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                                                              SUMMARY 

 

      In the first part of this thesis, the synthesis, characterization and investigation of  

ortho-phenyleneethynylenes containing heterocycles, are presented.  These compounds 

display changes in absorption and emission spectra varying with their functionalization 

and size.  These compounds also have the ability to coordinate with metals.  The 

synthesis of coordination compounds and their crystallographic data are reported.   The 

synthesis and characterization of tetraethynyl thiophene compounds containing pyridines 

are also presented.  These compounds exhibit differences in absorption and emission 

spectra upon exposure to various metal salts.  The final topic to be discussed is the 

synthesis and characterization of diphenyl amine polymers.  These polymers could in 

principle be used in NLO applications or light emitting devices.   
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CHAPTER 1 

INTRODUCTION 

 

 
 
     This work presents the synthesis and characterization of ortho-phenyleneethynylenes, 

thiophene ligands, and diphenyl amine (DPA) polymers.  All of these compounds 

demonstrate interesting characteristics in absorption and emission spectra in solution, 

solid state and with the addition of trifluoroacetic acid or metals.  These compounds also 

show promise in the use of LEDs and metal sensing.  

      This synthesis of ortho-phenyleneethynylenes, thiophene ligands, and diphenyl amine 

(DPA) polymers are constructed using the Heck-Cassar-Sonogashira-Hagihara palladium 

catalyzed reaction. This coupling reaction of terminal akynes to aromatic bromides or 

iodides has been known since 1975.1-3   The catalytic cycle can be seen in Scheme 1.4  In 

the first step, the alkyne is treated with CuI and an amine to form the cuprated alkyne A 

which then undergoes transmetallation with the palladium catalyst to form a dialkyne and 

the active Pd(0) species C.  The active catalyst, C, undergoes oxidative addition with an 

aryl bromide or iodide to form the intermediate D.  This intermediate D then participates 

in transmetallation with A to give the diorgano-Pd species E, which then undergoes 

reductive elimination to form the product, F.  The Pd(0) catalyst, C, is regenerated in the 

final step.   
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Figure 1.1:  Catalytic coupling scheme for the Heck-Cassar-Sonogashira-Hagihara  
                    Reaction 
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     The first compounds to be presented are ortho-phenylene ethynylenes.  Chapter 2 

presents the synthesis, absorption and emission spectra, and solid state crystal data for a 

series of six trimeric OPE’s containing pyridine, pyrimidines, and pyrazines.  In Chapter 

3 the focus is turned towards synthesizing longer OPEs from trimer through heptamer 

(Figure 2.2).5  It is of importance to design compounds which are both flexible, easily 

processed, yet do not require the presence of side chains.  OPEs may fulfill these 

requirements.   These types of compounds have a large outside surface, and almost no 

accessible interior cavity which is similar to α-helical protein structures.  OPEs promise 

ample discoveries with respect to solid-state ordering and supramolecular nano 

engineering, materials properties, and applications in solid state devices such as LEDs.   
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Figure 1.2:  Pyridine capped OPEs 
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     It was of interest to determine what sort of conformations could be obtained around a 

metal center utilizing OPEs as a ligand.  Chapter 4 demonstrates the various 

conformations formed by using an OPE trimer with various metals to form a ring, a dimer, 

and a polymer (Figure 1.3)6,7.  These such compounds can be used in supramolecular 

assembly of conjugated organic ligands toward novel photonic, electroactive, and 

structural materials8-10.  Here the crystal data and synthesis of such compounds are 

described.  

 

Figure 1.3:  OPE polymer containing Rh2(OAc)2 

 

    Chapter 5 presents the synthesis of thiophene containing ligands which contain four 

pyridyl rings.  The synthesis, absorption and emission spectra are presented as well as 

studies on the effect of metals on these compounds in solution. (Figure 1.4).  By using 

different pyridines, the sensing ability for various metals is changed.  These four metal 

binding sites demonstrate bathocrhomic shifts in absorption and emission based on the 

equivalents of metals used.  These compounds show promise in future use in metal 

sensing.   
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Figure 1.4:  A thiophene containing ligand 

 

     The final chapter discusses the synthesis and characterization of 

polyaryleneethynylenes (PAEs) which contain diphenyl amines with various 

comonomers.  Tertiary amines have been known to be suitable hole-transporting layers in 

the construction of organic LEDs. 11-13  Incoorperating a tertiary amine into the polymer 

backbone show a low threshold voltage compared with other polymers.  One cause for 

this low threshold voltage is the π-electron delocalization between the nitrogen lone pair 

and the π-electrons in the conjugated units.  In the case of the polymers presented in this 

thesis, the aromatic units are composed of one of the following: alkyl or alkoxy benzene, 

alkyl fluorene, or fluorenone. These types of polymers could be valuable in the area of 

polymeric electroluminescent devices because flat thin-film devices can be manufactured 

with reduced cost and weight.     
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CHAPTER 2 

ORTHO-PHENYLENEETHYNYLENE TRIMERS 

CONTAINING PYRIDINE, PYRIMIDINE AND PYRAZINE 

 

 

 

 

2.1  Introduction 

 

     The synthesis and characterization of six ortho-phenyleneethynylene trimeric ligands 

consisting of various nitrogen containing heterocycles (pyridines, pyrimidines, and 

pyrazines) with a benzene center are presented. The absorption and emission spectra 

exhibit a pH dependency.  Ligands of this type have been studied for their uses in metal 

coordination by the groups of Bosch, Bunz and others.1-6   Metal coordination to ligands 

such as these will be discussed in the next chapter.   More recently compounds containing 

enediyne scaffolding have been studied due to their similarities to families of molecules 

which display biological functions.  These compounds, which are similar to the ones 

presented in this chapter, demonstrated inhibition of the growth of 60 different cancers.  

These molecules are stable, relatively facile to synthesize, blue emitting in solution and 

yellow emitting in the solid state and show promise for use in organic displays. 
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2.2  Results and Discussion  

 

     The synthesis of OPE trimers begins with synthesis of a halogenated centerpiece from 

1,2-dimethoxybenzene 2.1 to form 2.2 by utilizing standard iodination conditions9. The 

two nitrogen containing heterocyclic arms are produced by the alkynylation of the 

halogenated pyridines 2.3, 2.5, 2.7 and pyrimidines 2.9 and 2.11 using the Heck-Cassar-

Sonogashira-Hagihara (HCSH)7,8 coupling reaction to form the corresponding 

compounds 2.4, 2.6, 2.8, and 2.10. Due to the fact that chloro-heterocycles are not as 

reactive under HCSH conditions, it was necessary to perform a halogen exchange using 

chloropyrazine 2.13 to obtain iodopyrazine 2.14 using NaI, H2SO4, acetic acid and 

acetonitrile. From 2.14 the production of the alkynylated species 2.15 was feasible in a 

72% yield.   
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Scheme 2.1: Synthesis of heterocyclic arms and centerpiece. 
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Scheme 2.2: Synthesis of alkynylated heterocyclic arms. 

 

     As seen in Scheme 2.1 and Scheme 2.2 the arms are attached to the centerpiece by 

coupling 2.2 using the in situ deprotection and coupling reaction developed by 

Waybright.10  The synthesis begins with the in situ deprotection and coupling reaction 2-

trimethylsilylethynyl pyridine 2.4 with the diiodo compound 2.2, using 0.5 equivalents of 

the diiodo compound.   (Scheme 2.1) The trimethylsilyl group of 2.4 is cleaved in situ, 

while coupling by the addition of KOH in ethanol to the reaction mixture. The Pd-

catalyst does not appear to be affected by the presence of the hydroxide. This reaction 

yields the trimer 2.16 in a 73% yield.  This ligand is proved to be valuable in 

coordination chemistry as will be seen in Chapter 3.  The synthesis of five additional 
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ligands, 2.17-2.21, of this type can be seen in Scheme 2.2.  The synthesis is similar to the 

synthesis of 2.16 and the yields are reasonable.    
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Scheme 2.3: Synthesis of trimeric ligands (cont.). 
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Scheme 2.4.  Synthesis of  trimeric ligands (cont.). 

 

     The crystal structures of three of these ligands, 2.16, 2.17, and 2.18 can be seen in 

Figure 1.1.  In 2.16, the molecule is nearly planar, and the nitrogens of the pyridines are 

rotated away from each other.  In the case of 2.17, the pyridines are slightly twisted with 
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the nitrogens facing towards one another.  The crystal structure of 2.18 reveals that one of 

the pyridine rings is twisted out of the plane.   

a).  

b).  

 

c)  

Figure 2.1:  Crystal structures of a) 2.16, b)2.17, c)2.18.  
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      The absorption spectra of the six trimers can be seen in Figure 2.2.   The absorption 

spectra for 2.16 and 2.18 are more well defined where as 2.18 is more broad and less 

defined.  This is probably due to the ortho-meta positioning in 2.16  and 2.18 of the 

nitrogen of the pyridines in relation to the alkyne arms of the molecule.  All trimers 

except 2.21 demonstrate a maximum absorption around 260, 290, and 340 nm.  A red 

shift from this wavelength to 280, 310, and 360 nm can be seen in the spectra of the 

pyrazine ligand 2.21. Upon addition of trifluoroacetic acid a red shift and a broadening of 

the spectra is observed for all ligands except for 2.16 which sees a shift to 250, 300, and 

335  (Figure 2.2).  
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Figure 2.2:  Absorption spectra of trimers in chloroform 
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Figure 2.3: Absorption spectra of trimers in chloroform with the addition of  

                   trifluoroacetic acid 

 

     All six ligands are blue emissive in a solution of chloroform.  In the solid state these 

ligands are yellow emissive.  Once the ligands are protonated with trifluoroacetic acid, 

the fluorescence for all ligands is quenched due to the break in conjugation except for 

2.16.  The reason for this shift in emission will be discussed further in Chapter 3.    
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Figure 2.4:  Emission spectra of trimer ligands in chloroform. 

 

 

2.3  Conclusion 

 

     The synthesis, photophysical data and solid state structures for six ortho-

phenyleneethynylene trimer compounds have been presented.  These compounds are very 

interesting in that they are of similar shape and demonstrate different absorption and 

emission spectra by modifying the heterocyclic arms.  In Chapter 3, 2.16 is presented 

again with its tetrameric, pentameric and heptameric forms.  This trimer 2.16 will be seen 

again in coordination with various metals in Chapter 4.   

 

 

 



 17

2.4     Experimental 

 

O

O

O

O

I

I

I2, KIO4

CH3COOH, H2O
H2SO4
66%

2.1 2.2  

 

1,2-Diiodo-3,4-dimethoxybenzene (2.2)9.   1,2-dimethoxybenzene 2.1 (50g, 362mmol), 

I2 (127.1g, 360 mmol),   KIO4 (82.8g, 360 mmol) were dissolved in 450ml (90%)  acetic 

acid, 35 ml (7%) water and 15 ml (3%) H2SO4 in a 1000 ml three-necked round bottom 

flask equipped with a condenser.  The flask is heated using an oil bath at 80°C for 48 h.  

The reaction mixture is washed with aqueous NaSO3 and extracted with CHCl3.  The 

organic layer is neutralized with aqueous NaHCO3.    After removal of the solvent, in 

vacuo the product was pale yellow.  Upon recrystallization from ethanol yields 2.2 as 

colorless crystals (94g, 66%).     1H-NMR (CDCl3, 300 MHz ,   15 °C) δ 7.259 (s, 2H, 

aryl-H),  3.835 (s, 6H, OCH3) ppm.  13C-NMR (CDCl3, 75 MHz, 20°C) 150.45, 121.32, 

98.45, 52.67. 

 

 

N

Br

N

Si
TMSA

NEt3
Pd(PPh3)2Cl2
CuI
97%2.3 2.4  
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2-Trimethylsilylethynylpyridine (2.4) 11  2-bromopyridine 2.3 (25g, 0.162 mol) is 

dissolved in NEt3 (200 mL) in a Schlenk flask under N2 atmosphere.  Next, Pd(PPh3)2Cl2 

(0.57 g, .714 mmol.), CuI ( 0.308 g, 1.62 mmol) and PPh3 (0.500 g) are added. The 

reaction is stirred for 16 h. at 60˚C.  The resulting solution is washed with a 10% NH4OH 

solution and extracted with hexanes (3x 200 mL).  The organic layer is washed with 

water and extracted with hexanes (3x, 100 mL).  The solvent is removed in vaccuo.  The 

crude compound is purified by distillation to yield 2.4 as a colorless solid  (27.5g, 0.157 

mol) in a 97% yield.  (1H-NMR (CHCl3, 300MHz) δ 8.43-8.40 (dt, 1H, pyridyl H), 7.48, 

7.46,7.5 (t, 1H, pyridyl-H), 7.32-7.28 (dt, 1H, pyridyl-H), 7.09-7.05 (m, 1H, pyridyl-H), 

0.01 (9H, Si-CH3-H).   13C-NMR (CDCl3, 75 MHz, 20°C) 150.17, 143.29, 136.34, 127.51, 

123.31, 104.03, 94.87, 0.07.   Mp=29˚C. 

 

 

N

Br

N

Si
TMSA

NEt3
Pd(PPh3)2Cl2
CuI
94%2.5 2.6  

 

 
 
3-bromopyridine 2.5 (5 g, 32.5 mmol)12     is dissolved in NEt3 in a 50 mL Schlenk flask 

under nitrogen atmosphere.   Next, Pd(PPh3)2Cl2 (0.11 g, 0.143 mmol.), CuI ( 0.061 g, 

0.324 mmol) and PPh3 (0.100 g) are added. The reaction is stirred for 16 h. at 70˚C for 24 

h. The solution is washed with 10% NH4OH solution and extracted with hexanes.  The 
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solvent is removed and the crude liquid is distilled to give 2.6 (5.34 g, 30.5 mmol) as a 

colorless oil in a 94% yield.  1H-NMR (CHCl3, 300MHz) δ 8.61 (m, 1H, pyridyl-H), 8.52 

(m, 1H, pyridyl-H), 7.66-7.63 (dt, 1H, pyridyl-H), 7.41-7.38 (m, 1H, pyridyl-H) 0.21 (s, 

9H, Si-CH3-H)  13C-NMR (CDCl3, 75 MHz, 20°C) 152.54, 148.66, 138.59, 122.78, 

120.21, 101.58, 98.89, -0.19.  

 

N Br N Si
TMSA

NEt2H
Pd(PPh3)2Cl2
CuI
93%2.7 2.8  

 

4-Trimethylsilylethynylpyridine (2.8)11 In a 100 mL Schlenk flask under nitrogen 

atomsphere, 4-bromopyridine 2.7 (10g, 51.4 mmol) is dissolved in diethylamine (40 mL) 

in a 250 mL Schlenk flask under nitrogen atmosphere. Next, Pd(PPh3)2Cl2 (0.359 g, 

0.513 mmol.), CuI ( 0.098 g, 0.513  mmol) and PPh3 (0.100 g) are added, and the reaction 

is capped.  TMSA (15.29 mL, 102.8 mmol) is added to the reaction mixture via syringe. 

