
Toward a framework for automated service composition

and execution : E-tourism Applications

Pathathai Na Lumpoon

To cite this version:

Pathathai Na Lumpoon. Toward a framework for automated service composition and execution
: E-tourism Applications. Other [cs.OH]. Université Grenoble Alpes, 2015. English. <NNT :
2015GREAM013>. <tel-01164389>

HAL Id: tel-01164389

https://tel.archives-ouvertes.fr/tel-01164389

Submitted on 16 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01164389

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial : 2013

Présentée par

Pathathai Na-Lumpoon

Thèse dirigée par Ahmed Lbath
et codirigée par Marie-Christine Fauvet

préparée au sein Laboratoire d’Informatique de Grenoble
et de Ecole Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique (MSTII)

Vers une plateforme dediee a
la composition automatique et
l’execution de services: Applica-
tions E-Tourisme

Thèse soutenue publiquement le 12 May 2015,
devant le jury composé de :

Prof. Marlon DUMAS
University of Tartu, Estonie, Président

Prof. Abdelaziz BOURAS
University of Lyon 2, Rapporteur

Prof. Nadine CULLOT
University of Bourgogne, Dijon, Rapporteur

Prof. Marie-Christine Fauvet
Joseph Fourier University of Grenoble, Co-Directeur de thèse

Prof. Ahmed LBATH
Joseph Fourier University of Grenoble, Directeur de thèse

“We are what we repeatedly do. Excellence then, is not an act, but a habit.”

Aristotle

Abstract

Recently, distributed computing systems based on context awareness have been

proposing in several domains such as healthcare, logistics and tourism. The study

described in this thesis is a part of a broader project of E-Tourism system that

provides nomad user, context-aware personalized services. The work of this thesis

focuses on the issues raised by web service composition and execution. Web ser-

vice composition brings benefits of reusing existing services to synthesize the new

resulting service. The way to create web service composition normally happens

at design time, but this limits choices of services. This thesis presents a novel

approach of automated web service composition and execution framework. Our

approach aims to compose service operations that fulfill mobile users’ require-

ments expressed in propositional logics and execute the resulting service based

on aggregating multi service components. In the framework, we have introduced

our planning algorithm based on abstract goal states to search and connect to

service operations, by mean of service operation annotations, for an abstract plan.

The abstract plan is expected for workflow model of sequencing, paralleling and

conditioning among service operations. However, the generated workflow is not

in an executable form, this is why we perform the transformation of the workflow

into an executable business process. To achieve the business process execution,

we defined context based BPMN model for mapping the abstract plan to BPMN

semantics. We also propose a new planning algorithm and exploited planning-

as-model-checking approach to validate the semantic BPMN model whether it is

Well-formed and Well-defined BPMN process. Finally, we implemented the auto-

mated service composition and execution framework system in Java platform as a

proof of concept. We developed the logical composition and, transformation and

validation BPMN algorithms written in Prolog. We have integrated these algo-

rithms into the whole system. As future work, we plan to extend our current work

and take into account more complex user’s scenarios that explicitly and implicitly

express other pattern controls and we will also consider the scenarios required for

stateful web services.

Résumé

Les systèmes de services contextualisés ont connu un grand essor ces dernières années dans

des domaines variés tels que la santé, la logistique ou bien le tourisme. Cette thèse s’intègre

dans un projet plus global, nommé E-Tourism, qui vise à réaliser une plateforme de fourniture

de services sensibles au contexte à des utilisateurs en situation de mobilité. Le travail de cette

thèse se focalise sur la problématique de composition de services web et de leur exécution. La

composition de services web permet la réutilisation de services existants afin d’en faire une

synthèse répondant au besoin de l’utilisateur. Cette composition se fait en général au niveau de

la phase conceptuelle ce qui limite le choix de services potentiels. Cette thèse présente une

nouvelle approche de la composition de services Web automatisé et une plateforme

d'exécution. Notre approche vise à composer les opérations de services qui répondent aux

besoins des utilisateurs mobiles exprimées dans une logique propositionnelle et exécuter le

service composé en agrégeant plusieurs services composants. Nous avons proposé une

plateforme d’exécution de services et nous avons introduit un nouvel algorithme de

planification intégré à cette plateforme. Nous avons défini un contexte basé sur le modèle

BPMN. Afin de valider notre modèle sémantique nous avons utilisé une approche de

type model-checking. Enfin, nous avons réalisé un prototype sous forme d’une plateforme de

composition de services et d'exécution automatique en Java. Nous avons implémenté les

règles d’inférence et les modèles BPMN en prolog. Enfin, nous avons intégré ces algorithmes

dans l'ensemble du système. En perspectives, nous prévoyons d'étendre notre travail actuel et

prendre en compte des scénarios plus complexes nécessitant des services web dynamiques.

Acknowledgements

This dissertation would not have been possible without the support of many great

people, to whom I express my gratitude.

First of all, I would like to thank Professor Ahmed Lbath, my supervisor, for giving

me the opportunity to pursue a PhD and be part of MRIM team, LIG, University

of Grenoble. His support and guidance enabled me to complete this project. I

am specially thankful to Professor Marie Christine-Fauvet, my supervisor, for her

valuable all-round support of my doctoral research work. I would have not made

it this far without her invaluable and generous investment into my research.

I am also grateful to European Commission under Sustainable e-Tourism, Erasmus

Mundus Action 2 and Chiang Mai university who have been providing me with

financial support during my period of my doctoral research. I also appreciate

Professors and colleges from MRIM team who have been advising and supporting

me during my 4-year research.

I would like to greatly thank Professor Nadine Cullot and Professor Abde-

laziz Bouras for reviewing the manuscript and providing me with valuable com-

ments. I wish to thank Krisdee Promubol for correcting English grammars of the

manuscript.

I would like to especially thank my project mates. As my research is part of

E-tourism project, I have been working with four PhD students, Isaac Caicedo

Castro, Mu lei, Teerawat Kamnerdsiri and Uyanga Sukhbaatar, and one master

student, Sanjay Kamath. We were supporting each other and helping each other

to the best of our research works.

My PhD life would not be meaning and colorful without all my friends of the LIG,

with which I shared these year in particular. Thanks to you all Sarah, Quang,

David, Mateuze, Fred and Nadia.

Last but not least, I want to thank you my family, my father, my mother and my

sister, for having always been near me in these last years of study. Without their

supports this study would have never come into existence. I also want to thank

you my boyfriend, Pree Thiengburathum, for his supporting and effort by keep

inspiriting and motivating me on both work and personal life...

v

Contents

Abstract iii

Résumé iii

Acknowledgements v

Contents vi

List of Figures ix

List of Tables x

Abbreviations xi

1 Introduction 1

1.1 E-Tourism system Architecture . 3

1.2 Motivating Examples . 5

1.3 Problem Definition . 8

1.4 Research questions . 9

1.5 Dissertation aims . 11

1.6 Dissertation outline . 13

2 Background and State of the Art 15

2.1 B2B Interactions . 16

2.1.1 Framework Layers . 18

2.2 Service-Oriented Computing . 19

2.2.1 Web Service . 21

2.2.1.1 Architecture . 23

2.2.1.2 Technology . 24

2.2.2 Semantic Web Service . 27

2.3 Service Composition . 32

2.3.1 Web service composition life cycle 33

2.3.2 Manual Approaches . 34

2.3.3 Automatic approaches . 37

vi

Contents vii

2.3.4 Existing Approaches . 41

2.3.4.1 End-to-end composition framework 41

2.3.4.2 Proposals of logical composition 42

2.3.4.3 Business process generation and execution 47

2.4 Summary . 48

3 Abstract Service Composition with Fluent Calculus 50

3.1 Requirements and Architecture . 52

3.1.1 Fluent Calculus . 53

3.1.2 FLUX . 56

3.2 Back to the motivating example . 56

3.3 Transformer to fluent calculus . 57

3.3.1 User requirements mapping 58

3.3.2 Service operations mapping 58

3.4 FLUX Planner . 59

3.4.1 FLUX query and Abstract plan 60

3.4.2 Service composition agent 63

3.5 Existing approaches . 66

3.6 Summary . 67

4 Composition Platform Generation 69

4.1 Architecture . 70

4.2 Abstract plan to BPMN semantics 72

4.3 BPMN Transformer . 74

4.3.1 Example of BPMN model 77

4.4 BPMN Validation . 81

4.4.1 Well-formed BPMN process 81

4.4.2 Well-defined BPMN process 82

4.4.3 Related work . 83

4.5 Summary . 83

5 Implementation 85

5.1 Models . 86

5.2 Implementation . 89

5.3 Results . 91

5.3.1 Experiment 1. 91

5.3.2 Experiment 2. 95

5.3.3 Experiment 3. 100

5.4 Discussion . 104

6 Conclusion and Future work 106

6.1 Future work . 108

A Planning model for the service composition agent 110

Contents viii

A.1 A list of fluents for conducting the Flux query 110

A.2 A list of fluents for the abstract plan 111

A.3 A list of actions the agent performing the abstract plan 111

B Program for the service composition agent 113

C BPMN specification and rules 118

C.1 BPMN specification . 118

C.2 BPMN Well-formed . 119

C.3 Well-formed BPMN rules . 120

Bibliography 122

List of Figures

1.1 Architecture of a system for discovering, execution and composition
of services for mobile users [LLK+11] 4

1.2 Multi-layer for service composition and execution system 11

2.1 Caption for LOF . 18

2.2 Web service architecture . 23

2.3 WeatherForecast service interface 24

2.4 Web service Composition Life Cycle 34

2.5 An overall process of automated service composition 38

2.6 Domains transformation in automated service composition process . 41

3.1 Proposed multi-layers of the Service Composition and Execution
framework highlighted at the Logical layer 51

3.2 Abstract Service Composition process 53

3.3 Transformer process . 57

3.4 FLUX planner . 59

3.5 The abstract service composition for Alice’s query 66

4.1 Proposed multi-layers of the Service Composition and Execution
system highlighted at Composition Platform layer 70

4.2 BPMN generation process . 71

4.3 BPMN notation related to the proposed of our work [OMG] 72

4.4 The example of BPMN model (Alice’s process) 80

5.1 Requirement model . 86

5.2 Service operation model . 87

5.3 FLUX planner model . 87

5.4 BPMN Prolog model . 88

5.5 BPMN model . 88

5.6 Composite platform layer on service composition and execution sys-
tem . 89

5.7 Composite platform layer on service composition and execution sys-
tem . 90

5.8 SearchAvailableRooms process . 94

5.9 FindRestaurantAndDirection process 99

5.10 GetWeatherForecastAndBuyTicket process 103

ix

List of Tables

2.1 Characteristics of existing AI planning system 45

2.2 Comparison among planner systems 46

3.1 Example of a mapping between user problem domain and planning
domain . 58

3.2 Example of service operations mapping between problem domain
and planning domain . 59

3.3 Comparison among planner systems 67

4.1 Mapping between BPMN elements and BPMN semantics 74

4.2 Mapping between the abstract plan and BPMN workflow 76

4.3 Mapping service operations example between problem domain and
planning domain . 79

4.4 Mapping service operations example between problem domain and
planning domain (cont.) . 80

x

Abbreviations

ADL Action Description Language

AI Artificial Intelligent

ALAN Axiomatization LAnguage for Agents

B2B Business-to-Business

B2C Business-to-Customer

BPEL Business Process Execution Language

BPMN Business Process Model Notation

COM Microsoft ComponentObject Model

COS Composition and Orchestration System

DCOM Distributed Component Object Model

DS Discovery System

ESB Enterprise Service Buses

FLUX FLUent EXecutor

HTN Hierarchical Task Network

HTTP HyperText Transfer Protocol

MBP Model Based Planning

OMG Object Management Group

OWL-S Web Ontology Language for Services

PDDL Planning Domain Definition Language

QM Query Management system

QoS Quality of Services

REST REpresentational State Transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

xi

Abbreviations xii

SAWSDL Semantic Annotations for WSDL and XML Schema

SHOP2 Simple Hierarchical Ordered Planner 2

SOA Service-Oriented Architecture

SOA Service-Oriented Computing

SOAP Simple Object Access Protocol

STRIPS STanford Research Institute Problem Solver

UIQM User Interaction Query Management

W3C World Wide Web Consortium

WfMC Workf low Management Coalition

WSDL Web Service Description Language

WSSL Web Service Specification Language

XPDL XML Process Definition Language

XML EXtensible Markup Language

YAWL Yet Another Workflowition Language

Chapter 1

Introduction

Contents

1.1 E-Tourism system Architecture 3

1.2 Motivating Examples . 5

1.3 Problem Definition . 8

1.4 Research questions . 9

1.5 Dissertation aims . 11

1.6 Dissertation outline . 13

Abstract. In this opening Chapter of the thesis we discuss distributed

computing of software system regarding to its trend and important to busi-

ness cooperation and technologies used to build such distributed systems.

In this dissertation, we will tackle a problem of the composition of exist-

ing services. The service composition problem is sourced from the Service

Composition and Execution system, which is a part of E-Tourism system.

The E-Tourism system and motivating scenarios from tourism domain are

introduced in this Chapter. In this Chapter we also present a compress view

of our work on the Service Composition and Execution Framework, which

consequently motivated and laid the foundation for the major contributions

we committed in this dissertation.

Over the past decades, the increasing distributed computing of software system

has led to enormous rise in application complexity. For example, distributed com-

puting applications in domains such as health-care, logistics and tourism. The

1

Chapter 1. Introduction 2

study described in this thesis is a part of a broader project of E-Tourism sys-

tem. The distributed computer program is assembled using a combination of

services from a variety of applications. The applications vary from difference of

operating systems, middleware platforms, and programming languages. The idea

of distributed computing is originated from the need of cooperation among soft-

ware components. Software components vary from computer programs to service

applications inter-acting across enterprises.

One example of distributed systems is Business-to-Business (B2B) system. The

B2B describes commercial transaction between businesses such as between whole-

salers and retailers. To design B2B interactions, the issues in communication,

content and business process need to be resolved. The B2B communication as-

sures that among remotely located partners are able to exchange messages. The

content due to the use of standard over B2B guarantee no ambiguous information

is exchanged among parters. The business process in B2B structures and measures

set of activities to produce a specified output for a particular customer or market.

Technologies, such as COM1, Java RMI2 and web services, are possible choices

to implement B2B and other distributed systems. All these technologies rely on

Service-Oriented Architecture (SOA)3.

This dissertation copes the problems of Service composition. Service composition

is one of the foundation technologies within SOA. It can be a part of and/or new

application which needs to compose a sequence, condition and loop among the

component services to fulfill the user’s need. In this PhD, we have selected web

services to reuse existing services for composing new services (or application) with

higher functionality. The reason why we have selected web services in service

composition problem is threefold:

• SOA-based applications are quickly tuned and adjusted to new business re-

quirements. As it allows for rapid development of new application which

results service compositions, especially when all the necessary components

are already available.

1The Microsoft Component Object Model (COM) is a platform-independent, distributed,
object-oriented system for creating binary software components that can interact.

2Java Remote Method Invocation (Java RMI) enables the programmer to create distributed
Java technology-based to Java technology-based applications possibly on different hosts.

3Service-oriented architecture is a design pattern based on distinct pieces of software providing
application functionality as services to other applications via a protocol.

Chapter 1. Introduction 3

• The proliferation of web service development. Web services have become

the dominant choice of implementation for SOA-based system. Statistics

from programmableWeb4 said that the number of published web services

have been increasing continuously from 2005 to 2013. The recent number

has been recorded for over 12,213 web services. This indicates the trend of

applications realizing web services keeps increasing.

• This dissertation deals with the service composition and execution part of the

E-Tourism system (see Figure 1.1). The E-Tourism system aims at providing

context-aware personalized services for nomad users. The objective of the

system is to locate and deliver the right service to the right person, at the

right time and location, with the appropriate rendering [Lba05, LLK+11,

LLCC+13]. We will describe in more details the E-Tourism system in the

next section.

1.1 E-Tourism system Architecture

In this research we aim to cope the problem of (1) composing service operations

that fulfil users’ requirements expressed in propositional logics (or called goal

state(s)) (i.e., BookingTableReservation state and Direction state for the user query

I want to book a table for 2 people at the finest restaurant at 8pm. in the city,

and the direction to the restaurant.”) and (2) executing the resulting service solu-

tion based on aggregating multi service components (i.e., FromCoordinatesToCity

operation, FindFinestRestaurant operation, BookRestaurant operation and Get-

Direction operation) back to the user. Therefore, we proposed a new approach for

automated service composition and execution to tackle the aforementioned illus-

trated problem. The approach is part of the system sketched in Figure 1.1. This

system is designed to provide mobile users with services [LLK+11, LLCC+13]. For

instance, services to book a room, or reserve a table in a restaurant located in a

certain city, etc. The role of each module, and the flows of information are detailed

as follows:

1. User interaction and query management (UIQM) module aims at managing

user connections and getting queries submitted by users and sent using their

4http://www.programmableweb.com/

Chapter 1. Introduction 4

Figure 1.1: Architecture of a system for discovering, execution and composi-
tion of services for mobile users [LLK+11]

mobile device. Users’ queries, identifications, and context information are

received by this module in the data flow (1). This module extracts from the

query all necessary information for the discovery, composition, and execution

of services.

2. The module User management System (UMS) is in charge of managing users’

context and profile with respect of their privacy. This module receives the

users’ identifications in the data flow (2). Thereafter, this module sends

forward by means of the data flow (3) users’ queries, context and class of

profile.

3. Discovery system (DS) is responsible for finding service operations that fulfil

users’ requirements expressed in free text queries. Given a user’s query

(received in the data flow (3)), what are the services which may potentially

meet the user’s needs expressed in such query? The services which fulfil the

user’s needs are sent, in the data flow (4), to the next module.

4. Eventually the module Composition and orchestration system (COS) is a mod-

ule which is in charge of automated service composition and execution. The

list of service operations and users’ query in the data flow (4) pass to this

module. Its aim is to compose operations, offered by discovered services, to

fulfill users’ query. The result is a composite service, which is executed later

by an orchestration engine. During the execution, if the users chose not to

disclose their privacy then some parameters from their profile and context

Chapter 1. Introduction 5

may be missing. In this case, the orchestration engine will interact to the

users to ask for the missing parameters. Finally, the resulting composite

service in the data flow (5) is sent back to the users.

This research focuses on the issues raised by the Composition and orchestration

system in the fourth above mentioned item (The other modules are handles by

other PhD students).

1.2 Motivating Examples

Alice is an American tourist visiting Paris in France. She has forgotten to search

hotel rooms for tonight. Thus, she picks up her smartphone and accesses the

system above mentioned (see Figure 1.1), and issues the query: I want to search

for apartment rooms available from tonight to 05/06/2014. The Query Manage-

ment system (QM) analyzes the query to retrieve initial parameters: CheckIn =

”tonight”5 , CheckOut = ”05/06/2014” and RoomType = ”apartment” and goal

parameter: RoomAvailables. Moreover, the system captures Alice’s context infor-

mation, namely: coordinates = ”48.2167◦ N, 2.3332◦ E” and date = ”1/06/2014”.

Besides, the system has the following information about Alice’s profile: name =

”Alice”, citizenship=”USA”, travelPurpose=”tourism”, gender=”female”. For pri-

vacy reason, Alice wants to hide her location so the User Interaction and Query

Management (UIQM) module dose not disclose her location information out from

her context.

Thereafter, the Discovery system (DS) searches services for searching available

rooms. It gives to the Composition and Orchestration System (COS) a ranked list of

candidate services for searching available rooms. The service which has the highest

rank in this list contains the following operation: SearchAvailableRooms, this op-

eration receives as parameters the destination location, the number of nights, the

number of guests, the type of room, the date and time to check-in and check-out.

As a result, the operation returns a list of available rooms.

In this case, the COS interacts with Alice to ask the missing values for the param-

eters Location and NumberOfGuest. COS executes this operation by using Alice’s

5where tonight is the 01/06/2014 according to Alice’s smart phone.

Chapter 1. Introduction 6

context information and Alice successfully searches for apartment rooms available

in Paris.

At 4 PM, she wants to book a table at the finest restaurant in the city, and the

direction to get there. Once again, she uses the same system and submits the

query: I want to book a table for 2 people at the finest restaurant in the city, and

the direction to the restaurant. At this time, Alice’s profile has not been changed,

and the system captures the following Alice’s context information: coordinates =

”48.8567◦ N, 2.3508◦ E” and date = ”1/06/2014”.

This query has two requirements, then the User Interaction and Query Management

(UIQM) module splits this query in two subqueries. Therefore, the first sub-query

submitted to the DS is I want to book a table at the finest restaurant in the city.

The second sub-query issued to the DS is the direction to the restaurant. The DS

shall send to the COS two ranked lists of candidate services, which correspond

with each subquery. From the list of candidate services that may fulfil the first

subquery, the one which has the highest rank contains the following operations:

• FindFinestRestaurant: This operation receives as a parameter the name of

the city where the user is looking for the finest restaurant. The operation

returns the name and the address of the restaurant.

• BookRestaurant: This operation receives as parameters the restaurant name,

the number of persons, and the user’s name and telephone number. As

a result, the operation returns a confirmation whether the table has been

booked or not.

In another ranked list of candidate services that fulfils the second subquery, the

one which has the highest rank contains the following operations:

• FromCoordinatesToCity: Given the geographical coordinates, this operation

returns the name of the city where are allocated the coordinates of certain

point of interest.

• CoordinatesFromAddress: Given an address, this operation returns its geo-

graphical coordinates.

Chapter 1. Introduction 7

• GetDirection: This operation provides instructions on how to reach a destina-

tion. This operation receives two parameters, the coordinates of the starting

point, and the coordinates of the destination.

The module COS takes the operations of both services and compose them. The

execution of the resulting composite service fulfils both Alice’s needs (i.e., booking

a table in the finest restaurant of the city, and knowing the direction to go there).

On that night, while she is enjoying a delightful dinner in Le Meurice restaurant,

Alice is wondering about the weather in the next day. She needs this information

to decide whether she will go to Louvre museum or Euro Disney. One more time,

she uses the system and submits the following query: I want to buy a ticket for Euro

Disney tomorrow if the weather forecast is sunny, otherwise, buy a ticket for Louvre

museum. At this time, Alice’s profile is still the same, however, her new spatial

context information is as follows: coordinates = ”48.8651◦ N, 2.3280◦ E” and date

= ”1/06/2014”.

Similar to the previous query, this one contains three requirements, therefore the

UIQM module splits the query in three subqueries. The first subquery is to buy

a ticket for Euro Disney tomorrow. The second subquery is the weather forecast is

sunny. The last subquery is to buy a ticket for Louvre museum. All three sub-

queries are sent to the module DS, thereby it sends three lists of services to the

module COS. From the list of candidate services that may fulfil the first subquery,

the one which has the highest rank contains the following operation: BuyTick-

ets4EuroDisney, this operation receives as parameters the name of the customer,

the number of required tickets, information of a credit card, etc. As a result, the

operation returns a confirmation whether the transaction has been successfully

finished or not.

In another ranked list of candidate services that may fulfil the second subquery,

the one which has the highest rank contains the following operation: GetWeather-

Forecast, this operation returns the weather for a given city of a certain country,

and for a given date at a given time.

In the ranked list of candidate services that may fulfil the last subquery, the

one which has the highest rank contains the following operation: BuyTick-

ets4LouvreMuseum, this operation receives similar operation as the one to by tickets

for Euro Disney, besides, the result of this operation is the same.

Chapter 1. Introduction 8

In the same way as before, the COS module composes all operations of previous

services. The execution of the resulting composite service fulfils Alice’s require-

ments regarding her condition. Once the process is finished, Alice is ready for the

tourist activities that she has planned to do in the next day, in this scenario she

has bought a ticket for Louvre museum because of the next day shall be raining.

With the above aforementioned system, Alice is able to consume services provided

in the Web, from her mobile devices. Furthermore, service provides do not need to

produce front-end applications, which serve as interfaces to access their services.

However, the back-end process is complex since one service cannot fulfill all user’s

need at one time. This thesis addresses the problem of automated composing

service operations and executing a result of the service composition, so that the

result fulfills specific users’ requirements.

1.3 Problem Definition

To pursue the development of a Service-Oriented system, several characteristic

such as software layers can be used to control the system implementation and

provide a logical application structure [Erl05].

Choreography layer defines a skeleton of communication among all business

participants. The business participants, for example, can be suppliers, merchants

and consumers. A fact behind is that all business participants desire to achieve

certain goals together. Thus, in service-oriented system, the interactions are de-

rived from all participants. They agree on the behavior in terms of messages that

are exchanged among them in a business process.

Orchestration layer refers to a business process that interacts with web ser-

vices. The interactions are derived from the participants in the choreography that

is required to realize and implement the business process. The construction of

the business process is depended on its business logic and execution order of the

interactions. Additional, the process is managed from the perspective of one of

the business participants.

Service layer consists of all atomic and composite services that are available for

the upper layers to integrate them in compositions or use them as part of the

choreography description.

Execution layer comprises of all aspects related to the SOA capabilities such as

Chapter 1. Introduction 9

publish-find-bind, the dynamic invocation of services and execution of composite

services and business processes.

There are two approaches for developing such a system. The first approach is

called a top-down approach. With this method, the system development starts

at Choreography layer to define a common agreement among the participants.

Later, the choreographies are transformed into orchestrations to be executed by

a platform engine. Contrary, a bottom-up approach produces orchestrations from

composing existing services to reach user’s requirements. The user’s requirements

can be in form of either user’s goal behavior such as composite service specification

or user’s goal in propositional.

Our service composition and execution component in E-Tourism system (see in

Section 1.1) is suitable for the bottom-up approach. Since the component has to

compose operations, offered by candidates services, to fulfill users’ needs. Devel-

oping such service-oriented systems with the bottom-up approach have been dis-

cussed for many decades ago. Many previous works present a system framework

covering the above mentioned layers. However, only fews of them have carried out

the system implementation from choreography layer to execution layer; they have

focused on logical composition in orchestration layer.

1.4 Research questions

Since user query is often complex, an operation offered by a web service is unlikely

to fulfill the user query. For example, I want to book a table for 2 people at

the finest restaurant query needs at least 2 operations such as findRestaurant and

bookTable operations combining to answer the query. Therefore, we need a system

performing the composition of service operations. So far, we have discussed in

the previous section that such a system is suitable for the bottom-up approach.

However, we also want the system to support on the fly requests from users.

In other words, the system should be able to generate a custom application as

quickly as possible. To achieve this goal, we divide works happened at design

time from those which happened at implementation time. At design time, an

agent with provided knowledge takes the role of a software designer to design

a workflow of service operations. This is called automated service composition,

which minimizes time consuming and complexity of tasks such as composition

Chapter 1. Introduction 10

requirement analysis. While at the implementation time, we realize that instead

of using the structure or object-oriented programming, an application may be

synthesized from business process languages such as BPEL6 and BPMN7. Since

operations and controls among them in the service composition domain are similar

to tasks and gateways in the business process domain.

The aforementioned issues raise the need for a set of methods and a framework

to effectively develop Automated service composition and execution system. This

dissertation is guided by the following two main research questions including a

subquestions to further structure the main question.

Q1: How to compose services so that the final result of composite service satisfies

users’ needs?

- Which methods provide a flexible and effective way to specify the behavior

of a service composition?

- Which developing system approach (top-down or bottom-up approaches) is

suitable for our service composition system?

- Which techniques can tackle automated service composition?

Q2: How to execute the result of composite service?

- What kind of runtime support mechanisms are required to address service

composition and execution?

- How to transform the resulting composite service into an orchestration model

which includes control and data flows?

- How to acquire parameters from users, which are used in data flow model?

- How to deploy orchestration instance, which is later executed by orchestra-

tion engine?

6Business Process Execution Language (BPEL) is an OASIS standard executable language
for specifying activities within business processes with web services.

7Business Process Model Notation (BPMN) is a graphical representation for determining
business processes in a business process model.

Chapter 1. Introduction 11

1.5 Dissertation aims

According to the research questions, we summarize in this section all contributions

of this dissertation. They cover a research challenge and integration architecture

to give the big picture description of this dissertation. The architecture is depicted

in Figure 1.2 and comprises four different layers. We annotated the architecture to

associate with the specific contributions: (1) the multi-layer model of the service

composite and execution system framework, (2) the abstract composition in logical

layer and (3) the business process generation in composition platform layer. Below,

we comment the contributions:

Figure 1.2: Multi-layer for service composition and execution system

Multi-layer model. The first contribution of this dissertation is a service com-

position model comprising of multiple layers. From the top layer, relevant ser-

vices to fulfill users’ needs can be accessed from service providers in the Ser-

vice layer. In this PhD, we consider web services, which explain operation(s)

with an invocation interface to call these operations. For example, restaurant

service offering two operations8 searchRestaurant:city,type 7→ restaurantName and

bookTable:restaurantName,guestName 7→ confirmationBooking. The next is Logical

8Parameters after colon refer to operation inputs while after arrow are for operation outputs.

