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Résumé

L’objet d’étude de cette theése est une mesure infinie sur les boucles (lacets) naturellement
associée a une large classe de processus de Markov et les processus ponctuels de Poisson
d’intensité proportionnelle & cette mesure (paramétre d’intensité o > 0). Ces processus
ponctuels de Poisson portent le nom d’ensembles poissoniens de boucles markoviennes ou
de soupes de boucles. La mesure sur les boucles est covariante par un certain nombre de
transformations sur les processus de Markov, par exemple le changement de temps.

Dans le cadre de soupe de boucles brownienne & l’intérieur d’'un sous-domaine ouvert,
propre simplement connexe de C, il a été montré que les contours extérieurs des amas
extérieurs de boucles sont, pour a < %, des Conformal Loop Ensembles CLE,, k € (%,4].
D’autre part il a été montré pour une large classe de processus de Markov symétriques que
lorsque o = %, le champ d’occupation d’une soupe de boucle (somme des temps passés par
les boucles aux dessus des points) est le carré du champ libre gaussien.

J’ai étudié d’abord les soupes de boucles associés aux processus de diffusion unidimen-
sionnels, notamment leur champ d’occupation dont les zéros délimitent dans ce cas les amas
de boucles. Puis j’ai étudié les soupes de boucles sur graphe discret ainsi que sur graphe
métrique (arétes remplacés par des fils continus). Sur graphe métrique on a d’une part une
géométrie non triviale pour les boucles et d’autre part on a comme dans le cas unidimen-
sionnel continu la propriété que les zéros du champ d’occupation délimitent les amas des
boucles. En combinant les graphes métriques et ’isomorphisme avec le champ libre gaussien
j’al montré que a = % est le paramétre d’intensité critique pour la percolation par soupe
de boucles de marche aléatoire sur le demi plan discret Z x N (existence ou non d’un amas
infini) et que pour a < % la limite d’échelle des contours extérieurs des amas extérieurs sur
Z x N est un CLE,, dans le demi-plan continu.



Abstract

In this thesis I study an infinite measure on loops naturally associated to a wide range
of Markovian processes and the Poisson point processes of intensity proportional to this
measure (intensity parameter o« > 0). This Poissson point processes are called Poisson
ensembles of Markov loops or loop soups. The measure on loops is covariant with some
transformation on Markovian processes, for instance the change of time.

In the setting of Brownian loop soups inside a proper open simply connected domain
of C it was shown that the outer boundaries of outermost clusters of loops are, for a < %,
Conformal Loop Ensembles CLE,, x € (%,4]. Besides, it was shown for a wide range of
symmetric Markovian processes that for o = % the occupation field of a loop soup (the sum
of times spent by loops over points) is the square of the Gaussian free field.

First I studied the loop soups associated to one-dimensional diffusions, and particularly
the occupation field and its zeros that delimit in this case the clusters of loops. Then I
studied the loop soups on discrete graphs and metric graphs (edges replaced by continuous
lines). On a metric graph on one hand the loops have a non-trivial geometry and on the
other hand one has the same property as in the setting of one-dimensional diffusions that
the zeros of the occupation field delimit the clusters of loops. By combing metric graphs
and the isomorphism with the Gaussian free field I have shown that a = % is the critical
parameter for random walk loop soup percolation on the discrete half-plane Z x N (existence
or not of an infinite cluster of loops) and that for o < % the scaling limit of outer boundaries

of outermost clusters on Z x N is a CLE,, on the continuum half plane.
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CHAPITRE 1

Introduction

1.1. Définitions

L’objet d’étude de cette thése est une mesure infinie sur les boucles (lacets) naturelle-
ment associée a une large classe de processus de Markov et les processus ponctuels de Poisson
d’intensité proportionnelle & cette mesure. Ces processus ponctuels de Poisson portent le nom
d’ensembles poissoniens de boucles markoviennes ou de soupes de boucles. Dans [LMR15]
et [FR14] apparaissent des cadres assez larges dans lesquels cette mesure et ces processus
ponctuels de Poissons sont définis. Dans cette thése, le cadre sera plus restreint et en parti-
culier tous les processus de Markov seront symétriques. Soit S un espace localement compact
a base dénombrable, muni de sa tribu borélienne. Soit (X;)o<i<¢ un processus de Feller sur
S a trajectoires cadlag défini jusqu’a un temps de mort ¢ € (0, +o0]. On suppose que X
a des densités de transition pi(z,y) par rapport une mesure o-finie m sur S, continues en
le triplet (¢,x,y) et symétriques (pi(x,y) = pi(y,x)). On note P, et E, les probabilités et
espérances relatives a des chemins issus de z € S. On note p™¥ la mesure sur les chemins de
durée finie (z;)o<i<¢ joignant = & y définie par

+o0

Y (Lese F((2)ogs<t) [(§)) = L Ep[leseF((Xs)ogs<t) f(w)pu—t (X, y)]du

La mesure sur les boucles p associée au processus de Markov X est définie comme
(1.11) pa) = i [ weedymido)
vy JzeSs

oil t, désigne la durée totale de la boucle . Dans cette thése les processus de Markov sous-
jacents seront soit des diffusions unidimensionnelles, soit le mouvement brownien planaire,
soit des processus & sauts symétriques sur des graphes non-orientés, soit des diffusions sur
des graphes métriques, c’est-a-dire des graphes ot les arétes sont remplacées par des "fils"
continus.

Le plus souvent on considérera le boucles définies a translation de paramétrisation prés.
Etant donnés (v(s))o<s<t, et T € (0,t,), on identifiera & v la boucle ¥ définie par

{ F(s)=v(s+ty =T) sise[0,T]

W) =(s=T)  sise[l,t,]

La raison d’étre de ceci est qu’apres cette identification la mesure est covariante par change-
ment du temps du processus de Markov sous-jacent par ’inverse d’une fonctionnelle additive
continue. Ceci est montré dans un cadre assez large dans [FR14] et apparaitra dans le cadre
des diffusions unidimensionnelles dans le chapitre 2 de cette thése. Par exemple, étant donnée
v une fonction strictement positive continue sur ’espace S, on peut introduire une famille

(7¥)s>0 de temps d’arréts pour X :
t
f v(Xy)du > s}

0

S

77 :zinf{tZO

Le processus changé de temps (X;v) <, <5 0(X)du est encore markovien et la mesure sur les
boucles quotientées par les translations de paramétrisation associée & ce processus changé de

5
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temps est I'image de p par le méme changement du temps. C’est 14 une propriété qui explique
la particularité et I'intérét de la mesure p sur les boucles ; elle sera utilisée & plusieurs reprises
dans cette thése. On peut aussi noter que si le processus X est un mouvement Brownien
sur R? alors la mesure 1 est invariante par tout changement d’échelle Brownien de ’espace-
temps.

On étudiera les processus ponctuels de Poisson d’intensité au, notés L, ol « est une
constante positive. L, est appelé Ensemble poissonien de boucles markoviennes ou bien
soupe de boucles. Dans les notations qu’on utilisera on verra £, comme un ensemble aléatoire
dénombrable de boucles. On s’intéressera également & la mesure d’occupation de L, qui &
un borélien A de S associe la masse

(1.1.2) > f (s)eads

YEL o

Dans les différents cadres qui apparaitront dans cette thése, la mesure d’occupation sera
bien définie pour les processus de Markov transients. De plus, pour des processus ayant des
temps locaux la mesure d’occupation d’ensembles poissoniens de boucles Markoviennes aura
elle-méme des densités, notées (Eﬁ)xes et on parlera de champ d’occupation.

1.2. Boucles browniennes bidimensionnelles, CLE, SLE et champ libre gaussien

La mesure sur les boucles a été étudiée par Lawler et Werner dans [LWO04] pour le
mouvement Brownien planaire sur C tout entier ou dans un domaine ouvert simplement
connexe, le mouvement Brownien étant tué en atteignant le bord. Si on considére les boucles
simplement comme des lieux géométriques en oubliant la paramétrisation par le temps,
alors la mesure sur les boucles est invariante par transformation conforme du domaine. Ceci
découle directement de la covariance de la mesure sur les boucles par changement du temps
du processus de Markov sous-jacent.

Dans l'article [SW12], Sheffield et Werner utilisent les ensembles poissoniens de boucles
browniennes planaires pour donner une construction des Conformal Loop Ensembles (CLE).
Etant donné un domaine ouvert simplement connexe D # C, un ensemble CLE dans D est
une famille aléatoire dénombrable de boucles simples (lacets de Jordan qu’on voit comme
des lieux géométriques) dans D qui vérifie les propriétés suivantes :

e Les boucles ne s’intersectent pas deux a deux.

e Les boucles ne s’entourent pas 'une I'autre.

e Finitude locale : Pour tout € > 0 il y a un nombre fini de boucles de diamétre plus
grand que .

e Invariance conforme : La loi des boucles est invariante par transformation conforme
de D.

e Restriction : Les boucles vérifient la propriété de restriction & un sous-domaine de
D suivante. Soit D un sous-domaine ouvert simplement connexe de D. On prive
D de toutes les boucles CLE dans D qui ne sont pas contenues dans D ainsi
que de leurs intérieurs. On obtient un ouvert (voir finitude locale) D* dont toutes
les composantes connexes sont simplement connexe. Sachant les boucles dont on a
privé 5, la loi conditionnelle des boucles dans chacune des composantes connexes
de D* est un CLE indépendant.

Il y a une famille d’ensembles vérifiant ces propriétés, paramétrée par k € (%, 4] (CLE,,).
Dans [SW12], les auteurs considérent, pour a > 0, I’ensemble poissonien de boucles brow-
niennes contenues dans D, L, ainsi que les amas de £,. Deux boucles dans £, sont dans
un méme amas s’il existe une chaine de boucles dans £, dont les éléments extrémes sont
les deux boucles précédentes, et tel que deux boucles consécutives visitent un point de D
en commun. Les auteurs utilisent la notion de charge centrale, notée c, issue de la Théorie
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Conforme des Champs. Mais contrairement & ce qu’affirment les auteurs, la charge centrale
c n’est pas le parameétre d’intensité a, mais en réalité o = 5. L’existence d’un facteur % m’a
été communiqué par Werner. Dans Darticle [Law09] de Lawler, le facteur + apparait égale-
ment. Sheffield et Werner montrent que si ¢ > 1 (et donc « > %) il n’y a qu'un seul amas et
si ce (0,1],1l y a une infinité d’amas, tous bornés et a distance strictement positive du bord
de D. De plus, dans le dernier cas les contours extérieurs des amas extérieurs (non-entourés

par un autre amas) forment un ensemble CLE,; avec la correspondance

3k — 8)(6 — k)
2K

(1.2.1) 2a=c=

Fig. 1.1. : Représentation de quatre boucles CLE, en pointillés
et des boucles browniennes en traits pleins a ’intérieur d’une d’elle.

Les boucles CLE sont reliées aux courbes SLE (Stochastic Loewner Evolution). Etant
donné un domaine ouvert simplement connexe D # C et deux points du bord (au sens
frontiére de Carathéodory, images du bord du disque unité par transformation conforme)
a # b, un SLE chordal dans D joignant a & b est une courbe ¢ dans D allant de a vers b
telle que :

e La loi de ¢ est invariante par les transformations conformes de D qui laissent a et
b fixes.

¢ Conditionnellement & une partie de la courbe £([0,t]), la loi du reste est un SLE
chordal dans D\(([0,t]) joignant & a b (la loi est I'image de celle dans D par
transformation conforme).

Les courbes SLE sont classées par un paramétre x € (0,8). Si D = H = {z € C|3(z) > 0},
a =0 et b =00 on décrit SLE,, a I’aide du flot de Loewner suivant. Il y a une unique
transformation conforme g; de H\¢([O, t]) vers H telle que & I'infini

G(z)—2=0 (%)

g; vérifie ’équation différentielle suivante

99t 2

ot &) = 91(z) — JEW,

ot (Wy)¢=0 est un mouvement brownien standard unidimensionnel. Si k € (0,4], SLE,, est
une courbe qui ne s’autointersecte pas et qui ne touche pas le bord du domaine sauf aux
deux extrémités. Pour plus de détails sur les processus SLE, voir [RS05].

Pour « € (%, 4], les trongons de boucles CLE,; "ressemblent" aux troncons de courbes
SLE,. On peut donner & cela un sens plus précis suivant. Soit zg un point dans le domaine
D et @ un point sur le bord (au sens frontiére de Carathéodory). On considére la boucle du
CLE, qui entoure zg (qui existe p.s.) et on la conditionne & passer dans un e-voisinage du
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point a. En faisant tendre € vers 0 on a une convergence en loi vers une boucle "épinglée",
allant de a vers a et entourant zg. Cette loi de boucle épinglée peut étre obtenue d’une autre
maniére, & partir de processus SLE,. a. va désigner un point du bord du domaine situé
dans un e-voisinage de a, différent de a. On considére un SLE, chordal allant de a vers a.
et conditionné & "entourer" zg, cet-a-dire & laisser zg du méme coté de la courbe SLE, que
le segment e-petit du bord du domaine. Lorsque ¢ tend vers 0, on a une convergence en loi
vers la méme boucle "épinglée" que précédemment (voir [SW12]).

7 ~ e ~
4 AN 4 AN
pd N / N
\ \
D / \ D / Z00/ N
7/ N\ / \ /7 N\ / \
/ \_~ / / \N_~ /
/ ; / y
/ - / -
/ // / -
| —*a ! a
Ve s
) / I /
] -~ / 1 -~ 7
I SN I N,
/ \ ! N -
! / ! )
/ / / /
\ s | s
N -~ ~ -

Fig. 1.2. : Deux maniéres d’obtenir une boucle épinglée au bord,
a partir d’une boucle CLE,, a gauche et a partir d’une boucle SLE,, a droite.

Dans [Law09], Lawler établit la relation suivante entre les courbes SLE,, k € (0,4],
et la mesure p sur les boucles browniennes dans D. On considére deux points distincts sur
le bord (frontiére de Carathéodory) a et b, ainsi qu’un sous domaine ouvert simplement
connexe D’ de D dont le bord contient des voisinages du bord de D autour de a et b. Soit
]P);{D,a—ﬂ) la loi du SLE, chordal de a vers b dans D, et Pg;_,b l’analogue dans D' Pg;_,b est
absolument continu par rapport & IP’Q asb- D0it ¢ la quantité appelée charge centrale, reliée
a k par (1.2.1). Lorsque £ < &, ¢ < 0. Etant donnée une courbe &, soit (¢ < D\D') la
p-masse des boucles browniennes qui visitent & la fois £ et D\D’. Alors

dPP

1 c
T (e = Sl exp (~5u(E & D\D))
K,a—b

A partir de ce type de relations, on obtient 'expression (1.2.1) de la valeur de  pour laquelle
CLE, est le contour des amas de I’ensemble poissonien de boucles browniennes d’intensité
a. C’est-a-dire que pour k € (%, 4], § est l'intensité o.

On présente la relation entre CLE, (correspondant au paramétre d’intensité o = % pour
les boucles browniennes) et le champ libre gaussien. Dans le domaine ouvert simplement

connexe D # C, on considére le champ libre gaussien ¢ ayant pour forme de Dirichlet

3| e

avec des conditions nulles sur 0D. On peut coupler ¢ et CLE, de maniére suivante :

(i) On échantillonne d’abord les boucles CLE, dans D.

(ii) A lintérieur de lintérieur de chaque boucle I' € CLE, (noté Int(I")) on échan-
tillonne un champ libre ¢™ 1) avec des conditions nulles sur I', de maniére indé-
pendante conditionnellement & C'LFEy.

(iii) Pour chaque boucle I' € CLEy, on choisit de maniére uniforme un signe or €
{—1,+1}, de maniére indépendante et indépendamment des champs libres précé-
dents conditionnellement & CLE,.
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(iv) On a alors l'identité en loi

d
o” @ Z 11nt(r)(¢lm(r) + or/)

I'eCLE,

Pour plus de détails voir [WW14]. La normalisation du champ libre dans l’article cité est
différente.

Dans le couplage précédent, le complémentaire des intérieurs des boucles C L E,4 apparait
en quelque sorte comme une ligne de niveau 0 du champ libre ¢”. On pense en plus que
dans ce couplage les boucles CLE, sont fonction déterministe de qﬁD .

1.3. Boucles de marches aléatoires et approximation

Lawler et Trujillo Ferreras dans [LF07] étudient des processus de Poisson de boucles
discrétes sur Z? qu'ils appellent soupes de boucles de marche aléatoire ("random walk loop
soup"). Les auteurs considérent la mesure que Ion va noter pf sur les chemins & temps
discret, de longueur finie, aux plus proches voisins sur Z2, dont le point d’arrivée est le point
de départ, et qui & tout tel chemin de longueur n paire associe la masse

4—71

n

On va noter par L% 1e processus ponctuel de Poisson d’intensité af.

Les auteurs cherchent & approximer par Lo* les ensembles poissoniens de boucles brow-
niennes (associés au mouvement brownien standard) dans C. On va noter ici par £, les
ensembles poissoniens de boucles browniennes et considérer que les boucles ont un instant
de départ. Pour N € N* on considére application ®n de changement d’échelle sur les
boucles discrétes suivante. Etant donné fyn = (z0y...,2n-1,20) dans Z? une boucle aux plus
proches voisins, ® yy* est une boucle a temps continu & espace continu dans C qui vérifie :

e La durée de (I>N7“ est sx .

e Pour j€{0,...,n—1}, (I)NVH(QJ{IQ) = 4.
o OnYH(gRz) = NH(0) = R
e Entre les temps 54z, j € {0,...,n}, ® y~! interpole linéairement.

Soit s+ le nombre de sauts n d'une boucle discréte v¥. Soit 6 € (2,2) et r > 1. Dans
[LFO07] il est montré qu’il y a un couplage entre L% and L, tel qu’a exception d'un évé-
nement de probabilité au plus cste - (o + 1)r2N273 il y a une bijection entre les deux
ensembles

o {vPeLlls,: >2N? |4#(0)| < Nr}
o {veLalty> N2 17(0)] <}
tel que, étant données une boucle discréte 4# et une boucle continue v qui lui est associée,
S S
2—]32 - tv‘ < gN*Q et 02321 ‘<I>ny<u2—]:;2) - fy(utv)‘ < cste- N~ og(N)

Dans Particle [dBCL14], van den Brug, Camia et Lis utilisent le résultat d’approxi-
mation de Lawler et Trujillo Ferreras pour montrer le résultat de convergence vers le CLE
suivant. Ils considérent un domaine ouvert simplement connexe et borné D, ainsi qu’un
coefficient 6 € (%, 2). Parmi les boucles discrétes v# € LF,, ils considérent celles qui sont
contenues dans ND et qui font au moins NY sauts (sans les plus petites boucles donc). Ils
montrent que pour « € (0,1], la limite d’échelle (lorsque N tend vers Dinfini) des contours
extérieurs des amas formés par ces boucles est un CLE,;, ou « et x sont reliés par (1.2.1).
Toutefois, on peut se demander si la convergence en loi tient toujours si on prend en compte
toutes les boucles discrétes a 'intérieur de N D et non seulement celles qui sont assez grandes.
Dans cette thése, il sera démontré que c’est la cas.
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1.4. Boucles de processus a sauts et champ libre gaussien

Dans [Jan11], Le Jan considére les ensembles poissoniens de boucles associés & des
processus de Markov & sauts sur des réseaux électriques. Le cadre est le suivant. G = (V, E)
est un graphe connexe non-orienté. L’ensemble des sommets V' est au plus dénombrable.
Chaque sommet a un degré fini. Les arétes sont munies de conductances strictement positives
(C(€))eck et les sommets d’une mesure de meurtre positive ou nulle (k(x))zev. Le processus
de Markov & sauts (X¢)o<t<c saute d’'un sommet z vers un de ses voisins y avec un taux
égal & la conductance C(z,y). Si jamais k(z) > 0, X; saute de x vers un état puits qu’on
appellera cimetiére avec un taux k(z). Le processus est alors tué. ¢ est soit 'infini, soit le
temps ou le processus est tué¢ par la mesure de meurtre, soit le temps ou il explose (sort
de tout compact) en temps fini. Si (X¢)o<i<¢ est transient (meurtre non nul ou graphe
infini avec conductances idoines) alors on notera par (G(,y))s yev la fonction de Green du

processus :
¢
G(z,y) =E; lf 1Xydt]
0
G est symétrique.

Le Jan considére la mesure p sur les boucles associée & (X;)o<i<¢ qui est donnée par
(1.1.1) ainsi que les ensembles poissoniens de boucles L. Les boucles sont a espace discret
mais & temps continu. Notons que dans ce cadre-1a £, contient des boucles non-triviales qui
visitent plusieurs sommets mais aussi, au dessus de chaque sommet, une infinité de "boucles"
qui ne visitent qu’un sommet. Si le graphe est Z2, les conductances uniformes et il n’y a pas
de mesure de meurtre, alors les soupes de boucles de marche aléatoire de Lawler et Trujillo
Ferreras sont les boucles de processus & sauts qui ne sont pas réduites 4 un sommet ot ’'on
remplace le temps continu par un temps discret. En particulier les amas de boucles sont
exactement les mémes. . R

Le Jan étudie la champ d’occupation (L£Z)zev de Lo. L2 est la somme sur les boucles de
L% du temps total qu’elles passent en x. Si le processus & sauts est récurrent, le champ d’oc-
cupation est infini en tout point. Si le processus & sauts est transient, le champ d’occupation
est fini. Le Jan établit un "isomorphisme" entre le champ d’occupation Eﬁ et le champ libre

2
gaussien discret ¢. ¢ est un champ gaussien centré donc la fonction de variance-covariance
est la fonction de Green G. Le Jan établit ’égalité en loi

(1.4.1) (£%)aer 2 <%¢§)
eV

n=8

Le paramétre d’intensité o = % est le méme que celui qui dans le cas bidimensionnel
brownien est reli¢ au CLE, qui a son tour est relié au champ libre en continu. L’isomor-
phisme de Le Jan fait partie d’'une famille d’isomorphismes reliant le champ d’occupation
de trajectoires markoviennes au carré d’un champ libre gaussien au méme titre que 1’iso-
morphisme de Dynkin, 'isomorphisme d’Eisenbaum, ’isomorphisme de Sznitman pour les
entrelacements aléatoires et les théorémes de Ray-Knight généralisés (voir [Szn12b]). L’iso-
morphisme de Le Jan ne relie pas le signe du champ libre & ’ensemble Poissonien de boucles
E%. Ce sera fait dans cette thése.

Dans le cas ou 'on considére un processus de diffusion unidimensionnel transient en
dimension 1 au lieu d’un processus & sauts, le champ d’occupation est encore défini ponc-
tuellement et I'isomorphisme de Le Jan tient. Ce sera étudié¢ dans cette thése. Dans le cas
des boucles browniennes en dimension supérieure, le champ d’occupation n’est pas défini
ponctuellement et au lieu de cela on a une mesure d’occupation (1.1.2). Mais elle est loca-
lement infinie méme si le processus est transient. Toutefois en dimension deux et trois on
peut définir une mesure d’occupation centrée.
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Le cadre est celui des boucles browniennes dans un sous-domaine strict ouvert de C ou
dans R3. Soit Eme le champ d’occupation des boucles de £, dont la durée est supérieure &
e. Alors R R

ca,a - E[»Ca,e]
a une limite en loi quand ¢ tend vers 0, qui est une distribution aléatoire et qu’on notera
ancent. Pour 'intensité o = %, EA% . a méme loi que la moitié du carré de Wick du champ
libre continu, qu’on note

,cen

L5

3 o
Le carré de Wick est défini ainsi. Soit ¢ le champ libre moyenné sur des boules de rayon ¢
de maniére & avoir un champ défini ponctuellement. Alors

1 ¢? == lim (62 — E[¢])

Dans le cas d’un sous-domaine strict ouvert simplement connexe de C, on a le diagramme
suivant qui relie E%, CLEjy, le champ libre ¢ et % D¢

contours
des amas
L 1 — = (CLE,
mesure lienes
d’occupation g
centrée de niveau
1.2,
207 carré ¢
de Wick

Fig. 1.3 : Relations entre £, CLE4 et le champ libre ¢
2

1.5. Algorithme de Wilson a effacement de boucles

Une autre propriété mise en évidence par Le Jan dans [Jan11] est le lien entre I’ensemble
poissonien de boucles £ et l’algorithme de Wilson d’effacement de boucles. Le cadre est
d’un réseau électrique fini connexe G = (V, E) muni de conductances mais sans mesure de
meurtre. Un sommet particulier est la racine 7. On considére le processus & sauts sur V' tué
en atteignant { ainsi que les ensembles poissoniens de boucles correspondants.

Le Jan part de la remarque suivante. Soit 1 € V\{{} et (X;)o<t<¢ la trajectoire du
processus & sauts issue de z1. Soit ﬁ.l le dernier temps de passage de X; en x; avant (.
Alors le processus

(Xt)0<t<fml
a méme loi que si on prenait toutes les boucles de £; qui passent par x1, les enracinait en x
et les concaténait bout & bout. Plus précisément, en partageant le temps que (Xt)ogkﬁl
passe en z; suivant une partition aléatoire de Poisson-Dirichlet PD(0,1) on obtient un
infinité dénombrable de boucles de x1 & x1 qui ont méme loi que le sous-ensemble de boucles
de £ passant par x.

S’en suit le lien entre les boucles £; et Ialgorithme de Wilson ([W1il96]) d’échantillon-
nage de l'arbre couvrant uniforme pondéré par le produit des conductances des arétes de
I’arbre. V; respectivement T; seront des ensembles de sommets respectivement arétes aléa-
toires. L’algorithme de Wilson est le suivant :

e Fixer (z1,...,z,) une numérotation de V\{f}.
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e Fixer V) := {{} et Yo := .
e Pour i allant de 1 & n faire :

—Siz;eVi_iposer V;=V,_1et T; =71;_1.

— Sinon lancer un processus de Markov & sauts partant de x; et ’arréter lorsqu’il
atteint V;_;. Effacer les boucles du processus a saut au fur et & mesure qu’elles
apparaissent. On obtient ainsi un chemin simple joignant x; a V;_1. Ajouter
les sommets visités par ce chemin & V;_; pour obtenir V;. Ajouter le arétes
empruntées par ce chemin & Y;_; pour obtenir Y;.

T, est alors un arbre couvrant enraciné en T dont la loi est celle d’'un arbre couvrant
uniforme pondéré par le produit des conductances des arétes. Ses arétes sont un processus
déterminantal. Les boucles effacées au cours de I’exécution de l’algorithme sont en loi les
boucles £; ou certaines ont été recollées entre elles. En particulier les champs d’occupation
sont les mémes.

La propriété mise en évidence par Le Jan pour les boucles des processus & sauts, a
un analogue pour dans le cas brownien bidimensionnel. Soit D un sous-domaine strict de
C, ouvert simplement connexe et a et b deux points distincts de son bord. Etant donné
I’excursion brownienne dans D joignant a & b, on peut définir un chemin simple joignant a
a b obtenu en effacant les boucles de I’excursion. Il a pour loi un processus de SLFE> chordal
([Zhal2]). Il a été conjecturé que sil’on prend un SLE5 chordal de a & b ainsi qu’un ensemble
poissonien de boucles browniennes £; indépendant dans D, et qu’on attache & SLFEs toutes
les boucles qu’il rencontre, on reconstitue en loi I’excursion brownienne([LW04]).

1.6. Percolation par boucles sur réseaux

Dans [JL13|, Le Jan et Lemaire initient I’étude des amas formés par les ensembles pois-
soniens de boucles des processus de Markov & sauts symétriques. On s’y intéresse notamment,
sous I’angle de la percolation : existence d’un amas infini de boucles sur Z?. Cette étude est
poursuivie par Chang et Sapozhnikov dans [CS14]. Le cadre considéré est celui du processus
A sauts symétriques aux plus proches voisins sur Z?, avec une mesure de meurtre uniforme
(d = 2) ou sans (d = 3). Dans le cas deux-dimensionnel sans mesure de meurtre il n’y qu’'un
seul amas, ce qui est relié & la récurrence du processus & sauts sous-jacent. Dans les autres
cas, il a été montré I’existence d’une transition de phase non triviale lorsque le paramétre
d’intensité o augmente, 'unicité de ’amas infini, certaines estimées quantitatives des pro-
babilités de connexion et un équivalent asymptotique en grande dimension du parameétre «
critique. Dans cette thése, cette étude sera poursuivie.

1.7. Organisation de la thése et résultats

Les chapitres 2 et 3 de cette thése sont tirés de mon mémoire [Lup13]. Le cadre étudié
est celui des diffusions unidimensionnelles sur un intervalle, tuées si éventuellement elles at-
teignent le bord, avec ou sans mesure de meurtre & ’'intérieur de l'intervalle. Dans le chapitre
2, je montre qu’on peut écrire la mesure sur les boucles de diffusions unidimensionnelles non
seulement comme une somme pondérée de probabilités de ponts ((1.1.1)) mais aussi comme
une somme de mesures d’excursions positives avec des minima balayant tout l’intervalle.
Dans le cas du mouvement Brownien sur R, il s’agit juste d’une application de la transfor-
mation de Vervaat. Quant au cas général, il me conduit & mettre en évidence une relation,
valable pour une diffusion quelconque avec ou sans mesure de meurtre, entre un pont de x
a x conditionné & atteindre son minimum en a et ’excursion positive issue de a. La loi du
premier objet, aprés permutation de troncons avant et aprés le minimum, est absolument
continue par rapport & la loi du second et la densité est proportionnelle au temps local
en z. On peut y voir une généralisation de la transformation de Vervaat. Toujours dans le
chapitre 2 j’étudie le champ d’occupation des ensembles poissoniens de boucles de diffusions
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unidimensionnelles. Si on considére la variable d’espace comme un paramétre d’évolution, les
champs d’occupation sont des processus de branchement avec immigration non-homogénes a
état continu. Enfin dans le chapitre 2 je montre aussi comment obtenir tout ou en partie les
ensembles poissoniens de boucles de paramétre o = 1 en découpant de maniére déterministe
ou aléatoire les trajectoires de diffusions. Ceci est I’analogue du lien avec les boucles effacées
mis en évidence par Le Jan dans [Jan11] dans le cadre de processus de Markov a sauts.

Dans le chapitre 3, j’étudie ce qu’on obtient si I’on applique ’algorithme d’effacement de
boucles, utilisé pour échantillonner des arbres couvrants aléatoires, & un mouvement brow-
nien sur R avec une mesure de meurtre non nulle. On peut imaginer un "graphe" constitué
de R et d’une "racine" située & 'extérieur. Chaque point z € R est relié a ses deux voising
infinitésimaux x — dx et x + dx. De plus, chaque point dans le support de la mesure de
meurtre est relié a la racine. Un "arbre couvrant" de cet objet peut étre décrit par deux
processus ponctuels sur R. Le premier correspond aux sommets dans "I’arbre" reliés a la
"racine" & l'extérieur de R. Le second aux points x € R tels que = — dx et = + dx ne soient
pas reliés par une "aréte" infinitésimale dans "l’arbre". Les deux processus ponctuels sont
entrelacés : entre deux points consécutifs de 1'un, il y a un point de lautre. J’identifie la
loi jointe de ces deux processus ponctuels. Les deux sont des processus déterminantaux. Il
y a ici analogie avec I'arbre couvrant uniforme habituel dont les arétes sont également un
processus déterminantal. Je décris aussi comment, & partir de bouts de trajectoires brow-
niennes utilisées dans I'algorithme, on peut reconstruire l’ensemble poissonien de boucles £
associé au mouvement brownien avec mesure de meurtre. C’est ’analogue de ce que Le Jan
décrit dans [Jan11] pour les processus & sauts. Enfin je montre que, si 'on augmente par
endroits la mesure de meurtre sur R, on peut obtenir des couplages monotones explicites des
processus déterminantaux-"arbres couvrants" correspondants & 1’ancienne et & la nouvelle
mesure de meurtre.

Le chapitre 4 est tiré de mon article [Lup14], augmenté d’une section supplémentaire.
L’article a été accepté a Annals of Probability. Le cadre est celui de processus markoviens
a sauts symeétriques transients sur un graphe (V, E). D’aprés l'isomorphisme de Le Jan
(1.4.1), le module du champ libre gaussien (|¢.|)zev est donné par le champ d’occupation
(E’é )zev. Je montre qu’en rajoutant de l’aléa supplémentaire, on peut créer un couplage

entre ’ensemble poissonien de boucles £ 1 et le champ libre gaussien ¢ tel qu’en plus le
signe de ¢ soit constant sur chaque amas de £ 1 Pour construire le couplage, j’'interpole le
graphe par un graphe métrique ou chaque aréte est remplacée par un fil "continu" d’une
longueur égale a la moitié de la résistance (inverse de la conductance) et je considére le
mouvement brownien sur cet objet. L’ensemble poissonien de boucles du processus & sauts
peut étre obtenu & partir de ’ensemble poissonien de boucles browniennes sur le graphe
métrique en prenant la restriction de ces derniéres au sommets. Ainsi les amas de boucles
des processus & sauts sont contenus dans les amas de boucles browniennes sur le graphe
métrique. L’isomorphisme de Le Jan fonctionne également sur le graphe métrique. De plus
au parameétre a = %, les amas des boucles sur le graphe métrique sont exactement des
composantes connexes du signe du champ libre sur le graphe métrique. Donc le signe du
champ libre est aussi constant sur les amas de boucles du processus & sauts. De ce couplage
je déduis que sur Z? (d > 3) les boucles de E% ne percolent pas, ne forment pas d’amas
infini. Cette approche utilisant les graphes métriques a été inspirée par les résultats portant
sur les ensembles poissoniens de boucles de diffusions unidimensionnelles présentés dans le
chapitre 2.

Dans le chapitre 4, je considére également les boucles de processus & sauts aux plus
proches voisins sur le demi-plan discret H = Z x N tués en atteignant la frontiére Z x {0}. J’y
étudie lexistence d’un amas infini et le parameétre d’intensité critique off. La motivation est
de comparer avec le modéle des boucles browniennes sur le demi-plan de C ot le paramétre
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d’intensité critique est % Le résultat de non-percolation des boucles pour a = % s’applique

aussi au demi-plan discret et on a off > 1. Je montre en plus que 3 est le paramétre
d’intensité critique comme dans le cas brownien bidimensionnel. J’utilise les résultats d’ap-
proximation des ensembles poissoniens de boucles browniennes par les ensembles poissoniens
de boucles de marches aléatoires obtenus par Lawler et Trujillo Ferreras dans [LF07].

Dans le chapitre 4, j’applique aussi ’idée d’interpolation du graphe discret par un graphe
métrique au modéle d’entrelacements aléatoires de Sznitman. Un entrelacement aléatoire sur
74, d > 3, est un processus ponctuel de Poisson fait de chemins aux plus proches voisins
bi-infinis (paramétrés par un temps infini dans les deux sens) se comportant comme des
trajectoires de marches aléatoires. Etant donné un paramétre d’intensité u > 0 et Z% un
entrelacement aléatoire de ce niveau d’intensité, ’ensemble vacant V* est I’ensemble des sites
non visités par aucun des chemins dans Z%. A un niveau critique uy € (0, 4+00) se produit
une transition de phase au-dela de laquelle V* n’a que des composantes connexes bornées
([Szn10], [SS09]). On peut paramétrer les chemins dans Z,, par un temps continu et dans
ce cas, il y un champ d’occupation de Z%, (L*(Z%)) ez¢- Sznitman établit un isomorphisme
avec le champ libre gaussien ¢ pour ce modéle 1a. Si Z% et ¢ sont indépendants, alors

(@ +52) @ (Ge —vawr)

A partir de cet isomorphisme, en interpolant Z? par un graphe métrique, je montre qu’il y
a un couplage entre Z" et ¢ tel que

{r e Z%¢, > V2u} = V"
Il existe un paramétre h, > 0 critique a partir duquel I’ensemble de niveau
{re Zd|¢x > Iy}

n’a que des composantes connexes bornées ([RS13]). Mon couplage entre Z* et ¢ implique
que hy < A 2uy.

Le chapitre 5 est tiré de mon article [Lup15]. J'y considére les demi-plans discrets
(%Z) X (%N ) interpolés par des graphes métriques (arétes remplacées par des fils continus de
méme longueur) et j’y étudie les amas d’ensembles poissoniens de boucles sur des graphes
meétriques de paramétre d’intensité o = % Je m’interroge si la limite d’échelle des frontiéres
extérieures des amas extérieurs quand n tend vers +oo0 est CLEy. En effet, k = 4 corres-
pond selon la formule (1.2.1) au paramétre d’intensité o = % pour les boucles browniennes
planaires sur un domaine simplement connexe de C. La réponse est positive. Brug, Camia
et Lis on montré dans [dBCL14]| que si au lieu de prendre toutes les boucles on prends
seulement les boucles pas trop petites, alors leurs amas vérifient cette convergence vers le
CLE. Pour montrer la convergence en général, je calcule certaines probabilités sur les fron-
tiéres extérieures qui, quand n tend vers 400, convergent vers des probabilités analogues
pour CLE,. Plus précisément, sur le demi-plan "continu" H = {S(z) > 0}, je consideére
deux familles poissoniennes indépendantes d’excursions browniennes allant du bord vers le
bord et indépendantes de I’ensemble C'LE, & lintérieur de H. Les extrémités des excur-
sions de la premiére famille sont contenues dans 'intervalle (—o0,0) x {0}. Les extrémités
de la deuxiéme famille sont contenues dans lintervalle (1,¢) x {0} ou ¢ > 1. Je considére
I’événement que les deux familles d’excursions soient reliées soit en s’intersectant soit en
intersectant une boucle de CLE, commune. On peut écrire une équation différentielle pour
cette probabilité en faisant varier ¢g. Ceci découle des résultats de Lawler, Schramm et Wer-
ner dans [LSW03] et de Werner et Wu dans [WW 13]. Ensuite, sur les graphes métriques
associés & (£Z) x (LN), je considére I'ensemble poissonien de boucles L1 et deux familles
poissoniennes indépendantes entre elles et de El d’excursions du mouvement brownien sur

z€eZ4

graphe métrique allant du bord TllZ x {0} vers lui-méme. Ces deux familles d’excursions
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convergent en loi vers les familles d’excursions browniennes dans H décrites précédemment,
quand n tend vers 4+00. Je considére la probabilité que les deux familles d’excursions sur le
graphe métrique soient reliés soit en s’intersectant, soit en intersectant une boucle commune
de C%. Cette probabilité peut étre calculée explicitement en utilisant I’isomorphisme avec
le champ libre gaussien. J’obtiens une convergence vers une probabilité analogue a celle
obtenue avec CLE,. En combinant avec le résultat de Brug, Camia et Lis de [dBCL14] je
montre sur le graphe métrique que la limite d’échelle des amas des boucles de paramétre
d’intensité o = % est bien CLFE;,. Plus loin, je montre qu’il y a aussi convergence des amas
pour toutes les valeurs de « dans (0, %], a la fois sur le graphe métrique et sur le graphe
discret, vers CLE, ou « et k sont liées par (1.2.1). La méthode consiste & montrer que s’il
n’y avait pas convergence pour une valeur de o dans (0, %), il n’y aurait pas non plus de
convergence pour o = % Dans le chapitre 5, certaines preuves de convergence manquent de
détails mais toutes les idées principales y figurent.

Ainsi, en ce qui concerne la comparaison de la percolation par boucles sur le demi-plan
discret et le demi-plan continu, on obtient le tableau suivant. Dans les deux cas, le paramétre
d’intensité critique est % et, pour « dans (0, %], la limite d’échelle des frontiéres extérieures
des amas extérieurs des boucles discrétes a la méme loi que les frontiéres extérieures des
amas extérieurs des boucles deux-dimensionnelles browniennes, c’est-a-dire des CLE,. De
plus, sur le graphe métrique, on a une analogie compléte avec le diagramme de la figure 1.3.

Les chapitres 4 et 5 sont auto-contenus en termes de notations. Dans le chapitre 3,
j’utilise les notations introduites dans le chapitre 2. Dans les chapitre 2, 3 et 4, la lettre « va
désigner une mesure de meurtre alors que dans le chapitre 5, ce sera le paramétre des SLE,,

et CLE,.

1.8. Perspectives

Dans le chapitre 4, nous avons obtenu un couplage naturel entre le champ libre gaussien
et ’ensemble poissonien de boucles des processus & sauts E%. Le point départ y est E%, a
partir duquel on construit un champ libre en rajoutant de 1’aléa supplémentaire. Un piste
d’étude est d’avoir au contraire la loi conditionnelle de C% par rapport au champ libre.

Une autre piste d’étude future concerne les boucles browniennes dans un domaine sim-
plement connexe en dimension 2. Le diagramme de la figure 1.3 présente la relation entre
E%, CLE}y, le champ libre ¢ et % : ¢% .. On a des couplages entre les paires de ces objets qui
sont, reliées par des fleches dans le diagramme. Mais, la question de coupler les quatre objets
ensemble de maniére naturelle et consistante avec les couplages par paires se pose. Ici aussi
I’approximation du domaine par des graphes métriques peut étre utile, étant donné que sur
le graphe métrique, les analogues des quatre objets sont couplés naturellement ensemble, et
on peut donc essayer de passer & la limite leur couplage.

Enfin, il sera intéressant d’étudier les amas des boucles browniennes en dimension 3. En
effet, la trajectoire du mouvement brownien tridimensionnel est non polaire et les ensembles
poissoniens de boucles browniennes en dimension 3 forment des amas non-triviaux. Il y a
une transition de phase, lorsque le paramétre d’intensité o augmente, entre ’absence et la
présence d’un amas non-borné. Il est vraisemblable que lorsque o« = %, il n’y a pas d’amas
non-borné tout comme c’est le cas pour les amas de boucles de la marche aléatoire sur Z?3.
Il se pose aussi la question du sens qu’on peut donner au signe du champ libre sur R? et
ce que pourrait signifier d’avoir un signe constant sur les amas des boucles browniennes,
c’est-a-dire transposer, dans le continu sur R3, les résultats vrais en discret sur Z3.



CHAPTER 2

Poisson ensembles of loops of one-dimensional diffusions

2.1. Introduction

Lawler and Werner introduced in [LWO04] the notion of Poisson ensemble of Markov
loops ("loop soup") for planar Brownian motion. In [SW12] it was used by Sheffield and
Werner to construct the Conformal Loops Ensemble (CLE). Le Jan studied in [Jan11] the
analogue of the Poissonian ensembles of Markov loops in the setting of a symmetric Markov
jump process on a finite graph. In both cases one defines an infinite measure p* on time-
parametrizes unrooted loops (i.e. loops parametrized by a circle where it is not specified
when the cut between the beginning and the end occurs) and considers the Poisson point
ensemble of intensity au*, a > 0, denoted here L. In both cases the ensemble £; (where
a = 1) is related to the loops erased during the loop-erasure procedure applied to Markovian
sample paths.In particular in the discrete setting Wilson’s algorithm ([Wil96]) leads to a
duality between £; and the Uniform Spanning Trees. In [Jan11] Le Jan also studied the
occupation field of L, that is the sum of the occupation times in a given vertex of the graph
of individual loops. In case o = % he found that it the square of a Gaussian Free Field and
related it to the Dynkin’s Isomorphism ([Dyn84b]).

The analogue of the measure u* can be defined for a much larger class of Markov
processes ([LMR15], [FR14]). The aim of this essay is on one hand to study the measure
p* and the Poisson ensembles of Markov loops £, in the setting of one-dimensional, not
necessarily conservative, diffusion processes, and on the other hand to define and study
some determinatal point processes on R that are analogous to Uniform Spanning Tress and
dual to £;. The diffusion processes we consider take values on a subinterval I of R, are
always killed at hitting a boundary point of I, and may be killed by a killing measure on the
interior of I. One can transform a diffusion process into an other applying a change of scale,
a random change of time, a restriction to a subinterval, an increase of the killing measure or
a conjugation of the semi-group by a positive sufficiently regular function (P; — h~!P;h).
The measure p* is covariant with all these transformations on Markov processes. In other
words the map diffusion to measure on loops is a covariant functor. Moreover we will show
that p* is invariant by conjugation on underlying diffusions. We will also extend the scope
of our study by associating a measure on loops to "generators" which contain a creation of
mass term: If L = L(© + v where L(© is a second order differential operator on I and v is a
signed measure, and if one sets zero Dirichlet boundary conditions for L, one can define in
a consistent way a measure on loops related to L even in case the semi-group (e‘*);>o does
not make sense. This extended definition of p* will be particularly handy for computing
the exponential moments of the Poissonian ensemble of Markov loops.

The layout of this paper is the following: In chapter 2.2 we will recall some facts on
one-dimensional diffusions and set the important notations. We will further consider "gen-
erators" with creation of mass term and characterize a class of such operators which up to
a conjugation are equivalent to the generators of diffusions. In chapter 2.3 we will define
the measure p* and point out different covariance and invariance properties. Further we
will make a connection between the Brownian measure on loops and the Levy-Itd6 measure
on Brownian excursion using the Vervaat’s bridge-to-excursion transformation. This in turn

16
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will lead us to a conditioned version of Vervaat’s transformation that holds for any one-
dimensional diffusion process, that is an absolute continuity relation between the bridge
conditioned to have a given minimum and an excursion of the same duration above this
minimum. The Vervaat’s transformation is deeply related to the measure on loops p*: The
loops are unrooted, so one can freely chose a moment separating the end from the start. If
one chooses this moment uniformly over the life-time of the loop, then the loop under the
measure p* looks in some sense like a bridge. If one chooses this moment when the loop hits
its minimum, then it looks like an excursion. In chapter 2.4 we will study the occupation
field of the Poisson ensemble of Markov loops. Each loop is endowed with a family of local
times. The occupation field is the sum of local times over the loops. We will identify its law
as an non-homogeneous continuous state branching process with immigration parametrised
by the position points in I. In case a = % we will identify it as the square of a Gaussian Free
Field and show how it is possible to derive particular versions of the Dynkin’s Isomorphism
using this fact and Palm’s identity for Poissonian ensembles. In chapter 2.5 we will root each
loop in £, at its minimum and obtain this way a collection of positive excursions. Then we
will order this excursions in the decreasing sense of their minima and glue them together.
We will obtain this way a continuous path which can be described using two-dimensional
Markov processes. This is a way to sample £,. In the particular case « = 1 the path
we obtain is the sample path of an one-dimensional diffusion. This is the analogue in our
setting of the relation between £; and the loop-erasure procedure observed in the setting
of the two-dimensional Brownian motion or of the symmetric Markov jump processes on
graphs. In chapter 3.1 we will apply an extension of Wilson’s algorithm to transient one-
dimensional diffusions and obtain a couple of interwoven determinantal point processes on
R which is dual to £;. In chapter 3.2 we will prove some monotone coupling properties for
the determinantal point processes introduced in chapter 3.1.

The author thanks Yves Le Jan for fruitful discussions and its helpful advice in relation
with this work.

2.2. Preliminaries on generators and semi-groups

2.2.1. A second order ODE. In this chapter we will introduce the one-dimensional
diffusions we will consider throughout this work (section 2.2.2). In the section 2.2.3 we will
extend the framework to the "generators" containing a mass-creation term. In the section
2.2.1 we will prove or recall some facts on the functions harmonic for these generators.

Let I be an open interval of R and v a signed measure on /. By signed measure we
mean that the total variation |v| is a positive Radon measure, but not necessarily finite, and
v(dr) = e(x)|v|(dx) where € takes values in {£1}. We look for the solutions of the linear
second order differential equation on I:

2
(2.2.1) % +uv =0

Given a solution u of (2.2.1) we will write 2(z") and 2%(z) for the right-hand side

respectively left-hand side derivative of v at x. The two are related by

du du

Sat) - ToeT) = —u@(ia})

Using a standard fixed point argument one can show that (2.2.1) satisfies a Cauchy-
Lipschitz principle: if zy € I and ug, vp € R, there is a unique solution u of (2.2.1), continuous
on I, satisfying u(zg) = ug and %(z?{) = vp. Let &1 € I n (29, +0). A continuous function

w on [zg,x1] is solution of (2.2.1) with previous initial conditions at zg if and only if it is a
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fixed point of the affine operator J on C([xg,z1]) defined as

(3u)(x) = o + (& — z0)v0 — f (z — y)u(y)(dy)

(3073]

|”|([”:0’”:1]), (@1=20)" Q4 for n large enough

The Lipschitz norm of J” is smaller or equal to
J" is contracting and thus J has a unique fixed point in C ([:UO, x1]).
Let W (u1,uz)(x) be the Wronskian of two functions uy, ug:

W, 2) () = 1 () G2 ) = wa0) T ()

If uy,us are both solutions of (2.2.1), W(uy,us) is constant on I. Using this fact we get
a results which is similar to Sturm’s separation theorem for the case of a measure v with

a continuous density with respect to the Lebesgue measure (see theorem 7, section 2.6 in
[BR89]):

PROPERTY 2.2.1. Given xg < x1 be two points in I:
(i) Let uy be a solution of (2.2.1) satisfying ui(zo) = 0, dul U(zg) > 0, and uy a
solution such that us(xo) > 0. Assume that ugs = 0 on [zo,zl] Then uqp > 0 on
(.I'O, .1'1] .
(ii) Let uy,us be two solutions such that ui(xg) = uz(xo) > 0 and %(xé) > %(xé).
Assume that us = 0 on [xg,x1]. Then uy > us on (zo, z1]-
(i) If there is a solution u to (2.2.1) positive on (xg,x1) and zero at xo and x1 then
any other linearly independent solution of (2.2.1) has ezxactly one zero in (xg,x1).

Next we prove a lemma that will be useful in the section 2.2.3.

LEMMA 2.2.2. Let vy be the positive part of v. Let xg < x1 € I. Let f be a continuous
positive function on [xo,x1] such that ming, .1 f > vy([zo,21])?. Then the equation

dPu
d2

has a positive solution that is non-decreasing on [xg,x1].

(2.2.2) +uv—uf=0

PROOF. Set a := minf,, 1 f. Let u be the solution to (2.2.2) with the initial values

u(zg) =1, 2(2zf) = \/a. We will show that u is non-decreasing on [zo,z1]. Assume that

this is not the case. This means that 4%(z*) takes negative values somewhere in [zq, 21].
Let

To := inf {x [zo, 21 ‘d ) < O}
Since 9% (z*) is right-continuous, % (23) < 0. Let r(z) := ﬁg—g(xﬂ. u is positive on

[z0, z2] hence 7 is defined [zg, z2]. 7(z0) = A/a. r is cadlag and satisfies the equation
dr = (f —r?)dz —dv
Let 3 := sup{x € [zg, z2]|r(z) = s/a}. We have

22

r(zg) =r(zy) + f (f(z) — r*(x))dz — v([r3,22])

z3
By construction r(z3) = «/a. By definition f —r? >0 on (z3,x2]. Thus
r(z2) = Va —v([zs,22]) >0

It follows that r(x2) > 0, which is absurd. O
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In the case v = —2k where & is a non-zero positive Radon measure, the equation (2.2.1)
becomes:
1d%u
(2'2'3) 5@ —uk =0

It commonly appears when studying the Brownian motion with a killing measure . In this
case the two-dimensional linear space of solutions is spanned by two convex positive solutions
up and v, uy being non-decreasing and u| non-increasing. Given zg € I, we can construct
us as the limit when 21 — inf I of the unique solution which equals 0 in 7 and 1 in 2. For
u; we take the limit as ;1 — sup/. uy and u; are defined up to a positive multiplicative
constant. See [Bre92], section 16.11, or [RY99], Appendix 8, for more details. Next we
give equivalent conditions on the asymptotic behaviour of uy and u| that will be used in
chapter 3.1.

PROPOSITION 2.2.3. In case [0, +0) C I, the following four conditions are equivalent:
S(Oﬂuﬁ) zk(dr) < +00
(i) wuy(400) >0
(iii) There is C > 0 such that for all x > 1, us(z) < Cx
(1¥) § 0., ur(@)uy (2)(de) < +o0
PrOOF. We will prove in order that (ii) implies (i), (iii) implies (i), (i) implies (ii), (i)
implies (iii) and (iv) implies (ii). (iv) is obviously implied by the combination of (i), (ii) and

(iii).
(ii) implies (i): For all x € [0, +0):
_%(:ﬁ) = QJ;I o uy(y)k(dy) < 2uyp(+0)k((x, +0))
_duy

T (™) is integrable on (0, +00). Since u(+00) > 0, this implies that:

f k((x,+0))dr < +00
(0,4m)

But

J k((z, +00))dx = J yr(dy)
(0,4+) (0,+%)
and hence (i).

(iii) implies (i): If (iii) holds then for all z € [0, +00), 2 (z+) < C. But

dus o+ ur(y)k
@)= GO +2 | wlsa

duT
dx

This implies that
[ wtmta) <+
(0,+0)

Since u4 is convex, up(y) = uqp(0) + d“T( 0™)y. So (i) is satisfied.
(i) implies (ii): For all y € [0, +oo)

() — uy(+0) = 2 j v j(  w@sn)ds < 2u() f( )

Condition (i) implies that:

lim QJ (x —y)k(dz) =0
(y,+%)

Yy—>+20

So for y large enough, u(y) — uy(+o0) < uy(y). Necessarily u(+o0) > 0.
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(i) implies (iii): For all y < z € [0, +00):
du
(@) = D) + 2 () +2 [ (uy(2) = )

(y,2]
Let y be large enough such that:

dup

(2.2.4) —

2f (z —y)r(dz) < 1
(y7+r/“‘)

Then there is C > 0 large enough such that:

M) + 2l +0) +20 [ (e = y)ntaz)
(y,+0)

(2.2.5) C>

Assume that there is z € [0, +00) such that %(x’“) > C. Let

xg := inf {x > y‘%(z*) > C’}

*) is right-continuous. Thus d“T “L(xzg) = C. By definition, for all z € [y, z],

T — d Lz
d =+ (21) < C and hence up(2) — uq(y) < C(z —9). But then (2.2.4) and (2.2.5) imply that
d “(zg) < C which is contradictory. It follows that 24 L (z*) is bounded by C, which implies
p rty (iii).
(iv) implies (ii): Applying integration by parts we get that for all z > 0:
du
2| s = [ @G
0 ;C] (va] dy
dup dup 4 Cduy g duy oy
== — 0N (0) — | SRS ()
7 @ (z) = ——(07)uy(0) rmd ) a0 (y™)dy
du

(7 )uy (z) is positive. We get that:

220~ [ GG <2 s + GOm0 < o

y dy dy
Next
du du +2
Bt () (g () — uy (+00)) = — 24 (1 +) f dus )iy
dx dx . dy
(2.2.7) Y duy . dus
<= | "))y
| Grengie
Assume that u;(+00) = 0. Then (2.2.7) implies that:
Lo dup —
ngfﬁ%(x Juy(z) =0
and
(2.2.8) lim — 2 g () = Wy up) — lim 2 (@ Yoy (2) = Wy, ug)
L. i . xr uTx = ui,uT it d:L‘ x uix = ui,uT

(2.2.6) together with (2.2.8) imply that

o duy , |
—_— dy < +00
L ur(y) dy (y™)dy

But this is impossible because log(us(+00)) = +00. Thus u (+00) > 0. O

Next we deal with the continuity of us and u; with respect the measure x. We will write
Ut and u,,| to denote the dependence on .
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LEMMA 2.2.4. Let xg € I. Let (kn)n=0 be a sequence of non-zero positive Radon mea-
sures on I converging vaguely (i.e. against functions with compact support) to k. Then
% converges to u::(’;o), u;’ff&o) converges to u:f(’;o) and the convergences are uni-
form on compact subsets of I.

