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Abstract

A new concept of airship without thrust, elevator or rudder is considered in this thesis. It is ac-

tuated by a moving mass and a mass-adjustable internal air bladder. This results into the motion of

the center of gravity and the change of the net lift. The development of this concept of airship is

motivated by energy saving. An eight degrees-of-freedom complete nonlinear mathematical model of

this airship is derived through the Newton-Euler approach.The interconnection between the airship’s

rigid body and the moveable mass is clearly presented. The dynamics in the longitudinal plane is ana-

lyzed and controlled through a LQR method, an input-output feedback linearization, and the maximal

feedback linearization with internal stability. Thanks tomaximal feedback linearization, an efficient

nonlinear control is derived. In this process, modelling, analysis, and control are solved for special

cases of the airship, which become gradually closer to the most general model. The most constrained

special case reduces to a two degree-of-freedom system. It is shown that the basic properties of this

two DOF mechanical system remain instrumental for the analysis and synthesis of advanced airship

models. These properties are far from being obvious from themost complex model. Through a sin-

gular perturbation approach, the superposition of the two control actions in the longitudinal plane and

in the lateral plane is shown to achieve the control of the dynamics in three dimension.
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Résumé

Un nouveau concept de dirigeable sans propulseur, ni gouvernail de direction, ni gouvernail de

profondeur est considéŕe dans cette th̀ese. Il est actionńe par une masse mobile et une vessie d’air

en interne dont la masse est réglable. Cela ŕesulte en un d́eplacement du centre de gravité et un

changement de la force de flottabilité nette. Le d́eveloppement de ce concept de dirigeable est motivé

par leséconomies d’́energie. Un mod̀ele complet̀a huit degŕes de libert́e de ce dirigeable est obtenu

par l’approche de Newton-Euler. L’interconnection entre le corps rigide du dirigeable et de la masse

mobile est clairement présent́ee. La dynamique dans le plan longitudinal est analysée et command́ee

par la ḿethode LQR, une lińearisation entŕee-sortie, et la lińearisation maximale par bouclage, avec

stabilit́e interne. Gr̂aceà la linéarisation maximale par bouclage, une commande non linéaire efficace

est d́eduite. Dans ce processus, la modélisation, l’analyse et la commande sont résolues pour les cas

particuliers du dirigeable qui deviennent peuà peu moins contraints et se rapprochent du cas le plus

géńeral. Le cas le plus contraint se réduità un syst̀eme qui a deux degrés de libert́e. Il est montŕe que

les propríet́es de base de certains systèmes ḿecaniques simples restent déterminantes pour l’analyse

et la synth̀ese des dirigeables avancés. Ces propriét́es sont loin d’̂etreévidentes sur le modèle complet.

Grâceà une approche de perturbations singulières, la superposition des deux actions de contrôle dans

le plan longitudinal et dans le plan latéral conduit̀a une commande pertinente pour la dynamique en

trois dimensions.
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Nomenclature

α the angle of attack

θ the pitch angle

λ2,λ1,λ0 parameters of the feedback controller

ξ the flight path angle

ρa the density of the air

∇ the volume of the airship

Ω the angular velocity of the airship in the body frame,Ω ≡ (Ω1,Ω2,Ω3)T

Ωi the ith element ofΩ

b the position of the airship in the inertial frame

B the momentum of the added mass

Pp the momentum of the moveable mass,Pp ≡ (Pp1,Pp2,Pp3)T

P the total momentum of the airship’s rigid body

C j
i aerodynamic coefficients

e1, e2, e3 the body frame unit vectors

Fa the aerodynamic force,Fa ≡ diag{Xa,Ya,Za}

Fat the aerodynamic force with respect to the body frame

FI the added inertial force

v
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Fs the total external force acting on the airship’s rigid body

Fint the internal force acting on the moveable mass by the body

I the identity matrix of appropriate dimensions

FGB the resultant force of the gravity and the buoyancy in the inertial frame

FGBt the resultant force of the gravity and the buoyancy in the body frame

J the second diagonal element ofJ s

Ji the ith diagonal element ofJ

J f the added inertial matrix,J f ≡ diag{m44,m55,m66}

J s the moment of inertia ofms, J s ≡ diag{Jx, Jy, Jz}

J the moment of inertia ofms and the added mass,J = diag{J1, J2, J3} = J f + J s

k the parameter of the feedback controller

i, j, k the inertial frame unit vectors

K the angular momentum of the added mass

Ks the total angular momentum of the airship’s rigid body

mb the mass of the internal air bladder

mh the uniformly distributed mass of the hull

ms the stationary mass of the airship

mv the total mass of airship,mv = ms+ m̄

mw the center offset mass

m̄ the mass of the moveable mass

mi the ith element ofM

m0 the net buoyancy of the airship

m the mass of the airship displaced air

Ma the aerodynamic pitch moment
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Ma the aerodynamic moment,Ma ≡ diag{La,Ma,Na}

Mat the aerodynamic moment with respect to the body frame

Madd the inertia matrix

M f the added mass matrix,M f ≡ diag{m11,m22,m33}

MGB the resultant moments of gravity and buoyancy in the inertial frame

MGBt the resultant moments of gravity and buoyancy in the body frame

MI the added inertial moment

Ms the total external moment acting on the airship’s rigid body

Mint the internal moment acting on the moveable mass by the body

M M ≡ diag{m1,m2,m3} = M f +msI

rb the position vector ofmb in the body frame

rp the position vector of the moveable mass in the body frame,rp ≡ (rp1, rp2, rp3)T

rw the position vector ofmw in the body frame

R1 the rotation matrix from the body frame to the inertial frame

R2 the rotation matrix from the velocity frame to the body frame

Tadd the kinetic energy of fluid disturbances

u the internal force applied on the moveable mass along thee1 axis,u ≡ u1

u the internal force acting on the moveable mass by the airship, u ≡ (u1,u2,u3)T

u4 the control of the mass of the internal air bladder

v the velocity vector of airship in the body frame,v ≡ (v1, v2, v3)T

vp the velocity of the moveable mass in the body frame

vp the velocity of the moveable mass in the vertical plane

Xa the drag element in the aerodynamic force

Za the lift element in the aerodynamic force
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7.2 Structure du dirigeable de flottabilité à moteur.. . . . . . . . . . . . . . . . . . . . . 106

7.3 Le dirigeable se d́eplace vers le haut et vers l’avant.. . . . . . . . . . . . . . . . . . 107

7.4 Le dirigeable se d́eplace vers le bas et vers l’avant.. . . . . . . . . . . . . . . . . . 107

7.5 Trajectoire typique d’un dirigeable.. . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.6 Le corps rigide et la masse mobile. . . . . . . . . . . . . . . . . . . . . . . . . . . 108

7.7 Le syst̀eme du dirigeable simplifíe est identiquèa un pendulèa liaison prismatique.. 113
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1.1 A Brief History of the Airship

1.1.1 Early period: before 1960s

The airship, also called blimp, has a much longer history than fixed-wing aircrafts, and it is the first

aircraft to enable controlled and powered flight. The airship was conceived by a French aeronautical

theorist Meusnier by the first time in 1784, soon after that, aFrench inventor Blanchard piloted a

ancient airship and crossed the English Channel (Wikipedia, 2010).

The first engine-powered airship emerged in 1852 with a steamengine equipped on the it. In 1884,

the first fully controllable airship,La France- a French army airship, was launched by Renard and

Krebs. This airship was the first one who did the full round trip flight with a landing on the starting

point.

In 1900, with the launch of theZeppelin LZ1 as shown in Fig.1.1, ”The Golden Age” of air-

ships began, and this is also the beginning of the most successful and well-known airship family:

the Zeppelins. ”The Golden Age” of airships lasted to the 1940s. During this period, airships had

been developed dramatically, both in application and technology.

In application, there mainly existed the following aspects:

1
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Figure 1.1: First Zeppelin LZ1 flight shown

above a boat at Lake Constance. Zeppelin LZ1

was the first truly successful experimental rigid

airship with 128 m length, 11.70 m diameter,

11,300m3 volume, 28 km/h maximum speed. It

used a 130 kg weight to control the attitude by

sliding it forward or aft.

Figure 1.2: LZ 127 Graf Zeppelin airship. The

first airship finished the round-the-world flight

and the polar (the arctic) flight. It also executed 64

regular transatlantic trips, traveling mainly from

Germany to Brazil. It had been operated safely

for 9 years.

• As bombers in combats. This military purpose only executed in the World War I before 1917

due to the vulnerability of the airship.

• As observing platforms. This is an important role for the airship in combats and this service

lasted for a long time. In the early war, small blimps were used to scout air attacks from

counterparts. Later, US navel used lots of blimps to escort ships in the World War II, and this

achieved a great success. Blimps equipped with radars were sent to search submarines and

protected ships from attacks. The duties of airship also included aerophoto reconnaissance,

naval mine-laying and mine sweeping.

• As long distant transport vehicles. Many international flights were operated by airships. Some

of them kept high level safety records, for instance,ZL 127Gra f Zeppelinas shown in Fig.1.2

flew over 1,600,000 km (including the first circumnavigationof the globe) without any single

passenger injury.

From a technical aspect, lots of fundamental researches hadbeen done in this periods, especially

in the 1920s and 1930s. These fundamental researches located in materials, structures, aerodynamic

forces, control, et al, which is the base of the airship engineering. Some outstanding scientific pioneers

and their classical works are listed in the following: the researches on the aerodynamics of airships by

M. Munk (Munk, 1922, 1923, 1924), W. S. Diehl (Diehl, 1922) et al., the researches on the structure

by E. H. Lewitt (Lewitt, 1922), S. Friedrich (Friedrich, 1923) et al., the researches on the stability and
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control of the airship by A. F. Zahm (Zahm, 1926), F. Rizzo (Rizzo, 1924) et al. and the researches

on the materials by R. Haas, A. Dietzius (Haas and Dietzius, 1918) et al. These details can be found

in (Khoury and Gillett, 1999).

As well-known cases, during the 1920s and the 1930s, many spectacular disasters happened and

caused large casualties, such as the crash of the ZRS 4-Akron in 1933 and the explosion accident

of the Hindenburg in 1937. However besides the problems of the reliability of airships, there still

existed lots of human factors which caused the accidents. For instance, the crash of ZR-1 was due to

the wrong command which ordered the airship to fly into appalling weather conditions (Purandare,

2007). The history of airship development before 1960 is displayed in Fig1.3.

Figure 1.3: History of airship development.Source(Goodyear Aerospace Corp., 1975)

1.1.2 Modern period: from 1960s to 1990s

After World War II, the US Navy continued to successfully operate their blimps in early warn-

ing role (US Navy, 2008; Marcy, 1978). However, the oil crisis happened in 1973, the interest in

the airship arose because people wanted to find a aircraft with low fuel consumption. Because of

this motivation, some important international conferencetook place to discuss the new applications

and technical peculiarities of the airship (Vittek, 1975). During the 1970s and 1980s, some airships

were designed and constructed, for instance, the AD500/Skyship-500 and Skyship-600 by a British

companyAirship Industries.

A very important airship program in this period was the SkyShip/Sentinel 5000. In 1987,West-

inghouse/Airship Industrieswere awarded a 170 million dollar contract to design an Airborne Early

Warning (AEW) airship which was required to undertake a 3-dayendurance at high altitude with



4 CHAPTER 1. INTRODUCTION

various surveillance equipments (Gomes, 1990). The airship to fulfill this mission is also called the

YEZ-2A and it is the first large military non-rigid airship tobe built after World War II. According to

the plan, this airship was 129 m length and 7000 cubic meters.Its commercial variant was designed

to have a 140-seater twin deck gondola. But after a full scale prototype mock-up was constructed in

1988, the program was stopped because of funding problems.

These modern airships started some new applications, such as advertising, passenger sight-seeing,

TV photography, surveillance purposes et al (see Fig.1.4and1.5) (Liao and Pasternak, 2009). How-

ever, from the technical point of view, there is not much innovation from the airships in the early of

the twentieth century.

Figure 1.4: A Goodyear airship. Goodyear began

producing airship envelopes in 1911. It’s airships

are used for advertising purposes and for use as

a television camera platform for aerial views of

sporting events. Most of them are semi-rigid air-

ships and manned airships

Figure 1.5: A Zeppelin NT airship. The german

company recovered the construction of the Zep-

pelin series airship in 1990s. Different from the

original rigid zeppelin airships, the modern zep-

pelin airships are semi-rigid. These airship can

take 2 crews and 12 passengers with maximum

speed 125 km/h, who is smaller than the old zep-

pelin.

1.2 Autonomous Unmanned Airship

1.2.1 Recent development of the airship

Even though the US SkyShip/Sentinel 5000 was not finished and did not have a chance to prove

its viability in both military and commercial aspects. But itbrought a new concept to the world-

High Altitude Platform (HAPs) as shown in Fig.1.6which has attracted many people’s interest in the
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recent twenty years.

Figure 1.6: A High Altitude Platform (HAP) is

a quasi-stationary platform which provide com-

munication or surveillance service to a large area.

This platform locates in the stratosphere. It is ex-

pected to stay in the sky for years without mainte-

nance.

Figure 1.7: Average wind speed in the strato-

sphere is minimal at altitudes of about 19-22 km (

Values vary with season and location). This is the

reason why the HAPs is proposed at an altitude

around 21 km.

High altitude platforms, also called stratospheric platforms, are located 17- 22 km above the

ground, and keep quasi-geostationary positions. The stratosphere is characterized by a highly stable

weather condition with stable winds (as shown in Fig.1.7) and no cloud. Such a platform has the

potential capability to serve as a wireless communication relay station and as a high resolution observ-

ing station (Widiawan and Tafazolli, 2006; Elfes et al., 1998; Tozer and Grace, 2001; Aragón-Zavala

et al., 2008), which can cover a very large area. Thus, high-quality communication and surveillance

can be achieved with a considerably smaller cost. Communications services including broadband,

WiMAX, 3G, and emergency communications, as well as broadcast services, are under consideration

in this mission. Recently, a HAP experiment has taken place on31st August 2005 at Kiruna, Sweden,

which has successfully tested the usage of a HAP at 25 km altitude, operating in the mm-wave band

to send data via Wi-Fi to a coverage area of 60 km in diameter (Grace et al., 2005).

Planes (such as M55 Geophysica) (Myasishchev Design Bureau, 2002), unmanned hydrogen

powered planes (such as US global observer) and unmanned solar powered planes (such as NASA

pathfinder plus) also can be used as the HAPs. However, in contrast to these vehicles, a high altitude

unmanned airship has the following features: driven by solar power makes its long aerial endurance,

and generally this platform can take 1000 kg to 3000 kg payload which is low-cost to carry out similar

tasks which are usually done by satellites (Haifeng et al., 2007). Lockheed Martin’s experiment in
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2008 had achieved to keep the airship in the sky for 2 weeks (Lockheed Martin Corporation, 2008).

From the beginning of the 21st century, major countries in the world have independently started

research on high altitude platforms (US Navy, 2008). In 2003, Lockheed Martin was awarded a US$

149 million contract from the US Missile Defense Agency to develop an airship that can maintain a

quasi-geostationary position at 20 km. Right now, the secondperiod of the research is carried out,

and because of budgetary constraints, a full-scale prototype was expected in the summar of 2010

(Defense Industry Daily, 2006; Lockheed Martin Corporation, 2008; Hopkins, 2010). Europe has

the ESA-HALE program (Lindstrand, 2000; Grace et al., 2004) which leads the stratospheric com-

munication research based on HAP. Japan has a so-called SPF program (Yokomaku, 2001). There is

also similar research in UK, South Korea and Brazil. In January 2010, a solar-powered airship has

been successfully tested and it is expected to cross the English Channel soon (ProjetSol’R, 2010). In

June 2010, Northrop Grumman has won a contract with the US Army to provide a Long-Endurance,

Multi-intelligence Vehicle (LEMV). The platform selectedby Northrop Grumman is based on a hy-

brid airship, and is designed to lift a payload of 1200 kg to 6000 m for periods more than 3 weeks

(Northrop Grumman, 2010). A summary of airship projects in recent years are listed inTab.1.1.

Designer Model Unique features Max.

altitude

(m)

Max. speed

(mph)

Country

ATG/WorldSkyCat Skycat-20 VTOL and cargo aircraft 3,000 97 UK

Skyhook-Boeing SkyHook JHL-40 Heavy lift four rotor and 40-ton lifting ca-

pacity

N/A 80 Canada/US

Lockheed Martin HAA Solar-powered, high altitude,unmanned, and

un-tethered

18,000 28 US

Techsphere Systems Inter-

national

SA-60 Spherical shape and low altitude 3,000 35 US

Southwest Research Insti-

tute

HiSentinel Air-

ship

Stratospheric and solar-powered >

22,000

N/A US

21st Century Airship Inc. N/A Spherical shape Low al-

titude

35 Canada

Millennium Airship Inc. SkyFreighter Hybrid, heavylift,and VTOL 6,000 80 Canada/US

Ohio Airships Inc. DynaLifter PSC-

3

Winged hybrid,VTOL, and heavy lift 3,000 115 US

Zeppelin Luftschifftechnik

Gmbh

Zeppelin LZ NT-

07

Semi-rigid, internal rigid framework consist-

ing of carbon fiber triangular frames and alu-

minum members

2,500 81 Germany

LTA Corporation Alize 50 Lenticular shape, semi-rigid,and VTOL 2,000 81 France

AEROS Aeroscraft

ML866 model

Control of static heaviness,heavy lift,and

VTOL

3,000 115 US

Northrop Grum-

man/Airship Industries

N/A Long endurance and multi-intelligence 6,000 N/A US/UK

Table 1.1: Summary of airship projects in recent years.

The remarkable difference from ancient airship researches is that modern researches concentrate
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on the unmanned flying. That means the airship no more needs any pilot on board to control the

airship. But based on partial remote human control, feedbackcontrol and autonomous waypoint

navigation, an airship is expected to finish a certain task automatically. This kind of airship is called

autonomous unmanned airship as shown in Fig.1.8.

Many works have been devoted to solve problems encountered in this process, such as new surface

materials, energy suppling method (Knaupp and Mundschau, 2004) and control problems. This thesis

focuses on the modelling and control problems.

1.2.2 Basic knowledge of the unmanned airship

From the airship’s appearance, there is no much difference between a manned airship and an

unmanned one. Both have the following similar structures (see Fig. 1.8). Control surfaces (elevators

and rudders), a gondola and engines are fixed on the hull. Control surfaces are used to control the

heading of movement, and engines offer the thrust. Some airships use vectored thrust which replaces

control surfaces to control the heading. In the inside of theairship, there exist two elastic inner

bladders, one for storing helium, the other is an adjustableair bladder is used to control the airship’s

motion in the vertical direction (see Fig.1.9).

Figure 1.8: Conventional unmanned airships are operated for a wide range of missions from scientific research

to surveillance duties. Unmanned airships can be designed to meet specific mission parameters set by clients

and include unique features such as hybrid power systems, multiple redundancy, autopilot and an advanced

handling system.

Different from a wing-fixed airplane, generally, an airship has aslow translational velocity and a

large volume, which leads the inertial forces to be considered (for a fixed-wing airplane, this is not the

case). Another problem is that the center of buoyancy (CB), thecenter of volume (O) and the center

of gravity (CG) locate at different places as shown in Fig.1.10.

Current unmanned airship research is based on a classical 6 degrees-of-freedom equations of

motion which are developed using the Newton-Euler method for each degree of freedom. These

equations are presented in the form as the following by the conventional notations:
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Figure 1.9: Climbing and descending control through adjusting the inner air bladders. Opening the valves to

release the air increases the net lift and leads to climb. Contrarily, blowing theair into the bladders decreases

the net lift and leads to descend.

M





u̇

v̇

ẇ

ṗ

q̇

ṙ





= Fd(u, v,w, p,q, r) + A(u, v,w, p,q, r) +G(λ31, λ32, λ33) + P(propulsion forces and moments)

(1.1)

where,M=6x6 Mass matrix

Fd=6x1 matrix Dynamic Forces vector

A=6x1 matrix Aerodynamics vector

G=6x1 matrix gravitational and Buoyancy vector

P=6x1 matrix Propulsion vector

Generally, there exist two important assumptions for this model. One is that the airship is assumed

to be a geometrical symmetrical ideal airship. Another one is that the center of the gravity and the

center of volume of the airship are assumed to be exactly overlapped.

The controls of this airship are the deflections of the control surfaces (or the vector thrust) and the

thrust. The mission of the unmanned airship is to track a given trajectory and keep a desired attitude.
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Figure 1.10: The center of gravity and the center of buoyancy do not overlap. This isan obvious different

point from the fixed-wings airplanes. This misalignment causes complexity and unstabilitySource(Cook, M.

V., 1990).

1.2.3 A survey on the control strategy

A general control strategy on the autonomous unmanned airship whose model presented by (1.1)

is a linear control scheme based on linearized and decoupledmodels. More precisely, the original

nonlinear model is linearized through some approaches, such as a small perturbation method, and

then, the system states are decoupled according to the dynamic planes they belong to, such as the

states on the longitudinal plane and the ones on the lateral plane (Khoury and Gillett, 1999). Controls

are designed for the linearized and decoupled subsystems instead of the original nonlinear system

(1.1). Methods which are used to design the control include PID (Purandare, 2007), LQR (Liu, 2009),

robust control (Ouyang, 2003), damping feedback (Cai et al., 2007; Ortega et al., 2002; Astolfi et al.,

2002), backstepping methods (Repoulias and Papadopoulos, 2008; Beji et al., 2002; Coron, 1999) and

others (Healey and Lienard, 1993; Kim et al., 2003; Khoury and Gillett, 1999). In these references,

conventional actuators, such as control surfaces and thrusts, are used to stabilizer the attitude and the

position (Morin and Samson, 1995; Pettersen and Egeland, 1999).

One major achievement of modern nonlinear control is feedback linearization (Isidori, 1989;

Conte et al., 2007; Isidori and Moog, 1988). This theory has been widely applied for flight con-

trols (Lane and Stengel, 1988; Sun and Clarke, 1994). Unfortunately the airship system is not fully

linearizable, the main drawback is that a nonlinear internal dynamics will remain in the closed-loop

system which may be unstable. To prove the stability of this nonlinear internal dynamics is a challenge

which is solved in this thesis.
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1.3 Glide and Buoyancy Engine

To achieve a longer aerial endurance with lower energy consuming, some mechanisms inspire new

solutions. The first one is glide. Glide is a motion for heavier-than-air objects which are supported

in flight, airborne or underwater, by the dynamic reaction ofthe medium against their lifting surface,

and this flight does not depend on any engine. A force analysisof an airplane in this case is shown in

Fig. 1.11.

Another motion is the buoying or sinking which is caused by the net lift. If the net lift of a vehicle

is adjustable by varying the weight or volume of the vehicle,it can buoy and sink in the medium.

Semi-rigid, rigid airships and submarines adjust the weight to vary the net lift to execute the buoying

and sinking. Some autonomous underwater vehicles employ a deformable bladder equipped on the

hull to adjust the volume of the vehicle to vary the net lift (Davis et al., 2002). Such a device to adjust

the net lift is called the buoyancy engine, and a type of that is shown in Fig.1.12.

Figure 1.11: The forces acting on the whole air-

craft during stable glide. Under this situation, the

components of the gravity equals to the drag and

lift.

Figure 1.12: An buoyancy pump (engine). This

buoyancy pump is equipped on a kind of under-

water glider - Slocum. It adjusts the mass of the

vehicle through pumping the water.

1.3.1 Gliding vehicles

There are lots of gliding vehicles, such as glider aircrafts, paragliders, et al.. These vehicles can

fly freely under the control of the pilot. What’s more efficient is that when these vehicles are equipped

with propellers, pilots have more “degrees-of-freedom” tocontrol the vehicles. There are also some

researches discussing the possibility of steering these gliding vehicles in an autonomous way. From

the results available to now, the mathematical models of these crafts are very complicated with a
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large number of degrees-of-freedom and complex nonlinear couplings (Zaitsev and Formalskii, 2008;

Toglia and Vendittelli, 2010).

1.3.2 Underwater gliders

Due to the same object of the airship research, oceanographers look for an oceanic observation

platform which can cruise a long distant and for a long time underwater or offshore with limit energy.

In 1989, Henry Stommel published a far-thinking article (Stommel, 1989) envisioning a global ocean

observing system based on “a fleet of 1000 small neutrally-buoyant floats” which “migrate vertically

through the ocean by changing ballast, and they can be steered horizontally by gliding on wings at

about a 35 degrees angle”. A class of autonomous underwater vehicles realized Stommel’s vision.

As opposed to conventional underwater vehicles, they do notuse propellers which usual are electrical

engines. Autonomous underwater gliders change their volume and buoyancy to cycle vertically in the

ocean and use the net lift on wings to convert this vertical velocity into forward motion. This driving

mechanism is called as a kind of buoyancy engine. Wing-lift drives forward motion both during

the ascend and descend of the vehicles, so they follow sawtooth paths. The shallowest points on

the sawtooth are at the surface where satellite navigation and communication are carried out (Jenkins

et al., 2003), which made possible a class of small, inexpensive instrument platforms that are changing

the way the ocean is observed.

There exist four mature underwater gliders which are Spray,Seaglider, Slocum Batttery and

Slcoum Thermal (Davis et al., 2002; Jenkins et al., 2003). These gliders can cover a range 3,000

km to 5,000 km in one to several months with limited on board electrical power. The typical horizon-

tal speed of these gliders is quite low, about 0.25 m/s as opposed to propeller-driven vehicles which

travel several meters per second. This does not mean the gliders can not move quickly, but actually,

there is a tradeoff between operating range and speed, which is illustrated by the Fig. 1.13and1.14

(Furlong et al., 2007). This also can be explained as: normally, the value of the thrust of a motion is

proportional to the cube of speed, so higher speed leads smaller range.

1.4 Hybrid Airship and the Buoyancy-driven Airship

Through the analysis in the section1.2, conventional unmanned airship with propellers is a good

choice for a long aerial-endurance platform. According to the relationship of “best transport method”

versus speed and lift for vertical/short take-off (V/STOL) aircraft illustrated in (Purandare, 2007),

airships are therefore best suited for low-speed applications (Liao and Pasternak, 2009).

To extend the operating range for normal lift and slow speed application, a hybrid airship is an
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Figure 1.13: Modelled range vs speed for the

concept long range AUV. The cruising speed is

slower, the operating range is larger and the vehi-

cle is more efficientSource(Furlong et al., 2007).

Figure 1.14: Maximum range and associated for-

ward speed for the long range concept AUV vs %

buoyancy. An increase in the vehicle’s net buoy-

ancy will greatly reduce the total range of the un-

derwater vehiclesSource(Furlong et al., 2007).

optimal choice. A Hybrid airship is a general term for an aircraft that combines characteristics of

heavier-than-air (airplane or helicopter) and lighter-than-air technology. British skycat program, P-

791 hybrid airship program developed by Lockheed Martin andAeroscraft ML866 are good exam-

ples, which are designed to be the best of the two worlds by retaining the high speed of conventional

aircraft and lifting capacity of aerostatic aircraft.

For long airborne endurance airships, Lockheed Martin Ltd.reported a patent design in 2007,

which describes an airship/fix-wing airplane hybrid with conventional propellers as shown in Fig.

1.15. Another Lockheed Martin’s hybrid airship with aerodynamic lift capability is shown in Fig.

1.16.

Another hybrid buoyancy-driven airship was proposed by Purandare in (Purandare, 2007), whose

appearance is shown in Fig.1.17. This hybrid airship employs a gliding mechanism and a buoyancy

engine which are depicted previously to drive itself, and itdrops the conventional propeller and control

surfaces. This hybrid airship is called the buoyancy-driven airship in the thesis, and it is the research

topic of thesis. The details of this airship is depicted in the next chapter.

1.5 Research Motive and Contributions

The buoyancy-driven airship uses a buoyancy engine to control the ascent and descent, in addition

with the gliding mechanism to move forward. Through the prior research in (Purandare, 2007), the

buoyancy-driven airship is efficient when the angle of attack in flight is small, and the buoyancy-
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Figure 1.15: Lockheed Martin’s inflatable, high-

altitude, endurance airship. This hybrid airship

uses conventional propeller, without buoyancy en-

gineSource(Lavan, 2007).

Figure 1.16: Lockheed Martin’s semi-buoyant

vehicle with aerodynamic lift capabilitySource

(Eichstedt et al., 2001).

Figure 1.17: The proposed buoyancy-driven airshipSource(Purandare, 2007).

driven airship is a good substitute of the conventional airship in many situations. It also offers a novel

mechanism for unmanned vehicles. Moreover, it employs an internal moveable mass to control the

vehicle’s attitude, which is a very important mechanism forlots of systems with internal dynamics.

Thus, the research of this thesis makes sense for the research of HAPs, UAVs, and lots of complex

mechanical systems.

The buoyancy-driven airship is a novel object. To present, the only available reference on this

domain is the thesis (Purandare, 2007), and this is a challenge for this research. In this thesis only

some theoretical issues are argued, and the main contributions consist of the following four aspects:

• A complete 8-DOF mathematical model for the buoyancy-driven airship in 3D is derived for

the first time. In this area, two approaches with the internaldynamics modeled are offered. The

modelling is significantly simplified by viewing the airship’s rigid body and the moveable mass
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independently.

• The fundamental structures of the complex model are investigated by analysis, design and sim-

ulations. Many properties of the airship’s structure are established, and these properties make

sense for the control design.

• Various controls of the planar dynamics are constructed. Approaches based on LQR, input-

output feedback linearization, and maximal feedback linearization are presented and compared.

It has been shown that the airship is not fully feedback linearizable. Maximal feedback has

been solved. Although the latter techniques are usually nottrackable for complex aeronautical

models, it has been possible to derive analytic control solutions. A major challenge is internal

stability and a suitable choice of linearizing coordinatescould circumvent this issue and the

internal stability has been proven.

The control laws are state feedbacks and thus require the knowledge of all state available. This

will eventually require the design of nonlinear observers.However this latter issue is out of the

scope of this thesis.

• A Control scheme based on singular perturbations for the motion in 3D is derived. In this frame,

the analytical condition for a stable spiral motion is derived.
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As introduced in the Introduction chapter, The main difference between the conventional airship

and the buoyancy-driven airship is that it employs a movablepoint mass and a mass-adjustable internal

air bladder to control the motion of the airship. They replace the conventional propellers and control

surfaces. This new mechanism has been adopted to achieve a high efficiency for aerial vehicles. The

structure and the operating mechanism of the buoyancy-driven airship is explicitly explained in this

chapter; useful physical properties are presented as well.Comparing with the conventional airship

and airplane, the energy efficiency of the buoyancy-driven airship is analyzed through an approximate

analytical approach, and some results are presented.

The contribution of this chapter consist in the analysis of the structure and the efficiency problem

of the buoyancy-driven airship. From this analysis, the structure of the airship is split into two parts as:

the moveable mass which impacts the airship’s attitude, andthe aerodynamic forces which impacts

the flight path. For the efficiency problem, the ideal propulsive powers of both the conventional airship

and the buoyancy-driven airship are compared. Partial content of this chapter has been published in

(Wu et al., 2011a).

This chapter is organized as follows: section2.1 explicitly depicts the concept of the buoyancy-

driven airship; section2.2 analyzes the dynamic system through an analytical approach; section2.3

compares the ideal propulsive powers of the conventional airship and of the buoyancy-driven airship.

15
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2.1 The Considered Hybrid Airship

The main structure of the buoyancy-driven airship proposedin (Purandare, 2007) is shown in Fig.

2.1, which has dropped the conventional actuators, such as diesel or electrical engine, elevator, rudder,

etc.

Helium bladder

ValveBlower

Moving mass

Air bladder

Figure 2.1: Structure of Buoyancy-Driven Airship.

2.1.1 General description

For the structure of the buoyancy-driven airship, it mainlyconsists of an envelope, wings, an

internal air bladder, and a movable mass. These parts are briefly depicted in the following.

The envelope and the wings

Obviously, the function of the envelope and the wings of an airship is to offer enough net lift for

the payload for scientific and other instruments. The envelope is assumed to be a rigid one in this

thesis. For the modelling of non-rigid airships, (Bennaceur, 2009; Azouz et al., 2002) gives some

details.

