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Information Sharing to Improve  
Retail Product Freshness of Perishables 

 
 
 

Abstract 
 

We explore the value of information (VOI) in the context of a retailer that provides a 

perishable product to consumers and receives replenishment from a single supplier. We assume a 

periodic review model with stochastic demand, lost sales, and order quantity restrictions. The 

product lifetime is fixed and deterministic once received by the retailer, although the age of 

replenished items provided by the supplier varies stochastically over time.  Since the product is 

perishable, any unsold inventory remaining after the lifetime elapses must be discarded 

(outdated).  Without the supplier explicitly informing the retailer of the product age, the age 

remains unknown until receipt.  With information sharing, the retailer is informed of the product 

age prior to placing an order and hence can utilize this information in its decision–making.  We 

formulate the retailer’s replenishment policies, with and without knowing the age of the product 

upon receipt, and measure the VOI as the marginal improvement in profit that the retailer 

achieves with information sharing, relative to the case when no information is shared. We 

establish the importance of information sharing and identify the conditions under which 

substantial benefits can be realized.   

   

 

Keywords:  value of information, inventory management, perishable inventory, product 
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1. Introduction  

The sale of perishable products makes up over 50% of the $400 billion U.S. retail grocery 

industry (First Research, 2005).  The importance of perishable goods is growing in terms of 

sales, SKUs, and the competitive importance of attracting consumers.  For supermarkets, 

perishables are the driving force behind the industry’s profitability and represent one of the last 

competitive advantages over the hard-charging and lower cost Wal-Mart super centers.   Further, 

perishables have become the order winning criteria of consumers, becoming the core reason 

many consumers choose one supermarket over another (Heller, 2002).  Despite their strategic 

importance, perishables subject grocery retailers to losses of up to 15 percent due to damage and 

spoilage.  Thus, they offer a significant opportunity for improvement.   These are all powerful 

incentives for investment in information enabling technologies for the management of 

perishables.  Indeed many suppliers are embarking on supply chain initiatives premised on 

information technologies.  For example, 

Del Monte is focusing on making the retailer’s life easier by taking on more of the work 
through supply partnerships… Technology has been the key to Del Monte’s strategy – 
along with a sophisticated partnering package.  Del Monte is working with retailers on 
accounting, packaging, merchandising, and sales – shared technology that allows broader 
and richer enhancement of information. (Hennessy, 2000, p. 74) 
 

A distinguishing characteristic of perishables is that they have a finite lifetime and hence, the 

age of the products must be considered in their management.  While our research focus is on 

groceries, the management of perishable inventories is an important problem confronting many 

other industries including blood banks, food service, pharmaceuticals, chemicals, and 

increasingly, biotechnology.  Yet the grocery industry is particularly appropriate, given current 

practitioner activity and industry initiatives.  In this paper, we introduce a model that extends the 

research on perishable inventory systems by evaluating a system where the age of the 
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replenished items is uncertain, the retailer orders in batches, and unmet demand results in lost 

sales: three highly significant aspects to the management of perishables in the grocery industry.     

We measure the value-of-information  (VOI) in the context of a retailer that provides a 

perishable product to consumers.  Demand is stochastic and unsatisfied demands are lost.  The 

retailer receives replenishments from a single supplier and there is a batch ordering constraint on 

the ordering decisions.  The product lifetime is fixed and deterministic once received by the 

retailer, although the age of replenished items varies stochastically over time.  These 

assumptions correspond to the widespread use of packaging highly perishable products with 

expiration dates.  Without the supplier explicitly informing the retailer of the product age, the 

age of any replenishment remains unknown until receipt.  Since the product is perishable, any 

unsold inventory remaining after the lifetime elapses must be discarded (outdated).  With 

information sharing, the retailer is informed of the product age, prior to placing an order, and 

hence can utilize this information in its decision–making.  We formulate the retailer’s 

replenishment problem under these respective scenarios as Markov Decision Processes (MDPs).  

Given the complexity and computational limitations of the MDPs, we introduce and test well 

performing heuristic policies.  We then use these heuristics to measure the VOI as the marginal 

improvement in profit that a retailer achieves with information sharing, relative to the case when 

no information is shared.       

We find that the retailer benefits the most from information sharing when:  1) the variability 

of demand is high, 2) product lifetimes are short, and 3) the cost of the product is high.  We also 

find that information sharing is generally more beneficial when demand is satisfied with a FIFO 

issuing policy than with a LIFO issuing policy.  Upon further investigation, we also find that a 

random issuing policy (SIRO) results in measurements of the VOI that closely resemble a LIFO 
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issuing policy.  Averaging across all parameter values, we find the average improvement from 

information sharing is 4.4% for FIFO, 3.6% for SIRO, and 3.4% for LIFO issuing.  The benefits 

of information sharing, however, are not always directly shared with the supplier.  Yet, the entire 

supply chain is either better-off or no worse-off, indicating that Pareto-improving contractual 

arrangements are feasible.  

The rest of the paper is organized as follows.  §2 reviews the literature,  §3 defines the 

model,  §4 provides and tests heuristic policies,  §5 presents a numerical evaluation of the VOI 

for both FIFO and LIFO issuing policies along with a sensitivity analysis that isolates the main 

drivers of the VOI, and §6 extends the analysis to include random issuing policies, correlation in 

the age of the replenished product over time, and retail demand sensitivity to the product 

freshness.  Finally,  §7 measures the impact on profits an investment in information sharing has 

versus other common investment opportunities and §8 concludes the paper.   

2. Literature Review 

Our research draws on two separate research streams: the literature on perishable inventory 

theory and the value of information.  In this section, we provide a review of prominent research 

in each stream and position our study at the point of their intersection.   

2.1 Perishable Inventory Theory 

Two problems addressed by the literature on fixed lifetime perishable inventory theory 

include determining reasonable and appropriate methods for both issuing inventory and for 

replenishing inventory.  Since inventory may contain units of different ages, the issuing problem 

focuses on the order in which units of each age category are withdrawn from inventory to satisfy 

demand.  Early work by Leiberman (1958) and Pierskalla and Roach (1972) address the 

conditions where issuing the oldest items first (FIFO) and youngest items first (LIFO) are 
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optimal.  With constant product utility until outdating, as is the case with our research, FIFO 

issuing is optimal.  Even so, we also address LIFO inventory issuing and random issuing (SIRO) 

since it is clear from practice that inventory issuing is not always controllable by a retailer. 

Significant research has been done to derive and evaluate replenishment policies for items 

with a fixed lifetime.  Simultaneously, yet independently, Nahmias (1975) and Fries (1975) were 

the first to derive and evaluate optimal policies for perishable products with lifetimes greater 

than two periods.  In their models, the quantity of product to be outdated is expressed recursively 

in terms of previous outdates and demands. They formulate their respective problems as cost–

minimizing dynamic programs that include both outdating and shortage costs.  In both cases, the 

optimal ordering policy is shown to be non–stationary and dependent on the age distribution of 

inventory.  Unlike our model, the product is assumed to be fresh on receipt (i.e. the remaining 

lifetime upon receipt does not vary from one replenishment to the next). 

Given the multidimensional state of inventory, computation of optimal solutions using 

dynamic programs on long lifetime products is impractical since the state space expands 

exponentially with the number of possible age categories.  Hence, much of the more recent work 

has focused on well performing heuristic policies.   Nandakumar and Morton (1993) and Chui 

(1995) provide approximations for continuous review perishable systems.  We also introduce 

well performing heuristics that are designed to evaluate the VOI in a periodic review system 

where all units do not arrive fresh at the retailer.  The remaining lifetime depends on the age of 

stock at the supplier used to satisfy a retail order. 

2.2 Value of Information  

While the importance of managing perishables is growing, there has also been a growing 

interest in the value of information sharing for supply chain management (VOI) as exemplified 
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by recent contributions to the academic literature by Aviv and Federgruen (1998), Cachon and 

Fisher (2000), Lee et al. (2000), Moinzadeh (2002), and Aviv (2002).  Most of the research has 

focused on the potential benefits of sharing downstream information on inventory stocking levels 

and ordering policies with upstream facilities located closer to the originating suppliers.  The 

upstream suppliers can then incorporate this information into their decision making process to 

better match supply with demand.  In contrast, the potential benefits with respect to the reverse 

flow of information (supplier to the retailer) have received scant attention in the literature.   