Chapter 1. Introduction 12

layer, which contains a logical composition of operations. The operations from the

service layers are assembled into a workflow against user’s goals.

For example, the sequence of calls to searchRestaurant then bookTable is satisfied

against confirmationBooking. However, the generated workflow is not in an ex-

ecutable form, this is why we perform the transformation of the workflow into

an executable business process in the Composition platform layer. The last layer

is the Execution layer, which handles runtime activities such as binding services,

acquiring missing parameters and enacting business process engine.

Logical Layer. To support the development of the service composition compo-

nent, we adopt, in the logical layer, a bottom-up modeling approach and auto-

mated technique for service composition. The planning technique taken from the

artificial intelligent domain is chosen to design an agent for the orchestration of

service operations. Generally speaking, given starting state(s), goal state(s) and a

set of actions, the agent finds a sequence of actions (or abstract plan) that get the

agent from the start(s) to the goal state(s). We propose constraints programming

system being our planning agent to solve service composition problems. Our agent

is capable to generate the abstract plan, which has sequencing, conditioning and

parallelizing controls among abstract service operations. Further details of the

logical layer will be given in Chapter 3.

Composition platform Layer. Since we want to minimize time consuming

for the implementation and execution of service composition, we choose BPMN

as a target execution platform. However, there is a gap between abstract plan

generated from the previous layer and executable BPMN platform. With the

aforementioned problem, this dissertation contributes a novel automated model

checking approach for correctness of user requirements and BPMN specification.

In this layer, a proposed algorithm to transform the abstract plan into BPMN

model. Furthermore, the resulting orchestrations are valid against BPMN specifi-

cation rules. The Composition platform generation are detailed in Chapter 4.

Execution Layer. The BPMN instant generation is involved in this layer. We

implement BPMN model to read the valid semantic BPMN from the previous

layer and we use open sourced APIs of business process modeling to generate

BPMN instant source code. At the same time, all input parameters are required

for executing the BPMN instant. These issues on the parameter acquiring and the

BPMN implementation and execution are discussed in Chapter 5.

Finally, we have implemented a prototype to realize our service composition and

Chapter 1. Introduction 13

execution approach as a proof of concept. The prototype illustrates a composition

as a service based on logic language, allowing automated composition generation,

executable platform transformation and execution of composite services. In addi-

tion, we have setup scenarios from E-tourism domain to perform an evaluation of

the prototype. More detail of the implementation is shown in Chapter 5.

1.6 Dissertation outline

This dissertation is organized as follows:

• Chapter 2 is divided in two sections. Section 1 comprises essential informa-

tion as the background of the service composition context. We start with the

question of why a cooperation among participants is important. The concept

of Business-to-business transaction is introduced. Examples of B2B system

are mentioned. Afterward, we come across the technical information of how

to invent such system. Service-oriented computing, web service and seman-

tic web service are discussed. Section 2 details the related work on service

composition. We classify the work into three levels (framework level, logical

level and business process generation level) as part of the contributions.

• Chapter 3 presents an overview of our logical layer to automated workflow

of Abstract service composition system. The overall requirements of the

system are elicited. Since we see service composition problem as planning

problem, we separate the system into two processes: Transformer process

and Planner process. The Transformer changes the user’s context and query

into planning problem and transforms a list of service operations into a set

of possible actions. The Planner shall try to reason the updated state of the

given actions to obtain a workflow of actions, which satisfies the planning

problem. We demonstrate our algorithms of the proposed system with one

scenario from the motivating examples in Section 1.2.

• Chapter 4 presents our composition platform layer to validate semantic

BPMN model of the composite platform generation system. The objec-

tive of the system is to analyze and check the properties of derived BPMN

model from the workflow of abstract service composition system. Therefore,

Chapter 1. Introduction 14

a model representing BPMN process in Prolog language is proposed in this

chapter. Two processes of BPMN Transformer and BPMN Validation re-

spectively are presented and detailed. We demonstrate our algorithms of

the proposed system with the same scenario used in Chapter 3.

• Chapter 5 presents implementation of our system for a proof of concept. It

covers the abstract service composition system in Chapter 3, the composite

platform generation system in Chapter 4 and the parameter monitor and

BPMN execution components happened in the execution layer. We present

meta-model used to predefined objects of our proposed system. Finally, we

show the experiments and results of our setup scenarios from Chapter 1.

• Chapter 6 concludes the research and offers future research recommenda-

tions.

Chapter 2

Background and State of the Art

Contents

2.1 B2B Interactions . 16

2.1.1 Framework Layers . 18

2.2 Service-Oriented Computing 19

2.2.1 Web Service . 21

2.2.2 Semantic Web Service 27

2.3 Service Composition . 32

2.3.1 Web service composition life cycle 33

2.3.2 Manual Approaches . 34

2.3.3 Automatic approaches 37

2.3.4 Existing Approaches . 41

2.4 Summary . 48

Abstract. This Chapter describes background knowledge, concepts rele-

vant to B2B interactions, Service-Oriented Architecture (SOA), web services

and service composition approaches. In this Chapter, we present idea and

existing research achievement in automated service composition and execu-

tion framework.

Research on service composition system tackles the problem of developing exten-

sible and stable applications that satisfy some user’s needs. It incorporates works

15

Chapter 2. Background and State of the Art 16

from several disciplines such as analysis and inference, modeling, transforming,

aggregating, validating, testing as well as service composition. This chapter de-

scribes background and related work in four main research categories:B2B in-

teractions, Service-Oriented Computing, Web service, Semantic Web service and

Service Composition. Section 2.1 discusses the concept of B2B interactions which

are used to describe how business partners exchange all products and/or service

transfers. In Section 2.2, we detail Service-Oriented Architecture (SOA) which is

the grounded in the idea of service composition, web services, which is one of SOA

technologies, how to construct and access web services (architecture and tech-

nologies related). Semantic web services which significantly facilitate automated

service discovery, service composition and service execution are also discussed. Fi-

nally in Section 2.3, we introduce service composition, which is the core of our

work. We start with the life cycle of service composition illustrated to realize the

process of constructing software or application from service components. Then a

discussion between manual service composition and automated service composi-

tion is raised. However, our work is dominated by automated service composition

approach (see Section 1.4). We explore Artificial Intelligent (AI) planning tech-

nique to deal with the automated service composition problem. The chapter con-

cludes by highlighting the shortcoming of the existing approaches based on service

composition.

2.1 B2B Interactions

The growth of Electronic commerce (or called E-commerce) had been driven along

with the growth of the Web [Dog98, SBe00]. The first generation of Web-based

E-commerce was Business-to-Customer (B2C) Applications. These applications

create online channels between businesses and customers to do activities of busi-

nesses in selling products and/or services. For example, someone purchasing some

books from amazon.co.uk or ordered CDs/DVDs from play.com. However, in order

to have these B2C transactions run smoothly and efficiently, the businesses might

need to perform some establishing and supporting actions such as procurement,

human resources, marketing, sales, supply chain and manufacturing. For example,

when receiving orders from customers, Amazon company contacts and purchases

Chapter 2. Background and State of the Art 17

the ordered books from publisher companies. Such actions, most of the time, oc-

cur in Business-to-Business (B2B) interactions. The B2B E-commerce interactions

describe all transactions of products and/or services between businesses.

Since network brings freely communication between enterprises via the web to

achieve business integration of complementary establishment and beneficial coop-

eration. Buyers and sellers on B2B internet-based transactions reduce a lot of

resources and time in order to complete the entire business process from business

establishment till customer service1.

However, some challenges have appeared on B2B interactions. Consider guest

house providing customers with a variety of room types such as single, double and

family. To run its business, the guest house sets up four systems (Payroll, Booking,

Time-stamp and Billing systems). Each sub-system has its own user interfaces

and databases. The payroll system is for calculating salaries for the guest house’s

working staffs. The booking system deals with room reservations for customers.

The time-stamp system monitors and records time when the staff members punch

in/out the clock. And the billing system is for issuing customers’ quotations and

receipts. So far, customers fill check-in, check-out dates and number of guests

on the guest house’s web site. The system will provide a list of available rooms

including room description, photos and prices. After selecting the desired rooms,

customers finish up the payment and receive back the room receipts.

The challenge in such setting this business would be to enable the system to

interoperate to each others. For instance in guest house example, the generation

of customers’ bills retrieves the number of nights the customers stayed in the guest

house from the booking system and calculation of staffs’ wages depends on their

working hours recorded by the time-stamp system.

However, same problems of connectivity among applications might occur. Differ-

ent systems may have incompatible protocol connectivities. For example, billing

application is DCOM2 computer program written in Visual Basic language while

booking room application is written in Java programming language which uses

Java RMI3.

1http://faqb2b.blog.com/what-is-b2b/
2Distributed Component Object Model (DCOM) is a platform-independent, distributed,

object-oriented system for creating binary software components that can interact.
3Java Remote Method Invocation (Java RMI) enables the programmer to create distributed

Java technology-based to Java technology-based applications possibly on different hosts.

Chapter 2. Background and State of the Art 18

Figure 2.1: The guest house system relying on ESB 7

To deal with the above mentioned interoperability problem, Enterprise Service

Buses (ESB) approach was introduced to handle the communication among appli-

cations using message over a network [ESB10]. Those messages could use several

supports: from the heavy SOAP4 specification to the REST5 lightweight principle,

even RPC6 is a possible support for messaging in an ESB. In Figure 2.1, we illus-

trate the guest house system with an integration of the Payroll sub-system, the

Booking sub-system, the Time-stamp sub-system and Billing sub-system under

ESB architecture.

2.1.1 Framework Layers

In spite of the ESB offered the solution of an interconnection among diverse ap-

plications over the network, it deals with only communication level. To run B2B

application successfully, business partners need to work together on interactions

layers. Interactions in B2B application occur in three layers: communication,

content and business process layers [MBB+03]:

4Simple Object Access protocol (SOAP) is a protocol specification for exchanging structured
information in the implementation of web services in computer networks.

5Representational State Transfer (REST) is a software architecture style consisting of guide-
lines and best practices for creating scalable web services.

6Remote procedure call (RPC) is an inter-process communication that allows a computer
program to cause a subroutine or procedure to execute in another address space.

7inspired from http://www.fiorano.com/products/ESB-enterprise-service-bus/Fiorano-ESB-
enterprise-service-bus.php

Chapter 2. Background and State of the Art 19

• Communication layer offers standard protocols for exchanging messages

among remotely located partners. It is possible that partners use distinct

proprietary communication protocols. In this case, gateways should be used

to translate messages between heterogeneous protocols.

• Content layer provides languages and models to describe and organize

information in exchanging messages to be standard and understood by a

machine. The content interactions require that the involved system under-

stand the semantics of content and syntax of types in documents. XML for

instance, particularly XML Schema, can handle communication formatting

of a given message.

• Business process layer: A business process (or a workflow) is a struc-

tured and measured set of activities designed to produce a specified output

for a particular customer or market [Dav93]. However in B2B interaction do-

main, the designed activities may outsource the services from other business

process. The ambiguities such as what an exchanged message may mean,

what actions are allowed and what response are expected may occur. Thus

the semantic of interactions among all business partners must be defined

well. This layer addresses the conversational interactions (i.e, joint business

process) among services.

This thesis follows the layers (Communication, Content, and Business process

layers) in B2B interaction framework [MBB+03] to pursue the objectives of an

automated service composition and execution framework as stated in chapter 1.

The rest of this chapter continues with Service-oriented computing, Web service

and Semantic web service in Section 2.2 covering aspects of the communication and

content layers in B2B interactions. While the service composition is introduced in

Section 2.3 to express techniques and technologies used to build the control and

data flows in business process layer.

2.2 Service-Oriented Computing

The principle idea behind service computing is to create a software application

by reusing existing other software applications. The program can inter-operate

with existing software components to obtain the objective goal. However, in order

Chapter 2. Background and State of the Art 20

to achieve this goal, inter-operating components rules shall be strictly complied.

These rules conform to Service-Oriented Computing (SOC).

Service-Oriented Computing (SOC) is the computing paradigm that utilizes ser-

vices as fundamental elements for developing applications/solutions [PvdH07].

The size of application development is diverse from services within an computer

program to service applications inter-acting across enterprises.

SOC addresses these problems by providing the abstractions and tools to model

the information and relate the models, construct processes over the systems, assert

and guarantee transactional properties, add flexible decision-support, and relate

the functioning of the component software systems to the organizations that they

represent [HS05].

To build the software application, SOC relies on the Service Oriented Architecture

(SOA), which is a way of reorganizing software application and infrastructure in

to a set of interacting services [PvdH07]. A definition of SOA is given below.

SOA is an architectural paradigm for components of a system and in-

teractions or patterns between them such that a component offers a

service that queue in a state a readiness and other components may

invoke the service in compliance with a service contract. [Nic05]

What is the definition of service? ”Services are self-describing, open components

that support rapid, low-cost composition of distributed applications” in another

definition by the same author [PvdH07]. Service is a business function, which is

implemented in a software format and supplied with a widely intelligible formal

documented interface [PvdH07].

General speaking, SOA is an architecture that governs a set of services exposed

by service provider to achieve the desired end results for a service consumer. Con-

sequently, to satisfy these requirements above, services should be subjected to the

following major requirements [PvdH07]:

• Technology neutral. Service must not rely on or be bounded to concrete

implementation technologies and standards utilized at both client and ser-

vice sides. Instead services have to be operated by mechanisms (protocols,

descriptions and discovery mechanisms) that comply with widely recognized

standards.

Chapter 2. Background and State of the Art 21

• Loosely coupled. No knowledge regarding any internal structures both at

client and service sides is required for implementing an application that calls

service operations.

• Support location transparency. A service should have its description and

location information stored in a repository and be accessible by a variety of

clients that can locate and invoke it irrespectively of its actual location.

SOA can be implemented using a wide range of technologies such as J2EE8, .NET9

and many others. However, the most popular and complete implementation of

SOA is based on Web Services10. We give background of web service and its

terminology, standards and specification below.

2.2.1 Web Service

Web services were introduced at the beginning of the 2000s. At that era, all

predictions agreed that B2B E-commerce will be booming in worth billions of dollar

in new investment [BMB+00]. Since Cheap connectivity and ease of advertising of

data and services on the Web created tremendous opportunities for organizations

of any size to diversify their customer-base and become truly global [BEB98].

Therefore, the needs of business protocol on the web (or web services) had been

originated. In other words, web services brings a standard for business partners

communication over a network.

Before the Web service technology, the Business to Business (B2B) applies a con-

ventional middle-ware platform to do commercial transactions among business

partners [ACKM04]. The transactions are fully automated between companies.

For instance, a restaurant owner uses the conventional middle-ware platform to

offer restaurant reservation for consumers. Therefore, instead of manually process

a table booking, customer fills a request form and places the booking electronically

directly with the restaurant provider. At restaurant provider side, the booking can

then be immediately processed and a confirmation sent to the customer. This ap-

proach facilitates the business partners and is less prone to human errors that

might occur in business workflow.

8http://java.sun.com/j2ee/
9www.microsoft.com/net/

10http://www.w3.org/2002/ws/

Chapter 2. Background and State of the Art 22

However, the conventional middle-ware platform has limitation of the integration

of several autonomous and heterogeneous systems. The companies lack of stan-

dardization across concrete middle-ware platforms. There are some issues regard-

ing the centralized middle-ware or third party trustworthy. Every company does

want to keep confidential its business transaction . The solution for this problem

is a point-to-point integration across companies. This means that all companies

need to have a co-agreement on middle-ware protocol and infrastructure. However,

this solution will be more costly if there are different partners and each partner

require the use of a different middle-ware platform.

The described limitations of the middle-ware platforms are solved by an approach

of application integration technology using web services. Since each web service

has an interface that describes a collection of operations accessible on HTTP11

protocol internet via standardized XML12 messaging, many of business partners

are interested in and agree to adopt web services as an application integration

technology.

We quote below definition of Web service given by the World Wide Web consor-

tium (W3C).

”A web service is a software system designed to support interoperable

machine-to-machine interaction over a network. It has an interface de-

scribed in a machine-processable format (specifically WSDL13). Other

systems interact with the Web service in a manner prescribed by its

description using SOAP14-messages, typically conveyed using HTTP

with an XML serialization in conjunction with other Web-related stan-

dards.”

Thus with web service technology, each business partner can expose the existing

functions in any technology and platform on the network. Later, other applica-

tions can access the exposed functions. In other words, web services bring the

application interoperability. In addition, the cost for implementing Web service is

much less than the mentioned middle-ware platform. One company can implement

Web service using an existing low cost internet. Since web services use SOAP over

HTTP protocol for the communication.

11http://www.w3.org/Arena/webworld/httpwgcharter.html
12http://www.w3.org/TR/REC-xml/
13http://www.w3.org/TR/wsdl
14http://www.w3.org/TR/soap/

Chapter 2. Background and State of the Art 23

2.2.1.1 Architecture

The following subsections give more details on how SOA works with web service.

Figure 2.2: Web service architecture

Web service architecture describes the interactions between three roles which are

the service requestor, the service provider and the service registry. The service

requestor looks for the targeted services from the advertised services in the ser-

vice registry. If the targeted services are found, the service requestor will invoke

and bind service port types from service provider with its operations. The web

service architecture model shown in Figure 2.2 illustrates the interaction between

components, component’s operations and artifacts.

Roles in web service architecture

• Service Requestor is any application or service which wants to use partic-

ular services published by service provider. After locating desired service in

service registry offering various operations, the service requestor binds the

services to the service providers. So that the service requestor is able to

invoke the web services.

• Service Provider is a service owner which wants to publish/expose its

services accessible on the internet towards other applications. The service

provider hosts both implemented service and its web service description

(WSDL) document. The WSDL document (or simply contract of service)

Chapter 2. Background and State of the Art 24

describes service access information such as interface, data types, binding

information and network location.

• Service Registry is a searchable respository of a set of advertised service

descriptions. The service registry allows service providers to publish their

service descriptions and then classify the service descriptions according to

searching criteria such as type of services and type of businesses.

2.2.1.2 Technology

As described in web service architecture, one of the artifacts which plays an impor-

tant role is the Web Service Description Language (WSDL). This section explains

the most significant details of WSDL.

W3C gives the definition of WSDL ”that is an XML format for describing network

services as a set of endpoints operating on messages containing either document-

oriented or procedure-oriented information. The operations and messages are de-

scribed abstractly, and then bound to a concrete network protocol and message

format to define an endpoint.” [CCMW01]

A WSDL document defines services as a collection of network endpoints, or ports.

Each port define a abstract set of operations, each operation specifies data ex-

changed between input messages and output messages. The data type of each

message can be either simple type or complex type. A port is defined by associ-

ating a network address with a reusable binding, and a collection of ports define

a service.

In Figure 2.3 is depicted an interface of WeatherForecast service. The Weather-

Forecast service provides information of weather forecast for given specific date

and city.

Figure 2.3: WeatherForecast service interface

To detail the WeatherForecast service, we show in Listing 2.1 its fragment example

code (line 1-58) of its WSDL document. Under the element portType Weatherfore-

castPortType (line 35), the operation GetWeatherforecast is defined. The operation

Chapter 2. Background and State of the Art 25

GetWeatherforecast has two inputs and one output under message GetWeather-

RequestInput (line 27) and message GetWeatherRequestOutput respectively. The

input message refers to element WeatherRequest (line 13) which is correspond

to element date typed Date (line 15) and element cityName typed string (line

16). The output message refers to element WeatherForecast (line 19) which is

correspond to element WeatherforecastInfo typed String (line 21). To invoke this

service Weatherforecast, the element binding WeatherforecastSoapBinding (line

42) defines protocol, data format for operation and messages in Weatherforecast-

PortType. The element port WeatherforecastPort (line 53) is defined by element

service WeatherforecastService (line 54) to specify an communication address

”http://example.com/weatherforecast”.

1 <?xml version ="1.0"? >

2 <definitions name=" WeatherForecast"

3

4 targetNamespace ="http :// example.com/weatherforecast.wsdl"

5 xmlns:tns="http :// example.com/weatherforecast.wsdl"

6 xmlns:xsd1="http :// example.com/weatherforecast.xsd"

7 xmlns:soap="http :// schemas.xmlsoap.org/wsdl/soap/"

8 xmlns="http :// schemas.xmlsoap.org/wsdl/">

9

10 <types >

11 <schema targetNamespace ="http :// example.com/weatherforecast.xsd"

12 xmlns="http ://www.w3.org /2000/10/ XMLSchema">

13 <element name=" WeatherRequest">

14 <complexType >

15 <element name="date" type="date"/>

16 <element name=" cityName" type=" string"/>

17 </complexType >

18 </element >

19 <element name=" WeatherForecast">

20 <complexType >

21 <element name=" weatherforecastInfo" type=" string"/>

22 </complexType >

23 </element >

24 </schema >

25 </types >

26

27 <message name=" GetWeatherRequestInput">

28 <part name="body" element ="xsd1:WeatherRequest "/>

29 </message >

30

31 <message name=" GetWeatherForecastOutput">

32 <part name="body" element ="xsd1:WeatherForecast "/>

33 </message >

34

35 <portType name=" WeatherForecastPortType">

36 <operation name=" GetWeatherForecast">

37 <input message ="tns:GetWeatherForecastInput "/>

Chapter 2. Background and State of the Art 26

38 <output message ="tns:GetWeatherForecastOutput "/>

39 </operation >

40 </portType >

41

42 <binding name=" WeatherForecastSoapBinding" type="tns:WeatherForecastPortType">

43 <soap:binding style=" document" transport ="http :// schemas.xmlsoap.org/soap/http"/>

44 <operation name=" GetWeatherForecast">

45 <soap:operation soapAction ="http :// example.com/GetWeatherForecast "/>

46 <input ><soap:body use=" literal"/></input >

47 <output ><soap:body use=" literal "/></output >

48 </operation >

49 </binding >

50

51 <service name=" WeatherForecastService">

52 <documentation >Weather Forecast service </ documentation >

53 <port name=" WeatherForecastPort" binding ="tns:WeatherForecastBinding">

54 <soap:address location ="http :// example.com/weatherforecast "/>

55 </port >

56 </service >

57

58 </definitions >

Listing 2.1: WeatherForecastRequestService in WSDL document

Thus service providers advertise their web services by registering the WSDL doc-

uments at some service registry. Service requestors can then process service dis-

covery for the particular web services at the same service registry and later bind

service endpoints to their applications. Under B2B interaction techniques with

Web services, the involved partners benefit advantages including coupling among

partners, heterogeneity and autonomy. Web services allow interactions at the

communication layer by using SOAP as a messaging protocol. The adoption of

an XML-based messaging over well-established protocol (e.g., HTTP, SMTP15,

and FTP16) enables loosely coupled communication among heterogeneous systems

[MBB+03]. The heterogeneous applications may be wrapped and exposed as web

services. In term of autonomy, Web services are accessible through published in-

terfaces. This enables the partners have more local control over implementation

and operation of services, and flexibility to change their processes without affecting

each other [MBB+03].

Nonetheless, WSDL documents lack providing data format, data models and lan-

guages which help the involved systems to understand the semantics of content

and types of business document. From the guest house system, if the billing sys-

tem receives a message form the booking room system, the billing system must

15http://tools.ietf.org/html/rfc5321
16http://tools.ietf.org/html/rfc959

Chapter 2. Background and State of the Art 27

determine whether the content in the message represent a request for a receipt

or a room quotation. In addition, the so far processes such as service discovery

and service composition are done manually which might be error prone and time

consuming. The semantic approach for web services is given in the next section,

overcome some of these above mentioned problems.

2.2.2 Semantic Web Service

There are increased web accessible programs, databases, and sensors primarily in

B2B and e-commerce applications [MSZ01]. Since one web service cannot com-

plete a business process, the involved applications often realize automation of web

service interoperation.

In this dissertation, we concern an automation of web service interoperation for

two reasons. The first reason is to facilitate the Discovery System (DS) searching

for composable service operations subjective to user’s requirements expressed in

free text queries [CC14]. The second reason is to apply planning technique for the

orchestration of returned service operations; each operation has an interface with

input and output entities from a semantic data model.

The realization of the Semantic Web comes from the development of new content

markup languages, such as OIL [FHH+01], DAML+OIL17 and OWL-S18. These

languages have a well-defined semantics and enable the markup and manipulation

of complex taxonomic and logical relations between entities on the web. A

fundamental component of the semantic web will be the markup of web services

to make them machine-interpretable, use-apparent, and computer-ready. So

computer agents can reason about web services to perform automated web service

discovery, web service composition and interoperation and then web service

execution [MSZ01]. In this section, we present and compare two dominant

approaches for Semantic web services: Semantic Annotations for WSDL and

XML Schema (SAWSDL) and Semantic Markup for Web Services (OWL-S).

SAWSDL is a W3C Recommendation which defines it as mechanisms us-

ing which semantic annotations can be added to WSDL components [FL07].

SAWSDL standard deals with problems regarding to data heterogeneity in WSDL

17http://www.daml.org/2001/03/daml+oil-index
18http://www.w3.org/Submission/OWL-S/

Chapter 2. Background and State of the Art 28

2.0 [CMRW07]. Two WSDL documents can have similar descriptions while

meaning totally different things, or they can have very different descriptions yet

similar meaning. Therefore, SAWDL provides mechanisms by which concepts

from the semantic models that are defined either in between or outside the WSDL

document can be referenced from within WSDL components as annotations.

These semantics when expressed in formal languages can help disambiguate the

description of web services during the automated discovery and composition of

the web services [FL07].

Consider the Listing 2.2 fragment code modified from the previous Weather-

ForecastRequest WSDL example (introduced in Listing 2.1). This service offers

the requesters to get the weather forecast for a given date and city (see Figure

2.3, Page 24). To realize a semantic annotation for WSDL, the service provides

an annotation sawdl:modelReference of a semantic model named SampleOntology

points to the matching attributes defined in WSDL. For example, element named

date refers to the vocabulary date (line 13), element named cityName refers to

the vocabulary city (line 15) and element named WeatherForecastInfo refers to

the vocabulary weather (line 21). Thus if the service request WSDL is annotated

using the same semantic model, a semantic engine could use this information to

match the two web services. Without the semantic annotations, the matching

engine may not have sufficient information to identify them as related terms

unless explicitly specified.

1 <wsdl:description

2 targetNamespace ="http :// example.com/wsdl/weatherforecastRequestSevice /"

3 xmlns="http :// example.com/wsdl/weatherforecastRequestSevice /"

4 xmlns:wsdl="http ://www.w3.org/ns/wsdl"

5 xmlns:xsd="http ://www.w3.org /2001/ XMLSchema"

6 xmlns:sawsdl ="http :// www.w3.org/ns/sawsdl">

7

8 <wsdl:types >

9 <xsd:schema targetNamespace ="http :// example.com/wsdl/weatherforecastRequestSevice">

10 <xsd:element name=" WeatherRequest">

11 <xsd:complexType >

12 <xsd:element name="date" type="xsd:date"

13 sawsdl:modelReference ="http :// example.com/ontologies/SampleOntology#date"/>

14 <xsd:element name=" cityName" type="xsd:string"

15 sawsdl:modelReference ="http :// example.com/ontologies/SampleOntology#city"/>

16 </xsd:complexType >

17 </xsd:element >

18 <xsd:element name=" WeatherForecast">

19 <xsd:complexType >

20 <xsd:element name=" WeatherForecastInfo" type="xsd:string"

21 sawsdl:modelReference ="http :// example.com/ontologies/SampleOntology#weather"/>

Chapter 2. Background and State of the Art 29

22 </xsd:complexType >

23 </xsd:element >

24 </xsd:schema >

25 </wsdl:types >

26

27 <wsdl:interface name=" WeatherForecastRequestService">

28 <wsdl:operation name=" WeatherForecastRequestOperation"

29 pattern ="http ://www.w3.org/ns/wsdl/in-out">

30 <wsdl:input element =" WeatherForecasteRequestServiceRequest "/>

31 <wsdl:output element =" WeatherForecastRequestServiceResponse "/>

32 </wsdl:operation >

33 </wsdl:interface >

34

35

36 </wsdl:description >

Listing 2.2: WeatherForecastRequest SAWSDL Service

OWL-S is an OWL based ontology for describing Semantic Web Services. It will

enable users and software agents to automatically discover, invoke, compose and

monitor web resources offering services under specified constraints [MBH+04]. To

facilitate the OWL-S capacities above mentioned, OWL-S organizes the service

structure into three parts which are service profile, process model and service

grounding. To give more details of OWL-S structure, the same WeatherForcas-

tRequest service, but formatted in OWL-S form is illustrated in Listing 2.3. The

service profile part (line 26-39) is used to describe what the service does, which

includes the information such as the service name and description, quality of

service, publisher and contact information. The process part (line 40-56) describes

the process type and its elements (a set of inputs, outputs, preconditions,

effects of the service execution) inside the process. In the example code, the

WeatherForcastRequest service defines its process type as AtomicProcess that

is binded to a single operation GetWeatherForecastPrice. Furthermore, OWL-S

services offer two more process types to support complex business processes. The

former (called CompositeProcess) is a process that requires multiple actions from

other process, in which directed by one of control constructs such as sequence,

iterate, choice and if-then-else. The latter (called SimpleProcess) is a process that

provides an abstraction mechanism that offers multiple views of the same process

[MBH+04]. Finally, the service grounding (line 65-113) specifies the interaction

information with the service such as communication protocols, message formats

and port number.