The reaction is stirred at 70 ˚C for 16 h. The solution is cooled to room temperature then 

washed with 10% NH4OH solution and extracted with hexanes.  The solvent is removed 

and the crude liquid is distilled under vacuum to furnish 2.8 (8.18g, 93%) as a colorless 

oil.   1H-NMR (CHCl3, 300MHz) δ 8.42, 8.41, 8.40 (t-pyridyl-H), 7.16, 7.15, 7.14 (t, 

pyridyl H), 0.12 (s, TMS-H)    13C-NMR (CDCl3, 75 MHz, 20°C) 149.41, 130.823, 

101.73, 99.51, -0.60.  
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N

N

Br

N

N

Si
TMSA

NEt3
Pd(PPh3)2Cl2
CuI
94%2.9 2.10  

 

5-Trimethylsilylpyrimidine (2.10)11  2.9 is dissolved in a 250 mL Schlenk flask  (5 g,  

32.5 mmol) is dissolved in NEt3 in a 50 mL Schlenk flask under nitrogen atmosphere.   

Next, Pd(PPh3)2Cl2 (0.11 g, 0.143 mmol.), CuI ( 0.061 g, 0.324 mmol) and PPh3 (0.100 g) 

are added. The reaction is stirred for 16 h. at 70˚C for 24 h. The solution is washed with 

10% NH4OH solution and extracted with hexanes.  The solvent is removed and the crude 

liquid is distilled to give 2.10 (5.34 g, 30.5 mmol) as a colorless oil in a 94% yield. 1H-

NMR (CHCl3, 300MHz) δ 9.04, 9.03, 9.02 (t, 1H, pyrimidyl-H), 8.82, 8.81 (d, 2H, 

pyrimidyl-H) 0.23 (s, 9H, SiCH3-H)   13C-NMR (CDCl3, 75 MHz, 20°C)  160.32, 156.54, 

118.34, 109.77, 94.23, 0.12. 

 

 

N

N

Br

N

N

Si
TMSA

NEt3
Pd(PPh3)2Cl2
CuI
96%2.11 2.12  

 

2-Trimethylsilylpyrimidine (2.12)11  2.9 is dissolved in a 250 mL Schlenk flask (2 g,  

12.6 mmol) is dissolved in NEt3 (15 mL) in a 50 mL Schlenk flask under nitrogen 

atmosphere.   Next, Pd(PPh3)2Cl2 (0.088 g, 0.126 mmol.), CuI ( 0.024 g, 0.126 mmol) 
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and PPh3 (0.050 g) are added. The reaction is stirred for 16 h. at 70˚C for 24 h. The 

solution is washed with 10% NH4OH solution and extracted with hexanes.  The solvent is 

removed and the crude liquid is distilled to give 2.12 (2.13 g, 12.01 mmol) as a colorless 

solid in a 96% yield.  1H-NMR (CHCl3, 300MHz) δ 8.83, 8.82 (d, 2H, pyrimidyl-H)  7.19, 

7.18, 7.16 (t, 1H, pyrimidyl-H), 0.28 (s, 9H, TMS-H)  13C-NMR (CDCl3, 75 MHz, 20°C) 

158.42, 141.33, 102.43, 93.79, 0.11.  

 

N

N Cl

N

N I
NaI, CH3COOH

H2SO4, CH3CN
72%

2.13 2.14  

2-Iodopyrazine (2.14)13 A 500 mL round bottom flask is equipped with a condenser, and 

a solution of acetonitrile (100mL), acetic acid (9.6mL) and NaI (30.0g, 0.200 mol) is 

added.  2-chloropyrazine 2.13 (9.63g, 84.0 mmol) is added last. The reaction is heated to 

reflux for 16 h.  The reaction is cooled to RT, and the solvent is removed in vaccuo.  

Water (100 mL) and is added, and the solution is neutralized with NaHCO3 and extracted 

with CH2Cl2. The CH2Cl2 solution is washed with a saturated solution of Na2S2O4 and 

extracted with CH2Cl2. The solvent is removed in vaccuo. The product is distilled under 

vacuum to yield 2.14 (12.4 g, 60.3 mmol, 72%) as a colorless oil.   1H-NMR (CHCl3, 

300MHz)  δ 8.73 (q, 1H) 8.63-8.62 (dd, 1H),  8.16 (q, 1H).  13C-NMR (CDCl3, 75 MHz, 

20°C)-153.08, 145.82, 142. 87, 118.49.     
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N

N I N

N

Si

2.14 2.15

TMSA

NEt3
Pd(PPh3)2Cl2
CuI

 

 

2-Trimethylsilylethynylpyrazine (2.15)12 A Schlenk flask is flushed with nitrogen and 

2.14 (4g, 19.5 mmol) is dissolved in NEt3 (30 mL), Pd(PPh3)2Cl2 (0.137g, 0.195 mmol), 

CuI (0.037g, 0.195 mmol) are added and the reaction is capped.  TMSA (4.78g, 48.8 

mmol) is added via syringe.  The reaction is stirred for 16 h. at 70˚C for 24 h. The 

solution is washed with 10% NH4OH solution and extracted with hexanes.  The solvent is 

removed and the crude liquid is distilled to give 2.15 (3.36 g, 19.06 mmol) as a colorless 

solid in a 98% yield.     1H-NMR (CHCl3, 300MHz) δ 8.74 (m, 1H, pyrazyl-H), 8.63 (m, 

1H, pyrazyl-H), 8.52 (m, 1H, pyrazyl-H), 0.31 (s, 9H, Si-CH3-H). 13C-NMR (CDCl3, 75 

MHz) 143.56, 142.84, 141.29, 104.34, 91.77, -0.28. 

 

 

N

Si

I

I

O

O

+

O

O

N

N

KOH/ EtOH

CH2Cl2
Pd(PPh3)2Cl2, CuI
Piperidine
73%2.2 2.4 2.16
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 1,2-Dimethoxy-4,5-bis(2-pyridylethynyl)benzene (2.16) In a 50 mL flask under 

nitrogen atmosphere, 1,2-diiodo-dimethoxybenzene 2.2 (3.30 g, 9.70 mmol) and  2.14 

(3.72 g, 2.12 mmol) are dissolved in CH2Cl2 (20 mL) and piperidine ( 2 mL).  A 10 wt. % 

mixture of KOH in ethanol (3 mL) is added and stirred for 15 minutes. Pd(PPh3)2Cl2 

(0.059 g, .084 mmol) and CuI (0.0146 g..077 mmol) are added, and reaction is stirred for 

12 h. at room temperature. The resulting mixture is poured into 150 mL CH2Cl2 and 

washed three times with 50 mL of water. The organic layer is washed with a 10% 

NH4OH solution. The aqueous layer was washed three times with 100 mL CH2Cl2.  

Organic layers are combined and dried with NaSO4.  Purification was done by column 

chromatography on a deactivated (2% NEt3/ 98% hexanes) column with eluent ethyl 

acetate/hexane (1:4). The resulting solid is recrystallized from ethyl acetate and hexanes 

(1:1) to yield a white crystalline solid (2.1 g, 73%).  1H-NMR (acetonitrile, 300 MHz ,   

20°C) 3.90 (s, 6H, OCH3), 7.24 (s, 2H, aryl-H), 7.38 (ddd, 2H, pyridyl-H), 7.77 (dt, 2H, 

pyridyl-H), 7.82 (td, 2H, pyridyl-H),  8.65 (d, 2H, pyridyl-H), ppm  13C-NMR (CDCl3, 75 

MHz, 20°C) 150.28, 149.812, 143.83, 136.38, 127.54, 122.92, 118.65, 114.67, 91.94, 88. 

33, 56.34 ppm  MS-EI (70eV, 200°C): 340 (100%, M+), 341 (25%, M+), 342 (5%, M+), 

325 (M+-CH3, 15%,) 309 (M+-OCH3, 4%), 263 (97%, M+-pyridine), 264 (22%, M+-

pyridine),  186 (68%, M+- 2x pyridine), 187 (10%, M+- 2x pyridine) m/z IR [KBr-pellet, 

cm-1] 2200 (m), 1590 (w), 1570 (s), 1550 (w), 1510 (s), 1460 (m), 1450 (m), 1435 (w), 

1425 (w) 1415 (w), 1360 (s), 1245 (s), 1210 (m), 1175 (w), 1095 (m), 1075 (w), 990 (m), 

890 (w), 770 (m).   
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N

Si

I

I

O

O

+

O

O

N

N

KOH/ EtOH

CH2Cl2
Pd(PPh3)2Cl2, CuI
Piperidine
69%

1.2 1.6 1.17
 

 

1,2-Dimethoxy-4,5-bis(3-pyridylethynyl)benzene (2.17)  2.2 (3.30 g, 8.46 mmol) and 

3-   trimethylsilylethynylpyridine 2.6 (3.72g, 21.25 mmol) are dissolved in 10 ml of 

CH2Cl2 and 2 ml of a 10 wt % solution of KOH/EtOH and stirred for 15 min in a nitrogen 

purged flask.  Next, piperidine (1 mL), Pd(PPh3)2Cl2 (0.06g, 0.08 mmol) and CuI (0.02 g, 

0.09 mmol) are added.  The reaction is stirred for 6 h.  The resulting mixture is worked 

up with 10 % NH4OH and extracted with CH2Cl2.  The organic layer is dried over sodium 

sulfate, filtered and solvent is removed under pressure.  Chromatography over silica gel 

with hexanes:EtOAc:NEt3 (80:19:1) gives 2.17 (1.98g, 68.8%) as a white solid.  1H-

NMR- (300MHz, CDCl3) δ 3.92 (s, 6H), 7.03 (s, 2H, aryl-H),   7.26, 7.27, 7.29 ( m, 2H 

pyridyl- H), 7.76, 7.77, 7.79, 7.80 ( dd, 2H) 8.53  (s, 2H), 8.76 (s, 2H). 13C-NMR- (75 

MHz, CDCl3) δ 151.77,149.19, 148.36, 137.92, 122.92, 120.19, 117.94, 113.77, 91.19, 

88.68, 55.81. IR- v 2201, 1598, 1554, 1506, 1262, 1408, 1365, 1245,  1212, 1088, 1022, 

990, 854, 800, 773, 697, 637   MP= 148 °C  UV/Vis  (CHCl3) λ  276, 332. Emission λ 

(CHCl3) 388. 
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N

Si

I

I

O

O

+

O

O

N

N

KOH/ EtOH

CH2Cl2
Pd(PPh3)2Cl2, CuI
Piperidine
63%

2.2 2.8 2.18
 

 

1,2-Dimethoxy-4,5-bis(3-pyridylethynyl)benzene 1.18.  2.2 (2.67 g, 6.85 mmol) and 4-

trimethylsilylethynyl pyridine 2.8 (3.00 g, 17.10 mmol) are dissolved in 20 mL CH2Cl2 

and 2 ml of a 10 wt % KOH/EtOH solution and stirred for 15 minutes in a nitrogen 

purged flask.  Next, piperidine (1 mL), Pd(PPh3)2Cl2 (0.050g, 0.070 mmol) and CuI 

(0.01g, 0.07 mmol) are added.  The reaction is stirred for 6 h. at RT.  The resulting 

mixture is washed with 10 % NH4OH and extracted with CH2Cl2. The organic layer is 

dried with sodium sulfate, and the solvent is removed under pressure.  The crude solid is 

purified by column chromatography over silica gel with eluent  EtOAc:hexane (1:4) to 

give 2.18 (1.63 g, 62.5%) as a pale yellow solid. 1H-NMR- (CDCl3, 300MHz) δ 3.94 (s, 

6H), 7.04 (s, 2H) 7.35, 7.36, 7.37, 7.37 (dd, 4H), 8.59, 8.61 (d, 4H)  13C-NMR- (75 MHz, 

CDCl3) δ 149.87, 149.80, 131.31, 125.24, 118.10, 114.17, 92.52, 89.75, 56.09.IR- v 2198, 

1719, 1588, 1552, 1407, 1363, 1254, 1218, 1080, 985, 862, 811, 695   MP=190 °C  MS - 

340, 325, 297, 268, 254, 170, 127, 100, 74 cm-1   UV/Vis (CHCl3) λ 264, 292, 336. 

Emission  (CHCl3) λ  401.  
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CH2Cl2
Pd(PPh3)2Cl2, CuI
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63%

2.1 2.10
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1,2-dimethoxy-4,5-bis(5-pyrimidylethynyl)benzene (2.19) In a nitrogen purged flask 

2.2 (2.40 g 6.20 mmol)  and 2.10 (2.70 g 15.30 mmol) are dissolved in 15 ml CH2Cl2 and 

2 ml of a 10 wt % KOH/EtOH solution and stirred for 15 min. Next piperidine (2 mL), 

Pd(PPh3)2Cl2 (0.04g, 0.06 mmol) and CuI (0.010g, 0.060 mmol) are added.  The eaction 

is stirred for 6 h.  The resulting mixture is washed with a 10 % NH4OH solution and 

extracted with CH2Cl2. Crystallization from methanol gives 2.19 (1.2 g, 57%) as a 

colorless solid. (1H-NMR- (CDCl3, 300MHz)  δ 3.94 (s, 6H,), 7.04 (s, 2H), 8.83 (s, 4H), 

9.13 (s, 2H) 13C-NMR- (CDCl3, 75 MHz)  δ 158.38, 156.81, 149.93, 119.75, 117.82, 

114.18, 94.67, 85.35, 56.14.  IR v 3019, 2932, 2205, 1588, 1537, 1508, 1450, 1421, 1370, 

1254, 1217, 1130, 1072, 1036, 985, 862, 753, 716, 636.3.  MP= 209 °C  UV/Vis (CHCl3) 

λ  268, 286, 334. Emission (CHCl3) λ  400.  
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 1,2-Dimethoxy-4,5-bis(2-pyrimidylethynyl)benzene (2.20). 2.2 (2.00 g, 5.89 mmol) 

and  2.12 (2.08 g, 118.2 mmol) are dissolved in piperidine (1 mL), CH2Cl2 (10 mL), and 2 

ml of a 10 wt % KOH/EtOH solution in a Schlenk flask under nitrogen atmosphere for 15 

min.  Pd(PPh3)2Cl2 (0.016 g, .02mmol),  CuI (0.01g, .05 mmol), and PPh3 (0.02 g, 0.07 

mmol) are added, and the reaction is capped.and heated at 70° C for 12 h. The resulting 

mixture is washed with 10 % NH4OH and extracted with CH2Cl2. After removing solvent 

under vacuum, the solid is crystallized from methanol to give 2.20 (1.13g, 55%) as a pale 

yellow solid.  1H –NMR - (CDCl3, 300MHz) δ 3.88 (s, 6H), 7.15 (s, 2H), 7.17-7.20 (t, 2H)  

8.72-8.70 (d, 4H)  13C-NMR- (CDCl3, 75 MHz)  δ 157.23 153.31, 149.99, 119.52, 117.84, 

115.22, 90.99, 86.06, 56.13.  UV/Vis (CHCl3) λ 263, 289, 322, 342. Emission (CHCl3) λ  

416.   

