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solving administrative formalities. I also want to mention all other people in SON-
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Résumé

0.1 Introduction

L’imagerie hyperspectrale (HSI) repose sur le fait que, pour un matériau donné,
la quantité de rayonnement émis varie avec la longueur d’onde. Les capteurs HSI
mesurent le rayonnement des matériaux au sein de chaque pixel pour un très grand
nombre de bandes spectrales contiguës et fournissent des images contenant des infor-
mations à la fois spatiales et spectrales. Les méthodes classiques de détection adap-
tative prennent généralement pour hypothèse un fond gaussien de vecteur moyenne
nul ou connu. Cependant, quand le vecteur moyenne est inconnu, comme c’est le
cas pour l’image hyperspectrale, il doit être inclus dans le processus de détection.
Nous proposons dans ce travail d’étendre les méthodes classiques de détection pour
lesquelles la matrice de covariance et le vecteur moyenne sont tous deux inconnus.
Cependant, la distribution statistique multivariée des pixels de l’environnement peut
s’éloigner de l’hypothèse gaussienne classiquement utilisée. La classe de distributions
elliptiques a déjà été popularisée pour la caractérisation de fond pour l’HSI. Bien que
ces modèles non gaussiens aient déjà été exploités dans la modélisation du fond et
dans la conception de détecteurs, l’estimation des paramètres (matrice de covariance,
vecteur moyenne) est encore généralement effectuée en utilisant des estimateurs con-
ventionnels gaussiens. Dans ce contexte, nous analysons des méthodes d’estimation
robuste plus appropriées à ces distributions non-gaussiennes : les M -estimateurs. Ces
méthodes de détection couplées à ces nouveaux estimateurs permettent, d’une part
d’améliorer les performances de détection dans un environment non-gaussien, mais
d’autre part de garder les mêmes performances que celles des détecteurs convention-
nels dans un environnement gaussien. Elles fournissent ainsi un cadre unifié pour la
détection de cibles et la détection d’anomalies pour la HSI.

0.2 État de l’art

Les méthodes de détection de cibles hyperspectrales sont couramment utilisées pour
détecter des cibles intégrées dans le fond et qui, généralement, ne peuvent être résolues
par la résolution spatiale Matteoli et al. (2010a). Il existe deux méthodes différentes
pour la détection de cibles dans la littérature de HSI Manolakis et al. (2003): détection
des anomalies et détection des cibles
Lorsque la signature spectrale de la cible souhaitée est connue, elle peut être utilisée
comme vecteur de direction dans les techniques de détection des cibles. Le problème
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de la détection de la cible peut être formulée comme un test d’hypothèses qui décide
entre la présence ou l’absence d’une cible. Le cadre typique proposé en théorie de
détection est basé sur l’approche de Neyman-Pearson Van Trees (2004). Les critères
de conception consistent à maximiser la probabilité de détection pour une probabilité
de fausse alarme donnée.
Dans de nombreuses situations pratiques, il n’y a pas suffisamment d’informations
sur la cible à détecter, ainsi les méthodes de détection des anomalies sont largement
utilisées Eismann et al. (2009). Les détecteurs d’anomalies recherchent des pixels
dans l’image avec des caractéristiques spectrales qui diffèrent du fond. Ils peuvent
être interprétés comme cas particulier de détection de cibles dans lequel aucune in-
formation a priori sur les éventails des cibles d’intérêt n’est disponible. Notez que,
puisque les détecteurs d’anomalies n’emploient aucune connaissance à priori, ils ne
peuvent pas distinguer les cibles et les détections vraies des pixels lumineux du fond
ou des cibles qui ne sont pas d’intérêt. Ensuite, nous plaçons le cadre et décrivons les
hypothèses classiques dans le traitement des signaux.

0.2.1 Notions préliminaires

Nous définissons les termes dont la connaissance est essentielle pour lire cette thèse
et qui seront utilisés dans le présent document.

Definition 0.2.1. Vecteur moyenne
Le vecteur moyenne d’un vecteur aléatoire complexe x = u + jv est défini comme:

E[x] = E[u] + jE[v]. (1)

Definition 0.2.2. Matrice de Covariance
La matrice de covariance d’un vecteur aléatoire complexe x = u + jv de dimension
m est définie comme:

M = cov(x) = E[(x− E[x])(x− E[x])H ]

et M appartient à la classe des matrices hermitiques semi-définies positives de taille
m×m.

Il est souvent supposé que des signaux, les interférences, le bruit et le fond sont
modelisés en tant que procédés stochastiques gaussiens. En effet, cette hypothèse sem-
ble raisonnable dans beaucoup d’applications Kay (1998). Nous rappelons d’abord,
la définition d’un vecteur gaussien.

Definition 0.2.3. Distribution gaussienne complexe
Un vecteur de dimension m x = u + jv a une distribution gaussienne complexe
distribution de moyenne µ et matrice de covariance Σ si x = (uT ,vT )T ∈ R2m a une
distribution normale van den Bos (1995). Si rank (Σ) = m, la fonction de densité
de probabilité (DDP) existe et est de la forme:

fx(x) = π−m|Σ|−1 exp{−(x− µ)HΣ−1(x− µ)}. (2)
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Dans la suite, elle sera notée comme CN (µ,Σ). Les estimateurs optimaux au sens
du maximum de vraisemblance (MV) sont le Sample Mean Vector (SMV) et la Sam-
ple Covariance Matrix (SCM). Considérons x1, . . . ,xN un N -échantillons de vecteurs
indépendants gaussiens complexes, de dimension m et moyenne µ. Le SMV et la
SCM s’écrivent alors:

µ̂SMV =
1

N

N∑

i=1

xi , Σ̂SCM =
1

N

N∑

i=1

(xi − µ̂)(xi − µ̂)H . (3)

En outre, nous noterons la Centered SCM (CSCM) comme:

Σ̂CSCM =
1

N

N∑

i=1

(xi − µ)(xi − µ)H . (4)

Definition 0.2.4. Distribution de Wishart complexe
Soit x1, ...,xN un N-échantillons de vecteurs indépendants et identiquement distribués
(IID) où xi ∼ CN (µ,Σ). Définissons µ̂ = µ̂SMV et Ŵ = N Σ̂SCM dénommée la
matrice de Wishart. Ainsi, on a (voir Gupta and Nagar (2000) pour le cas réel):

• µ̂ et Ŵ sont distribués indépendamment;

• µ̂ ∼ CN (µ, 1
N

Σ);

• Ŵ ∼ CW(N − 1,Σ) suit une distribution de Wishart avec N − 1 degrés de
liberté.

La distribution asymptotique de la matrice de Wishart est Bilodeau and Brenner
(1999): √

Nvec(Ŵ −Σ)
d−→ CN (0m2,1, (Σ

T ⊗Σ), (ΣT ⊗Σ)K). (5)

où K est la matrice de commutation. Par conséquent, les performances obtenues avec
les estimateurs SMV-SCM sont parfaitement connues. Ces estimateurs sont sans bi-
ais, convergents et asymptotiquement gaussiens.

0.2.2 Techniques classiques de détection de cibles

En traitement du signal, le problème de la détection de cibles est généralement énoncé
comme un test d’hypothèses binaire qui détermine la présence ou l’absence d’une cible
dans la cellule analysée. Par conséquent, le signal reçu est un vecteur x de dimension
m dénommé vecteur d’observation. Le signal complexe connu caractérisant la cible
visée est désigné par s, et il est corrompu par un bruit additif b dénommé fond. Le
problème de détection peut s’écrire:

{
H0 : x = b, xi = bi , i = 1, . . . , N

H1 : x = s + b, xi = bi , i = 1, . . . , N,
(6)
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où xi sont les données dites secondaires utilisées pour estimer les paramètres du
bruit, et le signal s peut être écrit sous la forme αp, où α est une amplitude complexe
inconnue, et p décrit le signal qu’on cherche. Les détecteurs sont conçus suivant le
critère de Neyman-Pearson. Il vise à maximiser la probabilité de détection (PD) pour
une probabilité de fausse alarme (PFA) fixe, qui est la probabilité de décider que la
cible est présente, alors qu’en fait elle ne l’est pas. Le test optimal en fonction de ce
critère est le rapport de vraisemblance (RV) donné par :

Λ(x) =
p(x|H1)

p(x|H0)

H1

≷
H0

η . (7)

Le seuil de détection η est déterminé selon une valeur fixe pour la probabilité de fausse
alarme PFA = k et calculé comme :

PFA = P(Λ(x;H0) > η) = k , (8)

Le but de ce chapitre est de fournir des expressions analytiques pour cette équation.
Puisque les paramètres statistiques du fond, sont supposés être inconnus, ils doivent
être estimés à partir de x1, . . . ,xN ∼ CN (µ,Σ) une série de N IID données sec-
ondaires sans cible. Ensuite, le détecteur adaptatif est obtenu en remplaçant dans
Eq. (7)les paramètres inconnus par leurs estimations menant au test de rapport de
vraisemblance généralisé (RVG).

0.2.2.1 Adaptive Matched Filter

Le filtre adapté (MF) est le détecteur optimal pour maximiser le rapport du signal au
bruit en présence d’un bruit additif gaussien avec des paramètres connus Kay (1998).
Et le détecteur MF prend la forme:

ΛMF =
|pH Σ−1 (x− µ)|2

(pH Σ−1 p)

H1

≷
H0

λ . (9)

La courbe “PFA-seuil” correspond au comportement statistique d’un détecteur sous
hypothèse nulle. Par ailleurs, la relation “PFA-seuil” est donnée par Kay (1998):

PFAMF = exp (−λ). (10)

Le filtre adapté adaptatif (AMF), noté Λ
(N)
AMF Σ̂ pour souligner la dépendance avec

N , est habituellement construit en remplaçant la matrice de covariance Σ par son
estimateur Σ̂ obtenu à partir des N données secondaires. Le vecteur moyenne est
généralement connu. Ainsi, la version adaptative devient:

Λ
(N)
AMF Σ̂ =

|pH Σ̂
−1

(x− µ)|2

(pH Σ̂
−1

p)

H1

≷
H0

λ . (11)

Alors, la relation théorique “PFA-seuil” est donnée par Robey et al. (1992) pour un
estimateur suivant une distribution Wishart obtenu avec Σ̂ = Σ̂CSCM :

PFAAMF Σ̂ = 2F1

(
N −m+ 1, N −m+ 2; N + 1; − λ

N

)
, (12)
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où 2F1(·) est la fonction hypergéométrique Abramowitz et al. (1964) définie comme:

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1
(1− tz)a

dt . (13)

Ce détecteur possède les propriétés Taux de Fausse Alarme Constant (TFAC) dans
le sens où l’expression de fausse alarme ne dépend que de la dimension du vecteur
m et le nombre de données secondaires utilisées pour l’estimation N . Notez qu’il
est également indépendant de la matrice de covariance de bruit Σ. Cependant, sa
performance s’appuie fortement sur le bon ajustement du modèle gaussien et le taux
de fausses alarmes est fortement augmenté lorsque l’hypothèse normale n’est pas
vérifiée.

