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SUMMARY

This thesis investigates the use of an auxiliary sensor, the GEMS device, for improving

the quality of noisy speech and designing noise preprocessors to MELP speech coders. Use

of auxiliary sensors for noise-robust ASR applications is also investigated to develop speech

enhancement algorithms that use acoustic-phonetic properties of the speech signal.

A Bayesian risk minimization framework is developed that can incorporate the acoustic-

phonetic properties of speech sounds and knowledge of human auditory perception into the

speech enhancement framework. Two noise suppression systems are presented using the

ideas developed in the mathematical framework. In the first system, an aharmonic comb

filter is proposed for voiced speech where low-energy frequencies are severely suppressed

while high-energy frequencies are suppressed mildly. The proposed system outperformed

an MMSE estimator in subjective listening tests and DRT intelligibility test for MELP-

coded noisy speech. The effect of aharmonic comb filtering on the linear predictive coding

(LPC) parameters is analyzed using a missing data approach. Suppressing the low-energy

frequencies without any modification of the high-energy frequencies is shown to improve

the LPC spectrum using the Itakura-Saito distance measure.

The second system combines the aharmonic comb filter with the acoustic-phonetic prop-

erties of speech to improve the intelligibility of the MELP-coded noisy speech. Noisy speech

signal is segmented into broad level sound classes using a multi-sensor automatic segmenta-

tion/classification tool, and each sound class is enhanced differently based on its acoustic-

phonetic properties. The proposed system is shown to outperform both the MELPe noise

preprocessor and the aharmonic comb filter in intelligibility tests when used in concatena-

tion with the MELP coder.

Since the second noise suppression system uses an automatic segmentation/classification

algorithm, exploiting the GEMS signal in an automatic segmentation/classification task is

xv



also addressed using an ASR approach. Current ASR engines can segment and classify

speech utterances in a single pass; however, they are sensitive to ambient noise. Features

that are extracted from the GEMS signal can be fused with the noisy MFCC features to

improve the noise-robustness of the ASR system. In the first phase, a voicing feature is

extracted from the clean speech signal and fused with the MFCC features. The actual

GEMS signal could not be used in this phase because of insufficient sensor data to train the

ASR system. Tests are done using the Aurora2 noisy digits database. The speech-based

voicing feature is found to be effective at around 10 dB but, below 10 dB, the effectiveness

rapidly drops with decreasing SNR because of the severe distortions in the speech-based

features at these SNRs. Hence, a novel system is proposed that treats the MFCC features

in a speech frame as missing data if the global SNR is below 10 dB and the speech frame

is unvoiced. If the global SNR is above 10 dB of the speech frame is voiced, both MFCC

features and voicing feature are used. The proposed system is shown to outperform some

of the popular noise-robust techniques at all SNRs.

In the second phase, a new isolated monosyllable database is prepared that contains

both speech and GEMS data. ASR experiments conducted for clean speech showed that

the GEMS-based feature, when fused with the MFCC features, decreases the performance.

The reason for this unexpected result is found to be partly related to some of the GEMS

data that is severely noisy. The non-acoustic sensor noise exists in all GEMS data but the

severe noise happens rarely. A missing data technique is proposed to alleviate the effects of

severely noisy sensor data. The GEMS-based feature is treated as missing data when it is

detected to be severely noisy. The combined features are shown to outperform the MFCC

features for clean speech when the missing data technique is applied.
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CHAPTER I

INTRODUCTION

1.1 Motivation of Research

Despite the significant progress in improving the noise-robustness of speech coders, the in-

telligibility of parametric speech coders, such as MELPe, still decreases drastically in harsh

noise environments [117]. The problem is important particularly for military applications

where clearly understanding the correct words is critical. The current NATO standard

for military communications is the MELPe speech coder that uses a noise-preprocessor to

alleviate the effects of noise. However, the MELPe coder still experiences significant intel-

ligibility degradation in high-noise environments such as in an M2 tank or in a Blackhawk

helicopter. Therefore, there is a need for designing speech coders that have high quality

and intelligibility in noisy environments.

The speech intelligibility improvement problem is found to be strongly related to the

acoustic-phonetic properties of the speech signal. This fact motivated more research in

noise-robust speech segmentation using the auxiliary sensors. Therefore, the final part of

this dissertation addresses noise-robust automatic speech recognition using the an auxiliary

sensor.

1.2 Scope of Thesis

This thesis addresses the intelligibility problem of the parametric speech coders in harsh

noise environments by using a noise preprocessor. Since the research is motivated mostly

by defense applications, the proposed noise preprocessing systems are concatenated with

the MELP speech coder. The MELPe speech coder, concatenation of the MELP coder with

a noise preprocessor, is used as the comparison basis. The proposed noise preprocessors

use non-acoustic auxiliary sensors, Glottal Electromotor Motion Sensor (GEMS) device,
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physiological microphone (p-mic), and bone microphone in addition to the acoustic micro-

phone. The GEMS device is an electromagnetic sensor that can detect the vibrations in the

larynx when directed at the throat. P-mic is a gel-suspended microphone that can detect

the vibrations on the skin. The bone microphone can receive some of the low frequency

speech cues when in contact with the speaker’s head.

A Bayesian risk minimization (BRM) framework is proposed that can exploit the per-

ceptual and acoustic-phonetic knowledge of the speech signal in a probabilistic framework.

Some heuristic systems that have been shown to outperform the mathematically optimal

systems that they are based on are explained theoretically using the proposed framework.

Moreover, the proposed framework can be used to develop speech enhancement systems

that can optimally incorporate acoustic-phonetic and psychoacoustic knowledge of speech.

The BRM framework is used as a guide to develop two noise suppression algorithms.

The first algorithm makes a noise-robust sinusoidal model of noisy speech incorporating the

GEMS signal, and uses it for aharmonic comb filtering. The second algorithm uses a multi-

sensor segmentation software to automatically segment noisy speech. Acoustic-phonetic

knowledge of basic sound classes are then used in addition to the aharmonic comb filter.

Both algorithms are shown to improve intelligibility of the MELP-coded speech, when used

at the front-end, compared to the MELPe coder.

Noise-robust automatic speech recognition (ASR) using the GEMS signal is investigated

to improve the robustness of the segmentation algorithm. A novel system is developed that

can efficiently exploit a voicing feature extracted from the GEMS signal. Initial experiments

are conducted using a simulated voicing feature extracted from the clean speech signal be-

cause of the lack of sufficient sensor data for ASR experiments. Therefore, the additive noise

in the GEMS signal , and in most currently available auxiliary sensors, is not considered in

the initial experiments. Moreover, the sensor noise can be severe for some subjects that can

significantly alter the results. Adverse effects of sensor noise on ASR is investigated. Peri-

odicity and energy features extracted from the GEMS signal are combined with the MFCC

features to improve the ASR robustness. A missing data technique is used to alleviate the

negative impact of the severe noise that is found in some of the GEMS signals.
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1.3 Organization of Thesis

The remainder of this dissertation is organized as follows. A brief background to speech

enhancement and noise-robust ASR fields is provided in Chapter 2. A Bayesian risk min-

imization framework for perceptually-motivated enhancement of the speech signal is pre-

sented in Chapter 3. The aharmonic comb filter is described in Chapter 4. In Chapter 5,

a noise-robust LPC extraction algorithm is described. The segmentation-based speech en-

hancement algorithm is presented in Chapter 6. An automatic speech recognition system

that efficiently exploits a GEMS-based voicing feature is described in Chapter 7. Effects of

severe sensor noise is completely ignored in Chapter 7 because the voicing feature used in

the experiments are extracted from the clean speech signal. In Chapter 8, effects of severe

sensor noise on the GEMS-based features are investigated by using a database that con-

tains both GEMS and acoustic signals. The dissertation is concluded in Chapter 9 where

the contributions of the dissertation are summarized.
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CHAPTER II

BACKGROUND

The main contribution of this dissertation is a multi-sensor, segmentation-based noise pre-

processor for MELP speech coders. The system has a noise preprocessing aspect, and a

noise-robust automatic speech segmentation aspect. Therefore, in this chapter, an overview

of the speech enhancement systems is presented in Section 2.1, and noise-robust automatic

speech segmentation systems is presented in Section 2.2 to provide a broader view to the

problem. Most of the noise-robust automatic segmentation systems borrowed their tools

from the noise-robust automatic speech recognition field. Hence, an overview of some of

the mainstream noise-robust automatic speech recognition techniques are also discussed in

Section 2.2.

The proposed noise suppression systems use the glottal electromagnetic motion sensor

(GEMS) device in addition to the acoustic microphone. A description of the GEMS device

is presented in Section 2.4. The acoustic microphone and GEMS data that is used for the

noise suppression experiments is also described in Section 2.4.

2.1 Speech Enhancement

Speech enhancement can be defined as modifying a distorted speech signal such that the

modified signal is as close as possible to the original signal with respect to a subjective

and/or objective distance sense.

Speech can be distorted by many different sources. Two of the most commonly studied

distortion sources are the additive ambient noise and reverberation. In this research, only

additive ambient noise is considered.

The measures that are used to assess the performance of a speech enhancement system

depend on the goal of the system. For example, a perceptual quality improvement task and

an intelligibility improvement task require different measures to assess the performance.
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Commonly used subjective and objective measures are discussed in Section 2.1.5.

The majority of the work in the speech enhancement field is done using single microphone

signals. Recorded noisy signal is typically enhanced using statistical models for noise, clean

speech, and noisy speech signals. Some of the more recent enhancement techniques, such

as subspace methods, are reviewed in [39], [38]. The paper in [83] discusses some of the

earlier systems such as spectral subtraction, Wiener filtering, adaptive comb filtering, and

Linear Predictive Coding (LPC) based speech enhancement. Some of the more popular,

single microphone speech enhancement systems are described below.

2.1.1 Single Microphone Statistical Speech Enhancement

2.1.1.1 Spectral Subtraction and Wiener Filter

Spectral subtraction is one of the earliest speech enhancement techniques. Statistically

independent random variables are used to model both speech and noise. Power spectrum

of clean speech is estimated with a maximum likelihood (ML) technique.

Spectral subtraction is effective in removing noise from noisy speech. However, it usually

leaves an annoying residual noise, the musical noise, in the enhanced signal. There are many

variations of spectral subtraction that address the musical noise problem [102], [87], [51].

A detailed analysis of the spectral subtraction technique is given in Section 3.2 where it is

discussed in the context of a Bayesian risk minimization framework.

Using the same statistical models, the problem of power spectrum estimation can also

be solved using a minimum mean square error (MMSE) estimator. This method of speech

enhancement is called Wiener filtering [83].

2.1.1.2 MMSE Amplitude Estimator

Spectral subtraction and Wiener filtering techniques approach the problem from a power

estimation perspective. However, the ultimate goal of enhancement is, typically, estimating

the spectral amplitude. An MMSE estimator for short-time spectral amplitude estimation

is proposed in [40]. Another MMSE estimator that minimizes the log-spectral amplitude

distortion is proposed in [41].

An MMSE estimator with a gamma-distribution assumption, as opposed to the Gaussian
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distribution assumption in [40], is proposed in [90]. Computationally efficient approxima-

tions of the MMSE estimator are proposed in [143].

The MMSE estimator in [40] is famous for its capacity to eliminate the musical noise.

In [9], a detailed analysis is done to show the reasons why musical noise does not occur in

[40]. Motivations for using an MMSE estimator for speech enhancement are discussed in

[35] where the MMSE estimator is shown to be optimal for some of the distance measures

that are commonly used in speech processing.

2.1.1.3 Signal-to-Noise Ratio (SNR)-Adaptive Systems

Most speech enhancement techniques use SNR in a statistical estimation framework. How-

ever, those systems that are mathematically optimum do not always generate perceptually

high quality speech. One of the approaches to this problem is using an adaptive system that

modifies the optimum noise suppression factor based on the estimated SNR. Typically, these

systems use aggressive suppresion at lower SNRs and mild suppression at higher SNRs. Al-

though the final system is typically mathematically suboptimum, it can successfully handle

the musical noise artifact.

An adaptive Wiener filter is proposed in [142] where the SNR estimates are smoothed

adaptively between speech frames in the stationary speech and noise sections to avoid the

artifacts common to Wiener filter.

2.1.1.4 Subspace Methods

Signal subspace methods decompose the noisy speech signal into a noise plus speech com-

ponent and a noise-only component. The noise-only component is suppressed without dis-

torting the speech signal in [43]. An extension to the colored noise case is proposed in

[82].

An interesting aspect of the signal subspace methods is their noise shaping capability.

These systems can conveniently leave some amount of noise with the speech that is shaped to

be tolerable by the listener while significantly preserving the original speech signal. In [68],

a spectral domain signal decomposition method is proposed that shapes the residual noise

based-on the masking threshold of the human auditory system. The goal is to reduce the
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musical noise artifact that is common in the subspace methods by adjusting the attenuation

factor of the suppression filter based on the energy of the speech signal in a critical band.

In [66], a prewhitening method is used so that the subspace method can be applied to

any type of colored noise. The system in [66] is also shown to be a generalization of the

system in [43] which was designed for white noise.

Wavelets can also be used to decompose the noisy speech signal into noisy speech and

noise-only components. Typically, wavelet coefficients are hard-thresholded to separate

noise and speech signal. However, such a hard-threshold separation can cause distortion to

the speech signal. In [6], soft-thresholding is applied that changes based on the masking

level at each subband.

2.1.1.5 Signal Presence Uncertainty

One of the flaws of the earlier statistical methods is the assumption of a speech plus noise

model at all points in the time-frequency plane. However, speech signal does not necessarily

appear at all times and frequencies in a typical speech recording. An obvious example to

that is the silence periods in the signal. Moreover, even when the speech signal exists,

some frequencies may contain negligible amount of speech energy. For example, voiced

sounds contain considerably higher energy at their harmonic frequencies compared to the

non-harmonic frequencies. Thus, a soft-decision method can be used to detect the existence

of speech at a particular time-frequency location, and the enhancement system can take into

account the signal presence uncertainty. The system proposed in [15], for example, modifies

the MMSE estimator proposed in [41] to include the signal presence uncertainty. A global

soft-decision method is proposed in [75] where each speech frame is assigned a single signal

presence uncertainty (Ps) value. Hence, it can address the pauses during speech. A similar

two-state model is proposed in [97].

The global soft-decision method does not take into account the cases where speech signal

exists only at certain frequencies in a time frame. The system proposed in [89] assigns a

different Ps value to each time-frequency location. The idea is to consider sounds like vowels

where the speech signal is quasi-stationary and most of the energy is concentrated at the
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harmonic locations.

Hard-decision and soft-decision adaptive speech presence detection algorithms are pro-

posed in [127]. Similar to [89], different Ps values are assigned to different time frequency

locations.

2.1.1.6 Enhancement with Hidden Markov Models (HMMs)

Most of the earlier statistical speech enhancement systems ignore the fact that different

speech sounds have different acoustic characteristics that can be used to improve the per-

formance of a speech enhancement system. HMM-based enhancement systems attempt to

exploit some of the structure in the speech signal. A detailed review of the HMM-based

enhancement systems is presented in [37].

HMM models for both noise and speech signals are used to derive MMSE and maxi-

mum a posteriori (MAP) estimators for speech enhancement in [36]. Autoregressive (AR)

parameters are used for building HMMs, and Wiener filtering is used to enhance speech at

each HMM state. HMM-based systems are iterative with the idea that more accurate state

sequences can be obtained at each iteration. In [88], the noise model is also updated at

each iteration.

HMM-based enhancement techniques use the Expectation Maximization (EM) algo-

rithm which is sensitive to initialization of the models. However, especially with the severely

noisy signal, initialization points are typically poor which leads to saturation at a local max-

ima in the search space. Initialization with a noise compensated AR-HMM is proposed in

[125]. HMM models for speech and noise are combined using a model combination technique

in the cepstral domain to obtain models for noisy speech, and the noisy speech models are

used for initialization.

Mel Frequency Cepstrum Coefficients (MFCC) are known to perform better than the

AR parameters in ASR systems. In [95], an MFCC-based system is used to initialize the

system. After the alignment of states with the noisy signal, AR parameters of each state

are used to find the optimum enhancement filters. Clean HMM-models are adapted to

unknown noise environment using data-driven parallel model combination (DDPMC).
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One of the problems with the HMM-based methods is its computational complexity.

A low complexity method is proposed in [81] where only the current and next states are

considered for state transitions as opposed to all states to all states connections in the other

systems. In [122], a system with real-time implementation considerations is proposed.

2.1.1.7 Model-based Speech Enhancement

There are speech enhancement systems that use the mathematical models of the speech

signal. Two of the more popular models are the LPC model and the sinusoidal model.

Examples of enhancement systems using these two models are discussed in this section.

In [23], enhancement is performed on the LPC residual signal to obtain sharper har-

monics in voiced speech, and the LPC spectrum is driven by the enhanced residual signal.

LPC residual is also used to make noise/speech decision in [23].

A constrained iterative speech enhancement technique is described in [69]. The idea

is to keep the smoothness constraints of the enhanced speech signal to avoid some of the

possible artifacts introduced by the enhancement algorithm.

In [104], higher order statistics of the speech signal is used to distinguish speech from ad-

ditive Gaussian noise. Speech spectrum is divided into narrow bands where noise spectrum

is assumed to be flat in each band. Fourth order cumulant of the noisy speech statistics is

used to estimate sinusoidal speech parameters in each band.

2.1.1.8 Perceptually-Motivated Enhancement Systems

Perceptual aspects of the human auditory system should be taken into account in quality and

intelligibility improvement tasks. Statistical models that do not consider human perception

can generate audible artifacts. Hence, statistically minimizing the residual noise energy in

the enhanced speech signal does not always generate high quality speech. Several systems

that consider various aspects of the human auditory system is discussed in this section.

In [118], an adaptive Wiener filter is proposed that takes into account the sensitivity of

the human ear to the rapid spectral changes in the speech signal. Such changes occur, for

example, at the vowel transitions and plosive bursts. Human ear can successfully mask the
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additive noise at those instances. Therefore, the Wiener filter is adapted such that it pre-

serves the rapid changes in the nonstationary regions of the speech signal while suppressing

the additive noise. The adverse effects of excessive smoothing and loss of important speech

cues are avoided in this method.

In [136], critical-band masking properties of the inner ear is considered in the enhance-

ment. The spectral subtraction parameters are tuned such that some amount of residual

noise that can be masked by the speech signal is left in the enhanced speech. The residual

noise allows flexibility in enhancement since it is not audible.

In [78], a perceptual post-processing filter is employed after a signal subspace enhance-

ment scheme to reshape the residual noise. Two criteria are considered. Noise peaks that

the ear is sensitive to are smoothed out, and residual noise is suppressed to be below the

masking threshold.

In [12], spectral masking property of the human ear is used for enhancement. A strong

tone can mask a weaker tone with higher chance if the weaker tone is spectrally closer to the

strong tone. Therefore, the noise at the low-energy spectral valleys are severely suppressed

while the lateral inhibition property of the ear is used to suppress the noise at the spectral

peaks.

2.1.2 Multi-Sensor Speech Enhancement

Multi-sensor speech enhancement systems use non-acoustic auxiliary sensors in addition

to the acoustic microphone to effectively enhance the noisy speech.1 Some of the recently

proposed multi-sensor speech enhancement systems are discussed below.