ProoF. We will deal with the convergence of u“"il(gto), the other one being similar. To
simplify notations we will chose the normalization w,_ |(zo) = s, (o) = 1. Without loss
of generality we will also assume that x({zo}) = 0. The proof will be made of two parts.
First we will show that if « is the solution of (2.2.3) and w,, solution of

1 d%u
and if u, (o) = u(zo) = 1 and L (zf) = lim,— o0 L= (zf) then u, converges to u uniformly

on compact subsets of I. After that we will show that %(zi{) converges to dl’;’;” (zd).
Let 1 € I n (x9,+©). Let (v,)n=0 be a sequence in R converging to v. Let J,

respectively J be the following affine operators on C([zg, z1]):

(mem:=1+<x—amm+2j (& — ) () rin(dy)

(;CU?;C]

0ﬁ@%=1+@F4MU+2f (z — ) f(y)(dy)

(IU 793]

Let u,, respectively u be the fixed points of J,, respectively J. Let ¢ € (0,1). The Lipschitz

norm of JJ is bounded by ?—i/{n([zo, 21])? (z1 — x0)’. For j = j., for all n € N, this norm is
less then . Then

max_|u, —u| = max_|Ifu, —Feu| < max |Fru—Fu|+ max |Tu, — Iyl
[zo,1] [zo,21 [zo0,21] [zo0,21]

< max [Jfu — 32 u| + ¢ max_ |u, — ul
[:Eo,:bl] [10,11

Hence

2.2.10 max |u, —u| < max |Jeu — Feu
( ) [xo,gff]| n — ul 1_E[I07I>f]| n |

For y <z el and i € N* let

fni(y,z) = f (x—=yic1) - (2 —y1) (W1 — Y)kn(dyr) . .. kn(dyi—1)

Y<y1<---<yY;i—1<T

ﬂ@w%=f (& = ic1) - (2 — 2 — )(dun) ... (i)

Y<y1r<---<Y;—1<T
and fo(y,z) = fo(y,x) =z —y. fn; and f; are continuous functions. Moreover the vague
convergence of k, to x ensures that if (y,,2n)n>0 iS a sequence converging to (y,z) then
fn.i(yn, xn) converges to f;(y, ).
Je—2

(3ru)(z) =1+ (z — zo)vn + ), r (1 + (y — 20)vn) fn,i(y, x)kn(dy)
i=0 Jzo

+ J% u(y)fnyjafl (y, 2)n(dy)

zo
j572

(Feu)(z) =1 + (. — zo)v + 2 ff (1 + (y — zo)v) fily, z)r(dy)

+wawm4@wmww

Zo
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For fixed z, the functions y — 1, <y<afni(y,2) and y — 1y <y<ofi(y, z) have a compact
support but are discontinuous at xg. If (2, )n>0 is a sequence in [z, 21] converging to z, then
the convergence of v, to v, the weak convergence of x,, to k and the condition x({zp}) =0
ensure that (J37:u)(2,) converges to (J37u)(z). This implies the uniform convergence of J7=u
to J’su on [xg,x1]. From (2.2.10) follows that u,, converges uniformly to u on [xg,z1]. The
situation is similar for x; < xg and we get the uniform convergence on compact sets of u,,
to u.

Let J J
K — . ul‘&
vim liminf =2t (af) 0 Tmsup =t o)
Let v < dzg* (zd). There is 1 € I n (x0, +00) such that the solution of (2.2.3) with initial

conditions u(zg) = 1, 2(2*) = v is zero at z; since u,, | converges to u,, | uniformly on

xg, 1] and u,, | is positive on [xg, 1], we get that for n large enough, u,_; is positive on
y) J nd
[z0,21] and %(wé) > . Thus v > S ().
Conversely, let v < T. Let u, be the solution of (2.2.9) with initial conditions u,(z¢) = 1,

L (p8) = v. If %(m&) > v, then for any x € I n [z, +00)

du, , dug,,, , 4 i,y , 4 due,,, , 4
Zmn < Bnod _ [ ZZEnsd _ < [ ZZEnsd _
dx (27) < dx (@) ( dx (o) v) = ( dx (2g) v)

duy,, |

(@) < s = (2

If sup I < 400 then by convexity of u,, |:

Up(z) <

and u,(z,) < 0 where

(&) = v) (@~ w0)

supl —x (du,@n,i

k(o) = v) (@ = 20)

supl — xo

duy
sup I + (M(z?{) - v)xo(supl — )

- dx
n o
dug,,|, +
1+ (W(zo ) — v) (sup I — xo)
~1
This is also true if sup I = +0o0 and in this case z, = zg + (%(xé) - v) . Let u be the
solution of of (2.2.3) with initial conditions u(zo) = 1, 24(2*) = v and

sup I + (T — v)xo(sup I — zo)
1+ (@W—wv)(supl — xp)

d _ .
Zeast (137) converges to T, we get by uniform con-

vergence of u, tu w on compact sets that u(z,,) > 0. It follows that dl’;’;” (zd) = v. Hence
Tel(zf) = .

dx
Finally v =7 = %(x& ) and this implies the uniform convergence on compact subsets

of uy, | to u. . O

Zop 1=

Considering a subsequence along which

2.2.2. One-dimensional diffusions. In this subsection we will describe the kind of
linear diffusion we are interested in, recall some facts and introduce notations that will be
used subsequently. For a detailed presentation of one-dimensional diffusions see [IM'74] and
[Bre92|, chapter 16.

Let I be an open interval of R, m and w continuous positive functions on I. We consider
a diffusion (X¢)o<;<c on I with generator

Lm”:maﬂ%<ﬁéﬁ%>
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and killed as it hits the boundary of I. In case I is unbounded, we also allow for X to blow
up to infinity in finite time. (9 is the first time X either hits the boundary or explodes. To
avoid some technicalities we will assume that %’ is locally bounded, although this condition
is not essential. Given such a diffusion, the speed measure m(z)dx and the scale measure
w(z)dz are defined up to a positive multiplicative constant, but the product mw is uniquely
defined. A primitive S of w is a natural scale function of X. Consider the random time
change di = mdt. Then (%S(X{))ngf(o) is a standard Brownian motion on S(I) killed
when it first hits the boundary of S(I). For all f, g smooth, compactly supported in I,

juﬁvxmﬂmmqu=jfuxﬂ%mmmqu
I I

The diffusion X has a family of local times (¢7(X))zer=0 with respect to the measure
m(z)dx such that (x,t) — ¢7(X) is continuous. We can further consider diffusions with
killing measures. Let k be a non-negative Radon measure on I. We kill X as soon as
§; 07 (X)m(x)r(dz) hits an independent exponential time with parameter 1. The corre-
sponding generator is

(2.2.11) L= ﬁ% <$%) I,

Let (X¢)o<t<¢ be the diffusion of generator (2.2.11), which is killed either by hitting 01,
or by exploding, or by the killing measure k. For x € I let 2% and n3Y be the excursion
measures of X above and below the level x up to the last time X visits . The behaviour
of X from the first to the last time it visits = is a Poisson point process with intensity
N> 4 0=, parametrized by the local time at x up to the value £5(X). 5% and n=Z% are
obtained from the Levy-Itd measure on Brownian excursions through scale change, time
change and multiplication by a density function accounting for the killing. See [SVY07] for
details on excursion measures in case of recurrent diffusions.

If X is transient the Green’s function of L,
Glx,y) = Eu[l; (X)]
is finite, continuous and symmetric. For z < y it can be written

G(z,y) = ur(x)uy(y)

where us(z) and uy(y) are positive , respectively non-decreasing and non-increasing solu-
tions to the equation Lu = 0, which through a change of scale reduces to an equation of
form (2.2.3). If S is bounded from below, us(inf I*) = 0. If S is bounded from above,
uy(supI~) = 0. uq(z) and uy(y) are each determined up to a multiplication by a posi-
tive constant, but when entering the expression of G, the two constants are related. For
r<yel:

up(2) = P, (X hits = before time () uy(y) = P, (X hits y before time ()
ur(y) uy ()
See [IM74] or [Bre92], chapter 16, for details. Let W (uy, us) be the Wronskian of u; and
Up:
o duy duy 4
W (g, u)(@) = g ()T (@) = () T )
This Wronskian is actually the density of the scale measure: W(uy, us) = w. We may write
G when there is an ambiguity on L.
If the killing measure k is non zero, then the probability that X, starting from z,
gets killed by x before reaching a boundary of I or exploding equals §, G(z,y)m(y)x(dy).
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Conditional on this event, the distribution of X.- is:

zezG(x z) ( )k (d2)
S[ (y)r(dy)

Indeed, let f be a non-negative compactly supported measurable function on I and

= inf {te [0,¢”| L ((X)m(y)n(dy) > 1}

Then by definition

E.[f(Xe-)] = J

0

+%0

e By [f( Xy, nc0)]dl = JO dve_UEx[LU f(XnAao))dl]

+0

But
f FXnpo)l = [ €2 o (Xmy)r(a)
(see corollary 2.13, chapter X in [RY99]). It follows that

= [ 10 [ "t co O]t = [ 1616w vmesa)

The semi-group of L has positive transition densities p;(x,y) with respect to the speed
measure m(y)dy and (t,z,y) — p:(z,y) is continuous on (0, +00) x I x I. McKean gives
a proof of this in [McK56] in case when the killing measure k has a continuous density
with respect to the Lebesgue measure. If this is not the case, we can take u a positive
continuous solution to Lu = 0 and consider the conjugation of L by u: u~'Lu. The latter
is the generator of a diffusion without killing measure and by [McK56]| this diffusion has
continuous transition densities p;(x,y) with respect to m(y)dy. Then u(z)p; (ac,y)ﬁ are
the transition densities of the semi-group of L. Transition densities with respect to the speed
measure are symmetric: p(x,y) = pt(y,x). For all z,y € I and ¢ > 0 the following equality
holds:

¢
(2.2.12) E, [E?AC(X)] = J; ps(z,y)ds
Next we deal with bridge probability measures.

PROPOSITION 2.2.5. The bridge probability measures P, () (bridge of X from x to y in
time t conditioned neither to die nor to explode in the interval) satisfy: for all x € I the map
(z,y,t) = PL (-) is continuous for the weak topology on probability measures on continuous
paths.

PROOF. Our proof mainly relies on absolute continuity arguments of [PFY93] and
[CB11], and the time reversal argument of [PFY93]. [CB11] gives a proof of weak conti-
nuity of bridges for conservative Feller cadlag processes on second countable locally compact
spaces. But since the proof contains an error and we do not restrict to conservative diffusions,
we give here accurate arguments for the weak continuity.

First we can restrict to the case k = 0. Otherwise consider u a solution to Lu = 0,
positive on I. The generator of the conjugate of L by u is

u(x>21m<x> i (I«L&)) %>

and does not contain any killing measure. The conjugation preserves the bridge measures
and changes the density functions relative to m(y)dy to ﬁpt(:ﬂ, y)u(y), and thus preserves
their continuity.
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Then we normalise the length of bridges: if (Xs(x7y7t))()gsgt is a path under the law P%, (),
let I@;y() be the law of (Xr(f’y’t))ogrgl. It is sufficient to prove that (x,y,t) — ]?”’;y() is

continuous. For v € [0,1], let IF’tx“y() be the law of (X“¥)o<,<,. Let PL?(-) be the law
of the Markovian path (X,t)o<r<o starting from z. For v € [0,1) we have the following
absolute continuity relationship:

p(lfv)t(th; y) dIﬁ’th
pe(z,y) ’

Let (Jn)n=0 be an increasing sequence of compact subintervals of I such that I =

Unso Jn- Let T;, be the first exit time from J,,. Let f,, be continuous compactly supported

function on I such that 0 < f, < 1and f,;, = 1. We can further assume that the sequence

(fn)ns=o0 is non-decreasing. The map

(zayv ) = fn( sup X)fn( inf X)d@;’y
[0,vt] [0,v1]

(2.2.13) dPLY = 1,<c

is weakly continuous. Let (z;,y;,t;);=0 be a sequence converging to (z,y,t). Let F be a
continuous bounded functional on C([ v]). Then applying (2.2.13) we get:

(2.2.14) a:;,yj(f"([sou% ’y)fn([lnf]’y) (7)) — Ptﬂ(f"([sou%wfn([mf]w (7)) =
(2.2.15) Pl wf (Supv)fn(mf NEM)
i pe(,y) [0,0] 0,7]
St p(kv)t(’)’(v)ay) su in
(2.2.16) Pt <—pt(z’y) fn ([Ogv)fn([of]v) (v))
(2.2.17) st (P00 O0) o 7 Gink )P ()
i P, (xjayj) [0,v] " [0,v]
St p(1—'u)t(’Y(U)ay) su in
(2.2.18) Pl (—pt(%y) fn ([01137)%([0 £ NEF( ))

DP(1—v)t (,¥)

Since
pt(@,y)

is continuous and bounded on J,, (2.2.15)—(2.2.16) converges to 0. More-

over for j large enough, p(;t—”();](y%y;) is uniformly close on .J,, to ’7(1’(’7;'()@’) Thus the difference

(2.2.17)—(2.2.18) converges to 0 and finally (2.2.14) converges to 0. Let ng € N and n > nyg.
Then

ij,y,(l—fn(?glriv)fn(mf]v)) 1- J’,yj(fn(sur;’y)fn(mf]v))

<1=PLY (fao ([sup] ) o (i 7)) =1 - PLY (fuo ([sup N fno(I0f 7))
0,v 0 71

and consequently

lim hmsupIP’tJ’ (1= fa(supy) fn(inf 7)) =0
e [0,v] [0,v]

It follows that N
lim B (F(y)) = B2 (F(7))

j—+w R
From this we get that the law of any finite-dimensional family of marginals of I@;y() depends

continuously on (z,y,t). To conclude we need a tightness result for (z,y,t) — Iﬁ;y() We
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have already tightness for (z,y,t) — ]T”tx’;() The image of f”txy() through time reversal

is ]?”Zz() So we also have tightness on intervals [1 — v/, 1] where 0 < v' < 1. But if
v+ v > 1, tightness on [0,v] and on [1 — ¢, 1] implies tightness on [0, 1]. This concludes.
The article [CB11] contains an error in the proof of the tightness of bridge measures in the
neighbourhood of the endpoint. O

2.2.3. "Generators" with creation of mass. In this section we consider more gen-
eral operators

1 d 1 d

with zero Dirichlet boundary conditions on 01, where v is a signed measure on [ which is
no longer assumed to be negative. We set

LO .= —p

In the sequel we may call L "generator" even in case the semi-group (e%);>o does not make
sense. Our main goal in this subsection is to characterize through a positivity condition
the subclass of operators of form (2.2.19) that are equivalent up to a conjugation to the
generator of a diffusion of form (2.2.11).

We will consider several kinds of transformations on operators of the form (2.2.19).
First, the conjugation: Let h be a positive continuous function on I such that Choig g
signed measure. We call Conj(h, L) the operator

. _ 1 d (h(z)? d 1
Conj(h L) = 3] da (w(ac) E) tvt L0

dx2

If f is smooth function compactly supported in I then
Conj(h,L)f = h™"L(hf)

We will call Conj(h, L) the conjugation of L by h. h may not be harmonic (Lh = 0) or
superharmonic (Lh < 0) and L is not necessarily the generator of a diffusion.

Second, the change of scale: If A is a C* function on I such that 42 > 0 and ‘57‘;‘ ey .(I)
and (y(t))ost<r a continuous path in I, then we will set Scales(y) to be the continuous
path (A(y(s)))o<i<r in A(I). Let Scale’"(L) be the operator on functions on A(I) with
zero Dirichlet boundary conditions induced by this change of scale:

1 d 1 d
Scale’™ (L) = — — A
cale ™ (L) mo A~1(a) da (w o A=1(a) da) +Awy
where A,v is the push-forward of the measure v by A.

Third, the change of time: If V is positive continuous on I then we can consider the
change of time ds = V((t))dt. Let Speedy be the corresponding transformation on paths.
The corresponding "generator" is - L.

Finally, the restriction: if I is an open subinterval of I then set L|; to be the operator

L acting on functions supported in I and with zero Dirichlet conditions on d1.
For the analysis of L we will use a bit of spectral theory: If [xg,x1] is a compact
interval of R and m, @ are positive continuous functions on [zg,z1], then the operator

1
m}z) 4 <~— di) with zero Dirichlet boundary conditions has a discrete spectrum of neg-
w(x)

ative eigenvalues. Let —\1 be the first eigenvalue. It is simple. According to Sturm-Liouville
theory (see for instance [Tes12], section 5.5) we have the following picture:
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PROPERTY 2.2.6. Let A > 0 and u a solution to

1d/14d
—( —)—i—)\u:O

mdr \© dx
PR iy du
with initial conditions u(xo) = 0, %(xo) > 0.
(i) If u is positive on (zo,x1) and u(x;) = 0 then X = A\, and u is the fundamental
eigenfunction. 5
(ii) If u is positive on (zo, 1] then A < Ay
(iii) If u changes sign on (xg,x1) then A\ > A\

Next we state and prove the main result of this section.

PROPOSITION 2.2.7. The following two conditions are equivalent:

(i) There is a positive continuous function u on I satisfying Lu = 0.
(ii) For any f smooth compactly supported in I

(2.2.20) L(L(O)f)(x)f(x)m(x)dx + L f(x)*m(z)v(dz) <0

PRrROOF. (i) implies (ii): First observe that the equation Lu = 0 reduces through a
change of scale to an equation of the form (2.2.1). Let u be given by condition (i).
Let L := Conj(u,L). Since Lu = 0, Lisa generator of a diffusion without killing
measure. Let m(x) := u?(x)m(x). Then for all g smooth compactly supported in I,
§,(Lg)(x)g(z)m(x)dx < 0. But

| @@t = [ (L)) wg)@me)ds + | (ug)@fm((dr)
I I I
Thus (2.2.20) holds for all f positive compactly supported in I such that u~!f is smooth.
By density arguments, this holds for general smooth f.

(ii) implies (i): First we will show that for every compact subinterval J of I there
is a positive continuous function u; on J satisfying Luy = 0 on J. Let J be such an

interval. According to lemma 2.2.2 there is A > 0 and uy positive continuous on J satisfying
Luy —Auy =0on J. Let L) := Conj(uA,L‘j). Then

1 d (u3d
Ly=———(2— )+
A uimdw(wdw)+

Let L(AO) := Ly —A. L ig the generator of a diffusion on J. We can apply the standard
spectral theorem to LE\O). Let —A; be its fundamental eigenvalue. Lgo) + X = L) is a non-
positive operator because it is a conjugate of L|; which satisfies condition (ii). This implies
that A < A;. Let @ be a solution of L@ + A& = 0 with initial conditions @(minJ) = 0
and %(min J) > 0. Since A < A1, according to property 2.2.6, 4 is positive on J. We set
uy := u)t. Then wu; is positive continuous on J and satisfies Luy = 0. This finishes the
proof of the first step.

Now consider a fixed point zy in I and (J,),>0 an increasing sequence of compact
subintervals of I such that zg € jo and Unzo Jn = I. Let uy, be a positive L-harmonic

dx

from below. Otherwise some of the uz, would change sign on I n (g, +00). Similarly, since

d
L (2

function on .J,. We may assume that us, () = 1. The sequence (d“"" (zar)) is bounded
n=0

is bounded from above. Let

none of the u;, changes sign on I n (—o0, xg), (

=(
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v be an accumulation value of the sequence (d S (g f )) . Then the L-harmonic function
n=0

satisfying the initial conditions u(zo) = 1 and 9% () = v is positive on I.

We will divide the operators of the form (2.2.20) in two sets: D%~ for those that satisfies
the constraints of the proposition 2.2.7 and ®* for those that don’t. ©%~ is made exactly
of operators that are equivalent up to a conjugation to the generator of a diffusion. We will
subdivide the set D%~ in two: ®~ for the operators that are a conjugate of the generator
of a transient diffusion and ®° for those that are a conjugate of the generator of a recurrent
diffusion. These two subclasses are well defined since a transient diffusion can not be a
conjugate of a recurrent one. Observe that each of L € ®~, ©° and ®7 is stable under
conjugations, changes of scale and of speed. Operators in ®~ and D° do not need to be
generators of transient or recurrent diffusions themselves. For instance consider on R

1 d?
L—§d 2+a+51—a 0_1
whereay,a_ > 0. If3a;—a_ > 0then Le ®%,if3a, —a = O0then Le ®° if3a;—a <0
then Le ®~. O

If L e %7, the semi-group (e*!);>¢ is well defined. Indeed, let X be the diffusion on I
of generator L(®) and ¢ the first time it hits the boundary of I or blows up to infinity. Let
u be a positive L-harmonic function and L := Conj(u, L) L is the generator of a diffusion
X on I without killing measure. Let ¢ be the first time X hits the boundary of I or blows
up to infinity. Using Girsanov’s theorem, one can show that for any F positive measurable
functional on paths, z € I and ¢ > 0 the following equality holds:

e [ticemn ([ #COmOtan ) P((ocaz)] =

ﬁﬂgx [1t<<~u()?t)F(()?s)ossst)]

In case L € ®7, let (G;(,y))z,yer be the Green’s function of L relative to the measure
u(z)?m(z)dz. Then L has a Green’s function (Gr(x,y))s,yer that equals

GL(xay) =E;
0

JC exp (J; €f(X)m(z)1/(dz)) dtﬁ’(X)] = u(z)u(y)Gi (z,y)

For L € ®~, the Green’s functions G, satisfy the following resolvent identities

LEMMA 2.2.8. If L € ©~ and v is a signed measure with compact support on I such that
L+ve®, then for all x,y eI

_ f GL(z, 2)Greo(z y)m(z)5(dz)

PrOOF. We decompose L as L = L) 4+ v where L(®) does not contain measures and v
is a signed measure on I. Let (X;)o<i<¢ be the diffusion of generator L(®). Then

Gr(z,y) = E; U exp <J (X da)) det} (X)]
Griol(o,y) = E, [ j exp ( j (x u+u><da>) dtfi’(X)]
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exp ( f (X )ym(a)(v + V)(da)> — exp ( f (X (a)u(da))
—exp ( L (X )ym(a)(d ) <exp ( f 05X ym(a)p(d )) _ 1)
—exp ( L (X )ym(a)v(da) ) f J exp ( J (X )ym(a)i(d )) dy0% (X )m(=)i(d=)

Thus Gp45(x,y) — Gr(z,y) equals

(2.2.21)
J f J exp ( f m(a)(€2(X )v(da) + £4(X)i (da))) dseg(X)dsef(X)m(z)a(dz)]
We would like to interchange E, [-] and §,(-)m(z)7(dz). Let z € I and (Xt(x))()gt<<w,

(Xt(z))ogt<<z be two independent diffusions of generator L(9) starting in a respectively z.
Applying Markov property, we get

lj f exp (J m(a)(03(X)v(da) + ea(X)D(da))> dsﬁz(X)dsef(X)]
=E“jw [ oo ([ maezoenw o)

X ex mla) (0 (X Nu(da) Vd. 07 (X Ed.e* (X (@)
p( [ m@ezxowa ))duem )t (X >]

=Grio(r,2)GL(2,y)

Since 7 has compact support

UJ Jequm ) (43 (X)v(da) + £5(X)D (da)))dJi(X)dseg(X)m(zm(dz)]
ok U [ o (] monncenta  csan)

dsl3 (X)dsﬁi’(X)] m(z)|v|(dz)

_ j Greo(@, 2)Gr(z, y)m(2)|F|(dz) < +o0
Thus in (2.2.21) we can interchange E, [-] and §,(-)m(z)7(dz) and get
Griolwy) = Guley) = | Grro(o. )G pm(2)o(d:)
Since L and L + U play symmetric roles, we also have
Grlir) = Grasey) = | Gl Gen(Im(=) (=) (d2)
(I

The discrete analogue of the sets ®~, ®° and ©* are symmetric matrices with non-
negative off-diagonal coefficients inducing a connected transition graph, with the highest
eigenvalue that is respectively negative, zero and positive. However in continuous case the
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sets L e D, DY and ®F can not be defined spectrally because for operators from L € ®~
and ®* the maximum of the spectrum can also equal zero. However the next result shows
that the sets ®~ and ©* are stable under small perturbations of the measure v and that
DY is not.

PROPOSITION 2.2.9. (i) If L € ©° and k is a non-zero positive Radon measure on
Ithen L—ke® and L+reDT.
(ii) If L € ®~ and J is a compact subinterval of I then there is K > 0 such that for
any positive measure k supported in J satisfying x(J) < K we have L + k€ D~
(iii) If L € ©T then there is K > 0 such that for any positive finite measure x satisfying
k(I) < K we have L — ke D™,
(iv) If L € ®*, there is a positive Radon measure k on I such that L — x € D°.
(v) Let L € ®F and 29 < x1 € I. Then Ly, q) e DY if and only if there is an
L-harmonic function u positive on (xo, 1) and zero in xg and x1.

PRrOOF. (i): Consider h positive continuous on I such that Conj(h, L) is the generator
of a recurrent diffusion. Since Conj(h,L — k) = Conj(h,L) — k, Conj(h,L — k) is the
generator of a diffusion killed at rate x and thus L — x € ®~. Similarly we can not have
L + x € D%~ because this would mean L = (L + k) —k € D"

(ii): Without loss of generality we may assume that L is the generator of a transient

diffusion and that it is at natural scale, that is L = @dd—;. Since the diffusion is transient,

I # R. We may assume that zp := inf I > —oo. Write J = [x1,22]. Let k be a positive
measure supported in [z1, z2]. Let u be the solution to Lu+ux = 0 with the initial conditions
u(wo) = 0,2 (xf) = 1. u is affine on [xg,21] and on [z2,supI). On [z1,x2] u is bounded
from above by zo — xg. Thus, if

Minfg, z,]M

A([z1, 22]) < (@ — 20)

then u is non-decreasing on I and hence positive. This implies that L + x € ®%~. By the

Ming,. z,1mM _
el then L+ ke D .

(iii): By definition there is f smooth compactly supported in I such that (2.2.20) does
not hold for f. Let U be the value of the left-hand side in (2.2.20). U > 0. If & is a positive

finite measure on I satisfying

point (i) of current proposition, if k([z1, z2]) <

U
1 £ 1% maxsupps m

then if we replace v by v — k in (2.2.20), keeping the same function f, we still get something
positive. Thus L — k€ DF.

(iv): Let f be a smooth function compactly supported in I such that (2.2.20) does not
hold for f. Let J be a compact subinterval of I containing the support of f. The set

{sel0,1]|L —vy+sljyeD}

k() <

is not empty because it contains 0, and open by proposition 2.2.9 (ii). Let S;q4. by its
supremum. Then s,,4, <1 and L — v; + Spmaeljve € ©°. Then

k= 1pgve + (1 = Smaz) Livs

is appropriate.

(v): First assume that there is such a function u. Then by definition L, »,) € D0,
Conj(u, Lj(zy,2,)) does not have any killing measure and the derivative of its natural scale
function is ;7. It is not integrable in the neighbourhood of xq or 1. Thus the corresponding
diffusion never hits xg or x1. This means that it is recurrent. Conversely, assume that

Li(zo.22) € D°. Let u be a solution to Lu = 0 satisfying u(zo) = 0 and % (z) > 0. If u
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changed its sign on (zo, 1) then according to the preceding we would have L., .,) € D7.
If u were positive on an interval larger that (zo,21) we would have L|(,,.,) € ®~. The only
possibility is that u is positive on (zq,z1) and zero in ;. O

2.3. Measure on loops and its basic properties

2.3.1. Spaces of loops. In this chapter, in the section 2.3.3, we will introduce the
infinite measure p* on loops which is at the center of this work. Prior to this, in the section
2.3.2 we will introduce measures p*¥ on finite life-time paths which will be instrumental
for defining p*. In the sections 2.3.4, 2.3.5, 2.3.7, 2.3.8 will be explored different aspects
of p*. In the section 2.3.6 we will extend the Vervaat’s Brownian bridge to Brownian
excursion transformation to general diffusions. This generalisation can be easily interpreted
in terms of measure p* and is related to the results of section 2.3.5. In the section 2.3.1 we
will introduce the spaces of paths and loops on witch will be defined the measures we will
consider throughout the paper.

First we will consider continuous, time parametrized, paths on R, (v(t))o<t<7(+), With
finite life-time 7'(7y) € (0, +00). Given two such paths (7(t))o<t<r() and (v'(£))o<t<r(v), @
natural distance between them is

dpaths(7,7) = [log(T'(7)) — log(T'(v))| + s (0 T(7)) - Y (WT'())

A rooted loop in R will be a continuous finite life-time path (v(t))o<¢<7(y) such that
v(T'(v)) = v(0) and £ will stand for the space of such loops. £ endowed with the metric dpqins
is a Polish space. In the sequel we will use the corresponding Borel o-algebra, Be, for the
definition of measures on £. For v € [0, 1] we define a parametrisation shift transformation
shift, on £: shift,(vy) =4 where T(¥) = T'(7) and

) Y (WT(7) +1) if £ < (1-0)T()
“”‘{vu—u—vww» if > (1—0)T(7)

We introduce an equivalence relation on £: v ~ v if T(y') = T(vy) and there is v € [0, 1]
such that v = shift,(7). We call the quotient space £  _ the space of unrooted loops, or
just loops, and denote it £*. Let 7 be the projection 7 : £ — £*. There is a natural metric
dpx on L£*:
dex(m(7), ﬂ-(’yl)) = min dpaths(Shiftv (7), 'Yl)
vel0,1]

(£*,dex) is a Polish space and 7 is continuous. For defining measures on £* we will use its
Borel g-algebra, Bes. 771 (Bgx), the inverse image of Bgs by 7, is a sub-algebra of Beg.

In the sequel we will consider paths and loops that have a continuous family of local
times (4§ (7)) zer,0<t<7(+) relative to a measure m(x)dz such that for any positive measurable
function f on R and any ¢ € [0,T(v)]

Oﬂ%mw=L@mem

We will simply write ¢7(~y) for E%(v)('y).

In the sequel we will also consider transformations on paths and loops and the images of
different measures by these transformation. We will use everywhere the following notation:
If £ and &' are two measurable spaces, ¢ : £ — &' a measurable map and 7 a positive
measure on &, p,7n will be the measure on £’ obtained as the image of 1 trough ¢.
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2.3.2. Measures ;%Y on finite life-time paths. First we recall the framework that
Le Jan used in [Janll]: G = (V,E) is a finite connected undirected graph. Lg is the
generator of a symmetric Markov jump process with killing on G. mg is the duality measure
for Lg. (ptg(ac,y))xyyevytzo is the family of transition densities of the jump process and
(]P’g:;(-))m,yev,t;o the family of bridge probability measures. The measure on rooted loops
associated with Lg is

dt

(231) pao() = [ 3 P (e mo () ]
t>0 pcy

Nfg is the image of 111, by the projection on unrooted loops. The definition of uzg is the
exact formal analogue of the definition used in [LWO04] for the loops of the two-dimensional
Brownian motion. In [Jan11] also appear variable life-time bridge measures (,ui’g)x,yev
which are related to pj _:

+0
(2.3.2) ped() = L P (pf (2, y)dt

In this subsection we will define and give the important properties of the formal analogue
of the measures uigy in case of one-dimensional diffusions. In the next section 2.3.2 we will
do the same with the measure on loops 7 _.

I is an open interval of R. (X)o<t<¢ is a diffusion on I with a generator L of the form
(2.2.11). We use the notations of the section 2.2.1. Let =,y € I. Following the pattern of
(2.3.2) we define:

DEFINITION 2.1.
+o0
pp () = L P, ()pe(z, y)dt

We will write *¥ instead of 7Y whenever there is no ambiguity on L. The definition of
1*Y depends on the choice of m, but m(y)u*¥ does not. Measures u*¥ were first introduced
by Dynkin in [Dyn84a] and enter the expression of Dynkin’s isomorphism between the
Gaussian Free Field and the local times of random paths. Pitman and Yor studied this
measures in [PY96] in the setting of one-dimensional diffusions without killing measure
(k = 0). Next we give a handy representation of ¥ in the setting of one-dimensional
diffusions. It was observed and proved by Pitman and Yor in case k = 0. We consider the
general case.

PRrROPOSITION 2.3.1. Let F be a non-negative measurable functional on the space of
variable life-time paths starting from x. Then

¢
(2.3.3) u=Y(F(v)) =E, lL F((Xs)ossst)th?(X)]
Equivalently

e(x)
Ml'vy(F("y)) =E, lJ; F((XS)OSSSTf’)dZ]

where 7/ := inf{t > 0¢;(X) > I}.
PRrROOF. It is enough to prove this for F' non-negative continuous bounded functional

witch takes value 0 if either the life-time of the paths exceeds some value t,,,, < +00 or of it
is inferior to some value t,,;, or if the endpoint of the path lies out of a compact subinterval



2.3. MEASURE ON LOOPS AND ITS BASIC PROPERTIES 33

[#1,22] of I. For j < n €N, set t;, 1= timin + M and At,, 1= @ Almost

surely So ((Xs)ogs<t)del? is a limit as n — +o0 of

(2.3.4) 2 <t; ), nc(X) =8 (X))

Moreover (2.3.4) is dominated by [F|..l{ .. It follows that the expectations converge
too. Using the Markov property and (2.2.12), we get that the expectation of (2.3.4) equals

n 1 Aty
(2.3.5) f f Plir (F((Xs)oss<t; ) Pty (€, 2)pr (2, y)drm(z)dz
zel

Using the fact that p.(-,-) is symmetric, we can rewrite (2.3.5) as

eso) | Z(ZAt Br (F((Xohzoct, ) 100 g [ 0 2)drm(2)

As n — 400 the measure Ai " pe(y, 2)drm(z)dz converges weakly to dy. Using the weak

continuity of bridge probablhtles (proposition 2.2.5) we get that (2.3.6) converges to

tmaz
[ e, Pz mtri
t

min

O

Proposition 2.3.1 also holds in case of a Markov jump processes on a graph, where the
local time is replaced by the occupation time in a vertex dived by its weight. Proposition
2.3.1 shows that we can consider ™ as a measure on paths (v(t))o<t<7(y) endowed with
continuous occupation densities (£7(7)).er,0<t<7(v)- Next we state several properties that
either follow almost immediately from the definition 2.1 and proposition 2.3.1 or are already
known.

PROPERTY 2.3.2. (i) The total mass of the measure u*¥ is finite if and only if X
is transient and then it equals G(xz,y). If it is the case, (1 )uz’z is the law of X,

starting from X (0) = x, up to the last time it visits x. (m y)u is the law of X,
starting from X (0) = x, conditioned to visit y before ¢, up to the last time it visits

y.
(ii) The measure pu¥* is image of the measure ¥ by time reversal.

(i) If I is an open subinterval of I then
MQE\? (d’y) = 1’y contained in f/LaLjyy (d’}/)

(iv) If & is a positive Radon measure on I then

g H<dv)—exp< [#a ()R(da) WE ()

(v) If A is a change of scale function then

A(z),A(y)

_ z,y
Scale%em L = Scale sy,

(vi) If V is a positive continuous function on I then for the time changed diffusion of
generator %L:

wY = Speedy Y

L
V
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.o . g . . 2 . .
(vil) If h is a positive continuous function on I such that % s a signed measure and
Lu is a negative measure then
s _ 1 T
Cona) = R()h(y) -

(viii) Let X and X be two independent Markovian paths of generator L starting from
X(0) = z and X(0) = y. Fora < z Ay, we introduce T, and T, the first time
X respectively X hits a. Let PLa be the first passage bridge of X from x to a,
conditioned by the event T, < (. Let IF’yﬁl be the analogue for X. Let Iﬁ’yi” be
the image of ]T”yil through time reversal and P1e < ]T”yil" the image of PLa ®]§’yfa"
through concatenation at a of two paths, one ending and the other starting in a.
Then

= [ R < OBy (T <O (PR 9B (ula)da
ael,a<zT Ay

Previous equalities depend on a particular choice of the speed measure for the modi-
fied generator. For (iv) we keep the measure m(y)dy. For (iii) we restrict m(y)dy to I.
For (v) we choose (44 014_1)71
we choose h(y)®m(y)dy. Property (i) follows from that pi(z,y) = pi(y,z) and P! ()
is the image of P}  (-) by time reversal. Property (vi) is not immediate from defini-
tion 1 because fixed times are transformed by time change in random times, but follows
from proposition 2.3.1. Property (vii) follows from the fact that a conjugation does not
change bridge probability measures and changes the semi-group (pi(x, y)m(y)dy)i=o0,zer to
(%pt(x,y)h(y)m(y)dy)tzo’xg. Properties (ii) and (viii) were proved by Pitman and Yor
in case k = 0. See [PY96]. The case k # 0 can be obtained through conjugations.

Next property was given without proof by Dynkin in [Dyn84a].

m o A~'da. For (vi) we choose yym(y)dy. For (vii)

LEMMA 2.3.3. Assume k # 0. Let P,(-) be the law of (Xi)o<t<¢ where X(0) = x. Then
| i omn(an) = 1x e Pa)
yel

PROOF. Let 0 < t; < to < --- <t, and let Ay, As,... A,, As1 be Borel subsets of 1.
The measure u™¥ satisfies the following Markov property

pY(T(Y) > e, y(t1) € Av, .y (tn) € An, Y(T(7)) € Apga) =
J pr (@, x)m(zr) .. pry o (Tne1, Tn)m(zn) ™Y (T () € Apyr)dey ... dxy,
Ay x-xA,

=lyca, . L ) Py (z,xz)m(z1) o Dyt (X1, To)m(20)G(2p, y)dzy . . . day,
1 X0 n

Hence

(2.3.7) f Iu”’(T(v) >t y(t1) € Av, ...y (tn) € An, Y (T(7)) € Ans1)m(y)r(dy) =

f Pty (.I', xl)m(‘rl) s Pty —tna (l‘n—17 xn)m(xn)G(xn, y)m(y)dl‘l oo d.ﬁnli(dy)
Ay XX Apta
From Markov property of X follows

Po((>tn, Xy, €A1, ., Xy, € Ap, Xe- € Apyr) =

J Py (@, 20)m(1) D=ty (Tne1, Tn)M(20) Py, (X € Apgr)day .. day,
Ay x-xA,
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Since the distribution of X - on the event of X killed by s is 1,e;G(Xo,y)m(y)x(dy), we
get

(2.3.8) Pu((>tn, Xy €Ar,..., Xy, €An, Xe- €Apgr) =
f P, ($, xl)m(xl) s Ptp—tna (l"ﬂ—17 xn)m(xn)G(xn, y)m(y)dl‘l s d.ﬁnli(dy)
Ay XX Apga

The equality between (2.3.7) and (2.3.8) implies the lemma. O
Next we study the continuity of (z,y) — pu®v.

LEMMA 2.3.4. Let J be a compact subinterval of I. Then the family of local times of X
satisfies: for every e >0

lim supP (supéy (X) > 5) =0
t—0t zeJ ’ yel tng

PROOF. It is enough to prove it in case the killing measure x is zero because adding a

killing measure only lowers ¢/, .(X). Without loss of generality we may also assume that the

diffusion is on its natural scale, that is to say w = 2. Then X is just a time changed Brownian

motion on some open subinterval of R. For a Brownian motion (By):>o the statement is

clear. In this case P, (supye]R 0 (B) > E) does not depend on z and for a given x

t—0t

lim P, (sup . (B) > 5) =0
yeER
Otherwise let .
7= f m(Xs)ds
0
Then given the time change that transforms X into a Brownian motion B, we have
t{(X) = {%,(B)

Let J = [xo,z1]. Let Zmin € I, Tmin < 2o and Tpmaz € I, Tmax > 1. Let T, the

Tmin,Tmax
first time X hits either x,,in Or Tmaez. Let s >0, e >0and z € J. If t < m

then on the event T, >t, Z; is less or equal to s. So for ¢ small enough

Tmin,Tmax

P, (sup b (X) > 5) <P, (sup (B) > 5) + Py (T imas < 1)
yel

yeR
But
Py (Txm,in7xmaz < t) = Pxo (Txmm,xmaz < t) + Py, (Txmm,xmam < t)

and

lm sup Py (Tuinzmes <t) =0

t—=0% zeJ
Thus

lim sup sup P, (supﬂ?AC(X) > E) <P, (sup ¥(B) > 5)
t—0+ zeJ yel yeR

Letting s go to 0 we get the statement of the lemma. O

PROPOSITION 2.3.5. Let tyqe > 0. Let F' be a bounded functional on finite life-time
paths endowed with continuous local times that depends continuously on the path (¢)o<i<7(+)
and on (l%(v) (7))zer where we take the topology of uniform convergence for the occupation
densities on I. On top of that we assume that F is zero if T(y) > tmaz- Then the function
(z,y) > p*Y(F(v)) is continuous on I x I.
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ProoF. If we had assumed that F' does only depend on the path regardless to its
occupation field then the continuity of (z,y) — p®¥(F(y)) would just be a consequence
of the continuity of transition densities and of the weak continuity of bridge probability
measures. For our proof we further assume that L does not contain any killing measure.
If this is not the case, then we can consider a continuous positive L-harmonic function
u. Then Conj(u,L) does not contain any killing measure and up to a continuous factor
u(z)u(y) gives the same measure p*¥ (property 2.3.2 (vii)). We will mainly rely on the
representation given by proposition 2.3.1.

Let x,y € I and (x;,y;)j=0 a sequence in I x I converging to (z,y). Without loss of
generality we assume that (z;),>0 is increasing. We consider sample paths (X;)o<i<c and

(Xt(j))()gt<gj of the diffusion of generator L starting from x and each of z;, coupled on a
same probability space in the following way: First we sample X starting from x. Then we
sample X (©) starting from . It starts independently from X until the first time Xt(o) = X;.
After that time X(® sticks to X. This two paths may never meet if one of them dies to
early. If X, X(© ... X0 are already sampled, we start XU+ from z,,; independently
from the preceding sample paths until it meets one of them. After that time X (+1) sticks
to the path it has met. Let

T = inf{t > 0|X7) = X}

If XU) does not meet X, we set 7) = +o0. By construction, (T));5¢ is a non-increasing
sequence. Here we use that there is no killing measure. 7U) is equal in law to the first time
two independent sample paths of the diffusion, one starting from x and the other from x;,
meet. Thus the sequence (7)) j=0 converges to 0 in probability. Since it is decreasing, it
converges almost surely to 0.

We use reduction to absurdity. The sequence (u®¥% (F(7y)));=0 is bounded because F
is bounded and zero on paths with life-time greater then t,,,,. Assume that it does not
converge to u®¥(F(v)). Then there is a subsequence that converges to a value other than
wY(F(y)). We may as well assume that the whole sequence (1'% (F(v)))j=0 converges
to a value v # ™Y (F(v)). According to lemma 2.3.4, the sequence ((£7.,, (XU))zer)j=0 of
occupation density functions converges in probability to the null function. Thus there is an
extracted subsequence (€2, (X)) c1)n=0 that converges almost surely uniformly to the
null function. We will show that (u®n ¥ (F(v)))ns0 converges to u®¥(F(vy)) and obtain a
contradiction.

For ze I and I > O let

77 = inf{t = 0|4} (X) > I}
and
77 = inf{t > 0¢5(X D)) > 1}
Then according to proposition 2.3.1

Y
e (X)

WEI(E()) = E[ [ F((Xs)osssﬁy)dl]

(X(J‘))

J
tmax ACj

pern () =

Forany z € I, if 77, € [T, ¢;) then 77, =7 where

F((ng))ogdﬁ)dl]

V=14 Gy (X) = Lo (X))

Along the subset of indices (jn)n>o0, ijjl converges to 7} for every I € (0,1{(X)) except

possibly the countable set of values of [ where [ — T;{l jumps. For any [ such that ijrf”l
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converges to 7/, the path (X(j)) v, converges to the path (X, Jo<s<T} . Moreover for

SSET

such I the occupation densities (17,, (Xn))).cr converge uniformly to (I12y(X))zer- Indeed
T, 1
Oy (XUR)) = €245, (X) = €5 (X) + L) (X U))
Thus for all I € (0, /(X)) except possibly countably many,
lim F((X§j7L))OSsSTyJ7L) = F((XS)OSSSle)

n—+wx0 Jnl
For n large enough, ¢; = ¢ and Eyj,:law G (XUn)) converges to oo (X). It follows that
the following almost sure convergence holds
e, (XU . 1w ncX)
(239) llI}Ll[ F((XS(]"))()<5<T )dl f F((Xs)()gng;’)dl
n=+% Jo 0

The left-hand side of (2.3.9) is dominated by ||F||+r,€yj”“AC (XUn)). In order to conclude

that the almost sure convergence (2.3.9) is also an L' convergence we need only to show
that

(2.3.10) E [wyin (XUn)) — ¢ (X)|] —0

tmaz ACin tmaz AC

We already know that ({7 . (X (7)) converges almost surely to £}

(X). Moreover
tmas

E[en . (X0)] :L pe,v3,)
and

E [E?MTAQ(X)] = J:mm pe(z,y)

It follows that the expectations converge. By Scheffe’s lemma, the L' convergence (2.3.10)
holds.

We have shown that there is always a subsequence (u®in-¥in (F()))n=0 that converges
to ™Y (F (7)) which contradict the convergence of (p"% (F(y)));=0 to a different value. O

2.3.3. The measure p* on unrooted loops. The measure u*® can be seen as a

measure on the space of rooted loops £. Next we define a natural measure p} on £*
following the pattern (2.3.1)

DEFINITION 2.2. Let uy, be the following measure on £:

dt 1
(dv) : f f LdY)pe(z, x)m(z)de— = —f p" (dy)ym(z)dz
t>0 Jxel ! t T(,Y) xel L
Wi =Ty is a measure on £*.

We will drop the subscript L whenever there is no ambiguity on L. The definition 2
does not depend on the choice of the speed measure m(z) dx. The measures p and p* are
o-finite but not finite. They satisfy the following elementary properties:

PROPERTY 2.3.6. (i) p is invariant by time reversal.
(i1) If I is an open subinterval of I then

ML\f(d’Y) = 17 contained in I luL(d,Y)

(iii) If R is a positive Radon measure on I then

pi_x(dy) = exp (— [ #ome m(dz)) ()
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(iv) If A is a change of scale function then

MScaleif" L = ScaleA*,U/L

(v) If h is a positive continuous function on I such that Lh s g signed measure and

dz?
Lu is a negative measure then

KcConj(h,L) = ML

Same properties hold for p*.

The measures p and p* contain some information on the diffusion X but the invari-
ance by conjugations (property 2.3.6 (v)) shows that they do not capture its asymptotic
behaviour. In the section 2.3.4 we will prove a converse to the property property 2.3.6 (v).
In our setting, most important examples of conjugations are:

e The Bessel 3 process on (0, +o0) is a conjugate of the Brownian motion on (0, +00),
killed when hitting 0, through the function = — x.

e The Brownian motion on R killed with uniform rate kdz (i.e. k constant) is a
conjugate of the drifted Brownian motion on R with constant drift «/2x, through

the function x — e~ V2T,

In the sequel we will be interested mostly in p* and not u. As it will be clear from the
next propositions, the measure p* has some nice features that p does not.

PROPOSITION 2.3.7. Let v € [0,1]. Then shiftyxp = p. In particular
(2.3.11) p(-) = f shiftyp(-)dv
ve[0,1]

PRroor. For a rooted loop + of life-time T'(v) we will introduce 7, the path restricted to
time interval [0, vT'(y)] and ~y, the path restricted to [vT'(y), T'(y)]- By bridge decomposition
property, the measure u(dv;,dy2) equals

, ., dt
[ | B e sip o oim) dyme) do 5
t>0

Since 1 and 7, play symmetric roles, changing the order of v; and ~2 does not change the
measure p. U

Formula (2.3.11) shows that we can get back to the measure p from the measure u* by
cutting the circle parametrizing a loop in £* in a point chosen uniformly on this circle, in
order to separate the start from the end.

COROLLARY 2.3.8. Let F' be a positive measurable functional on £. Then the map
v - Sé F(shift,(y))dv is 71 (Bex)-measurable and

d(F(7)p) :.[1

F(shifty(v))dv
()

0

ProoF. We need only to show that for every F’ measurable functional on £*:

(2312) | PO mtan = [ | Peshist )P )i
From proposition 2.3.7 follows that for every v € [0, 1]:
(2.3.13) |, PO @) = [ Planist )P o))

Integrating (2.3.13) on [0, 1] leads to (2.3.12). O
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The next identity appears in [Jan11] in the setting of Markov jump processes on graphs.
It can be generalized to a wider class of Markov processes admitting local times (see lemma
2.2 in [FR14]). We will give a short proof that suits our framework.

COROLLARY 2.3.9. Let x € I. Then
(2.3.14) () (dy) = T (dy)
Forl >0, let IP’;ZI(-) be the law of the sample paths of a diffusion X of generator L, started

from x, until the time 7° when £f(X) hits l, conditioned by 77 < (. Then

+%0

T _ 1 dl
(2.3.15) Ly yisits op™(dvy) = J Pt (dy)e” T N
0

Conventionally we set G(x,x) = +0 if X is recurrent.

PROOF. Let e > 0 such that [z —e,2 +¢] S I. Let Tj,_. 54.(7) be the time a loop v
spends in [z — €,z + ¢]. From the identity (2.3.11) follows that

To—cxra(V) gy - L F*E

and simplifying T'(v):

T+E

Tha—vose(*(dy) = j ™ (dy)m(2)dz

r—E€
Using local times we rewrite the previous expression as
te 2
Si_;ﬁ (V)m(Z)dZ/L*(d’y) B 1 J*a:+a
Sijz m(z)dz Si: m(z)dz

(2.3.16) T % (dy)m(z)dz

r—e

Let g9 > 0 such that [z —eg,2 +&9] € I. Let F be a continuous bounded functional on
loops endowed with continuous local times such that F' is zero if the life-time of the loop
exceeds tmaz > 0 and if SUp.cpy_c 24601 17 (7) €xceeds lyq,. According to the proposition
2.2.5, the right-hand side of (2.3.16) applied to F' converges as € — 0 to (m.u®7)(F(7y)). By
dominated convergence it follows that the left-hand side of (2.3.16) applied to F' converges
as e — 0 to

| eoreu @)

Thus we have the equality

(2317) L* ) F (A (dy) = (™) (F (7))

The set of test functionals F' that satisfy (2.3.17) is large enough to deduce the equality
(2.3.14) between measures.
From proposition 2.3.1 follows that

+%0 x 1
ey = [P e a
0

Applying (2.3.14) to the above disintegration, we get (2.3.15). O

COROLLARY 2.3.10. Let V' be a positive continuous function on I. We consider a time
change with speed V: ds = V (x)dt. Then

(2.3.18) ,u*%L = Speedy .}
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PrOOF. By definition 2.2 and property 2.3.2 (vi):

T(v)
masl) =705 [ o

ds Speedy(pr(dv))

Mo V((s))
Applying corollary 2.3.8 we obtain:
1y,
dSpeedyapis I A CICEACH)
= — =
Wir s, Tyl V((s))ds
This concludes. O

In dimension two, the time change covariance of the measure p* on loops plays a key
role for the construction of the Conformal Loop Ensembles (CLE) using loop soups as in
[SW12]: Let D be an open domain of the complex plane, (B;)o<i<¢ the two-dimensional
standard Brownian motion in D killed when hitting ¢D and p* the corresponding mea-
sure on loops. If f : D — D is a conformal map, then (f(Bi))o<t<c is a time changed
Brownian motion. If we consider p* not as a measure on loops parametrized by time but
a measure on the geometrical drawings of loops, then p* is invariant by the transformation
(Y(#))o<t<r(v) = (f(7(t)))o<t<r(y)- This is proved in [LWO04].

Given that p* is invariant through conjugations and covariant with the change of scale
and change of time, if X is a recurrent diffusion, then up to a change of scale and time, p*
is the same as for the Brownian motion on R, and if X is a transient diffusion, even if the
killing measure & is non-zero, then up to a change of scale and time, p* is the same as for
the Brownian motion on a bounded interval, killed when it hits the boundary.

2.3.4. Multiple local times. In this subsection we define the multiple local time
functional on loops. Corollary 2.3.9 gives a link between the measure p* and the mea-
sures (u**)zer. Using multiple local times we will get a further relation between p* and
(1"¥)z,yer. This will allow us to prove a converse to the property 2.3.6 (v): two diffusions
that have the same measure on unrooted loops are related trough conjugation.

DEFINITION 2.3. If (7(t))o<i<r(y) 8 @ continuous path in I having a family of local
times (€7 (7))zer,0<t<T(v) Telative to the measure m(x)dx, we introduce multiple local times
(FL%2 0 () for k1, Lo, ..., Ly €1:

primen () i | A2 2 0) . ds, 7 ()

0<t1 <t <<t <T'(v)

If v € £ and has local times, we introduce circular local times for ~y:
e*xl,xg,...,a;n (,y) = Z Exc(l)vxc(2)7"'7xc(n) (,y)

c circular
permutation
of {1,2,...,n}

(FrLT2 T being invariant under the transformations (shift,),ec[0,1], we see it as a func-
tional defined on £*.

Multiple local times of the form ¢¥%--%(y), called self intersection local times, were
studied by Dynkin in [Dyn84c]. Circular local times were introduced by Le Jan in [Jan11].

Let ne N* and p € {1,...,n}. Let Shuf fley ,, be the set of permutations o of {1,...,n}
such that for all i < j e {1,...,p}, o(i) < o(j) and for all i < j e {p+1,...,n}, o(i) <
o(j). Permutations in Shuf fley ., are obtained by shuffling two card decks {1,...,p} and
{p+1,...,n}. Let Shuffle;, , be the permutations of {1,...,n} of the form o o c where c
is a circular permutation of {p + 1,...,n} and o € Shuf fle,, satisfies 0(1) = 1. One can
check that

PrROPERTY 2.3.11. For all z1,...,Zp,Tpt1,...,Zn €1
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(1T () (Fr+1 T () = Z (T7 (1) To () To(p+1) 5 To(n) ()
ceShuf flep n
(i)
[HETLs 5T (,y)g*xpﬂ,...,xn (’Y) _ Z (T (1) T () T ol (1) 2+ ! () (’Y)
o'eShuffle, ,,

The equality 2.3.11 (ii) appears in [Jan11]. Tt is also shown in [Jan11] that for transient
Markov jump processes:

(2.3.19) fﬂ*xl’”’“"””(v)p(d’y) = G(x1,22) X+ X G(Tp—1,2pn) X G(xn,x1)

It turns out that we have more: We consider L a generator of a diffusion on I of form
(2.2.11). If ~; for ¢ € {1,2,...,n — 1} is a continuous path from z; to x;41, then we can
concatenate 71,7, ..., Yn—1 t0 Obtain a continuous path y; <y2 <1--- <17y,_1 from z; to z,.
Let p®1*2 - -qu®»—1%" be the image measure p*"*2®- - -Qu*~>*" by this concatenation
procedure.

PROPOSITION 2.3.12. The following absolute continuity relations hold:

(i) (72 Qe qutn=tn)(dy) = €720t (y) o (dy)
(i) o (02 <o Qutnm e Q) (dry) = 05 () (dry )

ProoOF. (i): Let ((Xt(j))()gt<<j Jo<j<n—1 be n —1 independent diffusions of generator L,
with X§") = z;. For 1 >0, let

T]f_”j'+1 — inf {tj > 0|€Z?+1(X(j)) > l}

According to proposition 2.3.1, (u**2 < - - < u®=1%)(F(v)) equals
(2.3.20)

E F((Xt(l))0<t<7'f%1 g (Xt(nil))ogtgﬁf"l , 1)dl1 . dln_l]

NS

zj<e§;j+1(x(j)),1<j<nf1 ’ “hin—
Let (X¢)o<t<c be an other diffusion of generator L. Let
7, = inf{t = 0|l7*(X) > I1}
and recursively defined
Ty dyoaly = f{t =7 |67 (X)) > 15}

Then by strong Markov property, (2.3.20) equals

E U Loy, <cF ((Xt)OStSTzl ..... zn_l) dly ... dlnl]

which in turn equals
(23.21) B | [ v, (Kdosest ) 52 (X)o7, (X))

By proposition 2.3.1, (2.3.21) equals { £%1:%n=1(y)F ()" (d).
(ii): According to the identity (i) and corollary 2.3.8, we have

1

M (U7 e Q) = [ (shi () o m (d)
0
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According to corollary 2.3.9
1

1
L (720 (s 1 () Ao ™ (dy) = €71 () L (7220 (shi () v (o)

But

1
gxl(,y)J\ gxz,,xn(shzftv(,y))dv — g*xl,xz,...,xn(,y)
0

which ends the proof. O
The proposition 2.3.12 (ii) implies (2.3.19).

ProrosiTION 2.3.13. If L and L are two generators of diffusions on I of the form
(2.2.11) such that pf = u%, then there is a positive continuwous function h on I such that
% 15 a signed measure, Lh a negative measure and L= Conj(h,L). If the diffusion of

generator L is recurrent then L=L.

