
Exact and approximate solving approaches in

multi-objective combinatorial optimization, application

to the minimum weight spanning tree problem

Renaud Lacour

To cite this version:

Renaud Lacour. Exact and approximate solving approaches in multi-objective combinatorial
optimization, application to the minimum weight spanning tree problem. Other [cs.OH]. Uni-
versité Paris Dauphine - Paris IX, 2014. English. <NNT : 2014PA090067>. <tel-01134242>

HAL Id: tel-01134242

https://tel.archives-ouvertes.fr/tel-01134242

Submitted on 23 Mar 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Thèses en Ligne

https://core.ac.uk/display/46817184?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01134242


Université Paris-Dauphine – École Doctorale de Dauphine
Laboratoire d’analyse et de modélisation de systèmes

pour l’aide à la décision

THESE

pour l’obtention du titre de :
DOCTEUR EN INFORMATIQUE

(arrêté du 7 août 2006)

Exact and approximate solving approaches
in multi-objective combinatorial optimization,

application to the minimum weight spanning tree problem

Approches de résolution exacte et approchée
en optimisation combinatoire multi-objectif,

application au problème de l’arbre couvrant de poids minimal

Candidat : Renaud Lacour

Directeur de thèse Daniel Vanderpooten

Professeur à l’Université Paris-Dauphine

Rapporteurs Xavier Gandibleux

Professeur à l’Université de Nantes

Olivier Spanjaard

Maître de conférences HDR à l’Université Pierre et Marie Curie

Examinateurs Lucie Galand

Maître de conférences à l’Université Paris-Dauphine

Kathrin Klamroth

Professeur à la Bergische Universität de Wuppertal (Allemagne)

Jacques Teghem

Professeur à la Faculté polytechnique de Mons (Belgique)

Présentée et soutenue publiquement le 2 juillet 2014



2



Remerciements

Je tiens tout d’abord à remercier Daniel Vanderpooten, mon directeur de thèse. Je lui dois
en premier lieu le sujet de thèse qu’il m’a proposé. Son indéfectible soutien durant cette
thèse m’a permis de la mener à bout. Il a su se rendre disponible pour de nombreuses
réunions durant lesquelles nous avons eu de riches dicussions. Je le remercie de façon
générale pour tout ce qu’il a fait pour moi, au-delà des aspects exclusivement liés à cette
thèse.

Je remercie aussi Kathrin Klamroth, naturellement pour avoir accepté de faire partie
de mon jury, mais aussi pour la collaboration que nous avons commencée durant son séjour
au Lamsade au second semestre 2013. Celle-ci s’est manifestée par de nombreux échanges
avec Daniel également, qui se sont vite révélés fructueux. Je remercie aussi Kathrin de
m’avoir accueilli durant deux séjours à Wuppertal au cours desquels elle s’est montrée très
disponible.

J’adresse ma reconnaissance à Xavier Gandibleux et Olivier Spanjaard qui ont accepté
d’être rapporteurs et pour les échanges que nous avons eus, en particulier dans le cadre du
projet GUEPARD. Je remercie également Olivier d’avoir fait partie de mon jury de pré-
soutenance. Je remercie Lucie Galand et Jacques Teghem pour leur participation à mon
jury en tant qu’examinateurs. La première soutenance de thèse à laquelle j’ai assisté était
celle de Lucie, et je peux affirmer que sa thèse (Galand, 2008) est une référence pour de
nombreux membres de la nouvelle génération à laquelle j’appartiens.

La présentation globale de ces travaux a été effectuée une première fois devant Peter
Beisel et Kerstin Dächert, alors enseignants-chercheurs à l’Université de Wuppertal, et une
seconde fois devant Mohamed Rahal, chercheur à ITE-VEDECOM. Je les remercie tous
pour leurs retours qui ont contribué à la qualité de la présentation finale le 2 juillet 2014.

Ces années de thèse ont aussi connu de nombreux échanges avec plusieurs membres, per-
manents et doctorants, du Lamsade et du projet GUEPARD. Je pense à Yann Dujardin,
avec qui j’ai eu de nombreuses discussions scientifiques, notamment mais pas uniquement
en optimisation multi-objectif. J’ai beaucoup échangé aussi avec Lyes Belhoul, en partic-
ulier autour de nos sujets de thèse et notamment des aspects d’implantation que ceux-ci
contiennent. Je remercie également Florian Jamain et Dalal Madakat pour nos discussions
passionnées et pour leur enthousiasme perpétuel. Je salue enfin les nouveaux membres de
l’« équipe multi-objectif » : Marek Cornu, Sami Kaddani et Satya Tamby (promis, après



4

la thèse je me mets sérieusement à Haskell !).
Je remercie l’équipe de l’école doctorale de Dauphine pour son travail au profit des

doctorants et son aide tout au long de cette thèse. J’adresse également toute ma gratitude à
l’équipe administrative et technique du Lamsade pour son soutien quotidien et sa sympathie.
Je remercie également le service de la reprographie de Dauphine pour son ouverture au
dialogue et son dévouement.

Je salue enfin mes collègues de bureau, présents et passés, en particulier Afef, Amine,
Basile, Édouard, Liang-liang, Émeric et Sonia en plus de ceux que j’ai cités précédemment.
La proximité géographique a permis de nombreuses discussions intéressantes.



Contents

Introduction 7

1 Concepts and generic algorithms in MOCO 11

1.1 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Implicit enumeration in MOCO . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.3 Exploration of the objective space . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Some insights into the multi-objective Minimum Spanning Tree problem 31

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Computational hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.3 From the single objective to the multi-objective case . . . . . . . . . . . . . . 35
2.4 Generic MOCO solving methods applied to the MOST problem . . . . . . . 43
2.5 Ranking spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3 Determining the search region in multi-objective optimization 49

3.1 Background and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Existence and construction of upper bound sets . . . . . . . . . . . . . . . . 59
3.3 Properties of local upper bounds and their efficient computation . . . . . . . 63
3.4 Complexity and computational experiments . . . . . . . . . . . . . . . . . . 70

4 Hybrid ranking and B&B algorithm for solving MOCO problems 79

4.1 A ranking strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Integration of the ranking strategy in a branching tree . . . . . . . . . . . . 87
4.3 Computation of a reduced (1 + ε)-approximation . . . . . . . . . . . . . . . 91
4.4 Instantiation on the Minimum Spanning Tree problem and implementa-

tion issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Conclusions 111

References 113

List of Algorithms 123

Nomenclature 125



6 CONTENTS



Introduction

Many real world decisions cannot be performed by comparing alternatives through a single
value. Instead, it is more realistic to associate several values to each alternative, according
to several criteria, points of view or states of the world. In the case of criteria, this gave
rise to the subject of multiple criteria decision making (MCDM). MCDM mainly embraces
multiple criteria decision aid (MCDA) and multi-objective optimization (MOO). While the
former focuses on situations where the set of alternatives of a decision problem is defined in
extension and is assumed to be of small cardinality, the latter faces a large, possibly infinite,
set of feasible solutions. Therefore, most developments in MCDA focus on modeling issues,
trying to determine and use in the best way the decision maker’s preferences in order to
formulate the most valuable recommendation regarding a practical decision problem. In
contrast, MOO primarily faces computational issues arising from multiple and conflicting
objective functions even when the single objective version of the problem is easily solved.
MCDM in general finds numerous real world applications and so does MOO: Ehrgott (2008)
details some of them in various fields such as finance, transportation, medicine, and telecom-
munication. Also Clímaco and Pascoal (2012) briefly survey recent applications in routing
problems and telecommunication networks.

Several solution approaches exist in decision aid in general and therefore in MCDM in
particular. The process can be more or less demanding for the decision maker: he can be
involved only for a fixed number of phases or for an undetermined number of iterations in
so-called interactive procedures. The solution to the problem with respect to the set of all
possible alternatives can vary as well: it can be, according to Roy (1985), a selection of a
subset of alternatives, a classification of the alternatives into categories, a ranking on all
alternatives, or a description of all alternatives. We will consider only the first of these
solution approaches in the remainder.

We now describe three possible types of choice subsets. A detailed survey on this subject
can be found in Ehrgott and Wiecek (2005).

Determination of a single solution A first reaction when facing multiple objectives
can be to aggregate them into one function, which maps each solution to a scalar value. The
problem can then be solved as in single objective optimization. A wide variety of aggregation
or scalarizing functions can be found in the literature, from weighted sum scalarization to



8 Introduction

more complex non linear functions. Several aggregation functions aim at modelling complex
decision maker’s preferences such as the Choquet integral. Other, known as achievement
functions, are used in interactive approaches, such as the weighted Tchebychev norm, whose
optimization seeks the closest point to a reference point (see Miettinen and Mäkelä, 2002;
Wierzbicki, 1986). The optimization of such non linear aggregation functions raises some
difficulties but several efficient solution methods have been developed until recently, see
e.g. Belhoul et al. (2014) and Galand et al. (2010). The use of an aggregation function
may be combined with the requirement of a minimal outcome for each objective function.
An example approach is to turn all but one objective into budget, resource, or knapsack
constraints that are added to the problem while optimizing with respect to the remaining
one.

Generation of all efficient solutions Another approach is the direct comparison of
feasible solutions based on their outcomes. A central comparison criterion in MOO is Pareto
dominance: a solution dominates another solution if it is at least as good on all obectives and
better on at least one objective. According to this criterion, a decision maker would not be
interested in a dominated solution, if we can show him instead a solution which dominates
it. It is therefore interesting to generate all solutions that are not dominated, which are
denoted efficient or Pareto optimal. The efficient set, i.e. the set of all efficient solutions,
may be large in the case of highly conflicting objectives. Even a reduced efficient set, which
contains all efficient solutions but keeps only one solution among equivalent solutions, can
be large. It may in the worst case contain all feasible solutions. Still it provides in general
an insight into the variety of outcomes that can be achieved by interesting feasible solutions;
therefore the generation of the efficient set can be seen as a first step before the selection of a
restricted set of solutions. This solution approach, which will be referred to as exact in the
remainder, has been primarily developed for linear continuous problems (multi-objective
linear programs, MOLP) and then also for combinatorial optimization problems (multi-
objective combinatorial optimization, MOCO). While MOLP are easily solved, algorithms
to solve MOCO have long been practically inefficient. Moreover, algorithms capable of
solving MOCO problems have long been tied to the bi-objective case due to the more
complex structure of problems with more than two objectives. The proposed algorithms
in the literature however improved a lot during the last decade. For example, Sourd and
Spanjaard (2008) showed that multi-objective branch and bound can efficiently solve large
instances of the bi-objective Minimum Spanning Tree problem. Also Przybylski et al.
(2010b) proposed a multi-objective method, not limited to the bi-objective case, which was
instantiated on the Assignment problem with three objectives and made it possible to
solve large instances.

Approximation of the efficient set Given that, on the one hand the efficient set may be
hard to exploit due to its size and costly to obtain, on the other hand a single solution poorly



9

describes the possible outcomes of the problem, a third approach consists in generating a
representation or an approximation of the efficient set. Ideally, one would like that the
representation (1) covers each efficient solution, (2) consists of solutions whose outcomes are
well distributed, (3) contains few solutions, and (4) is quickly obtained. Many approaches
based on meta-heuristics and genetic algorithms try to satisfy all these requirements, yet
without a priori guarantee on any of them. Approximation algorithms on the other hand
which introduce a tolerance in the dominance relation, prove that it is possible to satisfy
at least (1) and (4) – see Papadimitriou and Yannakakis (2000) –, and also show to what
extent it is possible or not to also satisfy (3) – see Diakonikolas and Yannakakis (2007) and
Vassilvitskii and Yannakakis (2005) –. Although primarily of theoretical interest only, it
was followed by practical efficient algorithms (e.g. Bazgan et al. (2009a))

MOCO today Today, research in MOCO is very active and is supported by several
grants. The work in this thesis was partially supported by the French ANR project
GUEPARD (GUaranteed Efficiency for PAReto optimal solutions Determination) which
creates synergy among three research centers (Lamsade, Université Paris-Dauphine; LINA,
Université de Nantes; and LIP6, Université Pierre et Marie Cuirie, Paris) on all these issues.

Scope and goal of the thesis

This thesis deals mainly with the exact solution of MOCO problems, in the sense of the
generation of a reduced efficient set. We are interested in approaches not limited to the
bi-objective case. The general multi-objective case raises several difficulties, one of them
being the computation of an explicit representation of the search region. The search region
corresponds, given a set of feasible solutions to a MOO problem, to a part of the objective
space where the images of the remaining efficient solutions are guaranteed to lie. We make
new proposals for computing this representation and discuss related complexity aspects.
We also propose a new practical efficient approach for the generation of the reduced effi-
cient set of a MOCO problem. Our method is general in the sense that it only relies on the
possibility to use a ranking algorithm on the single-objective version of the MOCO problem.
Following Bazgan et al. (2009a) who proposed a very efficient algorithm to approximate,
with a priori guarantee, the multi-objective Knapsack problem also supported by compu-
tational experiments, we show that our method can be adapted to efficiently approximate
the reduced efficient set with a priori guarantee. The proposed approach is instantiated
on the Minimum Spanning Tree problem which has numerous applications in the single
objective case and presents an interesting combinatorial structure, which is exploited to
specialize the proposed general method.

Outline of the thesis The first chapter is devoted to the presentation of useful concepts
in MOO and the main generic methods encountered in the literature to solve MOCO prob-



10 Introduction

lems. The second chapter deals with the multi-objective version of the Minimum Spanning

Tree problem. The third chapter elaborates on the explicit representation of the search
region in MOO. In the last chapter, we introduce a general MOCO solving method and
present some computational experiments. Some conclusions and perspectives are finally
provided.



Chapter 1

Concepts and generic algorithms in

multi-objective combinatorial

optimization

This first chapter introduces multi-objective optimization (MOO). The
first part contains definition of several useful concepts in multi-objective
optimization as well as some well known results in the subject. We de-
fine the problem setting, usual binary relations to compare solutions and
points, the weighted sum scalarization technique and its relation to Pareto
dominance and optimality. The first part finishes with a brief survey of
solution concepts in MOO. The second part is concerned with a survey
of some known generic solving methods in multi-objective combinato-
rial optimization. We present multi-objective dynamic programming and
branch and bound on the one hand, and methods based on solving several
budget constrained programs and two-phase methods on the other hand.



12 Concepts and generic algorithms in MOCO

Contents

1.1 Preliminary concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.1.2 Preference relations in multi-objective optimization . . . . . . . . . . 14

Pareto dominance • Approximate dominance

1.1.3 Nondominance and efficiency . . . . . . . . . . . . . . . . . . . . . . 15
Definitions related to elements • Definitions related to sets • Ideal and nadir points

1.1.4 Weighted sum scalarization . . . . . . . . . . . . . . . . . . . . . . . 17
Weighted sum comparisons and dominance • Weighted sum optimality and non-

dominance • Supported and nondominated extreme solutions and points

1.1.5 Solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Exact solution • Approximation with a priori guaranteed quality

1.2 Implicit enumeration in MOCO . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Notations and concepts • Principle • Pairwise comparison of search nodes •

Comparison of a search node to a set of solutions

1.2.2 Towards multi-objective branch and bound . . . . . . . . . . . . . . . 21
Approximation of the set of extensions of a search node in the objective space •

Construction of a convex linear approximation of Y (s)

1.3 Exploration of the objective space . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Methods based on the resolution of budget constrained MOCO problems 25
1.3.2 Two-phase methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Phase one • Phase two



1.1 Preliminary concepts 13

Introduction

Several practically efficient algorithms have been proposed from the end of the seventies to
enumerate efficient solutions in multi-objective combinatorial optimization (MOCO). Most
proposals first addressed the bi-objective case which has interesting and exclusive properties
compared to higher dimensional problems. The generalization of these algorithms to more
than two objective functions started to produce good practical results during the last decade.
It turns out that most exact multi-objective algorithms fall into one of the two following
categories.

The first category corresponds to implicit enumeration, that is, iterative partitioning
of the instance and elimination of dominated subinstances. Thus this kind of algorithm
primarily acts in the decision space. Two main approaches are concerned: multi-objective
branch and bound (MOBB) and dynamic programming, see e.g. respectively Jorge (2010)
and Bazgan et al. (2009b) for the implementation of these two methods in the general
multi-objective case.

The second category contains algorithms that primarily act in the objective space, at-
tempting to identify small zones that are individually explored. The two-phase method
(see Ulungu and Teghem (1995) for the original method and Przybylski et al. (2010b) for
a generalization to more than two objective functions) falls into this category as well as
several methods based on the resolution of budget constrained integer programs that use
the integer programming formulation of the underlying problem (see e.g. Sylva and Crema,
2004).

We present in Section 1.1 general concepts in MOO. Section 1.2 deals with implicit
enumeration in MOCO. Section 1.3 surveys generic solving methods which rely on the
division of the objective space. Finally, we summarize the chapter and present some topical
issues in the field.

1.1 Preliminary concepts

This section defines usual concepts in multi-objective optimization and discusses solution
approaches in the field.

1.1.1 Problem setting

We consider multi-objective optimization (MOO) problems

�

min c(x) = (c1(x), . . . , cp(x))
s.t. x ∈ X



14 Concepts and generic algorithms in MOCO

where X �= ∅ stands for the set of feasible solutions or feasible set that defines the possible
choices and c1, . . . , cp are p criterion, cost or simply objective functions. We assume in
this thesis that X is implicitly defined by a set of constraints and we cannot reasonably
enumerate all elements of X. In multi-objective combinatorial optimization, X is discrete,
which is the case of many problems arising in operations research.

We denote by X ⊇ X the decision space, a set of m-dimensional vectors. In MOO X is
R

m (the m product set R×· · ·×R) or some restriction to positive and/or integral component
values. In MOCO, it is generally a product set of binary values, that is, X = {0, 1}m.

Many problems arising in operations research consist in selecting subsets of edges of a
graph (e.g. Minimum Spanning Tree, Shortest Path, Maximum Matching), ver-
tices of a graph (Minimum Dominating Set), or simply items out of a set (Knapsack).
Assuming the set of items that can be selected is E, with |E| = m, the decision space can
be represented equivalently by 2E or by the set of all indicator vectors of 2E, {0, 1}m.

An objective function cj can take several functional forms: additive, i.e. cj(x) =
�m

i=1 cj(xi), bottleneck, i.e. cj(x) = maxm
i=1 cj(xi) or cj(x) = minm

i=1 cj(xi), or even cap-
ture some structural properties of a solution (e.g. number of leaves of a spanning tree). We
assume that they map elements of X to R. The vector function c = (c1, . . . , cp) hence maps
decision vectors to points of the objective space Z ⊂ R

p. Y = c(X) is the set of all feasible
points.

1.1.2 Preference relations in multi-objective optimization

Pareto dominance

Points and solutions are basically compared using the concept of Pareto dominance.
For any z, z� ∈ Z, we define the following relations:

z = z� iff zj = z�
j, for all j ∈ {1, . . . , p}

z � z� (z weakly dominates z�) iff zj ≤ z�
j, for all j ∈ {1, . . . , p}

z < z� (z strictly dominates z�) iff zj < z�
j, for all j ∈ {1, . . . , p}

z ≤ z� (z dominates z�) iff z � z� and z� ��= z

We define in the same way the relations �, > and ≥.
These definitions are propagated in the decision space as follows, for any x, x� ∈ X :

x ≈ x� iff c(x) = c(x�)
x � x� (x weakly dominates x�) iff c(x) � c(x�)
x ≺ x� (x strictly dominates x�) iff c(x) < c(x�)
x � x� (x dominates x�) iff c(x) ≤ c(x�)



1.1 Preliminary concepts 15

Approximate dominance

We can introduce a tolerance in the above dominance relations and define therefore approx-
imate dominance relations. This can be relevant for example if, from the context, small
differences between objective values are judged non significant.

There are several ways to take into account a tolerance in a comparison between two
points (see e.g. White, 1986). In particular, it is possible to introduce an additive term ε

or a multiplicative factor 1 + ε. The latter is interesting from the complexity point of view,
as shown in Papadimitriou and Yannakakis (2000). Therefore, the tolerance is assumed to
be modeled by a multiplicative factor in the remainder.

For any z, z� ∈ Z and given ε > 0, we define the following relation:

z �ε z�

(z ε-dominates or ε-covers z�)

�

�

�

�

�

iff zj � (1 + ε) · z�
j for all j ∈ {1, . . . , p}

This relation is also translated into the decision space, for any x, x� ∈ X :

x �ε x� iff c(x) �ε c(x�)

For the relations defined above, if for two objective values a, b ∈ R the ratio a
b

is less than
or equal to 1 + ε for some tolerance ε > 0, then a and b are considered to be approximately
identical outcomes.

1.1.3 Nondominance and efficiency

Definitions related to elements

The previous binary relations allow us to define the following concepts related to points and
solutions.
Let z ∈ Y be a point.

• z is said to be nondominated if there is no z� ∈ Y such that z� ≤ z, otherwise, it is
dominated ;

• z is said to be weakly nondominated if there is no z� ∈ Y such that z� < z, otherwise,
it is strictly dominated.

A weakly nondominated point is thus either a nondominated point or a dominated point
which is not strictly dominated.

Nondominated points are also called minima since they are minimal elements for the
relation ≤. This term is preferred to “nondominated” in the field of computational geometry



16 Concepts and generic algorithms in MOCO

(see e.g. Preparata and Shamos, 1985). Nondominated points are also often equivalently
called Pareto optima.
The corresponding concepts are defined in the decision space. Let x ∈ X be a feasible
solution.

• x is said to be efficient if there is no x� ∈ X such that x� � x

• x is said to be weakly efficient if there is no x� ∈ X such that x� ≺ x

We may also extend nondominance to subsets of Y . Let Q ⊆ Y and z ∈ Q.

• z is said to be nondominated w.r.t. Q if there is no z� ∈ Q such that z� ≤ z

• z is said to be weakly nondominated w.r.t. Q if there is no z� ∈ Q such that z� < z

Definitions related to sets

According to the previous concepts on elements of Y and X, we define the following sets:

• Ynd is the set of all nondominated points or simply the nondominated set. It is also
known as the Pareto front or even the skyline in the field of databases.

• Ywnd is the set of all weakly nondominated points

• Xeff is the set of all efficient solutions or simply the efficient set.

• Xweff is the set of all weakly efficient solutions

For any Q ⊆ Y , we also define the following sets:

• Qnd is the set of all nondominated points w.r.t. Q

• Qwnd is the set of all weakly nondominated points w.r.t. Q

Finally, a subset N of Z is stable for some binary relation SZ ⊂ Z × Z if we have

for all z, z� ∈ N, not(zSZz�)

In the remainder, if nothing else is said, “stable” is related to the dominance relation ≤,
and N denote a stable set with respect to this relation.

Ideal and nadir points

Denote respectively by zI
j and zN

j the minimal and maximal values of any point in Ynd on
component j ∈ {1, . . . , p}. Then the points zI = (zI

j)j∈{1,...,p} and zN = (zN
j )j∈{1,...,p} are

respectively called ideal and nadir points of the underlying MOO problem and instance.



1.1 Preliminary concepts 17

1.1.4 Weighted sum scalarization

Let λ = (λ1, . . . , λp) ∈ R
p
≥ be a weight ector. We define the weighted sum scalarization of the

objective functions c1, . . . , cp according to the weight vector λ as the function cλ =
�p

j=1 λjcj

We recall below some well-known and useful results. They can be found e.g. in Ehrgott
(2005).

Weighted sum comparisons and dominance

There are one way implications between dominance relations and weighted sum scalariza-
tions of points of Z. They are summarized in the following proposition.

Proposition 1.1. Let z and z � be two points of Z.

• If z � z� and λ ∈ R
p
≥, then λ · z � λ · z�

• If z ≤ z� and λ ∈ R
p
≥, then λ · z � λ · z�

• If z ≤ z� and λ ∈ R
p
>, then λ · z < λ · z�

• If z < z� and λ ∈ R
p
≥, then λ · z < λ · z�

Weighted sum optimality and nondominance

Now let z∗λ be the image in the objective space of an optimal solution to min{cλ(x) : x ∈ X}.
We have the following well known results:

Proposition 1.2. Assume z∗λ = c(x∗
λ
) where x∗

λ
∈ arg min{cλ(x) : x ∈ X}.

• If λ ∈ R
p
>, then z∗λ ∈ Ynd

• If λ ∈ R
p
≥, then z∗λ ∈ Ywnd

Supported and nondominated extreme solutions and points

We define in this section some useful concepts related to convexity in the objective space.
Some of them are illustrated in Figure 1.1.

For any Q ⊂ Z, conv(Q) denotes the convex hull of Q. A facet of a polytope is
called nondominated if any normal vector λ to its supporting hyperplane directed towards
the interior of the polytope has only strictly positive component values (we recall that
we consider minimization problems). Otherwise, if λ ≥ 0, then the facet is called weakly

nondominated. Otherwise, it is dominated. Such a normal vector is referred to as a weight
vector associated with the corresponding facet.



18 Concepts and generic algorithms in MOCO

c1

c2

Y
Yextr

conv(Y ) + R
p
�

conv(Y )
Nondominated facets of conv(Y ) + R

p
�

Weakly nondominated facets of conv(Y ) + R
p
�

Figure 1.1: Convexity concepts in MOO

Consider the convex hull conv(Y ) of the set of all feasible points of a multi-objective
optimization problem. The nondominated points lying on the boundary of conv(Y ), as
well as any solution that achieves such an outcome, are called supported. Equivalently, a
supported solution is an optimal solution to a weighted sum scalarization of the objective
functions with positive weights. We denote respectively by Ysupp and Xsupp the sets of all
supported points and solutions.

Nondominated extreme points of conv(Y ) are called extreme nondominated or extreme

supported points. Extreme efficient or extreme supported solutions are defined similarly to
supported solutions. They are respectively denoted by Yextr and Xextr.

Finally, for any Q ⊆ Z, we define the set conv(Q)� = conv(Q) + R
p
� = {z + z� : z ∈

conv(Q), z� ∈ R
p
�}. Note that all facets of conv(Q)� are either nondominated or weakly

nondominated.

1.1.5 Solution approaches

This section presents the two solution approaches to MOO problems that are considered in
this thesis.

Exact solution

Solving a multi-objective optimization problem in an exact way means that we want to
obtain either the whole efficient set Xeff or a subset of Xeff containing exactly one solution
per nondominated point, which we call a reduced efficient set. Hansen (1980) calls the
former maximal complete set and the latter minimal complete set.

Algorithms in the literature devoted to multi-objective optimization generally only com-
pute a reduced efficient set. This will also be our interpretation of the exact solution of a
multi-objective optimization problem in the remainder.



1.2 Implicit enumeration in MOCO 19

Approximation with a priori guaranteed quality

Using approximate dominance relations, it is possible to define sets of solutions or points
which approximate the efficient set or the non dominated set.
Given a tolerance ε > 0, we define the following notions:

• Yε is an approximate nondominated set if for any z� ∈ Y there exists a z ∈ Yε such that
z �ε z�. If for any z, z� ∈ Y ε, z � z� then Y ε is a reduced approximate nondominated
set.

• A (1 + ε)-approximation Xε is any subset of X whose image in the objective space
is an approximate nondominated set for the same tolerance. If for any x, x� ∈ Xε,
x �� x� then Xε is a reduced (1 + ε)-approximation.

As in the exact approach, approximation algorithms usually generate a reduced (1 + ε)-
approximation.

1.2 Implicit enumeration in multi-objective combina-

torial optimization

Implicit enumeration algorithms operate by iteratively partitioning the set X of all feasible
solutions of an optimization problem and removing elements of the partition that yield non
desirable solutions. They lie in the divide and conquer paradigm.

We first present an overview of implicit enumeration in MOCO, then we detail a par-
ticular approach, namely multi-objective branch and bound (MOBB).

1.2.1 Overview

The process of iteratively partitioning the set X of all feasible solutions can be represented
by a rooted search tree. The search tree, which initially consists of the root representing
X, grows during the iterative process. A node of the search tree in general represents a
subset of X and sibling nodes represent a partition of the set of solutions associated to their
parent node.

The search tree is an abstract representation of the enumeration scheme. What needs
to be maintained is the list of pending nodes of the search tree.

Notations and concepts

Let r denote the root of the search tree. Each search node s represents a subset of X

defined by assignments to 0 or 1 of some of the variables. X(s) ⊂ X denotes the set of
feasible solutions of s, each of which is called an extension of s. Note that X(r) = X.
Y (s) = c(X(s)) is the set of the images in the objective space of the extensions of s.



20 Concepts and generic algorithms in MOCO

Principle

At each iteration of the procedure, a pending search node is selected. It may be divided
into children nodes according to some partition scheme or discarded if it has no desirable
extensions.

If the goal is to compute the efficient set, an extension is desirable if it is efficient. If just
a reduced efficient set is required, an extension is desirable if it is efficient and no solution
achieving the same outcome has been computed so far or could be provably obtained. As in
this thesis in general, we focus on the latter. Therefore, in this case, the privileged relation
in the comparison of solutions and points is the weak dominance relation, i.e. respectively
� and �.

Since it is often NP-complete to determine if a given extension is efficient, the idea is to
compare extensions of a search node to extensions of other search nodes or other solutions.

Namely, in order to prune a search node s, one or both of the following methods can be
instantiated depending on how the exploration of the search tree is conducted:

1. find another search node s� such that for each extension of s, there is at least one
extension of s� which weakly dominates it,

2. show that any extension of s is weakly dominated by some already computed solution.

We now detail these methods. Note that since we are not considering the structure of the
feasible solutions, the description will be conducted in the objective space.

