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- Paris V, 2014. English. <NNT : 2014PA05T036>. <tel-01165008>

HAL Id: tel-01165008

https://tel.archives-ouvertes.fr/tel-01165008

Submitted on 18 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Résumé
Le système nerveux central est capable de mémoriser des percepts sur de longues
échelles de temps (mémoire à long terme), ainsi que de maintenir activement ces
percepts en mémoire pour quelques secondes en vue d’effectuer des tâches com-
portementales (mémoire de travail). Ces deux phénomènes peuvent être étudiés
conjointement dans le cadre de la théorie des réseaux de neurones à attracteurs.
Dans ce cadre, un percept, représenté par un patron d’activité neuronale, est stocké
en mémoire à long terme et peut être chargé en mémoire de travail à condition
que le réseau soit capable de maintenir de manière stable et autonome ce patron
d’activité. Une telle dynamique est rendue possible par la forme spécifique de la
connectivité du réseau.
Ici on examine des modèles de connectivité corticale à différentes échelles, dans le
but d’étudier quels circuits corticaux peuvent soutenir efficacement des dynamiques
de type réseau à attracteurs. Ceci est fait en montrant comment les performances
de modèles théoriques, quantifiées par la capacité de stockage des réseaux (nombre
de percepts qu’il est possible de stocker, puis réutiliser), dépendent des caractéris-
tiques de la connectivité.
Une première partie est dédiée à l’étude de réseaux complètement connectés où
un neurone peut potentiellement être connecté à chacun des autre neurones du
réseau. Cette situation modélise des colonnes corticales dont le rayon est de l’ordre
de quelques centaines de microns. On s’intéresse d’abord à la capacité de stockage
de réseaux où les synapses entre neurones sont décrites par des variables binaires,
modifiées de manière stochastique lorsque des patrons d’activité sont imposés sur
le réseau. On étend cette étude à des cas où les synapses peuvent être dans K états
discrets, ce qui, par exemple, permet de modéliser le fait que les connections entre
deux cellules pyramidales voisines du cortex sont connectées par l’intermédiaire de
plusieurs contacts synaptiques.
Dans un second temps, on étudie des réseaux modulaires où chaque module est
un réseau complètement connecté et où la connectivité entre modules est diluée.
On montre comment la capacité de stockage dépend de la connectivité entre mod-
ules et de l’organisation des patrons d’activité à stocker. La comparaison avec les
mesures expérimentales sur la connectivité à grande échelle du cortex permet de
montrer que ces connections peuvent implémenter un réseau à attracteur à l’échelle
de plusieurs aires cérébrales.
Enfin on étudie un réseau dont les unités sont connectées par des poids dont
l’amplitude a un coût qui dépend de la distance entre unités. On utilise une
approche à la Gardner pour calculer la distribution des poids qui optimise le
stockage de patrons d’activité dans ce réseau. On interprète chaque unité de ce
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réseau comme une aire cérébrale et on compare la distribution des poids obtenue
théoriquement avec des mesures expérimentales de connectivité entre aires cérébrales.

Summary
The central nervous system is able to memorize percepts on long time scales (long-
term memory), as well as actively maintain these percepts in memory for a few
seconds in order to perform behavioral tasks (working memory). These two phe-
nomena can be studied together in the framework of the attractor neural network
theory. In this framework, a percept, represented by a pattern of neural activity, is
stored as a long-term memory and can be loaded in working memory if the network
is able to maintain, in a stable and autonomous manner, this pattern of activity.
Such a dynamics is made possible by the specific form of the connectivity of the
network.
Here we examine models of cortical connectivity at different scales, in order to study
which cortical circuits can efficiently sustain attractor neural network dynamics.
This is done by showing how the performance of theoretical models, quantified by
the networks storage capacity (number of percepts it is possible to store), depends
on the characteristics of the connectivity.
In the first part we study fully-connected networks, where potentially each neuron
connects to all the other neurons in the network. This situation models cortical
columns whose radius is of the order of a few hundred microns. We first compute
the storage capacity of networks whose synapses are described by binary variables
that are modified in a stochastic manner when patterns of activity are imposed on
the network. We generalize this study to the case in which synapses can be in K
discrete states, which, for instance, allows to model the fact that two neighboring
pyramidal cells in cortex touches each others at multiple contact points.
In the second part, we study modular networks where each module is a fully-
connected network and connections between modules are diluted. We show how
the storage capacity depends on the connectivity between modules and on the or-
ganization of the patterns of activity to store. The comparison with experimental
measurements of large-scale connectivity suggests that these connections can im-
plement an attractor neural network at the scale of multiple cortical areas.
Finally, we study a network in which units are connected by weights whose am-
plitude has a cost that depends on the distance between the units. We use a
Gardner’s approach to compute the distribution of weights that optimizes storage
in this network. We interpret each unit of this network as a cortical area and com-
pare the obtained theoretical weights distribution with measures of connectivity
between cortical areas.
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Chapter 1

Introduction

Systems neuroscience has been concerned in elucidating how neural circuits can
give rise to high-level mental processes like perception, attention, decision-making,
motor movements or memory. In this context, theoretical tools allow to formal-
ize mechanistic models of brain circuitry, which can be used to make quantitative
predictions about observable quantities. These predictions can be confronted to
experimental data in order to assess the relevance of given mechanistic models,
thus leading to a better understanding of brain processes.
Theoretical tools have been widely used to propose and test mechanisms of mem-
ory formation and memory retrieval. In particular, the proposals that long-term
memories are maintained in changes in the synaptic connectivity of neural cir-
cuits and that short term memories are maintained by persistent neural activity
have been formalized conjointly in the framework of the theory of attractor neural
networks (ANNs). This theory has been corroborated by multiple experimental
observations, like the recordings of neurons showing persistent activity in animals
engaged in working memory tasks. In the present thesis, we will study the mem-
ory performance of several ANN models, focusing on various features of network
connectivity. Comparison with experimental measures of cortical connectivity at
different scales will allow us to discuss which cortical circuits are likely to support
ANN dynamics.

In this introduction we will define more precisely ANNs and describe how they
have been used to model memory processes in brain networks. We will also review
experimental data describing connectivity at the scale of local networks of size of
the order of hundred microns, the scale of a few centimeters of cortex, and at the
scale of the whole cortex.
In the second chapter, we will focus on models of fully-connected neural networks
that can be thought of as modeling the local cortical circuits. In particular we will
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quantify the storage capacity of networks with binary synapses subject to different
learning scenarios. This will then be extended to two specific models of synapses
that can be in K ≥ 2 discrete states.
In the third chapter, we will study modular networks where each module is a fully-
connected network and where the connectivity between modules is diluted. We will
show how the memory performance of these networks depends on the connectivity
between modules and discuss the idea that cortical circuits involving multiple local
circuits can sustain ANN dynamics.
In the last chapter, we will study a network whose units are connected by weights
whose amplitude has a cost that depends on the distance between units. We will
use a Gardner approach to compute the distribution of weights that optimizes the
storage of memory. We will interpret this network as the network of cortical areas
and compare features of the theoretical distribution of weights to experimental
measures of connectivity between cortical areas.

1.1 Attractor neural network (ANN) and memory
1.1.1 Neural networks as dynamical system
A neural network can be regarded as a dynamical system whose state evolves
in time driven by external inputs and constrained by its own dynamical proper-
ties, that are determined by the properties of the individual units of the network
and the form of the interactions between these units. In order to describe such
dynamics, one has to choose variables that characterize the state of each unit.
Ideally these variables should relate to experimentally measurable quantities. The
activity of neurons or groups of neurons can be characterized in different ways.
Common experimental techniques allow to monitor the membrane potential of
neurons (via intracellular recordings), and/or their spiking activity (extra-cellular
recordings). Many studies of neural networks focus on measures of spiking activity
as the standard theory states that neurons communicate with each other through
spikes. Spikes are all-or-none events that correspond to a sharp rise and decay of
the membrane potential during a time of approximately 2ms. Whether the precise
time at which spikes occur matters for the collective behavior of groups of neurons
has been much debated. In the work presented here, we assume that it does not
for the phenomenon we are trying to model. Thus the variable we use to char-
acterize the state of a neural unit is its firing rate, i.e. the averaged number of
spikes emitted during a given time window. The simplest way to model the firing
activity of a neuron, and that is used in this thesis, is to use binary 0−1 variables,
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where 0 stands for a neuron firing at spontaneous activity (' 2Hz) and 1 for a
neuron firing at an elevated rate (e.g. 20Hz). Although it is a crude way to model
the state of a neuron, it allows to gain insight into the properties of biological
networks, assuming that their dynamics is mainly governed by the specificity of
the connections between units rather than the precise input-output relationship of
neurons.
In the above paragraph, we focused on description of neural networks at the level
of neurons. In order to grasp brain properties that involve large neural networks
(e.g. multiple brain areas), experimentalists have used techniques that allow to
monitor the averaged activity of ensembles of neurons (e.g. fMRI, LFP record-
ings). These techniques do not give access to the activity of single neurons, thus it
can be of interest to find relevant variables to describe neural networks at the level
of the neural population. One example of such a model is the work by Wilson and
Cowan (1972) who introduced what is now called neural field/neural mass models
in which a continuous variable r(~x, t) describes the average activity of a piece of
neural tissue located at a position ~x at time t. Another example is a Potts model
in which each unit can take several discrete values representing different possible
states of an ensemble of neurons, that have been used to describe interactions be-
tween cortical areas, for instance see Kropff and Treves (2005).

1.1.2 Dynamical systems and attractors
A neural network can thus be described by an ensemble of N interconnected units
(where each unit can model a single neuron, a local network, a brain area, etc.)
whose state is characterized by a set of variables. We will consider models where
the whole network is described by a vector of length N . The set of all the possible
network states, a N -dimensional space, is called the state space of the network.
For a network of N binary neurons, its state is described by a vector ~σ ∈ {0, 1}N ,
and the state space is constituted by all the binary vectors of length N , a set of
size 2N .
The evolution in time of the network state, the trajectory of the network, is gov-
erned by a dynamic rule that can take the form of a set of differential equations
(one for each unit) if time is taken to be continuous or a map if time is discrete.
The form of these equations depends on the connectivity between units and the
specificity of the input-output relationship of each unit. A simple form of dynamics
for a network of binary neurons is the following
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σi(t+ 1) = Θ
 N∑
j=1

Wijσj(t)− θ
 for all i (1.1)

where Θ is the Heaviside function, θ an activation threshold and W is the connec-
tivity matrix that specifies how neurons interact. In words, each neuron i receives
an input that is the sum of the activity of the other neurons j’s, weighted by the
connection strenghts from j’s to i. The input-output relationship of these units
consists in comparing the input with the activation threshold θ and producing the
output 1 if the input is above θ and 0 if it is below.

Given a network defined by its dynamical equation, the trajectory of the net-
work tends to flow towards particular states that are called attractor states. An
attractor is a subset of phase space in which the network remains if it enters in.
Each attractor A is associated with a basin of attraction B(A). B(A) is defined as
a subset of phase space such that if the network is in a state in B it will eventually
flow towards states in A. Attractors can consist of a single state (fixed point at-
tractors), a discrete set of states, a continuous set of states (if variables describing
units are continuous) like a line or a plane, or more complicated sets. The tra-
jectory of the system in an attractor can be of various types. For instance, if the
network visits states of A in a periodic manner, we refer to A as a limit cycle. In
the next section, we describe examples in which attractor networks have been used
to model memory properties of the brain.

1.1.3 Modeling brain memory processes with ANNs
Fixed point attractors and memory of discrete items
These models rely on the assumption that each item µ is represented by a state of
the network ~ξµ (e.g. the value of the firing rate of each neuron in the network). A
given item µ is said to be memorized if ~ξµ is a fixed point attractor of the network
(Amit, 1989). These models share properties with human memory like associativ-
ity. This will be discussed in more detail in the following.

Line attractor and the memory of eye position
It has been proposed that the ability to hold the eyes still necessitates to form
a memory of eye position. There is experimental evidence that neural circuits in
the brain stem and cerebellum can perform this task. Electrophysiologists have
found neurons that receive transient inputs whose amplitude is proportional to the
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amplitude of the saccadic eye movement made by the animal. These neurons re-
spond with a transient modulation of their firing rate that eventually stabilizes at a
value linearly related to the eyes position, i.e. they perform an integration of their
inputs thus maintaining a signal coding for eye position. Seung (1996) proposed
that these neurons form a network with a line attractor where each stable state (in
the absence of external input) codes for one position of the eye. Seung explicited
on which conditions on the connectivity between neurons the network can sustain
such states. In this first model these conditions required an implausible fine tun-
ing of network connectivity. A recent study of a line attractor in a network with
excitatory and inhibitory populations has implemented a more robust version of a
network with a line attractor (Lim and Goldman, 2013). Line attractors have been
used to model other electrophysiological recordings while animals where required
to hold in memory the amplitude of a stimulus (Machens et al., 2005).

Plane attractor and 2-D spatial memory
It has been shown that firing patterns of neural activity in the hippocampus of
rats form an internal representation of the animal’s current location in a given en-
vironment (O’Keefe and Dostrovsky, 1971; O’Keefe and Nadel, 1978; Wilson and
McNaughton, 1993). This corresponds to a form of memory as it has been shown
that such a representation is indeed internal, since it does not rely on external
cues. As the animal is moved from one environment to another one with the same
geometry (but with a different lighting for instance), equivalent positions are en-
coded by different patterns of activity. Circuits of the hippocampus giving rise to
such representations have been modeled by plane attractor networks in which each
2-D location (parametrized by 2 numbers) in an environment is represented by a
self-sustained pattern of activity (Samsonovich and McNaughton, 1997; Battaglia
and Treves, 1998). The set of patterns of activity coding for each location forms
a plane attractor. In the network models that have been proposed, multiple such
attractors/environments can be embedded in the connectivity of the networks.

1.1.4 Associative memory and fixed point attractor
Properties of associative memories
As discussed above, neural networks with fixed point attractors can be used to
model properties of human memory. Two main aspects of memory are captured by
these models. Associative retrieval from long term memory, the fact that humans
are able to recall previously experienced percepts from a cue signal that share some
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resemblance with these percepts (see figure 1.1B). In the framework of ANNs, a
previously experienced percept ~ξµ corresponds to a network state that is one of the
fixed points of the network dynamics (figure 1.1A). The partial cue is considered
to set the network in a state that is within the basin of attraction ~ξµ, and the time
required for memory retrieval corresponds to the flow of the network towards the
attractor state.
Another related aspect of human memory that can be easily interpreted in this
framework is working memory, the ability to maintain a memory of a percept for
behavioral purposes. The maintenance of the memory is simply interpreted as the
fact that the network remains in the fixed point state corresponding to this mem-
ory. Thus one requirement for an ANN to load a percept in working memory is
that this percept is a fixed point of the dynamics.
The properties of associative memories have also been described from the point
of view of computer science (Knoblauch et al., 2010). In ordinary computers, two
distinct modules with different physical substrates are respectively in charge of
computations and data storage while in an ANN, computations and data storage
are realized by the same physical substrate. This leads to different properties, for
instance to retrieve a memory in a ordinary computer, a precise address has to
be provided, while an ANN can accept arbitrary queries and associate them with
one of the stored memories. Concretely this means that ANNs can be used to
categorize inputs. Other tasks that can be performed thanks to the associative
property are pattern completion and denoising.

Figure 1.1: Associative memory with recurrent networks. A- Schematic state space representation of network states.
Each state is labeled by a coordinate (x, y), circles represent fixed point states that correspond to particular memories,
and lines delimit the basin of attraction associated with each memory. B- Illustration of the associative property
of a Hopfield network. The color of each pixel (black or white) is the activity of a neuron (+1 or −1). The
connectivity matrix is chosen such that network states represented in the right column are fixed points of the network’s
dynamics. Initializing the network in states that partially overlap with the stored patterns (left column) leads to
pattern completion, i.e. memory retrieval. C- Controlling fixed point dynamics via recurrent excitation. Blue
connections create a positive feed-back loop in which activity is reverberated, making the represented pattern of
activity a fixed point of the network’s dynamics. Red connections, that are here to store a different pattern of
activity, tend to destabilize the represented pattern. Computing storage capacity in this kind of network consists in
quantifying how many stable patterns can be imprinted in the synaptic matrix.

Implementing attractor dynamics with excitatory recurrent connectiv-
ity
A common way to implement attractor dynamics in a neural network, and that is
at the root of all the models presented in this thesis, is to use recurrent excitatory
connectivity to create feedback loops in which activity is able to self-sustain. This
mechanism is illustrated on figure 1.1C where an item is represented by the state
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of a network of binary neurons. This item can be stored in long term memory and
used in working memory by potentiating the synapses between neurons that are
active in this state.

The shaping of recurrent connectivity is supposed to be the result of synaptic
plasticity that occurs during a learning phase in which the network is presented
the patterns to be learned. The scheme described above can be implemented by
Hebbian type learning rules that tend to connect neurons that are simultaneously
active, and to disconnect neurons that have opposite activity. Such kind of plas-
ticity rule is consistent with experimental data on plasticity (Bienenstock et al.,
1982; Kirkwood and Bear, 1994; Sjöström et al., 2001).

Characterizing the performance of associative memories
The storage capacity can simply be quantified by the number of stable fixed point
states Pmax that can be imprinted in the synaptic matrix of the network. As
patterns do not have the same information content, Pmax is not always the most
appropriate measure. To illustrate this point, let consider a network of binary
neurons, in which one is willing to store a set of patterns in which each neuron is
active independently with probability f (f is referred to as the coding level of the
memories). The size of the set of all possible patterns of activity with coding level
f increases when f increases from 0 to 1

2 , thus for a fixed coding level observing
a given state is more informative at f = 1

2 than at f → 0. To take this into
account, for the example of a fully connected network of N binary units storing
independent patterns, the storage capacity can be quantified by the information
capacity, measured in bits per synapse

i = PmaxN(−f ln2 f − (1− f) ln2(1− f))
N 2 (1.2)

That is the the total number of stored patterns multiplied by the information
carried by the observation of a specific pattern among the set of patterns of coding
level f ; divided by the total number of synapses in the network, which are the
physical substrate on which patterns are imprinted.

Another important quantity is the size of the basin of attraction associated to
each pattern, that determines to which extent the memory is associative for these
patterns.

The way patterns are learned from the environment is also of interest. Some
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models of associative memory do not possess any forgetting mechanism. In this
case, if too many patterns are presented to the network, the fixed points of the
network eventually become unrelated to any of the previously stored memories
(e.g. Amit et al. (1985)). The second chapter of this thesis is devoted to study the
storage capacity of simple models with different learning scenarios that have been
proposed to circumvent this issue.

1.1.5 A brief history of brain modeling with ANNs
In Hebb’s book the Organization of Behaviour (Hebb, 1949) it is proposed that
neurons could group together to form processing units, or cell-assemblies, under
the influence of activity dependent synaptic modifications. ANNs are a direct re-
alization of this idea. Willshaw et al. (1969) proposed a network of binary units
that exhibits associative memory properties. They showed that their network has
remarkable storage capacity, as it allows to store 0.69 bits per binary synapse,
which is not too far from the 1 bit theoretical limit for such synapses. Later, Hop-
field (1982) introduced a model of associative memory, of which he described the
dynamics with numerical simulations, observing "stable limit points" correspond-
ing to the patterns he was willing to store in the synaptic matrix. Importantly he
proposed a parallel between his network and models of spin glasses that were stud-
ied by physicists at that time. This allowed Amit et al. (1985) to provide a very
detailed description of the various stable states of the network, and to compute
the storage capacity of the Hopfield network. They confirmed that the number of
patterns that could be stored scaled with the number of neurons in the network.
More recently Coolen and Sherrington (1993) presented a dynamical theory for
the Hopfield model. Such a theory is important as it allows to study ’dynamical’
quantities, like the basin of attractions associated to each memory.
Another line of work that makes use of spin glass theory tools was introduced by
Gardner (1988). Her work, that will be described in more detail in the last chapter,
allows to derive general bounds on the storage capacity of ANNs, independently of
the choice of a specific learning rule, as is done in the Hopfield model for instance
where the form of the connectivity matrix is given a priori. Such a bound was
derived by Cover (1965) for perceptrons with continuous weights using a geometric
proof. The interest of Gardner’s method resides in its generality, many assump-
tions on the statistics of patterns to store or on the nature of synaptic weights
can be explored (Gardner, 1988; Gardner and Derrida, 1988; Gutfreund and Stein,
1990). Results obtained with this method are presented in chapter 2.
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Since these early studies, one line of research in computational neuroscience has
consisted in including more biologically realistic features in these models in order
to confront with experimental observations the hypothesis that memory and asso-
ciative properties of brains are realized by ANNs.

1.2 Alternative models of short term memory
In the models we have discussed so far, a special form of the connectivity between
neurons creates "cell-assemblies" in which activity can be self-sustained. In this
framework neurons can be observed in two states, a spontaneous state of activity
or an enhanced state of activity if they belong to the cell assembly in which activity
is reverberated. This enhanced activity allows to interpret the observed persistent
activity during memory tasks (see section 1.3.1). The most common proposal to
account for the form of the synaptic matrix leading to such a behavior, is to as-
sume that previous presentations of stimuli to be learned by the network lead to
Hebbian long-term plastic changes (see Wang 2001 for a review). Here we present
models based on different principles that have been proposed to model memory
related phenomena.

1.2.1 Bistability from single cells properties
An alternative mechanism to explain persistent activity is to postulate that individ-
ual cells are bistable. Such bistability could be achieved by positive feed-back loops
created by active ionic currents (Hodgkin and Huxley, 1952; Booth and Rinzel,
1995; Delord et al., 1997; Loewenstein and Sompolinsky, 2003). A hybrid mecha-
nism allowing bistability thanks to a combination of after-depolarization currents
(observed in pre-frontal pyramidal cells under the influence of neuro-modulators
like acetylcholine or serotonin) and external oscillatory inputs has been proposed
by Lisman and Idiart (1995). Such models have the advantage of being able to
maintain in persistent activity arbitrary patterns of activity, even those that have
not been previously presented to the network, however, without recurrent connec-
tions these models do not have associative properties.
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1.2.2 Working memory with short term plasticity
Mongillo et al. (2008) have proposed that working memory could be achieved by
synaptic facilitation (a form of short term synaptic plasticity), a phenomenon ob-
served in pre-frontal areas. A pattern of activity is presented to the network,
synapses between active neurons are facilitated (increase of their efficacy to excite
the post-synaptic cell) for a time of the order of 1s after the initial presentation.
Their network can operate in different regimes depending on the level of unspecific
(i.e. with a uniform spatial distribution) background activity exciting the network
after an object has been presented. If the level of background activity is low, the
elevated spiking activity elicited at pattern presentation goes away but the pattern
can still be read out during a time of the order of a second using an unspecific
excitation signal that preferentially reactivates neurons connected via facilitated
synapses (figure 1.2A). If there is an intermediate level of the unspecific back-
ground excitation after stimulus presentation, the network becomes bistable, i.e.
the sub-population that was initially stimulated is periodically reactivated with
a period controlled by the depression time constant of the short term plasticity
model (figure 1.2B). If the level of maintained unspecific excitation is increased
further, and if the recurrent connections are high enough, the network exhibit an
asynchronous state of persistent activity (figure1.2C) which is similar to the clas-
sical states sustained by recurrent excitation alone. Note than in all of the three
regimes they studied, there are recurrent ’long-term’ connections between neurons
coding for the same object. It is not clear to what extent this pre-training is nec-
essary, but the existence of these three regimes is interesting as a flexible manner
of memorizing objects for short periods of time. Indeed, the observed flexibility of
working memory is not accounted for by the basic ANN framework, but note that
recently Dipoppa and Gutkin (2013) proposed oscillatory mechanisms to allow for
a flexible control of working memory in ANNs.

Figure 1.2: Working memory with short term plasticity. Raster plot of spiking activity in a spiking network of
excitatory and inhibitory neurons with short-term plasticity. Black dots are spikes emitted by neurons excited by the
stimulus presented at t = 0, green dots are spikes emitted by neurons non-selective for the stimulus. The time course
of the short term plasticity parameters of the stimulus-selective neurons are shown by the red and blue lines. A-
Regime with low background excitation. Spiking activity decays after stimulus presentation, a population spike coding
for the stimulus is elicited when a brief non-specific input (second grey shading) stimulates the network. B- Regime
with intermediate background excitation, population spikes coding for the initial stimulus are emitted regularly at a
frequency controlled by the short-term plasticity parameters. C- Regime with high background excitation and high
level of recurrent connections between cells coding for the stimulus. In this case selective neurons fire asynchronously
at an elevated firing rate after stimulus presentation.
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1.2.3 Long-term memory and synfire chains
Feedforward networks are also at the root of a theory of neural coding that is
different from the coding scheme on which ANNs rely (Abeles, 1991). In the so
called synfire chains, percepts are coded by sequential transient activations of spe-
cific pools of neurons. Here spike timing is fundamental as opposed to models
with reverberating activity in which items are assumed to be coded by spatial pat-
terns of firing rates. Whether neural networks can learn to generate reproducible
sequences of activity has been much debated. Spike-timing dependent plasticity
seems a good candidate to achieve such learning. Studies using STDP were able
to produce only short and closed sequences even with fine tuning of parameters
(Hertz and Prügel-Bennett, 1996; Diesman et al., 1999; Levy et al., 2001; Izhike-
vich et al., 2004). In a more recent study, Liu and Buonomano (2009) using both
STDP and an homeostatic learning rule, were able to learn up to 5 sequences in a
network of 500 neurons where each neuron is activated once in the sequence (figure
1.3). Each sequence lasts for 100 − 200ms, and is initiated by the activation of a
specific subset of neurons, which can be seen as a sort of memory retrieval in which
the initial activation is a cue and the sequence of activity the retrieval of a specific
memory. To what kind of memory it could correspond is unclear. It is tempting to
say it would be a good mechanism to store percepts that involve precisely timed
sequences like auditory sequences or motor sequences.

Figure 1.3: Long-term memories retrieved by sequential activation of neurons in a recurrent network. A network of
400 excitatory and 100 inhibitory spiking neurons is stimulated with a pulse of activity targeting a specific subset of
excitatory neurons. After ' 400 such stimulations, thanks to the combination of a spike-timing-dependent-plasticity
and a homeostatic plasticity rule, the connectivity matrix organizes such that stimulations lead to the generation of
sequences of activity in which each excitatory neuron fire 1 or 2 spikes at a precise time. Each sequence of activity
last for a duration of 100ms. Only up to 5 such sequences can be stored. A- Raster plots where neurons are ordered
according to the moment they are activated in the sequence of activity triggered when a subset A of the excitatory
neurons are briefly stimulated. B- Same for an ordering determined by the stimulation of a subset B.

1.2.4 Short term memory and transient dynamics of neural networks
To maintain information about sequences of stimuli, models based on a different
principle have been developed in the last ten years. Instead of storing the memory
of stimuli in the synaptic matrix of neural networks, the memory is stored in the
activity of neural networks. In the framework described in Maass et al. (2002),
a first neural network is seen as a medium excited by a stream of stimuli, the
transient dynamical state of the network carrying information on the sequence of
inputs. Other ensembles of readout neurons can then be trained to extract task
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relevant information from this transient dynamics. Maass et al. (2002) have de-
scribed under what general conditions on the medium and on the readout neurons
this process is efficient to perform non trivial computations on sequences of inputs.
The ability of the medium to embed information about the history of the signal has
been quantified in particular models (White et al., 2004; Ganguli et al., 2008; Lim
and Goldman, 2012), in which a network of N neurons has to build the memory of
a time-varying scalar input presented to the network. It has been shown that feed-
forward structure are optimal to perform such tasks (Lim and Goldman, 2012), this
is because as past signals propagate through the network, they avoid interfering
with signals injected more recently. An illustration of this principle is shown in
figure 1.4. But recurrent networks with a hidden feed-forward architecture could
also subserve such dynamics (Goldman, 2009). However, it is not clear what kind
of recurrent connectivity matrix is well suited to implement this mechanism.

Figure 1.4: Short term memory and transient dynamics of neural network. Example of a neural integrator. A- A
feed-forward architecture whose activity is read-out by a single neuron is well suited to perform such a task. B- The
first neuron in the feed-forward chain is excited by a brief pulse of activity, the activity is then propagated along the
chain. If the weights to the read out neuron are well chosen, it can produce an output proportional to the amplitude
of the pulse for a time proportional to the number of neurons in the chain.

