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SUMMARY

Fluid velocities and Brownian effects at nanoscales in the near-wall region of mi-

crochannels can be experimentally measured in an image plane parallel to the wall using, for

example, evanescent wave illumination technique combined with particle image velocimetry

(see [29]). The depth of field of this technique being difficult to modify, reconstruction of

the out-of-plane dependence of the in-plane velocity profile remains extremely challenging.

Tracer particles are not only carried by the flow, but they undergo random fluctuation

imposed by the proximity of the wall. We study such a system under a particle based

stochastic approach (Langevin) and a probabilistic approach (Fokker-Planck). The neces-

sary modeling assumptions are presented first. The Langevin description leads to a coupled

system of stochastic differential equations. Because the simulated data will be used to test

a statistical hypothesis, we pay particular attention to the strong order of convergence of

the scheme developing an appropriate Milstein scheme of strong order of convergence 1.

Based on the probability density function of mean in-plane displacements, a statistical so-

lution to the problem of the reconstruction of the out-of-plane dependence of the velocity

profile is proposed. We developed a maximum likelihood algorithm which determines the

most likely values for the velocity profile based on simulated perfect particle position, sim-

ulated perfect mean displacements and simulated observed mean displacements. Effects of

Brownian motion on the approximation of the mean displacements are briefly discussed.

A matched particle is a particle that starts and ends in the same image window after a

measurement time. AS soon as the computation and observation domain are not the same,

the distribution of the out-of-plane distances sampled by matched particles during the mea-

surement time is not uniform. The combination of a forward and a backward solution of

the one dimensional Fokker-Planck equation is used to determine this probability density

function. The non-uniformity of the resulting distribution is believed to induce a bias in

the determination of slip length and is quantified for relevant experimental parameters.

xii



CHAPTER I

INTRODUCTION

One of the many ways of measuring fluid in a channel is to illuminate small tracer particles

to record their images through a camera. Under the assumption that the tracer particles

follow the flow, a full three-dimensional velocity profile can be reconstructed by properly

rotating the sample or changing the angle of illumination. Standard illumination techniques

include spectroscopy and multiple laser sheets illumination (see [1], [37]). The limitation of

tracking algorithms, which follow the position of every single tracer particle, and the desire

for higher velocity field resolution has led to the development by Meinhart et al. ([35], [22],

[36]) of a new technique. Micron-resolution particle image velocimetry (µPIV) combines

improvements in instrument hardware with post processing algorithms to gain accuracy in

the measurement and improve the spacial resolution from about 1 mm to about 1 µm. As

microfluidic devices become smaller, the out-of-plane spatial resolution of approximately

2 µm of µPIV needs to be overcome in order to obtain velocity data in the near-wall re-

gion. The well established technique of illumination through multiple laser-sheets failing

to provide fine enough measurements, a new illumination technique using evanescent wave

has been proposed by Zettner et al. ([38]) and Sadr et al. ([29]). This method reduces

the out-of-plane spatial resolution to approximately 400 nm, creating in the same time new

experimental and theoretical questions about the influence of the wall and about what is

effectively measured.

The work of this thesis is based on some of the problems and questions encountered by the

group of Minami Yoda in the Woodruff School of Mechanical Engineering at the Georgia

Institute of Technology.
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1.1 Experimental Set-up

We begin by describing the techniques used by Yoda et al. to obtain velocity images at

nanoscales. Figure 1 illustrates the experimental set-up around the region of interest (ROI)

and some of the inherent experimental restrictions in terms of relative width, height and

depth of the channel. Including the near-wall region of microchannels, Yoda et al. ([38],

x
y

z

Channel

ROI
ROI

Figure 1: Experimental set-up: Region of interest (ROI), flow direction and wall location.

[29]) extend PIV to flows illuminated with evanescent waves generated by total internal

reflection of a beam of light. Light undergoes total internal reflection between a medium

(glass plate) and a less dense medium (water) when the angle of incidence exceeds the critical

angle. An evanescent wave penetrates into the less dense medium and propagates parallel

to the interface with an intensity that decays exponentially with the distance normal to

the wall (see Fig. 2 and [38], [31]). The fluorescent particles illuminated by the evanescent

wave are captured on a camera with a measurement time of approximately 2-5 ms.

Glass

U

Water

Light

Ev. wave

Figure 2: Evanescent wave illumination technique.

A background image consisting of the average of all images is then subtracted from all

individual images to improve the contrast between the particle images and the background

2



noise ([29]). The result is an image matrix as illustrated in figure 3. Next, image pairs are

0 50 100 150 200 250 300 350 400 450 500
0

50

100

X
Y

Particles positions

Image matrix

Figure 3: Simulated image flow and resulting image matrix.

cross-correlated and the location of the maximum of the cross-correlation peak is used to

determine in-image-plane mean velocities. Subpixel accuracy is achieved through the use

of a Gaussian surface fitting algorithm (see [35], [19], [22], [21], [38], [29]).

1.2 Experimental Results

In a laminar flow, Fuller et al. ([7]) show that it is possible to reconstruct the velocity

gradient using light-scattering spectroscopy. This requires the knowledge of the intensity

function and the technical capacity of turning the sample to get a proper angle of illu-

mination. This last requirement can not be achieved with nPIV, because the images are

limited to in-plane (parallel to the wall) images. However, since the evanescent wave has an

intensity that decays exponentially away from the wall, the z−location (z distance normal

to the wall) of a particle can be correlated to its image intensity. Using this idea, Li et

al. ([18]) have proposed extending nPIV to multilayer nPIV for determining the velocity

component tangential to the wall at several z-locations given an appropriate division of the

3



image into layers based on intensity. This new technique is extremely challenging, espe-

cially since background noise pollutes the images, while tracer non-uniformity corrupts the

identification of particle position into layers.

At microscale, the effect of Brownian motion is independent of z. Therefore its effect on

the height and the width of the cross-correlation peak can be explicitly quantified (see [23],

[24], [26], [25]) leading to proper characterization of window size and windows overlapping.

Moreover, a better resolution can be obtained when the consecutive cross-correlation func-

tions are averaged over successive window pairs reducing the error due to Brownian motion

at microscale to a negligible factor (see [21], [35], [36]).

Because nPIV with evanescent wave does not illuminate the entire microchannel, velocity

measurements are limited to near-wall region over a distance comparable to the illumina-

tion wavelength (see [38], [29]). Therefore, Brownian motion and particle mismatch between

two images are an important issue. Sadr et al. ([29]) show that hindered Brownian motion

(the presence of the wall changes the drag coefficients and resulting Brownian motions of a

particle because of its hydrodynamic interaction with the wall) creates additional errors in

the measurements, especially if the particle mismatch (we say that a particle is mismatched

if it only appears in one image of a PIV image pair, because of its motion during the time

interval) between two windows exceeds 45%. The percentage of particle mismatch itself is

a function of the dimensionless diffusion time D∞T/a2, where D∞ is the Stokes-Einstein

diffusion coefficient in the region away from the wall, T is the time interval between two

windows and a is the radius of the particles.

Questions remain about the influence of hindered Brownian diffusion on measured velocity

profiles, in particular, when extrapolating slip length from the velocity profile. Slip lengths

of various order of magnitudes have been reported and explanations ranging from the non-

smoothness of the glass surface, to the presence of an air layer or to electro-kinetic effects

have been proposed (see [20], [15], [17], [16], [11],[32], [34], [12] ). Considering this problem
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as a result of Brownian diffusion, Sadr et al.([30]) computationally determine the bias in

the z-distribution of matched particles.

1.3 Motivation

The information lost with in-plane images is vital to the characterization of physical prop-

erties of the flow (see [31]). Since distinguishing particle brightness given by the intensity

function from background noise remains extremely challenging, we want to find an alternate

method to reconstruct the out-of-plane dependence of the velocity profile. The method is a

statistical approach based on the probability density function of the displacement. Choosing

a probabilistic point of view should also allow for a more precise discussion of the influ-

ence of Brownian motion on the cross-correlation function and of the bias generated by

particle mismatch. In order to prove that the concept is valid, a computer model will be

constructed and results will be derived from simulated data similar to experimental data.

Because of the numerous technical uncertainties, we hope that simplifying the problem will

enable us to pinpoint dominant effects and parameters of measured flows in near-wall region.

1.4 Outline

Constructing a computer model requires first to choose the adequate framework for the

problem and second to simplify and neglect some experimental parameters. Both of these

aspects are presented in chapter 2 describing the derivation of a particle model using a

Langevin and a Fokker-Planck approach.

Because of hindered Brownian diffusion, the Langevin system of equations is stochastic and

we present its numerical simulation in chapter 3. Numerical methods for stochastic differ-

ential equations are more complicated than those for non-stochastic systems and become

even more complicated for uncoupled system. In our case, Brownian diffusion depends on

z, thus the system is coupled through the z-coordinate. The reconstruction method being

of probabilistic type, we want the simulation to have higher order of strong convergence
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than that used in the reconstruction technique. Therefore we need to include higher order

terms to improve the Euler-Maruyama (equivalent to a deterministic forward Euler) scheme

of strong order of convergence 1/2 to a Milstein scheme of strong order of convergence 1.

Computation of Ito-integrals with respect to two distinct Brownian motions are carefully

discussed in Chapter 3.

Having at our disposal a robust code, we can proceed to the main result about the recon-

struction of velocity profile using a statistical method (see [10]). This part covers chapters

4 to 6 each one of them including elements closer to the experiments. To test the valid-

ity of the reconstruction algorithm we first limit ourselves to perfect particle identification

in chapter 4. Experimentally, this corresponds to a particle tracking algorithm where the

position of each particle is exactly known. Because nPIV techniques produce an approx-

imation of the mean displacements, we extend in chapter 5 the algorithm to exact mean

measurement of displacements between two windows. This remains an idealization, since

the computer simulation provides us with the exact value for the mean displacements. Hav-

ing demonstrated that a statistical reconstruction algorithm is valid, we finally discuss, in

chapter 6, the additional error generated when the mean displacements are not exact but

approximated via cross-correlation. Moreover, in chapter 6 we also describe the details of

a PIV algorithm similar to the one used by the experimentalists.

Next, we turn our attention to the bias in the distribution of matched particles and present

in chapter 7 an algorithm for the generation of the probability density function of the z-

distance of particles present in the window at the beginning and end of the measurement.

The algorithm is extremely fast, since it does not require the knowledge of the position

of each particle but uses a probability density function computed from the Fokker-Planck

equation. Applications to the determination of the bias and corrections to slip length terms

are also presented.

Finally, we discuss in chapter 8 results on correction terms that could be used in the
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quantification of the effects of hindered Brownian diffusion on the width and height of the

cross-correlation peak.

We conclude by discussing possible improvements of the model and directions for further

research.
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CHAPTER II

PARTICLE MODEL

What makes the problem of measurement of fluid velocities in near-wall region interesting

is the fact that tracer particles are not only carried by the flow, but their random Brownian

motions are affected by the presence of the wall. This is not some type of reflection at the

wall, but a random forcing whose magnitude depends on the distance from the wall. It

is obvious that, in the bulk region, tracers follow the flow on average and the wall has no

influence. In this chapter, we present two ways (Langevin or Fokker-Planck) of describing a

Brownian system with non-constant diffusion tensor. In doing so, we make some simplifying

assumptions on the nature of the underlying flow and we always assume that the perfect

spherical particles do not interact with each other, a reasonable assumption since the volume

fraction in practical applications is smaller than 10−3. Proceeding with a dimensional anal-

ysis, we derive a stochastic particle based (Langevin) and a probabilistic (Fokker-Planck)

description with characteristic dimensionless parameters of a simplified stochastic system

that retains the main properties of the experimental model.

2.1 Langevin Description

We describe the problem as a simple stochastic model of particle motions. Each particle is

assumed to have a fixed radius a and we consider a system of n Brownian particles obeying

Stokes drag relations, linearly dependent on the velocity. A general description of such

systems is provided by Ermak and McCammon ([6]) starting from Newton’s law

miv̇i = −
3n
∑

j=1

Mijvj + Fi +
3n
∑

j=1

αijfj i = 1, . . . , 3n. (1)

F describes the external and interaction forces and M is the mobility tensor related to the

configuration diffusion tensor D by MD = DM = kΘI with k Boltzmann constant, Θ

temperature, and I is the identity tensor. The random forcing f is described by a Gaussian
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distribution with mean fi = 0 and covariance fi(t)fj(t′) = 2δijδ(t − t′). The matrix α is

given by the relation kΘM = ααT .

For a time step dt bigger than the force relaxation time miDii/kΘ, Ermak and McCammon

show that the previous equation for a position vector r leads to

dri =

3n
∑

j=1

∂Dij

∂rj
dt +

3n
∑

j=1

DijFj

kΘ
dt + Wi(dt), i = 1, . . . , 3n, (2)

where Wi(dt) is a random displacement with a Gaussian distribution function whose average

value is zero and whose variance-covariance matrix is 2Ddt. The Brownian displacement

can be expressed as

Wi(dt) =
i

∑

j=1

σijdWj σ =
√

2Ddt dWj = N (0, 1), j = 1, . . . , 3n, (3)

using the notation N (µ0, σ
2
0) for a normal random variable of mean µ0 and variance σ2

0 .

2.2 Fokker-Planck Description

Another way of describing the system when interested by statistical properties and not

exact particle location is to use the Fokker-Planck equation. The n particle phase-space

distribution function W({ri}, {pi}, t) is the average number density of particles with posi-

tion ri and momentum pi at time t which evolves from the initial distribution W(ri, pi, 0).

Under the assumption that the momentum variables relax to equilibrium more rapidly than

the position variables (dt � miDii/kΘ), the equation for the n particle system is ([6])

∂W
∂t

=
3n
∑

i=1

3n
∑

j=1

∂

∂rj
Dij

(

∂W
∂rj

− 1

kΘ
FjW

)

, (4)

where W({ri}, t) is the configuration space distribution function and D, F are the diffusion

tensor and the force vector as defined in section 2.1.
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2.3 Diffusion Tensor

2.3.1 Approximation through images

A first approximation of the non-constant diffusion tensor is obtained by the methods of

image singularities for Stokes flows ([28], [5]), valid for particle center-to-wall distance, z,

that is large compared to the particle radius, a. Let µ be the viscosity of water, keeping in

mind that µ depends on the temperature Θ. Assuming that there is no contribution from

the particle neighbors, the diffusion tensor can be expressed as ([28])

Dij = kΘ

(

δij

6πµa
+ GW

ij (2zez)

)

= kΘ

(

δij

6πµa
− GS

ij(2zez) + 2z2GD
ij (2zez) − 2zGSD

ij (2zez)

)

,

(5)

where GW , GS , GSD, GD are the Green tensor associated with the wall, a stokeslet, a

stokeslet doublet, and a source doublet and z is the particle center-to-wall distance with

unit direction vector ez. This leads to the diffusion tensor D ([5])

D =
kΘ

6πµa













1 − 9
16

a
z 0 0

0 1 − 9
16

a
z 0

0 0 1 − 9
8

a
z













= D∞β(z), (6)

where D∞ = kΘ/(6πµa) is the Stokes-Einstein relation in the bulk limit far from the wall.

2.3.2 Hindered diffusion

The out-of-plane diffusion perpendicular to the wall has the physically impermeable prop-

erty that the diffusion coefficient goes to zero for a spherical particle touching the wall

(z = a). This is not satisfied by the diffusion tensor (6), but it is satisfied by the em-

pirical Bevan-Prieve relation (see [2]). Experimental verification shows that the infinite

series representing the modified diffusion coefficient in the out-of-plane direction z can be

approximated by the rational function

D33 =
kΘ

6πµa

6z2 − 10az + 4a2

6z2 − 3az − a2
. (7)
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Correction terms can also be found for the in-plane component leading to a power series in

a/z (see [29])

D11 = D22 =
kΘ

6πµa

(

1 − 9

16

a

z
+

1

8

(

a

z

)3

− 45

256

(

a

z

)4

− 1

16

(

a

z

)5)

. (8)

Considering for simplicity only the lowest-order a/z corrections for diffusion components

parallel to the wall and the Bevan-Prieve relation, the diffusion tensor is found to be

D =
kΘ

6πµa













1 − 9
16

a
z 0 0

0 1 − 9
16

a
z 0

0 0 6z2−10az+4a2

6z2−3az−a2













= D∞β(z). (9)

2.4 External Force: Hydrodynamic

For a force-free fluid velocity fluid u of the particles themselves, the hydrodynamic forces

on the particle is given by kΘD−1(u−U) for tracer particle velocity U. Because of hydro-

dynamic balance u = U and the external force F becomes

F = kΘD−1u. (10)

In the physical experiments, additional corrections are required to relate the force-free ve-

locity profiles of the tracers to that of the flow ([11]).

2.5 Flow

We consider a velocity profile u directed in one in-plane direction x and a simulated channel

of height H. Experimentally three different flows are most frequently encountered: shear

flow, pressure-driven flow, and electro-osmotically pumped flow.

Let u∞ be the “bulk” velocity and ex be the unit vector in the x-direction. We set u =

u∞γ(z)ex, where the dependence from the out-of-plane component z is γ(z). Corresponding
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to the three experimental cases (shear, pressure-driven and electro-osmotically pumped),

we have

γ(z) =
1

H − a
(z − a) linear (11)

γ(z) =
4

(2H − a)2
z(2H − z) parabolic (12)

γ(z) = 1 − exp(1 − z/a) exponentially decaying. (13)

2.6 Particle Model

2.6.1 Explicit Langevin model

We denote by x the component parallel to the wall in which the flow is directed, y the

component parallel to the wall affected only by random fluctuation and z the component

perpendicular to the wall. Consequently the three non-zero components of the diffusion

tensor can be expressed as β11(z) = β22(z) = β||(z) and β33(z) = β⊥(z).