1 <?xml version ="1.0" encoding ="WINDOWS -1252"? >

Chapter 2. Background and State of the Art 30

2 <rdf:RDF xmlns:owl = "http :// www.w3.org /2002/07/ owl#"

3 xmlns:rdfs = "http :// www.w3.org /2000/01/rdf -schema #"

4 xmlns:rdf = "http ://www.w3.org /1999/02/22 -rdf -syntax -ns#"

5 xmlns:service = "http ://www.daml.org/services/owl -s/1.1/ Service.owl#"

6 xmlns:process = "http ://www.daml.org/services/owl -s/1.1/ Process.owl#"

7 xmlns:profile = "http ://www.daml.org/services/owl -s/1.1/ Profile.owl#"

8 xmlns:grounding = "http ://www.daml.org/services/owl -s/1.1/ Grounding.owl#"

9

10 xml:base = "http ://127.0.0.1/ services /1.1/ weather_forecast_service.owls">

11

12 <owl:Ontology rdf:about="">

13 <owl:imports rdf:resource ="http ://127.0.0.1/ ontology/Service.owl" />

14 <owl:imports rdf:resource ="http ://127.0.0.1/ ontology/Process.owl" />

15 <owl:imports rdf:resource ="http ://127.0.0.1/ ontology/Profile.owl" />

16 <owl:imports rdf:resource ="http ://127.0.0.1/ ontology/Grounding.owl" />

17 <owl:imports rdf:resource ="http ://127.0.0.1/ ontology/weather.owl" />

18 </owl:Ontology >

19

20 <service:Service rdf:ID=" WEATHER_FORECAST_SERVICE">

21 <service:presents rdf:resource ="# WEATHER_FORECAST_PROFILE "/>

22 <service:describedBy rdf:resource ="# WEATHER_FORECAST_PROCESS "/>

23 <service:supports rdf:resource ="# WEATHER_FORECAST_GROUNDING "/>

24 </service:Service >

25

26 <profile:Profile rdf:ID=" WEATHER_FORECAST_PROFILE">

27 <service:isPresentedBy rdf:resource ="# WEATHER_FORECAST_SERVICE "/>

28 <profile:serviceName xml:lang="en">

29 WEATHER_FORECAST Service

30 </profile:serviceName >

31 <profile:textDescription xml:lang="en">

32 This service returns the information of weather forecast given by date and city name.

33 </profile:textDescription >

34 <profile:hasInput rdf:resource ="# _DATE"/>

35 <profile:hasInput rdf:resource ="# _CITY"/>

36 <profile:hasOutput rdf:resource ="# _WEATHERINFO "/>

37

38 <profile:has_process rdf:resource =" WEATHER_FORECAST_PROCESS" />

39 </profile:Profile >

40

41 <process:AtomicProcess rdf:ID=" WEATHER_FORECAST_PROCESS">

42 <service:describes rdf:resource ="# WEATHER_FORECAST_SERVICE "/>

43 <profile:hasInput rdf:resource ="# _DATE"/>

44 <profile:hasInput rdf:resource ="# _CITY"/>

45 <profile:hasOutput rdf:resource ="# _WEATHERINFO "/>

46 </process:AtomicProcess >

47

48 <process:Input rdf:ID="_DATE">

49 <process:parameterType rdf:datatype ="http :// www.w3.org /2001/ XMLSchema#anyURI">

50 http ://127.0.0.1/ ontology/weather.owl#date </ process:parameterType >

51 <rdfs:label ></rdfs:label >

52 </process:Input >

53 <process:Input rdf:ID="_CITY">

54 <process:parameterType rdf:datatype ="http :// www.w3.org /2001/ XMLSchema#anyURI">

55 http ://127.0.0.1/ ontology/weather.owl#city </ process:parameterType >

56 <rdfs:label ></rdfs:label >

Chapter 2. Background and State of the Art 31

57 </process:Input >

58

59 <process:Output rdf:ID=" _WEATHERINFO">

60 <process:parameterType rdf:datatype ="http :// www.w3.org /2001/ XMLSchema#anyURI">

61 http ://127.0.0.1/ ontology/weather.owl#weather </ process:parameterType >

62 <rdfs:label ></rdfs:label >

63 </process:Output >

64

65 <grounding:WsdlGrounding rdf:ID=" WEATHER_FORECAST_GROUNDING">

66 <service:supportedBy rdf:resource ="# WEATHER_FORECAST_SERVICE "/>

67 <grounding:hasAtomicProcessGrounding >

68 <grounding:WsdlAtomicProcessGrounding rdf:ID=" WEATHER_FORECAST_AtomicProcessGrounding "/>

69 </grounding:hasAtomicProcessGrounding >

70 </grounding:WsdlGrounding >

71

72 <grounding:WsdlAtomicProcessGrounding rdf:about ="# WEATHER_FORECAST_AtomicProcessGrounding">

73 <grounding:wsdlDocument rdf:datatype ="http :// www.w3.org /2001/ XMLSchema#anyURI">

74 http ://127.0.0.1/ wsdl/WeatherForecast.wsdl </ grounding:wsdlDocument >

75 <grounding:owlsProcess rdf:resource ="# WEATHER_FORECAST_PROCESS "/>

76 <grounding:wsdlOperation >

77 <grounding:WsdlOperationRef >

78 <grounding:operation rdf:datatype ="http ://www.w3.org /2001/ XMLSchema#anyURI">

79 http ://127.0.0.1/ wsdl/WeatherForecast/GetWeatherForecastPrice </ grounding:operation >

80 <grounding:portType rdf:datatype ="http ://www.w3.org /2001/ XMLSchema#anyURI">

81 http ://127.0.0.1/ wsdl/WeatherForecast/WeatherForecastPortType </ grounding:portType >

82 </grounding:WsdlOperationRef >

83 </grounding:wsdlOperation >

84 <grounding:wsdlInputMessage rdf:datatype ="http :// www.w3.org /2001/ XMLSchema#anyURI">

85 http ://127.0.0.1/ wsdl/WeatherForecast/GetWeatherForecastInput

86 </grounding:wsdlInputMessage >

87 <grounding:wsdlOutputMessage rdf:datatype ="http ://www.w3.org /2001/ XMLSchema#anyURI">

88 http ://127.0.0.1/ wsdl/WeatherForecast/GetWeatherForecastOutput

89 </grounding:wsdlOutputMessage >

90 <grounding:wsdlInput >

91 <grounding:WsdlInputMessageMap >

92 <grounding:owlsParameter rdf:resource ="# _DATE"/>

93 <grounding:wsdlMessagePart rdf:datatype ="http ://www.w3.org /2001/ XMLSchema#anyURI">

94 http ://127.0.0.1/ wsdl/WeatherForecast/_DATE </ grounding:wsdlMessagePart >

95 <grounding:xsltTransformationString >None (XSL)</grounding:xsltTransformationString >

96 </grounding:WsdlInputMessageMap >

97 </grounding:wsdlInput >

98 <grounding:wsdlInput >

99 <grounding:WsdlInputMessageMap >

100 <grounding:owlsParameter rdf:resource ="# _CITY"/>

101 <grounding:wsdlMessagePart rdf:datatype ="http ://www.w3.org /2001/ XMLSchema#anyURI">

102 http ://127.0.0.1/ wsdl/WeatherForecast/_CITY </ grounding:wsdlMessagePart >

103 <grounding:xsltTransformationString >None (XSL)</grounding:xsltTransformationString >

104 </grounding:WsdlInputMessageMap >

105 </grounding:wsdlInput >

106 <grounding:wsdlOutput >

107 <grounding:WsdlOutputMessageMap >

108 <grounding:owlsParameter rdf:resource ="# _WEATHER"/>

109 <grounding:wsdlMessagePart rdf:datatype ="http ://www.w3.org /2001/ XMLSchema#anyURI">

110 http ://127.0.0.1/ wsdl/WeatherForecast/_WEATHER </ grounding:wsdlMessagePart >

111 <grounding:xsltTransformationString >None (XSL)</grounding:xsltTransformationString > </grounding:WsdlOutputMessageMap >

Chapter 2. Background and State of the Art 32

112 </grounding:wsdlOutput >

113 </grounding:WsdlAtomicProcessGrounding >

114

115 </rdf:RDF >

Listing 2.3: WeatherForecastRequest OWL-S Service

Discussion

Since a WSDL document lacks declaring semantic data model that helps other

machines to understand the meaning of document contents, we drop WSDL and

consider choices (OWL-S and SAWSDL) on the semantic web service approach.

Overall both OWL-S and SAWSDL can annotate elements of a WSDL interface

with entities from a semantic data model, which facilitate automated service dis-

covery and service composition. However, we choose OWL-S as service description

for our Web service composition framework. As semantic web services that the

Discovery system (DS) uses for its searching model is OWL-S services. Addition,

OWL-S standards define ontologies for describing the capabilities and choreogra-

phies of stateful web services (choreographies being the sequences of messages

exchanged between a client and a service during an interaction [DS12]).

2.3 Service Composition

In general, service composition is the method to create new services or applications

by composing existing services. The output of service composition process is a

composite service which delivers desired functions. Since users’ requirements from

the E-tourism scenarios are complex, an execution of sole service is unlikely to

fulfill the users’ needs. Thus service composition plays a part in the procedure of

assembling the existing services if relevant to the users’ needs.

We consider the service composition problem as the constructing business process

problem in B2B interactions. Since both of them have a common goal to produce

a structured and measured set of activities designed for a particular customer

or market [Dav93]. As composite service and workflow have a common goal to

build up a set of activities and services respectively to produce a specified output

for a particular requirement, we use the terms composite service and workflow

interchangeably. We also concern in this context of service composition is or-

chestration. The term orchestration model (or simply orchestration) refers to the

Chapter 2. Background and State of the Art 33

part of the composition that specifies the order in which the different component

services should be invoked [ACKM04].

2.3.1 Web service composition life cycle

In this subsection, we discuss how a composite service can be built. Generally, ser-

vice composition process occurs in three subsequent phases: composition, selection

and execution (see in Figure 2.4).

• Composition phase. This phase deals with synthesizing the composition

schema. Given a complex requirement, the composition schema designer de-

composes the requirement to build up the composition schema or workflow

schema. The schema consists of component services and control and data

flow specification. The control flow specification sets up the order in which

the component services should be invoked. Also the condition and/or tim-

ing constraints defined may be interrupt or cancel their execution. While

data flow specification captures the flow of data between component services

[BDFR03]. The composition schema can be constructed either manually at

design time or automatically at run time. Note that if the composite ser-

vice is written up from specific composition language such as eFlow [CS01],

UML-WSC [TDE02] and BPEL [KMCW05], this composite service can later

be executed automatically by a tied execution engine. Otherwise a trans-

formation module is needed to convert composite schema from a graph or

workflow model to executable composite services such as BPEL and BPMN

language.

• Selection phase. In this phase, component services wiring in a composition

schema are bound specific web services. The specific services can be dis-

covered from service registry after the composite schema is formed. The

selection engine finds and matches the advertised service specifications and

the component service’s functions. The result of this phase is an executable

composite service. This service selection can be done either statically or

dynamically. If the specific services are known in advance, alliances are

statically defined. In other words, there is no service selection. The static

approach, generally, works well as long as the web service environment such

as business partners, service functionality and composite requirement do not

Chapter 2. Background and State of the Art 34

or rarely change. In contrary, if the selection of service components hap-

pen at run time, it will be classified as a dynamic services composition. In

other words, the dynamic approach allows the execution system to support

automated discovery, selection and binding of service components.

• Execution phase. In general, service execution governs the order in which

services are invoked, and the conditions under which a certain service may

or may not be invoked. In this phase, the executable composite service is

deployed to create its instance. Next the composite service instance then

allows an invocation by end user then is executed by process execution en-

gine. The execution engine performs monitoring tasks. The tasks includes

logging, execution tracking, performance measuring and exception handling.

[SQV+14].

Figure 2.4: Web service Composition Life Cycle

2.3.2 Manual Approaches

In this section, we discuss a manual web service composition which can be occurred

in Composition phase (see in Figure 2.4). Two different scenarios can be identified

respectively into primitive level and abstract level.

Chapter 2. Background and State of the Art 35

In primitive level, the programmer uses business process languages, such as BPEL

or OWL-S, to specify the composition schema. Consider the Listing 2.4 fragment

BPEL code (line 1-103) of FindFinestRestaurant process. The process receives

FindFinestRestaurantRequest given a coordinates from a client (line 52). Two web

services (FindCity and FindRestaurant) are called in the process to deliver Find-

FinestRestaurantResponse to the client (line 59-100). With these business process

languages, the programmer needs to specify both control flow and data flow of

component services. As the result, the composition schema result is an executable

composite process specification.

1 <?xml version ="1.0" encoding ="utf -8"?>

2

3 <!-- BPEL process -->

4

5 <process name=" FindFinestRestaurant"

6 targetNamespace ="http :// packtpub.com/bpel/findFinestRestaurant /"

7 xmlns="http :// schemas.xmlsoap.org/ws /2003/03/ business -process /"

8 xmlns:bpws="http :// schemas.xmlsoap.org/ws /2003/03/ business -process /"

9 xmlns:ffrp="http :// packtpub.com/bpel/findFinestRestaurant /"

10 xmlns:fcc="http :// packtpub.com/service/findCity /"

11 xmlns:fr="http :// packtpub.com/service/findRestaurant /" >

12

13 <partnerLinks >

14 <partnerLink name=" client"

15 partnerLinkType ="ffrp:findFinestRestaurant"

16 myRole =" findFinestRestaurantService"

17 partnerRole =" findFinestRestaurantServiceCustomer "/>

18

19 <partnerLink name=" FindCity"

20 partnerLinkType ="fcc:findCity"

21 partnerRole =" findCityService "/>

22

23 <partnerLink name=" FindRestaurant"

24 partnerLinkType ="fr:findRestaurant"

25 partnerRole =" findRestaurantService "/>

26 </partnerLinks >

27

28 <variables >

29 <!-- input for this process -->

30 <variable name=" FindFinestRestaurantRequest"

31 messageType ="ffrp:FindFinestRestaurantRequestMessage "/>

32 <!-- input for the Coordinates to City web service -->

33 <variable name=" FindCityRequest"

34 messageType ="fc:FindCityRequestMessage "/>

35 <!-- output from the Coordinates to City web service -->

36 <variable name=" FindCityResponse"

37 messageType ="fc:FindCityResponseMessage "/>

38 <!-- input for Restaurant web services -->

39 <variable name=" RestaurantRequest"

40 messageType ="fr:RestaurantRequestMessage "/>

41 <!-- output from Restaurant -->

Chapter 2. Background and State of the Art 36

42 <variable name=" RestaurantResponse"

43 messageType ="fr:RestaurantResponseMessage "/>

44 <!-- output from BPEL process -->

45 <variable name=" FindFinestRestaurantResponse"

46 messageType ="fr:RestaurantResponseMessage "/>

47 </variables >

48

49 <sequence >

50

51 <!-- Receive the initial request for Find finest restaurant request from client -->

52 <receive partnerLink =" client"

53 portType ="ffrp:findFinestRestaurant"

54 operation =" findFinestRestaurant"

55 variable =" FindFinestRestaurantRequest"

56 createInstance ="yes" />

57

58 <!-- Prepare the input for the Find City Status Web Service -->

59 <assign >

60 <copy >

61 <from variable =" FindFinestRestaurantRequest" part=" coordinates "/>

62 <to variable =" FindCityRequest" part=" coordinates "/>

63 </copy >

64 </assign >

65

66 <!-- Synchronously invoke the Find City Status Web Service -->

67 <invoke partnerLink =" FindCity"

68 portType ="fc:findCity"

69 operation =" findCityFromCoordinates"

70 inputVariable =" FindCityRequest"

71 outputVariable =" FindCityResponse" />

72

73 <!-- Prepare the input for Finest Restaurant Web Service ->

74 <assign >

75 <copy >

76 <from variable =" FindCityResponse" part="city"/>

77 <to variable =" RestaurantRequest" part="city"/>

78 </copy >

79 </assign >

80

81 <!-- Synchronously invoke the Finest Restaurant Status Web Service -->

82 <invoke partnerLink =" findRestaurant"

83 portType ="fr:findRestaurant"

84 operation =" findFinestRestaurant"

85 inputVariable =" RestaurantRequest"

86 outputVariable =" RestaurantResponse" />

87

88 <!-- construct the FindFinestRestaurantResponse -->

89 <assign >

90 <copy >

91 <from variable =" RestaurantResponse" />

92 <to variable =" FindFinestRestaurantResponse" />

93 </copy >

94 </assign >

95

96 <!-- Make a callback to the client -->

Chapter 2. Background and State of the Art 37

97 <invoke partnerLink =" client"

98 portType ="ffrp:ClientCallbackPT"

99 operation =" ClientCallback"

100 inputVariable =" FindFinestRestaurantResponse" />

101 </sequence >

102

103 </process >

Listing 2.4: FindFinestRestaurantProcessBPEL

Conversely, the composition schema is synthesized into an abstract workflow at

abstract level. The abstract workflow determines control and data flow of compo-

nent services in the abstract, without referring to any real services. For instance,

the software designer uses UML activity diagram to build up an abstract service

composite model. UML activity diagrams19 are the most widely used process mod-

eling paradigm, both in conventional middle-ware (workflow) and in web services.

The reason for their success is that, orchestrations are defined by specifying which

operations should be invoked, from the beginning of the execution to its end. This

seems to be the most natural way in which people think of a process, and it is

analogous to how developers code their application [ACKM04].

However, this manual approach is a time-consuming and not suitable for the Ser-

vice composition and execution module in the E-tourism project (see section 1.1).

The module aims to customize an application on-the-fly from existing services.

Therefore we select the automated approach, which is described in the next sub-

section.

2.3.3 Automatic approaches

Generally, an automated approach generates a composite service by aggregating

component services, without human intervention. To deal with the automatic

approach, some approaches present web service automated composition with AI-

planning techniques.

The concept of AI-planning is that planning can be interpreted as a kind of prob-

lem solving, where an agent uses its believes about available actions and their

consequence, in order to identify a solution over an abstract set of possible plans

[RN95]. Another definition of AI-planning based on state transition systems is

19http://www.omg.org/technology/documents/formal/uml.htm

Chapter 2. Background and State of the Art 38

that from deduction theory that the initial conditions together with the domain

axioms (which define the semantics of the operators) and some sequence of actions

imply the goal situation [Pee05].

We select AI-planning as planning technique to deal with the automated service

composition problem. Figure 2.5 illustrates an overall process of automated service

composition based on AI-planning techniques. Note that, inputs, processes and

outputs in the diagram are represented in two different domains: problem domain

written without parenthesis and planning domain written in parenthesis. Given

user query, profile and context and a list of component services in problem domain

are translated into initial and goal states and a set of actions respectively, an agent

can synthesize an abstract plan (or composite service specification) using reference

reasoning methods. As the result, the composition of web services is processed at

run-time.

Figure 2.5: An overall process of automated service composition

Understanding components in AI-Planning domain is important. Since they affect

a resulting plan. The classical view of a plan is a sequence of action instances,

which its execution leads to a state that satisfies the user query. However, the

classical plan might not be sufficient to capture the solutions to complex planning

problem. If the agent does not complete information for constructing a plan, a

conditional plan is required to deal with the possible solutions could arise. Besides

the sequence and conditional plans, there exist several other extensions such as

plans with parallel, branch and loop actions [Pee05]. An AI-planning approach

generally defines a planning problem as the following components:

1. A description of possible actions. The possible actions (or planning

domain) can represent both physical and abstract actions in the world. The

possible actions (or planning domain) can represent both physical and ab-

stract actions in the world. Let consider a trip planner robot in our E-tourism

system whose task is to plan actions from a given constraints to achieve its

goals. At the robot’s physical environment, such actions can be defined:

initial(X) for robot’s initial state, goals(Ys) for a list of expected goals. To

Chapter 2. Background and State of the Art 39

achieve the mission, the trip planner robot must perform such abstract ac-

tions such as add start, add and and add end. To specify these actions, a

domain theory in some formal language is specified. A domain theory is a

formal account of the semantics of the operations that are available or rel-

evant to the agent [Pee05]. For example, the preconditions of actions and

their effects to the world are defined. Classical logics such as situation calcu-

lus [Lin08], event calculus [KS89], model logics [CGLN01] are dominated to

build up domain theories. Besides, the AI-planning community extensively

formalizes languages such as Stanford Research Institute Problem Solver

(STRIPS [FN72]) , Action description language (ADL [Ped94]) and Plan-

ning Domain Definition Language (PDDL [MGH+98]) to express planning

domains. Among them, PDDL is the most recent and famous language in

AI domain. The more expressive is the planning language, the richer and

flexible is the resulting plan. For example, extended PDDL can express

non-determinism and iterative conditional plans [CRB04].

2. A description of the initial state of the world. Besides the concep-

tual models of actions, a planning agent must take the initial world state

into account. As it must provide a plan that, when executed in the initial

world, will lead to the specific goal. From booking a table at the finest restau-

rant in Alice’s partial query and her profile and context (see 1.2), initial(City),

initial(GuestName), initail(NumberOfGuest) and initial(GuestTelephone) are de-

fined as the initial world states. Generally, the initial world is just another

world state defined by the domain theory [Pee05]. In the domain world, the

definition of the initial world state provides a complete description. Thus,

the resulting plan is a sequence of actions. While in the real world, we are

confronted with the incomplete information. For example, in Alice’s sce-

nario, the agent may not know which restaurant offers the finest services in

the city, however it needs this information to achieve its goal of booking a

table. The solutions maybe are the planning agent deliver a conditional plan

or a plan with branch action.

3. A description of the desired goal. In classic AI planning, goals are

expressed as properties that need to be held in a desired world state. The

planner needs to identify a plan which, when executed in the initial world

state, will result in a world state that satisfied the goals. Consider again

Alice’s partial query of booking a table at the finest restaurant, its expected

Chapter 2. Background and State of the Art 40

goal in planning domain is goal(tableReservation). This goal indicates a con-

dition that the goal of table reservation must exist after the plan execution.

However, the real world situation, which is a complex problem, might express

multi goals, solutions for nondeterminism problems and/or offers over prefer-

ences of users. This is important to provide the planning agent with domain

or task dependent control knowledge in order to achieve good performance

in real world domains [Pee05].

4. Representing Plans. Classical AI planning approach assumes that the

initial world state is completely described and all actions are deterministic.

Consequently, the planning agent synthesizes the sequence of actions imply-

ing the goal. However, this assumption is unrealistic for certain reasons.

First, there is a situation that the information received from user entry or

user context does not specify all knowledge relevant to the planning task.

For example, in Alice’s query that she wants to book a room for 3 nights, the

agent might not know which hotel has available rooms for a given period, but

it needs this information to achieve its goal of booking a room. Second, the

execution of some operations does not meet the expected or desired result.

We call these actions as non-determinism actions. Third, users sometime

may want to specify their preferences or constraints on the solutions. For in-

stance, back to Alice’s partial query that she wants to go to Louvre museum

if the forecast weather is sunny.

These situations confronted with incomplete information or user preferences

and constraints or non-determinism actions could lead the agent to construct

a conditional plan, which generate for the possible branch plans [Pee05].

Thus, modern plans need complex control structures such as loops, non-

determinism and condition [SK03]. Furthermore, we are also interested in

planning that includes concurrency in service access for more efficiently ex-

ecution time. These are the criteria of our proposed system. We review

planning techniques regarding planning with control knowledge in section

2.3.4.

To benefit from existing AI-planning systems, an encoding of composite require-

ment and a set of operations in problem domain into possible actions, initial

condition and goal situation in planning domain is required.

Chapter 2. Background and State of the Art 41

Figure 2.6: Domains transformation in automated service composition process

Figure 2.6 shows three transformations notated as
⊗

that can occur in automated

service composition process. The T1, T2 transform problem domain (user query

and constraint and component services specifications) into planning domain (ini-

tial and goal states and action descriptions). For example, Alice’s partial query of

booking a table at the finest restaurant and her profile and context are converted to

planning domain as initial(city), initial(guestName), initail(numberOfGuest) and ini-

tial(Telephone) goal(tableReservation). The T3 occurs when we want to convert an

generated abstract plan which cannot be directly executed by any process execu-

tion engine into executable composition specification. For example, T3 transforms

a workflow represented in activity diagram to BPEL code. Later, BPEL process

can be executed by BPEL engine.

The latest transformation brings us the advantage of flexibility of process execu-

tion. Since an abstract plan in the composite activity can be transformed into

more than one executable description [LOKX13].

2.3.4 Existing Approaches

Many service composition techniques have been proposed in the literature (see for

example [MM04, RS04, DS05, AEE06, LOKX13, SQV+14]). To analyze them, we

structure this section into three topics. The first one relates to design approaches

for end-to-end composition framework. The second and third topics discuss work

related to automated logical composition and business process generation respec-

tively.

2.3.4.1 End-to-end composition framework

We propose an end-to-end composition of web services. We formulate the web

service composition problem and describe the integrated system for composing

Chapter 2. Background and State of the Art 42

web services from specification to deployment. Not many previous works imple-

mented the end-to-end composition of web services. They concerned only logical

or physical composition.

However, there is a METEOR-S system, which provides end-to-end composition

framework [POSV04]. The framework uses the notation of a service template de-

rived from ontological concepts. A service template refers to the description of a

single web service which consist of a set of operations with their inputs and out-

puts [MMV+05]. The output of logical composition is an abstract BPEL which

does not refer to any invocable service instances but semantic which does refer to

semantic type. This compares to us, we generate abstract Business Process Mod-

eling Notation (BPMN) which can support sequential and branches composition,

while abstract BPEL generates only sequential composition.

Another end-to-end service composition system is Synthy [ACD+05]. The system

uses an ontological concept for differentiating between service type and service

instance. Service types represent groupings of similar web services while service

instances refer to the actual web service instances that can be invoked. The planner

generates a plan which has sequence, choice and concurrency among actions. The

abstract plan later is transformed into abstract BPEL. Next the service discovery

component picks exactly one instance from the set of matching instances for each

service type. The Instance selector process takes into account global optimization

criteria (e.g., QoS). Two main differences with our work are that: (a) Synthy

has its service selection process after its service composition process. Compare to

us; the selection of relevant services is done (see from [CC14]) before the service

composition. (b) Synthy does not validate a translated abstract BPEL whether it

is well formed BPEL specification or not.

2.3.4.2 Proposals of logical composition

At automated composition level, several service composition frameworks toward

AI have been reviewed [McD00, MS02, NAI+03, BCG+05, CSHG09, BPT10]. Due

to web services are considered in the context of workflow [DPAM07] that consid-

ers web services in the context of workflows, the problem of automated composi-

tion of workflow tasks can be seen as an Artificial Intelligence planning problem.

Chapter 2. Background and State of the Art 43

This subsection discusses the existing approaches regarding planning with con-

trol knowledge that can be used to compose web service automatically. We then

compare these approaches to justify our workflow construction strategy.

PDDL based. The approach of McDermott use an extended PDDL as formal

language to formalize web services. He translates DAML-S (former version

of OWL-S) specification into PDDL action specification before executing a

planner. The planner is then given an initial situation, a set of action def-

initions, and a goal to be carried out. A solution is a sequence of actions

that, when executed beginning in the initial situation, carry out a situation

in which the goal is true [McD00]. In addition, the planner generates based

on estimated-regression conditional plans. In comparison to our criteria,

McDermott extends PDDL to support neutral and rich specification of plan-

ning problems. His approach deals with the nondeterminism and incomplete

information. However, the resulting plan has only sequences and conditions

among actions whereas our resulting plan supports sequences, conditions and

concurrencies among actions.

SHOP2. Simple Hierarchical Ordered Planner 2 (SHOP2) is a well known

domain-independent planning system based on Hierarchical Task Network

(HTN) planning [NAI+03]. HTN is an AI planning methodology that cre-

ates plans by task decomposition.