1.3 Experimental evidence of ANN dynamics
1.3.1 Persistent activity
A first neural correlate of memory maintenance predicted by fixed point ANNs
is persistent activity (PA). It has been observed with single cell recordings in the
prefrontal and temporal cortices of primates, and also in the basal ganglia, the
superior colliculus and brainstem. It has also been observed in the thalamus,
hippocampus and midbrain of rodents, and in the brainstem of non-mammalian
vertebrates (Major and Tank, 2004).
A standard memory task during which PA has been observed is the delay match
to sample (DMS) task. DMS tasks consist of three epochs (see figure 1.5A). First
the monkey is presented an image on a screen. Then there is a delay period with
a blank screen during which the monkey has to remember the shown image. In
the third epoch the monkey is presented a new image and has to decide whether
it is the same image as the one presented in the first epoch. An example of cells
in prefrontal cortex exhibiting PA during a DMS task is shown in figure 1.5B.

An alternative interpretation of persistent activity has been proposed in the
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Figure 1.5: Persistent activity observed during a working memory task. A- The Delay-Match-to-Sample (DMS) task
has been widely used to study the neural correlates of working memory in primates. The monkey fixates a screen
where a first image (sample) is presented for a brief time. During a delay of the order of the second it has to
remember this image. Then a test image is presented and the monkey has to signal with a saccade whether the test
image matches the sample. B- Example of neural activity in a temporal cortex neuron showing persistent activity
during a DMS task on a familiar stimulus (taken from Miyashita (1988)). This neuron is recorded during multiple
repetition of the task as shown by the raster plot on the upper part of the panel, and the histogram shows the average
activity of the cell during the different epochs of the DMS task. C- Same as B when the monkey is tested with a non
familiar stimulus.

framework of memory models based on transient dynamics. Goldman (2009) pro-
posed that neurons exhibiting persistent activity are neurons reading out (with
appropriate weights) the activity of a feedforward network in which the image pre-
sented in the first epoch is propagating (see figure 1.4). During DMS tasks the
firing rate of single units can exhibit various trajectories. These can be accounted
for by ANN models by assuming they are the result of phenomena like neural
fatigue. However one experiment put forward by Goldman (Batuev et al., 1979)
shows recordings in which some cells are transiently activated in the middle of the
delay period, which is easier to interpret with his theory (such cell is a readout
neuron receiving input only from neurons in the middle of the feed-forward circuit)
than with the theory of ANNs. Also, Harvey et al. (2012) have shown that some
cells in the parietal cortex of rats are sequentially and transiently active during the
delay period of a memory task, with different sets of cells active for trials leading
to different behavioral choices. A read-out with fine tuned connectivity from these
cells could generate persistent activity.

Exactly which brain circuits can implement ANN dynamics is a matter of de-
bate. For instance is it only present in the prefrontal areas of cortex ? It has
recently been shown that even in the auditory cortex of mice, neural responses
exhibit ANN like dynamics in a task involving sound discrimination (Bathellier
et al., 2012). It has also been proposed that attractor like dynamics can result
from choosing synaptic weights that allow an optimal representation of a distribu-
tion of input stimuli in the presence of high level of noise (Tkavcik et al., 2010).

1.3.2 Connectivity in local cortical circuits
The different memory mechanisms described above predict very different dynam-
ical behavior for the networks involved. As dynamical properties are shaped by
connectivity matrices, it can be relevant to give a close look at these data. We
will present data on the connectivity of local cortical networks, and then discuss
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theoretical studies that relate these measures with memory models.

Experimental data on local cortical connectivity
Current techniques to estimate the strength of the connectivity between two neu-
rons consist in recording intra-cellularly potential post-synaptic neurons while trig-
gering spikes from pre-synaptic neurons. The measure of the amplitude of exci-
tatory/inhibitory post-synaptic potential/current allows to quantify the synaptic
strength between the two neurons. One crude way to analyze these connectivity
measure is to describe a synapse by a binary variable (absent or present), multiple
pair recordings can then give the probability of connections between two neurons
as well as the probability to find a pair bidirectionally connected. A less crude way
is to consider the distribution of synaptic weights as defined by the amplitude of
the measured voltage/currents elicited in the post-synaptic cell.

Connections from excitatory to excitatory cells
Different studies in different cortical areas and different layers have been carried,
and they all find a low connection probability < 15% (see figure 1.6 for some exam-
ple). The connection probability seems not to depend on the distance between the
two recorded neurons for short distances (< 100µm), at least in layer 5 of visual
cortex as shown in figure 1.7A, but decays for larger distance as shown in figure
1.7B. In figure 1.8 blue histograms show distributions of synaptic weights obtained
in nine different studies.
In all the studies an over representation of bidirectional motifs (pair of neurons re-
ciprocally connected) was found compared to what it would be in a random graph
with the same connection probability. These results are summarized in figure 1.6.
In the study by Song et al. (2005), they mentioned that this over representation
of bidirectional motifs could originate from non-uniform probability of connections
but checked that connection probability was not sensitive to horizontal distance,
vertical distance, and ruled out a few experimental artifacts. They also recorded
triplets of cells simultaneously and were able to show that some 3-neurons motifs
were over-represented compare to a network whose 2-neurons motifs are randomly
drawn in numbers consistent with 2-neurons motifs observed experimentally.

Figure 1.6: Connection probability and over-representation of bidirectional motifs in three studies reporting results of
intracellular recordings in pairs of excitatory neurons. PE−E is the probability to find a connection present from one
neuron to another. The last column reports the fraction of pairs connected bi-directionally, the number in parenthesis
is what would be observed in a network where connections are randomly active with probability PE−E.
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Figure 1.7: Intracellular recordings of pairs of neurons allow to describe some features of local cortical connectivity.
A- Connection probability between excitatory pyramidal cells as a function of distance between the neurons in layer
5 of visual cortex. B Connection probability between excitatory pyramidal cells as a function of distance between the
neurons in layers 2/3 of visual or somato-sensory cortex. Bars are connection counts and black line is the connection
probability. C- Connection probability from an excitatory pyramidal cell to an inhibitory cell (black squares) and
from an inhibitory to an excitatory cell (black circles) as a function of distance between the neurons in layer 2/3 of
visual or somato-sensory cortex.

Connections from inhibitory to excitatory and excitatory to inhibitory
cells
In Holmgren et al. (2003) they also recorded pairs of excitatory/inhibitory neu-
rons. Results are summarized in figure 1.7C. The probability of connections is
higher than for excitatory-excitatory connections, and the decrease with distance
is slower. The occurrence of bidirectional motifs is also reported in figure 1.7.

Interpretation of local cortical connectivity
Barbour et al. (2007); Chapeton et al. (2012) have reported that these connection
probabilities of local cortical networks can be interpreted as a signature that they
operate as ANNs maximizing the number of memories they store. As mentioned
in a previous section, the method introduced by Gardner allows to compute the
maximal storage capacity of ANNs, moreover this technique can be used to com-
pute statistical properties of the synaptic matrix that achieves maximal capacity
(Brunel et al., 2004). This method will be described in more details in the last
chapter. Chapeton et al. (2012) considered networks of excitatory and inhibitory
neurons and found that at maximal capacity the probability that two excitatory
neurons are connected is < 50% while the connection from an inhibitory to an exci-
tatory neuron is > 50%, as observed in experimental data. Moreover experimental
distributions of non-zero synaptic weights can be fitted by theoretical predictions
as shown in figure 1.8.

Figure 1.8: Blue histograms: experimental distribution of PSP amplitude measured in pair recordings in 9 different
studies. Green lines: experimental distributions are well fitted by distributions of synaptic weights that optimize
storage capacity in a network of excitatory and inhibitory neurons.

1.4 The whole cortex as an attractor neural network ?
These interpretations of local cortical circuitry suggest that these circuits can, by
themselves, sustain PA and behave as ANNs. Other proposals have suggested that
ANNs could be implemented in circuits involving multiple brain areas like thalamo-
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cortical loop, which is consistent with the observation of PA in thalamus during the
delay period of memory tasks (Wang, 2001; Fuster and Alexander, 1971). Another
proposal (Braitenberg and Schütz, 1991), complementary to the idea that local
cortical areas can sustain PA by themselves, is that long range connections be-
tween different cortical columns/areas can be used to reverberate activity between
these areas and imprint stable states in the dynamics of the whole cortex. We
will present recent data on long-range cortical connectivity and discuss previous
theoretical work on this idea.

1.4.1 Data on long-range connectivity
The previous section focused on describing the statistics of connectivity between
pairs of neurons distant from less than 200µm horizontally. Here we present data
describing connectivity on larger scales.

Short-range versus long-range connectivity
Stepanyants et al. (2009) reconstructed neurons from multiple sections of cat visual
cortex and by counting synaptic terminals on axons and dendrites, they were able
to estimate the fraction of connections whose pre-synaptic neurons are located in-
side a cylinder of radius R centered on the post-synaptic neuron (see figure 1.9A).
For R = 200µm (the size of an iso-orientation column) they found that only 18% of
the synaptic contacts onto excitatory neurons originated in the cylinder (see figure
1.9) ; 34% for R = 800µm (the size of an occular-dominance column) ; 36% for
R = 1, 000µm. The method they use do not allow to know where the non-local,
longer-range connections originate.

Figure 1.9: Estimation of the proportion of short-range versus long-range connections. A- Stepanyants et al. (2009)
have estimated the number of synaptic terminals whose pre-synaptic cell is outside/inside a cylinder of radius R
centered on the post-synaptic neuron. B- Fraction of local synapses whose pre-synaptic neuron is excitatory or
inhibitory.

Patchy connectivity in pre-frontal cortex
Another common technique to study brain connectivity is to inject tracers into a
local patch of cortex. These tracers are viruses that propagate between neurons
and label them. They can be retrograde, if they travel from the injected neurons to
its pre-synaptic neurons or they can be anterograde if they travel from the injected
neurons to their post-synaptic neurons. As it is difficult to inject into a single
neuron, the measures of connectivity obtained from these experiments concern
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the patches of neurons that are affected by the initial injection of virus (typically
patches of radius ' 0.2− 1mm). Pucak et al. (1996) performed such injections in
the pre-frontal areas 6 and 46 of monkeys and described the connectivity. For both
anterograde and retrograde tracers, they found that labeled neurons were clustered
in groups of ' 0.3 × 1.5mm that often take the form of stripes. An example of
injection and reconstructed patches of labeled neurons is shown in figure 1.10A.
They were able to distinguish patches that are connected to the injection sites via
grey matter connections (’intrinsic patches’) from patches connected through white
matter (’associative patches’). They spotted an average of ' 15 intrinsic patches
per injection (12 on average for 5 anterograde labeling and 17 on average for 4
retrograde labeling) that were located between 0.8 and 6mm from the injection
site. For the 5 anterograde injection, they spotted 47 associative patches, 42 of
which were further than 8mm from the injection site and 39 patches at similar
distances for the 4 retrograde injections. These patches can be located in different
brain areas, and have sizes similar to the intrinsic patches. Some associational
patches together with intrinsic patches are reconstructed in figure 1.10B. 4 of the
injections lead to both anterograde and retrograde labeling which lead the authors
to claim that these stripes are connected reciprocally for intrinsic patches. They
have suggested that associational patches are also connected in a bi-directional
manner. Similar experiments have also reported patchy connectivity in sensory
cortices (DeFelipe et al., 1986; Gilbert and Wiesel, 1989; Bosking et al., 1997).

Figure 1.10: Patchy connectivity in pre-frontal cortex. A- Labeled neurons in area 46 of a macaque monkey following
injection of retrograde tracers at the border between areas 46 and 9 (left part of the image). B- Reconstruction of the
intrinsic patches (connections between the injection and source neurons are via grey matter connection) of labeled
neurons following an injection of anterograde tracers in area 9 (white circle). C- Reconstruction of intrinsic patches
(black) and associative patches (black-white stripes, connected to the injection site via white matter connections)
following an injection of tracers in area 9 (white circle).

1.4.2 Connectivity of the entire network of cortical areas
Description of the experiments. The study presented above reported some
connections between neighboring brain areas, but until recently, experimental data
characterizing brain connectivity at the level of brain areas have been rather scarce.
Anatomical experiments reported only the presence or absence of connections be-
tween brain areas (Felleman and Van Essen, 1991), leading to a description of
large-scale connectivity with binary connectivity matrices. The recent work of
Markov et al. (2011, 2012) allows a quantitative description of brain connectivity,
and in particular cortical connectivity. The principle of their experiments is sim-
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ilar to the study mentioned above, after injecting retrograde tracers (viruses that
travel from a neuron to its presynaptic neurons) in a given "target" cortical area,
they can count the number of neurons that project to this areas (see figure 1.11).
Based on anatomical considerations they delimit the cortex of macaque monkeys
in 91 areas and inject retrograde tracers in 29 of these areas. After slicing the
brain, they count the number of neurons labeled in each area for one every three
slice.

Figure 1.11: Study of large-scale connectivity via tracers injections in cortical areas of macaque monkey. A-B- Markov
et al. (2011) performed injections of tracers in 29 out 91 cortical areas delimited based on anatomical considerations.
C- For each injection, after slicing the brain they count the number of retrogradely labeled neurons in each brain
areas allowing them to establish the connectivity profile of each injected area.

Quantification of connectivity. After counting the number of source neurons
projecting to each injected target area, they quantify the projection strength from
a source area (S) to a target area (T) with the total fraction of labeled neurons
FLNt, which is the ration between the number of labeled neurons in area S and
the total number of labeled neurons in the whole brain ; and with FLNe, the ratio
between the number of labeled neurons in area S and the total number of labeled
neurons in cortex minus those labeled in area T. In the following we also refer to
FLNe as weights from (T) to (S).

Origin of long-range connections. For 5 injections in visual cortex and one in
prefrontal cortex, they measured FLNt for each source areas including subcortical
areas. Results are shown in figure 1.12A, which shows that the majority, 79%, of
neurons targeting at least one of the neuron initially infected by the virus originate
from the area in which the injection is made ; 16% come from neurons in neigh-
boring cortical areas, 5% from other cortical areas and only 1% from subcortical
areas.
They also measured sizes of cortices around the injection site with given FLNt.
Results are shown in figure 1.12B. From this figure, connectivity seems far more
local than shown in the previous study by Stepanyants et al. (2009). Many reasons
could explain such discrepancy, including methodological considerations.

Figure 1.12: Origin of long-range connections. Report from 5 injections in visual cortex and one in prefrontal cortex.
The FLNt measure the strength of the connection from a brain area to the injected area (see text for details). A-
Percentage of labeled neurons that are intrinsic to the injected area, in an area that touches the injected area (short),
in other cortical areas (long), in subcortical areas (SC). B- Fraction of labeled neurons that are at a given distance
from the injection site for 6 different injections.
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Details of cortical projections. Injections in 29 of the 91 areas, allow to build
a 29× 91 weighted connectivity matrix describing the connections from the whole
cortex to the 29 injected areas (figure 1.13A). It also allows to build a 29 × 29
matrix W which fully characterizes the connections of a subset of cortex. This
matrix is shown in figure 1.13B. Note that in this matrix, the weightWij from area
i to area j is obtained from one injection of tracer, while the weightWji from j to i
is obtained from another injection. As the FLNe depends on the total number of
labeled neurons projecting to a given area, one has to be careful when comparing
weights obtained from different injections.

Figure 1.13: Connectivity profiles between cortical areas. A- Connectivity matrix obtained from injections in 29 out
of 91 delimited cortical areas. B- Full connectivity matrix for the network composed of the 29 injected areas. C-
Distribution of connection weights between cortical areas. Blue line is a log-normal fit.

Distribution of cortical connection weights. For each injection the obtained
weights range approximately between 10−1 and 10−5. The distribution of weights
is well fitted by a log-normal distribution (if X is log-normally distributed, then
log(X) is normally distributed), as shown in figure 1.13C. Also the weights from
areas neighbors of the target area are more strongly connected to it than more
distant areas, as shown in figure 1.14B.

Binary features of the cortical connectivity matrix. The authors of this
study also carried extensive analysis of the binary connectivity matrix Wb of the
29× 29 matrix W , and its associated graph Gb. They found a density of 64%, that
is 64% of the entry of Wb are equal to one. The probability to find a link from
one area to another decreases with distance, as shown by the red line in figure
1.14A. They characterize the degree of symmetry of Gb, it can be done by looking
at the occurrence of the possible connection motifs between two areas. The motif
"bidirectional connectivity" is observed for 53% of the pairs of areas, for a binary
random graph where each link is ’on’ with probability 0.66 this motif would on
average occur for 44% pairs. The "unidirectional connectivity" motif is observed
for 27% of the pairs (45% for the random graph), and the motif with no connection
for 20% of the pairs (11% for the random graph). They have also described the
three neurons motifs.
In this study they have shown that the main properties (e.g. over representation
of bidirectional motifs, of some 3-neurons motifs, graph spectra) of the binary con-
nectivity matrix are well accounted for by a model in which the probability to
find a connection between two neurons decreases exponentially with the distance
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between them (Ercsey-Ravasz et al., 2013).

Figure 1.14: Dependence of connectivity features with distance. A- Histogram shows the distribution of distances
between brain areas as measured by the distance to travel from one area to another through the white-matter ; red
line shows how the probability to find at least one connection from one area to another decay with distance. B- Each
point corresponds to the value of the connection strength from one area to another separated by a distance d.

1.4.3 Theoretical studies on large-scale ANNs
The possibility of using long-range connections to sustain activity between distant
brain areas was investigated by O’Kane and Treves (1992) who studied a network
made of modules with dense connectivity between neurons inside the same mod-
ules and diluted long-range connections between neurons belonging to different
modules. The ratio between the number of short and long range connections a
neuron receives was taken of order one according to experimental data provided by
Braitenberg and Schütz (1991). In this first model, long-ranged connections onto
a neuron could originate from any of the other modules ; each pattern of activity
to be stored involved specific patterns of activity in all the modules. This model
suffered from two main issues. First the storage performance of the network was
not satisfactory in the sense that the number of stored patterns was not increasing
with the number of modules in the network. Second the authors discovered the
presence of ’memory glass’ states that were stable states co-existing along with the
patterns to be stored. These memory glass states are states in which local patterns
of activity in each module are patterns of activity corresponding to different global
patterns.
In a following paper Mari and Treves (1998) solved these two issues. First they
stored patterns in which only a fraction F of modules are active. They showed that
the number of stored patterns can scale with F . Thus, having F decreasing with
the number of modules, the number of stored patterns can increase with network
size. Second, instead of distributing long-range connections between all modules,
they focused long-range connections only between a limited number of pairs, such
that each module is connected to a finite number of modules. This modification
allows to increase the relative drive of long range connections and to destabilize
the memory glass states.
In the third chapter of this thesis similar modular networks are studied and are
confronted with data on long-range cortical connectivity.
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Chapter 2

Storage capacity of local networks with
discrete synapses

In this chapter, we focus mainly on the storage property of fully connected net-
works. For such connectivity it is assumed that potentially every neuron can be
connected to any other in the network, the actual connectivity being shaped solely
by the patterns of activity to be learnt. Models of fully connected networks seem
to be well suited to describe cortical networks with dimensions ≤ 150µm, as sup-
ported by the study of Kalisman et al. (2005) showing that -in layer 5 of the rat’s
somato-sensory cortex- an axon originating in such a network touches all the neigh-
boring dendrites (without necessarily forming a functional connection) without any
bias. More roughly, fully connected networks can model networks of size ≤ 500µm
for which the probability that two neurons touch each others varies smoothly from
0.8 to 0.1 with increasing distance, as shown by Hellwig (2000) -for neurons in layer
2/3 of the rats visual cortex. A cortical network of this size contains approximately
10, 000 neurons.
In the first section we summarize various previous results on the storage capacity
of networks of binary neurons. In the second section, we present a study of the
storage capacity of networks with binary synapses and on-line learning rules in
which synapses are updated stochastically upon pattern presentation. This work
is currently under-review for publication, a summary is provided at the beginning
of the section. In the third section, we generalize this study to the case where
synapses can take not only 2 but K discrete values.

2.1 Results on the storage capacity of various models
Since the introduction of the first ANNs, multiple models with increasing levels of
biological realism have been studied in order to estimate the relevance of the ANN
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idea to model brain functions. As discussed in the introduction, an important
quantity to assess the viability of a given model is to compute its storage capacity.
Two main approaches have been taken in this direction. One is to use Gardner’s
method (Gardner, 1988) in order to compute theoretical bounds on storage capac-
ity of ANNs. The principle of this method is to explore the space of all possible
network connectivities, and to measure the volume of the sub-space correspond-
ing to connectivities that satisfy the learning problem (i.e. all P patterns being
fixed points of the dynamics of the network). Intuitively, when more patterns are
required to be stored, this volume should get smaller. The maximal storage capac-
ity is then given by the number of patterns for which this volume becomes zero.
We refer the reader to chapter 4 for a more explicit example. The power of this
method is to be general enough to study a large variety of models. For instance in
her original paper, Gardner computed the maximal storage capacity for networks
of binary neurons, with continuous synapses storing patterns with arbitrary cod-
ing level. Note that this method does not provide an explicit connectivity matrix
satisfying the learning problem.

A second approach, is to choose a specific rule (’learning rule’) that determines
the synaptic matrix for a given set of memories to store. The performance of a given
learning rule can then be assessed by comparing the resulting storage capacity with
the corresponding theoretical bound established with Gardner’s approach. In the
following we present results obtained in networks of binary neurons with various
constraints on the nature of the synaptic connectivity and on the distribution of
patterns to be stored. Note that often in these works, the problem of learning a
set of P fixed points in an ANN is reduced to learning a set of P input-output
associations in N perceptrons.

We then discuss more recent works using ANNs of spiking neurons.

2.1.1 Standard coding and continuous synapses
Here the focus is on networks of binary neurons (whose activity is described by a
set of binary variables σi ∈ {−1; +1}, i = 1...N where N is the size of the network)
connected through real value synapses. The patterns of activity ~ξµ that are stored
in the synaptic matrix are drawn randomly and independently with a ’standard’
coding level f = 1

2 . That is for each pattern µ the activity of each neuron i is given
by
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ξµi =
1 with probability f = 1

2
−1 with probability 1− f = 1

2
(2.1)

With a network dynamics

σi(t+ 1) = sign(
N∑
i=1

Wijσj(t)) (2.2)

where Wij ∈ [−∞,+∞] is the connection from neuron j to neuron i. The prob-
lem of finding a connectivity matrix W such that P given patterns are fixed points
of this dynamics can be reduced to the problem of learning P input-output associ-
ations (~ξµ, ξµi0) in N perceptrons. It is known since the work of Cover (1965) that
in this framework a maximum of P = 2N patterns (or input-output associations)
can be learned in the limit N → +∞. The same result has been derived using
Gardner’s approach (Gardner, 1988).
Hopfield (1982) has proposed an explicit learning rule to store a set of P such
patterns with real value synapses. The symmetric synaptic matrix is related to the
patterns to store by

Wij = 1
N

P∑
µ=1

ξµi ξ
µ
j (2.3)

This synaptic matrix reflect the idea of Hebb that neurons that have similar
activity in a given pattern tend to be connected together and neurons with dissim-
ilar activity tend to be disconnected. Because the synaptic matrix is symmetric,
standard spin glass tools can be used to study its storage capacity. It has been
shown by Amit et al. (1985) that for this explicit learning rule, the maximal num-
ber of patterns that can be stored is P = 0.14N . A study by Sompolinsky (1986)
has shown that similar performance is obtained when perturbing this learning rule
while keeping synapses symmetric, for instance when: introducing a symmetric
noise ηij at each synapse Wij = Wij + ηij ; clipping each weights Wij = sign(Wij)
; diluting the connectivity Wij = cijWij where cij is zero or one with probability
c = O(1). Remarkably he has found that the ratio of the number of patterns
that can be stored to the number of available synapses is increasing with dilution.
A similar observation has been made for extreme asymmetric dilution (cij 6= cji
and c � lnN

N ) for which the maximal number of patterns that can be stored is
P = 0.64C (Derrida et al., 1987), where C ×N is the total number of synapses in
the network after dilution. These studies on dilution were motivated by the fact
that the Hopfield model had the unrealistic feature that every neuron is connected

28



to every other in the network. Many other features of the Hopfield network are
unrealistic. For instance there is no distinction between excitatory and inhibitory
neurons (in particular Dale’s law is not verified), binary units is a crude way to
model real neurons that emit spikes, synapses are assumed to have an infinity of
stable states, and the hypothesis of standard coding is not corroborated by elec-
trophysiological recordings which suggest that only a small fraction of the neurons
are active when coding for a given memory. The next section focuses on storing
patterns with biased coding levels f < 1

2 .

2.1.2 Sparse coding and continuous synapses
For patterns with a coding level f , Gardner computed the storage capacity and in
particular found that for small f , the maximal number of stored patterns is

P = 1
2f | ln f |N (2.4)

As mentioned in the introduction, patterns with a smaller coding level are less
informative, which can be accounted for by quantifying performance using the
information capacity

i = PIpattern
N 2 with Ipattern = N (−f log2 f − (1− f) log2(1− f)) (2.5)

for a fully connected network withN 2 modifiable synapses in which P patterns of
coding level f are stored as fixed points of the dynamic. The information capacity
of such network is found to decrease with the coding level from i = 2bits/synapse
at f = 0.5 to i = 0.72bits/synapse at f � 1.
An adaptation of the rule used by Hopfield (2.2) to sparse patterns f � 1 has been
studied by Tsodyks and Feigel’man (1988). Instead of using {−1; +1} neurons he
used {0,+1} neurons governed by the dynamics

σi(t+ 1) = Θ
 N∑
j=1

Wijσj − θ
 (2.6)

where θ is an activation threshold. This model has the advantage that the state
~σ = ~0 is always stable, which would correspond to the spontaneous state of the
network. Remarkably they showed that for a well chosen threshold the maximum
number of patterns that can be stored reaches the upper bound (2.4) derived by
Gardner.
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2.1.3 Discrete synapses
It has been argued that it would be difficult to build robust synapses that can
take continuous values with known biophysical processes (see Brunel 2003). Also
for practical applications, discrete states synapses seem easier to implement, and
there is experimental evidence that synapses can take only discrete values, at
least in hippocampus as shown by Petersen et al. (1998); O’Connor et al. (2005).
Gutfreund and Stein (1990) applied Gardner’s approach to the case of discrete
couplings and described multiple cases. They first studied the standard coding
case f = 1

2 . For binary synapses Wij ∈ {−1,+1} they found that up to 0.83N
patterns (or 0.83bits/synapse) can be stored, as previously observed by Krauth
and Mezard (1989). For Wij ∈ {0, 1} up to 0.59N patterns (or 0.59bits/synapse)
can be stored. In this case they can also estimate the fraction of synapses g
that are active at maximal capacity, g = 0.32. They have also studied the case
where synapses can be in a finite number of synaptic states, and found that for
synapses taking both positive and negative values the storage capacity goes toward
the value for continuous synapses. For instance for K = 6 up to 1.53N patterns
can be stored. Similarly for positive values, it goes towards 1N the theoretical
value for positive continuous synapses (Amit, 1989). They also studied the case
f � 1 for Wij ∈ {0, 1}. They were able to derive an upper bound on the maximal
storage capacity and found i ≤ 0.29 bits/synapse. Note that these models are very
sensitive to fluctuations in the number of active neurons per pattern, in this last
case, if all patterns have the same number of active neurons, the capacity increases
to 0.45 bits/synapse (Brunel, 1994).
The Hebbian learning rule for networks with {0, 1} synapses was introduced by
Willshaw et al. (1969). It takes the following form

Wij = Θ
 P∑
µ=1

ξµi ξ
µ
j

 (2.7)

The storage capacity of this model has been studied under different definitions.
In a recurrent network, for extremely sparse coding levels lnN

N and fixed number
of active neurons in each pattern, the capacity is 0.23bits/synapse which is also
almost optimal compared to the theoretical upper bound (Knoblauch et al., 2010).
For larger coding levels, the capacity goes to zero in the large N limit.
It is also worth noting, that contrary to the case of continuous synapses, there
exists no algorithm polynomial in time that guarantees to find a weight vector
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that allows to reach maximal capacity for a given set of patterns (Amaldi, 1991;
Garey and Johnson, 1990). Baldassi et al. (2007) have proposed a supervised
algorithm that in practice can find the optimal weights in a reasonable time for
P . 0.65N for the case of {−1, 1} synapses and standard coding (for which i '
0.83bits/synapse). This algorithm requires to characterize a given synapse with
some ’hidden’ states, that keep track of the patterns presented to the network
without necessarily modifying the effective value of the binary synapses. It has
been proposed that such ’meta-plasticity’ would arise from the multi-stability of
the protein interaction network at post-synaptic densities (Baldassi et al., 2007).
Thus ’meta-plasticity’ could be a good candidate to build learning rules achieving
good storage capacity for coding levels of order 1 (see also Fusi et al. 2005, Fusi
and Abbott 2007).