N

N

+

KOH/ EtOH

CH2Cl2
Pd(PPh3)2Cl2, CuI
Piperidine
55%

O

O

N

N

N

N

I

I

O

O

Si

2.2 2.15 2.21
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1,2-Dimethoxy-4,5-bis(2-pyrazylethynyl)benzene  (2.21)  2.2 (1.00g, 2.56 mmol) and 

2.15 (1.13g, 6.40 mmol) are dissolved in 10 ml CH2Cl2, 1 ml piperidine, and 2ml of a 

10% KOH/EtOH solution and stirred for 15 minutes.  Pd(PPh3)2Cl2 (0.02g, 0.03mmol 

and CuI (.006 g, 0.03 mmol) are added.   The reaction is stirred at room temperature for 6 

h.  The solution is washed with a 10 % NH4OH and extracted with CH2Cl2 .  The solvent 

is removed under pressure and the solid is recrystallized from methanol to yield 2.21 

(0.55g, 53% yield.)  1H-NMR- (300MHz, CDCl3) δ 3.93 (s, 6H), 7.13 (s, 2H), 8.47, 8.48 

(d, 2H), 8.58, 8.59, 8.59, 8.59 (m, 4H,).   13C-NMR- (75 MHz, CDCl3)  δ150.08, 147.88, 

144.52, 142.81, 140.31, 118.01, 114.34, 91.65, 89.32, 56.16. IR- v 2205, 1582, 1595, 

1508, 1464, 1362, 1253, 1217, 1101, 1014, 948, 854, 651. Mp= 222 °C 
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CHAPTER 3 

SYNTHESIS AND CHARACTERIZATION OF PYRIDINE 

CAPPED ORTHO-PHENYLENEETHYNYLENES 

                                                                                                             

 

 

3.1  Introduction 

 

     Aryleneeethynylenes1,2 (AE) constitute a general class of molecules in which arene 

units are connected by alkynyl linkers.  In most of the aryleneethynylenes benzene rings 

are used as the arene of choice perhaps due to simplicity and commercial access to the 

starting materials.  The first AEs reported were the cyclic trimers and  hexamers3-6 

(Figure 3.1), and not linear oligomers.  Linear oligomers of the para and meta type, were 

first synthesized7-13  for their potential application in molecular electronics and to study 

solvent driven folding processes in conjugated oligomers. 

     The first linear ortho-oligo-PEs were synthesized by Grubbs and Kratz14 (Figure 3.1), 

but despite their interesting thermal behavior and their unusual helical structures in the 

solid state, they have attracted much less attention than their meta or para counterparts.  

One investigation by Anderson15  has utilized kinked PEs in which ortho-linkages were 

present as active materials for light emitting diodes..  Donor-acceptor ortho-PEs were 

investigated by Nicoud16 et al. as NLO-type materials and showed interesting properties.  

Recently Tew et al.17  have reported alkoxy substituted o-PE’s  (trimer to hexamer) and 
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have performed a theoretical study18 of their helix formation.  The “floppiness” of the o-

PEs should give rise to a multitude of different conformations in solution and several 

conformations in the solid state.  The compound and its parent19,20,21 (without the 

methoxy groups)22,23 has been found to be a suitable ligand for transition metals as it can 

coordinate in a  trans-spanning fashion forming monomeric complexes, or be the bridging 

part of a metal organic coordination polymer.  We wish to present the synthesis and the 

structural characterization of the pyridine end-capped ortho-PEs 2.2, 3.1, 3.2, and 3.3.  

These oligomers are attractive as active layers in light emitting diodes and as building 

blocks for larger metal organic solid state polymers.  

  

 

                                                                                          

                

 

 
Figure 3.1:  Ortho-phenyleneethynylene oligomers.  
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Figure:  3.2  Pyridine capped OPE’s. 

 

3.2  Results and Discussion 

 

     The synthesis of 1.16 (Figure 2.1) has been previously discussed in Chapter 1.  Using 

the same reactants, but with an excess 1.2 with 1.4, the mono coupled compound 2.4, is 

produced in a 66 % yield.   Upon alkynylation of 2.4 with trimethylsilylacetylene yields 

the unsymmetrical diyne, 2.5 which is a building block in the synthesis of longer 

oligomers, in a 97% yield.  The longer tetramer is synthesized by treating 2.4 with 

acetylene gas under Sonogashira conditions to yield 2.1 in a 42% yield.   
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Scheme 3.1 Synthesis of tetramer 3.1. 

 

     The synthesis of the other necessary building blocks for the creation of the pentamer 

and heptamer begins with the reaction of the 2.2 with 2.5 eq of TMS-acetylene to yield  

the dialkynylated compound  3.6 in an 88% yield.  The dialkynylated compound 3.6 is 

treated with and excess of the diiodide 2.2, to yield the diiodo trimer 3.7 in a 34 % yield.   
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Scheme 3.2: Synthesis of o-diiodotrimer 
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     The synthesis of the longer oligomers can be seen in Scheme 3.3.  The dialkynyl 

compound 3.6 is deprotected and coupled in situ to the monosubstitued compound 3.4, in 

a similar fashion as the previous compounds, in a 54% yield.  The larger heptameric 

oligomer is created from the diiodo trimer 3.7 reacting with the asymmetrical alkyne 3.6 

in a 34% yield.    
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Scheme 3.3: Synthesis of 3.3 
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Figure 3.3:  Absorption spectra in chloroform 
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Figure 3.4: Absorption spectra in chloroform upon addition of TFA 
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Figure 3.5: Emission spectra of ligands 2.16 and 3.1-3.3. 

 

     The Uv-vis spectra of 2.16 and 3.1-3.3 in dilute solution are shown in Figure 3.3. With 

increasing length, λmax is shifted from 324-408 nm.  While the absorption of the trimer is 

well structured, the absorptions of the higher oligomers tend to become much broader, 

shoulder-like and less defined.  We trace this behavior back to the conformational 

freedom of these floppy molecules.  The larger the oligomer, the more conformation 

freedom the molecule has.  As a consequence this increase in length leads to broadening 

of the absorption spectra.  The presence of the pyridine end groups makes the Uv-vis 

spectra susceptible to the presence of acid, and addition of trifluoroacetic acid to dilute 

solutions of 2.16 and 3.1-3.3 lead to a significant bathochromic shift as seen in Figure 3.4.  

This shift is most distinct in the case of the trimer 2.16 and leads to further broadening of 

the Uv-vis features in 2.6 and 3.1-3.3 as shown in Figure 3.4  and Table 3.1.      

Table 3.1. Optical and Photophysical Data of 2.16, 3.1-3.3 
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 max,abs (nm) max, abs + TFA (nm) max,em (nm) sol (%) 

2.16 263, 294, 324 285, 318, 389 396, thin film: 508 36 

3.1 268, 352 282, 322, 406 416, thin film: 538 28 

3.2 265 291, 336 430, thin film: 542 28 

3.3 272 276, 378 436, thin film: Nd 35 

 

Table 3.1: Optical and Photophysical Data of 2.16, 3.1-3.3.  

     All of the oligomers are emissive, and contrary to the absorption spectra, the emission 

spectra do not broaden upon increasing from trimer 2.16 to heptamer 3.3.  A similar 

behavior is observed in the case of linear PEs8, and it was explained by the planarization 

of the oligomers in the excited state.  We can construe that planarization in the lowest 

excited state will drive the oligomers into a zig-zag type planar structure from which 

emission is observed.8  The quantum yield of the emission for 2.16 and 3.1-3.4 is 

significant and in the range from 28-40%, but lower than that of the corresponding linear 

PEs   

     Upon addition of TFA the fluorescence of the oligomers is generally quenched, with 

the exception of the fluorescence of 2.16, which shifts from 396 to 500 nm, i.e from 

purple to yellow.  The emission for the tetramer through heptamer is quenched, while the 

emission of the trimer 2.16 demonstrates a red shift.   A titration using trifluoroacetic acid 

was performed to determine at what equivalent of acid shifts the emission of 2.16.  As 

can be seen in Figure 3.6 and Figure 3.7, a shift can be seen beginning at 0.2 equivalents.  
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There is no further shift after 1.0 equivalent of acid.  It can be concluded that in fact there 

is only one proton present. 
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Figure 3.6: Absorption spectra of 2.16 with increasing amounts of TFA. 
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Figure 3.7: Emission spectra of 2.16 with increasing amounts of TFA. 
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     A 631G** calculation was performed on 2.16 to determine difference between the 

band gap of the unprotonated form of the ligand with the protonated form.  In this case 

the HOMO for the unprotonated form is -5.36 eV and the LUMO is -1.03 eV (Figure 3.7)   

                               

Figure 3.8: 6-31G** calculations of 2.16. HOMO (left) LUMO (right). 

 

     The protonated form gives a HOMO estimate at -8.44 eV and a LUMO of  -5.68 eV 

(Figure 3.7). This decrease in band gap indicates that the 2.16 will have a red shift.  The 

protonated form of this compound also demonstrates a greater donor-acceptor character.  

    

Figure 3.9: 6-31 G** calculation of 2.16 with a hydrogen between the nitrogens 
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     In order to further study whether or not 2.16 was singly or doubly protonated, IR 

spectra were taken (Figure 3.9) of the base ligand and the protonated form.  One clue to 

confirm the belief that ligand 2.16 is singly protonated between the nitrogens due to the 

disappearance of alkyne stretches at 2358 cm-1 and 2339 cm-1 (Figure 3.10) which is 

replaced by a single alkyne peak at 2200cm-1.  This shift can be attributed to a more 

symmetric molecule which can be traced to a singly protonated ligand which is 

planarizing.  
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Figure 3.10:  IR spectrumof 2.16. 
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Figure 3.11: IR spectrum of  2.16 with HBr. 

 

    The oligomers 2.16 and 3.1-3.3 are flexible and could in principle attain any 

conformation ranging from completely planar to highly twisted and/or helical.  While 

most of the conformations will be attained in solution, in the solid state one or several 

conformations should be preferred.  The parent ortho-phenyleneethynylenes have been 

investigated by Grubbs and Kratz in 1993 14, and the resulting solid state structures were 

highly helical.  It was of interest in how far the presence of the methoxy groups and the 

pyridine units would make a difference in the solid-state organization of 2.16 and 3.1-3.3..  

Figure 3.10 shows the structures of 2.16, 3.1, and 3.2 in the solid state.  The oligomers 

2.16 and 3.2 crystallized without solvent, while 3.1 co-crystalizes with one molecule of 

pyridine.   
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Figure 3.12: Solid State Structures of 2.16 and 3.1-3.3 

 

     The bond lengths and bond angles are inconspicuous in all oligomers.   The co-crystal 

of 3.1 the oligomer is virtually planar, with strong and sort π-π interactions between the 

arene units, while in the case of 2.16 and 3.2 the conjugated backbones are twisted out of 

the plane.  While 3.1 is planar and 2.16 is twisted, the pentamer 3.2 forms a dimer in the 

solid state the looks almost like a collapsed box, with the 90-degree twisted pyridine units 

as its side walls. Our substituted oligomers seem to be more inclined towards either a 

planar or twisted conformation, but do not show a helical packing in the solid state.   

 

2.3 Conclusion 

 

       In conclusion a series of pyridine-terminated o-aryleneethynylene oligomers (2.16 

and 3.1-3.3) has been synthesized. We have examined their photophysics in solution and 

their structures in the solid state. The oligomers are emissive in solution and in the solid 

state, but only the 2.16 is fluorescent after addition of trifluoroacetic acid. The structures 

of 2.16, 3.1, and 3.2 were determined by single-crystal X-ray diffraction. Contrary to the 
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hydrocarbon oligomers investigated by Grubbs and Kratz, 2.16, 3.1 and 3.2 do not form 

helical structures; instead, either planar (3.1) or intermediate (3.2) arrangements are 

preferred in the solid state. At the moment, we are investigating the use of 2.16 and 3.1-

3.3 as active layers in organic LEDs. 
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3.4 Experimental 

 

General Coupling Procedure A 

   A Schlenk flask is flushed with nitrogen for approximately 30 min.  The iodoarene, 

bis(triphenylphosphine)palladium(II) chloride ((PPh3)2PdCl2) (1.0 mol %) and CuI (1 mol 

%)  are dissolved in piperidine and solvent.  The terminal alkyne is added via syringe.   

The reaction is stirred for 24 h at room temperature under nitrogen atmosphere.   

 

General Coupling Procedure B 

     A Schlenk flask is flushed with nitrogen for approximately 30 min.  The bromoarene,  

bis(triphenylphosphine)palladium(II) chloride (PPh3)2PdCl2 (1.0 mol %), CuI (1 mol %), 

and PPh3  are dissolved in triethylamine and CH2Cl2. After initial heating to 50° C, the 

reaction is stirred for 24 h.   

 

General Coupling Procedure C 
 
     A Schlenk flask is flushed with nitrogen for approximately 30 min., and the iodoarene, 

piperidine, and catalysts are added as in General Coupling Procedure A.  Acetylene gas 

is added.  Reaction is agitated every ten minutes.  

 

General Cleavage and Coupling Procedure D 

     A Schlenk flask is flushed with nitrogen for approximately 30 min.  The iodoarene 

and TMS protected terminal alkyne are dissolved in CH2Cl2 and piperidine.  A 
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concentrated solution of KOH/ethanol is added, and reaction is stirred for 5 min. 

(PPh3)2PdCl2  (1 mol %) and CuI (1 mol %) are added last.  Reaction was stirred for 24 h 

at room temperature.   

 

General Cleavage and Coupling Procedure E 

     A Schlenk flask is flushed with nitrogen for approximately 30 min.  The bromoarene 

and TMS protected terminal alkyne are dissolved in CH2Cl2 and triethylamine. A 

concentrated solution of KOH/ethanol is added, and reaction is stirred for 5 min.   

(PPh3)2PdCl2 (1 mol %) and CuI (1 mol %) are added last.  After initial heating to 50°C, 

the reaction is stirred for 24 h.     
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2-(2-Iodo-4,5-dimethoxy-phenylethynyl)-pyridine, 3.4, Using General Coupling 

procedure D, 2.2 (12.0 g, 30.7 mmol), Pd(PPh3)2Cl2 (0.0870 g, 0.125 mmol) and CuI 

(0.0238 g, 0.125 mmol)  was reacted with 2.2 (3.75 g, 10.3 mmol).  The resulting mixture 

is washed with a 10% NH4OH aqueous solution (100 mL), extracted with 

dichloromethane (100 mL) and dried with Na2SO4.  The solvent is removed in vacuo. 

