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Chapter I

Introduction

The last few decades of research in programming language theory have seen the introduction
of a myriad of very advanced type systems, intended to enforce increasingly complex com-
putational properties of programs. For instance, in the �eld of functional di�erential privacy
[GHH+13, RP10] one aims at developing programing languages whose type system prevents
information leaks in the context of database requests. Another example is functional reactive
programming [Kri13, KBH12]: several memory leak problems (that are common in reactive
programming) are ruled out by a sophisticated linear discipline that tames space consumption.
A last example would be bounded-time programming languages, based on substructural log-
ics like light logics [GDR09, GMRDR12, Gir98], that ensure that the time or space complexity
of programs remains reasonable. In all those cases, one needs to prove the correctness of the
language with respect to the given computational property we want to ensure. The guarantee
of correctness can be critical in certain environments, and much energy has been dedicated to
formalize and mechanically verify such proofs. Those proofs are done syntactically or seman-
tically. When it is possible, semantics proofs are usually preferred since they are more modular
and easier to formalize.

Realizability semantics
In this thesis, we are particularly interested in realizability semantics. This technique consists
in de�ning a binary relation⊩ between programs and types, called the realizability relation:

t ⊩ A

In that context t ⊩ A means “t follows the computational speci�cation represented by A”. We
also say that t is a realizer of A. This relation is usually de�ned by induction on the grammar
of types. The goal is then to prove a soundness theorem of the form:

If ⊢ t ∶ A then t ⊩ A.

This theorem makes the link between syntactic constraints enforced by the type system and
computational correctness represented by the realizability relation. One generally deduces from
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this soundness theorem the correctness of typable programs, like termination without clash,
or safety. Using the realizability technique has several advantages:

• It is modular, in the sense that the theorems do not break easily when the de�nitions are
changed, and the proofs stay more or less the same. This allows to adapt realizability
techniques to other similar cases.

• The proofs are usually much simpler than the syntactic ones. Once the de�nition of the
realizability relation is given, the soundness tends to follow by a long and tedious but
straightforward induction.

However, we can identify several unsatisfactory points to this approach:

• These realizability semantics are not quite as modular as we often say. Indeed, extending
a programming language often implies changing all the de�nitions of the realizability
relation and reproving the entirety of the soundness theorem, even though the inductive
cases of the proof are said to be similar to the previous case.

• Moreover, it is really di�cult to combine those semantics, in order to combine di�erent
programming features together, since there is no general and structured enough space
of realizability semantics. When it comes to stacking up di�erent programming features,
one often has to try to combine di�erent realizability techniques and see if they work
without having formal results on the possibility of doing so.

Overall, there is a lack of structure. The success in proving the correctness of complex lan-
guages often rests upon the experience and intuitive understanding of the common patterns
underlying realizability semantics and on how to combine them. We advocate the need for a
more algebraic framework that formally unveils these common patterns, in which it is possible
to:

• Explore new realizability semantics generated by some simple algebraic structure.

• Combine those semantics by combining the underlying algebraic structures.

• Prove pieces of soundness results once and for all, that can be reused for various realiz-
ability semantics out of the box.

• Develop algebraic constructions that can be reused in various correctness proofs, for
example to add speci�c programming features and automatically derive the associated
soundness property.

To summarize, we want to adopt a more analytical point of view on realizability semantics for
the correctness of programming languages.

Annotated realizability
For the languages we mentionned before, there is a common particularity concerning the re-
alizability semantics used to prove the correctness: the presence of an additional annotation of
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CHAPTER I . INTRODUCTION

the programs [BM12, KBH12, RP10]. We call such an approach annotated realizability. In
that context the unary realizability relation ⊩ becomes a relation between types and annotated
(or weighted) programs:

(t, l) ⊩ A

The annotation l can be of a completely di�erent nature in each case. It can be an integer
bounding the consumption of space of the associated program, an abstract quantity bounding
the time complexity, step-indices used to stratify the execution, or even a real number in the
case of di�erential privacy. In general, we can see l as a way to re�ne the speci�cation repre-
sented by the typeA and hence the observation made on programs, by providing tests that the
program has to pass. By studying how this annotation is used, one soon notices many common
patterns in those realizability semantics. Amongst these patterns, one could cite:

• In much examples, the “annotation part” of the realizability relation satis�es similar
properties. In the case of the functional arrow→, we often have the following:

(t, p) ⊩ A→ B Ô⇒ ∀(u, q) ⊩ A, ((t)u, p + q) ⊩ B

Where the operation + on the set of annotation depends of the case, but always sat-
is�es the same basic properties (associativity, commutativity, the presence of a neutral
element).

• The presence of a certain preorder ⪯ on those annotations such that the interpretation
is closed by ⪯:

(t, p) ⊩ A ∧ p ⪯ qÔ⇒ (t, q) ⊩ A

This preorder expresses how much information is carried by an annotation, or at least
how it compares to another annotation. In this case, it says that if a program is correct
with respect to an annotation that is �ner than another one, then it is also correct with
respect to the latter.

This suggests that:

• It may be possible to look for a unifying framework for these semantics, by abstract-
ing over the set of annotations.

• In certain cases [BM12, KBH12], the annotation, the operation + and the preorder ⪯ are
de�ned as products of more elementary annotations and operations. In those works,
this results in the combination of the properties induced by each of the elementary an-
notations. This suggest that by combining the annotations in that framework, one could
combine the realizability semantics (and the languages being interpreted).

This thesis
The goal of the present thesis is to introduce a framework based on the idea of abstracting
over the set of annotations in an algebraic way. The ultimate goal is to dramatically reduce
the complexity of developing realizability semantics and prove soundness results, by allowing
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1.1. FORCING

to stack up abstract results. This framework allows to de�ne a space of realizability semantics
that is �exible enough to contain many known semantics, but constrained enough so that we
can adopt an algebraic view on them. Most of the complexity is contained in a simple algebraic
notion, which allows to combine semantics, reuse parts of soundness results, understand known
phenomenon and techniques (for instance, value restriction, step-indexing) in an algebraic
fashion.

This thesis develops the basis of this theory along with elementary results and tools. We
show that it is already possible to use it to re-obtain di�cult correctness results. We also
show that this framework can be used to explore new possibilities of realizability semantics,
leading to new results. The main elements used to develop such a theory are forcing, Krivine’s
classical realizability and the technique of iteration. The sections 1.1 to 1.4 are devoted to
the introduction of the main tools underlying our work: the forcing technique and Krivine’s
realizability. The reader will �nd in Section 1.5 a summary of each chapter of this thesis, in
which we can �nd the main de�nitions and results accompanied with various intuitions and
remarks. We recommend the reading of this section before the reading of the actual chapters.
Finally, Section 1.6 contains a very brief summary of the contributions of this thesis.

1.1 | Forcing
The main ingredient of our methodology is a variant of Cohen’s forcing and Girard’s phase
semantics. These techniques are both based on simple algebraic structures, which will be used
in our framework to represent annotations. We give some historical as well as technical details
about those techniques.

1.1.1 Cohen’s forcing
The ContinuumHypothesis (or CH) states that every in�nite subset S ⊆ R is either denum-
berable or in bijection with R. The question of the validity of this conjecture was �rst raised
by Georg Cantor in 1878. It became one of the major open problems in the foundations of
mathematics, and was the �rst of Hilbert’s famous 23 problems.

Inner models

In 1938, Kurt Gödel [GB40] proved that the negation of the continuum hypothesis could not
be derived from the axioms of ZFC, i.e.

ZFC ⊬ ¬CH

His construction, called the constructible sets, is an example of what is now known as an
inner model. It consists in starting with a model V of ZF that does not necessarily entail the
axiom of choice or the continuum hypothesis, and �nd a subclass of V that possesses a new
membership relation which satis�es these two principles.
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Cohen’s discovery

It was not until 1963 that the problem of the consistency of the negation of the continuum
hypothesis was solved by Paul Cohen. He introduced in a series of two papers [Coh63, Coh64]
the celebrated technique known as forcing, which he used to �nally prove

ZFC ⊬ CH

The technique has since then been extensively used to prove many consistency results. Starting
from a standard model of ZFC (that is, a model whose objects are well-founded sets built using
the empty set ∅, the union and powerset operations, and whose membership relation is the
usual ∈), it consists in adjoining to it a new set that does not exist in that ground model. In the
case of the original forcing, Cohen shows how to add a set X that is strictly between N and R.
The trick consists in describing this set using approximations, i.e. elementary statements about
X which are called forcing conditions.

Sketch of the argument

De�nition 1. In an ambient ZFC standard modelM, a forcing notion (or forcing poset)
is a partially ordered set (P,≤), whose elements are called forcing conditions.

Consider the forcing notion based on the set of of all �nite functions:

p ∶ ω → {0,1}

This set is orderered by the reverse inclusion ⊇. Each forcing condition p represents a �nite
number of statements on a subset X of ω saying: “x is in X” or “x is not in X”, depending on
wether p(x) = 0 or p(x) = 1. These are conditions on the possible elements of X , hence the
name forcing conditions. We say that two forcing conditions are compatible if they agree on
their common domain. Eventually, with enough compatible forcing conditions, we obtain the
full information on the new set we are trying to add. Here comes the idea of taking a generic
P -ultra�lter G, i.e. a subset of P that satis�es various conditions, in particular it intersects
every dense subset of P 1. This is where one builds a new model M[G] which is a generic
extension ofM. In this new model, it is possible to consider:

g =⋃G

Because of the conditions satis�ed by G, it is possible to prove that g is in fact a total function
ω → {0,1}. One can then pose X = g−1(1). Because G is generic, it can be shown that X is a
set that was not previously inM. Indeed if A is a subset of N, then the following set is dense
and hence intersects G:

DA = { p ∣ ∃n ∈ N, p(n) = 1⇔ n ∉ A }
1This generic P -ultra�lter always exists ifM is a denumberable model. Those can always be considered due

to Löwenheim-Skolem theorem that allows us to replace any uncountable model with a countable one
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By generalizing this argument and replacing ω with ω × ℵ2 (ℵ2 is the second uncountable
ordinal) and choosing the forcing poset of �nite functions:

p ∶ ω × ℵ2 → {0,1}

One obtains ℵ2 new distinct subsets of N in the modelM[G], hence an injection ℵ2 → P(ω).
Modulo some technicalities that show that cardinals cannot collapse (this is a consequence of
the countable chain condition), one obtains thatM[G] is a model that violates the continuum
hypothesis.

The proof-theoretical point of view

From the proof-theoretical point of view, the interesting part happens when one constructs
the model M[G], that somehow integrates the forcing conditions. Internally, it consists in
de�ning inM a forcing relation between forcing conditions and formulas of set theory:

p IF A

This relation is de�ned inductively2. For example, the case of the implication connective is as
follows:

p IF A⇒ B ≡ ∀q ≤ p (q IF A⇒ p IF B)

For the “and” connective, we de�ne:

p IF A ∧B ≡ p IF A ∧ p IF B

We can then prove the following properties:

1. If ⊢ A is provable, then so is ⊢ ∀p ∈ P, p IF A.

2. There exists A such that ⊢ ∀p ∈ P,¬(p IF A).

The �rst property morally says that IF induces a model of ZFC 3 and the second represents
the consistency of this model. We can in fact see the relation IF as a logical translation:

A↦ p IF A

The property 1. can be seen as the soudness of this logical translation. The recent works of Kriv-
ine [Kri11] and Miquel [Miq11] unveil the program transformation behind this logical transfor-
mation, which will be the starting point of this thesis.

2Most of the complexity of the de�nition lies in the interpretation of the membership relation a ∈ b.
3In fact, to obtain an actual model of ZFC, one has to perform a quotient by G.
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1.1.2 Forcing and orthogonality
The forcing technique can bene�t from a reformulation using orthogonality. Orthogonality
underlies many mathematical concepts. In linear algebra, we say that two vectors x and y are
orthogonal and denote by x�y if their inner product is zero:

x�y⇔ ⟨x∣y⟩ = 0

Many denotational semantics of linear logic are based on a form of orthogonality. For example,
in coherence spaces [Gir87], Girard uses the orthogonality relation between two cliques c and
c′ in a graph, which is de�ned as:

c�c′⇔#(c ∩ c′) ≤ 1 (# being the cardinality)

In general, one can understand orthogonality as a way to express the good interaction be-
tween two objects. When we reformulate forcing using orthogonality, we basically obtain
a set-theoretical version of the so-called phase semantics of linear logic, introduced as a se-
mantics of truth by Girard in his seminal paper [Gir87]. Since this is the style of forcing we
will consider in this thesis, we give a brief account of the phase semantics.

De�nition 2. A phase space is given by:

• A commutative monoid (P, ⋅,1).

• A subset �� of P , called the pole.

• Each idempotent phase space (whose operation ⋅ is such that p ⋅ p = p) de�nes a forcing
poset in the sense of Cohen’s forcing. Indeed, we can de�ne a partial order ≤ using ��:

p ≤ q⇔ ∀r ∈ P, q ⋅ r ∈ ��⇒ p ⋅ r ∈ ��

• For example, the original Cohen’s forcing notion can be retrieved as a phase space. We
take P as the set of relations ω × {0,1}, the ⋅ operation is the union of two relations and
the pole �� consists in the set of relations that de�ne a �nite function ω → {0,1}. 1 is
then the empty relation.

Given a phase space, we de�ne an orthogonality relation using its pole, as follows:

p�q⇐⇒ p ⋅ q ∈ ��

This orthogonality operation lifts to sets X ⊆ P 4:

X� = { q ∈ P ∣ ∀p ∈X,p�q }

This operation then satis�es several properties. In particular, the biorthogonality operator
(.)�� is a closure operator:

4The same happens in the case of an inner product space: the notion of orthogonality between two vectors lifts
to a notion of orthogonal of a set of vectors X , by considering all the vectors that are orthogonal to those of X .
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• X ⊆X��

• X ⊆ Y implies Y � ⊆X�

• X��� =X�

Here are some of the cases of the de�nition of the interpretation of linear logic in phase spaces.
The idea is to associate to each type a set closed by bi-orthogonality, i.e. a set of the form X�.
As examples, we give the interpretation of ⊗ and ⊸, which are linear logic versions of the
conjunction and the implication respectively:

(A⊗B)∗ = { p ⋅ q ∣ p ∈ A∗ ∧ q ∈ B∗ }��
(A⊸ B)∗ = { p ⋅ q ∣ p ∈ A∗ ∧ q ∈ B∗� }�

We can then de�ne the relation ⊩ as follows:

p ⊩ A ≡ p ∈ A∗

For example, the de�nition of the⊸ connectives is equivalent to the following de�nition:

p ⊩ A⊸ B⇔ ∀q ⊩ A,p ⋅ q ⊩ B

One can check that if ⋅ is idempotent, then by by reformulating this property with the partial
order ≤, one retrieves the de�nition of the forcing interpretation of⇒.

Remark 3. There are several bene�ts from the orthogonality approach.

• It simpli�es the de�nitions and proofs, since one can now prove the membership of
a condition p to the interpretation of a type A interactively, i.e. by testing the good
interaction with all the elements of A∗�.

• It is very �exible and can be used to prove many di�erent results just by changing the
pole: one can obtain cut-elimination proofs [Oka99, Oka02], decidability and undecid-
ability results [Laf96, DLM04], �nite model properties [Laf97], or a proof of Girard’s
approximation theorem [Gir87].

• As we will see it also allows for a much easier analysis of the program transformation
behind forcing.

• Finally, it better isolates the di�erent parameters of the forcing construction, which
allows to generalize or specialize it more easily. For example, a �rst generalisation is to
consider a non-idempotent operation ⋅, as it is the case in phase spaces. In this thesis,
we will push the generalization further by considering two operations + and ● (one for
the tensor, the other for the implication) instead of just ⋅.
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1.1.3 Iterated forcing
The forcing technique starts from a standard modelM, and given a poset P insideM, and a
P -generic �lter G, it builds a new standard modelM[G]. One can iterate this construction,
and choose a new forcing poset and a generic ultra�lter G′ insideM[G], then constructing
M[G][G′]. It is possible to show that this construction, which is the combination of a forcing
model and another forcing model built inside it, can be seen as a single forcing construction.
This is called the 2-steps forcing iteration. One can even iterate forcing a trans�nite number
κ of times, where κ is any ordinal. This technique has been introduced by Solovay and Tennen-
baum [ST71] in 1965 in their proof of the consistency of Souslin’s Hypothesis. Iterated forcing
has since then played a central role in set-theory and the quest for new consistency results.
From the point of view of the forcing relation the 2-steps iteration amounts to study:

p IFP1 (q IFP2 A)

where P1 is a forcing notion and P2 is a forcing notion taken inside a model induced by P1.
One can show that there exists a single forcing notion P1 ⋆ P2 such that

p IFP1 (q IFP2 A)⇔ (p, q) IFP1⋆P2 A

Remark 4. From the point of view of the orthogonality, given a phase space P1, we choose
a P1-phase space, i.e. a monoid P2 and a relativized pole ��2 ∶ P1 → P(P2). We then form
the phase space P1 ⋆ P2 as follows:

• The product of the monoids.

• The pole is de�ned as

�� = { (p, q) ∣ ∀r ∈ P1, q ∉ ��2(r)⇒ p + r ∈ ��1 }

1.2 | Forcing as a program transformation

1.2.1 Krivine/Miquel program transformation
The forcing technique as introduced by Cohen has been studied and used for decades by set the-
ory specialists, but it had escaped any proof theory investigation until Krivine showed [Kri10a]
how to combine his theory of classical realizability with forcing. He de�nes and uses a program
transformation that turns any proof term t of a formulaA into a realizer of the formula 1 IF A
in a suitable realizability model. Subsequently, Miquel [Miq11] showed that this transforma-
tion can be turned into a proper fully-typed syntactic program transformation in an extension
of higher-order arithmetic called PAω+. In this context, the soundness of the forcing inter-
pretation becomes a type preservation theorem. Moreover, Miquel studies the computational
behavior of the transformed programs, which reminds of the ring protection mechanism used
in most processors.

23



1.2. FORCING AS A PROGRAM TRANSFORMATION

We brie�y remind the extension PAω+ of higher-order arithmetic that Miquel de�nes, as
some parts of our core type system are strongly inspired by it. It is based on a higher-order
logic whose kinds are built using three constructors: ι (the kind of individuals, or integers), o
(the kind of propositions) and σ → τ (the functional kind). The higher-order terms contain the
usual λ-calculus augmented with the control operator call-cc5, integers (including a recursor)
and logical constructions:

• The classical implication⇒.

• The universal quanti�er ∀xτM on all kinds τ .

• The equational implication M =τ M ′ ↦ A, where M and M ′ are two terms of kind τ .
This construction is not standard and its intuitive meaning is as follows:

M =τ M ′ ↦ A ≡ { A if M equals M ′

⊺ otherwise

where ⊺ represents the type of all λ-terms. This equational implication is provably equiv-
alent to a usual implication M =τ M ′ ⇒ A (where =τ is the Leibniz equality at kind τ ),
but it yields more compact proof terms, as the equality is transparent from the point of
view of the proof terms. It provides a convenient way to simplify the forcing translation.

As we said earlier, forcing is usually parametrized by a poset of forcing conditions. How-
ever, in [Kri11] Krivine considers forcing conditions as the elements of an upward closed sub-
set C of a meet semi-lattice (P, ⋅,1) (⋅ is a meet operation on P and 1 is the least element).
Morally, he uses the orthogonality-based presentation of forcing (very much in the spirit of
phase spaces). C represents the complement of the pole � of the phase space. One obtains an
orthogonality relation by de�ning:

p�q⇔ p ⋅ q ∉ C

Concretely, in Miquel’s framework, a forcing structure is given by:

• A kind κ

• A closed predicate C ∶ κ→ o.

• A closed term ⋅ ∶ κ→ κ→ κ.

• A closed term 1 ∶ κ

• Several closed terms αi which constitute the proof that C is upward closed and that its
elements constitutes a meet semi-lattice. Here are some of those terms:

α0 ∶ C[1]
α4 ∶ ∀pκC[p]⇒ C[pp]
α6 ∶ ∀pκ∀qκ∀rκ(C[p(qr)]⇒ C[(pq)r])
α7 ∶ ∀pκ∀qκ∀rκ(C[(pq)r)]⇒ C[p(qr)])

5We do not emphasize on control operators in this introduction, since it is not the focus of this thesis.
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For example, α6 and α7 constitute the proof of the associativity of ⋅ (relatively to C).

As an example of such structure, Miquel explains how original Cohen’s original forcing can
be reformulated in this framework. Basically, the kind is taken as τ → ι→ o, that is the binary
relations over τ ×N. The term ⋅ is chosen so it performs the union of two such binary relations.
The predicate C is set so as C[p] expresses the fact that p ⊆ τ ×{0,1}, p is a functional relation
and p is �nite.

Using forcing structures, it is then possible to formalize inside PAω+ the forcing interpre-
tation. Forcing usually assigns to every formulaA of the theory a setA∗ of forcing conditions.
Here, when τ is a type (that is a term τ ∶ o), then its forcing translation is τ∗ ∶ κ → o, that is
a predicate over κ. (.)∗ is in fact de�ned on all kinds and all higher-order terms by induction.
Finally the forcing interpretation is de�ned as

p IF A ≡ ∀rκ(C[pr]⇒ A∗(r))

By interpreting C as the complement of an orthogonality pole, this can be understood as the
following informal sentence: For every r in the complement of A∗ we have that p is orthogo-
nal to r. Hence A∗ morally represents the complement of the orthogonal of the phase space
interpration of a type A.

The main theorem is the soundness of the translation with respect to typing.

Theorem 5 (Miquel 2011). If the judgment E ; Γ ⊢ t ∶ A is derivable (in PAω+), then for all
forcing conditions p, the sequent E∗; (p IF Γ) ⊢ t∗ ∶ (p IF A) is derivable too.

This purely syntactic theorem is the formalization of the soundness of the forcing interpreta-
tion. Indeed, it says that if ⊢ A is provable, then we have 1 IF A. But what is interesting here
is what happens with the proof-term t.

1.2.2 The KFAM

Miquel studies the computational behavior of the transformed programs of the form t∗. He
considers the Krivine Abstract Machine [Kri07] with explicit environments: the basic objects
are closures, environments and stacks. A closure is a pair (t, e), where t is a term and e an
environment, and an environment is a list of assignments of closures to variables:

[x1 ∶= c1, . . . , xn ∶= cn]

A stack is an element of the grammar:

π ∶∶= nil ∣ c.π where c is a closure
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The reduction rules are de�ned in the standard following way (for simplicity, here we do not
consider call-cc):

x[e, y ∶= c] ⋆ π ≻ x[e] ⋆ π
x[e′, x ∶= c] ⋆ π ≻ c ⋆ π

λx.t[e] ⋆ c.π ≻ t[e, x ∶= c] ⋆ π
tu[e] ⋆ π ≻ t[e] ⋆ u[e].π

Miquel unveils the behavior of the transformed programs, which can be synthetized as the
following translated reduction steps:

x[e, y ∶= c]∗ ⋆ c0.π ≻∗ x[e]∗ ⋆ α9c0.π
x[e′, x ∶= c]∗ ⋆ c0.π ≻∗ c ⋆ α10c0.π

λx.t[e]∗ ⋆ c0.c.π ≻∗ t[e, x ∶= c]∗ ⋆ α6c0.π
tu[e]∗ ⋆ c0.π ≻∗ t[e]∗ ⋆ α11c0.u[e]∗.π

The �rst element of the stack plays the role of a memory cell, which is protected: even if there
is a λx.t[e]∗ in head position, this element is not accessed. Here the parameters αi s are
combinators of a certain type6 and are pushed on the memory cell depending on the reduction
step. Each α is a proof of a certain property of the forcing structure. For example, here are the
types of some of the combinators:

α6 ∶ ∀pκ∀qκ∀rκ(C[p(qr)]⇒ C[(pq)r])
α11 ∶ ∀pκ∀qκ(C[pq]⇒ C[p(pq)])

α6 is a proof of one part of the associativity property of ⋅ and is pushed on the memory cell
during aλ-step (when a term of the formλx.t is in head position), when a closure from the stack
goes in the environment of the head closure. α11 is pushed when the the application of two
terms is splitted on the context: the environment is duplicated. In general, if one looks carefully,
the combinator αi describes at the level of the forcing conditions the moves, duplications,
erasing of the environments.

After having examined the translated programs, Miquel introduces an abstract machine
that implements natively the behavior of those programs. This machine, called the Krivine

Forcing Abstract Machine (or KFAM) , extends the usual Krivine Abstract Machine with a
native (.)∗ constructor that corresponds to the programs seen through the program transfor-
mation. Its reduction rules are exactly those of the usual Krivine abstract machine, extended
with the previous reduction steps (except that now c∗ is a native constructor and not a trans-
formation). To sum up, we can di�erentiate two execution modes:

• The kernel mode, where the execution is performed as usual.

• The user mode, when we execute a program of the form t∗. In that case, the reduction
steps are similar to the kernel mode, except that informations about the execution are
stored in a protected memory cell that can’t be accessed by the program.

6We keep the notations of Miquel’s paper [Miq11], so that the reader can refer to it to see what are the di�erent
combinators.
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Miquel points out a similarity with the ring protection mechanism of the x86 processors, where
for instance a program running in ring3 (known as user space) does not have access to the
reserved memory segment of ring0 (known as kernel space).

1.3 | Classical realizability and forcing

1.3.1 Krivine classical realizability

Curry remarked in 1958 the formal analogy between his combinatory logic and the deduc-
tion rules of Hilbert system for intuitionistic propositional logic. Several years later, in 1969,
Howard [How69] observed the same analogy between Gentzen natural deduction and the
lambda-calculus. The Curry-Howard correspondence (or proof-as-program correspondence)
was born. Because it showed a correspondence with a rather weak logical system, it was �rst
perceived as an interesting result, but its importance was not yet fully understood. In particular
many believed that classical proofs could not be given any computational content. Until Grif-
�n’s discovery [Gri89] who showed in 1989 that the instruction call-cc of the Scheme language
could be given the type of Peirce’s Law:

(¬A⇒ A)⇒ A

This opened the way for the extension of the Curry-Howard isomorphism to classical calculi.
In particular many classical λ-calculi have since been de�ned: Parigot’s λµ-calculus [Par92],
Filinski’s Symmetric λ-calculus [Fil89] (which, interestingly, slightly precedes Gri�n’s discov-
ery), Girard’s classical logic LC [Gir91], Curien and Herbelin λ̄µµ̃-calculus [CH00], and more
recently Munch’s system L [MM09].

Shortly after that discovery, Krivine became interested in analyzing the behavior of classical
proof terms obtained not only with propositional classical logic but also classical arithmetic or
even set theory. This research program raised the issue of associating a computational content
to axioms of those theories, like the axiom of choice or the continnum hypothesis. Because
the classical calculi previously de�ned could not help with this question, Krivine turned to
semantics. He adapted Kleene’s realizability [Kle45] for intuitionistic arithmetic to a classical
setting, which resulted in his theory of classical realizability introduced in a serie of papers
[Kri09, Kri03]. Among the early successes of this theory, one could cite the following:

• The computational content [Kri03] of the axiom of dependent choice DC, given by the
quote instruction of LISP.

• New models of ZF+DC [Kri10b] that violate the axiom of choice and the continuum
hypothesis. In particular these models cannot be obtained using forcing or the technique
of inner models.

• Program extraction procedures for a classical extension of the calculus of constructions
[Miq07].
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Krivine’s classical realizability relies on the notion of orthogonality already mentioned. His
framework is very close to other orthogonality-based works, most notably Girard’s ludics
[Gir01] and Pitts and Stark’s ⊺⊺-closure [PS98].

The principle

We give a quick introduction to Krivine’s realizability interpretation. We consider the following
simple language:

t, u ∶∶= x ∣ λx.t ∣ (t)u
π ∶∶= nil ∣ t.π where t is closed

We consider a set Λ containing at least the closed terms de�ned by this grammar, and a set
Π containing at least the stacks de�ned by this grammar. A con�guration is a pair t ⋆ π of
a closed term t ∈ Λ and a stack π ∈ Π. We consider a reduction relation ≻ that contains the
following rules:

λx.t ⋆ u.π ≻ t[u/x] ⋆ π
(t)u ⋆ π ≻ t ⋆ u.π

Remark 6. One important point of methodology is that we do not �x a syntax, nor a reduc-
tion relation. We just ask that Λ,Π contain a minimal syntax, and that ≻ contains a minimal
set of reduction rules. This allows to prove general results, and then add later new primitives
and new reduction rules without having to reprove everything.

The construction is parametrized with a pole ��, that is a set of con�gurations which is
≻-saturated:

C ≻ C ′ ∧C ′ ∈ ��⇒ C ∈ ��
The pole morally corresponds to the set of correct con�gurations. As in phase spaces, it in-
duces an orthogonality relation, between closed programs and stacks:

Y � = { t ∈ Λ ∣ ∀π ∈ Y, t ⋆ π ∈ �� }

In Krivine classical realizability, since the reduction is done in a call-by-name fashion, the
interpretation is negative. It means that every type A is interpreted by two sets:

• a set JAK ∈ P(Π) of stacks, known as the falsity value. This set is de�ned by induction
on the formula A.

• a set ∣A∣ ∈ P(Λ) of closed terms, known as the truth value. This set is de�ned as the
orthogonal of the falsity value:

∣A∣ = JAK�

Here are a few inductive cases of the de�nition of the set JAK:

JA⇒ BK = { t.π ∣ t ∈ ∣A∣ ∧ π ∈ JBK }
J∀xι.AK = ⋃n∈NJA[n/x]K
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De�nition 7 (Realizability relation). The realizability relation ⊩ is de�ned as:

t ⊩ A def= t ∈ ∣A∣

The following property shows very similar patterns to what we observe in forcing or phase
spaces. This is a �rst clue that these frameworks are somehow related.

Property 8.

• Suppose that t ⊩ A⇒ B. Then u ⊩ A implies (t)u ⊩ B.

• Suppose that t ⊩ ∀xι.A. Then for all n ∈ N, we have t ⊩ A[x ∶= n].

Krivine classical realizability enjoys a soundness theorem, which is parametric in the cho-
sen pole. A simpli�ed version would be as follows:

Theorem 9 (Krivine 2004). Let �� be a saturated pole. If ⊢ t ∶ A is provable then t ⊩ A.

The soundness theorem makes the link between the syntactic correctness given by the type sys-
tem and the computational correctness represented by the realizability relation. The strength
of Krivine classial realizability lies in its modularity. One can indeed extend this soundness
theorem to powerful theories, beginning with classical reasoning and going all the way up to
the entire ZF+DC7 set theory. This methodology allows one to turn these theories into type
systems, and give a computational content to all the proofs using these theories. We give two
examples.

• Suppose Λ contains the extension of the term grammar with the two following new
primitives: call-cc and kπ where π ∈ Π. Suppose that ≻ contains the following new
reduction rules:

call-cc ⋆ t.π ≻ t ⋆ kπ.π
kπ ⋆ t.π′ ≻ t ⋆ π

Then the following result can be shown : for any saturated pole ��, we have

call-cc ⊩ (¬A⇒ A)⇒ A

This justi�es a computational content for Peirce’s law.

• Suppose Λ contains the extension of the grammar with the following primitive: quote.
We denote by n the church encoding of the integer n. Let t ∈ Λ ↦ nt ∈ N be a bijection
between Λ and N. Suppose that ≻ contains the following new reduction rule:

quote ⋆ t.π ≻ t ⋆ nt.π
7Dependent Choice
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Then the following result can be shown : there is a program tDC
8 that uses quote such

that for any saturated pole ��, we have

tDC ⊩ DC

The details can be found in Krivine’s paper [Kri09].

1.3.2 Realizability algebras: combining forcing and realizability
Recently, Krivine [Kri11] de�ned the notion of realizability algebra, which generalises his
classical realizability by abstracting over the sets Λ of terms, Π of stacks, Λ ⋆Π of con�gura-
tions and the reduction relation ≻. The interpretation of classical second-order arithmetic (and
in fact, even set theory) can be done in a generic way and proved to be sound in all realizability
algebras. Moreover, classical forcing is shown to give an example of such a realizability algebra,
when considering the Krivine/Miquel presentation of forcing. In addition, Krivine shows that
it is possible to combine forcing and classical realizability into a new realizability algebra. This
allows to reobtain consistency proofs obtained using forcing, and more importantly, to under-
stand the computational content of those proofs. This construction has been shown by [Str13]
to be an instance of topos iteration (which itself is a generalization of the forcing iteration).

Here is a glimpse of the construction, simpli�ed by Miquel in [Miq11] and called product

realizability algebra. We start with a realizability algebra A (for example the standard clas-
sical realizability algebra), and a forcing structure (κ,C, ⋅,1) in the sense of Subsection 1.2.1.
We build a new realizability algebra A∗ as follows:

• Λ∗ = Λ × JκK, where JκK is the interpretation of the kind κ. For example if κ = ι, then
JκK = N.

• Π∗ = Π × JκK

• Λ∗ ⋆Π∗ = (Λ ⋆Π) × JκK

• (t, p) ⋆ (π, q) = (t ⋆ π, p ⋅ q)

• ��∗ = { (t ⋆ π, p) ∣ ∀c ∈ Λ, c ⊩A C(p)⇒ ⟨t, c.π⟩ ∈ �� }

Notice that the de�nition of ��∗ makes use of the realizability relation induced by the realiz-
ability algebraA. Miquel shows that this construction formally corresponds to the iteration of
A and a forcing model chosen inside A, in the form of the connection theorem. We give a
simpli�ed version of the theorem, that can be found in [Miq11].

8This program can be written explicitely and makes use of quote, but it has to be noted that the question of its
behavior is not studied in Krivine original work.
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Theorem 10 (Connection theorem (Miquel 2011)). Let A be a closed formula, p ∈ JκK and
c ∈ Λ. Then:

(c,p) ⊩A∗ A⇔ c ⊩A (p IF A)

1.4 | Logical relations under the light of forcing

The particular case of quantitative realizability
The technique of quantitative realizability introduced by Dal Lago and Hofmann [DLH05,
DLH11] is an extension of Kleene’s realizability where realizers are annotated by elements of
a resource monoid. In a realizer (t, p), this element p represents an abstract bound on the
execution time of the accompanying program t. They have used this technique and some vari-
ants of it to prove the bounded-time termination properties of various light logics and bounded
linear logic [DLH10a]. We showed in [Bru13] that it was possible to reformulate their ideas in
the style of Krivine’s classical realizability, by transitioning from the notion of resource monoid
to the more general notion of quantitative monoid. In this previous work, we showed that:

• The annotated realizability relation used in the obtained framework is extremely similar
in its de�nition to Krivine’s product realizability algebra mentioned in Subsection 1.3.2.

• Then, following Miquel’s methodology, we exhibited a forcing program transformation
and a corresponding abstract machine such that the annotated realizability relation could
be decomposed as a unary realizability relation built upon this abstract machine, iterated
with a (linear) forcing model chosen inside it. informally:

(t, p) ⊩ A⇔ t ⊩ (p IF A)

This abstract machine exhibits a surprising feature: there is a protected memory cell
(similarly to the KFAM) that contains an integer that is decremented at each reduction
step. When it reaches 0, the computation diverges. Thus, if the execution terminates in
this machine, it means we have been able to give a bound on the execution time. This
memory cell accumulates informations on the execution (here the execution time) and
possibly change its course: this is what we call monitoring the execution.

These observations constitute the origin of the work presented in this thesis.

A forcing-based framework
In this thesis, we advocate the use of forcing as a structuring concept for the development and
study of advanced realizability semantics. We propose to generalize what has been done for
quantitative realizability, and study the space of all realizability semantics that are induced by
a certain class of forcing program transformations, based on what we call forcing monoids.
This yields the notion of Monitoring Algebras, that is the main object of study of this thesis.
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The use of forcing allows to transport known forcing constructions (like forcing product or
iteration) in the world of programming languages semantics, and its algebraic nature makes it
possible to design elementary pieces of semantics that we can reuse in many di�erent correct-
ness proofs. The goal being to accumulate results on the monitoring algebras that would make
the future design of semantics and correctness proofs easier and shorter, but also to explore
the possibilities suggested by the theory and �nd new results.

Typically, to prove the correctness of a programming language using the theory of moni-
toring algebras, we proceed with the following steps:

1. Start with a simple monitoring algebra A0, that is known to entail the correctness of a
core programming language, subset of our language.

2. Use the forcing annotations to re�ne the computational property we are observing, for
example bounded-time execution. Here, we use a system similar Miquel’s KFAM where
combinators are being pushed on a protected element of the stack to track informations
about the execution of programs (we will often refer to this element as the protected

memory cell).

3. Using constructions like forcing product or iteration on A0, successively adding pro-
gramming features to the corresponding programming language, reusing known tech-
niques.

4. Show using a library of known results about forcing iteration and monitoring algebras
that the �nal monitoring algebra induces a sound realizability model of the programming
language we wanted to study.

A central part in the theory of iterated forcing consists in preservation theorems, i.e. �nd-
ing conditions that imply the preservation of certain axioms after an iteration. For example,
preserving CH by iteration is possible only under certain conditions. Preservation theorems
will also be a central tool of our methodology. They will ensure that each stage of our con-
struction, we accumulate new programming features but still have a semantics of the language
considered at the previous step, and still observe the desired computational property.

At this point, in addition to Krivine and Miquel work on realizability, we should mention
other previous works that are somehow related:

• The work of Jaber and Tabareau on the decomposition of logical relations using intuition-
istic forcing [JT11]. Although it is similar in spirit to our work, the tools used are very dif-
ferent: they consider intuitionistic forcing whereas we use classical forcing (even though
the programming languages considered are not necessarily classical), they use intuition-
istic logical relations while we use Krivine’s realizability, they consider a higher-order
logic that includes propositions on the reduction of terms and primitive abstract observa-
tion, while we only consider a simple �rst-order extension of Levy’s call-by-push-value
[Lev99].
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• The works of Birkedal et al. [BST09, BSS10, BRS+11, BMSS11] on de�ning step-indexed
logical relations by using metric spaces on the one hand, and using topos theory to sim-
plify the de�nition of step-indexed logical relations on the other. We will reuse many
ideas of the metric spaces construction in our treatment of step-indexing. Concerning
the second line of work, it relates to our work in the sense that topos theory can be used
to rephrase Cohen’s forcing. It is however not clear how this work and ours could be
formally related.

1.5 | The monitoring power of forcing program trans-
formations

We now give a synthetic but quite wide presentation of the work and results contained in this
thesis. The structure of this presentation follows closely the order in which it is exposed in the
thesis. Each subsection corresponds to one speci�c chapter, and contains intuitions about the
results and de�nitions. Hence it should be read before the actual chapter of the thesis.

1.5.1 Chapter II : a linear call-by-push value

The base language we will consider in the thesis is a variant of Levy’s call-by-push-value
[Lev99, Lev03] that we call λLCBPV. We made this choice since it decomposes both the call-by-
name and the call-by-value λ-calculi. This will allow us to de�ne a realizability framework that
can be specialised at will for the call-by-name and the call-by-value paradigms. Moreover, the
main ingredient of the call-by-push-value, namely the polarisation, simpli�es and makes the
de�nition of both the forcing program transformation and the Krivine style realizability seman-
tics more natural9. The polarity distinguishes between positive connectives (like ×, ∃, . . . ) the
negative connectives (like →, ∀, . . . ). In the call-by-push-value, at the operational level this
translates to a syntactical separation between positive values and negative computations.

Syntax

Our syntax of values and computation is as follows:

Values v,w ∶∶= x ∣ (v,w) ∣ ∗ ∣ 0 ∣ s(v) ∣ thunk(t) ∣ $ (where $ ∈W)
Computations t, u ∶∶= force(v) ∣ let∗ = v inu ∣ ret(v) ∣ λx.t ∣

(t)v ∣ t to x.u ∣ let (x, y) = v in t ∣
case v of x.t ∥x.u ∣ ✠ ∣ ζ (where ζ ∈ K)

9We have to remark that the choice of the call-by-push-value is guided essentially by its synthetic syntax and
relative ease to use. In [Bru13], we considered another polarised syntax, called system L and introduced by Munch
[MM09], and this would have worked too. In fact, system L generalises call-by-push-value which can be retrieved
as a fragment.
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This syntax features the unit, pairs, integers (including a successor and a case constructor).
Here are some remarks about the more unusual parts of this syntax:

• The thunk() constructor transforms a computation into a value, hence freezing it into a
thunk. Dually, the ret() constructor transforms a value into a computation.

• The application (t)v is restricted to values on the right-hand size. This is unusual, but it
makes the choice of the order of evaluation not ambiguous. The sequential composition
is then implemented by the constructor t to x.u: it reduces �rst t into a value, and then
passes it to u. It is this constructor that is responsible for the choice of the reduction
strategy.

• The special computation✠, called the daimon, is inherited from Girard’s ludics [Gir01].
Once it is executed it stops immediately the computation and consider it a success. It is
useful in the realizability semantics when one wants to test only some parts of a program
while ignoring some others.

• Finally, the syntax is parametrized by two sets: W and K. The �rst is a set of additional
values one can consider, and the latter is a set of additional primitives. This will allow to
add new primitives on the �y, and keep the de�nitions of semantics independent of any
language extension.

Reduction

The reduction is given by an abstract machine inspired by the KAM. The object being exe-
cuted is a con�guration, which is basically a pair composed by a closed computation and an
environment.

Environments E ∶∶= nil ∣ a(v).E ∣ f(x.t).E where FV (t) ⊆ {x}
Configurations C ∶∶= ✠ ∣ ⟨t,E⟩0 where t is closed

An environment is either the empty environment, or a an environment intuitively representing
an evaluation contextE((●)v) orE((t)●). Notice that in a con�guration, no free variable ever
appears. The special con�guration ✠ means “success”, and will be triggered by the daimon
computation, which is denoted by the same symbol.

We now consider a reduction relation
0Ð→ on con�gurations. It is a relation between con-

�gurations which contains at least the next rules. In this presentation, we only give some
representative rules, but they are all de�ned in detail in Chapter II . The �rst two rules corre-
spond to the usual β-rule, which are simpler than in the call-by-value for instance, since the
argument is always a value:
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⟨(t)v,E⟩0
0Ð→ ⟨t, a(v).E⟩0

⟨λx.t, a(v).E⟩0
0Ð→ ⟨t[v/x],E⟩0

The next two rules correspond to the usual rules associated to a let constructor à la Moggi.

⟨t to x.u,E⟩0
0Ð→ ⟨t, f(x.u).E⟩0

⟨ret(v), f(x.u).E⟩0
0Ð→ ⟨u[v/x],E⟩0

The following reduction step corresponds to unfreezing a frozen computation:

⟨force(thunk(t)),E⟩0
0Ð→ ⟨t,E⟩0

Finally we give the daimon reduction rule, which empties the stack and returns the daimon
con�guration:

⟨✠,E⟩0
0Ð→ ✠

Notice that we never suppose that the reduction rules are restricted to these rules, but
we only suppose that it contains them. This will allow us, like in Miquel’s work [Miq11], to
consider new reduction rules later on.

Notation 11. Each reduction rule is determined by the term constructor in head position. If
@ is such a constructor (for example λ or force), a @-step is any reduction step associated
with a constructor @. For example, the following step is a λ-step:

⟨λx.t, a(v).E⟩0
0Ð→ ⟨t[v/x],E⟩0

Types

We consider a type system for a fragment of this language. Re�ecting the distinction between
values and computations, the types are separated into positive types denoted by capital letters
P,Q, . . . and negative types, denoted by capital letters N,M, . . . . Values will be typed by
positive types, while computations correspond to negative types. The grammar is de�ned by
mutual induction:
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P,Q ∶∶= X(e1, . . . , en) ∣ ⇓N ∣ Nat ∣ P ⊗Q ∣ ∃x ∈ S.P ∣ {e ⪯S f} ∧ P
N,M ∶∶= ⇑P ∣ P ⊸ N ∣ ∀x ∈ S.N ∣ {e ⪰S f}↦ N

This type system will be used as a target for the programming languages we want to give
models of, and hence contains basic connectives. But it will also be the target of the forcing
translation as in Miquel [Miq11]. That’s why it is enriched with �rst-order quanti�ers and
inequational implications.

• The implication is a�ne. It means it represents the type of programs that use their ar-
gument at most once. Notice also that re�ecting the application construction which is
restricted to value argument, the implication is from positive to negatives.

• Two particular connectives are introduced because of the polarity: the positive shift

⇓ and the negative shift ⇑. They allow to pass from a negative to a positive, and vice
versa. They correspond to the thunk() and ret() constructors.

• The presence of �rst-order expressions. Those are built using a given set of sets S, an
in�nite number of variables of sort S (denoted xS), together with function symbols that
denote real functions on sets. Here is an example of �rst-order expression:

xN + 2

• Notice that the �rst-order quanti�ers do not change the polarity, since they are computa-
tionally transparent. The domain of these quanti�ers can be any set, which is the option
we choose to internalize our forcing. This is a main di�erence with Miquel [Miq11], as
he considers a higher-order type system where the quanti�ers domains are higher-order
kind of the language. But externalizing the domain of the quanti�ers will allow us to
elude some aspects of the forcing transformation we are not interested in, and simplify
the de�nitions.

• Finally, we add an inequational implication and an inequational conjunction. They
are a slight modi�cation of the equational implication used by Miquel. We consider pre-
ordered sets (S,⪯S) instead of simply sets. In that context the inequational implication
intuitively means

{e ⪰S f}↦ N ≡ { N if f ⪯S e
⊺ otherwise

where ⊺ is morally type of all computations. While the inequational conjunction intu-
ition is

{e ⪯S f} ∧ P ≡ e ⪯S f and P

These connectives will be useful to internalize our forcing interpretation.

The typing judgments are of the form:

E ; Γ ⊢0 v ∶ P or E ; Γ ⊢0 t ∶ N

36



CHAPTER I . INTRODUCTION

where:

• E is an inequational theory, that is a set of inequations between �rst-order expressions.
An example of such an inequation for a set S possessing a binary operation + is:

xS ⪯S xS + yS

• Γ is a context of assignments of positive types to variables.

The inequational theory E will be used to de�ne a subtyping relation ⊑E . Without giving the
details of its de�nition, here is an example of subtyping with E = f ⪯S g:

{e ⪯S f} ∧ P ⊑E {e ⪯S g} ∧ P

We give as an example some of the important rules of λLCBPV in Figure 1. These rules cor-
respond closely to Levy’s call-by-push-value, except for the multiplicative treatment of the
context (hence the absence of contraction).

E ; Γ, x ∶ P ⊢0 x ∶ P

E ; Γ ⊢0 v ∶ P
E ; Γ ⊢0 ret(v) ∶ ⇑P

E ; Γ ⊢0 t ∶ ⇑P E ; ∆, x ∶ P ⊢0 u ∶M
E ; Γ,∆ ⊢0 t to x.u ∶M

E ; Γ ⊢0 t ∶ N
E ; Γ ⊢0 thunk(t) ∶ ⇓N

E ; Γ ⊢0 v ∶ ⇓N
E ; Γ ⊢0 force(v) ∶ N

E ; Γ, x ∶ P ⊢0 t ∶ N
E ; Γ ⊢0 λx.t ∶ P ⊸ N

E ; Γ ⊢0 t ∶ P ⊸ N E ; ∆ ⊢0 v ∶ P
E ; Γ,∆ ⊢0 (t)v ∶ N

E ; Γ ⊢0 v ∶ P E ; ∆ ⊢0 w ∶ Q
E ; Γ,∆ ⊢0 (v,w) ∶ P ⊗Q

E ; Γ ⊢0 v ∶ P ⊗Q E ; ∆, x ∶ P, y ∶ Q ⊢0 t ∶ N
E ; Γ,∆ ⊢0 let (x, y) = v in t ∶ N

Figure 1: Some typing rules of λLCBPV

1.5.2 Call-by-value and call-by-name translations
It is well-known that one can retrieve in CBPV both a call-by-name and a call-by-value as
fragments. In fact, the purpose of CBPV is to unveil the elementary particles used to build
these two calculi. We show that this is still true when we consider our a�ne variant λLCBPV

of CBPV. We de�ne an a�nely typed λ-calculus called λAff . Its syntax is as follows:
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Terms t, u ∶∶= x ∣ n ∣ s(t) ∣ λx.t ∣ (t)u ∣ case tof x.u1 ∥x.u ∣ (t, u) ∣ let (x, y) = t inu
Types A,B ∶∶= Nat ∣ A⊸ B ∣ A⊗B

• It is a usual λ-calculus with pairs and integers.

• The types are either the type of integers Nat, the tensor A⊗B or the a�ne map⊸.

We then de�ne a type system ⊢Aff manipulating sequents of the form

x1 ∶ A, . . . , xn ∶ A ⊢Aff t ∶ B

This type system is completely standard. We then endow λAff with two di�erent reduction
strategies: call-by-name and call-by-value. They are introduced by considering abstract ma-
chines:

• In the case of the call-by-name, we execute con�gurations of the form ⟨t,E⟩N in a Krivine
abstract machine and the reduction relation is denoted by→N.

• In the case of the call-by-value, we de�ne a notion of values:

v,w ∶∶= k ∣ λx.t ∣ (v,w)

We execute con�gurations of the form ⟨t,E⟩V in an abstract machine whose reduction
is denoted by →V.

We show how it is possible to give two di�erent typed translations of λAff in λLCBPV corre-
sponding to the two di�erent strategies. These translations are shown to be both type and
reduction preserving. The call-by-name calculus corresponds to the purely negative part of
λLCBPV, while the call-by-value corresponds to the purely positive part of λLCBPV.

1.5.3 Chapter II The monitoring abstract machine

Miquel’s methodology consisted in considering a forcing program transformation �rst and
then giving an abstract machine that implements the behavior of the transformed programs.
Here, we choose to present things in a reverse order: we start with an abstract machine called
the Monitoring Abstract Machine (or MAM), and show later that it is justi�ed by a forcing
program transformation. As expected and announced, this machine is very much in the spirit of
Miquel’s KFAM. The syntax of λLCBPV is extended using the following constructors, n ranging
over N+:

t ∶∶= . . . ∣ LtMαn (where α is a closed computation)
E ∶∶= . . . ∣ mn(t).E (where t is a closed computation)
C ∶∶= . . . ∣ ⟨t,E⟩n (where t is a closed computation)
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• A con�guration of the form ⟨t,E⟩n is said to be at level n. We will in fact be interested
in con�gurations of the form:

⟨t, a(v1). . . . a(vn).E⟩n

At level n, the values v1, . . . , vn represent the di�erent memory cells used to track infor-
mations about the execution.

• The constructor LtMαn , called the observation, should be seen as an annotation of the
program t. When it comes in head position, it triggers the update of the n-th memory
cell. This update is performed using the closed program α, called the monitor. Hence,
depending on the annotations of a program, the memory cells will be updated in di�erent
ways.

• We denote by V,P,E,C respectively the sets of closed values, closed computations, en-
vironments and con�gurations generated by this extended grammar.

In Section 2.3, we de�ne an in�nity of reduction relations nÐ→ for each level n ∈ N, but here
we focus on the levels 0 and 1, to simplify the presentation. While the full language (at any
level) is referred to by the notation λMon, the restriction to the level 1 is referred to by λ1Mon.
In that case, the machine can be seen as a usual Krivine Abstract Machine augmented with a
protected memory cell, with two di�erent modes of execution:

• The level 1 mode, where the execution does not access or modify the memory cell.

• The level 0 mode, which we enter at certain times of the execution, where the memory
cell is accessed and updated using a special program called the monitor. Depending on
the content of the memory cell, the monitor can take di�erent actions (updating the
memory cell, stopping the execution, etc.).

The reduction relation, denoted by 1Ð→ , contains the following schemes of rules that are
de�ned using 0Ð→ .

• The �rst scheme of reduction rules only says that 1Ð→ contains 0Ð→ . It is de�ned as a
rule, saying every 0Ð→ reduction step induces a corresponding 1Ð→ reduction step.

C
0Ð→ C ′

C
1Ð→ C ′

• The second scheme of reduction rules extends the relation 0Ð→ by adding exactly one
memory cell. Each 0Ð→ reduction step induces a new reduction step that does not alter
the value in that memory cell.
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⟨t,E⟩0
0Ð→ ⟨t′,E′⟩0

⟨t, a(v).E⟩1
1Ð→ ⟨t′, a(v).E′⟩1

• We also distinguish the case when the daimon con�guration is observed:

⟨t,E⟩0
0Ð→ ✠

⟨t, a(v).E⟩1
1Ð→ ✠

• The next rule allows to enter what we call the monitoring mode. It happens when
an observation of the form LtMα1 is in head position, and triggers the introduction of the
monitor α, but at level 1:

⟨LtMα1 , a(v).E⟩1
1Ð→ ⟨α, a(v).m1(t).E⟩0

Being at level 1, α can then access the value v and modify it.

• We introduce a rule to exit the monitoring mode at level 1. Once the computation trig-
gered by a previous use of the monitor α has ended on a value, we can use the following
rule to put that value into the monitoring state:

⟨ret(v),m1(t).E⟩0
1Ð→ ⟨t, a(v).E⟩1

1.5.4 Examples of reduction at level ≤ 1
To give some intuitions on the monitoring abstract machine, we show several examples of
reductions of a same con�guration

⟨LLIMα1 0Mα1 , a(v).E⟩1

but for di�erent choices of α and di�erent choice of the value v initially put in the state. The re-
duction steps which are about the manipulation of the monitoring state have been highlighted
in blue. More examples are given in Subsection 2.3.2.

Clock

We consider the clock monitor

α = λx.ret(s(x))
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We show the reduction sequence of LLIMα1 0Mα1 and the term 3 in the memory cell.

⟨LLIMα1 0Mα1 , a(3).E⟩1
1Ð→ ⟨λx.ret(s(x)), a(3).m1(LIMα1 0).E⟩0
1Ð→ ⟨ret(4),m1(LIMα1 0).E⟩0
1Ð→ ⟨LIMα1 0, a(4).E⟩1
1Ð→ ⟨LIMα1 , a(4).a(0).E⟩1
1Ð→ ⟨λx.ret(s(x)), a(4).m1(I).a(0).E⟩0
1Ð→ ⟨ret(5),m1(I).a(0).E⟩0
1Ð→ ⟨I, a(5).a(0).E⟩1
1Ð→ ⟨ret(0), a(5).E⟩1

This example witnesses one possible use of the monitoring state: a counter incremented
when certain parts of a λ-term are executed. This can be used to implement a clock.

Countdown: divergence

Here is another example. We now choose the following monitor:

α = λx.casexof x.Ω ∥x.ret(x)

We show two di�erent executions: when the state is initially set to 2 and 1.

⟨LLIMα1 0Mα1 , a(2).E⟩1
1Ð→ ⟨α, a(2).m1(LIMα1 0).E⟩0
1Ð→∗ ⟨ret(1),m1(LIMα1 0).E⟩0
1Ð→ ⟨LIMα1 0, a(1).E⟩1
1Ð→ ⟨LIMα1 , a(1).a(0).E⟩1
1Ð→ ⟨α, a(1).m1(I).a(0).E⟩0
1Ð→ ⟨ret(0),m1(I).a(0).E⟩0
1Ð→ ⟨I, a(0).a(0).E⟩1
1Ð→ ⟨ret(0), a(0).E⟩1

Here the counter is decremented and the execution is somewhat similar to the previous
example. Now here is what happens when we put 1 in the monitoring state.

⟨LLIMα1 0Mα1 , a(1).E⟩1
1Ð→ ⟨α, a(1).m1(LIMα1 0).E⟩0
1Ð→∗ ⟨ret(0),m1(LIMα1 0).E⟩0
1Ð→ ⟨LIMα1 0, a(0).E⟩1
1Ð→ ⟨LIMα1 , a(0).a(0).E⟩1
1Ð→ ⟨α, a(0).m1(I).a(0).E⟩0
1Ð→ ⟨Ω,m1(I).a(0).E⟩0

⇑
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Here, the monitor plays the role of a countdown: it is a counter that makes the computation
diverge once it reaches 0. This example shows that changing the value in the memory cell can
a�ect the termination of the resulting con�guration. In general, a program will be annotated by
various monitors. Observing the termination of such an annotated program will in fact account
to observe a more re�ned property of the source program. For example, the previous example
shows that if we annotated a term with an observation on each redex, observing termination
for a given value k of the memory cell in fact amounts to say that the execution time is bounded
by k.

1.5.4.1 Program transformation

In Section 2.4 is exposed a program transformation from the monitoring extension at level
1 λ1Mon into the base calculus λLCBPV. It is untyped and will be extended to a typed program
transformation in a Chapter III . This program transformation is shown to preserve the dynamic
semantics of the monitoring abstract machine. For the most part, it is an adaptation to the
call-by-push-value of the usual monadic program transformation corresponding to the state
monad [Mog91], with a straightforward variation concerning the observation constructor. This
translation consists in:

• A translation function ⟪.⟫ that maps λ1Mon values to λLCBPV values, and λ1Mon computa-
tions to λLCBPV computations.

• A translation of execution environments. Since there are two modes of execution, we
need two di�erent maps, the �rst ⟪.⟫ is used to translate environments used during
executions in the normal mode. The second map J.K corresponds to the monitoring mode.

• Finally, the translation ⟪.⟫ of con�gurations is given as follows:
⟪⟨t, a(v).E⟩1⟫ = ⟨⟪t⟫, a(v).⟪E⟫⟩0

⟪⟨t,E⟩0⟫ = ⟨t, JEK⟩0

The simulation theorem 69 holds for the program transformation. It basically says that the
transformation preserves the reduction of λ1Mon.

Theorem 12 (Simulation). The following propositions hold:

C
1Ð→C ′ implies ⟪C⟫ 0Ð→∗⟪C ′⟫

1.5.5 Chapter III : a novel forcing transformation
The second main contribution of this thesis, which is the object of Chapter III , explains how the
the monitoring abstract machine can be obtained through a forcing program transformation
of the abstract machine associated with the linear call-by-push-value. Unlike Krivine’s forcing
transformation which is based on a notion of forcing structure which is internal to realizability
in [Kri11], or to a higher-order type system in Miquel [Miq11], ours rely on an external, set-
theoretic notion of forcing monoid.
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1.5.5.1 Forcing monoids

Forcing monoids constitute one of the main ingredients of our construction, as it is the structure
we will use to represents annotations in our realizability framework. The elements of a forcing
monoid are what describes the content of a memory cell in the MAM. A forcing monoid

M = (M,+,0, ●,⪯) is given by:

• A preordered commutative monoid (M,+,0,⪯).

• A left action ● ofM overM. In particular, we require that:

∀p, q, r ∈M, (p + q) ● r = p ● (q ● r)

Here is an intuitive explanation of the di�erent components of a forcing monoid.

• The elements ofM will be used to annotate programs (or types). They will represent
various notions. They will play the role of bounds on the execution time, step-indices,
or security labels.

• The element 0 is the element that carries the less information, as it is the least element
for ⪯ : 0 ⪯ p.

• The commutative operation + corresponds to the tensor connective, hence representing
how to combine the annotations of two values when forming a pair. It also corresponds
to the application of a computation to a value.

• The action ● represents how the annotations should be combined during the interaction
between a program and an environment. Here is a comparison between the application
reduction step and the action law:

⟨(t)v,E⟩0
0Ð→ ⟨t, a(v).E⟩0

(p + q) ● r = p ● (q ● r)

Here are some examples of forcing monoids (called additive because ● = +):

• The structure based on the set of integers N, and + and ● being both the usual addition
on N. The preorder is the usual order on N.

• The structure based on the set of integers N = N ∪ {∞}, obtained by adjoining ∞ to N.
The + and ● operations are then min (with ∞ being its neutral). Finally the preorder is
the reverse order ≥ on N.

The forcing monoid corresponds to the commutative monoid in a phase space. To be complete
we also need what corresponds to the pole of a phase space. This is exactly what the forcing

structure represents. It is given by:

• A forcing monoidM.
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• A positive predicate C of arityM such that p ⪯ q implies that C(q) ⊑ C(p).

As in Krivine program transformation, this C represents intuitively the negation of the pole
of a phase space. Notice that the forcing structures encapsulate an internal and an external
notion.

1.5.5.2 An annotated type system

In Section 3.2, we de�ne an annotated type system, which is parametrized by a forcing structure
F = (M,C). It manipulates judgments of the form:

E ; Γ ⊢n t ∶ (N,p) or E ; Γ ⊢n v ∶ (P, p)

where n ∈ N represents a level of the MAM, E is an inequational theory, Γ is a positive context
and p ∈M is a forcing condition. This type system should be seen more as a way to assign
an element of the forcing monoid to each λLCBPV derivation. It will also be useful to represent
semantical judgments, that is rules that are derivable inside a given annotated realizability
model. Here is a sample of the annotations of the typing rules of λLCBPV (which corresponds
to the same set of rules we have presented in the previous section).

E ;x ∶ P ⊢n x ∶ (P,0)
E ; Ξ ⊢n v ∶ (P, p)

E ; Ξ ⊢n ret(v) ∶ (⇑P, p)

E ; Ξ ⊢n t ∶ (⇑P, p) E ; Υ, x ∶ P ⊢n u ∶ (N, q)
E ; Ξ,Υ ⊢n t to x.u ∶ (N,p + q)

E ; Ξ ⊢n t ∶ (N,p)
E ; Ξ ⊢n thunk(t) ∶ (⇓N,p)

E ; Ξ ⊢n v ∶ (⇓N,p)
E ; Ξ,Υ ⊢n force(v) ∶ (N,p)

E ; Ξ, x ∶ P ⊢n t ∶ (N,p)
E ; Ξ ⊢n λx.t ∶ (P ⊸ N,p)

E ; Ξ ⊢n t ∶ (P ⊸ N,p) E ; Υ ⊢n v ∶ (P, q)
E ; Ξ,Υ ⊢n (t)v ∶ (N,p + q)

E ; Ξ ⊢n v ∶ (P, p) E ; Υ ⊢n w ∶ (Q, q)
E ; Ξ,Υ ⊢n (v,w) ∶ (P ⊗Q,p + q)

E ; Ξ ⊢n v ∶ (P ⊗Q, q) E ; Υ, x ∶ P, y ∶ Q ⊢n t ∶ (N,p)
E ; Ξ,Υ ⊢n let (x, y) = v in t ∶ (N,p + q)

This annotated type system also allows us to type the observation constructor L.Mα1 . Re-
�ecting the fact that the computation rule makes the con�guration level go from 1 to 0, the
corresponding typing rule uses a premise in the λLCBPV type system (that is, at level 0).
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E ; Γ ⊢1 t ∶ (N,p) E ;⊢0 α ∶ ∀x ∈M.C(f(x))⊸ C(x)
E ; Γ ⊢1 LtMα1 ∶ (N,f(p))

This rule explains how a monitor α is allowed to modify the memory cell: it has to stay in
the set given by a certain C(x) and has to make it pass from C(f(p)) to C(p) for every p ∈M.
Under certain conditions, it is also possible to give a general rule for the observation at any
level, but it is a little bit more complicated and will be treated later in the thesis.