Recently, a few articles have emerged that provide literature reviews and taxonomies that 

address the VOI for supply chain management. Sahin and Robinson (2002), Chen (2002) and 

Huang et al. (2003) are representative examples, each providing an overview of the literature and 

offering classification schemes.  Only a few studies have addressed the value of supply 

information.  For example, Chen and Yu (2005) consider the case where lead-time information is 

shared forward in the supply chain so that customers can reduce supply uncertainty.  We note 

that both Chen (2002) and Huang et al. (2003) remark on the need for future research in this area.  

In this respect, we extend the literature on the VOI sharing in this important direction. 

Beyond our own study, Ketzenberg and Ferguson (2005) is the only study we are aware of 

that addresses the value of information sharing in the context of perishable inventory.  The 

authors address the value of information sharing in a serial supply chain consisting of a single 

retailer and a single supplier.  Here, information is shared upstream, where the retailer shares its 

age–dependent inventory state, replenishment policy, and demand information with the supplier.  

While we also address the value of information with respect to the supply of a perishable 

product, in this paper we examine the reverse flow of information in which the supplier shares its 

inventory state with the retailer.  Also, Ketzenberg and Ferguson (2005) model supply chains 
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where the supplier’s ordering policy is highly dependent on the retailer’s actions whereas we 

model supply chain structures where the supplier provides for a large number of retailers.  Thus, 

the replenishment actions of a specific retailer are considered inconsequential to the choice of 

ordering policy of the supplier.  This scenario is more appropriate for the grocery industry.  

3. Model 

The general setting is a retailer that provides a perishable product to consumers and receives 

replenishments from a larger supplier.  We assume a periodic review inventory model, as this is 

the most common system used in the grocery industry.  The product is perishable and has a 

maximum retail product shelf life of M  periods, although the remaining shelf life at the time of 

replenishment varies between 1 and M  as we later discuss.  Throughout its lifetime, the utility 

of the product remains constant (see Ferguson and Koenigsberg (2005) for a treatment of 

perishable product whose provided utility degrades over time).  Once the lifetime expires, the 

product is outdated (disposed) without any salvage value.  

The order of events each day follows the sequence: 1) receive delivery, 2) outdate inventory, 

3) observe and satisfy demand, and 4) place replenishment order.  Retail demand is discrete, 

stochastic, and stationary over time with probability mass function (pmf) ( )φ ⋅ , mean Dµ , and  

coefficient of variation (cv) DC .  Define D to be a random variable denoting total demand in a 

period and { },  0,1, ...,td t M∈ , denote its realization in period t.  Unsatisfied demand is lost.  Let 

p be the unit selling price and w the unit purchase cost from the supplier.  We assume that the 

only penalty for a lost sale is the lost margin, p-w.  A holding cost h  is assessed on ending 

inventory.  
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Product ordered in period t arrives in period t+1.  The retailer orders from a completely 

reliable exogenous supplier.  That is, the supplier has ample capacity so that all retail orders are 

fully satisfied one period later.  The replenishment decision tq  is restricted to multiples of a 

batch quantity Q such that t tq n Q=  in the current period, where 0,1, 2, ...tn = .  The batch 

quantity Q  is given and fixed.  This assumption captures certain economies of scale in 

transportation, handling, or packaging, although we do not model these economies explicitly 

(i.e., there is no fixed order cost).   Such an assumption is common in practice and the literature 

(see Chen 1998, Cachon and Fisher 2000, Moinzadeh 2002).  Although Q is exogenous in our 

model, we nevertheless evaluate the impact of this important parameter in our analysis. 

Since the product is perishable, inventory may be composed of units with different ages.  Let 

,x ti  denote inventory in period t, after demand, that expires in x periods, where 1,  ...,  x M= .  Let 

( )1, 2, ,,  ,  ..., t t t M ti i i=i  represent the vector of inventory held at each age class in period t and 

define ,
1

M

t x t
x

I i
=

=∑ .    

We separately explore both FIFO and LIFO inventory issuing policies used to satisfy 

demand.  While it is clear that FIFO issuing is optimal, generally retailers do not have explicit 

control of how demand is satisfied.  Exceptions exist however, such as the load-from-the-back 

shelving systems often used for dairy products.  When control is left to customers, they are apt to 

select the freshest products first.  

The remaining lifetime of replenished items received in any period is an i.i.d. discrete 

random variable, with pmf ( )ψ ⋅ , mean Aµ , and cv AC .  All replenished items received in period 

t  have the same remaining lifetime.  We do not model the supplier explicitly, but rather address 

the stochastic nature of the product age at the time of replenishment.  These assumptions 
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represent the case of a large supplier that provides product to many independently controlled (in 

terms of ordering policies) retailers, a scenario that is common in the grocery industry today. 

Since the retailer makes up a fraction of the supplier’s total order quantity in any given period, 

the supplier’s inventory policy is assumed to be independent of the retailer’s policy.  We later 

relax this assumption and explore correlation in the age of replenished items over time in §6.2.    

Define A to be a random variable denoting the remaining lifetime of replenished items 

associated with an order placed in period t and { },  1, 2, ...,t ta a M∈ , denote its realization.  

Further, without information sharing, ta  is unknown at the time an order is placed although the 

retailer does know ( )ψ ⋅ .  Corresponding to practice, retailers do not typically know the age of 

replenished items until they are received, although they can estimate the age distribution from 

their order history.  We formulate the replenishment problem as an infinite-horizon dynamic 

program where the objective is to find the retailer’s optimal reorder policy so that its expected 

cost is minimized.  The linkage between periods is captured through the one period transfer 

function of the retailer’s age dependent inventory and is dependent on the current inventory level 

ti , any order placed in the current period tn Q , the realization of demand in the next period 1td + , 

and the realization of the remaining lifetime for any replenished items in the next period ta .   

For ease of exposition, let ( ) ( )max ,0z z+ ≡ .  Letting ( )1, , ,t t t td n Q aτ +i  denote the one period 

transfer function, then ( )1 1, , ,t t t t td n Q aτ+ +=i i  where 

1, 1 ,
1

, 1

1, 1 ,
1

x

x t t z t t
z

x t
x

x t t z t t t
z

i d i x a

i

i d i n Q x a

++

+ +
=

+ ++

+ +
=

   − − ≠      = 
   − − + =      

∑

∑
 for FIFO inventory issuing 
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and 

1, 1 ,
2

, 1

1, 1 ,
2

M

x t t z t t
z x

x t
M

x t t z t t t
z x

i d i x a

i

i d i n Q x a

++

+ +
= +

+ ++

+ +
= +

   − − ≠      = 
   − − + =      

∑

∑
 for LIFO inventory issuing. 

Given the vector of ending inventory it and an order quantity multiple of nt, the infinite 

horizon cost-to-go, if future periods behave optimally, is f(it).  The order quantity multiple that 

minimizes the cost-to-go is denoted by *( )t tn i .  We represent the expected one period holding 

and penalty cost in period t by L(It) where 

 
0

( ) ( ) ( ) ( ) ( ) ( )
t

t t t

I

t t t t t t t
d d I

L I h I d d p w d I dφ φ
∞

= =

= − + − −∑ ∑ .    (1) 

Let the superscript NIS represent the no information sharing case.  We can explicitly write the 

infinite horizon recursion as: 

      ( ) ( )( ) ( ) ( )
1

1, 1, 1 10 0 1
( ) min , ,

t
t t

M
NIS

t t t t t t t t t t tn d a
f wi L I i n Q f n Q d a a dτ ψ φ

+

∞

+ +≥
= =

  = + − + + 
  

∑ ∑i i . (2) 

The right hand side of equation (2) computes the total expected cost that is composed of the 

cost of any unsold product that perishes in the next period, the one-period holding and penalty 

cost in the next period, and future expected cost.  Note that 1) the outdating cost in the next 

period is independent of the replenishment decision, 2) the expectation of holding and penalty 

cost in the next period is predicated only on ( )φ ⋅ , and 3) the expectation of future cost is 

predicated on both ( )φ ⋅  and ( )ψ ⋅ .  The decision space for nt is the set of positive integer values.  

