (A.5)

∑

k∈K

∑

j∈J (k)

∑

i∈I
Āijk(t) +

∑

k∈K

∑

j∈J (k)

B̄jk(t) =
∑

k∈K

∑

j∈J (k)

µjkβjx
∗
jkt. (A.12)

By (A.2)

∑

i∈I
λit =

∑

i∈I

∑

k∈K
Āik(t) +

∑

i∈I

∑

k∈K

∑

j∈J (k)

Āijk(t). (A.13)
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By Assumption 1,
∑

i∈I λi =
∑

k∈K
∑

j∈J (k) µjkβjx
∗
jkt. This combined with (A.12) and

(A.13) implies that

∑

k∈K

∑

j∈J (k)

B̄jk(t) =
∑

i∈I

∑

k∈K
Āik(t).

Hence, by (A.3)

∑

k∈K
Q̄k(t) =

∑

k∈K
Q̄k(0) +

∑

k∈K

∑

i∈I
Āik(t) −

∑

k∈K

∑

j∈J (k)

B̄jk(t) =
∑

k∈K
Q̄k(0) = 0.

Thus, (0, z) ∈ Mπ.

Now assume that (0, z) ∈ Mπ and that (Qr(0)/N r, Zr(0)/N r) → (0, z) a.s. as r → ∞.

Then, by (A.5), T ∗
jk(t) = βjx

∗
jkt for all t ≥ 0.

Proof of Theorem A.1. Assume that (2.18) and (2.19) hold. Let A ⊂ Ω be such that

{Q̄r(0)} is bounded and the following FSLLN holds,

E(N r·)
N r

→ ν(·) and
Sjk(N

r·)
N r

→ αjk(·) u.o.c. (A.14)

as r → ∞, where αjk(t) = µjkt, for all j ∈ J , k ∈ K(j), and ν(t) = te, where e is the

I-dimensional row vector of ones. Note that we can take P (A) = 1 from (2.13).

Consider a sequence of numbers which we again denote, with a slight abuse of notation,

by {r}. We show that {X̄r(·, ω)} has a convergent subsequence, for all ω ∈ A. We fix ω ∈ A

for the rest of the proof.

Observe that

∣

∣

∣

∣

T r(t2, ω)

N r
− T r(t1, ω)

N r

∣

∣

∣

∣

≤ |t2 − t1|,

for all 0 ≤ t1 < t2. Hence,
{

T̄ r(·, w)
}

is tight; there exists a subsequence {rl} such that

T̄ rl(·, ω) converges u.o.c. to some continuous function T̄ . Since, D̄rl

jk(t) = 1
NrSjk

(

N rT̄ rl

jk(t)
)

,

D̄rl

jk(·) converges u.o.c. to D̄jk(·), (A.15)

where D̄jk(t) = µjkT̄ (t), by random time change theorem; see Theorem 5.3 in [15]. By

(A.14), Ārl(·, ω) converges u.o.c. to Ā(t) = λt, hence, it is pre-compact in DI [0,∞). But,
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for all 0 ≤ t1 < t2 and j ∈ J ,

Ārl

ik(t2, ω) − Ārl

ik(t1, ω) ≤ Ārl(t2, ω) − Ārl(t1, ω).

By Theorem 12.3 of Billingsley [11], this implies that {Ārl

ik(·, ω)} is also pre-compact. By

the same argument, so is {Ārl

ijk(·, ω)}, for all i ∈ I, k ∈ K, and j ∈ J (k).

Without loss of generality we can assume that

(Ārl(·, ω), Ārl
s (·, ω), Ārl

q (·, ω), D̄rl(·, ω),T̄ rl(·, ω), Ȳ rl(·, ω)) (A.16)

converges u.o.c. as l → ∞. We next show that B̄rl is pre-compact. Fix j ∈ J , k ∈ K(j),

and 0 ≤ t1 ≤ t2. We omit ω from the notation below. By (2.5), we have that

B̄rl

jk(t2) − B̄rl

jk(t1) ≤
∑

k′∈K(j)

(

D̄rl

jk′(t2) − D̄rl

jk′(t1)
)

. (A.17)

Since B̄rl

jk is nondecreasing, again by Theorem 12.3 of Billingsley [11], (A.17) implies that
{

B̄rl

jk(·, ω)
}

is pre-compact. This implies by (2.5) and (A.16) that
{

Z̄rl

jk(·, ω)
}

is pre-

compact. Finally, combining these results with (2.4), we have that
{

Q̄rl

k (·, ω)
}

is pre-

compact. Thus,
{

X̄
r
}

has a convergent subsequence.

Next, we show that every fluid limit satisfies (A.2)-(A.9). Let X̄ be a fluid limit and

for notational convenience assume that {X̄r(·, ω)}, for some ω ∈ A, converges u.o.c. to

X̄. X̄ satisfies (A.2) by (2.3), the convergence of Ār
i (·, ω) to Āi(t) = λt and the fact that

Ār
ik(·, ω) and Ār

ijk(·, ω) are both convergent. Equation (A.3) is satisfied by X̄ by (2.4) and

the convergence of Q̄r(0, ω), Ār
kj(·, ω), and B̄r

jk(·, ω). Equation (A.4) follows from (A.15),

the convergence of Z̄r
jk(0, ω), Ār

ijk(·, ω), and B̄r
jk(·, ω). Equation (A.5) follows from (2.8)

and the convergence of Z̄r
jk(·, ω) to Z̄jk(·) u.o.c.

We next show that X̄ satisfies (A.6). Fix t > 0. If Q̄k(t) = 0, then (A.6) is satisfied

trivially, so assume that Q̄k(t) > 0. By the continuity of Q̄k, there exist t > δ > 0 and

ε > 0 such that Q̄k(s) > ε for all s ∈ [t− δ, t+ δ]. Since Q̄r
k converges u.o.c. to Q̄k, for large

enough r

Q̄r
k(s, ω) > ε/4 for all s ∈ [t− δ, t+ δ].
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By (2.10), this gives

∑

j∈J (k)





N r
j

N r
−
∑

l∈K(j)

Z̄r
jl(s, ω)



 = 0 for all s ∈ [t− δ, t + δ].

Using the fact that X̄
r converges u.o.c. to X̄ again, we have that

∑

j∈J (k)



βj −
∑

l∈K(j)

Z̄jl(s)



 = 0 for all s ∈ [t− δ, t+ δ],

thus proving (A.6). It can be shown similarly that X̄ satisfies (A.8) and (A.9).

Remark A.4. It follows from (A.2)-(A.5) and the proof of Theorem A.1 that each compo-

nent of X̄ is Lipschitz continuous and so they are absolutely continuous and differentiable

almost everywhere with respect to the Lebesgue measure on [0,∞).
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APPENDIX B

EQUIVALENCE OF THE ORIGINAL AND PERTURBED

SYSTEMS

The key to the equivalence between the original and the perturbed systems is the assumption

of exponential service times. Without the memoryless property, the residual service times

would upset the equivalence we show in this appendix.

For notational simplicity we focus on systems with no routing. We assume that a type

i customer will be automatically routed to queue k at the time of his arrival. Therefore

I = K and we omit the subscript i from the notation throughout this section. For the rest

of this section we fix a policy π. Recall that each policy is associated with a transaction

function fπ. For simplicity, we assume that fπ is a deterministic function, but it can be

taken as a random variable that is independent of {X(t) : t ≥ 0}.

The following result will be needed in the following sections.

Lemma B.1. Let (Ω, P,F) be a probability space and A,B,N ∈ F with P (N ) = 0. Then

P (A|B ∪N ) = P (A|B) ,

where

P (A|B)P (B) = P (A ∩B) .

Proof is elementary, hence omitted.

B.1 Piecewise-deterministic Markov processes

To prove the equivalence of the original system with the perturbed system we model

both systems as piecewise-deterministic Markov processes (PDP’s) that are introduced by

Davis [23]. Below, we give a brief overview of PDP’s. A thorough treatment of the subject

can be found in Davis [23].
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For our purposes, it is enough to define a PDP on a state space E ⊂ Rp partitioned

into a boundary Eδ and interior Eo. We let E denote the Borel subsets of E, and we will

let P (E) be the space of probability measures on the measurable space (E, E), endowed

with the topology of weak convergence. Under suitable regularity conditions a PDP can be

uniquely determined by a vector field h : E → R
p, an intensity function λ : E → R+, and a

transition measure ̟ : E → P (E).

Between jumps a PDP x(t) obeys dx(t)/dt = h(x(t)), and jumps occur at rate λ(x) when

the process is at state x, independently of the process history. If a jump occurs at x ∈ Eo

or the process reaches the boundary at x ∈ Eδ, the process is transferred immediately to a

new state given randomly by probability measure ̟(dx|x). We assume that ̟(Eo|x) = 1.

We use σn to denote the the nth jump time of the PDP process x(t).

Let N(t) =
∑∞

i=1 Iσi≤t. Under the assumption

E[N(t)] <∞ for all t

it can be shown that {x(t)} is a strong Markov process, see Davis [23]

B.2 Construction of parallel server systems

In this section we construct the processes associated with a parallel server system. Recall

that arrivals to class k are given by a renewal process Ek and we assume that the interarrival

times of Ek are given by the i.i.d. sequence {uk(m) : m = 1, 2, . . .} for each k ∈ K. We also

assume that uk(1) > 0 w.p. 1.

We also assume that a sequence of i.i.d. exponential random variables {v′k(m) : m =

1, 2, . . .} gives the service times, where v′k(m) is the service request for the mth class k

customer. We assume that customers already present in the system at time 0 are or-

dered in some manner, so if there are Z ′
k(0) class k customers in the system at time 0,

(v′k(1), . . . , v
′
k(Z

′
k(0))) gives the service times of these customers. The actual service time of

a customer naturally depends on the server pool handling his request. The service time of

the mth customer is given by v′k(m)/µjk if he is handled by a server in pool j. We assume

that the service and interarrival times are independent.
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Let X ′(t) = (Q′(t), Z ′(t), b′(t)) denote the state of the system at time t, where Q′ and

Z ′ have the same interpretations as before and b′(t) = (b′1(t), . . . , b
′
K(t)) with b′k(t) is the

remaining time before the next class k customer will arrive from outside at time t. We

assume for simplicity that bk(0) > 0 for k 6= k′. Recall that, we use {σn} to denote the

increasing sequence of event times, either an arrival to or departure from the system.

Let ṽjkℓ(t) denote the remaining service time of the the class k customer being served

by the ℓth server among the servers who serve class k customers in server pool j at time t

for ℓ ≤ Z ′
jk(t). For notational simplicity we set

V(z) = {(j, k, ℓ) : k ∈ K, j ∈ J (k), ℓ ∈ {1, . . . , zjk}},

Vk′(z) = {(j, k′, ℓ) : j ∈ J (k), ℓ ∈ {1, . . . , zjk}},

where z ∈ N
J×K so that if (j, k, l) ∈ V(z) then ṽjkℓ(t) is a well defined random variable.

Recall that sn = σn − σn−1, where σn is defined in Chapter 2 and observer that

sn = min{b′(σn), ṽjkℓ(σn);∀(j, k, ℓ) ∈ V(Z ′(σn))}.

We note that how the servers are indexed in a pool does not matter. However, once a

customer begins service with a particular server, he stays in service with the same server

until his service is completed. In particular, that server cannot switch to serving any new

arrival.

The following lemma uses our assumption that service times are independent and expo-

nentially distributed to show a parallel server system satisfies a Markov property.

Lemma 2. Let x = (q, z, b), with q ∈ N
K , z ∈ N

J×K , and b ∈ R
K
+ . The following statements

are true for each n.

(i) Only one of the following events may happen at time σn; only one service completion

or arrival to one or more customer classes.

(ii) Let tjkℓ ≥ 0 and ˜̃vjkℓ for (j, k, ℓ) ∈ V(z) be an exponential r.v. with rate µjk that are
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independent from {X(t) : t ≥ 0}. Then

P
{

ṽjkℓ(σn) > tjkℓ;∀(j, k, ℓ) ∈ V (z)|X ′(σn) = x
}

=
∏

(j,k,ℓ)∈V (z)

P
{

˜̃vjkℓ > tjkℓ

}

, (B.1)

for any nonempty V (z) ⊂ V(z).

Proof. We prove the result by induction. For n = 0, (i) holds since we assume that bk(0) > 0

for all k ∈ K. The second result (ii) holds since at time zero all the service times are assumed

to have exponential distribution. Assume that (i) and (ii) hold for n.