1.5.5.3 The type translation

Still following Miquel’s methodology, we introduce a formalization of a linear forcing interpre-
tation, inside λLCBPV. Morally, it corresponds to a certain phase space interpretation for the
call-by-push-value underlying logic. It is similar to the phase semantics we were talking about
in Subsection 1.1.2, and with Krivine/Miquel forcing type translation mentioned in Subsection
1.2.1. Here are some remarkable di�erences:

• In addition to the usual components of a phase space, one has to deal with the preorder.

• A positive type is interpreted as a set of forcing conditions, but is not closed by biorthog-
onality (unlinke negative types). It is however upward-closed for the preorder ⪯ .

• A negative type is still interpreted as the orthogonal of another set.

• The interpretation of the two shift connectives ⇑ and ⇓ corresponds to the orthogonality
operator.

The forcing interpretation is parametrized by the choice of a forcing structure F = (M,C). It
is then given in the form of three maps:

• For any positive type P , we associate a positive predicate P ∗(p).

• For any negative type N , we associate two negative predicates:

– N○(p), which corresponds to the falsity value JAK in Krivine’s classical realizability.
– N∗(p), which is morally de�ned as the orthogonal of the “set” N○(.) and corre-

sponds to the negative truth value of Krivine’s classical realizability.

Here is a fragment of the de�nition of this type translation:

Positive interpretation

(Nat)∗(p) = Nat
(P ⊗Q)∗(p) = ∃q1 ∈M.∃q2 ∈M.{q1 + q2 ⪯M p} ∧ (P ∗(q1)⊗Q∗(q2))

(⇓N)∗(p) = ⇓(∀r ∈M.C(p ● r)⊸ N○(r))
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Negative falsity value

(P ⊸M)○(p) = ∃q ∈M.∃r ∈M.{p ⪰M q ● r}↦ (P ∗(q)⊸M○(r))
(⇑P )○(p) = ⇑(∃r ∈M.P ∗(r)⊗ C(r ● p))

Negative truth value

N∗(p) = ∀r ∈M.C(p ● r)⊸ N○(r)

We also de�ne the following notation:

p IFF A
def= A∗(p)

Remark 13. Aswe said, one can think ofC(p●q) as the negation¬(p�q) of the orthogonality
relation in phase spaces. With this interpretation in mind, if we look at the interpretation of
⇑, and forget about the polarities, we can intuitively interpret:

q ∈ (⇑P )∗⇔ ∃r ∈M,¬(q�r) ∧ r ∈ P ∗

Now, if we look at the interpretation of ⇓⇑P we obtain:

p ∈ (⇓⇑P )∗⇔ ∀r ∈M,¬(r�p)⇒ (∃q ∈M,¬(q�r) ∧ q ∈ P ∗)

That is,
p ∈ (⇓⇑P )∗ ⇔ ∀r ∈M, (∀q ∈M, q ∈ P ∗ ⇒ q�r)⇒ p�r

⇔ p ∈ P ∗��

The main result of this section is the following preservation theorem, which internalizes the
soundness of this forcing interpretation. It is stated using the annotated type system of the
previous subsection, used with the same forcing structure as the forcing translation.

Theorem 14 (Preservation theorem). The two following statements hold:

1. Suppose that the following judgment is derivable:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢1 v ∶ (P, p)
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Then we also have for any distinct variables ι1, . . . , ιn:

E ;x1 ∶ P ∗
1 (ι1), . . . , xn ∶ P ∗

n (ιn) ⊢0 ⟪v⟫ ∶ P ∗(p + ∑
1≤i≤n

ιi)

2. Suppose that the following judgment is derivable:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢1 t ∶ (N,p)

Then we also have for any distinct variables ι1, . . . , ιn:

E ;x1 ∶ P ∗
1 (ι1), . . . , xn ∶ P ∗

n (ιn) ⊢0 ⟪t⟫ ∶ N∗(p + ∑
1≤i≤n

ιi)

Remark 15. This program transformation and the corresponding results present very strong
similarities with the work of Pottier [Pot11] on a store-passing translation for general refer-
ences.

1.5.6 Chapter IV : Krivine style realizability
Exactly like Miquel de�nes a unary realizability framework based on his KFAM, we de�ne
a unary realizability framework based on the MAM. This unary realizability will constitute
the corner-stone of our theory. Like in classical realizability [Kri09], the interpretation is
parametrized by what is called a pole. It is a set �� of con�gurations (at any level), which
is →-saturated:

C → C ′ ∧C ′ ∈ ��⇒ C ∈ ��
That pole morally represents the set of good con�gurations, or correct con�gurations. This is
the notion of computational correctness we want to study. For example, here are some possible
poles:

1. The pole of terminating con�gurations

��✠ = { C ∣ C reduces to either { ⟨v, a(vn). . . . a(v1).nil⟩n
✠ }

This is an adaptation of the pole used to prove termination, and is also similar to the one
used in Girard’s ludics [Gir01].

2. The pole of diverging con�gurations

��Ω = { C ∣ C diverges }

This pole induces a notion of orthogonality, similarly to what is done in Krivine’s realiz-
ability.

Y �n = { t ∣ ∀E ∈ Y, ⟨t,E⟩n ∈ �� }
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The interpretation of types is built around this orthogonality operation. The intuition is
that we assign to each positive type P a set of values ∥P ∥ called its truth value, and to each
negative connective N a set of environments JNK called its falsity value. The truth value

of a negative N is then the orthogonal of JNK. Moreover, since the orthogonality operation
is indexed by integers (corresponding to di�erent levels of execution), so is the interpretation.
We only give the most important inductive cases, and forget about �rst-order:

Example of positive truth value

∥P ⊗Q∥n = { (v,w) ∣ v ∈ ∥P ∥n ∧w ∈ ∥Q∥n }
∥⇓N∥n = { thunk(t) ∣ t ∈ JNK�nn }

Example of negative falsity value

JP ⊸ NKn = { v.E ∣ v ∈ ∥P ∥n ∧E ∈ JNKn }
J⇑P Kn = ∥P ∥�nn

De�nition of the negative truth value

∥N∥n = JNK�nn

Here are some remarks about the interpretation:

• If one only looks at the negative part of the interpretation, one recognizes a similar pat-
tern to the usual Krivine classical realizability. For example, a negative is intrepreted
as the orthogonal of a set of stacks, as in Krivine realizability. Another similarity con-
cerns the interpretation of the implication, which is almost the same. And indeed, if one
looks at the fragment of λLCBPV interpreting the call-by-name translation, one gets back
Krivine classical realizability. The same phenomenon can be observed in [MM09]. 10

• One important remark is that the interpretation of the implication and of the tensor are
somewhat similar. This is because the ⊸ connective is in linear logic decomposed as
P ⊸ N = P � `N = (P ⊗N�)�. Hence, morally the JNK interpretation corresponds to
a positive interpretation of N�.

Our realizability framework enjoys a soudness theorem, exactly like Krivine realizability. This
soundness theorem shows the correction of the level 0 interpretation. Here is a simpli�ed
version of this result that we prove in Section 4.1:

Theorem 16. Let �� be a saturated pole. Suppose that ⊢0 t ∶ N . Then we have t ∈ ∥N∥0.

As a corollary, we could very well obtain a proof of the termination of λLCBPV.
10Again, we used call-by-push-value because it is convenient, but any other polarised linear logic based system

would have been good. Our interpretation is very similar to Munch system L version of Krivine classical realizability
[MM09], and could in fact be retrieved from it.
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1.5.7 Chapter IV : Monitoring algebras
The central notion of this thesis is the n-Monitoring Algebra, or simply n-MA. The �rst
intuition is that an n-MA internalizes the combination of a unary realizability model à la Kriv-
ine with a forcing program transformation that is chosen inside this realizability model. Its
de�nition and the study of its main basic properties are given in Chapter IV .

Definition

A n-MA A is given by the two following components:

• A forcing monoid ∣A∣

• A test function CA ∶ ∣A∣→ P(Vn), which is decreasing:

p ⪯ q⇒ CA(q) ⊆ CA(p)

The intuition behind the two components can be understood as follows:

• The forcing monoid ∣A∣ represents abstract pieces of information about the computation
performed by a con�guration, which is accumulated during the monitoring execution.
Those pieces of information help re�ning what is observed. It is the algebraic part of a
n-MA that gives them a great �exibility: algebraic constructions on forcing monoids will
be re�ected at the programming level.

• The test function CA associates with every abstract piece of information p ∈ ∣A∣ a con-
crete information represented as a set of tuples of values CA(p). These values are in-
tended to be put in the memory cells of the monitoring abstract machine. As we have
already seen, changing the content of the memory cells can impact the execution itself,
hence the name test function.

By reusing the pole �� of the unary realizability, each n-MA A naturally induces a family of
orthogonality relations between computations and environments denoted by {�A,k}k∈N:

(t, p)�A,k(E, q)⇔ ∀(v1, . . . , vn) ∈ CA(p ● q), ⟨t, a(v1). . . . a(vn).E⟩k ∈ ��

We can reformulate the orthogonality using an intermediate set called the A-pole:

��A,k = { (t,E, p) ∣ ∀Ð→v ∈ CA(p), ⟨t,
ÐÐ→
a(v).E⟩k ∈ �� }

Then we have (t, p)�A,k(E, q)⇔ (t,E, p+q) ∈ ��A,k. Notice the similarity with the de�nition
of Remark 4. Here it is quite clear that the forcing condition helps re�ning the orthogonality,
thanks to the values given by the test function CA. Those values are intended as tests that the
interaction of the computation and the environment has to pass. For example, if the compu-
tation t is annotated with the observation L.Mα1 with α being the monitor that decrements a
counter and diverges when it reaches 0, then depending on the values we put in the memory
cell, we can observe the number of steps needed by the con�guration to terminate.
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Interpretation

Each n-MA de�nes an indexed interpretation of types. It is similar to the unary realizability
interpretation, with the addition of elements of the forcing monoid. In fact, each type will be
interpreted by truth and falsity values, as in the unary case. The set I(VA) of positive truth
values is the set of all sets X ⊆ V × ∣A∣ such that if (v, p) ∈ X and p ⪯ q, then (v, q) ∈ X .
Similarly, the set of negative truth values I(PA) contains all sets X ⊆ P × ∣A∣ such that
(t, p) ∈X and p ⪯ q then (c, q) ∈X . Finally the set I(EA) of negative falsity values contains
the sets Y ⊆ E × ∣A∣ such that if (E,p) ∈ Y and p ⪯ q, then (E, q) ∈ Y . We give di�erent
examples:

∥P ⊗Q∥A,k = { ((v,w), p + q) ∣ (v, p) ∈ ∥P ∥A,k ∧ (w, q) ∈ ∥Q∥A,k }

JP ⊸ NKA,k = { (a(v).E, p ● q) ∣ (v, p) ∈ ∥P ∥A,k ∧ (E, q) ∈ JNKA,k }

J⇑P KA,k = ∥P ∥�A,k
A,k

As we see, without the forcing part, the interpretation is just the same as in the unary
realizability case. Moreover, if we consider only the forcing part, it really is similar to the
phase space interpretation with the slight di�erence that + becomes ● in certain cases. The �rst
important result aboutn-MAs is the soudness theorem, that says that every model induced by a
n-MA is sound with respect to λLCBPV, in a slightly di�erent sense than the unary realizability
model. Indeed, it basically says that if ⊢0 t ∶ N is provable, then there exists some forcing
condition p ∈ ∣A∣ such that (t, p) ∈ ∥N∥A,n. This p can be computed using the forcing annotated
type system. A simpli�ed version of Theorem 140 is as follows:

Theorem 17 (Soundness). Let A be a n-MA. If ⊢n t ∶ (N,p) is provable in the annotated
type system then (t, p) ⊩A,n N .

A-monitors

The previous soundness result covers only the annotated version of the λLCBPV rules, but if
one looks at the rules, the forcing condition obtained is only built using 0 and the + operation
(hence is always 0). Hence it means that the programs we can type don’t really use the memory
cell. That’s natural since we have not given any sound annotated typing rule concerning the
observation constructor L.Mαn , which is responsible for the update of the memory cell. It is
not possible to give a general typing rule for the observation. However, it is possible to give a
general condition such that if it is met, we can type it. We introduce what we callA-monitors.
Basically, it is a pair (α, f) where α is a closed computation and f a strong function, i.e. such
that

f(p ● q) ⪯∣A∣ f(p) ● q
and that satis�es a certain condition that implies the following:

(t, p) ⊩A N Ô⇒ (LtMαk , f(p)) ⊩A N
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Hence, given a A-monitor (α, f), the following rule is sound:

E ; Γ ⊢n t ∶ (N,p)
E ; Γ ⊢n LtMαn ∶ (N,f(p))

Clearly, the function f is responsible for making the forcing condition change, like the monitor
α makes the memory cell content change.

Properties of 1-MAs

Even if the soundness theorem is satis�ed by any n-MA, some of them behave better than
others. This is the case of 1-MAs, which enjoy remarkable properties that are studied in Section
4.4.

• The �rst one concerns the monitors. If A is 1-MA, it is possible to characterize a con-
sequent subset of the A-monitors. Suppose that α ∈ P and f ∶ ∣A∣ → ∣A∣ is a strong
function. Suppose that the following condition is satis�ed:

α ⊩0 ∀x ∈ ∣A∣.CA(f(x))⊸ CA(x)
Then (α, f) is aA-monitor. The fact that the condition exclusively relies on the realiz-
ability model at level 0 comes from the fact that during the reduction of the observation
at level 1 L.Mα1 , the con�guration passes to the level 0 before the monitor can perform any
operation. Remark that this corresponds to the annotated typing rule already used for
the program transformation:

E ; Γ ⊢1 t ∶ (N,p) E ;⊢0 α ∶ ∀x ∈ ∣A∣.C(f(x))⊸ C(x)
E ; Γ ⊢1 LtMα1 ∶ (N,f(p))

• The second result is the Connection Lemma. It intuitively says that any model induced
byA is the iteration of a forcing model inside a unary realizability model. This result can
be informally formulated as follows.

Theorem18. Suppose thatA is a 1-MA. Then for all (t, p) ∈ P×A, and every negative
type N , we have:

(t, p) ⊩A,n N ⇔ t ⊩n (p IF∣A∣ N)

where IF∣A∣ is the forcing interpretation induced by the forcing monoid ∣A∣.

1.5.8 Chapter V : Iteration
At the heart of our methodology lie di�erent ways of building new n-MAs out of previously
de�ned ones. To obtain a model of a complex programming language, we generally start with a
simple n-MA, and incrementally add new features to the corresponding language by applying
di�erent constructions, and show that at each step we do not loose what we gained previously.
These constructions, based on forcing iteration, are described and studied in Chapter V .
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Direct product

The direct product is the simplest way of combining two di�erent MAs. In a sense, it corre-
sponds to the intuition of “combining two programming languages”. Start with a k-MAA and
a 1-MA B. We then build a (k + 1)-MA denoted A × B as follows:

• The carrier ∣A × B∣ is the direct product of the two forcing monoids ∣A∣ × ∣B∣. It means
that we take the product of the underlying sets, and we de�ne the operations ● and +
component wise, e.g:

(p,n) + (q,m) = (p + q, n +m)
The preorder is the preorder on each component.

• The test function CA×B is also the product of the two test functions:

CA×B(p,m) = { (Ð→v ,w) ∣ (v1, . . . , vn) ∈ CA(p) ∧w ∈ CA(m) }

The direct product construction corresponds in the forcing theory to the product of two
forcing notions. It satis�es many good properties, and in particular, it preserves theA-monitors
and the B-monitors, as witnessed by Property 181.

Property 19. Let D = A × B be a direct product. Suppose that (α, f) is a A-monitor and
(β, g) is a B-monitor. Then the two following pairs are D-monitors:

• (λx.Lret(x)Mαk , (a, b)↦ (f(a), b))

• (β, (a, b)↦ (a, g(b)))

To lift the A-monitor into a A × B-monitor, we need to use λx.Lret(x)Mαk . That’s because
to access another memory cell than the last, we need to use another monitor. Let’s look at an
example of a reduction that accesses the second memory cell. Suppose β = λx.ret(s(x)) and
α = λx.Lret(x)Mβ1 , then the con�guration ⟨LtMα2 , a(n).a(v).nil⟩2 reduces as follows:

⟨LtMα2 , a(n).a(v).nil⟩2 → ⟨λx.Lret(x)Mβ1 , a(n).a(v).m2(t).nil⟩1

→∗ ⟨Lret(v)Mβ1 , a(n).m2(t).nil⟩1

→ ⟨λx.ret(s(x)), a(n).m1(ret(v)).m2(t).nil⟩0

→∗ ⟨ret(n + 1),m1(ret(v)).m2(t).nil⟩0

→ ⟨ret(v), a(n + 1).m2(t).nil⟩1

→ ⟨t, a(n + 1).a(v).nil⟩2

Here, we used the λx.Lret(x)Mβ1 to access the second memory cell.

Simple iteration

Our second construction is directly inspired by the 2-steps forcing iteration. We call it the MA

simple iteration. Starting with a k-MA A, it consists in taking a new 1-MA B inside A. We
then can de�ne a new (k + 1)-MA that results of the combination of A and B. A 1-MA inside
another k-MA A is called A-MA, and is given by the following components:

52



CHAPTER I . INTRODUCTION

• A forcing monoid ∣B∣.

• A relativized test function CB ∶ ∣B∣→ I(VA) such that:

n ⪯∣B∣ m⇒ CB(m) ⊆ CB(n)

Given A a k-MA, and a A-MA, one can de�ne a new (k + 1)-MA as described in De�nition
173.

De�nition 20 (Simple iteration). Let A be a k-MA, and B a A-MA. Then we denote by
A◁ B the following (k + 1)-MA:

• ∣A◁ B∣ = ∣A∣ × ∣B∣

• CA◁B(p,n) = { (Ð→v ,w) ∈ Vk+1 ∣ ∃r ∈ ∣A∣, (w, r) ∈ CB(n) ∧Ð→v ∈ CA(r ● p) }

Among the good properties satis�ed by the simple iteration, we retrieve the properties of the
1-MAs.

• A preservation result for A-monitors.

• A su�cient condition to �nd new A◁ B-monitors based on B.

The preservation result tells that theA-monitors can be extended intoA◁ B-monitors. If
(α, f) is a A-monitor, then the following pair is a A◁ B-monitor.

(λx.Lret(x)Mαk , (a, b)↦ (f(a), b))

The other property is similar to the way we can �nd newA-monitors in 1-MAs. It basically
says that any realizer in the realizability model induced by a k-MA A of the following form
induces a A◁ B-monitor:

(α, q) ⊩A,k ∀x ∈ ∣B∣.CB(f(x))⊸ ⇑CB(x)

The simple iteration really is a 2-steps forcing iteration inside a realizability model, as
witnessed by the following generalized version of the connection lemma:

Theorem 21. Suppose that D = A◁ B is a simple iteration. Then for all (t, (p,n)) ∈ PD ,
and every negative type N , we have:

(t, (p,n)) ⊩D,k N ⇔ (t, p) ⊩A,k (p ⊩∣B∣ N)

where IF∣B∣ is the forcing interpretation induced by the forcing monoid ∣B∣.
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Remark 22. The simple iteration is in some sense to the direct product what the dependent
sum is to the product in dependent type theory.

Semi-direct iteration

Finally, we consider in Section 5.3 a last construction called the semi-direct iteration. The
only di�erence with the simple iteration is that the product of forcing monoid is replaced by
a semi-direct product of forcing monoid, hence the name. Despite the name “iteration”, this
construction does not satisfy the same connection lemma as the simple iteration, hence it is
not coming from a 2-steps forcing iteration. However it is very similar and satis�es a monitor
preservation property. We will use this construction in a very particular context later.

1.5.9 Chapter VI : Basic blocks
Our methodology strongly relies on designing semantical techniques that can be reused in
correctness proofs of various programming languages. We expose in Chapter VI a wide range
of such “basic semantical blocks”. Those consist in particular constructions on MAs that can
be used to add di�erent programming features to the language, like new modalities, recursive
types or higher-order references, or to modify the property we observe, like bounded-time
termination.

1.5.9.1 Modalities

Modalities are ubiquitous in programming languages and logic. They often control di�erent
structural aspects of a programming language. For example, the exponential modality of linear
logic controls duplication [Gir87]. Nakano’s next modality [Nak00] controls the strati�cation
and helps taming recursive types. An extensive use of modalities has been strongly advocated
in [AMRV07]. One of the nice outcomes of the monitoring algebras is the ability to de�ne what
a modality is simply in terms of forcing monoids, which will allow for an algebraic treatment
of those. In the context of our core a�ne λ-calculus λAff , by modality we informally mean a
term and type constructor ◻ such that at least the two following rules hold:

Γ ⊢Aff t ∶ A
◻Γ ⊢Aff ◻t ∶ ◻A

∆ ⊢Aff t ∶ ◻A Γ, x ∶ ◻A ⊢Aff u ∶ B
Γ,∆ ⊢Aff let◻x = t inu ∶ B

Operationally, we distinguish two kinds of modalities: the blocking and call-by-value

modalities. To illustrate each case, let’s consider a call-by-value language. If we extend it with
a blocking modality ◻, its syntax of values and terms is extended as follows:

v,w ∶∶= . . . ∣ ◻t
t, u ∶∶= . . . ∣ ◻t ∣ let◻x = v in t
E ∶∶= . . . ∣ (◻x.u).E

and the following rules:
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⟨let◻x = t inu,E⟩V →V ⟨t, (◻x.u).E⟩V

⟨◻t, (◻x.u).E⟩V →V ⟨u[t/x],E⟩V

Notice that ◻t is a value, hence we cannot reduce under ◻. That’s why we call it blocking
modality. Then to translate this extension of the call-by-value language into λLCBPV, we only
need to have the following call-by-push-value promotion rule:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢0 v ∶ Q
E ;x1 ∶ ◻P1, . . . , xn ∶ ◻Pn ⊢0 v ∶ ◻Q

Notice that this rule is restricted to positive values. If one wants to extend it to negative, we
only have the option of using the positive shift and de�ne ◻⇓N . 11 In the context of MAs, we
can identify a signi�cant subset of those blocking modalities in a purely algebraic way: this is
the notion of A-modality.

De�nition 23 (A-modality). A A-modality is a sub-additive function ◻ ∶ ∣A∣→ ∣A∣, i.e.

◻(p + q) ⪯∣A∣ ◻(p) + ◻(q)

Given a A-modality, and if we extend the interpretation of types as follows:

∥◻P ∥ def= { (v,◻(p)) ∣ (v, p) ∈ ∥P ∥ }

Then the following annotated rule is sound:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢0 v ∶ (Q,p)
E ;x1 ∶ ◻P1, . . . , xn ∶ ◻Pn ⊢0 v ∶ (◻Q,◻(p))

Now consider a call-by-value modality, i.e. where we can reduce under the modality. It means
we have consider the following alternative extension of the syntax:

v,w ∶∶= . . . ∣ ◻v
t, u ∶∶= . . . ∣ ◻t ∣ let◻x = v in t
E ∶∶= . . . ∣ ◻.E ∣ (◻x.u).E

Notice that now ◻t is not a value anymore, hence we need to reduce under ◻ to obtain a
value. We have added a special environment construction◻.E and the following two additional
reduction rules:

⟨◻t,E⟩V →V ⟨t,◻.E⟩V

⟨v,◻.E⟩V →V ⟨◻v,E⟩V

11This is very similar to what happens with Melliès and Tabareau decomposition of the linear logic exponential
using resource modalities in tensor logic [MT10], where only a similar modality is de�ned on positives. This
phenomenon is called the value restriction.
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Now, if one wants to translate this fragment into λLCBPV, one needs more than just the previous
promotion rule. The following promotion rule is needed:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢0 t ∶ (⇑Q,p)
E ;x1 ∶ ◻P1, . . . , xn ∶ ◻Pn ⊢0 t ∶ (⇑(◻Q),◻(p))

But in order to obtain such a rule, we need to have a much stronger notion of modality,
called adjoint modality. If one looks at the operational side, we have added to the language
of environments an adjoint to ◻, in the form of the environment constructor ◻.E. We in fact
need the function ◻ on the forcing monoid to have a right adjoint, that is a function ◻ such
that

CA(◻(p) ● q) = CA(p ● ◻(q))
This re�ects the additional reduction rules we have added. Not all modalities have a right ad-
joint. But in Section 6.1, we will give a general construction, based on the semi-direct iteration,
that gives the possibility to give an adjoint to a A-modality. But by doing so, one might loose
some properties of the MA under consideration.

1.5.9.2 Bounded-time programming

We de�ne the class of quantitative 1-MAs. Those particular MAs give rise to realizabil-
ity models that allow the observation of bounded-time termination. This kind of realizability
models have been initially de�ned as an extension of Kleene realizability in a serie of works by
Hofmann [Hof03], Dal Lago and Hofmann [DLH05, DLH11, DLH10b]12. We study this class
of 1-MAs in Section 6.2. Quantitative MAs are based on the notion of quantitative forcing

monoid
13. A quantitative forcing monoid disposes of a function ∥.∥ ∶M→ N and an element

1 ∈M such that in particular we have:

• ∥p∥ + ∥q∥ ≤ ∥p ● q∥

• p ⪯ q⇒ ∥p∥ ≤ ∥q∥

• 1 ≤ ∥1∥
Intuitively, the elements of the forcing monoid should be seen as abstract representations of
concrete quantities, like time, space or resources.

• ∥p∥ represents the concrete quantity (as an actual number) associated to p. We need this
to be able to express concrete bounds.

• The anti-triangular inequality ∥p∥ + ∥q∥ ≤ ∥p ● q∥ represents the fact that the quantity
of resources usage resulting of an interaction of two programs (represented by the op-
eration ●) is a priori more than the sum of the resource usage generated by these two
programs alone (represented by the +).

12The theory of MAs presented in this thesis in fact originates from a Krivine-style extension of this quantitative
realizability and the proof that this framework can be decomposed through forcing [Bru13]. It is then no surprise
that these models �nd their place in the more general theory of monitoring algebras.

13It constitutes a slight variant of the quantitative monoids of [Bru13], which themselves are a generalization of
the resource monoids of [DLH05]
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• Finally, 1 represents an elementary quantity.

Example 24. A simple non trivial example of a quantitative forcingmonoid is theN endowed
with the usual addition and order, with

• ∥n∥ def= n is the identity

• 1
def= 1

If M is a quantitative forcing monoid, we can then de�ne the corresponding quantitative

1-MA:

• ∣A∣ is the quantitative forcingM.

• The test function is de�ned as CA(p) def= { k ∣ k ≥ ∥p∥ }.

Each such quantitative 1-MA disposes of a particular A-monitor (αtime, f) with:

• αtime
def= λx.casexof x.Ω ∥x.ret(x)

• f def= x↦ 1 ● x

When using this monitor, the memory cell is seen as a counter that is decreased by the monitor
if it is greater than 0. Otherwise, the monitor triggers the execution of the diverging term Ω.
One of the main interests of this particular monitoring is that it allows to observe bounded-
time execution. Indeed, consider a computation t. We de�ne an annotation {t}αtime

k of t. On λ
constructors it is de�ned as:

{λx.t}αk
def= Lλx.{t}αk Mαk

and {.}αk commutes with all other constructors. Consider the execution of a con�guration of
the form

⟨{t}αtime
1 , a(k).nil⟩1

If we observe the termination of that con�guration, it means that the monitor αtime has been
triggered less than k times, otherwise it would have made the execution diverge. Hence, by
observing the termination for di�erent values of the memory cell, we can deduce a bounded-
time termination property. As an example, if we consider the core type system λLCBPV, we can
prove the following theorem as a corollary of the soundness theorem on the quantitative MA

based on N:

Corollary 25. Suppose that ⊢0 t ∶ N . Then

⟨t,nil⟩0 terminates on a value in less than ∣t∣λ λ-steps

where ∣t∣λ is the number of λ constructors appearing in t.
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To prove this result we use the most simple quantitative 1-MA of Example 24, but by choos-
ing more complex ones, which for instance admit additional modalities that can be used to allow
some duplication, we can prove bounded-time properties for more complex languages. We will
use this class of 1-MAs in all the examples of Chapter VII .

1.5.9.3 Stratification

Many programmig features rely on some kind of circularity: recursive types, higher-order ref-
erences, streams or recursive de�nitions of programs. In all those examples, the treatment of
the circularity can be reduced to the treatment of �xed-points. Indeed, higher-order references
can be justi�ed through a proper program transformation typed using recursive types [Pot11],
and �xed-point combinators can be typed using recursive types. In terms of model, it means
the ability to prove the existence of �xed-points for certain maps. In our framework, it is possi-
ble to give a rather general account of recursivity by considering a certain class of monitoring
algebras called strati�ed. A strati�ed monitoring algebra A is required to dispose of a map
φ ∶ ∣A∣→ N such that:

p ⪯∣A∣ q⇒ φ(q) ≤ φ(p)
Using this strati�cation map, the goal is then to endow the sets I(VA) and I(EA) with a
structure of complete metric space. This will allow us to use Banach �xed-point theorem in
order to interpret various kinds of recursive types. We remind the statement of Banach �xed-
point theorem:

Theorem 26 (Banach �xed-point theorem). Let (X,d) be a complete metric space. Any
contractive map T ∶ X → X admits a unique �xed point x∗ (i.e. , T (x∗) = x∗). Where a
contractive map T is such that:

∃q < 1,∀x, y ∈X,d(T (x), T (y)) ≤ q.d(x, y)

In order to do de�ne the structure of metric space, we use a technique inspired by previous
works on semantics of recursive types and higher-order references [BST09, BSS10, BMSS11].
Following those works, we use the notion of k-approximation of a set X , which amounts to
only keep the elements of rank below k:

πk(X) def= { (x, p) ∈X ∣ φ(p) ≤ k }

We can deduce from it a notion of distance d(X,Y ) between two sets of I(VA) or I(EA):

D(X,Y ) def= sup({ k ∈ N ∣ πk(X) = πk(Y ) })
d(X,Y ) def= 2−D(X,Y )

Hence two types are at distance 0 if all their k-approximation (for k ∈ N) are equal. This in fact
not a distance but a pseudo-distance, which does not satisfy the following separation axiom:

d(x, y) = 0⇒ x = y
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However, it is always possible to quotient by the following equivalence relation:

X ≈ Y ⇔ d(X,Y ) = 0

Hence obtaining a distance. We show in Section 6.3 that (I(XA)/ ≈, d) is a complete ultramet-
ric space. A map from to the set of semantic types to the set of semantic types F ∶ I(VA) →
I(VA) is:

• Non-expansive if πk(X) = πk(Y ) implies πk(F (X)) = πk(F (Y )).

• Contractive if πk(X) = πk(Y ) implies πk+1(F (X)) = πk+1(F (Y )).

The main result of this section is a corollary of Banach �xed-point theorem, in the form of
a general �xed-point theorem for strati�ed MAs.

Theorem 27. Let A be a strati�ed MA. Suppose that F ∶ I(VA) → I(VA) is contractive.
Then F has a unique �xed-point modulo ≈.

1.5.9.4 Step-indexing

One of the most often used technique to interpret recursive types or higher-order references
is the so-called technique of step-indexing. In presence of such programming features, one
cannot directly prove correctness because of circularity issues already mentionned. The step-
indexing technique consists in stratifying the de�nition of the semantics interpretation by the
number of reduction steps available for testing the desired property. For example, if one wants
to prove a safety property of programs, one can instead prove a k-safety condition that say the
program reduces for at least k steps without clash, or returns a value in less than k steps. This
allows for a proof by induction of the correctness property. Since their introduction by Appel
and McAllester [AM01], step-indices have been extensively used and improved [DAB09, BH09,
BRS+11, Hos12]. It is possible to recast that technique using a speci�c Monitoring Algebra
called the step-indexingMA. It is an example of strati�ed MA.

De�nition 28. The step-indexing MA Astep is given by:

• The additive forcingmonoid (N,min,∞,≥) of integers augmentedwith the∞ element,
the minimum operation and the reversed order ≥.

• The test function CAstep(n) = { k ∣ k ≥ n }.

This MA is obviously strati�ed (the identity is the stratifying map). Moreover, it is easy
to see that all basic connectives induce non-expansive maps, hence by considering a predicate
variable X , each type P induces a non-expansive map via its interpretation at any level k:

C ↦ ∥P ∥Astep,k,ρ[X←C]
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For instance the orthogonality map is non-expansive:

{ I(VA) → I(EA)
X ↦ X�Astep,k

To use the �xed-point theorem, non-expansive maps are not enough: we need to �nd a con-
tractive map. This role is played by the next modality, de�ned on his action on the monoid:

▷n def= n + 1

We prove in Section 6.4 that ▷ de�nes a contractive map. This modality, or slight variations
of that modality, has been introduced by Nakano in [Nak00], and studied in many subsequent
works [AMRV07, BSS10, BMSS11, DAB09, JT11] as a way to simplify the technique of step-
indexing. Since ▷ is contractive, all maps induced by types of the form ▷P are shown to be
contractive. Hence, they have �xed-points (unique modulo ≈).

Theorem 29 (Fixed-points). Let P be a positive predicate of arity S = S1 × . . . Sn and X
be a positive type variable. Then for any level k ∈ N and any Astep-valuation ρ the map
∥▷P ∥Astep,k,ρ has a �xed-point µX.∥▷P ∥Astep,k,ρ, which is unique modulo ≈.

We use this Theorem to extend the interpretation of positive types by

∥µX.P ∥Astep,k,ρ
def= µX.∥▷P ∥Astep,k,ρ

We then show that using this interpretation we obtain two di�erent kinds of recursive types:
guarded and non-guarded.

Guarded recursive types. With this de�nition of the interpretation of the recursive types,
we obtain the following fold and unfold Astep-sound rules:

E ; Γ ⊢1 v ∶ (▷(P [µX.P /X]), n)
E ; Γ ⊢1 v ∶ (µX.P,n)

E ; Γ ⊢1 v ∶ (µX.P,n)
E ; Γ ⊢1 v ∶ (▷(P [µX.P /X]), n)

This corresponds to the guarded recursive types à la Nakano [Nak00]. These guarded recursive
types are known to preserve termination, unlike the unrestricted recursive types.

Unrestricted recursive types. InAstep, it is also possible to give an account of unrestricted
recursive types. This is where the name step-indexing is justi�ed. Indeed, this MA disposes of
a particularly interesting Astep-monitor, given by the following pair (αstep, f):

• αstep
def= λx.casexof x.✠ ∥x.ret(x)

• f def= x↦ x + 1
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By using the monitor αstep, we obtain the following rules:

E ; Γ ⊢1 v ∶ (P [µX.P /X], n)
E ; Γ ⊢1 v ∶ (µX.P,n)

E ; Γ ⊢1 v ∶ (µX.P,n) E ; ∆, x ∶ P [µX.P /X] ⊢1 t ∶ (N,m)
E ; Γ,∆ ⊢1 ret(v) to x.LtMαstep

1 ∶ (N,min(m,n))

Since we know that unrestricted �xed-points break termination, why can we interpret
them in a realizability semantics that is built around termination? Well, the presence of L.Mαstep

1

changes what is observed by the semantics. Indeed, it is a priori impossible to bound the num-
ber of times this observation will be made. But each time it arrives in head position, it decreases
the counter, and triggers✠ if it reaches 0. In that case, the execution stops, even though it could
have continued otherwise (or even diverged). That’s why we’re not observing termination but
safety: if we try every possible value in the memory cell, we observe that the execution never
clashes.

Step-indexed MA. We �nally give a condition on MAs, called the step-indexing condition,
that allows us to transfer the properties of the step-indexing algebra to thoseMAs. In particular,
doing a direct product or a simple iteration preserves the step-indexation, as well as most semi-
direct iterations. This will be very useful when dealing with complex programming languages.

1.5.9.5 Higher-order references

The last basic block we are going to study in this thesis is the addition of higher-order refer-
ences. The technique amounts to do the following steps:

• Choosing a step-indexed monitoring algebraA, that is an algebra that keeps all the good
properties of the step-indexing MA Astep.

• Identify a particular positive type P whose interpretation induces a contractive map. For
example, in Astep this can be any type of the form ▷P .

• De�ne a new A-MA, that takes advantage of the existence of a �xed-point and de�ne
the simple iteration of A and B.

One very important particularity of step-indexed MAs is that if a type is made out of non-
expansive connectives, then its forcing translation induces a non-expansive map. Indeed, the
forcing translation of a type P only uses the connectives used in P and the basic connectives
such as⊸,⊗,⇑ or ⇓. If we dispose of a contractive map, like the next modality ▷ of the step-
indexing algebra, then the following map is contractive (for any level k) :

{ I(VA)
M → I(VA)M
C ↦ (p↦ ∥(▷P )∗(x)∥A,k,[x←p,C←C])

Why is it interesting to obtain a �xed-point of such a map? Because it determines the content
of the memory cell. The idea is to de�ne the following A-MA denoted B:
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• The forcing monoid ∣B∣ is the trivial one-element forcing monoid {⋆}.

• We want CB to contain values of type P . But those values of type P must also be able to
manipulate the store, hence a �xed-point is needed. We de�ne the function F as

F ∶ (VA){⋆} → (VA){⋆}
X ↦ y ↦ ∥(P )∗(x)∥A0,n+1,[x←y,C←X]

We can then de�ne CB as a �xpoint of F :

CB = µF

We will make use of the simple iteration:

Aref(P )
def= A◁ B

As the following property shows, the memory cell in Aref(P ) contains realizers of the type P ,
in the same monitoring algebra, hence solving the circularity.

Property 30. If φ(p) ∈ N, the following equivalence holds:

(v,Ð→w ) ∈ CAref(P )(⋆, p)⇐⇒ ∃r ∈ ∣A∣, φ(r) <∞∧ { (v, (⋆, r)) ∈ ∥P ∥Aref(P ),n+1,[]
Ð→w ∈ CA(r ● p)

This allows us to introduce a primitive swapn. Its behavior is given by the following reduction
rule:

⟨swapn+1(v),
ÐÐÐ→
a(w′).a(w).E⟩n+1

n+1ÐÐ→ ⟨ret(w),
ÐÐÐ→
a(w′).a(v).E⟩n+1

This primitive linearly exchanges the content of the memory cell with its argument. We will
show that in the context of Aref(P ), the following theorem holds.

Theorem 31. The following rule is Aref(P )-sound.

E ; Γ ⊢n+1 v ∶ (P, (⋆, p)) φ(p) ∈ N
E ; Γ ⊢n+1 swapn+1(v) ∶ (⇑▷P , (⋆, p))

By specializing this rule to di�erent MAs, we can obtain di�erent kind of higher-order
references. For instance:

• Using the next modality in the step-indexing algebra, then we can always obtain guarded
higher-order references, that do not break termination.

• By using the step-indexing monitoring αstep, we can then obtain unrestricted higher-
order references. In that case we loose termination for the same reason as unrestricted
recursive types.

• We can also trivially obtain �rst-order references in any MA, by using the trivial strati-
�cation φ(p) = 0.
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1.5.10 Chapter VII : Applications
In Chapter VII , we will explore three interesting examples of application of the monitoring
algebra theory.

Linear naive set theory

We have seen in the Section 6.4 that by considering the step-indexing algebra Astep, it is pos-
sible to obtain two kinds recursive types:

• Guarded recursive types: in that case the realizability model still implies termination.

• Non-guarded recursive types: in which case we loose termination and only observe
safety.

There is another kind of recursive type which, like guarded recursive types, do not harm ter-
mination: the linear �xpoints. It is well-known [Gir92] that in the context of linear logic,
adding recursive types µX.L for every linear type L (i.e. that does not contain any occurence
of the exponential modality !) does not break strong normalization, even though they are not
guarded.

Here, we turn our interest to an even more general and older question: the consistency of
linear naive set theory. By naive set theory, we mean a set theory with the principle of
unrestricted comprehension: for every predicate P (x) there exists a set { x ∣ P } such that:

∀t, (t ∈ { x ∣ P } is logically equivalent to P (t))

It is well-known that in intuitionistic or classical logic, this principle yields an inconsistency
(for example considering the set { x ∣ x ∉ x } implies Russel’ Paradox). Grishin [Gri82] �rst
introduced in 1982 a naive set theory based on a contraction-free logic and showed the con-
sistency of such a theory. More expressive (and consistent) naive set theories have then been
proposed, based on light logics [Gir98, Ter04]: these theories are based on logics that have a
form of contraction that is not as powerful as the linear logic one but ensure the consistency.
The consistency of these theories is given by the cut-elimination theorem, usually proved by
a syntactic argument [Ter04, Shi94]. The question of �nding a semantical proof of the consis-
tency of these theories has been regularly raised [Kom89, Shi94, Ter02] but to our knowledge,
no such semantical proof has been given. We propose such a proof in the case of linear naive
set theory (i.e. , without any contraction), based on the combination of two 1-MAs:

• The quantitative 1-MA based on N.

• The step-indexing MA Astep.

The termination argument is then obtained by a surprising interaction between the two mon-
itors αtime and αstep, which compete to make their respective counter reach 0 �rst. We �nally
show evidence that this proof can be extended to more expressive naive set theories such as
elementary set theory or light a�ne set theory [Ter02].
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Polynomial-time programming language and recursive types

In this section, we consider a more concrete example: a programming language with unre-
stricted recursive types based on a substructural logic called soft a�ne logic (SAL) [BM04,
Laf04]. It means that the usual exponential of linear logic ! is weakened: the contraction rule is
restricted. As a result this type system ensures that all typable programs enjoy a polynomial-
time termination property. This example is the occasion to showcase the methodology of
monitoring algebras: we detail each step of the correctness proof of a concrete language. It
is basically as follows:

• We de�ne the syntax of a call-by-value language with an explicit modality and its type
system based on SAL.

• We build step by step a monitoring algebra that integrates the features required to show
the correctness of the language: a quantitative 1-MA, step-indexing to deal with recur-
sive types, the addition of adjoint modalities to reduce under !. We then show a sound-
ness theorem for this monitoring algebra, reusing many of the theorems and properties
proved in this thesis.

• We �nally de�ne a translation of the language into the call-by-push-value, and show that
the soundness of the monitoring algebra de�ned imply the polynomial-time termination
property.

This language is inspired by [BM12].

Strong update and linear capability

We study a small language that features a higher-order reference, but has the ability to perform
strong updates, very much inspired by the work of Ahmed et al. [AFM07]: in fact, modulo
the addition of dynamic references, we could translate their core language into this one. Strong
updates means that the type of the memory cell can change during the execution. This kind
of feature is usually not sound, but here the access to the memory cell is restricted thanks to a
linear discipline. We show that a simple monitoring algebra can be given by reusing a quantita-
tive 1-MA, the step-indexing algebra and a variant of the higher-order references construction
of Section 6.5, and a soundness theorem be proved such that it implies the termination of that
language.

1.6 | Summary of the contributions
We give a brief summary of all the contributions of this Thesis, chapter by chapter.

Chapter II
The �rst chapter introduces a linear variant λLCBPV of the call-by-push-value calculus, whose
type system features �rst-order quanti�ers and inequational reasoning. An abstract machine
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intended to execute the terms of this language is then de�ned. We then develop an extension
of this calculus with special memory cells that are used to keep tracks of some informations of
the execution. The corresponding abstract machine is called the Monitoring Abstract Machine.
We �nally give a (untyped) program transformation from λ1Mon to λLCBPV.

Chapter III

The type part of the program transformation mentioned in Chapter II is the focus of Chapter
III . We introduce the central notion of forcing monoid and forcing structure. We then de�ne
a forcing-based type system, that is an annotated version of the λLCBPV type system that we
use throughout the thesis. Finally, we de�ne the forcing type translation and use it to state and
prove that the forcing program transformation also preserves typing in a certain way.

Chapter IV

This chapter is devoted to the introduction and the basic study of the Monitoring Algebras.
We de�ne the interpretation of λLCBPV and show that each n-MA induces a sound model of
λLCBPV. We then turn our attention more closely to 1-MAs, by showing two important facts:

• A characterization of a subset of the A-monitors.

• The proof of the Connection Lemma.

We �nally give three basic examples of 1-MAs that illustrate the main use cases of the theory
of monitoring algebras.

Chapter V

Chapter V introduces two important ways of building new (n+1)-MAs, starting with old ones.
The �rst, the simple iteration, is shown to preserve several properties of the MAs, including
monitors and a generalization of the connection lemma. The second, called the semi-direct
iteration, is of a more exotic nature and we brie�y study its limited preservation properties.

Chapter VI

Several basic, reusable technical blocks are given in Chapter VI .

• Modalities: we �rst de�ne an algebraic notion of modality, and distinguish between
blocking and call-by-value modalities. We de�ne an algebraic operation on the monitor-
ing algebra that can be used to turn a blocking modality into a call-by-value modality.

• Strati�cation: we de�ne a class of MAs called strati�ed, that all can be endowed with
a certain structure of complete ultrametric space. We then apply Banach �xed-point
theorem to obtain a general purpose �xed-point theorem.
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• Step-indexing: we de�ne a particular strati�ed MA called the step-indexing algebra,
that corresponds to the well-known technique of step-indexing in our framework. We
study many of its properties and why it allows to obtain models of di�erent kinds of
recursive types: guarded à la Nakano and unrestricted recursive types. We �nally show
that these results can be transported to other MAs.

• Bounded-time termination: we study a class of 1-MAs called quantitative. We show
that they provide a basis to study various kinds of bounded-resource execution.

• Higher-order references: starting with the notion of strati�ed and step-indexed MA,
we show how higher-order references can be added to a language in a parametric way.

Chapter VII
We �nally give in Chapter VII some more complex applications of the theory, that each use
several of the basic blocks de�ned in Chapter VI .

• The �rst example is a proof of termination of linear naive set theory introduced by
[Shi94]. It is a naive set theory with an unrestricted comprehension scheme, but which
still enjoys consistency. We give the �rst semantics proof of this fact, by a surprising
combination of a bounded-time monitoring algebra and the step-indexing algebra.

• The second example is a programming language based on soft linear logic [Laf04], that
features recursive types. We show that our framework gives us a proof of the polynomial-
time execution of typed programs.

• The third example is a programming language with linear references and strong updates,
inspired by [AFM07]. We use a combination of the step-indexing MA and of a quan-
titative 1-MA to show that this language enjoys termination, even though it features
higher-order references and strong update.
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Chapter II

The monitoring abstract machine
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Contributions

We introduce the basic languages that will be used in this thesis. We begin in Section 2.1 by
introducing an a�ne variant of Levy’s call-by-push-value called λLCBPV, whose type system
is enriched with particular �rst-order quanti�ers and inequational theories. Section 2.1 is de-
voted to the de�nition of a�ne versions of the call-by-name and call-by-value calculi, and their
typed translation into λLCBPV. We then present an extension λMon of λLCBPV and the associ-
ated Monitoring Abstract Machine, that constitutes the heart of this thesis. This is done in
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Section 2.3. Finally, we give an untyped program transformation of λMon into λLCBPV, based
on the store-passing-style transformation.

2.1 | The call-by-push value calculus
We begin this chapter with the exposition of a variant of Levy’s call-by-push-value. We remind
the reader that call-by-push-value can be seen as a calculus generalizing both call-by-name and
call-by-value calculi. It is a polarised calculus, where positive values and negative computations
are two separated categories of the language.

2.1.1 Syntax

We start from an untyped λ-calculus featuring pairs, primitive integers, as well as conditional
branching, that we call λLCBPV . Its syntax di�erentiates two syntactical categories: the values
and the computations. Values correspond to already reduced terms, while computations corre-
spond to programs that still have to compute. The syntax of this core language is parametrized
by two sets:

• a setW of value symbols

• a set K of primitive symbols

The grammars of values and computations are de�ned by mutual induction as follows:

Values v,w ∶∶= x ∣ (v,w) ∣ ∗ ∣ 0 ∣ s(v) ∣ thunk(t) ∣ $ (where $ ∈W)
Computations t, u ∶∶= force(v) ∣ let∗ = v inu ∣ ret(v) ∣ λx.t ∣

(t)v ∣ t to x.u ∣ let (x, y) = v in t ∣
case v of x.t ∥x.u ∣ ✠ ∣ ζ (where ζ ∈ K)

This syntax features pairs, integers (including a successor and a case constructor). Here are
some remarks about the more unusual parts of this syntax:

• The thunk() constructor transforms a computation into a value, hence freezing it into a
thunk. Dually, the ret() constructor transforms a value into a computation.

• The application (t)v is restricted to value on the right hand. The sequential composition
is implemented by the constructor t to x.u: it reduces �rst t into a value, and then passes
it to u.

• The special computation✠, called the daimon, is inherited from Girard’s ludics [Gir01].
Once it is executed it stops immediately the computation and consider it a success. It is
useful in the realizability semantics when one wants to test only some parts of a program
while ignoring some others.
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• Finally, the syntax is parametrized by two sets: W and K. The �rst is a set of additional
values one can consider, and the latter is a set of additional primitives. This will allow to
add new primitives on the �y, and keep the de�nitions of semantics independent of any
language extension.

We denote by the letters t, u computations and by v,w values. We denote by the letters a, b
terms which can be computations or values. If @ is a term constructor (for example λ, the
application of two terms, or case), we denote by ∣t∣@ the number of times this constructor
appears in t.

Notation 32. We de�ne the following notations:

• We denote by V0 and P0 respecitively the sets of closed values and computations,
including the additional primitives coming from the setsW and K.

• We denote byVCore
0 and PCore

0 respecitively the sets of closed values and computations,
without the additional primitives coming from the setsW and K.

• We denote by λCore
LCBPV the core language, i.e. λLCBPV without the additional primitives.

2.1.2 An abstract machine

In order to executeλLCBPV programs, we de�ne an abstract machine. We �rst de�ne the syntac-
tic classes of environments and con�gurations. The latter being the results of an interaction
between a computation and an environment. We then give a reduction relation betwen such
con�gurations. To be precise, we de�ne a class of reduction relations that contain at least the
core reduction steps. When we consider new primitives, this allows us to add new reduction
steps as well.

De�nition 33 (Environments and con�gurations).

1. Environments are the �nite lists generated by the following grammar:

E ∶∶= nil ∣ a(v).E ∣ f(x.t).E

where v is closed and FV(t) ⊆ {x}.

2. A con�guration C is a pair ⟨t,E⟩0 of a closed computation t and an environmentE,
or the daimon con�guration✠, which represents an aborted execution.

3. A co-con�guration C is a pair ⟨↑ E,v⟩0 of a closed value v and an environment E.

The concept of co-con�guration will be useful when proving some results about the realizabil-
ity models of Chapter IV . They correspond to the fact that the call-by-push-value is a fragment
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of a much wider system where positive terms are not restricted to values and can be reduced.
The meaning of such a notion will be made clearer in Chapters III and Chapter IV .

Notation 34. We denote by C0 and E0 respectively the set of con�gurations and environ-
ments of λLCBPV. We denote by CCore

0 and ECore
0 respectively the set of con�gurations and

environments of λCore
LCBPV.

Remark 35. Because of this de�nition, a con�guration C never contains any free variable.

We now de�ne a reduction relation
0Ð→ on con�gurations. It is de�ned as the smallest relation

between con�gurations containing the next rules. The �rst two rules correspond to the usual
β-rule, that become simpler since the argument is always a value:

⟨(t)v,E⟩0
0Ð→ ⟨t, a(v).E⟩0

⟨λx.t, v.E⟩0
0Ð→ ⟨t[v/x],E⟩0

The next two rules correspond to the usual rules associated to a let constructor à la Moggi.

⟨t to x.u,E⟩0
0Ð→ ⟨t, f(x.u).E⟩0

⟨ret(v), f(x.u).E⟩0
0Ð→ ⟨u[v/x],E⟩0

The following reduction step corresponds to unfreezing a frozen computation:

⟨force(thunk(t)),E⟩0
0Ð→ ⟨t,E⟩0

The rule concerning the unit is:

⟨let∗ = ∗ in t,E⟩0
0Ð→ ⟨t,E⟩0

The rule concerning the pairs is:
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⟨let (x, y) = (v,w) in t,E⟩0
0Ð→ ⟨t[v/x,w/y],E⟩0

The rules for integers and conditional branching:

⟨case 0 of x.t1 ∥x.t2,E⟩0
0Ð→ ⟨t1[0/x],E⟩0

⟨case s(v)of x.t1 ∥x.t2,E⟩0
0Ð→ ⟨t2[v/x],E⟩0

Finally, we give a special rule for the daimon ✠:

⟨✠,E⟩0
0Ð→ ✠

Remark 36. Once the daimon✠ arrives in head position, the execution stops on the daimon
con�guration. This is very similar to the behavior of the daimon in Girard’s ludics.

Notation 37. Each reduction rule is determined by the term constructor in head position. If
@ is such a constructor (for example λ or case), a @-step is any reduction step associated with
a constructor @. For example, the following step is a λ-step:

⟨λx.t, v.E⟩0
0Ð→ ⟨t[v/x],E⟩0

In addition to the reduction relation 0Ð→, we also de�ne an equivalence relation ≅0 between
con�gurations and co-con�gurations:

⟨↑ E,v⟩0 ≅0 ⟨ret(v),E⟩0

2.1.3 First-order signature and evaluation
In order to be su�ciently expressive to formalize the forcing in it, the type system we will
consider for this language disposes of �rst-order quanti�ers and inequational implication. We
�rst de�ne the language of �rst-order expressions on which we can quantify, and then de�ne
what an inequational theory is.

2.1.3.1 First-order signature
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De�nition 38 (First-order signature). We de�ne several notions related to the �rst-order
syntax:

• A�rst-order signature S is a set of preordered sets, usually denoted (S,⪯S), (S′,⪯S′
), . . . .

• Given a signature S , we call arity any �nite tuple

(S1, . . . , Sn) ∈ Sn

We suppose that for each function f ∶ S1 × ⋅ ⋅ ⋅ ×Sn → Sn+1 with S1, . . . , Sn+1 ∈ S , we have
a corresponding function symbol ḟ .

De�nition 39. If ḟ is a function symbol denoting a function f ∶ S1 × . . . Sn → Sn+1, then
its arity, denoted by ar(f) is

ar(ḟ) = (S1, . . . , Sn, Sn+1)

For each arity S, we suppose disposing of an in�nite number of predicate variables

X,Y,Z, . . . of arity S. We denote the fact that X is of arity (S1, . . . , Sn) by

X ∶ (S1, . . . , Sn)

Finally, for each set S ∈ S , we suppose disposing of an in�nity of �rst-order variables

denoted by either the roman letters xS , yS , zS , . . . , or the greek letters ι, κ, σ.

De�nition 40 (First-order expressions). Given a signature S and a preordered set S ∈ S ,
we de�ne the set S-Exp of S-expression inductively using the two following rules:

xS ∈ S-Exp
e1 ∈ S1-Exp . . . en ∈ Sn-Exp ar(ḟ) = (S1 × ⋅ ⋅ ⋅ × Sn, Sn+1)

ḟ(e1, . . . , en) ∈ Sn+1-Exp

De�nition 41 (Evaluation).

• A �rst-order valuation ρ is an assignment of every variable xS to an actual element
ρ(xS) of S.

• Given a �rst-order valuation ρ and an element e of S-Exp, we de�ne the evaluation
of e and denote it JeKρ by induction:

JxSKρ = ρ(xS)
Jḟ(e1, . . . , en)Kρ = f(Je1Kρ, . . . , JenKρ)
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Property 42. If e ∈ S-Exp then for any �rst-order valuation ρ, JeKρ ∈ S.

2.1.4 The type system

We now have everything we need to describe the type system. Re�ecting the distinction be-
tween values and computations, the types are separated into positive types denoted by capital
letters P,Q, . . . and negative types, denoted by capital lettersN,M, . . . . Values will be typed
by positive types, while computations correspond to negative types. The grammar is de�ned
by mutual induction:

P,Q ∶∶= X(e1, . . . , en) ∣ ⇓N ∣ Nat ∣ P ⊗Q ∣ ∃x ∈ S.P ∣ {e ⪯S f} ∧ P
N,M ∶∶= ⇑P ∣ P ⊸ N ∣ ∀x ∈ S.N ∣ {e ⪰S f}↦ N

• The implication is a�ne. It means it represents the type of programs that use their ar-
gument at most once. Notice also that re�ecting the application construction which is
restricted to value argument, the implication is from positive to negatives.

• Two particular connectives are introduced because of the polarity: the positive shift

⇓ and the negative shift ⇑. They allow to pass from a negative to a positive, and vice
versa.

• First-order quanti�ers do not change the polarity, they are computationally transparent.

• Finally, we add an inequational implication and an inequational conjunction. They
are a slight modi�cation of the equational implication used by Miquel. The inequational
implication intuitively means

{e ⪰S f}↦ N ≡ { N if f ⪯S e
⊺ otherwise

where ⊺ is morally type of all computations. While the inequational conjunction intu-
ition is

{e ⪯S f} ∧ P ≡ e ⪯S f and P

Like the quanti�ers, they don’t change the polarity of the type and they are computa-
tionally transparent.

Notation 43. We use the capital lettersA,B, . . . to denote either a positive type or a negative
type.
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2.1.4.1 Predicates

Given a signature, we dispose of an in�nity of predicate variables. Each of these predicate
variable X has an arity ar(X). But it happens that types contain free �rst-order variables,
hence denoting themselves a predicate. It hence makes sense to assign to each type an arity.

De�nition 44. Given a type A, the set of the �rst-order free variables of A denoted by
FV(A) is de�ned inductively as follows:

FV(X(e1, . . . , en)) = ⋃i FV(ei)
FV(P ⊗Q) = FV(P ) ∪ FV(Q)

FV(P ⊸ N) = FV(P ) ∪ FV(N)
FV(⇑P ) = FV(P )
FV(⇓N) = FV(N)

FV(∀x ∈ S.N) = FV(N)/{xS}
FV(∃x ∈ S.P ) = FV(P )/{xS}

FV({e ⪯S f} ∧ P ) = FV(P ) ∪ FV(e) ∪ FV(f)
FV({e ⪰S f}↦ P ) = FV(P ) ∪ FV(e) ∪ FV(f)

De�nition 45. Let A be a type such that FV(A) = {xS1
1 , . . . , xSnn }.

• An interface of A is a bijective function σ ∶ J1, nK → FV(A), represented by the
notation (xσ(1), . . . , xσ(n)).

• A predicate is a type A together with an interface (xσ(1), . . . , xσ(n)), and is denoted
by A(xσ(1), . . . , xσ(n)).

• The arity of such a predicate is Sσ(1) × ⋅ ⋅ ⋅ × Sσ(n).

• The polarity of a predicate is the polarity of its type.

De�nition 46 (Substitution). Given a predicate A(x1, . . . , xn) of arity S1 × ⋅ ⋅ ⋅ × Sn, we
de�ne a notion of �rst-order substitution. If e is a Sk-expression, then

A(x1, . . . , xk−1, e, xk+1, . . . , xn)

is the type A where all occurrences of xSkk have been replaced by the �rst-order term e.

Notation 47. Given a predicate A(x1, . . . , xn), we may sometimes distinguish only one
variable xi of interest. In that case, if there is no ambiguity, we only write A(xi). Similarly,
we may sometimes identify a predicate A(x1, . . . , xn) with the type A.
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2.1.4.2 Typing rules

De�nition 48 (Inequational theory). Let S be a �rst-order signature. An inequational
theory E (over S) is a �nite set of inequations written

E = e1 ⪯S1 f1, . . . , en ⪯Sn fn

where for i ∈ [1, n], ei, fi are Si-expressions.

We use the notation E , e ⪯S f to denote the union of E and the singleton {e ⪯S f}. Every
such inequational theory E induces a subtyping relation between types.

De�nition 49 (E-valuation). If ρ is a �rst-order valuation and E is an inequational context,
we say that ρ is a E-valuation i�

e ⪯S f ∈ E ⇒ JeKρ ⪯S JfKρ

We then de�ne the relation ⪯E as follows

e ⪯E f ⇔ if ρ is a E-valuation, then JeKρ ⪯S JfKρ

De�nition 50 (Subtyping). Given an inequational theory E , we de�ne by induction in Figure
1 the following relations :

• The subtyping relation A ⊑E B between two types of the same polarity.

• If A ⊑E B and B ⊑E A, we note it A ≅E B.

De�nition 51 (Typing contexts and judgments).

• A typing context is a set of positive types assigned to variables written

x1 ∶ P1, . . . , xn ∶ Pn

and denoted by the capital greek letters Γ,∆.

• A typing judgment is of one of the two following forms:

E ; Γ ⊢0 t ∶ N

E ; Γ ⊢0 v ∶ P

where E is an inequational context, and Γ is a typing context.
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A ⊑E A
ek ≅S f

X(e1, . . . , ek−1, ek, . . . , en) ⊑E X(e1, . . . , ek−1, f, . . . , en)

A ⊑E B B ⊑E C
A ⊑E C

P ⊑E P ′ Q ⊑E Q′

P ⊗Q ⊑E P ′ ⊗Q′

P ⊑E Q N ⊑E M
Q⊸ N ⊑E P ⊸M

N ⊑E M
∀x ∈ S.N ⊑E ∀x ∈ S.M

P ⊑E Q
∃x ∈ S.P ⊑E ∃x ∈ S.Q

P ⊑E Q
⇑P ⊑E ⇑Q

N ⊑E M
⇓N ⊑E ⇓M

e′ ⪯E e f ⪯E f ′ N ⊑E,f⪰Se M
{e ⪰S f}↦ N ⊑E {e′ ⪰S f ′}↦M

e ⪯E e′ f ′ ⪯E f P ⊑E,e⪰Sf Q
{f ⪯S e} ∧ P ⊑E {f ′ ⪯S e′} ∧Q

Figure 1: De�nition of ⊑E

In Figure 2 are described the core typing rules corresponding to the logical rules. In Figure 4
are presented the rules for primitive integers.