Since the state and decision spaces are discrete and finite and the cost is bounded, there exists an 

optimal policy that does not randomize (Putterman, 1994 pg 102 - 111).  Let *( )t tn i  denote the 
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optimal policy of order quantity multiples for period t.  The resulting optimal cost-to-go 

is *( )NIS
tf i .  This formulation is similar to the approaches followed by Fries (1975) and 

Nandakumar and Morton (1993), where now the product lifetime is modeled as a random 

variable. 

With information sharing, the retailer knows tA a=  prior to placing an order in period t.  In 

this case, the state space is expanded to include this information.  Let the superscript IS denote 

the information sharing case.  The infinite horizon recursion is: 

( ) ( )( ) ( ) ( )
1 1

1, 1, 1 1 1 10 0 1
( , ) min , , , ,

t
t t

M
IS IS

t t t t t t t t t t t t tn d a
f a wi L I i n Q f n Q d a a a dτ ψ φ

+ +

∞

+ + + +≥
= =

  = + − + + 
  

∑ ∑i i

 

Let *( , )IS
t t tn ai  denote the optimal policy of order quantity multiples.  The resulting optimal 

cost-to-go is ( , )IS
t tf ai .   Note that while ta  is known with respect to any order placed in the 

current period, this information is not known for subsequent periods.  Hence, the state transition 

probability from state ( ),t tai  to state ( )1 1,t ta+ +i  is predicated on both ( )φ ⋅  and ( )ψ ⋅  just as it is 

in the no information sharing case. 

Since expected profit is a more appropriate metric for the grocery industry, we interpret the 

VOI in terms of a change in expected profit due to information sharing by a simple conversion of 

our cost minimizing policies.  Our switch to a profit maximization problem is simplified by the 

fact that we set the cost of a lost sale equal to the lost margin.  Thus, the optimal ordering 

quantity multiples *( )tn i  and *( , )IS
t tn ai  are equivalent for both the cost minimization and profit 

maximization problems.  Letting ( )NIS
tπ i  and ( , )IS

t taπ i represent the average expected profit 
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per period from the optimal policies across an infinite horizon, given a starting state of ( )ti  and 

( , )t tai for the respective cases, we have:  

 ( ) ( ) ( ) and ( , ) ( ) ( , )NIS NIS IS IS
t D t t t D t tp w f a p w f aπ µ π µ= − − = − −i i i i  (3) 

4. Heuristic Policies 

In this section, we introduce and test the performance of heuristic policies.  The policies 

introduced in §3 are impractical to implement for many realistically sized problems given that 

the size of the state space expands exponentially with the age dependent vector of inventory.  

Hence, we provide heuristics that enable a broad evaluation on the VOI and that are more 

relevant to practice.  In §4.1 we define our heuristic policies.  In §4.2 we demonstrate through a 

series of tests that the heuristics perform very well over the parameter set tested.  In §5 we 

proceed with an analysis on the VOI.  

4.1 Heuristic Policies 

The structure of the heuristic policies is predicated on a balance between simplicity and 

performance.   Since a retailer can place an order each day and the lead-time is one day, our 

heuristics represent myopic policies where the order decision rests on whether sufficient stock 

exists in the current period that will carry over and minimize expected cost in the next period 

only.  If sufficient stock exists, then the decision to order is postponed to the next day.   

Let ( )s
tg i  denote the total estimated future outdating cost associated with inventory ti  in 

periods t+s through t+M+1, where { }2, 3, ..., 1s M∈ + .   Hence, ( )2
tg i  denotes the total 

estimated future outdating cost of inventory ti  in periods t+2 through t+M+1, inclusive.  Note 
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that we are not interested in the outdating that occurs in period t+1 since the replenishment 

decision in period t is independent of the outdating cost in period t+1.  Formally, we have 

 ( )
( )( ) ( )

1

1
1, 1 1

0

1,

, ,0, 2

1

t

t

I
s

t t t t ts
dt

t

wi g d a d s M
g

wi s M

τ φ
+

+
+ +

=


+ ≤ ≤= 

 = +

∑ i
i . 

Note that zero is passed as a parameter for the order quantity for the tau function, since we 

are not concerned with outdating of future orders.  Now, let ( )HNIS
tf i  denote the minimum total 

estimated cost for the Heuristic No Information Sharing policy (HNIS), where   

 ( ) ( ) ( )( ) ( ) ( )
1,

1

2
1, 1 10 0 1

min , , ,
t t t

t
t t

I i n Q M
HNIS

t t t t t t t t t tn d a
f L I i n Q g d n Q a a dτ ψ φ

+

− +

+ +≥
= =

  = − + + 
  

∑ ∑i i . 

For the Heuristic Information Sharing policy (HIS), we simply add the age of replenished 

items to the current state so that 

 ( ) ( ) ( )( ) ( )
1,

1

2
1, 1 10 0

, min , , ,
t t t

t
t

I i n Q
HIS

t t t t t t t t t tn d
f a L I i n Q g d n Q a dτ φ

+

− +

+ +≥
=

  = − + + 
  

∑i i . 

Expected profits are found by substituting ( ) ( ) with HNIS NIS
t tf fi i  and ( ) ( ) with HIS IS

t tf fi i  

in (3).  The advantages of the heuristics are that they are easy to implement, extremely fast 

computationally, and provide near optimal performance as we describe below.  

4.2  Validation of Heuristic Performance 

We test the heuristics by comparing their performance to optimality for a variety of 

scenarios. Consumer demand ( )φ ⋅  corresponds to a truncated negative binomial distribution 

with a maximum value of 50  (probabilities for values exceeding 50 are redistributed 

proportionately within the truncated limit of the distribution).  See Nahmias and Smith (1994) 

regarding the advantages of assuming negative binomial distributions for retail demand.    
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For our computational study, we set the maximum product lifetime M  to 7 periods, although 

the age of receipts A  varies according to ( )ψ ⋅ .  We define ( )ψ ⋅  for each Aµ  and AC  pair in 

Appendix A.  There is not a unique distribution for each pair, but through our discussions with 

practitioners, these symmetric distributions seemed most appropriate.     

Each period represents a day, the selling price is $1 and the annual holding cost is 25% of the 

purchase cost.  We consider a set of experiments that comprise a factorial design for all 

combinations of the following parameter values: 

{ }3, 4Dµ ∈      { }0.60,0.75,0.90DC ∈    { }1, 2, 4Q∈  

{ }2,3, 4Aµ ∈    { }0.2,0.3,0.4AC ∈    { }0.4,0.55,0.70w∈  

Our selection of parameter values correspond to operating characteristics of many short life-

time products that include deli items, fresh cut produce, as well as packaged meats and seafood 

(Raper, 2003 and Pfankuch, B. 2004).  Through experimentation with the policies, we found that 

their performance degraded when the order batch size was substantially larger relative to mean 

demand.  Hence, we restricted our tests to conditions when the ratio was less than two.  

Moreover, our choice of parameter values for testing is constrained by the computational 

feasibility of the MDPs – our principal motivation for developing the heuristics.   

We duplicate the factorial design for each issue policy: LIFO and FIFO.  Hence, there are a 

total of 972 experiments in our test.  We use value iteration to compute the results for the 

respective optimal and heuristic policies and then solve the accompanying state transition 

matrices using the method of Gaussian elimination to evaluate steady state behavior as described 

in Kulkarni (1995, p. 124).   

We measure the performance of each heuristic policy by taking the percentage difference in 

expected profit, relative to the corresponding optimal policy.  Overall, the results are very good.  
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The no information sharing heuristic achieves, on average, a total expected profit that is 0.9% 

less than optimal and the information sharing heuristic achieves, on average, a total expected 

profit that is 1.6% less than optimal.  We report the performance at selected percentiles of the 

972 test cases in Table 4.1. 