Next we prove that (i) holds for n+1. By our induction argument the event(s) at time σn

is either a departure or one or more arrival events. Also, at time σn all the remaining service

times have exponential distribution by our induction argument. Therefore, the remaining

service times have a continuous distribution, and so the probability that either more than

one departure or a simultaneous departure and arrival occur at time σn+1 is 0. Hence, (i)

holds for n+ 1.

Now, let x(m) = (q(m), z(m), b(m)), with q(m) ∈ N
K , z(m) ∈ N

J×K, and b(m) ∈ R
K
+ ,

for m = 1, 2, . . .. For simplicity we take V (z) = V(z). Then

P
{

ṽjkℓ(σn+1) > tjkℓ; (j, k, ℓ) ∈ V(z(n+ 1))|X ′(σn+1) = x(n+ 1)
}

=

∫

NK×NJ×K×RK
+

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1))|X ′(σm) = x(m);m = n, n+ 1
}

dP
{

X ′(σn) = x(n)|X ′(σn+1) = x(n+ 1)
}

.

Recall that we assume fπ is a deterministic function. Assume that the event {X ′(σn) =

x(σn),X ′(σn+1) = x(σn+1)} is given so we know Zjk(t) + Qk(t) at times σn and σn+1.

Therefore, we can determine w.p. 1 if an arrival to class k has happened or a class k

customer’s service is completed at time σn+1.

Since at time σn+1, there is either a service completion or arrival events; either

qk(n+ 1) +
∑

j∈K
zjk(n+ 1) = qk(n) +

∑

j∈K
zjk(n) − 1 (B.2)

for some k ∈ K or

qk(n+ 1) +
∑

j∈K
zjk(n+ 1) = qk(n) +

∑

j∈K
zjk(n) + 1 (B.3)
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for k ∈ K̃ ⊂ K.

Assume that (B.3) holds for some K̃ ⊂ K. Then,

{X ′(σn) = x(n),X ′(σn+1) = x(n+ 1)}

≡ {X ′(σn) = x(n),X ′(σn+1) = x(n+ 1), ṽjkℓ(σn) > sn;∀(j, k, ℓ) ∈ V(z(n))} ∪ N

≡ {X ′(σn) = x(n), ṽjkℓ(σn) > sn;∀(j, k, ℓ) ∈ V(z(n))} ∪ N , (B.4)

for some P -null set N . Note that from the discussion above there cannot be a service

completion event at the same instant. Then, by (B.4) and Lemma B.1, when x(n) and

x(n+ 1) satisfy (B.3)

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1))|X ′(σn) = x(n),X ′(σn+1) = x(n+ 1)
}

=

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1))

|X ′(σn) = x(n), ṽjkℓ(σn) > sn;∀(j, k, ℓ) ∈ V(z(n))
}

=

P
{

ṽjkℓ(σn) > tjkℓ + sn;∀(j, k, ℓ) ∈ V(z(n)) ∩ V(z(n + 1))

|X ′(σn) = x(n), ṽjkℓ(σn) > sn;∀(j, k, ℓ) ∈ V(z(n))
}

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1)) \ V(z(n))

|X ′(σn) = x(n), ṽjkℓ(σn) > sn;∀(j, k, ℓ) ∈ V(z(n))
}

Above, V(z(n)) ∩ V(z(n + 1)) gives the set of customers whose service have started on or

before σn and V(z(n + 1)) \ V(z(n)) gives the set of customers whose service have started

on σn+1, since we assume that an admissible policy is non-preemptive. The second equality

follows from that fact that if a class k customer’s service starts at time σn+1 at service pool

j it has exponential distribution with rate µjk, independent from other service times. Now,

P
{

ṽjkℓ(σn) > tjkℓ + sn;∀(j, k, ℓ) ∈ V(z(n)) ∩ V(zn+1)

|X ′(σn) = x(n), ṽjkℓ(σn) > sn;∀(j, k, ℓ) ∈ V(z(n))
}

=
∏

(j,k,ℓ)∈V(z(n))∩V(z(n+1))

P
{

˜̃vjkℓ > tjkℓ

}
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by induction hypothesis. And

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1)) \ V(z(n))

|X ′(σn) = x(n), ṽjkℓ(σn) > sn;∀(j, k, ℓ) ∈ V(z(n))
}

=
∏

(j,k,ℓ)∈V(z(n+1))\V(z(n))

P
{

˜̃vjkℓ > tjkℓ

}

(B.5)

because of the independence of the service times. Hence, we get the desired result in this

case.

Now assume that (B.2) holds for k′. When (B.2) holds there are two possible cases that

must be analyzed separately:

(a) zjk′(n + 1) = zjk′(n) for all j ∈ J (k′) and qk′(n + 1) = qk′(n) − 1. In this case one

of the server pools have completed serving a class k′ customer, but we cannot extract

from (B.2) which one it is.

(b) zj′k′(n + 1) = zj′k′(n) for some j′ ∈ J (k′) and qk′(n+ 1) = qk′(n) − 1. In this case a

server in pool j′ has completed serving a class k′ customer.

Below, we prove the result for (a), the proof of in case (b) is similar. We define

τk′(σn) = min{ṽjk′ℓ(σn); {jk′ℓ} ∈ Vk′(z(n))}. (B.6)

Then, if (a) holds

{X ′(σn) = x(n),X ′(σn+1) = x(n+ 1)}

≡ {X ′(σn) = x(n),X ′(σn+1) = x(n+ 1), τk′(σn) = sn} ∪ N

≡ {X ′(σn) = x(n), τk′(σn) = sn} ∪ N (B.7)

for some P -null set N . Therefore, in this case

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1))|X ′(σn) = x(n),X ′(σn+1) = x(n+ 1)
}

=

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1))|X ′(σn) = x(n), τk′(σn) = sn

}

=
∑

(j′k′ℓ′)∈Vk′(z(n))

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1))

|ṽjkℓ(σn) > ṽj′k′ℓ′(σn);∀(j, k, ℓ) ∈ V(z(n)) \ {j′, k′, l′},X ′(σn) = x(n)
}

P
{

ṽj′k′ℓ′(σn) = sn

}

(B.8)
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In the above display, the first equality follows from (B.7) and the second equality follows

from the induction argument and from the independence of service times. Now, for any

{j′, k′, ℓ′} ∈ Vk′(z(n))

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1))

|ṽjkℓ(σn) > ṽj′k′ℓ′(σn);∀(j, k, ℓ) ∈ V(z(n)) \ {j′, k′, l′},X ′(σn) = x(n)
}

= P
{

ṽjkℓ(σn) > tjkℓ + sn;∀(j, k, ℓ) ∈
(

V(z(n)) \ {j′, k′, ℓ′}
)

∩ V(z(n + 1))

|ṽjkℓ(σn) > ṽj′k′ℓ′(σn);∀(j, k, ℓ) ∈ V(z(n)) \ {j′, k′, l′},X ′(σn) = x(n)
}

× P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1)) \
(

V(z(n)) \ {j′, k′, ℓ′}
)}

. (B.9)

In the above display (V(z(n)) \ {j′, k′, ℓ′}) ∩ V(z(n + 1)) gives the set of customers whose

service has started on or before σn not including {j′, k′, ℓ′}, since an admissible policy is

non-preemptive. The set V(z(n + 1)) \ V(z(n)) \ {j′, k′, ℓ′} is the set of customers whose

services have started on σn+1. The equality follows from the independence of service times.

For all (j, k, ℓ) ∈ V(z(n+1))\ (V(z(n)) \ {j′, k′, ℓ′}) the remaining service times at σn+1

have exponential distribution since their service starts at time σn+1. For those who started

service before or on σn, we have by the induction argument and the memoryless property

of exponential distribution

P
{

ṽjkℓ(σn) > tjkℓ + sn;∀(j, k, ℓ) ∈
(

V(z(n)) \ {j′, k′, ℓ′}
)

∩ V(z(n + 1))

|ṽjkℓ(σn) > ṽj′k′ℓ′(σn);∀(j, k, ℓ) ∈ V(z(n)) \ {j′, k′, l′},X ′(σn) = x(n)
}

=
∏

(j,k,ℓ)∈(V(z(n))\{j′,k′,ℓ′})∩V(z(n+1))

P
{

˜̃vjkℓ > tjkℓ

}

. (B.10)
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Hence, when the event at σn+1 is a class k′ service completion, by (B.8)-(B.10)

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1))|X ′(σn) = x(n),X ′(σn+1) = x(n+ 1)
}

=

∑

(j′k′ℓ′)∈Vk′(z(n))

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(z(n + 1))

|ṽjkℓ(σn) > ṽj′k′ℓ′(σn);∀(j, k, ℓ) ∈ V(z(n)) ∩ (j′k′ℓ′),X ′(σn) = x(n)
}

P
{

ṽj′k′ℓ′(σn) = sn

}

=
∑

(j′k′ℓ′)∈Vk′(z(n))





∏

(j,k,ℓ)∈V(z(n+1))

P
{

˜̃vjkℓ > tjkℓ

}



P
{

ṽj′k′ℓ′(σn) = sn

}

=
∏

(j,k,ℓ)∈V(z(n+1))

P
{

˜̃vjkℓ > tjkℓ

}

(B.11)

Finally, by (B.5) and (B.11), we have that

P
{

ṽjkℓ(σn+1) > tjkℓ;∀(j, k, ℓ) ∈ V(σn+1))|X ′(σn+1) = x(n)
}

=
∏

(j,k,ℓ)∈V(z(n+1))

P
{

˜̃vjkℓ > tjkℓ

}

∫

NK×NJ×K×RK
+

P
{

X ′(σn) = x(n)|X ′(σn+1) = x(n+ 1)
}

dFX′(σn)(x(n)),

where each ˜̃vjkℓ is an exponential random variable with rate µjk and is independent of

V(z(n + 1)) which gives the desired result since

∫

NK×NJ×K×RK
+

dP
{

X ′(σn) = x(n)|X ′(σn+1) = x(n+ 1)
}

= 1.

Using Lemma 2 we can show that X ′(t) = (Q′(t), Z ′(t), b′(t)) is a PDP. First note that

db′k(t)

dt
= −1, for t ∈ (σi, σi+1), k = 1, 2, . . . ,K, (B.12)

dq′k(t)

dt
=
dz′jk(t)

dt
= 0, for k = 1, 2, . . . ,K, and j ∈ J (k). (B.13)

(B.14)

Assume that X(σn) = x(n). Let t∗n = min{b′k(n) : k = 1, 2, . . . ,K} and

Gx(n)(t) =











exp{−∑k∈K,j∈J (k) zjkµjkt}, if t < t∗n

0, t ≥ t∗n.
(B.15)

158



By Lemma 2, since for t > 0 P
{

˜̃vjkl > t
}

= e−µjkt for zjk denoting the number of class k

customers being served by a server in pool j at time σn, P (sn > t|X(σn) = x(n)) = Gx(n)(t).

Hence, the jump rate λ(·) is given by

λ(x(n)) =
∑

k∈K,j∈J (k)

zjkµjk.

Let q(m) ∈ N
K , z(m) ∈ N

J×K, and b(m) ∈ R
K
+ for m = 1, 2. Define a probability

measure ̟ on (NK × N
J×K × R

K
+ ) × (NK × N

J×K × R
K
+ ) as follows:

̟((q(2), z(2), b(2)); (q(1), z(1), b(1))) = Fk(dB) (B.16)

if bk(1) = 0, bk(2) = B for B ∈ R and (q(2), z(2)) = fπ(q(1), z(1), ek , E0), where Fk is the

law of the interarrival times of class k customers and ek and E0 are defined as in Chapter 2.

The distribution given in (B.16) specifies the behavior of the system when there is an arrival

to class k. Let

̟((q(2), z(2), b(2)); (q(1), z(1), b(1))) =
z1(jk)µjk

∑

k∈K,j∈J (k) z1(jk)µjk
(B.17)

if b1(k) > 0, b2(k) = b1(k) for all k = 1, 2, . . . ,K and (q(2), z(2)) = fπ(q(1), z(1), e0 , Ejk).

The right hand side of (B.17) gives the probability that the service of a class k customer

is completed in server pool j given that there is a service completion in the system. From

Lemma 2, this characterization is true since each remaining service time at any instant

has exponential distribution and is independent from the other service times and from the

remaining time for an arrival.

It is clear that X ′(t) = (Q′(t), Z ′(t), b′(t)) is a PDP with intensity function λ, transition

measure ̟, and evolution equation (B.12). Also, since E[Ak(t)] < ∞ for all t ≥ 0 and

remaining service times at event times have exponential distribution, E[N(t)] < ∞ for all

t ≥ 0, therefore, a parallel service system is a regular strong PDP.