The lift, namely buoyancy, of the airship comes from two parts: one is the static lift offered by the

airship body. This is due to the density of the helium which issmaller than the density of air. Another

part is the aerodynamic lift caused by the turbulent mixing of air of varying pressure on the upper and

lower surfaces of the body and the wings. The functions to compute the values of these two lift terms

will be presented in the modelling section.

For aerial vehicles in flight, beside the lift, there also exists the drag (Kanikdale, 2004). Generally,

this drag consists of two primary parts, one is the lift-induced drag, namely induced drag, which
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occurs as the result of the creation of lift on a three-dimensional lifting body, such as the wing or

fuselage of an airplane. The relation of the lift and the induced drag is shown in Fig.2.2. Another

primary part of the drag consists in the parasitic drag. Parasitic drag, is the drag caused by moving

a solid object through a fluid. Parasitic drag is made up of multiple components including viscous

pressure drag, namely form drag, and drag due to surface roughness, namely skin friction drag. For

different shapes of the objects, the percentage of form drag and skin friction drag is different, as shown

in Tab.2.1.

For an airplane in flight, its drag consists of induced drag and parasite drag (Lutz and Wagner,

1998; Kanikdale, 2004). The variations of these two drags are shown in Fig.2.3. This curve can

be explained as: induced drag tends to be greater at lower speeds because a high angle of attack is

required to maintain lift, creating more drag. However, as speed increases the induced drag becomes

smaller, but parasitic drag increases because the fluid is flowing faster around protruding objects.

Figure 2.2: The induced drag and the lift.

In aviation, the induced drag occurs as the

result of the creation of lift on a three-

dimensional lifting bodySource(Wikipedia,

2011).

Figure 2.3: The power curve: parasitic and induced

drag vs. airspeed. It’s important for pilots to main-

tain certain airspeed where the total drag is the lowest

Source(Wikipedia, 2011).

For the design of the airship, decreasing total drag is important, no matter for conventional airship

or buoyancy-driven airship. But in opposition to fixed-wing aircrafts, airships are subject to significant

parasite drag, both form drag and skin friction drag. This iscaused as airship’s lift is mainly provided

by the lighter-than-air ballonets. For a given volume, the percentage of form drag and skin friction

drag has relation with a diameter-to length ratio (d/l) (Lutz and Wagner, 1998). The percentage of

form drag will increase when the ratiod/l increases as shown in Tab.2.1. Besides drag, for a given
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Table 2.1: From drag and skin friction drag vs. different shapesSource(Wikipedia, 2011)

Shape and flow

Form drag 0 ∼10% ∼90% ∼100%

Skin friction ∼100% ∼90% ∼10% 0

volume, it is also important to decrease the total surface-area since the envelope is a payload for the

system.

The center body of the airship is designed to have a low total drag and a high volume/surface-area

ratio. To achieve a tradeoff, the shape is a revolved NACA0050 airfoil profile whose coordinates are

shown in Fig.2.4, and it is decided by (2.1).
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Figure 2.4: The airship’s body is an elongated body which is a revolution of such NACA0050 airfoil.
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(2.1)

wherec is the chord length, and t is the maximum thickness as a fraction of the chord.

Note that the aerodynamics is not an important area in our research. So, sometimes the result is

given without lots of analysis. In the rest of this thesis, a simple ellipsoid is used to replace the above

revolved NACA0050 airfoil for simplicity.

The internal air bladder

Fig. 2.5 illustrates the internal air bladder fill/discharge system. The volume of the air bladder is

variable. The compressor/blower is used to fill the bladder with ambient air, and the valve is used to
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release the air from the bladder. By this way, the mass of the bladder is changed, which causes the

variations of the total weight of the airship. Thus, its net buoyancy (buoyancy force minus weight) is

controllable.

intake

helium

air bladder

compressor valve

atmosphere

air air

Figure 2.5: The internal air bladder and the mass adjusting mechanism. The altitude of the airship is controlled

by this mechanism.

When the ambient air is drawn into the air bladder, the net buoyancy becomes negative, thus,

the airship falls down. Conversely, when the air is released from the internal air bladder, the net

buoyancy becomes positive, thus, the airship rises. The altitude of the buoyancy-driven airship is

mainly controlled by this way.

Here, the description of this mechanism is simplified since the actual realization is more complex;

it has to consider the variation of the internal/external pressure, which is beyond the scope of this

thesis.

The moveable/moving mass

The moveable mass is located at the bottom of the airship and it can move on thee1 − e2 plane

of the body frame as shown in Fig.2.6. It can not move in the vertical direction. The motion in the

vertical direction is useless for the control and the stability the airship. Actually, the center of gravity

of the whole system should be under the horizontal symmetrical planee1−O−e2 (Leonard, 1997a,b).

m

rp1

rp2

e1

e2

e3

Figure 2.6: The moveable masses moves on thee1 − e2 plane.

With the motion of the moveable mass, the center of gravity ofthe airshipCGmoves, which leads

to the variation of the attitude of the airship, which is explicitly analyzed in next section and simulated
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in the chapter4.

The use of a moveable mass to control the attitude is an important and interesting mechanism.

Some other mechanical system, such as underwater gliders and re-entry vehicles, involve a similar

device. However, different forms of moveable masses exist, for instance an additional round mass

ring is used as a moveable mass for a underwater glider (Eriksen et al., 2001).

2.1.2 The operating mechanism

The mechanism to operate this kind of airship is described asfollows. When the air releases from

internal air bladder, the mass of the airship reduces, thus,the net lift becomes positive and the airship

rises. Meanwhile, the moveable mass moves to the rear of the airship; the airship gets a positive

pitch angleθ, which yields a forward aerodynamic component force actingon the airship. This

component force makes it move forward (see Fig.7.3 and the trajectory is the BC segment of Fig.

7.5). Conversely, when pumping air into the internal air bladder, the mass of the airship increases,

thus, the net lift becomes negative and the airship falls. With the moveable mass driven by the body

to the front, the pitch angleθ becomes negative, which still yields a forward aerodynamiccomponent

force. Therefore the airship moves forward and downwards (see Fig.7.4and the trajectory is the AB

segment of Fig.7.5). If the moveable mass is moving to the sides, then the airship will roll. Due to

the coupling of roll and rotation moments, the airship flies to the right or left directions (Purandare,

2007). Fig. 7.5 illustrates a typical trajectory of the airship in the vertical plane.

Figure 2.7: The Airship moves upwards and for-

ward.

Figure 2.8: The Airship moves downwards and

forward.

2.1.3 The mathematical description

The entire mass of the airship is split into several items. Let mh denote the uniformly distributed

mass of the hull,mb denote the variable mass of the internal air bladder, ¯m denote the mass of the

moving mass, andmw denote other internal fixed masses whose center of gravity offsets fromO.
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Figure 2.9: Ideal Trajectory of a Buoyancy-Driven Airship.

rp ≡ (rp1, rp2, rp3)T denotes the position of the moving mass in the body frame.rb andrw are the

vectors fromO to mb andmw, shown in Fig.2.10. In the rest of this thesis, it is assumed thatmb and

mw locate at pointO, thus,rb = rw = 0.

O

m

rp

mw

rw

mb

mh

e1

e3

e2
rb

Figure 2.10: Mass Distribution.

The massms is the total stationary mass, thus,ms = mh +mb +mw. The total mass of the vehicle

is mv, so:

mv = ms+ m̄= mh +mb +mw + m̄.

Let m = ρa∇ be the buoyancy of the airship with the volume∇, whereρa is the density of the air.

Therefore, the net lift of the airship ism0g = mvg−mg.

For the airship investigated in this thesis, the basic physical properties are given bymh = 269kg,

mw = 0, and∇ = 301m3.

2.2 Basic Analysis of the Dynamic System

In this section, a force analysis is done, and some importantprinciples are revealed through this

analysis.
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2.2.1 Moveable mass and attitude

Here, the interaction between the moveable mass and the airship’s body is investigated through

an approximate analysis; some principles are presented. Itis assumed that the airship is statically

suspended in the air; there is no translation and the net liftis equal to zero. In this case, it is assumed

that the airship rotates around its center of volumeO. Since the center of gravity of the airship’s body

locates at the center of volumeO, thus, the center of gravity of the entire airshipCG locates at the

straight line connectingO and the center of mass of ¯m. At the equilibrium,O, CG, and the center of

mass ofm̄ should all locate on a plumb-line. So, if the moveable mass moves to the front, as shown

in Fig. 2.11, the airship’s body will rotate clockwise, and it stabilizes at a negative pitch angleθ. If

the moveable mass moves to the rear, the body will rotate counter-clockwise, and it stabilizes at a

positive pitch angle, as shown in Fig.2.12. For the same reason, if the moveable mass moves to the

right or left side, it will yield a positive or negative roll angleφ.

θCG×

O

mθ

B

W

Figure 2.11: The body rotates clockwise.

θ

CG ×
O

m θ

B

W

Figure 2.12: The body rotates counter-clockwise.

Note that the above analysis is only an approximate one, the purpose is to illustrate that the attitude

of this airship is mainly controlled by the position of the moveable mass, no matter in flight or in a

static status. This is simulated in chapter4. Note that the moveable mass is actuated by the force

from the airship’s body, and this force is viewed as one of thecontrol inputs of the hold system. Thus,

Fig. 2.13 illustrates and concludes these relations. In this figure,u denotes the force to actuate the

moveable mass;rp denotes the position of the moveable mass; Euler anglesφ, θ, andψ represent the

attitude.

attitude
φ θ ψmoving

mass
u rp

Figure 2.13: The attitude control structure.

Remark: The attitude of the airship is mainly impacted by the motionof the moveable mass.
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2.2.2 Aerodynamics and flight path

In the above subsection, the moveable mass and the airship’sbody are viewed as two independent

parts. Here, these two subsystems are viewed as a whole, and the steady-state force-balance of the

airship during the descent and the ascent is investigated. These two conditions are illustrated in Fig.

2.14and2.15.

ξθ
α

Lift Force ( )L

Net Weight ( )W-B

Drag Force ( )D

Moving Direction
V

Figure 2.14: Descent forces.

Net Buoyancy ( )B-W

“Lift” Force ( )L

Drag Force ( )D

Moving Direction

ξ
θ

α

V

Figure 2.15: Ascent forces.

In these two figures,θ is the pitch angle;α is the angle of attack;ξ is the flight path angle.V is

the velocity vector in the inertial frame.L andD are the aerodynamic lift force and drag force.W is

airship’s total weight (including the moveable mass);B is the buoyancy.

For the descent case,W is greater thanB so that the net force is directed downwards as shown

in Fig. 2.14. For the ascent case,B is greater thanW so that the net force is upwards as shown in

Fig. 2.15. Note that for force-balance during descent, the lift forcehas an upward vertical component

(with respect to the wind frame). However, for force-balance during ascent, the lift force must have a

downward vertical component to balance the net buoyancy.

The force balance in the horizontal and vertical directionsof the wind frame for the descent case

is presented in the following:

∑

Fe1 = 0 : (W− B) sinξ − D = 0 (2.2)
∑

Fe3 = 0 : (W− B) cosξ − L = 0 (2.3)

From (2.2) and (2.3), the following result is derived:

W− B =
√

D2 + L2 (2.4)

The force-balance equations for ascent (Fig.2.15) are as follows:

∑

Fe1 = 0 : (B−W) sinξ − D = 0 (2.5)
∑

Fe3 = 0 : (B−W) cosξ − L = 0 (2.6)
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Thus, from (2.5) and (2.6), the following result is derived:

W− B = −
√

D2 + L2 (2.7)

With (2.4) and (2.7), the following remark is derived:

Remark: For the descent and the ascent, if the flight path angleξ symmetrical and the velocities

have the values, the net buoyancy (buoyancy minus weight) issymmetrical for these two motions.

For aerodynamic forces, drag and lift, they have the following general form:

D =
1
2
ρa∇2/3V2CD (2.8)

L =
1
2
ρa∇2/3V2CL (2.9)

whereρa is the density of the air;∇ is the volume of the airship;V is the velocity;CD andCL are

aerodynamic coefficients.

Substituting the expression ofD andL into (2.4), the following result is derived:

V2 =
B−W

1
2ρa∇2/3

√

C2
D +C2

L

(2.10)

Remark: The magnitude of the airship’s velocity is determined by the net buoyancy which is

controlled by the inputu4.

From (2.2) and (2.3), one gets:

D cosξ − L sinξ = 0

Thus, the flight path angleξ and the aerodynamic forces are related as:

tanξ =
D
L

(2.11)

Summarizing the result (2.11), the following remark is derived:

Remark: The equilibrium of the flight path angle is fixed by the aerodynamics.

To conclude the previous two remarks, the flight path and the velocity of the airship are mainly

controlled by the airship’s net buoyancy, and the aerodynamic forces, as shown in Fig.2.16. Here,

the control problem of the flight path and of the velocity is called the guidance problem.

From the expression of the aerodynamic forces (2.8) and (2.9), these forces depend on the velocity

V and the aerodynamic coefficients,CD andCL, which are the functions of the angle of attackα.

Obviously,α = θ − ξ. Thus, the aerodynamics forces are decided by the velocity,the Euler angles,

and the flight path angle. These relations are illustrated bythe Fig.2.17

Summarizing this section, the structure of the airship’s model is presented by Fig.2.18.
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guidanceaerodynamic
forces, etc.

V ξ  γ

net lift u4

Figure 2.16: The guidance control structure.

φ θ ψ aerodynamic
forces, etc.

V ξ  γ

Figure 2.17: The aerodynamics forces are decided by the velocity, Euler angles, andflight path angles.

From Fig. 2.18, it is found that the aerodynamics forces bridge the attitude subsystem and the

guidance subsystem. This point is very important for the analysis of the airship’s dynamics in chapter

4 where the airship’s dynamics is significantly simplified by ignoring the aerodynamic forces tem-

porarily.

2.3 Efficiency Comparison

In this section, the ideal propulsive power of the conventional airship and the buoyancy-driven

airship are introduced and compared. Here, the analysis is done in a constant density environment,

namely incompressible media, for other situation, such as in compressible media. Details may be

found in (Purandare, 2007).

2.3.1 The ideal propulsive power of the conventional airship

Conventional airships employ a propeller to drive the vehicle. It is assumed that a conventional

airship moves along a horizontal direction with velocityu. In force-balance condition, the thrust force

T is equal to the dragD; the buoyancy is equal to the weight as follows:

T = D =
1
2
ρa∇2/3u2CDC

Thus, the ideal propulsive power is:

PC = Tu=
1
2
ρaCD0∇2/3u3 (2.12)

The ideal propulsive power per unit gross weight or ideal ”specific power” is derived as follows:

PCS =
PC

W
=

1
2ρaCD0∇2/3u3

W
(2.13)
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Figure 2.18: The structure of the airship’s model.

From (2.13), the ideal specific power is proportional to the cubic of theflight speed for conven-

tional airships. For airplanes it reduces to a linear relation. This implies that airships are suitable for

low speed applications.

2.3.2 The propulsive power of the buoyancy-driven airship

Shown in Fig.2.9, the buoyancy-driven airship mainly behaves following a sawtooth trajectory.

Here one cycle which includes an ascent and a descent is considered as in Fig.2.19.

ξ

A

B

C

Δh

u

w

m0

m0

Figure 2.19: A cycle of the flight trajectory

Explicitly explained in (Purandare, 2007), the work needed to track the for AB and BC segments

is as follows:

ω = 2m0g∆h = 2(W− B)∆h = 2
√

D2 + L2∆h

= ρa∇2/3u2(1+
C2

D

C2
L

)
√

C2
D +C2

L∆h

where the expressions ofD andL and (2.11) have been substituted.

The average propulsive power is equal to the work divided by the period as follows:

PB =
ω

τ
=

ω

2∆h/w
=

ω

2∆h/u(CD/CL)

=

ρa∇2/3u2(1+
C2

D

C2
L
)
√

C2
D +C2

L∆h

2∆h/u(CD/CL)
=

1
2
ρa∇2/3u3CD

CL
(1+

C2
D

C2
L

)
√

C2
D +C2

L

whereτ is a period,u and w are horizontal and vertical velocities, respectively. Forthe descent

segment AB in Fig.2.19, the airship’s weight isW +
√

C2
D +C2

L; for the ascent segment BC in Fig.
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2.19, the airship’s weight isW−
√

C2
D +C2

L. To compute the power per unit gross weight or ”specific

power” of one cycle, the weight of the airship is approximately chosen asW. Thus, the specific power

PBS of the buoyancy-driven airship is:

PBS =
PB

W
=

1
2W

ρa∇2/3u3CD

CL
(1+

C2
D

C2
L

)
√

C2
D +C2

L (2.14)

2.3.3 Comparison of the efficiency

The power per unit gross weight of the conventional airship and the buoyancy-driven airship

are approximately computed. With (2.13) and (2.14), the ratio of ideal buoyancy-to-conventional

propulsion specific powerrsp is computed as:

rsp =
PBS

PCS
=

1
2Wρa∇2/3u3CD

CL
(1+

C2
D

C2
L
)
√

C2
D +C2

L

1
2WρaCD0∇2/3u3

=
CD

CD0CL
(1+

C2
D

C2
L

)
√

C2
D +C2

L (2.15)

where

CD0 = 0.0589

CD = 0.0589+ 0.016α2

CL = 1.269α

These aerodynamic coefficients are taken from (Ouyang, 2003). Thus,rsp is a function of the angle

of attackα, and Fig.2.20showsrsp versusα from (2.15). A low rsp is preferable as it indicates low

propulsive power per unit vehicle weight compared to a conventional propulsion. The figure shows

that a minimum exists forrsp.

From Fig. 2.20, it appears thatrsp is never lower than 1, which means that the propulsive power

per unit gross weight of the buoyancy-driven airship is larger than that of the conventional airship.

This result is beyond people’s expectation since the buoyancy-driven airship is expected to be more

energy-saving than conventional one. However, similar mechanical system, such as underwater glider,

has shown great potential in energy-saving. The last experiment on the underwater glider has demon-

strated that it can cross the Atlantic, from United States toSpain, without recharging its battery

(Shapiro, 2010).

The following is an approach to explain this. The conventional airship uses the standard propeller,

such as diesel engine or gasoline engine, normally, the usable horsepower of such engines is around

30%. The buoyancy-driven airship uses the electric energy to actuate the motion of the moveable
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Figure 2.20: Ideal specific power comparison between the conventional airship and the buoyancy driven air-

ship.

mass and the variation of the air bladder. It is believed thatthe usable horsepower of the buoyancy-

driven airship’s engine is higher that that of the conventional airship. Thus, the final efficiency of the

buoyancy-driven airship may be higher than the conventional one. The buoyancy-driven airship is a

substitute to conventional airships in some cases.

2.4 Conclusion

In this chapter, the structure and the operating mechanism of the buoyancy-driven airship are

explicitly explained. For the dynamic properties, some basic, but important, principles are analyzed

and presented. From these principles, the airship’s dynamic model is split into several subsystems.

These results are important for the control design in the next chapters. Finally, through an approximate

computation, the ideal propulsive power per unit gross weight of the conventional airship and the

buoyancy-driven airship are derived. From this result, it is found that the buoyancy driven airship is a

candidate to replace the conventional airship in some missions.
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This chapter develops a 8-DOF mathematical model for the buoyancy-driven airship which has

a body with fixed wings, internal mass-adjustable air bladders, and a moveable mass. The dynamic

model is developed based on physical principles and Newton-Euler Law. Different from the conven-

tional airship, the model developed here is intended to include the main features of buoyancy-driven

airships without unnecessary complexity. These characteristics have been depicted in the previous

chapter and consist in the control of internal air bladders and of the moveable mass.

There exist lots of references on the modelling of the aerialvehicles and ocean vehicles (Fos-

sen, 1994; Pourzanjani and Roberts, 1991; Bhattacharyya, 1978; Abkowitz, 1975). The mathematical

model of the conventional autonomous unmanned airship is mentioned in many references (Ouyang,

2003; Mueller et al., 2004; Beji et al., 2004), but it is first investigated and derived in (Gomes and

Ramos Jr, 1998). The dynamics of the buoyancy-driven airship is more complex than that of the con-

ventional one due to the existence of the internal dynamics.In the pioneer research on the buoyancy-

driven airship (Purandare, 2007), only the dynamic model on the longitudinal plane was given. This

chapter derives the full model of the buoyancy-driven airship in 3D for the first time. Moreover, it

offers two approaches to set up the model, considering the airship’s rigid body and the moveable mass

independently or not. These two approaches have respectiveadvantages. The model derived in the

29
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chapter is the basis of the analysis for the rest of the thesis.

The contribution of this chapter consists in the presentation of the full model of the buoyancy-

driven airship for the first time. According to the relation between the airship’s body and the moveable

mass, the modelling of such a complex mechanical system is significantly simplified and is clearly

presented. Partial content of this chapter has been published in (Wu et al., 2009a, 2010, 2011a).

This chapter is arranged as follows: the basic coordinates and definitions of the states are pre-

sented in Section3.1. The inertial frame, body frame, and the wind frame are introduced and the

transformations among them are also presented. Section3.2gives the airship’s equations of kinemat-

ics. Since the model is derived through Newton-Euler law, itis necessary to analyze the total forces

and moments acting on the airship’s body and the moveable mass. This content is presented in Section

3.3. In Section3.4, for the dynamics of the airship with moveable mass, two modelling approaches

are presented and compared. For one approach, the dynamics of the rigid body and moveable mass

are viewed independently. The force of interaction betweenthese parts is viewed as a control. For

another approach, the system dynamics are described in terms of the total system momentum and the

moveable mass momentum. Section3.5 presents the system’s dynamic equations through the first

approach. Section3.6 concludes the full mathematical model of the buoyancy-driven airship in 3D.

Section3.7concludes this chapter.

3.1 Reference Frame and System States

For aerial vehicle research, four frames may be involved, which are the inertial frame, the body-

fixed frame (no-inertial frame), the wind frame, and the Frenet frame (Fossen, 1994). In these frames,

the Frenet frame is used for trajectory planing and tracking. The first three frames are briefly intro-

duced in the following.

3.1.1 Inertial frame

The inertial frame is an initially fixed, non-rotating reference frameG{i, j, k}, shown in Fig3.1.

The originG is fixed on an arbitrary point on the earth. Thei inertial axis lies in the horizontal plane

and normally points to the airship’s global moving direction; the j axis is perpendicular to gravity and

is subject to right-hand rule;k lies in the direction of the gravity vector and is positive downwards. As

well, in the rest of this thesis, bold symbols,i, j, andk, also denote the unit vectors in these directions.

As shown in Fig3.1, the position vector of the airship’s center of volume with respect to the inertial

frame isb and it is also represented by (i, j, k)T .
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3.1.2 Body-fixed frame and the transformation

The body-fixed frameO{e1, e2, e3}, also called body frame or no-inertial frame, is fixed to the

airship’s body with the origin at the center of volumeO and its axes are aligned with the principal

axes of the glider. Thee1 axis lies along the long axis of the vehicle and points towards the airship’s

nose; thee2 axis lies in the plane of the wings and the axise3 points to the bottom and is perpendicular

to e2 as shown in Fig.3.1.

In this thesis, the velocity of the center of volumeO in the inertial frame isV. It is decomposed

with respect to the body frame asv1, v2 andv3. The angular velocityΩ is expressed in the body frame

as (Ω1, Ω2, Ω3). The directions of these states are shown in Fig.3.1.

The orientation of the body frame with respect to the inertial frame is defined by the three angles:

roll φ, pitch θ, and yawψ. In Euler’s rotation theorem, they are also called:φ angle of self rotation,

θ angle of nutation, andψ angle of precession. Rollφ is positive right-wing down, pitchθ is positive

nose-up, and yawψ is defined as positive right (clockwise) when viewed from above as shown in Fig.

3.2. These three angles are also called Euler angles which represent the attitude of the airship.

Thus, the rotation matrixR1, which maps vectors expressed with respect to the body frameinto

inertial frame coordinates, consists of these three Euler angles. R1 is constructed by the following

three rotations (from the inertial frameG{i, j, k} to the body frameO{e1, e2, e3}) (Shi, 1995):

1. rotate aroundG − k of yaw angleψ: G − i → G − x1, G − j → G − y1; shown in Fig.3.3.a.

2. rotate aroundG− y1 of pitch angleθ: G− x1→ O− e1, G− k→ G− z1 ; shown in Fig.3.3.b.

3. rotate aroundO− e1 of roll angleφ: G − y1→ O− e2, G − z1→ O− e3; shown in Fig.3.3.c.
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Figure 3.3: The aerodynamic angles

Shown in Fig.3.3, from the first rotation aroundG − i of yaw angleψ, thus,
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cosψ − sinψ 0

sinψ cosφ 0
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From the second rotation aroundG − y1 of pitch angleθ, thus,
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From the third rotation aroundG − e1 of roll angleφ, thus,
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Synthesize the above three coordinate transformations, the following relation is obtained:
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namely,





i

j

k





= R1





e1

e2

e3





where the rotation matrixR1 from the body frame to the inertial frame is:

R1 =





cosψ cosθ cosψ sinθ sinφ − sinψ cosφ cosψ sinθ cosφ + sinψ sinφ

sinψ cosθ sinψ sinθ sinφ + cosψ cosφ sinψ sinθ cosφ − cosψ sinφ

− sinθ cosθ sinφ cosθ cosφ





whereR−1
1 = RT

1 .
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3.1.3 Wind frame and the transformation

The aerodynamic forces on an aerial vehicles depend on the velocity and orientation of the vehi-

cles with respect to the airflow. To measure the orientation of the vehicles with respect to the airflow,

a wind frameO{w1, w2, w3} is assigned to track the airship’s motion as shown in Fig.3.4. The wind

axisw1 points in the direction ofV, thus, the aerodynamic force, drag, is in the opposite direction of

w1. The wind axisw3 lies in the bodye1 − e3 plane and is orthogonal to the vector (v1, 0, v3)T , and

the lift force lies in this direction. The orientation of thewind frame with respect to the body frame

will be described by the two aerodynamic angles, the angle ofattackα and the sideslip angleβ. One

of its axis is aligned with the velocity of the vehicle as shown in Fig. 3.4

v1

e3

e2

e1

v3

O

V
v2

β

α

Drag

Lift

w2

w3

w1

Figure 3.4: The aerodynamic angles

Obviously, from the Fig.3.4, the following relations are obtained:

α = arctan
v3

v1

β = arcsin
v2

‖V‖

The rotation matrix from the wind frame to the body frame is given by R2 as follows (Bhatta,

2006):

R2 = (Rα)T(Rβ)T =





cosα 0 sinα

0 1 0

− sinα 0 cosα





T 



cosβ − sinβ 0

sinβ cosβ 0

0 0 1





T

=





cosα cosβ cosα sinβ − sinα

− sinβ cosβ 0

sinα cosβ sinα sinβ cosα
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Thus,




e1

e2

e3





= R2
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The orientation of the wind frame with respect to the inertial frame defines the flight path angles

of the aerial vehicles, shown in Fig.3.5. The vertical planar component of the flight path angle is

denoted byξ, and its horizontal planar component is denoted byγ. The positive directions of these

angles are shown in Fig.3.5.
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Figure 3.5: The flight path angles

3.2 The Kinematics of the Airship

Here, the airship, including the moveable mass, is viewed asan entire system to compute its kine-

matics, and it is computed with respect to the inertial frame. From the above analysis, the translation

velocity of the airship with respect to the inertial frame isdenoted byḃ = (i̇, j̇, k̇)T ; the angular

velocity is denoted by (̇φ, θ̇, ψ̇)T . The following two steps set up the relation between states in the

inertial frame with the states in the body frame.

• The transformation of the linear velocity

The linear velocity with respect to the body frame is given byV = (v1, v2, v3)T . For a vector, it

can be transformed between framesO{e1, e2, e3} andG{i, j, k} throughR1. Thus, forV and ḃ, they

have the following relation:

ḃ = R1V (3.1)

The expression ofR1 is already displayed in the above, in turns of the three Eulerangles.

• The transformation of the angular velocity

Using Euler angles (φ, θ, ψ)T , the Euler angular velocities with respect to the body frameare

defined as follows: angular velocity of roll
−→
Ω1 = φ̇i, angular velocity of pitch

−→
Ω2 = θ̇ j, and angular

velocity of yaw
−→
Ω3 = ψ̇k. Here,−→ denotes a vector. The above definition is valid under the assump-

tion: there is only one axis that rotates at each time. If a rigid body rotates as in Fig.3.3. The angular

velocity is:
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−→
Ω = ψ̇k + θ̇y1 + φ̇e1

The transformation vectorsy1 andk to the body frame by the above rotation matrices are as follows

(Beji et al.(2004)):

−→
Ω = ψ̇





cosθ 0 sinθ

0 1 0

− sinθ 0 cosθ









1 0 0

0 cosφ − sinφ

0 sinφ cosφ
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In the scalar form as:
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which is simplified as:

Ω = R−1
3
· (φ̇, θ̇, ψ̇)T

Thus,




φ̇

θ̇

ψ̇





= R3Ω

which is rewritten as:

η̇ = R3Ω (3.2)

where

η = (φ θ ψ)T

and

R3 =





1 sinφ tanθ cosφ tanθ

0 cosφ − sinφ

0 sinφ/ cosθ cosφ/ cosθ





θ ,
π

2
+Kπ

Note thatR3 involves two Euler angles and its form is not unique, which depends on the order of

the rotation in the Fig.3.3. Moreover,R3 is not an orthonormal matrix, which means thatRT
3
, R−1

3
.

Thus, the kinematics of the airship in the inertial frame is given by (3.1) and (3.2).

The above can be described by the Lie algebra approach as follows:

R1 ∈ S O(3), whereS O(3) is 3× 3 special orthogonal matrix, defined as follows:

S O(3) =
{

R1 ∈ ℜ3×3|R1R1
T = I ,detR1 = 1

}
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whereI denotes a 3× 3 identity matrix. The attitude and the position of the airship is decided by

(R1, b). The configuration space of the system is defined as:

S E(3) =
{

(b, R1)|b ∈ ℜ3, R1 ∈ S O(3)
}

= ℜ3 × S O(3)

S E(3) can be represented by homogeneous coordinates, as follows:




R1 b

0 1




∈ S E(3)

S E(3) is a rotation matrix group. For example, ifG ∈ S E(3), thenG is a transformation matrix of the

rigid body from body frame to the inertial frame.

3.3 The Forces Analysis

To set up the model of the system through the Newton-Euler approach, the forces applied on the

system should be found and computed firstly, which is depicted in this section.

Two limiting assumptions are made at the outset of that analysis for practical reasons:

1. the airship forms a rigid body such that aeroelastic effects can be neglected;

2. the rigid body is symmetric about thee1 − e2 plane; the resulting center of mass of all rigid

body components, except the moveable mass, lies in the center of the volumeO.

This section consists of two parts, one is devoted to the force analysis of the moveable mass,

another is devoted to that of the airship’s body.

3.3.1 The forces acting on the moveable masses

As depicted in Fig.2.10, and3.6, there exists a moveable mass to control the attitude. Sinceits

mass ism̄, and its position is [rp1 rp2 rp3]T . u in Fig. 3.6 represents the force applied on the two

moveable mass by the rigid body, which is the only coupling between the moveable mass and the

rigid body.

Here,u = [u1 u2 u3]T . u1 is the force acting on the mass alonge1 by the actuator,u2 is the force

acting on the mass alonge2 by the actuator, andu3 is the force acting on the mass alonge3 by the

rigid body.

3.3.2 Inertial forces and added mass

In fluid mechanics, the added mass or virtual mass is the inertia added to a system because an

accelerating or decelerating body has to move some volume ofthe surrounding fluid as it moves
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mg
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Figure 3.6: The force analysis of the moveable mass.

through it, since the object and fluid cannot occupy the same physical space simultaneously. For

simplicity, this can be modeled as some volume of fluid movingwith the object since more force is

required to accelerate the body in the fluid than in a vacuum (Brennen, 1982). Since the force is equal

to the mass times the acceleration, the additional force is included in terms of a virtualadded massof

the object in the fluid.