Percentile No Info Heuristic
Info Sharing 
Heuristic 

0.00 0.0% 0.0% 
0.05 0.0% 0.1% 
0.10 0.0% 0.2% 
0.25 0.1% 0.5% 
0.50 0.5% 1.2% 
0.75 1.3% 2.2% 
0.90 2.5% 3.6% 
0.95 3.3% 4.2% 
1.00 8.6% 8.8% 

Table 4.1: Heuristic Performance 
 
As shown in Table 4.1, the worst-case performance is less than 9% from optimality for both 

heuristics and is less than 5% from optimality in over 95% of the test cases.  We were not able to 

identify any patterns in the results to explain why the performance under a few sets of parameter 

values was worse than others (except for large order batch sizes relative to mean demand which 

we did not include in our test).   

In a second test, we compared the VOI achieved with the heuristics to that of the optimal 

policies.  We evaluate the VOI, measured as the % improvement in expected retailer profit, 

relative to the case where information is not shared.  Specifically, define 
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The average VOI of the heuristics across all 972 examples is 6.6%, or 0.6% less than the VOI 

for the optimal policies.  This is not unexpected as the performance of the information sharing 

heuristic is, on average, 0.7% further from optimality than the performance of the no information 
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sharing heuristic.  Hence, we would expect the VOI to be underestimated by the heuristics.   

Moreover, a thorough comparison of the heuristic VOI to the optimal VOI, across all parametric 

settings, demonstrates the same qualitative relationships.  From the basis of these comparisons, 

we consider the heuristic policies to be well suited for our purposes and provide in the next 

section an extensive evaluation of the VOI.   

5. Analysis 

In this section, we report on a simulation study that evaluates the VOI using the heuristic 

policies defined in §4.  §5.1 details the experimental design and simulation procedures, §5.2 

reports our principal results and general observations, §5.3  and §5.4 respectively report our 

results for FIFO and LIFO issuing, §5.5 provides a sensitivity analysis, and §5.6 extends our 

analysis to the impact information sharing has on the supplier and the supply chain as a whole. 

5.1 Experimental Design and Simulation Procedures 

Testing via simulation allows us to choose a set of parameter values that captures the 

majority of cases for fresh meat, seafood, and produce based on our literature search and 

personnel interviews with produce managers (Pfankuch 2004, Raper 2003, Man and Jones 2000).  

We consider a set of experiments that comprise a factorial design for all combinations of the 

following parameters:   

{ }10,15, 20Dµ ∈      { }0.5,0.6,0.7DC ∈    { }1, 2, 4, 8Q∈  

{ }2, 3, 4, 5, 6Aµ ∈    { }0.2,0.3,0.4AC ∈    { }0.4,0.55,0.70w∈  

We duplicate the factorial design for each issuing policy so that there are a total of 3,240 

experiments with which to evaluate the VOI.  The age distribution ( )ψ ⋅  that corresponds to each 
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Aµ  and AC  pair are specified in Appendix A.  The maximum product lifetime M is 11 days, the 

selling price is $1 and the annual holding cost rate is fixed at 25% of the product cost. 

We developed a simulation program using the PASCAL programming language.  Each 

experiment is simulated for 1,100 days and replicated 20 times.  The first 100 days of each 

replication are set aside as the simulation warm–up period so that statistics are calculated for 

1,000 days in each replication.  This 100 days period was chosen for convenience, yet larger than 

the number of days necessary for the system to exhibit steady-state behavior.  In each replication, 

the random number streams across all experiments are identical in order to reduce the sampling 

error.  The estimated standard error for the expected average daily profit using either heuristic, 

averages 0.5% of its mean value, and has a maximum error of 1.4%.  Thus, we are over 99% 

confident that the true VOI in each experiment falls within 4.5% of the reported value. 

5.2 General Observations 

In general, we find that the sharing of supply information enables a retailer to purchase 

fresher product and consequently, information can be valuable.  In Table 5.1, we separately 

report the VOI at given percentiles of the set of 1,620 experiments evaluated for each issuing 

policy.  For example, the 0.50 percentile denotes the median values for VOI.  We also report 

additional performance measures of interest that include the absolute difference in expected 

profit, percentage change in the average remaining product lifetime of replenished items, level of 

outdating, and service (fill-rate), where all % change measures are relative to the no information 

sharing case.  Note that the values for each performance measure are ranked according to the 

percentile (from lowest to highest) and not according to the VOI.   
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          % Change in 
   ∆ Profit VOI Lifetime of Receipts Outdating Service 
Percentile FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO FIFO LIFO 

0.00 0.00 -0.04 0.1% -1.2% 0.4% -3.4% -90.1% -56.5% -4.0% -6.0%
0.25 0.09 0.05 1.3% 1.0% 4.3% 2.8% -66.8% -16.7% 0.2% 0.2%
0.50 0.15 0.10 2.9% 2.2% 8.1% 6.7% -51.4% -6.3% 0.7% 0.9%
0.75 0.28 0.19 5.6% 4.5% 12.8% 11.8% -35.6% -1.7% 1.7% 2.4%
1.00 0.81 0.59 39.5% 37.2% 25.0% 25.5% 0.1% 0.1% 38.1% 40.6%

Table 5.1: Performance metrics at percentiles of the 1,620 experiments for each issue policy  
 

For FIFO issuing, the range of the VOI is between 0.1% and 39.5%, with a mean of 4.4% 

and a median of 2.9%.  For LIFO issuing, the range of the VOI is between -1.2% and 37.2%, 

with a mean of 3.4% and a median of 2.2%.  In a few experiments, expected profit from the 

information sharing heuristic was less than the no information sharing heuristic, which we 

attribute to the use of a heuristic policy.   

Although it is clear from Tables 5.1 that the VOI can at times be large, the range that is 

reported also reveals that any realization of value is sensitive to model parameterization.  Next, 

we discuss the drivers of value for each issuing policy and follow with a sensitivity analysis to 

understand the conditions in which information sharing is most beneficial. 

5.3 FIFO Results 

With FIFO issuing, the retailer has explicit control of its inventory so that product outdating 

is minimized and it is profitable to maintain (based on the average over all parameter values 

explored) a 91% service fill rate without information sharing.  By using the supplier’s age of 

inventory in its replenishment decision, the retailer will increase the expected lifetime of 

replenished items by ordering more in periods when the supplier has fresher product and less in 

periods when the supplier has older product.  On average, the expected improvement in 

replenishment lifetime increases from 4.0 days to 4.3 days (8%).  In turn, the level of outdating 

that arises from product expiration decreases from an average of 0.68 units per period to 0.41 
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(40% improvement).  The key is that in any replenishment period, an improvement in the 

freshness of replenished items decreases the likelihood of product outdating in future periods. 

The improvement in product freshness is not necessarily shared with consumers.  Although, 

on average, consumers realize a 1.5% improvement in the remaining lifetime at the point of sale, 

it ranges from -10% to 9% as shown in Table 5.1.  We find that the change in product freshness 

to consumers is largely a function of a change in retailer service.  When the service level 

increases, the average inventory levels also increase so that product freshness decreases at the 

point of sale.  On average, the retailer observes a slight improvement in the expected service fill 

rate (1%) since the expected cost of over–stocking, relative to the opportunity cost of a lost sale, 

is reduced with a fresher product.   Yet this is not always the case as shown in Table 5.1 where 

we observe that the service fill-rate actually decreases in approximately 10% of the experiments.  

We find that information sharing enables a systematic tradeoff between a decrease in the cost of 

outdating and an increase in profit contribution.  On average, we observe that 72% of the 

improvement in average expected profit arises from a reduction in outdating and 28% arises from 

higher service.   Figure 5.1 shows how these two components (outdating cost and service) are 

influenced by information sharing.  Specifically, we break out the proportion in increased 

expected profit due to each component at fixed intervals of the reported increase in expected 

profit across experiments (values on the x-axis multiplied by 100 for readability).   
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Figure 5.1: The components of the VOI for FIFO issuing 

 
As Figure 5.2 illustrates, a reduction in the cost of outdating is largely responsible for the 

VOI that we observe.  However, when information is most valuable, the retailer is able to 

substantively increase service while simultaneously reduce outdating.  We elaborate later with a 

sensitivity analysis, but first position our results with those that arise for LIFO issuing. 