Purification was done by column chromatography on a deactivated column with eluent 

ethyl acetate:hexanes (1:4) to give 3.4 (1.64 g, 66 %), a colorless oil. 1H-NMR (CDCl3, 
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300 MHz ,  15°C) δ 8.62 (dd, 1H, pyridyl-H), 7.74 (m, 1H, pyridyl-H), 7.63 (dd, 1H, 

pyridyl-H), 7.20 (m, CDCl3, pyridyl-H, aryl-H), 7.11 (s, 1H, aryl-H), 3.88 (s, 3H, OCH3), 

3.85 (s, 3H, OCH3)  13C-NMR (CDCl3, 75 MHz, 15°C) δ 150.37, 150.30, 149.00, 143.80, 

136.37, 127.51, 123.03, 123.10, 121.21, 121.40, 115.55 (aryl/ pyridyl C’s), 90.00, 91.00 

(ethynyl C’s), 56.45, 56.29 (OCH3). IR (cm-1):ν 3004.9, 2939.3, 2360.7, 2331.8, 2210.3, 

1637.5, 1581.5, 1500.5, 1461.9, 1377.1, 1325.0, 1247.9, 1211.2, 1178.4, 1149.5, 1028.0, 

995.2, 962.4, 854.4, 812.0, 773.4, 748.3, 667.3, 582.5.  
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(3.5) Using General Coupling Procedure A, 3.4 (1.10 g, 3.01 mmol), 

trimethylsilylacetylene (0.329 g, 3.36 mmol), Pd(PPh3)2Cl2 (8.4 mg,  0.0120 mmol) and 

CuI  (5.7 mg, 0.0301 mmol)  are reacted. The reaction mixture is washed with a 10% 

NH4OH aqueous solution (100 mL), extracted with dichloromethane (100 mL) and dried 

with Na2SO4. After column chromatography over silica gel with eluent, EtOAc:hexanes 

(1:4) furnishes 3.5 (0.970 g, 97 %) as a colorless solid.  1H-NMR (300MHz, CDCl3)  δ 

3.87, 3.89 (s  6H –OCH3)  6.95, 7.07 (s  4H, aryl H) 7.19-7.20 (pyridyl H)  7.21-7.22 (m, 

pyridyl-H)  7.23 (m pyridyl H)  7.49 (m pyridyl H) 7.51 (m pyridyl H)  7.63-7.64(dd, 

pyridyl H) 7.65 (d, pyridyl H)  7.67 (d, pyridyl H)  13C-NMR  (75 MHz, CDCl3) δ 149.79, 

149.09, 148.85, 143.34, 135.72,  126.75, 122.33, 118.84, 117.83, 114.08, 113.98, 103.14, 
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96.92, 90.94, 87.92, 55.71, 55.68, -.19.    IR (cm-1): ν 3004.4, 2958.1, 2936.4, 2900.3, 

2848.7, 2365.1, 2213.7, 2152.4, 1597.4, 1581.0, 1510.6, 1463.9, 1441.7, 1394.4, 1355.9, 

1254.6, 1217.5, 1200.6, 1107.1, 1033.3, 999.5, 881.1, 844.8, 777.7, 759.9.  Mp= 86˚C 
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(3.1) Using General coupling procedure C, 3.4 (250 mg, 0.685 mmol), Pd(PPh3)2Cl2 

(1.9mg,  2.77 μmol) and CuI  (1.3 mg, 6.85 μmol)  were reacted with acetylene gas.  The 

reaction mixture is washed with a 10% NH4OH aqueous solution (100 mL), extracted 

with dichloromethane (100 mL) and dried with Na2SO4.   Purification by column 

chromatography with eluent MeOH:CH2Cl2 (1:99) over alumina oxide basic affords 3.1 

(144 mg, 42 %), as a colorless solid..  1H -NMR δ 3.88 (6H, OCH3) 3.91 (6H, OCH3) 

7.09 (d, pyridyl H) 7.11 (s, 2H, aryl H), 7.13 (d pyridyl H), 7.15 (s, 2H aryl H) 7.48 (d, 

pyridyl H) 7.5 (m pyridyl H) 7.54 (d pyridyl H) 7.56 (d pyridyl H) 8.46, 8.48 (dt pyridyl 

H).  13C-NMR(CDCl3, 75MHz, 20°C)  150.02, 149.84, 149.31, 143.82, 136.15, 127.55, 

122.67, 119.82, 117.77, 114.73, 114.36, 91.72, 91.36, 88.65, 56.32, 56.22.  IR (cm-1)  ν 

3008.7, 2941.2, 2908.5, 2362.6, 2331.8, 2208.3, 1706.9, 1647.1. 1585.4, 1569.9, 1512.1, 
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1461.9, 1367.4, 1263.3, 1234.4, 1118.6, 1001.0, 881.4, 858.3, 773.4, 746.4.    MS 500 

cm–1            UV/Vis  (CHCl3) λ 268, 352.   Emission (CHCl3) λ  416.  mp= 248°C. 
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(3.6) 1,2-Dimethoxy-4,5-bis-trimethylsilanylethynyl-benzene  Using General Coupling 

Procedure A,  1,2-diiodo-3,4-dimethoxybenzene, 2.2, (10.0 g, 25.6 mmol), Pd(PPh3)2Cl2 

(179 mg, 0.256 mmol) and CuI (48.6 mg, 0.256 mmol) were dissolved in CH2Cl2  (100 

mL) and treated trimethylsilylacetylene (6.28 g, 64.1 mmol). The reaction mixture is 

washed with a 10% NH4OH aqueous solution (100 mL), extracted with dichloromethane 

(100 mL). The CH2Cl2 layer is washed with a 25% aqueous solution of HCl (100 mL). 

The organic layer is dried with MgSO4. After column chromatography over silica gel 

with eluent, EtOAc:hexanes (1:4).  Compound 3.6 (7.41 g, 87.5 %), is recovered as a 

colorless solid. 1H-NMR (CDCl3, 300 MHz , 15 °C) δ 6.65 (s, 2H, aryl-H), 3.61 (s, 6H, 

OCH3 ), 0.00 (s, 18H, Si(CH3)3 13C-NMR (CDCl3, 75 MHz, 15°C) δ 149.19, 119.15, 

114.50 103.62, 97.01. IR (cm-1): ν 2958.6, 2360.7, 2331.8, 2150.5, 1647.1, 1589.9, 

1554.5, 1508.2, 1450.4, 1394.4, 1346.2, 1249.8, 1211.2, 1001.0, 881.4, 8444.8, 758.0.  

Mp =  88°C. 
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(3.2)  Using General Coupling Procedure D, 3.6 (1.00 g, 3.02 mmol), Pd(PPh3)2Cl2 (21.0 

mg, 0.0300 mmol) and CuI  (6.0 mg, 0.0300 mmol) was reacted with 3.4 (2.32 g, 6.32 

mmol).  The reaction mixture is washed with a 10% NH4OH aqueous solution (100 mL), 

extracted with dichloromethane (100 mL) and dried with Na2SO4.  After column 

chromatography over alumina oxide (basic) with eluent, CH2Cl2:MeOH (1:99) to yield 

3.2 (210 mg, 54%) as a colorless solid. 1H-NMR (CDCl3, 300 MHz ,  15°C)  δ 3.79  (s, 

6H, OCH3), 3.85 (s, 6H, OCH3) 3.87 (s, 6H, OCH3), 6.98 (s, 2H, aryl), 7.04 (s, 2H, aryl) 

7.11 (m, 2H, pyridyl H), 7.13 (s, 2H, aryl H) 7.54 (m 4H pyridyl H),  8.49, 8.51 (d 2H 

pyridyl H) 13C-NMR (CDCl3, 75 MHz) δ149.77, 149.39, 149.03, 148.83, 143.50, 135.87, 

127.32, 122.42, 119.60, 118.67, 117.28, 114.17, 114.09, 91.441, 91.35, 90.86, 88.50, 

5601, 55.91, 55.87. IR (cm-1): ν 3008.7, 2939.3, 2837.1, 2360.7, 2331.8, 2208.3, 1589.2, 

1512.1, 1461.9, 1371.3, 1228.6, 1128.3, 1002.9, 862.1, 669.3.  UV/Vis  (CHCl3) λ  265.   

Emission (CHCl3) λ 430.  Mp= 195˚C  
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(3.7) 1,2-Bis-(2-iodo-3,4-dimethoxy-phenylethynyl)-4,5-dimethoxy-benzene Using 

General Coupling Procedure A, 1,2-diiodo-3,4-dimethoxybenzene, 2.2, (2.13 g 5.50 

mmol), Pd(PPh3)2Cl2 (90.0 mg, 0.0100 mmol) and CuI  (10.0 mg, 0.0600 mmol)  is 

reacted with 3.7 (0.170 g, 0.910 mmol) in CH2Cl2 (100 mL). The reaction mixture is 

washed with a 10% NH4OH aqueous solution (100 mL), extracted with dichloromethane 

(100 mL). The CH2Cl2 layer is washed with a 25% aqueous solution of HCl (100 mL). 

The organic layer is dried with MgSO4. After column chromatography over silica gel 

with eluent, EtOAc:hexanes (1:4) gives 3.7 (220 mg, 34 %) as a colorless solid. 1H-NMR 

δ 7.21, 7.06, 7.05 (6H, aryl-H) 3.92, 3.86, 3.71 (18H-OCH3)   13C-NMR (CDCl3, 75 MHz, 

15°C): 149.85, 149.39, 149.13 (aromatic C-OCH3); 122.56, 121.107, 118.65, 115.41, 

114.43; 94.34 (aromatic C-I); 90.70, 90.32 (C-ethynyl) ; 56.42,  56.29, 56.24 (OCH3).  

IR (cm-1): ν 3003.0, 2937.4, 2360.7, 2331.8, 1633.6, 1593.1, 1506.3, 1458.1, 1394.4, 

1319.2, 1230.5, 1168.8, 1093.6, 1012.6, 850.5, 750.3. Mp= 145°C.   
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 (3.3) Using Genereal Coupling Procedure D, 3.5 (300 mg, 0.895 mmol)  3.7 (252 mg, 

0.355 mmol) Pd(PPh3)2Cl2 (0.994 mg,  0.00142 mmol) and CuI  (0.675,  mg, 0.00355 

mmol) are dissolved in dichloromethane (10 mL),  piperidine (1 mL) and  KOH 10 wt% 

in ethanol (1 mL). The reaction mixture is washed with a 10% NH4OH aqueous solution 

(100 mL), extracted with dichloromethane (100 mL) and dried with Na2SO4.  The solvent 

is removed in vacuo.  The resulting solid is purified over alumina oxide with eluent 

methanol/CH2Cl2 (1:99) to yield 3.3 (120 mg, 34%) as a pale yellow solid.   1H-NMR 

(CDCl3, 300 MHz)  8.48 (d, 2H), 7.52 (d, 4H), 7.23 (t, 4H), 3.82-3.71 (30H –OCH3) IR 

(cm-1): ν 3008.7, 2939.3, 2837.1, 2360.7, 2331.8, 2208.3, 1589.2, 1512.1, 1461.9, 1371.3, 

1228.6, 1128.3, 1002.9, 862.1, 669.3.  IR (cm-1): ν  3008.7, 2941.2, 2837.1, 2266.2, 

1591.2, 1226.6, 1002.9, 864.1, 752.2, 671.2. UV/Vis  (CHCl3) λ  275.   Emission (CHCl3) 

λ  436.  
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CHAPTER 4 

COORDINATION COMPOUNDS OF 1,2-DIMETHOXY-4,5- 

BIS(2PYRIDYLETHYNYL)BENZENE 

 

 

4.1  Introduction 

     Supramolecular chemistry has evolved rapidly during the last 20 years. A fascinating 

subfield of supramolecular chemistry is the metal-assisted synthesis of platonic solids, 

regular or truncated polyhedra, which form by self-assembly processes. Stang, Atwood, 

and Zaworotko have made great strides in the generation of a host of these beautiful 

topologies by clever metal–ligand combinations1-5.     We have an interest in the metal-

assisted supramolecular assembly of conjugated organic ligands toward novel photonic, 

electroactive, and structural materials6-8. 

        Here we wish to demonstrate that one organic module 1,2-dimethoxy-4,5-bis(2-

pyridylethynyl)benzene 2.16 (Figure 4.1) can form a supramolecular cycle,  dimers and a 

polymer utilizing different inorganic connectors Cu(OAc)2, Cu(OTf)2, (CH3CN)2PdCl2, 

ZnBr2,  ZnI2,  CoCl2 and [Rh(OAc)2]2.    
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Figure 4.1:  1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene 2.16 

Ueda9,10, Bosch11 and Thummel12 have reported similar coordination compounds 

of the pincer ligand similar in shape to 2.16, but lacking the methoxy groups.  

 

4.2 Results and Discussion: 

 

     The first compounds to be presented are dimers composed of 2.16 with various metal 

salts of the formula M(X2) where M is the metal (Co, Hg, or Zn), and X is a halogen (Cl, 

Br or I).  All dimeric compounds crystallized from slow diffusion reactions between 

solutions of ligand 2.16 and solutions of various metal(II) halide salts.  Cobalt(II), 

zinc(II), and mercury(II) are all divalent cations that have the tendency to adopt a 

tetrahedral coordination environment.  In each of the seven dimers presented here, every 

divalent metal cation binds two halogen ligands for charge balance and two nitrogen 

donor atoms from two different ligands of 2.16 to complete the tetrahedral coordination 
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environment (Figures 3.2 and 3.3).  Ligand 2.16 in its planar configuration would be 

unable to complete the tetrahedral coordination geometry of the metal due to its rather 

fixed geometry (V-shape).  However, 2-pyridyl rings are free to rotate out of the plane of 

the ligand and coordinate to the neutral metal-halide unit in a tetrahedral fashion.  

Although polymer formation is possible given the specific coordination environment of 

the metal and the availability of the second nitrogen donor atom of the ligand, two 

identical tetrahedrally coordinated metal atoms come together to form dimers instead.   

All atoms of the dimers rest on general crystallographic position and the dimers 

themselves are located about inversion centers such that the asymmetric units contain 

only one metal cation, one 2.16 ligand, and two halogen ligands.  Six of the seven 

dimeric compounds are isostructural, whereas, the dimer formed with HgI2 has similar 

features but crystallizes in a different space group.   

     Compound 4.1 contains Co2+, which is found in typical tetrahedral coordination.3This 

tetrahedral preference, apparently, cannot be conveniently satisfied through a ring closure 

that would require a rotation of the pyridyl rings away from the 180° angle found in the 

copper complex. The result of such a rotation would be an elongated Co–N bond. Instead, 

the pyridyl rings rotate away from each other by 128° and bind to separate cobalt atoms 

with bond lengths of 2.03 Å, which is typical for Co–N bonds. The tetrahedral 

coordination in each case is completed by two chlorine atoms. The overall structure 

(Fig.3.2) consists of two molecules of 2.16 bridging two cobalt atoms. An inversion 

center is located in the middle of the dimer. 
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Figure 4.2: Dimer 4.1 of ligand 2.16 with CoCl2.  Hydrogen atoms have been omitted for 

clarity. (a) a view of 4.1 from above showing the tetrahedral coordination of cobalt; (b) a 

view of 3 from the side showing the opposing orientations of 2.16 and the rotation of the 

pyridyl rings. 
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Figure 4.3:  Dimer, 4.2 of 2.16 with HgI2  Thermal ellipsoid plot of the [HgI2(1.16)]2 3.2         

dimer.  Displacement ellipsoids are drawn at the 30% probability level 

 
. 