A simple example is presented to illustrated theadded mass. Consider a cylinder of radiusr

and lengthL, accelerating at ratedv
dt = v̇, shown in Fig.3.7. The hydro/aerodynamic force in thex

direction is obtained by integrating the pressure over the area projected in thex direction:

dθ x

L

v
.

dθ

dAx dA

dA=Lds
=Lrdθ

r

ds

dAx= dAcosθ
Fx

Figure 3.7: The added mass around a cylinder

−→
F x =

∫

Pd
−→
Ax

where

• d
−→
Ax = cosθdA; dA= Lds; ds= Rdθ

• PressureP = −ρ
(

v̇r cosθ +
1
2

v2

)
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So

Fx =

∫ 2π

0

(

−ρ
(

v̇r cosθ +
1
2

v2

))

cosθRLdθ

= −ρ · rL · v̇r
∫ 2π

0
cos2 θdθ

︸          ︷︷          ︸

=π

−ρ · rL · 1
2

v̇2

∫ 2π

0
cosθdθ

︸         ︷︷         ︸

=0

= −ρπr2Lv̇

wherev̇ is the acceleration of the body, and the negative sign indicates that the force is in the negative

x direction, opposing the acceleration. Thus, this extra force is applied on the body, and the apparent

added mass is:

ma = ρπr2L

Generally, in the potential flows theorem,mi j is computed as follows:

mi j = −ρ
∫

s
φi
∂φ j

∂n
ds (i, j = 1,2, . . . ,6)

wheren is the outward normal to the surfaces which represents the body surface.φi is the velocity

potential of the steady flow due to unit motion of the body in the ith direction.

Munk has shown that the added mass of an elongated body of revolution, such as the body of the

buoyancy-driven airship shown in Fig.2.4, can be reasonable approximated as that of an ellipsoid

with the same volume and the samelength/width ratio (Brennen, 1982). For an ellipsoid as shown in

Fig. 3.8, the added mass for the axial motion and the vertical motion are given by (3.3) and Tab.3.1.

2a

2b
axial

vertical

Figure 3.8: An ellipsoid used to compute the added mass in two direction

madd = k · 4
3
πρab2 (3.3)

Table 3.1: The value of the factork for differenta/b ratioSource(Brennen, 1982).

a/b 1.00 1.50 2.00 2.51 2.99 3.99 4.99 6.01 6.97 8.01 9.02 9.97

k for axial motion .500 .305 .209 .156 .122 .082 .059 .045 .036 .029 .024 .021

k for vertical motion .500 .621 .702 .763 .803 .860 .895 .918 .933 .945 .954 .960

For any accelerating or decelerating object, there exist 36added masses which are denoted bymi j ,

shown in the following equation (Thomasson, 2000). The added massmi j is interpreted as a mass
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associated with a force on the body in the directioni due to a unit acceleration in the directionj.

Subscripts, 1, 2, and 3 denote the translations alonge1, e2, ande3, respectively. 4, 5, and 6 denote

the rotations arounde1, e2, ande3, respectively.

F =





m11 m12 m13 m14 m15 m16

m21 m22 m23 m24 m25 m26

m31 m32 m33 m34 m5 m36

m41 m42 m43 m44 m45 m46

m51 m52 m53 m54 m55 m56

m61 m62 m63 m64 m65 m66









v̇1

v̇2

v̇3

Ω̇1

Ω̇2

Ω̇3





(3.4)
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Figure 3.9: The inertial force for an irregular ob-

ject
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P

ds

ds
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O

Figure 3.10: The inertial force for a symmetric

object.

According to (3.4), assume that an irregular object moves along thex direction with acceleration

v̇ as shown in Fig.3.9. For an irregular object, the forceF does not follow thex direction, its

components in the three axis are:






Fx = −m11v̇

Fy = −m21v̇

Fz = −m31v̇

and the three moments around the three axis are:






Mx = −m41v̇

My = −m51v̇

Mz = −m61v̇
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But if there exists a symmetric plane for an object, as thex− zplane of the object shown in Fig.3.10,

the above forceFy and momentMy are equal to zero since the pressure on symmetrical surfacesare

identical. Thus,m21 = m51 = 0 for this case.

For the airship, it is assumed that there exist three symmetric planese1 − e2, e1 − e3 ande2 − e3,

thus, all non-diagonal components in the above added mass matrix are equal to zero, and only the

components on the diagonal are kept.

The following will derive the inertial force caused by the added mass with respect to the body

frame.

In an ideal fluid, the kinetic energyTadd of fluid disturbances is (Shi, 1995):

Tadd =
1
2

6∑

i=1

6∑

j=1

mi jǫiǫ j =
1
2

(

m11v
2
1 +m22v

2
2 +m33v

2
3 +m44Ω

2
1 +m55Ω

2
2 +m66Ω

2
3

)

whereǫ1 = v1, ǫ2 = v2, ǫ3 = v3, ǫ4 = Ω1, ǫ5 = Ω2, ǫ6 = Ω3. The momentumB ≡ (B1, B2, B3)T and the

angular momentumK ≡ (B4, B5, B6)T of fluid disturbances are related to the kinetic energyTadd:

Bi =
∂Tadd

∂ǫi
(i = 1,2, · · · ,6).

So,

B = M f v

K = J fΩ.

whereM f ≡ diag{m11 m22 m33} andJ f ≡ diag{m44 m55 m66}.
The inertial forceFI and momentMI acting on the airship are as follows,






FI = −dB̃
dt = −

(
dB
dt +Ω × B

)

= −M f v̇ +
(

M f v
)

×Ω
MI = −dK̃

dt = −
(

dK
dt +Ω × K + v × B

)

= −J fΩ̇ +
(

J fΩ
)

×Ω +
(

M f v
)

× v

wheredB
dt , dK

dt denote the time-derivative of momentumB and angular momentumK with respect to

the inertial frame,dB̃
dt and dK̃

dt denote the time-derivative in the body frame. Here, the components
(

M f v
)

×Ω and
(

J fΩ
)

×Ω +
(

M f v
)

× v are Coriolis effects which can not be observed in the inertial

frame.

3.3.3 Aerodynamic forces and moments

The aerodynamic model of the airship is an age-old research topic, and it has been rarely recon-

sidered since the airship peak during twenty to thirties of last century. In this domain, a wealth of
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research was performed by Maxwell Munk in the 1920’s to 1930’s, which provided the basis for sub-

sequent modelling and other design (Munk, 1924, 1923). The aerodynamic model presented here was

developed using the procedure outlined by Jones and De Laurier. This model includes expressions

for axial force, and moment on an axis symmetric airship. Theeffect of these aerodynamic forcesFa

and momentsMa are present as follows,

Fa ≡ (Xa,Ya,Za)
T

Ma ≡ (La,Ma,Na)
T .

Xa, Ya, andZa are drag, sideforce, and lift, respectively. In some previous sections,Xa andZa are

denoted byD andL. La, Ma, andNa are roll moment, pitch moment, and yaw moment, respectively.

The aerodynamic forces act on the center of buoyancyCB. By convention, the decomposed aero-

dynamic forcesFa lie in the velocity frame (namely the wind frame), and the moments Ma are

decomposed in the body frame.

SinceFa is defined with respect to the velocity frame,Fa is rewritten with respect to the body

frame and denoted byFat:

Fat = R2Fa (3.5)

whereR2 is the transfer matrix from the velocity frame to the body frame.

To keep the notations consistent,Ma is rewritten byMat and

Mat = Ma. (3.6)

For the explicit expressions the axis forces and moment, there exist two approaches to process:

the exact one and the approximate one.

For an airship which is flying with speedV, angle of attackα, and sideslip angleβ, the axis forces,

Xa, Ya, andZa, and momentLa, Ma, andNa are presented through an exact approach as (Munk, 1924):






Drag : Xa =
1
2ρa∇2/3V2

(

Cx0 +Cα
xα

2
)

S ide f orce: Ya =
1
2ρa∇2/3V2

(

Cy0 +Cβ
yβ +CΩ3

y Ω3

)

Li f t : Za =
1
2ρa∇2/3V2

(

Cz0 +Cα
zα

)

Roll moment: La =
1
2ρa∇V2

(

Cl0 +Cβ

l β +CΩ1
l Ω1 +CΩ3

l Ω3

)

Pitch moment: Ma =
1
2ρa∇V2

(

Cm0 +Cα
mα +CΩ2

m Ω2

)

Yaw moment: Na =
1
2ρa∇V2

(

Cm0 +Cβ
mβ +CΩ1

n Ω1 +CΩ3
n Ω3

)

(3.7)

Here,ρa is the density of ambient air,∇ is the volume of the airship. TheCi ’s are the aerodynamic

coefficients which are computed from wind tunnel experiments.
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Note that since the buoyancy-driven airship has no the conventional control surface, such as the

elevator and the rudder, the expressions of the aerodynamicforces do not include the deflection of the

control surface which is usually denoted by an angleδ.

Since the airship moves slowly and the aerodynamic forces are weak, to simplify the analysis of

the dynamics, these terms can be approximated as:





Fat

Mat




=





Fa1

Fa2

Fa3

La

Ma

Na





=





KDv1

KS Fv2

KLv3

KMLΩ1

KMΩ2

KNΩ3





(3.8)

whereKi are aerodynamic coefficients (Repoulias and Papadopoulos, 2008).

3.3.4 Gravity and buoyancy of the airship’s body

e1

e3

e2

X
O

mg

msg
rp

-u

Figure 3.11: The rigid body and some forces.

For the airship’s body, excepted the moveable mass, its massis ms, shown in Fig.3.11. Besides

the gravity, the buoyancymg is applied on it. In the inertial frame, the composite effect of gravity and

buoyancy is denoted byFGB as follows,

FGB = (ms−m)gk = (m0 − m̄)gk

wherek is a unit vector pointing in the direction of gravity.FGB is transferred to the body frame as

follows,

FGBt = (ms−m)gRT
1

k = (m0 − m̄)gRT
1

k (3.9)



3.4. TWO MODELLING APPROACHES 43

It is assumed that the center of gravity of the rigid body locates at pointO. So there is no moment

involved byms and the buoyancy of the airship. In the body frame, the lattermoment is:

MGBt = 0 (3.10)

3.3.5 The internal forces and moments

There exists a reacting force−u on the rigid body (see Fig.3.11), and this is a significant difference

from the conventional airship and airplane. These interactions Fint andMint are given by:

Fint = −u

Mint = rp × (−u)

3.4 Two Modelling Approaches

Here, two modelling approaches for a buoyancy-driven airship with internal moveable masses

are presented, which are different from the views of the system’s structure. For the first modelling

approach, the rigid body and internal moveable masses are viewed independently. The force of in-

teraction between the rigid body and the moveable mass is treated as a control. The advantage of

this approach is that the interconnection between the airship’s body and the moveable mass is clearly

presented, and the modelling of the airship’s body can referthat of the conventional airship which

is available in many reference. This is also the reason why the first approach is chosen to set up the

model in this thesis. For the second approach, the rigid bodyand internal moveable masses are viewed

globally. The above force is treated as an internal force. The system’s dynamics are described in terms

of the total system dynamics and the moveable mass dynamics.Since the control is an internal force,

the total momentum is conserved for any variation of control. The advantage of this approach is that

it is useful for studying stability of the system. Meanwhile, the disadvantage is that this approach is

more complicate than the first one.

As depicted in Fig.3.12, the airship’s rigid body and the moveable mass are synthesized as two

point masses. The two modelling approaches are presented asin the following.

3.4.1 The rigid body and the moveable mass are viewed independently

For the first approach, the two subsystems, the rigid body andthe moveable mass, are viewed

independently. Thus, the equations of motion involve the translational and angular motions of the

rigid body and the moveable mass. For simplicity, the dynamics is represented by the momentum of

the object.
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Figure 3.12: The rigid body and the moveable mass with respect to the inertial frame and the body frame.

Let p, π, andpp denote the translational, angular momentum of the rigid body and the translational

momentum of the moveable mass, respectively. Note thatp, π, andpp are all of these in the inertial

frame. Accordingly,P, Π, andPp denote these states in the body frame. According to the Newton’s

laws, the total external force and moment are denoted as:






π̇ =
∑

τext − rp ×
(

RT
1
u
)

ṗ =
∑

fext − m̄gk − RT
1
u

ṗp = m̄gk + RT
1
u

(3.11)

where
∑

fext denotes the total external force, besides ¯mg andu, applied to the rigid body.
∑

τext

denotes the total external torque, besides the torque of ¯mgandu.

With the transformation between the inertial frame and the body frame, one gets:






π = R1Π + b × p

p = R1P

pp = R1Pp

(3.12)

Differentiating (3.12) and substituting the kinematic equation (3.1) gives:






π̇ = R1

(

Π̇ +Ω ×Π
)

+ Rv × p + b × ṗ

ṗ = R1

(

Ṗ +Ω × P
)

ṗp = R1

(

Ṗp +Ω × Pp

)

(3.13)

Substituting (3.11) into (3.13), yields the following equations of motion in the body frame:






Π̇ = Π × Ω + P × v + RT
∑
τext − rp × u

Ṗ = P × Ω + RT
1

∑
fext − m̄g

(

RT k
)

− u

Ṗp = Pp × Ω + m̄g
(

RT k
)

+ u

(3.14)
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From theṖ equation andṖp equation in (3.14), the rigid body sustains a counterforce with the

magnitudeu from the moveable mass. This result is supported by the figure3.11 and the above

analysis. The control forceu couples the body and moveable masses as a multi-body system.

3.4.2 The rigid body and the moveable mass are viewed globally

Rather than considering the momentum of the rigid body separately from that of the moveable

mass, one may consider the total system momentum and angularmomentum which are specified by

a tilde, ′ ˜ ′. But for the moveable mass, the expression of the momentum is constant. To keep the

uniformity of the notation, it is rewritten as ˜pp.

For this case, the (3.11) transforms into:






˙̃π =
∑

τext + rp × (m̄gk)

˙̃p =
∑

fext

˙̃pp = m̄gk + RT
1
u

(3.15)

wherem̄gandu do not belong to external forces any more.

After the transformation, the variables with respect to theinertial frame in this case is given by:






˙̃
Π = Π̃ × Ω + P̃ × v + RT

∑
τext + rp ×

(

m̄gRT k
)

˙̃P = P̃ × Ω

˙̃Pp = P̃p × Ω + m̄g
(

RT k
)

+ u

(3.16)

Note thatu does not appear in the equation of˙̃
Π and ˙̃P, which reflects the fact that internal

actuation can not alter the total system momentum.

By this analysis, the internal dynamic structure has been recognized and exploited. These two

models are used for different purposes; they also aid the analysis and the control design for other

types vehicles, as well, including spacecraft and atmospheric re-entry vehicles.

3.5 The Dynamics Equations of the System

Even though the translational and angular momenta,Π, P, Pp, can be used as the states of the

system, they do not directly and visually present the system’s condition. The translational and angular

velocity of the system,Ω, v, ṙp are better to display the airship’s motion. Thus, the translational and

angular velocity are used as the states of the system in the following.

In this section the dynamics equations with new coordinatesof the system are derived through

the first approach in section3.4: the airship’s body and the moveable mass are viewed independently.
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The dynamics of the moveable mass is firstly derived, and then, those of the airship’s body is derived

based on the force analysis in the previous section.

3.5.1 Dynamics of the moveable mass

If the airship is rotating with angular velocityΩ. According to the relation between the absolute

velocity and the relative velocity, the absolute velocityvp of the ballast in the body frame is as follows,

vp = v + ṙp +Ω × rp. (3.17)

The total external force acting on the moveable mass is givenby:

Fp = (m̄vp) ×Ω + m̄gRT
1

k + u. (3.18)

According to Newton’s Second LawFp = m̄v̇p, with (3.17) and (3.18), the acceleration of the

moveable mass is derived as:

r̈p = −v̇ − Ω̇ × rp −Ω × ṙp + g(RT
1

k) + vp ×Ω + u/m̄. (3.19)

Since the moveable mass does not move in thee3 direction, namelyrp3 is a constant. Thus, ˙rp3 = 0

and ¨rp3 = 0, from (3.19), one gets:

u3 =m̄
(

v̇3 + Ω̇1rp2 − Ω̇2rp1 + Ω1(2ṙp2 + v2) −Ω2(2ṙp1 + v1) (3.20)

−gcosθ cosφ −Ω2
2rp3 + Ω2Ω3(rp2 + rp1) −Ω2

1rp3

)

3.5.2 Dynamics of the airship’s body

Let Bs andKs be the translational and angular momenta of the airship’s body. They are expressed

as,

Bs = msv (3.21)

Ks = J sΩ (3.22)

whereJ s is the matrix of the moment of inertia ofms of the airship’s body.

Thus, the total force , denoted byFs, and moment, denoted byMs, acting on the body are derived

through the above translational and angular momenta as follows:

Fs =
dB̃s

dt
=

dBs

dt
+Ω × Bs

= msv̇ +Ω × (msv) (3.23)

Ms =
dK̃s

dt
=

dKs

dt
+Ω × Ks + v × Bs

= J sΩ̇ +Ω × (J sΩ) + v × (msv) (3.24)
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From the analysis in section3.3, Fs andMs are derived as follows:

Fs = FI + Fat + FGB + Fint

= −M f v̇ +
(

M f v
)

×Ω + Fat + (m0 − m̄)gRT
1

k − u (3.25)

Ms = MI + Mat + MGB + Mint

= −J fΩ̇ +
(

J fΩ
)

×Ω +
(

M f v
)

× v + Mat + rp × (−u) (3.26)

Obviously, combining (3.23) and (3.25), (3.24) and (3.26), the dynamics equations of the airship’s

body are derived as follows:

v̇ = M−1
(

Mv ×Ω + Fat + (m0 − m̄)gRT
1

k − u
)

(3.27)

Ω̇ = J−1
(

JΩ ×Ω + Mv × v + Mat − rp × u
)

(3.28)

where the mass matrixM and the moment of inertia matrixJ are given by:

M = msI + M f = diag{m1 m2 m3} = diag{ms+m11 ms+m22 ms+m33}

J = J s + J f = diag{J1 J2 J3} = diag{Ix +m44 Iy +m55 Iz+m66}

Actually, the dynamics equations of the airship’s body can be simplified as the following form:






v̇ = M−1 (Fd + Fat + FGB + Fint)

Ω̇ = J−1 (Md + Mat + MGB + Mint)
(3.29)

Here, the force vectorFd contains the Coriolis force and the centrifugal force of the dynamic

model, andMd contains the moment of the Coriolis force and the centrifugalforce. Fd and Md are

given by:

Fd = Mv ×Ω

Md = JΩ ×Ω + Mv × v

3.6 The 8-DOF Mathematical Model

As the airship is driven by change of the net lift, and it is necessary to control the mass of ballonets,

through the inputu4, asmb = u4. Thusm0 = mh+m̄+u4−m, which means thatm0 in the mathematical

model includes a control input.

Combining equations (3.1), (3.2), (3.27), (3.28), and (3.19), the mathematical model of a 8 DOF
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buoyancy-driven airship is obtained as





ḃ

η̇

v̇

Ω̇

r̈p





=





R1v

R3Ω

M−1F̄

J−1K̄

T̄





(3.30)

where

K̄ = JΩ ×Ω + Mv × v + Mat − diag{1 1 0} · (rp × u)

F̄ = Mv ×Ω + Fat + (m0 − m̄)gRT
1

k − u

T̄ = −v̇ − Ω̇ × rp −Ω × ṙp + g(RT
1

k) + vp ×Ω + u/m̄.

3.7 Conclusion

A full mathematical model in 3D which has 8-DOF for the buoyancy-driven airship is derived for

the first time in this chapter based on the Newton-Euler approach. These 8-DOF consist of 6-DOF for

the airship’s rigid body and 2-DOF of the moveable mass. Through the independent or global views

of the rigid body and the moveable mass, the modelling is significantly simplified. According to this

difference, two approach to set up the model are presented. Thesetwo approaches have respective

advantages. Total forces and moments acting on the airship are analyzed and computed. The model

derived in the chapter is this basis of the analysis for the rest of the thesis.
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The complete 8-DOF model was derived in the previous chapter. Various open-loop simulations

are necessary to do with this mathematical model. The goal ofthese simulations is not only to verify

the mathematical model, but also to further understand the dynamic properties of the airship. Through

various simulations, the reactions of the airship to the actuators (internal air bladder, moveable mass)

and its behaviors under instant disturbances are clearly and directly presented.

Note that the so-calledopen-loopsimulation in this chapter is not a strict open-loop, since the

real control of the airship is the forceu and the mass of the internal air bladderu4. Here, the force

u acts through the airship’s body to control the translation of the moveable mass. To clearly display

the connection between the translation of the moveable massand the behavior of the airship, in some

simulations of this chapter, a feedback control is used on the internal forceu to keep the moveable

mass at certain constant places. With these simulations, how the position of the moveable mass

impacts the airship is clearly presented.

The dynamics of the airship in the longitudinal plane is considered since this dynamics is the most

fundamental and important for the airship. But it is not easy to analyze and control this dynamics due

to its complex nonlinearity. The longitudinal dynamics consists of six states and two controls. A

49
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common approach to control a nonlinear system consists in linearizing the system around an equilib-

rium, and then analyze and control this linear system takingthe place of the original nonlinear system.

An approach based on LQR is presented first in this chapter. The LQR is an important and classical

theory of optimal control and used to solve the LQG problem which is one of the most fundamental

problems in control theory. However, as everyone knows, a drawback of the linear control based on

LQR theory is the limit of validity of the linear control for the original nonlinear system due to the

linearizing approximation.

A nonlinear control for the system is necessary. In this prespective, a reasonable simplification

is made. During the ascending and descending periods, the airship just adjusts the position of the

moveable mass to cope with general disturbances. Therefore, the net lift, namelymb, m0, andu4, is

constant during these periods. When the airship transfers between the ascent and the descent, the mass

of the internal air bladdermb is subject to an open-loop bang-bang control. Thus, for the longitudinal

dynamics, there is only one control, the internal forceu1, which is subject to a nonlinear control.

One major achievement of modern nonlinear control is feedback linearization (Isidori, 1989;

Conte et al., 2007; Isidori and Moog, 1988). This theory has been widely applied for flight con-

trols (Lane and Stengel, 1988; Sun and Clarke, 1994). Unfortunately the airship system is not fully

linearizable, the main drawback is that a nonlinear internal dynamics will remain in the closed-loop

system which may be unstable. The stability of the internal dynamics of the two nonlinear control

scheme based on feedback linearization presented in chapter are proved, and surprisedly, analytical

control solutions are shown to be computable. These nonlinear controls are parts of the mainly con-

tribution of this research. Partial content of this chapterhas been published in (Wu et al., 2009a,b,

2010, 2011a).

All control defined in this thesis are state feedbacks. The practical issue of measurement or of

observer design is beyond the scope of the thesis. Obviously, a pragmatic application of the feedback

controls will require additional work about available measurements and some state estimation.

This chapter is arranged as follows: section4.1explicitly presents two different control objectives

which are adopted in this chapter. The longitudinal model isderived from the full model ant its

equilibrium is computed in section4.2. The reactions of the airship to the two control, the translation

of the moveable mass and the mass of the internal air bladder,are simulation in section4.3. It is

demonstrated that the attitude of the airship is mainly controlled by the translation of the moveable

mass and the ascent or descent is mainly controlled by the mass of the internal air bladder through

simulations in this section. Section4.4 presents two simple control scheme. One is based on LQR,

and another is based on an input-output feedback linearization. Due to the drawback of these two

controls, section4.5 explicitly presents a control scheme based on maximal feedback linearization
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with internal stability. In this progress, the dynamics in the longitudinal plane is deeply analyzed and

many properties are displayed. Section4.6concludes this chapter.

4.1 Control Objective

For the autonomous flight control, generally, there exist two control objectives:

Goal 1: The aerial vehicle is controlled to follow a desired direction and speed. As shown in Fig.

4.1, a flight direction is defined by two angles:ξ andγ. Thus, for this objective, only the direction

and speed need to be controlled.

G i

j V

k

γξe e

e

Figure 4.1: Reference flight angle and speed.

Goal 2: The aerial vehicle is controlled to track a desired path. Asshown in Fig.4.2, the objective

is to decrease the error∆ between the actual flight path and the desired path.

G i

j

k

Δ

Figure 4.2: Vehicle controlled to track a path

In this chapter, theGoal 1 is chosen as the control objective for the nonlinear controlbased on

feedback linearization, and the desired direction is defined by ξe andγe; the desired speed is defined

by Ve. The subscripte denotes the values of the states on the equilibrium. The analytical solutions

for other variables on the equilibrium are solved in this chapter. TheGoal 2 is adopted for the linear

control based on LQR in section4.4. Thus, an additional variable△z is added.
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4.2 The Longitudinal Dynamics and Equilibrium

The longitudinal dynamics is decoupled from the full model (3.30). The momentum of the move-

able massPp can replace the statėrp in (3.30). Through that way, an alternative of the coordinate is

offered. These two coordinates have respective advantages, and they are both used in the rest of this

chapter.

4.2.1 The longitudinal dynamics

As a remark of the next chapter, the longitudinal motion can decouple from the lateral motion

when the turn rate is small (the explanation locates section5.1.2). Here, the turn rate is assumed to

be zero, and the dynamics restricts in the longitudinal plane. The longitudinal dynamics is decoupled

from the complete model (3.30). This is a general approach for aerial vehicles as done in (Beji et al.,

2004; Hima, 2005; Kulczycki et al., 2008; Ouyang, 2003). As depicted in Fig.2.9, the principal

behavior of the airship is to fly in a sawtooth path. Thus, the longitudinal dynamics which restricts in

the i − k plane ande1 − e3 plane is the most important and most fundamental dynamics ofthe airship.

Here, thei − k plane ande1 − e3 plane overlap.

Since the airship only moves in the longitudinal plane, somevariables are set to zero. Thus,

attitude anglesψ = φ = 0, the translational velocityv2 = 0, angular velocitiesΩ1 = Ω3 = 0. Since the

moveable mass only moves in the longitudinal plane, sorp2 = 0, and ˙rp2 = 0.

Substituting the above restricted conditions into the mathematical model (3.30), the motion equa-

tions in the longitudinal plane is derived. These equationsare listed in (4.1):






θ̇ = Ω2

Ω̇2 =
1
J2

(

Ma − rp3u1 + rp1u3

)

v̇1 = 1
m1

(Fat1 + (m̄−m0)gsinθ −m3v3Ω2 − u1)

v̇3 = 1
m3

(Fat3 + (m0 − m̄)gcosθ +m1v1Ω2 − u3)

ṙp1 = ṙp1

r̈p1 = −v̇1 − Ω̇2rp3 − gsinθ − (v3 −Ω2rp1)Ω2 + u1/m̄

(4.1)

whereu3 = m̄
(

v̇3 + Ω̇1rp2 + Ω1(2ṙp2 + v2) − gcosθ − Ω2
1rp3

)

, Fat1 = − cosαXa + sinαZa, andFat3 =

− sinαXa − cosαZa.

As an alternative of the model (3.30) and (4.1), the momentum of the moveable massPp is used

to replace thėrp in (3.30). A new control input which represents the total force act onthe moveable

mass is defined as well, which is different from the model (3.30) and (4.1) where the control is only

the force act by the rigid body. These two different coordinates are both used in the rest sections.
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From (3.17), the momentum of the moveable mass is as:

Pp = m̄vp = m̄
(

v + ṙp +Ω × rp

)

. (4.2)

Thus, the time-derivative of the above equation yields the relation between thėPp and r̈p as:

Ṗp = m̄
(

v̇ + r̈p + Ω̇ × rp +Ω × ṙp

)

(4.3)

(4.4)

From (4.2) and (4.3), the following state transformation is derived:

ṙp = Pp/m̄−
(

v +Ω × rp

)

(4.5)

r̈p = Ṗp/m̄−
(

v̇ + Ω̇ × rp +Ω × ṙp

)

(4.6)

Substituting (4.5) and (4.6) into the complete (3.30), the statėrp is replaced by a new statePp, and

the differential equation of̈rp in (3.30) is replaced by:

Ṗp = Pp ×Ω + m̄g(RT
1

k) + u

Here, the total external force on the moveable mass is viewedas a new control̃u to replace the

original controlu. Thus,

Ṗp = ũ = Pp ×Ω + m̄g(RT
1

k) + u (4.7)

From (4.7), the relation between the new control and the original control is defined as:

u = ũ − Pp ×Ω − m̄g(RT
1

k) (4.8)

Substituting (4.5), (4.6), and (4.8) into the (3.30), the complete model with new coordinates is

defined. Under this new coordinates, the longitudinal dynamics is given by:

θ̇ =Ω2

Ω̇2 =
1
J2

(

(m3 −m1) v1v3 − (rp1Pp1 + rp3Pp3)Ω2 + Ma − m̄g(rp1 cosθ + rp3 sinθ) − rp3ũ1 + rp1ũ3

)

v̇1 =
1

m1

(

−m3v3Ω2 − Pp3Ω2 −m0gsinθ + Xa cosα − Za sinα − ũ1

)

v̇3 =
1

m3

(

m1v1Ω2 + Pp1Ω2 +m0gcosθ + Xa sinα + Za cosα − ũ3

)

ṙp1 =
1
m̄

Pp1 − v1 − rp3Ω2

Ṗp1 =ũ1
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whereũ3 = Ṗp3 = m̄(v̇3 − ṙp1Ω2 − rp1Ω̇2); the components of the moveable mass’s momentumPp1 =

m̄(ṙp1 + v1 + rp3Ω2) andPp3 = m̄(v3 − rp1Ω2). If this model is totally expanded, it reads:

θ̇ = Ω2 (4.9)

Ω̇2 = T1H1 + T2H2 (4.10)

v̇1 = H3/m1 (4.11)

v̇3 = T2H1 + T3H2 (4.12)

ṙp1 = Pp1/m̄− v1 − rp3Ω2 (4.13)

Ṗp1 = ũ1 (4.14)

where

T1 =
m3 + m̄

J2 (m3 + m̄) + m̄m3r2
p1

T2 =
m̄rp1

J2 (m3 + m̄) + m̄m3r2
p1

T3 =
J2 + m̄r2

p1

J2 (m3 + m̄) + m̄m3r2
p1

H1 = (m3 −m1) v1v3 − m̄g
(

rp1 cosθ + rp3 sinθ
)

−
(

rp1Pp1 + rp3m̄
(

v3 − rp1Ω2

))

Ω2 + Ma

−rp3ũ1 + m̄rp1Ω2

(

v1 + rp3Ω2

)

− rp1Ω2Pp1

H2 = m1v1Ω2 + Pp1Ω2 +m0gcosθ − Za cosα

−Xa sinα − m̄Ω2(v1 − rp3Ω2) + Pp1Ω2

H3 = −m3v3Ω2 − m̄(v3 − rp1Ω2)Ω2 −m0gsinθ

+Za sinα − Xa cosα − ũ1

With the model (4.9)-(4.14), the controlũ1 is equal to zero at the equilibrium. However, these two

models are the same in essence. From the above computation, it is clear that either model(4.1), or

model (4.9)-(4.14), they are both complex.

4.2.2 Equilibrium of longitudinal dynamics

To compute the equilibrium of the states for a steady flight path in the longitudinal plane which

is specified by a desired flight path angleξe and a desired speedVe, the left hand side of the equation
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(4.1) is set to zero. The substitutionu3 = −gm̄cosθ yields:

0 = Ω2e (4.15)

0 =
1
J2

(

KmαeV
2
e − m̄gcosθerp1e− m̄gsinθerp3e

)

(4.16)

0 =
1

m1

(

− cosαe(Kd0 + Kdα
2
e)V

2
e + sinαeKlαeV

2
e −m0egsinθe

)

(4.17)

0 =
1

m3

(

− sinαe(Kd0 + Kdα
2
e)V

2
e − cosαeKlαeV

2
e +m0egcosθe

)

(4.18)

0 = −gsinθe+ u1/m̄ (4.19)

whereKd0 =
1
2ρa∇2/3V2Cx0, Kd =

1
2ρa∇2/3V2Cα

x , Kl =
1
2ρa∇2/3V2Cα

z , Cz0 = 0, andKm =
1
2ρa∇V2Cα

m.

