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*C  --is the steady-state concentration of A at the droplet surface. 
 
CCN – Cloud Condensation Nuclei 
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to as “surface layer”) 
 
Ds -- diameter corresponding radial distance Rs 
 
Dv’ -- mass transfer coefficient of water vapor from the gas to the droplet. 

G – growth constant parameter defined,  

v∆Η -- the latent heat of vaporization for liquid water, 

Mw, -- the molecular weight, 
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dt
dnA  -- moles of A in the added condensed water vapor volume  
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, change volume of the droplet from water vapor condensation,  

 
 
υ  -- Van’t Hoff factor,  

c

p

D
D

=ω -- ratio of particle diameter to core diameter 

     1
s

c

D
D

−=δ -- Parameterized variable. 

 
 
 

 v



SUMMARY 
 
 
This study focuses on the importance of solute dissolution kinetics for cloud droplet 

formation. To comprehensively account for the kinetics, a numerical model of the process 

was developed. Simulations of cloud droplet growth were performed for solute 

diffusivity, droplet growth rates, dry particle and droplet diameters relevant for ambient 

conditions.  Simulations suggest that high ambient supersaturations and a decrease in 

solute diffusivity are major contributors to significant decreases in effective solute 

surface concentrations. The numerical simulations were incorporated into Köhler theory 

to assess the impact of dissolution kinetics on the droplet equilibrium vapor pressure. For 

CCN composed of partially soluble material, a significant increase was found in the 

equilibrium supersaturation of CCN.  
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CHAPTER 1: INTRODUCTION 
 

Organics constitute a major component of natural and anthropogenic particulate 

matter (Sloane, 1991; Wolff, 1991; Chow, 1994; Seinfeld and Pandis, 1997), yet much 

remains to be grasped about their effects on cloud droplet formation.  Although not 

completely understood, carbonaceous aerosol can readily form cloud droplets (Novakov 

and Penner, 1993) and potentially have a strong effect on cloud formation and the 

hydrological cycle (Shulman et al., 1996; Facchini et al., 1999; IPCC, 2001; Feingold and 

Chuang, 2002; Nenes et al., 2002; Lance et al., 2004) 

 The theory used to describe the formation of cloud droplets from precursor 

aerosol, or, “cloud condensation nuclei” (CCN), was first developed by Köhler (Köhler, 

1936) and has successfully been applied to CCN composed of deliquescent inorganic salt 

aerosols (ammonium sulfate and sodium chloride) and low molecular weight organic 

species that exhibit hygroscopic behavior (e.g, adipic acid and glutaric acid) (Cruz and 

Pandis, 1997; Raymond and Pandis, 2002).  Unfortunately, the theory is less successful in 

describing the behavior of less hygroscopic compounds, such as those found in ambient 

aerosol (Cruz and Pandis, 1997; Raymond and Pandis, 2002).  Analysis of ambient CCN 

measurements (Chuang P. Y., 2003; VanReken, 2003) typically show large deviations 

between predicted and measured CCN concentration under polluted conditions, which are 

often attributed to the complex interaction of organics with water. Organics, depending 

on their solubility, can contribute solute (Shulman et al., 1996; Laaksonen et al., 1998). 

Hydrophobic compounds with multiple functional groups may act as strong surfactants 

and considerably depress surface tension (Shulman et al., 1996; Facchini et al., 1999; 

Nenes et al., 2002); compressed surfactant layers may act as “film-forming compounds”, 
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and may influence droplet growth kinetics enough to affect droplet number and spectral 

dispersion (Blanchard, 1964; Gill et al., 1983; Feingold and Chuang, 2002; Nenes et al., 

2002; Chuang P. Y., 2003). Polymerization reactions, thought to occur in regions of 

secondary organic aerosol formation (Limbeck et al., 2003), may also have a 

considerable impact on the CCN properties of carbonaceous aerosol (VanReken et al., 

2005). A thorough review of organics and their interactions with water vapor can be 

found in Kanakidou et al., 2005.  