0.2.2.2 Détecteur de Kelly

Le détecteur de Kelly a été établi dans Kelly (1986). Dans ce cas, on suppose que la
matrice de covariance Σ est inconnue, le vecteur moyenne est censé être connu. Par
conséquent, le détecteur de Kelly adaptatif prend la forme suivante:

Λ
(N)
KellyΣ̂ =

|pH Σ̂
−1
CSCM (x− µ)|2(

pH Σ̂
−1
CSCMp

) (
N + (x− µ)H Σ̂

−1
CSCM (x− µ)

)
H1

≷
H0

λ , (14)

où λ = 1 − η− 1
N+1 . Comme montré dans Kelly (1986), la PFA pour le test de Kelly

est donnée par:

PFAKelly = (1− λ)N−m+1 . (15)

Le détecteur de Kelly est un test TFAC, dans lequel la PFA est indépendante de
la véritable matrice de covariance. Cependant, il n’a pas de propriété d’optimalité
connue dans le sens de maximiser la probabilité de détection pour une probabilité de
fausse alarme donnée comme expliqué dans Kelly (1986).

0.2.2.3 Adaptive Normalized Matched Filter

Le filtre adapté normalisé (NMF) est obtenu lorsque l’on considère que la matrice de
covariance est différente dans les deux hypothèses; c’est à dire que le fond a la même
structure de covariance mais une variance différente. Le détecteur NMF peut être
écrit selon Scharf and Friedlander (1994):

ΛNMF =
|pH Σ−1 (x− µ)|2

(pH Σ−1p)
(
(x− µ)H Σ−1 (x− µ)

)
H1

≷
H0

λ , (16)

où λ = 1− η− 1
m et pour lequel on a Scharf and Friedlander (1994):

PFANMF = (1− λ)m−1 . (17)
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Le filtre adapté normalisé adaptatif (ANMF) est généralement obtenu lorsque la ma-
trice de covariance du bruit inconnue est remplacée par une estimation menant à
Kraut et al. (2001):

Λ
(N)
ANMF Σ̂ =

|pH Σ̂
−1

(x− µ)|2(
pH Σ̂

−1
p
) (

(x− µ)H Σ̂
−1

(x− µ)
)
H1

≷
H0

λ . (18)

Et la PFA pour un estimateur suivant une distribution de Wishart obtenue avec
Σ̂ = Σ̂CSCM peut s’écrire selon Kraut et al. (2001):

PFAANMF Σ̂ = (1− λ)a−1 2F1(a, a− 1; b− 1;λ) , (19)

où a = N −m+ 2 and b = N + 2.
Ce test de détection détient des propriétés TFAC importantes comme que sa distri-
bution est indépendante de la matrice de covariance de bruit.

0.3 Détection de cibles dans un environnement gaussien

Le but de ce chapitre est de généraliser les méthodes classiques de détection de cibles
dans le cas où le vecteur moyenne est inconnu et doit être estimé.

0.3.1 Détection Gaussienne de moyenne différent de zéro

Supposons maintenant que le vecteur moyenne µ est inconnu comme c’est le cas par
exemple en HSI et dérivons les nouveaux schémas de détection. Puis, en utilisant le
calcul standard sur les distributions de Wishart, récapitulé dans la Section 0.2.1, les
distributions de chaque test de détection sont fournies.

0.3.1.1 Adaptive Matched Filter

Quand la matrice de covariance et le vecteur moyenne sont à la fois inconnus, ils sont
remplacés par leurs estimations à partir des données secondaires dans Eq. (9) et le
détecteur AMF s’écrit:

Λ
(N)
AMF Σ̂,µ̂ =

|pH Σ̂
−1

(x− µ̂)|2

(pH Σ̂
−1

p)

H1

≷
H0

λ, (20)

où la notation Λ
(N)
AMF Σ̂,µ̂ est utilisée pour souligner la dépendance sur le vecteur

moyenne estimé µ̂. La distribution de ce test de détection est donnée dans la propo-
sition suivante, à travers sa PFA.
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Proposition 0.3.1. Sous des hypothèses gaussiennes, la relation théorique entre
la PFA et le seuil est donnée par

PFAAMF Σ̂,µ̂ = 2F1

(
N −m, N −m+ 1; N ; − λ′

N − 1

)
, (21)

où λ′ = (N−1)
(N+1)

λ, Σ̂ = Σ̂SCM et µ̂ = µ̂SMV , rappelé dans la Section 0.2.1.

0.3.1.2 Détecteur de Kelly

Le détecteur de Kelly pour le vecteur moyenne inconnu et la matrice de covariance
inconnue doit être dérivé car il n’est pas le Kelly précédent dans lequel une estimation
du vecteur moyenne est branchée. Suivant les mêmes lignes que dans Kelly (1986),
nous supposons maintenant que tant le vecteur moyenne et la matrice de covariance
sont inconnus. Ainsi, le RVG peut maintenant s’écrire selon la définition suivante.

Definition 0.3.1 (Le détecteur de Kelly généralisé). Sous des hypothèses gaussi-
ennes, l’extension du test de Kelly prend la forme suivante lorsque le vecteur
moyenne et la matrice de covariance du fond sont tous les deux inconnus:

Λ =
β(N)

∣∣∣pHŜ−10 (x− µ̂0)
∣∣∣
2

(pHŜ−10 p)
(

1 + (x− µ̂0)
H Ŝ−10 (x− µ̂0)

)
H1

≷
H0

λ, (22)

où β(N) =
N + 1

N
, λ =

η − 1

η
et

• Ŝ0 =
N∑

i=1

(xi − µ̂0)(xi − µ̂0)
H ,

• µ̂0 =
1

N + 1

(
x +

N∑

i=1

xi

)
.

On peut remarquer que tous les deux l’estimateur de la matrice de covariance Ŝ0

et l’estimateur la moyenne µ̂0 dépendent de la donnée sous test x, ce qui n’est pas
le cas dans d’autres détecteurs classiques où les paramètres inconnus sont estimés à
partir de données secondaires sans cibles. Par conséquent, Ŝ0 et x − µ̂0 ne sont pas
indépendants. De plus, l’estimateur de la matrice de covariance Ŝ0 ne suit pas une
distribution de Wishart à cause de l’estimateur de la moyenne µ̂0. En conséquence ,
la dérivation de la distribution de ce test est très difficile.

Egalement, on peut utiliser le schéma classique rappelé dans Eq. (14) et remplacer
l’estimateur classique de la moyenne basé uniquement sur des données secondaires.
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Cela mène au détecteur de Kelly “ plug-in”:

Λ
(N)
KellyΣ̂,µ̂ =

|pH Σ̂
−1
SCM (x− µ̂SMV )|2(

pH Σ̂
−1
SCMp

) (
N + (x− µ̂SMV )H Σ̂

−1
SCM (x− µ̂SMV )

)
H1

≷
H0

λ . (23)

Dans ce cas, la distribution peut être obtenue. Tel est l’objet de la proposition suiv-
ante.

Proposition 0.3.2. La relation théorique entre la PFA et le seuil est donnée par

PFAKellyΣ̂,µ̂ =

Γ(N)

Γ(N −m+ 1) Γ(m− 1)

∫ 1

0

[
1 +

λ

1− λ

(
1− u

N + 1

)]m−N
uN−m(1− u)m−2 du ,

(24)

où Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .

0.3.1.3 Adaptive Normalized Matched Filter

De même, l’ANMF dans le cas où le vecteur moyenne et la matrice de covariance sont
tous les deux estimés devient:

ΛANMF Σ̂,µ̂ =
|pH Σ̂

−1
(x− µ̂)|2

(pH Σ̂
−1

p)
(

(x− µ̂)H Σ̂
−1

(x− µ̂)
)
H1

≷
H0

λ . (25)

Proposition 0.3.3. La relation théorique entre la PFA et le seuil est donnée par

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (26)

où a = (N − 1)−m+ 2 and b = (N − 1) + 2, Σ̂ = Σ̂SCM et µ̂ = µ̂SMV ,.

0.3.1.4 Simulations

Dans cette section, nous validons l’analyse théorique sur des données simulées. Les
expériences ont été réalisées sur des vecteurs gaussiens de dimension m = 5, pour
différentes valeurs de N , le nombre de données secondaires et les calculs ont été faits
pour 106 essais de Monte-Carlo. La vraie covariance est choisie comme une matrice
de Toeplitz dont les entrées sont Σi,j = ρ|i−j| et ρ = 0.4. Le vecteur moyenne est réglé
pour avoir toutes les entrées égales à (3 + 4j).

Fig. 1 montre la régulation de la fausse alarme pour le MF, l’AMF lorsque seule
la matrice de covariance est inconnue et l’AMF où à la fois la matrice de covariance et
le vecteur moyenne sont inconnus pour différentes valeurs de N . L’ajustement parfait
entre les courbes vertes et jaunes illustre les résultats de la Proposition 0.3.1.
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Figure 1: PFA par rapport au seuil de l’AMF lorsque (1) µ et Σ sont connus (MF)
(courbes rouges et noires) (2) seulement µ est connue (courbes grises et bleues) (3)
Proposition 0.3.1: les deux µ et Σ sont inconnus (courbes jaunes et vertes).

Fig. 2 et Fig. 3 présentent la régulation de la FA pour le détecteur de Kelly et
l’ANMF respectivement, sous hypothèse gaussienne. Pour plus de clarté, les résultats
sont affichés en termes de seuil η respectivement d’après Eq. (14), η = (1−λ)−(N+1),
et Eq. (16), η = (1 − λ)−m, et une échelle logarithmique est utilisée. Cela valide les
résultats des Propositions 0.3.2 et 0.3.3 pour les SCM-SMV.

0.3.2 Détection des anomalies

Récapitulons maintenant les détecteurs d’anomalies les plus populaires (voir e.g.
Nasrabadi (2014) pour une étude complète sur les méthodes de détection d’anomalies).