5.4 LIFO Results 

The results indicate the VOI is generally greater with FIFO issuing than LIFO issuing, 

although in 15% of the experiments the VOI with LIFO issuing is greater.  These instances 

correspond to scenarios where the VOI is smallest.  Consider that when the VOI with LIFO 

issuing exceeds FIFO issuing, the VOI is, on average, 2.3% with a maximum of 13.6%.  When 

the converse is true, the VOI is, on average, 5.1%, with a maximum of 39.5%.   

With LIFO issuing, the retailer has inherently less control of product outdating so that the 

cost of holding inventory is greater than we observe with FIFO issuing.  Consequently, the 

retailer maintains a lower service level on average (86% fill rate) without information sharing.  

Just as with FIFO issuing, when information is shared, it results in an improvement in the 

freshness of replenishment.  Yet here, any improvement will not necessarily result in a decrease 
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in product outdating because consumers buy the freshest product first.  Moreover, any new 

replenishment may increase the likelihood of outdating product that is already in stock.  Hence, 

with LIFO issuing the retailer is more constrained in its ability to reduce product outdating.   

Across experiments, information sharing enables a reduction in outdating from an average 1.4 

units per day to an average of 1.2 units (14% improvement) which is considerably less than that 

observed with FIFO issuing (40% improvement).   

As we did in Figure 5.1 for FIFO issuing, Figure 5.2 breaks out the proportion of the VOI 

attributed to a reduction in outdating and an increase in contribution.  Comparing Figure 5.1 with 

Figure 5.2 shows that across all levels of the VOI, increasing expected profit through higher 

service plays a greater role with LIFO issuing than with FIFO issuing.  Across all experiments, 

53% of the increase in expected profit is attributed to an increase in service fill-rate as compared 

to only 28% with FIFO issuing.  Consider that with FIFO issuing, service levels are already 

relatively high without information so that there is less opportunity to increase them. 
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Figure 5.2: The components of the VOI for LIFO issuing 

 
In the next section, we proceed to elaborate on our findings through a sensitivity analysis that 

explores the conditions in which information is most valuable. 
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5.5 Sensitivity Analysis 

In Table 5.2, we report the average VOI across all 3,240 experiments for each fixed 

parameter value and separately for each issuing policy.  In addition, we report the associated 

average change in the cost of outdating and the average change in profit contribution.  These 

results indicate that the VOI is largely a function of the level of uncertainty the retailer 

experiences and the sensitivity of its costs to uncertainty.   

As expected, the VOI increases as the expected lifetime of replenished items Aµ  decreases.  

Improvements in product freshness reduce the potential for outdating, allowing the retailer to 

carry more inventory for the same amount (or less) of product outdating.    To see this, consider 

the extreme case of a non-perishable product.  Here, there is no outdating and information 

sharing has no effect on retailer behavior because product freshness is no longer material to the 

problem.  Consequently, the VOI is zero. 
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 FIFO Issuing   LIFO Issuing   
Parameter 

 
Value VOI ∆ Contribution ∆ Outdating VOI ∆ Contribution ∆ Outdating

10 4.4% $0.04 $0.09 3.4% $0.05 $0.04 
15 4.4% $0.06 $0.14 3.4% $0.07 $0.07 Mean 

Demand 
20 4.3% $0.08 $0.19 3.4% $0.10 $0.09 
0.5 2.9% $0.04 $0.11 2.5% $0.02 $0.10 
0.7 4.3% $0.06 $0.14 3.2% $0.08 $0.06 Demand CV 
0.9 5.9% $0.09 $0.16 4.6% $0.13 $0.05 
2 7.3% $0.05 $0.23 6.0% $0.04 $0.16 
3 5.5% $0.07 $0.18 4.1% $0.08 $0.09 
4 4.1% $0.08 $0.13 2.8% $0.09 $0.04 
5 3.2% $0.07 $0.10 2.4% $0.08 $0.03 

Expected 
Lifetime 

6 1.8% $0.05 $0.06 1.7% $0.07 $0.01 
0.2 1.7% $0.01 $0.07 1.2% $0.02 $0.03 
0.3 4.0% $0.05 $0.14 2.9% $0.07 $0.05 Lifetime CV 
0.4 7.4% $0.12 $0.21 6.2% $0.14 $0.11 

0.40 2.1% $0.03 $0.13 1.6% $0.05 $0.06 
0.55 3.8% $0.06 $0.15 2.9% $0.07 $0.07 Product Cost 
0.70 7.2% $0.10 $0.14 5.7% $0.10 $0.07 

1 4.3% $0.06 $0.14 3.4% $0.07 $0.07 
2 4.3% $0.06 $0.14 3.4% $0.07 $0.07 
4 4.3% $0.06 $0.14 3.4% $0.07 $0.07 

Batch Size 

8 4.6% $0.06 $0.14 3.5% $0.08 $0.06 
Table 5.2: Sensitivity of the VOI to parameters 

 
Two factors that affect the retailer’s ability to efficiently match supply with demand are the 

coefficients of variations in demand DC  and in the lifetime of replenished items AC .  As shown 

in Table 5.2, the VOI increases with respect to both parameters.  While the fact that the VOI 

increases with an increase in uncertainty of demand has been well studied, we observe the same, 

if not stronger, relationship between supply uncertainty and the VOI.  That is, the more 

uncertainty there is with regard to the age of replenished items, the higher the VOI.  Again, an 

extreme example is sufficient to demonstrate.  Consider the case where 0AC = .  Here, there is no 

variability over time with respect to freshness of replenishment and hence the VOI is zero.   

While uncertainty is main driver of the VOI, the magnitude of this effect depends on the 

sensitivity to mismatches in supply and demand.  A clear example is that of the product cost.  

When the product cost is high (contribution margins low), the cost of holding inventory relative 
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to a lost sale is larger since the cost of unit outdating is larger.  Thus, service levels are lower 

even with FIFO issuing.  Consequently, information sharing that enables a reduction in the cost 

of outdating will also be accompanied by an increase in service.   Consider that with FIFO 

issuing, information sharing enables an average 0.4% increase in service when the product cost is 

$0.40 but a 2.7% increase when the product cost is $0.70.  These improvements are comparable 

with LIFO issuing.  We can also see from Table 5.2 that an increase in contribution has a larger 

role in the total profit improvement due to information sharing when the product cost is high. 

Thus, the VOI is largest when the retailer is able to substantially improve its service. 

Given that one of the drivers of value resides with the retailer’s ability to match supply with 

demand, it may seem surprising that the VOI demonstrates no sensitivity with respect to the 

order batch size.  However, to draw such a conclusion may be partially misleading since we have 

restricted our analysis to evaluating scenarios where the order batch size does not significantly 

exceed the mean demand rate (because heuristic performance degrades).   Hence, when demand 

rates are low compared to the order batch size, the VOI may be more sensitive to the order batch 

size.  Certainly, large batch sizes make it more difficult for a retailer to effectively match supply 

and demand.  Given our prior analysis, one would expect the VOI to be more valuable and we do 

have some limited experience with the optimal policies to support this assertion.  However, a 

large order batch size itself will constrain a firm’s ability to take advantage of information.  

Since it remains unclear which effect dominates and under what conditions, analysis of the VOI 

with large order batch sizes is an important avenue for future research.   

5.6 Impact on the Supplier 

Our analysis would not be complete without studying the impact of information sharing on 

the supplier.  While the supplier is exogenous to the model, we can nevertheless measure the 
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impact that information sharing has on its performance by considering the net change in expected 

retail orders and the net change in product outdating at the supplier.  Across experiments, we 

observe a range of between –13.5% and +41.6% and a mean of 0.0% in the change in expected 

size of retail orders per period.  The size of the change depends largely on the relative 

improvements in retailer outdating and retailer service.  Improvements in retailer outdating 

translate to a decrease in orders to the supplier while improvements in service translate to an 

increase in orders to the supplier.  In 43% of the experiments, the average expected order size to 

the supplier increases.   