Combining the results from the previous sections, we derive the simplified Langevin model.

We set u = u∞γ(z)ex with γ(z) given by (11)-(13). The external force F is given by (10).

Substituting these assumptions together with the out-of-plane dependent diffusion tensor D

(9) into the Langevin model (2)-(3) we obtain the system of stochastic differential equations

dx = u∞γ(z)dt +
√

2D∞β||(z)dtdW 1, (14)

dy =
√

2D∞β||(z)dtdW 2, (15)

dz = D∞
dβ⊥(z)

dz
dt +

√

2D∞β⊥(z)dtdW 3, (16)

with dW i = N (0, 1), i = 1, . . . , 3.

2.6.2 Explicit Fokker-Planck equation

The statistical description of the system through the Fokker-Planck equation (4) results

from the same assumptions as in the Langevin model into a space-time partial differential
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equation

∂W(x, y, z, t)

∂t
=D∞β||(z)

∂2W(x, y, z, t)

∂x2
− u∞γ(z)

∂W(x, y, z, t)

∂x

+ D∞β||(z)
∂2W(x, y, z, t)

∂y2
+ D∞

dβ⊥(z)

dz

∂W(x, y, z, t)

∂z

+ D∞β⊥(z)
∂2W(x, y, z, t)

∂z2
.

(17)

Solving the partial differential equation (17) numerically requires very evolved schemes.

Since it has been experimentally observed that the major difficulties arise from the dis-

placement of particles in the direction perpendicular to the wall (z), we will study a one-

dimensional space-time Fokker-Planck equation, assuming a uniform distribution of particles

in the in-plane direction. We obtain the following partial differential equation

∂W(z, t)

∂t
= D∞

dβ⊥(z)

dz

∂W(z, t)

∂z
+ D∞β⊥(z)

∂2W(z, t)

∂z2
, (18)

where W(z, t) is the z−distribution function over time.

We remark that if the diffusion coefficient were constant (Stokes-Einstein D∞, in the region

away from the wall), the partial differential equation (18) reduces to the well-known heat

equation ∂W(z,t)
∂t = D∞

∂2W(z,t)
∂z2 .

2.7 Dimensional Analysis

In order to determine relevant parameters, we perform a dimensional analysis on the model.

We choose T the time elapsed between two window measurements and a the particle radius

to be the characteristic time and length scales. Let x = aX, y = aY , z = aZ and t = Tτ

define the dimensionless variables. The resulting dimensionless parameters are Π1 = u∞T
a

and Π2 = D∞T
a2 . They represent the dimensionless deterministic time and diffusive time.

Using dimensionless units it is easy to plot (Fig. 4) the velocity profiles (11)-(13) and the

diffusion tensor (9) obtained with the Bevan-Prieve relation for the experiments a = 50 nm,

H = 450 nm, Θ = 300 K and µ = 0.856 kg/ms.
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Figure 4: (a) Dimensionless diffusion coefficient β⊥ and β|| as a function of the dimension-
less position Z (b) Dimensionless linear (Couette), parabolic (Poiseuille), and exponentially
decaying (electro-osmotic) profile γ as a function of the dimensionless position Z.

2.7.1 Dimensionless Langevin model

The dimensionless Langevin model (14)-(16) with dW i = N (0, 1), i = 1, . . . , 3 becomes

dX = Π1γ(aZ)dτ +
√

2Π2β||(aZ)dτdW 1, (19)

dY =
√

2Π2β||(aZ)dτdW 2, (20)

dZ = Π2
dβ⊥(aZ)

dZ
dτ +

√

2Π2β⊥(aZ)dτdW 3. (21)

This is a system of stochastic differential equations of the form dX = a(X)dτ + b(X)dW

with W = N (0, 1) and position dependent diagonal stochastic forcing b (see Chap. 3).

2.7.2 Dimensionless Fokker-Planck equation

The dimensionless one dimensional space-time Fokker-Planck equation (18) becomes

∂W(aZ, T τ)

∂τ
= Π2

dβ⊥(aZ)

dZ

∂W(aZ, T τ)

∂Z
+ Π2β⊥(aZ)

∂2W(aZ, T τ)

∂Z2
. (22)

The above equation is an advection-diffusion equation or a diffusion equation with non-

constant diffusivity, whose analytical solution is so far unknown.
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CHAPTER III

NUMERICAL SIMULATION

The Langevin system of equations (19)-(21) is, because of the random forcing, stochastic.

Before presenting general numerical simulations for such systems, we review basic and

important facts from stochastic calculus. Finally, in section 3.3, we apply the theoretical

considerations to our particular system.

3.1 Stochastic Calculus

Definition 3.1 (Scalar Brownian motion) Let (Ω,A, P ) be a probability space and [0, T ]

a time interval.

1. A stochastic process X = {X(t), t ∈ [0, T ]} is a collection of random variables on

(Ω,A, P ) indexed by t ∈ T . We write Xt for X(t).

2. A Gaussian process is a stochastic process whose joint distribution is Gaussian.

3. A standard Brownian motion W = {Wt, t ∈ [0, T ]} is a Gaussian process with inde-

pendent increments satisfying

W0 = 0with probability 1 (w.p.1) (23)

E(Wt) = 0 (24)

V ar(Wt − Ws) = t − s. (25)

Let W be a Brownian process and let {At, t ≥ 0} be an increasing family of sub σ−algebras

of A so that Wt is At−measurable with E(Wt|A0) = 0 and E(Wt − Ws|As) = 0 w.p.1

for all 0 ≤ s ≤ t. Here Y = E(X|S) is the unique S−measurable random variable with

∫

S Y dP =
∫

S XdP .

Definition 3.2 For 0 < T < ∞ we define L2
T as the space of functions f : [0, T ] × Ω → R

so that f is jointly L × A−measurable (L Lebesgue σ−algebra),
∫ T
0 E(f(t, ·)2)dt < ∞,
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E(f(t, ·)2) < ∞ for each 0 ≤ t ≤ T , and f(t, ·) is At−measurable for each 0 ≤ t ≤ T .

We define a norm on L2
T by ||f ||22,T =

∫ T
0 E(f(t, ·)2)dt.

Identifying functions that are equal except on a set of measure zero, (L2
T , ||·||2,T ) is a Banach

space.

Definition 3.3 A step function f ∈ L2
T is defined by f(t, ω) = fj(ω) w.p.1, for a partition

tj ≤ t < tj+1 and mean-square integrable Atj−measurable random variables fj, j = 1, . . . , n.

We denote by S2
T the subset of all step functions in L2

T .

Definition 3.4 (Ito integral) We define the Ito stochastic integral in two steps.

1. Let f ∈ S2
T . The Ito stochastic integral for f over the interval [0, T ] is

I(f)(ω) =

n
∑

j=1

fj(ω)(Wtj+1(ω) − Wtj (ω)) w.p.1. (26)

2. Let f ∈ L2
T . Let fn ∈ S2

T so that fn → f in (L2
T , || · ||2,T ). The Ito stochastic integral

of f is the mean-square limit of I(fn) with I(fn) given by (26).

Remark

If f ≡ 1, then I(f)(ω) = WT (ω) − W0(ω) = WT (ω).

Definition 3.5 (Scalar stochastic differential) Let e with
√

|e| ∈ L2
T and f ∈ L2

T . A

stochastic differential is an expression of the form

dXt(ω) = e(t, ω)dt + f(t, ω)dWt(ω),

which is a symbolic way of writing

Xt(ω) − Xs(ω) =

∫ t

s
e(u, ω)du +

∫ t

s
f(u, ω)dWu(ω) w.p.1 for all 0 ≤ s ≤ t ≤ T. (27)

Let U : [0, T ]×R → R have continuous partial derivatives ∂U
∂t , ∂U

∂x , ∂2U
∂x2 . Let Xt satisfy (27).

Theorem 3.1 (Ito formula) Let Yt = U(t,Xt) for 0 ≤ t ≤ T . Then

Yt − Ys =

∫ t

s

(

∂U(u,Xu)

∂t
+ eu

∂U(u,Xu)

∂x
+

1

2
f2

u

∂2U(u,Xu)

∂x2

)

du +

∫ t

s
fu

∂U(u,Xu)

∂x
dWu,

(28)

w.p.1, for any 0 ≤ s ≤ t ≤ T , where eu = e(u, ·) and fu = f(u, ·).

16



The proof (see [14]) is a consequence of the Taylor and Mean Value Theorems:

U(t+∆t, x +∆x)−U(t, x) =
∂U(t + α∆t, x)

∂t
∆t+

∂U(t, x)

∂x
∆x+

1

2

∂2U(t, x + β∆x)

∂x2
(∆x)2.

Definition 3.6 (Vector Brownian motion) Let W j, j = 1, . . . ,m be scalar pairwise

independent Brownian motions. Then W = {Wt = (W 1
t ,W 2

t , . . . ,W m
t ), t ≥ 0} is an

m−dimensional Brownian motion.

Definition 3.7 (Vector stochastic differential) A d−dimensional vector stochastic dif-

ferential for an m−dimensional Brownian motion is a symbolic equation of the form

dXt = etdt + FtdWt

representing the vector stochastic integral expression

Xt −Xs =

∫ t

s
eudu +

∫ t

s
FudWu for any 0 ≤ s ≤ t ≤ T (29)

or componentwise

Xk
t − Xk

s =

∫ t

s
ek
udu +

m
∑

j=1

∫ t

s
F k,j

u dW j
u , w.p.1, k = 1, . . . d. (30)

Let U : [0, T ] × R
d → R have continuous partial derivatives ∂U

∂t , ∂U
∂xk

, ∂2U
∂xk∂xi

, i, k = 1, . . . , d

and let Xt satisfy (29). The analogue to the Ito formula (28) is given in the next theorem.

Theorem 3.2 Let Yt = {Yt, 0 ≤ t ≤ T} be defined as Yt = U(t,Xt)w.p.1. Then the

stochastic differential for Yt is

dYt =

(

∂U

∂t
+

d
∑

k=1

ek
t

∂U

∂xk
+

1

2

m
∑

j=1

d
∑

i,k=1

F i,j
t F k,j

t

∂2U

∂xi∂xk

)

dt +

m
∑

j=1

d
∑

i=1

F i,j
t

∂U

∂xi
dW j

t . (31)

Iterated applications of the Ito formula (28) and (31) leads to Ito-Taylor expansions, the

analogue of the deterministic Taylor expansion.

We consider a d−dimensional Ito stochastic process satisfying

Xt = Xt0 +

∫ t

t0

a(Xs, s)ds +
m

∑

j=1

∫ t

t0

bj(Xs, s)dW j
s . (32)
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The random forcing b in (32) is called noise. We define for j = 1, . . . ,m the operator

Lj =
d

∑

k=1

bk,j ∂

∂xk
. Let I(j1,...,jl) denote the multiple Ito integrals

I(j1,...,jl) =

∫ t

t0

. . .

∫ s2

t0

dW j1
s1

dW j2
s2

. . . dW jl
sl

.

The first non-trivial Ito-Taylor expansion for a multi-dimensional Ito process is

Xk
t = Xk

t0 + ak(Xt0 , t0)

∫ t

t0

ds +

m
∑

j=1

bk,j(Xt0 , t0)I(j) + Rk (33)

and the second one becomes

Xk
t = Xk

t0 +ak(Xt0 , t0)

∫ t

t0

ds+

m
∑

j=1

bk,j(Xt0 , t0)I(j)+

m
∑

j1,j2=1

Lj1bk,j2(Xt0 , t0)I(j1,j2)+Rk, (34)

where R and R are remainder terms.

Theorem 3.3 The following statements are true for multiple Ito integrals.

1. I(j) = W j
t − W j

t0 .

2. I(j,j) = 1
2

(

(W j
t − W j

t0)
2 − (t − t0)

)

.

Proof

1. This follows from the definition of Ito integrals: I(j) =
∫ t
t0

dWs = W j
t − W j

t0 .

2. By definition of I(j1,j2) and the first part of the theorem we have

I(j,j) =

∫ t

t0

∫ s2

t0

dW j
s1

dW j
s2

=

∫ t

t0

(W j
s2

− W j
t0)dW j

s2
=

∫ t

t0

W j
s2

dW j
s2

− W j
t0

∫ t

t0

dW j
s2

=

∫ t

t0

W j
s2

dW j
s2

− W j
t0(W

j
t − W j

t0).

Let Xt = Wt (i.e e ≡ 0, f ≡ 1) and U(t, x) = x2. By Ito formula (28) we find for

Yt = U(t,Xt)

dYt = d((Wt)
2) = dt + 2WtdWt,

in other words

(Wt)
2 − (Wt0)

2 =

∫ t

t0

ds + 2

∫ t

t0

WsdWs.
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This implies that

∫ t

t0

W j
t dW j

t =
1

2

(

(W j
t )2 − (W j

t0)
2 − (t − t0)

)

.

Finally, we have

I(j,j) =
1

2

(

(W j
t )2 + (W j

t0)
2 − (t − t0) − 2W j

t0W
j
t

)

=
1

2

(

(W j
t − W j

t0)
2 − (t − t0)

)

.

�

3.2 Numerical Approximation

Let ∆ = T−t0
N for a time discretization t0 < t1 < . . . < tN = T . Let ∆W j

n = W j
tn+1

−

W j
tn , n = 0, . . . , N − 1, j = 0, . . . ,m for the m−dimensional Brownian motion W =

{(W 1
t , . . . ,W m

t ), t ≥ 0}. From definition 3.1 we know that the ∆W j increments are inde-

pendent and ∆W j = N (0,∆) for j = 1, . . . ,m . Therefore we use a sequence of independent

Gaussian numbers to generate ∆W j, j = 1, . . . ,m (see [9]).

We consider a d−dimensional stochastic process Xt satisfying (32). Let Yn be a discrete

stochastic process so that Yn is an approximation of Xtn : Yn ≈ Xtn .

Definition 3.8 (Strong order of convergence) Y k converges strongly with order Γ1 to

Xk if there exists a positive constant C1, which does not depend on ∆ and ∆0 > 0, with

E(|Xk
tn − Y k

n |) ≤ C1∆
Γ1

for any fixed t ∈ [t0, T ] and ∆ ∈ (0,∆0).

Definition 3.9 (Weak order of convergence) Y k converges weakly with order Γ2 to

Xk, if there exists a positive constant C2, which does not depend on ∆ and ∆0 > 0, with

|E(Xk
tn) − E(Y k

n )| ≤ C2∆
Γ2

for any fixed t ∈ [t0, T ] and ∆ ∈ (0,∆0).

The first non-trivial Ito-Taylor expansion (33), containing only time and Ito integrals of

multiplicity one, leads to the Euler-Maruyama approximation.

19



Definition 3.10 (Euler-Maruyama scheme) For the d-dimensional stochastic process

(32), the kth component of the Euler-Maruyama scheme is given by

Y k
n+1 = Y k

n + ak
n∆ +

m
∑

j=1

bk,j
n ∆W j

n. (35)

The following theorem about the orders of convergence of the Euler-Maruyama scheme is

proved by Kloeden and Platen ([14]).

Theorem 3.4 Assuming that a and b are four times continuously differentiable and satisfy

Lipschitz and linear growth conditions, then the Euler-Maruyama scheme (35) has the order

of strong convergence Γ1 = 1
2 and weak convergence Γ2 = 1.

Keeping the next order term in the Ito-Taylor expansion (34), we define the Milstein scheme.

Definition 3.11 (Milstein scheme) For the d-dimensional stochastic process (32), the

kth component of the Milstein scheme is given by

Y k
n+1 = Y k

n + ak
n∆ +

m
∑

j=1

bk,j
n ∆W j

n +
m

∑

j1,j2=1

Lj1bk,j2I(j1,j2). (36)

Kloeden and Platen ([14]) show that the next theorem holds.

Theorem 3.5 Under the assumption that a ∈ C1,1(Rd × R
+) and b ∈ C1,2(Rd × R

+), the

Milstein scheme (36) has strong order of convergence Γ1 = 1 and weak order of convergence

Γ2 = 1.

Definition 3.12 (Diagonal noise) A noise b is diagonal, when d = m and each compo-

nent Xk of the Ito process X is distributed only by the corresponding component W k of the

Brownian motion W and the diagonal diffusion coefficient bk,k depends only on xk, that is

bk,j(x, t) = 0 and
∂bj,j(x, t)

∂xk
= 0.

Claim 3.1 (Milstein scheme for diagonal noise) The Milstein scheme (36) for a di-

agonal noise reduces to

Y k
n+1 = Y k

n + ak
n∆ + bk,k

n ∆W k
n +

1

2
bk,k
n

∂bk,k
n

∂xk

(

(∆W k
n )2 − ∆

)

. (37)

20



This is a simple consequence of the definition of a diagonal noise and of the second part of

theorem 3.3 for double Ito integrals.