Pairwise comparison of search nodes

The first method can be viewed as a pairwise comparison of search nodes. It is also known1

as a dominance relation. Formally, it is defined as follows, for any search nodes s and s�:

s� dominates s iff for all z ∈ Y (s), there exists z� ∈ Y (s�) such that z� � z

Such dominance relations are efficiently used in multi-objective dynamic programming,
which is a kind of implicit enumeration. Actually, in Bazgan et al. (2009b) several dominance
relations are used at each stage of a dynamic programming algorithm to compute a reduced
efficient set of the multi-objective Knapsack problem. The computational experiments
they conducted even show that their dominance relations are complementary.

Comparison of a search node to a set of solutions

We may, at some point of the enumeration, have computed a set of solutions P . The set P , or
its image N = c(P ) in the objective space, may be generated before the enumeration through

1not only in MOO, see e.g. Jouglet and Carlier (2011) for a survey on the use of such pairwise comparisons
in combinatorial optimization, especially for scheduling problems



1.2 Implicit enumeration in MOCO 21

a procedure dedicated to the computation of an initial set of (non necessarily efficient)
solutions. It may also contain some solutions obtained during the previous enumeration
steps, if the search tree is explored following some kind of depth first or best first order. In
both cases, the points of N correspond to feasible points, thus any point dominated by a
point of N needs not be kept in the output. This gives rise to the following pruning rule:

prune s if for all z ∈ Y (s), there exists z� ∈ N such that z� � z (1.1)

1.2.2 Towards multi-objective branch and bound

We consider in this section a particular implicit enumeration scheme which basically relies
only on the second pruning method. Therefore we first explain how a convex linear approx-
imation of the set of extensions of a search node can be used in a pruning rule, then how
such an approximation can be obtained.

Approximation of the set of extensions of a search node in the objective space

In the previous section, the pruning rule (1.1) uses a stable set of already computed feasible
points to circumvent the fact that neither Xeff nor Ynd are known. However, the general
pruning rules we presented also involve the extensions of a search node s which is not
known either. Hence, there is a need to approximate Y (s). More precisely, we discuss how
a sub-space L(s) containing Y (s) can be determined.

The easiest way to proceed is to compute for each objective j a lower bound on the value
of any extension of s, namely a value lj(s) such that for any z ∈ Y (s), lj(s) ≤ zj. Thus the
set L(s) = {z ∈ Z : l(s) � z} is a correct approximation of Y (s) (i.e. L(s) ⊃ Y (s)) and
the following pruning rule directly follows:

prune s if there exists z� ∈ N such that z� � l(s)

For MOCO problems whose single-objective version is solvable in polynomial time, the
best lower bound for objective cj is obtained by computing a point z∗j(s) which is optimal
for objective cj for the sub-instance s, i.e.

z∗j(s) = arg min{zj : z ∈ Y (s)}.

Therefore, we take l(s) = (z∗1
1 (s), . . . , z∗p

p (s)).
For MOCO problems whose single-objective version is NP-hard, the computation of sin-

gle objective optima may be expensive and it is possible to rely on non optimal lower bounds,
such as the optimal value of the linear relaxation of the underlying problem. For example,
Bazgan et al. (2009b) use a lower bound computed in linear time for the single-objective
Knapsack problem to implement a pruning relation based on this principle denoted there



22 Concepts and generic algorithms in MOCO

by Dk
b .

The single point evaluation is coarse in practice. In Figure 1.2a, we illustrate this with
an instance where all extensions of a search node s are dominated, while the approximation
of Y (s) through the single point l(s) = (z∗1

1 (s), z∗2
2 (s)) intersects the search region. Thus

in this example, the pruning rule is inefficient, and we see that a refined approximation of
Y (s) would be profitable.

The previous approximation based on a single point is a particular case of approximation
based on the weighted sum optimization technique. Using any discrete set Λ ⊂ R

p
≥ of weight

vectors it is possible to obtain the following approximation of Y (s):

LΛ(s) = {z ∈ Z : ∀λ ∈ Λ, λ · z∗λ(s) � λ · z}

where z∗λ(s) is an optimal point for min{λ · z : z ∈ Y (s)}.
We have LΛ(s) ⊇ Y (s). Therefore, LΛ(s) can be used in place of Y (s) in Equation (1.1).

However L(s) is not a discrete set, which implies that the pruning rule formulated as in
Equation (1.1) cannot be tested. We shall see in Chapter 3 how local upper bounds provide
an alternative formulation of this rule, which is suitable for practical testing.

A simple situation in the bi-objective case is illustrated in Figure 1.2b, where Y (s) is
approximated through the optima of s for objective functions c1, c2 and cλ with λ = (1, 1).
In this example, s cannot yield any new non dominated point. Therefore it can be pruned.

The use of pruning rules based on the approximation of Y (s) is the foundation of multi-

objective branch and bound. It seems to have first been introduced by Villarreal and Karwan
(1981) to solve MOCO problems formulated as integer programs, especially the Knapsack

problem. Sourd and Spanjaard (2008) enumerate all extreme points of any search node s

in order to compute conv(Y (s))� as an approximation of Y (s).

Construction of a convex linear approximation of Y (s)

Basically, any set of weight vectors from R
p
≥ can be used to approximate Y (s). The quality

of the approximation, however, depends on the choice of weight vectors.
The set of weight vectors that yields the best approximation of Y (s) is the set of sup-

porting hyperplanes of conv(Y (s))�. This is closely related to the computation of the set
Yextr of all extreme supported points, which are the extreme points of conv(Y (s))�. When
the single objective version of the MOCO problem is easily solved, Yextr can be efficiently
computed in the bi-objective case using the dichotomic algorithm of Aneja and Nair (1979),
which achieves this goal requiring O(|Yextr|) resolutions of the single-objective version.

The method of Aneja and Nair (1979) is described in Algorithm 1.1. A set of weight
vectors associated with each nondominated facet of conv(Y )� may be generated at the
same time, therefore, the required instructions are integrated to Algorithm 1.1. In order to
ensure that the points obtained as optima of weighted sum objectives are nondominated and



1.2 Implicit enumeration in MOCO 23

z∗1(s)

z∗2(s)

ls

c2

c1

(a) Single point evaluation

z∗1
1 (s)

z∗2
2 (s)

z∗λ(s)

c2

c1

(b) Multiple point evaluation

Points in N
S(N)
All points of Z(s)
LΛ(s)

Figure 1.2: Comparison of evaluations of Y (s) in the bi-objective case

extreme, lexicographic optimization is used. For example, at the second step, we compute
a point which is optimal for the weight vector λ

2 among all optima according to λ
1.

For instance, the MOBB algorithm of Sourd and Spanjaard (2008) to solve the bi-
objective Minimum Spanning Tree problem relies on this dichotomic scheme.

The general multi-objective case raises some difficulties in the generalization of the
dichotomic scheme presented above. A first difficulty, for problems with more than two
objectives, is the possible existence of several nondominated points optimizing the same
objective function. Moreover, even if it is not the case, the hyperplane passing through the
p optimal points found during the initialization may be associated to a weight vector with
entries of opposite signs, the optimization of which may return a dominated point. Przybyl-
ski et al. (2010a), who pointed out these issues, got around them by working in the weight
vector space defined as W 0 = {λ ∈ R

p
� : λp =

�p−1
j=1 λj}. Their method is recursive in the

sense that in order to output the set Y extr of a p-objective problem, the sets Y extr of several
(p − 1)-objective problems have to be computed. We note that Özpeynirci and Köksalan
(2010) proposed a non recursive generalization of the dichotomic scheme. Their approach
relies on the use of p dummy points together with the at most p! nondominated points
optimizing separately all objectives, which roughly makes it possible to quickly adapt the
bi-objective scheme. The problem of hyperplanes defining non convex linear combinations
is bypassed by discarding the associated weight vectors. Moreover, dummy points are used



24 Concepts and generic algorithms in MOCO

Algorithm 1.1: Computation of the set Yextr in the bi-objective case (Aneja and Nair
(1979))

1 λ
1 ← (1, 0) ; λ

2 ← (0, 1)
2 z∗1 ← arg lexmin{(λ1 · z, λ

2) · z : z ∈ Y } ; z∗2 ← arg lexmin{(λ2 · z, λ
1) · z : z ∈ Y }

– The lexicographic objective avoids weakly dominated points.
3 O ← {(z∗1, z∗2)} – List of open pairs of extreme points to exploit
4 Y �

extr ← {z∗1, z∗2} – Initialization of the output
– which will eventually contain all points of Yextr.

5 Λ ← {λ
1, λ

2} – Initialize a set which will eventually contain
– one weight vector associated to each nondominated facet of conv(Y )�

6 while O �= ∅ do
7 Select (z1, z2) ∈ O ; O ← O \ {(z1, z2)}
8 λ ← (|z1

2 − z2
2 |, |z1

1 − z2
1 |) – Compute a normal to the straight line (z1, z2).

9 z∗λ ← arg lexmin{(λ · z, λ
1 · z) : z ∈ Y } – The lexicographic objective avoids

– non extreme points.
10 if λ · z∗λ < λ · z1 then
11 O ← O ∪ {(z1, z∗λ), (z∗λ, z2)}
12 Y �

extr ← Y �
extr ∪ {z∗λ}

13 else
14 Λ ← Λ ∪ {λ} – λ is a weight vector associated

– to a nondominated facet of conv(Y )�, namely [z1, z2]

15 return Yextr = Y �
extr, Λ



1.3 Exploration of the objective space 25

to ensure that the set Y extr is obtained at the end. The method seems to be practically less
efficient than that of Przybylski et al. (2010a).

However, in Przybylski et al. (2010a) and Özpeynirci and Köksalan (2010), only the
tri-objective case is solved within a reasonable amount of time.

1.3 Exploration of the objective space

In MOCO, not all exact solving methods follow implicit enumeration. Instead, many exact
methods primarily operate in the objective space by searching in several, often overlapping,
subspaces. We first mention methods primarily relying on the resolution of several integer
programs. Then we review the two-phase method since it was instantiated on many MOCO
problems and was subject to several enhancements and extensions. In the latter, we put an
emphasis on the ranking strategy in the second phase, since it is one of the ingredients of
the hybrid approach we propose in Chapter 4.

1.3.1 Methods based on the resolution of budget constrained

MOCO problems

Several works propose to find all nondominated points of a MOCO problem by solving
integer programs that comprise constraints that define the feasible set of the underlying
problem plus additional constraints. The principle is to formulate an integer program that
excludes from the feasible set all the solutions that are dominated by at least one of the
previously computed solutions. Therefore, all nondominated points are found after solving
a series of integer programs.

These integer programs are often derived from budget constrained versions of the initial
problem formulated as an integer program. This usually consists in turning all but one
objective into budget, resource, or knapsack constraints while optimizing with respect to
the remaining one, e.g.















min c1(x)
s.t. x ∈ X

cj(x) ≤ bj j = 2, . . . , p

(1.2)

for some b2, . . . , bp ∈ R. The solution to such problems is often significantly harder than
the unconstrained version. Therefore, for several classical operations research problems,
specialized exact and approximation algorithms have been developed2. As we will see, the
computation of values for the parameters b2, . . . , bp was first integrated into (1.2), adding
even more constraints and binary variables.

2See e.g. Aboudi and Jørnsten (1990) and Aggarwal (1985) for the Assignment problem, Aggarwal
et al. (1982), Hassin and Levin (2004), and Ravi and Goemans (1996) for the bi-objective and Grandoni
et al. (2009) and Hong et al. (2004) for the multi-objective Minimum Spanning Tree problem.



26 Concepts and generic algorithms in MOCO

In Sylva and Crema (2004, 2007), a single program looks for a point in a search region
defined according to the points found so far, which excludes the part of the objective space
that these points dominate. If the program has no feasible solution, then the search region
contains no feasible point, which ensures that all nondominated points have been found.
Besides, the objective function is defined so as to obtain efficient optimal solutions (they
made several proposals for this). In their approach, each new point z induces new constraints
that are added to the program to ensure that future points improve on at least one objective
with respect to z. This is modelled through a conjunction of disjunctive constraints. The
linearization of the disjunctive constraints induces big-M coefficients and additional binary
variables, therefore solving the program becomes rapidly very expensive.

The approach was later enhanced in Sylva and Crema (2008). In this paper, they split
the integer programs formulated in their earlier works into two integer programs. The first
program determines for each previously computed solution which objective a new solution
should improve. The solution to this first stage program is used to formulate the second
stage program, which is just a budget constrained version of the integer programming
formulation of the underlying problem. Contrary to the former approaches, the second
stage program looks for points in a single search zone determined after solving the first
stage program, rather than in the whole search region. This is basically the same approach
as the first application of local upper bounds we present in Section 3.1.5. However, Sylva
and Crema (2008) solve integer programs to compute these local upper bounds (namely the
first stage programs) whereas they can be quickly computed thanks to the algorithms we
present in Chapter 3. Therefore, their second method remains costly.

Laumanns et al. (2006) also presented an approach which involves the resolution of
budget constrained programs that search inside boxes. While the determination of the
boxes is faster than in Sylva and Crema (2008) (it does not require to solve additional
integer programs), the boxes themselves are highly redundant.

Lokman and Köksalan (2013) and Kirlik and Sayın (2014) also determine search zones
to be explored by budget constrained programs and improved on earlier approaches by
identifying many redundancies in the search zones before they are explored. However, the
approach of Lokman and Köksalan (2013) is instantiated on the multi-objective Minimum

Spanning Tree problem and solves only small instance sizes (10 vertices and 3 objective
functions). We also mention that Tenfelde-Podehl (2003) and Dhaenens et al. (2010) pro-
posed exact algorithm that recurse over the set of objective functions to partition the search
space.

Other approaches rely on the use of non linear aggregation function. See e.g. Ralphs
et al. (2006).

Finally, Przybylski et al. (2009) implemented the algorithms of Sylva and Crema (2004),
Tenfelde-Podehl (2003), Laumanns et al. (2006), and their own two-phase method Przy-
bylski et al. (2010b) to solve instances of the tri-objective Assignment problem. Their
computational experiments showed that computation times decrease from Sylva and Crema



1.3 Exploration of the objective space 27

(2004) to Przybylski et al. (2010b).

1.3.2 Two-phase methods

The first two-phase method was introduced by Ulungu and Teghem (1995). In the first
phase, the set Yextr of all extreme nondominated points is computed. It is used to delimit
a part of the objective space which is explored in the second phase in order to generate all
non extreme nondominated points. The efficient set (or a reduced efficient set) is eventually
obtained as the union of phase one and phase two solution sets.

The method was instantiated on bi-objective versions of several classical operational
research problems including amongst others the Assignment problem (Przybylski et al.,
2008; Delort and Spanjaard, 2011), the Knapsack problem (Visée et al., 1998; Delort and
Spanjaard, 2010), the Minimum Cost Flow problem (Raith and Ehrgott, 2009), and the
Minimum Spanning Tree problem (Ramos et al., 1998; Steiner and Radzik, 2008). It
was also adapted to more than two objectives by Przybylski et al. (2010b) and applied to
the Assignment problem and also to the Knapsack problem in Jorge (2010) (both for
the case of three objectives).

We now discuss the details of the two phases.

Phase one

Phase one of the two-phase method usually consists in computing the set Y extr of all extreme
nondominated points (see Section 1.2.2). The remaining points all lie both in the augmented
hull conv(Yextr)� and in the part of the objective space that is not dominated by any point
of Yextr. The intersection of these sets defines a search area. In the bi-objective case, the
search area corresponds to a union of triangles (see Figure 1.3).

Phase two

Phase two consists in the exploration of the zones defined at the end of phase one. Two
exploration strategies, implicit enumeration and ranking, can be found in the literature as
we can see in Table 1.1.

The first strategy consists in applying an implicit enumeration scheme (generally MOBB)
to explore the zones or the whole search area.

The second strategy relies on a ranking algorithm for the single-objective version of the
underlying problem. A ranking or k-best algorithm for a single-objective combinatorial
optimization problem determines for a given positive number k the k best solutions in non
decreasing order of their objective values. The use of ranking algorithms together with the
weighted sum scalarization technique is usual in MOCO – and also recently appeared in
multi-objective mixed integer programming (Vincent et al., 2011) – for two main reasons.
First, it makes it possible to determine the solutions that lie in a given band in the objective



28 Concepts and generic algorithms in MOCO

Points in Yextr

Search area

c2

c1

Figure 1.3: A bi-objective two-phase situation

Problem Implicit
enumeration

Ranking Computational
comparison

Minimum

Spanning

Tree

Ramos et al. (1998)
(single point
evaluation)

Steiner and Radzik
(2003, 2008)

Steiner and Radzik
(2008)

Assignment Delort and Spanjaard
(2011)

Przybylski et al.
(2008)

Delort and Spanjaard
(2011)

Minimum

Cost Flow

Raith and Ehrgott
(2009)

Knapsack Visée et al. (1998)
Delort and Spanjaard

(2010)
Jorge (2010)

Jorge (2010) Jorge (2010)

Table 1.1: Classification of two-phase methods in the bi-objective case according to phase
two algorithm.



1.3 Exploration of the objective space 29

space whose slope is defined by the choice of a weight vector and whose width is controlled
by a given maximum weighted sum value. Therefore, the choice of a weight vector to be used
in the weighted sum scalarization corresponds to a ranking direction through the objective
space. Second, general ranking algorithms as well as efficient algorithms specialized to a
particular problem have been developed and used for the most studied problems in MOCO.
Murty (1968) proposed a partition scheme which makes it possible to rank the solutions of
any 0-1 program. But according to this scheme, it may be required to solve independently
several subproblems to obtain each ranked solution. Specialized efficient algorithms include
Pedersen et al. (2008) for the Assignment problem, Eppstein (1998) and Jiménez and
Marzal (2003) for the Shortest Path problem, Hamacher (1995) for the Minimum Cost

Flow problem, and Gabow (1977), Katoh et al. (1981), and Eppstein (1992) for the Min-

imum Spanning Tree problem. We present in Section 2.5 the algorithm of Katoh et al.
for the Minimum Spanning Tree problem which yields the best known time complexity
when the number of solutions to rank is not known in advance. Finally, note that general
as well as specialized ranking algorithms often follow an implicit enumeration approach, i.e.
a ranking tree.

The idea in the use of ranking algorithms in phase two is to exploit directions that
correspond to weight vectors associated to the facets of conv(Yextr)�. It is then necessary
to define a stopping condition for each run of the ranking algorithms so that the union of
the bands that are explored thereby covers the search area.

As we saw, in the bi-objective case, the search area is easily partitioned into triangles
whose corner points are two extreme nondominated points and a local nadir point. It is
therefore natural to use these local nadir points to define the upper limit of the bands. The
stopping condition is thus defined using the coordinates of these points.

In the general multi-objective case, such local nadir points, which we rather call local

upper bounds in this case, are harder to define (this is an issue we address in Section 3.1.3).
Moreover, local upper bounds are no longer in one-to-one correspondence with facets of
conv(Y )�. Therefore there is no natural definition of zones. The approach of Przybylski
et al. (2010b) addresses all these issues.

Computational comparisons of phase two strategies There have been several com-
putational comparisons between implicit enumeration and ranking algorithms in phase two.
Steiner and Radzik (2008) compared their own ranking algorithm to the implicit enumera-
tion algorithm of Ramos et al. (1998) and concluded that their approach outperforms the
latter approach. However, the approach of Ramos et al. is based on a single point evalua-
tion model as described in Section 1.2.2. The comparisons conducted by Jorge (2010) and
Delort and Spanjaard (2011) respectively on the Knapsack and Assignment problems
are more uneven. In the tri-objective case, Jorge (2010) observed a large superiority of the
ranking approach over both dynamic programming and multi-objective branch and bound
approaches on instances whose objective values are uniformly drawn. In the bi-objective



30 Concepts and generic algorithms in MOCO

case, the local branch and bound of Delort and Spanjaard (2011) seems to perform better
than the approach of Przybylski et al. (2008), especially on low range objective scales.

Conclusions

We described in this chapter several approaches to the exact solution of MOCO problems.
We classified these methods into two categories, implicit enumeration and division of the
objective space, according to how the computation effort is organized.

Some trends can be drawn in the comparison of some classes of methods. Currently
the methods that add (at least) budget constraints to the integer programming formulation
of the underlying problem solve quite smaller instances than what MOBB and two-phase
methods do. This can be observed in the computational experiments conducted by the
authors of these methods. The same conclusion can be drawn from Przybylski et al. (2009).
This is one of the reasons for which we were particularly interested in this thesis in multi-
objective branch and bound and the use of ranking algorithms as in the second phase of
the two-phase method.



Chapter 2

Some insights into the multi-objective

Minimum Spanning Tree problem

This chapter deals with several aspects related to the multi-objective
version of the Minimum Spanning Tree. We review computational
complexity issues related to the problem and the relations between the
solution to the single and the multi-objective versions. We compare the
output of several approaches that generate a superset of the nondomi-
nated set. We also discuss generic MOCO solving methods that were
instantiated on the Minimum Spanning Tree problem. Some of them
rely on ranking spanning tree according to a single objective function; we
present the efficient algorithm of Katoh et al. (1981) for this.



32 Some insights into the multi-objective Minimum Spanning Tree problem

Contents

2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.2 Computational hardness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Exponential number of nondominated points . . . . . . . . . . . . . . 34
2.2.2 NP-completeness of the associated decision problem . . . . . . . . . . 34

2.3 From the single objective to the multi-objective case . . . . . . . . . . . . . . 35
2.3.1 Cut and cycle optimality conditions . . . . . . . . . . . . . . . . . . . 36

Cut and cycle necessary conditions • Coloring rules • Application of the coloring

rules

2.3.2 Generalizations of single objective Minimum Spanning Tree algo-
rithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Preliminaries • Generalization of Prim’s algorithm • Generalization of

Kruskal’s algorithm • Remarks

2.4 Generic MOCO solving methods applied to the MOST problem . . . . . . . 43
2.4.1 Two-phase methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.4.2 A branch and bound algorithm . . . . . . . . . . . . . . . . . . . . . 43

2.5 Ranking spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.5.1 Generic ranking scheme and specialization to the Minimum Span-

ning Tree problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5.2 Procedures of the ranking algorithm of Katoh et al. (1981) . . . . . . 46



2.1 Notations 33

Introduction

The generic method we present in Chapter 4 is instantiated on the multi-objective Minimum

Spanning Tree (MOST) problem. The Minimum Spanning Tree is a long-standing
problem in operations research (Graham and Hell, 1985; Mares, 2008) which has numerous
applications: Ahuja et al. (1993, Chap. 13) give an overview of applications in the single
objective case. Applications in the fields of network design and integrated circuits design
often involve multiple objectives. The problem also received much attention for its solution,
see e.g. Mares (2008) for a survey of algorithms.

We consider in this chapter the case of homogeneous objective functions obtained by
componentwise sums of vector values associated with each edge of the graph, often referred
to as sum objectives. Other models also consider bottleneck objectives, i.e. minimum or
maximum of selected edges values on a given component. These approaches are surveyed
from both a theoretical and an algorithmic point of view in Ruzika and Hamacher (2009).

After briefly defining some notations (Section 2.1), we recall the two main computational
difficulties arising in the MOST problem (Section 2.2). Then in Section 2.3 we present sev-
eral results on the single objective Minimum Spanning Tree problem and their extension
to the multi-objective case. We discuss in Section 2.4 some aspects of generic MOCO
solving methods we presented in the previous chapter which were applied to the MOST
problem. Finally we review the algorithm of Katoh et al. (1981) for ranking spanning trees
(Section 2.5).

2.1 Notations

Let G = (V, E) be a connected graph whose set of vertices is V with |V | = n and set of
edges is E with |E| = m.

We are interested in the following problem:

�

min c(t) = (c1(t), . . . , cp(t))
s.t. t ∈ T

(2.1)

where T is the set of spanning trees of G and t ∈ T designates a spanning tree as well as
the set of edges that constitutes it.

The decision space X of this problem is defined, in this thesis, as the set of all subgraphs
of G, i.e. 2E. This allows us to consider the cost of any subset of edges, in particular partial
solutions corresponding to trees being constructed.

The objective or cost functions c1, . . . , cp are assumed to be all additive, i.e. cj(e) =
�m

i=1 cj(ei) for any e ∈ 2E.



34 Some insights into the multi-objective Minimum Spanning Tree problem

2.2 Computational hardness

Like many MOCO problems whose single objective version is solved in polynomial time,
two computational difficulties emerge from the MOST problem.

2.2.1 Exponential number of nondominated points

Hamacher and Ruhe (1994) presented a bi-objective instance based on a complete graph of
arbitrary many vertices, all spanning trees of which are efficient and whose objective vectors
differ from one another. Since a complete graph on n vertices contains nn−2 spanning trees,
this shows that there can be exponentially many efficient spanning trees in a MOST instance.
Let Kn be a complete graph on n vertices. Assume that the edges of Kn are indexed from
1 to m = n(n − 1)/2, namely E = {e1, . . . , em}. The cost functions are defined as follows,
for any edge ei:

c(ei) = (2i−1, 2m − 2i−1)

Note that all edge costs are different and no two edges dominate each other since c1(ei) +
c2(ei) is a constant. From the uniqueness of the binary representation, all spanning trees
costs are also different. Hence, there are as many nondominated points as efficient spanning
trees. However, the ranges of the objective functions values also grow exponentially.

This property of MOCO problems is also referred to as intractability. It puts forward
approximation algorithms which aim at outputting a smaller yet representative solution set.
Especially, Diakonikolas and Yannakakis (2007), Papadimitriou and Yannakakis (2000), and
Vassilvitskii and Yannakakis (2005) show that small approximation sets can be obtained
for several MOCO problems.

2.2.2 NP-completeness of the associated decision problem

An interesting problem associated to MOCO is the following: given a point zb ∈ Z, does
there exist a feasible point dominating zb? This problem can be viewed as the decision
version of a MOCO problem. Once more, for many MOCO problems, this decision version
is NP-complete, even in the bi-objective case. This also holds for the MOST problem. This
was shown by Camerini et al. (1983) through a reduction of the decision version of the bi-
objective Minimum Spanning Tree from the Subset Sum problem, which asks whether
among a set of values, there exists a subset of these values that sum up to a specified
quantity.

Consider an instance of Subset Sum problem defined by the set of values a1, . . . , an

and the quantity b, all being positive integers. From this instance of Subset Sum, we
construct an instance of the decision version of the BOST problem. Let G be a connected
graph whose set of vertices is V = {1, . . . , n + 2} and whose set of edges is E = {(i, n +
1), (i, n + 2)}i∈{1,...,n} ∪ {(n + 1, n + 2)}. The cost functions are defined as follows, for



2.3 From the single objective to the multi-objective case 35

n

1

n + 2

n + 1...

(a1 , 0)

(0, a
1 )

(a
n
, 0

)
(0, an)

(0, 0)

Figure 2.1: Instance of BOST constructed from any instance of Subset Sum

i ∈ {1, . . . , n}:

c(i, n + 1) = (ai, 0)

c(i, n + 2) = (0, ai)

c(n + 1, n + 2) = (0, 0)

The corresponding graph is shown in Figure 2.1.
The bi-objective bound zb is defined as zb = (b,

�n
i=1 ai − b). We associate to any

spanning tree t of G the subset I of {1, . . . , n} such that i ∈ I if (i, n + 1) ∈ t (we exclude
spanning trees which do not take edge (n + 1, n + 2) since they are dominated). Conversely,
to any I ⊂ {1, . . . , n} we associate the spanning tree t whose edges are (n + 1, n + 2) and
(i, n + 1) for i ∈ I, (i, n + 2) otherwise. Hence, we have the following:

c1(t) ≤ zb
1 ⇔

�

i∈I

ai ≤ b

c2(t) ≤ zb
2 ⇔

�

i∈I

ai ≥ b

which implies that a spanning tree t dominates zb if, and only if, the subset I constructed
as above is a solution to the Subset Sum problem.

2.3 From the single objective to the multi-objective

case

We present in this section some known results related to the single objective Minimum

Spanning Tree problem and discuss their extension to the multi-objective case. The



36 Some insights into the multi-objective Minimum Spanning Tree problem

single cost function will be denoted by w, hence a single objective minimum spanning tree
will be referred to as w-MST.

2.3.1 Cut and cycle optimality conditions

Given a spanning tree t ∈ T , we define the following edge sets.

Fundamental cycle For any edge e ∈ E\t, Cyc(t, e) denotes the set of edges of the unique
cycle of the subgraph (V, t ∪ {e})

Fundamental cut For any edge e ∈ t, Cut(t, e) denotes the set of edges that reconnect
the two connected components of the subgraph (V, t \ {e})

Cut and cycle necessary conditions

The following theorem is well known in the single objective case (see e.g. Ahuja et al., 1993,
Chap. 13).

Theorem 2.1. Let t be a w-MST. Then:

• for any edge e ∈ t and for any edge e� ∈ Cut(t, e), w(e) ≤ w(e�)

• for any edge e� ∈ E \ t and for any edge e ∈ Cycle(t, e�), w(e) ≤ w(e�)

This result can be generalized in the multi-objective case.

Theorem 2.2 (Cut and cycle necessary conditions, Hamacher and Ruhe, 1994). Let t be

an efficient spanning tree. Then:

• any edge e ∈ t is nondominated in Cut(t, e);

• any edge e� ∈ E \ t does not dominate any edge in Cycle(t, e�).

A generalization of Prim’s algorithm presented in the next section is based on this
result. However, as we will see in the instance shown in Figure 2.3, these conditions are
not sufficient to guarantee that an edge satisfying one of them belongs or not to an efficient
spanning tree.

We note that Alonso et al. (2009) proposed sufficient conditions for a preference relation
S over 2E so that greedy algorithms which rely on the optimality conditions yield only
minimal spanning trees for S, but these conditions are not satisfied by the dominance
relation �.