0.3.2.1 Détecteur de Reed-Xiaoli

Le détecteur original de Reed-Xiaoli (RXD) proposé dans Reed and Yu (1990) est
communément considéré comme le détecteur d’anomalies de référence pour les données
hyperspectrales. Le schéma de détection prend la forme:

Λ(X) =
(XαT )T (XXT )−1(XαT )

ααT

H1

≷
H0

λ .

Comme les données hyperspectrales ne sont pas de moyenne nulle, nous considérons
maintenant que le fond bi est distribué selon N (µ,Σ) et le vecteur moyenne µ est
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Figure 2: PFA par rapport au seuil de le detécteur ”plug-in” de Kelly lorsque (1)
seulement µ est connue (courbes grises et bleues) (2) Proposition 0.3.2: les deux µ
et Σ sont inconnus (courbes jaunes et vertes).
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Figure 3: PFA par au rapport seuil de l’ANMF lorsque (1) µ et Σ sont connus (NMF)
(courbes rouges et noires) (2) seulement µ est connue (courbes grises et bleues) (3)
Proposition 0.3.3: les deux µ et Σ sont inconnus (courbes jaunes et vertes).
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censé être connu. Dans le cas où juste une anomalie dans les données sous test
doit être détectée, le vecteur d’amplitude correspondant peut être écrit comme αi =
[0 . . . 0 1 0 . . . 0]T où 1 est à la position iieme et le détecteur précédent s’écrit:

ΛRXD = (xi − µ)T Σ̂
−1
CSCM(xi − µ)

H1

≷
H0

λ .

Enfin, étant donné que le vecteur moyenne est généralement inconnu, il peut être
remplacé sur le détecteur dans son estimation par µ̂SMV . Le détecteur résultant,
communément appelé RVG en deux étapes, s’écrit ainsi:

ΛARXD = (xi − µ̂SMV )T Σ̂
−1
SCM(xi − µ̂SMV )

H1

≷
H0

λ . (27)

L’estimation de la matrice de covariance Σ̂SCM dans Eq. (27), est effectuée sur tout
l’ensemble de données, c’est à dire y compris le vecteur xi sous test. Dans ce qui suit,
le test dans Eq. (27) sera désigné comme RXD Adaptatif (ARXD), pour souligner le
fait que le vecteur moyenne inconnu est remplacé par son estimation.

0.3.2.2 Détecteur d’anomalies de Kelly

Après le développement proposé dans Kelly (1986), nous détaillons maintenant un
détecteur d’anomalies classique souvent désigné par erreur comme le RXD. Comme
dans le détecteur de Kelly classique, la matrice de covariance Σ est inconnue et le
vecteur moyenne µ est censé être connu. Toutefois, pour la dérivation du détecteur
d’anomalies, l’amplitude du signal α est supposée être connue et le paramètre inconnu
est maintenant le vecteur de direction p. Maximisant le RV sur la signature spectrale
inconnue p, il est facile de montrer que le test de RVG résultant est équivalent à:

ΛKellyAD Σ̂ = (x− µ)T Σ̂
−1
CSCM(x− µ)

H1

≷
H0

λ . (28)

Comme discuté ci-dessus, lorsque le vecteur moyenne est inconnu, il peut être
remplacé sur le détecteur (RVG en deux étapes) par son MV ayant:

Λ
(N)

KellyAD Σ̂,µ̂
= (x− µ̂SMV )T Σ̂

−1
SCM(x− µ̂SMV )

H1

≷
H0

λ . (29)

La distribution de ce test de détection est donnée dans la proposition suivante.

Proposition 0.3.4. La distribution du détecteur sous l’hypothèse gaussienne est
donnée par

N −m
m (N + 1)

Λ
(N)

KellyAD Σ̂,µ̂
∼ Fm,N−m , (30)

où Fm,N−m est la distribution F décentrée avec m et N − m degrés de liberté et

Σ̂ = Σ̂SCM et µ̂ = µ̂SMV .
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0.3.2.3 RXD Normalisé et détecteur de cibles uniforme

Nous rappelons maintenant deux variantes populaires de la distance de Mahalanobis
décrit dans Chang and Chiang (2002): RXD Normalisé (N-RXD) et le détecteur de
cibles uniforme (UTD).
Le N-RXD prend la forme:

ΛN−RXD =
(x− µ̂SMV )T

||x− µ̂SMV ||
Σ̂
−1
SCM

(x− µ̂SMV )T

||x− µ̂SMV ||
H1

≷
H0

λ , (31)

où ||x − µ̂SMV ||2 = (x − µ̂SMV )T (x − µ̂SMV ) représente la norme euclidienne du
vecteur.
L’UTD est un autre test de détection d’anomalie répandu. Il a d’abord été introduit
dans Harsanyi (1993) et est défini comme:

ΛUTD = (1− µ̂SMV )T Σ̂
−1
SCM(x− µ̂SMV )

H1

≷
H0

λ . (32)

avec 1 = [1, . . . , 1]T est le vecteur unité de taille m.

0.3.2.4 Détecteur d’anomalies de Kelly generalisé

Dans le cas où la matrice de covariance et le vecteur moyenne sont à la fois inconnus,
nous devons dériver un nouveau détecteur. Cette stratégie est similaire à celle pro-
posée dans la section 0.3.1.2 pour le test de détection de Kelly généralisé. Ensuite, le
RV doit être maximisé par rapport à p. Le maxima est obtenu en prenant:

p̂ =
N + 1

N

(x− µ0)

α
. (33)

Par conséquent, le détecteur résultant prend la forme:

ΛG−KellyAD = (x− µ̂0)
H Ŝ−10 (x− µ̂0)

H1

≷
H0

λ , (34)

où Ŝ0 =
∑N

i=1(xi − µ̂0)(xi − µ̂0)
H , et µ̂0 =

1

N + 1

(
x +

∑N
i=1 xi

)
. A nouveau,

l’estimateur du vecteur moyenne µ0 et la matrice de covariance S0 dépendent de
la donnée sous test x. Ainsi, x− µ̂0 et Ŝ0 ne sont pas indépendants.

0.4 Détection de cibles dans un environnement non-

gaussien

Ce chapitre examine les caractéristiques principales de la famille des distributions
elliptiques et les correspondants estimateurs robustes, M -estimateurs. Nous décrivons
les différentes techniques de détection de cibles analysées et présentons les détecteurs
d’anomalies dans un environnement non-gaussien.
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0.4.1 Distributions elliptiques

Dans cette section, nous présentons la classe des distributions elliptiques complexes
Krishnaiah and Lin (1986), Ollila et al. (2012). Elle décrit une famille de distributions
multivariées qui servent principalement comme des alternatives à longue queue au
modèle normal multivarié.

0.4.1.1 Definition

Definition 0.4.1. Un vecteur aléatoire complexe de dimension m z a une distribution
elliptique complexe (CE) si sa fonction caractéristique est de la forme:

Φz(c) = exp
(
j <(cH µ)

)
φ(cH Σ c) , (35)

pour une fonction φ : R+ → R, appelée fonction génératrice, une matrice semi-définie
positive Σ, appelée matrice de dispersion et µ ∈ Cm le vecteur de position. Nous
écrirons z ∼ CE(µ,Σ, φ).

Theorem 0.4.1. (Théorème de représentation stochastique)
Un vecteur aléatoire complexe de dimension m z ∼ CE(µ,Σ, φ) avec un rang(Σ) =
k ≤ m si et seulement si il admet la représentation suivante:

z
d
= µ+RAU (k), (36)

où U (k) est un vecteur aléatoire de dimensionk distribué uniformément sur la k-sphère
complexe unitaire CSk; Rest une variable aléatoire non négative appelée génératrice
de la forme, étant stochastiquement indépendante de U (k); µ ∈ Cm et Σ = A AH est
une factorisation de Σ où A ∈ Cm×k avec rank(A) = k.

La génératrice de la forme R détermine la forme de la distribution, en particulier
la queue de la distribution. D’après z ∼ CE(µ,Σ, φ), il n’entrâıne pas que z a une
DDP fz(·). Si elle existe, elle peut être liée à la fonction de densité de la génératrice
de la forme R, à condition que R soit absolument continue. Alors, la DDP de z a la
forme:

fz(z) = cm,h|Σ|−1h
(
(z− µ)H Σ−1 (z− µ)

)
(37)

où h est une fonction telle que (37) définit une DDP dans Cm. La fonction h est
généralement appelée générateur de densité et elle est supposé être connue seulement
approximativement. La classe de distributions elliptiques comprend un grand nombre
de distributions largement répandues, comme par exemple la gaussienne multivariée
Goodman (1963), la distribution K Conte et al. (1991) ou la distribution de Student
multivariée Krishnaiah and Lin (1986).

0.4.2 Estimation robuste

Afin d’améliorer l’estimation des paramètres, l’objectif est de trouver un modèle ap-
proprié et utiliser les MLE correspondantes. Cette méthode conduit à des estimateurs
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asymptotiquement efficaces mais pas nécessairement robustes. En effet, l’estimateur
robuste est plutôt celui qui est encore assez fiable, quel que soit le départ de données,
à défaut d’être optimale dans certains scénarios. Dans des applications réelles, bien
que les distributions elliptiques offrent beaucoup de distributions possibles, le risque
que les données ne suivent pas le modèle considéré demeure.

0.4.2.1 M -Estimators

Lorsque le générateur de densité hm est inconnu, les M -estimateurs permettent une
approche alternative pour l’estimation robuste des paramètres des populations el-
liptiques. Supposons z1, z2, ..., zN échantillons IID à partir d’une CE(µ,Σ, hm) avec
N > m. Les M -estimateurs complexes de position et de dispersion sont définis comme
les solutions conjointes de:

µ̂N =

N∑

i=1

u1(ti) zi

N∑

i=1

u1(ti)

, Σ̂N =
1

N

N∑

i=1

u2
(
t2i
)

(zi − µ̂) (zi − µ̂)H , (38)

où ti =
(
(zi−µ̂)H Σ̂

−1
(zi−µ̂)

)1/2
et u1(.), u2(.) dénotent toute fonctions de pondération

valeur réelle sur la forme quadratique ti. L’objectif principal de u1(.) et u2(.) est
d’atténuer les contributions des valeurs aberrantes. Le choix de u1(.) et u2(.) n’a
pas besoin d’être lié à une distribution elliptique particulière et, par conséquent, les
M -estimateurs constituent une large classe d’estimateurs qui inclut les MLE pour le
cas particulier u1(t) = −h′m (t2) /hm (t2) et u2 (t2) = u1(t).