Optimal analog Hebbian analog Optimal binary ({0,1}) Hebbian binary ({0,1})
synaptic matrix synaptic matrix synaptic matrix synaptic matrix

(Willshaw)
f=1

2 2N 0.14 N 0.59 N o(N)
(nb of patterns)

f�1 N
2f |lnf |

N
2f |lnf | ≤ 0.2 N

f |lnf | 0.69 N2

(lnN)2

(nb of patterns) (f small but O(1)) (f=1.5 lnN
N )

f=1
2 2 bits/synapse 0.14 bits/synapse 0.59 bits/synapse 0 bits/synapse

(information)

f�1 0.72 bits/synapse 0.72 bits/synapse ≤0.29 bits/synapse ?
(information) (f small but O(1))

≤0.45 bits/synapse 0.23 bits/synapse
(fixed nb of selective neurons) (with f=1.5 lnN

N )

2.1.4 On-line learning
All the learning rules presented so far suffer from the so called black-out catastro-
phe. If too much patterns are presented to the network, all the presented patterns
are eventually lost, see e.g. Amit et al. (1985) for the Hopfield model. To rem-
edy this bothering situation, several authors introduced palimpsest learning rule
avoiding this saturation. Nadal et al. (1986) modified the Hopfield learning rule
by introducing a decay term that made synaptic changes resulting from the pre-
sentation of a given pattern to decay when new patterns are presented. With this
modification the capacity drops from 0.14 to 0.05 bits/synapse. The Willshaw
learning rule has also been modified to embed networks with binary synapses with
palimpsest properties. The main modification is to introduce in the learning rule
an activity dependent depression term that naturally allows to forget memories
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presented far in the past. Evaluating the storage capacity of such rules is the sub-
ject of the work presented in section 2.2.

2.1.5 Beyond binary neurons
Following the work on binary neurons, models of ANN with more realistic neurons
have been developed. First, authors introduced models with neurons showing a
graded range of activity (Hopfield, 1984; Amit and Treves, 1989; Amit and Tsodyks,
1991). Treves (1990) has shown that such a model can have a storage capacity
similar to models with binary neurons. Then, in order to carry more quantitative
comparisons with experimental data, networks of spiking neurons were introduced
(Gerstner and van Hemmen, 1992; Amit and Brunel, 1997b,a; Brunel, 2000b). The
first models focused on studying the bi-stability properties of networks storing a
finite number of patterns (see Renart et al. 2003 for a review of these models).
A capacity analysis was carried by Roudi and Latham (2007) in a model where
excitation and inhibition where balanced. They have shown that the number of
stored patterns can scale with the number of connections per neurons at finite cod-
ing level. In their model, the coding level is required to be high enough, otherwise
selective neurons fire at a too elevated rate and activity is not as irregular as seen
in experiments. With such a high coding level, the number of patterns that can
be stored would be relatively low (they exhibit a network storing 100 patterns for
10, 000 synapses onto each neuron). It has been suggested that the pattern capac-
ity could be increased further by decreasing the coding level of memories as has
been done in networks of binary neurons. However in spiking networks, the coding
level can not be decreased too much because the activity of selective neurons has
to be distinguishable from the fluctuations of the background activity. A network
model with small coding level and spiking statistics consistent with experimental
data is still to be found (see Renart et al. (2007) for an attempt)
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2.2 Memory capacity of networks with stochastic binary synapses
2.2.1 Summary
In standard attractor neural network models, specific patterns of activity are stored
in the synaptic matrix, so that they become fixed point attractors of the network
dynamics. The storage capacity of such networks has been quantified in two ways:
the maximal number of patterns that can be stored, and the stored information
measured in bits per synapse. In this paper we compute both quantities in fully
connected networks of N binary neurons with binary synapses, storing patterns
with coding level f , in the large N and sparse coding limits (N → ∞, f → 0).
We also derive finite-size corrections that accurately reproduce the results of sim-
ulations in networks of tens of thousands of neurons. These methods are applied
to three different scenarios: (1) the classic Willshaw model, (2) networks with
stochastic learning in which patterns are shown only once (one shot learning),
(3) networks with stochastic learning in which patterns are shown multiple times.
The storage capacities are optimized over network parameters, which allows us to
compare the performance of the different models. We show that finite-size effects
strongly reduce the capacity, even for networks of realistic sizes. We discuss the
implications of these results for memory storage in hippocampus and cerebral cor-
tex.

2.2.2 Introduction
Attractor neural networks have been proposed as long-term memory storage devices
(Hopfield, 1982; Amit, 1989; Brunel, 2003). In such networks, a pattern of activity
(the set of firing rates of all neurons in the network) is said to be memorized if it
is one of the stable states of the network dynamics. Specific patterns of activity
become stable states thanks to synaptic plasticity mechanisms, including both
long term potentiation and depression of synapses, that create positive feed-back
loops through the network connectivity. A long standing question in the field has
been the question of the storage capacity of such networks. Much effort has been
devoted to compute the number of attractor states that can be imprinted in the
synaptic matrix, in networks of binary neurons (Amit et al., 1985; Sompolinsky,
1986; Gardner, 1988; Tsodyks and Feigel’man, 1988). Models storing patterns with
a covariance rule (Sejnowski, 1977; Hopfield, 1982; Tsodyks and Feigel’man, 1988)
were shown to be able to store a number of patterns that scale linearly with the
number of synapses per neuron. In the sparse coding limit (in which the average
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fraction of selective neurons per pattern f goes to zero in the large N limit), the
capacity was shown to diverge as 1/(f | log(f)|). These scalings lead to a network
storing on the order of 1 bit per synapse, in the large N limit, for any value of the
coding level. Elizabeth Gardner (Gardner, 1988) computed the maximal capacity,
in the space of all possible coupling matrices, and demonstrated a similar scaling
for capacity and information stored per synapse.

These initial studies, performed on the simplest possible networks (binary neu-
rons, full connectivity, unrestricted synaptic weights) were followed by a second
wave of studies that examined the effect of adding more neurobiological realism:
random diluted connectivity (Sompolinsky, 1986), neurons characterized by ana-
log firing rates (Amit and Tsodyks, 1991), learning rules in which new patterns
progressively erase the old ones (Nadal et al., 1986; Parisi, 1986). The above men-
tioned modifications were shown not to affect the scaling laws described above.
One particular modification however was shown to have a drastic effect on capac-
ity. A network with binary synapses and stochastic on-line learning was shown
to have a drastically impaired performance, compared to networks with continu-
ous synapses (Tsodyks, 1990; Amit and Fusi, 1994). For finite coding levels, the
storage capacity was shown to be on the order of

√
N , not N stored patterns,

while the information stored per synapse goes to zero in the large N limit. In the
sparse coding limit however (f ∼ log(N)/N), the capacity was shown to scale as
1/f 2, and therefore a similar scaling as the Gardner bound, while the information
stored per synapse remains finite in this limit. These scaling laws are similar to
the Willshaw model (Willshaw et al., 1969), which can be seen as a particular case
of the Amit-Fusi (Amit and Fusi, 1994) rule. The model was then subsequently
studied in greater detail by Amit and Huang (2010); Huang and Amit (2011) who
computed the storage capacity for finite values of N , using numerical simulations
and several approximations for the distributions of the ‘local fields’ of the neurons.
However, computing the precise storage capacity of this model in the large N limit
remains an open problem.

In this article we focus on a model of binary neurons where binary synapses are
potentiated or depressed stochastically depending on the states of pre and post
synaptic neurons (Amit and Fusi, 1994). We first introduce analytical methods
that allow us to compute the storage capacity in the large N limit, based on a
binomial approximation for the synaptic inputs to the neurons. We first illustrate
it on the Willshaw model and to recover the well-known result on the capacity of
this model (Willshaw et al., 1969; Nadal, 1991; Knoblauch et al., 2010). We then
move to a stochastic learning rule, in which we study two different scenarios: (i)
in which patterns are presented only once - we will refer to this model as the SP
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(Single Presentation) model (Amit and Fusi, 1994); (ii) in which noisy versions of
the patterns are presented multiple-times - the MP (Multiple presentations) model
(Brunel et al., 1998). For both models we compute the storage capacity and the
information stored per synapse in the large N limit, and investigate how they de-
pend on the various parameters of the model. We then study finite size effects,
and show that they have a huge effect even in networks of tens of thousands of
neurons. Finally we show how capacity in finite size networks can be enhanced by
introducing inhibition, as proposed in Amit and Huang (2010); Huang and Amit
(2011). In the discussion we summarize our results and discuss the relevance of
the SP and MP networks to memory maintenance in the hippocampus and cortex.

2.2.3 Storage capacity in the N →∞ limit
The network
We consider a network of N binary (0,1) neurons, fully connected through a binary
(0,1) synaptic connectivity matrix. The activity of neuron i (i = 1...N) is described
by a binary variable, σi = 0, 1. Each neuron can potentially be connected to every
other neurons, through a binary connectivity matrix W. This connectivity matrix
depends on P random uncorrelated patterns (‘memories’) ~ξµ, µ = 1, . . . , P that are
presented during the learning phase. The state of neuron i = 1, . . . , N in pattern
µ = 1, . . . , P is

ξµi =
1 with probability f

0 with probability 1− f
(2.8)

where f is the coding level of the memories. We study this model in the limit of
low coding level, f → 0 when N →∞. In all the models considered here, P scales
as 1/f 2 in the sparse coding limit. Thus, we introduce a parameter α = Pf 2 which
stays of order 1 in the sparse coding limit.

After the learning phase, we choose one of the P presented patterns ~ξµ0, and
check whether it is a fixed point of the dynamics:

σi(t+ 1) = Θ[hi(t)− fNθ], (2.9)

where
hi(t) =

N∑
j=1

Wijσj(t) (2.10)

is the total synaptic input ("field") of neuron i, θ = O(1) is a scaled activation
threshold, and Θ is the Heaviside function.
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Field averages

When testing the stability of pattern ~ξµ0 after learning P patterns, we need to
compute the distribution of the fields on selective neurons (sites i such that ξµ0

i =
1), and of the fields on non-selective neurons (sites i such that ξµ0

i = 0). The
averages of those fields are fNg+ and fNg respectively, where

g+ = P(Wij = 1|ξµ0
i = ξµ0

j = 1) (2.11)

and
g = P(Wij = 1| (ξµ0

i , ξ
µ0
j ) 6= (1, 1) ). (2.12)

Pattern ~ξµ0 is perfectly imprinted in the synaptic matrix if g+ = 1 and g = 0.
However, because of the storage of other patterns, g+ and g take intermediate
values between 0 and 1. Note that here we implicitly assume that the probability
of finding an potentiated synapse between two neurons i, j such that ξµ0

i = ξµ0
j = 0

or ξµ0
i 6= ξµ0

j is the same. This is true for the models we consider below. g+ and g
are function of α, f , and other parameters characterizing learning.
Information stored per synapse
One measure of the storage capability of the network is the information stored per
synapse :

i = PmaxN(−f ln2 f − (1− f) ln2(1− f))
N 2

'
f→0

α
| ln2 f |
fN

(2.13)

where Pmax is the size of a set of patterns in which each pattern is a fixed point
of the dynamics with probability one. With α = O(1), for the information per
synapse to be of order one in the large N limit, we need to take f as

f = β
lnN
N

. (2.14)

In this case the information stored per synapse has the simple expression:

i = α

β ln 2 (2.15)

Computing the storage capacity
Our goal here is to compute the size Pmax = α/f 2 of the largest set of patterns
that can be stored in the connectivity matrix. The criterion for storage that we
adopt is that if one picks a pattern in this set, then this pattern is a fixed point of
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the dynamics with probability 1. We thus need to compute the probability Pne of
no error in retrieving a particular pattern µ0. To compute this probability, we first
need to estimate the probabilities that a single selective/non-selective neuron is in
its right state when the network is initialized in a state corresponding to pattern
µ0. For a pattern with M selective neurons, and neglecting correlations between
neurons (which is legitimate if f � 1/

√
N (Amit and Fusi, 1994)), we have

Pne = (1− P(hi ≤ fNθ|ξµ0
i = 1))M (1− P(hi ≥ fNθ|ξµ0

i = 0))N−M (2.16)

Clearly, for Pne to go to 1 in the large N limit, the probabilities for the fields
of single neurons to be on the wrong side of the threshold have to vanish in that
limit. A first condition for this to happen is g+ > θ > g - if these inequalities are
satisfied, then the average fields of both selective and non-selective neurons are on
the right side of the threshold. When g+ and g are sufficiently far from θ, the tail
probabilities of the distribution of the fields are

P (hi ≤ fNθ|ξµ0
i = 1) = exp (−MΦ(g+, θ) + o(M)) (2.17)

P (hi ≥ fNθ|ξµ0
i = 0) = exp (−MΦ(g, θ) + o(M)) (2.18)

where Φ(g+, θ), Φ(g, θ) are the rate functions associated with the distributions
of the fields (see Methods A). Neglecting again correlations between inputs, the
distributions of the fields are binomial distributions, and the rate functions are

Φ(x, θ) = θ ln θ
x

+ (1− θ) ln 1− θ
1− x (2.19)

Inserting Eqs. (2.17,2.18,2.19,2.14) in Eq. (2.16), we find that

Pne = exp [− exp (Xs)− exp (Xn)] (2.20)

where

Xs = −βΦ(g+, θ) lnN + ln(ln(N)) + o(ln(ln(N)))
Xn = −βΦ(g, θ) lnN + ln(N) + o(ln(N)). (2.21)

For Pne to go to 1 in the large N limit, we need both Xs and Xn to go to −∞ in
that limit. This will be satisfied provided

Φ(g+, θ) >
ln(lnN)
β lnN (2.22)

Φ(g, θ) >
1
β

(2.23)

These inequalities are equivalent in the large N limit to the inequalities

g+ > θ > g + ζ (2.24)
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where ζ is given by the equation Φ(g + ζ, θ) = 1/β.
The maximal information per synapse is obtained by saturating inequalities

(2.22) and (2.23), and optimizing over the various parameters of the model. In
practice, for given values of α, and parameters of the learning process, we compute
g and g+; we can then obtain the optimal values of the threshold θ and the rescaled
coding level β as

θ = g+ (2.25)

β = 1
Φ(g, θ) , (2.26)

and compute the information per synapse using Eq. (2.15). We can then find the
optimum of i in the space of all parameters.

Before applying these methods to various models, we would like to emphasize
two important features of these calculations:

• In Eq. (2.22), note that the r.h.s. goes to zero extrememely slowly as N goes
to ∞ (as ln(lnN)/ ln(N)) - thus, we expect huge finite size effects. This will
be confirmed in Section 5 where these finite size effects are studied in detail.

• In the sparse coding limit, a Gaussian approximation of the fields gives a poor
approximation of the storage capacity, since the calculation probes the tail of
the distribution.

2.2.4 Willshaw model
The capacity of the Willshaw model has already been studied by a number of
authors (Willshaw et al., 1969; Nadal, 1991; Knoblauch et al., 2010). Here, we
present the application of the analysis described in Section 1 to the Willshaw
model, for completeness and comparison with the models described in the next
Section. In this model, after presenting P patterns to the network, the synaptic
matrix is described as follows: Wij = 1 if at least one of the P presented patterns
had neuron i and j co-activated,Wij = 0 otherwise. Thus, after the learning phase,
we have,

g+ = 1
g = 1− (1− f 2)P ' 1− exp(−α) for small f (2.27)

Saturating the inequalities (2.25),(2.26) with g fixed, one obtains the information
stored per synapse,

iopt = ln(1− g) ln g 1
ln 2 (2.28)
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The information stored per synapse is shown as a function of g in figure 2.1a. It
reaches a maximum is reached for g = 0.5 at iW = ln 2 = 0.69 bits/synapse, but
goes to zero in both the g → 0 and g → 1 limits. The model has a storage ca-
pacity comparable to its maximal value, iopt > 0.5iW in a large range of values of
g (between 0.1 and 0.9. We can also optimize capacity for a given value of β, as
shown in figure 2.1b. It reaches its maximum at β = 1.4, and goes to zero in the
small and large β limits. Again, the model has a large storage capacity for a broad
range of β, iopt > 0.5iW for β between 0.4 and 10.
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Figure 2.1: Optimized information capacity of the Willshaw model in the limit N → +∞. Information is optimized
by saturating (2.25) (θ = 1) and (2.26): a. iopt as a function of g, b. iopt as a function of β = fN/ lnN .

2.2.5 Amit-Fusi model
A drawback of the Willshaw learning rule is that it only allows for synaptic poten-
tiation. Thus, if patterns are continuously presented to the network, all synapses
will eventually be potentiated and no memories can be retrieved. In (Amit and
Fusi, 1994), Amit and Fusi introduced a new learning rule that maintains the sim-
plicity of the Willshaw model, but allows for continuous on-line learning. The
proposed learning rule includes synaptic depression. At each learning time step µ,
a new pattern ~ξµ with coding level f is presented to the network, and synapses are
updated stochastically:

• for synapses such that ξµi = ξµj = 1 :
if Wij(µ− 1) = 0, then Wij(µ) is potentiated to 1 with probability q+ ; and if
Wij(µ− 1) = 1 it stays at 1.

• for synapses such that ξµi 6= ξµj :
if Wij(µ− 1) = 0, then Wij(µ) stays at 0 ; and if Wij(µ− 1) = 1 it is depressed
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to 0 with probability q−.

• for synapses such that ξµi = ξµj = 0, Wij(µ) = Wij(µ− 1).

The evolution of a synapseWij during learning can be described by the following
Markov process : P(W µ+1

ij = 0)
P(W µ+1

ij = 1)

 =
1− a b

a 1− b

×
 P(W µ

ij = 0)
P(W µ

ij = 1)

 (2.29)

where a = f 2q+ is the probability that a silent synapse is potentiated upon the
presentation of pattern µ and b = 2f(1−f)q− is the probability that a potentiated
synapse is depressed. After a sufficient number of patterns has been presented
the distribution of synaptic weights in the network reaches a stationary state. We
study the network in this stationary regime.

For the information capacity to be of order 1, the coding level has to scale as
lnN
N , as in the Willshaw model, and the effects of potentiation and depression have
to be of the same order (Amit and Fusi, 1994). Thus we define the depression-
potentiation ratio δ as,

δ = 2f(1− f)q−
f 2q+

(2.30)

We can again use equation (2.15) and the saturated inequalities (2.25,2.26) to
compute the maximal information capacity in the limit N → ∞. This requires
computing g and g+, defined in the previous section, as a function of the different
parameters characterizing the network. We track a pattern ~ξµ0 that has been
presented P time steps in the past. In the following we refer to P as the age of
the pattern. In the sparse coding limit, g corresponds to the probability that a
synapse is potentiated. It is determined by the depression-potentiation ratio δ,

g = 1
1 + δ

(2.31)

and

g+ = g + q+(1− g)(1− a− b)P ' g + q+(1− g) exp(−q+α

g
) for f � 1 (2.32)

where α = Pf 2. Our goal is to determine the age P of the oldest pattern that
is still a fixed point of the network dynamics, with probability one. Note that in
this network, contrary to the Willshaw model in which all patterns are equivalent,
here younger patterns, of age P ′ < P , are more strongly imprinted in the synaptic
matrix, g+(P ′) > g+(P ), and thus also stored with probability one.
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Choosing an activation threshold and a coding level that saturate inequalities
(2.25) and (2.26), information capacity can be expressed as :

iopt = g

q+
ln
[
q+

1− g
g+ − g

] [
g+ ln2

g+

g
+ (1− g+) ln2

1− g+

1− g

]

= α

1 + δ

[ (
1 + δq+e

−α(1+δ)q+
)

ln2
(
1 + δq+e

−α(1+δ)q+
)

+

δ
(
1− q+e

−α(1+δ)q+
)

ln2
(
1− q+e

−α(1+δ)q+
) ]

(2.33)

The optimal information iSP = 0.083 bits/synapse is reached for q+ = 1 , θ =
0.72 , β = 2.44 , α = 0.14 , δ = 2.57 which gives g = 0.28 , g+ = 0.72.

The dependence of iopt on the different parameters is shown in figure 2.2. Panel
a shows the dependence on g the fraction of activated synapses in the asymptotic
learning regime. Panels b, c and d show the dependence on δ, β and q+. Note from
panel c that there is a broad range of values of β that give information capacities
similar to the optimal one. One can also observe that the optimal information
capacity is about 9 times lower in the SP model than in the Willshaw model. This
is the price one pays to have a network that is able to continuously learn new
patterns. However, it should be noted that at maximal capacity, in the Willshaw
model, every pattern has a vanishing basin of attraction while in the SP model,
only the oldest stable patterns have vanishing basins of attraction. This feature is
not captured by our measure of storage capacity.

2.2.6 Multiple presentations of patterns, slow learning regime
In the SP model, patterns are presented only once. Brunel et al (Brunel et al.,
1998) studied the same network of binary neurons with stochastic binary synapses
but in a different learning context, where patterns are presented multiple times.
More precisely, at each learning time step t, a noisy version ~ξµ(t),t of one of the P
prototypes ~ξµ is presented to the network,

 P(ξµ(t),t
i = 1) = 1− (1− f)x and P(ξµ(t),t

i = 0) = (1− f)x for ξ
µ(t)
i = 1

P(ξµ(t),t
i = 1) = fx and P(ξµ(t),t

i = 0) = 1− fx for ξ
µ(t)
i = 0

(2.34)
Here x is a noise level: if x = 0, presented patterns are identical to the prototypes,
while if x = 1, the presented patterns are uncorrelated with the prototypes. As
for the SP model this model achieves iopt = O(1) and has good storage properties
if the depression-potentiation ratio δ is of order one and if the coding level scales
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Figure 2.2: Optimized information capacity for the SP model in the limit N → +∞. a. iopt as a function of g, b. iopt
as a function of δ, the ratio between the number of depressing events and potentiating events at pattern presentation,
c. iopt as a function of β = f N

lnN , d. iopt as a function of the LTP transition probability q+.

with network size as f ∝ lnN
N . If learning is slow, q+, q− � 1, and the number of

presentations of patterns of each class become large the probabilities g and g+ are
(Brunel et al., 1998):

g =
+∞∑
Π=0

(1− x)2Π + αx(2− x)
(1− x)2Π + α(δ + x(2− x))

αΠ exp(−α)
Π ! (2.35)

and
g+ =

+∞∑
Π=0

(1− x)2(Π + 1) + αx(2− x)
(1− x)2(Π + 1) + α(δ + x(2− x))

αΠ exp(−α)
Π ! (2.36)

We inserted those expressions in Eqs. (2.25,2.26) to study the maximal information
capacity of the network under this learning protocol. The optimal information
iMP = 0.69 bits/synapse is reached at x = 0 for θ → 1 , β → 1.44 , δ → 0 , α →
0.69 which gives g → 1

2 , g+ → 1. In this limit, the network becomes equivalent to
the Willshaw model.

The maximal capacity is about 9 times larger than for a network that has to
learn in one shot. On figure 2.3a we plot the optimal capacity as a function of g.
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The capacity of the slow learning network with multiple presentations is bounded
by the capacity of the Willshaw model for all values of g, and it is reached when the
depression-potentiation ratio δ → 0. For this value, no depression occurs during
learning: the network loses palimpsest properties, i.e. the ability to erase older
patterns to store new ones, and it is not able to learn if the presented patterns
are noisy. The optimal capacity decreases with δ, for instance at δ = 1 (as many
potentiation events as depression events at each pattern presentation), iopt = 0.35
bits/synapse. Figure 2.3c shows the dependence as a function of β = f N

lnN . In
figure 2.3d, we show the optimized capacity for different values of the noise x in
the presented patterns. This quantifies the trade-off between the storage capacity
and the generalization ability of the network (Brunel et al., 1998).
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Figure 2.3: Optimized information capacity for the MP model in the limit N → +∞. a. Optimal information
capacity as a function of g, the average number of activated synapses after learning. Optimal capacity is reached in
the limit δ → 0 and at x = 0 where the capacity is the same as for the Willshaw model. b. Dependence of information
capacity on δ, the ratio between the number of depressing events and potentiating events at pattern presentation. c.
Dependence on β = f N

lnN . d. Dependence on the noise in the presented patterns, x. This illustrates the trade-off
between the storage capacity and the generalization ability of the network.
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2.2.7 Finite-size networks
The results we have presented so far are valid for infinite size networks. Finite-size
effects can be computed for the three models we have discussed so far (see Methods
B). The main result of this section is that the capacity of networks of realistic sizes
is very far from the large N limit. We compute capacities for finite networks in the
SP and MP settings, and we validate our finite size calculations by presenting the
results of simulation of large networks of sizes N = 10, 000, N = 50, 000.

We summarize the finite size calculations for the SP model (a more general and
detailed analysis is given in Methods B). In the finite network setting, conditional
on the tested pattern µ0 havingM+1 selective neurons, the probability of no error
is Pne is given by

Pne = exp [− exp (Xs)− exp (Xn)]
with

Xs = −βMΦ (g+, θM) lnN + 1
2 ln lnN

−1
2 ln


(
1− exp(∂Φ

∂θ (g+, θM))
)2 2πθM(1− θM)

βM

 + o(1)

Xn = (−βMΦ(g, θM) + 1) lnN − 1
2 ln lnN −

1
2 ln

(1− exp(−∂Φ
∂θ

(g, θM))
)2

2πθM(1− θM)βM
 + o(1) (2.37)

where βM = M
lnN , θM = θ fNM and Φ is given by Eq. (2.19). In the calculations for

N → +∞ discussed in Sections 1-4 we kept only the dominant term in lnN , which
yields equations (2.25) and (2.26).

In the above equations, the first order corrections scale as ln lnN
lnN , which has a

dramatic effect on the storage capacity of finite networks. In figure 2.4a,b, we plot
Pne (where the bar denotes an average over the distribution of M) as a function
of the age of the pattern, and compare this with numerical simulations. It is
plotted for N = 10, 000 and N = 50, 000 for learning and network parameters
chosen to optimize the storage capacity of the infinite-size network (see Section
3). We show the result for two different approximations of the field distribution:
a binomial distribution (magenta), as used in the previous calculations for infinite
size networks ; and a gaussian (red) approximation (see Methods C for calculations)
as used by previous authors Amit and Huang (2010); Huang and Amit (2011);
Leibold and Kempter (2008). For these parameters the binomial approximation
gives an accurate estimation of Pne, while the gaussian calculation overestimates
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it.
The curves we get are far from the step functions predicted for N → +∞ by

Eq. (2.51). To understand why, compare equations (2.77), and (2.37): finite size
effects can be neglected when |(−βΦ(g+, θ))| � ln lnN

lnN and |(−βΦ(g, θ) + 1)| �
ln lnN
lnN . Because the finite size effects are of order ln lnN

lnN , it is only for huge values
of N that the asymptotic capacity can be recovered. For instance if we choose
an activation threshold θ slightly above the optimal threshold given in Section 3
(θ = θopt + 0.01 = 0.73), then −βΦ(g, θ) + 1 = −0.06, and for N = 10100 we only
have |−βΦ(g, θ)+1| ' 3 ln lnN

lnN . In figure 2.4c we plot Pne as a function of α
αopt

where
αopt = 0.14 is the value of α that optimizes capacity in the large N limit, θ = 0.73
and the other parameters are the one that optimizes capacity. We see that we are
still far from the large N limit for N = 10100. Networks of sizes 104 − 106 have
capacities which are only between 20% and 40% of the predicted capacity in the
large N limit. Neglecting fluctuations in the number of selective neurons, we can
derive an expression for the number of stored patterns P that includes the leading
finite size correction for the SP model,

P (N) = c1
N 2

(lnN)2

1− c2

√√√√ ln(lnN)
lnN + o


√√√√ ln(lnN)

lnN


 (2.38)

where c1 and c2 are two constants (see Methods B).
If we take fluctuations in the number of selective neurons into account, it in-

troduces other finite-size effects as can be seen from equations (2.49) and (2.50)
in the Methods section. These fluctuations can be discarded if |(−βΦ(g+, θ))| �√

β√
lnN

1−θ
1−g+

and |(1− βΦ(g, θ))| �
√
β√

lnN
1−θ
1−g . In figure 2.4d we plot Pne for different

values of N. We see that finite size effects are even stronger in this case.
To plot the curves of figure 2.4, we chose parameters to be those that optimize

storage capacity for infinite network sizes. When N is finite, those parameters are
no longer optimal. To optimize parameters at finite N, since the probability of
error as a function of age is no longer a step function, it is not possible to find the
last pattern stored with probability one. Instead we define the capacity Pc as the
pattern age for which Pne = 1

2 . Using equations (2.37) and performing an average
over the distribution ofM , we find parameters optimizing pattern capacity for fixed
values of β. Results are shown on figure 2.5a,b for N = 10, 000 and N = 50, 000.
We show the results for the different approximations used to model the neural
fields: the blue line is the binomial approximation, the cyan line the gaussian
approximation and the magenta one is a gaussian approximation with a covariance
term that takes into account correlations between synapses (see Methods C and
Amit and Huang (2010); Huang and Amit (2011)). For f < 1√

N
the storage
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Figure 2.4: Finite size effects. Shown is Pne, the probability that a tested pattern of a given age is stored without
errors, for the SP model. a. Pne as a function of the age of the tested pattern. Parameters are those optimizing
capacity at N → +∞ (see Section 3), results are for simulations (blue line) and calculations with a binomial
approximation of the fields distributions (magenta) and a gaussian approximation (red) ; Pne is averaged over
different value of M , the number of selective neurons in the tested pattern (magenta line). b Same for N = 5.104.
c. Pne as a function of a scaled version of pattern age (see text for details), fluctuations in M are discarded on this
plot. d. Same as c with an average of Pne over different M .

capacity of simulated networks (black crosses) is well predicted by the binomial
approximation while the gaussian approximations over-estimates capacity. For
f > 1√

N
, the correlations between synapses can no longer be neglected (Amit and

Fusi, 1994). The gaussian approximation with covariance captures the drop in
capacity at large f .