From (4.17) and (4.18), the following equation is derived:

sinθe

cosθe
=
− cosαe(Kd0 + Kdα

2
e) + sinαeKlα

sinαe(Kd0 + Kdα2
e) + cosαeKlαe

→ tanθe =
sin(αe− A)
cos(αe− A)

→ tanθe = tan(αe− A)

where sinA = Kd0+Kdα
2
e√

(Kd0+Kdα
2
e)2+(Klαe)2

, cosA = Klαe√
(Kd0+Kdα

2
e)2+(Klαe)2

Thus,

θe = αe− A→ tanA = − tan(θe− αe) = − tanξe

So,
Kd0 + Kdα

2
e

Klαe
= − tanξe→ Kdα

2
e + tanξeKlαe+ Kd0 = 0

It is assumed that the above equation can be solved under the condition (tanξeKl)2 − 4KdKd0 ≥ 0

as:

αe =
− tanξeKl ±

√

(tanξeKl)2 − 4KdKd0

2Kd

Since the flight path angleξ is in the domain (−π/2, π/2), and the approximate aerodynamic expres-

sion is valid only at small angles of attack, the solution ofα is chosen as:

αe = −
tanξeKl

2Kd
+

1
2Kd

√

(tanξeKl)2 − 4KdKd0 (4.20)

Thus, the equilibrium ofθ is as:

θe = ξe+ αe (4.21)

Due to tanα = v3
v1

,

v1e = cosαVe (4.22)

v3e = sinαVe (4.23)

From (4.16) and (4.17), the following equilibrium is derived:

rp1e =
KmαeV2

e

m̄gcosθe
− tanθerp3 (4.24)

m0e =
1

gsinθ

(

− cosαe(Kd0 + Kdα
2
e)V

2
e + sinαeKlαeV

2
e

)

(4.25)
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From the above computation, the equilibria of states are computed by (4.20) - (4.25)

4.3 Open-loop Simulation

To demonstrate the validity of the mathematical model in theprevious chapter and to further

understand the airship’s behavior, the open-loop simulation is done based on the nonlinear model

(3.30). The airship’s equations are integrated into MATLAB/Simulink for rapid simulation. The

simulink model is shown in Fig.4.3.

dot (v)

dot (Omega ) v Omega

ddot (r_p)

dot (r_p)

b

phi
theta

psi

Product

Moveable Mass Model

MATLAB
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Mass Matrix
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MATLAB
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Integrator 1

1
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Integrator
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Gravity & Buoyancy

MATLAB
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MATLAB
Function

Air Bladder Mass

u_4

Aerodynamic Model

MATLAB
Function

Figure 4.3: The airship’s simulink model

4.3.1 The reaction to the variation of the mass of the internal air bladder

The function of the internal air bladder is to control the ascent and descent of the airship. Through

the modification of the mass of the air bladder, the net buoyancy (lift) m0 is changed. The airship

keeps a stable status in the air ifm0 = 0, which has been simulated and are shown in Fig.4.4. The

airship ascends ifm0 < 0; the result of simulation is shown in Fig.4.5 wherem0 = −10 kg. On the

contrary, the airship descends ifm0 > 0; the simulation is shown in Fig.4.6. wherem0 = 10 kg.

4.3.2 The reaction to the translation of the moveable mass

As depicted previously, the moveable mass is used to controlthe attitude of the airship. When

the moveable mass moves in the longitudinal direction, the pitch angle of the airship is modified
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Figure 4.4: The airship stops in the air when the lift

is equal to the weight

0
200

400

−1
0

1
0

100

200

i   (m)j   (m)

k 
  (

m
)

0 50 100
0

1

2

3

4

5

v 1 (
m

/s
)

time   (s)

0 50 100
−1

−0.5

0

0.5

1

v 2 (
m

/s
)

time   (s)
0 50 100

−1.5

−1

−0.5

0

v 3 (
m

/s
)

time   (s)

Figure 4.5: The airship ascends in the air when the

lift is larger than the weight.
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Figure 4.6: The airship descends in the air when the lift is smaller than the weight.

accordingly. Similarly, when the moveable mass moves in thelateral direction, the roll angle of the

airship is modified accordingly. These behaviors are displayed through some open-loop simulations

as following.

For the initial condition asrp1 = −1.15 m and all other variables are zero (similar to the case

shown in Fig.2.11and2.12), the airship has a pendulum motion in the longitudinal plane as shown

in Fig. 4.7. In this case, the airship is similar to a pendulum to a certain extent. The fact that the pitch

angle is mainly decided by therp1 is explained in section2.2. This is recalled and illustrated in Fig.

4.8. The equilibrium ofrp1 is derived in (4.24). When the airship is static (no translational motion),

the relation between the pitch angleθ and the longitudinal translation of the moveable massrp1 is:

tanθ =
rp1

rp3

On the equilibrium, the variation of the pitch angle according to the motion of the moveable mass

is simulated and the result is shown in Fig.4.9.
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Figure 4.7: The pendulum motion of the airship ac-

cording to the specified initial conditions
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Figure 4.8: The stable situation of the pitch an-

gle and the longitudinal translation of the moveable

mass.

Similarly, for the lateral dynamics, the roll of the airshipis controlled by the lateral translation

of the moveable massrp2, which is shown by the simulation in Fig.4.10. On the equilibrium, the

relation between the roll angle and the lateral translationof the moveable mass is:

tanφ =
rp2

rp3
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Figure 4.9: The pitch angle is mainly controlled by

the longitudinal translation of the movable mass.
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Figure 4.10: The roll angle is mainly controlled by

the lateral translation of the movable mass.

4.3.3 Open-loop flight in the longitudinal plane

According to the equilibrium derived in the subsection4.2.2, there is no doubt that the buoyancy-

driven airship with the mathematical model (4.1) or (4.9)-(4.14) can fly follow the trajectories of

ascending and descending as shown in Fig.2.9, but it is interesting to check the airship’s behavior
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under the disturbance and if the airship can smoothly cover the transferring points as the A, B,and C

in Fig. 2.9. Such open-loop simulations are done next.

From the result in the subsection4.2.2, the nominal values of an ascending motion is calculated

and listed in Tab.4.1. Note that, according to the definition in section2.1.3, the minus value ofm0

here means that the total weight of the airship is larger thanthe lift, and the net lift is minus.

Table 4.1: The nominal values of an ascending segment

Term θ rp1 v1 v3 m0

Ascent 25.4◦ −0.82 m 3 m/s −0.24 m/s −3 kg

With this initial values, the airship steadily ascends in the longitudinal plane in a no-disturbance

environment. However, Fig.4.11and4.12show the airship’s behavior when it encounters disturbance

on θ which is enlarged by 5.7◦ instantly.
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Figure 4.11: The pitch angle encounters an instant

disturbance at the 20th second.
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Figure 4.12: The dynamics of velocities and the tra-

jectory under an instant disturbance.

Suffering this instantaneous disturbance, it seems that there is limited impact on the trajectory, but

the other variables, such as the pitch angleθ, need a long time to recover the nominal regime.

The buoyancy-driven airship flies along a sawtooth trajectory as shown in Fig.2.9. Whether the

airship can smoothly cover the transferring points as A, B,and C in Fig.2.9with an open-loop bang-

bang controlled moveable mass, deserves to be investigated(there is bang-bang control on the net lift

too). The equilibria for the ascent and the descent are derived and listed in the Tab.4.2.

According to the values in Tab.4.2, an open-loop simulation is done to show a continuing fly of

the airship whose ideal trajectory is shown in Fig.2.9. These simulation results are shown in Fig.

4.13and4.14.
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Table 4.2: The values on the nominal regime

Term θ rp1 v1 v3 m0

Ascent 25.4◦ −0.82 m 3 m/s −0.24 m/s −3 kg

Descent −25.4◦ 0.82 m 3 m/s 0.24 m/s 3 kg
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Figure 4.13: The dynamics of the pitch angle and of the open-loop controlled moveable mass

From the first ascending segment of this simulation, a stableascent under a fixed moveable mass

in a no-disturbance environment is smoothly done. But when ittransfers to a descent, the airship

swings. This swing is mainly caused by the instant translation of the moveable mass, which is similar

to the swing of the airship in Fig.4.7.

To minimize the swings of the variables in the open-loop, thechange of motion of the moveable

mass to a smooth motion is a feasible way. If the moveable massspends 16 seconds to move between

the−0.82 m and the 0.82 m on the longitudinal direction, the swing of the airship is minimized as

shown in the Fig.4.15and4.16.

From the simulations in this section, disturbances will cause the swing of the system, and only

bang-bang control is not good enough to eliminate this swing. In the rest of this chapter, controls,

linear one or nonlinear one, are tried to achieve the goals and to stabilize the variables.

4.4 Two Basic Controls

From the above result, the longitudinal dynamics consists of six states and two controls (the net

lift is subject to the bang-bang control sometimes). As someearly results, two control schemes based
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Figure 4.14: The moving trajectory of the airship and the velocities with respect to the body frame

on LQR and an input-output feedback linearization are considered respectively. These two theories,

LQR and state feedback are basic and important theories for control problems. They are also easy to

adopt. Thus, the results of this two approaches are presented first.

These two approaches adopt the model (4.9)-(4.14), and they both need the linearized model of

this nonlinear one. Thus, its linearized model is derived first.

The motion of airship can be split into two motions, the reference motionxe with ũ1e = 0 and

the disturbing motion∆x and∆ũ1 which are the dynamics away from the equilibrium. Substituting

x = xe + ∆x andu1 = ∆ũ1 into the nonlinear model (4.9)-(4.14), the result only keep the first-order

of ∆x and∆ũ1, neglected high-order terms. Then, the linearized model byapproximation, around the

equilibrium pointxe, is derived as:

∆ẋ = A∆x + B∆ũ1 (4.26)

wherex = (θ,Ω2, v1, v3, rp1,Pp1)T , A is a 6× 6 constant system matrix, andB is a 6× 1 input matrix.

Note that (4.26) can not be confused with feedback linearization considered in section4.4.2.

Given nominal values of states arexe = (θe,Ω2e, v1e, v3e, rp1e,Pp1e)
T = (0.44,0,9.97,−0.8,−1,299)T .

These values are computed from (4.21)-(4.25). The linear approximation around this point is

ẋ = Ax + Bũ1 (4.27)
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Figure 4.15: The dynamics of the pitch angle with respect to the smooth motion of the moveable mass

where,

A =





0 1 0 0 0 0

−0.08 0.01 −0.0004 0.004 −0.03 0

0.57 0.93 −0.063 −0.17 0 0

0.24 9.13 0.05 −0.62 0.002 0

0 −2 −1 0 0 0.03

0 0 0 0 0 0





B =





0

−0.0002

−0.002

0.00001

0

1





4.4.1 Linear control based on LQR

Since theGoal 2 is adopted here, a new state which depicts the distance between the actual flight

path and the commanded path is added.

As shown in Fig.4.17, on the equilibrium, the commanded flight path (straight line) of the airship

is defined and overlapped with thee1 axis of the body frame. The inertial frame under this situation

is defined asi −G− k as shown in that figure. At timet, the actual position of the airship is (x, z) with

respect to the inertial frame, and (x
′
, z
′
) with respect to the body frame. As known from the Fig.4.17,
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Figure 4.16: The moving trajectory of the airship and the velocities with respect to the smooth motion of the

moveable mass
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Figure 4.17: The airship tracks a desired flight path

z
′
is distance from the airship to thee1 axis of the body frame. As depicted previously,z

′
is also the

distant to the commanded path. By the rotation matrix, the distance from the airship to the desired

path is

z
′
= − sinξex+ cosξez (4.28)

Differentiating (4.28) and substitutingv1, v3 andθ, the perpendicular velocity to desired path is

ż
′
= − sinξe (v1 cosθ + v3 sinθ) + cosξe (−v1 sinθ + v3 cosθ) (4.29)

Thus, for theGoal 2, a new statez
′
and4.29should be added to the model. Moreover, to follow a

desired flight path, another control, the mass of the internal air bladdermb = u4 is needed. Thus, for

a mission ofGoal 2, 7 states
(

θ, Ω2, v1, v3, rp1, Pp1, z
′)T

and 2 controls(u1, u4)
T are involved.
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The linear quadratic regulator is a well-known and efficient theory for control problems; it pro-

vides practical feedback gains. It is assumed that all states ∆x are available for the control. The

infinite horizon cost function is defined as:

J =
∫ ∞

0

(

xTQx + uTRu
)

dt

The weight matricesQ andR are tuning parameters. There is no general way to define the values

of these parameters, and their values depend on their weightand the user’s choices, which deeply

impacts the performance of the closed loop system.

The feedback control law that minimizes the value of the costis:

u = −K(x − xe) (4.30)

whereK is given by

K = R−1BTP

andP is found by solving the continuous time algebraic Riccati equation

ATP+ PA− PBR−1BTP+ Q = 0

The above computation can be done in MATLABr and the feedback gainK is derived by the com-

mand lqr(A, B,Q,R,0).

With the linear feedback (4.30), the airship tracks a desired flight path, which is simulated and

shown in Fig.4.18.
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Figure 4.18: The airship with linear control tracks a commanded flight path.

Nevertheless, such a linear control for the original nonlinear system is only valid in a small neigh-

borhood around the equilibrium. The linear control no more ensures stability and the airship crashes

down when the disturbance is large, for instance when the disturbance onv1 is larger than+4.5 m/s.
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4.4.2 Nonlinear control based on an I/O feedback linearization

Here, a nonlinear control based on input-output linearization is derived for the model (4.9)-(4.14)

with internal stability is proved. TheGoal 1 is adopted here. The motion of the airship no more

tracks a desired path, but tracks a desired flight angleξ, shown in Fig.4.19. Sinceξ = θ−α, thus, the

control objective is also to stabilizeθ andα. As tanα = v3/v1, the stabilization ofα can be achieved

by stabilizing ofv1 andv3. Thus, for the system (4.9)-(4.14) which involves six states and one control

(the mass of the air bladderu4 is subject to an open-loop bang-bang control), a state feedback is

expected to stabilize all six states.

ξeG
i

Commanded Flight Path Angle

ξe

Figure 4.19: The airship tracks a commanded flight angle

Consider the output of the systemy = x, in these six states, bothθ andrp1 have relative degree 2.

However, it is easy to check that the outputy = rp1 yields a non minimum phase systems and thus, the

input-output linearization can not be applied; whereas theoutput functiony = θ defines a minimum

phase system. Let us check thaty = rp1 yields a non minimum phase system. This is done through

the approximate linearization of the input-output system and through the computation of its zeros.

Whenever, the linearized system has no zero on the imaginary axis, then, it is possible to conclude

about the local minimum phase property of the nonlinear system. When the linearized system has a

zero on the imaginary axis, and no zero in the right half complex plane, then, the nonlinear system

may be either minimum phase or no minimum phase (Slotine and Li, 1991).

With the linearized form (4.27), the transfer function for the outputy = θ is computed as:

T F1 =
−0.02s4 − 0.02s3 − 0.1s2 − 0.08s− 0.005

100s6 + 67s5 + 1.9s4 − 2.3s3 − 5s2 − s

and it for the outputy = rp1 is computed as:

T F2 =
3.6s4 + 2.4s3 + 0.3s2 + 0.2s+ 0.01

100s6 + 67s5 + 1.9s4 − 2.3s3 − 5s2 − s

The four zeros ofT F1 have strictly negative real part, whereas some ofT F2 have positive real part

and thus are unstable.

Since the linear approximation of the system (4.9)-(4.14) with the outputy = θ has stable trans-

mission zeros, the nonlinear system has locally stable zerodynamics and thus the system is minimum

phase (Conte et al., 2007).
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Note that the four zeros ofT F1 lie close to the imaginary axis, but in the left open half complex

plane, thus, the system is weakly minimum phase. Feedback linearization ofy = θ will yield some

undesired oscillations.

I/O linearization of θ

Since the relative degree of the outputy = θ is 2, it proposes the following desired error equation

ë+ λ1ė+ λ0e= w1

wheree= y− θe, θe is the desired value forθ, andw1 denotes a new control. Equivalently,

θ̈ + λ1θ̇ + λ0(θ − θe) = w1 (4.31)

λ1 andλ0 assign the poles of the error dynamics. Substituting (4.9)-(4.14) into (4.31), the equation

can be solved and the control ˜u1 is derived, as follows,

ũ1 = T4(H4 − w1 + λ1Ω2 + λ0(θ − θe)) (4.32)

where,

T4 =
J2m3 + J2m̄+ m̄r2

p1m3

rp3(m3 + m̄)
H4 = T1(H1 + rp3ũ1) + T2H2

(4.32) is the nonlinear feedback control of the system. Letw1 = 0, and substituting (4.32) into the

system (4.9)-(4.14), the closed loop system will be derived.

The choice of the values ofλ1 andλ0 not only has a direct impact on the motion ofθ andΩ2, but

also a significant one on the statesv1, v3, rp1 andPp1. The impact on theθ andΩ2 is easy to analyze,

but the transient response ofv1, v3, rp1 andPp1 remains unclear due to the nonlinear equations. By

trying different values ofλ1 andλ0, different performances of the controller are presented.

Simulation results

Only a ascending segment is considered here. The conditionsin the descent are the same as the

ascent with only reversed values of the commands and the net lift.

As to the values ofλ1 andλ0, there is a tradeoff between the performance ofθ andΩ2 with respect

to the one of statesv1, v3, rp1 andPp1, and thus they must be carefully chosen. Three different sets of

λ1 andλ0 are chosen to compare. All of these simulations are under thesame initial errors∆θ = +5◦

and∆v1 = +2 m/s.

To compare the results of different parameters, the poles under different sets of parameters should

have the same negative real part, soθ stabilizes in a similar period as shown in Fig.4.20.



4.4. TWO BASIC CONTROLS 67

x

x

Re

Im

x Re

Im

x x Re

Im

a b c

x

-1/4

-1/4

1/4

-1/4 -100/4 -1/4

Figure 4.20: Three Different Assignments of Poles

1. First strategy: two complex poles

The poles are chosen to be of the forms = −a(1± i). For the reported simulation,a = 1/4, so

λ1 = 1/2 andλ0 = 1/8, see Fig.4.20.a. This is called Controller No. 1.

2. Second strategy: a double real pole

Both poles are placed at−a, with a = −1/4, see Fig.4.20.b. So the controller No. 2 is with

λ1 = 0.5 andλ0 = 0.0625.

3. Third strategy: a dominant real pole

The last considered strategy is to obtain a first-order like response by placing a dominant pole.

Controller No. 3 has two different negative real poles. One pole close to the imaginary axis,

another is far away from the imaginary axis. Lets1 = −1
4, s2 = −100

4 , see Fig. 4.20.c, so

λ1 = 25.25 andλ0 = 6.25.

The dynamics ofθ andΩ2 under these controls are presented in Fig.4.21and4.22. Fig. 4.23and

4.24are the dynamics ofv1 andv3 with the controller No. 3. For different controllers, the difference

on dynamics ofv1 andv3 is the final amplitude. Fig.4.25- 4.27are the dynamics ofrp1 for different

controls.
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Analysis of the simulation result

Generally, from the simulation results, the system is stable under certain initial errors with these

controllers, but the differences between three controllers are significant.

In detail, from Fig.4.21, the three controllers have similar stationarity and rapidity, which is due

to the same negative real parts, see Fig.4.20. Bothθ andΩ2 stabilize at the equilibrium point quickly,

which is the goal of these feedback controllers.

As v1 andv3, they have small periodic oscillations under three conditions, but the final amplitudes

are different. With controller No. 1 and No.2, the final amplitudes are the same, 0.14 m/s, for v1, and

v3, which is small enough to be ignored. The controller No. 3 hasa slightly better performance. To

v1, the final amplitude is 0.01 m/s.

From Fig.4.25to 4.27, it is clear to find that the controller No. 3 is better than thetwo others. The

amplitude ofrp1 under controller No. 3 continually declines with the time, but it is constant under
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Figure 4.27: Dynamics ofrp1 with Controller No.3

controllers No. 1 and No. 2.

With these controllers,v1, v3, rp3 andPp1 have periodic oscillations, with a period approximately

of 3 s. These oscillations are caused by the zeros of the linear approximation which are close to the

imaginary axis. Here, two of the zeros ofT F1 are−2.85× 10−4 ± 2.16i.

Remark: The internal dynamics of the system with outputy = θ is critical stable.

Thus, it is necessary to find an output with maximal relative degree to obtain the smallest and

asymptotically stable internal dynamics.

4.5 Nonlinear Control Based on Maximal Feedback Linearization

This section contains the main result of this chapter. The model (4.1) andGoal 1 are adopted

here. In this section the dynamics is analyzed, and an advanced nonlinear control is derived.

To analyze the dynamics and to derive a nonlinear control forthe system, a progressive approach

from a simplified model to a complete one is adopted. The simplest airship model corresponds to

the special case in which the airship freely rotates around its fixed center of volume. The model

is identical to a prismatic-joint pendulum model. Basic properties are derived and a control law is

explicitly computed which solves the maximal feedback linearization problem with internal stability.

Based on this fundamental model, and by dropping some restrictions, two other less restrictive special

cases are considered for the airship. Although models become more complex, it is shown that the

results obtained for the most simple special case remain valid, including for the complete complex

model.

For several different special cases in this section, dummy output functionsare computed which

define a minimum phase system and whose feedback linearization will achieve maximal linearization.

It is shown that the angular momentum of the airship plays a key role in these computations and
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is instrumental for its full internal stabilization despite the intrinsic nonlinearity of the model.

This section is arranged as follows: section4.5.1introduces some basic knowledge on feedback

linearization and zero dynamics. Section4.5.2is devoted to the modelling and control of the most

restrictive special case of the airship whose center of volume is fixed and which is only subject to the

motion of the moveable mass. The airship is liberated in Section 4.5.3by dropping the assumption

that the center of volumeO is fixed, which means the airship can ascend and descend. In this case, the

center of mass is subject to a ballistic motion and the controllable subsystem is shown to keep similar

properties as the previous fundamental system. In Section4.5.4, the airship model is completed with

the inertial forces and Section4.5.5displays the full model in the longitudinal plane includingthe

aerodynamic forces. Up to some approximation, the previoussystem structure is still valid and used

to design a nonlinear control with similar performance. Section 4.5.6presents simulation results of a

continuing flight with the control in Section4.5.5.

4.5.1 Preliminaries on maximal feedback linearization and zero dynamics

A standard way to control a nonlinear system consists in looking for a nonlinear state feedback

that fully, or partially, cancels out all nonlinear terms insome suitable coordinates. This has been

one major achievement in the early years of modern nonlinearcontrol theory. For completeness some

main results are recalled now that will be applied in the restof this section.

Given a SISO nonlinear affine system,

Σ =






ẋ = f (x) + g(x)u

y = h(x)
(4.33)

where the statex ∈ Rn, the inputu ∈ R, the dummy outputy ∈ R, and the entries off , g are

meromorphic functions. According to (Conte et al., 2007), if the relative degree of the outputy is

n, the system (4.33) can be fully and exactly linearized by feedback. Pick new coordinatesξ =

(h, L f h, · · · , Ln−1
f h)T and system (4.33) is transformed into






ξ̇1 = ξ2

ξ̇2 = ξ3

...

ξ̇n = α(ξ) + β(ξ)u

y = ξ1

for some suitableα(ξ) andβ(ξ).

Define the nonlinear state feedback as:

u =
1
β(ξ)

(−α(ξ) + v) . (4.34)
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and the original nonlinear system is transformed into a linear system with transfer function 1/sn. By

choosingv = −λ0ξ1 − λ1ξ2 − · · · − λn−1ξn, the characteristic polynomial of this linearized system is

sn + λn−1sn−1 + · · · + λ0 = 0.

which is easy to stabilize. The overall nonlinear feedback for the system (4.33) is as,

u =
1
β(ξ)

(−α(ξ) − λ0ξ1 − λ1ξ2 − · · · − λn−1ξn) .

Whenever the relative degree of the system (4.33) is γ andγ < n, partial feedback linearization is

obtained as follows. Pick

ξ1 = h(x), ξ2 = L f h(x), · · · , ξγ = Lγ−1
f h(x).

As system (4.33) is single input, the left kernelg⊥ of g(x) has dimensionn−1 and it is fully integrable.

Thus,g⊥ can be written as

g⊥ = span{dξ1, · · · , dξγ−1; dζ}

where dimζ = n− γ. Consequently, in these new coordinates, system (4.33) reads






ξ̇1 = ξ2

...

ξ̇γ = α(ξ, ζ) + β(ξ, ζ)u

ζ̇ = q(ξ, ζ)

y = ξ1

(4.35)

The dynamicṡζ = q(ξ, ζ) are known as the internal dynamics and whenevery is constrained to

zero, then it yields the so-called zero dynamics (Isidori and Moog, 1988)

ζ̇ = q(0, ζ).

The nonlinear feedback

u =
1

β(ξ, ζ)
(−α(ξ, ζ) + v) (4.36)

yields a linear transfer function from the new inputv to the outputy as 1
sγ . The feedback also yields

the unobservable dynamicsζ̇ = q(ξ, ζ). The dummy output of system (4.33) is easily stabilized

by pole placement as done in (4.36). However the internal stability is guaranteed if and only if the

unobservable zero dynamicsζ̇ is stable. This is exactly what is called a minimum phase system and

does depend on the choice of output only.

In the rest of this section, an output will be sought such thatits relative degree is maximal, and

such that it defines a minimum phase system.
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4.5.2 The airship with fixed center of volume

The dynamics in the longitudinal plane is impacted by the following four parts:

1. the moveable mass which controls the pitch angleθ,

2. the mass of the internal air bladder which controls the flying altitude,

3. the inertial forces,

4. the aerodynamic forces.

Assuming that the airship is only subject to the motion of themoveable mass to control the pitch

angle, and there is no other force affecting the airship. In this situation, the moveable mass actually

impacts the angular momentum around the center point. The dynamics of the airship is not only

restricted to the longitudinal plane, but it is also assumedthat the center of volumeO of the airship

is fixed, which means that the airship can only rotate aroundO and the longitudinal and horizontal

translation velocitiesv3 andv1 are zero, shown in Fig4.28.

These assumptions are summarized as:

Assumptions:

A1: No aerodynamic force.

A2: No inertial force.

A3: The center of volumeO is fixed, and the airship has no translational velocities.

The mathematical model of this fundamental case is derived as follows.

Model of the airship with a fixed center of volume

In the situation described above, the airship rotates around O depending on the forward and back-

ward motions of the moveable mass, as shown in Fig.4.28, but O does not have any translation

velocity.

Figure 4.28: The rotation of the airship with the movement of the moveable mass.
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In this case, the airship is identical to a prismatic-joint pendulum described in Fig.4.29. The

rotational joint at the pointO is not actuated. The joint between the two links of the pendulum is

prismatic and actuated. This pendulum, inverted or not, hasbeen considered as a standard control

example in many references (Wie, 1998).

Figure 4.29: The airship system with a fixed point.

Here, the rigid body of the airship is represented by the link1 which is fixed at the pointO, and

the moveable mass corresponds to the link 2 which can be movedby an actuator. The position of

the center of mass of the moveable mass in the body frame in thelongitudinal plane is (rp1, rp3).

The system can swing along with the actuator changing the position of m̄, which is the same as the

description in Section2.1.2. Here,rp3 is constant, as shown in Fig.4.29.

For this case,Fs = 0. The moveable mass impacts the angular momentum, which is reflected

by Ms = MGBt with the constrain that the velocityv = 0. Combining equations (3.19), (3.23), and

(3.24), the model is derived as,






θ̈ = ̺1 = − 1
J+m̄r2p1

(m̄rp3rp1θ̇
2 + 2m̄rp1ṙp1θ̇ + m̄grp1 cosθ + rp3u)

r̈p1 = σ1 =
1

J+m̄r2p1

(

(Jrp1 + m̄r3
p1 + m̄r2

p3rp1)θ̇2 + 2m̄rp3rp1ṙp1θ̇

−(J + m̄r2
p1)gsinθ + m̄grp3rp1 cosθ + ( J

m̄ + r2
p1 + r2

p3)u
)

(4.37)

where the inputu1 andJy are rewritten asu andJ, respectively.ζ1 andσ1 are suitable notations which

will be used later on.

Maximal linearization of a minimum phase model

System (4.37) is a special case of ˙x = f (x)+g(x)u wherex = (θ, θ̇, rp1, ṙp1). It is fully accessible

as it can be checked from standard computation (Isidori, 1989) that

dim span{g, adf g, ad2
f g} = 4.
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The distribution spanned by{g, adf g, ad2
f g} is not involutive, thus, system (4.37) is not fully lin-

earizable by static state feedback. It is thus interesting to look for a maximal linearization as done in

(Marino, 1986). Standard computation allow to check that the distribution spanned by{g, adf g} is

involutive. As done in (Marino, 1986), any state variableh(x) such thatdh(x)⊥{g, adf g} will define a

dummy output whose relative degree is 3 and whose feedback linearization yields a linear third order

subsystem and first order zero dynamics.

According to the notations in (Conte et al., 2007) the following results are obtained from system

(4.37):

H∞ = 0

H3 = span{dφ1, dφ2}

andH4 is not integrable. The conditionH∞ = 0 means that the system is fully accessible.H3

represents the codistribution which consists of all differential forms whose relative degree is at least

3. Here,φ1 andφ2 are computed as,

φ1 = Jθ̇ + (r2
p1θ̇ + r2

p3θ̇ + rp3ṙp1)m̄

φ2 = θ +
rp3

√

J
m̄ + r2

p3

arctan
rp1

√

J
m̄ + r2

p3

.

The mechanical interpretation of those functions is as follows. Inφ1, Jθ̇ is the angular momentum

of the static mass of the airship in the longitudinal plane, and (r2
p1θ̇ + r2

p3θ̇ + rp3ṙp1)m̄ is a longitudinal

plane component of the angular momentum of the moveable massrp × m̄vp. So,φ1 is the angular

momentum of the whole airship computed at the pointO. Note thatφ1 is different fromK in Section

3.3.2which is the angular momentum of the inertial forces.φ1 andφ2 also have the following relation:

φ̇2 =
1

J + (r2
p1 + r2

p3)m̄
φ1. (4.38)

Up to some integrating factor,φ2 represents an integral of the angular momentumφ1.

At this stage, any combination ofφ1 andφ2 has relative degree 3 and its feedback linearization

will yield a linear controllable three-dimensional subsystem with a one-dimensional zero dynamics.

The following result shows the possibility to ensure that the system is minimum phase which has a

decisive impact on its internal stability and the feasibility of this control design.

Theorem 1: The system (4.37) with the outputy = φ1 + kφ2 has asymptotically stable zero

dynamics for anyk > 0.
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Proof: As in Section4.5.1, under this situation, a new coordinate is chosen as follows

ξ1 = φ1 + kφ2 (4.39)

ξ2 = φ̇1 + kφ̇2 (4.40)

ξ3 = φ̈1 + kφ̈2 (4.41)

ζ = φ1. (4.42)

From a practical point of view, the right hand side of equations (4.39)-(4.42) are computed using

a computer algebra software, as the lengthy expression of those functions are trackable by computers.

Their result is directly plugged in the simulation system for practical tests. For instance, equations

(4.39) to (4.41) read:





ξ1=φ1 + kφ2 = Jθ̇ + (r2
p1θ̇ + r2

p3θ̇ + rp3ṙp1)m̄+ k(θ + rp3
√

J
m̄+r2

p3

arctan rp1
√

J
m̄+r2

p3

)

ξ2=−mg(rp1 cosθ + rp3 sinθ) + k
J+mr2p1+mr2p3

(

Jθ̇ +mr2
p1θ̇ +mr2

p3θ̇ +mrp3ṙp1

)

ξ3=−mġrp1 cosθ +mgrp1θ̇ sinθ −mgrp3θ̇ cosθ − k(mr3
p1gcosθ + 2mr3

p1ṙp1θ̇

+mrp3gsinθr2
p1 +mrp1gcosθr2

p3 + 2mrp1ṙ2
p1rp3 + 2mrp1ṙp1θ̇r2

p3 +mgr3p3 sinθ

+rp1gJcosθ + 2rp1ṙp1θ̇J + grp3 sinθJ)m/(J2 + 2Jmr2p1 + 2Jmr2p3

+m2r4
p1 + 2m2r2

p1r
2
p3 +m2r4

p1)

(4.43)

The zero dynamics under this new coordinates is given byζ̇ under the constraintφ1 + kφ2 = 0.

Thus,φ̇1 = −kφ̇2. From (4.38) one gets

ζ̇ = φ̇1 = −kφ̇2 = −k
1

J + (r2
p1 + r2

p3)m̄
φ1.

Thus,

ζ̇ = −k
1

J + (r2
p1 + r2

p3)m̄
ζ.

So, for anyk > 0, the system is asymptotically stable asJ + (r2
p1 + r2

p3)m̄ is strictly positive and

bounded.