2.3 From the single objective to the multi-objective case 37

Coloring rules

In the single objective case, the well known greedy algorithms of Prim, Kruskal and Borůvka
consist in the application of the two following rules.

Definition 2.3 (Coloring rules in the single objective case, Tarjan, 1983). Let G be a graph
with single valued edge costs. Assume that all edges of G are initially uncolored.

• (Blue rule) Let e be an edge in a cut ω of G containing no blue edge. If e is of minimal
cost among the uncolored edges of ω, color it blue.

• (Red rule) Let e be an edge in a cycle ω of G containing no red edge. If e is of maximal
cost among the uncolored edges of ω, color it red.

The result of the greedy application of these rules is summarized in the following theo-
rem.

Theorem 2.4 (Tarjan, 1983). The greedy application of the above coloring rules on a

connected graph yields a complete coloring of the graph such that the set of all blue edges or

the complement set of all red edges defines an optimal spanning tree.

Sourd and Spanjaard (2008) remarked that the coloring rules and the associated result
immediately extend to the multi-objective case since they only assume the existence of least

and greatest elements of the underlying ordering of edges in a given subset (cut or cycle).

Definition 2.5 (Coloring rules in the multi-objective case, Sourd and Spanjaard, 2008).
Let G be a graph with multi-valued edge costs. Assume that all edges of G are initially
uncolored.

• (Blue rule) Let e be an edge in a cut ω of G containing no blue edge. If e is a dominating

edge among the uncolored edges of ω (for all uncolored e� ∈ ω, c(e) � c(e�)), color it
blue.

• (Red rule) Let e be an edge in a cycle ω of G such that e is dominated by all uncolored
edges of ω (for all uncolored e� ∈ ω, c(e�) � c(e)), color it red.

Note that since the relation � is not complete, least or greatest elements in a given
subset of E may not exist. Hence in the multi-objective case, the coloring rules can (and in
practice often) lead to uncolored edges. The worst case is the situation where no two edges
dominate each other (that is E = Eeff), which prevents the application of any of the two
rules.

However, we have the following result:

Theorem 2.6 (Sourd and Spanjaard, 2008). If the coloring rules in the multi-objective case

are greedily applied on a connected graph, then for each nondominated point, there exists at

least one spanning tree compatible with the coloring rules, i.e. taking all blue edges and no

red edges, that achieves the same outcome.



38 Some insights into the multi-objective Minimum Spanning Tree problem

Application of the coloring rules

In the single objective case, the application of the coloring rules yields a complete coloring
of the instance and hence a single solution.

In the multi-objective case, applying the coloring rules does not yield a single solution.
Moreover, there may be dominated spanning trees among the spanning trees that satisfy
the coloring (i.e. that take all blue edges and no red edge). Therefore, we can only hope
a reduction in some cases of the instance. We are thus interested in applying these rules
without generating all the spanning trees compatible with the colors.

From this point of view, Sourd and Spanjaard (2008) also show, as in the single objective
case, that the coloring does not depend on the order these rules are applied on the edges of
the graph. They provide for each rule an O(m) algorithm for its application. Let blue(E)
and red(E) respectively denote the current sets of blue and red edges of G and consider
an uncolored edge e = (u, v). In order to apply the blue rule, a depth first search is
performed from u on the partial graph Gcut

e = (V, Ecut
e ) where Ecut

e = {e� ∈ E \ {e} : c(e) ��

c(e�)}∪blue(E). If v is not visited, e is colored blue, since the partition between visited and
unvisited vertices is a cut that satisfies the conditions of the blue rule. Similarly, to apply
the red rule, a depth first search is performed from u on the partial graph Gcyc

e = (V, Ecyc
e )

where Ecyc
e = {e� ∈ E \ (red(E) ∪ {e}) : c(e�) � c(e)} ∪ blue(E). If v is visited, e is colored

red, since we traversed a path which, together with e, constitutes a cycle that satisfies the
conditions of the red rule.

2.3.2 Generalizations of single objective Minimum Spanning Tree

algorithms

Preliminaries

We consider in this section generalizations of Prim’s and Kruskal’s algorithms to the multi-
objective case. We recall, for the single objective versions, that:

• Prim’s algorithm grows a tree which spans a subset of the graph vertices. Therefore,
a tree t is represented by a partial subgraph (Vt, Et). The algorithm starts from a tree
t = (Vt, Et) where Vt = {r} and Et = ∅, r being an arbitrary start vertex. Then the
blue rule is applied n − 1 times by considering the cut Cut(Vt) of all edges having one
endpoint in t and the other outside t, yielding at each iteration a blue edge which is
added to t.

• Kruskal’s algorithm grows an empty forest f . At each of the n − 1 iterations, the
coloring rules are applied to the cheapest uncolored edge e. Namely, if e has both
endpoints in f , it is colored red (it is the costliest edge in the cycle Cycle(f, e)),
otherwise, it is colored blue (there is at least one cut in G containing no blue edge,
where e is the cheapest uncolored edge) and added to t.



2.3 From the single objective to the multi-objective case 39

s1

e1

s2

e1 e2

. . .
sk

e1 · · · ek−1 ek

s

e1
e2 ek

Figure 2.2: Non redundant generation of the children of a tree t given k edges e1, . . . , ek.
New excluded edges are crossed out, new included edges are circled

Enumeration scheme All generalizations presented below are implicit enumeration al-
gorithms. They maintain at each iteration a set of partial solutions – trees or forests – each
of which is augmented by adding edges, one at a time, yielding as many new partial solu-
tions as candidate edges. To avoid redundancies, we must ensure that the partial solutions
are disjoint. One way of satisfying this requirement is as follows:

• first define for each partial solution s and each edge e a status with respect to any
descendant of s: included, excluded, or free;

• second, assume a partial solution s is to be augmented by adding one edge among a
set of edges e1, . . . , ek. An order is chosen on the candidates edges (e.g. the index) so
as to exclude some edges in children partial solutions.

This simple scheme is illustrated in Figure 2.2.
The details discussed above are intentionally omitted in the description of the algorithms.

Generalization of Prim’s algorithm

The algorithm of Corley (1985) This generalization is due to Corley (1985). The
idea is to grow trees or connected forests by covering one more vertex at each iteration by
selecting efficient edges in the cut Cut(Vf ) formed by the sets of covered vertices Vf and
non covered vertices V \ Vf . Algorithm 2.1 details this approach.

The justification follows directly from the first result of Theorem 2.2. However, since the
conditions in this theorem are only necessary, non efficient spanning trees may be returned
by the algorithm. Figure 2.3 shows an example application of this algorithm leading to
some non efficient solutions.

An attempt to avoid the enumeration of forests leading to non efficient spanning

trees Hamacher and Ruhe (1994) attempted to enhance Corley’s algorithm by discarding
at each of the n − 1 iterations dominated forests, i.e. dominated trees in Ti are filtered



40 Some insights into the multi-objective Minimum Spanning Tree problem

Algorithm 2.1: Generalization of Prim’s algorithm by Corley (1985)

1 Let r be an arbitrary vertex of V
2 T0 ← {(v0, ∅)}; T1 ← · · · ← Tn−1 ← ∅
3 for i ← 1, . . . , n − 1 do
4 for f = (Vf , Ef ) ∈ Ti−1 do
5 for e = (v, v�) ∈ Cut(Vf )eff

such that v ∈ Vf do
6 Ti ← Ti ∪ {(Vf ∪ {v�}, Ef ∪ {e})}

7 return Tn−1

1 2

34

a
(1, 9)

b(3, 5)

c
(1, 10)

d
(7, 7)

e

(9
, 1

)

f
(8, 8)

(a) Example graph

Edges Cost

T1
{a} (1, 9)
{b} (3, 5)

T2

{a, b} (4, 14)
{a, c} (2, 19)
{a, e} (10, 10)
{b, d} (10, 12)

Edges Cost

T3

{a, b, c} (5, 24)
{a, b, e} (13, 15)
{a, b, f} (12, 22)
{b, d, c} (11, 22)
{b, d, e} (19, 11)
{b, d, f} (18, 20)

(b) Algorithm trace (starts with vertex 1). Dominated trees
shown in bold.

Figure 2.3: An example application of Algorithm 2.1 starting from v0 = 1.

out after Step 6. The resulting algorithm was also presented in Zhou and Gen (1999) and
Ehrgott (2005).

However, as remarked by Knowles and Corne (2002), some efficient spanning trees may
be omitted. This also implies that some non efficient spanning trees may be returned by
the algorithm and cannot be filtered. This is shown in Figure 2.4 where the algorithm is
executed on the same instance as Algorithm 2.1.

Generalization of Kruskal’s algorithm

The generalization comes from Serafini (1987). His algorithm relies on the following theo-
rem.

Theorem 2.7 (Serafini, 1987). Let t be an efficient spanning tree. Then there exists an

edge order on E compatible with the dominance relation � such that the greedy algorithm

of Kruskal with this edge order returns t.

Hence, the algorithm of Serafini (1987) tries all dominance-compatible edge orders. It
is detailed in Algorithm 2.2.



2.3 From the single objective to the multi-objective case 41

1 2

34

a
(1, 9)

b(3, 5)

c
(1, 10)

d
(7, 7)

e

(9
, 1

)

f
(8, 8)

(a) Example graph

Edges Cost

T1
{a} (1, 9)
{b} (3, 5)

T2

{a, b} (4, 14)
{a, c} (2, 19)
{a, e} (10, 10)

✟
✟
✟{b, d} ✘✘✘✘(10, 12)

Edges Cost

T3

{a, b, c} (5, 24)
{a, b, e} (13, 15)
{a, b, f} (12, 22)

✘✘✘✘{b, d, c} ✘✘✘✘(11, 22)

✘✘✘✘{b, d, e} ✘✘✘✘(19, 11)

✘✘✘✘✘{b, d, f} ✘✘✘✘✘(18, 20)

(b) Algorithm trace (starts with vertex 1). Dominated trees
shown in bold. Sub-tree {b, d} eliminated from T2 although
it would yield two efficient spanning trees.

Figure 2.4: An example application of the multi-objective Prim-like algorithm modified by
Hamacher and Ruhe (1994)

Algorithm 2.2: A Kruskal-like multi-objective spanning tree algorithm by Serafini
(1987)

1 T1 ← EE – initialize a set of forest by selecting all efficient edges
2 T2 ← · · · ← Tn−1 ← ∅
3 for i ← 2, . . . , n − 1 do
4 for f ∈ Ti−1 do
5 C ← {e ∈ E \ f : f ∪ {e} does not contain a cycle} – define a set of candidate

edges
6 for e ∈ Ceff do
7 Ti ← Ti ∪ {f ∪ {e}}

8 return Tn−1

An example application (on the same instance) is depicted in Figure 2.5.

Remarks

Perny and Spanjaard (2005) also considered generalizations of Prim’s and Kruskal’s algo-
rithms in the case where any two subsets of the graph edges can be compared through
a binary relation S. Their generalizations also maintain lists of forests and exclude S-
dominated elements, just as with the dominance relation. They showed that their algo-
rithms generate a superset of all minimal or maximal spanning trees if S satisfies the two
following conditions:

• S is quasi-transitive, i.e. its asymmetric part P (for all s, s� ⊂ E, sPs� iff sSs� and



42 Some insights into the multi-objective Minimum Spanning Tree problem

1 2

34

a
(1, 9)

b(3, 5)

c
(1, 10)

d
(7, 7)

e

(9
, 1

)

f
(8, 8)

(a) Example graph

Edges Cost

T1

{a} (1, 9)
{b} (3, 5)
{e} (9, 1)

T2

{a, b} (4, 14)
{a, c} (2, 19)
{a, e} (10, 10)
{b, d} (10, 12)
{b, e} (12, 6)

Edges Cost

T3

{a, b, c} (5, 24)
{a, b, e} (13, 15)
{a, b, f} (12, 22)
{b, d, c} (11, 22)
{b, d, e} (19, 11)
{b, d, f} (18, 20)

(b) Algorithm trace. Dominated trees shown in bold.

Figure 2.5: An example application of Algorithm 2.2

not(s�Ss)) is transitive ;

• S satisfies the independence axiom, i.e. for all s, s�, s�� ⊂ E such that s�� ∩ (s ∪ s�) = ∅,
sSs� implies that (s ∪ s��)S(s� ∪ s��).

The case of additive cost vectors compared through the dominance relation �, which is also
considered in Perny and Spanjaard (2005), obviously satisfies the two above conditions.

Comparison of the outputs of Algorithms 2.1 and 2.2 to the images of span-

ning trees compatible with the generalized coloring rules We saw that both Al-
gorithms 2.1 and 2.2 and the generalized coloring rules produce dominated spanning trees.
The application of the coloring rules on the same instance only makes it possible to color b,
in blue. The spanning trees satisfying this coloring include the output of both algorithm,
plus {b, c, e} of cost (13, 16) and {b, e, f} of cost (20, 14), which are dominated spanning
trees. Hence, these algorithms produce in general smaller outputs than the coloring rules.

Worst case behavior of multi-objective Prim and Kruskal algorithms and color-

ing rules If no two edges dominate each other in the instance, multi-objective Prim and
Kruskal algorithms (2.1 and 2.2) return all spanning trees of the instance. Similarly in this
case, the coloring rules do not color any edge. Such instances may however contain non
efficient spanning trees, as in the bi-objective instance of Figure 2.6.

This motivates the use of pruning rules in order to discard sub-trees which would lead
to non efficient spanning trees. The failed attempt to enhance Corley’s algorithm shows
that pruning rules have to be carefully defined. The discussion in Section 1.2 provides some
insight into this issue.



2.4 Generic MOCO solving methods applied to the MOST problem 43

1 2

34

a
(1, 10)

b(4, 2)
c

(3, 6)
d

(2, 9)

e
(8, 1)

Figure 2.6: Example bi-objective instance where no two edges dominate each other but
where not all spanning trees are efficient.
The spanning tree t = {a, d, e} of cost (11, 20) is dominated by the spanning tree t� =
{a, b, c} of cost (8, 18).

2.4 Generic MOCO solving methods applied to the

multi-objective Minimum Spanning Tree problem

Both the two-phase method and multi-objective branch and bound were instantiated for
the MOST problem. The above two subsections survey the instantiations found in the
literature.

2.4.1 Two-phase methods

We already presented bi-objective two-phase methods in Section 1.3.2. Both Ramos et al.
(1998) and Steiner and Radzik (2003, 2008) tested two-phase methods on the Minimum

Spanning Tree problem. The approach of Ramos et al. (1998) uses a branch and bound
algorithm in phase two, which evaluates search nodes according to their ideal point in
order to explore the search area defined from Yextr, thus it can be viewed as an implicit
enumeration algorithm initialized with the set of all extreme nondominated points. The
approach of Steiner and Radzik (2008) relies on a ranking algorithm (namely, the algorithm
of Gabow and Myers (1978)) to explore the same search area defined from all nondominated
extreme points. Steiner and Radzik (2008) also provide experimental results showing the
superiority of their approach to the one of Ramos et al. (1998) on random instances with
uniform objective values.

2.4.2 A branch and bound algorithm

Sourd and Spanjaard (2008) proposed and implemented an enhanced branch and bound
procedure which outperforms all earlier algorithms. We summarize the main enhancements



44 Some insights into the multi-objective Minimum Spanning Tree problem

of their algorithm.

1. The instance is preprocessed by applying the generalized coloring rules presented in
Section 2.3.1.

2. An initial set of solutions is obtained as the result of a local search procedure. Namely,
starting from a set P of extreme efficient spanning trees for each extreme nondom-
inated point, they compute the set of neighbors of all elements of P , that is the
spanning trees which differ from those in P by a symmetric difference of their edge
sets of 2. All efficient neighbors with respect to P are inserted into P while the dom-
inated ones are removed from P . The procedure continues with the new spanning
trees of P . While it is known since Ehrgott and Klamroth (1997) and Gorski et al.
(2011) that nondominated points may be missed, the procedure often returns a re-
duced efficient set and provides a good initial search region. However, it yields many
redundant computations and is rather time-consuming.

3. The set Y (s) of all extensions of a given search node s is approximated by iteratively
computing extreme nondominated points for s. This refines the bounding procedure
of Ramos et al. (1998).

This bounding of search nodes is also used in a shaving procedure. This procedure is
run after the neighborhood search heuristic and aims at reducing the instance size. For
each uncolored edge e, search nodes se and sē are created where e is made respectively
mandatory and forbidden. Then each search node se is evaluated. If it can be shown
according to this evaluation that se cannot yield new nondominated points, then e

is colored red. Otherwise sē is considered and if it cannot yield new nondominated
points, then e is colored blue.

4. As the infinite number of weight vectors λ = (λ1, λ2) where λ1 ∈ [0, 1] and λ2 = 1−λ1

induces only a polynomial number in m of edge orders (namely m(m−1)
2

), they proposed
to compute at the beginning of their procedure all these edge orders and store them
in a priority queue using the first component λ1 of associated weight vectors as key.

We remark that, to some extent, points 3 and 4 are specific to the bi-objective case.
Point 1 was adapted in Galand and Spanjaard (2012) for the computation of optimal

spanning trees for the Ordered Weighted Average aggregation function.

2.5 Ranking spanning trees

The solutions to any 0-1 program can be ranked using the method of Murty (1968). The
algorithm of Katoh et al. (1981) is a smart specialization of this generic method for the



2.5 Ranking spanning trees 45

Minimum Spanning Tree problem and its complexity is the best known when no assump-
tion is made on the number of solutions to be computed. The complexity of obtaining the
minimum cost solution together with some necessary computations to obtain next spanning
trees is O(min(m log n, n2)). Next solutions can be computed in only O(m). The space
requirement of the whole algorithm is O(Km) and can be reduced to O(K + m) where K

is the number of computed solutions.
We assume in this section that the solutions are to be ranked according to an additive

objective function w : X = 2E → R (the weight of any subset of edges).
We first describe the partition scheme of Murty (1968) and the specialization proposed

by Katoh et al. (1981). Then we present the procedures of Katoh et al. (1981).

2.5.1 Generic ranking scheme and specialization to the Minimum

Spanning Tree problem

The method starts from an optimal solution x1 ∈ {0, 1}m and partitions the set of remaining
solutions X \ {x1} into m subsets

{x ∈ X : x1 = 1 − x1
1}

{x ∈ X : x1 = x1
1, x2 = 1 − x1

2}
...

{x ∈ X : x1 = x1
1, . . . , xm−1 = x1

m−1, xm = 1 − x1
m}

Then a second best solution is found among those subsets which are subinstances of the
initial instance. In general, when a k-best solution is found, the partition scheme is applied
on the subinstance that brought it to obtain a k + 1-best solution, which induces O(m)
new subinstances. Each of these subinstances will have to be solved. So the innovations
in k-best algorithms lie in routines that efficiently optimize a subinstance starting from an
optimal solution to the parent instance.

Consider the following measure of distance d between two solutions x and x�: d(x, x�) =
|{i : xi �= x�

j}|. For general 0-1 programs, there is no constant upper bound on the smallest
distance between a k + 1-best solution and any of the computed k-best solutions. In the
case of Minimum Spanning Tree problem however, we have the following result.

Proposition 2.8 (Deo, 1974; Katoh et al., 1981). The smallest distance between a k+1-best

spanning tree and any of the computed k-best solutions is 2.

The distance 2 corresponds to an edge exchange between two spanning trees.

Definition 2.9. For any spanning tree t, a t-exchange is any pair of edges (e, f) such that
f ∈ E \ t and e ∈ Cycle(t, f).

The weight of (e, f) is w(e, f) = w(f) − w(e).



46 Some insights into the multi-objective Minimum Spanning Tree problem

The algorithm of Katoh et al. (1981) partitions instances following these principles:

1. any new spanning tree must differ from the previously computed spanning trees by
at least one edge exchange,

2. sets of mandatory and forbidden edges, respectively in(t) and out(t), are maintained
together with each previously computed spanning tree t in order not to obtain an
already computed spanning tree.

Initially, a first spanning tree t1 is computed and in(t1) and out(t1) are set to ∅. When
a spanning tree t� is obtained by applying to a spanning tree t a feasible t-exchange (e, f),
i.e. that satisfies f ∈ E \ (t ∪ out(t)) and e ∈ Cycle(t, f) \ in(t), we let in(t�) ← in(t) ∪ {f}

and out(t�) ← out(t), and we add f to out(t). This ensures that t and t� cannot be obtained
again by applying respectively to t� and t an edge exchange that satisfies the conditions
represented by the in and out sets.

Assume that k best spanning trees t1, . . . , tk have been computed. A k + 1-th best
spanning tree is obtained by the best combination between a spanning tree t among t1, . . . , tk

and a feasible t-exchange, i.e. as a solution to























min w(t) + w(e, f)
s.t. t ∈ {t1, . . . , tk}

f ∈ E \ (t ∪ out(t))
e ∈ Cycle(t, f) \ in(t)

The correctness of the approach comes from Proposition 2.8 and the validity of the partition
scheme through in and out sets.

So to rank spanning trees according to Katoh et al. (1981), apart from the update of in
and out sets, it is required to:

1. compute a minimum weight spanning tree t1 and a minimum weight t1-exchange (e, f)
for each f ∈ E \ t1,

2. for any spanning tree t� obtained from a previously computed spanning tree t, compute
a minimum weight feasible t�-exchange for each non tree edge of t�,

3. retrieve the current best spanning tree – edge exchange combination.

We now describe and discuss the proposals of Katoh et al. (1981) for these needs.

2.5.2 Procedures of the ranking algorithm of Katoh et al. (1981)

Computation of t1 and required t1-exchanges To obtain t1, a first minimum cost
spanning tree together with its edge exchanges, two procedures are presented in Katoh et



2.5 Ranking spanning trees 47

al. (1981) whose complexities are O(n2) and O(m log n). The first procedure uses Prim’s
algorithm to obtain t1. At each iteration, it also maintains at no extra cost (w.r.t. the big
O notation) for each non tree edge f , the maximum weight edge in Cycle(t1, f). Thanks to
these computations, the required edge exchanges are then immediately obtained.

The second procedure uses Kruskal’s algorithm to obtain t1 and then the spanning tree
verification algorithm found in Tarjan (1979) to generate the associated edge exchanges.
The complexity of this approach is O(m log n).

Computation of t�-exchanges associated to a spanning tree obtained from t Some
but not all t-exchanges will remain feasible for t�. Katoh et al. (1981) propose an algorithm
which computes the missing t�-exchanges in O(m). This is basically done by performing
two depth first searches in t \ {f}: one from each endpoint of f . We omit the detail since
there is not much to discuss here.

Retrieval of the current best spanning tree – edge exchange combination In
order to efficiently obtain the current best spanning tree – edge exchange combination, all
previously computed spanning trees are stored together with their minimum weight feasible
edge exchanges in a priority queue. Namely, for any spanning tree t among the first k-best
trees that admits a minimum weight feasible t-exchange (e, f), the pair (t, (e, f)) is stored
with the value w(t) + w(e, f) as key. For each t ∈ {t1, . . . , tk}, the minimum weight feasible
t-exchanges associated to each non tree edge are also maintained in a priority queue together
with t. Both types of priority queues have to support insertions and deletions. Any binary
heap can be used and the time for each insertion and deletion is bounded above by O(m).

Conclusions

This chapter addressed the multi-objective version of a classical problem in operations
research, which is the Minimum Spanning Tree problem. We discussed the complexity
of generating the efficient set and deciding whether a solution is efficient, both for the multi-
objective Minimum Spanning Tree problem (MOST). We considered the generalization
to the multi-objective case of well-known optimality conditions for the single objective
version of the problem. They yield preprocessing rules which can possibly simplify an
instance of the MOST problem as well as multi-objective versions of two classical algorithms
for the Minimum Spanning Tree problem. However, the generalized algorithms are not
interesting in practice since they may generate many non efficient solutions. This raises
the interest in other approaches to generate the nondominated set for the MOST problem.
Therefore, we surveyed earlier instantiations on the MOST problem of generic MOCO
solving methods.



48 Some insights into the multi-objective Minimum Spanning Tree problem



Chapter 3

Determining the search region in

multi-objective optimization

Given a set N of feasible points of a multi-objective optimization (MOO)
problem, the search region corresponds to the part of the objective space
containing all the points that are not dominated by any point of N , i.e.
the part of the objective space which may contain further nondominated
points. In this chapter, we consider a representation of the search region
by a set of tight local upper bounds (in the minimization case) that can
be derived from the points of N . Local upper bounds play an important
role in methods for generating or approximating the nondominated set
of an MOO problem, yet few works in the field of MOO address their
efficient incremental determination. We relate this issue to the state of
the art in computational geometry and provide several equivalent defini-
tions of local upper bounds that are meaningful in MOO. We discuss the
complexity of this representation in arbitrary dimension, which yields an
improved upper bound on the number of solver calls in epsilon-constraint-
like methods to generate the nondominated set of a discrete MOO prob-
lem. We analyze and enhance a first incremental approach which operates
by eliminating redundancies among local upper bounds. We also study
some properties of local upper bounds, especially concerning the issue of
redundant local upper bounds, that give rise to a new incremental ap-
proach which avoids such redundancies. Finally, the complexities of the
incremental approaches are compared on the theoretical and empirical
points of view.

This chapter is adapted from Klamroth et al. (2014) which has been submitted for pub-

lication.



50 Determining the search region in multi-objective optimization

Contents

3.1 Background and motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.1.1 Multi-objective optimization setting . . . . . . . . . . . . . . . . . . . 52
3.1.2 The search region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.1.3 Explicit representation of the search region by local upper bounds . . 53
3.1.4 Related concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.1.5 Application for the solution of MOO problems . . . . . . . . . . . . . 57

A generic method based on the solution of budget constrained programs • MOBB

and two-phase methods

3.2 Existence and construction of upper bound sets . . . . . . . . . . . . . . . . 59
3.3 Properties of local upper bounds and their efficient computation . . . . . . . 63

3.3.1 Introductory examples and geometric interpretation . . . . . . . . . . 63
3.3.2 Theoretical properties of local upper bounds and a new incremental

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.4 Complexity and computational experiments . . . . . . . . . . . . . . . . . . 70

3.4.1 Tight upper bound on the number of local upper bounds . . . . . . . 71
3.4.2 Worst-case complexities of the algorithms . . . . . . . . . . . . . . . 71

Common steps of both algorithms • Remaining steps

3.4.3 Experimental comparison of the algorithms . . . . . . . . . . . . . . . 73
Experimental setup • Observations on the SA instances • Comparison of the al-

gorithms



51

Introduction

Most solution approaches in multi-objective optimization (MOO) aimed at outputting a set
of “good” solutions iteratively generate candidate solutions. Generally, a pool of solutions is
maintained and updated when new solutions arrive. The pool provides information which is
used to decide whether a new solution should be inserted and whether old solutions should
be removed. It can also be used to guide the search process within the objective space. In
particular, from the images in the objective space of the pool solutions, we can define the
part of the objective space containing all points that none of these images dominate, which
we refer to as the search region.

The concept itself is well known in the field. Especially in the two dimensional or bi-
objective case, it is a key tool of the two-phase and branch and bound methods. In the
two-phase method (see Ulungu and Teghem, 1995), adjacent extreme nondominated points
computed in the first phase define triangles which delimit zones where all other nondomi-
nated points lie. The so-called local nadir points corresponding to the right angles of these
triangles act as local upper bounds that together define the search region, assuming that the
objectives are to be minimized. This upper bounding part is also one of the foundations
of multi-objective branch and bound (see Sourd and Spanjaard (2008)). Actually, the rep-
resentation of the search region through local upper bounds makes it possible to test the
existence of the intersection between the search region and a convex lower bound on the
feasible points associated to a search node and to decide whether to fathom the search node
or not.

Given a discrete set of points Q ⊆ R
p, Kaplan et al. (2008) consider maximal empty

orthants with respect to Q, which contain no point of Q and are maximal for this property
under inclusion. Assuming that the points of Q are feasible points of an MOO problem,
the union of all maximal empty orthants corresponds to the search region associated to Q

and their apexes correspond to local upper bounds in the context of MOO. Kaplan et al.
(2008) give an algorithm for the generation of all maximal empty orthants, and hence for
the computation of all local upper bounds of the search region. However it requires that
the input points are given in a nondecreasing order of some component and in this sense
does not directly imply an incremental approach.

Przybylski et al. (2010b) considered local upper bounds in arbitrary dimension for a
generalization of the two-phase method to problems with arbitrarily many objectives. They
propose an online algorithm to carry out the update of the local upper bounds as soon as
new feasible points are discovered, but they do not consider the complexity of this operation.

Several solution methods to generate the nondominated set iteratively solve linear pro-
grams parametrized by local upper bounds (see Sylva and Crema (2007)), possibly including
redundancies (see Lokman and Köksalan (2013) and Kirlik and Sayın (2014)). In Sylva and
Crema (2007) each local upper bound is determined by solving an integer linear program.



52 Determining the search region in multi-objective optimization

Also, Dächert and Klamroth (2014) proposed to compute boxes for three dimensional
MOO problems that are defined by a common lower bound and several upper bounds
and decompose the search region. They developed an efficient incremental algorithm, that
avoids redundancies, to update the decomposition each time a nondominated point is found,
through e.g. the optimization of a pseudo-distance function parametrized by the defining
points of the box. In particular, they showed that, in the three dimensional case, the search
region can be described by 2n + 1 boxes if the number of known feasible points is n.

The chapter is organized as follows. Section 3.1 sets some notations, formally defines the
concepts of search region and upper bound set, then motivates their use in MOO. Section 3.2
shows the existence and uniqueness of local upper bounds through a first algorithm for which
we discuss some enhancements. Section 3.3 investigates some properties of the elements of
upper bound sets that yield another approach to compute an upper bound set. Section 3.4
is devoted to the complexity aspects related to the representation of the search region by a
set of local upper bounds and the comparison of the two approaches from both theoretical
and empirical points of view. The last section provides conclusions and perspectives.