In the case of a non-diagonal noise, the implementation of the Milstein scheme requires the

evaluation of double Ito integrals I(j1,j2) for j1 6= j2. Because there are no simplifications

analogous to theorem 3.3 for I(j1,j2), j1 6= j2, we consider the system of Ito stochastic

differential equations (see [13])














dXt = YtdW j2
t Xt0 = 0

dYt = dW j1
t Yt0 = 0

. (38)

Integrating the system we have

Yt =

∫ t

t0

dW j1
s and dXt =

(∫ t

t0

dW j1
s

)

dW j2 . (39)

The last equation is equivalent to

Xt =

∫ t

t0

∫ s2

t0

dW j1
s1

dW j2
s2

= I(j1,j2). (40)

Therefore a double Ito stochastic integral I(j1,j2) with j1 6= j2 is numerically approximated

via an Euler-Maruyama scheme as the solution of the stochastic differential system (38). If

the time step ∆ is small enough in the approximation of I(j1,j2), then the Milstein scheme

remains of strong order of convergence Γ1 = 1.

3.3 Dimensionless Langevin Simulation

We apply a discretized numerical scheme to the dimensionless Langevin equations (19)-(21).

We have, in the description of the stochastic differential equation (32), d = m = 3 and

Xτ =













X

Y

Z













, a =













Π1γ(aZ)

0

Π2
dβ⊥(aZ)

dZ













, b =













√

2Π2β||(aZ) 0 0

0
√

2Π2β||(aZ) 0

0 0
√

2Π2β⊥(aZ)













,

for τ ∈ [0, 1] and Z ∈ [1,H/a]. The stochastic differential is therefore

dXτ = a(Xτ )dτ + b(Xτ )dWτ , (41)
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with Wτ a 3-dimensional Brownian motion with independent increments. We emphasize

that, while b is a diagonal tensor, the recurring Z dependence violates the definition of

diagonal noise.

Let ∆τ = 1
N be the time step discretization. Let ∆W k, k = 1, . . . , 3 be independent

N (0,∆τ)-distributed increments. Initially the particles (a = 50 nm) are uniformly dis-

tributed in the channel of dimensions: H = 450 nm, Hx = 2500 nm, and Hy = 5000 nm.

We study both the Euler-Maruyama scheme (35) and the Milstein sheme (36) for the sim-

ulation of particles displacements obeying the stochastic differential equation (41).

3.3.1 Euler-Maruyama scheme

The Euler-Maruyama scheme for the Langevin stochastic differential equation (41) becomes

Xn+1 = Xn + Π1γ(aZn)∆τ +
√

2Π2β||(aZn)∆W 1
n (42)

Yn+1 = Yn +
√

2Π2β||(aZn)∆W 2
n (43)

Zn+1 = Zn + Π2
dβ⊥(aZ)

dZ

∣

∣

∣

∣

Z=Zn

∆τ +
√

2Π2β⊥(aZn)∆W 3
n . (44)

We expect the strong order of convergence of the scheme (42)-(44) to be Γ1 = 1/2 and the

weak order of convergence to be Γ2 = 1 (Thm. 3.4).

In the next figure (Fig. 5) we logarithmically plot each component of the strong error at

τ = 1: E(|X(1) − XN |), E(|Y (1) − YN |) and E(|Z(1) − ZN |) as a function of ∆τ . Be-

cause there is no particle-particle interaction, the sample mean is taken over 29 particles.

Since the exact solution X(1) is unknown, we use XN with the smallest ∆τ = 2−16 as the

best approximation for X(1) (see [9]). We choose Π1 = 3 and Π2 = 4 corresponding to

50 nm particles in water at room temperature with u∞ = 0.1 mm/s and γ to be on the

left the linear profile (Eq. (11)) and on the right the parabolic profile (Eq. (12)). Both

plots in figure 5 show that the Euler-Maruyama scheme for the Langevin system ((42)-(44))

has strong order of convergence Γ1 = 1/2 and that generating the data with N = 212
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Figure 5: Log-Log strong convergence of the X-, Y - and Z-components of the Euler-
Maruyama simulation of the dimensionless Langevin system at τ = 1 as a function of ∆τ
compared to a line of slope 0.5.

(∆τ = 2−12 = 2.33 · 10−4) will guarantee a reasonable accuracy. The same result holds for

the exponentially decaying profile (Eq. (13)).

Next we look at the weak convergence of the Euler-Maruyama scheme for the Langevin

system (42)-(44). In figure 6, we logarithmically plot each component of the weak error at

τ = 1: |E(X(1)) − E(XN )|, |E(Y (1)) − E(YN )| and |E(Z(1)) − E(ZN )| as a function of ∆τ .

Again the sample mean is over 29 particles, the approximate solution at τ = 1 with the

smallest ∆τ is used for the exact solution X(1) and the parameters are Π1 = 3 and Π2 = 4.

We find that the weak convergence is harder to check especially in the Y -direction. The os-

cillations come from the variation in the variance of the Brownian increments generated with

randn in Matlab and are therefore inevitable. Because in the X- and Z-direction the weak

error decays with a slope of 1 and the strong convergence order is 1/2, we set N = 212 or

N = 214 in the generation of the particles displacement with an Euler-Maruayama scheme.
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Figure 6: Log-Log weak convergence of the X-, Y - and Z-components of the Euler-
Maruyama simulation of the dimensionless Langevin system at τ = 1 as a function of ∆τ
compared to a line of slope 1.

3.3.2 Milstein scheme

Because we will develop a probabilistic method to reconstruct the velocity profile, we want

the simulation to have a higher order of convergence, in order to properly address (see Chap.

4-6) the validity of the developed reconstruction algorithm.

The noise b is not a diagonal noise, even if it is a diagonal matrix. Therefore the implemen-

tation of the Milstein scheme requires the simulation of I(3,1) and I(3,2) through the system

of stochastic differential equations (38). The Milstein scheme (36) for a non-diagonal noise

with diagonal entries becomes

Y k
n+1 = Y k

n + ak
n∆t + bk,k

n ∆W k
n +

3
∑

j1=1

Lj1bk,j1I(j1,k) (45)

= Y k
n + ak

n∆t + bk,k
n ∆W k

n + b3,3 ∂bk,k

∂Z
I(3,k). (46)

With the definitions of a, b and theorem 3.3 we find for the Langevin stochastic differential
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equation (41)

Xn+1 =Xn + Π1γ(aZn)∆τ +
√

2Π2β⊥(aZn)∆W 1
n

+ Π2

√

β⊥(aZn)

β||(aZn)

dβ||(aZ)

dZ

∣

∣

∣

∣

Z=Zn

I(3,1) (47)

Yn+1 =Yn +
√

2Π2β⊥(aZn)∆W 2
n + Π2

√

β⊥(aZn)

β||(aZn)

dβ||(aZ)

dZ

∣

∣

∣

∣

Z=Zn

I(3,2) (48)

Zn+1 =Zn + Π2
dβ⊥(aZ)

dZ

∣

∣

∣

∣

Z=Zn

∆τ +
√

2Π2β⊥(aZn)∆W 3
n

+
Π2

2

dβ⊥(aZ)

dZ

∣

∣

∣

∣

Z=Zn

((∆W 3
n)2 − ∆τ). (49)

Here I(3,1) and I(3,2) are obtained as solutions of the system of stochastic differential equa-

tions (38) approximated with an Euler-Maruyama scheme with 26 steps. The purpose of

the Milstein scheme is to achieve a strong order of convergence Γ1 = 1 and to keep the weak

order of convergence Γ2 = 1 (see Thm. 3.5).

10−4 10−3

10−4

10−3

∆ τ

 

 

X
Y
Z
Slope 1

(a) Linear Profile

10−4 10−3

10−5

10−4

10−3

∆ τ

 

 

X
Y
Z
Slope 1

(b) Parabolic Profile

Figure 7: Log-Log strong convergence of the X-, Y - and Z-components of the Milstein
simulation of the dimensionless Langevin system at τ = 1 as a function of ∆τ compared to
a line of slope 1.

In figure 7, we logarithmically plot each component of the strong error over 29 particles at

τ = 1 as a function of ∆τ for the linear (Fig. 7(a)) and parabolic profile (Fig. 7(b)) at

Π1 = 3 and Π2 = 4. We set the number of time steps in the Euler-Maruyama simulation of
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I(3,1) and I(3,2) to ∆τ
26 . We find for each of the components the expected linear decay. We

conclude that it is enough to set N = {210, 212, 214} in the generation of data.

Finally, we logarithmically plot each component of the weak error at τ = 1 with the same

parameters to check that the weak order of convergence of the scheme (47)-(49) is Γ2 = 1.

In the case of the Milstein scheme, the oscillations due to the variance of the Brownian
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Figure 8: Log-Log weak convergence of the X-, Y - and Z-components of the Milstein
simulation of the dimensionless Langevin system at τ = 1 as a function of ∆τ compared to
a line of slope 1.

increments (in comparison with figure 6) diminish and we demonstrate the linear decay of

the weak error.

3.3.3 Flow simulation

Having established that the Milstein scheme (47)-(49) with N = 212 has the desired order

of strong convergence (Γ1 = 1) we are now able to simulate the effect of a flow in a mi-

crochannel, including the near-wall region.

Experimentally, particles are confined to the channel. The size of the channel and the par-

ticle density are chosen to match the experiments of Sadr et al. ([29], [38]). We set: a = 50
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nm, H = 450 nm, Hx = 2500 nm, Hy = 5000 nm and n = 64.

The no-flux boundary condition at Z = 1 is a consequence of the fact that β⊥(aZ) is zero

at Z = 1. However, in the numerical simulation a negative Brownian increment ∆W k
n may

cause the particle to cross the wall. To avoid this situation, we impose an artificial bound-

ary condition at the wall in the form of a perfectly elastic reflection. We remark that it is

enough for ∆τ to be smaller than 2−8 for the number of particles that have to be reflected

at the wall to be zero in practice.

The upper wall at Z = H/a does not influence any of the experimental measurements, but

to make sure that particles stay in the channel we impose numerically an elastic boundary

condition at Z = H/a. The dimensions of the channel in the plane parallel to the wall are

big compared to the channel height H. Therefore we set periodic boundary conditions on

the X- and Y -displacements.

Images of particle flow are taken with a lag time T (T = 2−9 s). In the dimensionless

numerical description, the location of the particles position at τ = 1, corresponding to T , is

found through a Milstein scheme with 212 time steps. Therefore multiple consecutive images

are obtained by repeating the simulation (see Fig. 3). To generate and save three particle

positions for 216 windows with 212 Milstein steps takes on a dual 2GHz AMD Athlon with

2GB RAM 10 to 14 days. The size of each of the resulting binary position file is 256M.
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CHAPTER IV

VELOCITY PROFILE RECONSTRUCTION WITH PERFECT

PARTICLE IDENTIFICATION

The goal is to reconstruct the dependence of the in-plane velocity profile from the distance

normal to the wall, Z, without using any information about the location of the particle

(for example, through the brightness of particle images). The assumptions leading to the

statistical reconstruction concerns the distribution of the particles between two window

measurements. Because we have chosen to focus on the deterministic part of the displace-

ment, we assume that the diffusion tensor is known as D∞β(aZ), where β is given by (9)

and D∞ is the Stokes-Einstein relation. For simplicity, we assume that the computation and

observation domain are the same, thereby eliminating errors due to particle drop-in/out.

We first consider the ideal case where the displacement of each particle is known.

The general idea is to reformulate the problem as a maximum likelihood estimate where the

unknown velocity profile is the one that makes the observed data most likely. Therefore, we

first describe the statistical assumptions in terms of the probability density function of a

displacement. Then, we derive an algorithm to reconstruct the velocity profile for the per-

fect particle identification case followed by a discussion of basic examples. The main result

together with error estimates is presented in chapter 5, when we replace perfect particle

identification with exact mean displacement between two windows.

4.1 Probability Density Functions

We recall that X and Y are the in-plane dimensionless position of the particle, Z ∈ [1,H/a]

is the out-plane dimensionless position, Π1 is the dimensionless deterministic time and Π2

is the dimensionless diffusive time.
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Definition 4.1 Let fZ be the probability density function of the Z-position. Let f∆X be the

probability density function of the X-position. Let f∆X∆Y be the joint probability density

function of a pair displacement (∆X,∆Y ). Let f be the joint probability density function

of N displacement pairs.

We know from the experimental setting that the X-displacement depends on the Z-position

through the diffusion coefficient and the velocity profile and that the Y -displacement de-

pends on the Z-position through the diffusion coefficient only (we assume unidirectional

flow). Therefore we define the following probability density functions.

Definition 4.2 Let f∆X|Z and f∆Y |Z be the probability density function of a displacement

∆X given Z and a displacement ∆Y given Z, respectively. Let f∆X∆Y |Z be the joint prob-

ability density function of a pair displacement (∆X,∆Y ) given Z.

Claim 4.1 Assuming independence between both in-plane displacements and consecutive

displacements, we find

f∆X∆Y |Z = f∆X|Zf∆Y |Z (50)

f∆X∆Y =

∫

f∆X∆Y |ZfZdZ (51)

f∆X =

∫

f∆X|ZfZdZ (52)

f =

N
∏

i=1

f∆X∆Y . (53)

In other words, the probability density function of a series of N displacements is given by

f =

N
∏

i=1

∫

f∆X|Zf∆Y |ZfZdZ. (54)

Remark

The second assumption about independence between two displacements is incorrect, since

consecutive (∆X,∆Y ) displacements are correlated by the continuity-in-time of the parti-

cles Z positions. This effect being small, equation (54) is valid.

Next we make a modeling assumption.
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Assumption 4.1 The dimensionless displacement between two consecutive windows can be

approximated by an Euler step of the form

∆X ≈ Π1γ(aZ) +
√

2Π2β||(aZ)dW 1 (55)

∆Y ≈
√

2Π2β||(aZ)dW 2 (56)

where γ is the velocity profile given by (11)-(12), β is the diffusion coefficient (9) and dW 1,

dW 2 are N (0, 1)−distributed.

In other words, the X- and Y -displacements are normally distributed with respective means

Π1γ(aZ) and 0 and variance 2Π2β||(aZ). Thus, we have an explicit formula for the proba-

bility density functions f∆X|Z and f∆Y |Z

f∆X|Z(∆X,Z) =
1

2
√

πΠ2β||(aZ)
e

−(∆X−Π1γ(aZ))2

4Π2β||(aZ) (57)

f∆Y |Z(∆Y,Z) =
1

2
√

πΠ2β||(aZ)
e

−∆Y 2

4Π2β||(aZ) . (58)

Because we restrict ourselves to the case where the computation and observation domain

are the same, we make the following assumption about the Z distribution.

Assumption 4.2 The Z-positions are uniformly distributed in the region of interest, i.e

fZ =
a

H − a
χ[1,H/a](Z). (59)

Therefore we have for the probability density function f∆X and for the joint probability

density function f∆X∆Y with claim 4.1, assumption 4.2 and equations (57)-(58)

f∆X =
a

2
√

πΠ2(H − a)

∫ H
a

1

1
√

β||(aZ)
e
− (∆X−Π1γ(aZ))2

4Π2β||(aZ) dZ (60)

f∆X∆Y =
a

4πΠ2(H − a)

∫ H
a

1

1

β||(aZ)
e
− (∆X−Π1γ(aZ))2

4Π2β||(aZ) e
− ∆Y 2

4Π2β||(aZ) dZ. (61)

Figures 9 are Maple plots of the joint probability density function f∆X∆Y for the linear

(Eq. (11)) and parabolic (Eq. (12)) profile with Π1 = 3 and Π2 = 4 corresponding to
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Figure 9: Joint probability density function f∆X∆Y for the linear and parabolic profile
with Π1 = 3 and Π2 = 4.

experimental values. Even though the two dimensional joint probability density function

is the integral of the product of two Gaussian distributions the shape remains similar to a

Gaussian distribution. We note the slight difference in the height and width of the peak

between the two velocity profiles (similarly for the exponentially decaying profile) signaling

that a statistical reconstruction will be extremely sensitive.

This is reinforced by the next plot (Fig. 10) which is a normal plot of 218 X-displacements

for 64 particles for the linear profile with Π1 = 3 and Π2=4. It shows the deviance of

the X-displacements from a true normal distribution. Thus, we conclude that even if the

differences between an integrated Gaussian and a simple Gaussian are minimal, equation

(55) is valid.
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Figure 10: Normal probability plot of the X-displacements for the linear profile with
Π1 = 3, Π2 = 4, n = 64 and N = 218.

4.2 Maximum Likelihood Estimate

Using N displacement pairs of n particles, we want to reconstruct γ(aZ) through the prob-

ability density functions (61) and (54).

Given Nn measured displacement pairs (∆Xi,∆Yi), i = 1, . . . , Nn, Π1, Π2 and β||(aZ),

the maximum likelihood estimate of γ(aZ) is the value of γ(aZ) that makes the observed

displacements most likely. Led by the independence assumption, we define the function

φ({uj}M
j=1) = −

Nn
∑

i=1

ln f∆X∆Y (∆Xi,∆Yi), (62)

where M is the number of points Z at which we estimate γ, i.e γj = γ(aZj), j = 1, . . . ,M .

The most likely values for γj , j = 1, . . . ,M, are obtained by minimizing φ.

The statistical reconstruction problem has thus been reduced to two numerical algorithms.

First, we evaluate the probability density function f∆X∆Y in (61) computing the inte-

gral with Gauss-Legendre quadrature for given γj values at the collocation points Zj ,

j = 1, . . . ,M . We subsequently minimize the function φ with a direct simplex algorithm pe-

nalizing solutions that do not produce an increasing sequence, since we know that all three

velocity profiles are increasing to the bulk velocity away from the wall. Both algorithms are

presented next.
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4.2.1 Numerical integration

We use Gauss-Legendre collocation points and Gauss quadrature (see [33]) to evaluate the

integral over Z ∈ [1,H/a].