Multiplicative connectives

E ; Γ, x ∶ P ⊢0 x ∶ P

E ; Γ ⊢0 v ∶ P
E ; Γ ⊢0 ret(v) ∶ ⇑P

E ; Γ ⊢0 t ∶ ⇑P E ; ∆, x ∶ P ⊢0 u ∶M
E ; Γ,∆ ⊢0 t to x.u ∶M

E ; Γ ⊢0 t ∶ N
E ; Γ ⊢0 thunk(t) ∶ ⇓N

E ; Γ ⊢0 v ∶ ⇓N
E ; Γ ⊢0 force(v) ∶ N

E ; Γ ⊢0 ∗ ∶ 1
E ; Γ ⊢0 v ∶ 1 E ; ∆ ⊢0 t ∶ N
E ; Γ,∆ ⊢0 let∗ = v in t ∶ N

E ; Γ, x ∶ P ⊢0 t ∶ N
E ; Γ ⊢0 λx.t ∶ P ⊸ N

E ; Γ ⊢0 t ∶ P ⊸ N E ; ∆ ⊢0 v ∶ P
E ; Γ,∆ ⊢0 (t)v ∶ N

E ; Γ ⊢0 v ∶ P E ; ∆ ⊢0 w ∶ Q
E ; Γ,∆ ⊢0 (v,w) ∶ P ⊗Q

E ; Γ ⊢0 v ∶ P ⊗Q E ; ∆, x ∶ P, y ∶ Q ⊢0 t ∶ N
E ; Γ,∆ ⊢0 let (x, y) = v in t ∶ N

Figure 2: λLCBPV Typing rules

Remarks 52. Here are some remarks on the type system.
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First-order quanti�ers

E ; Γ ⊢0 t ∶ N x#Γ

E ; Γ ⊢0 t ∶ ∀x ∈ S.N
E ; Γ ⊢0 t ∶ ∀x ∈ S.N e ∈ S-Exp

E ; Γ ⊢0 t ∶ N[e/x]

E ; Γ ⊢0 v ∶ P [e/x] e ∈ S-Exp
E ; Γ ⊢0 v ∶ ∃x ∈ S.P

E ; Γ ⊢0 v ∶ ∃x ∈ S.P E ; Γ, z ∶ P [y/x] ⊢0 a ∶ A y#Γ

E ; Γ ⊢0 a[v/z] ∶ A

Inequational implication and conjunction

E , e ⪰S f ; Γ ⊢0 t ∶ N
E ; Γ ⊢0 t ∶ {e ⪰S f}↦ N

E ; Γ ⊢0 t ∶ {e ⪰S e}↦ N

E ; Γ ⊢0 t ∶ N
E ; Γ ⊢0 v ∶ P e ⪯E f
E ; Γ ⊢0 v ∶ {e ⪯S f} ∧ P

E ; Γ ⊢0 v ∶ {e ⪯S e} ∧ P
E ; Γ ⊢0 v ∶ P

Subtyping

E ; Γ ⊢0 a ∶ A A ⊑E B
E ; Γ ⊢0 a ∶ B

Figure 3: λLCBPV Typing rules II

Primitive integers

E ; Γ ⊢0 0 ∶ Nat

E ; Γ ⊢0 v ∶ Nat

E ; Γ ⊢0 s(v) ∶ Nat

E ; Γ ⊢0 v ∶ Nat E ; ∆, x ∶ Nat ⊢0 t ∶ N E ; ∆, x ∶ Nat ⊢0 u ∶ N
E ; Γ,∆ ⊢0 case v of x.t ∥x.u ∶ N

Figure 4: λLCBPV Typing rules III

1. The type system is not linear but a�ne. That is, we allow unrestricted weakening. In
particular a program typable by P ⊸ N uses its argument at most once (and not exactly
once).

2. The rules concerning the inequational implication and conjunctions are perfectly trans-
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parent from the point of view of the terms: the term of the premise is not changed in
the conclusion. This allows to optimize the terms associated to proofs containing some
computationally-irrelevant reasoning.

Finally, we de�ne di�erent fragments of λLCBPV type system.

• The system containing only predicate variables, Nat, the tensor ⊗ and the a�ne impli-
cation⊸ is re�ered by:

λ⊗Nat
LCBPV

• The system containing in addition to Nat,⊗,⊸ the two universal and existential quan-
ti�ers is denoted by:

λ⊗Nat∀
LCBPV

2.2 | Call-by-name and call-by-value translations
It is well-known that one can retrieve in CBPV both a call-by-name and a call-by-value as
fragments. In fact, the purpose of CBPV is to unveil the elementary particles used to build
these two calculi. In this section, we show that this is still true when we consider our a�ne
variant λLCBPV of CBPV. We de�ne an a�nely typed λ-calculus called λAff . We then endow it
with two di�erent reduction strategies, one being call-by-name, the other being call-by-value.
We show how it is possible to give two di�erent typed translations of λAff in λLCBPV. These
translations are shown to be both type and reduction preserving. The call-by-name calculus
corresponds to the purely negative part of λLCBPV, while the call-by-value corresponds to the
purely positive part of λLCBPV.

2.2.1 The λ-calculus with pairs and integers

We de�ne a a�nely typed λ-calculus with pairs and integers. The syntax of terms and types
is given as follows:

Terms t, u ∶∶= x ∣ n ∣ s(t) ∣ λx.t ∣ (t)u ∣ case tof x.u1 ∥x.u ∣ (t, u) ∣ let (x, y) = t inu
Types A,B ∶∶= Nat ∣ A⊸ B ∣ A⊗B

A typing judgment is of the form

x1 ∶ A, . . . , xn ∶ A ⊢Aff t ∶ B

The typing rules are given in Figure 5.
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Γ, x ∶ A ⊢Aff x ∶ A Γ ⊢Aff 0 ∶ Nat

Γ ⊢Aff t ∶ Nat

Γ ⊢Aff s(t) ∶ Nat

Γ ⊢Aff t ∶ Nat ∆, x ∶ Nat ⊢Aff u1 ∶ A ∆, x ∶ Nat ⊢Aff u2 ∶ A
Γ,∆ ⊢Aff case tof x.u1 ∥x.u2 ∶ A

Γ, x ∶ A ⊢Aff t ∶ B
Γ ⊢Aff λx.t ∶ A⊸ B

Γ ⊢Aff t ∶ A⊸ B ∆ ⊢Aff u ∶ A
Γ,∆ ⊢Aff (t)u ∶ B

Γ ⊢Aff t ∶ A ∆ ⊢Aff u ∶ B
Γ,∆ ⊢Aff (t, u) ∶ A⊗B

Γ ⊢Aff t ∶ A⊗B ∆, x ∶ A,y ∶ B ⊢Aff u ∶ C
Γ,∆ ⊢Aff let (x, y) = t inu ∶ C

Figure 5: λAff typing rules

2.2.2 Call-by-name
We now endow λAff with a call-by-name reduction relation →N. It is described thanks to an
abstract machine, which is a simple variant of Krivine Abstract Machine. We then de�ne a
translation of λAff terms and types into λLCBPV and show that this translation preserves both
typing and the reduction relation.

Reduction

An environment is an element of the following grammar:

E ∶∶= nil ∣ t.E ∣ s.E ∣ (x.t ∣ x.u).E ∣ ((x, y).t).E

A con�guration is a pair ⟨t,E⟩N of a term and a call-by-name environment. We now de�ne
the reduction relation→N between such con�gurations as the union of the following reduction
steps:

79



2.2. CALL-BY-NAME AND CALL-BY-VALUE TRANSLATIONS

⟨(t)u,E⟩N →N ⟨t, u.E⟩N

⟨λx.t, u.E⟩N →N ⟨t[u/x],E⟩N

⟨s(t),E⟩N →N ⟨t, s.E⟩N

⟨n, s.E⟩N →N ⟨n + 1,E⟩N

⟨case tof x.u1 ∥x.u2,E⟩N →N ⟨t, (x.u1 ∣ x.u2).E⟩N

⟨n + 1, (x.t ∣ x.u).E⟩N →N ⟨u[n/x],E⟩N

⟨0, (x.t ∣ x.u).E⟩N →N ⟨t[0/x],E⟩N

⟨let (x, y) = t inu,E⟩N →N ⟨t, ((x, y).u).E⟩N

⟨(t, u), ((x, y).u).E⟩N →N ⟨u[t/x,u/y],E⟩N

Translation

We now give a typed translation of λAff to λLCBPV. This translation of terms and types is then
shown to satisfy a preservation theorem. We �rst de�ne a type translation map (.)N that maps
λAff types to negative types of λLCBPV. It is de�ned by induction on types:

NatN = ⇑Nat

(A⊸ B)N = (⇓AN)⊸ BN

(A⊗B)N = ⇑((⇓AN)⊗ (⇓BN))

We then provide a translation of λAff terms to λLCBPV computations as follows:

xN = force(x)
nN = ret(n)

(s(t))N = t to x.ret(s(x))
(case tof x.t1 ∥x.t2)N = tN to z.case z of x.tN1 ∥x.tN2

(λx.t)N = λx.tN

((t)u)N = (tN)thunk(uN)
((t, u))N = ret((thunk(tN), thunk(uN)))

(let (x, y) = t inu)N = tN to z.let (x, y) = z inuN

This translation of terms and types satis�es a type preservation theorem.

Theorem 53 (Call-by-name type preservation). If x1 ∶ A1, . . . , xn ∶ An ⊢Aff t ∶ B then
x1 ∶ AN

1 , . . . , xn ∶ AN
n ⊢V t

N ∶ BN.

We now want to show that the reduction is also preserved. To do that, we need to give
�rst a translation of call-by-name environments into λLCBPV environments. It is de�ned by
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induction as follows:

nilN = nil

(t.E)N = thunk(tN).EN

(s.E)N = f(x.ret(s(x))).EN

((x.t ∣ x.u).E)N = f(z.case z of x.tN1 ∥x.tN2 ).EN

(((x, y).t).E)N = f(z.let (x, y) = z inuN).EN

A call-by-name con�guration ⟨t,E⟩N is then mapped to a λLCBPV con�guration

(⟨t,E⟩N)N = ⟨tN,EN⟩0

Theorem 54 (Call-by-name reduction preservation). Let C,C ′ be two call-by-name con-
�gurations. Then

C →N C
′ ⇒ (C)N 0Ð→

∗

C ′N

2.2.3 Call-by-value
We now endow λAff with a call-by-value reduction relation →V. It is described thanks to an
abstract machine. We then de�ne a translation of λAff terms and types into λLCBPV and show
that this translation preserves both typing and the call-by-value reduction relation.

Reduction

To de�ne the reduction relation, we �rst need to de�ne what values are:

v,w ∶∶= λx.t ∣ (v,w) ∣ n

A call-by-value environment is an element of the following grammar:

E ∶∶= nil ∣ f(v).E ∣ a(t).E ∣ s.E ∣ (x.t ∣ x.u).E ∣ (v, _).E ∣ (_, t).E ∣ ((x, y).t).E

A call-by-value con�guration is a pair ⟨t,E⟩V of a term and a call-by-value environment. We
now de�ne the reduction relation→V between such con�gurations as the union of the follow-
ing reduction steps:
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⟨(t)u,E⟩V →V ⟨u, a(t).E⟩V

⟨λx.t, f(v).E⟩V →V ⟨t[v/x],E⟩V

⟨s(t),E⟩V →V ⟨t, s.E⟩V

⟨n, s.E⟩V →V ⟨n + 1,E⟩V

⟨case tof x.u1 ∥x.u2,E⟩V →V ⟨t, (x.u1 ∣ x.u2).E⟩V

⟨n + 1, (x.t ∣ x.u).E⟩V →V ⟨u[n/x],E⟩V

⟨0, (x.t ∣ x.u).E⟩V →V ⟨t[0/x],E⟩V

⟨let (x, y) = t inu,E⟩V →V ⟨t, ((x, y).u).E⟩V

⟨(t, u),E⟩V →V ⟨t, (_, u).E⟩V

⟨v, (_, t).E⟩V →V ⟨t, (v, _).E⟩V

⟨w, (v, _).E⟩V →V ⟨(v,w),E⟩V

⟨(v,w), ((x, y).u).E⟩V →V ⟨u[v/x,w/y],E⟩V

Translation

We now give a typed translation ofλAff toλLCBPV. This translation of values, terms and types is
then shown to satisfy a type preservation theorem. We then show that call-by-value reduction
is also preserved. We �rst de�ne a type translation map (.)V that maps λAff types to positive
types of λLCBPV. It is de�ned by induction on types:

NatV = Nat
(A⊸ B)V = ⇓(AV ⊸ (⇑BV ))
(A⊗B)V = AV ⊗BV

We also give a translation of λAff terms to computations of λLCBPV:

xV = ret(x)
nV = ret(n)

(s(t))V = t to x.ret(s(x))
(case tof x.t1 ∥x.t2)V = t to z.(case z of x.tV1 ∥x.tV2 )

(λx.t)V = ret(thunk(λx.tV ))
((t)u)V = uV to x.((tV ) to y.((force(y))x))

((t, u))V = tV to x.(uV to y.(ret((x, y))))
(let (x, y) = t inu)V = tV to z.let (x, y) = z inuV

The translation satis�es the following preservation theorem.
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Theorem 55 (Type preservation). If x1 ∶ A1, . . . , xn ∶ An ⊢Aff t ∶ B then x1 ∶ AV
1 , . . . , xn ∶

AV
n ⊢V t

V ∶ ⇑BV.

We now want to show that the reduction is also preserved. To do that, we need to give
�rst a translation of call-by-value environments into λLCBPV environments. It is de�ned by
induction as follows:

nilV = nil

(f(t).E)V = f(x.(tV to y.(force(y))x).EV

(a(v).E)V = f(x.force(x)vV).(E)V

(s.E)V = f(x.ret(s(x))).EV

((x.t ∣ x.u).E)V = f(z.case z of x.tV1 ∥x.tV2 ).EV

(((x, y).t).E)V = f(z.let (x, y) = z inuV).EV

A call-by-value con�guration ⟨t,E⟩V is then mapped to a λLCBPV con�guration

(⟨t,E⟩V)V = ⟨tV,EV⟩0

Theorem 56 (Call-by-value reduction preservation). Let C,C ′ be two call-by-value con-
�gurations. Then

C →V C
′ ⇒ CV 0Ð→

∗

C ′V

2.3 | The monitoring abstract machine

We present an extension of the call-by-push-value that we call λMon. λMon is intended to be
the target language of various translations of λLCBPV. As we will see, many translations are
possible. Depending on the translation, observing the behavior of the translated programs
will allow us to observe �ne computational properties of the original source program. λMon

programs are executed in the Monitoring Abstract Machine (or MAM). It is an extension
of the call-by-push-value machine de�ned in Section 2.1, with the addition of what we call
a monitoring state, i.e. a state in which informations about the execution of λ-terms are
accumlating during their reduction, and that can trigger di�erent events depending on those
informations.
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2.3.1 λMon syntax and reduction

Extended syntax

The syntax of computations, environments, con�gurations and co-con�gurations is extended
as follows (here, n ∈ N ∖ {0}):

t ∶∶= . . . ∣ LtMαn (α is a closed computation)
E ∶∶= . . . ∣ mn(t).E (t is a closed computation)
C ∶∶= . . . ∣ ⟨t,E⟩n (t is a closed computation)
C ∶∶= . . . ∣ ⟨↑ E,v⟩n

We will mostly be interested in con�gurations of the form:Âă

⟨t, a(v1). . . . a(vn).E⟩n
In such con�gurations the di�erent values v1, . . . , vn represent the content of the memory
cells. The constructor L.Mαn , which we call observation, will be responsible for the update of
the n-th memory cell. This update is achieved through the program α called the monitor.
This observation should be seen as an annotation in a program, that marks a point of control.

Notation 57. For each n ∈ N, we use λnMon to refer to the restriction of this extended syntax
to those constructors indexed up to n. As an example, λ0Mon corresponds to λLCBPV. We use
the notations Vn,Pn,En,Cn and Cn to denote respectively the closed values, closed compu-
tations, closed environments con�gurations and co-con�gurations of λnMon. We then have the
following equalities:

V =⋃
n
Vn, P =⋃

n
Pn E =⋃

n
En C =⋃

n
Cn and C =⋃

n
Cn

Notation 58. We will often use the vector notation as follows:

• Ð→v denotes a tuple of values (v1, (v2, . . . , vn) . . . ).

•
ÐÐ→
a(v).E denotes a stack a(v1). . . . a(vn).E.

Monitoring reduction

We de�ne a new reduction relation, denoted by nÐ→ . It is de�ned by induction on n ∈ N, starting
with 0Ð→ de�ned in Chapter II , using the following schemes of rules.

• The �rst scheme of reduction rules only says that n+1ÐÐ→ contains nÐ→ . It is de�ned as
a rule, saying every nÐ→ reduction step induces a corresponding n+1ÐÐ→ reduction step.
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C
nÐ→ C ′

C
n+1ÐÐ→ C ′

• The second scheme of reduction rules extends the relation nÐ→ by adding exactly one
memory cell. Each nÐ→ reduction step induces a new reduction step that does not alter
the value in that memory cell.

⟨t, a(v1). . . . a(vn).E⟩n
nÐ→ ⟨t′, a(v′1). . . . a(v′n).E′⟩n

⟨t, a(v1). . . . a(vn).a(v).E⟩n+1
n+1ÐÐ→ ⟨t′, a(v′1). . . . a(v′n).a(v).E′⟩n+1

• We also distinguish the case when the daimon con�guration is observed:

⟨t, a(v1). . . . a(vn).E⟩n
nÐ→ ✠

⟨t, a(v1). . . . a(vn+1).E⟩n+1
n+1ÐÐ→ ✠

• The next rule allows to enter what we call the monitoring mode. It happens when
an observation of the form LtMαn is in head position, and triggers the introduction of the
monitor α, but at level n:

⟨LtMαn, a(v1). . . . a(vn+1).E⟩n+1
n+1ÐÐ→ ⟨α, a(v1). . . . a(vn+1).mn+1(t).E⟩n

Being at level n, α can then access the value vn+1 and modify it.

• We introduce a rule to exit the monitoring mode at level n. Once the computation trig-
gered by a previous use of the monitor α has ended on a value, we can use the following
rule to put that value into the monitoring state:

⟨ret(v), a(v1). . . . a(vn).mt(n + 1).E⟩n
n+1ÐÐ→ ⟨t, a(v1). . . . a(vn).a(v).E⟩n+1

• Finally, we also introduce the following equivalence rule:
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⟨ret(v), a(v1). . . . a(vn+1).E⟩n+1 ≅n+1 ⟨↑ E, (v, (vn+1, . . . , v1)⟩n+1

Remark 59. We can explain the meaning of the equivalence rule ≅n. Consider the case n = 1:

⟨ret(v), a(w).E⟩1 ≅1 ⟨↑ E, (v,w)⟩1

This will correspond to the fact that in the store-passing program translation, during the
computation, the content of the state of type S is passed as an argument of the program, and
this corresponds to a type of the form

S ⊸ N

When the computation ends however, we return a pair of values containing the value of the
program and the �nal content of the store, corresponding to the type

S ⊗ P

To prove some results of Chapter IV (in particular the connection theorem), we will need to
be able to switch between the two representations.

Notation 60. We de�ne the monitoring reduction relation → as the union of all
nÐ→ :

→ = ⋃
n∈N

nÐ→

We also de�ne the monitoring equivalence relation ≅ as the union of all ≅n:

≅ = ⋃
n∈N

≅n

We �nally de�ne the notation C ⇑ that stands for “C diverges”.

2.3.2 Examples of reduction at level ≤ 1
To give some intuitions on the monitoring abstract machine, we show several examples of
reductions of a same con�guration

⟨LLIMα1 0Mα1 , a(v).E⟩1

but for di�erent choices of α and di�erent choice of the value v initially put in the state. The re-
duction steps which are about the manipulation of the monitoring state have been highlighted
in blue.
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Trivial monitoring

The �rst monitor example is the trivial monitor

α = I = λx.ret(x)

We consider any value v that we put in the state. Here is the sequence of reduction steps:

⟨LLIMα1 0Mα1 , a(v).E⟩1
1Ð→ ⟨λx.ret(x), a(v).m1(LIMα1 0).E⟩0
1Ð→ ⟨ret(v),m1(LIMα1 0).E⟩0
1Ð→ ⟨LIMα1 0, a(v).E⟩1
1Ð→ ⟨LIMα1 , a(v).a(0).E⟩1
1Ð→ ⟨λx.ret(x), a(v).m1(I).a(0).E⟩0
1Ð→ ⟨ret(v),m1(I).a(0).E⟩0
1Ð→ ⟨I, a(v).a(0).E⟩1
1Ð→ ⟨ret(0), a(v).E⟩1

Clearly, the monitor is not interfering with the reduction. If we erase the highlighted re-
duction steps, we see that we retrieve the usual 0Ð→ reduction.

Clock

We now consider the clock monitor

α = λx.ret(s(x))

We show the reduction sequence of LLIMα1 0Mα1 and the term 3 in the monitoring state.

⟨LLIMα1 0Mα1 , a(3).E⟩1
1Ð→ ⟨λx.ret(s(x)), a(3).m1(LIMα1 0).E⟩0
1Ð→ ⟨ret(4),m1(LIMα1 0).E⟩0
1Ð→ ⟨LIMα1 0, a(4).E⟩1
1Ð→ ⟨LIMα1 , a(4).a(0).E⟩1
1Ð→ ⟨λx.ret(s(x)), a(4).m1(I).a(0).E⟩0
1Ð→ ⟨ret(5),m1(I).a(0).E⟩0
1Ð→ ⟨I, a(5).a(0).E⟩1
1Ð→ ⟨ret(0), a(5).E⟩1

This example witnesses one possible use of the monitoring state: a counter incremented
when certain parts of a λ-term are executed. This can be used to implement a clock.
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Countdown: divergence

Here is another example. We now choose the following monitor:

α = λx.casexof x.Ω ∥x.ret(x)

Where Ω is the call-by-name translation of the term (λx.xx)(λx.xx):

Ω
def= ((λx.xx)(λx.xx))N

Hence, when Ω comes into head position, it makes the con�guration diverge. We show two
di�erent executions: when the state is initially set to 2 and 1.

⟨LLIMα1 0Mα1 , a(2).E⟩1
1Ð→ ⟨α, a(2).m1(LIMα1 0).E⟩0
1Ð→∗ ⟨ret(1),m1(LIMα1 0).E⟩0
1Ð→ ⟨LIMα1 0, a(1).E⟩1
1Ð→ ⟨LIMα1 , a(1).a(0).E⟩1
1Ð→ ⟨α, a(1).m1(I).a(0).E⟩0
1Ð→ ⟨ret(0),m1(I).a(0).E⟩0
1Ð→ ⟨I, a(0).a(0).E⟩1
1Ð→ ⟨ret(0), a(0).E⟩1

Here the counter is decremented and the execution is somewhat similar to the previous
example. Now here is what happens when we put 1 in the monitoring state.

⟨LLIMα1 0Mα1 , a(1).E⟩1
1Ð→ ⟨α, a(1).m1(LIMα1 0).E⟩0
1Ð→∗ ⟨ret(0),m1(LIMα1 0).E⟩0
1Ð→ ⟨LIMα1 0, a(0).E⟩1
1Ð→ ⟨LIMα1 , a(0).a(0).E⟩1
1Ð→ ⟨α, a(0).m1(I).a(0).E⟩0
1Ð→ ⟨Ω,m1(I).a(0).E⟩0

⇑
Here, the monitor plays the role of a countdown: it is a counter that makes the computation

diverge once it reaches 0. This example shows that changing the value in the monitoring state
can a�ect the termination of the resulting con�guration.

Countdown: termination

If we now choose the following variation of the previous example:

α = λx.casexof x.✠ ∥x.ret(x)

We put 1 in the monitoring state and reduce the same term as before.
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⟨LLIMα1 0Mα1 , a(1).E⟩1
1Ð→ ⟨α, a(1).m1(LIMα1 0).E⟩0
1Ð→∗ ⟨ret(0),m1(LIMα1 0).E⟩0
1Ð→ ⟨LIMα1 0, a(0).E⟩1
1Ð→ ⟨LIMα1 , a(0).a(0).E⟩1
1Ð→ ⟨α, a(0).m1(I).a(0).E⟩0
1Ð→ ⟨✠,m1(I).a(0).E⟩0
1Ð→ ✠

Here again, we have a countdown. But when the counter reaches 0, we stop the execution
using ✠. Dually to the previous example where divergence can be caused by the value in the
monitoring state, here it can prevent it from happening by triggering the execution of ✠.

2.3.3 Reduction at level ≥ 2
The reduction at level ≥ 2 allows more complex behaviors.

Example 61. One should observe that when executed at level 2, a program has no direct
access to the memory cell of level 1. Indeed, changing the value of a memory cell is only
possible by triggering an observation L.M2, which is done on the memory cell of the current
level.

⟨LtMα2 , a(v).a(w).E⟩2 → ⟨α, a(v).a(w).m2(t).E⟩1

It is however possible to change indirectly the memory cell of level 1 through an appro-
priate monitor. Suppose β = λx.ret(s(x)) and α = λx.Lret(x)Mβ1 , then the con�guration
⟨LtMα2 , a(n).a(v).nil⟩2 reduces as follows:

⟨LtMα2 , a(n).a(v).nil⟩2 → ⟨λx.LxMβ1 , a(n).a(v).m2(t).nil⟩1

→∗ ⟨Lret(v)Mβ1 , a(n).m2(t).nil⟩1

→ ⟨λx.ret(s(x)), a(n).m1(ret(v)).m2(t).nil⟩0

→∗ ⟨ret(n + 1),m1(ret(v)).m2(t).nil⟩0

→ ⟨ret(v), a(n + 1).m2(t).nil⟩1

→ ⟨t, a(n + 1).a(v).nil⟩2

Example 62. One can also make the update of the level 1 memory cell depend on the content
of the 2memory cell. Suppose β = λx.ret(s(x)) andα = λx.casexof x.Lret(0)Mβ1 ∥x.ret(x).
Here are two reductions for the con�gurations ⟨LtMα2 , a(n).a(k).nil⟩2 where k ∈ {0,1}. When
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k = 1 the reduction is:

⟨LtMα2 , a(n).a(1).nil⟩2 → ⟨α, a(1).a(n).m2(t).nil⟩1

→∗ ⟨ret(n), a(0).m2(t).nil⟩1

→∗ ⟨t, a(0).a(n).nil⟩2

When k = 0, we have

⟨LtMα2 , a(n).a(0).nil⟩2 →∗ ⟨α, a(n).a(0).m2(t).nil⟩1

→∗ ⟨Lret(0)Mβ1 , a(n).m2(t).nil⟩1

→∗ ⟨ret(n + 1),m1(ret(0)).m2(t).nil⟩0

→ ⟨ret(0), a(n + 1).m2(t).nil⟩1

→ ⟨t, a(n + 1).a(0).nil⟩2

If it is possible to make the level 1 cell depends of the level 2 cell, it is impossible to reverse
this dependency: the level 2 cell cannot depend a priori (without adding new primitives) of the
the level 1 cell.

2.3.4 Program translations
We now give a �rst glimpse on typical use cases of the monitoring abstract machine. λMon

will often be the target of a certain translation from (an extension of) λLCBPV programs. These
translations are typically annotations of the source program with well-chosen observations. By
observing the behavior of these annotated programs in the MAM, we will be able to observe
complex computational properties of the source program. We �rst de�ne a generic annotation,
parametric in the choice of the monitor.

De�nition 63 (Annotation). Let α be a closed term and n ∈ N. If t is a computation, we
de�ne {t}αk by induction on t. On λ constructors it is de�ned as:

{λx.t}αk = Lλx.{t}αk Mαk

and {.}αk commutes with all other constructors.

To put things simply, {.}αk annotates each λ constructor with an observation L.Mkα. This implies
that before each β-reduction happening during the execution, this observation is triggered. We
now look at particular instances of this annotation.

Bounded-time termination

The �rst example uses the following monitor, already seen in the examples:

αtime = λx.casexof x.Ω ∥x.ret((x))

The memory cell represents a counter that decreases each time an observation is made, or
make the con�guration diverge if the counter was already 0. The following theorem states that
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observing the termination of annotated terms amounts to observe bounded-time termination.

Theorem64. Let t ∈ P0 be a level 0 computation. The following propositions are equivalent:

1. ⟨t,nil⟩0 terminates in less than n λ reduction steps.

2. ⟨{t}αtime
1 , a(n).nil⟩1 terminates.

Proof. The reduction steps in the con�guration at level 1 are the same as those of the original con�g-
uration at level 0, except that before each λ reduction step, the counter is decreased by one if it greater
that 1 and diverge otherwise. Hence, the con�guration ⟨{t}αtime

1 , a(n).nil⟩1 diverges if and only if strictly
more than n λ reduction steps are performed during the execution of ⟨t,nil⟩0.

Safety

The second example uses the monitor dual to αtime:

αstep = λx.casexof x.✠ ∥x.ret((x))

When using this monitor, the memory cell intuitively represents a counter that decreases each
time an observation is made, or make the con�guration converge (by triggering the daimon✠)
if the counter was already 0. The following theorem states that observing the termination of
annotated terms amounts to observe safety.

Theorem65. Let t ∈ P0 be a level 0 computation. The following propositions are equivalent:

1. ⟨t,nil⟩0 diverges or terminates on a value.

2. For every n ∈ N, ⟨{t}αstep

1 , a(n).nil⟩1 terminates on a value or on ✠.

Proof. The reduction steps in the con�guration at level 1 are the same as those of the original con�g-
uration at level 0, except that before each λ reduction step, the counter is decreased by one if it greater
that 1 and converges on ✠ otherwise. Hence, the con�guration

Cn = ⟨{t}αstep

1 , a(n).nil⟩1

converges on a value or on ✠ if and only if the original con�guration ⟨t,nil⟩0 uses at least n + 1 λ

reduction steps (and in that case ✠ is triggered) or reduces on a value in less than n λ steps. Therefore
Cn converges for all n ∈ N if and only if ⟨t,nil⟩0 terminates on a value or diverges.

2.4 | Program transformation
We are interested in giving a typed program transformation of the monitoring calculus λ1Mon

into the base calculus λLCBPV. In this section, we de�ne the syntactic, untyped part of this
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transformation, while the more complicated type part is left for Chapter III . This program
transformation is shown to preserve the dynamic semantics of the monitoring calculus. For the
most part, it is an adaptation to the call-by-push-value of the usual store-passing-style program
transformation, with a straightforward variation concerning the observation constructor. We
could have de�ned a more general program transformation ofλn+1Mon intoλnMon, as it is essentially
the same transformation.

De�nition 66 (Program transformation). We de�ne a translation function ⟪.⟫κ that maps
λ1Mon values to λLCBPV values, and λ1Mon computations to λLCBPV computations. Let κ be
a fresh variable. This variable appears free in every translated term ⟪t⟫κ, whereas it only
appears bound in ⟪v⟫. These two maps are de�ned by mutual recursion.

• We �rst give the de�nition ⟪.⟫ on values as follows:

⟪x⟫ = x
⟪∗⟫ = ∗
⟪0⟫ = 0

⟪s(v)⟫ = s(⟪v⟫)
⟪(v,w)⟫ = (⟪v⟫,⟪w⟫)

⟪thunk(t)⟫ = thunk(⟪t⟫)

• We �nally unveil the de�nition of the ⟪.⟫ map on computations:

⟪ret(v)⟫ = λκ.ret((⟪v⟫, κ))
⟪force(v)⟫ = force(⟪v⟫)

⟪λx.t⟫ = λκ.λx.(⟪t⟫κ)
⟪(t)v⟫ = λκ.(⟪t⟫κ)⟪v⟫

⟪t to x.u⟫ = λκ.⟪t⟫κ to z.(let (x,κ′) = z in⟪u⟫κ′)
⟪let (x, y) = v in t⟫ = let (x, y) = ⟪v⟫ in⟪t⟫

⟪let∗ = v in t⟫ = let∗ = ⟪v⟫ in⟪t⟫
⟪case v of x.t ∥x.u⟫ = case⟪v⟫of x.⟪t⟫κ ∥x.⟪u⟫

⟪LtMα1⟫ = λκ.(α)κ to κ.⟪t⟫κ
⟪✠⟫ = (✠)

The program transformation satis�es a substitution lemma.

Lemma 67 (Substitution lemma). Let t ∈ P, v,w ∈ V and x a variable that does not appear
bound in v or t. Then both propositions hold:

⟪v[w/x]⟫ = ⟪v⟫[⟪w⟫/x] (1)
⟪t[w/x]⟫ = ⟪t⟫[⟪w⟫/x] (2)

Proof. These two propositions are proved by mutual induction on the v and t. Let’s begin with the
proof of (1) by inspecting all the cases for v.

• Variable ::
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– If v is the variable x, then ⟪x[w/x]⟫ = ⟪w⟫ = ⟪x⟫[⟪w⟫/x].
– If v is a variable y ≠ x, then ⟪y[w/x]⟫ = ⟪y⟫ = y = y[⟪w⟫/x] = ⟪y⟫[⟪w⟫/x].

• Unit :: It is immediate since ∗ has no free variable.
• Zero :: It is immediate since 0 has no free variable.
• Successor :: Suppose that we know by induction that (1) is true for v. Then

⟪s(v)[w/x]⟫ = ⟪s(v[w/x])⟫ = s(⟪v[w/x]⟫) = s(⟪v⟫[w/x]) = ⟪s(v)⟫[w/x]

• Pair :: Suppose that we know by induction (IH) that

⟪v1[w/x]⟫ = ⟪v1⟫[⟪w⟫/x]
⟪v2[w/x]⟫ = ⟪v2⟫[⟪w⟫/x]

Consider the pair (v1, v2). Then

⟪(v1, v2)[w/x]⟫ = (⟪v1[w/x]⟫,⟪v2[w/x]⟫)
= (⟪v1⟫[⟪w⟫/x],⟪v2⟫[⟪w⟫/x]) (IH)
= (⟪v1⟫,⟪v2⟫)[⟪w⟫/x]
= ⟪(v1, v2)⟫[⟪w⟫/x]

• Thunk :: Suppose that (2) holds for t. Then similarly to the successor case

⟪thunk(t)[w/x]⟫ = ⟪thunk(t[w/x])⟫
= thunk(⟪t[w/x]⟫)
= thunk(⟪t⟫[⟪w⟫/x]) (2)
= ⟪thunk(t)⟫[⟪w⟫/x]

Let’s now consider all the cases for t and prove (2).
• Return :: Suppose that (1) holds for v (IH). We have:

⟪ret(v)[w/x]⟫ = ⟪ret(v[w/x])⟫
= λκ.ret((⟪v[w/x]⟫, κ))
= λκ.ret((⟪v⟫[⟪w⟫/x], κ)) (IH)
= (λκ.ret((⟪v⟫, κ)))[⟪w⟫/x]
= ⟪ret(v)⟫[⟪w⟫/x]

• Force :: This case is similar to the previous case.
• Lambda :: Suppose that (2) holds for t (IH). We have:

⟪(λy.t)[w/x]⟫ = ⟪λy.(t[w/x])⟫
= λκ.λy.⟪(t[w/x])⟫κ
= λκ.λy.(⟪t⟫[⟪w⟫/x])κ (IH)
= (λκ.λy.⟪t⟫κ)[⟪w⟫/x] by α-conversion
= ⟪λy.t⟫[⟪w⟫/x]

• Application :: Suppose that (1) holds for v (IH1) and that (2) holds for t (IH2). Then:

⟪((t)v)[w/x]⟫ = ⟪(t[w/x])v[w/x]⟫
= λκ.(⟪t[w/x]⟫κ)⟪v[w/x]⟫
= λκ.(⟪t⟫[⟪w⟫/x]κ)⟪v⟫[⟪w⟫/x] (IH1), (IH2)
= (λκ.(⟪t⟫κ)⟪v⟫)[⟪w⟫/x] by α-conversion
= ⟪(t)v⟫[⟪w⟫/x]
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• To :: Suppose that (2) holds for t (IH1) and for u (IH2). Then:

⟪t to y.u[w/x]⟫ = ⟪t[w/x] to y.u[w/x]⟫
= λκ.⟪t[w/x]⟫κ to z.(let (y, κ′) = z in⟪u[w/x]⟫κ′)
= λκ.⟪t⟫[⟪w⟫/x]κ to z.(let (y, κ′) = z in⟪u⟫[⟪w⟫/x]κ′) (IH1), (IH2)
= (λκ.⟪t⟫κ to z.(let (y, κ′) = z in⟪u⟫κ′))[⟪w⟫/x]
= ⟪t to y.u⟫[⟪w⟫/x]

• Pair elim. :: Suppose that (1) holds for v (IH1) and (2) holds for t (IH2). Then:

⟪(let (z, y) = v in t)[w/x]⟫ = ⟪let (z, y) = v[w/x] in t[w/x]⟫
= let (z, y) = ⟪v[w/x]⟫ in⟪t[w/x]⟫
= let (z, y) = ⟪v⟫[⟪w⟫/x] in⟪t⟫[⟪w⟫/x] (IH1), (IH2)
= (let (z, y) = ⟪v⟫ in⟪t⟫)[⟪w⟫/x] α-conversion
= ⟪let (z, y) = v in t⟫[⟪w⟫/x]

• Unit elim. :: Suppose that (1) holds for v (IH1) and (2) holds for t (IH2). Then:

⟪(let∗ = v in t)[w/x]⟫ = ⟪let∗ = v[w/x] in t[w/x]⟫
= let∗ = ⟪v[w/x]⟫ in⟪t[w/x]⟫
= let∗ = ⟪v⟫[⟪w⟫/x] in⟪t⟫[⟪w⟫/x] (IH1), (IH2)
= (let∗ = ⟪v⟫ in⟪t⟫)[⟪w⟫/x]
= ⟪let∗ = v in t⟫[⟪w⟫/x]

• Case :: this case is similar to the previous one.
• Observation :: Suppose that (2) is true for t (IH). Then:

⟪LtMα1 [w/x]⟫ = ⟪Lt[w/x]Mα1 ⟫
= λκ.(α)κ to κ′.(⟪t[w/x]⟫κ′)
= λκ.(α)κ to κ′.(⟪t⟫[⟪w⟫/x]κ′) (IH)
= ⟪LtMα1 ⟫[⟪w⟫/x]

• Daimon :: This case is easy since

⟪✠[v/x]⟫ = ⟪✠⟫ =✠ =✠[⟪v⟫/x]

Since we only have de�ned the execution of a program through the de�nition of the abstract
machine, we need to extend the translation to environments and con�gurations in order to state
the simulation theorem.

De�nition 68 (Environments and con�gurations transformation). Since there are two
modes of execution, we need two di�erent maps, the �rst ⟪.⟫ is used to translate environ-
ments used during executions in the normal mode.

⟪nil⟫ = nil
⟪a(v).E⟫ = a(⟪v⟫).⟪E⟫

⟪f(x.t).E⟫ = f(z.(let (x,κ) = z in⟪t⟫κ)).⟪E⟫
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The second map J.K● corresponds to the monitoring mode.

JnilK = nil
Ja(v).EK = a(v).JEK

Jf(x.t).EK = f(x.t).JEK
Jm1(t).EK = f(κ.⟪t⟫κ).⟪E⟫

We �nally translate the di�erent con�gurations.

⟪⟨t, a(v).E⟩1⟫ = ⟨⟪t⟫, a(v).⟪E⟫⟩0

⟪⟨↑ E, (v,w)⟩1⟫ = ⟨↑ ⟪E⟫, (⟪v⟫,w)⟩0

⟪⟨t,E⟩0⟫ = ⟨t, JEK⟩0

⟪⟨↑ E,v⟩0⟫ = ⟨↑ JEK, v⟩0

The following simulation result holds for the program transformation. It basically says that
the transformation preserves the reduction of λ1Mon.

Theorem 69 (Simulation). The following propositions hold:

C
1Ð→C ′ implies ⟪C⟫( 0Ð→)∗ ⟪C ′⟫

C ≅1 C implies ⟪C⟫ 0Ð→ C ′ ≅0 ⟪C⟫

Proof. We have three di�erent statements to prove. One for the reduction steps at level 1, one for the
reduction steps at level 0 and �nally for the equivalence.

1. Let C = ⟨t′, a(u).E⟩1. We proceed by enumerating all the possible reduction steps:

• Application :: In the case of t′ = (t)v, then

⟪⟨(t)v, a(u).E⟩1⟫ = ⟨λκ.((⟪t⟫)κ)⟪v⟫, a(u).⟪E⟫⟩0
0Ð→ ⟨(⟪t⟫u)⟪v⟫,E⟩0
0Ð→

2

⟨⟪t⟫, a(u).a(⟪v⟫).⟪E⟫⟩0
= ⟨⟪t⟫, a(u).⟪a(v).E⟫⟩0
= ⟪⟨t, a(u).a(v).E⟩1⟫

• Lambda :: In the case of t′ = λx.t, then
⟪⟨λx.t, a(u).a(v).E⟩1⟫ = ⟨λκ.λx.⟪t⟫κ, a(u).a(⟪v⟫).⟪E⟫⟩0

0Ð→
2

⟨⟪t⟫[⟪v⟫/x]u,⟪E⟫⟩0 u is closed
0Ð→ ⟨⟪t⟫[⟪v⟫/x], a(u).⟪E⟫⟩0
= ⟨⟪t[v/x]⟫, a(u).⟪E⟫⟩0 Lemma 67
= ⟪⟨t[v/x], a(u).E⟩1⟫

• Force :: In the case of t′ = force(thunk(t)), then

⟪⟨force(thunk(t)), a(u).E⟩1⟫ = ⟨force(thunk(⟪t⟫)), a(u).⟪E⟫⟩0
0Ð→

2

⟨⟪t⟫, a(u).⟪E⟫⟩0
= ⟪⟨t, a(u).E⟩1⟫
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• To :: Suppose t′ = t to x.u, then

⟪⟨t to x.u, a(u).E⟩1⟫ = ⟨λκ.⟪t⟫κ to z.(let (x,κ′) = z in⟪u⟫κ′), a(u).⟪E⟫⟩0
0Ð→
∗

⟨⟪t⟫, a(u).f(z.(let (x,κ′) = z in⟪u⟫κ′)).⟪E⟫⟩0
= ⟪⟨t, a(u).f(x.u).E⟩1⟫

• Return :: Suppose t′ = ret(v), then

⟪⟨ret(v), a(u).f(x.t).E⟩1⟫ = ⟨λκ.ret((⟪v⟫, κ)), a(u).f(z.let (x,κ) = z in⟪t⟫κ).⟪E⟫⟩0
0Ð→ ⟨ret((⟪v⟫, u)), f(z.let (x,κ) = z in⟪t⟫κ).⟪E⟫⟩0
0Ð→ ⟨let (x,κ) = (⟪v⟫, u) in⟪t⟫κ,⟪E⟫⟩0
0Ð→

2

⟨⟪t⟫[⟪v⟫/x], a(u).⟪E⟫⟩0
= ⟨⟪t[v/x]⟫, a(u).⟪E⟫⟩0
= ⟪⟨t[v/x], a(u).E⟩1⟫

• Unit :: Suppose t′ = let∗ = ∗ in t, then

⟪⟨let∗ = ∗ in t, a(u).E⟩1⟫ = ⟨let∗ = ∗ in⟪t⟫, a(u).⟪E⟫⟩0
0Ð→ ⟨⟪t⟫, a(u).⟪E⟫⟩0
= ⟪⟨t, a(u).E⟩1⟫

• Pair :: Suppose t′ = let (x, y) = (v,w) in t, then

⟪⟨let (x, y) = (v,w) in t, a(u).E⟩1⟫ = ⟨let (x, y) = (⟪v⟫,⟪w⟫) in⟪t⟫, a(u).⟪E⟫⟩0
0Ð→ ⟨⟪t⟫[⟪v⟫/x,⟪w⟫/y], a(u).⟪E⟫⟩0
= ⟨⟪t[v/x,w/y]⟫, a(u).⟪E⟫⟩0
= ⟪⟨t[v/x,w/y], a(u).E⟩1⟫

• Case :: Suppose t′ = case 0 of x.t ∥x.u, then

⟪⟨case 0 of x.t ∥x.u, a(u).E⟩1⟫ = ⟨case 0 of x.⟪t⟫∥x.⟪u⟫, a(u).⟪E⟫⟩0
0Ð→ ⟨⟪t⟫[0/x], a(u).⟪E⟫⟩0
= ⟨⟪t[0/x]⟫, a(u).⟪E⟫⟩0
= ⟪⟨t[0/x], u⟩0E⟫

• Successor :: Suppose t′ = case s(v)of x.t ∥x.u, then

⟪⟨case s(v)of x.t ∥x.u, a(u).E⟩1⟫ = ⟨case s(⟪v⟫)of x.⟪t⟫∥x.⟪u⟫, a(u).⟪E⟫⟩0
0Ð→ ⟨⟪u⟫[⟪v⟫/x], a(u).⟪E⟫⟩0
= ⟨⟪t[v/x]⟫, a(u).⟪E⟫⟩0
= ⟪⟨t[v/x], u⟩0E⟫

• Observation :: Suppose t′ = LtMα1 , then

⟪⟨LtMα1 , a(u).E⟩1⟫ = ⟨λκ.(α)κ to κ′.⟪t⟫κ′, a(u).⟪E⟫⟩0
0Ð→

2

⟨(α)u, f(κ′.⟪t⟫κ′).⟪E⟫⟩0
= ⟪⟨(α)u,m1(t).E⟩0⟫
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• Daimon :: Suppose t′ =✠, then

⟪⟨✠, a(u).E⟩1⟫ = ⟨✠, a(u).⟪E⟫⟩0
0Ð→ ✠
= ⟪✠⟫

2. We now consider a con�guration at level 0. All cases are straightforward but the following one:

⟨ret(v),m1(t).E⟩0

⟪⟨ret(v),m1(t).E⟩0⟫ = ⟨ret(v), f(κ.⟪t⟫κ).⟪E⟫⟩0
0Ð→ ⟨⟪t⟫v,⟪E⟫⟩0
0Ð→ ⟨⟪t⟫, a(v).⟪E⟫⟩0
= ⟪⟨t, a(v).E⟩1⟫

3. Let C = ⟨ret(v), a(w).E⟩1. We have C ≅1 ⟨↑ E, (v,w)⟩1. But

⟪C⟫ = ⟨λκ.ret((⟪v⟫, κ)), a(w).⟪E⟫⟩0
0Ð→ ⟨ret((⟪v⟫,w)),⟪E⟫⟩0
≅0 ⟨↑ ⟪E⟫, (⟪v⟫,w)⟩0
= ⟪⟨↑ E, (v,w)⟩1⟫
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Contributions

In Section 3.1, we de�ne the basic theory of forcing monoids: we give the basic de�nitions,
examples and properties as well as some useful constructions. Section 3.2 is devoted to the
de�nition of an annotatd type system based on forcing monoids. Finally, Section 3.3 is devoted
to a program transformation from the λMon to LCBPV. We �rst de�ne an untyped program
transformation that is shown to preserve reduction. We then show how it is possible to type
this program transformation using a particular internalization of forcing inside LCBPV.

3.1 | Forcing monoids
The core mathematical object of this thesis is the notion of forcing monoid. It is the main
ingredient of the forcing program transformation. It generalizes the concept of forcing poset
used in set theory. It can be seen as the basis of many works, including set theoretic forcing,
Kripke semantics, quantitative realizability, phase spaces, among others. Its simplicity and
generality will allow us to capture various existing and new techniques, that were previously
seen as unrelated. In this section, we de�ne what forcing monoids are, along with examples
and basic de�nitions we will use throughout this thesis.
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3.1.1 Definition

De�nition 70 (Preordered commutative monoid). A preordered commutative monoid
is a structure (M,+,0,⪯) such that:

• M is a set

• + ∶M ×M→M is a binary associative and commutative operation.

• 0 ∈M is neutral for +: ∀p ∈M, p + 0 = p.

• ⪯ is a preorder onM such that:

– it is compatible with +: ∀p, q, r ∈M, p ⪯ q⇒ p + r ⪯ q + r.
– 0 is a minimum for ⪯ : ∀p ∈M,0 ⪯ p.

De�nition 71 (Left action). Let (M,+,0,⪯) be a preordered commutative monoid. Let
(A,≤) be a preordered set and δ ∶M ×A→ A. We say that δ is an action ofM on A:

• ∀m,n ∈M,∀a ∈ A, δm+n(a) = δm(δn(a))

• m ⪯ n implies that δm(a) ≤ δn(b)

• a ≤ b implies that δm(a) ≤ δm(b)

We will alternatively use an in�x notation. If ⋆ is a left action of M on A we use the
notation m ⋆ a instead of ⋆(m,a). For example the second axiom is rewritten as:

(m + n) ⋆ a =m ⋆ (n ⋆ a)

In that case, we just write m ⋆ n ⋆ a to denote m ⋆ (n ⋆ a).

De�nition 72. A forcing monoid is a structure (M,+,0, ●,⪯) where:

• (M,+,0,⪯) is a preordered commutative monoid onM.

• ● is a left action of (M,⪯) on (M,+,0,⪯).

Notation 73. IfM is a forcing monoid, we will sometimes denote by +M,0M,⪯M and ●M
the di�erent components ofM

We often denote a forcing monoid by its underlying set M. The elements of a forcing
monoid will generally be denoted by letters p, q, r, . . . . If n ∈ N and p ∈M, we use the notation
n.p to denote the element p + p + ⋅ ⋅ ⋅ + p

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

.
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Example 74. Forcing posets are the core of the set theoretic forcing technique. A forcing
poset is a triple (P,≤,1,∧) which is a sup-semi lattice:

• ≤ is a preorder on P .

• For all p ∈ P , p ≤ 1.

• ∧ is a meet operation.

They are in fact particular cases of forcing monoid. Indeed given a forcing poset (P,≤,1,∧),
one can build the following forcing monoid on the set P :

• + = ● = ∧

• the neutral element is 1

• p ⪯ q⇔ q ≤ p

De�nition 75 (Elementary properties). A forcing monoidM is said to be:

• additive i� + and ● coincide.

• commutative i� ● is commutative.

• idempotent i� + is idempotent.

Remark 76. An additive forcing monoid is just a preordered commutative monoid.

Example 77. Here are some examples of additive forcing monoids we will use throughout
the next chapters.

1. The trivial forcing monoid on the the singleton {0}.

2. Themonoid (N,+,0,≤) of natural numbers, endowedwith the usual addition and order
≤ on natural numbers.

3. The monoid (N,max,0,≤) of natural numbers, with max as the monoid operation,
and the usual order ≤ on natural numbers.

4. The monoid (N,min,∞,≥) of extended natural numbers endowed with the operation
min and the reverse order on natural numbers.

5. The boolean algebra (B,∧,⊺,⊆) where B = {�,⊺}, ∧ is the usual “and” operation, and
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⊆ is the order such that � ⊆ ⊺.

6. The forcing monoid the vector space Rn. Its elements are the vectors of Rn, with the
addition being the usual componentwise addition and the preorder being the compo-
nentwise preorder.

7. Separation logic related papers give us a lot of additive forcing structure examples. An
example is the pointer model de�ned in [BBTS07]. They consider a set H of heaps, i.e.
the set of �nite partial functions from a set of locations L to a set of values V . A forcing
structure is then given by the pointer model (H�,⋆), where H� is H augmented with
a bottom element �, and ⋆ is the operation de�ned by:

h1 ⋆ h2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

� if h1 = � or h2 = �
h1 ∪ h2 if h1#h2

� otherwise

The set is then ordered by the extension ordering:

h ⪯ h′⇔ ∃h′′ ∈H�, h
′ = h′′ ⋆ h

3.1.2 Functions
An simple yet important notion is the strength of a function onM.

De�nition 78 (Strong function). IfM is a forcing monoid, we say that a function f ∶M→
M is strong if for all p, q ∈M, the following inequality holds:

f(p ● q) ⪯ f(p) ● q

Example 79. The identity function is always strong.

Property 80. WhenM is additive, the following functions are always strong:

• The constant function x↦ p for p ∈M.

• The adding function x↦ x + q for any q ∈M

• For any n ∈ N∗, the function x↦ n.x.
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De�nition 81 (Sub-additive function). LetM and N be two forcing monoids. A function
M→ N is sub-additive i�

f(p +M q) ⪯ N f(p) +N f(q)

Example 82. The following functions are sub-additive:

1. The identity function x↦ x.

2. The doubling function x↦ x + x.

3. Any scalar multiplication function x↦ n.x with n ∈ N.

3.1.3 Algebraic constructions

De�nition 83 (Direct product). LetM and N be two forcing monoids. We de�ne their
direct productM ×N as follows:

• The underlying set is the cartesian product of the two setsM ×N .

• The addition + is the componentwise addition:

(m,p) + (n, q) = (m + n, p + q)

• The additive identity element is
0 = (0,0)

• The left action ● is de�ned as:

(m,p) ● (n, q) = (m ● n, p ● q)

• The preorder is the product preorder:

(m,p) ● (n, q)⇔m ⪯ n ∧ p ⪯ q

We now describe generalization of the direct product construction: the semi-direct prod-

uct. It is inherited from the notion of semi-direct product of monoids. It is based on the same
base set, that is the cartesian product, but it allows the right component to act on the �rst
component by mean of the operation ●, unlike the direct product that clearly separate the two
components. It relies on a more constrained notion of left action.

103



3.1. FORCING MONOIDS

De�nition 84 (Forcing monoid left action). Let (M,+,0, ●,⪯) and (N , . , e,⋆,≤) be two
forcing monoids. We say that δ is an action of N onM if:

• δ is an action of (N ,≤) on (M,+,0,⪯).

• δn⋆m(p) = δm(p)

• δn(p + q) = δn(p) + δm(q)

Remark 85. The notion of forcing monoid left action is di�erent from the notion of action
of a preordered set on a forcing monoid.

Example 86. The identity action δn(p) = p is an example of forcing monoid left action.

De�nition 87 (Semi-direct product). LetM and N be two forcing monoids. Suppose that
we have a left action δ ∶ N ×M →M of N overM. Then we can de�ne the semi-direct
productM ⋉δ N as follows:

• The underlying set is the cartesian product of the two setsM ×N .

• The addition + is:
(p,m) + (q, n) = (p + q, n +m)

• The additive identity element is
0 = (0,0)

• The left action ● is de�ned as:

(p,m) ● (q, n) = (δn(p) ● q, n ●m)

• The preorder is the product preorder:

(p,m) ● (q, n)⇔m ⪯ n ∧ p ⪯ q

Property 88. The semi-direct product is a forcing monoid.

Proof.

• It is clear thatM ×N is a preordered commutative monoid.

• Let (p,n), (q,m), (r, l) ∈M×N . On the one hand, we have ((p,n)+(q,m))●(r, l) = (δl(p+q)●
r, (n+m)● l). On the other hand, we have (p,n)●(q,m)●(r, l) = (δm●l(p)●δl(q)●r, n●m● l).
But we have (n + m) ● l = n ● m ● l. Hence we only need to show the equality of the �rst
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component. We have δl(p + q) ● r = δl(p) ● δl(q) ● r. But we also know that δm●l(p) = δl(p),
hence the result.

• Suppose that (p,n) ⪯ (q,m), that is p ⪯ q and n ⪯ m. If (r, l) ∈ M × N , we want to show
that (p,n) ● (r, l) ⪯ (q,m) ● (r, l). But (p,n) ● (r, l) = (δl(p) ● r, n ● l) and (q,m) ● (r, l) =
(δl(q) ● r,m ● l). Since n ⪯ m, we have n ● l ⪯ m ● l. Moreover, δl(p) ⪯ δl(q) since p ⪯ q, hence
δl(p) ● r ⪯ δl(q) ● r and the result.

• Suppose that (p,n) ⪯ (q,m), that is p ⪯ q and n ⪯ m. If (r, l) ∈ M × N , we want to show
that (r, l) ● (p,n) ⪯ (r, l) ● (q,m). But (r, l) ● (p,n) = (δn(r) ● p, l ● n) and (r, l) ● (q,m) =
(δm(r) ● q, l ●m). Since n ⪯ m, we have l ● n ⪯ l ●m. Moreover, δm(r) ⪯ δn(r) since m ⪯ n,
hence δm(r) ● p ⪯ δn(r) ● p. Finally since p ⪯ q, we have δm(r) ● p ⪯ δn(r) ● p ⪯ δn(r) ● q and
the result.

Remark 89. The absorbing condition δn⋆m(p) = δm(p) is necessary because of the mixed
associativity condition of forcing monoids, and because semi-direct product relies on a fun-
damental non-commutativity. It is very restrictive, but as we will see, the construction still
has useful instances.

3.2 | A forcing-based type system
We now introduce a typing system for a fragment of λMon. More than an actual type system, it
is an annotation of the type system of λLCBPV that makes use of the elements of a given forcing
monoidM. It also provides a typing rule for the constructor LtMαn . We will use this annotated
type system for two things:

• As a clean way of stating and proving the type preservation property of the forcing
program transformation we will de�ne in Section 3.3.

• As a way to extend the realizability relation induced by the structures we will de�ne in
Chapter IV to open terms, and to express the soundness of typing rules in the corre-
sponding models.

The annotated type system is divided in two distinct parts:

• The �rst part contains the annotated versions of the λLCBPV typing rules, and is de�ned
directly for every level n ≥ 1, with annotations being elements of any forcing monoid
M.

• The second part consists in a single new typing rule, which is intented to type the obser-
vation L.Mα1 . Operationnally, the observation makes a con�guration at level 1 reduce to
a con�guration at level 0. Similarly, the typing rule at level 1 of the observation makes
use of the typing rules at level 0, that is the typing relation ⊢0.
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Remark 90. For now, we don’t give any rule for the observation at level n > 1. This is
possible, but requires to speak about forcing iteration. We postpone the introduction of such
rules to Chapter V , where we study forcing iteration at the realizability level.

The annotated typing relation is parametrized by what we call a forcing structure.

De�nition 91 (Forcing structure). A forcing structure F is given by:

• A forcing monoid (M,+,0, ●,⪯).

• A forcing predicate, i.e. a predicate C of arityM such that the following subtyping
judgment is derivable:

p ⪯ q
C(q) ⊑ C(p)

Suppose that a forcing structureF = (M,C) is �xed. We de�ne an annotated typing relation

at level n with n ≥ 1, denoted ⊢n. The corresponding rules manipulate judgments of one of
the two following forms:

E ; Γ ⊢n v ∶ (P, p)
E ; Γ ⊢n t ∶ (N,p)

where Γ is a usual positive typing context, E is an inequational theory and p ∈M.
• The �rst part of the rules consists in annotated versions of the λMon rules, which are

de�ned in Figure 1 and Figure 2. We denote this set of rules by the name λMLCBPV. The
annotated type system induced byM

• The second part consists in two new rules which are given in Figure 3. The �rst one says
that we can always annotate a rule by a greater annotation (in the sense of ⪯) and is true
for every level n. The second one types the observation at level 1. Notice that one of the
premises of this rule supposes a function f that is strong, in the sense of De�nition 78.

Remark 92. The observation rule is the only one that makes use of the forcing predicate C.

3.3 | Forcing program transformation
We have de�ned in Section 2.4 a syntactic program transformation from λ1Mon to λLCBPV that
has been proved correct with respect to the reduction. We now turn our attention to the typing
side of this transformation. To type the target of the transformation, we use what we call
the forcing type transformation, which is an internalization of a forcing interpretation of
λLCBPV inside λLCBPV. The source of the transformation (i.e. λ1Mon) is typed using the typing
relation ⊢1 de�ned in Section 3.2.
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Multiplicative connectives

E ;x ∶ P ⊢n x ∶ (P,0)
E ; Ξ ⊢n t ∶ (N,p)

E ; Ξ, x ∶ P ⊢n t ∶ (N,p)
E ; Ξ ⊢n t ∶ (N,p) p ⪯ q

E ; Ξ ⊢n t ∶ (N,q)

E ; Ξ ⊢n v ∶ (P, p)
E ; Ξ ⊢n ret(v) ∶ (⇑P, p)

E ; Ξ ⊢n t ∶ (⇑P, p) E ; Υ, x ∶ P ⊢n u ∶ (N, q)
E ; Ξ,Υ ⊢n t to x.u ∶ (N,p + q)

E ; Ξ ⊢n t ∶ (N,p)
E ; Ξ ⊢n thunk(t) ∶ (⇓N,p)

E ; Ξ ⊢n v ∶ (⇓N,p)
E ; Ξ,Υ ⊢n force(v) ∶ (N,p)

E ; Ξ, x ∶ P ⊢n t ∶ (N,p)
E ; Ξ ⊢n λx.t ∶ (P ⊸ N,p)

E ; Ξ ⊢n t ∶ (P ⊸ N,p) E ; Υ ⊢n v ∶ (P, q)
E ; Ξ,Υ ⊢n (t)v ∶ (N,p + q)

E ; Ξ ⊢n ∗ ∶ (1,0)
E ; Ξ ⊢n v ∶ (1, q) E ; Υ ⊢n t ∶ (N,p)
E ; Ξ,Υ ⊢n let∗ = v in t ∶ (N,p + q)

E ; Ξ ⊢n v ∶ (P, p) E ; Υ ⊢n w ∶ (Q, q)
E ; Ξ,Υ ⊢n (v,w) ∶ (P ⊗Q,p + q)

E ; Ξ ⊢n v ∶ (P ⊗Q, q) E ; Υ, x ∶ P, y ∶ Q ⊢n t ∶ (N,p)
E ; Ξ,Υ ⊢n let (x, y) = v in t ∶ (N,p + q)

E ;⊢n 0 ∶ (Nat,0)
E ; Ξ ⊢n v ∶ (Nat, p)
E ; Ξ ⊢n s(v) ∶ (Nat, p)

E ; Ξ ⊢n v ∶ (Nat, q) E ; Υ, x ∶ Nat ⊢n t ∶ (N,p) E ; Υ, x ∶ Nat ⊢n u ∶ (N,p)
E ; Ξ,Υ ⊢n case v of x.t ∥x.u ∶ (N,p + q)

Figure 1: λMon Typing rules 1

Type translation

The type translation is parametrized by what we call a F-model.

De�nition 93 (F-model). Let F = (M,C) be a forcing structure. A F-model is a function
that maps every predicate variable X of arity S to another predicate variable X∗ of arity
S ×M.

