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PREFACE

The subject of wavelets appeared in the mid 1980s influenced by ideas from both pure mathematics

(harmonic analysis, functional analysis, approximation theory, fractal sets etc.) and applied mathe-

matics (signal processing, mathematical physics etc.). Almost instantaneously it became a success

story with thousands of papers written by now and a wide range of applications.

A simple definition of wavelets is

Definition 1 A wavelet is a function ψ(t) ∈ L2(R) such that the family of functions

ψj,k = 2j/2ψ(2jt− k)

where j and k are arbitrary integers, is an orthonormal basis in the Hilbert space L2(R).

Wavelets are widely used in many areas. This is due to their powerful properties, such as

orthogonality, localization in time and frequency, compact support, as well as availability of the fast

computational algorithms. Many scientists and researchers find the use of wavelets advantageous to

their purposes. Naturally, this statement can be justified only after working with wavelets on some

concrete problems. In this thesis, problems of classification, shrinkage/thresholding, and nano-scale

image analysis are addressed, with wavelets playing a crucial role in each of them.

This thesis is organized as follows.

Chapter I contains sections listing prerequisites. We state without proof well-known results on

Hilbert spaces, and Fourier transform, and give a more detailed introduction to wavelets. A reader

familiar with these concepts can skip this chapter and proceed directly to Chapters II-IV.

Chapter II introduces the wavelet-based generalized linear classifier. We show that under mild

conditions this classifier is consistent. The performance of the classifier is illustrated on simulated

data as well as on the “real” data from the paper making process and biological example.

In Chapter III, we propose two new approaches to wavelet shrinkage/thresholding based on testing

multiple hypotheses in the wavelet domain. New methods are compared to well-known thresholding
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techniques and applied to atomic force microscopy data.

In Chapter IV, a new method for the analaysis of the nano-scale images is proposed. The method

uses the Hough transform combined with wavelets to detect and analyze the linear structure formed

by an atomic lattice. The chapter briefly introduces the Hough transform, and after description of

the proposed method, shows its applications to simulated data as well as to nano-scale images of

the ZnS structures.

Appendix A lists all the definitions, lemmas, and theorems which were used in the proof of the

consistency in Chapter II.

Appendix B containts MATLAB codes of the Daubechies-Lagarias algorithm used in construction

of the wavelet-based generalized linear classifier.

Appendix C containts the manual for the MATLAB toolbox (NSIA) in which the method proposed

in Chapter IV is implemented.
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SUMMARY

Given the recent popularity and clear evidence of wide applicability of wavelets, this thesis

is devoted to several novel statistical applications of Wavelet transforms. Statistical multiscale mod-

eling has, in the most recent decade, become a well established area in both theoretical and applied

statistics, with impact on developments in statistical methodology.

Wavelet-based methods are important in statistics in areas such as regression, density and func-

tion estimation, factor analysis, modeling and forecasting in time series analysis, assessing self-

similarity and fractality in data, and spatial statistics. In this thesis we show applicability of the

wavelets by considering three problems.

• We consider a binary wavelet-based linear classifier. Both consistency results and implemen-

tal issues are addressed. We show that under mild assumptions wavelet-based classification

rule is both weakly and strongly universally consistent. The proposed method is illustrated on

synthetic data sets in which the “truth” is known and on applied classification problems from

the industrial and bioengineering fields.

• We develop wavelet shrinkage methodology based on testing multiple hypotheses in the

wavelet domain. The shrinkage/thresholding approach by implicit or explicit simultaneous

testing of many hypotheses had been considered by many researchers and goes back to the

early 1990’s. We propose two new approaches to wavelet shrinkage/thresholding based on

the local False Discovery Rate (FDR), Bayes factors and ordering of posterior probabilities.

• We propose a novel method for the analysis of straight-line alignment of features in the images

based on Hough and Wavelet transforms. The new method is designed to work specifically

with Transmission Electron Microscope (TEM) images taken at nanoscale to detect linear

structure formed by the atomic lattice.

xv



CHAPTER I

INTRODUCTION TO WAVELETS

1.1 Hilbert Spaces

In this chapter we state without proof well-known results on Hilbert spaces, and Fourier transform,

and give a more detailed introduction to wavelets. A reader familiar with these concepts can skip

this chapter and proceed directly to Chapters II-IV.

LetH be a linear space over either the real numbers R or the complex numbers C. An inner product

on H is a function 〈., .〉 from H×H into scalars such that

〈x, y〉 = 〈y, x〉

〈αx1 + βx2, y〉 = α〈x1, y〉+ β〈x2, y〉

〈x, x〉 ≥ 0

〈x, x〉 = 0 if and only if x = 0.

In such a situation the function ‖x‖ =
√
〈x, x〉 is a norm i.e. it satisfies

‖x + y‖ ≤ ‖x‖+ ‖y‖

‖αx‖ = |α|‖x‖

‖x‖ = 0 if and only if x = 0.

A linear space H equipped with an inner product is a Hilbert space if H is complete as a metric

space with the metric d(x, y) = ‖x− y‖.

There are two basic examples of Hilbert spaces. For any subset A ⊂ Rd, d = 1, 2, . . . , in particular

for the whole Rd or an interval in R, L2(A) is the space of all (equivalence classes of equal a.e.)

measurable functions such that

‖f‖2 :=
(∫

A
|f(x)|2

)1/2

< ∞.

The inner product is given by

〈f, g〉 :=
∫

A
f(x)g(x)dx.
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If B is a countable set then the space `2(B) is the space of all sequences (ab)b∈B indexed by the

set B such that

‖b‖2 :=

(∑

b∈B

|ab|2
)1/2

< ∞.

The inner product is given by

〈a, c〉 :=
∑

b∈B

abcb.

Two vectors x and y in a Hilbert space H are called orthogonal if 〈x, y〉 = 0. Two subsets A and B

of a Hilbert space H are orthogonal if 〈a, b〉 = 0 for all a ∈ A and b ∈ B. We denote this by A⊥B.

A system of non-zero vectors (xs)s∈S is called an orthogonal system if 〈xs, xs′〉 = 0 for s 6= s′. If

we have

〈xs, xs′〉 =





0 if s 6= s′

1 if s = s′

then the system is orthonormal. An orthonormal system (xs)s∈S is an orthonormal basis inH if one

of the following equivalent conditions holds:

• every x ∈ H can be written as a convergent series x =
∑

s∈S asxs for some scalars as

• if 〈x, xs〉 = 0 for all s ∈ S then x = 0

• for every x ∈ H the series
∑

s∈S〈x, xs〉xs converges to x.

If (xs)s∈S is an orthonormal basis in Hilbert space H then for any x ∈ H we have

‖x‖ =

(∑

s∈S

|〈x, xs〉|2
)1/2

.

Suppose that (Xs)s∈S is a system of closed linear subspaces of H which are pairwise orthog-

onal. If 0 is the only vector from H which is orthogonal to all Xs then each vector x ∈ H can

be written as x =
∑

s∈S xs with xs ∈ Xs. If we have two orthogonal subspaces X1 and X2 in

a Hilbert space H, then by X1
⊕

X2 we denote direct sum of X1 and X2, i.e. the subspace of H
consisting of all vectors x1 + x2 with xi ∈ Xi.
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1.2 Fourier Transform

Functional series have a long history that can be traced back to the early nineteenth century. French

mathematician (and politician) Jean-Baptiste-Joseph Fourier, decomposed a continuous, periodic

on [−π, π] function f(x) into the series od sines and cosines,

a0

2
+

∞∑

n=1

an cosnx + bn sinnx,

where the coefficients an and bn are defined as

an =
1
π

∫ π

−π
f(x) cosnx dx, n = 0, 1, 2, . . .

bn =
1
π

∫ π

−π
f(x) sinnx dx, n = 1, 2, . . . .

The sequences {an, n = 0, 1, . . . } and {bn, n = 1, 2, . . . } can be viewed as a transform of the

original function f . It is interesting that at the time of Fourier’s discovery the very notion of function

was not precisely defined. Fourier methods have long history in statistics especially in the theory of

nonparametric function and density estimation and characteristic functions.

Definition 2 The Fourier transformation of a function f ∈ L1(R) is defined by

f̂(ω) = F [f(x)] = 〈f(x), eiωx〉 =
∫

R
f(x)eiωxdx =

∫

R
f(x)e−iωxdx.

if f̂ ∈ L1(R) is the Fourier transformation of f ∈ L1(R), then

f(x) = F−1[f̂(ω)] =
1
2π

∫
f̂(ω)eiωxdω,

at every continuity point of f .

The function f̂(ω) is, in general, a complex function of the form f̂(ω) = |f̂(ω)|eiϕ(ω). The part

|f̂(ω)| is called the magnitude spectrum and the exponent ϕ(ω) is called the phase spectrum.

If f(x) is real, then

• f̂(−ω) = f̂(ω)

• |f̂(ω)| is an even function and ϕ(ω) is an odd function of ω.
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1.2.1 Basic Properties of the Fourier Transform

Boundedness. f̂ ∈ L∞(R), ‖f̂‖∞ ≤ ‖f‖1.

Uniform Continuity. f̂(ω) is uniformly continuous on −∞ < ω < ∞.

Decay. For f ∈ L1, f̂(ω) → 0, when |ω| → ∞, (Riemann-Lebesgue lemma).

Linearity. F [αf(x) + βg(x)] = αF [f(x)] + βF [g(x)].

Derivative. F [f (n)(x)] = (iω)nf̂(ω).

Plancherel’s Identity. 〈f, g〉 = 1
2π 〈f̂ , ĝ〉; If g = f one obtains Plancherel’s identity: ‖f‖2 =

1
2π‖f̂‖2.

Shifting. F [f(x− x0)] = e−iωx0 f̂(ω).

Scaling. F [f(ax)] = 1
|a| f̂

(
ω
a

)
.

Symmetry F [F [f(x)]] = 2πf(−x).

Convolution. The convolution of f and g is defined as f ∗ g(x) =
∫

f(x − t)g(t)dt. One of the

most important properties of Fourier transformation is F [f ∗ g(x)] = f̂(ω)ĝ(ω).

Modulation Theorem. From the symmetry property it follows that f(x)g(x) = 1
2πF (ω) ∗G(ω).

Moment Theorem. ∫

R
xnf(x)dx = (i)n dnf̂(ω)

dωn

∣∣∣∣∣
ω=0

.

1.2.2 Discrete Fourier Transform

The discrete Fourier transform (DFT) of a sequence f = {fn, n = 0, 1, . . . , N − 1} is defined as

F =

{
N−1∑

n=0

fnwnk
N , k = 0, . . . , N − 1

}
,

where wN = e−i2π/N . The inverse is
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f =

{
1
N

N−1∑

k=0

Fkw
−nk
N , n = 0, . . . , N − 1

}
.

The DFT can be interpreted as the multiplication of the input vector by a matrix; therefore, the

discrete Fourier transform is a linear operator. If Q = {Qnk = e−i2πnk}N×N , then F = Q · f . The

matrix Q is unitary (up to a scale factor), i.e., Q∗Q = NI, where I is the identity matrix and Q∗ is

the conjugate transpose of Q.

There are many uses of discrete Fourier transform in statistics. It turns cyclic convolutions into

component-wise multiplication, and the fast version of DFT has a low computational complexity

of O(n log(n)), meaning that the number of operations needed to transform an input of size n is

proportional to n log(n). For a theory and various other uses of DFT in various fields reader is

directed to Brigham [10].

1.3 Wavelets

Wavelet theory has developed into a methodology that is used in a range of disciplines, including

mathematics, physics, geophysics, astronomy, signal processing, statistics, and a number of applied

fields. Wavelets provide a rich source of already indispensable and intriguing tools for “time-scale”

applications. The success of wavelets is attributed to their low computational complexity, good lo-

cality and adaptivity, and potential to incorporate prior information about the phenomena. Hence,

wavelets are natural tools in modeling complex data structures and multiscale phenomena consid-

ered in this project. Wavelet-based methods have also proved to be very advantageous for applica-

tion to various theoretical statistical problems such as regression, probability density estimation or

inverse problems.

Wavelets and wavelet-like decompositions are well suited for analysis of non-stationary and

non-isotropic phenomena. They are capable of “zooming-in” and exploring local features at various

scales of interest. An additional feature of multiscale methods is that they are “friendly” towards

large data sets. In fact, fast filtering algorithms needed to perform wavelet transform exceed in

speed classical fast fourier transforms (FFT) and have a calculational complexity of O(n).
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1.3.1 A Case Study

We start first with a statistical application of wavelet transforms. This example emphasizes speci-

ficity of wavelet-based denoising not shared by standard state-of-art denoising techniques.

A researcher in geology was interested in predicting earthquakes by the level of water in nearby

wells. She had a large (8192 = 213 measurements) data set of water levels taken every hour in a

period of time of about one year in a California well. Here is the description of the problem.

The ability of water wells to act as strain meters has been observed for centuries. The Chinese, for

example, have records of water flowing from wells prior to earthquakes. Lab studies indicate that a seismic

slip occurs along a fault prior to rupture. Recent work has attempted to quantify this response, in an effort

to use water wells as sensitive indicators of volumetric strain. If this is possible, water wells could aid in

earthquake prediction by sensing precursory earthquake strain.

We have water level records from six wells in southern California, collected over a six year time span.

At least 13 moderate size earthquakes (magnitude 4.0 - 6.0) occurred in close proximity to the wells during

this time interval. There is a a significant amount of noise in the water level record which must first be

filtered out. Environmental factors such as earth tides and atmospheric pressure create noise with frequencies

ranging from seasonal to semidiurnal. The amount of rainfall also affects the water level, as do surface

loading, pumping, recharge (such as an increase in water level due to irrigation), and sonic booms, to name

a few. Once the noise is subtracted from the signal, the record can be analyzed for changes in water level,

either an increase or a decrease depending upon whether the aquifer is experiencing a tensile or compressional

volume strain, just prior to an earthquake.

A plot of the raw data for hourly measurements over one year (8192 = 213 observations) is

given in Figure 1a, with a close-up in panel b. After applying the wavelet transform and further

processing the wavelet coefficients (thresholding), we obtained a fairly clean signal with a big jump

at the earthquake time. The wavelet-denoised data are given in Figure 1d. The magnitude of the

water level change at the earthquake time did not get distorted in contrast to traditional smoothing

techniques. This local adaptivity is a desirable feature of wavelet methods.

For example, Figure 1c, is denoised signal after applying supsmo smoothing procedure. Note

that the earthquake jump is smoothed, as well.
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Figure 1: Panel (a) shows n = 8192 hourly measurements of the water level for a well in an
earthquake zone. Notice the wide range of water levels at the time of an earthquake
around t = 417. Panel (b) focusses on the data around the earthquake time. Panel
(c) demonstrates action of a standard smoother supsmo, and (d) gives a wavelet
based reconstruction.

1.3.2 Multiresolution Analysis

Fundamental for construction of critically sampled orthogonal wavelets is a notion of multiresolu-

tion analysis introduced by Mallat ([45], [46]) A multiresolution analysis (MRA) is a sequence of

closed subspaces Vn, n ∈ Z in L2(R) such that they lie in a containment hierarchy

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · . (1)

The nested spaces have an intersection that contains only the zero function and a union that contains

all square integrable functions.
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∩nVj = {0}, ∪jVj = L2(R).

[With A we denoted the closure of a set A]. The hierarchy (1) is constructed such that V -spaces are

self-similar,

f(2jx) ∈ Vj iff f(x) ∈ V0. (2)

with the requirement that there exists a scaling function φ ∈ V0 whose integer-translates span the

space V0,

V0 =

{
f ∈ L2(R)| f(x) =

∑

k

ckφ(x− k)

}
,

and for which the family {φ(• − k), k ∈ Z} is an orthonormal basis. It can be assumed that
∫

φ(x)dx ≥ 0. With this assumption this integral is in fact equal to 1. Because of containment

V0 ⊂ V1, the function φ(x) ∈ V0 can be represented as a linear combination of functions from V1,

i.e.,

φ(x) =
∑

k∈Z
hk

√
2φ(2x− k), (3)

for some coefficients hk, k ∈ Z. This equation called the scaling equation (or two-scale equation)

is fundamental in constructing, exploring, and utilizing wavelets.

Theorem 1 For the scaling function it holds

∫

R
φ(x)dx = 1,

or, equivalently,

Φ(0) = 1,

where Φ(ω) is Fourier transform of φ,
∫
R φ(x)e−iωxdx.
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The coefficients hn in (3) are important in efficient application of wavelet transforms. The

(possibly infinite) vector h = {hn, n ∈ Z}will be called a wavelet filter. It is a low-pass (averaging)

filter as will become clear later by its analysis in the Fourier domain.

To further explore properties of multiresolution analysis subspaces and their bases, we will often

work in the Fourier domain.

It will be convenient to use Fourier domain for subsequent analysis of wavelet paradigm. Define

the function m0 as follows:

m0(ω) =
1√
2

∑

k∈Z
hke

−ikω =
1√
2
H(ω). (4)

The function in (4) is sometimes called the transfer function and it describes the behavior of the

associated filter h in the Fourier domain. Notice that the function m0 is 2π-periodic and that filter

taps {hn, n ∈ Z} are in fact the Fourier coefficients in the Fourier serias of H(ω) =
√

2 m0(ω).

In the Fourier domain, the relation (3) becomes

Φ(ω) = m0

(ω

2

)
Φ

(ω

2

)
, (5)

where Φ(ω) is the Fourier transform of φ(x). Indeed,

Φ(ω) =
∫ ∞

−∞
φ(x)e−iωxdx

=
∑

k

√
2 hk

∫ ∞

−∞
φ(2x− k)e−iωxdx

=
∑

k

hk√
2
e−ikω/2

∫ ∞

−∞
φ(2x− k)e−i(2x−k)ω/2d(2x− k)

=
∑

k

hk√
2
e−ikω/2 Φ

(ω

2

)

= m0

(ω

2

)
Φ

(ω

2

)
.

By iterating (5), one gets

Φ(ω) =
∞∏

n=1

m0

( ω

2n

)
, (6)
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which is convergent under very mild conditions concerning the rates of decay of the scaling function

φ.

Next, we prove two important properties of wavelet filters associated with an orthogonal mul-

tiresolution analysis, normalization and orthogonality.

Normalization.

∑

k∈Z
hk =

√
2. (7)

Proof:

∫
φ(x)dx =

√
2

∑

k

hk

∫
φ(2x− k)dx

=
√

2
∑

k

hk
1
2

∫
φ(2x− k)d(2x− k)

=
√

2
2

∑

k

hk

∫
φ(x)dx.

Since
∫

φ(x)dx 6= 0 by assumption, (7) follows.

This result also follows from m0(0) = 1.

Orthogonality. For any l ∈ Z,

∑

k

hkhk−2l = δl. (8)

Proof: Notice first that from the scaling equation (3) it follows that

φ(x)φ(x− l) =
√

2
∑

k

hkφ(2x− k)φ(x− l) (9)

=
√

2
∑

k

hkφ(2x− k)
√

2
∑
m

hmφ(2(x− l)−m).

By integrating the both sides in (9) we obtain
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δl = 2
∑

k

hk

[∑
m

hm
1
2

∫
φ(2x− k)φ(2x− 2l −m) d(2x)

]

=
∑

k

∑
m

hkhmδk,2l+m

=
∑

k

hkhk−2l.

The last line is obtained by taking k = 2l + m.

An important special case is l = 0 for which (8) becomes

∑

k

h2
k = 1. (10)

The fact that the system {φ(• − k), k ∈ Z} constitutes an orthonormal basis for V0 can be

expressed in the Fourier domain in terms of either Φ(ω) or m0(ω).

In terms of Φ(ω),

∞∑

l=−∞
|Φ(ω + 2πl)|2 = 1. (11)

From the Plancherel identity and the 2π-periodicity of eiωk it follows

δk =
∫

R
φ(x)φ(x− k)dx

=
1
2π

∫

R
Φ(ω)Φ(ω)eiωkdω

=
1
2π

∫ 2π

0

∞∑

l=−∞
|Φ(ω + 2πl)|2eiωkdω. (12)

The last line in (12) is the Fourier coefficient ak in the Fourier series decomposition of

f(ω) =
∞∑

l=−∞
|Φ(ω + 2πl)|2.

Due to the uniqueness of Fourier representation, f(ω) = 1. As a side result, we obtain that

Φ(2πn) = 0, n 6= 0, and
∑

n φ(x − n) = 1. The last result follows from inspection of coeffi-

cients ck in the Fourier decomposition of
∑

n φ(x− n), the series
∑

k cke
2πikx. As this function is

11



1-periodic,

ck =
∫ 1

0

(∑
n

φ(x− n)

)
e−2πikxdx =

∫ ∞

−∞
φ(x)e−2πikxdx = Φ(2πk) = δ0,k.

Remark 1 Utilizing the identity (11), any set of independent functions spanning V0, {φ(x−k), k ∈
Z}, can be orthogonalized in the Fourier domain. The orthonormal basis is generated by integer-

shifts of the function

F−1


 Φ(ω)√∑∞

l=−∞ |Φ(ω + 2πl)|2


 . (13)

This normalization in the Fourier domain is used in constructing of some wavelet bases.

(b) In terms of m0 :

|m0(ω)|2 + |m0(ω + π)|2 = 1. (14)

Since
∑∞

l=−∞ |Φ(2ω + 2lπ)|2 = 1, then by (5)

∞∑

l=−∞
|m0(ω + lπ)|2|Φ(ω + lπ)|2 = 1. (15)

Now split the sum in (15) into two sums – one with odd and the other with even indices, i.e.,

1 =
∞∑

k=−∞
|m0(ω + 2kπ)|2|Φ(ω + 2kπ)|2 +

∞∑

k=−∞
|m0(ω + (2k + 1)π)|2|Φ(ω + (2k + 1)π)|2.

To simplify the above expression, we use relation (11) and the 2π-periodicity of m0(ω).

1 = |m0(ω)|2
∞∑

k=−∞
|Φ(ω + 2kπ)|2 + |m0(ω + π)|2

∞∑

k=−∞
|Φ((ω + π) + 2kπ)|2

= |m0(ω)|2 + |m0(ω + π)|2.
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Whenever a sequence of subspaces satisfies MRA properties, there exists (though not unique)

an orthonormal basis for L2(R),

{ψjk(x) = 2j/2ψ(2jx− k), j, k ∈ Z} (16)

such that {ψjk(x), j-fixed, k ∈ Z} is an orthonormal basis of the “difference space” Wj = Vj+1ª
Vj . The function ψ(x) = ψ00(x) is called a wavelet function or informally the mother wavelet.

Next, we discuss the derivation of a wavelet function from the scaling function. Since ψ(x) ∈ V1

(because of the containment W0 ⊂ V1), it can be represented as

ψ(x) =
∑

k∈Z
gk

√
2φ(2x− k), (17)

for some coefficients gk, k ∈ Z.