 A common assumption for partially soluble compounds is that the solute 

instantaneously dissolves and distributes uniformly throughout the drop (Laaksonen et 

al., 1998; Raymond and Pandis, 2002; Shantz et al., 2003).   Compared to electrolytes, 

the majority of organic compounds are not very soluble in water, do not deliquesce, have 

a higher molar mass and thus diffuse more slowly in aqueous solutions. The implication 

for a growing droplet is that mass transfer of the dissolving organics may not be fast 

enough to assure uniform distribution of solute through the droplet volume; this may 

decrease the solute concentration at the droplet surface and increase the droplet 

equilibrium vapor pressure. If sufficient, the latter may delay or even hinder droplet 

formation. Thus, assuming instantaneous dissolution and distribution of solute throughout 

the droplet volume may overestimate the effect of slightly soluble compounds on CCN 

activation. This kinetic limitation mechanism is fundamentally different from the growth 

delay identified by Shantz et al. (2003), which arises from differences in the equilibrium 

curves between inorganic and organic CCN.  

This study focuses on exploring the effects of solute dissolution kinetics on cloud 

droplet formation. A numerical model is developed to simulate the dissolution of solute 
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from a solid core located at the center of the droplet and its diffusion throughout the 

aqueous phase of the growing drop. Conditions are determined for which a significant 

decrease in surface solute concentration is expected. The numerical simulations are 

parameterized and introduced into Köhler theory for a thorough analysis of dissolution 

kinetics on CCN behavior.  
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CHAPTER 2:   DISSOLUTION KINETICS MODEL 

2.1 Equation Formulation 

 The numerical model is based on the conservation of mass for the dissolving 

substance in a spherically symmetric droplet. The solute originates from a spherical solid 

core located at the center of the droplet; after dissolution, we assume that the solute mass 

transport occurs via molecular diffusion from the core to the droplet surface.  Convective 

transport within the droplet phase is neglected, because i) the solution is assumed to be 

dilute enough so that Stefan convection is negligible, and ii) the low terminal velocity for 

droplets smaller than 20 µm in diameter (i.e., most CCN during their activation phase) 

yields negligible shear forces on their surface (Seinfeld and Pandis, 1997) hence 

negligible re-circulations within the droplet volume.  Assuming that the solid core is 

composed of a slightly soluble substance A, the transport of dissolved solute from the 

core into the droplet aqueous phase can be described by, 

⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

∂
∂

=
∂

∂
r

trCr
rr

D
t

trC A
Aw

A ),(1),( 2
2  (1) 

where CA(r,t) denotes the concentration of A at time t and distance r from the core droplet 

center, and DAw is the diffusivity of A in water.   DAw depends on temperature and solute 

molecular size (Table 1).   
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Table 1:  Aqueous diffusivity of organic compounds found in atmospheric aerosols.   

Compound Formula DA,w (298 K) 
m2 s-1

DA,w (273 K) 
m2 s-1

Sodium Chloride* NaCl 1.26 × 10-9  
Methanol◊ CH4O 1.94 × 10-9 1.02 × 10-9

Caffeine◊ C8H10N4O2 6.43 × 10-10 3.38 × 10-10

Adipic acid◊ C6H10O4 8.19 × 10-10 4.31 × 10-10

Succinic acid◊ C4H6O4 1.00 × 10-9 5.27 × 10-10

Suberic◊ C8H14O4 7.04 × 10-10 3.70 ×10-10

Cholesterol◊ C27H46O 3.73 × 10-10 1.96 × 10-10

C50 (e.g, humic-
like substances) ◊ C50H104 2.47 × 10-10 1.30 × 10-10

* obtained from (Perry et al., 1997).       ◊ obtained from (Hines and Maddox, 1985). 

 

 The concentration of A throughout the droplet volume is initially equal to its 

solubility in water, Ceq,  

eq
A CrC =),0(  (2) 

 In terms of spatial boundary conditions, we assume that the solution is saturated 

with A at the core-solution interface, 

eq
c CRtAC => ),0(  (3) 

The boundary condition at the droplet surface is somewhat more complex, as solute 

diffusion and water condensation affect the surface concentration of A. CA(t,Rp) at the 

droplet surface can be rewritten in terms of the rate of change of freshly condensed water 

volume, 
dt
dV

 and the molar flux 
dt

dnA  of A into V,  
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 The freshly condensed water (hereon referred to as the “surface layer”) is 

assumed to occupy a layer of infinitesimal thickness, dr, adjacent to the droplet surface. 

