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SUMMARY

Temperature rise due to Joule heating of on-chip interconnects can severely

affect performance and reliability of next generation microprocessors. Thermal pre-

dictions become difficult due to number of features on the order of a billion and the

impact of electron size effects on electrical and thermal transport. It is thus necessary

to develop efficient numerical approaches and accurate metal and dielectric thermal

characterization techniques. In this research, analytical, numerical, and experimental

techniques were developed to enable accurate and efficient predictions of temperature

rise in an on-chip interconnect stack.

A finite element based compact thermal modeling methodology was developed

to obtain temperature rise with lesser number of elements and acceptable accuracy

(5 - 10 %). In this technique, the temperature drop across the interconnect cross-

section was ignored. This approach was applied to two-dimensional uniformly spaced

interconnects, three-dimensional interconnects terminated with vias, and a real world

structure consisting of a long serpentine chain of about 500 interconnects and vias. In

all the cases, the compact model performed better than standard finite elements. In

some cases, the performance was improved by an order of magnitude. The compact

model predictions agreed closely with experimentally measured temperature rise of

the serpentine chain.

A numerical solution was developed for electron transport through complex inter-

connect structures based on the Boltzmann Transport Equation (BTE). This deter-

ministic technique, based on the path integral solution of BTE within the relaxation

time approximation, free electron model, and linear response, was applied to a con-

striction in a finite size thin metallic film. Effective conductance dropped over the

xiii



bulk value even with specular surface scattering for different constriction sizes and

aspect ratios. An extension of the constriction results for a short metallic bridge was

discussed. These simulations can provide effective resistances between two locations,

and can then be used in a macroscale framework.

An Atomic Force Microscope (AFM) was used to develop a new technique to

measure thermal conductivity of thin metallic films in the size effect regime. This

technique uses Scanning Joule Expansion Microscopy (SJEM) to measure temper-

ature expansion amplitude on the surface of a constriction in a thin film. It does

not require complex microfabrication to obtain free-standing structures, and thus

preserves the original metal interface and scattering characteristics. Using extensive

thermal conduction modeling in the frequency space, thermal conductivity values for

two film thicknesses were extracted from SJEM measurements. The thermal conduc-

tivities of 43 nm and 131 nm gold films were found to be 82 W/mK and 162 W/mK

respectively at the smallest frequency investigated. These measurements were close to

Wiedemann-Franz Law predictions and are significantly smaller than the bulk value

of 318 W/mK due to electron size effects. The technique can potentially be applied

to interconnects in the sub-100 nm regime.

A semi-analytical solution for the 3ω method was derived to account for thermal

conduction within the metallic heater. Existing uniform heat flux approximation

between the metal heater and substrate was replaced by a more realistic uniform

heat generation condition within the metal heater. Although this correction does not

affect thermal conductivity measurements in the original 3ω method, it is shown that

significant errors can result when it is applied for anisotropy measurements. For small

thermal conductivity films, the error in the anisotropy ratio can be as high as 50 %.

xiv



CHAPTER I

INTRODUCTION

The microelectronics industry is pursuing several architectural advances in order to

sustain steady improvements in the performance of microprocessors. Most notably,

copper has replaced aluminum for on-chip interconnects, and novel low dielectric

constant materials (low-k materials) are being introduced to replace traditional inter

layer dielectric (ILD) material TEOS (TetraEthylOrthoSilicate) [88]. Typical low-k

dielectrics have up to an order of magnitude lower thermal conductivity than TEOS.

According to the International Technology Roadmap for Semiconductors (ITRS 2004

[37]), electrical design requirements dictate higher current densities in the intercon-

nects of next generation technology nodes. In addition, the number of interconnect

layers is expected to increase in future technologies. These trends result in higher in-

terconnect temperatures in the current and future technology nodes. Figure 1.1 shows

a schematic cross-section of an interconnect stack in microprocessors based on [37].

Multi-stack interconnect architecture is characterized by wide range of length scales

(from 10−9 m to 10−2 m) and significant material inhomogeneity (thermal conduc-

tivity variation from 0.1 W/mK to 400 W/mK). Different metal levels are connected

through vias that provide electrical connections.

Traditionally, interconnect temperature was crucial in predicting median time to

failure (MTTF ) due to electromigration (Ho and Kwok [33]). MTTF is commonly

given by Black’s equation [4]

MTTF =
AeEa/kT

jn
(1.1)

where A is a constant, Ea is the activation energy, T is the temperature, k is the

1
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Figure 1.1: A schematic of interconnect stack with metal lines and vias adapted
from [37].

Boltzmann constant, j is the current density, and n is the current exponent. Com-

mon practice is to use maximum junction temperature (temperature of the front-end

transistors) for interconnect temperature in Black’s equation to project field life from

accelerated tests. Such a practice can lead to non-conservative field life estimates, as

the interconnect temperature is higher than transistor temperature due to self-heating

effects. Joule heating in the earlier generations resulted in only a small increment in

interconnect temperature above the transistor/active device temperature. However,

in the current and future technologies, temperature rise can be significant, and in-

terconnect thermal issues have received considerable attention in recent times (Shen

[79], Banerjee et al. [5], and Streiter et al. [85]). Due to increased temperatures in

the interconnect stack, temperature dependence of clock signal delay (Kapur et al.

[43]) and clock skew (Ajami et al. [2]) have also received considerable attention. The

electrical resistivity of the metal line and electrical capacitance due to the surround-

ing dielectric cause a delay in the signal propagation through the circuit. Signal delay

is directly proportional to interconnect resistance and is affected by the temperature

2



dependence of metal’s electrical resistivity.

An accurate prediction of both performance (signal delay and clock skew) and

reliability (MTTF due to electromigration) requires a detailed determination of tem-

perature profile in the interconnect stack of a chip under system operating conditions.

As interconnect dimensions decrease with each technology node, the effect of electron

scattering with the walls of the interconnect plays an important role in electrical and

thermal conduction. Figure 1.2 shows the predicted reduction in effective conduc-

tivity of interconnects if the walls are assumed to be perfectly diffuse (see Chapter

2 for references and description). These predictions are based on Fuchs-Sondheimer

model for electron size effect ([27] and [82]). This plot shows that the conductivity

may be reduced to half the bulk value in a decade. Similar reductions are expected

for thermal conductivity, since in metals, both electrical and thermal conduction are

dominated by electrons. It is thus important to also include electron size effects in

predicting temperature rise.

The ITRS roadmap predicts that the number of transistors in a high performance

microprocessor will exceed a billion in year 2007. The number of interconnects con-

necting these active devices will also increase in a similar manner. Predicting tem-

perature rise within the interconnect stack is thus a formidable task. Figure 1.3

illustrates a big picture of various sub-tasks that may be necessary to enable accurate

and efficient temperature rise predictions. This task involves three main compo-

nents: macroscale modeling, nanoscale modeling, and electrical and thermal charac-

terization, and various inter-relations between these sub-tasks. Macroscale modeling

involves using analytical or numerical techniques, assuming either that continuum

theory holds, or effective properties can be defined. Reduced microscopic models (ei-

ther through theory or experiments) and thermal/electrical properties are necessary

to perform such simulations. Nanoscale modeling involves simulating detailed elec-

tron and phonon transport through small structures where size effects are important.

3
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Figure 1.2: Electrical conductivity reduction predictions using Fuchs-Sondheimer
model for size effect and using dimensions from ITRS 2004 [37].

Some techniques, such as ab-initio molecular dynamics, can predict physical prop-

erties by merely specifying the atomic composition. Other simulations may require

some macroscopic properties. Nanoscale simulations can result in reduced models to

be later used in macroscale modeling. In some instances, macroscale predictions are

necessary to simulate far-field conditions in a nanoscale simulation. A more compre-

hensive approach is a simulation that simultaneously solves for all length scales. Such

a multiscale modeling approach has received considerable attention recently [73]. It is

also important to supplement nanoscale and macroscale modeling with experimental

characterization. These measurements can validate the simulations and also provide

valuable input to the simulations in the form of thermal and electrical properties,

and empirical models. Many nanoscale phenomena are yet to be understood, and

high resolution characterization is essential to make any progress towards predictive

models.
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Figure 1.3: A big picture of various tasks that enable accurate interconnect thermal
modeling and characterization including physics from the nanoscale to the macroscale.

Existing numerical techniques based on finite difference and finite element meth-

ods can be used for temperature prediction at the macroscale, assuming that the

continuum theory holds. But the computational times are long even for a unit cell

(micro-models). Any simpler approaches, mostly analytical, are restricted to simpler

structures and cannot capture thermal interactions. It is thus essential to develop

approaches that require less computational time and capture thermal interactions.

Simulations of electron transport can be performed using the Monte Carlo technique,

but such approaches are highly expensive for a complex interconnect structure. Sim-

pler approaches that include the essential physics should be developed.

This work develops novel analytical, numerical, and experimental techniques, to

facilitate accurate and efficient predictions of temperature rise in an on-chip inter-

connect stack. The unique contributions of this research are as follows.
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• A Finite Element Method (FEM) based compact approach to simulate contin-

uum based thermal transport that requires lesser number of finite elements has

been developed.

• A path integral based approach to simulate electron transport through complex

interconnect structures that provides effective conductance and heat generation

variation has been implemented.

• A novel technique to extract thermal conductivity of sub-100 nm interconnects

using Scanning Joule Expansion Microscopy (SJEM) that preserves original

interface scattering characteristics has been developed.

• A new semi-analytical solution for the 3ω method including the effect of thermal

conduction in the metallic heater that improves anisotropic dielectric thermal

conductivity measurements has been obtained.

A brief description of these contributions is given in the following paragraphs. Chapter

2 provides a background on earlier Joule heating studies, electron transport theory and

size effect models, high resolution thermal characterization, and existing approaches

to measure in-plane thermal conductivity of metallic films.

The compact modeling approach described in Chapter 3 uses traditional finite

element technique with the approximation that the temperature drop across an inter-

connect cross-section is negligible. Temperature drop along the length is appreciable

and is retained, as it plays an important role in lateral heat conduction. The com-

pact numerical solution methodology proposed in this work takes advantage of large

metal-to-dielectric thermal conductivity ratio. The finite elements investigated here

contain both metallic and dielectric regions in the same element. Such a compact

thermal modeling approach reduces the number of nodes where temperature needs

to be computed. Compact thermal models outside the chip, or at the package level

have been studied in several investigations (Bar-Cohen et al. [6], Rosten et al. [72],
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Boyalakuntla and Murthy [13], Adams et al. [1], and Sabry [74]). Most of the in-

vestigations have been directed towards obtaining an equivalent thermal resistance

network. In this chapter, simple structures are first studied to evaluate the perfor-

mance of the compact model. Error estimates are provided to guide mesh generation.

Then, Joule heating effects in a commonly used 500-link test structure, consisting of

two levels of metal lines (M1 and M2) connected by vias (V1) is studied using compact

models, detailed finite element calculations and experimental measurements. Average

temperature rise of this structure was measured by resistance thermometry and the

results are compared with the predictions of compact model.

Chapter 4 describes a path integral based numerical approach to simulate electron

transport through complex structures. This approach solves the Boltzmann Trans-

port Equation (BTE) for free electrons, within the relaxation time approximation,

and under linear response. Only electrons at the Fermi level are considered in the

technique. This approach does not require a separate solution of Poisson’s equation.

Using this technique, reduction in conductance across a constriction in a thin film

is predicted. A short metallic bridge is also considered, and it is shown that a sim-

ple series addition of independent constriction and bridge resistances can accurately

predict overall conductance of the structure. The simulations also provide detailed

variation of heat generation in the structures.

A novel approach to extract thermal conductivity of thin metallic films is pro-

posed in Chapter 5. This technique uses Atomic Force Microscope (AFM) based

Scanning Joule Expansion Microscopy (SJEM) developed by Varesi and Majumdar

[90]. Through extensive SJEM characterization of a constriction, and numerical sim-

ulations in the complex domain, thermal conductivity of thin films in the size effect

regime is measured. These measurements are close to the expected values.

In Chapter 6, a new semi-analytical solution to the 3ω method is derived and

investigated. The 3ω method is a powerful technique to measure thermal properties
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of films [15]. The present solution includes heat conduction within the metallic heater,

which was ignored in earlier solutions. It is shown that this effect is significant in

anisotropy measurements. Finally, Chapter 7 concludes and provides future directions

to this research.

8



CHAPTER II

BACKGROUND AND LITERATURE SURVEY

In this chapter, relevant background and previous investigations are presented. In-

terconnect Joule heating studies, electron transport simulation techniques, in-plane

metal thermal conductivity measurement techniques, high resolution temperature

measurement techniques, and the 3ω method are reviewed. Electron transport theory

is explained in considerable detail to facilitate subsequent explanations of approxi-

mations used in the present work.

2.1 Interconnect Joule heating studies

Several studies dealt with interconnect Joule heating at various levels of approxi-

mation. A set of long uniformly spaced interconnects is often approximated as a

two-dimensional thermal spreading problem of an isothermal heat source shown in

Figure 2.1. Bilotti [8] obtained analytical expressions for the heat spreading fac-

tor using double Schwarz-Christoffel conformational transformation. Schafft [76] and

Chiang et al. [20] considered finite length interconnects using a fin type equation.

Although heat conduction along the interconnect was considered, a length-wise con-

stant two-dimensional spreading resistance through the dielectric was assumed. Such

a fin equation can be solved for any specified temperature conditions near the ends.

Chiang et al. [20] also considered multi-level interconnects by simply adding average

contributions to temperature rise from each interconnect level. Teng et al. [87] de-

veloped an electromigration reliability predictive tool that accounts for Joule heating

effects in active devices and the interconnects. The temperature profile on the sub-

strate was calculated by a finite difference method after ignoring interconnect Joule
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Figure 2.1: A common idealization of long uniformly spaced interconnects.

heating. This temperature profile was later used to determine the boundary con-

ditions for interconnect heating simulation. Hunter [35] analyzed the self-consistent

problem of determining allowed current density using Bilotti’s expressions. Intercon-

nect heating and electromigration were included in the analysis. Chen et al. [18]

computed interconnect temperature rise using a commercially available finite element

solver for more realistic structures. Expressions for temperature rise were provided

for some of the structures using a combination of analytical and numerically fitted

solutions. Using the thermal modeling methodology described in [18], Casu et al.

[17] performed electro-thermal simulations and optimization of clock networks. Their

study included electromigration and clock signal delay through the interconnect net-

work. Stan et al. [83] and Huang et al. [34] developed a compact thermal model that

included details at the microprocessor architecture level. Importance of temperature

field at all stages of an IC design was noted, although interconnect temperature rise

was considered only in an average sense.

2.2 Theory of electron transport in metals

Metals are characterized by large electron densities and are good conductors of heat

and electricity. Due to an electric potential or a temperature gradient, electron cur-

rents are setup inside the metal, which lead to macroscopic electric and thermal

currents. This flow of electrons is impeded at normal temperatures by the underlying
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lattice of atoms. Atomic vibrations (a quantum of lattice vibration is termed phonon)

scatter electrons and result in finite electrical and thermal conductivity. Other scat-

tering mechanisms include those due to impurities, vacancies, and grain boundaries

(See Ashcroft and Mermin [4] for an excellent treatment of condensed matter physics).

A general description of electron dynamics begins by defining a distribution func-

tion f(k, r, t). The distribution function denotes the probability that a state specified

by wavevector k is occupied at position r at time t. Strictly speaking, an electron

state is specified by the wavevector as well as spin. The spin can be up or down. This

is unimportant for the properties considered in this work. A factor of 2 that arises

due to electron spin is included in the averaging over the distribution function. Once

the distribution function is known, any property can be calculated by performing a

weighted average over suitable variables. For example, the electron density n(r, t),

electric current density je(r, t), and heat flux q′′

e(r, t) are given by

n(r, t) =
1

4π3

∫

dkf(k, r, t) (2.1)

je(r, t) =
q

4π3

∫

dkvkf(k, r, t) (2.2)

q′′

e(r, t) =
1

4π3

∫

dkvkεkf(k, r, t) (2.3)

where vk is the velocity of electron, εk is the energy of the electron, q is the electron

charge (q = −e = −1.602 x 10−19 C), dk is the differential volume element in k-space

(dkxdkydkz), and the integration is over entire k-space. The subscript ′k′ on velocity

and energy indicates that they are functions of the wavevector. This dependence will

sometimes be denoted by v(k) and ε(k). In these expressions, the factor 2 due to

electron spin is included. At equilibrium, the distribution function is given by the

Fermi-Dirac distribution

fo(εk) =
1

1 + exp[(εk − µ)/kBT ]
(2.4)

where µ is the chemical potential, kB is the Boltzmann constant, and T is the temper-

ature. This function shown in Figure 2.2 is quite different from Maxwell-Boltzmann
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Figure 2.2: Evolution of Fermi-Dirac distribution function for copper as tempera-
ture increases. At equilibrium, all the states until the Fermi level εF are filled. As
temperature increases, only the energy states in the range ≈ kBT about the Fermi
level are altered due to Pauli principle. It is electrons in these states that are impor-
tant for conduction

distribution function, due to Pauli’s exclusion principle. According to the Pauli prin-

ciple, no two electrons can be in the same state (a state is characterized by the

wavevector and spin). At the ground state (T = 0 K), all electrons up to the Fermi

level εF are filled (µ = εF at T = 0 K). As temperature increases, electrons gain

energy, but lower energy electrons cannot fill adjacent states as they are already oc-

cupied. Only electrons in the range ≈ kBT below the Fermi level spill over to higher

energies. For kBT << εF the electron gas is termed degenerate and the degeneracy

temperature TF equals εF /kB. The effect of Pauli principle is similar when external

fields interact with the electrons. Thus, in a degenerate electron gas, only electrons

near the Fermi level play a role in electrical and thermal transport.