In [65], a glottal correlation filter is proposed that uses the General Electromagnetic

Motion Sensor (GEMS) device [117]. Significant intelligibility improvement over the MELPe

coder using the Diagnostic Rhyme Test (DRT) is reported.

The system proposed in [117] fuses the GEMS signal, physiological microphone (p-mic)

signal, and the bone microphone signal with the acoustic microphone signal based on the

estimated quality of those signals in each frequency subband.

1Microphone array based systems and multiple microphone systems are also sometimes called multi-sensor
systems, but they are out of the scope of this section.
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The system proposed in [149] uses the bone-conduction microphone in addition to the

acoustic microphone. Speech/non-speech detection is done using the bone-conduction mi-

crophone for improved speech quality, and noisy speech signal is enhanced using the bone-

conduction microphone signal in a Wiener filtering framework. The automatic speech recog-

nition (ASR) results for the system in [149] are presented in [147].

2.1.3 Noise Estimation

Noise estimation is a fundamental block in most of the speech enhancement systems. There-

fore, significant amount of research has been done on noise estimation and effects of additive

noise on the speech signal [106], [150].

One of the more recent and popular noise estimation techniques uses an optimum

smoothing technique to estimate the noise power spectral density (psd) using minimum

statistics [90]. The idea is to multiply the minimum statistics for each time-frequency loca-

tion by a bias factor using optimum smoothing. The system proposed in [14] also uses the

minimum statistics. However, a simple recursive averaging technique is used in [14] based

on signal presence probability estimation.

2.1.4 SNR Estimation

SNR is defined as

SNR(n, k) = 10log10

[
S(n, k)

N(n, k)

]
(1)

where S(n, k) represents the power of the speech signal and N(n, k) represents the power of

the noise signal at time n and frequency k. Estimated SNR is commonly used as an input to

the statistical speech enhancement systems. Hence, SNR estimation is an important block

in most speech enhancement systems.

A non-casual SNR estimation method is proposed in [17] where not only the past values

of the noisy speech samples, but also the future values are taken into account for estimating

SNR. The popular “decision-directed” SNR estimation method, which uses the past estima-

tions to estimate the current SNR, is analyzed as a special case of the noncausal estimator

in [16].
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In [131], the input signal is divided into 32 auditory channels, and SNR in each band

is estimated using neurophysiologically-motivated spectro-temporal features. The idea is

to extract the features by mimicing the ear and use those features in a neural network to

estimate SNR.

2.1.5 Assessing the Performance of a Speech Enhancement System

The method for assessing the performance of a speech enhancement system depends on

the goal of the system. An enhancement system can be designed for perceptual quality

improvement, intelligibility improvement, or as a preprocessor to an ASR system. Subjective

listening tests, such as A/B test or MOS test, are used for quality improvement tasks [116].

For intelligibility tasks, diagnostic rhyme test (DRT) or similar methods are used [116].

Enhancement for ASR tasks are typically assessed with ASR experiments.

Besides the subjective measures, there are also objective distance measures as described

in [54] and [116]. Objective distance measures are used to mathematically define the dis-

tortion between the enhanced speech and original speech. They have been used to predict

the performance of a speech enhancement system for both perceptual quality improvement

and ASR preprocessing tasks with limited success.

One of the more commonly used objective measures is the segmental-SNR (S-SNR)

measure [116]. The speech signal is divided into short-time signal frames. Segmental-SNR

for each noisy speech frame i is

S − SNRi = 10 log10

(
Si

Ni

)
. (2)

where Si is the signal power, and Ni is the noise power in frame i. Average segmental-SNR

of N frames is

S − SNR =
N∑

i=1

S − SNRi (3)

Itakura-Saito distance (dIS) is another commonly used distance measure [116]. For a

clean speech spectrum S(w) and a distorted speech spectrum S′(w)

dIS =

∫
−π

π

[
eV (w) − V (w) − 1

]
dw

2π
(4)
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where

V (w) = log[S(w)] − log[S′(w)]. (5)

V (w) is called the log-likelihood ratio (LLR) and sometimes used as a distance measure

(dLLR) [116]. If the vector of linear prediction (LP) coefficients for the clean speech signal

is ac, the vector of LP coefficients for the distorted signal is ad, and the autocorrelation

matrix for the clean speech signal is Rc, then

dLLR = log

(
adRcad

acRcac

)
. (6)

2.2 Noise-Robust Automatic Speech Recognition

State-of-the-art Automatic Speech Recognition (ASR) systems can achieve less than point

two percent word error rate for the digit recognition task. Moreover, they have high per-

formance for medium and large vocabulary dictation tasks. However, these performance

results are obtained in quiet environments. Performance is known to drop drastically for

real–life environments where speech is contaminated with an unpredictable noise source

resulting in an unknown and time-varying signal-to-noise Ratio (SNR). Therefore, noise

robustness is one of the key challenges remaining to be solved before the ASR systems can

be employed in real environments.

Current approaches to the noise robustness problem can be classified into several broad

categories. Some techniques compensate for the effect of noise on speech features and create

a better match between acoustic models and noisy features [80], [52]. Similarly, acoustic

models can be modified to better represent the features extracted in a noisy environment.

Parallel Model Combination [48] and model adaptation approaches [50] [49] are in this

category.

In this dissertation, missing data techniques, noise-robust features, and speech enhance-

ment are used for noise-robust automatic segmentation. Therefore, these three approaches

are discussed in more detail below.
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2.2.1 Missing Data Techniques

The missing data techniques approach the noise robustness problem from a reliability per-

spective. In contrast to the methods mentioned above, missing-data based systems do not

compensate the features or the acoustic models. Instead, they attempt to detect the reliable

features and do recognition based only on those reliable features. Thus, the two challenges

these methods face are detecting the unreliable (missing) features and decoding the noisy

speech by using the reliable features.

Spectral subtraction and SNR thresholding are two popular ways of estimating the

subband reliability [20]. Once the reliable bands are detected, either marginalization or data

imputation approaches can be used for recognition. In the marginalization technique, the

likelihood function of the reliable features are estimated through integration over unreliable

features. In the data imputation technique, the missing features are imputed from the

reliable features.

Early work on missing data techniques include [77], [63], [135]. These systems were based

on detecting of unreliable parts of the spectrum in a hard-decision manner and imputing

the unreliable parts using the estimated noise level. Although most of these systems use

subband features, a cepstral domain version has also been proposed in [99].

Recently, a theoretical framework for handling missing data using the marginalization

technique has been presented in [20]. Performance of the system is assessed for both small

vocabulary and large vocabulary tasks [10]. Recent systems that use data-imputation algo-

rithm in the cepstral domain include [56], [10], [120].

2.2.2 Noise-Robust Feature Extraction

A strategy for improving noise robustness of ASR systems is using noise-robust features. A

review of the popular noise-robust feature extraction schemes is discussed in [114]. Some

of the front-end signal processing techniques used for noise-robust ASR is described in [67].

Examples of noise-robust features are discussed below.
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2.2.2.1 Features Derived from DFT Spectrum

Mel-Frequency cepstrum coefficients (MFCC) are the most popular features in ASR systems

[114]. However, cepstrum-based features are sensitive to noise [108]. Therefore, alternative

features have been considered that are directly derived from the power spectrum.

In [109], filter-bank energies are fed into the recognizer without further processing. It

is shown that filter-bank energies perform at least as good as the MFCCs in noisy envi-

ronments. In [145], difference between the power spectrums of the consecutive frames are

used to derive the MFCC features. The idea is to eliminate the background noise that is

assumed to be stationary over the subtraction interval. A similar strategy is described in

more detail in [11]. In [123], instead of the logarithmic nonlinearity in the MFCC features,

an n-th order root operation is performed to improve noise robustness. These features are

called root-cepstrum coefficients (RCCs).

Two dimensional (2D) cepstrum coefficients represent a matrix of feature vectors that

can efficiently incorporate the temporal dependence between the feature vectors [13]. In

[85], the 2D cepstrum coefficients are modified using genetic algorithms to obtain noise

robustness.

2.2.2.2 Features Derived from LPC Spectrum

MFCC features are derived from the Discrete Fourier Transform (DFT) spectrum of the

speech signal. However, LPC spectrum can also be used to extract the features.

DFT-based features are known to outperform the LPC-based features in clean conditions[94].

Still, because of their parametric nature, LPC-based features can be useful for noise-robust

feature extraction. For example, in [61], one-sided autocorrelation sequence is used for

linear prediction of noisy speech which is then used to extract noise-robust LPC features.

2.2.2.3 Perceptually-Motivated Features

Human auditory system is significantly more robust to noise than the current ASR systems.

Some of the perceptually-motivated feature extraction methods that mimic the human ear

are discussed below.
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In [146], a minimum variance distortionless response (MVDR) of the speech spectrum

is used to extract noise-robust features. It is shown that the MVDR method can accurately

track the peaks in the spectrum while being computationally simple. Moreover, recognition

accuracy improves significantly in noisy conditions compared to the popular Perceptual

Linear Prediction (PLP) features.

RASTA is another perceptually-motivated, noise-robust feature extraction method [60].

The idea is to filter out the spectral components of speech that change faster or slower than

the natural range of change rate of the speech signal. Significant reduction of noise can be

obtained with this method.

Speech signal has resonant frequencies that are important determinants of the perceptual

speech quality. In [133], formant locations as well as some perceptually distinctive acoustic

features are combined with the MFCC features in a multi-stream recognition framework.

Significant decrease in WER is reported in noisy conditions.

Filterbanks are used to mimic the human auditory system in the MFCC features. How-

ever, the bandwidths of these filters are typically chosen to be triangular while it has

arbitrary shapes in the auditory systems. More precise modeling of the filter bandwidths is

shown to improve noise robustness in [126].

2.2.2.4 Environment-Dependent Feature Selection

Different features can have higher performance in different background environments. In

[2], an environmental sniffing algorithm is proposed that measures the characteristics of

the environmental noise. The features that are expected to perform best for the detected

environment are used to do the recognition.

2.2.2.5 Aurora Evaluations

Aurora, a working group of European Telecommunications Standards Institute (ETSI), has

been found to address some of the issues related to distributed speech recognition. In this

context, a standard speech recognition setup is prepared to measure the performance of

noise-robust front-ends given all the other parameters of the recognizer are same at all re-

search sites. Evaluations are done using the standard Aurora speech databases. Results of
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these evaluations with many comparison papers can be found in the International Confer-

ence on Speech and Language Processing (ICSLP) 2002 conference papers and in some of

the later conferences [21].

2.2.3 Speech Enhancement for Noise-Robust ASR

Speech enhancement is a commonly used method to reduce noise in the speech signal before

feeding it into an ASR system. There are numerous papers that compare the performance of

various speech enhancement systems on automatic speech recognition. In [57], performance

of spectral subtraction, nonlinear spectral subtraction [87], MMSE algorithm [40], and noise

adaptive AutoLSP algorithms [69] are compared using the Aurora2 corpus. The nonlinear

spectral subtraction method is found to be the best performer among all the candidates.

Another study with nonlinear spectral subtraction using Aurora 2/3 tasks is presented in

[45].

An interoperability study of speech enhancement and ASR systems is done in [103].

It is shown that enhancement systems improve the performance compared to the baseline

system at lower SNRs. However, if the ambient noise is mild, speech enhancement can have

an inverse effect particular generating deletion errors.

2.2.4 Feature Enhancement

ASR systems use features extracted from the speech signal for recognition. Therefore,

estimating the clean features from the noisy features may bes more suitable for an ASR

task as opposed to speech enhancement that attempts to estimate the clean speech.

In [53], a probabilistic optimum filtering framework [105] is used to estimate the clean

speech features from the noisy speech features using a throat microphone. The idea is to

divide the clean feature space into vector quantized (VQ) regions. The noisy input feature

is mapped to one ofs those VQ regions in a soft-decision manner. The throat microphone

signal is used to improve the mapping vector.

Noisy features can be modeled with a probability distribution function (pdf) such as a

Gaussian. The uncertainty in the noisy features can be handled with a statistical uncertainty

decoder in this case. For example, in [32], uncertainty is addressed in the feature space by
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using the estimated variances of the enhanced features.

2.3 Noise-Robust Speech Segmentation and Classification

Segmentation can be defined as dividing a speech signal into segments that contain one and

only one predefined sound class. For example, a speech signal can be segmented into broad

sound classes such as vowels, nasals, stops, etc.

Although segmentation can automatically generate the segments, it does not classify

the segments. Classification can be defined as labeling the segments that are generated by

the segmentation algorithm. HMM-based systems perform segmentation and classification

simultaneously. However, there are systems that perform these two tasks separately as

discussed below.

2.3.1 Discriminative Feature Extraction

One of the biggest challenges in an automatic segmentation task is finding the features that

are suitable for discriminating between the sound classes. In [134], narrowband and wide-

band classifiers are used to detect segment boundaries that correspond to narrowband and

wideband diphone boundaries. Boundaries that are detected independently are combined

together using lowest-cost path algorithms.

In [18], duration of phonemes are used as a confidence measure for segmentation. Al-

though the method is independent of the segmentation paradigm, the results are reported

for HMM-based systems in noisy conditions. Similar to [18], phoneme duration is used in

conjunction with the acoustic similarity measures using a genetic algorithm in [129].

A soft-decision hierarchical method using support-vector machines is proposed for au-

tomatic segmentation in [70]. Sound classes become more specific down the hierarchy with

a speech/non-speech detection at the first branch. Both segmentation and classification are

done for recognizing broad sound classes.

2.3.2 HMM-based Techniques

Similar to ASR systems, hidden Markov models (HMMs) are commonly used for automatic

segmentation. An overview of HMM-based approaches to automatic speech segmentation
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is presented in [31] where Viterbi decoding is compared with forward-backward decoding.

Although HMM-based techniques typically perform well in detecting segments, segment

boundaries are often not accurate. Therefore, spectral boundary correction is commonly

used for HMM-based segmentation systems [76] Postprocessing techniques for fine-tuning

the segment boundaries in HMM-based systems are discussed in [31].

In [115], broad-level sound classification is done using HMM methods. Features that

are effective in making classifications between two sound classes are used in a hierarchical

manner. Some of the popular noise-robust ASR techniques are applied to noise-robust

segmentation and compared with each other in [111].

2.3.3 Spectral Variation-based Techniques for Segmentation

Automatic segmentation typically generates segments that have common spectral proper-

ties. Hence, spectral-variation can be a good measure to detect the segment boundaries.

Broad-level speech segmentation is done in [112] for spontaneous speech. Three different

feature sets are used that are compared for speech contaminated with white noise. Various

features, similarity measures, and liftering algorithms are compared in [121] for detecting

the transition regions in speech.

2.4 Description of the GEMS Device and the ARCON

Database

The glottal electromagnetic motion sensor (GEMS) is a micro-power device that can be used,

among other things, to detect motion in larynx. The GEMS device consists of a penetrating

radar whose principles have been studied both at the Lawrence-Livermore Laboratory and

Aliph, Inc. A fully developed, commercial version based on these principles is currently

available from Aliph, Inc. Descriptions of its properties can be found in [8].

When positioned correctly on the exterior of the throat adjacent to the larynx, the out-

put of the radar during voiced speech is a signal that resembles the airflow volume velocity

at the larynx. The exact physical structures whose motion are detected are currently not

completely understood. The signal, however, is often stable and as such can be useful in fur-

ther processing. Additionally, the signal obtained is robust to external acoustic influences,
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such as ambient noise.

The GEMS device responds to vocal fold vibration at the larynx. Other devices such as

EGG do this by measuring the changes in conductivity at the throat, but it is considered

too cumbersome for everyday use. The GEMS device can be deployed in handheld devices

for speech applications, such as noise robust pitch detection [8] and speech enhancement

[7], in a less intrusive manner.

2.4.1 ARCON Database Description

The GEMS system was investigated for very low bit-rate speech coding (300 bps) in noisy

environments as part of a Department of Advanced Research Projects Agency (DARPA)

project [7]. As part of this program, an extensive database was created by ARCON Corpo-

ration having simultaneous speech, GEMS, EGG, and other sensor data for various military

noise conditions [119]. Recordings from ten male and ten female speakers are available in

the database. The data is designed for the assessment of speech coding systems. DRT

(diagnostic rhyme test) and CVC (consonant vowel consonant) word lists are provided for

intelligibility assessment. Harvard sentences and isolated vowels are provided for percep-

tual quality assessment. The systems proposed in this thesis are tested using the ARCON

database. DRT sequences are used for intelligibility tests, and Harvard sentences are used

for quality tests.

2.4.2 Correlation of GEMS-based and Acoustic Microphone-based Features

The periodicity feature, the energy feature, and the high-energy frequencies in the GEMS

spectrum are found to be strongly correlated with the same features extracted from the

clean speech signal for voiced speech. Descriptions and discussions of the three features are

done below.

2.4.2.1 Periodicity Feature

The periodicity feature for a short-time GEMS signal frame i (gi) is defined as

vi = arg max
2.5 msec<τ<10 msec

Rgg(τ) (7)

where Rgg(τi) is the normalized autocorrelation function of gi.
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Figure 1: Spectrogram of a sample speech signal is shown in the top figure, and spectrogram
of the simulatenously recorded GEMS signal is shown in the middle figure. Trajectory of the
periodicity features is shown in the bottom figure. Speech and GEMS samples are taken
from the DRT sequences in the ARCON database recorded in the quiet conditions by a
female speaker. The parameters given in Table 1 are used in the analysis. The sequence
of monosyllables in the utterance are: vill, jest, taught, coop, neap, vast, dock, those, sing,
and met.

The GEMS signal is strongly correlated with the airflow velocity at the larynx [8] and

indicates high degree of periodicity when the speech signal is voiced as shown in Fig. 1.

Moreover, assuming short-time periodicity, the period within a short-time (∼ 20msec)

frame is equal to the pitch period of the speech signal recorded simultenously.

2.4.2.2 Energy Feature

The energy feature

Ei =
N∑

k=1

(gi(k))2 (8)

is defined as the total energy of the short-time sensor signal g at time frame i. The energy

trajectory of the speech signal is highly correlated with the energy trajectory of the GEMS

signal as shown in Fig. 2. Moreover, the energy feature is found to be smoother than the

voicing feature in most cases. This can be observed when Fig. 1 and Fig. 2 are compared.
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Figure 2: Trajectory of the energy feature is shown for the speech signal in the top figure.
Trajectory of the energy feature is shown for the GEMS signal in the bottom figure. Speech
and GEMS samples are taken from the DRT sequences in the ARCON database recorded
in the quiet conditions by a female speaker. The parameters given in Table 1 are used in
the analysis. The sequence of monosyllables in the utterance are: vill, jest, taught, coop,
neap, vast, dock, those, sing, and met.
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Table 1: The parameters that are used in analysis of speech and GEMS signals in this
chapter.

Attribute Value

Window Length 256 samples

Window Type Hanning window

Frame Rate 128 samples/frame

Sampling Rate 8 kHz

2.4.2.3 High-Energy Frequency Locations

The GEMS signal often has an harmonic structure up to 4 kHz as shown in Fig. 3. Although

the higher frequency harmonics in the GEMS spectrum, most of the time, are not visible in

the spectrogram because of their relatively low energy, the spectral peaks are clearly visible

when the GEMS spectrum for a short-time frame is inspected as shown in Fig. 3.