When the isostructural compounds 4.1-4.6 are viewed along the [001] direction, 

the dimers are observed to exist in a layered arrangement in which the dimers are tilted 

oppositely in alternating layers (Figure 4.4).  These dimers are further organized into 

rows running parallel to the crystallographic c-axis.  For compound 4.2, rows of the 

coordination dimers run along the [100] direction.  As in compounds 4.1-4.6, the dimers 
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in 4.2 also exist in a layered arrangement.  However, the dimers in 4.7 all tilt in the same 

direction (Figure 4.5). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 4.4:    Crystal packing in [HgCl2(2.16)]2 representing isostructural compounds 4.1-

4.6.  Hg atoms shown as pink spheres; Cl, green; C, yellow; N, blue; O, red.  H atoms are 

not shown. 
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Figure 4.5:  Crystal packing in [HgI2(1.16)]2 (4.7). Hg atoms shown as pink spheres;                        

I, purple; C, yellow; N, blue; O, red.  H atoms are not shown. 

 

 The coordination preference of the metal center or the location of open 

coordination sites on the metal center seem to be the primary factors contributing to the 
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structure and dimensionality of the products.  Both of these factors are somewhat 

dependent on the nature of the counterions used for charge balance (anion charge, anion 

coordination ability, and steric bulk of the anion).  Additionally, the rotational flexibility 

of the 2-pyridyl rings about the C-C single bonds joining them to the rest of the ligand 

contributes to the versatility of this ligand in forming different structures with different 

metal salts.  Thus, while it is not possible to predict absolutely the structure and 

dimensionality of products formed with 2.16, the fundamental aspects of the coordination 

chemistry, i.e., the coordination preference of the metal or the identity of the counterions, 

may be used to rationalize the structure formed.  In fact, all the divalent metal halides 

studied thus far have resulted in the formation of dimers when reacted with the 2.16; and 

we may thus predict that dimers are likely to result from the reaction of other divalent 

metal halides with the 2.16. 

   

  

 CoCl2[1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene] (4.1)  

 The tetrahedral coordination environment around the metal is distorted from the 

ideal 109.5° angles, with both the nitrogen atoms and the chlorine atoms pushed away 

from each other and towards the other pair (∠N-Co-N = 117.53(9)°, ∠Cl-Co-Cl = 

112.81(3)°).  The averaged Co-N and Co-Cl bond lengths of 2.028 Å and 2.236 Å are 

well within normal bonding distances.  The pyridyl groups of the ligand are rotated 

approximately 128° out of the plane of the central benzene ring, with the two central 

benzene rings in each dimer being parallel.  The perpendicular distance between the 

ligands is about 3.5 Å, and the Co…Co separation is about 9.2 Å.  



 62

 

 ZnCl2[1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene] (4.2) 

 In 4.2 (Figure 3.6), the angles around zinc range  from 116.39(7)° to 105.11(5)° 

(∠N-Zn-N = 116.39(7)°, ∠Cl-Zn-Cl = 113.72(2)°).  The Zn-N and Zn-Cl average bond 

lengths of 2.0410 Å and 2.2387 Å are well within the normal bonding distances.  The 

pyridyl groups of the ligand are rotated approximately 140° out of the plane of the central 

benzene in 4.2, and the two central benzene rings of each dimer are parallel. The 

perpendicular distance between the ligands is approximately 3.4 Å while the Zn…Zn 

separation is about 9.3 Å. 

   

 ZnBr2[1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene] (4.3) 

 In 4.3, the angles around zinc range from 117.03(9)° to 105.05(7)° (∠N-Zn-N = 

117.03(9)°, ∠Br-Zn-Br = 114.131(17)°).  The Zn-N and Zn-Br average bond lengths of 

2.041 Å and 2.3673 Å are well within the normal bonding distances.  The pyridyl groups 

are rotated about 140° out of the plane of the central benzene, with the two central 

benzene rings of each dimer being parallel. The perpendicular distance between the 

ligands is approximately 3.4 Å while the Zn…Zn separation is about 9.3 Å. 

 

 ZnI2[1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene] (4.4) 

 In 4.4, the angles around zinc range from 104.50(7)° to 116.79(9)° (∠N-Zn-N = 

116.79(9)°, ∠I-Zn-I = 113.923(14)°).  The average Zn-N and Zn-I bond lengths of 2.037 

Å and 2.5647 Å are well within the normal bonding distances.  The pyridyl groups are 

rotated approximately 141° out of the plane of the central benzene, with the two central 
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benzene rings of each dimer being parallel. The perpendicular distance between the 

ligands is about 3.3 Å while the Zn…Zn separation is approximately 9.4 Å.  

 

 HgCl2[1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene] (4.5) 

 In 4.5, the angles around mercury range from 118.99(9)° to 98.98(7)° (∠N-Hg-N 

= 118.99(9)°, ∠Cl-Hg-Cl = 116.57(3)°).  The average Hg-N and Hg-Cl bond lengths of 

2.271 Å and 2.4519 Å are well within the normal bonding distances.  The pyridyl groups 

are rotated about 141° out of the plane of the central benzene, with the two central 

benzene rings of each dimer being parallel. The perpendicular distance between the 

ligands is about 3.5 Å while the Hg…Hg distance is approximately 9.4 Å.  

 

 HgBr2[1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene] (4.6) 

 In 4.6, the angles around mercury range from 120.43(3)° to 100.55(13)° (∠N-Hg-

N = 117.04(17)°, ∠Br-Hg-Br = 120.43(3)°).  The average Hg-N and Hg-Br bond lengths 

of 2.305 Å and 2.5341 Å are well within the normal bonding distances.  The pyridyl 

groups are rotated about 143° out of the plane of the central benzene, with the two central 

benzene rings of each dimer being parallel. The perpendicular distance between the 

ligands is approximately 3.5 Å while the Hg…Hg separation is about 9.6 Å.   
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Figure 4.6.  Side-on views of [ZnCl2(dmpeb)]2 (4.2, top) and [HgI2(dmpeb)]2 (4.4, bottom) 

illustrating the difference in the orientation of the ligated pyridyl rings. Zn atoms 

shown as pale purple spheres; Hg, pink; Cl, green; I, purple; C, yellow; N, blue; O, 

red.  H atoms are not shown. 
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 HgI2[1,2-dimethoxy-4,5-bis(2-pyridylethynyl)benzene] (4.7) 

 Like compounds 4.1-4.6, each metal cation in compound 4.7 is bonded to two 

halide ligands and two ligands of 2.16 in a distorted tetrahedral environment; and each 

dmpeb ligand bridges two cations in order to form dimers which rest on inversion centers 

(Figure 3). However, in 4.7, only one pyridyl group rotates out of the plane of the central 

benzene ring (112.6°) while the other pyridyl group remains essentially planar (174.7°; 

Figure 6).   In 4.7, the bond angles about Hg2+ range from 136.56(2)° to 99.14(12)° (∠N-

Hg-N = 110.45(16)°, ∠I-Hg-I = 136.56°), and the Hg-N (average Hg-N: 2.432 Å) and 

Hg-I (average Hg-I: 2.6625 Å) distances are typical.  The central benzene rings in 4.7 lie 

in parallel planes and the perpendicular distance between ligands is approximately 3.3 Å.  

The Hg…Hg separation in 4.7 is approximately 9.6 Å.  

     The second type of coordination geometry presented here two complexes which form 

an 11-membered ring which is formed by coordination of a metal, Cu(OAc)2 and 

(CH3CN)2PdCl2.   

Single crystals suitable for X-ray diffraction of Cu(1)(OAc)2·CH3OH 4.8 were 

obtained by layering a methanol solution (1 mL) of Cu(OAc)2·H2O (2.0 mg, 0.01 mmol) 

over a dichloromethane solution (1 mL) of 2.16 (6.7 mg, 0.02 mmol), with a layer of pure 

methanol separating them (20% yield). Compound 4.8 demonstrates the preference of 

Cu2+ for square planar coordination with copper positioned snugly between the two 

pyridyl rings. The resulting N–Cu–N (Cu–N 2.01 Å, N–Cu–N 172.98°) bonds close an 

eleven membered, triangular ring (4.7), which is nearly identical to the structures 
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reported by Bosch and Barnes for 1,2-bis(2-pyridylethynyl)benzene. The square planar 

coordination of copper is completed by two trans oxygen atoms from separate acetate 

groups. 

 

 

 

Figure 4.7:  A single molecule of 4.8 with Cu(OAc)2.  The hydrogen atoms and methanol       

group have been omitted for clarity. 

 

     We obtained 2.16·PdCl2, i.e. 4.9, by layering a solution of (CH3CN)2PdCl2 in 

acetonitrile over a solution of 2.16 in dichloromethane. Overnight block-shaped crystals 

formed in a 65% yield at the interface of the two solvents. Attempts to grow crystals of 

4.9 by mixing of 2.16 and (CH3CN)2PdCl2 in a suitable solvent did not work. Figure 3.9 

shows the 1H-NMR spectra of the ligand 2.16 (bottom) and that of the complex 4.9 (top). 

The downfield shift of the signals of the pyridine ligand upon complexation is 

considerable and is due to the electron withdrawing effect of the PdCl2 moiety. It is clear 
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from the simple and clean spectrum that the crystallization experiment produces only one 

compound under these conditions. The isolated specimens were of good quality, and a 

single crystal structure analysis of 4.9 was undertaken. The  of 4.9 is displayed in 

Figure 4.8.   

 

Fig. 4.8: (a) Molecular structure ( ORTEP, 50% probability level) of 4.9. The dotted 
arrow marks the diyne distance that is relevant for a Bergman cyclization (3.96 Å). The 
Pd---N distances are 2.01 Å and identical to those reported by Bosch and Barnes for a 
similar complex. (b) Packing of 4.9 in the solid state. The packing is influenced by the 
proximity of the halogens in adjacent PdCl2-units and the intercalated solvent molecules 
(CH2Cl2).  
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Figure 4.9: Top: 1H-NMR spectrum of 4.9. Bottom: 1H-NMR spectrum of 2.16. 

 

                  The next type of trans-spanning coordinating complexes is a dimer formed by 

Cu(OTf)2 with 2.16. In this case, two ligands of 2.16 are bound around one metal. 

                   In the first experiment a solution of copper(II)triflate in methanol was layered over a 

solution of 2.16 in dichloromethane. After several days, well-developed blue-green 

needles were harvested by filtration (30%). These needles are very sensitive to solvent 

loss when removed from the mother liquor. Attempts to obtain an 1H-NMR spectrum of 

this compound was unsuccessful due to the paramagnetic nature of this d9 Cu(II) complex. 

The harvested specimens were of good quality and a single crystal X-ray structure 

determination of 4.10 was possible.  

     Figure 4.10 shows the molecular structure of 4.10 and its packing in the solid state. 

Remarkable is the intramolecular shortening of the alkyne–alkyne distance upon co-

ordination of the Cu2+ salt. This distance (arrow) decreases from 4.25 Å in the 
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uncomplexed cis-form of 2.16 (as calculated by 6-31G**) to 3.98 Å in the enediyne 

system of 4.10.  

 

Figure 4.10: (40% probability level) of 4.10. The dotted arrows mark the diyne 

distances that are relevant for a Bergman cyclization (3.96 and 3.99 Å). Bottom: linear 

chains of molecules of  1.16are held together by –  stacking interactions. The centroid–

centroid distances shown by the dotted lines are 3.47 and 3.51 Å, respectively. 

     The octahedral molecules of 4.10 arrange in a linear chain in the solid state. This chain 

is formed by the –  stacking of dimethoxybenzene rings on top of each other. In this 

packing pattern the electron-rich methoxy groups of one ring are placed over the 
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electron-deficient carbon atoms (C30A and C35A) of a second dimethoxybenzene unit. 

The tight interaction (3.48 Å, dotted line) of these benzene rings is probably due to an 

electrostatic/charge effect.   

     A cursory examination of the differential scanning calorimetry data of 4.9 and 4.10 

shows that these materials undergo Bergman type reactions at elevated temperatures  and  

The ligand 2.16 melts at 168 °C and shows an exothermic reaction at 276 °C (62 

kcal mol−1). Upon complexation 4.9 does not melt, but instead a structural change is 

witnessed (319 °C, −4.6 kcal mol−1, 4.9) that is followed by a strong exotherm (344 °C, 

−22 kcal mol−1, 4.9). The second, larger exotherm is due to a Bergman-type 

rearrangement in the solid state. The coordination of PdCl2 increases the temperature for 

this rearrangement significantly perhaps because the PdCl2 acts as a ‘stopper’ between 

the enediyne termini. The complex 4.10 was too sensitive (loss of solvent) to perform 

meaningful DSC measurements.  

     The final type of complex formed is metal containing ortho-phenyleneethynylene 

polymer  formed from [Rh(OAc)2]2.     Crystals of catena-poly{[Rh(OAc)2]22.16·CH2Cl2} 

4.11 were prepared by layering except that [Rh(OAc)2]2 (maintaining the ligand to metal 

ratio) and ethanol was substituted for methanol (40% yield).  
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Figure 4.11: A view of 4.11 showing the connectivity of 2.16 and the rhodium dimer. 

Hydrogens have been omitted for clarity. 

 

Tetrakis(carboxylato)rhodium compounds were first discovered in 1960, but it was not 

until 1981 that the first polymeric species containing such a rhodium dimer was 

synthesized.5 A survey of the CSD indicates that 2.16 is the largest ligand yet used in 

such a polymeric species. The polymeric structure is charge balanced, eliminating the 

need for counterions competing for binding sites. This leads to higher site symmetry and 

makes such rhodium dimers attractive building blocks for coordination polymers.6 

Because of its length, the dirhodium moiety cannot fit between the pyridyl rings and 

achieve ring closure, as in 4.8 and 4.9, despite the favorable linear arrangement of the 

binding sites. Consequently, the pyridyl rings rotate outward by 180° to form a polymer 

chain with the rhodium dimer bridging adjacent ligands in a zig-zag fashion. This 

polymer is a supramolecular analogue of the hitherto unknown ortho-PPE and as such is 

a fascinating structure. The Rh–N distance within the polymer is 2.25 Å, typical for Rh–

N bonds in such systems. 
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4.3 Conclusion: 

These metal-ligand systems each form a distinctly different structure and between 

them, demonstrate the importance of the free rotation of the pyridyl rings around the 

carbon–carbon bonds for facilitating the formation of the three structure types.  These 

structures demonstrate the diversity, which can be achieved using 2.16 that is made 

possible by the ability of the ligand to distort itself to the preferred coordination 

environment of the metal center. While one may expect a slight bending of the 

pyridylethynyl legs either towards or away from each other, these three structures show 

that rotation of the pyridyl ring around the ethynyl linkage seems more favorable. 
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4.4. Experimental 

Compound 2.16 was synthesized using literature procedures. All other reagents were of 

commercial grade and used as obtained. 1H- and 13C-NMR spectra were recorded in 

CDCl3 on a Bruker AM 300 or a Varian Mercury 400 spectrometer. The mass spectra 

were measured on a VG 70SQ. IR spectra were obtained using a Shimadzu FTIR-8400 

with KBr pellets. X-ray crystal structure analyses were performed at 293 K using a 

Bruker SMART APEX CCD-based diffractometer system Mo–K , ( =0,71073Å).  