One of classical works on automated web service composition using SHOP2

is the works in [SPW+04]. The authors show how a set of OWL-S service

descriptions can be translated to a planning domain description that can be

used by SHOP2. The SHOP2 planner executes a given service composition

problem by decomposing recursively the task into sub-tasks. The execution

stops when the composite service contains only primitive operations. The

resulting composite service is a sequence of service operation calls that can

be subsequently enacted. The approach is also capable of executing web

services for information-providing during the planning process [SPW+04].

However, the generated plan from SHOP2 has only sequence among ac-

tions. This hierarchical planning is suitable for Plan-management problems

in which the plans tend to consist of abstract structures of actions [McD00].

Golog. The Golog is a logic programming language built on top of the situation

calculus [LRL+97]. The approach that uses Golog to solve automated web

Chapter 2. Background and State of the Art 44

service composition is proposed in [MS02]. The authors set up service compo-

sition problem as a set of atomic actions, which are derived from an OWL-S

ontology of services and client request, which is a skeleton of Golog proce-

dure (constructed with sequence, choice and so on) expressing also client

constraints and preferences. The approach differentiates between knowledge

self-sufficient and physically self-sufficient. As the result, they propose Con-

Golog interpreter that combines on-line execution of information providing

with off-line simulation of world altering web services. A number of different

approaches have been discussed [GL99, Lak99, Rei01]. The planner with

on-line interpreter can determine a sequence of web services for subsequent

execution [GL99, Rei01] while the conditional plans can be generated by the

use of an off-line interpreter [Lak99].

Solving web service composition with Golog is sound and complete as it

presents good results for the problems of planning with non-deterministic ac-

tions, partial observations of the world, concurrency actions and non-linear

plans. However, systems implemented with Golog are semi-automated ap-

proaches; since web service composition problem is predefined using require-

ment templates.

MBP. Model checking is a formal verification technique used to determine

whether or not a property holds in a finite state model [DPAM07]. There-

fore, Planning as Model checking paradigm is that planning problems should

be solved model-theoretically [GT00].

Various publications adopt a concept of Planning as Model Checking (see

examples in [MPT08] and [BPT10]). Given a description of component ser-

vices and client service (e.g. in Abstract BPEL format) and composition

requirements (e.g. the global goals including control flow and data flow), the

planner synthesizes automatically the composite service that implements the

internal process. Since this approach applies symbolic model checking, the

composite service is automatically monitored to detect whether the compo-

nent services behave consistently with the specified protocols. The approach

shows a good practical result for the problem of planning with stateful ser-

vice, non-deterministic actions, partial observations of environment, complex

goals and domain [DPAM07].

Chapter 2. Background and State of the Art 45

Table 2.1: Characteristics of existing AI planning system

Systems Planning domain Goal spec.
PDDL based PDDL atomic actions propositional logic
SHOP2 SHOP2 atomic and complex actions task name
Golog based atomic actions in Situation Calculus Golog procedure
MBP abstract process in STS global

requirement
(control and data
flow)

FLUX based atomic actions in fluent calculus propositional logic

Our approach develops the idea of model checking to monitor a semantic

model of composite service and also check a well-formed and well-defined of

business process which is later executed.

FLUX. The FLUX (stands for: Fluent Executor) is a logic programming lan-

guage for the design of intelligent agents that recognize about their actions

using the fluent calculus [Thi98]. FLUX is used to solve an automation ser-

vice composition problem [CSHG09]. The approach models a set of actions

for web service composition by translating OWL-S service description to flu-

ent calculus formalization. Then given initial and goal states of composite

requirements, the FLUX planner generates a workflow of relevant actions.

However, the workflow has only a sequence control among actions.

Recently, another work proposes a composition and verification framework

for semantic web services specified using Web Service Specification Language

(WSSL), a novel specification language for services, based on the fluent cal-

culus [BP14]. The framework is implemented using FLUX-based planning,

supporting compositions with control constructs such as conditionals and

loop. However, this is similar to Golog approach, which the possible generic

procedure for particular problems are needed to predefined.

According to the information above, we summarize characteristics of the existing

AI Planning systems and a comparison among these automated planner systems

in Table 2.1 and 2.2 respectively.

Discussion

So far, we have presented the comparison among existing planner systems in table

2.2. The following describes five essential criteria of plan characteristics.

Chapter 2. Background and State of the Art 46

Table 2.2: Comparison among planner systems

Plan characteristics P
D

D
L

S
H

O
P

2

G
o
lo

g

M
B

P

F
L

U
X

Non-determinism Y Y Y Y Y
Extended goals N Y Y Y Y
Generation of non-liner plans Y (par-

tially)
Y (par-

tially)
Y Y Y

Concurrency N N Y Y Y
Automation level A A SA A A

• Non-determinism. This refers to a situation when an agent is given incom-

plete information to accomplish its goal. For example, the agent is assigned

to booking a table in a restaurant to Alice. However, Alice does not know

which restaurant yet. Therefore, the agent needs to solve it to find the

restaurant.

• Extended goals. This refers to a situation when an expected plan contains

many goals. Since in the reality, users’ behavior and need are complex, the

planner should be able to handle this situation. For example, from Alice’s

query that she wants to buy ticket of Louvre museum if the forecast weather

is sunny or go for Disney Euro land instead. Two goals (ticket of Louvre

museum and ticket of Disney Euro) are implicit in this example.

• Generation of non-liner plans. Due to presenting of non-determinism

and extended goals, a planning agent constructs a conditional plan, which

accounts for the possible branch plans. For example, the resulting plan

for the above mentioned Alice’s query is the conditional plan that has two

alternative paths; buyDisneyEuroTicket operation is called if value of weather

is sunny; buyLourveMuseumTicket operation is called if value of weather is

not sunny.

• Concurrency. Generally, an action can be fired when its input(s) is existed.

So if all inputs of relevant actions are hold in the current environment, the

actions can be executed at the concurrency time. This make overall plan

execution more efficiently. For example, renting a car: information of renting

a car 7→ renting car receipt operation and booking a hotel room: information

of booking a room 7→ booking room confirmation operation can be executed

Chapter 2. Background and State of the Art 47

at the same time as none of linked parameters is found between these oper-

ations.

• Automatic level. We interest in automated level of plan generation by the

planning agent. For full automated level, the agents are able to design control

flow automatically. While semi-automated level, the abstract workflow is

derived from composition requirements template.

From the comparison shown in Table 2.2 and 3.3, all planner systems support non-

determinism actions. However, system based on PDDL and SHOP2 only allow

conditional plans and do not support concurrency among actions. Only Golog

allows semi-automated composition. We have noticed that the more expressivity

of planning domain, the more complex of composition solution you could get.

Thus, MBP is the best alternative with respect to the generation of non-liner

plans as stateful services. However, MPB is tight with abstract BPELs for service

components and client, this limits a number of BPEL service partners.

We choose fluent calculus to represent a description of component services. As flu-

ent calculus is formalism language for reasoning and planning actions in dynamic

environment. The more important is that fluent calculus works compatibly with

FLUX planner. The planner provides logical constructs for assembling primitive

actions into complex actions. FLUX complex action constructs include concur-

rence, conditional, sequential and nondeterministic actions [WNI+09]. We will

give more detail on fluent calculus and FLUX later in the next chapter.

2.3.4.3 Business process generation and execution

As our ultimate goal is to execute the generated composite service and send the

result of service execution to user, the resulting plan, which is a template for

the composite service, needs to be in a format that can be executable. Thus,

business process generator transform the abstract plan (or abstract workflow) into

a standard business process model.

Many efforts, such as WS-BPEL20, WS-CDL21, BPMN22 and OWL-S23, have

been underway to define standards for composing web services. In addition,

20http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
21http://www.w3.org/TR/ws-cdl-10/
22http://www.bpmn.org/
23http://www.w3.org/Submission/OWL-S/

Chapter 2. Background and State of the Art 48

many software enterprises offer business process programs based on business pro-

cess language standard. The tools basically consist of business process mod-

eler and executor. To benefit business process standards, many existing works

[SPW+04, ACD+05, BCG+05, BPT10] convert their abstract plan into abstract

business process, which later drives the process of matching each process task to

a corresponding service instance.

SHOP2 system, discussed in the logical composition, offers the system output as

business process [SPW+04]. The output of SHOP2 system is a sequence of world-

altering web service calls in SHOP2 domain. The OWL-S plan converter converts

the plan produced by SHOP2 to OWL-S format which can be directly executed by

an OWL-S executor. The OWL-S web service executor which communicate with

SOAP-based web service description by OWL-S grounding to WSDL description

of those services.

While many works adopt BPEL standard in their automated web service com-

position (see in [ACD+05, BCG+05, BPT10]). [ACD+05] presents Synthy web

service composition tool which use Planner4J24 to generate contingent plans. The

Planner4J generates output plan in workflow (BPEL4WS) format. Works in

[BCG+05, BPT10] use state transition system (STS) in their logical composition.

With the expressive of STS, the resulting plan supports full control structures

such as loops, conditionals and parallel. Each work proposes algorithm for the

translation of such synthesized STSs to BPEL.

2.4 Summary

So far, we have been given the background and related work regarding to auto-

mated service composition system. We start from interactions in B2B which occur

in three layers: Communication, Content and Business process layers. To fulfill

the contents for communication and content layers, we mention Service-Oriented

Architecture (SOA) and web services. Web services is the most popular and com-

plete implementation of SOA. Two semantic web services description language

(SAWSDL and OWL-S) are introduced since they are needed for automated ser-

vice composition system. However, we select OWL-S for component services as

OWL-S supports conceptual markup of web services and process model which

24http://researcher.watson.ibm.com/researcher/view person subpage.php?id=914

Chapter 2. Background and State of the Art 49

describes the capablities and choreographies of stateful web services. Then we

explain Web service composition life cycle for the business process layer. We an

emphasize automated service composition and then introduce AI planning as a

planning technique to deal with the automated service composition problem. For

the related work, we have divided automated service composition into 3 levels:

framework, logical composition and business process generation levels.

Chapter 3

Abstract Service Composition

with Fluent Calculus

Contents

3.1 Requirements and Architecture 52

3.1.1 Fluent Calculus . 53

3.1.2 FLUX . 56

3.2 Back to the motivating example 56

3.3 Transformer to fluent calculus 57

3.3.1 User requirements mapping 58

3.3.2 Service operations mapping 58

3.4 FLUX Planner . 59

3.4.1 FLUX query and Abstract plan 60

3.4.2 Service composition agent 63

3.5 Existing approaches . 66

3.6 Summary . 67

Abstract. An automated workflow of Abstract service composition system,

one of our contributions, is introduced in this Chapter. Since we see ser-

vice composition problem as planning problem, we separate the system into

two processes: Transformer process and Planner process. The Transformer

changes the user’s context and query into planning problem and transforms

50

Chapter 3. Abstract Service Composition with Fluent Calculus 51

a list of service operations into a set of possible actions. The Planner shall

try to reason the updated state of the given actions to obtain a workflow of

actions, which satisfies the planning problem.

This chapter presents the Abstract Service Composition process which is the pro-

cess present in Logical layer of the Service Composition and Execution system (see

in Figure 3.1).

Figure 3.1: Proposed multi-layers of the Service Composition and Execution
framework highlighted at the Logical layer

The aim of the Abstract Service Composition process is to synthesize an abstract

plan, which is constituted from operations offered by services. It is an automated

approach where there is no human intervention during the service composition

process. We modeled user’s initial, user’s query and service operations into fluent

calculus and use FLUX Planner, which is constraint logic programming, to draw

the expected output plan. Nevertheless, the FLUX planner reasons the updated

state of the given operations to obtain the workflow of operations (so called ab-

stract plan or abstract service composition) which satisfies the user’s goals and

conditions.

This chapter is organized as follows: requirements and architecture of the Ab-

stract Service Composition system discussed in Section 3.1. Section 3.2 presents a

Chapter 3. Abstract Service Composition with Fluent Calculus 52

motivating example used throughout the chapter. Then we propose Transformer

process and FLUX Planner process in Section 3.3 and Section 3.4 respectively.

Lastly, we compare our service composition approach to the existing works in

Section 3.5.

3.1 Requirements and Architecture

To develop our Abstract Service Composition system, we list the overall system

requirements as following:

1. System interacting with the Discovery system to receive system inputs:

user’s query (expressed in terms of goals and initials), her profile, context

and a list of relevant service description operations.

2. System transforming the user’s query, his or her profile, context and service

operations (in requirement no.1) into initial and goal states and possible

operations in planning domain respectively.

3. System reasoning these service operations (in requirement no.2) to generate

an abstract plan.

4. The resulting abstract plan satisfies all expected goals and initial constraints

in requirement no.3.

5. The resulting abstract plan may consist one or more link controls such as

sequence, condition and parallel among operations.

From the above stated requirements, we separate the Abstract Service Compo-

sition system into two components: Transformer and FLUX Planner as depicted

in Figure 3.2. The Transformer component is responsible for pre-processing in-

puts from problem domain into the user’s planning domain. While FLUX Planner

component is a service operation composer, which performs assembling service

operations to get the desired abstract plan.

The user’s query along with her profile, context and service operations in problem

domain shall be considered as initial, goal states and possible actions in FLUX

query respectively. The FLUX query shall be solved by the FLUX planner. We

use AI-planning techniques to implement our FLUX planner to perform automated

Chapter 3. Abstract Service Composition with Fluent Calculus 53

Figure 3.2: Abstract Service Composition process

abstract service composition. There are many previously approaches adopting AI-

Planning methods to solve automated service composition. We have reviewed and

compared those existing in Section 2.3.4.2, Chapter 2.

The reason we chose FLUX over other AI systems because FLUX is implemented

based on fluent calculus1. Modeling user’s constraints and relevant operations with

fluent calculus, the FLUX Planner reasons on a variety of operations such nondeter-

ministic, conditional and concurrency to obtain a resulted abstract plan. The rest

of this section is dedicated to fluent calculus and FLUX as a background for the

Transformer and FLUX Planner components in Section 3.3 and 3.4 respectively.

3.1.1 Fluent Calculus

Fluent Calculus is a language for reasoning and planning actions in dynamic en-

vironment [Thi98]. It is a variant of the situation calculus. The main field using

the fluent calculus is in autonomous robotics which models state of the world

before and after executed robot actions. The objective is to represent non-effect

actions and infer them under the frame problem. The frame problem is the prob-

lem of finding adequate collections of axioms for a viable description of a robot

environment [Hay71].

One of the research projects realizing fluent calculus is ALAN (Axiomatization

Language for Agents). The authors designed an axiomatization language for au-

tonomous agents and mobile robots [Thi02]. This aims to enable the robots to

determine the response actions it must decide with respect to the knowledge given

in the effects of these actions [Thi02]. A question may be raised: how such actions

are designed and described?

Generally, four sorts of entities based on fluent calculus construct the dynamic

actions in agent’s specific environment. The fundamental entity is a fluent f, which

1A formal mathematic expression for dynamical domain in first order logic.

Chapter 3. Abstract Service Composition with Fluent Calculus 54

is a single atomic term f of the physical world, which may change on time [BP14].

For example, the robot’s position at location (x,y) is defined in fluent calculus as

f = At(x,y). The second entity is a state, which is a collection of fluents. In other

words, states are built up from fluents and their conjunction, using the function

◦: state, state 7→ state [Thi05]. For instance, the initial state of Alice’s query

that she wants to book a table at restaurant tonight can then be formalized by this

term:

Restaurant(r) ◦ Guest(g) ◦ Date(d) ◦ TableAvailable(t) (3.1)

The third is an action, which is a high-level action referring to things that can

change the world state. Finally, a situation is a sequence of actions.

In agent programs, conditions which refer to the state of the outside world are

based on the notion of fluents to hold in states [Thi05]. For example, it is impos-

sible for the planner to book a table for Alice if fluent Restaurant(r) does not hold

in the current state. The method to assign any fluent f into a state z is presented

in formula (3.2). It indicates that z can be identified with f that hold in it and z

can be decomposed into f and some state z’ [Thi05].

Holds(f,z) ≡ (∃z’ is a state, ◦(f,z’) = z) (3.2)

Therefore, (∃r) Holds(Restaurant(r),z) where z is the state in (3.1) is equiva-

lent to Restaurant(r) plus some arbitrary other sub-state: Guest(g) ◦ Date(d) ◦
TableAvailable(t).

There are two predicate formulas in the fluent calculus offering functions to hold

a state z in an action before and after state execution. The first one is an ac-

tion precondition axiom for formally specifying the circumstances under which an

action is possible in a state. With action functions A and let A ∈ A, a action

precondition axiom for A is a formula:

Poss(A(−→x),z) ≡ Π(z) (3.3)

where Π(z) is a state formula with free variables among −→x , z. The formula explains

that the action A is possible at state z, if and only if a state formula Π(z) is true.

For instance, precondition states of booking table at restaurant action can be

Chapter 3. Abstract Service Composition with Fluent Calculus 55

formalized by this axiom:

Poss(BookingTable(r,g,d),z) ≡

Holds(Restaurant(r),z) ∧ (∃t)(Holds(TableAvailable(t),z)) ∧

Holds(Guest(g),z) ∧ Holds(Date(d),z). (3.4)

With this specification, in the initial state (3.1) this action is possible. Another

predicate is a state update axiom for formally specifying a resulting state that an

action caused. With action functions A and let A ∈ A, a state update axiom for

A is a formula:

Poss(A(−→x),s) ⊃ (∃(−→y))(∆(s) ∧ State(Do(A(−→x),s)) = State(s) + θ+ - θ−)

(3.5)

where ∆(s) is a situation formula with free variables among −→x ,−→y ,s; θ+, θ− are

finite states with variables among −→x ,−→y . The formula shows that if conditions

of action A is possible at situation s, executing it results in a successor state

derived for state(s): positive effect θ+ and negative effects θ−, under additional

conditions ∆(s) [Thi98].

For Instance, state update of booking table at restaurant action can be formalized

by this axiom:

Poss(BookingTable(r,g,d),s) ⊃

(∃t)(Holds(TableAvailable(t),z)) ∧

State(Do(BookingTable(r,g,d),s)) =

State(s) - TableAvailable(t) + TableBooked(r,g,d,t) (3.6)

With this specification, State(S0) = (3.1), then Poss(BookingTable(r,g,d),S0) ac-

cording to the precondition axiom in (3.4). Let S1 = Do(BookingTable(r,g,d),S1),

then the state update axiom for booking table action implies:

State(S1) = State(S0) - TableAvailable(t) + TableBooked(r,g,d,t)

A solution to this equation is given by:

State(S1) = Restaurant(r) ◦ Guest(g) ◦ Date(d) ◦ TableBooked(r,g,d,t)

Chapter 3. Abstract Service Composition with Fluent Calculus 56

3.1.2 FLUX

With state representation in dynamic environment using fluent calculus, the con-

straint logic programming called FLUX (Fluent Executor) is developed. The

FLUX aims to design of agent programs that reason about their actions using

the fluent calculus [Thi98].

These agents use the concept of a state of the world when controlling their own

behavior. Regularly, agents update their state of the world to reflect the changes of

their actions’ effect and/or obtaining sensor information. The structure of FLUX

consists of three modules: Pk, Pd and Ps. Pk is a set of constraint handling rules

and constraint solvers for finite domain. Pd contains encodings of the domain

axioms including action precondition axiom, update axioms, domain constraints

and initial knowledge state. Lastly Ps specifies a high level of specific strategy

on the behave of the agent it will perform. Due to the powerful constraint solver

and the underlying FLUX kernel prover general reasoning facilities in Pk, the

agent programmer can focus only on specifying the application domain in Pd and

designing the high-level behavior in Ps [Thi98].

Overall, FLUX performs outstanding linear computational behavior due to its

inference engine. Additional, applying the progression principle, FLUX scales up

well to long-term control [Thi98].

3.2 Back to the motivating example

At four in the afternoon, Alice wants to book a table for 2 people at the finest

restaurant at 8pm, in the city, and also find the direction. She uses the E-Tourism

system (see Section 1.1) via her smart device and submits a query: I want to book

a table for 2 people at the finest restaurant at 8pm in the city, and I want to know

the direction to the restaurant. Alice’s device sensors also capture her context

information she submitted the query that coordinates = ”48.8567◦ N, 2.3508◦ E”

and date = ”1/06/2014”. The system has knowledge of Alice’s profile that name =

”Alice”, citizenship=”USA”, travelPurpose=”work”, preferred activities=”outdoor”,

gender=”female”. For privacy reason, Alice wants to hide her location so the User

Privacy module dose not disclose her location information out from her context.

These data from three sources (query, context and profile) are forwarded to the

Chapter 3. Abstract Service Composition with Fluent Calculus 57

User Management system to discover the parameters of the query and split the

query into sub-queries. Later the sub-queries and discovered parameters are sent

to the Discovery system. The Discovery system shall send to the Composition and

orchestration system a list of candidate services, each of which corresponds to

the spitted sub-queries, and the forwarded parameters. Then the Composition

and orchestration system compose operations offered by the services to fulfill the

query. The resulting service to be executed is the composition of the operations

below:

FromCoordinatesToCity: Coordinates → City

FindFinestRestaurant: City → RestaurantID, RestaurantName, RestaurantAddress

BookRestaurant: RestaurantName, BookingTime, BookingDate, NumberOfGuest,

GuestName, GuestTelephone → BookingRestaurantReservation

GetDirection: FromAddress, ToAddress → Direction

3.3 Transformer to fluent calculus

Figure 3.3: Transformer process

The Transformer is the process in the Abstract Service Composition system. It

intents to pre-process data from user problem domain into initial knowledge state

and constraints in planning domain. The data from user problem domain consists

of parameters extracted from the user’s query, the profile, the context and oper-

ations offered by service descriptions. In Figure 3.3, the transformer parses the

parameters and the service operations and then transforms them into initial and

goal states and operations in fluent calculus axioms respectively. Their converted

results are combined for a FLUX query. The Flux query is then forwarded to

FLUX planner. The following section presents the transformer process with the

motivating example (see Section 3.2), which is subjected to user requirements and

service operations mappings.

Chapter 3. Abstract Service Composition with Fluent Calculus 58

3.3.1 User requirements mapping

This subsection shows what are the user’s requirements and the parameters of the

user’s goals and her profile and context, are transformed to initial and goal states.

Consider user requirements mapping in Table 3.1 as an example:

User problem domain Planning domain

Query

RestaurantName(goal) goals([RestaurantName,
BookingReservation(goal) BookingReservation, Direction])
Direction(goal) initial(NumberOfGuest)
NumberOfGuest(2) initial(Time)
Time(8pm)

Context Date(01/06/2014) initial(Date)
Profile Name(Alice) initial(Name)

Table 3.1: Example of a mapping between user problem domain and planning
domain

The parameters classified into query, context and profile categories are shown

in user problem domain column. We use the convention for each parameter as

name of parameter followed by its value beside parenthesis. The value itself

has two options: known value or goal value. The known values are extracted

from user queries, disclosed context and profile information. For example, Num-

berOfGuest(2), Time(8pm), Date(01/06/2014). The goal values are the unknown

values of things the users want to possess or achieve. For instance, Restaurant-

Name(goal), BookingReservation(goal), Direction(goal).

To map parameters from problem domain to fluents in planning domain, we shall

follow these two rules: 1) Parameters having the goal values are grouped into

a list of goals fluent. For instance, goals([RestaurantName, BookingReservation,

Direction]). 2) Individual parameter having known values is converted to initial

fluent. For example, initial(NumberOfGuest).

3.3.2 Service operations mapping

Besides user requirements mapping, the transformer converts service operations

into input fluent operations. Each operation has its naming conventions of

op inputs and op outputs clauses. For each service operation, we have only one

clause op inputs and one clause op outputs. Generally, op inputs and op outputs

Chapter 3. Abstract Service Composition with Fluent Calculus 59

refer a set of operation input and a set of operation outputs. Consider service

operation mapping in Table 3.2 as an example:

Operations in FindFinestRestaurant
Problem domain input: City

outputs: RestaurantName, RestaurantAddress
Operations in op inputs(FindFinestRestaurant, [City])
Planning domain op outputs(FindFinestRestaurant,

[RestaurantName,RestaurantAddress])

Table 3.2: Example of service operations mapping between problem domain
and planning domain

It’s a worth noting that we separate input and output operations into different

naming conventions. It enables the Planner to synthesize the control links among

operations in the abstract plan. More details about the Planner are given in the

next section.

3.4 FLUX Planner

Planner is a process happening after the transformer process in the Abstract Ser-

vice Composition system. It intents to synthesize a plan from abstract operations

to fulfill the user’s goals. According to the system requirements (see Section 3.1),

outcome of this resulting plan should satisfy all expected goals and initial con-

straints and also support linked control constructs such as sequence, condition

and parallel.

Figure 3.4: FLUX planner

To achieve this operation, we propose FLUX planner, which is a constraint pro-

gramming based on fluent calculus (see Subsection 3.1.2 for more details) see its

architecture depicted in Figure 3.4. The FLUX planner consists of three com-

ponents: (1) FLUX library, (2) FLUX query and abstract plan and (3) service

composition agent.

Chapter 3. Abstract Service Composition with Fluent Calculus 60

The FLUX library contains a set of constraint handling rules and a constraint

solver for finite domain of our FLUX planner [Thi05]. The FLUX query contains

encodings of the domain axioms including condition constraint, initial and goal

knowledge state and a list of service operations, while the abstract plan contains

encoding of the plan axioms including initial and goal nodes, flow of compos-

able operations and data transformation. The service composition agent performs

agent’s actions including action precondition axiom and update axioms, under the

behavior of planning composition.

3.4.1 FLUX query and Abstract plan

To achieve synthesizing the resulting plans defined in Section 3.1, we develop

planning model for the service composition agent. The model is formulated using

fluents for the FLUX query and the abstract plan structures. We use the special

sorts OPERATION, PARAMETER, VALUE and INDEX along with the fluents. One

instance of FLUX query necessarily consists of following basic fluents:

Initial(X): PARAMETER --> FLUENT

Goal(Xs): PARAMETER --> FLUENT

Op_inputs(X,Ys): OPERATION x SET OF PARAMETER --> FLUENT

Op_outputs(X,Ys): OPERATION x SET OF PARAMETER --> FLUENT

Initial(X) is a fluent for initial parameter X (i.e., initial(RestaurantType) and

initial(Coordinates)). Goal(Xs) is a fluent for a set of goal paramaters Xs (i.e.,

goals([RestaurantName, BookingReservation, Direction])). Op inputs(X,Ys)

is a fluent for a set of input parameters Ys of a single operation X (i.e.,

op inputs(FromCoordinatesToCity, [Coordinates])) and Op outputs(X,Ys) is a

fluent for a set of output parameters Ys of a single operation X (i.e.,

op outputs(FindFinestRestaurant, [RestaurantName, RestaurantAddress])). Be-

sides these basic fluents, we have fluents for representing user constraints in the

FLUX query. For example:

Cond(C,if(guard(O1,RO1,V1),O3),else(guard(O2,RO2,V2),O4)):

INDEX x PARAMETER x OPERATOR x VALUE x PARAMETER x

PARAMETER x OPERATION x VALUE x PARAMETER --> FLUENT

Chapter 3. Abstract Service Composition with Fluent Calculus 61

Cond(C,if(guard(O1,RO1,V1),O3), else(guard(O2,RO2,V2),O4)) is a fluent

for condition guard request. The index C request contains two alternative paths

if the first guard condition indicating parameter value O1 with relational op-

eration RO1 equals to value V1 is true then parameter O3 exists; else if the

second guard condition saying parameter value O2 with relational operation

RO2 equals to V2 is true then parameter O4 exists. For instance, cond(c1,

if(guard(weather,==,sunny),ticketD),else(guard(weather,==,rainy),ticketM)). It’s

worth noting that DataTransform(X,X1) fluent might be hold if there is trans-

formation of data passing between parameter X, where X is a subset of operation

outputs and parameter X1, where X1 is a subset of another operation inputs.

We show a complete FLUX query specification as example in Listing 3.1 for

initial and goal states and input operations, which is relative to Alice’s scenario

(see Section 3.2).

1 init(Z0) :-

2

3 Z0 =

4 [op_inputs(fromCoordinatesToCity ,[" Coordinates "]),

5 op_inputs(findFinestRestaurant ,[" City"]),

6 op_inputs(bookRestaurant ,[" RestaurantName "," BookingDate "," BookingTime "," NumberOfGuest",

7 "GuestName "," GuestTelephone "]),

8 op_inputs(getDirection ,[" Coordinates ","Address "]),

9

10 op_outputs(fromCoordinatesToCity ,[" City"]),

11 op_outputs(findFinestRestaurant ,[" RestaurantName "," RestaurantAddress "]),

12 op_outputs(bookRestaurant ,[" BookingConfirmation "]),

13 op_outputs(getDirection ,[" Direction "]),

14

15 dataTransform (" RestaurantAddress", "Address"),

16

17 initial(NumberOfGuest),initial(BookingDate), initial(BookingTime), initial(GuestName),

18 goals ([" RestaurantName "," BookingConfirmation ","Direction ")].