Control design and simulation

The family of dummy outputsy = φ1 + kφ2 for a varying real numberk is considered now. The

special case (4.37) is stabilized through standard input-output linearization according to the above

approvement. FromTheorem 1, it is mandatory to pickk > 0 to ensure internal stability of the closed

loop system. Its actual value is a tuning parameter which influences the velocity of the zero dynamics.

According to the feedback design in Section4.5.1, the following error equation is considered,

y(3) + λ2y
(2) + λ1y

(1) + λ0(y− ye) = 0 (4.44)
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whereye is the desired constant value fory; y = ξ1; y(1) = ξ2; andy(2) = ξ3. Here,ξi are computed

by equation (4.43). The termy(3) is an explicit function of the controlu asξ̇γ in Section4.5.1, which

can be rewritten asy(3) = α(ξ, ζ) + β(ξ, ζ)u. Substituted the model (4.37) into the first order time-

derivative ofy(2), theseα(ξ, ζ) and β(ξ, ζ) are derived by computer algebra software. Actually,

they are with long expressions and useless for practitioners as the feedback is directly plugged in the

control device. Thus, the controlu is detailed in the Appendix of the thesis and reads as:

u = − 1
β(ξ, ζ)

(

λ2ξ
(2)
3 + λ1ξ

(1)
2 + λ0(ξ1 − ye) + α(ξ, ζ)

)

(4.45)

The control (4.45) requires the knowledge of all states available. Eventually its practical imple-

mentation will go through the design of a nonlinear observerwhich is out of the scope of this thesis.

For these simulations, parametersk = 50,λ2 = 2, λ1 = 2, λ0 = 1. The initial values ofθ, θ̇, rp1,

and ˙rp1 are 41.5◦, 0,−1.15 m, and 0, respectively, and their commanded values are 30◦, 0,−1.15 m,

and 0, respectively. All mechanical properties used in the simulations are listed in Table4.3 where

the aerodynamic coefficients are borrowed from (Ouyang, 2003).

Table 4.3: Physical properties of the airship

Terms Values Terms Values Terms Values

m̄ 30kg J 8000kg ·m2 Cx0 0.059

ms 269kg ρa 1.29kg/m3 Cα
x 0.016

m1 400kg ∇ 296m3 Cz0 0

m3 500kg Cα
m 0.255 Cα

z 1.269

rp3 2 m CΩ2
m 0 Cm0 0

Fig. 4.30and4.31are simulation results of the dynamics ofθ, rp1 and the control inputu. θ and

rp1 are stabilized to the desired equilibrium 30◦ and−1.15 m after 30s.

4.5.3 The airship with liberated center point

Aircrafts, as helicopters, rotate around the center of mass, not around the center of volume. In the

first fundamental special case, the aircraft is assumed to rotate around the center of the volumeO. So,

by liberating the pivotO, the airship will rotate around the center of the gravityCG. The body frame

is still attached to the pointO.

In this case, assumptionA3 is dropped and the following assumptions do still hold.

Assumptions:

A1: No aerodynamic force.
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Figure 4.30: Dynamics ofθ and rp1 with initial

error.
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Figure 4.31: The behavior of inputu.

A2: No fluid inertial force.

Model of the airship with liberated center point

In this case, only the gravity and the buoyancy are applied onthe airship, which means that the

right hand sides of equations (3.25) and (3.26) only include the gravity and the buoyancy terms.

Equations (3.23) and (3.24) remain unchanged,

Fs = FGBt (4.46)

Ms = MGBt . (4.47)

Combining (3.19), (3.23), (3.24) (4.46), and (4.47), the mathematical model in the longitudinal

plane is as follows,






θ̈ = ̺1 +
1

J+m̄r2p1
(v̇3 − θ̇v1)m̄rp1

r̈p1 = σ1 +
1

J+m̄r2p1

(

m̄rp1rp3(θ̇v1 − v̇3) − (J + m̄r2
p1)(θ̇v3 + v̇1)

)

v̇1 = 1
ms

(−msθ̇v3 + (m̄−m0)gsinθ − u)

v̇3 = 1
ms+m̄

(

(ms+ m̄)θ̇v1 +m0gcosθ + m̄rp3θ̇
2 + 2m̄θ̇ṙp1 + m̄rp1θ̈

)

.

(4.48)

Comparing the special case (4.37) with model (4.48), it is easy to note that system (4.37) is a

subsystem of the model (4.48). The additional parts in̈θ and ¨rp1 are due to the translation velocities

of pointO.

Maximal linearization of a minimum phase model

System (4.48) is now subject to a ballistic motion (the pointCG). In other words, there exist

some non-controllable states besides the controllable or accessible subsystem, which is explained in
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the following. Again, following standard computation (Conte et al., 2007), one computes the non-

controllable subsystem whose coordinates are denoted byψ1 andψ2:

H∞ = span{dψ1, dψ2}

where

ψ1 = (rp1θ̇ −
ms+ m̄

m̄
v3)

2 + (ṙp1 + rp3θ̇ +
ms+ m̄

m̄
v1)

2

ψ2 = (rp1θ̇ −
ms+ m̄

m̄
v3) cosθ + (ṙp1 + rp3θ̇ +

ms+ m̄
m̄

v1) sinθ.

(ms+m̄)ψ1 is the kinetic energy ofCG, andψ2 denotes the horizontal velocity ofCG, which means

that theCG of the airship is subject to a ballistic motion, shown in Fig.4.35.

Thus the six-dimensional state system (4.48) can be decoupled into a two-dimensional non-

controllable subsystem and a four-dimensional subsystem whose structural properties are similar to

those of model (4.37). One gets

H3 = span{dφ̃1, dφ̃2} ⊕ H∞

where

φ̃1 = Jθ̇ + (r2
p1θ̇ + r2

p3θ̇ + rp3ṙp1)
m̄ms

m̄+ms

φ̃2 = θ +
rp3

√
m̄+ms

m̄ms
J + r2

p3

arctan
rp1

√
m̄+ms

m̄ms
J + r2

p3

.

Here,φ̃1 is exactly the angular momentum of the airship computed at the center of gravityCG. The

relation ofφ̃1 andφ̃2 is as follows,

˙̃φ2 =
1

J + (r2
p1 + r2

p3)
m̄ms

m̄+ms

φ̃1.

Theorem 2: The system (4.48) with the outputφ̃1+ k̃φ̃2 has asymptotically stable zero dynamics

for any k̃ > 0.

The proof is similar to that ofTheorem 1.

Control design and simulation

The principle to derive the control is the same as in Section4.5.2. Here, define the dummy output

y = φ̃1 + k̃φ̃2 and substitutey(1) = ˙̃φ1 + k̃ ˙̃φ2, y(2) = ¨̃φ1 + k̃ ¨̃φ2, y(3) =
...
φ̃1 + k̃

...
φ̃2 into equation (4.44). The

latter is solved inu through computer algebra to get the state feedback linearization.
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Since the model becomes more complicated, the explicit expression of the controlu becomes

longer and only trackable by computers. By the way, these results are directly plugged in the control

device and useless for the practitioners. These explicit expressions are not displayed.

For the simulations, the initial values ofv1, v̇1, v3, andv̇3 are 1.8 m/s, 0, 0, and 0. Letm0 = 1 kg.

Other parameters remain the same values. As done in the previous simulation results, similar dynamic

behaviors ofθ, rp1 and control inputu are obtained and are not reproduced here. The ballistic motion

of CG is shown in Fig.4.35.
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Figure 4.32: Dynamics ofθ and rp1 with initial

error in the second case.
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Figure 4.33: The behavior of inputu.
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Figure 4.35: Ballistic motion ofCG.

4.5.4 The airship with liberated center and added masses

The model in Section4.5.3is completed now by including the inertial forces. Assumption A2 is

dropped and aerodynamic forces are still ignored.
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Assumption:

A1: No aerodynamic force.

In this case, the angular momentum will be affected by the inertial forces. The results from

previous sections are extended and adapted to this more complete case.

Model of airship with liberated center and added masses

In this situation,FI and MI are included inFs and Ms, which means that equations (3.25) and

(3.26) are modified as follows,

Fs = FI + FGBt (4.49)

Ms = MI + MGBt . (4.50)

Combining (3.19), (3.23), (3.24), (4.49), and (4.50), the model of the airship subject to the inertial

forces is as follows,






θ̈ = ̺2

r̈p1 = σ2

v̇1 = κ1

v̇3 = κ3

(4.51)

where

̺2 = −
1

J2 + m̄r2
p1

(

m̄rp3rp1θ̇
2 + 2m̄rp1ṙp1θ̇ + m̄grp1 cosθ + rp3u

−(v̇3 − θ̇v1)m̄rp1

)

σ2 =
1

J2 + m̄r2
p1

(

(J2rp1 + m̄r3
p1 + m̄r2

p3rp1)θ̇
2 + 2m̄rp3rp1ṙp1θ̇

− (J2 + m̄r2
p1)gsinθ + m̄grp3rp1 cosθ + (

J2

m̄
+ r2

p1 + r2
p3)u

+m̄rp1rp3(θ̇v1 − v̇3) − (J2 + m̄r2
p1)(θ̇v3 + v̇1)

)

κ1 =
1

m1

(

−m3θ̇v3 + (m̄−m0)gsinθ − u
)

κ3 =
1

m3 + m̄

(

(m1 + m̄)θ̇v1 +m0gcosθ + m̄rp3θ̇
2 + 2m̄θ̇ṙp1 + m̄rp1θ̈

)

.

Note that (4.48) and (4.51) have the same form, with onlyJ andms in (4.48) are modified toJ2,

m1 andm3 in (4.51), and the other items remain the same. Therefore, model (4.51) reduces to the

model (4.48) if m11 = m33 = J22 = 0 (no added mass).
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Maximal linearization of a minimum phase model

The model (4.51) is decomposed into a non-controllable system and a controllable one as it was

done for model (4.48). The dynamics of the center of gravityCG is not affected by the control input

which means thatCG has a similar ballistic motion as in Fig.4.35. These non-controllable variables

span the autonomous subspaceH∞ which reads as:

H∞ = span{dψ′1, dψ
′
2}

where

ψ′1 = (rp1θ̇ −
m3 + m̄

m̄
v3)

2 + (ṙp1 + rp3θ̇ +
m1 + m̄

m̄
v1)

2

ψ′2 = (rp1θ̇ −
m3 + m̄

m̄
v3) cosθ + (ṙp1 + rp3θ̇ +

m1 + m̄
m̄

v1) sinθ.

There is now only one single independent functionφ̃
′
2 which has relative degree 3 for the model

(4.51). More precisely, computeH3:

H3 = span{dφ̃′2, ω} ⊕ H∞

whereφ̃
′
2 = θ +

rp3
√

m3(m1+m̄)
m1(m3+m̄)

√
m̄+m1
m̄m1

J+r2
p3

arctan

√
m3(m1+m̄)
m1(m3+m̄) rp1

√
m̄+m1
m̄m1

J+r2
p3

andH3 is no more fully integrable.ω denotes a

suitable non integrable differential one-form.

ComputeH2 as:

H2 = span{dy
′
1, dy

′
2, dφ̃

′
1} ⊕ H∞

where

y
′
1 =

m̄
m3 + m̄

rp1θ̇ − v3

y
′
2 =

m̄
m1 + m̄

(ṙp1 + rp3θ̇) + v1

φ̃
′
1 = J2θ̇ +

m̄m1

m̄+m1

(

m3(m1 + m̄)
m1(m3 + m̄)

r2
p1θ̇ + r2

p3θ̇ + rp3ṙp1

)

.

As in the previous sections,φ̃
′
1 is an angular momentum, related toφ̃

′
2 by,

˙̃φ
′
2 =

m̄+m1
m̄m1

m̄+m1
m̄m1

J2 +
m3(m1+m̄)
m1(m3+m̄) r

2
p1 + r2

p3

φ̃
′
1.

Despite these dramatic changes in comparison to section4.5.3, it is now argued that the control

scheme which has been computed for the fundamental special case in the section4.5.2is still valid,

up to some approximation. This is done next.
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Control design and simulation

Sinceφ̃
′
1 does not have relative degree 3 asφ̃

′
2, the results inTheorem 1 & 2 are not available

anymore. However, the second-time derivative ofφ̃
′
1 is argued to depend weakly on the control input

u, so the coefficient ofu is neglected.

More precisely, define again the outputy = φ̃
′
1 + kφ̃

′
2, for somek > 0.

Instead of the coordinate (4.39)-(4.42), define a new coordinate as:

ξ1 = φ̃
′
1 + kφ̃

′
2 (4.52)

ξ2 =
˙̃φ
′
1 + k ˙̃φ

′
2 (4.53)

ξ3 =
¨̃φ
′
1 + k ¨̃φ

′
2 − ∆u (4.54)

ζ = φ̃
′
1 (4.55)

where ¨̃φ
′
1 = Π + ∆u for some functions of the state variablesΠ and∆.

Instead of solving equation (4.44), consider the following equation:

ξ̇3 + λ2ξ3 + λ1y
(1) + λ0(y− ye) = 0. (4.56)

Note that equation (4.56) corresponds strictly to the equation (4.44) only if ∆ = 0. In the following

when∆ is small, then (4.56) is an approximation of (4.44).

In (4.56), one haṡξ3 = α
′
(ξ, ζ) + β

′
(ξ, ζ)u. Solving (4.56) in u, yield

u = − 1
β
′(ξ, ζ)

(

λ2ξ3 + λ1ξ
(1)
2 + λ0(ξ1 − ye) + α

′
(ξ, ζ)

)

and apply to the model (4.51). For the same reason, the explicit expression ofu is not displayed here.

m1 = 400kg, m3 = 500kgand the other parameters have the same values as previously.Good control

performances are obtained. The simulation results of the dynamics ofθ, rp1 and the motion ofCG are

similar to the previous cases. The behavior of inputu is displayed in Fig.4.37.

4.5.5 The complete airship model in the longitudinal plane

In the last step, the aerodynamic forces are added to the system, which means thatA1 is dropped.

The addition of the aerodynamic forces causes a huge impact on the angular momentum, since a pitch

moment is included by the aerodynamic forces.

Combining (3.19), (3.25), (3.26), (3.27), and (3.28) the complete model in the longitudinal plane

is derived, which also can be obtained from the full model (3.30), as follows
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Figure 4.36: Ballistic motion ofCG in the third

case.
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Figure 4.37: The behavior of inputu.






θ̈ = ̺2 +
Ma

J+m̄r2p1

r̈p1 = σ2 +
Marp3

J+m̄r2p1

v̇1 = κ1 +
Fa1
m1

v̇3 = κ3 +
Fa3

m3+m̄

where

Fa1 = −Xa cosα + Za sinα

Fa3 = −Xa sinα − Za cosα

There is no ballistic motion anymore, and the system becomesfully accessible:

H∞ = 0.

The aerodynamic forces render all DOF controllable. For instance, the special cases in Section4.5.3

and4.5.4are not fully controllable as no aerodynamic forces are considered, but the system in this

section is fully accessible as all forces are considered. The airship’s full model can be represented in

Fig. 4.38.

The attitude of the airship is controlled by the position of the moveable mass (rp). Meanwhile,

its positionrp is controlled by the internal forcesu. The guidance of the airship is impacted by the

net lift (controlled byu4), aerodynamic forces and torques, etc. The aerodynamic forces and torques

introduce a new coupling which yields full accessibility, but they do not yield any new DOF. For the

cases in Section4.5.3and4.5.4, due to the absence of the aerodynamic force, the center of gravityCG
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attitude guidance
φ θ ψ aerodynamic

forces, etc.
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Figure 4.38: The aerodynamic forces render all DOF controllable.

of the airship is subject to an uncontrollable ballistic motion, but in this section where the aerodynamic

force is considered, the motion ofCG is controllable, shown in the next simulations.

ComputeH2 andH3 as:

H2 = span{dy
′
1, dy

′
2, dφ̃

′
1, dθ, drp1}

H3 = span{dφ̃′2, ω1, ω2, ω3}.

Here,dφ̃
′
1 anddφ̃

′
2 are the same as those in the section4.5.4. ω1, ω2, andω3 are suitable possibly

non integrable differential one-forms.

As in subsection4.5.4, an advanced nonlinear controlu is derived which achieves internal stabi-

lization. But due to its long expression and useless for practitioners, the explicit expression ofu is not

displayed here.

The simulation results of this nonlinear control for the complete system are displayed in Fig.4.39-

4.40. The initial values forθ, θ̇, rp1, ṙp1, v1, andv3 are 41.5◦, 0,−2.5 m, 0, 10m/s, and−0.69 m/s,

respectively. The equilibrium values for these states are 30◦, 0,−2.7 m, 0, 10.4 m/s, and−0.73 m/s,

respectively. The angle of attackα = θ − ξ = arctanv3
v1
= −4◦. In this situation, the airship no more

displays any ballistic motion, but flies along the desired angle which is denoted byξ, here,ξ = 34◦

(see Fig.4.42). Fig. 4.41reflects the value of the control inputu, which keeps in a reasonable domain.
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Figure 4.39: Dynamics ofθ andrp1 with initial error

of the complete model.
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of the complete model.
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Figure 4.41: The behavior of inputu.
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Figure 4.42: The movement ofO.

4.5.6 Simulation of a typical trajectory tracking flight

In this section, a typical trajectory is considered, as depicted in Fig2.9. It includes two cycles of

ascending and descending segments. The goal is to show that the control laws developed in Section

4.5.5are able to cope with a switching structure of the system. To implement a sawtooth flight as Fig

2.9, besides the input in Section4.5.5to control the movement of the moveable mass, the inputu4 is

involved to control the ascent and the descent.

The flight path is shown in Fig4.46, the variations ofθ, rp1, v1, v3 are shown in Fig4.43and4.44.

The input force is shown in Fig4.45.
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Figure 4.43: Dynamics ofθ and rp1 of a

continuing flight.
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Figure 4.44: Dynamics ofv1 andv3 of a continu-

ing flight.

The control laws for ascending and descending segments are similar, up to the desired command

ye. On the transition points, besides the switches of the commands of the states, the net buoyancy of

the airship is switching from 340N to −340 N, which represent a bang-bang control foru4. In this

simulation, it is assumed that the release and the inflation of the air bladder are much faster than the

motion of the airship, and this switch is considered to be instantaneous. It is shown by the simulation
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Figure 4.45: The behavior of inputu.
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Figure 4.46: Flight path of two cycles.

that the behavior of the states and the control input is approximately symmetric. On the transition

point, the variation of the input is acceptable as well.

4.6 Conclusion

As how to control the longitudinal dynamics of the airship, that is a challenge, due to the complex

nonlinearity of the model. Two simple controls are derived firstly to verify the control performances.

Due to the drawback of these two control, it is necessary to seek an advance nonlinear control. For cer-

tain mechanical systems with internal dynamics, references (Bloch et al., 1992; Woolsey and Leonard,

2002) investigated the use of the internal torques to stabilizerthe system. To deal with this complex

nonlinear mechanical system, this chapter offers a new approach which is to analyze the system with

a maximal number of constraints, which are gradually relaxed. The maximally constrained model is

assimilated to be the prismatic-joint pendulum shown in Section 4.5.2. Thanks to the angular mo-

mentum of the whole airship computed at the pointO or CG which is denoted byφ1, φ̃1 andφ̃′1 in

this chapter, an explicit dummy output function is derived which defines a minimum phase system.

Maximal feedback linearization with internal stability isperformed, and good control performance is

shown.

The dynamic analysis and control method displayed in this chapter makes sense for similar com-

plex systems, and is also instrumental in dealing with othermotions of this airship, for instance, the

dynamics in the horizontal plane.
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Control Scheme for the Three Dimensional Case
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The longitudinal dynamics of the vehicle has been analyzed in the chapter4. Based on some spe-

cial cases and the maximal feedback linearization with internal stability, an advanced nonlinear con-

trol has been derived for the attitude control and the guidance in longitudinal plane. For autonomous

gliding vehicles, such as buoyancy-driven airships and underwater gliders, the lateral dynamics is

similar to that of the longitudinal plane, only the parameters differ. By a similar approach as the one

used in the longitudinal plane in the chapter4, a nonlinear control has been derived for the attitude

control and the guidance in the lateral plane in this chapter. Thus, for both longitudinal and lateral dy-

namics, nonlinear controllers are derived which solve the maximal linearization problem with internal

stability.

To be able to superpose the longitudinal control and the lateral control, a singular perturbation

approach is adopted as a tool to combine the two controllers designed for the longitudinal and lateral

plane. In this case, the longitudinal dynamics is assumed tobe slow and the lateral dynamics is

assumed to be fast. The simulations show that this control scheme is acceptable for the control

problem in three dimension. To the best of our knowledge, this is the first control solution for the 3D

motion of the autonomous gliding vehicles, both aerial and underwater.

The singular perturbation approach developed here is different from the standard singular per-

turbation approach for the underwater or aerial vehicles, as depicted in (Naidu and Calise, 2001;

Subudhi and Morris, 2003). Usually the problem is split into the attitude control problem and the

guidance problem. Here, the singular perturbation method is used to superpose both control loops for

87
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the longitudinal and lateral motions.

The contributions of the chapter consist of a derivation of the analytical solution of the equilibrium

for three dimensional motion, and a control scheme for it based on the singular perturbation theory.

The content of this chapter has been published in (Wu et al., 2011b).

The chapter is organized as follows: for the dynamics in 3D, due to the complexity of the model,

the regular perturbation theory is involved to derived an approximate analytical solution of the equi-

librium in section5.1. The equilibrium is also derived in this section if the simplified aerodynamic

model is adopted.

5.1 Open-loop Simulations and Equilibrium of the Dynamics in 3D

From 8-DOF model (3.30), the full model for the moveable mass controlled airship isas follows:






φ̇ = Ω1 + sinφ tanθΩ2 + cosφ tanθΩ3

θ̇ = cosφΩ2 − sinφΩ3

ψ̇ =
sinφ
cosθΩ2 +

cosφ
cosθΩ3

Ω̇1 =
1
J1

(

La + (J2 − J3)Ω2Ω3 + rp3u2 − rp2u3

)

Ω̇2 =
1
J2

(

Ma + (J3 − J1)Ω1Ω3 − rp3u1 + rp1u3

)

Ω̇3 =
1
J3

(Na + (J1 − J2)Ω1Ω2)

v̇1 = 1
m1

(Fat1 + (m̄−m0)gsinθ −m3v3Ω2 +m2v2Ω3 − u1)

v̇2 = 1
m2

(Fat2 + (m0 − m̄)gcosθ sinφ +m3v3Ω1 −m1v1Ω3 − u2)

v̇3 = 1
m3

(Fat3 + (m0 − m̄)gcosθ cosφ +m1v1Ω2 −m2v2Ω1 − u3)

r̈p1 = −v̇1 + Ω̇3rp2 − Ω̇2rp3 + Ω3ṙp2 − gsinθ + (v2 + ṙp2 + Ω3rp1 −Ω1rp3)Ω3

−(v3 + Ω1rp2 −Ω2rp1)Ω2 + u1/m̄

r̈p2 = −v̇2 − Ω̇3rp1 −Ω3ṙp1 + Ω̇1rp3 + gcosθ sinφ + (v3 + Ω1rp2 −Ω2rp1)Ω1

−(v1 + ṙp1 + Ω2rp3 −Ω3rp2)Ω3 + u2/m̄

(5.1)

whereu3 is deduced from (3.20) and(mv) × v in equationΩ̇ of the model (3.30) is neglected since it

is included in the aerodynamics (Ouyang, 2003).

5.1.1 Open-loop simulations

For the motion in 3D, there exists turning flights, more precisely, spiral motions as shown in5.1.

The spiral motion of a buoyancy-driven airship is considerably different from that of an aircraft. For

an aircraft, this motion is commanded by the deflections of the rudder and the elevator. A spiral
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motion for an buoyancy-driven airship is caused by the lateral translation of the moveable mass,

namely the translation of the moveable mass along thee2 direction, which is denoted byrp2. The

lateral translation of the moveable mass yields a roll of theairship, which generates a component of

aerodynamic forces on the lateral plane. Thus, a spiral motion is produced.
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Figure 5.1: A spiral motion of the buoyancy-driven airship

With this spiral motion, the airship can enjoy a certain degree of freedom to turn the heading in

space, which is demonstrated by an open-loop simulation as shown in Fig.5.2, 5.3and5.4. From this

simulation, it finds that the airship turns the direction in the horizontal plane while the motion in the

longitudinal plane is only slightly impacted.
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Figure 5.2: The airship change the heading in space

5.1.2 Equilibrium of the dynamics in 3D

For the analytical conditions of a stable spiral motion in 3D, two approximate computations are

presented according to two different aerodynamic expressions.
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Figure 5.3: The motion of the airship in space
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Figure 5.4: The motion of the airship in space

maps in a longitudinal plane

For full aerodynamic model case

To derive the analytical condition of this spiral motion, the right-hand side of the 3D full model

(5.1)are equal to zero and are solved in all variables. The challenge is that the 3D full model (5.1) is

very difficult to solve directly due to its complexity. Thus, the regular perturbation is involved as a

tool to find an approximate analytical solution for this spiral motion.

To apply the regular perturbation method, the turn rate of the spiral motionω is arranged to be

very small and let:

ω = ǫ

√
g

rp3
(5.2)

Thus, the angular velocities with respect to the body frame are equal to:

Ω =





Ω1

Ω2

Ω3





=





− sinθ

cosθ sinφ

cosθ cosφ





ω (5.3)

Let the translational velocity of the airship beV, then the translational velocities with respect to

the body frame are written as:

v =





v1

v2

v3





=





cosα cosβ

sinβ

sinα cosβ





V (5.4)

To get the regular perturbation solution inǫ, the steady longitudinal motion is viewed as a basic

motion of the spiral motion in 3D. (5.2), (5.3), (5.4), and the following polynomial expansions are

substituted to thėΩi andv̇i equations of (5.1):



5.1. OPEN-LOOP SIMULATIONS AND EQUILIBRIUM OF THE DYNAMICS IN 3D 91






V = Ve+ ǫV1

m0 = m0e+ ǫm01

α = αe+ ǫα1

φ = 0+ ǫφ1

β = 0+ ǫβ1

rp2 = 0+ ǫrp21

The coefficient equations ofǫ0 are identical to the situation of the derivation of the equilibrium of

the longitudinal motion in section4.2.2. Solving the coefficient equations ofǫ1 andǫ2 gives approxi-

mate solutions of the equilibrium of the spiral motion and which are presented in the following:

V1 = 0 (5.5)

α1 = 0 (5.6)

m01 = 0 (5.7)

β1 = ±(

√

g/rp3 cosθ cosαerp3m̄

Ve cosαe(m3 −m2)
)

1
2 (5.8)

φ1 = −
V2

e(Ks f + Kd0 + Kdα
2
e)

cosθm0eg
(5.9)

rp21 = −
V2

eKnβ1 − cosθ tanφ1rp3m̄g

m̄gcosθ
(5.10)

whereKn =
1
2ρa∇V2Cβ

l , andKs f =
1
2ρa∇2/3V2Cβ

y.

From this approximate analytical solution of the equilibrium in 3D, it is implied that the longi-

tudinal motion is decoupled from the lateral motion when theturn rate is small sinceV, α andm0

remain constant to the small turn rate and are identical to the equilibrium of the longitudinal motion.

Thus, a remark can be concluded as follows:

Remark: The longitudinal motion is decoupled from the lateral motion when the turn rate is

small.

For simplified aerodynamic model case

If the aerodynamic force is given by a simple form as (3.8), the equilibrium of the state is derived

as follows.

To compute the equilibrium for a specified flight path, the right hand side of (5.1) is set to zero.
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From (3.1) and Fig.4.1, the following equations are derived:

tanξe =
− sinθe+

−Kd sinφe

Ks f tanθe
cosθe sinφe+

−Kd cosφe

Kl tanθe
cosθe cosφe

cosψe cosθe+
−Kd sinφe

Ks f tanθe
(cosψe sinθe sinφe−sinψe cosφe)+

−Kd cosφe

Kl tanθe
(cosψe sinθe cosφe+sinψe sinφe)

tanγe =
sinψe cosθe+

−Kd sinφe

Ks f tanθe
(sinψe sinθe sinφe+cosψe cosφe)+

−Kd cosφe

Kl tanθe
(sinψe sinθe cosφe− cosψe sinφe)

cosψe cosθe+
−Kd sinφe

Ks f tanθe
(cosψe sinθe sinφe− sinψe cosφe)+

−Kd cosφe

Kl tanθe
(cosψe sinθe cosφe+sinψe sinφe)

tanθe =
− sinθe+

−Kd sinφe

Ks f tanθe
cosθe sinφe+

−Kd cosφe

Kl tanθe
cosθe cosφe

√
(

cosψe cosθe+
−Kd sinφe

Ks f tanθe
(cosψe sinθe sinφe−sinψe cosφe)+

−Kd cosφe

Kl tanθe
(cosψe sinθe cosφe+sinψe sinφe)

)2

+
(

sinψe cosθe+
−Kd sinφe

Ks f tanθe
(sinψe sinθe sinφe+cosψe cosφe)+

−Kd cosφe

Kl tanθe
(sinψe sinθe cosφe−cosψe sinφe)

)2

From those three equations, for givenξe andγe, the equilibria ofφe, θe, andψe can be computed.

From r̈p1 and ¨rp2 equations in (5.1), the followingu1 andu2 are computed as:

u1e = m̄gsinθe (5.11)

u2e = −m̄gcosθe sinφe (5.12)

and from (3.20), the equilibrium ofu3 is computed as:

u3e = −m̄gcosθe cosφe (5.13)

Substituting (5.11)-(5.13) into equations ˙v1, v̇2, andv̇3 of (5.1), and combining with the relation

v2
1e+ v2

2e+ v2
3e = V2

e, the equilibria of the speed andm0 are computed as:

v1e =
KlKs f tanθe

√

tan2 θeK2
s fK

2
l + sin2 φeK2

dK2
l + K2

dK2
s f − K2

dK2
s f sin2 φe

Ve

v2e =
cosθe sinθeKdKl

√

K2
s fK

2
l − K2

s fK
2
l cos2 θe+ K2

dK2
l cos2 θe− K2

dK2
l cos2 θe cos2 φe+ K2

dK2
s f cos2 θe cos2 φe

Ve

v3e =
cosθe sinθeKdKs f

√

K2
s fK

2
l − K2

s fK
2
l cos2 θe+ K2

dK2
l cos2 θe− K2

dK2
l cos2 θe cos2 φe+ K2

dK2
s f cos2 θe cos2 φe

Ve

Ω1e = Ω2e = 0

m0e =
Kd

gsinθe
v1e

wherev1e, v2e andv3e have the relationsv2e =
−Kd sinφe

Ks f tanθe
v1e; v3e =

−Kd cosφe

Kl tanθe
v1e.

From the equationṡΩ1, Ω̇2, andΩ̇3, the equilibriums ofrp1 andrp2 are computed as:
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rp1e =
−rp3m̄gsinθe

m̄gcosθe cosφe

rp2e =
rp3m̄gcosθe sinφe

m̄gcosθe cosφe

5.2 Lateral Dynamics and Control

The lateral structure of the airship has been shown in Fig.5.5. The lateral dynamics in the full

model involve the roll DOFφ andΩ1; velocitiesv2 andv3; and the moving mass dynamicsrp2. The

lateral dynamic model is as follows:






φ̇ = Ω1

Ω̇1 =
1
J1

(

La − rp2u3 + rp3u2

)

v̇2 = 1
m2

((m0 − m̄) gsinφ +m3v3Ω1 + Fa2 − u2)

v̇3 = 1
m3

((m0 − m̄)gcosφ −m2v2Ω1 + Fa3 − u3)

r̈p2 = −v̇2 + Ω̇1rp3 + (v3 + Ω1rp2)Ω2 + gsinφ + u2/m̄

(5.14)

whereFa2 = − sinβXa + cosβYa, Fa3 = Za, andu3 is also decided by (3.20).

o

e3

e2

m

Figure 5.5: The lateral structure of the airship.

Note that the analysis of the longitudinal subsystem remains instrumental although parameters

are different. Actually, the lateral control design has the same structure as that of the longitudinal

dynamics. This remark is easy to understand when taking intoaccount of the real physical system,

see Fig.4.28and5.5. The dynamics in the lateral plane has the same structure as the dynamics in the

longitudinal plane; however the parameters are different.

As the result of the previous chapter, The angular momentum plays an important role in control.