Define

m1(ω) =
1√
2

∑

k

gke
−ikω. (18)

By mimicking what was done with m0, we obtain the Fourier counterpart of (17),

Ψ(ω) = m1(
ω

2
)Φ(

ω

2
). (19)

The spaces W0 and V0 are orthogonal by construction. Therefore,

0 =
∫

ψ(x)φ(x− k)dx =
1
2π

∫
Ψ(ω)Φ(ω)eiωkdω

=
1
2π

∫ 2π

0

∞∑

l=−∞
Ψ(ω + 2lπ)Φ(ω + 2lπ)eiωkdω.

By repeating the Fourier series argument, as in (11), we conclude
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∞∑

l=−∞
Ψ(ω + 2lπ)Φ(ω + 2lπ) = 0.

By taking into account the definitions of m0 and m1, and by the derivation as in (14), we find

m1(ω)m0(ω) + m1(ω + π)m0(ω + π) = 0. (20)

From (20), we conclude that there exists a function λ(ω) such that

(m1(ω), m1(ω + π) ) = λ(ω)
(
m0(ω + π), −m0(ω)

)
. (21)

By substituting ξ = ω + π and by using the 2π-periodicity of m0 and m1, we conclude that

λ(ω) = −λ(ω + π), and (22)

λ(ω) is 2π-periodic.

Any function λ(ω) of the form e±iωS(2ω), where S is an L2([0, 2π]), 2π-periodic function, will

satisfy (20); however, only the functions for which |λ(ω)| = 1 will define an orthogonal basis ψjk

of L2(R).

To summarize, we choose λ(ω) such that

(i) λ(ω) is 2π-periodic,

(ii) λ(ω) = −λ(ω + π), and

(iii) |λ(ω)|2 = 1.

Standard choices for λ(ω) are −e−iω, e−iω, and eiω; however, any other function satisfying

(i)-(iii) will generate a valid m1. We choose to define m1(ω) as

m1(ω) = −e−iωm0(ω + π). (23)
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since it leads to a convenient and standard connection between the filters h and g.

The form of m1 and the equation (11) imply that {ψ(• − k), k ∈ Z} is an orthonormal basis

for W0.

Since |m1(ω)| = |m0(ω + π)|, the orthogonality condition (14) can be rewritten as

|m0(ω)|2 + |m1(ω)|2 = 1. (24)

By comparing the definition of m1 in (18) with

m1(ω) = −e−iω 1√
2

∑

k

hke
i(ω+π)k

=
1√
2

∑

k

(−1)1−khke
−iω(1−k)

=
1√
2

∑
n

(−1)nh1−ne−iωn,

we relate gn and hn as

gn = (−1)n h1−n. (25)

In signal processing literature, the relation (25) is known as the quadrature mirror relation and the

filters h and g as quadrature mirror filters.

Remark 2 Choosing λ(ω) = eiω leads to the rarely used high-pass filter gn = (−1)n−1 h−1−n. It

is convenient to define gn as (−1)nh1−n+M , where M is a “shift constant.” Such re-indexing of g

affects only the shift-location of the wavelet function.

1.3.3 Haar Wavelets

In addition to their simplicity and formidable applicability, Haar wavelets have tremendous educa-

tional value. Here we illustrate some of the relations discussed in the Section 1.3.2 using the Haar

wavelet. We start with scaling function φ(x) = 1(0 ≤ x ≤ 1) and pretend that everything else is
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unknown. By inspection of simple graphs of two scaled Haar wavelets φ(2x) and φ(2x + 1) stuck

to each other, we conclude that the scaling equation (3) is

φ(x) = φ(2x) + φ(2x− 1)

=
1√
2

√
2φ(2x) +

1√
2

√
2φ(2x− 1), (26)

which yields the wavelet filter coefficients:

h0 = h1 =
1√
2
.

The transfer functions are

m0(ω) =
1√
2

(
1√
2
e−iω0

)
+

1√
2

(
1√
2
e−iω1

)
=

1 + e−iω

2
.

and

m1(ω) = −e−iω m0(ω + π) = −e−iω

(
1
2
− 1

2
eiω

)
=

1− e−iω

2
.

Notice that m0(ω) = |m0(ω)|eiϕ(ω) = cos ω
2 · e−iω/2 (after cosx = eix+e−ix

2 ). Since ϕ(ω) = −ω
2 ,

the Haar wavelet has linear phase, i.e., the scaling function is symmetric in the time domain. The

orthogonality condition |m0(ω)|2 + |m1(ω)|2 = 1 is easily verified, as well.

Relation (19) becomes

Ψ(ω) =
1− e−iω/2

2
Φ

(ω

2

)
=

1
2
Φ

(ω

2

)
− 1

2
Φ

(ω

2

)
e−iω/2,

and by applying the inverse Fourier transform we obtain

ψ(x) = φ(2x)− φ(2x− 1)
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in the time-domain. Therefore we “have found” the Haar wavelet function ψ. From the expression

for m1 or by inspecting the representation of ψ(x) by φ(2x) and φ(2x − 1), we “conclude” that

g0 = −g−1 = 1√
2
.

Although the Haar wavelets are well localized in the time domain, in the frequency domain they

decay at the slow rate of O( 1
n) and are not effective in approximating smooth functions.

1.3.4 Daubechies’ Wavelets

The most important family of wavelets was discovered by Ingrid Daubechies and fully described in

Daubechies [17]. This family is compactly supported with various degrees of smoothness.

The formal derivation of Daubechies’ wavelets goes beyond the scope of this chapter, but the

filter coefficients of some of its family members can be found by following considerations.

For example, to derive the filter taps of a wavelet with N vanishing moments, or equivalently,

2N filter taps, we use the following equations.

The normalization property of scaling function implies

2N−1∑

i=0

hi =
√

2,

requirement for vanishing moments for wavelet function ψ leads to

2N−1∑

i=0

(−1)iikhi = 0, k = 0, 1, . . . , N − 1,

and, finally, the orthogonality property can be expressed as

2N−1∑

i=0

hihi+2k = δk k = 0, 1, . . . , N − 1.

We obtained 2N + 1 equations with 2N unknowns; however the system is solvable since the

equations are not linearly independent.

Example 1 For N = 2, we obtain the system:




h0 + h1 + h2 + h3 =
√

2

h2
0 + h2

1 + h2
2 + h2

3 = 1

−h1 + 2h2 − 3h3 = 0 ,

h0 h2 + h1 h3 = 0
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which has a solution h0 = 1+
√

3
4
√

2
, h1 = 3+

√
3

4
√

2
, h2 = 3−√3

4
√

2
, and h3 = 1−√3

4
√

2
.

For N = 4, the system is




h0 + h1 + h2 + h3 + h4 + h5 + h6 + h7 =
√

2

h2
0 + h2

1 + h2
2 + h2

3 + h2
4 + h2

5 + h2
6 + h2

7 = 1

h0 − h1 + h2 − h3 + h4 − h5 + h6 − h7 = 0

h0h2 + h1h3 + h2h4 + h3h5 + h4h6 + h5h7 = 0

h0h4 + h1h5 + h2h6 + h3h7 = 0

h0h6 + h1h7 = 0

0h0 − 1h1 + 2h2 − 3h3 + 4h4 − 5h5 + 6h6 − 7h7 = 0

0h0 − 1h1 + 4h2 − 9h3 + 16h4 − 25h5 + 36h6 − 49h7 = 0

0h0 − 1h1 + 8h2 − 27h3 + 64h4 − 125h5 + 216h6 − 343h7 = 0.

Figure 2 depicts two scaling function and wavelet pairs from the Daubechies family. Panels (a)

and (b) depict the pair with two vanishing moments, while panels (c) and (d) depict the pair with

four vanishing moments.

1.3.5 Discrete Wavelet Transforms

Discrete wavelet transforms (DWT) are applied to discrete data sets and produce discrete outputs.

Transforming signals and data vectors by DWT is a process that resembles the fast Fourier transform

(FFT), the Fourier method applied to a set of discrete measurements.

Table 1: The analogy between Fourier and wavelet methods
Fourier Fourier Fourier Discrete
Methods Integrals Series Fourier Transforms
Wavelet Continuous Wavelet Discrete
Methods Wavelet Transforms Series Wavelet Transforms

The analogy between Fourier and wavelet methods is even more complete (Table 1) when we

take into account the continuous wavelet transform and wavelet series expansions.

Discrete wavelet transforms map data from the time domain (the original or input data vector) to

the wavelet domain. The result is a vector of the same size. Wavelet transforms are linear and they

can be defined by matrices of dimension n × n if they are applied to inputs of size n. Depending
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Figure 2: Wavelet functions from Daubechies family. (a) Daubechies scaling function, 2
vanishing moments, 4 tap filter (b) Wavelet function corresponding to (a),(c)
Daubechies scaling function, 4 vanishing moments, 8 tap filter (d) Wavelet function
corresponding to (c)

on boundary conditions, such matrices can be either orthogonal or “close” to orthogonal. When the

matrix is orthogonal, the corresponding transform is a rotation in Rn in which the data (a n-typle)

is a point in Rn. The coordinates of the point in the rotated space comprise the discrete wavelet

transform of the original coordinates. Here we provide two toy examples.

Example 2 Let the vector be (1, 2) and let M(1, 2) be the point in R2 with coordinates given by

the data vector. The rotation of the coordinate axes by an angle of π
4 can be interpreted as a DWT

in the Haar wavelet basis. The rotation matrix is

W =




cos π
4 sin π

4

cos π
4 − sin π

4


 =




1√
2

1√
2

1√
2

− 1√
2


 ,

and the discrete wavelet transform of (1, 2)′ is W · (1, 2)′ = ( 3√
2
,− 1√

2
)′. Notice that the energy

(squared distance of the point from the origin) is preserved, 12 + 22 = (1
2)2 + (

√
3

2 )2, since W is a
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Figure 3: A function interpolating y on [0,8).

rotation.

Example 3 Let y = (1, 0,−3, 2, 1, 0, 1, 2). The associated function f is given in Figure 3. The

values f(n) = yn, n = 0, 1, . . . , 7 are interpolated by a piecewise constant function. We assume

that f belongs to Haar’s multiresolution space V0.

The following matrix equation gives the connection between y and the wavelet coefficients (data

in the wavelet domain).




1

0

−3

2

1

0

1

2




=




1
2
√

2
1

2
√

2
1
2 0 1√

2
0 0 0

1
2
√

2
1

2
√

2
1
2 0 − 1√

2
0 0 0

1
2
√

2
1

2
√

2
−1

2 0 0 1√
2

0 0

1
2
√

2
1

2
√

2
−1

2 0 0 − 1√
2

0 0

1
2
√

2
− 1

2
√

2
0 1

2 0 0 1√
2

0

1
2
√

2
− 1

2
√

2
0 1

2 0 0 − 1√
2

0

1
2
√

2
− 1

2
√

2
0 −1

2 0 0 0 1√
2

1
2
√

2
− 1

2
√

2
0 −1

2 0 0 0 − 1√
2




·




c00

d00

d10

d11

d20

d21

d22

d23




.
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The solution is 


c00

d00

d10

d11

d20

d21

d22

d23




=




√
2

−√2

1

−1

1√
2

− 5√
2

1√
2

− 1√
2




.

Thus,

f =
√

2φ−3,0 −
√

2ψ−3,0 + ψ−2,0 − ψ−2,1

+
1√
2
ψ−1,0 − 5√

2
ψ−1,1 +

1√
2
ψ−1,2 − 1√

2
ψ−1,3. (27)

The solution is easy to verify. For example, when x ∈ [0, 1),

f(x) =
√

2 · 1
2
√

2
−
√

2 · 1
2
√

2
+ 1 · 1

2
+

1√
2
· 1√

2
= 1/2 + 1/2 = 1 (= y0).

Applying wavelet transforms by multiplying the input vector with an appropriate orthogonal

matrix is conceptually straightforward task, but of limited practical value. Storing and manipulating

the transformation matrices for long inputs (n > 2000) may not even be feasible.

This obstacle is solved by the link of discrete wavelet transforms with fast filtering algorithms

from the field of signal and image processing.

1.3.6 Nondecimated Wavelet Transform

An important development in the statistical context has been the routine use of the nondecimated

wavelet transform (NDWT), also called the stationary or translation-invariant wavelet transform.

See, for example Nason and Silverman [55].

The NDWT is obtained by modifying the Mallat DWT algorithm: at each stage, no decimation

takes place but instead the filters are padded out with alternate zeroes to double their length. The
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effect (roughly speaking, depending on boundary conditions) is to yield an overdetermined trans-

form with n coefficients at each of log 2n levels. The transform contains the standard DWT for

every possible choice of time origin. Since the NDWT is no longer (1–1), it does not have a unique

inverse, but the DWT algorithm is easily modified to yield the average basis inverse (Coifman and

Donoho [15]), which gives the average of the DWT reconstructions over all choices of time origin.

Both the NDWT and the average basis reconstruction are O(n log n) algorithms.

1.3.7 Directional Wavelet Transforms

Definition 3 A wavelet ψ is said to be directional if and only if its Fourier transform is strictly

supported in a convex cone with apex at the origin.

Example 4 (Cauchy Wavelets) Let C be the cone defined by the angles α and β and let α̃ =

α + π/2, β̃ = β − π/2. The Cauchy wavelet is defined by

ψ̂C
l,m(~ω) =





(
~ω ·~1α̃

)l (
~ω ·~1β̃

)m
e−~ω·~η, if ~ω ∈ C

0, otherwise

where l, m ∈ N, ~1α stands for the unit vector in the direction α and ~η is a vector in the cone defined

by the angles α̃ and β̃

Example 5 (Gabor or Morlet Wavelets) Let ~ω0 be a fixed frequency vector. The 2-D Morlet wavelet

is defined by

ψ̂(~ω) = e−‖~ω−~ω0‖2 .

For more information and reference on directional wavelets we direct the reader to Vandergheynst [71].

1.3.8 Daubechies–Lagarias Algorithm

A challenge in exhibiting a wavelet-based classificator is computational. Namely, except for the

Haar wavelet, all compactly supported orthonormal families of wavelets (e.g., Daubechies, Symm-

let, Coiflet, etc.) scaling and wavelet functions have no closed form. A non-elegant solution is to

have values of the mother and father wavelet given in a table. Evaluation of φjk(x) or ψjk(x), for

given x, then can be performed by interpolating the table values.
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(a) (b)

Figure 4: a) The Cauchy wavelet in frequency plane, with support in the cone C =
C(−π/6, π/6). b) The Morlet wavelet in frequency plane.

Based on Daubechies and Lagarias ([18], [19]) local pyramidal algorithm a solution is proposed.

A brief theoretical description and MATLAB program are provided.

Let φ be the scaling function of a compactly supported wavelet generating an orthogonal MRA.

Suppose the support of φ is [0, N ]. Let x ∈ (0, 1), and let dyad(x) = {d1, d2, . . . , dn, . . . } be the

set of 0-1 digits in dyadic representation of x (x =
∑∞

j=1 dj2−j). By dyad(x, n) we denote the

subset of the first n digits from dyad(x), i.e., dyad(x, n) = {d1, d2, . . . , dn}.
Let h = (h0, h1, . . . , hN ) be the vector of wavelet filter coefficients. Define two N×N matrices

as

T0 =
√

2(h2i−j−1)1≤i,j≤N , and T1 =
√

2(h2i−j)1≤i,j≤N . (28)

Then

Theorem 2 (Daubechies and Lagarias)

lim
n→∞Td1 · Td2 · · · · · Tdn =




φ(x) φ(x) . . . φ(x)

φ(x + 1) φ(x + 1) . . . φ(x + 1)
...

φ(x + N − 1) φ(x + N − 1) . . . φ(x + N − 1)




. (29)
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The convergence of ||Td1 ·Td2 ·· · ··Tdn−Td1 ·Td2 ·· · ··Tdn+m || to zero, for fixed m, is exponential

and constructive, i.e., effective bounds, that decrease exponentially to 0, can be established.

Example: Consider the DAUB 2 wavelet basis (N = 3). The corresponding filter is (1+
√

3
4
√

2
, 3−√3

4
√

2
,

3+
√

3
4
√

2
, 1−√3

4
√

2
). According to (28) the matrices T0 and T1 are given as:

T0 =




1+
√

3
4 0 0

3−√3
4

3+
√

3
4

1+
√

3
4

0 1−√3
4

3−√3
4




, and T1 =




3+
√

3
4

1+
√

3
4 0

1−√3
4

3−√3
4

3+
√

3
4

0 0 1−√3
4




.

If, for instance, x = 0.45, then dyad(0.45, 20) = { 0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0,

0, 1, 1 }. The values φ(0.45), φ(1.45), and φ(2.45) are calculated as

∏

i∈dyad(0.45,20)

Ti =




0.86480582 0.86480459 0.86480336

0.08641418 0.08641568 0.08641719

0.04878000 0.04877973 0.04877945




.

By using the so-called two-scale equations, it is possible to give an algorithm for calculating

values of the mother wavelet, the function ψjk, see Vidakovic [73]. For our purposes direct calcu-

lation of wavelet coefficients is unnecessary since, having scaling coefficients at some level J , all

wavelet coefficients at coarser levels can be obtained utilizing Mallat’s algorithm. MATLAB codes

are available in the Appendix.

1.3.9 Wavelets in Statistics

Wavelets found application in a remarkable diversity of disciplines: mathematics, physics, numeri-

cal analysis, signal and image processing, and many others. In this section we will briefly describe

some of the application of wavelets in statistics.

Denoising/Shrinkage Consider the following model

yi = fi + εi i = 1, . . . , n,

where yi is the observed data, fi is the unknown signal and ε is the random noise. Wavelet

shrinkage usually refers to the reconstruction of the unknown signal f obtained from the
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shrunk wavelet coefficients. Shrinking and truncating the data directly or the coefficients

in their Fourier series expansions is an old technique in signal and image processing. For

non-local bases, such as trigonometric, shrinking the coefficients can affect the global shape

of the reconstructed function and introduce unwanted artifact. In the context of function

estimation by wavelets, the shrinkage has an additional feature; it is connected with smoothing

(denosing) because the measures of smoothness of a function depend on the magnitudes of

its wavelet coefficients.

The two most common thresholding methods are hard and soft. The analytic expression for

the hard and soft thresholding rules are

δh(d, λ) = d1(|d| > λ) λ ≥ 0, d ∈ R,

and

δs(d, λ) = (d− sign(d) · λ)1(|d| > λ)

= sign(d)(|d| − λ)+ λ ≥ 0, d ∈ R,

respectively. The rules are illustrated in Figure 5.
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Figure 5: a) Hard and b) Soft thresholding rules for λ = 1.

One of the simples choices of threshold is the universal threshold, proposed by Donoho and
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Johnstone [22]

λun = σ
√

2 log(n)/
√

n

with σ replaced by a suitable estimate σ̂ derived from the data when σ is unknown.

Literature is rich with various shrinkage methods based on wavelets. Brief overview of the

various methods can be found in Chapter 6 in Vidakovic [73]. In Chapter 3 of this thesis we

propose two new methods of shrinkage, based on the testing of multiple hypothesis.

Density estimation Given the realization X1, X2, . . . , Xn of a random variable X with an un-

known density function f , it is of interest to estimate f . An automatic approximation to f is

the empirical “density” fe(x) = 1
n

∑n
i=1 δ(x − Xi). It is easy to see that fe is an unbiased

estimator of f since IEfe(x) = δ ∗ f = f . However, for an absolutely continuous underling

distribution, the estimator fe is a poor choice. It is not smooth, moreover, it is even not a

function. For these reasons, different estimators have been proposed. The density estimation

has a long history and many solutions. The local nature of wavelets functions promises su-

periority over projection estimators that use classical orthonormal bases (Fourier, Haar, etc.)

The wavelet estimators are simple, well-localized in space/frequency, and share a variety of

optimality properties. We refer reader to Chapter 7 in Vidakovic [73], for detailed information

on various method of density estimation using wavelets.

Inverse problems (See Abramovich, Bailey and Sapatinas [1]) Some interesting scientific applica-

tions involve indirect noisy measurements. For example, the primary interest might be in a

function g, but the data are only accessible from some linear transformation Kg and, in addi-

tion, are corrupted by noise. In this case, the estimation of g from indirect noisy observations

y = (y1, . . . , yn)′ is often referred to in statistics as a linear inverse problem. Such linear

inverse problems arise in a wide variety of scientific settings with different types of trans-

formations K. Examples include applications in estimating financial derivatives, in medical

imaging(the Radon transform), in magnetic resonance imaging (the Fourier transform) and in

spectroscopy (convolutional transformations). Typically such problems are referred to as ill

posed when naive estimate of g obtained from the inverse transform K−1 applied to an esti-

mate of Kg fails to produce reasonable results because K−1 is an unbounded linear operator
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and the presence of even small amount of noise in the data ‘blow up’ when the straightfor-

ward inversion estimate is used. Wavelets and wavelet-like decomposition provide solution

for the inverse problem. For more information please refer to the work of Abramovich and

Silverman [4]

Changepoint problems (See Abramovich, Bailey and Sapatinas [1]) The good time-frequency lo-

calization of wavelets provides a natural motivation for their use in changepoint problems.

Here the main goal is the estimation of the number, locations and size of a function’s abrupt

changes, such as sharp spikes or jumps. Changepoint models are used in a wide set of prac-

tical problems in quality control, medicine, economics and physical sciences. The detection

of edges and the location of sharp contrast in digital pictures in signal processing and image

analysis is also fall within the general changepoint problem framework (see, for example,

Mallat and Hwang [48] and Ogden [59]).

The general idea used to detect a function’s abrupt changes through a wavelet approach is

based on the connection between the function’s local regularity properties at a certain point

and the rate of the decay of the wavelet coefficients near this point across increasing resolution

levels (see, for example Daubechies [17] section 2.9, and Mallat and Hwang [48]). Local

singularities are identified by ‘unusual’ behavior in the wavelet coefficient at high resolution

levels at the corresponding locations. Such ideas are discussed in more detail in, for example,

Wang [75] and Raimondo [65]. Bailey et al. [9] have provided an example of related work in

detecting transient underwater sound signals.

Antoniadis and Gijbels [7] also proposed an ‘indirect’ wavelet-based method for detecting

and locating changepoints before curve fitting. Conventional function estimation techniques

are then used on each identified segment to recover overall curve. They have shown that,

provided that discontinuities can be detected and located with sufficient accuracy, detection

followed by wavelet smoothing enjoys optimal rates of convergence.

Bayesian approaches using wavelets have also been suggested for estimation the locations and

magnitudes of a function’s changepoints and are discussed by Richwine [66] and Ogden and

Lynch [60]. These place a prior distribution on a changepoint and then examine the posterior
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distribution of the changepoint given the estimated wavelet coefficients.

Time series analysis (See, Vidakovic [73] Chapter 9 and Abramovich, Bailey and Sapatinas [1])

The chief motivation for modeling a time series is the need for forecasting. To that tend,

an analysis of time series can be performed in the time domain as well as in the frequency

domain. Wavelets provide additional insight in the analysis of time series via scale analysis.

The notion of frequency in Fourier analysis can be related to the notion of scale in multiscale

analysis; and often Fourier-based tools for exploring time series have their wavelet counter-

parts (for instance, wavelet spectra, wavelet periodogram, and scalogram). Self-similarity

properties of some processes, such as fractional Brownian motion or ARIMA, can be well

described by wavelet methods.