19

20 op_list ([fromCoordinatesToCity ,findFinestRestaurant ,bookRestaurant ,getDirection]).

Listing 3.1: FLUX generated query for the motivating example

With the above specification, the State of the FLUX query is assigned to Z0 (line

1). The FLUX query has initial states for example, initial(RestaurantType) and

initial(Coordinates) (line 17) and a set of goal states in goals([RestaurantName,

BookingReservation, Direction]) (line 18). The query contains 4 service opera-

tions (line 20): fromCoordinatesToCity, findFinestRestaurant, bookRestaurant and

getDirection. Each operation provides a set of inputs and a set of outputs.

Chapter 3. Abstract Service Composition with Fluent Calculus 62

For instance, operation fromCoordinatesToCity defines its input Coordinates in

op inputs(fromCoordinatesToCity, [Coordinates]) (line 4) and its output City in

op outputs(FromCoordinatesToCity, [City]) (line 10). The query also specifies

data transform between term RestaurantAddress and term Address in dataTrans-

form(RestaurantAddress,Address) (line 15). Without it, the agent is not able to

make a link between operation findFinestRestaurant and operation getDirection.

Whereas, the partial fluents for abstract plan structures are listed below:

Add_initail(X): OPERATION --> FLUENT

Add_goal(X): OPERATION --> FLUENT

Flow(X,Y): OPERATION x OPERATION --> FLUENT

Flow(X, if(guard(O1,RO1,V1),Y1),else(guard(O2,RO2,V2),Y2)):

OPERATION x PARAMETER x OPERAND x VALUE x OPERATION x

PARAMETER x OPERAND x VALUE x OPERATION --> FLUENT

To construct the sequencing and paralleling plans, Add initail(X), Add goal(X)

and Flow(X,Y) fluents are required, where Add initail(X) is a fluent for an initial

node of operation X (i.e., add initail(FromCoordinatesToCity)), Add goal(X) is a

fluent for a goal node of operation X (i.e., add goal(GetDirection)) and Flow(X,Y)

is a fluent for a flow node with a pair of head operation X and tail operation Y

(i.e., flow(FromCoordinatesToCity,FindFinestRestaurant)).

If fluent Op inputs(X,Ys) is hold, this means all inputs Ys of operation X are

matched to either initial parameters or output parameters of other operations.

Thereafter, the agent adds the fluents either Add initial(X) or Flow(X,Y) into

the abstract plan.

To merge condition operations into the abstract plan, the service compo-

sition agent uses Flow(X, if(guard(O1,RO1,V1),Y1), else(guard(O2,

RO2,V2),Y2)) fluent. The Flow(X,if(guard(O1,RO1,V1), Y1), else(

guard(O2,RO2,V2), Y2)) is fluent for a flow with condition of two alternative

outgoing paths. The first one is a path from operation X to operation Y1 if the

guard condition that parameter value O1 with relational operation RO1 equals

to V1 is true. The second path is from operation X to operation Y2 if the guard

condition that parameter value O2 with relational operation RO2 equals to V2 is

true. More fluents for the FLUX query and abstract plan structures are listed in

Appendix A.

Chapter 3. Abstract Service Composition with Fluent Calculus 63

3.4.2 Service composition agent

The previous Subsection, we have described structures of the FLUX query and the

abstract plan, which contains fluents of initial, goal states, service operations and

elements of the plan respectively. However, the service composition agent needs to

perform planning domain actions which includes precondition axiom and update

axioms in order to execute the plan. Thus, in this subsection, two questions have

been addressed. What are the planning domain actions the agent can perform?

and what is the agent strategy to achieves the resulting plan?. Our agent basically

performs adding initial nodes, flow nodes, flow with condition nodes and goal

nodes into the abstract plans. We explain some planning domain actions the

agent perform as follows:

Add initial(X,Z1,Z2) is an action for the agent to add initial node of operation X

into the abstract plan. Consider fragment code Listing 3.2, the agent checks its

state in Z that there is none of head operation X of any flow(X,) exists in tail

operation of any flow(,X) (line 1-5) and then updates its state from Z1 into Z2

by adding add initial(X) fluent (line 7-11).

1 check_initial ([],Z,Z).

2 check_initial ([X|Op_list1],Z,Zn) :-

3 ((holds(flow(X,_),Z), not_holds_all(flow(_,X),Z)))

4 -> (add_initial(Op,Z,Z1), check_initial(Op_list1 ,Z1 ,Zn))

5 ;check_initial(Op_list1 ,Z,Zn).

6

7 add_initial(X,Z1,Z2) :-

8 state_update(Z1,add_initial(X),Z2 ,[]).

9

10 state_update(Z1,add_initial(X),Z2 ,[]) :-

11 update(Z1 ,[add_initial(X)],[],Z2).

Listing 3.2: Agent performing adding initial node action

Add goal(X,Z1,Z2) is an action for the agent to add goal node of operation X

into the abstract plan. Consider fragment code in Listing 3.3, the agent checks

its state in Z that there is an existence of a single goal G in a set of operation

output Outputs and the operation X must not exist in any flow(X,) (line 1-4).

Thereafter, the agent updates its state from Z1 into Z2 by adding add goal(X)

fluent (line 6-10).

1 check_goal ([],_,_,Z,Z).

Chapter 3. Abstract Service Composition with Fluent Calculus 64

2 check_goal ([G|Gs],Outputs ,X,Z,Zn) :-

3 (member(G,Outputs), not_holds_all(flow(X,_),Z))

4 -> (add_goal(Z,X,Z1), check_goal(Gs,Outputs ,X,Z1,Zn)).

5

6 add_goal(X,Z1,Z2) :-

7 state_update(Z,add_goal(X),Z2 ,[]).

8

9 state_update(Z1,add_goal(X),Z2 ,[]) :-

10 update(Z1 ,[add_goal(X)],[],Z2).

Listing 3.3: Agent performing adding goal node action

Another action is Add flow(Z1,X,Y,Z2). This action is called when the agent

wants to add flow node linking operation X and operation Y into the abstract

plan. Consider fragment code in Listing 3.4, the agent checks its state in Z that

there is an existence of Output of operation X in a set of Inputs of operation Y

(line 2-5). Thereafter, the agent updates its state from Z1 into Z2 by adding

add flow(X,Y) fluent (line 7-11).

1 check(_,_,[],Z,Z).

2 check(Output ,X,[Y|Op_list],Z,Zn) :-

3 knows_val ([Inputs],op_inputs(Opy ,Inputs),Z),

4 ((member(Output ,Inputs) -> (add_flow(Z,X,Y,Z1),

5 check(Output ,X,Op_list ,Z1,Zn))).

6

7 add_flow(Z,X,Y,Z1) :-

8 state_update(Z,add_flow(X,Y),Z1 ,[]).

9

10 state_update(Z,add_flow(X,Y),Z1 ,[]) :-

11 update(Z,[flow(X,Y)],[],Z1).

Listing 3.4: Agent performing adding flow node action

Apart from the FLUX query and the planning domain actions, a behavior of FLUX

planner is mandatory for the abstract service composition as it governs its actions

to achieve the resulting plan.

Algorithm 3.5 is a part of a program for service orchestration planning agent. The

objective of the program is to synthesize the abstract plan from initial knowledge

of user’s initial and goal states, a list of service operation and predefined user’s

constraints. To do so, the initialization of planning variables is performed that all

FLUX query fluents are in state Z0 (line 2), two lists of operations are assigned in

Op list1 and Op list2 (line 3), variable Gs keeps a set of goal fluents (line 4) and

variable CList stores a list of user’s constraints (line 5). Then the agent visits each

Chapter 3. Abstract Service Composition with Fluent Calculus 65

of a given operation in Op list1 and systematically check matching an output of

one operation in Op list1 to an input of another operation in Op list2 in situation

check flow(Op list1, Op list2, Z0,Z1) (line 6). After learning the matching,

the agent creates a flow of two linked operations into a plan.

Next (line 10), the agent checks whether all goals Gs are hold among given

operations Op list1 or not. If the agent finds one operation output matches to a

goal in Gs then the goal node of that operation is added into the plan.

1 main3 :-

2 init(Z0),

3 op_list(Op_list1),op_list(Op_list2),

4 knows_val ([Gs],goals(Gs),Z0),

5 condition_list(CList),

6 (check_flows(Op_list1 ,Op_list2 ,Z0,Z1)

7 -> Fflow=true

8 ;

9 Fflow=false , Z0=Z1),

10 check_goals(Gs ,Op_list1 ,Z1,Z2),

11 check_initial(Op_list1 ,Z2 ,Z3),

12 check_OR_split(CList ,Z3,Z4),

13 check_OR_join(CList ,Z4,Z5),

14 writeln(Z5).

Listing 3.5: Part of an agent program to plan service orchestration

The agent monitors which operation is a origin of the plan (line 11). The agent

searches for the head operation in the generated flow fluents which do not match

to tail operation of any other flow fluents. As the result, the initial node is added

to the plan.

Lastly, the agent checks constraints user specified in CList. There are two kinds

of condition requests: request with XOR split and request with XOR join. The

former (in line 12) determines a split of one flow operation into two other operation

flows if their conditions are hold. If agent is able to search for operations satisfied

for the request with XOR split then the flow with XOR split node is created.

The latter (in line 13) specifies a join one flow operation from other operation

flows. If agent is able to search for operations satisfied for the request with XOR

join then the flow with XOR join node is created into the plan. As the end,

the resulting plan fulfills the specified user goals and also supports sequencing,

paralleling and conditioning among service operations. The complete program for

service orchestration planning agent is shown in Appendix B.

Chapter 3. Abstract Service Composition with Fluent Calculus 66

As the result of the FLUX planner process subjective to the motivating example,

the service composition agent generates the following fluents:

add initial(fromCoordinatesToCity),

flow(fromCoordinatesToCity,findFinestRestaurant),

flow(findFinestRestaurant,bookRestaurant),

flow(findFinestRestaurant,getDirection),

add goal(bookRestaurant),

add goal(getDirection).

The agent generates a plan as a composition of operations for Alice’s query that

she wants to get a booking reservation and a direction to the restaurant. In other

words in Figure 3.5, given two goals bookingConfirmation and direction and and a

list of service operations to the agent, the composite process starts calling oper-

ations fromCoordinatesToCity and then findFinestRestaurant. After the operations

bookRestaurant and getDirection. Finally, the agent generates the composition of

operations that is satisfied the goals bookingConfirmation and direction.

Figure 3.5: The abstract service composition for Alice’s query

3.5 Existing approaches

In this section, we compare our proposed abstract service composition system

to the existing approaches in term of service inputs, resulted plan outputs and

automation level. We found three existing works, which model planning do-

main including knowledge of initial and goal states and agent actions in proposi-

tional logic approaches such as situation calculus and fluent calculus and develop

Chapter 3. Abstract Service Composition with Fluent Calculus 67

Systems Services Plan support Automation
level

Viorica et al Atomic sequence Auto
Golog Atomic sequence, condi-

tion, parallel
Semi-auto

WSSL Atomic and com-
posite

sequence, condi-
tion, parallel

Semi-auto

Our proposal Atomic sequence, condi-
tion, parallel

Auto

Table 3.3: Comparison among planner systems

planning reasoner to solve its problems using constraints programming languages

[LRL+97, CSHG09, BP14].

The GOLOG has proposal to solve automatic service composition. The authors

modeled problems and actions in logic using situation calculus. They use ontology

for facilitating service discovery for atomic service. However, they use user tem-

plate to control the workflow of the plan [LRL+97]. This makes their approach

semi-automated whereas we propose automated service composition.

Mapping between OWL-S service operations and FLUX actions is proposed in

[CSHG09]. FLUX constraint programming is used to conduct a resulting plan.

However, the generated plan shown has only a sequence of operations where our

resulting plan can support sequencing, conditioning and paralleling among opera-

tions.

Another relevant work is WSSL2. This work has been proposed recently the service

description specification using fluent calculus. and their services cover both simple

and complex service [BP14]. However, for the service composition, the authors

offered semi-auto method to generate a workflow using behavior logic template.

The below Table 3.3 is shown a summary of the comparison among these relevant

systems.

3.6 Summary

In this chapter we present the Abstraction Service Composition which aims to

automatically compose services on the fly. In doing so, we adopt AI-planning

2Web Service Specification Language

Chapter 3. Abstract Service Composition with Fluent Calculus 68

technique to solve automated service composition problems. Given a list of opera-

tions and user goals, the AI-planner build up an abstract plan, which is a sequence

of operations. Therefore, we have called orchestration, workflow and abstract plan

in this dissertation interchangeably. We have proposed constraints programming

system being our operations composer. The composer is capable to generate the

abstract plan, which has sequencing, conditioning and parallelizing controls among

operations.

Chapter 4

Composition Platform Generation

Contents

4.1 Architecture . 70

4.2 Abstract plan to BPMN semantics 72

4.3 BPMN Transformer . 74

4.3.1 Example of BPMN model 77

4.4 BPMN Validation . 81

4.4.1 Well-formed BPMN process 81

4.4.2 Well-defined BPMN process 82

4.4.3 Related work . 83

4.5 Summary . 83

Abstract. Our composition platform layer to valid semantic BPMN model

of the composite platform generation system, one of our contributions, is

presented in this Chapter. The objective of the system is to analyze and

check the properties of derived BPMN model from the workflow of abstract

service composition system. Therefore, a model representing BPMN process

in Prolog language is proposed in this chapter. Two processes of BPMN

Transformer and BPMN Validation respectively are presented and detailed.

This chapter discusses the Composite Platform Generation, which is the process

present in Composite Platform layer of the Service Composition and Execution

system (see Figure 4.1).

69

Chapter 4. Composition Plarform Generation 70

Figure 4.1: Proposed multi-layers of the Service Composition and Execution
system highlighted at Composition Platform layer

The Composite Platform generation process handles transforming the abstract

plan, which is derived from the Abstract Service Composition in the Logical layer,

to BPMN model in Prolog language and analyzing the BPMN model whether it is

well-formed BPMN from the BPMN specification[OMG] and well-defined BPMN

from correctness requirements.

Therefore, we start this chapter with an architecture of the Composition Platform

Generation process in Section 4.1. As we selected BPMN as our composition

platform, we describe in details abstract plan to BPMN semantic in Section 4.2.

The main components of the Composition platform generation process: the BPMN

Transformation and the BPMN Validation are explained in Sections 4.3 and 4.4

respectively.

4.1 Architecture

A preliminary aim of the Composite Platform Generation process is to obtain an

executable composite service, given an input of the abstract plan from the Abstract

Service Composition process (see in Chapter 3). As the abstract plan supports

Chapter 4. Composition Plarform Generation 71

only a control among abstract service operations, an execution of the composite

plan is not be possible.

A solution considered is to create a workflow application. A workflow applica-

tion is an information system that supports controlling the execution of complex

application processes in a variety of domains, including the traditional business

domain [WGHS99]. While a workflow itself is a collection of related, structured

activities or tasks that produce a specific service. To develop the workflow ap-

plication, any specialized workflow languages (i.e., WS-BPEL and BPMN) or

general-purpose languages (i.e., XPDL1 and YAWL2) can be used for workflow

definition.

Among these languages, BPMN was selected for being our workflow composition

platform. In other words, BPMN model shall represent a workflow of the abstract

plan. Therefore, we need a mechanism for mapping the abstract plan into the

BPMN model.

Figure 4.2: BPMN generation process

The Figure 4.2 illustrates the architecture of Composite Platform (or business

process) Generation. The process starts from the BPMN transformer that converts

the abstract plan, which is consisted of a sequence of operation fluents, to BPMN

model in Prolog language. Next, the BPMN model is analyzed and verified in the

BPMN Validation. The valid BPMN model as a result will be implemented and

executed in the experiment phase later on.

1The XML Process Definition Language (XPDL) is a format standardized by the Workflow
Management Coalition (WfMC) to interchange business process definitions between different
workflow products.

2YAWL (Yet Another Workflow Language) is a workflow language based on workflow patterns.

Chapter 4. Composition Plarform Generation 72

4.2 Abstract plan to BPMN semantics

A BPMN is a standard notation maintained by OMG3 for modeling business pro-

cesses. Its goal is to provide a notation of business specification that is under-

standable by all business stake holders (i.e. business analysts, software developer

and business people), mainly at the level of domain analysis and high-level sys-

tems design [OMG]. The BPMN is widely-used in the early stages of systems life

cycle. According to the OMG, 72 implementations of the BPMN are reported

for known businesses [OMG]. Moreover, open sourced software companies (i.e.,

Activiti4, BonitaSoft5 and Yaoqiang BPMN Edior6) dramatically compete among

each others to offer varied solutions to edit and run BPMN models.

Figure 4.3: BPMN notation related to the proposed of our work [OMG]

BPMN is comprised of an abstract of workflow components. However, this disser-

tation focuses on a control-flow perspective of BPMN. Therefore, the subset of the

3http://www.omg.org/
4http://activiti.org/
5http://www.bonitasoft.com/
6http://bpmn.sourceforge.net/

Chapter 4. Composition Plarform Generation 73

notation that handles the order of activities are allowed to occur. It does not han-

dle its non-functional features (i.e., artifacts and association) and organizational

modeling features (i.e., lanes and pools).

Figure 4.3 shows an overview of a set of graphical BPMN elements related to the

proposes of our work. For the event elements, only start event and end event

are taken into consideration. Service tasks are main knowledge of processing

elements; each task is a finite process with a set of inputs and a set of outputs.

Two gateways: split and join control a workflow. Split gateways present when

branching of the workflow takes place; two disjoint subtypes of splits are AND-

split gateway and XOR-split gateway. AND-split allows a single flow to

be split into two or more branches which can execute tasks concurrently while

XOR-split allows a flow to be split into two or more flows when the incoming

flow is enabled, the gateway is passed to one of the outgoing flows based on a

specified condition that can select one of the outgoing flows. Join gateways

happen when two or more paths meet; two further disjoint subtypes of merge

modes are considered: AND-join gateway and AND-split gateway. AND-

join allows two or more parallel flows to be joined into a single subsequent flow

when all input flows have been enabled while AND-split allows a single flow to

be split into two or more branches which can execute tasks concurrently. Lastly,

a sequence flow is used to link two entities of event, activity or gateway in a

process diagram and specify a control flow relation. For further details of BPMN

specification, see Appendix C.

For BPMN transformation purpose, we map from logical analysis of BPMN com-

ponent to their logical models, properties and representation in Prolog. The fol-

lowing table 4.1 lists BPMN elements along with their mapped semantic fluents

into consideration:

Chapter 4. Composition Plarform Generation 74

BPMN elements BPMN semantics

Start event node(start)

End event node(end)

Service task task(Name,Inputs,Outputs)

Sequence flow flow(HOperation,TOperation)

XOR-split gateway gateway(xorS)

XOR-join gateway gateway(xorJ)

AND-split gateway gateway(andS)

, AND-join gateway gateway(andJ)

Table 4.1: Mapping between BPMN elements and BPMN semantics

The BPMN elements are mapped into the BPMN semantics according to the ele-

ment type. For example, Start event is mapped to node(start) and so on. However,

Service task and Sequence flow BPMN element require more informations for se-

mantic mapping. A semantic of Service task needs informations of task name,

inputs and outputs for defining task(Name, Inputs, Outputs), where Name, Inputs

and Outputs are variable names. The same principle applies to Sequence flow

that it needs a workflow information of head operation linking to tail operation

for flow(HOperation,TOperation), where HOperation and TOperation are operation

names.

4.3 BPMN Transformer

The BPMN transformer is a process for mapping the abstract plan consisting of a

sequence of the fluents into semantic BPMN model in the declaration of a formal

language. The reason why we transform the abtract plan into the formal language

is that a graphical notation of BPMN elements binds information of data passing,

data transformation and routing condition from BPMN workflow specification.

This shall be hard to fix defects when they occur in BPMN model.

We selected Prolog as a formal language for modeling BPMN. The static analysis

towards a logical model for BPMN diagram will be discussed later in Section 4.4.

Therefore, the resulting transformed model shall represent semantic workflow spec-

ification in Prolog including data passing, data transforming and routing condition.

Chapter 4. Composition Plarform Generation 75

The following Table 4.2 shows mapping rules between particular fluents occurred in

the abstract plan and semantic BPMN we defined in Table 4.1. We have classified

the fluents into four groups: initial group, flow group, goal group and data group.

The initial group contains add initial(Op) fluents, where Op is a single operation.

Mapping these initial fluents into BPMN could create two possible situations.

The first situation happens when the transformer detects only one initial fluent

in the abstract plan. The transformer creates node(start) and flow(start,Op), link-

ing between start event and operation Op, into BPMN model. While the second

situation occurs when there are more than one initial fluents in the plan. This

means operations derived from initial fluents can start a process at the same time.

A converted BPMN has one AND-split gateway to combine these initial opera-

tions. For example, add initial(Op1), add initial(Op2) is mapped to BPMN model,

which is consisted of node(start), gateway(andS), flow(start,andS), flow(andS,Op1),

flow(andS,Op2).

The flow group contains flow(,), flow(,if(guard(, , ,),),else(guard(, , ,),)) and

flow(if([,],)) fluents. These flow fluents can be mapped into a sequence, parallel

and condition flows in BPMN model. For the sequence flow, the transformer does

not change flow(,) fluent. For instance, flow(Op1,Op2), where Op1 and Op2 are

instants of Task Op1 and Task Op2, stays remain in BPMN since it describes a

control flow from task object to another task object in the same way as a flow

dose in BPMN. While creating parallel flow in BPMN, the transformer checks all

tasks in the head position of flow fluent. i.e., OP1 in flow(Op1,) fluents whether

Op1 exists in any head position of other flow(Op1,) fluents. If these flow fluents

exist, the transformer convert them to one AND-split gateway, relevant control

flows and relevant tasks. For example, flow(Op2,Op3), flow(Op2,Op4) is mapped

to gatway(andS), flow(Op2,andS), flow(andS,Op3), flow(andS,Op4). This checking

parallel rule also is applied for AND-join gateway that the transformer monitors the

tail position of flow fluent. i.e., Op1 in flow(,Op1) fluent with others flow(,Op1)

fluents instead. For the condition flow, the transformer checks the abstract

plan for flow(,if(guard(, , ,),), else(guard(, , ,),)) fluent and flow(if([,],)).

If the former fluent is detected, the transformer creates one XOR-split gate-

way, one control flow and two control flows with condition into BPMN model.

For example, flow(Op1,if(guard(O1,RO1,V1),Op2),else(guard(O2,RO2,V2),Op3) is

mapped to gatway(xorS), flow(Op1,xorS), flow(xorS,Op2,guard(O1,RO1,V1)),

Chapter 4. Composition Plarform Generation 76

Group Fluents in Abstract plan BPMN

Initial

initial
add initial(Op1) node(start)

flow(start, Op1)
initial with parallel

add initial(Op1) node(start)
add initial(Op2) gateway(andS)

flow(start,andS)
flow(andS,Op1)
flow(andS,Op2)

Flow

flow with sequence
flow(Op1,Op2) flow(Op1,Op2)

flow with AND Split parallel
flow(Op2,Op3) gateway(andS)
flow(Op2,Op4) flow(Op2,andS)

flow(andS,Op3)
flow(andS,Op4)

flow with AND Join parallel
flow(Op3,Op5) gateway(andJ)
flow(Op4,Op5) flow(Op3,andJ)

flow(Op4,andJ)
flow(andJ,Op5)

flow with XOR Split condition
flow(Op1, if(O1,S1,V1,Op2), gateway(xorS)

else(O2,S2,V2,Op3) flow(Op1, xorS)
flow(xorS,Op2,guard(O1,S1,V1))
flow(xorS,Op3,guard(O2,S2,V2))

flow with XOR Join condition
flow(if([Op2,Op3], Op4) gateway(xorJ)

flow(Op2, xorJ)
flow(OP3,xorJ)
flow(xorJ,OP4)

End

goal
add goal(Op4) node(end1)
add goal(Op5) node(end2)

flow(Op4, end1)
flow(Op5, end2)

Data

data passing
op inputs(Op,[Inputs]) task(Op, [inputs], [outputs])

op outputs(Op,[Outputs])
data transforming

dataTransform(X,X1) dataTransform(X,X1)

Table 4.2: Mapping between the abstract plan and BPMN workflow

flow(xorS,Op3,guard(O2,RO2,V2)). While the flow with XOR-join gateway is cre-

ated if the latter fluent is captured. For instance, flow(if[Op2,Op3],Op4) is mapped

Chapter 4. Composition Plarform Generation 77

to gatway(xorJ), flow(Op2,xorJ), flow(xorJ,Op3), flow(xorJ,Op4).

The goal group contains add goal(Op) fluents, where Op is a single operation.

We follow BPMN specification that a workflow in BPMN model may have more

than one end events. Therefore, the transformer creates goal nodes up to number

of distinct add goal() fluents found. For example, add goal(Op4), add (Op5) is

mapped to node(end1), node(end2), flow(Op4,end1), flow(Op5,end2).

Lastly, the data group contains data passing and data transforming fluents.

The data passing describes both the task Op creation and its data passing

of inputs and outputs. To do so, the transformer searches for service opera-

tions used in the abstract plan. For each operation Op, the transformer com-

bines op inputs(Op,[inputs]) and op outputs(Op,[outputs]) fluents and map them to

task(Op,[inputs],[outputs]) fluent, referring to Task Op containing a set of its inputs

and its output. While dataTransform(X,X1) fluent, capturing a change from a data

form X into another form X1, in the abstract plan stays remain in the semantic

BPMN model.

4.3.1 Example of BPMN model

This subsection illustrates an example of BPMN Transform process mapping be-

tween the abstract plan and the semantic BPMN model. The example scenario is

taken from Section 3.2. Before the mapping, the abstract plan is consisted of:

• add initial(fromCoordinatesToCity), referring operation fromCoordinatesToCity

is added as initial to the plan,

• add goal(bookRestaurant) and add goal(getDirection), referring that

bookRestaurant and getDirection are operations holding user’s goals

in the plan,

• flow(fromCoordinatesToCity,findFinestRestaurant), flow(findFinestRestaurant,

bookRestaurant) and flow(findFinestRestaurant, getDirection), each flow fluent

referring to a control flow from the 1st operation to the 2nd operation.

• dataTransform(RestaurantAddress,Address), referring to data transforming

from parameter RestaurantAddress to parameter Address. Without this data-

Transform fluent, flow(findFinestRestaurant,getDirection) fluent is not existed.

Chapter 4. Composition Plarform Generation 78

• op inputs(fromCoordinatesToCity,[Coordinates]), op inputs(bookRestaurant,

[RestaurantName,BookingDate, BookingTime,GuestName,GuestTelephone]),

op inputs(findFinestRestaurant,[City]) and op inputs(getDirection, [Coordi-

nates,Address]), each referring to a set of inputs of the operation.

• op outputs(fromCoordinatesToCity, [City]), op outputs(findFinestRestaurant,

[RestaurantName,RestaurantAddress]), op outputs(bookRestaurant, [Booking-

Confirmation]) and op outputs(getDirection, [Direction]), each referring to a

set of outputs of the operation.

The BPMN transformer converts the above mentioned fluents into the semantic

BPMN model (see in Tables 4.3 and 4.4). We group the fluents to define BPMN

elements:

1. Start node and its flow

As the transformer detect only a single add initial(fromCoordinatesToCity)

fluent in the plan, the transformer reasons for fluents subjec-

tive to operation FromCoordinatesToCity and creates node(start),

task(fromCoordinatesToCity,[coordinates],[city]) and flow(start, fromCoor-

dinatesToCity).

2. Sequence flow between two operations

The sequence flow between two operations happens in the

BPMN model when the transformer detects non parallel gate-

way from that two operations. Therefore, the transformer maps

flow(fromCoordinatesToCity,findFinestRestaurant) and its findFinestRestaurant

relevant fluents into flow(fromCoordinatesToCity,findFinestRestaurant) and

task(findFinestRestaurant,[coordinates],[name(restaurant),address(restaurant)])

in the semantic BPMN elements.