As for outdating, we take a conservative approach to measuring the impact on the supplier 

and assume that whenever product at the supplier has a remaining lifetime of one day and the 

retailer does not place an order, it expires.  We assume the quantity that expires is equal to the 

average order size placed by the retailer.  This assumption is conservative as it assumes that no 

other retailers buy the soon-to-expire stock.  Across experiments, we observe a change in 

supplier outdating due to information sharing that ranges from 0.0 units per day to 1.2 units per 

day, with a mean of 0.09 units.  Hence, a reduction in retailer outdating (with a mean of 0.20 

units) translates to an increase in supplier outdating, but the impact is much less on the supplier.   

Given both the change in retailer orders and supplier outdating that arises from information 

sharing, the supplier is worse off on average.  In Table 5.3, we report the impact that information 

sharing has on the supply chain by reporting, at given percentiles across the 3,240 experiments, 

the change in orders to the supplier, the change in supplier outdating, and the change in supplier 

revenue.  We also report the impact on both the supplier’s expected profit and the combined 

expected profit for both the retailer and the supplier.  We do so by evaluating two cases: one in 

which the supplier’s product margin is 10% and another in which it is 50%.  This provides a 
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relative comparison between cases when the supplier is a distributor (low margin) and a 

manufacturer (high margin). 

Supplier Supply Chain 

Percentile ∆ Order ∆ Revenue ∆ Outdating
∆ Profit  

(10% Margin)
∆ Profit  

(50% Margin) 
∆ Profit  

(10% Margin) 
∆ Profit  

(50% Margin)
0.00 -1.04 -0.53 0.00 -0.30 -0.33 -0.02 -0.08 
0.05 -0.57 -0.28 0.00 -0.18 -0.19 0.01 0.00 
0.10 -0.38 -0.18 0.01 -0.13 -0.13 0.02 0.01 
0.25 -0.16 -0.08 0.02 -0.06 -0.06 0.05 0.04 
0.50 -0.02 -0.01 0.05 -0.02 -0.02 0.09 0.10 
0.75 0.12 0.07 0.13 -0.01 0.02 0.17 0.21 
0.90 0.36 0.23 0.25 0.00 0.07 0.26 0.35 
0.95 0.55 0.37 0.34 0.00 0.13 0.33 0.47 
1.00 3.08 2.15 1.20 0.02 0.79 0.64 1.46 

Table 5.3: Impact of information sharing on the supply chain 
 

As shown in Table 5.3, while the supplier is harmed in a preponderance of the cases, the 

supply chain as a whole generally improves or is no worse-off.  While nearly 5% of the cases 

show a negative change to expected supply chain profit, we attribute these negative values to our 

use of a heuristic policy.  Consider that in the worst case reported, supply chain profit decreases 

from $7.27 to $7.19 (-1.3%) with information sharing.  Overall the change in supply chain profit, 

expressed as a percentage relative to the no information case, ranges from -0.4% to 19.2% with a 

10% supplier margin and from -1.3% to 32.9% with a 50% supplier margin.   

Since the supplier is generally worse-off, some form of contract beyond the normal price-

only contract is needed to induce the supplier to participate in the information sharing.  Gerchak 

and Wang (2004) and Cachon and Lariviere (2005) discuss revenue sharing contracts, where the 

product is sold to the retailer at the supplier’s cost and the retailer shares a pre-determined 

percentage of the revenue with the supplier.  The percentage of revenue shared is generally set 

such that the contract is Pareto improving.  In our scenario, retailers are typically much smaller 

than suppliers, thus retailers may be more risk adverse.  Gan et al. (2005) discuss how 
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coordination contracts may be modified to account for this reality.  Given the common practice 

of sharing point-of-sale data, the cost of implementing and monitoring such a contract should not 

be prohibitive. 

6. Extended Analysis 

In this section, we explore some practical extensions to our base model assumptions.  

Specifically, we study the impact of a random issuing policy, correlation in the age of 

replenished items over time, and demand sensitivity to product freshness.   

6.1 Random Issuing 

While we have modeled consumer behavior with respect to LIFO and FIFO issuing policies, 

some product displays allow consumers to be random in their selection of products with respect 

to their freshness.  Hence, an interesting and practical line of inquiry is to examine the VOI with 

a service-in-random-order (SIRO) issuing policy.  To do so, we assume that the probability 

associated with a unit of demand being satisfied with a unit of product in a given age category is 

equivalent to the proportion of total inventory represented by the given age category.  For 

example, if 20% of the units in inventory have a remaining lifetime of three days, then a 

particular unit of demand has a probability of 0.20 of being satisfied with a unit of inventory with 

a remaining lifetime of three days. 

To explore the VOI in the context of SIRO issuing, we duplicate the full set of experiments 

conducted for FIFO and LIFO issuing as defined in §5.  All parameter settings and simulation 

methods are identical to that described in §5 (as are subsequent studies in §6.2 and 6.3).   

The results of our experiments were somewhat surprising, particularly when compared to the 

VOI for the other issuing policies.  We found that the average VOI for the SIRO policy across 

experiments is 3.6%, considerably closer to the 3.4% average for the LIFO policy than the 4.4% 
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for the FIFO policy.  Looking beyond the averages, a more comprehensive analysis of the VOI 

across individual scenarios provides the same picture:  the VOI for the SIRO policy is closer to 

the LIFO policy than the FIFO policy.   

Duplicating the sensitivity analysis presented for the other issuing policies in §5.4, in Table 

6.1, we report sensitivity of the VOI with SIRO issuing to the parameters.  Here, we find the 

same relationships between the VOI and parameters for all issuing policies, but notice that not 

only are the averages reported at each parameter value closer to those reported for LIFO issuing, 

one is even less ( 0.5DC = ) and several averages are identical.   

      SIRO    FIFO  LIFO  
Parameter Value VOI ∆ Contribution ∆ Outdating VOI VOI 

10 3.7% $0.05 $0.06 4.4% 3.4% 
15 3.6% $0.07 $0.08 4.4% 3.4% Mean Demand 
20 3.5% $0.10 $0.11 4.3% 3.4% 
0.5 2.1% $0.03 $0.07 2.9% 2.5% 
0.7 3.6% $0.07 $0.09 4.3% 3.2% Demand CV 
0.9 5.1% $0.11 $0.09 5.9% 4.6% 
2 6.0% $0.06 $0.16 7.3% 6.0% 
3 4.4% $0.08 $0.11 5.5% 4.1% 
4 3.3% $0.08 $0.07 4.1% 2.8% 
5 2.8% $0.07 $0.06 3.2% 2.4% 

Expected 
Lifetime 

6 1.7% $0.06 $0.03 1.8% 1.7% 
0.2 1.2% $0.02 $0.04 1.7% 1.2% 
0.3 3.2% $0.06 $0.08 4.0% 2.9% Lifetime CV 
0.4 6.4% $0.13 $0.14 7.4% 6.2% 
0.4 1.7% $0.05 $0.08 2.1% 1.6% 

0.55 3.2% $0.07 $0.09 3.8% 2.9% Product Cost 
0.7 5.9% $0.10 $0.08 7.2% 5.7% 
1 3.6% $0.06 $0.10 4.3% 3.4% 
2 3.6% $0.07 $0.08 4.3% 3.4% 
4 3.5% $0.07 $0.08 4.3% 3.4% 

Batch Size 

8 3.7% $0.08 $0.08 4.6% 3.5% 

Table 6.1: Sensitivity analysis 
  

Without information sharing, we find that the retailer is able to achieve a level of expected 

profit for SIRO that is generally midway between the FIFO and LIFO issuing policies.  On 

average, expected profit for SIRO is $5.53 compared to $5.21 for LIFO and $5.88 for FIFO.  
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However, the average absolute improvement in expected profit due to information sharing for 