 

(4.9) Compound 2.16 (93.6 mg, 0.274 mmol) was dissolved in dichloromethane (3 ml) 

and placed in a vial. A solution of (CH3CN)2PdCl2 (87.9 mg, 0.339 mmol) dissolved in 8 

ml of acetonitrile was carefully layered on top of the dichloromethane solution. The vial 

was capped and placed in the dark for 12 h, after which brownish block-like crystals of 

4.9 (93.0 mg, 65%) were collected by vacuum filtration, washed with warm acetonitrile, 

and dried. IR (cm−1): 2950, 2212, 1591, 1531, 1371, 1256, 991, 768. 1H-NMR (300 

MHz, CDCl3): 8.85 (dd, 2H, 3JH,H=6.6 Hz, 4JH,H=0.83 Hz, pyr-H), 7.73 (ddd, 2H, 

3JH,H=9.3 Hz, 4JH,H=1.7 Hz, pyr-H), 7.60 (dd, 2H, 3JH,H=8.8 Hz, 4JH,H=0.83 Hz, pyr-H), 

7.30 (dtd, 2H, 3JH,H=9.1 Hz, 4JH,H=1.7 Hz, pyr-H), 7.17 (s, 2H, arom.-H), 3.98 (s, 6H, 

OCH3). MS (EI) m/z Calc. for M+ (C22H16Cl2N2O2Pd) 516.0, decomposition before could 

be M+ determined. 

(4.10) A solution of Cu(OTf)2 (3.6 mg, 10 mol) in ethanol (1 ml) was layered over a 

solution of (2.16) (6.8 mg, 20 mol) in chlorobenzene (1 ml) with a layer of ethanol 
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separating them. Upon diffusion of the layers, blue–green crystals formed of 4.10 (3.1 mg, 

30%). One needle was coated in inert oil and mounted on a thin glass fiber for single 

crystal structure determination. 

  

 (4.1) A solution of CoCl2•6H2O in ethanol (0.01 mmol, 1 mL) was layered over a 

solution of the ligand in dichloromethane (0.02 mmol, 1 mL) with a layer of neat ethanol 

(1mL) separating them.  Blue-green needles formed upon diffusion of the two solutions 

into one another, and the crystals were isolated in 29% yield based on Co.  One needle 

was coated in an inert oil and mounted on the end of a thin glass fiber for single crystal 

structure determination. 

 

 

 (4.2) A solution of ZnCl2 in methanol (0.01 mmol, 1 mL) was layered over a solution of 

the ligand in dichloromethane (0.02 mmol, 1 mL) with a layer of neat methanol (1mL) 

separating them.  Yellow prismatic crystals formed upon diffusion of the two solutions 

into one another, and the crystals were isolated in 48% yield based on Zn.  One crystal 

was mounted onto the end of a thin glass fiber using inert oil for single crystal structure 

determination. 

 

 (4.3) A solution of ZnBr2 in methanol (0.01 mmol, 1 mL) was layered over a solution of 

the ligand in dichloromethane (0.02 mmol, 1 mL) with a layer of neat methanol 

separating them.  Yellow bars formed upon diffusion of the two solutions into one 
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another, and the crystals were isolated in 42% yield based on Zn.  One bar was epoxied 

onto the end of a thin glass fiber for single crystal structure determination. 

 

 (4.4) A solution of ZnI2 in methanol (0.01 mmol, 1 mL) was layered over a solution of 

the ligand in dichloromethane (0.02 mmol, 1 mL) with a layer of neat methanol (1mL) 

separating them.  Yellow crystals formed upon diffusion of the two solutions into one 

another, and the crystals were isolated in 19% yield based on Zn. An irregular fragment 

sectioned from a larger crystal was mounted onto the end of a thin glass fiber using an 

inert oil for structure determination. 

 

 (4.5) A solution of HgCl2 in methanol (0.01 mmol, 1 mL) was layered over a solution of 

the ligand in dichloromethane (0.02 mmol, 1 mL) with a layer of neat methanol (1mL) 

separating them.  Yellow-orange crystals formed upon diffusion of the two solutions into 

one another, and crystals were isolated in 37% yield based on Hg. An irregular crystal 

was cut from a larger aggregation and epoxied onto the end of a thin glass fiber for single 

crystal structure determination.   

 

(4.6) A solution of HgBr2 in ethanol (0.01 mmol, 1 mL) was layered over a solution of 

the ligand in chloroform (0.02 mmol, 1 mL) with a layer of neat ethanol (1mL) separating 

them.  Yellow plate crystals formed upon diffusion of the two solutions into one another, 

and the crystals were isolated in 19% yield based on Hg. A plate was epoxied onto the 

end of a thin glass fiber for single crystal structure determination. 
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 (4.7)  A solution of HgI2 in methanol (0.01 mmol, 1 mL) was layered over a solution of 

the ligand in dichloromethane (0.02 mmol, 1 mL) with a layer of neat methanol (1mL) 

separating them.  Yellow bars formed upon diffusion of the two solutions into one 

another, and the crystals were isolated in 25% yield based on Hg. A bar was cut to size 

and epoxied onto the end of a thin glass fiber for single crystal structure determination.   
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CHAPTER 5 
 

TETRA-PYRIDYL LIGANDS WITH A THIOPHENE CORE 
 
 
 
 
 
 
 
 
5.1:  Introduction 
 
 
     Tetraethynylthiophenes were first synthesized by Whitesides1 for their future use in 

the formation, by oxidative polymerization, of highly cross-linked organic solids. These 

solids demonstrate a high degree of hardness and thermal stability.  Later, tetraethynyl 

thiophenes such as the ones seen in Figure 4.1 were investigated for the uses as discotic 

liquid crystals2-4.    
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Figure 5.1: Examples of previously synthesized tetraethynylthiophenes. 
 
 
     Here two additional tetraethynyl thiophene compounds are presented.  These 

compounds have alkynyl groups with pyridines as end-caps.     These compounds are 

green emissive in solution and yellow emissive in the solid state.  Their absorption and 
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emission spectra can be modified by the addition of various metals which would allow 

these compounds to be valuable in metal sensing applications.  The pyridine in the para 

position offers conjugation whereas in the meta system conjugation is broken. It was of 

interest to determine the effect of similar compounds varying by the presence of a 

conjugated system.  

 
 
5.2  Results and Discussion 
 
 
 
     We have prepared two ligands containing thiophene as the core and alkynylpyridines 

as the arms.  The first synthetic method is seen in Scheme 4.1.  The core of the ligand is 

synthesized by the iodination of thiophene using literature procedures3 to obtain 5.2.   In 

this method the alkynes were attached by utilizing TMSA forming 5.3. During the 

deprotection step with KOH/EtOH, a dark red precipitate formed, and an insoluble solid 

was obtained which was not the desired deprotected tetraalkyne according to 1H-NMR 

and 13C-NMR.  It was necessary to select a different method for synthesizing the ligands.   
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Scheme 5.1: Synthesis of tetraethynylthiophene 
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     A new method was to use alkynyl pyridines and couple them to 5.2.  As seen in 

previous syntheses presented, the in situ coupling and deprotection reaction using KOH 

was a valuable method in obtaining the target compound. This method was initially 

utilized for the synthesis of these ligands, however, no coupling of the alkyne occurred.  

This problem could be remedied by deprotecting the alkyne, isolating it, and using 

coupling it to the thiophene core with absence of KOH.    As seen in Scheme 5.2, 

deprotection of the TMS group in 2.6 with KOH/EtOH furnishes the free alkyne 5.4.      

The ligand 5.5 is assembled using HCSH reaction conditions coupling the free alkyne 5.4 

to tetraiodothiophene 5.2.   
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Scheme 5.2. Synthesis of the thiophene ligand 5.5 
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     This thiophene ligand 5.5 displays shifts in absorption and emission spectra upon 

exposure to different metals.  The greatest shifts can be seen by utilizing Hg(OTf)2 in 

Figure 5.2 and AgOTf in Figure 5.3.  In this experiment, increasing equivalents (0-6eq) 

were employed.  In the case of the emission spectra, there is a slight shift and decrease in 

emission until it is quenched at four equivalents of the metal salt.   

 

0

20

40

60

80

100

120

140

160

180

200

250 300 350 400 450 500 550 600

Wavelenght [nm]

In
te

ns
ity

 [a
u]

0

0.5

1

1.5

2

2.5

A
bs

or
pt

io
n

0 Emission

1 Emission

2 Emission

4 Emission

6 Emission

0 Absorption

1 Absorption

2 Absorption

4 Absorption

6 Absorption

 

Figure 5.2:  Absorption and Emission of 5.5 with Hg(OTf)2 
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Figure 5.3: Absorption and Emission of 5.5 with  AgOTf  
 
 
 
     The synthesis of a second thiophene ligand can be seen in Scheme 4.2 using similar 

synthetic techniques seen in Scheme 5.1.   
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Scheme 5.3:  Synthesis of the thiophene ligand 5.7. 
 

 
     As can be seen in Figure 5.4 and 5.5, this ligand also demonstrates shifts in absorption 

and emission spectra.  In this case, more metals were tested. Upon addition of NaCl, 

Ca(NO3)2 and KOTf, there is not a significant shift in absorption and no quenching of 

emission occurs. However, noticeable red shifts in absorption and decrease in emission 

can be seen upon addition of an excess of Zn(OTf)2 and Mg(OTf)2.   
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Figure 5.4:   Absorption of 5.7 in chloroform with various metal salts 
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Figure 5.5.  Emission spectra of 5.7 in chloroform with various metal salts 
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5.3 Conclusion 
 
 
     Two new thiophene and pyridine containing ligands have been synthesized, and their 

optical and metal sensing properties have been tested.  The compounds show promise in 

future applications in the field of determining specific metals due to their ability to 

display varying absorption and emission spectra upon exposure to various metals.   
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5.4  Experimental 
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2,3,4,5-Tetraiodothiophene (5.2).   A solution of acetic acid (170 mL), H2O (78 mL), 

and CCl4 (64 mL) is prepared and added to a 1000 mL three-necked flask which is 

equipped with a condenser. I2 (84.9 g, 0.352 mol), HIO3 (31 g, 0.716 mol), and thiophene 

5.1 (16.8 g, 0.2 mol) is added next.  H2SO4 (4.5 mL) is added last.  The reaction is 

refluxed for 1 week.  CCl4 (100 mL) and H2O were added, and the reaction was heated to 

reflux and then cooled to room temperature.  The solid is filtered and washed with a 5% 

Na2S2O3 solution followed H2O.  The solid is recrystallized twice from dioxane which 

yielded a pale yellow solid (84.9 g, 73%)  13C-NMR (CDCl3, 75 MHz, 20°C)  83.52, 

93.41.  
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2,3,4,5-Tetrakis-trimethylsilanylethynyl-thiophene (5.3)  5.2 (5.00 g, 8.49 mmol) is 

added to NEt3 (15 mL) in a 38 mL pressure tube under nitrogen atmosphere. The 

catalysts, Pd(PPh3)2Cl2 (0.59g, 0.085 mmol) and CuI (0.16g, 0.085 mmol) are added next.  

TMSA (4.16g, 42.4 mmol) is added via syringe. The reaction is capped and stirred for 24 

h. at 65˚C.  The reaction is then allowed to cool to room temperature.  The crude mixture 

is washed with an aqueous solution of 10% NH4OH and extracted with heaxane (3x 100 

mL). The hexane layer is washed with water and extracted with hexanes (3x 100 mL).  

The solvent is removed invaccuo to yield a light brown compound which is then purified 

by column chromatography over silica gel with eluent hexanes to yield 5.3 as a pale 

yellow solid.   H-NMR (CDCl3) δ  0.253.  13C-NMR (CDCl3) 121.15, 119.491, 105.59, 

95.02, 0.249.   

 

 

 

N N
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CH2Cl2
82%

2.6 5.4  
 

3-Ethynyl-pyridine (5.4)  1.6 (3 g, 17.1 mmol) is dissolved in CH2Cl2.  A solution of 

10% KOH/EtOH (3 mL) is added.  The reaction is stirred at room temperature for 1 h. 

The solvent is removed in vacuuo without heat.  The crude product is sublimed under 

vacuum to yield 5.4 (1.44g, 82%)) as a colorless solid. 1H-NMR δ 8.68 (m, 1H, pyridyl-

H), 8.58-8.56 (m, 1H, pyridyl-H), 7.69 (m, 1H, pyridyl-H), 7.26-7.23 (m, 1H, pyridyl-H), 

3.28 (s, 1H, ethynyl-H).  13C-NMR 150.63, 147.52, 138.31, 123.47, 82.43, 81.35.   
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2,3,4,5-tetrakis-(3-pyridylethynyl)-thiophene (5.5) A 50 mL pressure tube is flushed 

with nitrogen, 5.2 (1 g, 1.70 mmol), THF (10 mL), toluene (5 mL) and diisopropyl amine 

(3 mL). Pd(PPh3)2Cl2 (0.012g, 0.017 mmol) and CuI (0.0032 g, 0.017 mmol) are added.  

5.4 (0.875 g, 8.50 mmol) is dissolved in THF (1 mL) and added to the reaction.  The 

reaction is capped and stirred for 24 h at 65˚C.  The solvent is removed under vacuum.  