The high-energy frequencies in the GEMS and speech spectrums are also found to match

most of the time for voiced speech which can be useful in many applications. For example,

an aharmonic comb filtering method is described in Chapter 4 that uses the high-energy

frequencies in the short-time GEMS frames for further enhancing the noisy audio signal.

2.4.3 Time Delay Between the Acoustic Sensor and the GEMS Sensor

There is a small (∼ 2msec) time difference between the GEMS signal and the acoustic signal

when they are recorded simultaneously. The asynchrony is a result of the instrumentation

delay and the difference in the acoustic wave velocity and the electromagnetic wave velocity.

Moreover, the GEMS device measures the airflow velocity at the larynx, but the acoustic

microphone measures the airflow pressure close to lips. Therefore, the differences in places

of measurement also adds to the delay.

A MATLAB function, developed at Georgia Tech, is used to synchronize GEMS and

speech signals. The function is based on a crosscorrelation method. The optimum delay is

found at the lag where the cross-correlation of the residual of the acoustic signal and the

derivative of the GEMS signal makes a peak.
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CHAPTER III

A PERCEPTUALLY-MOTIVATED BAYESIAN RISK

MINIMIZATION FRAMEWORK FOR SPEECH

ENHANCEMENT

A typical noise suppression system always carry a risk of misestimating the original signal,

and perfect reconstruction is often not possible. These misestimations are associated with

perceptual costs that depend on the goal of the system. To minimize the average cost

of misestimations, a statistical speech enhancement framework should have the following

properties

1. Sources of misestimations have to be identified, and perceptual costs of possible mis-

estimations should be explicitly taken into account.

2. Speech signal is nonstationary, and different speech sounds have different acoustic

and perceptual properties. Therefore, in order to accomplish the first requirement,

the framework should be able to incorporate acoustic-phonetic knowledge of speech

and perceptual aspects of the human auditory system.

Traditional systems such as Wiener filters, spectral subtraction filters, and MMSE es-

timators do not explicitly consider the costs associated with possible misestimations. The

deficiency of the traditional systems in addresssing the above criteria have been investigated,

and, typically, optimum linear enhancement filters are nonlinearly modified to improve the

perceptual quality of the enhanced speech signal. Most of those nonlinear modifications are

based on observations and heuristic algorithms.

The heuristic algorithms typically undersuppress or oversuppress the noisy signal to

preserve the speech cues and suppress the noise. Oversuppression is achieved by subtracting

more noise than dictated by the optimal filter. Similarly, undersuppression is achieved by
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subtracting less noise than dictated by the optimal filter. For example, there are many

nonlinearly modified spectral subtraction filters that use SNR-based oversuppression factors

and perform better than the mathematically optimum filter [79], [102], [87], [51]. There are

also systems that take into account the perceptual properties of the human auditory system

by post-processing the enhanced speech signal. Masking property of human perception, for

example, is commonly used in such systems [12], [78].

Signal presence detection framework is another example of incorporating an SNR-based

oversuppression factor into the enhancement framework [15], [41], [75]. The suppresion

factor is adapted based on the probability of existence of the speech signal in the noisy

signal. Noisy signal is more aggressively suppressed with decreasing probability of speech

existence. SNR-based measures are typically used to estimate the probability of existence.

The signal presence detection framework does not take into account the uncertainty in

the SNR parameter. Low SNR does not always mean low probability of speech existence

and high SNR does not always indicate signal presence partly because of possible SNR

misestimations. Moreover, SNR-based signal presence detection does not consider the per-

ceptual aspects of the human auditory system and the acoustic-phonetic properties of the

speech signal.

In the next section, a statistical speech enhancement framework is described that is

based on Bayesian risk minimization.

3.1 Proposed Framework

In the proposed framework, the speech enhancement filter is designed to minimize the

costs of misestimations. Using the risk and the perceptual costs of misestimations, the

perceptually optimum estimator can be mathematically derived. Several assumptions have

been made to simplify the formulation:

1. System is assumed to be causal. Therefore, effects of future values are not considered

in calculating the risk function, and post-processing of the enhanced speech is not

considered.

2. A subband-based speech enhancement method is used where each band represents an
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auditory channel. Auditory channels are assumed to be independent, and misestima-

tions in a band do not have a cost in the other bands.

3. The system is sound-class dependent. To exploit the acoustic-phonetic properties of

speech sounds, speech is segmented into broad level sound classes. One particular

sound classification is proposed in Chapter 6.

4. The cost function is related to the sound class of the current frame only, and sound

classes of the earlier frames are not taken into account. Transition regions between

speech sounds can be included as another class of sound to avoid problems in these

perceptually important regions.

The variables that are used to formulate the risk function are defined as follows. The

gain factor that perfectly recovers the original signal is denoted by G while the gain factor

estimated by the speech enhancement system is denoted by Ĝ. Similarly, the vector of

previous perfect gain factors at time i and auditory channel j is

Gi,j = [G(i−1),j G(i−2),j ... G2,j G1,j ]
T (9)

while the vector of previously estimated gain factors is

Ĝi,j = [Ĝ(i−1),j Ĝ(i−2),j ... Ĝ2,j Ĝ1,j ]
T . (10)

Gi,j and Ĝi,j denote scalar gain factors obtained at time i and auditory channel j. Previous

values of the clean signal at time i and auditory channel j are

X i,j = [X(i−1),j X(i−2),j ... X2,j X1,j ]
T (11)

while the vector of previously estimated speech values is

X̂i,j = [X̂(i−1),j X̂(i−2),j ... X̂2,j X̂1,j ]
T . (12)

For a sound class c, the average perceptual cost (C) of using the gain factor Ĝi,j , risk

function, is

E[C(Ĝi,j)] =

∫
∞

−∞

C(Ĝi,j/X̂ i,j , c, Gi,j)P (Gi,j/X̂i,j , Ĝi,j , c)d(Gi,j) (13)
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where c denotes the sound class.

In Eq. 13, acoustic-phonetic properties of the speech signal are taken into account

through formulating the problem in terms of the sound class c. Probability of misestima-

tion (Pm) is incorporated with P (Gi,j/X̂i,j , Ĝi,j , c, Gi,j) that represents the probability of a

suppression factor Gi,j given the previous estimates of the signal X̂i,j , previous suppression

gains Ĝi,j , and the sound class c.

Perceptual knowledge of the human auditory system can be included into the estimation

process through the cost function C. For example, in the musical noise case, if there are

narrow-band islands left after enhancement, even if those regions have high SNR and low

risk values, they can be suppressed by the system by assigning high cost to such situations.

Some of the typical sources of misestimations and the perceptual costs of misestimation are

discussed below.

3.1.1 Sources of Misestimations in Speech Enhancement Filters

In this work, two sources of misestimations are identified. The first source is the variance

of the estimator for the given input parameters. In the case of speech enhancement, the

uncertainty in the estimated value, and therefore Pm, rapidly increases with decreasing SNR.

The second source of misestimation is the uncertainty in the input parameters. For example,

SNR misestimations can significantly increase Pm in speech enhancement. Robustness of

an estimator to the uncertainty in the prior parameter is studied in the Robust Bayesian

Analysis (RBA) field [79]. The methods that can be used to quantify the uncertainty in

the apriori parameters are discussed in more detail in Section 3.1.3.

3.1.2 Costs of Misestimations

In general, misestimations can be divided into two categories. The noisy signal is either

oversuppressed or undersuppressed. The costs of those two situations are sound class and

goal dependent. The costs for quality and intelligibility improvement goals are discussed,

though not quantified, for vowels, consonants, and silence segments below.

Consonant sounds are typically short-duration, and low-energy segments. They are
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critically important in intelligibility tasks while they are not as important in quality im-

provement tasks. Oversuppression of the low-energy consonant sounds causes erasure of

the consonant cues that are important for intelligibility. However, typically, oversuppres-

sion does not significantly degrade the perceptual quality.

Undersuppression leaves residual noise on the consonant sound that can create artificial

cues in the signal and confuse the human auditory system. Therefore, undersuppression

can also degrade intelligibility. Moreover, the residual noise can also degrade the perceptual

quality.

Vowels and silence segments are the major determiners of the speech quality. Formant

locations and bandwidths are the primary determiners of the quality of vowels. Oversup-

pression can change the locations of the formants and/or the formant bandwidth. More-

over, oversuppression can cause deletion of perceptually important harmonic frequencies

as shown in Fig. 4. Both situations can substantially degrade the speech quality. Under-

suppression can also change the formant locations and/or reduce the formant resolution in

vowels. Moreover, undersuppression has an additional cost of leaving significant residual

noise particularly at the nonharmonic, low-energy frequencies. Intelligibility of vowels are

not considered in some intelligibility tasks such as DRT. However, formant transitions within

a vowel can significantly impact the intelligibility of a neighboring consonant. Therefore,

oversuppression and undersuppression of a vowel spectrum can degrade the intelligibility of

the neighboring consonant.

Oversuppression has minimal cost for silence segments. In fact, oversubtraction is typ-

ically desirable, since there is no speech present in the signal. However, undersuppression

typically has two costs. The first cost is the wideband residual noise and the second cost is

the narrowband musical noise as shown in Fig. 4. Musical noise artifact in particular can

significantly degrade the perceptual quality.

3.1.3 Quantifying the Probability of Misestimation

The P (Gi,j/X̂i,j , Ĝi,j , c, Gi,j) term in Eq. 13 is hard to estimate in general because the

statistics of speech and noise are not known at a time-frequency location in noisy speech.
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Figure 4: Effects of oversuppression and undersuppression is illustrated. Spectrogram of a
clean speech utterance is shown in the first figure. The same signal is contaminated with
0 dB M2 tank noise in the second figure. The third figure shows the output of an MMSE
estimator that attempts to clean the noisy speech. MMSE estimator with an oversuppression
factor is used in the fourth figure. MMSE estimator with a less aggressive oversuppression
factor is shown in the last figure.
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Therefore, a heuristic measure is used to assess Pm as described below.

Two factors for misestimations, the uncertainty in the a priori parameters and the

variance of the estimator, are identified in Section 3.1.1. In this section, these two risk

factors are quantified for further analysis.

The Robust Bayesian Analysis (RBA) framework can be used to quantify the risks asso-

ciated with the uncertainty in the prior parameter. There are three main RBA approaches

to measure the robustness, or sensitivity, of the estimator to the uncertainty in the prior

distribution. The first approach is called the informal approach where a few highly probable

priors are considered, and the a posteriori means are compared to measure the robustness

of the estimator. In the second approach, called the global robustness, range of a posteriori

means of all possible prior functions is used to assess the robustness. Finally, the local ro-

bustness approach uses the derivative of the estimator with respect to the prior variable at

the operating point to measure the rate of change of inferences, sensivity, of the estimator

to the prior.

Even if the a priori parameters were perfectly known, misestimations still occur because

of the inherent uncertainty in the estimation process. This factor can be quantified for

an estimator using the Monte Carlo simulation technique for given apriori parameters or

analytical derivation when possible.

In this thesis, the local robustness approach used in RBA analysis is used to quantify

both SNR and estimator uncertainty. The suppression gain in a typical speech enhancement

estimator decreases with an increasing rate with decreasing SNR. Hence, the local derivative

of the gain function with respect to SNR increases with decreasing SNR. Uncertainty of the

estimator also increases with decreasing SNR. Therefore, the local derivative approach of

the RBA framework can also be used as a measure to assess the uncertainty of the estimator

at different SNRs.
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3.2 Analysis of Spectral Subtraction Method Using the Pro-

posed Framework

Bayesian estimators are commonly used for enhancing the noisy speech signal; however,

some heuristically modified versions of the “optimal” estimators are shown to perform bet-

ter in both ASR and perceptual quality enhancement tasks as discussed in Section 3.1.

Performance improvement obtained with some of the modified systems can be analyzed un-

der the proposed theoretical framework. Several variants of the popular spectral subtraction

technique are analyzed below.

3.2.1 Analysis of the Modified Spectral Subtraction

In the spectral subtraction (SS) algorithm, clean speech power |X|2 is estimated with

|X̂|2 = |Y |2 − |N̂ |2. (14)

where |X̂|2 is the estimated power, |Y |2 is the noisy signal power, and |N̂ |2 is the estimated

noise power. Therefore, the gain function of the optimum linear SS is

Gss =

(
1 −

1

Γ

)
, (15)

where Γ is a priori SNR and defined as

Γ =
|Y |2

|N̂ |2
. (16)

Although the SS filter is an optimum ML filter, some of the heuristically modified versions of

it are shown to generate higher quality speech compared to the SS system. Moreover, some

SS-based nonlinear estimators, when used at the front-end of an ASR system, are shown to

provide higher accuracy in noisy environments compared to the SS system. In the following

two sections, popular examples to such modified SS systems and their superior performance

compared to the optimum SS system are discussed using the proposed framework.

3.2.2 Spectral Subtraction for Perceptual Quality Enhancement

One of the variants of the linear SS algorithm is the modified SS (MSS) algorithm that uses

an oversuppression factor to improve the perceptual quality [5]. The MSS system estimates
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clean speech power with

|X̂|2 = |Y |2 − α|N̂ |2 (17)

where α is the oversuppression factor and α ≥ 1. The gain function of the MSS system is

Gmss = max

(
(1 −

α

Γ
), Θ

)
(18)

where Θ is the minimum gain threshold. Typically, the transfer function Gmss is set to

a constant, Θ, below an SNR threshold (Ex: 5.5 dB) as shown in Fig. 5. The α and

Θ modifications to the SS algorithm are analyzed under the proposed framework in this

section. The purpose of this analysis is to formally explain the better perceptual quality of

the MSS system and set the theoretical groundwork for further improvements.

The local derivative method is used to measure the sensitivity of an estimator to the

SNR misestimations as discussed in Section 3.1.3. The sensitivity function of SS (Sss) with

respect to SNR is

Sss =
∂Gss

∂Γ
=

1

Γ2
. (19)

The sensitivity function of MSS (Smss) is

Smss =
∂Gmss

∂Γ
=






α
Γ2 if SNR> Θ,

0 if SNR≤ Θ.

(20)

The gain functions and their sensitivity functions are shown in Fig. 5 for SS and MSS.

Sensitivity of SS increases rapidly with decreasing SNR. Therefore, particularly at lower

SNRs, the risk of musical noise, which have a high perceptual cost, is significantly higher

compared to the higher SNRs. The MSS algorithm uses a constant suppression factor at

those high risk SNRs to make the system more immune to sudden fluctuations. From an

RBA stand-point, sensitivity of the MSS filter to the misestimations of SNR becomes zero

since the MSS filter uses a constant suppression factor. Although Pm is higher compared

to the SS filter, since SS is the optimum filter, enhanced speech contains less musical noise

artifact and has higher perceptual quality in MSS.

At higher SNRs, Pm is relatively lower, but there is still a risk of leaving residual noise

on the enhanced signal. The MSS system multiplies the estimate of the noise variance with
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Figure 5: The gain functions H (dB) is shown in the top figure. Sensitivity of the gain
functions to the prior parameters are shown in the bottom figure.

a constant α factor to achieve oversubtraction and reduce that risk. An important thing

to note is that the amount of oversuppression increases with decreasing SNR which ensures

more aggressive noise suppression for higher risk SNR regions.

The 5.5 dB threshold can be explained using the sensitivity function of the MSS system

which increases slowly with decreasing SNRs until 6 dB starts to increase more rapidly

below 5 dB as shown in Fig. 5. Therefore, 5.5+
−
0.5 dB is a critical threshold range for the

sensitivity function.

One further modification to the SS system is the generalized spectral subtraction (GSS)

system [27] that not only uses a constant α factor for oversubtraction but also uses a β

exponent modification in the gain function. The β factor gives a second degree of freedom

for adjusting the subtraction factor. The GSS gain is

Ggss = (1 −
α

Γ
)β . (21)

The GSS gain and its SNR sensitivity is shown for α = 0 dB and β = 2 in Fig. 5.

The Ggss curve closely follows the Gss curve at high SNRs while at lower, more sensitive
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SNRs, it starts departing from the Gss curve. Note that the SNR threshold is not needed in

GSS, since, at low SNRs, the new system has considerably lower sensitivity compared to SS

and MSS algorithms. As opposed to SS and MSS, sensivity of GSS starts decreasing with

decreasing SNR below around 5.5 dB which explains how it can avoid the musical noise

artifact without any SNR threshold.

The higher performance of the GSS system compared to the MSS system is related to

the fact that it has two degrees of freedom, and the suppression gain can be adjusted with

a greater flexibility as explained above. Another dimension of flexibility can be obtained if

the oversubtraction factor, α, is a function of the estimated SNR. The gain function with

an SNR-dependent α is

Gvα =

(
1 −

α(Γ)

Γ

)
. (22)

In [71], the spectrum is divided into four bands, and a linear function of SNR is used

in each band to increase α for more aggressive suppression at lower SNRs. Although, MSS

and GSS works with similar principals, the system in [71] provides the flexibility to tune α

seperately at each SNR which is shown to improve quality at low SNR environments.

3.2.3 Spectral Subtraction for Noise-Robust ASR

There are SS-based systems that are specifically designed for noise-robust ASR applications.

The nonlinear SS (NSS) system proposed in [87] has a gain factor

Gnss =

(
1 −

Φ(Γ, ρ, |N̂ |2)

|Ŷ |2

)
(23)

where the noise estimate Φ is

Φ(Γ, ρ, |N̂ |2) =
ρ

1 + Γρ
, (24)

and ρ is a constant. Φ is not allowed to exceed 3|N̂ |2 or drop below |N̂ |2, and the ρ factor

is frequency dependent. The relatively good performance of the NSS filter in ASR tasks is

discussed below using the proposed framework.

ASR systems commonly use Mel Frequency Cepstrum Coefficients (MFCCs) as discussed

in Chapter 2. In the MFCC extraction algorithm, the first step is to calculate the logarithm
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of the energy in each auditory subband. The masking effect and the winner-take-all effect

of the nonlinear logarithm function can be used to explain the relatively good performance

of the NSS system in ASR tasks. These two effects are discussed below.

The masking effect can be described as follows. For the additive and independent noise

case, expected value of the log-energy of a noisy signal is

log(Y 2) = log((X + N)2) (25)

where X is the clean signal, N is the noise signal, and Y is the noisy signal. If |N |2 is

significantly greater than |X|2, then the noise masks the signal, and

log(Y 2) ≈ log(N2). (26)

The winner-take-all behavior of the logarithm function is a consequence of the masking

effect and can be described as follows. Logarithm of the sum of N numbers can be ap-

proximated with a subset of those N numbers that are significantly higher than the rest

of the numbers. Therefore, logarithm of the total energy in an auditory subband can be

approximated using the total energy of the few high-energy frequencies that can mask the

rest of the frequencies. Moreover, the high-energy frequencies typically have higher SNRs

compared to the rest of the frequencies in an auditory channel. Hence, oversuppressing

the lower SNR frequencies, where the estimator is less reliable and the speech energy is

expected to be relatively lower, while operating close to the optimum SS system for high

SNR frequencies that s have higher speech energy enables relatively reliable extraction of

the MFCC features in the NSS system.