L’existence et l’unicité ont été prouvées dans le cas réel, à condition que les fonc-
tions u1(.), u2(.) vérifient un ensemble d’hypothèses générales formulées par Maronna
Maronna (1976). Olilla a montré dans Ollila and Koivunen (2003a) que ces conditions
sont également vérifiées dans le cas complexe.

Remark 0.4.1. En général, une fonction de pondération consistante devrait tendre
vers zéro à l’infini . Cela signifie que des poids petits sont donnés à ces observations
qui sont très éloignées en termes de la forme quadratique ti. Les observations qui
restent lointaines du modèle de base auront une moindre contribution à l’estimation
des paramètres. Par exemple, la SCM donne un poids unitaire (u2(t) = u1(t) = 1)
à toutes les observations, et donc est naturellement non robuste. Lorsqu’il s’agit
de modèles à queue lourde, l’utilisation d’estimations robustes diminue l’impact des
échantillons très impulsifs et les valeurs aberrantes possibles dans les cellules de
référence.

0.4.2.1.1 Exemples de M-estimateurs Nous présentons ici quelques exemples
des M -estimateurs.
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0.4.2.1.1.1 Huber type M -estimateurs Les M -estimateurs d’Huber peu-
vent être obtenus comme les solutions des équations implicites suivantes:

µ̂Hub =
1

N

N∑

i=1


zi 1ti≤k + k

zi(
(zi − µ̂Hub)H M̂−1

Hub (zi − µ̂Hub)
)1/2 1ti>k


 , (39)

M̂Hub =

1

Nβ

N∑

i=1

[
(zi − µ̂Hub) (zi − µ̂Hub)H 1t2i≤k2 + k2

(zi − µ̂Hub)(zi − µ̂Hub)H

(zi − µ̂Hub)H M̂−1
Hub (zi − µ̂Hub)

1t2i>k
2

]
,

(40)

où t2i est la forme quadratique (zi − µ̂Hub)H Σ̂
−1
Hub (zi − µ̂Hub) et 1(·) est la fonction

indicateur définie comme 1A = 1 si A et 1A = 0 autrement.

Les constantes k et β sont des paramètres réglables qui permettent de choisir le
pourcentage de données atténuées. Le choix q = 1 donne u1 = 1 et u2 = 1 et les
estimateurs d’Huber correspondent respectivement à la SMV et à la SCM, alors que
le choix q = 0 mène à u1(t) = t−1 et u2(t

2) = mt−2 et les estimateurs d’Huber
correspondent à des estimateurs du Point Fixe définis ci-dessous.. Pour une valeur
intermédiaire de q, les estimateurs d’Huber pourraient être interprétés comme un
mélange entre le Point Fixe et la SCM classique. Les valeurs de la forme quadratique
inférieures à k2 sont conservées et traitées comme avec les estimateurs SMV et SCM
(correspondant à la première sommation); et les valeurs de t2i supérieures à k2 sont
atténués par la fonction de pondération de manière similaire à l’approche Point Fixe.
Dans un contexte gaussien complexe, il peut être établi que lorsque N tend vers
l’infini, la proportion de données traitées avec le SCM est égale au paramètre q.

0.4.2.1.1.2 Estimateurs du Point Fixe Les estimateurs du Point Fixe (FPE),
selon la définition proposée par Tyler Tyler (1987), satisfont les équations suivantes:

µ̂FP =

N∑

i=1

xi(
(xi − µ̂FP )T Σ̂

−1
FP (xi − µ̂FP )

)1/2

N∑

i=1

1
(

(xi − µ̂FP )T Σ̂
−1
FP (xi − µ̂FP )

)1/2

(41)

Σ̂FP =
m

N

N∑

i=1

(xi − µ̂FP ) (xi − µ̂FP )T

((xi − µ̂FP )T Σ̂
−1
FP (xi − µ̂FP ))

(42)

qui sont des cas particuliers de (38) pour u1(t) = t−1 et u2 (t2) = mt−2. Ils sont
définis par les équations de point fixe et peuvent être facilement calculés en utilisant
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un algorithme récursif. Les FPE ont été largement étudiés en statistiques et dans la
littérature de traitement du signal. Nous nous référons à Pascal et al. (2008b) pour
une analyse détaillée de la performance.
Il est intéressant de souligner que Σ̂SCM et Σ̂FP ont la même distribution gaussienne
asymptotique qui diffère sur leur second moment par un facteur m+1

m
, i.e. pour N suff-

isamment grand, Σ̂FP se comporte comme une matrice de Wishart avec m
m+1

N degrés

de liberté. Remarquons que la distribution de M̂FP ne dépend pas de la distribution
elliptique spécifique. Afin d’assurer la consistence et la gaussianité asymptotique, la
répartition de la population ne peut pas être trop fortement concentrée autour du
centre. La consistance et la distribution asymptotique de M̂FP sont démontrées pour
l’estimation conjointe du vecteur de position et la matrice de dispersion dans le cas
réel dans Tyler (1987).

0.4.3 Détection non-gaussienne adaptative

L’objectif de cette section est d’étendre les détecteurs gaussiens classiques pour le
cadre non-gaussien. Cette section présente la contribution la plus importante de ce
travail.

0.4.3.1 Adaptive Normalized Matched Filter

Si le fond ne respecte pas l’hypothèse gaussienne, les performances du détecteur peu-
vent être détériorées, augmentant le taux de fausses alarmes. Pour tenir compte de
l’hétérogénéité et de la non-gaussianité pour la modélisation du fond, une solution
possible est d’utiliser le test ANMF construit avec des estimateurs robustes.
Nous remplaçons la matrice de covariance et le vecteur moyenne par des MLE ou
des M -estimateurs robustes de dispersion et de position car ils sont des estimateurs
consistants de la matrice de covariance et le vecteur moyenne dans la classe des dis-
tributions elliptiques (RVG en deux étapes). Ainsi, le ANMF prend la forme (voir
Eq. (25)):

ΛANMF Σ̂,µ̂ =
|pH Σ̂

−1
N (x− µ̂N)|2

(pH Σ̂
−1
N p)

(
(x− µ̂N)H Σ̂

−1
N (x− µ̂N)

)
H1

≷
H0

λ . (43)

où µ̂N et Σ̂N dénotent tout couple de M -estimateurs et où N souligne la dépendance
avec le nombre de données secondaires. Lorsque les M -estimateurs sont utilisés con-
jointement avec le ANMF, la fausse-alarme peut être réglée selon la proposition suiv-
ante.
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Proposition 0.4.1. La relation théorique entre la PFA et le seuil pour l’ANMF,
construite avec des M-estimateurs µ̂N et Σ̂, est donnée par:

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (44)

avec a = σ1(N − 1)−m+ 2 et b = σ1(N − 1) + 2, où N est le nombre de données
secondaires et m la dimension des vecteurs. σ1 est liée au choix particulier des
M-estimateurs et obtenue selon:

σ1 =
E [ψ2

2(σt2)]

m (m+ 1) (1 + [m(m+ 1)]−1E [σt2ψ′2(σt
2)] )2

. (45)

Bien que les FPE n’appartiennent pas à la classe des M -estimateurs (car ils ne sat-
isfont pas les conditions de Maronna), ces résultats peuvent également être étendues
à la FPE. La“PFA-seuil ” approximée est obtenue en remplaçant dans Eq. (26) N−1
par m

m+1
(N − 1) puisque σ1 = m+1

m
qui est une extension de Pascal et al. (2006) pour

le vecteur moyenne inconnu.

Comme le fond est non-gaussien et/ou hétérogène, la distribution statistique de
l’ANMF construit avec la SCM ne peut pas être prédite mais elle va sûrement varier
avec le fond. L’ANMF construit avec les M -estimateurs (et en particulier les FPE)
et en particulier il permet de surmonter la non-gaussianité et/ou de l’hétérogénéité
des données. Cela implique, grâce aux propriétés de la CE, que le détecteur se com-
porte selon la même distribution quelle que soit la vraie CE, c’est à dire qu’elle est
indépendante de la distribution (voir Ollila and Tyler (2012)).

0.4.3.2 Simulations

La régulation de la FA est présentée ici pour le test ANMF.

0.4.3.2.0.3 Analyse gaussienne
Les expériences ont été menées sur des vecteurs gaussiens de dimension m = 10 pour
N = 50 données secondaires et les calculs ont été faits par 106 essais de Monte-Carlo.
La vraie covariance est choisie comme une matrice de Toeplitz dont les entrées sont
Σi,j = ρ|i−j| et ρ = 0.4. Le vecteur moyenne est réglé pour avoir toutes les entrées
égales à (3 + 4j).
La Fig. 4 présente la régulation FA pour la ANMF sous l’hypothèse gaussienne, tant
pour les FPE comme pour les SMC-SMV. La superposition entre relation théorique
(courbe verte) et des données simulées (courbe jaune) valide les résultats de la Propo-
sition 0.4.1 et il montre que le facteur de correction σ1 (Eq. (45)) permet de réguler
parfaitement la FA, même dans le contexte gaussien.

0.4.3.2.0.4 Analyse non-gaussienne
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Figure 4: PFA par rapport au seuil pour l’ANMF sous une distribution gaussienne
pour m = 10 et N = 50 lorsque (1) les SCM-SMV sont utilisés (courbes rouges et
noires) (2) Proposition 0.4.1: les FPE sont utilisés (courbes jaunes et vertes).

Dans cette section, les expériences ont été réalisées sur une K-distribution avec
le paramètre de forme ν = 0.5 pour des vecteurs gaussiens de dimension m = 10,
N = 50 données secondaires et les calculs ont été faits par 106 essais de Monte-
Carlo. Sous une K-distribution, comme représenté sur la Fig. 5, la relation théorique
“PFA-seuil” dans l’Eq. (44) est superposée avec les simulations de Monte-Carlo pour
les FPE, tandis que pour les SCM-SMV, la relation théorique “PFA-seuil” obtenue
dans la Section 0.3.1.3 n’est plus valide (puisque l’hypothèse gaussienne n’est plus
respectée). Nous avons laissé la relation théorique “PFA-seuil” pour les estimateurs
gaussiens (courbe noire) pour information. Notez que sur les deux contextes gaussien
et K-distribution, la régulation de la FA pour les FPE conduit aux mêmes résultats.
Ainsi, la courbe ne dépend que de la taille du vecteur m et du nombre de données
secondaire N . Ce fait met l’accent sur l’invariance maximale obtenue avec le ANMF
construit avec les FPE, c’est à dire la distribution du détecteur sous l’hypothèse de
cibles absentes reste la même pour toutes les différentes distributions impulsives dans
la classe de distributions CE.