PROOF. Let m(z)dz be a speed measure for L and m(z)dz be a speed measure for L.
First let’s assume that both L and L are generators of transient diffusions. Applying the
identity (2.3.19) to {4, £**Y(y)u*(dv) we get that for all z,y € I:

(2.3.22) Gi (2, y)Gy(y, )m(x)m(y) = Gr(z,y)Gry, )m(z)m(y)
and for all z,y, z € I:
(2.3.23)

Gi(z,y)Gi(y, 2)Gp (2, x)m(x)m(y)m(z) = Gr(z,y)GL(y, 2)GL(z, z)m(z)m(y)m(z)
Fix g € I. Let h be

) .
) Gz, y)m(y)
Applying (2.3.22) and (2.3.23) to (2.3.24) we get that

ﬁG(z,y)h(y)m(y) = Gy (z,y)m(y)

Applying (2.3.25) once to (z,y) and once do (z,z) we get that

Gi(z,y) G(y,y)
G(z,y) Gi(y,y)
d’h

From (2.3.26) we deduce that 9—3 is a signed measure. From (2.3.25) we deduce that

(2.3.25)

(2.3.26) h(y) = h(z)

L = Conj(h,L). —Lh is the killing measure of L and is positive.

If we no longer assume that L and L generate transient diffusions then consider A > 0.
Then pf_, = u%ﬁ\. According to the above, there is h positive continuous function on [
such that dd—; is a signed measure and

L—X=Conj(h,L —\) =Conj(h,L) — A

Then L = Conj(h, L) and necessarily Lh is a negative measure.
The class of recurrent diffusions is preserved by conjugations. So if L is the generator
of a recurrent diffusion then so is L, and thus h is bound to satisfy Lh = 0. But since
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the diffusion of L is recurrent, the only solutions to Lh = 0 are constant functions. Thus
L=1L. O

2.3.5. A disintegration of p* induced by the Vervaat’s transformation. By
conditioning the measure p by the life-time of loops we get a sum of bridge measures.
In this section we will disintegrate the measure p* as a measure on the minimal value of
the loop and its behaviour above this value. By doing this way we will obtain a sum of
excursion measures 7,... In case of Brownian loops on R this disintegration will follow
from the Vervaat’s bridge to excursion transformation. The case of general diffusion will be
obtained using covariance of the measure on loops by time and scale change, restriction to
a subinterval, killing, as well as invariance by conjugations.

THEOREM(VERVAAT). ([Ver79],[Bia86]) Let (v(s))o<s<t be a random path following
the Brownian bridge probability measure Py, o o(-). Let Spin := argminy. Then the path

s+ —min~y + (shifts";m Y)(s)
has the law of a positive Brownian excursion of life-time t.

In the sequel if 5 is a measure on paths and = € R, we will write (x + ) for the image
of n by v = = + 7. 3%, will be the Levy-It6 measure on positive Brownian excursions and
77; 9 17 the probability measure on positive Brownian excursions of duration ¢. Given a con-
tinuous loop (7t)o<t<7(y) and tmin the first time  hits min -y, let V() be the transformation
shifte ia - V is Bg-measurable.

TG
PROPOSITION 2.3.14. Let pu¥,, be the measure on loops associated to the Brownian
motion on R. Then:

(23.27) @) =2 [ mela o) dy) da
a€R
The measure on (min~y, max~y) induced by p,, is la<p(b — a) 2dadb. Let a < be R and

p, p two independent Bessel 3 processes starting from 0. Let T,_, and ﬁ,a be the first times

p respectively p hits b —a. Let (ﬁt)ogthb_ +7,_, be the path

5, = a+ pt ift <Tp—q

e+ ﬁbea"l'bea_t ift>To—a

Then the law of (ﬂt)ogtgn_ T is the probability measure obtained by conditioning the
measure (g, by (minvy, max~y) = (a,b).

ProOF. For the Brownian motion on R, ppps writes
O=[ [ @+Popd—s=a
wBMm(+) = x BM e
2ER Jt>0 AN

Let x(a)da be the law of the minimum of the bridge under P}, , - Applying the Vervaat’s
transformation, we get that

Vo) = [ [ ([ st -t @+ nihan)gesde

Since {___ x(z —a)dz = 1, the right-hand side above equals

dt
a+n7%) () ——=da
|| et =
But
>0 dt >0
(a+n pm)() = 2(a +n5)()
t>0 23
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The equality (2.3.27) follows. The rest of the proposition is a consequence of the William’s
representation of Brownian excursions. O

COROLLARY 2.3.15. Let I be an open interval of R and A = 0. Let u* be the measure
2
on loops in I associated to the generator -1 —\. Given a loop (v(t))os<t<(v), let R(7) be

2d
the loop
R(v) = (max~y + miny — y(t))o<t<r(v)

. . . . + i
that is the image of v through reflection relative to =222 Then
Rop* = p*

PROOF. It is enough to prove this in case A = 0 and I = R. Otherwise we multiply the
measure p,, by a density function that is left invariant by R. Then we use the description of
the measure 1}, conditioned by the value of (min -, max~) and the fact that if a > 0, (p¢)s>
is a Bessel 3 process starting from 0 and T}, is the first time it hits b, then (y — pr, —t)o<t<,
has the same law as (p:)o<t<t, (see [RY99], chapter VII, §4). O

Now we consider that L is a generator of a diffusion on I of form (2.2.11). Given a point
29 € I, ut® and u™ % will be the L-harmonic functions satisfying the initial conditions

w0 (zg) = um ™ (z0) = 0, Lo (z4) =1 and %" (27) = —1. o < y € I then

(2.3.28) w(y)u™?(z) = wlz)u™" (y)

Indeed, the Wronskian W (u ™%, u™*) takes in x the value u¥(z) and in y the value u**(y),
and the ratio ﬁz)W(u_y,qu”)(z) is constant. If x = 0, then the both sides of (2.3.28)
equal § w(z)dz. uw™*0 is positive on I n (2o, +00) and uw™* is positive on I N (=00, xp). Let
Lt%0 be Conj(ut*°, L) restricted to I n (zg, +00) and L~ be Conj(u—*°, L) restricted to
In(—00,1p). LT* and L™°% are generators of transient diffusions without killing measures.
If L is the generator of the Brownian motion on R, then L*:C is just the generator of a Bessel
3 process. In general case, zg is an entrance boundary for L™% and L%°, that is to say
a diffusion started from x # xy will never reach the boundary at xg, and we can also start
this diffusions at the boundary point xg, in which case it will be immediately repelled away
from zg. Let x € I and (pf’m)ogkﬁ,m be a diffusion of generator L™® starting from z. Let

yel,y >z Let T,” be the first time p™ hits y and f;“’ the last time it visits y. Then

+, . . . . —,
(pf;’yzﬂ)ogkg%wff;ﬁ* is a diffusion of generator L™V starting from y. Let (p; "¥)o<i<c-w

be a diffusion of generator L™¥ starting from y and T, ¥ the first time it hits . Then
(p:,x)ogth;,x and (p;;{y_t)ogth;,y are equal in law: Indeed let C' be the constant

w(z)

¢= W(u—¥, ut)(z)

The Green’s operator of p™ % killed in y is

utr(y)

/ d /
u+’x(l‘l)m(y) y

y
(L)) =€ [ @ a6 v y)
x
and the Green’s operator of p—¥ killed in x is
(L) D) = [t Ayl v ) o gy iy
(.9) Y, Y Y (@)™
The potential measure of (p:’z)ogth;,m starting from x is

U(x')ds' = Cut® (2 ) u™Y (2" )ym(2")dz’
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and for any f, g bounded functions on (z,y)
y
@320 [ (L1 D@00 = [ HEL,) U6
The time reversal property for (p;* Jo<t <rFe follows from the duality relation (2.3.29). See
[RY99], chapter VII, §4 for details on time reversal.
COROLLARY 2.3.16. If L is a generator of a diffusion on I of form (2.2.11), then

(2.3.30) w0 = | e (ua)da

The measure on (min~y, max~y) induced by p* is 1a<b61%. Let a < bel. Let

(5 YNozt<cta and (p, )O§t<<—,b be two independent diffusion, the first of generator L™*
starting from a and the second of generator LY starting from b. Let Tb+’a be the first time
p™® hits b and T, " the first time p—" hits a. Let (Bt)gc,cp+a » be the path

Stsdy

p:—,a th < Tb-‘r,a
Bt :=

—,b - +,a
ptinJr,a ift =1,

+Ty

Then the law of (6t)0<t<T+,a+T—,b is the probability measure obtained by conditioning the
=t=<Lp a

measure p* by (min~y, max~y) = (a,b).

PROOF. Both sides of (2.3.30) are covariant by scale and time change. Moreover both
sides satisfy the property 2.3.6 (ii) for the restriction to a subinterval and the property
2.3.6 (iii) when adding a killing measure. Thus the general case (2.3.30) follows from the
Brownian case (2.3.27) by this covariance properties.

If L is a generator without killing measure (x = 0) then the description of the mea-
sure on (min~y, max+vy) and the probabilities obtained after conditioning by the value of
(min~y, max ) follow through a change of scale and time from the analogous description in
proposition 2.3.14. If k # 0, then we can take u a positive L-harmonic function and deduce
the result for L from the result for Congj(u, L) using the fact that uj = uéonj(u’L). O

The relation between the measure on loops and the excursions measures in dimension
1 (identity (2.3.30)) is analogous to the relation between the measure on Brownian loops
and the so called bubble measures observed by Lawler and Werner in dimension 2. See
propositions 7 and 8 in [LW04].

2.3.6. A generalization of the Vervaat’s transformation. In this subsection we
will show a conditioned version of the Vervaat’s transformation that holds for any one-
dimensional diffusion of form (2.2.11) and not just for the Brownian motion. L will be a
generator of a diffusion on I of form (2.2.11). From corollary 2.3.9 and identity (2.3.30)
follows that for every x € I:

(2.3.31) ViPl o (dy)pe (@, z)dt = J . ()~ (dy)w(a)da

t>0

Let P!, ,(dy|miny = a) be the bridge probability measure condition by the value of the
minimum to equal a. Further we will show that there is a version that depends continuously
on (a,t). Let n7* the probability measure obtained from 1n~® by conditioning the excursion
to have a life-time ¢. The identity (2.3.31) suggests the following:

ProposITION 2.3.17. For everya <x €l andt >0

£ (v)ni“(dv)

2.3.32 ViPL (dy|miny = a) = =
( ) * s ( | ) > (gt (’)’))
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The distribution of min~y under P;x equals

1 57 T(y) € (t,t + dt))
2.3. i 054 ’
(2:3.3) wla (6 (0)) = da

Z (T (y)e(t,t+dt))
dt

where is the density of the measure on the life-time of the excursion induced

by n~*. Given an excursion 7 following the law %W’ the local time in x is a measure
t t

on {s € [0,t]|y(s) = x}. The transformation V sends the starting point of the bridge to a
0"
-

Identities (2.3.32) and (2.3.33) can be viewed as a conditioned analogue of the Vervaat’s
relation between the Brownian bridge and the Brownian excursion. The latter can be de-
duced from (2.3.32) and (2.3.33) using the translation invariance of the Brownian motion.
From (2.3.32) we can only deduce that (2.3.32) and (2.3.33) hold for Lebesgue almost all ¢
and a. We need to show the weak continuity in (a,t) of conditioned bridge probabilities and
biased conditioned excursion probabilities to conclude. It is enough to prove the proposition
2.3.17 for L not containing any killing measure and such that for all a < x € I, a diffusion
starting from x reaches a almost surely. Indeed, for a general generator, Conj(uy, L) does
satisfy the above constraints and if the proposition 2.3.17 is true for Conj(u, L) then it
is also true for L. From now on we assume that L satisfies the above constraints. Next
we give a more constructive description of the conditioned bridges and biased conditioned
excursions. We start with bridges. i

Property 2.3.2 (viii) shows that the measure PTe < P2~ conditioned on T, + T, = t is

a version of P,  (dy|miny = a). Let pgax)(x,y) be the transition density on I n (a, +o0)

point s € [0,t] distributed conditional on the excursion 7y according the measure

relative to m(y)dy of the semi-group generated by Lj;~(q,++). Then p,E“X)(x,cﬁ) = 0.

According to [McK56], for all t > 0, y — pgax)(z,y) is Cl. Let agpgax)(z,y) be the

derivative relative to y. It has a positive limit agp,ﬁ“)(x, a™) as y — a*. Extended in this

way, the map (t,x,y) — azp,gax)(ac,y) is continuous on (0 4+ o) x I N (a, +0) x I N [a, +0).
The distribution of T, under P, is (see [IM74], page 154):
1

w(a)

Let ngf;)’t be the bridge probability measures of L|;~(4,4+0)- It has a weak limit ]P’ia:ﬁt as
y — a™. Let Fs be the sigma-algebra generated by the restriction of a continuous path to
the time interval [0,s]. Let P} be the law of p™¢ starting from a. For all s € (0,¢) we

have the following absolute continuity relations:

0apt™) (2, 0™ )dt

( X)7t a
(2 3 34) d]P)x(Ta‘*' _ 62p§7§)(X5) a+)
. dP - s<Ta a (a)() +
€ |F, op;(x,aT)

and for the time reversed bridge
(ax),tA a
d]P)ac,a"' _ pgi?(ﬂj’ 733)
dPa |7, agp,ﬁ‘”)(x, at)
Using the absolute continuity relation (2.3.34) and (2.3.35) one can prove in a similar way
(ax),t

z,at

The first passage bridge P« disintegrates as follows

(2.3.35)

as in proposition 2.2.5 that the map (¢,y) — P is continuous for the weak topology.

1 aX aXx
(2.3.36) P20 = ol f ()Pi,aﬁ’t(»azpi (@, a*)dt
t>

From the property 2.3.2 (viii) and (2.3.36) we get that
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PROPERTY 2.3.18. The distribution of min~y under P} , is

da ft
—————— | ' (z,ah)0 ((i)s z,am)ds
w(a)pt (.Z', .I') 0 2p ( ) 2pt ( )

There is a version of P, . (dy|miny = a) that disintegrates as
fo (BUe a2 ) (@)™ (2. at)aap(”Y) (2, ds
fo 02p") (2, %) op( ) (, a*)ds

(2.3.37)

(2.3.38)

Next we show that the probability measure given by (2.3.38) depends continuously on

(a,t).

LEMMA 2.3.19. The functions (x,a,t) Hpgax)(x,cﬁ) and (z,a,t) — 62p§ax)(x,a+) are
continuous on {(z,a)|lx > a € I} x (0,+00).

PrOOF. As in [McK56|, we can use the eigendifferential expansion of L to express
pgax)(z, a™) and 62p§ax)(z, a™). Let xo. For A € R consider e1 (-, A) and ex(-, A) two solutions
to Lu + Au = 0 with initial conditions

61(.1'0,)\) =1 %(l‘o,)\)zo 62(1‘0,)\)=0 %(l‘o,)\)zl
Let e(x, A) be the 2-vector whose entries are ej(x,\) and ez(z, A). According to theorems
3.2 and 4.3 in [McK56], for all a € I there is a Radon measure §(*) on (—co, 0] with values in
the space of 2 x 2 symmetric positive semi-definite matrices such that for all z € I n (a, +o0)

0
pgax)(x’ a+) — f et)‘Te(x, )\)f(ax)(d)\)e(a7 )\)
oL

X 0 6e
03p ) (2, a*) = f eTe(ir, V) (d) 2

Let # > a € I. Consider a two sequences (2, )n>0 and (an)ns0 in I N (—o0,z) converging to
x respectively a such that for all n > 0, z, > a,. Let (b;);>0 be an increasing sequence in
I n (z,supI) converging to supI. Let f, ; be the 2 x 2-matrix valued measure on (—o0, 0]
corresponding to the eigendifferential expansion of L restricted to (an,b;). fn,; charges only
a discrete set of atoms. As shown in the proof of theorem 3.2 in [McK56] the total mass of
the measures 1 A |A|72|[fn ;[ (dN), 1 A [A|72|[f(@)||(d)) and 1 A [A|72[§(¢)]|(d)) is uniformly
bounded. Moreover for a fixed n, as j — 4+, 1 A [A\|7f, ;(d)\) converges vaguely, that is
against continuous functions vanishing at infinity, to the measure 1 A |A|~2f(#»*)(d)). More-
over, for any increasing integer-valued sequence (j, )n>0 converging to +o0, 1 A |X| 2§, ;. (d\)
converges vaguely as n — 400 to 1 A [A|72f(@*)(d)\). Since the sequence (j,)ns0 is arbitrary,
this implies that 1 A [A]72f(4nX)(d)) converges vaguely as n — 400 to 1 A [X|72f(@*)(d)).
There are constants C, ¢’ > 0 such that for all A <0 andn >0

(a, )

; y 0
(2.3.39) le(zn, Nl < Ce“VPL Je(an, )| < Ce VI IIa—;( M| < Ce”
Let t > 0 and (¢, )n>0 a sequence of times converging to ¢t. From (2.3.39) follows that
Jim Sulol)\l2 " le(@n, M| % le(an, A)| =0

—Ln>
A 1 v [A2etn? (e(mp, A), Oe(an, \)) vanishes at infinity an converges uniformly on (—co, 0]
to A 1 v |A2e? (e(x, \), e(a, A)). The vague convergence of measures implies that
0

0
i [ et e(an, A)f@ ) (dN)e(an, A) = f AT el A)F@) (dN)e(a, )

n—+ow J_
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Similarly 62p§:”x)(acn, a;) converges to agpg“)(z, at). O

LEMMA 2.3.20. The map a — P% is weakly continuous.

PROOF. Let a9 € I. Consider the process (p;*);>o following the law Pi.a. For
a € I n (ag, +o), let T, be the last time p*@ visits a. Then (p;:ft)t?O follows the law
PH-e. The process valued map a — (p’Tf;i‘)t)t;o is almost surely continuous on I n (ag, +0)
and thus the laws depend weakly continuously on a. O

PROPOSITION 2.3.21. The version of P, (dy|miny = a) given by (2.3.38) is weakly
continuous in (a,t).

PRrOOF. From the absolute continuity relations (2.3.34) for the bridge ]P’ia:l’t and (2.3.35)
for its time reversal, together with the continuity of the densities which follows from lemma
2.3.19, and the weak continuity of a — P7, we can deduce in a very similar way as in propo-

sition 2.2.5 that the map (a,t) — plex)t

vat 18 weakly continuous on (0, +00) x I n (-0, z) and

hence (a, s,t) — P;a;z’s < P;asﬁ’t_“ is weakly continuous. Finally the densities that appear
in expression (2.3.38) are continuous with respect to (a, s,t). O

Next we will give a decomposition of the measure n~* which is similar to the Bismut’s de-
composition of Brownian excursions (see [RY99], chapter XII, §4, theorem 4.7). Biane used
this Bismut’s decomposition to give an alternative proof for the Brownian Vervaat’s transfor-

mation ([Bia86]). dypi®*)(x,a*t) is C! relative to x and the derivative 0 op\®*(z,a*) has

a positive limit 61,21}%“)(&*, a™) as y — a™. Moreover t — 61,2p£ax)(a+, a™) is continuous.

The measure on the life-time of the excursion induced by 7% is (see [SVY07]):
1 (ax)¢ + _+
Wal’ﬂ)t (a ,a )dt
Let s € [0,¢]. The measure n;*(-) disintegrates as (see [SVY07]):

059 (2, a*)2ap\™) (, a* )m(y)

d1.0p\" (0, at)

(2.3.40) f (P;“;j’“ < P;a:gvt*S) ) dy
zel,x>a ’ ’

For every s; < s3 € [0, s], under the bridge measure ]P’Z(ffzx)’s

5o (ax) (ax)
(2.3.41) PL (02 () — €2 (7))=f pr Wby (@.2) ),
2 s s1 (ax)
s1 ps (Y,2)

and under the bridge measure P,(a X+)’S
y,a

dr

sz (ax) (ax)
(23.42) e ) — ) = [ s ()
" = 02ps"" (y, a™)

Combining (2.3.40) and (2.3.42) we get that for every s; < s € [0, s]:

ds

a/pr €T 52 a pgaX) z,a+ a p(gz) z,a+
(2.3.43) n (682(7)—&1(v))=J | (ax)> P @0 )
s1 (91,227,: (a+7a+)
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PROPOSITION 2.3.22. Let Fy and F» be two non-negative measurable functional on the
paths with variable life-time. Then

(2.3.44 77t <J F1 0<r<5)F2(( (5 +r))0$r$t—s)ds€§(7)> =
22pS (,a) 0o\ (w, at)

@ ds
al,th (a+ 9 a’+)

z,at z,at

f ]P)(ax) sA(Fl)P(ax),t—s(FQ)

In particular
0aps" (,a*)0ap |2 (w, a)
01,00} (a*, a%)
PRrROOF. It is enough to prove the result in case F; and F; are non-negative, continuous
and bounded. On top of that we may assume that there are s, < Smaz € (0,t) such that
Fy respectively Fy takes value 0 if the life-time of a path is smaller than s,,;, respectively

t — Smaz, and that there is C' € I, C' > a, such that F; and F5 take value 0 if max~y > C.
For j <ne N set As, := %(smaz — Smin) and S;, 1= Smin + jAs,. Then almost surely

343 ) = [ (P20 9B (@) ds
0

(2.3.46) J; Fi((v(r)o<r<s) Fo((7(s +7))osr<t—s)dsl5(7) =

lim Z Fy((v(r))osr<s; S, () = €5, (V) F2((V(Sj41,n +7))o<r<t—s;41.0)

n—+90
7=0

Moreover the right-hand side of (2.3.46) is dominated by €7 (y)|Fi| x| F2|l. Thus the n;%-
expectation converges too. Applying (2.3.40) and (2.3.41) we get

U (F((y()ozres; ) () = € ()P (V57410 + 1)o<retms i) =
Asy
J J | ng:ﬁ Sy )Pia:_gt SN (B g (7, y, 2)m(y)dym (2)dzdr
(a,C)?

where 0 ax)
ané] n (ya a’+)a pt Si41,n (Z a’+)
01207 (a*, a*)

qn(r,y, 2) = S«“X)(y, )p(Aa:)_r(x 2)

1 X
A— SOAS” qn(r,y, 2)drdydz converges weakly as n — +00 t0o 0y 4)-

The measure 1, .>qer

The maps (s,y) — Dol (x at) and (s,y) — ]Pg“x)’y’aJr(-) are continuous. Moreover
02172(;,);)(97a+)52pt753+1,n (2,a™) is uniformly bounded for j < n € N and y,z € (a,C]. All

this ensures that the 7;”%-expectation of the right-hand side of (2.3.46) converges as n — +o0
to the right-hand side of (2.3.44). O

Now we need only to match the preceding descriptions to prove proposition 2.3.17.

(2.3.38) and (2.3.45) imply (2.3.32). (2.3.37) and (2.3.43) imply (2 3.33). The fact that the

point where the excursion is split is distributed according to de f( ) follows from (2.3.44).

2.3.7. Restricting loops to a discrete subset. Let L be the generator of a diffusion
on I of form (2.2.11) and (X;)o<i<¢ be the corresponding diffusion. Let J be a countable
discrete subset of I. A Markov jump process to the nearest neighbours on J is naturally
embedded in the diffusion X. In this section we will show that, given any z,y € J, the
image of the measure p7¥ through the restriction application that sends a sample paths of
the diffusion (X)o<t<c to a sample path of a Markov jump process on J is a measure on
J-valued paths that follows the pattern (2.3.2). From this we will deduce that the image of
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the measure p} through the restriction to J is a measure on J-valued loops following the
pattern (2.3.1) and which was studied in [Jan11]. This property will be used in section
2.4.2 to express the law of finite-dimensional marginals of the occupation field of a Poisson
ensemble of intensity o .

For a continuous path (v(t))o<¢<7(y) in I, endowed with continuous local times, let

D INACILAE
ze]

For s > 0, we introduce the stopping time

7)(v) := inf{t > 0|Z{(7) > s}

S

We write 4’ for the path (y(r ))O<6<IJ (OB J. Let my be the measure

my = 2 m(x)d,

z€e]

The occupation measure of 77 is

2 £ (y)m(x)o

zeJ
and (% (7))zey are also occupation densities of the restricted path 47 with respect to my.
The restricted diffusion X7 is a Markov jump process to nearest neighbours on J, poten-
tlally with killing. If g < 1 are two consecutive points in J, the jump rate from x( to 1 is
1 1 1
m(xo)w(xo) FE0 @) and the jump rate from z; to xg is mED e v (we) If vp <1 <2
are three consecutive points in J, then the rate of killing while in z; is

1 (W(u‘7“2,u+’”’0)(x1) 1 1 )

m(z)w(@r) \ u—(z)ut2o(z)  u*i(ze)  ut ()

If J has a minimum zy and z; is the second lowest point in J, then the killing rate while in
To 18

1 W(u™"1, up)(xo) 1
m(xo)w(zo) <U’I1($0)UT($0) U*’“’“(ﬂ?l))

An analogous expression holds for the killing rate while in a possible maximum of J. X7 is
transient if and only if X is. Let Ly be the generator of X?. Ly is symmetric relative to my.
Its Green’s function relative to my is (G(x,y))s,yer, that is the restriction of the Green’s
function of L to J x J. X7 may not be conservative even if the diffusion X is. In case if J is
not finite, X? may blow up performing an infinite number of jumps in finite time. Measures
(U7 ")zyer, pr and py have discrete space analogues (u7")z,yes, i, and pf  as defined in
[Jan11], that follow the patterns (2.3.2) and (2.3.1).

PROPOSITION 2.3.23. Let z,y € J. Then vy — ~' transforms u7? in py? and py in oy
PROOF. The representation (2.3.3) also holds for u7’¥. For I > 0, let
7/ :=1inf{t > 0|¢}(X) > I}
and
7 = inf{s > 0]¢¥(X") > 1}

Then for any non-negative measurable functional F'

W EO) = |

0

+x0

dle [1 yJ<IJF((X )0<5<7—y J)]
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But (X7)
if 7/ < ¢. Thus p7” is the image of uj’¥ through the restriction on path to J. The second
part of the proposition can be deduced from that for any = € J

()t (dy) = mopi] ™ (dy)

is the image of (Xt)ostsrf by the map v — ~¥ and le“H < Ig if and only

OSSST;“J

and as noticed in [Jan11]
(i, (dy) = mepg) (dr')
(I

Previous restriction property and the time-change covariance of u* (corollary 2.3.10)
can be treated in a unified framework of the time change by the inverse of a continuous
additive functional. This is done in [FR14], section 7.

2.3.8. Measure on loops in case of creation of mass. We can further extend the
definition of the measures pu*¥ on paths and g and p* on loops to the case of L being a
"generator" on I containing a creation of mass term as in (2.2.19). Doing so will enable us
to emphasize further the conjugation invariance of the measure on loops and will be useful

in section 2.4.2 to compute the exponential moments of the occupation field of Poisson
ensembles of Markov loops. Let v be signed measure on I. Let L(® := mlx) 4 (ﬁ %)
and L :=LO 4+

DEFINITION 2.4. o u7Y(dy) = exp (§; 1°(v)m(z)v(dz)) pd) (dv)

o pp(dy):=exp (§; 1*(v)m(z)v(dz)) ppo (dv)
o U = TapL

Definition 2.4 is consistent with properties 2.3.2 (iv) and 2.3.6 (iii). If 7 is any other
signed measure on I, then

(2.3.47) WY (dy) 1= exp ( [ ef(wm(z)ﬂ(dx)) W2 (dy)

Same holds for g and p*. Under the extended definition, the measures p®¥ still satisfy
properties 2.3.2 (ii), (iii), (v) and (vi). Proposition 2.3.5 remains true. p still satisfies
properties 2.3.6 (i), (ii) and (iv). Proposition 2.3.7 and corollary 2.3.8 still hold. The
identities (2.3.14) and (2.3.18) remain true for p*. Concerning the conjugations, we have:

PROPOSITION 2.3.24. Let h be a continuous positive function on I such that % 15

a signed measure. h(x)?>m(x)dx is a speed measure for Congj(h,L). Then for all z,y € I,
uggnj(h L) = mui’y, and ficonj(h,Ly = pr- Conversely, if L and L are two "generators”
with or without creation of mass such that pup = p; then there is a positive continuous

function h on I such that % is a signed measure and L= Conj(h, L).

PROOF. There is a positive Radon measure % on I such that both L—#& and Conj(h, L)—
R are generators of (killed) diffusions. But

Conj(h,L) — &k = Conj(h,L — k)

It follows that 41538, o 1)« = wnm AEss a0 Koonj(h,1) -7 = HL—r- Applying (2.3.47) we
get the result.
If p = py, we can again consider K a positive Radon measure on I such that both

L—Fand L — F are generators of (killed) diffusions. Then according to propos1t10n 2.3.13,

tdh

there is a positive continuous function & on I such tha is a signed measure and L—k=

Conj(h,L — k). Then L = Conj(h,L).

O
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Similarly to the case of generators of diffusions (section 2.3.5), one can consider L-
harmonic functions © % and u** in case of L containing creation of mass. If L € D, then
u™® respectively u % is not necessarily positive on I n (—oo, ) respectively I n (z, +0).
Let

M(z):=sup{ye I,y = z|Vz € (z,y),u""(2) >0} e I U {sup I}

If L € % then for all z € I, M(z) = supl. Let y € I,y > z. If y < M(z), then
Liey) €D7. If y = M (), then L, ) € D0, If y > M(x), then Li(z,y) € ©*. The diffusion
pt® of generator Lt* = Conj(u™?, LlJEU’;M(I))) is defined on (z, M (z)). Similarly for p=¥.

. +,x = M(x)
Moreover if If M (x) € I, then L)) = L)
If L e D%, the description of the measure on (min~, max~) induced by u* as well as
of the probability measures obtained by conditioning p* by the value of (min~, max~) is
the same as given by corollary 2.3.16, with the same formal expressions. Next we state what

happens if Le D™

PROPOSITION 2.3.25. Let L € ®*. The measure on (min~y, max~y) induced by p* and
restricted to the set {a € I,b € (a, M(a))} is ]-ael,be(a,M(a))%' If a < b < M(a),
then the probability measure obtained through conditioning by (min~, max~y) = (a,b) has the
same description as in corollary 2.3.16. Outside the set {a € I,b € (a, M (a))}, the measure
on (min vy, max~y) is not locally finite. That is to say that, if a <be I and b > M(a), then
for all £ > 0.

(2.3.48) p*({minvy € (a,a + €),maxy € (b —¢,b)}) = +0

PROOF. For the behaviour on {a € I,b € (a, M(a))}: There is a countable collection
(I;)j=0 of open subintervals of I such that

{aelbe(a, M)} =|Jiz<yel}

j=0

Since for all j, Lz, € D%~ corollary 2.3.16 applies to L7, Combining the descriptions on
different {a < b € I;}, we get the description on {a € I,b € (a,M(a))}.
For the behaviour outside {a € I,b € (a, M(a))}: Let A < B € R. Then

+w pA
(2.3.49) pry({miny < A,maxy > B}) = J J (dﬂ = 4w
B J-w

(b—a)?
If a <beland M(a) = b, then 1,<y<pp™ is the image of u¥,, through a change of
scale and time. In this case (2.3.48) follows from (2.3.49). If b > M(a), then L, ;) € 7.
According to proposition 2.2.9 (iv), there is a positive measure Radon measure s on (a,b)
such that Ly, — K € DY, From what precedes, (2.3.48) holds for u}:(a - Moreover,

“}:(a,b) > ”Z(a,b)—n' So (2.3.48) holds for u}:(a’b). O

2.4. Occupation fields of the Poisson ensembles of Markov loops

2.4.1. Inhomogeneous continuous state branching processes with immigra-
tion. We will identify the occupation fields of the Poisson ensembles of Markov loops as
inhomogeneous continuous state branching processes with immigration. This will be done
in section 2.4.2. In the section 2.4.1 we will give the basic properties of such processes. In
section 2.4.3 we will deal with the particular case of the intensity being %u*, in relation with
Dynkin’s isomorphism.

Let I be an open interval of R. We will consider stochastic processes where = € I is the
evolution variable. We do not call it time because in the sequel it will rather represent a
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space variable. Let (B,).,er be a standard Brownian motion. Consider the following SDE:

(2.4.1) dZy = o(x)\ ZpdBy + b(x) Zda
(2.4.2) dZ; = o(x)\/ ZzdB, + b(x) Zydz + c(z)dx

For our needs we will assume that o is positive and continuous on I, that b and c are only
locally bounded and that ¢ is non negative. In this case existence and pathwise uniqueness
holds for (2.4.1) and (2.4.2) (see [RY99], chapter IX, §3), and Z and Z take values in R
0 is an absorbing state for Z.

(2.4.1) satisfies the branching property: if Z®W and Z@ are two independent processes
solutions in law to (2.4.1), defined on I n [zg, +00), then Z1) + Z@ is a solution in law
to (2.4.1). If Z and Z are two independent processes, Z solution in law to (2.4.1) and
Z solution in law to (2.4.2), defined on I n [0, +0), then Z + Z is a solution in law to
(2.4.2). Solutions to (2.4.2) are (inhomogeneous) continuous state branching processes with
immigration. The branching mechanism is given by (2.4.1) and the immigration measure is
¢(x)dz. The homogeneous case (o, b and ¢ constant) was extensively studied. See [KWT1].

The case of inhomogeneous branching without immigration reduces to the homogeneous
case as follows: Let g € I and let

O(x) = exp (— ) ) dy) Aw) = [ oo

Zo

If (Zy)aer is a solution to (2.4.1), then (C(Afl(a))éA—l(a))aeAU) is a solution in law to

dZ, = 2\/ZTadIB%a

Let Z be a solution to (2.4.1) defined on I  [x¢, +00), starting at zo with the initial
condition Z,, = 2o = 0. Then, for A > 0and x € I, x > x¢:

B [e—xém] — o—20%(w0,2,})
20

Ez _

¥(xg,x,\) depends continuously on (xg,x,\). If z = xo then
(2.4.3) W(xo, o, A) = A
If o <1 < 22 €1 then

Y(xo, 22, A) = (w0, 71,9(21, 2, A))

1) satisfies the differential equation

(2.4.4) 0—w(x0,x,A) = U(J;O)Q

6330

If b is not continuous, equation (2.4.4) should be understand in the weak sense. If be is con-
tinuous, then (2.4.4) satisfies the Cauchy-Lipschitz conditions, and 1 is uniquely determined
by (2.4.4) and the initial condition (2.4.3). This is also the case even if b is not continuous.
Indeed, by considering C(z)Z, rather than Z,, that is to say considering %w(xo,x, A)
rather than v (zg,z, \), we get rid of b.

Inhomogeneous branching processes are related to the local times of one-dimensional
diffusions:

d)(‘roﬂ z, )\)2 - b(‘ro)w(an xz, )‘)

PROPOSITION 2.4.1. Let zg € I and let (X¢)o<i<¢ be a diffusion on I of generator L of
form (2.2.11) starting from xo. Let zo > 0 and

720 = inf{t > 0|¢;°(X) > 2o}

Z
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Then conditional on 72° < (, (ﬁf:é, (X))zel =z 15 @ solution in law to the SDE:

N . dl ~
2.4.5 A7, = \2w(@)\] ZpdB, + 2228 (V7 du:
d
XL

Proor. If X is the Brownian motion on R, then w = 2 and u| is constant. In this
case the assertion is the second Ray-Knight theorem. See [RY99], chapter XI, §2. The
equation (2.4.5) is then the equation of a square of Bessel 0 process. If z,,;, < xo and
X is the Brownian motion on (Zn, +00) killed in @y, then the law of (Ei:(? (X)) ael z>a0

conditional on 77° < ¢ does not depend on x,;, and is the same as in case of the Brownian
motion on R. Equation (2.4.5) is still satisfied.

If X is a diffusion on I that satisfies that for all x > a € I, starting from x, X reaches
almost surly a, which is equivalent to u; being constant, then through a change of scale and
time X is the Brownian motion on some (Z,in, +00) where 2, € [—00, +00). Time change
does not change the local times because we defined them relative to the speed measure.
Only the change of scale matters. If S is a primitive of w, then conditional on 72° < (,

ST(2
(67—}(? (2y)
equation of the square of Bessel 0 process by deterministic change of variable dy := %w(x)dx.
w(x)

Now the general case: let ()?t)()gt<§ be the diffusion of generator Conj(uy, L). Wdz

is the natural scale measure of X and uy(x)?m(z)dx is its speed measure. We assume that

both X and X start from zo. The law of X up to the last time it visits xg is the same as
for X. Let

(X))y>15(a0) is @ square of Bessel 0 process. The equation (2.4.5) follows from the

~ 1
F o= inf {t > 0)60(X) > ———
; m{ o >>ui(x0)220}

Then the law of (Ei:(? (X))zer,z>az, conditional on 72° < ( is the same as the law of

(uy(x)2 0% ()?))IEI,IZIO conditional on 7 < ¢. The factor uy(z)? comes from the fact that per-
forming a conjugation we change the measure relative to which the local times are defined.

For any a < x¢ € I, X reaches a a.s. Thus (¢2(X))zer s>, satisfies the SDE
~ /2 =
AR CLGONEY
uy ()
and (uy(2)30220 (X))rel,aza, Satisfies (2.4.5). O
20

If there is immigration: Let Z be a solution to (2.4.2) defined on I n [z, +0), starting
at zo with the initial condition Z,;, = 290 > 0. Then, for A >0 and z € I, > x¢:

(2.4.6) Ez, == [ 2] = exp <—zmp(:co,:c, A) — r U(y, z, A)c(y)dy>

2.4.2. Occupation field. Let L be the generator of a diffusion on I of form (2.2.11).
Let L£,,r be a Poisson ensemble of intensity auf. L is a random infinite countable
collection of unrooted loops supported in I. It is sometimes called "loop soup".

~

DEFINITION 2.5. The occupation field of Lo 1, is (EZJ:)IE[ where

npi= Y, )
YELA, L
We will drop out the subscript L whenever there is no ambiguity on L. In this subsection
we will identify the law of (L% ).er as an inhomogeneous continuous state branching process
with immigration. If J is a discrete subset of I, then applying proposition 2.3.23 we deduce

~

that (L£%),ey is the occupation field of the Poisson ensemble of discrete loops of intensity
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apy, as defined in [Jan11], chapter 4. This fact allows us to apply the results of [Jan11]
in order to describe the finite-dimensional marginals of the occupation field. If the diffusion
is recurrent, then for all x € I, £ = +oo a.s. If the diffusion is transient, then for all z € I,

EZ < +o0 a.s. Next we state how does the occupation field behave if we apply various
transformations on L.

PROPERTY 2.4.2. Let L be the generator of a transient diffusion.
(i) If A is a change of scale function, then

FA@)

_ Pz
a,Scaled™ L — anL

(il) If V is a positive continuous function on I, then
Ei,%L = Ez,L
(iii) If h is a positive continuous function on I such that Lh is a negative measure, then
£ S
a,Conj(h,L) — h(l_)Q a,L
Previous equalities depend on a particular choice of the speed measure for the modifica-
tion of L. For (i) we choose (44 o A*1)71 m o A tda. For (ii) we choose %m(m)dm. For

(iii) we choose h(x)*m(x)dz. The fact that Lr

a.Conj(h,r) 7 La,r despite Lo conj(n,L) = La,L

comes from a change of speed measure.
Next we characterize the finite-dimensional marginals of the occupation field by stating
the results that appear in [Janl1], chapter 4.

PROPERTY 2.4.3. The distribution of Eﬁ is

(Gr(z,2)* 0y !
— ¢ ——— ) 1;50dl
I() PGy
Let x1,29,...,2p € I and A1, A2, ..., A\, = 0. Then

N P det(GL—Z’-L Nida, (Tiy zj))1<i j<n ¢
2.4.7 E |ex — )\iﬁgi — i=1 Nidz; VA
( ) l p ( ;1 >] ( det(GL(l'i,l’j)hgi,jgn >

The moment E [L'ﬁl Lr2 .. Eﬁ”] s an a-permanent:

B[2pin . Er]= %) ot e o7 T] Glais o)
eSS, i=1

~

IfJ is a discrete subset of I, then (LZ)ye1, viewed as a stochastic process that evolves when x
increases, is an inhomogeneous continuous state branching process with immigration defined
on the discrete set J. In particular, for any x1 < 290 < --- <z, €l andpe {1,2,...,n},

=, A, T STp AT > . - g
(Egl JLZ2 L ,Ea”) and (Ea” JLoPT L ,EZ") are independent conditional on L,”.

Next we show that the processes x +— LI parametrized by x € I, where x is assumed
to increase, is an inhomogeneous branching process with immigration of form (2.4.2). In
particular, it has a continuous version and is inhomogeneous Markov.

~

PROPOSITION 2.4.4. (L%),er has the same finite-dimensional marginals as a solution to
the stochastic differential equation

1
(2.4.8) 7, = \/T0(a)N ZodBy + 22 flg (1) Zydz + aw(z)dz
i
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~

If L is the generator of a Brownian motion on (0, +0) killed when it hits 0, then (LZ)z>0
has the same law as the square of a Bessel process of dimension 2« starting from 0 at x = 0.
If L is the generator of a Brownian motion on (0, Tmaz), killed when hitting the boundary,

~

then (LX)o<z<z,,., has the same law as the square of a Bessel bridge of dimension 2« from
Oatx=01to0 atxr =2mas-

PROOF. Let xg < z € I and Mg, A = 0. Applying the identity (2.4.7) to the case of two
points, we get that
(2.4.9)

E [exp (—Aoﬁgo - A,Eg)] = (1 + M G(20,20))(1 + AG(z, 7)) — MoA(G(w0,7))%)

—

Let

~x G , %
A(zo, Ao) :=E [E’A‘)C“O] - (%)

For y < z, let
G(z,y)G(y, z)A
Gy, y)(G(y,y) + Adety . G)

G(y,y)
A)i=—1
oy, z, ) og (G(y,y) T det, . G

One can check that the right-hand side of (2.4.9) equals
A(‘r07 )‘0 + w($07 xz, )‘)) eXp(—Oé(‘D(l‘Q, Z, )‘))

In particular for the conditional Laplace transform:

Yy, z,\) =

(2.4.10) E [exp (—)\EAz) |E§0] = exp <—2§0¢(z(), x, )\)) exp(—ap(zo, z, \)) a.s.
Moreover
o0 _ 9 2 duy

(), V) — 2%@”@1&@, )
and
dp
a_y(y"r’ ) = —W(Ui,UT)(y)’(/)(y,l‘,)\) = —w(y)d)(ya%)\)

and we have the initial conditions ¥ (z,z,A\) = A and ¢(z,z, A) = 0. Thus (2.4.10) has the
same form as (2.4.6) where ¢(y) = aw(y). Let (Z,)yer,y==, be a solution to (2.4.8) with the
initial condition Z,, being a gamma random variable of parameter o with mean aG(zo, xo).
It follows from what precedes that (Egn,ﬁg) has the same law as (Z,,, Z;). Using the
conditional independence satisfied by the occupation field, we deduce that (Eg)ye I,y=>xz, has
the same finite-dimensional marginals as (Z,)yer,y=2,- Making xo converge to inf I along
a countable subset, we get a consistent family of continuous stochastic processes, which
induces a continuous stochastic process (Zy)yecr defined on whole I. It satisfies (2.4.8) and
has the same finite-dimensional marginals as (Eg)ye I
In case of a Brownian motion in (0, +00) killed in 0, the equation (2.4.8) becomes

dZy = 27/ ZdB, + 2adx

which is the SDE satisfied by the square of a Bessel process of dimension 2. Moreover
(L£Z)z>0 has the same one-dimensional marginals as the latter, more precisely £Z is a gamma
r.v. of parameter o with mean 2ax. This shows the equality in law.
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In case of a Brownian motion in (0, Z;,4.) killed in 0 and z,,4, the equation (2.4.8)
becomes

1
dZ, =27/ Z,dB, + —————— 7, dzx + 2adx

Tmaz —

which is the SDE satisfied by the square of a Bessel bridge of dimension 2« from 0 at

=010 0 at & = Zyqa,. Moreover the latter process and (£Z)o<z<z,,., have the same one-
dimensional marginals, more precisely gamma r.v. of parameter o with mean 2a(%q: —

2)—2—. Thus the two have the same law. O

Tmax

We showed that (Eg)xel has the same finite-dimensional marginals as a continuous
stochastic process. We will assume in the sequel and prove in section 2.5.2 that one can
couple the Poisson ensemble £, and a continuous version of its occupation field (23)16 7 on
the same probability space. This does not follow trivially from the fact that the process
(Eﬁ)ze[ has a continuous version. Consider the following counterexample: Let U be an
uniform r.v. on (0,1). Let £ be a countable random set of Brownian excursions defined as
follows: conditional on U & is a Poisson ensemble with intensity n3Y, + n5Y,. Let (&,)zer
be the occupation field of £. Then & is continuous on (—00,U) and (U, +00) but not at U.
Indeed EU =0 and

lim & = lim & =1
z—U— z—U—

Let (é\;)xeR be the field defined by: z‘j’g’g = ff‘x ifz # U and &, = 1. (c‘j’g’ﬁ)xeR is continuous and
for any fixed z € R gg’ﬁ = é‘\x a.s. Thus (é\;)xeR is a continuous version of the process (é\x)xe]g
but it can not be implemented as a sum of local time across the excursions in £. As we will
show in section 2.5.2, such a difficulty does not arise in case of L.

(Ei)xe 1 is an inhomogeneous continuous state branching with immigration. The branch-
ing mechanism is the same as for the local times of the diffusion X, given by (2.4.1). The
immigration measure is aw(z)dz. The interpretation is the following: given a loop in L,
its family of local times performs a branching according to the mechanism (2.4.1), indepen-
dently from the other loops. The immigration between x and x + Az comes from the loops
whose minima belong to (z,z + Ax). It is remarkable that although the immigration mea-
sure is absolutely continuous with respect to Lebesgue measure, there is only a countable
number of moments at which immigration occurs. These are the positions of the minima of
loops in L,,. Moreover the local time of each loop at its minimum is zero. For z > a € I, let

L= 3 ()
V€L
min~y>a

Let a < bel. Forj <neN,letAx, := %(b— a) and let z;, := a + jAz,. Then

(EAS’ 1) ) is a sequence of independent gamma r.v. of parameter o and the mean
1<j<n
Al j Glzj—1,25)G(xj, 25—
of £{Z=1)%5 ig a(G(xj,xj) _ Gl 7)Glay, 2 1)) For n large
Gaj1,2j-1)

G(zj1,2;)G(x5,25-1)
G(zj-1,7-1)

G(zj,x;) — = w(z;—1)Az, + o(Azy)
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and o(Ax,,) is uniform in j. Thus

: 3,1,90 —
Jim B 3 £ |

Jj=1
n . . . . b
lim « (G(xj,xj) - G(xj_l’xJ)G(x]’x]_l)) = aj w(x)dx

n—+w et G(ijhl'j—l)

and

n
; Plzj—1),x;) —
n1—1>rE/ Var( Z:l Ly )
j=

n

i, o 3, (61612 -

G(zjlazj)G(%zjl))Q _0
G(xj-1,2j-1)

It follows that Z Llz=1) converges in probability to « st(:ﬂ) dx. This is consistent
with our mterpretatlon of immigration.
Next proposition deals with the zeroes of the occupation field.

PROPOSITION 2.4.5. Let zg € I. If " , w(z)dz < +o0 then
lim Ez =

xz—inf T

sup I

Analogous result holds zfg (z)dx < +o0.

Ifa 1, then the continuous process (Ez Veer stays almost surely positive on I. If a <1
then (Ea)xe[ hits 0 infinitely many times on I.

Proor. If ("% w(z)dzr < +00, then L + k, where £ is the killing measure of L, is also
the generator of a transient diffusion. We can couple (Ca 1)zer and (Ea L4 )zer O the same

probability space such that a.s. for all x € I, E%L < Lo But according to property

a,L+K"*
2.4.2 (i), (L% 1 1.)zer is just a scale changed square of Bessel process starting from 0 or
square of a Bessel bridge from 0 to 0. Thus
< =
QLE]THC" L= allg;lflﬁa L4 =0

Regarding the number of zeros of (C )zer on I, property 2.4.2 ensures that it remains
unchanged if we apply scale, time changes and conjugations to L. Since any generator of a
transient diffusion is equivalent through latter transformation to the generator of a Brownian
motion on (0,+o0) killed in 0, the result on the number of zeros of (L%),e; follows from
standard properties of Bessel processes. O

In [SW12] respectively [JL13] are studied the clusters of loops induced by a Poisson
ensemble of loops in the setting of planar Brownian motion respectively Markovian jump
processes on graphs. In our setting of one dimensional diffusions the description of such
clusters is simple and is related to the zeros of the occupation field. We introduce an
equivalence relation on the loops of L,: -« is in the same class as 7 if there is a chain
of loops 70,71,.-.,7vn In L4 such that vy = v, 7, = 4 and for all i € {0,1,...,n — 1},
Y([0, T (v)]) N Yi+1([0, T (7i+1)]) # . A cluster is the union of all ([0, T(7)]) where the
loops v belong to the same equivalence class. It is a subinterval of I. By definition clusters
corresponding to different equivalence classes are disjoint.

PROPOSITION 2.4.6. Let L be the generator of a transient diffusion on I. If a > 1,
the loops in L, form a single cluster: I. If o € (0,1), there are infinitely many clusters.
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These are the maximal open intervals on which (Ei)xel is positive. In case of the Brownian
motion on (0, 400) killed at 0, the clusters correspond to the jumps of a stable subordinator
with index 1 —«. In case of a general diffusion, by performing a change of scale of derivative

%%, we reduce the problem to the previous case. In case of the Brownian motion on (0, +00)

killed at 0 and with uniform killing k, the clusters correspond to the jumps of a subordinator
e2V2hz g

with Levy measure 1x>0m.

PROOF. Assume that £, and a continuous version of (EZ)Ie] are defined on the same
probability space. Almost surely the following holds

e Given v # v’ € L,, miny # maxy’ and max~y # min~’.
e Forally € L,, /™07 (y) = ™37 (y) = 0 and £*(v) is positive for x € (min v, max ).

Whenever the above two conditions hold it follows deterministically that the clusters are
the intervals on which (Eﬁ)xe 7 stays positive. We deduce then the number of clusters from
proposition 2.4.5.

If L is the generator of the Brownian motion on (0, +00) killed at 0, then (EA%;)IE] is the
square of a Bessel process of dimension 2« and its excursions correspond to the jumps of a
stable subordinator with index 1 — a.

In general a generator L has the same measure on loops as Conj(uy, L). A diffusion of
generator Conj(uy, L) transforms through a change of time and a change of scale of density

3% into a Brownian motion on (0, +c0) killed at 0. For the clusters, the change of time
1

does not matter.

In case of a Brownian motion on (0, 4+00) killed at 0 and with uniform killing s, we can

2Kz

take uy(z) = e~ . The scale function is then

T dy v 1
Sm=f—=fe2myd=—62m”—l
(@) o u(y)? 0 Y 2\/2n( )

Let (Y;)t=0 be an 1 —« stable subordinator with Levy measure 1y>0y*(2*a)dy. The clusters

of L 1 42 _ correspond to the jumps of the process (S71(Y}))¢=0, which is not a subordi-
'2 g2

nator. We will that nevertheless the latter process the same set of jumps as a subordinator

e2V2hz g

@V 1y Let ¢ > 0 and (Yz:)i=0 be the process obtained

with Levy measure 1,

from (Y;);»0 by removing all the jumps of height less then . By construction Y, < V.
(S71(Yz1))i=0 is a Markov process: given the position of S™!(Y.;) at time ¢, the process
waits an exponential holding time with inverse of the mean equal to

F“ dy 1
A e

Once a jump occurs, the jump of Y; is distributed according the probability

dy
y27a

l—«

1y>6(1 —-a)g
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The distribution of the corresponding jump of S~*(Y. ;) is obtained by pushing forward the
above probability by the map y — S~ (y + Y. ) — S~ (Y- ;) which gives

(2@)270¢e2\/ﬂ(x+3_1 (Ye.t)) g
(62\/ﬂ(x+sfl(ys,,,)) _ ewﬂs—l(ya,t))%a

l—«a

loss=1(c4ve 1 )—5—1(vo) (1 —@)e

—a —a,—(l—-«a kSTt 62\/ﬂ1dl~
= Limst(ervs 0571002, (L= @) (@VR) e ORS00 e S
e (2 /2,1)27& 62\/27111(11,
= lyos-1(ctv.)—5-1(v. ) (1 — @)

(1 + 2@}/6715)1—0( (62 2KT _ 1)27a

Consider now the random time change

7.(v) = inf {t = f T A v}

0 (142¢2kY. ,)1-@

and at the limit as e — 0

t / 2—a
7(v) := inf {t > 0‘f (2v2r) ds = v}
0 (1 + 2’\/2/@}/578)1_0‘

For the time-changed process (S™'(Y% ;. (»)))v=0, the rate of jumps of height belonging to
[z,x +dx] is

e2V2re gy . 1 1
(VB _1)a ifz>S5" e+ Yer () =5 (Yer(v)
0 otherwise

Thus, as € goes to 0, on one hand the process (Sfl(YE,TE(,U)))UZ() converges in law to

(S ' (Yr(v)))v=0 and on the other hand it converges in law to a subordinator with Levy
e2V2re gy 0

measure 1.’,C>O W .

The clusters coalesce when « increases and fragment when « decreases. Some informa-
tion on the coalescence of clusters delimited by the zeroes of Bessel processes is given in
[BP99], section 3. This clusters can be obtained as a limit of clusters of discrete loops on
discrete subsets. In case of a symmetric jump process to the nearest neighbours on eN, if
a > 1, there are finitely many clusters, and if a € (0,1), there are infinitely many clusters
and these clusters are given by the holding times of a renewal process, which suitable nor-
malized converges in law as € — 07 to the inverse of a stable subordinator with index 1 — a.
See remark 3.3 in [JL13|.

We can consider the occupation field (fﬁc‘Y )zer if L is not the generator of a diffusion
but contains creation of mass as in (2.2.19). In this setting, if h is a positive continuous

function on I such that % is a signed measure, then for all z € T

ACE 1 AI
Ea,Conj(h,L) = W‘CQ,L

It follows that if L € ©~ then for all z € I, EiL < 4 as. and if L € DY then for all
rzel, EEL = 400 a.s. If L € ®*, then according to proposition 2.2.9 (iv), there is a positive
Radon measure % such that L — & € D% Then for all z € I, EﬁyL > CAZ;,L% = 4o0. If
L € D7, then properties 2.4.2 (i) and (ii) stiAll hold. The description given by the property

2.4.3 of the finite-dimensional marginals of (L£%),¢s is still true, although the case of creation
of mass wasn’t considered in [Jan11]. (£%),e; still satisfies the SDE (2.4.8).
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PROPOSITION 2.4.7. Let L € ®~ and U a finite signed measure with compact support in
1. Then there is equivalence between

i) E [exp (gl 227Lz7(dz))] < +o0
(i) L+veD-
If L + 0 e® then for s € [0,1]

(2.4.11) E [exp ( L EAZ;,Lﬂ(dac))] = exp (a L 1 L GL+sf/(z,z)17(dz)ds>

PROOF. First observe that {, 23 £|7|(dz) is almost surely finite because |7| is finite and

has compact support and (EAZ 1 )zer is continuous. Also observe that ®~ is convex. So if
L+v0e® ,then forall se[0,1], L+ sveD.