3.1 Background and motivations

3.1.1 Multi-objective optimization setting

We consider multi-objective optimization (MOO) problems as in Chapter 1

�

min c(x) = (c1(x), . . . , cp(x))
s.t. x ∈ X

(3.1)

with feasible set X �= ∅ and with p ≥ 2 objective functions cj : X → R, j = 1, . . . , p,.
For all j ∈ {1, . . . , p} and x ∈ X, we assume, for any instance of an MOO problem, that
m < cj(x) < M for some m, M ∈ R, or that such values m and M exist that bound the
area of interest for the decision maker. We will refer to Z = (m, M)p as the p-dimensional
search interval, a set that contains all feasible or at least all relevant points. We denote by
Ẑ = [m, M ]p the closure of Z.

We define some general notations. We denote by M the p-dimensional vector
(M, . . . , M) and analogously the p-dimensional vector m = (m, . . . , m) and the p-
dimensional all-ones vector 1. For any z ∈ R

p, we let z−j be the (p − 1)-dimensional vector
of all components of z excluding component j, for a given j ∈ {1, . . . , p}. Finally, for any
z, a ∈ R

p and any j ∈ {1, . . . , p}, (zj, a−j) denotes the vector (a1, . . . , aj−1, zj, aj+1, . . . , ap).
Such a vector will be referred to as the jth projection of vector z on vector a.



3.1 Background and motivations 53

3.1.2 The search region

In the following definition, we formalize the concept of search region which we presented in
the introduction.

Definition 3.1. Let N be a finite and stable set of feasible points. The search region for
Ynd \ N , denoted by S(N), contains all the points in Z that could be nondominated given
N , or alternatively, excludes all the points in Z that are dominated by at least one point
in N , that is:

S(N) = {z ∈ Z : ∀z̄ ∈ N, z̄ �� z}

= Z \ {z ∈ Z : ∃z̄ ∈ N with z̄ � z}
(3.2)

Note that the search region S(N) excludes the points in N , since they are already known,
that is, S(N) ∩ N = ∅.

In some cases, N is a subset of Ynd obtained by some scalarizing function. More generally,
N may contain any feasible point, no matter how it is obtained, e.g. by any heuristic
procedure. It could even be any stable set of not necessarily feasible points from Z, provided
none of its points dominate any point of the nondominated set Ynd.

Regarding the stability condition on N , it can be easily seen that the set S(N) is not
affected if a point dominated by another point of N is added. In other words:

Remark 3.2. For any set of points Q, we have S(Q) = S(Qnd), i.e., both sets induce the
same search region.

Consequently, the assumption that the set N is stable can be made without loss of generality.

3.1.3 Explicit representation of the search region by local upper

bounds

Our purpose is to find an explicit and concise characterization of S(N) using a finite set
U(N) of minimal local upper bounds, which could also be referred to as local nadir points

or maximal points (for the dominance relation). We will refer to U(N) as an upper bound

set for the search region S(N) in the following.
Every local upper bound u ∈ U(N) defines a search zone C(u) ⊂ Z as

C(u) = {z ∈ Z : z < u},

and the search region S(N) is covered by the union of these search zones. In order to
possibly include any point of Z in a given search zone C(u), the possible values for u should
include the boundary of Z. So in general U(N) is a subset of Ẑ, the closure of the search
interval Z.

In the following, we give three alternative definitions for upper bound sets and show
their equivalence.



54 Determining the search region in multi-objective optimization

Definition 3.3. Let N ⊂ Z be a finite and stable set of points. A set U(N) ⊂ Ẑ is called
an upper bound set with respect to N if and only if

(1) S(N) =
�

u∈U(N) C(u) and

(2) ∀u1, u2 ∈ U(N), C(u1) �⊂ C(u2).

While condition (1) in Definition 3.3 guarantees that the search region S(N) is exactly

represented by the search zones induced by U(N), condition (2) ensures minimality of the
set U(N) in the sense that no redundant search zones are contained in the representation.
Observe that this definition can be seen as a natural extension of the concept of upper bound

in the 1-dimensional case. If p = 1, a stable set may either be empty (N = ∅), or it may
consist of exactly one point (N = {z̄}). The corresponding search region is then uniquely
represented by one point, namely ū = M in the first case and ū = z̄ in the latter case.

As an example, we describe the situation in the 2-dimensional case.

Example 1. Let N = {(z1
1 , z1

2), . . . , (zn
1 , zn

2 )} be a stable set of 2-dimensional points (with
n ≥ 1). In the bi-objective case, the points in any stable set N can be ordered such that
the objective values are strictly increasing in the first objective and strictly decreasing in
the second objective. Hence we can assume that z1

1 < · · · < zn
1 and z1

2 > · · · > zn
2 . The

search region consists of the union of search zones defined by pairs of consecutive points in
N . Thus the upper bound set associated to N is

U(N) = {(z1
1 , M), (z2

1 , z1
2), (z3

1 , z2
2), . . . , (zn

1 , zn−1
2 ), (M, zn

2 )}

We illustrate this example in Figure 3.1.

z1

z2

zn

Points in N
Search region S(N)
All local upper bounds of U(N)

f2

f1M

M

Figure 3.1: Illustration of the concepts of search region and local upper bound (p = 2)



3.1 Background and motivations 55

The conditions of Definition 3.3 can immediately be reformulated in terms of pairwise
comparisons between points in S(N) and U(N).

Proposition 3.4. Let N ⊂ Z be a finite and stable set of points. Then U(N) ⊂ Ẑ is an

upper bound set with respect to N if and only if

(1a’) ∀z ∈ S(N) ∃u ∈ U(N) : z < u,

(1b’) ∀z ∈ Z \ S(N) ∀u ∈ U(N) : z �< u, and

(2’) ∀u1, u2 ∈ U(N) : u1 �≤ u2.

Proof. Conditions (1a’) and (1b’) together are equivalent to condition (1) in Definition 3.3,
and condition (2’) is equivalent to condition (2) in Definition 3.3.

In the case where the search interval is restricted to integer-valued vectors, i.e. Z ⊂ Z
p,

conditions (1a’) and (1b’) of Proposition 3.4 can be further specified since for all z, z � ∈ Z
p

such that z < z�, we have z � z� − 1. We briefly restate them in the following remark.

Remark 3.5. Assume Z ⊂ Z
p and M ∈ Z

p. Under the same hypothesis of Proposition 3.4,
we have for the upper bound set U(N) ⊂ Ẑ:

(1a”) ∀z ∈ S(N) ∃u ∈ U(N) : z � u − 1 and

(1b”) ∀z ∈ Z \ S(N) ∀u ∈ U(N) : z �� u − 1

This is particularly useful in the context of the two-phase and branch and bound algo-
rithms which we discuss at the end of this section.

A yet alternative characterization of local upper bounds that will turn out useful for
their efficient determination is given in Proposition 3.6. In particular, local upper bounds
are exactly those points that (i) are not strictly dominated by any of the points in N , and
(ii) are maximal with this property.

Proposition 3.6. Let N ⊂ Z be a finite and stable set of points. Then U(N) ⊂ Ẑ is an

upper bound set with respect to N if and only if U(N) consists of all points u ∈ Ẑ that

satisfy the following two conditions:

(i) no point of N strictly dominates u and

(ii) for any ū ∈ Ẑ such that ū ≥ u, there exists z̄ ∈ N such that z̄ < ū, i.e., u is a

maximal point with property (i).

Proof. Let U(N) denote the upper bound set with respect to N , and let U �(N) denote the
set of all points satisfying (i) and (ii) above.
Claim 1: U(N) ⊂ U �(N). Let u ∈ U(N). We show that u satisfies (i) and (ii).



56 Determining the search region in multi-objective optimization

(i) Assume that there exists a point z̄ ∈ N such that z̄ < u. Then by condition (1) of
Definition 3.3, z̄ ∈ C(u) ⊂ S(N), which contradicts S(N) ∩ N = ∅.

(ii) Let ū ≥ u and hence C(u) ⊂ C(ū). Since u ∈ U(N), by condition (2) of Definition 3.3,
we get ū �∈ U(N). Thus, there exists a point z� ∈ C(ū) such that z� ∈ Z \S(N). Since
z� ∈ Z \ S(N), there exists a point z̄ ∈ N with z̄ � z � and hence z̄ < ū.

Claim 2: U �(N) = U(N), i.e., we show that U �(N) satisfies (1) and (2).
First observe that for any u� ∈ U �(N), we have C(u�) ⊂ S(N). Indeed, if there exists

z� ∈ C(u�) \ S(N), then there exists z ∈ N such that z � z�. Since z� < u�, we get z < u�

contradicting condition (i).

(1) Let u� ∈ U �(N). Then we have C(u�) ⊂ S(N) and hence ∪u�∈U �(N)C(u�) ⊂ S(N).
From Claim 1 above, we have S(N) = ∪u∈U(N)C(u) ⊂ ∪u�∈U �(N)C(u�), and thus
∪u�∈U �(N)C(u�) = S(N), which proves (1).

(2) Now let u1, u2 ∈ U �(N). Then we have C(u1) ⊂ S(N) and C(u2) ⊂ S(N). If
C(u1) ⊂ C(u2), then (ii) would be violated. This proves (2).

3.1.4 Related concepts

In computational geometry, Kaplan et al. (2008) define maximal empty orthants with re-
spect to a discrete set of points Q ⊆ R

p as partially bounded hyperrectangles of the form
�p

j=1(−∞, aj) ⊆ R
p, for some a ∈ R

p (apex), which contain no point of Q and are maximal
for this property under inclusion. It is clear that such points a satisfy the conditions of
Proposition 3.6 and are therefore local upper bounds for the search region S(Q).

For their generalization of the two-phase method to MOO problems with more than two
objectives, Przybylski et al. (2010b) are interested in characterizing the part of the objective
space where remaining nondominated points have to be searched after phase one. To this
end, they defined a concept similar to our search region, the search area. The search area
S �(N) is defined as the closure of the complement set of {z ∈ R

p : ∃z� ∈ N, z� � z}, i.e.,

S �(N) = cl
�

{z ∈ R
p : ∃z� ∈ N, z� � z}C

�

.

N is defined in Przybylski et al. (2010b) as an upper bound set for the nondominated set

in the sense of Ehrgott and Gandibleux (2007), and can also be any stable set of feasible
points. Note that we omit from their definition a lower bounding part, which is not relevant
for our purpose.

In fact, the search area S �(N) corresponds to the closure of the search region S(N)
defined according to equation (3.2) in Definition 3.3. This difference implies that the search



3.1 Background and motivations 57

area S �(N) includes N and even points of the objective space that are weakly dominated
by some points of N .

Przybylski et al. (2010b) and Dächert and Klamroth (2014) also describe the search area
by a set of corner points or upper bounds which are the same as the local upper bounds we
consider in this chapter. The former rely on a definition for these points which corresponds
to Proposition 3.6.

3.1.5 Application for the solution of MOO problems

The concepts and properties developed in Sections 3.1.2 and 3.1.3 apply to MOO in general.
For continuous and mixed discrete-continuous problems, they are useful in approaches aimed
at generating discrete representations of the nondominated set. In the case of discrete
problems, such as multi-objective combinatorial optimization (MOCO) problems, they play
an important role in the generation of the nondominated set as well. We focus in this section
on the latter issue and mention two widely applied methods to show how the computation
of local upper bounds can be integrated into an overall solution strategy.

A generic method based on the solution of budget constrained programs

The representation of the search region as a set of search zones makes it possible to derive a
simple algorithm to enumerate all nondominated points of a MOCO problem. This can be
done by iteratively exploring the search zones that define the search region and updating
the search region whenever new points are found. The exploration of a search zone C(u)
has to determine whether C(u) contains feasible points, and if so output one such point.
In order to limit the number of search zones that are considered, the exploration routine
should return only nondominated points. Such an exploration can be achieved by solving,
for example, the following mathematical program associated to a search zone C(u):

P (u) : min{g(c(x)) : x ∈ X, c(x) < u}

where g is any strongly increasing aggregation function of the cj’s (e.g. g : z �→
�p

j=1 zj).
Note that the strict dominance in the definition of P (u) can be translated into non-strict
inequalities, e.g. in the case of MOCO by slightly decreasing u since then X is a discrete
set, or, when possible, by taking advantage of Remark 3.5.

The generic method is presented in Algorithm 3.1. From property (2) of Definition 3.3,
there is no redundant constrained program among the programs associated to the search
zones of the current search region.

Note that each local upper bound that is considered at Step 3 will either lead to a
nondominated point or be part of the final upper bound set U(Ynd) (if the associated
P (u) has no feasible solution). Therefore the number of calls to the exploration routine is



58 Determining the search region in multi-objective optimization

Algorithm 3.1: Generic method to generate all nondominated points of a MOCO
problem based on the definition of search zones

input : X, c, M

output : Ynd

1 N ← ∅; U(N) ← {M}
2 while U(N) �= ∅ do
3 Select u ∈ U(N)
4 if P (u) is feasible then
5 Let z̄ be an optimal point of P (u)
6 N ← N ∪ {z̄}
7 Update U(N)

8 else
9 U(N) ← U(N) \ {u}

10 return N = Ynd

exactly |U(Ynd)| + |Ynd|. This, together with the tight upper bound on |U(Ynd)| provided in
Section 3.4.1, amounts to O(|Ynd|�

p

2
�) solver calls for p ≥ 2.

Several works (Kirlik and Sayın (2014), Laumanns et al. (2006), Lokman and Köksalan
(2013), Özlen and Azizoglu (2009), and Sylva and Crema (2008)) develop similar methods
based on the solution of budget constrained programs, sometimes considered as generaliza-
tions of the ε-constraint method to the case p ≥ 3, but they do not provide a non-trivial
upper bound on the number of solver calls. Dächert and Klamroth (2014) show, however,
using a similar approach that, in the particular case p = 3, the number of calls to the
exploration routine is upper bounded by 3|Ynd| − 2.

MOBB and two-phase methods

In multi-objective branch and bound (MOBB), we usually perform a bounding step at each
node of a search tree. Assume we consider the current node whose set of feasible solutions
is X � ⊂ X. In general, computing either X � or Y � = c(X �) would be expensive. However,
given a set of, say m weight vectors λ

1, . . . , λ
m of Rp such that for any i = 1, . . . , m, λ

i ≥ 0,
we may approximate Y � by computing αi = min{

�p
j=1 λ

i
jzj : z ∈ Y �}, especially if the single

objective version of the underlying problem is solvable in polynomial time. Denoting by Q

the set {z ∈ Z :
�p

j=1 λ
i
jzj ≥ αi, i = 1, . . . , m}, we have Y � ⊂ Q. Therefore, if Q∩S(N) = ∅

then the current node can be pruned since it cannot yield any new nondominated point.
Consider also the two-phase method, and especially the version where a ranking al-

gorithm is used to obtain, in phase two, nondominated non-extreme points. A set of
weight vectors λ

1, . . . , λ
m that satisfy the same conditions as above is obtained in phase

one. At some time during phase two, we are given m values α1, . . . , αm ∈ R such that for



3.2 Existence and construction of upper bound sets 59

each i = 1, . . . , m, all feasible points whose weighted sum value according to the weight
vector λ

i is less than or equal to αi have been computed. Considering N as the set
of all these feasible points, excluding the dominated ones, we can test whether the set
Q = {z ∈ Z :

�p
j=1 λ

i
jzj ≥ αi, i = 1, . . . , m} intersects the search region S(N).

Now we explain how local upper bounds help to determine whether such a polytope Q

intersects the search region. For any λ ∈ R
p such that λ ≥ 0 and for any z, z� ∈ R

p such
that z < z�, we have

�p
j=1 λ

i
jzj <

�p
j=1 λ

i
jz

�
j. Therefore, together with conditions (1a’) and

(1b’) of Proposition 3.4, we obtain:

Q ∩ S(N) = ∅ if ∀u ∈ U(N), ∃i ∈ {1, . . . , m} such that
p

�

j=1

λ
i
juj ≤ αi (Rule “R”)

If the feasible points are integral, that is we restrict ourselves to integer vectors in both
S(N) and Q, the above condition for Q ∩ S(N) = ∅ can be strengthened using Remark 3.5.
In this case, we rely on the following implication: if z and z� are two vectors such that
z � z�, then

�p
j=1 λ

i
jzj ≤

�p
j=1 λ

i
jz

�
j. Then in this case, we have:

Q ∩ S(N) = ∅ if ∀u ∈ U(N), ∃i ∈ {1, . . . , m} such that
p

�

j=1

λ
i
juj < αi −

p
�

j=1

λ
i
j (Rule “Z”)

These rules are used by Sourd and Spanjaard (2008) in the context of MOBB to find all
nondominated points of the bi-objective minimum spanning tree problem. Przybylski et al.
(2008) also use them in a two-phase method based on the use of a ranking algorithm to find
all nondominated points of the bi-objective assignment problem. Przybylski et al. (2010b)
consider their application again in a two-phase method not limited to the bi-objective case.
The rules they propose for the general multi-objective case are related to their definition of
the search area we presented in Section 3.1.4, which implies that the rule for the integral
case is a little weaker than Rule “Z”.

3.2 Existence and construction of upper bound sets

The initial search region consists of the whole search interval Z. Therefore, it can be
described by the following upper bound set:

U(∅) = {M}.

Actually, this defines the unique search zone C(M) = Z, which is consistent with Defini-
tion 3.3.

Starting with this in the case N = ∅, a simple incremental algorithm can be formulated



60 Determining the search region in multi-objective optimization

that iteratively introduces points to the set N and updates the upper bound set accordingly.
It was first proposed by Przybylski et al. (2010b) with a slight difference in the filtering step
to which we shall return later. Given a finite and stable set N ⊂ Z, a corresponding upper
bound set U(N), and a point z̄ ∈ Z that is nondominated with respect to N , Algorithm 3.2
describes the updating procedure to obtain the upper bound set U(N ∪ {z̄}).

Algorithm 3.2: Update procedure of an upper bound set based on redundancy elim-
ination

input : U(N), z̄ – Set of local upper bounds and new point
output : U(N ∪ {z̄})

1 A ← {u ∈ U(N) : z̄ < u} – Search zones that contain z̄
2 B ← {u ∈ U(N) \ A : z̄ ≤ u} – Search zones whose boundary contains z̄
3 P ← ∅
4 for u ∈ A do
5 for j ∈ {1, . . . , p} do
6 P ← P ∪ {(z̄j, u−j)} – Generate all projections of z̄ on the local upper bounds

of A

7 P ← {(z̄j, u−j) ∈ P : (z̄j, u−j) �≤ u�, ∀u� ∈ P ∪ B} – Filter out all redundant points of
P

8 U(N ∪ {z̄}) ← (U(N) \ A) ∪ P

Basically, Algorithm 3.2 updates each search zone C(u) in which the new point z̄ lies by
removing from C(u) the part of Z which is dominated by z̄ (including z̄). This is achieved
by replacing C(u) by p subzones as done in Step 6 of Algorithm 3.2. Some of these newly
generated subzones may be redundant, and are thus removed in Step 7. More formally, we
state the following result, which justifies Algorithm 3.2.

Proposition 3.7. Let N ⊂ Z be a non-empty finite and stable set of points. Applying

Algorithm 3.2 iteratively on the points of N , starting with an initial upper bound set U(∅) =
{M}, returns the correct upper bound set U(N).

Proof. We show that Algorithm 3.2 correctly computes the set U(N ∪{z̄}), given any finite
and stable set N ⊂ Z of points, the correct upper bound set U(N), and a new point z̄ ∈ Z

that is nondominated with respect to N . The result then follows by induction.
Considering the new point z̄, the search region S(N ∪ {z̄}) must be updated from S(N)

by removing all points in Z such that z̄ � z.
In Step 1 of Algorithm 3.2 the search zones C(u), u ∈ A, containing z̄ are identified.

All other search zones C(u), u ∈ U(N) \ A, are not affected by the new point z̄ and thus
need not be modified.

Thus, we just need to remove the set of points {z ∈ S(N) : z̄ � z} from the search
zones C(u), u ∈ A, to ensure that condition (1) of Definition 3.3 is satisfied. Steps 4-6 are



3.2 Existence and construction of upper bound sets 61

justified by the fact that for any u ∈ A we have

C(u) \ {z ∈ S(N) : z̄ � z} =
p

�

j=1

C(z̄j, u−j).

Among the candidate local upper bounds of P , as defined after all iterations of Step 6,
there may be some redundant local upper bounds in the sense that they induce search zones
that are included in a search zone associated to some (candidate) local upper bounds of
P ∪ (U(N) \ A). Let (z̄j, u−j) ∈ P , with u ∈ A, be a redundant local upper bound, i.e.
there exists u� ∈ P ∪ (U(N) \ A) such that z̄ ≤ (z̄j, u−j) ≤ u�. If z̄ < u�, then P contains
the candidate local upper bound (z̄j, u�

−j), otherwise we have u� ∈ B. Therefore, Step 7
correctly filters the set P , which leads to satisfying condition (2) of Definition 3.3.

In Przybylski et al. (2010b), the filtering step is formulated with respect to the set U(N),
i.e.

P ← {(z̄j, u−j) ∈ P : (z̄j, u−j) �≤ (u�), ∀u� ∈ U(N)}.

This is correct, but involves unnecessary dominance tests compared to Algorithm 3.2, since
one only needs to filter with respect to P ∪ B instead of U(N).

It is even possible to further refine the filtering step of Algorithm 3.2. To this end, we
prove the following proposition.

Proposition 3.8. Let (z̄j, u−j) be a candidate local upper bound in P . Then:

(1) (z̄j, u−j) ≤ (z̄k, u�
−k) for some (z̄k, u�

−k) ∈ P with k �= j implies (z̄j, u−j) ≤ (z̄j, u�
−j);

(2) (z̄j, u−j) ≤ u� for some u� ∈ B implies z̄j = u�
j and z̄−j < u�

−j.

Proof.

(1) Since z̄ < u�, we have (z̄k, u�
−k) ≤ u�, which, together with (z̄j, u−j) ≤ (z̄k, u�

−k), leads
to (z̄j, u−j) ≤ u�, and thus (z̄j, u−j) ≤ (z̄j, u�

−j).

(2) Since z̄ < u and (z̄j, u−j) ≤ u� we have z̄−j < u−j ≤ u�
−j. Moreover, with u� ∈ B, we

obtain z̄j = u�
j.

According to property (1) of Proposition 3.8, the filtering step 7 of Algorithm 3.2 can
be replaced by the following step:

P ← {(z̄j, u−j) ∈ P : (z̄j, u−j) �≤ (z̄j, u�
−j),

∀(z̄j, u�
−j) ∈ P and (z̄j, u−j) �≤ u�, ∀u� ∈ B}



62 Determining the search region in multi-objective optimization

which is equivalent to the following formulation:

P ← {(z̄j, u−j) ∈ P : (z̄j, u−j) �≤ u�, ∀u� ∈ (A ∪ B) \ {u}}

From property (2) of Proposition 3.8, it is also possible to do fewer dominance tests
against the local upper bounds of B.

Overall, Proposition 3.8 shows that it is only required to perform dominance tests be-
tween vectors that differ in all but one component. We present these enhancements in
Algorithm 3.3, where we split the sets B and P into p disjoint sets, respectively B1, . . . , Bp

and P1, . . . , Pp, to stress the by-component filtering step.

Algorithm 3.3: Update procedure of an upper bound set based on redundancy elim-
ination with an enhanced filtering step

input : U(N), z̄ – Set of local upper bounds and new point
output : U(N ∪ {z̄})

1 A ← {u ∈ U(N) : z̄ < u} – Search zones that contain z̄
2 for j ∈ {1, . . . , p} do
3 Bj ← {u ∈ U(N) : z̄j = uj and z̄−j < u−j}
4 Pj ← ∅

5 for u ∈ A do
6 for j ∈ {1, . . . , p} do
7 Pj ← Pj ∪ {(z̄j, u−j)} – Generate all projections of z̄ on the local upper

bounds of A

8 for j ∈ {1, . . . , p} do
9 Pj ← {(z̄j, u−j) ∈ Pj : (z̄j, u−j) �≤ u�, ∀u� ∈ Pj ∪ Bj} – Filter out all redundant

points of P

10 U(N ∪ {z̄}) ← (U(N) \ A) ∪
�p

j=1 Pj

While Algorithm 3.3 allows the correct computation of upper bound sets, it requires the
iterative filtering for a possibly large number of candidate local upper bounds, which may be
computationally expensive. In the next section, we establish structural properties of local
upper bounds which yield necessary and sufficient conditions for a candidate local upper
bound to become actually a (non-redundant) local upper bound. Then a new approach
to the incremental computation of an upper bound set, which avoids the filtering step, is
derived.



3.3 Properties of local upper bounds and their efficient computation 63

3.3 Properties of local upper bounds and their effi-

cient computation

In this section, we study some theoretical properties of local upper bounds that yield another
approach which, in comparison to the algorithms presented in Section 3.2, avoids the filtering
step (namely Steps 8-9 in Algorithm 3.3).

The properties are first presented under a simplifying assumption that no two distinct
points, among the points of Z to be considered, share the same value in any dimension.
This assumption, denoted “SA” in the remainder, corresponds to what is referred to as
a general position assumption in computational geometry. It is, however, not realistic for
many instances of MOCO problems, that is why we extend the properties under the general
case according to which identical component values among distinct points are allowed.

We first illustrate the properties on small examples (Section 3.3.1). Then we detail the
properties and derive the new approach (Section 3.3.2).

3.3.1 Introductory examples and geometric interpretation

In this section, we give a geometric intuition to the properties that are detailed in the
next sections through two example instances in the tri-objective case. First we present an
example instance in the SA case (Example 2). Then we discuss the consequences of feasible
points having identical component values (Example 3).

Example 2 (Under SA). We consider a three-dimensional simple instance of our problem
which consists of two feasible points : z1 = (3, 5, 7) and z2 = (6, 2, 4). Let us apply
the incremental algorithm presented in the previous section first on U(∅) = {M} and
z̄ = z1 then on U({z1}) and z̄ = z2. At the first iteration, z1 yields three local upper
bounds, namely u1 = (3, M, M), u2 = (M, 5, M), and u3 = (M, M, 7) so that U({z1}) =
{u1, u2, u3}. Then at the second iteration we consider the three projections of z2 on the
local upper bounds whose associated search zones contain z2 which are u2 and u3. We
get u21 = (6, 5, M), u22 = (M, 2, M), and u23 = (M, 5, 4) for u2, and u31 = (6, M, 7),
u32 = (M, 2, 7), and u33 = (M, M, 4) for u3. Projections u23 and u32 being redundant since
u33 ≥ u23 and u22 ≥ u32, we have U({z1, z2}) = {u1, u21, u22, u31, u33}.

We represent the situation in Figure 3.2. The feasible points z1, z2 are depicted together
with their Pareto dominance cones {z ∈ Z : zi � z}, i = 1, 2, in gray as well as the local
upper bounds. The scene is represented in perspective from point m to point M so that
the search zones go towards us.

Now we look at a particular local upper bound, say u21 = (z2
1 , u2

−1). Consider any point
z̄ that belongs to the search zone defined by u21. The jth projection of z̄ on u21 amounts
to sliding u21 along the half-line [u21, (mj, u21

−j)). From Figure 3.2, we can see that if a
projection of z̄ on u21 lies outside any of the three black line segments that start from u21,



64 Determining the search region in multi-objective optimization

z1u1

u2

u3

c3

c1

c2

m

ẑ1ẑ2

ẑ3

(a) N = {z1}

z1u1

z2u31

u21
u22

u33

c3

c1

c2

m

ẑ1ẑ2

ẑ3

(b) N = {z1, z2}

Figure 3.2: A 3-dimensional example problem with points under SA



3.3 Properties of local upper bounds and their efficient computation 65

then it will be redundant since it belongs to the closure of another search zone. We can
see that these line segments are edges of the union of dominance cones associated to the
points of N , plus 3 dummy points ẑ1 = (M, m, m), ẑ2 = (m, M, m) and ẑ3 = (m, m, M).
With these dummy points, even local upper bounds located on the boundary of Ẑ lie at
the intersection of 3 dominance cones. We can now avoid the filtering step (Steps 8-9) of
Algorithm 3.3 if, for each local upper bound u, the p edges of the union which are incident
to u are known. In the rest of this section, we consider facets of the union of the dominance
cones associated to the points of N and to the dummy points ẑ1, ẑ2, ẑ3.

We can see that the facets incident to u21 are composed of two facets incident to u2 that
are shrunk after the first projection of z2 and one facet which is a subset of a facet of the
dominance cone associated to z2. So, in order to compute the edges incident to u21, we only
have to keep track of the three points that lower bound the facets, namely z2, z1, and ẑ3.
This holds because under SA, a facet is defined by a local upper bound and a single point
of N .

z̄
z1

z2

z3

u

u�

c3

c1

c2 m

ẑ1ẑ2

ẑ3

Figure 3.3: A 3-dimensional instance with feasible points having the same value on compo-
nent 2

Example 3. Consider the 3-dimensional instance represented in Figure 3.3 with three
feasible points z1 = (2, 7, 7), z2 = (5, 7, 5) and z3 = (8, 7, 3), which all share the same value
on the second coordinate. We look again at facets of the union of all dominance cones
associated to the points of N . The local upper bound u = (M, 7, M) is defined by ẑ1 on
component 1, ẑ3 on component 3, and z1, z2, and z3 on component 2. We consider the
facet of the union incident to u and orthogonal to the c2-axis. Similarly to the SA case,
we may want to represent this facet by u and a single point defining a lower bound on
the c1 and c3 values. Since this facet is incident to three feasible points we could define
b = (z1

1 , z1
2 = z3

2 , z3
3) = (2, 7, 3) (see again Figure 3.3).