Let Ii denote the numerical integration of

∫ H
a

1
f∆X|Z(∆Xi, Z)f∆Y |Z(∆Yi, Z)dZ for a given

set of values γj , j = 1, . . . ,M and a displacement pair (∆Xi,∆Yi). Let f i
∆X∆Y denote the

numerical approximation of f∆X∆Y (∆Xi,∆Yi). Then

f i
∆X∆Y =

aIi

H − a

as in equation (61).

Algorithm 4.1 Numerical approximation of f∆X∆Y (∆Xi,∆Yi)

• Given: β||(aZ), Π1 and Π2

• Input: (∆Xi,∆Yi) and γj, j = 1, . . . ,M

• Define M Gauss-Legendre points sj and weights wj on [−1, 1], j = 1, . . . ,M ([33])

• Transform the points Zj ∈ [1,H/a] to sj with Zj = 1 +
sj+1

2 (H
a − 1), j = 1, . . . ,M

• Evaluate with Gauss quadrature Ii = H−a
2a

M
∑

j=1

wjf∆X|Z(∆Xi, Zj)f∆Y |Z(∆Yi, Zj) with

f∆X|Z and f∆Y |Z given by (55) and (56)

• Probability distribution function f i
∆X∆Y = aIi

H−a

• Output: f i
∆X∆Y

4.2.2 Minimization with perfect particle identification

With Φ denoting the numerical approximation of φ the Matlab minimization using the build-

in Matlab function fminsearch for a data set (∆Xi,∆Yi), i = 1, . . . , Nn follows, assuming

that an initial guess γ0,j, j = 1, . . . ,M can be found. Non-increasing solutions are penalized

by adding to the function a multiple (usually 103) of the sum of the squares of the negative
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increments.

Algorithm 4.2 Minimization with perfect particle identification

• Given: β||(aZ), Π1 and Π2

• Input: (∆Xi,∆Yi), i = 1, . . . , Nn

• Initial guess: γ0,j , j = 1, . . . ,M

• Compute the numerical probability density function f i
∆X∆Y with algorithm 4.1

• Function to be minimized: Φ({γj}M
j=1) = −

Nn
∑

i=1

ln f i
∆X∆Y

• Penalty: Add to Φ a multiple of the sum of the squares of the negative increments

• Minimization using fminsearch, a simplex direct search method

• Output: γj, j = 1, . . . ,M

4.3 Results

Because the goal is to improve from perfect particle identification to exact mean, the discus-

sion of the results is not as thorough as the one presented below in chapter 5. In particular,

there is no discussion of error, and we limit ourselves to the illustration of the validity of a

statistical reconstruction. We consider the linear profile (11) and the parabolic profile (12)

with Π1 = 3, Π2 = 4, n = 64 and N = 218.

Including both the X- and Y -displacements for each particles, we have to process, at every

function evaluation of Φ, 225 data. Because of RAM memory limitation, we divide the X

and Y data set into B = 128 blocks each of size 217. Let γj, j = 1, . . . ,M denote the mean

of the approximated γ over the 128 blocks. In other words,

γj =
1

B

B
∑

k=1

γk
j , j = 1, . . . ,M.

Figure 11 illustrates the statistical reconstruction in the case of the linear profile with M = 3

and M = 5. Note that because of the symmetry of Gauss-Legendre collocation points, we

limit ourselves to odd numbers M . In both cases (Fig. 11), we plot the mean of the block
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Figure 11: Perfect particle identification: Errorbar reconstruction for the linear profile
with B = 128, 90% confidence interval for M = 3 and M = 5.

reconstructed values γj , j = 1, . . . ,M as well as the standard deviation, represented as 90%

confidence interval together with the true linear profile. We see that with M = 3 (Fig.

11(a)) there is not much variation in γk
j , k = 1, . . . , B for each points Zj , j = 1, . . . , B,

while the errorbars are more significant on a M = 5 (Fig. 11(b)) reconstruction. Thus,

it follows that the standard deviation among different averaged block recontructed profiles

is determined by the size of the given data. The more discrete points M , the bigger each

set of data should be to reduce discrepancy. We remark that the approximation for γ(aZj)

through the mean over the blocks γj, j = 1, . . . ,M is equivalently good for both cases.

Next, we apply the same reconstruction with mean over blocks to the parabolic profile (Fig.

12) with M = 3 and M = 5. Again γj , j = 1, . . . ,M is plotted together with the standard

deviation in the form of 90% confidence interval and the true profile. The results are similar

to the linear case with bigger errorbar with M = 5 (Fig. 12(b)) than with M = 3 (Fig.

12(a)) and equally good approximation of γ(aZj) through γj , j = 1, . . . ,M .

From figures 11 and 12, we conclude that it is possible to statistically reconstruct the velocity

profile based on the probability density function of the X- and Y -displacements provided
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Figure 12: Perfect particle identification: Errorbar reconstruction for the parabolic profile
with B = 128, 90% confidence interval for M = 3 and M = 5.

that we know the exact displacement of each particle. In the next chapter (Chap. 5), we

discuss what modifications have to be incorporated in order to extend the reconstruction

to exact mean displacements of n particles.

We remark that the developed algorithm corresponds to an experimental particle tracking

problem.

4.4 Computational Cost

As an indication for the computational resources needed in the reconstruction, we list in

table 1 the time required by the four examples presented in figures 11 and 12.

Each node of the cluster is a dual 2 GHz AMD Athlon processor with 2 GB RAM. The

main problem is RAM memory, because a typical X-displacement file has size 256M.

Linear Parabolic

M = 3 1h40 1h44

M = 5 8h18 9h30

Table 1: Computational time for perfect particle identification.

When comparing the times in table 1 to the 10 days necessary to the Milstein generation

of the data, we conclude that we have developed a fast reconstruction algorithm.
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CHAPTER V

VELOCITY PROFILE RECONSTRUCTION WITH EXACT MEAN

DISPLACEMENTS

In this chapter, we consider exactly observed mean displacements. By this, we mean that

the exact position of each particle is known in the simulation, but only the mean displace-

ment is available for reconstruction. Cross-correlation processing of image pair in PIV (see

chapter 6) extracts, up to various sources of error, the mean displacement of “matched”

particles: those that contribute to both images. The general idea is the same as in chapter

4, we use a maximum likelihood estimate on a set of mean displacements. Therefore we

first extend the probability density function to mean displacements, before presenting the

algorithms, examples and error plots leading to the reconstruction for the three velocity

profiles (11)-(13). During the reconstruction process, we use the Milstein simulated data

as a given set of particle displacements forgetting the a-priori knowledge of the underlying

deterministic velocity profile. Because all the information about γ(aZ) is in the X-direction

and we assume independence between in-plane displacement, we will not take into account

the Y -displacements. Therefore, flow along two directions can be reconstructed individually.

5.1 Probability Density Functions

The problem is to find the probability density function of the mean of a random variable

knowing the probability density function of the random variable.

Definition 5.1 Let f be a probability density function. Define the characteristic function

Φf of f as Φf (t) = E(eitx).

Remark

We note that the characteristic function can be written in the following way

Φf (t) =

∫ ∞

−∞
eixtf(x)dx = F−1

x
2π

[

f

(

x

2π

)]

(t),
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where F−1 is the inverse Fourier transform.

Theorem 5.1 Let {Xi}n
i=1 be a collection of independent random variables with identical

probability distribution function f . Let Sn =

n
∑

i=1

Xi and let fSn be the probability distribution

of the random variable Sn. Then

fSn = f ∗ f ∗ . . . ∗ f,

where the convolution ∗ is taken n times.

Proof

Let Φf and ΦfSn
be the characteristic functions of f and fSn . Then

ΦfSn
(t) = E

(

eitSn

)

= E

(

e

it

n
∑

i=1

xi)

= E

( n
∏

i=1

eitxi

)

.

Because the random variables are independent, we find

ΦfSn
(t) =

n
∏

i=1

E(eitxi) =

n
∏

i=1

Φf (t) = Φf (t) · . . . · Φf (t).

Using the previous remark the last result ca be written as

ΦfSn
= Φf · . . . · Φf = F−1[f ] · . . . · F−1[f ].

The convolution theorem says that F [H ·H] = F [H] ∗ F [H] or H ·H = F−1[F [H] ∗ F [H]].

By induction we have H · . . . · H = F−1[F [H] ∗ . . . ∗ F [H]].

Thus with H = F−1[f ] we find

ΦfSn
= F−1[F [F−1[f ]] ∗ . . . ∗ F [F−1[f ]]] = F−1[f ∗ . . . ∗ f ].

Since fSn = F [ΦfSn
], we have from the last result fSn = f ∗ . . . ∗ f.

�

Remark

We recall that fZ is the probability density function of the Z-location, that f∆X is the

probability density function of the X-displacement, and that f∆X|Z is the probability dis-

tribution function of ∆X given Z.
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Using conditional probability and the fundamental assumptions (59) and (55) we have

f∆X =

∫

f∆X|ZfZdZ

=
a

(H − a)
√

2πΠ2

∫ H/a

1

1
√

2β||(aZ)
e
− (∆X−Π1γ(aZ))2

4Π2β||(aZ) dZ.
(63)

Let ∆X = 1
n

n
∑

k=1

∆xk be the mean displacement of n matched particles. We define the

following probability distribution functions.

Definition 5.2 Let fS be the probability distribution function of n∆X. Let f be the joint

probability distribution function of N measured n∆X.

With theorem 5.1 we compute fS as n times the convolution of f∆X with itself, in other

words

fS = f∆X ∗ . . . ∗ f∆X with f∆X given by (63). (64)

The following figure (Fig. 13) shows the probability density function f∆X on the left and

the probability density function fS on the right computed for the linear profile (11) with

Π1 = 3 and Π2 = 4. We know that the convolution of two vectors of length l produces a
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Figure 13: Probability density function of the displacements ∆X and of n times the mean
of the displacements n∆X for the linear profile with Π1 = 3 and Π2 = 4.

vector of length 2l − 1. Thus, if the domain of H is [t0, t1] discretized at l points, then the
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domain of H ∗ H will be [2t0, 2t1] discretized at 2l − 1 points. Clearly the domain of fS on

figure 13(b) is 64 times larger than the domain of f∆X on figure 13(a). The other effect of

the convolution is to narrow the width and height of the peak.

Figure 14 compares the histogram of a n∆X set with Z ∈ [1,H/a] for the parabolic profile

(12) with probability density function fS computed with equation (64) (red dashed line).

Going even further, the blue dotted line represents the probability density function obtained

by fitting the data set n∆X for Z ∈ [1,H/a] by a single Gaussian. The values of the

parameters are Π1 = 3, Π2 = 4, n = 64 and N = 218. Again the differences between

the integrated Gaussian (red dashed line) and the fitted Gaussian (blue dotted line) are

minimal in the height and location of the peak. These minimal distinctions make the

desired optimization highly sensitive, but there is nevertheless a gain in precision when

using the integrated Gaussian.
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Figure 14: Comparison for the parabolic profile between the histogram of the distribution
n∆X, the integrated probability density function, and a fitted Gaussian with n = 64,
N = 218, Π1 = 3 and Π2 = 4.

Finally, assuming independence between two window measurements, we have that the joint

probability density function f is given by

f =

N
∏

i=1

fS with fS given by (64). (65)
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5.2 Maximum Likelihood Estimate

Given N measured mean values n∆X, Π1, Π2 and β||(aZ), we apply a maximum likelihood

estimate on the probability density function of observed mean X−displacements. We define

the function

φ({γj}M
j=1) = −

N
∑

i=1

ln fS(n∆X i), (66)

where M is the number of discrete points Z at which we estimate γ. The most likely values

for γj , j = 1, . . . ,M , are obtained by minimizing φ. The statistical reconstruction problem

has been reduced to two numerical integrals and one minimization algorithm. First, we

evaluate the probability density function fS by repeated convolution (see Alg. 5.2) of the

probability density function f∆X , computing the integral by Gauss-Legendre quadrature

for given γj, j = 1, . . . ,M values at the Legendre collocation points (see Alg. 5.1). Finally,

we minimize the function φ with a direct simplex algorithm penalizing solutions that do

not produce an increasing sequence γj, j = 1, . . . ,M (see Alg. 5.3).

5.2.1 Numerical Integration

Let fnum
∆X denote the numerical approximation of f∆X(∆) and J denote the numerical

approximation of
∫ H/a
1 f∆X|Z(∆, Z)dZ for given γj, j = 1, . . . ,M and displacement ∆.

Algorithm 5.1 Numerical approximation of f∆X(∆)

• Given: β||(aZ), Π1 and Π2

• Input: γj, j = 1, . . . ,M

• Define M Gauss-Legendre points sj and weights wj on [−1, 1], j = 1, . . . ,M ([33])

• Transform the points Zj ∈ [1,H/a] to sj with Zj = 1 +
sj+1

2 (H
a − 1), j = 1, . . . ,M

• Evaluate with Gauss quadrature J = H−a
2a

M
∑

j=1

wjf∆X|Z(∆, Zj) with f∆X|Z as in (63)

• Probability distribution function f num
∆X = aJ

H−a

• Output: fnum
∆X
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Let f i
S denote the numerical approximation of fS for a given set of mean displacements

n∆X i, i = 1, . . . , N . First, we compute the convolution using the discrete Matlab function

conv inductively over a fixed interval [−L,L], where L is an estimate of the biggest probable

displacement (usually L = 20). Because the convolution is nothing other than an integral

we multiply the result of the discrete convolution by the length of the increment. Finally,

we approximate fS(n∆X i) at the given n∆Xi by linear interpolation.

Algorithm 5.2 Numerical approximation of fS(n∆X i)

• Given: β||(aZ), Π1 and Π2

• Input: γj, j = 1, . . . ,M

• Define a vector ∆ of 64 equidistant (distance δ) points on [−L,L]

• For the displacement vector ∆ compute f num
∆X with algorithm 5.1

• Set g = conv(fnum
∆X , fnum

∆X )δ

• Inductive loop over k = 1, . . . , n − 2: g = conv(f num
∆X , g)δ

• Normalize g to a probability density function

• Linearly interpolate g at n∆X i to get f i
S

• Output: f i
S

5.2.2 Minimization with perfect mean displacements

Let Φ be the numerical approximation of φ. The fact that the velocity profile increases away

from the wall can be included by discarding or penalizing non-increasing solutions. Because

of the high sensitivity of the model, the first solution is inconclusive. We instead penalize

non-increasing solutions by adding to the value of the function a factor (103) depending on

the sum of the squares of the negative increment of γ. An initial guess γ0,j is obtained by

searching the space of linearly spaced increasing sequence for a minimum of Φ for small M .

For M ≥ 7 we interpolate the initial guess from the final result for a smaller value of M .

Instead of an unknown profile γ we could assume that γ(aZ) = γ0 +γ1Z +γ2Z
2 +h.o.t and
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Algorithm 5.3 Minimization with exact mean displacements

• Given: β||(aZ), Π1 and Π2

• Input: ∆X i, i = 1, . . . , N

• Initial guess: γ0,j , j = 1, . . . ,M

• Numerical probability density function f i
S with algorithm 5.2

• Function to be minimized: Φ({γj}M
j=1) = −

N
∑

i=1

ln f i
S

• Penalty: Add to Φ a multiple of the sum of the squares of the negative γ increments

• Minimization using fminsearch, a simplex direct search method

• Output: γj, j = 1, . . . ,M

substitute this into the minimization algorithm 5.3. Since this method reveals itself to be

even more sensitive than the one described for a general γ, we will not study it further.

5.3 Results
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Figure 15: Exact mean: Velocity profile reconstruction at five points (M = 5) for the
linear and parabolic profile with data set size N = 214 and N = 218.

We begin by applying the reconstruction algorithm 5.3 on the linear (11) and parabolic (12)
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profile (Fig. 15) at M = 5 points with parameters Π1 = 3, Π2 = 4, n = 64 and two val-

ues for N , N = 214 or N = 218. In each figure, the underlying profile is plotted as a solid line.

5.3.1 Error plots

Since the accuracy of the reconstructed points does not appear to improve (see Fig. 15)

when the data size N increases form 214 to 218, we are motivated to instead consider

breaking one block of data up into separate reconstructions over each of B blocks of size

2b. To determine the best value for B and 2b we study the behavior of the relative error.

In figure 16, we compute the L2-norm of the relative error of the reconstructed values

10 11 12 13 14 15 16 17 18

10−1

Data size 2b

 

 

M=3
M=5
M=7
M=9

(a) Linear profile

10 11 12 13 14 15 16 17 18

10−1

Data size 2b

 

 

M=3
M=5
M=7
M=9

(b) Parabolic profile

Figure 16: Exact mean: L2-relative error averaged over the number of blocks B of size 2b

at M = 3, M = 5, M = 7, M = 9 for the linear and parabolic profile.

γj , j = 1, . . . ,M with respect to the true γ(aZj), j = 1, . . . ,M for individual blocks, the

errors being then averaged over the number of blocks B for four different values of M

(M = 3, M = 5, M = 7, M = 9). In other words,

E1 =
1

B

B
∑

k=1

√

∑M
j=1 wj|γk

j − γ(aZj)|2
√

∑M
j=1 wjγ(aZj)2

, (67)

where γk
j is the reconstructed value at Zj for the block Bk, k = 1, . . . , B, j = 1, . . . ,M . Note

that we approximate the L2-norm by a weighted Gauss-Legendre sum. The plots in figure
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16 are semi-log plots of E1 with respect to the exponent b in the block size 2b. For the linear

profile (Fig. 16(a)) we observe the same behavior as in figure 15(a), namely that increasing

the data size does not improve the accuracy of the reconstruction. For the parabolic profile

on the right (Fig. 16(b)), we find a decay of the relative error E1 in function of the data

size b of the form (2b)−1/4 revealing a stagnation of the error for data size larger than 214.