For the lateral dynamics, the angular momentum is:

Ξ1 = J1φ̇ +
mm3

m+m3
r2

p2φ̇ −
mm2

m+m2
(rp3ṙp2 − r2

p3φ̇)
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and there exist two functionsΞ2 and̺
′
, such that:

Ξ̇2 = ̺
′
Ξ1, ̺

′
> 0

Ξ2 = φ −
rp3

√
J1(m2+m̄)

m2m̄ + r2
p3

√
m3(m2+m̄)
m2(m3+m̄)

arctan
rp2

√
m3(m2+m̄)
m2(m̄+m3)

√
J1(m2+m̄)

m2m̄ + r2
p3

Ξ1 andΞ2 have relative degree 3. Following a similar derivation, it is possible to prove that the

lateral system with the outputy
′
= Ξ1 + kΞ2 has asymptotically stable zero dynamics for anyk > 0.

An error equation as Equation (4.44):

y
′(3) + λ

′
2y
′(2) + λ

′
1y
′(1) + λ

′
0(y

′ − y
′
e) = 0 (5.15)

is adopted to derive the nonlinear controlu2 to stabilize the flight path angleγ and speeds to commands

in the lateral plane. The parameters of the control are represented byλ
′
2, λ

′
1, andλ

′
0. The exact

expression ofu2 is easily computable, although through tedious computations. Similar simulation

results as that for the longitudinal dynamics are obtained for the dynamics in the lateral plane.

5.3 Control of the Dynamics in Three Dimension

Even though the dynamics of the airship can be decoupled intothe longitudinal dynamics and the

lateral dynamics, the direct superposition of the controlsfor the dynamics on these two planes will

does not guarantee the stable of the system. The singular perturbation is needed to solve this problem.

The singular perturbation is used for the flight controls in many references (Wang and Stengel,

2005; Naidu and Calise, 2001; Subudhi and Morris, 2003; Calise, 1976; Bhatta, 2006; Bhatta and

Leonard, 2008). A control scheme based on the singular perturbations for the longitudinal and the

lateral dynamics in 3D is presented, see Fig.5.6. Some simulations have been done to show the

control performances for the attitude control and the guidance.

Through the simulation in 3D, it is found that if 6 poles of theerror equations (4.44) and (5.15) are

all arranged at the same places, namelyλi = λ
′
i , then the controlsu1 andu2 are too large and exceed

an acceptable domain. When the longitudinal dynamics is slowand the lateral dynamics is fast,

the magnitude ofu1 andu2 are acceptable. This also shows the necessity of a singular perturbation

approach. This will be explicitly explained in the following.

5.3.1 Controller structure

The controlu1 is tuned through parametersλ2, λ1, andλ0; u2 is tuned through parametersλ
′
2, λ

′
1,

andλ
′
0. So that the dynamics in the longitudinal plane are slower than the dynamics in the lateral
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plane by choosingλ2 = 3, λ1 = 3, λ0 = 1, λ
′
2 = 300,λ

′
1 = 300, andλ

′
0 = 1000. The time response of

the longitudinal motion in closed loop has been chosen to be 10 times longer than the time response

of the lateral motion.

The control structure of the vehicle in 3D is shown in Fig.5.6. Here, the longitudinal states

consist ofθ, Ω2, v1, v3, rp1, and ˙rp1; the lateral states consist ofφ, Ω1, v2, v3, rp2, and ˙rp2. whereu1 is

airship
model

Nonlinear
fast

controller

Nonlinear
slow

controller

+

u

u1

u2

states of the
longitudinal  motion

states of the
lateral motion

u4

θ φ, , ,
,

Ω
v rp,rp

Figure 5.6: Structure of the singular perturbation controller

the control for the longitudinal dynamics (4.1) in Section4.2.1; andu2 is the controller for the lateral

dynamics (5.14) in Section5.2. The net liftm0g, namelyu4, is still subject to a open loop bang-bang

control. For the autonomous gliding vehicle, the speed is mainly controlled by the net liftm0g, and

the heading of the motion is controlled by the airship’s attitude which is taken into account byu1 and

u2, as shown in Fig.4.38.

5.3.2 Simulations of nominal control responses

All mechanical properties used in the simulation are listedin Table5.1 where the aerodynamic

coefficients are borrowed fromOuyang(2003).

Control performances of the singular perturbation controllers are given in Fig5.7- 5.11.

Figure5.7shows the dynamics of the Euler angles when there exists initial errors. In this simula-

tion, the commanded angle forθ is 26 degree, and theφ is expected to be zero. With initial errors, the

three Euler angles are asymptotically stable. Fig.5.8 represents the motion of the moveable masses

in this process.

The simulation shown in Fig.5.9 and5.10presents the turning case of the airship. Here,φ is

stabilized at 10 degrees at first, and then it is commanded to zero. Shown in Fig.5.10, the trajectory

is turned to the+e2 (namely−y) direction.
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Table 5.1: Physical properties of the airship

Terms Values Terms Values Terms Values

m̄ 30kg Volume 296m3 KD -2.16 Ns/m

ms 269kg m1 400kg KS F -7.21 Ns/m

m2 400kg m3 500kg KL -36.51 Ns/m

J1 9000kg ·m2 J2 8000kg ·m2 KML -0.44 Ns/m

J3 8000kg ·m2 rp3 2 m KM -49.97 Ns/m
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Figure 5.7: The dynamics of the Euler angles with initial errors.

Finally, a simulation on a continuing flight which consists of a rise segment and a fall segment (as

shown in Fig2.9) is presented by Fig5.11, and this process goes with a the turn to+e2 (namely−y)

direction.

5.4 Conclusion

To present, the discussion on the control of the airship is mainly limited to one plane (i.e. the

longitudinal plane). Through a singular perturbation scheme, a solution for three-dimensional attitude

control has been derived for the first time. With the controller proposed here, not only the pitch angle

(also the flight angle) can be stabilized, but also steady turning direction can be achieved by the

feedbacku2. With this attitude controller scheme, a trajectory tracking controller can be derived

based on it. The analysis of this paper offers a control scheme for similar mechanical systems.
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Figure 5.8: The motion of the moveable masses.
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Figure 5.9: The dynamics of the Euler angles in turning case.
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Figure 5.10: The trajectory in turning case.
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Figure 5.11: The trajectory for a continuing flight with changing direction.
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Conclusion

Even though the mechanical system of the buoyancy-driven airship is complicate, through the

analysis of some constrained cases, such as presented in section 2.2, lots of fundamental properties

are found. Through the analysis in the modelling, the relationship between the airship’s body and

the movable mass is clearly presented, and the modelling of such complicate system becomes easy

to follow. For the control design in this thesis, actually, not only some control methods have been

derived, but also the dynamic system has been deeply analyzed. In this process, the important roles

of the angular momentum and the aerodynamic forces are foundand demonstrated. The performance

of the nonlinear control displayed in this thesis, both in 2Dand 3D, are acceptable.

Airships are no longer used for passenger transportation, however, they are useful for other pur-

poses, such as surveillance, communication relay, and heavy lift transportation, which has drawn a

lot of attention in the recent years. This is the motivation of this research as well. But different

from the conventional airship which is driven by propellers, rudders and elevators, a new-concept of

buoyancy-driven airship is considered in this thesis. Thisnew buoyancy-driven airship moves for-

ward by moving an internal mass and by varying the total mass of the airship. The motivation of

the research of this new airship is to design a new energy-saving aircraft which has longer airborne

endurance. The buoyancy-driven airship has been introduced by R. Purandare in (Purandare(2007)),

which is the first and the only monograph available on this domain. Thus, lack of references is also

a challenge of this research. Nevertheless, the buoyancy-driven airship which employs an internal

moving mass to control the attitude and an adjustable air bladder to control the altitude offers a novel

mechanism for UAVs, and it is an exciting research topic, especially, since this mechanism is already

successfully applied in some underwater gliders.

In this thesis, the main contributions consist of the following four aspects:

• A complete 8-DOF mathematical model for the buoyancy-driven airship in 3D is derived. In

this progress, two approaches are offered. The rigid body and the moveable mass can be viewed
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independently and globally. When the rigid body and the moveable mass are viewed indepen-

dently, the coupling of these two subsystems only consists in a control force.

• The fundamental properties of the complex model are investigated by analysis, design and

simulations. Through analysis and simulations, it is established that the attitude of the airship is

mainly controlled by the translation of the moveable mass and the altitude is controlled by the

variation of the net lift. Moreover, the aerodynamic forcesoffer couplings between the attitude

control and the guidance control and render all DOF controllable. These are shown according

to the following Fig6.1.

attitude guidance
φ θ ψ aerodynamic

forces, etc.
V ξ  γmoving

mass

net lift u4

(mass of air bladder)

u rp

Figure 6.1: The structure of the buoyancy-driven ariship (also the autonomous gliding vehicle).

The angular momentum of the airship plays an important role in the control the dynamics since

it has the highest relative degree.

• Various controls of the planar dynamics are constructed. Besides a basic LQR approach and

an input-output linearization, an advanced nonlinear control based on the maximal feedback

linearization with internal stability is derived. This process is not easy to perform directly on

the full model.

It has been shown that the airship is not fully feedback linearizable. Maximal feedback has

been solved. Although the latter techniques are usually nottrackable for complex aeronautical

models, it has been possible to derive analytic control solutions. A major challenge is internal

stability and a suitable choice of linearizing coordinatescould circumvent this issue and the

internal stability has been proven.

• A control scheme based on singular perturbations for the motion in 3D is given for the first

time. In this process, the analytical solution for a stable spiral motion is derived.

The buoyancy-driven airship is a novel object as it is not yetavailable on the market, and in this

thesis only some preliminary theoretical issues are argued. There still exist a lot of open questions.

The main points which are worth to be solved are listed in the following:

• In this thesis, lots of parameters are assumed to be constant, such as the moment of inertia and

the aerodynamic coefficients. It is mandatory to investigate the robustness of thecontrol under

the variations of these parameters.
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• Obviously, severe wind conditions are not considered here,and they may give the limits of

the airship design and the minimal use of a standard propulsion may become mandatory. For

further work, a hybrid airship which employs the buoyancy-driven and the standard propeller is

worth to consider.

• The autonomous airship has finally to be considered in a framework of UAV. The complete

control structure of autonomous UAVs is shown in Fig.6.2. In this thesis, only the internal first

and second loops are considered. Thus, the outer loops require additional research to complete

the control structure.

Aircraft

Attitude Control

Flight Path Control

Navigation

Mission
Goals
And

Constraints

Mission Planning

Figure 6.2: The control structure of autonomous UAVs.

Obviously, the most pragmatic aspects go through the construction of a demonstration airship to check

the practical feasibility of this new UAV mechanism and the validity of the control in the thesis.
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Résumé en Français
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7.3 Deux Approches pour la Mod́elisation . . . . . . . . . . . . . . . . . . . . . . . 107

7.4 Contrôle de la Dynamique Longitudinale . . . . . . . . . . . . . . . . . . . . . 110

7.5 Contrôle en Trois Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Un nouveau concept de dirigeable sans propulseur, sans gouvernail de direction et sans gouvernail

de profondeur est considéŕe dans cette th̀ese. Il est actionńe par une masse amovible et une vessie d’air

interne dont la masse est réglable. Ces deux actionneurs permettent de commander le mouvement du

centre de gravit́e et la force de flottabilit́e nette (pousśee d’archim̀ede). Le d́eveloppement de ce

concept de dirigeable est motivé par leśeconomies d’́energie. Un mod̀ele complet a huit degrés de

liberté de ce dirigeable est obtenu par la méthode de Newton-Euler. L’interconnexion entre le corps

rigide du dirigeable et de la masse mobile est modélisée. La dynamique dans le plan longitudinal

est analyśee et contr̂olé successivement par une commande LQR, un retour d’état assurant un plan

placement de p̂oles, et la lińearisation maximale par bouclage. Grâceà la linéarisation maximale

par bouclage, un commande non linéaire ad́equate est obtenue. Dans ce processus, la modélisation,

l’analyse et de contrôle sont ŕesolus pour les cas particuliers du dirigeable de plus en plus complexes,

afin de nous rapprocher du cas le plus géńeral. Le cas le plus particulier se réduit à un syst̀eme qui

a deux degŕes de libert́e. Il est montŕe que les propriét́es de base de certains systèmes ḿecaniques

simples restent d́eterminantes pour l’analyse et la synthèse des dirigeables avancés. Ces propriét́es

sont loin d’̂etre évidentes lorsque le modèle consid́eŕe est complexe. Nous montrons que l’étude

du cas 3D est facilit́ee gr̂aceà une approche de perturbations singulière. La superposition des deux

actions de contr̂ole dans le plan longitudinal et dans le plan latéral est alors possible et permet de
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parvenir au contr̂ole de la dynamique en trois dimensions.

7.1 Introduction

Bien que les dirigeables ne soient plus utilisés pour le transport de passagers, ils sont utilesà

d’autres fins, telles que la publicité, les visites touristiques, la surveillance et la recherche (Elfes et al.,

1998; Tozer and Grace, 2001; Bowes, W. C. and Engelland, J. and Fernandez, F. L. and Fratarangelo,

P. and Kohn, Jr. E. and Lister, R. and Neal, W. A. and Polmar, N. and Rumpf, R. L, and Smith, T.

B. and NRAC, 2006). Les principaux pays dans le monde ont mis en place indépendamment de nou-

veaux projets, par exemple, le programme de Northrop Grumman sur le dirigeable hybride(Northrop

Grumman, 2010), le programme de Lockheed Martin(Defense Industry Daily, 2006; Lockheed Mar-

tin Corporation, 2008), le programme européen l’ESA-HALE, et quelques autres(Knaupp and Mund-

schau, 2004; Yokomaku, 2001).

La différence notable avec les anciens dirigeables est que la recherche moderne se concentre

sur le dirigeable sans pilote humainà bord. Fond́e sur la commandèa distance, la commande par

bouclage et la navigation autonome, un dirigeable moderne doit accomplir certaines tâches de manière

automatique. De nombreux travaux ontét́e consacŕes à la mod́elisation, le contr̂ole et de suivi de

trajectoire des dirigeables(Gomes and Ramos Jr, 1998; Ouyang, 2003; Purandare, 2007).

La plupart de ces travaux ont contribué à des dirigeables qui sont entraı̂nés par des propulseurs

situés le long de la cellule, et dont l’attitude est contrôlée par des gouvernails ou d’une poussée

vectorielle. Ces mod̀eles math́ematiques sont fondés sur le mod̀ele Gomes(Gomes and Ramos Jr,

1998).

Dans cette th̀ese, un nouveau concept de dirigeable est considéŕe, mû par la force de flottabilit́e.

Le déplacement d’un ballast interne et la variation de la masse totale du dirigeable permettent de

déplacer l’engin.. La motivation de cette recherche est de développer un vol d’́economie d’́energie

qui a une longue endurance de suspension dans l’air.

A l’heure actuelle, la seule monographie sur le dirigeableà flottabilit́e motrice est la th̀ese(Puran-

dare, 2007). C’est un d́efi de cette recherche. Une démonstration est mentionnée dans cette thèse,

et qui montre la modification de la flottabilité nette de l’engin par un ventilateur, la modification de

l’attitude, et la faisabilit́e d’un mouvement de petite amplitude vers l’avant. La faisabilit é du projet a

ét́e prouv́ee cependant les technologies n’étaient pas m̂ures(Purandare, 2007). Ces travaux pionniers

pionnier ontétudíe la faisabilit́e, le mod̀ele physique 2D de ce type de dirigeable, et la synthèse d’un

contr̂ole PID pour le syst̀eme. Les travaux ont́et́e meńes aét́e meńee dans un environnement non

perturb́e. La conclusion fut que ce nouveau type de dirigeable pourrait voler de manìere efficace
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lorsque l’angle d’attaque est faible.Évidemment, les conditions de vents violents peuvent donner les

limites de la conception aéronautique et l’utilisation minimale de propulseurs standard peut devenir

obligatoire.

La pŕesente th̀eseétudie les aspects théoriques seulement, et l’expérimentation ŕeelle est au-delà

de ses objectifs. Ńeanmoins, les principales contributions sont illustrés par un ensemble de résultats

de simulation. Plus préciśement, les contributions de cette thèse sont:

• Un mod̀ele complet̀a 8 degŕes de libert́e d’un dirigeablèa flottabilit́e motrice est obtenu en 3D.

Deux approches sont proposées. La cellule rigide et la masse mobile sont modélisées soit en

tant que deux sous-systèmes coupĺes, soit globalement.

• Les propríet́es structurelles fondamentales du modèle complexe sont́etudíees par l’analyse, la

synth̀ese et les simulations. L’attitude du dirigeable est principalement contr̂olée par la trans-

lation de la masse mobile, et l’altitude est contrôlée par la variation de la poussée nette. En

aéronautique, les forces aérodynamiques induisent un couplage entre le contrôle d’attitude et

de guidage. Par conséquent, les forces aérodynamiques rendent tous les degrés de libert́e com-

mandables. Elles sont indiquées par la figure7.1.

attitude guidance
φ θ ψ aerodynamic

forces, etc.
V ξ  γmoving

mass

net lift u4

(mass of air bladder)

u rp

Figure 7.1: La structure du mod̀ele du v́ehicule.

Un des fils rouges de nos travaux est la démonstration que le moment angulaire du dirigeable

joue un r̂ole d́eterminant dans le contrôle de la dynamique, car il a un degré maximal.

• Divers ḿecanismes de commande de la dynamique plane, de l’approche LQRà une commande

non linéaire fond́ee sur la lińearisation maximale par bouclage, sont construits. Il est montŕe que

le dirigeable n’est pas complètement linearisable par bouclage. La linéarisation maximale est

résolue. Bienque ces techniques soient en géńeral difficilesà mettre en oeuvre sur des modèles

complexes, des solutions analytiques sont calculées. Un d́efi majeur est la stabilité interne qui

n’est malheureusement pas garantie. Le choix adéquat de coordonnées lińearisantes permet de

résoudre ce problème et la stabilit́e interne du système en boucle ferḿee est d́emontŕee.

• Une commande fond́ee sur les perturbations singulières pour le mouvement en 3D est donnée

pour la premìere fois. Dans ce ḿemoire, la condition analytique pour un mouvement en spirale

stable est d́eduit.
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Les hypoth̀eses importantes sont faites dans cette thèse. Dans ces premiers résultats, les questions

théoriques sont d́ebattues. Les perturbations, comme le vent, et la variationde la densit́e de l’air ou

de la temṕerature, ne sont pas considéŕees.

Le chapitre est organisé comme suit: le dirigeablèa flottabilit́e motrice est introduit brièvement

dans la section7.2. Le dirigeable est complètement mod́elisé dans la section7.3. La section7.4

montre les commandes utilisées pour la dynamique longitudinale. La dynamique du véhicule est

également analysée dans cette section. La section7.5 propose une commande fondée sur la th́eorie

des perturbations singulières pour le mouvement en 3D. La section7.6conclut ce chapitre.

7.2 Description Générale du Dirigeable Soumis à une Force de Flotta-

bilité

La structure de base du dirigeable est montrée dans la figure7.2. La coque du dirigeable est

gonfléeà l’hélium et l’air ambiant est contenu dans deux vessies isolées. Les vessies d’air interne

sont syḿetriques et́elastiques; leur masses peuventêtre ajust́ees par un ventilateur et des vannes.

Comme le volume du dirigeable est fixe, la force de flottabilité du dirigeable demeure constante. En

ajustant la masse de la vessie d’air interne, le dirigeable monte ou descend.

Helium bladder

ValveBlower

Moving mass

Air bladder

Figure 7.2: Structure du dirigeable de flottabilité à moteur.

Il y a une masse mobile situéeà la bas du dirigeable. Elle peut se déplacer le long des directions

e1 et e2 du rep̀ere mobile. Avec le mouvement de masse mobile, le centre de gravité CG se d́eplace,

ce qui conduit̀a la variation de l’attitude du dirigeable.

Le dirigeable est́egalement́equiṕe de quelques ailettes qui contribuentà augmenter les forces

aérodynamiques, cependant il n’y a pas de gouvernail.
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Le mécanisme actionnant ce type du dirigeable est décrit comme suit. Lorsque l’air est libéŕe

de la vessie d’air interne, la masse du dirigeable se réduit, par conśequent, la poussée nette devient

positif et le dirigeable monte. Lorsque simultanément, la masse mobile se déplace vers l’arrìere du

dirigeable, le dirigeable obtient un angle de montée positive, et cela induit une composante de force

aérodynamique vers l’avant sur le dirigeable. Cette composante de force meut le dirigeable vers

l’avant (voir la figure7.3et le segment BC de la figure7.5). Inversement, quand l’air est pompé dans

la vessie d’air interne, la masse du dirigeable augmente, donc par conśequent, la poussée nette devient

négative et le dirigeable descend. Lorsque la masse mobile sedéplace simultańement vers l’avant,

l’angle de mont́ee devient ńegatif. Cela induit́egalement une composante de force aérodynamique

vers l’avant. Par conséquent, le dirigeable se déplace vers le bas et vers l’avant (voir la figure7.4 et

le segment AB de la figure7.5).

Figure 7.3: Le dirigeable se d́eplace vers le haut

et vers l’avant.

Figure 7.4: Le dirigeable se d́eplace vers le bas et

vers l’avant.

Figure 7.5: Trajectoire typique d’un dirigeable.

7.3 Deux Approches pour la Modélisation

Ici, deux approches de modélisation pour le dirigeable avec la masse mobile sont présent́ees.

Ces deux approches appréhendent la dynamique du système de manière différente. Pour la première

approche de mod́elisation, la dynamique des corps rigides et interne masse mobile sont consid́eŕes de

manìere ind́ependante. La force d’interaction entre le corps rigide et la masse mobile est considrée



108 CHAPTER 7. ŔESUMÉ EN FRANÇAIS

comme une variable de commande intermédiaire. De ce point de vue, l’interconnexion entre ces deux

sous-syst̀emes est claire. Pour la deuxième approche, la dynamique du système est d́ecrite en termes

de la dynamique totale du système rigide et la dynamique de la masse mobile. Comme la force de

contr̂ole est une force interne, la quantité de mouvement totale est conservée pour tout choix de la

commande.
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e2
e3
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Figure 7.6: Le corps rigide et la masse mobile

Comme repŕesent́e sur les figures7.6, le corps rigide du dirigeable et la masse mobile sont

repŕesent́es comme deux points matériels. Les deux approches de modélisation sont pŕesent́ees

comme suit.

Certains ŕesultats de cette section sont publiés dans (Wu et al., 2009a, 2010).

7.3.1 Le corps rigide et la masse mobile sont deux sous-systèmes indépendants

Comme not́e ci-dessus, dans ce cas, le seule connexion entre le corps rigide et la masse mobile se

compose d’une force qui est utilisée pour actionner la masse mobile par le corps. Leséquations du

mouvement du système comprennent les mouvements de translation et angulaires du corps rigide et

de la masse mobile.

Soit p la quantit́e de mouvement,π la moment cińetique du corps rigide, etpp la quantit́e de

mouvement de la masse mobile, respectivement. Noter quep, π, et pp sont calcuĺes par rapport au

rep̀ere inertiel.P,Π, et Pp sont calcuĺes par rapport au repère mobile.






π̇ =
∑

τext − rp ×
(

RT
1
u
)

ṗ =
∑

fext − m̄gk − RT
1
u

ṗp = m̄gk + RT
1
u

(7.1)

où
∑

fext est la force ext́erieuer total et n’inclut pas les moments de ¯mget u, agi sur le corps.
∑

τext

est le moment extérieure totale, excepté les moment de ¯mget u.
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Grâceà la transformation entre le repère inertiel et le rep̀ere mobile, leśequations du mouvement

par rapport au rep̀ere inertiel sont obtenues comme:






Π̇ = Π × Ω + P × v + RT
∑
τext − rp × u

Ṗ = P × Ω + RT
1

∑
fext − m̄g

(

RT k
)

− u

Ṗp = Pp × Ω + m̄g
(

RT k
)

+ u

(7.2)

DeséquationsṖ et Ṗp dans Eq. (7.2), on conclut que le corps rigide subit une force antagoniste

à la grandeuru de la masse mobile. Ce résultat est confirḿe par la figure3.11et l’analyse ci-dessus.

La force de contr̂ole u associe le corps rigide et la masse mobile comme un système multi-corps.

7.3.2 Le corps rigide et la masse mobile sont considérés globalement

Plutôt que de consid́erer la dynamique du corps rigide sépaŕement de celle de la masse mobile,

on peut consid́erer la dynamique totale du système qui est notée par un tilde′ ˜ ′. Dans ce cas, la

quantit́e de mouvement est contstante. Pour maintenir l’uniformité de la notation, elle est reécrite

commep̃p.

Dans ce cas, Eq. (7.1) se transforme en:






˙̃π =
∑

τext + rp × (m̄gk)

˙̃p =
∑

fext

˙̃pp = m̄gk + RT
1
u

(7.3)

où m̄get u n’apparaissent pas dans la force et le moment externes.

Après la transformation, les variables par rapport au repère inertiel dans ce cas sont donnés par:






˙̃
Π = Π̃ × Ω + P̃ × v + RT

∑
τext + rp ×

(

m̄gRT k
)

˙̃P = P̃ × Ω

˙̃Pp = P̃p × Ω + m̄g
(

RT k
)

+ u

(7.4)

Notez queu n’entre pas dans l’équation du˙̃
Π and ˙̃P. Cela refl̀ete le fait que l’actionnement interne

ne peut pas modifier la dynamique globale du système.

Par cette analyse, la structure dynamique aét́e reconnue et exploitée. Ces deux modèles sont

utilisés à des fins différentes. Ils sont́egalement d’excellents candidats pour faciliter l’analyse et

la conception des contrôles pour les autres véhicules qui comprennent les engins spatiaux et les

véhicules de rentrée atmosph́erique.
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7.3.3 Le modèle mathématique complet

Puisque le dirigeable est entraı̂né par le changement de la poussée nette, il est ńecessaire de

contr̂oler la masse du ballonnets par la l’entrée de commandeu4, soit mb = u4. Doncm0 = mh +

m̄+ u4 −m, cela implique quem0 dans le mod̀ele math́ematique comprend une entrée de commande.

Mais l’utilisation de la quantit́e de mouvement et du mouvement cinétique comméetats du mod̀ele

ne convient pas, et il est préférable d’exprimer la quantité de mouvement en fonction de la vitesse.

En combinant leśequations de la cińematique par rapport au repère inertiel, le mod̀ele math́ematique

qui a huit degŕes de libert́e est obtenu comme suit:





ḃ

η̇

v̇

Ω̇

ṙp

r̈p





=





R1v

R3Ω

M−1F̄

J−1K̄

ṙp

T̄





(7.5)

où

K̄ = JΩ ×Ω + Mv × v + Mat − rp × u

F̄ = Mv ×Ω + Fat + (m0 − m̄)gRT
1

k − u

T̄ = −v̇ − Ω̇ × rp −Ω × ṙp + g(RT
1

k) + vp ×Ω + u/m̄.

7.4 Contrôle de la Dynamique Longitudinale

La dynamique du dirigeable dans le plan longitudinal est considéŕe puisque cette dynamique est

la plus fondamentale et importante. Mais il n’est pas facilede l’analyser et de la commander en

raison de sa non-lińearit́e. La dynamique longitudinale est formée de sixétats et de deux entrées

de commande. Diverses simulations en boucle ouverte sont effectúees pour v́erifier le mod̀ele. Une

approche commune pour contrôler un syst̀eme non lińeaire consistèa linéariser le système autour

d’un point équilibre, et puis l’analyse et la commande de ce système lińeairesont utiliśees pour le

syst̀eme nonlińeaire d’origine. Une approche basée sur la commande LQR est d’abord présent́ee dans

cette section. Toutefois, en raison de l’inconvénient de l’approche LQR, un contrôle non lińeaire du

syst̀eme est ńecessaire.

Une ŕeussite majeure du contrôle non-lińeaire moderne est linéarisation par bouclage (Isidori,

1989; Conte et al., 2007). Malheureusement, le système du dirigeable n’est pas entièrement lińearisable,
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et le principal inconv́enient est qu’une dynamique non-linéaire qui peut̂etre instable restera dans le

syst̀eme en boucle-ferḿee. Deux commandes non-linéaires fond́ees sur lińearisation par bouclage

sont pŕesent́ees dans cette section et la stabilité de la dynamique interne est prouvée. Ces commandes

non linéaires sont des sont certaines des contributions de ces travaux de recherche.

Certains ŕesultats de cette section sont publiés dans (Wu et al., 2009a,b, 2010, 2011a).

7.4.1 Modèle de la dynamique longitudinale

Pourétudier la dynamique dans le plan longitudinal, le modèle complet áet́e limité au plane1−e2,

c’est-a-dire que seulement les degrés de libert́e dans le plan longitudinal dans le modèle complet sont

conserv́es, commeθ,Ω2, v1, v3, rp1, etm0. Le mod̀ele longitudinal est alors donné comme suit:






θ̇ = Ω2

Ω̇2 =
1
J2

(Ma + rp1u3 − rp3u1)

v̇1 = 1
m1

((m̄−m0) gsinθ −m3v3Ω2 + Fa1 − u1)

v̇3 = 1
m3

((m0 − m̄)gcosθ +m1v1Ω2 + Fa3 − u3)

r̈p1 = −v̇1 − Ω̇2rp3 − (v3 −Ω2rp1)Ω2 − gsinθ + u1/m̄

ṁ0 = u4

(7.6)

où u3 n’est pas une entrée de commande et est fixée par Eq. (3.20). L’ équilibre de la dynamique

longitudinale est calculé à partir de ce mod̀ele.

7.4.2 Commande LQR

La commande LQR est une théorie importante et classique pour le contrôle optimal, et elle est

utilisée pour ŕesoudre le problème LQG qui est l’un des problèmes les plus fondamentaux de la

théorie du contr̂ole. Cependant, comme chacun le sait, un inconvénient de toute commande linéaire

est la limite du domaine de validité de la commande lińeaire contr̂ole linéaire pour le système non

linéaire d’origine, en raison de l’approximation de la linéarisation.

La théorie LQR pour des problèmes de contrôle fournit les gains de rétroaction pratiques. Il est

suppośe que tous leśetatsx sont disponibles pour le contrôle. La fonction de côut est d́efinie comme:

J =
∫ ∞

0

(

xTQx + uTRu
)

dt

Les matrices de pondérationQ et R sont des param̀etres de ŕeglage. Il n’y a pas de manière ǵeńerale

pour d́efinir les valeurs de ces paramètres et elles d́ependent du choix de l’utilisateur. Elles ont des

répercussions profondes sur la performance du système en boucle ferḿee.
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La loi de commande de rétroaction qui minimise la valeur du coût est la suivante:

u = −K(x − xe) (7.7)

où K est la solution de l’́equation de Lyapunov et peutêtre calcuĺee aiśement par MATLABr.

Avec le bouclage lińeaire (7.7), le dirigeable suit une trajectoire détermińee, qui est simulé et

montŕe dans la figure.4.18.

Néanmoins, un tel contrôle linéaire pour le système non lińeaire d’origine n’est valable que dans

un petit domaine autour de l’équilibre. Le contr̂oleur linéaire seul assure la stabilité locale et le dirige-

able s’́ecrase lorsqu’il est soumisà une perturbation significative, par exemple lorsque la perturbation

surv1 est suṕerieureà+4.5 m/s.

7.4.3 Linéarisation entrée-sortie

Ici, une simplification raisonnable est faite. Pendant la montée et la descente, le dirigeable ajuste

simplement la position de la masse mobile de manière à ŕesister aux perturbations géńerales. Par

conśequent,mb, m0, et u4 sont constants au cours de ces périodes. Lorsque le dirigeable commute

entre la mont́ee et la descente, la masse la vessie d’air internemb est soumisèa une commande bang-

bang en boucle ouverte . Ainsi, pour la dynamique longitudinale, il n’y a qu’une seule commande

effective, la force interne.

En choisissant la sortie du systèmey = x, ou bienθ ou bienrp1 on vérifie que le syst̀eme a un

degŕe relatif égalà 2. Toutefois, il est facile de vérifier que la sortiey = rp1 conduità un syst̀emeà

non minimum de phase. Donc, la linéarisation entŕee-sortie ne peut pasêtre appliqúee. Par contre, la

fonction de sortiey = θ définit un syst̀emeà minimum de phase.