• Spectral density estimation for stationary processes. Consider a real-valued, stationary,

Gaussian random process Y1, Y2, . . . with zero mean and covariance function R(j) =

cov(Yk, Yk+1). An important tool in the analysis of such process is its spectral density

(or power spectrum function) f(ω), which is the Fourier transform of the covariance

function R(j):

f(ω) = R(0) + 2
∞∑

j=0

R(j) cos(2πjω). (30)

Given n observations y1, . . . , yn, the sample estimator of the spectral density is the

sample spectrum or periodogram I(ω). This is essentially the square of the discrete

Fourier transform of the data and it is typically computed at the ‘fundamental’ frequen-

cies ωj = j/n, j = 0, . . . , n/2, in which case

I(ωj) =
1
n

∣∣∣∣∣
n∑

k=1

exp−2iπ(k − 1)ωj

∣∣∣∣∣
2

, ωj = j/n, j = 0, . . . , n/2.

I(ω) is an asymptotically unbiased estimate of f(ω), but it is not a consistent estimate

and it is usually suggested that the periodogram should be smoothed to estimate spectral

density.

The conventional smoothing is based on kernel estimation, but wavelet-based techniques

can also be used for estimating log(f(ω)) from log(I(ω)). Moulin [53] and Gao [30]
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proposed wavelet shrinkage procedures for estimating log(f(ω)), and then exponen-

tiating to obtain an estimate of f(ω). Please see Vidakovic [73] Chapter 9 for more

details.

• Wavelet Analysis of non-stationary processes. The conventional theory of spectral analy-

sis discussed above applies only to stationary processes. The spectral characteristics of

non-stationary processes change over time, so these precesses do not have a spectral

density as defined through equation (30). Instead, it is natural to consider the evolution

of their spectral properties in time. Owning to their localization in both the time and

the frequency, or scale or resolution domains, wavelets are a natural choice for this pur-

pose. Recently, there has been growing interest in wavelets analysis of non-stationary

processes, particularly in so-called ‘locally stationary’ processes (see, for example, Neu-

mann [57], von Sachs and Shneider [68], Neumann and von Sachs [58], and Nason et

al. [56]).

By analogy with the periodogram which is the square of the discrete Fourier transform

of the data, we can define a wavelet periodogram as the square of the DWT of the data

(in fact, it is preferable to define the wavelet periodogram via the non-decimated wavelet

transform (NDWT) of the data). The wavelet periodogram may then be used as a tool

for analyzing how the spectra characteristics of a process change in time. As in the

case of stationary time series, the wavelet periodogram need to be denoised to obtain a

consistent estimate, and that is achieved through appropriate thresholding procedures.

For a discussion and more details we refer to Nason and von Sachs [54]. More general

coverage of wavelet methods in the analysis of non-stationary time series mayu be found

in Priestley [64], Morttin [52] or Percival and Walden [63].

There are many other application of wavelets in statistics. For more information on applica-

tion of wavelets in statistics, please refer to Vidakovic [73], Antoniadis and Oppenheim [8], and

Abramovich, Bailey and Sapatinas [1].
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CHAPTER II

WAVELET-BASED GENERALIZED LINEAR CLASSIFIER

2.1 Chapter Introduction

Classification is one of the main statistical procedures in the field of Pattern Recognition Theory.

Based on historic (training) covariate measurements (univariate or multivariate) the decision-maker

is to classify a newly obtained observation. For instance, an observation may be classified as con-

forming or non-conforming, low or high, real or fake, black or white, etc, depending on the problem

context. This unknown nature of the observation will be called a class, and in this paper we consider

problems possessing only two possible exclusive classes, “0” and “1.” Formally, the classifier is a

function that maps the d-dimensional space of covariates to the set {0, 1}.
In this chapter we are concerned with classifier functions represented by wavelet decompo-

sitions. Our proposal builds on the existing theory of generalized linear classifiers by Devroye,

Györfi, and Lugosi [21]. Kohler [41] argues that the use of standard wavelets in the general regres-

sion may produce suboptimal results if the distribution of the design is non-uniform. It is likely

that the same holds true for wavelet-based classifiers. However, we have found that in practical and

simulated situations, when design distribution is clearly non-uniform, our classificator works well.

2.2 The Bayes Classification Problem

In this section we introduce the Bayes classification problem.

Let (X, Y ) ∈ Rd×{0, 1} denote a random variable. Let µ be the probability measure of X and

η the regression of Y on X , i.e., for a Borel set A ∈ Rd

µ(A) = P{X ∈ A}

and

η(x) = P{Y = 1|X = x} = IE{Y |X = x}.

It can be demonstrated that the pair (µ, η) uniquely determines the distribution of (X, Y ).

30



Any function g : Rd → {0, 1} is a classifier. For a classifier g, the error (risk) function is the

probability of error, i.e., L(g) = P{g(X) 6= Y }.
The Bayes classifier

g∗(x) = 1(η(x) > 1/2)

minimizes L, i.e., for any classifier g,

P{g∗(X) = Y } ≥ P{g(X) = Y },

or equivalently, L(g∗) ≤ L(g).

We will denote this minimal error with L∗ and call it Bayes error . The attribute Bayes comes

from the fact that classification is made according to the posterior probability,

η(X) = P{Y = 1|X}.

Let Dn = ((X1, Y1) . . . , (Xn, Yn)) be a training set and X be a new observation. A classifier

constructed on the basis of Dn is denoted by gn. Label Y is classified by the decision gn(X) =

gn(X, Dn). The error probability is

Ln = Ln(gn) = P{Y 6= gn(X)|Dn}.

For more details and results about general Bayes classification problem we direct the reader to

the excellent monograph by Devroye, Györfi, and Lugosi [21].

2.2.1 Consistency

One of the desirable properties of any estimation and classification rule is its consistency. If a

training data is given Dn = ((X1, Y1) . . . , (Xn, Yn)), the best one can expect from a classifier is to

achieve the Bayes error probability L∗. Generally, one cannot hope to obtain a classifier that exactly

achieves L∗, but it is possible to construct a sequence of classifiers gn, such that the error probability

Ln = L(gn) = P{gn(X,Dn) 6= Y |Dn}

gets arbitrarily close to L∗ with large probability (that is, for “most” Dn). This idea is formulated

in the definition of consistency:
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Definition 4 (Weak and Strong Consistency) A classification rule is consistent (or asymptotically

Bayes-risk efficient) for a certain distribution of (X, Y ) if

IELn = P{gn(X, Dn) 6= Y } → L∗ as n →∞,

and strongly consistent if

lim
n→∞Ln = L∗ with probability 1.

“A consistent rule guarantees that by increasing the amount of data the probability that the error

probability is within a very small distance of the optimal achievable gets arbitrary close to one.

Intuitively, the rule can eventually learn the optimal decision from a large amount of training data

with high probability. Strong consistency means that by using more data the error probability gets

arbitrary close to the optimum for every training sequence except for a set of sequences that has

zero probability altogether.

A decision rule can be consistent for a certain class of distributions of (X,Y ), but may not

be consistent for others. It is clearly desirable to have a rule that is consistent for a large class of

distributions. Since in many situations we do not have any prior information about the distribution,

it is essential to have a rule that gives good performance for all distributions.” Devroye, Györfi, and

Lugosi [21].

This strong requirement is formulated in the following definition:

Definition 5 A sequence of decision rules is called universally (strongly) consistent if it is (strongly)

consistent for any distribution of the pair (X, Y ).

2.2.2 Previous Work

This work closely follows the result of Devroye, Györfi, and Lugosi [21] (Theorem A. 1) and the

work of Chang, Kim, and Vidakovic [13]. Devroye, Györfi, and Lugosi [21] defined the generalized

linear classifier gn by

gn(x) =





0 if
∑kn

j=1 a∗jψj(x) ≤ 0

1 otherwise.
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where coefficients a∗1, . . . , a
∗
kn

minimize the empirical squared error

1
n

n∑

i=1




kn∑

j=1

ajψj(Xi)− (2Yi − 1)




2

under certain the constraints. The sequence ψj forms an uniformly bounded (|ψj(x)| ≤ 1 for all

x and j) orthonormal basis. Devroye, Györfi, and Lugosi [21] propose that under some regularity

conditions the classifier defined above will be universally consistent in both strong and weak senses.

Most series classifiers have unattractive feature, they are not local in nature – points at arbitrary

distances from x affect the decision at x. In this work we propose a generalized linear classifier

which is based on wavelet sequence. Wavelets are local in nature, but this comes at the price. It

is well known that wavelets are not uniformly bounded, this will change minimization constraints

and consistency conditions. Section 2.3 defines the wavelet-based generalized linear classifier and

states consistency results.

Now, we will briefly introduce the classifier proposed in Chang, Kim, and Vidakovic [13].

Let’s assume that a density of X , f ∈ L2(R), exists. If f0 ∈ L2(R) and f1 ∈ L2(R) are class-

conditional densities, i.e., densities of X when Y = 0 and Y = 1 respectively, and p and 1−p class

probabilities, P (Y = 1) and P (Y = 0), then the function

α(x) = pf1(x)− (1− p)f0(x)

has the representation (2η(x)− 1)f(x), and the classifier g∗ can be written as

g∗(x) = 1(α(x) > 0). (31)

Since α(x) is in L2, it allows the wavelet representation

α(x) =
∑

k∈Z

cJ,kφJ,k(x) +
∑

j≥J

∑

k∈Z

dj,kψj,k(x).

A raw wavelet-based linear classifier, ĝJ , is defined as

ĝJ(x) = 1(α̂J(x) > 0), (32)

where α̂J(x) is an estimator of the projection of α on VJ , i.e. an estimator of

αJ(x) =
∑

k∈Z cJ,kφJ,k(x).

33



The coefficients cJ,k =
∫
R(2η(x) − 1)f(x)φJ,k(x) dx = E[(2η(X) − 1)φJ,k(X)] can be, by

moment matching, estimated by ĉn
J,k = 1

n

∑n
i=1(2Yi − 1)φJ,k(Xi). Thus, one can take α̂n,J(x) =

∑
k ĉn

J,kφJ,k(x), and the estimator from (32) can be rewritten as ĝn,J(x) = 1(α̂n,J(x) > 0). If the

wavelet basis is interpolating, or close to interpolating, then the coefficients {ĉn
J,k, k ∈ Z} can be

thought as values of α sampled at equally spaced points. Let L̂n(J) = P (Y 6= ĝn,J(X)|Dn) be the

error probability of ĝn,J .

Results of Chang, Kim, and Vidakovic [13] show that the estimator ĝn,J(x) is weakly consis-

tent. They also establish what the linear estimator ĝn,J gains in performance if regularized. Reg-

ularization is achieved by wavelet shrinkage. Soft shrinkage with universal threshold is used. The

regularized estimator for the training sample of size n, multiresolution level J , and threshold λ is

denoted by g̃n,J,λ. The classifier g̃n,J,λ is also consistent in the weak sense.

Generalized linear classifier presented here is of a different nature; it is distribution free, and

based on the minimization of the empirical squared error. Classifier proposed by Chang, Kim, and

Vidakovic [13], is not universal, since they need to assume the existence of square integrable condi-

tional densities. It is important to develop a distribution free methods, since, after all, the distribution

of (X,Y ) is unknown in practice. Besides, even if we have an iid sample (X1, Y1), . . . , (Xn, Yn)

at out disposal, we do not know of any test verifying whether conditional densities of X are square

integrable. The next section defines the wavelet-based generalized linear classifier and states the

result about its consistency.

2.3 Wavelet Based Classifier

The wavelet based classifier is preceded in the literature by the Fourier series classifier. All such

classifiers can be put in the form: classify X = x to be in class 0 if
∑k

j=1 an,jψj(x) ≤ 0. Functions

ψj are fixed and represent the basis for the series estimate. Coefficients an,j depend on the training

sample of size n. The number of basis functions is denoted by k and usually regulates smoothness.

The literature on Fourier series classifiers is rich. Work by Van Ryzin [70], Greblicki and

his team (Greblicki [31]; Greblicki and Rutkovski [32]; Greblicki and Pawlak ([33], [34]) explore

various theoretical concepts of consistency and rates of convergence of the classifiers.
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Any L2(R) function f can be represented as

f(x) =
∑

j,k

djkψjk(x),

and this unique representation corresponds to a multiresolution decompositionL2(R) =
⊕∞

j=−∞Wj .

Also, for any fixed J the decomposition L2(R) = VJ
⊕∞

j=J Wj corresponds to the representation

f(x) =
∑

k

cJ,kφJk(x) +
∑

j>J

∑

k

djkψjk(x),

where

cJ,k =
∫

f(x)φJk(x)dx, djk =
∫

f(x)ψjk(x)dx.

Consider the wavelet-based generalized linear classifier of the form

gn(x) =





0 if
∑

j,k∈Kn
djkψjk(x) ≤ 0

1 otherwise,

where ψjk ∈ L2(µ), j, k ∈ Z are fixed wavelet sequence, and the coefficients djk are estimated

from the training sequence Dn by minimizing the empirical squared error

1
n

n∑

i=1


 ∑

j,k∈Kn

djkψjk(Xi)− (2Yi − 1)




2

.

The following result shows that the above classifier is universally consistent.

Theorem 3 Let ψjk ∈ L2(µ), j, k ∈ Z be a wavelet sequence, such that |ψ(x)| ≤ W for some W .

Let the coefficients d∗jk minimize the empirical square error

1
n

n∑

i=1


 ∑

j,k∈Kn

djkψjk(Xi)− (2Yi − 1)




2

under the constraint
∑

j,k∈Kn
|djk|2j/2 ≤ bn, bn ≥ 1. Define the generalized linear classifier gn by

gn(x) =





0 if
∑

j,k∈Kn
d∗jkψjk(x) ≤ 0

1 otherwise.

If Kn and bn satisfy

|Kn| → ∞, bn →∞ and
|Kn|b4

n log(bn)
n

→ 0,

then IE{L(gn)} → L∗ for all distributions of (X,Y ), that is, the rule gn is universally consistent.

Under the same conditions the rule gn is strongly universally consistent
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2.3.1 Proof of the Theorem

Let δ > 0 be arbitrary. Then there exists a constant M such that P{‖X‖ > M} < δ.

L(gn)− L∗ = P{gn(X, Dn) 6= Y |Dn} − P{g∗(X) 6= Y }

= P{gn(X, Dn) 6= Y, ‖X‖ ≤ M |Dn}+ P{gn(X, Dn) 6= Y, ‖X‖ > M |Dn}

− P{g∗(X) 6= Y, ‖X‖ ≤ M} − P{g∗(X) 6= Y, ‖X‖ > M}

= P{gn(X, Dn) 6= Y, ‖X‖ > M |Dn} − P{g∗(X) 6= Y, ‖X‖ > M}

+ P{gn(X, Dn) 6= Y, ‖X‖ ≤ M |Dn} − P{g∗(X) 6= Y, ‖X‖ ≤ M}

Note that:

P{gn(X, Dn) 6= Y, ‖X‖ > M |Dn} − P{g∗(X) 6= Y, ‖X‖ > M}

= P{‖X‖ > M} [P{gn(X, Dn) 6= Y | ‖X‖ > M, Dn} − P{g∗(X) 6= Y | ‖X‖ > M}]

≤ P{‖X‖ > M} < δ

Thus,

L(gn)− L∗ ≤ δ + P{gn(X) 6= Y, ‖X‖ ≤ M |Dn} − P{g∗(X) 6= Y, ‖X‖ ≤ M}.

It suffice to show that P{gn(X) 6= Y, ‖X‖ ≤ M |Dn} − P{g∗(X) 6= Y, ‖X‖ ≤ M} → 0

in the required sense for every M > 0. Introduce the notation f∗n(x) =
∑

j,k∈Kn
djkψjk(x). By

Corollary A. 1 (see Appendix A), we see that

P{gn(X) 6= Y, ‖X‖ ≤ M |Dn} − P{g∗(X) 6= Y, ‖X‖ ≤ M}

≤
√∫

‖x‖≤M
(f∗n(x)− (2η(x)− 1))2 µ(dx)

We prove that the right-hand side converges to zero in probability. Observe that since IE{2Y −
1|X = x} = 2η(x)− 1, for any function h(x),

IE{(h(X)− Y )2|X = x}

= IE{(h(x)− η(x) + η(x)− Y )2|X = x}

= (h(x)− η(x))2 + 2(h(x)− η(x))IE{η(x)− Y |X = x}+ IE{(η(X)− Y )2|X = x}

= (h(x)− η(x))2 + IE{(η(X)− Y )2|X = x}
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hence,

(h(x)− (2η(x)− 1))2

= IE{(h(X)− (2Y − 1))2|X = x} − IE{((2Y − 1)− (2η(X)− 1))2|X = x}

therefore, denoting the class of functions over which we minimize by

Fn =





∑

j,k∈Kn

djkψjk :
∑

j,k∈Kn

|djk|2j/2 ≤ bn



 ,

we have
∫

‖x‖≤M
(f∗n(x)− (2η(x)− 1))2 µ(dx)

= IE
{
(f∗n(X)− (2Y − 1))2I‖X‖≤M |Dn

}− IE
{
((2Y − 1)− (2η(X)− 1))2I‖X‖≤M

}

=
(

IE
{
(f∗n(X)− (2Y − 1))2I‖X‖≤M |Dn

}− inf
f∈Fn

IE{(f(X)− (2Y − 1))2I‖X‖≤M}
)

+
(

inf
f∈Fn

IE{(f(X)− (2Y − 1))2I‖X‖≤M} − IE
{
((2Y − 1)− (2η(X)− 1))2I‖X‖≤M

})
.

The last two terms may be combined to yield

inf
f∈Fn

∫

‖x‖≤M
(f(x)− (2η(x)− 1))2 µ(dx)

which converges to zero since wavelets form an orthonormal basis in L2(µ). To prove that the first

term converges to zero in probability, observe that we may assume without loss of generality that

P{‖X‖ ≤ M} = 0. Now

IE
{
(f∗n(X)− (2Y − 1))2I‖X‖≤M |Dn

}− inf
f∈Fn

IE{(f(X)− (2Y − 1))2I‖X‖≤M}

= IE
{
(f∗n(X)− (2Y − 1))2|Dn

}− inf
f∈Fn

IE{(f(X)− (2Y − 1))2}

= IE
{
(f∗n(X)− (2Y − 1))2|Dn

}− 1
n

n∑

i=1

(f∗n(Xi)− (2Yi − 1))2

+
1
n

n∑

i=1

(f∗n(Xi)− (2Yi − 1))2 − inf
f∈Fn

IE{(f(X)− (2Y − 1))2} ≤
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≤ IE
{
(f∗n(X)− (2Y − 1))2|Dn

}− 1
n

n∑

i=1

(f∗n(Xi)− (2Yi − 1))2

+ sup
f∈Fn

∣∣∣∣∣
1
n

n∑

i=1

(f(Xi)− (2Yi − 1))2 − IE{(f(X)− (2Y − 1))2}
∣∣∣∣∣

≤ 2 sup
f∈Fn

∣∣∣∣∣
1
n

n∑

i=1

(f(Xi)− (2Yi − 1))2 − IE{(f(X)− (2Y − 1))2}
∣∣∣∣∣

= 2 sup
h∈T

∣∣∣∣∣
1
n

n∑

i=1

h(Xi, Yi)− IE{h(X, Y )}
∣∣∣∣∣ ,

where the class of functions T is defined by

T =
{
h(x, y) = (f(x)− (2y − 1))2 : f ∈ Fn

}
.

Observe that since |2y − 1| = 1 and there exist constant W > 1 such that |ψ(x)| ≤ W , we have

0 ≤ h(x, y) = (f(x)− (2y − 1))2

=


 ∑

j,k∈Kn

djkψjk(x)− (2y − 1)




2

=


 ∑

j,k∈Kn

djk2j/2ψ(2jx− k)− (2y − 1)




2

≤

 ∑

j,k∈Kn

|djk|2j/2|ψ(2jx− k)|+ |2y − 1|



2

≤

 ∑

j,k∈Kn

|djk|2j/2W + 1




2

≤ 2





 ∑

j,k∈Kn

|djk|2j/2W




2

+ 1


 ≤ 2(W 2b2

n + 1) ≤ 4W 2b2
n.

Therefore, Theorem A. 2 (see Appendix A) asserts that

P

{
IE

{
(f∗n(X)− (2Y − 1))2|Dn

}− inf
f∈Fn

IE{(f(X)− (2Y − 1))2} > ε

}

≤ P

{
sup
h∈T

∣∣∣∣∣
1
n

n∑

i=1

h(Xi, Yi)− IE{h(X, Y )}
∣∣∣∣∣ > ε/2

}

≤ 8IE
{
N

( ε

16
, T (Zn

1 )
)}

e−nε2/(512(4W 2b2n)2),

where Zn
1 = (X1, Y1), . . . , (Xn, Yn).

Next for fixed zn
1 , we estimate covering number N (

ε
16 , T (zn

1 )
)

(Definition A. 1). For arbitrary

f1, f2 ∈ Fn, consider the functions h1(x, y) = (f1(x)− (2y− 1))2 and h2(x, y) = (f2(x)− (2y−
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1))2. Then for any probability measure ν on Rd × {0, 1},
∫
|h1(x, y)− h2(x, y)| ν(d(x, y))

=
∫
|(f1(x)− (2y − 1))2 − (f2(x)− (2y − 1))2| ν(d(x, y))

=
∫
|f2

1 (x)− f2
2 (x)− 2(2y − 1)(f1(x)− f2(x))| ν(d(x, y))

=
∫
|f1(x)− f2(x)||f1(x) + f2(x)− 2(2y − 1)| ν(d(x, y))

=
∫
|f1(x)− f2(x)|

∣∣∣∣∣∣
∑

j,k∈Kn

d
(1)
jk ψjk(x) +

∑

j,k∈Kn

d
(2)
jk ψjk(x)− 2(2y − 1)

∣∣∣∣∣∣
ν(d(x, y))

≤
∫
|f1(x)− f2(x)|


 ∑

j,k∈Kn

|d(1)
jk |2j/2|ψ(2jx− k)|

+
∑

j,k∈Kn

|d(2)
jk |2j/2|ψ(2jx− k)|+ 2


 ν(d(x, y))

≤
∫
|f1(x)− f2(x)|[2Wbn + 2] ν(d(x, y)) ≤ 2W (bn + 1)

∫
|f1(x)− f2(x)|µ(dx)

where µ is the marginal measure for ν on Rd. Thus, for any zn
1 = (x1, y1), . . . , (xn, yn) and ε,

N (ε, T (zn
1 )) ≤ N

(
ε

2W (bn + 1)
,F(xn

1 )
)

.

Therefore, it suffices to estimate the covering number corresponding to Fn. Since Fn is a subset of

a linear space of functions, we have VF+
n
≤ |Kn|+ 1 (see Definitions A. 2, A.3 and Theorem A. 3).

By Corollary A. 2 (see Appendix A),

N
(

ε

2W (bn + 1)
,Fn(xn

1 )
)
≤

(
4eWbn

ε/(2W (bn + 1))
log

(
2eWbn

ε/(2W (bn + 1))

))|Kn|+1

≤
(

8e2W 2b2
n

ε2/(4W 2(bn + 1)2)

)|Kn|+1

≤
(

32e2W 2b2
n(bn + 1)2

ε2

)|Kn|+1

.