Suppose we have �xed a forcing structure F = (M,C) and a F-model. The F-model
already associates to every predicate variable of arity S another predicate variable of arity
S ×M. The translation is an extension of the F-model to all types, turning any predicate P
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First-order quanti�ers

E ; Ξ ⊢n t ∶ (N,p) x#Ξ

E ; Ξ ⊢n t ∶ (∀x ∈ S.N, p)
E ; Ξ ⊢n t ∶ (∀x ∈ S.N, p) e ∈ S-Exp

E ; Ξ ⊢n t ∶ (N[e/x], p)

E ; Ξ ⊢n v ∶ (P [e/x], p) e ∈ S-Exp
E ; Ξ ⊢n v ∶ (∃x ∈ S.P, p)

E ; Ξ ⊢n v ∶ (∃x ∈ S.P, q) E ; ∆, z ∶ P [y/x] ⊢n t ∶ (N,p) y#Γ

E ; Ξ,∆ ⊢n t[v/z] ∶ (N,p + q)

Equational implication and conjunction

E , e ⪰S f ; Ξ ⊢n t ∶ (N,p)
E ; Ξ ⊢n t ∶ ({e ⪰S f}↦ N,p)

E ; Ξ ⊢n t ∶ ({e ⪰S e}↦ N,p)
E ; Ξ ⊢n t ∶ (N,p)

E ; Ξ ⊢n v ∶ (P, p) e ⪯E f
E ; Ξ ⊢n v ∶ ({e ⪯S f} ∧ P, p)

E ; Ξ ⊢n v ∶ ({e ⪯S e} ∧ P, p)
E ; Ξ ⊢n v ∶ (P, p)

E ; Ξ ⊢n c ∶ (A,p) A ⊑E B
E ; Ξ ⊢n c ∶ (B,p)

Figure 2: λMon Typing rules 2

Additional rules

E ; Ξ ⊢n t ∶ (N,p) p ⪯ q
E ; Ξ ⊢n t ∶ (N, q)

E ; Ξ ⊢1 t ∶ (N,p) f is ●-strong E ; Ξ ⊢0 α ∶ ∀x ∈M.C(f(x))⊸ C(x)
E ; Ξ ⊢1 LtMα1 ∶ (N,f(p))

Figure 3: λMon Typing rules 3

(resp. negative predicateN ) of arity S into a positive predicate P ∗(κ) (resp. negative predicate
N∗(κ) of arity S ×M.

Notation 94. In what follows, we use the letters p, q, r, . . . usually reserved for elements of
M to denoteM-expressions (i.e. that possibly contain free variables of sortM). By con-
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Positive interpretation

X(e1, . . . , en)∗(p) = ∃q ∈M.{q ⪯M p} ∧X∗(e1, . . . , en, q)
(1)∗(p) = 1

(Nat)∗(p) = Nat
(P ⊗Q)∗(p) = ∃q1 ∈M.∃q2 ∈M.{q1 + q2 ⪯M p} ∧ (P ∗(q1)⊗Q∗(q2))

(⇓N)∗(p) = ⇓(∀r ∈M.C(p ● r)⊸ N○(r))
(∃x ∈M.P )∗(p) = ∃x ∈M.P ∗(p)

({e ⪯S f} ∧ P )∗(p) = {e ⪯S f} ∧ P ∗(p)

Negative environment interpretation

(P ⊸M)○(p) = ∃q ∈M.∃r ∈M.{p ⪰M q ● r}↦ (P ∗(q)⊸M○(r))
(⇑P )○(p) = ⇑(∃r ∈M.P ∗(r)⊗ C(r ● p))

(∀x ∈M.N)○(p) = ∀x ∈M.N○(p)
({e ⪰S f}↦ N)○(p) = {e ⪰S f}↦ N○(p)

Negative computation interpretation

N∗(p) = ∀r ∈M.C(p ● r)⊸ N○(r)

Figure 4: Forcing Type Translation

venience and because this is unambiguous, we will denote function symbols ḟ simply by f .
Hence we can write something like

{p ⪰M r ● q}↦ N

De�nition 95 (Forcing translation of types). The forcing translation of types is de�ned
inductively on the types in Figure 4.

We now consider the annotated type system of Section 3.2 ⊢1 at level 1 induced by the
forcing structure F . We show the following type preservation theorem:

Theorem 96 (Preservation theorem). The two following statements hold:

1. Suppose that the following judgment is derivable:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢1 v ∶ (P, p)
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Then we also have for any distinct variables ι1, . . . , ιn:

E ;x1 ∶ P ∗
1 (ι1), . . . , xn ∶ P ∗

n (ιn) ⊢0 ⟪v⟫ ∶ P ∗(p + ∑
1≤i≤n

ιi)

2. Suppose that the following judgment is derivable:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢1 t ∶ (N,p)

Then we also have for any distinct variables ι1, . . . , ιn:

E ;x1 ∶ P ∗
1 (ι1), . . . , xn ∶ P ∗

n (ιn) ⊢0 ⟪t⟫ ∶ N∗(p + ∑
1≤i≤n

ιi)

Lemma 97. The following rule is derivable:

E ; Γ, x ∶ C(p) ⊢0 a ∶ A∗(q) p ⪯E p′ q ⪯E q′

E ; Γ, x ∶ C(p′) ⊢0 a ∶ A∗(q′)

Proof. The part concerning C is because of the de�nition of forcing structure (see De�nition 91). We
then only prove by induction on A that A∗(p) ⊑E A∗(q) as soon as p ⪯E q.

• If A = N then since we have p ⪯E q, we have by de�nition of the forcing structure and by
subtyping, that C(q ● ι) ⊑E C(p ● ι). Hence we obtain

C(p ● ι)⊸ N○(ι) ⊑E C(q ● ι)⊸ N○(ι)

And �nally
∀ι ∈M.C(p ● ι)⊸ N○(ι) ⊑E ∀ι ∈M.C(q ● ι)⊸ N○(ι)

• If A = P , then we proceed by induction.

– The cases Nat,1 are trivial.
– The cases X and ⊗ are similar, so we prove only the latter. It is enough to show that for
ι, κ fresh variables of sortM, we have:

{p ⪯M ι + κ} ∧ P ∗(ι)⊗Q∗(κ) ⊑E {q ⪯M ι + κ} ∧ P ∗(ι)⊗Q∗(κ)

But this is obtained by application of the following rule:

p ⪯E q ι + κ ⪯E ι + κ P ∗(ι)⊗Q∗(κ) ⊑E,p⪰Mι+κ P
∗(ι)⊗Q∗(κ)

{ι + κ ⪯M p} ∧ P ∗(ι)⊗Q∗(κ) ⊑E {ι + κ ⪯M q} ∧ P ∗(ι)⊗Q∗(κ)

– For the positive shift, it is obtained by applying the ⇓ subtyping rule to the negative case
already proved.

– The existential quanti�er and the inequational implication are proved by induction and
using the corresponding subtyping rule.
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Lemma 98. Suppose that A ⊑E B. Then A∗(ι) ⊑E B∗(ι).

Proof. This is easily done by induction and using Lemma 97.

We can now resume the proof of Theorem 96.

Proof. We prove these two statements by mutual induction on the typing derivation.

1. We only give the proofs of some interesting cases: the axiom, the introduction of ⇓, the intro-
duction of 1, the introduction of Nat and the existential quanti�er. The other cases are similar.
Axiom ::

E ; Γ, x ∶ P ⊢1 x ∶ (P,0)
↝

E ; Γ∗(
Ð→
ι′ ), x ∶ P ∗(ι) ⊢0 x ∶ P ∗(ι′)

E ; Γ∗(
Ð→
ι′ ), x ∶ P ∗(ι) ⊢0 x ∶ P ∗(∑Ð→ι + ι′)

Lemma 97

E ; Γ∗(Ð→ι ), x ∶ P ∗(ι′) ⊢0 x ∶ P ∗(0 + ι′ +∑Ð→ι )
≅E

Thunk ::

E ; Ξ ⊢1 t ∶ (N,p)
E ; Ξ ⊢1 thunk(t) ∶ (⇓N,p)

↝
E ; Ξ∗(Ð→ι ) ⊢0 ⟪t⟫ ∶ N∗(p +∑Ð→ι )

E ; Ξ∗(Ð→ι ) ⊢0 thunk(⟪t⟫)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟪thunk(t)⟫

∶ ⇓N∗(p +∑Ð→ι )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(⇓N)∗(p+∑Ð→ι )

Tensor ::

E ; Ξ ⊢1 v ∶ (P, p) E ; Υ ⊢1 w ∶ (Q, q)
E ; Ξ,Υ ⊢1 (v,w) ∶ (P ⊗Q,p + q)

↝

E ; Ξ∗(Ð→ι ) ⊢0 ⟪v⟫ ∶ P ∗(

noted p′
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p +∑Ð→ι ) E ; Υ∗(Ð→κ ) ⊢0 ⟪w⟫ ∶ Q∗(

noted q′
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
q +∑Ð→κ )

E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ) ⊢0 (⟪v⟫,⟪w⟫) ∶ P ∗(p′)⊗Q∗(q′) p′ + q′ ⪯E p′ + q′

E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ) ⊢0 (⟪v⟫,⟪w⟫) ∶ {p′ + q′ ⪯M p′ + q′} ∧ (P ∗(p′)⊗Q∗(q′))
E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ) ⊢0 (⟪v⟫,⟪w⟫)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟪(v,w)⟫

∶ ∃x ∈M.∃y ∈M.{x + y ⪯M p′ + q′} ∧ P ∗(x)⊗Q∗(y)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(P⊗Q)∗(p+q+∑Ð→ι +∑Ð→κ )
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Existential quanti�er ::

E ; Ξ ⊢1 v ∶ (P [e/xS], p)
E ; Ξ ⊢1 v ∶ (∃x ∈ S.P, p)

↝

E ; Ξ∗(Ð→ι ) ⊢0 ⟪v⟫ ∶ P [e/xS]∗(

noted p′
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
p +∑Ð→ι )

E ; Ξ∗(Ð→ι ) ⊢0 ⟪v⟫ ∶ P [e/xS]∗(p′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=P ∗(p′)[e/xS]

E ; Ξ∗(Ð→ι ) ⊢0 ⟪v⟫ ∶ ∃x ∈ S.P ∗(p′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(∃x∈S.P )∗(p′)

Unit ::

E ; Γ ⊢1 ∗ ∶ (1,0)
↝

E ; Γ∗(Ð→ι ) ⊢0 ∗ ∶ 1®
=1∗(Ð→ι )

Zero ::

E ;⊢1 0 ∶ (Nat, p)
↝

E ;⊢0 0®
=⟪0⟫

∶ Nat
°

=Nat∗(p)

Successor ::

E ; Ξ ⊢1 v ∶ (Nat, p)
E ; Ξ ⊢1 s(v) ∶ (Nat, p)

↝
E ; Ξ∗(Ð→ι ) ⊢0 ⟪v⟫ ∶

=Nat
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Nat∗(p +∑Ð→ι )

E ; Ξ∗(Ð→ι ) ⊢0 s(⟪v⟫)
´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
=⟪s(v)⟫

∶ Nat

2. We now prove the negative cases. We only give the proofs of some interesting cases: the in-
troduction and elimination of ⊸, the introduction of ⇑ and the elimination of ⇓, and �nally the
observation rule. The other rules are handled in a similar way.
Lambda ::

E ; Ξ, x ∶ P ⊢1 t ∶ (N,p)
E ; Ξ ⊢1 λx.t ∶ (P ⊸ N,p)

↝

E ; Ξ∗(Ð→ι ), x ∶ P ∗(κ) ⊢0 ⟪t⟫ ∶ ∀r ∈M.C((p +∑Ð→ι + κ) ● r)⊸ N○(r)
E ; Ξ∗(Ð→ι ), κ ∶ C((p +∑Ð→ι + κ) ● r), x ∶ P ∗(κ) ⊢0 ⟪t⟫κ ∶ N○(r)

E ; Ξ∗(Ð→ι ), κ ∶ C((p +∑Ð→ι + κ) ● r) ⊢0 λx.(⟪t⟫)κ ∶ P ∗(κ)⊸ N○(r)
E , σ ⪰M κ ● r; Ξ∗(Ð→ι ), κ ∶ C((p +∑Ð→ι + κ) ● r) ⊢0 λx.(⟪t⟫)κ ∶ P ∗(κ)⊸ N○(r)
E , σ ⪰M κ ● r; Ξ∗(Ð→ι ), κ ∶ C((p +∑Ð→ι ) ● (κ ● r)) ⊢0 λx.(⟪t⟫)κ ∶ P ∗(κ)⊸ N○(r)
E , σ ⪰M κ ● r; Ξ∗(Ð→ι ), κ ∶ C((p +∑Ð→ι ) ● σ) ⊢0 λx.(⟪t⟫)κ ∶ P ∗(κ)⊸ N○(r)

E ; Ξ∗(Ð→ι ), κ ∶ C((p +∑Ð→ι ) ● σ) ⊢0 λx.(⟪t⟫)κ ∶ {σ ⪰M κ ● r}↦ (P ∗(κ)⊸ N○(r))
E ; Ξ∗(Ð→ι ), κ ∶ C((p +∑Ð→ι ) ● σ) ⊢0 λx.(⟪t⟫)κ ∶ (P ⊸ N)○(σ)
E ; Ξ∗(Ð→ι ),⊢0 λκ.λx.(⟪t⟫)κ ∶ C((p +∑Ð→ι ) ● σ)⊸ (P ⊸ N)○(σ)

E ; Ξ∗(Ð→ι ),⊢0 λκ.λx.(⟪t⟫)κ
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=⟪λx.t⟫

∶ ∀σ ∈M.C((p +∑Ð→ι ) ● σ)⊸ (P ⊸ N)○(σ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(P⊸N)∗(p+∑Ð→ι )
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Here, we have used the fact that κ ● r ⪯ σ and Lemma 97.
Application ::

E ; Ξ ⊢1 t ∶ (P ⊸ N,p) E ; Υ ⊢1 P ∶ (P, q)
E ; Ξ,Υ ⊢1 (t)v ∶ (N,p + q)

We pose:
p′ = p +∑Ð→ι
q′ = q +∑Ð→κ

We have on the one hand

E ; Ξ∗(Ð→ι ) ⊢0 ⟪t⟫ ∶ ∀x ∈M.C(p′ ● x)⊸ (P ⊸ N)○(x)
E ; Ξ∗(Ð→ι ), κ ∶ C(p′ ● q′ ● x′) ⊢0 ⟪t⟫κ ∶ (P ⊸ N)○(q′ ● x′)
E ; Ξ∗(Ð→ι ), κ ∶ C(p′ ● q′ ● x′) ⊢0 ⟪t⟫κ ∶ (P ∗(q′)⊸ N○(x′))

where x′ is chosen fresh. On the other hand we have

E ; Υ∗(Ð→κ ) ⊢0 ⟪v⟫ ∶ P ∗(q′)

Hence, by combining both judgments we obtain

E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ), κ ∶ C(p′ ● q′ ● x′) ⊢0 (⟪t⟫κ)⟪v⟫ ∶ N○(x′)

Which in turn gives

E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ) ⊢0 λκ.(⟪t⟫κ)⟪v⟫ ∶ C(p′ ● q′ ● x′)⊸ N○(x′)

We conclude by using ≅E , because p′ ● q′ ● x′ = (p′ + q′) ● x′ and because x′ is fresh:

E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ) ⊢0 λκ.(⟪t⟫κ)⟪v⟫ ∶ ∀x′ ∈M.C((p′ + q′) ● x′)⊸ N○(x′)

To ::

E ; Ξ, x ∶ P ⊢1 t ∶ (N,p) E ; Υ ⊢1 u ∶ (⇑P, q)
E ; Ξ,Υ ⊢1 u to x.t ∶ (N,p + q)

First, we have

E ; Ξ∗(Ð→ι ), x ∶ P ∗(ι′) ⊢0 ⟪t⟫ ∶ ∀σ ∈M.C((p +∑Ð→ι + ι′) ● σ)⊸ N○(σ)
E ; Ξ∗(Ð→ι ), x ∶ P ∗(ι′), κ′ ∶ C(p′ ● ι′ ● σ) ⊢0 ⟪t⟫κ′ ∶ N○(σ)

E ; Ξ∗(Ð→ι ), z ∶ P ∗(ι′)⊗ C(p′ ● ι′ ● σ) ⊢0 let (x,κ′) = z in⟪t⟫κ′ ∶ N○(σ)

Secondly, if we pose q′ = q +∑Ð→κ , we have:

E ; Υ∗(Ð→κ ) ⊢0 ⟪u⟫ ∶ ∀σ ∈M.C(q′ ● σ)⊸ ⇑∃y ∈M.P ∗(y)⊗ C(y ● σ)
E ; Υ∗(Ð→κ ), κ ∶ C(q′ ● p′ ● σ) ⊢0 ⟪u⟫κ ∶ ⇑∃y ∈M.P ∗(y)⊗ C(y ● p′ ● σ)

By using both the ⇑ and ∃ elimination rules, we obtain:

E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ), κ ∶ C(q′ ● p′ ● σ) ⊢0 ⟪u⟫κ to z.let (x,κ′) = z in⟪t⟫κ′ ∶ N○(σ)
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Finally,

E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ) ⊢0 λκ.⟪u⟫κ to z.let (x,κ′) = z in⟪t⟫κ′ ∶ ∀σ ∈M.C((p′ + q′) ● σ)⊸ N○(σ)

Force ::

E ; Ξ ⊢1 v ∶ (⇓N,p)
E ; Ξ ⊢1 force(v) ∶ (N,p)

↝
E ; Ξ∗(Ð→ι ) ⊢0 ⟪v⟫ ∶∶

=⇓N∗(p+Ð→ι )
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(⇓N)∗(p +Ð→ι )

E ; Ξ∗(Ð→ι ) ⊢0 force(⟪v⟫)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=⟪force(v)⟫

∶ N∗(p +Ð→ι )

Return ::

E ; Ξ ⊢1 v ∶ (P, p)
E ; Ξ ⊢1 ret(v) ∶ (⇑P, p)

↝

E ; Ξ∗(Ð→ι ) ⊢0 ⟪v⟫ ∶∶ P ∗(

noted p′

p +Ð→ι )

E ; Ξ∗(Ð→ι ), κ ∶ C(y ● p′) ⊢0 (⟪v⟫, κ) ∶ P ∗(p′)⊗ C(y ● p′)
E ; Ξ∗(Ð→ι ), κ ∶ C(y ● p′) ⊢0 (⟪v⟫, κ) ∶ ∃x ∈M.(P ∗(x)⊗ C(y ● x))
E ; Ξ∗(Ð→ι ), κ ∶ C(y ● p′) ⊢0 (⟪v⟫, κ) ∶ ∃x ∈M.(P ∗(x)⊗ C(y ● x))

E ; Ξ∗(Ð→ι ), κ ∶ C(y ● p′) ⊢0 ret((⟪v⟫, κ)) ∶ ⇑(∃x ∈M.(P ∗(x)⊗ C(y ● x)))
E ; Ξ∗(Ð→ι ) ⊢0 λκ.ret((⟪v⟫, κ)) ∶ C(y ● p′)⊸ ⇑(∃x ∈M.(P ∗(x)⊗ C(y ● x)))

E ; Ξ∗(Ð→ι ) ⊢0 λκ.ret((⟪v⟫, κ))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=⟪ret(v)⟫

∶ ∀y ∈M.C(y ● p′)⊸ ⇑(∃x ∈M.(P ∗(x)⊗ C(y ● x)))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(⇑P )∗(p′)

Unit elim. ::

E ; Ξ ⊢1 v ∶ (1, q) E ; Υ ⊢1 t ∶ (N,p)
E ; Ξ,Υ ⊢1 let∗ = v in t ∶ (N,p + q)

↝

E ; Ξ∗(Ð→ι ) ⊢0 ⟪v⟫ ∶ 1 E ; Υ∗(Ð→κ ) ⊢0 ⟪t⟫ ∶ N∗(p +∑Ð→κ )
E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ) ⊢0 let∗ = ⟪v⟫ in⟪t⟫ ∶ N∗(p +∑Ð→κ )

E ; Ξ∗(Ð→ι ),Υ∗(Ð→κ ) ⊢0 let∗ = ⟪v⟫ in⟪t⟫ ∶ N∗(p +∑Ð→ι +∑Ð→κ )
Lemma 97

Observation :: Suppose we have:

E ; Ξ ⊢1 t ∶ (N,p) f is ●-strong E ;⊢0 α ∶ ∀x ∈M.C(f(x))⊸ ⇑C(x)
E ; Ξ ⊢1 LtMα1 ∶ (N,f(p))

Then, �rst we have by induction hypothesis:

E ; Ξ∗(Ð→ι ) ⊢0 ⟪t⟫ ∶ ∀x ∈M.C((p +∑Ð→ι ) ● x)⊸ N○(x)

We note p′ = p +∑Ð→ι . Hence if y is a fresh variable, we obtain:

(1) E ; Ξ∗(Ð→ι ), κ ∶ C(p′ ● y) ⊢0 ⟪t⟫κ ∶ N○(y)
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On the other hand we have by induction hypothesis on α that:

E ;κ′ ∶ C(f(p′ ● y)) ⊢0 (α)κ′ ∶ ⇑C(p′ ● y)

But since

(f(p) + ι1 + ⋅ ⋅ ⋅ + ιn) ● y = f(p) ● (ι1 ● . . . ιn ● y)
⪰ f(p ● (ι1 ● . . . ιn ● y)) (f is ●-strong)
= f(p′ ● y)

We also have by Lemma 97:

(2) E ;κ′ ∶ C((f(p) +∑Ð→ι ) ● y) ⊢0 (α)κ′ ∶ ⇑C(p′ ● y)

Therefore by combining (1) and (2) we obtain:

E ; Ξ∗(Ð→ι ), κ′ ∶ C((f(p) +∑Ð→ι ) ● y) ⊢0 (α)κ′ to κ.(⟪t⟫κ) ∶ N○(y)

By introducing a λ:

E ; Ξ∗(Ð→ι ) ⊢0 λκ′.(α)κ′ to κ.(⟪t⟫κ) ∶ C((f(p) +∑Ð→ι ) ● y)⊸ N○(y)

Since y does not appear in E or Ξ∗(Ð→ι ), we can introduce a universal quanti�er:

E ; Ξ∗(Ð→ι ) ⊢0 λκ′.(α)κ′ to κ.(⟪t⟫κ) ∶ ∀y ∈M.C((f(p) +∑Ð→ι ) ● y)⊸ N○(y)

We conclude by remarking that ⟪LtMα1 ⟫ = λκ′.(α)κ′ to κ.(⟪t⟫κ) and N∗(f(p) +∑Ð→ι ) = ∀y ∈
M.C((f(p) +∑Ð→ι ) ● y)⊸ N○(y).
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In this chapter, we introduce several realizability frameworks.
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• The �rst one is the unary realizability model. It is a usual Krivine-style realizabil-
ity framework, but based on the MAM (instead of the Krivine Abstract Machine), which
makes this framework similar to Miquel’s unary realizability based on theKFAM [Miq11].
A particularity of our framework is that we do not de�ne one but an in�nity of interpre-
tations of λLCBPV types, for each level n ∈ N of the MAM. The interpretation at level 0
is then shown to be sound with respect to the rules of λLCBPV.

• The second one is based on the central notion of n-Monitoring Algebra (abbreviated
n-MA in the rest of this thesis) . The de�nition of n-MAs crucially relies on both the
monitoring abstract machine and on forcing monoids. Given a n-MA, we de�ne a real-
izability framework which is an elaboration of the unary realizability model. One par-
ticularity of this model is that it is annotated by forcing conditions. The main results of
this chapter concerning the n-MAs are:

– The soundness theorem, which shows that given any n-MA A, the annotated
rules (at level n) of λLCBPV given in Section 3.2 are sound in the model induced by
A (at level n).

– The de�nition of the A-monitor condition. A pair (α, f) that satis�es the A-
monitor condition is shown to make the following typing rule sound in A:

E ; Γ ⊢n t ∶ (N,p)
E ; Γ ⊢n LtMαn ∶ (N,f(p))

– We devote a section to the explanation of what we mean by “adding a type” in
our framework. We de�ne an algebraic notion of A-connective. Each such A-
connective admits a realizability interpretation (both in the unary and MA case)
and an extension of the forcing translation.

– We also study in more depth the remarkable properties of the 1-MAs. In partic-
ular, in a 1-MA A, it is possible to characterize a large subset of the A-monitors.
We moreover prove the connection theorem, which says that each realizability
model induced by a 1-MA can be uniquely decomposed as the iteration of a unary
realizability model (based on the MAM) and of a forcing model (as de�ned in Chap-
ter III ). Another way of seeing things is to say that a monitoring algebra is obtained
by a certain forcing program transformation of the unary realizability framework.

Contributions

Section 4.1 is devoted to the de�nition of a family of unary realizability interpretations of
λLCBPV types indexed by the levels of the MAM, and the proof of a soundness theorem at level
0. In Section 4.2, we de�ne the notion ofn-monitoring algebra, together with the biorthogonality-
based realizability interpretation they induce. We then prove that each n-MA induces a sound
interpretation of the annotated type system of Section 3.2. We then explain in Section 4.3
how to extend the realizability interpretation and the forcing interpretation to new types us-
ing A-connectives. We subsequently turn our attention more speci�cally to 1-MAs. We show
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in Section 4.4 the main properties of 1-MAs: the connection theorem and the soundness of
the monitoring rule. Finally, we give in Section 4.5 three important examples of 1-MAs: the
linear-time algebra, an algebra for �rst-order references and �nally the step-indexing algebra.

4.1 | Simple realizability
We now introduce a Krivine style realizability model based on the MAM. As we have already
remarked, theMAM is similar in spirit to Miquel’sKFAM. Miquel shows that hisKFAM can be
used to de�ne a realizability semantics, just like the usual Krivine abstract machine. Similarly
to Krivine’s classical realizability, it is unary, meaning that we de�ne a realizability relation of
the form

t ⊩ A

It relates one program t to a type A. He then state and prove two di�erent soundness results
of this new realizability semantics:

1. A soundness theorem for the non-forcing mode.

2. A soundness theorem for the forcing mode.

We adopt a similar strategy, that is de�ning a realizability model based on the MAM, but the
technical details di�er because we in fact de�ne an in�nity of di�erent realizability interpre-
tations of types: one for each execution level k of the MAM. We then state two soundness
results:

1. One for the level 0

2. One for the level 1

These two results are the counterparts in our framework of Miquel’s results on the KFAM. In
this section, we only prove the �rst one, while the second one will be proved as a corollary of
the connection theorem of Section 4.4. This unary realizability model will be the �rst stage in
the elaboration of the theory of monitoring algebras.

4.1.1 Orthogonality
As mentioned in Section 1.3, Krivine’s realizability is built around the notion of orthogonal-
ity. It is a way of de�ning when a program and an environment interact well. It allows to de�ne
sets of programs (or sets of environments) that interact well with another set of well-chosen
environments (or programs). This notion of good interaction is in fact a parameter of the con-
struction, usually called the pole. Our realizability framework is built around a similar notion
that we de�ne here.
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De�nition 99 (Pole). A pole is a set �� of con�gurations and co-con�gurations in C ∪ C,
which is →-saturated:

∀C ∈ ��, C ′ → C Ô⇒ C ′ ∈ ��

and ≈-saturated:
∀C ∈ ��, C ′ ≅ C Ô⇒ C ′ ∈ ��

The pole represents the notion of computational correctness we want to observe. It is a way
of discriminating between bad and good con�gurations.

Remark 100. A pole is in particular always
nÐ→ -saturated for any n ∈ N:

∀C ∈ ��, C ′ nÐ→ C Ô⇒ C ′ ∈ ��

Example 101. Here are some examples of valid poles:

1. The two following trivial poles:

• �� def= ∅
• �� def= C ∪C

2. The pole of terminating con�gurations

��✠ def= { C ∈ C ∪C ∣ C reduces on either { ⟨v, a(vn). . . . a(v1).nil⟩n
✠ }

3. The pole of diverging con�gurations

��Ω
def= { C ∈ C ∪C ∣ C diverges }

If there are plenty of possible choices of poles, in this thesis we will build everything around
the pole of terminating con�gurations de�ned in Example 101. But since most of the results
are true for any pole, we keep it as a parameter in most parts of this thesis. Moreover, it may be
the case that other poles are of interest in the future. As in Krivine’s work, this pole induces an
orthogonality relation. To be precise it induces a family of orthogonality relations indexed
by N (one relation for each execution level of the MAM).

De�nition 102 (Orthogonality). Let k ∈ N. We say that a computation t and an environ-
ment E are k-orthogonal and we note it t�kE i� the following holds:

⟨t,E⟩k ∈ ��
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Similarly, we say that a value v and an environment E are k-orthogonal and we note it
v�kE i� the following holds:

⟨↑ E,v⟩k ∈ ��

Remark 103. Because �� is ≈-saturated, we have

v�E⇔ ret(v)�0E

However, if k ≥ 1, we do not have:

v�E⇔ ret(v)�kE

The intuition behind this orthogonality relation is that a program t and an environment E
are k-orthogonal if their combination yields a good interaction at level k.

Remark 104. It is clear that the orthogonality relations at di�erent levels are distincts. In-
deed, the correctness of a con�guration at level n ∈ N won’t imply in general its correctness
at levelm ≠ n. For example, if we consider the pole of diverging con�gurations, we have:

⟨Ω,nil⟩0 ∈ ��Ω

But, since at level 1 it cannot reduce:

⟨Ω,nil⟩1 ∉ ��Ω

Indeed, we need an argument to be pushed on the environment for the con�guration to reduce
at level 1. For example:

⟨Ω, a(0).nil⟩1 ∈ ��Ω

De�nition 105 (Orthogonal of sets of values and environments). Each relation �n can be
lifted to sets of closed values and sets of environments. Suppose that X ⊆ V. Then we de�ne
its orthogonal at level n:

X�n def= { E ∈ E ∣ ∀v ∈X,v�nE }

Similarly, if Y ⊆ E, we de�ne

Y �n def= { t ∈ P ∣ ∀E ∈ Y, t�nE }

Property 106. If X ⊆ Y , then Y �n ⊆X�n .
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Proof. Let E ∈ Y �n . For any v ∈X , we have v ∈ Y , hence v�nE. That means E ∈X�n .

Property 107. If v ∈X , then ret(v) ∈X�1�1 .

Proof. Let E ∈ X�1 . Then we want to show that ⟨ret(v),E⟩1 ∈ ��. But this is equivalent by using ≅1
to show that ⟨↑ E,v⟩1 ∈ ��. This exactly means that v�E, which is true.

4.1.2 Interpretation

We have now everything we need to give an interpretation of λLCBPV types. The idea is that:

• We associate to each positive type P a set of values ∥P ∥, called the truth value of P
(following Miquel’s convention).

• Similarly, we associate to each negative type N a set of environments JNK, called the
falsity value of N .

• Using the previously de�ned set of environments, we associate to each negative type
N a set of computations ∥N∥, called the truth value of N . This set is de�ned as the
orthogonal of a set of environments JNK, meaning that it contains the computations
that interact well with the environments of this set.

We in fact build an in�nity of interpretations for each level k ∈ N. Those interpretations are all
built following the same pattern, allowing us to only give one common de�nition.

De�nition 108. A unary model (or simplymodel) ρ is a function such that:

• It assigns to each �rst-order variable xS an element ρ(x) ∈ S.

• It assigns to every predicate variable P of arity S1× ⋅ ⋅ ⋅×Sn a function S1× ⋅ ⋅ ⋅×Sn →
P(V).

De�nition 109 (Interpretation). Let k ∈ N and ρ be a unary model. We de�ne the inter-
pretation ∥.∥k,ρ of a type that associates:

• to every value type P a set ∥P ∥k,ρ ⊆ V of values

• to every computation type N a set JNKk,ρ ⊆ E of environments.

• to every computation type N a set ∥N∥k,ρ ⊆ P of computations.

This interpretation is de�ned by induction on the formula and given in Figure 1.

122



CHAPTER IV . MONITORING ALGEBRAS

Positive interpretation

∥X(e1, . . . , en)∥n,ρ def= ρ(X)(Je1Kρ, . . . , JenKρ)
∥1∥n,ρ def= {∗}

∥Nat∥n,ρ def= { n ∣ n ∈ N }
∥P ⊗Q∥n,ρ def= { (v,w) ∣ v ∈ ∥P ∥n,ρ ∧w ∈ ∥Q∥n,ρ }

∥⇓N∥n,ρ def= { thunk(t) ∣ t ∈ JNKn,ρ�n }
∥∃x ∈ S.P ∥n,ρ def= ⋃c∈S ∥P ∥n,ρ[x←c]

∥{e ⪯S f} ∧ P ∥n,ρ def= { ∥P ∥n,ρ if JeKρ ⪯S ρ(f)
∅ otherwise

Negative environment interpretation

JP ⊸MKn,ρ
def= { a(v).E ∣ v ∈ ∥P ∥n,ρ,E ∈ JMKn,ρ }

J⇑P Kn,ρ
def= ∥P ∥n,ρ�n

J∀x ∈ S.NKn,ρ
def= ⋃c∈S JNKn,ρ[x←c]

∥{e ⪰S f}↦ N∥n,ρ def= { ∥N∥n,ρ if JeKρ ⪰S JfKρ
∅ otherwise

Negative computation interpretation

∥N∥n,ρ def= JNKn,ρ�n

Figure 1: Simple interpretation

If A is closed then the interpretation ∥A∥n,ρ does not depend of the valuation ρ. In that
case, we will often only write ∥A∥n. We �nally de�ne the unary realizability relation at level
n, that relates closed terms and closed formulas.

t ⊩n N[ρ]⇐⇒ t ∈ ∥N∥n,ρ

Similarly,
v ⊩n P [ρ]⇐⇒ v ∈ ∥P ∥n,ρ

4.1.3 Soundness
We now prove a soundness theorem for the unary realizability interpretation at level 0, which
is in the style of the adequacy result of Krivine’s realizability.
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De�nition 110 (Substitution). A substitution σ is a partial function from the set of term
variables to the set V, whose domain dom(σ) is �nite. We note

[x1 ← v1, . . . , xn ← vn]

the substitution σ such that dom(σ) = {x1, . . . , xn} and such that σ(xi) = vi.

If σ is a substitution, we denote by σ[x← v] the substitution obtained from σ by rebinding
x to v. If σ1 is a subtitution and σ2 = [x1 ← v1, . . . , xn ← vn] is another substitution, we denote
by

σ1, σ2 = (. . . (σ1[x1 ← v1]) . . . )[xn ← vn]

Now, take a substitution σ = [x1 ← v1, . . . , xn ← vn]. If t (resp. v) is a possibly open
computation (resp. value) then we note

t[σ] = t[v1/x1, . . . , vn/xn]

(resp. v[σ] = v[v1/x1, . . . , vn/xn])

Remark 111. If FV(t) ⊆ dom(σ), then t[σ] is closed.

De�nition 112 (Adapted substitution). Suppose n ∈ N. Let Γ = x1 ∶ P1, . . . , xn ∶ Pn be a
typing context and ρ a unary model. We de�ne the set ∥Γ∥n,ρ as the set of substitutions σ
which are adapted to Γ (at level n), that is:

• dom(σ) = {x1, . . . , xn}

• ∀i ∈ {1, . . . , n}, σ(xi) ∈ ∥Pi∥n,ρ

De�nition 113 (Adapted model). Given an inequational theory E , we say that a model ρ
is adpated to E and we note ρ ⊩ E i� the �rst-order part of ρ is a E-valuation (as de�ned in
De�nition 49).

De�nition 114 (Sound judgment). Suppose that:

• Γ = x1 ∶ P1, . . . , xn ∶ Pn is a typing context.

• E is a �rst-order inequational theory.
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We say that a judgment of the form E ; Γ ⊢ t ∶ N is sound (at level n) i� for every adapted
model ρ ⊩ E and for every adapted substitution σ ∈ ∥Γ∥n,ρ, we have

t[σ] ∈ ∥N∥n,ρ

Similarly, we say that a judgment of the form E ; Γ ⊢ v ∶ P is sound (at level n) i� for
every adapted model ρ ⊩ E and for every n-adequate substitution σ ∈ ∥Γ∥n,ρ, we have

v[σ] ∈ ∥v∥n,ρ

We de�ne what it means for our interpretation to be sound with respect to a given typing
rule. A typing rule is given by a sequence of premises Ji (which are typing judgments), side-
conditions (SC) on these judgments, and a conclusion K :

J1 J2 . . . Jn SC
(rule)

K

De�nition 115 (Sound rule). SupposeR is a typing rule, with J1, . . . , Jn being its premises
judgments andK its conclusion. We say that R is sound i� whenever J1, . . . , Jn are sound
and the side-conditions SC are met, the conclusionK is sound as well.

Remark 116. If a typing derivation π is built using only sound rules (at level n), then its
conclusion is also sound (at level n).

4.1.3.1 Soundness

We prove that all λLCBPV typing rules are sound.

Theorem 117. Let E be an equational theory and ρ a model such that ρ ⊩ E . Then given
two types A,B and n ∈ N, we have:

P ⊑E Q Ô⇒ ∥P ∥n,ρ ⊆ ∥Q∥n,ρ
N ⊑E M Ô⇒ ∥N∥n,ρ ⊆ ∥M∥n,ρ

Proof.

The proof is done by induction on the subtyping judgment de�ned in Figure 1. To prove the second
statement, it is enough to prove that N ⊑E M implies JMKn,ρ ⊆ JNKn,ρ since (.)�n is contravariant.

• Re�exivity : The base case A ⊑E A is immediate.
• Transitivity : This is immediate by transitivity of the set inclusion ⊆.
• Predicate variables : Suppose that e ≅S f . Then it means that for any �rst-order valuation ρ

we have JeKρ = JfKρ. It is then also true for any unary model ρ, and hence

∥X(e)∥n,ρ = ∥X(f)∥n,ρ
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• Tensor : Suppose that P ⊑E P ′ andQ ⊑E Q′. Then, by induction we have that ∥P ∥n,ρ ⊆ ∥P ′∥n,ρ
and ∥Q∥n,ρ ⊆ ∥Q′∥n,ρ. It means that if (v,w) ∈ ∥P ⊗Q∥n,ρ, we have v ∈ ∥P ′∥n,ρ andw ∈ ∥Q′∥n,ρ.
Therefore (v,w) ∈ ∥P ′ ⊗Q′∥n,rho.

• Positive shift : Suppose that N ⊑E M . Then we know that JMKn,ρ ⊆ JNKn,ρ. We have
JNKn,ρ

�n ⊆ JMKn,ρ
�n and hence the result ∥⇓N∥n,ρ ⊆ ∥⇓M∥n,ρ.

• Positive shift : Suppose that P ⊑E Q. Then J⇑QKn,ρ = ∥Q∥n,ρ�n ⊆ ∥P ∥n,ρ�n = J⇑P Kn,ρ.

• Linear implication : Suppose that P ⊑E Q and N ⊑E M . Then we have by induction that
∥P ∥n,ρ ⊆ ∥Q∥n,ρ and JMKn,ρ ⊆ JNKn,ρ. Hence we obtain that JP ⊸MKn,ρ = { a(v).E ∣ v ∈
∥P ∥n,ρ ∧E ∈ JMKn,ρ } ⊆ { a(v).E ∣ v ∈ ∥Q∥n,ρ ∧E ∈ JNKn,ρ } = JQ⊸ NKn,ρ.

• Inequational implication : Suppose that e′ ⪯E e, f ⪯E f ′ and N ⊑E,e⪰Sf M . Then two cases
are possible:

– If ¬(Jf ′Kρ ⪯S Je′Kρ), then J{e′ ⪰S f ′}↦MKn,ρ = ∅ ⊆ J{e ⪰S f}↦ NKn,ρ.
– If Jf ′Kρ ⪯S Je′Kρ then J{e′ ⪰S f ′}↦MKn,ρ = JMKn,ρ. But since Je′Kρ ⪯S JeKρ and JfKρ ⪯S

Jf ′Kρ, we have J{e ⪰S f}↦ NKn,ρ = JNKn,ρ. Finally, since JfKρ ⪯S JeKρ, it means that ρ is
adapted to (E , e ⪰S f). Hence we conclude by induction hypothesis:

JMKn,ρ ⊆ JNKn,ρ

• Inequational conjunction : Suppose that e′ ⪯E e, f ⪯E f ′ and P ⊑E,e⪯Sf Q. Then two cases
are possible:

– If ¬(JeKρ ⪯S JfKρ), then ∥{e ⪯S f} ∧ P ∥n,ρ = ∅ ⊆ ∥{e′ ⪯S f ′} ∧Q∥n,ρ.
– If JeKρ ⪯S JfKρ then ∥{e ⪯S f} ∧ P ∥n,ρ = ∥P ∥n,ρ. But since Je′Kρ ⪯S JeKρ and JfKρ ⪯S

Jf ′Kρ, we have ∥{e′ ⪯S f ′} ∧Q∥n,ρ = ∥Q∥n,ρ. Finally, since JeKρ ⪯S JfKρ, it means that ρ
is adapted to (E , e ⪯S f). Hence we have by induction hypothesis:

∥P ∥n,ρ ⊆ ∥Q∥n,ρ

We conclude that
∥{e ⪯S f} ∧ P ∥n,ρ ⊆ ∥{e′ ⪯S f ′} ∧Q∥n,ρ

• Quanti�ers : Here again we only prove the negative case, the positive one being similar. Suppose
that N ⊑E M . We then have by applying multiple times the induction hypothesis:

J∃x ∈ S.MKn,ρ = ⋃s∈S JMKn,ρ[x←s]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
⊆JNKn,ρ[x←s]

⊆ ⋃s∈S JNKn,ρ[x←s]

Theorem 118 (Soundness theorem). All the rules of λLCBPV are sound at level 0.

Proof. The proof is done by examining each rule. Here E is �xed and ρ is a model such that ρ ⊩ E .

• (Var) We want to show that E ; Γ, x ∶ P ⊢0 x ∶ P is sound. But it is immediate since if σ ∈
∥Γ, x ∶ P ∥0,ρ then σ(x) ∈ ∥P ∥0,ρ, hence the result.

126



CHAPTER IV . MONITORING ALGEBRAS

• (Pos. shift) We suppose that E ; Γ ⊢0 t ∶ N is sound and want to conclude that E ; Γ ⊢0 thunk(t) ∶
⇓N is. Let σ ∈ ∥Γ∥0,ρ. Then by hypothesis we know that

t[σ] ∈ ∥N∥0,ρ

Hence, by de�nition we immediately conclude that

thunk(t[σ]) ∈ ∥⇓N∥0,ρ

• (Pos. shift elim.) We suppose that E ; Γ ⊢0 v ∶ ⇓N is sound and want to conclude that E ; Γ ⊢0
force(v) ∶ N is. Let σ ∈ ∥Γ∥0,ρ. Then by hypothesis we know that:

v[σ] ∈ ∥⇓N∥0,ρ

First, by de�nition of ∥⇓N∥0,ρ, we have v[σ] = thunk(t) with

t ∈ ∥N∥0,ρ (1.1)

Let E ∈ JNK0,ρ. We need to show that

force(thunk(t)) = force(v)[σ]�0E

Because of (2.21), we have immediately that ⟨E, ∈⟩t��. Since

⟨force(thunk(t)),E⟩0 →V ⟨t,E⟩0 ∈ ��

we conclude by saturation of the pole.

• (Neg. shift) We suppose that E ; Γ ⊢0 v ∶ P is sound and want to conclude that E ; Γ ⊢0 ret(v) ∶
⇑P is. Let σ ∈ ∥Γ∥0,ρ. Then by hypothesis we know that

v[σ] ∈ ∥P ∥0,ρ (1.2)

We need to show that ret(v[σ]) ∈ J⇑P K0,ρ
�0 . LetE ∈ J⇑P K0,ρ. Because of (2.22) and by de�nition

of J⇑P K0,ρ we conclude immediately.

• (Neg. shift elim.) We suppose that the two following judgments are sound:

E ; Γ ⊢0 t ∶ ⇑P (1.3)

E ; ∆, x ∶ P ⊢0 u ∶M (1.4)

We want to show that E ; Γ,∆ ⊢0 t to x.u ∶M is sound. Let σ ∈ ∥Γ,∆∥0,ρ. Then because Γ and
∆ are disjoint, it is clear that there exists two substitutions σ1, σ2 such that

– σ = σ1, σ2
– σ1 ∈ ∥Γ∥0,ρ
– σ2 ∈ ∥∆∥0,ρ

Hence, by hypothesis we have
t[σ1] ∈ ∥⇑P ∥0,ρ (1.5)

∀v ∈ ∥P ∥0,ρ, u[σ2][v/x] ∈ ∥M∥0,ρ (1.6)
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Let’s show that
t[σ1] to x.u[σ2] ∈ ∥M∥0,ρ

Suppose that E ∈ JMK0,ρ. Then, we can show the following intermediate result:

f(x.u[σ2]).E ∈ ∥P ∥0,ρ�0

Indeed, if v ∈ ∥P ∥0,ρ we have

⟨ret(v), f(x.u[σ2]).E⟩0→V⟨u[σ2][v/x],E⟩0 ∈ ��

Hence, we obtain the result by saturation of ��. But since J⇑P K0,ρ = ∥P ∥0,ρ�0 and because

⟨t[σ1] to x.u[σ2],E⟩0→V⟨t[σ1], f(x.u[σ2]).E⟩0 ∈ ��

we deduce the conclusion by saturation of ��.

• (⊸ intro.) We suppose that E ; Γ, x ∶ P ⊢0 t ∶ N is sound and want to conclude that E ; Γ ⊢0
λx.t ∶ P ⊸ N is. Let σ ∈ ∥Γ∥0,ρ. Let v ∈ ∥P ∥0,ρ and E ∈ JNK0,ρ. We need to show that
λx.t[σ]�0a(v).E. We know that σ[v/x] ∈ ∥Γ, x ∶ P ∥0,ρ, hence by hypothesis that t[σ][v/x] ∈
∥N∥0,ρ. This implies that

⟨t[σ][v/x],E⟩0 ∈ ��
On the other hand, we have

⟨λx.t[σ], a(v).E⟩0→V⟨t[σ][v/x],E⟩0

Therefore, by saturation of ��, we conclude that λx.t[σ]�a(v).E.

• (⊸ elim.) We suppose that the two following judgments are sound:

E ; Γ ⊢0 t ∶ P ⊸ N (1.7)

E ; ∆ ⊢0 v ∶ P (1.8)

We want to show that E ; Γ,∆ ⊢0 (t)v ∶ N is sound. Let σ ∈ ∥Γ,∆∥0,ρ. Then because Γ and ∆
are disjoint, it is clear that there exists two substitutions σ1, σ2 such that

– σ = σ1, σ2
– σ1 ∈ ∥Γ∥0,ρ
– σ2 ∈ ∥∆∥0,ρ

Hence, by hypothesis we have
t[σ1] ∈ ∥P ⊸ N∥0,ρ (1.9)

v[σ2] ∈ ∥P ∥0,ρ (1.10)

Let’s show that
t[σ1]v[σ2] ∈ ∥M∥0,ρ

Suppose that E ∈ JMK0,ρ. Then because of (2.34),

a(v[σ2]).E ∈ JP ⊸ NK0,ρ

128



CHAPTER IV . MONITORING ALGEBRAS

Hence, we know by (2.29) that
⟨t[σ1], a(v[σ2]).E⟩0 ∈ ��

Finally, we conclude by saturation of �� that

⟨(t[σ1])v[σ2],E⟩0 ∈ ��

• (⊗ intro.) We suppose that E ; Γ ⊢0 v ∶ P and E ; ∆ ⊢0 w ∶ Q are sound and want to conclude that
E ; Γ ⊢0 (v,w) ∶ P ⊗Q is. Let σ ∈ ∥Γ,∆∥0,ρ. Then because Γ and ∆ are disjoint, it is clear that
there exists two substitutions σ1, σ2 such that

– σ = σ1, σ2
– σ1 ∈ ∥Γ∥0,ρ
– σ2 ∈ ∥∆∥0,ρ

Hence, by hypothesis we have
v[σ1] ∈ ∥P ∥0,ρ

and
w[σ2] ∈ ∥Q∥0,ρ

Hence, clearly because (v,w)[σ] = (v[σ1],w[σ2]) we have

(v,w)[σ] ∈ ∥P ⊗Q∥0,ρ

• (⊗ elim.) We suppose that the two following judgments are sound:

E ; Γ, x ∶ P, y ∶ Q ⊢0 t ∶ N (1.11)

E ; ∆ ⊢0 v ∶ P ⊗Q (1.12)
We want to show that E ; Γ,∆ ⊢0 let (x, y) = v in t ∶ N is sound. Let σ ∈ ∥Γ,∆∥0,ρ. Then because
Γ and ∆ are disjoint, it is clear that there exists two substitutions σ1, σ2 such that

– σ = σ1, σ2
– σ1 ∈ ∥Γ∥0,ρ
– σ2 ∈ ∥∆∥0,ρ

Hence, by hypothesis we have

∀v ∈ ∥P ∥0,ρ,∀w ∈ ∥Q∥0,ρ, t[σ1][v/x,w/y] ∈ ∥N∥0,ρ (1.13)

and
v[σ2] ∈ ∥P ⊗Q∥0,ρ (1.14)

By de�nition of the interpretation of P ⊗Q, we have v[σ2] = (w,w′) such that w ∈ ∥P ∥0,ρ and
w′ ∈ ∥Q∥0,ρ. Hence, by (2.33) we have

t[σ1][w/x,w′/y] ∈ ∥N∥0,ρ

Now, for any E ∈ JNK0,ρ we have

⟨let (x, y) = v[σ2] in t[σ1],E⟩0→V⟨t[σ1][w/x,w′/y],E⟩0
But since t[σ1][w/x,w′/y]�E, we have by saturation that

⟨let (x, y) = v[σ2] in t[σ1],E⟩0 ∈ ��

Which exactly means that let (x, y) = v[σ2] in t[σ1] ∈ ∥N∥0,ρ.
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• (unit) We want to show that E ; Γ ⊢0 ∗ ∶ 1 is sound. This is immediate by de�nition of ∥1∥0,ρ.
• (unit elim.) We want to show that E ; Γ,∆ ⊢0 let∗ = v in t ∶ N is sound provided that E ; Γ ⊢0
v ∶ 1 and E ; ∆ ⊢0 t ∶ N are sound. Let ρ be an adapted model and let σ ∈ ∥Γ,∆∥0,ρ. Then because
Γ and ∆ are disjoint, it is clear that there exists two substitutions σ1, σ2 such that

– σ = σ1, σ2
– σ1 ∈ ∥Γ∥0,ρ
– σ2 ∈ ∥∆∥0,ρ

Hence, by hypothesis we have
v[σ1] ∈ ∥P ∥0,ρ (1.15)

and
t[σ2] ∈ ∥N∥0,ρ (1.16)

But by de�nition we know that v[σ1] = ∗. Let E ∈ JNK0,ρ. We want to show that

⟨let∗ = ∗ in t[σ2],E⟩0 ∈ ��

This is immediate by →-saturation of �� since

⟨t[σ2],E⟩0 ∈ ��

• (prim. integers) We want to show that E ; Γ ⊢0 n ∶ Nat is sound. This is immediate by de�nition
of ∥Nat∥0,ρ.

• (succ) We want to show that E ; Γ ⊢0 s(v) ∶ Nat is sound provided that E ; Γ ⊢0 v ∶ Nat is sound.
Let σ ∈ ∥Γ∥0,ρ. We have by hypothesis that

v[σ] ∈ ∥Nat∥0,ρ
Hence, by de�nition of the interpretation, there is n ∈ N such that v[σ] = n. Therefore, since
s(n) = n + 1, we have

s(v)[σ] = n + 1 ∈ ∥Nat∥0,ρ
• (Case) We suppose that E ; Γ ⊢0 v ∶ Nat, E ; ∆, x ∶ Nat ⊢0 t1 ∶ N and E ; ∆, x ∶ Nat ⊢0 t2 ∶ N are

sound. We want to prove that the following judgment is sound too:

E ; Γ,∆ ⊢0 case v of x.t1 ∥x.t2 ∶ N

Let σ1 ∈ ∥Γ∥0,ρ and σ2 ∈ ∥∆∥0,ρ. We �rst know that

v[σ1] ∈ ∥Nat∥0,ρ
Hence, there is n ∈ N such that v[σ1] = n. Since σ2[x ← v[σ1]] ∈ ∥∆, x ∶ Nat∥0,ρ we also know
that

t1[σ2][v[σ1]/x] ∈ ∥N∥0,ρ (1.17)

t2[σ2][v[σ1]/x] ∈ ∥N∥0,ρ (1.18)
Let E ∈ JNK0,ρ. Depending of wether n = 0 or n > 0 we have

⟨case v[σ1]of x.t1[σ2] ∥x.t2[σ2],E⟩0→V⟨ti[σ2][v[σ]/x],E⟩0
We have ⟨ti[σ2][v[σ1]],E⟩0 ∈ �� because of (2.35) and (2.36). Hence by saturation of ��we obtain

⟨case v[σ1]of x.t1[σ2] ∥x.t2[σ2],E⟩0 ∈ ��
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• (∀ intro.) We want to show that given that ιS does not appear free in Γ nor in E and that
E ; Γ ⊢0 t ∶ N is sound we obtain that E ; Γ ⊢0 v ∶ ∀ι ∈ S.N is sound too. Let ρ ⊩ E and σ ∈ ∥Γ∥0,ρ.
Let E ∈ J∀ι ∈ σ.NK0,ρ = ⋃a∈S JNK0,ρ[ι←a]. We want to show that t[σ]�E. We know there exists
a ∈ S such that E ∈ JNK0,ρ[ιS←a]. We have ρ[ιS ← a] ⊩ E since ιS does not appear free in E .
Moreover σ ∈ ∥Γ∥0,ρ[ι←a] since ιS does not appear free in Γ. Therefore, we know by hypothesis
that

t[σ] ∈ JNK0,ρ[ι←a]
�0

That concludes the proof.

• (∀ elim.) We want to show that given that E ; Γ ⊢0 t ∶ ∀ι ∈ S.N is sound then for any a ∈ S,
E ; Γ ⊢0 t ∶ N[a/ιS] is sound too. Let ρ ⊩ E and σ ∈ ∥Γ∥0,ρ and a ∈ S. We know by hypothesis
that

t ∈ (⋃b∈S JNK0,ρ[ιS←b])�0

= ⋂b∈S(JNK0,ρ[ιS←b])�0

⊆ JNK0,ρ[ιS←a]
�0

= JN[a/ιS]K0,ρ
�0

This concludes the proof.

• (∃ intro.) We want to show that given that E ; Γ ⊢0 v ∶ P [e/ιS] is sound we obtain that E ; Γ ⊢0
v ∶ ∃ι ∈ S.P is sound too. Let ρ ⊩ E and σ ∈ ∥Γ∥0,ρ. We know by hypothesis that

v[σ] ∈ ∥P [e/ιS∥0,ρ

But ∥P [e/ιS]∥0,ρ = ∥P ∥0,ρ[ιS←ρ(e)] Hence we obtain immediately that:

v[σ] ∈ ⋃
a∈S

∥P ∥0,ρ[ιS←a] = ∥∃ι ∈ S.P ∥0,ρ

• (∃ elim.) We suppose that E ; Γ ⊢0 v ∶ ∃ι ∈ S.P and E ; ∆, x ∶ P [κ/ι] ⊢0 t ∶ N are sound, with κ
not appearing free in E , ∆ or N . We want to show that

E ; Γ,∆ ⊢0 t[v/x] ∶ N

Let ρ ⊩ E and let σ ∈ ∥Γ,∆∥0,ρ. We have σ = σ1, σ2 such that σ1 ∈ ∥Γ∥0,ρ and σ2 ∈ ∥∆∥0,ρ. We
know by hypothesis that

v[σ1] ∈ ⋃
a∈S

∥P ∥0,ρ[ιS←a]

So there exists a ∈ S such that
v[σ1] ∈ ∥P ∥0,ρ[ιS←a] (1.19)

On the other hand we observe that since κS does not appear free in E and because ρ ⊩ E , we
have:

ρ[κS ← a] ⊩ E

Moreover, since κS does not appear free in Γ we also have

σ2 ∈ ∥∆∥0,ρ[κS←a]

Finally, (2.37) implies that
v[σ1] ∈ ∥P [κ/ι]∥0,ρ[κS←a]
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So, by the second hypothesis we obtain that

t[σ2][v[σ1]/x] ∈ ∥N∥0,ρ[κS←a]

But since κ does not appear free in N , then

∥N∥0,ρ[κS←a] = ∥N∥0,ρ

• (Inequ. conj. intro.) We want to show that provided that E ; Γ ⊢0 v ∶ P is sound and that
f ⪯E e, we have E ; Γ ⊢0 v ∶ {f ⪯S e} ∧ P is sound too. Let ρ ⊩ E and let σ ∈ ∥Γ∥0,ρ. We know
that JfKρ ⪯S JeKρ by hypothesis. Hence, by the other hypothesis we have that v[σ] ∈ ∥P ∥0,ρ =
∥{f ⪯S e} ∧ P ∥0,ρ.

• (Inequ. imp. intro.) We want to show that provided that E , e ⪰S f ; Γ ⊢0 t ∶ N is sound, we have
E ; Γ ⊢0 t ∶ {e ⪰S f}↦ N is sound too. Let ρ ⊩ E and let σ ∈ ∥Γ∥0,ρ. There are two possibilities:

– If JeKρ ⪰S JfKρ then ρ ⊩ E , e ⪰S f . Hence, by hypothesis we have that t[σ] ∈ JNK0,ρ
�0 =

J{e ⪰S f}↦ NK0,ρ
�0 .

– If ¬(JeKρ ⪰S JfKρ) then by hypothesis we have that t[σ] ∈ J{e ⪰S f}↦ NK0,ρ
�0 = ∅�0 = P.

• (Inequ. conj. elim.) We want to show that provided that E ; Γ ⊢0 v ∶ {e ⪯S e} ∧ P is
sound, E ; Γ ⊢0 v ∶ P is sound too. Let ρ ⊩ E and let σ ∈ ∥Γ∥0,ρ. We conclude easily because
∥{e ⪯S e} ∧ P ∥0,ρ = ∥P ∥0,ρ.

• (Inequ. imp. elim.) We want to show that provided that E ; Γ ⊢0 t ∶ {e ⪰S e} ↦ N is
sound, E ; Γ ⊢0 t ∶ N is sound too. Let ρ ⊩ E and let σ ∈ ∥Γ∥0,ρ. We conclude easily because
J{e ⪰S e}↦ NK0,ρ = JNK0,ρ.

• (Subtyping) Finally, we want to show that if A ⊑E B and E ; Γ ⊢0 a ∶ A is sound then so is
E ; Γ ⊢0 a ∶ B. This is a direct consequence of Theorem 117.

4.2 | n-Monitoring algebras
Now that we have de�ned the unary realizability model based on the Monitoring Abstract
Machine, we can turn our attention to the central notion of this thesis, namely the Monitor-

ing Algebra or MA. A monitoring algebra is a structure that combine the forcing program
transformation with the unary realizability of the previous section. The algebraic nature of the
forcing layer will allow for complex combinations and constructions on monitoring algebras,
thus giving birth to models of elaborated programming languages. In the rest of this thesis, we
suppose having a �xed a unary pole �� as de�ned in Section 4.1.

4.2.1 Definition
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De�nition 119 (n-Monitoring Algebra). Let n ∈ N. A n-monitoring algebra A =
(∣A∣,CA) is a structure such that:

• ∣A∣ is a forcing monoid, called the carrier of the algebra.

• CA ∶ ∣A∣ → P(Vn) is the test function, which maps an element p of the forcing
monoid ∣A∣ to a set CA(p) of n-uples of values. The function CA is moreover required
to be decreasing, that is:

∀p, q ∈ ∣A∣, p ⪯ q implies CA(q) ⊆ CA(p)

The natural number n is called the level of A.

Remark 120. The test function CA is somehow similar to what is called the erasure map
in the Views framework [DYBG+13] and in recent separation logic models such as [SBP13].

In what follows, we will denote n-monitoring algebras (or n-MAs for short) with capital
letters A,B,D, etc.

4.2.2 A-orthogonality
In what follows, we suppose thatA is a �xed n-MA. In the simple realizability model given in
Section 4.1, the realizers are: values, computations or environments. In monitoring algebras,
the actors of the realizability are annotated terms: i.e. a term associated to an element of the
forcing monoid ∣A∣. This element is here to give an information on the execution of the term:
the time complexity, a quantity of resources the term can use, security credentials, etc.

De�nition 121 (A-terms).

• A A-value is an element (v, p) of V × ∣A∣. The set of A values is denoted by VA.

• A A-environment is an element (E,p) of E × ∣A∣. The set of A-environments is
denoted by EA.

• Finally, aA-computation is an element (t, p) of P× ∣A∣. The set ofA-computations
is denoted by PA.

In the unary realizability case, we considered a family of orthogonality relations that relate
computations (resp. values) to environments. Each n-MAA induces a similar family of orthog-
onality relations. But instead, they relateA-computations (resp. A-values) andA-environments.
These relations are obtained by extending the simple orthogonality inherited from the pole ��,
and by incorporating the forcing conditions using the test function CA. These forcing condi-
tions re�ne the notion of good interaction de�ned by ��.
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De�nition 122 (A-orthogonality). Let A be a n-MA. We de�ne two families of orthogo-
nality relations indexed by N:

• For each k ∈ N, a relation �A,k ⊆ PA ×EA de�ned as:

(t, p)�A,k(E, q)⇐⇒ ∀(v1, . . . , vn) ∈ CA(p + q), ⟨t, a(v1). . . . a(vn).E⟩k ∈ ��

• For each k ∈ N, a relation �A,k ⊆ EA ×VA de�ned as:

(E, q)�A,k(v, p)⇐⇒ ∀(v1, . . . , vn) ∈ CA(p + q), ⟨↑ E, (v, (vn, . . . , v1))⟩k ∈ ��

We denote these two relations by the same symbol �A,k: their domain being disjoint, there is
no possible confusion. We call both these relations A-orthogonality at level k.

This de�nition makes clear the role of the forcing condition: it parametrises the orthogonality
with a set of tests (the values given by the test function CA) that the con�guration has to pass.
Of course, the presence of those values only a�ects con�gurations that will manipulate the
store during its execution, using the observation L.Mαk or new primitives.

Notation 123. In addition, we de�ne the following set that we will sometimes �nd convenient
to use:

��A,k def= { (t,E, p) ∣ ∀(v1, . . . , vn) ∈ CA(p), ⟨t, a(v1). . . . a(vn).E⟩k ∈ �� }

This new set plays the same role as the pole in the simple realizability model and we call it
the A-pole at level k. Using it, we can reformulate the orthogonality between computations
and environments as follows:

(t, p)�A,k(E, q)⇔ (t,E, p + q) ∈ ��A,k

Remark 124. It is possible to express theA-orthogonality using the simple orthogonality as
follows:

(t, p)�A,k(E, q)⇔ ∀(v1, . . . , vn) ∈ CA(p + q), t�ka(v1). . . . a(vn).E

These two orthogonality relations can in turn be lifted to two operations on sets of A-values
and A-environments respectively. If X ⊆ VA, we de�ne

X�A,k def= { (E, q) ∈ EA ∣ ∀(v, p) ∈X, (E, q)�A,k(v, p) }

Similarly if we take Y ⊆ EA, we de�ne

Y �A,k def= { (t, p) ∈ PA ∣ ∀(E, q) ∈ Y, (t, p)�A,k(E, q) }
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Notation 125. If A is a n-MA, we denote by �A the relation �A,n.