Nothing has yet been mentioned about the relationship between electron energy,
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velocity and wavevector. The Bloch theory of energy bands solves for the quantum-

mechanical energy states. In this model, electrons are assumed to be influenced by a

periodic potential due to the underlying lattice with atomic cores (or ions) frozen at

their equilibrium positions. Solution of the quantum-mechanical Schrodinger equation

leads to energy bands εn(k) of possible electron states indexed by ′n′. The term bands

is used to signify that there are forbidden energy levels in between them. The mean

velocity of an electron with wavevector k in energy band n is given by

vn(k) =
1

h̄

∂εn(k)

∂k
(2.5)

It turns out that within such a potential model, electrons travel unimpeded, and thus

provide no explanation for the observed finite electrical or thermal conductivity. As

mentioned earlier, the frozen lattice model is incorrect at normal temperatures and

electrons are scattered due to phonons and other collision mechanisms.

External forces, such as electric and magnetic fields, and temperature gradient,

lead to a non-equilibrium distribution function. In a semiclassical treatment of elec-

tron motion (See [4] for the details on assumptions involved), the following equations

are valid in the absence of an external magnetic field.

dr

dt
= vn(k) =

1

h̄

∂εn(k)

∂k
; h̄

dk

dt
= qE(r) (2.6)

where h̄ = h/2π (h = 6.626 x 10−34 Js is the Planck’s constant) and E(r) is the

external electric field. It is semiclassical since only the periodic potential of ions (at the

atomic scale) is treated quantum mechanically. External fields are treated classically.

This assumption is justified as long as the external fields do not vary appreciably

over atomic distances. The second equation above reminds of Newton’s Second Law

if h̄k is interpreted as electron momentum (h̄k is termed crystal momentum). The

above expressions are valid only between collisions. Collisions are assumed to be

instantaneous and change the electron state abruptly.
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The general evolution of fn(k, r, t) is governed by the Boltzmann Transport Equa-

tion (BTE) which simply is a conservation law (fn(k, r, t) is now the probability that

a state specified by wavevector k is occupied at position r in band n at time t). The

total time derivative of fn(k, r, t) should be zero in the absence of any collisions. Col-

lisions can cause an abrupt change in the wavevector or band. Thus the following

equation can be written down (suppressing the arguments momentarily).

dfn

dt
=

∂fn

∂t
+

dr

dt
· ∂fn

∂r
+

dk

dt
· ∂fn

∂k
=

(

∂fn

∂t

)

coll

(2.7)

where the right hand side term denotes changes in the distribution function due to

collisions. Using Eq. 2.6 one obtains the BTE:

∂fn(k, r, t)

∂t
+ vn(k) · ∂fn(k, r, t)

∂r
+

qE(r)

h̄
· ∂fn(k, r, t)

∂k
=

(

∂fn(k, r, t)

∂t

)

coll

(2.8)

There are seven independent dimensions in the above equation and the collision term

is quite complicated for a general case. In the following section, a much simpler model

is described that explains many of the transport properties in metals quite well.

2.2.1 Free electron model and relaxation time approximation

In the early 1900’s, free electron model was proposed to account for transport prop-

erties in metals. Historically, this model precedes the Bloch theory of energy bands

outlined in the previous section. In this model, electrons are assumed to travel freely

(not influenced by any periodic potential) between scattering events. Accordingly,

there is just one single continuous band of energy states (the band index n can then

be omitted). The electron energy is purely kinetic and the following explicit relations

are valid.

dr

dt
= vk =

h̄k

m
; εk =

1

2
mv2

k
=

h̄2k2

2m
(2.9)

With these relations, Fermi velocity vF and Fermi wavevector kF are defined by

εF =
1

2
mv2

F =
h̄2k2

F

2m
(2.10)
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In the three-dimensional k-space, Fermi sphere is defined by a spherical region of

radius kF centered at the origin. The equilibrium number density no can now be easily

evaluated from Eq. 2.1 using the above relations and the fact that at T = 0 K, fo = 1

inside the Fermi sphere and zero outside (due to electron number conservation, the

number density is also same at nonzero temperatures if thermal expansion is ignored):

no =
k3

F

3π2
(2.11)

In the Relaxation Time Approximation (RTA), scattering events are phenomeno-

logically described by a relaxation time τ . This relaxation time represents the average

time between collisions. There is no reason for τ to be a constant. Nevertheless, a

constant τ explains electrical and thermal transport in simple metals satisfactorily.

The stationary BTE for free electrons within the RTA takes the following form.

vk · ∂f(k, r)

∂r
+

qE(r)

h̄
· ∂f(k, r)

∂k
= −f(k, r) − fle(k, r)

τ
(2.12)

1

4π3

∫

dk [f(k, r) − fle(k, r)] = 0 (2.13)

where the local equilibrium distribution function fle(k, r) is the Fermi-Dirac distri-

bution in Eq. 2.4 with a spatially varying chemical potential µ(r) and has the same

local charge density as f(k, r). The local equilibrium distribution function ensures

that the number of electrons is conserved.

If there is no net electric charge in the metal, the BTE (2.12) is sufficient to

calculate the response of electrons due to an external electric field. In a general case

however, one has to also solve for the following Poisson’s equation for electric potential

φ(r) together with the BTE.

∇2φ(r) = −qδn(r)

ǫ
(2.14)

δn(r) = n(r) − no =
1

4π3

∫

dk [f(k, r) − fo(εk)] (2.15)

where no is the equilibrium electron number density. At equilibrium, electron charge

is canceled by the underlying equal and opposite ion charge. Only the deviations in
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electron density enter the Poisson’s equation. Depending on the particular problem,

these equations have to be supplemented with appropriate boundary conditions.

While evaluating equilibrium properties such as number density or energy density,

the following simplification to energy as an independent variable is convenient. This

also leads to the definition of density of states g(ε).

1

4π3

∫

dkF (εk) =
1

π2

∫

∞

0

k2dkF (εk) =

∫

∞

0

dεg(ε)F (ε) (2.16)

g(ε) =
m

h̄2π2

√

2mε

h̄2 (2.17)

where F (εk) is an arbitrary function of energy and the subscript ′k′ has been dropped

to stress that energy is the independent variable.

2.2.2 Linear response and bulk conductivities

In bulk metals, Ohm’s Law for electrical transport and Fourier’s Law for heat con-

duction are examples of linear response. There is a linear relationship between the

applied field and resulting currents. Consider a uniform bulk metal, with electric field

Ex along the x–direction. The non-equilibrium distribution function is split as

f(k) = fo(εk) + f1(k) (2.18)

where f1(k) is the perturbation caused by the electric field and is independent of

position. With this substitution in Eq. 2.12 and using the fact that fle = fo since the

electron density does not vary, the perturbation is given by,

f1(k) =
eExτ

h̄

∂fo

∂kx
(2.19)

where the term involving Ex∂f1/∂k has been ignored to seek only the linear response,

and q = −e has been used. The current density can now be evaluated by using Eq. 2.2.

After using jx = σEx, the bulk electrical conductivity is given by,

σbulk =
noe

2τ

m
(2.20)
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In obtaining the above expression for electrical conductivity, it has been assumed

that the electron gas is degenerate, which justifies the T = 0 K assumption for the

equilibrium Fermi distribution. The error due to this approximation is on the order

of (kBT/εF )2, which is 1.4× 10−5 for copper at 300 K. Using similar approximations,

the free electron result for bulk thermal conductivity κbulk is given by

κbulk =
π2nok

2
BTτ

3m
(2.21)

Equation 2.20 is used to calculate the relaxation time and electron mean free path

λ = vF τ using bulk electrical conductivity data.

2.3 Size effects on electron transport

Size effects become important when at least one of the sample dimensions becomes

comparable to the mean free path of transport. In the following sections, size effects

on thin films, wires, and constriction are reviewed.

2.3.1 Size effect on thin film electrical conductivity

Fuchs [27] provided the first exact solution of size effect on the electrical conductivity

of a thin film within the RTA and free electron model. A phenomenological specularity

parameter p was introduced to describe the way electrons interact with the wall.

Figure 2.3 shows two extreme cases of electron reflection with the walls of the thin

film. In the specular case, the incident and reflected angles with respect to the wall

are same. In the case of diffuse scattering, the electron has an equal probability to

emerge in any direction. The specularity parameter p is the fraction of electrons

scattered specularly.

The general approach to solve this and other size effect problems is similar to that

used in the previous section for bulk electrical conductivity. The distribution function

is split into the equilibrium and perturbation function, and only linear response is

sought. The perturbation function f1 now depends in addition on the z coordinate
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Figure 2.3: Two types of electron scattering by the wall of a thin film.

across the thin film. The solution is given by

f1(k, z) =
eExτ

h̄

∂fo

∂kx

[

1 − 1 − p

1 − p exp(−d/vzτ)
exp

(

− z

vzτ

)]

(kz > 0)

f1(k, z) =
eExτ

h̄

∂fo

∂kx

[

1 − 1 − p

1 − p exp(d/vzτ)
exp

(

−d − z

vzτ

)]

(kz < 0) (2.22)

An effective film conductivity is defined by calculating the current density using the

above expressions and averaging it over the film thickness. The final expression for

film conductivity σfilm in terms of non-dimensional film thickness γd = d/λ is given

by (see Sondheimer [82] for these expressions)

σfilm

σbulk

= 1 − 3(1 − p)

2γd

∫

∞

1

(

1

ξ3
− 1

ξ5

)

1 − e−γdξ

1 − pe−γdξ
dξ (2.23)

Simpler expressions can be written down in the limiting cases

σfilm

σbulk
≈ 1 − 3(1 − p)

8γd
(γd ≫ 1) (2.24)

σfilm

σbulk
≈ 3(1 + p)

4(1 − p)
γd ln

1

γd
(γd ≪ 1) (2.25)

2.3.2 Size effect on circular wire electrical conductivity

The solution for the size effect on a circular wire of diameter D was obtained by

Dingle [25] using similar procedures. The conductivity ratio with γD = D/λ is given

by

σcwire

σbulk
= 1 − 12(1 − p)2

π

∞
∑

ν=1

νpν−1

∫ 1

0

(1 − ξ2)1/2L4(νγDξ)dξ (2.26)

Ln(u) =

∫ π/2

0

exp
(

− u

sin θ

)

cos2 θ sinn−3 θdθ (2.27)
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and the limiting expressions are

σcwire

σbulk
≈ 1 − 3(1 − p)

4γD
+

3(1 − p)2

8γ3
D

∞
∑

ν=1

pν−1/ν2 (γD ≫ 1) (2.28)

σcwire

σbulk
≈ (1 − p)γD

(1 + p)
− 3γ2

D

8

[

1 + 4p + p2

(1 − p)2

(

ln
1

γD
+ 1.059

)

− (1 − p)2

∞
∑

ν=1

ν3pν−1 ln ν

]

−2γ3
D(1 + 11p + 11p2 + p3)

15(1 − p)3
(γD ≪ 1) (2.29)

2.3.3 Size effect on rectangular wire electrical conductivity

A wire of square cross-section was solved for size effect by MacDonald and Sarginson

[55]. A more general case of rectangular cross-section was later treated by Lu et al.

[52] for the size effect on thermal conductivity. The expressions obtained for thermal

conductivity ratio are identical to electrical conductivity ratio expression obtained by

[55] when the sides of the wire are made equal (see the next section for a thorough

discussion). The conductivity ratio for a wire of width a and thickness b in terms of

non-dimensional parameters γa = a/λ and γb = b/λ is given by

σrwire

σbulk
= 1 − 3(1 − p)

8

(

1

γa
+

1

γb

)

− 4(1 − p)2 ln(1 − p)

5πγaγbp

−6(1 − p)2

π

∞
∑

ν=1

pν−1P (ν, γa, γb) (2.30)

P (ν, γa, γb) =

∫ π/4

0

dφ

{

1

γa

[

sin φL5

(

νγb

cos φ

)

− cos φL5

(

νγa

cos φ

)]

+
1

γb

[

sin φL5

(

νγa

cos φ

)

− cos φL5

(

νγb

cos φ

)]

+
1

νγaγb

sin 2φ

[

L6

(

νγb

cos φ

)

+ L6

(

νγa

cos φ

)]}

(2.31)

where the functions L5 and L6 are given by Eq. 2.27. In the above expression, a

small typo in the original paper by Lu et al. [52] in the coefficient multiplying the

summation term has been corrected (the number should be 6 instead of 3).
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2.3.4 Extensions to Fuchs-Sondheimer size effect model

Several investigators extended the Fuchs-Sondheimer model for thin metallic films.

Ziman [102] argued that the specularity parameter p is a result of interface rough-

ness, and that the diffuse nature of an interface is a direct result of outgoing elec-

tron wave interference. He provided an expression for the specularity parameter in

terms of surface roughness and electron wavelength, by only treating normal inci-

dence and reflection. Inspired by Ziman [102], Soffer [81] analyzed a more general

case of oblique incidence, and obtained an expression for the specularity parameter

as a function of angle of incidence. This specularity parameter was then used within

the Fuchs-Sondheimer model to calculate effective electrical conductivity. Mayadas

and Shatzkes [59] included grain boundary scattering by modeling them as parallel

planes, with their normals along the in-plane direction of the thin film. A reflec-

tion parameter R was introduced to account for electron reflection with the grain

boundaries. Carcia and Suna [16] derived expressions for conductivity of a metal

superlattice composed of two different metals. The superlattice in this case is an

array of one metal film on top of the other and repeated infinitely. A transmission

parameter p was introduced to account for the coherence of electron passage from one

metal to the other. Dimmich [24] extended this further by including grain boundary

scattering within the Mayadas-Shatzkes model and using two different transmission

parameters. He argued that the transmission from one metal to the other need not

be same as the transmission vice versa.

An important extension to Fuchs model was given by Namba [60]. He assumed

that the roughness of a thin film can be idealized by a sinusoidal variation in film

thickness d(x) given by

d(x) = d̄ + hr sin

(

2πx

s

)

(2.32)

where d̄ is the average film thickness, hr is the roughness amplitude, and s is the
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wavelength of surface roughness. The mean conductivity σ̄film can then be obtained

as

σ̄film

σbulk
=

L

d̄

[
∫ L

0

σbulk

σfilm[d(x)]d(x)
dx

]−1

(2.33)

where σfilm[d(x)] is the conductivity given by Fuchs expression for a film of thickness

d(x), and L is the total length of the film. This expression is simply a series addition

of resistances along the film, assuming Fuchs expression is valid over an infinitesimally

short film length.

A sinusoidal voltage across a metal conductor at high frequencies results in in-

creasing current densities near the surface. As the current concentration is within

a few skin depths near the surface, the net DC resistance increases dramatically at

large frequencies. Skin depth δs is given by ([38] and [28])

δs =

√

2ρe

µω
(2.34)

where ω is the frequency of the input voltage signal, ρe is the electrical resistivity,

and µ is the magnetic permeability. When the mean free path of electrons becomes

comparable to skin depth, an anomalous skin effect arises (see [66]). For intercon-

nects operating at gigahertz frequencies, these effects need to be considered. Sarvari

and Meindl [75] performed an analysis of this effect for rectangular wires when the

dimensions are comparable to mean free path and skin depth. Distribution of current

density across the interconnect cross-section results in a distributed heat generation.

Nevertheless, this distributed heat generation is unimportant since metals have much

higher thermal conductivity and tend to even out the temperature distribution. Thus,

for thermal predictions, only an average heat generation across the cross-section is

necessary, which should be obtained by performing a detailed electromagnetic analysis

of periodic voltage signals.
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2.3.5 Wiedemann–Franz Law

According to Wiedemann–Franz Law, the ratio of thermal and electrical conductivity

is directly proportional to temperature, with the proportionality constant almost same

for all metals [4]. This is an empirical law discovered in 1853. Using expressions 2.20

and 2.21, it can be shown that

κbulk

σbulkT
=

π2

3

(

kB

e

)2

= Lo = 2.44 × 10−8 WΩ/K2 (2.35)

where the constant Lo is called the Lorenz number. Thus the free electron model,

within the relaxation time approximation under linear response, clearly satisfies the

Wiedemann–Franz Law.