There are spectral subtraction schemes, such as subband spectral subtraction (SSS)

[102], that attempt to estimate the total signal power in a subband. It has been observed

that the ASR performance improves when the total subband power is estimated as opposed

to estimating the signal power at each frequency. In this case, the system has a better

estimate of the SNR, and it performs better since the apriori parameter is more reliable.

The uncertainty, hence the variability, of the SNR parameter decreases in this case because

of the smoothing effect of using total power.
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CHAPTER IV

AHARMONIC COMB FILTERING OF NOISY SPEECH

Comb filtering is commonly used in tandem with other speech enhancement algorithms for

improving the perceptual quality [64]. The main idea is to leverage the harmonic structure

of the voiced speech signal for suppressing the background noise. The noisy signal at the

nonharmonic locations can be suppressed without distorting the perceptually important

speech cues while suppressing significant amounts of noise [107], [24], [130].

There are several problems with the basic comb filtering technique. The first problem

is that voiced speech is quasiperiodic even within a small analysis window. Therefore, the

harmonicity assumption of the comb filter is not valid in general. Adaptive comb filters

address this problem by finding the pitch epochs in a speech frame without a periodicity

assumption [84], [47]. However, finding the correct pitch epochs is challenging at low SNRs

and/or nonstationary noise environments.

Comb filtering can be done in the frequency domain as well as the time domain. In both

cases, sampling resolution limits the effectiveness of the algorithm. The system proposed in

[110] uses fractional sample delay to solve the problem in the time domain. However, the

system in [110] is not adaptive, and it is susceptible to pitch epoch misestimations.

Frequency domain comb filters use windowing for analysis of a speech frame which

can further reduce the resolution of the harmonics and create high energy side lobes in

voiced speech spectrum. Combined with the quasiperiodicity and resolution problems, there

might be more than one high signal power (HSP) locations around the harmonic frequency.

Previous comb filtering techniques do not consider the high-energy sidelobes around the

harmonic frequency which can significantly degrade the speech quality.

A sinusoidal model of the speech signal is proposed in [98] that enables aharmonic anal-

ysis of the voiced speech signal. However, accurate sinusoidal modelling of noisy speech is

37



challenging. Misestimations, for example, are found to degrade the speech quality signifi-

cantly in sinusoidal coders [100] and speech enhancement systems using sinusoidal models

[3].

HSP locations in the speech spectrum can be detected using the GEMS signal under

all acoustic noise conditions and SNRs [7] as mentioned in Section 2.4. In this chapter, an

aharmonic comb filtering (ICF) technique is proposed that uses the GEMS signal to detect

HSP locations in the voiced speech spectrum without any harmonicity assumption. HSP

location detection is robust to ambient noise because GEMS is a non-acoustic sensor. The

ICF system is described below.

4.1 Aharmonic Comb Filter

4.1.1 The HSP Detection Problem

Speech production mechanism is commonly modeled with a linear filter driven by an exci-

tation signal. Therefore, the speech signal

s(n) = h(n) ∗ e(n) (27)

is a convolution of the vocal tract filter h(n) and the excitation signal e(n). Excitation signal

for voiced speech is typically modeled with a periodic pulse generator for voiced speech with

a short-time spectrum

ev(fn) =
N−1∑

k=0

δ(fn − kFp) (28)

Hz where k is an integer number, Fp is the short-time average pitch frequency, and N is the

analysis window length. ev(fn) has harmonics at every kFp Hz, when convolved with h(n),

create harmonics in the final speech spectrum as shown in Fig. 6.

The model described above, although frequently used in speech applications, is a rough

approximation of the actual system. Harmonics in the voiced speech spectrum usually

does not have equal space between the, and sidelobes with variable bandwidths are created

around the harmonics as shown in Fig. 6.

The problems of the harmonic model of speech can significantly degrade the speech

quality. Therefore, an aharmonic model of voiced speech spectrum is proposed that is
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Figure 6: An example GEMS spectrum is shown in the top figure. The output of the HSP
detector is shown in the bottom figure. The number of HSP points at a harmonic location is
variable because of the bandwidth variability. In the GEMS spectrum HSP locations with
two and three points are shown. Moreover, the resolution problem is clearly shown with a
case where the exact harmonic position is in approximately in the middle of the two HSP
locations.

defined by

S
′

v(fn) =






Sv(fn) if fn is an HSP location,

0 if fn is not an HSP location.

(29)

The aharmonic model does not make any periodicity assumption nor does it assume a strict

harmonic structure for the voiced speech spectrum. Detection of HSP locations is discussed

in the next section.

4.1.2 Detection of HSP Locations in Voiced Speech Spectrum Using the GEMS
Device

The GEMS signal is correlated with the air flow velocity at the glottis during voiced speech

[8]. Thus, if both speech and GEMS signals are windowed using the same window, then the

GEMS spectrum can accurately indicate the (HSP) locations in the voiced speech spectrum.
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Moreover, GEMS-based HSP location estimation is independent of the ambient noise since

the GEMS signal is immune to acoustic noise.

The GEMS spectrum is divided into subbands with a bandwidth of pitch frequency,

and HSP locations are detected independently in each band. Pitch information is extracted

from the GEMS signal. An autocorrelation method is used at this step where the maximum-

correlation lag in the interval of 2.5 msec and 10 msec is chosen as the pitch.

A hard-decision thresholding algorithm is used for detecting the HSP locations, and

the binary decisions are stored in a masking vector Ps. Two types of HSP locations are

identified in a given subband:

1. A harmonic location typically covers at least two frequency samples because of the

resolution problem. Therefore, Ps(k) is set to 1 at the two highest energy frequencies

in the subband to detect. The two closest neighbors of the harmonic frequency.

2. An harmonic location can be composed of more than two points as shown in Fig. 6.

Therefore, a derivative rule is used to detect locations that are neighboring an HSP

location and have significantly higher energy compared to a neighboring non-HSP

location. The energy comparison is done as follows. Ps(k) is set to 1 if

(ζk − ζk−1) − (ζk+1 − ζk) > ζth (30)

(k + 1) is a type-1 HSP location, and (k − 1) is a non-HSP location. ζk denotes the

natural logarithm of the signal energy at frequency k. ζth is an energy threshold and

discussed below. Ps(k) is also set 1 if

(ζk − ζk+1) − (ζk−1 − ζk) > ζth (31)

(k − 1) is a type-1 HSP location, and (k + 1) is a non-HSP location. ζk denotes the

natural logarithm of the signal energy at frequency k. The algorithm for setting ζth

is discussed below.

For each subband in a windowed speech frame, a two iteration procedure is followed. In

the first iteration, type 1 locations are found, and in the second iteration, type 2 locations

are found.
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Figure 7: The GEMS spectrum is shown in the bottom figure. It is divided into subbands
with a bandwidth of pitch. At each subband, the two iterations of the HSP detector is
applied. The HSP locations detected in the first iteration is shown in the top figure. The
HSP locations detected after the two iterations are shown in the middle figure.

ζth is initialized to 3 dB for each subband and adjusted adaptively. The HSP detection

algorithm attemps to find at least three HSP locations in each subband. If the number of

HSP locations is less than three for some bands after the two iterations, then ζth is decreased

with a step size of 0.5 dB, and the second iteration is repeated for those bands until at least

three HSP locations are detected or ζth is less than 0.

The initial value of ζth and the step size are found by observing the range of ζ which is

typically between −10 and +10 for voiced GEMS signals. Below 3 dB, some of the HSP

locations could not be detected which degraded the quality for some cases. The quality

does not change when ζth is above 3 dB. The step size of 0.5 dB is set to minimize the

computational complexity. Above 0.5 dB, some harmonics cannot be detected, and quality

degradation is observed for some cases.

An illustration of the algorithm is shown in Fig. 7. The HSP locations detected by the

first iteration are shown in Fig. 7-a. The HSP locations detected by the second and first

iterations are shown in Fig. 7-b. Elements of the masking vector Ps that are not explicitly

set to 1 by the algorithm are by default 0.
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4.2 Speech Enhancement Using the Proposed HSP Detector

The system overview is shown in Fig. 8. The ICF system is used in tandem with an MMSE

estimator [40] for voiced speech while only the MMSE estimator is used for unvoiced speech.

HSP locations are estimated at the ICF block described in the next section. Non-HSP

locations are severely suppressed with a constant suppression factor (Gmin = 10−3) while

the HSP locations are enhanced with the MMSE filter. The suppression factor of the MMSE

filter at frequency k is

Gk =
ζk

1 + ζk

exp

(
1

2

∫
∞

vk

e−t

t
dt

)
(32)

where ζk is the SNR,

vk =
ζk

1 + ζk

λk, (33)

and

1

λk

=
1

λy(k)
+

1

λn(k)
(34)

where λy(k) is the noisy signal power, and λn(k) is the noise power.

The autocorrelation based periodicity feature described in Section 2.4.2.1 is used as the

measure of voicing in a speech frame. Since voicing detection is done using the GEMS

signal, voicing detection is accurate at all noise conditions. Hard thresholding is used for

voicing detection. If voicing is above a hard-threshold, the speech frame is classified as

voiced, and if voicing is below the hard-threshold, the speech frame is classified as unvoiced.
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4.3 Experiments

An A/B subjective quality test and two objective measure tests are used to compare the

performance of the algorithm with the MMSE estimator. Harvard sentences from the AR-

CON database are used for the A/B test. Four male and four female speakers are used with

the Blackhawk helicopter noise and the M2 tank noise under severe noise conditions. A

total of 16 utterances are used in the test. Seven male and seven female listeners took the

test. Among the listeners, five males and five females are native English speakers. Subjects

chose A, B, or same options based on the quality of the enhanced speech utterance and

described the reason for their choice. The question that was directed to the subjects was

“Which sample sounds more pleasant?”.

The A/B subjective quality test results are shown in Table 2. Sixty percent of the time

the proposed system was chosen as the better quality system. Thirteen percent of the time

the MMSE system was favored, and twentyseven percent of the time listeners thought the

quality is the same. Confidence intervals of the subjective test results are shown in Table 3.

Student’s t-test is used to calculate the confidence intervals with a 95 percent confidence

level. The subjective test results show that suppressing the low-power frequencies in the

voiced speech spectrum while preserving the perceptually important HSP locations using

the GEMS device significantly improves the speech quality.

Log-likelihood ratio and segmental SNR measures, which are commonly used objective

measures, are used to objectively assess the performance of the proposed system. The

segmental SNR (S-SNR) measure and the log-likelihood ratio measure, using the LP coeffi-

cients, are defined in Chapter 2. The M2 tank noise and the Blackhawk helicopter noise were

used for testing. Fifteen minutes of speech from the DRT test set of ARCON database was

hand-labeled and segmented into five voiced phonetic classes and one unvoiced/non-speech

sound class for the objective measure tests.

The voicing threshold of 0.7 proposed in [44] is found to perform well in the experiments.

The system is also tested with threshold values above and below 0.7. Speech quality did

not degrade noticeably for the tested utterances if the threshold values are between 0.6 and

0.8. Below 0.6, musical noise is observed because unvoiced speech is enhanced using the
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GEMS signal which does not contain information for unvoiced speech. Above 0.8, sound

quality starts degrading because some of the voiced speech frames are not enhanced with

the proposed system.

4.3.1 Results

Table 2: Results of the A/B speech quality tests.
Preference Percentage

Proposed System 60

MMSE system 13

Same 27

Table 3: 95 percent confidence intervals of the A/B test results using student’s t-test.
Preference Confidence Interval

Proposed System [56, 64]

MMSE system [8, 17]

Same [21,32]

The segmental SNR and the log-likelihood ratio results for the M2 tank noise are shown

in Tables 4 and 5 respectively. Performance is compared for the voiced classes only since

the ICF system is used for voiced sounds. The proposed system has higher S-SNR for all

sound classes and both noise types. Significant difference in the log-likelihood ratio measure

is not observed in the proposed system compared to the baseline system. Similar results

were obtained for the Blackhawk helicopter noise as shown in Tables 6 and 7.

Table 4: Comparison of the proposed system with the noisy system using the segmental
SNR measure for the M2 tank noise. Highest SNR cases are shown with bold fonts.

Phone Class Noisy (dB) Baseline (dB) Proposed System (dB)

Voiced Fricative -8.9 -5.0 -4.6

Voiced Plosive -8.8 -4.3 -3.5

Vowel -1.5 2.6 3.2

Semivowel -5.5 -0.6 0.2

Nasal -7.8 -1.9 -1.0
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Table 5: Comparison of the proposed system with the noisy system using the log-likelihood
ratio measure for the M2 tank noise.

Phone Class Noisy Baseline Proposed System

Voiced Fricative 1.3 0.9 0.9

Voiced Plosive 1.6 1.1 1.1

Vowel 1.0 0.6 0.5

Semivowel 2.2 1.5 1.4

Nasal 1.5 0.9 0.9

Table 6: Comparison of the proposed system with the noisy system using the segmental
SNR measure for the Blackhawk helicopter noise. Highest SNR cases are shown with bold
fonts.

Phone Class Noisy (dB) Baseline (dB) Proposed System (dB)

Voiced Fricative -9.4 -5.6 -4.8

Voiced Plosive -9.0 -5.3 -3.8

Vowel -3.0 2.8 3.0

Semivowel -6.3 -0.3 0.1

Nasal -8.4 -2.4 -1.9

Table 7: Comparison of the proposed system with the noisy system using the log-likelihood
ratio measure for the Blackhawk helicopter noise.

Phone Class Noisy Baseline Proposed System

Voiced Fricative 1.61 1.23 1.29

Voiced Plosive 2.18 1.90 1.90

Vowel 1.15 0.99 0.99

Semivowel 2.50 2.35 2.35

Nasal 1.96 1.69 1.69
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CHAPTER V

SPARSE REPRESENTATION OF VOICED SPEECH

SPECTRUM FOR NOISE-ROBUST LPC EXTRACTION

Linear prediction (LP) is a widely used parametric model of the speech spectrum that

creates a perceptually attractive model of the spectral envelope partly because it models

the perceptually important spectral peaks more accurately than the spectral valleys [128].

However, in additive noise environments, resolution of the spectral peaks in the linear

prediction (LP) spectrum decrease which can significantly reduce the quality of the coded

speech [73]. Moreover, performance of the LP-based ASR systems drop substantially with

increased background noise [114]. Therefore, it is important to develop noise-robust linear

prediction coefficients (LPC) extraction algorithms that are immune to background noise.

Such algorithms can find applications in all speech applications, such as parametric speech

coders [128] and automatic speech recognition (ASR) [114], where the LP method is used.

There are noise-robust LPC extraction systems that perform relatively well for some

noise types and Signal-to-Noise-Ratios (SNR). The system proposed in [72] uses iterative

MAP estimation to estimate the LPC parameters in noisy environments. EM algorithm

is used for ML estimation of the LPC parameters in [33]. A subspace method is proposed

in [22] that generates mean pole locations that are close to correct locations while having

small error variance.

In the previous chapter, an aharmonic comb filter (ICF) is proposed to enhance noisy

speech. In this chapter, noise-robust extraction of LPC parameters using the ICF system is

discussed. In a noisy environment, suppressing the signal at the non-HSP frequencies can

increase the accuracy of the LPC parameters because the LP method can still model the

spectral envelope of voiced speech when a significant portion of the spectrum is severely

suppressed. For example, if pitch and LPC order are low enough, LPC can generate a

smooth spectral envelope of voiced speech using the envelope information available only at
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the harmonic frequencies. A more detailed analysis of the effect of sparse spectrum on LPC

extraction is done below. Noise-robust LPC extraction using the aharmonic comb filter is

discussed in Section 5.1.1. Experimental results are presented in Section 5.2.

5.1 Effect of Sparse Spectrum on LPC Extraction

Using the LPC parameters aj,k at speech frame k, the speech signal

sk(n) =
L∑

j=1

sk(n − j)aj,k + ek(n) (35)

where L is the LPC order, and ek(n) is the residual signal. The LPC parameters, aj,k, can

be derived by minimizing the total energy of the residual noise

ǫk =
∞∑

n=−∞

(ek(n))2 (36)

Using Eq. 35, the speech spectrum

Sk(z) = E(z)Hk(z) (37)

where

Hk(z) =
1

1 −
∑L

k=1 aj,kz−k
. (38)

Using Eq. 37 and the Parseval theorem, the spectral domain equivalent of Eq. 36 is

ǫk =

∫ π

−π

|Sk(z)|2

|Hk(z)|2
. (39)

An interesting property of the LP method is that it can generate a smooth spectral

envelope of a sparsely represented spectrum such as in the case of voiced speech [128]. One

way of understanding the way LPC handles the sparse spectrum is by analyzing the error

function in Eq. 39. In a sparse spectrum, some of the frequencies are severely suppressed

and Sk(z) is significantly smaller than the spectral envelope Hk(z). In this case, the ratio in

the error term at those frequencies are significantly smaller compared to the frequencies that

are not suppressed. Therefore, the LPC extraction algorithm becomes insensitive to those

suppressed parts of the spectrum, and LPC fits a model based on the available spectrum.

As long as the LPC order is low enough and the sampling rate of the spectrum is high
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enough, LPC does not follow the fine structure of the spectrum. Hence, the resulting LPC

spectrum is usually a good approximation of the LPC spectrum with the complete data for

the speech signal.

In the next section, use of sparse spectral representation for noise-robust extraction of

the LPC parameters from voiced speech is described.

5.1.1 Noise-robust LPC Extraction Using the Aharmonic Comb Filter

Voiced speech signal is typically modeled with a smooth all pole transfer function h(n)

driven by a quasistationary source signal e(n). The spectrum of e(n) is similar to an impulse

train where each impulse occurs at the integer multiple of the fundamental frequency F0.

Thus, the voiced speech spectrum S(k) is a sampled version of H(k) at the HSP locations.

Although there is still some energy at the non-HSP locations, it is negligible compared to

the energy at the HSP locations for clean speech as shown in Fig. 10.

While the lack of spectral information at the non-HSP locations typically does not affect

the operation of LPC, the effect of relatively low power at those frequencies should be taken

into account in noisy environments. Non-HSP locations typically have significantly lower

SNRs compared to HSP locations in a noisy environment which can significantly distort

the LPC spectrum. However, this problem can be ameliorated if the HSP locations are

detected and the signal at the non-HSP locations are severely suppressed. The ability of

LPC to handle such sparse spectral representations can improve the LPC spectrum in noisy

environments especially if noise is concentrated in the low frequency bands where most of

the speech signal resides.

The ICF system described in the previous chapter is used to detect and suppress the

non-HSP locations in voiced speech as shown in Fig. 9. The speech signal spectrum S(k)

is labeled voiced or unvoiced using the voicing detector described in Section 4.2. If the

frame is labeled as voiced, then the ICF system suppresses the non-HSP locations, and

LPC parameters are extracted from the sparse spectral representation.