4.2.3 Interpretation of multiplicatives

We now show how each n-MA A induces a realizability model of λLCBPV. We need to give
an interpretation of types, similarly to what has been done for the unary realizability model
of Section 4.1. A positive (resp. negative) type will be interpreted by a set of A-values (resp.
A-computations) which is upward closed (for the preorder ⪯∣A∣ ).

De�nition 126. We denote by:

• I(VA) the set of all subsets X ⊆ VA that are upward-closed:

∀(v, p) ∈X,p ⪯ q⇒ (v, q) ∈X

• I(EA) the set of all subsets X ⊆ EA that are upward-closed:

∀(E,p) ∈X,p ⪯ q⇒ (E, q) ∈X

• I(PA) the set of all subsets X ⊆ PA that are upward-closed:

∀(t, p) ∈X,p ⪯ q⇒ (t, q) ∈X

De�nition 127 (A-model). A A-model is a mapping ρ such that:

• ρ associates to every predicate variable X of arity S1 × ⋅ ⋅ ⋅ × Sn a function

ρA(X) ∶ S1 × ⋅ ⋅ ⋅ × Sn Ð→ I(VA)

• It associates to every �rst-order variable of sort S an element ρ(xS) ∈ S.

Property 128. Let k ∈ N. If X ⊆ VA (resp. Y ⊆ EA) then X�A,k ∈ I(EA) (resp. Y �A,k ∈
I(PA)).

Proof.

• We prove that given X ⊆ VA, X�A,k ∈ I(EA), the other case can be proved by the same rea-
soning. Let (E,p) ∈ X�A,k and q such that p ⪯ q. We want to show that (E, q) ∈ X�A,k . Let
(v, r) ∈X and (w1, . . . ,wn) ∈ CA(r ● q). We need to prove that

⟨↑ E, (v, (wn, . . . ,w1))⟩n ∈ �� (2.20)
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But p ⪯ q implies that r ● p ⪯ r ● q, hence because CA is non-increasing, we have (w1, . . . ,wn) ∈
CA(r ● p). Since (E,p) ∈X�A,k we deduce (2.20).

• The case where X ⊆ EA is proved in a similar way, using the fact that p ⪯ q implies p ● r ⪯ q ● r.

De�nition 129 (Interpretation). Let n ∈ N and ρ be aA-model. The interpretation of types
is given as follows:

• We associate to every value type P a set ∥P ∥A,k,ρ ⊆ VA of A-values, called the A-
truth value of P (at level k).

• We associate to every computation type N :

– a set JNKA,k,ρ ⊆ EA of A-environments, called the A-falsity value of N (at
level k).

– a set ∥N∥A,k,ρ ⊆ PA ofA-computations, called theA-truth value ofN (at level
k).

These sets are de�ned by mutual induction on the type and given in Figure 2.

Property 130. Let P be a positive type and N a negative type. Let A be a MA, n ∈ N and
ρ a A-model. Then:

• ∥P ∥A,n,ρ ∈ I(VA)

• JNKA,n,ρ ∈ I(EA)

• ∥N∥A,n,ρ ∈ I(PA)

Proof. The proof is easily done by induction on the formula and by using Property 128.

If a typeA (resp. N ) is closed, then we will often just write ∥A∥A,n (resp. JNKA,n) to denote
its truth value (resp. falsity value). Moreover, if A and n are clear from the context, we will
sometimes omit them.

De�nition 131 (Realizability relation). Let A be a n-monitoring algebra and k ∈ N. We
de�ne the realizability relation ⊩A,k _[ρ] at level k that relates:

• A A-computation (t, p) ∈ PA

• A closed negative type N
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Positive interpretation

∥X(e1, . . . , ek)∥A,n,ρ def= ρ(X)(Je1Kρ, . . . , JekKρ)
∥Nat∥A,n,ρ def= { (k, p) ∣ k ∈ N ∧ p ∈ ∣A∣ }

∥1∥A,n,ρ def= { (∗, p) ∣ p ∈ ∣A∣ }
∥P ⊗Q∥A,n,ρ def= { ((v,w), r) ∣ p + q ⪯ r ∧ (v, p) ∈ ∥P ∥A,n,ρ ∧ (w, q) ∈ ∥Q∥A,n,ρ }

∥⇓N∥A,n,ρ def= { (thunk(t), p) ∣ (t, p) ∈ JNKA,n,ρ
�A,n }

∥∃x ∈ S.P ∥A,n,ρ def= ⋃c∈S ∥P ∥A,n,ρ[x←c]
∥{e ⪯S f} ∧ P ∥A,n,ρ def= { ∥P ∥A,n,ρ if JeKρ ⪯S JfKρ

∅ otherwise

Negative environment interpretation

JP ⊸MKA,n,ρ
def= { (a(v).E, r) ∣ p ● q ⪯ r ∧ (v, p) ∈ ∥P ∥A,n,ρ ∧ (E, q) ∈ JQKA,n,ρ

�A,n }
J⇑P KA,n,ρ

def= ∥P ∥A,n,ρ�A,n

J∀x ∈ S.NKA,n,ρ
def= ⋃c∈S JNKA,n,ρ[x←c]

J{e ⪰S f}↦ NKA,n,ρ
def= { JNKA,n,ρ if JeKρ ⪰S JfKρ

∅ otherwise

Negative computation interpretation

∥N∥A,n,ρ def= JNKA,n,ρ
�A,n

Figure 2: Unary monitoring interpretation

It is de�ned as follows:

(t, p) ⊩A,k N[ρ] def= (t, p) ∈ ∥N∥A,k,ρ

We �nish by proving a useful technical lemma.

Lemma 132. Suppose that ρ is a A-model such that for all predicate variableX of arity S,
for any s ∈ S there is v ∈ V such that (v,0) ∈ ρ(X)(s). Then the two following statements
hold:

1. For every positive type P of λ⊗Nat∀
LCBPV, there exists v ∈ V such that (v,0) ∈ ∥P ∥A,1,ρ.
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2. For every negative type N of λ⊗Nat∀
LCBPV, there exists E ∈ E such that

(E,0) ∈ JNKA,1,ρ

Proof.

We prove the two by induction on the negative types.
1. We prove that assertation by induction on the type.

• If P =X with X a predicate variable then it is the base hypothesis.
• If P = ⇓N : then we have (✠,0) ∈ ∥N∥A,1,ρ. Hence (thunk(✠),0) ∈ ∥⇓N∥A,1,ρ.
• If P = Q1 ⊗ Q2, then by induction we have (v,0) ∈ ∥Q1∥A,1,ρ and (w,0) ∈ ∥Q2∥A,1,ρ.

Therefore ((v,w),0) ∈ ∥Q1 ⊗Q2∥A,1,ρ.
• If P = Nat, then (0,0) ∈ ∥Nat∥A,1,ρ.
• If P = ∃x ∈ S.Q then it is easy since S is not empty we have at least (v,0) ∈ ∥Q∥A,1,ρ[x←c]

for some c ∈ S.

2. We now prove the second assertation, still by induction on N .

• IfN = ⇑P , then we know that for any value (v, p) ∈ ∥P ∥A,1,ρ, (ret(v),nil, p) ∈ ��A,1, since
the resulting con�guration will never reduce for →.

• If N = ∀x ∈ S.N , then it is immediate since J∀x ∈ S.NKA,1,ρ is an union of interpretations
of negative types which satisfy the property.

• If N = P ⊸ M , then by the property 1., there exists v ∈ V such that (v,0) ∈ ∥P ∥A,1,ρ.
Moreover we have (E,0) ∈ JNKA,1,ρ for someE ∈ E. Hence (a(v).E,0) ∈ JP ⊸ NKA,1,ρ.

Remark 133. This lemma will be used to prove the computational correctness using our
realizability framework. Notice that it would not hold if one includes the inequational impli-
cation. That’s why we restrict it to λ⊗Nat∀

LCBPV types.

4.2.4 Parametric soundness
We now prove a soundness theorem for MAs. This result is similar to the forcing soundness
result of [Miq11]. In particular, we prove that each n-MA A induces a realizability model of
λLCBPV. That means that for every negative type N and every positive type P , we have:

E ; Γ ⊢0 v ∶ P ⇒ ∃p ∈ ∣A∣, (v, p) ∈ ∥P ∥A,n
E ; Γ ⊢0 t ∶ N ⇒ ∃p ∈ ∣A∣, (t, p) ∈ ∥N∥A,n

Notice that the level at which we prove soundness is n, which is the level of A. The element
p ∈ ∣A∣ that accompanies the value v (resp. the computation t) can directly be calculated from
the type system de�ned in Section 3.2. In fact, we use this type system to de�ne what it means
for a rule to be A-sound and then state the soundness theorem. We begin by de�ning some
useful notions.

138



CHAPTER IV . MONITORING ALGEBRAS

De�nition 134 (Substitution). AA-substitution σ is a partial application from the set of
term variables Var to the set VA, whose domain dom(σ) is �nite. We note

[x1 ← (v1, p1), . . . , xn ← (vn, pn)]

the substitution σ such that dom(σ) = {x1, . . . , xn} and such that σ(xi) = (vi, pi).

If σ is a A-substitution, we denote by σ[x ← (v, p)] the substitution obtained from σ by
binding x to (v, p). If σ1 is a subtitution and σ2 = [x1 ← (v1, p1), . . . , xn ← (vn, pn)] is another
substitution (disjoint from σ1), we denote by

σ1, σ2 = (. . . (σ1[x1 ← (v1, p1)]) . . . )[xn ← (vn, pn)]

Now, take a substitution σ = [x1 ← (v1, p1), . . . , xn ← (vn, pn)]. Let (t, q) ∈ PA (hence t
is possibly open). Then we note

t[σ] = t[v1/x1, . . . , vn/xn]
q[σ] = q +∑i pi

(t, q)[σ] = (t[σ], q[σ])

Similarly if (w, q) ∈ VA, we note:

w[σ] = w[v1/x1, . . . , vn/xn]
(w, q)[σ] = (w[σ], q[σ])

Remark 135. If FV(t) ⊆ dom(σ) (resp. FV(v) ⊆ dom(σ)) then (t, q)[σ] (resp. (v, q)[σ])
is closed.

We now want to de�ne what it means for a typing rule to be sound with respect toA. We
consider typing rules of the type system λ

∣A∣

LCBPV whose judgments are of the form:

E ; Γ ⊢k a ∶ (A,p) where p ∈ ∣A∣

We �rst de�ne the soundness of a judgment, and then of a typing rule. We will then prove the
soundness of every typing rule.

De�nition 136 (Adequate substitution). Let Γ = x1 ∶ P1, . . . , xn ∶ Pn be a context and ρ a
A-model. We say that a A-substitution σ is adequate to Γ[ρ] and we note σ ∈ ∥Γ∥A,k,ρ i�

• dom(σ) = {x1, . . . , xn}

• ∀i ∈ {1, . . . , n}, σ(xi) ∈ ∥Pi∥A,k,ρ
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De�nition 137 (A-sound judgment). Suppose that:

• A is a k-MA.

• Γ = x1 ∶ P1, . . . , xn ∶ Pn is a typing context.

• E is a �rst-order inequational theory.

• p ∈ ∣A∣.

• a ∈ P ∪V.

• A is a negative or positive type.

We say that a judgment of the form E ; Γ ⊢k a ∶ (A,p) is A-sound i� for every A-model ρ
such that ρ ⊩ E and for every adequate substitution σ ∈ ∥Γ∥A,k,ρ, we have

(a, p)[σ] ∈ ∥A∥A,k,ρ

We can de�ne what it means for our interpretation to be sound with respect to to a given
typing rule. A typing rule is given by a sequence of premises Ji (which are typing judgments),
side-conditions (SC) on these judgments, and a conclusion K :

J1 J2 . . . Jn SC
(rule)

K

De�nition 138 (A-sound rule). LetA be a k-MA. SupposeR is a typing rule, withJ1, . . . , Jn
being its premises judgments andK its conclusion. We say that:

R is A-sound i� the A-soundness of all premises Ji and the side-conditions SC implie
the soundness of the conclusionK .

Theorem 139 (Subtyping soundness). LetA be a k-MA. Suppose that E is an inequational
theory and that A ⊑E B. For every A-model ρ such that ρ ⊩ E , we have

∥A∥A,k,ρ ⊆ ∥B∥A,k,ρ

Proof. The proof is very similar to the proof Theorem 117, hence we omit it.

Theorem 140 (Soundness). Let A be a k-MA. All λ∣A∣

LCBPV typing rules at level k are A-
sound.

Proof. The proof is done by examining each rule. Here E is �xed and ρ is always aA-model such that
ρ ⊩ E .
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• (Var) We want to show that E ; Γ, x ∶ P ⊢k x ∶ (P,0) is sound. But it is immediate since if
σ ∈ ∥Γ, x ∶ P ∥A,k,ρ then σ(x) ∈ ∥P ∥A,k,ρ, hence the result.

• (Unit) We want to show that E ; Γ ⊢k ∗ ∶ (1,0) is sound. But it is immediate since if σ ∈ ∥Γ∥A,k,ρ
then (∗,0)[σ] ∈ ∥1∥A,k,ρ by ⪯ -saturation.

• (Pos. shift) We suppose that E ; Γ ⊢n t ∶ (N,p) is sound and want to conclude that E ; Γ ⊢n
thunk(t) ∶ (⇓N,p) is. Let σ ∈ ∥Γ∥A,k,ρ. Then by hypothesis we know that

(t, p)[σ] ∈ ∥N∥A,k,ρ

Hence, by de�nition we immediately conclude that

(thunk(t[σ]), p[σ])
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(thunk(t),p)[σ]

∈ ∥⇓N∥A,k,ρ

• (Pos. shift elim.) We suppose that E ; Γ ⊢n v ∶ (⇓N,p) is sound and want to conclude that
E ; Γ ⊢n force(v) ∶ (N,p) is. Let σ ∈ ∥Γ∥A,k,ρ. Then by hypothesis we know that:

(v, p)[σ] ∈ ∥⇓N∥A,k,ρ

First, by de�nition of ∥⇓N∥A,k,ρ, we have (v, p)[σ] = (thunk(t), p) with

(t, p[σ]) ∈ ∥N∥A,k,ρ (2.21)

Let (E, q) ∈ JNKA,k,ρ. We need to show that

(force(thunk(t)), p[σ]) = (force(v)[σ], p[σ])�A(E, q)

Let Ð→w ∈ CA(p[σ] ● q). Because of (2.21), we have immediately that ⟨t,
ÐÐ→
a(w).E⟩k ∈ ��. Since

⟨force(thunk(t)),
ÐÐ→
a(w).E⟩k

kÐ→ ⟨t,
ÐÐ→
a(w).E⟩k

we conclude by saturation of the pole.

• (Neg. shift) We suppose that E ; Γ ⊢n v ∶ (P, p) is sound and want to conclude that E ; Γ ⊢n
ret(v) ∶ (⇑P, p) is. Let σ ∈ ∥Γ∥A,k,ρ. Then by hypothesis we know that

(v, p)[σ] ∈ ∥P ∥A,k,ρ (2.22)

We need to show that (ret(v[σ]), p[σ]) ∈ J⇑P KA,k,ρ
�A . Let (E, q) ∈ J⇑P KA,k,ρ. Because of (2.22)

and by de�nition of ∥⇑P ∥A,k,ρ we conclude immediately.

• (Neg. shift elim.) We suppose that the two following judgments are A-sound:

E ; Γ ⊢n t ∶ (⇑P, p1) (2.23)

E ; ∆, x ∶ P ⊢n u ∶ (M,p2) (2.24)

We want to show that E ; Γ,∆ ⊢n t to x.u ∶ (M,p1 + p2) is A-sound. Let σ ∈ ∥Γ,∆∥A,k,ρ. Then
because Γ and ∆ are disjoint, it is clear that there exists two substitutions σ1, σ2 such that

– σ = σ1, σ2
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– σ1 ∈ ∥Γ∥A,k,ρ
– σ2 ∈ ∥∆∥A,k,ρ

Hence, by hypothesis we have
(t, p1)[σ1] ∈ ∥⇑P ∥A,k,ρ (2.25)

∀(v, q) ∈ ∥P ∥A,k,ρ, (u[σ2, v/x], p2[σ2] + q) ∈ ∥M∥A,k,ρ (2.26)

Let’s show that
(t[σ1] to x.u[σ2], p1[σ1] + p2[σ2]) ∈ ∥M∥A,k,ρ

Suppose that (E, r) ∈ JMKA,k,ρ. Then, we can show the following intermediate result:

(f(x.u[σ2]).E, p2[σ2] ● r) ∈ ∥P ∥A,k,ρ�A

– Indeed, if (v, p′) ∈ ∥P ∥A,k,ρ and Ð→w ∈ CA(p′ ● p2[σ] ● r), we have

⟨ret(v),
ÐÐ→
a(w).f(x.u[σ2]).E⟩k

kÐ→ ⟨u[σ2][v/x],
ÐÐ→
a(w).E⟩k

The latter is in �� by (2.26). Hence, we obtain the result by saturation of ��.

Let Ð→w ∈ CA((p1[σ1] + p2[σ2]) ● r). Then Ð→w ∈ CA(p1[σ1] ● p2[σ2] ● r). Since J⇑P KA,k,ρ =
∥P ∥A,k,ρ�A and because

⟨t[σ1] to x.u[σ2],
ÐÐ→
a(w).E⟩k

kÐ→ ⟨t[σ1],
ÐÐ→
a(w).f(x.u[σ2]).E⟩k ∈ ��

we deduce the conclusion by saturation of ��.

• (⊸ intro.) We suppose that E ; Γ, x ∶ P ⊢n t ∶ (N,p) is A-sound and want to conclude that
E ; Γ ⊢n λx.t ∶ (P ⊸ M,p) is. Let σ ∈ ∥Γ∥A,k,ρ. Let (v, q) ∈ ∥P ∥A,k,ρ and (E, r) ∈ JNKA,k,ρ.
We need to show that (λx.t[σ], p)�A(a(v).E, q ● r). Let Ð→w ∈ CA(p ● q ● r). We know that
σ[(v, q)/x] ∈ ∥Γ, x ∶ P ∥A,k,ρ, hence by hypothesis that (t[σ][v/x], p[σ] + q) ∈ ∥N∥A,k,ρ. By
associativity, this implies that

⟨t[σ][v/x],
ÐÐ→
a(w).E⟩k ∈ ��

On the other hand, we have

⟨λx.t[σ],
ÐÐ→
a(w).a(v).E⟩k

kÐ→ ⟨t[σ][v/x],
ÐÐ→
a(w).E⟩k

Therefore, by saturation of ��, we conclude that (λx.t, p)[σ]�A(a(v).E, q ● r).

• (⊸ elim.) We suppose that the two following judgments are A-sound:

E ; Γ ⊢n t ∶ (P ⊸ N,p) (2.27)

E ; ∆ ⊢n v ∶ (P, q) (2.28)

We want to show that E ; Γ,∆ ⊢n (t)v ∶ (N,p+q) isA-sound. Let σ ∈ ∥Γ,∆∥A,k,ρ. Then because
Γ and ∆ are disjoint, it is clear that there exists two substitutions σ1, σ2 such that

– σ = σ1, σ2
– σ1 ∈ ∥Γ∥A,k,ρ
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– σ2 ∈ ∥∆∥A,k,ρ
Hence, by hypothesis we have

(t[σ1], p[σ1]) ∈ ∥P ⊸ N∥A,k,ρ (2.29)

(v[σ2], q[σ2]) ∈ ∥P ∥A,k,ρ (2.30)

Let’s show that
(t[σ1]v[σ2], p[σ1] + q[σ2]) ∈ ∥M∥A,k,ρ

Suppose that (E, r) ∈ JMKA,k,ρ and Ð→w ∈ CA((p[σ1] + q[σ2]) ● r). Then because of (2.34),

(a(v[σ2]).E, q[σ2] ● r) ∈ JP ⊸ NKA,k,ρ

Hence, we know by (2.29) that

⟨t[σ1],
ÐÐ→
a(w).a(v[σ2]).E⟩k ∈ ��

Finally, we conclude by saturation of �� that

⟨(t[σ1])v[σ2],
ÐÐ→
a(w).E⟩k ∈ ��

• (⊗ intro.) We suppose that E ; Γ ⊢n v ∶ (P, p) and E ; ∆ ⊢n w ∶ (Q, q) are A-sound and want to
conclude that E ; Γ,∆ ⊢n (v,w) ∶ (P ⊗Q,p + q) is. Let σ ∈ ∥Γ,∆∥A,k,ρ. Then because Γ and ∆
are disjoint, it is clear that there exists two substitutions σ1, σ2 such that

– σ = σ1, σ2
– σ1 ∈ ∥Γ∥A,k,ρ
– σ2 ∈ ∥∆∥A,k,ρ

Hence, by hypothesis we have
(v, p)[σ1] ∈ ∥P ∥A,k,ρ

and
(w, q)[σ2] ∈ ∥Q∥A,k,ρ

Hence, clearly because ((v,w), p + q)[σ] = ((v[σ1],w[σ2]), p[σ1] + q[σ2]) we have

((v,w), p + q)[σ] ∈ ∥P ⊗Q∥A,k,ρ

• (⊗ elim.) We suppose that the two following judgments are A-sound:

E ; Γ, x ∶ P, y ∶ Q ⊢n t ∶ (N,p) (2.31)

E ; ∆ ⊢n v ∶ (P ⊗Q, q) (2.32)

We want to show that E ; Γ,∆ ⊢n let (x, y) = v in t ∶ (N,p + q) is A-sound. Let σ ∈ ∥Γ,∆∥A,k,ρ.
Then because Γ and ∆ are disjoint, it is clear that there exists two substitutions σ1, σ2 such that

– σ = σ1, σ2
– σ1 ∈ ∥Γ∥A,k,ρ
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– σ2 ∈ ∥∆∥A,k,ρ

Hence, by hypothesis we have

∀(w1, q1) ∈ ∥P ∥A,k,ρ,∀(w2, q2) ∈ ∥Q∥A,k,ρ, (t[σ1][w1/x,w2/y], p[σ1] + q1 + q2) ∈ ∥N∥A,k,ρ
(2.33)

and
(v, q)[σ2] ∈ ∥P ⊗Q∥A,k,ρ (2.34)

By de�nition of the interpretation of P ⊗Q, we have (v, q)[σ2] = ((w1,w2), q1 + q2) such that
(w, q1) ∈ ∥P ∥A,k,ρ and (w, q2) ∈ ∥Q∥A,k,ρ. Hence, by (2.33) we have

(t[σ1][w1/x,w2/y], p[σ1] + q[σ2]) ∈ ∥N∥A,k,ρ

Now, for any (E, r) ∈ JNKA,k,ρ and Ð→w ∈ CA((p[σ1] + q[σ2]) ● r) we have

⟨let (x, y) = v[σ2] in t[σ1],
ÐÐ→
a(w).E⟩k

kÐ→ ⟨t[σ1][w1/x,w2/y],
ÐÐ→
a(w).E⟩k

But since (t[σ1][w1/x,w2/y], (p + q)[σ])�E, we have by saturation that

⟨let (x, y) = v[σ2] in t[σ1],
ÐÐ→
a(w).E⟩k ∈ ��

Which exactly means that (let (x, y) = v[σ2] in t[σ1], p[σ1] + q[σ2]) ∈ ∥N∥A,k,ρ.

• (prim. integers) We want to show that E ; Γ ⊢n n ∶ (Nat,0) is A-sound. This is immediate by
de�nition of ∥Nat∥A,k,ρ.

• (succ)We want to show that E ; Γ ⊢n s(v) ∶ (Nat, p) isA-sound provided that E ; Γ ⊢n v ∶ (Nat, p)
is A-sound. Let σ ∈ ∥Γ∥A,k,ρ. We have by hypothesis that

(v, p)[σ] ∈ ∥Nat∥A,k,ρ

Hence, by de�nition of the interpretation, there is n ∈ N such that (v, p)[σ] = (n, p[σ]). There-
fore, since s(n) = n + 1, we have

(s(v), p)[σ] = (n + 1, p[σ]) ∈ ∥Nat∥A,k,ρ

• (Case) We suppose that E ; Γ ⊢n v ∶ (Nat, p), E ; ∆, x ∶ Nat ⊢n t1 ∶ (N, q) and E ; ∆, x ∶ Nat ⊢n
t2 ∶ (N, q) are A-sound. We want to prove that the following judgment is A-sound too:

E ; Γ,∆ ⊢n case v of x.t1 ∥x.t2 ∶ (N,p + q)

Let σ1 ∈ ∥Γ∥A,k,ρ and σ2 ∈ ∥∆∥A,k,ρ. We �rst know that

(v, p)[σ1] ∈ ∥Nat∥A,k,ρ

Hence, there is n ∈ N such that v[σ1] = n. Since σ2[x ← (v[σ1], p[σ1])] ∈ ∥∆, x ∶ Nat∥A,k,ρ we
also know that

(t1[σ2][v[σ1]/x], q[σ2] + p[σ1)] ∈ ∥N∥A,k,ρ (2.35)

(t2[σ2][v[σ1]/x], q[σ2] + p[σ1]) ∈ ∥N∥A,k,ρ (2.36)
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Let (E, r) ∈ JNKA,k,ρ andÐ→w ∈ CA((p[σ1] + q[σ2]) ● r). Depending of wether n = 0 or n > 0 we
have

⟨case v[σ1]of x.t1[σ2] ∥x.t2[σ2],
ÐÐ→
a(w).E⟩k

kÐ→ ⟨ti[σ2][v[σ]/x],
ÐÐ→
a(w).E⟩k

We have ⟨ti[σ2][v[σ1]],
ÐÐ→
a(w).E⟩k ∈ �� because of (2.35) and (2.36). Hence by saturation of �� we

obtain
⟨case v[σ1]of x.t1[σ2] ∥x.t2[σ2],

ÐÐ→
a(w).E⟩k ∈ ��

• (∀ intro.) We want to show that given that ιS does not appear free in Γ nor in E and that
E ; Γ ⊢n t ∶ (N,p) is A-sound we obtain that E ; Γ ⊢n t ∶ (∀ι ∈ S.N, p) is sound too. Let ρ ⊩ E
and σ ∈ ∥Γ∥A,k,ρ. Let (E, r) ∈ J∀ι ∈ σ.NKA,k,ρ = ⋃a∈S JNKA,k,ρ[ι←a]. We want to show that
(t, p)[σ]�A(E, r). We know there exists a ∈ S such that (E, r) ∈ JNKA,k,ρ[ιS←a]. We have
ρ[ιS ← a] ⊩ E since ιS does not appear free in E . Moreover σ ∈ ∥Γ∥A,k,ρρ[ι← a] since ιS does
not appear free in Γ. Therefore, we know by hypothesis that

(t, p)[σ] ∈ JNKA,k,ρ[ι←a]
�A

That concludes the proof.

• (∀ elim.) We want to show that given that E ; Γ ⊢n t ∶ (∀ι ∈ S.N, p) is A-sound then for any
a ∈ S, E ; Γ ⊢n t ∶ (N[a/ιS], p) is A-sound too. Let ρ ⊩ E and σ ∈ ∥Γ∥A,k,ρ and a ∈ S. We know
by hypothesis that

(t, p)[σ] ∈ (⋃b∈S ∥N∥A,k,ρ[ιS←b])�A
= ⋂b∈S(JNKA,k,ρ[ιS←b])�A
⊆ JNKA,k,ρ[ιS←a]

�A

= JN[a/ιS]KA,k,ρ
�A

This concludes the proof.

• (∃ intro.) We want to show that given that E ; Γ ⊢n v ∶ (P [e/ιS], p) is A-sound we obtain that
E ; Γ ⊢n v ∶ (∃ι ∈ S.P, p) is A-sound too. Let ρ ⊩ E and σ ∈ ∥Γ∥A,k,ρ. We know by hypothesis
that

(v, p)[σ] ∈ ∥P [e/ιS∥A,k,ρ
But ∥P [e/ιS]∥A,k,ρ = ∥P ∥A,k,ρ[ιS←ρ(e)] Hence we obtain immediately that:

(v, p)[σ] ∈ ⋃
a∈S

∥P ∥A,k,ρ[ιS←a] = ∥∃ι ∈ S.P ∥A,k,ρ

• (∃ elim.) We suppose that E ; Γ ⊢n v ∶ (∃ι ∈ S.P, p) and E ; ∆, x ∶ P [κ/ι] ⊢n t ∶ (N, q) are
A-sound, with κ not appearing free in E , ∆ or N . We want to show that

E ; Γ,∆ ⊢n A ∶ (k, t[v/x])Np + q

Let ρ ⊩ E and let σ ∈ ∥Γ,∆∥A,k,ρ. We have σ = σ1, σ2 such that σ1 ∈ ∥Γ∥A,k,ρ and σ2 ∈ ∥∆∥A,k,ρ.
We know by hypothesis that

(v, p)[σ1] ∈ ⋃
a∈S

∥P ∥A,k,ρ[ιS←a]

So there exists a ∈ S such that

(v, p)[σ1] ∈ ∥P ∥A,k,ρ[ιS←a] (2.37)
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On the other hand we observe that since κS does not appear free in E and because ρ ⊩ E , we
have:

ρ[κS ← a] ⊩ E

Moreover, since κS does not appear free in Γ we also have

σ2 ∈ ∥∆∥A,k,ρ[κS←a]

Finally, (2.37) implies that
(v, p)[σ1] ∈ ∥P [κ/ι]∥A,k,ρ[κS←a]

So, by the second hypothesis we obtain that

(t[σ2][v[σ1]/x], q[σ2] + p[σ1]) ∈ ∥N∥A,k,ρ[κS←a]

But since κ does not appear free in N , then

∥N∥A,k,ρ[κS←a] = ∥N∥A,k,ρ

• (Inequ. conj. intro.) We want to show that provided that E ; Γ ⊢n v ∶ (P, p) is A-sound
and that f ⪯E e, we have E ; Γ ⊢n v ∶ ({f ⪯S e} ∧ P, p) is A-sound too. Let ρ ⊩ E and let
σ ∈ ∥Γ∥A,k,ρ. We know that JfKρ ⪯S JeKρ and then, ρ ⊩ E , e ⪰S f . Hence, by hypothesis we have
that (v, p)[σ] ∈ ∥P ∥A,k,ρ = ∥{f ⪯S e} ∧ P ∥A,k,ρ.

• (Inequ. imp. intro.) We want to show that provided that E , e ⪰S f ; Γ ⊢n t ∶ (N,p) is A-sound,
we have E ; Γ ⊢n t ∶ ({e ⪰S f}↦ N,p) is A-sound too. Let ρ ⊩ E and let σ ∈ ∥Γ∥A,k,ρ. There are
two possibilities:

– If JeKρ ⪰S JfKρ then ρ ⊩ E , e ⪰S f . Hence, by hypothesis we have that (t, p)[σ] ∈
JNK,�A,=J{e ⪰S f}↦ NKA,k,ρ

�A .
– If ¬(JeKρ ⪰S JfKρ) then by hypothesis we have that (t, p)[σ] ∈ J{e ⪰S f}↦ NKA,k,ρ

�A =
∅�A = PA.

• (Inequ. conj. elim.) We want to show that provided that E ; Γ ⊢n v ∶ ({e ⪯S e} ∧ P, p) is
A-sound, E ; Γ ⊢n v ∶ (P, p) is A-sound too. Let ρ ⊩ E and let σ ∈ ∥Γ∥A,k,ρ. We conclude easily
because ∥{e ⪯S e} ∧ P ∥A,k,ρ = ∥P ∥A,k,ρ.

• (Inequ. imp. elim) We want to show that provided that E ; Γ ⊢n t ∶ ({e ⪰S e}↦ N,p) is sound,
E ; Γ ⊢n t ∶ (N,p) is sound too. Let ρ ⊩ E and let σ ∈ ∥Γ∥A,k,ρ. We conclude easily because
J{e ⪰S e}↦ NKA,k,ρ = JNKA,k,ρ.

• (Subtyping) Finally, we want to show that if A ⊑E B and E ; Γ ⊢n a ∶ (A,p) is A-sound then
E ; Γ ⊢n a ∶ (B,p). This is a direct consequence of Theorem 139.

4.2.5 Monitors
For now, all typing rules we have proved to be A-sound are either just using the forcing con-
dition 0 or the addition +. Hence, there is no rule that really modi�es the forcing condition.
That means the programs we build using these rules are not really dependent of what values
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are in the memory cells. And indeed, the programs built using these typing rules never change
or use the memory cells, since it is the role of the observation L.Mαk that has not been considered
yet. We have seen in Section 3.2 one kind of typing rule for L.Mαk . It was however speci�c to
the level 1. There is in fact no evident way to generalize this rule to any level n. However one
can see that the part of the rule that is not speci�c to the level 1 (that is the predicate C) is as
follows:

E ; Γ ⊢k t ∶ (N,p)
E ; Γ ⊢k LtMαk ∶ (N,f(p))

Where f is a certain function on the forcing monoid. This is clearly where the forcing condition
associated with a program is changed. This f expresses the cost we have to pay to trigger an
observation. The good news is that given a n-MA A, we can give a su�cient condition on
α ∈ P and f ∶ ∣A∣ → ∣A∣ so that this typing rule becomes A-sound. Every (α, f) satisfying
that condition will be called a A-monitor. In the next sections and chapters, we will identify
certain situations where we can characterize a subset of those monitors.

De�nition 141 (Monitor). LetA be a n-MA. AA-monitor is a pair (α, f)where f ∶ ∣A∣→
∣A∣, is a strong function and α ∈ P are such that:

∀t ∈ P,∀E ∈ P,∀p ∈ ∣A∣, (t,E, p ● q) ∈ ��A,k ⇒ (LtMαn,E, f(p) ● q) ∈ ��A,k

Lemma 142. If (α, f) is a A-monitor, then we have

(t, p + p′)�A,k(E, q)⇒ (LtMαk , f(p) + p′) �A,k (E, q)

Proof. Suppose that (t, p+p′)�A,k(E, q). Then it means that (t,E, (p+p′) ● q) ∈ ��A,k . Since (α, f)
is a monitor we have

(LtMαk ,E, f((p + p′) ● q)) ∈ ��A,k
But since f((p + p′) ● q) ⪯ (f(p) + p′) ● q (because f is strong), by ⪯ -saturation of ��A,k we obtain

(LtMαk ,E, (f(p) + p′) ● q) ∈ ��A,k

Lemma 143. To show that (α, f) is a A-monitor, it is enough to show that

∀t ∈ P,∀E ∈ P,∀p ∈ ∣A∣, (t,E, p) ∈ ��A,k ⇒ (LtMαn,E, f(p)) ∈ ��A,k

Proof. This is because f(p ● q) ⪯ f(p) ● q (f is strong) and because CA is decreasing.

We now show that for each A-monitor the announced typing rule is indeed A-sound.
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Property 144. Let (α, f) be a A-monitor, where A is a n-MA. Then the following typing
rule is A-sound:

E ; Γ ⊢n t ∶ (N,p)
E ; Γ ⊢n LtMαn ∶ (N,f(p))

Proof. Let ρ be a A-model and σ ∈ ∥Γ∥A,n,ρ. Then we know by induction that (t, p)[σ] ∈ ∥N∥A,n,ρ.
Let (E, q) ∈ JNKA,n,ρ. Since we have (t, p)[σ]�A,n(E, q) and because (α, f) is a A-monitor and by
Lemma 142, we obtain that

(t[σ], f(p)[σ])�A,n(E, q)
This permits us to conclude that (t, f(p))[σ] ∈ ∥N∥A,n,ρ, hence the A-soundness of the conclusion.

4.3 | Adding types
We have shown that each k-MA gives rise to a sound realizability interpretation of the a�ne
core type system λLCBPV, or from another point of view of the annotated type system λ

∣A∣

LCBPV
at level k. As a programming language, this core is very weak from the point of view of expres-
sivity, as it does not even allow sharing of variables. In order to obtain models of reasonable
programming languages, we need to add new types and new typing rules. In this section we
explain what we mean by adding types to the programming language associated with a MA.

In general, adding a type amounts to extend the grammar of positive or negative types and
de�ne the corresponding interpretation. However, if we want to automatically extend some
of the important properties of the monitoring algebra theory to these new types, we need to
structure them. In this thesis, we will only consider adding types through what we call simple

connectives. Even though there are other ways to build new types, types built using simple
connectives are extremely well-behaved.

4.3.1 Simple connectives
We begin by de�ning what simple connectives are in the unary realizability context.

De�nition 145 (Connective arity). A connective arity is a function σ ∶ {+,−}→ N.

De�nition 146 (Simple connective). We de�ne the notions of positive and negative simple
connectives:
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1. A positive connective (of arity σ) ⊙ is a function v⊙ ∶ Vσ(+) ×Eσ(−) → V

2. A negative connective (of arity σ) ⊙ is a function e⊙ ∶ Vσ(+) ×Eσ(−) → E.

This notion of simple connective admits a simple realizability interpretation.

De�nition 147 (Connective interpretation). Its interpretation is de�ned as follows:

1. For the positive connectives:

⊙(X1, . . . ,Xσ(+), Y1, . . . , Yσ(−))
def= { v⊙(v1, . . . , vσ(+),E1, . . . ,Eσ(−)) ∣ vi ∈Xi,Ej ∈ Yj }

2. For the negative connectives:

⊙(X1, . . . ,Xσ(+), Y1, . . . , Yσ(−))
def= { e⊙(v1, . . . , vσ(+),E1, . . . ,Eσ(−)) ∣ vi ∈Xi,Ej ∈ Yj }

Example 148. The type constructors ⊗ are respective examples of such positive simple con-
nective, while ⊸ is an example of a negative simple connective. Indeed, here are the corre-
sponding functions:

v⊗(v,w) def= (v,w)
e⊸(v,E) def= a(v).E

Example 149. Let w ∈ V. Consider the following simple constant positive connective

v⊙(v) def= w

Then when applied to any non empty set X , one obtain a singleton type:

⊙(X) = {w}

4.3.2 Simple A-connectives
We now de�ne what simple connectives are in the context of a n-MA. We �x such a MA

denoted A.
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De�nition 150 (SimpleA-connective). We de�ne the notions of positive and negative sim-
ple A-connectives:

1. A positive simple A-connective (of arity σ) ⊙ is a pair given by

• A function v⊙ ∶ Vσ(+) ×Eσ(−) → V
• A function φ⊙ ∶ ∣A∣σ(+)+σ(−) → ∣A∣

2. A negative simple A-connective (of arity n) ⊙ is given by:

• A function e⊙ ∶ Vσ(+) ×Eσ(−) → E
• A function φ⊙ ∶ ∣A∣σ(+)+σ(−) → ∣A∣

De�nition 151 (Simple connective interpretation). Its interpretation is de�ned as follows:

1. For the positive simple connectives:

⊙(X1, . . . ,Xσ(+), Y1, . . . , Yσ(−))
def= { (v⊙(Ð→vi ,

Ð→
Ej), φ⊙(Ð→pi ,Ð→qj )) ∣ (vi, pi) ∈Xi, (Ej , qj) ∈ Yj }

2. For the negative simple connectives:

⊙(X1, . . . ,Xσ(+), Y1, . . . , Yσ(−))
def= { (e⊙(Ð→vi ,

Ð→
Ej), φ⊙(Ð→pi ,Ð→qj )) ∣ (vi, pi) ∈Xi, (Ej , qj) ∈ Yj }

To clarify the de�nition, we have used the notation (Ð→vi ,
Ð→
Ej) to denote the tuple

(v1, . . . , vσ(+),E1, . . . ,Eσ(−))

And (Ð→pi ,Ð→qj ) to denote the tuple

(p1, . . . , pσ(+), q1, . . . , qσ(−))

Remark 152. Every simple A-connective also de�nes a simple connective by keeping only
the function v⊙ (resp. e⊙). In some sense it is a pair of connectives on both components.

Example 153. ⊸, ⊗ are examples of simple A-connectives, with the following associated
functions.

φ⊗(p, q) def= p + q
φ⊸(p, q) def= p ● q
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Example 154. Let w ∈ V and r ∈ ∣A∣. Consider the following simple constant positive
connective

v⊙(v) def= w

φ⊙(p) def= r

Then when applied to any non empty set X , one obtain the upward closure of a singleton
type:

⊙(X) = { (w,p) ∣ r ⪯ p }

Notation 155. We will often take the liberty to use the same notation ⊙ for all the compo-
nents of a simple A-connective, if there is no possible ambiguity.

4.3.3 Forcing transformation
One of the main interests of simpleA-connective is that they admit a forcing interpretation, i.e.
the forcing type translation can be extended to those new connectives in a canonical way.

Positive

Let (v⊙, φ⊙) be a positive A-connective. Given X1, . . . ,Xσ(+) be positive predicates of arity
∣A∣, and Y1, . . . , Yσ(−) be negative predicates of arity ∣A∣, ⊙ induces a positive predicate of arity
∣A∣ denoted by

(⊙(X1, . . . ,Xσ(+), Y1, . . . , Yσ(−)))∗(ι)

which is de�ned as follows (ι is a fresh variable of sort ∣A∣):

∃p1, . . . , pσ(+), q1, . . . , qσ(−) ∈ ∣A∣,
{φ⊙(Ð→pi ,Ð→qj ) ⪯∣A∣ ι} ∧ (⊙(X1(p1), . . . ,Xσ(+)(pσ(+)), Y1(q1), . . . , Yσ(−)(qσ(−))))

Negative

Similarly, if (e⊙, φ⊙) is a negativeA-connective. GivenX1, . . . ,Xσ(+) be positive predicates of
arity ∣A∣, and Y1, . . . , Yσ(−) be negative predicates of arity ∣A∣, ⊙ induces a negative predicate
of arity ∣A∣ denoted by

(⊙(X1, . . . ,Xσ(+), Y1, . . . , Yσ(−)))○(ι)

which is de�ned as follows:

∃p1, . . . , pσ(+), q1, . . . , qσ(−) ∈ ∣A∣,
{ι ⪰∣A∣ φ⊙(Ð→pi ,Ð→qj )}↦ (⊙(X1(p1), . . . ,Xσ(+)(pσ(+)), Y1(q1), . . . , Yσ(−)(qσ(−))))
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Example 156. Here is an example on how the inductive forcing interpretation of types would
be extended when considering a negative binary simple A-connective ⊙, of arity σ(+) = 1 =
σ(−):

(⊙(P,N))○(p) = ∃q, r ∈ ∣A∣.{p ⪰∣A∣ φ⊙(q, r)}↦ ⊙(P ∗(q),N○(q))

It is clear that if we take the example of the ⊸ connective, we get back its original forcing
interpretation.

4.4 | Properties of 1-Monitoring Algebras
We now turn our attention to 1-MAs, which are particularly well-behaved MAs. We show that
they are particularly interesting on the two following aspects:

• First, for each 1-MA, we are able to identify a substantial class of monitors in 1-MAs
using typing, which corresponds to the typing rule at level 1 given in Section 3.2 for the
observation constructor.

• We then prove a crucial result: the connection theorem. It formally shows how each 1-
MA comes from the composition of a unary realizability with a forcing transformation.
Or said otherwise, each A-model comes from a forcing model chosen inside a unary
realizability model. This theorem is not only conceptually interesting but also impor-
tant in practice, as we will see in the next chapters, as it will make possible to use the
characteristics of a given MA to build another one inside it.

These two points do not hold in general for n-MAs, but they are not restricted to 1-MAs either.
We will show in the next chapter how it possible to build n-MAs that enjoy generalized form
of those two good properties.

4.4.1 Monitors

We �rst show the soundness of the typing rule for the observation constructor L.Mα1 already
given in Section 3.2. We in fact give a su�cient condition for a pair (α, f) to be a A-monitor,
by only considering the unary realizability model of Section 4.1. This re�ects the fact that the
observation makes the level of the con�guration temporarily pass from 1 to 0.

Property 157. Let A be a 1-MA. Suppose we have a pair (α, f) where:

• α ∈ T is a closed term.

• f ∶ ∣A∣→ ∣A∣ is strong.
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Then (α, f) is a A-monitor if the following holds:

α ⊩0 ∀x ∈ ∣A∣.CA(f(x))⊸ ⇑CA(x)

Proof. By Lemma 143, it is enough to show that given (t,E, p) ∈ ��A,k , we have (LtMα1 ,E, f(p)) ∈
��A,k . So let v ∈ CA(f(p)). We then want to prove that

⟨LtMα1 , a(v).E⟩1 ∈ ��

But this con�guration reduces to ⟨α, a(v).m1(t).E⟩0. To conclude by→-saturation of ��, we only need
to show that α�1a(v).m1(t).E, but since α ⊩0 ∀x ∈ ∣A∣.CA(f(x))⊸ ⇑CA(x), it is enough to show:

a(v).m1(t).E ∈ JCA(f(p))⊸ ⇑CA(p)K0,[]

Since v ∈ CA(f(p)), it is enough to show that m1(t).E ∈ CA(p)�0 . Let w ∈ CA(p). We have

⟨w,m1(t).E⟩0 → ⟨t, a(w).E⟩1

The latter is in �� since (t,E, p) ∈ ��A,k , hence the conclusion by →-saturation of ��.

As an immediate corollary of Proposition 157, we get the following extension of the Sound-
ness theorem.

Corollary 158. Let A be a 1-MA. Then the following rule is A-sound:

E ; Γ ⊢1 t ∶ (N,p) E ;⊢0 α ∶ ∀x ∈ ∣A∣.CA(f(x))⊸ CA(x) f is strong

E ; Γ ⊢1 LtMα1 ∶ (N,f(p))

It is clear that this reasoning does not make sense in the general case of a (n+ 1)-MA A: A is
not necessarily built using a n-MA, whereas a 1-MA is built on top of the simple realizability
(which is morally a 0-MA). We would not know what to use as a replacement of the side
condition:

α ∶ ∀x ∈ ∣A∣.CA(f(x))⊸ CA(x)

4.4.2 Connection theorem
The connection theorem is a crucial technical result about 1-MAs. It formally shows that
each 1-MA is the composition of the simple realizability model at level 1 described in Section 4.1
and of a forcing structure as described in Chapter III . This result is conceptually and technically
important, as it will be used in the next chapters to build models of complex programming
languages. To establish the connection theorem, we start with:

• A 1-MA A.

• A A-model ρ.
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We want to show that ourA-model ρ can be seen as a forcing model inside a certain unary
realizability model ρ. We begin by choosing the following forcing structure induced by A and
noted F(A):

• The forcing monoid is ∣A∣.

• The predicate is a �xed predicate variable C.

And we suppose disposing of aF(A)-model, that is a function mapping all predicate variables
X of arity T1 × ⋅ ⋅ ⋅ × Tk to another variable X∗ ∶ T1 × ⋅ ⋅ ⋅ × Tk × ∣A∣.

Remark 159. F(A) is not a forcing structure stricto sensu, as C is not provably decreasing.
But inside the unary model ρ, it will be.

We now de�ne the desired unary model ρ, which depends on ρ.

• The valuation ρ is de�ned as follows:

– On �rst-order expressions e, ρ(e) = ρ(e).

– The valuation of the predicate C of arity ∣A∣ is given by

ρ(C)(p) = CA(p)

– If X is a predicate arity of arity T1 × ⋅ ⋅ ⋅ × Tk we de�ne the valuation ρ(X∗) of X∗

as:
ρ(X∗)(e1, . . . , ek, n) = { v ∈ V ∣ (v, p) ∈ ρ(e1, . . . , ek) }

With these de�nitions we can show how the realizability model ρ induced by A and the
forcing relation de�ned in the unary realizability model ρ are connected. We moreover prove
it not only for the basic types of λLCBPV, but for an extension of those types with any simple
A-connective. To do this, we state and prove the following Connection Lemma:

Lemma 160. Suppose that ρ is a A-model, p ∈M, v ∈ V, t ∈ P and E ∈ E. Suppose that
P and N are types built using the core grammar of λLCBPV augmented with any number of
simple A-connectives. Then the three following equivalences hold:

(1) (v, p) ∈ ∥P ∥A,n,ρ ⇐⇒ v ∈ ∥P ∗(p)∥n,ρ
(2) (E,p) ∈ JNKA,n,ρ ⇐⇒ E ∈ JN○(p)Kn,ρ
(3) (t, p) ∈ ∥N∥A,n,ρ ⇐⇒ t ∈ ∥N∗(p)∥n,ρ

Proof. We prove the three statements by mutual induction on the type.

1. We begin by proving (1), by looking at all the possible cases. We �x k ∈ N, ρ a simple valuation.
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• Predicate variable. Given a predicate variable X of signature S1 × ⋅ ⋅ ⋅ ×Sn and e1, . . . , en
respectively in S1-Exp, . . . , Sn-Exp, we have:

(v, p) ∈ ∥X(e1, . . . , en)∥A,k,ρ ⇔ ∃q ∈ ∣A∣, q ⪯ p ∧ (v, q) ∈ ρ(X)(Je1Kρ, . . . , JenKρ)
⇔ ∃q ∈ ∣A∣, q ⪯ p ∧ v ∈ ρ(X∗)(Je1Kρ, . . . , JenKρ, ρ(q))
⇔ ∃q ∈ ∣A∣, q ⪯ p ∧ v ∈ ρ(X∗)(Je1Kρ, . . . , JenKρ, q)
⇔ v ∈ ∥∃q ∈ ∣A∣.{q ⪯∣A∣ p} ∧ ρ(X∗)(Je1Kρ, . . . , JenKρ, q)∥k,ρ
⇔ v ∈ ∥(X(e1, . . . , en))∗(p)∥k,ρ

• Primitive integers. Let v ∈ V and p ∈M. We have the following equivalences:

(v, p) ∈ ∥Nat∥A,k,ρ ⇔ ∃n ∈ N, v = n
⇔ v ∈ ∥Nat∥k,ρ
⇔ v ∈ ∥Nat∗(p)∥k,ρ

• Unit. Let v ∈ V and p ∈M. We have the following equivalences:

(v, p) ∈ ∥1∥A,k,ρ ⇔ v = ∗
⇔ v ∈ ∥1∥k,ρ
⇔ v ∈ ∥1∗(p)∥k,ρ

• Positive A-connective. Suppose that ⊙ is a A-connective. We suppose to simplify the
presentation, but without any loss of generality that its signature is such that σ(+) = 1 =
σ(−), hence we consider the type ⊙(P,N) for some positive type P and some negative
type N . We suppose that by induction, (1) is true for P (H1) and (2) is true for N (H2).
Then we have:

(v, p) ∈ ∥⊙(P,N)∥A,k,ρ
⇔ ∃q1, q2 ∈ ∣A∣,⊙(q1, q2) ⪯∣A∣ p,∃(w,E) ∈ V ×E, v = ⊙(w,E)

∧(w, q1) ∈ ∥P ∥A,k,ρ ∧ (E, q2) ∈ JNKA,k,ρ
⇔ ∃q1, q2 ∈ ∣A∣,⊙(q1, q2) ⪯∣A∣ p,∃(w,E) ∈ V ×E, v = ⊙(w,E)

∧w ∈ ∥P ∗(q1)∥k,ρ ∧E ∈ JN○(q2)Kk,ρ (H1), (H2)
⇔ ∃q1, q2 ∈ ∣A∣,⊙(q1, q2) ⪯∣A∣ p, v ∈ ∥⊙(P ∗(q1),N○(q2))∥k,ρ
⇔ v ∈ ∥∃q1, q2 ∈ ∣A∣,{⊙(q1, q2) ⪯∣A∣ p} ∧ ⊙(P ∗(q1),N○(q2))∥k,ρ
⇔ v ∈ ∥(⊙(P,N))∗(p)∥k,ρ (Def of .∗)

• Tensor. The tensor is an example of positive A-connective, hence it is already proved.
• Positive shift. Let v ∈ V and p ∈M. We suppose that (3) is true for the computation type
N (IH). We know that (v, p) ∈ ∥⇓N∥A,k,ρ is equivalent to

∃t ∈ P, v = thunk(t) ∧ (t, p) ∈ (JNKA,k,ρ)�A,k

But because of (IH) this is equivalent to

∃t ∈ P, v = thunk(t) ∧ t ∈ ∥∀x ∈M.C(p ● x)⊸ N∗(x)∥k,ρ

This is in turn equivalent to

v ∈ ∥⇓(∀x ∈M.C(p ● x)⊸ N∗(x))∥k,ρ

And �nally, by de�nition of (⇓N)∗(p) this last proposition is equivalent to

v ∈ ∥(⇓N)∗(p)∥k,ρ
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• Existential quanti�er. Let v ∈ V and p ∈M. We suppose that (1) is true for P (IH).

(v, p) ∈ ∥∃x ∈ T.P ∥A,k,ρ ⇔ ∃r ∈ T, (v, p) ∈ ∥P ∥A,k,ρ[x←r]
⇔ ∃r ∈ T, v ∈ ∥P ∗(p)∥k,ρ[x←r] (IH)
⇔ v ∈ ∥∃x ∈ T.P ∗(p)∥k,ρ
⇔ v ∈ ∥(∃x ∈ T.P )∗(p)∥k,ρ (def of (.)∗)

• Inequational conjunction. Let v ∈ V and p ∈ M. Now suppose that (1) is true for P
(IH).

(v, p) ∈ ∥{s ⪯T r} ∧ P ∥A,k,ρ ⇔ JrKρ ⪰T JsKρ ∧ (v, p) ∈ ∥P ∥A,k,ρ
⇔ JrKρ ⪰T JsKρ ∧ v ∈ ∥P ∗(p)∥k,ρ
⇔ v ∈ ∥{s ⪯T r} ∧ P ∗(p)∥k,ρ
⇔ v ∈ ∥({s ⪯T r} ∧ P )∗(p)∥k,ρ

2. We now prove the proposition (2) by looking at all possible cases for negative types. In all cases
we �x k ∈ N and ρ a simple valuation.

• Negative A-connective. Suppose that ⊙ is a negative A-connective. We suppose to sim-
plify the presentation, but without any loss of generality that its signature is such that
σ(+) = 1 = σ(−), hence we consider the type ⊙(P,N) for some positive type P and some
negative type N . We suppose that by induction, (1) is true for P (H1) and (2) is true for
N (H2). Then we have:

(E,p) ∈ J⊙(P,N)KA,k,ρ
⇔ ∃q1, q2 ∈ ∣A∣,⊙(q1, q2) ⪯∣A∣ p,∃(w,E′) ∈ V ×E,E = ⊙(w,E′)

∧(w, q1) ∈ ∥P ∥A,k,ρ ∧ (E′, q2) ∈ JNKA,k,ρ
⇔ ∃q1, q2 ∈ ∣A∣,⊙(q1, q2) ⪯∣A∣ p,∃(w,E′) ∈ V ×E,E = ⊙(w,E′)

∧w ∈ ∥P ∗(q1)∥k,ρ ∧E′ ∈ JN○(q2)Kk,ρ (H1), (H2)
⇔ ∃q1, q2 ∈ ∣A∣,⊙(q1, q2) ⪯∣A∣ p,E ∈ J⊙(P ∗(q1),N○(q2))Kk,ρ
⇔ E ∈ J∃q1, q2 ∈ ∣A∣,{p ⪰∣A∣ q1 + q2}↦ ⊙(P ∗(q1),N○(q2))Kk,ρ
⇔ E ∈ J(⊙(P,N))○(p)Kk,ρ (Def of .∗)

• Linear implication. The linear implication is particular case of negative A-connective.
Hence it is already proved.

• Negative shift. Suppose that (1) is true for P (IH). Take E ∈ E and q ∈M. We prove
the following equivalences:

(E, q) ∈ J⇑P KA,k,ρ
⇔ ∀(w,p) ∈ ∥P ∥A,k,ρ,∀u ∈ CA(p ● q), ⟨(w,u), ↑ E⟩k ∈ ��
⇔ ∀p ∈M,∀w ∈ ∥P ∗(p)∥k,ρ,∀u ∈ CA(p ● q), ⟨(w,u), ↑ E⟩k ∈ �� (IH)
⇔ ∀p ∈M,E ∈ J⇑(P ∗(p)⊗ C(p ● q))Kk,ρ
⇔ E ∈ J⇑(∃x ∈M.P ∗(x)⊗ C(x ● q))Kk,ρ
⇔ E ∈ J(⇑P )○(q)Kk,ρ (Def of (.)∗)

• Universal quanti�cation. Suppose that (2) is true for N (IH). For all E ∈ E and p ∈M
we have the following:

(E,p) ∈ J∀x ∈ T.NKA,k,ρ ⇔ ∃r ∈ T, (E,p) ∈ JNKA,k,ρ[x←r]
⇔ ∃r ∈ T,E ∈ JN○(p)Kk,ρ[x←r] (IH)
⇔ E ∈ J∀x ∈ T.N○(p)Kk,ρ
⇔ E ∈ J(∀x ∈ T.N)○(p)Kk,ρ (Def of (.)∗)
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• Inequational implication. Let E ∈ E and p ∈M. Now suppose that (2) is true for N
(IH).

(E,p) ∈ J{r ⪰T s}↦ NKA,k,ρ ⇔ JrKρ ⪰T JsKρ ∧ (E,p) ∈ JNKA,k,ρ
⇔ JrKρ ⪰T JsKρ ∧E ∈ JN○(p)Kk,ρ
⇔ E ∈ J{r ⪰T s}↦ N○(p)Kk,ρ
⇔ E ∈ J({r ⪰T s}↦ N)○(p)Kk,ρ

3. We �nally prove (3) by showing that it is a direct consequence of (2). Suppose that (2) is true
for N (H). Let t ∈ P and p ∈M. We have the following equivalences:

(t, p) ∈ ∥N∥A,k,ρ
⇔ ∀(E, q) ∈ JNKA,k,ρ,∀u ∈ CA(p ● q), ⟨t, a(u).E⟩k ∈ ��
⇔ ∀q ∈M,∀E ∈ JN○(q)Kk,ρ,∀u ∈ CA(p ● q), ⟨t, a(u).E⟩k ∈ �� (H)
⇔ ∀q ∈M, t ∈ ∥C(p ● q)⊸ N○(q)∥k,ρ
⇔ t ∈ ∥∀x ∈M.C(p ● x)⊸ N○(x)∥k,ρ
⇔ t ∈ ∥N∗(p)∥k,ρ

As a corollary, we obtain the more graphical Connection theorem.

Theorem 161 (Connection theorem). Let (t, p) ∈ PA and N be a negative type, and ρ a
A-model. Then the following equivalence holds:

(t, p) ⊩A,k N[ρ]⇐⇒ t ⊩k (p IFF (A) N)[ρ]

4.5 | Basic 1-MAs examples
To make sense of the de�nition of Monitoring Algebra, we now give some examples of MAs.
Each of these examples illustrate a di�erent aspect and use-case of MAs, hence covering most
of the future uses we will encounter in this thesis. We just give the main de�nitions and intu-
itions and leave most proofs of the results mentionned here for the next chapters, where they
are extensively developped. The examples detailed in this section are as follows:

• Time monitoring Algebra: this example illustrates how di�erent MAs can be used to
observe re�ned computational properties of programs. As we have already remarked, when
we use no monitor, we basically observe termination of programs. However, for a choice
of MA and when programs are decorated with observations L.M1

α, we can observe much
more involved properties. Here we illustrate this point of view by de�ning an algebra
that allows to observe bounded-time termination, as we have seen in Subsection 2.3.4.
As a corollary of the soundness theorem applied to this MA, we obtain a linear-time
termination for the programs typable in λLCBPV.
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• First-order references Algebra: we show how we can use MAs to add new primitives
to our language. Indeed, remember that our language is parametric in the setK of prim-
itives. Hence, we can very well add new programming features that way, but we have
no guarantee that we can �nd associated typing rules that can be shown to be adequate
with respect to any MA. However, considering a speci�c MA (or a class of MAs) may
allow to �nd such a typing rule. Here, we add a new primitive swap(v) that takes the
content of the memory cell, returns it and replace it by v. We also give a typing rule for
such a primitive when applied only to primitive integers. We show that the �rst-order
references algebra is sound with respect to this typing rule. This example makes no use
of monitors.

• Step-indexing Algebra: MAs can also be used to add new types to our type system.
Indeed in some MAs, one can de�ne new interpretations associated to meaningful new
types. In Subsection 4.5.3, we give the example of the step-indexing algebra. It has
the particularity of allowing an interpretation of various kinds of recursive types. It
moreover allows to handle program �xed-point combinators.

4.5.1 Time monitoring
We now de�ne a particular algebra denoted Atime which has several particularities.

• This algebra is based on a forcing monoid that is fundamentally linear. It gives a �rst
example of a MA such that the following contraction principle is not sound in general:

A⊸ A⊗A

• This algebra is resource-conscious. Indeed, there is a Atime-monitor that allows us to
track the number of reduction steps of programs. We in fact use the monitor based on
the combinator αtime already de�ned in Subsection 2.3.4. As already noted, observing
the termination of {t}αtime at level 1 amounts to observe the bounded-time termination
of t at level 0. As we will see, this allows us to derive a linear time execution property of
typable programs as a consequence of Theorem 140 applied to this particular algebra.

De�nition 162 (Time monitoring Algebra). The time monitoring algebra, denoted by
Atime is de�ned as follows:

• ∣Atime∣ is the additive forcing monoid is (N,+,0,≤).

• The test function is de�ned by

CAtime
(n) def= { k ∣ k ≥ n }

We remind the de�nition of αtime:

αtime
def= λx.casexof x.Ω ∥x.ret(x)

It gives the �rst concrete example of a Atime-monitor.
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Property 163. The pair (αtime, x↦ x + 1) is a Atime-monitor.

The soundness theorem for MAs has a nice corollary: the linear-time termination the-

orem. Each computation t typable in λLCBPV has the property that the number of λ-steps
needed for the con�guration ⟨t,nil⟩0 to terminate is bounded by the number ∣t∣λ of λ in t.

Theorem 164 (Linear-time execution). Suppose that ⊢ t ∶ N . Then:

⟨t,nil⟩0 →∗ ⟨ret(v),nil⟩0

Moreover, the number of λ-steps k is such that k ≤ ∣t∣λ.

We will prove this theorem in Chapter VI , Section 6.2, where we generalize this construc-
tion by de�ning the class of quantitative monitoring algebras.

4.5.2 First-order references
As we have already remarked several times, the forcing program transformation is an indexed
version of the usual state monad program transformation. Hence, by making the indexed part
trivial, it seems reasonable to obtain a MA that can deal with simple �rst-order references.

De�nition 165. We de�ne Aref[1] as theMA given by:

• The trivial forcing monoid on the singleton {⋆}.

• The test function CAref[1](⋆)
def= { n ∣ n ∈ N }.