Deviations from the Wiedemann-Franz law are well known at intermediate tem-

peratures (from few K to few hundred K). This is not a failure of free electron model,

as the law can be derived even within semiclassical band theory of electrons. The

relaxation time approximation, even with a relaxation time varying with position and

wavevector, strictly holds, when the energy εk depends only on the magnitude k, and

when the scattering is elastic (energy of the electron is conserved). The Wiedemann–

Franz Law however, holds when the collisions are elastic, or at least the change in

electron energy after a collision is small when compared with kBT . The dominant

scattering mechanism at low temperatures is due to static defects. These collisions are

elastic and thus the law holds. At higher temperatures (room temperature and above),

collisions with phonons are dominant. At these temperatures, electron-phonon colli-

sions only cause a small change in electron’s energy relative to kBT after a collision.

Thus the law also holds at higher temperatures.

The above discussion is limited to bulk metals. It is not clear if the Wiedemann-

Franz Law can also be applied for long straight wires and thin films. One might

expect it to hold, since collisions with the wall are assumed to conserve electron’s

energy. Nevertheless, this has been a subject of several theoretical investigations.
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Pichard et al. [65], and Kumar and Vradis [48] investigated the case for thin metallic

films. Stewart and Norris [84] considered thin circular wires. The main conclusion of

these investigations is that the law is essentially unaltered as long as εF/kBT ≫ 1.

Kumar and Vradis [48] found it to be identically valid for εF/kBT > 100, which is

valid at room temperatures for most metals.

2.3.6 Measurements on thin film electrical conductivity

Several investigators measured the electrical conductivity of thin metallic films in the

size effect regime (see Chopra [21] for many references). Some of the papers on the

resistivity of copper films are reviewed here. Chen and Gardner [19] measured the

resistance of interconnects down to 0.25 µm width. They found good agreement with

Fuchs-Sondheimer model. Suri [86] analyzed copper thin films ranging from 10 nm

to 100 nm in thickness. They were able to fit their data well to Fuchs-Sondheimer

model when the thickness was greater than the mean free path. Neither the Fuchs-

Sondhiemer model nor the Mayadas-Shatzkes model [59] provided satisfactory agree-

ment for small thicknesses. Fenn et al. [26] investigated copper films from about 5 nm

to about 1 µm. They used the Mayadas-Shatzkes model to fit their electrical resistiv-

ity measurements. They arbitrarily assumed the specularity parameter p to be 0.5.

It was then found that the grain boundary reflection parameter R is almost constant

for different thicknesses. Vancea et al. [89] performed an extensive investigation on

thin films of various metals. They obtained a good fit with Fuchs-Sondheimer model

for large thicknesses. At small thicknesses, significant deviations were reported, and

neither the Fuchs-Sondhiemer model nor the Mayadas-Shatzkes model could explain

them. They however obtained very good agreement with Fuchs-Namba model [60]

over the entire range. They also discussed another model for electrical conductivity of

bulk polycrystalline metals (see Reiss [70]). Liu et al. [50] also found good agreement

only with Fuchs-Namba model in their measurements on 10 nm to 40 nm thick copper
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films.

The main conclusion from these investigations appears to be that Fuchs-Sondheimer

model cannot be used directly for very small thicknesses. When the film is very thin,

macroscopic surface roughness amplitude becomes comparable to the thickness, which

must then be taken into account. This is demonstrated by the success of Fuchs-Namba

model in some of the studies. In the studies done by Suri et al. [86], the behavior

of electrical conductivity at small thicknesses is very similar to that predicted by

Fuchs-Namba model, although they did not compare their results with this model.

These investigations do not invalidate Fuchs’s original theory of size effect as it was

assumed that the thin film is of uniform thickness.

2.3.7 Size effect on electron transport through a constriction

Size effects could be of a semi-classical nature arising at dimensions comparable to

the carrier mean free path (described in the previous sections), or can arise due

to quantum effects, which is important when dimensions are comparable to carrier

wavelength. Carrier wavelength is given by

λF =
2π

kF
=

2πh̄√
2mεF

(2.36)

which is about 4.63 Å in copper. Quantum effects can thus be ignored for on-chip

interconnects. Semiclassical size effect described in the above sections arises due to

diffuse nature of metal walls. Another size effect of semiclassical nature appears even

with specular surfaces when the cross-section of a wire or thin film is not uniform. An

ideal constriction or orifice can be modeled as two infinite half-spaces separated by

an infinitesimally thin dielectric with a small aperture that connects the two spaces.

Such structures are technologically significant since they closely approximate vias

connecting metal lines of different dimensions. This size effect will remain even if

perfectly specular interfaces are fabricated.

Several published works provided expressions for the resistance of constrictions
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between semi-infinite spaces. Sharvin [78] gave an expression for the constriction

resistance which is valid when the radius of the aperture is much smaller than the

mean free path. Such structures are of fundamental significance since one can study

scattering mechanisms through point contact spectroscopy [41]. In the other extreme

of large radius when compared to mean free path, Maxwell provided a simple expres-

sion for the resistance through the solution of Poisson’s equation [58]. Wexler [95]

provided an approximate interpolation formula when the aperture radius and mean

free path are comparable. Recently Nikolic and Allen [64] obtained an exact solution

for the same problem. deJong [23] evaluated the conductance of a finite length con-

striction connected to electron reservoirs through perfect leads, and observed that a

naive sum of Sharvin and Maxwell resistance of the constriction is within 3.5% of the

exact results for the three-dimensional case.

2.4 Numerical approaches to simulate electron transport

The BTE for static cases (2.12) is a six-dimensional equation. Straightforward dis-

cretization in each dimension would lead to a huge model. In this regard, Monte

Carlo techniques are quite popular to simulate electron transport in semiconductors.

Excellent reviews of this technique are given by Price [68], and Jacoboni and Reggiani

[39]. In a typical ensemble Monte Carlo routine, each electron undergoes a series of

events involving free flights for a preselected duration, and a scattering event at the

end of the free flight. The motion during free flight is governed by the semiclassical

equations of motion (2.6). The duration of the free flight is chosen with a probability

distribution determined by the scattering probabilities. At the end of the free flight,

a scattering mechanism is chosen according to relative probabilities of all possible

scattering mechanisms. A new wavevector resulting from this scattering mechanism

is assigned to the electron. These steps are repeated until a steady state is reached.

With an ensemble of electrons, one essentially obtains the distribution function, from
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which other parameters of interest can be claculated.

One siginificant difficulty with Monte Carlo techniques is their inability to handle

degenerate systems satisfactorily. Metals and some semiconductors (such a GaAs)

are degenerate, where the Pauli principle for electrons must be respected to obtain a

reasonable distribution function. Lugli and Ferry [53] developed a rejection procedure

to account for Pauli principle in a Monte Carlo simulation. Romano and Dallacasa

[71] implemented this technique for metallic systems and obtained bulk resistivity

values with realistic phonon scattering. This procedure is computationally expensive.

In metals at room temperature, only electrons at the Fermi level play a role. Pauli

principle can be avoided, if one considers electrons only at the Fermi level. Luthi and

Wyder [54] exploited this aspect and simulated size effect in a thin film. It has also

been used by Bulashenko et al. [14] to calculate current fluctuations in a thin metal

film. More recently, Boughton and Feng [12] included realistic phonon scattering to

calculate size effect in a thin film using the Monte Carlo technique for electrons on

the Fermi level.

In some instances, the BTE should be solved self-consistently with the Poisson’s

equation. In general, for degenerate systems, this is a very difficult task. It turns

out that, in linear response, the BTE can be decoupled from the Poisson’s equation.

This fact is exploited in solving for electron transport through constriction or point

contact (see [41] and [64]). This development is described in Chapter 4 and used in

the numerical simulation.

2.5 Techniques to measure thin film thermal conductivity

There are several techniques to measure thin film thermal conductivity. In this sec-

tion, experimental techniques to measure in-plane thermal conductivity of thin metal-

lic films are reviewed. These techniques can be broadly classified among steady state
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and transient techniques. Steady state techniques can directly yield the thermal con-

ductivity. In contrast, transient techniques yield the thermal diffusivity. To deduce

thermal conductivity, either the heat capacity is assumed to be the same as the bulk

value, or is measured separately.

2.5.1 Steady state techniques

In almost all the steady state techniques, a suspended metal bridge, or a metal and

low thermal conductivity substrate composite bridge, is used to measure the thermal

conductivity of the metal film. Nath and Chopra [61] developed two techniques to

measure thermal conductivity of thin metal films. Their technique is schematically

shown in Figure 2.4. A large copper block with a heating element below acts as

the heat source. The lead sheet wrapped near the other end of the structure acts

a sink. The thermocouples measure the temperature difference. Heat flow through

the structure is measured by calibrating the sink’s heat transfer coefficient. A one

dimensional heat transfer model is assumed to be valid along the metal film and

mica double layer. A bare mica film and a metal deposited mica film are used to

deduce the metal thermal conductivity. Their transient technique is similar to the

steady state technique. The difference is in the way heat flow is measured. In the

transient technique, the temperature change in the heat sink is measured, and the heat

capacity is used to calculate the net flow of heat. Pompe and Schmidt [67] developed

a technique similar to the steady state one described above. The variations are in the

heat source and heat sink.

In the technique developed by Boiko et al. [10], the ends of a self-supporting metal

film are fastened to a holder. This holder is large and maintains both the ends of

the foil at room temperature. A current is passed through the foil, and Joule heating

results in a temperature gradient along the metal line. Temperature distribution

along the film is measured by an electron diffraction method. A one-dimensional fin

27



T
A

TB

Mica
Metal film

Heating elementCopper block

Sink - Wrapped 

lead sheet

Figure 2.4: Experimental structure of Nath and Chopra [61] to measure the thermal
conductivity of a thin metallic film.

equation model including radiation loss is used to obtain thermal conductivity and

emissivity of the metal film by a least squares fit. Volklein and Kessler [92] developed

a similar technique.

By using micromachining, it is possible to suspend a cantilever type of structure

with heating and sensing elements patterned on the cantilever. Such a microstructure

was used by Volkelin and Baltes [91] to measure the thermal conductivity of polysil-

icon films. One end of the cantilever has a heater and a temperature sensor (a metal

line). The other end is attached to silicon and is assumed to be at room temperature.

A one-dimensional model is used for heat conduction through all the parallel layers in

the cantilever. The thermal conductivity of the film of interest is measured by using

two cantilevers. One has all the layers, and the film of interest is absent in the other.

This technique was used by von Arx et al. [3] for measuring thermal conductivity of

silicon dioxide, silicon nitride, aluminum metal, and polysilicon, all used in a standard

CMOS process.

Shojaei-Zadeh et al. [80] and Zhang et al. [101] used a suspended metal bridge

and induced a temperature gradient by Joule heating. The average temperature rise

of the metal line was measured by resistance thermometry. This was then correlated

to the thermal conductivity using a one-dimensional heat conduction model. It was

assumed that the ends of the line attached to silicon are at room temperature.
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Figure 2.5: Experimental structure of Kelemen [45] to measure the thermal con-
ductivity of a thin metallic film.

Main drawbacks of steady state techniques are heat loss due to radiation, or

thermocouple and sensor errors. The Joule heated suspended metal bridge appears

to be ideal for thermal conductivity determination of interconnects in the sub-100 nm

range. These structures though require complex microfabrication to obtain suspended

structures. In addition, there is no reason to believe that the interface quality does

not change after these fabrication steps. Thermal conductivity is a strong function

of interface scattering in thin films and every effort must be made to preserve the

original interface.

2.5.2 Transient techniques

Kelemen [45] described a transient technique to measure thermal diffusivity of thin

films. This technique is schematically shown in Figure 2.5. A heating element provides

a pulse at one end of the film. The temperature is measured at two locations along

the film. A one dimensional transient heat conduction model is used to extract the

thermal diffusivity. Heat generation need not be measured since thermal diffusivity

depends only on the temperatures at the two locations, the distance of these locations

from the heat source, and time.

A technique similar in principle to that of Kelemen [45] was developed by Hatta

[31]. This technique is shown in Figure 2.6. An AC light irradiation acts as the

heat source. Lateral heat penetration can be quantified using a thermocouple, and
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Figure 2.6: Experimental structure of Hatta [31] to measure the thermal conduc-
tivity of a thin metallic film.

by varying the mask position. Thermal diffusivity is calculated by using a one-

dimensional model. Hatta [31] originally implemented the technique on very thick

specimens. Yamane et al., [96] and [97], developed it further for multilayer films to

enable measurements on much thinner films.

Kemp et al. [46] and Langer et al. [49] used AC laser irradiation and observed

two-dimensional spreading of the thermal wave. Kemp [46] used a thermocouple fixed

at one location to measure the temperature amplitude as the laser is moved on the foil.

Langer [49] in turn used thermoreflectance from the film to deduce the temperature

rise. Measurements at two locations yield the thermal diffusivity of the thin film.

Volklein and Starz [93] developed a microfabricated structure to enable in-situ

thermal conductivity measurements of thin metallic films as they grow. The cross-

section of their structure is schematically shown in Figure 2.7. The metal line heats

up and causes lateral heat flow through the dielectric and metal films. The ends of

the films are attached to silicon and are assumed to be at room temperature. The

temperature rise of the metal line is measured by monitoring resistance change. By

using steady state and transient measurements, Volklein and Starz [93] were able to

measure heat capacity and thermal conductivity of thin metallic films.

Lu et al. [51] described a 3ω technique to measure specific heat and thermal

conductivity of thin wires. AC heating in a wire results in a voltage component at

3ω due to resistance variation caused by temperature variation. The thin wire is
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Figure 2.7: Experimental structure of Volklein and Starz [93] to measure the thermal
conductivity of a thin metallic film.

suspended off of a substrate. The ends are attached to the substrate to provide a

constant temperature boundary condition. Measuring the 3ω component at various

frequencies yields thermal conductivity and specific heat of the wire. Yang and Ashegi

[98] extended such a technique by eliminating the need for a suspended structure.

They used extensive three-dimensional modeling to account for substrate effect.

Most of the techniques described above cannot be directly used for interconnects in

the sub-100 nm regime. The 3ω technique by Yang and Ashegi [98] appears well suited

for this purpose, although they calculated a very low sensitivity for this technique,

primarily due to substrate effect. The length of the interconnect needs to be only a

few microns for the best sensitivity. It should be noted that, in this technique, only

an average temperature amplitude of the interconnect is measured. Any possible

interfacial defects along the interconnect will go unnoticed.

2.6 High resolution temperature measurement

A high spatial resolution temperature measurement technique is necessary to charac-

terize thermal transport in nanoscale interconnects. Resistance thermometry using

sub-100 nm metal lines and nanowires does offer nanoscale resolution, but only an

average temperature rise of the whole wire is accessible. In addition, this technique

is plagued by large leads to enable resistance measurements. Infrared Microscopy
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does offer thermal images of a large two-dimensional region, but the resolution is

limited to few microns. Careful calibration and radiation from the surroundings pose

a tremendous challenge towards obtaining accurate measurements.

The Atomic Force Microscope (AFM) is very popular in nanoscale characteriza-

tion. Temperature measurements can be performed using cantilevers with built-in

thermal sensors. These sensors can be simple resistors, thermistors, or thermocou-

ples. An extensive review of this technique, Scanning Thermal Microscopy (SThM),

is given by Majumdar [56]. In SThM, a tip with the thermal sensor is scanned over

the surface of the sample and temperature signal is recorded. Simultaneously, the to-

pography is also obtained by the regular functioning of the AFM. These two signals

can be correlated to obtain a temperature map of the surface. There are several draw-

backs to this technique. The measured temperature is a strong function of tip-sample

heat transfer mechanisms. At small length scales, the interface quality severely af-

fects the heat transport. Careful calibration on similar surfaces is necessary to obtain

accurate measurements.

There exists another technique known as Scanning Joule Expansion Microscopy

(SJEM), that uses the AFM to characterize thermal transport. This technique devel-

oped by Varesi and Majumdar [90], measures the expansion amplitude of the surface.

Figure 2.8 adapted from [90] illustrates this technique. In a regular AFM scan in con-

tact mode (tip in contact with the sample), tip deflection is continuously monitored

by measuring the photodiode signal. As the sample is scanned in the x-y directions,

topographical changes cause the cantilever to bend and alter the photodiode signal.

A feedback is then sent to the piezoelectric scanner to adjust its position vertically

until the earlier photodiode voltage is reached. The amount by which the piezoelectric

scanner moves is then equal to the height variation in the sample. Typical feedback

bandwidths go up to 100 kHz. Some AFMs allow you to vary this bandwidth. In

SJEM, the sample is heated periodically. In the case of interconnects, metal lines
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Figure 2.8: A schematic of Scanning Joule Expansion Microscopy (SJEM) and
Scanning Thermal Microscopy (SThM) setup.

can be Joule heated using an AC voltage. This Joule heating causes both an AC

temperature rise and DC temperature rise. Any temperature rise also causes expan-

sion of the sample if the Coefficient of Thermal Expansion (CTE) is non-zero. The

AC temperature rise thus makes the cantilever also oscillate at the heating frequency.