Summarizing, we have

P

{
IE

{
(f∗n(X)− (2Y − 1))2|Dn

}− inf
f∈Fn

IE{(f(X)− (2Y − 1))2} > ε

}

≤ 8
(

213e2W 4b2
n(bn + 1)2

ε2

)|Kn|+1

e−nε2/(213W 4b4n)

≤ 8
(

215e2W 4b4
n

ε2

)|Kn|+1

e−nε2/(213W 4b4n)
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which goes to zero if |Kn|b4
n log(bn)/n → 0. This proves that the rule gn is universally consistent.

Strongly universal consistency follows by applying the Borel-Cantelli lemma (Lemma A. 1 and

Theorem A. 4) to the last probability.

∑
n

P

{
IE

{
(f∗n(X)− (2Y − 1))2|Dn

}− inf
f∈Fn

IE{(f(X)− (2Y − 1))2} > ε

}

≤ 8
∑

n

(
215e2W 4b4

n

ε2

)|Kn|+1

e−nε2/(213W 4b4n)

According to a well known calculus theorem (Cauchy root test (Theorem A. 5.)) if

lim
n→∞

((
215e2W 4b4

n

ε2

)|Kn|+1

e−nε2/(213W 4b4n)

) 1
n

< 1

then
∑
n

(
215e2W 4b4

n

ε2

)|Kn|+1

e−nε2/(213W 4b4n) < ∞.

To verify that

((
215e2W 4b4

n

ε2

)|Kn|+1

e−nε2/(213W 4b4n)

) 1
n

= exp

{
4

( |Kn|+ 1
n

)
log

(
215/4e1/2Wbn

ε1/2

)
− ε2

213W 4b4
n

}

Now

exp

{
4

( |Kn|+ 1
n

)
log

(
215/4e1/2Wbn

ε1/2

)
− ε2

213W 4b4
n

}
< 1

if and only if

4
( |Kn|+ 1

n

)
log

(
215/4e1/2Wbn

ε1/2

)
− ε2

213W 4b4
n

< 0

if and only if
215W 4(|Kn|+ 1)b4

n log
(

215/4e1/2Wbn

ε1/2

)

nε2
< 1.

For every ε > 0, under the condition |Kn|b4
n log(bn)/n → 0,

215W 4(|Kn|+ 1)b4
n log

(
215/4e1/2Wbn

ε1/2

)

nε2
→ 0

therefore

lim
n→∞

((
215e2W 4b4

n

ε2

)|Kn|+1

e−nε2/(213W 4b4n)

) 1
n

< 1.

¤
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2.4 Implementation

In this section we discuss the practical aspects of the wavelet-based classifier. We propose two

practical ways of constructing wavelet-based generalized linear classifier.

2.4.1 Single Scale Classifier

We begin with the selection of wavelet function. Obtained results indicate that the selection of the

wavelet function might improve the results. Next step is to select a multiresolution level J . Let the

scaling function φ(x) generates orthonormal multiresolution analysis (MRA) and let the multireso-

lution subspace VJ be spanned by the functions {φJ,k(x) = 2J/2φ(2Jx− k), k ∈ Z}. Recall, what

with the fixed J the decomposition L2(R) = VJ
⊕∞

j=J Wj corresponds to the representation

f(x) =
∑

k

cJ,kφJk(x) +
∑

j>J

∑

k

djkψjk(x),

for any f ∈ L2(R). We restrict ourselves only to multiresolution subspace VJ . Now, if X’s are

rescaled to [0, 1] then Kn = {0, 1, 2, . . . 2J − 1}. Wavelet classifier will be of the form

gn,J(x) =





0 if
∑2J

k=0 d∗JkφJk(x) ≤ 0

1 otherwise,

where the coefficients d∗Jk minimize the empirical square error

1
n

n∑

i=1




2J−1∑

k=0

dJkφJk(Xi)− (2Yi − 1)




2

under the proper constraints. Minimization of the squared error is attractive because there are ef-

ficient algorithms to find the minimizing coefficients, while minimizing the number of errors com-

mitted on the training sequence is computationally more difficult. Daubechies-Lagarias algorithm

was used for evaluation of φjk(x) or ψjk(x), for given x. For details on the algorithm please refer

to Chapter I.

As in Chang, Kim, and Vidakovic [13] our experiments indicate that the wavelet-based clas-

sifier gn gains in performance if regularized. Regularization is achieved by wavelet shrinkage;

wavelet coefficients d∗Jk are thresholded using BAMS method (see Vidakovic and Ruggeri [74])

with Symmlet 8 as a wavelet function.
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2.4.2 Classifier Based on Multiple Scales

The single scale method described above is not very effective. One of the reasons for that is

that by use of single scale, we completely ignore ability of wavelets to capture different fea-

tures of the signal using different scales. In addition, for a single fixed scale J and location set

Kn = {0, 1, 2, . . . 2J −1} function φJk(x) will be zero equal for many k. Hence, when we perform

minimization many of the resulting coefficients d∗Jk will be insignificant, this is one possible expla-

nation of the improvements of the results after regularization. Another consideration is the number

of parameters in the model. Fixed single scale J and location set Kn = {0, 1, 2, . . . 2J − 1} will

generate 2J coefficients d∗Jk. Thus, with small sample sizes we a limited in the selection of scale.

To overcome these issues, we recommend using the following method based on multiple scales.

After the set of scales {J1, . . . Jl} is specified, for each scale j = Jt the location set will be defined

Kj = {k ∈ 0 . . . 2j − 1 : φjk(x) 6= 0}. Note that X’s are rescaled to [0, 1] as in the case above.

Wavelet classifier will be of the form

gn(x) =





0 if
∑

j∈{J1,...Jl}
∑

k∈Kj
d∗jkφjk(x) ≤ 0

1 otherwise,

where the coefficients d∗jk minimize the empirical square error

1
n

n∑

i=1


 ∑

j∈{J1,...Jl}

∑

k∈Kj

djkφjk(Xi)− (2Yi − 1)




2

,

under the proper constrains. Length of the set Kj will now depend on the length of the filter of the

selected wavelet function.

2.5 Examples

We discuss in detail simulational studies in which the true classes are known, and real-life examples

from industrial and bioinformatical fields.

The performance of the classifier gn constructed using training data set of size n and evaluated

at testing data {(Xj , Yj) : j = 1, . . . , m}, is measured using empirical error

L̂(gn) =
1
m

m∑

j=1

I(gn(Xj) 6= Yj).
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In all the following examples WBGLC will denote the proposed single scale classifier, WBGLCreg

its regularized version, and WBGLCMS denotes classifier based on multiple scales.

The first two examples are taken form Chang, Kim, and Vidakovic [13].

2.5.1 Simulated Data Example: 0 - 1 Classification

In this simulation we want to classify between observations coming from two different normal

populations.

The training set, {(Xi, Yi), i = 1, . . . , n}, (n is even) is generated as follows. For the first half

of the data, Xi, i = 1, . . . , n
2 are sampled from the standard normal distribution and Yi = 1, i =

1, . . . , n
2 . For the second half, Xi, i = n

2 + 1, . . . , n are sampled from normal distribution with

mean 2 and variance 1, while Yi = 0, i = n
2 + 1, . . . , n.

The validation set {(Xj , Yj), j = 1, . . . , m} is generated in the same way. We compare the

empirical errors WBGLC with WBGLCreg and the error of the logistic regression classifier,

L
logit
n (m) =

1
m

m∑

j=1

I
(
I(f(Xj) > 0.5) 6= Yj

)
,

where f is fitted logistic regression.

The results for various values of n and m = 200 are given in Table 2. Results from Chang, Kim,

and Vidakovic [13] for the same data example are given in Table 3 for the purpose of comparison.

The empirical error of the regularized estimator from Chang, Kim, and Vidakovic [13] is denoted

L̃n(J,m, λ).

Sample size n WBGLC WBGLCreg Logistic Regression
80 0.2838 0.2410 0.1589
200 0.2024 0.1886 0.1606
400 0.1756 0.1705 0.1587
800 0.1659 0.1639 0.1587
2000 0.1641 0.1625 0.1585

Table 2: Average of the empirical errors over 1000 simulations using n training data points,
J = 6 if N < 1000, J = 7 for N > 1000, and m = 200 validation data points.
Wavelet function – Daubechies 16
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n L̂n(6, 200) L̃n(6, 200, λ) Logistic Regression
80 0.272 0.170 0.158

200 0.200 0.164 0.154
400 0.187 0.176 0.171
800 0.169 0.163 0.163

2000 0.160 0.157 0.158

Table 3: Results from Chang, Kim, and Vidakovic [13]. Empirical errors using n training
data points, J = 6, and m = 200 validation data points

2.5.2 Simulated Data Example: 0 - 1 - 0 Classification

In the following simulated example the linear logistic regression classifier is not appropriate, so it is

not surprising that logistic regression performs so poorly.

We generate the training data set, {(Xi, Yi), i = 1, . . . , n}, (n is a multiple of 3) as follows. In

the first third of the data, Xi, i = 1, . . . , n
3 is generated from a normal distribution with mean −2

and variance 1, with Yi = 0, i = 1, . . . , n
3 . In the second third of the data, Xi, i = n

3 + 1, . . . , 2n
3

are standard normal random variables and Yi = 1, i = n
3 + 1, . . . , 2n

3 . Finally, in the last third of

the data, Xi, i = 2n
3 + 1, . . . , n are generated from normal distribution with mean 2 and variance

1, and Yi = 0, i = 2n
3 + 1, . . . , n.

The evaluation set {(Xj , Yj), j = 1, . . . , m} is generated in an analogous manner. The results

for various values of n and m = 300 are presented in Table 4. Results from Chang, Kim, and

Vidakovic [13] for the same data example are given in Table 5 for the purpose of comparison. The

empirical error of the regularized estimator from Chang, Kim, and Vidakovic [13] is denoted by

L̃n(J,m, λ).

We compare the empirical errors of WBGLC with WBGLCreg and the error of the logistic

regression classifier,

L
logit
n (m) =

1
m

m∑

j=1

I
(
I(f(Xj) > 1/3) 6= Yj

)
,

where f is fitted logistic regression.

2.5.3 Two Simple Examples

The next two examples demonstrate experimentally consistency results proved in the Theorem 3. In

both examples performance of the classifier based on various sample sized of the training data set
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n WBGLC WBGLCreg Logistic Regression
120 0.2983 0.2626 0.5017
300 0.2434 0.2280 0.5011
600 0.2245 0.2174 0.5008
900 0.2196 0.2152 0.5007
1200 0.2232 0.2162 0.5007

Table 4: Average of the empirical errors over 1000 simulations using n training data points,
J = 6 if N < 1000, J = 7 for N > 1000, and m = 300 evaluation data points.
Wavelet function – Daubechies 16.

n L̂n(7, 300) L̃n(7, 300, λ)
120 0.340 0.213
300 0.288 0.221
600 0.247 0.218
900 0.232 0.212

1200 0.214 0.202

Table 5: Results from Chang, Kim, and Vidakovic [13]. Average empirical errors using train-
ing data of size n, J = 7, and m = 300 evaluation data points.

is measured on the testing data set of 200 observations.

Example 1. Let

Y =





1 if X1 + X2 + X3 < 3

0 otherwise.

If X1, X2, and X3 are known, Y is known as well. The Bayes classifier decides 1 if X1+X2+X3 <

3 and 0 otherwise. The corresponding Bayes probability of error is zero. But lets assume that X3

is not available to the observer, and we would only have access to X1 and X2. Given X1 and X2,

when should we guess that Y = 1? To answer this question, one must know the joint distribution

of (X1, X2, X3), or, equivalently, the joint distribution of (X1, X2, Y ). So lets assume that X1,

X2, and X3 are i.i.d. exponential random variables with mean 1 (i.e. they have density e−u on

[0,∞)). The Bayes rule compares P{Y = 1|X1, X2}with P{Y = 0|X1, X2} and makes decision

consistent with the maximum of these two values. A simple calculation shows that

η(X1, X2) = P{Y = 1| X1, X2} = P{X1 + X2 + X3 < 3| X1, X2}

= P{X3 < 3−X1 −X2| X1, X2}

= max(0, 1− e−(3−X1−X2)).
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Thus, the Bayes classifier is

g∗(X1, X2) =





1 if X1 + X2 < 3− log 2

0 otherwise.

The probability of error is

L∗ =P{g∗(X1, X2) 6= Y } = P{X1 + X2 < 3− log 2, X1 + X2 + X3 ≥ 3}+

P{X1 + X2 ≥ 3− log 2, X1 + X2 + X3 < 3}

=IE{e−(3−X1−X2)I{X1+X2<3−log 2}}+

IE{(1− e−(3−X1−X2))I{3−log 2≤X1+X2<3}}

=
∫ 3−log 2

0
xe−xe−(3−x)dx +

∫ 3

3−log 2
xe−x(1− e−(3−x))dx

=0.1710.

Note, the density of X1 + X2 is ue−u on [0,∞).

Now, assume that observer has access only to X1, then the Bayes classifier is allowed to use X1

only. Similarly, we have

η(X1) = P{Y = 1| X1} = P{X3 + X2 < 3−X1| X1} = max(0, 1− (1 + 3−X1)e−(3−X1)).

The cross over at 1/2 occurs at X1 = c = 1.3216. Thus the Bayes classifier is given by

g∗(X1) =





1 if X1 < c

0 otherwise.

The probability of error is

L∗ =P{g∗(X1, X2) 6= Y } = P{X1 < c, X1 + X2 + X3 ≥ 3}+ P{X1 ≥ c,X1 + X2 + X3 < 3}

=IE{(1 + 3−X1)e−(3−X1)I{X1<c}}+

IE{(1− (1 + 3−X1)e−(3−X1))I{c≤X1<3}}

=
∫ c

0
e−x(1 + 3− x)e−(3−x)dx +

∫ 3

c
e−x(1− (1 + 3− x)e−(3−x))dx

=0.2829.
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The Bayes error has increased. Finally, if we do not have access to any of the three variables, the

best we can do is see which class is most likely. To this end, we compute

P{Y = 0} = P{X1 + X2 + X3 ≥ 3} = (1 + 3 + 32/2)e−3 = 0.4232.

If we set g ≡ 1 all the time, we make an error with probability 0.4232. Tables 6 and 7 provide

simulational results, the confirm theoretical findings, as empirical error converges to theoretical

Bayes error as sample size increases. Figure 6 gives graphical illustration of the results of the

simulations.

Method 100 250 500 1000
WBGLC 0.2107 0.1839 0.1784 0.1821
WBGLCreg 0.1970 0.1792 0.1755 0.1763
WBGLCMS 0.2326 0.1894 0.1752 0.1729
Logistic Regression 0.1953 0.1943 0.1962 0.1976

Table 6: Example 1: X1 and X2 are observable. Average of the empirical errora of the 100
simulations, for various training sample sizes. Wavelet function is Daubechies with
8 vanishing moments. The Bayes error is 0.1710

Method 100 250 500 1000
WBGLC 0.3407 0.3080 0.3028 0.2910
WBGLCreg 0.3725 0.3427 0.2910 0.2866
WBGLCMS 0.3561 0.3243 0.3062 0.2904
Logistic Regression 0.3415 0.3107 0.3097 0.3101

Table 7: Example 1: Only X1 is observable. Average of the empirical errors of the 100
simulations, for various training sample sizes. Wavelet function is Daubechies with
8 vanishing moments. The Bayes error is 0.2829

Example 2. This example is almost identical to the previous example, with the exception of the

distribution of Xi.

Y =





1 if X2
1 + X2

2 + X2
3 < c

0 otherwise,

where Xi are iid N(0, 1) random variables and c is a quantile of χ2
3 (chi squared with three degrees

of freedom) distribution.

In our experiments we selected c = χ2
3(0.5) = 2.36597, this implies that classes have equal

probabilities,

P{Y = 0} = P{X2
1 + X2

2 + X2
3 ≥ c} = 0.5 = P{Y = 1}.
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Figure 6: Example 1: Average of the empirical errors of the 100 simulations, for various
training sample sizes. (a) Case 1: X1 and X2 are observable. (b) Case 2: Only X1

is observable.

Let’s assume that only X1 and X2 are observable. Simple calculation shows

η(X1, X2) = P{Y = 1| X1, X2} =P{X2
1 + X2

2 + X2
3 < c| X1, X2}

=P{X2
3 < c−X2

1 −X2
2 | X1, X2}

=max(0, F1(c−X2
1 −X2

2 )),

where F1 denotes the cdf of χ2
1 distribution. Thus Bayes decision function is

g∗(X1, X2) =





1 if X2
1 + X2

2 < c− F−1
1 (1/2) = 1.9110

0 otherwise.

The probability of error is

L∗ =P{g∗(X1, X2) 6= Y } = P{X2
1 + X2

2 + X2
3 < c, X2

1 + X2
2 > c− F−1

1 (1/2)}+

P{X2
1 + X2

2 + X2
3 ≥ c,X2

1 + X2
2 ≤ c− F−1

1 (1/2)}

=
∫ c

c−F−1
1 (1/2)

F1(c− x)f2(x)dx +
∫ c−F−1

1 (1/2)

0
(1− F1(c− x)f2(x)dx,

=0.1702

where f2 denotes pdf of the χ2
2 distribution.
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Now let’s assume that only X1 is available to the observer. In this case

η(X1) = P{Y = 1| X1} =P{X2
1 + X2

2 + X2
3 < c| X1}

=P{X2
2 + X2

3 < c−X2
1 | X1}

=max(0, F2(c−X2
1 )),

where F2 denotes the cdf of χ2
2 distribution. Thus Bayes decision function is

g∗(X1) =





1 if X2
1 < c− F−1

2 (1/2) = 0.9797

0 otherwise.

The probability of error is

L∗ =P{g∗(X1) 6= Y } = P{X2
1 + X2

2 + X2
3 < c,X2

1 > c− F−1
2 (1/2)}+

P{X2
1 + X2

2 + X2
3 ≥ c,X2

1 ≤ c− F−1
2 (1/2)}

=
∫ c

c−F−1
2 (1/2)

F2(c− x)f1(x)dx +
∫ c−F−1

2 (1/2)

0
(1− F2(c− x)f1(x)dx,

=0.3062

where f1 denotes pdf of the χ2
1 distribution. Tables 8 and 9 provide simulational results, the confirm

theoretical findings, as empirical error converges to theoretical Bayes error as sample size increases.

Figure 7 gives graphical illustration of the results of the simulations.

Method 100 250 500 1000
WBGLC 0.2076 0.1876 0.1861 0.1828
WBGLCreg 0.2158 0.2207 0.1805 0.1799
WBGLCMS 0.2299 0.1944 0.1827 0.1756
Logistic Regression 0.2037 0.2046 0.2035 0.2033

Table 8: Example 2: X1 and X2 are observable. Average of the empirical errors of the 100
simulations. Wavelet function is Daubechies with 8 vanishing moments. The Bayes
error is 0.1702

2.5.4 Effect of the Wavelet Function on the Performance of Classifier

Different wavelets have different properties. For example, Daubechies filters are minimal phase

filters that generate wavelets which have minimal support for a given number of vanishing moments.

Symmlets are within minimum size support for a given number of vanishing moments, but they are

as symmetrical as possible, as apposed to the Daubechies filters which are highly asymmetrical. The
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Method 100 250 500 1000
WBGLC 0.3792 0.3519 0.3220 0.3195
WBGLCreg 0.4481 0.4348 0.3775 0.3367
WBGLCMS 0.3722 0.3442 0.3227 0.3151
Logistic Regression 0.3414 0.3452 0.3404 0.3402

Table 9: Example 2: Only X1 is observable. Average of the empirical errors of the 100
simulations. Wavelet function is Daubechies with 8 vanishing moments. The Bayes
error is 0.3062
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Figure 7: Example 2: Average of the empirical errors of the 100 simulations, for various
training sample sizes. (a) Case 1: X1 and X2 are observable. (b) Case 2: Only X1

is observable.

Vaidyanathan filter gives exact reconstruction, but does not satisfy any moment condition. Wavelets

designed for a different purposes, for example, some are specifically designed for image processing,

others for speech coding. So it is expected that that selection of the wavelet function will have impact

on the performance of the proposed wavelet-based generalized classifier.

Our wavelet-based classifier approximates generally unknown function

η(x) = P{Y = 1|X = x} = IE{Y |X = x}.

Choice of wavelet function will determine how well we approximate η(X). We now provide experi-

mental results that confirm that selection of the wavelet function plays important role in performance

of the proposed classifier.
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Wavelet 100 200 300 500
Case 1: X1 and X2 are observable
Daubechies 2 0.4268 0.4175 0.4221 0.3975
Daubechies 3 0.3480 0.3063 0.2962 0.2611
Daubechies 4 0.2827 0.2212 0.2143 0.1960
Daubechies 5 0.2377 0.1959 0.1870 0.1773
Daubechies 6 0.2367 0.1916 0.1832 0.1771
Daubechies 7 0.2419 0.1944 0.1875 0.1798
Daubechies 8 0.2448 0.1964 0.1889 0.1792
Daubechies 9 0.2572 0.1977 0.1900 0.1802
Daubechies 10 0.2608 0.2017 0.1937 0.1803
Case 2: Only X1 is observable
Daubechies 2 0.4261 0.3974 0.3927 0.3628
Daubechies 3 0.3870 0.3441 0.3236 0.3071
Daubechies 4 0.3671 0.3242 0.3082 0.2963
Daubechies 5 0.3609 0.3287 0.3100 0.3057
Daubechies 6 0.3610 0.3299 0.3193 0.3057
Daubechies 7 0.3620 0.3349 0.3201 0.3085
Daubechies 8 0.3677 0.3382 0.3211 0.3071
Daubechies 9 0.3756 0.3436 0.3244 0.3101
Daubechies 10 0.3756 0.3397 0.3259 0.3143

Table 10: Average of the empirical errors of the 50 simulations for the Daubechies family,
for various training data sample sizes. The Bayes errors are 0.1710 and 0.2829, for
case 1 and 2 respectively.

Tables 10 – 12, illustrate performance of the generalized linear classifier with multiples scales

([5, 6, 7]) on the data set described in the Example 1. For the same date we calculate empirical

error of the classifier using different wavelet families, for for each family we also investigate effect

of the number of vanishing moments. Results indicate that average of the empirical error over

50 simulation decreases as we increase number of vanishing moments and starts increasing after

for number of vanishing moments greater that 6. Figure 8, demonstrates average of the empirical

errors of the 50 simulations, for various training sample sizes and various wavelet function with 6

vanishing moments. Results indicate that Daubechies family outperforms Symmlet and Coiflet.