B.3 Construction of perturbed systems

Fix an admissible policy π. Next we build another process that has the same intensity

function, evolution equation and transition measure as the parallel server system described
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in the previous section. Then, we show that this new process has the same departure process

pathwise as our perturbed system.

Let {vjk(l) : l = 1, 2, . . .} be a sequence of independent and identically distributed

exponential random variables for k ∈ K and j ∈ J (k). Also assume that these sequences

are mutually independent and each one is independent from the sequence of interarrival

times for each customer class. By the description of our perturbed system in Section 2.1,

the service completion time of the mth class k job in server pool j is given by

dm = inf

{

t :

∫ t

0
Zjk(s)ds = Vjk(m)

}

(B.18)

where

Vjk(m) =

m
∑

l=1

vjk(l)

We next show that when departures are modeled as above, X(t) = (Q(t), Z(t), b(t)) is a

piecewise-deterministic Markov process with the same parameters asX ′(t) = (Q′(t), Z ′(t), b′(t)).

Let

ṽjk(σn) = Vjk(Djk(σn) + 1) − σn,

where Djk(t) is the number of class k service completions in server pool j by time t; see

Chapter 2. Therefore, ṽjk(σn) is the remaining interarrival time for the (Djk(σn) + 1)st

arrival of the process Sjk at time σn. For notational simplicity, we set

Y = {(j, k) : k ∈ K, j ∈ J (k)} and

Yk = {(j, k) : j ∈ J (k)}

Lemma 3. Let x = (q, z, b), with q ∈ N
K , z ∈ N

J×K , and b ∈ R
K
+ . The following statements

are true for each n.

(i) Only one of the following events may happen at time σn; only one service completion

or arrival to one or more customer classes.

(ii) For any non-empty Ỹ ⊂ Y

P
{

ṽjk(σn) > tjk;∀(j, k) ∈ Ỹ|X(σn) = x
}

=
∏

(j,k)∈Ỹ

P
{

˜̃vjk > tjk
}

, (B.19)
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for tjk > 0, where ˜̃vjk is an exponential r.v. with rate µjk. In addition,

P (sn > t|X(σn) = x(n)) = Gx(n)(t), (B.20)

where Gx(n)(t) is given by (B.15).

Proof. The proof is similar to that of Lemma 2 by using an induction argument. We set

Ỹ = Y for simplicity.

For n = 0, the result holds trivially from our assumptions. Assume that the results hold

for n. The proof of (i) for n + 1 is similar to that in the proof of Lemma 2, hence omitted

here.

Assume that statements in (i) and (ii) are true for n and let x(m) = (q(m), z(m), b(m)),

with q(m) ∈ N
K , z(m) ∈ N

J×K , and b(m) ∈ R
K
+ , for m = 1, 2, . . .. Then

P {ṽjk(σn+1) > tjk;∀(j, k) ∈ Y|X(σn+1) = x(n+ 1)}

=

∫

NK×NJ×K×RK
+

P
{

ṽjk(σn+1) > tjk;∀(j, k) ∈ Y|X(σm) = x(m);m = n, n+ 1
}

dP {X(σn) = x(n)|X(σn+1) = x(n+ 1)} .

Since fπ is a deterministic function and only one event can happen at time σn, the event

{X(σn) = x(σn),X(σn+1) = x(σn+1)} yields which event happened at time σn+1. As in the

proof of Lemma 2, one can analyze an arrival event and a departure event similarly. The

analysis for the arrival event is similar to that in the proof of Lemma 2. Hence, we focus

on a departure event.

Assume that (B.2) holds for k′. As in the proof of Lemma 2, one should analyze two

possible cases separately. Again we only focus on case (a). Define

τk′(σn) = min{ṽjk′(σn)/zjk′(n); (j, k′) ∈ Y} (B.21)

to be the remaining time for the first service completion after time σn, where we take

x/0 = ∞ for a real number x. Then,

{X ′(σn) = x(n),X ′(σn+1) = x(n+ 1)}

≡ {X ′(σn) = x(n),X ′(σn+1) = x(n+ 1), τk′(σn) = sn} ∪ N

≡ {X ′(σn) = x(n), τk′(σn) = sn} ∪ N (B.22)
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for some P -null set N . Therefore, by Lemma B.1, when x(n) and x(n+ 1) satisfy (B.2)

P
{

ṽjk(σn+1) > tjk;∀(j, k) ∈ Y|X(σn) = x(n),X(σn+1) = x(n+ 1)
}

=

P
{

ṽjk(σn+1) > tjk;∀(j, k) ∈ Y|X(σn) = x(n), τk′(σn) = sn

}

=

∑

(j′,k′)∈Yk′ ,zj′k′ (n)>0

P
{

ṽjk(σn+1) > tjk;∀(j, k) ∈ Y

|X(σn) = x(n),
ṽj′k′(σn)

zj′k′(n)
= sn; (j, k) ∈ Y

}

P

{

ṽj′k′(σn)

zj′k′(n)
= sn

}

.

Now, for j′ ∈ Yk′ with zj′k′(n) > 0

P
{

ṽjk(σn+1) > tjk;∀(j, k) ∈ Y

|X(σn) = x(n),
ṽj′k′(σn)

zj′k′(n)
= sn; (j, k) ∈ Y

}

= P
{

ṽjk(σn) > tjk + zjk(n)sn;∀(j, k) ∈ Y \ (j′, k′)

|X(σn) = x(n), ṽjk(σn) > zjk(n)sn; (j, k) ∈ Y \ (j′, k′)
}

P
{

ṽj′k′(σn+1) > tj′k′
}

=
∏

(j,k)∈V(z(n+1))

P
{

˜̃vjk > tjk
}

,

where the last inequality follows from the induction argument, independence of the interar-

rival times of Sj′k′ and memoryless property of exponential distribution. This gives (B.19).

Equation (B.20) follows from (B.19) since, given X(σn+1) = x(n+ 1)

sn+1 = min{bk, ṽjk(σn+1)/zjk}.

Therefore, for t < bk for all k ∈ K

P {sn+1 > t|X(σn+1) = x(n+ 1)}

= P {ṽjk(σn+1)/zjk > t, (j, k) ∈ Y|X(σn+1) = x(n+ 1)} .

Proof of Theorem 2.1. Using Lemma 3 one can show that the system defined above has the

same PDP characterization as the original system, that is; they have the same transition

measure, intensity function and evolution equation. Also, by a similar argument to that
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at the end of the last section, E[N(t)] < ∞ for all t ≥ 0 for the system constructed above

too. Hence, by Theorem 5.5 in Davis [23], both Markov processes have the same generator.

Therefore, they have the same finite-dimensional distribution by Proposition 1.6 in Chapter

4 of Ethier and Kurtz [24].

Now let Sjk be Poisson process with interarrival times given by the sequence {vjk(l) :

l = 1, 2, . . .}. Note that the mth service completion time from Sjk

(

∫ t
0 Zjk(s)ds

)

is also

given by (B.18). Hence, the departure processes for the system generated above are the

same pathwise as the Poisson process characterization in the perturbed system.
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APPENDIX C

PROOFS OF THE RESULTS IN SECTION 4.1

C.1 Proofs of the results in Section 4.1.4.2

Proof of Theorem 4.1.6. For notational simplicity we set ϕr
1(t) = ϕr

1(Z
r(t)). Fix t0 >

0, r > 0 and ω ∈ M∩.

1. Assume that (4.37) holds. Let t1(ω) = inf {t : ϕr
1(t, ω) < ϕr

1(0, ω)/2}. We investigate

two possible cases; t1(ω) ≤ t0 and t1(ω) > t0, separately. We omit ω from the notation

in the rest of the proof.

Case 1. First assume that t1 ≤ t0. Set s0 = t1 and define

s2i+1 = inf{t > s2i : ϕr
1(t) = 0} and s2i+2 = inf{t > s2i+1 : ϕr

1(t) > 0} for i = 0, 1, . . . .(C.1)

For any t ∈ [s2i+1, s2i+2), ϕ
r
1(t) = 0, so assume that t0 ∈ [s2i, s2i+1) for some i. Note

that

ϕr
1(t0) ≤ ϕr

1(s2i) − (Ar(t0) −Ar(s2i)) +
J
∑

j=1

(

Sj

(

Br
j (t0)

)

− Sj

(

Br
j (s2i)

))

,

since all arrivals are routed to one of the queues that have idle servers. Hence,

ϕr
1(t0) ≤ ϕr

1(s2i) −
(

Ăr(t0) − Ăr(s2i)
)

+

J
∑

j=1

(

S̆j

(

Br
j (t0)

)

− S̆j

(

Br
j (s2i)

)

)

+

J
∑

j=1

µj

∫ t0

s2i

Zr
j (s)ds− λr(t0 − s2i)

≤ ϕr
1(s2i) + θ

√
λr(t0 − t1) + |o(

√

|N r|)| + 2
J
∑

j=1

‖Sj(t) − µjt‖|Nr |t0

+2 ‖Ar(t) − λrt‖t0
. (C.2)

Since, by Lemma 9, ϕr
1(s2i) < (ϕr

1(0)/2) ∨ J and ϕr
1(0)/2 > J for r large enough,

ϕr
1(t0) ≤ ϕr

1(0)/2 + θ
√
λr(t0 − t1) + |o(

√

|N r|)| + 2

J
∑

j=1

‖Sj(t) − µjt‖|Nr|t0

+2 ‖Ar(t) − λrt‖t0
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Now add and subtract ϕr
1(0)/2 to the right hand side above to get (4.38).

Case 2. Now assume that t1 > t0, then

ϕr
1(t0) ≤ ϕr

1(0) −Ar(t0) +

J
∑

j=1

Sj

(

Br
j (t0)

)

= ϕr
1(0) − Ăr(t0) +

J
∑

j=1

S̆j

(

Br
j (t0)

)

+
J
∑

j=1

µj

∫ t0

0
Zr

j (s)ds− λrt0

≤ ϕr
1(0) −

(

µminϕ
r
1(0)/2 −

√
λrθ
)

t0 + |o(
√

|N r|)| +
J
∑

j=1

∥

∥Sr
j (t) − µjt

∥

∥

|Nr |t0

+ ‖Ar(t) − λrt‖t0
.

By (4.37), the last inequality gives (4.38).

2. Now assume that

ϕr
1(Z

r(0)) ≤ 4θ
√
λr(t0 ∨ 1)

µmin ∧ 1

First assume that ϕr
1(0, ω) > 0. Set s0 = 0 and define s2i+1 and s2i+2 as in (C.1). For

any t ∈ [s2i+1, s2i+2), ϕ
r
1(t) = 0, so assume that t0 ∈ [s2i, s2i+1) for some i. Then, we

have that (C.2) holds with t1 = 0. Since ϕr
1(s2i) < ϕr

1(0) ∨ J , (C.2) yields (4.39). If

ϕr
1(0, ω) = 0, then define t1 = inf{t > 0 : ϕr

1(t, ω) > 0}. Since ϕr
1(t1, ω) < 2J , we get

the result from a similar discussion used in the case with ϕr
1(0, ω) > 0 above.

Proof of Theorem 4.1.7. For notational simplicity we set ϕr
2(t) = ϕr

2(Q
r(t)). Fix t0 > 0,

r > 0 and ω ∈ M∩.

1. Assume that ϕr
2(0) > θ

√
λr(t0 ∨ 1).

Let

t1 = inf{t ≥ 0 : ϕr
1(t) = 0} and t2 = inf{t ≥ 0 : ϕr

2(t) = 0}

We will study the following three possible cases separately; (1) t1 ≤ t0 ≤ t2, (2) t1 > t0

and t2 > t0, (3) t2 ≤ t0.
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Case 1. Assume that t1 ≤ t0 ≤ t2. Let s0 = t1 and define

s2i+1 = inf{t > s2i : ϕr
1(t) > 0} and s2i+2 = inf{t > s2i+1 : ϕr

1(t) = 0} for i = 0, 1, . . . .

One of the following must hold; s1 > t0 or s2k+2 < t0 < s2k+3 or s2k+1 ≤ t ≤ s2k+2

for some k ≥ 0.

If s1 > t0 then

ϕr
2(t0) ≤ ϕr

2(t1) + (Ar(t0) −Ar(t1)) +

J
∑

j=1

(Sj (t0) − Sj (t1))

≤ ϕr
2(t1) −

√
λrθ(t0 − t1) + 2

J
∑

j=1

‖Sj(t) − µjt‖|Nr |t0

+2 ‖Ar(t) − λrt‖t0
. (C.3)

By definition of t1,

ϕr
2(t1) ≤ ϕr

2(0) −N r
minµmint1 + 2

J
∑

j=1

‖Sj(t) − µjt‖|Nr|t0 . (C.4)

For r large enough N r
min/

√
λr > θ/µmin, hence for such r we get (4.42) by combining

(C.3) and (C.4).