The amplitude of this oscillation is simply measured by using a lock-in amplifier as

shown in Figure 2.8. In order to differentiate topography from the expansion ampli-

tude, the heating frequency is made higher than the bandwidth of the piezoelectric

scanner. The expansion amplitude is then correlated with temperature amplitude.

Varesi and Majumdar [90] reported a sub-100 nm resolution with this technique.

The technique was also used to characterize temperature rise in vias [36]. One sig-

nificant disadvantage of this technique is that only an AC temperature rise can be

measured. In addition, expansion amplitude is a strong function of heating frequency,

and underlying layers dimensions and thermal properties. CTE mismatches can cause

significant errors in these measurements. Nevertheless, through careful modeling, it
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can be shown that this is a powerful technique to measure temperature rise accurately

on some structures.

2.7 The 3ω method

The 3ω method developed by Cahill [15] is a popular technique to measure thermal

conductivity of bulk substrates as well as thin films. In this technique, a long metal

line is deposited on top of the material of interest. This metal line is excited by a

periodic current source I(t) at frequency ω given by

I(t) = Io cos (ωt) (2.37)

This excitation results in a heat generation that consists of DC and AC components:

q̇(t) = I2(t)Ro = I2
o Ro cos2 (ωt) =

I2
oRo

2
(1 + cos (2ωt)) (2.38)

where Ro is the resistance of the line. Due to linearity of the heat conduction equation,

such a heat generation will result in a temperature rise that again has a DC component

∆TDC and an AC component with amplitude ∆TAC at 2ω:

T (t) = ∆TDC + ∆TAC cos (2ωt + φ) (2.39)

where φ is the phase lag. This temperature rise then results in a change in the

resistance of the line given by

R(t) = Ro(1 + αT ∆TDC + αT ∆TAC cos (2ωt + φ)) (2.40)

where αT is the Temperature Coefficient of Resistivity (TCR) of the line. Thus the

net voltage drop across the metal line is given by

V (t) = I(t)R(t) = IoRo cos (ωt)(1 + αT ∆TDC + αT ∆TAC cos (2ωt + φ)) (2.41)

One can split the product of ω and 2ω components using standard trigonometric

identity, which results in the following expression for voltage across the metal line.

V (t) = IoRo(1 + αT ∆TDC) cos (ωt) +
IoRoαT ∆TAC

2
cos (ωt + φ)

+
IoRoαT ∆TAC

2
cos (3ωt + φ) (2.42)
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Thus a 3ω component appears in the voltage signal that is proportional to AC tem-

perature amplitude. A lock-in amplifier is used to measure this particular component,

and one can then calculate the temperature amplitude if other parameters are known.

The temperature amplitude ∆TAC is mainly a function of the underlying film or

substrate properties. Cahill [15] provided an analytical solution for this amplitude

in the case of a semi-infinite substrate. This solution was later extended by Borca-

Tasciuc et al. [11] to a multilayer stack with anisotropic properties. Although metal

specific heat was taken into account by Borca-Tasciuc et al. [11], they ignored the

effect of thermal conduction within the metal heater. Jacquot et al. [40] numerically

solved the complete problem without any approximations. Even though metal ther-

mal conduction was discussed, nothing was mentioned about its impact on anisotropic

thermal conductivity measurements. They solved a transient problem using the finite

volume method and extracted the temperature amplitude after the solution attained

a quasi-steady state.
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CHAPTER III

COMPACT INTERCONNECT THERMAL

MODELING

In this chapter a compact approach to interconnect thermal modeling is proposed

and investigated for representative interconnect architectures.

3.1 Compact thermal modeling in two dimensions

In a conventional finite element analysis, the spatial domain of interest is discretized

into elements such that the region inside an element is homogeneous, although it can

have anisotropic thermal conductivity. In the proposed compact approach, a given

element is allowed to contain both metal and dielectric regions. For simplicity, the

method is described only for a two-dimensional case since the three-dimensional de-

velopment proceeds along similar lines. Both conventional and compact rectangular

elements are contrasted in Figure 3.1. The compact element contains both metallic

and dielectric regions. The element is normalized to 1×1 size and the metallic region

occupies a × b size near the origin. Temperature within the element is interpolated

from nodal temperatures using weighting functions. Assuming Ti to be the tempera-

ture at node i, and Ni(x, y) to be the weighting function for node i, the temperature

field within the element is given by

T (x, y) =
4

∑

i=1

Ni(x, y)Ti (3.1)
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Figure 3.1: A conventional element and a compact element are contrasted at the
bottom. The compact element has shaded metallic regions together with dielectric
regions. The interpolating function for node 1 in both approaches is shown above. In
the compact element case, this function ignores temperature drop across the metallic
region.

The weighting functions in the general case can be written as

N1(x, y) = [1 − F (x; a)][1 − F (y; b)]

N2(x, y) = [F (x; a)][1 − F (y; b)]

N3(x, y) = [F (x; a)][F (y; b)]

N4(x, y) = [1 − F (x; a)][F (y; b)] (3.2)

where F (x; a) is defined using the Heaviside function H(x) as

F (x; a) =
(x − a)H(x − a)

(1 − a)
(3.3)

H(x − a) = 0 if x < a

H(x − a) = 1 if x > a (3.4)
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Weighting function N1(x, y) for node 1 is shown in Figure 3.1 for both approaches

(making a = b = 0 in the above expressions leads to conventional bilinear weighting

functions). These functions approximate the metallic region to have infinite thermal

conductivity.

In conventional Finite Element Method (FEM), a weaker formulation is first de-

rived from the heat conduction equation (see Segerlind [77] for details of the FEM):

∂

∂x

(

k
∂T (x, y)

∂x

)

+
∂

∂y

(

k
∂T (x, y)

∂y

)

+ q̇′′′ = 0 (3.5)

The above equation is multiplied by a weighting function and integrated over the

whole domain resulting in

∫

Ω

w(x, y)

(

∂

∂x

(

k
∂T (x, y)

∂x

)

+
∂

∂y

(

k
∂T (x, y)

∂y

)

+ q̇′′′
)

dΩ = 0 (3.6)

where Ω is the domain and w(x, y) is an arbitrary weighting function. Using Gauss

theorem, the left hand side can be split into a boundary and area integral as

∫

Γ

w(x, y)~q ′′ · n̂dΓ −
∫

Ω

(

k
∂w(x, y)

∂x

∂T (x, y)

∂x
+ k

∂w(x, y)

∂y

∂T (x, y)

∂y

)

dΩ

+

∫

Ω

w(x, y)q̇′′′dΩ = 0 (3.7)

The integral around Γ in Eq. 3.7 is evaluated using the boundary conditions. The

weighting functions can be chosen to be the same nodal weighting functions that are

used to interpolate for the temperature field. If there are N nodes with unknown

temperatures, N equations can be derived by replacing w(x, y) with the weighting

functions Ni(x, y). For convenience, the area integral is split into individual element

integrals. Consider an element of size Lx × Ly with the metal occupying a fraction a

in the x-direction and fraction b in the y-direction near the origin. Substituting for

the temperature field within this element and weighting functions for the four nodes

in the second term of the above expression results in the following integrals

[KX](e)ij =

∫ Lx

0

∫ Ly

0

kd
∂Ni

∂x

∂Nj

∂x
dxdy ; [KY ](e)ij =

∫ Lx

0

∫ Ly

0

kd
∂Ni

∂y

∂Nj

∂y
dxdy (3.8)
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They are represented in matrix form by defining conductance matrices [KX](e) and

[KY ](e). Here kd is the thermal conductivity of the dielectric. Note that the contri-

bution from metallic regions to these integrals is zero, and thus the use of dielectric

thermal conductivity in these expressions does not lead to any contradiction. The

resulting 4 × 4 symmetric conductance matrices are given as

[KX](e) =
kdLy

Lx



















(1+2b)
3(1−a)

− (1+2b)
3(1−a)

− (1−b)
6(1−a)

(1−b)
6(1−a)

· (1+2b)
3(1−a)

(1−b)
6(1−a)

− (1−b)
6(1−a)

· · (1−b)
3(1−a)

− (1−b)
3(1−a)

· · · (1−b)
3(1−a)



















(3.9)

[KY ](e) =
kdLx

Ly



















(1+2a)
3(1−b)

(1−a)
6(1−b)

− (1−a)
6(1−b)

− (1+2a)
3(1−b)

· (1−a)
3(1−b)

− (1−a)
3(1−b)

− (1−a)
6(1−b)

· · (1−a)
3(1−b)

(1−a)
6(1−b)

· · · (1+2a)
3(1−b)



















(3.10)

Furthermore, if q̇′′′o is a uniform heat generation in the metallic region, the column

vector of elemental source terms is given as

[Q](e) = q̇′′′o LxLy



















ab

0

0

0



















(3.11)

The rest of the procedure is similar to conventional finite element analysis. Global

conductance matrix is assembled from the element conductance matrix [K](e) =

[KX](e)+[KY ](e), and the global source vector [Q] is assembled from elemental source

vectors (Eq. 3.11) and other boundary conditions (see Segerlind [77] for handling vari-

ous types of boundary conditions). The resulting set of linear equations can be solved

using a variety of iterative and direct linear equation solvers. The final form of these
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equations is

[K]N×N [T ]N×1 = [Q]N×1 (3.12)

where [K]N×N is the global conductance matrix, [T ]N×1 is a column vector of nodal

temperatures, [Q]N×1 is the column vector due to sources terms (arises due to heat

generation, as well as boundary conditions) and N is the number of nodes where

temperature is computed.

3.2 Compact thermal modeling in three dimensions

In three dimensions the derivation proceeds in a manner similar to two dimensions.

A typical compact element with the interconnect along z-direction between nodes

1 and 5 is shown in Figure 3.2. The temperature field is approximated from nodal

temperatures and weighting functions as

T (x, y) =
8

∑

i=1

Ni(x, y)Ti (3.13)

where the weighting functions for the compact element in Figure 3.2 are given by

N1(x, y) = [1 − F (x; a)][1 − F (y; b)][1 − z]

N2(x, y) = [F (x; a)][1 − F (y; b)][1 − z]

N3(x, y) = [F (x; a)][F (y; b)][1 − z]

N4(x, y) = [1 − F (x; a)][F (y; b)][1 − z]

N5(x, y) = [1 − F (x; a)][1 − F (y; b)][z]

N6(x, y) = [F (x; a)][1 − F (y; b)][z]

N7(x, y) = [F (x; a)][F (y; b)][z]

N8(x, y) = [1 − F (x; a)][F (y; b)][z] (3.14)

The global conductance matrix is now a sum of three matrices:

[K](e) =
kdLyLz

Lx
[kx](e) +

kdLxLz

Ly
[ky](e) +

kdLxLy

Lz
[kz](e) (3.15)
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Figure 3.2: A compact element in 3D is shown along with node numbers. The
dashed line marks the interconnect aligned along z-direction.

where the elements of individual matrices [kx](e), [ky](e) and [kz](e) are tabulated in

Table 3.1. Other elements can easily be deduced from the symmetric property of

these matrices. The elemental source vector is given by

[Q](e)T = q̇′′′o

LxLyLz

2

[

ab 0 0 0 ab 0 0 0

]

(3.16)

where T stands for transpose of the matrix.

3.3 Compact model evaluation

In this section, simple two and three dimensional case studies of interconnect tem-

perature rise are performed to evaluate the performance of the compact model. The

approach described in the earlier section is implemented in a FORTRAN and MAT-

LAB environment. Due to lack of analytical solutions for the case studies performed

in this work, detailed finite element simulations were performed. Predictions from

these simulations are termed “exact” when quantifying error in the predictions using

the compact model.
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Table 3.1: Elements of the conductance matrices

(i,j) [kx](e) [ky](e) [kz](e)

(1,1) (1)(1+2b)(1)
(1−a)(3)(3)

(1+2a)(1)(1)
(3)(1−b)(3)

(1+2a)(1+2b)(1)
(3)(3)(1)

+ (km−kd)ab
kd

(2,2) (1)(1+2b)(1)
(1−a)(3)(3)

(1−a)(1)(1)
(3)(1−b)(3)

(1−a)(1+2b)(1)
(3)(3)(1)

(3,3) (1)(1−b)(1)
(1−a)(3)(3)

(1−a)(1)(1)
(3)(1−b)(3)

(1−a)(1−b)(1)
(3)(3)(1)

(4,4) (1)(1−b)(1)
(1−a)(3)(3)

(1+2a)(1)(1)
(3)(1−b)(3)

(1+2a)(1−b)(1)
(3)(3)(1)

(5,5) (1,1) (1,1) (1,1)

(6,6) (2,2) (2,2) (2,2)

(7,7) (3,3) (3,3) (3,3)

(8,8) (4,4) (4,4) (4,4)

(1,2) (−1)(1+2b)(1)
(1−a)(3)(3)

(1−a)(1)(1)
(6)(1−b)(3)

(1−a)(1+2b)(1)
(6)(3)(1)

(1,3) (−1)(1−b)(1)
(1−a)(6)(3)

(1−a)(−1)(1)
(6)(1−b)(3)

(1−a)(1−b)(1)
(6)(6)(1)

(1,4) (1)(1−b)(1)
(1−a)(6)(3)

(1+2a)(−1)(1)
(3)(1−b)(3)

(1+2a)(1−b)(1)
(3)(6)(1)

(1,5) (1)(1+2b)(1)
(1−a)(3)(6)

(1+2a)(1)(1)
(3)(1−b)(6)

(1+2a)(1+2b)(−1)
(3)(3)(1)

− (km−kd)ab
kd

(1,6) (−1)(1+2b)(1)
(1−a)(3)(6)

(1−a)(1)(1)
(6)(1−b)(6)

(1−a)(1+2b)(−1)
(6)(3)(1)

(1,7) (−1)(1−b)(1)
(1−a)(6)(6)

(1−a)(−1)(1)
(6)(1−b)(6)

(1−a)(1−b)(−1)
(6)(6)(1)

(1,8) (1)(1−b)(1)
(1−a)(6)(6)

(1+2a)(−1)(1)
(3)(1−b)(6)

(1+2a)(1−b)(−1)
(3)(6)(1)

(2,3) (1)(1−b)(1)
(1−a)(6)(3)

(1−a)(−1)(1)
(3)(1−b)(3)

(1−a)(1−b)(1)
(3)(6)(1)

(2,4) (−1)(1−b)(1)
(1−a)(6)(3)

(1−a)(−1)(1)
(6)(1−b)(3)

(1−a)(1−b)(1)
(6)(6)(1)

(2,5) (−1)(1+2b)(1)
(1−a)(3)(6)

(1−a)(1)(1)
(6)(1−b)(6)

(1−a)(1+2b)(−1)
(6)(3)(1)

(2,6) (1)(1+2b)(1)
(1−a)(3)(6)

(1−a)(1)(1)
(3)(1−b)(6)

(1−a)(1+2b)(−1)
(3)(3)(1)

(2,7) (1)(1−b)(1)
(1−a)(6)(6)

(1−a)(−1)(1)
(3)(1−b)(6)

(1−a)(1−b)(−1)
(3)(6)(1)

(2,8) (−1)(1−b)(1)
(1−a)(6)(6)

(1−a)(−1)(1)
(6)(1−b)(6)

(1−a)(1−b)(−1)
(6)(6)(1)

(3,4) (−1)(1−b)(1)
(1−a)(3)(3)

(1−a)(1)(1)
(6)(1−b)(3)

(1−a)(1−b)(1)
(6)(3)(1)

(3,5) (−1)(1−b)(1)
(1−a)(6)(6)

(1−a)(−1)(1)
(6)(1−b)(6)

(1−a)(1−b)(−1)
(6)(6)(1)
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Table 3.1 (continued).

(i,j) [kx](e) [ky](e) [kz](e)

(3,6) (1)(1−b)(1)
(1−a)(6)(6)

(1−a)(−1)(1)
(3)(1−b)(6)

(1−a)(1−b)(−1)
(3)(6)(1)

(3,7) (1)(1−b)(1)
(1−a)(3)(6)

(1−a)(1)(1)
(3)(1−b)(6)

(1−a)(1−b)(−1)
(3)(3)(1)

(3,8) (−1)(1−b)(1)
(1−a)(3)(6)

(1−a)(1)(1)
(6)(1−b)(6)

(1−a)(1−b)(−1)
(6)(3)(1)

(4,5) (1)(1−b)(1)
(1−a)(6)(6)

(1+2a)(−1)(1)
(3)(1−b)(6)

(1+2a)(1−b)(−1)
(3)(6)(1)

(4,6) (−1)(1−b)(1)
(1−a)(6)(6)

(1−a)(−1)(1)
(6)(1−b)(6)

(1−a)(1−b)(−1)
(6)(6)(1)

(4,7) (−1)(1−b)(1)
(1−a)(3)(6)

(1−a)(1)(1)
(6)(1−b)(6)

(1−a)(1−b)(−1)
(6)(3)(1)

(4,8) (1)(1−b)(1)
(1−a)(3)(6)

(1+2a)(1)(1)
(3)(1−b)(6)

(1+2a)(1−b)(−1)
(3)(3)(1)

(5,6) (1,2) (1,2) (1,2)

(5,7) (1,3) (1,3) (1,3)

(5,8) (1,4) (1,4) (1,4)

(6,7) (2,3) (2,3) (2,3)

(6,8) (2,4) (2,4) (2,4)

(7,8) (3,4) (3,4) (3,4)
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Figure 3.3: A set of uniformly spaced interconnects embedded in the dielectric.