Fig. 10 shows a case where the spectrum of the voiced speech is contaminated with the

Blackhawk helicopter noise at 0 dB, and the LPC spectrum of the noisy speech is highly
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Figure 9: Overview of the proposed LPC extraction system. S(k) is the spectrum of the
speech signal, and R(k) is the spectrum of the radar signal.

distorted compared to the clean spectrum. Resolution of the formant frequencies in the

LPC spectrum significantly degrades for the noisy signal in Fig. 10 where all three peaks at

the formant locations are smoothed because of noise. When non-HSP locations are detected

and suppressed, a sparse spectral representation of the noisy speech is obtained. Fig.10-

b illustrates the resulting spectrum for the case shown in Fig. 10-a. The LPC spectrum

of the sparse spectrum resembles the clean speech spectrum in the first formant region.

Moreover, the third formant is more prominent relative to noisy speech although its position

is shifted compared to the clean case. Furthermore, the overall spectral level is much closer

to the clean case when the non-HSP locations are suppressed. Thus, suppressing the non-

HSP locations without any further spectral enhancement significantly improves the LPC

spectrum in this example.

5.2 Experiments

Fifteen minutes of 8 kHz speech samples from the DRT sequences in the ARCON database

have been hand-labeled into five phonetic classes that represent voiced phonemes. Itakura-

Saito (IS) objective measure is used to compare the performance of the proposed system

with the noisy system for each class. Background noise is added electronically to clean

speech. Segmental SNRs for both environments are 0 dB in these experiments.
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Figure 10: Illustration of noise-robust LPC extraction with the proposed system. The noisy
spectrum and its LPC spectrum are shown in (a). The noisy spectrum processed with the
proposed system and its LPC spectrum are shown in (b). The clean spectrum and its LPC
spectrum are shown in (c). Comparison of the LPC spectra of the clean spectrum, noisy
spectrum, and the processed spectrum is shown in (d).
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Table 8: Performance results in terms of Itakura-Saito distortion measure. LPC spectrum
is created with the full-spectrum in the baseline system. Sparse spectrum is used for LPC
extraction in the proposed system. M2 tank noise used.

Phone Class Baseline Proposed System

Voiced Fricative 5.4 2.8

Voiced Plosive 5.3 3.2

Vowel 5.7 4.3

Semivowel 5.9 3.4

Nasal 5.4 2.9

Table 9: Performance results in terms of Itakura-Saito distortion measure. LPC spectrum
is created with the full-spectrum in the baseline system. Sparse spectrum is used for LPC
extraction in the proposed system. Blackhawk helicopter noise is used.

Phone Class Baseline Proposed System

Voiced Fricative 6.4 3.4

Voiced Plosive 6.5 3.5

Vowel 6.8 4.7

Semivowel 7.0 3.9

Nasal 6.6 3.2

The results are shown for the M2 tank noise and the Blackhawk helicopter noise envi-

ronments in Tables 8 and 9 respectively. The proposed system reduces the mean IS distance

significantly for all phoneme classes and both noise types. An interesting point to note is

the relatively smaller gain for the vowel class. Vowels have relatively higher energy, and ,

they are more immune to additive noise compared to other voiced sounds.

5.3 Conclusion

The ICF system described in the previous chapter is used for noise-robust extraction of the

LPC parameters. A sparse spectrum is created by suppressing the non-HSP frequencies

using the ICF system. The LPC extraction algorithm is theoretically shown to be robust

to such sparse spectral information. The objective measure test using the Itakura-Saito

spectral distance shows significant improvement in the LPC parameters compared to the

noisy case. The proposed system can be used to increase the noise immunity of all speech

applications that use the LPC parameters such as ASR and speech coding.
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CHAPTER VI

SEGMENTATION-BASED ENHANCEMENT OF THE

NOISY SPEECH SIGNAL FOR INTELLIGIBILITY

IMPROVEMENT IN MELP SPEECH CODERS

Despite significant progress in improving the robustness of speech coders in noisy environ-

ments, intelligibility of parametric speech coders still decreases significantly in harsh noise

environments [117]. The problem is particularly important for military applications where

clearly understanding the correct message is critical. In this work, the intelligibility problem

of a 2400 bps MELP coder in harsh noise environments is addressed using a front-end noise

suppression system.

Noise-robust signal processing systems for parametric speech coders can be grouped into

three broad categories. The first category of methods uses acoustic properties, such as mi-

crophone design including microphone arrays. In harsh-noise environments, or in situations

where such elaborate measures are not practical, other processing must be performed. The

second category of systems attempts to estimate clean speech parameters from the noisy

speech signal [74],[148],[93],[128],[59],[22],[92]. The third category of systems attempt to

suppress the noise in the speech signal before extracting the speech parameters. For exam-

ple, the state-of-the-art 2400 bps MELPe speech coder uses this approach [7], as do systems

proposed in [1], [141], [19], [55], and [91].

Among the noise suppression techniques, there are methods that leverage auxiliary sen-

sors in addition to a noisy acoustic microphone channel[65],[28],[117]. In [65], a glottal cor-

relation filter was designed using an auxiliary device (GEMS), and significant intelligibility

improvement over the MELPe coder as measured by the Diagnostic Rhyme Test (DRT) was

reported. However, most of the improvement was obtained by enhancing tranmission of the

voicing feature. The system proposed in [117] fused a GEMS signal, a throat-mounted,
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gel-suspended accelerometer (p-mic) signal, and a bone-coupled accelerometer signal with

an acoustic microphone signal. The fusion algorithm used the estimated quality of each

signal in various frequency bands. The system described in [137] fused a high-pass filtered

accelerometer signal mounted on the throat with a low-pass filtered noise cancelling micro-

phone signal to improve intelligibility of coded speech in harsh-noise environments. This

same system was extended in [138] by using additional sensors with different frequency band

configurations.

Most of the previous statistical speech enhancement systems lack the ability to exploit

the acoutic-phonetic properties of speech sounds. There have been efforts to include such

a priori knowledge of the speech signal into the enhancement algorithm. In [42], a Hidden

Markov Model (HMM) was trained using clean speech, and the noisy speech was segmented

into stationary states using ergodic HMM. Although those systems were found to perform

improvement in quality, they still do not fully exploit the acoustic-phonetic knowledge of

speech since the HMM states do not necessarily correspond to any phonetic events. The

system proposed in [34] had five states that represented five phoneme classes. The speech

signal is segmented into one of those phoneme classes, and a class specific filter is applied

to each segment. The system has inaccurate segmentation problems, does not make any

distinction between voiced and unvoiced speech, and it is not designed for an intelligibility

improvement task.

A Bayesian risk minimization (BRM) framework is proposed for speech enhancement in

Chapter 3. One of the key aspects of the BRM framework is that each sound class should be

enhanced based on its acoustic-phonetic properties and the goal of the enhancement system.

In this chapter, a speech enhancement system is proposed that uses the acoustic-phonetic

properties of speech. Speech is segmented into a number of broad-level sound classes, and

each sound-class (e.g. vowels) is treated differently based on its acoustic-phonetic properties.

The signal presence detection framework [15],[75], [96] is used to detect perceptually

important speech cues. These important regions of the spectrum are mildly suppressed

while the rest of the spectrum is more aggresively suppressed to minimize the risk of deleting

low-energy speech cues that are vital for intelligibility.
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Previously reported systems that use the signal presence detection idea typically use

an SNR-based signal presence measure that becomes less reliable with decreasing SNR.

They are mostly targeted at increasing the subjective quality of the speech signal, which is

primarily related to vowel and silence segments. Oversuppressing the low-SNR frequency

regions typically emphasizes the formant frequencies in vowels and reduces the residual

and tonal noise. However, oversuppression runs the risk of erasing the acoustic cues for

low-energy consonant sounds that can degrade the intelligibility as discussed in Chapter 3.

The proposed system reduces this risk by exploiting the acoustic-phonetic knowledge of the

speech and the auxiliary sensor signals in addition to the estimated SNR.

This chapter is organized as follows. The challenge of SNR-based signal presence de-

tection is discussed in Section 6.1. Auxiliary sensors that are used in this work are briefly

described in Section 6.2. The proposed system is described in Section 6.3. The general

methods that are used for signal presence detection are explained in Section 6.4, and the

combination of methods that are used for each sound class are described in Section 6.5. Ex-

perimental results are presented and discussed in Section 6.6. The results are summarized

in Section 6.7.

6.1 Problem Definition

In frame-based, linear speech enhancement systems, the clean speech signal at frame k and

frequency i is estimated by

X̂(k, i) = Y (k, i)G(k, i) (40)

where X̂ is the estimate of the clean speech signal X, Y is the noisy speech signal, and G is

the suppression factor. G is typically estimated using estimated SNR which is defined as

ζ(k, i) = 10 log10

(
|X̂(k, i)|2

σ̂2
N(k,i)

)
(41)

where σ̂2
N is the estimated noise variance.

The speech signal does not exist at all points in the time-frequency plane in a noisy

speech utterance. Therefore, probability of signal presence (Ps) can be estimated and used
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to modify the gain function. Typically,

Ps = f(ζ), (42)

and the new gain function is

G
′

(k, i) = f(G, Ps) (43)

where f(.) and g(.) are nonlinear functions. The general goal is to decrease G to oversuppress

the noisy signal when Ps gets lower.

The signal presence detection can measurably improve speech quality. However, in-

telligibility of speech is dependent on low-energy consonant cues that can be significantly

distorted with SNR-based oversuppression. The low-energy cues typically have relatively

lower SNR in a noisy environment, and SNR-based oversuppression has a high risk of

erasing these important speech cues as described in Chapter 3.

The problem of intelligibility is mainly related to the inadequacy of the SNR information

in detecting the presence of low-energy, perceptually important consonant cues as discussed

above. Two methods to detect signal presence in addition to the SNR-based detection are

described below.

6.2 Auxiliary Sensors

Two auxiliary sensors, the gel-suspended accelerometer (p-mic) [117] and the general elec-

tromagnetic sensor (GEMS) device [8], are used in addition to the acoustic microphone in

this chapter.

The GEMS device is described in Chapter 2. The p-mic device is a piezo-electric-based,

gel-suspended vibrometer [124]. It can detect the vibrations on the skin during voiced

speech if placed on the throat. The p-mic device is used in the segmentation block of the

proposed system.

Both the GEMS and the p-mic devices provide voicing information. However, the GEMS

spectrum typically has a higher bandwidth than the p-mic spectrum as shown in Fig. 11.

Although the GEMS signal is robust to ambient noise, it can be noisy in cases of excessive

skin fat and/or sensor misplacements. Therefore, the p-mic signal is used to complement
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Figure 11: A spectrogram of the GEMS signal is shown in the top figure. A spectrogram
of the p-mic signal is shown in the same figure for the same syllable sound. Sampling rate
is 8 kHz for both signals.

the GEMS signal in the segmentation algorithm.

6.3 Proposed System

The general overview of the proposed system is shown in Fig. 12. The segmentation block

uses the noisy speech signal, the GEMS signal, and the p-mic signal to segment noisy speech

into broad-level acoustic-phonetic classes. The signal presence detection block uses the

segmentation information, the high-signal-power (HSP) information for voiced speech, and

the SNR estimates to evaluate the signal presence probability Ps. The MMSE estimator

uses Ps to achieve oversuppression at the frequencies where speech has a low probability of

existence.

The SNR estimation block uses spectral subtraction to estimate the clean speech spec-

trum. The noise spectrum is estimated by assuming stationary noise and averaging the

spectra of the first ten noise-only frames of a noisy speech utterance using the segmentation

information. Given the estimate of the noise power spectrum at frequency k and time frame

56



SEGMENTATION

SNR

ESTIMATOR

HARMONIC

TRACKER

P-MIC Signal

Noisy Speech

GEMS signal

SIGNAL

PRESENCE

DETECTION

MMSE

ESTIMATOR

Enhanced Speech

Sound Class

Ps

SNR

Harmonic 

Locations

Figure 12: An overview of the proposed system. The speech signal is segmented using the
noisy acoustic signal, the GEMS signal, and the p-mic signal. The segmentation information
is used in addition to the SNR information and HSP locations for voiced speech to detect
signal presence. Signal presence probability (Ps) is used at the speech enhancement block.

i, σ̂2
N (k, i), and using the spectal subtraction technique, the estimate of the signal power is

|X̂(k, i)|2 = |Y (k, i)|2 − σ̂2
N (k, i) (44)

where |Y (k)|2 is the noisy signal power. The SNR estimate is

ζ̂(k, i) = 10 log10

(
|X̂(k, i)|2

σ̂2
N (k, i)

)
(45)

The HSP detector is discussed in detail in Chapter 4. The segmentation algorithm and

the MMSE estimators are discussed below.

6.3.1 The Segmentation Algorithm

The segmentation algorithm detects the sound class of a speech segment based on hard-

decision thresholding of the incoming sensor signals and noisy speech [30]. The noisy speech

is segmented into vocalics, unvoiced fricatives, unvoiced plosives, transitional sounds, tran-

sients, voiced plosives, voiced fricatives, and silence. Transitional sounds include liquids,

glides, nasals, and consonant to vowel transitions. Vocalics are highly voiced and relatively
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Table 10: Combinations of the acoustic-phonetic, HSP location, and SNR information
that are used for signal presence detection are illustrated for each sound class.

Sound Class Acoustic-phonetic HSP SNR None

Vocalics X 0 − 4 kHz X X

Unvoiced Fricatives 0 − 2 kHz X X 2 kHz − 4 kHz

Unvoiced Plosives 0 − 400 Hz X X 400 Hz − 4 kHz

Transitional Sounds X X X 0 − 4 kHz

Transients X X X 0 − 4 kHz

Voiced Plosives X 0 − 500 Hz X 500Hz − 4 kHz

Voiced Fricatives X 0 − 2 kHz X 2 kHz − 4 kHz

Silence X X 0 − 4 kHz X

stable regions of speech such as stable portions of vowels. Transients are defined in the next

paragraph.

The segmentation algorithm works on a sample basis as opposed to the enhancement

algorithm that works on a frame basis. Therefore, in the enhancement phase, a speech

frame may include speech samples from more than one sound. If the speech frame includes

samples from two sound classes, the system picks the sound class that has a higher portion

of the speech frame. If more than two classes are included, then the frame is labeled as

transient.

6.3.2 The MMSE Estimator

The gain function of the estimator is modified by taking into account the risks of misesti-

mation based on the algorithm proposed in [15]. The modified gain function is

G
′

= GPsG1−Ps

min (46)

where G is the original gain function of the MMSE estimator discussed in Chapter 4, Gmin is

set to 10−3 , and Ps is the signal presence probability. The term signal presence probability

is used to indicate the probability of existence of a perceptually important speech signal.

The spectral bands that have a high chance of carrying useful speech information are mildly

suppressed while low probability bands are more severely suppressed.
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6.4 Methods Used in Signal Presence Detection

Three methods are employed in the proposed system to minimize the perceptual costs

of misestimations in the enhanced speech. The first method uses the acoustic-phonetic

knowledge of speech to oversuppress the perceptually irrelevant parts of the spectrum while

preserving the salient cues. Oversuppressing the irrelevant parts of a consonant spectrum

does not generate a significant distortion in perceptual quality. Moreover, it increases the

intelligibility in noisy environments because the residual noise in the irrelevant parts of

the spectrum can degrade intelligibility. For example, in unvoiced fricatives, such as /s/,

the speech signal is typically concentrated above 2 kHz. Therefore, Ps for frequencies

below 2 kHz can be set to 0. Fig. 14 shows a case where preserving the signal at the

higher frequencies while oversuppressing the lower frequencies helps distinguish an unvoiced

fricative from a voiced fricative. This method not only suppresses a significant amount of

noise in the signal, but also increases the DRT scores for sibilation as will be shown in

Table 12.

In the voiced speech spectrum, most of the speech energy is concentrated in high-signal-

power (HSP) locations. The signal presence detection system must detect those high-signal-

power (HSP) locations to generate high quality speech, which is not always possible with the

SNR methods. The second method utilizes the GEMS signal for detecting (HSP) locations

in the voiced speech spectrum. HSP locations detected by the GEMS signal are assigned a

signal presence probability (Ps) of 1 while non-HSP frequencies are assigned a Ps of 0. The

HSP detector described in [29] is used. An illustration of HSP detection is shown in Fig. 7.

The third method uses estimated SNR at each frequency and assigns soft Ps values as

proposed in [15]. This method is used only when silence is detected because of the problems

with the SNR-based signal presence detection mentioned in the previous chapter.

A different strategy is used for each sound class based on the acoustic-phonetic charac-

teristics of the sound classes and knowledge of human perception using the combination of

the three methods. The proposed strategies are described in the next section.
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6.5 Sound Class Dependent Signal Presence Detection

The proposed system combines the segmentation information, HSP locations, and the esti-

mated SNR to maximize the intelligibility of speech sounds using a signal presence detection

framework. The key idea is to oversuppress the noisy signal to improve the quality without

significantly distorting the perceptual cues that are vital for identifying the speech sounds.

The algorithm segments noisy speech into vocalics, unvoiced fricatives, unvoiced plosives,

transitional sounds, transients, voiced plosives, voiced fricatives, and silence as described in

Section 6.3. The signal presence detection strategy for each sound class is discussed below,

and a summary is shown in Table 10.

6.5.1 Vocalics

Vocalics are important determiners of the perceptual quality of speech [58], and their quality

primarily depends on the formant locations and bandwidths that are mainly determined by

the HSP locations. Therefore, the HSP detector is used for the vocalic class, and Ps is set

to 1 for the HSP locations.

Undersuppression of non-HSP locations can create noticeable residual noise [24],[130].

, and oversuppression of the non-harmonics emphasizes the harmonic trajectories in the

spectrogram which can be important for the intelligibility of a neighboring consonant [25].

For example, formant transitions are critically important for identifying the initial plosive

sounds. Therefore, Ps is set to 0 for the non-HSP locations.

6.5.2 Unvoiced Fricatives

Acoustic-phonetic knowledge can be used for sibilated unvoiced fricatives such as /s/ and

/sh/. The spectral cues for these sounds are typically above 2 kHz, and they do not

contain significant speech energy in the lower frequencies [46]. Therefore, Ps is set to 0 for

the 0 − 2 kHz for these sounds.

Unsibilated fricatives, such as /th/ and /f/, have significant energy below 2 kHz [46].

However, oversuppression of the spectrum below 2 kHz improves intelligibility by empha-

sizing the high frequency frication, and it does not create significant confusion between
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sibilated and non-sibilated unvoiced fricatives, because of the loss of low-frequency infor-

mation, as discussed in the experiments section.

The SNR information is available above 2 kHz for oversuppressing the noisy signal.

However, above 2 kHz, using the SNR method runs the risk of removing the low-energy

frication cues. Moreover, the signal is expected to be everywhere in the spectrum above

2 kHz for unvoiced fricatives. Thus, Ps is set to 1 for the 2 kHz − 4 kHz range.

6.5.3 Unvoiced Plosives

Typically, the fundamental frequency of voiced sounds is in the 0− 400 Hz range, and first

couple of harmonics in that range are important in pitch perception [101]. Therefore, the

0 − 400 Hz range is assigned a Ps of 0, and the low-frequency parts of the spectrum are

severely suppressed to decrease the chance of confusing an unvoiced plosive with a voiced

sound [26]. Moreover, the burst cues of plosives are usually not at these low frequencies,

and the risk of erasing perceptually important burst cues is low.

Ps is set to 1 for the 400− 4000 Hz range of unvoiced plosives. The SNR method does

not perform well for this region since low-SNR burst cues may be erased by the algorithm,

and SNR estimation errors can further create significant loss of cues or generate false cues.