For N = 10, 000, the SP model can store a maximum of Pc = 7, 800 patterns
at a coding level f = 0.0015 (see blue curve in figure 2.5c). As suggested in
figures 2.4c,d, the capacity of finite networks is strongly reduced compare to the
capacity predicted for infinite size networks. More precisely, if the network of size
N = 10, 000 had the same information capacity as the infinite size network (2.33),
it would store up to P = 70, 000 patterns at coding level f = 0.0007. Part of this
decrease in capacity is avoided if we consider patterns that have a fixed number
fN of selective neurons. This corresponds to the red curve in figure 2.4c. For
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fixed sizes the pattern capacity is approximately twice as large. In figure 2.5d,
we do the same analysis for the MP model with N = 10, 000. Here we have also
optimized all the parameters, except for the depression-potentiation ratio which is
set to δ = 1, ensuring that the network has the palimpsest property and the ability
to deal with noisy patterns. For N = 10, 000, the MP model with δ = 1 can store
up to Pc = 70, 000 patterns, at f = 0.001 (versus Pc = 7, 800 at f = 0.0015 for the
SP model). One can also compute the optimized capacity for a given noise level.
At x = 0.1, Pc = 20, 900 for f = 0.0012 and δ = 4.3 or at x = 0.2, Pc = 8, 900 for
f = 0.0018 and δ = 6.9.
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Figure 2.5: Capacity at finite N. a,b. Pc as a function of f for the SP model and N = 104, 5.104 Parameters are
chosen to optimize capacity under the binomial approximation. Shown are the result of the gaussian approximation
without covariance (cyan) and with covariance (magenta) for these parameters. c. Optimized Pc as a function of f
for the SP model at N = 10, 000. The blue curve is for patterns with fluctuations in the number of selective neurons.
The red curve is for the same number of selective neurons in all patterns. The black curve is the number of patterns
that would be stored if the network were storing the same amount of information as in the case N → +∞. d. Same
for the MP model, where parameters have been optimized, but the depression-potentiation ratio is fixed at δ = 1.
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2.2.8 Storage capacity with errors
So far we have only considered patterns that are perfectly retrieved. It is difficult
to estimate analytically the stability of patterns that are retrieved with errors as
it requires analysis of the dynamics at multiple time steps, not only the first time
step. However, in simulations we can verify whether a tested pattern is retrieved
as a fixed point of the dynamics at a reasonable error level. To quantify the degree
of error, we introduce the overlap m

(
~σ∗, ~ξµ0

)
between the network fixed point ~σ∗

and the tested pattern ~ξµ0 (with M selective neurons)

m
(
~σ∗, ~ξµ0

)
= 1
M(1− f)

N∑
i=1

(ξµ0
i − f)σ∗i (2.39)

In figure 2.6a we show Pc(m), where Pc(m = 1) corresponds to the same defini-
tion of Pc used above, and Pc(m < 1) is defined similarly but instead of taking into
consideration only fixed points that are exactly pattern ~ξµ0, we consider all the
patterns that lead to a fixed point with an overlap larger than m. In the figure we
plot this for m = 1, m = 0.99 and m = 0.7. Taking into account patterns with m
smaller than 0.7 leads to values of the capacity similar to the case m = 0.7 as only
a negligible number of tested patterns lead to fixed points with m smaller than 0.7.
Note that for sparse coding levels, the overlap m is much more sensitive to missed
activation of selective neurons than false activation of non-selective neurons. For
instance for f = 0.008 and N = 10, 000, if a pattern for which M = 80 is retrieved
with 79 selective neurons active and 0 non-selective neurons active, the overlap is
m = 0.987. On the other hand, if it is retrieved with 80 selective neurons active
and 50 non-selective neuron active, it leads to an overlap m = 0.995.
Considering fixed points with errors leads to a substantial increase in capacity from
Pc(m = 1) = 7, 800 to Pc(m = 0.7) = 10, 400 at f = 0.0018 for instance.
In figure 2.6b, we quantify the storage capacity with i = Pc(−f log2 f−(1−f) log2(1−f))

N .
This resembles the information capacity, but note that its meaning is not as clear
as in the case N → +∞ since now Pc is the pattern age at which the probability of
retrieval equals 1

2 , and some patterns are retrieved with errors. With this measure,
the optimal coding level is larger, fopt ' 0.003 for i against fopt ' 0.002 for Pc.

2.2.9 Increase in capacity with inhibition
As we have seen above, the fluctuations in the number of selective neurons in each
pattern lead to a reduction in storage capacity in networks of finite size (e.g. figure
2.5c,d). The detrimental effects of these fluctuations can be mitigated by adding
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Figure 2.6: Storage capacity with errors in the SP model. Instead of counting only patterns that are perfectly retrieved,
patterns that lead to fixed points of the dynamic overlapping significantly (see text for the definition of the overlap)
with the tested memory pattern are also counted. Simulations are done with the same parameters as in figure 2.5a.
a. Pc as a function of f . Blue crosses correspond to fixed points that are exactly the stored patterns. Red triangles
correspond to fixed points that have an overlap larger than 0.99, and brown circles an overlap larger than 0.7. b.
Same as a. but instead of quantifying storage capacity with Pc, it is done with i = Pc(−f log2 f−(1−f) log2(1−f))

N .

a uniform inhibition η to the network (Amit and Huang, 2010). Using a simple
instantaneous and linear inhibitory feed-back, the local fields become

hi =
N∑
k=1

Wikξ
µ0
k − η

N∑
k=1

ξµ0
k − fNθ (2.40)

For infinite size networks, adding inhibition does not improve storage capacity
since fluctuations in the number of selective neurons vanish in the large N limit.
However, for finite size networks, minimizing those fluctuations leads to substan-
tial increase in storage capacity. When testing the stability of pattern ~ξ1, if the
number of selective neurons is unknown, the variance of the field on non-selective
neurons is Nf(g − 2ηg + η2), and Nf(g+ − 2ηg+ + η2) for selective neurons (for
small f). The variance for non-selective neurons is minimized if η = g, yielding the
variance obtained with fixed sized patterns. The same holds for selective neurons
at η = g+. Choosing a value of η between g and g+ brings the network capacity
towards that of fixed size patterns. On figure 2.7, pattern capacity is shown as a
function of f in these three scenarios. Optimizing the inhibition η increases the
maximal capacity by 54% (green curve) compared to a network with no inhibition
(blue curve). Red curve is the capacity without fluctuations.
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Figure 2.7: Storage capacity optimized with inhibition in the SP model. Blue is for a fixed threshold and fluc-
tuations in the number of selective neurons per pattern. Green, the fluctuations are minimized using inhibition.
Red, without fluctuations in the number of selective neurons per pattern. a. Storage capacity as measured by
i = Pc(−f log2 f−(1−f) log2(1−f))

N . b. Storage capacity measured by Pc.

2.2.10 Discussion
We have presented an analytical method to compute the storage capacity of net-
works of binary neurons with binary synapses in the sparse coding limit. When
applied to the classic Willshaw model, in the infinite limit, we find a maximal
storage capacity of ln(2) = 0.69 bits/synapse. In previous studies (Willshaw et al.,
1969; Nadal, 1991) this value was obtained for a feed-forward network with a single
output neuron, with no fluctuations in the number of selective neurons per pattern,
and by requiring that the number of errors on silent outputs is of the same order
as the number of selective outputs in the whole set of patterns. In the calculations
presented here, we have used a different criteria, namely that a given pattern (not
all) is exactly a fixed point of the dynamics of the network with a probability that
goes to one in the large N limit. Another possible definition would be to require
that all the P patterns are exact fixed point with probability one. In this case, the
capacity, for patterns with a fixed numbers of selective neurons, the capacity drops
by a factor 3, ln(2)/3 = 0.23, as already computed by Knoblauch et al (Knoblauch
et al., 2010).

We then used this method to study the storage capacity of a network with binary
synapses and stochastic learning, in the single presentation (SP) scenario (Amit
and Fusi, 1994). The main advantage of this model, compared to the Willshaw
model, is its palimpsest property, that allows it to do on-line learning in an ever
changing environment. Amit and Fusi showed that the optimal storage capacity
was obtained in the sparse coding limit, f ∝ lnN

N and with a balance between
the effect of depression and potentiation. The storage capacity of this network has
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been further studied for finite size networks in Amit and Huang (2010); Huang and
Amit (2011). We have complemented this work by computing analytically the stor-
age capacity in the large N limit. The optimal capacity of the SP model is 0.083
bits/synapse, which is about 9 times lower than the one of the Willshaw model.
This decrease in storage capacity is similar to the decrease seen in palimpsest net-
works with continuous synapses - for example, in the Hopfield model the capacity
is about 0.14 bits/synapse, while in a palimpsest version the capacity drops to
about 0.05 bits/synapse. The reason for this decrease is that the most recently
seen patterns have large basins of attraction, while older patterns have smaller
ones. In the Willshaw model, all patterns are equivalent, and therefore they all
have vanishing basins of attraction at the maximal capacity.

We have also studied the network in a multiple presentation (MP) scenario,
with in which patterns presented to the network are noisy versions of a fixed set
of prototypes, in the slow learning limit in which transition probabilities go to
zero (Brunel et al., 1998). In the extreme case in which presented patterns are
the prototypes, all synaptic weights are initially at zero, and if the synapses do
not experience depression, this model is equivalent to the Willshaw model with
a storage capacity of 0.69 bits/synapse, which is about 9 times larger than the
capacity of the SP model. A more interesting scenario is when depression is present.
In this case then the network has generalization properties (it can learn prototypes
from noisy versions of them), as well as palimpsest properties (if patterns drawn
from a new set of prototypes are presented it will eventually replace a previous set
with the new one). We have quantified the trade-off between generalization and
storage capacity (see figure 2.3d). For instance, if the noisy patterns have 80% of
their selective neurons in common with the prototypes to be learned, the storage
capacity is decreased from 0.69 to 0.12bits/synapse.

A key step in estimating storage capacity is deriving an accurate approximation
for the distribution of the inputs neurons receive. These inputs are the sum of a
large number of binary variables, so the distribution is a binomial if one can neglect
the correlations between these variables, induced by the learning process. Amit
and Fusi (1994) showed that these correlations can be neglected when f � 1/

√
N .

Thus, we expect the results with the binomial approximation to be exact in the
large N limit. We have shown that a Gaussian approximation of the binomial dis-
tribution gives inaccurate results in the sparse coding limit, because the capacity
depends on the tail of the distribution, which is not well described by a Gaussian.
For larger coding levels (f ∼ 1/

√
N), the binomial approximation breaks down

because it does not take into account correlations between inputs. Following Amit
and Huang (2010) and Huang and Amit (2011), we use a Gaussian approxima-
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tion that includes the covariance of the inputs, and show that this approximation
captures well the simulation results in this coding level range.

We computed storage capacities for two different learning scenarios. Both are
unsupervised, involve a Hebbian-type plasticity rule, and allow for online learning
(providing patterns are presented multiple times for the MP model). It is of interest
to compare the performance of these two particular scenarios with known upper
bounds on storage capacity. For networks of infinite size with binary synapses
such a bound has been derived using the Gardner approach (Gutfreund and Stein,
1990). In the sparse coding limit, this bound is ' 0.29 bits/synapse with random
patterns (in which fluctuations in the number of selective neurons per pattern
fluctuates), and ' 0.45 bits/synapse if patterns have a fixed number of selective
neurons (Brunel, 1994). We found a capacity of iSP = 0.083bits/synapse for the
SP model and iMP = 0.69 bits/synapse for the MP model, obtained both for
patterns with fixed and variable number of selective neurons. The result for the
MP model seems to violate the Gardner bound. However, as noticed by Nadal
(1991), one should be cautious in comparing these results: in our calculations
we have required that a given pattern is stored perfectly with probability one,
while the Gardner calculation requires that all patterns are stored perfectly with
probability one. As mentioned above, the capacity of the Willshaw and MP models
drops to iopt = 0.23bits/synapse in the case of fixed-size patterns, if one insists
that all patterns should be stored perfectly, which is now consistent with the
Gardner bound. This means that the MP model is able to reach a capacity which
is roughly half the Gardner bound, a rather impressive feat given the simplicity
of the rule. Note that supervised learning rules can get closer to these theoretical
bounds (Baldassi et al., 2007).

We have also studied finite-size networks, in which we defined the capacity as
the number of patterns for which the probability of exact retrieval is at least 50%.
We found that networks of reasonable sizes have capacities that are far from the
large N limit. For networks of sizes 104 − 106 storage capacities are reduced by a
factor 3 or more (see Fig. 2.4). These huge finite size effects can be understood by
the fact that the leading order corrections in the large N limit are in ln(lnN)

lnN - and
so can never be neglected unless N is an astronomical number (see Methods A). A
large part of the decrease in capacity when considering finite-size networks is due
to fluctuations in the number of selective neurons from pattern to pattern. In the
last section, we have used inhibition to minimize the effect of these fluctuations.
For instance, for a network of N = 10, 000 neurons learning in one shot, inhibition
allows to increase capacity from P = 7, 800 to P = 12, 000. For finite size networks,
memory patterns that are not perfectly retrieved can still lead to fixed points
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where the activity is significantly correlated with the memory patterns. We have
investigated with simulations how allowing errors in the retrieved patterns modifies
storage capacity, for instance for N = 10, 000, capacity increases from P = 7, 800
to P = 10, 400.

Models with binary synapses are a simple alternative to models with continuous
synapses that have infinite resolution. It has been argued that it would be difficult
to built robust synapses that can take continuous values with known biophysical
processes Brunel (2003). Also for practical applications, discrete states synapses
seem easier to implement, and there is experimental evidence from minimal stim-
ulations in hippocampal slices that some synapses can be well described by binary
variables Petersen et al. (1998); O’Connor et al. (2005). In this study we have
used binary neurons, which allowed us to track analytically the storage properties
of the networks. It remains to be investigated how these results will generalize
to networks of more realistic neurons. In strongly connected networks of spiking
neurons operating in the balanced mode (van Vreeswijk and Sompolinsky, 1996;
Amit and Brunel, 1997b; van Vreeswijk and Sompolinsky, 1998; Brunel, 2000a), the
presence of ongoing activity presents strong constraints on the viability of sparsely
coded selective attractor states. This is because ‘non-selective’ neurons are no
longer silent, but are rather active at low background rates, and the noise due to
this background activity can easily wipe out the selective signal (Amit and Brunel,
1997b; Roudi and Latham, 2007). In fact, simple scaling arguments in balanced
networks suggest the optimal coding level would become f ∼ 1/

√
N (Brunel, 2003;

van Vreeswijk and Sompolinsky, 2005). The learning rules we have considered in
this paper lead to a vanishing information stored per synapse with this scaling.
Finding an unsupervised learning rule that achieves a finite information capacity
in the large N limit remains an open question. However, the results shown here
show that for networks of realistic sizes, the information capacity at such coding
levels is in fact not very far from the optimal one that is reached at lower coding
levels (see vertical lines in Fig. 2.5-2.7). A priori, a main drawback of the models
we have studied here is the requirement of ultra-sparse coding level, f ∝ lnN

N , for
having good storage capacity. To compare this quantity with experiments, one
first has to set a network size. Fully-connected networks we have studied here do
not seem appropriate to study networks larger than 0.5mm3 for which connection
probability can hardly be considered homogeneous (see e.g. Hellwig 2000 for cor-
tical networks). A network of this dimension contains approximately N = 10, 000
neurons, and for this value of N we have seen that for coding levels up to 10−2 one
can get close to the optimal capacity. This is one order of magnitude larger than
one would have guessed from the scaling f ∝ lnN

N and falls in a reasonable range
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of coding level.
The SP and MP models investigated in this paper can be thought of as minimal

models for learning in hippocampus and neocortex. The SP model bears some
resemblance to the function of hippocampus, which is supposed to keep a memory
of recent episodes that are learned in one shot, thanks to highly plastic synapses.
The MP model relates to the function of neocortex, where a longer-term memory
can be stored, thanks to repeated presentations of a set of prototypes that occur
repeatedly in the environment, and perhaps during sleep under the supervision
of the hippocampus. The idea that hippocampal and cortical networks learn on
different time scales has been exploited in several modeling studies (Alvarez and
Squire, 1994; Káli and Dayan, 2004; Roxin and Fusi, 2013), in which the memo-
ries are first stored in the hippocampus and then gradually transferred to cortical
networks. It would be interesting to extend the type of analysis presented here to
coupled hippocampo-cortical networks with varying degrees of plasticity.

2.2.11 Methods
A - Capacity calculation for infinite size networks

We are interested at retrieving pattern ~ξµ that has been presented during the
learning phase. We set the network in this state ~σ = ~ξµ and ask whether the
network remains in this state while the dynamics (2.9) is running. At the first
iteration, each neuron i is receiving a field

hi =
N∑
j=1

Wijξ
µ
j =

M∑
k=1

X i
k (2.41)

Where M+1 is the number of selective neurons in pattern ~ξµ, with M = O(lnN)
and N → +∞. We recall that g+ = P(Wij = 1|ξµi = ξµj = 1) and g = P(Wij =
1|(ξµi , ξ

µ
j ) 6= (1, 1)). Thus X i

k is a binary random variable which is 1 with proba-
bility, either g+ if i is a selective neuron (sites i such that ξµi = 1), or g if i is a
non-selective neuron (sites i such that ξµi = 0). Neglecting correlations between
Wij1 and Wij2 (it is legitimate in the sparse coding limit we are interested in, see
(Amit and Fusi, 1994)), the X i

k’s are independent and the distribution of the field
on selective neurons can be written as

P(hsi = S) =
M
S

gS+(1− g+)M−S

= exp
[
−MΦ

(
g+,

S

M

)
− 1

2 ln
(
S

(
1− S

M

))
− 1

2 ln(2π)
]
(2.42)
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where we used Stirling formula for M,S � 1, with Φ defined in (2.19). For non-
selective neurons

P (hni = S) =
M
S

gS(1− g)M−S

= exp
[
−MΦ

(
g,
S

M

)
− 1

2 ln
(
S

(
1− S

M

))
− 1

2 ln(2π)
]

(2.43)

Now write

P(hsi ≤ θfN) = P(hsi = θfN)
∑

S≤θfN

P(hsi = S)
P(hsi = θfN)

P(hni ≥ θfN) = P(hni = θfN)
∑

S≥θfN

P(hni = S)
P(hni = θfN) (2.44)

In the limit N → +∞ we are considering in this section, and if Mg < fNθ <

Mg+, the sums corresponding to the probabilities P(hsi ≤ fNθ),P(hni ≥ fNθ)
are dominated by their first term (corrections are made explicit in the following
section). Keeping only higher order terms in M in equations (2.42) and (2.43), we
have:

P(hsi ≤ fNθ) ' exp(−MΦ(g+, θM)) (2.45)
and

P(hni ≥ fNθ) ' exp(−MΦ(g, θM)), (2.46)
yielding equation (2.77) with θM = θ fNM = O(1). Note that with the coding levels
we are considering here (f ∝ lnN

N ), M is of order lnN . When the number of
selective neurons per pattern is fixed at fN , we choose Mθ for the activation
threshold and these equations become:

Xs = − lnNβΦ(g+, θ) +O(ln lnN)
Xn = lnN(−βΦ(g, θ) + 1) +O(ln lnN) (2.47)

where β = f N
lnN

For random numbers of selective neurons we need to compute the average over
M : Pne(N) = ∑N

M=0 P(M)Pne(M,N). Since M is distributed according to a bino-
mial of average Nf and variance Nf(1− f) ' Nf , for sufficiently large Nf , this
can be approximated as M = fN + z

√
fN where z is normally distributed:

Pne(N) =
∫ +∞

−∞
dz
e−

z2
2

√
2π

exp(− exp(Xs(z,N))− exp(Xn(z,N))) (2.48)
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with

Xs(z,N) = −MΦ
g+,

θ

1 + z√
fN

 +O(ln lnN)

' −β lnN
[
Φ(g+, θ) + z√

fN

(
Φ(g+, θ)− θ

∂Φ
∂θ

(g+, θ)
) ]

+O(ln lnN)

' −β lnN
[
Φ(g+, θ) + z√

fN
ln 1− θ

1− g+

]
+O(ln lnN) (2.49)

and

Xn(z,N) = −MΦ
g, θ

1 + z√
fN

 + lnN +O(ln lnN)

' lnN
[

1− β
(

Φ(g, θ) + z√
fN

ln 1− θ
1− g

) ]
+O(ln lnN) (2.50)

When N goes to infinity, we bring the limit into the integral in equation (2.48)
and obtain

lim
N→+∞

Pne(N) =
∫ +∞

−∞
dz
e−

z2
2

√
π

lim
N→+∞

exp [− exp(Xs(z,N))− exp(Xn(z,N))]

= Θ(Φ(g+, θ))Θ(−βΦ(g, θ) + 1) (2.51)

where Θ is the Heaviside function. Thus in the limit of infinite size networks, the
probability of no error is a step function. The first Heaviside function implies that
the only requirement to avoid errors on selective neurons is to have a scaled activa-
tion threshold θ below g+. The second Heaviside function implies that, depending
on β, θ has to be chosen far enough from g. There is no constraint on the distance
between θ and g+ because in each pattern there are only O(lnN) selective neurons
while there are O(N) background neurons. The above equation allows to derive
the inequalities (2.25) and (2.26).
B - Capacity calculation for finite-size networks.
We now turn to a derivation of finite-size corrections for the capacity. Here we show
two different calculations. In the first calculation, we derive Eq. (2.38), taking into
account the leading-order correction term in Eq. (2.49). This allows us to compute
the leading-order correction to the number of patterns P that can be stored for
a given set of parameters. However, it does not predict accurately the storage
capacity of the large-size but finite networks that we simulated. In the second
calculation presented, we focus on computing the probability of no error in a given
pattern Pne, including a next-to-leading-order correction.
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Equation (2.38) is derived for a fixed set of parameters, assuming that the set of
active neurons have a fixed size, and that the activation threshold θ has been chosen
large enough such that the probability to have non-selective neurons activated is
small. From the Stirling expansion, adding the first finite-size correction term in
Eq. (2.47), we get

Xs ' − lnNβMΦ(g+, θ) + 1
2 ln(lnN) (2.52)

with βM = M/ lnN . For large N , the number of stored patterns P can be increased
until g+(P ) ' θ. Setting g+ = θ + ε, an expansion of Φ in ε allows to write

Xs ' − lnNβM
ε2

2θ(1− θ) + 1
2 ln(lnN) (2.53)

The P patterns are correctly stored as long as Xs � −1. This condition is satisfied
for ε <

√
θ(1−θ)
βM

ln(lnN)
lnN . For the SP model, we can deduce which value of P yields

this value of ε (see Eq. (2.32)). This allows to derive Eq. (2.38),

P = g

q+β2 ln
q+(1− g)

θ − g

 N 2

(lnN)2 ×1−
√
θ(1− θ)

√
βM(θ − g) ln

(
q+(1−g)
θ−g

)
√√√√ ln(lnN)

lnN + o

 ln(lnN)
lnN


 (2.54)

We now turn to a calculation of the probability of no error on a given pattern Pne,
taking into account the next-to-leading order correction of order one, in addition
to the term of order ln lnN in Eq. (2.47). This is necessary to predict accurately
the capacity of realistic size networks (for instance for N = 10, 000, ln(lnN) ' 2 =
O(1)). Pne(M) is computed for a memory pattern with M selective neurons. The
estimation of Pne used in the figures is obtained by averaging over different values
of M , with M drawn from a binomial distribution of mean fN .

We first provide a more detailed expansion of the sums in equation (2.44). Set-
ting S = fNθ + k, with the Taylor expansions:

MΦ
(
g, θM + k

M

)
= MΦ(g, θM) + k

∂Φ
∂θ

(g, θM) + k2

2M
∂2Φ
∂θ2 (g, θM) +O

( 1
M 2

)
(2.55)

ln
(
S

(
1− S

M

))
= ln(MθM(1− θM)) + k

M
∆θ−1

M +O

( 1
M 2

)
(2.56)
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where θM = θ fNM and ∆θ−1
M = 1

θM
− 1

1−θM . Using (2.43) we can rewrite:

∑
S≥fNθ

P(hni = S)
P(hni = fNθ) =

M−fNθ∑
k=0

exp
[
− k∂Φ

∂θ
(g, θM)− 1

M

k2

2
∂2Φ
∂θ2 (g, θM)− k∆θ−1

M

 +

O

( 1
M 2

) ]
(2.57)

In the cases we consider, we will always have ∂Φ
∂θ (g, θM) 6= 0 so that we can consider

only the term of order 1 in M . The sum is now geometric, and we obtain

∑
S≥fNθ

P(hni = S)
P(hni = fNθ) = 1

1− exp (−∂Φ
∂θ (g, θM))

+ o(1) (2.58)

The same kind of expansion can be applied for the selective neurons. Again if
we are in a situation where ∂Φ

∂θ (g+, θM) 6= 0,

∑
S≤fNθ

P(hsi = S)
P(hsi = fNθ) = 1

1− exp (∂Φ
∂θ (g+, θM))

+ o(1) (2.59)

When g+ close to θ and thus ∂Φ
∂θ (g+, θM) ' 0, we are then left with:

θM∑
k=0

exp
− 1

M

k2

2
∂2Φ
∂θ2 (g+, θM)− k∆θ−1

M

 (2.60)

= exp
 1

8M
∂2Φ
∂θ2 (g+, θM)(∆θ−1

M )2
 +∞∑
k=0

exp
−(k −∆θ−1

M )2

2M
∂2Φ
∂θ2 (g+, θM)

 + o(1)

=
∫ +∞

0
dte−

(t−(∆θ−1
M

))2

2M
∂2Φ
∂θ2 (g+,θM ) + o(1)

=
√√√√√π2

M
∂2Φ
∂θ2 (g+, θM)

+ o(1) (2.61)

When g+ is too close to θ, which is the case for the optimal parameters in the
large N limit, we need to use (2.61). It only contributes a term of order ln lnN
in Xs and does not modify our results. In the figures of Sections 6 and 7, we use
(2.59), which gives from (2.44) and (2.42), (2.43) and (2.59),(2.58):
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P(hsi ≤ fNθ) = exp
[
lnN(−βMΦ(g+, θM))− 1

2 ln lnN −
1
2 ln

(
2πθM(1− θM)[1− exp(∂Φ

∂θ
(g+, θM))]2

) ]
(2.62)

P(hni ≥ fNθ) = exp
[
lnN(−βMΦ(g, θM))− 1

2 ln lnN −
1
2 ln

(
2πθM(1− θM)[1− exp(−∂Φ

∂θ
(g, θM))]2

) ]
(2.63)

The probability of no error is

Pne = (1− P(hsi ≤ fNθ))M(1− P(hni ≥ fNθ))N−M

= exp(− expXs − expXn) (2.64)

which leads to equations (2.37)

Xs = −βMΦ (g+, θM) lnN + 1
2 ln lnN −

1
2 ln


(
1− exp(∂Φ

∂θ (g+, θM))
)2 2πθM(1− θM)

βM

 + o(1)

Xn = (−βMΦ(g, θM) + 1) lnN − 1
2 ln lnN −

1
2 ln

(1− exp(−∂Φ
∂θ

(g, θM))
)2

2πθM(1− θM)βM
 + o(1)

C - Gaussian approximation of the fields distribution.