3.3.1 Two-dimensional uniformly spaced interconnects

The simulated domain is shown in Figure 3.3 along with the nomenclature of dimen-

sions. Such a structure closely approximates long uniformly spaced interconnects.

Interconnect aspect ratio is close to 2 for structures found in microprocessors, and

therefore, Hint is fixed at 2W [1]. Dielectric thickness Hd is approximately equal to

interconnect height and is also fixed at 2W . Interconnect pitch P though is allowed to

vary. The bottom surface is fixed at constant temperature and all other surfaces are

assumed to be adiabatic. The detailed model contains 2304 elements. Maximum tem-

perature changes by about 0.2 % when the number of elements is increased from 576

to 2304 (grid size is halved in each direction). The prediction error in using the stan-

dard finite element meshes and compact elements (Figure 3.4) is shown in Figure 3.5

as the pitch increases. The error is computed by comparing with detailed simulations.

It is assumed that all the interconnects are carrying the same current density. The

element count is on a per-pitch basis. The 4-element FEM mesh is the coarsest mesh

possible with regular finite elements. This element number is equal to the maximum

number of elements in the compact meshes. The solid lines (compact model errors)

fall below the 4-element FEM mesh line, which clearly proves the superiority of the
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4 elements

Standard Finite Element Meshes

12 elements

2 elements 3 elements 4 elements

Compact Model Meshes

8 elements 16 elements

Figure 3.4: Different meshes used in evaluating the performance of compact model
when compared with a standard finite element analysis. The number of elements is
on a per pitch basis. Percentage errors for these meshes are shown in Figure 3.5.

proposed compact modeling approach. The error in compact model based predictions

generally increases as the pitch is increased, although one additional element between

the interconnects reduces the error significantly. The simulations suggest that more

elements are necessary for large pitches.

Similar set of results are shown in Figures 3.6 and 3.7 but with four elements in

the vertical direction for the FEM meshes. Once again, compact modeling predicts

the temperature rise as good as the regular finite element mesh while still requiring

very few elements. These case studies demonstrate the performance gains obtained

by using a compact model mesh in two-dimensions.

A key advantage of the present approach is that it can also capture interactions

between adjacent interconnects. In Figure 3.8, temperature rise from detailed and

compact model are compared when only the leftmost interconnect is carrying a cur-

rent of 10 MA/cm2 (heat generation is calculated using a resistivity of 2.2 µΩ-cm).

Metal and dielectric thermal conductivity were fixed at 400 W/mK and 0.17 W/mK

respectively. The structure is same as in Figure 3.3. Compact model predicts temper-

ature rise in the middle and right most interconnects quite well for several different

pitches when compared with the detailed simulations. The 2-element compact mesh is
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Figure 3.5: Percentage error in predictions using various meshes shown in Figure
3.4.
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Standard Finite Element Meshes
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Compact Model Meshes
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Figure 3.6: Different meshes used in evaluating the performance of compact model
when compared with a standard finite element analysis. The number of elements is
on a per pitch basis. Percentage errors for these meshes are shown in Figure 3.7.
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Figure 3.7: Percentage error in predictions using various meshes shown in Figure
3.6.

used for these set of simulations. Such a capability is necessary to accurately predict

effective resistance of lines for electric signal time delay calculations.

3.3.2 Three-dimensional interconnects with vias

For three-dimensional studies, interconnects were terminated by vias near the ends

as shown schematically in Figure 3.9. This structure reduces to that studied in

Section 3.3.1 above when the interconnects are infinitely long. Grid in the cross-

sectional region is the same as in the above case. Element length Le is fixed at 4 µm

for different lengths of the interconnects. Temperature rise along the interconnect

is shown in Figure 3.10 for several different lengths. Comparison with the detailed

model is performed for different interconnect lengths Lint and it is found that compact

model predictions are within 10 % of the detailed model. Detailed model simulation

for 16 µm length interconnects took 57 s while the compact model took only 0.1 s.

As the interconnect length becomes very large compared to the characteristic length

for temperature gradient (Characteristic length λ =
√

kmHintHd/kd which is equal
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Figure 3.8: Temperature profile for the structure shown in Figure 3.3 when only
the left most interconnect is generating heat for various pitches. The flat regions in
the detailed model profiles correspond to interconnects and are a result of high metal
thermal conductivity.

Lint

Le

Side view

Top view

Via

Interconnect
Dielectric

Figure 3.9: A schematic of the three-dimensional interconnect with vias near the
ends along with the location of nodes.
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Lint = 16 µm

Lint = 24 µm

Lint = 40 µm

Lint = 112 µm

Lint = 16 µm

Lint = 24 µm

Lint = 40 µm

Lint = 112 µm

Figure 3.10: Temperature profiles along the interconnect for different lengths. Pitch
P = 4W for these simulations.

to 17.47 µm for the structure studied here), temperature near the middle flattens

and approaches the two-dimensional value [20]. This trend is clearly captured by the

compact model.

3.3.3 Long serpentine interconnect and via chain

The compact thermal modeling approach is implemented for a 500-link M1/V1/M2

serpentine test structure, which is shown in Figure 3.11. This structure has single

damascene copper lines at metal 1 (M1) and metal 2 (M2) levels connected by via 1

(V1). In a single damascene process, vias and lines are deposited separately, whereas

in a dual damascene process they are filled simultaneously. The length of each in-

terconnect and spacing between the rows is 7 µm. The metal lines are 180 nm wide

and 350 nm thick. A cross-sectional view of various layers is shown in Figure 3.12

from the bottom of silicon to the first metal level. Interconnect temperature rise was

measured by Ramakrishna et al. [69] by monitoring the resistance change at different
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Figure 3.11: A schematic of the long chain of interconnects and vias.

current densities, while maintaining the bottom surface of a 200 mm diameter silicon

wafer, which is vacuum clamped to a chuck at room temperature.

The entire test structure consisting of 500 interconnects and 500 vias is modeled by

suitably choosing the domain. It is not necessary to model the entire 8-inch diameter

silicon wafer, since the heat-generating region is localized to an area of 98 x 224 µm on

the wafer. The lateral size of the domain is fixed by comparing its thermal spreading

resistance to that of infinite-extent geometry. Based on a closed form solution by

Yovanovich et al. [100], a gap of 900 mm on each side (1898 mm x 2024 mm is the

total domain size) of the heated region results in a spreading resistance within 1 %

of that of an infinite-extent region. Since the heat generating region and domain are

rectangular, an area-equivalent radius of a circle is used in the spreading resistance

expressions. Temperature dependent calculations are performed using the material

properties listed in Tables 3.2 and 3.3. PEN (Plasma Enhanced Nitride) layers in
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Table 3.2: Thermal properties used for via chain simulation

Material Temperature Thermal conductivity

(oC) (W/mK)

Silicona

– 23.15 191

26.85 148

76.85 119

PENb 46.85 1.921

(Plasma Enhanced Nitride) 66.85 2.047

TEOSc

– 1.31
(Tetraethylorthosilicate)

Copperd

– 23.15 328

26.85 335

76.85 341

Tantalume – 57.5

PSGf

– 0.286
(Phosphosilicate Glass)

a) Ho et al. [32].
b) Griffin et al. [30].
c) Thermal conductivity of TEOS is known to vary considerably [42]. A typical value
is chosen and a variation from 1.2 to 1.4 W/mK has been considered in the sensitivity
analysis.
d) Assuming Wiedemann-Franz Law holds true [94].
e) Dean [22].
f) Goodson [29]

Table 3.3: Electrical properties used for via chain simulation

Material Temperature Electrical resistivity

(oC) (µΩ–cm)

Copper

– 23.0 1.726

27.0 2.066

77.0 2.405

Tantalum – 175
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TEOS 150 nm

PEN 50 nm

Polysilicate Glass 400 nm
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Figure 3.12: Schematic of different layers from the bottom of silicon wafer until
metal level 1.

metal and via levels are assumed to be same as TEOS to result in fewer elements.

This is justified since their thickness is very small and their thermal conductivity

is not very different from that of TEOS. Since the line includes copper as well as

tantalum based barrier layer, a one-dimensional electrical model is used to calculate

heat generation. The current density through each one of them is given by

jCu =

(

I

ACu

) (

ρTa/ATa

ρCu/ACu + ρTa/ATa

)

jTa =

(

I

ATa

) (

ρCu/ACu

ρCu/ACu + ρTa/ATa

)

(3.17)

where, ρ is electrical resistivity, A is cross-sectional area and I is total current. The

heat dissipated in a line of length L is then given by

Q̇ = L
(

j2
CuρCuACu + j2

TaρTaATa

)

(3.18)

In order to reduce the number of nodes, the metal line is assumed to be a homogeneous

material with its effective thermal conductivity derived from two parallel resistances
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for copper line and barrier layer. This can be justified since the thermal conductivity

of metal is much higher than the surrounding dielectric and the thickness of tantalum

is much smaller in comparison to the line cross-section.

The simulated region consists of about 200,000 elements. A preconditioned con-

jugate gradient solver is used to solve the large set of linear equations. The pre-

conditioner is a diagonal matrix formed from the values in the main diagonal of the

coefficient matrix. The iterations are terminated until a relative residual of 1 × 10−6

is reached. The results change negligibly when the iterations are terminated at a

residual of 1 × 10−7. Each simulation takes about 30 minutes on a 2.8 GHz Pentium

Xeon processor running on Windows XP.

The temperature map of the heat generating region is shown in Figure 3.13 for

a current density of 23.8 MA/cm2. Both the top and cross-sectional views clearly

show the complex heat flow through the via chain. Although precise periodicity is

absent in the present structure due to the end effects, it appears that most of the

inner interconnect temperature rises are same. A unit cell model may then be used

to calculate the temperature rise to good accuracy.

The average temperature rise and maximum temperature at different current den-

sity values is shown in Figure 3.14 along with the measured temperature rise. The

average temperature rise is calculated by averaging along the whole chain and is thus

expected to be closer to the measured values. Predictions from a detailed finite ele-

ment model of a unit cell performed by Ramakrishna et al. [69] are also shown in the

figure. The unit cell shown in the inset of Figure 3.14 consists of an M1 line, two vias

at its ends, and two halves of M2 line on either side of the M1 line. An effective ther-

mal resistance is prescribed on the sides to account for lateral heat loss. Temperature

rise from all the simulations are within 5 % of the measurements. Simulations are

also performed to include uncertainty in thermal properties. A 10 % uncertainty in

silicon properties, 11 % uncertainty in PSG property, and 1.2 - 1.4 W/mK variation
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Cross-sectional view

Top view

Figure 3.13: Temperature map of the heat generating region for a current density
of 23.8 MA/cm2.

of TEOS thermal conductivity results in the error bars shown for the largest current

density data point. Average temperature rise is within 5 % of that predicted by

baseline thermal properties listed in Tables 3.2 and 3.3. This study demonstrates

the usefulness of the proposed compact approach to model large number of intercon-

nects with sufficient accuracy. Detailed temperature profile along the interconnects

is important for calculating critical performance metrics such as time delay and clock

skew.
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Figure 3.14: Experimental and numerical temperature rise of the interconnect/via
chain shown in Figure 3.11. The error bars for the highest current density data
point are obtained by including property uncertainties. The unit cell model from
Ramakrishna et al. [69] is described in the text.
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CHAPTER IV

ELECTRON TRANSPORT AND SIZE EFFECTS

Electron transport through interconnect structures can be described by the Boltz-

mann Transport Equation (BTE) for electrons. In this chapter, a path integral for-

mulation of BTE is first derived, and a numerical approach to solve this equation is

presented. This formulation is then applied on a constriction in a thin metallic film

and a short metallic bridge.

4.1 Mathematical Formulation

The steady state Boltzmann Transport Equation (BTE) for the distribution function

f(k, r) of electrons within the relaxation time approximation is given as (electron

charge e < 0)

vk.
∂f(k, r)

∂r
− e∇φ

h̄
.
∂f(k, r)

∂k
= −f(k, r) − fle(k, r)

τ
(4.1)

where k is the wavevector, r is the position vector, vk is the velocity vector as function

of wavevector, φ is the electric potential and τ is the relaxation time. The local equi-

librium distribution function fle(k, r) is the Fermi-Dirac distribution with a spatially

varying chemical potential µ(r) corresponding to the local density:

fo(εk) =
1

1 + exp[(εk − µ)/kBT ]
(4.2)

For low external fields, it is convenient to linearize the BTE by defining deviation

functions Ψ(k, r) and δµ(r) such that [64]

f(k, r) = fo(εk − Ψ(k, r))

fle(k, r) = fo(εk − δµ(r)) (4.3)
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To first order in deviation functions we have

fo(εk − Ψ(k, r)) ≈ fo(εk) − Ψ(k, r)
∂fo

∂εk

fo(εk − δµ(r)) ≈ fo(εk) − δµ(r)
∂fo

∂εk

(4.4)

The above approximation leads to a linear relationship between voltage drop and

current. The deviation δµ(r) in chemical potential is given by the angular average of

Ψ(k, r) at the Fermi level.

δµ(r) = 〈Ψ(k, r)〉 ≡ 1

4π

∫

Ψ(k, r)dΩk (4.5)

where dΩk is differential solid angle. An additional function u(k, r) can be introduced,

which would decouple the solution of Poisson’s equation from the BTE. Assuming

Ψ(k, r) = u(k, r) − eφ(r), the BTE reduces to

nk.
∂u(k, r)

∂r
=

〈u(k, r)〉 − u(k, r)

τvk

(4.6)

where nk is the unit vector in the direction of k. The above equation can be solved for-

mally, and the solution can be expressed as a path-integral along a given straight line

in the direction of k. Denoting variables with subscripts ′i′ as initial, and subscripts

′f ′ as final, the path-integral solution is given by

u(k, rf) = u(k, ri)exp(−(tf − ti)/τ) +

∫ tf

ti

〈u(k, r)〉exp(−(tf − t)/τ)
dt

τ
(4.7)

Equation 4.7 is the basis for the iterative numerical scheme described below.

4.2 Numerical Method

Figure 4.1 shows the geometry of the constriction in a thin film. The structure

is assumed to be infinite along the normal to the page. When the dimensions a,

b, and L are much larger compared to the mean free path, one can calculate the

resistance by solving Poisson’s equation under space charge neutrality. When spatial

dimensions are comparable to mean free path, continuum theory is not appropriate
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Figure 4.1: Constriction in a finite size thin film. The solution is obtained only for
the shaded region.

and BTE solution is necessary to provide accurate results. Only the shaded region

needs to be simulated owing to symmetry about the center-line plane perpendicular

to the plane of the paper, and antisymmetry about the plane of the constriction

opening perpendicular to the plane of the paper. In the numerical approach, the

entire simulation region is divided into a rectangular grid. This uniform grid is shown

in Figure 4.2. All the variables are defined at nodes, which are points of intersection

of the grid lines in this spatial grid. In the k-space, only wavevectors near the Fermi

level are considered, since for metals, the degeneracy temperature is much higher

than normal room temperatures. The Fermi sphere is divided into equal area regions

as shown in Figure 4.2. Additional weighting factors are thus not necessary while

computing quantities such as current density. Electric current density j(r) at a given

location is then given by

j(r) = eg(εF )〈vku(k, r)〉 ≈ eg(εF )

NFS

∑

i

vki
u(ki, r) (4.8)

where g(εF ) is the density of states at the Fermi level, NFS is the number of regions

into which the Fermi sphere is divided, and subscript ′i′ denotes the ith cell. The

numerical solution begins by guessing an initial value for 〈u(k, r)〉. The following

iterative procedure is employed.
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Figure 4.2: Numerical grid in physical and k–space. In a free electron model, Fermi
surface is spherical.

• Apply the boundary conditions based on the initial guess.

• Evaluate new values for u(k, r) in the whole region by numerically integrating

Eq. 4.7 and performing iterations.

• Evaluate new 〈u(k, r)〉 by averaging u(k, r) over the Fermi sphere.

• Repeat the above procedure until current continuity is satisfied.