dt
dV

 is equal to the rate of change of droplet volume and can be expressed in terms of the 

droplet diameter, Dp , as 

dt
dDD

dt
dV pp ⋅=

2

2π
 (5) 

dt
dnA  is equal to the flux of solute from the bulk of the droplet,  

22 ),(
- )(4

),(
-         p

pA
Awp

pA
Aw

A D
r

RtC
DdrR

r
drRtC

D
dt

dn
ππ

∂

∂
≈−

∂

−∂
=  (6) 

In equation (6), we assumed that the surface layer has negligible thickness compared to 

the droplet radius, so that drRp −  ≈ . Introducing Equations (5) and (6) into (4) 

yields, 

pR

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂

∂
+

−
=

∂

∂

p

pA
Aw

p
A

p

pA

D
RtC

D
dt

dD
C

Dt
RtC ),(

43),(
   (7) 

 Equation (7) expresses the rate of change of CA at the growing droplet surface and 

is an exact boundary condition for equation (1). 
dt

dDp  can be written in terms of the 

ambient conditions (Seinfeld and Pandis, 1997) as,  

G
SS

Ddt
dD eq

p

p )(1 −
=  (8) 
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where ( )Tp
pS o

w

=  is the ambient saturation ratio, pw is the water vapor partial pressure, 

 is the water saturation vapor pressure at the ambient temperature T and  is the 

equilibrium saturation ratio of the growing droplet. G is a kinetic growth parameter 

defined as 

)(Tp° eqS

⎟
⎠
⎞

⎜
⎝
⎛ −
∆∆

+
°

1
'4')(4 TR

MH
Tk

H
MDTp

RT wv

a

wv

wv

w ρρ
 where Mw and wρ  are the molecular 

weight and density of water, respectively, R is the universal gas constant, is the 

latent heat of vaporization for liquid water, is the thermal conductivity of air, and D

vΗ∆

'ak v’ 

is mass transfer coefficient of water vapor from the gas to the droplet. Since 1≈eqS  and if 

we neglect the size-dependence of G, Equation (8) is inversely proportional to Dp and 

simplifies to: 

pp

p

D
s

GD
S

Gdt
dD 111

=
−

≈  (9) 

where  is the ambient water vapor supersaturation. Substitution of Equation (9) 

into Equation (7) gives, 

1−= Ss
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⎥
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∂
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p
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p
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D
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D
D
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GDt
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4

),(13),(
   (10) 

Equation (10) is the droplet surface boundary condition used to integrate Equation (1). 

 

2.2 Integration procedure 

 Equation (1), with the initial and boundary conditions expressed by Equations (2), 

(3) and (10) is numerically integrated using finite differences. The solution procedure 
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entails applying the initial condition (Equation 2) to all grid points, and then integrating 

the equations over time using central-differencing in the spatial direction and backward 

differencing in time. The boundary condition at r = Rc (Equation 3) is directly applied, 

while the boundary condition at r = Rp (Equation 10) is applied after approximating the 

derivatives with finite differences: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∆

∆−−
+

∆
−=∆+

r
rRtCRtC

D
D

RtCs
GD

tRtCRttC pApA
Aw

p

pA

p
pApA

),(),(
4

),(13),(),(   (11) 

where the “new” time is “t+∆t”, the “old” time is “t”, and  ∆t, ∆r are the time step and 

grid spacing used  respectively. 5×104 grid points between r = Rc and r = Rp are used; the 

equations are integrated over time until steady-state is achieved. 

2.3 Simulations Considered 

 Examination of Equation (1) and its boundary conditions (Equations 2, 3 and 10) 

suggests that four parameters influence the extent of surface solute concentration 

depression from dissolution kinetics: DAw, s, Dp and Dc. We explore the dependence of CA 

to these parameters by performing a series of sensitivity simulations. To avoid any effects 

from transients and initial conditions, we focus on the steady-state profiles of CA(t,r); 

thus, to facilitate the numerical integration, we keep Rc and Rp constant during the 

integration.  