0.4.4 Détection des anomalies

Le détecteur d’anomalies de Kelly présente l’avantage suivant: le vecteur moyenne,
la matrice de covariance et le vecteur d’observation sont indépendants les uns des
autres. Ce n’est pas le cas pour le Kelly généralisé ou le RXD classique. Cela
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Figure 5: PFA par rapport au seuil pour l’ANMF sous une K-distribution avec le
paramètre de forme ν = 0.3 pour m = 10 and N = 50 lorsque (1) les SCM-SMV
sont utilisés (courbes rouges et noires) (2) Proposition 0.4.1: les FPE sont utilisés
(courbes jaunes et vertes).
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permet de remplacer les paramètres inconnus par un MLE où des M -estimateurs et
le détecteur peut être écrit ainsi:

ΛKellyAD Σ̂,µ̂ = (x− µ̂N)T Σ̂
−1
N (x− µ̂N)

H1

≷
H0

λ, (46)

et µ̂N et Σ̂
−1
N sont les mêmes que dans Eq. (38). Il est important de souligner que la

distribution de ce détecteur est encore une question ouverte. En fait, il va sûrement
dépendre de la distribution CE sous-jacente, à savoir la distribution va changer avec
le choix de hm(·).

0.5 Application à l’imagerie hyperspectrale

Les propositions théoriques ont été analysées dans les chapitres précédents à l’aide
de simulations. Ici, nous discutons les résultats obtenus dans de vraies images hyper-
spectrales. Les schémas de détection sont évalués pour l’image Blind Test HYMAP.

0.5.1 Image Blind Test HYMAP

Nous illustrons ici la non-gaussianité d’une image hyperspectrale. La scène analysée
est le “blind test” fournie dans Snyder et al. (2008). L’image a été collecté en Juillet
2006, dans les alentours de la petite ville de Cooke City, Montana, USA. L’image
hyperspectrale a été recueillie par le capteur HYMAP exploité par HyVista. L’image
HYMAP a une résolution au sol d’environ 3 mètres. Les véhicules civils et des petits
panneaux de tissu ont été utilisés comme cibles. L’image est constituée de 280× 800
pixels et 126 bandes spectrales. La composition de la couleur réelle de la scène est
représentée sur Fig. 6.

Figure 1. Color rendering of self test hyperspectral image.

 

 

Figure 2. Screenshot of home page for Target Detection Blind Test website. 

 

,,������

Figure 6: Composition de la vraie couleur de la scène HYMAP.

Les diagrammes de dépassement sont essentiellement des histogrammes cumulat-
ifs des valeurs de distance de Mahalanobis, et ils fournissent un moyen utile pour
visualiser les queues lourdes de distributions multivariées. La Fig. 7 présente les
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Figure 7: Fonction de répartition complémentaire de la distance de Mahalanobis
P(T 2 > λ) pour l’image HYMAP (bleu) et la relation théorique pour la distribution
normale multivariée (jaune et rouge).

résultats théoriques lorsque la distribution gaussienne est présumée et la distribution
des données hyperspectrales expérimentales qui dévie du comportement attendu. Cela
suggère la nécessité des distributions non-gaussiennes pour modéliser le fond pour
l’imagerie hyperspectrale.

0.5.1.1 Régulation de la Fausse Alarme

Puisque les données hyperspectrales sont réeles et positives, nous proposons d’utiliser
un filtre de Hilbert pour les rendre complexes et faire correspondre la distribution des
détecteurs de cibles. Pour éviter le problème bien connu de la haute dimension, nous
avons choisi séquentiellement huit bandes dans la représentation complexe. Dans
cette approche, la matrice de covariance et le vecteur moyenne sont tous les deux
estimés en utilisant une fenêtre glissante de taille 11× 9, ayant N = 98 des données
secondaires.

Nous montrons dans la Fig. 8 le résultat de la méthode de détection ANMF
classique construit avec les SMV-SCM (courbe rouge) et les FPE robustes (courbe
jaune). En outre, les relations théoriques “PFA-seuil” sont représentées pour les esti-
mateurs SMV-SCM (courbe noire) et les FPE (courbe verte). Les résultats obtenus
sur des données réelles HSI sur une région non-gaussienne sont en accord avec la
relation théorique calculée pour les FPE, tandis que la distribution du détecteur con-
struit avec les SMV-SCM ne suit plus la relation théorique “PFA-seuil” pour un fond
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non-gaussien. Remarquons que la distribution du détecteur sous l’hypothèse nulle ne
dépend pas du matériau sous-jacent, pour l’ANMF-FPE. En outre, la distribution du
détecteur peut dévier du comportement prévu dès lors que les estimateurs gaussiens
sont utilisés. Cela souligne l’intérêt des estimateurs robustes dans la détection de
cibles pour HSI et suggère son utilisation dans d’autres applications HSI où la ma-
trice de covariance et le vecteur moyenne sont inconnus et doivent être estimés à
partir du fond (e.g. classification, unmixing, etc.).
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Figure 8: PFA par rapport au seuil pour l’ANMF pour une scène HSI relle et m = 8
et N = 98 (1) les SCM-SMV sont utilisés (courbes rouges et noires) et (2) les FPE
sont utilisés (courbes jaunes et vertes).

0.5.1.2 Détection des anomalies

Nous présentons des résultats pour la détection d’anomalies sur une image hyper-
spectrale réelle dans laquel le fond ne peut pas être caractérisé avec une distribution
gaussienne et des cibles artificielles ont été introduites comme des anomalies.

0.5.1.2.1 Détecteur d’anomalies de Kelly robuste
Le jeu de données d’origine consiste à 50× 50 pixels avec 126 bandes. Ce jeu corre-
spond à la région en haut à gauche de la scène dans Fig. 6 à partir de laquelle nous
avons choisi séquentiellement neuf bandes. Pour les cibles artificielles avec signature
spectrale connue introduites comme des anomalies dans le fond, nous avons utilisé le
spectre de la Fig. 10 (a) comme endmember. Il caractérise le matériel de tissu de la
Fig. 10 (b) mesurée dans un laboratoire et disponible dans le projet de blind test.
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La Fig. 9 montre la position et la forme des cibles considérées. Pour cet exemple,
la matrice de covariance et le vecteur moyenne sont estimés en utilisant une fenêtre
glissante de taille 9× 9 ayant N = 80 de données secondaires.
Les résultats pour le ΛKelly AD construit avec les SMV-SCM, les FPE et les estima-
teurs de shrinkage sont présentés dans la Fig. 11, la FA est fixée à une valeur de
PFA = 0.03. Le paramètre de régularisation β a été fixé à β = 0.8 pour les estima-
teurs de shrinkage. Nous avons optimisé empiriquement les résultats sur β menant à
la valeur choisie. Dans ce cas, les FPE et notamment les shrinkage FPE sont capables
de localiser les cibles artificielles et présentent une diminution du nombre de fausses
alarmes. Cette amélioration est due au fait que les FPE traitent les valeurs aber-
rantes et les échantillons impulsifs afin pour eux d’avoir une moindre contribution
au processus de caractérisation du fond, tandis que les estimateurs SMV-SCM (et sa
version diagonal loaded) souffrent de la présence de pixels fortement réflectants dans
les données secondaires. Remarquez que les shrinkage FPE permettent une meilleure
détection par rapport aux FPE.

Figure 9: Jeu de données d’origine et la position des anomalies artificiels.

0.6 Conclusion

Des détecteurs de cibles classiques sont habituellement obtenus dérivant le rapport
de vraisemblance sous hypothèse gaussienne et remplaçant des paramètres incon-
nus du fond par leurs estimations. Dans la plupart des applications, des signaux
d’interférence sont supposés être gaussiens de moyenne nulle ou avec un vecteur
moyenne connu qui peut être enlevé et de matrice de covariance inconnue. Lorsque
le vecteur moyenne est inconnu, il doit être estimé conjointement avec la matrice de
covariance, comme c’est le cas par exemple dans l’imagerie hyperspectrale. Dans ce
travail, les versions adaptatives du filtre adapté classique et du filtre adapté normalisé,
ainsi que deux versions du détecteur Kelly sont calculées puis sont analysées dans le
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cas où le vecteur moyenne du fond n’est pas connu. Plus précisément, des expres-
sions théoriques pour la régulation de la fausses alarme sont dérivées et la propriété
TFAC est vérifiée pour permettre au détecteur d’être indépendant des paramètres
de nuisance. Il est intéressant de souligner que ces expressions sont essentielles pour
régler automatiquement le seuil du détecteur. Dans le cas contraire, des méthodes
numériques ou des simulations de Monte-Carlo doivent être utilisées conduisant à des
résultats moins précis.

Cette thèse propose également un nouveau type de détecteurs robustes permet-
tant de surmonter la non-gaussianité et l’hétérogénéité des données hyperspectrales
réels. Lors de la prise en compte de l’hétérogénéité et de la non-gaussianité, les
distributions elliptiques offrent des modèles fiables pour la caractérisation du fond.
Grâce à cette hypothèse non-gaussienne, ce travail met en évidence le fait que les
procédures d’estimation robustes sont une alternative intéressante aux estimateurs
gaussiens classiques. Les M -estimateurs pour le vecteur moyenne et la matrice de
dispersion sont décrits. Les performances des estimateurs robustes ont été étudiés.
Cette analyse révèle la supériorité de M -estimateurs dans un environnement non-
gaussien. L’objectif de cette thèse est alors non seulement de rappeler les méthodes
bien connues pour la détection de cibles, mais aussi de proposer des moyens de les
étendre au cadre non-gaussien. En outre, les expressions théoriques pour la régulation
de la fausse alarme sont prévus et la propriété TFAC est atteinte dans la classe des
distributions elliptiques.
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(a) SCM (b) SCM-DL

(c) FPE (d) Shrinkage FPE

Figure 11: Kelly AD construit avec des estimateurs robustes pour cibles artificielles
dans une HSI réelle.
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Résumé vii

0.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
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Notation

R Set of real numbers.
C Set of complex numbers.
E denotes the expectation,
T denotes the transpose operator,
H denotes the hermitian operator,
∗ denotes the conjugate operator.
∼ means “distributed as”,
d
= means “has the same distribution as” .
d→ denotes the convergence in distribution,
⊗ denotes the Kronecker product,
vec denotes the operator that transforms a m× n matrix into

a vector of dimension mn by concatenating the columns,
H0 denotes the signal absent (or null) hypothesis,
H1 denotes the signal present (or alternative) hypothesis,
H1

≷
H0

decides H1 if the result is greater and H0 if the result is lower

than a certain value,
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0m, n denotes the zero matrix of dimensions m× n .
K is the commutation matrix such that Kvec(A) = vec(AT ).
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cov(x) denotes the covariance of x,
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Tr denotes the trace operator,
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Introduction

Hyperspectral imaging (HSI) extends from the fact that for any given material, the
amount of emitted radiation varies with wavelength. HSI sensors measure the radi-
ance of the materials within each pixel area at a very large number of contiguous
spectral bands and provide image data containing both spatial and spectral infor-
mation (see Manolakis et al. (2003) for more details and references therein). A large
number of hyperspectral detection algorithms have been derived and explored over the
past years (see for e.g. Chang (2003), Manolakis et al. (2014)). Most of these methods
rely on classical Gaussian distribution assumption and need for the statistical charac-
terization of the background usually through first and second order parameters (i.e.
the mean vector and the covariance matrix). Classical detection methods assume that
background is zero mean or with known mean vector that can be exploited. However,
when the mean vector is unknown, as it is the case for hyperspectral imaging, it has
to be included in the detection process. We propose in this work an extension of
classical detection methods for both covariance matrix and mean vector unknown.