For each spatial location and each Fermi wavevector, in order to evaluate Eq. 4.7, one

evaluates a suitable initial time ti by tracing back in time. A limit for the time back-

wards is specified for all variables. If within this time the path intersects a boundary,

ti is made equal to the time of intersection. This procedure can be applied for all the

values inside the region. At the boundaries though, not all wavevectors originate from

59



within the domain. Thus u(k, r) is computed for only those wavevectors that strike

the surface. Boundary conditions described later in the section enable the evaluation

of u(k, r) for reflected wavevectors.

A constant potential difference is maintained between the left and right ends. The

constriction plane is maintained at zero potential. The solution of Poisson’s equation

is an initial guess for 〈u(k, r)〉. On the left boundary, an analytical expression for

u(k, r) is applied, as it corresponds to the case of a homogenous medium in a constant

electric field, if far from the constriction. For the homogenous case the distribution

function is given by

f(k, rb) = fo(εk) − eE(rb).vkτ
∂fo

∂εk

(4.9)

where E is the electric field and subscript ′b′ denotes boundary. From the definition

of u(k, r) one obtains

u(k, rb) = e(φ(rb) + E(rb).vkτ) (4.10)

for the boundary condition on left end. If the walls are diffuse, then the boundary

condition is given as

u(k, rb) = e(φ(rb) + E(rb).vkτ)

[

1 − exp

(−b − y

τvky

)]

for vky > 0

u(k, rb) = e(φ(rb) + E(rb).vkτ)

[

1 − exp

(

b − y

τvky

)]

for vky < 0 (4.11)

Here, the y coordinate is zero on the centerline, and increases in the upward direc-

tion. The above expressions are valid only for left boundary when it is far from the

constriction. For the walls, specular or diffuse reflection conditions can be applied. If

kinc is the incident wavevector, and kref is the specularly reflected wavevector, then

u(kref , rb) = u(kinc, rb) for a specular surface. If the surface is diffuse, then

u(kref , rb) = −
∑

ki.n<0 vki
u(ki, rb)

∑

ki.n>0 vki

(4.12)
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Figure 4.3: Comparison of analytical and numerical effective electrical conductivity
reduction as the thickness of a thin film reduces.

where n is the unit vector normal to the surface directed into the domain. On the

right end over the plane of constriction, reflection antisymmetry of Ψ(k, r) implies

u(kref , rb) = −u(kinc, rb) since the potential is specified as zero.

4.3 Size effect on constriction in a thin film

The numerical approach outlined in the previous section is first validated for a thin

metallic film for which an analytical solution is available. Figure 4.3 shows the reduc-

tion in effective conductivity as the thin film thickness reduces. Numerical approach

predicts this reduction well for several thicknesses. For the case with a constriction,

several cases are simulated with a constant constriction size and increasing aspect

ratio. These results are compared with that obtained by Nikolic and Allen [64] for a

circular constriction. The results in [64] are presented as

Rc = RS + γ(l/a)RM (4.13)
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Figure 4.4: Interpolating function evaluated numerically (dots) is compared with
the expression from Nikolic and Allen [64]. l is the mean free path. Reference [64]
studied a circular constriction in the limit when b/a becomes infinite whereas the
results of current study are for a constriction in a thin film. The agreement need not
be exact, though at large b/a, the interpolating function for both studies should be
comparable which is evident from the shown data points.

where Rc is the constriction resistance, RS is the Sharvin resistance and RM is the

Maxwell resistance. Sharvin resistance arises purely due to ballistic nature of electrons

near the constriction when the constriction size is much smaller than the mean free

path. Maxwell resistance is based on continuum theory and involves no microscopic

phenomena. The interpolating function γ(l/a) signifies the contribution of Maxwell

resistance to overall resistance. For a circular constriction of radius a [95],

RM =
ρ

2a
; RS =

4ρl

3πa2
(4.14)

An approximate expression (within 1% fit) was provided by Nikolic and Allen for

the interpolating function:

γ(l/a) =
1 + 0.83(l/a)

1 + 1.33(l/a)
(4.15)

Since in the geometry considered, one has a thin film of finite thickness instead
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Figure 4.5: Current density through a constriction for specular and diffuse walls.
Note the curving of profile near the walls for diffuse surface scattering

of infinite half-spaces, constriction resistance is calculated by subtracting the film

resistance without constriction from the calculated resistance. Since all the walls are

assumed specular, film resistance is simply ρL/2bW , where W is the width into the

plane. W is assumed to be much larger than the mean free path, as the structure

is two-dimensional. Figure 4.4 shows the interpolating function evaluated through

simulations for high aspect ratios along with that given in [64]. It should be expected

that numerical predictions should be comparable with that of [64], but there is no

reason for them to be identical since [64] considered a circular constriction while

the computations reported here are for a two-dimensional geometry. A schematic

of current density over the entire region is contrasted in Figure 4.5 for specular and

diffuse walls. With diffuse walls, the current density drops near the walls due to diffuse

surface scattering as seen by the curving of the profile. These results substantiate the

numerical approach in its ability to capture size effect in complex structures.

Some interesting deviations are found when the aspect ratio b/a is small. The

interpolating function calculated from the simulations is shown in Figure 4.6 for

(a/l) = 1.0 and 0.5 as b/a increases. Note that at low aspect ratios the interpolating
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Figure 4.6: Comparison of interpolating function as the thin film width is varied,
keeping the constriction size constant. Significant deviations are observed when the
aspect ratio b/a is small.

function is negative, which merely states that the constriction resistance is smaller

than the Sharvin resistance. Sharvin resistance arises due to electron focusing from

an infinite region towards the small orifice. A lower Sharvin contribution can thus

be expected for finite aspect ratios. As the width 2b increases and approaches closer

to infinite half-spaces, the results come very close to the circular constriction case.

The results suggest that significant deviations should be expected at small aspect

ratios. In order to obtain a simple expression for the resistance increase due to the

size effect, several cases with varying a/l and b/a were simulated. In particular, small

values of a/l and b/a are more important for next generation interconnects. The set

of simulation points are plotted in Figure 4.7 along with the fitted curve. A simple

expression of the form

RM/Rc =
a/l

a/l + C(b/a)
; C(b/a) = exp

[

0.34

(

b

a

)2

− 2.21

(

b

a

)

+ 3.55

]

(4.16)
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Figure 4.7: Ratio of Maxwell resistance to actual resistance as a function of a/l
for several aspect ratios. The filled dots are simulated results for the infinitesimally
thin dielectric region and the curves are evaluated from the correlation developed in
the current study. The correlation is applicable for small constriction sizes and small
aspect ratios.

agrees very well with the calculated values. Here, C(b/a) is a function of the aspect

ratio b/a. The maximum deviation is 6.25% with an average deviation within 2%

for the simulated 32 numerical data points when compared with that obtained from

the above correlation. The above correlation is applicable only within the range

0 < (a/l) < 3.0 and 0 < (b/a) < 3.0.

4.4 Size effect on a short metallic bridge

It is of interest to consider a more general validity of the constriction resistance.

Instead of an infinitesimally long constriction, a constriction of length (2a) was also

simulated for b/a = 2.0. The effective conductance of this bridge type structure is

shown in Figure 4.8 as the constriction size varies. For this particular case, a simple
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Figure 4.8: Comparison of total resistance obtained using a full BTE simulation
and a simple series addition of bridge resistance and constriction resistance.

addition of the zero length constriction resistance and Maxwell resistance was found

to be within 3 % of the actual results, which suggests a more general applicability of

the present study.

Figure 4.9 illustrates that detailed variation of current density and heat generation

can also be obtained from these simulations. As in a classical case, heat generation

peaks near the corners [99]. Such high rates of heat generation and current density

near the corners are critical for reliability.

In summary, a numerical approach to predict electron transport through BTE

within the relaxation time approximation under linear response conditions was devel-

oped. Resistance values for a constriction in a thin metallic film were predicted and

compared with earlier works. Significant deviations from the ideal constriction case

occur at small aspect ratios. A simple expression was fit to the numerical predic-

tions when constriction sizes were comparable to the mean free path. The approach

66



Current density
Diffuse surface 

scattering effect

Heat generation 
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Figure 4.9: Current density and heat generation map of a bridge. The current
density is smaller near the edges due to diffuse surface scattering. As with a classical
solution of Poisson’s equation, heat generation peaks near the corners even in the size
effect regime.

outlined here could be a useful technique to predict resistance values for on-chip

interconnects.
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CHAPTER V

THERMAL CHARACTERIZATION OF THIN

METALLIC FILMS USING SCANNING JOULE

EXPANSION MICROSCOPY (SJEM)

In this chapter, a constriction in a thin metallic film is excited by an AC voltage

source, and the resulting current crowding, heat generation, and temperature rise are

investigated. Numerical predictions in the frequency space are compared with exper-

imental measurements made using Scanning Joule Expansion Microscopy (SJEM). A

novel technique is proposed to extract the thermal conductivity of thin films, whose

thickness is in the electron size effect regime. This technique is then used to mea-

sure in-plane thermal conductivities of gold thin films of two different thicknesses.

This chapter is organized as follows. After describing preliminary measurements on

a constriction in a thin film, the numerical approach in frequency space is described

in detail. The effect of electromagnetic skin depth on heat generation is discussed

and followed by a detailed description of the thermal conductivity extraction proce-

dure. This procedure assumes linearity between the temperature amplitude and the

expansion amplitude, which is justified by a coupled thermomechanical analysis of

the structure. Finally, uncertainties in the measurements are quantified.

5.1 SJEM on a constriction

This section describes SJEM measurements on a constriction in a thin metallic film.

Current crowding and the associated heat generation non-uniformity result in a sig-

nificant variation in temperature amplitude near the constriction.
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Figure 5.1: A schematic of the constriction in a metal thin film

5.1.1 Constriction test structures

Figure 5.1 shows a schematic of the constriction and the different layers underneath

the metal film. Both the shorter (2a) and longer (2b) width lines extend to more than

2 mm in length. End effects do not affect the electrical and thermal transport near

the constriction since the widths are much smaller than the lengths. The metal line

was deposited using electron beam evaporation of gold and patterned by the lift-off

technique. The silicon dioxide layer underneath was deposited by PECVD process.

Two structures, Constriction - A and Constriction - B, of different thicknesses were

investigated. All the dimensions of these structures are given in Table 5.3.

Table 5.1: Dimensions of constrictions investigated in the present work

Constriction - A Constriction - B

Shorter width (2a) 7.01 µm 6.2 µm

Longer width (2b) 200 µm 200 µm

Metal thickness (h) 43.4 nm 131.3 nm

Oxide thickness (dox) 849 nm 7.72 µm
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Figure 5.2: Topography (a), and expansion signal (b), of a constriction obtained us-
ing the Atomic Force Microscope (AFM) based Scanning Joule Expansion Microscopy
(SJEM).

5.1.2 Heat generation and temperature rise

In this work, a closed-loop AFM (Asylum Research - MFP-3D) was used along with a

digital and an RF lock-in amplifier (Stanford Research Systems - SR830 and SR844).

The AFM scan rates were adjusted such that for each data point, at least 10 surface

oscillations were detected by the AFM tip. This allows sufficient time for the lock-in

to detect the particular frequency component.

Figure 5.2 shows the topography and the expansion signal on the constriction at

20 kHz heating frequency. Due to current continuity, the current density is much

higher near the constriction and in the narrow line than in the wider line. Higher

current density causes higher heat generation per unit volume, and if the thermal

conductivity of the metal film is not too high, this heat generation variation results

in a sensible temperature amplitude gradient near the constriction. Current crowding

and the associated Joule heating is clearly captured in the present experiments. The

following sections describe the numerical procedure to predict temperature amplitude

variation near the constriction.

5.2 Thermal modeling in frequency space

A sinusoidal voltage signal in an interconnect results in a steady (DC), and a periodic

(AC) heat generation. Since SJEM measures only the AC temperature amplitude,

70



significant computational effort can be saved by transforming the heat conduction

equation into frequency or complex space. Consider the transient heat conduction

equation

ρcP
∂T (r, t)

∂t
= k∇2T (r, t) + q̇′′′(r, t) (5.1)

with a time varying volumetric heat generation. If ωh is the frequency of heat genera-

tion (ωh = 2ω where ω is the frequency of input voltage signal), periodic components

of heat generation and temperature can be written as

T (r, t) = (X(r) + iY (r))eiωht ; q̇′′′(r, t) = qo(r)e
iωht (5.2)

where X(r) and Y (r) are respectively the real and imaginary parts of temperature

amplitude, qo(r) is the spatially varying heat generation amplitude and i =
√
−1.

With these substitutions, Eq. 5.1 leads to two steady coupled partial differential

equations:

k∇2X(r) + ρcP ωhY (r) + qo(r) = 0

k∇2Y (r) − ρcP ωhX(r) = 0 (5.3)

These equations are solved using the traditional Finite Element Method (FEM).

A layout view of the computational domain along with the numerical grid is shown

in Figure 5.3. The lengths La and Lb along the metal line are made long enough so that

the results near the constriction are independent of these lengths. The temperature

amplitude reaches a constant value corresponding to a two-dimensional case near the

ends.

5.3 Effect of skin depth on heat generation

In steady state conditions, electric field can be obtained from a solution of the Pois-

son’s equation for electric potential with a zero space charge. Ohm’s law gives a

relationship between electric field and current density once the electrical resistivity is
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Figure 5.3: A schematic of computational domain and numerical grid.

known (see Jackson [38] for a good description of electrostatics and electrodynamics).

Heat generation can then be calculated using the electric field and current density.

The following set of equations fully describe a steady state scenario:

∇2V (r) = 0

E(r) = −∇V (r)

j(r) = E(r)/ρe

q̇′′′(r) = j2(r)ρe (5.4)

where V is the electric potential, E is the electric field, j is the current density,

and ρe is the electrical resistivity. For an accurate description of transient cases, the

complete set of Maxwell’s electromagnetic equations should be considered [38]. These

equations are coupled and are difficult to solve for an arbitrary conductor. For small

frequencies this may not be necessary, as the skin depth becomes very large. Skin

depth δs is given by ([38] and [28])

δs =

√

2ρe

µω
(5.5)

where ω is the frequency of the input voltage signal. The effect of magnetic fields

on current density and heat generation are negligible if the skin depth is much larger
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than the conductor diameter. For a typical ρe = 2.2 µΩ-cm for gold, the skin depth

is 333.8 µm at ω = 50 kHz and 105.6 µm at ω = 500 kHz. Skin effect may then be

neglected for the smaller line width interconnect (7 µm wide) but it is not clear if it

is negligible in the wider line (200 µm wide).

Ney [63] obtained an analytical solution for a constriction type structure including

skin effect. The geometry is shown in the inset of Figure 5.4. It is assumed that the

thickness into the plane of the paper is much smaller than all other dimensions and

skin depth, which allows for a two-dimensional analysis. Normalized heat generation

profiles for this structure are plotted in Figure 5.4 for several frequencies. Due to the

fitting procedure used in thermal property extraction, normalized heat generation

is sufficient for analysis. It is clear that significant deviations appear at very high

frequencies but there is little difference between the profiles for 100 kHz and 1.0

MHz. The maximum frequency used in the present work is 500 kHz and it can thus

be concluded that the effects of skin depth can be ignored.

Heat generation can now be calculated by assuming that the amplitudes of various

quantities are given by Eq. 5.4. A typical heat generation profile and the associated

temperature amplitude near the constriction are shown in Figure 5.5. The heating

frequency is 150 kHz and the thermal conductivity of the metal film is assumed to be

82 W/mK. This value for the thermal conductivity is extracted by using the fitting

procedure described in later sections. The figure shows two temperature profiles

obtained using two different heat generation profiles. In the one-dimensional model,

current density is assumed to be constant in each line but the total current is kept

the same. This results in a heat generation profile with a step change near the

constriction. The current crowding model involves solving the Poissons equation for

voltage and calculating the heat generation using the electric field and current density

5.4. The temperature profiles in both cases are smooth near the constriction but are

significantly different. The drop is much steeper for the one-dimensional model. In
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Figure 5.4: Effect of skin depth on heat generation profiles is shown for different
frequencies. The inset zooms a portion of the plot to resolve lower frequencies. For
the frequencies considered in this work, the skin effect can be neglected. It is assumed
that L → ∞.

both cases, far from the constriction, temperature amplitude reduces to that of a

two-dimensional geometry with an infinitely long metal line of the same width. This

study demonstrates that a detailed solution of Poisson’s equation is necessary to

obtain accurate temperature amplitude profiles.

5.4 Thermal conductivity extraction procedure

This section describes the thermal conductivity extraction procedure, using temper-

ature amplitude profiles obtained at different heating frequencies. The thermal con-

ductivity of silicon dioxide underneath the metal lines is important in the numerical

model, and was measured using the 3ω method. Figure 5.6 shows the measured and

predicted values for the temperature amplitude in the 3ω method. The thermal con-

ductivity of silicon dioxide was measured in constriction - A wafer to be 1.16 ± 0.035
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Figure 5.5: Temperature amplitude profiles along the centerline near the constric-
tion. Normalized heat generation amplitude obtained from Poisson’s equation for
electric potential is also shown (current crowding model). Effect of current crowding
is shown to significantly alter the profile near the constriction. In the one-dimensional
model, current density is assumed to be constant in each line but the total current is
kept the same.