Now assume that either s2k+2 < t0 < s2k+3 or s2k+1 ≤ t ≤ s2k+2 for some k ≥ 0.

We define ∆i = [s2i+1, s2i+2], for i = 0, 1, . . .. For any i ≥ 0 and t ∈ [s2i+1, s2i+2],

there exists at least one jt ∈ J such that Qr
jt

(t) < N r
jt

. Define

ai
j = inf{t ≥ s2i+1 : Qr

j(t) < N r
j } ∧ s2i+2.

We assume for simplicity that s2i+1 = ai
1 ≤ ai

2 ≤ . . . ≤ ai
J ≤ s2i+2. If Qr

j(t) < N r
j

for some t ∈ [s2i+1, s2i+2), then Qr
j(s2i+2) < N r

j + 2, by Lemma 9 and since no

arrivals join queue j during [s2i+1, s2i+2) when Qr
j(t) ≥ N r

j . Hence, if ai
J < s2i+2 then

ϕr
2(s2i+2) < 2J . Now assume that ai

J = s2i+2. Then for any t ∈ [s2i+1, s2i+2)

ϕr
1(t) ≤ ϕr

1(s2i+1) − (Ar(t) −Ar(s2i+1)) +
J−1
∑

j=1

(

Sj(B
r
j (t)) − Sj(B

r
j (s2i+1))

)

≤ 2J −
(

Ăr(t) − Ăr(s2i+1)
)

+

J−1
∑

j=1

(

S̆j(B
r
j (t)) − S̆j(B

r
j (s2i+1))

)

+
(

θ
√
λr −N r

minµmin

)

(t− s2i+1)

≤ 2J + ζr(t0). (C.5)
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Choose l ≤ k so that ∆l is the last interval such that al
j < s2l+2 ∧ t0, for all j ∈ J , if

there exists such l or set l = k+ 1. Hence, ∆l is the last interval during which all the

queues become empty at least once.

a. Assume that l ≤ k. If s2l+1 ≤ t0, then

ϕr
2(t0) < 2J. (C.6)

If s2l+2 < t0, then (C.5) holds for all t ∈ [s2l+2, t0] since if t ∈ [s2i+2, s2i+3], then

ϕr
1(t) = 0 and otherwise we have from the discussion above that (C.5) holds.

Hence, for Qr
Σ(t) =

∑J
j=1(Q

r
j(t) + Zr

j (t))

Qr
Σ(t0) −Qr

Σ(s2l+2) ≤ Ar(t0) −Ar(s2l+2) −
∑

j∈J

(

S(Br
j (t0)) − S(Br

j (s2l+2))
)

≤
(

µmax(2J + ζr(t0)) −
√
λrθ
)

(t0 − s2l+2)

+2

J
∑

j=1

‖Sj(t) − µjt‖|Nr|t0 + 2 ‖Ar(t) − λrt‖t0
.

Since ϕr
1(t0) ≤ 2J + ζr(t0), we have from the last inequality that

ϕr
2(t0) − ϕr

2(s2l+2) ≤
(

µmax(2J + ζr(t0)) −
√
λrθ
)

(t0 − s2l+2)

+2

J
∑

j=1

‖Sj(t) − µjt‖|Nr |t0 + 2 ‖Ar(t) − λrt‖t0

+2J + ζr(t0). (C.7)

Since ϕr
2(s2l+2) < 2J by definition of l, we get (4.42) from (C.7).

b. If l = k + 1, then (C.5) holds for all t ∈ [t1, t0]. Hence,

ϕr
2(t0) − ϕr

2(t1) ≤
(

µmax(2J + ζr(t0)) −
√
λrθ
)

(t0 − t1)

+2
J
∑

j=1

‖Sj(t) − µjt‖|Nr |t0 + 2 ‖Ar(t) − λrt‖t0

+2J + ζr(t0). (C.8)

For r large enough N r
min/

√
λr > θ/µmin, hence for such r we get (4.42) by

combining (C.8) and (C.4).
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Case 2. Now assume that t1 > t0 and t2 > t0. Then, none of the arrivals join a queue

that has customers waiting during [0, t0]. Let aj = inf{t > 0 : Qr
j(t) < N r

j }. As in

Case 1, if aj ≤ t0 for all j ∈ J , then ϕr
2(t0) < 2J . If aj > t0 for some j ∈ J then

ϕr
2(t0) − ϕr

2(0) ≤ −N r
minµmint0 + 2

J
∑

j=1

‖Sj(t) − µjt‖|Nr |t0 . (C.9)

Hence for r large enough, we get (4.42).

Case 3. If t2 < t0, define

t′2 = sup{t > t2 : ϕr
2(t) > 0}.

If t′2 ≥ t0, then ϕr
2(t0) = 0, so assume that t′2 < t0. We have that 0 < ϕr

2(t
′
2) < 2J .

We get (4.42) from the discussion below.

2. Now assume that

ϕr
2(Q

r(0)) ≤ θ
√
λr(t0 ∨ 1),

and define

t̃ = sup{t0 ≥ t ≥ 0 : ϕr
2(t) = 0}.

If t̃ = −∞, set t̃ = 0. Observe that θ
√
λr(t0 ∨ 1) ≥ ϕr

2(t̃) > 0 and ϕr
2(t) > 0 for all

[t̃, t0]. By considering the path from t̃ to t0, one can use the same arguments above,

but this time only cases 1 and 2 will apply. It is obvious that (C.3)-(C.9) hold for this

case as well, since they do not depend on the initial value of ϕr
2. Hence, we get (4.43).

C.2 Proofs of the results in Section 4.1.4.3

We first establish the additional fluid model equations that must be satisfied by the fluid

limits of the MED–FSF and MED–LB distributed server pool systems. Then, using these

equations, we determine the set of invariant states of the fluid limits for both systems.

Lemma 4. Let {Xr} be a sequence of MED–FSF distributed server pool systems. Assume

that {Q̄r(0)} is bounded a.s. as r → ∞. Every fluid limit X̄ of {Xr} satisfies the following
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equations in addition to the fluid model equations (A.2)-(A.11) in [22]. For every j ∈ J

and a regular point t of X̄

˙̄Aq
j(t) = 0 when

Q̄j(t)

βjµj
>
Q̄j′(t)

βj′µj′
for some j′ ∈ J and (C.10)

J
∑

j′=j

˙̄As
j′(t) = λ if

J
∑

j′=j

(Z̄j′(t) − βj′) < 0 (C.11)

Proof. Let X̄ be a fluid limit. Fix t > 0 and assume that
Q̄j(t)
βjµj

>
Q̄j′(t)
βj′µj′

for some j′ ∈ J . By

continuity of X̄, there exists δ > 0 such that

Q̄j(s)

βjµj
>
Q̄j′(s)

βj′µj′

for all s ∈ [t− δ, t+ δ]. Let ω ∈ A, for A given as in Section 4.1.4.3. Assume for notational

simplicity that X̄
r(·, ω) converges u.o.c. to X̄(·, ω). Note that by (4.2)

N r
ℓ = βℓ|N r| + o(|N r|) for all ℓ ∈ J .

Hence, for r large enough

Q̄j(s)

βjµj + o(|N r|)/|N r| >
Q̄j′(s)

βj′µj′ − o(|N r|)/|N r| ,

so

Qr
j(s)/|N r|

βjµj + o(|N r|)/|N r| >
Qr

j′(s)/|N r|
βj′µj′ − o(|N r|)/|N r|

Thence

Qr
j(s)

N r
j µj

≥
Qr

j(s)

|N r|βjµj + o(|N r|) >
Qr

j′(s)

|N r|βj′µj′ − o(|N r|) ≥
Qr

j′(s)

N r
j′µj′

(C.12)

for large enough r for all s ∈ [t − δ, t + δ]. This implies by (4.30) for r large enough that

Aq,r
j (s) is flat on [t − δ, t + δ]. Hence ˙̄Aq(t) = 0. Fluid limit equation (C.11) is proved

similarly.

Lemma 5. Let {Xr} be a sequence of MED–LB distributed server pool systems. Assume

that {Q̄r(0)} is bounded a.s. as r → ∞. Every fluid limit X̄ of {Xr} satisfies (C.10) and the

following equation in addition to the fluid model equations (A.2)-(A.8) in [22]. For every

j ∈ J and a regular point t of X̄

˙̄As
j(t) = 0 when

Z̄j(t)

βj
>
Z̄j′(t)

βj′
for some j′ ∈ J . (C.13)
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The proof is similar to that of Lemma 4.

Proof of Lemma 1. Let {Xr} be a sequence of MED–FSF distributed server pool systems

and h1(t) =
∑J

j=1 |Z̄j(t) − βj |. Note that if h1(t) > 0 and t is a regular point of X̄ then

ḣ1(t) ≤ 0 from the fluid model equation (C.11), and equations (A.2) and (A.9) in [22].

Hence, if h1(0) = 0, then h1(t) = 0 for all t ≥ 0 by virtue of Lemma 2.4.5 of [19].

Now let h2(t) = maxj∈J {Q̄j(t)/βj} − minj∈J {Q̄j(t)/βj} and assume that Z̄j(0) = βj

for all j ∈ J . If t is a regular point of X̄ and h2(t) > 0 then ḣ2(t) ≤ 0, by (C.10),

(C.11), (A.2)-(A.11) in [22] and Lemma 2.8.6 of [19]. Hence, if h1(0) = h2(0) = 0, then

(Q̄(0), Z̄(0)) = (Q̄(t), Z̄(t)). Note that h1(0) = h2(0) = 0 if and only if (q, z) ∈ M.

Therefore, (q, z) is an invariant state if and only if (q, z) ∈ M. For the MED–LB policy the

result is proved similarly using (C.13).

C.3 Proofs of the results in Section 4.1.4.4

C.3.1 Proofs of Propositions 4.7 and 4.9

We use the framework of [22]. We need to check that Assumptions 1 through 4 in that

paper are satisfied by the sequuence of MED–FSF and MED–LB distributed systems. It

can easily be checked using (4.2) and (4.4) that the static planning problem (2.20) in [22]

has a unique optimal solution with x∗j = 1 for all j ∈ J , and so, by (4.4), Assumption 1 in

that paper is satisfied. Assumption 2 in [22] is satisfied by both policies by Lemma 1 and

by Theorem A.1 in the same paper. So we focus on Assumptions 2 and 4. In this section we

first define the appropriate SSC functions, see Section 4.1 of [22] for more details on SSC

functions, then we show that Assumption 3 in that paper is satisfied by the MED–LB and

MED–FSF distributed systems.

Hydrodynamic scaling and hydrodynamic limits are introduced in [22]. They showed

that hydrodynamic limits satisfy a set of equations that are called hydrodynamic model

equations. To check Assumption 4 in [22], one needs to show that the hydrodynamic model

solutions, which are solutions of the hydrodynamic model equations, satisfy certain condi-

tions. We start with characterizing the additional hydrodynamic model equations for the

MED–FSF and MED–LB policies; see Lemmas 6 and 7. Then we show that hydrodynamic
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model equations satisfy Assumption 4 in [22] in Propositions C.1 and C.2. This gives us the

multiplicative state space collapse results. To prove the strong state space collapse results

stated in Theorems 4.7 and 4.9, we show in Theorem C.3.1 that condition (4.15) in [22] is

satisfied by Q̂r and Ẑr under any completely non-idling policy.

Recall that λ = limr→∞ λr/|N r| = µ̄.

Lemma 6. Let {Xr} be a sequence of MED-FSF distributed server pool systems. Every

hydrodynamic limit X̃ of {Xr} satisfies the following equations in addition to equations

(4.9)-(4.14) in [22]. For every j ∈ J

˙̃Aq
j(t) = 0 when

Q̃j(t)

βjµj
>
Q̃j′(t)

βj′µj′
for some j′ ∈ J and (C.14)

˙̃As,+
j (t) = λ when

J
∑

l=j

Z̃l(t) < 0, (C.15)

where Ãs,+
j (t) =

∑J
ℓ=j Ã

s
ℓ(t).

Proof. Let X
r,m be the Hydrodynamically scaled version of X

r as defined in Section 5.1 in

[22]. Then, by (4.30) and (4.31) Xr,m satisfies the following equations.