 Overall, a total of 500 simulations were completed. DAw was varied between 

1×10-10 to 1×10-9 m s-2, which encompasses the diversity of water-soluble organic 

compounds found in ambient aerosol (Table 2).  Ambient supersaturations were chosen 

to represent globally important cloud types; we consider radiative fog (s = 0.01%), 
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stratiform (s = 0.25%), cumuliform (s = 0.5%) and convective clouds (s = 1%) 

(Pruppacher and Klett, 1997; Seinfeld and Pandis, 1997; Nenes et al., 2001).  Five 

different droplet diameters were considered (0.1, 0.5, 1.0, 5.0 and 10 µm) to represent the 

transition from deliquesced aerosol to activated cloud droplets (Seinfeld and Pandis, 

1997).  The slightly soluble core size was also varied, expressed as a fraction of the wet 

diameter (0.5%, 1%, 5%, 10% and 20% of Dp).   

 

Table 2: Parameters varied in numerical simulations.  

DA,w (m2 s-1) s (%)  

(Cloud type) 

Drop Diameter  

(m) p

c

D
D

 

1×10-10 0 0.1×10-6 0.005 

2.5×10-10 0.01 (fog) 0.5×10-6 0.01 

5×10-10 0.25 (stratiform) 1.0×10-6 0.05 

1×10-9 0.5 (cumulus) 5.0×10-6 0.1 

 1 (cumulus) 10.0×10-6 0.2 

 
 

2.4 Simulation Results 

 Figure 1 illustrates the characteristics of all numerical simulations. Initially, CA is 

uniform throughout the droplet volume, being equal to Ceq. As water begins to condense, 

CA decreases at the surface layer, progressively diluting much of the droplet volume. This 

can be seen in Figure 2, which presents transient radial profiles of CA. Simulations are 

shown for Dp = 1µm, Dc = 0.5µm, DAw = 1×10-10 m2 s-1, and s = 1%. The simulations 
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indicate that throughout most of the simulation, CA drops steeply with distance from the 

core until a characteristic distance, Rs (Figure 1), after which the gradient of CA becomes 

effectively zero (at steady state).  

Rc
Rs

Rp

Rc RS RP

Ceq

C*

Radial Distance

C(
t,r)

C(0,r)

C(t? 8 ,r), steady state

Gas Phase Parameters

r

Rc
Rs

Rp

Rc
Rs

Rp

Rc RS RP

Ceq

C*

RS RP

Ceq

C*

Radial Distance

C(
t,r)

C(0,r)

C(t? 8 ,r), steady state

Gas Phase Parameters

r

Figure 1:  Illustration of the problem geometry and the solute concentration profile. 
Rs represents the location where the concentration gradient becomes effectively 

zero. 
 

Figure 2 suggests that Rs may not significantly change location, and that the steady-state 

solution can be achieved in a fraction of a second, i.e. within the timescale of cloud 

droplet activation. It is therefore sufficient to focus on the steady-state concentration 

 10



profile, with an emphasis on the steady-state ( )pA RtC ,  (hereon referred to as C*) because 

it determines the droplet equilibrium vapor pressure. Therefore, it is important to explore 

the dependence of the C* on all four parameters varied in Table 1.  
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Figure 2:  Transient radial profiles of CA. Simulations are shown for Dp = 1µm, Dc = 
0.5µm, DAw = 1×10-10 m2 s-1, and s = 1%. 

 

 

 Figure 3 presents steady-state radial profiles of eqC
C *  for DAw ranging between 

1×10-9 and 1×10-10 m2 s-1. Simulations are shown for Dp = 1µm, Dc = 0.5µm and s = 1%. 

As expected, the most pronounced decrease in C* occurs for the lowest molecular 

diffusivity (~10-10 m2 s-1), i.e., when mass transfer is the slowest. The simulations suggest 
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that the concentration depression is minor (~ 5%) for rapid mass transfer (DAw = 10-9 m2 

s-1) but becomes significant (>10%) for DAw < 5×10-10 m2 s-1. The % depression in C* 

seems to be inversely proportional to DAw.  
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Figure 3:  Steady-state radial profiles of CA. Simulations are shown for Dp = 1µm, Dc = 
0.5µm,  s = 1%, and for DAw between 1×10-9 and 1×10-10 m2 s-1. 