However, the actual distribution of the background pixels may differ from the
theoretically predicted under Gaussian hypothesis. In fact, as stated in Manolakis
and Marden (2002), the empirical distribution usually has heavier tails compared to
the Gaussian distribution, and these tails strongly influence the observed false-alarm
rate of the detector. The class of elliptically contoured distributions has already been
popularized for background characterization in HSI Manolakis and Marden (2002).
Although non-Gaussian models are assumed for background modeling and detectors
design, the parameters estimation is still performed using classical Gaussian-based
estimators; for example the covariance matrix generally determined by the Sample
Covariance Matrix and the mean vector with the Sample Mean Vector. We analyze
here some robust estimation procedures (M -estimators introduced in Huber (1964),
Maronna (1976), Tyler (1987)) more suitable when non-Gaussian distributions are
assumed. Moreover, target detection methods are extended to the non-Gaussian dis-
tributed background providing a unified framework for target detection in HSI.

Many of these problems have been widely analyzed in radar detection domain. In
this context, several authors have studied conventional detection schemes in Gaus-
sian environment Scharf and Friedlander (1994), Kraut et al. (2001), Kelly (1986).
These techniques constitute the basis for adaptive target detection for non-zero mean
Gaussian distribution. In addition, the occurrence of impulsive noise has led to the
development of techniques for treatment in case of non-Gaussian clutter (see for e.g.
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Gini and Greco (2002), Pascal et al. (2008b)). These methods found in radar signal
processing serve as a reference and starting point for this work. This document is
organized as follows.

The first chapter introduces the State of the art. The main characteristics of HSI
acquisition and hyperspectral data processing are described. In particular, target de-
tection and anomaly detection techniques and their applications are detailed. Next,
the basic preliminary notions on signal processing are recalled and classical target
detection methods, widely investigated in detection theory and used all over this doc-
ument, are described in the last section.

In Chapter 2, we derive the expression of each adaptive detector, the Adaptive
Matched Filter, the Kelly’s detection test and the Adaptive Normalized Matched
Filter (ANMF), under the Gaussian assumption where both then mean vector and
the covariance matrix are assumed to be unknown. The main contribution of this
chapter is the exact derivation of the distribution of each proposed detection scheme
under null hypothesis, i.e. when no target is supposed to be present. Thus, through
Gaussian assumption, closed-form expressions for the false-alarm regulation are ob-
tained, which allow to theoretically set the detection threshold for a given Probability
of False Alarm (PFA). Furthermore, this chapter reviews classical anomaly detection
schemes such as the widely spread Reed-Xiaoli Detector and some of its variations.
Moreover, the Mahalanobis distance based detector is rigorously derived from a Kellys
test-based approach. Finally, this detector is analyzed and its exact distribution is
derived when both mean vector and covariance matrix are unknown. The Kelly’s
detection test applied to anomaly detection problems constitute an original result of
this work.

Chapter 3 provides a summary on elliptical distributions, their characterization
and generation. We detail some examples of elliptical distributions and emphasize
the fact that real hyperspectral data cannot be described only with the Gaussian
model. In addition, this chapter introduces robust parameter estimation tools, the
M -estimators, for the scatter matrix and location vector. The main contribution of
this chapter and of this thesis is the analysis of target detection techniques in non-
Gaussian distributed background. For this purpose, we describe the different target
detection methods studied, the ANMF and the Kelly’s anomaly detector. Further, we
obtain theoretical expressions for false alarm regulation which highlight the Constant
False Alarm Rate (CFAR) properties of the detection schemes. More precisely, the
detectors’ performance are analyzed over simulations and compared to those of the
conventional Gaussian detectors. The key result of this work can be summarized as
follows: The proposed detection methods jointly used with robust estimates allow not
only to overcome the heterogeneity and non-Gaussianity of the data but also to reach
the same performance than the conventional detector on homogeneous and Gaussian
background. At last, we study the use of robust estimation methods in anomaly de-
tectors leading to some great improvement in the detection process.
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Chapter 4 represents the more applied contribution of this work. The different
detection methods studied in Gaussian and non-Gaussian case are investigated for
four hyperspectral images. False-alarm regulation expressions are validated for the
different detection schemes, the AMF, the ANMF, classical Kelly’s test and Kelly’s
anomaly detector on real data. Finally, the improvement brought by robust estima-
tion procedures is studied for detection tasks in different scenarios.

We conclude with a summary of the results presented and some perspectives, new
issues, opportunities and paths, this work suggests.
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1
State of the art

1.1 Hyperspectral Imaging

Hyperspectral imaging (HSI), also known as hyperspectral spectroscopy Goetz et al.
(1985) provides rich information both spatially and spectrally. Hyperspectral spec-
trometers are a class of optical sensors that measure spectral radiance from every pixel
in a scene. The result is the so-called hyperspectral image. The resulting spectra on
each point of the image can contain more than 200 contiguous narrow channels cov-
ering visible and near-infrared wavelengths at a high spectral resolution Green et al.
(1998). This fact enhances the capability of HSI to discriminate different materials
through their unique spectral signature. With the increasing development of these
sensors delivering high spatial and spectral resolution, HSI has gained interest in the
last decades for target detection and recognition purposes Bioucas-Dias et al. (2013),
Plaza et al. (2009). These sensors are usually deployed on satellites or aircrafts and
are used for a large number of remote sensing applications: border surveillance, mine
detection, agricultural monitoring, terrain exploration for minerals or soil types char-
acterization, etc.

Hyperspectral images contain a wealth of data, but interpreting them needs for a
depth comprehension of exactly what properties of ground materials we are trying to
measure, and how they are related to the sensor measurements. The analysis of light
that is emitted or reflected from different materials and the fluctuation of the amount
of radiation with wavelength is known as spectroscopy. In optical remote sensing
applications, one studies the spectrum of the sunlight that is propagated through
the atmosphere and diffusely reflected, transmitted and/or absorbed by the ground
materials on the Earth surface. Scene information is contained in the measured
radiance as a function of continuous space, wavelength and time variables. In practice,
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sensors have limitations due to finite-resolution recordings. In terms of geometrical
properties of the imaging system, the spatial resolution of a sensor is given by the
instantaneous field of view of the spectrometer. The field of view is a function of
the optics of the sensor, the size of the detector components and the altitude. The
spatial resolution of the sensor determines the size of smallest object that can be
distinguished on the Earth surface and relates how well the spatial details can be
described in the image. The spectral resolution is defined by the width of spectral
bands used to measure the radiance at difference wavelengths. The table in 1.1
mentions some of the hyperspectral sensors currently being operated for investigation
or commercial purposes. Most of this spectrometers measure radiation in the solar
illumination portion of the electromagnetic spectrum (0.4µm to 2.5µm). This limits
their use to daylight hours. When the range of the hyperspectral sensor is extended
into thermal infrared region (8µm to 14µm), materials emit more radiation than they
reflect from the sun allowing spectrometers to operate all daylong, as it is the case
for the DAIS 2115.

Figure 1.1: Datacube for the Pavia scene.

An equivalent interpretation of HSI is given by the obtention of a stack of images
representing the radiance in the corresponding wavelength. Thereupon, the HSI sen-
sors provide three-dimensional data cube with spatial-spatial-spectral components.
Fig. 1.1 shows an example of a data cube. Thus, if the values of all pixels in the
same spectral band are depicted in spatial coordinates, a grayscale image is obtained
which shows the spatial distribution of the scene in the corresponding spectral wave-
length (see Fig. 1.2). If all the bands are extracted in the same spatial location and
plotted as a function of wavelength, the average of all the materials present in the
corresponding ground resolution cell forms the spectrum (see Fig. 1.3). The scene
in Fig. 1.1 was acquired by the ROSIS sensor with spectral coverage ranging from
0.43µm to 0.86µm during a flight campaign over Pavia, northern Italy, in 2003. The
number of spectral bands is 103 for 610× 340 pixels. Moreover, the spatial resolution
is 1.3 meters.
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Sensor Organization Country Number of Wavelengt
Bands Range (µm)

AVIRIS NASA United States 224 0.4-2.5
AISA Spectral Imaging Ltd. Finland 286 0.45-0.9
CASI Itres Research Canada 288 0.43-0.87

DAIS 2115 GER Corp. United States 211 0.4-12.0
HYMAP Integrated Spectronics

Pty Ltd. Australia 128 0.4-2.45
PROBE-1 Earth Search

Sciences Inc. United States 128 0.4-2.45

Table 1.1: Research and Commercial Imaging Spectrometers

Figure 1.2: Image at a single wavelength (45th band).

In the spectral representation, the pixel x can be seen as a m-dimensional vector
x = [x1, . . . , xm]T in Rm Manolakis et al. (2003). Each spectral band is assigned to
one dimension and the vector lies inside the positive cone of Rm. Note that a change
in the level of illumination can modify the norm of the vector but not its orientation
which is related to the shape of the spectra. If every material can be characterized by
a unique spectrum, this could be used as a spectral mark for discrimination purposes.
In the spatial representation, each band corresponds to a matrix X in RN1×N2 , where
N1 and N2 are the two spatial dimensions of the image.
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Figure 1.3: Spectra of one of the pixels in the image (pixel (1,1)).