2.5.5 Application in Paper Producing Process

We consider an example from the book of Pandit and Wu ([62], pp. 496–497) which presents 100

data points of the observed basis weights in response to an input in the stock flow rate of a paper-

making process. The values were taken at one-second intervals. The following brief description of
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Wavelet 100 200 300 500
Case 1: X1 and X2 are observable
Coiflet 4 0.3577 0.3208 0.3100 0.2817
Coiflet 6 0.2702 0.2221 0.2110 0.2107
Coiflet 8 0.2928 0.2472 0.2262 0.2267
Coiflet 10 0.3272 0.2704 0.2582 0.2565
Case 2: Only X1 is observable
Coiflet 4 0.4145 0.3809 0.3618 0.3543
Coiflet 6 0.4063 0.3963 0.3800 0.3714
Coiflet 8 0.4247 0.4122 0.3942 0.3870
Coiflet 10 0.4541 0.4276 0.4225 0.4088

Table 11: Average of the empirical errors of the 50 simulations for the Coiflet family, for
various training data sample sizes. The Bayes errors are 0.1710 and 0.2829, for
case 1 and 2 respectively.

Wavelet 100 200 300 500
Case 1: X1 and X2 are observable
Symmlet 4 0.2870 0.2335 0.2269 0.2069
Symmlet 6 0.2484 0.2147 0.2044 0.1961
Symmlet 10 0.2966 0.2512 0.2408 0.2431
Case 2: Only X1 is observable
Symmlet 4 0.3852 0.3512 0.3419 0.3324
Symmlet 6 0.3857 0.3764 0.3687 0.3591
Symmlet 10 0.4292 0.4127 0.4138 0.4052

Table 12: Average of the empirical errors of the 50 simulations for the Symmlet family, for
various training data sample sizes. The Bayes errors are 0.1710 and 0.2829, for
case 1 and 2 respectively.
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Figure 8: Average of the empirical errors of the 50 simulations, for various training sample
sizes and various wavelet function with 6 vanishing moments. (a) Case 1: X1 and
X2 are observable. (b) Case 2: Only X1 is observable.

the papermaking process is from section 11.1.1 of Pandit and Wu [62]. A schematic diagram can be

found there, too.

The Fourdrinier papermaking process starts with a mixture of water and wood fibers

(pulp) in the mixing box. The gate opening in the mixing box can be controlled to

allow a greater or smaller flow of the thick stock (a mixture of water and fiber) entering

the headbox. A turbulence is created in the headbox by means of suspended plates to

improve the consistency of the pulp. The pulp then descends on a moving wire screen,

as a jet from the headbox nozzles. Water is continuously drained from the wet sheet of

paper so formed on the wire screen. The paper sheet then passes through press roles,

driers, and calender roles to be finally wound.

It is important to produce paper of as uniform a thickness as possible since irregulari-

ties on the surface such as ridges and valleys cause trouble in later operations such as

winding, coating, printing, etc. This uniformity is measured by what is called a basis

weight, the weight of dry paper per unit area. It may be measured directly or by means

of a beta-ray gauge that makes use of the beta-ray absorption properties of the paper
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material. The regulation of paper basis weight is one of the major goals of the paper

control system.

The basis weight is affected by variables such as stock consistency, stock flow, headbox

turbulence and slice opening, drier steam pressure, machine speed, etc. However, thick

stock flow is often used as the main control input measured by the gate opening in the

mixing box.

Based on the above description, we selected the stock flow as the only input in our problem.

We are looking for a good predictor of the output basis weight. Let Bt and St for t = 1, 2, . . . , 100

denote the basis weight and the stock flow rate at time t, respectively. The output basis weight,

Bt depends not only on its past values but also on the stock flow. However, as stock flow must go

through several steps such as refining, pressing, drying etc. to be paper products, the stock flow at

time t cannot directly affect the basis weight at the same time. However, we assumed that St−1

affects Bt. Further analysis found that 0.7Bt−1 + 0.25St−1 is a good predictor of Bt.

Now we define {(Xt, Yt), t = 2, 3, . . . , 100}. The target basis weight depends upon the grade of

the paper being made. We assume that the target basis weight for the paper is 40lb/3300 sq ft. and

our tolerance level is ±0.5lb. Therefore, we consider the basis weight, Bt in the range of 39.5 and

40.5 as “good” and assign the value of “1” for the response variable, Yt. Otherwise, the basis weight

is “bad” and Yt is assigned “0”. For each such Yt, the corresponding Xt is 0.7Bt−1 + 0.25St−1.

Thus, we have 99 data points of (Xt, Yt)’s from the given 100 values of basis weight and stock flow.

We used (Xt, Yt)’s with odd t as the training set and the remaining even-index set as the validation

set.

By identifying the classifier, we hope to be able to predict whether the future basis weight will

be “good” or “bad” at the measured basis weight and stock flow. In addition, we want to make the

output basis weight maintained at the “good” range of target value by manipulating the stock flow.

For example, by looking at the measured basis weight and stock flow at time t, we can guess the

basis weight at time t + 1 and from this future basis weight, we know which range of stock flow

rate we should have to get a “good” basis weight at time t + 2.

The empirical errors for the wavelet classifier with different wavelet basis are given in Table 13.
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Wavelet WBGLC (J = 4) WBGLCreg (J = 4) WBGLC (J = 4) WBGLCreg (J = 5)
Symmlet 8 0.36 0.34 0.38 0.26
Daubechies 4 0.24 0.20 0.28 0.20
Daubechies 8 0.22 0.16 0.30 0.18

Table 13: Empirical errors for the paper making process.

Chang, Kim, and Vidakovic [13] report an error of 0.18 for the same data set. The empirical

error of the logistic regression is

L
logit
49 (50) =

1
50

50∑

j=1

I
(
I(f(Xj) > 0.5) 6= Yj

)
= 0.36.

The best performance is achieved with Daubechies 8 wavelet function and regularized classifier,

with error 0.16.

2.5.6 MicroArray Example

MicroArrays. From Wikipedia (http://en.wikipedia.org/), the free encyclopedia.

A DNA microarray is a collection of microscopic DNA spots attached to a solid surface, such

as glass, plastic or silicon chip forming an array. Scientists use DNA microarrays to measure the

expression levels of large numbers of genes simultaneously. The affixed DNA segments are known

as reporters, thousands of which can be used in a single DNA microarray. Microarray technol-

ogy evolved from Southern Blotting1, where fragmented DNA is attached to a substrate2 and then

probed with a known gene or fragment. Measuring gene expression using microarrays is relevant

to many areas of biology and medicine, such as studying treatments, disease and developmental

stages.

The most common use of microarrays is to quantify mRNAs3 transcribed4 from different genes

and which encode different proteins. RNA is extracted from many cells, ideally from a single cell

type, then converted to cDNA or cRNA (complimentary DNA or RNA). Fluorescent tags 5 are en-

zymatically incorporated into the newly synthesized cDNA/cRNA or can be chemically attached to

1Southern Blotting is a method in molecular biology of enhancing the result of separation of the DNA strands by size,
by marking specific DNA sequences.

2Substrate is a molecule which is acted upon by an enzyme.
3Messenger RNA (mRNA) is RNA that encodes and carries information from DNA to sites of protein synthesis.
4Transcription is the process through which a DNA sequence is copied by an RNA polymerase to produce a comple-

mentary RNA. Or, in other words, the transfer of genetic information from DNA into RNA.
5A fluorescent tag is a part of a molecule that researchers have attached chemically to aid in detection of the molecule

to which it has been attached.

55



the new strands of DNA or RNA. A cDNA or cRNA molecule that contains a sequence comple-

mentary to one of the single-stranded probe sequences on the array will hybridize, via base pairing

(more at DNA), to the spot at which the complementary reporters are affixed. The spot will then

fluoresce (or glow) when examined using a microarray scanner.

Increased or decreased fluorescence intensity indicates that cells in the sample have recently

transcribed, or ceased transcription, of a gene that contains the probed sequence (”recently,” because

cells tend to degrade RNAs soon after transcription). The intensity of the fluorescence is roughly

proportional to the number of copies of a particular mRNA that were present and thus roughly

indicates the activity or expression level of that gene. Arrays can paint a picture or ”profile” of

which genes in the genome are active in a particular cell type and under a particular condition.

The analysis of DNA microarrays poses a large number of statistical problems, including the

normalization of the data. The large number of genes present on a single array means that the

experimenter must take into account the multiple testing problem: even if each gene is extremely

unlikely to randomly yield a result of interest, the combination of all the genes is likely to show at

least one or a few occurrences of this result which are false positives.

microRNA. From Wikipedia (http://en.wikipedia.org/), the free encyclopedia. The

term miRNA was first introduced in a set of three articles in Science (26 October 2001). In genetics,

a miRNA (micro-RNA) is a form of single-stranded RNA which is typically 20-25 nucleotides

long, and is thought to regulate the expression of other genes. miRNAs are RNA genes which

are transcribed from DNA, but are not translated into protein. The DNA sequence that codes for

an miRNA gene is longer than the miRNA. This DNA sequence includes the miRNA sequence

and an approximate reverse complement. When this DNA sequence is transcribed into a single-

stranded RNA molecule, the miRNA sequence and its reverse-complement base pair to form a

double stranded RNA hairpin loop; this forms a primary miRNA structure (pri-miRNA).

The function of miRNAs appears to be in gene regulation. For that purpose, a miRNA is com-

plementary to a part of one or more messenger RNAs (mRNAs), usually at a site in the 3’ UTR

(prime untranslated region). The annealing of the miRNA to the mRNA inhibits protein transla-

tion. In some cases, the formation of the double-stranded RNA through the binding of the miRNA
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Figure 9: A DNA microarray, the different colors indicate relative expression of different
genes. Image is taken from Wikipedia, the free encyclopedia.

triggers the degradation of the mRNA transcript through a process similar to RNA interference

(RNAi), though in other cases it is believed that the miRNA complex blocks the protein translation

machinery or otherwise prevents protein translation without causing the mRNA to be degraded.

miRNA and cancer.

miRNA has been found to have links with some types of cancer. A study of mice altered to

produce excess c-myc a protein implicated in several cancers shows that miRNA has an effect

on the development of cancer. Mice that were engineered to produce a surplus of types of miRNA

found in lymphoma cells developed the disease within 50 days and died two weeks later. In contrast,

mice without the surplus miRNA lived over 100 days. (He, et al., 2005)

Another study found that two types of miRNA inhibit the E2F1 protein, which regulates cell

proliferation. miRNA appears to bind to messenger RNA before it can be translated to proteins that

switch genes on and off. (O’Donnell, et al., 2005)

By measuring activity among 217 genes encoding miRNA, patterns of gene activity that can
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distinguish types of cancers can be discerned. miRNA signatures may enable classification of can-

cer. This will allow doctors to determine the original tissue type which spawned a cancer and to

be able to target a treatment course based on the original tissue type. miRNA profiling has already

been able to determine whether patients with chronic lymphocytic leukemia had slow growing or

aggressive forms of the cancer. (Lu, et al., 2005)

References:

• This paper defines miRNA and proposes guidelines to follow in classifying RNA genes as

miRNA: Ambros V, Bartel B, Bartel DP, Burge CB, Carrington JC, Chen X, Dreyfuss G,

Eddy SR, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003). A uniform

system for microRNA annotation. RNA 9 (3): 277-279. PMID 12592000

• This paper discusses the processes that miRNA and siRNAs are involved in, in the context of

2 articles in the same issue of the journal Science: Baulcombe D (2002). DNA events. An

RNA microcosm.. Science 297 (5589): 2002-2003. PMID 12242426

• This paper describes the discovery of lin-4, the first miRNA to be discovered (editor’s note:

in fact, no Wikipedia editor has yet read this paper, only made inferences from a citation):

Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes

small RNAs with antisense complementarity to lin-14. Cell 75 (5): 843-854. PMID 8252621

• He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-

Cardo C, Lowe SW, Hannon GJ, Hammond SM (2005). A microRNA polycistron as a poten-

tial human oncogene. Nature 435 (7043): 828-833. PMID 15944707

• O’Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT (2005). c-Myc-regulated mi-

croRNAs modulate E2F1 expression. Nature 435 (7043): 839-843. PMID 15944709

• Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL,

Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR (2005). MicroRNA

expression profiles classify human cancers. Nature 435 (7043): 834-838. PMID 15944708

58



Data Description. In their paper, Lu et al. [43], used miRNA for classification of cancer. They

used miRNA expressions in the human samples as a training sample and successfully classified

mouse samples using same miRNA expressions. Paper, supplementary materials and data sets can

be found at Cancer Program Data Sets at Broad Institute at

http://www.broad.mit.edu/cgi-bin/cancer/datasets.cgi.

In order to build classifier of normal samples vs. tumor samples based on miGCM collection, we

selected tissues used by Lu et al. [43]. Table 14 summarizes the tissues for the analysis. Testing

data set mLung consisted of the 12 mouse lung samples (5 normal and 7 with tumor). Both data

sets have 217 miRNA expressions. Each data set was log2 transformed.

Tissue Number of Normal Number of Tumor
Colon 5 10
Kidney 3 5
Prostate 8 6
Uterus 9 10
Lung 4 6
Breast 3 6

Table 14: Number of training samples used to build Normal/Tumor classifier.

Modeling. Proposed above wavelet-based generalized linear classifier learns from training data

set (above samples from miGCM data set) and predicts samples in a test data set (the mouse lung

sample set). Wavelet-based classifier with Daubechies 6 wavelet function and scale set [3, 4, 5],

was applied individually to miRNA expression. Each expression has 75 observation, each observa-

tion can be classified into class 0 (normal sample) and class 1 (tumor sample). A set of 132 markers

(miRNA expressions with small error rate (less that 30%), i.e. that best distinguishes between two

classes of samples) was selected using training data set. 109 of those selected markers is identical

to the ones selected by Lu et al. [43]. These 132 markers were used without modification to predict

12 mouse lung samples. Each mouse sample was predicted separately, using wavelet-based gener-

alized linear classifier. Since, as mentioned above, each individual expression is unlikely to yield
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results of interest, classification is done according to the following rule:

Class =





0 If
P132

i=1 g75(Xi,D
i
75)

132 < 0.5

1 otherwise.

where Xi is miRNA expression for marker i, Di
75 learning set of 75 human samples corresponding

to ith miRNA expression. Using this procedure 11 out of 12 samples were correctly identified ,

Lu et al. [43] reported 100% accuracy, but they used k-NN (k-nearest neighbor classifier) which is

much more powerful method.

2.6 Conclusion

In this chapter we introduce wavelet-based generalized linear classifier. We establish that under

mild conditions this classifier is both consistent and strongly consistent. Experimental results show

that the proposed classifier performs well and is comparable to other methods.

MATLAB programs for the wavelet-based generalized linear classifier are available at Jacket’s

Wavelets page http://www.isye.gatech.edu/˜brani/wavelet.html.
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CHAPTER III

LOCAL BAYESIAN FALSE DISCOVERY RATE WAVELET

SHRINKAGE

3.1 Chapter Introduction

In this chapter we introduce wavelet-based shrinkage based on two versions of false discovery rate:

local FDR and Bayesian FDR based on selecting dominant posterior probabilities. The developed

methodology is comparable to currently best available wavelet shrinkage methods. Even though

the two proposed methods may not achieve the minimum of MSE they possess two distinct quali-

ties: (i) they are of thresholding type leading to most parsimonious representations desirable when

dimension reduction is an issue, and (ii) the bias of obtained estimators is small.

Simultaneous testing of multiple hypotheses has always attracted the attention of statisticians

(e.g., Folks [29]) but traditionally, the number of hypotheses was modest (say, < 20). Nowadays,

thousands of hypotheses need to be tested simultaneously and the traditional methods (such as

Bonferroni, for example) are not sensible because of loss of specificity and power.

To illustrate the loss of specificity, consider a gene expression example. Assume that a chip

contains 10000 genes and not a single gene is differentially expressed. If we test each of 10000

hypotheses separately at level α = 0.01, we would expect that 10000 ×0.01 = 100 of the tests

would have p-value less than α, i.e., 100 of the tests would be falsely significant and the probability

that at least one p-value will be less than α (family-wise error rate) is around 1. Thus, individual

p-values are no longer valid measures of significant findings.

For controlling the FWER (family-wise error rate, Dudoit et al. [25]), conservative methods

such as Bonferroni correction is widely used, however this method also suffers from the lack of

power when the number of hypotheses is large. For microarray data, for example, the goal is to

focus on several candidate genes for further study. Thus, the low power of FWER-controlling

procedure is unacceptable and it would be better to control the false discovery rate, FDR, a method
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that is discussed in some detail in following Sections.

To formally illustrate what happens in a testing problem when the number of hypotheses to be

tested simultaneously increases, we consider paradigmatic problem of testing for the multivariate

normal mean.

Suppose we wish to test

H0 : θ = 0 vs. H1 : θ 6= 0, (33)

where X ∼ MVN n(θ, In) is observed. A sufficient statistics for the problem is ||X||2. If the

alternative is precise, θ = θ1, then the α-level maximum likelihood ratio test has approximate

power

1− Φ

(
z1−α − ||θ1||2/

√
2n√

1 + 2||θ1||2/n

)
≈ 1− Φ

(
z1−α − ||θ1||2/

√
2n

)
. (34)

If ||θ1||2 goes to infinity, the power of the test is expected to tend to 1, however, if ||θ1||2 goes

to infinity as o(
√

n), the power tends to α when n increases. Thus, for high-dimensional θ, the

discriminatory distance ||θ1||2 is shrunk to ||θ1||2/
√

2n, and the power tends to the significance

level.

This dissipation of power, while testing multiple hypotheses is discussed by many researchers.

Folks [29] gives an excellent overview of multiple hypothesis testing, including the Tippet method

which can be viewed as a precursor of FDR method of Benjamini and Hochberg [11], and local

FDR discussed in Section 3.2. Another classical repository of methods used in multiple hypothesis

testing is monograph by Miller [50].

In his spirited paper with applications in genomics, Efron [26] found that local FDR tends to

overfit the model. He demonstrated that replacing the “theoretical null distribution” by its empir-

ical counterpart often improves the model selection. We connect local FDR approach (Efron and

Tibshhirani [27]; Efron [26]) to the related model selection procedure based on Bayes factors in the

context of wavelet-smoothing. Consistently with Efron’s findings, the empirical H0 density in the

local FDR tends to have longer tails, leading to more parsimonious models. An efficient proposal

to replace theoretical null by empirical null based on nonparametric version of Empirical Bayes

estimator is proposed by Datta and Datta [16].

62



3.2 Local False Discovery Rate in the Wavelet Domain (BLFDR)

Many proposed wavelet shrinkage methods can be interpreted as multiple hypotheses testing in the

wavelet domain. For example the universal thresholding of Donoho and Johnstone [22], recursive

likelihood ratio tests of Ogden and Parzen [61], false discovery rate of Abramovich and Benjamini

([2], [3]) are some early references. Vidakovic [72] proposes the use of Bayesian hypothesis test-

ing and Bayes factors in the tasks of wavelet thresholding. Vidakovic and Ruggeri [74] develop an

adaptive Bayesian model in which the resulting Bayes rule acts as a shrinker in the wavelet domain.

Their method (Bayesian Adaptive Multiscale Shrinkage, or short BAMS) is now part of Gaussian-

WaveDen of Antoniadis, Bigot,and Sapatinas [6] and allows for incorporation of prior information

about the signal. We review the local false discovery rate and establish the link with Bayes factor

shrinkage induced by BAMS model, all in the context of wavelet shrinkage.

Suppose the observed data y = (y1, . . . , yn) represent the sum of an unknown signal f =

(f1, . . . , fn) and random noise ε = (ε1, . . . , εn). Coordinate-wise, yi = fi + εi, i = 1, . . . , n.

In the wavelet domain (after applying a linear and orthogonal wavelet transformation W to the

observed data), expression (35) becomes djk = θjk + εjk, i = 1, . . . , n, where djk, θjk, and εjk

are the j, k-th coordinates in the traditional scale/shift wavelet-enumeration of vectors Wy, Wf

and Wε, respectively. Our assumption is that the coefficients djk can be considered independently,

since the wavelet transformations are decorrelating. When modeling in practice, such an assumption

prove to be very reasonable. In the exposition that follows, we omit the double index jk and work

with a “typical” wavelet coefficient, d. Therefore, our model is

d = θ + ε. (35)

One way to select the parsimonious model is to componentwise test that the signal part of the

coefficient is zero, i.e., H0 : θ = 0. If the hypothesis is rejected the coefficient is significant and

retained in the model. If the H0 is accepted, then d in the model is replaced by 0. After all n tests are

conducted, the coefficients that survived the tests are back transformed to the domain of the original

data.

When n simultaneous null hypotheses are tested, the corresponding test statistics (likely not all

independent) will result in n p-values, p1, p2, . . . , pn. Under H0 these p-values represent a sample
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from a uniform distribution.

It is more convenient to work with z-values,z1, . . . , zn, where

zi = Φ−1(pi). (36)

Under the H0 the zis are theoretically N(0, 1), and the standard normal tables could be used.

Define local false discovery rate as the ratio of f0(z), theoretical null density for zs and f(z)

observed empirical density for z’s,

lfdr(z) =
f0(z)
f(z)

.

Efron [26] suggests to keep in the model, as interesting, all coefficients for which lfdr(zi) =

f0(zi)
f(zi)

is smaller than some threshold value, say γ = 0.10. As pointed in the same paper, by dropping

p0 which is close to 1 (most of the H0s are true, only a few coefficients are retained in the model), the

probability P (Uninteresting|z) = p0f0(z)/f(z) is close to lfdr(z) = f0(z)/f(z) and represents a

link with Bayes factor shrinkage proposed by Vidakovic [72].

Next we introduce the local false discovery rate for a specific model first discussed in the wavelet

context by Vidakovic and Ruggeri [74].

Assume that [d|θ, σ2] ∼ N(θ, σ2) and the prior σ2 ∼ E(µ), µ > 0, with density f(σ2|µ) =

µe−µσ2
. The marginal likelihood (with σ2 integrated out) is

[d|θ] ∼ DE
(

θ,
1√
2µ

)
, with density f(d|θ) =

1
2

√
2µe−

√
2µ|d−θ|.

If the prior on θ is

[θ] ∼ πoδ0 + π1DE(0, τ), (37)

then the predictive distribution of d is

[d] ∼ m(d) = π0DE
(

0,
1√
2µ

)
+ π1m1(d),

where m1(d) is

τe−|d|/τ − 1√
2µ

e−
√

2µ|d|

2τ2 − 1/µ
,
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The Bayes factor in favor of testing H0 : θ = 0 versus the alternative H1 : θ 6= 0, when wavelet

coefficient d is observed is

B01(d) =
f(d|0)
m1(d)

=
1
2

√
2µe−

√
2µ|d|

τe−|d|/τ− 1√
2µ

e−
√

2µ|d|

2τ2−1/µ

(38)

By straightforward calculation,

f0/m(d) =
B01(d)

π1 + π0B01(d)
(39)

and lfdr can be estimated by B̂01(d)/(π1 + π0B̂01(d)) where B̂01 is an empirical counterpart of

Bayes factor.

Using the empirical counterpart of Bayes factor means that we choose the empirical null hy-

pothesis instead of theoretical one. Local false discovery rate, lfdr, computed by using the empirical

counterpart of Bayes factor (B̂01) corresponds to the empirical null hypothesis and lfdr computed

by using the exact Bayes factor (B01) corresponds to the theoretical null hypothesis.