SIRO is much closer to LIFO.  On average, we find the VOI for SIRO is $0.153, while for FIFO 

it is $0.199 and for LIFO it is $0.137.  These results indicate that, as with LIFO, the retailer is 

more constrained in its ability to take advantage of fresher product since doing so may increase 

outdating of product held in inventory.  In fact, when we examine components of the change in 

profit that arise from information sharing, we observe that they behave similar to LIFO issuing as 

we demonstrate in Figure 6.1 (which mirrors the analysis presented in Figure 5.2 for LIFO).   
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Figure 6.1: The components of the VOI for SIRO issuing 

 
While SIRO generally demonstrates a greater absolute improvement in expected profit with 

information sharing, the fact that the retailer is better off with SIRO issuing (even without 

information sharing) can result in lower reported VOI.  In Table 6.2, we provide analysis on the 

cases in which 1) LIFO ≥ SIRO, 2) LIFO ≥ FIFO, and 3) SIRO ≥ FIFO.  We also report the 

conditions (parameter values) that correspond to the scenarios, as indicated by the row headers.    
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   Mean Demand Product Order  
VOI Scenarios % Scenarios Demand CV Lifetime Batch Size Age CV 

LIFO ≥ SIRO 543 33.5% Higher Higher    
LIFO ≥ FIFO 239 14.8%   Longer Lower Lower 
SIRO ≥ FIFO 146 9.0% Lower Lower Longer Lower  

Table 6.2: Analysis of cases in which the VOI for one issuing policy is greater than another 
 

6.2 Correlation in the Age of Replenished Items 

In our base model, we assume that the age distribution of replenished items is stationary over 

time.  In many supply chains of perishable produce; there are hundreds of retailers served by a 

single supplier so that it is reasonable to assume that the ordering policy of the retailer does not 

significantly affect the state of the inventory carried at the supplier.  There are cases however, 

where this is not true.  Thus, we examine the robustness of our model and findings with respect 

to the correlation in the age of replenished items.  First, we require additional notation.  Let ρ  

denote the one period correlation in the age of replenished items and let ( )tψ ⋅  denote the 

distribution for the lifetime of replenished items for an order placed in the current period.  If no 

replenishment arrives at the beginning of period t, then  

( ) ( ) ( ) ( )
( ) ( ) ( )

1

1

1 1 0
1 1

t
t

t

x x x M
x

x x M
ρψ ρ ψ

ψ
ρψ ρ ψ

−

−

+ + − < <=  + − =
 

otherwise 

( )
( ) ( )

( ) ( )
( ) ( )

1

1 1 1

1 1

1 1
1 1, 1
1 1, 1

t

t t t t

t t

x x a
x a x a a

M x a a

ρ ψ
ψ ρ ρ ψ

ρ ρ ψ

−

− − −

− −

− ≠ −
= + − = − >
 + − = − =

. 

To explore the VOI in the context of correlation, we use a subset of the experiments we 

explored in §5 duplicated for values of ρ  where { }0.0, 0.1, ...,1.0ρ ∈ .  Since we expect that 

increasingly higher values of ρ  will decrease the VOI, we restrict the range of other parameter 
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values to those we know from prior results for which either the VOI is not measurably sensitive 

or otherwise correspond to conditions of high VOI.  In this way, the influence of ρ  is more 

readily transparent.  Hence, we fix the parameters 10, 0.4, 0.7, 1D DC w Qµ = = = = and vary the 

parameters { }2, 3, 4, 5, 6Aµ ∈  and { }0.2,0.3,0.4AC ∈ , along with ρ  for the FIFO and LIFO 

issuing policies in a full factorial design.  In total, there are 180 experiments with which to 

explore the impact of correlation on the VOI. 

The results were somewhat of a surprise.  While we expect that the VOI would decrease with 

respect to the correlation, we find a concave relationship.  That is, the VOI is greatest at 

intermediate values of ρ .  Clearly, when 1.0ρ = , there is no VOI since the age of replenished 

items is known exactly without information sharing.  As for, the concave relationship between ρ  

and the VOI, we find that for intermediate values, the cv in the age of replenished items actually 

increases.  Since the VOI is proportional to the cv, we observe the concave relationship.  To 

illustrate our findings, in Figure 5.1 we report the average VOI and average realized AC  across 

experiments, at each value of ρ .   
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Figure 6.2: The VOI and Age CV as a function of ρ  
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Another surprising finding that is also readily transparent from Figure 6.2 is that the VOI can 

remain quite substantial for high values of ρ  and, upwards to 0.6ρ =  the VOI can be higher 

than the VOI at 0ρ = .  Clearly, we have tilted the balance towards high VOI in our experiments 

given our choice of parameter values.  Even so, we find the same relationship holds over the 

entire range of parameter values.   

6.3 Demand Sensitivity to Product Freshness 

In our base model, we assume that demand is i.i.d. over time.  However, based on the 

observed behavior of consumers selecting the freshest products first and that perishables, along 

with their product freshness, have become order winning criteria for food purveyors, it seems to 

some extent that demand is sensitive to product freshness.  That is, we expect a store selling 

fresher product experiences a higher level of demand than a store selling older product.  Hence, 

we test the robustness of our model and findings with respect to demand sensitivity.  To do so, 

we adopt a simple linear model of demand sensitivity where mean demand ,D tµ  in day t is a 

function of 1) a maximum rate of demand Dµ , 2) the average lifetime of inventory available for 

sale at the retailer tλ  relative to maximum lifetime M, and 3) a constant α  that conceptually 

represents demand sensitivity to product freshness, where  0 1α≤ ≤ .  Here, 

,
1

M

x t
x

t
t

xi

I
λ ==

∑
    and , 1 t

D t D D M
λµ µ µ α  = − − 

 
. 

We assume that the DC  in each period t is independent of the mean demand rate so that for 

any t, total demand D  is a random variable with mean ,D tµ  and cv DC .  Note that if 0α = , then 

,D t Dµ µ=  for all t, corresponding to the case where demand is insensitive to product freshness. 
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For our experiments, we choose a subset of the experiments defined in §5.  Here, we fix the 

parameters 10  and  1D Qµ = =  since our prior results showed no sensitivity to these parameters 

and choose a factorial design based on the following parameters: 

{ }0.5, 0.7, 0.9DC ∈   { }0.2, 0.3, 0.4AC ∈   { }0.4, 0.55, 0.7w∈   

{ }3, 4, 5, 6Aµ ∈  { }0.0, 0.25, 0.5α ∈ . 

The full set of experiments are duplicated for both the FIFO and LIFO issuing policies so 

that there are a total of 972 experiments with which to explore the impact of α  on the VOI. 

Our results show that when demand is sensitive to product freshness, the VOI can be quite 

substantial and that the VOI increases at an increasing rate with respect to α .  In Table 6.3, we 

report our summary results for each issuing policy that identifies the average VOI and percentage 

change in demand, outdating, service, and lifetime of replenished items across experiments.   

    FIFO     LIFO   
% Change in α =0.0 α =0.25 α =0.50 α =0.0 α =0.25 α =0.50 
VOI 3.5% 4.8% 7.2% 2.8% 4.0% 6.4%
Demand 0.0% 0.7% 2.0% 0.0% 0.1% 0.9%
Outdating -56.1% -61.6% -66.1% -9.1% -11.6% -12.8%
Service 1.2% 1.3% 1.6% 1.6% 2.1% 3.1%
Age of Reciepts 7.6% 9.6% 11.0% 6.6% 8.2% 10.6%

Table 6.3: Summary Results of the VOI with respect to α  
 

With demand sensitivity, information sharing that provides a fresher product provides the 

capability of increasing the mean demand rate, in addition to reducing product outdating and 

reducing the service level.  As α  increases, increasing the demand rate plays an increasingly 

greater role in the net profit improvement due to information sharing.  These summary results are 

also representative of the sensitivity of the VOI to parameters and matches quite closely to the 

results provided to our sensitivity analysis in §5.5.  For comparison, we illustrate the sensitivity 

of the VOI to each parameter and level of α  for both issuing policies in Figure 6.3.   The height 
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of each bar corresponds to the average VOI across experiments for the parameter and value 

specified on the x-axis and there are three bars for each, corresponding to each value of α . 
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Figure 6.3: Sensitivity of the VOI to the parameters at each level of α .  
 