We consider next E2, the L2−norm of the relative error of the block averaged reconstructed

values γj, j = 1, . . . ,M , with respect to the true γ(aZj), j = 1, . . . ,M (Fig. 17). By γj we

denote the average over the blocks of the reconstructed values

γj =
1

B

B
∑

k=1

γk
j j = 1, . . . ,M. (68)

Thus in figure 17 we plot
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Figure 17: Exact mean: L2-relative error with γ averaged over the number of blocks B of
size 2b at M = 3, M = 5, M = 7, M = 9 for the linear and parabolic profile.

E2 =

√

∑M
j=1 wj|γj − γ(aZj)|2

√

∑M
j= wjγ(aZj)2

, (69)

where γk
j is the reconstructed value at Zj for the block Bk and wj are the weights associated

with the Gauss-Legendre quadrature, j = 1, . . . ,M, k = 1, . . . , B. The plots in figure 17 are

semi-log plots of E2 with respect to the exponent b in the block size 2b. The plots show that
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averaging over more blocks of smaller size reduces the spread between the relative error for

different M , but creates larger errors. Thus averaging reconstructed velocity profiles over

blocks of data of smaller size improves the resolution of the reconstruction. This is visible

for both the linear and parabolic profile, where starting with size 2b = 215 the relative error

E2 starts growing. Moreover, the parabolic profile (Fig. 17(b)) follows up to 215 a decay

close to (2b)−1/4. We deduce that the best reconstruction on a data set of size N = 218

will be achieved when the average of the reconstructed points is done over 8 or 16 blocks

(size 215 or 214). We also notice that increasing the number of discrete points to M = 7 or

M = 9 does not produce significantly better results, but lengthens the computation time

(see section 5.4).

In practice, of course, the goal of the reconstruction is to obtain the velocity profile, the

true profile being unknown. So, finally, we compare the L1-norm of the variance of the re-

constructed profiles from the individual blocks, plotted as semi-log plot versus the exponent

b in the block size 2b (Fig. 18). By this, we mean
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Figure 18: Exact mean: L1-norm of the variance of γ averaged over the number of blocks
B at M = 3, M = 5, M = 7, M = 9 for the linear and parabolic profile.

E3 =

M
∑

j=1

wj
1

B

B
∑

j=1

(γk
j − γj)

2. (70)
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Again, we note for both the linear and parabolic profiles that the variance increases for data

size bigger than 215 with in the parabolic profile (Fig. 18(b)) a decay of the form (2b)−1/4.

Figure 18 confirms that a better result can be obtained and recognized when averaging the

reconstructed γ over B = 8 or B = 16 blocks corresponding to blocks of size 215 or 214.

5.3.2 Linear, parabolic, and exponential reconstruction

Using the result of the block averaging technique investigated in the previous subsection

(Figs. 16, 17 and 18) we now reconstruct the velocity profile for the linear case with B = 16

blocks and M = 5. In figure 19, we examine both the spread of the values obtained for

each block, the average γj , j = 1, . . . ,M and standard deviation. The standard deviation

is plotted as 90% confidence interval errorbars for the averaged block reconstructed values

γj , j = 1, . . . ,M . For comparison, we plot in figure 20 the averaged block reconstructed
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Figure 19: Exact mean: (a) Scatter plot of the different block reconstructed γj, j =
1, . . . ,M and (b) block-averaged γj, j = 1, . . . ,M with 90% confidence interval for the
linear profile with B = 16 and M = 5.

values γj , j = 1, . . . ,M for the linear profile with 16 blocks and 90% confidence interval for

the cases M = 3 and M = 7. The four plots in figure 19 and 20 confirm that the block

averaged reconstructed values γj = 1
B

∑B
k=1 γk

j , j = 1, . . . ,M is a good approximation of
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Figure 20: Exact mean: Block-averaged γj , j = 1, . . . ,M with 90% confidence interval for
the linear profile with B = 16 and M = 3, M = 7.

γ(aZj), j = 1, . . . ,M . Increasing the number of points M from 3 to 5 produces a bet-

ter approximation, but more importantly it reduces consequently the size of the errorbars.

Comparing figures 19(b) and 20(b) we see that there is not a significant gain in accuracy

in increasing M from 5 to 7. Some of the errorbars (for example the first one) get smaller,

while others (last one) get bigger during this process. Moreover, because the space of in-

creasing sequence of length 7 is now too big to be heuristically searched, we interpolate the

initial guess for M = 7 from the block averaged reconstructed values γj, j = 1, . . . ,M with

M = 5. Therefore to obtain arguably a slightly better result with M = 7, we still need the

reconstructed data from M = 5.

Next, we discuss the size of the errorbar at the last point ZM . We recall that to make sure

that particles stay in the channel we introduced a perfectly elastic reflection at the upper

wall, Z = H/a (see Section 3.3). This creates a bias in the sampled positions, since particles

on both sides of the wall are represented with the same velocity. This effect is not present

at the wall Z = a, because the diffusion coefficient is zero at the lower channel wall and

with the chosen ∆τ the simulated particles can not cross it (Section 3.3). Therefore the

errorbar is shorter at the first point Z1.
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Figure 21 is the averaged block reconstructed values γj , j = 1, . . . ,M for the parabolic

profile with B = 16 blocks and 90% confidence interval with M = 3 and M = 5. For

both values of M the averaged block reconstructed profile γj , j = 1, . . . ,M is a good

approximation of the parabolic profile. We note again a relatively large errorbar at the last

point on figure 21(b).
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Figure 21: Exact mean: Errorbar reconstruction for the parabolic profile with B = 16,
90% confidence interval and M = 3, M = 5.

Finally, we apply the averaging block technique on the exponentially decaying velocity pro-

file (Eq. (13)) at M = 5 points and B = 16 blocks and 90% confidence interval. Figure 22

illustrates the limitation of the block averaging statistical reconstruction on a fast increasing

velocity profile. Keeping in mind that the last point might be biased, we see that the the

statistical reconstruction is not able to recognize points of large inflexion (second point)

correctly, while it reconstructs almost constant functions (third and fourth point) properly.

Nevertheless, because in the near-wall region the velocity profile is usually assumed to be

linear or parabolic, we conclude that we have developed, ignoring the last point, a proba-

bilistic algorithm to reconstruct the velocity profile at four Z-locations given exact mean

X-displacements and a computation domain of the same size than the observation domain.
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Figure 22: Exact mean: Errorbar reconstruction for the exponentially decaying profile
with B = 16, M = 5 and 90% confidence interval.

5.4 Computational Cost

We discuss the computational cost of the different reconstructions. The mean displacement

data generated by the Milstein code (see Chap. 3) are saved as binary files of size 128K.

The machine is an 18 nodes beowolf cluster, where each node is a dual 2 GHZ AMD Athlon

with 2 GB RAM. The filestore is a dual AMD 2800+ Athlon with 16B RAM.

Because the entire problem can be reduced to a minimization of the function Φ, Φ has to

be evaluated at M points for the entire block of data of size N/B. Thus the major resource

restriction is RAM memory. Moreover, at each function evaluation the probability density

function using recursively n − 1 discrete convolutions has to be computed.

The following three tables 2, 3 and 4 contain the computational time required for the

averaged block reconstruction for different number of blocks B, and correspondingly data

size 2b, for the linear and parabolic profile with M = 5 (Table 2), M = 3 (Table 3) and

M = 7 (Table 4). From the tables 2 and 3, we see that, when compared to the time

required to generate the data (10 days, see Chap. 3) the minimization routine is fast. For

example, the studied case of B = 16 blocks is computed in about 15 minutes. When M = 3
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B 256 128 64 32 16 8 4 2 1

2b 210 211 212 213 214 215 216 217 218

Lin. 3h40 2h 57min 33min 17min 10min 8min45 8min30 2min30

Par. 3h45 1h50 52min 27min 13min30 9min 7min 6min 7min30

Table 2: Exact mean: Computational time for the linear and parabolic profile as a function
of B with M = 5.

B 256 128 64 32 16 8 4 2 1

2b 210 211 212 213 214 215 216 217 218

Lin. 1h25 45min 23min30 13min 6min 5min 4min 4min 4min

Par. 1h30 46min 24min 14min 7min30 5min 3min 3min 4min

Table 3: Exact mean: Computational time for the linear and parabolic profile as a function
of B with M = 3.

(Table 3) both the linear and parabolic profiles run in the same amount of time. On the

other hand, when M = 5 (Table 2) starting with B = 8 the reconstruction of the parabolic

profile is achieved more quickly than of the linear profile. This can hardly be explained,

but it might simply be related to this particular data set. In this sense, when the number

of blocks gets bigger, the size of each one gets smaller and therefore it is harder to find an

appropriate minimum with fewer points. Also worth noticing is the fact that as the number

of blocks increases, there are more values to store. As an approximate rule of thumb, we

say that starting with B ≥ 8, doubling the number of blocks double the computational

time. The next table 4 is the computational time for M = 7. This table confirms that

the slightly better accuracy obtained with 7 points compared to 5 points is not worth the

computational effort for two reasons. First of all, the computational time has increased by

a factor of between five and ten and second of all, this reconstruction can only be obtained

when the suitable initial guess is given through the result of a 5 points reconstruction,

adding more time to the entire process.

B 256 128 64 32 16 8 4 2 1

2b 210 211 212 213 214 215 216 217 218

Lin. 7h10 3h15 1h34 46min 30min 12min 14min 17min 19min

Par. 13h30 6h45 3h50 1h47 1h16 40min 35min30 23min 26min

Table 4: Exact mean: Computational time for the linear and parabolic profile as a function
of B with M = 7.
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Finally, table 5 contains the number of function evaluations and iterations for each of the

16 blocks of size 214 of the block averaged reconstructed values γj , j = 1, . . . ,M for the

linear (Table 5 top) and parabolic profile (Table 5 bottom) at M = 5 discrete points. Those

numbers have purely an informative value, as they can, from one block to another block

of the same size, quadruple. The only pattern that can be noticed is that the number of

function evaluations is roughly 1.5 to 2 times the number of iterations.

Block 1 2 3 4 5 6 7 8 9 10 11 12 13

Eval. 652 584 541 503 731 399 568 503 478 775 271 501 174

Iter. 400 350 329 301 443 230 337 303 281 486 156 297 96

Block 14 15 16

Eval. 466 668 397

Iter. 279 398 238

Block 1 2 3 4 5 6 7 8 9 10 11 12 13

Eval. 216 358 231 575 845 267 828 191 435 369 239 391 661

Iter. 116 200 126 347 528 153 508 108 254 222 138 230 405

Block 14 15 16

Eval. 293 195 430

Iter. 167 105 252

Table 5: Exact mean: Function evaluations and iterations for the linear (top) and parabolic
(bottom) profile with M = 5.
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CHAPTER VI

VELOCITY PROFILE RECONSTRUCTION WITH PIV MEANS

In the previous chapter (Chap. 5), we demonstrated that it is possible to statistically

reconstruct the velocity profile based on the probability density function of perfect mean

X-displacements between window pairs. However, in the experimental set-up, the mean dis-

placements are not exact, but approximated through PIV imaging techniques. The goal of

PIV is to extract from two image windows the mean displacement of n particles without the

knowledge of the individual displacements under the assumption that particles have com-

parable displacements. In the first part of this chapter, we describe basic cross-correlation

algorithms (see [19], [37], [35]). Then we test the reconstruction on approximated mean

X-displacements using the same algorithms (Alg. 5.1, 5.2, 5.3) as in chapter 5.

6.1 Particle Image Velocimetry (PIV)

6.1.1 Image matrix

From the simulation of the dimensionless Langevin system (19)-(21) with the Milstein

scheme (Chap 3) we generate flows of tracer particles over time. If the particles were

point-particles we could define for each cell of a given grid a value based on the number of

point-particles present in the cell. Since the particles have a radius and their centers are

not necessarily in the center of the cell, they can cover more than one grid cell. Therefore

we consider a grid of size Mx by Mx and a Gaussian intensity distribution

I(r) = I0 exp

(−||r− r0||2
2σ2

p

)

r = (X,Y ), (71)

where r0 is the position of the center of the cell and I0, σp are constants. A radius σp of 1

means that 68.3% of light scattered by the particle is imaged onto a circular area of radius

1. The parameters are chosen to match the experimental parameters ([29]): the size of the

region of interest is Hx = 25µm, Hy = 5µm, H = 450 nm, a = 50 nm, n = 64, Mx = 32,
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σp = 2 and I0 = 255 exp(−Z/100) is the exponentially decaying intensity function. To each

grid cell corresponds an entry in the image matrix obtained with the intensity I(r) given

by (71). Because the grid is generated from the bottom left corner of the window and the

matrix from the top left corner, the intensity of a particle located in the cell with left-hand

corner (j, i) is reported in the entry (Mx − i + 1, j) of the image matrix as illustrated in

the following figure (Fig. 23). If there is more than one particle in a grid cell, the intensity

(Mx−i+1,j)

(1,1)

(j,i)

(1,1)

y

x

β
α

Figure 23: Correspondence between grid elements and matrix entries.

at that entry is the sum of the intensities for each particle. Algorithm 6.1 describes the

generation of the image matrix. Note that, in order to include the particles in the last row

and column of the grid, we expand the grid to an Mx + 2 by Mx + 2 grid with no particle

in the added cells.

Algorithm 6.1 Generation of the image matrix

• Given: cell with left-hand edge (j, i) and center r0 = (X0, Y0)

• Input: Xi, Yi, Zi i = 1, . . . , n, Mx × Mx grid with midpoints and edges

• Find the m particles in the cell with position ri = (Xi, Yi), i = 1, . . . ,m

• Compute I i
0 = 255 exp

(

−Zi

100

)

, i = 1, . . . ,m

• Intensity: I(ri) = I i
0 exp

(

−||ri−r0||2
2σ2

)

, i = 1, . . . ,m

• Output: im(Mx − i + 1, j) =

m
∑

i=1

I(ri)
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6.1.2 Cross-correlation function and displacement

Definition 6.1 Let im1 and im2 be two image matrices. The discrete cross-correlation

function Φnorm
12 (m,n) of the sampled images im1(m,n) and im2(m,n) is given by (see [19],

[37])

Φnorm
12 (m,n) =

∞
∑

k=−∞

∞
∑

l=−∞
im1(k, l)im2(k + m, l + n)

∞
∑

k=−∞

∞
∑

l=−∞
im1(k, l)

∞
∑

k=−∞

∞
∑

l=−∞
im2(k, l)

.

From the definition we remark the following.

Remarks

1. If im1 and im2 are δ-functions of particles with a radius of 1, then the numerator of

Φnorm
12 is non-zero exactly when (k, l) is the position of the particle in the first image

and (m,n) corresponds to the displacement between the two images.

2. The denominator of Φnorm
12 is a normalization coefficient, so that when many particle

images match up with their corresponding shifted particles, the cross-correlation value

is near 1.

Let Φ12 denote the non-normalized discrete cross-correlation function, in other words the

numerator of the cross-correlation function Φnorm
12 . Φ12 is nothing else than the two-

dimensional discrete convolution. Therefore we apply the two-dimensional convolution the-

orem which relates complex multiplication in frequency domain to convolution in space

domain. Algorithm 6.2 uses two-dimensional Fast Fourier Transform to compute Φ12.

Algorithm 6.2 Non-normalized discrete cross-correlation function

• Input: image matrices im1 and im2 computed with algorithm 6.1

• F = fft2(im1) G = fft2(im2), two-dimensional Fast Fourier Transform

• Θ = F · G

• Φ12 = fft2−1(Θ) two-dimensional inverse Fourier transform

• Output: Φ12
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The location of the maximum peak of the cross-correlation function gives a first approxima-

tion of the mean displacement between the windows. Because an immobile particle should

have a peak located at (0, 0), we shift the entries of Φ12 with the command fftshift so that

the zero frequency components are in the center of the spectrum. Finally, we convert the

displacements expressed in matrix-coordinates to true displacements (see Fig. 23). Since

a displacement in the X-grid direction corresponds to an integer multiple of the β-matrix

coordinates (column), the approximated X-displacement is computed from the j location

of the peak. In a similar way, because a displacement in the Y -grid direction is equiv-

alent to a negative integer multiple of the α-matrix coordinate (row), the approximated

Y -displacement uses the i location of the peak and reverses the sign. The factors Mx/2 + 1

reflect the shifting of the components (see Alg. 6.3).