3. Gateway and its flows

As the transformer detects parallel operation findFinestRestau-

rant among these flow(findFinestRestaurant,bookRestaurant) and

flow(findFinestRestaurant,getDirection) fluents, this indicates an occurrence

of AND-split gateway. Therefore, the mapped BPMN elements are gate-

way(andS1), flow(findFinestRestaurant,andS1), flow(andS1,bookRestaurant),

flow(andS1,getDirection), task(bookRestaurant,[name(restaurant),date,time,

Chapter 4. Composition Plarform Generation 79

Abstract plan in Semantic BPMN model and diagram
Fluent calculus
add initial(fromCoordinatesToCity) node(start)
op inputs(fromCoordinatesToCity, task(fromCoordinatesToCity,

[Coordinates]) [Coordinates], [City])
op outputs(fromCoordinatesToCity, flow(start, fromCoordinatesToCity)

[City])

flow(fromCoordinatesToCity, flow(fromCoordinatesToCity,
findFinestRestaurant) findFinestRestaurant)

op inputs(findFinestRestaurant, task(findFinestRestaurant, [City],
[Coordinates]) [RestaurantName,RestaurantAddress])

op outputs(findFinestRestaurant,
[RestaurantName,
RestaurantAddress])

flow(findFinestRestaurant, gateway(andS1)
bookRestaurant) flow(findFinestRestaurant, andS1)

flow(findFinestRestaurant, flow(andS1, bookRestaurant)
getDirection) flow(andS1, getDirection)

dataTransform task(bookRestaurant,[RestaurantName,
(RestaurantAddress,address) BookingDate,BookingTime,

op inputs(bookRestaurant, GuestTelephone],[BookingConfirmation])
[RestaurantName,BooingDate, task(getDirection, [Coordinates,Address],
BookingTime,GuestTelephone]) [Direction])

op outputs(bookRestaurant, dataTransform(RestaurantAddress,Address)
[BookingConfirmation])

op inputs(getDirection,
[Coordinates,Address])

op outputs(getDirection,
[Direction])

Table 4.3: Mapping service operations example between problem domain and
planning domain

Chapter 4. Composition Plarform Generation 80

Abstract plan in Fluent calculus Semantic BPMN model and diagram

add goal(bookRestaurant) node(end1)
add goal(getDirection) node(end2)

flow(bookRestaurant,end1)
flow(getDirection,end2)

Table 4.4: Mapping service operations example between problem domain and
planning domain (cont.)

telephone], [bookingConfirmation]), task(getDirection,[coordinates,address],

[direction]) and dataTransform(address(restaurant),address).

4. End nodes and their flow.

As the transformer captures two add goal(bookRestaurant) and

add goal(getDirection), the semantic BPMN elements: node(end1),

node(end2), flow(bookRestaurant,end1) and flow(getDirection,end2) are

created in the BPMN model.

The Figure 4.4 illustrates an aggregation of the semantic BPMN elements in Tables

4.3 and 4.4. The BPMN model can be read that a process starts from fromCo-

ordinatesToCity operation followed by findFinestRestaurant operation. Later, the

findFinestRestaurant operation is split into bookRestaurant and getDirection opera-

tions and the process is then ended.

Figure 4.4: The example of BPMN model (Alice’s process)

Chapter 4. Composition Plarform Generation 81

4.4 BPMN Validation

The BPMN Validation is a process to analyze and verify BPMN models using

AI approach. To do so, we formulate checking rules against well-formed BPMN

to assure the BPMN model specification. The rules also reveal guard condition

expression on the semantic BPMN model.

4.4.1 Well-formed BPMN process

We show some useful Prolog queries for finding properties of the business pro-

cess model (see more queries in Appendix C.3). For this purpose we use the

rules defined in the specification of well-formed BPMN processes [OMG], see Ap-

pendix C.2.

• rule1(Z) :-

holds(flow(start,_),Z).

This rule verifies that a start event must be a source of a sequence. Given a

semantic BPMN model in State Z, the validation agent checks whether there

is a flow(start,) fluent in Z under predicate holds(flow(start,),Z). If a result

returns true, it refers that there is a start event being a source of a sequence

in the BPMN model.

• rule2(Z) :-

\+ (knows_val([End],node(End),Z), End \= start,

knows_val([Op],flow(Op,End),Z), holds(flow(start, Op),Z)).

This rule verifies that there must not exist a connection between a start

and an end event. Given a semantic BPMN model in State Z, the

validation agent retrieves variable End from node(End) fluent in Z un-

der predicate know val([End],node(End),Z) and check the End value is not

equal to start node. The agent then retrieve variable Op in the flow

fluent having the End being an end of a sequence in Z under predicate

know val([Op],flow(Op,End),Z) and lastly the agent checks whether there is a

flow(start,Op) fluent in Z under predicate holds(flow(start,Op),Z). With log-

ical negation \+ in Prolog, the agent repeats the same procedure on other

end node fluents. The \+ will return true only if every loops return false.

Chapter 4. Composition Plarform Generation 82

This refers that there is none of a connection between a start and an end

event.

4.4.2 Well-defined BPMN process

The above mentioned rules only verify BPMN well-formed model. However, a

well-formed model does not assure that any input knowledge the process can

be executed leading to expected goals. Therefore, we have following auxiliary

functions (line 1-9) aiming to check all possible process.

1 travel(S,E,[S|P],[L|_],GE,Z,Z1) :-

2 holds(flow(E,L),Z), update(Z,[flowPath ([A|P],GE)],[],Z1).

3

4 travel(S,E,Visited ,P,GE,Z,Z1) :-

5 (holds(flow(C,E),Z) -> ((C\==S;C==start), not(member(C,Visited)),

6 travel(S,C,[C|Visited],Visited ,Cond1 ,Z,Z1))

7 ;

8 holds(flow(C,E,GE2),Z,Z1) -> ((C\==S;C==start), not(member(C,Visited)),

9 travel(S,C,[C|Visited],Visited ,[GE2|GE],Z,Z1))).

After running the above functions, resulting model contains all possible paths, each

path holding all visited nodes and guard conditions. To do so, the validation agent

calls travel(S,E,[S|P],[L|],GE,Z,Z1) action (line 1), where S = start node, E = end

node, [S|P] = a set of visited nodes (start node (S) plus a sequence of nodes (P)),

[L|] = a set of visited nodes (operation node (L) next to the start node), GE =

guard condition, Z = current state, Z1 = new state. The agent checks (line 2)

whether there is a flow fluent having variable E of start node in a head position and

a derived operation node L from another travel predicate (line 4-9) at tail position

in state Z or not. With the travel predicate (line 4-9), the agent knows operation

node C from holds(flow(C,E),Z) and checks a condition whether C /= start node S

or C = start node. If this condition passes, C is checked that it is not member of

Visited a set of visited nodes. Then operation node C is add into the visited path

in [C|Visited]. The agent continues adding nodes into the visited path until the

flow(E,L) is found in Z. If the semantic BPMN model contains flows with guard

conditions, the validation agent will add a set of guard conditions into GE (line 8-9).

Finally, the agent adds all possible paths [A|P] and relevant guard conditions GE

into flowPath([A|P],GE) fluent under action update(Z,[flowPath([A|P],GE)],[],Z1).

Chapter 4. Composition Plarform Generation 83

This checking assures resulted well-defined model since the flow fluents, derived

from FLUX planner, were processed using links detected matched parameters from

two service operations, their data transformation, and correct controls defined by

the branching/merging condition assigned to the links (see in Section 3.4, Page 59).

4.4.3 Related work

There are many researches based on BPMN formalization and verification. They

migrate from logical analysis of BPMN component to their logical models, prop-

erties and representation in formalization languages such as π-Calculus [PW06],

Petri nets [DDO08], YAWL [DDDGB08], Prolog [LP14] and Maude [ESB14].

Among these formalization languages, we selected AI approach to formally analyse

our BPMN model. To the best of our knowledge, apart from [And10, LP14], there

are no other related works defining BPMN model in Prolog. The former used

Prolog modeling BPMN model for simulation purpose [And10]. The simulation of

business process to assess the cost and time of running a process and to identify

potential problems with resources. He claimed that his result is the same as the

result from specialized commercial tools like IBM WebSphere Business Modeler7.

The latter performed analysis against well-formed and well-defined BPMN process

[LP14]. Their aim is to verify BPMN model in the declarative Prolog language on

specification of correct components and correct data flow. Compare to our work,

we also defined formal semantics of diagram components and workflow operation

in Prolog language, however we added guard condition expression evaluation to

check whether the solution holding the guard condition expression defined from

correctness requirements.

4.5 Summary

This chapter talks about business process generation process. Since business pro-

cess is the standard method to create the workflow application, which is one of

our ultimate goals. Thus, we propose the mapping from the abstract plan, derived

from the FLUX planner in the abstract service composition process, to semantic

7http://www-03.ibm.com/software/products/en/modeler-advanced/

Chapter 4. Composition Plarform Generation 84

BPMN model in the declarative Prolog language. Addition, we propose AI ap-

proach to formal analysis of the BPMN model. The analysis checking reveals the

notation of well-formed and well-defined BPMN model.

Chapter 5

Implementation

Contents

5.1 Models . 86

5.2 Implementation . 89

5.3 Results . 91

5.3.1 Experiment 1. 91

5.3.2 Experiment 2. 95

5.3.3 Experiment 3. 100

5.4 Discussion . 104

Abstract. Implementation of our system for a proof of concept is pre-

sented in this Chapter. It covers the abstract service composition system in

Chapter 3, the composite platform generation system in Chapter 4 and the

parameter monitor and BPMN execution components, which are found in

the execution layer. We present meta-model used to predefined objects of

our proposed system. Finally, we show the experiments and results of our

setup scenarios from Chapter 1.

This chapter talks about implementation of Service Composition and Execution

system. The objectives of the system are (1) to generate correct and abstract

BPMN workflow from the user’s goals in propositional logic and the service opera-

tion references to aliases used to fulfill the propositional logic and (2) to implement

and run executable BPMN model from the valid abstract BPMN model and users’

85

Chapter 5. Implementation 86

input parameters. For the first objective, the implementation in Section 5.2 covers

FLUXQuery Transformation and FLUX Planner, which are introduced in Chapter

3, BPMN Transformation and BPMN Validation, which are introduced in Chapter

4. While the second objective, we discuss is in the implementation of Parameter

Monitor and BPMN Execution. However, we discuss meta-model used for pre-

defined objects of our approach problems in Section 5.1. Finally, a simulation of

running examples from Chapter 1 is discussed in Section 5.3.

5.1 Models

The Service Composition and Execution system is comprised of various different

domains such as user requirement, planning, web service and BPMN. Therefore,

we have identified a set of 5 domain-specific models that together encapsulate the

required range of process operations.

• Requirement model. A Requirement model, shown in Figure 5.1, repre-

sents an input requirement with a set of Initials. Generally, user provides the

system informations of user’s query, profile and context. These informations

are preprocessed by the User query management; user’s query is expressed

in terms of goal and initial states, flow conditions and data transformation

of certain parameters; user’s profile and context are expressed in term of

initial states. These informations are stored in Requirements. Since the sys-

tem helps the user to enter values of input process parameters, Initials keeps

information as expressed as the triple < paraname, datatype, value >.

Figure 5.1: Requirement model

Chapter 5. Implementation 87

• Service operation model. To composition of service operations, as il-

lustrated in Figure 5.2, we define a Service operation model. We sup-

port wsdl services that could be abstract into an Operation containing

a set of Inputs and a set of Outputs. For an issue of service execu-

tion, we implement web service class called during process execution us-

ing org.activiti.engine.delegate.JavaDelegate interface. Under this interface,

required business logic is implemented in the execute(DelegateExecution)

method.

Figure 5.2: Service operation model

• FLUX planner model. The structure of our FLUX, explained in Section

3.1.2, is consisted of (1) encoding of goal knowledge state, service oper-

ation candidates and flow conditions, which are expressed as FLUXQuery,

(2) domain axioms including action precondition axiom and update axiom

and FLUX rules and constraints, which are expressed in agentFLUX and li-

braryFLUX respectively and (3) a high level of the agent’s behavior expressed

in programFLUX. Therefore, we implement these FLUX elements as FLUX

planner model illustrated in Figure 5.3. An abstract plan resulted of FLUX

Planner is kept in abstractPlanFile.

Figure 5.3: FLUX planner model

Chapter 5. Implementation 88

• BPMN prolog model. A BPMN prolog model, shown in Figure 5.4, rep-

resents two states of BPMN Prolog model object. They are states before and

after validation. The BPMN state after validation reveals whether its model

is valid against minimal rules of BPMN specification (see in Section 4.2) as

expressed in isPropertiesValid and is correctness of user guard condition as

expressed in isGuardValid.

Figure 5.4: BPMN Prolog model

• BPMN model. This dissertation focuses on a control-flow perspective

of BPMN. Therefore, the subset of the notation that handles the order of

activities (Events, Flows, Gateways and Tasks) are allowed to occur.

Figure 5.5: BPMN model

It does not handle its non-functional features (i.e., artifacts and associa-

tion) and organizational modeling features (i.e., lanes and pools). Therefore,

Chapter 5. Implementation 89

we implement this BPMN model, as illustrated in Figure 5.5. Besides the

BPMN elements, we keep other informations such as req.Initials as process

input paramaters and bpmnResult as process output.

5.2 Implementation

Figure 5.6 illustrates the system design and interaction of the main components

of the Service Composition and Execution system. We implement component

class using our defined interfaces, expressed in Figure 5.7, in JAVA platform. The

whole system operation can be summarized as follows. First a Requirement object

Figure 5.6: Composite platform layer on service composition and execution
system

and a set of Operation objects are being transformed using operations in FLUX-

QueryTransformer component to obtain FLUXQuery object. Next FLUXPlanner

component is triggered, which FLUX planning program is generated. To compile

and run the program, we implement an object of com.parcltechnologies.eclipse,

Chapter 5. Implementation 90

Figure 5.7: Composite platform layer on service composition and execution
system

which is API documentation for the Java-Eclipse Interface of Eclipse1. As the

result, an abstract plan is stored in the FLUXPG and ready to be transformed into

BPMN in prolog declaration. Then BPMN model in prolog in BPMN PrologModel

object is checked its process properties and guard condition expression in BPM-

NValidation component. We also compile and run the transform and validation

programs via com.parcltechnologies.eclipse. If the BPMN in prolog is valid, Pa-

rameterMonitor and BPMNExecution components in Execution layer are enable.

The BPMN PrologModel object is monitored whether it possesses all process input

parameters from the Requirement object or not. User is asked to submit missing

parameter(s) if all the parameter inputs are not found in the Requirement object.

Then BPMNModel object is created from the BPMN PrologModel object and the

Requirement object. To implement and execute BPMN model, we implement an

object of org.activiti, which is API documentation for modeling and execution

BPMN model (i.e., generating graphical BPMN process, deploying the process to

the engine, starting a process instance and save process diagram to a file) [Tea].

Finally, result of BPMN model execution in BPMNModel object is sent back to

the user.

1an open-source software system for the cost-effective development and deployment of con-
straint programming applications [ECL].

Chapter 5. Implementation 91

5.3 Results

Our main challenge to validate our framework is to find service operations of real

world services that are composable in E-Tourism domain. Unfortunately, to best

our knowledge, there is no service operations that allow us to fully operate the

performance of our framework. Therefore, to prove the feasibility of our approach

to compose service operations that fulfill user’s query, we have make an implemen-

tation as a proof of concept and experiments to evaluate outputs of our automated

service operations composition and execution approach. For experiments as fol-

low, we use three motivating scenarios introduced in Chapter 1. The scenarios

describe different problem situations of Alice facing during her trip in Paris. For

each situation, she submits a textual query via her smart phone to the Context

Awareness Recommendation system, introduced in Chapter 1, to obtain a service

solution. We capture the Service Composition and Execution part of the system

that is responsible for synthesizing automatically a service composition among

relevant service operations, so that the execution of the composite service fulfills

user’s need.

Therefore, we set up each experiment having Alice’s problem query in text, which

its full description is found in Section 1.2, and per-processing input in proposi-

tional logics of user’s profile, context, query, which is expressed as initial and goal

states, and list of service operations, which each is described with its input(s) and

output(s). We illustrate results of the experiments consisting of (1) a valid BPMN

model in Prolog which illustrates a valid assembly of abstract service operation in

BPMN specification, (2) its equivalent to graphical BPMN model, (3) missing in-

put parameter(s) which are later filled by Alice to obtain (4) all input parameters

for a service execution and (5) a result of the service execution.

5.3.1 Experiment 1.

The aim of the experiment 1 is to execute a query, which has one operation

to fulfill a goal the query explicitly defining, on our Service Composition and

Execution system. We pick up one query existing in Alice’s scenario (see Sec-

tion 1.2), which is I want to search for apartment rooms available from tonight to

05/06/2014. To set up an experiment, we prepare the following data inputs of

Chapter 5. Implementation 92

query, profile, context and service operations derived from the User Interaction

and Query Management (UIQM) and the Discovery system (DS) respectively.

• From UIQM

Query

Initials Goals

CheckIn(01/06/2014) RoomAvailables

CheckOut(05/06/2014)

RoomType(apartment)

Profile Context

PersonName(Alice) Date(01/06/2014)

Citizenship(USA) Time(12.00)

TravalPurpose(work)

• From DS

Service operation Input(s) Output(s)

SearchAvailableRooms Location RoomAvailables

CheckIn

CheckOut

RoomType

NumberOfGuest

These mention above pre-processing inputs are transformed into FLUXQuery as

belows using methods in FLUXQueryTransformer class.

1 % there is one service operation in an operation list.

2 op_list ([" SearchAvailableRooms "]).

3

4 % the service operation is tramsformed here

5 op_inputs (" SearchAvailableRooms ",[" Location","CheckIn","CheckOut","RoomType",

6 "NumberOfGuest "]),

7 op_outputs (" SearchAvailableRooms ",[" RoomAvailables "]),

8

9 % intial and goal states are defined here

10 initials ([" CheckIn","CheckOut","RoomType"," PersonName", "Citizenship", "TravelPurpose",

11 "Date", "Time"]),

12

13 initialsWithValues ([" CheckIn :01 -06 -2014" ," CheckOut :05 -06 -2014" ," RoomType:apartment",

14 "PersonName:Alice"," Citizenship:USA"," TravelPurpose:work","Date :01 -06 -2014" ," Time :12am"]),

15

16 goals ([" RoomAvailables "])].

Chapter 5. Implementation 93

The generated FLUXQuery is injected into FLUXPlaner. With composition rules,

the FLUXPlaner is able to synthesizes an abstract plan of the Alice’s query. The

partial of Alice’s abstract plan is shown below.

add initial(SearchAvailableRooms),

add goal(SearchAvailableRooms),

...

The above abstract plan shows that it starts and ends with SearchAvailableRooms

operation. Then the Service composition and execution system transforms the ab-

stract plan into semantic BPMN model using BPMNTransformer class as follows.

node(start),

node(end1),

flow(start,searchAvailableRooms),

flow(SearchAvailableRooms,end1),

task(SearchAvailableRooms,[Location, CheckIn, CheckOut, RoomType

NumberOfGuest],[RoomAvailabilities]).

parameters([CheckIn:01-06-2014, CheckOut:05-06-2014,

RoomType:apartment]),

missingP(NumberOfGuest), missingP(Location)

The generated semantic business model consists of three elements (one start

event node(start), one task operation SearchAvailableRooms and one end event

node(end1)) and the flows connecting those elements. Besides, we keep the pro-

cess input parameters of CheckIn, CheckOut, RoomType and missing parameters

of NumberOfGuest, Location in the model.

Next Alice is asked to submit the mentioned missing parameter(s). Alice puts

48.8567◦N2.3508◦E for Location and 2 for NumberOfguest. Thus all required pa-

rameters with values are presented here.

<InputParameters>

<Location> 48.8567◦N2.3508◦E) < /Location>

<CheckIn> 01/06/2014 < /CheckIn>

<CheckOut> 05/06/2014 < /CheckOut>

<NumberOfguest> 2 < /NumberOfguest>

<InputParameters>

Chapter 5. Implementation 94

After the BPMN model is implemented into BPMN format and it is deployed on

the server. We then execute the model with the InputParameters. The BPMN

diagram of Alice’s query is shown below.

Figure 5.8: SearchAvailableRooms process

Finally, the resulting of BPMN model execution holding three set of RoomAvailable

information as follows is sent back to Alice.

<RoomAvailables>

<RoomAvailable>

<Id>Sofa bed in the heart of paris< /Id>

<Type>Shared room< /Type>

<Address>Rue des Rosiers, Paris 4e arrondissement,

lle-de-France 75004< /Address>

<City>Paris< /City>

<Price>EUR38< /Price>

<CheckIn>01/06/2014< /CheckIn>

<CheckOut>05/06/2014< /CheckOut>

<NumberOfGuest>2< /NumberOfGuest>

< /RoomAvailable>

<RoomAvailable>

<Id>Nice flat in Montmarte< /Id>

<Type>Private room< /Type>

<Address>Rue Lamarck, Paris, lle-de-France 75018

< /Address>

<City>Paris< /City>

<Price>EUR47< /Price>

<CheckIn>01/06/2014< /CheckIn>

<CheckOut>05/06/2014< /CheckOut>

<NumberOfGuest>2< /NumberOfGuest>

Chapter 5. Implementation 95

< /RoomAvailable>

<RoomAvailable>

<Id>Quiet, Spacious apt in City Center< /Id>

<Type>Entire home< /Type>

<Address>Rue Dussoubs, Paris, lle-de-France 75002

< /Address>

<City>Paris< /City>

<Price>EUR132< /Price>

<CheckIn>01/06/2014< /CheckIn>

<CheckOut>05/06/2014< /CheckOut>

<NumberOfGuest>2< /NumberOfGuest>

< /RoomAvailable>

< /RoomAvailables>

5.3.2 Experiment 2.

The aim of the experiment 2 is to execute a query, which has sequencing and

paralleling among operations, so that the composite operation fulfills the defined

goals, on our Service Composition and Execution system. We pick up one query

existing in Alice’s scenario (see Section 1.2), which is I want to book a table for

2 people at the finest restaurant at 8pm. in the city, and the direction to the

restaurant. To set up an experiment, we prepare the following data inputs of

query, profile, context and service operations derived from the User Interaction

and Query Management (UIQM) and the Discovery system (DS) respectively.

• From UIQM

Chapter 5. Implementation 96

Query

Initials Goals

NumberOfGuest(2) BookingTableReservation

RestaurantType(finest) Direction

BookingTime(8pm)

BookingDate(01/06/2014)

Profile Context

PersonName(Alice) Date(01/06/2014)

Citizenship(USA) Time(16.00)

TravalPurpose(work)

• From DS

Operation Name Input(s) Output(s)

FromCoorinateToCity Coordinates City

FindFinestRestaurant City RestaurantID

RestaurantName

RestaurantAddress

BookRestaurant RestaurantName BookingTableReservation

BookingTime

BookingDate

NumberOfGuest

GuestName

GuestTelephone

GetDirection FromAddress Direction

ToAddress

These mention above pre-processing inputs are transformed into FLUXQuery as

belows using methods in FLUXQueryTransformer class.

1 % there are four service operations in an operation list.

2 op_list ([" FromCoorinateToCity "," FindFinestRestaurant "," BookRestaurant "," GetDirection "]).

3

4 % the service operation is tramsformed here.

5 op_inputs (" FromCoorinateToCity ",[" Coordinates "]),

6 op_outputs (" FromCoorinateToCity ",["City"]),

7 op_inputs (" FindFinestRestaurant ",["City"]),

8 op_outputs (" FindFinestRestaurant ",[" RestaurantID "," RestaurantName "," RestaurantAddress "]),

9 op_inputs (" BookRestaurant ",[" RestaurantName "," BookingTime "," BookingDate "," NumberOfGuest",

10 "GuestName "," GuestTelephone "]),

11 op_outputs (" BookRestaurant ",[" BookingTableReservation "]),

Chapter 5. Implementation 97

12 op_inputs (" GetDirection ",[" FromAddress "," ToAddress "]),

13 op_outputs (" GetDirection ",[" Direction "]),

14

15 % list of data transform is presented here.

16 dataTransform(RestaurantAddress ,ToAddress),

17 dataTransform(Coordinates ,ToAddress),

18

19 % intial and goal states are defined here.

20 initials ([" NumberOfGuest "," RestaurantType "," BookingTime "," BookingDate "," Citizenship",

21 "TravelPurpose", "Date", "Time"]),

22

23 initialsWithValues ([" NumberOfGuest :2"," RestaurantType:finest"," BookingTime :8pm",

24 "BookingDate :01 -06 -2014" ," PersonName:Alice"," Citizenship:USA"," TravelPurpose:work",

25 "Date :01 -06 -2014" ," Time :12am"]),

26

27 goals ([" BookingTableReservation ","Direction "])].

The generated FLUXQuery is injected into FLUXPlaner. With composition rules,

the FLUXPlaner is able to synthesizes an abstract plan of the Alice’s query as

follows.

add initial(FromCoorinateToCity),

flow(FromCoorinateToCity,FindFinestRestaurant),

flow(FindFinestRestaurant,BookRestaurant),

flow(FindFinestRestaurant,GetDirection),

add goal(BookRestaurant),

add goal(GetDirection),

...

The above abstract plan shows that it starts with FromCoorinateToCity opera-

tion and ends with two operations BookRestaurant and GetDirection. The order

of its workflow begin with FromCoorinateToCity following by FindFinestRestaurant

operation, which connects to two operations BookRestaurant and GetDirection at

the same time. Then the Service composition and execution system transforms

the abstract plan into semantic BPMN model using BPMNTransformer class as

follows.

node(start),

gateway(andS1),

node(end1), node(end2),

flow(start,FromCoorinateToCity),

Chapter 5. Implementation 98

flow(FromCoorinateToCity,FindFinestRestaurant),

flow(FindFinestRestaurant,andS1),

flow(andS1,BookRestaurant),

flow(andS1,GetDirection),

flow(BookRestaurant,end1),

flow(GetDirection,end2),

task(FromCoorinateToCity,[Coordinates],[City]),

task(FindFinestRestaurant,[City],

[RestaurantID,RestaurantName,RestaurantAddress]),

task(BookRestaurant,[RestaurantName,BookingTime,BookingDate,

NumberOfGuest,GuestName,GuestTelephone],

[BookingTableReservation]),

task(GetDirection,[Coordinates,Address],[Direction]),

dataTransform(RestaurantAddress,ToAddress),

dataTransform(Coordinates,ToAddress).

parameters([BookingTime:8pm, BookingDate:01-06-2014,

NumberOfGuest:2]),

missingP(Coordinates), missingP(GuestName),

missingP(GuestTelephone)

The generated semantic business model consists of eight elements (one start

event node(start), four task operations FromCoorinateToCity, FindFinestRestaurant,

BookRestaurant and GetDirection, one parallel gateway gateway(andS1), two end

events node(end1)) and node(end2)) and the flows connecting those elements. Be-

sides, we keep the process input parameters of BookingTime, BookingDate, Num-

berOfGuest and missing parameters of Coordinates, GuestName, GuestTelephone in

the model.

Next Alice is asked to submit the mentioned missing parameter(s). Alice puts

48.8567◦N2.3508◦E for Coordinates, Alice for GuestName and 078956120 for Guest-

Telephone. Thus all required parameters with values are presented here.

<InputParameters>

<Coordinates> 48.8567◦N2.3508◦E) < /Coordinates>

<BookingTime> 20 : 00 < /BookingTime>

<BookingDate> 05/06/2014 < /BookingDate>

<NumberOfguest> 2 < /NumberOfguest>

Chapter 5. Implementation 99

<GuestName> Alice < /GuestName>

<GuestTelephone> 078956120 < /GuestTelephone>

<InputParameters>

After the BPMN model is implemented into BPMN format and it is deployed

on the server. We then execute the model with the InputParameters. The below

BPMN diagram of Alice’s query shows sequencing and paralleling among opera-

tions.

Figure 5.9: FindRestaurantAndDirection process

Finally, the resulting of BPMN model execution holding BookingTableReservation

and Direction information as follows is sent back to Alice.

<BookingTableReservation>

<Status>booked< /Status>

<RestaurantResult>

<RestaurantName>Chez Marie Louise

< /RestaurantName>

<BookingTime>20:00< /BookingTime>

<BookingDate>01/03/2014< /BookingDate>

<NumberOfguest>2< /NumberOfguest>

<GuestName>Alice< /GuestName>

<GuestTelephone>078956120< /GuestTelephone>

<NumberOfGuest>2< /NumberOfGuest>

< /RestaurantResult>

< /BookingTableReservation>

<Direction>

48.850266, 2.330650, Head north on Rue Cassette toward Rue de

Mézières, Take Boulevard Saint-Germain, Boulevard de Sébastopol

Chapter 5. Implementation 100

and Boulevard de Strasbourg to Rue des Récollets, Continue to Rue

Bichat, Continue on Rue Bichat. Drive to Rue Marie et Louise, Chez

Marie Louise 11 Rue Marie et Louise, 75010 Paris

< /Direction>

5.3.3 Experiment 3.

The aim of the experiment 3 is to execute a query, which has conditioning among

operations, so that the composite operation fulfills the defined goals, on our Service

Composition and Execution system. We pick up one query existing in Alice’s

scenario (see Section 1.2), which is I want to buy a ticket for Euro Disney tomorrow

if the weather forecast is sunny, otherwise, buy a ticket for Louvre museum. To set

up an experiment, we prepare the following data inputs of query, profile, context

and service operations derived from the User Interaction and Query Management

(UIQM) and the Discovery system (DS) respectively.