These spectral and spatial representations have been widely turn to good ac-
count in several HSI applications: feature extraction, unmixing Keshava and Mus-
tard (2002), Chen et al. (2013), Bioucas-Dias et al. (2012), classification Harsanyi
and Chang (1994), segmentation Valero et al. (2011) detection Nasrabadi (2014), and
closely related to the high-dimensionality of HSI data, sparse and redundant modeling
Theiler et al. (2011). This work is focused on target detection tasks and a review on
target detection applications for HSI is provided in next section.

1.2 Target Detection and Anomaly Detection

As detailed before, hyperspectral processing involves various applications such as
unmixing, classification, detection, dimensionality reduction, ... Among them, hyper-
spectral detection is an active research topic that has led to many publications e.g.
Manolakis and Shaw (2002), Stein et al. (2002), Chang and Chiang (2002), Kwon
and Nasrabadi (2006). More precisely, hyperspectral target detection methods are
commonly used to detect targets embedded in background and that generally can-
not be solved by spatial resolution Matteoli et al. (2010a). There are two different
methodologies for target detection purposes in the HSI literature Manolakis et al.
(2003): Anomaly Detection Stein et al. (2002), Chang and Chiang (2002) and Target
Detection Manolakis and Shaw (2002).
When the spectral signature of the desired target is known, it can be used as steering
vector in Target Detection techniques Manolakis et al. (2003). However, despite of
the application, the aim of target detection techniques is to locate small rare objects
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that constitute a very small region compared to the background. The problem of
target detection can be stated as a hypothesis test which decides between the pres-
ence or the absence of a target. Furthermore, Detection Theory Kay (1998) arises
in many different military and civilian applications and has been widely investigated
in several signal processing domains such as radar, sonar, communications, see Gini
et al. (2001) for the different references. The typical framework proposed in detec-
tion theory is based on the Neyman-Pearson approach Van Trees (2004). The design
criterion consists in maximizing the probability of detection for a given probability
of false alarm. Moreover, the decision strategy is given by a Likelihood Ratio Test
(LRT) which is subject to the probability density functions (PDFs) conditioned on
the two hypotheses. Nevertheless, the LRT supposes that all the parameters of the
distributions are perfectly known and in real applications such information is usu-
ally unavailable. Therefore, the suboptimal decision approach generally used is the
Generalized LRT (GLRT) Kay (1993) which employs the available independent and
identically distributed (IID) signal-free secondary data to estimate the unknown pa-
rameters according to the Maximum Likelihood (ML) strategy. Unfortunately, one
cannot characterize one material with an unique deterministic spectrum Manolakis
et al. (2007). The observed spectra samples from the same material are never iden-
tical, because of variations in atmospheric conditions, in the surface material, sensor
noise, adjacent materials, etc. Thus, the inherent spectral variability prevents to
characterize homogenous regions with only one spectral signature. The resulting de-
tection schemes have to be robust against this spectral variability.

In many practical situations, there is not enough information about the target
to detect, thus Anomaly Detection methods are widely used Eismann et al. (2009).
Anomaly detectors search for pixels in the image with spectral characteristics that
differ from the background. It can be interpreted as a particular case of target
detection in which no a priori information about the spectra of the targets of interest is
available. The type of interesting targets can differ significantly from one application
to another, e.g. in forestry applications infected trees are the anomalies of interest,
whereas in defense and intelligence applications the anomalies to be detected are
usually vehicles. Note that, since anomaly detectors do not use any a priori knowledge,
they cannot distinguish between true targets and detections of bright pixels of the
background or targets that are not of interest. Anomaly detection arises in many
other domains other than hyperspectral imaging such as biomedical imaging Chen
et al. (1999), Tarassenko et al. (1995), network and data security Lazarevic et al.
(2003) and data mining Song et al. (2007).

1.3 Dimensionality Reduction

One of the major challenges in hyperspectral data exploitation is the high-dimensiona-
lity of the data cubes provided by the sensors. Because hyperspectral pixels usually
consist of hundreds of bands and the data cubes are typically hundreds of megabytes,
the amount of data to analyze can be overwhelming. On the other hand, as spectral
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bands are narrow and continuous, there is generally a high correlation between con-
tiguous bands. Consequently, the number of bands acquired by the sensor is much
higher than the dimensionality of the subspace where the hyperspectral information
lies. Many methods have been proposed to reduce the dimensionality. A popular
technique consists in choosing the best bands according to a certain criteria, such as
the Signal-to-Noise Ratio (SNR), separation between classes, or reconstruction ac-
curacy (see e.g. Chang et al. (1999), Mausel et al. (1990)). In this work, we have
used linear projection methods to reduce the dimension Chen et al. (2011a). It in-
volves the projection of the data into a lower dimensional subspace where most of the
information is contained. Although other sophisticated methods for dimensionality
reduction could be studied, they are beyond the scope of this work and constitute
part of perspectives to be further investigated.
Let us consider am-dimensional pixel x. The vector can be reduced to a k-dimensional
vector (and k < m) by projecting it through a m× k matrix P , y = Px. Thus, the
choice of P leads to different dimensionality reduction schemes. Those explored in
this work, due to their simplicity, are:

• Random Subset of Bands. Let Q be a random permutation matrix of size m×m
with only one entry of 1 in each row and each column and 0’s elsewhere. The
projection matrix is obtained as a random subset of k rows of Q,

• Random Projection. The entries of the matrix Pi,j are independent identically
distributed samples from a Gaussian distribution N (0, 1/k),

• Uniform Downsampling. Let p = [1 0 . . . 0]T be a d-dimensional row vector
where d is the downsampling rate (d ≈ m/k). Thus, the projection matrix can
be written as:

P =




p 0 . . . 0
0 p . . . 0
...

...
. . .

...
0 0 . . . p


 , (1.1)

where 0 is a d-dimensional zero vector. If m is not an integer multiple of k, the
last column will consist of m− (m/k) d < d entries.

• Averaging. Let p = [d d . . . d]−T a d-dimensional row vector where d is the
downsampling rate. The projection matrix P takes the same form as in Eq.
(1.1).

The resulting data set in the lower dimensional space is highly correlated in the
spectral dimension for Random Projection and Averaging methods. Thus, Uniform
Downsampling and Random Subset of Bands techniques are preferred. However, the
choice of the most discriminating bands utterly depends on the application.

Before detailing the classical detection methods, let us set the framework and
describe the classical hypotheses in signal processing.



1.4. PRELIMINARY NOTIONS 11

1.4 Preliminary Notions

In most signal processing applications, one considers that interference signals are char-
acterized as a random process and has to assume a distribution for the received data.
For instance in radar domain, it is common to represent the clutter with a certain
distribution and statistically differentiate the target from this distribution. Similarly,
in HSI, the reflectance for a given material suffers from an inherent variability. This
variability is usually described by using probabilistic models and different materials
will lead to different distributions. This principle is used for target detection pur-
poses, classification, unmixing, etc.
In general, the statistical parameters of these distributions are hardly available. Thus,
they have to be estimated from the data itself. The mean vector (MV, first order
moment) is often supposed to be zero or perfectly known, and in that situation it
can be exploited. However, it is not the case for HSI. Indeed, hyperspectral data
represent radiance or reflectance and thus, they are positive and the mean vector
has to be included for characterization. The covariance matrix (CM, second order
moment) and its estimation are an important research topic in multivariate statistics
and in signal processing. The aim of this work is to jointly study these two parameters.

In most signal processing literature, signals are usually characterized through com-
plex distributions. Hence, target detection methods are derived considering complex
distributed data and classical results on the detector’s distribution are found in the
complex case. As hyperspectral data are real, the analysis could have been done
in the real case. However, the detectors distribution are unknown for zero-mean
Gaussian distribution in the real case. For this purpose, Hilbert transform is used
to render hyperspectral data complex. The analytic representation of the signal is
obtained as: xa = x + jH(x), where x is the original real-valued vector and H(·) is
the Hilbert transform. The main idea is that the negative components of the Fourier
transform of a real-valued function are superfluous, due to the Hermitian symmetry
of the Fourier transformation. This method discards these negative components with-
out loss of information, obtaining a complex-valued function instead. The conversion
from complex back to real is just a matter of discarding the imaginary part and the
real component of the analytic representation is still the original data. Therefore,
this technique does not change the nature of the original hyperspectral data. The
analytical representation will be considered for classical target detection purposes,
while anomaly detection methods are studied in the real case as they were originally
derived for HSI.

Before going further, let us define the terms of which knowledge are essential to
read this thesis and will be used throughout this document.

Definition 1.4.1. Mean vector
The mean vector (or expectation) of a complex random vector x = u + jv is defined
as:

E[x] = E[u] + jE[v]. (1.2)
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Definition 1.4.2. Covariance Matrix
The covariance matrix of a complex random vector x = u + jv of dimension m is
defined as:

M = cov(x) = E[(x− E[x])(x− E[x])H ]

= cov(u) + cov(v) + j(cov(v,u)− cov(u,v)), (1.3)

and M belongs to the class of positive semidefinite Hermitian m×m matrices.

It has been often assumed that signals, interferences, noise and background are
modeled as Gaussian stochastic processes. Indeed, this assumption makes sense in
many applications Kay (1998). Let us now recall the definition of a Gaussian vector.

Definition 1.4.3. Complex Gaussian Distribution
A m-dimensional vector x = u+jv has a complex Gaussian distribution with mean µ
and covariance matrix Σ if x = (uT ,vT )T ∈ R2m has a normal distribution van den
Bos (1995). If rank(Σ) = m, the probability density function exists and is of the form

fx(x) = π−m|Σ|−1 exp{−(x− µ)HΣ−1(x− µ)}. (1.4)

In the following, it will be referred to as Gaussian distribution or normal distribu-
tion indistinctively and denoted CN (µ,Σ). We assume that vectors are circular of sec-
ond order and that the pseudo-covariance matrix is zero (E[(x−E[x])(x−E[x])T = 0),
thus it will be omitted. The complex Gaussian distribution is called circular, without
going into further details. However, this assumption is not always valid and we refer
to Schreier and Scharf (2010) for non-circular signal processing.