We can show that it is possible to add and type new primitives in our language. Consider
the primitive swap(.) with the following reduction rule:

⟨swap(v), a(w).E⟩1
1Ð→ ⟨ret(w), a(v).E⟩1

We suppose that this primitive is in the set K of additional primitives and that the reduction
contains the previous reduction step. This primitive linearly exchanges the value in the mem-
ory cell with the one given in argument.

Property 166. The following typing rule is Aref[1]-sound.

E ; Γ ⊢1 v ∶ (Nat,⋆)
E ; Γ ⊢1 swap(v) ∶ (⇑Nat,⋆)

Hence, usingAref[1] we are able to obtain a model of a programming language with linear
references. We can in fact obtain full �rst-order references. Indeed, the following property
shows that we have unrestricted contraction. In fact, every idempotent MA has unrestricted
contraction. This applies to Aref[1], which is trivially idempotent.
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Property 167. Suppose that A is idempotent. Then the following rule is A-sound.

E ; Γ, x ∶ P, y ∶ P ⊢k t ∶ (N,⋆)
E ; Γ, x ∶ P ⊢k t[x/y] ∶ (N,⋆)

Proof. Suppose that E ; Γ, x ∶ P, y ∶ P ⊢k t ∶ (N,p) is A-sound. Let ρ ⊩ E and σ, [x ↦ (v, q)] ∈
∥Γ, x ∶ P ∥A,k,ρ. Then σ, [x ↦ (v, q), x ↦ (v, q)] ∈ ∥Γ, x ∶ P, y ∶ P ∥A,k,ρ. Therefore, by hypothesis we
have

(t[v/x, v/y], p + q + q)[σ] ∈ ∥N∥A,k,ρ
Since p + q + q = p + q, we obtain

(t[x/y][v/x], p)[σ] ∈ ∥N∥A,k,ρ

Hence the conclusion.

Using these two typing rules, we can derive the usual primitives used to access references,
namely set. and get. Those are de�ned from swap. as follows:

set(v) = swap(v) to x.ret(∗)
get = swap(0) to x.(swap(x) to y.x)

The next property shows how we can type them.

Property 168. These two primitives are typable as follows in Aref[1]:

E ; Γ ⊢1 v ∶ (Nat,⋆)
E ; Γ ⊢1 set(v) ∶ (1,⋆) E ; Γ ⊢1 get ∶ (Nat,⋆)

We will see in Section 6.5 some generalizations of this constructions, including higher-order
references.

4.5.3 Step-indexing
In this example, we de�ne an idempotent 1-MA that induces a realizability model enjoying
several interesting properties:

• First, we can interpret various kinds of recursive types in it. That is, types of the form
µX.P , where X is a type variable, which are in some way equivalent to P [µX.P /X].

• Secondly, by considering a particular monitor in this algebra, the observation made at
level 0 of termination becomes safety at level 1. As a by-product we can type a program
�xed-point combinator.

This monitoring algebra is the counterpart in our setting of the well-known technique of step-
indexing.
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De�nition 169 (Step-indexing MA). The step-indexing monitoring algebra Astep is
given by the following components:

• The forcing monoid is an additive forcing monoid de�ned as follows:

– The carrier is N ∪ {∞}
– The operation + is the min on N and the neutral element is∞.

– The preorder is the reverse order ≥ on N

• The test function is CAstep(n)
def= { m ∣ m ≤ n }

We remind the de�nition of αstep:

αstep
def= λx.casexof x.✠ ∥x.ret(x)

It gives us a Astep-monitor.

Proposition 170. The pair (αstep, x↦ x + 1) is a Astep-monitor.

Proof. It is clear that f is strong since ∣Astep∣ is commutative. Let’s just check that for any n ∈ N, we
have:

α ⊩0 CAstep(n + 1)⊸ ⇑CAstep(n)

Let n ∈ N and v ∈ CAstep(n + 1). Then v = m with m ∈ N such that m ≤ n + 1. Let E ∈ CAstep(n)�0 . We
want to prove that

⟨α, a(m).E⟩0 ∈ ��
Let’s consider the following cases:

• If m = 0, then
⟨α, a(0).E⟩0 → ⟨✠,E⟩0 →✠ ∈ ��

Hence, we conclude by →-saturation of �� that ⟨α, a(m).E⟩0 ∈ ��.

• If m =m′ + 1, then because m′ + 1 ≤ n + 1 we have then m′ ≤ n (this is true even if n =∞) and
m′�E. On the other hand,

⟨α, a(m′ + 1).E⟩0 → ⟨ret(m′),E⟩0 ∈ ��

Hence, we conclude by →-saturation that ⟨α, a(m′ + 1).E⟩0 ∈ ��.

Recursive types

Let’s extend the grammar of types with unrestricted recursive types as follows:

P ∶∶= . . . ∣ µX.P
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where X is a predicate variable. Then, it is possible to interpret µX.P in Astep in such a way
that the following rules are Astep-sound:

E ; Γ ⊢1 v ∶ (P [µX.P /X], n)
E ; Γ ⊢1 v ∶ (µX.P,n)

E ; Γ ⊢1 v ∶ (µX.P,n) E ; ∆, x ∶ P [µX.P /X] ⊢1 t ∶ (N,m)
E ; Γ,∆ ⊢1 ret(v) to x.LtMαstep

1 ∶ (N,min(m,n))

Recursive types are known to break termination. It does not contradict the fact that we can
interpret them in our realizability model based on termination. Indeed, notice that we make use
of the monitor αstep. As we have seen in Subsection 2.3.4, observing termination in presence
of this monitor amounts to observe safety, which is not in contradiction with the presence of
recursive types. This will be proved in details, in a more general context, in Chapter VI , Section
6.4.

Divergence

When we consider the translation t↦ {t}αstep of Subsection 2.3.4, we have seen that observing
termination amounts to observe safety. This allows to type �xed-point combinators (without
using recursive types). Indeed, consider the following term, which is a modi�cation of the
usual Y call-by-name �xed-point combinator (de�ned through the call-by-name translation of
Section 2.2):

YAstep = {(λf.(λx.f(xx))(λx.f(xx)))N}αstep

It does the same thing as the Y combinator, except that it makes the counter represented by
the memory cell decrease:

⟨(YAstep)thunk(t), a(k + 1).E⟩1 →∗ ⟨t, a(k).(YAstep)thunk(t).E⟩1

It is then possible to show directly that the following rule is Astep-sound for every n ∈ N:

E ; Γ ⊢1 YAstep ∶ (⇓(⇓N ⊸ N)⊸ N,n)

The main ingredient is that we can prove this by induction on the annotation n ∈ ∣Astep∣. This
strati�cation technique is essentially what is also known as step-indexing.
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In the previous chapter, we have de�ned the general notion of n-MA and proved that each
of them induces a sound realizability interpretation of the forcing annotated version of λLCBPV

de�ned in Section 3.2. If we have seen some interesting examples of 1-MAs, it remains to see
how it is possible to combine MAs to form new ones. Indeed, when proving the correctness
of a complex language, we don’t want to come upÂădirectly with the right MA, but reuse
basic semantical blocks already de�ned. In this chapter, we propose to study two di�erent
constructions that allows one to build new n-MAs out of previously de�ned ones. These two
constructions are called respectively the MA simple iteration and MA semi-direct itera-

tion:

• The simple iteration consists in picking a 1-MA inside another n-MA A. As we have
seen, 1-MAs admit a characterization of a large subset of the monitors, but it is not
always the case in general n-MAs. We will see that each simple iteration admits such
a characterization. Moreover, MAs built using the simple iteration satisfy a generalized
version of the connection theorem of Section 4.4.

• The semi-direct iteration is a generalization of the simple iteration, which replaces the
use of the direct product of forcing monoids by a semi-direct product. This construction
will be useful, but is not as well-behaved as the simple iteration. For example, the con-
nection theorem does not make sense for a semi-direct iteration. However we will see
that it preserves monitors, under certain conditions.
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Contributions

We �rst de�ne in Section 5.1 the simple iteration and prove some of its remarkable properties,
including a monitor preservation property and the identi�cation of a subset of monitors, but
also a generalized connection theorem that we prove in Section 5.2. We then de�ne and brie�y
study the more involved construction called the semi-direct iteration in Section 5.3.

5.1 | Simple iteration
We present a particular construction on Monitoring Algebras called simple iteration. This
operation will be the main ingredient used to build new MAs. This operation consists in doing
the following:

• Choosing a n-Monitoring Algebra A (in the sense of Chapter IV ).

• Picking inside the realizability interpretation induced by A a new 1-Monitoring Algebra
B.

As we will see, B is not really a 1-MA but can be seen as a 1-MA relatively to A. B indeed
lives inside the model induced byA. The iteration leads to the de�nition of a new (n+ 1)-MA

denoted by A◁ B.

LetA be a n-MA.A naturally gives rise to a realizability model, as de�ned in Chapter IV .
We now de�ne formally the notion of A-MA, i.e. a 1-MA chosen inside A. We then de�ne the
simple iteration A◁ B.

De�nition 171 (A-MA). Let A be a n-MA with n ≥ 1. A A-MA is a structure B given by:

• A forcing monoid ∣B∣.

• A function CB ∶ ∣B∣→ I(VA) which is decreasing:

p ⪯∣B∣ q⇒ CB(q) ⊆ CB(p)

Remark 172. Clearly, the notion of A-MA resembles that of 1-MA. But it is not a 1-MA
since the test predicate is relativized to A.

De�nition 173 (Simple iteration). If A is a n-MA and B is a A-MA, we denote by A◁ B
the n-MA such that:

• The carrier ∣A◁ B∣ def= ∣A∣ × ∣B∣ is the direct product forcing monoid.

164



CHAPTER V . ITERATION

• CA◁B is the function de�ned by

CA◁B(p,m) def= { (Ð→v ,w) ∣ ∃r ∈ ∣A∣, (w, r) ∈ CB(m) ∧Ð→v ∈ CA(r ● p) }

A◁ B is called the simple iteration of B over A.

Property 174. Any simple iteration A◁ B with A a n-MA is a (n + 1)-MA.

Proof. We only need to check that CA◁B is a test function. Suppose that (p,n) ⪯ (q,m), i.e. p ⪯∣A∣ q

and n ⪯∣B∣ m. Take (Ð→v ,w) ∈ CA◁B(q,m). Then we have some r ∈ ∣A∣ such that (w, r) ∈ CB(m) and
Ð→v ∈ CA(r ● q). But since n ⪯∣B∣ m we have (w, r) ∈ CB(n). Moreover, since r ● p ⪯ r ● q we have
Ð→v ∈ CA(r ● p). Hence we have (Ð→v ,w) ∈ CA◁B(p,n).

Notation 175. IfD = A◁ Bwe say thatA andB are factors ofD. We extend this de�nition
by adding that if A′ is factor of A or B, then it is also a factor of D.

De�nition 176 (Canonical extension of aA-connective). Suppose thatD = A◁ B. If ⊙ is
a A-connective (resp. a B-connective) then its canonical extension to D is a D-connective
de�ned by:

• It is extended on the product forcing monoid as

⊙((p,n)) def= (⊙(p), n)

(resp. ⊙((p,n)) def= (p,⊙(n)))

• Identical to ⊙ on the term part.

We use the same symbol ⊙ to denote its canonical extension.

5.1.1 Properties of the simple iteration

Simple iteration has remarkable properties, that were already proved for 1-MAs. The �rst im-
portant property concerns the monitors. IfD = A◁ B, we have mainly two ways of obtaining
D-monitors:

• By taking a A-monitor and lifting it to D. This is a preservation property.

• By choosing a new one using the structure coming from B, just as it was done in 1-MAs.
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We �rst prove that A-monitors can be lifted to D-monitors.

Property 177. Let D = A◁ B be a simple iteration, (α, f) a A-monitor. Then

(λx.Lret(x)Mαk , (a, b)↦ (f(a), b))

is a D-monitor.

Proof. We pose F ∶ (a, b)↦ (f(a), b).

• We �rst show that F is strong. Let (a, b), (a′, b′) ∈ ∣A∣ × ∣B∣. We have F ((a, b) ● (a′, b′)) =
(f(a ● a′), b ● b′). By strength of f , we have f(a ● a′) ⪯∣A∣ f(a) ● a′. Therefore we have

F ((a, b) ● (a′, b′)) ⪯∣A×B∣ (f(a) ● a′, b ● b′) = F (a, b) ● (a′, b′)

• We pose α′ = λx.Lret(x)Mαk . Suppose that (t,E, (p ● q, n ●m)) ∈ ��D,k+1. We want to show the
two following assertion:

(LtMα
′

k+1,E, (f(p) ● q, n ●m)) ∈ ��D,k+1

Let (Ð→w, v) ∈ CD(f(p), n). It means that there exists r ∈ ∣A∣ such that

{ (v, r) ∈ CB(n ●m)
Ð→w ∈ CA(r ● f(p) ● q)

We have r ● f(p) ● q = f(p) ● r ● q, but since f is strong, we also have f(p ● r) ⪯ f(p) ● r and
hence f(p ● r) ● q ⪯ r ● f(p) ● q. That implies thatÐ→w ∈ CA(f(p ● r) ● q). We want to show that

⟨LtM,k+1a(v).
ÐÐ→
a(w).E⟩k+1 ∈ ��

By →-saturation of ��, it is enough to show that

⟨Lret(v)Mαk ,
ÐÐ→
a(w).mk+1(t).E⟩k ∈ ��

We show the following stronger statement:

(Lret(v)Mαk ,mk+1(t).E, f(p ● r) ● q) ∈ ��A,k

Since (α, f) is a A-monitor, by de�nition it is enough to show that

(ret(v),mk+1(t).E, p ● r ● q
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=r●p●q

) ∈ ��A,k

Let Ð→u ∈ CA(r ● p ● q). We have

⟨ret(v),
ÐÐ→
a(u).mk+1(t).E⟩k → ⟨t, a(v).

ÐÐ→
a(u).E⟩k+1

But the last con�guration is in �� since:

– (t,E, (p ● q, n ●m)) ∈ ��D,k+1
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– (v,Ð→u ) ∈ CD(p ● q, n ●m)

Hence we conclude by →-saturation of ��.

To simplify the proofs and notations, when α is part of such a A-monitor and λx.Lret(x)Mαk is
its lifting to the level k+1, we will denote the term LtMλx.Lret(x)Mαk

k+1 simply by LtMαk . We then have
the following reduction steps when we are at level k + 1:

⟨LtMαk ,
ÐÐ→
a(w).a(v).E⟩k+1 →∗ ⟨LtMαk ,

ÐÐ→
a(w).mk+1(ret(v)).E⟩k

In general, when we will consider (k + n)-MAs of which A is a factor, we have the following
reduction steps:

⟨LtMαk ,
ÐÐ→
a(v). . . . a(vk+1). . . . a(vk+n).E⟩n

→∗ ⟨LtMαk ,
ÐÐ→
a(v).mk+1(ret(vk+1)). . . .mk+n(ret(vk+n)).E⟩k

Since the methodology we follow to build models for complex programming languages is to
build more and more involved MAs using simple iteration, Property 177 essentially tells us
that all the good work is not lost. In Section 4.4 we gave a su�cient condition for (α, f) to
be a monitor, in the context of 1-MAs. As we said, 1-MAs can be intuitively seen as a form
of simple iteration. It is then no surprise that we can give a similar su�cient condition for
D-monitors.

Property 178. Suppose we have a closed computations α, a strong function f ∶ ∣B∣ → ∣B∣
and q ∈ ∣A∣. Then (α, (x, y)↦ (q ● x, f(y))) is a D-monitor if the following holds:

(α, q) ⊩A,k ∀x ∈ ∣B∣.CB(f(x))⊸ ⇑CB(x)

Proof.

• We �rst show that F = (x, y)↦ (q ● x, f(y)) is strong. On the other hand, we have

F ((a, b) ● (a′, b′)) = (q ● (a ● a′), f(b ● b′)) ⪯ ((q ● a) ● a′, f(b) ● b′) = F (a, b) ● (a′, b′)

• By Lemma 143, it is enough to show that given (t,E, (p,n)) ∈ ��D,k+1, we have (LtMαk+1,E, (q ●
p, f(n))) ∈ ��A,k+1. Let (Ð→w, v) ∈ CD(q ● p, f(n)). It means that there exists r ∈ ∣A∣ such that

{ (v, r) ∈ CB(f(n))Ð→w ∈ CA(r ● (q ● p))

We want to show that
⟨LtMαk+1, a(v).

ÐÐ→
a(w).E⟩k+1 ∈ ��

But it is enough by →-saturation to show that

⟨α,
ÐÐ→
a(w).a(v).mk+1(t).E⟩k ∈ ��
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Since we know that
(α, q) ⊩A,k ∀x ∈ ∣B∣.CB(f(x))⊸ ⇑CB(x)

We only need to show that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(1) Ð→w ∈ CA(r ● (q ● p))
(2) (v, r) ∈ CB(f(n))
(3) (mk+1(t).E, p) ∈ CB(n)�A,k

We already have (1) and (2) by hypothesis, so we only have to prove (3). Let (u, q0) ∈ CB(n)
and

Ð→
v′ ∈ CA(q0 ● p). We then have

C0 = ⟨ret(u),
ÐÐ→
a(v′).mk+1(t).E⟩k → ⟨t, a(u).

ÐÐ→
a(v′).E⟩k+1 = C1

Since (t,E, (p,n)) ∈ ��D,k+1 and because it is easy to check that (
Ð→
v′ , u) ∈ CD(p,n), we have

C1 ∈ �� and hence C0 ∈ ��, which concludes the proof.

5.1.2 Direct product
One important particular case of simple iteration is the direct product of monitoring alge-

bras. We begin by de�ning what the direct product is and then show why it is an example of
a simple iteration.

De�nition 179 (Direct product). Let A be a n-MA, and B be a 1-MA. Then we de�ne the
direct product of A and B, denoted by A × B as the (n + 1)-MA such that:

• The carrier ∣A × B∣ is the direct product forcing monoid ∣A∣ × ∣B∣.

• CA×B def= (p, k) ∈ ∣A∣ × ∣B∣↦ { (Ð→v ,w) ∣ Ð→v ∈ CA(p) ∧w ∈ CB(k) }

Theorem 180. The direct product of a 1-MA with a n-MA is a simple iteration.

Proof. Let A be a n-MA, and B be a 1-MA. Then we can de�ne a A-MA denoted B′ as follows:

• ∣B′∣ = ∣B∣

• CB′(n) = CB × ∣A∣

We only need to prove that A◁ B′ = A × B.

• The carrier is the same product forcing monoid.

• We now show that CA◁B′(p,n) = CA×B(p,n), by double inclusion.

– If (Ð→v ,w) ∈ CA×B(p,n) then w ∈ CB(n) and Ð→v ∈ CA(p). By de�nition, we have (w,0) ∈
CB′(n) and Ð→v ∈ CA(0 ● p), hence (Ð→v ,w) ∈ CA◁B′(p,n).
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– If (Ð→v ,w) ∈ CA◁B′(p,n) then there is r ∈ ∣A∣ such that (w, r) ∈ CB′(n) andÐ→v ∈ CB(r ● p).
But by de�nition of CB′(n), we also have (w,0) ∈ CB′(n) and because p ⪯∣B∣ r ● p, we also
have Ð→v ∈ CB(p). Hence (Ð→v ,w) ∈ CA×B(p,n).

Property 181. Let D = A × B be a direct product. Suppose that (α, f) is a A-monitor and
(β, g) is a B-monitor. Then the two following pairs are D-monitors:

• (λx.Lret(x)Mαk , (a, b)↦ (f(a), b))

• (β, (a, b)↦ (a, g(b)))

Proof. The proof is an easy adaptation of the proof of Property 177.

5.2 | Generalized connection theorem
The connection theorem proved in Chapter IV in the case of 1-MAs is not adaptable as it
is to general n-MAs. We remind the reader that the connection theorem intuitively means
that given a 1-MA A, each A-model can be obtained by the choice of a forcing model inside a
unary realizability model. The principle of the simple iteration we have de�ned in the previous
section is similar: we de�ne a (n+1)-MA by choosing a 1-MA inside another n-MA. It is then
not surprising that in the context of simple iterations, a variant of the connection theorem can
be proved. This section is devoted to this generalized connection theorem.

Preliminaries

We start with:

• A n-MA A and a A-MA B.

• A simple iteration D = A◁ B.

• A D-model ρ.

In the proof of the connection Lemma 160 for 1-MAs, we considered types built using any
simple connectives. Similarly to the impossibility of proving a connection theorem for general
n-MAs, it is also impossible to consider general simple D-connectives. We need to consider
speci�cD-connectives that are given by their action onA and B separately. Those connectives
are called separable.
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De�nition 182 (Separable A◁ B-connective). Suppose that D = A◁ B is a simple itera-
tion. Let ⊙ be a D-connective. We say that (⊙, φ⊙) is D-separable if

⎧⎪⎪⎪⎨⎪⎪⎪⎩

φ⊙ = (p,n)↦ (φ⊙A(p), φ⊙B(n))
(⊙, φ⊙A) is a A-connective
(⊙, φ⊙B) is a B-connective

In that case, to simplify, we will denote all these connectives (in A,B and D) by the same
symbol ⊙.

Remark 183. In a certain sense, simple connectives in 1-MAs satisfy a condition similar to
the separability condition: they are characterized by two functions, one on terms and one on
the elements of the forcing monoid.

In this section, we prove a connection lemma for any type built using the core grammar of
λLCBPV augmented with any number of D-separable connectives.

Connection theorem

We want to show that ourD-model ρ can be seen as a forcing model inside a certainA-model.
We begin by choosing the following forcing model F(B):

• The forcing monoid ∣B∣.

• The orthogonality predicate is a predicate variable C.

We now de�ne the desired A-model, which is function of ρ.

• The valuation ρ is de�ned as follows:

– On �rst-order variables, ρ(x) def= ρ(x).
– The valuation of the predicate C of arity ∣B∣ is given by

ρ(C)(p) def= CB(p)

– To each predicate X of arity T1 × ⋅ ⋅ ⋅ × Tk corresponds a forcing predicate X∗ ∶
T1 × ⋅ ⋅ ⋅ × Tk × ∣B∣. We de�ne its valuation ρ(X∗) by:

ρ(X∗)(e1, . . . , ek, n) def= { (v, p) ∈ VA ∣ (v, (p,n)) ∈ ρA(e1, . . . , ek) }

With these de�nitions we can show how the realizability model induced byA◁ B and the
forcing relation de�ned in the realizability model induced by A are connected. To do this, we
state and prove the following Connection Lemma:
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Lemma 184. Suppose that ρ is a valuation, p ∈ ∣A∣, m ∈ ∣B∣, v ∈ V, t ∈ T and E ∈ E.
Suppose that P and N are types built using the core grammar of λLCBPV augmented with
any number of separable A◁ B-connectives. Then the three following equivalences hold:

(1) (v, (p,m)) ∈ ∥P ∥A◁B,k,ρ ⇐⇒ (v, p) ∈ ∥P ∗(m)∥A,k,ρ
(2) (E, (p,m)) ∈ JNKA◁B,k,ρ ⇐⇒ (E,p) ∈ JN○(m)KA,k,ρ
(3) (t, (p,m)) ∈ ∥N∥A◁B,k,ρ ⇐⇒ (t, p) ∈ ∥N∗(m)∥A,k,ρ

Proof. We prove the three statements by mutual induction on the type.

1. We begin by proving (1), by looking at all the possible cases. We �x k ∈ N, ρ a simple valuation.

• Predicate variable. Given a predicate variableX of signature S1×⋅ ⋅ ⋅×Sm and e1, . . . , em
respectively in S1-Exp, . . . , Sm-Exp, we have:

(v, (p,n)) ∈ ∥X(e1, . . . , em)∥D,k,ρ ⇔ (v, (p,n)) ∈ ρ(X)(Je1Kρ, . . . , JemKρ)
⇔ (v, p) ∈ ρ(X∗)(Je1Kρ, . . . , JemKρ, n)
⇔ (v, p) ∈ ρ(X∗)(Je1Kρ, . . . , JemKρ, n)
⇔ (v, p) ∈ ∥(X(e1, . . . , em))∗(n)∥k,ρ

• Primitive integers. Let v ∈ V and p ∈M. We have the following equivalences:

(v, (p,n)) ∈ ∥Nat∥D,k,ρ ⇔ ∃k ∈ N, v = k
⇔ (v, p) ∈ ∥Nat∥A,k,ρ
⇔ (v, p) ∈ ∥Nat∗(n)∥A,k,ρ

• Tensor unit.

(v, (p,n)) ∈ ∥1∥D,k,ρ ⇔ v = ∗
⇔ (v, p) ∈ ∥1∥A,k,ρ
⇔ (v, p) ∈ ∥1∗(n)∥A,k,ρ

• Positive separable A-connective. Suppose that ⊙ is a positive separable A-connective.
We suppose to simplify the presentation, but without any loss of generality that its signa-
ture is such that σ(+) = 1 = σ(−), hence we consider the type ⊙(P,N) for some positive
type P and some negative type N . We suppose that by induction, (1) is true for P (H1)
and (2) is true for N (H2). Then we have:

(v, (p,n)) ∈ J⊙(P,N)KD,k,ρ
⇔ ∃(q1,m1), (q2,m2) ∈ ∣D∣, φ⊙((q1,m1), (q2,m2)) ⪯∣D∣ (p,n),

∃(w,E) ∈ V ×E, v = ⊙(w,E)∧
(w, (q1,m1)) ∈ ∥P ∥D,k,ρ ∧ (E, (q2,m2)) ∈ JNKD,k,ρ

⇔ ∃(q1, q2) ∈ ∣A∣,∃(m1,m2) ∈ ∣B∣, φ⊙((q1,m1), (q2,m2))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(φ⊙(q1,q2),φ⊙(m1,m2))

⪯∣D∣ (p,n), ⊙ is separable

∃(w,E) ∈ V ×E, v = ⊙(w,E)∧
(w, q1) ∈ ∥P ∗(m1)∥A,k,ρ ∧ (E, q2) ∈ ∥N○(m2)∥A,k,ρ (H1), (H2)

⇔ ∃q1, q2 ∈ ∣A∣, φ⊙(q1, q2) ⪯∣A∣ p,∃m1,m2 ∈ ∣B∣, φ⊙(m1,m2) ⪯∣B∣ n,
∃(w,E) ∈ V ×E, v = ⊙(w,E)∧
(w, q1) ∈ ∥P ∗(m1)∥A,k,ρ ∧ (E, q2) ∈ ∥N○(m2)∥A,k,ρ (H1), (H2)

⇔ ∃m1,m2 ∈ ∣B∣, φ⊙(m1,m2) ⪯∣B∣ n, (v, p) ∈ ∥⊙(P ∗(m1),N○(m2))∥A,k,ρ
⇔ (v, p) ∈ ∥(⊙(P,N))∗(n)∥A,k,ρ (Def of .∗)
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• Tensor. The tensor is positive separable D-connective.

• Positive shift. Let (v, p) ∈ VA and n ∈ ∣B∣. We suppose that (3) is true for the computation
type N (IH). We know that (v, (p,n)) ∈ ∥⇓N∥D,k,ρ is equivalent to

∃t ∈ P, v = thunk(t) ∧ (t, (p,n)) ∈ (JNKD,k,ρ)�D,k

But because of (IH) this is equivalent to

∃t ∈ P, v = thunk(t) ∧ (t, p) ∈ ∥∀x ∈ ∣B∣.CB(n ● x)⊸ N∗(x)∥A,k,ρ

This is in turn equivalent to

(v, p) ∈ ∥⇓(∀x ∈ ∣B∣.CB(n ● x)⊸ N∗(x))∥A,k,ρ

And �nally, by de�nition of (⇓N)∗(n) this last proposition is equivalent to

(v, p) ∈ ∥(⇓N)∗(n)∥A,k,ρ

• Existential quanti�er. Let v ∈ V and p ∈M. We suppose that (1) is true for P (IH).

(v, (p,n)) ∈ ∥∃x ∈ T.P ∥D,k,ρ ⇔ ∃r ∈ T, (v, (p,n)) ∈ ∥P ∥D,k,ρ[x←r]
⇔ ∃r ∈ T, (v, p) ∈ ∥P ∗(n)∥A,k,ρ[x←r] (IH)
⇔ (v, p) ∈ ∥∃x ∈ T.P ∗(n)∥A,k,ρ
⇔ (v, p) ∈ ∥(∃x ∈ T.P )∗(n)∥A,k,ρ (def of (.)∗)

• Inequational conjunction. Let v ∈ V and p ∈ M. Now suppose that (1) is true for P
(IH).

(v, (p,n)) ∈ ∥{s ⪯T r} ∧ P ∥D,k,ρ ⇔ JrKρ = JsKρ ∧ (v, (p,n)) ∈ ∥P ∥D,k,ρ
⇔ JrKρ = JsKρ ∧ (v, p) ∈ ∥P ∗(n)∥A,k,ρ
⇔ (v, p) ∈ ∥{s ⪯T r} ∧ P ∗(n)∥A,k,ρ
⇔ (v, p) ∈ ∥({s ⪯T r} ∧ P )∗(n)∥A,k,ρ

2. We now prove the proposition (2) by looking at all possible cases for negative types. In all cases
we �x k ∈ N and ρ a simple valuation.

• Negative separableA-connective. Suppose that⊙ is a Negative separableA-connective.
We suppose to simplify the presentation, but without any loss of generality that its signa-
ture is such that σ(+) = 1 = σ(−), hence we consider the type ⊙(P,N) for some positive
type P and some negative type N . We suppose that by induction, (1) is true for P (H1)
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and (2) is true for N (H2). Then we have:

(E, (p,n)) ∈ J⊙(P,N)KD,k,ρ
⇔ ∃(q1,m1), (q2,m2) ∈ ∣D∣, φ⊙((q1,m1), (q2,m2)) ⪯∣D∣ (p,n),

∃(w,E′) ∈ V ×E,E = ⊙(w,E′)∧
(w, (q1,m1)) ∈ ∥P ∥D,k,ρ ∧ (E′, (q2,m2)) ∈ JNKD,k,ρ

⇔ ∃(q1, q2) ∈ ∣A∣,∃(m1,m2) ∈ ∣B∣, φ⊙((q1,m1), (q2,m2))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=(φ⊙(q1,q2),φ⊙(m1,m2))

⪯∣D∣ (p,n), ⊙ is separable

∃(w,E′) ∈ V ×E,E = ⊙(w,E′)∧
(w, q1) ∈ ∥P ∗(m1)∥A,k,ρ ∧ (E′, q2) ∈ ∥N○(m2)∥A,k,ρ (H1), (H2)

⇔ ∃q1, q2 ∈ ∣A∣, φ⊙(q1, q2) ⪯∣A∣ p,∃m1,m2 ∈ ∣B∣, φ⊙(m1,m2) ⪯∣B∣ n,
∃(w,E′) ∈ V ×E,E = ⊙(w,E′)∧
(w, q1) ∈ ∥P ∗(m1)∥A,k,ρ ∧ (E′, q2) ∈ ∥N○(m2)∥A,k,ρ (H1), (H2)

⇔ ∃m1,m2 ∈ ∣B∣, φ⊙(m1,m2) ⪯∣B∣ n,
(E,p) ∈ J⊙(P ∗(m1),N○(m2))KA,k,ρ

⇔ (E,p) ∈ J∃m1,m2 ∈ ∣B∣,{n ⪰∣B∣ φ⊙(m1,m2)}↦ ⊙(P ∗(m1),N○(m2))KA,k,ρ
⇔ (E,p) ∈ J(⊙(P,N))∗(n)KA,k,ρ (Def of .∗)

• Linear implication. The linear implication is a negative separable D-connective.

• Negative shift. Suppose that (1) is true for P (IH). Take (E, q) ∈ EA and m ∈ ∣B∣. We
prove the following equivalences:

(E, (q,m)) ∈ J⇑P KD,k,ρ
⇔ ∀(w, (p,n)) ∈ ∥P ∥D,k,ρ,∀(Ð→u , v) ∈ CD(p ● q, n ●m), ⟨((w, v),Ð→u ), ↑ E⟩k ∈ ��
⇔ ∀n ∈ ∣B∣,∀(w,p) ∈ ∥P ∗(n)∥A,k,ρ,∀(v, r) ∈ CB(n ●m),

∀Ð→u ∈ CA(r ● p ● q
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
=(p+r)●q

), ⟨((w, v),Ð→u ), ↑ E⟩k ∈ �� (IH)

⇔ ∀n ∈ ∣B∣, (E, q) ∈ J⇑(P ∗(n)⊗ CB(n ●m))KA,k,ρ
⇔ (E, q) ∈ J⇑(∃x ∈ ∣B∣.P ∗(x)⊗ CB(x ●m))KA,k,ρ
⇔ (E, q) ∈ J(⇑P )○(m)KA,k,ρ (Def of (.)∗)

• Universal quanti�cation. Suppose that (2) is true for N (IH). For all E ∈ E and p ∈M
we have the following:

(E, (p,n)) ∈ J∀x ∈ T.NKD,k,ρ ⇔ ∃r ∈ T, (E, (p,n)) ∈ JNKD,k,ρ[x←r]
⇔ ∃r ∈ T, (E,p) ∈ JN○(n)KA,k,ρ[x←r] (IH)
⇔ (E,p) ∈ J∀x ∈ T.N○(n)KA,k,ρ
⇔ (E,p) ∈ J(∀x ∈ T.N)○(n)KA,k,ρ (Def of (.)∗)

• Inequational implication. Let E ∈ E and p ∈M. Now suppose that (2) is true for N
(IH).

(E, (p,n)) ∈ J{r ⪰T s}↦ NKD,k,ρ ⇔ JrKρ = JsKρ ∧ (E, (p,n)) ∈ JNKD,k,ρ
⇔ JrKρ = JsKρ ∧ (E,p) ∈ JN○(n)KA,k,ρ
⇔ (E,p) ∈ J{r ⪰T s}↦ N○(n)KA,k,ρ
⇔ (E,p) ∈ J({r ⪰T s}↦ N)○(n)KA,k,ρ
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3. We �nally prove (3) by showing that it is a direct consequence of (2). Suppose that (2) is true
for N (H). Let t ∈ P and p ∈M. We have the following equivalences:

(t, (p,n)) ∈ ∥N∥D,k,ρ
⇔ ∀(E, (q,m)) ∈ JNKD,k,ρ,∀(Ð→u ,w) ∈ CD(p ● q, n ●m), ⟨t,

ÐÐ→
a(u).a(w).E⟩k ∈ ��

⇔ ∀m ∈ ∣B∣,∀(E, q) ∈ JN○(m)KA,k,ρ,∀(w, r) ∈ CB(n ●m),∀Ð→u ∈ CA(r ● p ● q),
⟨t,
ÐÐ→
a(u).a(w).E⟩k ∈ �� (H)

⇔ ∀m ∈ ∣B∣, (t, p) ∈ ∥CB(n ●m)⊸ N○(m)∥A,k,ρ
⇔ (t, p) ∈ ∥∀x ∈ ∣B∣.CB(n ● x)⊸ N○(x)∥A,k,ρ
⇔ (t, p) ∈ ∥N∗(n)∥A,k,ρ

As a corollary, we obtain the more graphical Connection theorem.

Theorem 185 (Connection theorem). Let (t, (p,n)) ∈ P × ∣A◁ B∣ and N be a negative
type, and ρ a A◁ B-model. Then the following equivalence holds:

(t, (p,n)) ⊩A◁B,k N[ρ]⇐⇒ (t, p) ⊩A,k (n IF F(B)N)[ρ]

5.3 | Semi-direct iteration
We now turn our attention to the semi-direct iteration. It is a generalization of the simple
iteration, where the semi-direct product of forcing monoids is used instead of the direct prod-
uct. This construction is not as well-behaved as the simple iteration, but still has some form of
monitor preservation while being more general.

De�nition 186 (Semi-direct iteration). LetA be a n-MA and B aA-MA. Suppose that ∣B∣
acts on ∣A∣ via a left action δ. Then we denote by A ⋉δ B the n-MA such that:

• The carrier ∣A ⋉δ B∣ def= ∣A∣ ⋉δ ∣B∣ is the semi-direct product forcing monoid.

• CA⋉δB is the function de�ned by

CA⋉δB(p,m) def= { (Ð→v ,w) ∣ ∃r ∈ ∣A∣, (w, r) ∈ CB(m) ∧Ð→v ∈ CA(r ● p) }

A ⋉δ B is called the semi-direct iteration of B over A.

It is easy to check that A ⋉δ B indeed de�nes a (n + 1)-MA.

Notation 187. We extend the meaning of factor to semi-direct products in the natural way.
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This construction does not have most of the good properties that the simple iteration has:
the connection property for instance is not provable with the current de�nition of forcing
transformation. However, it does preserves monitors under certain conditions.

Property 188. Let D = A ⋉δ B be a semi-direct iteration, (α, f) a A-monitor. Suppose
moreover that f weakly commutes with δ, i.e. :

∀p ∈ ∣A∣, f(δn(p)) ⪯∣A∣ δn(f(p))

Then
(λx.Lret(x)Mαk , (a, b)↦ (f(a), b))

is a D-monitor.

Proof. We need to check two things: that (a, b)↦ (f(a), b) is strong and that the monitor condition
of De�nition 141 is met.

• We have to show that for any (a, b), (a′, b′) ∈ ∣A∣ × ∣B∣, we have

(f(δb′(a) ● a′), b ● b′) ⪯ (f(a), b) ● (a′, b′)

Since f is strong, we have
f(δb′(a) ● a′) ⪯∣A∣ f(δb′(a)) ● a′

But f(δb′(a)) ⪯ δb′(f(a)). Hence,

(f(δb′(a) ● a′), b ● b′) ⪯ (δb′(f(a)) ● a′, b ● b′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=(f(a),b)●(a′,b′)

• The proof that (α, f) satis�es the monitoring condition is exactly the same as for Property 177.
Indeed, this proof makes no use of the ● operation over the product forcing monoid, and hence
is independant of the choice of operation.

If we want to consider an analoguous of Property 178 in the context of semi-direct iteration,
there is more di�culty. The main reason is that a function of the form

F (x, y) = (q ● x, f(y))

is not strong in general. Indeed,

F ((x, y) ● (x′, y′)) = (q ● (δy′(x) ● x′), f(y ● y′)) ⪯ (q ● (δy′(x) ● x′), f(y) ● y′)

But on the other hand, we have

F (x, y) ● (x′, y′) = (δy′(q ● x) ● x′, f(y) ● y)

But we can’t a priori reconcile the δy′(q●x) with q●δy′(x), except if q = 0 or δy′ is the identity.
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In this chapter, we exhibit several applications of the theory of monitoring algebras. We
show how the di�erent constructions and theorems proved on monitoring algebras can be
used to build modularly realizability models for complex programming languages. We �rst
focus on a serie of basic constructions on monitoring algebras that make use of operations like
the simple or semi-direct iteration:

• Modalities - we show how it is possible to algebraically add a modality to the program-
ming language. Examples of modalities contain Girard’s linear logic modality ! [Gir87],
or Nakano’s recursion modality ▷ [Nak00]. Given a MA A, we de�ne an algebraic no-
tion ofA-modality, and a stronger notion of strongA-modality that allows to encode
call-by-value modalities. We then show how, under certain conditions, we can generi-
cally transform a modality into a strong modality by an algebraic transformation based
on the semi-direct iteration.

• Bounded-time monitoring - we generalize the linear-time monitoring example de-
scribed in Section 4.5 by de�ning a class of 1-MAs called quantitative. They all share
the common particularity that the program αtime is a monitor, which, together with the
soundness theorem implies a bounded-time termination property.

• Strati�cation - a central application of our theory is the de�nition of realizability mod-
els of recursive types. We explore a class of MAs called strati�ed. We prove that in such
a MA, the set of semantic types (I(VA) and I(EA)) can be endowed with a structure
of complete ultrametric space, hence satisfying a �xed-point theorem. This method is
inspired by previous works [BST09, BSS10]. We then study a particular strati�ed 1-MA:
the step-indexing algebra de�ned in Section 4.5. We show that several recursive types
can be interpreted in this algebra: the guarded recursive types à la Nakano [Nak00],
which don’t break termination, and the usual non-guarded recursive types which break
termination. In particular we identify the di�erence between the two kind of recursive
types as the result of the use the monitor αstep. We �nally de�ne a subclass of the strat-
i�ed MAs called step-indexed that inherit many good properties of the step-indexing
algebra.

• Higher-order references - we show how simple iteration can be used to obtain a real-
izability model of a simple language with higher-order references. We in fact explain a
generic construction based on the simple iteration which consists in:

1. Taking a monitoring algebra A satisfying the step-indexing condition, hence ad-
mitting the �xed-point theorem and many good properties.

2. Picking inside A an algebra similar to the algebra of �rst-order references already
presented in Section 4.5, but making use of the step-indexed structure of A to add
a reference for any positive type inducing a �xed-point in A.

This fairly generic technique is then instanciated in several interesting particular cases:

– In the most simple case, by choosing a trivial strati�cation of the algebra, we get
back �rst-order references.
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– We show that in the step-indexing algebra, we obtain both guarded and non-guarded
higher-order references for any positive type P .

6.1 | Adding a modality
We have identi�ed in Section 4.3 a notion of simple A-connective that can be used to extend
the interpretation as well as the connection property to new type constructors. In this sec-
tion, we explore a particular case of simple A-connective: the modalities. Modalities appear
everywhere in logic and programming languages, and we will use them in all the concrete ap-
plications presented in Chapter VII . Our modalities are de�ned in a purely algebraic way. We
then extend this notion of modality into the more involved adjoint modality that correspond
to call-by-value modalities (that is, modalities that don’t block the reduction). We �nally
give a purely algebraic transformation on monitoring algebras to transform any modality into
an adjoint modality.

6.1.1 Preliminaries

Modalities are particular 1-ary connectives. They are of speci�c interest as they will constitute
one of the preferred way to extend the expressivity of the language. What we informally mean
by modality is any connective ◻ that comes with at least the following promotion rule:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢0 v ∶ Q
E ;x1 ∶ ◻P1, . . . , xn ∶ ◻Pn ⊢0 v ∶ ◻Q

Some examples of such modalities are the exponential modality ! of linear logic [Gir87] or
Nakano’s recursion modality [Nak00], which have both the promotion rule plus some addi-
tional logical principles. These modalities often control some structural aspects of the type
system: the linear logic exponential permits to introduce variable sharing, while Nakano’s re-
cursion modality can be used to tame recursive types. At the operational level, we distinguish
two kinds of modalities: the blocking modalities and the call-by-value modalities.

Blocking modalities

If we turn to the linear call-by-value λ-calculus de�ned in Section 2.2, it can be extended with
a modality using this promotion rule as described in Figure 1. We have added a modality
constructor ◻ and the accompanying let◻x = _ in _ construction. This extension is justi�ed
by the corresponding extension of the translation (.)V that can be proved to preserve the new
reduction and typing rules. Notice that since◻t is a value, we cannot reduce under the modality
◻. This is linked to the fact that to extend the modality to negatives, we have to use thunk(.).
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Extension of types

A,B ∶∶= . . . ∣ ◻A

Γ ⊢Aff t ∶ A
◻Γ ⊢Aff ◻t ∶ ◻A

Γ, x ∶ ◻A ⊢Aff u ∶ B ∆ ⊢Aff t ∶ ◻A
Γ,∆ ⊢Aff let◻x = t inu ∶ B

Syntax and reduction

A,B ∶∶= . . . ∣ ◻A
v,w ∶∶= . . . ∣ ◻t
t, u ∶∶= . . . ∣ ◻t ∣ let◻x = t inu
E ∶∶= . . . ∣ (◻x.u).E

⟨let◻x = t inu,E⟩V →V ⟨t, a((◻x.u)).E⟩V

⟨◻t, a((◻x.u)).E⟩V →V ⟨u[t/x],E⟩V

Call-by-value translation

(◻A)V def= ◻(⇓(A)V)
(◻t)V def= ret(thunk((t)V))

(let◻x = t inu)V def= (t)V to x.(u)V

((◻x.u).E)V def= f(x.(u)V).(E)V

Figure 1: Extension of the call-by-value λ-calculus with a modality

Call-by-value modalities

One can wonder what we need in order to be able to reduce under the modality. It means having
the following de�nition for values and environment instead of the one de�ned in Figure 1:

v,w ∶∶= . . . ∣ ◻v

We also have the following new environment:

E ∶∶= . . . ∣ ◻.E

And the following new reduction rules, to reduce under the modality:

⟨◻t,E⟩V →V ⟨t,◻.E⟩V

⟨v,◻.E⟩V →V ⟨◻v,E⟩V

If one wanted to implement this in λLCBPV, he would have to de�ne the following translation
of the ◻ constructor:

(◻t)V def= (t)V to x.ret(x)
(◻.E)V def= f((x.ret(x))).(E)V
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While this syntactic translation can be shown to preserve the reduction we have just de�ned,
it does not preserve typing. The faulty rule being the promotion rule described in Figure 1. To
reobtain the promotion rule while being able to reduce under the modality, we need a slightly
stronger rule:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢0 t ∶ ⇑Q
E ;x1 ∶ ◻P1, . . . , xn ∶ ◻Pn ⊢0 t ∶ ⇑◻Q

We will examine under which conditions it is possible to obtain the soundness of such a rule.

6.1.2 A-modalities

De�nition 189 (A-modality). A A-modality is a 1-ary simple A-connective (v ↦ v,◻)
where ◻ ∶ ∣A∣→ ∣A∣ is a ∣A∣-morphism.

Since a A-modality is entirely de�ned by the function ◻ on the forcing monoid, we will from
now on use the latter to denote the former.

Property 190. Let A be a MA. If ◻ is a A-modality then the following rule is sound:

E ;x1 ∶ P1, . . . , xn ∶ Pn ⊢n v ∶ (Q,p)
E ;x1 ∶ ◻P1, . . . , xn ∶ ◻Pn ⊢n v ∶ (◻Q,◻(p))

Proof. Suppose that the premise is A-sound. Take ρ a A-valuation, and [x1 ← (v1, p1), . . . , xn ←
(vn, pn)] ∈ ∥◻Γ∥A,k,ρ. Then we have for each i ∈ [1, n], ◻(qi) ⪯ pi and (vi, qi) ∈ ∥Pi∥A,k,ρ. Hence σ =
[x1 ← (v1, q1), . . . , xn ← (vn, qn)] ∈ ∥Γ∥A,k,ρ. By A-soundness of the premise, we have (v[σ], p[σ]) ∈
∥Q∥A,k,ρ. Hence, (v[σ],◻(p + ∑i qi)) ∈ ∥◻Q∥A,k,ρ. But since ◻ is a A-modality, we have ◻(p +
∑i qi) ⪯ ◻(p) + ∑i ◻(qi) ⪯ ◻(p) + ∑i pi. Finally (v[σ],◻(p) + ∑i pi) ∈ ∥◻Q∥A,k,ρ, by ⪯-saturation.

We prove a property that will be useful later.

Lemma 191. Let A be a k-MA. Suppose that ◻ is a A-modality and that (α,◻) is a A-
monitor. Then

E ; Γ ⊢k t ∶ (⇑(◻P ), p)
E ; Γ ⊢k t to x.Lret(x)Mkα ∶ (⇑P, p)

As we have seen in the preliminary, this form of modality is not enough if one wants to
model call-by-value modalities, that is to reduce under the modality. At the operational level,
it means having a new environment constructor ◻.E and a reduction rule such that

⟨◻t,E⟩V →V ⟨t,◻.E⟩V

⟨v,◻.E⟩V →V ⟨◻v,E⟩V
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These two reduction rules are reminiscent of a notion of operational adjoint. And indeed, to
obtain such modalities, we require the existence of what we call a A-adjoint.

De�nition 192 (Left and right A-adjoint). Given two functions F,G ∶ ∣A∣ → ∣A∣, we say
that G is a right A-adjoint of F (and that F is a le� A-adjoint of G) i�

CA(p ●G(q)) = CA(F (p) ● q)

Remark 193. LetA be aMA and F,G ∶ ∣A∣→ ∣A∣ be two functions. It is enough for F and
G to be adjoints that the two following conditions are met:

p ●G(q) ⪯∣A∣ F (p) ● q

F (p) ● q ⪯∣A∣ p ●G(q)

De�nition 194 (Adjoint A-modality). Let A be a n-MA. We say that ◻ ∶ ∣A∣ → ∣A∣ is an
adjoint A-modality if it is a A-modality and has a right A-adjoint, denoted ◻.

The notion of adjoint modality is exactly what we need to model what we have called
call-by-value modality. This is all due to the following typing rule.

Property 195. LetA be aMA. If◻ is an adjointA-modality then the following rule is sound:

E ; Γ ⊢n t ∶ (⇑P, p)
E ;◻(Γ) ⊢n t ∶ (⇑(◻P ),◻(p))

Proof. Suppose that the premise is A-sound. Take ρ a A-model, and [x1 ← (v1, p1), . . . , xn ←
(vn, pn)] ∈ ∥◻(Γ)∥A,k,ρ. Then we have for each i ∈ [1, n], ◻(qi) ⪯ pi and (vi, qi) ∈ ∥Pi∥A,k,ρ. HEnce
σ = [x1 ← (v1, q1), . . . , xn ← (vn, qn)] ∈ ∥Γ∥A,k,ρ. By A-soundness of the premise, we have

(⋆) (t[σ], p[σ]) ∈ ∥⇑P ∥A,k,ρ

If we can prove that (t[σ],◻(p[σ])) ∈ ∥⇑◻P ∥A,k,ρ, then we could conclude using the fact that ◻ is
a A-modality and by ⪯ -saturation. We pose p′ = p[σ] and t′ = t[σ]. Let (E, q) ∈ J⇑◻P KA,k,ρ =
∥◻P ∥A,k,ρ�A,k . We want to prove that

(t′,◻(p′))�A,k(E, q)

But since ◻ has an A-adjoint ◻, this is equivalent to

(t′, p′)�A,k(E,◻(q))

But to prove this, by using (⋆), it is enough to show that

(E,◻(q)) ∈ J⇑P KA,k,ρ
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Take (w, r) ∈ ∥P ∥A,k,ρ. We want to prove that (w, r)�A,k(E,◻(q)), which is equivalent to

(w,◻(r))�A,k(E, q)

But since (E, q) ∈ ∥◻P ∥A,k,ρ�A,k and (w,◻(r)) ∈ ∥◻P ∥A,k,ρ, we have our result.

Remark 196. Not all modalities have an adjoint. For example take the linear-time algebra
Atime de�ned in Section 4.5. In this algebra, we have:

1 ≰ 0

Now consider the null constant function x↦ 0. This map is clearly a A-modality. We have:

1 ≰ 0 = ◻(1)

Hence for any morphism G we have

1 +G(0) ≰ ◻(1) + 0 = 0

Therefore, in this algebra, CA(1 +G(0)) ≠ CA(◻(1) + 0) for any G: ◻ has no adjoint.

6.1.3 Preservation theorem

We have shown in Chapter V that given an-MAA,A-connectives can be canonically extended
to any simple iterationA◁ B inA. The same is true for semi-direct iteration. We extend these
properties to modalities, by showing that the structure of A-modality is preserved after an
iteration.

Theorem 197 (Modality preservation). LetA be a n-MA and ◻ be aA-modality. Let B be
a A-MA. Then the following assertions hold:

1. If D = A◁ B is a simple iteration, then the canonical extension of ◻ to D is a D-
modality.

2. Suppose that δ is an action of B over A such that δ weakly commutes with ◻, i.e. :

∀n ∈ ∣B∣,∀p ∈ ∣A∣,◻(δn(p)) ⪯∣A∣ δn(◻(p))

Consider the semi-direct iteration D = A&δ B. Then the canonical extension of ◻ to D
is a D-modality.

Proof. Since the simple iteration is a special case of semi-direct iteration, with δ being the identity
(and hence always commuting with ◻), we only prove the second statement. It is immediate that the
canonical extension of ◻ is order preserving. We just have to show it is also a D-modality. Indeed, if
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(a, b), (a′, b′) ∈ A◁ B, we have

◻((a, b) + (a′, b′)) = (◻(δb′(a) + δb(a′)), b + b′)
⪯ (◻(δb′(a)) + ◻(δb(a′)), b + b′)
⪯ (δb′(◻(a)) + δb(◻(a′)), b + b′)
= ◻(a, b) + ◻(a′, b′)

In general, adjoint modalities are preserved by direct product without any condition and
by semi-direct product under some reasonable assumptions.

Theorem 198 (adjoint modality preservation). Let A be a n-MA and ◻ be an adjoint
A-modality. Let B be a A-MA. Then the following assertions hold:

1. If D = A × B is a direct product, then the canonical extension of ◻ to D is an adjoint
D-modality,

2. Suppose that δ is an action of B over A such that δ commutes with ◻ and ◻:

∀n ∈ ∣B∣,∀p ∈ ∣A∣,◻(δn(p)) = δn(◻(p))

∀n ∈ ∣B∣,∀p ∈ ∣A∣,◻(δn(p)) = δn(◻(p))

Consider the semi-direct product D = A &δ B. Then the canonical extension of ◻ to D
is an adjoint D-modality.

Proof. Second, suppose ◻ is an A-adjoint of ◻. Then we show that the canonical extension of ◻
is an D-adjoint of the canonical extension of ◻. We have

CD((a, b) ● ◻(a′, b′)) = CD(δb′(a) ● δb(◻(a′)), b ● b′)

Take (Ð→v ,w) ∈ CD(δb′(a) ● δb(◻(a′)), b ● b′). Then we have

{ w ∈ CB(b ● b′)Ð→v ∈ CA(δb′(a) ● δb(◻(a′)))

But since ◻(δb(a′)) = δb(◻(a′)), we have

{ w ∈ CB(b ● b′)Ð→v ∈ CA(δb′(a) ● ◻(δb(a′)))

Finally, since ◻ and ◻ are adjoint, we have
Ð→v ∈ CA(◻(δb′(a)) ● δb(a′))

Again, by commutativity,
Ð→v ∈ CA(δb′(◻(a)) ● δb(a′))

Therefore, (Ð→v ,w) ∈ CD(◻(a, b) ● (a′, b′)).

If adjoint modalities are not preserved by simple or centered semi-direct iteration, we can
give some additional conditions that ensure that they are.
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De�nition 199 (Monoidal modality). A A-modality ◻ is monoidal if :

∀r, p ∈ ∣A∣,◻(r) + ◻(p) ⪯ ◻(r + p)

Theorem 200 (Adjoint modality preservation by iteration). Let A be a n-MA. Suppose
that:

• ◻1 is an adjoint A-modality, that satis�es the monoidality condition.

• ◻2 is an adjoint B-modality such that

∀p ∈ ∣B∣,CB(◻2(n)) = ◻1(CB(n))

and its adjoint is the identity.

If D = A◁ B then (x, y)↦ (◻1(p),◻2(n)) is an adjoint D-modality.

Proof. We prove that it has an adjoint

◻(a, b) = (◻1(a), b)

We have
CD(◻(a, b) ● (a′, b′)) = CD(◻1(a) ● a′,◻2(b) ● b′)

Take (Ð→v ,w) ∈ CD(◻1(a) ● a′,◻2(b) ● b′). Then we have

{ (w, r) ∈ CB(◻2(b) ● b′)Ð→v ∈ CA(r ● (◻1(a) ● a′))

But (w, r) ∈ CB(◻2(b● b′)) = ◻1(CB(b● b′)) Hence ◻1(r′) ⪯∣A∣ r and (w, r′) ∈ CB(b● b′). We then have

{ (w, r′) ∈ CB(b ● b′)Ð→v ∈ CA(◻1(r′ + a) ● a′)

Finally, since ◻1 and ◻1 are adjoint, we have

Ð→v ∈ CA(r′ ● a ● ◻1(a′))

Hence
(Ð→v , v) ∈ CD(a ● ◻1(a′), b ● b′)

Therefore
(Ð→v , v) ∈ CD((a, b) ● ◻(a′, b′))
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6.1.4 Example of modality: the linear logic exponential
As an example, we give a possible axiomatization of the linear logic exponential modality, in
the form of a set of inequalities in the forcing monoid. By considering di�erent subsets of those
inequalities, we obtain substructural modalities. LetM be a forcing monoid and ! ∶M →M.
We enumerate three conditions on !, which are all parametrized by an element c ∈M:

(c-Contraction) ∀p ∈M, !p + !p ⪯ c + !p
(c-Digging) ∀p ∈M, !!p ⪯ c + !p

(c-Dereliction) ∀p ∈M, p ⪯ c + !p

When c = 0, we just denote these conditions by Contraction,Digging and Dereliction. Each of
these conditions implies the soundness of a certain rule.

Property 201. Suppose that A is a n-MA and ! ∶ ∣A∣→ ∣A∣ is a A-modality.

• If ! satis�es the c-Contraction condition, then the following typing rule is A-sound:

E ; Γ, x ∶ !P, y ∶ !P ⊢n a ∶ (A,p)
E ; Γ, x ∶ !P ⊢n a[x/y] ∶ (A,p + c)

• If ! satis�es the c-Digging condition, then the following typing rule is A-sound:

E ; !Γ ⊢n v ∶ (P, p)
E ; !Γ ⊢n v ∶ (!P, !p + c)

• If ! satis�es the c-Dereliction condition, then the following typing rule is A-sound:

E ; Γ, x ∶ P ⊢n a ∶ (A,p)
E ; Γ, x ∶ !P ⊢n a[x/y] ∶ (A,p + c)

These three rules constitute the rules of the linear logic exponential !. Some restrictions of
this notion also have a speci�c interest. For instance, if one only consider the c-Contraction
condition (and abandon the c-Digging and c-Dereliction conditions), we obtain the exponential
of the elementary linear logic [DJ03]: a substructural logic that ensures the elementary time
execution of the typable programs.

De�nition 202 (Exponential modalities). Suppose thatA is a n-MA and ! ∶ ∣A∣→ ∣A∣ is a
A-modality.

• If there are c1, c2, c3 ∈ ∣A∣ such that ! satis�es the c1-Contraction condition, the c2-
Digging and the c3-Dereliction condition, then we say that (!, c1, c2, c3) is an expo-
nential.
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• If there is c ∈ ∣A∣ such that ! satis�es the c-Contraction condition, then (!, c) is an
elementary exponential.

Example 203. Here are some examples of such modalities:

• Consider a MA whose carrier is the additive forcing monoid (N,+,0,≤). We de�ne !
as follows:

!p
def= { 0 if p = 0

∞ if p > 0

Then (!,0,0,0) is an exponential modality.

• Consider a MA whose carrier is the additive elementary monoidMelem (which is
adapted from the elementary resource monoid of [DLH05]) given by:

– The set of triples (n,m, f) ∈ N ×N ×NN.

– (n,m, f) + (l, k, g) def= (n + l,m + k,max(f, g))
– (n,m, f) ⪯ (l, k, g) i�

∗ n ≤ l
∗ 2nm ≤ 2lk

∗ f(x) ≤ g(x) for any x ∈ N

We pose:
!(n,m, f) def= (1, n +m,x↦ xf(x2x))

Then (!, (2,0, x↦ 0)) is an elementary modality.

Property 204. If !1 is aM1-modality and !2 is aM2-modality, then !(p1, p2) def= (!p1, !p2)
is a (M1 ×M2)-modality.

Proof. Straightforward.

Lemma 205. IfM is idempotent then the identity is an exponentialM-modality.

Proof. Straightforward.

6.1.5 Adding adjoint modalities
We have shown that in general aA-modality is not an adjoint modality since it does not always
admit an adjoint. However, under certain conditions it is possible to extend the n-MA in order
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to build an adjoint. We now exhibit a construction based on the semi-direct product which
does the following:

• Start with a monitoring algebra A, and a A-modality ◻ that satis�es additional condi-
tions.

• De�ne a new monitoring algebra A{◻} in which the canonical extension of ◻ to A{◻}

has an adjoint.

In what follows, we suppose that ◻ is a A-modality such that:

• ◻(p + q) = ◻(p) + ◻(q)

• p ⪯ q implies ◻(p) ⪯ ◻(q)

• p ⪯ ◻(p)

Example 206. The exponential modality on N of Example 203 satis�es these conditions.

De�nition 207. We de�ne the 1-MA Nadj de�ned by the following components:

• The carrier is the forcing monoid (N,max,0, ●,≤) where:

– n ●m def= m is the right identity.

– ≤ is the usual order on N.

• CNadj

def= n ↦ {∗} is the constant function that maps any natural number to the sin-
gleton containing the unit value.

We now de�ne an action of Nadj overA, which is basically the n-th iteration of theA-modality
◻ on an element of ∣A∣.

Property 208 (◻-context action). The function ⋆ ∶ N× ∣A∣→ ∣A∣ de�ned as n⋆p def= ◻n(p).
⋆ is an action of Nadj on ∣A∣.

Proof.

1. Because ◻ is additive, we can prove by induction on n ∈ N that n ⋆ (p + q) ⪯ n ⋆ p + n ⋆ q.

2. Since ◻ is increasing, if p ⪯ q, we have n ⋆ p ⪯ n ⋆ q by induction on n.

3. Finally, since p ⪯ ◻(p), we have n ≤m implies n ⋆ p ⪯ m ⋆ q by induction.
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De�nition 209 (◻-context extension). We de�ne the (n+1)-MAA{◻} def= A ⋉◻ Nadj as the
semi-direct product ofA andNadj. We call this construction overA the ◻-context extension
of A.

We now want to check that in this new (n + 1)-MA:

1. We can extend the A into a A◻-modality.

2. In addition this new modality has an adjoint.

Remember that the canonical extension of ◻ to A{◻} is de�ned as follows:

◻(p,n) def= (◻(p), n)

Property 210. ◻ is an adjoint A{◻}-modality.

Proof.

1. It is immediate that ◻ is a A{◻}-modality since ◻ commutes with the action ⋆ and by Theorem
197.

2. We now show that ◻ has an A{◻}-adjoint. We pose ◻(p,n) = (p,n + 1). Then we have

◻(p,n) ● (q,m) = (◻(p), n) ● (q,m)
= (◻m+1(p) ● ◻n(q),m)

But CA◻(◻m+1(p)●◻n(q),m) = CA◻(◻m+1(p)●◻n(q),m+1). Moreover, we have the following
equalities:

(◻m+1(p) ● ◻n(q),m + 1) = (p,n) ● (q,m + 1)
= (p,n) ● ◻(q,m)

Therefore, by combining these pieces of reasoning, we obtain that

CA◻(◻(p,n) ● (q,m)) = CA◻((p,n) ● ◻(q,m))

We then dispose of a technique that permits to build a new adjoint modality out of any
modality.