For a fixed number M + 1 of selective neurons in pattern ~ξ1, approximating the
distribution of the fields on background neurons hni and selective neurons hsi with
a gaussian distribution gives:

PG(hni = S) = 1√
2πσ2

n

exp
−(S − µb)2

2σ2
n

 (2.65)

where
µb = Mg , σ2

n = Mg(1− g) (2.66)
and

PG(hsi = S) = 1√
2πσ2

s

exp
−(S − µf)2

2σ2
s

 (2.67)
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where
µf = Mg+ , σ

2
s = Mg+(1− g+) (2.68)

The probability that those fields are on the wrong side of the threshold are:

PG(hni ≥ fNθ) =
∫ +∞

fNθ
PG(hni = z)dz (2.69)

and
PG(hsi ≤ fNθ) =

∫ fNθ
−∞

PG(hsi = z)dz (2.70)

Following the same line of calculation than in Methods A, and keeping only
terms that are relevant in the limit N → +∞, the probability that there is no
error is given by:

Θ(ΦG(g+, θ))Θ(−βΦG(g, θ) + 1) (2.71)
where the rate function ΦG is

ΦG(x, θ) = (θ − x)2

2x(1− x) (2.72)

Calculations with the binomial versus the gaussian approximation differ only in
the form of Φ. Finite size terms can be taken into account in the same way it is
done in Methods B for the binomial approximation.

In all above calculations we assumed that fields are sums of independent random
variables (2.41). For small f correlations are negligible (Amit and Fusi, 1994; Amit
and Huang, 2010). It is possible to compute the covariances between the terms of
the sum (see Eq. (3.9) in Amit and Huang (2010)), and take them into account in
the gaussian approximation. This can be done using

σ2
n = Mg(1− g) +M(M − 1)γ (2.73)
σ2
s = Mg+(1− g+) +M(M − 1)γ (2.74)

in Eqs. (2.65),(2.67), where

γ = f
δ2

2(1 + δ)3 (2.75)
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2.3 Synapses with multiple states
We now consider synaptic weights that take K discrete values,Wij ∈ {0, ..., K−1}.
Again we study the scenario in which patterns are presented only once to the net-
work (SP model) and the scenario in which patterns are presented multiple times
(MP model). Also, we study two different models of synaptic connection, a first
one modeling a single synaptic contact that can be in K different states. In this
case, upon pattern presentation, synaptic weights can be increased or decreased by
at most one unit, as shown by the cartoon in figure 2.8A. And a second model for
a connection made of K−1 binary contacts, that are independently updated upon
pattern presentation, thus allowing transition of the total synaptic weight value
(the sum of the values of the binary contacts) between non-neighboring values,
this is shown by the cartoon in figure 2.8D. This last model of connection weights
is inspired by the data of Kalisman et al. (2005) showing that in the somato-sensory
cortex of rats, if a pre-synaptic neuron connects to a post-synaptic one, its axon
forms an average of 5.6 contacts on the dendritic tree of the post-synaptic neuron.
These models are studied in the limit N → +∞.

2.3.1 Capacity calculation
The method to compute the capacity is similar to what is described in the section
2.2.3. The only change is that the rate function φ is now a function of K variables
instead of 2. More precisely, when testing the stability of a pattern ~ξµ0 with M
selective neurons (M = O(lnN)), we need to compute the probability that it is
perfectly stable (see Method section for derivation)

Pne = (1− P(hi ≤Mθ|ξµ0
i = 1))M (1− P(hi ≥Mθ|ξµ0

i = 0))N−M

= exp(− exp(Xs)− exp(Xn)) (2.76)

with

Xs = −MΦK
θ (~P+) + o(M)

Xn = −MΦK
θ (~P−) + lnN + o(M). (2.77)

ΦK
θ is given in the method section and ~P+ =

(
P+

0 , ..., P
+
K−1

)
describes the state

of the synapses (i, j) that could have been potentiated when the tested pattern µ0
was presented to the network; ~P− =

(
P−0 , ..., P

−
K−1

)
to describe the other synapses.

With the notation
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P+
k = P (Wij = k|ξµ0

i = ξµ0
j = 1) and P−k = P (Wij = k|(ξµ0

i , ξ
µ0
j ) 6= (1, 1)) (2.78)

whereW describes the synaptic matrix at the end of the learning phase (i.e. once
P = α

f2 patterns have been presented subsequently to the presentation of pattern
µ0 for the SP model, or presenting an infinity of sequences of the P patterns to
store for the MP model).

Note that again, as we will work in the sparse coding limit and keep the
depression-potentiation ratio of order 1, the depression probability will be small
thus P (Wij(µ) = k|(ξµi , ξ

µ
j ) = (0, 1)) ' P (Wij(µ) = k|(ξµi , ξ

µ
j ) = (0, 0)).

In the large N limit, the condition for stability is expressed as before

ΦK
θ (~P+) >

ln(lnN)
β lnN (2.79)

ΦK
θ (~P−) >

1
β

(2.80)

and the optimal capacity is obtained by finding parameters (β, θ and all the
parameters that determine ~P±) that saturates these inequalities and using the ex-
pression of the information capacity (2.15), i = α

β ln 2 .

2.3.2 K-states synapses in the single-presentation (SP) learning sce-
nario

Multi-stable synapses in the SP learning scenario
In this section, each pattern has to be learnt in one shot and only transitions
between neighbor states are allowed (see figure 2.8A). The evolution of synapses is
then described by
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P (Wij(µ+ 1) = 0)
P (Wij(µ+ 1) = 1)

...

P (Wij(µ+ 1) = K − 2)
P (Wij(µ+ 1) = K − 1)


=



1− a b 0
a 1− a− b b . . .
0 . . . . . . . . . 0

. . . a 1− a− b b
0 a 1− b


×



P (Wij(µ) = 0)
P (Wij(µ) = 1)

...

P (Wij(µ) = K − 2)
P (Wij(µ) = K − 1)


(2.81)

with a = f 2q+ and b = 2f(1−f)q−. Note that as in the case of 2 states synapses,
we work in a regime where f ∝ lnN

N and δ = 2f(1−f)q−
f2q+

= O(1). From this equation,
~P± can be expressed by diagonalizing the transition matrix (see Methods), and
the capacity can be computed. In figure 2.8B we plot the optimal capacity as a
function of the number of synaptic states. It slightly increases from K = 2 to
K = 3 and rapidly saturates.
The optimal capacities are always reached for q+ = 1. Looking at the value of α
that optimizes capacity gives a way to see how the network is dealing with patterns,
as α = Pf 2 is the average number of potentiating events a synapse experiences,
between the time we probe the stability of the tested pattern and the time it has
been presented. For K = 2, the network operates in a regime where α = 0.14,
while for K = 10, α = 4.8 and for K = 25, α = 30.9. For these values of K, the
optimal δ are 2.57, 1.06 and 1.01.
In figure 2.9A we plot the values of P−k , which corresponds, in the sparse coding
limit, to the probability that a randomly taken weight has a value k. This dis-
tribution can be written simply as it corresponds to the stationary distribution of
synaptic states given by the eigenvector associated to the eigenvalue equals to 1 of
the transition matrix in (2.81) (see derivation of ~P∞ in Methods section).

P−k = δK−k∑K
n=0 δ

n
(2.82)

In the case K = 2, the optimal capacity is reached for parameters such that 72%
of the synapses are silent. When increasing K, this fraction is decreasing to 30%
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at K = 5 and to 4% at K = 25.

Poly-synaptic contacts in the SP learning scenario
Here each weight is the sum of K binary variables that are updated independently
at each pattern presentation. This models the fact that an axon usually makes
multiple contacts onto a single dendritic tree (see figure 2.8C) as shown by Kalis-
man et al. (2005) where they measure a 5.6± 3.57 synaptic contacts.
HereWij can takeK+1 values. The evolution of each weight can then be described
by the following Markov process



P (Wij(t+ 1) = 0)
P (Wij(t+ 1) = 1)

...

P (Wij(t+ 1) = K − 1)
P (Wij(t+ 1) = K)


= M ×



P (Wij(t) = 0)
P (Wij(t) = 1)

...

P (Wij(t) = K − 1)
P (Wij(t) = K)


with

Mij = P (i→ j) =
 f 2

(
K−j
i−j

)
qi−j+ (1− q+)K−i + 2f(1− f)

(
i
j

)
qj−i− (1− q−)i for i 6= j

1− ∑K
k=0,k 6=i P (i→ k) for i = j

(2.83)
For instance for K = 2

M =


1− a(2− q+) b bq−

2a(1− q+) 1− a− b 2b(1− q−)
aq+ a 1− b(2− q−)

 '

1− a(2− q+) b 0

2a(1− q+) 1− a− b 2b
aq+ a 1− 2b


We diagonalize such matrices for various values of K which allows us to com-
pute the values of ~P± and thus capacity. In figure 2.8D we show the maximal
capacity for different values of K. In this case the number of bits stored per pair
of neurons is significantly increased, almost a factor 2 from K = 1 to K = 8.
The maximal capacities are still reached for q+ = 1. The value of α optimizing
are always smaller than 1 from α = 0.14 for K = 2, to α = 0.21 for K = 8. As
for the case of a single multi-stable contact, the optimal value of δ decreases with
increasing K, with δ = 1.09 for K = 8.
We also plot the values of P−k describing the statistics of the synaptic matrix in
figure 2.9C. In this case, we did not find analytical expressions for the eigenvalues
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and eigenvectors of the transition matrix, that was diagonalized using Maple. Thus
we don’t have analytical expressions for the P−k . Similarly to the previous case,
the fraction of silent synapses is decreasing with K, 30% for K = 4 and 13% for
K = 9.

2.3.3 K-states synapses in the multiple-presentation (MP) learning
scenario

Here we generalize the work of Brunel et al. (1998) to the case of synapses with K
contacts. As before to compute capacity we first need to express ~P± as a function
of the different parameters characterizing the synapses, the statistics of patterns
presented during learning and the total number of pattern in the sequence P , again
defined through α with P = α

f2 . We will sketch how to express these vectors (details
can be found in the Method section) and then use these expressions to compute
the optimal capacity for multi-state synapses and poly-synaptic contacts. The
evolution of the state of a given synapseWij at time t (where here t corresponds to
the number of patterns that have been presented to the network) is still described
by a vector (P (Wij(t) = k))k=0...K−1, that evolves at each pattern presentation
according to

P (Wij(t+ 1) = 0)
P (Wij(t+ 1) = 1)

...

P (Wij(t+ 1) = K − 1)
P (Wij(t+ 1) = K)


= Mij(t)×



P (Wij(t) = 0)
P (Wij(t) = 1)

...

P (Wij(t) = K − 1)
P (Wij(t) = K)


where Mij(t) is a matrix that depends on the activity ξti and ξtj of the pattern

presented at time t and on the parameters governing plasticity q+ and q−. In
the SP model, this matrix was averaged over all the possible configurations of the
activity of neurons i and j to give the matrix M . Here we consider the average of
this equation over all the possible sequences of presentation of the P patterns we
are trying to store

〈~Pij(t+ 1)〉 = 〈Mij(t)〉〈~Pij(t)〉 (2.84)
where 〈Mij(t)〉 depends on
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Cij =
P∑
µ=1

ξµi ξ
µ
j and Dij =

P∑
µ=1

ξµi (1− ξµj ) + (1− ξµi )ξµj (2.85)

the total number of patterns that tend to potentiate/depress synapse Wij. We
compute analytically

(
〈~Pij(+∞)〉

)
k
the probability that Wij is k when an infinite

number of sequences have been presented, by diagonalizing the averaged transition
matrix. Then this allows to compute the expression of ~P± (Brunel et al., 1998)

P−k = 1
N(N − 1)

∑
i6=j
〈P k

ij(+∞)〉(Cij, Dij)

=
P∑

Π,∆=0
Ψ (Π,∆) 〈P k

ij(+∞)〉(Π,∆) (2.86)

where Ψ (Π,∆) '
f→0

e−αα
Π

Π! δ
(
∆− 2α

f

)
is the probability that a given synapse

experiences Π potentiating activity events and ∆ depressing activity events during
a sequence of presentation of the P patterns. The distribution of fields can then be
computed with equation (2.90). The distribution of synaptic values for synapses
Wij such that ξµ0

i = ξµ0
j = 1 is given by

P+
k = 1

Nf(Nf − 1)
∑
i 6=j
〈P k

ij(+∞)〉(Cij, Dij)ξµ0
i ξ

µ0
j

=
P−1∑

Π,∆=0
Ψ+ (Π,∆) 〈P k

ij(+∞)〉(Π + 1,∆ + 1) (2.87)

where Ψ+ (Π,∆) '
f→0

e−αα
Π

Π! δ
(
∆− 2α

f

)
is the probability that a given synapse

experiences Π potentiating activity events and ∆ depressing activity events during
a sequence of presentation of the P − 1 patterns (where the tested pattern ~ξµ0 has
been already counted as a potentiating event).

Multi-stable synapses in the MP learning scenario

The expressions of ~P± are given by equations (2.109),(2.108) in the Method sec-
tion as a function of the depression-potentiation ratio δ, the amount of noise in
the presented patterns x (see (2.34) for the definition of x), and the number of
stored patterns via α. We applied the general method presented above to estimate
the maximal capacity. Figure 2.8C shows how the optimal capacity behaves as a
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function of K for different amounts of noise in the presented patterns. When the
presented patterns are exactly the P prototypes to be learned (see (2.34)), increas-
ing the number of synaptic states does not allow to increase the capacity beyond
the 0.69bits/synapse value of the Willshaw model (x = 0, black line). The network
reaches this capacity with α = 0.69, that is on average a synapse is activated less
than one time. The optimal depression-potentiation ratio being 0 as in the K = 2
case. For this noise-less case, the distributions of weights at the end of learning is
extremely bimodal, with half of the connections at 0 and half at K. It is not clear
why there is no parameters such that the intermediary synaptic states are used to
lead higher capacity.
When the presented patterns are noisy versions of the prototypes (blue and ma-
genta lines), having a synapse with multiple states allows to increase capacity, and
eventually to reach the capacity obtained in the noiseless case. Note also that the
optimal capacity is reached for δ 6= 0, e.g. δ = 0.8 for K = 5 and δ = 0.55 for
K = 30 at x = 0.2.
In figure 2.9B, we show the distribution of synaptic states after learning for x = 0.2.
As shown by the panel with K = 30, the distribution is bimodal around the two
extreme values 0 and K. Again the fraction of silent synapses is decreasing from
50% for K = 2 to 40% for K = 5 and 18% for K = 30.

Poly-synaptic contacts in the MP learning scenario

Again, the expression of ~P± are given in the appendix and allows to compute the
optimal capacity. Results are reported as a function of the number of synaptic
contacts for different values of the noise x in figure 2.8F. The behavior is similar
to K states synapses, the larger K the closer the capacity for noisy patterns is
from the 0.69bits/synapse noiseless limit. Figure 2.9D shows the distribution of
synaptic values, and as in the previous paragraph, this distribution is bi-modal,
but this time, the peaks of probability are not on the extreme values 0 and K,
but more at intermediate values. For instance, this makes the fraction of silent
synapses to be 0 for K = 30.

2.3.4 Discussion on multiple states connections
We have computed the storage capacity of networks with two models of the con-
nection between neurons and in the two learning scenarios SP and MP (see figure

67



2.8). In some cases having multiple states allow a significant increase in capacity,
for instance from i = 0.08 bits/synapse for K = 2 synaptic states to i = 0.16
bits/synapse for K = 6 synaptic states, in the SP learning scenario where pat-
terns are presented only once. We also found in the MP scenario where patterns
are presented multiple times, that having multiple states was beneficial to reach a
capacity of 0.69bits/synapse for noisy patterns. However, for non noisy patterns
we have not found any increase in capacity with K, while Gardner’s calculations
performed on networks of synapses with multiple discrete positive states (Gutfre-
und and Stein, 1990) have shown that the optimal capacity is increasing with K,
to reach the capacity for continuous synapses in the case of large K. Note that in
this paper the calculations are done for the un-bias case (i.e. f = 1

2), and that also
our values of capacity still can not be directly compared to the Gardner bound as
we are testing the stability of only one pattern while the Gardner calculation test
the stability of all the patterns. We could only get fair comparison if we had the
Gardner bounds for non-fluctuating numbers of selective neurons per patterns (for
which we can test the stability of all patterns in our models) and sparse coding
levels.
As in the case K = 2, we expect that finite size effects are going to be impor-
tant and decrease capacity significantly. It would be interesting to compute these
finite-size effects to quantify how capacity is reduced. It would also be interesting
to see how the storage capacity depends on K at fixed coding levels, for finite-size
networks and for the different models, as there is hope that multi-states synapses
could be used to maintain good storage performance even for large coding lev-
els. This question has been studied in the SP model for finite-size networks and
gaussian distributions of the fields by Huang and Amit (2011). For instance for
f = 0.003 and N = 10, 000, they have found that the number of patterns that
can be stored is almost the same for K = 2 and K = 15, but that for f = 0.01,
the capacity is almost doubled between these two values of K, suggesting that the
maximal information capacity can remain large on a larger range of coding level
when K is larger.
The two models of connections we have studied are defined by a specific form of the
transition matrix describing the evolution of synapses upon pattern presentation.
For instance in the case of a single synaptic contact that can take various values,
we have only allowed transitions between neighboring states (see figure 2.8A). It
would be interesting to look for an optimal transition matrix (by changing in-
dependently each of the entry) in the SP and MP cases, to see whether further
improvements can be achieved. This idea has been explored by Barrett and van
Rossum (2008) for a perceptron performing a recognition task on patterns that are
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presented only once during a learning phase (reminiscent of our SP model). They
quantified performance using a different measure of information than the one we
have used, and found that optimal learning rules were corresponding to transition
matrices M that are band diagonal. In our study of the SP model, we have found
for K > 2 that capacity is larger for multiple binary contacts independently up-
dated at pattern presentation (non-band diagonal transition matrices) than for a
single contact with multi-state with only transitions between neighboring states
allowed (band-diagonal transition matrices). Although it is difficult to compare
these two studies that use different models with different measures of information
capacity, it would suggest, in order to increase capacity, to try to introduce hetero-
geneities in the transition probability between the different states (i.e. introduce
heterogeneities in the a and b entries of the transition matrix (2.81)).

2.3.5 Methods
Computing the distribution of input fields

Here we assume that the ~P± are known (see next paragraph for how to derive
it). The goal is to compute the field distribution on neurons selective to pattern
~ξµ (neuron i such that ξµi =1) and on neurons non-selective (neuron i such that
ξµi =0). For a pattern with M selective neurons, the field hni = ∑N

j=1Wijξ
µ
j on a

non-selective neurons is distributed according to (see Method for calculation)

P (hni = S) =
∑

(S1,...,SK−1)/
∑K−1
k=1 kSk

(P−1 )S1(P−2 )S2...(P−K−1)SK−1

×(1−
K−1∑
k=1

P−k )M−
∑K−1
k=1 Sk

M
S1

M − S1

S2

...
M − ∑K−2

k=1 Sk
SK−1


∝

∑
(S1,...,SK−1)/

∑K−1
k=1 kSk

exp(−MΦK(~P−, S1

M
, ...,

SK−1

M
) + o(M))

(2.88)

Equation (2.88) is the generalization of the binomial distribution for K states
(thus we treatWij as independent random variables, which we assume is legitimate
in the sparse coding limit). ΦK can be computed using Stirling formula
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ΦK(~P−, S1

M
, ...,

SK−1

M
) =

K−1∑
k=1

Sk
M

ln Sk/M
P−k

+ (1−
K−1∑
k=1

Sk
M

) ln 1− ∑K−1
k=1

Sk
M

1− ∑K−1
k=1 P

−
k

(2.89)

In the limit of large size networks, the sum in equation 2.88 is dominated by its
largest term

P (hni = S) ∝ exp(−MΦK(~P−, S
∗
1
M
, ...,

S∗K−1
M

) + o(M)) (2.90)

where (S∗1 , ..., S∗K−1) = arg[min(ΦK(~P−, S1
M , ...,

SK−1
M ))], which can be found using

Lagrange multipliers method, we introduce:

L(S1

M
, ...,

SK−1

M
) = ΦK(~P−, S1

M
, ...,

SK−1

M
)− λ(

K−1∑
k=1

k
Sk
M
− S

M
) (2.91)

The extremum of L is reached at a point (S
∗
1
M , ...,

S∗K−1
M ) such that ∂L

∂Sk
(S
∗
1
M , ...,

S∗K−1
M ) =

0⇔ S∗k
M = P−k

1−X
1−
∑K−1
k=1 P−k

eλk, with X =
∑K−1
k=1 P−k e

λk

1+
∑K−1
k=1 P−k (eλk−1) and the Lagrange multiplier

can be found by extracting roots of the following polynomial in eλ :

K−1∑
k=1

kP−k e
λk − 1− ∑K−1

k=1 P
−
k

1−X
S

M
= 0 (2.92)

The root of the polynomial minimizing ΦK is computed numerically. This allows
us to obtain the distribution of hni .
The distribution of the field on foreground neurons can be expressed similarly

P (hsi = S) =
∑

(S1,...,SK−1)/
∑K−1
k=1 kSk

(P+
1 )S1(P+

2 )S2...(P+
K−1)SK−1

×(1−
K−1∑
k=1

P+
k )M−

∑K−1
k=1 Sk

N
S1

M − S1

S2

...
M − ∑K−2

k=1 Sk
SK−1


∝ exp(−MΦK(~P+,

S∗1
M
, ...,

S∗K−1
M

) + o(M)) (2.93)

In the large N limit, the requirement for pattern stability is that ΦK
θ > 0. This

is satisfied as long as θ is chosen such that θ > ∑K−1
k=1 kP

+
k , since ΦK(∑ kP+

k ) = 0.
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Computing the distribution of synaptic states in the single presentation
(SP) learning scenario
At each pattern presentation, synaptic state update is described by

P (Wij(t+ 1) = 0)
P (Wij(t+ 1) = 1)

...

P (Wij(t+ 1) = K − 1)
P (Wij(t+ 1) = K)


= M ×



P (Wij(t) = 0)
P (Wij(t) = 1)

...

P (Wij(t) = K − 1)
P (Wij(t) = K)


It is possible to describe the state of a synapse after the presentation of µ patterns

if the matrix M can be diagonalized:

−−−−−−−−−−→
P (Wij(µ) = µ) = P(P−1MP)µP−1−−−−−−−−−−→P (Wij(µ) = 0) (2.94)

where P = (~u0, ..., ~uK−1) is a matrix to change basis such that M becomes a
diagonal matrix P−1MP. In other words, ~uk is the eigenvector associated with
λk, the kth eigenvalue ofM . The expression of

−−−−−−−−−−→
P (Wij(µ) = 0) depends on whether

we want to compute ~P− or ~P+.
The transition matrix for the case of a single synaptic contact with K states in
equation (2.81) can be diagonalized (Kouachi, 2006; da Fonseca, 2007). For K =
2n, the eigenvalues of M are,

• λk = 1− a− b +
√

2ab(1 + cos θk) = 1− f 2q+(1 + δ −
√
δ
√

2(1 + cos θk)) with
θk = 2kπ

K for k = 1, ..., n− 1

• λk = 1− a− b−
√

2ab(1 + cos θk) = 1− f 2q+(1 + δ +
√
δ
√

2(1 + cos θk)) with
θk = 2(k−n+1)π

K for k = n, ...,K − 2

• λK−1 = 1− a− b

• λK = 1

The eigenvectors of M ~u(k) = (u(k)
1 , ..., u

(k)
K ) are,

• for k = 1, ..., n− 1

u
(k)
j = (−

√
δ)K−j

 (1−
√
δ
√

2(1 + cos θk)) sin(K−j+1
2 θk) + sin(K−j−1

2 θk) for j odd√
δ sin((K−j2 + 1)θk) + (

√
δ −

√
2(1 + cos θk)) sin(K−j2 θk)for j even

(2.95)
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• for k = n, ..., 2n− 2

u
(k)
j = (−

√
δ)K−j

 (1 +
√
δ
√

2(1 + cos θk)) sin(K−j+1
2 θk) + sin(K−j−1

2 θk) for j odd√
δ sin((K−j2 + 1)θk) + (

√
δ +

√
2(1 + cos θk)) sin(K−j2 θk)for j even

(2.96)

• u
(K−1)
K−j+1 = (−1)[j/2]δ[(j−1)/2]

• u
(K)
K−j+1 = δj−1

For K = 2n+ 1 the eigenvalues of M are,

• λk = 1− a− b +
√

2ab(1 + cos θk) = 1− f 2q+(1 + δ −
√
δ
√

2(1 + cos θk)) with
θk = 2kπ

K for k = 1, ..., n

• λk = 1− a− b−
√

2ab(1 + cos θk) = 1− f 2q+(1 + δ +
√
δ
√

2(1 + cos θk)) with
θk = 2(k−n)π

K for k = n+ 1, ..., K − 1

• λK = 1

The eigenvectors of M ~u(k) = (u(k)
1 , ..., u

(k)
K ) are,

• for k = 1, ..., n

u
(k)
j = (−

√
δ)K−j

 (1−
√
δ
√

2(1 + cos θk)) sin(K−j+1
2 θk) + sin(K−j−1

2 θk) for j odd√
δ sin((K−j2 + 1)θk) + (

√
δ −

√
2(1 + cos θk)) sin(K−j2 θk)for j even

(2.97)

• for k = n+ 1, ..., 2n− 1

u
(k)
j = (−

√
δ)K−j

 (1 +
√
δ
√

2(1 + cos θk)) sin(K−j+1
2 θk) + sin(K−j−1

2 θk) for j odd√
δ sin((K−j2 + 1)θk) + (

√
δ +

√
2(1 + cos θk)) sin(K−j2 θk)for j even

(2.98)

• u
(K)
K−j+1 = δj−1

For the case with poly-synaptic contacts, we diagonalize P with Maple.

Computing the distribution of synaptic states in the multi-stable synapses,
multi-presentation (MP) learning scenario

To establish the expressions of ~P±, we need to diagonalize the transition matrix
Mij(t) averaged over the possible sequences of presentation of the P patterns to
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store. The expression of 〈Mij(t)〉 is similar to the transition matrix M defined in
equation (2.81), with a and b replaced by aij = q+

Cij
P and bij = q−

Dij

P where Cij
(resp. Dij) is the number of potentiating events, i.e. the number of patterns µ
such that ξµi = ξµj = 1 (resp. depressing events, the number of patterns µ such that
ξµi 6= ξµj ). We recall that ~P± are obtained from the expressions of

(
〈~Pij(+∞)〉

)
k

that are obtained by diagonalizing 〈Mij(t)〉. More precisely

〈~Pij(t+ 1)〉 = PijDijP
−1
ij 〈~Pij(t)〉 (2.99)

with Dij the diagonalized version of Mij and Pij = (~u0, ..., ~uK−1) is a matrix
to switch Mij to Dij and P−1

ij = (
(
~v0
)T ; ...;

(
~vK−1)

)T its inverse. As we are in-
terested only at the synaptic state after the presentation of an infinite number of
sequences, 〈~Pij(+∞)〉, we only need to know the vectors ~u0 and ~v0 associated with
the eigenvalue λ0 = 1

〈~Pij(+∞)〉 =
[
~v0.〈~Pij(0)〉

]
~u0 (2.100)

In the multi-stable synapses case, we found
(
~u0)T =

(
δKij , δ

K−1
ij , ..., δ, 1

)
(2.101)

and

(
~v0)T =

( 1
1 + δ + ...+ δK

, ...,
1

1 + δ + ...+ δK

)
(2.102)

with δij = q−Dij

q+Cij
. It allows to express (by noting that ||〈~Pij(0)〉||2 = 1)

(
〈~Pij(+∞)〉

)
k

=
δK−kij∑K
n=0 δ

n
ij

(2.103)

Finally, with the relationships (2.86) and (2.87) we can write the expressions of
~P±

P−k =
P∑

Π=0
e−α

αΠ

Π!
(αδ)K−k Πk∑K
n=0 (αδ)n ΠK−n (2.104)

and

P+
k =

P−1∑
Π=0

e−α
αΠ

Π!
(αδ)K−k (1 + Π)k∑K
n=0 (αδ)n (1 + Π)K−n

(2.105)
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This expressions are valid when the presented patterns are exactly the prototypes
we are trying to store (x = 0). When noisy versions of the prototypes are presented
(x > 0), the same reasoning can be done by replacing Cij by (see Brunel et al.
(1998))

C̃ij = [1− x(1− f)]2Cij + fx(1− x(1− f))Dij + (fx)2 [P − Cij −Dij]
'
f→0

(1− x)2Cij + αx(2− x) (2.106)

and replacing Dij by

D̃ij = 2(1− f)x [1− x(1− f)]Cij +
[
1− x+ 2f(1− f)x2]Dij +

2fx(1− fx) [P − Cij −Dij]

'
f→0

2α
f

(2.107)

which leads to

P−k =
P∑

Π=0
e−α

αΠ

Π!
(αδ)K−k

[
(1− x)2Π + αx(2− x)

]k
∑K
n=0 (αδ)n [(1− x)2Π + αx(2− x)]K−n

(2.108)

and

P+
k =

P−1∑
Π=0

e−α
αΠ

Π!
(αδ)K−k

[
(1− x)2(1 + Π) + αx(2− x)

]k
∑K
n=0 (αδ)n [(1− x)2(1 + Π) + αx(2− x)]K−n

(2.109)

Computing the distribution of synaptic states in the poly-synaptic bi-
nary contacts, multiple presentation (MP) learning scenario
We have to repeat the reasoning presented above with a different matrix Mij. Now
this matrix has the same form as (2.83) again with a and b replaced by aij = q+

Cij
P

and bij = q−
Dij

P . Note that we also assume that q+ � 1. After diagonalizing several
such matrices with different K, we were able to infer analytical expressions for ~u0
and ~v0

(
u0)

k
=
K
k

δK−kij (2.110)

and
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(
v0)

k
= 1

(1 + δij)K
(2.111)

which leads to

P−k =
P∑

Π=0
e−α

αΠ

Π!