In multiple testing problem, Efron [26] considered the choice of an appropriate density for the

null hypotheses, the point there being that large-scale situations can provide their own “empiri-

cal null”, which may differ in important ways from the traditional theoretical null appropriate for

any individual problem. In addition, permutation and bootstrap null density estimates should be

considered as improved versions of theoretical null, rather than empirical nulls.

Remark 1. In the illustrative example of gene expression data (Jung et al., [40]), it is shown that

the frequently used permutation methods can be misleading when the mean of the distribution of

test statistics for most genes(non-differential genes) is not zero because the random permutations

of expression levels across the control and treatment groups make the mean of the distribution

definitely zero. This would yield a bias in the mean estimate and thus result in inaccurate estimation

of FDR.

Jung et al. [40] proposed the fully Bayesian mixture model-based method in meta-analysis to

estimate the null distribution of test statistics and compared it with the permutation methods by

computing the FDRs given the critical value. The proposed method was applied to four publicly

available prostate cancer gene expression data and the results showed that the model-based approach

is superior to the permutation method.
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In this example, the mean of test statistics of non-differential genes was estimated 0.177, larger

than zero and the null density from permutation method showed the center around zero, showing

significant difference from the estimated density in the proposed method. Also for example, with

critical value 1.207, the FDR estimated by the mixture model is 0.001, while the FDR estimated by

the permutation method is 0.022.

Remark 2. From the form of Bayes factor in (38), it follows that B01 < α leads to a thresholding

rule |d| > λ, for some λ = λ(α).

The Bayes factor provides a measure of data support for the H0 and is used to calculate posterior

odds of H0 as

p0

p1
=

π0

π1
B01,

where π0
π1

are prior odds.

A coefficient should remain in the model if the B01 < α. Since adaptive Bayesian shrinkage

uses level varying probability of null hypothesis, π0 = π0(j), where j is the level in the wavelet

decomposition, the local false discovery rate is equivalent to the following rule based on Bayes

factors,

Keep the wavelet coefficient at level j in the model as interesting if B01 ≤ α(j).

In automatic procedure α(j) is always 1, which reflects the fact that H0 is more readily rejected.

This means that the thresholding is not performed and the coefficient is retained as significant.

3.3 FDR Ordering of Posterior Probabilities (BaFDR)

As we hinted in the Introduction, wavelet shrinkage, in form of thresholding of wavelet coefficients,

can be viewed as a multiple testing problem. For each observed wavelet coefficient di = θi + σεi,

consisting of signal part θi and the error σεi the hypothesis H0 : θi = 0 is tested against the

alternative H1 : θi 6= 0. If the hypothesis H0 is rejected, the coefficient di is retained in the model

as significant. Otherwise, it is discarded.

For example, the universal threshold can be viewed as a critical value of a test with the level

α = P (|di| >
√

2 log n σ |H0 ) ≈ (n
√

π log n)−1.

The power of this test against the alternative H1 : θi = θ (6= 0) is O
(

1
n
√

log n

)
.
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Universal thresholding is equivalent to a Bonferroni-type procedure. In testing n statistical hy-

potheses simultaneously, the Bonferroni procedure guarantees that the overall level of the omnibus

test is α by setting the levels for the individual hypotheses as α
n . For large n, the individual levels α

n

become unduly small, leading to loss of “strictness” and dissipation of power. This loss of strictness

means that many of H0 : θ = 0 are accepted, i.e., many observed coefficients are discarded from

the model leading to over-smoothing.

A way to control such dissipation of massive acceptance of null hypotheses could be based on

the false discovery rate (FDR) (Abramovich and Benjamini [2], [3]; Benjamini and Hochberg [11]).

Here is a brief description. Let R be the number of wavelet coefficients retained in the model. If

S of them are correctly kept, then V = R−S are erroneously kept. The random variable Q = V/R

expresses the error in such a procedure. The false discovery rate of coefficients is the expectation of

Q; that is, the expected proportion of coefficients erroneously kept. One maximizes the number of

coefficients kept, subject to condition IEQ ≤ α, for α small.

Several Bayesian alternatives to FDR are proposed from the Bayesian stand point, a nice overview

can be found in Tadesse et al. [69].

Rosner and Vidakovic [67] propose an FDR procedure in which that is based on the assessment

of posterior probabilities of hypotheses. An application is given in Angelini and Vidakovic [5].

Suppose that in testi([18], [19])ng of n hypotheses H0, we obtain a sequence of their posterior

probabilities, p1
0, p

2
0, . . . , p

n
0 . Let p(1), p(2), . . . , p(n) be increasingly ordered posterior probabilities,

and q(k) = 1− p(k), k = 1, . . . , n.

When deciding about retaining the wavelet coefficients in the model (“a discovery”, “interesting

coefficient”, etc.) by rejecting corresponding null hypotheses H0 : θ = 0, one controls the number

of hypotheses that are erroneously rejected, V . If the R hypotheses with smallest posterior proba-

bilities are rejected, we require the expectation (with respect to the posterior measure) of Q = V/R

not to exceed α. Note that

IEQ =
1
R

R∑

i=0

iP (Among R rejected hypotheses, the number of erroneously rejected is i)

=
1
R

R∑

i=0

iPR(i), (40)
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where the probabilities PR(i) can be calculated efficiently as the coefficients with powers zi in

generating polynomial

ϕR(z) =
R∏

k=1

(q(k) + p(k)z) =
R∑

i=0

PR(i)zi. (41)

Thus, this Bayesian FDR procedure (BaFDR) can be summarized as follows:

• STEP 1. Find the posterior probabilities pjk of all hypotheses H0 : θjk = 0 and

order them according to their size.

• STEP 2. Fix α small and set R = 1.

• STEP 3. Increase R by 1. Find ϕR(z) using p(1), . . . , p(R), and calculate IEQ.

• STEP 4. If IEQ ≥ α then the maximum posterior probability of rejection is

p(R−1). STOP.

Otherwise, if IEQ < α, return to STEP 3.

The introduced BaFDR naturally leads to wavelet thresholding. It turns out that such shrinkage

is also linked with the shrinkage based on Bayes Factors and lfdr discussed in the previous sections.

Note that the posterior probability p0 of hypothesis H0 is

p0(d) =
B01(d)

π1
π0

+ B01(d)
(42)

where d is observed wavelet coefficient and π1
π0

are prior odds in favor of H1. This is an easy

reformulation of the definition of Bayes Factor which links the prior and posterior odds:

p0

p1
= B01 × π0

π1
.

If the hypotheses H0 is rejected, by (42),

p0(d) ≤ α is equivalent to B01(d) ≤ α

1− α
× π1

π0
.

We provide the simulational results involving the standard test functions and the BaFDR shrink-

age. Because of its global nature the resulting shrinkage is inferior to the state of art local, neighborhood-

dependent shrinkage methods.

3.4 Simulations and Application

The same setup is used for both BaFDR, and Local Bayesian FDR in wavelet domain. Four standard

test functions (blocks, bumps, doppler and heavisine) are rescaled so that an added
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standard normal noise produces a preassigned signal-to-noise ratio (SNR). The wavelet bases used

are: Symmlet 8 for doppler and heavisine, Haar for blocks and Daubechies 6 for bumps,

as standardly done. Number of levels in wavelet decomposition is 4 for signal length of 512, 5 levels

for signal length 1024 and 6 for signal length 2048. The in all three cases the smooth level contains

32 coefficients which are left intact.

One of the key challenges in shrinkage/thresholding methods based on Bayesian model is spec-

ification of hyperparameters. It is desirable to have an automatic and objective procedure amenable

to a range of input signals and noises. Our method is based on Empirical Bayes moment-matching.

In principle it is possible to use more formal Empirical Bayes MLII method, but for practicable

models such avenue leads to a nontrivial extremal problems.

We discuss two cases in specifying the hyperparameters. In the Case 1 the parameters are

specified in a global way, i.e., coefficients in all detail levels have the same model. This case is

compared to two popular global methods: VisuShrink and SureShrink (Donoho and Johnstone [22];

Donoho [23]; and Johnstone and Donoho, [39]).

In the Case 2 the model parameters depend on detail level, thus the models are level-dependent.

The level dependent shrinkage is compared to ABWS of Chipman, Kolaczyk, and McCulloch [14]

and BAMS of Vidakovic and Ruggeri [74]. Both of these methods are implemented by Antoniadis,

Bigot, and Sapatinas [6]. More detailed description of this automatic hyperparameter selection is

provided next.

3.4.1 Tuning the Model Parameters: Case 1

This is global model, i.e., hyperparameters in models for all detail coefficients are the same.

1. µ is the reciprocal of the mean for the prior on σ2, or, equivalently, the square root of the

precision for σ2. We first estimate σ by a robust Tukey’s pseudos = (Q1 −Q3)/C, where

Q1 and Q3 are the first and the third quartiles of the finest level of details in the decomposition

and 1.3 ≤ C ≤ 1.5. We propose 1

pseudos2 as a default value for µ; according to the Law

of Large Numbers, this ratio should be close to the “true” µ.

2. π0 is the weight of the point mass at zero in the prior on θ and taken to be independent of

level j.
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3. τ is the scale of the “spread part” in the prior (37). In the case of a double exponential prior,

the variance of the signal part is 2τ2. Because of the independence between the error and the

signal parts, we have σ2
d = 2(1− π0)2τ2 + 1/µ, where σ2

d is the variance of the observations

d. This yields

τ =

√√√√max

{
σ2

d − 1
µ

2(1− π0)2
, 0

}
.

Note when τ = 0, the prior (also the posterior) put all their mass at 0, which results in

δ(d) = 0.

3.4.2 Tuning the Model Parameters: Case 2

Models are level-dependent, i.e., some hyperparameters in models for detail coefficients are the

same within a level, and different for different levels.

1. µ is specified as in the Case 1.

2. π0 is the weight of the point mass at zero in the prior on θ and should depend on level j.

Depending on our prior information about smoothness, π0 should be close to 1 at the finest

level of detail and close to 0 at the coarsest levels. We propose a hyperbolic decay in j,

π0(j) = 1− 1
(j − coarsest+ 1)γ

, coarsest ≤ j ≤ log2 n,

where coarsest is the coarsest level subjected to shrinkage.

3. Specification of τ coincides with that in Case 1 but with π0 replaced by π0(j). In this case,

σ2
d = 2(1− π0(j))2τ2 + 1/µ, and

τ =

√√√√max

{
σ2

d − 1
µ

2(1− π0(j))2
, 0

}
.

3.4.3 Results

Table 15 gives the mean-squared error MSE (Variance+Bias2) for VisuShrink, SureShrink, BaFDR

(α = 0.05), and BLFDR-fixed, as procedures with a global shrinkage model and for BAMS, ABWS,

and BLFDR-ld as level dependent shrinkers on standard test signals. The test signals are rescaled

so that the noise variance σ2 equals 1. Signal-to-noise ratio is 7 and sample size is 1024.
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blocks bumps
VISUSHRINK 0.6840 (0.0719 + 0.6122) 1.5707 (0.1165 + 1.4543)
SURESHRINK 0.2225 (0.1369 + 0.0856) 0.6827 (0.2660 + 0.4167)

BAFDR 0.1460 (0.1137 + 0.0322) 0.5768 (0.2880 + 0.2888)
BLFDR-FIXED 0.1244 (0.1129 + 0.0115) 0.3796 (0.2584 + 0.1212)

ABWS 0.0995 (0.0874 + 0.0121) 0.3495 (0.2228 + 0.1267)
BAMS 0.1107 (0.0965 + 0.0142) 0.3404 (0.1976 + 0.1428)

BLFDR-LD 0.1184 (0.1154 + 0.0031) 0.3828 (0.2637 + 0.1191)
doppler heavisine

VISUSHRINK 0.4850 (0.0523 + 0.4327) 0.1204 (0.0339 + 0.0864)
SURESHRINK 0.2285 (0.0946 + 0.1340) 0.0949 (0.0416 + 0.0534)

BAFDR 0.2489 (0.1049 + 0.1440 0.1098 (0.0463 + 0.0635)
BLFDR-FIXED 0.1817 (0.1272 + 0.0545) 0.1010 (0.0689 + 0.0320)

ABWS 0.1646 (0.1006 + 0.0640) 0.0874 (0.0442 + 0.0433)
BAMS 0.1482 (0.0899 + 0.0584) 0.0815 (0.0511 + 0.0304)

BLFDR-LD 0.1801 (0.1283 + 0.0519) 0.1070 (0.0814 + 0.0256)

Table 15: MSE (Variance+Bias2) for VisuShrink, SureShrink, BaFDR (α = 0.05) and
BLFDR (as global methods) and ABWS, BAMS, BLFDR (as level-wise meth-
ods). The standard test signals are rescaled so that the noise variance σ2 equals 1.
SNR is 7, and sample size is 1024.

Table 15 gives MSE (Variance+Bias2) for VisuShrink, SureShrink, BaFDR (α = 0.05) and

BLFDR as comparable global methods. In addition to superior MSE, Bayesian hard-thresholding

alternatives have much smaller bias.

To illustrate performance of BLFDR and BaFDR for standard signals and SNR’s we provide

three tables with simulational results. Tables 16 and 17 give global and levelwise BLFDR. For the

global case p0 = 0.95 while in the levelwise case parameters are determined as in the Case 2 with

γ = 2.5. Table 18 gives MSE value for global shrinkage induced by BaFDR with α = 0.05 and

π0 = 0.90.

Figures 10 – 13 show a graphical examples of the application of the above concepts.

Figure 14 shows ordered posterior probabilities (from BaFDR). Note that, as expected, for most

of the coefficients the posterior probability is close to 1. On the other hand, the selection principle

is robust with respect to the choice of maximal posterior probability – the number of coefficients in

the model is essentially the same for all value of the posterior probability smaller than 0.9.
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Function n SNR=3 SNR=5 SNR=7 SNR=10
Blocks 512 0.2434 0.2159 0.1982 0.1810

1024 0.1884 0.1433 0.1244 0.1044
2048 0.1279 0.0904 0.0698 0.0570

Bumps 512 0.5022 0.5733 0.6596 0.7407
1024 0.3356 0.3660 0.3796 0.3946
2048 0.2235 0.2227 0.2261 0.2384

Doppler 512 0.2439 0.2524 0.2676 0.2872
1024 0.1684 0.1692 0.1817 0.1901
2048 0.1180 0.1044 0.1053 0.1079

Heavisine 512 0.1510 0.1593 0.1888 0.2123
1024 0.1120 0.0943 0.1010 0.1185
2048 0.0897 0.0688 0.0698 0.0796

Table 16: Performance of Local False Discovery Rate in Wavelet Domain. The table shows
average MSE for 1000 simulations, with parameters τ and π0 = 0.95 fixed for all
levels.

3.4.4 An Application in AFM

To illustrate features of the BLFDR and BaFDR shrinkage approaches proposed here we used mea-

surements in atomic force microscopy (AFM).

The AFM is a type of scanned proximity probe microscopy (SPM) that can measure the adhesion

strength between two materials at the nanonewton scale (Binnig, Quate and Gerber, [12]). In AFM,

a cantilever beam is adjusted until it bonds with the surface of a sample, and then the force required

to separate the beam and sample is measured from the beam deflection. Beam vibration can be

caused by factors such as thermal energy of the surrounding air or the footsteps of someone outside

the laboratory. The vibration of a beam acts as noise on the deflection signal; in order for the data

to be useful this noise must be removed.

The AFM data from the adhesion measurements between carbohydrate and the cell adhesion

molecule (CAM) E-Selectin was collected by Bryan Marshal from the BME Department at Georgia

Institute of Technology. The technical description is provided in Marshall, McEver, and Zhu [49].

Figure 15 depicts the original AFM signal (Panel (a)), signal smoothed by BaFDR procedure

(Panel (b)), signal smoothed with global BLFDR procedure with π0 = 0.999 fixed for all levels

(Panel (c)), and signal smoothed by BLFDR with level-dependent π0 but γ fixed at 5.
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Function n SNR=3 SNR=5 SNR=7 SNR=10
Blocks 512 0.2859 0.2483 0.2073 0.1688

1024 0.1997 0.1472 0.1184 0.0977
2048 0.1101 0.0910 0.0750 0.0595

Bumps 512 0.4876 0.5540 0.6174 0.6702
1024 0.3272 0.3698 0.3828 0.3877
2048 0.1981 0.2210 0.2381 0.2594

Doppler 512 0.2759 0.2916 0.2982 0.3049
1024 0.1625 0.1699 0.1801 0.1912
2048 0.0858 0.0942 0.1081 0.1178

Heavisine 512 0.1981 0.1834 0.1900 0.1966
1024 0.1077 0.1010 0.1070 0.1202
2048 0.0598 0.0566 0.0606 0.0700

Table 17: Performance of Local False Discovery Rate in Wavelet Domain. The table shows
average MSE for 1000 simulations, with level-dependent parameters τ and π0,
γ = 2.5.

3.5 Conclusion

In this chapter we proposed and explored two natural approaches to threshold wavelet coefficients.

The approaches are based on multiple testing of hypotheses in Bayesian fashion. They are linked

with the hard thresholding paradigm and also with local false discovery rate methodology proposed

and explored by Efron and Tibshirani [27] and Efron [26]. The proposed approaches are desirable

when dimension reduction is important and they have small bias, as typical for hard-thresholding

estimators.

The methodology leading to BLFDR is quite general and could be developed for a range of

Bayesian models as well. We adhere to the concept of reproducible research. The BLFDR and

BaFDR are implemented in MATLAB, and m-files with examples can be found at

http://www.isye.gatech.edu/˜brani/wavelets.html

under BLFDR and BaFDR.
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Function n SNR=3 SNR=5 SNR=7 SNR=10
Blocks 512 0.4114 0.3012 0.2527 0.2130

1024 0.2687 0.2098 0.1460 0.1099
2048 0.1322 0.1025 0.0743 0.0573

Bumps 512 1.0058 0.9367 0.9541 1.0605
1024 0.4902 0.5479 0.5768 0.5408
2048 0.2785 0.3130 0.3117 0.3028

Doppler 512 0.3875 0.3657 0.3940 0.4091
1024 0.1842 0.2085 0.2489 0.2938
2048 0.0814 0.1031 0.1260 0.1464

Heavisine 512 0.1078 0.1440 0.1966 0.3213
1024 0.0617 0.0873 0.1098 0.1556
2048 0.0391 0.0609 0.0720 0.0989

Table 18: Performance of the BaFDR. The average MSE for 1000 simulations with α = 0.05
and π0 = 0.90 coarsest=5 for all.
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Figure 10: (a) Doppler signal with noise (SNR=7); (b) BLFDR with p0 = 0.95; (c) BLFDR
with levelwise p0; and (d) BaFDR with α = 0.05.
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Figure 11: (a) HeavySine signal with noise (SNR=7); (b) BLFDR with p0 = 0.95; (c)
BLFDR with levelwise p0; and (d) BaFDR with α = 0.05.
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Figure 12: (a) Blocks signal with noise (SNR=7); (b) BLFDR with p0 = 0.95; (c) BLFDR
with levelwise p0; and (d) BaFDR with α = 0.05.
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Figure 13: (a) Bumps signal with noise (SNR=7); (b) BLFDR with p0 = 0.95; (c) BLFDR
with levelwise p0; and (d) BaFDR with α = 0.05.
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Figure 14: Ordered posterior probabilities (from BaFDR) for (a) Doppler signal, (b) Heavy-
Sine, (c) Blocks, (d) Bumps.
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Figure 15: (a) Original AFM signal; (b) Smoothing with BaFDR; (c) Smoothing with
BLFDR with π0 = 0.999 fixed for all levels; and (d) Smoothing with BLFDR
with level-dependent π0 but fixed γ = 5.
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CHAPTER IV

LINEAR FEATURE IDENTIFICATION AND INFERENCE IN

NANO-SCALE IMAGES

4.1 Chapter Introduction

Nanoscale materials (i.e. materials designed on the scale of 10−9 meters) have been growing in

interest in recent years. This is due to the emergence of nanotechnology as a field of interest in

technology and to the miniaturization limitations of current technology. Nanoscale-designed mate-

rials promise to have radically different properties than their bulk counterparts. For example, the

photoluminescence properties of materials change significantly in nanomaterials. Widely discussed,

carbon nanotubes have been either semiconducting or metallic and have vastly improved strength

over any bulk carbon.

It is important, then, to be able to characterize the materials being used in order to fully under-

stand the properties that they exhibit. A tool crucial to this characterization and understanding is

the Transmission Electron Microscope (TEM) . In order to view and understand the arrangements

of atoms at an atomic scale, a high resolution transmission electron microscope is necessary. Fur-

thermore, tools helping to analyze the images taken from the microscope could vastly enhance the

ability of scientists to understand the phenomena that occur when designed at the nanoscale.

Crystalline materials are made up of atoms in specific sites within unit cells. These attributes

of crystalline materials help define the many attributes that the bulk material shows. The size of

these unit cells is on the order of only a couple of angstroms (10−10 meters) and so imaging them

is somewhat of a challenge. This is solved through the use of a TEM in which resolutions up to

one angstrom have been achieved. In a nanoscale world, the easy and reliable measurement of these

properties of the crystals is vital to the characterization of the materials being used.

Lattice spacing determination in high resolution electron microscope images is a key way in

which a material can be characterized and studied. The spacing of unit cells of atoms and the angles
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that the sides of the unit cells make are both techniques in characterizing a crystalline material. Also

interesting are spaces in the crystal where this regularity breaks down. This can symbolize defects

in the crystal structure, such as dislocations, point defects, and planar defects. Such defects can

have a large impact on the properties of the material. In many cases, it can be difficult to see the

presence of nanoscale particles without an aid.

When taking a low magnification, high resolution (500kx, 1.2 angstrom resolution) images,

layers of atoms manifest themselves as a series of parallel lines. The separation between these

lines can be used to determine the separation between the layers of atoms. This is important in

determining several important factors about the material, including the crystallographic orientation

and some mechanical properties. Most of the time, these lines are visible to the human eye and

currently are measured by hand with a magnifying glass, after the pictures of the specimen have

been developed, and after the specimen is no longer in the microscope. More and more, these

microscopes have digital cameras installed on them, so the ability to make these measurements

immediately, while the specimen is still in the microscope is an extremely useful tool to researchers.

Knowing what you have already measured while you are still working on the microscope can lead

to better analysis and an easier time of making all of the correct measurements. Moreover the

visual scans are not very accurate and often miss hidden crystallographic orientations. Therefore,

developing a tool to automate the process of determining the spacing and orientation of the lattice of

atoms could be important to the development of the understanding of materials and their properties

at the nanoscale.