• From UIQM

Query

Initials Goals

ForecastDate(02/06/2014) TicketLouveMuseum

Condition(if(Weather /== Sunny))

TicketEuroDisney

Condition(if(Weather == Sunny)

User’s Profile User’s Context

PersonName(Alice) Coordinates(48.8567◦ N 2.3508◦ E)

Citizenship(USA) Date(01/06/2014)

TravalPurpose(work) Time(12.00)

• From DS

Chapter 5. Implementation 101

Operation Name Input(s) Output(s)

GetWeatherForecast Coordinates Weather

ForecastDate

BuyTicketLouveMuseum NumberOfTicket TicketLouveMuseum

TicketDate

TicektTime

CreditcardInfo

BuyTicketEuroDisney NumberOfTicket TicketEuroDisney

TicketDate

TicektTime

CreditcardInfo

These mention above pre-processing inputs are transformed into FLUXQuery as

belows using methods in FLUXQueryTransformer class.

1 % there are three service operations in an operation list.

2 op_list ([" GetWeatherForecast "," BuyTicketLouveMuseum "," BuyTicketEuroDisney "]).

3

4 % the service operation is tramsformed here.

5 op_inputs (" GetWeatherForecast ",[" Coordinates "," ForecastDate "]),

6 op_outputs (" GetWeatherForecast ",[" Weather "]),

7 op_inputs (" BuyTicketLouveMuseum ",[" NumberOfTicket "," TicketDate "," TicektTime",

8 "CreditcardInfo "]),

9 op_outputs (" BuyTicketLouveMuseum ",[" TicketLouveMuseum "]),

10 op_inputs (" BuyTicketEuroDisney ",[" NumberOfTicket "," TicketDate "," TicektTime",

11 "CreditcardInfo "]),

12 op_outputs (" BuyTicketEuroDisney ",[" TicketEuroDisney "]),

13

14 % intial and goal states are defined here.

15 initials ([" NumberOfGuest "," RestaurantType "," BookingTime "," BookingDate "," Citizenship",

16 "TravelPurpose", "Date", "Time"]),

17

18 initialsWithValues ([" NumberOfGuest :2"," RestaurantType:finest"," BookingTime :8pm",

19 "BookingDate :01 -06 -2014" ," PersonName:Alice"," Citizenship:USA"," TravelPurpose:work",

20 "Date :01 -06 -2014" ," Time :12am"]),

21

22 goals ([" TicketEuroDisney "," TicketLouveMuseum "])].

23 cond(c1 ,if(" Weather","sunny"," TicketEuroDisney "),

24 else(" Weather","rainny ",[" BookingRestaurantReservation ","Direction "]))

The generated FLUXQuery is injected into FLUXPlaner. With composition rules,

the FLUXPlaner is able to synthesizes an abstract plan of the Alice’s query as

follows.

add initial(GetWeatherForecast),

Chapter 5. Implementation 102

flow(GetWeatherForecast,if (weather,”==”,”sunny”,BuyTicketEuroDisney),

else(weather,”!=”,”sunny”,BuyTicketLouveMuseum)),

add goal(BuyTicketEuroDisney),

add goal(BuyTicketLouveMuseum),

...

The above abstract plan shows that it starts with GetWeatherForecast operation

and ends with two operations BuyTicketEuroDisney and BuyTicketLouveMuseum.

There is one condition flow in the plan specifying that if the weather is predicted

as sunny, the BuyTicketEuroDisney operation is enable or else the BuyTicketLouve-

Museum operation is enable. Then the Service composition and execution system

transforms the abstract plan into semantic BPMN model using BPMNTransformer

class as follows.

node(start),

gateway(xorS1),

node(end1), node(end2),

flow(start,GetWeatherForecast),

flow(GetWeatherForecast,xorS1),

flow(xorS1,BuyTicketLouveMuseum,if (Weather,==,sunny)),

flow(xorS1,BuyTicketEuroDisney),if (Weather,/==,sunny)

flow(BuyTicketLouveMuseum,end1),

flow(BuyTicketEuroDisney,end2),

task(GetWeatherForecast,[Coordinates,ForecastDate],[Weather]),

task(BuyTicketLouveMuseum,[NumberOfTicket,TicketDate,

CreditcardInfo],[TicketLouveMuseum]),

task(BuyTicketEuroDisney,[NumberOfTicket,TicketDate,

CreditcardInfo],[TicketEuroDisney]),

parameters([ForecastDate:02-26-2014, NumberOfTicket:2,

TicketDate:02-26-2014]),

missingP(Coordinates), missingP(CreditcardInfo),

The generated semantic business model consists of seven elements (one start

event node(start), three task operations GetWeatherForecast, BuyTicketLouveMu-

seum, BuyTicketEuroDisney, one condition gateway gateway(xorS1), two end events

node(end1)) and node(end2)) and the flows connecting those elements. Besides, we

Chapter 5. Implementation 103

keep the process input parameters of ForecastDate, NumberOfTicket, TicketDate

and missing parameters of Coordinates, CreditcardInfo in the model.

Next Alice is asked to submit the mentioned missing parameter(s). Alice puts

48.8567◦N2.3508◦E for Coordinates and Visa no. 548910578XXX ... for Credit-

cardInfo. Thus all required parameters with values are presented here.

<InputParameters>

<Coordinates> 48.8567◦N2.3508◦E) < /Coordinates>

<ForecastDate> 02/06/2014 < /ForecastDate>

<NumberOfTicket> 2 < /NumberOfTicket>

<TicketDate> 02/06/2014 < /TicketDate>

<CreditcardInfo>Visa no. 548910578XXX ...< /CreditcardInfo>

<InputParameters>

After the BPMN model is implemented into BPMN format and it is deployed

on the server. We then execute the model with the InputParameters. The below

BPMN diagram of Alice’s query shows conditioning among operations.

Figure 5.10: GetWeatherForecastAndBuyTicket process

There are two alternative solutions of the resulting of BPMN model execution.

One is for condition that If Weather returns ”NOT Sunny”:

<TicketLouveMuseum>

<Status>paid< /Status>

<Tickets>

<Ticket>

<TicketID>0121< /TicketID>

<TicketType>single< /TicketType>

Chapter 5. Implementation 104

<TicketDate>02/06/2014< /TicketDate>

< /Ticket>

<Ticket>

<TicketID>0122< /TicketID>

<TicketType>single< /TicketType>

<TicketDate>02/06/2014< /TicketDate>

< /Ticket>

< /Tickets>

< /TicketLouveMuseum>

The other is for condition that If Weather returns ”Sunny”:

<TicketEuroDisney>

<Status>paid< /Status>

<Tickets>

<Ticket>

<TicketID>0514< /TicketID>

<TicketType>family< /TicketType>

<TicketDate>02/06/2014< /TicketDate>

< /Ticket>

< /Tickets>

< /TicketEuroDisney>

5.4 Discussion

We performed the evaluation for the correctness of our Automated Service Compo-

sition and Execution approach on three running scenarios from Chapter 1. For Ex-

periment 1, a result is shown a finding of a single service operation SearchAvailable-

Rooms and execution of a BPMN process invoking the discovered service operation

in Figure 5.8. A result of service execution in xml document contains root element

as RoomAvailables which matches to predefined RoomAvailables in Alice’s goal. For

Experiment 2, a result in Figure 5.9 shows a composite model supporting sequenc-

ing and paralleling constructs among service operations: FromCoordinatesToC-

ity, FindFinestRestaurant, BookRestaurant and GetDirection operations. A result

Chapter 5. Implementation 105

of service execution in xml document contains root element as BookingRestau-

rantResveration,Direction which matches to predefined BookingRestaurantResvera-

tion,Direction in Alice’s goals. For lastly Experiment 3, a result in Figure 5.10

shows a composite model supporting conditioning constructs among service op-

erations: GetWeatherForecast, BuyTicketLouveMuseum and BuyTicketEuroDisney

operations. A result of this service execution has two optional outputs. It re-

turns a result in xml document containing root element as TicketLouveMuseum

if the GetWeatherForecast operation return no Sunny for Weather value, which

matches to predefined TicketLouveMuseum, Condition(if(Weather /== Sunny)) in

Alice’s goals. Whereas another result in xml document containing root element

as TicketEuroDisney is returned if the GetWeatherForecast operation return Sunny

for Weather value, which satisfies with Alice’s query expression TicketEuroDisney,

Condition(if(Weather == Sunny)).

Chapter 6

Conclusion and Future work

Contents

6.1 Future work . 108

Abstract. In this Chapter, we conclude the research and offers future

research recommendations.

In this dissertation, we investigated a problem of Automated Service Composition

and Execution in static execution environment. We proposed a framework for

(1) composing automatic service operations, so that a BPMN composition model

fulfills both BPMN specification and defined user’s goals at the same time and (2)

executing the BPMN model with user’s parameters, so that the result of service

execution returns to the user.

On the basis of our composition technique, we defined user requirements expressed

in a sequence of goal states in propositional logic. We show how our planning al-

gorithm is working with abstract goal states to search and connect to service

operations, by mean of service operation annotations, for a solution. The solution

is expected for workflow model of sequencing, paralleling and conditioning among

service operations. To allow for more expressive control flow requirements, we

proposed our own abstract (context based) language that introduces the following

features: the ability to express both reachability and procedural goals and the

ability to set preferences among alternative goals. On the basis of our BPMN

transformation technique, we defined reasonable semantics for BPMN elements

106

Chapter 6. Conclusion and Future work 107

for mapping context-based composition model into BPMN model in Prolog decla-

ration. We proposed a new planning algorithm and exploited planning-as-model-

checking approach developing the idea of [MPT08] to validate the Prolog BPMN

model whether it is Well-formed and Well-defined BPMN process.

On the basis of our service execution technique, we implemented algorithm to

checking missing parameters from the derived initial states and we implemented

BPMN diagram and BPMN model in xml format from open source BPMN Ac-

tiviti API. Finally, we executed the BPMN model with the input parameters and

returned the result of the execution to the user.

One of the key contributions of the thesis is the Service Composition and Execu-

tion demonstration platform. In it, we modeled a pervasive system based on the

E-Tourism scenarios and realized workflow composition, BPMN transformation,

validation and implementation and execution of BPMN models using our Service

Composition and Execution framework.

The platform allowed us to evaluate not only the integrability of multiple domains

for our Service Composition and Execution approach but also the performance of

the composition and execution engines on dynamic related scenarios.

Through out this research, we found the added values and limitations of our work.

The proposed service composition and execution system framework is a generic

approach suitable for most domains on component integration. The prototype

developed in this thesis is for the module Composition and Orchestration System

(COS) which will be integrated in the E-Tourism system. Additionally, the pro-

totype is designed to handle both push and pull modes in the E-Tourism system.

However, our framework relies only on function call (input(s) and output(s)) of

service operation annotations. We did not use other service informations such

as preconditions and effects, which allow users to make more complex queries.

Furthermore, our composition approach supports only automatic tasks such as

service tasks and script tasks in business process model. Besides, the business

process model does not handle its non-functional features (i.e., artifacts and asso-

ciation) and organizational modeling features (i.e., lanes and pools). Lastly, we do

not support process monitoring and controlling when our process engine executes

the business process model.

As a matter of fact, within this dissertation we could not handle every single issue

related to the topics of interest. We admit that there are still many extensions

Chapter 6. Conclusion and Future work 108

and improvements are needed to make the approaches more mature and effective.

The following we shall discuss the most important issues we plan to take in the

near future.

6.1 Future work

System Assessment

There are two possibilities to assess our system. The first possibility is to run the

experiment to see how many failure time of resulting composite service execution.

The second possibility is to evaluate the project system from user satisfaction.

To do this, we integrate our service composition and execution system into the

E-tourism project.

User Interface Composition

As stated above in our limitation that our approach handles only service tasks

and script task. In the future, we plan to and extend semantic user task and

trigger event on our context process model to dynamically generate user interface

in the business process. This user interface can keep the user in a loop until the

predefined trigger of some events occur.

Complete the process

We plan to work more on user query for supporting loop control construct by en-

coding loop control definition into our planning domain. Furthermore, we plan to

support possible exceptions happened in the process model. To do that, we might

refer to experts on particular domains to add rules for the possible exceptions.

Statefull Web services

One of the direction for future work is the further development of the statefull

web services. Since some users require a retainment of particular objects during

process execution. Shopping cart object in Shopping online application can be

one of examples that the users need to keep certain states of such objects during

browsing more products. We plan to extend semantic transaction model along

with our context process model.

Data Flow Requirements

We plan to continue our work on data-flow requirements, which are not completely

integrated to the approach. We also consider a problem of miss-matched data

Chapter 6. Conclusion and Future work 109

type between two service operations. For example, a pre-defined context output

of one operation may return value in Interger data type while the same pre-defined

context input of continuous service operation requires value in String data type.

Adaptation Process

There are a few directions for improving our process adaptation approach. One of

them is proactive service operation substitution. In this work a list of service op-

erations are delivered by another work from the Service Discovery system, which

performs the most intuitive way of strategy selection. The service operation sub-

stitution can happen when we detect a failure of a service operation invocation, we

request to the Service Discovery system for candidates of such service operation.

Appendix A

Planning model for the service

composition agent

A.1 A list of fluents for conducting the Flux

query

Initial(X):

PARAMETER 7→ FLUENT

Goal(Xs):

SET OF PARAMETER 7→ FLUENT

Op inputs(X,Ys):

OPERATION × SET OF PARAMETER 7→ FLUENT

Op outputs(X,Ys):

OPERATION × SET OF PARAMETER 7→ FLUENT

Cond(C, if(O1,O3), else(O2,O3)):

INDEX× PARAMETER× PARAMETER×
PARAMETER × PARAMETER 7→ FLUENT

Cond(C, if(O1,O3), else(O2,O3)):

INDEX× PARAMETER× PARAMETER×
PARAMETER× PARAMETER 7→ FLUENT

DataTransform(RestaurantAddress,ToAddress):

PARAMETER× PARAMETER 7→ FLUENT

110

Appendix A. Planning model for the service composition agent 111

A.2 A list of fluents for the abstract plan

Add initail(X):

OPERATION 7→ FLUENT

Flow(X,Y):

OPERATION×OPERATION 7→ FLUENT

Add goal(X):

OPERATION 7→ FLUENT

Flow(X, if (guard(O1,RO1,V1),Y1),else(guard(O2,RO2,V2),Y2)):

OPERATION× PARAMETER×OPERAND× VALUE×
OPERATER× PARAMETER×OPERAND× VALUE×
OPERATER 7→ FLUENT

Flow(if [X1,X2],Y):

OPERATION×OPERATION×OPERATION 7→ FLUENT

A.3 A list of actions the agent performing the

abstract plan

Add initial(X,Z1,Z2):

VALUE 7→ ACTION

Add flow(Z1,X,Y,Z2):

VALUE× VALUE 7→ ACTION

Add goal(Z,X,Z2) :

VALUE 7→ ACTION

Add OR split(Z1,X,O1,RO1,V1,Y1,O2,RO2,V2,Y2,Z2):

VALUE × VALUE × VALUE × VALUE × VALUE × VALUE ×
VALUE× VALUE 7→ ACTION

Appendix A. Planning model for the service composition agent 112

Add OR join(Z1,X1,X2,Y,Z2)

VALUE× VALUE× VALUE 7→ ACTION

Appendix B

Program for the service

composition agent

1 :- [’6_flux ’].

2 :- lib(xml).

3

4 :- discontiguous(state_update /4).

5

6 add_flow(Z,Opx ,Opy ,Z1) :-

7 state_update(Z,add_flow(Opx ,Opy),Z1 ,[]).

8

9 add_goal(Z,Op,Z2) :-

10 state_update(Z,add_goal(Op),Z2 ,[]).

11

12 add_initial(Op ,Z,Zn) :-

13 state_update(Z,add_initial(Op),Zn ,[]).

14

15 add_OR_split(Z,Op1 ,O1,S1,V1 ,Op2 ,O2,S2,V2 ,Op3 ,Z2) :-

16 state_update(Z,add_or_split(Op1 ,O1,S1,V1 ,Op2 ,O2,S2 ,V2,Op3),Z2 ,[]).

17

18 add_OR_join(Z,Op1 ,Op2 ,Op3 ,Z2) :-

19 state_update(Z,add_or_join(Op1 ,Op2 ,Op3),Z2 ,[]).

20

21

22

23 state_update(Z,add_flow(Opx ,Opy),Z1 ,[]) :-

24 update(Z,[flow(Opx ,Opy)],[],Z1).

25

26 state_update(Z,add_goal(Op),Z2 ,[]) :-

27 update(Z,[add_goal(Op)],[],Z2).

28

29 state_update(Z,add_initial(Op),Zn ,[]) :-

30 update(Z,[add_initial(Op)],[],Zn).

31

32 state_update(Z,add_or_split(Op1 ,O1,S1,V1 ,Op2 ,O2,S2 ,V2,Op3),Zn ,[]) :-

33 not_holds_all(flow(Op1 ,_),Z) ->

34 update(Z,[flow(Op1 ,if(O1,S1,V1 ,Op2),else(O2,S2,V2 ,Op3)), add_initial(Op1)],

113

Appendix B. Program for the service composition agent 114

35 [flow(Op1 ,Op2),flow(Op1 ,Op3),add_initial(Op2),add_initial(Op3)],Zn)

36 ;

37 update(Z,[flow(Op1 ,if(O1,S1,V1 ,Op2),else(O2,S2,V2 ,Op3))],

38 [flow(Op1 ,Op2),flow(Op1 ,Op3),add_initial(Op2),add_initial(Op3)],Zn).

39

40 state_update(Z,add_or_join(Op1 ,Op2 ,Op3),Z2 ,[]) :-

41 update(Z,[flow(if[Op1 ,Op2],Op3)],[add_initial(Op3)],Z2).

42

43

44 init(Z0) :-

45

46 Z0 = [op_inputs(fCC ,[’coordinates ’]), op_inputs(fFR ,[’city ’]),

47 op_inputs(gD ,[’addressFrom ’,’addressTo ’]),

48 op_outputs(fCC ,[’city ’]),

49 op_outputs(fFR ,[’name(restaurant)’,’address(restaurant)’]),

50 op_outputs(bR ,[’bookingConfirm ’]),

51 op_outputs(gD ,[’direction ’]),

52 dataTransform(’coordinates ’,’addressFrom ’),

53 dataTransform(’address(restaurant)’,’addressTo ’),

54 initials ([coordinates , number(guest),date]),

55 goals([’name(restaurant)’,’direction ’])].

56

57 op_list ([fCC ,fFR ,gD]).

58 condition_list ([]).

59

60 main3 :-

61 init(Z0),op_list(Op_list1),op_list(Op_list2),knows_val ([Gs],goals(Gs),Z0),

62 condition_list(CList), knows_val ([Initials],initials(Initials),Z0),

63 (check_flows(Op_list1 ,Op_list2 ,Z0,Z1) -> Fflow=true;Fflow=false , Z0=Z1),

64 check_goals(Gs ,Op_list1 ,Z1,Z2), check_initial(Op_list1 ,Z2,Z3),

65 check_OR_split2(CList ,Op_list1 ,Op_list2 ,Z3 ,Z4),check_OR_join(CList ,Z4,Z5),

66 create_initial(Op_list1 ,N,P1,Z5 ,Z6),create_ends(Z6 ,Op_list1 ,N,P1 ,P2,Z7),

67 create_gateways(Op_list1 ,Op_list2 ,N,L1 ,L2,P2,P3 ,Z7,Z8),writeln(Z8).

68

69

70 check_flows ([],_,Z,Z).

71 check_flows ([Opx|Op_list1],Op_list2 ,Z1,Z) :-

72 knows_val ([Outputs],op_outputs(Opx ,Outputs),Z1),

73 check_outputs(Outputs ,Opx ,Op_list2 ,Z1,Z2),

74 check_flows(Op_list1 ,Op_list2 ,Z2 ,Z).

75

76 check_outputs ([],_,_,Z,Z).

77 check_outputs ([X|Xs],Opx ,Op_list ,Z1,Zn) :-

78 check(X,Opx ,Op_list ,Z1,Z2),

79 check_outputs(Xs,Opx ,Op_list ,Z2,Zn).

80

81 check(_,_,[],Z,Z).

82 check(Output ,Opx ,[Opy|Op_list],Z,Zn) :-

83 knows_val ([Inputs],op_inputs(Opy ,Inputs),Z),del([],Inputs ,Input1),

84 ((member(Output ,Input1) -> (add_flow(Z,Opx ,Opy ,Z1),

85 check(Output ,Opx ,Op_list ,Z1,Zn)))

86 ;

87 (knows_val ([Output1],dataTransform(Output ,Output1),Z),

88 member(Output1 ,Input1) -> (add_flow(Z,Opx ,Opy ,Z1),

89 check(Output ,Opx ,Op_list ,Z1,Zn)))

Appendix B. Program for the service composition agent 115

90 ;check(Output ,Opx ,Op_list ,Z,Zn)).

91

92

93 check_goals(_,[],Z,Z).

94 check_goals(Gs ,[Op|Op_list1],Z,Zn) :-

95 knows_val ([Outputs],op_outputs(Op ,Outputs),Z), check_goal(Gs ,Outputs ,Op,Z,Z1),

96 check_goals(Gs ,Op_list1 ,Z1,Zn).

97

98

99 check_goal ([],_,_,Z,Z).

100 check_goal ([G|Gs],Outputs ,Op ,Z,Zn) :-

101 ((member(G,Outputs),holds(flow(_,Op),Z), not_holds_all(flow(Op,_),Z))

102 -> (add_goal(Z,Op,Z1), check_goal(Gs,Outputs ,Op,Z1 ,Zn))

103 ;

104 (member(G,Outputs),not_holds_all(flow(_,Op),Z),not_holds_all(flow(Op ,_),Z))

105 -> (add_goal(Z,Op,Z1), add_initial(Op ,Z1,Z2),

106 check_goal(Gs,Outputs ,Op ,Z2,Zn))

107 ; check_goal(Gs ,Outputs ,Op,Z,Zn)).

108

109

110 check_initial ([],Z,Z).

111 check_initial ([Op|Op_list1],Z,Zn) :-

112 ((holds(flow(Op ,_),Z), not_holds_all(flow(_,Op),Z)))

113 -> (add_initial(Op,Z,Z1), check_initial(Op_list1 ,Z1 ,Zn))

114 ;check_initial(Op_list1 ,Z,Zn).

115

116

117 check_OR_split ([],Z,Z).

118 check_OR_split ([C|Cs],Z,Zn) :-

119 knows_val ([O1,S1,V1 ,T1,O2 ,S2,V2,T2],cond(C,if(O1 ,S1,V1,T1),else(O2 ,S2,V2,T2)),Z)

120 ->

121 (knows_val ([Op1],op_outputs(Op1 ,[O1|_]),Z),knows_val ([Op2],

122 op_outputs(Op2 ,[T1|_]),Z),knows_val ([Op3],op_outputs(Op3 ,[T2|_]),Z),

123 add_OR_split(Z,Op1 ,O1 ,S1,V1 ,Op2 ,O2,S2,V2 ,Op3 ,Z2),

124 check_OR_split(Cs ,Z2,Zn))

125 ; check_OR_split(Cs,Z,Zn).

126

127 check_OR_split1 ([],_,_,Z,Z).

128 check_OR_split1 ([C|Cs],Op_list1 ,Op_list2 ,Z,Zn) :-

129 knows_val ([O1,S1,V1 ,T1,O2,S2,V2,T2],cond(C,if(O1 ,S1,V1,T1),else(O2 ,S2,V2,T2)),Z)

130 ->

131 (knows_val ([Op1],op_outputs(Op1 ,[O1|_]),Z),

132 knows_val ([Op2],op_outputs(Op2 ,[T1|_]),Z),

133 check_Head1(Op_list1 ,Op_list2 ,Op2 ,Op2h ,Z),

134 knows_val ([Op3],op_outputs(Op3 ,[T2|_]),Z),

135 check_Head1(Op_list1 ,Op_list2 ,Op3 ,Op3h ,Z),

136 add_OR_split(Z,Op1 ,O1 ,S1,V1 ,Op2h ,O2 ,S2,V2 ,Op3h ,Z2),

137 check_OR_split1(Cs,Op_list1 ,Op_list2 ,Z2,Zn))

138 ; check_OR_split1(Cs ,Op_list1 ,Op_list2 ,Z,Zn).

139

140 check_OR_split2 ([],_,_,Z,Z).

141 check_OR_split2 ([C|Cs],Op_list1 ,Op_list2 ,Z,Zn) :-

142 knows_val ([O1,V1,T1 ,O2,V2,T2],cond(C,if(O1 ,V1,T1),else(O2 ,V2,T2)),Z),

143 knows_val ([Op1],op_outputs(Op1 ,[O1|_]),Z),

144 (((not(isList(T1)),not(isList(T2))) -> (knows_val ([Op2],op_outputs(Op2 ,[T1|_]),Z),

Appendix B. Program for the service composition agent 116

145 check_Head1(Op_list1 ,Op_list2 ,Op2 ,Op2h ,Z),

146 knows_val ([Op3],op_outputs(Op3 ,[T2|_]),Z),

147 check_Head1(Op_list1 ,Op_list2 ,Op3 ,Op3h ,Z),

148 add_OR_split(Z,Op1 ,O1,S1,V1 ,Op2h ,O2,S2,V2 ,Op3h ,Z2),

149 check_OR_split2(Cs,Op_list1 ,Op_list2 ,Z2,Zn)))

150 ;

151 ((isList(T1),not(isList(T2))) -> (knows_val ([Op3],op_outputs(Op3 ,[T2|_]),Z),

152 check_Head1(Op_list1 ,Op_list2 ,Op3 ,Op3h ,Z),

153 check_Head3(T1 ,Op_list1 ,Op_list2 ,Th,H,Z),

154 del([],H,Hn),

155 (is_set(Hn) -> add_OR_split(Z,Op1 ,O1,S1,V1 ,T1,O2,S2 ,V2,Op3h ,Z2)

156 ;

157 last(Hn ,H1),

158 add_OR_split(Z,Op1 ,O1 ,S1,V1 ,H1,O2,S2 ,V2,Op3h ,Z2),

159 check_OR_split2(Cs,Op_list1 ,Op_list2 ,Z2,Zn))))

160 ;

161 ((not(isList(T1)),isList(T2)) -> (knows_val ([Op2],op_outputs(Op2 ,[T1|_]),Z),

162 check_Head1(Op_list1 ,Op_list2 ,Op2 ,Op2h ,Z),

163 check_Head3(T2 ,Op_list1 ,Op_list2 ,Th,H,Z),

164 del([],H,Hn),

165 (is_set(Hn) -> add_OR_split(Z,Op1 ,O1,S1,V1 ,Op2h ,O2,S2,V2 ,T2,Z2)

166 ;

167 last(Hn ,H1),

168 add_OR_split(Z,Op1 ,O1 ,S1,V1,Op2h ,O2 ,S2,V2,H1,Z2),

169 check_OR_split2(Cs,Op_list1 ,Op_list2 ,Z2,Zn))))

170 ;

171 ((isList(T1),isList(T2))-> (check_Head3(T1 ,Op_list1 ,Op_list2 ,H,H1 ,Z),

172 check_Head3(T2 ,Op_list1 ,Op_list2 ,H,H2 ,Z),

173 del([],H1,H1n),del([],H2 ,H2n), ((is_set(H1n),

174 is_set(H2n)) -> add_OR_split(Z,Op1 ,O1 ,S1,V1,T1,O2,S2 ,V2,T2,Z2)

175 ;

176 last(H1n ,H11),last(H2n ,H21),

177 add_OR_split(Z,Op1 ,O1 ,S1,V1,H11 ,O2,S2,V2 ,H21 ,Z2),

178 check_OR_split2(Cs,Op_list1 ,Op_list2 ,Z2,Zn))))).

179

180

181 check_Head1 ([],_,Op2 ,Op2 ,Z).

182 check_Head1 ([Op|Op_list1],Op_list2 ,Op2 ,Opn ,Z) :-

183 knows_val ([Op],flow(Op,Op2),Z)

184 -> check_Head2(Op_list1 ,Op_list2 ,Op,Opn ,Z)

185 ; check_Head1(Op_list1 ,Op_list2 ,Op2 ,Opn ,Z).

186

187 check_Head2(Op_list1 ,[],Op2 ,Op2 ,Z).