(i) implies (ii): Let P, , be the law of L, 1 and P., ,,, be the law of L, 4. There
is an absolute continuity relation between the intensity measures:

pr+s(dy) = exp (L e (7)) pr(dy)

In case (i) is true P, is absolutely continuous with respect to Pz, , and

exp (SI Ei,LD(dx))
E [exp (SI EﬁLﬁ(dz))]

But this can not be if L+ ¢ ©®~ because then for any = € I, E L <+ooand Ea L+p = t00.
Thus necessarily L + 7 € ©~

(ii) implies (i): We ﬁrst assume that 7 is a positive measure and L + 7 € ©®~. Then
P¢, . is absolutely continuous with respect to P and

o, L+v

(2.4.12) dP, Py, ,

o L4b

exp (= §; £8,1.457(da))
E |oxp (~§; £5,57(d0)) |

Inverting the above absolute continuity relation, we get that

E [exp (L Eg,Lﬂ(dx))] =E [exp (—Lﬁg,uﬁﬁ(daz))]l <+

If o is not positive, let o+ and —o~ be its positive respectively negative part. Then

E[exp <LCA§,LD(dx))]
=E [exp ( L Le, o zﬁ(dx))] E [exp (— L EzyLﬂ(dx))]

E [exp (— §; 23 LD_(dac))]

= < 40

B o (=5 227 ()|

For the expression (2.4.11) of exponential moments:

(2.4.13) %E [exp (s L Engﬂ(dx))] =E [ L L2 po(dx)exp (s L 2§7Lﬁ(dz)>]

P, .
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From the absolute continuity relation (2.4.12) follows that the right-hand side of (2.4.13)

equals
’ J s o (2, 2)9(da)E [exp( f oo dcc))]

This implies (2.4.11). O

As in discrete space case, the above exponential moments can be expressed using deter-
minants. On the complex Hilbert space L?(d|7|) define for s € [0, 1] the operators

(Bsof) (@ f Gryso(z,y)f(y)v(dy)

(16511 j Grvus (2, 9) F(1)]7|(dy)

The operator |&%;]| is self-adjoint, positive semi-definite with continuous kernel function,
and according to [Sim05], theorem 2.12, it is trace class. Since trace class operators form a
two-sided ideal in the algebra of bounded operators, &; is also trace class. Moreover

(2.4.14) Tr(®s) = J;GL+5,;(:L’, x)v(dx)

The determinant det(Id + &5 ) is well defined as a converging product of its eigenvalues (see
[SimO05], chapter 3).

PROPOSITION 2.4.8.
1
exp (af f GLJrSg(ac,ac)z?(dz)ds) = (det(Id + &5))“
0 JrI

PROOF. &; has only real eigenvalues. Indeed, let A be such an eigenvalue and f a non
zero eigenfunction for A. The sign of 7, sign(?), is a {—1, +1}-valued function defined d|7|
almost everywhere.

(2.4.15) f (sign(?) ) ()| 65| (sign (i) f)() || (d) f (@

The left-hand side of (2.4.15) is non-negative. If the right-hand side of (2.4.15) is non-zero,
then M is real. If it is zero, consider f. := f + esign(v)f. Then

3= i 5 ( [ @) @0 i) )@ ) ) ([ |f|2(z)|17|(dx))1

e—0+ 2¢

and thus A is real.

The operators B,; are compact and the characteristic space corresponding to each of
their non-zero eigenvalue is of finite dimension. Let ()\;);>0 be the non-increasing sequence
of positive eigenvalues of &;. Each eigenvalue \; appears as many times as the dimension
of its characteristic space ker(®; — A\;Id)" (n large enough). Similarly let (—););>0 be the
non-decreasing sequence of the negative eigenvalues of &;. Let s € [0,1]. According to the
resolvent identity (lemma 2.2.8), the operators ®; and &,; commute and satisfy the relation

1
(2.4.16) B8, =G ;6; = 1—_8((’5,; — (’5517)

Since &; and B,; commute, these operators have common characteristic spaces. From
(2.4.16) follows that ( is a non-increasing sequence of positive eigenvalues of
A )
1—(1—s)X; /420

1+(1=s)X; /i=0

G, If % is not an eigenvalue of &, then ( is also a sequence of eigenvalues

of &,;. But the family of operators (&sz)se[o,1] is bounded. Thus none of ﬁ can
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blow up when s varies. So it turns out that &; has no eigenvalues in (-0, —1]. From
(2.4.14) we get

i i
Grisp(z,x)v(dx) = -t —
LH( )i (dx) ;Hu_% ;1_(1_%_

The above sum is absolutely convergent, uniformly for s € [0,1]. Integrating over [0, 1]
yields

1
J J Griso(z,x)0(dx)ds = Z log(1 4+ \;) + 2 log(1 —\))
0 JI i=0 j=0

This concludes the proof. O

2.4.3. Dynkin’s isomorphism. In this subsection we recall the equality in law ob-

served in [Jan11] between the occupation field (£%),er and the square of a Gaussian Free
2

Field and show how to derive from this particular versions of Dynkin’s isomorphism.
Let L be a generator of a transient diffusion on I of form (2.2.11). Let (¢, ).er be a
centred Gaussian process with variance-covariance function:

E[¢x¢y] = G(xa y)
(¢z)zer is the Gaussian Free Field associated to L. Let S be a primitive of u—“; Then
1

S(sup I) = 4. Moreover S(inf I) > —oo because L is the generator of a transient diffusion.

(m(bg_l(“))aeéa) is a standard Brownian motion starting from 0 at S(infI). In
particular (¢, )ger is inhomogeneous Markov and has continuous sample paths.
It was shown in [Jan11], chapter 5, that when a = 3 (L% ).e; has the same law as
2

(3¢2)zer. In case of a Brownian motion on (0, +00) killed in 0, (Eﬁ)gwo is the square of
2

a standard Brownian motion starting from 0. In case of a Brownian motion on (0, Zqaz)
killed in 0 and Zymqz, (L3 )o<z<w,,.. 1S the square of a standard Brownian bridge on [0, Zmaz]
2

from 0 to 0. In case of a Brownian motion on R with constant killing rate #, (L% )zcr is the
2
square of a stationary Ornstein—Uhlenbeck process.
The relation between the occupation field of a Poisson ensemble of Markov loops and

the square of a Gaussian Fee Field extends the Dynkin’s isomorphism which we state below
(see [Dyn84a| and [Dyn84c]):

THEOREM(DYNKIN’S ISOMORPHISM). Let x1, s, ..., To, € I. Then for any non-negative
measurable functional F' on continuous paths on I,

(2417) E, [H %F((}bi)me[)] -

n

> [Ba[r(Get + X eenen] TT wme(an)
pairings 7j=1 pairs
(2n)!

means that the n pairs {y;, z;} are formed with all 2n points x; in all 575

where Zpairings
possible ways.

Next we will show that in case x; = x;4n, for i € {1,...,n} , ie. H?Zl ¢z, being a
product of squares ]_[:?:1 qﬁi, one can deduce the Dynkin’s isomorphism from the relation
between the square of the Gaussian Free Field and the occupation field. In [LMR15] and
[FR14] this is only done in case n = 1 and 1 = x5 using the Palm’s identity for Poissonian

ensembles and the analogue of the relation (2.3.14). To generalize for any n we will use an
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extended version of Palm’s identity and the absolute continuity relation given by proposition
2.3.19 (ii).

LEMMA 2.4.9. Let € be an abstract Polish space. Let M(E) be the space of locally finite
measures on € and let M € M(E). Let ® be a Poisson random measure of intensity M.
Let H be a positive measurable function on M(E) x E™. Let P,, be the set of partitions of
{1,....,n}. If Pe P, and i € {1,...,n}, then P(i) will be the equivalence class of i under
P. The following identity holds:

(2.4.18) E[ H(®,q1,- . qn H@ dgi ] -
g’lL

Z J (q)+ Z 6qcaq77(1)7"'7q77(n))] HM(qu)
Pexg,, VEWT ceP ceP
Proor. We will make a recurrence over n. If n =1, (2.4.18) is the Palm’s identity for
Poisson random measures. Assume that n > 2 and that (2.4.18) holds for n — 1. We set

ﬁ(q)atha .. ~;Qn71) = LH(‘I),% .. 7Qn71;qn)q)(dQn)

Then
(2.4.19)
n n—1
E[ . H(®,q1,. -, qn1,90) [ [ ®(dgi ] = [L ﬁ(q);(h;“'a%tfl)l—[q)(d%)]
" i=1 nt i=1

= ,E[J H q)+ Z 5(] nq'P’(l)a'"7q'P’(n—1)aqn)

c'eP’
®(dgn) + ) 84, (dgn) ] [T M(dge)

c'eP’ c’eP’!

Given a partition P’ € B,,—1, one can extend it to a partition of {1,...,n — 1,n} either by
deciding that n is single in its equivalence class or by choosing an equivalence class ¢’ € P’
and adjoining n to it. In the identity (2.4.19) the first case corresponds to the integration
with respect to ®(dg,), and according to Palm’s identity

UHdﬂr D Gau @1y 2 AP (1), Gn) P (dQn)] =

c'epP’

LE lH(Q + Z 5qcl y 4P (1)s - -+ dP(n—1)s Qn)] M(dqn)
c'eP’

The second case corresponds to the integration with respect to é, ,(dg,). Thus the right-
hand side of (2.4.19) equals the right-hand side of (2.4.18). O

Next we show how derive a partlcular case of Dynkin’s isomorphism using the above
extended Palm’s formula. Since (C )oer and (5¢2)zer are equal in law:

E¢ |;|i[ ¢1, ¢;c iCEI)] = 2nEL% lHEElF( Ag%)xe[)]
i=1
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Applying lemma 2.4.9 we get that

5[115“ (£3) xen] =
2 JH&L YP(i)) l ﬁx-{-Zf Ye))zer) H = p*(dve)

PePn ceP cE'P

Let &,(P) be all the permutations o of {1,...,n} such that the classes of the partition
P are the supports of the disjoint cycles of 0. Given a class ¢ € P, let j. be its smallest
element. From property 2.3.11 (ii) follows that

.
[Teoma) = 3 [eeooerioo(y,)
1=1

0€G, (P) ceP

m

Proposition 2.3.12 (ii) states that
g*l‘jc»%(y‘c)w T le \(,C)( ) (d%) —

lel=1¢, lel (. -
Ta (W70 (d5;) - e 0N (5, 1)) < e (e )

and if the loop 7. is a concatenation of paths 7, , ..., Y,lci-1(;.), Volel(;,) then

5 (ve) = L5(%5.) + -+ Aglei-130)) + L7 (Folel (5.))

)a:e])] =

Z gn—t cycles OfUJEE% l £1 + ZE % er ﬂuz cr(z) dfy)

It follows that

=8

n
(2.4.20) Q”E[;l ln z

ceS,
But the right-hand side of (2.4.20) is just the same as the right-hand side of (2.4.17) in the
specific case when for all i € {1,...,n}, x;+,, = x;. This finishes the derivation of the special

case of Dynkin’s isomorphism.

2.5. Decomposing paths into Poisson ensembles of loops

2.5.1. Glueing together excursions ordered by their minima. Let L be the
generator of a diffusion on I of form (2.2.11). A loop of L, 1 rooted at its minimal point
is a positive excursion. For a given g € I, we will consider the loops v € L, 1, such that
miny € (inf I, 29]. We will root these loops at their minima and then order the obtained
excursions in the decreasing sense of their minima. Then we will glue all these excursions
together and obtain a continuous paths «f(()f]";). The law of this path can be described as
a one-dimensional projection of a two-dimensional Markov process. Moreover this path
contains all the information on the ensemble of loops L4,z N {7y € £*¥|minvy < z¢}. So this

is a way to sample the latter ensemble of loops. In the particular case of a =1, &7} (0) 45 the
sample paths of a one-dimensional diffusion. This is analogue of the link between L1 and
the loop-erasure procedure already observed in [LWO04] and in [Jan11], chapter 8 and will
de described in detail in section 2.5.3 In the section 2.5.1 we will consider generalities about
glueing together excursions ordered by their minima and probability laws won’t be involved.
In the section 2.5.2 we will deal with 5((32) and identify its law. In the section 2.5.3 we will
focus on the case a = 1 and describe other ways of slicing sample paths of diffusions into
Poisson ensembles of loops.
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Let 9 € R and let Q be a countable everywhere dense subset of (—o0,xzp). We con-
sider a deterministic collection of excursions (e)seo Where (eq(f))o<t<r(e,) is @ continuous
excursion above 0, T'(eq) > 0 and

04(0) = e, (T(eg)) = 0
Vie (OvT(eq))a eq(t) >0

We also assume that for all C' > 0 and a < xg, there are only finitely many ¢ € Q n (a, z)
such that maxe, > C and that for all a < z

(2.5.1) D1 Tley) < 4w
geQn(a,zo)
Let T (y) be the function defined on [0, +00) by
T(y) = Y, Tleg)

€2 (w0 —y,%0)
T is a non-decreasing function. Since Q is everywhere dense, T is increasing. 7T is right-
continuous and jumps when zy —y € Q. The height of the jump is then T'(e_,).
Let Thag := T (+00) € (0, +0]. For t € [0, Tinas) we define
0(t) := zo — supfy € [0, +0)[T (y) > t}

6 is a non-increasing function from [0, Thaz) to (—00, 2g]. Since T is increasing, 6 is contin-
uous. We define

b () = inf (s € [0, Tonas)|9(5) = 6(1)}
bT(t) = sup{s € [0, Trnaz)|0(s) = 0(t)}
b~ (t) < b*(t) if and only if 6(t) € Q and then b*(t) — b~ (t) = T'(eg()). We introduce the

set
"= {t € [0, Tonar)|0(t) € Q, b7 (1) = 0(2)}
b~ is in one to one correspondence with Q by t — 6(¢).
Finally we define on [0, T}p,q2) the function &:

G if 0(t) ¢ Q
£(t) .—{ 0(t) + equ)(t —b(t) ifO(t) e Q

Intuitively ¢ is the function obtained by gluing together the excursions (g + e4)qeo ordered
in decreasing sense of their minima. See figure 2.1 for an example of £ and 6.

PROPOSITION 2.5.1. ¢ is continuous. For all t € [0, Tiaz)

(2.5.2) 0(t) = [1515]5

The set b~ can be recovered from £ as follows:

(2.5.3) b~ = {t € [0, Thaz)|E(t) = [iontf]f and e > 0,Vs € (0,¢),&(t + s) > £(t)}

Ifto e b~ then
(2.5.4) b* (to) = inf{t € [to, Timaa]|E(t) < E(t0)}

PROOF. Let t € [0, Tynqaz)- To prove the continuity of ¢ at ¢ we distinguish three case:
the first case is when 0(t) € Q and b~ (t) <t < b™(¢), the second case is when 6(¢) ¢ Q and
the third case is when 0(t) € Q and either b~ (¢) = ¢ or b+ (¢) = t.

In the first case, for all s € (b~ (t), b (¢)),

£(s) = 0(1) + eguy(s — b (1))

eg () being continuous, we get the continuity of £ at ¢.



2.5. DECOMPOSING PATHS INTO POISSON ENSEMBLES OF LOOPS 67

In the second case we consider a sequence (t,)n>0 in [0, Traz) converging to ¢. Let
C > 0. There are only finitely many ¢ € Q such that there is n > 0 such that 6(¢,) = ¢
and maxe, > C. Moreover for any ¢ € Q, there are only finitely many n > 0 such that
0(tn) = g. Thus there are only finitely many n > 0 such that 6(t,,) € Q and maxeg, ) > C.
So for n large enough

(2.5.5) 0(tn) < &(tn) < O(tn) +C
0

But £(t) = 6(t) and 0(ty,) converges to 6(t). Since we may take C' arbitrarily small, (2.5.5)
implies that £(t,,) converges to (t).

Regarding the third case, assume for instance that 6(t) € Q and ¢ = b~ (t). The right-
continuity of ¢ at t follows from the same argument as in the first case and left-continuity
from the same argument as in the second case.

By definition, for all ¢t € [0, Thaez), 0(t) < &(t). 6 being non-increasing, for all ¢ €
[07 Tmaa:)

6(t) < inf
(t) [lg}t]ﬁ

For the converse inequality, we have

Regarding (2.5.3) and (2.5.4) we have the following disjunction: if 6(t) € Q and b (t) <
t < bt(t) then £(t) > 0(¢). If (t) € Q and ¢t = b~ (¢) then for all s € (0,b%(t) — b (t)),
E(t +5) > &(t). If either O(t) € Q and ¢t = b1 (t) or (t) ¢ Q then £(t) = 6(¢) and there is a
positive sequence (s, )n=0 decreasing to 0 such that (¢t +s,) ¢ Q and £(t+s,,) = 0(t+s,) <
0(t). O

Fig.2.1 - Drawing of £ (full line) and 6 (dashed line).

Previous proposition shows that one can reconstruct @ and the family of excursions
(eq)qeo only knowing £. (2.5.2) shows how to recover 6 from £. (2.5.3) and (2.5.4) show how
to recover the left and the right time boundaries of the excursions of £ above 6. Also observe
that the set defined by the right-hand side of (2.5.3) is countable whatever the continuous
function £ is, even if it is not obtained by glueing together excursions.

2.5.2. Loops represented as excursions and glued together. Let o > 0 and
L« the Poisson ensemble of loops of intensity apf;,, where ¥, is the measure on loops
associated to the Brownian motion on R. Let g € R. We consider the random countable
set Q:

= {min’ﬂ’y € Ea,BI\/I} N (—OO, 1‘0)
Almost surely Q is everywhere dense in (—o0,x¢) and for every g € Q there is only one
v € Lo,y such that miny = ¢. Almost surely v € £, gy reaches its minimum at one
single moment. Given ¢ € Q and vy € L, gy such that miny = ¢ we consider e, to be the
excursion above 0 equal to v — ¢ where we root the unrooted loop v at argminy. Then the
random set of excursions (e4)qco almost surely satisfies the assumptions of the section 2.5.1.
In particular the condition (2.5.1) follows from the fact that, according to (2.3.27)

BN |

| A TO et ) = o =) | Lot < oo
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Thus we can consider the random continuous function (&4, p M(t)(z"))t;o constructed by
glueing together the excursions (¢ + e4)qc0 in the way described in section 2.5.1. Let

05 (0) = it €75

=00 (0 = (€59, (8),059,, (1))

Next we will describe the law of the two-dimensional process (E(()f"B)M(t)) =0

PROPOSITION 2.5.2. Let (ét)t;o be a standard Brownian motion on R starting from 0.

(Eg’ng(t))t>0 has the same law as

N 1 . 1 .
(10 111 = 20080 - (5D
t=0

In particular for a = 1, ( %)M (t))t<o has the same law as a Brownian motion starting from
Xo.

PROOF. For a < x¢ let T, be the first time 9&35%)]\4 hits a. For [ > 0 let

70 .= inf{t > 0[¢%(B) > 1}

According to the disintegration (2.3.27) of the measure ;% in the proposition 2.3.14, for all
a < xo the family (e4)ge0n(a,z,) Of excursions above 0 is a Poisson point process of intensity
2am79;. This implies the following equality in law

(law) ,,
(féajOB)M(t)_GSTOB)M(t))OStSTa = (Bosrss,, .,

Since the above holds for all a < z¢, we have the following equality in law
(6 ar (D) = 05550 (1), a(wo = b mar (D))o = (1Bil, €2(B))ez0

which is exactly the equality in law we needed. Finally for o = 1, (¢ + | Be| — €9(B))=0 has
the law of a Brownian motion starting from xy. See [RY99], chapter VI, §2. O

(law)

According to proposition 2.5.2 a Brownian sample path can be decomposed into a Pois-
son process of positive excursion with decreasing minima.This decomposition id for instance
described in [KS10], section 6.2.D. In case a = 1, proposition 2.4.4 states that the occupa-
tion field of a the Poisson ensemble of loops associated to the Brownian motion on (0, 4+0)
killed at 0 is the square of a Bessel process of dimension 2 starting from 0 at 0. This result
can also be obtained using the fact that ( §z]§)lw(t))t<0 is a Brownian sample path and apply-
ing the first Ray-Knight theorem which gi{/es the law of the occupation field of a Brownian
path stopped upon hitting 0.

From proposition 2.5.2 follows in particular that (ES:OB)M (t))t>0 is a sample path of a
two-dimensional Feller process. Let -

TH(R?) := {(z,a) € R?*|x > a} Diag(R?) := {(z,z)|z € R}

For (z9,a0) € TT(R?) we define the process
(25.6) (20557 (0) 10 = €75 0,005 () 15

~ 1 ~ 1 ~
= (a0 + w0 = ao + Bil = 07 (B ag — 607" (B)
@ « t=0

~ . . . . ,:.(x07x0) ':'(350)
where (By)¢>0 is a Brownian motion starting from 0. E0.BM has the same law as S0 BM-

The family of paths (ESOB‘ZE) are the sample paths of the same Feller semi-group on

)IOZGO
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T*(R?) starting from all possible positions. Next we describe this semi-group in terms of
generator and domain. Let f be a continuous function on 7" (R?), C? on the interior of
T*(R?), such that all its second order derivatives extend continuously to Diag(R?). This
implies in particular that the first order derivatives also extend continuously to Diag(R?).
We write 01 f, 02f and 01,1 f for the first order derivative relative to the first variable,
the second variable and the second order derivative relatively the first variable. Applying
Ito-Tanaka’s formula we get

¢
f(ngEE) (t)) = f(zo,a0) + f 61f(E$E7\2)(3)) sign(xo — ap + Bs)dBs+
0

t t
f ((1 B l) " 192) FESH () dutte 0 B) + 3 | o0 f GBI () ds
o «@ «@ ’ 2 Jo ’

Let D, g be the set of continuous functions f on Dg, C? on the interior of T+ (R?), such
that all the second order derivatives extend continuously to Diag(R?) and that moreover
satisfy the following constraints: f and 01,1 f are uniformly continuous and bounded (which
also implies that 01 f is bounded by the inequality [01fllsc < 24/[f|2ll01,1f]) and on
Diag(R?) the following equality holds:

<<1 _ é) o — %ag) Fla,2) =0

If f € Doy then §(E[f(EX50 ()] — f(x0,a0)) converges as ¢ — 0, uniformly for
(z0,a0) € TT(R?), to 01,1 f(z0,a0). Moreover D, gy is a core for $0;,1 in the space of
continuous bounded function on T+ (R?).

Next we describe what we obtain if we glue together the loops, seen as excursion, ordered
in the decreasing sense of their minima, where instead of L, g we use the Poisson ensemble

of Markov loops associated to a general diffusion. Let I be an open interval of R and La

generator on I of form
7o 1 d 1 d
~ m(z) de \(x) d

with zero Dirichlet boundary conditions. Let S be a primitive of w(z). We assume that

~

S(sup I) = +0. Let
THI?) :={(z,a) e I?|lx = a}  Diag(I*) := {(z,z)|x e I}
Let T (12) be the closure of T+ (I2) in (inf I, sup 1%
Given any z{, = aj > %g(inf I) let C, be the first time Eg:}’g'}é’[) hits %S‘(inf I). Let

t 1

Ti= | = (57 (267500 () ds
o m
Let (ft_l)()gt<l~<~a be the inverse function of (E)O<t<5a' It is a family of stopping times for
':*(5”6’0*6)

Ea.pn - Forzg 2 ap el and t < I}a let

Eiﬁf%,ao)(t) _ (gs:‘%,ao)(t)’eiﬂf%,ao)(t)) — E((j‘gla\r:/})),S(an))(E—l)

If « = 1 then 555%’“0) is just the sample paths starting zo of a diffusion of generator L. Let
ﬁa,i be the space of continuous functions f on T+ (I?) satisfying

e f0S71is C? on the interior of T+ (I2) and all the second order derivatives extend
continuously to Diag(I?).
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m(x 701 (w(x o1 f(x, a)) are bounded on T (I?) and extend continu-

ously to T+ (12)
o f(x,a) and =

m(ac

o f(z,a) and —

61 (w(x 01 f(x, a)) converge to 0 as a converges to inf I uniformly
in z.
e On Diag(I?) the following equality holds:

(2.5.7) ((1-3)a-222) st =0

LEMMA 2.5.3. (E(”‘i’a")

a,L )IOZO«OEI
positions of the same Markovian or sub-Markovian semi-group on T+ (I?). The law of the

is a family of sample path starting from all possible

path Eg%’ao) depends weakly continuously on the starting point (xg,ao). The domain of the

generator of this semi-group contains ﬁa i, and on this space the generator equals

Moreover there is only one Markovian or sub-Markovian semi-group with such generator on

D, ;.

PROOF. Since a change of scale does not alter the validity of the above statement, we

can assume that @ = 2. Then supl = (Eiz%’ao)(t))0<t<1~_ is then obtained from
’ ST
(ES%‘I’\;}) (1) g<i<¢, by a random time change. The Markov property and the continuous

r—x(fbo,ag)

=(70:9) follows from analogous properties for Z79:9).

dependence on the starting point for =
If fe Da 7 then

)

—(xo,a T d 1 T;IAE —(xo,a
(f(:&w @ ae) -3 auf(:;ms»ds)
0 =0
is a local martingale. We can rewrite it as
(r0a0) ' 1
fEW2® (AT ) J—lle ‘1"()18 7 ds
( a,L Co ) 2”h(g((l:n%,ao)(S)) ( L ) <I<a

t=0

The above local martingale is bounded on all finite time intervals and thus is a true martin-
gale. Since 5= I) 01,1f(z,a) converges to 0 as a converges to inf I, uniformly in z, it follows
that

f( SCOL’%)(t /\I )) t<I f( (xo,ao (t ))
Thus
1 xo,ap
lim, ~ (E [1t<f<~af(5a,z’ '©)] = f(o,a0)) =

t—0+ t

mamf(zo, ao)

Moreover the above convergence is uniform in (zg,ap) because #@:)0171 f(z,a) extends

continuously to T+(I?).
To prove the uniqueness of the semi-group we need to show that there is A > 0 such

that
1 ~
(g 2 @u
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is sufficiently large, for instance that it contains all functions with compact support in
T*(I?). Let g be such a function and A > 0. Consider the equation

1
(2.5.8) Wal’lf(z’ a) — Af(z,a) = g(z,a)
Let uy,; be a positive decreasing solution to
1 d*u
2 daz ) ~Aul@) =0
Let
+0 p+0 dy
folz,a) := uy, xf f 2m(z)g(z,a)uy, (z) dz ——
o(z,a) 1(2) s (2)g9(z; a)in, 1 (2) )

Then fy is a solution to (2.5.8) and it is compactly supported in 7" (1?). We look for the
solutions to (2.5.8) of form

f(l', a) = fO(l‘7a) + C(a)a)\,i(l‘)
f satisfies the constraint (2.5.7) if and only if C satisfies

() (@) + (1 - 1) 0L (4)Ca) + hla) = 0

where

h is compactly supported in I. We can set
_ (0 h(y)
Cla) = iry ()" J LLC)
i inf 1 Ux,1(y)*
C' is zero in the neighbourhood of inf /. Moreover %y, has a limit at +o0o. It follows that
feD, ;. O

Let L be the generator of a diffusion on I of form (2.2.11). Let g € I. Consider the loops

vin L4, 1, such that minvy < z, rooted at argmin-~y, seen as excursions. Let (fézz) (t))o<t<ca
be the path on I obtained by glueing together this excursions ordered in the decreasing sense
of their minima. Let

05 (¢) = min &y

=) = (€070
PROPOSITION 2.5.4. Let L := Conj(uy,L). Then (Eg‘i)(t))oqq has the same law as

(™)

ol )0<t<§a' So it is a sample path of a two-dimensional Feller process. In particular

fora=1, fimz) is the sample path of a diffusion of generator L. For all a >0
lim inf €5)(t) = inf I

If L is the generator of a recurrent diffusion then
liin scup ESE) (t) =supl

Otherwise

lim sup fémz) (t) =inf I

t—Ca
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PrOOF. First notice that if L is the generator of a recurrent diffusion then L =1L
Otherwise a diffusion of generator L=1L is, put informally, a diffusion of generator L
conditioned to converge to inf I (which may occur with zero probability). From conjugation
invariance of the measure on loops follows that Lo, = £, ;. From property 2.3.6 (iv) and

corollary 2.3.10 follows that H(IO) is obtained from =, gas by scale and time change in the

)

same way as :S%IO) and thus = ”( o) and ”Ef%’z“ have the same law. Regarding the limits

of &'} (@) at Co, We need just to observe that they hold if L is the generator of the Brownian
motlon on an interval of form (a,400), a € [0, +0), and by time and scale change they
hold in general. (]

As explained in the proposition 2.5.1, the knowledge of the path (&£,7 (o) (4 ) o<so ., alone

is enough to reconstruct L, 1 N {y € £*|min~y < xo}. From this we deduce the following

COROLLARY 2.5.5. If L is the generator of a transient diffusion, it is possible to construct
on the same probability space L, 1, and a continuous version of the occupation field (‘Cg,L)HCEI'

PROOF. By scale and time change covariance and conjugation invariance of the Poisson
ensembles of loops, it is enough to prove the proposition in case of a Brownian motion on

(0, +00) killed at 0. Let (xy)n>0 be an increasing sequence in (0, 4+00) converging to +00.
(xnaxn)

We consider a sequence of independent paths (fa M ) =0 defined by (2.5.6). Let

Tn,ﬂ:n—1 := inf {t 0|§axgja\c; ( ) = xn—l}
where conventionally we set x_; := 0. By decomposing on [0,T}, 5, ,] the restricted path
(f&xfgﬂ")(t))MKT one can reconstruct a family of loops 7 such that min~y € (x,_1,x,):
’ = T —1

there is a random countable set %, of disjoint compact subintervals [b—,b%] of [0, T} 4, ]
such that

{8 07 + ) cieps 7,071 € B} = Lapar A {y € £ miny € (2n-1,7,)}
(see (2.5.3)). The union of all previous families of loops for n > 0 is a Poisson ensemble of
loops Lo,y N {y € £*| miny > 0}.

Each of £ I"’z" is a semi-martingale and its quadratic variation is

GITRNNCIT

Moreover for all z € R
' (2 .20) 1\ [ 0
Tn,Tn
J eongin=a@€o 50 (8) = (1 - —) J Loo(B)=awdsls(B) =0
« 0 s

From theorems 1.1 and 1.7 in [RY99], chapter VI, §1, follows that we can construct on
the same probability space féxg’if) and a space-time continuous version of local times
(Ef (gsj};’,z]\;)))xeﬂi >0 of 5&13& relative to the Lebesgue measure. In particular

(fészif ) is continuous. If [b~,b%] € J,, then

(e (€5 = 6o (€5 o0

is the occupation field of the loop corresponding to the time interval [b~,b%]. We need to
check that a.s

(2.5.9) Vo> 0.6, (s = Y G el) - 6 (<Cai)
[b—,bt]€eSB,,

T
x =07

T —1
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For x > 0, consider the random set of times

(2.5.10) {te[0.Toe, NS O =2\ | [b7.0"]
[b—,bt]eB,,

(Tn,Tn)

If z is a minimum of a loop embedded in (£,5y; or if x ¢ (2", z,) then

(t))0<t<Tn,wn71
the set (2.5.10) is empty. Otherwise it is reduced to one point: the first hitting time

of the level x. Almost surely, for all x > 0, the measure d;¢} (SSL%]@”)) is supported in

{t > O|£$};,’$f)(t) = z} and has no atoms, and thus does not charge the set (2.5.10). This
(g(xnvl'n)

implies (2.5.9). Finally we can conclude that (6%” o, BM ))x>0 is the occupation field

of Lo v N {y € L¥ miny € (zp—1,7n)}
The occupation field of L gar N {7 € £%| miny > 0} is

(S 6. €))
z>0

n=0

The above sum is locally finite and thus varies continuously with x. (I

2.5.3. The case a = 1. According to proposition 2.5.4 in case a = 1 the Poisson
ensemble of loops £ 1 can be recovered from sample paths of one-dimensional diffusions.
A similar property was observed for loops of the two-dimensional Brownian Motion and of
Markov jump processes on graphs. In [Janll], chapter 8, it is shown that by launching
consecutively symmetric Markov jump processes from different vertices of a finite graph
and applying the Wilson’s algorithm ([Wil96]), one can simultaneously construct a uniform
spanning tree of the graph with prescribed weights on the edges and an independent Poisson
ensemble of Markov loops of parameter o = 1. If D is a simply-connected open domain of
C other than C, it was shown in [Zhal2] that one can couple a Brownian motion on D,
killed at hitting 0D, and a simple curve (SLE>) with same extremal points such that the
latter appears as the loop-erasure of the first. It is conjectured that given this loop-erased
Brownian motion and an independent Poisson ensemble of Brownian loops of parameter 1,
by attaching to the simple curve the loops that cross it one reconstructs a Brownian sample
path. See [LWO04], conjecture 1, and [LSWO03], theorem 7.3.

in case of one-dimensional diffusions one can partially recover £; ; from Markovian

sample paths otherwise than slicing 5352) in excursions. The next result has an analogue for
loops of Markov jump processes on graphs. See [Jan11], remark 21.

PROPOSITION 2.5.6. Assume that L is the generator of a transient diffusion. Let x € I.
Let (Xi)ost<c be the sample path of a diffusion of generator L started from x. Let T, the
last time X wisits x. Forl >0 let

= {2 06(X) > 1)

Let (g;)jen be a Poisson-Dirichlet partition PD(0,1) of [0,1], independent from X, ordered
in an arbitrary way. Let

The family of bridges ((Xt)rr <t<ry )j=0 has, up to unrooting, the same law as the loops
Jj—1 J

m
Li,p n{yeL¥zeq(0,T(vD}

In particular (Xt)ogtgf,. can be obtained through sticking together all the loops in L. 1, that
visit x.
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PROOF. According to corollary 2.3.9, (£*(7))~e£a 1.,y visits « i a Poisson ensemble of

intensity ¢ TED %. Thus EAZ;L is an exponential r.v. with mean G(z,z) and has the same
law as (F(X). Moreover the Poisson ensemble (£7(7))yec. .y visits = has up to reordering
the same law as (; — [;_1);j=0. Almost surely { — 7% does not jump at any [;. Conditional
on (Ij)j=0, ((Xt)TLxJ-_ | Stsr, )j=o0 is an independent family of bridges and (Xt) P sty has
the same law as (Xt)0<t<71j_zj_1' We conclude using identity (2.3.15) and the theory of
marked Poisson ensembles. O

Assume that L is the generator of a transient diffusion. Let x € I and let (X¢)o<t<c
be a sample path starting from x of the diffusion corresponding to L. We will describe two
different ways to slice (X¢)o<t<¢ s0 as to obtain the loops

Ly {y e L5([0,T(y)]) n [X(0), X (¢T)](or [X(¢T), X(0)]) # &}

The first method corresponds to the "loop-erasure procedure" applied to (X¢)o<t<¢ and the
second to the "loop-erasure procedure" applied to the time-reversed path (X¢_;)o<i<c. Let
fz be the last time (X;)o<t<¢ visits . Let T be the first time X hits X If X €0l then
T = ¢. Let (gj)jen be a Poisson-Dirichlet partition PD(0,1) of [0, 1], independent from X.
The first method of decomposition is the following:

e The path (X;),_,.+ is decomposed in bridges ((Xt)'rf <t<ry )j=o0 from x to x by
stsTe i—1 j

applying the Poisson-Dirichlet partition (g;);en to £F(X), as described in proposi-
tion 2.5.6.

¢ Given the path (X5

T,,+t)0<t<§7f,’ if X~ <z we define

sup X
sE[t,C=Th)

and 3e € (0,1) s.t. Vs € (t —&,1), X7, , | < Xfm}

ot o= {te[0.c - Txg ,, =

b is countable and we define on b+ the map b~:

b= (t) :==sup{s € [0,1)| X7 . = X5 .}

(X5, +b—(t)+s)0<s<t b-(t))tep+ 18 the family of negative excursions of the path
(X7, 1 o<i<c_7, below (sup[T +4.0) X)o<twct,- I X¢- > x then

b+ {te[()( T, x inf  Xn

T:+
selt,¢—T) °

and Je € (0,1) s.t. Vs € (t —¢,1), X7, > Xﬁﬂ}

Tott =

We define on b+ the map b :

b (t) :=sup{s € [0,t)|X

’1’\}+s = X

ﬁ+t}

(Xp, +b—(t)+s)0<s<t—b— (t))teo+ are the positive excursions of (X7 +t>0st<<—ﬁ above
(mf[ﬁ +1,¢) X)0<t<§7ﬁ'

e We denote 21 ((Xt)o<t<c) the set of loops

{(XT§71+5)()§S§TLH; 771?71 |.7 = 0} v {(X’j\‘w+b—(t)+s)0§s§t7b_(t)|t € b+}

where the loops are considered to be unrooted.

The second method of decomposition is the following:
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o If X.- <z we define
b = {t e [0,T)| X, = nf X and 3e > 0 5.4, Vs € (1, + ), X, > Xt}
0,t

On b~ we define the map b™:
bt (t) == inf{s € (¢, T)| X, = X;}
((Xt+s)oss<b+(1)—t)iev— are the positive excursions of the path (Xi),, 7 above

(inffo,4) X)g<y<q- This is exactly the decomposition described in the previous sec-
tion 2.5.2. If X.— > z then

b = {t € [O,f)|Xt =sup X and Je > 0 s.t. Vs € (t,t +¢), X5 < Xt}
[0,]

The map b" defined on b~ is
b*(t) := inf{s € (¢, T)| X, = X;}
((Xt+s)oss<bt (t)—t)teb— are the negative excursions of the path (X),.,_¢ below

(SUP[O,t] X)()gtgf"
o If T < ¢ we introduce:

~ X . _ ‘7
=0 (X)) a
1=0

and <
T, = inf{t e [T,¢)|¢, <~ (X) > I;}
We decompose the path (Xt)f<t<< in bridges ((X¢); <t<m )j=o0 from X.- to
= Ji— J
X
e We denote Z2((Xt)o<t<c) the set of loops

{(Xt+s)()§s§b+(t)ft|t € bi} v {(*X*‘rl-j_1 +s)0§5§7'l"j *Tl"j_l |J = 0}

where the loops are considered to be unrooted.
The loops in L ((Xt)o<t<c) and £2((Xt)o<t<c) are not the same but follow the same law.

PROPOSITION 2.5.7. L ((Xt)oxt<c) and L*((Xt)o<t<c), considered as collections of
unrooted loops, have the same law. Let L1 be a Poisson ensemble of loops independent
from Xc—. Then L1 ((Xi)o<i<c) and L%((X¢)osi<c) have the same law as

(2.5.11) L1 0 {y e £5([0, T()]) N [X(0), X (¢T)] (or [X(¢T), X(0)]) # T}

PROOF. First we will prove that Z2((X:)o<t<¢) has the same law as (2.5.11). If
P(X.- = infI) > 0, then conditional on X~ = inf I, (X;)o<¢<¢ has the law of a sample path
corresponding to the generator Conj(uy, L). If y € I n (—o0,z] and y is in the support of
(the killing measure in L) then conditional on X.- =y, (X;)o<t<¢ is distributed according

the measure =+—pu7"? (property 2.3.2 (i)). According to the lemma 2.3.3, (Xt)g<i<7 and

G(x,

(Xf+t)0<t<<—f( azﬁe independent conditionally X.- =y, (Xt),<,7 having the law of a sam-
ple path corresponding to the generator Conj(uy, L), run until hitting y, and (Xf+t)0<t<<fT~
following the law ﬁy)u%y From proposition 2.5.4 and 2.5.6 follows that £%((X;)o<t<c)
and (2.5.11) have the same law on the event X~ < x. Symmetrically this also true on the
event X, > z.

The decomposition .2 ((X;)o<t<c¢) is obtained by first applying the decomposition .£>
to the time-reversed path (X¢_i)o<i<¢c and then applying again the time-reversal to the
obtained loops. The law of the loops in (2.5.11) is invariant by time-reversal. Let y € I,



2.5. DECOMPOSING PATHS INTO POISSON ENSEMBLES OF LOOPS 76

y in the support of . Conditional on X~ = y, the law of (X¢ ¢)o<i<¢ is @uy’“’. So

applying the decomposition 2 to the path (X¢_;)o<¢<¢ conditioned by X.— =y gives
Lip 0 {yeL*y([0,T(M]) n [y, 2] (or [z, y]) # &}
If P(X,~ = infI) > 0 then conditional on X~ = infI, the path (X;)o</<¢ is a limit as
y — inf I of paths following the law ﬁy) u*Y (i.e. the latter are restrictions of the former).
Thus conditional on X.- = inf [ LM ((Xt)o<t<c) is an increasing limit as y — inf I of
Lip n{ye &[0, T(]) N [y, 2] # &}
which is
Lip 0 {ye L ([0, T(y)]) n [inf I, 2] # &}
Similar is true conditional on X.- = sup /. O



CHAPTER 3

The analogue of the Wilson’s loop erasure algorithm for
one-dimensional Brownian motion with killing

3.1. The algorithm and its output

3.1.1. Description of the algorithm. Given a finite undirected connected graph
G = (V,E) and C a positive weight function on its edges, a Uniform Spanning Tree of the
weighted graph G is a random spanning tree with the occurrence probability of a spanning
tree 7 proportional to

C(e)

e edge of T

The edges belonging to the Uniform Spanning Tree are a determinantal point process (trans-
fer current theorem). In [Wil96] Wilson showed how to sample a Uniform Spanning Tree
using successive random walks to nearest neighbours, with transition probabilities propor-
tional to C, starting from different vertices, and erasing the loops created by these random
walks. The edges left after loop-erasure form a Uniform Spanning Tree. This is known
as Wilson’s algorithm. See [BLPSO01] for a review. In [Jan11], chapter 8, Le Jan shows
that the loops erased during the execution of Wilson’s algorithm are related to the Poisson
ensemble of Markov loops of parameter 1.

In [Jan11], chapter 10, Le Jan suggests that Wilson’s algorithm can be adapted to
the situation where the random walk on a graph is replaced by a transient diffusion on a
subinterval I of R. In this section we will describe the algorithm in the latter setting. The
algorithm returns on one hand a sequence of one-dimensional paths which can be decomposed
into a Poisson ensemble of Markov loops of parameter 1 (section 3.1.2), and on the other
hand a pair of interwoven determinantal point processes on I, which may be interpreted as
some kind of Uniform Spanning Tree. In section 3.1.3 we will derive the law of this pair of
determinantal point processes in the setting where the underlying is a Brownian motion on
R with a killing measure. In section 3.1.4 we will give without proof the law in general case
as it follows directly from the Brownian case.

Let I be a subinterval of R and L a generator of a transient diffusion on I of form
2.2.11. Let s be the killing measure in L, which may be zero. Let (x,),>1 be a sequence of

pairwise distinct points in I which is dense in I. Let ((X,E(I"))(KKC ) be a sequence of
< n/n>1

independent sample paths of the diffusion of generator L, with starting points XO(I”) = Tp.

In the first step of Wilson’s algorithm we will recursively define sequences (T}, )n>1, (Vn)n>1
and (J)n>1 where T}, is a killing time for X (*»), Yy is a finite subset of Supp(x) v 0 and
Jr is a finite set of disjoint compact subintervals of I, some of which may be reduced to one
point:

o Ty :i=C, V= {X;“j_l)}, Ty = {[xl,X;T_l)]} (or {[B(T”f_l)’ggl]}).

T
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e Assume that ), and J, are constructed. If x,, 1 € UJEJn J then we set T,,,1 := 0,
Vons1:=YVpand Jny1 = Tn. Hxpiq & UJEJn J then we define

Tp41 = min (Cn,inf {t > O|Xt(x”+1) € U J})

JCTn
If X;m,"“) € Uch J then there is a unique J € 7, such that X;m,"“) € J. In this
n+1 =vn n+1

case we set Vp41 := Y, and
Tnsr 1= (FNTN) 0 {7 0 [nen, X2}

<0r (T \{ID) v {J U [X;Q:T)’x”“]})

If X;r_’wl) ¢ Ujcz, J then we set Vi1 := Yy U {X;I_n+1)} and
n+1 - .

Tnsr 1= T 0 {Lomss, XS0} (or oo {[X50) e}

T'n._+l

It is immediate to check by induction the following facts:

e YV, C Supp(k) v 0I. More precisely V,, € Supp(r) U {y € 0I|P(X<(f") = y) > 0}.

e The intervals in 7, are pairwise disjoint. "
ﬁyn = ﬁjn <n
For every y € ), there is one single J € J,, such that y € J.
yn c ynJrl
If n < n/, then for every J € 7, there is one single J' € 7,/ such that J < J'. We
denote 1,, 5, the corresponding application from 7, to J,-. The application 1, ;- is
injective. Trivially for n <n’ < n”, 1y v = 1y 7 © Uy g
For any J € J,, 0J € YV, U {x1,...,2Zn}

In the second step of Wilson’s algorithm we will take the limit of ((V,, Jn))n>1 and

define (Y., Jo) as follows:

veruUn z=U U { U zn,n,(J)}

n=1 n=1lJeJ, ~n'=Zn

Y, is a finite or countable subset of Supp(x) U dI. T, is a finite of countable set of disjoint
subintervals of I, but these subintervals are not necessarily closed or bounded. For any
y € YV, there is a single J € J,, such that y € J, and this induces a bijection between
Y, and J,. For any J € J,, there is a single J' € J, such that J € J'. We define
tn,0(J) = J'. 1, is injective. Trivially, for n < 0/, 4,00 = 1y 5 0 1y . We will sometimes
write Vo (21, -, Tn), Tn(1, s Tn)y Voo ((Xn)n=>1) and T ((2n)n=1) in order to emphasize
the dependence on the starting points (z,)n>1. In the sections 3.1.3 and 3.1.4 we will see
that

The set YV, is a.s. discrete.

A.s. for any intervals J € 7., J\OI is open

The subset I\ |J ., / is a.s. discrete.

The law of ()., J») does not depend on the choice of starting points (2, )n>1-

We introduce Z, := 1 \( UJe 7 J ) We will further see that V., and Z., are determinantal

point processes.

The couple (Y., ) may be interpreted as a spanning tree. Consider the following
undirected "graph": Tts set of "vertices" is I U {{} where T is a cemetery point outside of
I. Ever point x € I is connected by an "edge" to its two infinitesimal neighbours x — dx
and z + dz. Every point in Supp(x) is connected by an "edge" to t. Finally any point
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in y € 0I such that P(Xéf") = y) > 0 is connected by an "edge" to . On this "graph"
(Vo, J») induces the folloWing "spanning tree": Each point in | J . T J is connected to its
infinitesimal neighbours in I and Z,, represents "edges" on I that are missing. Moreover
every point in )., is connected to T.

There are two trivial cases in which (Y, J,) is deterministic. In the first one x = 0
and I has one single regular or exit boundary point y characterized by ]P’(Xc(f") = y) >0

(see [Bre92], chapter 16, for the characterization of boundaries). Then )., is made of this
boundary point and 7, contains one single interval I U V.. Z, is empty. In the second
case I does not have regular or exit boundaries and « is proportional to a Dirac measure
cdy,. Then YV, = {yo} and J,, = {I}. Z, is again empty. In all other situation Z, is
non-empty and random. See figure 3.1.a for an illustration of (},,J,) for 1 < n <5 and
figure 3.1.b for an illustration of (Y, Z4).

T4 ) xrs3 x1 x
° ° ° N °
T4 x2 x3 T1 Ts5
o \/ o V4 °
- L4l - Can 2 -
T4 x2 x x3 w T x5
T4 « x2 x3 T1 x5
> > X .
T4 o 9 T3 o 1 x5
> e X

Fig.3.1.a - Illustration of ((Vn,In))1<n<s: x-dots represent the points of Yy,

and thick lines the intervals in 7).

Fig.3.1.b - Ilustration of (Y, Joo): x-dots represent the points of Yoo

and diamonds the points of Z.

3.1.2. The erased paths. During the execution of Wilson’s algorithm we used the

paths ((Xt(w"))ogtdn)pl
described in the section 2.5.3.

. These paths can be further decomposed using the procedure

ProprosSITION 3.1.1. The family of unrooted loops
1 (n)
U < ((Xt )()<t<Tn)
n=1
has the same law as the Poisson ensemble L1 1. Moreover it is independent from (Yo, Tx)-
ProOOF. Let £y, be a Poisson ensemble of loops independent from the family of paths
((Xt(zn))()<t<c ) . Using proposition 2.5.7 and induction is it immediate to show that
~ n 1

n=

the triple

(ym T O 1 ((Xt(xj))ogKTj))

j=1
has the same law as

(ymjm {(V(t))()StST('y) € L1,]v([0,T(7)]) N U J # @})

JeTn
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Since (V.., Jo) is by construction independent from ((Xt(g”"))0 - t<T‘) conditionally on
= 171

<j<n
(Vn, Tn), we further get that the triple

(;VJ Uf ((X£$f>)0<t<Tj)>

j=1

has the same law as

(yx,@, {@rere € b A | 7T @})

JETn
Taking the limit of the third component as n tends to infinity we get that

(yx, VRUES ((Xt(xj))ostdj))

j=1

has the same law as

(yxa T, {(’Y(t))()StST(y) € L1,.1v([0,T(v)]) n U J # ®}>

JeTx
To conclude we need only to show that almost surely

{6®<i<ry € Lh(0. T o | T# @} = L1
JeTx

The latter is equivalent to UJEJI‘ J being dense in I, which will be proved in the next
section. O

3.1.3. Determinantal point processes ()., Z,,): Brownian case. In this section
we will describe ()., J») in the Brownian case by giving the joint law of the point processes
Y, and Z,,. First we will study the case of a Brownian motion on a bounded interval (a, b),
killed upon hitting a or b, and without killing measure. Then we will study the case of the

Brownian motion on R with a non-zero Radon killing measure x. We will write (Bt(x”)

instead of (Xt(x”))

)()<t<(71
0<t<(Cn”

PROPOSITION 3.1.2. In the case of a Brownian motion on a bounded interval (a,b),
killed upon hitting a or b, and without killing measure, Y, is deterministic and equals {a, b}
and Z, is made of a single point distributed uniformly on (a,b).

PRrROOF. For n > 1 we define T, 0 < Tp,1 < -+ < &p,pnt1 as the family zq,...,2,,a,b
ordered increasingly. According to this definition Z, o = a and Z,, ,4+1 = b. As a convention
we denote Zo := a and Zo 1 := b. For n > 2, one of the following situations may occur:

o Vo = {b} and Ty, = {[Zn,1,0]}
e YV, ={a} and J, = {[a,Tnn]}
e YV, = {a,b} and for some j € {2,...,n}, T, = {[a,Zn j-1], [Zn,;,b]}

In any case (a, b)\(U_,ejn J) is an interval of form (%, j_1,%n,;)-
We set {J}o = J. Let n > 1. Thereisa j € {1,...,n} such that z, € (Tr.—1,j—1, Trn—1,5).
Conditional on (a,b)\(U(,eJni1 J) = (Tn-1,j-1,%n-1,5), the point B(T?) equals Zp—1 j_1

Tn—1,—Tn Tn=Tn—1j-—1

with probability =
we get that

and Z,-1,; with probability - . By induction

n—1,j)—Tn—1,j-1 n—1,j)—Tn—1,j-1

P ((a,b)\( U J) = (fmj_l,;zn,j)) - %

JeTn
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Hence

PO =ta}) < lim P <<a’b>\( U ) - <>) = Jim =l =0
JETn
and similarly P()Y,, = {}) = 0. Thus YV,, = {a,b}. Almost surely for n large enough
Jn will be of form {[a,Zn 1], [Zn,;,b]} for a random j € {2,...,n}. We denote by p;' ,
respectively p,, , the random values of Z,, ;1 respectively Z, ;. Almost surely, neither of the
non-decreasing sequence (pn 1)n Or non-increasing sequence of (p,, 5)n is stationary. This
fact follows from the same argument according to which ), is not reduced to one point.
Moreover p,, 5 — pn,l, bounded by supsc <, (¥n,; — Tnj-1), converges to 0. It follows that
a.s. Z., is reduced to one point, the common limit of p,:,l and p,, 5. Finally if a < b are two
values taken by the sequence (z,),>1 then

- b—a
P(Z, < (@D) =
It follows that the unique point in Z, is distributed uniformly on (a,b). O

We consider now the case of the Brownian motion on R with a non- zero Radon Kkilling

measure k. G(z,y) = us(r Ay)uy(z vy) will be the Green’s function of 3 5 d 4 — k. The law of
(Vn, Jn) may be expressed explicitly. Let @, be the cardinal of Y,,. Let Yy, 1, Y5 2, ..., Y5 o(m)
be the points in ), ordered in the increasing sense. Denote by [p, 1,2 1], [Pr.2: P2l -+
[p;Qn,p;Qn] the intervals in 7, ordered in the increasing sense. For all ¢ € {1,...,Q,},
Yoq€ [p;’q,p;{q]. It happens with positive probability that for some ¢, p, , = p,J{,q if one of
the starting points x1, ..., z, is an atom of k. To compute recursively the joint law of above

random variables we use the following facts: Given a killed Brownian path (Bt(x)) o<i<c

starting from x, the distribution of B(x) G(z,y)k(dy) (see section 2.2.2). Given a < z, let
T, be the first time B®) hits a. Then

On the event T, > (, the distribution of Bgf) is:

(G(o) = Pully < G @)1 ar(d) = (Go) = CEDOEI N1y

More generally, if a < z < b and 5 is the first time B(*) gets either killed by the killing
measure k or hits a or b then

e The probability that Bgf) = a is:

e G
uy(@)up () — uy(x)ur(a) _ det ( G(a,

uy(@ur(b) —uy (O)ur(a) o ( g((

)
=

o The probability that Béff) = bis:

ot [ Gla:)
uy(@)ur(0) =y Bur(z) " ( G, b)
uy(a)usr(b) —uy (b)uq(a) G(a,a)

v(a)up 1(b)uy det< o
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e The distribution of Béf) on (a,b) is:

G(z,y) Gla,y) Gly,b)

det | G(a,z) G(a,a) G(a,b)
G(z,b) G(a,b) G(b,b) ) w(dy)
dot G(a,a) G(a,b) a<y<bfieY
¢ ( G(a,b) G(b,b) )

Above expressions give the law of ()1, J1) and the law of (V,+1, Jn+1) conditional on
(Vn, Jn)- By induction one can derive the law of (Y, 7). We will express it using a single
identity involving a determinant. However this single identity may correspond to different
configurations: We will divide the set of indices {1,...,Q,} in three categories E,, E}
and E;* where for ¢ € E;, Y, , = p;,,, for ¢ € Ef, Y, , = p}, and for ¢ € E %,
Prng < Yngq < pi,. For instance on the figure 3.1.a, Qs = 3, E = {3}, Ef = {1} and
E;" = {2}

PROPOSITION 3.1.3. Let g€ {1,...,n}. Let (E, , E}, E, ") be a partition of {1,...,q}:

{1,...,¢}=E, uE'uE, *

Let = be an increasing function from E; 1 E>% to {z1,...,z,} and z an increasing
function from EX W E_ % to {x1,...,x,}. We assume that the sets x~ (E,; U E, %) and
T (EF U E, ") are disjoint, that for every i € E % x7 (i) < xt(i) and that for every
i€ By WE;Y and j € Ef UWE;" such that i # j, (x%(j) — 27 (i)) has the same sign

s (j —1i). Let (Ai)1<i<n be a family of disjoint bounded intervals each of which may be
open, closed or semi-open such that for every i < j, maxA; < minAj;, that for every i,
minA; >z () ifi € E; NWE,Y, max A; <z (i) ifi € EF1NE ", and that for all ¢

(i —1),z7(i —1) <minA;, maxA; <z (i +1),2% (i +1)

where in the prem'ous inequalities one should only consider the terms that are defined. Let
p; (Ys) andp (yi) be the functions defined by: p; (y;) = =~ (i) if i € E, UE," and y;
otherwise. p} (y;) =x* (i) ifi € Ef UE>" and y; otherwise. Then

(3.1.1) P(Qn=¢q,VieE,,p,; =z (i),p}, =YaiVie Bl pt. =2"(i),p,; = Yni,

Vie Byt p, =27 (0),pr, =27 (0),¥re{l,...,q},Yor €A,) =
f f det (G(p7 ()07 (W) <y <y 11 #ldys)
Y1EAL quAq 1<r<q

det (G(pi_(yi),p;L (yj)))léi,jéq may be rewritten as a simpler product:

(3.1.2) Gy ()i (w1) ] <G(p7?+1(yT+1),pi+1(yr+1))

1<r<q-—-1

_ Gpr (yr), Py (yr41)) G (yr),pm(ym)))
G(pr (yr), 0 (yr))

If o is a permutation of {1,...,n}, then (Vn(To1)s - Tom)), Tn(Ta(1)s- - Tom))) has the
same law as (Yn(21,. .., Tn), Tn(21, ..., Tn)) Moreover, for any n’ > n and any permutation
oof {n+1,...,n'}, the law of (Vn (21, .., Tn; To(n1)s -+ Ta(n))s

T (T15 e Ty T (ng1)s - - s Tanry) conditional on (Vn(z1,... 20), Tn(21,...,20)) is the
same as the law of (Vn/(T1, s Ty Tt 1y -+ Tt )y T (T15 -+ o5 Ty Tty - - -, T )) conditional

on (Vn(x1,...,20), T, (xl,.. Zn)).
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ProoOF. We will only give the sketch of a short proof. First let’s check that the de-
terminant det (G(pi_(yi),p;L (yj)))1<i i<q MAY be indeed expressed as a product (3.1.2). We

use the fact that for any a <b < a < b e R:
G(a,b)G(b,a) = G(a,a)G(b,b) = us(a)us(b)uy(
By subtracting from the last line in the matrix (G(p; (y;), pj (y5)))

(G(pg (¥q), Py (y5)))1<j<q, the second to last line (G(p;_1 (Yg—1), P} (y5)))1<j<q multiplied by
G(p;q(yq—l),p;— (Yq))
G(Pge1(Wg=1),Py—1(Yg-1))
one. Thus det (G(p; (vi),p} (7)), ;<

det (G(p; (y’b)v pj (y]))) 1<i,j<q—1 X

(G@;(yq),p;(yq)) -

By induction we get (3.1.2).