6.2 | Bounded-time monitoring
This section is devoted to the study of a particularly interesting class of 1-monitoring algebras,
namely the quantitative monitoring algebras. This generalizes the linear-time algebra ex-
ample shown in Subsection 4.5.1. We �rst de�ne the notion of quantitative forcing monoid.
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De�nition 211 (Quantitative forcing monoid). A quantitative forcingmonoid is a forc-
ing monoidM with a function ∥.∥ ∶M→ N and an element 1 ∈M such that:

1. ∥.∥ is sup-additive:
∥p∥ + ∥q∥ ≤ ∥p ● q∥

2. ∥.∥ is increasing:
p ⪯ q⇒ ∥p∥ ≤ ∥q∥

3. 1 ≤ ∥1∥ and ∥1∥ ∈ N

4. p↦ 1 ● p is strong.

Remark 212. IfM is additive, the condition 4 is unnecessary since p ↦ p + 1 is always
strong in that context by Property 80.

Remark 213. The notion of resource monoid introduced in [DLH05, DLH11] is a particular
case of quantitative monoid. A resource monoid comes with an anti-distance D(p, q) on the
monoidM. We can then pose ∥p∥ = D(p,0) to retrieve a quantitative monoid.

We introduce a new value ∞ in the language, with the following reduction rule at level 0
(and hence at higher levels):

⟨case∞of x.t ∥x.u,E⟩0 → ⟨u[∞/x],E⟩0

Hence, when evaluating ∞, the case construction will always choose the second branch with-
out decreasing the argument.

De�nition 214 (Quantitative 1-MA). A 1-MA A is said to be quantitative i�:

• ∣A∣ is a quantitative forcing monoid.

• CA is equal to:
CA(p) def= { n ∣ n ∈ N ∧ n ≥ ∥p∥ }

Proof. This de�nes a 1-MA, because ∥.∥ is compatible with ⪯.

For instance if ∥p∥ =∞, then CA(∞) = {∞}.

Example 215.

• A simple example of quantitative forcing monoid is the set of integers N with the usual
addition and order, together with the function ∥n∥ def= n and 1 =def= 1. In this quantita-
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tive forcing monoid, no element p is such that ∥p∥ =∞.

• A variation of the previous example is N with ∥n∥ def= n and 1
def= 1. Obviously,

∥∞∥ =∞.

• A more complex example is given by the additive elementary monoidMelem of Exam-
ple 203. It can be endowed with the following structure:

∥(n,m, f)∥ def= n.f(n + 2nm)
1

def= (1,0, x↦ x)

The monitor αtime already mentioned in Subsection 2.3.2 is a A-monitor in every quantitative
MA.

Property 216. If A is quantitative then the following pair (αtime, f) is a A-monitor:

• αtime
def= λx.casexof x.Ω ∥x.ret(x)

• f ∶ p↦ 1 ● p

Proof.

• f is strong by condition 4 of the de�nition of quantitative forcing monoid.
• By Property 157, it is enough to show that

αtime ⊩0 ∀x ∈ ∣A∣.CA(1 ● x)⊸ CA(x)

Let E ∈ CA(p)�0 Take k ∈ CA(1 ● p), that is k ≥ ∥1 ● p∥ ≥ ∥p∥ + 1. Since k ≥ 1, we have

C0 = ⟨αtime, a(k).E⟩0 → ⟨k − 1,E⟩0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

noted C1

(with ∞− 1 =∞). Since k ≥ ∥p∥+ 1, we have k − 1 ≥ ∥p∥ and therefore k − 1 ∈ CA(p). Hence, the
con�guration C1 ∈ ��, so by →-saturation of ��, we have C0 ∈ ��, and then our result.

This monitor is the same as the one de�ned in Subsection 2.3.2. When using it, the memory
cell acts as a countdown, which makes the computation diverges if it reaches 0, hence allowing
to observe bounded-time termination. However, putting ∞ in the memory cell plays the role
of giving up the bounded-time termination analysis, since the memory cell cannot reach 0.

Lemma 217. Suppose thatA is quantitative and ρ aA-model that satis�es the condition of
Lemma 132, i.e. for every predicate variable of arity S:

∀s ∈ S,∃v ∈ V, (v,0) ∈ ρ(X)(s)
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If (t, p) ∈ ∥N∥A,1,ρ then for any n ≥ ∥p∥, we have

⟨t, a(n).nil⟩1 terminates

Proof. By Lemma 132, we know that there existsE such that (E,0) ∈ JNKA,1,ρ. Hence we know that
if n ≥ ∥p∥,

⟨t, a(n).E⟩1 terminates

But if this con�guration terminates, it is easy to see that so does

⟨t, a(n).nil⟩1

Corollary 218. Suppose that ⊢0 t ∶ N . Then

⟨t,nil⟩0 terminates on a value in less than ∣t∣λ λ-steps

Proof. Consider the quantitative MA based on (N,+,0,≤, n ↦ n). Let k = ∣t∣λ the number of λ
constructors in t. Notice that ∥k∥ = k ≠ ∞. To show that ⟨t,nil⟩0 terminates on a value in less than k
λ-steps, it is enough to show that

⟨{t}αtime , a(k).nil⟩1 ∈ ��

Let ρ be aA-model that satis�es the condition of Lemma 132 (such a model always exists). By Theorem
140, we have

({t}αtime , k) ⊩A,1 N[ρ]

We conclude by Lemma 217.

If this corollary implies a linear-time termination theorem for a speci�c core linear lan-
guage, Lemma 217 can be used to obtain bounded-time termination theorems for more expres-
sive languages. We will illustrate this in Chapter VII .

6.3 | Stratification
Many programmig features rely on some kind of circularity: recursive types, higher-order ref-
erences or recursive de�nitions of programs. In all those examples, the treatment of the circu-
larity can be reduced to the treatment of recursive types. Indeed, higher-order references can
be justi�ed through a proper program transformation typed using recursive types, and �xed-
point combinators can be typed using recursive types. In terms of model, it means the ability
to prove the existence of �xed-points for certain maps. We consider a class of monitoring al-
gebras called strati�ed and show that a general �xed-point theorem can be formulated and
proved. This theorem is obtained as a corollary of Banach �xed-point theorem.
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6.3.1 Banach Fixed-point theorem
We begin with a well-known result: the Banach �xed-point theorem for complete metric
spaces. We remind to the reader some basic de�nitions and facts about metric spaces.

De�nition 219 ((Pseudo-)metric and ultrametric spaces). Given a set X , we say that a
function d ∶X ×X → R is a pseudo-metric i� for all x, y, z ∈X we have:

1. d(x,x) = 0

2. d(x, y) ≥ 0

3. d(x, y) = d(y, x)

4. d(x, z) ≤ d(x, y) + d(y, z)

We say that d is ametric if it satisfy the additional following principle:

d(x, y) = 0 implies that x = y

We moreover say that d is an ultrametric if it satis�es the following generalization of 4:

d(x, z) ≤ max(d(x, y), d(y, z))

• A pseudo-metric space is a pair (X,d) such thatX is a set of points and d a pseudo-
metric on X .

• Anmetric space is a pair (X,d) such thatX is a set of points and d an metric onX .

• An ultrametric space is a pair (X,d) such that X is a set of points and d an ultra-
metric on X .

Proposition 220. Let (X,d) be a pseudo-metric space. If we pose the following equivalence
relation:

x ≈ y⇔ d(x, y) = 0

then the quotient space (X/ ≈, d) is a metric space.

De�nition 221 (Product metric space). If (X,dX) and (Y, dY ) are two metric spaces, we
de�ne the product metric space (X × Y, dX × dY ) where

dX×Y ((x, y), (x′, y′)) def= max(dX(x,x′), dY (y, y′))
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De�nition 222 (Cauchy sequence). Let (X,d) be ametric space. A sequence (xn)n∈N ∈XN

is a Cauchy sequence i�

∀ε > 0,∃N ∈ N,∀m,n ≥ N,d(xn, xm) ≤ ε

De�nition 223 (Completeness). Ametric space (X,d) is complete i� any Cauchy sequence
(xn)n∈N converges to a limit x:

∀ε > 0,∃N ∈ N,∀n ≥ N,d(x,xn) ≤ ε

Property 224. If (X,dX) and (Y, dY ) are complete, then so is (X × Y, dX×Y ).

De�nition 225 (Contractive and non-expansive maps). Let (X,dX) and (Y, dY ) be two
complete metric spaces. Let T ∶X → Y be a map. We say that

• T is contractive i� there is q ∈ [0,1[ such that dY (T (x), T (y)) ≤ q.dX(x, y).

• T is non-expansive i� for all x, y ∈X , we have dY (T (x), T (y) ≤ dX(x, y)

Property 226. If T ∶ Y → Z is a non-expansive map and C ∶ X → Y is a contractive map
then T ○C is contractive. Similarly, if C ∶ Z →X is contractive then C ○ T is contractive.

We can now state the Banach �xed-point theorem for complete metric spaces. It says that in
all complete metric spaces, contractive maps admit unique �xed-points. It applies in particular
to complete ultrametric spaces as well.

Theorem 227 (Banach �xed-point theorem). Let (X,d) be a non-empty complete metric
space. Any contractive map T ∶X →X admits a unique �xed point x∗ (i.e. , T (x∗) = x∗).

6.3.2 Stratified monitoring algebras
We now de�ne the class of the strati�edmonitoring algebras. Given such a MAA, we show
that I(VA) and I(EA) are completely pseudo-metrizable (we in fact even show that we can
endow them with a structure of complete pseudo-ultrametric space). This allows us to use the
Banach �xed-point theorem on these spaces, which will be used to obtain models of various
kinds of recursive types.
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Notation 228. In this subsection, all the de�nitions and properties hold indi�erently for VA
and EA. In what follows, X ∈ {E,V} is �xed.

De�nition 229 (Strati�ed forcing monoid and MA). A strati�ed forcing monoid is a
structure (M, φ) where:

• M is a forcing monoid

• φ is a function called the strati�cation mapM→ N such that:

– p ⪯ q⇒ φ(q) ≤ φ(p)

A n-MA A is strati�ed i� its carrier is.

It is in fact the set I(XA)S , with S being any set, that we endow with a structure of metric
space. It naturally represents a subset of the predicates on S. For example the following type
with y a free variable of sort S:

⇓(∀x ∈ S.X(x)⊸ ⇑X(y))
can be seen as a map that takes X ∶ S → I(VA) and returns an element of S → I(VA).

De�nition 230 (n-approximation). Let n ∈ N. Let X ∈ I(XA). Then we de�ne its n-
approximation as:

πn(X) def= s↦ { (x, p) ∈X(s) ∣ φ(p) ≤ n }

In particular, π∞(X) =X .

We begin by endowing I(XA)S with a structure of pseudo-ultrametric space based on the
notion of n-approximation.

De�nition 231 (Cantor ultrametric). Let X,Y ∈ I(XA)S . Then we de�ne:

D(X,Y ) def= sup({ k ∈ N ∣ πk(X) = πk(Y ) })
d(X,Y ) def= 2−D(X,Y )

with 2−∞
def= 0.

Lemma 232. Let k ∈ N. If k ≤D(X,Y ) then πk(X) = πk(Y ).

Proof. It is clear, because πn(X) = πn(Y ) implies that πk(X) = πk(Y ) for any k ≤ n.

We now prove that the distance induces an ultrametric on I(XA)S .
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Property 233. (I(XA))S , d) is a pseudo-metric space. It is in fact a pseudo ultrametric
space.

Proof. We show that d is a pseudo-ultrametric, which implies that it is a pseudo-metric. We only
prove the ultrametric inequality.

We want to prove the following inequality:

d(X,Z) ≤ max(d(X,Y ), d(Y,Z))

We have max(d(X,Y ), d(Y,Z)) = max(2−D(X,Y ),2−D(Y,Z)). There are two possible cases:

• If D(X,Y ) <D(Y,Z), then 2−D(Y,Z) < 2−D(X,Y ). By Lemma 232 we have

πD(X,Y )(Y ) = πD(X,Y )(Z)

But we also know that
πD(X,Y )(X) = πD(X,Y )(Y )

Hence,
πD(X,Y )(X) = πD(X,Y )(Z)

By de�nition of D(X,Z) it means that

D(X,Y ) ≤D(X,Z)

Therefore, by combining everything:

d(X,Z) = 2−D(X,Z) ≤ 2−D(X,Y ) = max(2−D(X,Y ),2−D(Y,Z)) = max(d(X,Y ), d(Y,Z))

• If D(Y,Z) ≤D(X,Y ) then the proof is symmetric.

We don’t have the separation property, but as stated in Proposition 220, by quotienting
using the following equivalence

X ≈ Y ⇔ ∀k ∈ N, πk(X) = πk(Y )

we obtain a metric space. We implicitely work in this space from now on.
We now want to show that our metric space is complete. We use an intermediate lemma

that rephrase what it means to converge or be a Cauchy sequence in our particular ultrametric
space.

Lemma 234. The following equivalences hold:

• (Xn)n∈N is Cauchy⇐⇒ ∀k ∈ N,∃N ∈ N,∀m,n ≥ N,k ≤D(Xn,Xm).

• (Xn)n∈N converges to X ⇐⇒ ∀k ∈ N,∃N ∈ N,∀n ≥ N,k ≤D(X,Xn).
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Proof. We only prove the �rst statement, the second one being similar.

• Suppose that (Xn)n∈N is Cauchy. Let k ∈ N. There exists ε > 0 such that k ≤ − log2(ε). Because
Xn is Cauchy, we have N ∈ N such that

∀n,m ≥ N,d(Xn,Xm) ≤ ε

We want to prove that if n,m ≥ N , we have

k ≤D(Xn,Xm)

But d(Xn,Xm) = 2−D(Xn,Xm), hence

− log2(ε) ≤D(Xn,Xm)

We conclude because k ≤ − log2(ε).

• Suppose that (Xn)n∈N satis�es the right condition. Let ε > 0. There exists k ∈ N such that 2−k ≤ ε.
Hence, we have an N ∈ N such that for all m,n ≥ N ,

k ≤D(Xn,Xm)

This implies that
d(Xn,Xm) = 2−D(Xn,Xm) ≤ 2−k ≤ ε

Property 235. Every Cauchy sequence on (I(XA)S , d) converges.

Proof. Let (Xn)n∈N be a Cauchy sequence. We construct a new set X ∈ I(XA)S slice by slice,
n-approximation by n-approximation, which is enough since we are working modulo ≈. We de�ne
Gn = πn(X) by induction on n ∈ N and then pose X as follows:

X = ⋃
i∈N
Gi

To make it work, we just need to ensure that Gi ⊆ Gi+1.
Let k ∈ N. Then by Lemma 234, we have N(k) ∈ N such that for all n,m ≥ N(k),

k ≤D(Xn,Xm)

That means by Lemma 232 that ∀n ≥ N(k),

πk(Xn) = πk(XN(k))

We pose for any k ∈ N
Gk = πk(XN(k))

We immediately have that Gk ⊆ Gk+1 for any k ∈ N. By posing

X = ⋃
i∈N
Gi

we have that πn(X) = Gn. We prove that X ∈ I(XA)S :
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• X ∈ I(XA)S . Indeed, for s ∈ S, if we have (x, p) ∈ X(s) and p ⪯ q, then φ(q) ≤ φ(p) by the
strati�cation condition. But (x, p) ∈ πφ(p)(X)(s) = Gφ(p)(s) = πφ(p)(XN(φ(p)))(s). On the
other hand, since πφ(p)(XN(φ(p)))(s) is upward closed (because of the strati�cation condition),
we have (x, q) ∈ πφ(p)(XN(φ(p)))(s) = Gφ(p)(s) ⊆X(s).

Finally, it is easy to see that Xn converges to X

We have successfully endowed I(XA)S with a structure of complete metric space. We can
therefore apply the Banach �xed-point theorem.

Theorem 236 (Fixed-point Theorem). Let A be a strati�ed monitoring algebra. Suppose
that F ∶ I(XA)S → I(XA)S is contractive. Then there exists X ∈ I(XA)S such that:

F (X) ≈X

This �xed-point is denoted by µF .

Proof. It is a direct corollary of the Banach �xed-point theorem.

Theorem 237 (Solution to a �nite set of recursive equations). Let A be a strati�ed mon-
itoring algebra. Suppose that we dispose of n contractive maps F1, . . . , Fn ∶ (I(XA)S)n →
(I(XA)S)n. Then there exists n setsX1, . . . ,Xn that satisfy the following �nite set of equa-
tions:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X1 ≈ F1(X1, . . . ,Xn) (E1)
X2 ≈ F2(X1, . . . ,Xn) (E2)

. . .
Xn ≈ Fn(X1, . . . ,Xn) (En)

Proof. It is enough to remark that we can form the following map Φ:

Φ
def= (X1, . . . ,Xn)→ (F1(X1, . . . ,Xn), . . . , Fn(X1, . . . ,Xn))

This map is a contractive map from (I(XA)S)n to (I(XA)S)n. We can then use Banach �xed-point
theorem to conclude.

Remark 238. It is always possible to stratify a MA A by choosing φ(p) = 0 for all p ∈ ∣A∣,
but then the only contractive maps are the constant maps. In general, even if we have a
�xed-point theorem, its interest really depends on the kind of maps that can be proved to be
contractive.
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6.4 | Step-indexing
We now explain how we can apply Theorem 236 to the step-indexing algebraAstep and retrieve
the results stated in section 4.5.3. We then explain how to transport non-expansiveness and
contractiveness of certain maps in Astep to other MAs.

6.4.1 Preliminaries
We �rst give many useful technical results. This subsection can be skipped in �rst reading, as
it is mostly useful for the proofs of this section, but not for its understanding.

Property 239. Suppose that A is strati�ed. Let ⊙ be a simple A-connective, with σ(−) +
σ(+) = n, such that:

• If ⊙(p1, . . . , pn) ⪯ r then there exists q1, . . . , qn ∈ ∣A∣ such that:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

∀i ∈ [1, n], pi ⪯ qi
φ(qi) ≤ φ(r)
⊙(q1, . . . , qn) ⪯ r

Then the map ⊙ ∶ I(VA)σ(+) × I(EA)σ(−) → I(XA) is non-expansive. By convenience, if
⊙ satis�es that condition we say that it is non-expansive.

Proof.

Suppose that for some k ∈ N, we haveπk(Xi) = πk(Yi). We want to prove thatπk(⊙(X1, . . . ,Xn)) =
πk(⊙(Y1, . . . , Yn)). The situation is symmetric, so we only prove an inclusion. Let (⊙(x1, . . . , xn), r) ∈
⊙(X1, . . . ,Xn). We know there are p1, . . . , pn such that:

• ⊙(p1, . . . , pn) ⪯ r
• (xi, pi) ∈Xi

Then, there exists q1, . . . , qn such that:

1. pi ⪯ qi
2. φ(qi) ≤ k
3. ⊙(q1, . . . , qn) ⪯ r

We have because of the points 1,2,3 and 4 that:

∀i ∈ [1, n], (xi, qi) ∈ πk(Xi) = πk(Yi)

Hence, (⊙(x1, . . . , xn),⊙(q1, . . . , qn)) ∈ ⊙(Y1, . . . , Yn). By ⪯-saturation we also have

(⊙(x1, . . . , xn), r) ∈ ⊙(Y1, . . . , Yn)
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Property 240. Let A be strati�ed. Suppose that:

• For all p, q ∈ ∣A∣ there exists p′, q′ ∈ ∣A∣ such that

– p ⪯ p′

– φ(p′) ≤ φ(q)
– p′ ● q ⪯ p ● q
– q ● p′ ⪯ q ● p

Then both ⇑ and ⇓ are non-expansive. By convenience we will say that �A is non-expansive
if this condition is satis�ed.

Proof. We only prove the case where X,Y ∈ I(EA), the other case being symmetric. We only need
to show that given πk(X) = πk(Y ), we have πk(X�A,k) = πk(Y �A,k). Let (x, p) ∈ πk(X�A,k) and
(y, q) ∈ Y . We know that φ(p) ≤ k. We want to prove that

(x, p)�A,k(y, q)

But there is q′ such that q ⪯ q′ and φ(q′) ≤ k. Hence (y, q′) ∈ πk(Y ) = πk(X). Therefore we have

(x, p)�A,k(y, q′)

Since, p ● q′ ⪯ p ● q we have
(x, p)�A,k(y, q)

Remark 241. It is worth remarking that ifA is commutative, hence + and ● being the same
operation, it is enough that + is non-expansive (in the sense of Property 239) for the condition
of Property 240 to be met.

Property 242. Let A be a strati�edMA. Then the following map is non-expansive:

∃s ∶ { I(XA)
S×s → I(XA)S
X → ⋃x∈sX(x)

Proof. Suppose that πk(X) = πk(Y ). Let (x, p) ∈ πk(⋃a∈sX(a)). Then there exists a ∈ s such that
(x, p) ∈ πk(X(a)) = πk(Y (a)). Hence (x, p) ∈ ⋃a∈s Y (a).

De�nition 243 (Step-indexed monitoring algebra). A step-indexedmonitoring algebra
is a strati�edMA A such that:

• + is non-expansive.
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• �A is non-expansive.

De�nition 244 (Next modality). In a step-indexedMAA, anextmodality is aA-modality
▷ such that if ▷(p) ⪯ r then there exists q such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

p ⪯ q
φ(q) + 1 ⪯ φ(r)
▷(q) ⪯ r

Lemma 245. If A is step-indexed, then any next A-modality is contractive.

Proof. Let X,Y ∈ I(VA). Suppose that πk(X) = πk(Y ). We want to show that πk+1(▷X) =
πk+1(▷Y ). It is su�cient to show one of the two inclusions, the other case being symmetric. Let
(v, p) ∈ πk+1(▷X): we want to prove that (v, p) ∈ ▷Y (it is su�cient since φ(p) ≤ k + 1). We have
▷(q) ⪯ p for some q such that (v, q) ∈X . We have φ(▷(q)) = φ(q)+1. Hence we have φ(p) ≤ φ(q)+1.

Because A is step-indexed, there exists q′ such that q ⪯ q′ and φ(q′) + 1 ≤ φ(p), with ▷(q′) ⪯ p.
Then by ⪯ -saturation of X , we have (v, q′) ∈X .

• If φ(p) = 0 then φ(q′) ≤ φ(p) = 0. Moreover ▷(q′) ⪯ p. Then (v, q′) ∈ πk(X) = πk(Y ). Hence
(v, q′) ∈ Y ⊆▷Y .

• If φ(p) =m + 1 for some m ∈ N, then m ≤ k. We moreover know that φ(q′) + 1 ≤m + 1 ≤ k + 1
hence φ(q′) ≤ k. We then have (v, q′) ∈ πk(X) = πk(Y ). Then (v,▷(q′)) ∈▷Y . But ▷(q′) ⪯ p
hence the result.

Property 246. Let F ∶ X × Y ↦ F (X,Y ) be a map such that X ↦ F (X,Y ) and Y ↦
F (X,Y ) are non-expansive. Suppose moreover that▷ is a next modality. Then,

Y ↦ µ(X ↦▷F (X,Y )) is contractive

Proof. We want to prove that if πk(Y ) = πk(Z) then

πk+1(µ(X ↦▷F (X,Y ))) = πk+1(µ(X ↦▷F (X,Z)))

We prove this by induction on k ∈ N. We have

µ(X ↦▷F (X,Y )) =▷F (µ(X ↦▷F (X,Y )), Y )

Since ▷ is contractive, we only need to prove that

πk(F (µ(X ↦▷F (X,Y )), Y )) = πk(F (µ(X ↦▷F (X,Z)), Z))

But since F is non-expansive, we only need to show that the k-approximations of its argument are
equal. For the �rst argument, this is the induction hypothesis. For the second it is the hypothesis.
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Let A be step-indexed. Consider a type P that is built using the core grammar of LCBPV
types augmented with any numbers of A-connectives that satisfy the condition of Property
239. Let ρ be a A-valuation, x1, . . . , xn are �rst-order variables of respective sorts S1, . . . , Sn
and X a type variable of arity S1 × ⋅ ⋅ ⋅ × Sn (denoted by S). Then P induces a map:

∥P ∥A,k,ρ(X) ∶ { I(VA)
S → I(VA)S
C ↦ s↦ ∥P ∥A,k,ρ[Ð→x←s,X←C]

Lemma 247. Let k ∈ N. For any positive predicate P of arity S which is the composition
of the core connectives and A-connectives that satisfy the condition of Property 239, and for
any positive type variable X of arity S′, the map ∥P ∥A,k,ρ(X) is non-expansive.

Proof. This map is the composition of non-expansive maps (by Property 239 and Property 240), its
induced map ∥P ∥A,k,ρ(X) is itself non-expansive.

6.4.2 Step-indexing Algebra
We now consider a speci�c step-indexed algebra, which has already been considered: the step-
indexing monitoring algebra. We remind its de�nition, and prove some elementary facts
about it.

De�nition 248 (Step-indexing algebra). The 1-MA Astep is de�ned as:

• ∣Astep∣ def= (N,min,∞,≥)

• CAstep(n)
def= { k ∣ k ≤ n }

Astep is idempotent, so by Property 167, the contraction rule isAstep-sound. Astep is moreover
trivially strati�ed, by choosing φ(n) def= n. It is also step-indexed, as suggested by its name.

Fact 249. Astep is step-indexed.

Proof. By Remark 241, we only have to check that min is non-expansive. Suppose that min(m,n) ≥ k.
We then have: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

m ≥ k and n ≥ k
k ≤ k
min(k, k) ≥ k

Hence the conclusion.

This in particular implies that⊸,⊗,⇑. and ⇓ all induce non-expansive maps.
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Property 250 (Approximation). If t ∈ P and Y ∈ I(EAstep) then for any k ∈ N, we have the
following equivalence:

(t,∞) ∈ Y �A,k ⇔ ∀n ∈ N, (t, n) ∈ Y �A,k

Proof. We only prove the⇐ implication, the other one being immediate by ≥-saturation. Suppose that
for every n ∈ N, (t, n) ∈ Y �A,k and take (E,m) ∈ Y . We want to show that (t,E,min(∞,m)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=m

) ∈ ��A,k .

Two cases are possible:

• If m ∈ N, then we know that (t,m) ∈ Y �A,k and since min(m,m) =m, we have the result.

• If m =∞, then we need to show that for any k ∈ N, we have

(⋆) ⟨t, a(k).E⟩k ∈ ��

But we know that (t, k) ∈ Y �A,k by hypothesis. Moreover, by ≥-saturation of Y , we have (E,k) ∈
Y . Hence, (t,E, k) ∈ ��A,k and therefore we deduce (⋆).

Remark 251. A consequence of this property is that for everyX,Y ∈ I(EAstep) (resp. X,Y ∈
I(VAstep)) we have the following implication:

X ≈ Y Ô⇒X�A,k = Y �A,k

6.4.3 A contractive modality
In order to use the �xed-point theorem we proved for strati�ed MAs, we de�ne a new Astep-
modality which will turn out to be a next modality, hence contractive. Therefore, by composing
this modality with any non-expansive map induced by a type yields a contractive map (by
Property 226). This will be used to de�ne di�erent kinds of recursive types.

De�nition 252 (Next modality). We de�ne ▷ as the following next Astep-modality:

▷(n) def= n + 1

Proof. It is easy to see that it is indeed order-preserving and sub-additive. It is also trivial that it is a
next modality.

Property 253. This modality satis�es multiple remarkable properties:
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1. X ⊆▷X

2. ▷ distributes over ⊗

Proof.

1. If (v, n) ∈X , then (v, n + 1) ∈▷X , but since n ≤ n + 1, we also have (v, n) ∈▷X .

2. This is an immediate consequence of the following equality:

min(n,m) + 1 = min(n + 1,m + 1)

6.4.4 Guarded recursive types
We now have all the ingredients to interpret recursive types. We show that we can interpret
them in two �avours: guarded recursive types andnon-guarded recursive types. We begin
by extending the original grammar of λLCBPV positive types as follows:

P,Q ∶∶= . . . ∣ µX.P

such that in the constructor µX.P :

• P is a positive predicate of arity S

• X is a positive predicate variable of the same arity S.

Since ▷ is contractive, Property 226 immediately tells us that all maps induced by types of the
form ▷P are contractive. Hence, they have �xed-points (unique modulo ≈).

Theorem 254 (Fixed-points). Let P be a positive predicate of arity S = S1 × . . . Sn and
X be a positive type variable. Then for any level k ∈ N and any Astep-model ρ the map
∥▷P ∥Astep,k,ρ has a �xed-point µX.∥▷P ∥Astep,k,ρ, which is unique modulo ≈.

Proof. It is a simple application of the Banach �xed-point theorem, by remarking that since ▷ is con-
tractive and ∥P ∥Astep,k,ρ is non-expansive by Lemma 247 and Property 246, ∥▷P ∥Astep,k,ρ is contractive
by Property 226. Therefore this map as a unique �xed-point modulo ≈.

We use Theorem 254 to extend the interpretation of positive types by

∥µX.P ∥Astep,k,ρ
def= µX.∥▷P ∥Astep,k,ρ

It is time to wonder what kind of typing rules we can prove to be sound in Astep. Consider
the following guarded recursive types fold and unfold rules, respectively for the positive
recursive types, described in Figure 2.
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Positive recursive types

E ; Γ ⊢1 v ∶ (µX.P,n) n ∈ N
E ; Γ ⊢1 v ∶ (▷P [µX.P /X], n)

E ; Γ ⊢1 v ∶ (▷P [µX.P /X], n) n ∈ N
E ; Γ ⊢1 v ∶ (µX.P,n)

Figure 2: Guarded recursive types

Proposition 255. The typing rules for guarded recursive types described in Figure 2 are
Astep-sound.

Proof. This is a direct corollary of Theorem 254.

Remark 256. As a corollary of Proposition 255 and of the parametric soundness theorem,
every program typable in λ⊗Nat∀

LCBPV augmented with the guarded fold and unfold rules are
terminating. The fact that every occurence of the variable we consider is guarded by the next
modality ▷ prevents divergence.

6.4.5 Non-guarded recursive types
What if we want to obtain unrestricted recursive types, i.e. get rid of the ▷ modality? First,
concerning the fold rule, we can simplify it since X ⊆▷X (Property 253) as follows:

E ; Γ ⊢1 v ∶ (P [µX.P /X], n)
E ; Γ ⊢1 v ∶ (▷P [µX.P /X], n)
E ; Γ ⊢1 v ∶ (µX.P,n)

This is the usual fold rule for recursive types. Now if we turn our attention to the unfold rule
and use the de�nition of ▷, we obtain:

E ; Γ ⊢1 v ∶ (µX.P,n + 1)
E ; Γ ⊢1 v ∶ (P [µX.P /X], n)

In order to obtain an unrestricted unfold rule, the idea is to �nd a way to pass from n to n+ 1.
Remind the following lemma proved in Section 4.5.3.
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Lemma 257. If we take αstep = casexof x.✠ ∥x.ret(x), the following rule is Astep-sound:

E ; Γ ⊢1 t ∶ (N,n)
E ; Γ ⊢1 LtMαstep

1 ∶ (N,n + 1)

We would like to precompose the unfold typing rule with the observation rule. The problem
with the unfold rule is that we can’t precompose it with the observation typing rule since it
can only be applied to computations. However, we can consider the following rule:

Γ ⊢ v ∶ µX.P Γ, x ∶ P [µX.P /X] ⊢ t ∶ N
Γ ⊢ let fold x = v in t ∶ N

Remark 258. This corresponds to the fold rule given by Levy in his PhD thesis and in [Lev99].

In our framework, we consider a corresponding realizability typing rule.

Property 259. The following rule is Astep-sound.

E ; Γ ⊢1 v ∶ (µX.P,n) E ; ∆, x ∶ P [µX.P /X] ⊢1 t ∶ (N,m)
E ; Γ,∆ ⊢1 ret(v) to x.LtMαstep

1 ∶ (N,min(m,n))

Proof. First, consider the following part of the derivation:

E ; ∆, x ∶ P [µX.P /X] ⊢1 t ∶ (N,m)
E ;▷∆, x ∶ ▷P [µX.P /X] ⊢1 LtMαstep

1 ∶ (N,m)
E ; ∆, x ∶ ▷P [µX.P /X] ⊢1 LtMαstep

1 ∶ (N,m)

On the other hand, we have:

E ; Γ ⊢1 v ∶ (µX.P,n)
E ; Γ ⊢1 v ∶ (▷P [µX.P /X], n)

E ; Γ ⊢1 ret(v) ∶ (⇑(▷P [µX.P /X]), n)

Notice that if n =∞, this still works since we can prove the conclusion for every n ∈ N, and then since
the conclusion is negative, we can use Property 250 to re-obtain ∞. Finally, we deduce the following
conclusion

E ; Γ,∆ ⊢1 ret(v) to x.LtMαstep

1 ∶ (N,min(m,n))

Remark 260. An important consequence when considering these non-guarded recursive
types is that we loose termination. Indeed, if we use the observation L.Mαstep

1 in a program,
and if we don’t know in advance how many times this observation will arrive in head posi-
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tion, we can’t tell if the term terminates or not: even if the program diverges, for any value
n we can put in the memory cell, the observation will stop after a �nite number of times it
arrives in head position, even though the execution could have continued.

Guarded recursive types

E ; Γ ⊢1 v ∶ (▷(P [µX.P /X]), n)
E ; Γ ⊢1 v ∶ (µX.P,n)

E ; Γ ⊢1 v ∶ (µX.P,n)
E ; Γ ⊢1 v ∶ (▷(P [µX.P /X]), n)

Non-guarded recursive types

E ; Γ ⊢1 v ∶ (P [µX.P /X], n)
E ; Γ ⊢1 v ∶ (µX.P,n)

E ; Γ ⊢1 v ∶ (µX.P,n) E ; ∆, x ∶ P [µX.P /X] ⊢1 t ∶ (N,m)
E ; Γ,∆ ⊢1 ret(v) to x.LtMαstep

1 ∶ (N,min(m,n))

Figure 3: Guarded and non-guarded recursive types

6.4.6 Call-by-name and call-by-value translation

To illustrate how positive recursive types with the rules presented in Figure 3 are useful, we
extend the translation of the call-by-name and call-by-value calculi already de�ned in Section
2.2 to recursive types.

6.4.7 Preservation

We give a �nal result concerning the preservation of the step-indexed structure by the di�erent
iterations. If A is strati�ed (by φ ∶ ∣A∣ → N) and B is a A-MA, we can canonically extend
the strati�cation to any simple iteration A◁ B or centered semi-direct iteration A &δ B by
choosing:

φ(a, b) def= φ(a)

Theorem 261. If A is step-indexed, then any simple iteration D = A◁ B is also step-
indexed.

Proof. We want to prove that the + on ∣D∣ is non-expansive. Suppose that (a,n) + (b,m) ⪯∣D∣ (c, k).
Then it means that:

{ a + b ⪯∣A∣ c
n +m ⪯∣B∣ k
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Extension of types

A,B ∶∶= . . . ∣ X ∣ µX.A

Γ ⊢Aff t ∶ µX.A
Γ ⊢Aff unfold t ∶ A[µX.A/X]

Γ ⊢Aff t ∶ A[µX.A/X]
Γ ⊢Aff fold t ∶ µX.A

Syntax

t, u ∶∶= . . . ∣ fold t ∣ unfold t
v,w ∶∶= . . . ∣ fold v

Call-by-value reduction

⟨fold (t),E⟩V →V ⟨t, fold .E⟩V

⟨v, fold .E⟩V →V ⟨fold v,E⟩V

⟨unfold (t),E⟩V →V ⟨t,unfold .E⟩V

⟨fold (v),unfold .E⟩V →V ⟨v,E⟩V

Call-by-name reduction

⟨unfold (t),E⟩N →N ⟨t,unfold .E⟩N

⟨fold (t),unfold .E⟩N →N ⟨t,E⟩N

Call-by-value translation

(X)V def= X

(µX.A)V def= µX.(A)V

(fold t)V def= (t)V

(unfold t)V def= (t)V to x.Lret(x)Mαstep

1

Call-by-name translation

(X)N def= ⇑X
(µX.A)N def= ⇑µX.⇓(A)N

(fold t)N def= ret(thunk((t)N))
(unfold t)N def= t to x.Lforce(x)Mαstep

1

Figure 4: Extension of the linear λ-calculus with recursive types

Since A is step-indexed we obtain two elements a′, b′ ∈ ∣A∣ such that:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

a ⪯∣A∣ a
′

b ⪯∣A∣ b
′

φ(a′ + b′) ≤ φ(c)
a′ + b′ ⪯∣A∣ c
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Therefore we have (a,n) ⪯∣D∣ (a′, n), (b,m) ⪯∣D∣ (b′,m). On the other hand,

φ((a′, n) + (b′,m)) = φ(a′ + b′)
≤ φ(a′ + b′) by monotonicity of δ
≤ φ(c)

Finally, we have (a′, n) + (b′,m) = (a′ + b′, n +m) ⪯ (c, n +m) ⪯ (c, k).

Property 262. Let A be step-indexed, and consider a simple iteration D = A◁ B. If ⊙ is a
B-connective, then its canonical extension to D is non-expansive.

Proof. Straightforward.

Property 263. Let A be step-indexed, and consider a simple iteration D = A◁ B. If▷ is a
next modality in B, then its canonical extension to D is also a next modality.

Proof. Straightforward.

In the case of the semi-direct iteration, the situation is a little bit more complicated. IfA′ is
a step-indexed algebra that is a factor ofA. Then in a centered semi-direct iterationD = A&δB,
if δ leaves A′ untouched, then its step-indexed structure is transported to D.

Theorem 264. Suppose that A′ is step-indexed. Let A be a n-MA, whose A′ is a factor of.
We note ι the canonical injection of ∣A′∣ in ∣A∣. Let B be aA-MA, and δ an action of ∣B∣ over
∣A∣. Suppose that

∀p ∈ ∣A′∣, δ(ι(p)) = ι(p)

Then D is step-indexed.

Finally, we give a general theorem that ensures the existence of unrestricted �xed-points.

Theorem 265. Suppose that:

• A is a step-indexed k-MA .

• ▷ is a next A-modality.

• (α,x↦▷x) is a A-monitor.
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Then using the same interpretation of recursive types as for Astep, the following rules are
A-sound as soon as P is built using the core connectives and non-expansive connectives:

E ; Γ ⊢k v ∶ (P [µX.P /X], p) φ(p) ∈ N
E ; Γ ⊢k v ∶ (µX.P, p)

E ; Γ ⊢k v ∶ (µX.P, p) E ; ∆, x ∶ P [µX.P /X] ⊢k t ∶ (N, q)
E ; Γ,∆ ⊢k ret(v) to x.LtMαk ∶ (N,p + q)

6.5 | Higher-order references
If �rst-order references can be added by considering a simple MA, as seen in Section 4.5, it
is not the case of higher-order references. Indeed, higher-order references pose a circularity
problem: the values which are put in the state are themselves able to manipulate the state.
Usually, realizability models for languages featuring such higher-order references are based
on the technique of step-indexing, or are based on some encoding in recursive types. In our
framework, we can de�ne a general method to build realizability models of references, includ-
ing higher-order references, by relying on the results proved in Section 6.3. The method goes
schematically as follows:

1. Choosing a step-indexed monitoring algebra A, in the sense of Section 6.3.

2. Identify a type P that induces a contractive map.

3. De�ne a new A-MA B, using the �xed-point induced by P to de�ne the content of the
memory cell.

4. Form a simple iteration of A and B.

5. We can then prove a soundness theorem for the swap instruction, as done in Section 4.5.

6.5.1 Preliminaries
In the following, we �x a step-indexed k-MA A. We also suppose that we have chosen in it
a contractive positive type P , i.e. a type built using the basic connectives, any non-expansive
simpleA-connective, and such that the outer-mostA-connective is contractive in the sense of
Section 6.4.

Example 266. For instance, if A is equipped with a next modality ▷, we can choose any
non-expansive type P and form ▷P which is contractive.

Notice that since P is made out of the core connectives and simpleA-connectives, it admits
a forcing interpretation P ∗(ι) as pointed out in Section 4.3.
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Property 267. IfM is any forcing monoid, then the following map is contractive for any
levelm ∈ N:

{ I(VA)
M → I(VA)M
C ↦ (p↦ ∥(P )∗(ι)∥A,m,[ι←p,C←C])

where (P )∗(ι) is the forcing type transformation induced by the forcing structure F =
(M,C) with C being a predicate variable of arityM.

Proof. It is enough to remark that (P )∗(ι) only makes use of the connectives of λLCBPV, the sim-
ple A-connectives used by P (which are all non-expansive). Moreover its outer most connective ⊙ is
contractive. Indeed, remark that (P )∗(p) (suppose for more clarity that ⊙ is binary) is de�ned as:

(P )∗(p) = ∃q1 ∈M,∃q2 ∈M,{⊙(q1, q2) ⪯M p} ∧ ⊙(Q∗(q1),N∗(q2))

Hence the map induced by the forcing interpretation of P is contractive.

6.5.2 General case
We now de�ne a A-MA, which takes advantage of the structure of step-indexed algebra. This
new A-MA is basically not indexed, similarly to Aref[1] de�ned in Subsection 4.5.2.

De�nition 268. We de�ne the following A-MA denoted B:

• The forcing monoid ∣B∣ is the trivial one-element forcing monoid {⋆}.

• CB is de�ned as the �xed-point of a function F de�ned as:

F
def= (VA){⋆} → (VA){⋆}

X ↦ y ↦ ∥(P )∗(x)∥A0,k+1,[x←y,C←X]

We can then de�ne CB as a �xpoint of F :

CB def= µF

• Notice that to de�ne the test function we use the forcing interpretation of P inside A0

but at level k+1, although the level ofA is k. This is because thanks to the �xed-point, it
will represent the content of the memory cell in the simple iterationA◁ B, whose level
is k + 1.
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De�nition 269 (Higher-order reference algebra). The resulting (k + 1)-MA is de�ned as
the simple iteration of A and B:

Aref(P )
def= A◁ B

In this new MA, the content of the test function is indeed the set of realizers of P , as witnessed
by the following property.

Property 270. The following equivalence holds:

(v,Ð→w ) ∈ CAref(P )(⋆, p)⇐⇒ ∃r ∈ ∣A∣, φ(r) ∈ N ∧ { (v, (⋆, r)) ∈ ∥P ∥Aref(P ),k+1,[]
Ð→w ∈ CA(r ● p)

Proof. By de�nition,

CAref(P )
(⋆, p) = { (v,Ð→w ) ∣ ∃r ∈ ∣A∣, (v, r) ∈ CB(⋆) ∧Ð→w ∈ CA(r ● p) }

Therefore it is enough to prove that (v, r) ∈ CB(⋆) is equivalent to (v, (⋆, r)) ∈ ∥P ∥Aref(P ),k+1, with
φ(r) ∈ N. But by de�nition, (v, r) ∈ CB(⋆) means that (v, r) ∈ µ(X ↦ ∥(P )∗(⋆)∥A,k+1,[C←X]). Hence
φ(r) ∈ N and by unfolding the �xed-point this is equivalent to (v, r) ∈ ∥(P )∗(⋆)∥A,k+1,[C←CB(⋆)].
By the connection theorem, this is in turn equivalent to (v, (⋆, r)) ∈ ∥(P )∥Aref(P ),k+1,[]. Hence the
conclusion.

We now show that we can add a new swap instruction to our language and a newAref(P )-
sound typing rule. In Subsection 4.5.2 we have introduced the primitive swap. We here in-
troduce a generalization of swap to any level: swapn+1, whose reduction rule is as follows:

⟨swapn+1(v),
ÐÐÐ→
a(w′).a(w).E⟩n+1

n+1ÐÐ→ ⟨ret(w),
ÐÐÐ→
a(w′).a(v).E⟩n+1

Theorem 271. The following rule is Aref(P )-sound.

E ; Γ ⊢k+1 v ∶ (P, (⋆, p)) φ(p) ∈ N
E ; Γ ⊢k+1 swapk+1(v) ∶ (⇑P, (⋆, p))

Proof. Suppose that E ; Γ ⊢k+1 v ∶ (P, (⋆, p)) is Aref(P )-sound. For the sake of simplicity, sup-
pose Γ is empty. Then, we know by hypothesis that (v, (⋆, p)) ∈ ∥P ∥Aref(P ),k+1,ρ. Let (E, (⋆, q)) ∈
∥P ∥Aref(P ),k+1,ρ

�Aref(P ),k+1 and (w,Ð→w ) ∈ CAref(P )
(⋆, p ● q). We know by Property 270 that there exists

some r ∈ ∣A∣ such that:

• (w, (⋆, r)) ∈ ∥P ∥Aref(P ),k+1,[]
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•
Ð→
w′ ∈ CA(r ● p ● q)

We want to prove that ⟨swap(v), a(w).
ÐÐÐ→
a(w′).E⟩k+1 ∈ ��. But this con�guration reduces to

⟨ret(w), a(v).
ÐÐÐ→
a(w′).E⟩k+1

so it is enough to show that this last con�guration is in��. It is enough to show that (v,
Ð→
w′) ∈ CAref(P )

(⋆, r●
q). We have:

• (v, (⋆, p)) ∈ ∥P ∥Aref(P ),k+1,ρ on one hand

•
Ð→
w′ ∈ CA(r ● p ● q) = CA(p ● r ● q) on the other hand

So by the other implication of Property 270, we obtain that (v,
Ð→
w′) ∈ CAref(P )

(⋆, r ● q), hence the con-
clusion.

6.5.3 Particular instances

We give various concrete instances of this construction, by choosing di�erent starting algebras,
di�erent strati�cations and di�erent contractive maps.

6.5.3.1 First-order references

We can retrieve the �rst-order references already mentionned in Section 4.5 as a degenerate
case. We show that our method instanciates into a method to add �rst-order references to any
MA. LetA be a n-MA. Then we endowAwith a structure of step-indexed MA by chosing the
trivial strati�cation:

φ
def= { ∣A∣ → N

p ↦ 0

In the induced metric space, the only contractive maps are the constant maps. Hence Nat
induces a contractive map. By Theorem 271, we obtain that the following rule is Aref(Nat)-
sound:

E ; Γ ⊢k+1 v ∶ (Nat, (⋆, p))
E ; Γ ⊢k+1 swapk+1(v) ∶ (⇑Nat, (⋆, p))

6.5.3.2 Guarded higher-order references

We have seen in Section 6.4 that using the step-indexing algebra Astep, we can interpret both
guarded and non-guarded recursive types. Similarly, we can use Astep to obtain guarded
higher-order references as well as non-guarded higher-order references. Guarded references
are obtained in the following way:

• Consider the step-indexing algebra Astep.
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• By choosing a positive type P , we know that the map induced by the interpretation at
any level of ▷P is contractive in Astep.

• We build Astep[ref(P )].

We conclude by Theorem 271 obtaining what we call guarded higher-order references:

Property 272. The following rule is Astep[ref(P )]-sound:

E ; Γ ⊢2 v ∶ (▷P, (⋆, p))
E ; Γ ⊢2 swap2(v) ∶ (⇑▷P , (⋆, p))

6.5.3.3 Non-guarded higher-order references

To obtain non-guarded higher-order references, similarly to non-guarded recursive types,
we reuse the guarded case. Indeed, it is enough to consider the rule previously obtained:

E ; Γ ⊢2 v ∶ (▷P, (⋆, p))
E ; Γ ⊢2 swap2(v) ∶ (⇑▷P , (⋆, p))

We precompose it with the ▷ promotion, thus obtaining:

E ; Γ ⊢2 v ∶ (P, (⋆, n))
E ; Γ ⊢2 swap2(v) ∶ (⇑▷P , (⋆, n))

By Property 177 and Proposition 170, we know that if we pose:

α′step
def= λx.Lret(x)Mαstep

1

then (α′step,▷) is a Astep[ref(P )]-monitor. Hence, we can �nally post-compose the previous
typing rule with the monitor typing rule, following Lemma 191 we have

Property 273. The following rule is Astep[ref(P )]-sound:

E ; Γ ⊢2 swap2(v) ∶ (⇑▷P , (⋆, n))
E ; Γ ⊢2 swap2(v) to x.Lret(x)Mαstep

1 ∶ (⇑P, (⋆, n))
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Some applications of the monitoring
algebra theory
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This chapter is devoted to the study of three more complex applications of the monitoring
algebras. Three main examples are used to illustrate the use of MAs:

• A �rst application concerns substructural naive set theories, i.e. set theories with an un-
restricted comprehension scheme, but based on substructural logic (for instance light
logics [Gir98]). Such theories, where contraction is weakened, are known to be consis-
tent. But until now, no semantical proof of the consistency of these theories was known.
This situation is a generalization of what happens in the case of linear recursive types:
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in general one can add linear recursive types in any type system without harming ter-
mination. This fact is known since Girard [Gir92], but again, no semantical proof of this
fact was known. Our development gives a solution to this problem as well. We begin
by this example, because the technique used here will surprisingly be reused in the two
other examples.

• The second application is the correctness of a polynomial-time programming language.
We introduce a call-by-value programming language based on soft linear logic [Laf04],
that features unrestricted recursive types. Despite the presence of unrestricted recursive
types, all typable programs enjoy a termination property. Moreover, the bound on the
reduction of those programs is a polynomial in their size. This language gives in fact
a characterization of the complexity classes P and FP. We show that using monitoring
algebras we can prove the bounded-time termination property of typable programs.

• Finally, we consider a core programming language with higher-order references, very
much inspired by [AFM07], that has the particularity of supporting strong updates. Strong
updates allow to change the type of the reference in the course of the execution. When
used in an unrestricted way this usually result in the loss of program safety. This lan-
guage however relies on the use of linear capabilities to access the reference, which en-
sures the termination of programs. The elaboration of a good monitoring algebra and the
proof of termination reuses the technique used for the linear naive set theory example.

7.1 | Linear naive set theory
We have seen in the Section 6.4 that by considering the step-indexing algebra Astep, it is pos-
sible to obtain two kinds recursive types:

• Guarded recursive types: in that case the realizability model still implies termination.

• Non-guarded recursive types: in which case we loose termination and only observe
safety.

There is another kind of recursive type which, like guarded recursive types, do not harm ter-
mination: the linear �xpoints. It is well-known [Gir92] that in the context of linear logic,
adding recursive types µX.L for every linear type L (i.e. that does not contain any occurence
of the exponential modality !) does not break strong normalization, even though they are not
guarded.

Here, we turn our interest to an even more general and older question: the consistency of
linear naive set theory. By naive set theory, we mean a set theory with the principle of
unrestricted comprehension: for every predicate P (x) there exists a set { x ∣ P } such that:

∀t, (t ∈ { x ∣ P } is logically equivalent to P (t))

It is well-known that in intuitionistic or classical logic, this principle yields an inconsistency
(for example considering the set { x ∣ x ∉ x } implies Russel’ Paradox). Grishin [Gri82] �rst
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introduced in 1982 a naive set theory based on a contraction-free logic and showed the con-
sistency of such a theory. More expressive (and consistent) naive set theories have then been
proposed, based on light logics [Gir98, Ter04]: these theories are based on logics that have a
form of contraction that is not as powerful as the linear logic one but ensure consistency. The
consistency of these theories is given by the cut-elimination theorem, usually proved by a syn-
tactic argument [Ter04, Shi94]. The question of �nding a semantical proof of the consistency
of these theories has been regularly raised [Kom89, Shi94, Ter02] but to our knowledge, no
such semantical proof has been given. We propose such a proof in the case of linear naive set
theory (i.e. , without any contraction), based on the combination of two 1-MAs:

• The quantitative 1-MA based on N.

• The step-indexing MA Astep.

The termination argument is then obtained by a surprising interaction between the two mon-
itors αtime and αstep, which compete to make their respective counter reach 0 �rst. We �nally
show evidence that this proof can be extended to more expressive naive set theories such as
elementary set theory or light a�ne set theory [Ter02].

7.1.1 Linear set theory
The syntax of linear naive set theory is an extension of the core λLCBPV.

α ∈ V ar
Naive sets r, s ∶∶= α ∣ { α ∣ P }
Pos. types P,Q ∶∶= P ⊗Q ∣ r ∈ s ∣ ∃α.P ∣ ⇓N
Neg. types N,M ∶∶= P ⊸ N ∣ ⇑P ∣ ∀α.P

• A �rst-order term is either a �rst-order variable α or a naive set of the form { α ∣ P },
which morally represents the set of all sets s such that P [s/α]. Here P is supposed to
be a predicate such that FV(P ) ⊆ {α}.

• The domain of quanti�cation is the set of all closed �rst-order terms, i.e. sets of the
form { α ∣ P } where FV(P ) ⊆ {α} called naive sets. Formally, since this domain is
de�ned by mutual recursion with the grammar of types, we should say that the domain
of quanti�cation is N, and then give a bijection between N and the set of closed naive
sets afterwards. Hence the quanti�cation is simply the usual �rst-order quanti�cation
with N as the domain. We leave that implicit since it has no technical interest.

• The syntax of types is augmented with a membership relation ∈ between two naive sets.

Here are the additional typing rules for this system, which constitute the naive comprehension
rule and are somewhat similar to the rule for folding and unfolding of unrestricted recursive
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types as in Section 6.4 :

E ; Γ ⊢ v ∶ P [r/α]
E ; Γ ⊢ v ∶ r ∈ { α ∣ P }

E ; Γ ⊢ v ∶ r ∈ { α ∣ P } E ; ∆, x ∶ P [r/α] ⊢ t ∶ N
E ; Γ,∆ ⊢ ret(v) to x.t ∶ N

Similarly to second-order encoding, other connectives of A�ne Logic like the absurdity 0 or
the additive disjunction ⊕ can be encoded using naive sets following [Ter04]:

t0
def= { α ∣ α ∈ α }

0
def= ∀α.t0 ∈ α

P ⊕Q def= ∀α.((A⊸ t0 ∈ α)⊸ (B ⊸ t0 ∈ α)⊸ t0 ∈ α)

Here t0 can be replaced by any naive set. We can consider the set { α ∣ (α ∈ α)⊸ 0 }, whose
existence usually implies inconstency due to Russel’s paradox. Here it becomes harmless. In-
deed the theory is consistent despite the presence of the unrestricted comprehension rule.

Theorem 274 (Linear naive set theory consistency). Linear naive set theory is consistent.
More precisely, there is no term of type �.

In this system, we can �nd a certain type P that is logically equivalent to P ⊸ �, for example:

P
def= { α ∣ (α ∈ α)⊸ � } ∈ { α ∣ (α ∈ α)⊸ � }

However, the idea behind the consistency result of linear naive set theory (or linear recursive
types) is that it is impossible to duplicate P to obtain P and P ⊸ � at the same time, and apply
one to the other to deduce �.

7.1.2 A realizability model

We now de�ne a step-indexed monitoring algebra B in which we can interpret linear naive set
theory. The di�culty lies in the interpretation of the membership relation, which is de�ned by
solving a set of recursive equations in B.

7.1.2.1 Monitoring algebra

The monitoring algebra chosen is a very simple one, resulting of the product of two already
known MAs.

• We start with the simplest quantitative 1-MA A, based on N and already de�ned in
Example 215:

(N,+,0,≤, x↦ x)
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• We then take the product ofA and the step-indexing monitoring algebraAstep of Section
6.4:

B def= A ×Astep

Here are a few properties satis�ed by B:

• B is step-indexed by Theorem 261.

• ▷(n, k) def= (n, k + 1) de�nes a next B-modality, by Property 263.

• (λx.Lret(x)Mαtime
1 , (n, k)↦ (n + 1, k)) is a B-monitor by Property 181.

• (αstep, (n, k)↦ (n, k + 1)) is a B-monitor by Property 181.

7.1.2.2 The interpretation

To interpret the problematic unrestricted comprehension scheme, we use the following argu-
ment. Consider a derivation π in linear naive set theory. In π, only a �nite number s1, . . . , sk
of naive sets appear. Those sets can be written:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

s1 = { α ∣ P1 }
. . .

sk = { α ∣ Pk }

To interpret the general formula r ∈ s, we know that it is enough that r and s take their
value amongst the sets s1, . . . , sk. That is we can restrict the quanti�cation domain to those
sets. Hence r ∈ s will always be of the form si ∈ sj with i, j ∈ [1, k], i.e. si ∈ { α ∣ Pj }.
What we want is the denotation of this formula to be logically equivalent to the denotation
of Pj(si). This poses a problem of circularity, as witnessed by the following example, where
si

def= { α ∣ α ∈ α⊸ � }:
si ∈ si ˛ (si ∈ si)⊸ �

Let’s note the interpretation, still to be de�ned, of si ∈ sj by the variableXsisj . If ρ is aB-model,
then it is easy to see that the interpretation ∥Pi∥B,2,ρ of each type Pi is uniquely determined
by the Xsisj . For example the type P = α ∈ β ⊗ β ∈ γ induces the following interpretation:

Xρ(α)ρ(β) ⊗Xρ(β)ρ(γ)

The solution is to consider the following �nite set of recursive equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xs1s1 ≈ ▷P1[s1/α] (E11)
Xs1s2 ≈ ▷P2[s1/α] (E12)

. . .
Xsisj ≈ ▷Pj[si/α] (Eij)

. . .
Xsksk ≈ ▷Pk[sk/α] (Ekk)
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This system of recursive equation can be solved since all maps are contractive and there is a
�nite number of equations, by Theorem 237. Hence we de�ne the interpretation of si ∈ sj as
the solution of (Eij):

∥s ∈ r∥B,2,ρ def= XJsKρJrKρ

Lemma 275. The following rules are B-sound:

E ; Γ ⊢2 v ∶ (P [r/α], p)
E ; Γ ⊢2 v ∶ (r ∈ { α ∣ P }, p)

E ; Γ ⊢2 v ∶ (r ∈ { α ∣ P }, p) E ; ∆, x ∶ P [r/α] ⊢2 t ∶ (N,q)
E ; Γ,∆ ⊢2 ret(v) to x.LtMαstep

2 ∶ (N,p + q)

Proof. By Theorem 265.

7.1.3 Consistency result

We have a sound partial interpretation of linear naive set theory inA3: it is parametrized over
a �nite set of the naive sets that can appear in the course of a typing derivation. We now
want to prove that it implies the consistency of this theory. The main argument will be the
termination of all well-typed programs. However, since we use a similar constructions to the
unrestricted recursive types and we introduce the αstep monitor, we need a special argument
to justify that we don’t loose termination.

We begin by annotating the typable programs using the two monitors αstep and αtime. In
fact, we annotate the typing derivation of a programs. We annotate only the typing rule that
concerns the unfolding of the naive comprehension scheme, using the two observations L.Mαstep

2

and L.Mαtime
1 . This corresponds to a proof translation:

π ↝ π●

that is the identity everywhere except for the following rule (we abusively identify π● with the
underlying program t● or v●):

E ; Γ ⊢ v ∶ r ∈ { x ∣ P } E ; ∆, x ∶ P [r/x] ⊢ t ∶ N
E ; Γ,∆ ⊢ ret(v) to x.t

↝

E ; Γ ⊢2 v
● ∶ (r ∈ { x ∣ P }, p) E ; ∆, x ∶ P [r/x] ⊢2 t

● ∶ (N,q)
E ; Γ,∆ ⊢2 ret(v●) to x.LLt●Mαstep

2 Mαtime
1 ∶ (N,p + q + (1,0))
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Basically, the argument is now that each time the monitor αstep is triggered, the monitor αtime

has to be triggered �rst. Suppose that the two memory cells are initialized with a same value
n. It means we launch a con�guration of the form

⟨t●, a(n).a(n).nil⟩2

In that case, the daimon✠ cannot be triggered. Indeed, in the case✠ is triggered, it means that
αstep has been called while the value of the (second) counter is 0: but that would mean αtime

is called with the value of the corresponding (�rst) counter being 0, which would trigger the
execution of Ω and that is absurd (because it would prevent ✠ from being triggered). Since it
cannot be triggered, it means that when observing the termination of the translated program,
we are sure that the original program also terminates.

We now can give a proof of Theorem 274. That is, there is no term typable by �.

Proof. Reasoning by absurd, suppose that we have ⊢0 t ∶ �. Then we know that (t, (n,∞)) ∈
∥�∥B,2,[]. Hence (t, (n,n)) ∈ ∥�∥B,2,[]. Let E = f(x.Ω).nil. We know that (E, (0,0)) ∈ J�KB,2,[] and
(nil, (0,0)) ∈ J�KB,2,[]. Therefore we have

C0
def= ⟨t, a(n).a(n).nil⟩2 ∈ ��

and
C1

def= ⟨t, a(n).a(n).E⟩2 ∈ ��
There are two possibilities:

• If the con�guration C0 terminates on a con�guration of the form

⟨ret(v), a(k).a(k′).nil⟩2

Then necessarily,
C1 →∗ ⟨Ω, a(k).a(k′).nil⟩2 that diverges

But we know that C1 terminates, which is absurd.
• If C0 terminates on ✠, then it means that it has been triggered by the monitor αstep. But to

trigger ✠, it means that the monitor is called after the second counter has reached 0. This is
absurd because before each call to αstep in t∗ there is a call to αtime. Since the counters are
initialized with the same value n, if one counter is equal to 0 then the next call to a monitor will
make the reduction diverge, because of αtime. Hence ✠ is never called.

7.1.4 Considerations
• We have given a semantical proof that the linear naive set theory is consistent. This

theory is extremely weak since it does not allow any kind of sharing. However, notice
that the construction and the proof of Theorem 274 do not depend of the choice of the
quantitative monitoring algebra A, as soon as the element 1 is such that ∥1∥ ∈ N. It
means that we can choose another more expressive quantitative 1-MA. By considering:
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– The elementary quantitative monoidMelem described in Example 203 and Example
215, we then can interpret elementary naive set theory, based on elementary linear
logic [Gir98].

– The light quantitative monoid described in [BM12] allows to interpret Light A�ne
Set Theory [Ter04].

– We can in fact revisit all quantitative monoids described in the various papers
[Bru13, BM12, DLH11].

This gives an interesting point of view: we can explore the possibilities o�ered by the
semantics (here the notion of quantitative monoid) to look for new systems (here con-
sistent naive set theories).

• It is known that any naive set theory based on linear logic without any restriction is
unsound. In fact, it is the same as using unrestricted recursive types with linear logic:
this yields divergence. This phenomenon can be reread in our framework in the form of
the following algebraic result:

Fact 276. There exists no quantitative monoidMwith an exponential modality in the
sense of De�nition 202 such that for all p ∈M, ∥p∥ <∞.

Indeed, otherwise we could prove the consistency of naive set theory. Of course this
result can be proved directly.

7.2 | Polynomial-time programming languagewith re-
cursive type

In this section, we consider a more concrete example: a programming language with unre-
stricted recursive types based on a substructural logic called soft a�ne logic (SAL) [BM04,
Laf04]. It means that the usual exponential of linear logic ! is weakened: the contraction rule is
restricted. As a result this type system ensures that all typable programs enjoy a polynomial-
time termination property. This example is the occasion to showcase the methodology of
monitoring algebras: we detail each step of the correctness proof of a concrete language. It
is basically as follows:

• We de�ne the syntax of a call-by-value language with an explicit modality and its type
system based on SAL.