7. Other Investments 

Our exploration of the VOI also enables a comparison to the value of other investments that 

may be available to the firm to improve the operations of selling perishable products.  For 

example, many firms have opportunities for investments that could influence the issuing policy 

or that could increase product life times. Since all investments compete for a limited budget of 

available funds, it is important to compare the return on the capital investment needed for 

obtaining the age of the product versus these other investment opportunities.  Thus, in §7.1 we 

explore the value of switching the issuing policy used to satisfy demand and in §7.2 we explore 

the value of increasing the product lifetime. 

7.1 Switching the Issuing Policy 

Practitioners are well aware of the value in controlling inventory issuing with a FIFO issuing 

policy.  Extensive investments are made into specialized equipment including rear-loading 

shelving systems and gravity wells, in addition to extensive training and labor expenditures to 
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ensure that perishables are continuously rotated.  Here, we provide a comparison on the value of 

influencing (switching) the issuing policy to that of sharing information.   

For our comparisons, we use the set of experiments defined in §5, as well as our extended 

results with the SIRO policy presented in §6.1.  Table 7.1 is representative of the overall results 

where we show the average percent change in expected profit that arises from switching the 

issuing policy from 1) LIFO to FIFO, 2) LIFO to SIRO, and 3) SIRO to FIFO.  For convenience, 

we also report the average VOI for each issuing policy.   

LIFO to FIFO LIFO to SIRO SIRO to FIFO 
 FIFO SIRO LIFO % Change % Change % Change 
Without information $5.88 $5.53 $5.21 12.7% 6.1% 6.2% 
With information sharing $6.13 $5.73 $5.39 13.7% 6.3% 7.0% 
VOI  4.4%  3.6%  3.4% - - - 

Table 7.1: The value of switching the issue policy versus the VOI 
 

We find the value of switching the issue policy to FIFO or SIRO is more valuable than the 

VOI both on average and for a vast majority of the cases we evaluated.  Only in approximately 

5% of the cases do we find that the VOI is greater than switching from LIFO to FIFO (17% for 

LIFO to SIRO and 15% for SIRO to FIFO) and these instances, not surprisingly, correspond to 

where the VOI is greatest – low expected product lifetime, high variability in the age of 

replenished items, high product cost, and high demand variability.  This result indicates that 

retailers who have not implemented FIFO issuing may be better off trying to do so first, before 

making investments in information sharing. 

7.2 Increasing the Product Lifetime 

Practitioners often can also invest in equipment that increases product lifetime.  Examples 

include specialized cold storage equipment, chemical treatments, use of preservatives, food 
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irradiation, and even specialized lighting.  Here, we provide a comparison on the estimated 

benefits of these investments for increasing the product lifetime to that of sharing information. 

In Table 7.2 we report the percentage change in expected profit by increasing the product 

lifetime.  The first row of the table denotes the base product lifetime and each subsequent row 

denotes the expected average improvement in profit by increasing the product lifetime to the 

number of days indicated by the row header.  For comparison, the final row reports the 

corresponding average VOI for the lifetime indicated in the column header.  For example, 

increasing the product lifetime from 2 days to 3 days increases expected profit by an average of 

16.5%.  This compares to an increase of 6.7% in average expected profit due to information 

sharing when the lifetime is two days.   

 
Expected Life 2 3 4 5 

3 16.5%    
4 25.4% 7.6%   
5 30.6% 12.1% 4.2%  
6 34.3% 15.3% 7.1% 2.8% 

VOI 6.7% 4.8% 3.5% 2.8% 

Table 7.2: Value of Increasing Product Lifetime 
 

A review of Table 7.2 shows that on average, investments that improve the product lifetime 

for all lifetimes we evaluate provide a greater benefit than that of information sharing.  A further 

comparison of all individual experiments reveals that in only a few cases is the VOI greater than 

the value of increasing the product lifetime - even by one day.  In 50 (7.7%) of the relevant 

scenarios, the value of information is greater when increasing the lifetime from 5 days to 6 days.  

This figure drops to 31 scenarios (4.8%) when increasing the lifetime from 4 days to 5 days.  For 

shorter product lifetimes, there are only 3 scenarios.  Collectively, all of these scenarios for 

which the VOI is greater than increasing the product lifetime correspond to the conditions 
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demonstrating the highest VOI ( 0.4, 0.7,AC w= =  and FIFO issuing) and the average benefit of 

information sharing relative to increasing the product lifetime is 1.1%. 

8. Conclusion 

In this paper, we study the benefits of information sharing to a retailer that sells a perishable 

product with a fixed lifetime and is constrained to order in fixed lot sizes.  We first describe 

exact policies for determining the optimal batch size multiple at the retailer for each time period 

and inventory state.  Since the product is perishable, the need to track the age of inventory makes 

this policy intractable for reasonable sets of parameter values.  Thus, we propose heuristic 

policies for the retailer under both no information sharing and information sharing of the age of 

the inventory arriving upon replenishment.  The heuristic solutions are compared against the 

exact results and shown to perform well.  The heuristics are then used to measure the value of 

information under a wide range of parameter value settings.  We find that the retailer benefits the 

most from information sharing when:  1) the variability of either demand or the remaining 

lifetime of replenished items is high, 2) product lifetimes are short, and 3) the cost of the product 

is high.  We also find that information sharing is generally more beneficial when demand is 

satisfied with a FIFO issuing policy than with a LIFO issuing policy.  Upon further investigation, 

we also find that a random issuing policy (SIRO) results in measurements of the VOI that closely 

resemble a LIFO issuing policy.  In fact, we observe that it is generally more profitable to switch 

from LIFO (or SIRO) to FIFO issuing (if possible) than from sharing information. 

Averaging across all parameter values, we find the average improvement from information 

sharing is 4.4% for FIFO, 3.6% for SIRO, and 3.4% for LIFO issuing.  The benefits of 

information sharing, however, are not always shared with the supplier.  Although the supplier is 

exogenous to our model, we observe that information sharing may result in a net decrease in 
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retailer replenishment orders due to a reduction in the amount of retailer outdating and an 

increase in outdating at the supplier’s facility.  The benefits of information sharing to the whole 

supply chain are almost always positive however, indicating the possibility for Pareto 

improvement through some form of coordination contract.  We also study the effect on the VOI 

when the age of replenished items is correlated over time and when retail demand is sensitive to 

the product freshness.  We conclude with a comparison of the payoffs when investments are 

available that change the choice of issuing or increase the lifetime of the product.  
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Appendix A 

Distributions of ( )ψ ⋅  used in the design of experiments: 

{ }P A a=  
AC  Aµ  1 2 3 4 5 6 7 8 9 10 11 

2 0.08 0.84 0.08                 
3 0.03 0.06 0.82 0.06 0.03            
4 0.02 0.03 0.05 0.81 0.05 0.03 0.02        
5 0.01 0.02 0.03 0.04 0.80 0.04 0.03 0.02 0.01    

0.2 

6 0.01 0.01 0.02 0.03 0.03 0.79 0.03 0.03 0.02 0.01 0.01 
2 0.18 0.64 0.18                 
3 0.07 0.14 0.60 0.14 0.07            
4 0.04 0.07 0.11 0.57 0.11 0.07 0.04        
5 0.02 0.05 0.07 0.09 0.55 0.09 0.07 0.05 0.02    

0.3 

6 0.02 0.03 0.05 0.06 0.08 0.54 0.08 0.06 0.05 0.03 0.02 
2 0.32 0.36 0.32                 
3 0.12 0.24 0.28 0.24 0.12            
4 0.06 0.13 0.19 0.23 0.19 0.13 0.06        
5 0.04 0.08 0.12 0.16 0.20 0.16 0.12 0.08 0.04    

0.4 

6 0.03 0.06 0.08 0.11 0.14 0.18 0.14 0.11 0.08 0.06 0.03 
Table A.1: Values for ( )ψ ⋅   