Puisque le degré relatif de la sortiey = θ est de 2, il suffit de consid́erer l’équation d’erreur

suivante:

ë+ λ1ė+ λ0e= w1

où e = y − θe, θe est la valeur d́esiŕee deθ, et w1 repŕesente une nouvelle entrée de commande du

syst̀eme en boucle ferḿee.

θ̈ + λ1θ̇ + λ0(θ − θe) = w1 (7.8)

λ1 et λ0 assignent les p̂oles de la dynamique d’erreur. En substituant (4.9) et (4.10) en (4.31),

l’ équation peut̂etre ŕesolue et la commande ˜u1 est calcuĺee.
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7.4.4 Linéarisation maximale par bouclage avec stabilité interne

Le mod̀ele (7.6) est complexe et il est difficile de calculer une sortie ayant le degré relatif le plus

élev́e. Mais un mod̀ele simplifíe peutêtre d’une grande pertinence dans l’analyse de la stabilité et la

conception du contrôle. Le mod̀ele complexe du dirigeable est simplifié en un pendule prismatique

qui est au coeur de sa dynamique.

Il est clair que la dynamique dans le plan longitudinal est affect́e par les quatre parties suivantes:

• la masse mobilep1 qui contr̂ole l’angle de mont́eeθ,

• la flottabilité nettem0g qui contr̂ole la mont́ee et la descente de dirigeable,

• les forces d’inertie qui sont désigńees par des masses ajoutéesmii ,

• les forces áerodynamiquesFa et Ma.

Il est suppośe que le dirigeable est fixé au pointO et est seulement soumis au mouvement de la

masse mobile pour contrôler l’angle de mont́ee, et il n’y a aucune autre force qui affecte dirigeable.

Dans cette situation, le système peut̂etre simplifíe au maximum, et le dirigeable tourne autour du

centre du volumeO, ce qui conduit le systèmeà un pendule prismatique décrit dans la figure7.7.

La liaison de rotation au pointO n’est pas actionńe. L’articulation entre les deux corps du pendule

est prismatique et actionnées. Ce pendule, inversé ou non, áet́e consid́eŕe comme un exemple de

commande standard dans de nombreuses références (Wie, 1998).

Figure 7.7: Le syst̀eme du dirigeable simplifíe est identiquèa un pendulèa liaison prismatique.

Le syst́eme du dirigeable simplifíeest identiquèa un pendulèa liaison prismatique.

Le mod̀ele math́ematique pour ce cas particulier est un sous-système de (7.6). Son mod̀eleà quatre

dimensions est intrinsèquement non lińeaire dans le sens où elle n’est pas entièrement lińearisable par

bouclage. Ńeanmoins, il peut̂etre lińeariśe partiellement. Malheureusement, le choix d’une sortie

aléatoire de lińearisation ne donnera pas de stabilité interne. Il s’agit d’un ph́enom̀ene bien connu
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et est formaliśe par la notion ćelèbre de dynamique de zéro (Isidori and Moog, 1988). Le résultat

principal est le calcul explicite d’une sortie qui donne un sous-syst̀eme lińeaire d’ordre 3, avec une

dynamique de źero asymptotiquement stable.

Pour un point de vues non-réclaḿes , le moment cińetiqueΠ1 du syst̀eme a un degré relatif égal

à 3 et il reste inchanǵe lorsque les forces de supplémentaires, comme la flottabilité nette, la force

d’inertie, et la force áerodynamique, etc, s’appliquent sur le dirigeable. Le moment cinétiqueΠ1 du

mod̀ele longitudinal complet (7.6) est :

Π1 = J2θ̇ +
m̄m1

m̄+m1

(

m3(m1 + m̄)
m1(m3 + m̄)

r2
p1θ̇ + r2

p3θ̇ + rp3ṙp1

)

.

Grâceà un certain facteur intégrant̺ , le moment angulaireΠ1 peutêtre int́egŕe. Plus pŕeciśement, il

existeΠ2 tel que:

Π̇2 = ̺Π1, ̺ > 0

Π2 = θ +
rp3

√
m3(m1+m̄)
m1(m3+m̄)

√
m̄+m1
m̄m1

J + r2
p3

arctan

√
m3(m1+m̄)
m1(m3+m̄) rp1

√
m̄+m1
m̄m1

J + r2
p3

Toute combinaison deΠ1 et Π2 a un degŕe relatif égal à 3 et sa lińearisation par bouclage va

transformer (7.6) dans un sous-système lińeairelińeaire de dimension 3 commandable avec une dy-

namique de źero dimension 3 (Marino, 1986). Le résultat suivant montre la possibilité d’assurer que

le syst̀eme soit̀a minimum de phase. Cela a un impact décisif sur sa stabilit́e interne et la faisabilité

de ce commande.

Théor̀eme: Le syst̀eme avec la sortiey = Π1 + kΠ2 a un une dynamique de zéro stable quand

k > 0.

Donc, pourk > 0, le syst̀eme est asymptotiquement stable puisque̺ est strictement positif et

borńe fonction d’inertie.

De ce th́eor̀eme, il est obligatoire de choisirk > 0 pour assurer la stabilité interne du système en

boucle ferḿee. Sa valeur réelle est un param̀etre de ŕeglage qui influe sur la vitesse de la dynamique

de źero. L’équation d’erreur suivante est considéŕee,

y(3) + λ2y
(2) + λ1y

(1) + λ0(y− ye) = 0 (7.9)
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Dans l’́equation (7.9), le termey(3) est un une fonction explicite de de l’entréeu1. L’ équation

(7.9) est ŕesolue enu1 et conduit au retour d’état statique qui est calculé explicitement après quelques

calculs certes lourds, mais directs.

Les résultats de simulation

Une trajectoire typique est considéŕee, comme le montre la figure2.9. L’ équilibre deśetats est

également pŕesent́e dans le tableau. Le but de cette simulation est de montrer que les lois de com-

mande non lińeaires sont capables de commander lesétats et de faire facèa une structure de commu-

tation du entre la montée et la descente.

Pour mettre en oeuvre un vol en dents de scie comme en figure2.9, en plus de l’entŕeeu1 qui

commande le mouvement de la masse mobile, l’entréeu4 dans l’́equation (7.6) est impliqúee pour

contr̂oler la mont́ee et la descente.

La trajectoire de vol est indiquée sur la figure7.11; les variations deθ, rp1, v1, etv3 sont repŕesent́ees

sur les figures7.8et7.9. La force d’entŕee est repŕesent́ee sur la figure7.10.
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Figure 7.8: Dynamique deθ et rp1 d’un vol
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Figure 7.9: Dynamique dev1 et v3 d’un vol typ-

ique.

Sur les points de transition, en plus des transformations des commandes deśetats, la flottabilit́e

nette du dirigeable est passée de 62N à−62 N, ce qui repŕesente un contrôle bang-bang pouru4. Il

est d́emontŕe par la simulation que le comportement desétats et l’entŕee de commande està peu pr̀es

symétrique. Sur les points de transition, la variation de l’entrée est aussi acceptable.

7.5 Contrôle en Trois Dimensions

La condition analytique du mouvement en spirale stable en 3Dest ŕesolu. A partir de ce résultat,

on constate que la dynamique longitudinale peutêtre d́ecoupĺee de la dynamique latérale lorsque le
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Figure 7.11: La trajectoire de vol de deux cycles.

taux de rotation est faible. Dans cette section, la dynamique lat́erale est d’abord présent́ee. Le principe

de sa commande est semblableà la commande non lińeaire de la dynamique longitudinale. Grâceà

une approche de perturbations singulières, la superposition de ces deux actions de commande dans le

plan longitudinal et dans le plan latéral est faite afin d’obtenir obtenir du contrôle de la dynamique en

trois dimensions. Les simulations du véhicule pour un suivi d’un attitude de référence, la direction du

déplacement et la vitesse en trois dimensions sont présent́ees.

Certains ŕesultats de cette section sont publiés dans (Wu et al., 2011b).

7.5.1 Commande de la dynamique latérale

La structure lat́erale du dirigeable est représent́e sur la figure7.12. La dynamique lat́erale com-

prend l’angle de roulisφ, la vitesse angulaireω1, les vitessesv2, v3, la position de la masse mobile

rp2, et la vitesse de la masse mobile ˙rp2. Le mod̀ele dynamique transversal est le suivant:

o

e3

e2

m

Figure 7.12: La structure lat́erale du dirigeable.
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φ̇ = Ω1

Ω̇1 =
1
J1

(

La − rp2u3 + rp3u2

)

v̇2 = 1
m2

((m0 − m̄) gsinφ +m3v3Ω1 + Fa2 − u2)

v̇3 = 1
m3

((m0 − m̄)gcosφ −m2v2Ω1 + Fa3 − u3)

r̈p2 = −v̇2 + Ω̇1rp3 + (v3 + Ω1rp2)Ω2 + gsinφ + u2/m̄

ṁ0 = u4

(7.10)

où u3 provientégalement de (3.20).

L’analyse du sous-système longitudinal reste instrumentale bien que les paramètres soient différents.

En fait, la conception du contrôle lat́eral est le m̂eme que celui de la dynamique longitudinale. Cette

remarque est facilèa comprendre si l’on tient compte de système physique ŕeel, voir Fig.4.28et Fig.

7.12. La dynamique dans le plan latéral a la m̂eme structure que la dynamique dans le plan vertical,

mais les param̀etres sont différents.

Le moment cińetique de la dynamique latérale est:

Ξ1 = J1φ̇ +
mm3

m+m3
r2

p2φ̇ −
mm2

m+m2
(rp3ṙp2 − r2

p3φ̇)

et il existe deux fonctionsΞ2 et̺
′
, donc:

Ξ̇2 = ̺
′
Ξ1, ̺

′
> 0

Ξ2 = φ −
rp3

√
J1(m2+m̄)

m2m̄ + r2
p3

√
m3(m2+m̄)
m2(m3+m̄)

arctan
rp2

√
m3(m2+m̄)
m2(m̄+m3)

√
J1(m2+m̄)

m2m̄ + r2
p3

Ξ1 et Ξ2 ont degŕe relatif 3. De la m̂eme façon, il est facile de prouver que le système avec

y
′
= Ξ1 + kΞ2 a une dynamique de zéro stable pour toutk > 0. Consid́erons unéequation d’erreur

semblablèa l’équation (7.9):

y
′(3) + λ

′
2y
′(2) + λ

′
1y
′(1) + λ

′
0(y

′ − y
′
e) = 0 (7.11)

La commandeu2 afin de stabiliser l’angle de la trajectoire de volγ et la vitesse dans le plan latéral. Les

param̀etres de la commande sont représent́es parλ
′
2, λ

′
1, etλ

′
0. Le retour d’́etatu2 est alors facilement

obtenu. Les ŕesultats de la simulation sont similairesà ceux de la dynamique longitudinale et sont

obtenus pour la dynamique dans le plan latéral.

7.5.2 Structure de commande en 3D

La décomposition en deux́echelles de temps du système complet est fondée sur l’hypoth̀ese que

la dynamique deśetats dans le plan longitudinal est plus lente que la dynamique deśetats dans le plan
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latéral, voir figure5.6. Lesétats dans le plan longitudinal se composent deθ, Ω2, v1, v3, rp1,et ṙp1;

lesétats dans le plan latéral se composent deφ, Ω1, rp2, v2, v3, et ṙp2. Il est d́emontŕe a posteriori que

cette d́ecomposition en deux́echelles de temps est la clé pour le succ̀es de la commande de l’attitude

en 3D d’attitude en 3D.

La commandeu1 est ajust́ee par des param̀etresλ2, λ1, etλ0; u2 est ajust́e par des param̀etresλ
′
2,

λ
′
1, etλ

′
0. Donc, la dynamique dans le plan longitudinal est plus lenteque la dynamique dans le plan

latéral par le choixλ2 = 3, λ1 = 3, λ0 = 1, λ
′
2 = 300,λ

′
1 = 300, etλ

′
0 = 1000.
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Figure 7.13: Structure de la commande fondée sur les perturbations singulières

où la flottabilit́e nettem0g , nomḿementu4, est toujours soumisèa une commande en boucle

ouverte bang-bang.

7.5.3 Simulations des réponses à la commande nominale

Les performances de la commande proposée sur la base des perturbations singulières sont donńes

dans la figure7.14- 7.17.

La figure7.14illustre la dynamique des angles d’Euler lorsqu’il existe des erreurs initiales. Dans

cette simulation, l’angle de commande deθ est de 26 degrés, et l’angleφ désiŕe est źero. Avec des

erreurs initiales, les trois angles d’Euler sont asymptotiquement stables. La Figure7.15repŕesente le

mouvement de masse mobile dans ce processus.

Les simulations pŕesent́ees dans la figure.7.16et 7.17présentent le cas d’une rotation du dirige-

able. Ici,φ est stabiliśe à 10 degŕes dans un premier temps, puis il est commandé à źero. Dans la Fig.

7.17, la trajectoire est tourńee vers la direction de+e2.
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Figure 7.14: La dynamique des angles d’Euler avec des erreurs initiales.

7.6 Conclusion

Le nouveau concept de dirigeable autonome qui utilise de masse mobile interne pour contrôler

l’attitude et une vessie d’air réglable pour contr̂oler l’altitude offre un nouveau ḿecanisme pour les

drones. Gr̂aceà l’approche Newton-Euler, un modèle 3D avec 8 degrés de libert́e est obtenu, qui

est plus complexe que le modèle des dirigeables classiques autonomesà cause de l’existence de la

dynamique interne et de l’actionnement spécifique de la flottabilit́e. Cette th̀ese consid̀ere la masse

mobile interne et le corps rigide du véhicule, comme deux sous-systèmes ind́ependants, ce qui rend

la mod́elisation claire et facile. L’analyse montreégalement le r̂ole des forces áerodynamiques pour

la dynamique de ce dirigeable, il introduit un couplage entre le contr̂ole d’attitude et du contrôle de

guidage et rend de l’accessibilité compl̀ete des tous les degrés de libert́e du syst̀eme.

Pour un syst̀eme non lińeaire complexe, les approches de commande fondées sur la ḿethode

LQR et la lińearisation entŕee-sortie montrent des inconvénients qui conduisentà la ńecessit́e de la

synth̀ese d’une commande non linéaire avanćee. Comme le mod̀ele consid́eŕe n’est pas complètement

linéarisable par bouclage, cette thèse propose une nouvelle approche qui consisteà analyser le système

dans des cas particuliers de moins en moins contraints. Cettenouvelle ḿethodologie de commande

estélaboŕee par la lińearisation maximale avec stabilité interne. La lińearisation maximale est résolue.

Bienque ces techniques soient en géńeral difficilesà mettre en oeuvre sur des modèles complexes, des

solutions analytiques sont calculées. Un d́efi majeur est la stabilité interne qui n’est malheureusement

pas garantie. Le choix adéquat de coordonnées lińearisantes permet de résoudre ce problème et la sta-

bilit é interne du système en boucle ferḿee est d́emontŕee. Gr̂ace au moment cińetique du dirigeable,

une des fonctions de sortie est obtenue explicitement qui définit un syst̀emeà minimum de phase.

Grâceà une approche fondée sur la technique des perturbations singulières, une solution pour la
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Figure 7.15: La translation de la masse mobile.

commande de l’attitude en trois dimensions aét́e calcuĺee pour la première fois. Avec la commande

propośee ici, non seulement l’angle de tangage (l’angle de la trajectoire de vol) peut̂etre stabiliśe,

mais aussi la rotation stable peutêtre obtenue par la commandeu2. Avec ce syst̀eme de contr̂ole

d’attitude, un contr̂ole suivi de trajectoire peutêtreétabli par la suite.

Le dirigeable propulśe par la force de flottabilité est un nouveau concept non-disponible sur le

march́e. Dans cette th̀ese, certaines questions préliminaires th́eoriques ont́et́e consid́eŕees. Il existe

encore de nombreuses questions ouvertes. Les principaux points qui ḿeritent d’̂etre ŕesolus sont

énuḿeŕes ci-apr̀es: (1) il est obligatoire d’examiner la robustesse de la commande sous les variations

des param̀etres etsous l’action des perturbations externes, (2) pourla faisabilit́e, un dirigeable hybride

qui emploie la force de flottabilité et des propulseurs standard doitêtre consid́eŕe, (3) la navigation et

la planification de la mission doiventêtre d́efinies.

L’approche de mod́elisation, l’analyse dynamique et les solutions de commande donńees dans

cette th̀ese sont pertinents pour des systèmes complexes similaires, tels que le planeur sous-marin et

ou les v́ehicules de rentrée atmosph́erique.
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Figure 7.16: La dynamique des angles d’Euler en tournant cas.
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Figure 7.17: La trajectoire dans le cas d’une rotation.
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The explicit expression ofu in Eq. (4.45) is as follows:

u = −1
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3ṙp1gcos(θ)r2

p3J + 6r2
p1m̄

3θ̇3r4
p3J

+8r2
p1m̄

3gr3
p3cos(θ)θ̇J − 2r2

p1m̄
2ṙ2
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2ṙp1rp3J + 12r3

p1m̄
2θ̇r2

p3J)/(J4 + 4J3m̄r2
p1 + 6J2m̄2r4

p1

+9Jm̄3r4
p1r

2
p3 + 3J2m̄2r4

p3 + 6Jm̄3r4
p3r

2
p1 + m̄4r8

p1 + 3m̄4r6
p1r

2
p3 + 3m̄4r4

p1r
4
p3

+m̄3r6
p3J + m̄4r6

p3r
2
p1 + 9J2m̄2r2

p3r
2
p1 + 4Jm̄3r6

p1 + 3J3m̄r2
p3)



AppendixB

Publications

Journal Papers

X. WU, C. H. Moog, L.A. Marquez-Martinez and Y. Hu. Full Model of a Buoyancy-Driven

Airship and Its Control in the Vertical Plane.Control Engineering Practice. (under the third review)

X. WU, C. H. Moog, and Y. Hu, A Singular Perturbation Approach to Moving Mass Control of

a Buoyancy-Driven Airship in Three Dimension.Transactions of Nanjing University of Aeronautics

and Astronautics. (under review)

Conference Papers

X. WU, C. H. Moog, Y. Hu. Modelling and linear control of a buoyancy-driven airship. The

Proceeding of 7th Asian Control Conf., Hong Kong, August 2009.

X. WU, C. H. Moog, L.A. Marquez-Martinez and Y. Hu. Nonlinear Control of a Buoyancy-

Driven Airship. The Proceeding of 48th IEEE Conf. on Decision and Control, Shanghai, December

2009.

X. WU, C. H. Moog, L.A. Marquez-Martinez and Y. Hu. Modeling and Control of a Complex

Buoyancy-Driven Airship,The Proceeding of 8th IFAC Symposium on NonlinearControl Systems,

Bologna, Italy, September 2010.

135



136 Appendix B



NNN¹¹¹ A ¥¥¥©©©nnnããã��KïÄ
�«#.�2å°Ä��Î§T�Î|^�£Ä��þ¬ÚCz�À2å5°Ä§l��
~5�|^Ú^÷ÚûÅ�°Ä�ª"ù«#.�Î��£Ä�þ¬^uUCù�XÚ�%§lUC�Î�^�¶ÏLÀ2å�UC§���ÎU
gX�þ,Úeü"ü«����p�Ü§5°Ä�Î��½�$Ä"muù«#.�Î�ÄÅÒ´Ǒ
¼��«�\!U��1Å�§l���1ìäk���¢��m½���ÑÊål"�Ø©ÄkÏLÚî-î.�{§í�Ñù«#.�Î�lgdÝêÆ�."dué�ÎÅNÚÙ�£Ä�þ¬�m�p'X�ØÓÀÆ§�©0�
ü«ØÓ�ï��{"éù«�Î3p�²¡�$Ä§�©�O
A«ØÓ����{§©OkÄu�5�g.N!ì£LQR¤��5��ì!ÄuÑ\ÑÑ�5z���5��ì!±9Äu��°(�"�5z���5��ì"ü«��ìÑØÓ§Ý��3�
"�§ÏL�©JÑ�Äu��°(�"�5z�����5��ìU
é������8�"3í�ù���5���ì�L§¥§©Û!ï�!Ú��
õ�ÅÚCE,��Îf�.§����r3Ü©{z
��.þ���(Øí�¿A^3�Î����.þ"3ù�L§�¥§�{z��Î�.´��äk�gdÝ��á{XÚ"ÏL3{z
�XÚþí�Ñ�(Ø§��Ñy²
ÏL·��?�§ù
(Ø�±·^u?�ÚCE,!����."du�.�E,5§éu�����.§ù
A5½ö(Ø  éJ���uy"©Ù���ÏLÛ�ÄnØJÑ
�«n��m�$Ä���{"ÏLU\3p�¡�$Ä��Ú3ý��$Ä��§�±¼���^un��m���(�§¿�ÏL�ýw«���J´�±�É�"
A.1 XXXØØØ�+�Î�®²Ø2�Ǒ�Ïóä$ÑÀ�§�´§3�
#�+�%u�X���^§~X2w�«!*1Ài!p�²�!±9�Ǒn�$Ä��²�(Elfes et al., 1998; Tozer and Grace, 2001; Bowes et al.,

2006)".þ�
Ì���IÑm�
ù�¡�ïÄ§~X{Iü��



2 �«2å°Ä��Î�ï����óãÞNorthrop Grumman ÚLockheed Martin �gÕá�p��ÎïÄ�8(Northrop Grumman, 2010¶Defense Industry Daily, 2006; Lockheed Martin

Corporation, 2008)!î³�ESA-HALE p�²��8!±93¥I�ÊUÊ��þ°�Ï�ÆéÜ�²6��Î�8",	3nÜ!F�!±9±Ú�Ñkaq��8(Knaupp and Mundschau, 2004; Yokomaku, 2001)"�Î�þ��ïÄp¸Ï´3þV20�30�"y��ÎïÄÚ±�ïÄ�ǑwÍ���«OÒ´y��ÎïÄõà83�Î��<gÌ���¡"�ÎÄu��gÌ½öÜ©��§��!�"��!±9gÌ�´I�Ê�Eâ§y��<�Î�Ï"U
gÌ��¤�«���?Ö"8kéõïÄÒ8¥3XÛ)ûù�L§¥���'uï�!��!�Ê��¡�¯K(Gomes and Ramos Jr, 1998; Ouyang, 2003; Purandare, 2007)"3ù
ïÄ¥§�Ü©�ïÄé�Ñ´~5�Î§ǑÒ´|^Ú^÷ÚûÅ°Ä��Î"ù«~5��<�Î��´dGomesJÑ¿�Ñ
ù«�Î���ï��{(Gomes and Ramos Jr, 1998)"y3�ý�õê�<�Î��.Ñ´5ud"�Ø©�Ä
�«#.�2å°Ä��Î§§´d��SÜ�£Ä��þ¬Ú�N!�À2å°Ä"ïÄù«#.�Î�8�3u&¢�«�Ǒ!U��1�ª§l�Ê1ìäk�p�¢��m½ö���Ê1ål"�8Ǒ�§éù«#.�Î�ïÄ©z=k��Æ¬Ø©(Purandare, 2007)"ùǑ´��KïÄ�℄Ô��"3TØ©¥�Ñ�#.�ÎVgãXãA.1¤«"�
�y5�¢�®²y²
ù«#Å���Î§3|^z�Ú¿íÅUCÀ2å!�Î�þ,½e�!��$Ä��¡Ñ´�1�§�´ù
Eâ�Ø¤Ù§I�?�Ú�&¢(Purandare, 2007§12�)"3ù�k°5�©zïÄ
ù«#.�Î��15!3��p�²¡��.±9PID��"�âù�©z�(Ø§�~5�Î�'§ù«#.�Î3�1�Æ'����ÿ�±¼�����Ç"w´��´ù«#.�Î|º6Ä�UåØ´ér§Ïdò~5�Ú^÷�ù«#.�wÄÅ��(Ü´���©kdå���"ù�Ø©Ì�ïÄ
ù«#.�Î��
nØ5¯K§¢S�¢�Ø3ù�Ø©���±S"ù�Ø©¤���
M#ÏLéõ��ý5Ly"o�5`§�Ø©Ì��Ñ
Xeo��¡��z"ùo��¡©O´µ
• �©í�
ù«#.w�ª�Î�n��m��lgdÝêÆ�."3
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ã A.1: 2å°Ä��ÎVgã5 (Purandare, 2007)"ù��.�¥§�Î��£Ä�þ¬!�Cz�À2åÑ��Ä"Ǒ
{zï�§�©rù«�Îw�d�ÎÅNÚ�£Ä�þ¬|¤�ü��:XÚ"�âw�ùü��:�ØÓÀÆ§�©Jø
ü«ï�g´"
• �Î���lgdÝ�.´�©E,�§�©ïÄ!©Û!��Ú�ý
ù�E,�.��
Ä�(�§��
éõéu
)ù«#.�Î(�!é�O���.��ì�©k¿Â��(Ø"²�©ïÄ§T�Î�Ä�(�XãA.2 ¤«µ�Î�^�Ì�d�£Ä�þ¬� �û½§Ù �´dXÚ�Ñ\-ÅNé�þ¬��^å-���"XÚ�Ê,Ì�k�Î��íÄåû½"¿��íÄå3då� Ü^���ÚÊ,�����^"

attitude guidance
φ θ ψ aerodynamic

forces, etc.
V ξ  γmoving

mass

net lift u4

(mass of air bladder)

u rp

ã A.2: �Î�.�Ä�(�.

• éu�Îp�²¡�$Ä§�©�O
õ«ØÓ���ì"í�Ú'�
©OÄuLQR!Ñ\ÑÑ�"�5z!Ú��°(�"�5z���ì"²Lí�uy�Î��.¿ØU
?1����"�5z§�©í�
T�.����"�5z§¿�O�
��5��ì�)Û)"ù



4 �«2å°Ä��Î�ï����
(ØÏ~éuE,�Ê1ì�.5`´éJ�����"éu^Ü©�"�5z�O��5��ì§���℄Ô3uXÛ(�XÚ�SÜÄ��½5§ǑÒ´"Ä��½5"ù
¯K3�©Ǒ��
)û"
• JÑ
�«ÄuÛ�ÄnØ�n��m$Ä��µe"3ùp§Ǒ|^�K�ÄnØí�
�Î3n��m½Ú^þ,½eü$Ä�Cq)Û�)"I�5¿�´§�©Ì�3�6Ä�¸e?ØT.�Î��'¯K§�
�¸�6Ä§~Xº!Cz��í�ÝÚ§Ý��Ñò3�Y�ïÄ¥UY)û"�Ù�SüXeµA.2!äN0�ù«�2å°Ä!±w��ª$Ä�#.�Î�(�Ú$1Å�"A.3!0�ÏLr�ÎÅNÚ�£Ä�þ¬w¤ü��:�ü«ï�g´"A.4!0�
�ép�²¡$Ä�A«���{§Ù¥�[0�
Äu��°(�"�5z���ì�O�{"A.5!JÑ
ÄuÛ�ÄnØ��«n�$Ä���{"��A.6!o(
�Ù"

A.2 222ååå°°°ÄÄÄ������ÎÎÎ���oooNNN000����X3�!¥¤0��§2å°Ä��ÎÚ~5�Î�Ì�ØÓ3uÙ^�£Ä��þ¬ÚCz�À2å°Ä§��~5�|^Ú^÷ÚûÅ°Ä��ª"ù«#�°Ä�ª®²3Yew�ìþ���y§¿�y²
Ùã��!Udå"ù�!�[0�ù«#.�Î�(�!$ÄÅ�!±9§��Ç¯K"'uù�!��[SN�±ë�Ø©�12Ù"
A.2.1 222ååå°°°ÄÄÄ������ÎÎÎ���ÄÄÄ���(((���2å°Ä��Î�Ä�(��ãA.3§T�Îï^
~5�Î�í?ì±9�«ûÅ"T�ÎÌ�dÅN!Ê!�£Ä��þ¬!±9�±� �SÜ�íK|¤"�ÎO\�Ê´Ǒ
O�w�$ÄL§¥��íÄå"�Î�ÅN´f5�§ǑÒ´`ÙNÈ´ØC�§l�Î�2å´ØC�"'u�Î	/�ÀJ§����Ä´XJü$��XÚ�{å"éu�Î�	/5`§{åÌ�5gü��¡µ��´	/���{å§,	��´L¡��Þ{å"Ǒ
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Helium bladder

ValveBlower

Moving mass

Air bladder

ã A.3: 2å°Ä��Î�(�"ü$ùü��¡�{å�oÚ§T�Î�ÅN	/ÎÜNACA0050.ÅÊÓ+�^=¤�Y%.ý¥N§XãA.4¤«"Ǒ
{z©Û§±9�íÄå��¿Ø´�©�ïÄ�:§3���SN¥ò^��IO�ý¥N5�OãA.4¤«�Ø5Ký¥N"ãA.5«¿
T�ÎXÚ�¿í/�íXÚ"ÏLéSÜ�íK¿\�í§Ò�±���Î��þO�§l��ý��Î�À2å~�"XJò�íKp¡��íüÑ§ý�XÚ��þÒ~�§l��À2å��O\"T�Î|^ù«Å����Î�À2å§l���Î�±���þ,½öe�"T�Î3.ÜC�
���±3��²¡$Ä��þ¬§�ãA.6§T�þ¬�±^Å1>¬½ö´Ù���5¿�"Ù$Ä´dÅNþ�>Å5°Ä�§ùǑ´��XÚ�����"Ù$Ä�²¡ u�ÎY²é¡²¡�e�§ù´Ǒ
(�ù�XÚ�% u�Î�eÜ§l(�Ê1ìÄ��½5"Ó�b��þ¬$Ä´²1uÅNX�O− e1ÚO − e2 ¶�"B�X�þ¬�$Ä§��XÚ�%Ǒ��u)£Ä§ùlUC�Î�^�"^£Ä��þ¬UCXÚ�^�´�«é��Å�§§Ǒ�^u�
�£ª¥(½ö�����^���§y3É��5�õ�'5"
A.2.2 ���ÎÎÎ���$$$111ÅÅÅ���o�5`§T#.�ÎÌ���«ç¸GÌ�w1$Ä§XãA.7¤«"
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ã A.4: dNACA0050ÅÊÓ+�^=¤�ÅN	/"Ùþ,w1´dXeö�5���µ�ÎÄkò�ílSÜ�íKüÑ§ù���Î�þC�§À2åCǑ�§l���Îþ2"Ó����þ¬��Î��Ü£Ä§UCÙ^�§��Ùäk��:�Æθ§ùÒ���Î��íÄåk����©å5°Ä�Î�$Ä"þãü«���(Ü§XãA.8¤«§Ò���Î���w1§~XãA.7�BCã"���A§XJ�Î�SÜ�íK¿í§��À2åCǑK§�Îeü"Ó����þ¬�ÞÜ$Ä§XÚ¼�K�:�Æ§ù�Ó��±�)�����íÄå©å5°Ä�Î�$Ä§XãA.9¤«"ùã$Ä;,ÒXãA.7�ABã¤«"XJ�þ¬÷î�$Ä§ò���ÎE=§dd�±�)�����Î=��åÝ§l¢y�Î�=�"
A.2.3 XXXÚÚÚ���ÄÄÄ���©©©ÛÛÛÏL�
Ä��©Û§�±��'uT�Î��
��(Ø"Äk©Û�£Ä�þ¬��ÎÅN�m�'X"���ÎÀ2åǑ"§Ù℄Ê3�¥"d��k�þ¬£Ä§ù7ò���Î�A�^��½_��=Ä§XãA.10ÚA.11¤«"�ª�Î½�G�7½´NÈ¥%O!%CG!±9���:��þ¬n: uYR�þ"
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intake

helium

air bladder

compressor valve

atmosphere

air air

ã A.5: �Î�SÜ�íK§±9¿í/�íXÚ"
m

rp1

rp2

e1

e2

e3ã A.6: �þ¬÷X²1uO − e1ÚO − e2 ¶���$Ä"ÅNé�þ¬�°Äå^uL«§�þ¬� �^rpL«§XÚ�^�^î.Æφ!θ!9ψL«"Ïdùþã��þ¬�ÅN��m�'X�±^ãA.12L«"þ¡�©Ûr�Îw�dÅNÚ�£Ä�þ¬|¤�ü�Ü©§3ùpr�Îw����N§©Û�Î½þ,Ú½eü�ã�Éå�¹§Ù(JXãA.13 ÚA.14¤«"ÏLå�©)§±9�eÜ	åǑ"§�±í�ÑXJ�Îþ,�ãÚeü�ã��1;,Æξ´�����{§�oùü��ãÀ2åǑ´����§�����§Xª(A.1)¤«"
W −B = ±