 

 In addition to DAw, C* depends on the droplet growth rate (i.e., the ambient 

supersaturation). This is depicted in Figure 4, which presents steady-state radial profiles 

of eqC
C *  for s ranging between 0.1% and 1%. Simulations are shown for Dp = 1µm, Dc 

= 0.5µm, DAw = 1×10-9 m2 s-1.  The largest drop in C*  is seen for high s, as this is the 

condition for which dilution of A from water condensation at the surface layer is 

strongest. Compared to DAw, an order of magnitude change in s leads to a smaller (but 

still significant) decrease in C*.  
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Figure 4:  Steady-state radial profiles of CA. Simulations are shown for Dp = 1µm, Dc 
= 0.5µm, DAw = 1×10-9 m2 s-1, and for s between 0.1% and 1%. 

 

 Finally, C* depends on the droplet and core diameters. This is depicted in Figure 

5, which shows eqC
C *  as a function of core diameter and ambient supersatuation. 

Simulations are shown for (a) Dp = 1µm, DAw = 1×10-10 m2 s-1, and, (b) Dp = 5µm, DAw = 

1×10-9 m2 s-1. It is clear that decreasing the core size and increasing the droplet size yield 

a larger depression in C*, because mass transport becomes less efficient in supplying 

solute at the droplet surface. Simulations suggest that  can be fifty percent lower than 

C

*C

eq. 
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Figure 5:  Steady-state droplet surface CA normalized with Ceq, as a function of 
core diameter and ambient supersatuation. Simulations are shown for (a) Dp = 1µm, 

DAw = 1×10-10 m2 s-1, and, (b) Dp = 5µm, DAw = 1×10-9 m2 s-1. 
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 The trends seen for C* in the simulations can be rationalized through the 

following analysis. Applying the steady state requirement on the droplet surface 

boundary condition (Equation 10), 
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 refers to the gradient of CA at the droplet surface, and can be expressed as 
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, where ∆Dp is an appropriate spatial scale (more will be 

discussed in section 3.1).  Substitution of the above into Equation (8) and solving for C* 

yields, 
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Substituting Equation (9) into (13) gives, 
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Equation 14 confirms the numerical simulation trends; when DAw is large, C* ≈ Ceq and 

when it decreases, C* < Ceq. Similarly, smaller droplet sizes or large ambient 

supersaturations will lead to large growth rates, and will decrease C* because of excessive 

dilution of the surface layer. However, when the ambient supersaturation is very small or 

the droplet diameter is very large, 
dt

dDp  is negligible and C* ≈ Ceq. Dc also affects C*; 
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smaller sizes imply that the solute needs to diffuse over a larger distance, hence ∆Dp 

increases and C* decreases. 
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3. INTRODUCING DISSOLUTION KINETICS INTO 

KÖHLER THEORY 

3.1. Parameterization of the numerical simulations 

 It is desirable to introduce appropriate modifications to Köhler theory when 

assessing the effects of solute mass transfer kinetics on cloud droplet formation. This 

could be accomplished if a relationship is established between C* and the dissolution 

kinetics parameters DAw, s, Dp and Dc. The steady-state droplet boundary condition 

(Equation 14) is ideally suited for this purpose; the free parameter ∆Dp however must first 

be defined. In deriving Equation (14), we assumed that 
p
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D
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dD
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⎛ *),(
. Based 

on Figure 1, most of the variation of CA takes place in a region close to the core; therefore 

the flux of A at the surface of the droplet can, at steady state, can be expressed as,  
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where Rs is the distance where the concentration gradient becomes effectively zero 

(Figure 1).   Defining 
c

p

D
D

=ω and 
s

c

D
D

−=1δ  (where Ds and Dp are diameters 

corresponding to Rs and Rp , respectively), Equation (15) becomes, 

Aw
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4
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*

ωδδ −+
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 Equation (16) describes the solute surface concentration at the droplet surface in 

terms of solubility, ambient supersaturation, solute diffusivity, droplet and core size, and 

the non-dimensional coefficient δ which is related to the mass transfer kinetics.  In 

agreement with the numerical simulations, Equation (16) indicates that a decrease in 

solute diffusivity and an increase ambient supersaturation both yield a decrease in the 

solute surface concentration.  A small core size (i.e., increasing ω ) implies that the solute 

has to diffuse a large distance; C* will decrease because water vapor condensation is 

more efficient in diluting the droplet surface layer. We use the numerical simulations to 

constrain δ so that Equation (16) reproduces the steady-state C* derived from the 

simulations.  Least squares minimization yields δ= 0.933 with which the numerical 

simulations are reproduced to within 10% (Figure 6).   
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Figure 6: Parameterized vs. Simulation Surface Solute Concentration Values.  
Simulations are shown for which . 95.0/* ≤eqCC