(
K
k

)
(αδ)K−k Πk

(Π + αδ)K
(2.112)

and

P+
k =

P−1∑
Π=0

e−α
αΠ

Π!

(
K
k

)
(αδ)K−k (1 + Π)k

(1 + Π + αδ)K
(2.113)

When noisy patterns are presented

P−k =
P∑

Π=0
e−α

αΠ

Π!

(
K
k

)
(αδ)K−k

[
(1− x)2Π + αx(2− x)

]k
[(1− x)2Π + α (δ + x(2− x))]K

(2.114)

P+
k =

P−1∑
Π=0

e−α
αΠ

Π!

(
K
k

)
(αδ)K−k

[
(1− x)2 (1 + Π) + αx(2− x)

]k
[(1− x)2 (1 + Π) + α (δ + x(2− x))]K

(2.115)
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Figure 2.8: Storage capacity in networks with K-states connections. A- Single synaptic contact that can take values
0, ...,K − 1. Upon pattern presentation only transitions between neighboring states are allowed. B- Storage capacity
for the single contact with K states model in the SP scenario. We show the optimized capacity for different values
of K. C- Storage capacity for the single contact with K states model in the MP scenario, for different levels of
noise in the patterns presented during the learning phase (see (2.34) for a definition of the noise). D- As observed
experimentally, axons have multiple contacts with a single dendritic tree (5 on average in cortex). A connection weight
is thus modeled as a sum of K binary variables, each of them being updated independently at pattern presentation.
E- Storage capacity for the poly-synaptic contacts model in the SP scenario. F- Storage capacity in the poly-synaptic
contacts model in the MP scenario, for different levels of noise in the patterns presented during the learning phase.
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Figure 2.9: Distribution of the strength of the connexion between two neurons at optimal capacity in the different
models (multi-stable synapses and poly-synaptic contacts) and different learning scenarios, as given by the vector
~P−. A- Multi-stable synapses and single presentation (SP) learning scenario. B- Poly-synaptic binary contacts, SP
scenario. C- Multi-stable synapses, MP model (x = 0.2) D- Poly-synaptic binary contacts, MP model (x = 0.2)

77



Chapter 3

Modular networks

3.1 Introduction
In the previous chapter, the networks we have studied were fully-connected net-
works, i.e. every connection between two neurons can exist and be modified
through activity dependent plasticity. Such models are well suited to describe
local cortical networks with a size smaller than a few hundred microns, as sup-
ported by the study of Kalisman et al. (2005) which shows that potentially every
pair of cells distant from ≤ 150µm can form a functional connection. When looking
at cortical circuits at larger scales, connection probability is no more homogeneous
with respect to the distance between neurons and drops with distance (Holmgren
et al., 2003; Markov et al., 2011). Also, connectivity at a larger scale is not ran-
domly distributed with a distance-dependent parameter, but rather shows some
structure. For instance, as reported in the introduction, Pucak et al. (1996) have
shown that connectivity from/to patches of pre-frontal cortex of monkeys of size
' 0.3mm send/receive connections from other discrete patches of cortex that have
the shape of stripes and sizes of ' 0.25 × 1.7mm. One patch being connected to
about 15− 20 other patches in the same or neighboring areas via grey matter con-
nections and at least 15−20 other patches connected via white matter connections.
Other experimental studies have found such a patchy connectivity in sensory areas
(DeFelipe et al., 1986; Gilbert and Wiesel, 1989; Bosking et al., 1997).

The possibility that local networks (≤ 100µm) sustain attractor dynamics has
been supported by multiple experimental and theoretical studies. For instance,
as mentioned in the introduction, the local connectivity between excitatory cells
and from inhibitory cells to excitatory cells can be interpreted as the one of fully-
connected networks optimizing storage capacity (Chapeton et al., 2012). Whether
larger-scale cortical circuits (as the one described by Pucak et al. 1996 for instance)
can sustain attractor dynamics remains far less studied (but see O’Kane and Treves
1992; Mari and Treves 1998; Kropff and Treves 2005; Johansson and Lansner 2007).
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In this chapter, we study modular networks whose modules are fully connected net-
works (’short-range’ connections) connected through ’long-range’ diluted connec-
tions. In order to match the apparent large-scale structure of the cortex, we dilute
connections between modules such that only a fraction of the pairs of modules can
have connection between them. Again in order to match available experimental
data, we impose that the numbers of ’short-range’ and ’long-range’ pre-synaptic
connections onto a neuron are of the same order (Braitenberg and Schütz, 1991;
Stepanyants et al., 2009).

We model these networks with binary neurons and binary synapses, for which
the storage properties of fully-connected networks are well known. Moreover, for
such models, the distribution of the synaptic currents can be expressed analyti-
cally, which allows to study the associative properties of the networks. The storage
of patterns of activity is implemented using a Willshaw learning rule, that poten-
tiates, at each pattern presentation, a fraction of the synapses that are allowed to
exist by the network architecture. As we have seen in chapter 2, implementing this
learning rule is equivalent to implementing an on-line learning rule in which pat-
terns of activity are repeatedly imposed to the network. The patterns of activity,
or memories, we are trying to store reflect the modular architecture, in the sense
that each of the memory consists in the activation of only a subset of the modules.
We study two different models, a first one where the identity of the modules that
are active in each pattern is randomly chosen from one memory to another. And
a second model where patterns are split in categories. Two patterns in the same
category have the same modules activated. This is a more realistic situation since
objects that are semantically close to each others are represented in very similar
way on the cortical surface, as can be seen from fMRI recordings (with a spatial
resolution of about 2mm) of humans exposed to numerous visual stimuli (Huth
et al., 2012).

The properties of the models are characterized in two steps. First we evaluate
how the storage capacity, regardless of associative properties, behaves as a function
of the different parameters defining the networks. Then we look at how the storage
capacity of these networks is affected when we require the networks to have asso-
ciative properties. In particular we will see that for having associative properties,
the ratio of the number of long-range connections and the number of short-range
connections plays a critical role.

In this work, we study modular networks for the two different kinds of patterns
of activity described above. We first give a general description of these network
models and explain how to compute their storage capacity. Then we explicit their
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specificity for the two kinds of patterns.

3.2 Modular networks and storage capacity
We consider networks of M modules of N binary neurons connected through a
binary connectivity matrix. The activity of each neuron (i,m) (i = 1...N ;m =
1...M) is described by a binary variable σmi = 0, 1, evolving in time according to

σi,m(t+ 1) = Θ [hi,m(t)− θfN ] (3.1)
where

hi,m(t) = hli,m(t) + hei,m(t) =
N∑
j=1

Wm,m
ij σj,m +

∑
n6=m

N∑
j=1

Wm,n
ij σj,n (3.2)

is the total synaptic input (’field’) on neuron (i,m) that is composed of a local
field resulting from the activity of neurons belonging to the same module and an
external field resulting from the activity of neurons belonging to other modules.
θ = O(1) is an activation threshold, Θ is the Heaviside function, and W describes
the connectivity between neurons.

3.2.1 Connectivity: pre-existing architecture and activity dependent
learning

The connection Wm,n
ij from neuron (i,m) to neuron (j, n) is described by a binary

variable ∈ {0, 1}. The connectivity between these two neurons is determined by
two factors, an architectural constraint that can be thought of as accounting for
whether or not the dendritic arbor of neuron (j, n) is within reach of the axon of
neuron (i,m) ; and an activity dependent factor that accounts for the formation
of a functional connection between the two neurons.

The architectural constraint is such that neurons belonging to the same module
are fully connected (every neuron can potentially be connected to every other
neurons in the network) and connections between neurons belonging to different
modules are diluted. In the following intra-module connections will be qualified
as ’short-range’ and inter-modules connections as ’long-range’. Dilution is made at
two scales. At a macroscopic scale, only some pairs of modules can have connections
between their neurons (see dashed lines in figures 3.1A-B), which mimics the patchy
connectivity observed in cortex (DeFelipe et al., 1986; Gilbert and Wiesel, 1989;
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A B 

C

Figure 3.1: Computing the number of patterns that can be stored in modular networks. After the learning phase
(Willshaw learning rule), the network is set in one of the pattern ~Ξµ0 , which is said to be stored if it is a stable fixed
point of the network dynamics. A- Focus on the connectivity onto a neuron selective for the memory µ0 (red circle).
Connections shown in blue create feed-back loops between selective neurons in which activity is reverberated, which
stabilizes pattern ~Ξµ0 . Black connections from silent neurons do not influence the stability of this network state, they
have been potentiated during the presentation of a pattern µ 6= µ0. B- Focus on the connectivity onto a non-selective
neuron (red circle). Connections onto this neuron result from the presentation of other patterns µ 6= µ0 in which
this neuron is active. The green connections from selective neurons provide excitation to this neuron, which tends to
destabilize ~Ξµ0 . C- The typical stability of a pattern can be assessed by evaluating the probability distributions of the
inputs on non-selective neurons (green) and on selective neurons (blue). A tested pattern is stable if the probability
that the input on all non-selective neurons to be above the activation threshold θ, as well the probability that the
input on all selective neurons to be below the activation threshold, are vanishingly small. When more patterns are
stored in the synaptic matrix (from P1 to P2 > P1), the number of green connections increases and the distribution
of the input on non-selective neurons shifts its mean towards θ and gets wider. Evaluating storage capacity consists
in computing the largest P for which a tested pattern is stable.

Pucak et al., 1996; Bosking et al., 1997). At a microscopic scale, for a pair of
connected modules only a fraction of the connections between neurons belonging to
different modules can exist (see the specific models for details). In order to match
available experimental data (Braitenberg and Schütz, 1991; Stepanyants et al.,
2009) the amount of dilution is chosen such that each post-synaptic neuron receives
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a number of long-range connections of the same order of short-range connections,
thus we introduce

γ = nb long-range connections
nb short-range connections = O(1) (3.3)

Besides the architectural constraint, the connectivity matrix is specified by P
patterns of activity (’memories’) that are stored in the network during a learning
phase. For each pattern ~Ξµ (µ = 1...P ), the activity of a neuron is also described
at two scales by the product of two binary variables

Ξµ
i,m = Ξµ

mξ
µ
i,m ∈ {0, 1} × {0, 1} (3.4)

At the macroscopic scale, a fraction F (macroscopic coding level) of the modules
are active

M∑
m=1

Ξµ
m = FM (3.5)

At the microscopic scale, a fraction f (microscopic coding level) of the neurons
are active in any active module m

N∑
i=1

ξµi,m = fN (3.6)

We carry a study in a sparse coding limit where the microscopic coding level
scales with the number of neurons in each module as

f = β
lnN
N

with β = O(1) (3.7)

This allows the network to optimize its storage capacity (Willshaw et al., 1969).
The scaling of the macroscopic coding level will be defined for each particular
model. These patterns are stored using a Willshaw type learning rule. If the ar-
chitecture of the network is such that there can be a connection between neurons
(i,m) and (j, n), this becomes functional, Wm,n

ij = 1, if there exists a pattern in
which these two neurons are co-activated.

3.2.2 Pattern stability and storage capacity

After the learning phase, we choose one of the P presented patterns ~Ξµ0, set the
network in this state ~σ = ~Ξµ0 and test whether it is a fixed point of the dynamic
(3.1).
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The stability of pattern ~Ξµ0 is assessed by computing the probability Pne that
the fields on neurons are on the right side of the activation threshold θfN (see
figure 3.1C for an illustration). Doing so, we have to distinguish selective neurons
(neurons (i,m) such that Ξµ0

i,m = 1, figure 3.1A), neurons that are non-selective
but that belong to an active module ((i,m) such that Ξµ0

i,m = 0 but Ξµ0
m = 1, figure

3.1B) and neurons that are non-selective and belong to an inactive module ((i,m)
such that Ξµ0

i,m = 0 and Ξµ0
m = 0). The probability of ~Ξµ0 being a fixed point of

(3.1) can be written

Pne =
(
1− P(hi,m ≤ fNθ |Ξµ0

i,m = 1)
)FMfN

×
(
1− P(hi,m ≥ fNθ |Ξµ0

i,m = 0, Ξµ0
m = 1)

)FM(1−f)N

×
(
1− P(hi,m ≥ fNθ |Ξµ0

i,m = 0, Ξµ0
m = 0)

)(1−F )MN (3.8)

In the limit of large networks and for a sparse microscopic coding level, these
probabilities can be expressed for the two specific models we will consider (see
Methods section), they take the form

P(hi,m ≤ fNθ |Ξµ0
i,m = 1) = exp [−fNΦs + o(fN)]

P(hi,m ≥ fNθ |Ξµ0
i,m = 0, Ξµ0

m = 1) = exp [−fNΦns + o(fN)]
P(hi,m ≥ fNθ |Ξµ0

i,m = 0, Ξµ0
m = 0) = exp

[
−fNΦns′ + o(fN))

]
(3.9)

Where the Φ’s are rate functions that depend on network parameters, patterns
parameters and the number of stored patterns P . This allows to rewrite

Pne = exp [− exp(Xs)− exp(Xns)− exp(Xns′)] (3.10)
with

Xs = −βΦs lnN + o(lnN)
Xns = −βΦns lnN + lnN + o(lnN)
Xns′ = −βΦns′ lnN + lnN + o(lnN) (3.11)

For Pne to go to 1 in the large N limit, we need the X’s to go to −∞ in that
limit. This will be satisfied provided

Φs > 0 (3.12)
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Φns >
1
β

(3.13)

There is no inequality involving the rate function related to errors in modules
that are silent because the probability to activate a neuron in these modules is
much lower than the one to activate a neuron in active modules that receives local
noise on top of external noise.
For a given set of parameters, one can thus find the maximal number of patterns
Pmax that can be imprinted in the synaptic matrix while keeping pattern ~Ξµ0 a
fixed point of the dynamics. This allows to compute the information capacity i of
the network, defined as

i = PmaxIpattern
number of synapses (3.14)

where Ipattern is the information carried by each pattern. It is divided by the
total number of synapses that can be potentiated, i.e. the physical substrate on
which patterns are stored.

3.3 Maximal storage capacity
We now introduce the specific models for the two kinds of patterns and explicit the
expressions for the information capacity as a function of the various parameters,
which allows us to characterize their storage capacity.

3.3.1 Unstructured macroscopic patterns
In this model, each pattern of activity consists of FM active modules that are
chosen randomly and independently from the other patterns. The architecture
of the network on which these patterns are stored consists of theM fully connected
modules that are connected to each other by connections randomly diluted at
the macroscopic and microscopic level. The macroscopic dilution is such that
connections from one module m to another module n can exist with probability
D
M . The microscopic dilution is such that, if the macroscopic architecture allows
connections from m to n, two neurons belonging to m and n can be connected with
probability d

N . A given neuron in m is thus, on average, potentially connected to
Dd external neurons. The constraint on the ratio of the numbers of long-range
connections and short-range connections (3.3) is then written

84



Dd = γN (3.15)
In order to describe the noise due to the stored patterns on this architecture

(see figure 3.1B), we introduce

g = 1− (1− f 2)PF '
f→0

1− exp(−αF ) (3.16)

with

α = Pf 2 (3.17)
g is the probability to find a functional connection Wm,m

ij = 1 between two
neurons belonging to the same module. We study the network in the limit where
the number of stored patterns P scales as 1

f2 , i.e. α = O(1). We also introduce

G = 1− (1− f 2)PF 2 '
f→0

1− exp(−αF 2) (3.18)

the probability to find a functional connection between two neurons belonging
to different modules, given the pre-existing architecture allows a connection to be
formed.
As in the previous section, in order to estimate the storage capacity of such a
network, we want to test the stability of a given pattern ~Ξµ0. To do so we need
to evaluate the distribution of inputs on neurons while the network is in a state
~σ = ~Ξµ0 (see figure 3.1C for an illustration). We focus on neurons that are selective
for the pattern ((i,m) such that Ξµ0

i,m = 1), that should receive an input hsi,m above
the activation threshold for the pattern to be stable, and neurons that are non-
selective but belong to an active module ((i,m) such that ξµ0

i,m = 0 but Ξµ0
m = 1)

that should receive an input hni,m below the activation threshold. The other non-
selective neurons that belong to inactive modules have a negligible chance to receive
an input above threshold as they only receive external inputs. Before describing
the distribution of these inputs, it is useful to write their average.

〈hsi,m〉 = fN + FDfd = fN(1 + γF )
〈hni,m〉 = fNg + FDfdG = fN(g + γFG) (3.19)

The rate functions (3.9) describing the distribution of the inputs are given
in the Methods section (equations (3.58),(3.59) for FD � lnN and equations
(3.66),(3.67) if FD = O(lnN)). They allow to derive the condition (3.12) for no
error on selective neurons and the condition (3.13) for no error on non-selective
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neurons. Condition (3.12) is met if the activation threshold is below the average
of the input on selective neurons

θ →
N→+∞

1 + γF (3.20)

We can choose θ to be the average of the field on selective neurons because in the
large N limit the fluctuations (due to the random dilution) around the mean are
small, and there is a relatively small total number of selective neurons (FMfN)
compared to the number of non-selective neurons (FM(1 − f)N). In condition
(3.13), the Φ’s in the right hand side of the inequality depend only on γ, F , and
α through g and G. In order to find the optimal storage capacity of the network
we also saturate this inequality, which can be done by increasing the number of
stored patterns (controlled by the parameter α) at fixed γ, F and β.

The information per synapse can be written as a function of network parameters.
The information per pattern is

Ipattern = M
[
− F ln2(F )− (1− F ) ln2(1− F ) +

FN(−f ln2 f − (1− f) ln2(1− f))
]

'
fN→+∞

MFN(−f ln2 f) (3.21)

The number of synapses is equal to MN(N − 1) + M(M − 1)DMN(N − 1) dN '
MN 2(1 + γ). Assuming α corresponds to the maximal number of patterns that
can be stored without errors (i.e. α saturates (3.13)), the maximal information
imax that can be stored for parameters γ, F , β is

imax = 1
ln 2

αF

β(1 + γ) (3.22)

In figure 3.2A, we plot the information optimized over the choice of the micro-
scopic coding level (parameter β) as a function of the amount of long-range con-
nections quantified by γ in the case FD � lnN . For low γ the inputs to neurons
are predominantly local, and the information capacity equals 0.69 bits/synapse the
value of the storage capacity of the classical fully-connected Willshaw model (when
we require the stability of only the tested pattern). For large γ, inputs are mainly
controlled by external fields, and the storage capacity equals 0.26 bits/synapse,
the capacity of the Willshaw model with diluted connections. For the values of
interest γ ' 1, the storage capacity interpolates between these two values. The

86



different curves show the optimal capacity for different values of F . For γ ' 1,
larger capacities are reached for smaller F since using smaller F minimizes the
relative strength of external inputs (see (3.19)), and thus pushes capacity towards
the larger capacity of non-diluted networks.
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Figure 3.2: Optimized storage capacity of the models. A- Storage capacity as a function of γ the ratio of long-range
and short-range connections. Different curves correspond to different values of the macroscopic coding level. The full
black curve is for the model in which patterns are organized in categories. The storage capacity interpolates between
the storage capacity of the fully-connected Willshaw model at small γ and the storage capacity of a diluted Willshaw
model for large γ. B- Storage capacity for the unstructured model when fluctuations (due to macroscopic dilution) in
the number of modules sending inputs to a given module becomes large enough (FD = O(fN)) to decrease storage
capacity. C- Storage capacity in the case of patterns organized in categories for a finite value of FM the number of
active modules sending inputs to a given module.

When the average number of modules sending inputs to a given module is small
and of the order FD = O(fN) = O(lnN), the fluctuations of this number in-
creases the width of the field distributions and capacity is reduced. Figure 3.2B
shows how capacity is decreased for different values of F as a function of the ratio
fN
FD . If one assumes N ' 10, 000, and FD ' 100, the ratio is fN

FD ' 0.1 for which
the capacity is only slightly impacted compare to the case FD � fN . It would
be interesting to see in a finite network how these fluctuations due to macroscopic
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dilution influence storage capacity. In the infinite size limit, if FD = O(1) the
capacity goes to zero.

3.3.2 Patterns organized in categories
Here each pattern of activity still consists of FM active modules chosen randomly,
but the P patterns of activity are split into P categories. Patterns in the same
category have the same active modules. Moreover, the patterns are chosen such
that each module is activated in the same number of categories δ with

δ = PF ∈ {1, ...,M} (3.23)
We study this model in the limits P → +∞ and F → 0. Here, there is no

macroscopic dilution per se, but only pairs of modules that are co-activated in at
least one category are connected. We introduce R, the probability that a given
pair of modules is co-activated in at least one pattern

R = 1− (1− F 2)P '
F→0

δF (3.24)

The microscopic dilution is described as before by the probability d
N that two

neurons belonging to a connected pair can be connected. The constraint (3.3) is
now

RMd = γN (3.25)
Again we define

g = 1− (1− f 2)pPF '
f→0

1− exp(−αδ) (3.26)

the probability to find a functional connection Wm,m
ij = 1 between two neurons

belonging to the same module. In equation (3.26) p is the number of patterns in
each category, and

α = p

f 2 = O(1) (3.27)

We also define

G = 1− (1− f 2)p(1+PF 2) '
f,F→0

1− exp(−α) (3.28)
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the probability to find a functional connection between two neurons belonging
to different modules, given the pre-existing architecture allows a connection to be
formed and given that the considered pair of modules is co-activated in at least
one category.
In order to compute the storage capacity of this model, we proceed as above. First
we establish the distributions of the inputs hsi,m to selective neurons and hni,m to
non-selective neurons, when the network state is set in one of the stored pattern.
These fields now have averages

〈hsi,m〉 = fN + FDfd = fN(1 + γ

δ
)

〈hni,m〉 = fNg + FDfdG = fN(g + γ

δ
G) (3.29)

and the rate functions describing their distributions is given in the Methods
section by equations (3.69),(3.70) when FM � 1 and by equations (3.71),(3.72)
when FM = O(1). The maximal information per synapse for a given set of network
parameters is given by

imax = 1
ln 2

αδ

β(1 + γ) (3.30)

where α is chosen to saturate (3.13). Note that in the expression of the field, 1
δ

plays the same role as F , but that in the expression of the information capacity δ
plays the same role as F , thus the two models are not mathematically equivalent.
On figure 3.2A we plot the storage capacity optimized over the choices of δ and
β (black line) in the case where the number of active modules sending input to a
given module is large FM � 1. As in the previous model, capacity interpolates
between the two limits of the fully connected network and the diluted network. For
FM = O(1), the expressions of the rate functions change slightly and the value of
the storage capacity is slightly modified as can be seen on figure 3.2C. Taking this
limit means that the macroscopic coding level F can be taken to scale as 1

M , thus
the number of categories P and then the total number of stored patterns can scale
with the number of modules in the network, as observed in the model studied by
Mari and Treves (1998).

3.4 Storage capacity with finite size basin of attractions
In the previous section, the activation threshold is chosen very close to the average
field on selective neurons (e.g. θ → 1 + γF ). With such a high threshold, the net-
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Figure 3.3: Storage capacity with associative properties (E = 0.1). A- Storage capacity as a function of γ in the
unstructured and categorized models when the network is required to perform macroscopic pattern completion. B-
Same as A when the network is required to be able to disambiguate local patterns of activity. C- Storage capacity
for F = 0.1 in the unstructured case with inhibition when the network is required to perform macroscopic pattern
completion with the help of local inhibition. D- Same as C with categorized patterns and F → 0.

work does not have associative memory properties. We would like that a network
initialized in a state ~S(t = 0) that resembles a pattern ~Ξµ0, but with errors on
the activation of a fraction of the modules, eventually reaches the state ~Ξµ0. This
can be done by using a lower activation threshold. As a consequence of the lower
threshold, the network will store less memories. We study two kind of errors, a
first one where the macroscopic pattern is different from the macroscopic pattern of
~Ξµ0. When the network is able to recall the memory from such a pattern of activity
we say the network performs ’pattern completion’ (PC). Another kind of errors is
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when the macroscopic pattern of activation is correct, but some of the modules are
not in the correct attractor state. We say the network performs ’disambiguation’
when it can recall the memory from such a pattern. We first show how the stor-
age capacity drops when we require the network to perform pattern completion or
disambiguation, then we show that adding local inhibition in the network helps
for pattern completion. Finally we exhibit ’optimal’ network parameters for which
the networks have satisfactory storage capacity in both conditions.

3.4.1 Macroscopic pattern completion
For the pattern completion case, we set the network in an initial state such that

Si,m = Smsi,m with Sm = (1−Xs
m)Ξµ0

m +Xns
m (1− Ξµ0

m ) (3.31)
where

Xs
m =

1 with probability (1− F )E
0 with probability 1− (1− F )E

(3.32)

Xns
m =

1 with probabilityFE
0 with probability 1− FE

(3.33)

The microscopic activity si,m in each correctly active module is ξµ0
i,m, and the

activity in modules that are active by error is chosen as one of the local attractor
of the module. In order to correct network activity in a single time step of the
dynamics (3.1), we need an activation threshold that is above the input received
by neurons to silence, neurons that are active in a module such that Ξµ0

m = 0, and
below the input received by a neuron to activate (Ξµ0

i,m = 1 and Sm = 0). For
the case of unstructured macroscopic patterns, the activation threshold is then
required to satisfy

1 + γFG < θ < γF (1− E(1− F )(1−G)) (3.34)
For the case of categorized patterns we need

1 < θ <
γ

δ
(1− E) (3.35)

For the categorized case, there is no dependence on G since two randomly cho-
sen modules have a probability to be co-activated in a pattern that is vanishingly
small (see (3.24)). We study how these constraints on the activation threshold
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reduces storage capacity, by optimizing capacity with a threshold satisfying the
above constraints. The curves on figure 3.3A represent this optimized information
capacity for the model with unstructured patterns and different values of F , for
an amount of error E = 0.1. As can be noted from inequality (3.36), having a
network performing error correction necessitates the relative amount of long-range
connections quantified by γ to be large enough. The smaller the macroscopic cod-
ing level, the higher the amount of long-range connections has to be. This can be
understood by examining (3.36) in the case where no patterns have been stored
(g = G = 0). γ has to be high enough such that local inputs impinging on neurons
to de-activate are smaller than external inputs impinging on neurons to activate.
The optimized capacity for E = 0.1 and for the model with categorized patterns
is shown by the black line in figure 3.3A. Again, γ has to be above 1 to allow for
error correction, but note that here the amount of long range connections required
does not depend on the macroscopic coding level. Even if F → 0 a reasonable
amount of long-range connections is sufficient to provide the network with associa-
tive properties.

3.4.2 Disambiguation

Now the network is initialized in a state ~S such that Sm = Ξµ0
m , but a fraction E of

the active modules are not in the correct attractor: Si,m = Ξµ6=µ0
i,m . To correct these

errors, the activation threshold needs to be sufficiently high such that neurons
whose activation is supported only by local connectivity are silenced, and suffi-
ciently low such that long-range connections can activate neurons receiving only
a noisy local input. Which gives for the model with unstructured macroscopic
patterns

1 + γFG < θ < g + γF (1− E(1− F )(1−G)) (3.36)
For the case of categorized patterns

1 + γ

δ
G < θ < g + γ

δ
(1− E(1−G)) (3.37)

Note that at low loading (g = G = 0) these inequalities are the same than for
the case with unstructured patterns, the difference is in the way the storage of
other patterns modify the right hand side and left hand side of the inequalities.
We plot the capacity as a function of γ for E = 0.1 in figure 3.3B. Now, even for
γ < 1 error correction is possible. However note that when γ < 1, the range of α
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on which disambiguation is possible does not start at α = 0. Such phenomenon is
more clearly illustrated by the red bars in figures 3.4 and 3.5.