Figure 16, shows the typical TEM image of the ZnS structure. The “linear” structure (parallel

lines of different orientation) formed by an atomic lattice is clearly visible. The difference in orien-

tation may come from the following sources: (i) different materials will have different orientation;

(ii) often the layer that is below the surface can be seen, and this creates the additional orientation

and (iii) different areas of the crystal can be oriented differently. Our primary goal is to detect this

linear structure, or more specifically, to find the parallel lines, their relative orientations, and dis-

tances between parallel lines of the same direction. All this information is useful in the following

important applications. First of all, by knowing of the relative orientation of different materials

we can learn more about the crystallographic structure of the interfaces of the materials. Second,
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Figure 16: Example of the TEM image of the ZnS structure. Parallel lines formed by an
atomic lattice are clearly visible. They form approximately 30◦ angle with the
y-axis.

the knowledge of the orientation of the surface layer and the layers below it, coupled with diffrac-

tion pattern and images at higher resolution, can give us signature of the material, its structure and

properties. Finally by learning the distances between parallel lines the distance between atoms, the

lattice spacings can be determined.

4.2 The Hough Transform

The straight lines are the pattern of interest in the images. There are several different ways of

representing the straight line in R2. For convenience, the normal representation of the line is used:

x cos θ + y sin θ = ρ,

where ρ is the length of a normal from origin to the line and θ is the angle of the orientation of ρ

with respect to the x-axis (See Figure 17). Simple geometry shows that the angle between the line

and the “negative” y-axis is also θ. In the future, we will refer to an orientation as an angle formed

by the line and “negative” y-axis.
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Figure 17: Normal representation of a straight line in R2.

There are many methods in image processing for the detection of lines. One of the most popular

is the Hough Transform (HT) .

The Hough transform (HT) is a well known tool for the detection of the straight lines. Paul

Hough [37], deduced the method in order to detect the straight line tracks left by the charged par-

ticles in a bubble chamber. His proposal was based more on intuition than on formal mathematical

ground. Later, Duda [24], introduced the (ρ, θ) parametrization, and Deans [20] showed that the

Hough transformation is in fact a special case of the well known Radon transform.

The Hough transform involves three main steps. The first step is the computation of a binary

edge image I(x, y). The edge description is commonly obtained from a feature detection methods

such as the Laplacian of Gaussian method, the zero-crossing method, Robers Cross, Sobel, or Canny

edge detector, and it is usually noisy, i.e. it contains multiple edge fragments corresponding to a

single whole feature.

The second step is the evaluation of the formula

HT (ρ, θ) =
∫∫

R2

I(x, y)δ(ρ− x cos θ − y sin θ)dxdy, (43)

where δ is the standard delta function, δ(x) = 0 for all x 6= 0. Equation (43) is the mathematical

representation of the standard Hough transform. Any grayscale image is stored in computer as a

matrix. Thus function I(x, y) in the Equation (43) will be discrete. This requires the discretization

of the the parameters of the lines ρ and θ. Hence the integrals in (43) will be represented as sums.
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For an N ×N image, discrete values of the (ρ, θ) variables, within the intervals [−N/
√

2, N/
√

2]

and [0, π] respectively. Discretization of the parameter θ may, for example may be from 1 to 180

degrees in steps of ∆θ = 1, or one may choose half-degree step ∆θ = 0.5, to increase sensitivity.

One can discretize parameter ρ in similar way with different values for the step ∆ρ. The size of

the steps creates the dimensions of a “probe line” or rectangular window/band along which the

formula is evaluated. Simply stated, the Hough transform computes the sum of the edge map I ,

along the straight “probe lines” defined by the polar parameters (ρn, θm), and stores the values in

the corresponding bins HT (ρn, θm) forming the accumulator matrix R. The Hough transform could

be generalized by changing the argument of the delta function. A generalized Hough transform can

be used for the detection of regular curves such as circles, ellipses, etc, and it is can be employed in

applications where a simple analytic description of features of a pattern of interest is not possible.
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Figure 18: Example of the HT applied to image in Fig 16. Notice irregularities at 27◦. These
correspond to parallel lines formed by an atomic lattice clearly visible in Fig. 16.

The last step is the analysis of the output. There are number of methods which one can employ

in order to extract bright points (local maxima), from the accumulator, in other words, unique (ρ, θ)

points corresponding to each of the straight lines in the image. The simplest method is the relative

thresholding. One could take only those local maxima in the accumulator whose values exceed
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Figure 19: An image with straight lines and the HT of this image. Notice a distinct “butter-
fly” shape formed by the lines after the HT. The line in the neighborhood of the
point (250, 200) which forms an angle slightly over 90◦ with the y-axis in a) will
correspond to the “butterfly” with its center approximately at (−90, 90) in b).

some fixed percentile. However, there are many local maxima that do not correspond to straight

lines because of sensitivity of the Hough transform to the correlated noise. Hence, the relative

thresholding generally performs poorly.

Figure 19 shows the representation of straight lines in the Hough transform output. The lines

have a more complex representation than just the local maxima. One can clearly see the distinct

distribution of intensity associated with each straight line featured in image space. The distribution

has the appearance of a butterfly with its wings extended in the θ direction. Therefore, instead of

looking for local maxima one can be looking for this particular distribution around local maxima.

This can be done by using a mask or filter that matches the distribution under investigation. The

analytical form of the “butterfly” distribution in transformed space has been deduced using a step

by step geometric approach and a limiting process. If the line under detection has a normal which

subtends an angle α with the x-axis, then

HT (ρ, θ) =
1

| sin(θ − α)| .

More information about the Hough transform, butterfly distribution and filtering, and other Hough

transform techniques can be found in Leavers [42] and Illigworth and Kittler [38].
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4.3 Method Description

As mentioned above, the first step is the creation of the binary edge map, edge detection. The Canny

method of edge detection was found to be particularly well suited for this purpose. The method finds

edges by looking for local maxima of the gradient of the image, calculated using the derivative of

a Gaussian filter. The method uses two different thresholds. The first threshold detects strong and

weak edges, and the other includes the weak edges in the output only if they are connected to strong

edges. Compared to other standard methods, the Canny algorithm is less likely to be “fooled” by

noise, and is more likely to detect true weak edges.

After the edge detection is complete, the standard Hough transform is performed to obtain the

accumulator matrix R. The parallel lines of different orientation formed by the atomic lattice is

pattern of interest. Due to the physical nature of the images, the presence of the parallel lines

throughout the whole image is expected. Parallel lines with the same orientation will be represented

as bright points at one specific column (equivalently, angle) of the accumulator matrix R. Thus it is

expected that some angles would have more energy than that of others. The energy function Ang,

can be obtained from the accumulator matrix R, as follows

Ang(j) =
∑

i

R2
i,j , for j = 1, 2, . . . 180.

For convenience, Ang is normalized, so that it has a zero mean, and a unit sample variance. Fig-

ure 20 illustrates the application of the above concept to the image in Figure 16.

The energy function helps identify the angles that correspond to structured patterns of parallel

lines. These angles will be represented on the graph of the energy function as sharp peaks. On the

other hand, those that do not correspond to such patterns, for example some instances of correlated

noise, will show up as flatter or less sharp local maxima. This behavior is captured in Figure 20,

where three distinct peaks can be observed at 27◦, 90◦, and 119◦ elucidating patterns of parallel

lines aligned at those angles. There is also a flat local maxima present around 45◦ which does not

correspond to a pattern of interest. In this way, the identification of peaks in the graph of the energy

would accurately determine the orientations of the parallel lines formed by the atomic lattice.

Because of their localization property, wavelets are employed as an appropriate tool for detecting

peaks. To this end, the non-decimated wavelet transform of the energy function Ang is performed
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Figure 20: Energy plot Ang of the HT accumulator matrix R for the image in Fig. 16. Notice
three distinct peaks at 27◦, 90◦ and 119◦. The peak at 27◦ corresponds to a major
visible orientation of the image in Fig. 16. The peak at 119◦ corresponds to a
second orientation, which is barely visible.

using the Haar wavelet. Using two levels of the decomposition has proved to be sufficient to detect

the peaks. The coefficients at the two detail levels with large absolute values would correspond to

irregularities in the energy function Ang since the levels are close to the first and second discrete

derivatives of the function. For the Haar wavelet, if properly scaled, the first two levels are exactly

the first two numerical derivatives. The following rule is used in order to determine the significance

of an angle. The angle i, for i = 1, 2, . . . 180, is considered to be a significant if it satisfies:

αdi,1 + (1− α)di,2 > αqp1(level1) + (1− α)qp2(level2)

and

di,1 > 0, di+1,1 < 0,

where di,1 and di,2 are the coefficients of the first and second levels of the decomposition, respec-

tively, corresponding to a given angle i. The qp(level k) is the p · 100% quantile of the coefficients

of level k, for k = 1, 2. The relative importance of the levels is selected by the value of α. The
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default values of p1, p2, and α are 0.90, 0.75, and 0.75, respectively. These default parameters pro-

vide very good results in noisy and real life images. These parameters can be changed in order to

increase sensitivity and detect otherwise overlooked features. The first expression in this rule finds

all significant coefficients in the decomposition which correspond to irregularities in the function

Ang such as fast decay, discontinuity jumps, peaks, etc. The second guaranties that the suspicious

angle is local maxima. This rule proves to be a very efficient in finding peaks of the function Ang.
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Figure 21: Coefficients of the first level of non-decimated wavelet decomposition of the func-
tion Ang in Fig 20. Notice the behavior of the coefficients at 27◦, 90◦ and 119◦.

After analyzing real life images, an interesting feature is found: the peak at 90◦ almost always

appears in the graph of the energy function Ang. It can be shown that this peak is an construct

of the Hough transform. For instance, if Bernoulli random noise is used to create an original edge

map image (with probability p for a given pixel to be 1), then the energy function Ang will have a

distinct shape shown in Figure 22.

The sharpness of the peak depends on the percentage of ones in an edged map. Sometimes,

some parts or the even a whole image will not posses any features of interest; still their energy

function will have a distinctive shape as in Figure 22. Thus, the shape of the energy function of

an image with only noise, can be used as a template function for the absence of linear structure in

images. It is very unlikely that a realistic nanoscale image would have parallel lines at 90◦. Hence,

peaks at 90◦ can be ignored.

After determining the orientation of the parallel lines, the next step is to find their location by
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Figure 22: Function Ang that corresponds to the 0−1 image with probability 0.1 for a given
pixel to be 1.

analyzing the columns of the accumulator matrix R. The angles, which were found in the previous

step, would determine exactly which columns of the accumulator matrix are needed to be analyzed.

For example, in the image in Figure 16 only two orientations were detected – one at 27◦ and a

second at 119◦. Therefore, one should focus on only the 27th and 119th columns of the matrix R.

Figure 23 shows the 27th column of the accumulator matrix R.

The relative thresholding will correspond to a horizontal cut on the graph in Figure 23. If the

value of the threshold is too large (cut high) then too few lines would be detected. Lines that are

close to the end of the image would be ignored, as well as the lines whose length is relatively small.

If the value of the threshold is too small (cut low), then too many “noise lines” would be detected

which would be useless for the analysis. To this end, a compromising thresholding technique based

on wavelets has been developed.

Let dis denote the column of interest of the accumulator matrix R. The length n of dis depends

on the size of the original image. The signal dis is decomposed using a wavelet transform. The

Vaidyanthan wavelet filter was selected for the decomposition. The sound-like form of the signals

gives a strong indication that the Vaidyanathan wavelet is appropriate, since this filter has been

optimized for speech coding. The number of levels in the wavelet decomposition is selected as

nl =
⌊

log2(n− 1)
2

⌋
. (44)
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Figure 23: Plot of the 27th column of the accumulator matrix R.

The wavelet decomposition is thus composed of nl levels containing the details of the signal dis,

plus the smooth part, which contains the information about the general behavior of the signal. The

number nl as in the (44), ensures that the smooth part does not contain any high frequency features.

Using only this smooth part of the wavelet decomposition, one can create a flexible threshold.

Application of the inverse wavelet transform to the smooth part only produces the smoothed version

of the signal dis. This reconstruction is used as a threshold criteria. The dotted curve in Figure 24

a) shows the smoothed signal dis. After shifting the restored signal by an appropriate constant, one

can consider everything below the curve as insignificant. The standard deviation of the absolute

values of the residuals of the signal dis and its restored smoothed representation is selected as the

shift constant. The solid curve in Figure 24 a) represents shifted smoothed signal dis, which is

used as a threshold. By itself this threshold is not selective enough, for it selects too many lines.

The Vaidyanthan wavelet transform is then applied to the original signal dis again, but this time we

ignore the first level (finest level) of the decomposition. Similarly, the inverse wavelet transform

is applied to the smooth part of the decomposition. The restored signal repeats the behavior of the

original signal dis almost perfectly. Figure 24 b) shows the restored signal with only one level of
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Figure 24: (a) Cyan - original signal. Dotted line - smoothed signal dis. Solid curve - shifted
smoothed signal. (b) Cyan - original signal. Blue - restored signal without finest
level.

decomposition. There are key differences in a restored signal and the original signal which make

it easier to eliminate most of the extra lines. The restored signal is based on only half of the data

points of the original signal. It averages values of neighboring data points. The restored signal

always shrinks towards its average. Everything below the restored signal is ignored. The combined

two-step thresholding produces good results.

Another challenge comes from the pixel representation of a straight line. The granularity of the

pixel representation of a line can be coarse enough for the Hough transform to detect two or more

lines of the same orientation, where, in fact only one line exists (see Figure 25). Some orientations

tend to create more neighboring parallel lines than the others. Experiments with different images

have shown that orientations which favor generation of several lines are located in the neighborhood

of the local minima of the function in Figure 22. This creates a problem for the analysis of the lattice

spacing – the distance between parallel lines of the same direction. The introduction of several extra

lines in close proximity will act as noise.

When working with real life images with visible linear structure, continuous straight lines are

rarely found, since lines are broken into pieces. The lines are not always straight, due to the defects
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Figure 25: Theoretical line(solid); its pixel representation. The dotted lines represents a
neighboring line, which might get detected since it goes through many pixels
of the pixel representation.

in a materials, and/or poor image quality. Thus, after edge detection there would be a noisy image

with fragmented lines. Even in the continuous fragments of the same line one can observe small

shifts (see Figure. 26). All these factors cause the single line to create several extra lines, which

brings more noise into the analysis.

The following procedure has been developed in order to solve this problem. Among detected

lines, those that are one, two or three pixels apart were singled out. From the equations of these

lines, pixel representations are generated. These representations are the coordinates of pixels out-

lining the original lines. Using these pixel coordinates the signal of zeros and ones can be obtained

from the edge map, which would correspond to a line under investigation. One could choose several

measurements in order to decide if the line is significant: the simple count of ones, the maximum

length of the continuous run of ones, or the average length of runs of ones. The significance mea-

sure could help to differentiate between the actual line and the neighboring noise lines. Figure 27

illustrates the representation of a detected line and its neighbor. Clearly the second line b) is only

detected because of the “spill-over” from line a). Therefore it could be ignored. This step improves

the results significantly.
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(a) (b)

Figure 26: A close-up on the linear structure of the ZnS structure. Notice how the lines
formed by an atomic lattice are not exactly straight or continuous. One can clearly
see that the lines are fragmented and continuous segments contain small shifts. All
this generates problems in the analysis.
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Figure 27: Representation of the two neighboring lines detected after thresholding. Line (b)
is clearly detected as a “spill-over” from line (a) and can be ignored.
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Figure 28: (a) Example of the deterministic image with three sets of parallel lines; (b) Exam-
ple of the deterministic image with added normal noise (SNR=0.5). Notice how
the lines with 144◦ orientation are barely visible in the noise.

4.4 Results
4.4.1 Deterministic Images

Several synthetic images of size 1024 × 1024 have been created in order to test performance of

the method. All images consist of fifty parallel lines of various orientation with a fixed distance

between them. Different levels of normal noise have been added to each image. Table 19 shows the

results of the analysis of these images.

Notation: “# of lines” refers to number of lines detected. “Distance” denotes estimated average

distance detected. “Std” refers to standard deviation of the estimated distance between the lines.

Since all the lines have a fixed distance between them, standard deviation theoretically should be

zero. However, because of approximations in constructing lines (i.e. pixel representation) some

small variability is expected. Images 1 through 4 have single orientation, where images 5-7 have

two sets of parallel lines and image 8 has three. Figure 28 shows an enlarged portion of image 8

together with the noise added to this image.
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4.4.2 Nanoscale Images

Application of the method is demonstrated on the two TEM images of the ZnS structures. Figures 29

and 30 show the images. Because of their large size the images have been broken into 4 subimages

in the following manner
(1, 1) (1, 2)

(2, 1) (2,2)
. Each subimage is analyzed separately. The results for

each image can be found in Tables 20-22. The results are given for the default parameter settings,

using three-pixel difference elimination for close lines. A 10% trimming from above is applied,

for the estimation of the average distance between parallel lines or lattice spacing. The theoretical

lattice spacing for the ZnS materials is 1.66 · 10−10 m. This if for the inside of material in ideal

condition, as on the surface the spacing may vary. As one can see from the Tables 20-22, the

estimate of the major layer is almost always greater than the theoretical distance. However, the

estimate of distances for visible layers under the surface is very close to the theoretical distance.

On the surface, the atoms experience different energetic responses than in the bulk of the ma-

terial. In order to compensate, the atomic layer relaxes (spreads out) or otherwise rearranges itself.

This is the major reason why the estimated distance of the main visible layer exceeds the theoreti-

cal distance. For some of the materials the way atoms rearrange themselves on the surface is well

studied, and the lattice spacing could be determined theoretically. For the others there is no method

that would give good understanding of the rearrangements and provide theoretical lattice spacing.

Our method allows the experimenter to estimate the lattice spacings quite accurately.

4.4.3 Analysis of Image 1

Size 4050 × 5220, scanned at 2400dpi and with microscope magnification of 500,000. The image

is broken into 4(2x2) overlapping images 2048×2048, which give almost complete coverage of the

original image. Quality of the subimage (1, 2) is poor. No features are found with default parameter

settings. Results of the analysis are in Table 20. 29◦ is the major visible orientation present almost

throughout the entire image. 78◦ is visible only in part of the image.

4.4.4 Analysis of Image 2

Size 3360×4560, scanned at 2400dpi and with microscope magnification of 500,000. The image is

been broken into 4(2x2) overlapping images 2048× 2048, which give almost complete coverage of
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Figure 29: (a) Image 1: size 4050 × 5220; (b) Image 2: size 3360 × 4560, ZnS structure,
microscope magnification 500,000.

the original image. 28◦ is the major visible orientation present almost throughout the entire image.

118◦ is the secondary orientation present almost always throughout the whole image, but is barely

visible, and with default parameter it is detected only once. Results of the analysis are in Table 21.

4.4.5 Analysis of Image 3

Size 2415 × 2745, 2400dpi and with microscope magnification of 500,000 times. The image is

broken into 4(2x2) overlapping images 2048× 2048, which give complete coverage of the original

image. Results of the analysis are in Table 22.

4.5 Conclusions and Discussion

In this chapter we propose a new method for the analysis of the nanoscale images. The proposed

method produces good results in both synthetic and real nano-scale images. It is recommended to

have two images of the same sample: one the rotated version of the other. Comparison of the results

of both images would allow for the removal of the uncertainty that comes from the sensitivity of the

Hough transform to certain orientations. This would increase accuracy in the analysis of the lattice

spacing. Current ’algorithmic’ methods of image rotation would preserve the image’s structure

completely, and the energy function would shift according to the angle of rotation (see Figure 31).

This is why it is recommended to have two images.
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Figure 30: Image 3: ZnS structure, size 2415× 2745, microscope magnification 500,000.

It is possible to perform continuous directional wavelet transform of the images with the direc-

tions defined by the output of the analysis. The continuous directional wavelet transform would

extract the features of the images which are aligned in the given direction. Figure 32 shows the

continuous directional wavelet transform of the image in Figure 16 in two directions 27◦ and 119◦.

The results of the continuous directional wavelet transform could tell a little bit more about structure

and defects in the material for specific orientation.

We support David Donoho’s initiative for reproducible research. MATLAB toolbox, tutorial file,

sample images, and m-files used to produce the calculations and pictures in this chapter are available

at Jacket’s Wavelets page http://www.isye.gatech.edu/˜brani/wavelet.html.
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Figure 31: Plot of the energy function of the rotated by 5◦ image. The energy function of the
rotated image almost completely preserves structure of the energy function for
the original image. Everything is shifted by 5◦.
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Figure 32: Continuous Direction Wavelet Transforms of image in Fig. 16 a) 27◦ b) 119◦.
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Description SNR 0.3 0.5 0.7 1 3 No Noise
Image 1(1 set) # of lines 51 49 49 49 49 49
Distance between the lines is 25 pixels Distance 23.5 25.06 24.93 25 25 25
Angle 30◦ between lines and y axis Std 4.445 1.31 1.31 0.87 5.8E-15 5.8E-15
Image 2(1 set) # of lines 66 47 47 47 49 49
Distance between the lines is 20 pixels Distance 16.18 20.06 20 20 19.58 20
Angle 150◦ between lines and y axis Std 10.2 2.4 2 2 2.5 1.6E-14
Image 3(1 set) # of lines 49 49 48 48 48 48
Distance between the lines is 20 pixels Distance 19.58 20 20 20 20 20
Angle 120◦ between lines and y axis Std 3.03 1.23 0.437 1.25 8.3E-15 8.3E-15
Image 4(1 set) # of lines 67 50 48 46 47 48
Distance between the lines is 25 pixels Distance 17.42 24.42 25 25 24.93 25
Angle 144◦ between lines and y axis Std 8.29 5.26 1.37 1.73 1.18 1.6E-15
Image 5(2 sets) Set 1: # of lines 70 49 49 49 49 49
Distance between the lines is 25 pixels Distance 17.75 25.06 24.93 25 24.93 25
Angle 30◦ between lines and y axis Std 7.25 1.15 1.31 1.07 1.8 1.51
Set 2: # of lines 117 64 50 49 49 49
Distance between the lines is 25 pixels Distance 10.9 19 24 25.06 25 25
Angle 144◦ between lines and y axis Std 6.16 7.49 4.38 1.42 0.41 0.41
Image 6(2 sets) Set 1: # of lines 86 51 49 49 49 49
Distance between the lines is 25 pixels Distance 14.21 24.44 25 24.93 25 25
Angle 30◦ between lines and y axis Std 6.95 2.84 1.23 0.97 1.51 2.55
Set 2: # of lines 73 49 48 48 48 49
Distance between the lines is 20 pixels Distance 15.36 20 20 20 20 19.93
Angle 120◦ between lines and y axis Std 11.3 1.75 1.39 0.625 1.97 1.57
Image 7(2 sets) Set 1: # of lines 66 49 49 49 49 49
Distance between the lines is 20 pixels Distance 16.09 19.93 20 20 20 20
Angle 120◦ between lines and y axis Std 6.95 1.64 1.23 8.2E-15 8.2E-15 8.2E-15
Set 2: # of lines 119 72 50 50 49 49
Distance between the lines is 25 pixels Distance 10.4 16.95 24.53 25.04 25 24.97
Angle 144◦ between lines and y axis Std 5.83 7.65 2.78 1.15 0.61 0.14
Image 8(3 sets) Set 1: # of lines 98 52 48 49 49 49
Distance between the lines is 25 pixels Distance 12.53 24.07 25 25 25 25.06
Angle 30◦ between lines and y axis Std 6.66 3.74 1.25 1.51 1.51 2.18
Set 2: # of lines 89 51 49 49 49 49
Distance between the lines is 20 pixels Distance 14.02 19.54 20.06 19.93 20 20
Angle 120◦ between lines and y axis Std 10.35 2.71 1.57 1.15 8.2E-15 8.2E-15
Set 3: # of lines Failed 107 55 50 50 51
Distance between the lines is 25 pixels Distance 11.94 22.18 25 24.95 24.52
Angle 144◦ between lines and y axis Std 6.8 5.63 1.25 0.28 2.97

Table 19: Analysis of the deterministic images. Each set of lines consists of 50 parallel lines.