√
D2 + L2 (A.1)ùpWL«XÚ�å§BL«2å§D ÚL ´,åÚ{å"3²ï½�G�e§(Ü�íÄå��Ý�'X§(Ü(A.1)§�±í�ÑXe�ÝÚÀ2å�m�'Xµ

V 2 =
B −W

1
2
ρa∇2/3

√

C2
D + C2

L

(A.2)



8 �«2å°Ä��Î�ï����
ã A.7: 2å°Ä��Î�;.$Ä;,"

ã A.8: �Î��þw1©Û" ã A.9: Î��ew1©Û"dd�±�Ñ(ØµT�Î��1�Ý���´dÀ2åû½�"éu�½��Î§�äN�5`§�Ý´d�Î�SÜ�íK��þû½�§ùǑÒ´TXÚ�,	����u4",	3��§Ǒ�±íÑ�1;,Æξ��íÄå�'X´µtan ξ = D/L"dd�Î�$Ä��Ì�k�íÄåû½"ù
'X�±ÏLãA.15 5L«"ùprk'�Î��Ý§$Ä���¯K¡��Ê(guidance)¯K",	éw,�íÄå��dÊ1ì�$Ä�ÝV§±9�Æα!ýwÆβû½"ÒÆα5`§k'Xα = θ − ξ"Ïd�±`�íÄå´d�1�Ý!î.Æ!±9�1;,Æ�û½�§XãA.16¤«"nÜþ¡�ãA.12!A.15!±9A.16§�Î�ù�(��±^ãA.175L«"ãA.16Ǒ�«
�íÄå3��XÚ¥���^§�å� Ü^���Ú�Ê����^"lãþ�±��*	��§XJXÚvk�íÄå§ò��XÚ��1�ÝÚ��Ø��"ù�:ò3�Y�Ù!¥��y"
A.2.4 ���ÇÇÇ'''���ù��!ò2å°Ä��Î�~5�Î�°Ä�Ç¯K���é'§���Ñ
�
'�k��(Ø"
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θCG×

O

mθ

B

Wã A.10: ÅN�^��=Ä"
θ

CG ×
O

m θ

B

Wã A.11: ÅN�_��=Ä"
attitude

φ θ ψmoving
mass

u rpã A.12: �Î^���e�"ÄkÏL©Û�±íÑéu~5�Îéü �þ¤I�°ÄõÇǑµ
PCS =

PC

W
=

1
2
ρaCD0∇2/3u3

W
(A.3)5¿ùp�uL«�Î��Ý"lªA.3�±���Îü �þ¤I�°ÄõÇ´Ú�Î$Ä�Ý�á�¤�'�"ùǑV«�Î�·Ü�$�$Ä�A^"éu�½Ê�Å5`§ �þ¤I�°ÄõÇ´Ú�Å�$Ä�Ý¤�5'X�"éu2å°Ä��Î5`§§�3þ,Úeüü«��"©O�Ñùü«��e�¤7L�°ÄõÇ§,��²þ§�Ñ2å°Ä��Î�ü �þ¤I�õÇǑµ

PBS =
PB

W
=

1

2W
ρa∇2/3u3

CD

CL
(1 +

C2
D

C2
L

)
√

C2
D + C2

L (A.4)e¡'�2å°Ä��Î�~5�Î�ü �þ¤I�õÇ§ù�'�^rsp5L«"(ÜªA.3ÚA.4, ù�'�Ǒµ
rsp =

PBS

PCS

=

1
2W
ρa∇2/3u3CD

CL

(1 +
C2

D

C2

L

)
√

C2
D + C2

L

1
2W
ρaCD0∇2/3u3

=
CD

CD0CL
(1 +

C2
D

C2
L

)
√

C2
D + C2

L (A.5)
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ξθ

α

Lift Force ( )L

Net Weight ( )W-B

Drag Force ( )D

Moving Direction
Vã A.13: eü�ãÉå©Û"

Net Buoyancy ( )B-W

“Lift” Force ( )L

Drag Force ( )D

Moving Direction

ξ
θ

α

V

ã A.14: þ,�ã©Û"
guidanceaerodynamic

forces, etc.
V ξ  γ

net lift u4ã A.15: �Î�$Ä�Ý9����e�"ùp
CD0 = 0.0589

CD = 0.0589 + 0.016α2

CL = 1.269αùp��íÄåXê5u(Ouyang, 2003)"dd��rsp´�Æα���¼ê"ãA.18�Ñ
rsp���αCz��¹"dãA.18��§rsp��vk�u1��¹§ǑÒ`éuü �þ¤I�õÇ§~5�Î�'2å°Ä��Î�"ùBÚ2å°ÄÅ�¤J��!U���"�¢Sþù�2å°ÄÅ�®²�Á�y¢äk�p��Ç§~X3�C��gYew�Åì<�¢�¥§ÙÏL���>U�¤
ª��Ü��Ê1"¢Sþ§XJ�Ä�ü«°ÄÅ��k^õÇ§Ò�±ue2å°Ä��Î´�±'~5�Îä��p�!U.�"~5�Î��æ^ÆhÅ°ÄÚ^÷��ª5í�§ÆhÅ�k^õÇ��330%�m"�2å°Ä��Î§ÙUþ=zǑk^õ��Ç�'�±péõ"Ïd§3#.�Î?uÜ·��Æ�1��ÿ§��XÚ�Uk^õÇ�'~5�Î�péõ§l¢y
�\!U�Ê1"
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φ θ ψ aerodynamic
forces, etc.

V ξ  γ

ã A.16: �íÄåd�1�Ý!î.Æ!±9�1;,Æ5û½"
attitude guidance

φ θ ψ aerodynamic
forces, etc.

V ξ  γmoving
mass

net lift u4

(mass of air bladder)

u rp

ã A.17: �Î��.(�"
A.3 üüü««« ���ååå»»»�éu~5�Î5`§2å°Ä��Î�\�E,"XJÀJØT��ï��{§ò¬��ï�L§�©�E,§¿�ǑéJ|^����.©ÛXÚ�A5"3ù�!§M#5�ò�Î�f5ÅNÚ�£Ä�þ¬w�Ǒü��:§���ÎXÚÒ´dùü��:|¤�XÚ§ddï���
���{z"ÏL�«Ôn½n±9Úî-î.�{í�
2å°Ä��Î�lgdÝ�."ù´1�gJÑù«�Î����.§Ǒ´�ïÄ��z��"ù��.Ǒ´e©©ÛÚ���O�é�"'uù�!��[SN�±ë�Ø©�13Ù§½öÜ©®uL�Ø©(Wu et al., 2009a, 2010)"Xþ¤ã§XJò�ÎÀ�dÅN�:Ú�£Ä�þ¬�:|¤�XÚ§XãA.19¤«"ÏLòùü��:À��pÕá��N§½öÀǑ���Nò��ü«ØÓ�ï�å»Úü«ØÓ��."ùü«�.Ñk�g��?±9Øv"Ï~�ï��{Ò´rùü�XÚw����N5?n§ù«�{���?Ò´�)��.éu©ÛXÚ�½'��B§Øv�?Ò´ï�L§E,"XJrü�fXÚÕáw�§ùò��{zXÚ�ï�§ÏǑéÅN�ï��±ë�DÚ�Î"ÙØv�?Ò´ØBuéXÚ�N�©Û"�©Ì�æ^òü�fXÚÕáw��ï��{"

WU
新建图章
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ã A.18: rsp��αCz��¹"
A.3.1 ÕÕÕááá©©©ÛÛÛ���ÎÎÎ���fff555ÅÅÅNNNÚÚÚ���£££ÄÄÄ������þþþ¬¬¬XJÕá�©Û�Î�f5ÅNÚ�£Ä��þ¬§�o�Î��.Òd�ÎÅN�Äþ!=Äþ!±9�þ¬�Äþ5½Â"ùn�þéAu.5XÚÅNX©O^��p!π!pp�Ú���P!Π!Pp5L«"�âÚî½Æ§3.5X¥f5ÅN±9£Ä�þ¬¤É�Ü	åǑµ



















π̇ =
∑

τext − rp ×
(

RT
1
u
)

ṗ =
∑

fext − m̄gk −RT
1
u

ṗp = m̄gk +RT
1
u

(A.6)ùp�u �LÅNé�£Ä�þ¬��^å"d.5XÚÅNX�m��p=�'X�±��µ














π = R1Π+ b× p

p = R1P

pp = R1Pp

(A.7)��(A.7)§�±��:
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i

k
j

e1

e2
e3

b

R1

m

r

O

G

x
CG

pã A.19: r�ÎÀ�dN�:Ú�£Ä�þ¬�:|¤�XÚ






















π̇ = R1

(

Π̇+Ω×Π
)

+Rv × p+ b× ṗ

ṗ = R1

(

Ṗ +Ω× P
)

ṗp = R1

(

Ṗp +Ω× Pp

)

(A.8)�\(A.6) �(A.8)¥, Òí�Ñ�Î3ÅNX¥�$Ä�§:



















Π̇ = Π×Ω+ P × v +RT
∑∑∑

τext − rp × u

Ṗ = P ×Ω+RT
1

∑∑∑

fext − m̄g
(

RTk
)

− u

Ṗp = Pp ×Ω+ m̄g
(

RTk
)

+ u

(A.9)ÏL*	(A.9)¥�ṖªÚṖpª§�±uyÅN��þ¬�mk����§������^åÚ��^åm̄g (RTk
)

+ u. XÚ���-ÅNé�þ¬��^å-éXÚ�Ü©�KǑÒé²w�¥y
Ñ5§§��éXÅNÚ�£Ä�þ¬��^"ùǑÒ´ù«ï��{�`:§§é�ß�Ny
XÚØÓÜ©�m��péX"
A.3.2 ���NNN©©©ÛÛÛ���ÎÎÎ���fff555ÅÅÅNNNÚÚÚ���£££ÄÄÄ������þþþ¬¬¬XJrf5ÅNÚ�£Ä�þ¬�����N§�oÅNé�þ¬��^åÒ�´��Så�"d��Î�$Ä�§d���Î�Äþ!=Äþ!±9�þ¬�ÄþL«§ù
þÚ�^��þ£�̃5I5"�ØLØÓ�´§ù



14 �«2å°Ä��Î�ï����pπ̃!Π̃!p̃!±9P̃L«���ÎXÚ��'þ§�)ÅNÚ£Ä�þ¬"ùp�£Ä�þ¬�Äþ´ØC�"3ù«�¹e§ª(A.6)A?UǑµ


















˙̃π =
∑

τext + rp × (m̄gk)

˙̃p =
∑

fext

˙̃pp = m̄gk +RT
1
u

(A.10)ùpm̄g Úu Ø2áu	å§ÏdvkÑy3þª¥"(Jaq�.5X�ÅNX�=�§���$Ä�§Ǒµ


















˙̃
Π = Π̃×Ω+ P̃ × v +RT

∑∑∑

τext + rp ×
(

m̄gRTk
)

˙̃
P = P̃ ×Ω

˙̃
P p = P̃p ×Ω+ m̄g

(

RTk
)

+ u

(A.11)5¿�ùpuØ2Ñy3 ˙̃
Π Ú ˙̃

P¥, ù�NÑd�u�ǑSå§§�CzØKǑ�N�Äþ½ö=Äþ"ÏLþ¡�©Û§\�
é�ÎXÚ�
)§Ǒ��ï�¯KC�²
Ú{ü§~X31�«ï��{¥§éÅN�ï�Ò�±ë�~5�Î�ï�"
A.3.3 XXXÚÚÚ���lllgggdddÝÝÝ���������...�Î�,üª´dSÜ�í���þCzû½�"ÏdXÚ�,	����u4½ u���Î��íK��þ"-mb = u4"m0 = mh + m̄ + u4 −m,"Ïd3d��§�´�¹m0t/�ÑV«�¹��Ñ\",	|^ÄþÚ=ÄþL«�XÚ�§Ø´é�B§��òÙ=zǑ�ÝÚ=�ÝL«�XÚ�."��²L=z���lgdÝ���.Ǒª(A.12)µ
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K̄ = JΩ×Ω+Mv × v +Mat − rp × u

F̄ = Mv ×Ω+ Fat + (m0 − m̄)gRT
1
k − u

T̄ = −v̇ − Ω̇× rp −Ω× ṙp + g(RT
1
k) + vp ×Ω+ u/m̄.

A.4 ppp���²²²¡¡¡���$$$ÄÄÄ������éu�õêÊ1ì�©Û5`§��Ñæ�r�.©)�A�²¡þüÕ©Û"p�²¡�$Äé�õêÊ1ì5`§Ñ´�ǑÄ:Ǒ�Ǒ��$Ä"�´éu2å°Ä��Î5`§=�´r�.��3��²¡§§��.�´éE,"�Ø©ép�²¡��.�
õ«m��ý§5�y�.�k�5"ù
m�©Û��[�¹��Ø©�14Ù"éuÊ1ì��5�.���¯K§~���{Ò´æ�r�.3��²ï�N��5z§,�é�5XÚ�O���5��ì§��rù�����5��ì^u���5XÚ"ùǑÒ´�!1�«ÄuLQR���ì��O�{"�´ù«��ìw´��"�Ò´§�k���É�é����"ÏdÏ�����5��ì´ék7��"���!&¢
�«ÄuÑ\ÑÑ�"�5z���5��ì§y���5��nØ��Ì��¤ÒÒ´�"�5znØ�ïá(Isidori,

1989; Conte et al., 2007)§�´ù«�{�(J3u§�XÚØU��°(�"�5z��ÿ§k�éJ(�XÚ�"Ä��½5(Isidori and Moog, 1988)"�~Ø3�´�©ïÄ��ÎÒ´ù����XÚ§§ØU����"�5z"�!í��1�«Äu{ü�Ñ\ÑÑ�"�5z�����5��ì§ÒÏǑÙ"Ä�´�.½§������XÚ�3½��Ä"Ïd¢y���°(�"�5z§¿�y²XÚ�"Ä�´ì?½´ÏéÜ·���5���Ì�℄Ô"ù�JK3�Ø©¥ÏL©Û�
{z�XÚ§��
é��)û"ùǑ´�©�Ì��z��"�!��'SNuÙ3(Wu et al.,

2009a,b, 2010, 2011a)þ"
A.4.1 ppp���²²²¡¡¡������...Ǒ
ïÄp�²¡�Ä�5U§Ò�r���.(A.12) ��3e1 − e2 ²¡§ǑÒ´`��3���.¥3p�²¡þ�gdÝ§~Xµθ, Ω2, v1, v3,Úrp1"Ïdp�²¡��.Ǒ:
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θ̇ = Ω2

Ω̇2 = 1
J2
(Ma + rp1u3 − rp3u1)

v̇1 = 1
m1

((m̄−m0) g sin θ −m3v3Ω2 + Fa1 − u1)

v̇3 = 1
m3

((m0 − m̄)g cos θ +m1v1Ω2 + Fa3 − u3)

r̈p1 = −v̇1 − Ω̇2rp3 − (v3 − Ω2rp1)Ω2 − g sin θ + u1/m̄

(A.13)

5¿ùp�u3Ø´����§´��(½�'Xª"p�²¡�²ï��)Û)314Ùk�[0�"
A.4.2 ÄÄÄuuuLQR���������
LQR´`z��p¡���~�Ú²;�nØ"LQRnØǑ��¯KJø�~¢^��"O�"§b�¤k�G�x Ñ´���¼��"b�¤��§�Ǒµ

J =

∫

∞

0

(

xTQx+ uTRu
)

dtùp�Ý
Q ÚR Ñ´N!ëê§vkÚ���{5(½§���"§���dz�G���±9^r�ÀJ5û½"-þã¤��§äk�����"��Ǒµ
u = −K(x− xe) (A.14)ùp�K ´��ik&�§�)§Ù�±/ÏMATLABr�)"ãA.20w«
|^�5��ì(A.14)5�l�^�½;,��ýL§"�´Äu¯¤±���Ï§du�5z�Cq?n§��LQR�5��ì�k���ék�§��5`§�3²ï�NC��k��Û�p¡k�"~Xéuþã��"§�3�Ýv1 þ�6Ä�u+4.5 m/s��ÿ§��ìÒ��§�ÎkL¤��U5"

A.4.3 ÄÄÄuuuÑÑÑ\\\ÑÑÑÑÑÑ���"""���555zzz¿¿¿(((���SSSÜÜÜÄÄÄ���½½½���������555�������"�5znØ�ïá(Isidori, 1989; Conte et al., 2007)´y���5��nØ��Ì��¤Ò§�´���XÚØU��°(�"�5z��ÿ§k�ÒéJ(�XÚ�"Ä��½5(Isidori and Moog, 1988)§ù´A^ù«�{�O��5��ì���Ì�(J¤3"�©ïÄ��ÎÒ´ù����X
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ã A.20: The airship with linear control tracks a commanded flight path.Ú§§ØU����"�5z"�©¤������zÒ´3d«�¹e§ÏLÜn�ÀJ#�G�§y²
ù�XÚØU�5z�SÜÄ��ì?½"�[�L§�±ë�Ø©��'Ù!"ùpÄk���Ü·�b�§�Ò´�Îþ,Úeüw�L§¥§�Î=UC�þ¬� �§5AGdL§¥�6Ä§�Î�À2å�±ØC"Ïd3dL§¥mb, m0, Úu4Ñ´ð½�"��Î3þ,Úeü�maC��ÿ§SÜ�íK��þ§ǑÒ´À2åÑl��m��bang-bang ��"ddùp��Ä�^u�£Ä�þ¬��^åu1����"XJ�ÄXÚ�ÑÑy = x§K�G�xǑθ ½rp1�§ÑÑyäk2���é�"�´�~N´�uy�ÑÑy = rp1 �§XÚØ´��� �§�k�y = θ�§XÚâ´��� �"ÏdÀJÑÑy = θ�Ñ\ÑÑ�"�5z"duy = θ��é�´2§Ïd½ÂXe�Ø��§µ
ë+ λ1ė+ λ0e = w1ùpe = y − θe§θe ´G�θ �Ï"�§¿�w1 L«��#���"�A��±��µ
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θ̈ + λ1θ̇ + λ0(θ − θe) = w1 (A.15)ëêλ1 Úλ0 ���±�Ø��§ØÓ�4:©Ù"�\(A.13)�(A.15)¥§�±�Ñ��u1 �)"l14Ù�Ñ��ý(J5w§|^ù«��ì�XÚ�3½��Ä"ÄÙ�Ï§Ò´ÏǑXÚäkÑÑy = θ�§XÚäk�.½�SÜÄ�5U"äN©Û�±�14Ù"

A.4.4 ÄÄÄuuu���������"""���555zzz���������555������du�.(A.13)�é'�E,§Ïd'�(Jé�äk�p�é��ÑÑ"�´ÏLé�
{z��.�©Û§�±¼�é�Î�.��\�
)§±9é��ì�Oé���¢"Äk©Û�Î3p�²¡�Ä�Ì�É�Xe4«KǑµ
• �£Ä�þ¬��:�Æθ§
• À2åm0g ���Î�þ,½öe�§
• ^miiL«�.5å§
• �íÄåFa 9åÝMa.ùp©Û¯K�g´´µÄkÏLb�þã�4«KǑ¥�n«6�Ø�3§��3�£Ä��þ¬5��XÚ�:�Æθ"ù�Ò��
p�²¡þE,�.�Ǒ{z��«�¹"3ù«�¹e�Îaqu��C/��á{§XãA.21¤«"ù«�á{´��nØ�Æp¡�²;�.(Wie, 1998)"ù�{ü��gdÝ(�Ò´�Î�.�ǑØ%ÚÄ:�(�"ÏLéù��gdÝ{z�.�ï�Ú©Û§�±uyXÚ�éu%CG�=Ä.þäk�pǑ3��é�"ù�{z�XÚ´4��§,	�����5z�G�Ǒ�y²´ì?½�"©Û�1�Ú´~f1�Ú�b�§ǑÒ´���Î�À2åØǑ"§Ó��Î�±3²¡gd$Ä"�´E,b�XÚvk.5å§Ǒvk�íÄ
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ã A.21: �Î{z��.XÓ���á{"å"ù«�¹e�Î��.'1�ÚCE,
§Ǒ�C
���."3ù«�¹e§²�yuyXÚ�éu%CG�=Ä.þEäk�pǑ3��é�"�d��XÚäk6�"�´duØ�3�íÄå§�Î%�$ÄØ��"éXÚ5`§ǑÒ´�3��Ø��G�",	��3���SÜÄ�§ÏLaq1�Ú¥��{§T���SÜÄ��y²´½�"1nÚ´?�Ú�°b�§-XÚäk.5å§�EØäk�íÄå"ù«�¹e��.ǑÒ��C���."ïáù«�¹e��Î�.§O��éu%CG�=Ä.þ§¿�yÙ�é�"ù«�¹7%CG�=Ä.þØî�äk3��é�§�´ÏL©Ûuy§ÏL·��Cq?n§T=Ä.þEäk3��é9"ù«�¹e�Ù�A5Ú�«�¹Ä���"���ÚÒ´�ï¤k�b�§�ÎÉ��íÄå�KǑ"ù�Ò´�Î3p�¡����."31n«�¹eí��¤k(ØÑ�±��A^y3����."Ó�duäk
�íÄå�KǑ§XÚ¤k�gdÝÑÉ�§Ø2äkØ���G�"ÏL�ý§w«Ñ|^���"�5z�����5��ìäké�����J"dþ¡�©Û�±wÑ§3ù���ì��OL§¥§7%CG�=Ä.þäk�����^"éup�¡����.5`§Ù7%CG�=Ä.þΠ1�O�Ǒµ
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Π1 = J2θ̇ +

m̄m1

m̄+m1

(

m3(m1 + m̄)

m1(m3 + m̄)
r2p1θ̇ + r2p3θ̇ + rp3ṙp1

)

.Ó��3��Π1�È©/ªΠ2Ǒäk3��é�"�3��·��¼ê̺§��e¡ü�ªf¤áµ
Π̇2 = ̺Π1, ̺ > 0

Π2 = θ +
rp3

√

m3(m1+m̄)
m1(m3+m̄)

√

m̄+m1

m̄m1

J + r2p3

arctan

√

m3(m1+m̄)
m1(m3+m̄)

rp1
√

m̄+m1

m̄m1

J + r2p3¤kΠ1 ÚΠ2 �|ÜÑäk3��é�"ÏLù
|Ü§�±r��.(A.13)=�Ǒ��äk3�"Ä���5�3���XÚ(Marino, 1986)"�©ÏL��y²
�½n(�
äkÑÑy = Π1 + kΠ2�XÚ´��� �§ǑÒ`Ù"Ä�´ì?½�"ù�½n´µ½n(Wu et al., 2010): kÑÑǑy = Π1+ kΠ2 �XÚ§3÷vk > 0�§äkì?½�"Ä�"ùpéu?Û�«{z��¹§^uí��"���Ø��§Ñaquµ
y(3) + λ2y

(2) + λ1y
(1) + λ0(y − ye) = 0 (A.16))ÑA.16¥y(3)¤�¹���u1,Ò��
¤I���5�"§��5`ù��)L§'�{ü§�´O�êâþ'��§Ï~I�O�Å�ê^�9ÏO�"ùp�ëêλ2!λ1!Úλ0���ÀJòKǑXÚ"Ä���Ý"

A.4.5 ���ýýý(((JJJ|^þ¡í��Äu���"�5z�����5��ì5���Î¢y��;.�ëY�1§XãA.7"Ù�ý(JdãA.22�A.25 �Ñ"ù��ý�8�3w«ù«��5���±²�ÞL;,�=ò:"�õ��ýÚ��[�©Û�14Ù"
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�Î��1;,, θ!rp1!v1!and v3 �Ä�CzdãA.22ÚA.23�«"ãA.24�A
ÑÑ�^å�Cz�¹"
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t   (s)ã A.22: θ Úrp1 �Ä�.
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ã A.24: Ñ\u�Ä�.
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ã A.25: ü�Ì���1;,.

A.5 nnn������ ���$$$ÄÄÄ������3n��m§�Î�3�«½�Ú^þ,½öeü$Ä§3Ø©�15Ù�[�0�
|^�K�Ä{Cq�)ù«�$Ä�)Û)"ù�Cq�)(JL¡§XJ��Î=Ä�ÆÝ'����ÿ§�Î3p�¡�$ÄÚ3ý��$Ä�ppØZ6§�±�p) "ùÜ©SNë�Ø©�15Ù"3ù�!¥§Äkí��Î3ý��$Ä�§"du�Î3ý�äkÚp�aq���(�§Ïd�±ë�p�¡��ì��O�{éý�²¡�Ä��O��5��ì"/ÏÛ�Ä��{§r�Î3p�Úý�����U\§l¼���n��m$Ä���e�"���Ñ
|^ù«��e�5���Î

WU
jian2



22 �«2å°Ä��Î�ï�����l�½�^�!$Ä��!Ú�Ý��ý(J"ù�!�Ú^$Ä©Û!±9ÄuÛ�ÄnØ�n�$Ä��e�´�©�M#��§ÙÜ©(JuL3(Wu et al., 2011a)"
A.5.1 ýýý���$$$ÄÄÄ�������Î3ý��(��±XãA.26¤«"ý��gdÝ�)µE=Æφ!Æ�ÝΩ1!�Ýv2Úv3!±9�þ¬�3ý�� �rp2Ú�Ýṙp2"�Î3ý�¡�$Ä�.Xeµ

o

e3

e2

m

ã A.26: �Î�ý�(�"










































φ̇ = Ω1

Ω̇1 = 1
J1
(La − rp2u3 + rp3u2)

v̇2 = 1
m2

((m0 − m̄) g sinφ+m3v3Ω1 + Fa2 − u2)

v̇3 = 1
m3

((m0 − m̄)g cosφ−m2v2Ω1 + Fa3 − u3)

r̈p2 = −v̇2 + Ω̇1rp3 + (v3 + Ω1rp2)Ω2 + g sinφ+ u2/m̄

ṁ0 = u4

(A.17)

5¿ùpu3 Ø´��§´��(½�þ"du�Î�(�3p�Ú3ý�äkaq5§§��m=´ëêk¤ØÓ§¤±�!'up�$Ä�©Û�{Ñ·^uý�$Ä�."¤±aq�����ý�²¡�'u%�=Ä.þǑµ
Ξ1 = J1φ̇ +

mm3

m+m3
r2p2φ̇− mm2

m+m2
(rp3ṙp2 − r2p3φ̇)



N¹ A ¥©nã 23Ó�ùpǑ�3��Ξ1�È©/ªΞ2 Ú��·��̺′§kXe'Xµ
Ξ̇2 = ̺

′

Ξ1, ̺
′

> 0

Ξ2 = φ− rp3
√

J1(m2+m̄)
m2m̄

+ r2p3

√

m3(m2+m̄)
m2(m3+m̄)

arctan
rp2

√

m3(m2+m̄)
m2(m̄+m3)

√

J1(m2+m̄)
m2m̄

+ r2p3

Ξ1 ÚΞ2Ñäk3��é�"ÏL�Ó��{�±y²éuäkÑÑǑy′

=

Ξ1 + kΞ2 �XÚ§�k > 0�§Ùkì?½�"Ä�"�ìª(A.16)§½Âéuý�$Ä�Ø��§Ǒµ
y

′(3) + λ
′

2y
′(2) + λ

′

1y
′(1) + λ

′

0(y
′ − y

′

e) = 0 (A.18)d�§A.18�����ìu2�±½�Î�Ê,Æγ ±93ý���Ý"
λ

′

2!λ
′

1!Úλ′

0´��ì�ëê"
A.5.2 nnn���$$$ÄÄÄ���������eee���I�5¿�´ùp·^�Û�Ä�{ØÓu^uÙé��Ê�ì�IO�{§Ï~Ê�ì��¯K�©�Ǒ^���Ú�Ê��ü��¡(Naidu and

Calise, 2001; Subudhi and Morris, 2003)"ùp|^Û�Ä�{�Ǒ��óä5U\p�Úý��ü����´"¿�b½p��Ä�úuý��Ä�"ù´|^�½��ì�ëê5¢y�"p���ìu1 ´dλ2, λ1, Úλ0 �ëêN!�; ý���ìu2 ´dëêλ′

2,

λ
′

1, Úλ′

05N!�"ÏdÏL�½λ2 = 3, λ1 = 3, λ0 = 1, λ
′

2 = 300, λ
′

1 = 300,Úλ′

0 = 10005(�ý��Ä�¯up��Ä�"|^Û�ÄU\ùü�����n��m$Ä��µeXãA.27¤«"
A.5.3 nnn���$$$ÄÄÄ���������ýýýãA.28 - A.31�Ñ
ÄuÛ�Ä�n���ì����J"ãA.28 w«
�î.Æk�©Ø���½L§"3ù��ý¥§:�Æθ ��-�26Ý§¿�E=Æφ´Ï"Ǒ"�"3k�©Ø���¹e§n�î.ÆÑì?½"ãA.29 w«
3ù�L§¥�þ¬�$Ä�¹"
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airship
model

Nonlinear
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controller

Nonlinear
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controller
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u
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states of the
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states of the
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u4

θ φ, , ,
,

Ω
v rp,rp

ã A.27: ÄuÛ�ÄnØ�n�$Ä��µeãA.30 ÚA.31 ��ýw«
�Î3n��m�=��¹"3ù��ýp§
φ 3m©�100�p�½310 Ý§��Ù���½�"Ý"ãA.31w«�Î�+e2 (ǑÒ´−y) ��=�"

A.6 ooo(((�©¤ïÄ��«|^�£Ä�þ¬��^�§^�þ�N!�SÜíK��,ü�#.�ÎǑ�<gÌÊ1ìJø
�«#�°ÄÅ�"ÏLÚî-î.�{§�©1�gJÑ
ù«�Î3n����lgdÝ���."du�3SÜÄ�±9g��þ�Cz§ù«#.�Î�.'~5�Î��E,éõ"ù�Ø©ÏLò�Î�ÅNÚ�£Ä�þ¬w�ü�Õá��:5ï�§l��ï���
{z"ÏL©Û§±9�þ��ý§�Î�Ä�5U��
�¡��«"éuE,���5�.§�Ø©ÄkÄuLQRÚÑ\ÑÑ�5zí�
ü«��§�´(Jw«ùü����J¿Øn�§ÏdÏ���Ü·��5��ìw��©�7�§�ùǑ´��℄Ô"du�Ä��Î�.ØU
���°(�"�5z§�Ø©JÑ
�«#�©Ûg´§�Ò´l�
{z��.\�§ÏL©Û{z��.����
k^�(Ø",�òù
(Øí2��ǑE,§±�������."ù«g´�y²´k��"��éuE,�.¼�
����"�5z§SÜÄ��½5��
�y§¿���
)Û)"ù
¤JÑ´Ø�U��lE,�.þ���"é�«{zA~¥��Î
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time   (s)ã A.28: 3k�©Ø���¹e§î.Æ�Ä�Cz�¹"�.§7%�=ÄÄþ3�O��5�"��ìþå�
'���^"�©ÏLÛ�Ä�{1�gïáù«Å��Ê1ì3n��m�^���µe"ÏL�©JÑ���µe§�Î3:�Ï�ÚE=Ï��^�Æ!Ê,ÆÑU����"3^�Æ�����Ä:þ§;,����±��¢y"2å°Ä��Î´�«#.�Vg§8�?3ïÄ��ã"�Ø©ïÄ
§��
Ä�nØ5¯K§8��3�þÿ�)û�¯K§Ù¥�Ì��A�¯K´µ(1)I��yù
��ì3XÚëêu)Cz��°�5§��5`XJkSÜ�£Ä��þ¬§ù7ò��éõXÚëê�X�þ¬�$ÄCz"(2)ù«��2å°Ä��ÎǑ,!U§�±�����¢��mÚ���Ê§"�´Ù3|6Ä�Uåþ�½Øv§Ïdù«2å°Ä�Å�(Ü~5�Äåí?Òw�ék7�"(3)ù«�Î��Ê±9?Ö�5yI���ïÄ"�©JÑ�ï��{!Ä�©Û�{!±9��ì��OéuaqÅ��XÚÑ´�~k¿Â�§~XéuYew�Åì<±9�£�¥(��"
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