 

 An issue arises for small core diameters; as the core dissolves and approaches 

zero, ∞→ω ; under such conditions, Equation (16) predicts that . This is of 

course does not happen in reality but arises because Equation (16) was derived assuming 

steady-state for C

0* →C

A(t,r). When , the steady state timescale becomes exceedingly 

long, and Equation (16) does not become applicable. This limitation is easily overcome 

by considering the droplet growth dynamics. Initially, droplet growth is at a rate that 

steady state assumptions can be made.  The core begins to dissolve, shrink and eventually 

reaches a size in where Equation (16) is not applicable.  At this instance, we will assume 

that C

0→cD

* does not change anymore; thus a lower-limit constraint is applied on C*.   We 
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consider that a timescale relevant for cloud droplet formation is ~ 1 sec; under this 

constraint, numerical simulations suggest that . Therefore, the surface 

concentration of solute when mass transfer kinetics are considered is parameterized as, 

eqCC 5.0* ≥
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3.2. Introduction to Köhler Theory 

 Solute mass transfer kinetics can be included in Köhler theory by appropriate 

modifications to existing theory. Assuming instantaneous dissolution for slightly 

solubles, the equilibrium supersaturation, seq, of a CCN composed of soluble 

(deliquescent) and a slightly soluble compounds can be expressed as (Shulman et al., 

1996), 

33
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where  represents the moles of solute dissolved in the droplet from the soluble and 

slightly soluble species, respectively; 

sss nn ,

sss υυ ,  are the corresponding effective van’t Hoff 

factors.  

If the solubility of the partially soluble compound, Ceq, is expressed in moles m-3, then in 

the presence of a soluble core (i.e., when there is not enough water in the CCN to 

completely dissolve the core) Equation (18) becomes, 
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After the core has completely dissolved, Equation (18) is used with nss equal to the total 

moles of slightly soluble species available in the CCN.  

Solute transport kinetics can be introduced in Equation (19) by replacing Ceq with C* 

(Equation 17), 
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 (20) 

We assume that after the core has completely dissolved, Equation (18) is used with nss 

equal to the total moles of slightly soluble species available in the CCN. This implies that 

mass transfer kinetics are not important after the core has dissolved; in reality there is a 

relaxation time associated with solute transport from the bulk of the droplet to the surface 

layer, which for simplicity we have neglected.  

3.3. Implications of solute transport kinetics for cloud droplet formation  
  

 For solute dissolution kinetics to have an important influence on droplet 

formation: (a) a partially soluble core needs to be present during the CCN activation, and, 

(b) the amount of partially soluble solute provided is a significant fraction of the total 

solute. The latter requirement implies that solute dissolution kinetics may not influence 

droplet formation if the CCN contains substantial amounts of inorganic electrolytes (e.g., 

(NH4)2SO4). In the subsequent analysis, we consider CCN composed of only partially 

soluble substances so that the effects of dissolution kinetics on cloud droplet formation 

are maximized. In the atmosphere, such particles could correspond to aged secondary 

organic aerosol (VanReken et al., 2005). 
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Figure 7:  Köhler curves modified to include the effect of dissolution kinetics. The 
dry aerosol is 75 nm in diameter and composed of a partially soluble substance with 

1750 kg m-3 density, 0.132 kg mol-1 molar mass, van’t Hoff factor of 2 and a 
solubility of 10-2 kg kg-1. Ambient supersaturation is assumed to be 1% . 

Calculations are presented as (a)  Seq vs. wet diameter for a range of DAw, and, (b) 
change in Seq, relative to the instantaneous dissolution.
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 Figure 7 displays Köhler curves with and without the effect of solute dissolution 

kinetics. In these calculations, the dry CCN is 75 nm in diameter and composed of a 

partially soluble substance with 1750 kg m-3 density, 0.132 kg mol-1 molar mass, van’t 

Hoff factor of 2 and a solubility of 10-2 kg kg-1. Ambient supersaturation is assumed to be 