66 Determining the search region in multi-objective optimization

However, this information may not be sufficient to avoid future redundancies. Consider
for example the point z̄ = (4, 3, 7) as depicted in Figure 3.3 together with its Pareto domi-
nance cone (in dotted lines). It satisfies z1

1 < z̄1 < z2
1 , z̄2 < z1

2 = z2
2 and z̄3 = z1

3 . z̄ defines
among others the local upper bound u� = (ẑ1

1 , z2
2 , z̄3) = (M, 7, 7). Unfortunately, one of the

edges incident to u� represented as a dashed line in the figure is limited by an intermediate
feasible point, namely z2. Therefore, it will be necessary in the general case to keep track
of all feasible and dummy points that belong to a facet incident to a local upper bound.
This is what the sets Zj(·) are aimed at in Section 3.3.2.

3.3.2 Theoretical properties of local upper bounds and a new

incremental approach

According to Step 7 of Algorithm 3.3, all components of a local upper bound u result from
previously generated upper bounds for p−1 components and, for the remaining component,
from the currently added point z̄. The initial local upper bound M , however, is not
defined from any point of Z. In order to make no particular case of the component values
inherited from M , we extend any stable set of points from Z with the dummy points
we introduced in the previous section. Namely, we define the extension of N as the set
N̂ = N ∪ {ẑj, j = 1, . . . , p}, where

ẑj = (M j, m−j), j = 1, . . . , p

It is not hard to see that U({ẑj, j = 1, . . . , p}) = {M}, i.e. the dummy points yield the
initial search zone, which implies that for any finite and stable set N of points from Z, we
have U(N̂) = U(N).

Using dummy points, we now have that any component value of a local upper bound is
defined by a point of N̂ .

Observe that a dummy point ẑj can only define the jth component of any local upper
bound, which is M . Indeed since no point from Z is lower than or equal to m on any
component, m cannot be a component value of a local upper bound. Therefore, and since
M is unique in the component values of a dummy point, ẑj is the only dummy point that
can define component j.

The following proposition gives a useful property of those points that define each com-
ponent of a local upper bound.

Proposition 3.9. For any local upper bound u ∈ U(N) and j ∈ {1, . . . , p}, there exists

z ∈ N̂ such that zj = uj and z−j < u−j.

Proof. If uj = M , then the dummy point ẑj ∈ N̂ satisfies the required conditions.
Otherwise and since N̂ is a finite set, there exists an ε > 0 sufficiently small such that

no point of N̂ has its jth component value in the interval (uj, uj +ε). Let u� = (uj +ε, u−j).



3.3 Properties of local upper bounds and their efficient computation 67

According to Proposition 3.6, since u� ∈ Ẑ and u� ≥ u, there exists a z ∈ N such that (i)
z < u� and (ii) z �< u. It follows from (i) that we have z−j < u−j, which imposes zj ≥ uj

from (ii). From the choice of ε, we therefore have zj = uj.

In the following we define two notations for those points that define local upper bounds,
for the general case and for the SA case, respectively.

Definition 3.10. For any local upper bound u ∈ U(N), we denote by Z j(u) = {z ∈ N̂ :
zj = uj and z−j < u−j} the set of defining points of u for component j, j = 1, . . . , p.

In the SA case, the unique defining point of u for component j is denoted zj(u).

Using Proposition 3.9, we can now precisely characterize the projections which are kept
in the set P after the filtering step of Algorithm 3.3. We first consider the SA case.

Theorem 3.11 (Simplifying assumption). Let z̄ be a point of Z that is nondominated with

respect to N and such that the points in N ∪ {z̄} satisfy SA. Consider a local upper bound

u ∈ U(N) such that z̄ < u. Let zmax
j (u) = maxk �=j{zk

j (u)}.

Then, for any j ∈ {1, . . . , p}, (z̄j, u−j) is a local upper bound of U(N ∪ {z̄}) if and only

if z̄j > zmax
j (u).

Proof. Let u ∈ U(N) and z̄ ∈ Z \ N be a point not dominated by any point of N such that
z̄ < u.

(⇒) Suppose that ū = (z̄j, u−j) is a local upper bound in U(N ∪ {z̄}) and let zmax
j (u) =

zk
j (u) for some point zk(u) ∈ N̂ , such that zk

k(u) = uk, k �= j. Therefore, zk
k(u) = ūk

and, from SA, no other point of N̂ equals ūk on its kth component. Thus from
Proposition 3.9, we have zk

−k(u) < ū−k, which implies zk
j (u) = zmax

j (u) < ūj = z̄j.

(⇐) Assume that for a given j ∈ {1, . . . , p}, z̄j > zmax
j (u). Suppose, to the contrary, that

(z̄j, u−j) is not a local upper bound for N ∪ {z̄}, that is, it dominates a local upper
bound of U(N ∪ {z̄}). Hence from Proposition 3.8, there exists u� ∈ U(N) such that
(z̄j, u−j) ≤ (z̄j, u�

−j) (note that in the SA case, the set B defined in Algorithm 3.2
is empty). Then, we have u−j ≤ u�

−j, which implies uj > u�
j and uk < u�

k for some
k �= j. Let zk(u) ∈ N̂ be the point that defines the kth component uk of u. From
Proposition 3.9, we have zk

−k(u) < u−k. Thus, since k �= j, we have zk
−j(u) < u�

−j

but since u� is a local upper bound, we must have zk
j (u) ≥ u�

j (otherwise zk(u) < u�).
Hence, zmax

j (u) ≥ zk
j (u) ≥ u�

j. Since we have both z̄j > zmax
j (u) and z̄j < u�

j, we obtain
a contradiction: z̄j < u�

j ≤ zmax
j (u) < z̄j.

Let us illustrate this theorem on the first example instance of Section 3.3.1.



68 Determining the search region in multi-objective optimization

Example 2 (continued). Consider the situation in Figure 3.2a with N = {z1}, where z1 =
(3, 5, 7). The points that define the local upper bounds of U(N), namely u1 = (3, M, M),
u2 = (M, 5, M), and u3 = (M, M, 7), are:

z1(u1) = z1 z2(u1) = ẑ2 z3(u1) = ẑ3

z1(u2) = ẑ1 z2(u2) = z1 z3(u2) = ẑ3

z1(u3) = ẑ1 z2(u3) = ẑ2 z3(u3) = z1

and zmax(u1) = (m, 5, 7), zmax(u2) = (3, m, 7), and zmax(u3) = (3, 5, m).
The point z2 = (6, 2, 4) strictly dominates u2 and u3 and we have:

z2
1 > zmax

1 (u2) z2
2 > zmax

2 (u2) z2
3 ≤ zmax

3 (u2)
z2

1 > zmax
1 (u3) z2

2 ≤ zmax
2 (u3) z2

3 > zmax
3 (u3)

thus we obtain again the four new local upper bounds u21 = (z2
1 , u2

−1), u22 = (z2
2 , u2

−2),
u31 = (z2

1 , u3
−1), and u33 = (z2

3 , u3
−3).

According to Theorem 3.11, we can avoid the filtering step of Algorithm 3.3 if we keep
track of the p points that define each local upper bound and only generate the projections
of z̄ that satisfy the conditions of Theorem 3.11. The corresponding algorithm is detailed
in Algorithm 3.4.

Note that each component of the vector zmax(u) for a given local upper bound u will be
used at most once in all iterations of Algorithm 3.4. That is why it is computed only before
its use, namely at Step 5. Moreover, this vector is not sufficient to compute the vector
zmax(uj) associated to a local upper bound uj defined from u. Indeed, as the following
example shows, it is required to keep track of all points that define the component values
of uj, as is done in Steps 8-10.

Example 2 (continued). Consider a new point z3 = (4, 4, 2) and the local upper bound
u21 = (6, 5, M) with zmax(u21) = (3, 2, 7), stemming from z1(u21) = z2 = (6, 2, 4), z2(u21) =
z1 = (3, 5, 7), and z3(u21) = ẑ3 = (m, m, M).

We have z3 < u21 and z3
2 ≥ zmax

2 (u21), thus u212 = (z3
2 , u21

−2) is a local upper bound of
U({z1, z2, z3}). Since z1(u212) = z1(u21), z2(u212) = z3, and z3(u212) = z3(u21), we have
zmax(u212) = (4, 2, 4). As we can see, the last component value of zmax(u212), which comes
from z1(u212) = z2, cannot be obtained from zmax(u21) or z3.

In the general case, Theorem 3.11 is modified as follows:

Theorem 3.12. Let N be a finite and stable set of points of Z, and let z̄ be a point of Z

that is nondominated with respect to N . Consider a local upper bound u ∈ U(N) such that

z̄ < u. Let zmax
j (u) = maxk �=j min{zj : z ∈ Zk(u)}.

Then, for any j ∈ {1, . . . , p}, (z̄j, u−j) is a local upper bound of U(N ∪ {z̄}) if and only

if z̄j > zmax
j (u).



3.3 Properties of local upper bounds and their efficient computation 69

Algorithm 3.4: Update procedure of an upper bound set based on the avoidance of
redundancies : SA case

input : U(N) together with zj(u), ∀j ∈ {1, . . . , p}, u ∈ U(N) – Set of local upper
bounds and associated defining points

input : z̄ – New point
output : U(N ∪ {z̄})

1 A ← {u ∈ U(N) : z̄ < u} – Search zones that contain z̄
2 P ← ∅
3 for u ∈ A do
4 for j ∈ {1, . . . , p} do
5 zmax

j (u) ← maxk �=j{zk
j }

– Check for the condition of Theorem 3.11 –
6 if z̄j > zmax

j (u) then
– Let uj = (z̄j, u−j)

7 P ← P ∪ {uj}
8 zj(uj) ← z̄
9 for k ∈ {1, . . . , p} \ {j} do

10 zk(uj) ← zk(u)

11 U(N ∪ {z̄}) ← (U(N) \ A) ∪ P

Proof. Let u ∈ U(N) and z̄ ∈ Z \ N be a point not dominated by any point of N such that
z̄ < u.

(⇒) Suppose that ū = (z̄j, u−j) is a local upper bound in U(N ∪ {z̄}) and to the contrary
z̄j ≤ zmax

j (u). Then, there is k �= j such that z̄j ≤ zj for all z ∈ Zk(u). Since ū ≤ u

and ūk = uk, it holds that Zk(ū) ⊂ Zk(u) but for any z ∈ Zk(u), zj �< z̄j = ūj. Hence,
Zk(ū) = ∅ which contradicts Proposition 3.9.

(⇐) Assume that for a given j ∈ {1, . . . , p}, z̄j > zmax
j (u). Suppose, to the contrary,

that (z̄j, u−j) is not a local upper bound for N ∪ {z̄}, that is, it dominates a local
upper bound of U(N ∪ {z̄}). Hence from Proposition 3.8, there exists u� ∈ U(N),
(z̄j, u−j) ≤ (z̄j, u�

−j) (possibly with z̄j = u�
j).

Then we have u−j ≤ u�
−j which implies uj > u�

j and uk < u�
k for some k �= j.

From Proposition 3.9, the set Zk(u) is non-empty. For any z ∈ Zk(u), we have
z−k < u−k and thus, since k �= j, z−j < u�

−j but since u� is a local upper bound,
we must have zj ≥ u�

j (otherwise z < u�). Hence, there is a z ∈ Zk(u) such that
zmax

j (u) ≥ zj ≥ u�
j. Since we have both z̄j > zmax

j (u) and z̄j ≤ u�
j, we obtain a

contradiction: z̄j ≤ u�
j ≤ zmax

j (u) < z̄j.



70 Determining the search region in multi-objective optimization

We illustrate the general case on the second example instance of Section 3.3.1.

Example 3 (continued). In Figure 3.3, we consider the situation with N = {z1, z2, z3}

where z1 = (2, 7, 7), z2 = (5, 7, 5) and z3 = (8, 7, 3). We only look at the local upper bound
u = (M, 7, M). We have Z1(u) = {ẑ1}, Z2(u) = {z1, z2, z3}, and Z3(u) = {ẑ3}. Thus
zmax(u) = (2, m, 3). The projections of a point z̄ that strictly dominates u will be kept as
non-redundant local upper bounds depending on the comparisons between the component
values of z̄ and zmax(u) only.

Algorithm 3.5 presents the update procedure in the general case. The initialization is
done with U(∅) = {M} and Zj(M) = {ẑj}, j = 1, . . . , p.

Algorithm 3.5: Update procedure of an upper bound set based on the avoidance of
redundancies : general case

input : U(N) together with Zj(u) for all j ∈ {1, . . . , p}, u ∈ U(N) – Set of local
upper bounds and associated defining points

input : z̄ – New point
output : U(N ∪ {z̄})

1 A ← {u ∈ U(N) : z̄ < u} – Search zones that contain z̄
2 P ← ∅

– Update sets Zj(u) when z̄ satisfies the conditions of Proposition 3.9 –
3 for u ∈ U(N) and j ∈ {1, . . . , p} such that z̄j = uj and z̄−j < u−j do
4 Zj(u) ← Zj(u) ∪ {z̄}

5 for u ∈ A do
6 for j ∈ {1, . . . , p} do
7 zmax

j (u) ← maxk �=j min{zj : z ∈ Zk(u)}
– Check for the condition of Theorem 3.12 –

8 if z̄j > zmax
j (u) then

– Let uj = (z̄j, u−j)
9 P ← P ∪ {uj}

10 Zj(uj) ← {z̄}
11 for k ∈ {1, . . . , p} \ {j} do
12 Zk(uj) ← {z ∈ Zk(u) : zj < z̄j}

13 U(N ∪ {z̄}) ← (U(N) \ A) ∪ P

3.4 Complexity and computational experiments

In Sections 3.2 and 3.3, we described two incremental approaches for the update of an upper
bound set. In Section 3.2, the approach is based on redundancy elimination (RE) among



3.4 Complexity and computational experiments 71

local upper bounds, while in Section 3.3 it is based on redundancy avoidance (RA) with
respect to local upper bounds.

We first report upper bounds on the total number of local upper bounds associated to
a discrete set of points N . Then we study the complexities of the RE and RA approaches.
Finally, we present some computational experiments that compare these approaches.

3.4.1 Tight upper bound on the number of local upper bounds

None of the incremental algorithms proposed in the literature, even in the SA case, make
it possible to directly derive a non-trivial upper bound on the size of any upper bound set
U(N) for p ≥ 4.

For p = 2, the number of local upper bounds is clearly |N | + 1 (see Example 1). For
p = 3 we recall that Dächert and Klamroth (2014) showed that it is bounded above by
2|N | + 1 and is exactly 2|N | + 1 in the SA case.

For an arbitrary p ≥ 2, Kaplan et al. (2008) provide a tight upper bound on the size of
U(N). Following Boissonnat et al. (1998) who studied the complexity of a union of axis-
parallel hypercubes, they show that the number of maximal empty orthants with respect to a
stable set N is O(|N |�

p

2
�). They also provide an instance for which this number is Ω(|N |�

p

2
�).

Therefore, and recalling that maximal empty orthants are in one-to-one correspondence with
local upper bounds, O(|N |�

p

2
�) is a tight upper bound on the total number of local upper

bounds associated to a stable set N .

3.4.2 Worst-case complexities of the algorithms

In this section, we analyze the worst case behavior of the two approaches. We consider
the dimension p of the problem as a fixed parameter. The reference algorithm for the RE
approach will be Algorithm 3.3 while the reference algorithm for the RA approach will be
Algorithm 3.4 in the SA case, and Algorithm 3.5 in the general case.

Common steps of both algorithms

In the SA case, both approaches first compute the set A of local upper bounds that contain
z̄. This amounts to |U(N)| dominance tests if U(N) is stored as a simple linked list. If
A is small compared to U(N), it is possible to reduce the complexity of these operations.
Actually, since the elements of A are those local upper bounds located in the hyperrect-
angle

�p
j=1(z̄j, M), they can be obtained by an orthogonal range query on the set U(N)

(see Berg et al. (2008), Chapter 5). In the case p = 2, U(N) can be efficiently stored in
a simple balanced binary search tree. For p ≥ 3, as in the case of the algorithm of Ka-
plan et al. (2008) U(N) can be stored in a dynamic p-dimensional range tree, as proposed
e.g. in Willard and Lueker (1985), which allows insertions and deletions in O(logp |U(N)|)
time and orthogonal range queries in O(logp |U(N)| + |A|) time. We note that augmented



72 Determining the search region in multi-objective optimization

dynamic range trees (Mehlhorn and Näher (1990), Theorem 8) lower the “log” factors to
logp−1 |U(N)|log log |U(N)|.

Remaining steps

We assume that p ≥ 3 since it can be easily seen that both approaches operate identically
in the case p = 2. Both approaches consider p|A| candidate local upper bounds.

We first consider the SA case. We focus on the operations on which Algorithm 3.3
(RE approach) and Algorithm 3.4 (RA approach) differ. They correspond to Steps 5-
9 (Algorithm 3.3) and Steps 3-10 (Algorithm 3.4), and respectively involve sets Pj, j =
1, . . . , p, and P .

Proposition 3.13. The worst-case complexity of Steps 5-9 in Algorithm 3.3 is bounded by

O(|A|2).

Proof. The complexity of these steps is dominated by the filtering (Steps 8-9) of each Pj,
j = 1, . . . , p, where |Pj| = |A|, therefore the total time is O(|A|2).

This can be reduced to O(|A| log |A|) in the case p = 2, 3 (Kung et al. (1975)) and
O(|A| logp−3 |A| log log |A|) in the case p ≥ 4 (Gabow et al. (1984)) using some specialized
algorithms.

Proposition 3.14. The worst-case complexity of Steps 3-10 in Algorithm 3.4 is bounded

by O(|A|).

Proof. In Algorithm 3.4, no additional dominance test is performed with the local upper
bounds of P , but the values zmax

j (u) need to be computed just before they are needed, each
of which takes constant time. Also the references to the p points that define each local
upper bound have to be updated which takes constant time for each new upper bound. The
total time of these operations is thus O(|A|).

In the general case, the number of local upper bounds against which candidate local
upper bounds have to be checked for dominance in the RE approach just grows by an
additional |B|. In the RA approach adapted to the general case, namely Algorithm 3.5, it
is possible that |N | points have to be considered in a set Zk(u) at Step 12. This leads to
an upper bound on the complexity of O(|N ||A|) in Algorithm 3.5.

In practice, however, the size of the sets Zk(u) is rather small depending on how many
points in N share the same component values. Note that according to Boissonnat et al.
(1998), an alternative approach would be to slightly shift those points in N that do not
satisfy SA such that the resulting set satisfies SA. Then Algorithm 3.4 can be applied,
yielding a complexity of O(|A|). Similarly, ties in the comparisons of any jth component
values for points zk and zl could be resolved by a lexicographic comparison “<lex” where
zk

j <lex zl
j if zk

j < zl
j or if zk

j = zl
j and k < l, which would replace the natural comparison



3.4 Complexity and computational experiments 73

“<” between reals (and similarly for “>”) in Algorithm 3.4. However these approaches yield
redundant search zones that, in the context of Algorithm 3.1, induce redundant solver calls.

3.4.3 Experimental comparison of the algorithms

In this section we investigate the behaviour of the RE and RA approaches on random
instances.

Experimental setup

We implemented Algorithm 3.3 for the RE approach and Algorithm 3.5 for the RA ap-
proach. Both algorithms were implemented in C. The experiments were run on a worksta-
tion equipped with an Intel Core i7-3840QM CPU at 2.80GHz with 8MB cache and 32GB
RAM. For both algorithms, we considered the version that does not require SA, since the
assumption cannot be made in most applications.

As test instances, we generated random stable sets of points N . In order to obtain a
new point in the random stable set being generated, we uniformly draw from the integer set
[1, K]p and reject the points that are dominated by or dominate any of the previous points.
We draw without or with replacement in [1, K], respectively, to obtain points satisfying SA
or not. In the general case, the parameter K controls to what extent objective values are
shared among feasible points. In the SA case, K is just set to a very large integer. Since
in both cases the distribution of each point is conditioned by the requirement that it is
neither dominated by nor dominates any previously generated point, the generated points
are eventually randomly reordered.

We considered instances for p = 3, 4, 5, 6 having 100 000, 50 000, 25 000, and 5 000 points,
respectively. We generated instances under SA and also with possible identical component
values. In the general case, we set K so as to obtain |N |

K
= 5, 10. The plots we made in the

SA case were obtained by recording intermediate results every 500 points for p = 3, 4, 5 and
every 100 points for p = 6. We also considered a pathological instance type in the general
case with p = 6, |N | = 10 000 and K = 10.

We drawn 10 instances of each type and the output results were averaged over the 10
runs carried out for each instance type.

Observations on the SA instances

We provided above a theoretical tight upper bound on the number of local upper bounds
in SA instances. Now we consider the empirical number of local upper bounds observed in
our test instances for p = 4, 5, 6 (since the theoretical upper bound is tight for p = 3). The
results, which can be obtained by any of the two approaches, are reported on Figure 3.4.
According to Figure 3.4, it seems that on such random instances, the number of local
upper bounds grows approximately linearly in the number of points. Kaplan et al. (2008)



74 Determining the search region in multi-objective optimization

showed that the number of maximal empty axis-parallel boxes in a set of n points drawn
uniformly and independently from [0, 1]p is O(n logp−1 n), therefore the growth observed in
our experiments may be superlinear. However, the distribution of our points is not the
same since we discard points that dominate or are dominated by previously drawn points
and the bound of Kaplan et al. (2008) does not count only maximal empty orthants.

Observing from Figure 3.4 the apparently linear relation between |N | and |U(N)|, we
performed a simple linear regression. We obtained the following slopes for the fitted lines:
6.524 for p = 4, 31.86 for p = 5, and 165.9 for p = 6. This gives an insight on the increase
in the number of local upper bounds induced by the consideration of a new point in the
search region, i.e. the average |U(N ∪ {z̄})| − |U(N)|.

100 200 500 1000 2000 5000 10000 20000 50000

5e
+

03
2e

+
04

1e
+

05
5e

+
05

Number of points

N
um

be
r

of
lo

ca
l

up
pe

r
bo

un
ds p = 4

p = 5
p = 6

Figure 3.4: Number of local upper bounds on SA instances (logarithmic scales for both
axes)

We also computed the average number of search zones that contain the current point
(namely |A|) between two observations. Since these values do not vary much on the tested
instance, we provide the averages over all instances of all sizes: 3.999 for p = 3, 21.56 for
p = 4, 141.67 for p = 5, and 735.9 for p = 6.

From the average |U(N ∪ {z̄})| − |U(N)| and |A|, we compute the ratio |U(N∪{z̄})|−|U(N)|
|A|

.
We obtain 0.5001 for p = 3, 0.3025 for p = 4, 0.2249 for p = 5, and 0.2255 for p = 6.
This indicates that the number of additional search zones induced by each search zone that
contains the current feasible point remains small.

Comparison of the algorithms

We first provide raw computation times in Table 3.1, showing the performance of the RE
and RA approaches on SA and on general instances.



3.4 Complexity and computational experiments 75

RE approach RA approach

|N |
p

3 4 5 6 3 4 5 6

5 000 0.232 1.09 26.3 614.0 0.289 2.18 35.2 179.0
25 000 6.93 93.4 830.0 - 16.6 154.0 951.0 -
50 000 44.6 509.0 - - 122.0 673.0 - -
100 000 387.0 - - - 664.0 - - -

(a) Simplifying assumption

RE approach RA approach

|N |
p

3 4 5 6 3 4 5 6

5 000 0.192 0.882 13.4 530.0 0.24 1.15 18.7 166.0
25 000 6.18 68.3 767.0 - 9.53 112.0 862.0 -
50 000 36.0 463.0 - - 77.0 582.0 - -
100 000 339.0 - - - 498.0 - - -

(b) No simplifying assumption, |N |
K

= 5

RE approach RA approach

|N |
p

3 4 5 6 3 4 5 6

5 000 0.167 0.772 12.1 447.0 0.218 0.978 16.7 150.0
25 000 5.99 65.6 754.0 - 7.84 107.0 839.0 -
50 000 32.8 447.0 - - 69.2 564.0 - -
100 000 325.0 - - - 459.0 - - -

(c) No simplifying assumption, |N |
K

= 10

Table 3.1: Average computation times (in seconds) for both approaches



76 Determining the search region in multi-objective optimization

Since the computation times of the algorithms we consider to generate U(N ∪ {z̄}) are
both Ω(|U(N)|), we also present normalized computation times. Figure 3.5 shows running
times divided by |U(N)|.

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

0.
00

00
0.

00
04

0.
00

08
0.

00
12

Number of points

T
im

e
(s

)
pe

r
lo

ca
l

up
pe

r
bo

un
d

RE approach
RA approach

(a) p = 3

0 10000 20000 30000 40000 50000

0.
00

00
0

0.
00

01
0

Number of points

T
im

e
(s

)
pe

r
lo

ca
l

up
pe

r
bo

un
d

RE approach
RA approach

(b) p = 4

0 5000 10000 15000 20000 250000.
0e

+
00

5.
0e

-0
6

1.
0e

-0
5

1.
5e

-0
5

Number of points

T
im

e
(s

)
pe

r
lo

ca
l

up
pe

r
bo

un
d

RE approach
RA approach

(c) p = 5

0 1000 2000 3000 4000 50000.
0e

+
00

1.
0e

-0
6

2.
0e

-0
6

Number of points

T
im

e
(s

)
pe

r
lo

ca
l

up
pe

r
bo

un
d

RE approach
RA approach

(d) p = 6

Figure 3.5: Comparison of the normalized running times of the two algorithms in the SA
case

According to these results, the RE approach remains the best one in terms of com-
putation time for p = 3, 4, 5, the values being rather close in the case p = 5. The RA
approach however outperforms the RE approach for p = 6. These observations hold for SA
and general case instances but the gaps between the relative efficiency of the approaches
are larger on SA instances. Besides, additional computational experiments on SA instances
with p = 7, 8 showed that the RA approach performs even better above p = 6. Namely,
we obtained the following average computation times (RE time in seconds, RA time in
seconds): (161.69, 5.046) for p = 7, n = 500, (1 240.11, 27.458) for p = 7, n = 1 000, (24.06,



3.4 Complexity and computational experiments 77

0.348) for p = 8, n = 125, (423.15, 2.330) for p = 8, n = 250.
We also observed in our experiments that, even starting from p ≥ 3, a little fewer

component comparisons are made in the RA approach than in the RE approach. Finally, we
ran the implementations under Cachegrind, a CPU caches profiling tool. We observed for the
RA approach a larger use of the slowest caches, L2 and L3, than for the RE approach. This,
together with the smaller average |A| observed on low dimensional instances, explains why
the implementation of the RA approach performs worse than the one of the RE approach
for p ≤ 5.

To observe the effect of highly duplicated component values among distinct points, we
also tested the approaches on instances of points with p = 6, |N | = 10 000, and K = 10.
The average |U(N)| and |A| are much smaller than in the SA case, being respectively
14 228.4 and 33.44. Due to the fact that many points share the same component values, the
sets Zk(u) in Algorithm,3.5 can grow significantly, reaching the maximum value of 1 109.7,
averaged on the test instances. Therefore, the computation time of the RA approach is a
little longer than the one of the RE approach (1.95 against 1.51 seconds).

Conclusions

We addressed in this chapter the problem of representing the search region in MOO. The
concept itself is used in numerous approaches to compute the nondominated set. We pro-
vided several equivalent definitions of the search region. Local upper bounds induce a
decomposition of the search region into search zones. We reviewed possible uses of this de-
composition to enumerate all nondominated points of an MOO problem. We presented two
incremental approaches to compute the local upper bounds that represent a search region,
respectively based on “redundancy elimination (RE)” and “redundancy avoidance (RA)”.
The first encompasses an already known algorithm for which we proposed some enhance-
ments to its filtering step. The second is derived from theoretical properties of local upper
bounds we studied and avoids the filtering step of the former. Finally, we considered the
complexity of the representation of the search region by local upper bounds and gave some
insights into the theoretical complexities and the practical efficiencies of the two incremen-
tal approaches. In particular, we showed that the RA approach developed in this chapter
performs better than the RE approach starting from dimension 6 on instances where the
objective ranges are not too small.

The future work directions are numerous. Although the RA approach is practically less
efficient than the RE approach in low dimensions, it maintains, contrary to the latter, a
relation between feasible points and local upper bounds. This makes it possible to define a
neighborhood between local upper bounds, as in Dächert and Klamroth (2014) in the case
p = 3, that can be exploited in order to update the search region more efficiently when a
search zone containing the new feasible point is known. Derivatives of the concept of search



78 Determining the search region in multi-objective optimization

region defined in this chapter could also be considered. Actually, we made no assumption
on the feasible points that define the search region, apart from the requirement that they
constitute a stable set of points. If e.g. the feasible points are optimal with respect to
one objective function, some search zones may be discarded. Note also that the search
zones that are defined in this chapter are bounded below by the same point m. It may be
interesting to bound below each search zone using some local lower bounds such that the
union of the corresponding restricted search zones still contains all unknown nondominated
points.



Chapter 4

Hybrid ranking and branch and

bound algorithm for solving

multi-objective combinatorial

optimization problems

This chapter is concerned with generic approaches for solving MOCO
problems. We propose a flexible method primarily aimed at the genera-
tion of the nondominated set of a MOCO problem, which is not limited
to the bi-objective case. We first propose an approach which relies on
the weighted sum technique and on the use of a ranking algorithm. Then
this approach is integrated into a branching scheme. We also propose two
approximation versions of our hybrid strategy which provide an a priori
guarantee on the quality of the output. The proposed generic method is
instantiated on the Minimum Spanning Tree problem and computa-
tional experiments that show the practical efficiency of our method are
reported for several instance types.