Aq,r,m
j (t) can only increase when

Qr,m
j (t)

N r
j µj

≤
Qr,m

j′ (t)

N r
j′µj′

for all j′ ∈ J and (C.16)

As,r,m
j (t) can only increase when

J
∑

l=j+1

Zr,m
l (t) = 0. (C.17)

Let X̃ be a cluster point of {Xr,m}, for some L > 0.

Fix T > 0. By definition of a hydrodynamic limit, given ǫ > 0 one can choose (r,m, ω)

such that

∥

∥

∥
X̃(t) − X

r,m(t, w)
∥

∥

∥

L
≤ ǫ. (C.18)

The rest of the proof is similar to the proof of the first part of Lemma 1. Fix L > t > 0

and j ∈ J . Assume that

Q̃j(t)

βjµj
>
Q̃j′(t)

βj′µj′
for some j′ ∈ J .
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By continuity of X̃, there exists a δ > 0 such that

Q̃j(s)

βjµj
>
Q̃j′(s)

βj′µj′

for all s ∈ [t− δ, t + δ]. Since ǫ is arbitrary, by (C.18) one can choose (r,m, ω) such that

Qr,m
j (s)

βjµj
>
Qr,m

j′ (s)

βj′µj′

for all s ∈ [t− δ, t + δ]. Since βj = N r
j /|N r| − o(N r)/|N r|, this implies, similar to (C.12),

by (C.16) that Aq,r,m
j (s) is flat on [t− δ, t+ δ]. Hence Ãq(t) cannot increase on [t− δ, t+ δ].

The second hydrodynamic equation (C.15) is proved similarly using (C.17).

Lemma 7. Let {Xr} be a sequence of MED-LB distributed server pool systems. Then,

in addition to equations (4.9)-(4.14) in [22], every hydrodynamic limit X̃ of {Xr} satisfies

(C.14) and

˙̃As
j(t) = 0 when

Z̃j(t)

βj
>
Z̃j′(t)

βj′
for some j′ ∈ J . (C.19)

The proof is similar to that of Lemma 6.

Next, we define the SSC function for the MED–FSF policy. Let f̂j : R
2J → R be defined

by

f̂j(q, z) =
qj
µjβj

,

for j ∈ J . The SSC function, ĝ : R
2J → R, for the MED–FSF policy is defined as follows.

ĝ(q, z) = max
j∈J

{fj(q, z)} − min
j∈J

{fj(q, z)} +
J
∑

j=2

|Z̃j(t)|. (C.20)

It is obvious that ĝ is continuous and ĝ(αq, αz) = αĝ(q, z) for all (q, z) ∈ R
2J . Hence, ĝ

satisfies Assumption 3 in [22]. Also,

ĝ(Q̃(t), Z̃(t)) = 0

if and only if

Q̃j(t)

βjµj
=
Q̃j′(t)

βj′µj′
and

J
∑

j=2

Z̃j(t) = 0 for all j, j′ ∈ J .

Therefore, ĝ is the desired SSC function. Next we show that the hydrodynamic model

solutions and ĝ satisfy Assumption 4 in [22].
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Proposition C.1. Let {Xr} be a sequence of MED–FSF distributed server pool systems.

Let ĝ be defined as in (C.20). For any hydrodynamic model solution X̃,

ĝ(Q̃(t), Z̃(t)) ≤ H(t) for t ≥ 0

with H(t) = (ĝ(Q̃(0), Z̃(0)) − (µminβmin ∧ 1)t) ∧ 0. Whenever ĝ(Q̃(0), Z̃(0)) = 0 then

ĝ(Q̃(t), Z̃(t)) = 0 for t ≥ 0. In particular, the hydrodynamic model solutions of {X
r} and ĝ

satisfy Assumption 4 in [22].

Proof. Let X̃ be a hydrodynamic model solution and t ≥ 0 a regular point of X̃. Assume

that ĝ(Q̃(t), Z̃(t)) > 0.

Let

Umin(t) = {j ∈ J : f̂j(Q̃(t), Z̃(t)) ≤ f̂j′(Q̃(t), Z̃(t)) for all j′ ∈ J } and

Umax(t) = {j ∈ J : f̂j(Q̃(t), Z̃(t)) ≥ f̂j′(Q̃(t), Z̃(t)) for all j′ ∈ J }.

Since t is a regular point of X̃, by Lemma 2.8.6 of [19],

˙̂g(Q̃(t), Z̃(t)) =
˙̂
fi(t) − ˙̂

fj(t) −
J
∑

j=2

˙̃Zj(t) for all i ∈ Umax(t) and j ∈ Umin(t).

First assume that
∑J

j=2 Z̃j(t) < 0. Then,

J
∑

j=2

˙̃Zj(t) ≥ λ−
J
∑

j=2

µjβj ≥ µminβmin

by (C.15) and (4.5) in [22]. Also, by (C.14) and (4.8) in [22],
˙̂
fi(t) = −1 or 0 and

˙̂
fj(t) = 0

for all i ∈ Umax(t) and j ∈ Umin(t). Hence, ˙̂g(Q̃(t), Z̃(t)) ≤ −µminβmin.

Now assume that
∑J

j=2 Z̃j(t) = 0. Then,
∑J

j=2
˙̃Zj(t) = 0 since

∑J
j=2

˙̃Zj(t) > 0 whenever

∑J
j=2 Z̃j(t) < 0. Hence,

˙̂g(Q̃(t), Z̃(t)) =
˙̂
fi(t) − ˙̂

fj(t).

We get as in the proof of Proposition C.2 below that ˙̂g(Q̃(t), Z̃(t)) ≤ −(µmin∧1). This gives

the first claim. Second claim is follows from the fact that ˙̂g(Q̃(t), Z̃(t)) < 0 if ĝ(Q̃(t), Z̃(t)) >

0.
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Next, we define the SSC function for the MED–LB policy. Let q = (q1, . . . , qJ) ∈ R
J ,

z = (z1, . . . , zJ ) ∈ R
J and fj : R

2J → R be defined by

fj(q, z) =
qj
µjβj

+
zj
βj
,

for j ∈ J . The SSC function, g : R
2J → R, for MED–LB policy is defined by

g(q, z) = max
j∈J

{fj(q, z)} − min
j∈J

{fj(q, z)}. (C.21)

It is easily checked that g is continuous and g(αq, αz) = αg(q, z) for all (q, z) ∈ R
2J . Hence,

g satisfies Assumption 3 in [22]. Also,

g(Q̃(t), Z̃(t)) = 0

if and only if

Q̃j(t)

βjµj
=
Q̃j′(t)

βj′µj′
and

Z̃j(t)

βj
=
Z̃j′(t)

βj′
, for all j, j′ ∈ J .

Therefore, g is the desired SSC function. Next we show that g satisfies Assumption 4 in

[22].

Proposition C.2. Let {Xr} be a sequence of MED–LB distributed server pool systems. Let

g be defined as in (C.21). For any hydrodynamic model solution X̃

g(Q̃(t), Z̃(t)) ≤ H(t) for t ≥ 0 (C.22)

with H(t) = (g(Q̃(0), Z̃(0))−(µmin∧1)t)∧0. Whenever g(Q̃(0), Z̃(0)) = 0 then g(Q̃(t), Z̃(t)) =

0 for t ≥ 0. In particular, {Xr} with g satisfy Assumption 4 in [22].

Proof. Let X̃ be a hydrodynamic limit and t ≥ 0 be a regular point of X̃.

Assume that

g(Q̃(t), Z̃(t)) > 0. (C.23)

Let

Umin(t) = {j ∈ J : fj(Q̃(t), Z̃(t)) ≤ fj′(Q̃(t), Z̃(t)) for all j′ ∈ J } and

Umax(t) = {j ∈ J : fj(Q̃(t), Z̃(t)) ≥ fj′(Q̃(t), Z̃(t)) for all j′ ∈ J }.
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Since t is a regular point of X̃, by Lemma 2.8.6 of [19],

ġ(Q̃(t), Z̃(t)) = ḟi(t) − ḟj(t), for all i ∈ Umax(t) and j ∈ Umin(t).

Also, observe that Umax(t) ∩ Umin(t) = ∅ since g(Q̃(t), Z̃(t)) > 0.

We first show that if g(Q̃(t), Z̃(t)) > 0, then

ḟi(Q̃(t), Z̃(t)) ≤ −(µmin ∧ 1) for all i ∈ Umax(t). (C.24)

First observe that if g(Q̃(t), Z̃(t)) > 0 and i ∈ Umax(t)

Q̃i(t)

µiβi
>
Q̃j(t)

µjβj
or

Z̃i(t)

βi
>
Z̃j(t)

βj

for some j ∈ Umin(t). Therefore, by (C.14), (C.19), equations (4.2) and (4.5) in [22]

˙̃Qi(t) + ˙̃Zi(t) ≤ −µminβmin.

In addition, either ˙̃Qi(t) = 0 or ˙̃Zi(t) = 0 by (4.7) in [22]. This gives (C.24).

Next we show that if g(Q̃(t), Z̃(t)) > 0, then

ḟi(Q̃(t), Z̃(t)) ≥ 0 for all i ∈ Umin(t). (C.25)

By (4.1), (4.2) and (4.5) in [22]

∑

i∈Umin(t)

(

˙̃Qi(t) + ˙̃Zi(t)
)

= λ−
∑

i∈Umin(t)

µiβi > 0,

where the last inequality follows from the fact that Umin(t) 6= J . By (C.24) we get (C.25).

Combining (C.24) with (C.25) gives (C.22). The second claim immediately follows from

Lemma 2.8.6 of [19] and the fact that ġ(Q̃(t), Z̃(t)) < 0 whenever g(Q̃(t), Z̃(t)) > 0 as

shown above.

Next we show that under a non-idling routing policy the sequence of distributed systems

satisfy condition (4.15) in [22].

Theorem C.3.1. Let π ∈ Π be a non-idling routing policy and assume that (4.20) holds.

Then, for every T > 0

lim
C→∞

lim
r→∞

P

{

‖Q̂r(t)‖T ∨ ‖Ẑr(t)‖T > C
}

= 0. (C.26)
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Proof. Fix π ∈ Π, T > 0 and assume that (4.20) holds. Observe that (4.20) implies

lim
C→∞

lim
r→∞

P

{

|Q̂r(0)| ∨ |Ẑr(0)| > C
}

= 0. (C.27)

By (4.35), (4.38) and (4.39), for C > 0,

P

{

‖Ẑr(t)‖T > C
}

≤ P

{

‖Ẑr(0)‖ + θ
√

λr/|N r|T + |o(
√

|N r|)|/
√

|N r|

+2

J
∑

j=1

‖Sj(|N r|t) − |N r|µjt‖T
√

|N r|
+ 2

‖Ar(t) − λrt‖T
√

|N r|
> C

}

≤ P

{

‖Ẑr(0)‖ > C/4
}

+ P

{

θ
√

λr/|N r|T + |o(
√

|N r|)|/
√

|N r| > C/4
}

+P







2
J
∑

j=1

‖Sj(|N r|t) − |N r|µjt‖T
√

|N r|
> C/4







+P

{

2
‖Ar(t) − λrt‖T

√

|N r|
> C/4

}

.

For any j ∈ J ,
Sj(|Nr |t)−|Nr |µjt√

|Nr|
converges weakly to a Brownian motion with variance

µj, and Ar(t)−λrt√
|Nr|

converges weakly to a Brownian motion with variance λ. Hence by the

continuous mapping theorem

lim
C→∞

lim
r→∞

P







2
J
∑

j=1

‖Sj(|N r|t) − |N r|µjt‖T
√

|N r|
> C/4







= lim
C→∞

lim
r→∞

P

{

2
‖Ar(t) − λrt‖T

√

|N r|
> C/4

}

= 0.

(C.28)

Thus, by (C.27) and (C.28)

lim
C→∞

lim
r→∞

P

{

‖Ẑr(t)‖T > C
}

= 0.
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By (4.35), (4.42) and (4.43), for C > 0,

P

{

‖Q̂r(t)‖T > C
}

≤ P

{

‖Q̂r(0)‖ > C/5
}

+P

{

θ
√

λr/|N r|T + |o(
√

|N r|)|/
√

|N r| > C/5
}

+P

{

2T (µmax ∨ 1)ζr(T )/
√

|N r| > C/5
}

+P







4

J
∑

j=1

‖Sj(|N r|t) − |N r|µjt‖T
√

|N r|
> C/5







+P

{

2
‖Ar(t) − λrt‖T

√

|N r|
> C/5

}

.