Subimage Detected Direction Average(in m.)
(1, 1) 29 2.18E-10
(2, 1) 29 2.37E-10
(2, 2) 29 2.16E-10

78 2.49E-10

Table 20: Image 1 analysis.
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Subimage Detected Direction Average(in m.)
(1, 1) 28 2.03E-10
(1, 2) 28 2.03E-10

99 2.10E-10
(2, 1) 28 2.06E-10
(2, 2) 28 2.10E-10

118 1.71E-10

Table 21: Image 2 analysis.

Subimage Detected Direction Average(in m.)
(1, 1) 28 2.03E-10
(1, 2) 28 2.06E-10

118 1.89E-10
(2, 1) 28 2.03E-10
(2, 2) 28 2.30E-10

100 1.73E-10
118 1.81E-10

Table 22: Image 3 analysis.
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APPENDIX A

DEFINITIONS, LEMMAS, THEOREMS

Theorem A. 1 (Theorem 29.8 p.502 in [21]). Let ψ1, ψ2, . . . be a sequence of bounded functions

with |ψj(x)| ≤ 1 such that the set of all finite linear combinations of the ψj’s

∞⋃

k=1





k∑

j=1

ajψj(x) : a1, a2, . . . ∈ R




is dense in L2(µ) on all balls of the form {x : ‖x‖ ≤ M} for any probability measure µ. Let the

coefficients a∗1, . . . , a
∗
kn

minimize the empirical squared error

1
n

n∑

i=1




kn∑

j=1

ajψj(Xi)− (2Yi − 1)




2

under the constraint
∑kn

j=1 |aj | ≤ bn, bn ≥ 1. Define the generalized linear classifier gn by

gn(x) =





0 if
∑kn

j=1 a∗jψj(x) ≤ 0

1 otherwise.

If kn and bn satisfy

kn →∞, bn →∞ and
knb4

n log(bn)
n

→ 0,

then E{L(gn)} → L∗ for all distributions of (X,Y ), that is, the rule gn is universally consistent. If

we assume additionally that b4
n log(n) = o(n), then gn is strongly universally consistent.

The function η(x) is estimated from training data Dn by some function ηn(x) = ηn(x, Dn).

Corollary A. 1 (Corollary 6.2 p.93 in [21]) If

gn(x) =





0 if ηn(x) ≤ 1/2

1 otherwise.
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then its error probability satisfies

P{gn(X) 6= Y |Dn} − L∗ ≤ 2

√∫

Rd

|η(x)− ηn(x)|2 µ(dx).

Let F be a class of real-valued functions defined on Rd, and let Z1, Z2, . . . , Zn be i.i.d. Rd-valued

random variables. We assume that for each f ∈ F , 0 ≤ f(x) ≤ M for all x ∈ Rd and some

M < ∞.

Definition A. 1 (Definition 29.1 p.492 in [21]) Let A be a bounded subset of Rd. For every ε > 0.

the `1-covering number , denoted by N (ε, A), is defined as the cardinality of the smallest finite set

in Rd such that for every z ∈ A there is a point t ∈ Rd in the finite set such that (1/d)‖z− t‖1 < ε.

(‖x‖1 =
∑d

i=1 |x(i)|) denotes the `1-norm of the vector x = (x(1), . . . , x(d)) inRd.) In other words,

N (ε, A) is the smallest number of `1-balls of radius εd, whose union contains A. logN (ε, A) is

often called the metric entropy of A.

Let zn
1 = (z1, . . . , zn) be n fixed points in Rd, and define the following set:

F(zn
1 ) = {(f(z1), . . . , f(zn)) : f ∈ F} ⊂ Rd.

The `1-covering number of F(zn
1 ) is N (ε,F(zn

1 )). If Zn
1 = (Z1, . . . , Zn) is a sequence of i.i.d.

random variables then N (ε,F(Zn
1 )) is a random variable.

Theorem A. 2 (Theorem 29.1 p.492 in [21]) For any n and ε > 0,

P

{
sup
f∈F

∣∣∣∣∣
1
n

n∑

i=1

f(Zi)− IE{f(Z1)}
∣∣∣∣∣ > ε

}
≤ 8IE{N (ε/8,F(Zn

1 ))}e−nε2/(128M2)

Definition A. 2 (Definition 12.1 p.196 in [21]) Let A be a collection of measurable sets. For

(z1, . . . , zn) ∈ {Rd}n, let NA(z1, . . . , zn) be the number of different sets in

{{z1, . . . , zn}
⋂

A : A ∈ A}.

The n-th shatter coefficient of A is

s(A, n) = max
(z1,...,zn)∈{Rd}n

NA(z1, . . . , zn).
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That is, the shatter coefficient is the maximal number of different subsets of n point that can be

picked out by the class of sets A.

Definition A. 3 (Definition 12.2 p.196 in [21]) Let A be a collection of sets with |A| ≥ 2. The

largest integer k ≥ 1 for which s(A, k) = 2k is denoted by VA, and it is called the Vapnik-

Chervonenkis dimension (or VC dimension) of classA. If s(A, n) = 2n for all n, then by definition

VA = ∞.

Theorem A. 3 (Theorem 13.9 p.221 in [21]) Let G be a finite-dimensional vector space of real

functions on Rd. The class of sets

A = {{x : g(x) ≥ 0} : g ∈ G}

has VC dimension VA ≤ r, where r = dim(G).

Corollary A. 2 (Corollary 29.2 p.497 in [21]) Let F be a class of [0,M ]-valued functions on Rd.

For every ε > 0 and the probability measure µ,

N (ε,F) ≤
(

4eM

ε
log

(
2eM

ε

))VF+

.

F+ is defined by following:

F+ = {{(x, t) : t ≤ f(x)}; f ∈ F}.

Lemma A. 1 (Borel-Cantelli lemma, p.585 in [21]) Let An, n = 1, 2, . . . be a sequence of events.

Introduce notation

[An i.o.] = lim sup
n→0

An =
∞⋂

n=1

∞⋃

m=1

Am,

(“i.o.” stands for “infinitely often.”) If

∞∑

n=1

P{An} < ∞

then

P{[Ani.o.]} = 0.
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Theorem A. 4 (p.585 in [21]) If for each ε > 0

∞∑

n=1

P{|Xn −X| ≥ ε} < ∞,

then limn→∞Xn = X with probability one.

Theorem A. 5 (Cauchy root test) Let
∑

k ak be a series with ak ≥ 0, and let

ρ ≡ lim
k→∞

a
1/k
k .

1. If ρ < 1, the series converges.

2. If ρ > 1 or ρ = ∞, the series diverges.

3. If ρ = 1, the series may converge or diverge.
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APPENDIX B

MATLAB PROGRAM CALCULATING SCALING FUNCTION BY

DAUBECHIES-LAGARIAS ALGORITHM

As a rule, in compactly supported orthogonal wavelets, wavelet and scaling function have no closed

form. We give the MATLAB program based on Daubechies-Lagarias algorithm (Daubechies and

Lagarias, ([18], [19])), that calculates a value of the scaling function at an arbitrary design point

with a prescribed precision.

function yy = Phijk(z, j, k, filter, n)
%--------------------------------------------------------------
% yy=Phijk(z, j, k, filter, n)
% Evaluation of the scaling function corresponding to an Orthogonal
% MRA by Daubechies-Lagarias Algorithm.
% inputs: z -- the argument
% j -- scale
% k -- shift
% filter -- ON finite wavelet filter, might be an
% output of WaveLab’s: MakeONFilter
% n -- precision of approximation maesured by the number
% of Daubechies-Lagarias steps (default n=20)
%--------------------------------------------------------
% output: yy -- value of father wavelet (j,k) coresponding to
% ’filter’ at z.
%--------------------------------------------------------------
% Example of use:
% > xx = 0:0.01:6; yy=[];
% > for i=1:length(xx)
% > yy =[yy Phijk(x(i), 0, 1, MakeONFilter(’Daubechies’,4), 25)];
% > end
% > plot(x,yy)
%----------------------------------------------------------------
if (nargin == 4)
n=20;
end
daun=length(filter)/2;
N=length(filter)-1;
x=(2ˆj)*z-k;
if(x<=0|x>=N) yy=0;
else
int=floor(x);
dec=x-int;
dy=dec2bin(dec,n);
t0=t0(filter);
t1=t1(filter);
prod=eye(N);
for i=1:n
if dy(i)==1 prod=prod*t1;
else prod=prod*t0;
end
end
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y=2ˆ(j/2)*prod;
yyy = mean(y’);
yy = yyy(int+1);
end
%--------------------functions needed----------------------------
%---------
function a = dec2bin(x,n)
a=[];
for i = 1:n
if(x <= 0.5) a=[a 0]; x=2*x;
else a=[a 1]; x=2*x-1;
end
end
%-----------
function t0 = t0(filter)
%
n = length(filter); nn = n - 1;
%
t0 = zeros(nn); for i = 1:nn
for j= 1:nn
if (2*i - j > 0 & 2*i - j <= n)
t0(i,j) = sqrt(2) * filter( 2*i - j );
end
end
end
%------------------
function t1 = t1(filter)
%
n = length(filter); nn = n - 1;
%
t1 = zeros(nn); for i = 1:nn
for j= 1:nn
if (2*i -j+1 > 0 & 2*i - j+1 <= n)
t1(i,j) = sqrt(2) * filter( 2*i - j+1 );
end
end
end
%---------------------- B. Vidakovic, 2002 --------------------
%--------------------------------------------------------------
function yy = Psijk(z, j, k, filt, n)
%--------------------------------------------------------------
% yy=Psijk(z, j, k, filter, n)
% Evaluation of the wavelet function corresponding to an Orthogonal
% MRA by Daubechies-Lagarias Algorithm.
% inputs: z -- the argument
% j -- scale
% k -- shift
% filter -- ON finite wavelet filter, might be an
% output of WaveLab’s: MakeONFilter
% n -- precision of approximation maesured by the number
% of Daubechies-Lagarias steps (default n=20)
%--------------------------------------------------------
% output: yy -- value of mother wavelet (j,k) coresponding to
% ’filter’ at z.
%--------------------------------------------------------------
% Example of use:
% > xx = -1:0.01:5; yy=[];
% > for i=1:length(xx)
% > yy =[yy Psijk(x(i), 0, 1, MakeONFilter(’Daubechies’,4), 25)];
% > end
% > plot(x,yy)
%----------------------------------------------------------------
if (nargin == 4) n=20;
end
N=length(filt)-1;
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daun = (N+1)/2;
x=(2ˆj)*z-k;
if(x<=daun-N|x>=daun) yy=0;
%if(x<=0|x>=N) yy=0;
else
twox = 2 * x;
inti=floor(twox);
dec=twox-inti;
dy=dec2bin(dec,n);
t0=t0(filt);
t1=t1(filt);
prod=eye(N);
for i=1:n
if dy(i)==1
prod=prod*t1;
else prod=prod*t0;
end
end
uu=[];
for i=1:N
index = i + 1 - inti;
if ( index > 0 & index < N + 2 )
fi= (-1)ˆ(-index)*filt(index);
else fi=0;
end
uu =[uu fi];
end
%----------------------------------------
v = 1/N * ones(1,N) * prod’ ;
yy=2ˆ(j/2)* uu * v’;
end
%--------------------functions needed----------------------------
%---------
function a = dec2bin(t,n)
a=[];
for i = 1:n
if(t <= 0.5) a=[a 0]; t=2*t;
else a=[a 1]; t=2*t-1;
end
end
%-----------
function t0 = t0(filt)
%
n = length(filt); nn = n - 1;
%
t0 = zeros(nn); for i = 1:nn
for j= 1:nn
if (2*i - j > 0 & 2*i - j <= n)
t0(i,j) = sqrt(2) * filt( 2*i - j );
end
end
end
%------------------
function t1 = t1(filt)
%
n = length(filt); nn = n - 1;
%
t1 = zeros(nn); for i = 1:nn
for j= 1:nn
if (2*i -j+1 > 0 & 2*i - j+1 <= n)
t1(i,j) = sqrt(2) * filt( 2*i - j+1 );
end
end
end
%--------------------- B. Vidakovic, 2002 --------------------
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APPENDIX C

NANO-SCALE IMAGE ANALYSIS (NSIA) MATLAB TOOLBOX
MANUAL

The method is implemented in the MATLAB toolbox NSIA. This manual provides installation and step-by-step instruc-
tions for the toolbox.

C.1 Installation
In order to install MATLAB toolbox NSIA, unzip all the required files into your MATALAB “work” folder (for example
c:\matlab6p5\work\nsia). Next, create a temporary folder c:\matlab6p5 \work\nsia\temp. The name
of the MATLAB root folder can be arbitrary, however the structure \work\nsia and \work\nsia\temp must be
preserved. Finally, add a path to MATLAB. This can be done by opening MATLAB and going to File. Click onto Set
Path..., and then Add Folder.... Select your NSIA folder, and save. This last step can be avoided if one makes
c:\matlab6p5\work\nsia the “current directory” every time before starting the program.

C.2 Getting Started
C.2.1 Main Menu (Figure 33).
Figure 33 shows the start menu of the program. It consists of six buttons:

1. “Select Image”: This button opens the “Image Selection” window (shown in Figure 34) which allows one to
open an image file and select a region of interest.

2. “Hough Transform”: This button opens the “Hough Transform” window (shown in Figure 35) which per-
forms the Hough transformation of the selected image.

3. “Analysis”: This button opens the “Analysis” window (shown in Figure 36) which detects various orientations
and estimates the distance between lines formed by an atomic lattice.

4. “Convert to meters”: This button opens the “Convert to meters” window (shown in Figure 37) which
allows the conversion of average distance detected in the analysis stage to meters.

5. “CDWT”: This button opens the “CDWT” window (shown in Figure 38) which performs a continuous directional
wavelet transformation along the detected direction/orientation of the selected image.

6. “Close”: This button closes the application.

C.2.2 “Image Selection” Window (Figure 34).
1. In this field the image is displayed.
2. This filed displays the selected region.
3. This allows the selection the size of the subimage in a pop-up menu. The “Select” button displays the crosshair

which allows for the selection of a region of interest.
4. “Open Image” starts the standard menu for opening files. It allows the selecting of JPG image from files on the

hard drive. The “Save” button saves the selected subimage. The “Close” button closes the current window.

C.2.3 “Hough Transform” Window (Figure 35).
1. The “Load” button loads the last saved subimage.
2. This field displays an image.
3. The “Half Degree Step” allows one to select ∆θ = 0.5 degrees in the Hough transform. This will increase

sensitivity as well as computational time. The “Hough Transform” button performs the Hough transformation
of the image.

4. This field displays the Hough transformation of the image.
5. The “Save” button saves the information required for the next step. The “Close” button closes the current

window.
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Figure 33: Main menu.

C.2.4 “Analysis” Window (Figure 36).
1. The “Load” button loads the last selected image. The “Close” button closes the current window and saves the

results required for the next step.
2. The “Plot Image” button displays the image in field (7).
3. The controlled parameters field allows to change parameters to increase sensitivity of the method.

4. The “Detect” button performs the analysis of the image and detects parallel lines formed by an atomic lattice,
and measures the distance between them. The results of the analysis are displayed in (5) and (6).

5. This displays the plot of the energy function, with circles representing detected angles/orientations of the parallel
lines.

6. This field lists the results of the analysis (detected orientation, number of parallel lines, average distance between
the lines and standard deviation of the distances). Selecting particular orientation and clicking the “Plot” button
will plot lines of this orientation over the image in field (7), graph of the distances between the lines in field (8),
and display the histogram of the distances in the field (9).

7. This field displays the image under investigation.

8. This field displays the graph of the distances between the lines.
9. This field displays the histogram of the distances between the lines.

10. This is the control over calculation of the average distance between the lines. There are three possible choices in
the pop-up menu: standard average, trimmed average, and winsorized average. Upper and lower quantiles for the
trimmed and winsorized averages are shown in corresponding fields. Select the desired method in the menu, enter
the values of the quantiles if necessary, and click the “Recalculate Avg.” button to get the results.

11. This is the control over the elimination of the close lines. Select the “Eliminate Close Lines” option
together with the number of pixels in the pop-up menu, and click the “Detect” button to get the results.

C.2.5 “Convert to meters” Window (Figure 37).
1. The “Load” button loads the results from the previous step of the analysis. The “Calculate” button converts

the results to meters.
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Figure 34: Select Image window.

2. This menu allows the selection of the resolution at which the image was originally scanned.

3. This menu allows the selection the magnification of the microscope used.

4. This field displays the results.

C.2.6 “CDWT” Window (Figure 38).
1. The “Load” button loads the image under investigation (displayed in field (4)). The “Save” button saves the

results of the continuous directional wavelet transformation on the hard drive. The “Close” button closes current
window.

2. This is a list of all detected orientations. Select the desired orientation by clicking on it.

3. Select the scale of the wavelet transformation by sliding the rule or entering the value in a field. The “CDirWT”
button performs the transformation.

4. This field displays the image under investigation.

5. This field displays the results of the wavelet transform.

C.3 Step-by-step Instructions.
• Type “nsia” in the MATLAB command line (>>nsia) in order to start the program. Figure 33 shows the start

menu. To make a full analysis one needs to go through each of the steps.

• Analysis starts with the loading of the image and selection of a subimage of interest. Click Select Image
button (Figure 33.(1)). “Image Selection” window shown in Figure 34 will appear.

• Click the Open Image button (Figure 34.(4)). The standard menu for opening file will appear (currently the
program works only with JPG format). Select the desired file. The field Figure 34.(1) will display the selected
image.

• Select the subimage size in the pop-up menu Figure 34.(3). The available sizes are 256 × 256, 512 × 512,
1024 × 1024, 2048 × 2048 and 4096 × 4096. The larger the subimage size, the longer it will take to run the
analysis. The recommended subimage size is 1024× 1024.
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Figure 35: Hough Transform window.

• Click the Select button Figure 34.(3). The crosshair appears, click on the region of interest. The filed Fig-
ure 34.(2), will display the selected region. This step can be repeated until desired region is selected.

• Then satisfied with the selected subimage, click Save and Close buttons (Figure 34.(4)). This will save the
selected subimage and close this window.

• Click the Hough Transform button (Figure 33.(2)). The “Hough Transform” window shown in Figure 35 will
appear.

• Clicking on the Load button (Figure 35.(1)) the last selected subimage will be loaded and shown in (Fig-
ure 35.(2)).

• Now one has an option of selecting “Half degree step” (Figure 35.(3)). This will increase sensitivity as well as
calculation time. It is not recommend to select this option during the first run. If the procedure, however, fails to
detect orientations, one can select this option in a second run. Click the Hough Transform button. This is the
longest computational step in the program. Upon completion, the Hough transform of the image will be displayed
in (Figure 35.(4)).

• Click the Save and Close buttons to save the results and close the window (Figure 35.(5)).

• Click the Analysis button (Figure 33.(3)). The “Analysis” window shown in Figure 36 will appear.

• Click the Load button (Figure 36.(1)). This loads the previously saved information.

• Click the Plot Image button (Figure 36.(2)) to display the image under investigation.

• Click the Detect button (Figure 36.(4)). For the first run it is recommended to run the analysis with the default
parameters. A graph will appear in Figure 36.(5) with circles representing detected angles . Information about
the detected angles, number of detected lines in each direction as well as the average distance between the lines
of the same orientation will be listed in the “Results list” Figure 36.(6).

• One can select any detected direction and using the Plot button (Figure 36.(6)), draw all the lines of the se-
lected direction. A graph which shows the distances (Figure 36.(8)) as well as the histogram of the distances
(Figure 36.(9)) will also appear.

• One can change the controlled parameters in order to detect additional directions by sliding the bars or entering
the parameter value manually (Figure 36.(3)). After changing the parameters, click the Detect button again.

• It is also possible to change the way average distance are calculated in the pop-up menu.Usual average, trimmed
average (enter the lower and upper percentages for the trimming), or winsorized average can be calculated (Fig-
ure 36.(10)).

• When all desired orientation are found, it is recommended to improve the results by elimination of the close lines.
The reason for this is that in the real life images the lines are almost never straight and always discontinuous.
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Figure 36: Analysis window.

This creates the problem of close lines, when a single line generates several broken segments which are getting
detected as several lines. This introduces large errors into the analysis of the distances between the lines. The
elimination of the closes can be done in two steps. First select Eliminate Close Lines (Figure 36.(10)).
Next, in a menu below select 3pix, 2pix or 1pix, and click the Detect button again. This step takes some time.
It will through all detected lines of all detected directions, finding the lines with distances between which are less
that 3 pixels, 2 pixel or 1 pixel, eliminating insignificant ones. This step significantly improves results.

• Close the window by clicking the Close button. It will automatically save information required for the next step.
• To conversion of distances from pixels to meters. Click the Convert to meters button (Figure 33.(4)). The

“Convert to meters” window shown in Figure 37 will appear.
• Click the Load button (Figure 37.(1)).
• Select the resolution at which the image was originally scanned in the pop-up menu (Figure 37.(2)), and select

the magnification of the microscope used (Figure 37.(3)).
• Click Calculate to get the results.
• The final step is CDWT, which stands for Continuous Directional Wavelet Transformation. This feature will help

to see the structure of layers. Click the CDWT button (Figure 33.(5)).
• Click the Load button (Figure 38.(1)). The image under investigation will appear in Figure 37.(4)), as well as all

detected directions in Figure 37.(2).
• Select the desired direction from the list (Figure 37.(2)). Select the scale of the wavelet transformation (Fig-

ure 37.(3)). The recommend the scale to is around 4-8.
• Click on the CDirWT button (Figure 37.(3)) to get the results. The filed in Figure 37.(5) will display the wavelet

transformation along the specified direction.
• Click on the Save button, to save the results. The results will be saved in CWTDdata.mat file in ...\nsia\temp

folder.

C.4 Comments
The following functions are from the WaveLab toolbox for the MATLAB.
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Figure 37: Convert to meters window.

Available at http://www-stat.stanford.edu/˜wavelab/.
ancov.m, downdyadhi.m, downdyadlo.m, dyad.m, dyadlength.m, fwt po.m, fwt stat.m, fwt ti.m, iconv.m iwt po.m,

iwt stat.m lshift.m, makeonfilter.m, mirrorfilt.m, packet.m, reverse.m, rshift.m, shapeasrow.m, shapelike.m, ti2stat.m,
updyadhi.m, updyadlo.m, upsample.m

And the following functions are from YAWTB toolbox.
Available at http://www.fyma.ucl.ac.be/projects/yawtb/index.php.
cauchy2d.m, cwt 2d.m, getopts.m, list elem.m, yapuls.m, yawopts.m.
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Figure 38: CDWT window.
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