3.4.3 Effect of local inhibition on error correction
The need for having more numerous long-range connections than short-range con-
nections in order to perform pattern completion, comes from the presence of the
local term on the left hand side in inequalities (3.36),(3.37). Because of this term
the activation threshold has to be high enough to prevent the activation of neurons
that are only excited by local inputs. To relax this constraint on the activation
threshold, the effective strength of local inputs has to be diminished via another
mechanism. This can be done by introducing a local inhibitory term η proportional
to the average activity in the local network. With this additional mechanism, the
dynamics of the networks become

σi,m(t+ 1) = Θ
 N∑
j=1

Wm,m
ij σj,m − η

N∑
j=1

σj,m +
∑
n 6=m

N∑
j=1

Wm,n
ij σj,n − θfN

 (3.38)

In this case, if no error correction is required it is optimal (in terms of storage
capacity) to choose an activation threshold θ = 1− η + γF (resp. θ = 1− η + γ

δ )
for the unstructured model (resp. categorized model). The unconstrained storage
capacity does not depend on the value of η. We first study the effect of inhibition
in the pattern completion task. Here the constraints on the activation threshold
become

1− η + γFG < θ < γF (1− E(1− F )(1−G)) (3.39)
for unstructured macroscopic patterns, and

1− η < θ <
γ

δ
(1− E) (3.40)

for categorized patterns. In order to minimize the amount of long-range con-
nections required to correct ~S into ~Ξµ0, one should take η = 1. Once the value of
the local inhibition is chosen, one can proceed as previously in order to estimate
the maximal storage capacity that can be reached for a given amount of error
correction (measured by E), i.e. optimize the choice of network parameters with
an activation threshold satisfying the above constraints. In figure 3.3C, we plot
the storage capacity as a function of γ for different values of the inhibition in the
unstructured model and for F = 0.1. Figure 3.3D shows the same quantity in the
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categorized model. As expected, the minimal γ required for having error correction
decreases with η.
In the case of disambiguation, the constraints on θ in the presence of inhibition
become

1− η + γFG < θ < g − η + γF (1− E(1− F )(1−G)) (3.41)
for unstructured macroscopic patterns, and

1− η + γ

δ
G < θ < g − η + γ

δ
(1− E(1−G)) (3.42)

for patterns organized in categories. In this case, as can be noted from η ap-
pearing in both sides of the inequalities, adding inhibition is useless because the
neurons we are trying to activate or silence are in the same module.

3.4.4 Pattern completion and disambiguation in the same network
So far we have optimized separately the capacity under the constraint of pattern
completion or disambiguation. The optimal capacities exhibited in the different
panels of figure 3.3 are reached for networks with different parameters (β and
δ). We searched for parameters for which the network shows both the pattern
completion and the disambiguation properties. In figure 3.4 each panel shows the
performance of a network with unstructured macroscopic patterns in the three
conditions. The brown, blue and red bars are respectively the capacity the net-
work can reach if no associative property is required (0BA), pattern completion is
required (PC), disambiguation is required (Dis.) for E = 0.1 and a fixed inhibi-
tion η = 0.8. The network performs better for large F and large γ, for which the
external input is large and embeds the network with associative property at the
macroscopic scale.

Similarly figure 3.5 shows the performance of networks in the case of catego-
rized patterns for an error rate E = 0.1 and with fixed inhibition η = 0.8. Again
the larger the external input (here measured by γ

δ instead of γF ) the better are
the macroscopic associative properties. One can note that at equal strength of
external inputs (γF = γ

δ ), the unstructured model has a larger capacity than the
categorized model, because the information stored in the network is proportional
to F in one case and inversely proportional to 1

δ in the other case.
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Figure 3.4: Storage capacity of networks performing error-corrections in the case of unstructured patterns. From left
to right, networks with increasing γ the ratio of the number of long-range connections to the number of short range
connections. From bottom to up, increasing macroscopic coding level F . Different bars show the storage capacity that
can be reached with an activation threshold θ that allows to perform disambiguation (red bars), pattern completion
(blue bars) or that optimizes storage capacity without any error-corrections requirement (brown bars). The parameter
β = f lnN

N has been chosen such that storage capacity are as high as possible in the different conditions, and would
be chosen differently if it were optimized for each condition separately.

3.5 Discussion
In this chapter, we have investigated modular ANNs where connectivity is po-
tentially full inside modules and diluted between modules. This has been done
using binary neurons and binary synapses on which patterns of activity are stored
using a simple Hebbian learning rule as proposed by Willshaw et al. (1969). We
have found that the storage capacities that can be reached on such a connectivity
interpolate between the storage capacity of a fully connected Willshaw network

95



δ = 1 ; γ = 2 (β = 0.7) δ = 1 ; γ = 3 (β = 0.5)

δ = 2 ; γ = 1 (β = 1) δ = 2 ; γ = 2 (β = 2.6) δ = 2 ; γ = 3 (β = 3)

δ = 5 ; γ = 2 (β = 13) δ = 5 ; γ = 3 (β = 6)

i (
bi

ts
/s

yn
ap

se
s)

i (
bi

ts
/s

yn
ap

se
s)

0.1

0.2

0.3

0

i (
bi

ts
/s

yn
ap

se
s)

δ

0BA PC Dis. 0BA PC Dis. 0BA PC Dis.

γ 

δ = 1 ; γ = 1 (β = 1.1)

0.1

0.2

0.3

0

δ = 5 ; γ = 1 (β = 1.3)

0.1

0.2

0.3

0

0.4

Figure 3.5: Storage capacity of networks performing error-corrections in the case of patterns organized in categories.
It reads as the previous figure, but from up to bottom, where δ, the number of categories in which a module is
activated, is increasing.

(i = 0.69bits/synapse) and of a diluted Willshaw network (i = 0.26bits/synapse).
These limits being respectively reached when the number of long-range connections
is small or large compare to the number of local connections, i.e. γ � 1 or γ � 1.
It seems therefore that the network which is best suited for memory storage is a
network with disconnected modules (γ = 0). However, for disconnected modules,
it is clear that the network does not have large-scale associative properties. That
is, if the network is cued by a pattern of activity that resembles one of the memory
patterns, but with some modules in a state too far from the memory pattern, the
network’s state does not flow towards the memory pattern.
We quantified how many long-range projections are needed to allow for such error-
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corrections. This has been done for the models with unstructured macroscopic or
categorized patterns, and two kinds of errors have been considered. A first kind
(’pattern completion’ task) for which the network is initialized with an erroneous
macroscopic pattern, i.e. the pattern is one of the stored patterns but some mod-
ules that should be active are silent and some modules that should be silent are
put in random attractors. We named the other kind of error-correction a ’disam-
biguation’ task. In this case, the modules are correctly active or silent but some of
the active modules are in a wrong attractor state. These errors can be corrected
if the activation threshold is well adjusted such that wrongly active neurons are
silenced and wrongly silent neurons are activated. This is possible if the synaptic
drive carried by long-range range connections is high enough. More specifically,
for the model with unstructured patterns, we have found that for the pattern com-
pletion task to be completed, the amount of long-range connections should satisfy
γ > 1

F ; for the model with categorized patterns the constraint γ > 1 needs to be
satisfied (see figure 3.3A). Note that in the case of categorized patterns, capacity
is optimized for δ = 1, i.e. each module is activated in only one category. If we
want each module to be active in δ categories, the constraint becomes γ > δ (see
equation (3.37)). Finally these constraints on γ simply translate the fact that in
order to have pattern completion, the synaptic drive that allows a pattern to be
stable should be dominated by its long-range component. This constraint on γ

can be relaxed if a local inhibition, proportional to the activity in each module,
is introduced (see figure 3.3C-D). This is because it becomes easier to activate
silent modules in this case. For the disambiguation task, it seems there is no such
hard constraint on the number of long-range connections, as there is always some
parameters for which this task can be completed. However, for low values of γ
(γ < 1

F in the unstructured macroscopic pattern case, and γ < 1 in the categorized
case), disambiguation can be performed only if the network is loaded with enough
memories (α high enough). Note that for the disambiguation task, adding inhibi-
tion does not relax the constraints on γ.
If the network are required to be able to perform both the pattern completion
and the disambiguation tasks, storage capacity increases when the product γF in-
creases (for unstructured patterns) with γ > 1 (see figure 3.4), or when the product
γ
δ increases with γ > 1 (for categorized patterns, see figure 3.5). Again this is be-
cause the drives from long-range connections are proportional to γF or γ

δ , and that
this drive is crucial to perform macroscopic error correction. From this study, it
appears that the networks that have the best memory performance are the one
with F = 1 or δ = 1 as they allow good storage capacity with a minimal number
of long-range connections, which are supposed to be costly. In a sense these two
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models are equivalent: the model with categorized patterns and in which modules
are active in only one category is similar to a collection of multiple unconnected
networks with F = 1. Thus it seems that having modules specialized for a single
category of item is optimal in terms of memory storage.

In this study the number of neurons in each module as well as the number of
modules go to infinity. How different the results would be if these numbers were to
be finite ? As we have seen in the previous chapter, the storage capacity should be
significantly reduced, one can bet on a factor around 5 given the previous results.
In this previous chapter, by comparing the storage of patterns that all have the
same number of active neurons, or a fluctuating numbers, we have realized that
fluctuations in the input to selective neurons is detrimental to storage capacity. In
the models studied here, we have removed this fluctuations by considering patterns
of activity with a fixed number of active modules and fixed numbers of active neu-
rons in each active module. However, in the model with unstructured macroscopic
patterns another source of fluctuations is present, due to the random macroscopic
dilution. Thus, in finite networks, we expect the storage capacity of this last model
to be decreased more than the one of the model with categorized patterns.
We expect the constraints on γ we have established to be unaffected when going to
finite size networks, as these constraints come from the need to have a sufficiently
strong amount of non-local inputs to perform macroscopic error-corrections, which
do not depend on network size.

ANNs with modules have been studied by a few other authors (O’Kane and Treves,
1992; Mari and Treves, 1998; Mari, 2004; Kropff and Treves, 2005; Johansson and
Lansner, 2007). One comparable to ours is the one studied by Mari and Treves
(1998). In their model, also a fraction F of the modules are activated in each
pattern, and they show using a signal-to-noise analysis that the storage capacity of
the network scales as 1

F . By taking F ∝ 1
M , the number of patterns stored in the

network can be proportional to the size of the whole network. In our models, we
have found that only in the case of categorized patterns we could take the coding
level to scale as low as 1

M without having a vanishingly small storage capacity.
They got this feature for the two models they study, one with unstructured macro-
scopic patterns and one reminiscent of the categorized patterns we have studied,
where macroscopic activity is not totally random but biased by the presence of
connections between modules. One interesting feature of their second model, is
that it allows to get rid of ’memory glass states’, states that correspond to stable
patterns where some modules are in local attractors that are not the one of the
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memory. In our models, we have not encountered such states. One possibility
for such difference is that we have used binary neurons while they used analog
neurons. For binary neurons, in the large N limit, we take an activation threshold
such that a neuron can stay active if it receives an input with both a strong local
and external component (e.g. θ → 1 + γF ). With such a high threshold, a module
that is in an attractor not supported by the macroscopic pattern will receive an
input below threshold and be destabilized.

3.6 Methods
Estimating the storage capacity is done following the reasoning presented in section
3.2.2. This required to compute the distributions of the inputs on selective and
non selective neurons (3.2). Because neural activity and synapses are binary, these
inputs can be treated as sums of binary random variables. We first present some
general results about such sums, results that are useful to explicit the distributions
of inputs in the networks.

We consider a random variable h

h =
K∑
k=1

Xk (3.43)

where the Xk are independent binary random variables described by a parameter
q:

Xk =
1 with probability q

0 with probability 1− q
(3.44)

The sum h is then distributed according to a binomial distribution

P (h = S) =
K
S

qS (1− q)K−S (3.45)

Note that to get this binomial distribution, we have to assume the Xk’s are
independent. In our case, this mean that two synapses on the same neuron Wm,n

ij1

and Wm,n
ij2 are treated as independent variables. This is a reasonable assumption

to make as the covariance between such random variables has been shown by Amit
and Fusi (1994) to be negligible in the sparse coding limit f ∝ lnN

N we are interested
in. Moreover, in the second chapter, we have checked with numerical simulations
that modeling the inputs with a binomial distribution is a very good approximation
for such coding levels.
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We will consider cases in which K and S are large, we can then use Stirling
formula to express the binomial coefficients and write

P (h = S) = exp
(
−KΦfc( S

K
, q) + o(K)

)
(3.46)

with

Φfc
(
S

K
, q

)
= S

K
ln
S/K

q

 +
(

1− S

K

)
ln
1− S/K

1− q

 (3.47)

We use the superscript fc as this expression will be mainly used to describe fully
connected sub-networks. For diluted enough networks, we will have q, SK � 1, it is
then useful to introduce Φdc

Φdc
(
S

K
, q

)
= S

K
ln
S/K

q

− S

K
+ q (3.48)

In our networks, when testing the stability of a given pattern ~Ξµ0 it is useful to
look at the total input as split into a local part and an external part. The local part
is described by a couple (K, q), where K = fN is the number of neurons active in
a given local network, and q = 1 or g depending on whether we are considering the
input onto a selective or a non-selective neuron. In most cases the external part
can also be described by a couple (K, q) with K = Y fN (where Y is the number
of modules that send input to the considered module) and q = d

N or d
NG for the

selective or non selective neurons.
The distribution of the total input on a neuron can be written

P(hi,m = S) =
∑

Sl,Se/Sl+Se=S
Pl(Sl)Pe(Se) (3.49)

To compute it, we first need to express the distribution of the inputs generated
by the local module and the distribution of the inputs generated by the other
modules. In the asymptotic limits we consider, this sum will be dominated by the
most probable term of the sum, we will thus need to find the couple (Sl, Se) that
maximizes Pl(Sl)Pe(Se).

3.6.1 Distribution of inputs for the unstructured model
We apply the method sketched above to compute the distributions of inputs (3.9)
(when the network is set in a memory state ~Ξµ0) on selective ((i,m)/Ξµ0

i,m = 1) and
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non selective neurons in the model with unstructured macroscopic patterns. We
first derive these expressions in the case where the fluctuations on the number of
active modules sending inputs to a given module are negligible. This is correct to
assume when the average of this number is FD � fN (or FD � lnN). We then
explain how to take these fluctuations into account as is done to get the curves of
figure 3.2B.
Case FD � lnN
Selective neurons - As the number of neurons active in each module is exaclty
fN , and because the network is fully connected, the Willshaw learning rule ensures
that the local part of the input is

Psl (Sl) = δ (Sl − fN) (3.50)
If a module receives input from exactly the same number of modules FD, the

external part of the field is simply written

Pse(Se) =
FDfN

Se

( d
N

)Se (
1− d

N

)FDfN−Se

= exp
[
−fNΦdc

(
Se
fN

, γF

)
+ o(fN)

]
(3.51)

The total input on selective neurons is then

P(hi,m = S = fN + Se|Ξµ0
i,m = 1) = exp

[
−fNΦdc

(
Se
fN

, γF

)
+ o(fN)

]
(3.52)

Non-selective neurons - The local input now fluctuates because of inputs me-
diated by synapses that have been potentiated during the presentation of patterns
~Ξµ6=µ0. It is distributed according to

Pl(Sl) =
fN
Sl

gSl(1− g)fN−Sl

= exp
[
−fNΦfc

(
Sl
fN

, g

)
+ o(fN)

]
(3.53)

where g is defined in eq. (3.16). Similarly, the external part of the input can be
modeled by
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Pe(Se) =
FDfN

Se

( d
N
G

)Sl (
1− d

N
G

)FDfN−Se

= exp
[
−fNΦdc

(
Se
fN

, γFG

)
+ o(fN)

]
(3.54)

The distribution of the total input is now written

P(hi,m = S|Ξµ0
i,m = 0,Ξµ0

m = 1) =∑
Sl,Se/Sl+Se=S

exp
[
−fN

(
Φfc

(
Sl
fN

, g

)
+ Φdc

(
Se
fN

, γFG

))
+ o(fN)

]

= exp
[
−fN

(
Φfc (s∗l , g) + Φdc (s∗e, γFG)

)
+ o(fN)

]
(3.55)

with s∗l = S∗l
fN and s∗e = S∗e

fN = s−s∗l (where s = S
fN ) such that ∂(Φfc(s1,g)+Φdc(s−sl,γFG))

∂sl
(s∗l ) =

0. s∗l (s) and s∗e(s) can be computed

s∗l = 1
2

1 + s+ (1− g)γFG
g

− 1
2

√√√√√1 + s+ (1− g)γFG
g

2

− 4s

s∗e = −1
2

1− s+ (1− g)γFG
g

 +

√√√√√1− s+ (1− g)γFG
g

2

+ 4(1− g)γFG
g

s

(3.56)

Probability of no errors - We have derived the expressions for the distribution
of inputs to both selective and non-selective neurons. In order to compute the
probability that there is no error Pne in the retrieval of pattern ~Ξµ0, we have to
estimate the probability that the inputs are above or below threshold, as written
in the main text in equations (3.9). To do so we first note that

P(hi,m ≥ θfN |Ξµ0
i,m) = P(hi,m = θfN |Ξµ0

i,m)
∑
s≥θ

P(hi,m = sfN |Ξµ0
i,m)

P(hi,m = θfN |Ξµ0
i,m) (3.57)

where the ’∑’ term will not contribute to the final expression of Pne in the large
N limit, as shown in chapter 2. In practice we thus replace the probability to be
above threshold by the probability to be at threshold. We can apply the same
reasoning for the probability to be above the activation threshold for non-selective
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neurons. We now have all the elements to express Φs and Φns in formulas (3.9) for
the case of unstructured macroscopic patterns

Φs = Φdc (θ − 1, γF ) (3.58)
and

Φns = Φfc (s∗l (θ), g) + Φdc (s∗e(θ), γFG) (3.59)
Case FD = O(lnN)
The fluctuations in the number of active modules connected to a given module has
now to be taken into account. It changes the distribution of the external input,
for selective neurons

Pse(Se) =
FM∑
Y=0

exp
[
−FDΦ0 − fNΦe( Se

fN
, yγF ) + o(fN) + o(FD)

]

=
FM∑
Y=0

exp
[
−FDΦ0 − fNΦdc( Se

fN
, yγF ) + o(fN) + o(FD)

]

= exp
[
−FDΦ0(y∗,

D

M
)− fNΦdc( Se

fN
, y∗γF ) + o(fN) + o(FD)

]
(3.60)

with

Φ0(y,
D

M
) = y ln y + (M

D
− y) ln

1− y DM
1− D

M

 (3.61)

and Y = yFD. With the same reasoning as before, the sum over different Y is
dominated by the most probable term y∗ that can be determined numerically by

∂
(
FDΦ0(y, DM ) + fNΦdc( SefN , yγF )

)
∂y

(y∗) = 0

⇔ FD ln
y∗ 1− D

M

1− y∗ DM

 + fN

(
− Se
fNy∗

+ γF

)
= 0 (3.62)

The distribution of the field on selective neurons is then

P(hi,m = S = fN + Se|Ξµ0
i,m = 1) = exp

[
− FDΦs

0(y∗,
D

M
)− fNΦdc( Se

fN
, y∗γF )

+o(fN) + o(FD)
]

(3.63)
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For non-selective neurons, the distribution of external input is also modulated
by the fluctuations on Y and the distribution of the total input is

P(hi,m = S|Ξµ0
i,m = 0)

=
∑
y

exp
[
−FDΦ0(y,

D

M
)
] ∑
Sl,Se/Sl+Se=S

exp
[
−fN

(
Φfc( Sl

fN
, g) + Φdc( Se

fN
, yγFG)

)]

=
∑
y

exp
[
−FDΦ0(y,

D

M
)
]

exp
[
−fN

(
Φfc(s∗l (y), g) + Φdc(s∗e(y), yγFG)

)]

= exp
[
−FDΦ0(y∗,

D

M
)− fN

(
Φfc(s∗l (y∗), g) + Φdc(s∗e(y∗), y∗γFG)

)]
(3.64)

where the expressions of s∗l and s∗e are given by equations (3.56) with γF replaced
by y∗γF . Again y∗ can be determined numerically from its definition

∂
(
FDΦ0(y, DM ) + fN

(
Φfc(s∗l (y), g) + Φdc(s∗e(y), yγFG)

))
∂y

(y∗) = 0

⇔ FD ln
y∗ 1− D

M

1− y∗ DM

 + fN

γFG− s− s∗1(y∗)
y∗

 = 0 (3.65)

The probability that the field is below/above threshold for selective/non-selective
neurons (3.9) is now given by

Φs = Φdc (θ − 1, y∗γF ) + FD

fN
Φ0(y∗,

D

M
) (3.66)

and

Φns = Φfc (s∗l (θ), g) + Φdc (s∗e(θ), y∗γFG) + FD

fN
Φ0(y∗,

D

M
) (3.67)

3.6.2 Distribution of inputs for the categorized model
In this case, there is no macroscopic dilution and each active module receives inputs
from exactly F (M − 1). This removes the fluctuations on the number of active
modules sending inputs to a given module, and allows to work with FM = O(1).
However, the expression of the rate functions will slightly differ when considering
FM → +∞ (and d

N → 0, see (3.25)) or FM = O(1) (and d
N = O(1)). Thus we

present results for the two cases separately.
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Case FM → +∞
The strategy to compute the distribution of inputs is similar to the unstructured
model. We first focus on selective neurons and split the input into a local compo-
nent and an external component (as in eq. (3.49)).
Selective neurons - The local component do not fluctuate and is given by eq.

(3.50). The external component is given by

Pe(Se) =
FMfN

Se

( d
N

)Se (
1− d

N

)FMfN−Se

= exp
[
−fNΦdc

(
se,

γ

δ

)]
(3.68)

with se = Se
fN .

Non-selective neurons - The distribution of the local field is the same as (3.54)
with γF replaced by γ

δ . Also note that g and G are defined by (3.26) and (3.28).
Doing so we have assumed that the amount of noise coming from the storage of
patterns different than ~Ξµ0 is the same for every pair of modules. This is the case
if each pair is co-activated in the same number of categories. In the case we are
considering, a given pair is co-activated in at least one category with a probability
R '

F→0
δF → 0. Thus in practice, a pair of module activated in pattern ~Ξµ0 is

activated only in this category.
Probability of no errors - The distribution of the total input can be expressed

by taking values s∗l and s∗e defined by equations (3.56) with γF replaced by γ
δ . The

rate functions for the categorized model in the case FM → +∞ are

Φs = Φdc
(
θ − 1, γ

δ

)
(3.69)

and

Φns = Φfc (s∗l (θ), g) + Φdc
(
s∗e(θ),

γ

δ

)
(3.70)

Case FM = O(1)
Now the microscopic dilution term d

N is finite and we have to use Φfc instead of
Φdc to describe the external inputs. At the end the rate functions are

Φs = (θ − 1) ln
 θ − 1
FM d

N

 + (FM − (θ − 1)) ln
1− (θ − 1)/FM

1− d/N

 (3.71)
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and

Φns = Φfc (s∗l (θ), g) + s∗e(θ) ln
 s∗e(θ)
FM d

NG

 + (FM − s∗e(θ)) ln
1− s∗e(θ)/FM

1− d/N


(3.72)

with s∗l and s∗e given by

s∗l = λ(FM − s) + 1 + s

2(1− λ) − 1
2

√√√√√λ(FM − s) + 1 + s

1− λ

2

− 4 s

1− λ

s∗e = −λ(FM + s) + s− 1
2(1− λ) + 1

2

√√√√√−λ(FM + s) + s− 1
(1− λ)

2

+ 4λFMs

1− λ
(3.73)

3.6.3 Storage capacity with error correction
In the section 3.4. the network is able to correct for errors because we choose an
activation threshold smaller than the average activity received by selective neurons
when the network is in the pattern ~Ξµ0. The expression of the rate functions we
have established above are valid for arbitrary θ, thus they can be used to estimate
storage capacity also for low activation threshold.
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Chapter 4

The whole cortex as an attractor
network ?

4.1 Introduction
In this chapter, we study the storage capacity of a network with a different ap-
proach than previously used. In the work presented so far, network connectivity
was explicitly determined by the patterns of activity we were trying to imprint as
fixed points of the network dynamics. For instance, in chapter 2 we found that
networks with binary synapses updated stochastically at each pattern presenta-
tion with a simple Hebbian-learning rule were able to store 0.23bits/synapse if
multiple presentations of the patterns are allowed, while it has been shown us-
ing Gardner’s approach that networks with binary synapses are able to store up
to 0.59bits/synapse (Gutfreund and Stein, 1990) . The principle of Gardner’s
approach is to explore the space of network connectivities, and to examine the
sub-space in which a set of P patterns are fixed points of the dynamics of the
network, independently of a learning rule explicitly specifying connectivity as a
function of the identity of the patterns to store. Notably, this allows to compute
storage capacities by finding the value Pc such that this sub-space has a size that
vanishes. Moreover, this technique allows to give a statistical description of the
connectivity storing a set of P patterns (Brunel et al., 2004). This has been applied
to interpret experimental measures of network connectivity, for instance for synap-
tic connectivity from granule cells to Purkinje cells in the cerebellum. The network
constituted by a Purkinje cell and its pre-synaptic granule cells can be seen as a
perceptron storing input-output associations, and as presented in the introduction
chapter, pair recordings of granule-Purkinje cells allow to quantify the connectiv-
ity of this network. Brunel et al. (2004) have studied a perceptron with positive
weights (modeling excitatory synapses from granule to Purkinje cells) and derived
an expression for the distribution of synaptic weights when the perceptron is at
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maximal capacity. They found parameters such that the experimental distribu-
tion is well fitted by the theoretical distribution (notably the unexpected fact that
more than 50% of the synapses are silent), allowing to interpret the experimental
connectivity as maximizing the number of input-output associations the network
can store. As mentioned in the introduction, Chapeton et al. (2012) have used a
similar reasoning to interpret features of the connectivity of local cortical networks.

Here we study a network in which two units are connected via an excitatory con-
nection whose amplitude is assigned a specific cost. This cost is used to take into
account the physical distance separating two units in cortex. We interpret this
network as the network of cortical areas and compare the theoretical distributions
of weights with the quantitative experimental measures of weights between cortical
areas presented in the introduction. Note that in practice the problem of finding
weights that stabilize a given pattern of activity in a recurrent network with N

neurons is equivalent to finding weights to store input-output associations for N
perceptrons with N neurons in the input layer.

4.2 Model: Perceptron with a distance constraint
We study a perceptron with N synapses wi that have to classify P input-output
associations, {~ξµ, ξµ0 } where ~ξµ are vectors of length N and µ = 1, ..., P . The input
and output patterns are random independent binary variables with coding level f ,
that is

P (ξµi = 1) = f and P (ξµi = 0) = 1− f (4.1)

for all i = 0, ..., N and all µ. We define the stability of pattern µ

∆µ = ζµ√
N

 N∑
i=1

wiξ
µ
i −Nθ

 (4.2)

where θ is an activation threshold and ζµ = 2ξµ0 − 1. We say the P patterns are
learned (or the ’storage problem’ is satisfied) if the weights are such that

∆µ ≥ κ for all µ (4.3)

where κ is a robustness parameter. Note that when learning is successful, we
expect that in the large N limit, the average weight W = ∑

iwi is such that the
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average field on the output unit is of the order of the threshold, which translates
to W ' θ

f .
In order to model the fact that connections between two units (i, j) have a cost
that depends on the distance between them, we introduce the distance constraint,

N∑
i=1

wiρi = λN (4.4)

where ρi represents a cost that increases with the distance between the input unit
indexed by i and the output unit. Calculations can be done for arbitrary ~ρ, but we
will focus on constraints such that ∑i ρi ' 1. To better understand the meaning
of equation (4.4), first consider a weight vector that has learned the P patterns
without the distance constraint. For this we have ∑iwiρi = WN + O(

√
N), such

that in the large N limit, the unconstrained learning leads to (4.4) with λ = W . If
we want (4.4) to be satisfied with λ < W , we encourage weights i such that ρi > 1
to be smaller than W and weights such that ρi < 1 to be larger than W , which
corresponds to the intuitive idea that weights between distant units are penalized.