80 Hybrid ranking and B&B algorithm for solving MOCO problems

Contents

4.1 A ranking strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.1 Computation of an initial set of points and a weight vector set . . . . 82
4.1.2 Association between weight vectors and search zones . . . . . . . . . 83
4.1.3 Exploitation of a ranking direction to explore a group of search zones 84
4.1.4 Organizing the whole search . . . . . . . . . . . . . . . . . . . . . . . 85

4.2 Integration of the ranking strategy in a branching tree . . . . . . . . . . . . 87
4.2.1 Branching scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2.2 Bounding procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.3 Stopping criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.4 Choice of a branching item . . . . . . . . . . . . . . . . . . . . . . . . 90

4.3 Computation of a reduced (1 + ε)-approximation . . . . . . . . . . . . . . . 91
4.3.1 Tolerance in the weighted sum test . . . . . . . . . . . . . . . . . . . 91
4.3.2 Case of ε-dominated points . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Instantiation on the Minimum Spanning Tree problem and implementa-
tion issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.1 Ranking spanning trees . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.4.2 Computation of an initial solution pool through neighborhood search 94
4.4.3 Preprocessing search nodes . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.4 Update of the search region . . . . . . . . . . . . . . . . . . . . . . . 96

Testing membership to the search region • Updating upper bound sets

4.5 Computational experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.5.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Instances

4.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
General statistics on instances • Comparison of strategies • Opportunity of neigh-

borhood search • Approximation in the ranking strategy



4.1 A ranking strategy 81

Introduction

As seen in Chapter 1, most approaches to the solution of MOCO problems are either based
on implicit enumeration or on the exploration of the search region by iteratively searching in
sets of zones. Several computational comparisons of MOBB and two-phase methods, which
are representatives of the two general approaches we mentioned, appeared in the literature.
To our knowledge, the most recent comparison not limited to the bi-objective case concerns
MOBB and ranking-based two-phase methods for the Knapsack problem and can be
found in Jorge (2010). According to the author, the MOBB approach is dominated by the
two-phase method for the Knapsack problem. It is well-known however, that ranking
approaches encounter difficulties with instances having many nondominated points that are
far from being supported.

Our aim is therefore to combine the two approaches into a single method. The founda-
tions of this method are the use of an underlying search tree, the evaluation of search nodes
using optimal solutions to weighted sums of the objectives, and the use of a ranking algo-
rithm in order to obtain more extensions from each search node. The proposed approach
is therefore a hybrid strategy which behaves at one end as a ranking approach and at the
other end as a branch and bound algorithm. Our method is instantiated and tested on the
MOST problem.

We assume in the presentation that the decision space of the underlying MOCO problem
is 2E, where E is a set of m items to be taken or not in a solution. The feasible set X is
therefore a subset of 2E.

We chose to first present a ranking strategy (Section 4.1), which is later integrated at
each search node of a branching tree (Section 4.2). In Section 4.3 we show how our method
can be adapted to generate an ε-approximation of the nondominated set. The instanti-
ation of the proposed method on the Minimum Spanning Tree problem is presented
in Section 4.4 as well as some important implementation details. Finally, computational
experiments which support our approach are discussed in Section 4.5.

4.1 A ranking strategy

Ranking algorithms have been used several times in MOO and particularly in phase two
of the two-phase method. In phase one of the two-phase method, the set Yextr of all ex-
treme nondominated points is computed and also weight vectors associated to the facets
of conv(Y )�. The ranking strategy we propose does not necessarily compute Yextr at the
beginning. We propose, especially for p ≥ 3, to compute a subset of Ysupp which is possibly
augmented by points obtained from a heuristic. Observe that these points do not need to
be supported nondominated points. Their role is to refine the initial search region



82 Hybrid ranking and B&B algorithm for solving MOCO problems

We present a general ranking strategy in Algorithm 4.11 whose main components are
detailed in the following subsections.

Algorithm 4.1: Ranking procedure
input : instance data, M – M is strictly dominated by any feasible point
output : N – the nondominated set

1 N ← ∅; U(N) ← {M} – Initialization of the output and the initial upper bound set
2 Λ ← computeWeightVectorSet() – Computation of a set of weight vectors
3 for λ ∈ Λ do
4 z∗λ ← arg min{λ · z : z ∈ Y }
5 updateSearchRegion(z∗λ, � N , � U(N))

6 Λ
� ← Λ

7 while Λ
� �= ∅ do

8 Select λ ∈ Λ
�; Λ

� ← Λ
�\{λ}

– Association of search zones from U(N) to a weight vector λ

9 Uλ ← associateSearchZones(U(N), Λ
�, λ)

10 while Uλ �= ∅ do
11 z ← computeNextPoint(λ)

12 updateSearchRegion(z, � N , � U(N))
13 if ubsTest(λ, z, Uλ) then
14 U(N) ← U(N) \ Uλ

15 Uλ ← ∅

4.1.1 Computation of an initial set of points and a weight vector

set

We presented in Section 1.2.2 several approaches to compute the set Yextr of all extreme
nondominated points of a MOCO problem, which also compute weight vectors associated to
the facets of conv(Y )�. In the bi-objective case, this is efficiently done using the algorithm
of Aneja and Nair (1979). We stressed that the general multi-objective case raises several
difficulties. Additionally, it is well-known that the number of facets of the convex hull of k

points of dimension p is O(k� p

2
�) (see e.g. Preparata and Shamos, 1985). Thus, for p ≥ 4,

the number of supporting hyperplanes of conv(Y )� could no longer be linear in the number
of extreme nondominated points.

An alternative approach is the a priori determination of a weight vector set. Borges
and Hansen (2002) propose to rely on a maximally dispersed set of weight vectors for

1In the presentation of the algorithms in pseudo-code, the modified arguments of procedures are marked
with the symbol �.



4.1 A ranking strategy 83

the Manhattan distance to generate a well-dispersed set of supported points for MOCO
problems. Such a set is defined as follows.

Definition 4.1 (Borges and Hansen (2002)). Let Λ
p be a compact subset of R

p. A set
Λ ⊂ Λ

p is maximally dispersed for the Manhattan distance d1(·, ·) w.r.t. Λ
p if for any

Λ
� ⊂ Λ

p such that |Λ�| > |Λ|,

min
λ,µ∈Λ�

λ�=µ

d1(λ, µ) ≤ min
λ,µ∈Λ

λ�=µ

d1(λ, µ)

where d1(λ, µ) =
�p

j=1 |λj − µj| for all λ, µ ∈ R
p.

A maximally dispersed set w.r.t. Λ
p = {λ ∈ R

p
� :

�p
j=1 λj = 1} can be easily generated

using the following result:

Proposition 4.2 (Borges and Hansen (2002)). For any positive integer q, the set

Λ =







λ ∈ R
p
� :

p
�

j=1

λj = 1, λj ∈ {1/q, 2/q, . . . , 1}, j = 1, . . . , p







is maximally dispersed w.r.t. {λ ∈ R
p
� :

�p
j=1 λj = 1} and |Λ| = Cq

p+q−1

We propose to use weight vectors obtained from the dichotomic scheme in the case
p = 2, due to the efficiency of the procedure, and maximally dispersed weights in the case
p ≥ 3. In both cases optimal points for the corresponding weight vectors are computed and
yield an update of the search region. This corresponds to Steps 2-5 in Algorithm 4.1. The
procedure updateSearchRegion(z, � N , � U(N)), the implementation of which is detailed
in Section 4.4.4, inserts a point z in N if it is not dominated (according to “�”) and updates
the upper bound set U(N).

Additionally, we consider the computation of feasible points to be inserted in the initial
set N just after Step 5 through a neighborhood search heuristic (see Section 4.4.2).

4.1.2 Association between weight vectors and search zones

In the exploration process of the search region, it is basically possible either (1) to iterate
over local upper bounds of U(N) or (2) to iterate over directions of Λ.

For (1), a local upper bound is selected at each iteration and a ranking direction is chosen
and exploited to explore the corresponding search zone. In this case a ranking direction has
to be considered several times.

Iterating over ranking directions (2) makes it possible to group local upper bounds
together. In this case a group of local upper bounds is associated to the current ranking
direction which is then exploited to explore all corresponding search zones. This is actually
the way chosen by Przybylski et al. (2010b) for their multi-objective two-phase method. As



84 Hybrid ranking and B&B algorithm for solving MOCO problems

we will see, this makes it necessary to compute one optimum for each ranking direction in
order to do the association. However, contrary to (1) we can define from the set of local
upper bounds associated to the current ranking direction an upper bound on the weighted
sum value of any point we want to rank along a given direction. Defining such a weighted
sum upper bound often makes it possible to prune the ranking tree, which is especially the
case for the Minimum Spanning Tree problem.

Therefore, we choose to follow (2), i.e. to group search zones together.
It remains to define a criterion for the association between ranking directions and search

zones. In the multi-objective two-phase method of Przybylski et al. (2010b), a local upper
bound u is associated to the ranking direction λ such that the Euclidean distance between
u and the hyperplane h passing through z∗λ = arg min{λ · z : z ∈ Y } whose normal is λ,
namely

d∗
E(λ, u) =

λ · z∗λ − λ · u
�

�p
j=1 λ2

j

is minimal. We also consider a simpler criterion, namely the minimization of the normalized
difference

d∗
D(λ, u) =

λ · z∗λ − λ · u
�p

j=1 λj

.

Preliminary experiments, which we do not report here, showed that these criteria behave
similarly in the whole method. Therefore, we choose to rely in the remainder on the minimal
normalized difference criterion.

The function associateSearchZones(U(N), Λ
�, λ) associates to the ranking direction

λ ∈ Λ
� a subset of U(N) according to one of the criteria described above, where Λ

� is a
set of ranking directions that have not been used for ranking points. If we consider the
minimal normalized difference as association criterion, associateSearchZones(U(N), Λ

�,

λ) returns
�

u ∈ U(N) : arg min
λ�∈Λ�

d∗
D(λ�, u) = λ

�

.

Note that the association function assumes that weighted sum optima are known for
each λ ∈ Λ. That is why they are computed at Step 4 of Algorithm 4.1.

4.1.3 Exploitation of a ranking direction to explore a group of

search zones

Following the discussion in the above section, we assume that a ranking direction λ has
been associated to a subset Sλ of search zones defined by a set Uλ of local upper bounds
(i.e. Sλ =

�

u∈Uλ
C(u)).

Points are ranked along a ranking direction λ by calling computeNextPoint(λ), which
returns a point whose weighted sum value according to λ is optimal if we exclude the optimal
point computed at Step 4 and the points obtained from earlier calls to this procedure. The



4.1 A ranking strategy 85

function ubsTest(λ, z, Uλ) compares the weighted sum value of a point z w.r.t. λ to the
value of the local upper bounds of Uλ. It returns true if

max
u∈Uλ

λ · u ≤ λ · z (4.1)

in the general case (Y ⊂ R
p) and

max
u∈Uλ

λ · (u − 1) < λ · z. (4.2)

in the case Y ⊂ Z
p. According respectively to Rule “R” and Rule “Z” from Section 3.1.5,

if the test is satisfied, then z as well as all points of Y whose weighted sum value according
to λ is greater than or equal to λ · z lie outside the partial search region Sλ. Practically, the
left-hand side of (4.1) or (4.2) is computed only when Uλ is created or updated.

Now we consider the consequences induced by the discovery of a point z obtained while
ranking along λ. We assume that we are within the general case of Rule “R”, and we denote
by α the left-hand side in (4.1). We discuss four situations with respect to z, which are also
illustrated in Figure 4.1.

(a) z belongs to a search zone of Sλ. Then Uλ is updated and α may be lowered.

(b) z belongs to a search zone of S(N) \ Sλ. Although it has no consequence on Sλ itself,
U(N) should nevertheless be updated, which reduces the future effort to explore the
remaining zones.

(c) z does not belong to any search zone of S(N). Then z is dominated or already known
and can be discarded.

(d) z is also dominated but its weighted sum value according to λ is greater than or equal
to α. This guarantees that all feasible points of Sλ have been generated. In this case,
the search zones of Sλ can be safely removed from S(N).

These operations are performed at each iteration of the while loop (Step 7).

4.1.4 Organizing the whole search

The exploration of the whole search region is done considering ranking directions one by
one, together with the associated search zones. It remains to define how the current weight
vector is chosen at Step 8. This can be done according to the criterion that associates them
to search zones. Przybylski et al. (2010b) propose to select, among the remaining ranking
directions (i.e. of Λ

�), the direction λ that minimizes the maximal value of the association
criterion of associateSearchZones among the local upper bounds Uλ associated to λ. This
corresponds to the idea of prioritizing the groups of search zones that are likely to be quickly
explored.



86 Hybrid ranking and B&B algorithm for solving MOCO problems

α

c2

c1

(a) Update of Uλ and α

α

c2

c1

(b) Update of U(N)\Uλ

α

c2

c1

(c) No effect

α

c2

c1

(d) Exploration of Uλ complete

Level curve of the weighted sum objective according to λ

Points in N
Points in Uλ

Points in U(N) \ Uλ

A ranked point z according to the ranking direction λ

Figure 4.1: Consequences linked to the computation of a new extension of a search node



4.2 Integration of the ranking strategy in a branching tree 87

This depends on the association criterion that was retained in associateSearchZones

(Przybylski et al. (2010b) again considered the Euclidean distance) and assumes that the
association operation is performed for each λ ∈ Λ

� at each loop of Step 7. Moreover, since
the ranked points induce updates of U(N), the order on the set of all ranking directions
cannot be determined at the beginning of the procedure. Namely, in the case of the minimal
normalized difference criterion, the current weight vector is selected as a solution to

min
λ∈Λ�

max
u∈Uλ

d∗
D(λ, u)

where {Uλ}λ∈Λ� is a partition of U(N) according to associateSearchZones, i.e. Uλ = {u ∈

U(N) : arg minλ�∈Λ� d∗
D(λ�, u) = λ}, for all λ ∈ Λ.

4.2 Integration of the ranking strategy in a branching

tree

We presented in the previous section a ranking strategy to generate the nondominated set.
This ranking strategy is integrated into the bounding procedure of a branch and bound
algorithm, therefore it operates on a search node rather than on the whole instance.

The hybrid strategy is based on two procedures: the branching procedure, which is the
main procedure (Algorithm 4.2 – Section 4.2.1) and the bounding procedure exploreBB

(Algorithm 4.3 – Section 4.2.2). Two functions which characterize the hybrid approach
are added, namely stoppingCriterion (Section 4.2.3) and chooseBranchingItem (Sec-
tion 4.2.4).

4.2.1 Branching scheme

In Algorithm 4.2, a search node s is defined by a set of included or mandatory items and
a set of excluded or forbidden items respectively denoted by in(s) and out(s), as well as a
proper search region represented by an upper bound set U(s). All this information is kept
together with s and is hence passed to subroutines that operate on s.

We consider in the description of the approach as well as in our implementation a
binary branching scheme, which is defined by the choice of a branching item which is made
mandatory in one child and forbidden in the other child.

The role of the procedure exploreSearchNode is to perform some computations on a
search node s before a possible branching in order to determine if this node s can be pruned.



88 Hybrid ranking and B&B algorithm for solving MOCO problems

Algorithm 4.2: Main hybrid procedure
input : instance data, M – M is strictly dominated by any feasible point
output : N – the nondominated set

1 Λ ← computeWeightVectorSet() – Computation of a set of weight vectors
2 N ← ∅ – Initialization of the output

– Initialization of the root node r and the search list O
3 in(r) ← ∅; out(r) ← ∅; U(r) ← {M}
4 O ← {r} – List of open nodes

– Main search loop
5 while O �= ∅ do
6 Select s ∈ O ; O ← O \ {s} – Choice of a search node to explore
7 dominated ← exploreSearchNode(� s, � N , Λ)

8 if not dominated then
9 Select a branching item e

– Generate children of s
10 in(se) ← in(s) ∪ {e}; out(se) ← out(s); U(se) ← U(s)
11 in(sē) ← in(s); out(sē) ← out(s) ∪ {e}; U(sē) ← U(s)
12 O ← O ∪ {se, sē}

13 return N

4.2.2 Bounding procedure

The bounding procedure, exploreSearchNode, is described in Algorithm 4.4. It is based
on Algorithm 4.1 but it first requires some modifications due to the fact that it is applied
on a search node s.

First, we replace Steps 3-5 in Algorithm 4.1, which compute weighted sum optima for
all weight vectors of Λ, by a dedicated procedure, Algorithm 4.3. This procedure avoids
the computation of all weighted sum optima w.r.t. Λ if a subset of Λ is sufficient to prove
that Y (s) ∩ S(N) = ∅. In this case we get U(s) = ∅, therefore Algorithm 4.4 stops and
the search node s is pruned. Otherwise, all weighted sum optima are computed and the
remaining local upper bounds are associated to the weight vectors of Λ as in Algorithm 4.1.

The search zones associated to local upper bounds that are removed from U(s) at Step 8
of Algorithm 4.3 and at Step 11 of Algorithm 4.4 are guaranteed to contain no point of
Y (s). This will also be the case for any descendant of s, which justifies that only the local
upper bound in U(s) left active by exploreSearchNode need to be passed to its children
nodes. This is actually what is done in the main procedure (Algorithm 4.2).

If at the end of Algorithm 4.4 we have U(s) �= ∅, we propose to use the association
criterion again in order to (1) define an order on the weight vectors of Λ to be used in
Algorithm 4.3 for the children nodes of s and (2) define an order on the list O of open
search nodes in Algorithm 4.2.



4.2 Integration of the ranking strategy in a branching tree 89

Algorithm 4.3: Procedure firstStage

in/out : s, N – search node, current set of points
input : Λ – set of weight vectors

1 O ← U(s) – List of search zones to explore
2 while O �= ∅ do
3 Select a local upper bound u ∈ O ; O ← O \ {u}
4 for λ ∈ Λ do
5 Let z∗λ(s) = arg min{λ · z : z ∈ Y (s)}
6 updateSearchRegion(z∗λ(s), � N , � U(s))
7 if ubsTest(λ, z∗λ(s), {u}) then

– Remove u from U(s) since its associated search zone
– does not intersect Y (s)

8 U(s) ← U(s) \ {u}
9 break – Skip to the next element of O

Algorithm 4.4: Procedure exploreSearchNode

in/out : s, N – search node, current set of points
input : Λ – set of weight vectors

– Bounding part based on weighted sum optima
1 firstStage(� s, � N , Λ)

2 Λ
� ← Λ

3 while U(s) �= ∅ and Λ
� �= ∅ do

4 Select λ ∈ Λ
�; Λ

� ← Λ
�\{λ}

– Association of search zones from U(s) to a weight vector λ

5 Uλ ← associateSearchZones(s, U(s), Λ
�, λ)

6 if Uλ �= ∅ then
– Perform the computation of ranked points

7 while Uλ �= ∅ and not stoppingCriterion(s, λ) do
8 z ← computeNextPoint(� s, λ)

9 updateSearchRegion(z, � N , � U(s))
10 if ubsTest(λ, z, Uλ) then
11 U(s) ← U(s) \ Uλ

12 Uλ ← ∅

13 if U(s) �= ∅ then
– The exploration was interrupted due to stoppingCriterion.

14 br(s) ← chooseBranchingItem()

15 return false

16 return true



90 Hybrid ranking and B&B algorithm for solving MOCO problems

To this end we partition U(s) according to Λ into {Uλ(s)}λ∈Λ with Uλ(s) = {u ∈ U(s) :
arg minλ�∈Λ� dk

D(s, λ
�, u) = λ}, for all λ ∈ Λ where k indicates that the association criterion

is computed with respect to the last ranked point of Y (s) along λ. For (1), the weight
vectors of Λ are sorted in increasing order of maxu∈Uλ(s) dk

D(s, λ, u). For (2), the search
nodes are sorted in increasing order of maxλ∈Λ maxu∈Uλ(s) dk

D(s, λ, u), giving higher priority
to the search nodes that are expected to be quickly completely explored.

4.2.3 Stopping criterion

The exploitation of a ranking direction may be at some point inefficient, in the sense that
it yields only points that lie outside the search region. The function stoppingCriterion

aims at stopping the exploitation of a ranking direction (in which case it returns true)
according to the information gathered on the current search node.

We propose to exploit a ranking direction as soon as a maximal number of successively
computed points that lie outside the search region is not reached. If the stopping criterion
is met, then the exploration continues with the next ranking direction.

Several values for this criterion are considered in the computational experiments.

4.2.4 Choice of a branching item

The role of procedure chooseBranchingItem is to optimize the result of the branching
step. If Algorithm 4.4 fails to explore a search node s, i.e. to prove that Y (s) ∩ S(N) = ∅,
we would like to share the difficulties encountered by the ranking algorithm between the
children nodes of s. To this end, we propose to exploit the information computed through
the application of the ranking algorithm. In particular, we are interested in the weight
vector such that the associated instance of the ranking algorithm is the farthest from its
goal to explore its associated search zones.

Consider the above partition of U(s) into subsets Uλ(s), λ ∈ Λ, according to dk
D(s, λ, u)

and a weight vector λbr which maximizes maxu∈Uλ(s) dk
D(s, λ, u). Then, as a heuristic to

balance the computational effort to explore the children of s, we choose a branching item
in E \ (in(s) ∪ out(s)) that best splits the solutions that were ranked along λbr. Namely,
let R be the set of solutions of X(s) that were ranked along λbr. We choose as branching
item any e ∈ E such that the number of solutions of R that take e best fits half of the total
number of solutions of R.

Note that in the extreme case of a branch and bound strategy without ranking the
above criterion to select a branching edge is meaningless. In this case, we propose instead
to branch first on items whose outcomes are the most unbalanced. To this end, we evaluate
each item e ∈ E according to

max
j1,j2∈{1,...,p}

cj1
(e) − cj2

(e)



4.3 Computation of a reduced (1 + ε)-approximation 91

and then we select the item of E \ (in(s) ∪ out(s)) which maximizes this quantity.

4.3 Computation of a reduced (1 + ε)-approximation

The method we propose can be easily adapted to generate a reduced (1 + ε)-approximation
Xε or, equivalently, a reduced approximate nondominated set Yε. As in the “exact” version,
we will avoid referring to the decision space when unnecessary.

A tolerance ε > 0 may be introduced in the weighted sum test in ubsTest (Section 4.3.1)
and also in the update of the current set of points N and of the search region done by
updateSearchRegion (Section 4.3.2). We will consider without loss of generality the root
search region S(N).

4.3.1 Tolerance in the weighted sum test

The weighted sum tests in Section 4.1.3 and Section 4.2.2 rely on Rule “R” or Rule “Z”,
depending on the hypothesis on the objective space, which were presented in Section 3.1.5.
The tolerance can be simply introduced in the test by substituting any point z by (1 + ε)z.

The introduction of the tolerance ε can also be interpreted as shifting the local upper
bounds that define the region by a factor of 1

1+ε
(we call this ε-shift of the search region for

short). A simple situation is illustrated in Figure 4.2a.
Therefore it is not hard to see how ubsTest can be adapted. For example, the test

(4.1) to determine if a set of search zones associated to an upper bound set Uλ contains non
dominated point is modified as follows:

max
u∈Uλ

λ · u < λ · (1 + ε)z

4.3.2 Case of ε-dominated points

Since we are generating reduced sets, dominated points will not be kept. Among points
that are currently non dominated, i.e. which lie in the current search region, some may be
ε-dominated, such as the point z3 in Figure 4.2b which is ε-dominated by z2 (we assume
that z1, z2 ∈ N).

ε-dominated points may be discarded since there will be some points in the output that
cover them (A). But it is also possible to include them in N and update the search region
accordingly (B). The main advantage in strategy (B) is that some search zones will be
refined and weighted sum upper bounds computed from local upper bounds may decrease.
This is illustrated in Figure 4.2c where the search region is updated with z3, which yields
two new local upper bounds, u2 and u3. The weighted sum upper bound formerly computed
from u1 decreases.



92 Hybrid ranking and B&B algorithm for solving MOCO problems

z1

z2

u1

c2

c1

(a) ε-shifted search region and level curve
λ · z = λ · u

1+ε
(in bold)

z1

z2

z3

u1

c2

c1

(b) ε-dominated point z3 is discarded.

z1

z2

z3

u2

u3

c2

c1

(c) ε-dominated point z3 is included in N
and in the search region.

z1

z2

u2

u3

c2

c1

(d) ε-dominated point z3 is not inserted in
N but the search region is updated accord-
ing to z3. Potentially missed points lie in
the black triangle.

Figure 4.2: Example situations for the approximation version (log scales). Dashed lines
indicate the boundary of the ε-shifted search region.



4.4 Instantiation on the Minimum Spanning Tree problem and implementation
issues 93

Note that if the search region is updated with ε-dominated points, then they must be
included in N as well. Otherwise, some points may be eventually non covered. Figure 4.2d
shows a black triangle which may contain uncovered points if the search region is updated
according to z3 but z3 is not included in N .

So in strategy (A), the dominance relation in Step 3 of updateSearchRegion is replaced
by the ε-dominance relation �ε. In strategy (B), updateSearchRegion is not modified. It
can be expected that strategy (A) generates fewer points than strategy (B) but the latter
may be more time efficient than the former, due to the increased opportunities to reduce
weighted sum upper bounds. This will be investigated in our experiments.

4.4 Instantiation on the Minimum Spanning Tree

problem and implementation issues

The first three subsections (Section 4.4.1, Section 4.4.2, and Section 4.4.3) concern the
instantiation of the proposed approach on the MOST problem. The last subsection (Sec-
tion 4.4.4) deals with the implementation of the procedure updateSearchRegion.

4.4.1 Ranking spanning trees

In order to obtain solutions to the single-objective Minimum Spanning Tree problem in
non decreasing order, we implemented the algorithm of Katoh et al. (1981) presented in
Section 2.5.

For the initialization of the algorithm, we propose to use the procedure based on
Kruskal’s algorithm to compute a minimum spanning tree and a spanning tree verification
algorithm to generate the associated edge exchanges (see Section 2.5.2). This procedure
seems more appealing than the procedure based on Prim’s algorithm. Its time complexity
reduces to O(mα(m, n), where α(m, n) is the inverse Ackermann function (see e.g. Tarjan
(1983)) – a very slowly growing function) if the edges are presorted. Moreover, it distin-
guishes the computation of a minimum weight spanning tree and the computation of the
associated edge exchanges, which makes it possible to do the latter only at the required
time.

Use of an upper bound From the description of the procedure, we see that if no span-
ning tree of cost more than a specified α is needed, we can easily reduce the computational
effort and the required space. For any enumerated spanning tree t, we discard t-exchanges
(e, f) such that w(t) + w(e, f) > α.



94 Hybrid ranking and B&B algorithm for solving MOCO problems

4.4.2 Computation of an initial solution pool through neighbor-

hood search

We stressed that non supported points may be introduced at the initialization of the ranking
or hybrid approaches in order to refine the initial search region. Such points can be obtained
using a neighborhood or local search heuristic. Neighborhood search in the case of the
Minimum Spanning Tree problem often yields a reduced efficient set. For this reason, it
was used in several works (see e.g. Andersen et al., 1996 and Sourd and Spanjaard, 2008).
We propose an efficient implementation of neighborhood search for the MOST problem,
which we describe in Algorithm 4.5.

First, the computation of all cycles required by Step 4 can be done in O(mα(m, n))
time using the least common ancestors algorithm of Tarjan (1979) (see also Cormen et al.,
2009). It could also be done in linear time using the algorithm of Gabow and Tarjan (1985),
however we believe that it would not be significant on the practical efficiency.

Second, at Step 9, we apply the move-to-front heuristic of Bentley et al. (1993) to lists
P and O. This heuristic concerns linear lists of solutions or points. If an element of such a
list dominates a candidate element to be inserted, then, while the latter is not inserted, the
former is moved to the front of the list. The moved element, which is expected to dominated
some future candidates, will then be quickly accessed. We refer to Bentley et al. (1993) for
the theoretical foundations of this procedure.

It is required that Algorithm 4.5 starts from at least one efficient spanning tree in P .
It can be for example any supported spanning tree. Although the adjacency subgraph of
efficient spanning trees is not connected in general (Ehrgott and Klamroth, 1997), the ad-
jacency subgraph of supported spanning trees is (see e.g. Andersen et al., 1996 or Okamoto
and Uno, 2011). So the neighborhood search algorithm described above will return all sup-
ported spanning trees, provided it is initialized with at least one supported spanning tree.
The expected benefit of initializing Algorithm 4.5 with many or even all supported points is
that dominated neighbors will be discarded earlier. Our computational experiments, how-
ever, showed that it is not always relevant in practice, and the largest time save we observed
on the procedure was about 25%.

4.4.3 Preprocessing search nodes

We presented in Section 2.3.1 preprocessing rules proposed by Sourd and Spanjaard (2008)
that extend the well known coloring rules for the Minimum Spanning Tree problem.
These rules can be applied for the whole instance, i.e. at the root of the search tree, but it
is also possible to apply the preprocessing rules at each search node.