By (C.27) and (C.28) it is enough to show that for any T > 0

lim
C→∞

lim
r→∞

P

{

2T (µmax ∨ 1)ζr(T )/
√

|N r| > C/5
}

= 0. (C.29)

to complete the proof of (C.26). For notational simplicity assume that µmax > 1 and choose

r large enough so that N r
minµmin − θ

√
λr > 2|N r|B3 for some B3 > 0. Observe that

P

{

2µmaxT
ζr(T )
√

|N r|
> C

}

≤ P

{

2µmaxT sup
0≤s1≤s2≤T

{

−
√

|N r|B3(s2 − s1) +
|Ăr(s2) − Ăr(s1)|

√

|N r|

}

> C/2

}

+

J
∑

j=1

P

{

2µmaxT sup
0≤sj

1
≤sj

2
≤T

{

−
√

|N r|B3

J
(sj

2 − sj
1)

+

∣

∣

∣
S̆j

(

|N r|sj
2

)

− S̆j

(

|N r|sj
1

)∣

∣

∣

√

|N r|

}

> C/(2J)

}

≤ P

{

4µmaxT
‖Ar(t) − λrt‖T

√

|N r|
> C/2

}

+

J
∑

j=1

P

{

4µmaxT
‖Sj (|N r|t) − |N r|µjt‖T

√

|N r|
> C/(2J)

}

We get (C.29), again, by virtue of the continuous mapping theorem.

Proposition 4.7. Let {Xr} be a sequence of MED–FSF distributed server pool systems.

Assume that (4.2),(4.4), and (4.20) hold. We showed above that this sequence with ĝ defined

as in (C.20) satisfy Assumptions 1-4 in [22]. So we conclude by Theorem 4.2 in the same
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paper that for some Lr = o(
√

|N r|) with Lr → ∞ as r → ∞, and for every T > 0 and

ǫ > 0,

P







sup
Lr/

√
|Nr |≤t≤T

∣

∣

∣
ĝ(Q̂r(t), Ẑr(t))

∣

∣

∣

sup
Lr/

√
|Nr|≤t≤T

(∣

∣

∣Q̂r(t)
∣

∣

∣ ∨
∣

∣

∣Ẑr(t)
∣

∣

∣ ∨ 1
) > ǫ







→ 0, (C.30)

as r → ∞. Combining (C.30) with Theorem C.3.1 and using Remark 4.4 in [22] yields

P







sup
Lr/

√
|Nr|≤t≤T

∣

∣

∣ĝ(Q̂r(t), Ẑr(t))
∣

∣

∣ > ǫ







→ 0.

If in addition (4.46) and (4.47) hold we conclude similarly from Theorem 4.1 and Remark 4.4

in [22] and Theorem C.3.1 above that (4.48) holds.

Proposition 4.9 is proved similarly by using g, defined in (C.21), instead of ĝ.

C.3.2 Proofs of the results in Section 4.1.4.4

Proof of Proposition 4.11. Let {Xr} be a sequence of MED–FSF distributed server pool

systems. Assume that (4.2),(4.4), (4.20) and (4.48) hold.

By (4.48)
∥

∥

∥

∥

∥

Q̂r
j(t)

βjµj
−
Q̂r

j′(t)

βj′µj′

∥

∥

∥

∥

∥

T

∨

∥

∥

∥

∥

∥

∥

J
∑

j=2

Ẑr
j (t)

∥

∥

∥

∥

∥

∥

≤ ǫ(r), (C.31)

for j, j′ ∈ J , where ǫ(r) → 0 as r → ∞ in probability. This gives

J
∑

j=1

µj

∫ t

0
Ẑr

j (s)ds = µ1

∫ t

0
Ẑr

1(s)ds+ ǫ(r) (C.32)

and

(X̂r(t))− = −Ẑr
1(t) + Jǫ(r) (C.33)

Observe that

X̂r(t) = X̂r(0) +

(

Ar(t) − λrt
√

|N r|

)

−
J
∑

j=1

(

Sj

(

|N r|
∫ t
0 Ẑ

r(s)ds
)

− |N r|µj

∫ t
0 Z̄

r
j (s)ds

)

√

|N r|

−
J
∑

j=1

µj

∫ t

0
Ẑr

j (s)ds+
(λr −∑J

j=1 µjN
r
j )

√

|N r|
t (C.34)

By (4.2), (4.4), (C.31)- (C.33)

J
∑

j=1

µj

∫ t

0
Ẑr

j (s)ds = µ1

∫ t

0
Ẑr

1(s)ds+ Jǫ(r) = −µ1

∫ t

0
(X̂r(s))−ds+ 2Jǫ(r) (C.35)
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Also

(

Ar(t) − λrt
√

|N r|

)

⇒Wa and

J
∑

j=1

(

Sj

(

|N r|
∫ t
0 Ẑ

r(s)ds
)

− |N r|µj

∫ t
0 Z̄

r
j (s)ds

)

√

|N r|
⇒Wd,(C.36)

where Wa and Wd are Brownian motions with variances equal to µ̄, by Lemma 1 and since

λr/|N r| → µ̄, as r → ∞. We combine (C.34)-(C.36) and appeal to the continuous mapping

theorem to complete the proof.

Proof of Proposition 4.13. The proof is similar to the proof of Proposition 4.11 above.

Let {Xr} be a sequence of MED–LB distributed server pool systems. Assume that (4.2),(4.4)

and (4.20) hold. Let Ẑr
Σ(t) =

∑J
j=1 Ẑ

r
j (t). By Proposition 4.9

∥

∥

∥

∥

∥

Q̂r
j(t)

βjµj
−
Q̂r

j′(t)

βj′µj′

∥

∥

∥

∥

∥

T

∨
∥

∥

∥

∥

1

βj
Ẑr

j (t) − Ẑr
Σ(t)

∥

∥

∥

∥

T

≤ ǫ(r)

for all j, j′ ∈ J , where ǫ(r) → 0 as r → ∞ in probability. This gives

(X̂r(t))− = −Ẑr
Σ(t) + Jǫ(r).

and

J
∑

j=1

µj

∫ t

0
Ẑj(s)ds =

J
∑

j=1

µjβj

∫ t

0
Ẑr

Σ(t) + Jǫ(r) = µ̄

∫ t

0
Ẑr

Σ(t) + Jǫ(r)

The other arguments in the previous proof can be repeated verbatim to conclude the proof.

Proof of Theorem 4.1.8. Let {Xr} be a sequence of MED–FSF distributed server pool

systems. Assume that (4.2),(4.4) and (4.20) hold. We prove the theorem for J = 2, the proof

for an arbitrary J is similar. By Theorem 4.7 and Proposition 4.11, and Theorem 11.4.5 of

[65],

(

Q̂r
1(t), Ẑ

r
1(t), Q̂r

2(t), Ẑ
r
2(t)

)

⇒
(

µ1β1

µ1β1 + µ2β2
(X(t))+,

−(X(t))−,
µ2β2

µ1β1 + µ2β2
(X(t))+, 0

)

, (C.37)
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as r → ∞ in C
4[0,∞). Let

D̂r
j (t) =

Dr
j (t) − µjN

r
j t

√

|N r|
.

Hence,

D̂r
j (t) =

√

|N r|





Sj

(

|N r|
∫ t
0 Z̄

r
j (s)ds

)

|N r| − µj

∫ t

0
Z̄r

j (s)ds



+ µj

∫ t

0
Ẑr

j (s)ds

By virtue of Theorem 11.5.1 of [65] and the continuous mapping theorem

{

µi

∫ ·

0
Ẑr

j (s)ds

}

(C.38)

converges weakly to a continuous limit. Also, the sequence







√

|N r|





Sj

(

|N r|
∫ t
0 Z̄

r
j (s)ds

)

|N r| − µj

∫ t

0
Z̄r

j (s)ds











(C.39)

converges weakly by Lemma 1 and the convergence together theorem, hence it is tight.

From (C.38) and (C.39) and Theorem 11.6.7 of [65] we have that
{

D̂r
j (·)
}

is tight in uniform

topology. Thence, we have again from Theorem 11.6.7 of Whitt, (C.37), and the tightness

of the scaled departure processes that the sequence

{(

Q̂r
1, Ẑ

r
1 , D̂

r
1, Q̂

r
2, , Ẑ

r
1 , D̂

r
2

)}

is tight. Thus, there exists a subsequence rk such that

(

Q̂rk
1 , Ẑ

rk
1 , D̂rk

1 , Q̂
rk
2 , , Ẑ

rk
1 , D̂rk

2

)

⇒
(

Q̂1, Ẑ1, D̂1, Q̂2, Ẑ2, D̂2

)

as k → ∞ for some process
(

Q̂1, Ẑ1, D̂1, Q̂2, Ẑ2D̂2

)

. Let ar
j(t) = Aq,r

j (t) + As,r
j (t) be the

total number of arrivals to the jth pool by time t. We define the diffusion scaled arrival

process, âr
j , to queue j by

âr
j(t) =

√

|N r|
(

ar
j(t) − µjN

r
j t

|N r|

)

.

Since

âr
j(t) = −Q̂r

j(0) − Ẑr
j (0) + Q̂r

j(t) + Ẑr
j (t) + D̂r

j (t),
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we have by the continuous mapping theorem that

(

ârk
1 , D̂

rk
1 , â

rk
2 , D̂

rk
2

)

⇒
(

â1, D̂1, â2, D̂2

)

where âi(t) = Q̂i(t) + Ẑi(t) + D̂i(t) − Q̂i(0) − Ẑi(0), for i = 1, 2.

Note that the processes âi and D̂i, for i = 1, 2, are continuous a.s. since all the tightness

results above hold in uniform topology and âi(0) = 0 and D̂i(0) = 0, i = 1, 2. By using the

corollary in [55] we have that (
√
N rkW rk

1 ,
√
N rkW rk

2 ) ⇒ (Ŵ1, Ŵ2) where

Ŵi(t) =

[

X̂
]+

µ
for i = 1, 2 (C.40)

and X̂(t) =
∑2

j=1 Q̂i(t)). Since the limit X̂ is independent of the subsequence chosen we

have the convergence of the waiting time processes for each pool. To prove the convergence

of W r, we note that

(W r
1 (t) ∧W r

2 (t)) ≤W r(t) ≤ (W r
1 (t) ∨W r

2 (t)) a.s.

for all r and t ≥ 0. Hence

0 ≤
√

|N r| (W r
1 (t) ∨W r

2 (t)) −
√

|N r|W r(t)

≤
√

|N r| (W r
1 (t) ∨W r

2 (t)) −
√

|N r| (W r
1 (t) ∧W r

2 (t)) a.s.

The last term converges to zero by continuous mapping theorem and from (C.40). But weak

convergence to a deterministic limit implies convergence in probability, see, for example,

[11]. Therefore,
√

|N r| (W r
1 (t) ∨W r

2 (t))−
√

|N r|W r(t) converges to zero in probability. We

have the convergence of W r to [X]+/µ by virtue of Theorem 3.1. of [11].

The proof of Theorem 4.1.8 is similar.

C.3.3 Proofs of the results in Section 4.1.4.4

C.3.3.1 Proof of Theorem 4.1.11

Fix a non-idling routing policy π ∈ Π and let X̄
r,n
π (·) = X

r
π(n·)/n. This scaling is known as

the conventional fluid scaling. (These are not related to the fluid scaling that are discussed

in Section 4.1.4.3 and will not be used elsewhere in this paper outside this section.) Similar
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to [19], X̄
r
π ∈ D

8J+1 is said to be a fluid limit of {Xr,n
π } if there exists a subsequence {nk}

of {n} and ω ∈ Ω satisfying

lim
t→∞

Er(λrt)/t = λr and lim
t→∞

Sj(t)/t = µj,

for all j ∈ J , such that

lim
k→∞

X̄
r,nk
π (·, ω) = X̄π(·)

u.o.c. It can be shown as in [18] that fluid limits for queueing systems with multiple servers

exist and satisfy the following equations for all t ≥ 0.

λrt =

J
∑

j=1

(Ās,r
j (t) + Āq,r

j (t)),

Q̄r
j(t) = Q̄r(0) + Ās,r

j (t) + Āq,r
j (t) − µj T̄j(t), for all j ∈ J

T̄ r
j (t) + Ȳ r

j (t) = N r
j µj , for all j ∈ J

Ȳ r
j (t) can only increase when Q̄r

j(t) = 0, for all j ∈ J

Ās,r
j , Ār,q

j , T̄ r
j , and Ȳ r

j are non-decreasing, for all j ∈ J

(C.41)

We note that Z̄r
j (t) = 0 for all t ≥ 0, since Z̄r,nk

j (t) ≤ |N r|/nk and so goes to zero as k → ∞

for fixed r. It is clear from these equations that every fluid limit is absolutely continuous

hence differentiable almost everywhere.