Next step is to check that (Vn(x1,. .., Tn-2,Tn-1,Tn), Tn(T1,- .., Tn_2,Tn_1,T,)) and
Vn(z1, ..y Tpn—2,Zn, Tp—1), Tn(T1,. .., Tn_2,Tn,Tn_1)) have the same law conditional on
(Vn—2(x1,...,2n—2), IJn—2(x1,...,2n—2)). This can be done using the explicit expressions

for the conditional destitution of B(Tx,"_l), B(Tz,"), B(TI,") and B(Tx,"_l). This invariance by
n—1 n n

transposition of the two last starting points implies in turn all the invariances by permutation
stated in the proposition.

From the invariance by permutation follows that one only needs to prove (3.1.1) in case
21 < xg < --- < . In this case one can prove (3.1.1) by induction on n using the expression

a)uy(b)
\<ij<q’ that is to say from

we get zero for all coefficient on the last line, except the diagonal

1
, eduals

G(pq_1(yq—l),pJ(yq))G(pJ_l(yq—l),p;(yq)))
G(py 1(yg—1):y 1(Yg-1))

n—1

(3.1.2) for det (G(pi_(yi),p;L (yj)))lgi,qu' O
The fact that the law of the tree obtained after n steps of Wilson’s algorithm is invariant
under permutations of the starting points (z1,...,2,) is something that is also satisfied in

case of random walks on a true finite graph. The product (3.1.2) can be further rewritten
as
(3.1.3)

up(pr ())us(ey () [T Cuelor (90)us (0pa (9rs0)) = wr (0 ()t (071 (yr41))

1<r<g—-1
Next we will show that )., and Z, are a.s. discrete.

LEMMA 3.1.4. Foralln >2 and g€ {2,...,n}:

PV 0 (0 g 1:Pg) = BlPr g 15Prhgs Qn = q) =
2(17;:,(; - p;,q—l)
ul(p;,q—ﬂUT(p;{q) - UT(p;,q—ﬂUl(pg,q)
PROOF. Let n and ¢ be fixed. For n’ > n, let
N(n') = t({zns1, - Tt 0 (P g1 Pig)
and Zp1 < Tprg < +00 < Ty Ny the points of {z,11,... 20} 0 (p, ,_1,p5 ) ordered
increasingly. Conventionally we define 2,/ o := p,, -1 and Ty N(nh)41 = p,fy q- The condition

Yor 0 (P 415 Pryq) = & is satisfied if and only if for some i € {1,2,..., N(n’) +1}, necessarily
unique, the following holds:

[Prg—1:Tnrim1] S U J and [Zn g p5,] S U J
JeTm JET
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Thus

PV O (0gor:Phg) = DIy g 151k Qn = @) =

N(n")+1
Z P([p;,qflai‘n’,ifl] = U J, [i'n’,iap:’;,q] < U Jpq;,qflaprtqa Qn = Q)
i=1 JETm JeT,1

Let T,; be the first time B®~.) hits either Prg-1 O P, or gets killed by the killing
measure k. For i € {1,2,..., N(n') + 1} let Tw.i,.,_, be the first time B@n".) hits Tns i1
Since the law of (Y, Jns) conditional on (Y, J,) is invariant by permutation of points in
(Tnt1,-.-,Tnr), we get that

P(Iomg i€ | Alwsnie (J 7
JeTm JeT,

(i’n’,i)
Tt

Prog1>Dmgr Qn = q) =

— ot
- =P Ini <Twiz,.,_,

n'! i—1

(5:71.’ i— ) — _
P (B T =pp g1, B Prg1> Py @n = q) =

uy (T i—1)ur (T i) — up(Tnrim1)uy (T i)
Uy (Pry 1)Ut (Prg) = ur(py, g—1)uy (D)

It follows that

P (Vo 0 (0 g 1508 ) = DNy 1590 Qn = q) =

N(n')+1 - - - -
(”i wy (Fr i) g (Fr i) = 0 (F e Uy (Fr0)

-1 Ul(p;,q—l)uT(p;{q) - UT(p;,q—1)Ul(pvr,q)

If Z,,r 51 is close to &, ; then

Uy (T im1)ut (T i) — up (Tnrim1)uy (T i)
=W (uy,ut)(@ni=1) (@i = Tnrim1) +0(Tnr i — Tnrim1)
=2(Zpr i — Tnrio1) +0(Tnr i — Tnri1)

The sequence (%5 )n'>n+1 is dense in (p, ,_q,p;t ). Thus

n/li»Him,‘P (Vor O (Prg1:Png) = BlPrg1:Prg @n =) =

2(p'rt,q - p;,q—l)
uy(pr, 4 1)ur(Pimg) = ur(Py g 1)uy (Pig)

O

PROPOSITION 3.1.5. Let a < beR. Then for alln>1

(3.1.4) E[8(Vn N [a,b))] < - G(z, x)k(dx)

It follows that a.s. for alla <beR, YV, n[a,b) is finite.

PROOF. Let & < b € [a,b] where a is close to b. We will first show that for all n > 1

(3.1.5) i (yn A [a,b) # @) <| G a)s(ds) +ob —a)

[@,b)
where o(b — @) is uniform over @ and b close to each other in [a,b]. Then we will deduce
(3.1.4) by partitioning the interval [a, b) in small subintervals [a,b) and approximating the



3.1. THE ALGORITHM AND ITS OUTPUT 85

expected number of points in [a, l~)) by the probability of presence of one point. Let n > 1.
Then

P (yn(zl, o an) O [ # @) <P (yn+2(:c1, Ty, D) O [a,0) # @)
Since the law of ), 5 is invariant by permutation of the starting points:
p ())n+2(ac1,...,xn,d,l~)) A [a,b) # @) _P (yw(a,é,zl,...,xn) NP @)
But
(3.1.6) P (yn+2(a,'6,:c1, T ( ) [a,b) # @)
+]P’<y2(a b)  [a, B) B, Vnsa(@ b2, oy wn) 0 [3,D) # B

We start Wilson’s algorithm by launching first B (@) starting from a followed by B® starting
b. Then

P (¥3(a0) n[a.0) # ) =P (B(T’?_) elah) +P (B 0 ¢[00, B <a, B e [a.5))
Applying proposition 3.1.3 we get that
P (32(a,5) n [3,5) # &) =

Le[& b) <G(d,x) * J (G(y,a)G(,b) = Gy, b)G(d,m))f@(dy)) k(dzx)

y<a

For x € R, let T , be the first time B(@ hits z. Then

G(a,z) + J (G(y,a)G(x,b) — Gy, b)G(a, z))w(dy) =

G(z, ) (]P’(Tl >Ty.) + g((;”:z))n»m <T z,ng < a)) < G(z,z)
Thus
(3.1.7) P (32(a.0) 0 [a.b) # ) < .y Gaalnda)
Further

P (32(a,5) 0 [4,5) = @, Vusa(@ b1, . w0) 0 [a,5) # @) <
P (2(a,5) 0 [4,5) = @, Y0 (@b, (2);1) 0 [4,5) # @)
Applying lemma 3.1.4 and proposition 3.1.3 we get that
P(32(a,5) 0 [a,5) = @,V (@b, (;);21) 0 [4.5) # @) =
P (Vs (@b, (2)51) 0 [8,0) # DIV2(@,5)  [a,0) = @) x P (Va(a,b) 0 [4,5) = &)

_ (1 w-a) )
uy(@yup(b) — up(@)u | ()
G(y,a) Gly,z)
g J;/<a J;Zb 1y,z¢[&,5) det ( G(Zab) G(Z,Z) ) H(dy)m(dZ)

< (ug(@)us (b) — us @)u | () — 2(b —a>>f
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But 5

wy(@)ur (b) — un(@yu | () — 26 — a) = ofb — a)
Thus

(3.1.8) i (yg(a,é) A[a,0) = &, Vuso(@, b, a1, ..., an) A [a,0) # @) = o(b—a)
Combining (3.1.6), (3.1.7) and (3.1.8) we get (3.1.5).
Now for j € N* and i € {1,...,27} consider the intervals A; ; defined by
A= l[a+(@—1)277(b—a),a+i277(b—a)) ifi<2 —1
J la+(1—-279)(b—a),b] if i =27

Then E [$(V, N [a,b))] is the increasing limit of ZZQ; PV nAi; # ). But

Z PVnnAij # )< 2 JA. | Gz, z)r(dx) +270(277)

(3.1.4) follows. Since (3.1.4) holds for all n, it also holds at the limit when n tends to +oo.
This implies that Y, N [a,b) is a.s. finite. O

PROPOSITION 3.1.6. Almost surely all the intervals in [J., are open.

ProoOF. We need only to show that for any n > 1 and g € {1,...,n}

(3.1.9) (Qn q,Yn' = n, min(,, ./ ([pn,q,pn,q])) = pnyq) =0
and
P (Qn = q,Yn' = n,max(vnw ([P, 4Pt g]) = Pyn) =0
Let n and ¢ be fixed. We will show (3.1.9). We will also assume that ¢ > 2. The proof is
similar if ¢ = 1. We need to show that a.s. the following conditional probability converges
to 0:
lim P (mln(ln n ([p;,qap:{,q])) = p7_7'7q (Vns Tn), @n = q) =0

n'—+w
We recall that for n” > n 4+ 1, B®*»") is a Brownian motion starting from z,» and it is
independent from (Y, J,). Let Ton P be the first time it hits p_,, and T, the first time
it either hits | J;., J or gets killed by the killing measure x. Since the law of (Y, Jnr)
conditional on (Y, J,) is invariant by permutation of points in (z,+41,...,Zn ), we get that

P (min(tn,ne ([P 45 21t o)) = P gl (Vs Tn), @ = q)
< inf 1-— 1P:’q,1<InH<P;,qP (Tnu = Tnu,pq—’71 |p:7q71ap;,qa Qn = Q)

n+1<n”"<n’
But ]P) ( n! = Tn" Pan
a subsequence of (X, )pr=nt1 made of points in (pn,q_l,pmq) which converges to p;, .. It
follows that

P, q—1:Pn, q) is close to 1 if x,,» is close enough to p,, ,. There is always

inf 1-14 _, P (Tn" = T e P g 10 P @ > q) ~0

n"=zn+1 Prn,qg—1

which concludes the proof. O

From proposition 3.1.6 follows that Z., is closed. Moreover it does not contain any of
the points of the sequence (x,)n>1. Since the sequence (z,)n>1 is everywhere dense, the
connected components of Z,, are single points. One can see that

e If y < ¢ are two consecutive points in )., then §(Z, n (y,3)) = 1.
e If Y, is bounded from below and y = min )., then Z,, n (—o0,y] = &.
e If V,, is bounded from above and y = max ),, then Z, n [y, +©0) = .
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See figure 3.1.b. The set Z,, may be empty, which for instance happens almost surely if «
is a Dirac measure. For n > 1 we define

- +
Z, = {pinvql * Png

2<qg<@Q,
2 ‘QQ}

We will write Z,(x1,...,2,) and Z, ((zn)n>1) whenever we need to emphasize the depen-
dence on the starting points.

PROPOSITION 3.1.7. The law of (Y, Z+) does not depend on the starting points (z,)n>1-

PROOF. Let (Z,)n=1 be another sequence of pairwise disjoint points in R. We will show

that the sequence (Vo (21, ..., &0, &1, ..., &n), Zon(1, ..., Tn, T1,...,%n)) converges in law
to (Voo ((zn)n=1), 200 ((Xn)n=>1)) and that (Von (Z1,...,Tn, 21, .., Tn),

Zon(Z1, ..oy &n, T1, ..., xy)) converges to (Vo ((Zn)n>1), Z0((Zn)n>1))- Since the two cou-
ples of point processes (Von (X1, .-y Tny T1, -« Tn), Zon(T1, - Tn, T1,- -+, Tpn)) and
Von(Z1, -+ s Tny Ty - o5 Tn), Zon(Z1y. oy Ty X1, - - -, Ty )) have the same law, this will finish
the proof.

For the convergence in law we will use the topology of uniform convergence on compact
sets of collections of points in R. It can be defined using the following metric: Let dg be the
Hausdorff metric on compact subsets of R. One may use the metric dpp on point processes:

dpp(X,X) := dg(tan™ (X)) U {—1,1}, tan " (X) U {—1,1})
In order to simplify the notations we will write:
(Vns Zn) = (Vn(z1, ..oy 20), Zu(x1,. ., Z0))
Vers Z2) := (Voo ((@n)nz1), Zoo ((20)n=1))
Vo, Zan) 1= (Von(@1, oo, Ty Bty o) Zan (T, ooy Ty Tty )

We can construct (Vn, Zn))ns1, Vs Z2) and ((Van, Z2n))n>1 on the same probability
space using independent Brownian motions starting from the points in (2,,)n>1 and (Z,)n>1
and killed by the measure k. We construct the sequence ((Vn, Z,))n>1 using the Wilson’s
algorithm described in introduction. This way YV, © Vnp+1 and YV, = Un>1 Y,,. In order

to construct )72n, we first construct ), and then continue the Wilson’s algorithm using
t~he Bro~wnian motions starting from Z1,...,Z,. This way ), € ), but not necessarily
Yo € Va(nt1)-
Let C >0 and ¢ € (0,%). Let 6 € (0,1), 6 small. There is N € N* such that
P(Ynn[-C,Cl=Yen[-CC])=1-06
There is ¢’ € (0, €) such that for all « < b e [-C, C] satisfying b — a < &’ the following holds:
B 2(b—a) - K
uy(a)ur(b) —ur(a)uy (b) = N
There is N’ > N such that with probability 1 — 26 the following two conditions hold:

(3.1.10) In n[-C,Cl =Y, n[-C,C]
(3.1.11) Leb([-C,C\ | 7) <<
JeT Nt

We define the following two random variables:

K = min (min J) Kt = max (max J)
JeTn1,JC[=C,C] JeT N1, JC[=C,C]
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If (3.1.11) holds, then [-$,$] < [K—, K*]. If (3.1.10) and (3.1.11) hold than for n > N/,

202
[K~, K*\Ujey, J is made of at most N intervals, each of length at most ¢’. Consider the

following condition on j}gnl
(3.1.12) Von A [K™, K] =Y, n[K™,K*]
Applying lemma 3.1.4 we get that for all n > N’
P ()Nign satisfies (3.1.12) | (3.1.10) and (3.1.11) hold) =>1-94§
This implies that for all n > N’

P (372,” satisfies (3.1.12), and (3.1.10) and (3.1.11) hold.) >1-30

Let n > N’. On the event when (3.1.10) and (3.1.11) hold and )%, satisfies (3.1.12), which
happens with probability at least 1 — 34, the following is true:

¢ Vo n[K—,K*] =Y, n[K—,K*]
e dy(Zop n[K KT, Z, n[K~,K%])<e¢
In particular with probability at least 1 — 34

o dpp(Von, V) < 1—tan"'(§)
o dp(Zam, 2,) <e + (1 —tan™(§))

Since C is arbitrary large and € and ¢ are arbitrary small, this implies that ()72n,Z~2n)
converges in law as n — +00 to (V, Z5). O

Next we identify the law of ), as a determinantal fermionic point process. For gener-
alities on this processes see [HKPV09], chapter 4, and [Sos00].

PROPOSITION 3.1.8. Letn>1 and a1 < by <ag <by <---<a, <b, €R. Then

(3.1.13) lnﬁ (Yo n [ar, b ))] :£ b)’”J‘[ , )det (G(yuy] 1<i H (dyr)

In other words Y., is a determinantal point process on R with reference measure k and
determinantal kernel G.

PRrOOF. Consider points d, < b, € [a,,b,] for r € {1,...,n}. We will show that

(3.1.14) P(Vre{l,...,n},y‘x,‘ [y, b );é@)

n
f f det (G (i, 97))1 < s | | #ldsr)
[a1,b1) bn) r=1

r=1 r=1 Ec{1,...,n} reE r¢ £

where the quantities O(Z;T —a,) and o(l;r —a,) are uniform over a, < b, € [ar,b.], @, close to
b.. From (3.1.14) one deduces (3.1.13) by splitting the intervals [a,, b,] in small subintervals
and approximating the number of points in Y., n [a,, b.) by the number of subintervals of
[ar,b,) that contain a point in V.

As the law of )., does not depend on the choice of everywhere dense sequence of starting
points, we will assume that the first 2n starting points in Wilson’s algorithm are in order



3.1. THE ALGORITHM AND ITS OUTPUT 89
a1,b1,...,an, by. We will show that for all non-empty subsets E of {1,...,n}

(3]—15) P (V”I’ €E, Vo N [ar; ’l“) G, Ve N [ar; ) #JNr¢ E,Vop N [ara ) # Q)

= [ToG, —an) [T slar.b,)

rek r¢E
Further we will show that for any ¢ € {1,...,n}
(3.1.16)
n
P(Vre{1,...,n},Von 0 [dr, by) # B, [args b1 & | ) = Olbrg = diry) [ | £([@r, b))
JeTan r=1

If for all 7 € {1,...,n}, Yon N [ar, by) # & and [ay, b, S UJes,, J then necessarily Q2 = n
and Ja,, = {[ar,b,]|1 <7 < n}. We will use the fact that according to (3.1.1)

(3.1.17) P (an =1, Tom = {[ar bl <7 < n})

:J[al,il)mj[* et (Ga,-,,bj)lgm_< [ ] s(dy»)

anabn) Sn r=1

n

= J[& E)...J[& . )det (G(Yi, ¥5j) 1< ﬁ (dy) + (Zi] O(b, —ar)) < [ ] #([ar. b))

Let’s show (3.1.15). A closed expression of the probability in (3.1.15) can be computed
using (3.1.1) and lemma 3.1.4. Since many different configurations (different values of Qs
and configurations of Ja,,) contribute to the probability in (3.1.15), we won’t give the closed
expression and only give the estimates. Let E be a non-empty subset of {1,...,n}. If
r ¢ E, then the condition Vo, N [, br) # @ contributes by a factor O(k([ay,by))) to
the probability in (3.1.15). If r € E, then the two conditions Vs, n [a,,br) = & and
Yo N [a,,br) # & imply that ( a,«,br U,EJ2 = . According to the identity (3.1.3),

the condition (G, br NUjes,, J = & contributes to the probability in (3.1.15) by a factor

O(ui(dr)“T(?)r) - UT(dr)ui(ET)) = O(Br —ay)

According to the lemma 3.1.4, the additional condition YV, N [a, l~)7") # (& contributes to the
probability in (3.1.15) by a factor
2 Br - ~r
o AemE)
uy (@ )up(br) — up(ar)uy (by)

(3.1.15) follows.
We deal now with (3.1.16). As in the previous case, the condition that for all r €

{1, ...,n}, Yon 0 [dr, by) # & contributes by a factor O (]_[: 1 k([ar, l;r))) to the probability

n (3.1.16). The condition [dy,, by, ] & Uses, J implies that there is i € {2,. ..,an} such

that a,, < p2n i1 <P < b,o0 As previously, this contributes by a factor O( ro — Qg ) tO
the probablhty Comblnlng (3.1.15), (3.1.16) and (3.1.17) yields (3.1.14). d

Let &, be the following operator defined for functions in IL.?(dk) with compact support:

(&)« jczy Ji(dy)

A standard condition for a determinantal point process with kernel G relative to the measure
K to be well defined is &, to be positive semi-definite, contracting and locally trace class.
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We explain why this is true. Let f be a compactly supported L2(dk) function. Then the
weak second derivative of &, f is

d(®, f)
d(T) = (& f — f)dr
6. f and % are square-integrable and
1 d(&, f)
(stif)fd’% = (®Kf)2dl</ + 5 (anf)d
(3.1.18) JR JR 2 JR ( du )

_ fR (& f Vs + fR (A0,

Identity (3.1.18) shows that &, is positive semi-definite. It also shows that {, (&, f)*dk <
SR((’SK f)fdrk, which implies that &, is contracting and hence can be continuously extended
to a contraction of the whole space L?(dr). &, is locally trace class because it is positive
semi-definite and its functional kernel is continuous (see theorem 2.12 in [Sim05], chapter
2).

Next we give a criterion for )5, to be finite or just to be finite in the neighbourhood of
either +00 or —oo0.

PROPOSITION 3.1.9. If §,
finite. Moreover

0,4) xk(dx) < +o0 then almost surely §(V, n (0, +00)) is

(3.1.19) E[#(Yx n (0,400))] = £0 o G(z,z)k(dx) < +00

If S(o o) xk(dz) = +oo then almost surely §(V, N (0,4+00)) = +00. In general, for all a € R

(3.1.20) POV, ~ (a,+0) = &) = u, (+00) J wn(z)e(dz)

(77;,&]

Similarly, if § |x|k(dz) < 400 then a.s. 8Y. is finite and
B[] = [ Glaosldo) <o
R

If ; |z|k(dz) = 400 then a.s. §Y, = +o0.

PrOOF. We need only to deal with the finiteness of §(),, n (0, +00)). If S(o oy & k(dz) <
+00 then (3.1.19) holds according to 2.2.3 and hence £(Y, n (0, +00)) is finite is finite a.s.
We will prove (3.1.20). If S(o +o0) xk(dz) = +o0 then according 2.2.3 uy(+o0) > 0 and

thus #(Vs, N (0, +0)) = 400 a.s. Let a < b € R. We assume that the two first starting points
in Wilson’s algorithm are a and b. Then

P(Ys n (a,b] = @) =P(B\” > b) +P(B\”) <a,B\" =a)
=P(B{” > b) + P(BY

(3.1.21) = J(b o G(a,x)k(dz) + (J

(_‘L‘va]

G(a, x)/@(dx)) x Ztés))

:f G(a,z)k(dx) +U¢(b)f up(z)k(dx)
(b,4+%0)

(_%‘7a]

Letting b go to +00 in (3.1.21) gives (3.1.20). O
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Next we will show that Z,, is a determinantal point process with kernel IC relative to
the Lebesgue measure where

1 duT

K(.2) == 5 7 (A2 ) ZE (v 2))

~ J<—x,yu] urlartde) = J[yvz,m ule)sldn)

PROPOSITION 3.1.10. Letn>1 and a1 <by <as <by <---<a, <b, €R. Then

n

[T¢2.n (ar,br))] = f f det(K(2i, 2j)1<ij<n | | d2
(a1,b1) (an,bn) r=1

r=1

If for r € {1,2,...,n}, k({a,}) = k({b.}) = 0 then

(3.1.22) E

n

(3.1.23) P(Vre{1,2,...,n},4(Z, A (ar,b,)) = 1) = det(K(ai, b;))1<ij<n X 1_[ (by — ay)

ProOF. We will only prove (3.1.23). (3.1.22) can be deduced from (3.1.23) by diving the
intervals (a,,b,) in small subintervals and approximating the expected number of points in
these subintervals by the probability to have one single point per subinterval. Observe that
if the measure x has atoms then K is not continuous. Yet z — %(z*) is right-continuous

and z — %(z‘) is left-continuous. So the approximation can still be done.

Consider the Wilson’s algorithm where the 2n first starting points are in order ay, b1, as, ba,
.y Qp, bn. Then

(3.1.24) P(Vre{l,2,....,n},8(Zs A (ar, b)) = 1) =

P(Vre{l,Q,...,n},(ar,br)QR\ U J,(ar,br)myx=@>

JeTan

Applying lemma 3.1.4 we get that (3.1.24) equals

(3.1.25) P(Vr €{1,2,...,n},(ab.) € R\ U ) x ﬁ w 20, — )

JeTon r=1 (ar)ur(br) — up(ar)uy (by)

Further

(3.1.26) P(Vre{1,2,...,n},(ar,br)§R\ U J) =

JeT2n

P (B(T‘“) <a, B 2 b, vre {1, n— 140, < BY < Bl < +1)

1 2n 2r T27 +1

Applying (3.1.1) and (3.1.3) we get that (3.1.26) equals

(3.1.27)
[TCws(aryun(ve) = ur(ar)us(00) = j( ()stn) f[ e,
r=1 —0,a1 n st

+0)

<1 (n([bhamn el

r=1 SYr<yr<ar41

(uy (yr)ur (gr) = UT(yr)m(ﬂr))n(dyr)ﬁ(dﬁr)>
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But

(3.1.28) L wy (yr)ur (9 )5 (dyr )5 (dir)

2 Lrsyrsarﬂ Ui(yr)( dr Napi1) - e (y, ))“(dyr)
_ 1 dui dui duT 1f du sy
a 4<dac (ar1) =5 (b’")) gz (@) = 5 ez 1) === (5, )R(dyr)

and

(3.1.29) — f wr (g Yy () (dyr ) (A5
b SYr<Yr<arg1

. 3 r ) (B 0y01) = B (4 ) ()

- 1 duT duT dui 1 f dui
== (Grtare) = o) Tra) 5 | unln) G ()
Combining (3.1.28) and (3.1.29) we get that
f (uy (yr)ur (9r)—ur(yr)uy (9,) 5 (dyr ) K (dgr)
br <Yr<yr<ariyi
I G _duy gy
B 4( dx (br) dz (ar+1) dx )G dz (arﬂ))
1 duT + dul +
S (DG w0 G ) st

B i(% (br)%(ar'H) o %(b )CZ;T (aT+1)) - K([braar+1])

It follows that (3.1.27) equals

(3.1.30) 1:[1 wy (ar)un (by) — wp(ar)uy (b)) x (— i%(a )‘Z;i (b ))
n—1
Lrdur g, ydu _ duy g, 4
X e (4( dx (br) dx (@r41) dx ()G dx (arﬂ)))
1 n
= o [ [(wa(ar)ur(b) = ut(ar)uy(by)) x det(K(ai, bj))i<i,j<n
r=1
(3.1.25) together with (3.1.30) gives (3.1.23). O

To see that the operator induced by the kernel K on L2(Leb) is positive semi-definite,
one can check that for any L2 function f with compact support

FWK(y, 2)f(2)dydz = | G(3,%2) (sz(w)dJC) K (dg)rk(d2)
R2 R2 i

Too see that K induces a contraction one can check that for any C' function f with compact
support

(.2 () = f fapas—3 [ @027 @z

and that SR2 L (9)G(7, ) L(2)dydz >
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The determinantal kernels G and IC both satisfy the following relation: for any z < y <
zeR

(3.1.31) G(z,y)G(y, 2) = G(z,2)G(y,y)  K(z,y)K(y,2) = K(z,2)K(y,y)
For z € R and y, z > x, we define

G(z,y)G(z, 2)
G(z,x)

Kz, y)K(z, z)

(3.1.32) G™)(y,2) := G(y, 2)— K(z, )

K:(QED) (ya Z) = IC(y, Z)_
Relation (3.1.31) ensures that det(G(yi,y;j))1<ij<n and det(K(zi,2;j))1<ij<n can be fac-
torised as follows: If y1 < yo < --- <y, then

n

(3]—33) det(G(yza yj))léi,jgn = G(yla yl) H G(yT*lx)(yT? yr)

r=2
If 21 <29 <--' <z, then

n

(3.1.34) det(K(2i, 2j)1<ijen = K(z1,21) [ [ K5 (2, 20)

r=2
The relations (3.1.31) or equivalently the factorisations (3.1.33) and (3.1.34) imply that the
spacings between consecutive points of ), respectively Z,, are independent, that is to say
conditional on )., having a point at yg, the position of the next higher point y is independent
on Yo, n (—00,yp), and similarly for Z,, ([Sos00], section 2.4). Conditional on yg € V., the
distribution of its higher neighbour in Y, is of the form f(yo,y)x(dy). Similarly denote
fxc(20, z)dz the distribution between two consecutive points in Z,, conditional on zy be the
lowest one. Following relations relate G¥*)(y, 1)) respectively K(20=)(z, z) to fg respectively

fr:
G (y,y) = fa(yo.y)

+ f Ja(yo,y1) fa(yi, y2) - '-fG(yjflay)K/(dyl) . "’i(dyjfl)
j=2YY0<Y1<--<yY;j-1<Y

IC(ZOD)(Z’ Z) = fIC(ZO’ Z)

+ Z f fK(Zo, Zl)f)c(zl, 22) .. .f/c(Zj_l, z)d21 .. .dzj_l
j=2 20<z1<<zj-1<%
If S(O#%) zk(dz) < 400, i.e. Y N (0,400) a.s. finite, then S(y07+,ﬂ) fo(yo,y)k(dy) < 1 and

S;b fr(20,2)dz < 1.

Given a couple of interwoven point processes (), Z) on R such that between any two
consecutive point in ) lies one single point of Z and such that for any J bounded subinterval
of R Y satisfies the constraint

E[§(Y nJ)] <+

the joint distribution of (Y, Z) can be fully described by a family of measures (M, (Y, Z))n=0
defined by

fRf(yo)MO(va)(dyo) = E[ » f(yo)]

YoEY
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f FWo, 21, Y1, -« - 20y Yn ) M (Y, Z)(dyo, dz1, dya, . . . dzn, dyy)
Yo<z1<Y1<...2n<Yn

=E > fo, 21,915+ - - Zns Yn)

Yo,--Yn
n+1 consecutive points in )
21,...,2n€Z
Yo<z1<Y1<...2n<Yn

M, (Y, Z)(dyo,dz1,dy, - . . dzn, dyy,) is the infinitesimal probability for yo,y1, ...y, being
n+ 1 consecutive points in Y and z1, ...z, being the n points in Z separating them. In case
of (V, Z4), Mo(YVr, Z2)(dyo) = G(yo, yo)r(dyo)-
ProrosiTioN 3.1.11. Forn >1
My, (Vs, Z4)(dyo, dz1, - . . dzp, dyn) =2"us(yo)uy (yn)k(dyo)dz1 - . . dznk(dyn)

3.1.35
( ) =2"G(yo, Yn)k(dyo)dz1 . . . dzpnk(dyn)

Moreover

fa(yo,y) = 2(y — yo) Zl((;o))

k(dy) — almost everywhere

-1
(20, 2) = 26((20, 2)) (%(ZO)) %(z) dz — almost everywhere
T x

The distribution on Z, conditional on Y, is the following: given two consecutive points
11 < y2 in Vo, then the point of 2., lying between them is distributed uniformly on (y1,y2)
and independently on the behaviour of Z, on (—o0,y1) U (y2,+0). The distribution on
Y conditional on Z. is the following: given two consecutive points z1 < zo in 2,
then the point of YV, lying between them is distributed on (21, 22) according the measure
Loy cy<zs K((Z( Z))) and independently on the behaviour of Y, on (—0,z1) U (29, +0). If
S(fx‘,()) |z|x(dx) < +00, then min Y, is distributed conditional on Z,, according to the mea-

sure 1y<min 2., % and it is independent on the behaviour of V., on (—o0, min Z.,).
Similarly for the distribution of max )., conditional on max Z., if S(o +o0) xk(dx) < +00.

PROOF. Let ag < by < @3 < by < a1 < by < -+ < @y < by < a, < b, € R. Let

én(ao,bo,a1,b1,a1,b1,...,0n,bn, ay,by,) corresponding to the following conditions:

o Vo nlag,bo] # &, Voo N [an, by] ;é %]

o Vre{l,....,n}, (Vs n[ar,b]) =

e Vre{l,....n}8(Z, N (G, b)) =

e Vre{0,....n—1},(Vp UZs) N (br,a,«] =, (Ve U Z) N [br,ars1) =S
We will compute the probability of &, (ao, bo, @1, bi,a1,b1,... a0, bp,an,b ). Consider that
we execute the Wilson’s algorithm where the 2n first startlng points are @i, b1, ..., an, by.
The only configurations that contribute to the studied event are those where B( @) ¢ € [ao, bo],

Bg_) € [an,b,] and for r € {1,...,n — 1}, B T B(a’“) € [ars1,br41]- We further need
2n 27‘+

that for r € {1,...,n}, Yo n (G, T) . Thus applying (3 1.1), (3 1.3) and lemma 3.1.4

we get the probability of the event €, (ag, by, a1, b1, a1, bl, ee ey Qpy by, an, by) equals

f UT(yO)K(dyO) X f yn dyn H ar; H b - ar
[aU,bU] [an,b ] r=1

The above probability also equals M, (Y., Z)([ao, bo] X [a1,b1] % [a1,b1] X - -+ X [@n, bn] ¥

[an,bn]) and gives the expression of (3.1.35). To get the expressions of fo and fi just
observe that

G(Y0, yo) fa (Yo, y)k(dyo)k(dy) = Mi([yo, yo + dyo] x (yo,v) x [y,y + dy])
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K (20, 20) fic(20, 2)dzodz = Ms((—00, 20) X [20, 20 + d20] X (20,2) X [2,2 + dz] x (2, +0))

Expression (3.1.35) gives also the law of Z, conditional on )., and the law of ).,
conditional on Z,, except for the possible extremal points of ),,. Let’s deal with the dis-
tribution of max )., conditional on max Z,, in case S(Q +o0) xk(dz) < +00. Again according
to (3.1.35), conditional on zg € Z,,, the distribution of min Y., n (2, +00) is proportional
t0 1y (y)k(dy). To obtain the distribution max )., conditional on max Z,,, one must
weight u;(y) by 1 — Sg>y fa(y, 7)k(dg), i-e. the probability of not having any point in Y,
consecutive to y. But

ol ietan) =2 [ (5= ua)

y>y g>y uy (y)

. y—yduy, 1 J‘ duy . .
= lim — — —(y™)dy
go+» uy(y) dr ) uL(y) Jgsy dx( )
But
~ dul ~ 4 ~
G-y )= -y) 2uy(z)r(dr) <2 (z —y)uy(z)k(dr) — 0
x (g,+7) (§,+%)
It follows that:
~ - 1 duy , o\ uy (+00)
faly,9)r(dy) = — f —— (" )dy =1~
J,., et mmtan = =5 [ S u )
Thus 1y>.0u)(y) (1 = §;_, fa(y,9)r(dy))r(dy) is simply proportional to 1, .,#(dy). O

PROPOSITION 3.1.12. In case §, |z|x(dz) < +o0

BV, = 1) = up(—o0)uy (+00)r(R)

Conditional on 8y, = 1 the unique point in Y, is distributed according %.

PRrROOF. The distribution of the unique point gy of Y, on the event ), = 1 is given
by the following sieve identity:

(G<yo,yo>— [ v fotvmnmintiy-)

Y-1<Yo

—f G(y0,90) fa (Yo, y1)k(dyr)
Y1>Yo

+ LMO LMO G(y-1,y-1)fe(y-1,90) fa(yo, yl)li(dy_l)/@(dyl)) K (dyo)

It is the infinitesimal probability of V., having a point at yo minus the probability of having
a point at yo and an other lower, minus the probability of having a point at yy and an other
higher, plus the probability of having a point at yg surrounded by two neighbours on both
sides. The identity can be further factorized as

(urt0m) 2 [ - ooy

X (ui(yo) —2 Ll>y0 (y1 — y())ui(yl)n(dyl)) x k(dyo)

According to the calculation done in the proof of proposition 3.1.11 this the above equals
wy (=0 )y (+90)(dyo - O
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Now let’s describe (Vy, Z,) in two particular cases. If the killing rate is uniform, that
is k(dy) = cdy where c is constant, then

cfa(zo, ) = fr(xo,z) = 2¢(z — 330)6_\/270(%_1'0)

Both the spacings of )., and Z., are i.i.d. gamma-2 variables with mean \/g . Actually the

union Y., U Z., is a Poisson point process with intensity \2¢dz. If the killing measure is of
form k = ¢ ez d; where c is constant, then again the spacings between consecutive points
in Y, arei.i.d random variables, this time integer valued. Let N5 be a random variable with
same distribution as this spacings. For any j € N

P(Ny = j) = 2¢j(1 + VZ) ™

N5 can be written as Ny = N7 + Nl — 1 where N; and ]\71 are two independent geometric
variables of parameter (1 + +/2¢)~'. Actually, if yo < y are two consecutive points in V..
and z the point of Z,, lying between them, then conditional on yo, (|z] — yo, ¥ — | 2]) has the
same law as (N; — 1, N). Moreover {|z||z € Z,.} has the same law as V...

3.1.4. Determinantal point processes ()., Z,): general case. Let I be an open
subinterval of R and L be the generator of a transient diffusion on I of form

I 1 d 1 d
=———|—=7—)—~
m(x) dr \w(z) dx
with zero Dirichlet boundary conditions on dI with sample path denoted (X;)o<t<¢ We will
describe, without proof, the law of (¥, Z,) in this generic case. It can be derived in the

same way as it was done in the previous section. Let G be the Green’s function of L relative
to the measure m(y)dy, factorisable as G(x,y) = us(z A y)uy(z v y).

PropPoSITION 3.1.13. V., and Z, are a.s. discrete point processes. Let 01 be the
boundary of I in R u {—0o0, +00}. Almost surely

Vo ndl ={yedllP(X,- =y) >0}

If k # 0, the points in Y, N I are a determinantal point process with determinantal kernel
G(z,y) relatively the reference measure m(y)s(dy). Z is a determinantal point process on
I with determinantal kernel

duT + dul _
—(yrz2)")—{(y v =z
A v )
relative to the reference measure %. Given two consecutive points y1 < yo in Vo, then the

w(z)dz
S(y1 »Y2) w(a)da
and independently on the behaviour of Z,, on (—o0,y1) U (y2, +0). Given two consecutive
points z1 < z in Zy, then the point of YV lying between them is distributed on (z1,22)

according the measure 121<y<22% and independently on the behaviour of V.,
Z1,22

point of Z. lying between them is distributed according to the measure 1y, <.y,

on (—0,21) U (22, +00).

3.2. Monotone couplings for the point processes ()., Z,)

3.2.1. Conditioning. In this chapter we will deal with monotone coupling for the
determinantal point processes )., and Z, intruded in chapter 3.1. We will restrict to the
Brownian case. Consider two different killing measures x and £ on R, with k < &, and the
couples of determinantal point processes (Y, Z,) respectively (.)Niﬁ,u‘, ZN,) corresponding to
the Brownian motion on R with killing measure x respectively k. We will show that one
can couple (Vy, Z,,) and ()N)‘-/J, ZN.,J) on the same probability space such that Z,, < Z., and



3.2. MONOTONE COUPLINGS FOR THE POINT PROCESSES (Y, Zx) 97

57% C YV, u Supp(k — k). Moreover if k and & are proportional we may also have )., € )7,
We will provide an explicit construction for the this couplings in the section 3.2.2.

In the section 3.2.1 we will prove conditionning results for (Y., Z,): what is obtained
if Y, or Z is conditioned by either containing a point at a given location or not containing
any points in a given interval. These results will be used in the next section. The conditional
law we will obtain are analogous to those of the Uniform Spanning Tree on a finite undirected
connected graph: Let G be such a graph, E the set of its edges, C' a weight function on
E and T the corresponding Uniform Spanning Tree on G. Let E; and F> be two disjoint
subsets of E such that E; contains no cycles and such that erasing the edges in Fy does not
disconnect G. The law of T conditioned by £ € T and T n Es; = & can be described as
follows: Let G’ be the graph obtained from G trough erasing the edges in Es and contracting
(i.e. identifying the two end vertices) the edges in E;. The edges of G’ are in one to one
correspondence with E\FEs. If we keep the same weight function C on these edges and take
Y’ an Uniform Spanning Tree on G’, then Y/ U E; has the same law as T conditioned by
Ey €Y and T n Ey = F (see proposition 4.2 in [BLPS01]).

Let k be a Radon measure on R and G(z,y) = us(x A y)uy(r v y) the Green’s function

of %dd—; — k. First we will restrict the Brownian motion with killing measure « to a half-line
by adding either a killing or a reflecting boundary point and describe what is obtained if we
apply the Wilson’s algorithm to it. This is related to some of the conditional laws we are
interested in. Diffusions with reflection were not discussed so far.

For xp < y let

W) o= up() — LDy )

and for zg < y, z let
Gy, 2) =™ (y A 2)uy(y v 2)

)y, 2) = =

(5~ ) S (v 2)7)

2 dx
G®0%) was already introduced in (3.1.32). For y < z let
(xz0) uy (o)
u =u -

and for y, z < x¢ let
G(X’C")(y, z) == usr(y A z)uixzo)(y Vv z)

1 duy duisz)

K#0) (g, 2) 1= —5 (W A ——(y v 2))

G@oX) respectively G(*70) is the Green’s function of %j—; — Kk restricted to the interval

(20, +0) respectively (—o0,xg) with zero Dirichlet boundary condition at xg.
Let 2o € R such that «({zo}) = 0. For ¢ < y let

™7 () = un(y) + (%(ﬂco))_l%(zo)ui(y)

and for y, z < x¢ let
G0 (y,2) =™y A 2)uy(y v 2)

Ko=) (y, 2) = —= ((y A Z)+)%((y v2)7)

Ko=) was already introduced in (3.1.32). For y < z let

ui«“)(y) = uy(y) + (%(mo))—l%(zo)m(y)
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and for y, z < x¢ let
Gy, 2) = up(y A 2)u ™™ (y v 2)

(<1$0)
1du du
(<1$0) — _ T + | —
Ky, 2) = 5 D (g A 2) D) e ((y v 2)7)
G@o=) respectively G(=70) is the Green’s function of §d—;2 — Kk restricted to the interval

[zo, +00) respectively (—oo, z9] with zero Neumann boundary condition at 9. Equivalently
G(xo>) respectively G(<‘”°) is the restriction to [zg, +00) respectively (—oo, zg] of the Green’s
function on R of % 3 d 77 — Lo, +20)k Tespectively %% — L~ m0] K-

Consider now g € R and (z,),>1 & dense sequence of pairwise disjoint points in
(0, +00). We consider the Wilson’s algorithm applied to the Brownian motion on (xg, +00)
with killing measure s and killing boundary xo, where (z,),>0 is the sequence of starting
points. Let yf,f”ox) and Z&%"X) be the interwoven point processes in [zg, +00) obtained as
result. See figure 3.2.a for an illustration of the first four steps of Wilson’s algorithm and
of ())(IOX) Z, IOX)). According to proposition 3.1.13, zg € YE) as., Y A (x0, +00)
is a determinantal point process with determinantal kernel G(*0%) relative to the measure

(CEQ X

Lo, 40y and Z.(xo )is a determinantal point process with kernel relative to the mea-

sure 1,~,,dz. The distribution of the 2n closest to xg points in (Y5 ( 20X) (o, +00)) U Z&%"X),
the odd-numbered belonging to yk,u‘ N (zg, +00) and the even-numbered to Z;, (o) , is given

by the measure

uy (yn)
uy (o)

Its total mass equals ]P’(]:D)(x" ) > > n+1). If the Wilson’s algorithm is applied to the Brownian

motion on (—o0,z), killed at xo and with killing measure &, and (Y2<°, 2070} are the

point processes returned by the algorithm, then the distribution of the 2n closest to zg
(xxo)

(”C"X)()} (@0 x) A IOX))(dzl, dyi,...,dz,, dyy) == 2" dz1k(dyr) . .. dzpk(dyy)

points in () N (—00,x0)) U 20 g given by the measure

M;LXQEO) (y’(lxx[))a Z’(/XQO))(dzfla dyfla RN dZ,n, dyfn) =
uT(y—n)
uq(zo)

Let now zp € R such that x({zo}) = 0. If we replace the Brownian motion on (xq, +00)

killed in 2o by a Brownian motion on [z, +o0) reflected in xg, and keep the killing measure

K, we get another pair (Y{°%), Z{ro>)

2m dz_1k(dy—1) ...dz_pk(dy—n)

) of interwoven point processes on [zg,+00). The
pair (yf,f“D), Z&?OD)) can be also obtain through applying Wilson’s algorithm to a Brownian
motion on R with the killing measure 1., y)r. See figure 3.2.b for an illustration of
(Yo=) 2(#0=)) - Observe the difference with figure 3.2.a at the third step of Wilson’s

(20=) is a determinantal point process with determinantal kernel G(*0>) relative

(zo>) -

algorithm. )
is a determinantal point process with kernel K(*0=) relative

0t>)
)

to the measure 1, 1)k Z5

to the measure 1,-,,dz. The distribution of the 2n—1 closest to xy points in ))(x"D Z(,x

(zo>)

the odd-numbered belonging to Z; and the even-numbered to ))(x" ), is given by the

measure
M,gxoD)(yr(,f?“D),Z(IOD))(dyl,dzl,. dzp_1,dyy) =

— 2" (‘ZQ (ﬂco)) sz dz1n(dy,)
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If the Wilson’s algorithm is applied to the Brownian motion on (—o0,x¢], reflected at z
and with killing measure x, and (yr(jm), Z(,qlo)) are the point processes returned by the
algorithm, then the distribution of the 2n — 1 closest to z points in Y7 U 2577 is given

by the measure
M (Y, 257N (dy 1, doy, . dzng, dy—n) =

du -1
2" (d—;(aco)) up(Yon)k(dy—1)dz_1 ... dz_pr15(dy—y)

o z3 x2 T4 T1

o z3 xr2 x4 T1
° AV4 ° .

X0 x3 x2 T4 1

K
K

~
L
q
Q
L

o T3 T2 T4 T
Y.
4 > 4 e
o
Y Y
7N 7N 7N 7N 7N 7N

Fig.3.2.a - Illustration of the first four steps of Wilson’s algorithm in case of killing at zo
and of (y&f?ox), ZO((?OX)): x-dots represent the points of yﬁfﬂx),

diamonds the points of Z{"°*) and thick lines the intervals in "0
x3 o x4

x0 x1
° ° ° ° A4

* ° ° * e

x0 x3 x2 T4 1
° ° V4 - Y.

* L e ® P

o 3 9 T4 1
o e o > 4

xo x3 « 2 T4 « 1
zo

X V4

v 7N 7N 7N 7N 7N 7N

Fig.3.2.b - Illustration of the first four steps of Wilson’s algorithm in case of reflection at zg
and of (y&??”l Z&?OD)): x-dots represent the points of y}fW),

diamonds the points of Z{*°™) and thick lines the intervals in J,\*°.

Let Y, and Z,, be the determinantal point processes associated to the Brownian motion
on R with killing measure x. Let n,n’ € N*. The following two factorizations hold:

Mn-‘rn’(y'/v‘; Z%)(dy—7L'7 dz—n’; ER dy—l; dz—h dy07 le, dyh RS dZ'ru dyn) =
MU (V) 20V (g dy . Az, dy ) X G0, yo) s (dyo)
X M,(LyOX)(yf,;?“X), Zg?ox))(dzl, dyi,...,dz,, dyn)

Mn+n’71(y’/,»; Z”fq)(dyfn’a dZ,nurl, oo dZ,l, dy*la dZ(), dyla le, ) dznfla dyn) =
M,(Lflzo)(ysfzo)a Zr(/flzo))(dyfl, dz_1,...dz_pwy1,dy—n) x K(20,20)dz0
X M,(LZUD) (y$f°>), Z,’.(,;?“D))(dyl7 dz1,...dzn—1,dyy)

The above factorisations imply the following:
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PROPERTY 3.2.1. Let € > 0 and let I} and Fy be two measurable non-negative func-
tionals on couples of point processes on R and f a measurable non-negative function on R.
Then

E[ 2 f(yO)Fl (y’/ N (—OO,yo],Z% N (—OO,yo])FQ(yy N [y()a +OO),Z% N [yOa +OO)):|

YoEYV»
= f FW0)G (o, yo)E[FL VSV, Z0YNE[F (V) Z280))]k(dyo)
R

and

E[ Z f(z0)Fi(Vyp 0 (=0, 20], 25 N (=00, 20]) F2 (Vs N [20, +0), 25 N [20, +oo))]

20EZ
- f F(20)K (20, 20)E[FL (V572 , 25N B[R (YD), 2507 dzg
R

If yo € Supp(k), then conditional on yo € Vo, (Voo N (—0,%0], 25 N (—00,y0]) and
(Vs N [yo, +90), Z5 N [yo, +0)) are independent, (V. N (—0,yo], Z5 N (—0,40]) has the
same law as (yﬁ(,j(yo),zf(ﬁfyo)) and (Vo N [yo, +0), Z5 N [yo, +0)) has the same law as
(Y, gy,

If k((—0, 20)) > 0, K((20,+0)) > 0 and k({z0}) = 0, then conditional on zy € 2,
(Voo N (=00, 20], 20 N (=0, 20]) and (Voo N [20, +0), 25 N [20, +00)) are independent, (Vo
(—00,20], 200 N (—0, 20]) has the same law as (yf“%z&f’“h and (Vo 0 [20, +0) 2.,
[20,+0)) has the same law as ( Sffob),ZfﬁfOD)).

Let yo € R and ¢ > 0. We will denote by (yS,}%“, Z.(,;O)) the pair of interwoven determi-
nantal point processes corresponding to the killing measure & + cd,, conditioned on y.(,f"“)
containing yo. The law of ()/f,;yo), ZK,;!{O)) does not, depend on the value of ¢ according to the
property 3.2.1. ()),(/f"’) N (Yo, +90), Zr(,f"’) N (Yo, +90)) and ( -(,'f’“) N (=00, yo), Z.(,E’”) N (—00,y0))
are independent. The distribution of the 2n closest to 1y points in (y.(,f"“) U Z,(/f’“)) N (yo, +0),
on the event n(yS{“) N (yo, +0)) = n, is

u
(3.2.1) Lyo<zi <y <v<zn<yn 2" l(yn)d,zlf-e(dyl) dzpk(dyn)
uy(yo)
The distribution of the 2n closest to yg points in ())%0) v Z.(,;O)) N (—o0,yo) is
ur(y—n
(3.2.2) 1y0>z_1>y_1>...>Z_n>y_n2”Mdz_m(dy_l) coodz_pk(dy—p)
ur(yo)

Let a < b € R. Next we will describe what happens if we condition by Z,, n [a,b] = &.
This condition implies in particular that §(}, n [a,b]) < 1. Let R be the quotient space
where in R we identify to one point all the points lying in [a, b]. R is homeomorphic to R.
Let 7 be the projection from R to R. Let 6 be the class of [a,b] in R. We define on R the
metric dg:

e If x <a and y > b then dg (7 (), 7(y)) = (y —x) — (b — a).

o If 2 < a then dg(7(x),0) = a — 2.

o If 2 > b then dg(7(x),0) =z —b.
R endowed with dg is isometric to R. So we can define a standard Brownian motion on R.
Let & be the measure x pushed forward by # on R. In particular 2({6}) = r([a,b]). Let
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(5}%, ZA,) be the pair of interwoven determinantal point processes on R obtained by applying
the Wilson’s algorithm to the Brownian motion on R with killing measure 4.

PROPOSITION 3.2.2. Conditional on Z, n [a,b] = &, (7(Vs),7(Z5)) has the same
distribution as (Y5, 2+). Moreover on the event Vo, n [a,b] # &, the unique point in

1a<y$b”(dy)

YV, n[a,b] is distributed according the probability measure ~Tad])

ProOOF. First we compute P(Z,, n [a,b] = &). We consider that a and b are the first
two starting points in the Wilson’s algorithm. Then

P(Z: 0 [a,b] = @) =P(BY) > b) + P(BYY < a,BY) =a) +P(BYY = BY € [a,b])
g () - B )%(bﬂ +uy(@uy (B[ B)

Next we determine the Green’s function G of %%22 — 7 on R. Let iy and 4 be two

solutions on R to

. . . dity dug [, o« da
with the initial conditions u4(0) = us(a), L (07) = F(a™), 4 () = uy(b) and —£(01) =
%(b*). Then for z < a, 44(7(z)) = us(z) and for x = b, 4y (7(x)) = uy(z). 44 and 4 are
positive, w4 is non—decreasmg and 7 non-increasing. Moreover:

— (@) +2ur(a)x([a, b])

dﬁT dﬁT duT

+ — 1 — 2A
“L(o%) = S07) + 201 (0)R((6)) =
The Wronskian of 4 and 4 equals

dit dit

Wiy, i) =ty (0)—— T 6%) —a4(0) dx 6%)
:%(af)ui(b) - m(a)%(H) + 2ur(a)uy (b)r([a, b])
=2P(Z, n[a,b] = &)
Thus G equals
. Uy (T A §)ay(Z v )

In particular if z < a and y > b then

(y)) _ uT(x)ul (y) _ G(l‘, y)
P(Z, n[a,b]l =) P(Z,n][a,b] =)
To prove the equality in law, we need to consider the probabilities of all the events
©n (ao,bo,al,bl,al,bl,.. G, by G, by ) where n > 1 and ag < by < a1 < by <ay <b <
<Ay < l;n < ay, < b, € R, corresponding to following conditions:
e Vo nag,bo] # &y Vo 0 [an, bn] # &
o Vre{l,...,n},§(Vr n[ar,b.]) =1
o Vre {1,...,n},ﬁ( 0 (G, b)) =1
e Vre{0,...,n =1}, (Vo U Z5) N (br,ar] = &, (Vo U Z5) N [bpyar41) = O
We will also assume that either all of the [a,, b,] do not intersect [a,b] or one of the [a,, b;]
is contained in [a,b] and the other do not intersect [a,b]. The probabilities of such events
determine the joint law of (Y., Z,,) on the event )., > 2, Z,, n [a,b] = &. We will denote
‘5:1() the analogously defined events where we replace (V,., Z) by (y,,z,) We do not
need to deal with the event ), = 1 because then Z, = .

(3.2.3) G(#(x), 7
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We first consider the case of [a,b] n (U!_o[ar, br]) = &. If there is ro € {0,n — 1} such
that b,, < a and b < ar,+1 then

P (cgn(a()ab()a&laglaal;bla .. 'aanagn;anabn)az"[» N [aab] = @)

= UT(yO)K(dyO) X f uy dyn ar; r
J‘[a07b0] [anvbn] ];[
x 1‘[ 2(by — ar) x 2Leb([arg, bry \[a, b])

Using (3.2.3) we get that the above equals

P(Zs N [a,] = @) x P (G (a0), #(bo), #(@r), 7(B1), ..., 7(an), 7(ba))

If b < ag, then we consider a Wilson’s algorithm where the 2(n + 1) first starting points are
al,bl, .. an,bn,a b. The conditions %, (ao,bo,al,bl,al,bl, .. an,bn,an,b ) and
Z4 N [a,b] = & are satisfied if and only if the following is true:

.B@:)e[ao,bo],B@) € [an,bn], for all 7€ {1,...,n—1}, B(b = B+ ¢ [q,,b,]
Ty T Tyrg1

and for all 7 € {1,...,n}, Vo 0 (@, by) = &.
e Either B(a) € (b, B(al)] or B(b) <aorBY =B" ¢ [a, b].