We considered a binary branching scheme that partitions a search node s into two
subnodes according to a branching edge e, namely se for which e is made mandatory and sē

for which e is made forbidden. Edge e can be equivalently viewed as a blue edge in se and as



4.4 Instantiation on the Minimum Spanning Tree problem and implementation
issues 95

Algorithm 4.5: Implementation of a neighborhood search procedure for the MOST
problem

input : G = (V, E), c, P – Graph, vector criterion function, initial list of spanning
trees

output : P

1 O ← P – List of spanning trees to visit
2 while O �= ∅ do
3 Select t ∈ O ; O ← O \ {t} – Take the head of O
4 for f ∈ E \ t, e ∈ Cycle(t, f) do
5 t� ← t ∪ f \ e
6 dominated ← false
7 for t�� ∈ P do
8 if c(t��) � c(t�) then
9 Move t�� to the front of P and O (if applicable)

10 dominated ← true
11 break

12 else if c(t�) ≤ c(t��) then
13 P ← P \ {t��}
14 O ← O \ {t��} (if applicable)

15 if not dominated then
16 Insert t� in P and O

17 return P



96 Hybrid ranking and B&B algorithm for solving MOCO problems

a red edge in sē, which is an arbitrary coloring stemming from the branching scheme. Now,
coloring e blue will not make it possible to color additional edges in blue but it may enable
to color more red edges, since it will reduce the set of uncolored edges in a fundamental
cycle (containing no red edge) that must dominate a candidate red edge. In the same way,
only the blue rule may apply after coloring e red.

We summarize this in the following proposition.

Proposition 4.3. Consider two subnodes se and sē of s that respectively make edge e

mandatory and forbidden. Then, if s was preprocessed through the blue and red preprocessing

rules, only the red rule may apply to se and only the blue rule may apply to sē.

4.4.4 Update of the search region

The role of procedure updateSearchRegion, described in Algorithm 4.6, is twofold:

1. determine if a candidate point z lies in the search region defined by an upper bound
set U(N),

2. if the answer to the first point is “yes”, perform the update of N and U(N).

Algorithm 4.6: Procedure updateSearchRegion

input : z – candidate point
in/out : N , U(N) – set of points, set of local upper bounds

1 updated ← true
2 for z� ∈ N do
3 if z� � z then
4 Move z� to the front of N
5 updated ← false
6 break

7 else if z ≤ z� then
8 N ← N \ {z�}

9 if updated then
10 Update U(N) with respect to z

11 return updated

Testing membership to the search region

The first point can be achieved either (a) by comparing the candidate z to the points of N

or (b) by comparing it to the local upper bounds of U(N). Depending on z, there are two
situations:



4.5 Computational experiments 97

• If z is not in the search region, this will be proved using (a) by finding a point of N

which dominates z and no update of the search region is required. Using (b) would
require either to scan all local upper bounds of U(N), or to use some specialized data
structure, both to obtain that z �< u for all u ∈ U(N). From Section 3.4.1, U(N) can
be far larger than N , especially for p ≥ 4.

• If z is in the search region, this can be proved using (a), which requires to scan all
points of N , or using (b), which requires to find a local upper bound u such that
z < u. However, the update of the search region (point 2) requires that all local
upper bounds satisfying z < u be found.

So the privileged method among (a)-(b) to achieve point 1 depends on whether candidate
points are likely to lie in the search region or not. Due to the fact that the points are obtained
using a ranking procedure, which generates many equivalent or dominated points, we retain
method (a). We use again the move-to-front heuristic of Bentley et al. (1993) presented in
Section 4.4.2 to perform insertions in the set N , implemented as a linear list.

Updating upper bound sets

Chapter 3 provides several algorithms to update an upper bound set. Here we cannot assume
that the points of Y are in “general position” (in the sense that on any objective function,
no two points of Y share the same component value) especially because they correspond
to sums of objective values. Therefore, we should use Algorithm 3.3 or Algorithm 3.5.
According to our computational experiments in Section 3.4.3, Algorithm 3.3 should be
preferred for p ≤ 4 while Algorithm 3.5 is more efficient for p ≥ 5.

Special care should be taken due to the fact that several upper bound sets exist at the
same time. Namely, a local upper bound which is updated in U(N) should also be updated
in all other upper bound sets. To this end, u is stored only once and keeps pointers to the
upper bound sets that contain u.

4.5 Computational experiments

We implemented the proposed approach in C and ran it on several instances on a workstation
equipped with an Intel Core i7-3840QM CPU at 2.80GHz with 8MB cache and 32GB RAM.
We first describe the instance types, then we detail the algorithm parameters and computed
results, and finally we present the experiments and their results. Our approach is compared
in the bi-objective case to the approach of Sourd and Spanjaard (2008).



98 Hybrid ranking and B&B algorithm for solving MOCO problems

4.5.1 Experimental setup

Instances

Our test instances are defined through the following parameters:

• the graph type t: we consider cliques (c), connected graphs whose edges are created
with fixed probability π (dπ), square grids (g), and cliques with an additional gadget
which makes it possible to duplicate the Pareto front (m);

• the type of random generation of the edge objective values r: we consider uniform
edge costs (u) and conflicting edge costs (c);

• the number of vertices n;

• the number of objective functions p;

• the objective range K.

For convenience, test instances will be denoted by a string t/r/n/p/K where t ∈

{c, g, m, dπ}, r ∈ {u, c} and n, p, K are positive integers. Now we detail the graph and
objective values generators.

Graph types Cliques correspond to complete graphs. Grids have a2 = n vertices ar-
ranged as a a × a grid where horizontally and vertically neighboring vertices are joined
together.

Multiple Pareto front graphs are cliques with an additional gadget consisting of edges
(n, n + 1), (n, n + 2), . . . , (n, n + p) with respective criterion vectors

(M, 0, . . . , 0), (0, M, 0, . . . , 0), . . . , (0, . . . , 0, M)

and edges (n+1, n+2), . . . , (n+p−1, n+p) all of null cost. Since all null cost edges will be
included in any efficient solution, only one of the first p gadget edges will be included. The
parameter M is chosen as a sufficiently large integer such that the nondominated points
of the sub-instances respectively including the edges of cost (M, 0, . . . , 0), . . . , (0, . . . , 0, M)
are also nondominated points of the whole instance. This device was proposed by Knowles
and Corne (2001) and used in Sourd and Spanjaard (2008).

Random objective values types Uniform objective values are randomly chosen in
{0, . . . , K} in a uniform way.

Conflicting objective values are used to design instances whose edges (1) are unlikely
to dominate each other and (2) whose outcomes are highly conflicting. We describe a way
to obtain such instances in the bi-objective case. For a each edge e and for c1(e) we select



4.5 Computational experiments 99

n

n + 1

n + 2

n + p

(M
, 0,

. . .
, 0)

(0, M, 0, . . . , 0)

(0, . . . , 0,M)

(0, . . . , 0)

(0, . . . , 0)

Figure 4.3: An instance gadget

with probability 1/2 an interval I1 corresponding to the first half or to the second half of
{0, . . . , K} and we define I2 as the other half of 1/2. Then the idea is to draw cj(e) in the
interval Ij, for j = 1, 2. To satisfy both (1) and (2) we propose to draw in Ij according to an
approximately Gaussian distribution centered at the middle of Ij. Since we want cj(e) ∈ Ij,
we choose a Binomial distribution with probability 1/2 and 100 trials. Figure 4.4 shows the
density of such a distribution for c1(e).

Parameters combinations We consider the following parameter combinations:
c/u/n/p/K, c/c/n/p/K, m/u/n/p/K, dπ/u/p/n/K, and g/u/n/p/K. We represent
in Figure 4.5 density plots of the set Y of all feasible points for some representative
instances from these parameter combinations. Two aspects are important to observe on
these plots: the shape of the Pareto front, and in particular the location of non supported
nondominated points and the density of Y around the Pareto front. Indeed these two
aspects play an important role in the behaviour of the search strategies we test below.

4.5.2 Results

We summarize and comment below our experimental results.

• All experiments where performed on 10 random instances of each type.

• Unless specified, the values are the averages of the values obtained on a set of identical
types of instances.

• All times are CPU times measured in seconds.

• The memory consumption is measured in MB.



100 Hybrid ranking and B&B algorithm for solving MOCO problems

0 20 40 60 80 100

0.
00

0
0.

01
0

0.
02

0
0.

03
0

N = 1000 Bandwidth = 5.659

D
en

si
ty

Figure 4.4: Density of the distribution of c1 for conflicting instances

General statistics on instances

We provide in Table 4.1 the list of our test instances with the number of nondominated
points and the proportion of extreme nondominated points. We show how many edges can
be colored after the application of the preprocessing rules presented in Section 2.3.1. on
the whole instance. The column “Chosen Λ” indicates the method chosen in the remainder
for obtaining a set of weight vectors. “D” refers to the bi-objective dichotomic scheme
and numbers refer to the choice of the parameter q in the determination of a maximally
dispersed set. This number was chosen according to preliminary experiments.

Comparison of strategies

Tables 4.2 and 4.3 provide respectively computation times and memory consumptions of
four strategies. All these strategies rely on the minimal normalized difference association
criterion. Strategy S1 is ranking only, strategy S4 is branch and bound only, and strategies
S2 and S3 are hybrid strategies for which the values of the stopping criterion are respectively
1000 and 100. For S1, the set of points N is fed with neighborhood search after the
computation of weighted sum optima at the root node. The symbol “—” indicates instances
that could not be solved using the corresponding strategy, either because the computation
time was too long (> 1 hour) or because the available memory was exceeded.

The following observations and analysis can be made on these results.

• The ranking strategy S1 is time-efficient on most instances, except:



4.5 Computational experiments 101

c1

c
2

100 200 300 400 500 600

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

(a) c/u/7/2/100

c1

c
2

200 300 400 500

1
5
0

2
5
0

3
5
0

4
5
0

(b) c/c/7/2/100

c1

c
2

0 200 400 600 800

1
0
0

3
0
0

5
0
0

7
0
0

(c) m/u/7/2/100

c1

c
2

600 700 800 900 1000

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

(d) d0.1/u/20/2/100

c1

c
2

500 600 700 800 900

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

(e) g/u/16/2/100

Figure 4.5: Density plots of some representative instances



102 Hybrid ranking and B&B algorithm for solving MOCO problems

Ynd Yextr/Ynd (%)

t r p n K red blue min mean max min mean max Chosen Λ

c u 2 100 100 4511.0 2.2 996 1164 1277 15.2 16.7 18.4 D
1000 4492.0 1.1 3800 4933 6124 4.8 5.4 6.4 D

200 100 19011.3 4.0 1610 1712 1801 15.2 16.5 17.2 D
1000 18816.8 1.4 11253 12568 14042 4.5 4.9 5.3 D

400 100 78132.7 7.9 2330 2460 2602 10.6 11.3 12.1 D
1000 77387.0 1.9 23330 24476 26343 5.2 5.4 5.7 D

3 15 10 51.4 0.5 446 711 1226 19.2 26.6 32.7 10
100 40.0 0.0 1797 2844 4805 6.6 10.0 12.9 10
1000 38.9 0.3 1666 3555 5844 5.8 8.1 12.7 10

20 10 104.7 0.9 927 1441 2124 18.1 23.2 28.8 20
100 84.3 0.0 8349 11195 20442 3.7 5.4 6.7 20
1000 80.4 0.0 8026 15009 23621 3.2 4.4 6.2 20

4 10 100 7.4 0.0 865 3047 7822 9.8 18.6 25.7 10
12 100 8.8 0.0 5694 17195 40871 4.6 8.1 13.0 20

c 2 10 100 16.2 0.0 68 143 181 8.6 11.1 19.1 D
12 100 27.1 0.0 185 246 322 5.9 7.6 9.7 D

m u 3 15 100 36.5 2.1 6486 9430 14913 2.5 3.5 4.4 20

d0.1 u 2 200 100 1356.8 16.5 3219 3768 4099 6.8 7.3 8.2 D

3 30 100 2.4 7.3 352 1531 6764 5.3 15.0 23.4 20

g u 2 100 100 28.4 42.0 406 522 682 8.9 10.5 12.1 D
225 100 64.6 84.7 1617 2019 2418 5.1 6.3 7.5 D
400 100 121.9 152.6 3719 4346 5694 4.1 5.1 5.8 D

Table 4.1: General information on the test instances



4.5 Computational experiments 103

t r p n K S1: Ranking S2: Hybrid 1000 S3: Hybrid 100 S4: BB w. NS SouSpa08

c u 2 100 100 0.272 0.270 2.459 41.952 6.508
1000 1.625 1.593 70.146 1258.932 129.549

200 100 5.622 — — 62.138 22.148
1000 10.432 — — — —

400 100 — — — 13.562 154.559
1000 56.463 — — — —

3 15 10 0.093 0.098 0.558 0.889 —
100 0.575 2.532 5.554 10.529 —
1000 0.883 4.542 8.517 15.734 —

20 10 0.363 0.777 2.433 6.325 —
100 5.759 45.503 118.944 253.876 —
1000 11.087 96.913 229.357 419.488 —

4 10 100 16.768 215.934 187.441 30.493 —
12 100 280.399 — — 2787.256 —

c 2 10 100 41.018 31.958 18.882 4.920 2.397
12 100 155.810 876.783 642.591 199.365 81.761

m u 3 15 100 — 13.439 23.983 121.163 —

d0.1 u 2 200 100 1.697 2.900 56.447 1041.414 —

3 30 100 0.493 — — — —

g u 2 100 100 0.071 0.071 0.237 4.670 1.181
225 100 0.756 0.693 8.323 193.449 38.247
400 100 3.878 5.949 87.230 1793.476 312.616

Table 4.2: Overview of strategy results
Average computation times (s)



104 Hybrid ranking and B&B algorithm for solving MOCO problems

t r p n K S1: Ranking S2: Hybrid 1000 S3: Hybrid 100 S4: BB w. NS

c u 2 100 100 17.9 17.9 11.5 5.8
1000 31.7 31.7 28.4 16.9

200 100 2160.3 — — 15.0
1000 189.2 — — —

400 100 — — — 36.0
1000 472.5 — — —

3 15 10 12.6 9.1 3.5 1.7
100 43.8 30.0 11.1 5.7
1000 43.3 33.6 12.4 7.9

20 10 77.0 21.8 5.8 3.7
100 79.7 75.8 33.3 30.0
1000 140.1 101.1 45.3 47.2

4 10 100 742.1 19.5 12.7 24.6
12 100 898.5 — — 555.2

c 2 10 100 1811.0 13.9 2.1 1.2
12 100 9935.2 21.2 2.7 3.7

m u 3 15 100 — 216.9 31.1 25.4

d0.1 u 2 200 100 59.3 85.1 42.3 18.2

3 30 100 13.4 — — —

g u 2 100 100 6.1 5.8 5.2 2.5
225 100 28.1 24.4 25.5 10.3
400 100 113.4 115.9 80.0 30.6

Table 4.3: Overview of strategy results
Average memory consumption (MB)



4.5 Computational experiments 105

– on instances where the set of feasible points is dense around the Pareto front
due to a low objective range compared to the solution sizes (low K/n), e.g.
c/u/2/400/100,

– on certain highly conflicting instances such as c/c/10/2/100 or m/r/15/3/100,
which contain nondominated points which are far away from the boundary of
the convex hull of the feasible points (bd(convY )).

The strategy S1 however is the most memory-consuming. This comes from the re-
quirement to keep nearly all ranked solutions for one ranking direction.

• The branch and bound strategy S4 is particularly sensitive to n and K: instances
for which the product nK is high are hard to solve using this strategy. This includes
instances for which the number of nondominated points is high but also instances made
of sparse graphs (e.g. t = g and t = d0.1) which contain nondominated points far
away from bd(conv(Y )). These instances, however, differ from multiple Pareto front
instances in the sense that they cannot be quickly partitioned into easy subinstances.

The chosen order for search nodes makes this strategy cheaper on memory than the
ranking strategy.

• The time performance of the hybrid strategies S2 and S3 lies generally between S1 and
S4, except for multiple Pareto front instances and to a lesser extent for certain grid
instances. For multiple Pareto front instances, hybrid strategies make good choices
on the branching edges in the sense that the resulting subinstances are easier for the
ranking strategy.

Thanks to the stopping criterion, these hybrid strategies are often more efficient than
the ranking strategy on memory consumption. For memory consumption again, we
even see that the strategy S3 is the most efficient on a few instances (c/u/20/3/1000
and c/c/12/2/100). The memory requirement of a hybrid strategy (including ranking
only and BB only) increases in the maximal size of the search tree and in the size
of the largest ranking tree. Therefore strategy S3 actually achieves a compromise
between the two which is better than other tested strategies on these instances.

Table 4.2 additionally shows computation times for the branch and bound algorithm
of Sourd and Spanjaard (2008) on the bi-objective instances that could be solved. Their
approach is more efficient than the branch and bound strategy S4 since it computes a weight
vector set at each search node s based on conv(Y )� and it maintains all the edge orderings
induced by all possible weighted sum objectives (see Section 2.4.2). These two features are,
to some extent, specific to the bi-objective case. The poorer performance of the approach of
Sourd and Spanjaard on c/u/400/2/1000 is due to the time spent on neighborhood search
(131.38 s, i.e. 85 % of the total time).



106 Hybrid ranking and B&B algorithm for solving MOCO problems

S1: Ranking S2: Hybrid 1000 S3: Hybrid 100 S4: BB

p n K without NS with NS without NS with NS without NS with NS without NS with NS NS time

2 200 100 5.622 1.741 — — — — — 62.138 0.471
1000 10.432 21.973 — — — — — — 6.910

400 100 — 9.215 — — — — — 13.562 1.710
1000 56.463 130.459 — — — — — — 42.337

3 15 10 0.093 0.076 0.098 0.214 0.558 0.637 4.407 0.889 0.025
100 0.575 0.902 2.532 4.260 5.554 7.288 47.968 10.529 0.312
1000 0.883 1.423 4.542 6.724 8.517 11.171 64.465 15.734 0.539

20 10 0.363 0.272 0.777 0.591 2.433 2.153 39.039 6.325 0.074
100 5.759 12.452 45.503 86.594 118.944 224.585 — 253.876 4.866
1000 11.087 22.350 96.913 178.994 229.357 489.315 — 419.488 8.334

4 10 100 16.768 17.611 215.934 234.204 187.441 235.970 59.010 30.493 0.878
12 100 280.399 308.157 — — — — — 2787.256 35.755

Table 4.4: Computation times for strategies S1, . . . , S4 without and with neighborhood
search on c/u instances

Opportunity of neighborhood search

Table 4.4 shows the computation times for strategies S1, S2, and S3 without and with
neighborhood search, as well as the time spent on neighborhood search. As we can see,
neighborhood search does not help much for the ranking and hybrid strategies. Indeed, all
points computed from neighborhood search are quickly obtained by the ranking algorithm.
However, neighborhood search provides a refined initial search region and therefore reduce
the size of the ranking tree. This made it possible to solve instances of type c/u/400/2/100
using the ranking strategy S1. For the branch and bound strategy, the use of neighborhood
search is clearly crucial.

Besides we observe from the results that our implementation of neighborhood search is
very time-efficient.

Approximation in the ranking strategy

We present some results for approximation versions of the ranking strategy S1. We consider
both versions (“A” and “B”) described in Section 4.3.2 and 3 tolerance levels: ε = 1%,
ε = 5%, and ε = 10%.

Table 4.5 presents computation times for the exact version and the approximation ver-
sions. We guessed in Section 4.3.2 that version B could be more time-efficient than version
A. As we can see, this is only the case on certain instances for ε = 10%. For smaller toler-
ances, version B maintains a set of points N which is nearly as large as in the exact version
and thus the procedure updateSearchRegion takes much more time than in version A.

Table 4.6 gives the output sizes. As expected, version A produces smaller output than
version B, up to 74 times smaller than the nondominated set in the case ε = 10%.

It turns out that for most tested bi-objective instances, the set of all extreme nondomi-



4.5 Computational experiments 107

ε = 1% ε = 5% ε = 10%

t r p n K Exact A B A B A B

c u 2 200 1000 10.432 0.719 0.674 0.634 0.646 0.647 0.663
400 1000 56.463 8.663 12.811 8.832 8.606 8.747 8.626

3 15 100 0.575 0.304 0.379 0.178 0.122 0.088 0.092
1000 0.883 0.337 0.470 0.231 0.281 0.293 0.082

20 100 5.759 1.475 2.786 0.344 0.351 0.198 0.106
1000 11.087 1.578 4.152 0.449 1.136 1.047 0.206

4 10 100 16.768 14.069 14.951 5.365 4.597 2.441 1.167
12 100 280.399 214.333 370.275 27.178 37.111 5.224 5.342

c 2 10 100 41.018 30.899 23.837 0.550 0.000 0.003 0.000
12 100 155.810 — — 0.002 0.000 0.000 0.000

Table 4.5: Comparison of computation times (s) for exact and approximate versions of the
ranking strategy S1

nated points computed at the beginning of Algorithm 4.1 is nearly sufficient to ε-dominate
all feasible points.

Finally, Table 4.7 provides two indicators for the output Yε of the approximation version
of S1. We computed the a posteriori covering tolerance εc, i.e. the minimal value such that
any feasible point is εc-dominated by some point of Yε. We also computed a stability
tolerance εs as a measure of distribution, i.e. the maximal value such that no two points of
Yε εs-dominate each other. As we can see, version A achieves an εc which is very close to
the a priori ε for three and four objective instances.

Conclusions

We proposed in this chapter a hybrid approach which solves MOCO problems and is not
restricted to the bi-objective case. The method is based on a ranking strategy that integrates
into a branching scheme. We presented an instantiation on the MOST problem using
efficient implementations of procedures for ranking spanning trees and obtaining a good
initial set of points through neighborhood search. We showed that the proposed approach
can be adapted to generate an approximate nondominated set. According to presented
computational experiments, there is no dominating exact strategy. The ranking strategy is
the most time-efficient for solving instances where the nondominated points are not too far
from being supported and where the part of the set of feasible points around the Pareto
front is not too dense. It outperforms branch and bound approaches on such instance
types. It requires however much memory to solve large instances. The hybrid strategy
is the most efficient for instances where good choices on a few branching edges makes it
possible to obtain far easier subinstances. It is also interesting for large instances due to
its memory save compared to the ranking only strategy. The branch and bound strategy



108 Hybrid ranking and B&B algorithm for solving MOCO problems

ε = 1% ε = 5% ε = 10%

t r p n K Exact A B A B A B

c u 2 200 1000 12568 483 487 459 620 459 620
400 1000 24476 1020 1020 1019 1379 1019 1379

3 15 100 2844 1339 2822 261 1747 107 932
1000 3555 1393 3489 265 2033 107 1168

20 100 11195 3464 10579 472 3497 205 1277
1000 15009 3528 13516 465 4540 204 1801

4 10 100 3047 1939 3047 420 2709 159 2172
12 100 17195 8838 17171 1172 9864 444 4140

c 2 10 100 143 39 143 15 55 15 15
12 100 246 — — 19 23 18 18

Table 4.6: Number of points obtained for exact and approximate versions of the ranking
strategy S1

ε = 1% ε = 5% ε = 10%

A B A B A B

t r p n K εc εs εc εs εc εs εc εs εc εs εc εs

c u 2 200 1000 0.991 0.059 0.975 0.051 1.561 0.059 1.119 0.046 1.561 0.059 1.119 0.046
400 1000 0.894 0.031 0.894 0.029 0.955 0.031 0.769 0.022 0.955 0.031 0.769 0.022

3 15 100 1.000 0.252 0.635 0.133 4.986 0.554 4.078 0.136 9.846 1.145 8.251 0.144
1000 1.000 0.112 0.657 0.015 4.980 0.453 3.985 0.015 9.890 1.131 8.434 0.018

20 100 1.000 0.157 0.837 0.096 4.999 0.426 4.474 0.099 9.970 0.586 8.747 0.106
1000 1.000 0.072 0.855 0.011 4.991 0.256 4.364 0.011 9.938 0.659 8.845 0.019

4 10 100 0.999 0.520 0.070 0.199 4.993 1.181 2.780 0.199 9.981 1.423 6.198 0.199
12 100 1.000 0.269 0.393 0.146 5.000 0.764 3.971 0.148 9.973 0.965 8.048 0.157

c 2 10 100 0.963 0.430 0.000 0.151 3.886 0.400 2.736 0.153 4.626 0.400 4.070 0.371
12 100 — — — — 3.575 0.267 3.412 0.169 7.641 0.267 6.337 0.267

Table 4.7: Covering and stability tolerances (%) measured on the output sets of the ap-
proximate versions of the ranking strategy S1



4.5 Computational experiments 109

remains powerful for hard instances containing nondominated points that are far away
from the convex hull of feasible points and for which it is not sufficient to branch on a
few edges. The implementation of neighborhood search we proposed is very efficient in
practice. The two approximation versions we proposed run significantly faster than the
exact version according to our experiments. The experiments also showed that the two
versions do not dominate each other. However, with similar computation times, version A
produces significantly smaller approximations.

There are several directions for future work. First it would be interesting to make the
hybrid strategy more efficient on a wide range of instances. To this end, less time should
be spent on each search node. The time spent on a search node is related to the number
of ranking directions that are exploited and to the definition of the stopping criterion. It
would be required in particular to avoid the use of ranking directions that yield redundant
solutions. The stopping criterion should trigger a branching as soon as it is clear that the
only use of ranking is too expensive. The literature on metaheuristics and genetic algorithms
could provide some insight into this issue, since the tradeoff between the quality of a solution
pool and the exploration cost is a concern (see e.g. Wagner et al., 2011). Future directions
also include the instantiation of the hybrid approach on other MOCO problems, especially
those for which an efficient ranking algorithm is available.



110 Hybrid ranking and B&B algorithm for solving MOCO problems



Conclusions

Summary

We considered in this thesis optimization with multiple objective functions, a subject lying
at the intersection of classical operations research and multiple criteria decision making. We
presented exact and approximate solution concepts as well as some solving approaches for
MOCO problems. The latter revealed the encountered solving approaches can be classified
in two categories, according to whether they primarily operate in the decision space or in the
objective space. We also surveyed several aspects related to a particular MOCO problem,
namely the multi-objective Minimum Spanning Tree problem.

We were concerned with the concept of search region in MOO. The subject was not
much treated since the search region is easily represented in the bi-objective case. In the
multi-objective case, the literature on exact solutions to MOO problems rarely addresses
the problem of efficiently and explicitly representing the search region. The only proposal
for an explicit representation of the search region, not based on solving integer programs,
was found in Przybylski et al. (2010b). We proposed some enhancements of their algorithm
as well as a new approach which avoids the generation of redundant elements. We studied
complexity aspects related to the explicit representation of the search region and to its
generation using the two approaches. We also compared the approaches on the basis of
computational experiments. They showed that the two approaches behave similarly up to
5 objective functions and that the new approach outperforms the older above.

Besides, starting from the classification of MOCO solving methods we presented, we
proposed a hybrid strategy which combines a ranking-based exploration of the objective
space with an implicit enumeration scheme. The motivation behind this was to take ad-
vantage of the flexible choices that can be made in the decision space while also benefiting
from a directed search in the objective space enabled by a ranking algorithm together with
the weighted sum technique. The method was implemented and tested on several instances
of the multi-objective Minimum Spanning Tree problem. The experimental results first
show that instances with more than two objectives can be practically solved. The results
did not reveal a dominating strategy on all instance types but provided some insight into
the behavior of each strategy. We also showed that the proposed approaches can be adapted
to quickly generate an approximate nondominated set with a priori quality guarantee.



112 Conclusions

Prospects

Among the perspectives we already drawn, we would like to highlight a few work directions
which sound promising to us.

Exploitation of the neighborhood of search zones The properties we derived on
local upper bounds addressed their relation to feasible points which contribute to define
them. From this relation, we can define a neighborhood between local upper bounds, e.g.
two local upper bounds being neighbors if they share the same defining points on one
component. This neighborhood could be exploited in an enumeration MOCO approach.
In particular, in the case where for each new point we know a search zone which contains
it, we could exploit the neighborhood relation to possibly avoid the scan of all local upper
bounds.

Parallel search strategies The exploration of distinct search zones as well as the explo-
ration of distinct search nodes can be parallelized. It raises however the issue of concurrent
updates of the search region.

Instantiation on other MOCO problems Other MOCO problems are known to have
practically efficient ranking algorithms, namely Shortest Path and Knapsack as well
as Assignment. Moreover, algorithms not limited to the bi-objective case have been
developed for each of them. It would be interesting to compare the efficiency of a hybrid
approach to state-of-the-art algorithms.



References

Aboudi, R. and Jørnsten, K. (1990). “Resource constrained assignment problems”. In: Dis-

crete Applied Mathematics 26.2–3, pp. 175–191. doi: 10.1016/0166-218X(90)90099-X.

Aggarwal, V., Aneja, Y. P., and Nair, K. P. K. (1982). “Minimal spanning tree subject to a
side constraint”. In: Computers & Operations Research 9.4, pp. 287–296. doi: 10.1016/

0305-0548(82)90026-0.

Aggarwal, V. (1985). “A Lagrangean-relaxation method for the constrained problem”. In:
Computers & Operations Research 12.1, pp. 97–106. doi: DOI:10.1016/0305-0548(85)

90011-5.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms,

and Applications. 1st. Prentice Hall.

Alonso, S., Domínguez-Ríos, M. Á., Colebrook, M., and Sedeño-Noda, A. (2009). “Opti-
mality conditions in preference-based spanning tree problems”. In: European Journal of

Operational Research 198.1, pp. 232–240. doi: DOI:10.1016/j.ejor.2008.07.042.

Andersen, K. A., Jörnsten, K., and Lind, M. (1996). “On bicriterion minimal spanning trees:
An approximation”. In: Computers & Operations Research 23.12, pp. 1171–1182. doi:
DOI:10.1016/S0305-0548(96)00026-3.

Aneja, Y. P. and Nair, K. P. K. (1979). “Bicriteria Transportation Problem”. In: Manage-

ment Science 25.1, pp. 73–78. doi: 10.1287/mnsc.25.1.73.

Bazgan, C., Hugot, H., and Vanderpooten, D. (2009a). “Implementing an efficient fptas
for the 0-1 multi-objective knapsack problem”. In: European Journal of Operational

Research 198.1, pp. 47–56. doi: 10.1016/j.ejor.2008.07.047.