1%. Assuming that dissolution and mass transfer of the solute is instantaneous (blue 

curves) yields “typical” Köhler curves (Figure 7a). At small wet diameters (< 0.4 µm), 

the amount of liquid water is insufficient to completely dissolve the core, hence the 

concentration of solute is constant throughout the droplet volume until complete 

dissolution (here at ~0.4 µm). For larger wet diameters, the droplet dilutes as it grows and 

develops the characteristic “Köhler” maximum in seq. When dissolution kinetics are 

considered, the decrease in C* (Equation 17) shifts seq to higher levels at small wet 

diameters; this effect is rather small for large solute diffusivity (~ 10-9 m2 s-1) but 

becomes significant at modest to low diffusivity (~ 5×10-10 to 10-10 m2 s-1). This effect is 

more clearly seen if seq is normalized to seq from instantaneous dissolution (Figure 7b); 

the region where the ratio is larger than unity indicates an increase in equilibrium vapor 

pressure from the effect of dissolution kinetics. The effect of dissolution kinetics 

maximizes close to the point of complete dissolution of the core because the diffusion 

length scale (i.e., ω) becomes maximum. In Figure 7b, the increase in seq is at most 20% 

for large diffusivity (~ 10-9 m2 s-1), which is rather small. However, when the diffusivity 

is decrease, seq becomes significantly higher (~50%), exceeding the local maximum at 

~0.5µm. The effects of dissolution kinetics become even stronger if a larger CCN is 

considered (not shown). 
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In addition to the diffusion coefficient and solubility, the droplet growth rate (i.e., 

ambient supersaturation) also affects seq. This is shown in Figure 8, which displays 

Köhler curves with the effect of solute dissolution kinetics for various ambient 

supersaturations. The CCN characteristics are the same as in Figure 7, and DAw = 10-10 m 

s-2. Calculations show that the Köhler curves exhibit rather important sensitivity to s 

(Figure 8a). As the ambient supersaturation drops and droplet growth slows down, 

dilution of the droplet surface layer from water condensation is less efficient, hence C* 

approaches Ceq and seq converges to the “classical” Köhler (i.e., instantaneous transfer) 

curve. This effect is more clearly seen if seq is normalized to seq from instantaneous 

dissolution (Figure 8b); as in Figure 8b, dissolution kinetics maximizes close to the point 

of complete dissolution of the core.  

 Both Figures 7 and 8 imply that in the presence of solute dissolution kinetics, 

CCN could have a “dynamical” equilibrium saturation ratio that is considerably different 

from that obtained using only thermodynamic arguments. Although this may not be 

sufficient to completely inhibit CCN from becoming droplets, the modified droplet 

growth kinetics may have a strong influence on the water vapor availability during cloud 

droplet nucleation and feedback into cloud droplet number. For this, our newly developed 

theory needs to be incorporated into a numerical cloud parcel model (e.g., Nenes et al., 

2001); this will be the subject of a future study. 
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Figure 8:  Same as Figure 7, but for a 100 nm dry particle diameter 
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CHAPTER 4: SUMMARY 

 Partially soluble substances, although able to affect the ability of cloud 

condensation nuclei (CCN) to form droplets, need a finite time to dissolve and diffuse to 

the droplet surface before they can affect droplet growth.  This study focuses on the 

importance of dissolution kinetics for cloud droplet formation. To comprehensively 

account for the kinetics, a numerical model of the process was developed. Simulations of 

cloud droplet growth were performed for solute diffusivity, droplet growth rates, dry 

particle and droplet diameters relevant for ambient conditions.  Simulations suggest that 

high ambient supersaturations and a decrease in solute diffusivity are major contributors 

to significant decreases in effective solute surface concentrations. Our simulations 

suggest that the effect of dissolution kinetics can lead up to a 50% decrease in surface 

solute concentration.  

 The steady-state numerical simulations were then parameterized and incorporated 

into Köhler theory to assess the impact of dissolution kinetics on the droplet equilibrium 

vapor pressure. For CCN composed of partially soluble material, a significant increase 

was found in the equilibrium supersaturation of CCN. Although this may not be sufficient 

to completely inhibit CCN from becoming droplets, the modified droplet growth kinetics 

may have a strong influence on the water vapor availability during cloud droplet 

nucleation and have a strong feedback on cloud droplet number. For this, our newly 

developed theory needs to be incorporated into a numerical cloud parcel model (e.g., 

Nenes et al., 2001); this will be the subject of a future study. 
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