W/mK, and in constriction - B wafer to be 1.00 ± 0.019 W/mK. These values are

typical for chemical vapor deposited silicon dioxide films [42].

5.4.1 Effect of heating frequency

In a periodic heating case, as the frequency of heating is varied, the effect of ther-

mal penetration depth appears. If the measurements are sufficiently accurate to

observe this effect, thermal penetration depth, or the thermal conductivity can be ex-

tracted using appropriate analytical or numerical models, assuming the heat capacity

is known. This effect is shown in Figure 5.7 in the constriction as the frequency is

increased. Even though the spatial variation in heat generation is same for all the

cases, both predicted and measured amplitudes clearly show a frequency dependent
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Figure 5.6: Temperature amplitude in the 3ω experiments, which is used to measure
thermal conductivity of silicon dioxide.

structure. As the frequency increases, thermal penetration depth within the film re-

duces, and the amplitude drops much more steeply near the constriction. In the limit

that the penetration depth is zero, the expansion amplitude will be similar to the heat

generation amplitude. This effect is clearly seen at 1000 kHz. Noise levels gradually

increase as the frequency is increased to 1000 kHz. Thermal expansion amplitude

continuously reduces as the frequency increases.

This investigation shows that frequency dependent structure can be captured by

SJEM on a constriction. This can allow for thermal conductivity extraction of thin

films. This procedure is described in the following section.

5.4.2 Numerical fit to measurements

Calculation of temperature amplitude from the expansion signal requires considerable

information about the underlying layers. In order to deduce temperature amplitude
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Figure 5.7: A comparison of numerical and experimental expansion amplitudes as
the frequency is varied. The effect of penetration depth is clearly seen in the images
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from the expansion amplitude, the coefficient of thermal expansion (CTE) and thick-

ness of all the underlying layers that contribute to the expansion signal must be

known. In the present structure, the CTEs of metal line and parylene are much

larger than the underlying oxide and silicon substrate. Since the thermal conduc-

tivity of gold is high, temperature across the thickness of the metal line is constant.

It can be assumed that the temperature across parylene is also constant, since the

thickness is much smaller than the thermal penetration depth. If one ignores temper-

ature dependence of properties, then the temperature amplitude and expansion signal

are linearly proportional. The contribution of the underlying layers (silicon dioxide

and silicon substrate) to the expansion signal diminishes as the frequency increases.

Higher frequencies diminish the effect of far-field conditions. Detailed comparison of

numerical and experimental results are made for 100, 150, and 200 kHz heating fre-

quencies, and a technique to measure metal thermal conductivity is briefly outlined

in the following paragraphs.

A simple minimization procedure is used to find the proportionality constant

between the expansion signal and temperature amplitude. If E(x, y) is the expansion

signal, then Texp(x, y) = αE(x, y), where α is the unknown proportionality constant.

For a given temperature amplitude Tnum(x, y) obtained from numerical simulations,

α is obtained by minimizing the mean square error. Temperature amplitude profile

on the centerline of metal lines is averaged over a micron across the width and is used

in this fitting procedure.

The error after obtaining the best α for different values of metal thermal con-

ductivity is shown in Figure 5.8 for 100, 150, and 200 kHz heating frequency. It is

clear that a good fit is obtained for metal thermal conductivity near 82.0 W/mK.

The numerical and experimental temperature amplitude profiles for the best fit for

km = 82 W/mK are shown in Figure 5.9. The agreement appears good over almost

the entire region. Although gold has a bulk thermal conductivity of 318 W/mK at
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Figure 5.8: Error in numerical fit at different frequencies as the thermal conductivity
of metal film is varied for constriction - A.

room temperature, thin films of thickness comparable to mean free path are known

to have much lower thermal conductivity due to enhanced electron surface scattering

[27]. The fit value of thermal conductivity thus appears reasonable for the 43 nm

thick film (constriction - A) used in the present investigation.

It is well known that electrical and thermal conductivity of bulk metals are ap-

proximately related by the Wiedemann-Franz Law [4], according to which,

κfilm

σfilmT
= Lo (5.6)

where σfilm is the electrical conductivity, κfilm is the thermal conductivity, T is the

temperature and Lo is the Lorenz number [4] (see the discussion in Chapter 2). Based

on electrical resistance measurements, the electrical resistivity of the line was found

to be 7.52 mW-cm. Using 2.32 × 10−8 WΩ/K2 for the Lorenz number of gold results

in a thermal conductivity of 92.55 W/mK for the metal line. This value is close to

the extracted value of 82 W/mK as it should be expected. It thus appears that a
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Figure 5.9: Comparison of experimental and numerical temperature amplitude pro-
files along the centerline near the constriction after minimizing the error in numerical
fit.

constriction in a thin metal film characterized through SJEM in conjunction with

the 3ω method, can enable in-plane thermal conductivity measurements of thin films

and interconnects in the sub-100 nm range. The technique does not require extensive

microfabrication since freestanding metal films are not necessary.

Measurements were also made on constriction - B and are summarized in Figures

5.10 and 5.11. This structure lacks parylene coating, but the signal-to-noise ratio is

still good due to large oxide layer underneath the metal layer. Thicker oxide results in

larger temperature amplitude. The thickness of this structure is 131 nm and is about

three times the mean free path of electrons. The thermal conductivity is about twice

that of the constriction - A film. Once again, the extracted thermal conductivity is

close to that predicted by Wiedemann-Franz Law. The obtained temperature profiles

at the best fit follow the measurements very closely. Thicker metal film implies lesser

surface scattering effect, and the temperature profiles are much flatter than in the
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constriction - A case. This investigation further demonstrates the proposed technique.

5.5 Thermomechanical analysis of expansion amplitude

SJEM measures only the expansion amplitude of the surface. This amplitude is in gen-

eral a complex function of temperature, thermophysical, and mechanical properties.

It is assumed in the thermal conductivity extraction procedure, that the expansion

amplitude is linearly proportional to temperature amplitude. This assumption is ex-

amined by performing a detailed deformation analysis of a two-dimensional structure.

It is convenient to use Einstein notation to describe the governing dynamical equa-

tion (see [57] for a detailed derivation of the equations). Let ui be the displacement

vector (i takes the values 1, 2 and 3 corresponding to x, y and z directions). The
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Figure 5.11: Comparison of experimental and numerical temperature amplitude
profiles along the centerline near the constriction after minimizing the error in nu-
merical fit.

strain tensor components ǫij are given as

ǫij =
1

2
(ui,j + uj,i) (5.7)

where ui,j stands for the partial derivative of ui with respect to j coordinate. Within

the framework of linear thermoelasticity, a constitutive equation between the stress

tensor σij and strain tensor is given by

σij =
E

(1 + ν)(1 − 2ν)
[νδijǫkk + (1 − 2ν)ǫij ] −

E

(1 − 2ν)
α(T − To)δij (5.8)

where E is the Young’s modulus, ν is the Poisson’s ratio, α is the Coefficient of

Thermal Expansion (CTE), T is the temperature, To is the reference temperature, and

δij is the Kronecker delta. The dynamical equation is derived by applying Newton’s

second law to a differential volume element:

ρüi = σij,j + ρbi (5.9)
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where ρ is the density, bi is a volumetric body force such as that due to gravity, and

the dots denote second order partial derivative with respect to time. Using Eq. 5.8 for

the stress tensor results in the following dynamical equation, known as the Navier’s

equation.

ρüi =
E

2(1 + ν)
ui,jj +

E

2(1 + ν)(1 − 2ν)
uj,ij −

Eα

(1 − 2ν)
T,i + ρbi (5.10)

The above equation is transformed into frequency space since only the expansion

amplitude is required. Assuming ui = u∗

i e
iωht and T = T ∗eiωht, where the superscript

‘*’ implies a complex function of space, and ignoring body forces results in

−ρω2
hüi

∗ =
E

2(1 + ν)
u∗

i,jj +
E

2(1 + ν)(1 − 2ν)
u∗

j,ij −
Eα

(1 − 2ν)
T ∗

,i (5.11)

If the temperature field is known, this equation can be solved for the expansion

amplitude ui
∗.

A two-dimensional analysis of a long metal line is performed to verify the validity

of a linear relation between the expansion amplitude and temperature amplitude. In

this case, a plane strain assumption is made to reduce the computational cost. In a

plane strain assumption, ǫzz, ǫyz, and ǫzx are assumed to be zero. A schematic of the

simulated half metal line structure is shown in the inset of Figure 5.12 (half metal

line is sufficient due to symmetry). The vertical plane at x = 0 is allowed to move

only in the vertical direction. The problem is solved in FEMLAB which allows for

easy coupling of different equations. The temperature amplitude is calculated by the

solution of heat conduction equation in the frequency space, which is then used as an

input for deformation modeling. The mechanical properties used for the simulation

are shown in Table 5.2. These are typical values available from the literature.

Expansion amplitude and temperature amplitude on the surface of the structure

until the edge of metal width is plotted in Figure 5.12 for ωh = 100 kHz. If the

relationship between them is linear, the two curves should coincide. It is apparent

that the linearity assumption fails as one approaches the edges of the metal line. This
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Figure 5.13: Deformation amplitude is shown by the displaced structure. Temper-
ature amplitude is plotted using color shading. The deformation is artificially scaled
by a large factor for clarity.
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Table 5.2: Mechanical properties used for thermomechanical simulation

Material Young’s modulus Poisson’s ratio CTE Density

E (GPa) ν α (ppm/K) ρ (kg/m3)

Silicon 97.68 0.278 2.62 2329

Silicon dioxide 59.0 0.24 1.0 2185

Gold 80.12 0.423 14.29 18880

Parylene 3.2 0.4 35.0 1289

is primarily due to large CTE mismatch between the metal and underlying oxide layer.

The percentage error is also shown in the same plot. This is not a serious concern

since the thermal conductivity extraction procedure uses expansion amplitude only

along the center line of the metal line. The deformation of the structure is depicted

in Figure 5.13 along with the temperature amplitude over the cross-section. The

deformation is arbitrarily scaled to a much larger value for clarity. Due to large

heating frequency, the temperature amplitude is appreciable only in the oxide layer

close to the metal line.

5.6 Uncertainty analysis

The thermal conductivity values extracted in this chapter depend on several parame-

ters such as, metal line width, metal thickness, oxide thermal conductivity and so on.

Uncertainties in these parameters propagate into the measured thermal conductivity

of the metal line. A general procedure to account for these uncertainties was given

by Kline and McClintock [47]. Let the final measured value y be a function of N pa-

rameters (x1, x2, ..., xN). These parameters in turn have uncertainties (u1, u2, ..., uN).

The final uncertainty uy in the parameter y is then given by

uy =

√

(

∂y

∂x1
u1

)2

+

(

∂y

∂x1
u2

)2

+ . . . +

(

∂y

∂xN
uN

)2

(5.12)
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Table 5.3: Uncertainty analysis for oxide thermal conductivity in Constriction - A

Parameter Nominal value Deviation % change in

kox for + ui

Metal half width (a) 3.5 µm ± 0.05 µm − 1.3

Oxide thickness (dox) 849 nm ± 5 nm + 0.5

TCR (αT ) 1.678 × 10−3 /oC ± 0.035 × 10−3 /oC + 2.3

Input voltage (Vin) 4.246 V ± 1 mV + 0.1

Silicon thermal 148 W/mK ± 7.4 W/mK − 0.4

conductivity (kSi)

Silicon heat 1.66 × 106 J/m3 ± 0.08 × 106 J/m3 − 0.1

capacity (CSi)

3ω voltage (V3ω) 2.68 mV ± 0.03 mV − 1.1

Oxide thermal 1.16 W/mK ± 0.035 W/mK ± 3 %

conductivity kox

This expression is used in arriving at the uncertainties in the oxide thermal conductiv-

ity and extracted metal thermal conductivity. Tables 5.3 and 5.4 list the uncertainties

in various parameters and their effect on the measured oxide thermal conductivity

for the structures. Extracted metal thermal conductivity in turn depends on oxide

thermal conductivity as well as other parameters. An analysis of these uncertainties

for Constriction - A structure at 100 kHz heating frequency and Constriction - B

structure at 90 kHz heating frequency are shown in Tables 5.5 and 5.6 respectively.

The uncertainty in both cases is about ± 10 %.

A summary of all the measurements is shown in Figure 5.14. In both the struc-

tures, measured values are close to that obtained from Wiedemann-Franz Law for

the same structures. These are much smaller than bulk values. Also, as expected,

the 43 nm film has much smaller conductivity than the 131 nm film. These results

demonstrate the applicability of the proposed technique.
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Table 5.4: Uncertainty analysis for oxide thermal conductivity in Constriction - B

Parameter Nominal value Deviation % change in

kox for + ui

Metal half width (a) 3.1 µm ± 0.07 µm − 1.1

Oxide thickness (dox) 7.72 µm ± 10 nm + 0.1

TCR (αT ) 2.176 × 10−3 /oC ± 0.022 × 10−3 /oC + 1.1

Input voltage (Vin) 4.05 V ± 1 mV + 0.1

Silicon thermal 148 W/mK ± 7.4 W/mK − 0.4

conductivity (kSi)

Silicon heat 1.66 × 106 J/m3 ± 0.08 × 106 J/m3 < − 0.1

capacity (CSi)

3ω voltage (V3ω) 6.985 mV ± 0.07 mV − 1.0

Oxide thermal 1.00 W/mK ± 0.019 W/mK ± 1.9 %

conductivity kox

Table 5.5: Uncertainty analysis for extracted metal thermal conductivity in Con-
striction - A at 100 kHz heating frequency

Parameter Nominal value Deviation % change in

km for + ui

Metal half width (a) 3.5 µm ± 0.05 µm 4.9

Metal thickness (h) 43.4 nm ± 1.2 nm 2.4

Oxide thermal 1.16 W/mK ± 0.035 W/mK 2.4

conductivity kox

Constriction location - ± 0.06 µm 7.3

Metal thermal 82 W/mK ± 7.7 W/mK ± 9.4 %

conductivity km
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Table 5.6: Uncertainty analysis for extracted metal thermal conductivity in Con-
striction - B at 90 kHz heating frequency

Parameter Nominal value Deviation % change in

km for + ui

Metal half width (a) 3.1 µm ± 0.07 µm 8.6

Metal thickness (h) 131.3 nm ± 3.5 nm 4.9

Oxide thermal 1.00 W/mK ± 0.019 W/mK 1.2

conductivity kox

Constriction location - ± 0.04 µm 2.5

Metal thermal 162 W/mK ± 16.7 W/mK ± 10.3 %

conductivity km
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Figure 5.14: A summary of the extracted thermal conductivities for two constric-
tions and their comparison with bulk value and Wiedemann-Franz Law (WFL) pre-
dictions.
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CHAPTER VI

AN IMPROVED SOLUTION FOR THE 3ω

METHOD OF THERMAL CONDUCTIVITY

MEASUREMENTS

In this chapter, a new semi-analytical solution for the 3ω method is derived and

investigated. Thermal conduction within the metal heater is resolved. This solution

can be applied for a general multilayer anistropic stack.

6.1 Earlier boundary conditions

In the earlier 3ω solutions [15], it was assumed that heat enters uniformly across the

width of the metallic heater. This assumption is exact only when the metal thermal

conductivity is close to zero. In general, the thermal conductivity of the metal heater

can be up to three orders of magnitude higher than the underlying dielectric film. A

complete system of metal line and the film can be solved for AC temperature rise.

Figure 6.1 shows the heat flux profiles below the metal heater for such a structure.