Algorithm 6.3 Approximated mean displacements

• Given: Mx × Mx grid with cell size δx

• Input: Φ12 from algorithm 6.2

• Find [i, j] the location of Φmax
12 the maximum of fftshift(Φ12)

• ∆Xapp = (Mx/2 + 1 − j)δx

• ∆Y app = −(Mx/2 + 1 − i)δx

• Output: ∆Xapp, ∆Y app, and Φmax
12

6.1.3 Gaussian surface fitting

To obtain an approximation of the mean displacement with an accuracy finer than the

grid size δx, we use a Gaussian surface fitting technique (see [29]). The mean displacement

between two windows is the first moment of the distribution of the displacements. To

first order, the probability density function of the displacement can be approximated by a

Gaussian of the form (see also Fig. 9 and Fig. 14)

w = h(X,Y ) = a1e
a2(X−a3)2+a4(Y −a5)2 , (72)
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where a3 and a5 determine the mean X- and Y -displacements. From the previous algorithm

6.3 we have a first estimate of a0
1 = Φmax

12 , of a0
3 = ∆Xapp and of a0

5 = ∆Y app. To gain

better accuracy, we want to determine the constants a1, . . . , a5 as a best fit through the

eight points surrounding the peak. We number the neighbors starting from the top left

corner (see Fig. 24) and we assume equidistant points. Since the center point corresponds

4 6
5

7 8 9

2 31

Figure 24: Eight neighbors grid.

to the maximum, we have w5 = h(a3, a5) = a1. Moreover, we find w2 = h(a3, a5 + δx),

w8 = h(a3, a5 − δx), w6 = h(a3 + δx, a5) and w4 = h(a3 − δx, a5), where δx is the length of

the cell. Therefore the initial guesses for a2 and a4 are given by

a0
2 =

ln((z4 + z6)/(2a
0
1))

δ2
x

and a0
4 =

ln((z2 + z8)/(2a
0
1))

δ2
x

. (73)

Algorithm 6.4 finds the coefficients a1, . . . , a5 using the non-linear minimization lsqcurvefit.

Figure 25 is a mesh plot of the cross-correlation function Φ12 given by algorithm 6.2 to-

Algorithm 6.4 Gaussian surface fitting

• Given: Mx × Mx grid with cell size δx

• Input: Φmax
12 from algorithm 6.2, ∆Xapp and ∆Y app from algorithm 6.3

• Determine the 8 neighbors (Fig. 24)

• Function to be minimized: w = a1e
a2(X−a3)2+a4(Y −a5)2

• Initial guess: a0
1 = Φmax

12 , a0
3 = ∆Xapp, a0

5 = ∆Y app, a0
2 and a0

4 given by (73)

• Minimization of w using lsqcurvefit, a non-linear least-squares curve fitting algorithm

• Output: a1, . . . , a5

gether with a surface plot of the Gaussian density function (Eq. (72)) with the coefficients
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a1, . . . , a5 obtained from algorithm 6.4. There is noise in the cross-correlation function,
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Figure 25: Gaussian surface fitting of the cross-correlation peak.

but not enough to forbid the detection of the peak. The Gaussian fitting algorithm 6.4

produces a smoother peak which allows for the determination of the approximated mean

X−displacement as a3.

Combining algorithms 6.1, 6.2, 6.3 and 6.4 we can find an approximate mean displacement

between a window pair. Here, we note two important simplifications. First, we have not

included any background noise, which pollutes the determination of the mean displacement.

Second, we have not discussed overlapping windows or averaging cross-correlation function

(see [35]). This last improvement is necessary with experimental data to overcome the un-

certainties due to noise.

Because, in our case Hx = 5Hy, we decompose one image into five windows of size Hy ×Hy

without overlapping. We then average the five mean velocities obtained through cross-

correlation to approximate the mean displacement over the window Hx × Hy.
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Sadr et al. ([29]) establish that for 2% particle mistach, the absolute error in the approx-

imated mean is 0.0002 pixels. The absolute error becomes important with 45% particle

mismatch. We apply the cross-correlation algorithms on the linear and parabolic data with

N = 218, Π1 = 3 and Π2 = 4. There is no particle mismatch, however only half of the data

lie within an absolute error of 0.0005 of their true value. This can be explained by the fact

that approximating mean displacements through cross-correlation works only if the particle

displacements of each particle are comparable to each others and are reasonable compared

to the grid size. We proceed by applying the reconstruction algorithm on the smaller data

set of PIV mean with an absolute error smaller than 0.0005.

6.2 Results

Because the data set has roughly 217 points we start with the reconstruction profile at

M = 3 points with B = 8 blocks (see Chap. 5) for the linear profile (11) and the parabolic

profile (12). In figure 26, we plot the block averaged reconstructed mean together with

1 2 3 4 5 6 7 8 9
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Z

γ(
aZ

)

 

 

true
perfect mean
piv mean

(a) Linear profile

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Z

γ(
aZ

)

 

 

true
perfect mean
piv mean

(b) Parabolic profile

Figure 26: PIV: Errorbar reconstruction for the linear and parabolic profile with perfect
mean and PIV approximated mean within 0.0005 absolute error, M = 3, B = 8 and 90%
confidence interval.

90% confidence interval for perfect mean (red circle) and PIV approximated mean (green

square) within 0.0005 absolute error. We first notice that the errorbars are longer with PIV
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approximated mean than with exact mean. This makes perfect sense, since the additional

errors due to the approximation of the means with cross-correlation techniques are included.

The second aspect is that the last reconstructed point, especially in the parabolic profile

(Fig. 26(b)), is badly approximated. There are two reasons for this: the upper wall and the

penalty in the minimization. We already discussed in chapter 5 the effect of the artificial

reflection at the upper wall on the reconstruction with perfect means. This phenomena is

here augmented by the errors in the approximation of the means. We remember that the

penalty in algorithm 5.3 was determined by a constant (usually 103) multiplying the sum of

the squares of the negative γ increments. The effect of the constant is to force fminsearch

to look for a minimum in a different neighborhood. However, if the only non increasing

point is the last one, this may cause the new neighborhood to be too far away from the true

values resulting in a bigger error at the last point.

Next (Fig. 27), we reconstruct the velocity profile using block averaging with B = 16,

M = 5 for the linear and parabolic profile for the exact mean data set of size 217 and for

the one with approximated PIV mean. The conclusions from figure 27 are similar to the
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Figure 27: PIV: Errorbar reconstruction for the linear and parabolic profile with perfect
mean and PIV approximated mean within 0.0005 absolute error, M = 5, B = 16 and 90%
confidence interval.
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results derived from figure 26. The errorbars for PIV approximated means are longer than

exact mean displacements and the block averaged values γj , j = 1, . . . ,M produce, except

at the last point, a good approximation of the corresponding values γ(aZj), j = 1, . . . ,M .

It is worth noticing that for the linear profile (Fig. 26(a)) the reconstructed point at Z5 is

actually better with PIV approximated means, than with exact means another illustration

of the high sensitivity of the reconstruction.

Because the data used for PIV means is about half the size of the one used with exact

means and because experimentally PIV displacements are obtained with high accuracy, we

conclude that it is possible to statistically reconstruct the out-of-plane dependence of the

velocity profile from in-plane images. Moreover, since experimentalists are mostly interested

in the velocity profile in the near-wall region, it is not a major drawback that the block

averaged reconstructed value closer to the upper wall has the largest errorbar.

6.3 Computational Cost

It takes, on a dual 2GHz AMD Athlon with 2GB RAM processor, between 5 and 10 seconds

to approximate one X-mean displacement with algorithms 6.1-6.4. Because each cross-

correlation is independent from the previous one, the generation of PIV data based on a set

of displacements can be broken onto different processors, allowing for the computation to

run in about 32 hours. We finish by summarizing the size of the files and the computational

time needed for each of the steps of the entire reconstruction algorithm.

Step Method Computational time File size

Data generation Milstein and Ito double integral 10 days 3 × 256M

PIV Cross-correlation and Gaussian fit 32 hours (parallel) 2M

Reconstruction Minimization and Block average 15 minutes M values

Table 6: Summary of the computer resource needed for the statistical reconstruction with
PIV generated data.
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CHAPTER VII

BIAS IN THE Z−DISTRIBUTION OF MATCHED PARTICLES

In the reconstruction algorithms in chapter 4-6 we assumed that the computation and

observation domain were the same. This means that the distribution of particles in the

Z-direction perpendicular to the wall is uniform. However, when the domains are differ-

ent, the particles can move out and back into the window (computation domain) during

the measurement time T . Because of the lack of information about the Z-locations of the

particles, it is usually assumed, when there is more than one window in the observation

domain, that the measured in-plane mean velocities represent the value at the Z-middle

height. This supposes that the distribution of the Z-locations of particles that start and

end in the window is uniform. In the next section, we show with a simple Milstein simu-

lation based on the Z-Langevin equation (21) that the distribution of matched particles at

nanoscale is not uniform. Again this is a consequence of hindered Brownian diffusion. Then,

using a one dimensional space-time Fokker-Planck equation (4) we derive a fast algorithm

computing the distribution of matched particles. Finally, we study some implications in

terms of mismatch, drop-out and slip length.

7.1 Numerical Simulation of Particle Positions

We make the variable transformation: He = Z − 1 for Z ∈ [1,H/a]. He corresponds to

the nondimensional edge-wall distance. This means that the wall is located at He = 0. For

the rest of this chapter, every distance will be given in edge-wall distance. Let C be the

dimensionless center of the window and let W be the dimensionless height of the window.

Note that W ≤ H/a − 1. With the variable transformation, the He-nondimensionalize

Langevin equation in the direction perpendicular to the wall (Eq. (21)) becomes

dHe = Π2
dβ⊥(a(He + 1))

dZ
dτ +

√

2Π2β⊥(a(He + 1))dτdW, (74)
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where dW = N (0, 1), Π2 is the dimensionless diffusive time, β⊥ is the perpendicular com-

ponent of the diffusion tensor (9). For simplicity, we set

β⊥(a(He + 1)) =
6H2

e + 2He

6H2
e + 9He + 2

= βe
⊥(He). (75)

Following the discussion of chapter 3, the corresponding one dimensional Milstein scheme

is

Hj+1
e = Hj

e + Π2
dβe

⊥
dHe

∣

∣

∣

∣

Hj
e

∆τ +

√

2Π2βe
⊥(Hj

e )∆τ∆ω +
Π2

2

dβe
⊥

dHe

∣

∣

∣

∣

Hj
e

∆τ(∆ω2 − 1) (76)

with j = 1, . . . , Nt, ∆τ = 1/Nt and ∆ω is normally distributed with mean 0 and variance

1. In the case that Hj
e ≤ 0, we impose an artificial elastic boundary condition at the wall:

Hj
e = −Hj

e . The initial distribution is uniform in the window [C − W/2, C + W/2].

Figure 28 is the histogram of the He−locations of matched particles for the two cases Π2 = 1

and Π2 = 5 with C = 0.5 and W = 1 and a fixed radius a = 50 nm. The histogram is

obtained by determining the particles in the window [C − W/2, C + W/2] at τ = 1 and

plotting their corresponding locations at all in-between times. We set Nt = 210 and repeat

the simulation 211 times for n = 32 particles. Both plots show that the distribution of
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Figure 28: Histogram of the matched particles for C = 0.5 and W = 1 for Π2 = 1 and
Π2 = 5.

matched particles is not uniform and not symmetric, since the window is the one closest
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to the wall. Because of the cost in terms of RAM memory, we are motivated to find an

alternate approach which computes directly the He−distribution of matched particles.

Since Π2 = D∞T
a2 , there are two ways of decreasing Π2: decreasing T the time elapsed be-

tween the window measurements or increasing the radius of the particle a. Because D∞ is

inversely proportional to a the dependence of Π2 from a is inversely cubic. Thus, decreasing

the particle radius to the quantum dot range (a = 5 nm, see [27]) has the dramatic effect

of increasing Π2 to about 20000.

7.2 Probability Density Function of Matched Particles

Let W(He, τ) denote the probability density function of He at time τ given that the initial

distribution at τ = 0 is W0(He). Then, the nondimensional one dimensional space-time

Fokker-Planck equation in configuration space becomes (see Eq. (22))

∂W(He, τ)

∂τ
= Π2

∂

∂He

(

βe
⊥(He)

∂W(He, τ)

∂He

)

. (77)

At the wall (He = 0) we use a Neumann boundary condition describing the no-flux condition.

Let L be large enough so that no particle has a displacement bigger than L. We always

have that L ≤ H, where H is the height of the channel or depth of field of vision. Thus, we

impose the same Neuman boundary condition at He = 0 and He = L:

βe
⊥(He)∂W(He, τ)

∂He

∣

∣

∣

∣

He=0

=
βe
⊥(He)∂W(He, τ)

∂He

∣

∣

∣

∣

He=L

= 0. (78)

The initial distribution W0(He) is uniform in the window [C − W/2, C + W/2]:

W0(He) =
1

W
χ[C−W/2,C+W/2](He). (79)

W(He, τ) is the distribution of He−locations starting from the uniform distribution (79),

but it is not the probability density function of matched particles. Let P(He) be the

probability density function of matched particles, that is particles that are in the window

[C − W/2, C + W/2] at τ = 0 and in the window at τ = 1. Let (He, τ) with τ < 1 be

the position of a particle at some time τ . The probability that this particle is a matched
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particle is given by the probability that there is a path from (He,0, 0) to (He, τ) with He,0 ∈

[C − W/2, C + W/2] and a path from (He, τ) to (He,1, 1) with He,1 ∈ [C −W/2;C + W/2].

The first probability is simply given by W(He, τ). Because of the reflexivity of time and

the symmetry of the Fokker-Planck equation (77), we have that the second probability is

given by W(He, 1 − τ). Therefore, we find for P(He)

P(He) = K

∫ 1

0
W(He, τ)W(He, 1 − τ)dτ, (80)

where K is a normalization constant.

7.2.1 Perturbation series solution

Because βe
⊥(He) decreases monotonically away from the wall, the idea is to use the solution

of the heat equation in a uniform media with diffusivity Π2 to obtain a perturbation solution

of (77). We set W(H, τ) = W0(H, τ) + εW1(H, τ) + h.o.t and we write βe
⊥(He) as 1 −

ε 7He+2
6H2

e +9He+2
= 1− εϕ(He) and let ε → 1. Substituting those assumptions into (77) leads to

the following partial differential equations for W 0(He, τ) and W1(H, τ)

∂W0(He, τ)

∂τ
= Π2

∂2W0(He, τ)

∂H2
e

(81)

∂W1(He, τ)

∂τ
= Π2

∂2W1(He, τ)

∂H2
e

+ ϕ(He)Π2
∂W0(He, τ)

∂He
. (82)

W0(He, τ) is the solution of the heat equation on a finite interval with Neuman boundary

conditions. Thus W0(He, τ) can be expressed as a cosine series whose coefficients are given

as Fourier cosine series. W1(η, τ |η0) is the solution of the non-homogeneous heat equation

whose solution is a convolution of the fundamental solution and the non-homogeneous part.

This approach has the main disadvantage that any higher order approximation of W will

contain more convolutions of lower order terms. Therefore we will not pursue it any further.

7.2.2 Numerical solution

The first method to solve numerically the partial differential equation (77) is to use a spec-

tral method combined with time-discretization (see [33]). For this method to be stable, the
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eigenvalues of the linearized spatial discretization operator, scaled by the time step, must

lie in the stability region of the time-discretization operator. However, this is not enough

to ensure the robustness of the algorithm at small Π2, since the initial distribution is a sum

of discontinuous δ−functions. Moreover, because the boundary condition is not of Dirichlet

type, the problem has to be made symmetric by solving it on the domain [−L,L] with zero

boundary condition at the edge. This leads to other stability problems, since by making

the non-constant diffusion βe
⊥ symmetric, we also create a cusp at the origin.

Thus, we abandon this method, instead turning to the built-in Matlab function pdepe, which

solves parabolic and elliptic partial differential equations in one space and time variable with

initial condition and Dirichlet and Neumann boundary conditions. The algorithm described

next (Alg. 7.1) combines the backward and forward solutions of the Fokker-Planck equation

(77) to obtain P defined by equation (80). Let the matrix S be the numerical approximation

of W(He, τ) over the time-space mesh and let P be the approximation of P.

Algorithm 7.1 Probability density function of matched particles

• Input: Π2, C, W

• Given: L length of space interval, N number of space steps, Nt number of time steps

• Generate a linearly spaced time [0, L] and space [0,Π2] grid

• Define pdeic: uniform initial condition on the window [C−W/2, C +W/2] as Eq. (79)

• Define pdebc: Neumann boundary conditions as Eq. (78)

• Define pdepe: the partial differential equation as Eq. (77)

• Solve with pdepe to obtain S

• Matched particles time dependent distribution: Ptemp = S. ∗ S(end : −1 : 1, :)

• Integrate over time with a trapezoidal rule

• Normalize with a trapezoidal rule to get P

• Output: P
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7.2.3 Comparison

We use algorithm 7.1 to compute the probability density function of matched particles for

the same cases as in figure 28. For validation purposes the underlying histograms (red) are

plotted together with P (blue) on figure 29.
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Figure 29: Comparison between the computed probability density function of matched
particles and the histogram of matched particles at C = 0.5 and W = 1 for Π2 = 1, Π2 = 5.

In figure 30, we compare the histogram of the matched particles with the computed prob-

ability density function of matched particles P for two additional cases. On figure 30(a)

the window has been shifted so that it does not touch the wall anymore, but it is centered

at C = 2.5 with the same height W = 1. In figure 30(b) for the first window (C = 0.5,

W = 1), Π2 has been increased to 20.

The four plots in figures 29 and 30 demonstrate that algorithm 7.1 produces the same re-

sult as the histogram of the matched particles computed from the Langevin equation. The

small differences between the two curves can be explained by numerical round-off errors

during the normalization of both curves. There is an important computational gain by us-

ing a probabilistic method, even though the Fokker-Planck equation (77) can not be solved

analytically. Computing and storing all the particles positions require a lot of RAM mem-

ory (256M) and a computational time varying between minutes and tens of minutes for a
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Figure 30: Comparisons between the computed probability density function of matched
particles and the histogram of matched particles for different values of Π2, C and W .

single group of dimensionless parameters. Because the Matlab function pdepe is very effi-

cient, algorithm 7.1 runs in seconds, allowing rapid study of results across parameter values.