6.5.4 Voiced Plosives

First two or three harmonics are important in the perception of voicing as described above.

The SNR method is not always capable of resolving the fundamental frequency at low

SNRs. In Fig. 13, a spectrum of a voiced plosive is contaminated with M2 noise. Not only

is the harmonic pattern in the low frequencies are distorted, but also the SNR information

is not useful in oversuppressing the non-harmonics, since all frequencies below 500 Hz have

high SNRs.

The GEMS signal can accurately indicate the first few harmonics for voiced plosives.

Hence, the HSP method is used for the first 500 Hz of voiced plosives to emphasize the

harmonics at these low frequencies. Similar to the unvoiced plosives case, a Ps of 1 is used

for all frequencies above 500 Hz.
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Figure 13: Power spectrum of a 20 msec speech sample taken from the bust location of a
clean plosive sound is shown in the top figure. The middle figure shows the same spectrum
contaminated with M2 tank noise at 0 dB. The bottom figure shows the SNR (dB) of the
noisy spectrum. Mean noise power is used to estimate the SNR. HSP locations in the first
500 Hz of the spectrum are marked.
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6.5.5 Voiced Fricatives

In voiced fricatives, both lower and higher frequencies contain important cues. Low fre-

quencies are important because they indicate voicing in the signal, and high frequencies are

important because they indicate frication in the sound.

The HSP method is used for the frequency range of 0 − 2 kHz to create a harmonic

pattern in this range to perceptually emphasize voicing. Although a fricative sound may

not have a harmonic structure up to 2 kHz, using the HSP method is not found to create

any perceptually audible artifact. Similar to unvoiced fricatives, the Ps is set to 1 for the

2 kHz − 4 kHz range to preserve the low-energy frication cues.

6.5.6 Transitional Sounds and Transients

Although the GEMS device can often receive a signal during transitional sounds and tran-

sients, the HSP detector sometimes fails to detect perceptually important HSP locations

because of the relatively weaker GEMS signal, particularly at the voicing onsets. Therefore,

the HSP detector is not used for these voiced sounds.

Low energy sounds, such as nasals, are prone to suppression of valuable cues with the

SNR method. Furthermore, the human ear can mask a significant amount of background

noise at the rapidly changing transitional regions [118]. Therefore, the SNR method is also

not considered for the transitional sounds and transients.

Given the limitations of the HSP method and the SNR method, Ps is set to 1 for the

whole spectrum for transitional sounds and transients.

6.5.7 Silence

Undersuppression has a high risk of creating residual noise and tonal artifacts for silence

segments. Therefore, the signal is oversuppressed at all frequencies when silence is detected.

The acoustic-phonetic knowledge can be used to completely suppress the silence regions.

However, listeners prefer a low-level comfort noise, and enhanced speech sounds less pleasing

when silence segments are completely suppressed. Moreover, the segmentation algorithm

is not perfect, and the SNR method reduces the risk of oversuppressing the speech cues
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Table 11: Parameter values used by the proposed speech enhancement system.
Parameter Value

Frame Length 256 samples

Frame Rate 128 samples

Window Type Hanning

Gmin 10−3

Sampling Rate 8 kHz

in the case of a segmentation error, since the high SNR speech cues can be detected and

preserved with the SNR method. Therefore, the SNR method is used to detect the signal

for the whole spectrum.

6.6 Experiments

The proposed system is used at the front-end of the 2.4 kbps MELP speech coder and

compared with the MELPe NATO speech coding standard. The MELPe coder uses the

MMSE estimator (M-MMSE) described in [89] in concatenation with the MELP speech

coder. The Diagnostic Rhyme Test (DRT) is used to measure the intelligibility of coded

speech. Experiments are conducted as per ITU recommendations [4]. The subjects consisted

of six native English speakers, and each subject had at least one hour of previous experience

with the DRT testing. Test materials were roughly 15 minutes duration, containing 696

DRT syllables spoken by three male and three female, trained native English speakers.

M2 noise was used for testing since it had been found to be the most challenging test

environment used during the development of MELP coders. Speech is recorded using a

noise-cancelling microphone, with SNR approximately 0 dB 1. Parameters of the speech

enhancement system are given in Table 11.

Description of the DRT is made in the next section. Experimental results are presented

and discussed in Section 6.6.3.

1The speech and sensor data is from a subset of the ARCON speech database that is created as part of
the DARPA Advanced Speech Encoding (ASE) program
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6.6.1 Description of the Diagnostic Rhyme Test (DRT)

The DRT is an intelligibility test that for diagnosing weaknesses in a voice communication

system [140]. Consonant-Vowel-Consonant (CVC) monosyllables are presented to a set

of listeners continuously; each listener makes a choice between the true syllable and an

alternative false syllable. The true and false syllables differ only in their initial consonants

with these differing only by one distinctive feature. Thus, the test is designed to diagnose

intelligibility problems of initial consonants. It is well known that this test correlates highly

with other, more complex, intelligibility tests.

There are six distinctive features that are used in DRT, which include voicing, nasal-

ity, compactness, sibilation, sustention, and graveness. They are briefly described in Sec-

tion 6.6.3. After a complete test is administered to a given listener, intelligibility scores for

each feature and total intelligibility score is calculated. The intelligibility score for a feature

i is calculated using

Score(i) =
(Number of correct answers)

(Total number of questions)
100, (47)

and

Total Score =
1

6

6∑

i=0

Score(i). (48)

The score for each individual feature can be used to diagnose the particular problems with

the communication channel. All listeners’ scores are used for calculating averages and

standard errors, which are then used for significance testing.

DRT results of two systems are shown in Table 12. These will be discussed in Sec-

tion 6.6.3.

6.6.2 Analysis of Segmentation Errors

In the proposed system, errors in segmentation can potentially degrade the DRT scores.

Therefore, segmentation errors are analyzed to understand their effect in the final DRT

scores and results are shown in Table 13. Long-duration, high-energy voiced sounds can

be detected by the segmentation algorithm because the p-mic and the GEMS signals can

reliably indicate these sounds. However, problems occur frequently with fricatives and
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Table 12: The DRT scores for each distinctive feature compared for MELP encoded speech
in 0 dB M2 noise environment.

Feature M-MMSE Proposed System p value

Voicing 68.62 75.63 0.12

Nasality 60.7 91.86 0.0001

Sustention 60.3 60.09 0.19

Sibilation 74.41 81.79 0.18

Graveness 68.27 74.43 0.14

Compactness 77.09 77.5 0.21

Total 68.23 76.88 0.0001

plosives. For example, voiced plosives and voiced fricatives were rarely detected as shown

in Table 13. Therefore, the analysis of segmentation errors is constrained to plosives and

fricatives.

The following procedure was used for analyzing the segmentation errors. Spectrograms

and segmentation data for all monosyllables were aligned and analyzed manually for errors.

An example alignment is shown in Fig. 14. Two types of errors are considered. A detection

error occurs when the correct consonant is not detected in its time boundaries. A confusion

error occurs when the consonant is confused with another sound.

The detection and confusion information is recorded for the initial consonants only,

as described above. The segmentation algorithm sometimes detects more than one initial

consonant. The time boundaries for the correct sounds are not known since the clean signal

is not available. Therefore, subjective judgment is used to decide which sound is detected

at the time boundary of the correct sound. Ambiguous cases rarely occurred, and errors in

the subjective judgments were not expected to create a statistically significant bias.

The sound detection rate for four consonant types are shown in Table 13. Confusion

rates between the four consonant types are shown in Table 14. The detection and confusion

data is used for the discussion of the results below.

6.6.3 Results

Experimental results are shown in Table 12. The proposed system has a higher mean

DRT score than the M-MMSE system. Statistical significance of the results are measured

using paired student’s t-test with 95 percent confidence interval. The p value indicates
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Table 13: Detection rates (%) of the four consonant sounds using the segmentation algo-
rithm.

Detected Not Detected

Unvoiced Plosives 53 47

Unvoiced Fricatives 43 57

Voiced Fricatives 4 96

Voiced Plosives 10 90

Table 14: Mutual Confusion rates (%) among four consonant classes using the segmentation
algorithm.

Voiced Unvoiced Voiced Unvoiced
Plosives Plosives Fricatives Fricatives

Voiced Plosives X 38 0 4

Unvoiced Plosives 0 X 0 29

Unvoiced Fricatives 3 4 0 X

Voiced Fricatives 19 4 X 8

the probability that the proposed system has a higher score than the M-MMSE system.

Analysis of results for each feature type is described below.

6.6.3.1 Voicing

The voicing feature discriminates a voiced consonant from its unvoiced cognate. For exam-

ple, voiced plosives and unvoiced plosives can be discriminated using the voicing feature.

The proposed system improves the voicing feature compared to the M-MMSE system as

shown in Table 12.

One of the expected effects of using the GEMS signal was improvement in the voicing

feature. The idea was to detect the voiced sounds using the segmentation algorithm, and

emphasize harmonicity and voicing using the HSP detector. However, the improvement in

the voicing feature is modest and below the expected gains. The major reason that limited

the improvement in the voicing feature was found to be the errors in the segmentation

algorithm as discussed below.

Since the auxiliary sensors can indicate voicing in speech, when confusion occurs, voiced

sounds are expected to be confused with other voiced sounds, and unvoiced sounds are

expected to be confused with silence or other unvoiced sounds. However, this is sometimes

not the case, particularly for voiced plosives and voiced fricatives as shown in Table 14.
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Figure 14: Spectrograms of the M-MMSE algorithm and the proposed system are compared
for a monosyllable sample to show the improvement in the voicing feature. The DRT word
pairs are “SAID” and “ZED,” and the true word is “SAID.” The top figure illustrates the
output of the M-MMSE estimator, the middle figure illustrates the output of the proposed
system, and the bottom figure illustrates the segmentation data.

Confusions of voiced sounds with unvoiced sounds can be attributed to the fact that the

auxiliary sensor signals are also noisy, and they typically have lower energy for the voiced

fricatives and voiced plosives compared to the high-energy voiced sounds such as vowels.

Such confusions limit the improvement in the voicing feature.

Most of the voiced plosives and voiced fricatives are not detected by the segmentation

algorithm. They are typically labeled as transition sounds when not confused with an un-

voiced sound. The transition sounds are enhanced without any oversuppression. Therefore,

the low detection rate of voiced consonants did not significantly degrade the voicing feature.

Voiced plosives are frequently confused with unvoiced plosives as shown in Table 14.

However, this usually does not affect the voicing feature because the confusions are found

to occur only at the burst location but not at the following voiced aspiration phase. Thus,

the burst is labeled as unvoiced plosive but the following aspiration part is typically labeled
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Figure 15: An example case is shown where the segmentation error causes confusion in
voicing. The correct word is “VAST,” but the enhanced word sounds like “FAST,” because
the cues related to voicing and frication are suppressed.

with a voiced sound. Therefore, significant amount of voicing cues could be preserved for

these cases.

Detection rates are low for unvoiced plosives and unvoiced fricatives as shown in Ta-

ble 13. However, confusion of unvoiced plosives and unvoiced fricatives with voiced sounds

happen rarely. Therefore, low detection rates for these sounds do not create major confusion

in the voicing feature.

Some of the cases which were consistenly confused by most of the listeners in testing

the voicing feature were analyzed. Almost all of those cases were related to the fricatives.

Undetected fricatives, which were confused with silence, are found to seriously degrade the

performance. Fig. 15 shows a case where the fricative is not detected at all. This caused

the word “VAST” to sound like “FAST”, and an error in identifying the voicing feature

occured. Similar other cases were observed where the problems with undetected fricatives

degrade the voicing score.
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Figure 16: Spectrograms of the M-MMSE algorithm and the proposed system are compared
for a monosyllable sample to show the improvement in the nasality feature. The DRT word
pairs are “NEED” and “DEED,” and the true word is “NEED.” The top figure illustrates the
output of the M-MMSE estimator, the middle figure illustrates the output of the proposed
system, and the bottom figure illustrates the segmentation data.

Similar to the case of degradations, improvements in the voicing feature were also ob-

served mostly with the fricatives. Figure 14 shows a case where the segmentation algorithm

preserved the cues related to voicing. The segmentation algorithm indicated an unvoiced

fricative, and the enhancement system preserved the unvoiced fricative cues whereas the

M-MMSE system removed almost all the cues related to the unvoiced fricatives. Listeners

prefered “ZED” for the M-MMSE system while they preferred “SAID” for the proposed

system.

Although errors in the segmentation algorithm degrades the performance, it also helps

improve intelligibility in some cases as discussed above. As a result, moderate improvement

in the voicing feature compared to the M-MMSE system is obtained using the proposed

system.
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Figure 17: Spectrograms of the M-MMSE algorithm and the proposed system are compared
for a monosyllable sample to show the improvement in the nasality feature. The DRT
word pairs are “MOOT” and “BOOT,” and the true word is “MOOT.” The top figure
illustrates the output of the M-MMSE estimator, the middle figure illustrates the output
of the proposed system, and the bottom figure illustrates the segmentation data.

6.6.3.2 Nasality

Nasality feature discriminates between the nasalized consonants and the oral consonants.

For example, nasals can be distinguished from vowels using the nasality feature. The

proposed system has a substantially higher nasality score compared to the MMSE system.

The nasality feature, as measured by the DRT, was improved compared to the M-

MMSE estimator. The M-MMSE system was found to erase the low-energy nasality cues

frequently which create confusions between (/m,n/) and (/b,d/) sounds as shown in Fig-

ures 16, 17, 18, 19. The proposed system can successfully preserve those low-energy cues

because the segmentation algorithm typically detects a transition sound, which is enhanced

without any oversuppression, during nasals.
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Figure 18: Spectrograms of the M-MMSE algorithm and the proposed system are compared
for a monosyllable sample to show the improvement in the nasality feature. The DRT
word pairs are “GNAW” and “DAW,” and the true word is “GNAW.” The top figure
illustrates the output of the M-MMSE estimator, the middle figure illustrates the output
of the proposed system, and the bottom figure illustrates the segmentation data.

6.6.3.3 Sibilation

The sibilation feature is used to distinguish between irregular and regular waveforms. For

example, the sibilation feature can be used to distinguish between an unvoiced fricative and

unvoiced plosive. The proposed system improves the sibilation feature compared to the

M-MMSE system.

The improvement in the sibilation feature is limited mainly because the segmentation

algorithm can sometimes fail to detect the fricative sound which cause a deletion of the

sibilation cues as shown in Fig. 15. Similar to the voicing feature, in some cases, the

segmentation information helped with the sibilation feature. A sample case is shown in

Fig. 20. This example is interesting because voicing could not be detected in the initial

consonant, but frication was detected. Therefore, although the initial consonant sounds
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Figure 19: Spectrograms of the M-MMSE algorithm and the proposed system are compared
for a monosyllable sample to show the improvement in nasality. The DRT word pairs are
“NUDE” and “DUDE,” and the true word is “NUDE.” The top figure illustrates the output
of the M-MMSE estimator, the middle figure illustrates the output of the proposed system,
and the bottom figure illustrates the segmentation data.

like the unvoiced fricative /s/, listeners could still identify the correct monosyllable.

6.6.3.4 Graveness

Graveness feature is used to detect the ratio of the high frequency energy to the low fre-

quency energy in a speech sound. Graveness of a consonant increases as its energy con-

centrates more at the lower frequencies. For example, graveness can be used to distinguish

between “WEED” and “REED”. The speech energy is concentrated at the higher frequen-

cies for the /w/ sound compared to the /r/ sound. The proposed system improves the

graveness feature compared to the M-MMSE system.

The improvement in the graveness feature could not be attributed to any one aspect of

the proposed system. This result is partly related to the fact that, as opposed to voicing,

nasality, and sibilation features, the graveness feature is related to a comparison of a variety
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Figure 20: Spectrograms of the M-MMSE algorithm and the proposed system are compared
to show the improvement in sibilation for a monosyllable sample. The DRT word pairs are
“THEE” and “ZEE,” and the true word is “ZEE.” The top figure illustrates the output of
the M-MMSE estimator, the middle figure illustrates the output of the proposed system,
and the bottom figure illustrates the segmentation data.

of sound classes.

6.6.3.5 Sustention

The sustention feature is used to indicate if the consonant is sustained or interrupted. For

example, plosives are interrupted sounds while fricatives are sustained. The sustention

feature has similar scores for both systems.

Plosive sounds are short-duration events that change faster than the time resolution of

the MELP coder [139]. Therefore, even for clean speech, the sustention feature, which is

related to discriminating between plosives and fricatives, is low compared to other features

[144]. This is partly the reason why the sustention feature did not change significantly.
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6.6.3.6 Compactness Feature

The compactness feature is used to detect if the energy of the consonant is concentrated at

the mid frequencies. For example, compactness can be used to distinguish between “KEY”

and “TEA”. Energy of the /k/ sound is more concentrated at the mid frequencies. Hence,

it is more compact compared to the /t/ sound. The compactness feature has similar scores

for both systems.

6.7 Summary and Conclusions

A multi-sensor speech enhancement system is proposed that uses sound-class dependent

noise suppression, where each sound segment is enhanced based on its acoustic-phonetic

properties. Acoustic phonetic knowledge of speech, HSP location information for voiced

speech, and SNR information is combined in a speech presence detection framework to

minimize the risk of erasing the perceptually important speech cues. Several observations

are made using the experiment results:

• Nasality feature improved substantially while voicing, sibilation, and graveness fea-

tures improved modestly. The DRT scores improved from 68.62 to 91.86 for the

nasality feature.

• The improvement in nasality is found to be related with the low performance of

the speech presence detection algorithm employed in the M-MMSE algorithm. The

segmentation algorithm can detect nasal sound successfully, and low-energy nasality

cues are preserved in the proposed system.

• The improvement in voicing and sibilation features found to be mostly related to

fricatives. The M-MMSE algorithm fails to detect the low-energy sibilation features.

The segmentation algorithm also fails to detect sibilation and/or voicing for some

cases. However, the proposed system could improve the DRT scores by 7 points for

voicing and sibilation features.

• Confusion of plosives with other sounds or silence did not generate significant degra-

dation in performance in any of the features. Correct detection of plosives also does
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not seem to help improve the intelligibility of plosive sounds.

• The sustention feature which is designed to distinguish between plosives and fricatives

did not change significantly partly because the time-resolution of the MELP coder is

not high-enough to resolve the rapid spectral transitions during plosive sounds.

• The improvement in graveness feature could not be attributed to any specific aspect

of the MMSE system or the proposed system.

• A significant change is not observed with the compactness feature.
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CHAPTER VII

USING A SIMULATED VOICING FEATURE FOR

NOISE-ROBUST ASR

Since the speech enhancement system proposed in Chapter 6 uses an automatic segmenta-

tion/classification block, possible use of GEMS signal for a noise-robust segmentation/classification

task is further investigated using HMM-based automatic speech recognition (ASR) tech-

niques. A general background of the noise-robust ASR field is given in Chapter 2, and some

of the noise-robust ASR systems that use auxiliary sensors are discussed below.