In this section we show that the fluid model of X̄
r
π is stable (see Definition 4.1 of [18])

when π ∈ Π and (4.59) holds. Then we appeal to Theorem 4.2 in [18]. This theorem is

applicable only to single server systems but can be extended to cover the systems with

multiple servers. We omit the proof since it follows straightforwardly from the analysis in

[18].

Proof. Fix a routing policy π ∈ Π and r > 0. Let X̄
r be a fluid limit of {Xr,n

π }. Fix a regular

point t > 0.

We first show that fluid limits of {Xr,n
π } satisfy

˙̄As,r
j (t) + ˙̄Aq,r

j (t) = 0 when Q̄r
j(t) > 0 and Q̄r

j′(t) = 0 for some j′ ∈ J (C.42)
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for any j ∈ J . To prove this, assume that Q̄r
j(t) > 0 and Q̄r

j′(t) = 0. By continuity of Q̄r,

there exists a δ > 0 such that

Q̄r
j(s) > 2ǫ and Q̄r

j′(s) < ǫ/(2ar
π) for all s ∈ [t− δ, t+ δ] and for some ǫ > 0.

Let X
r,nk
π (·, ω) → X̄

r
π(·) u.o.c. as k → ∞. Then, for k large enough,

Q̄r,nk

j (s) > ǫ and Q̄r,nk

j′ (s) < ǫ/ar
π for all s ∈ [t− δ, t+ δ].

Hence, Qr
j(nks) > ar

πQ
r
j′(nks) for all s ∈ [t − δ, t + δ]. Therefore, by (4.29), Aq,r

j is flat on

s ∈ [nk(t−δ), nk(t+δ)]. Note that Ar
s,j is flat on s ∈ [nk(t−δ), nk(t+δ)] since Qr

j(nks) > 0.

This gives (C.42).

Let Q̄r
Σ(t) =

∑J
j=1 Q̄

r
j(t) and assume that Q̄r

Σ(t) > 0. First assume that there exists

j′ ∈ J such that Q̄r
j′(t) = 0. Then, since Q̄r

j′ is absolutely continuous, and differentiable at

time t and attains a minimum at t > 0, ˙̄Qr
j′(t) = 0. Hence

˙̄Qr
Σ(t) =

∑

j∈J :Q̄r
j (t)>0

˙̄Qr
j(t) +

∑

j∈J :Q̄r
j (t)=0

˙̄Qr
j(t) ≤ −µminN

r
min

by (C.41) and (C.42) .

If Q̄r
j(t) > 0 for all j ∈ J , then

˙̄Qr
Σ(t) = λr −

∑

j∈J
µjN

r
j < −ǫ

for some ǫ > 0 by (4.59) and (C.41).

Hence, if Q̄r
Σ(t) > 0, and t is a regular point then ˙̄Qr

Σ(t) < −(ǫ ∧ µminN
r
min) so the fluid

model of X̄
r
π is stable by Lemma 5.2 of [18]. We conclude the existence of a stationary

distribution of (Qr, Zr) by Theorem 4.2 of [18].

C.3.3.2 Proof of Theorem 4.1.12

Choose t0 > 0 such that for large enough r

Ex

[

exp
{

−θ
√

λr/|N r|
√
t0

}]

Ex

[

exp

{

2
‖Ar(t) − λrt‖t0
√

|N r|t0

}]

J
∏

j=1

Ex

[

exp

{

2

∑J
j=1 ‖Sj(t) − µjt‖|Nr|t0

√

|N r|t0

}]

< 1/2.

(C.43)

183



Note that the existence of such t0 and r is guaranteed by Lemma 10.

Let xi ∈ R
J for i = 1, 2 and x = (x1, x2). We define Φr

1(x) : R
2J → R by

Φr
1(x) = exp

{

(|N r|t0)−1/2ϕr
1(x2)

}

, (C.44)

where t0 is as chosen in (C.43) and ϕr
1 is defined as in (4.36). We show using Theorem 4.1.6

that Φr
1 is a geometric Lyapunov function; see Definition 2 in Gamarnik and Zeevi [27],

then we appeal to Theorem 5 in the same paper to complete the proof.

Recall that Pπr denotes the stationary distribution of (Qr, Zr) under the routing policy

π. We denote the expectation operator with respect to this distribution by Eπr . We set

Ex[·] = E[·|Qr(0) = x1, Z
r(0) = x2]

for x = (x1, x2), xi = (xi1, . . . , xiJ) ∈ RJ , for i = 1, 2, with x1 ≥ 0, 0 ≤ x2j ≤ N r
j and

x1j(N
r
j − x2j) = 0 for all j ∈ J .

Proposition C.3. Let Φr
1 be defined as in (C.44). There exists t0 > 1 and 0 < γ < 1 such

that for r large enough

supx∈R2J :Φ1(x)>κ

{

Ex [Φr
1(Q

r(t0), Z
r(t0))/Φ

r
1(x)]

}

≤ γ and (C.45)

φr
1(t0)

∆
= supx∈R2J

{

Ex [Φr
1(Q

r(t0), Z
r(t0))/Φ

r
1(x)]

}

<∞, (C.46)

where κ = exp

{

4θ
√

λr/|Nr |√t0
µmin∧1

}

.

Proof. Fix a t0 > 1 that satisfies (C.43). Note that if Φr
1(x) > exp

{

4θ
√

λr/|Nr |√t0
µmin∧1

}

then

ϕr
1(Z

r(0)) > 4θ
√

λrt0
µmin∧1 . Hence, by (4.38), for r large enough

sup
x∈R2J :Φ1(x)>κ

{Ex [Φr
1(Q

r(t0), Z
r(t0))/Φ

r
1(x)]} ≤ 2Ex

[

exp
{

−θ
√

λr/|N r|
√
t0

}]

Ex

[

exp

{

2
‖Ar(t) − λrt‖t0
√

|N r|t0

}]

J
∏

j=1

Ex

[

exp

{

2

∑J
j=1 ‖Sj(t) − µjt‖|Nr |t0

√

|N r|t0

}]

.

This gives (C.45) by (C.43).

If Φr
1(x) ≤ exp

{

4θ
√

λr/|Nr |√t0
µmin∧1

}

then φr
1(Q

r(0)) ≤ 4θ
√

λrt0
µmin∧1 . Hence, by (4.39),
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sup
x∈R2J :Φ1(x)>κ

{Ex [Φr
1(Q

r(t0), Z
r(t0))/Φ

r
1(x)]} ≤ Ex

[

exp
{

θ
√

λr/|N r|
√
t0

}]

Ex

[

exp

{

2
‖Ar(t) − λrt‖t0
√

|N r|t0

}]

J
∏

j=1

Ex

[

exp

{

2

∑J
j=1 ‖Sj(t) − µjt‖|Nr |t0

√

|N r|t0

}]

.

We get (C.46) by virtue of Lemma 10.

In order to define the Lyapunov function for the queue length process we need the

following result.

Lemma 8. There exist t0 > 0 and r0 such that for r > r0

exp

{

−θ
√

λr/|N r|
√
t0 +

√
t02(µmax ∨ 1)J/

√

|N r|
}

(

Ex

[

exp{4
√
t0(µmax ∨ 1)ζr(t0)/

√

|N r|}
]

+Ex

[

exp

{

4
‖Ar(t) − λrt‖t0
√

|N r|t0

}]

J
∏

j=1

Ex

[

exp

{

8

∑J
j=1 ‖Sj(µjt) − µjt‖|Nr |t0

√

|N r|t0

}])

< 1/2.

(C.47)

Proof. By Lemma 10 there exists r1 such that for any t1 > 0

Ex

[

exp

{

4
‖Ar(t) − λrt‖t1
√

|N r|t1

}]

J
∏

j=1

Ex

[

exp

{

8

∑J
j=1 ‖Sj(µjt) − µjt‖|Nr|t1

√

|N r|t1

}]

< B1/2,(C.48)

for some J + 2 < B1 < ∞ and all r > r1. Now, for large enough t2 > t1 and r2, and for

r > r2 > r1

exp{−θ
√

λr/|N r|
√
t2 +

√
t22(µmax ∨ 1)J/

√

|N r|} < 1

4B1
(C.49)

By Lemma 11 we can choose r3 large enough so that for r > r3 > r2

Ex

[

exp{4
√
t2(µmax ∨ 1)ζr(t′0)/

√

|N r|}
]

< B1/2. (C.50)

We get (C.47) by combining (C.48)-(C.50).

For t0 chosen as in Lemma 8, we define the function Φr
2 : R

2J → R by

Φr
2(x) = exp

{

(|N r|t0)−1/2ϕr
2(x1)

}

(C.51)

for x = (x1, x2) and xi ∈ R
J , i = 1, 2, where ϕr

2 is defined in (4.1.7).
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Proposition C.4. Let Φr
2 be defined as in (C.51). There exists t0 > 1 and 0 < γ < 1 such

that for r large enough

supx∈R2J :Φr
2
(x)>κ {Ex [Φr

2(Q
r(t0), Z

r(t0))/Φ
r
2(x)]} ≤ γ and (C.52)

φr
2(t0)

∆
= supx∈R2J {Ex [Φr

2(Q
r(t0), Z

r(t0))/Φ
r
2(x)]} <∞, (C.53)

where κ = exp{θ
√

λr/|N r|√t0}.

Proof. Choose t0 and r0 as in Lemma 8. Note that if Φr
2(x) > exp{θ

√

λr/|N r|√t0} then

ϕr
2(Q

r(0)) > θ
√
λrt0. Hence, by (4.42),

sup
x∈R2J :Φr

2
(x)>κ

{

Ex [Φr
2(Q

r(t0), Z
r(t0))/Φ

r
2(x)]

}

≤

exp
{

−θ
√

λr/|N r|
√
t0 +

√
t02(µmax ∨ 1)J/

√

|N r|
}

(

Ex

[

exp{4
√
t0(µmax ∨ 1)ζr(t0)/

√

|N r|}
]

+Ex

[

exp

{

4
‖Ar(t) − λrt‖t0
√

|N r|t0

}]

J
∏

j=1

Ex

[

exp

{

8

∑J
j=1 ‖Sj(t) − µjt‖|Nr|t0

√

|N r|t0

}])

<1,

where the last inequality follows from Lemma 8. This gives (C.52).

Now assume that Φr
2(x) ≤ exp{θ

√

λr/|N r|√t0}. By (4.43),

sup
x∈R2J :Φr

2
(x)>κ

{

Ex [Φr
2(Q

r(t0), Z
r(t0))/Φ

r
2(x)]

}

≤

exp
{

2J + θ
√

λr/|N r|
√
t0 +

√
t02(µmax ∨ 1)J/

√

|N r|
}

(

Ex

[

exp{4
√
t0(µmax ∨ 1)ζr(t0)/

√

|N r|}
]

+Ex

[

exp

{

4
‖Ar(t) − λrt‖t0
√

|N r|t0

}]

J
∏

j=1

Ex

[

exp

{

8

∑J
j=1 ‖Sj(t) − µjt‖|Nr|t0

√

|N r|t0

}])

This gives (C.53) by Lemmas 10 and 11.

Theorem 4.1.12. Let π ∈ Π be a non-idling routing policy. We claim that for r large
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enough,

Pπr







J
∑

j=1

Qr
j(0)

√

|N r|
> s







≤ c1 exp{−c2s} and (C.54)

Pπr







J
∑

j=1

N r
j − Zr

j (0)
√

|N r|
> s







≤ c1 exp{−c2s} (C.55)

for some c1, c2 > 0.

Let t0 be given as in Proposition C.3. By Theorem 5 of [27] and Theorem C.3,

Eπr [Φr
1(Q

r(0), Zr(0))] ≤ φr
1(t0)κ

1 − γ
< c0 exp

{

4θ
√

λr/|N r|√t0
µmin ∧ 1

}

,

for some c0 > 0. By Markov’s inequality

Pπr

{

exp

{

ϕ1(Q
r(0))

√

|N r|t0

}

> exp{s}
}

≤ exp{−s}Eπr [Φr
1(Q

r(0))] < c1 exp{−s}

for some c0 > 0. This gives (C.54). The second inequality (C.55) is proved similarly using

Proposition C.4.

Theorem 4.1.12 immediately follows from (C.54) and (C.55) since both
Qr

j (0)√
|Nr|

and

Nr
j −Zr

j (0)√
|Nr |

are nonnegative.