4.3 Calculation of storage capacity with the replica method
In order to evaluate how the distance constraint reduces storage capacity, we use
the replica formalism to evaluate for which value of α = P

N the volume of weights
satisfying the constraints (4.3) and (4.4) shrinks to zero. In the space of couplings
the volume of weights satisfying the learning problem is

V =
∫ (∏N

i=1 dwi
)
δ (∑iwiρi − λN)∏Pµ=1 Θ(∆µ − κ)∫ (∏N
i=1 dwi

)
δ (∑iwiρi − λN)

(4.5)

We are interested in the typical value of V . This typical value can be obtained
for the logarithm of V by averaging over the distribution of random patterns (〈.〉).
We introduce n replicas of the system in order to compute 〈ln V 〉 using the replica
trick (Mézard et al., 1987)

〈ln V 〉 = lim
n→0

〈V n〉 − 1
n

(4.6)

The quantity 〈V n〉 is the volume of the sub-space of weights that satisfy the
learning problem in n (’replicated’) neural networks. We start by computing the
average over the distribution of patterns of the volume of the replicated system:
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〈V n〉 =
∫ (∏N

i=1
∏n
α=1 dw

α
i

) (∏P
µ=1

∏n
α=1 δ (∑iw

α
i ρi − λN)

)
〈
(∏P

µ=1
∏n
α=1 Θ (∆µ,α − κ)

)
〉∫ (∏N

i=1
∏n
α=1 dw

α
i

) (∏P
µ=1

∏n
α=1 δ (∑iwα

i ρi − λN)
)

(4.7)
In order to compute these integrals, a first step is to introduce integral repre-

sentations of the δ and Θ functions. This allows to express this quantity only with
integrals of regular functions, which makes it easier to perform the average over
the distribution of patterns to store. 〈V n〉 can then be estimated using a steepest
descent method. To do so the number of variables on which we integrate has to
be finite. Thus we introduce a finite number of variables describing macroscopic
features of the synaptic connectivity :

qαβ = 1
N

N∑
j=1

wα
j w

β
j (4.8)

Qα = 1
N

N∑
j=1

(
wα
j

)2 (4.9)

Mα

√
N

= 1
N

N∑
j=1

wα
j −

θ

f
(4.10)

which respectively describes the overlap of the synaptic weight vectors of two
different replicated networks indexed by α and β (α, β = 1, ..., n), the norm of
the synaptic weight vector of network α, the distance between the average weight
of network α and activation threshold divided by the fraction of active units in
each pattern of activity, which we expect to scale as 1√

N
if an extensive number of

patterns are stored (see equation (4.2)). In order to introduce these parameters in
the expression of 〈V n〉, we also need to introduce the conjugate parameters q̂αβ,
Q̂α, M̂α such that

δ

Nqαβ −∑
j

wα
j w

β
j

 =
∫ dq̂αβ

2πi exp
−Nqαβ q̂αβ + q̂αβ

∑
j

wα
j w

β
j

 (4.11)

δ

NQα −
∑
j

(
wα
j

)2
 =

∫ dQ̂α

2πi exp
−NQαQ̂α + Q̂α∑

j

(
wα
j

)2
 (4.12)

δ

∑
j

wα
j −N

θ

f
−Mα

√
N

 =
∫ dM̂α

2πi exp
√NMαM̂α +N

θ

f
M̂α − M̂α∑

j

wα
j


(4.13)

We also introduce a parameter Eα to enforce the distance constraint (4.4)
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δ

∑
j

ρjw
α
j − λN

 =
∫ dEα

2πi exp
λNEα −

∑
j

ρjw
α
j

 (4.14)

All these elements allow to prepare 〈V n〉 for the steepest descent method (see
Methods section for details)

〈V n〉 =
∫
dMdM̂dQdQ̂dqdq̂dE exp(NnF )∫

dE exp(NnH) (4.15)

with

F = αZ1 + Z2 + Z3 +O( 1√
N

) (4.16)

where

Z1 =
∫
Dt

∑
ζ=±1

pζ ln
H

κ− fζM + t
√
f(1− f)q√

f(1− f)(Q− q)

 (4.17)

Z2 =
∫
dρP (ρ)

∫
Dt ln

[∫ +∞

0
dw exp

(
−1

2
[
q̂ − 2Q̂

]
w2 + (t

√
q̂ − M̂ − Eρ)w

)]
(4.18)

Z3 = −QQ̂+ 1
2qq̂ + θ

f
M̂ + λE (4.19)

With P (ρ) the density probability function from which the elements of ~ρ are
drawn and pζ=+1 = f , pζ=−1 = 1 − f . The order parameters M,Q, q and the
conjugate parameters M̂, Q̂, q̂ do not depend on the replica indeces anymore, as
we have assumed that for each replicated network these macroscopic quantities
are the same (replica symmetric solution). For n finite and N → +∞ we apply
a steepest descent method and found the set of q,Q,M, q̂, Q̂, M̂ , E maximizing F .
The saddle point equations defining these parameters are given in the Methods
section (4.39) to (4.47). Note that they depend on the memory load α.

The storage capacity corresponds to the maximum number of patterns that can
be stored. As mentioned above, at maximal capacity we expect that the volume
of the sub-space of weights satisfying (4.3) shrinks to zero, i.e. only one synaptic
weight vector satisfies the storage problem. In this case, the weights are the same
in each replicated system, and we expect

q → Q (4.20)
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Solving the saddle point equations (4.49) to (4.55) in this limit allows to com-
pute the storage capacity as a function of the various parameters. In figure 4.1A
we show how the storage capacity depends on the distance constraint via the pa-
rameter λ, for θ = 0.5, f = 0.5 and κ = 0. In this figure and in the following, the
value of the elements of the cost vector ρi’s are distributed normally with mean
1 and standard deviation σ = 0.38 (see section ’Comparison with experimental
data’ for an explanation of this choice). For λ = θ

f = 1, we recover the known
result that αc = 1 when no distance constraint is imposed (when no constraint is
imposed, the average weight equals θ

f + O
(

1√
N

)
). As the constraint gets stronger

λ < θ
f , capacity is reduced. The solid line shows the theoretical prediction and

the squares with error bars are obtained by simulating learning in 100 perceptrons
with N = 100 and the above mentioned parameters.
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Figure 4.1: Properties of the perceptron with a distance constraint. In these figures the costs ρi’s are distributed
normally with a mean 1 and standard deviation σ = 0.38 The other parameters are f = 0.5, θ = 0.5 and κ = 0.
A- Storage capacity as a function of λ (see equation (4.4) for definition). Black line is the value of αc obtained by
solving the saddle point equations (4.49)-(4.55) in the limit q →Q. Blue line is the average of αc = P

N corresponding
to the number of patterns that can be learned by a simulated perceptron with N = 100 input units. Error bars are the
standard deviations obtained from 100 such simulations. B- Density (fraction of non-zero synapses) of the weights
vector at maximal capacity. C- Theoretical distributions of weights at different loading for λ = 0.7.

4.4 Distribution of weights
We want to compute the typical probability 〈P (Wi0)〉 that a weight with cost ρi0
takes the value Wi0. It writes,

〈P (Wi0)〉 = 〈 1
V

∫ (∏N
i=1 dwi

)
δ(Wi0 − wi=i0)δ (∑iwiρi − λN)∏Pµ=1 Θ(∆µ − κ)∫ (∏N

i=1 dwi
)
δ (∑iwiρi − λN)

〉

(4.21)
with V defined in eq.(4.5). It can be rewritten,
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〈P (Wi0)〉 = lim
n→0
〈V n−1

∫ (∏N
i=1 dwi

)
δ(Wi0 − wi0)δ (∑iwiρi − λN)∏Pµ=1 Θ(∆µ − κ)∫ (∏N

i=1 dwi
)
δ (∑iwiρi − λN)

〉

(4.22)
As in the previous section, we introduce n replicas of the system where one of

the replica has the particularity of displaying the term δ(Wi0 − wi0), we compute
the disorder average for n an integer, and then perform the limit n→ 0.

Following the same calculations has above, we can derive

〈P (Wi0)〉 =
∫
Dt

exp
((
Q̂− q̂

2

)
W 2

i0
−
(
M̂ − t

√
q̂ − Eρi0

)
Wi0

)
∫+∞
0 dw exp

((
Q̂− q̂

2

)
w2 −

(
M̂ − t

√
q̂ − Eρi0

)
w
)Θ(Wi0) (4.23)

Where the conjugate parameters are solutions of the same system of saddle point
equations (4.39)-(4.47) mentioned above.

At maximal capacity, this distribution is a truncated gaussian with a mean that
depends on the cost ρi,

〈P (Wi0)〉 = δ (Wi0)H [−(B +Dρi0)] +

Θ (Wi0)
1√

2πWs

exp
− 1

2W 2
s

(Wi0 + (B +Dρi0)Ws)2
 (4.24)

with Ws =
√
C
A and A,B,C,D the solution of the saddle point equations at

maximal capacity.
The distribution of all the weights, independently of the neuron index i can be
obtained by integrating over the distribution of costs. In the subcritical case (α <
αc) the probability P (W ) to find a weight at a value W at the end of learning is

P (W ) =
∫
dρP (ρ)

∫
Dt

exp
((
Q̂− q̂

2

)
W 2 −

(
M̂ − t

√
q̂ − Eρ

)
W
)

∫+∞
0 dw exp

((
Q̂− q̂

2

)
w2 −

(
M̂ − t

√
q̂ − Eρ

)
w
)Θ(W )

(4.25)
In the case we are considering where they are distributed normally with a vari-

ance σ and average 1, the distribution of weights at maximal capacity is still a
truncated Gaussian
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P (W ) = δ (W )H
(
− B +D√

1 +D2σ2

)
+ Θ (W )

exp
(
−1

2
(W+(B+D)Ws)2

W 2
s (1+D2σ2)

)
√

2πW 2
s (1 +D2σ2)

(4.26)

This expression is valid for every values of λ, the dependence on this parameter
comes from the values of the order parameters obtained by solving the saddle point
equations that depend on λ.

In figure 4.1B, we plot the density of the connectivity, defined as the fraction
of W ’s that are non-zero after learning. For the same parameters that are used in
figure 4.1A. Again for λ = θ

f = 1, we find that half of the synapses have values
zero (Brunel et al., 2004). For λ < θ

f , the density is decreasing. Blue points with
error bars show the results of simulations. In figure 4.1C, we plot the distribu-
tions of weights obtained from equations (4.25) or (4.26) when the network is at
maximal capacity αc or below, for λ = 0.7. When the network is loaded up to its
critical capacity, the distribution is composed of a peak at zero and a truncated
Gaussian. For sub-critical loading, there is no concentration of synapses at 0, but
many weights will have low values.

4.5 Comparison with experimental data
4.5.1 Networks at maximal capacity
We now compare properties of the connectivity at maximal capacity with the con-
nectivity measured by Markov et al. (2012) when measuring the weights between
cortical areas (see the chapter ’Introduction’ for a more detailed presentation of
these data). Doing so, we interpret each unit of the theoretical network as repre-
senting a cortical area. A pattern of activity then models a cortical state with a
fraction f of the cortical areas active. And the weight between two cortical areas
i and j corresponds to the FLN from j to i, the ratio of neurons that are counted
in j when injecting tracers in area i to the total number of neurons counted in all
areas when injecting in i. We want to assess whether the measured statistics of
cortical connectivity is consistent with the connectivity of a network maximizing
the number of stable states that can be learned. To do so, we choose a particular
distance vector ~ρ where each element ρi is drawn independently from a gaussian
distribution of mean µ = 1 and standard deviation σ = 10.11mm

26.57mm = 0.38. This choice
is determined by the fact that the distribution of distances between cortical areas
is well fitted by a Gaussian distribution with µ = 26.57mm and σ = 10.11mm
(Ercsey-Ravasz et al., 2013). With this choice the distance constraint corresponds
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to a cost ρj equals to the distance between areas. For this ~ρ, the global distribution
of weights can be computed with equation (4.26).

Figure 4.2A shows how the theoretical and simulated distributions of non-zero
weights depend on the parameters λ for f = 0.5, θ = 0.5, κ = 0. To build these
distributions, we proceed as follows. For the simulated distributions (blue his-
tograms), we simulate learning in 50 perceptrons (with N = 100) subject to the
distance constraint (4.4), from which we obtain sets of N weights. In the exper-
imental data, the values of the logarithm (in base 10) of the FLN range from
∼ 10−6 − 100, and by definition the sum of the FLN from the areas j = 1...N
to a given injected area i is 1. We reproduced these features by normalizing the
obtained weights and applying a cut-off (setting low weights at 0) such that the
obtained weights have a logarithm that range between ∼ 10−6− 100 and sum to 1.
To obtain the theoretical distributions (black curves), we apply the same procedure
with weights drawn from the distribution (4.26).
The histograms we have obtained should be compared with the left panel of figure
4.3A, the distribution of non-zero FLN obtained experimentally. For our model, at
maximal capacity, the distribution of non-zero weights is peaked and concentrated
at rather high values, around log10(FLN) ' 10−2, compared to the measured ex-
perimental data for which the distribution is much broader and peaked around
10−3. We have explored how this depends on the other parameters f , θ and κ
and always found such distributions, concentrated at FLN around 10−2. Such
concentration of FLN can be paralleled to the critical distribution of figure 4.1C
where most of the weights are of the same order than the mean weight. It can be
interpreted by saying that at optimal capacity, each non zero weight has a con-
tribution to the total input sent to the output neuron that is of the same order.
Too large weights being detrimental because they tend to drive the output neuron
above threshold in patterns that should produce a 0 output, and weights too low
being useless in driving the output neurons above threshold in patterns that should
produce a 1 output.

Another feature of the experimentally measured cortical connectivity matrix that
is not captured by the distribution of FLN is the density of the binary cortical
connectivity matrix (the number of non-zero entries in the cortical connectivity
matrix). In figure 4.2B, we show how the density, i.e. the fraction of non-zero
weights, depends on the distance between two areas (which depends on the index
i in equation (4.24)) for different values of λ. The average density is shown in
figure 4.1B. The evolution of these histograms, from nearly flat to a more and
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more pronounced decrease of density with distance, shows that what we called
the ’distance constraint’ indeed favors connections between areas that are close to
each others. Even though the general trend (see figure 4.3) of the dependence with
distance can be captured, the theoretical and simulated density is always too low
(for satisfying density profiles). Indeed, the experimental measures of connectivity
between cortical areas found an average density of 66%. For all the parameters
tested, at maximal capacity, the density we have found was always smaller than
50%, as illustrated by figure 4.1B.

0 0.5 1 1.5 20 0.5 1 1.5 2

−6 −4 −2 0
log

10
(FLN)

−6 −4 −2 0
log

10
(FLN)

−6 −4 −2 0
log

10
(FLN)

−6 −4 −2 00
0.2
0.4
0.6
0.8

1 λ = 1

log
10
(FLN)

P(
lo

g 10
(F

LN
))

0 0.5 1 1.5 20

0.2

0.4

0.6

0.8

1

distance

de
ns

ity

0 0.5 1 1.5 2
distance distance distance

λ = 0.7 λ = 0.5 λ = 0.3A

B

Figure 4.2: Dependence on λ of the distributions of non-zero weights, and network densities as a function of the
distance between units at maximal capacity. A- Distributions of the logarithms of the FLN (see text for definition),
for different values of λ. Blue histograms are the results of simulating perceptrons reaching maximal capacity with
N = 100 and the gaussian cost vector. Black lines are obtained by applying the definition of the FLN for weights
drawn according to the theoretical distribution (4.26). B- Density versus distance (see text for the definition of
distance). Blue histograms are simulated data and black lines theoretical predictions. Parameters are f = 0.5,
θ = 0.5 and κ = 0.

4.5.2 Networks below maximal capacity
As suggested by figure 4.1C, the connectivity for α < αc contains much more
low weights, which should lead to broaden the distribution of FLN . Also the
theory predicts that only a vanishingly small proportion of weights are 0 at the
end of learning, which should lead to densities of 100%. We performed the same
kind of simulations than the one described before with α < αc, to see whether
we could find connectivities that better match the experimental measurements.
In figure 4.3A-B we show the distribution of FLN , the dependence with distance
of the density and the average density for simulations with f = 0.5, θ = 0.5,
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κ = 0, λ = 0.4 and α = αc
2 = 0.10. The results are now much more similar to

the experimental connectivity, except the average density 48% which is still lower
than the experimentally observed 66% (we do not obtain 100% densities probably
because of the procedure used to transform the obtained weights into FLN ’s).
Note that the parameters of the model leading to these features have been found
’manually’. We have found a single best set of parameters, although the entire
parameter space has not been explored.
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Figure 4.3: Features of the experimentally measured cortical connectivity matrix compared to a network loaded below
its maximal capacity. A- Distribution of the logarithm of the experimental FLN (left, taken from Markov et al.
(2012)) and simulated FLN (right). B- Red lines: dependence of network density (i.e. the probability to find a
non-zero connection between two areas) as a function of the distance separating to areas as seen in the experiments
(left, taken from Markov et al. (2013)) and in the simulations. The black histogram on the left panel shows how
the distance between pairs of areas is distributed across the cortical surface. The black line on the right shows the
similar distribution we have implemented in our simulations. All the simulations are done with the same parameters
f = 0.5, θ = 0.5, κ = 0, λ = 0.4 and α = 0.10
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4.6 Discussion
We have studied a perceptron with positive weights where the amplitude of each
weight Wi from an input unit i to the output unit is associated with a specific cost
ρi. We have interpreted this model by identifying each unit i of the perceptron with
a cortical area, each weightWi as a measure of the number of synaptic connections
from an area i to the output area, ρi as the distance from area i to the output
area. In fact the network of cortical areas is a recurrent network, but learning fixed
points in recurrent networks with N neurons can be reduced to learning N per-
ceptrons with N input units (Brunel, 2003; Chapeton et al., 2012). Modeling the
activity of an entire cortical area with a binary variable is quite bold, as obviously
the patterns of activation that a cortical area exhibit are much more numerous
than two. However, in order to interpret the available data of Markov et al. (2011)
that quantifies connectivity between cortical areas and discards finer structure of
cortical connectivity (Pucak et al., 1996), we have chosen such a minimal model.
In a first attempt, we have compared the theoretical distributions of connection
weights that optimize storage capacity with the experimentally observed distribu-
tion. While the experimental distribution is quite wide, the optimal theoretical
distributions are much more narrow (figure 4.2A). Also we have found that the
density (fraction of non-zero connections in the network) is always too low for the
model (figure 4.1B) compare to the experimental value of 66% (Markov et al.,
2011).
In a second attempt, we have compared the experimental data and the theoretical
distribution of weights for networks below the optimal capacity. As expected, in
this case the distributions of weights get wider and we were able to find a set of
network parameters for which the distribution of weights as well as the dependence
of the density with distance fit reasonably well the experimental data. Note how-
ever that the obtained average density is still lower than the observed one. For
these parameters, the network is able to sustain 10 patterns of activity with ap-
proximately half of the areas active and the other half silent. Thus we have shown
that some statistics of the connectivity matrix of the network of cortical areas is
consistent with a simple model with 10 states that are able to self-sustain, however
it is not granted that the connectivity, in its detail, supports such states.

4.7 Methods
Here we first give more details on how to express 〈V n〉 as defined in equation (4.7),
to the simpler expression (4.15). Similar calculations can be found in Gardner
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(1988); Hertz et al. (1991); Brunel et al. (2004). We then explicit the system of
saddle point equations from which we can extract all the relevant quantities allow-
ing to describe storage capacity and network connectivity.

We first start by performing the average over the distribution of patterns of activity
to store. Introducing integral representation of the Heaviside function

θ(z − κ) =
∫ +∞

κ
dy

∫ dx

2π exp(ix(y − z)) (4.27)

we can rewrite

〈
P∏
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Where 〈.〉ζ is the average over the distribution of the output unit. We have not
performed explicitly this average for formal concision. This expression can be sim-
plified by introducing the order parameters qαβ, Qα,Mα defined in (4.8),(4.9),(4.10).
The expression of 〈V n〉 can then be rewritten, using integral representation of the δ-
functions and introducing the conjugate parameters defined in (4.11),(4.12),(4.13)

〈V n〉 =
∫ ∏
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(4.29)

with

F ′ = Z ′1 + Z ′2 + Z ′3 (4.30)
where

Z ′1 = P

N
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(4.31)
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∑
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and
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The expressions of the Z ′’s can be simplified under the assumption of a replica
symmetric solution qαβ = q, Qα = Q, Mα = M , Eα = E, q̂αβ = q̂, Q̂α = Q̂,
M̂α = M̂ , and by using the following identities
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and
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It gives
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with P (ρ) the probability density function from which the elements of ~ρ are
drawn.

Z ′2 = n
∫
Dt lnH

κ− fζM + t
√
f(1− f)q√

f(1− f)(Q− q)

 (4.38)

Putting everything together into the expression of 〈V n〉 we get equation (4.15).
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The macroscopic quantities describing the network are the parameters that max-
imize the function F . Indeed, when applying the steepest descent method to the
integral in (4.15) in the limitN → +∞, only the values that maximize F contribute
to the final value of 〈V n〉. These values are given by the following equations
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In the limit q → Q, these can be simplified by introducing A,B,C,D such that
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It gives
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These equations can then be solved numerically to give the storage capacity
of the network αc and to extract the order parameters that allow to express the
distributions of weights. Note that calculations for the distributions of weights is
almost identical to the one we have just described.
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Chapter 5

Discussion

We have studied models of ANNs describing cortical circuits at different scales. In
chapter 2, we have considered fully connected networks that can be thought of as
an approximation of local cortical networks at a scale of a few hundred microns
(Hellwig, 2000; Kalisman et al., 2005). We have computed the storage capacity
of networks with discrete states synapses in different learning scenarios, a first
one where patterns are presented only once and a second one where patterns are
presented multiple times. We have interpreted this second learning scenario as
describing learning in local cortical circuits. Naturally we want to ask whether
the properties of the connectivity of this model are consistent with known facts
about connectivity of cortical networks. In our model synapses can be in a finite
number of states. It has been argued that it would be difficult to build synapses
that can take continuous values with known bio-physical processes (see e.g. Brunel
2003), but to the best of our knowledge there is no direct evidence that cortical
synapses can be described by discrete variables. Nonetheless, for hippocampal cir-
cuits where it is easier to induce plasticity, studies using minimal stimulation have
provided evidence that synapses could be described by binary variables (Petersen
et al., 1998; O’Connor et al., 2005). In the mouse somato-sensory cortex, two
neighboring cells touch each other on average at ∼ 5 different locations Kalisman
et al. (2005). We have modeled this feature by considering synapses made of 5 bi-
nary contacts that are independently modified during learning, we have seen that
this feature could increase the storage capacity of local cortical networks, compare
to models with a single binary synaptic contact. A measure of connectivity that
has been well documented is the connection probability between pyramidal cells,
which has consistently been found to be low, around 10%. In our cortical model
with 5 independent binary synaptic contacts, parameters optimizing capacity lead
to a connection probability around 80%. These parameters are the one saturating
the storage capacity of the network, thus we expect that each memory is associ-
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ated with a small basin of attraction. In the framework developed by Gardner,
it has been shown that connection probability decreases when stored patterns are
required to have larger basins of attraction (Brunel et al., 2004). It would be inter-
esting to introduce such a requirement about the basins of attractions in our model,
and see how storage capacity and connection probability are modified. Also, as
we have seen, the learning rule we have studied is not optimal in terms of storage
capacity (Gutfreund and Stein, 1990). For binary synapses and standard coding
level (f = 1

2) a network optimizing storage capacity has a connection probabil-
ity < 30%. It would be interesting to know how this value changes for discrete
synapses with more than two states and sparser more realistic coding levels, and
then see whether a biologically plausible learning rule could be found that reaches
this capacity.

In the third chapter, we have studied memory properties of modular networks
where modules are fully-connected networks connected to each others via diluted
long-range connections. As in the previous studies of similar models (O’Kane
and Treves, 1992; Mari and Treves, 1998) we have found that these networks are
able to store a number of bits per synapse of order one, with a storage capacity
that interpolates between fully-connected networks and diluted networks. We have
studied two different kinds of models, a first one where patterns of activity of active
modules are chosen randomly and another kind where patterns are organized in
categories. For patterns organized in categories, the network has an information
capacity of order one when the macroscopic coding level scales as 1

M -where M
is the number of modules. In this case the number of patterns P stored in the
network can then scale as P ∝M N2

(lnN)2 -where N is the number of neurons in each
module-, i.e. the network stores a number of patterns proportional to size of the
network, as in Mari and Treves (1998).

If these networks are required to correct macroscopic errors (e.g. single modules
in a local attractor not consistent with the whole pattern) some constraints on the
sources of reverberating activity have to be satisfied. Namely, the component of the
reverberating activity supported by long-range connections has to be larger than
the local component. In terms of network connectivity this means that a given
neuron, belonging to a module m active in a pattern ~Ξµ0, receives less connections
from neurons in m than from neurons belonging to other modules active in ~Ξµ0.

What kind of cortical circuits can be well modeled by these networks ? It is
tempting to interpret modules as the patches identified by connectivity studies like
the one of Pucak et al. (1996). In this case, modeling a patch by a fully connected
network might not be ideal as these patches are on average 1.7mm × 0.25mm,
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which is larger than the size of the local networks described in chapter 2, at most
0.5mm×0.5mm. However these last dimensions have been inferred from studies in
sensory cortices of rodents, it might be that similar studies in pre-frontal cortices
of monkeys would lead to larger dimensions for networks that can reasonably be
approximated by fully-connected models. In our models, the patterns of activity
also have a modular structure. With an fMRI study on humans, Huth et al. (2012)
have shown how visually perceived objects are represented on the cortical surface.
Small ’patches’ of sizes of the order of the millimeter (close to the spatial resolution
of the fMRI machine) are activated when a given object is presented. One could
speculate that these ’patches’ of activity coincide with the patches of connectivity
mentioned above. It would not be that surprising, for instance it has been shown
in visual cortex of tree shrew that interconnected patches have similar preferred
orientations (Bosking et al., 1997). In order to see whether these networks support
ANN dynamics, it would be interesting to record the activity of a large piece of
cortex with a spatial resolution of the order of the millimeter, while a subject
is performing a working memory task, to see if there is some sort of distributed
persistent activity.

If a network of interconnected patches of cortex operates as an ANN and is able
to correct for macroscopic errors, our study predicts that injection of retrograde
tracers in a single neuron (Rancz et al., 2011) would label less neurons in the lo-
cal patch to which the neuron belongs than in other patches representing similar
items. For instance this could be done in the patches of cortex representing faces
that have been well identified (Tsao et al., 2003). Note that an analysis of Stepa-
nyants et al. (2009) shows that in the visual cortex of mice, 36% of the connections
to a neuron originate inside a cylinder of radius 1 mm, the other inputs being me-
diated by long-range connections. This is consistent with the constraint we have
established on the minimal amount of long-range connections, although the origin
of these connections would need to be known to be sure the constraint is satisfied.

Recently, quantitative data about the connectivity between cortical areas have
been published (Markov et al., 2011). Could this connectivity sustain ANN dy-
namics at the scale of the whole cortex ? To study this question, models like
the one studied in chapter 3 seem inappropriate since they do not incorporate the
heterogeneity in the distances between modules which is present between cortical
areas, while Markov et al. (2013) have shown that distance strongly modulates
connectivity between areas.

Experimental measures of connectivity in the cerebellum or local cortical net-
works are consistent with perceptron or attractor network models working at op-
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timal storage capacity (Brunel et al., 2004; Chapeton et al., 2012). Guided by a
similar idea, we have studied the connectivity of a minimal model of the network
of cortical areas where the activity of each area is described by a binary unit and
where the amplitude of the connection between two areas has a cost that depends
on distance. Using Gardner’s approach, we have computed statistical properties of
the connectivity matrix of such networks. In the framework of our simple model,
statistical properties of the experimental connectivity matrix could not be well fit-
ted by statistical properties of a network working at an optimal capacity. However,
we have found some parameters for a network below maximal capacity that fit the
experimental measurements rather well. For these parameters, the model can sus-
tain 10 patterns via reverberating activity through connections between cortical
areas. Even though the model shares similar statistics of connectivity with the real
network, it is not granted the real network can sustain patterns of activity. In-
deed, connection weights drawn randomly from the theoretical distribution would
not necessarily lead to attractor states. It would be interesting to implement the
detailed measured connectivity matrix in a network model and study the fixed
points of this network. A first difficulty arises from the fact that this connectivity
matrix is only partially known (about 30% of the full matrix has been character-
ized). Instead, one could focus on the 29× 29 sub-network of cortical areas whose
connectivity is fully known, and identify which fixed points could be implemented
in this network. It would also be interesting to compare measures of functional
connectivity established from resting state activity and the anatomical connectiv-
ity in the 29×29 sub-network, and maybe use functional connectivity to guess the
anatomical connections that have not yet been explored.
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