The crude product is dissolved in CH2Cl2 (5 mL), and hexane (50 mL) is added, and a 

pale yellow solid is formed.  The solid is filtered and precipitated again in the same 

manner as above.  The solid is filtered again to yield 5.5 (0.399g, 48%) as a pale yellow 

solid. 1H-NMR δ 8.78 (s, 4H, pyridyl-H), 8.57 (s, 4H, pyridyl-H), 7.84, 7.83, 7.82, 7.81, 

7.80, 7.79 (dt, 4H, pyridyl-H), 7.32-7.28 (m, 4H, pyridyl-H).  13C-NMR (CDCl3) δ 

152.09, 151.97, 138.34, 138.32, 127.74, 125.66, 123.14, 119.58, 119.19, 95.78, 92.94, 

85.23, 84.04. Mp=177-179˚C.  
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4-ethynyl-pyridine (5.6)  2.8 (1g, 5.71 mmol) is dissolved in CH2 Cl2 .  A solution of 

10% KOH/EtOH (2 mL) is added, and the reaction is stirred for 1 h.  The solvent is 

removed under vacuum.  Purification by vacuum sublimation yields 5.6 (0.466g, 79%) as 

a colorless solid.  1H-NMR  δ 8.51, 8.50, 8.49, 8.48 (dd, 2H, pyridyl-H), 7.26, 7.25, 7.24, 

7.24 (dd, 2H, pyridyl-H) 3.25 (s, 1H, ethynyl-H)  13C-NMR 149.46, 130.07, 125.85, 

81.87, 80.75. 
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2,3,4,5-tetrakis-(4-pyridylethynyl)thiophene (5.7) A 50 mL pressure tube is flushed 

with nitrogen, 5.2 (0.462 g, 0.784 mmol), THF (5 mL), toluene (3 mL) and diisopropyl 

amine (2 mL). Pd(PPh3)2Cl2 (54.0 mg, 0.0784 mmol) and CuI (15.0 mg, 0.0784 mmol) 

are added.  4.6 (0.350 g, 3.53 mmol) is dissolved in THF (1 mL) and added to the 

reaction.  The reaction is capped and stirred for 24 h at 65˚C.  The solvent is removed 
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under vacuum.  The crude product is dissolved in CH2Cl2 (5 mL), and hexane (50 mL) is 

added, and a pale yellow solid is formed.  The solid is filtered and precipitated again in 

the same manner as above.  The solid is filtered again to yield 5.7 (0.123 g, 32%) as a 

pale yellow solid.  1H-NMR (CDCl3) δ 8.64 (dd, 8H, pyridyl-H), 7.42 (dd, 8H, pyridyl-H).  

13C-NMR (CDCl3) 150.34, 148.65, 130.67, 130.126, 125.72, 125.51, 97.14, 94.27, 86.23, 

84.99.   
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CHAPTER 6 
 

DIPHENYLAMINE POLYMERS CONTAINING 
ARYLENEETHYNYLENES 

 
 
 
 
 

 
 

6.1. Introduction:  
 
 
       Poly(aryleneethynylene)s (PAE)s are polymers of fascinating structure and 

properties, spanning a wide spectrum.1a-e  Some of their representatives, particularly the 

highly fluorescent poly(paraphenyleneethynylene)s (PPEs) are important materials with 

applications in sensors,2 light emitting diodes,3 sheet polarizers,4 and in the field of 

molecular electronics.5 
  In this chapter, diphenyl (DPA) polymers with various 

comonomers are presented.  Previously, triphenyl amine (TPA) has been mainly used as a 

hole transporting layer in organic LED’s.6-8  The first case of TPA polymers containing 

ethynyl and aromatic monomers such as anthracene and biphenyl were synthesized by 

Kim et al. 9  These polymers are structurally rigid due to aromatic and acetylene units and 

demonstrate high thermal stability.  These polymers, however, demonstrate poor 

solubility due to lack of solubilizing groups on the monomers.   

     In this chapter, rather than using three phenyl groups as substituents on the amine we 

chose to substitute on of the phenyl groups with a dodecyl group which allows for better 

solubility.  Also the DPA monomers were polymerized with various monomers such as 
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alkyl and alkoxy benzes, alkyl fluorenes, and fluorenone.  It was of interest to see how 

the variation of monomers changed the absorption and emission spectra of the polymers.   

  

 
 
6.2  Results and Discussion :   
 
 
 
     In order to improve the solubility of the DPA polymers, the addition of a long alkyl 

chain was implemented. This solubilizing group is added using 1-iodo-dodecane to create 

the alkyl substituted amine 6.2.10 (Scheme 5.1) In order to perform the HCSH reaction, it 

was necessary to add a halogen to both phenyl groups on the amine.  Reacting BTEACl 

with ICl forms a salt, BTEAICl2, 6.3.  This salt 6.3 is used with CaCO3 to iodinate 6.2 in 

the phenyl position para to the amine 6.4. in an excellent yield.11  This monomer can be 

coupled with various diacetylenes to form polymers, which is seen later, or it can be 

reacted with TMSA to form 6.5 as seen in Scheme 6.1.  Subsequent deprotection of the 

TMS group yields the dialkynyl compound 6.6, which is then used with dihalo 

compounds in order to form DPA polymers.   
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Scheme 6.1:  Synthesis of DPA monomers 

 

     The monomers 6.7 and 6.9 are prepared according to literature procedures.12  The Pd 

catalyzed reaction of 6.7 and 6.9 with the diiodo amine 6.4 gives polymers 6.8 and 6.10 

as seen in Scheme 6.2. These polymers demonstrate that it is feasible to put 

diphenylamine and related monomers into the PPE backbone. 
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Scheme 6.2:  Synthesis two DPA polymers: 6.8 and 6.10 

 

     The absorbance spectra of 6.8 and 6.10 in solution and the solid state can be seen in 

Figure 6.1.  There is a red shift in absorbance from the alkoxy PPE 6.10 (390 nm) from 

the alkyl PPE 6.8 (422 nm) in a choloroform solution.  The absorption for 6.8 is blue-

shifted in solution and the solid state from a typical alkoxy PPE.10 It is found that usually 

when a comonomer is used that does not contain alkoxy units, then a blue shift in λmax 

occurs.       There is a slight shift in absorption from the solution to the solid state in There 

is a slight shift in absorption from the solution to the solid state in both 6.8 and 6.10.   
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Figure 6.1:  Absorbance of polymers 6.8 and 6.10 in chloroform and solid state. 

      

     The emission spectra of 6.8 and 6.10 show a red shift in emission in a chloroform 

solution, which is typical between standard alkyl PPEs and alkoxy PPEs.  In the solid 

state, a red shift from solution is observed in both 6.8 and 6.10.     
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Figure 6.2: Emission of 6.8 and 6.10. 
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     Another DPA polymer is created from the reaction of diiodoTIPS monomer 6.11, 

which was provided by Dr. Brian Englert, with 6.6 using HCSH conditions.  This 

polymer is yellow in the solid state and is green-yellow emissive in the solid state and in 

a chloroform solution.  A red shift in emission can be seen.  The polymer shows promise 

in future use in reaction with azides to form polymers with triazole side groups or 

reaction with dendrons to form PAE’s with dendrimeric side chains.   
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Scheme 6.3:  Synthesis  DPA polymer with alkynyl side groups 
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Figure 6.3 Absorption of polymer 6.12 



 99

 
 
 

0

50

100

150

200

250

420 460 500 540 580

Wavlength

In
te

ns
ity

CHCl3
solid state

 
 
 
Figure 6.4 Emission spectra of polymer 6.12 in chloroform solution and the solid state. 
 
 
 
 
     It was of interest to investigate the effect of using a different type of monomer such as 

fluorene into the backbone of the polymer rather than using a benzene containing 

monomer.  The synthesis of a fluorene containing DPA polymer, 6.16, is shown in 

Scheme 5.4.  The TMS protected monomer 6.14 is formed using the previously 

synthesized brominated fluorene 6.13 under HCSH conditions.  Subsequent deprotection 

using KOH/EtOH forms the diethynyl substituted fluorene 6.15.  This monomer 6.15 

undergoes polymerization with 6.14 to yield the polymer 6.16 as a yellow solid.  
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Scheme 6.4:  Synthesis of a fluorene-DPA polymer 
 
 
 
 
     The absorption and emission spectra of 6.16 are shown in Figure 5.5. The polymer is 

fluorescent in chloroform solution but the fluorescenece is quenched upon addition of 

trifluoroacetic acid. 
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Figure 6.5: Absorption and emission of 6.16 
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     The synthesis of a fluorenone-DPA polymer can be seen in Scheme 6.5. The 

fluorenone has been chosen in order to yield energy transfer to low bandgap segments.  

This allows for a red shift in absorption and emission. This synthesis begins with the 

iodination of fluorene 6.7 followed by the oxidation to the fluorenone to form 2.7-

diiodofluorenone 6.18.    Monomers 6.6 and 6.19 are reacted under HCSH conditions to 

produce polymer 6.20. 

 

III2 H2SO4

NaNO3
HOAc
38%6.17 6.18

I I
O

CrO3

Acetic
anhydride
84% 6.19  

 
.   
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6.6

+

 
 
Scheme 6.5:  Synthesis of a fluorenone-DPA polymer 6.20 
 
 
 
         The absorption and emission spectra for 6.20 can be seen in Figure 6.6 This 

polymer is orange fluorescent in a thin film but is not fluorescent in a solution of 

chloroform. However, in a solution of THF the polymer is weakly yellow emissive.  

When it is dissolved in dioxane, the polymer is moderately emissive, but not as emissive 

as standard PPE’s or the other DPA polymers presented here.   
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Figure 6.6: Absorption of  6.20. 
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Figure 6.7. Emission of 6.20. 
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     The synthesis of the dihydroxy-DPA polymer is important in further synthesis of a 

redox-active quinone containing polymer.  As seen in Scheme 6.6, the DPA 6.6 is reacted 

under Pd-catalyzed conditions with a protected hydroquinone 6.21 to form polymer 6.22.  

Subsequent deprotection gives polymer 6.23 in a reasonable yield.  The absorption and 

emission spectra of 6.22 can be seen in Figure 6.8.      
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Scheme 6.6:  Synthesis of hydroquinone polymer 6.22 and 6.23 
 
 

  
 
 

 



 104

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

300 350 400 450 500 550 600

Wavelength (nm)

Abs Polymer 15  in
CHCl3 

Em Polymer 15 in
CHCl3

 
Figure 6.8: Absorption and emission of 6.22. 
 
 
 
 
 
 

6.3  Conclusion 

 

     These polymers are the first of this type of DPA polymers to be synthesized. It can 

bee seen that DPA can be incoorperated into a PAE backbone rather easily.  These 

polymers demonstrate interesting properties in absorption and emission especially with 

respect to the change of comonomer.  The absorption and emission are valuable due to 

their sensitivity towards change in pH.  One future goal for this project would be to 

examine the influence of metals on these polymers.   
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5.4.  Experimental 
 
 
 

N
H

N
C12H25

C12H25I

NaH/THF
5.1 5.237%

 

 

Didodecyl-diphenyl-amine (5.2)  Diphenylamine 5.1 (15.0 g, 88.75 mmol) is dissolved 

in dry THF in an oven dried Schlenk flask equipped with a condenser under nitrogen 

atmosphere. NaH (2.23 g, 92.9 mmol) is added and the reaction is heated at 65˚C for 1 h.  

1-iodododecane (80 mL, 399.37 mmol) is added and the reaction is refluxed for 18 h.  

The reaction is cooled to room temperature and quenched with ice.  The solution is 

extracted with ether and dried over sodium sulfate.  The solvent is removed in vaccuo.  

The resulting liquid is purified by column chromatography over silica with eluent hexane 

to yield 5.2 (11.08 g, 37%) as a colorless oil.   1H-NMR (CDCl3)  δ 7.38-7.32 (m, 4H, 

aryl-H), 7.11-7.08 (m, 4H, aryl-H), 3.81, 3.78, 3.76 (t, 2H, alkyl-H), 1.79, 1.77, 1.75 (t, 

alky.H), 1.40, 1.38, 1.37 (alkyl-H), 1.01, 0.99, 0.97 (alkyl-H).  13C-NMR (CDCl3) δ 

147.93, 129.98, 120.88, 52.35, 31.87, 29.8, 29.37, 27.49, 27.15, 22.72, 14.19.  

 

NEt3
+

Cl- + ICl
NEt3

+
ICl2-CH2Cl2

H2O
97%

5.3  



 106

BTEAICl2 (5.3)  BTEACl (45.6g, 0.20mol) is dissolved in 200 mL of water, and ICl 

(32.5 g, 0.20 mol)  is dissolved in 400 mL CH2Cl2. The H2O solution is slowly added 

dropwise to the ICl solution. The solution is initially brown, then becomes yellow.  

CH2Cl2 is added, and the organic is separated.  The solvent is removed, and the crude 

product is crystallized twice from 3:1 CH2Cl2:ether.  The product 5.3 is isolated as a 

yellow solid (75.7 g, 97%). 

 

N
C12H25

N
C12H25

II
6.2 6.4

BTEAICl2
     6.3

MeOH
CH2Cl2
84%  

 

Dodecyl-bis-(4-iodo-phenyl)-amine (6.4) Dodecyl-diphenyl-amine 6.2 (11.14 g, 

0.0330mol) is dissolved in 100 mL CH2Cl2.  BTEAICl2 (27.04 g, 0.0693 mol) is 

dissolved in 100 mL of methanol and added to the CH2Cl2  solution. CaCO3 (10.0 g) is 

added last, and the reaction is stirred for 14 h.  The mixture is filtered to remove the 

excess CaCO3.  The solvent is removed in vaccuo and the crude product is dissolved in 

ether and washed with a 5% NaHSO3 aqueous solution.  The ether fraction is washed 

three times with water, and the solvent is removed in vaccuo to yield 6.4 (16.41g, 84%) 

as a colorless oil.  1H-NMR (CDCl3) δ 7.54, 7.52 (d, 4H, aryl H), 6.77, 6.74 (D, 4H, aryl 

H), 3.65, 3.63, 3.60 (t, 2H, alkyl H), 1.63 (alkyl H), 1.28 (alkyl H).  13C-NMR (CDCl3) δ 

146.96, 137.96, 83.85, 52.22, 31.93, 29.65, 29.61, 29.59, 29.40, 29.37, 27.22, 27.02, 
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22.74, 14.24.  IR cm-1  (KBr) 2951.85, 2922.92, 2851.56, 1589.23, 1574.77, 1486.05, 

1466.76, 1359.72, 1309.58, 1277.75, 1244.97, 1187.10, 1057.88, 1005.81, 810.05, 743.51, 

718.43. 

 

N
C12H25

I I

N
C12H25

TMS TMS6.4 6.5

TMSA, CH2Cl2

Pd(PPh3)2Cl2
CuI
piperidine
96%  

 

Dodecyl-bis-(4-trimethylsilanylethynyl-phenyl)-amine (6.5).   In a nitrogen purged 100 

mL Schlenk flask, 6.4 (3.39 g, 5.75 mmol)) is dissolved in CH2Cl2 (20 mL) and 

piperidine (1 mL).  Pd(PPh3)2Cl2 (0.052 g, 0.073 mmol) and CuI (0.014 g, 0.073 mmol) 

are added next, and the reaction is capped.  TMSA (2.14 mL, 14.3 mmol) is added via 

syringe.  The reaction is stirred for 12 h.  The resulting solution is washed with a 10% 

NH4OH solution and extracted with hexane.  The hexane is washed with water and 

extracted with hexane.  The organic fraction is dried over sodium sulfate.  The organic 

fraction is filtered over alumina oxide neutral to yield 6.5 (2.84 g, 93%) as a colorless oil. 