Bazgan, C., Hugot, H., and Vanderpooten, D. (2009b). “Solving efficiently the 0–1 multi-
objective knapsack problem”. In: Computers & Operations Research 36.1, pp. 260–279.
doi: 10.1016/j.cor.2007.09.009.

Belhoul, L., Galand, L., and Vanderpooten, D. (2014). “An efficient procedure for finding
best compromise solutions to the multi-objective assignment problem ”. In: Computers

& Operations Research 0. doi: 10.1016/j.cor.2014.03.016.



114 References

Bentley, J., Clarkson, K., and Levine, D. (1993). “Fast linear expected-time algorithms for
computing maxima and convex hulls”. In: Algorithmica 9.2, pp. 168–183. doi: 10.1007/

BF01188711.

Berg, M. de, Cheong, O., Kreveld, M. van, and Overmars, M. (2008). Computational Ge-

ometry: Algorithms and Applications. 3rd. Santa Clara, CA, USA: Springer.

Boissonnat, J. D., Sharir, M., Tagansky, B., and Yvinec, M. (1998). “Voronoi Diagrams
in Higher Dimensions under Certain Polyhedral Distance Functions”. In: Discrete &

Computational Geometry 19.4, pp. 485–519. doi: 10.1007/PL00009366.

Borges, P. and Hansen, M. (2002). “A Study of Global Convexity for a Multiple Objec-
tive Travelling Salesman Problem”. In: Essays and Surveys in Metaheuristics. Vol. 15.
Springer US. Chap. Operations Research/Computer Science Interfaces Series, pp. 129–
150. doi: 10.1007/978-1-4615-1507-4_6.

Camerini, P. M., Galbiati, G., and Maffioli, F. (1983). “On the complexity of finding multi-
constrained spanning trees ”. In: Discrete Applied Mathematics 5.1, pp. 39–50. doi:
10.1016/0166-218X(83)90014-8.

Clímaco, J. o. C. N. and Pascoal, M. M. B. (2012). “Multicriteria path and tree prob-
lems: discussion on exact algorithms and applications”. In: International Transactions

in Operational Research 19.1-2, pp. 63–98. doi: 10.1111/j.1475-3995.2011.00815.x.

Corley, H. W. (1985). “Efficient spanning trees”. In: Journal of Optimization Theory and

Applications 45.3, pp. 481–485. doi: 10.1007/BF00938448.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to Algo-

rithms, Third Edition. 3rd. The MIT Press.

Dächert, K. and Klamroth, K. (2014). “A linear bound on the number of scalarizations
needed to solve discrete tricriteria optimization problems”. In: Journal of Global Opti-

mization, pp. 1–34. doi: 10.1007/s10898-014-0205-z.

Delort, C. and Spanjaard, O. (2010). “Using Bound Sets in Multiobjective Optimization:
Application to the Biobjective Binary Knapsack Problem”. In: 9th International Sym-

posium on Experimental Algorithms (SEA 2010). Ed. by P. Festa. Vol. 6049. Lecture
Notes in Computer Science. Springer Berlin Heidelberg. Chap. Lecture Notes in Com-
puter Science, pp. 253–265. doi: 10.1007/978-3-642-13193-6_22.

Delort, C. and Spanjaard, O. (2011). “Yet another two-phase method for the biobjective
assignment problem”. In: 21st International Conference on Multiple Criteria Decision

Making (MCDM 2011). Jyvaskyla, Finland.

Deo, N. (1974). Graph theory with applications to engineering and computer science.
Prentice-Hall.



115

Dhaenens, C., Lemesre, J., and Talbi, E. G. (2010). “K-PPM: A new exact method to
solve multi-objective combinatorial optimization problems”. In: European Journal of

Operational Research 200.1, pp. 45–53. doi: 10.1016/j.ejor.2008.12.034.

Diakonikolas, I. and Yannakakis, M. (2007). “Small Approximate Pareto Sets for Bi-
objective Shortest Paths and Other Problems”. In: Approximation, Randomization,

and Combinatorial Optimization. Algorithms and Techniques. Ed. by M. Charikar, K.
Jansen, O. Reingold, and J. P. Rolim. Vol. 4627. Springer Berlin Heidelberg. Chap. Lec-
ture Notes in Computer Science, pp. 74–88. doi: 10.1007/978-3-540-74208-1_6.

Ehrgott, M. (2005). Multicriteria optimization. Springer Verlag.

Ehrgott, M. (2008). “Multiobjective (Combinatorial) Optimisation - Some Thoughts on
Applications”. Anglais. In: Multiple Objective Programming and Goal Programming:

Theoretical Results and Practical Applications. Ed. by V. Barichard, M. Ehrgott, X.
Gandibleux, and V. T’Kindt. Vol. 618. Lecture Notes in Economics and Mathematical
Systems. Tours, France: Springer, pp. 267–282. doi: 10.1007/978-3-540-85646-7\_25.

Ehrgott, M. and Gandibleux, X. (2007). “Bound sets for biobjective combinatorial opti-
mization problems”. In: Computers and Operations Research 34.9, pp. 2674–2694. doi:
10.1016/j.cor.2005.10.003.

Ehrgott, M. and Klamroth, K. (1997). “Connectedness of efficient solutions in multiple
criteria combinatorial optimization”. In: European Journal of Operational Research 97.1,
pp. 159–166. doi: DOI:10.1016/S0377-2217(96)00116-6.

Ehrgott, M. and Wiecek, M. (2005). “Mutiobjective Programming”. In: Multiple Criteria

Decision Analysis: State of the Art Surveys. Ed. by J. Figueira, S. Greco, and M. Ehrgott.
Vol. 78. Boston, Dordrecht, London: Springer Verlag. Chap. International Series in Op-
erations Research & Management Science, pp. 667–708. doi: 10.1007/0-387-23081-

5_17.

Eppstein, D. (1998). “Finding the k Shortest Paths”. In: SIAM Journal on Computing 28.2,
pp. 652–673. doi: 10.1137/S0097539795290477.

Eppstein, D. (1992). “Finding the k smallest spanning trees”. In: BIT Numerical Mathe-

matics 32.2, pp. 237–248. doi: 10.1007/BF01994879.

Gabow, H. (1977). “Two Algorithms for Generating Weighted Spanning Trees in Order”.
In: SIAM Journal on Computing 6.1, pp. 139–150. doi: 10.1137/0206011.

Gabow, H. and Myers, E. (1978). “Finding All Spanning Trees of Directed and Undirected
Graphs”. In: SIAM Journal on Computing 7.3, pp. 280–287. doi: 10.1137/0207024.



116 References

Gabow, H. N. and Tarjan, R. E. (1985). “A linear-time algorithm for a special case of
disjoint set union ”. In: Journal of Computer and System Sciences 30.2, pp. 209–221.
doi: 10.1016/0022-0000(85)90014-5.

Gabow, H. N., Bentley, J. L., and Tarjan, R. E. (1984). “Scaling and Related Techniques
for Geometry Problems”. In: Proceedings of the Sixteenth Annual ACM Symposium on

Theory of Computing. STOC ’84. New York, NY, USA: ACM, pp. 135–143. doi: 10.

1145/800057.808675.

Galand, L. (2008). “Méthodes exactes pour l’optimisation multicritère dans les graphes :
recherche de solutions de compromis”. In:

Galand, L. and Spanjaard, O. (2012). “Exact algorithms for OWA-optimization in multiob-
jective spanning tree problems ”. In: Computers & Operations Research 39.7, pp. 1540–
1554. doi: 10.1016/j.cor.2011.09.003.

Galand, L., Perny, P., and Spanjaard, O. (2010). “Choquet-based optimisation in multiob-
jective shortest path and spanning tree problems”. In: European Journal of Operational

Research 204.2, pp. 303–315. doi: 10.1016/j.ejor.2009.10.015.

Gorski, J., Klamroth, K., and Ruzika, S. (2011). “Connectedness of Efficient Solutions in
Multiple Objective Combinatorial Optimization”. In: Journal of Optimization Theory

and Applications 150.3, pp. 475–497. doi: 10.1007/s10957-011-9849-8.

Graham, R. L. and Hell, P. (1985). “On the History of the Minimum Spanning Tree Prob-
lem”. In: IEEE Ann. Hist. Comput. 7.1, pp. 43–57. doi: 10.1109/MAHC.1985.10011.

Grandoni, F., Ravi, R., and Singh, M. (2009). “Iterative Rounding for Multi-Objective
Optimization Problems”. In: chap. Iterative Rounding for Multi-Objective Optimization
Problems, pp. 95–106. doi: {10.1007/978-3-642-04128-0_9}.

Hamacher, H. (1995). “A note on K best network flows”. In: Annals of Operations Research

57.1, pp. 65–72. doi: 10.1007/BF02099691.

Hamacher, H. and Ruhe, G. (1994). “On spanning tree problems with multiple objectives”.
In: Annals of Operations Research 52.4, pp. 209–230. doi: 10.1007/BF02032304.

Hansen, P. (1980). “Bicriterion Path Problems”. In: Multiple Criteria Decision Making The-

ory and Application. Ed. by G. Fandel and T. Gal. Vol. 177. Lecture Notes in Economics
and Mathematical Systems. Berlin: Springer Verlag. Chap. Multiple Criteria Decision
Making Theory and Application, pp. 109–127. doi: 10.1007/978-3-642-48782-8_9.

Hassin, R. and Levin, A. (2004). “An Efficient Polynomial Time Approximation Scheme
for the Constrained Minimum Spanning Tree Problem Using Matroid Intersection”. In:
SIAM Journal on Computing 33.2, pp. 261–268. doi: 10.1137/S0097539703426775.



117

Hong, S. P., Chung, S. J., and Park, B. H. (2004). “A fully polynomial bicriteria approxima-
tion scheme for the constrained spanning tree problem”. In: Operations Research Letters

32.3, pp. 233–239. doi: 10.1016/j.orl.2003.06.003.

Jiménez, V. M. and Marzal, A. (2003). “A Lazy Version of Eppstein’s K Shortest Paths
Algorithm”. In: Experimental and Efficient Algorithms. Ed. by K. Jansen, M. Margraf,
M. Mastrolilli, and J. D. P. Rolim. Vol. 2647. Springer Berlin Heidelberg. Chap. Lecture
Notes in Computer Science, pp. 179–191. doi: 10.1007/3-540-44867-5_14.

Jorge, J. (2010). “Nouvelles propositions pour la résolution exacte du sac à dos multi-objectif
unidimensionnel en variables binaires”. Français. PhD thesis. Université de Nantes.

Jouglet, A. and Carlier, J. (2011). “Dominance rules in combinatorial optimization problems
”. In: European Journal of Operational Research 212.3, pp. 433–444. doi: 10.1016/j.

ejor.2010.11.008.

Kaplan, H., Rubin, N., Sharir, M., and Verbin, E. (2008). “Efficient Colored Orthogonal
Range Counting”. In: SIAM Journal on Computing 38.3, pp. 982–1011. doi: 10.1137/

070684483.

Katoh, N., Ibaraki, T., and Mine, H. (1981). “An Algorithm for Finding K Minimum
Spanning Trees”. In: SIAM Journal on Computing 10.2, pp. 247–255. doi: 10.1137/

0210017.

Kirlik, G. and Sayın, S. (2014). “A new algorithm for generating all nondominated solutions
of multiobjective discrete optimization problems ”. In: European Journal of Operational

Research 232.3, pp. 479–488. doi: 10.1016/j.ejor.2013.08.001.

Klamroth, K., Lacour, R., and Vanderpooten, D. (2014). On the representation of the search

region in multi-objective optimization. Tech. rep. Université Paris-Dauphine.

Knowles, J. D. and Corne, D. W. (2001). “Benchmark Problem Generators and Results
for the Multiobjective Degree-Constrained Minimum Spanning Tree Problem”. In: In

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2001).
Morgan Kaufmann Publishers, pp. 424–431.

Knowles, J. D. and Corne, D. W. (2002). “Enumeration of Pareto optimal multi-criteria
spanning trees – a proof of the incorrectness of Zhou and Gen’s proposed algorithm ”.
In: European Journal of Operational Research 143.3, pp. 543–547. doi: 10.1016/S0377-

2217(01)00346-0.

Kung, H. T., Luccio, F., and Preparata, F. P. (1975). “On Finding the Maxima of a Set of
Vectors”. In: Journal of the ACM 22.4, pp. 469–476. doi: 10.1145/321906.321910.



118 References

Laumanns, M., Thiele, L., and Zitzler, E. (2006). “An efficient, adaptive parameter variation
scheme for metaheuristics based on the epsilon-constraint method ”. In: European Jour-

nal of Operational Research 169.3, pp. 932–942. doi: 10.1016/j.ejor.2004.08.029.

Lokman, B. and Köksalan, M. (2013). “Finding all nondominated points of multi-objective
integer programs”. In: Journal of Global Optimization 57.2, pp. 347–365. doi: 10.1007/

s10898-012-9955-7.

Mares, M. (2008). “The saga of minimum spanning trees”. In: Computer Science Review

2.3, pp. 165–221. doi: 10.1016/j.cosrev.2008.10.002.

Mehlhorn, K. and Näher, S. (1990). “Dynamic fractional cascading”. In: Algorithmica 5.1-4,
pp. 215–241. doi: 10.1007/BF01840386.

Miettinen, K. and Mäkelä, M. M. (2002). “On scalarizing functions in multiobjective op-
timization”. In: OR Spectrum 24.2. 10.1007/s00291-001-0092-9, pp. 193–213. doi: 10.

1007/s00291-001-0092-9.

Murty, K. G. (1968). “Letter to the Editor—An Algorithm for Ranking all the Assignments
in Order of Increasing Cost”. In: Operations Research 16.3, pp. 682–687. doi: 10.1287/

opre.16.3.682.

Okamoto, Y. and Uno, T. (2011). “A polynomial-time-delay and polynomial-space algo-
rithm for enumeration problems in multi-criteria optimization”. In: European Journal

of Operational Research 210.1, pp. 48–56. doi: 10.1016/j.ejor.2010.10.008.

Özlen, M. and Azizoglu, M. (2009). “Multi-objective integer programming: A general ap-
proach for generating all non-dominated solutions”. In: European Journal of Operational

Research 199.1, pp. 25–35. doi: 10.1016/j.ejor.2008.10.023.

Özpeynirci, O. and Köksalan, M. (2010). “An Exact Algorithm for Finding Extreme Sup-
ported Nondominated Points of Multiobjective Mixed Integer Programs”. In: Manage.

Sci. 56.12, pp. 2302–2315. doi: 10.1287/mnsc.1100.1248.

Papadimitriou, C. H. and Yannakakis, M. (2000). “On the approximability of trade-offs and
optimal access of Web sources”. In: 41st IEEE Symposium on Foundations of Computer

Science, pp. 86–92. doi: 10.1109/SFCS.2000.892068.

Pedersen, C. R., Nielsen, L. R., and Andersen, K. A. (2008). “An algorithm for ranking as-
signments using reoptimization”. In: Computers & Operations Research 35.11, pp. 3714–
3726. doi: 10.1016/j.cor.2007.04.008.

Perny, P. and Spanjaard, O. (2005). “A preference-based approach to spanning trees and
shortest paths problems****”. In: European Journal of Operational Research 162.3,
pp. 584–601. doi: 10.1016/j.ejor.2003.12.013.



119

Preparata, F. P. and Shamos, M. I. (1985). Computational geometry: an introduction. New
York, NY, USA: Springer-Verlag New York, Inc.

Przybylski, A., Gandibleux, X., and Ehrgott, M. (2008). “Two phase algorithms for the
bi-objective assignment problem ”. In: European Journal of Operational Research 185.2,
pp. 509–533. doi: 10.1016/j.ejor.2006.12.054.

Przybylski, A., Gandibleux, X., and Ehrgott, M. (2009). “Computational Results for Four
Exact Methods to Solve the Three-Objective Assignment Problem”. In: Multiobjective

Programming and Goal Programming. Ed. by S. B. Heidelberg. Vol. 618. Springer Berlin
Heidelberg. Chap. Computational Results for Four Exact Methods to Solve the Three-
Objective Assignment Problem, pp. 79–88. doi: 10.1007/978-3-540-85646-7_8.

Przybylski, A., Gandibleux, X., and Ehrgott, M. (2010a). “A Recursive Algorithm for Find-
ing All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer
Programme”. In: INFORMS Journal on Computing 22.3, pp. 371–386. doi: 10.1287/

ijoc.1090.0342.

Przybylski, A., Gandibleux, X., and Ehrgott, M. (2010b). “A two phase method for multi-
objective integer programming and its application to the assignment problem with three
objectives”. In: Discrete Optimization 7.3, pp. 149–165. doi: 10.1016/j.disopt.2010.

03.005.

Raith, A. and Ehrgott, M. (2009). “A two-phase algorithm for the biobjective integer min-
imum cost flow problem”. In: Comput. Oper. Res. 36.6, pp. 1945–1954. doi: 10.1016/

j.cor.2008.06.008.

Ralphs, T., Saltzman, M., and Wiecek, M. (2006). “An improved algorithm for solving
biobjective integer programs”. In: Annals of Operations Research 147.1, pp. 43–70. doi:
10.1007/s10479-006-0058-z.

Ramos, R. M., Alonso, S., Sicilia, J., and González, C. (1998). “The problem of the optimal
biobjective spanning tree ”. In: European Journal of Operational Research 111.3, pp. 617–
628. doi: 10.1016/S0377-2217(97)00391-3.

Ravi, R. and Goemans, M. X. (1996). “The constrained minimum spanning tree problem”.
In: Algorithm theory: SWAT’96: 5th Scandinavian Workshop on Algorithm Theory, Reyk-

javík, Iceland, July 3-5, 1996: proceedings. Ed. by R. Karlsson and A. Lingas. Vol. 1097.
Springer Berlin Heidelberg. Chap. Lecture Notes in Computer Science, pp. 66–75. doi:
10.1007/3-540-61422-2_121.

Roy, B. (1985). Méthodologie multicritère d’aide à la décision. Paris: Economica.

Ruzika, S. and Hamacher, H. (2009). “A Survey on Multiple Objective Minimum Spanning
Tree Problems”. In: Algorithmics of Large and Complex Networks. Ed. by J. Lerner, D.



120 References

Wagner, and K. Zweig. Vol. 5515. Springer Berlin Heidelberg. Chap. Lecture Notes in
Computer Science, pp. 104–116. doi: 10.1007/978-3-642-02094-0_6.

Serafini, P. (1987). “Some Considerations about Computational Complexity for Multi Ob-
jective Combinatorial Problems”. In: Recent advances and historical development of vec-

tor optimization. Ed. by J. Jahn and W. Krabs. Vol. 294. Lecture Notes in Economics
and Mathematical Systems. Berlin: Springer-Verlag. Chap. Lecture Notes in Economics
and Mathematical Systems, pp. 222–232. doi: 10.1007/978-3-642-46618-2_15.

Sourd, F. and Spanjaard, O. (2008). “A multi-objective branch-and-bound framework. Ap-
plication to the bi-objective spanning tree problem”. In: INFORMS Journal on Com-

puting 20.3, pp. 472–484. doi: 10.1287/ijoc.1070.0260.

Steiner, S. and Radzik, T. (2003). Solving the biobjective minimum spanning tree problem

using a k-best algorithm. Tech. rep. TR-03-06, Department of Computer Science, King’s
College London.

Steiner, S. and Radzik, T. (2008). “Computing all efficient solutions of the biobjective
minimum spanning tree problem”. In: Comput. Oper. Res. 35.1, pp. 198–211. doi: http:

//dx.doi.org/10.1016/j.cor.2006.02.023.

Sylva, J. and Crema, A. (2004). “A method for finding the set of non-dominated vectors
for multiple objective integer linear programs ”. In: European Journal of Operational

Research 158.1, pp. 46–55. doi: 10.1016/S0377-2217(03)00255-8.

Sylva, J. and Crema, A. (2007). “A method for finding well-dispersed subsets of non-
dominated vectors for multiple objective mixed integer linear programs ”. In: European

Journal of Operational Research 180.3, pp. 1011–1027. doi: 10.1016/j.ejor.2006.

02.049.

Sylva, J. and Crema, A. (2008). “Enumerating the set of non-dominated vectors in multiple
objective integer linear programming”. In: RAIRO-Operations Research 42.3, pp. 371–
387. doi: 10.1051/ro:2008018.

Tarjan, R. E. (1983). Data structures and network algorithms. Society for Industrial and
Applied Mathematics.

Tarjan, R. E. (1979). “Applications of Path Compression on Balanced Trees”. In: J. ACM

26.4, pp. 690–715. doi: 10.1145/322154.322161.

Tenfelde-Podehl, D. (2003). A recursive algorithm for multiobjective combinatorial problems

with. Tech. rep. Karl-Franzens-Univ. Graz & Techn. Univ. Graz.

Ulungu, E. L. and Teghem, J. (1995). “The two phases method: An efficient procedure to
solve bi-objective combinatorial optimization problems”. In: Foundations of Computing

and Decision Sciences 20.2, pp. 149–165.



Vassilvitskii, S. and Yannakakis, M. (2005). “Efficiently computing succinct trade-off

curves”. In: Theor. Comput. Sci. 348.2, pp. 334–356. doi: 10.1016/j.tcs.2005.09.022.

Villarreal, B. and Karwan, M. H. (1981). “Multicriteria integer programming: A (hybrid) dy-
namic programming recursive approach”. In: Mathematical Programming 21.1, pp. 204–
223. doi: 10.1007/BF01584241.

Vincent, T., Przybylski, A., and Gandibleux, X. (2011). “Two phase method for Biobjective
Mixed 0-1 Linear Programming”. In: 21st International Conference on Multiple Criteria

Decision Making, Jyväskylä, Finland.

Visée, M., Teghem, J., Pirlot, M., and Ulungu, E. L. (1998). “Two-phases Method and
Branch and Bound Procedures to Solve the Bi–objective Knapsack Problem”. In: Journal

of Global Optimization 12.2, pp. 139–155. doi: 10.1023/A:1008258310679.

Wagner, T., Trautmann, H., and Martí, L. (2011). “A Taxonomy of Online Stopping Cri-
teria for Multi-Objective Evolutionary Algorithms”. In: Evolutionary Multi-Criterion

Optimization. Ed. by R. C. Takahashi, K. Deb, E. Wanner, and S. Greco. Vol. 6576.
Springer Berlin Heidelberg. Chap. Lecture Notes in Computer Science, pp. 16–30. doi:
10.1007/978-3-642-19893-9_2.

White, D. J. (1986). “Epsilon efficiency”. In: Journal of Optimization Theory and Applica-

tions 49.2, pp. 319–337. doi: 10.1007/BF00940762.

Wierzbicki, A. P. (1986). “On the completeness and constructiveness of parametric char-
acterizations to vector optimization problems”. In: Operations-Research-Spektrum 8.2,
pp. 73–87. doi: 10.1007/BF01719738.

Willard, D. E. and Lueker, G. S. (1985). “Adding Range Restriction Capability to Dynamic
Data Structures”. In: Journal of the ACM 32.3, pp. 597–617. doi: 10.1145/3828.3839.

Zhou, G. and Gen, M. (1999). “Genetic algorithm approach on multi-criteria minimum
spanning tree problem”. In: European Journal of Operational Research 114.1, pp. 141–
152. doi: 10.1016/S0377-2217(98)00016-2.





List of Algorithms

1.1 Computation of the set Yextr in the bi-objective case (Aneja and Nair (1979)) 24

2.1 Generalization of Prim’s algorithm by Corley (1985) . . . . . . . . . . . . . . 40
2.2 A Kruskal-like multi-objective spanning tree algorithm by Serafini (1987) . . . 41

3.1 Generic method to generate all nondominated points of a MOCO problem
based on the definition of search zones . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Update procedure of an upper bound set based on redundancy elimination . 60
3.3 Update procedure of an upper bound set based on redundancy elimination

with an enhanced filtering step . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Update procedure of an upper bound set based on the avoidance of redundan-

cies : SA case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 Update procedure of an upper bound set based on the avoidance of redundan-

cies : general case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.1 Ranking procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Main hybrid procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3 Procedure firstStage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.4 Procedure exploreSearchNode . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.5 Implementation of a neighborhood search procedure for the MOST problem . 95
4.6 Procedure updateSearchRegion . . . . . . . . . . . . . . . . . . . . . . . . . 96





Nomenclature

Abbreviations

MCDM multiple criteria decision making, page 7
MCDA multiple criteria decision aid, page 7

MOO multi-objective optimization, page 7
MOCO multi-objective combinatorial optimization, page 7
MOBB multi-objective branch and bound, page 13
MOST multi-objective Minimum Spanning Tree problem, page 33

Convenient notations

(zj, a−j) (a1, . . . , aj−1, zj, aj+1, . . . , ap), page 52

General problem notations

X , x decision space, solution (possibly infeasible), page 14
Z, z objective space, point, page 14

m dimension of the decision space, page 14
p dimension of the objective space, page 14

cj, c = (c1, . . . , cp) objective function, vector of objective functions, page 14
X set of all feasible solutions, page 14
Y set of all feasible points, page 14

Pareto dominance and remarkable sets and points

= � < ≤ dominance relations defined on Z, page 14
≈ � ≺ � dominance relations defined on X , page 14

�ε ε-dominance relation in the objective space, page 15
�ε ε-dominance relation in the decision space, page 15
Ynd set of all nondominated points, page 16

Ywnd set of all weakly nondominated points, page 16
Xeff set of all efficient solutions, page 16

Xweff set of all weakly efficient solutions, page 16
N stable subset of Z w.r.t. ≤, page 16
zI ideal point, page 16
zN nadir point, page 16



Convex weighted sum scalarization

λ weight vector of Rp
≥, page 17

cλ weighted sum scalarized function
�p

j=1 λj · cj associated to weight
vector λ, page 17

conv(Q) convex hull of Q, page 17
conv(Q)� conv(Q) + R

p
�, page 18

Y supp set of all supported points, page 18
Xsupp set of all supported solutions, page 18
Y extr set of all extreme nondominated points, page 18
Xextr set of all extreme efficient solutions, page 18

Around the search region

Z = (m, M)p search interval (contains all feasible points), page 52
S(N) search region associated to a stable set N , page 53

U(N), u upper bound set associated to a stable set N , local upper bound,
page 53

C(u) search zone associated to a local upper bound u,
i.e. C(u) = {z ∈ Z : z < u}, page 53

Implicit enumeration

s search node, page 19
r root node, page 19

X(s) set of extensions of a search node s, page 19
Y (s) image in the objective space of set of extensions of a search node

s, page 19



Résumé

De nombreux problèmes décisionnels nécessitent la prise en compte d’objectifs multiples souvent con-
flictuels. L’ensemble des solutions efficaces d’un tel problème, c’est-à-dire qui ne peuvent être améliorées
simultanément sur tous les objectifs, peut être de grande taille. Pourtant, il peut être intéressant de
déterminer cet ensemble dans son intégralité, et plus particulièrement l’ensemble des points non dom-
inés, c’est-à-dire son image dans l’espace des objectifs. On s’attache dans cette thèse à plusieurs aspects
liés à la résolution de problèmes multi-objectifs, sans se limiter au cas biobjectif. Nous considérons la
résolution exacte, dans le sens de la détermination de l’ensemble des points non dominés, ainsi que la
résolution approchée dans laquelle on cherche une approximation de cet ensemble dont la qualité est
garantie a priori.

Nous nous intéressons d’abord au problème de la détermination d’une représentation explicite de
la région de recherche. La région de recherche, étant donné un ensemble de points réalisables connus,
exclut la partie de l’espace des objectifs que dominent ces points et constitue donc la partie de l’espace
des objectifs où les efforts futurs doivent être concentrés dans la perspective de déterminer tous les
points non dominés.

Puis nous considérons le recours aux algorithmes de séparation et évaluation ainsi qu’aux algo-
rithmes de ranking afin de proposer une nouvelle méthode hybride de détermination de l’ensemble des
points non dominés. Nous montrons que celle-ci peut également servir à obtenir une approximation de
l’ensemble des points non dominés. Cette méthode est implantée pour le problème de l’arbre couvrant
de poids minimal. Les quelques propriétés de ce problème que nous passons en revue nous permet-
tent de spécialiser certaines procédures et d’intégrer des prétraitements spécifiques. L’intérêt de cette
approche est alors soutenu à l’aide de résultats expérimentaux.

Mots-clés optimisation multi-objectifs, représentation de la région de recherche, algorithmes de
séparation et évaluation, algorithmes de ranking, problème de l’arbre couvrant de poids minimal

Abstract

Many decision problems require to consider several, often conflicting, objectives. For such a problem,
the set of all efficient solutions, i.e. that cannot be improved simultaneously on all objectives, can
be large. Yet it may be interesting to generate this set or rather its image in the objective space
known as the set of all nondominated points. This thesis deals with several aspects related to solving
multi-objective problems, without restriction to the bi-objective case. We consider exact solving, which
generates the nondominated set, and approximate solving, which computes an approximation of the
nondominated set with a priori guarantee on the quality.

We first consider the determination of an explicit representation of the search region. The search
region, defined with respect to a set of known feasible points, excludes from the objective space the part
which is dominated by these points. Future efforts to find all nondominated points should therefore be
concentrated on the search region.

Then we review branch and bound and ranking algorithms and we propose a new hybrid approach
for the determination of the nondominated set. We show how the proposed method can be adapted to
generate an approximation of the nondominated set. This approach is instantiated on the minimum
spanning tree problem. We review several properties of this problem which enable us to specialize some
procedures of the proposed approach and integrate specific preprocessing rules. This approach is finally
supported through experimental results.

Keywords multi-objective optimization, representation of the search region, branch and bound
algorithms, ranking algorithms, minimum spanning tree problem