Auxiliary sensors, such as the GEMS device, bone microphone, or physiological micro-

phone, can provide reliable information for noise-robust ASR applications. One way of

exploiting this information is using the auxiliary sensor signal to enhance the speech signal

[53],[147] since the noise-robust sensor signal can help design better speech enhancement

systems. Speech/non-speech detection using a bone microphone is also done in [147]. In

this work, a voicing feature is extracted from the GEMS signal for increased noise immu-

nity in an ASR task. Voicing is defined as the energy of the GEMS signal in the 0-500 Hz

frequency band.

A voicing feature has been used in previous systems which mostly focus on clean speech.

In [151], three different voicing detection algorithms are compared, and the voicing feature

is used for small and large vocabulary tasks. In [132], an autocorrelation based voicing

measure is used, and MFCC features are fused with the voicing feature and the first and

second order derivatives of the voicing feature. In [86], fundamental frequency and voicing

are used with the MFCC features using Linear Discriminant Analysis (LDA).

The fundamental problem in the systems mentioned above is the difficulty in extracting

the voicing feature reliably at low SNRs. Moreover, the problem becomes even more severe

under non-stationary noise conditions. Misclassifications in voicing detection can decrease
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ASR performance rather than increase it at low SNRs. Therefore, only marginal improve-

ment in word-error-rate (WER) could be obtained with the previous systems that use the

voicing feature.

This chapter addresses the problem of efficient utilization of a reliable voicing feature

extracted from an auxiliary sensor for noise-robust ASR systems. The first contribution

is two different strategies for deploying the voicing feature for increased noise robustness

in the ASR system. It is shown that both strategies can substantially increase the noise

robustness using a voicing feature compared to the baseline system, the ISIP ASR engine

developed at Mississippi State University. The second contribution is a proposed system

that uses a combination of the two techniques to efficiently employ the voicing feature at

all SNRs. It is shown that the two proposed strategies are complementary to each other,

and when used together, substantial performance improvements can be obtained at all noise

environments and all SNRs.

The first strategy described in this work is the feature fusion (FF) method. The voicing

feature is directly fused with the speech-based features and recognition is done using the

final feature vector. The FF method is found to perform well at all SNR levels while it is

most effective at 10 dB for all investigated noise types.

The second strategy is a data marginalization (DM) method where recognition is per-

formed using only the voicing feature for low-energy speech frames while the feature fusion

method is used for high-energy speech frames. The rationale behind this approach is the fact

that low-energy speech segments are typically significantly more sensitive to background

noise compared to high-energy segments. Indeed, experiment results show a substantial

performance improvement below 15 dB with the data marginalization method.

Experiment results show that the two strategies are complementary to each other. The

FF method performs better than the DM method down to 10 dB while the DM method

performs better than the FF method below 10 dB. The proposed system uses a global SNR

based switch system that, for a given speech utterance, uses the FF method if the global

SNR is above 5 dB, and the DM method is used if the global SNR is below 10 dB to

efficiently utilize the voicing feature. Experiment results with the Aurora2 database show
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substantial improvement over the baseline system at all SNRs.

This chapter is organized as follows. The two methods for utilizing the voicing fea-

ture as well as the proposed system that uses both methods are described in Section 7.1.

The algorithm for voicing detection and high-energy speech detection are also described in

Section 7.1. The auxiliary sensor signal is not available for any standard ASR database.

Therefore, a simulation methodology is used to simulate the voicing feature and high-energy

speech detection for the Aurora2 database. The simulation methodology for the ASR ex-

periments are described in Section 7.2. Experiment results are discussed in Section 7.3.

7.1 Three Strategies for Utilizing the Voicing Feature

7.1.1 Feature Fusion Method

The voicing feature can be directly fused with the MFCC features and fed into the ASR

engine. This approach is called the feature fusion (FF) method in this work. Although it is

a straightforward way of utilizing the voicing feature, it is found to perform well particularly

between 5 dB and 15 dB as shown in Section 7.3.

The problem that is observed with the FF method is that below 10 dB the performance

improvement rapidly starts decreasing. Although a reliable estimate of the voicing feature

increases the overall performance, the distortions in the speech features significantly degrade

the system performance below 10 dB which is discussed below.

7.1.2 Analysis of the SNR-Dependent Performance Gain with the Voicing Fea-
ture Method

In a typical Hidden Markov Model (HMM) based ASR system, log-likelihood scores (L) for

many possible word strings are evaluated. The word string with maximum L is output at

the end of the decoding process. Since L is the distance metric used in decoding, evaluation

of L is explained below to analyze the limitation of the feature fusion method.

Log-likelihood score of HMM-state k at frame t is

L(k, t) = log

[ K∑

j=1

wkjN(ot; µkj , Ckj)

]
(49)

where K is the number of Gaussian mixtures, ot is the observation vector at frame t, wkj
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is the mixture weight, Ckj is the covariance matrix, and µkj is mean vector of the jth

mixture component of state k. In practice, for efficient calculation, the log-likelihood score

is approximated by

L(k, t) ≈ max arg
j

{
log(wkj) + log(N(ot; µkj , Ckj))

}
. (50)

where log(wkj) is a constant. In case of a diagonal covariance matrix,

log(N(ot; µkj , Ckj) =
M∑

i=1

log
[
N(ot(i); µkj(i), Ckj(i, i))

]
(51)

where M is total number of features, ot(i) is the ith element of the observation vector,

Ckj(i, i) is the ith diagonal element of the covariance matrix, and µkj(i) is the ith element

of the mean vector.

If the MFCC features derived from the speech signal are fused with the voicing feature

derived from the sensor signal, then Eq. 51 can be divided into two components

log(N(ot; µkj , Ckj) = LMFCC(k, t) + Lv(k, t) (52)

where, assuming the voicing feature is fused to the end of the MFCC features,

LMFCC(k, t) =

M−1∑

i=1

log
[
N(ot(i); µkj(i), Ckj(i, i))

]
(53)

and

Lv(k, t) = log
[
N(ot(i); µkj(i), Ckj(M, M))

]
(54)

For noisy speech,

log(N(ot; µkj , Ckj) = LMFCC(k, t) + Lv(k, t) + Ld(k, t) (55)

where Ld term compensates for the distortion in the MFCC features. The distortion ratio

can be defined as

D1 =
Ld(k, t)

LMFCC(k, t) + Lv(k, t)
. (56)

If the voicing feature is not used, and the log-likelihood evaluation is based on the MFCC

features only, then

log(N(ot; µkj , Ckj) = LMFCC(k, t) + Ld(k, t), (57)
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and the distortion ratio is

D2 =
Ld(k, t)

LMFCC(k, t)
. (58)

The log-likelihood score Lv(k, t) contributed by the voicing feature helps decrease the dis-

tortion ratio as shown in Equations 57 and 58. However, with decreasing SNR, expected

value of Ld increases. Therefore, D1 approaches D2, and the voicing information becomes

less effective with decreasing SNR.

To avoid this problem and efficiently utilize the voicing feature, a data marginalization

method is proposed in the next section.

7.1.3 Data Marginalization Method

Low-energy speech sounds are particularly more susceptible to ambient noise compared to

high-energy speech sounds since low-energy sounds can be relatively easily masked by ad-

ditive noise as shown in Fig. 21. In order to address the noise sensitivity problem of the

low-energy speech sounds, only the voicing feature is used when such a low-energy sound is

detected. Since the acoustic models contain all the features for all states, a data marginal-

ization (DM) method is used that calculates the likelihood using the voicing feature only if

the speech sound is classified as low-energy. After marginalizing the likelihood function over

all the MFCC features, for a diagonal covariance matrix, the likelihood function becomes

Lm(k, i) = log(wkj) + log(ℵ(ot(M); µkj(M), Ckj(M, M))) (59)

where Lm denotes the marginalized likelihood function, and voicing feature is assumed to

be in the M th position of the observation vector. All the features contributed by the noisy

speech signal are ignored in this formulation.

One can also design a system that detects subbands that are reliable in the low-energy

speech frames and use those subbands for recognition. One of the problems with this

approach is the difficulty in detecting the reliable subbands particularly at the SNR levels

where the marginalization method is used in this work. A subband-based approach is

compared with the proposed method in Section 7.3.
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Figure 21: Energy trajectories of the clean speech and the noisy speech with babble noise
at -5 dB are compared for an utterance from the Aurora2 database. Masking effect is
clear for low-energy regions. Energy trajectory is thresholded at -7 dB to show the high-
energy speech segments. The vertical lines indicate the boundaries of the high-energy speech
segments.

7.1.4 Proposed System

An overview of the final proposed system is shown in Fig. 22. The DM method is used

for speech utterances with global SNRs below a threshold. The FF method is used if the

global SNR is above the threshold. The global SNR threshold level is set to 10 dB based

on the results presented in Section 7.3. The voicing extraction algorithm is defined in the

next section.

7.1.5 Voicing Extraction Algorithm

A hard-decision energy-based algorithm is used to detect the voiced segments using the

GEMS signal. Each 20 msec of GEMS frame i is windowed with a Hanning window. Total

energy ζi in the 100-400 Hz range is calculated for each frame i. This range generally

contains at least one harmonic in the case of voicing. Thus, significant energy rise in this

band compared to the silence level indicates existence of voicing. A minimum energy level

ζmin,r is set to the mean of energy levels of the first 10 frames in the radar signal, assuming

that they are noise-only frames, and a threshold energy level ζth,r is set to 6 dB above the
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ζmin,r. The voicing feature Vi for frame i is

Vi =






1 if ζi > ζth,r,

0 if ζi≤ζth,r.

where ζi is the energy of the ith frame and r refers to radar.

Although the voicing feature has a discrete value, a Gaussian mixture distribution is

used in Eqn. 59 for the voicing feature. The ASR engine has a minimum variance (MV)

parameter that avoids numerical problems associated with the small variances of Gaussian

distributions. The training program does not allow the variances of Gaussian distributions

fall below the MV parameter. Thus, the Gaussian mixture assumption works because

the system can model a discrete binary distribution with two Gaussians that have small

variances.

7.1.6 High-Energy Speech Detection

Most high-energy speech sounds can be detected using the GEMS signal since there is a

strong correlation between voicing and energy in a speech frame. There are two problems

that need to be addressed in high-energy speech detection using the GEMS signal. The

first problem is determining the energy threshold to define high-energy speech sounds. In
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this work, the energy threshold is set based on the performance of the resulting system as

discussed below.

Table 15 shows the performance of the DM method with various energy thresholds for

energy normalized speech. Energy normalization is performed by normalizing the energy

feature of all speech frames with the energy value of the highest energy frame in a speech

utterance. Thus, the maximum value of the energy feature is 0 (dB) in the speech utterance

after normalization. The highest energy threshold of -5 dB achieves the best performance up

to 5 dB SNR. For input SNRs above 10 dB, the information loss because of data marginal-

ization starts degrading the performance, and the optimum threshold decreases rapidly. The

threshold of -5 dB is used in the proposed system since it provides the highest performance

gain below 10 dB SNR.

The second problem that should be addressed for high-energy speech detection is the dif-

ficulty in detecting the speech sounds with energy above -5 dB using the GEMS signal. The

energy of the GEMS signal is thresholded similar to the speech signal. The GEMS-energy

threshold is tuned to minimize the probability of error at each speech-energy threshold

level. Pe values at each threshold level is shown in Table 16. Although Pe is lowest when

the speech-energy threshold is -7 (dB), Pe is still low at -5 (dB).

One of the problems with the GEMS device is that there is not enough training data for

speech recognition experiments. Therefore, GEMS-based high-energy speech and voicing

detection is simulated using the clean speech signal. Details of the simulation methodology

for voicing detection and high-energy speech detection are given in the next two sections

respectively.

7.2 Simulating Voicing and High-Energy Speech Detection

7.2.1 Simulating the GEMS-based Voicing Detection

Voicing is detected from the clean speech signal using the algorithm described in Sec-

tion 7.1.5. The threshold level ζth,s for the speech signal is set to ζmin,s + 8(dB) where

ζmin,s is the average energy of the first 10 frames. The first 10 frames in an utterance are

assumed to be noise-only frames.
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Table 15: Averaged word error rate (WER) results for four different noise types in the Au-
rora2 database are shown. Data marginalization method is used. Various energy thresholds
are investigated, and the performance is compared with the baseline system. The WER
results are presented for SNR levels from -5 dB to 20 dB as well as the clean case. The
lowest WER at each SNR has bold font.

SNR/Threshold -5 dB -7 dB -9 dB -11 dB Baseline

-5 dB 63.88 68.05 79.45 82.55 89.15

0 dB 47.48 52.35 60.00 66.15 75.30

5 dB 26.23 26.80 34.45 39.75 51.75

10 dB 15.6 13.95 16.30 19.75 27.70

15 dB 9.3 7.90 7.40 9.50 9.50

20 dB 6.63 5.75 4.10 5.40 3.15

Clean 5.10 4.35 2.40 3.05 1.25

Fig. 24 may be useful for understanding the rationale behind using an energy based

voicing detection algorithm. A sample speech utterance from a male speaker is energy

normalized as shown in Fig. 24. Clearly, energy rises significantly both in GEMS and

speech trajectories when voicing occurs. Therefore, energy rise in the 100-400Hz range is

used as the indicator of voicing both for speech and radar signals.

The voiced speech sections are segmented with rectangular boxes in Fig. 24. Although

there is a very high match between the voicing decisions from the radar and the speech

signals, there are also occasional errors. The accuracy of the GEMS voicing detector is

analyzed as follows. The performance of the simulation is measured using ten minutes of

speech from clean harvard sentences for which GEMS data is available. Six male and six

female speakers are used. Speech energy is normalized and divided into 1 dB intervals for

more accurate simulation of the system. Probability of misclassification is calculated for

each speech-energy interval by using the voicing feature extracted from the GEMS signal

as the ground truth. Misclassification rates are shown in Fig. 25.

7.2.2 Simulating the GEMS-based High-Energy Speech Detection

High-energy speech frames are detected using the clean speech signal using the algorithm

described in Section 7.1.6. The speech energy threshold of -5 dB is used as mentioned in

Section 7.1.6. The GEMS energy threshold is set to -4 (dB) since it gives the minimum Pe
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Figure 23: Probability of error for high-energy speech detection using the GEMS device
is shown. Speech energy threshold is set to -5 dB. Possible energy values of normalized
speech frames are divided into 1 dB segments, and the error rate is shown seperately for
each energy interval.
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for the -5 dB speech energy threshold as shown in Table 16.

The GEMS signal and the clean speech signal do not always make the same decision in

detecting the high energy frames. Misclassification rates are calculated using the method

described for the voicing feature. Fig. 23 shows the intervals used for the log-energy of the

frames and the probability of making an error for each interval.

7.2.3 Incorporating the Simulation Errors into ASR Experiments

Probability of simulation errors are included in the experimental setup as follows. For each

speech frame its corresponding energy interval is found. High-energy and voicing detection

are done using the clean speech signal. The detection decision is flipped with a probability

of simulation error using the clean speech energy and the Pe data shown in Fig. 23 and 25.
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Figure 24: Energy trajectories of the clean speech signal and the radar signal are shown.
Energy threshold of -5 dB is used for both cases, and the high-energy segments are shown
with rectangular boxes.

Table 16: Probability of error is shown for high-energy speech detection using the GEMS
device. Probability of error for various energy thresholds are shown. For each speech energy
threshold, the threshold level for the GEMS energy threshold is tuned for the smallest
probability of error.

Acoustic Threshold -5 dB -7 dB -9 dB -11 dB

Radar Threshold -4 dB -5 dB -5 dB -9 dB

Pe 0.09 0.05 0.12 0.15

7.3 Experiments

7.3.1 Experimental Setup

The open source ASR software developed at Mississippi State University is used as the base-

line recognizer [113]. Words are modeled with 20 state left–to–right Hidden Markov Models

(HMM) using 16 Gaussian mixtures per state. The training procedure can be summarized

as follows. Baum-Welch training is used with a flat start algorithm for initialization. Sin-

gle mixture models are trained using Baum-Welch training with four iterations. After the

single mixture models are trained, a one state short pause model is trained to represent

the short silence segments between words. One mixture models with the short pause model

are iterated nine times. Once the single mixture training for all models are completed, the
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Figure 25: Probability of error is shown for the simulation of voicing detection. Normalized
speech energy (dB) is divided into 1 dB intervals, and the error rates are shown for each
energy interval.

mixture number is increased progressively by a split strategy where at each step the mixture

number is doubled, and new mixtures are retrained by four Baum-Welch iterations.

The Aurora2 database, which contains clean and noisy digits recorded in various noise

environments, is used for the experiments [62]. Clean training data is used for training,

and the four noisy testing data with subway, babble, car, and exhibition noises are used for

testing.

The GEMS data is not yet available for the Aurora2 task. The procedure proposed in

Section 7.2 is used for simulating the voicing and high-energy speech detection using the

GEMS signal. The errors that occur due to simulation are included both in training and

testing.

The baseline system contains 12 MFCC coefficients and energy feature with their first

and second order derivatives. Thus, there are 39 features in the baseline system. Energy

normalization, described in Section 7.1.6, is performed both for the baseline system and the

proposed system.

7.3.2 Results

The performance of the baseline system is compared with the FF and DM methods seper-

ately. Table 17 shows the results for the baseline system. Table 18 shows the results with
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the DM method, and Table 19 shows the results with the FF method. Improvements over

the baseline system using the two methods and the proposed system that uses both methods

is shown in Fig. 26.

The DM method provides significant improvement over the baseline system below 15

dB while its performance suddenly and severely drops above 10 dB. The reason for this

problem is that at 15 dB even the low-energy speech sounds can be highly reliable, and the

DM method cannot take advantage of that reliable information.

The FF method has a different performance gain curve. The gain follows a bell curve

with peak at 10 dB. Although the performance gain starts decreasing above 10 dB, it does

not experience the sharp drop that is observed with the DM method. However, below 10

dB, its performance gain starts degrading significantly faster than the DM method.
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Figure 26: Performance improvement over the baseline system using the feature fusion
(FF) method, data marginalization (DM) method, and the proposed system.

The FF and DM methods compliment each other, and the voicing feature is efficiently

utilized in the proposed system by using both methods. Hence, the proposed system sig-

nificantly outperforms the baseline system at all SNRs as shown in Table 20 and Fig. 26.

The proposed system is compared with four other relatively low complexity popular

algorithms. Cepstral mean normalization (CMN) is a low complexity feature normalization
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Table 17: Performance results in terms of WER for four noise types using the baseline
system.

SNR Subway Babble Car Exhibition Avg.

-5 dB 88.6 89.7 88.2 88.2 88.7

0 dB 75.1 75.5 76.5 73.9 75.2

5 dB 50.4 53.1 55.7 47.8 51.7

10 dB 26.0 29.4 26.8 21.4 25.9

15 dB 9.5 9.5 7.2 8.1 8.6

20 dB 3.4 2.9 3.3 3.6 3.3

algorithm that is commonly used in the state-of-the-art systems. It improves the perfor-

mance over the baseline system at low SNRs, but the improvement is not significant.

An energy-based voice activity detection (VAD) algorithm is used with the baseline

system that extracts the voice activity information from the clean speech. Thus, the VAD

result in Fig. 27 is the upper bound of its performance. The improvement with VAD is

even less than the CMN case. Upper bound of performance is used since the choice of VAD

system can significantly affect the performance. It is shown that the gain is small even for

the best possible VAD.