27L+1 271.+2 2n+1 T2n+2

Then

P(an(a@abOaa/laElaalabla .. -adna?)n)an,bn))Z‘L‘ N [aab] = @)

n—1 n

:L b ]ul(yn)’i(dyn) X 1_[ ar; H b _ar

X (UT(G)J (uy (y)ur(yo) — ur(y)uy(yo))r(dy)r(dyo) + ur(a)k([ao, bol)
b<y<yo,yoE[ao,bo]

n (L <auT(y_1)/@(dy_1) +u¢(a)ﬁ([ao,bo]))

x f[ (830 0n) = e () 30 ()

:L \ ]U,L(yn)/i(dyn) X 1_[ Ii([ar, br]) X H 2(l~)r _ &r)

]. dul
x (Gur(@ f[ao,bo] (o

+ (%%(a_) +up(a)r([ao, bm])) f

[a0,bo]

b s (o) — S (0" (o) ) o)

—

(ua (B)us (yo) — ur ()uy (yo))(dyo))

But for yo = b

in(a0)) =g un (@) (G2 0 s (o) — G267 s 30)

(551 (0) + s (@) Lo, bo]) ) g (D (30) — e (B ()
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Indeed one can check the initial conditions (7 (b)) = us(a) and (7 (b)*) = F(a™) +
2uq(a)k([ao, bo]). It follows that

P(an(a()ab()adlagla .- wan;bn);z”fq N [avb] = Q)

=y B x [ s x [T stlon ) < T]26: ~a)
—P(Z,. 0 [0,6] = @) x P (%u(f(a0), 7(bo), (@), 7 (1), ..., #(an), 7(00)))

Similar holds if b,, < a.
Now we consider the case when there is ro € {0,...,n} such that [a,,, b, ] E [a,b] and

[a,b]m(U#m[ar, o) =@ If 1 <rg <n—1then

P (%n(ao,bo,dl,?)l, .. .,an,bn),Z% N [a,b] = @)

B f[ao,bo] u(vo)r(dyo) x f[ambn] uy (yn)s(dyn) x [ ] w(lar,0,])

x [T 20 —ar) x 2Leb([ry, brgJ\[a, b]) % 2Leb([ary+1, bro+1]\[a, 0])

T#T0,70+1

_H([am’bm]) _ o (A A~ . N A A
=S X B 0 [8] = 2) x B (Fa(i(00), 7 00), (@), 700) . Flan), 7 (00)

Moreover 7(ar,) = (by,) = 6. If 1o = 0 then

P (fgn(ao,bo,al,él, e an b)), 2 [a,b] = @)

=us(a)k([ao, bo]) x J[ \ ]ui(yn)ﬁ(dyn)

1;[ ([ar,br]) x H 2(b, — a,) x 2Leb([ay, b1]\[a, b])

r=2

“([ Kllao, bol) A [a,b] = @) x P (G, (7 (ao), 7 (bo), 7(a1), 7 (b Han), 7
e B 0] = @) x P (i), 700), (@), 70, . an), 7(00)))
and 7(ag) = 7(bo) = 6. We have a similar expression if rq = n. O

Next we deal with the condition of the determinantal point process )., not charging a
given subinterval of R. We will consider the following more general situation: Let x and &
be two different killing measures on R, with x < &, and the couples of determinantal point
processes (V.,, Z..) respectively (V,., Z..) corresponding to the Brownian motion on R with

killing measure & respectively %. Let G be the Green’s function of é dd > — R, factorized as

G(z,y) = r(z A )iyl v y)
Let ~

R(w.2) = —5 (g n 2) ) T (g v 2) )

We will assume that & — k has a first moment, that is to say
f || (R(dz) — k(dx)) < 400
R

Let x be the Radon-Nikodym derivative
dk

Xizﬁ
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By definition 0 < y < 1. Let AY be the point process obtained from Y. as follows: Given a
point y in Y., we chose to erase it with probability y(y) and keep it with probability 1 — (),
each choice being independent from the other choices and the position of other points. It
is immediate to check that AY is a determinantal point, process with determinantal kernel
(G(z, Y))z,yer relative to the measure (1 — x)&, that is to say the measure & — k. We will
show that conditional on AY = &, (ﬁm ZN.,J) has the same law as (V, Z,). In case 1 — x
being the indicator function of a bounded subinterval of R, this gives the law of (V., Z..)
conditioned on Y., not charging this subinterval.

LEMMA 3.2.3. AY is a.s. finite. Let
v (y) = (aT(w— [ aT(y1><u¢(y1>uT<y>—uT<y1>u¢<y>><&—n><dy1>)
< (m(m [ ) ) — uslnur ) - m)(dyn)

Then
P(AY = 1) = j vez () (7 — 1) (dy)

The distribution of the unique point in AY conditional on le.)NJ =11is

v, (U) ( — ) ()
P(HAY =1)

Furthermore

P(}AY f Gy, y)(R(dy) —f@(dy)))2

l\D|>—‘

and P(AY = &) > 0

PROOF. First let us check that G(y,y)(R(dy) — k(dy)) < 4. Since & — k has a
first moment, we need only to show that G(y,y) grows sub-linearly in the neighbourhood
of —oo and +o0. Let a < b € R such that #((a,b)) > 0. Let C:'a,b be the Green’s function
of %j—; — 1(g,p)k. Then (Nlayb(y,y) is affine on (—o0,a) and on (b, +00). Moreover é(y,y) <
C:'a,b(y,y). Thus we get

E[:AF] = jRé@,y)(ﬁ(dy) — k(dy)) < +

In particular A.)NJ is a.s. finite.
To bound P(§AY > 2) we use the following:

P(:AY > 2) < JE[AT(AT - 1)]
- f (G(a,2)G(y.y) = Gla,y)*)(R(dx) — k(do)) (R(dy) — r(dy))
% f Gy, y)(i(dy) —Ii(dy)))2

The expression of E[]jAy (1AY —1)] that we used is general for determinantal point processes.
Let’s prove now that P(AY = &) > 0. AY is determinantal point process associated to
a trace-class self-adjoint positive semi-definite contraction operator on L?(d& —drk). P(AY =
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&) > 0 if and only if all the eigenvalues of the operator are strictly less then 1 (see theorem
4.5.3 in [HKPV09]). Let f € L?(k — k). Let

j G, ) f () (R(dy) — (dy))

F is continuous, dominated by

1

-

5 J G (y,y)(R(dy) —/@(dy % J f(y)?(R(dy) — “(dy)))

and has left-side and right-side derivatives at every point. F' satisfies the equation

1d*°F - -
—iw"ﬁ‘Fﬁ—f(H—Ii)

Assume by absurd that f = F (i — x)-almost everywhere. Then

JRF(JC)%(d _ w(da)) Jf dz) — r(dz))

dF
- | PP + 5 | Solerda

Thus F' is necessarily constant. But then this means that (K — k)(R) = &(R), which is
impossible because k is non zero. Thus 1 is not an eigenvalue of the operator defining the
determinantal process AY and thus P(AY = &) > 0.

As for )NJ»,J, the spacing between consecutive points of AY are independent. By con-
struction AY C Supp(k — k). Given yo € Supp(k — k), let

Ly>yo f a5 (W0, y) (R(dy) — k(dy))

be the distribution of the lowest point in AY n (yo, +00) conditional on yo € AY. Since Yo
may be the maximum of A)), fAj(yo, y)(R(dy) —r(dy)) < 1. For y to be min AY n (yg, +0),

y must belong to Y., all points in ¥’ € Y, A (yo,y) must be erased (probability x(y') for
each), and y must be kept (probability 1 — x(y)). For y' > yo, let fx(yo,y’) be

felo,v') =2(y —yo)

Ly'>yo f&(y0,y')R(dy') is the distribution of min .)Nixﬂ(yo, +00) conditional on yg € Y, (propo-
sition 3.1.11). fA)? and fg are related as follows:

fA)N)(y();y)
j—1
&Wo,y) + f falo,vn) - falyin,) [ [ x(wi)s(dy:)
j=2YY0<r<Y;j-1<Y i=1
_ -1
() < y—yo)+ 2 J (1 —wo) - (w—y;—) [ | %(dyi)>
@y (o) j>2 Yo<<yj_1<y i=1
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But
j—1
2(y—yo) +Z2JJ (y1 = o) - (y = yj=1) [ [ wldyy)
j=2 Yo<<Yj—1<yY i=1
]71
= ul(yo) (fG Yo, y) + Z f fa(yo,y1) .- fa(yj-1,y K (dyi >
( ) j=2YYo<<Y;j-1<Y 1=1
_ uy(yo) Glyo,y)*\ _
= 7 (G = ZErs) = ) y) = urlvo)u )

(see section 3.1.3). It follows that

fas(Wo,y) = (o) (uy (yo)ur(y) — ur(yo)uy (y))

In particular, if yop < y1 < -+ < y, € R, the infinitesimal probability that AY has a point
at each of the locations y; and no points in-between is

é(yo,yo)fAj;(yo,yﬂ fAy Yn—1,Yn H (dy:) — k(dy:))
i=0

n

n
1 (o) (yn) [ T(us(g)us (gim1) = up(yi)uy (gim1) l_[ (dy:) — k(dy:))
1=1

Thus the expression of v, z(y) is a sieve identity obtained as follows: v, z(y)(F — k)(dy)
is the infinitesimal probability that AY contains a point at y, from which we subtract the
infinitesimal probabilities to have a point at y at another below respectively above, and to
which we add the infinitesimal probability to have a point at y and points both below and
above y. O

Next we deal with the law of ()NJ, , ZN,) conditional on A)} = 0. Let yp € Supp(/i — R).
First we will compute the probability that AY n (yo, +0) # & conditional on yg € Y, -

LEMMA 3.2.4. There are positive constants ¢y and co such that for all x € R

(3.2.4) f (ug(y)ur (x) = up(y)uy (2))ur (y) (R(dy) — K(dy)) = tr(x) = crus(x)

(3.2.5) J (ur(y)uy (z) — uy(y)ur(e))iy (y) (Rdy) — k(dy)) = ty(x) — cauy(x)

In particular
v, (y) = crcaur (y)uy (y)
Proor. We will prove (3.2.5). The proof of (3.2.4) is similar. Let f be the function

fx) = uy(z) - f (ur(W)uy () = uy(y)ur (@) (y) (R(dy) — r(dy))
y>x
The derivative of f, defined everywhere except at most countably many points, is

)= @ = () G )~ ) G ) i) = ()
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The weak second derivative of f is:

T @ =T @ = () G )~ ui0) G @) W) ) — wld)

X
duT

+ (1) B ) () 2 (0 ) 1 o) () — )
=27, (z)k(dx)

- f> (ur(y)uy () = uy(y)ur (2))ay (y)(R(dy) = K(dy)) x w(dz)

+ 24y (x)(k(dz) — k(dz))
=27, (z)k(dz)

- f (ur(y)uy (z) —uy(y)us(z))ay (y) (Rdy) — k(dy)) x k(dz)
=2f(z)r(dx)

Thus f satisfies the same differential equation as u;. Moreover |f| is dominated by

ay(z) +uy(z) G(y,y)(k(dy) — k(dy))

y>x

Thus f is bounded on the intervals of the type (a,+00). It follows that there is a constant
¢ € R such that f = cpuy. Thus we get the identity (3.2.5). Let’s show that co > 0. Let
x € Supp(k). Then

e f (ur(W)uy (x) —uy(y)ur (z))ay (y) (R(dy) — k(dy))
ul(x) y>x

1= [ s = wd) = PAT 0 (o40) = Blo e ¥o)

The above conditional probability is positive because according to the lemma 3.2.3, P(A?
@) > 0. Thus f is positive and co > 0.

O

LEMMA 3.2.5. Conditional on the event A.)NJ = O, ()NJ,,ZN,) has the same law as
Ve, Z0).

PROOF. It is enough to show that conditional on Af =, ﬁﬁ has the same law as
Y. Indeed in both cases the points of Z~, respectively Z., are distributed independently
and uniformly between any two consecutive points of )NJ, respectively V. For n > 1 and
Y1 < < Yn, let pp(dyy,...dys) be the infinitesimal probability for )., having a point at
each of the locations y; and none in-between, conditional on AY = &. We need only to
show that

n

(3.2.6) pldyr, . dyn) = 2" up (o )uy (yn) [ [ —wi ) | [ e(dui)

i=2 =1

For y; < --- < y, to be n consecutive points in )7, and for AY = ,weneed y1 < -+ < Yn
to be n consecutive points in Y., to choose not to erase any of y; (probability x(y;)) and
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finally we need that AY n (—o0,y1) = & and AY n (Yn, +0) = &. Thus

1 U
P (dyt, . dyn) = ——=————2""" s (y1) Ty (yn)

P(Afi = Q)
(ur (y)uy (yn) — g (y)ur (yn)) iy (y) (7 (dy) — ﬁ(dy»)

<
n

XH( —Yi-1) nyz (dy:)
1=2

Applying lemma 3.2.4 we get that

(uy (y)ur (y1) — ur(y)uy(y2))us (y) (R(dy) — %(dy)))

Y<yi

n n
pn(dyr, ..., dyn) = mf 1(y1)uy (Y g — Yi-1 Qﬁ dy;)
Since the constant B (A‘}Zg) does not depend on n, the previous equations implies that
P(Y, # BIAY = @) = — 22— PV, # @)
P(AY = &)
But P(V,, # @AY = &) = P(V,. # &) = 1. Thus
c1Co _
PAY =)
and 3.2.6 holds. O

COROLLARY 3.2.6. Leta < b € R such that #(R\[a,b]) > 0. Conditional on Y, A[a,b] =
D, Vo, Z) has the same law as the pair of interwoven determinantal point processes
obtained from the Wilson’s algorithm applied to the Brownian motion with killing measure
Lg\[a,b) -

LEMMA 3.2.7. Conditional on jjA)j = 1 and on the position of the unique point Y in
AY, (Y, Z,.) has the same law as ( (,Y),Z(,Y))

PrROOF. It is enough to show that conditional on jjA)N) = 1 and on the position of the
unique point Y in AJNJ, )N).,J has the same law as yﬁ,ﬁ Indeed the points of ZN.,J respectively
Zg) are independently and uniformly distributed between any two consecutive points in
)N).,J respectively Z.(,}/).

Let n > 1 and ip € {1,...,n}. Let yr <. <yn€ R. The infinitesimal probability for

Y1,--.,Yn being n consecutive points in Y, and AY = {yio } 1s
2" g (y1)ay (yn)
(L= | ) - ) ) () - x(dy)
ﬂT(yl) y<y1
(s | ) @)@ ~ )

x H(yi — Yi-1) H k(dy;) x (F — k) (dyi,)
=2 i#10
= 122" tup(yr)uy (yn) H(yi —Yi-1) H k(dyi) x (F — k) (dyi,)

1=2 1#£10
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io—1

- (yl) H Yir1 — yi)k(dy;)

ur (Yig

= U, (3o ) (B = K)(dyiy) x 207

i=1

)
x 2n 10 yn)) H — i 1 (dyz)

ylo i=ig+1

(3.2.7)

In 3.2.7 appears the infinitesimal probability for AY = {yi,} times the infinitesimal proba-

bility for y1,...,y, being n consecutive points in V,’*’ (compare with expressions 3.2.1 and
3.2.2). O

3.2.2. Couplings. In this section we will prove the monotone coupling results for
(Vs, Z5) stated at the begining of section 3.2.1. The construction of the coupling will
be explicit. However it will not appeal to Wilson’s algorithm used to define (Y., Z5).
First we will describe analogous monotone coupling results for Uniform Spanning Trees on
finite graphs. In this case no explicit construction is known in general and the proof relies
on Strassen’s theorem and the conditions for stochastic domination between determinantal
processes shown in [Lyo03].

PROPOSITION 3.2.8. Let G be a finite connected undirected graph with E its set of edges,
and (C(e))eep a positive weight function on E. Let F be a subset of E. Let (C(€))ecr be an
other weight function such C>=CandC=C on E\F. Let Y be the Uniform Spanning Tree
of G correspondmg to the weights C' and T the Umform Spanning Tree of G corresponding
to the weights C. There is a coupling of T and Y such that

(3.2.8) T A (E\F)S T n (E\F)

In case F' is made of all edges adjacent to a particular vertex xq, and C is proportional to
C on F, then there is a coupling satisfying the additional condition

(3.2.9) TAFSYAF

PRrROOF. It is enough to prove the first coupling ((3.2.8)) in case F' is a single edge
(F = {e}). Then by induction on §F the general result will follow. From definition of
Uniform Spanning Trees is clear that P(e € T) P(e € T). Moreover, T conditional on
e € T respectively e ¢ YT has the same law as T conditional on e € T respectively e ¢ T.
A possible coupling is the following: first we couple l.ey with 1 _4 in a way such that
leery < 1,.%- In case leex = 1__5 = 0 respectively leey = 1,4 = 1 we sample for both T
and Y the same tree having the law of T conditioned by e ¢ T respectively e € T. In case
leex =0 and 1__4 = 1, we use the fact that on the edges in E\{e}, the law of T conditioned
by e € T is stochastically dominated by the law of T conditioned by e ¢ T, which implies
the existence of a monotone coupling by Strassen’s theorem. See theorems 5.2, 5.3 and 5.5
in [Lyo03].

Now we consider the case of F' made of all edges adjacent to a particular vertex zg, and
Cis proportional to C on F. Let (T, T) be a coupling satisfying (3.2.8). In general it does
not satisfy (3.2.9). To deal with this issue we will re-sample the edges of T and T contained
in F, that is to say sample YT’ having the same law as T, Y having the same law as Y’, such
that Y/ n (E\F) = Y n (E\F), Y n (E\F) = T (E\F) and such that YYn F < Y’ A F. Let
Ti,...,Tn be the connected components of T n (E\F). (3.2.8) ensures that each connected
component of Y/~ (E\F) is contained in one of the 7;. Let T1,1,. .-, Tigis---s TN1s - -« s TN gw
be the connected components of T A (E\F'), where 7, ; € 7;. Conditional on Ty,..., 7w,
T n F has the following law: for each 7; one chooses an edge connecting xg to 7; with
probability proportional to C, and independently from the edges of T that will connect xy to
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other (7). Similarly for the law of Y conditional on Tig, - Tigs s TN - T
To construct T/ and Y’ we use the fact that C' is proportional to C' on F":

e We start with T and T satisfying (3.2.8).

e Then we remove from T and Y the edges contained in F'.

e For each 7; ;, we add to Y’ an edge connecting xo to 7; ;, chosen proportionally to
its weight under C, each choice being independent from the others.

e For each i € {1,..., N}, there are ¢; edges in Y’ connecting xg to 7;, one for each
(Ti,j)1<j<q:- In order to construct Y’, we need to chose one out of ¢; to keep and
remove the others. We chose to keep the edge corresponding to 7; ; with probability
proportional to:

Y. Cl)

e connecting
Zxo to 7_7;7j

The choice is done independently for each i € {1,..., N}.
By construction Y/ n F € Y’ A F. O

Consider now two different killing measures x and K on R, with x < &, and the cou-
ples of determinantal point processes (V,, £ ) respectively ()7,, ZN,) corresponding to the
Brownian motion on R with killing measure x respectively <. We want to show that one
can couple (Y, Z,,) and ()N)‘-/J, ZN.,J) on the same probability space such that Z,, < Z., and
VoSV, u Supp(k — k), and if k and & are proportional also have ), < Y.,.. The condition
Z,C Z, and Y, SV U Supp(k — k) is analogous to (3.2.8). The condition Y., < Vo
is analogous to (3.2.9), where the cemetery f plays the role of the distinguished vertex .
We used the stochastic domination principle ([Lyo03]) for determinantal point process with
determinantal kernel a projection operator. It ensures the existence of a monotone coupling
but does not give one explicitly (see open questions [Lyo03]). However for (Y, Z,) and
(.)Niﬁ,u‘, ZN,) we will construct a whole family of rather explicit monotone couplings.

Let G be the Green’s function of %j—; — R, factorized as

G(z,y) = p(z Ayt (z v y)

et - 1 diis L diy _
Ry 2) = —5 L~ 9D T v 2)7)

Let &% be the operator on L?(d&) defined on functions with compact support as follows:

(6:f) (@) := fRé(az,mf(y)ﬁ(dy)

In case & = ck where ¢ is a constant, ¢ > 1, we have the following resolvent identity, which
follows from lemma 2.2.8:
(3.2.10) L6, = 16,6, = —— (@K - 1csm)
c c c—1 c
Next we prove that a simple necessary but not sufficient condition for monotone cou-
plings to exist is satisfied. It won’t be used in the sequel but we prefer to give a direct proof
for it.

PROPOSITION 3.2.9. For any 21, ..., 2, € R such that k({z;}) =0

(3.2.11) det(K (21, 2)))1<ij<n > det(K(zi, 2)))1<ij<n
If k = ¢k, ¢ > 1, then for any y1,...,yn € Supp(k)

~

(3.2.12) c" det(G(yi, yj))1<ijen = det(G(yi, yj))1<ij<n
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Proor. We will first show (3.2.11). To begin with we will show that for any z; € R,
K(z1,21) = K(z1,21). The Wronskian

W () (2) = () S0 (%) — 1y (2) o (=)

is non-negative. Indeed W (uy, @is)(—00) = 0 and
dW (up, tp) = 2usts(di — dr) = 0
Similarly the Wronskian

W, 10)(2) = () () () G (o)

is non-positive. Using the fact that
W (uy,ur) = Wiy, ty) =2

we get
. _ _Lledur giduy gy dip oy dby oy
R(z1,2) = K(or 1) =5 (LD T2 D) - ZHEHTEHED)
1 /du du o diiy du
—1 (LT W g, i) — LD TR W ()
(B o) T (W g, 1))
du du _
- L EN T EDW ) () 2 0

To prove (3.2.11) in general, we will use the factorization (3.1.34). For xg < z, let
dﬁl 1 duT

~(zor>) — auy
a7 () = i (2) + () L )u()
Factorization (3.1.34) ensures that we only need to prove that for z¢g < z with x({zo}) =
~(zo>) . (wor>)
diiy" z+)%(z >_duT° B )dui
dx dx - dx dx
First observe that the Wronskian

(2)

(r0=) - (w0) RPN (ro=)
W (™, 5707))(2) o= 0 () L (o) = 7 (2)
is non-negative on [, +00). Indeed W (uy (0>) ﬁgz"D))(x) =0 and
AW (uf™?), a{"™)) = 2u{"7 (2)al"7) (2)(dR — dr) = 0
The sequel of the proof works as in the previous case.
Let’s prove now (3.2.12). First we consider the case n = 1. From the resolvent identity
(3.2.10) follows that

B — 6, = (C - 1)(6;&@ - QSCRQSR)
Since &, is contracting, this implies that &, < &, where the inequality stands for positive
semi-definite operators on L?(dk). Let y; € Supp(x). Then for any € > 0

(3.2.13) cf( o Gz, y)k(dz)k(dy) = J( ” G(z,y)r(dz)k(dy)

Since y; € Supp(k), both sides of (3.2.13) are positive. The continuity of G and G ensures
that ¢G(y1,y1) = G(y1,y1).- In case of general n, we use the factorization (3.1.33). It is
enough to prove that for any zo <y, y € Supp(k)

(3.2.14) G (y,y) = G (y,y)
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where N
~x ~ G(zo,y 2
G0 y,y) i= Gily,y) — S0
G (o, z0)
G is the restriction to (g, +90)2 of the Green’s function of %dd—; —1(zg,+o)R- Let &%) and

05820*) be the operators on L2(1(I07+7J)dli) defined for functions f with compact support as

(BE ) f)(a) = j G0 (2, ) £ (y)w(dy)

(zo,+0)

@)@ = ) wsdy)
(wo,+%0)

&) and B2 are contractions and satisfy a resolvent identity similar to (3.2.10), which

similarly implies (3.2.14). O

The resolvent identity (3.2.10) implies that &, and &., commute and that &, < 6.
It was shown in case of determianatal point processes on discrete space that this a sufficient
condition for a monotone coupling to exist. See theorem 7.1 in [Lyo03].

To construct the couplings we will give several procedures that take deterministic ar-
guments, among which pairs of interwoven sets of points, and return pairs of interwoven
random point processes. The first procedure we describe will be used as sub-procedure in
subsequent procedures.

PROCEDURE 3.2.10. Arguments:

o a pair (), Z) of disjoint discrete sets of points in R such that between any two points
in Y lies a single point in Z and vice-versa, and such that inf Y U Z € Y U {—w},
supY u Z e Y u {+ow0}

e a positive Radon measure K

e a point yo € R such that yo ¢ Z

Procedure:
(i) If yo ¢ YV, we define a random variable Z distributed as follows:
(ia) If there are y' € Y, 2/ € Z u {+w0}, such that y < 2, yo € (y',2') and
Vn(y,2')y=Z2,0n(y,2) = then Z is distributed according to
Lee(yyo)  dup
ur(yo) — ur(y’) da
(ib) If there are y' € Y, 2z’ € Z u {—w}, such that 2’ < v, yo € (2',y’) and
Vn(Z,y)=Zn(2,y) = then Z is distributed according to

(2)dz

—Leeoy) ﬂ d
uy(y') —uy(yo) d
(i) If there arey' € Y, 2’ € Z U {+w}, such that y' < z', yo € (¥',2") and Y n (v, 2") =
Zn(y,7) =, then

!
(ii a) with probability ur(y') we set
ut(yo)
(P,2) = (VU {goh\ly'}, 2)
!
(ii b) and with probability 1 — (') we set
ut(yo)

Y, 2) = (VuimwhZuiz}
(iii) If there arey' € Y, 2’ € Z u{—w}, such that 2’ <y', yo € (2',y") and Y n (2',y') =
Zn(Z,y) =, then
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!
(iii a) with probability wy) we set

uy(yo)
V.2) = (Y u{nh\y} 2)

uy(y")

we set
uy(Yo)

(iii b) and with probability 1 —

¥, 2) = (VU iy} 2 v {Z})

(iv) Ifyo €V, we set (V,Z) = (V, 2).
Return: (Y, Z).
LEMMA 3.2.11. If procedure 3.2.10 is applied to the pair of interwoven determinantal

point processes (Y, Z,) corresponding to the killing measure k, then its result ()N), ZN) has
the same law as (Y, 230,

PROOF. By construction gy € 37 Let Zl < }71 << Zn < ffn be the 2n closest points
to yo in (¥ U Z) N (yo, +0). On the event min(Y,, u Z,) N (Yo, +0) € Z, (point (ii) in
procedure 3.2.10) their distribution is given by

(3.2.15) 1yo<z1<y1<---<zn<yn2n<f UT(yl)“(dyl))ui(yn)dzlff(dyl) - dznk(dyn)

(—2,90)

On the event min(Y., U2 )N (yo, +00) € V., (point (iii) in procedure 3.2.10), the distribution
of min(Y,, U Z,) N (yo, +0) is (see proposition 3.1.11)

1y,>y02(£

ur(y—1)(yo — yq)ﬂ(dyfl))w(y’)ff(dy')

%G(yo, yo)f@(dy/)

=1yr>yo (ur(yo) — ur(+00))uy (v )k(dy") + Lyrsyour(+00)uy (y')r(dy’)
:1y’>youT(f‘JO)ui(yl)"@(dyl)

—,Y0)

+ 1y’>yo

Thus on the event min(Y,, U Z,) N (Yo, +©) € YV, (point (iii) in procedure 3.2.10), the
distribution of (Z1,Y1,...,2Z,,Y,) is
(3.2.16)

/!

Lyyesy<ocy, (J uy(y ))

s o)y ()2 0 ) ) . ()

Yyo<y'<z1 ul(y() ul(yl)
=1 du 71ul(yn)
3.2.17 1y <. — 2Tt ——(d dyi) .. .dzpk(dy,
( ) Flyo<zi<o<yn w(y0) dx (z1)ur(yo)uy(y1) wy (1) 21k (dy1) Znk(dyn)

The term (3.2.16) corresponds to the case when a point is removed from )., (case (iii a) in
procedure 3.2.10) and (3.2.17) to the case when Z is added to Z,, (case (iii b) in procedure
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3.2.10). The sum of the densities that appear in (3.2.15), (3.2.16) and (3.2.17) is

2"<J<_.L,y0) @ s@)usto) + (| s )2 )
o e )z
= ) + s (o) = ) o)
L G ur o)
=t () s ) =2 18

So we obtain the density which appears in (3.2.1).

It remains to prove that (Y (yo, +0), Z (yo, +0)) and (Y (=0, y0), Z (=00, yo)) are
independent. Let Z { >Y | >---> Z ,» >Y . be the n’ closest points to yg in ()7 uZN) )
(—00,y0). The distribution of the family of points (Z_1,Y_1 ..., Z_p,Y_p', Z1,Y1,..., Zpn, Y2)
on the event #(Y n (=0, 10)) = n, (Y A (yo, +0)) = n’ is

, wy(y' ontn' =Ly (y oy (yn) du
(3.2.18) (f 2 (Y () D () — 1(§-w)us(yn) duy
Yo<y'<z1

uy(yo) uy (o) dz
(3.2.19)
n+n'u Nu U’T(yl)ﬁ ’ 2n+n171u1‘(y7n’)ul(yn)% .
| T ) S ) + - dm(g)

X1y <o i<z <yo<zr <<y <y K(AY—n)dZ_p .. dz_1dzy .. dzpk(dyn)
The term (3.2.18) corresponds to point (iii) in procedure 3.2.10 and (3.2.19) to point (ii) in
procedure 3.2.10. One can check that the sum of the densities equals

gntn’ M uy(Yn)

up(yo) uy(yo)
Thus (Y A (yo, +0), Z A (yo, +0)) and (Y n (=0, 10), Z n (—o0, o)) are independent. [

LEMMA 3.2.12. We consider the subspace of triples (¥, Z), k,yo) consisting of a pair of
discrete sets of points (Y, Z), a Radon measure k and a point yo € R, and which satisfies the
restrictions on the arguments of procedure 3.2.10. We assume this subspace endowed with the
product topology obtained from the topology of uniform convergence on compact subsets for
the pairs (), Z), the vague topology for the measures k and standard order topology on R. If
()7, Z~) is the pair of point processes obtained by applying procedure 3.2.10 to the arguments
(Y, 2),k,y0), then its law depends continuously on ((V, 2), k,yo).

PrROOF. From lemma 2.2.4 it follows that the cumulative distribution function of Z
(point (i) in procedure 3.2.10) depends uniformly continuously on ((), Z), k, yo) in the neigh-
bourhood of triples where yo ¢ . Moreover the probabilities to make either the choice (ii
a) or the choice (ii b), as well as to make either the choice (iii a) or the choice (iii b),
depend continuously on ((Y, Z), k,y0). Thus the law of (), Z) depends continuously on
((V, 2), K, yo) in the neighbourhood of triples where yo ¢ J. Moreover in the neighbourhood
of triples where yo € ), with high probability, converging to 1, ()N), ZN) = (), Z). Thus the
law of (), Z) is continuous also at these triples. O

First we will describe a coupling in case when & and & differ by an atom: & = Kk 4 cdy,.
We construct the coupling as follows:
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PROCEDURE 3.2.13. Arguments:

o a pair (), Z) of disjoint discrete sets of points in R such that between any two points
in Y lies a single point in Z and vice-versa, and such that inf Y v Z € Y U {—ow},
supY u ZeYu {+w0}

o two positive Radon measures x and K where & is of form & = k + cdy, and yo ¢ Z.

Procedure:
(i) Let 8 be a Bernoulli r.v. of parameter cé(yo,yo).
(ii) If B =0 we set (¥, 2) = (Y, 2).
(i) If 8 =1, we apply the procedure 3.2.10 to the arguments (Y, Z), k and yo and set
(Y, Z) to be its result.

Return: (Y, Z).

()) Z) constructed this way satisfies the following: between any two consecutive pomts
in Y lies a single point in Z and between any two consecutive points in Z lies a point in Y.
By construction Z < ZandYCYu {yo}-

PROPOSITION 3.2.14. If procedure 3.2.13 is applied to to the pair of interwoven deter-
minantal point processes (V., Z4) corresponding to the measure x, then the returned pair of
point processes ()7, Z~) has the law of the interwoven determinantal point processes (j%, ZNL)
corresponding to K = K 4 €y, .

PROOF. Observe that a.s. yo ¢ Z,. First we deal with the case x({yo}) = 0. Then
almost surely yo ¢ V. and yg € ) if and only if 8 = 1. But
P(3=1)=P(yoe V) = Cé(yo,yo)

According to corollary 3.2.6, conditional on yq ¢ )NJ ()), , ) has the same law as (Y, Z..),
that is to say the same law as (), Z) conditional on ﬁ = 0. According to lemma 3.2.11,
conditional on 8 = 1, ()) Z) follows the same law as (Y n (—00,0), Z N (—0,y0)), which

is also the law of ()) ', Z+) conditioned on yo € )) .
We deal now with the case x({yo}) > 0.

P(yo € Vo) = &({y0})G (%0, %0)
P(yoe V) =P(B =1) +P(B=0,y0 € V)

= cG(yo. o) + (1 — cG(yo. v0))K({y0}) G (0, o)
But G and G satisfy the resolvent identity (see lemma, 2.2.8):

G (Y0, y0)({y0 )G (yo, yo) = R({yﬁ;{fiz{%}) (G(¥o,90) — G(yo,0))

It follows that P(yo € V) = P(yg € V). Let & := x — K({yo})dy, and ( Z.,) be the
interwoven determinantal point processes corresponding to &.et K := ({yo}) v and
(N',,ZN’,) be the interwoven determinantal processes corresponding to &'. According to
corollary 3.2.6, (y Z) conditioned by Yo ¢ Y has the same law as ()) s Z+) conditioned by
Yo ¢ )),, which is the same law as (y,,z,) conditioned by yo ¢ yﬁ, and it is the law of
()J, , Z,) For gy € )) there are two possibilities: either yg € Yy or yo ¢ Voo and 8 = 1. In
the first case, it follows from proposition 3.2.1 that ()., £ ) conditioned on yo € V., has
the same law as (yv , z +) conditioned on yg € y,, In the second case (Y., Z4) conditioned
on yo ¢ V.. has the same law as ()., Z..). This bring us back to the situation x({yo}) = 0.
According to what was proved earlier, conditional on yy ¢ )V, and 8 = 1, (j,ZN) has the
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same law as (~,’/J, 2’ ) conditioned on yo € )NJ’L But this is the same law as for (Y., Z..)

A

conditioned on yo € V... So again, ()7, Z~) has the same law as (.)Niﬁ,u‘, ZN,) O

Next we consider the more general case where the measure % — k has a first moment:
J 12| (R(d) — k(dz)) < +o0
R

First we describe a procedure that does not give a coupling between ()., Z,,) and ()7,, ZN,)
but allows to approach it.

PROCEDURE 3.2.15. Arguments:

o a pair (), Z) of disjoint discrete sets of points in R such that between any two points
in Y lies a single point in Z and vice-versa, and such that inf Y U Z € Y U {—w},
supY u ZeYu {+ow}

o two positive Radon measures , & such that k < i and (3 || (R(dz) — k(dx)) < 400
and (K — k)(Z) =0.

Procedure:

(i) Let 8 be a Bernoulli r.v. of parameter

f Ve (1) (7 — 5)(dy)
R

(see notations of proposition 3.2.3)
(ii) Let Y be a real r.v. independent from [ distributed according to

Uk,i (y) (K — K)(dy)
P(B=1)
(iii) If B = 0 we set (Y, 2) = (¥, Z).
(iv) If 8 =1, we apply the procedure 3.2.10 to the arguments (Y, Z), k and Y and set
(Y, Z) to be its result.

Return: (Y, Z).

Observe that in case & and k differ only by an atom, procedure 3.2.15 is the same as
procedure 3.2.13.

LEMMA 3.2.16. Let (Vy, Z.) respectively (ﬁﬂ,ZNI‘) be the pair of interwoven determi-
nantal point processes corresponding to the killing measure k respectively . We assume that
the procedure 8.2.15 is applied to (V., Z+) and that ()N), ZN) is the returned pair of point pro-
cesses. Then the total variation distance between the law of (Y, Z) and the law of (V,., Z,)

is less or equal to (SR Gy, y)(R(dy) — /{(dy)))2.

PROOF. Let AY be the determinantal point process defined in section 3.2.1 (see lemma
3.2.3). According to lemma 3.2.5, the law of (), Z) conditional on 8 = 0 is the same as
the law of ()7,, ZN,) conditional on A.)NJ = . From lemmas 3.2.11 and 3.2.7 follows that
the law of (), Z) conditional on 8 = 1 is the same as the law of (Y., Z,) conditional on
$AY = 1. Moreover P(8 = 1) = P(4AY = 1). However

P(8 = 0) = P(AY = &) + P(1AY > 2) > P(AY = &)

It follows that the total variation distance between the law of (), Z) and the law of (Y., Z..)
is less or equal to 2P($AY > 2), which according lemma 3.2.3 is less or equal to the square

(8 Gl ) (R(dy) — () 0
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COROLLARY 3.2.17. Let kg < K1 < --- < K; be positive Radon measures such that
§g [2|(kj(dx)—ko(dx)) < +o0. Let G; be the Green’s function of%j—; —k; and (y.(,?,z.(,?) the
pair of interwoven determinantal point processes corresponding to k;. Let ((y(”,z@))ogigj
be the sequence of pairs of interwoven point processes defined as follows: (y<0>,z<0>) =
(yf,?),z,ﬁ?)); given (Y01, 261 (Y& Z0) s obtained by applying procedure 3.2.15 to
the arguments (y(i_l),Z(i_l)), ki—1 and k;. Then the total variation distance between the
law of (Y9, 2 and the law of ( ,(,f),ZS,f)) 1s less or equal to

Zj: (LGifl(%y)(ﬂi(dy) - Hi71(dy)))2

PROOF. Let ())’(i), Z’(i)) be the pair of point processes obtained by applying procedure
3.2.15 to the arguments (yf,j‘l),z,(,f‘l)), ki—1 and k;. According to lemma 3.2.16, the total
variation distance between the law of (J”(?), 2’())) and the law of ()),(,f), Z(,l)) is less or equal to

2
(SR Gi—1(y,y)(ki(dy) — /ii,l(dy))) . We denote by d, the total variation distance between

the law of (Y@, Z(@)) and the law of ( @ Z,(,j])). The total variation distance between the
law of (', 2'@) and the law of (Y, Z()) is less or equal to d; 1. It follows that

< s+ ([ Galy)satin) - ria @)
and thus

dj < i (JR Gi-1(y, y)(ri(dy) — m—l(dy)))2

i=1
(]

Next we give a true monotone coupling between (V.,Z,) and (V,, Z,). We still
consider that x < & and that {, |z|(k(dz) — x(dx)) < +o0. To construct the coupling we will
use a continuous monotonic increasing path in the space of measures, (kq)o<q<1, joining x
to & (ko = Kk, k1 = k). Such a path is defined as follows: Let A be a positive Radon measure
on R x [0,1] satisfying the following constraints:

e For any g€ [0,1], A(R x {¢}) =0
e For any A Borel subset of R, A(A x [0,1]) = &(A)

For ¢ € [0, 1], we define k, as the measure on R satisfying, for any A Borel subset of R
rq(A) = ro(A) + A(A x [0,q])

For any ¢ < ¢’ € [0,1], kg < Kg. Moreover the map ¢ — kg is continuous for the vague
topology. In the sequel we will denote G, the Green’s function of %%22 — kg (for z < y,

Gq(z,y) = ugr(x)uq, (y)) and use the measure Gy(y, y)A(dy, dg), which is finite.

PROCEDURE 3.2.18. Arguments:

e a pair (), Z) of disjoint discrete sets of points in R such that between any two points
in Y lies a single point in Z and vice-versa, and such that inf Y v Z € Y u {—w},
supY u Z €Y u {+w}

e two positive Radon measures , i such that k <k and {; |z|(A(dz) — K(dz)) < 40
and (k — k)(Z) = 0.

e a continuous monotonic increasing path in the space of measures, (Kq)o<q<1, join-
ing k to K, obtained by integrating the Radon measure A on R x [0,1].

Procedure:
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(i) First sample a Poisson point process of intensity G4(y, y)A(dy,dq) on R x [0,1]:
((Y},q5))1<j<n, the points being ordered in the increasing sense of g;.

(ii) Then construct recursively the sequence (Y9, Z20)))o<j<n of pairs of interwoven
point processes as follows: (Y(©), Z(0) is set to be (¥, Z). (Y9), 2 is obtained
bgi azzplying procedure 3.2.10 to the arguments (YU, 201, Kq; and Yj.

(iii) (Y, Z) is set to be (YN, Zz(N))

Return: (Y, Z).

The condition (% — x)(Z) = 0 ensures that a.s., none of YU lies in Z. By construction
ZcZandY €Y U Supp(i — k). (Y, Z) differs from (I, Z) only by a finite number of
points. The law of (), Z) depends only on the "geometrical path" (Kq)o<q<1 and not on its
parametrization: if 6 is an increasing homomorphism from [0, 1] to itself, then procedure
3.2.18 applied the path (kg(4))o<g<1 returns the same result (in law). Below an illustration
of procedure 3.2.18:

0T XN XX X XXX

X X XX X — XXX

Fig.3.3 - Illustration of procedure 3.2.18: On the left are represented (Y, Z) and
the Poisson process ((Yj,q;))1<j<n- On the right are represented the successive

(YD), 20)))ggj<n- x-dots represent the points of YU) and diamonds the points of Z().

PROPOSITION 3.2.19. Let (Y., Zy) respectively ()7,,Z~,) be the couple of interwoven
determinantal point processes corresponding to the killing measure k respectively k. We
assume that the procedure 38.2.18 is applied to (Y, Zy.) and that (Y, Z) is the returned

couple of point processes. Then ()N),ZN) has the same law as (V5 , Zx).

PROOF. Observe that a.s. (& —k)(Z,) = 0. Let n € N*. We define the fam-
ily (Y@, 20:m))) o< <, of interwoven point processes as follows: (Y0, Z(0m)) equals
(Vs Z,). Given (YU-Lm) zG=1tn)) (yEn) z0Gm)) is obtained by applying procedure
3.2.15 to the arguments (Y1) Z2U-11)) ;1 and k; . We will show that as n tends to

n
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infinity, the law of (Y™™, Z(nn)) converges in total variation to the law of (V,, Z,) and
converges weakly to the law of ()7, ZN), which will imply that ()NJ, ZN) and (.)Niﬁ,u‘, ZN,) have the
same law.

Applying corollary 3.2.17, we get that the total variation distance between the law of
(V) Z(n)) and the law of (Y., Z,) is bounded by

n

3% ([, G 1)l () = s ()

<sup <Gi0+x|;| )2 2 (J 1+ |y)(k %(dy) — K%(dy)))Q

2

zeR

Go(z,2)\° .
<oup (SUEEL) [ (1t o) = ta)
< [ (L4 1yl) 0 () — s ()

The continuity of the path (kq)o<q<1 ensures that

lim sup fR(l + |y|)(l€l(dy) - ”u(dy)) =0

n—+ua0 1<j<n

and hence the total variation distance between the law of (Y(n) | z(nn)) and the law of

(Y, Z.,,) converges to 0 as n tends to infinity.
We define a random finite set F,, of points in R x { , n, ce %} as follows: Take a family
(B1.msB2.ns - - -5 Bn.n) of independent Bernoulli variables, §;.,, being of parameter

Whenever 3, = 1, we add to E, a point (Vi ,, =1) to E, where Y;, is a r.v. distributed
according the measure

1

A, =D (y)(r

2z
n

— ri)(dy)

K
n

The (Y; n, %) are assumed to be independent and independent from (51,1, B2.ny- - -5 Bn,n)-
The pair (Y™™, Z2(m7) is sampled as follows: starting from ()., Z..), independent from
E,,, we apply successively, for i ranging from 1 to n, the procedure 3.2.10 with the argu-
ments xi-1 and Y, whenever 5; , = 1. At the end we get ())(”’”),Z(”’”)). According to
lemma, 2.5.4, the law of the pair of point processes returned by procedure 3.2.10 depends
continuously on the arguments. So to prove that (Y™™, Z("")) converges in law to ()N), ZN),
we only need to show that the random set of point E, converges in law to the Poisson
point process ((Yj,q;))1<j<n used in procedure 3.2.18. All of the functions v.,_, ., (y) are
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dominated by Gy(y,y). Moreover
Uﬂﬂﬁi (y) -G (yay)|

i
n

n? n n

o) | g s
Y-1<y

x (ki —riz1)(dy-1)

b o) [ g ) s )~ i (o )u
Yy1>y

n?

x (ki —riz1)(dyr)

n

s e ) - w0
Y-1<y

<Golyen) | Golymrymn) e — )y

Y-1<y
+Gouy) [ Gl = wiza )
Yy1>y
+Galy) [ Golvoaya)(ey =R )ymn) [ Gl = ko))
Y-1<y Yy1>y
Thus given any bounded interval J
lim  sup sup|ve,_, «, (¥) = G:(y,y)| =0
N2+ 1<i<n yeJ non "

It follows that
lim  sup P(3;,=1)=0

n—o+%0 1<i<n

n
2 Uk j—1,k
i=1

n

and the measure

()5 — ri2)(dy) @ 1 (dg)

3l

converges weekly to G4(y,y)A(dy, dg), which is the intensity of the Poisson point process
((Yj,4))1<j<n- Thus the random sets E,, are compound Bernoulli approximations of the
Poisson point process ((Y;,¢;))1<j<n and converge in law to the latter. O

Given a continuous monotonic increasing path (kq)o<q<1 in the space of Radon mea-
sures and a pair of interwoven determinantal point processes (.., £, ) corresponding to ko,
used as argument, procedure 3.2.18 yields non-homogeneous Markov g-parametrized process
in the space of interwoven pairs of discrete sets of points whose one-dimensional marginal
at any value gy of the parameter is the pair of interwoven determinantal point processes
corresponding to the killing measure xg4,. This corresponds to sampling only the partial
Poisson point process of intensity lo<q<qoGq(¥y,y)A(dy, dq) and successively applying pro-
cedure 3.2.10 for each of its points. In general, multidimensional marginals corresponding
to ¢1 < --+ < ¢, depend not only on Kq,,..., kK, but on the whole path (kq)q, <q<q,- FoOr
instance consider two different paths (kq)o<q<1 and (%q)o<q<1 Wwhere

* Ko = Ko 25_% +5%
° K1=/%1=5_%+(5_%
+4

+ 5

3
2

+

0

for g € [0, l] and kg = 6_

onq=2q57% 0 5 +d6 149

a¢€[31]

+ (2¢ —1)é3 for

_ 1 _1 1
2 2 2

N

1
2
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¢ kg =0_1+9¢ 2q51 for ¢ € [0, l] and kg = (2¢ — 1)6_

3 +5% for

1
2

N

[SIE

ge 3.1
Let Gy(z,y) = ugr(z A y)ug, (z v y) be the Green s function of %dd:ﬁ kq and éq(ac,y) =
Gt (x A y)lg, (v y) the Green’s function of 2445 — %, Let (Y, Z.), (Y, Z,)) be the
coupling between the point process corresponding to kg respectively k1 induced by the path

(Kq)og<t and (Yo, Z4), (y,,z, )) the coupling induced by the path (%q)o<q<1. Then

O )

But
" ~ 3 3 ~ 3 3
Gi(3)=Gi(-3) Gi(-3)=G(5)
and
ia(d) wa(-) (=3 wa(d)
i14(3)  wg(=3)  wu(=3)  wa(3)
Thus
ug (= 3) urs (3)
~ 27 1— > 2
POr={ b}V = {808 Wit )
{111y _f_313 (=3 i
SO SR EA 1) s e
CTUAG) T\2
But
wa(=3) _ 3 wa(3) _1
up(=3) 11 wma(3) 4
Th
* P(y,=4-11 j},:_élé
@ 202 (KL 272772 45 1
IO T )

The two couplings are different.

If K —x does not have a first moment, we can still construct a coupling between (Y, Z-)
and ()., Z.,) as follows: Consider a continuous monotonic increasing path (Kq)o<g<t joining
K to R satisfying the constraint

Vg e [0,1), f (2| (ry(de) — ro(dz)) < +o0

Given ¢ € (0,1), one can apply procedure 3.2.18 to the arguments (V,, Z), K, Kq, and the
partial path (kq)o<q<q,- As result we get a two interwoven determinantal point processes
corresponding to the kllhng measure Kq,. At the limit as go tends to 1 we get something
that has the same law as (y,, ,)

Next we prove the existence of stronger couplings in case # = ck where ¢ > 1 is a
constant.



3.2. MONOTONE COUPLINGS FOR THE POINT PROCESSES (Y, Zx) 122

PROPOSITION 3.2.20. If & = ck with ¢ > 1 then there is a coupling between (Y, Z)
and (Va, Z5) such that Z,, € Z,, and V5 C V.

Proor. Consider a coupling between ()., Z,) and ()NJ,, 2,) given by procedure 3.2.18,
possible extended to the case where k does not have a first moment. Then Z, ZN, but
in general )., & Y,. So we will sample other point processes Y. and f’, that conditional
on Z,, respectively ZN% have the same law as )., respectively ﬁ,v‘, and such that )/, < f’,

For each connected component J of R\Z, we sample a point Y5 according the measure
1,c5R(dy)
R (J)
independent one from another. We set

V., = {Y;|J connected component of R\Z.}

We assume that conditional on 2’[», all the 17:7 are independent from Z, and

Then (Y., Z,) has the same law as (Y, Z,.). Let be J a connected component of R\Z.,

and Ji,...,Jn, the connected components of J\g, On J we define the r.v. Y as follows:
Y takes value in an and

”(jn)
K(J)

P(Y; =Y; | i, Jn,) =
We set
V! = {Y;|J connected component of R\Z., }

By construction Y/, € )7’, Moreover the proportionality of x and & ensures that (), Z,)
has the same law as (Y, Z.)- O



CHAPTER 4

From loop clusters and random interlacements to the
Gaussian free field

4.1. Introduction

Here we introduce our framework, some notations, state our main results and outline
the layout of the paper.

We consider a connected undirected graph G = (V, E) where the set of vertices V' is at
most countable and every vertex has finite degree. We do not allow multiple edges nor loops
from a vertex to itself. The edges are endowed with positive conductances (C(e))eer and
vertices endowed with a non-negative killing measure (k(z))zev. £ may be uniformly zero.
(Xt)o<t<c is a continuous-time sub-Markovian jump process on V. Given two neighbouring
vertices x and y, the transition rate from x to y equals the conductance C(z,y). Moreover
there is a transition rate x(z) from x € V to a cemetery point outside V. Once such a
transition occurs, the process X is considered to be killed. Moreover we allow X to blow
up in finite time, i.e. leave all finite sets. ( is either 400 or the first time X gets killed or
blows up. We assume that X is transient, which is a condition on C and k. In particular if
k is not uniformly zero X is transient. (G(x,y))syev denotes the Green’s function of X:

G(z,y) = E, lf; 1Xydt]

G is symmetric.

Let (P;y())xyev .~ be the bridge probability measures of X, conditioned on ¢ > ¢
and let (pi(2,y))z,yev,e=0 be the transition probabilities of X. The measure p on time-
parametrized loops associated to X is, as defined in [Jan11],

+7J e T, T ﬁ
(411) ICEDI I SCTUCRE

Let a > 0. L, is defined to be the Poisson point process in the space of loops on G with

A~

intensity ap. It is sometimes called loop-soup of parameter a. The occupation field (£%),ev

of L, is
t’Y
Li= 2 f Ly =odt
0

VELA

where ¢, is the duration of the loop v. The loops of £, may be partitioned into clusters: if
v,7 € L, belong to the same cluster if there is a chain 7, ..., v, of loops in £, such that
Yo =7, v =7 and for all i € {1,...,n} v;—1 and ~; visit a common vertex ([JL13]). A
cluster C is a set of loops, but it also induces a sub-graph of G. Its vertices are the vertices
of G visited by at least one loop in C and its edges are those that join two consecutive points
of a loop in C. Therefore we will also consider C as a subset of vertices and a subset of edges
and use the notations v € C, x € C and e € C where 7 is a loop, x is a vertex and e is an
edge. €, will be the random set of all clusters of £,. It induces a partition of V.

123
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Let (¢s)zev be the Gaussian free field on G, i.e. the mean-zero Gaussian field with

El¢.¢y] = G(z,y). In [Janll], section 5, Le Jan showed that at intensity parameter o = %

the occupation field (Eﬁ)xev has the same law as (3¢2)sev. This equality in law may be
seen as an extension of 2Dynkin’s isomorphism ([Dyn84a], [Dyn84b]) and in turn enables
an alternative derivation of some version of Dynkin’s isomorphism through the use of Palm’s
identity for Poisson point processes ([JLMR15],[FR14] and [Lup13], section 4.3). However
the question of relating the sign of ¢ to E% remained open. In this paper we show the
following:

THEOREM 4.1. There is a coupling between the Poisson ensemble of loops E% and the
Gaussian free field ¢ such that the two constraints hold:

e ForallzeV, Eﬁ = %d)i
2
e ForallCe Qﬁ% the sign of ¢ is constant on the vertices of C.

In section 4.2 we will construct the coupling that satisfies the constraints of theorem 4.1.
To this end we will introduce the metric graph G associated to the graph G and interpolate the
loops in £ 1 by continuous loops on G. In section 4.3 we will give an alternative description

of the same coupling that does not make use of the metric graph G and the interpolation of
loops. In section 4.4 we will give an alternative, direct, proof that the coupling holds using
its description given in section 4.3.

In section 4.5 we will apply theorem 4.1 to the loop percolation problem. The loops
of L, are said to percolate if there is an unbounded cluster of loops. This question of
percolation was studied in [JL13] and [CS14]. Obviously from theorem 4.1 follows that the
loops do not percolate if the sign clusters of ¢ are all bounded. But we will show that even
in some situations where ¢ is known to have some (two) infinite sign clusters, the loops of
E% still do not percolate:

THEOREM 4.2. Consider the following networks:

o 72 with uniform conductances and a non-zero uniform killing measure

o the discrete half-plane Z x N with instantaneous killing on the boundary Z x {0}
and no killing elsewhere

o 74, d > 3, with uniform conductances and no killing measure

On all above networks E% does not percolate.

We will also give a bound for the probability that two vertices belong to the same cluster
of loops.

In section 4.6 we will show that on the discrete half-plane Z x N, with instantaneous
killing on the boundary Z x {0}, % is actually the critical parameter for the loop percolation.
In this section we will denote by H := Z x N, by uH the measure on loops on the network
H endowed with instantaneous killing on the boundary Z x {0}, by L% the Poisson point
process of intensity auf and off the critical value of « for the percolation by loops of £E.
We will prove that

THEOREM 4.3. For all o > % LY has an infinite cluster of loops. Consequently off = 3.

For the proof of the inequality af < % we will use completely different arguments

than previously. We will use the fact that large discrete loops approximate two-dimensional
Brownian loops on the continuum half plane H = {z € C|S(z) > 0}. The measure p on
the Brownian loops on H is defined as follows: Let pi(z,2") be the transition density of the
Brownian motion on H killed on R, let P;E be the Brownian bridge probability measures
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conditioned on not hitting R. Then

o dtdz A dz
0= | PEOne T
H Jo i

where % is the standard area form on C. The measure ™ is invariant under Brownian

scaling
(v(t))o<t<t, — AT2 (Y(At))ost<r-1t,,

We will denote by L the Poisson point process of intensity au™. In [SW12] Werner and
Sheffield consider the clusters of L. They use the notion of central charge (denoted ¢) which
comes from Conformal Field Theory. In [SW12] the authors use the same normalisation of
the measure on loops as we, but contrary to what they claim, the central charge c is not the
intensity parameter of the loop soup. Actually (see [Law09])

o =

N O

The critical value of the central charge is ¢, = 1. For ¢ > 1, £ has only one cluster and
for ¢ < 1 it has infinitely many clusters all bounded. This means that % is the critical
intensity parameter for £5. To conclude that off < 1 we will use the result from [LF07] on
approximation of Brownian loops by large discrete loops and block percolation arguments.
In section 4.7 we consider random interlacements on Z< introduced by Sznitman ([Szn10]).
We consider that the edges of Z¢ have conductances equal to 1 and that (G(z,y)), yeza and
(¢ )peza are the corresponding Green’s function and Gaussian free field. Given K a finite

subset of ZZ, let ex be the equilibrium measure of K (supported on K):
Ve K ex({z}) =Pu(¥j > 1,Y; ¢ K)

The capacity of K is
cap(K) = ex (K)

Let Q be the measure on doubly infinite trajectories on Z?, () jez parametrized by discrete
time j € Z, of total mass cap(K), such that

e the measure on x( induced by Qx is ex

e conditional on zg, (x;);=0 and (y;);<o are independent

e conditional on zg, (x;);=0 is a nearest neighbour random walk on 7 starting from
xo

e conditional on zg, (7_;);>0 is a nearest neighbour random walk on Z< starting
from x( conditioned not to return in K for j > 1.