1H-NMR (CDCl3) δ 7.59 (s, 4H, aryl-H)), 7.19 (s, 4H, aryl-H), 2.61, 2.57, 2.54 (t, 2H, 

alkyl-H) 1.72, 1.70,1.69 (t, 2H, alkyl-H), 1.28-.1.20 (m, alkyl-H), 0.28-0.80 (m, alkyl-H), 

0.231 (s, 9H, Si-CH3 H).  13C-NMR (CDCl3) δ 147.32, 133.01, 120.34, 115.49, 105.35, 

92.89, 52.15, 31.98, 29.69, 29.63, 29.41, 27.44, 27.06, 22.78, 14.23, 0.21.      
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N
C12H25

TMS TMS

N
C12H25

6.5 6.6

KOH/EtOH
CH2Cl2

93%

 

 

Dodecyl-bis-(4-ethynyl-phenyl)-amine (6.6).  In a 100 mL round bottomed flask, 6.5 

(900 mg, 1.7 mmol) is dissolved in CH2Cl2.   A 10% wt KOH/EtOH solution (1 mL) is 

added and the reaction is stirred for 30 min. The solvent from the solution is removed.  

The crude mixture is washed with water and extracted with hexane.  The solvent is 

remove to yield 5.6 (0.654 g, 99%) as a colorless oil   1H-NMR (CDCl3)  δ 7.42 (d, 4H, 

aryl-H), 6.97, 6.94 (d, 4H, aryl-H), 3.72, 3.69, 3.67 (t, 2H, alkyl-H), 3.033 (s, 2H, 

ethynyl-H), 1.65, 1.29, 0.93, 0.92, 0.89 (alkyl-H).  13C-NMR (CDCl3)  δ 147.40, 133.10, 

114.5, 83.76, 76.21, 52.14, 31.34, 29.66, 29.60, 29.38, 27.36, 27.02, 22.74, 14.19.   

 

C8H15

C8H15

6.7

+
N
C12H25

I I

N
C12H25

I

6.4 6.8

Pd(PPh3)2Cl2
CuI
piperidine
64%

C8H15

C8H15

 

Polymer (6.8).  In a nitrogen flushed 25 mL tubular Schlenk flask under nitrogen 

atmosphere, 6.4 (200 mg, 0.519 mmol) and 6.7 (287 mg, 0.519  mmol) are dissolved in 
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piperidine (3 mL) and THF (1 mL) under nitrogen stream.  The catalysts Pd(PPh3)2Cl2 

(0.0182g, 0.00259 mmol) and CuI (0.0049g, 0.00259 mmol) are added and the reaction is 

capped and heated at 60˚C for 48 h.  The reaction mixture is added dropwise to MeOH 

(500 mL), and a yellow precipitate forms.  The mixture is filtered to obtain 5.8 (210 mg, 

64%) as a yellow solid.  1H-NMR (CDCl3)  δ  7.60, 7.58, 7.33, 7.02, 6.928,6.91, 6.87, 

6.84, 3.69, 2.76, 1.82, 1.67, 1.29, 0.91.  13C-NMR δ 147.25, 147.08, 146.89, 

132.46,132.42, 124.37, 122.64, 120.52, 118.02, 115.93, 115.07, 94.05,88.17, 87.96, 84.99, 

52.29, 40.28, 38.60, 32.59, 32.24, 31.98, 29.70, 29.46, 29.41, 28.99, 28.76, 27.50, 27.38, 

27.08, 25.65, 23.22, 22.78, 14.25, 10.91.    MW=7400. 

 

O

O

C8H15

+ N
C12H25

I I
Pd(PPh3)2Cl2
CuI
piperidine
67%

N
C12H25

I
O

O

C8H15

6.9 6.4

6.10  

Polymer (6.10).  In a nitrogen flushed 25 mL tubular Schlenk flask under nitrogen 

atmosphere, 6.4 (2.08g, 3.54 mmol) and 6.9 (1 g, 3.54 mmol ) are dissolved in piperidine 

(3 mL) and THF (1 mL) under nitrogen stream.  The catalysts Pd(PPh3)2Cl2 (0.0247 g, 

0.0354 mmol) and CuI (0.006g, 0.0354 mmol)  are added and the reaction is capped and 

heated at 60˚C for 48 h. The reaction mixture is added dropwise to MeOH (500 mL), and 

a yellow precipitate forms.  The mixture is filtered to obtain 6.10 (2.62g, 67%) as a 

yellow solid.  1H-NMR (CDCl3) δ 7.43, 7.26, 6.98, 4.82, 3.73, 1.67, 1.26, 1.06, 0.89.  
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13C-NMR (CDCl3)  152.35, 147.20, 132.59, 120.43, 118.91, 115.71, 114.34, 101.79, 

95.47, 89.86, 84.80, 58.42, 52.27, 31.98, 29.68, 29.49, 29.41, 27.56, 27.14, 22.77, 18.64, 

14.22, 11.23.  IR 2953.78, 2923.66, 1594.06, 1519.80, 1464.83, 1368.40, 1260.39, 

1216.03, 1182.28, 1034.74, 818.73, 802.33, 760.87, 668.29. MW=8801.  

 

O

O

TIPS

I

I

TIPS

+ N
C12H25 N

C12H25

O

O

TIPS

TIPS

Pd((PPh2)2Cl2, CuI

piperidine, dioxane
60 C, 72%

6.11 6.6 6.12  

(6.12)  In a nitrogen flushed 25 mL tubular Schlenk flask under nitrogen atmosphere, 

6.11 (2.00, 2.67 mmol) and 6.6 (1.03 g, 2.67 mmol) are dissolved in piperidine (3 mL) 

and THF (1 mL) under nitrogen stream.  The catalysts Pd(PPh3)2Cl2 (0.0187, 0.0267 

mmol) and CuI (0.0051g, 0.0267)  are added and the reaction is capped and heated at 

60˚C for 48 h.  .  The reaction mixture is added dropwise to MeOH (500 mL), and a 

yellow precipitate forms.  The mixture is filtered to obtain 6.12 (1.69 g,72%) as a yellow 

solid.    1H-NMR δ 7.43, 7.26, 6.97, 4.81, 3.72, 1.66, 1.25, 1.05, 0.88. 13C-NMR  152.29, 

147.19, 132.68, 120.39, 118.82, 115.68, 114.26, 101.76, 95.43, 89.84, 84.77, 58.39, 52.26, 

31.96, 29.67, 29.41, 27.50, 22.77, 18.62, 14.22, 11.20.  MW=7200.   
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C6H13C6H13

BrBr
TMS

 (Ph3P)2PdCl2
triethylamine, CuI
  98%

C6H13C6H13

6.13 6.14

TMSTMS

 

9,9-Dihexyl-2,7-bis-trimethylsilanylethynyl-fluorene (6.14) In a Schlenk flask under 

nitrogen atmosphere, 6.13 (4.00g, 8.16 mmol), Pd(PPh3)2Cl2 (0.057 g, 0.082 mmol), CuI 

(0.0156 g, 0.082 mmol), and PPh3 (0.05 g, 0.082 mmol) are dissolved in triethylamine, 

and the reaction capped. TMSA (2.00 g, 20.4 mmol) is added via syringe, and the 

reaction is heated at 85˚C for 24 h.  The reaction solution is cooled to room temperature 

and washed with a 10% NH4OH solution and extracted with hexane.  The hexane extract 

is washed with a 25% HCl solution and extracted with hexane.  This hexane layer is 

washed with H2O and extracted with hexane and dried over MgSO4 and filtered.  The 

solvent is removed to yield, and the crude solid is recrystallized from ethanol to yield 

6.14 (4.21 g, 98%) as a colorless solid.  1H-NMR δ 7.65 (d, 2H), 7.62 (d, 2H) 7.45 (d, 

2H), 7.43 (d, 2H), 7.34 (m, 2H), 2.58, 2.57, 2.56 (t, 2H, alkyl-H), 1.38 (m, alkyl-H), 1.12 

(m, alkyl-H), 1.10 (t, 6H, alkyl-H)  13C NMR (CDCl3) δ 150.72, 140.69, 131.09, 126.07, 

121.67, 119.73, 106.07, 94.17, 55.22, 40.43, 55.22, 40.43, 31.62, 29.76, 23.69, 22.71, 

14.11, 0.18.   
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C6H13C6H13

6.14

TMSTMS

C6H13C6H13

KOH/EtOH
CH2Cl2

94%
6.15

 

 

9,9-Dihexyl-2,7-bis-ethynyl-fluorene (6.15) 6.14 (1.5 g, 2.85 mmol) is dissolved in 

CH2Cl2 (20 mL) followed by the addition of a 10% wt solution of KOH in ethanol (2 mL).  

The reaction is stirred at room temperature for 1h.  The solvent is removed and the crude 

product is dissolved in hexanes and washed 3 times with water (50 mL).  The resulting 

solid is purified over a silica gel plug with hexanes.  The solvent is removed in vaccuo to 

yield 6.15 (1.02g, 94%) as a pale yellow solid. 1H-NMR (CDCl3) δ 7.52, 7.38,  3.02 (s, 

2H, ethynyl H), 2.61 (t, 4H, alkyl H), 1.29 (m, alkyl H), 0.85 (m, alkyl H). 13C-NMR  

(CDCl3) 142.35, 135.83, 130.28, 126.59, 121.34, 120.59, 81.98, 78.94, 55.36, 40.92, 

31.53, 30.78, 24.65, 22.34, 14.71.   

 

N
C12H25

I

C6H13C6H13

(Ph3P)2PdCl2
piperidine, CuI
         67%

6.16

C6H13C6H13

6.15

N
C12H25

II
6.4

+

 

(6.16) 6.4 (1.00g, 1.69 mmol) is dissolved in piperidine (5 mL) in a 25 mL Schlenk flask 

under nitrogen atmosphere.  The catalysts, Pd(PPh3)2Cl2 (12 mg, 0.0169 mmol) and CuI 

(3 mg, 0.0169 mmol) are added, and the reaction is capped.  The reaction is stirred for 48 

h. at 65˚C.  The resulting mixture is added dropwise to MeOH (500 mL).  A yellow 
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precipitate is formed.  This precipitate is filtered, and 6.16 is obtained (67%) as a 

fluorescent yellow solid.  1H-NMR δ  7.35, 7.13, 6.98, 2.53, 2.51, 1.99, 1.97.   

 

III2 H2SO4

NaNO3
HOAc
38%6.17 6.18  

2,7-diiodofluorene (6.18).  Fluorene (6.17) (25.0 g, 150 mmol) was dissolved in glacial 

acetic acid (1500 mL) while stirring in a round bottom flask equipped with a dropping 

funnel.  I2 (53.3 g, 210 mmol) was ground into a fine powder and added to the solution, 

followed by the addition of NaNO3 (6.00 g, 70.6 mmol). H2SO4 (75 mL) was added 

dropwise over a period of 30 min.  When all the H2SO4 had been added, a second portion 

of NaNO3 (6.00 g, 70.6 mmol) was added followed once again by H2SO4 (75 mL).  

During the addition of this second portion of H2SO4, a color change from dark purple to a 

light red was observed, and a light precipitate was formed signaling that the reaction was 

complete.  The mixture was washed with a concentrated Na2SO3 solution, filtered, 

washed further with cold acetic acid, and finally with copious amounts of H2O.  To the 

solid was added some warm EtOH and then refiltered, removing some of the monoiodide.  

The product was recrystallized from isopropanol affording 6.18 (24.1 g, 38 %) as a light 

yellow solid; m.p. 213-214 °C.   1H NMR (CDCl3) δ 7.86 (s, 2H), 7.70-7.67 (m, 2H), 

7.47 (d, 2H, J = 8.0 Hz), 3.82 (s, 2H); 13C NMR (CDCl3) δ 144.8, 140.4, 136.0, 134.1, 

121.6, 92.4, 36.3. 
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II I I
O

CrO3

Acetic
anhydride
84%6.18 6.19  

 

2,7-diiodofluorenone (6.19).  CrO3 (24.0 g, 240 mmol) was added to a suspension of 

6.18 (41.8 g, 100 mmol) in acetic anhydride (600 mL) while stirring at room temperature 

for 12 h.  The reaction mixture was poured slowly into 500 ml of a 2% HCl solution at 

0˚C, filtered, and recrystalized from 2-propanol yielding 6.19 (36.2 g, 84%) as yellow 

needles; Mp.= 209-210 °C.  1H NMR (CDCl3): δ 7.60 (d, 2H), 7.46 (dd, 2H), 7.37 (dd, 

2H). 13C NMR (CDCl3) δ = 190.6, 143.4, 142.9, 134.8, 133.5, 122.1, 94.4.  

 

 

I I
O

N
C12H25

I
O

6.19
6.20

Pd(PPh3)2Cl2
CuI
piperidine

N
C12H25

6.6

+

 

 

Polymer (6.20) The DPA compound 6.19 (0.222 g, 0.514 mmol) is dissolved in 

piperidine (2 mL) in a tubular Schlenk flask under a nitrogen atmosphere.  The catalyst, 

Pd(PPh3)2 (3.4 mg, 0.000514 mmol) and CuI (1.0 mg, 0.000514 mol) are added, and the 

reaction is capped.  The diethynyl compound 6.6 (0.198g, 0.514 mmol) is dissolved in 



 115

piperidine (1 mL) and added to the reaction mixture via syringe.  The reaction is stirred at 

60 ˚C for 48 h.  1H NMR (CDCl3): δ 7.93, 7.77, 7.43, 7.25, 6.99, 3.71, 1.65, 1.25, 0.87.   

 

 

N

C12H25

O

I

I

O

Ts

Ts

+

N

C12H25

O

O

Ts

Ts

*

Pd(PPh3)2Cl2

CuI
Piperidine
THF
92%

6.6 6.21
6.22

I

 

(Polymer 6.22) 6.21 (0.174 g, 0.259 mmol) is added to a tubular Schlenk flask under 

nitrogen atmosphere and dissolved in piperidine (1 mL) and THF (2 mL).  The catalysts, 

Pd(PPh3)2Cl2 (10.8 mg, 0.00259 mmol) and CuI (4.9 mg, 0.00259 mmol) are added and 

the reaction is capped.  6.6 (4.9 mg, 0.00259 mmol) is dissolved in piperidine (1 mL) and 

added via syringe. The reaction is heated to 60˚C and stirred for 48 h.  The crude mixture 

is added dropwise to methanol (500 mL).  A brownish-yellow solid precipitated.  The 

solution is filtered and the solid is dissolved in CH2Cl2 and repriciptated from methanol 

(500 mL) and filtered to yield 6.22 (92%) as a yellow solid.  1H NMR (CDCl3):  7.36, 

7.34, 7.33, 7.15, 3.45, 3.44, 3.43, 2.52, 2.44, 2.41, 2.40.   
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KOH, DMF

N
C12H25

O

O
H

H

6.23

74%

I

N

C12H25

O

O

Ts

Ts

6.22
I

 

 

(Polymer 6.23) 6.22 (100 mg, 0.149 mmol ) and KOH are dissolved in DMF and the 

reaction is stirred for 72 h at 50˚C. The reaction mixture is initially yellow and then turns 

dark brown.  The mixture is added drop wise into methanol (500 mL) to give a dark 

brown solid which is filtered to yield 6.23 (0.054 g ,74%)   1H NMR (CDCl3):   δ 7.63, 

7.61, 7.58, 7.56, 2.86, 2.50, 1.66, 1.27, 1.24, 0.88. 
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