The Ephraim-Malah Suppression Rule (EMSR) [41] is used at the front-end, which is

a relatively high complexity speech enhancement algorithm. The EMSR system provides a

higher performance gain than the other two systems at the expense of increased complexity.

However, the proposed system performs significantly better than the EMSR system at all

SNRs. Moreover, the EMSR system also has the problem of introducing its own distortion

that decreases the performance at high SNRs.

Finally, the proposed system is compared with the marginalization-based missing data

system described in [20]. 24 Mel-spaced filters, that are also used in the proposed system,

are used to extract the subband features. Spectral subtraction technique is used to detect

the missing subbands. Total WER for all four noise types with the subband features are

given in Table 22. WER after applying the standard missing data technique is given in

Table 21. Clearly, the subband system is significantly intolerant to additive noise compared

to the MFCC features. The marginalization method significantly improves the performance
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Table 18: Performance results in terms of WER for four noise types using the DM method.

SNR Subway Babble Car Exhibition Avg.

-5 dB 65.6 60.3 66.4 63.2 63.9

0 dB 48.4 41.5 52.1 47.9 47.5

5 dB 28.7 21.2 26.4 28.8 26.2

10 dB 17.3 11.0 16.8 17.5 15.6

15 dB 9.9 7.0 10.1 10.2 9.3

20 dB 7.1 5.6 6.5 7.3 6.6

Table 19: Performance results in terms of WER for four noise types using the data fusion
method.

SNR Subway Babble Car Exhibition Avg.

-5 dB 83.6 83.3 86.1 81.7 83.7

0 dB 62.9 68.6 70.6 62.6 66.2

5 dB 34.5 37.8 38.1 33.8 36.05

10 dB 16.9 12.5 12.9 15.6 14.5

15 dB 8.3 4.1 5.0 8.8 6.6

20 dB 3.6 2.0 2.9 4.0 3.1

in noisy environments although the performance is still far from the proposed technique.

The performance drop observed in the proposed system at very high SNRs is also observed

for the missing-data system for the clean environment. A significant factor in such low

performance is the difficulty in detecting the low SNR bands as mentioned in the first

section. The proposed system does not have that problem since the GEMS device can

accurately detect the voiced speech segments.
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Table 20: Performance results in terms of WER for four noise types using the proposed
system.

SNR Subway Babble Car Exhibition Avg.

-5 dB 65.6 60.3 66.4 63.2 63.9

0 dB 48.5 41.6 52.1 47.9 47.5

5 dB 29.3 21.8 26.5 29.0 26.7

10 dB 17.0 11.9 14.5 16.2 14.9

15 dB 8.3 4.1 5.0 8.8 6.6

20 dB 3.6 2.0 2.9 4.0 3.1

Table 21: Performance results in terms of WER for four noise types using the standard
missing data system.

SNR Subway Babble Car Exhibition

-5 dB 90.6 91.4 91.9 100

0 dB 89.5 90.0 91.6 91.3

5 dB 87.9 88.2 91.5 90.6

10 dB 78.0 77.4 82.7 83.6

15 dB 57.0 52.6 56.6 60.9

20 dB 34.5 30.4 30.4 35.3

Clean 3.1 4.3 4.5 3.3

Table 22: Performance results in terms of WER for four noise types using the 24 Mel-spaced
filter outputs.

SNR Subway Babble Car Exhibition

-5 dB 100 100 100 100

0 dB 100 100 100 100

5 dB 100 100 100 100

10 dB 98.8 90.9 99.6 99.7

15 dB 84.5 60.6 87.6 93.6

20 dB 49.9 24.3 46.3 59.6

Clean 3.1 3.1 3.3 3.3

92



−5 0 5 10 15 20
0

10

20

30

40

50

60

70

80

90

SNR (dB)

W
E

R
 (

%
)

Missing Data
Baseline
VAD
CMN
EMSR

Figure 27: Comparison of the performance between the proposed system, the baseline
system, and other relatively low complexity noise-robust systems are shown. The results
are averaged over the four noise types of test-a in the Aurora2 database.
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CHAPTER VIII

EFFECTS OF SEVERE SENSOR NOISE ON

GEMS-BASED FEATURES

Although the GEMS signal is robust to acoustic noise, it typically contains some amount

of non-acoustic noise. The noise problem is particularly severe with some of the recordings

in the ARCON database for some of the female speakers and some speakers with thicker

neck skin.

The noise-robust ASR methods presented in the previous chapter were tested using

a simulated GEMS feature derived from clean speech. However, this method ignores the

severe non-acoustic noise that existed in some of the GEMS data since the GEMS recordings

with severe non-acoustic noise were not used in the process of determining the simulation

parameters.

In this chapter, effects of noise on the GEMS-based features are discussed with a focus

on the severely noisy cases. Effects of noise on the three features, periodicity, energy,

and harmonicity, are discussed in the next section. In Section 8.2, a signal enhancement

technique and a missing data technique are investigated to alleviate the effects of sensor

noise on the feature fusion based multisensor ASR. Experimental results are presented in

Section 8.3.

8.1 Noise Interference in the GEMS Signal

Noise in the GEMS signal is modelled with additive white noise. Hence, the noisy GEMS

signal is

gn(i) = g(i) + n(i) (60)
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Figure 28: Spectrogram of a clean speech signal is shown in the top figure. Spectrogram
of the corresponding noisy GEMS signal is shown in the bottom Figure.

where g(i) is the clean GEMS signal, and n(i) is the noise signal at the time sample i. The

magnitude spectrum of the noisy GEMS signal is

Gn(k) = G(k) + N(k) (61)

at the frequency sample k.

Noise is typically stationary for a given recording in the ARCON database. In Fig. 28, a

sample noisy GEMS spectrum is shown with the corresponding audio for a sample utterance.

Effects of noise on the three features derived from the GEMS signal, periodicity, energy,

and harmonicity features defined in Section 2.4, are discussed below. Short-time analysis

of the GEMS signal is used in the discussions.

Trajectory of the periodicity feature extracted from a sample noisy GEMS signal is

shown in Fig. 29. Periodicity of a noisy GEMS signal at time frame j is

vn,j = arg max
2.5 msec<τj<10 msec

Rgg(τj) + Rnn(τj) (62)

where Rnn(τj) is the autocorrelation function of the additive noise, and Rgg(τj) is the
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Figure 29: Spectrogram of a sample GEMS signal is shown in the top figure. Correspond-
ing speech spectrogram is shown in the middle figure. Trajectory of the voicing features
extracted from the GEMS signal is shown in the bottom figure. Speech and GEMS samples
are taken from the DRT sequences in the ARCON database recorded in the quiet conditions
by a female speaker.

autocorrelation function of the GEMS signal in the jth frame. Since the noise is white,

E{vn,j} = arg max
2.5 msec<τj<10 msec

Rgg(τj) (63)

where E{vn,i} is the expected value of the periodicity feature. Thus, on average, the

periodicity feature is robust to additive sensor noise.

GEMS signal has a harmonic spectrum similar to the voiced speech spectrum as dis-

cussed in Section 2.4. Harmonicity at high frequencies is more sensitive to the sensor noise

compared to the low frequency harmonics as shown in Fig. 31 since the noise is white

and the high-frequency harmonics have significantly lower signal energy compared to the

low-frequency harmonics.

Trajectory of the energy features extracted from a noisy GEMS signal sample is shown

in Fig. 30. Similar to the periodicity feature, energy feature is robust to sensor noise if

the GEMS signal is not severely contaminated by additive noise. The relative robustness

of the energy feature can be explained as follows. The GEMS spectrum has a rapidly

decaying spectral envelope as shown in Fig. 31. Although noise can mask a significant
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Figure 30: Energy trajectory of a sample speech utterance is shown in Figure a and energy
trajectory of the corresponding GEMS signal is shown in Figure b. Speech and GEMS
samples are taken from the DRT sequences in the ARCON database recorded in the quiet
conditions by a female speaker.

portion of the higher frequencies, the first couple of harmonics, especially the first harmonic

at the fundamental frequency, still have significantly greater energy than the sensor noise

in general. Therefore, if the GEMS signal is not severely noisy, total energy of the GEMS

harmonics masks the total noise energy in a given GEMS signal frame.

8.2 Feature-Fusion Based ASR with Noisy GEMS Signal

Effects of the sensor noise on the ASR performance is measured using the word error rate

(WER) metric. Two types of features, the energy and periodicity features defined in Sec-

tion 2.4, are extracted from the GEMS signal. The GEMS-based feature is augmented with

the speech-based MFCC features using the feature-fusion method described in Chapter 7.

Two approaches are used to alleviate the effects of noise on the ASR performance. In

the first approach, the MMSE estimator proposed in [40] is used to clean the noise in the

GEMS signal, and ASR results are reported for the features extracted from the enhanced

GEMS (e-GEMS) signal. Both training and testing data are enhanced in this approach.

The GEMS signal is known to be severely noisy for some of the utterances as discussed
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Figure 31: Magnitude spectrums of a noisy GEMS signal and acoustic signal are compared
for a voiced speech frame.

in the previous section. In the second approach, a missing-data method is used to minimize

the adverse effects of those severely noisy case. The GEMS-based feature is labeled as

“missing” if the GEMS signal is severely noisy. The marginalization-based missing data

technique discussed in Chapter 7 and [20] is used.

8.3 Experiments

The ARCON database, described in Section 2.4, is reorganized for speech recognition ex-

periments. A corpus that contains speaker-dependent, isolated monosyllables is prepared

where each utterance contains a single monosyllable. Ten female and nine male speakers

are enrolled in the experiments. Each speaker has seven minutes of training data and three

minutes of testing data. Hence, a total of 133 minutes of training data and 57 minutes

of testing data is collected from all 19 speakers. Speaker M8 in the ARCON database is

excluded because he is found to have a voice disorder. The ARCON database, described in

Section 2.4, is used for experiments. The DRT data in the ARCON database is reorganized
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for speech recognition experiments as described below.

The lexicon is prepared as follows. Pronunciations of all the monosyllables are gathered

from the pronunciation dictionary prepared at Carnegie Melon University. All monosyllables

are found to be correct except ”MIT” which is pronounced as /m/-/iy/-/t/ in the DRT list

but as /em/-/ay/-/t/-/iy/ in the dictionary. The final lexicon contains 228 words.

Both speech and GEMS signals are downsampled to 8 kHz, and a 256 sample Hanning

window with a frame rate of 128 samples/frame is used to extract the features synchronously

from the speech and GEMS samples. Half of the training and testing data for each user is

recorded in quiet conditions while the other half is recorded in an office environment that

has high SNR. Both acoustic data and GEMS data are prepared for each utterance. GEMS

and acoustic signals are synchronized using the method described in Section 2.4.3.

Both speech and GEMS signals are downsampled to 8 kHz, and a 256 sample Han-

ning window with a frame rate of 128 samples/frame is used to extracted the features

synchronously from the speech and GEMS samples.

Experiments are performed using the HMM-based Automatic Speech Recognition (ASR)

software developed at Mississippi State University. 16 Gaussians per state are used for

Gaussian mixture modelling. Syllable templates are used to model each monosyllable.

HMM-models for each monosyllable contain 10 states.

8.3.1 Results and Discussion

The baseline system uses the original 39 dimensional MFCC features. The proposed system

uses an additional feature, periodicity or energy, extracted from the GEMS signal. Several

experiments are performed to compare the performance of the baseline system and the

proposed system. The first set of experiments are done to compare the performance of

the direct feature fusion method with the baseline system. The results are illustrated in

Table 23. Augmenting the GEMS feature with the MFCC features has an adverse effect

on the accuracy for both the periodicity and the energy features. The periodicity feature

outperforms the energy feature.

The second set of experiments are done by enhancing the GEMS signal with the MMSE
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estimator. Both training and testing data are enhanced using the MMSE estimator. Results

are shown in Table 24. After signal enhancement, accuracy is approximately nine percent

lower in both cases relative to the baseline case. Moreover, accuracy using the e-GEMS

signal is lower compared to the accuracy using the GEMS signal.

In the third set of experiments, a missing data technique is used that discards a GEMS

utterance if the estimated average noise energy in the utterance is above a hard threshold.

The algorithm works as follows. Energy features that are extracted from a GEMS utterance

are normalized with a constant multiplication factor k. k is chosen such that the highest

energy frame in an utterance has 0 dB energy. The first 10 frames in a given GEMS signal

are assumed to be noise-only, and average noise energy is estimated by averaging the energy

of the first 10 frames. If the noise energy is found to be above an energy threshold, then

the signal is classified as severely noisy.

The energy threshold is determined by maximizing the rejection ratio of the severely

noisy GEMS signals while minimizing the loss of other utterances. Severely noisy utterances

are hand-selected by inspection of the spectrograms of the utterances in the DRT database

An utterance is labeled as severely noise when noise masks most of the harmonics below

500 Hz. A severely noisy utterance from the ARCON database is shown in Fig. 32.

Pdf of the noise energy estimated in all utterances, and the pdf of the noise energy

estimated in the severely noisy utterances are shown in Fig. 33 Analyzing the pdf curves,

energy threshold of -10 dB is chosen as the operating point. Therefore, if the noise energy is

above -10 dB, then the GEMS features are labeled as missing. If the noise energy is above

-10 dB, then the GEMS features are augmented with the MFCC features.

Results with the missing data technique are shown in Table 25. Accuracy of the system

is higher than the baseline for both features. The relative improvement is approximately

six percent for the energy feature and nine percent for the periodicity feature compared

to the baseline case. Thus, these results suggest that the severely noisy GEMS features

can significantly degrade the performance of an ASR system when fused with the MFCC

features. When those severely noisy features are discarded using a missing data method,

GEMS-based features can help increase the accuracy of the clean MFCC features.
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Figure 32: Spectrogram of a severely noisy GEMS sample.
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Figure 33: Pdf of the energy features extracted from all (noisy and clean) GEMS utterances
are shown in the top figure. Pdf of the energy features extracted from the severely noisy
utterances are shown in the bottom figure.
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Table 23: A GEMS-based feature is fused with the MFCC features. Two types of features,
periodicity and energy, are extracted from the GEMS signal. Results for both features are
shown and compared with the MFCC features. Error rates for three different error types,
substitution, deletion, insertion, and their total are shown.

Error Type MFCC MFCC and MFCC and
GEMS-energy GEMS-periodicity

Substitution 11.4 11.6 11.0

Deletion 0.2 0.3 0.3

Insertion 0.0 0.0 0.0

Total Error 11.6 11.9 11.7

Table 24: ASR performance when the GEMS signal is enhanced with the MMSE estimator.
Error rates for three different error types, substitution, deletion, insertion, and their total
are shown. GEMS-based feature is fused with the MFCC feature vector. Two types of
features, periodicity and energy, are extracted from the GEMS signal. Results for both
features are shown.

Error Type MFCC and MFCC and
e-GEMS-energy e-GEMS-periodicity

Substitution 12.0 11.8

Deletion 0.2 0.2

Insertion 0.0 0.0

Total Error 12.2 12.0

Table 25: ASR performance when the missing data technique is used for the GEMS-based
features. Error rates for three different error types, substitution, deletion, insertion, and
their total are shown. GEMS-based feature is fused with the MFCC feature vector. Two
types of features, periodicity and energy, are extracted from the GEMS signal. Results for
both features are shown.

Error Type MFCC and MFCC and
MD-GEMS-energy MD-GEMS-periodicity

Substitution 10.6 10.0

Deletion 0.3 0.3

Insertion 0.0 0.0

Total Error 10.9 10.3
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CHAPTER IX

CONCLUSION

This thesis presents novel multi-sensor speech enhancement methods to improve the intel-

ligibility of MELP-encoded speech. A perceptually-motivated Bayesian risk minimization

(BRM) framework is proposed for speech enhancement. The proposed framework takes

into account the sound-class dependence of the human auditory perception. Misestimations

due to estimation uncertainty and SNR uncertainty are analyzed using the robust Bayesian

analysis (RBA). Heuristically-motivated spectral subtraction based systems are analyzed

under the proposed theoretical framework.

Using the ideas presented in the RBM framework, a segmentation-based, multi-sensor

speech enhancement system is proposed that is shown to improve the intelligibility of en-

coded speech in M2 tank noise environment. The proposed system is tested by using it in

tandem with a 2400 bps MELP speech coder, and comparing with a state-of-the-art 2400

bps MELPe coder using the DRT intelligibility test. Concatenation of the MELP coder

and the proposed system is shown to have higher intelligibility for nasality, sibilation, and

voicing features compared to the MELPe coder.

The segmentation-based system uses a novel aharmonic comb filter (ICF) in addition to

the acoustic-phonetic knowledge provided by a segmentation algorithm. The ICF system

uses the GEMS signal to detect perceptually important high-signal-power (HSP) frequencies

in the voiced speech spectrum. HSP locations are enhanced with the MMSE estimator while

the non-HSP locations are severely suppressed. Improvement in the perceptual quality com-

pared to the MMSE system used in MELPe is shown using A/B subjective tests. Moreover,

the ICF system also improved the segmental-SNR compared to the MMSE system.

The ICF system creates a sparse spectrum by suppressesing the low-energy non-HSP

frequencies. LPC extraction from such a sparse spectrum is analyzed in detail in Chapter 5.

It is shown that suppressing the non-HSP frequencies without any further enhancement of
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Table 26: The quality and intelligibility tests that have been done to measure the perfor-
mance of the proposed enhancement systems.

Quality Test Intelligibility Test

ACF system A/B test None

Segmentation-based system None DRT

the HSP frequencies can improve the LPC spectrum significantly.

A multi-sensor segmentation system developed at Georgia Tech is used for segmentation

in the experiments. Multi-sensor, HMM-based speech segmentation/classification is also

considered. Because of the lack of GEMS data, in the first phase, a voicing feature, extracted

from clean speech, is used for the Aurora2 speech recognition task. The voicing feature is

exploited by feature fusion and data marginalization methods. Feature fusion method is

found to be more effective at higher SNRs while the data marginalization method is found

to be effective at lower SNRs. Therefore, a combined system is proposed that uses the

data marginalization method at low SNRs and the feature fusion method at high SNRs.

The combined system is shown achieve significant gain over the baseline system and the

individual systems. Moreover, the proposed system outperformed some of the popular

noise-robust methods. The tests that have been done to measure the effectiveness of the

proposed algorithms are shown in Table 26.

In the second phase of the noise-robust segmentation research, an isolated monosyllable

database is created using the ARCON DRT database. Feature-fusion method is used where

the GEMS-derived feature is fused with the MFCC features. Energy and voicing features

are used. Experiments show an increase in word error rate compared to the baseline system

when the GEMS-based feature is fused with the MFCC features. An investigation of the

reason showed that the GEMS signal can be severely noisy in some situations because of

misplacement of the sensor, amount of skin fat, or gender differences. These severely noisy

cases are found to degrade the performance. Two methods are used to alleviate the effects

of severely noisy GEMS data. In the first method, signal enhancement using an MMSE

estimator is considered. However, signal enhancement degraded the accuracy even further.

In the second method, a data marginalization based missing data method is used where
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severely noisy GEMS utterances are labeled as missing data. The data marginalization

method is found to improve the accuracy of the system over the baseline system. Periodicity

feature is found to perform better than the energy feature in all experiments.
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