A uniform heat generation is prescribed within the metal heater. The structure is a

copper heater on top of silicon dioxide. It is clear that the assumption of uniform

heat flux breaks down near the edges. There is a small frequency dependence due

to variation in thermal penetration depth within the metal line. This plot shows

that the effect of thermal conduction within the heater should be considered for

accurate 3ω measurements. The following section describes a semi-analytical solution

to incorporate this effect.
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Figure 6.1: Heat flux variation below the heater line

6.2 Derivation of the semi-analytical solution

A schematic of the structure considered in the analysis is shown in Figure 6.2. The an-

alytical development is described in detail for this single film structure. An arbitrary

case of multilayer structure with anisotropic thermal conductivity can be solved in

a similar manner. The two-dimensional transient heat conduction equation without

any volumetric heat generation is given by

∂T

∂t
= α

(

∂2T

∂x2
+

∂2T

∂y2

)

(6.1)

Since only the oscillating component of temperature is required, the above equation

is transformed into frequency space by choosing

T (x, y, t) = F (x, y)eiωht (6.2)
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Figure 6.2: A schematic of the semi-infinite film case.

where F (x, y) is a complex function and ωh is the heating frequency. Equation (6.1)

then reduces to

(

∂2F

∂x2
+

∂2F

∂y2

)

=

(

iωh

α

)

F (6.3)

Using separation of variables so that F (x, y) = X(x)Y (y), the following equations

arise for each eigenvalue λ

d2X

dx2
= −λ2;

d2Y

dy2
= l2 where l =

√

λ2 + q2 and q =

√

iωh

α
(6.4)

6.2.1 Dielectric region solution

Consider Eq. (6.4) for the dielectric region. The general solutions for the x and y

directions are given as

X(x) = A(λd) cos λdx + B(λd) sin λdx (6.5)

Y (y) = C(λd) exp [−ldy] + D(λd) exp [+ldy] (6.6)

where subscript d stands for dielectric. Symmetry condition at x = 0 and bounded

behavior for y → ∞ requires B(λd) and D(λd) to vanish respectively. The general

solution will then be a superposition of solutions for each eigenvalue. Absorbing C(λd)
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in A(λd) results in

Fd(x, y) =

∫

∞

0

A(λd) cosλdx exp [−ldy]dλd (6.7)

6.2.2 Metal region solution

For the metal region, the general solution for the x and y directions are given as

(assuming heat generation is zero momentarily)

X(x) = A(λm) cosλmx + B(λm) sin λmx (6.8)

Y (y) = C(λm) exp [−lmy] + D(λm) exp [+lmy] (6.9)

Symmetry condition at x = 0 requires B(λm) to vanish. Adiabatic condition at x = b

results in discrete eigenvalues:

dX

dx

∣

∣

∣

∣

∣

x=b

= −A(λm)λm sin λmx = 0 implies λ(n)
m =

nπ

b
; n = 0, 1, 2... (6.10)

The general solution including heat generation can be written as

Fm(x, y) =
q̇′′′

kmq2
m

+

∞
∑

n=0

(

Cn exp [−l(n)
m y] + Dn exp [+l(n)

m y]
)

cos λ(n)
m x (6.11)

6.2.3 Other boundary conditions

Applying adiabatic boundary condition at y = −h for 0 < x < b, results in

−km
∂Fm

∂y

∣

∣

∣

∣

∣

y=−h

=

∞
∑

n=0

kml(n)
m

(

Cn exp [+l(n)
m h] − Dn exp [−l(n)

m h]
)

cos λ(n)
m x = 0 (6.12)

Using Fourier series theory, a general relation can be found between the coefficients:

Dn = Cn exp [+2l(n)
m h] (6.13)

Temperature and heat flux must be continuous at the interface for 0 < x < b and,

for b < x < ∞, the heat flux should vanish. The heat flux condition on the dielectric

surface at y = 0 for 0 < x < ∞ is then

− [H(x) − H(x − b)] km
∂Fm

∂y

∣

∣

∣

∣

∣

y=0

= −kd
∂Fd

∂y

∣

∣

∣

∣

∣

y=0

(6.14)
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where H(x) is the Heaviside function. Substituting for the metal and dielectric solu-

tions (Eqs. (6.7) and (6.11)) results in

∞
∑

n=0

kml(n)
m (Cn − Dn) [H(x) − H(x − b)] cos λ(n)

m x =

∫

∞

0

kdldA(λd) cos λdxdλd (6.15)

Using the following identity and the usual Fourier series/transform theory,

∫ b

0

cos λdx cos λ(n)
m xdx =

(−1)nλd sin λdb

(λd)2 − (λ
(n)
m )2

(6.16)

an expression for A(λd) can be obtained in terms of Cn after using Eq. (6.13):

A(λd) =

∞
∑

n=0

(−1)n2kml
(n)
m (1 − exp [+2l

(n)
m h])

πkdld

λd sin λdb

(λd)2 − (λ
(n)
m )2

Cn (6.17)

Finally, the temperature matching condition at the interface leads to

(Cn + Dn) =
(−1)n(2 − δ0,n)

b

∫

∞

0

A(λd)λd sin λdb

(λd)2 − (λ
(n)
m )2

dλd − δ0,n
q̇′′′

kmq2
m

(6.18)

An infinite set of simultaneous equations for Cn arise when Eqs. (6.13) and (6.16)

are used to eliminate Dn and A(λd) respectively. The infinite set of simultaneous

equations can be written in a matrix form:

[a] {C} = {q} (6.19)

where [a] is the square coefficient matrix, {C} is the column vector of coefficients and

{q} is a column vector involving source terms. The terms in the matrices are

aij = δi,j(1 + exp [+2l(i)m h])+

∫

∞

0

(−1)i+j+12kml
(j)
m (2 − δ0,j)(1 − exp [+2l

(j)
m h])λ2

d sin2 λdb

πkdldb[(λd)2 − (λ
(i)
m )2][(λd)2 − (λ

(j)
m )2]

dλd

(6.20)

qi = −δ0,i
q̇′′′

kmq2
m

(6.21)

It is only necessary to retain sufficient number of terms to obtain accurate average

temperature rise. About 10 to 20 equations generally give very accurate results.
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Figure 6.3: A schematic of the multilayer anisotropic stack.

A general solution for a multilayer structure with anisotropic thermal conductiv-

ities can also be derived by following the above described steps. This structure is

shown in Figure 6.3 along with the nomenclature used in the solution. Here, kyk is

the cross-plane, and kxk is the in-plane thermal conductivity of the kth layer. The

solution again involves solving Eq. 6.19 with different expressions for the matrices.

For convenience, all the relations are summarized below.

aij = δi,j(1 + exp [+2l(i)m h])+

∫

∞

0

(−1)i+j+1

(

1 + R1

1 − R1

)

2kml
(j)
m (2 − δ0,j)(1 − exp [+2l

(j)
m h])λ2

d sin2 λdb

πky1l1b[(λd)2 − (λ
(i)
m )2][(λd)2 − (λ

(j)
m )2]

dλd

(6.22)

qi = −δ0,i
q̇′′′

kmq2
m

(6.23)

Rk =

(

(zk − zk+1) + Rk+1(zk + zk+1) exp [2lk+1dk]

(zk + zk+1) exp [2lkdk] + Rk+1(zk − zk+1) exp [2lk+1dk]

)
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RN = 0; lk =
√

kxykλ
2
d + q2

k; qk =

√

iωh

αk
;

kxyk =
kxk

kyk
; αk =

kyk

(ρcP )k
; zk = kyklk; k = 1, ..., N (6.24)

Once Eq. 6.19 is solved with the above expressions for the matrix elements, the

average complex temperature amplitude is given by

∆Tavg = Co(1 + exp [+2qmh]) +
q̇′′′

kmq2
m

(6.25)

6.3 Results and Discussion

The semi-analytical solution described in the previous section is solved in MATLAB.

The simulations were performed for a 300 nm thick and 6 µm wide Aluminum metal

line. The thermal conductivity and heat capacity of the metal line was fixed at 235

W/mK and 2.43 × 106 respectively. The heat capacity of the underlying film was

fixed at 1.626 × 106 (corresponding to silicon dioxide), and the thermal conductiv-

ity was allowed to vary. Figure 6.4 compares the predictions made by earlier and

present 3ω solutions. It is clear that the error is significant when the underlying film

thermal conductivity kf is low. Earlier 3ω solutions always over-predict the average

temperature rise. A non-zero thermal conductivity of the metal line smooths out

temperature variation in the metal line and results in a lower average temperature.

This effect mainly depends on the lateral thermal conductivity (in-plane) of the metal

line and film. In Cahill’s original paper [15], the 3ω technique was applied only to

semi-infinite substrates. An approximate expression was obtained for the real part

of average temperature amplitude when
√

ωhb2/αd ≪ 1. Thermal conductivity can

then be directly calculated using the slope between real part of temperature ampli-

tude and ln ω. Figure 6.5 plots this slope for three different solutions. The solution

that is corrected for metal heat capacity was derived by Borca-Tascuic et al. [11].

This figure shows that metal thermal conduction only adds a frequency independent

correction to the real part of temperature amplitude for small
√

ωhb2/αd. It can thus
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Figure 6.4: Comparison of temperature amplitude predictions between earlier and
present 3ω solutions. The error is significant for low film thermal conductivity kf .

be ignored when Cahill’s original technique is used. For higher
√

ωhb2/αd, the three

solutions deviate, and when
√

ωhb2/αd ≫ 1, the heat capacity corrected and present

work solution become coincident. This is due to the metal heat capacity domination

at very large frequencies. The heat conduction is essentially one-dimensional at such

frequencies. Effect of heat capacity was absent in Cahill’s original solution.

From the foregoing discussion and results, it is clear that the effect of in-plane

thermal conduction is important. Naturally, significant deviations should be expected

when the 3ω method is used to measure anisotropy in the film thermal conductivity.

A virtual experiment is performed to evaluate this effect. AC temperature rise as a

function of frequency is obtained by solving the present solution for an isotropic film.

These results are assumed to be the experimental results, and the earlier 3ω solution

for an anisotropic film is used to fit to these measurements. Earlier solution is the

one corrected for metal heat capacity that was derived by Borca-Tascuic et al. [11].
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Ideally, one should obtain kxy = 1 after the fit. Figure 6.6 plots the obtained kxy

after the fit. Earlier 3ω solutions can falsely predict anisotropy even for a perfectly

isotropic film. The error is more pronounced for low thermal conductivity films.

Earlier solution can predict a kx of 0.15 W/mK when in reality it is only 0.1 W/mK.

Figure 6.7 shows the error when a real anisotropic film is considered. Cross-plane

thermal conductivity ky is fixed at 0.5 W/mK for all the cases. As in the previous

case, virtual experiments are performed and the earlier 3ω solution is used to obtain

an estimate for anisotropy ratio. It is clear that earlier 3ω solution fails significantly

at low in-plane thermal conductivities.
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CHAPTER VII

CONCLUSION

This dissertation addresses the task of predicting temperature rise in an on-chip inter-

connect stack. A detailed temperature map within the microprocessor interconnect

stack is necessary to predict signal time delay and mean time to failure due to elec-

tromigration. Thermal predictions become difficult due to complexity of the stack.

Number of features is on the order of a billion, and as the dimensions shrink to below

100 nm range, electron size effects become important. This chapter discusses several

conclusions that can be drawn from different analytical, numerical and experimental

techniques developed as part of this work. Future directions are also discussed.

A finite element based compact thermal modeling methodology was developed to

obtain temperature rise in interconnects due to Joule heating. This approach uses

continuum based thermal modeling based on the Fourier’s Law of heat conduction.

Interconnects are made of metal and are highly conductive. Temperature drop across

their cross-section can thus be ignored. The compact elements in this work include

both metal and dielectric regions. This reduces the number of nodes, and results in

shorter computational times and smaller memory requirements. In two-dimensional

case studies performed on uniformly spaced interconnects, compact elements per-

formed better than standard finite elements for the same number of elements. The

error in compact model predictions was within 5 – 10 % of the detailed simulations.

In some cases, an order of magnitude performance improvement was obtained us-

ing compact elements. Similar errors were obtained in the case of three dimensional

interconnects terminated by vias. In this structure, thermal conduction along the in-

terconnect length is significant, and is included in the compact element. The method
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was also applied on a long serpentine chain of about 500 interconnects and vias. The

predictions compared well with experimentally measured temperature rise at several

current densities.

The compact model case studies suggest that this technique can be valuable for

interconnect temperature rise predictions. This approach requires thermal properties

of metal and dielectric, and the variation of heat generation within the interconnect

net. For macroscopic dimensions, thermal properties can be prescribed as bulk val-

ues and pose no difficulty for the compact modeling. Electron size effects become

important when the dimensions are comparable to the mean free path. For long

straight interconnects, an effective thermal conductivity can be defined for heat con-

duction along the interconnect. This can enter seamlessly within the compact model

since only thermal conductivity along the interconnect is retained. For more com-

plex structures that involve a cross-section change, effective thermal conductance can

be defined between two locations. Such a model was developed for a constriction

in a thin metallic film with perfectly specular scattering by solving the Boltzmann

Transport Equation (BTE). This effective conductance can then be easily used in the

compact modeling framework. Heat generation within the metal lines is determined

mainly by the electrical properties, dimensions, and operating conditions. Detailed

electrical circuit analysis is necessary to calculate average current density within the

interconnects. Compact model can then use the heat generation obtained through

such analysis.

A numerical solution of the BTE was developed to simulate electron transport in

complex interconnect structures. A path integral formulation was used to solve the

BTE deterministically. Several approximations were made to simplify the problem.

These approximations, such as the free electron model, relaxation time approximation,

and linear response, are justified for metals at low electric fields. A self-consistent

solution of the BTE and Poission’s equation for electric potential is not necessary, as
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the BTE is decoupled from the Poisson’s equation.

A constriction in a thin metallic film was investigated using the above described

technique. This structure closely approximates a via effect. Significant reductions

in effective conductance result as the constriction sizes become comparable to or

smaller than the mean free path. This reduction is observed even with perfectly

specular surfaces, and thus will persist even with innovations in microfabrication to

obtain atomically smooth surfaces. An important utility of these simulations was also

pointed out. A short metallic bridge between wider metal lines can be approximated

as a composition of a constriction and the metal bridge. Effective conductance of such

a structure is easily calculated by adding the traditional ohmic resistance of the metal

bridge to the constriction resistance. The error with such additions was within 3 %

for the cases considered. This suggests that reduced models of vias can be obtained

and used in large scale simulations involving interconnects and vias.

Thermal characterization of thin metallic films in the size effect regime was per-

formed by an existing Atomic Force Microscope (AFM) based application called Scan-

ning Joule Expansion Microscopy (SJEM). A novel technique to measure thermal

conductivity of thin metallic films was developed using SJEM. This involves charac-

terizing a constriction in the thin metal film for AC Joule heating and using numerical

modeling in the frequency space. The thermal conductivities of 43 nm and 131 nm

gold films measured using this technique, were found to be 82 W/mK and 162 W/mK

respectively at the smallest frequency investigated. Thermal conductivities were sim-

ilar at other frequencies. These measurements are close to Wiedemann-Franz Law

predictions but are significantly smaller than the bulk value of 318 W/mK due to

electron size effects.

The above described thermal conductivity measurement technique has several

advantages. It does not require complex microfabrication to obtain free-standing

metal structures necessary for conventional techniques. Electron size effect is highly
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dependent on the interface between metal and dielectric. A free-standing structure

completely alters this interface and naturally will lead to different electron scattering

characteristics. In addition, due to high resolutions possible with SJEM (∼ 10 nm),

it can potentially be used for interconnects whose width is in the sub-100 nm range.

Although the technique was demonstrated on metal films, any current carrying and

heat generating material can be characterized through this technique. These include

doped silicon or other semiconductors.

The low-k dielectrics being developed for next generation microprocessors have

much lower thermal conductivity than the traditional TEOS (TetraEthylOrthoSili-

cate) oxide. The 3ω technique is very popular for their thermal conductivity mea-

surements. In this work, a new semi-analytical solution was derived to incorporate

metal heater thermal conduction, not accounted for in the existing 3ω solutions. It

was found that this effect is highly important in anisotropy measurements. For films

of low thermal conductivity (∼ 0.1 W/mK), existing solutions can falsely predict

anisotropy even in a perfectly isotropic thin film. In addition, for a truly anisotropic

film, existing solutions can result in errors as high as 50 % in their anisotropy ratio.

7.1 Future work

Several important directions can further be explored to enable accurate and efficient

thermal predictions in an on-chip interconnect stack. One such area is the multi-scale

modeling that involves simultaneous solution of both nanoscale and macroscale. BTE

simulations at the nanoscale should be coupled with macroscopic electron transport.

Such a simulation may bring out new effects that cannot be captured by the reduced

models.

The compact elements developed in the present work require the interconnect to

be located on the corner of the element. Further techniques should be developed to

remove this restriction and enable automatic mesh generation. A general element
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containing arbitrary metallic and dielectric regions is an ideal problem to investigate.

This further leads to upscaling techniques, where a smaller region is first modeled

accurately by detailed finite elements and later embedded in the larger system by

using empirical shape functions. Another important effect is metal-dielectric inter-

face resistance. This contact resistance should be incorporated within the compact

elements. The compact model can also be extended to solve for 3D architectures

where there can be several active device layers.

Temperature rise in interconnect structure is a coupled electrothermal problem.

Electric circuit design models can be integrated with the thermal models in the present

work. Only a detailed circuit analysis can provide the average heat generation rates

within the interconnects. These heat generation models should account for size and

skin effects.

The experimental technique to measure thermal conductivity of interconnects

should be applied on sub-100 nm wide interconnects. Another important application

is on tantalum barrier films. These films are usually 5 to 10 nm thick and detailed

simulations maybe necessary to design optimal test structures. It is also interesting

to see how the technique performs when electron transport is dominated by hopping

between the metal islands. Further investigations can also be performed on doped

semiconductors.
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