188 check_Head2(Op_list1 ,[Opx|Op_list2],Op2 ,Opn ,Z) :-

189 knows_val ([Opx],flow(Opx ,Op2),Z)

190 -> check_Head2(Op_list1 ,Op_list2 ,Opx ,Opn ,Z)

191 ; check_Head2(Op_list1 ,Op_list2 ,Op2 ,Opn ,Z).

192

193 check_Head3 ([],Op_list1 ,Op_list2 ,H,H,Z).

194 check_Head3 ([T|T2],Op_list1 ,Op_list2 ,H,H2 ,Z) :-

195 knows_val ([Op2],op_outputs(Op2 ,[T|_]),Z),

196 check_Head1(Op_list1 ,Op_list2 ,Op2 ,Op2h ,Z), H1 = [Op2h|H],

197 check_Head3(T2 ,Op_list1 ,Op_list2 ,H1,H2,Z).

198

199 check_OR_join ([],Z,Z).

Appendix B. Program for the service composition agent 117

200 check_OR_join ([C|Cs],Z,Zn) :-

201 knows_val ([O1,O2,T1],cond(C,if(O1 ,T1),else(O2,T1)),Z)

202 ->

203 (knows_val ([Op1],op_outputs(Op1 ,[O1|_]),Z), knows_val ([Op2],

204 op_outputs(Op2 ,[O2|_]),Z),knows_val ([Op3],op_outputs(Op3 ,[T1|_]),Z),

205 add_OR_join(Z,Op1 ,Op2 ,Op3 ,Z2),

206 check_OR_join(Cs,Z2 ,Zn))

207 ;

208 check_OR_join(Cs,Z,Zn).

209

210 last([Elem], Elem).

211 last([_|Tail], Elem) :- last(Tail , Elem).

212

213 isList ([]).

214 isList ([_|Tail]):-

215 isList(Tail).

216

217 is_set(Lst) :-

218 setof(X, member(X, Lst), Set),

219 length(Lst , N),

220 length(Set , N).

221

222 output_data(File ,L):-

223 open(File ,’write ’,S),

224 (foreach(X,L),

225 param(S) do

226 writeq(S,X),writeln(’.’)

227),

228 close(S).

229

230 deleteLastElement ([_], []).

231 deleteLastElement ([Head], [Head|NTail]):-

232 deleteLastElement(Tail , NTail).

233

234 del(_, [], []).

235 del(X, [X|L1], L2):-

236 del(X,L1,L2).

237 del(X, [H|L1], [H|L2]):-

238 del(X,L1,L2),

239 X\==H.

240

241 substring(X,S) :-

242 append(_,T,S) ,

243 append(X,_,T) ,

244 X \= [].

Listing B.1: Part of an agent program to plan service orchestration

Appendix C

BPMN specification and rules

C.1 BPMN specification

• S (or node(start) fluents) is a set of start events

• E (or node(end) fluents) is a set of end events

• T (or task(, ,) fluents) is a set of service activities ; a task T ∈ T is a finite

process with a set of inputs and a set of outputs, to be executed within a

finite interval of time.

• F (or flow(,) fluents) is a set of workflow links , F ⊆ O × O, where O =

S ∪ E ∪ T ∪ G ∪M is the join set of objects. All the component sets are

pairwise disjoint. A sequence flow is used to link two entities of event,

activity or gateway in a process diagram and specify a control flow relation.

In addition, a sequence flow determines a enabling of entity in a sequence

flow after the completion of a preceding entity in the same flow.

• G is a set of split gateways, where branching of the workflow takes place;

two disjoint subtypes of splits are considered:

- GX (or gateway(xorS) fluents) is a set of exclusive splits where one and

only one of the alternative paths can be followed (a split of XOR type). In

other words, GX allows a flow to be split into two or more flows when the

incoming flow is enabled, the gateway is passed to one of the outgoing flows

based on a specified condition that can select one of the outgoing flows.

- GP (or gateway(andS) fluents) is a set of parallel splits where all the paths

118

Appendix C. BPMN specification and rules 119

of the workflow are to be followed (a split of AND type) In other words, GP
allows a single flow to be split into two or more branches which can execute

tasks concurrently.

• M is a set of merge gateways where two or more paths meet; two further

disjoint subtypes of merge modes are considered:

- MX (or gateway(xorJ) fluents) is a set of exclusive merge nodes where one

and only one input path is taken into account (a merge of XOR type). In

other words, MX allows two or more flows to be join into a single subsequence

flow such that each enabling of an incoming flow results in the subsequent

flow.

- MP (or gateway(andJ) fluents) is a set of parallel merge nodes where all the

paths are combined together (a merge of AND type). In other words, MP
allows two or more parallel flows to be joined into a single subsequent flow

when all input flows have been enabled.

• GE (or guard(, ,) fluents) is a set of guard condition expressions where the

splits and merges depend on logical guard conditions assigned to particular

branches. It is assumed that there is a defined partial function Con: F→ GE
assigning logical formulas to links. In particular, the function is defined for

links belonging to G × O ∪ O ×M, i.e. outgoing links of split nodes and

incoming links of merge nodes. The conditions are responsible for workflow

control.

C.2 BPMN Well-formed

Having selected the core BPMN elements it is necessary to state restrictions on the

overall diagram structure. The following is a set of typical requirements defining

the so-called well-formed diagram [OMG].

• ∀s ∈ S, in(s) = ∅ and |out(s)| = 1 is any start node s ∈ S has no incoming

links and exactly one outgoing link,

• ∀3 ∈ E, in(e) = 1 and |out(e)| = ∅ is any end event node e ∈ E has no

outgoing links and exactly one incoming link,

• ∀T ∈ T, in(s) = 1 and |out(T)| = 1 is any task node T ∈ T has exactly one

input and one output link,

Appendix C. BPMN specification and rules 120

• ∀g ∈ G, in(g) = 1 and |out(g)| ≥ 2 is any split node g ∈ G has exactly one

incoming link and at least two outgoing ones,

• ∀m ∈M, in(m) ≥ 2 and |out(m)| = 1 is any merge node m ∈M has at least

two incoming links and exactly one outgoing link,

• ∀f ∈ F, f ∈ out(S ∪ T ∪G ∪M)× in(E ∪ T ∪G ∪M) every link joins some

legal output of some object with a legal input of some (other) objects.

• ∀GE ∈ GE, GE ⊆ P× Σ× V where P = a set of parameters, Σ = {∧,∨,=
, 6=,≥,≤, >,<} and V = a set of values

• every object o ∈ O is on some path from some start event and an end event.

C.3 Well-formed BPMN rules

1. A start event must be a source of a sequence.

rule1(Z) :-

holds(flow(start,_),Z).

2. There must not exist a connection between a start and an end event.

rule2(Z) :-

\+ (knows_val([End],node(End),Z), End \= start,

knows_val([Op],flow(Op,End),Z), holds(flow(start, Op),Z)),

\+ (knows_val([End],node(End),Z), End \= start,

knows_val([Op],flow(Op,End),Z), holds(flow(Op, start),Z)).

3. A connection between two stops events is not allowed.

rule3(Z) :-

\+ (knows_val([Y1],node(Y1),Z),knows_val([Y2],node(Y2),Z),

Y1\==Y2, Y1 \= start, Y2 \= start, holds(flow(Y1,Y2),Z)),

\+ (knows_val([Y1],node(Y1),Z),knows_val([Y2],node(Y2),Z),

Y1\==Y2, Y1 \= start, Y2 \= start, holds(flow(Y2,Y1),Z)).

4. An end event must be a target of a sequence.

Appendix C. BPMN specification and rules 121

rule4(Z) :-

\+ (knows_val([X],node(X),Z), X \= start,

knows_val([Y],flow(Y,X),Z), not_holds(flow(Y,X),Z)).

5. An end event must not be a source of a sequence flow, there must not be an

outgoing sequence flow.

rule5(Z) :-

\+ (knows_val([X],end_node(X),Z), X \= start, holds(flow(X,_),Z)).

6. Any split node has exactly one incoming link and at least two outgoing ones.

rule6(Z) :-

\+ (knows_val([NSplit],gateway(NSplit),Z),

(knows_val([X1],flow(NSplit,X1),Z);

knows_val([],flow(NSplit,X1,_),Z)),

(knows_val([X2],flow(NSplit,X2),Z);

knows_val([X2],flow(NSplit,X2,_),Z)),

X1 \= X2, not_holds(flow(_,NSplit),Z)).

7. Any merge node has at least two incoming links and exactly one outgoing

link.

rule7(Z) :-

\+ (knows_val([NMerge],gateway(NMerge),Z),

knows_val([X1],flow(X1,NMerge),Z),

knows_val([X2],flow(X2,NMerge),Z), X1 \= X2,

not_holds(flow(NMerge,_),Z)).

8. The following is a rule for checking correctness of guard condition expression.

check_guard_expression(Z) :-

\+ (holds(guard(GE),Z),not_holds(flowPath(_,GE),Z)).

Bibliography

[ACD+05] V. Agarwal, G. Chafle, K. Dasgupta, N. M. Karnik, A. Kumar,

S. Mittal, and B. Srivastava. Synthy: A system for end to end compo-

sition of web services. Web Semantics: Science, Services and Agents

on the World Wide Web, 3(4):311–339, 2005.

[ACKM04] G. Alonso, F. Casati, H. A. Kuno, and V. Machiraju. Web Services

- Concepts, Architectures and Applications. Data-Centric Systems

and Applications. Springer, 2004.

[AEE06] A. Alamri, M. A. Eid, and A. El-Saddik. Classification of the state-of-

the-art dynamic web services composition techniques. International

Journal of Web and Grid Services, 2(2):148–166, 2006.

[And10] D. Androcec. Simulating bpmn models with prolog. In Central Eu-

ropean Conference on Information and Intelligent Systems, 2010.

[BCG+05] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Me-

cella. Automatic service composition based on behavioral descrip-

tions. International Journal of Cooperative Information Systems,

14(4):333–376, 2005.

[BDFR03] B. Benatallah, M. Dumas, M. C. Fauvet, and F. A. Rabhi. Pat-

terns and skeletons for parallel and distributed computing. Towards

patterns of web services composition, Springer, 2003.

[BEB98] A. Bouguettaya, A. K. Elmagarmid, and B. Benatallah. Intercon-

necting heterogeneous information systems. Kluwer Academic Pub-

lishers, 1998.

[BMB+00] B. Benatallah, B. Medjahed, A. Bouguettaya, A. K. Elmagarmid,

and J. Beard. Composing and maintaining web-based virtual enter-

prises. In TES, pages 155–174, 2000.

122

Bibliography 123

[BP14] G. Baryannis and D. Plexousakis. Fluent calculus-based semantic

web service composition and verification using wssl. In Service-

Oriented Computing - ICSOC 2013 Workshops, volume 8377 of Lec-

ture Notes in Computer Science, pages 256–270. Springer Interna-

tional Publishing, 2014.

[BPT10] P. Bertoli, M. Pistore, and P. Traverso. Automated composition

of web services via planning in asynchronous domains. Artificial

Intelligence, 174(3-4):316–361, 2010.

[CC14] I. B. Caicedo-Castro. A Desription-based Service Search System. In

PhD Symposium, in conjonction with the 12th International Con-

ference on Service Oriented Computing (ICSOC’14), Paris, France,

novemeber 2014. 6 pages.

[CCMW01] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana.

Web service description language (wsdl) 1.1. W3C note, W3C, Mar

2001. Web 12 Jan. 2015, http://www.w3.org/TR/2001/NOTE-wsdl-

20010315.

[CGLN01] D. Calvanese, G. B. Giacomo, M. Lenzerini, and D. Nardi. Reasoning

in expressive description logics. Handbook of Automated Reasoning,

2:1581–1634, 2001.

[CMRW07] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web

services description language (wsdl) version 2.0 part 1: Core lan-

guage. W3C recommendation, W3C, June 2007. Web 12 Jan. 2015,

http://www.w3.org/TR/2007/REC-wsdl20-20070626/.

[CRB04] A. Cimatti, M. Roveri, and P. Bertoli. Conformant planning via

symbolic model checking and heuristic search. Artificial Intelligence,

159(1-2):127–206, 2004.

[CS01] F. Casati and M.-C. Shan. Dynamic and adaptive composition of

e-services. Information Systems, 26(3):143–163, 2001.

[CSHG09] V. R. Chifu, I. Salomie, I. Harsa, and M. Gherga. Semantic web

service composition method based on fluent calculus. In 11th Inter-

national Symposium on Symbolic and Numeric Algorithms for Sci-

entific Computing, pages 325–332, Timisoara, Romania, 2009.

Bibliography 124

[Dav93] T. H. Davenport. Process Innovation: Reengineering Work through

Information Technology. Harvard Business School Press, Boston,

MA, USA, 1993.

[DDDGB08] G. Decker, R. Dijkman, M. Dumas, and L. Garćıa-Bañuelos. Trans-

forming bpmn diagrams into yawl nets. In Business Process Man-

agement, pages 386–389. Springer, 2008.

[DDO08] R. M. Dijkman, M. Dumas, and C. Ouyang. Semantics and analy-

sis of business process models in bpmn. Information and Software

Technology, 50(12):1281–1294, 2008.

[Dog98] A. Dogac. A survey of the current state-of-the-art in electronic com-

merce and research issues in enabling technologies. In Euro-Med Net

98 Conference, Electronic Commerce Track, Nicosia, Cyprus, 1998.

[DPAM07] L. A. Digiampietri, J. Pérez-Alcázar, and C. B. Medeiros. Ai plan-

ning in web services composition: a review of current approaches and

a new solution. VI ENIA - nos Anais do XXVII Congresso da So-

ciedade Brazileira de Computacao (CSBC2007), pages 983–992, July

2007.

[DS05] S. Dustdar and W. Schreiner. A survey on web services composition.

International Journal of Web and Grid Services, 1(1):1–30, 2005.

[DS12] Semantic Automated Discovery and Integration (SADI). Relation-

ship to other web service standards, 2012. n.d. Web. 12 Jan. 2015,

https://code.google.com/p/sadi/wiki/StandardsComparison.

[ECL] The eclipse constraint programming system. ECLiPSe Home, Cisco,

n.d. Web. 24 Dec. 2014, http://eclipseclp.org/.

[Erl05] T. Erl. Service-oriented architecture (SOA): concepts, technology,

and design. Prentice Hall, August 2005.

[ESB10] Expertos en java y gestion de proyectos j2ee/jee, 2010. n.d. Web. 12

Jan. 2015, http://www.consultoriajava.com.

[ESB14] N. El-Saber and A. Boronat. Bpmn formalization and verification

using maude. In Proceedings of the 2014 Workshop on Behaviour

Modelling-Foundations and Applications, page 1. ACM, 2014.

Bibliography 125

[FHH+01] D. Fensel, F. V. Harmelen, I. Horrocks, D. L. McGuinness, and P. F.

Patel-Schneider. Oil: An ontology infrastructure for the semantic

web. IEEE intelligent systems, 16(2):38–45, 2001.

[FL07] J. Farrell and H. Lausen. Semantic annotations for WSDL

and XML schema. W3C recommendation, W3C, #aug# 2007.

http://www.w3.org/TR/2007/REC-sawsdl-20070828/.

[FN72] R. E. Fikes and N. J. Nilsson. Strips: A new approach to the appli-

cation of theorem proving to problem solving. Artificial intelligence,

2(3):189–208, 1972.

[GL99] G. D. Giacomo and J. H. Levesque. An incremental interpreter for

high-level programs with sensing. In Logical Foundations for Cogni-

tive Agents, pages 86–102. Springer, 1999.

[GT00] F. Giunchiglia and P. Traverso. Planning as model checking. In

Recent Advances in AI Planning, pages 1–20. Springer, 2000.

[Hay71] P. J. Hayes. The Frame Problem and Related Problems on Artificial

Intelligence. Stanford University, 1971.

[HS05] M. N. Huhns and M. P. Singh. Service-oriented computing: Key

concepts and principles. IEEE Internet Computing, 9(1):75–81, 2005.

[KMCW05] R. Khalaf, N. Mukhi, F. Curbera, and S. Weerawarana. The business

process execution language for web services. In Process-Aware In-

formation Systems: Bridging People and Software Through Process

Technology. John Wiley & Sons, 2005.

[KS89] R. Kowalski and M. Sergot. A logic-based calculus of events. In

Foundations of knowledge base management, pages 23–55. Springer,

1989.

[Lak99] G. Lakemeyer. On sensing and off-line interpreting in golog. In

Logical Foundations for Cognitive Agents, pages 173–189. Springer,

1999.

[Lba05] A. Lbath. Method and device for automatic production of context

aware mobile services. In PATENTSCOPE. No WO 006721, 2005.

Bibliography 126

[Lin08] F. Lin. Situation calculus. Handbook of knowledge representation,

3:3–88, 2008.

[LLCC+13] P. N. Lumpoon, M. Lei, I. B. Caicedo-Castro, M. C. Fauvet, and

A. Lbath. Context-aware service discovering system for nomad users.

In 7th International Conference on Software, Knowledge, Informa-

tion Management and Applications (SKIMA), Chiang Mai, Thailand,

2013.

[LLK+11] P. N. Lumpoon, M. Lei, T. Kamnardsiri, M. C. Fauvet, and A. Lbath.

Illustrating some issues raised when designing context-aware per-

sonalized services for mobile users. In 6th International Conference

on Software, Knowledge, Information Management and Applications

(SKIMA 2012), 2011.

[LOKX13] Zheng Li, Liam O’Brien, Jacky Keung, and Xiwei Xu. Effort-oriented

classification matrix of web service composition. CoRR Computing

Research Respository, abs/1302.2201, 2013.

[LP14] A. Ligoza and T. Potempa. Ai approach to formal analysis of bpmn

models: Towards a logical model for bpmn diagrams. In Advances

in Business ICT, pages 69–88. Springer, 2014.

[LRL+97] H. J. Levesque, R. Reiter, Y. Lespérance, F. Lin, and R. B. Scherl.

GOLOG: A logic programming language for dynamic domains. The

Journal of Logic Programming, 31(1-3):59–83, 1997.

[MBB+03] B. Medjahed, B. Benatallah, A. Bouguettaya, A. H. Ngu, and A. K.

Elmagarmid. Business-to-business interactions: issues and enabling

technologies. The VLDB Journal The International Journal on Very

Large Data Bases, 12(1):59–85, 2003.

[MBH+04] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D. McDermott,

S. McIlraith, S. Narayanan, M. Paolucci, B. Parsia, T. Payne,

E. Sirin, N. Srinivasan, and K. Sycara. Owl-s: Semantic markup

for web services, 2004.

[McD00] D. V. McDermott. The 1998 AI planning systems competition. AI

Magazine, 21(2):35–55, 2000.

Bibliography 127

[MGH+98] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram,

M. Veloso, D. Weld, and D. Wilkins. Pddl-the planning domain

definition language. AI Magazine, 1998.

[MM04] N. Milanovic and M. Malek. Current solutions for web service com-

position. IEEE Internet Computing, 8(6):51–59, 2004.

[MMV+05] R. Mulye, J. Miller, K. Verma, K. Gomadam, and A. Sheth. A

semantic template based designer for web processes. In Proceedings

IEEE International Conference on Web Service. IEEE, 2005.

[MPT08] A. Marconi, M. Pistore, and P. Traverso. Automated composition

of web services: the ASTRO approach. IEEE Data Engineering

Bulletin Issues, 31(3):23–26, 2008.

[MS02] S. A. McIlraith and T. C. Son. Adapting golog for composition of

semantic web services. In D. Fensel, F. Giunchiglia, D. L. McGuin-

ness, and M.-A. Williams, editors, Proceedings of the Eights Interna-

tional Conference on Principles and Knowledge Representation and

Reasoning (KR-02), pages 482–496, Toulouse, France, 2002. Morgan

Kaufmann.

[MSZ01] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web services.

IEEE Intelligent Systems, 16(2):46–53, 2001.

[NAI+03] D. S. Nau, T. Au, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu, and

F. Yaman. SHOP2: an HTN planning system. Journal of Artificial

Intelligence Research JAIR, 20:379–404, 2003.

[Nic05] D. Nickull. Service oriented architecture. Technical report, White

Paper, Adobe Systems, Inc, May 2005.

[OMG] OMG. Business process model and notation (bpmn)) version 2.0.2.

n.d. Web. 20 Dec. 2014, http://www.omg.org/spec/BPMN/2.0.2/.

[Ped94] E. Pednault. Adl and the state-transition model of action. Journal

of Logic and Computation, 4(5):467–512, 1994.

[Pee05] J. Peer. Web service composition as ai planning-a survey. University

of St. Gallen, 2005.

Bibliography 128

[POSV04] A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma. Meteor-s

web service annotation framework. In Proceedings of the 13th in-

ternational conference on World Wide Web, pages 553–562. ACM,

2004.

[PvdH07] M. P. Papazoglou and W. J. van den Heuvel. Service oriented archi-

tectures: approaches, technologies and research issues. VLDB Very

Large Database Journal, 16(3):389–415, 2007.

[PW06] F. Puhlmann and M. Weske. Investigations on soundness regarding

lazy activities. Springer, 2006.

[Rei01] R. Reiter. Knowledge in action: logical foundations for specifying and

implementing dynamical systems, volume 16. MIT press Cambridge,

2001.

[RN95] S. J. Russell and P. Norvig. Artificial intelligence - a modern ap-

proach: the intelligent agent book. Prentice Hall series in artificial

intelligence. Prentice Hall, 1995.

[RS04] J. Rao and X. Su. A survey of automated web service composition

methods. In J. Cardoso and A. P. Sheth, editors, Semantic Web Ser-

vices and Web Process Composition, First International Workshop,

SWSWPC, volume 3387 of Lecture Notes in Computer Science, pages

43–54, San Diego, CA, USA, 2004. Springer.

[SBe00] E. Lindencrona S. Brinkkemper and A. Solvberg (eds.). The B2B E-

commerce Revolution: Convergence, Chaos, and Holistic Computing,

in Information System Engineering: State of the Art and Research

Themes. Springer-Verlag Ltd., London., 2000.

[SK03] B. Srivastava and J. Koehler. Web service composition-current so-

lutions and open problems. In ICAPS International Conference on

Automated Planning & Scheduling workshop on Planning for Web

Services, volume 35, pages 28–35, 2003.

[SPW+04] E. Sirin, B. Parsia, D. Wu, J. A. Hendler, and D. S. Nau. HTN

planning for web service composition using SHOP2. Web Semantics:

Science, Services and Agents on the World Wide Web, 1(4):377–396,

2004.

Bibliography 129

[SQV+14] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and

X. Xu. Web services composition: A decade’s overview. Information

Sciences, 280:218–238, 2014.

[TDE02] S. Thöne, R. Depke, and G. Engels. Process-oriented, flexible com-

position of web services with UML. In S. Spaccapietra, S. T. March,

and Y. Kambayashi, editors, Conceptual Modeling - ER 2002, 21st

International Conference on Conceptual Modeling, volume 2503 of

Lecture Notes in Computer Science, pages 390–401, Tampere, Fin-

land, 2002. Springer.

[Tea] Activiti Team. Activiti bpm platform. Activiti. Alfresco, n.d. Web.

03 Mar. 2015, http://activiti.org/.

[Thi98] M. Thielscher. Introduction to the fluent calculus. Electronic Trans-

actions on Artificial Intelligence, 2:179–192, 1998.

[Thi02] M. Thielscher. Alan: Designing an axiomatisation lan-

guage for autonomous agents and mobile robots, 2002.

March 2002, Web. 20 Dec. 2014, http://www.computational-

logic.org/content/projects/alan.php.

[Thi05] M. Thielscher. Flux: A logic programming method for reasoning

agents. Theory and Practice of Logic Programming, 5(4-5):533–565,

2005.

[WGHS99] M. Weske, T. Goesmann, R. Holten, and R. Striemer. A reference

model for workflow application development processes, volume 24.

ACM, 1999.

[WNI+09] S. M. Watt, V. Negru, T. Ida, T. Jebelean, D. Petcu, and D. Zaharie,

editors. 11th International Symposium on Symbolic and Numeric Al-

gorithms for Scientific Computing, SYNASC 2009, Timisoara, Ro-

mania, September 26-29, 2009. IEEE Computer Society, 2009.

	main
	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 E-Tourism system Architecture
	1.2 Motivating Examples
	1.3 Problem Definition
	1.4 Research questions
	1.5 Dissertation aims
	1.6 Dissertation outline

	2 Background and State of the Art
	2.1 B2B Interactions
	2.1.1 Framework Layers

	2.2 Service-Oriented Computing
	2.2.1 Web Service
	2.2.1.1 Architecture
	2.2.1.2 Technology

	2.2.2 Semantic Web Service

	2.3 Service Composition
	2.3.1 Web service composition life cycle
	2.3.2 Manual Approaches
	2.3.3 Automatic approaches
	2.3.4 Existing Approaches
	2.3.4.1 End-to-end composition framework
	2.3.4.2 Proposals of logical composition
	2.3.4.3 Business process generation and execution

	2.4 Summary

	3 Abstract Service Composition with Fluent Calculus
	3.1 Requirements and Architecture
	3.1.1 Fluent Calculus
	3.1.2 FLUX

	3.2 Back to the motivating example
	3.3 Transformer to fluent calculus
	3.3.1 User requirements mapping
	3.3.2 Service operations mapping

	3.4 FLUX Planner
	3.4.1 FLUX query and Abstract plan
	3.4.2 Service composition agent

	3.5 Existing approaches
	3.6 Summary

	4 Composition Platform Generation
	4.1 Architecture
	4.2 Abstract plan to BPMN semantics
	4.3 BPMN Transformer
	4.3.1 Example of BPMN model

	4.4 BPMN Validation
	4.4.1 Well-formed BPMN process
	4.4.2 Well-defined BPMN process
	4.4.3 Related work

	4.5 Summary

	5 Implementation
	5.1 Models
	5.2 Implementation
	5.3 Results
	5.3.1 Experiment 1.
	5.3.2 Experiment 2.
	5.3.3 Experiment 3.

	5.4 Discussion

	6 Conclusion and Future work
	6.1 Future work

	A Planning model for the service composition agent
	A.1 A list of fluents for conducting the Flux query
	A.2 A list of fluents for the abstract plan
	A.3 A list of actions the agent performing the abstract plan

	B Program for the service composition agent
	C BPMN specification and rules
	C.1 BPMN specification
	C.2 BPMN Well-formed
	C.3 Well-formed BPMN rules

	Bibliography

	Resume
	main
	Abstract
	Résumé
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 E-Tourism system Architecture
	1.2 Motivating Examples
	1.3 Problem Definition
	1.4 Research questions
	1.5 Dissertation aims
	1.6 Dissertation outline

	2 Background and State of the Art
	2.1 B2B Interactions
	2.1.1 Framework Layers

	2.2 Service-Oriented Computing
	2.2.1 Web Service
	2.2.1.1 Architecture
	2.2.1.2 Technology

	2.2.2 Semantic Web Service

	2.3 Service Composition
	2.3.1 Web service composition life cycle
	2.3.2 Manual Approaches
	2.3.3 Automatic approaches
	2.3.4 Existing Approaches
	2.3.4.1 End-to-end composition framework
	2.3.4.2 Proposals of logical composition
	2.3.4.3 Business process generation and execution

	2.4 Summary

	3 Abstract Service Composition with Fluent Calculus
	3.1 Requirements and Architecture
	3.1.1 Fluent Calculus
	3.1.2 FLUX

	3.2 Back to the motivating example
	3.3 Transformer to fluent calculus
	3.3.1 User requirements mapping
	3.3.2 Service operations mapping

	3.4 FLUX Planner
	3.4.1 FLUX query and Abstract plan
	3.4.2 Service composition agent

	3.5 Existing approaches
	3.6 Summary

	4 Composition Platform Generation
	4.1 Architecture
	4.2 Abstract plan to BPMN semantics
	4.3 BPMN Transformer
	4.3.1 Example of BPMN model

	4.4 BPMN Validation
	4.4.1 Well-formed BPMN process
	4.4.2 Well-defined BPMN process
	4.4.3 Related work

	4.5 Summary

	5 Implementation
	5.1 Models
	5.2 Implementation
	5.3 Results
	5.3.1 Experiment 1.
	5.3.2 Experiment 2.
	5.3.3 Experiment 3.

	5.4 Discussion

	6 Conclusion and Future work
	6.1 Future work

	A Planning model for the service composition agent
	A.1 A list of fluents for conducting the Flux query
	A.2 A list of fluents for the abstract plan
	A.3 A list of actions the agent performing the abstract plan

	B Program for the service composition agent
	C BPMN specification and rules
	C.1 BPMN specification
	C.2 BPMN Well-formed
	C.3 Well-formed BPMN rules

	Bibliography