There is an (infinite) measure p;; on right continuous doubly infinite trajectories (w(t))ter
on Z?, parametrized by continuous time, considered up to a translation of parametrization
((w(t))ter same as (w(t))i+t,er) such that
o limy 4o Jw(t)| = limy—_ o |w(t)| = +00 pi-almost everywhere
e for any finite subset K of Z?, by restricting 5 to trajectories visiting K, choosing
the initial time ¢ = 0 to be the first entrance time in K and taking the skeleton
(the doubly infinite sequence of successively visited vertices) we get the measure
Rk
e under p,;;, conditional on the skeleton, the doubly infinite sequence of holding times
of the trajectory (times spent at vertices before jumping to neighbours) is i.i.d with
exponential distribution of mean (2d)~1.

See [Szn10] and [Szn12a].
The random interlacement Z% of level v > 0 is the Poisson point process of intensity
up;. The vacant set V* of Z% is the set of vertices not visited by any of trajectories in Z“.
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There is uy € (0, 4+00) such that for u < u, V* has a.s. infinite connected components and
for u > uy V, has a.s. only finite connected components ([Szn10], [SS09]).
The occupation field (L*(Z"))eze of the interlacement Z" is defined as

+o
L¥(Z%) := Z f Ly(ty=2dt
©

weZ, ¥~

In [Szn12a] Sznitman showed the following isomorphism between (L*(Z")),ez« and the
Gaussian free field: Let (¢%),eze be a copy of the free field independent of (L*(Z%)),eza-
Then

T (TU 1 2 (d) 1 2
(4.1.2) (L (%) + 2¢”)xezd B (2(5151 \/@) )zEZd
This isomorphism can be used to relate the random interlacement to the level sets of the
Gaussian free field. There is hy € [0, +00) such that for h < hy, the set {z € Z%|¢, > h} has
an infinite connected components and for h > h, only finite connected components ([RS13],
[BLMS8T7]). h is positive if the dimension d high enough ([RS13]). In section 4.7 we will
prove:

THEOREM 4.4. For all u > 0, there is a coupling between I and ¢ such that a.s.
{x € Z% ¢, > \2u} € V¥

In particular
Ry < A/2uy

This theorem is again obtained by replacing the discrete graph Z¢ by a metric graph.

We would like to explain the interdependence of different sections. The sections 4.2, 4.3,
4.4 and 4.5 are closely related both for the results and for the notations. The section 4.7
is more independent but uses the main ideas and notation of the above mentioned sections.
The section 4.6 is mostly independent of the rest, except for the most common notations in
this article.

4.2, Coupling through interpolation by a metric graph

One can associate a measure on loops following the formal pattern of (4.1.1) to a wide
range of Markovian or sub-Markovian processes. In the articles [LMR15] and [FR14] the
authors give quite general definitions for a wide range of cases. The setting of [FR14] will
cover our needs. In that article the measure on loops is defines for transient Borel right
processes on a locally compact state space with with a countable base, that have 0-potential
densities with respect some sigma-finite measure, the 0-potential densities being assumed
to be finite everywhere (in particular on the diagonal) and continuous. In [Lupl3| were
specifically studied the measures on loops associated to one-dimensional diffusions and the
corresponding loop ensembles. This case is of particular interest for the proof of Theorem
4.1. Indeed in the setting of one-dimensional diffusions the occupation fields are continuous
space-parametrized processes with non-negative values and the clusters of loops correspond
exactly to the excursions of the occupation field above zero (proposition 4.7 in [Lup13]). In
particular for the loop ensemble of parameter %, the clusters of loops are exactly the sign
clusters of the one-dimensional Gaussian free field.

The nice identity between the clusters of loops and the sign clusters of GFF in case of
one-dimensional diffusions leads us to consider the metric graph or cable system G associated
to the graph G ([BC84|, [EK01], [Fol14]). Topologically G is constructed as follows: to
each edge e of G corresponds a different compact interval, each endpoint of this interval being
identified to one of the two vertices adjacent to e in G; for every vertex x € V the intervals
corresponding to the edges adjacent to x are glued together at the endpoints identified to
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the vertex z. We will consider V to be a subset of G. Given any e € E, I. will denote the
subset of G made of the interval corresponding to e minus its two endpoints. Topologically
I. is an open interval. G is a disjoint union
é =Vu U 1.
eeE

We further endow G with a metric structure by assigning a finite length to each of the
(I)eer- The length of I, is set to be
1
€)= 360
which makes I, isometric to (0, p(e)). This particular choice of the lengths will be explained
farther. Let m be the Borel measure on G assigning a zero mass to V, a mass p(e) to each
of the I. and to a subinterval of I. a mass equal to its length. m is o-finite.

On G one can define a standard Brownian motion BY. Here we give a description through
chaining stopped Markovian paths on G (see [BC84|, [EKO01| and [Fol14]). If BY starts in
the interior I, of an edge, it behaves as tlle standard Brownian motion on I, until it reaches
a vertex. To describe the behaviour of BY starting from a vertex we use the excursions. Let
2o € V, {Z1,..., Taeg(z,)} the vertices adjacent to x¢ and {{xo,1},..., {T0, Tdeg(zs)}} the
edges joining ¢ to one of its neighbours. Let (B;):>0 be a standard Brownian motion on R
starting from 0. To each excursion e of (B;)¢>¢ away from 0 we associate a random variable
z(e) uniformly distributed in {z1,...,Zqcg(ay)}- We chose the different r.v.’s x(e) to be
independent conditional on the family of excursions of (B;);>0- e: the excursion straddling
the time ¢. Let be

T, taesiegy} = E{E = 0[|Be| = p({wo, z(e:)})}

To the path (Bt)ogth{xl we associate a path in G: it starts at xo and each

excursion e of (B,f)ogth{w1 is performed in I(,, .(c); instead of R. The obtained

,,,,, ”"deg(zg)}

path has the law of BY starting at 2o and stopped at reaching {z1,...,Zgeg(zy)}- Let

(L{(B))t=0,ycr be the continuous family of local times of B and (L{(BY)),-, Jeg the family
of local times of BY started at 7o, relative to the measure m. Let y € Iy, .., and § be the

length of the subinterval (2¢,y) of I{z,z,3- Then

x

and the limit, uniform in time, of the above process as y converges to xg is

(LY(BY))o<t<Ty, .

“deg(wg)}

f Lo(e,)=a, (dLY(B) + dLZ‘S(B))>

0 0<t< Ty,

2
2(5)
(deg(zo) ' 0StST oy, 2 gog(ng)}
v Pdeg(xg

whatever the value of i. Let B(zp,d) be the ball in 5 around zg of radius §. If § <
Miny <;<deg(zo) A({70, 7i}) then m(B(zo,d)) = deg(w)d. Consequently for any time ¢ €
[OaT{xl,..

- Zdeg(zq) }

. 1 t . 1 t
%%mwmwnﬁ5@WM“‘gm%mwﬁ”Md“
2 0

~degtan) Y
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It follows that the process (BY Jo<t<Ti,, . has a space-time continuous family of

1 deg(zg)}
local times. By concatenating different stopped paths we get that the whole process BY has
space-time continuous local times relative to the measure m. The measure on the height
of excursions (in absolute value) induced by the measure on Brownian excursions is (see
[RY99], chapter XII, §4)

da
1a>0§
It follows that LT{ }(B) is an exponential random variable with mean
PLoTdog(wg)
deg(zo) deg(zo)
deg @ d
SR p({wg,a}) 1 2505 Oag, )
L;‘{’ }(Bé) is an exponential random variable with mean
P Pdeg ()

1
S8 O, )

and

5 C(xo,xy)
P BY — _ 0,bg
Zo Tieq,. . \x } Zj deg xo ,
1o des(zo) > C(zo, ;)

i=1

(see also theorem 2.1 in [Fol14]). This explains our particular choice of the lengths (p(e))eer -

From now on the Brownian motion BY on § is considered to be constructed and the

starting point to be arbitrary. It is not excluded that BY blows up in finite time. A

necessary but not sufficient condition of this is the existence of a path of finite length that
visits infinitely many vertices. Let & be the following measure on G

k= 2 k()0

zeV

Let ¢ be the first time either BY blows up or the additive functional

Leg LY(BY = > L{(B

zeV

hits an independent exponential time with mean 1. ¢ = 40w as. if kK = 0 and BY is
conservative. For [ > 0 let 7; be the stopping time

7, := inf {T > 0‘ Z Lf(BG) > l}

zeV

If the starting point of BY is a vertex then the process (Bgl ) has the same

0<I<Y,cy LE(BY)
law as the Markov jump process X on V. In particular it follows that the process (Btg)
is transient. R

The 0-potential of the process (Bg)o<t<§ has a density relative to the measure m, the
Green’s function (G(y,2)), ..g- We use the same notation as for the Green’s function of
X because the latter is the restriction to V' of the first. The value of (G(y,2)), ..g on the
interior of the edges is obtained from its value on the vertices by linear interpolation. Let
(z1,y1) and (z2,y2) be two pairs of adjacent vertices in G. Let z1 respectively z2 be a point

in the interval [x1,y1] respectively [z2,y2] and 1 respectively ro be the length of [z1, 21]

o<t<(l
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respectively [x2, 2z2]. Then

1
{z1,y1})p({72, y2})
+1r1r2G(y1, y2) + 11(p({72, y2}) — 12)G(y1, v2) + (p({w1,y1}) — 7“1)7“2G($1ay2))

(121) Gler,2) = — ((eltwr, 1) = ) (2. 12)) = r2) Glr, 22)

Let (¢y),cg be the Gaussian free field on G with variance-covariance function G. It’s
restriction to V' is the Gaussian free field on the graph G, hence the same notation. Condi-
tional on (¢g)zev, (¢y)y€g~ is obtained by joining on every edge e the two values of ¢ on its
endpoints by an independent bridge of length p(e) of a Brownian motion with variance 2 at

time 1 (not a standard Brownian bridge). In particular (¢;), s has a continuous version.

The process (Bté)o<t<§ fits into the framework of [FR14] and one can associate to it

a measure on time-parametrized continuous loops . Let ENQ be the Poisson point process
of loops of intensity aji. We would like to stress that by loop we only mean a continuous
paths with the same starting and endpoint without assumptions on its homotopy class and
actually most loops in £, are topologically trivial. Just as the process (Btg)ogkf itself,

the loop 7 € L, can be endowed with space-time continuous local times (LY (MN)o<i< -

~

relative to the measure m. The occupation field (Eg)yeg is defined as

£y =, L)
FeLa
The restriction of (Eg)yeg to the set of vertices V' has the same law as the occupation field

of the discrete loops L,, hence the same notation. As in the discrete case, at o = %, (EAZ)

2
has the same law as (%qﬁi)yeg (see Theorem 3.1 in [FR14]).

The discrete-space loops of L, can be obtained from the continuous loops Ea by taking
the print of the latter on V. This is described in [FR14], section 7.3, or in a less general
situation of the restriction of the loops of one-dimensional diffusions to a discrete subset in
[Lup13], section 3.7. We explain how the restriction from G to V works. First of all we
consider only the subset {7 € Lq |5 visits V'} because the print of other loops on V' is empty.
Next we re-root the loops so as to have the starting point in V: to each loop # visiting V'
we associate a uniform r.v. on (0, 1) Us, these different r.v.’s being independent conditional
on the loops. We introduce the time

yeG

7 (5) = in {t e 0.5 X LE3) 2 U5 Y I, (a)}

zeV zeV

For each loop 7 visiting V' we make a rotation of parametrization so as to have the starting
and end-time at 7V (%) instead of 0. Let £’ be the set of the new re-parametrized loops. For

each 5/ € £ and [ € [O, DV Ly, (ﬁ’)] we define

7 (3') i= inf {t e 0. 3 18(7) > z}

eV

The set of V-valued loops

{(:Y;lv (31))0<I<S, oy Ly, a7 € C'}

has the same law as L.
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Next we explain how to reconstruct {¥ € Ea|’y visits V'} from L, by adding random
excursions to the discrete-space loops. We won’t give the proof of this. For elements sup-
porting what we explain see [Jan11], chapter 7, and [Lup13], corollary 3.11. Let x9 € V
and {x1, ..., Tqeg(ao) } the vertices adjacent to z9. Let 14 be the intensity measure of positive
Brownian excursions. To every loop v € L, spending a time [ in zy before jumping to one of
its neighbours or before stopping one has to add excursions from ¢ to zo in U?igl(“) Itz wiy
according to a Poisson point process, the intensity of excursions that take place inside the

edge I(;, ., being

(4.2.2) I x 1height excursion <p({xo,z;})T+

Let z,y be two adjacent vertices. Whenever a loop 7 € L, jumps from x to y one has to
add a Brownian excursion from x to y inside Iy, . (a Brownian excursion from 0 to a > 0 is
a Bessel-3 process started from 0 run until hitting a). All the added excursions have to be
independent conditional on £,. At this stage we get a Poisson point process of continuous
loops in 5, but all have a starting point lying in V. The final step is to choose for each a
new random starting point distributed uniformly on their duration. What we get has the
law of {7 € L, |7 visits V}.

From now on we assume that £, and L, are naturally coupled on the same probability
space through restriction. L., has loop clusters and we will denote by Ela the set of these
clusters. Obviously each cluster of L, is contained in a cluster of Ea, but with positive
probability a cluster of Lo may contain several clusters of £,. We will prove the following:

PROPOSITION 4.2.1. There is a coupling between the Poisson ensemble of loops EN% and
a continuous version of the Gaussian free field (¢y)ye§ such that the two constraints hold:

e ForallyeG, LY = 302
2

e The clusters of loops of E% are exactly the sign clusters of (¢y)yeg~

Theorem 4.1 follows from the above proposition because the restriction of (EAZ) to

~ 3 /yeG

V'is (L7 )zev, the restriction of (¢y) s to V' is the Gaussian free field on G and the sign of
2

¢ is constant on the clusters of E%, hence also constant on the clusters of E%.

The first step in proving proposition 4.2.1 is to show that there is a realisation of Ea
such that its occupation field (£Y), g is continuous. We know already that each individual

loop in L, has space-time continuous local times and that the process (Eg)yeg considered for
itself, regardless of the loops, has a continuous version (see [Lup13], section 4.2). However

this does not automatically imply that a realisation of (LY

)yecj as the occupation field of
Ea can be made continuous (there are infinitely many loops above each point in G and the
occupation field is an infinite sum of continuous functions). A counterexample is given in

[Lup13], section 4.2, the remark after proposition 4.5.

LEMMA 4.2.2. There is a realisation of Lo such that its occupation field (Eg)yeg 8
continuous.

ProoF. We divide the loops of Ea into three classes:

(i) The loops that visit at least two vertices in V'
(ii) The loops that visit only one vertex in V'
(iii) The loops that do not visit any vertex and are contained in the interior of an edge
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Above any vertex x € V are only finitely many loops of type (i) (see [Jan11] chapter
2 for the exact expression of their intensity). Each individual loop of type (i) has a con-
tinuous occupation field and the sum of this occupation fields is locally finite and therefore
continuous.

Let xg € V and {1, ..., Zqeg(a,)} the vertices adjacent to x9. We consider now the loops
of type (ii) such that x¢ is the only vertex they visit, which we denote (%;),=0. Conditional

(o) Itzq .,y according

on Lf;’j (%), 7, is obtained by launching excursion from x¢ to g in Ufigl
to a Poisson point process, the intensity of excursions that take place inside the edge Iy, ..}

being (see (4.2.2))
Lf:?] (:Y]) X ]-height excursion <p({zo,z;})T+

If we consider all the loops (¥;);>0 we obtain an intensity

( Z L?:?J (:YJ)) x ]-height excursion <p({zo,z;})T+
j=0
The continuity of the occupation field of (3;);>0 follows from the continuity of Brownian
local times.

Let e be an edge. We consider the loops of type (iii) that are contained in I.. They
have the same law as a Poisson ensemble of loops of parameter « associated to the standard
Brownian motion on the bounded interval I, killed upon reaching either of its boundary
points. This situation was entirely covered in [Lup13]. According to corollary 5.5 in [Lup13]
it is possible to construct these loops and a continuous version on their occupation field on
the same probability space. All the subtlety of our lemma lies in this point. Moreover
according to proposition 4.6 in [Lup13] the occupation field of these loops converges to 0
at the end-vertices of I. O

~

From now on we consider only the continuous realization of the occupation field (Eg)yegm
We call a positive component of (Eg)yeé a maximal connected subset of G on which the
occupation field is positive. It is open and by continuity the occupation field is zero on the
boundary of a positive component. Given a continuous loop ¥, Range(¥) will denote its

range.
LEMMA 4.2.3. LetC € E:a be a cluster of Ea. Then
U Range(3)

5e€

is a positive component of (Eg)yeg Conversely every positive component of (A'g)yeg is of
this form.

PRrROOF. The following almost sure properties hold:

(i) For every 5 € L, the occupation field of 7 is positive in the interior of Range(¥)
and zero on the boundary dRange(7)

(ii) For every 5 € Lo and y € dRange(¥), there is another loop 7' € Lo such that v is
contained in the interior of Range(¥')

The property (i) comes from an analogous property of a finite duration one-dimensional
Brownian path: its occupation field is positive on its range, except at the maximum and the
minimum where it is zero.

We briefly explain why the property (ii) is true. First of all the boundary d Range(%) is
finite because it can intersect an edge in at most two points and a loop visits finitely many
edges. Moreover any deterministic point in G is almost surely covered by the interior of the
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range of a loop. Applying Palm’s identity one gets (ii):

E [H{’y € Ea|6Rcmge(7y) not covered by interiors of the ranges of loops in Ea}]

=q fP(@Rcmge(’y) not covered by interiors of the ranges of loops in L )ji(d¥)

=0
Properties (i) and (ii) imply on one hand that the zero set of (Eg)yeé is exactly the set
of all point in G that are not visited by any loop in Za and on the other hand that any point

visited by a loop cannot belong to the boundary of a cluster of loops. This in turn implies
the lemma. O

Proof of proposition 4.2.1. First sample E% with a continuous version of its occupation

field. Consider (4 /22{) 5282 realization of (|¢y|), .5 and sample the sign of the Gaussian
2 yE

free field ¢ independently from E% conditional on (4 /22{) _. Then according to lemma

2/ yeg
4.2.3 the clusters of L, are exactly the positive components of (|¢y|)y€§ which are the sign
clusters of (¢y)

~. o
yeG

4.3. Alternative description of the coupling

In this section we give en alternative description on the coupling between £ 1 and (¢z)zev

constructed in section 4.2 but that does not use EN% as intermediate. First we deal with the
law of the sign of ¢ conditional on (|¢y|), 5. We will show that one has to chose the
sign independently for each positive component, of (|¢y|)yeg~ and uniformly distributed in
{—1,+1}. Then we will deal with the probability of a cluster of continuous loops occupying
entirely an edge e conditional on discrete-space loops £ 1 and on the event that none of these
loops occupies e.

Let K be a non-empty compact connected subset of G. 0K is finite, g\K has finitely
many connected components and the closure of each of these connected components is itself
a metric graph associated to some discrete graph. Let Tk be the first time the Brownian
motion BY, started outside K, hits K. Let (GQ\K(y,z))yyzeg\K be the Green’s function

relative to the measure m of the killed process (Btg)ost<§ATK' GIVE i symmetric, contin-

uous and extends continuously to g\K by taking value 0 on the boundary. Actually GI\K
is obtained by linear interpolation from its values on the vertices and 0K as in (4.2.1). Let
( g\K)yeé\ & be the Gaussian free field on G\K with variance-covariance function G9\X. Let

f be a function on 0K and uyx be the following function on G\K:

ur i (y) =By [ f(BE ), ¢ |

By the Marko~v property of (¢y)yeg~, conditional on (¢y)yek, (¢y)ye§\K has the same law as
(ugp,x (y) + qﬁg\K)yeé\K. We consider now a random connected compact subset K. We use
the equivalent o-algebras on the connected compact subsets:

o the o-algebra induced by the events ({K S U}y oen subset of &

o the o-algebra induced by the events ({F' N K # O}) i c1osed subset of &

Below we state a strong Markov property for the Gaussian free field (¢y)yeg~. It can be
derived from the simple Markov property (see [R0z82], chapter 2, §2.4, theorem 4).
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STRONG MARKOV PROPERTY. Let KC be a random compact connected subset ofg~ such
that for every deterministic open subset U of G the event {K < U} is measurable with
respect to (¢y)yev- Then conditional on K and (¢y)yex, (¢y)yeg~\,C has the same law as

(o) + 65", o

LEMMA 4.3.1. Given yo € G we denote by F,, the closure of the positive component of
(I¢yl),cg containing yo (a.s. ¢y, # 0). Then the field (—lyer, ¢y + lygr, ¢y), 5 has the

same law as the Gaussian free field (¢y)yeg~.

PRrOOF. By construction Fy, is closed and connected, but not necessarily compact if V'
is not finite. ¢ is zero on 0Fy,.
We first consider the case of V' being finite. Then Fy, is compact. According to the
str?ng Markov property, conditional on Fy, and (¢y)yer,, , (¢y)yeg~\Fy0 has the same law as
G\F, 5 4
( y\ 0 )yEQN\Fy() - But ¢Q\Fy0 and _¢Q\Fy0 have the same law. Thus (1y€Fy0 ¢y - 1y¢Fy0 ¢y)ye§
has the same law as ¢. Since ¢ and —¢ have the same law, (—1yer0 Gy + lygr,, ¢y)yeg~ has
the same law as ¢ too.
If V is infinite, let xo € V. Let V,, be the set of vertices separated from zy by at most
n edges. V,, is finite. Vj = {zo} and V; is made of ¢ and all its neighbours. For n > 1
let E, be the set of edges either connecting two vertices in V,,_1 or a vertex in V,\V,_1
to a vertex in V,,_1. G, := (V,,, E,) is a connected sub-graph of G. Let G,, be the metric
graph associated to the graph G,, viewed as a compact subset of G. For n large enough

such that yo € Gy, let F,, ,, be the positive component of (|¢5\(V"\V”—1)|) 5 containing yo,

yeg
which is compact. As in the previous case, (—1lyer,, ., g\W"\V"*l) +1yer,, . g\W"\VH))yeg

has the same law as ¢§\(V"\V"*1). As n converges to +oo, the first field converges in law
to (—1yer0 by + lygr,, ¢y)y€§ and the second field converges in law to ¢, which proves the
lemma. (I

LEMMA 4.3.2. Conditional on (|¢)y|)ye§, the sign of ¢ on each of its connected compo-
nents is distributed independently and uniformly in {—1, +1}.

PROOF. Let (yn)n=0 be a dense sequence in G. Let (o0n)n=0 be an i.i.d. sequence of
uniformly distributed variables in {—1,+1} independent of ¢. According to lemma 4.3.1,

the field
N
<H(0n1y€Fyn + 1yer,, ) x ¢y>
yeG

n=0
has the same law as ¢ whatever the value of N. Moreover as IV converges to 400, this field
converges in law to the field obtained by choosing uniformly and independently a sign for

each positive component of (|¢y|), .- O

Next we consider the discrete-space loops E% and continuous loops EN% coupled in the
natural way though the restriction of the latter to V. We deal with the probability of a
cluster of continuous loops occupying entirely an edge e conditional on £ 1 and on the event
that none of discrete-space loops occupies e. This event is the same as the occupation field
E% staying positive on I. and not having zeros there. Let e = {x,y} be an edge joining
vertices x and y. In case e is not occupied by a loop of E%, there are three kind of paths
visiting I,:

e the loops of entirely L1 contained in I.. These are independent £ 1 as they have
no print on V. The occupation field of these loops is the square of a standard
Brownian bridge of length p(e) from 0 at « to 0 at y ([Lup13], proposition 4.5).
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¢ the Poisson point process of excursions from x to x inside I, of the loops in L
visiting x. The intensity of excursions is

1
2

Ail)
E% X 1height excursion <p(e)Tl+

Conditional on E’j , this Poisson point process of excursions is independent from
2
E%. Its occupation field is according to the second Ray-Knight theorem the square
of a Bessel-0 process with initial value /3“1’ at z conditioned to hit 0 before time
2

ple). ~
e the Poisson point process of excursions from y to y inside I. of the loops in £

visiting y. The picture is the same as above.

%
We will denote by (bgT))ogth a standard Brownian bridge from 0 to 0 of length T" and
(ﬁt(T’l))t;O a square of a Bessel 0 process starting from [ at ¢ = 0 and conditioned to hit 0
before time T. We have the following picture:

PRrROPERTY 4.3.3. Conditional on the discrete-space loops L'%, the events of the family

({E; has a zero on Ie}) are independent. Let e = {x,y} be an edge. The
2 e€E\Ucee, €

Nf=

probability
IP’(E% has a zero on I,

LiecE\ c)

CeCy
2

is the same as for the sum of three independent processes

. ()£ (ple).LY)
(bgm Nz g

having a zero on (0, p(e)).

2
+ ﬂf’(e)—t )ogtgp(e)

LeEMMA 4.3.4. Let T,l1,lo > 0. The probability that the sum of three independent pro-
cesses

(4.3.1) (bgm n ﬂt(m) n 5(;};))

o<t<T

has a zero on (0,T) is

1 e 1112 ds

432 — (— 2 )—

(132 7 o (Camm )G

ProOOF. We will break the symmetry of the expression (4.3.1) and use the fact that the
process (bgT)2 + ﬂ(TTff))

ost<T

of length T from 0 to v/l (see [RY99], chapter XI, §3). For the process (4.3.1) to have a

zero on (0,T), the process 5(T"11) has to hit 0 before the last zero of (b,ET)2 + B(T’l2)

T—t ) :
0<t<T
According to Ray-Knight’s theorem, the time when the square Bessel 0 started from [y

hits 0 has the same law as the maximum of a standard Brownian motion started from 0 and
stopped at its local time at 0 reaching the level /1. The distribution of this maximum is

l l
1a>02T‘12 exp (—i) da
In B(T:1) we condition on hitting zero before time T'. So the distribution of the first zero is

1 l1 l1
433 1 L L) g
(4.3.3) O<ta<T oy P <2T 2t1> !

has the same law as the square of a standard Brownian bridge
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Let (B;)i=0 be a standard Brownian motion on R started from 0 and
gr :=sup{t € [0, T]|B: = 0}
The joint distribution of (g7, Br) is (see [RY99], chapter XII, §3)

|z e _L
1 w 2T —a) dadx
O<a<T o /701(71 — a)3
If we condition by By = /Iy we get the distribution of the last zero of ( (12 By (T'12) )

which is

0<t<T

la la
VT (5~ )

27Tt2(T — tg)?’

(4.3.4) lo<ty<T

Gathering (4.3.3) and (4.3.4) we get that the probability that we are interested in is

lo )
eXp | ——F———~
IsT I +1 I I < 2(T —
2_ exp (g) J‘ _1 exp ( 1 > ( t2) dtldtQ
0

27 2T <ty <to<T 2t% 2t1 to (T — t2)3

LT o <l1 + lz) f o ( l1 Iy > dts
2r C P\ 72T O<ta<T P2t 2(T —t2) (T — t2)?

By performing the change of variables

lo to
§ 1= —
2T'T —to

we get the integral (4.3.2). O

LEMMA 4.3.5. For all A >0

PROOF. Let

Then f(0) =T(5) = /7 and

(SIS

By doing the change of variables z = < we get
. p ; A) dz
wo( —z—2) 22
0 NE
f satisfies the ODE
1
"N = ——=f(\
') ﬁf( )

with initial condition f(0) = /7, thus f(\) = /me 2V>. 0
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COROLLARY 4.3.6. Conditional on the discrete-space loops E%, the events of the family

({ZI\; has a zero on Ie}) are independent and the corresponding probabilities are
2 eeE\ Uca‘:l ¢
given by ’
]P(Z:\l has a zero on I, y|L1, {7, y} € E\ U C) = exp(— 1 % A?{)
B P2 cces p({z,yh) N 7272
2
— exp ((— 2C(w,y)y |25 L))
2 2

From lemma 4.3.2 and corollary 4.3.6 we get the following alternative description of the
coupling between L and (¢ )zev (see figure 4.1):

THEOREM 4.1. bis. Consider the following construction:

e First sample the Poisson ensemble of loops E% with (Aﬁ)xev being its occupation
2
field and QI% the set of its clusters.
e For any edge {x,y} not visited by any loop in E%, choose to open it with probability

1—exp (— 2C (x,y)4 /Zlé EA@%) By doing so some cluster of Qﬁ% may merge and this

induces a partition & of V in larger clusters.

o For all clusters C' € € sample independent uniformly distributed in {—1,+1} r.v.
a(Ch).
o Set ¢y :=0(C'(x)) 2£’i where C'(x) is the cluster in €' containing the vertex x.
2

(¢z)zev is then a Gaussian free field on G. Moreover the obtained coupling between E% and
¢ 1s the same, in law, as the one constructed in section 4.2.

1— e*C(myy”dh(ﬁyl
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Fig.4.1: Full lines are the edges visited by discrete loops. Double lines are additionaly opened edges.

Dashed lines are edges left closed. Dotted contours surround clusters in ¢”.

4.4. Alternative proof of the coupling

In this section we prove directly, without using metric graphs, that the procedure de-
scribed in theorem 4.1 bis provides a coupling between £ 1 and the Gaussian free field. We
will denote by ¢ the field constructed by this procedure and v a generic Gaussian free field
on G, so as to avoid confusion.

Let e; = {z1,y1},...,en = {Tn,yn} be n different edges of G. Let G(¢1:--¢) be the
graph obtained by removing the edges e1,...,e,. G€1»¢) may not be connected. Let
k(€1:2en) be the killing measure on V' defined as

k(o) (2) 1= k(x) + ) Cle)(Loma, + lo=y,)
i=1
Let (G(¢1¢n) (2, 9)),.4ev be the Green’s function of the Markov jump process on G(€1:¢n)
with jump rates equal to conductances and killing rates given by x(¢1:¢n) | Let (wéel"”’e"))zev
be the corresponding Gaussian free field on G(¢1»-+¢n)_ Let H be the energy functional

HD=3( Sr@zs T Cant-52)

2 zeV z,yeV.,{z,y}eE
and let
Heen)(f) = H(f) + Y, Cles) fui fyn
i=1

If V is finite the distribution of ¢ is

1 —H(f)
v 1 € de
(2m)'F det(G)? ;g
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and the distribution of ¢(¢1:-en) ig

]_ H(el ..... en)(f)
1 7
Y
Conditionalon e; ¢  Jpee, C foreveryie {1,...,n}, ( & )zev has the same law as 1p(@1¢n)2
1 2
If V is finite then i
dot(Ge1-e0))
(4.4.1) P(Vie{l, nbeid | ) e o)
=4 det(G)z
See [JL13].

LEMMA 4.4.1. Assume that V is finite. Letey = {x1,y1},...,en = {Tn,yn} ben different
edges of G. For any bounded functional on fields F

~ n 1
) Vi ) / =C(ei)(|tha; Yy; [+a;Py;) 2
(4.4.2) E[F(EZ),Vze{l,...,n},elgé | C]—Ell |e F(2w )]

C’ec’ i=1

(443) El % E\ U CI {ela"'aen}] =

C’ee’

lﬁe () (1$a; Yy |+ by, H Ly, =0(1 — €—2C(w,y)|wm,¢y|)F(%¢2)]

i=1 {z.y}e
E\{e1,....en}

ProoF. We begin with the proof of (4.4.2). Conditional on e; ¢ (Joee, C for every
2

i€ {1,...,n}, (£%)zev has the same law as 1¢(¢1-¢)2  that is to say
2
C ) 1 (e1,...,6n)2
E|F(Li)|Vie{l,...,n}e; ¢ UC =F F(_l/f 1resen )
’ Cee 2

Nl

Applying (4.4.1) we get that

~ (e1,en))3 1
E[F(Li);Vie{l,...,n},e; ¢ C] = ME [F<_f¢)(el,m,en)2)]
2 CEQ% det(G)2 2
But
det(G(er le))i [F(lw(el ,,,,, en)2):|
det(G)2 2
_ det(G(el,...,en))% ]_ J\eiH(el ..... en)(f)F< ) H df
det(G):  (2m)'F det(Glermen)) aeV
1 f H(f)l_[ —Cl(ei)fu, f I1
= V—1 e ety df
(2 )I ldet(G)5 i=1 ( )JEV

It follows that

El (E%)Vze{l Ln) e ¢

c] - lﬁ eC(enwm,.,wy,.,F(%wz)]
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Then

C’ec’

[He —QC’ el)ﬂﬁﬁ"ﬁyf) (E%) Vie{l,...,n},e; ¢ C
=1 202 CeC

[ﬁ —0(e) (b o, |+, wyl)F<2¢ )]

]ElF(LAé);Vz'e{l,...,n},ei¢ g c’]

[N

For the proof of ( we will use the inclusion-exclusion principle.
IE[ LiyE\ ¢ = {el,...,en}]
C'e’
= Z (—1)|A\—n (,C%) Veec Ae¢ U ]
e Cle¢!
{e1,...,.en}CA L
= >, (el T e*cu,y)(wmy\mwy)F( 1/)2)]
{e1,.. gen}cA | {z,y}eA
:E[ em e le il ) 11 (1 - e—cu,y)(w,wuwmwy))F (%W)]
- {z,y}eE\{e1,....en}
But
1 — e~ Cl@y)(Iatpyl+eutby) _ 1¢wwy>0(1 _ G_QC(x»y)\’l/mey\)
Thus we get (4.4.3). )

PROPOSITION 4.4.2. The field (¢5)zev constructed in theorem 4.1 bis has the law of a
Gaussian free field on G.

ProOF. First we consider the case of V' being finite and use the identity (4.4.3). Let F'
be a bounded functional on fields. Given a subset of edges A € E, we will denote by €(A)
the partition of V' obtained by removing from G the edges in A and taking the connected
components. Let S4(F') be the functional on non-negative fields defined as

1
SaF)(f) = Sy > F(ov/2f)
oe{—1,+1}¢(AD)

where F(0+/2f) means that we have made a choice of a sign which is the same on each
equivalence class of the partition €(A).
Let e1 = {z1,91},...,en = {Zn,yn} be n different edges of G. By construction

(44.4) E|F(@);E\ | ¢ ={er,... en}
C'ee’

:Els{el, 7en} L1 E\ U C = {61,...,6n}

2
Clec’
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From (4.4.3) follows that this in turn equals

(445) E H e_c(ei)(lwfiwyi | +a; by, ) H 1’¢m¢y>0(1 _ e_QC(x»y)"‘/"wwy‘)

i=1 {z)e
E\{er,...en}

X Sterent (F) (5“1’2)]

In (4.4.5) the factor

n
R N | (1_6—2C($7y)|¢z¢y\)S{el,___7en}(F)(%wQ)
i=1 @y}

B\{e1,.wen)

depends only on the absolute value |¢/|. Two other factors take in account the sign of v:

n

(4.4.6) [ e Clevevu
i=1
and
(4.4.7) H Lyapy >0
{z,y}e
E\{elwwen}

The factor (4.4.6) multiplied by the non normalized density e~ (/) of 1 gives the non-

normalized density e HE ) of Ppleen) the Gaussian free field on G1-en)  gh(e1en)
is independent on each connected component, of G(¢1-+¢n). The factor (4.4.7) means that we
restrict to the event on which the field has constant sign on each connected component of
Gler-men)  But conditional on ¢(¢1+¢n) having constant sign on each connected component
of Gle1--men) these signs are independent on each connected component and — and + have
equal probability % This implies that (4.4.5) equals

n
E| [[eCleovnvultintn) [T 1yy,m0(l — e 2@l p(y)
1=1

{z,yle
E\{e1,....en}
Then summing on all possible values of E\ | Jo/ oo C' we get E[F(¢)] = E[F(¢)] and deduce
that ¢ and v are equidistributed.

For the case of infinite V' we approximate the graph G by an increasing sequence of finite
connected sub-graphs. Let xg € V. Let V,, be the set of vertices separated from zy by at
most n edges. For n > 1 let F,, be the set of edges either connecting two vertices in V,,_1 or
a vertex in V,\V;,,—1 to a vertex in V,_1. G,, := (V,,, E,,) is a connected sub-graph of G. We
consider the Markov jump process on G, with transition rates given by the conductances
restricted to E,, the killing measure « restricted to V,,_; and an additional instant killing
at reaching V,\V,—1. Let (GV"~'(2,9))zyev, . be the corresponding Green’s function and

(1/)9‘5/"’1)955‘/%1 the corresponding Gaussian free field. The associated Poisson ensemble of
loops of parameter 3 is {y € L]y stays in Vi—1}. Let (qb;/"’l)zevnfl be the field obtained
by applying the procedure described in theorem 4.1 bis to {y € L'%|fy stays in V,,_1}. As

shown previously ¢"»-1 has same law as 1)"»—*. Moreover ¢""~! converges in law to ¢ and
Vn=1 to 1. Thus ¢ and ¢ have same law. O
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4.5. Application to percolation by loops

In this section we consider the lattices

e 72 with uniform conductances and a non-zero uniform killing measure

o the discrete half-plane Z x N with instantaneous killing on the boundary Z x {0}
and no killing elsewhere

e 7%, d > 3, with uniform conductances and no killing measure

and show that there is no infinite loop cluster in El Obviously there cannot be such an
infinite cluster if the Gaussian free field only has bounded sign clusters, which is the case for
Z? with uniform conductances and a non-zero uniform killing measure (see Theorem 14.3
in [HJ06]). However on Z¢ for d sufficiently large the Gaussian free field has infinite sign
clusters, one of each sign, at is it believed that is the case for all d > 3 ([RS13]). But at
the level of the metric graph there are no unbounded sign clusters of the free field.

The uniqueness of an infinite cluster of loops on Z¢, d > 3 and on Z? with uniform
killing measure was shown applying Burton-Keane’s argument in [CS14]. Next we adapt
this argument to the case of loops on the discrete half-plane.

PROPOSITION 4.5.1. On the discrete half-plane Z x N with instantaneous killing on the
boundary Z x {0}, a.s. E% has at most one infinite cluster.

PRrROOF. The general layout of the proof is the same as for the i.i.d. Bernoulli percolation.
See section 8.2 in [Gri99]. The law of L1 is ergodic for the horizontal translations and hence
the number of infinite clusters in (‘:% is a.s. constant. The next step is to show that this
constant can only be 0, 1 or +00. This can be proved similarly to the i.i.d. Bernoulli
percolation case and we omit it. Then one has to rule out the case of infinitely many infinite
clusters.

For a € N let

Ei“ :={y € L1|Range(y) € Z x [a + 1, +0)}

£>O = £1 and all the £>“ have the same law up to a vertical translation. A vertex

(acl, a+ 1) € Z x N* will be an upper trifurcation if it is contained in an infinite cluster of
L7 and if this vertex and adjacent edges are removed the cluster splits in at least three
in2ﬁnite clusters. Every vertex of Z x N* has equal probability to be an upper trifurcation.
Let it be p3. If with positive probability E% has at least three infinite clusters then a vertex
in Z x {1} has a positive probability to be an upper trifurcation. This can be proved in the
similar way as in i.i.d. Bernoulli case. Consequently ps > 0.

Let T, be the set of upper trifurcations in [—n,n] x [1,n]. Let (2;)1<i<n, be an enu-
meration of 7, such that the sequence of second coordinates of z;, (a; + 1)1<i<n,,, iS non-
increasing. Given z;, there are three simple paths ¢1(z;), c2(z) and c3(z;) that connect 2
to three different vertices on

o([=n—1,n+1] x [Ln+1]) =

{=n—1}x[Lin+1]u{n+1} x[l,n+1]u[-n—1,n+1] x {n +1}
that do not intersect outside z; and such that c¢q(z;)\{z:}, ca(z:)\{z:} and e3(z;)\{z;} are
contained in three different clusters induced by the clusters of £7% after deleting the vertex

2
zi. For i > 2, two different paths c¢;(z;)\{z} and ¢;/(z)\{z:i} cannot intersect the same
connected component of

(Cl(Zi/) ) Cg(zi/) U CS(Zi’))
1<i'<i—1
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because the set above is covered by the loops in £7%. Then as in Burton-Keane’s proof one

2
sets ¢j(z1) = ¢j(#1) and iteratively constructs the family of simple paths (¢;(2;))1<j<3,2<i<N,

X

where the path é;(z;) starts from z; as ¢;(z;) and as soon as it meets a path ¢ from the family
(€j:(2ir))1<j'<3,1<i'<i—1 it continues as ¢. The graph formed by the paths (¢;(z:))1<j<3,1<i<n,
has no cycles, its leaves (vertices of degree 1) are contained in o([—n—1,n+ 1] x [1,n+1])
and the vertices z; have degree 3 at least. Thus

8T, <to([-n—1,n+1] x[1,n+1]) =4n +3
The expectation of £7,, cannot grow as fast as n? hence p3 = 0. O
Next we give a simple upper bound for the probability of two vertices belonging to the

same cluster of £ 1 This is an inequality that holds on all graphs and not specifically on
periodic ones as considered previously in this section.

PROPOSITION 4.5.2. Let x,y € V. Let

G(z,y)

909 = a0 y)

(451) P (ac and y belong to the same cluster of E%) <

~ 2
P (36 and y belong to the same cluster of C%) == arcsin(g(z,y))

Proor. Consider the set of extended clusters €. The probability that = and y belong
to the same cluster in € is exactly

E [sign(¢.) Sign(¢y)]

In our coupling if x and y belong to the same cluster in €’ then the product sign(¢,)sign(¢,)
equals 1, and if this is not the case sign(¢y)sign(é,) equals either 1 or —1 each with
probability 1

One must to check that

E [sign(¢s ) sign(,)] = % arcsin(g(z, 1))

Let Z; and Z3 be two independent standard centred Gaussian r.v.’s. We have the equalities
in law

(60r8y) "2 (WG, 2) 21, VG, y) (9, 9) 71 + /1 — (w0, y)2 Z2)

(sign(gs ), sien(gy)) "2 (sign(Z1), sign(g(z, y) Z1 + /1 — g(z, 9)°2s))
Then

. : |Zs| 9(z,y)
E [sign sign(¢,)| =P | = <
Z2/7, follows the Cauchy distribution

1 dz
1422

@ M Zgarcan M =zarcsin x
IP)(|Z1|<\/m> ™ i ( 1—g(ac,y)2> . (9(x,y))

Thus
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In the case of a graph Z? (d > 2) with positive constant killing measure, inequality
(4.5.1) ensures an exponential decay of cluster size distribution. For Z? (d > 3) with no
killing inequality (4.5.1) implies

1
P (ac and y belong to the same cluster of E%) =0 (W)
y—z

However this bound is certainly not sharp and one expects that for d > 5

1
P (ac and y belong to the same cluster of E%) =0 (W)

(see proposition 5.3 in [CS14]). This also means that the percolation by discrete loops on
periodic lattices and the percolation by continuous loops on the corresponding metric graphs
behave differently.

Proof of theorem 4.2. Assume that E% has an infinite cluster. Let C,, be this infinite
cluster. Let = be a vertex and

0(z) :=P(reCy)

Let u; be the unit vector corresponding to the first coordinate, u; = (1,0,...,0). Let
Zn := 2 4+ nuy. From the invariance under translation by u; it follows that 6(z,) = 0(x).

P (x and y belong to the same cluster of E%) <P(xeCyp,z,€Cyp)
L, satisfies Harris-FKG inequality ([JL13]). Thus
P(x € Cypyan € Cy) = 0(2)0(,) = O(w)?
It follows that
0(x)* < %arcsin(g(w,xn))

Letting n go to +00 we get that 6(x) = 0. o

Let d > 3. Let Z¢ be the metric graph associated to the graph Z<. All edges have
length 1. We consider the Gaussian free field (), 5. on 74 and the following dependent
percolation model on the edges of Z¢: Let w be the random configuration on the edges of Z¢
with we =1 (e is open) if |¢| has no zeros on I, and w. = 0 (e is closed) otherwise. The set
of clusters of w is exactly €’ which appears in the coupling of theorem 4.1 bis. The free field
on the metric graph has an unbounded sign cluster if an only if there is an infinite cluster
in ¢, as the sign clusters of ¢ that are contained inside the intervals I, corresponding to
the edges are all bounded. We will show that this cannot happen. We will follow the same
pattern as for the proof of theorem 4.2: first show that €' can contain at most one infinite
cluster, the show that w satisfies the Harris-FKG inequality and conclude using inequality
(4.5.1).

LEMMA 4.5.3. With probability one & has at most one infinite cluster.

PROOF. According to theorem 1 in [GKIN92], the uniqueness of the infinite clusters is
implied by translation invariance and positive finite energy property. We need only show
the finite energy property:

(4.5.2) P(w. = 1|(wy, fis an edge of Z* and f # ¢)) > 0 a.s.
Let e = {z,y} be an edge. We see (5¢%)__5. as the occupation field of continuous loops EN%.
The loops inside I, and the excursions inside I, from x to x and y to y that do not cross

entirely I, are independent of (%‘ﬁ)zeid\f conditional on |¢,| and |¢y|. Thus, according to
the computations made in section 4.3

p(we _ 1‘(1@) ) ) 51— o l0atl
2 2€Z4\I,
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Hence

(4.5.3) P(w. = 1|(wy, fis an edge of Z% and f # €)) =
E [1 — e~ 192%ul|(wy, fis an edge of Z and f # e)]

Since |¢z¢y| > 0 a.s., the right-hand side in (4.5.3) is a.s. non-zero and the condition (4.5.2)
is satisfied. O

LEMMA 4.5.4. w satisfies the Harris-FKG inequality: given Ai(w) and Az(w) two in-
creasing events

(4.5.4) P(A1(w), Az2(w)) = P(A1 (w))P(A2(w))

Proor. We see the field (%¢5)yeid as the occupation field of the metric graph loops

EN%. If the events A (w) and Az(w) are increasing in the sense that opening more edges in w
only helps their occurrence, then these events are also increasing in the sense that they are
stable by adding more loops to EN%. The inequality (4.5.4) follows from the FKG inequality
for Poisson point processes (lemma 2.1 in [Jan84]). O

PROPOSITION 4.5.5. With probability one € has only finite clusters.

4.6. Critical intensity parameter on the discrete half-plane

Let o, § > 0. Given U an open subset of H, we will denote by £U:>? respectively £J =9

the subset of L respectively £ made of loops contained in U and with diameter greater or
equal to 5. We will use the notations £ and £{"" when there is a condition on the range
but not on the diameter.

Let Qczt and Q¢ be the following rectangles:

Qext :=(0,6) X (0,3) Qint :=(1,5) x (1,2)

We consider the subset of Brownian loops £Z¢**:>° which is a.s. finite. We introduce events

C1(LGew20) Cy(LYe=2%) and C3(LYe++>°) depending on the loops in L= The
event O (L£Y<=+>°) will be satisfied if there is a cluster K; of loops in £&#+:>° such that in

L£OOXM2:20 thore is a loop that intersects K; and {1} x (1,2) and a loop that intersects

K and {5} x (1,2). The two loops may be the same. Cy(L£Z:=*>?) will be satisfied if there

2
a cluster K5 in £&1,2) 2% such that in E&LQ)X(OB)’Z(S there is a loop that intersects Ko and

(1,2) x {1} and a loop that intersects K and (1,2) x {2}. The event C5(£S¢=>%) is similar
to the event Co(LYe++>%) where the square (1,2)? is replaced by the square (4,5) x (1,2)
and the rectangle (1,2) x (0,3) by the rectangle (4,5) x (0,3). Next figure illustrates the
event, (7_, Ci(LQe>9).
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Fig.4.2: Illustration of the event (_, C;(L£LJext>2).
One should imagine that the smooth loops are actually Brownian.
Only a set of loops that is sufficient for the event is represented.
Full line loops stay inside Q;n:. Dashed loops cross the boundary of Q;nzt.

We will call the event ﬂ?:1 C; (LY== special crossing event with exterior rectangle
Qext and interior rectangle Q;ny. We will also consider translations, rotations and rescaling
of Qezt and @y and deal with special crossing events corresponding to the new rectangles.
We are interested in the event ()?_, C;(£Qe**">%) because then the loops in £&==+>? achieve
the three crossings drawn on the figure 4.3:

Fig.4.3: The three crossings we are interested in.

Next we show that if o > % and ¢ is small enough then the probability of the event

ﬂle Ci(LYe=+>7) is close to 1.

LEMMA 4.6.1. Let Q be a rectangle Q := (—a,a) x (0,b). Let « > 0. Let (Bt)i=0 be the
standard Brownian motion on C started from 0 and let LS be a Poisson ensemble of loops
independent from B. Then for all € > 0 there is t € (0,¢) such that B at time t intersects a
loop in LS.

PROOF. First we consider a loops soup in H, £LZ independent of B. Let
T :=inf{t > 0|B; is in the range of a loop in £}

T is a.s. finite. Indeed a loop in £ delimits a domain with non-empty interior. Since the
Brownian motion on C is recurrent, B will visit this domain and thus intersect the loop. Let
A > 0. The Poisson ensemble of loops L is invariant in law under the Brownian scaling
1
(v())ost<t, = A2 (Y(M))ose<r1e,
So does the Brownian motion B. Thus AT has the same law as T'. It follows that 7" = 0 a.s.
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The set of loops LE\LY is at positive distance from 0 thus B cannot intersect it imme-
diately. It follows that B intersects immediately £S. O
2
LEMMA 4.6.2. Let a,a > 0. There is a.s. a loop in £<(;a’a) that intersects the real line
R.

PROOF. Let ,cg”) be the subset of E&_a’a)Q made of loops v of duration ¢, comprised

between 27"~! and 27". The family (ﬁ&”))@O is independent. By Brownian scaling, the
_on/2 n/2\2
probability that the loop in £ intersects R is the same as a loop in £§ “> **")" of

duration comprised between % and 1 intersects R. This is at least as big as the similar

probability for 555”. Since the latter probability is non-zero, the intersection events occurs

a.s. for infinitely many of E&n). O
2
LEMMA 4.6.3. Let a,a > 0. There is a.s. a loop in £<(;a’a) that intersects the real line

R and a loop in nga,a)x((),a)'

ProoF. Consider the subset of E&_a’a)z made of loops intersecting R. It is non empty
according the lemma 4.6.2. Moreover it is independent of ﬁg‘“’“)x(o’“). The law of a Brow-
nian loop that intersects R is locally, near the point of intersection, absolutely continuous
with respect to the law of a Brownian motion started from there. Applying lemma 4.6.1, we
get that it intersects a.s. a loop in £ (09, O

LEMMA 4.6.4. Let a > 3. Then

lim IP’( ﬁ Ci(ﬁgm’?‘s)) —1
=1

§—0t

PROOF. It is enough to show that the probability of each of the C;(£Z<=+>%) converges
to 1 as ¢ tends to 0. Since the three cases are very similar, we will do the proof only

for Oy (LY=+>?). According to lemma 4.6.3 there is a loop 7 in £0:6x(1,2)
{1} x (1,2) and a loop 4/ in £, Similarly there is a loop 7 in L0912 that intersects
{5} x (1,2) and a loop 7’ in LY. Since a > 3, 7' and 7’ belong to the same cluster in
LYmt ([SW12]). Thus there is a chain of loops (Yo, ...,7V,) in £, with 79 = 4" and
Yn = 7', joining 7" and 7. If § is the minimum of diameters of (7o, ..., ¥») and v and 7 then
C1(LYe++>°) is satisfied. Let 6 be maximal value of § such that C;(L£L%e=+>?) is satisfied. §

is a well defined random variable with values in (0,+00). Then

] Qezh?é — ] S\ —
Jim P(Cy(£8+7) = lim P(6 <3) =1

that intersects

O

Next we recall the result on approximation of Brownian loops by random walk loops
from [LFO07]. Let N € N*. We consider the discrete loops v on Z x N*. We define on these
loops a map @y to continuous loops on H. Given ~ a discrete loop and (2q,- .-, 2n—1, 20)

the sequence of the vertices it visits, the continuous loop ® -y satisfies:
e The duration of ®n7v is 53
o For je{0,....,n—1}, ®ny(5k=) = 2.
* Pn(ga=) = BN(0) = &
¢ Between the times 53, j € {0,...,n}, ®xv interpolates linearly.

The number of jumps n of o discrete loop v will be denoted s.,. Let 6 € (2,2) and r > 1.
There is a coupling between £ and L such that except on an event of probability at most
cste - (o + 1)r2N273% there is a one to one correspondence between the two sets
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o {veLi]sy >2N’ 7(0)] < Nr}
o {JeLalts > N2 13(0) <7}
such that given a discrete loop v and the continuous loop ¥ corresponding to it:

Sy 5 -2 Sy 5 -1
T L R ey

Next we state as without proof a lemma that follows immediately from this approximation.

LEMMA 4.6.5. Let « > 0 and § > 0. As N tends to +oo the random set of interpolating
continuous loops

(Bl e £YQenh=N)
converges in law to the set of Brownian loops L%e=+>7.

We need to show that the above convergence for the uniform norm also implies a con-
vergence of the intersection relations, that is to say that

ENth NH,>N¢§
a

{7 € v intersects 7'}

converges in law to
{(3%,4)17,7 € LL==>° 7 intersects 7'}
Let j € N. Let v be a continuous path on C (not necessarily a loop) of lifetime ¢,. For
r >0 let
T(v) := inf{s > 0[|y(s)| = r} € (0, +-o0]}
If T, () < 400 let

Let I; be the real interval

7T, 9. _.
I = (—2*&—2*])
12 12
For 0 <1 < rg let A(rq,7r2) be the annulus
A(ri,m2) = {2 € C|ry < |z| < ra}
For r > 0 let HD(r) be the half-disc
HD(r) := B(0,7) n {z € C|R(2) > 0}
We will say that the path v satisfies the condition C; if
o Tuys(y) <+ 4 )
o After time T, (7) < 400, 7 hits ¢!w2—i—1+3) [ at a time 7; before hitting the
circle S(0,277)
e On the time interval (T5-;-1(7),%;) 7 stays in the half-disc e*~2=i—* HD(277)
o From time #; the path v stays in the annulus A($5277, 2277) until surrounding
once clockwise the disc B(0, 1—722’j) once clockwise and hitting ei(%—i—l*“)lj.
Figure 4.4 illustrates a path satisfying the condition C;. If this condition is satisfied than
~ disconnects the disc B(0, :5277) from infinity. Moreover if one perturbs by any contin-
uous function f : [0,¢,] — C such that ||f|.. < 75277 then the path (v(s) + f(s))o<s<t,
disconnects the disc B(0,27771) from infinity. Moreover the disconnection is made inside
the annulus A(27771,277).



4.6. CRITICAL INTENSITY PARAMETER ON THE DISCRETE HALF-PLANE 148

Fig.4.4: Representation of a path v satisfying the condition C;

LEMMA 4.6.6. Let (B;)o<t<r be a standard Brownian path on C starting from 0. Then
almost surely it satisfies the condition C; for infinitely many values of j € N.