Following algorithm 7.1 a code has been developed that asks the user to input the mea-

surement time T , the radius of the particles a, the dimensionless center C and width W of

the window, the value for L the dimensionless diffusive length and return the probability

density function of matched particles P together with its He and Z moments.

7.3 Results

7.3.1 Characterization of the bias

We use algorithm 7.1 to compute the probability density function of matched particles as a

function of Π2 to see when the uniform distribution assumption is valid. We set a = 50 nm,

C = 2.5, W = 5 and vary T from 0.01 ms to 100 ms. Figure 31 is a waterfall plot of the

probability density function of matched particles as a function of Π2. If the dimensionless

diffusive time Π2 is small, the particles do not have time to move out of the window and

as expected the distribution is uniform. As Π2 increases, the probability density function
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Figure 31: Probability density function of matched particles as a function of the dimen-
sionless diffusive time Π2 with C = 2.5 and W = 5.

starts by developing a peak close to the wall, before flattening and spreading over the entire

region. This proves that assuming a uniform distribution of matched particles is only valid

at Π2 smaller than 0.1, in the case when C = 2.5 and W = 5. This corresponds for a

particle of radius a = 50 nm to an exposure time T of approximately 0.05 ms. In nPIV

T = 2 − 5 ms, thus the bias in the distribution of matched particles can not be neglected.

However at microscale, with a = 100 − 200 nm the uniformity assumption, for Π2 < 0.1 in

the near-wall region is valid for an exposure time up to 1 ms.

In order to quantify the bias in the probability density function of matched particles we

compute the moments of the distribution. The following figure (Fig. 32) contains the

mean of the probability density function of matched particles for different values of the

dimensionless diffusive time Π2 compared to the center of the window C. We consider the

nanoparticles setting with a = 50 nm, C = 2.5, W = 5 and we vary T from 0.01 ms to 95 ms

(see also Fig. 31). The mean of a uniform distribution in the window [C−W/2, C +W/2] is

C. From figure 32 we note that the mean of the distribution of matched particles starts by
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Figure 32: He mean of the probability density function of matched particles as a function
of Π2 with a = 50 nm, C = 2.5 and W = 5.

shifting to the left before becoming wider. Moreover, as Π2 increases and the distribution

gets broader, more and more particles move out of the window, so that the sampled location

lies outside the window for Π2 > 105.

The next plots (Fig. 33) are probability density function of matched particles for the first

window for two experimental cases. In figure 33(a), we set T = 2 ms, a = 50 nm, C = 2.5

and W = 5 leading to Π2 = 4 as in the experiments described by Yoda et al. ([38], [18], [30]),

while on the right (Fig. 33(b)) we have T = 10 ms, a = 5 nm, C = 10 and W = 20 giving

Π2 = 20500 as reported by Pouya et al. ([27]) for quantum dots (QD). We remark that

in the quantum dot case (Fig. 33(b)), particles diffuse on a longer scale, so that L = 512.

Therefore N = 8192 and Nt = 4096, but algorithm 7.1 runs on a dual 2 GHz AMD Athlon

processor with 2 GB RAM in less than five minutes. For both cases, the distribution is far

from being uniform. For the nPIV case, we find He = 2.26 compared to C = 2.5 and for

the QD case we have He = 63.4 compared to C = 10. Thus we conclude that the bias in

the distribution of matched particles can be observed at nanoscales and it can be become

dominant for quantum dots.

Finally, in figure 34 we look at the relation between the size of the window and the effects

of the wall via hindered Brownian diffusion. We are mainly interested in the first window
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Figure 33: Probability density function of matched particles in the first window for nPIV
and quantum dot image velocimetry.

adjacent to the wall, thus we fix W = 2C. As W gets bigger, the particles do not have

time to leave the window unless Π2 is also increased; that is, the uniform distribution re-

mains valid longer. However, if Π2 is big enough, particles can drift out of the window

again. On the other hand, as the window gets bigger, the wall effect diminishes, because

the diffusion coefficient becomes constant to the Stokes-Einstein value D∞. Therefore we

expect the behavior of the location of the He mean of the distribution of matched particles

to become similar for large windows. In order to compare the evolution of the He-mean
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Figure 34: Comparison between rescaled He mean location of the probability density
function of matched particles for C = 1, C = 10, C = 50 and C = 100 and W = 2C.
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for the four windows C = 1 (blue circle), C = 10 (red square), C = 50 (purple diamond)

and C = 100 (green star), we rescale the axis and now plot He

C as a function of Π2
C2 . From

figure 34 we see that there is no difference between C = 50 (purple diamond) and C = 100

(green star). Therefore, this is a limiting curve showing that the effects of the wall become

negligible for large enough windows. We remark that if the distribution were uniform, the

value should be constant at 1. Thus, even for large windows we observe the same shifting

of the probability density function of matched particles (first to the left and then to the

right). Moreover in the large-window limit, where the diffusion coefficient is constant D∞,

the probability density function is an integral of a product of error functions, which when

evaluated numerically agrees with the limiting curve observed in figure 34.

7.3.2 Slip or no-slip

Having established the bias in the He- and therefore Z- distribution of matched particles

in experimental setting, we discuss its implication for the determination of slip length. The

question of slip or no-slip at the wall goes back to Navier. At microscales, it has been

established that the no-slip boundary condition holds. However, experimental results (see

[16], [32], [34], [12], [20]) suggests that at nanoscale the no-slip boundary might be violated.

Assuming that errors in the wall location are small, the slip at the wall is determined by

linearly extrapolating the measured velocity to zero. If the velocity is zero at the wall, then

there is no slip, else the slip length is the length which makes the velocity zero.

Let U be the measured velocity and let Us be the sample mean velocity. U is an approx-

imation of Us. Since P is the probability density function of matched particles, we have

with u(Z) velocity profile

Us =

∫ ∞

a
u(Z)P(Z)dZ, Z = He + 1. (83)

First we consider a Couette flow of the form u(Z) = GZ with no-slip. Then

Us = G

∫ ∞

a
ZPdZ = GZ. (84)

In other words, if U is measured over different Z, G can be determined by linearly fitting
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the values of U to Z. We remark that U has previously always been set to the center of the

window C + 1, causing an erroneous value for G and even possibly slip. Experimentally,

questions remain on how to change Z, since it is not easy to change the size of the window

W or to obtain with relatively small uncertainties data for more than three consecutive

windows. However, it possible to change the elapsed time between measurements T and

therefore Π2.

In the case of slip, we have a linear flow of the form u(Z) = G(Z + b) with b slip length and

therefore the sample mean velocity Us becomes

Us = G

∫ ∞

a
ZP(Z)dZ + Gb

∫ ∞

a
P(Z)dZ = GZ + Gb. (85)

Again both G and b can be determined by a linear least square fit of U through Z.

It is believed that the flow in near-wall region is mostly linear, but if this is not the case, a

parabolic flow profile u(Z) = FZ2 + GZ + Gb could be recover using the second moment

of the distribution of matched particles

Us = FZ2 + GZ + Gb, Z2 =

∫ ∞

0
Z2P(Z)dZ. (86)

This is now a non-linear least square fitting problem.

7.3.3 Multilayer PIV

Next, we turn our attention to errors in reported velocity field measurements. In their de-

velopment of multilayer PIV Li et al. ([18]) compare the measured velocity in three layers

to the expected mean velocity for different values of the dimensionless diffusive time Π2.

They find, especially in the first layer closest to the wall discrepancies of up to 6%. We

show that those differences can be explained with the bias in the Z-distribution of matched

particles.
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We consider a shear flow of the form u(Z) = GZ and we plot the ratio of the measured

velocity U to the expected mean velocity Um. Um is the velocity in the middle of the window

(corresponding to a uniform distribution), thus we have Um = G(C + 1). Assuming that

U is a good approximation of the sample mean velocity Us we have U ≈ Us = GZ as in

equation (84). Therefore we find for the ratio of U and Um

U

Um
≈ Z

C + 1
. (87)

The three layers I, II, III for 50 nm radius particles in water at room temperature are

defined in the following way: I: 1 < Z < 1.6, II: 1.6 < Z < 2.7 and III: 2.7 < Z < 7.

This corresponds to (in terms of He): (CI ,WI) = (0.3, 0.6), (CII ,WII) = (1.15, 1.1) and

(CIII ,WIII) = (3.85, 4.3). We vary T from 1 ms to 4 ms corresponding to Π2 ∈ [2, 8]. The

result for each of the layer is plotted in figure 35 together with the values (empty symbols)

for multilayer PIV reported by Li et al.. Because hindered Brownian motion decreases away
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Figure 35: Ratio of U to Um in layers I, II, III as a function of Π2 compared with the
values for mPIV reported by Li et al. ([18]).

from the wall, there is almost no bias in layer III and therefore U is really sampled in the

middle of the window in the third layer. We remark that Li et al. report a value of 0.9 in

layer III with a similar small decay as Π2 increases, while we find a value of 1. It is believed,

that evanescent waves and difficulties resulting from the illumination are responsible for the

error in the last layer. Layer II does not present a bias as long as Π2 < 5 in similarity

with figure 34 and we see that in multilayers PIV where the values are almost constant
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at 1, the illumination uncertainties are enough to correct for the bias. For layer I, the

numbers in figure 35 obtained as a result of the bias in the distribution of matched particles

follow almost exactly the curve described by Li et al. This demonstrates that errors in the

measurement of the velocity field in the layer adjacent to the wall are dominated by the non-

uniformity of the distribution of matched particles and can thus be corrected appropriately.

In other words, the velocity sampled in the first window at nanoscale does not correspond

to the velocity in the middle of the window.
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Figure 36: (a) Probability density function of matched particles and (b) He mean as
functions Π2 for layer I.

Figure 36 consists of the waterfall plot of the probability density functions of matched par-

ticles (see Fig. 31(a)) and of the He-location of matched particles as function of Π2 (see

Fig. 32) for layer I. We note that even for T = 0.1 ms, the distribution is not uniform and

the center has shifted to the left. For all other values of T , the probability density function

of matched particles becomes broader and consequently the center shift to the right. We

remark that already for T > 2 ms (Π2 > 5) the center of the distribution does not even lie

in the window [0, 0.6] anymore.

Finally, we use algorithm 7.1 to quantify the percentage of particles dropping-out of the
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window between the elapsed measurement time T . If all the particles remain in the window,

the probability density function W(He, 1) is uniform and its integral is 1. Therefore the

drop-out is defined as

dropout = 1 −
∫ C+W/2

C−W/2
W(He, 1)dHe, (88)

where W(He, 1) is the solution of the Fokker-Planck equation (77) at τ = 1. In figure 37

we plot the drop-out percentage as a function of Π2 for the first layer. The plot (Fig. 37)
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Figure 37: Dropout percentage as a function of Π2 in layer I.

confirms that particles dropping-out of the window is a relevant issue. In fact, already for

T = 0.6 (Π2 = 1.23) more than 50% of the particles present in layer I do not remain in the

layer at time T .

All the previous examples demonstrate the strength of algorithm 7.1 in determining the

influence of particle mismatch and particle drop-out at nanoscale. It is expected (see Fig.

33(b)) that such effects remain for quantum dot image velocimetry. Those results are

being applied to slip observations made by Joseph et al. ([12]), Lumma et al. ([20]) and

Tretheway et al. ([34], [32]). We remark that for the latter one, the displacement is obtained

via averaging the cross-correlation function over 50 image pairs. This means that the initial

distribution of particles is not uniform, but has to be replaced by W(He, 1)χ[C−W/2,C+W/2].
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CHAPTER VIII

BROWNIAN MOTION AND CORRELATION IN NPIV

The central element in the determination of mean displacements with PIV is the cross-

correlation peak (see Chap. 6). If background noise dominates the measurement or if the

displacements are not comparable, the location of the peak can not be found with certainty.

Therefore there exists a close connection between the geometrical properties of the peak,

Brownian motion and the illumination thechnique.

For light-sheet illumination and µPIV, Olsen and Adrian ([23], [24], [25], [26]) derive a

mathematical representation of images. They include Brownian motion, but not hindered

Brownian diffusion and are limited to an intensity function not depending on z, the direc-

tion perpendicular to the wall. In the case of illumination through evanescent waves, the

intensity function is an exponentially decaying function of z of the form I0 exp(−z
zp

), where

zp is the penetration depth. We want to follow Olsen and Adrian to describe changes in

the width and height of the cross-correlation peak due to hindered Brownian diffusion.

Let Wi be weighting functions defining the interrogation windows, X be the two-dimensional

position vector in the image plane, Xi be the ith interrogation spot, x be the three-

dimensional position vector in the fluid and let M be the magnification. Let I0i define the

shapes and intensities of the illumination pulses, I be the particle image intensity function

per unit of intensity that illuminates the particle located at x, and g(x, t) =
∑

i δ(x−xi(t))

indicate the Lagrangian position of each particle in the flow at time t.

Let I1(X) and I2(X) describe two images taken at time t1 and t2. We define mathematically

the images in the following way.
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Definition 8.1

I1(X) = W1(X −X1)

∫

I01(x)I(X − Mx; z)g(x, t1)dx

I2(X) = W2(X −X2)

∫

I02(x
′)I(X− Mx′; z′)g(x′, t2)dx

′.

The Lagrangian position g(x, t) can be decomposed into mean parts C(x, t) = g(x, t) and

fluctuating parts ∆g(x, t) with ∆g(x, t) = 0 so that g(x, t) = C(x, t) + ∆g(x, t).

Definition 8.2 The local cross-correlation of the two images is defined by

R(s) =

∫

I1(X)I2(X + s)dX.

Using the definitions of the images I1 and I2 as well as the decomposition of g into mean

and fluctuation parts, we have

R(s) =

∫

I1(X)I2(X + s)dX

=

∫

dX

∫

W1(X−X1)(C(x, t1) + ∆g(x, t1))I01(x)I(X− Mx; z)dx

∫

W2(X−X2 + s)(C(x′, t2) + ∆g(x′, t2))I02(x
′)I(X− Mx′ + s; z′)dx′.

Let RD(s) be the displacement component of the cross-correlation function

RD(s) =

∫

dX

∫

W1(X −X1)∆g(x, t1)I01(x)I(X− Mx; z)dx

∫

W2(X−X2 + s)∆g(x′, t2)I02(x
′)I(X − Mx′ + s; z′)dx′.

(89)

Let u(x) be a velocity vector field. Let f(x′, t2;x, t1) be the probability density function

that a particle at (x, t1) moves into the volume (x′,x′ + dx) at t2 given u(x). It was shown

by Olsen and Adrian ([23]) that the conditional space-time correlation can be written as

g(x, t1)g(x′, t2) = C(x, t1)C(x′, t2) + C(x, t1)f(x′, t2;x, t1). (90)

We consider RD(s) the conditionally averaged displacement cross-correlation for the velocity

field u(x) over the interrogation window. From equations (89) and (90) and the definition

of ∆g we find

RD(s) =

∫

dX

∫

W1(X−X1)I01(x)C(x, t1)I(X− Mx; z)

∫

W2(X−X2 + s)

I02(x
′)I(X− Mx′ + s; z′)f(x′, t2;x, t1)dx

′dx.

(91)
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To simplify the previous equation (91) we will need the following lemma about the product

of two Gaussians.

Lemma 8.1

∫ ∞

−∞
exp

(

−(x − µ)2

2σ

)

exp

(

−(kx − ν)2

2τ

)

dx =

√
2πστ√

σk2 + τ
exp

(

− (kµ − ν)2

2(σk2 + τ)

)

. (92)

Proof

We complete the square

(x − µ)2

2σ
+

(kx − ν)2

2τ
=

x2(τ + k2σ) − 2x(τµ + kσν)

2στ
+

µ2

2σ
+

ν2

2τ

=
(x
√

τ + σk2 − τµ+νσk√
τ+σk2

)2

2στ
+

(kµ − ν)2

2(σk2 + τ)
.

The result follows since
∫ ∞

−∞
exp

(

−(x − υ)2

2κ

)

=
√

2πκ.

�

Without Brownian motion, the probability density function f is simply a delta function

f(x′, t2;x, t1) = δ(x′ − x − ∆x).

In the presence of Brownian motion, the probability density function f is given by (see, e.g,

Chandrasekhar [4])

f(x′, t2;x, t1) =
1

(4πD∆t)3/2
exp

(−(x′ − x− ∆x)2

4D∆t

)

∆x = u∆t,

where D is the Stokes-Einstein diffusion coefficient.

8.1 Light-Sheet Illumination

The particle image intensity function is not a function of z and can be written as ([23])

I(X) = I0 exp

(−4β2X2

d2
e

)

I0 constant, β2 = 3.67,

where de =
√

M2d2
p + d2

s is the image diameter and ds is the diameter of the point response

function.
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Theorem 8.1 For light-sheet illumination in the absence of Brownian motion and un-

der the assumptions that C(x, t) and ∆x are constant, the averaged displacement cross-

correlation function (91) becomes

RD(s) =
CπI0

8β2

d4
e

d2
e

∫

W1(Mx −X1)W2(Mx + M∆x−X2)I01(z)I02(z + ∆z)

exp

(−2β2(s − M∆x)2

d2
e

)

dx.

Proof

We substitute f and I into (91) to get

RD(s) =I2
0C

∫

dXW1(X−X1)W2(X −X2 + s)

∫

I01(z)I02(z + ∆z) exp

(−4β2

d2
e

(X− Mx)2
)

exp

(−4β2

d2
e

(X− Mx − M∆x + s)

)

dx.

The integrand vanishes unless X ≈ Mx ≈ Mx + M∆x− s (see Olsen [23]).