C.3.3.3 Proofs of Theorems 4.1.13 and 4.1.14

Proof. The proof is similar to that of Theorem 8 in [27]. Assume that (4.2) and (4.4) hold.

By Theorem 4.1.11, (Qr(∞), Zr(∞)) exists for each r, and by Theorem 4.1.12 the se-

quence {(Q̂r(∞) , Ẑr(∞))} is tight. Therefore, every subsequence of {(Q̂r(∞), Ẑr(∞))} has

a convergent subsequence. Hence, it is enough to show that every convergent subsequence

of {(Q̂r(∞), Ẑr(∞))} converges to the same limit [11, page 59] and this limit has the same

distribution with the stationary distribution of (Q̂, Ẑ) that is given by

Q̂j(∞) =
µjβj

∑J
j=1 µjβj

(X̂(∞))+,

Ẑ1(∞) = (X̂(∞))− and Ẑj(∞) = 0 for j ≥ 2.

by Remark 4.12, where X̂(∞) has the density given by (4.13).

187



For notational simplicity let {(Q̂r(∞), Ẑr(∞))} be a convergent subsequence and denote

the weak limit by (Q̂∗(∞), Ẑ∗(∞)). Let {Xr} be a sequence of MED–FSF distributed

systems with

(Q̂r(0), Ẑr(0)) ∼ (Q̂r(∞), Ẑr(∞)), (C.56)

i.e., {(Q̂r(0), Ẑr(0))} has the stationary distribution. Then, by Theorem 4.7, for some

Lr = o(
√

|N r|) with Lr → ∞ as r → ∞, and for every T > 0 and ǫ > 0,

P







sup
Lr/

√
|Nr |≤t≤T

∣

∣

∣

∣

∣

Q̂r
j(t)

βjµj
−
Q̂r

j′(t)

βj′µj′

∣

∣

∣

∣

∣

∨

∣

∣

∣

∣

∣

∣

J
∑

j=2

Ẑr
j (t)

∣

∣

∣

∣

∣

∣

> ǫ







→ 0, (C.57)

as r → ∞.

Let

(qr(·), zr(·)) = (Qr(· + Lr/
√

|N r|), Zr(· + Lr/
√

|N r|)),

By (C.56)

(qr(0), zr(0)) ∼ (Q̂r(∞), Ẑr(∞)), (C.58)

since (Q̂r(∞), Ẑr(∞)) is the unique stationary distribution. Therefore, {(qr(0), zr(0))}

satisfies the conditions of Proposition 4.11 by (C.57) and (C.58). Hence

(qr, zr) ⇒ (Q̂, Ẑ) (C.59)

where Q̂ and Ẑ are given by (4.52) and (4.53), respectively, and (Q̂, Ẑ(0)) ∼ (Q̂∗(∞), Ẑ∗(∞)).

Fix t > 0. Then (qr(t), zr(t)) ∼ (Q̂r(∞), Ẑr(∞)), again by stationarity of (Q̂r(∞), Ẑr(∞)).

Since {(qr(t), zr(t))} converges weakly to (Q̂(t), Ẑ(t)) by (C.59), (Q̂(t), Ẑ(t)) ∼ (Q̂∗(∞), Ẑ∗(∞)).

Hence (Q̂∗(∞), Ẑ∗(∞)) is the unique stationary distribution of (Q̂, Ẑ).

The weak convergence of W r(∞) to X̂(∞)/µ can be proved similarly by starting the

each process in its steady state and repeating the arguments in the proof of Theorem 4.1.8.

The proof of Theorem 4.1.14 is similar.
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C.4 Auxiliary Results

Lemma 9. Let M be a renewal process with interarrival times given by the sequence of

i.i.d. random variables {m(i) : i = 1, 2, . . .}. Assume that P{m(1) = 0} = 0. For t0 > 0, let

M = ∩∞
r=1 {‖M(t) −M(t−)‖nrt0 ≤ 1} ,

where {nr} is a sequence of real numbers with nr = O(|N r|). Then P(M) = 1.

Proof. Fix r > 0 and t0 > 0. Then P{M(nrt) < ∞} = 1. Let U = ∪∞
i=1{m(i) > 0}. By the

assumption of the lemma P{U} = 1. Define for k = 1, 2, . . .,

Mr
k = {M(nrt0) < k} and

Mr = {‖M(t) −M(t−)‖nrt0 ≤ 1}.

Observe that

∪∞
k=1 (Mr

k ∩ U) ⊂ Mr

Hence,

P {Mr} ≥ P {∪∞
k=1 (Mr

k) ∩ U} = 1.

Since M = ∩∞
r=1Mr, P{M} = 1.

Lemma 10. Let M be a poisson process with rate γ > 0, {nr} be a sequence of nonnegative

real numbers such that nr = O(|N r|), and α > 0. Then, there exists B1 < ∞ such that for

every 0 < t0 <∞

lim sup
r→∞

E

[

exp

{

α sup
0≤t≤nrt0

|M(t) − γt|
√

|N r|t0

}]

< B1. (C.60)

Remark C.5. If M is a Poisson process with rate 1, then M ′(·) = M(γ·) is a Poisson

process with rate γ, hence (C.60) also holds for the process M(γ·)

Proof. Fix α > 0 and t0 > 0. Since nr = O(|N r|), nr/|N r| < a for r large enough and for

some a > 0.
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As in the proof of Lemma 1 in [27]

lim sup
n→∞

E

[

sup
0≤t≤n

exp
{

2α
√
an−1/2|M(t) − γt|

}

]

< B2, (C.61)

for some B2 <∞. We have

E

[

exp

{

α sup
0≤t≤nrt0

|M(t) − γt|
√

|N r|t0

}]

≤ E

[

exp

{

α
√
a sup

0≤t≤a|Nr |t0

|M(t) − γt|
√

a|N r|t0

}]

= E

[

sup
0≤t≤a|Nr |t0

exp

{

α
√
a
|M(t) − γt|
√

a|N r|t0

}]

This together with (C.61) gives the desired result.

Lemma 11. Let ζr be defined as in (4.40). For every t0 > 0 and α > 0, there exists rt0 > 0

such that for r > rt0

E

[

exp

{

4(µmax ∨ 1)t0
ζr(t0)
√

|N r|

}]

< (J + 1) + 2α.

Proof. For notational simplicity we assume that µmax > 1. Choose r large enough so that

N r
minµmin − θ

√
λr > 2|N r|B3 for some B3 > 0. Then, for such r,

E

[

exp{4µmaxt0
ζr(t0)
√

|N r|
}
]

≤

E

[

exp

{

8µmaxt0 sup
0≤s1≤s2≤t0

{

−
√

|N r|B3(s2 − s1) +
|Ăr(s2) − Ăr(s1)|

√

|N r|

}}]

+E

[

exp

{

8µmaxt0 sup
0≤s1≤s2≤t0

ν1,...,νJ :νj+(s2−s1)≤t0

{

−
√

|N r|B3(s2 − s1)

+

∑J
j=1

∣

∣

∣
S̆j ((υj + (s2 − s1)) |N r|) − S̆j (υj |N r|)

∣

∣

∣

√

|N r|

}

}]

(C.62)

We show that the first term on the right hand side (RHS) above is bounded by 1 + α, it

can similarly be shown that the second term is bounded by J + α. First observe that for
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any ǫ > 0

E

[

exp

{

8µmaxt0 sup
0≤s1≤s2≤t0

{

−
√

|N r|B3(s2 − s1) +
|Ăr(s2) − Ăr(s1)|

√

|N r|

}}]

≤E

[

exp

{

8µmaxt0

(

−
√

|N r|B3ǫ+ sup
0≤s1≤s2≤t0

{

|Ăr(s2) − Ăr(s1)|
√

|N r|

})}]

+ E






exp











8µmaxt0






sup

0≤s1≤s2≤t0
|s1−s2|<ǫ

{

|Ăr(s2) − Ăr(s1)|
√

|N r|

}























(C.63)

We next show that we can choose ǫ > 0 so that the terms on the RHS of (C.63) are

bounded by 1 + α. Let Âr(t) = Ăr(t)/
√

|N r| = (Ar(t) − λrt)/
√

|N r|. Then, Ar ⇒ Wa,

as r → ∞, where Wa is a Brownian motion with variance λ. By the continuous mapping

theorem

P











sup
0≤s1≤s2≤t0
|s1−s2|<ǫ

{

|Ăr(s2) − Ăr(s1)|
√

|N r|

}

>
log u

8µmaxt0











→ P











sup
0≤s1≤s2≤t0
|s1−s2|<ǫ

{|Wa(s2) −Wa(s1)|} >
log u

8µmaxt0











.

Hence, by virtue of the dominated convergence theorem we have that

E






exp











8µmaxt0






sup

0≤s1≤s2≤t0
|s1−s2|<ǫ

{

|Ăr(s2) − Ăr(s1)|
√

|N r|

}























→ E






exp











8µmaxt0






sup

0≤s1≤s2≤t0
|s1−s2|<ǫ

{|Wa(s2) −Wa(s1)|}























(C.64)

as r → ∞. By a.s. continuity of a Brownian motion,

exp











8µmaxt0






sup

0≤s1≤s2≤t0
|s1−s2|<ǫ

{|Wa(s2) −Wa(s1)|}

















→ 1

a.s. as ǫ→ 0. Since for every ǫ > 0

E






exp











8µmaxt0






sup

0≤s1≤s2≤t0
|s1−s2|<ǫ

{|Wa(s2) −Wa(s1)|}























≤ E

[

exp

{

8µmaxt0

(

sup
0≤s1≤s2≤t0

{|Wa(s2) −Wa(s1)|}
)}]

<∞
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Another application of the dominated convergence theorem yields that

E






exp











8µmaxt0






sup

0≤s1≤s2≤t0
|s1−s2|<ǫ

{|Wa(s2) −Wa(s1)|}






















→ 1

as ǫ→ 0. Thus, for every α > 0 we can find ǫ > 0 such that

E






exp











8µmaxt0






sup

0≤s1≤s2≤t0
|s1−s2|<ǫ

{|Wa(s2) −Wa(s1)|}






















< 1 + α/4.

Hence, from (C.64), we can find r0 > 0 such that for all r > r0

E






exp











8µmaxt0






sup

0≤s1≤s2≤t0
|s1−s2|<ǫ

{

|Ăr(s2) − Ăr(s1)|
√

|N r|

}






















< 1 + α/3. (C.65)

Next, observe that

E

[

exp

{

8µmaxt0 sup
0≤s1≤s2≤t0

{

|Ăr(s2) − Ăr(s1)|
√

|N r|

}

}]

≤ E

[

exp

{

16µmaxt0 sup
0≤t≤t0

{

|Ar(t) − λrt|
√

|N r|

}}]

.

(C.66)

Note that, for large enough r, the term on the RHS of (C.66) is bounded by Lemma 10.

Hence, by selecting r large enough we can make the first term on the RHS of (C.63)

arbitrarily small for any ǫ > 0.

Fix ǫ > 0 and choose r1 large enough so that (C.65) holds for every r > r1. Now, for

this choice of ǫ > 0 choose r2 large enough so that for r > r2 the first term on the RHS of

(C.63) is bounded by α/4. Therefore, for every r > r2

E

[

exp

{

8µmaxt0 sup0≤s1≤s2≤t0

{

−
√

|N r|B3(s2 − s1) + |Ăr(s2)−Ăr(s1)|√
|Nr|

}}]

< 1 + α

by (C.63).

Next we outline the details how the second term on the RHS of (C.62) is handled.

Observe that

E

[

exp

{

8µmaxt0 sup
0≤s1≤s2≤t0

ν1,...,νJ :νj+(s2−s1)≤t0

{

−
√

|N r|B3(s2 − s1)

+

∑J
j=1

∣

∣

∣
S̆j ((υj + (s2 − s1)) |N r|) − S̆j (υj |N r|)

∣

∣

∣

√

|N r|

}

}]

≤
J
∑

j=1

E

[

exp

{

8Jµmaxt0 sup
0≤sj

1
≤sj

2
≤t0

{

−
√

|N r|B3

J
(sj

2 − sj
1) +

∣

∣

∣
S̆j

(

|N r|sj
2

)

− S̆j

(

|N r|sj
1

)∣

∣

∣

√

|N r|

}

}]

.
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It can be shown as above that for large enough r

E

[

exp

{

8Jµmaxt0 sup
0≤sj

1
≤sj

2
≤t0

{

−
√

|Nr |B3

J (sj
2 − sj

1) +
|S̆j(|Nr|sj

2)−S̆j(|Nr|sj
1)|√

|Nr |

}

}]

< 1 + α/J,

for each j ∈ J .
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