• We build step by step a monitoring algebra that integrates the features required to show
the correctness of the language: a quantitative 1-MA, step-indexing to deal with recur-
sive types, the addition of strong modalities to reduce under !. We then show a sound-
ness theorem for this monitoring algebra, reusing many of the theorems and properties
proved in this thesis.
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• We �nally de�ne a translation of the language into the call-by-push-value, and show that
the soundness of the monitoring algebra de�ned imply the polynomial-time termination
property.

This language is inspired by [BM12].

7.2.1 The language

Syntax

We de�ne the syntax of the language alongside its reduction. It constitutes an extension of the
core call-by-value calculus of Subsection 2.2.3. In addition to the base constructors, we have
an explicit modality !, and the constructors unfold and fold for the recursive types.

Values v,w ∶∶= x ∣ λx.t ∣ ∗ ∣ n ∣ !v ∣ fold (v)
Terms t, u ∶∶= v ∣ s(t) ∣ (t)u ∣ !t ∣ let !x = t inu ∣ fold (t) ∣ unfold (t)

The language is executed with a call-by-value strategy, in an abstract machine based on the
machine presented in Section 2.2. Hence we use the same notations when possible. We de�ne
the syntax of environments, which is the same as for the core language of Subsection 2.2.3
but augmented with a special context !.E which represents a !-box.

Environments E ∶∶= nil ∣ a(v).E ∣ f(t).E ∣ !.E ∣ fold .E ∣ unfold .E
Con�gurations C ∶∶= ⟨t,E⟩

Finally, the reduction relation is extended as follows:

⟨!(t),E⟩ →V ⟨t, !.E⟩
⟨v, !.E⟩ →V ⟨!v,E⟩

⟨unfold (t),E⟩ →V ⟨t,unfold .E⟩
⟨fold (v),unfold .E⟩ →V ⟨v,E⟩

Notice that ! is a call-by-value modality in the sense of Section 6.1. This is very important
as it is crucial for its expressivity [BM04, Laf04], unlike linear logic that is fully expressive
without reducing under !.

So� type system

We now de�ne the accompanying type system. It is, like the syntax, an extension of the type
system presented in Section 2.2. In addition, we add type variables and (unrestricted) recursive
types.
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Types A,B ∶∶= Nat ∣ X ∣ A⊸ B ∣ A⊗B ∣ !A ∣ µX.A

The typing relation is denoted ⊢SAL and the complete set of rules is the following:

Γ, x ∶ A ⊢SAL x ∶ A Γ ⊢SAL 0 ∶ Nat

Γ ⊢SAL t ∶ Nat

Γ ⊢SAL s(t) ∶ Nat

Γ ⊢SAL t ∶ Nat ∆, x ∶ Nat ⊢SAL u1 ∶ A ∆, x ∶ Nat ⊢SAL u2 ∶ A
Γ,∆ ⊢SAL case tof x.u1 ∥x.u2 ∶ A

Γ, x ∶ A ⊢SAL t ∶ B
Γ ⊢SAL λx.t ∶ A⊸ B

Γ ⊢SAL t ∶ A⊸ B ∆ ⊢SAL u ∶ A
Γ,∆ ⊢SAL (t)u ∶ B

Γ ⊢SAL t ∶ A ∆ ⊢SAL u ∶ B
Γ,∆ ⊢SAL (t, u) ∶ A⊗B

Γ ⊢SAL t ∶ A⊗B ∆, x ∶ A,y ∶ B ⊢SAL u ∶ C
Γ,∆ ⊢SAL let (x, y) = t inu ∶ C

Γ, x1 ∶ A, . . . , x ∶ A ⊢SAL t ∶ B
Γ, x ∶ !A ⊢SAL t[x/x1, . . . , x/xn] ∶ B

Mplexn
Γ ⊢SAL t ∶ B

!Γ ⊢SAL !t ∶ !B
Prom

Γ ⊢SAL t ∶ !A ∆, x ∶ !A ⊢SAL u ∶ B
Γ,∆ ⊢SAL let !x = t inu ∶ B

Γ ⊢SAL t ∶ µX.A
Γ ⊢SAL unfold (t) ∶ A[µX.A/X]

Γ ⊢SAL t ∶ A[µX.A/X]
Γ ⊢SAL fold (t) ∶ µX.A

Here are some remarks on the typing rules.

• The recursive types are unrestricted, in the sense that they are not guarded.

• The promotion rule of ! is the usual functorial promotion.

• The contraction rule is not quite the same as in linear logic. It takes the form of a scheme
of rules, called the multiplex rules:

!A⊸ A⊗ ⋅ ⋅ ⋅ ⊗A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

Whereas the linear logic contraction is:

!A⊸ !A⊗ !A
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De�nition 277 (!-depth). If π is a typing derivation, its !-depth is the maximum number
of nested promotion rule (Prom) in π.

We intend to prove the following polynomial-time termination theorem. It says that there
exists a family of polynomials of each degree, such that for each typable program, a bound on
its execution time is given by the application of the polynomial whose degree is the !-depth of
its derivation to the size of this program.

Theorem278 (Polynomial-time termination). There exists a family of polynomials (Pd)d∈N
such that Pd is of degree d, such that if ⊢SAL t ∶ A is proved with a !-depth equals to n, then
⟨t,nil⟩ terminates on a value using at most Pn(∣t∣λ + ∣t∣unfold ) λ and unfold reduction steps.

7.2.2 Monitoring algebra
We now build step-by-step a n-monitoring algebra that induces a realizability model of this
language (or more precisely of the translation into the call-by-push-value of this language). As
a corollary of the soundness of the realizability model, we obtain a proof of the polynomial
time reduction theorem. The di�erent steps are the following ones:

1. De�ne a quantitative 1-MA A1 that allows to observe bounded-time termination (as
shown in Section 6.2) and in which the typing rule of a restricted functional fragment,
where promotion is restricted to values.

2. Based on A1, we de�ne a 2-MA A2 in which we apply the modality completion pro-
cedure described in Section 6.1, allowing us to obtain the soundness of the unrestricted
promotion for !.

3. We then use a similar construction to the one described in Section 7.1 for the linear naive
set theory: we use the product with the step-indexingMA to obtain a step-indexed 3-MA

A3, and interpret unrestricted recursive types.

Step 0: so� forcing monoid

The �rst step is to de�ne a class of forcing monoids such that every k-MAwhose carrier belongs
to this class induces a model of the functional fragment of the previously de�ned typing rules.
We will then use this to check that at each step of our construction the k-MA we have obtained
still induces a model of the core of our language.

De�nition 279 (Soft forcing monoid).
A so� forcing monoid is a structure (M,+,0, ●,⪯, !, (rn)n∈N) such that:

• (M,+,0, ●,⪯) is a forcing monoid.
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• (rn)n∈N is a family of elements ofM indexed by N.

• ! ∶M →M is a sub-additive function that satis�es the following multiplex condi-
tion:

∀p ∈M, n.p ⪯ !p + rn

We say that a k-MA is so� if its carrier is.

Example 280. Any idempotentMA is also soft, by choosing !p
def= p and rn

def= 0.

Property 281. IfM andN are two soft forcing structures, then so isM×N (by considering
the product of the two modalities !, and the product of the two families rn).

Proof. Immediate.

This class of monitoring algebras enjoys an extended soundness result. In addition to the
linear core of the type system, new rules concerning ! are sound. These new rules allows to
have some restricted form of duplication.

Theorem 282 (Soft soundness). If A is a soft k-MA, then the following modality typing
rules are sound:

E ; Γ ⊢k v ∶ (P, p)
E ; !Γ ⊢k !v ∶ (!P, !p)

E ; Γ, x1 ∶ P, . . . , xn ∶ P ⊢k t ∶ (N,p)
E ; Γ, z ∶ !P ⊢k t[z/x1, . . . , z/xn] ∶ (N,p + rn)

Proof.

1. The �rst rule is simply the usual promotion rule, which is sound because of Property 190.

2. Let ρ be a A-valuation, σ ∈ ∥Γ∥A,k,ρ and (v, q) ∈ ∥!P ∥A,k,ρ. We know there exists q′ such that
!q′ ⪯ q and (v, q′) ∈ ∥P ∥A,k,ρ. We know by hypothesis that

(t[v/x1, . . . , v/xn], p + q′ + ⋅ ⋅ ⋅ + q′
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

)[σ] ∈ ∥N∥A,k,ρ

We have n.q′ ⪯ !q′ + rn ⪯ q + rn hence

(t[v/x, v/y], p + q + rn)[σ] ∈ ∥N∥A,k,ρ
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Step 1: Polynomial-time termination

The starting point of the construction is the soft bounded-time MA. It is an example of
quantitative MA, in the sense of Section 6.2, whose carrier is a soft forcing monoid. We begin
by de�ning the carrier of this algebra.

De�nition 283. Mpoly is the commutative forcing monoid such that:

• The set of pairs (n, f) ∈ N ×NN where f is an ≤-preserving function.

• 0
def= (0, x↦ 0)

• (n, f) + (m,g) def= (max(n,m), f + g)

• (n, f) ⪯ (m,g) i�:

– n ≤m
– ∀x ≥m,f(x) ≤ g(x)

Proof.

• + is clearly an associative and commutative operation with 0 being its neutral.

• We prove that ⪯ is compatible with +:

– It is clear that 0 ⪯ (n, f) for any (n, f).
– Suppose that (n, f) ⪯ (m,g). So (n, f)+(k, h) = (max(n, k), f +h) and (m,g)+(k, h) =

(max(m,k), g + h). Clearly since n ≤ m we have max(n, k) ≤ max(m,k). Let x ≥
max(m,k) ≥m. Then we have (f +h)(x) = f(x)+h(x) ≤ g(x)+h(x) = (g+h)(x) since
(n, f) ⪯ (m,g).

Property 284. We endowMpoly with:

1. A structure of soft forcing monoid, by choosing:

• !(n, f) def= (n,x↦ (x + 1)f(x))

• rn
def= (n,x↦ 0)

2. A structure of quantitative forcing monoid, by de�ning:

• ∥(n, f)∥ def= f(n)

• 1
def= (0, x↦ 1)

Proof.

1. We need to prove that ! is a modality and that it satis�es the multiplex condition.
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• First, we want to prove that !((n, f) + (m,g)) ⪯ !(n, f) + !(m,g). It is immediate since:

!((n, f) + (m,g)) = !(max(n,m), f + g)
= (max(n,m), x↦ (x + 1)(f + g)(x))
= (max(n,m), x↦ (x + 1)f(x) + (x + 1)g(x))
= !(n, f) + !(m,g)

• We now want to prove that n.(k, f) ⪯ !(k, f) + rn. We have n.(k, f) = (max(k,n), n.f)
on the one hand. On the other hand, !(k, f) + rn = (max(k,n), x ↦ (x + 1).f(x)). Let
x ≥ max(k,n). Then n.f(x) ≤ (max(k,n) + 1)f(x) ≤ (x + 1)f(x). Hence the result.

2. First, sinceMpoly is additive, x↦ 1 ● x is immediately strong by Property 80.

• We prove that ∥.∥ is sup-additive.

∥(n, f)∥ + ∥(k, g)∥ = n.f(n) + k.g(k)
≤ max(n, k).f(n) +max(n, k).g(k)
≤ max(n, k).f(max(n, k)) +max(n, k).g(max(n, k))
= max(n, k).(f + g)(max(n, k))
= ∥(max(n, k), f + g)∥
= ∥(n, f) + (k, g)∥

• We prove that ∥.∥ is increasing. Suppose that (n, f) ⪯ (m,g). Then since n ≤ m and f is
increasing, n.f(n) ≤m.f(n) ≤m.f(m). But f(m) ≤ g(m) so m.f(m) ≤m.g(m).

• We have ∥(0, x↦ 1)∥ = 1.

De�nition 285 (Soft bounded-time MA). We de�ne the soft bounded-time MA A1 as the
quantitative 1-MA induced by the quantitative forcing monoidMpoly.

Lemma 286. ! satis�es additional properties:

• For all p ∈ ∣A1∣, p ⪯∣A1∣ !p.

• For all p, q ∈ ∣A1∣, !(p + q) = !p + !q.

Proof. Immediate.

We remind the reader that by Property 216 the pair (αtime, x ↦ x + 1) is a A1-monitor,
where:

αtime = λx.casexof x.Ω ∥x.ret(x)

Step 2: Reducing under the modality

The connective ! is a A1-modality. It means that it is restricted to value, or in other words it is
not allowed for the reduction to happen under !. We remind that in order to do that, we need
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! to have a right adjoint: this is impossible in A1. To obtain an adjoint modality, we apply the
construction described in Section 6.1, which automatically adds an adjoint to !. We de�ne the
following 2-MA:

A2
def= A{!}

1 = A1 ⋉! Nadj

Proposition 287.

1. A2 is soft.

2. ! is an adjoint A2-modality.

3. The A1-monitor (αtime, x↦ x + 1) is preserved.

Proof.

1. Nadj is soft when considering the modality n ↦ n because it is idempotent, as remarked in Ex-
ample 280. Hence A2 is also soft as a semi-direct product of two soft MAs and by Property
281.

2. The fact that the new A2-modality ! is an adjoint modality is a direct consequence of Property
210.

3. To show that the A1-monitor is preserved, we use Property 188. It requires the strong function
x ↦ x + 1 to weakly commute with the modality !. Let (n, f) ∈ ∣A1∣, we have (!(n, f)) + 1 =
(n,x↦ (x + 1)f(x) + 1) ⪯ (n,x↦ (x + 1)(f(x) + 1)) = !((n, f) + 1) .

Step 3: Linear type fixed-points

We now have enough to interpret the functional core of our type system, including the unre-
stricted modality !. The third step consists in adding recursive types. We de�ne the 3-MA

A3
def= Astep ×A2

Proposition 288.

1. A3 is soft.

2. ! is an adjoint A3-modality.

3. A3 is step-indexed and has a next modality ▷.

4. The canonical extension of ! to A3 is non-expansive.

5. The two monitors based on αtime and αstep are preserved.

Proof.
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1. SinceAstep is idempotent, it is also soft. But the product of two soft forcing monoids is itself soft
by Property 281, hence the result.

2. Adjoint modalities are preserved by direct product of MAs by Theorem 198.

3. The product of any algebra with a step-indexed algebra is itself step-indexed by Theorem 261. It
moreover has a next modality because Astep has and by Property 263.

4. Since ! comes from a simpleA2-connective, its canonical extension is non-expansive by Property
262.

5. Immediate by Property 181.

Result: Soundness

Consider the following grammar of types:

P,Q ∶∶= Nat ∣ X ∣ 1 ∣ P ⊗Q ∣ ⇓N ∣ !P ∣ ▷P ∣ µX.P
N,M ∶∶= ⇑P ∣ P ⊸ N

Then as a corollary of Proposition 288 and using the step-indexing theorem 265, the interpre-
tation of all those types is such that in addition to the typing rules of λLCBPV, the following
typing rules are A3-sound.

E ; Γ ⊢3 t ∶ (⇑P, p)
E ; !Γ ⊢3 t ∶ (⇑!P , !p)

E ; Γ, x1 ∶ P, . . . , xn ∶ P ⊢3 t ∶ (N,p)
E ; Γ, z ∶ !P ⊢3 t[z/x1, . . . , z/xn] ∶ (N,p + rn)

E ; Γ ⊢3 t ∶ (N,p)
E ; Γ ⊢3 LtMαtime

1 ∶ (N,p + 1)
E ; Γ ⊢3 v ∶ (P [µX.P /X], p)
E ; Γ ⊢3 v ∶ (µX.P, p)

E ; Γ ⊢1 v ∶ (µX.P, p) E ; ∆, x ∶ P [µX.P /X] ⊢1 t ∶ (N,q)
E ; Γ,∆ ⊢1 ret(v) to x.LtMαstep

1 ∶ (N,p + q)

Hence, so is

E ; Γ ⊢1 v ∶ (µX.P, p) E ; ∆, x ∶ P [µX.P /X] ⊢1 t ∶ (N,q)
E ; Γ,∆ ⊢1 Lret(v) to x.LtMαstep

3 Mαtime
1 ∶ (N,p + q + 1)

7.2.3 Translation

To obtain a soundness result for the original language, we end this section by providing a
translation of our source language to the monitoring calculus. It is a simple extension of the
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call-by-value translation (.)V developped in Section 2.2. The translation is unchanged on the
purely linear and functional calculus and extended as follows:

(!t)V def= (t)V to x.ret(x)
(let !x = t inu)V def= (t)V to x.(u)V

(fold t)V def= (t)V

(unfold t)V def= L(t)V to x.Lret(x)Mαstep

3 Mαtime
1

Theorem 289. The extended translation preserves reduction and typing.

Proof. This is an extension of Theorems 55 and 56 and has already been proved in Section 6.1 for the
modality and in Section 6.4 for the recursive types.

Theorem290 (Polynomial-time termination). There exists a family of polynomials (Pd)d∈N
such that Pd is of degree d, such that if ⊢SAL t ∶ A is proved with a !-depth equals to n, then
⟨t,nil⟩ terminates on a value using at most Pn(∣t∣λ + ∣t∣unfold ) λ and unfold reduction steps.

Proof. Suppose that ⊢SAL t ∶ A. Then we have

;⊢3 {(t)V}αtime ∶ (⇑(A)V, (p,0,∞))

Hence, ({(t)V}αtime , (p,0, ∥p∥)) ∈ ∥(A)V∥A3,3,[] by ⪯-saturation. Since (A)V is positive, we immedi-
ately have that:

(nil,0) ∈ J⇑(A)VKA3,3,[]

Hence if we pose k = ∥p∥,

C = ⟨{(t)V}αtime , a(k).a(∗).a(k).nil⟩3 ∈ ��

• First, as in the proof of Theoreom 274, each time αstep has been triggered, it means that the
monitor αtime has been triggered before. Since we put the same value in the two counters, it
means that αstep is never called in front of a counter that equals 0. Otherwise, αtime would have
been called before and triggered the execution of Ω, making the whole con�guration diverge.
Since we know that C ∈ ��, it means that this situation does not happen. Hence αtime and αstep

are both triggered less than k times, and do not alter the convergence of the execution.

• Second, by examining the typing rules, it is easy to see that p is built by adding 1 each time
there is an observation αtime, and by applying ! for each promotion rule encountered. Therefore
∥p∥ is a polynomial in the size of t, whose degree is less than the maximum number of nested !
promotion rules used.

Finally, using the simulation theorem, these two points ensure that the original con�guration ⟨t,nil⟩
terminates on a value, using a number of λ-steps and unfold -steps which is bounded by ∥p∥, which is it-
self bounded by a polynomial in the size of t, whose degree is the !-depth of the typing derivation of t.
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7.3 | A linear calculus for strong updates
We study a small language that features a higher-order reference, but has the ability to perform
strong updates, very much inspired by the work of Ahmed et al. [AFM07]: in fact, modulo
the addition of dynamic references, we could translate their core language into this one. Strong
updates means that the type of the memory cell can change during the execution. This kind
of feature is usually not sound, but here the access to the memory cell is restricted thanks to a
linear discipline. We show that a simple monitoring algebra can be given by reusing a quantita-
tive 1-MA, the step-indexing algebra and a variant of the higher-order references construction
of Section 6.5, and a soundness theorem be proved such that it implies the termination of that
language.

7.3.1 The language

The language and its type system are given as an extension of λ⊗Nat∀
LCBPV called λcap

LCBPV. We �rst
give the syntax of this core language, as an extension of λLCBPV values and computations.

Values v,w ∶∶= . . . ∣ cap
Computations t, u ∶∶= . . . ∣ swap(v,w)

• The syntax of values is extended with a capability cap, that is used to grant access to
the memory cell.

• We extend the computations with a variant of the swap instruction, that requires the use
of a capability, hence the additional argument.

We also de�ne a new reduction relation →Str. It is a relation between con�gurations of the
form

⟨t,E ⋆ v⟩Str

where t and v are terms of the extended grammar we just de�ned, and E is a usual envi-
ronment resulting of this extension. The value v represents the content of the memory cell.
The reduction relation →Str is a simple variant of λLCBPV reduction, with a rule for the swap
constructor.
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⟨(t)v,E ⋆w⟩Str →Str ⟨t, a(v).E ⋆w⟩Str

⟨λx.t, v.E ⋆w⟩Str →Str ⟨t[v/x],E ⋆w⟩Str

⟨t to x.u,E ⋆w⟩Str →Str ⟨t, f(x.u).E ⋆w⟩Str

⟨ret(v), f(x.u).E ⋆w⟩Str →Str ⟨u[v/x],E ⋆w⟩Str

⟨force(thunk(t)),E ⋆w⟩Str →Str ⟨t,E ⋆w⟩Str

⟨let (x, y) = (v,w) in t,E ⋆ u⟩Str →Str ⟨t[v/x,w/y],E ⋆ u⟩Str

⟨swap(cap, v),E ⋆w⟩Str →Str ⟨ret((cap,w)),E ⋆ v⟩Str

We also extend the syntax of λ⊗Nat∀
LCBPV types as follows:

Types P,Q ∶∶= . . . ∣ !P ∣ Cap P
Modes κ, ι ∶∶= lin ∣ exp

• The types are just an extension of λ⊗Nat∀
LCBPV types with the exponential ! of linear logic

and capability types Cap P .

• Finally, the modes are used to restrict the application of the ! promotion rule: it is re-
stricted to the exp mode.

De�nition 291. We de�ne the operation ∨ on modes as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩

lin ∨ κ = lin
κ ∨ lin = lin

exp ∨ exp = exp

The typing judgments are of the form

κ ∣ Γ ⊢Str a ∶ A

where κ is a mode and Γ is a usual positive context, while a is a term and A a formula of
the same polarity as a. The typing rules given below can be seen as an extension of the core
λ⊗Nat∀

LCBPV rules, without inequational theory, but with a linear logic exponential and a typing
rule for swap. The �rst component κ of a judgment represents a possible restriction on the
application of ! promotion rule.
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exp ∣ Γ, x ∶ P ⊢Str x ∶ P

exp ∣ !Γ ⊢Str v ∶ P
exp ∣ !Γ ⊢Str v ∶ !P

κ ∣ Γ, x ∶ !P, y ∶ !P ⊢Str a ∶ A
κ ∣ Γ, x ∶ !P ⊢Str a[x/y] ∶ A

κ ∣ Γ, x ∶ P ⊢Str a ∶ A
κ ∣ Γ, x ∶ !P ⊢Str a ∶ A

κ ∣ Γ ⊢Str v ∶ P
κ ∣ Γ ⊢Str ret(v) ∶ ⇑P

κ ∣ Γ ⊢Str t ∶ ⇑P ι ∣ ∆, x ∶ P ⊢Str u ∶M
κ ∨ ι ∣ Γ,∆ ⊢Str t to x.u ∶M

κ ∣ Γ ⊢Str t ∶ N
κ ∣ Γ ⊢Str thunk(t) ∶ ⇓N

κ ∣ Γ ⊢Str Γv ∶ ⇓N
κ ∣ Γ ⊢Str force(v) ∶ N

exp ∣ Γ ⊢Str ∗ ∶ 1
κ ∣ Γ ⊢Str v ∶ 1 ι ∣ ∆ ⊢Str t ∶ N
κ ∨ ι ∣ Γ,∆ ⊢Str let∗ = v in t ∶ N

κ ∣ Γ ⊢Str t ∶ N
κ ∣ Γ ⊢Str λx.t ∶ P ⊸ N

κ ∣ Γ ⊢Str t ∶ P ⊸ N ι ∣ ∆ ⊢Str v ∶ P
κ ∨ ι ∣ Γ,∆ ⊢Str (t)v ∶ N

κ ∣ Γ ⊢Str v ∶ P ι ∣ ∆ ⊢Str w ∶ Q
κ ∨ ι ∣ Γ,∆ ⊢Str (v,w) ∶ P ⊗Q

κ ∣ Γ ⊢Str v ∶ P ⊗Q ι ∣ ∆, x ∶ P, y ∶ Q ⊢Str t ∶ N
κ ∨ ι ∣ Γ,∆ ⊢Str let (x, y) = v in t ∶ N

κ ∣ Γ ⊢Str v ∶ Cap P ι ∣ ∆ ⊢Str w ∶ Q
lin ∣ Γ,∆ ⊢Str swap(v,w) ∶ ⇑(Cap Q⊗ P )

7.3.2 Monitoring algebra

We de�ne a 3-MAA3 that interprets this core language. More precisely we will show that this
language can be translated into a fragment of the language interpreted by A3. The di�erent
factors of A3 are the following ones:

1. A quantitative 1-MA A1 that allows to observe bounded-time termination (as shown in
Section 6.2). where promotion is restricted to values.

2. The step-indexing algebra Astep of Section 6.4.

3. We then de�ne a (A1×Astep)-MA B that is similar to the higher-order reference algebra
used in Section 6.5, except that the forcing monoid is no more a singleton. Instead its
elements represent the type of the content of the memory cell, re�ecting the presence of
strong updates that can change its type. We then use a simple iteration similar to 6.5 to
build A3

def= (A1 ×Astep)◁ B.
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The monitoring algebra

1. A1 is the quantitative 1-monitoring algebra based onN and already described in Example
215.

• (N,+,0,≤)
• CA0(n)

def= { k ∣ k ≥ n }

2. We then form the productA2 = A1 ×Astep. A2 is step-indexed by Theorem 261 and has
a next modality ▷ de�ned as

▷(n, l) def= (n, l + 1)

3. The �nal monitoring algebra is a variation on the higher-order reference construction
proposed in Section 6.5.

• The carrier of B is the additive forcing monoid whose elements consist in all pos-
itive types P generated by the grammar of λcap

LCBPV, augmented with two symbols
� and ⊺. This set can be endowed with the following structure of complete lattice
as follows:

⊺

P
�

. . . Q

-

�
�

-

For the corresponding preoder ⊑, � is the least element and ⊺ is the greatest element.
The forcing monoid is then the lattice, the + operation being the join ∨, the neutral
element being � and the preorder being ⊑.

• If P is a positive type, the value of the relativized test function CB(P ) is de�ned as
the �xed-point of the following function F :

FP ∶ V∣B∣

A2
→ V∣B∣

A2

X ↦ y ↦ ∥(P )∗(x)∥A0,n+1,[x←y,C←X]

We can then de�ne CB as follows:

CB def= X ↦
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(µFP )(�) if X = P
∅ if X = ⊺

VA1 if X = �
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There is one subtelty that has to be addressed in this de�nition. We de�ne the test func-
tion using the forcing interpretation of every positive type P generated by the grammar
of λcap

LCBPV. But we have not de�ned the interpretation of the type Cap P nor its forc-
ing interpretation. We de�ne its interpretation as the upward closure of the following
singleton:

Cap P
def= {(cap, (0,∞, P ))}

As already said in Section 4.3, every singleton type can be seen as the composition of a
connective and the type 1, so we can abusively speak of Cap P as a connective. This is
in particular a separable connective on A2 and B, as de�ned in Section 5.2. Notice that
this de�nition does not need B to be de�ned, but only its carrier, hence the de�nition of
the test function CB still makes sense.

Property 292. B is a A2-MA.

We can then form the simple iteration :

A3
def= A2 ◁ B

Properties of A3

We now prove important properties ofA3. The �rst one shows that we can interpret the linear
logic exponential !. Indeed we can de�ne an exponentialA3-modality in the sense of De�nition
202. It is de�ned as the product of exponentials on the di�erent factors ofA3. The exponential
on N is the same as in Example 203:

!
def= n↦ { 0 if n = 0

∞ otherwise

On Astep, it is simply the identity. On B, it is de�ned similarly as on N:

!
def= X ↦ { � if X = �

⊺ otherwise

Finally, the modality resulting of the product is:

!(n, l,X) def= (!n, l, !X)

Property 293. ! is an exponential A3-modality.

Proof. It is enough to show that ! comes from a product of exponential modalities, thanks to Property
204. Since Astep is idempotent the identity is exponential thanks to Lemma 205. We only prove that ! is
exponential on A1, the B case being very similar.
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• (Additivity) Let n,m ∈ N. If n + m = 0 then n = m = 0. Hence, !(n + m) = 0 =!n+!m.
Otherwise it means that n or m is not equal to 0. Let’s suppose that n > 0. We then have
!(n +m) =∞ =∞+!m =!n+!m.

• (Contraction) Let n ∈ N. Clearly, !n+!n =!n (because 0 + 0 = 0 and ∞+∞ =∞).
• (Dereliction) Let n ∈ N. We need to prove that n ≤ !n. If n = 0 then n ≤!n. Otherwise, !n = ∞

and hence n ≤∞.
• (Digging) Let n ∈ N, then we want to prove that !!n ≤ !n.

– If !n = 0 then !!n = 0 and it is immediate.
– If !n =∞ it implies that !!n =∞ and hence !!n = !n.

Corollary 294. The following rules are A3-sound.

E ; !Γ ⊢3 v ∶ (P, p)
E ; !Γ ⊢3 v ∶ (!P, !p)

E ; Γ, x ∶ !P, y ∶ !P ⊢3 a ∶ (A,p)
E ; Γ, x ∶ !P ⊢3 a[x/y] ∶ (A,p)

E ; Γ, x ∶ P ⊢3 a ∶ (A,p)
E ; Γ, x ∶ !P ⊢3 a ∶ (A,p)

Proof. It is a corollary of Property 201.

Lemma 295. The following rule is A3-sound.

E ; Γ ⊢3 v ∶ (Cap P, p) E ; ∆ ⊢3 w ∶ (Q, q)
E ; Γ,∆ ⊢3 swap(v,w) to x.LLret(x)Mαstep

2 Mαtime
1 ∶ (⇑(Cap Q⊗ P ), p + q + 1)

Proof. By Lemma 191, it is enough to show that the following rule is A3-sound.

E ; Γ ⊢3 v ∶ (Cap P, p) E ; ∆ ⊢3 w ∶ (Q, q)
E ; Γ,∆ ⊢3 swap(v,w) ∶ (⇑(▷(Cap Q⊗ P )), p + q)

But since ▷Cap Q = Cap Q and that ▷ commutes with ⊗, it is enough to show that the following rule
is A3-sound.

E ; Γ ⊢3 v ∶ (Cap P, p) E ; ∆ ⊢3 w ∶ (Q, q)
E ; Γ,∆ ⊢3 swap(v,w) ∶ (⇑(Cap Q⊗▷P ), p + q)

For simplicity, we suppose that Γ = ∆ = ∅. We then suppose that (v, p) ∈ ∥Cap P ∥A3,3,ρ and (w, q) ∈
∥Q∥A3,3,ρ. Let (E, r) ∈ J⇑(Cap Q⊗▷P )KA3,3,ρ and (m, k, u) ∈ CA3(p + q + r). We know by de�nition
that p ⪰ (0,∞, P ), v = cap. Let’s pose q = (n, l,R) and r = (n′, l′,R′). We then have p + q + r ⪰
(n + n′,min(l, l′), P ∨R ∨R′.

• Suppose that P ∨R ∨R′ = ⊺. This is absurd since in that case CA3p + q + r = ∅.
• Suppose that P ∨R ∨R′ = P . Then there exists (n′′, l′′) ∈ N ×N such that

⎧⎪⎪⎪⎨⎪⎪⎪⎩

m ∈ CA1(n + n′ + n′′)
k ∈ CAstep(min(l, l′, l′′))

(u, (n′′, l′′)) ∈ CB(P )
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That means that by the connection theorem, we have:

(u, (n′′, l′′,�)) ∈ ∥▷P ∥A3,3,ρ

We want to prove that
⟨swap(cap,w), a(m).a(k).a(u).E⟩3 ∈ ��

But it reduces to
⟨ret(cap, u), a(m).a(k).a(w).E⟩3 ∈ ��

• First, we have ((cap, u), (n′′, l′′,Q)) ∈ ∥Cap Q⊗▷P ∥A3,3,ρ. It is then enough to show that

(m, k,w) ∈ CA3(n′′ + n′,min(l′′, l′),Q)

• But we have clearly that

{ (m, k) ∈ CA2(n + (n′ + n′′),min(l,min(l′, l′′)))
(w, (n, l,Q)) ∈ ∥Q∥A3,3,ρ ⊆ ∥▷Q∥A3,3,ρ

By a �xed-point argument we obtain (w, (n, l)) ∈ CB(Q). Hence the conclusion (m, k,w) ∈
CA3(n′′ + n′,min(l′′, l′),Q).

7.3.3 Correctness

De�nition 296. The annotation map (.)● is de�ned on the swap constructor:

(swap(v,w))● = swap(v●,w●) to x.LLret(x)Mαstep

2 Mαtime
1

And (.)● commutes with every other constructor.

Lemma 297.

• If κ ∣ ⊢Str t ∶ N then there exists n ∈ N such that (t●, (n,∞,�)) ∈ ∥N∥A3,3,[].

• If κ ∣ ⊢Str v ∶ P then there exists n ∈ N such that for all k ∈ N, (v●, (n, k,�)) ∈
∥P ∥A3,3,[].

Proof. It is a consequence of Theorem 140, Lemma 295 and Corollary 294. We can always choose �
as the third component of the annotation because the only type that can make it change is Cap P , but
we did not include any rule to introduce a term of type Cap P .
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Theorem 298. If κ ∣ ⊢Str t ∶ Cap P ⊸ N and ι ∣ ⊢Str v ∶ P then ⟨(t)cap,nil ⋆ v⟩Str

terminates.

Proof. On the one hand, since κ ∣ ⊢Str t ∶ Cap P ⊸ N and by Lemma 297 we have k ∈ N such that
we can derive:

(t●, (k,∞,�)) ∈ ∥Cap P ⊸ N∥A3,3,[]

On the other hand, because ι ∣ ⊢Str v ∶ P we have n ∈ N such that:

(v●, (n,n + k,�)) ∈ ∥P ∥A3,3,[]

Since ∞ ≥ n + k we obtain:

(t●, (k,n + k,�)) ∈ ∥Cap P ⊸ N∥A3,3,[]

We also have (cap, (0,∞, P )) ∈ ∥Cap P ∥A3,3,[], hence:

((t)●cap, (k,n + k,P )) ∈ ∥N∥A3,3,[] (⋆)

Using Lemma 132, we then have:

(((t●)cap,nil), (k,n + k,P )) ∈ ��A3,3

Moreover, we have (v●, (n,∞,�)) ∈ ∥P ∥A3,3,[] ⊆ ∥▷P ∥A3,3,[], so by a �xed-point argument we also
have

(v●, (n,∞)) ∈ CB(P ) (1)

We also know that
(n + k,n + k) ∈ CA2(n + k,n + k) (2)

So by combining (1) and (2), we obtain:

(n + k,n + k, v●) ∈ CA3(k,n + k,P )

Finally, because of (⋆) we obtain that

⟨(t●)cap, a(n + k).a(n + k).a(v●).nil⟩3 terminates on a value

But, by the same reasoning as in Section 7.1, we obtain that the second counter of level 2 never reaches
0 and hence the daimon is never triggered. That means that

⟨(t)cap,nil ⋆ v⟩Str terminates

7.3.4 Discussion
This semantical proof of termination suggests variations of this core language. Indeed, follow-
ing [AFM07], we used a linear discipline to tame the access to the memory cell, hence allowing
for strong updates. In our proof, the presence of higher-order references is allowed by the
step-indexing algebra, but is counter-balanced by the quantitative 1-MA A1, which restores

239



7.3. A LINEAR CALCULUS FOR STRONG UPDATES

termination. The use of A1 is rather restrictive, since it does not allow any duplication of a
capability. The same discussion we had in the case of linear naive set theory applies here. We
could replace A1 by any quantitative 1-MA which contains greatest element, since the de�ni-
tion of the modality ! would remain unchanged. In suchMAs, it is possible to de�ne, in addition
to this exponential modality, substructural modalities, as the one mentioned in Section 7.2 or
in Example 203. These modalities allow for a certain amount of duplication, without reaching
the power of the usual linear logic exponential. Thus we believe that the cohabitation of these
two types of exponentials in an extension of [AFM07] could greatly improve the expressivity
of this core calculus by allowing a certain amount of sharing of the capabilities.
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Chapter VIII

Conclusion

In this thesis, we have a de�ned a new realizability framework that allows to generalize several
known techniques and reobtain various language correctness proofs. This framework more-
over allows to reuse parts of those proofs as they are, hence simplifying the new semantics and
proofs. We plan to continue simplifying the theory of monitoring algebras, as well as extend-
ing it with new techniques and semantical blocks. We intend to investigate how wide is the
range of applications of our theory and �nd concrete examples where we can simplify existing
proofs, as well as to apply it on new results. We already know several interesting results that
can be drastically simpli�ed by considering some slight extensions of the present work: in the
context of functional reactive programming [Kri13] and in the context of indexed linear logic
[BGMZ, GS14]. In addition, we have identi�ed several interesting research directions.

8.1 | Realizability algebras
A �rst line of work concerns the de�nition a notion of linear realizability algebra, similar
to Krivine’s realizability algebra, which would generalize our unary realizability, monitoring
algebras and our linear version of forcing. This would allow us to:

• have a unique soundness result for all those semantics.

• carry a general study of iteration, that would generalize the simple iteration and our two
connection theorems.

In general, it is interesting to understand which results are speci�c to the monitoring algebras,
and which ones hold in a more general context. Another possible outcome would be to �nd
formal links with Krivine’s realizability algebras.
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8.2 | Control operators
We have not talked about control operators in this thesis. However, Krivine’s realizability is
somehow hardwired to accept control operators like call-cc. To add such a control operator to
a MA, it seems that we need two di�erent things:

• The �rst one is the commutativity of the forcing monoid. Indeed, we need to be able to
take an environment and transform it into a value: this re�ects at the forcing level by
the commutativity of ●. This is enough to obtain an a�ne form of control operators that
do not duplicate the environment (unlike call-cc).

• The second ingredient is then the possibility of duplicating the environment, which can
be done in several ways. For instance this is possible if the forcing monoid admits an
exponential modality or is idempotent.

The �rst point is not always met, for example in the case of a semi-direct iteration. If we
consider the construction of Section 6.1 used to add an adjoint modality (which makes use of the
semi-direct iteration), we conjecture that this is a manifestation of a well-known phenomenon:
the value restriction. Indeed in a call-by-value language featuring control operators, one needs
to restrict the exponential modality and the quanti�ers to values. More about this can be found
in Munch’s PhD thesis [MM]. Similarly, the construction used to add adjoint modalities is
not compatible with the commutativity requirement. We plan to pursue a study of control
operators and the associated phenomenon in our framework.

8.3 | Generalization of the forcing monoid
We have used a particular notion to represent annotations: the forcing monoid. It has been
de�ned to abstract over all the examples we had in mind at the beginning of this work, but
not too general to simplify the presentation. However, we already are aware of examples of
annotated realizability semantics that do not �t in the framework presented in this thesis. Here
are some possibilities of generalizing the forcing monoid:

• When we look at the orthogonality relation induced by a MA A, it looks as follows (we
forget about the level):

(t, p)�A(E, q)⇔ (t,E, p ● q) ∈ ��A

Here, the elements p and q that annotate the environment and the computation are both
elements of a same setM, and we make them interact using the operation ●, returning
also an element ofM. However there are examples of quantitative realizability semantics
that distinguish between three kinds of annotations: p is an element ofMΛ, q an element
ofMΠ and p ● q is of a third kindMΛ●Π. This is the case of [BM12] whereMΛ is a
quantitative monoid,MΠ a set of functions f ∶MΛ →MΛ and p ● f is the application
f(p) ∈MΛ. We already have started investigating a generalization of forcing monoids
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that allow to deal with three kinds of elements. This generalization does not seem to
break any of the results presented here (in particular the soundness theorem and the
connection theorem).

• In [BG], we considered a quantitative semantics for a linear dependent type system
[DLG11] that allows to give exact bounds on the time complexity of PCF programs.
The types are not dependent of terms, as in dependent type theories, but of an external
notion of �rst-order terms which represent the complexity bounds. That kind of de-
pendency has been used in several other works [GHH+13, DLP13]. The di�culty lies
in the fact that annotations can contain annotation variables and hence are dependent
themselves. We believe our framework can also be extended to handle that very general
situation, but it remains to see how di�cult that would be.

8.4 | Combination with the KFAM
Our forcing program transformation is in some aspects orthogonal to the forcing transfor-
mation unveiled by Miquel [Miq11]. Indeed, in the KFAM, the combinators pushed on the
protected memory cell are the terms behind the proofs of the basic facts about the set of forc-
ing conditions: associativity, commutativity, idempotency, etc. In our forcing transformation
these basic properties are computationally trivial since the notion of forcing monoid is exter-
nal to the type system. In our case, the combinators used on the protected memory cell of
the MAM, the monitors, are proofs of certain saturation properties of the forcing predicate
C. It seems to us that if the monitoring algebra theory is reformulated in an adequate frame-
work (higher-order logic or a powerful enough type theory), it would be possible to combine
these two di�erent aspects of the forcing program transformations, thus obtaining an abstract
machine that combines both features.

The forcing transformation used to obtain the KFAM implement a mechanism that specif-
ically monitors the management of explicit environments. Hence, we believe it could bring
to our framework a greater analysis power, since some properties of the execution are tightly
coupled to the substitution of variables and the duplication/erasing of environments: this could
for example allow us to analyse precise space consumption or control �ow analysis.

8.5 | Extension to type theory
Our framework is based on a �rst-order logic extending polarized linear logic. We intend in
the future to reformulate this framework is the context of dependent type theories, like the
calculus of constructions. It is already possible to extend classical realizability to the calculus
of constructions as shown by Miquel [Miq07]. We believe such a reformulation would add
more �exibility to the de�nition of new types and proofs of correctness. This would permit the
following directions to be explored.
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Binary logical relations
In this thesis, we have only studied unary logical relations, in the sense that in our framework,
it is not possible to relate two terms:

(t, t′) ⊩ A
This is useful to study contextual equivalences of programs. Our framework could be extended
to such binary relations. But more interestingly, we conjecture that if reformulated in a su�-
ciently expressive theory, i.e. a dependent type theory or a set theory, we could retrieve binary
logical relations as a particular case of simple iteration, i.e. we would have the following com-
position:

(t, t′) ⊩ A⇔ t ⊩ (t′ ⊩ A)
This would amount to take programs, environments and con�gurations as forcing conditions.

Coq formalization
Formalizing the theory of monitoring algebras in Coq is one of our major future goals. How-
ever, as it is, it seems to us that it would be really di�uclut. We think that reformulating our
work using a dependent type theory would make this task much more conceivable.

8.6 | A forcing study of the semi-direct iteration
We have considered the particular construction of the semi-direct iteration in Chapter V . This
construction has proved to be useful. However, unlike the simple iteration, it fails to satisfy
the connection theorem of Section 5.2. In a certain respect, it is not even clear why we call this
operation iteration if it does not satisfy the connection theorem. We can in fact underline the
part of the proof of Lemma 184 that fails: the positive and negative shifts. Suppose we consider
the following semi-direct iteration:

D def= A ⋉δ B
If we carefully look at the proof of the negative shift (for example), one wants to prove that:

∀(E, (q,m)) ∈ JNKD,k+1,ρ, (t,E, (p,n) ● (q,m)) ∈ �� (⋆)

is equivalent to the following:

(t, p) ∈ ∥∀m ∈ ∣B∣.CB(n ●m)⊸ N○(m)∥A,k,ρ

But because we use the the semi-direct product instead of the product, we can only prove that
(⋆) is equivalent to the following:

∀m ∈ ∣B∣, (t, δm(p)) ∈ ∥CB(n ●m)⊸ N○(m)∥A,k,ρ

This suggests that we could de�ne a new connective∀δ whose interpretation would be basically
such that:

(t, p) ∈ ∥∀δx ∈ S.N∥⇔ ∀m ∈ S, (t, δm(p)) ∈ ∥N[m/x]∥
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This new connective, which a form of dependent product, allows to de�ne a new forcing in-
terpretation of the negative shift as follows:

N∗(m) def= ∀δm ∈ ∣B∣.CB(n ●m)⊸ N○(m)

This de�nes a whole new class of forcing models that we plan to investigate.

• First, we would like to consider this new forcing type translation and formally generalize
the connection theorem to semi-direct iteration1.

• We then want to see if the new forcing models coming from this interpretation have some
interest on their own (in the context of set theory for instance). This new interpretation
of the shift connectives seems to correspond to a dependent version of orthogonality that
we intend to study.

Here again, formalizing our work in a dependent type theory could help.

8.7 | Store-passing translation
In [Pot11] Pottier gives a typed store-passing translation of a language with general references
to a variant of system Fω with guarded recursive kinds, i.e. he introduces Nakano’s recursion
modality at the level of kinds. Pottier claims that it is the �rst type-preserving store-passing
translation for general references. However, to achieve this result, Pottier needs to extend Fω

so that in some sense it already integrates a form of step-indexing. After having extended our
framework to at least system Fω , by using our forcing program transformation induced by the
step-indexing algebraAstep, we could translate his system into the simpler system Fω . By com-
posing it with Pottier’s translation, one would obtain the �rst translation for general references
into system Fω . In general, it is interesting to see that if we have obtained a realizability model
of a programming language by only using successive simple iterations of 1-MAs, we obtain at
the same time a program transformation by composing the forcing transformations.

8.8 | Categorical formulation
We have not touched upon any category-theoretical consideration in the course of this thesis.
We think it would be worth investigating two di�erent possible research directions.

• It is possible to de�ne a category of monitoring algebras, whose objects are the monitor-
ing algebras. By quotienting the set of computations by the contextual equivalence:

t ≡��u⇔ {t}� = {u}�

We can de�ne a meaningful notion of morphisms between two MAs A and B by con-
sidering a pair:

1This would by the way justify the name iteration.
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– A sub-additive function φ ∶ ∣A∣→ ∣B∣ between the carriers of the MAs.
– The equivalence classe of a computation γ that realizes the following:

γ ⊩0 ∀p ∈ ∣A∣.CA(p)⊸ ⇑CB(φ(p))

We believe we could reformulate many of the concepts presented in this thesis in a more
categorical �avor, maybe leading to simpli�cations and new concepts. In particular, in
this particular category, is it possible to give a categorical status to the simple iteration
construction?

• As already mentioned, Cohen’s forcing can be reformulated in topos theory. Topos the-
ory has already proved to give a framework in which the use of logical relations can be
drastically simpli�ed [BMSS11, JTS12] and it presents the advantage of working in the
context of dependent type theories. A �rst account of Krivine’s realizability algebras in
topos theory has been given by Streicher [Str13] and the product realizability [Kri11]
(that combines Krivine’s classical realizability with forcing) has been shown to be an ap-
plication of Pitts iteration [Pit81]. We believe investigating how our work relates with
topos theory would constitute a very interesting line of work.

246



Bibliography

[AFM07] Amal Ahmed, Matthew Fluet, and Greg Morrisett, l3: A linear language with lo-
cations, Fundamenta Informaticae 77 (2007), no. 4, 397–449.

[AM01] Andrew W Appel and David McAllester, An indexed model of recursive types for
foundational proof-carrying code, ACM Transactions on Programming Languages
and Systems (TOPLAS) 23 (2001), no. 5, 657–683.

[AMRV07] Andrew W Appel, Paul-André Mellies, Christopher D Richards, and Jérôme
Vouillon, A very modal model of a modern, major, general type system, ACM SIG-
PLAN Notices 42 (2007), no. 1, 109–122.

[BBTS07] Bodil Biering, Lars Birkedal, and Noah Torp-Smith, Bi-hyperdoctrines, higher-
order separation logic, and abstraction, ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 29 (2007), no. 5, 24.

[BG] Aloïs Brunel and Marco Gaboardi, Realizability models for a linear dependent pcf.

[BGMZ] Aloïs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic, A core
quantitative coe�ect calculus.

[BH09] Nick Benton and Chung-Kil Hur, Biorthogonality, step-indexing and compiler cor-
rectness, ACM Sigplan Notices 44 (2009), no. 9, 97–108.

[BM04] Patrick Baillot and Virgile Mogbil, Soft lambda-calculus: a language for polyno-
mial time computation, Foundations of software science and computation struc-
tures, Springer, 2004, pp. 27–41.

[BM12] Aloïs Brunel and Antoine Madet, Indexed realizability for bounded-time program-
ming with references and type �xpoints, Programming Languages and Systems,
Springer, 2012, pp. 264–279.

[BMSS11] Lars Birkedal, Rasmus Ejlers Mogelberg, Jan Schwinghammer, and Kristian
Stovring, First steps in synthetic guarded domain theory: step-indexing in the topos
of trees, Logic in Computer Science (LICS), 2011 26th Annual IEEE Symposium
on, IEEE, 2011, pp. 55–64.

247



BIBLIOGRAPHY

[BRS+11] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring, Jacob
Thamsborg, and Hongseok Yang, Step-indexed kripkemodels over recursive worlds,
ACM SIGPLAN Notices 46 (2011), no. 1, 119–132.

[Bru13] Aloïs Brunel, Quantitative classical realizability, Information and Computation
(2013).

[BSS10] Lars Birkedal, Jan Schwinghammer, and Kristian Støvring, A metric model of
lambda calculus with guarded recursion, Fixed Points in Computer Science 2010
(2010), 19.

[BST09] Lars Birkedal, Kristian Støvring, and Jacob Thamsborg, Realizability semantics of
parametric polymorphism, general references, and recursive types, Foundations of
Software Science and Computational Structures, Springer, 2009, pp. 456–470.

[CH00] Pierre-Louis Curien and Hugo Herbelin, The duality of computation, ACM sigplan
notices, vol. 35, ACM, 2000, pp. 233–243.

[Coh63] Paul J Cohen, The independence of the continuum hypothesis, Proceedings of the
National Academy of Sciences of the United States of America 50 (1963), no. 6,
1143.

[Coh64] , The independence of the continuum hypothesis, ii, Proceedings of the Na-
tional Academy of Sciences of the United States of America 51 (1964), no. 1, 105.

[DAB09] Derek Dreyer, Amal Ahmed, and Lars Birkedal, Logical step-indexed logical rela-
tions, Logic In Computer Science, 2009. LICS’09. 24th Annual IEEE Symposium
on, IEEE, 2009, pp. 71–80.

[DJ03] Vincent Danos and Jean-Baptiste Joinet, Linear logic and elementary time, Infor-
mation and Computation 183 (2003), no. 1, 123–137.

[DLG11] Ugo Dal Lago and Marco Gaboardi, Linear dependent types and relative complete-
ness, Logic in Computer Science (LICS), 2011 26th Annual IEEE Symposium on,
IEEE, 2011, pp. 133–142.

[DLH05] Ugo Dal Lago and Martin Hofmann, Quantitative models and implicit complexity,
FSTTCS 2005: Foundations of Software Technology and Theoretical Computer
Science (2005), 189–200.

[DLH10a] , Bounded linear logic, revisited, Logical Methods in Computer Science 6

(2010), no. 4.

[DLH10b] , A semantic proof of polytime soundness of light a�ne logic, Theory of
Computing Systems 46 (2010), 673–689.

[DLH11] , Realizability models and implicit complexity, Theoretical Computer Sci-
ence 412 (2011), no. 20, 2029 – 2047, Girard’s Festschrift.

248



BIBLIOGRAPHY

[DLM04] Ugo Dal Lago and Simone Martini, Phase semantics and decidability of elementary
a�ne logic, Theoretical Computer Science 318 (2004), no. 3, 409–433.

[DLP13] Ugo Dal Lago and Barbara Petit, The geometry of types, The 40th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’13, Proceedings, 2013, pp. 167–178.

[DYBG+13] Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew Parkinson,
and Hongseok Yang, Views: compositional reasoning for concurrent programs,
ACM SIGPLAN Notices 48 (2013), no. 1, 287–300.

[Fil89] Andrzej Filinski, Declarative continuations: An investigation of duality in pro-
gramming language semantics, Category Theory and Computer Science, Springer,
1989, pp. 224–249.

[GB40] Kurt Gödel and George William Brown, The consistency of the axiom of choice
and of the generalized continuum-hypothesis with the axioms of set theory, no. 3,
Princeton University Press, 1940.

[GDR09] Marco Gaboardi and Simona Ronchi Della Rocca, From light logics to type assign-
ments: a case study, Logic Journal of IGPL 17 (2009), no. 5, 499–530.

[GHH+13] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C
Pierce, Linear dependent types for di�erential privacy, ACM SIGPLAN Notices,
vol. 48, ACM, 2013, pp. 357–370.

[Gir87] Jean-Yves Girard, Linear logic, Theoretical computer science 50 (1987), no. 1, 1–
101.

[Gir91] , A new constructive logic: classical logic, Mathematical Structures in Com-
puter Science 1 (1991), no. 3, 255–296.

[Gir92] , A �xpoint theorem in linear logic. an email posting to the mailing list
linear@ cs, 1992.

[Gir98] , Light linear logic, Information and Computation 143 (1998), no. 2, 175–
204.

[Gir01] , Locus solum: From the rules of logic to the logic of rules, Mathematical
Structures in Computer Science 11 (2001), no. 3, 301–506.

[GMRDR12] Marco Gaboardi, Jean-Yves Marion, and Simona Ronchi Della Rocca, An implicit
characterization of pspace, ACM Transactions on Computational Logic (TOCL) 13
(2012), no. 2, 18.

[Gri82] VN Grišin, Predicate and set-theoretic calculi based on logic without contractions,
Mathematics of the USSR-Izvestiya 18 (1982), no. 1, 41.

249



BIBLIOGRAPHY

[Gri89] Timothy G Gri�n, A formulae-as-type notion of control, Proceedings of the 17th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages,
ACM, 1989, pp. 47–58.

[GS14] Dan R Ghica and Alex Smith, Bounded linear types in a resource semiring, Euro-
pean Symposium on Programming (ESOP), Grenoble, France. Springer, 2014.

[Hof03] Martin Hofmann, Linear types and non-size-increasing polynomial time computa-
tion, Information and Computation 183 (2003), no. 1, 57–85.

[Hos12] Naohiko Hoshino, Step indexed realizability semantics for a call-by-value lan-
guage based on basic combinatorial objects, Proceedings of the 2012 27th Annual
IEEE/ACM Symposium on Logic in Computer Science, IEEE Computer Society,
2012, pp. 385–394.

[How69] William A Howard, The formulae-as-types notion of construction.

[JT11] Guilhem Jaber and Nicolas Tabareau, Decomposing logical relations with forcing.

[JTS12] Guilhem Jaber, Nicolas Tabareau, and Matthieu Sozeau, Extending type theory
with forcing, Logic in Computer Science (LICS), 2012 27th Annual IEEE Sympo-
sium on, IEEE, 2012, pp. 395–404.

[KBH12] Neelakantan R. Krishnaswami, Nick Benton, and Jan Ho�mann, Higher-order
functional reactive programming in bounded space, POPL, 2012, pp. 45–58.

[Kle45] Stephen Cole Kleene, On the interpretation of intuitionistic number theory.

[Kom89] Yuichi Komori, Illative combinatory logic based on bck-logic.", Math. Japonica 34

(1989), 585–596.

[Kri03] Jean-Louis Krivine, Dependent choice,âĂŸquoteâĂŹand the clock, Theoretical
Computer Science 308 (2003), no. 1, 259–276.

[Kri07] , A call-by-name lambda-calculus machine, Higher-Order and Symbolic
Computation 20 (2007), no. 3, 199–207.

[Kri09] , Realizability in classical logic, Panoramas et synthèses 27 (2009), 197–229
(Anglais).

[Kri10a] , Realizability algebras: a program to well order R, manuscript (2010).

[Kri10b] , Realizability algebras II: new models of ZF+ DC, Arxiv preprint
arXiv:1007.0825 (2010).

[Kri11] , Realizability algebras: a program to well order r, Logical Methods in Com-
puter Science (LMCS) 7 (2011), no. 3, 1–47.

250



BIBLIOGRAPHY

[Kri13] Neelakantan R. Krishnaswami, Higher-order functional reactive programming
without spacetime leaks, Proceedings of the 18th ACM SIGPLAN international
conference on Functional programming, ACM, 2013, pp. 221–232.

[Laf96] Yves Lafont, The undecidability of second order linear logic without exponentials,
Journal of Symbolic Logic (1996), 541–548.

[Laf97] , The �nite model property for various fragments of linear logic, Journal of
Symbolic Logic 62 (1997), no. 4, 1202–1208.

[Laf04] , Soft linear logic and polynomial time, Theoretical Computer Science 318
(2004), no. 1-2, 163–180.

[Lev99] Paul Blain Levy, Call-by-push-value: a subsuming paradigm, Typed Lambda Cal-
culi and Applications, Springer, 1999, pp. 228–243.

[Lev03] , Call-by-push-value: A functional/imperative synthesis, vol. 2, Springer,
2003.

[Miq07] Alexandre Miquel, Classical program extraction in the calculus of constructions,
Computer Science Logic, Springer, 2007, pp. 313–327.

[Miq11] , Forcing as a program transformation, Logic in Computer Science (LICS),
2011 26th Annual IEEE Symposium on, IEEE, 2011, pp. 197–206.

[MM] Guillaume Munch-Maccagnoni, Models of a non-associative composition.

[MM09] , Focalisation and classical realisability, Computer Science Logic, Springer,
2009, pp. 409–423.

[Mog91] Eugenio Moggi, Notions of computation and monads, Information and computa-
tion 93 (1991), no. 1, 55–92.

[MT10] Paul-André Mellies and Nicolas Tabareau, Resource modalities in tensor logic, An-
nals of Pure and Applied Logic 161 (2010), no. 5, 632–653.

[Nak00] Hiroshi Nakano, A modality for recursion, LICS, 2000, pp. 255–266.

[Oka99] Mitsuhiro Okada, Phase semantic cut-elimination and normalization proofs of �rst-
and higher-order linear logic, Theoretical Computer Science 227 (1999), no. 1-2,
333–396.

[Oka02] , A uniform semantic proof for cut-elimination and completeness of various
�rst and higher order logics, Theoretical Computer Science 281 (2002), no. 1, 471–
498.

[Par92] Michel Parigot, λµ-calculus: an algorithmic interpretation of classical natural de-
duction, Logic programming and automated reasoning, Springer, 1992, pp. 190–
201.

251



BIBLIOGRAPHY

[Pit81] Andrew M Pitts, The theory of triposes, 1981.

[Pot11] François Pottier, A typed store-passing translation for general references, ACM SIG-
PLAN Notices, vol. 46, ACM, 2011, pp. 147–158.

[PS98] Andrew M Pitts and Ian DB Stark, Operational reasoning for functions with local
state, Higher order operational techniques in semantics (1998), 227–273.

[RP10] J. Reed and B.C. Pierce, Distance makes the types grow stronger: A calculus for
di�erential privacy, ACM SIGPLAN Notices, vol. 45, ACM, 2010, pp. 157–168.

[SBP13] Kasper Svendsen, Lars Birkedal, and Matthew Parkinson, Impredicative concur-
rent abstract predicates, Under submission (2013).

[Shi94] M. Shirahata, Linear set theory, PHD Thesis (1994).

[ST71] Robert M Solovay and Stanley Tennenbaum, Iterated cohen extensions and
souslin’s problem, Annals of Mathematics (1971), 201–245.

[Str13] Thomas Streicher, Krivine’s classical realisability from a categorical perspective,
Mathematical Structures in Computer Science 23 (2013), no. 06, 1234–1256.

[Ter02] Kazushige Terui, Light logic and polynomial time computation, Ph.D. thesis, Keio
University, 2002.

[Ter04] , Light a�ne set theory: a naive set theory of polynomial time, Studia Logica
77 (2004), no. 1, 9–40.

252


	Introduction
	Forcing
	Cohen's forcing
	Forcing and orthogonality
	Iterated forcing

	Forcing as a program transformation
	Krivine/Miquel program transformation
	The KFAM

	Classical realizability and forcing
	Krivine classical realizability
	Realizability algebras: combining forcing and realizability

	Logical relations under the light of forcing
	The monitoring power of forcing program transformations
	Chapter II : a linear call-by-push value
	Call-by-value and call-by-name translations
	Chapter II  The monitoring abstract machine
	Examples of reduction at level 1
	Chapter III  : a novel forcing transformation
	Chapter IV : Krivine style realizability
	Chapter IV : Monitoring algebras
	Chapter V : Iteration
	Chapter VI : Basic blocks
	Chapter VII : Applications

	Summary of the contributions

	The monitoring abstract machine
	The call-by-push value calculus
	Syntax
	An abstract machine
	First-order signature and evaluation
	The type system

	Call-by-name and call-by-value translations
	The -calculus with pairs and integers
	Call-by-name
	Call-by-value

	The monitoring abstract machine
	Mon syntax and reduction
	Examples of reduction at level 1
	Reduction at level 2
	Program translations

	Program transformation

	Forcing monoids
	Forcing monoids
	Definition
	Functions
	Algebraic constructions

	A forcing-based type system
	Forcing program transformation

	Monitoring algebras
	Simple realizability
	Orthogonality
	Interpretation
	Soundness

	n-Monitoring algebras
	Definition
	A-orthogonality
	Interpretation of multiplicatives
	Parametric soundness
	Monitors

	Adding types
	Simple connectives
	Simple A-connectives
	Forcing transformation

	Properties of 1-Monitoring Algebras
	Monitors
	Connection theorem

	Basic 1-MAs examples
	Time monitoring
	First-order references
	Step-indexing


	Iteration
	Simple iteration
	Properties of the simple iteration
	Direct product

	Generalized connection theorem
	Semi-direct iteration

	Basic semantical blocks
	Adding a modality
	Preliminaries
	A-modalities
	Preservation theorem
	Example of modality: the linear logic exponential
	Adding adjoint modalities

	Bounded-time monitoring
	Stratification
	Banach Fixed-point theorem
	Stratified monitoring algebras

	Step-indexing
	Preliminaries
	Step-indexing Algebra
	A contractive modality
	Guarded recursive types
	Non-guarded recursive types
	Call-by-name and call-by-value translation
	Preservation

	Higher-order references
	Preliminaries
	General case
	Particular instances


	 Some applications of the monitoring algebra theory
	Linear naive set theory
	Linear set theory
	A realizability model
	Consistency result
	Considerations

	Polynomial-time programming language with recursive type
	The language
	Monitoring algebra
	Translation

	A linear calculus for strong updates
	The language
	Monitoring algebra
	Correctness
	Discussion


	 Conclusion
	Realizability algebras
	Control operators
	Generalization of the forcing monoid
	Combination with the KFAM
	Extension to type theory
	A forcing study of the semi-direct iteration
	Store-passing translation
	Categorical formulation