Therefore we find for the previous integral

RD(s) =I2
0C

∫

dXW1(Mx −X1)W2(Mx + M∆x −X2)

∫

I01(z)I02(z + ∆z)

exp

(−4β2

d2
2

(X− Mx)2
)

exp

(−4β2

d2
e

(X− Mx − M∆x + s)

)

dx.

Using lemma 8.1 with µ = Mx, τ = σ = d2
e

8β2 , k = 1, ν = Mx+M∆x− s we integrate with

respect to X

RD(s) =
CπI00

8β2

d4
e

d2
e

∫

W1(Mx −X1)W2(Mx + M∆x −X2)I01(z)I02(z + ∆z)

exp

(−2β2(s − M∆x)2

d2
e

)

.

�

Olsen and Adrian ([23]) show that in the case of light-sheet illumination with Brownian

motion the following expression holds.

Theorem 8.2 For light-sheet illumination with Brownian motion and under the assump-

tions that C(x, t) and ∆x are constant, the averaged displacement cross-correlation function

(91) becomes

RD(s) =
CπI2

0

8β2

∫

I01(z)I02(z + ∆z)W1(Mx −X1)W2(Mx + M∆x−X2)

(

d4
e

8d2
e + 8M2β2D∆t

)

exp

(−2β2(s − M∆x)2

d2
e + 8M2β2D∆t

)

dx.
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This shows, when compared to the result without Brownian motion (Thm. 8.1), that Brow-

nian motion reduces the strength of the correlation by the ratio d2
e(d

2
2 + 8M2β2D∆t) and

broadens the diameter of the correlation peak from
√

2de/β to
√

2(d2
e + 8M2β2D∆t)1/2/β.

8.2 µPIV

In microscopic PIV the image intensity function has the form

I(X, z) =
A

de(z)2(s0 + z)2
exp

(−4β2X2

de(z)2

)

, A, s0 constant.

The next theorem was discussed by Olsen and Adrian ([23]).

Theorem 8.3 Assuming that perturbations due to Brownian motion are small, the averaged

displacement cross-correlation function (91) becomes

RD(x) =
πA2I01I02

8β2

∫

C(x, t)W1(Mx −X1)W2(Mx + M∆x−X2)

(s0 + z)4d2
e

d2
e

d2
e + 8M2β2D∆t

exp

(−2β2(s − M∆x)2

d2
e + 8M2β2D∆t

)

dx.

Theorem 8.3 demonstrates that the effect of Brownian motion on the signal strength is

determined by the parameter d2
e(d

2
e + 8M2β2D∆t). However, since de varies through out

the interrogation volume, this factor is hard to quantify other than numerically.

8.3 nPIV

We assume that I01(x), I02(x
′), C(x, t), ∆x = u(x)∆t, and de the image diameter are

constant. We set ∆z = 0. Let zp be the penetration depth.

We define an exponentially decaying intensity function

I(X) = I0 exp

(−z

zp

)

exp

(

−4β2X2

d2
e

)

, β2 = 3.67. (93)

With the above assumptions equation (91) becomes

RD(s) =I01I02CI2
0

∫

dX

∫

dxW1(X −X1) exp

(

− z

zp

)

exp

(

−4β2(X − Mx)2

d2
e

)

∫

dx′W2(X−X2 + s) exp

(

− z′

zp

)

exp

(

−4β2(X− Mx′ + s)2

d2
e

)

f(x′, t2;x, t1).

(94)
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First, we study the influence of the exponentially decaying intensity function on the cross-

correlation peak in the absence of Brownian motion. In this case, the probability density

function f is a delta function f(x′, t2;x, t1) = δ(x′ − x− ∆x).

Theorem 8.4 For an exponentially decaying intensity function in the absence of Brownian

motion, the averaged displacement cross-correlation function (94) becomes

RD(s) =
I01I02CI2

0π

8β2

d4
e

d2
e

∫

W1(Mx −X1)W2(Mx + M∆x−X2) exp

(

−2β2(s − M∆x)2

d2
e

)

exp

(

−2z

zp

)

dx.

Proof

Substituting f into equation (94) we find

RD(s) =I01I02CI2
0

∫

dX

∫

dxW1(X −X1) exp

(

− z

zp

)

exp

(

−4β2(X − Mx)2

d2
e

)

W2(X−X2 + s) exp

(

− z

zp

)

exp

(

−4β2(X− M(x + ∆x) + s)2

d2
e

)

.

The integrand vanishes unless the product of the two exponentials is large. Because both

exponentials are narrow functions, this requires that X ≈ Mx ≈ Mx + M∆x − s and the

previous equation simplifies to

RD(s) =I01I02CI2
0

∫

dX

∫

W1(Mx −X1)W2(Mx + M∆x −X2) exp

(

−2z

zp

)

exp

(

−4β2(X− Mx)2

d2
e

)

exp(−4β2(X + s− Mx − M∆x)2

d2
e

)

dx.

Next we integrate with respect to X using lemma 8.1 with σ = τ = d2
e

8β2 , µ = Mx, k = 1

and ν = Mx + M∆x− s. We find

RD(s) =
I01I02CI2

0π

8β2

d4
e

d2
e

∫

W1(Mx −X1)W2(Mx + M∆x−X2) exp

(

−2β2(s − M∆x)2

d2
e

)

exp

(

−2z

zp

)

dx.

�

Comparing the above result with theorem 8.1 for light sheet illumination we see that the

negatively decaying intensity function results in a multiplication of the correlation peak by

the exponential function exp(−2z/zp).
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Next we include hindered Brownian motion due to the presence of a wall located for sim-

plicity at z = 0. Then the z−domain of integration is [0,∞]. The probability distribution

function f is given by Chandrasekhar ([4]), assuming a constant Stokes-Einstein diffusion

coefficient D (in the region away from the wall), as

f(x′, t2;x, t1) =
1

(4πD∆t)3/2
exp

(

−(x′ − x − ∆x)2

4D∆t

)

exp

(

−(y′ − y − ∆y)2

4D∆t

)

[

exp

(

−(z′ − z)2

4D∆t

)

+ exp

(

−(z′ + z)2

4D∆t

)]

.

Theorem 8.5 For an exponentially decaying intensity function with hindered Brownian

motion with constant Stokes-Einstein diffusion, the averaged displacement cross-correlation

function (94) becomes

RD(s) =
CI01I02I

2
0π

8β2

d4
e

d2
e + 8M2β2D∆t

∫

W1(Mx −X1)W2(Mx + M∆x −X2)

exp

(

− 2β2(s − M∆x)2

d2
e + 8M2β2D∆t

)

exp

(

−2z

zp

)

exp

(

D∆t

z2
p

)[

erfc

(
√

D∆t

zp
− z√

4D∆t

)

+ exp

(

2z

zp

)

erfc

(
√

D∆t

zp
+

z√
4D∆t

)]

dx.

Proof

Substituting f into equation (94) we find

RD(s) =
I01I02CI2

0

(4πD∆t)3/2

∫

dXW1(X −X1)W2(X −X2 + s)

∫ ∫

exp

(

− z

zp

)

exp

(

− z′

zp

)

exp

(

−4β2(X − Mx)2

d2
e

)

exp

(

−4β2(X − Mx′ + s)2

d2
e

)

exp

(

−(x′ − x − ∆x)2

4D∆t

)

exp

(

−(y′ − y − ∆y)2

4D∆t

)[

exp

(

−(z′ − z)2

4D∆t

)

+ exp

(

−(z′ + z)2

4D∆t

)]

dx′dx,

where the x′− and y′−integrals are over (−∞,∞) and the z ′−integral is over [0,∞).

First we integrate with respect to x′ and y′ using lemma 8.1 with k = M , µ = x + ∆x or

µ = y + ∆y, σ = 2D∆t, ν = sx + X or ν = sy + Y and τ = d2
e

8β2 . We find

RD(s) =
I01I02CI2

0√
4πD∆t

d2
e

d2
e + 16M2β2D∆t

∫

dXW1(X −X1)W2(X −X2 + s)

∫ ∫

exp

(

−4β2(X + s− M(x + ∆x))

d2
e + 16M2β2D∆t

)

exp

(

−4β2(X − Mx)2

d2
e

)

exp

(

− z

zp

)

exp

(

− z′

zp

)[

exp

(

−(z′ − z)2

4D∆t

)

+ exp

(

−(z′ + z)2

4D∆t

)]

dz′dx.
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Again the integrand vanishes unless we have X ≈ Mx ≈ Mx + M∆x− s.

Thus the previous equation simplifies to

RD(s) =
I01I02I

2
0C√

4πD∆t

d2
e

d2
e + 16M2β2D∆t

∫

dX

∫ ∫

W1(Mx−X1)W2(Mx + M∆x−X2)

exp

(

− z

zp

)

exp

(

− z′

zp

)

exp

(

−4β2(X + s − M(x + ∆x))

d2
e + 16M2β2D∆t

)

exp

(

−4β2(X − Mx)2

d2
e

)

[

exp

(

−(z′ − z)2

4D∆t

)

+ exp

(

−(z′ + z)2

4D∆t

)]

dz′dx.

We integrate with respect to X using lemma 8.1 with k = 1, µ = Mx, ν = Mx+M∆x− s,

σ = d2
e

8β2 and τ = d2
e+16M2β2D∆t

8β2 .

We have

RD(s) =
CI01I02I

2
0π

8β2
√

4πD∆t

d4
e

d2
e + 8M2β2D∆t

∫

W1(Mx −X1)W2(Mx + M∆x−X2)

exp

(

− 2β2(s− M∆x)2

d2
2 + 8M2β2D∆t

)

exp

(

− z

zp

)
∫ ∞

0
exp

(

− z′

zp

)[

exp

(

−(z′ − z)2

4D∆t

)

+ exp

(

−(z′ + z)2

4D∆t

)]

dz′dx.

In order to evaluate the z ′−integral we complete the squares in the following way

−z′

zp
− (z′ − z)2

4D∆t
= −

(

z′ − (z − 2D∆t
zp

)

)2

4D∆t
− z

zp
+

D∆t

z2
p

−z′

zp
− (z′ + z)2

4D∆t
= −

(

z′ − (−z − 2D∆t
zp

)

)2

4D∆t
+

z

zp
+

D∆t

z2
p

and we define the complementary error function erfc(x) as

erfc(x) =
1√
π

∫ ∞

x
e−t2dt.

Then, setting t =

z′−

(

±z− 2D∆t
zp

)

2
√

D∆t
we have

∫ ∞

0
exp

(

− z′

zp

)

exp

(

−(z′ − z)2

4D∆t

)

dz′ =exp

(

− z

zp

)

exp

(

D∆t

z2
p

)

2
√

D∆tπ

erfc

(
√

D∆t

zp
− z

2
√

D∆t

)

,

∫ ∞

0
exp

(

− z′

zp

)

exp

(

−(z′ + z)2

4D∆t

)

dz′ =exp

(

z

zp

)

exp

(

D∆t

z2
p

)

2
√

D∆tπ

erfc

(
√

D∆t

zp
+

z

2
√

D∆t

)

.
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Finally the averaged displacement cross-correlation function RD(s) can be expressed as

RD(s) =
CI01I02I

2
0π

8β2

d4
e

d2
e + 8M2β2D∆t

∫

W1(Mx −X1)W2(Mx + M∆x −X2)

exp

(

− 2β2(s − M∆x)2

d2
e + 8M2β2D∆t

)

exp

(

−2z

zp

)

exp

(

D∆t

z2
p

)[

erfc

(
√

D∆t

zp
− z√

4D∆t

)

+ exp

(

2z

zp

)

erfc

(
√

D∆t

zp
+

z√
4D∆t

)]

dx.

�

To explain the effect of Brownian motion on the averaged displacement cross-correlation

function RD(s), we compare the results of theorems 8.4 and 8.5 in the same way as Olsen

and Adrian derived their results for light-sheet illumination (Section 8.1). We find a similar

influence of the Brownian motion, namely it reduces the strength of the correlation by the

ratio d2
e(d

2
e +8M2β2∆t) and broadens the diameter of the correlation peak from

√
2de/β to

√
2(d2

e + 8M2β2D∆t)1/2/β combined with an additional factor of the form

exp

(

D∆t

z2
p

)[

erfc

(
√

D∆t

zp
− z√

4D∆t

)

+ exp

(

2z

zp

)

erfc

(
√

D∆t

zp
+

z√
4D∆t

)]

,

resulting form the hindered Brownian diffusion at the wall. This correction term is a func-

tion of z including complementary error function and it is therefore hard to quantify other

than numerically.

This analysis can not be pursued further, because the next step would be to include a

non-constant diffusion coefficient for hindered motion near a wall (e.g., Bevan-Prieve [2]),

leading to integrals which are impossible to evaluate analytically.

85



CHAPTER IX

CONCLUSION

We studied fluid flow measurements in near-wall regions of microchannels. Many experi-

mental parameters (polydispersity, image noise, corrections to the force exerted by the fluid,

drop-out) have been left out in order to describe the basic stochastic properties of such a

system. Hindered Brownian diffusion caused by the wall is included using the empirical

Bevan-Prieve relation ([2]). The resulting Langevin equation in space is of the form

dX = a(X)dτ + b(X)dW dW j = N (0, dτ), j = 1, . . . , 3 and b =
√

2D(Z)Π2,

where X,Y,Z are the dimensionless position of the particles in the XY -plane parallel to

the wall, Z is the direction perpendicular to the wall and Π2 is the dimensionless diffusive

time.

Because the simulation is used to test a statistical hypothesis, we construct a numeri-

cal scheme with the biggest possible order of convergence. Since the system is coupled

through the Z-component, the Milstein scheme requires the evaluation of double Ito inte-

grals
∫ ∫

dW 3dW 1. We showed in chapter 3 that the double Ito integrals can be numerically

approximated with an Euler-Maruyama scheme as the solution of an appropriate system of

stochastic differential equations. Moreover, we demonstrated that with ∆τ small enough,

the resulting scheme has strong order of convergence Γ1 = 1 and weak order of convergence

Γ2 = 1.

Because experimental restrictions limit flow images to in-plane images, we developed a

statistical reconstruction algorithm for the dependence of the velocity profile from the out-

of-plane direction. The main idea is to assume that between two images particles have
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moved in the X-direction according to one Euler step of the form

dX = Π1γ(aZ) +
√

2Π2β||(aZ)dW dW = N (0, 1),

where Π1 is the dimensionless deterministic time and Π2 is the dimensionless diffusive time.

In chapter 4 and chapter 5, we showed that together with a uniform Z-distribution of parti-

cles in the window (in other words, the computation and observation domain are the same),

this is a valid assumption. Since γ is the unknown profile, we used a maximum likelihood

estimate based on the probability density function of perfect particle position and exact

mean displacement to extract the velocity profile. Appropriate initial guess, penalization of

the minimization function and average over different blocks of data are necessary to reduce

the high sensitivity of the problem. We demonstrated the reconstruction for perfect particle

identification (Chap. 4) and for exact mean (Chap 5) where the probability density function

is obtained as a convolution. Finally, we extended the reconstruction algorithm to means

approximated with particle image velocimetry (Chap 6). There are two main advantages

of this reconstruction algorithm. First it is computationally fast (30 minutes) and second

it does not use any information (like exponentially decaying intensity function) about the

Z-location of the particles.

In chapter 7, we established that the distribution of particles that start uniformly in a

window and end in the same window after a measurement time T (matched particles) is

not uniform. Describing the distribution of particles with a Fokker-Planck equation, we

constructed a fast algorithm for the estimation of the distribution of matched particles and

of the resulting bias in its moments. After testing the algorithm against computer simu-

lated data, we demonstrated its importance for experimentally relevant parameters bringing

up the question of slip in near-wall region of microchannels and for quantum dot velocimetry.

We briefly mentioned in chapter 6 and in chapter 8 the effects of hindered Brownian diffu-

sion on the cross-correlation peak. Those are analytically hard to quantify and very little

remains known about them.
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One of the major assumptions of the statistical reconstruction algorithm is that the dis-

tribution of matched particles is uniform. This was ensured by making the size of the

computation domain equals the size of the observation domain. Therefore, the next step

will be to replace this assumption by the correct non-uniform Z-distribution. This means

that particles dropping-in and dropping-out of the field of vision become a relevant factor

and that the number of particles in the window is not always n. Because we have developed

an algorithm to compute the probability density function of matched particles, we want to

incorporate it into the maximum likelihood estimate instead of the uniform Z-distribution.

This will then allow for the comparison with some of the data obtain by Li et al. ([18])

about multilayers PIV. The problem can then be extended to the inclusion of more experi-

mentally relevant factors like polydispersity or background noise.

The question of slip or no-slip in nanochannels is far from being answered. The algorithm

developed for the distribution of matched particles is currently being jointly used with H.

Li and M. Yoda to review velocity results presented in the literature.

Because the description of the images by Olsen does not clarify the effect of hindered Brow-

nian motion on the cross-correlation peak, the approach of Breedveld et al. ([3]) could

be adopted. This requires tracking particles positions, which is only a drawback for real

experiments and not for computer simulations. Looking at the problem from this perspec-

tive, one might obtain more information about the role and effects of background noise and

hindered Brownian motion on the cross-correlation peak.

Experimentalists have started to use quantum dots to measure flows in nanochannels

([27],[8]). This technique opens the door to a variety of theoretical and computational

problems like the description of the system through a Langevin equation, the experimental

relation for hindered Brownian diffusion, the Euler statistical assumption, the range of the

dimensionless parameter Π2 or the description of images through cross-correlation.
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