PROOF. Let B be the Brownian path B continued on ¢ € (0,+c). The events ” B
satisfies the condition C;” are i.i.d. Indeed such an event is rotation invariant and depends

only on B on the time interval (Ty—;1 (B), To—; (B)). Moreover the probability of such an
event is non-zero. Thus B satisfies the condition C; for infinitely many values of j € N. Since

lim Ty,—;(B) =0
J—>+0
so does B. O

LEMMA 4.6.7. Let z1,20 € C and t1,to > 0. Let (bgl))ogsgtl and (ng))()gsth be two
independent standard Brownian bridges from z1 to zy and zy to zo respectively. On the
event that bV intersects b there is a.s. € > 0 such that for all continuous functions
fi: [0,t1] = C and f2 : [0,t2] — C of infinity norm ||fi|» < e, (bﬁ” + f1(8))ogs<t,
intersects (bg2) + f2(5))ogs<ts -

PROOF. Let 74" be the first time b hits the range of b®. If the two path do not
intersect each other TQ(I) = 400. On the event T2(1) < 400 the conditional law of (b(Tl()1)+s -
2
1
b(T;U)ossstl—T;”—a
with respect the law of a Brownian path starting from 0. From lemma 4.6.6 follows that

the path (b") bV

TP 4s Tgl))()ésétr
7 €N. Let

(¢ > 0 a small constant) given the value TQ(I) is absolutely continuous

) satisfies the condition C; for infinitely many values of
2

. , (1) (1) . "
J:=max {j € N|(bT2(1)+S - bT2<1>)0<s<t1—T§” satisfies the condition C;

2 13__.
and 3s € [0, 2], [p® — b<T221)| > 52 J}

jis ar.v. defined on the event where b™") and b intersect. If f; and fo are such that

I f:| < 5277 then the path b + f; disconnects the disc B(b(Tz()l) , 27771 from infinity inside

the annulus b(l()l) +A(27771,277) and the path b(?) + f, crosses from the circle S(b(l()l) , 27771
T2 T‘Z

to the circle S (b(Tl()l) ,277), so the two must intersect. O
2
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Observe that two discrete loops v and +' intersect each other if and only if the continuous
loops @y and ' do. From lemmas 4.6.5 and 4.6.7 follows:

COROLLARY 4.6.8. Let « > 0 and 6 > 0. As N tends to +oo the random set of
interpolating continuous loops

{@ryly € L) Q2N
jointly with the intersection relations

{(v, Y,

converges in law to the set of Brownian loops LE==+>° jointly with the intersection relations

v e LNQeetnhZNS o intersects v}

{(3%,A)73,7 € L2 5 intersects 7'}

We consider the scaled up rectangle NQc,+ and NQ;n¢:. The next lemma deals with
the probability that the discrete loops LY @<=t ¥ realise special crossing event with exterior
rectangle NQezt and interior rectangle NQ;n:. See figures 4.2 and 4.3 and consider that
Qewt is replaced by NQext: Qint by NQint and ['gemt,Z(s by ['éVQemmH'

LEMMA 4.6.9. Let o > % As N tends to +o0, the probability that the loops E(ZIVQW“H
realise special crossing event with exterior rectangle NQey: and interior rectangle NQ;n:
converges to 1.

PROOF. Let § > 0. The probability that that the loops LY @e=¢~H realise special crossing
event with exterior rectangle NQ..+ and interior rectangle NQ;n: is at least as large as the
probability that the loops E(]IVQ”WH’ZN‘; realise special crossing event with the same interior
and exterior rectangle. From corollary 4.6.8 follows that the latter probability converges as

N — 4 to
3
P (ﬂ a—(ﬁ%m»?é))
i=1
We conclude by applying the lemma 4.6.4. O

To conclude that for o > %, LY has an infinite cluster we will use a block percolation
construction that will combine special crossing events. We will need the result of Liggett,
Schonmann and Stacey in [LSS97] on locally dependent percolation models. Consider
1-dependent edge percolations on H, (w(e))e edge of 5- By 1-dependent percolation we mean
that if two disjoint subsets of edges F; and E» are at graph distance at least 1 then (w(e))ecr,
and (w(e))eer, are independent. For all such 1-dependent edge percolations, with a uniform
probability p of an edge to be open, there is a universal p(p) € [0,1) such that the 1-
dependent edge percolation contains an i.i.d. Bernoulli percolation with probability p(p) of
an edge to be open. Moreover the following constrain holds:

lim p(p) =1
p—1—

Proof of theorem 4.3. From the Theorem 4.2 we know already that off < % We need to
show that For v > £, L% has an infinite cluster.

Let o > % and N > 1. We consider a depend edge percolation (w? (e))e edge of H
on the discrete half plane H. If e is an edge of form {(j,k),(j + 1,k)} then w™(e) = 1
(open edge) if LNQune 3NTHBNRIOH 5 hioves a special crossing event with exterior rectangle
NQezt + 3Nj + i3NEk and interior rectangle NQ;nt + 3Nj + i3Nk. If e is an edge of form
{(4,k), (j, k + 1)} then w™(e) = 1 if LGN Qine FSNTHBNE)OR 5 hieves a special crossing event
with exterior rectangle iNQert + 3Nj + 13Nk and interior rectangle iNQ;n: + 3Nj + 13Nk,
where the multiplication by ¢ means rotation by +7. w? is a 1-dependent edge percolation:

if two disjoint subsets of edges F1 and Fs are such that no edge is adjacent to both E; and
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Ey, then (W™ (e))eer, and (wV(e))eer, are independent. This is due to the fact that the
subsets of loops involved in the definition of special crossing events for edges in E; and and
edges in Ej are disjoint. To an open path in w corresponds a cluster of £ whose loops
form crossings of related interior rectangles. Thus if w” has an unbounded cluster, then so
does LE. See next picture.
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Fig.4.5: Crossings achieved by subsets of loops in Ci, corresponding to five open edges in w?.

The probability P(w™¥(e) = 1) is uniform and we will denote it py. According to the
lemma 4.6.9

li =1
N—1>erlx‘pN

Thus for N large enough p(py) > % % is the critical probability for the i.i.d. Bernoulli edge

percolation on H. So for N large enough w? contains a supercritical i.i.d. Bernoulli edge
percolation and percolates itself. Thus L% percolates too. o

4.7. Random interlacements and level sets of the Gaussian free field

Let d > 3. As in section 4.2 we consider the metric graph Z4 associated to the graph Z%.
All edges have length % We construct a continuous version Z* of the random interlacement
of level u on the metric graph Z4. First we sample Z%. Given a path w in Z% we replace
each jump from a vertex to its neighbour by a Brownian excursion inside the linking edge
and we add Brownian excursions from a vertex visited by w to itself inside adjacent edges
such that the local time on the vertex equals the time w spends in it (as in (4.2.2) for loops).
By construction Z* is the restriction of 7" to the vertices. Z* has an occupation field
(Ly(i’“))yEZd which is continuous (because the occupation field of the Brownian excursions
is) and its restriction to the vertices is (L*(Z")),cze. We will show that the isomorphism
(4.1.2) also holds in the continuous setting on Z?. To this end we will use the approximation
scheme of random interlacement by excursions that appeared in [Szn12al].

Let K be a finite subset of Z%. Let Z% be the set of trajectories in Z" that visit K.
Given such a trajectory w we will denote by (w’ (t))s>0 the trajectory obtained by setting
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the origin of times at the entrance time of w in K and running w onward from this time.

Conditional on w{, (w’ (t));=0 is a Markov jump process on Z.

Let G, be the (discrete) graph obtained from the subgraph [—n,n]? of Z? by identifying
to one vertex x, the boundary of [—n,n]?, that is the vertices

{(z1,22,...,24) € [—n,n]d|3!z’ e{l,...,d},|z;| = n}

Between any two distinct adjacent vertices in G,, the conductance is 1. Let (X{*);>0 be the
recurrent Markov jump process on G, starting from z,. X" jumps away from z, with rate

2d(2n — 1)41. Let
t
T = inf {t > O‘J Ixn=g,ds = u}
0

There are two sequences (D7);>1 and (R});>1 with

0<D} <Ry <Dy <Ry<---<D}<R}<:-
of successive departure and return times of X" from and to z,. By convention we set

o = 0. X" is outside z, on time intervals [D?, R?) and in z on intervals [R}_;, D}). Let
Ju =max{j = 0|R} <7}

Let K be a subset of [—(n —1),n — 1]¢. Let

v =17 €{l, ..., gy }| X" visits K on [D7, R})}
For j € J x we define the stopping time T :

Ty, :=inf{t e [D}, R})|X]" € K}

Conditional on j € J - and on the value of X”; , the trajectory
; g

n
(XT;}J. +t)0<t<R;}—T};7j

is a Markov jump process on G,, run until hitting x, or equivalently a Markov jump process
on Z run until hitting the boundary of [—n,n]%.
The next approximation result was shown in the first proof of theorem 2.1 in [Szn12a]:

LEMMA 4.7.1. Let K be a finite subset of Z%. The set of points
(XFy i€ Tk
converges in law as n — +00 to
{w(0)|w e Ti}
The set of trajectories
{(X?;,jﬂ)o@sz%y—m,j VAS JS,K}

converges in law to the set of trajectories
{(w™ (t))ez0|w € Tj}

Let QNn be the metric graph associated to the graph G,,. Let (Bté")t;o be a Brownian

motion on G, starting from z, and (LY (B9")) its family of local times. Let

t>0,y€C,,

o= inf{t = 0|L7* (B9) > u}

u

For r € N* we denote by /N\T the metric graph associated to the subgraph [—r,r]¢ of Z4
(without identification of boundary points).

LEMMA 4.7.2. For all r € N* the occupation field (LZ (Bén)) ;  converges in law as

u ye r
n — 400 to (Ly(f“)) o
yEA,.
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_ ProoF. The Markov jump process X" on G, is obtained from the Brownian motion
B9 through a time change by the inverse of the continuous additive functional

>, Li(B%)
z€Gn
Let n > r + 1. The occupation field (Lgn (Bén)) _is obtained from the set of discrete-

R X yeEA,
space trajectories

(4.7.1) {(Xg[n_ryrldwjﬁ)ogtgl%yT["_M]dd lj € ‘Ig,[—r,r]d}

in the same way as the occupation field (Ly(f“)) N is obtained from the trajectories
YEN,

(4.7.2) (@ () zolw e T, )

In both cases one adds Brownian excursions and takes the local times. According to lemma
4.7.1 applied to the set [—r,7]¢, (4.7.1) converges in law to (4.7.2). This implies the conver-

gence in law of (Lgn (Bgﬂ)) x to (Ly(f“)) i O
* YEA, YEA,

PROPOSITION 4.7.3. Let (¢y)yeid be the Gaussian free field on the metric graph 74 and
((b;)yeid a copy of ¢ independent of Z,,. The following equality in law holds:

(4.7.3) (Ly(f“) + %qﬁf) @ (1(% - \/@2)

yezd 2 yezd

PRrROOF. Let ¢™ be the Gaussian free field on the metric graph G, associated to the
Brownian motion with instantaneous killing at x, ( = 0). Let ¢ be a copy of ¢"

independent of the Brownian motion B starting from x,. The second generalized Ray-
Knight theorem (see theorem 8.2.2 in [MIRO06]) holds in this setting:

n
L

. 5 1 @ (1
Lgntn + = /n2) :<_ n_ /9 2)
(Lg% + 5007) @ (505 - vaw?)
Since the ¢™ converges in law to ¢ and according to lemma 4.7.2 (Lgn (Bg~" )) G converges
* YEGn
in law to (Ly (f“)) 5a W get the isomorphism (4.7.3). O
ye

Proof of theorem 4.4. The coupling is the following: take a discrete-space random in-
terlacement 7% and extend it to a continuous interlacement Z" of the metric graph Z<.
Take a Gaussian free field ¢’ on Z? independent on Z%. Using isomorphism (4.7.3) we see
(Ly(f“) + %qﬁf) 50 8 (%(qﬁy - \/Zu)Q) ” where ¢ is a Gaussian free field on Z¢ and

Yye Yye
sample the sign of ¢ — /2u using its conditional law given |¢p — /2u|.

The continuous occupation field (Ly (i“)) , is strictly positive on all the vertices and
Yy

inside the edges visited by the discrete random interlacement Z*. In the isomorphism (4.7.3),
(lpy — \/ﬂ|)yezd is strictly positive on these vertices and inside these edges. This means
that each trajectory in Z* is contained in a sign cluster of ¢ — /2u, which is necessarily
unbounded. But according proposition 4.5.5, ¢ has only bounded sign clusters on the metric
graph and a fortiori the connected components of {y € Zd|z,z5y > \/2u} are all bounded. Thus
in our coupling all the vertices visited by Z* are contained in {y € Zd|¢y < \/2u} and since
these are vertices, they are contained in {z € Z%|¢, < \/2u}. o
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The fact that for all h > 0, {z € Z%|¢, < h}, seen as a dependent site percolation on
74, has an infinite cluster was proved in [BLM87|. However theorem 4.4 may be used as
an alternative proof of this fact.



CHAPTER 5

Convergence of the two-dimensional random walk loop
soup clusters to CLE

5.1. Introduction

One can naturally associate to a wide class of Markov processes an infinite measure on
time-parametrized loops. Roughly speaking, given a locally compact second-countable space
S, a Markov process (X;)o<i<c on S, defined up to a killing time ¢ € (0, +00], with transition
densities p¢(x,y) with respect some o-finite measure m(dy) and with bridge probability
measure P;yy(-), where the bridges are conditioned on ¢ > ¢, the loop measure associated to
X is

(5.1.1) i =[] BaOnten )

See [LMIR15] for the precise setting and definition. A Poisson ensemble of Markov loops or
loop soup of intensity parameter o > 0 is a Poisson point process of loops of intensity o.
It is a random collection of loops. We will deal with the clusters of loops. Two loops v and
7" in a loop soup belong to the same cluster if there is a chain of loops 7o, ..., ~; such that
Yo =, =~ and 7; and 7;_1 visit a common point in S. These loop soups satisfy some
universal properties, one of which being the relation to the Gaussian free field at intensity
parameter o« = + ([Jan11], [Lup14]).
We will consider loop soups in the following settings:

e On the continuum half-plane H = {(2) > 0} = C we will consider the loop soups
associated to the Brownian motion on H killed at hitting the boundary R and
denote them LY. These two-dimensional Brownian loop soups were introduced
by Lawler and Werner in [LWO04] and used by Sheffield and Werner in [SW12]
to give a construction of Conformal Loop Ensembles (CLE). In (5.1.1) we use
the same normalisation of the loop measure as in [LWO04], [SW12], [Jan11] or
[LF07]. However, contrary to what is claimed in [SW12], the intensity parameter
a does not equal the so called central charge c. Actually

o= =
2

The % factor was pointed out by Werner in a private communication. It also
appears in the Lawler’s work [Law09].

e On the discrete rescaled half-plane

- (2) ()

we will consider the loop soups associated to the nearest neighbours Markov jump
process with uniform transition rates and killed at hitting the boundary %Z x {0}.
We will denote these loop soups £2». The loop soups associated to Markov jump
processes on more general electrical networks were studied by Le Jan in [Jan11].
If one forgets the parametrisation by continuous time and the "loops" that visit

154
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only one vertex, these are exactly the random walk loop soups studied by Lawler
and Trujillo Ferreras in [LF07] ‘
o We will use the metric graphs H, associated to H,: each edge {(£,4), (& iy or

n n’n

{(£,2),(%, L)} is replaced by a continuous line of length 1. Let (Bi)o<i<c,
be the Brownian motion on H,, killed at reaching the boundary, that is to say the
vertices 27 x {0} and all the lines joining (£, 0) to (2, 0). (B )g<s<1 1, converges
in law to the Brownian motion on the half—plane H killed at reachlng R. We will
denote by EH" the loop soups associated to (B;I Jo<t<c,- The loop soups on metric
graphs were first considered in [Lup14]. We will use the metric graphs because
at intensity parameter o = % the probability that two points belong to the same
cluster of loops can be explicitly expressed using a metric graph Gaussian free field.
Indeed the clusters of loops are then exactly the sign clusters of the Gaussian free
field ([Lup14]).

The discrete loops L8 can be deterministically recovered from the metric graph loops
E(ﬁ;l. The first are the trace on the vertices of the latter. In particular each cluster of £i» is
contained in a cluster of Egﬂ, but the clusters of EE" may be strictly larger ([Lup14]).

¢ = 1 is known to be the critical central charge for the Brownian loop percolation
on H (or any other simply connected proper subset of C). This means that the critical
intensity parameter is o = 1. For > 3 L has only one cluster everywhere dense in H. If
o € (0, 3] there are infinitely many clusters and each is bounded ([SW12]). It was shown
in [Lup14] that for discrete or metric graph Brownian loop soups on H, respectively H,
there are no unbounded clusters of loops if a € (0, 3]. In all three settings, for o € (0, 3],
we will consider the collection of outer boundaries of outermost clusters (not surrounded
by any other cluster) and denote it Fo.:(LS), where S is H, H, or H,. Next we give the
formal definition of F,,;(L£3). We consider the set of all points in H v151ted by a loop in £2
and take its complementary in H. This complementary has only one unbounded connected
component. We take the boundary in H of this connected component (by definition it does
not intersect R). The element of F..;(£3) are the connected components of this boundary.
We will call the elements of F..:(L5) contours. The contours are two by two disjoint and
non nested. See next plcture for a representatlon of felt(ﬂ ).

......

Fig.5.1: Tllustration of three clusters (thin full lines) of LH"
two of them being external and one being surrounded.

The thick lines represent the elements of ]-'wt([lzn).
The contours in Feut (L), a € (0, %], are non self-intersecting loops, and are equal in

law to a Conformal Loop Ensemble CLE,, r € (%,4] ([SW12]). The relation between «
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and k is given by
(35 —8)(6 — k)
2K
We will denote by k() the value of k corresponding to a particular intensity parameter «.
We will show that both Fe.:(L£8) and fext(ﬁin) converge in law to Fo.t(LH) @
CLE, ) for a € (0,3]. Observe that x(3) = 4 and fem(ﬁi"‘) and CLE, are both re-

72

(5.1.2) 2a=c=

lated to the Gaussian free field. ]-'ext(ﬁﬁ;) is the collection of outer boundaries of outermost
2

sign clusters of a GFF on the metric graph H, ([Lup14]) and the CLEj loops are in some
sense zero level lines of the continuum GFF on H with zero boundary conditions on R
(IWW14)).

Next we define the notion of convergence we will use. dy will be Hausdorff distance on
the compact subsets of H. We introduce the distance d¥; on finite sets of compact subsets
of H:

&5 (K =4 TP if K] # |K'|
HAY Mingepijc, k) Maxgex da (K, 0(K)) otherwise

Given z € H we will denote by

Feart(L3)(2)
the contour of ]-'em(ﬁg) that contains or surrounds z, whenever it exists. It exists a.s. in
the case S = H. Given 21, ..., z; € H we will denote

fezt(ﬁg)[zlau'a ] {Feat(L )( DIl <<}

By the convergence in law of Fe.:(L8) and ]-'ext(ﬁﬂn) t0 Fert(LT) we mean that for any
Z1,...,%; € H, the random sets Fegt(Lhn)[21,...,2;] and Fepe (L )[21, ..., z;] converge in
law to feat(ﬂg)[zl, ..., ;] for the distance d¥.

In the article [dBCL14] Van de Brug, Camia and Lis consider clusters of rescaled two-
dimensional random walk loops that are not too small. Given T > 0 let L7 be the
subset of L= consisting of random walk loops that do at least 7' jumps. In [dBCL14]

it is almost shown that for § € (4£,2) and « € (0,1], fext(ﬂgyvne) converge in law to a
CLE, ) process in the sense described previously. The result uses the approximation of
"not too small" Brownian loops by "not too small" random walk loops obtained by Lawler
and Trujillo Ferreras in [LF07]. However the authors in [dBCL14] consider the loop soups
only on bounded domains and their lattice approximations. We will fill the small gap to
extend their result to the half-plane. Observe that in [dBCL14] the authors use the same
normalisation of the measure on loops as we but do the widespread mistake to consider that
the intensity parameter of the loop soups equals the central charge.

From above considerations one deduce that the limiting (in law) loops of Fe,¢ (L") and
a fortiori of fezt(ﬁgﬂ) are at least as big as CLE(,) loops. We have a "lower bound". To
conclude the convergence we need an "upper bound". We will construct such an "upper

bound" for fext(ﬂﬁf), deduce the convergence to CLE, of ]-'ext(ﬁﬁ;) and Foz:(L£7). Then
2 2 2

from this we will deduce the desired convergences for a € (0, %) Next we explain how the
"upper bound" will be constructed.
We will concentrate on the case o = % We will additionally introduce two Poisson

point processes of excursions on H, and on H. First we consider H,. Let z € ~Z_ x{0}. Let

I/glc(l‘ — (—00,0]) be the measure on excursions of the metric graph Brownlan motion B

from x to a point in 2Z_ x {0}. It is defined as follows: Let ]P’IHE( ’B?:TL € 1Z_ x {0}) be

the law of a sample path of BH", started at x + ie, restricted to the event B?E € %Z_ x {0}
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(we do not condition and the total mass is < 1). Then

- i 1
Vi (x — (—0,0]) = lim EIPE’;LHE (-,BZ‘S € EZ, X {0})

Let g € (1,+0) and z € ((2Z) n [1,¢]) x {0}. We will similarly denote by l/exc(l' - [1,q])
the measure on excursions from z to ((£Z) n [1,4q]) x {0}. Let

(513) (=0, 0D = 0 S) v (e (—0,0))
ze1Z_x{0}

(51.4) A =" e L)

z€((+2)n[1,q])x {0}

Vi ((=00,0]) is a measure on1 excursions from and to 2Z_ x {0}. Vi ([1,4]) is a measure

on excursion from and to ((;;Z) n [1,q]) x {0}. Both measures are invariant under time
reversal.

As n tends to infinity, v ((—o0,0]) and vf»_([1, q]) have limits which are measures on
Brownian excursions in H, from and to (—oo, 0] x {0} respectively [1, q] x {0}. We will denote
them by v ((—o0,0]) respectively v ([1,¢]). For z,y € R, let Pﬂxﬂy() be the probability
measure on Brownian excursions from x to y in H. Then

dxdy
Vere ooO —QJ J
e N L e

=2 Pﬂ,y%

In general, given a < b € R, we will use the notation

ezca’b —QJJ dzdy

We will consider on H,, three independent Poisson point processes:
¢ a loop soups Eﬁ"
e a Poisson pomt process of excursions of intensity uz/mc((—oo, 0]), u > 0, denoted
by €8 ((—0,0])
e a Poisson point process of excursions of intensity vl/em([l, q]), v > 0, denoted by
8 ([1,4])
We will consider the following event: either an excursion from £ ((—o,0]) intersects an
excursion from & ([1,¢]) or an excursion from Sﬁn(( ,0]) and from &= ([1,¢]) intersect
a common cluster of Cﬁ". We will denote by pl"u, (¢) the probability of this event. The
second condition of 1ntersect1ng a common cluster is equivalent to intersecting a common
contour in fem(ﬁi )
Similarly we vsill consider on H three independent Poisson point processes:
e aloop soups L5, € (0, 1]
e a Poisson point process of excursions of intensity uvtL ((—0,0]), u > 0, denoted
by E;((—a0,0])
e a Poisson point process of excursions of intensity vviL . ([1,¢]), v > 0, denoted by

EX([1.a])
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Then we will consider the event when either an excursion from EX((—o0,0]) intersects an
excursions from X ([1, ¢]) or an excursion from EX((—o0, 0]) and one from EX([1, q]) intersect
a common cluster of £&. This event is schematically represented on the figure 5.2. We denote
by pe ... (q) its probability.

F~
N
\
- \
{ \\\
\ \\\\
\\__’§ \
A
/ VT~
s ~
N__~ \ N
\ \
\ I
\ /
N 7/
I I
0 1 q

Fig.5.2: Two excursions (full lines) connected by a chain of two loops (doted lines).

In the section 5.2 we will compute pi"‘u 7j(q) using the duality with the Gaussian free
1,

field, and compute its limit as n tends to 0. Tn section 5.3, for an arbitrary value of v and
a particular value ug(a) of u (depending on «) we will establish a differential equation in ¢
for 1 — pg ., (g). Using this we will show that

lim pfr (@) =P g(2),0(@)

n—+w 5:“0(%):”

This will be our "upper bound". In the section 5.4 we will prove the convergences to CLE.

5.2. Computation of connexion probability on metric graph half-plane

Let G = (V, E) be a connected undirected graph. V is countable and each vertex is of
finite degree. Each edge {z,y} is endowed with a positive conductance C(z,y) > 0. We also

consider a metric graph G associated to G where each edge {z, y} is replaced by a continuous
line of length

(5.2.1) r(z,y) = %C(ﬂc,y)’1

Let Bg be the Brownian motion on the metric graph g Let I be a subset of V. Let
Cr be the first time BY hits F. Let measure ,ug *F be the measure on loops associated to
(Bg)0<t<<F the Brownian motion killed at reaching F. It is defined according to (5.1.1).
See [Lup14] for details. Let Eg *F he the Poisson point process of intensity aug XE
BY has a time-space continuous family of local times L?(BY). The Green’s function of

the killed Brownian motion (BY)o</,. satisfies

- - P, -~
GO (z,2) = G97F (2, 2) = E. U( L; (Bg)]



5.2. CONNEXION PROBABILITY ON METRIC GRAPH HALF-PLANE 159

Just as Bg~ a loop v € £g~ *F has a family of continuous local times L} (). We will denote
by t., the total life-time of the loop . The occupation field (E ) 2e\F is defined as

>OLi(y)

'yellg’XF

It is a continuous field. The clusters of Eg’XF are delimited by the zero set of the occupation
field.
At intensity parameter o = l the occupation field (E )zeg\F is related to the Gaussian

free field (¢:) g\ r

Eg > 0 we denote by C1(z) the cluster of £9*F that contains z. We introduce a countable
2

with zero mean and covariance function G9*F . Given z € Q\F such that

family (U(C%(z)))zeg\F of ii.d. random variables, independent of E%XF conditional on

2
the clusters, which equal —1 or 1 with equal probability. There is an equality in law (see
[Lup14)):

(5.2.2) (¢z)ze§\F @ (U(Cé(z)) 2LAZ%)&G\F

Let z,y € V\F. Let C®(x,y), X(a: (@) Xf;l ,) () be the quantities defined by

~ ~ —1
GOxF (aa) GO (a,y)
G9*F(z,y) G9*F(y,y)

X(gy (@) +CU(z,y) —C*(z,y)
—Ceq (z,y) X)) + CU(z,y)

Then C*(z,y) > 0, X(g; y)( z), X(x y)( y) = (X(x y)( z), Xfiy)(y)) # (0,0). C®(z,y) is the
equivalent conductance between x and y given that all points in F' have the same (electrical)
potential.

Let N} (z,y) the number of loops in E%’XF that visit both z and y.
2
LeEMMA 5.2.1. Let u,v >0 and z,y € V\F.

(5.2.3) P (Cy (@) # €y (v)

Aai = uaﬁyl = 'U’N% (za y) = 0) = 67206‘1(1@)\/@
2 2
Proor. If N (z,y) > 0 then Cy (z) = C1(y). Thus

~,

(5.2.4) P (C%(ac) #Ci(y)|LY = u. LY = v, Ny (w,y) = 0)

The value of the denominator

B (A (y) =

“wli=)

depends only on u,v and on GG’XF(z, x), vaXF(y, Y), Gg’XF(ac,y) (or equivalently on
Cel(x,y), X(a: y)(ac), X‘(eg y)(y)) This a general property of the loop soups (see [Janl1], espe-
cially chapter 7).
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As for the numerator, it can be computed using the duality with the Gaussian free field
(5.2.2):
P(Cy () # Cy ()| 25 = ulY =)
2 2 3
— 1~ E [sign(6,) sign(6,) 162 | = V2u, o] = V20|

=20 (z.y) v
~ cosh(20¢4(x, y)/uv)

It follows that the probability (5.2.3) that we want to compute only depends on wu, v and
on C*U(x,y), X(y ,) (@), X(s ) (¥)- Thus it is the same if we replace G by the interval

(M

1 . 1 . ;1 _
1= <—§X(q7y)( )~ 1a§C !(x,y) 1+§X(z,y)(y) 1)

the Brownian motion on G by the Brownian motion on I killed at endpoints, and the points
z and y by 0 and %Ceq(z, y) ! respectively. According to the computation made in [Lup14],
we get (5.2.3).

By the way we also get that

P (N% (x,y) =0 ,\2 = u, E‘é = v) = cosh(2C% (z, y)\/uv)

O

In [Jan11], chapter 7, there is a combinatorial representation of C¢4(z,y). Given z € V,
we will denote

Az) = >, C(z7)

2leV,zl~z

where the sum is over the neighbours of z in the (discrete) graph G. Then

C(z,y) = A=) ), 2, H Cizzllz

721 (20,...25)e(V\F)THE i=1
Z0=X,25 =Y, 2~ 2i—1
zi#x,y for 1<i<j—1

The sum is over all the discrete nearest neighbour paths joining = to y, that avoid F' and
only visit  and y at endpoints. The above equality can be rewritten as

(5.2.5) C*(x,y) Z C(x,2)P Bg hits y before F or x)

zeV,z~x

Next we return to the metric graph half-plane H,. Let a > 0. Let g},a(q) be the metric
graph obtained from H, by identifying the following vertices:

o All the vertices in ((1Z) n [—a,0]) x {0} are identified into a single vertex <, (a).
o All the vertices in ((2Z) n [1,q]) x {0} are identified into a single vertex >, (q).

See the following picture.
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....... s R

<n(a) >n(q)
Fig.5.3: Illustration of points identified into <1, (a) and >,(q).
. . . . 7 ] +1 ) ; ) 7 Jrl . 1
As the length of the line joining (%,Z) to (*3=,2) or (£,2) to (5,L=) is -, the

corresponding conductance is according (5.2.1) equal to 2. Let C2%,(q) be the equivalent

2 n,a

conductance between <I,(a) and >, (q) when all the points in ()Z x {0} other than those
identified to <1,,(a) or t>,(q) have the same electrical potential. According to (5.2.5):

nq|

co@="1 LE Pis 1) (Bﬁ“ hits (%Z) x {0} in [~a,0] X {0})

i—n

As a tends to infinity, C¢? (¢q) increases and converges to

n,a

[nql
n B 1 .
(5.2.6) C(q) = 5 Z Pei1) <BH" hits <EZ> x {0} in (—o0, 0] x {o})
LEMMA 5.2.2. For all n € N* and z¢ > 0, C¢%(q) < +o0. Moreover
1 1
lim ~C%(q) = — 1
Jm —Cri(g) = o log(q)

ProoOF. Let GH(.,-) be the Green’s function of the simple random walk on H = Z x N
killed at hitting Z x {0}. Let 4, j € Z. Then

P 1) (Bﬁn hits <%Z> x {0} in (%0))
= 36761, G, 1) = 3670, 1), G — 4, 1)

1

Indeed to go from (£, 1) to (£,0) the moving particle needs to reach (£, 1), possibly make

excursions from and to this point without hitting (2Z) x {0}, and then with probability
transition to (%, 0). Replacing in (5.2.6) we get that
n [ngl +o

1=n 5=0

According to the asymptotic expansion given in [LL10], section 8.1.1,

G*((0, 1), (. 1)) = ﬂif o (j%)
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This means that C¢9(q) < +o0 and that

1 1 [ng| +oo 1 [ng| +o0 1
—_(€q [
ROt =g v ¢ (2 2, (i +j)3>

O

Let v»_([—a, 0]) be the measure on excursions vf»_((—ao, 0]) restricted to the excursions

from and to [—a, 0] x {0}. Let Eg" *(@) he the loop soup associated to the Brownian motion
on the metric graph G, 4(q), killed at hitting (1)Z x {0} outside the points identified to <I,,(a)

or >,(q). Let (En a.q.0)2¢G, . (q) P€ the occupation field of Eg" (@) Let Nao(<n(a),>n(q))

Egn,a(q)

be the number of loops in joining <1, (a) to >,(q).

LEMMA 5.2.3. Let a,a,u,v > 0. We consider L'g”’“(Q) conditioned on Efl]’,; Z)a = u,
Ei’& Z?a = v and No(<n(a),>n(q)) = 0. Then ﬁg” D) consists of three independent families
of loops:

o The loops that visit neither <, (a) nor t>,(q). These are the same as the loops in
LHn
o The loops that visit <, (a). The excursions these loops make outside <, (a) form a

Poisson point process of intensity guyezc([—a, 0]).
o The loops that visit t>,,(q). The excursions these loops make outside t>,,(q) form a

Poisson point process of intensity Sﬂvuem([l, q])-

ProoOF. This follows from universal properties of loop soups. See for instance [Jan11].
The factor g- in gw/eggc([—a,O]) and —’ul/e;gc([l q]) comes from the normalisation factor

8T in the definition of Vezc([—a, 0]) ((5.1.3)) and Vem([l, q]) ((5.1.4)). O
ProposITION 5.2.4. Let u,v >0,g>1andn > 1

(5.2.7) P (q)=1—e 2
2

(5.2.8) lim p' (q) =1—¢q 2V™@

n—+0" 3:WY
PROOF. Let a > 0. Consider three independent Poisson point processes:
e a loop soup EH”

e a P.p.p of excursions of intensity uyem([—a, 0])

e a P.p.p of excursions of intensity vifr_([1, ¢])
The probability for the two P.p.p. of excursions to be connected either directly or through
a cluster of L'H" equals, according lemma 5.2.3, the probability for <i,,(a) and >,(q) to

A<in(a A,
) conditional on L q; = 8y, L @ = 87y and
2

1
n,a,q,3

Ni(<dn(a), >n(q)) = 0. Accordmg to lemma5.2.1 this probablhty equals

be in the same cluster of Eg"”(q

1 — =205 (a)Vuv
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Taking the limit as a tends to infinity we get (5.2.7). Using lemma 5.2.2 we get the limit
(5.2.8). O

5.3. Computation of connexion probability on continuum half-plane

On the continuum upper half plane H we consider two independent, Poisson point pro-
cesses:

e a Brownian loop soup L%, 0 < a < %

e a P.p.p. of Brownian excursions from and to (—co, 0] x {0}, £¥((—c0,0]), u > 0.

We will consider the clusters made out of loops in L and excursions in £¥((—0,0]). Among
these clusters we only take the clusters that contain at least one excursion and consider the
right boundary of the rightmost cluster. This boundary is a non self-intersecting curve
joining R to infinity. It can be formally defined as follows. Take the clusters that contain
at least one excursion. The curve minus its starting point on R is the boundary in H of the
closure in H of the set of points visited by the above clusters.

All the excursions % ((—o0,0]) are located left to the curve and there are only clusters
made of loops right to it. According to [Wer03] and [WW13] this boundary curve is an
SLE(k, p) starting from 0, where & is given by (5.1.2) and p by

(p+2)(p+6—k)
4k

We will define
(5.3.1) uo(a) 1= 62;7&([?

See next picture.
no loop or excursion
crossing the curve

loops L2 + excursions EX((—o0,0])
loops LY

0

Fig.5.4: Illustration of the curve separting clusters with loops and excursions on the left
from the clusters with only loops on the right.

For u = ug(a), p = 0 and SLE(k,p) is a chordal SLE, curve starting from 0. For a
description of SLE processes see [Wer04]. We will denote by (& );>0 this curve. & = 0.
It does not return to R at positive times. There is only one conformal map ¢; that sends
H\([0, ¢]) (half-plane minus the curve up to time ¢) onto H and that is normalized at infinity
Zz — o0 as

a
g(2) =z + ;’f +o(zh)
The Loewner flow (g¢):>0 satisfies the differential equation

agt(z) _ 2
ot 91(2) = VEW,

where (W;);>0 is a standard Brownian motion on R.
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H
pa,uo(a),v

dent SLE, ) curve. The excursions EX([1,q]) satisfy a one-sided conformal restriction
property ([Wer05]): if K is a compact subset of C that does not intersect [1,¢] x {0} and
such that H\K is simply connected, if f is a conformal map from H\K onto H such that
f(1) < f(g) € R, then the probability that £¥([1, ¢]) does not intersect K equals

(f’(l)f’(q)(q - 1)2)v
(flg) = f(1))?
Moreover conditional on this event the law of f(EM([1,q])) is EX([£(1), f(q)]) up to a change

of parametrization of the excursions. From this conformal restriction property immediately
follows:

(q) is the probability that an excursion from £2([1,q]) intersects an indepen-

LEMMA 5.3.1. Let k € (0,4]. Let (&)i=0 be an SLE,; with the driving Brownian motion
(VEW:)i=0 and the Loewner flow (g:)i=0. Denote by g; the derivative of g, with respect the
complex variable:

gi(z) = 22)

Denote by py.»(q) the probability that and independent family of excursions EX([1,q]) does
not intersect &. Then the conditional probability of the event that EX([1,q]) does not intersect
& conditional on (£5)o<s<t (or equivalently conditional on (Ws)o<s<t) and on not intersecting
(€s)o<s<t equals

 (9:(q) = W,
(5.3.2) Die,v <m)

The conditional probability of the event that EX([1,q]) does not intersect & conditional on
(€s)o<s<t is

g Wgia)a—1)2\" _ [ gilq) — W,
(5:3.3) ( (@) - )2 ) Prio (mn—@m)

In particular for all t = 0

_ _al (9 @@ —1*\"_ (g:(a) — EW:
Gaa ot E|(TE ) me (S|
PROOF. (5.3.2) is the conditional probability that g;(£X([1, ¢])) does not intersect the

curve (g¢(&+s))s=0- To express it we used the fact that gt(é'g“([l q])) has same law as
EX([ge(1), g¢(q)]) and that (g¢(&445))s0 is a chordal SLE, starting from \/&xW;. In (5.3.3)
we multiplied the conditional probability that £X([1, ¢]) does not intersect (£)o<s<¢ and the
conditional probability that g;(EX([1, ¢])) does not intersect (g:(&45))s=0- O

Next we derive a differential equation in ¢ satisfied by p. »(g) on (1, +o0):

LEMMA 5.3.2. Let k € (0,4], v > 0 and ¢ > 1. Let f be a bounded, C* function on
(1,+00). Then

Conilitn

is a martingale if and only if [ satisfies the differential equation

(5.3.5) "+ @ _11)q ((2 i) q— —) = —f =0
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PROOF. Let

_ 91(Mgi(@)(g —1)? _ 91(9) = VEW
(5:3.6) Bt a@ a7 a) Ve,

R, has bounded variation (in ¢). Let

My := Ry f(q:)
We apply the Itd’s formula to (M;)i=0

d
1= By (o) S + 0+ ) )

Denote H := {(z) = 0}. For z € H\¢([0,¢]):
o) _ @ <agt<z>) :3< 2 ): ~24/(2)
ot 0z \ 0t 0z \ gie(z) = VEW, (9:(2) — VEW,)?

th:< “20(Vgi@@~1* | ~26()gia)la 1)
(9:(1) = VW (g0 (@) = 9e(0)  (9:(@) = VEWo)(92(q) — e (1))?

Thus

g Wg@a -1 g -1 ) »
(gt(l) - \/—Wt)(gt(Q) (1))‘3 (gt(Q) - \/EWt)(gt(Q) - gt(l))3
1 1
- 2Rt<<gt<1) — 2t (gila) = Va2

2
~ (9e(1) = VW) (ge(a) — xth))

1 1 2
=2 <9t(1) —VEW:  gi(q) — \/EWt> a

Further
-1 — /KW
dq; =/r ( 91(@) — EW > AWy

gt(1) = EW, — (g:(1) — /EW;)?

i ( 2 _9 9:(q) — VEW;
(9:(q) = VEW)(9e(1) = EW)  (ge(1) — /EWR)?

gt(Q) gt(l)
s ( ( - \th) )dt

) \/—Wt (gt(Q) VEW:)?
(

k(g — 1)%¢?
d<q>t: qt )qt

Finally

—Da Ry (g —1)
aM, =R f(q) e =D gy T x
PR g @ = ™ Gata) - e
K

< (5 (a0 = DaEf" (@) + (5 = Das = 2" (ae) = 20(a = Dfar))
It follows that (M;);>0 is a local martingale (hence a true one, f being bounded) if and only
if
(2 = Vgt f"(ar) + (5 — 2)a = 2)f' () — 20(q — 1) f (@) =0

| X
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which gives the equation (5.3.5). O
(5.3.2) is the differential equation for p .. However we do not know a priori that p .

is C2-regular.

ProrosiTION 5.3.3. Let ¢ > 1, v > 0.

lim pf" (@) =15 oy @=1—q"

n—+x" 2 “0(%)»11 2>

Vo

PROOF. By definition

H
D1 ug(

2

)0(@) =1 —Dan(q)

1
2
According to proposition 5.2.4

lim pi L () =1 gV =g gV

nStot 3u0(g).v

Let f,(q) := ¢ V7. With k = 4 the ODE (5.3.5) becomes
1
[l = =0
q q

and it is satisfied by f,. According to the lemma 5.3.2, (R} fo(q¢))t>0 is a martingale (we
use the notations (5.3.6) and xk = 4) for any initial value of ¢o. In particular for any ¢t > 0

fu(qo) = E[RY fo(qt)]
The same is true if we replace f, by pa. ((5.3.4)). Thus

(5.3.7) fu(q0) — Pa,w(q0) = E[RY (fo(qt) — Paw(ar))]

for any starting value of ¢ € (1,+o0) and ¢ > 0.
Pa,y is non-increasing on (1, +00) with boundary limits

ﬁ4,7j(1) =1 ]34,71(-{-(1_‘)) =0

Moreover Py, is continuous. Indeed, let ¢ € (1, +00). A.s. there is no excursion in £X([1, ¢])
with endpoint (g,0). This means that ps, is left-continuous at g. Moreover a.s. there is
£ > 0 such that there is no excursion in £([1,q + ) with an endpoint in [q,q + €) x {0}
that intersects an independent SLE, curve. This implies that p4 , is right-continuous at g.
From the continuity of pa, follows that there is ¢ € (1, +00) such that

| fo(q) _174,v(‘j)| = max |fo(q) _174,v(Q)|
ge(1,+x)

Let ¢t > 0 and let ¢ be the initial value gg of (¢s)s=o0. From (5.3.7) we get that
|fu((j) _ﬁ4,v((j)| < E[R}f}“fu((j) _ﬁ4,v((j)|
But a.s. Ry <1 and E[R}] < 1. This implies that

| fo(Q) _174,v(‘j)| = max |fo(q) _174,v(Q)| =0
qe(1,+x)

and that

Pawl(q) =gV
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5.4. Convergence to CLE

In this section we prove the convergence results. Let Q; := (—I,1) x (0,1). Let Linn@uT
be the loops in L that are contained in @; and do at least T jumps. Let £3' be the
Brownian loops in L% that are contained in @;. From [dBCL14] follows that for a € (0, 3],

l>0andfe (L 2), femt(ﬁgﬁﬁQ“”Q) converges in law to Fop(L£S).
LEMMA 5.4.1. Let € (0, 3] and 6 € (12,2). fext(ﬂg”’”e) converges in law to Fort(LE).

PROOF. Let z1,...,2; € H. To deduce that fem(ﬁg’“”g)[zl, ..., 2;] converges in law to
Feaxt(LE)[21, ..., z;] from the result of [dBCL14] we need only to show that

lim liminf P(Contours of fext(ﬂi"“”e)[zl, ..., %] contained in ;) =1
l>+w n—>+x0

Let € € (0, 3). There is lo > 0 such that
P (Contours of Fezt(L5)[21,. - ., 2;] contained in Q) > 1 —¢

Denote
ouQu == ({~1} x (0,1]) v ({1} x (0,1]) v ([, 1] x {I})

There is {; > lp such that
PEye Ly, v n Qi # B,y 0 ouQi, # B) <e
Then

9
lir}: P(Contours of fext(EZ"lel’n )[z1,- ., 2] contained in Q)
n—+wx0

= P(Contours of fem(ﬁgll )[z1, ..., 2;] contained in Q)
> P (Contours of Fep(Lo)[21,. . ., 2] contained in Q) > 1—¢

According the approximation of [LF07]

. ng
lim P(3vye Ci’“ AN Qu # B,y N 0w, # )

n—+w
=Py e Ly, 7N Qi # T,y N ouQi, # ) <e
But
P(Contours of fext(ﬂi’“"g)[zl, ..., 2] contained in Q) >
6
P(Contours of Feze( Bn Qo )[z1, ..., 2;] contained in Q)
6
- P(El’y € ‘an,n YO Qlo # @77 N aHQh 7> @)
Thus
hmJirnf P(Contours of femt(ﬁi"’”e)[zl, ...,zj] contained in Q) =1 —2¢
n—-+00

1
)

Seun(20) i= max{d(z, Fear(Lh ") (20))| € Faa (L5 (20)}

By z € Feur(L8)(29) we mean that z is a point on the contour Fous(£3)(z0). The ran-

dom variable 04, (20) is defined only when .Fext(ﬁgﬂ’”e)(zo) is defined, which happens with
probability converging to 1.

From now on 6 € (%2, 2) will be fixed. o will belong to (0, 1]. For zg € H, we define

LEMMA 5.4.2. Assume that fezt(ﬁgﬂ) does not converge in law to Fop (L), Then there
i$ 2a,0 € H such that da.n(2a,0) does not converge in law to 0.
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Proor. If }"ezt(ﬁi") does not converge in law to F,.;(£Y) then by definition there are

21,...,2; € Hsuch that Fope(L3)[21, . .., 2;] does not converge in law to Fept (L5)[21, ..., 2]
To the contrary fezt(ﬁgﬂvng)[zl, ..., 2] does converge in law to Fezt(LE)[21,. .., 2;]. Since
each contour of fem(ﬁg’“”g)[zl, ..., 2;] is surrounded by a contour of Feot (LB [z, ..., 5],
one of 04, (2;) must not converge in law to 0. O

Let z4,0 be defined by the previous lemma under the non convergence assumption. The
set

{z € fext(ﬁin)(za,0)|d(z7fext(ﬁgmne)(za,o)) = 5a,n(za,0) A1}

is non-empty (when 04 n(2q,0) defined) because fezt(ﬁgﬂ)(za,o) is connected and compact.
Let Z, , be a random point in the above set, for instance the maximum for the lexicograph-
ical order.

LEMMA 5.4.3. Assume that ]-'ext(ﬁgﬂ) does not converge in law to Fopi (L), Then there
is a sub-sequence of indices nqy,0 such that the joint law of

Hn,, o5
(]:ezt(ﬁa 0" YO)(Za,O)aza,na,o)

has a limit when nqo o — 400, the law of

(Feat (['Ig)(za,o), Zy)

satisfying the property that with positive probability Z. is not contained or surrounded by
fezt(ﬁg)(za,o)'

PROOF. 0q4.n(2a,0) does not converge in law to 0. This means that there is ¢ > 0 and a
sub-sequence of indices n’ such that

(5.4.1) V1!, P(A(Zants Feat (L") (20.0)) =€) > €

The sub-sequence of random variables

H /0

(-Fezt(ﬁan " )(ZO&,O)’ ZU‘,”’)

is tight. Indeed the first component of the couple converges in law and the second is by
definition at distance at most 1 from the first. Thus there is a sub-sequence of indices nq g

0
. . H Nao .
out of n/ such that there is a convergence in law. Fepi(Lo “° “")(24,0) converges in law

fezt(ﬁg)(za,o). Let Z, the limit in law Z ,, ,. (5.4.1) implies that
P(d(Za, Feat (L) (20,0)) Z €) = €

Moreover a.s. Z, cannot be in the interior surrounded by Feui(L2)(24,0) because Z, ,, is
non surrounded by fext(ﬁg”’"e)(za,o). O

From now on (z;);>1 will be a fixed everywhere dense sequence in H.

LEMMA 5.4.4. Assume that fezt(ﬁgﬂ) does not converge in law to Fop (L), Then there
is a family of sub-sequences of indices n. ; such that

® 4,0 15 given by lemma 5.4.3.
® Ng j+1 1S 6 sub-sequence of ng, ;.
e The random variable

Hng joTa,j

0
(}—ext([ra )[Za,Oazla---azj]7Zoz,na,j)

converges in law as ny,; — +00 and the limit defines the joint law of

(‘Femt(ﬁﬂi)[za,()a 2 BRI Zj]a Za)
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o The family of joint laws (Fept(L g)[zayo,zl,...,zj],Za)j;l is consistent in the
sense that the law on (Feut(LE)[20.0, 21, - - - 2], Za) induced by the law of
(Feat (L) 20,05 215 - - 5 2411, Za) is the same as the one given by the convergence.
In particular the law on ( ext(ﬁ )(2a,0)s Za) is the one given by lemma 5.4.5.

o The family of laws of (Feat (L) [20.0, 21, - -5 2]s Za)j=1 uniquely defines a law on
(fext(ﬁg)7za)-

Proor. The consistency of law follows from the fact that n, j+1 is a sub-sequence of
Ng,j. A contour loop in Feu (EEI) almost surely surrounds one of the z; points. Thus the
fact that a consistent family of laws on (Fout(L5)[20.0, 21, - - -, 2j], Za)j=1 uniquely defines
a law on (Fort (L), Z,) follows from the Kolmogorov extension theorem.

Next we explain how we extract nq, j+1 out of n, ;. By construction the sub-sequence

(Feat (Lo ") 200, 215 - - 32}y Zan, ;) converges in law as no; — 400 and defines a

joint law on (Fext (L) [20.0, 21, - - -, 2j]s Za). Moreover we have the convergence in law of

6
Fext( N "9 (2j41) 10 Foar(LE)(2j11). Thus the sub-sequence
6

Hn,, 3144
(Fewt (Lo =7 Me Nza,0, 21, -5 Zj41], Zan, ;) is tight and one can extract a subset of indices
Na,j+1 Such that it converges in law. The limit law is a law on (Fept (£5)[20.05 21, - - -, 2j41]s Za)-
O

THEOREM 5.1. Fope(LT) and fezt(ﬁi") converge in law as n — +00 to Fepr (L), that
2 2 2
is to say to a CLE, on H.

ProoF. It is enough to prove the convergence of fezt(ﬁi"). Indeed we already have
2
the convergence for ]-'ext(ﬁki"’”e) and each contour F,.;(£7)(z) is comprised between the
2
contour fext(ﬁz"’”e)( ) and the contour .7-'63;,5(/5 ")(2).
2 2

Assume that ]-'ext(EHf) does not converge in law to Fou:(LY). Let z1 be the point
2 3 )
defined by lemma 5.4.2 and ni; the sub-sequences defined by lemma 5.4.4. We also consider
the joint law of (Feyt(LY), Z1) defined by 5.4.4.
2

For uw,v > 0 and ¢ > 1 we consider additional independent Poisson point processes of
excursions £X((—o0,0]) and EX([1,q]). Let A1 40(q) be the event that is satisfied if either

5,U,V
an excursion from £%((—o0, 0]) and one from EH([L q]) intersect each other or both intersect
a common contour from .7-'63;,5(/5 ). By definition
P(A,

2

Let AT ..o(@) be the event that is satisfied if one of the following conditions holds:
30U

UV (q)) = p% JU,v (Q)

e An excursion from EZ((—o,0]) and one from EX([1, ¢q]) intersect each other.
e An excursion from £X((—o0, 0]) and one from £([1, ¢]) intersect a common contour
from ]:eact ([,Ef)
2

e An excursion from EZ((—o0,0]) intersects Fezt (E]g)(z%,o) and an excursion from
EX([1, q]) hits or surrounds Zy.

e An excursion from £2([1,q]) intersects fezt(ﬁg)(zé,o) and an excursion from
EX((—00,0]) hits or surrounds Zy.

Since with positive probability Z 1 is not contained or surrounded by F..+(£L%)(z1 )
2

P(AT (@) > B(As () =9, (@)

5,U,V
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See next picture for the illustration of A+ ( NAL o (a)-
1 :

=

0
Fig.5.5: Illustration of A% (g) where an excursion from £%((—x,0]) surrounds Z1
5 ,u,v

and an excursion from £2([1, q]) intersects ]-'GT,(L )(z1 O)

Let j > 1. The events Aéywj(q,j) respectively A;u’v(q,j) are defined similarly to
A1 4.0 (q) respectively AT ....(@) where the condition of EX((—00,0]) and EX([1, q]) intersect-
ing a common contour (if .}:ext(ﬂﬂf) is replaced by the condition of intersecting a common
contour of fext(ﬂg)[zéyo, 21,y ZZJ] Then

lim P(Ay,,(00) =P(Ay.(@)  lim B(AT (3.0) =P(A], (@)

Jj—o+0 j—+0 2
We will denote by A%u,v(q, j) and Ag’,:v(q, j) the events defined similarly to A%ﬂw(q, 7)
and AT (@ 7) by doing the following replacements:
3.u,

o £H((—0,0]) replaced by £ ((—c0,0]) and EX([1, ¢]) replaced by £ ([1,q])
. Z% replaced by 21

N

o ezt(ﬁ ) replaced by ]-'em(ﬁ " "9) and fezt(ﬁﬁg)[zéﬁy 21,...,2;] replaced by

6
‘FeIt(EH%mn )[2%707 Rlyewes Zj]
fezt(ﬁ?’”e)[zévo’ Z1,...,2n] convergesin law to fezt(ﬁg)[Z%,O, z1,...,%;], the Poisson point
process £ ((—00,0]) to EX((—o0,0]) and EE([1, ¢]) to EX([1,q]). Moreover in the limit, if
an excursion intersects a contour loop in fezt(ﬁﬂf)[z% 0121, ., %;] then a.s. it goes in the
! ;

interior surrounded by the loop. Thus the intersection still holds for small deformations of
the excursion and of the contour. Thus for all j > 1 we have the convergence

nl_l)IE,/]P)(A%,uyv(qa.])) (Aé uv(qa]))
From lemma 5.4.4 follows that

i PR 0) = BT (.9)

be-

Each contour of felt(ﬂﬂn’”e) is surrounded by a contour of fext(ﬁﬁ;) and Z1 ,
2 2

7
longs to fext(ﬂ ')(21,0). Thus on the event A” o ,(@,7), an excursion from g ((—a0,0])

and one from 5;‘”([1,q]) either intersect each other or intersect a common contour from
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fezt(ﬁﬁ")[z%,o, 21,...,%;]. Thus

2

35U,V 3,U,V
Let u be equal to ug(3). Then
H ﬁnl .
_ . R
p%?u()(%)ﬂ}(q) o nllj,lg+%‘p%7u0(%)av(q) 2
L
lim  PAETT (g,4) =P :
- 1Ln+m ( lu %),v(q’])) =P( %,uo(%)yv(%]))
Taking the limit as j — 400 we get
]Iil 1 = i T ) = 3
pi,uo(i)vv(q) = jEI}le‘P(A%mo(%)w(q’])) ]P)(A%ﬂio(%),v(q)) >
Fl
P(AL uo(3),0(D) = DL ug(1),0(@)
which is a contradiction. It follows that ]-'ext(ﬁﬁl") converges in law to Fo.¢(LT). O

1 1
2 2

THEOREM 5.2. Let a € (0,3). Fepe(LE) and Fewt(LE) converge in law as n — +00 to
Feut (L), that is to say to a CLE, () on H.

PrOOF. As for theorem 5.1 it is enough to prove that ]-"em(ﬁi") converges in law to
fezt(ﬁg). Let’s assume that this is not the case. Let z,,0 be the point and n, ¢ the sub-
sequence defined by lemma 5.4.2. We also consider the joint law of (Fezt (L), Z,) defined
by 5.4.4. Let Z e H, Z # zq,0.

Let & := 3 — . We take L independent from (L%, Z,) and £I independent from

(,ci’y, Zam)- We define £ and E;i" as unions of two independent Poisson point processes:
2 2
ch=riolh Ly =rhocy

Let A, be the event defined by Foui(LY)(20.0) = Feut(LY)(2). Let AL be the event
2 2
which holds if one of the below conditions is satisfied:

o Fear(LY)(200) = Fear(LT)(2).
o Fert(LE)(2) surrounds Z,.

Since £ is independent from (£, Z,) and with positive probability Z, is in the exterior
of Feut (ﬁg)(za,o)

P(AY) > P(Aq)

Next is an illustration of A}\A,.
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=TT T RN
-’ ~
, 4 -
/ fezt(ﬁa)(g) \\ I/ \\\\ ext(‘céﬂ)(za,o)
! v o AN
: Y 20,0 N
\ AN h
\ e r” N \\
\\ \/ \\\ \
)
\ St—— >
\\ N \\\\_//
\\ //”— [ ‘Fext(ﬁ%)(g)
~o - 2
0

Fig.5.6: Tllustration of AT\A,.

Let A7 and A" be the events defined similarly to A, and A} where the contours
Feot (L) (20.0); Fewt (LF)(2) and Fopt (L) (2) are replaced by Feut(L57)(20.0)s Feat(L5)(2)
2 2 2

N 3
and F.¢(LE)(%) respectively and Z, is replaced by Zap- Since Zg, is on the contour
Fezt (L) (24,0) we have the equality A = A”. From theorem 5.1 follows that

lim P(A") = P(A,)

n—+w
On the other hand
lim  P(AZ0F) =P(AY) > P(Ay)

Nea,0—>+%0

which is a contradiction. It follows that fm(ﬁin) converges in law to Fo.¢(LT). O
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