The Gaussian distribution benefits from the fact that the optimal estimators in
the sense of Maximum Likelihood (ML) for the statistical parameters are easily ob-
tained. Along with their well-known properties and their simplicity of analysis, the
Sample Mean Vector (SMV) and the Sample Covariance Matrix (SCM) are the most
extended estimators and they are easily implemented from a given set of samples.
Let x1, . . . ,xN be an IID N -sample, where xi ∼ CN (µ,Σ). Thus, the SMV and the
SCM can be written as:

µ̂SMV =
1

N

N∑

i=1

xi , (1.5)

Σ̂SCM =
1

N

N∑

i=1

(xi − µ̂)(xi − µ̂)H . (1.6)

Further, we shall denote the Centered SCM (CSCM) as:

Σ̂CSCM =
1

N

N∑

i=1

(xi − µ)(xi − µ)H . (1.7)

Some key properties about the distribution of the estimators are recapped in the
following.
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Definition 1.4.4. Complex Wishart distribution
Let x1, ...,xN be an IID N-sample, where xi ∼ CN (µ,Σ). Let us define µ̂ = µ̂SMV

and Ŵ = N Σ̂SCM referred to as a Wishart matrix. Thus one has (see Gupta and
Nagar (2000) for the real case):

• µ̂ and Ŵ are independently distributed;

• µ̂ ∼ CN (µ, 1
N

Σ);

• Ŵ ∼ CW(N − 1,Σ) is Wishart distributed with N − 1 degrees of freedom.

The asymptotic distribution of the Wishart matrix is (e.g. Bilodeau and Brenner
(1999)): √

Nvec(Ŵ −Σ)
d−→ CN (0m2,1, (Σ

T ⊗Σ), (ΣT ⊗Σ)K). (1.8)

where K is the commutation matrix. Therefore, the performances obtained with the
SMV-SCM estimators are perfectly known. These estimators are unbiased, consistent
and asymptotically Gaussian.

After providing the framework on Gaussian distributions, we discuss now the
general background for adaptive target detection. First, we recall classical zero mean
Gaussian detection schemes. Then, we will extend in Chapter 2 these tests for the
non-zero mean case studied in this work.

1.5 Classical Target Detection Techniques

In signal processing, the problem of target detection is generally stated as a binary
hypothesis test which decides the presence or absence of a target in the cell under
test. Therefore, for a fixed cell of study, the received signal is a vector x of dimension
m referred to as the observation vector. The known complex signal characterizing the
intended target is denoted by s, and it is corrupted by an additive noise b referred
as clutter or background. The detection problem can be written as:

{
H0 : x = b, xi = bi , i = 1, . . . , N

H1 : x = s + b, xi = bi , i = 1, . . . , N,
(1.9)

where the xi are the so-called secondary data (signal-free) used to estimate the noise
parameters, and the signal s can be written in the form αp, where α is an unknown
complex scalar amplitude, and p is the steering vector describing the signal which is
sought.
Under the signal absent (or null) hypothesis H0, the signal x only contains the back-
ground. This is constituted, among others, by various reflections from the ground
and environmental components, as well as thermal noise. Under the signal present
(or alternative) hypothesis H1, in addition to this background, the signal x contains
the target s to be detected. The goal of detection is to determine which of these two
hypotheses is more likely, while minimizing the following probabilities:
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• the non-detection probability PND, which is the probability of not detecting
the target (hypothesis H0) when in fact the signal is present,

• the false-alarm probability PFA, which is the probability of deciding the target
is present (hypothesis H1) when in fact it is not.

One can also define the probability of detection, PD = 1− PND.
In practice, it is impossible to simultaneously minimize these two errors. A good
compromise is given by the Neyman-Pearson criterion which aims to maximize the
probability of detection PD (or equivalently minimize PND) for a fixed PFA. The
optimal test according to this criterion (see e.g. Kay (1998)) is the Likelihood Ratio
(LR) given by:

Λ(x) =
p(x|H1)

p(x|H0)

H1

≷
H0

η . (1.10)

The detection threshold η is determined according to a fixed value for the false-alarm
probability PFA = k and computed solving one of the followings equations:

PFA = P(Λ(x;H0) > η) = k , (1.11)

PFA =

∫

D0

p(x|H0)dx , (1.12)

where D0 is the set of x contained in the decision domain of the hypothesis H0. The
aim of this chapter is to provide analytic expressions for these equations. Other-
wise, one has to numerically solve Eq. (1.11) and Eq. (1.12) or obtain the threshold
through Monte-Carlo simulations which is a less accurate method and/or more time
consuming.

Remark 1.5.1. The relationship between the PFA and the detection threshold η
is nothing else that the complementary cumulative density function of the detector
Λ(x;H0). Thus, it completely characterizes the statistical distribution of this detector
under hypothesis H0.

Once the threshold is settled, the PD can be calculated according to:

PD = P(Λ(x;H1) > η) , (1.13)

PD =

∫

D1

p(x|H1)dx , (1.14)

where D1 is the set of x contained in the decision domain of the hypothesis H1. In
this case, it is more unusual to obtain a closed-form expression for the PD. This
problem is beyond the scope of this work. Since the background statistics, i.e. the
MV and the CM, are assumed to be unknown, they have to be estimated from
x1, . . . ,xN ∼ CN (µ,Σ) a sequence of N IID signal-free secondary data. Then, the
adaptive detector is obtained by replacing in Eq. (1.10) the unknown parameters by
their estimates leading to the Generalized Likelihood Ratio Test (GLRT). In practice,
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an estimate may be obtained from the pixels surrounding pixel cell under test, which
play the role of the N IID signal-free secondary data and replacing the parameters
by their estimates in the GLRT detector yields the two-step GLRT approach. The
sample size N has to be chosen large enough to ensure the invertibility of the co-
variance matrix and small enough to justify both spectral homogeneity (stationarity)
and spatial homogeneity. The use of a sliding mask provides a more realistic scenario
than when estimating the parameters using all the pixels in the image. For a given
pixel, a window centered on this pixel compose the secondary data used to estimate
the statistical parameters. In addition, a small window with the size of the expected
targets can be used as guard window. An example of such a window is displayed in
Fig. 1.4. However, it requires the information on the size and shape of the targets and
this information is hardly available. Let us now recall the detectors under interest in
this work.

Figure 1.4: Sliding window mask over the observation vector (green dot) with a guard
window (red) and useful secondary data (blue).

1.5.1 Adaptive Matched Filter

The Matched Filter (MF) detector is the optimal linear filter for maximizing the SNR
in the presence of additive Gaussian noise with known parameters Kay (1998). Hence,
the signal model can be written as:

{
H0 : x = b ∼ CN (µ,Σ)

H1 : x = αp + b ∼ CN (αp + µ,Σ).
(1.15)

The LR according to the signal model is given by:

Λ(x, α) =
exp

[
− (x− (αp + µ))H Σ−1 (x− (αp + µ))

]

exp
[
−(x− µ)HΣ−1(x− µ)

]
H1

≷
H0

η . (1.16)
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Taking logarithms and ignoring the constant terms, one obtains:

(x− µ)HΣ−1(x− µ)− (x− (αp + µ))H Σ−1 (x− (αp + µ))
H1

≷
H0

λ . (1.17)

and λ = log(η). Since the complex amplitude is unknown, it has to be estimated
from the observation vector x and the background parameters according to:

α̂ =
<{pHΣ−1(x− µ)}

pHΣ−1p
. (1.18)

Replacing this value in Eq. (1.16) and after some manipulations, the resulting MF
detection scheme is:

ΛMF =
|pH Σ−1 (x− µ)|2

(pH Σ−1 p)

H1

≷
H0

λ . (1.19)

Remark 1.5.2. Note that it differs from the classical MF by the term µ, the back-
ground mean, but without any consequence since x− µ ∼ CN (0,Σ).

The “PFA-threshold” curve corresponds to the statistical behavior in general of a
detector under null hypothesis .Moreover, the “PFA-threshold” relationship is given
by Kay (1998):

PFAMF = exp (−λ). (1.20)

The widely used Adaptive Matched Filter (AMF), denoted Λ
(N)
AMF Σ̂ to underline the

dependency with N , is usually built replacing the covariance matrix Σ by its estimate
Σ̂ obtained from the N secondary data (two-step GLRT approach). The mean vector
is generally supposed to be known. Thus, the adaptive version becomes:

Λ
(N)
AMF Σ̂ =

|pH Σ̂
−1

(x− µ)|2

(pH Σ̂
−1

p)

H1

≷
H0

λ . (1.21)

Then, the theoretical “PFA-threshold” relationship is given by Robey et al. (1992)
for an estimate following a Wishart distribution obtained with Σ̂ = Σ̂CSCM :

PFAAMF Σ̂ = 2F1

(
N −m+ 1, N −m+ 2; N + 1; − λ

N

)
, (1.22)

where 2F1(·) is the hypergeometric function Abramowitz et al. (1964) defined as,

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1
(1− tz)a

dt . (1.23)

This detector holds the CFAR properties in the sense that its false alarm expres-
sion only depends on the dimension of the vector m and the number of secondary
data used for the estimation N . Note that it is also independent of the noise co-
variance matrix Σ, therefore the detector is said to be CFAR-matrix. However, its
performance strongly relies on the good fit of the Gaussian model and the false alarm
rate is highly increased when normal assumption is not verified.
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1.5.2 Adaptive Kelly detector

The Kelly detector was derived in Kelly (1986). It is based on the Generalized Likeli-
hood Ratio Test (GLRT) assuming Gaussian distribution and the same signal model
than the AMF in Eq. (1.15). In this case, only the covariance matrix Σ is unknown,
the mean vector is assumed to be known. Therefore, N+1 m-dimensional vectors are
observed under each hypothesis. Under the hypothesis H0, the N + 1 vectors are all
Gaussian noise, while under H1, just N vectors contain only the background. Thus,
the joint probability density function (PDF) of the the N secondary data and the
observation vector x under the two hypotheses Hi can be written as the product of
N + 1 multivariate Gaussian densities from each vector, separating the observation
vector from the N secondary data:

fi(x) =

(
1

πm|Σ| exp[−Tr(Σ−1Ti)]

)N+1

, (1.24)

where Tr is the trace operator and Ti is the composite sample covariance matrix
constructed from both the secondary data and observation vector:

T0 =
1

N + 1

(
(x− µ)(x− µ)H + Ŵ

)
, (1.25)

T1 =
1

N + 1

(
(x− (αp + µ))(x− (αp + µ))H + Ŵ

)
, (1.26)

and Ŵ = N Σ̂CSCM . The first step is to maximize with respect to (w.r.t) the unknown
covariance matrix Σ. Thus, the matrix maximizing the PDF fi is simply Ti. When
this estimator is replaced in the PDF, one obtains:

max
Σ
fi =

(
1

(πe)m|Ti|

)N+1

. (1.27)

It remains to maximize this expression over the complex unknown signal amplitude
α. And the GLRT neglecting the exponent N + 1 is given by:

Λ(x, α) =
|T0|
|T1|

H1

≷
H0

η . (1.28)

Then, by maximizing the PDF under both hypotheses and by maximizing the LR w.r.t
the complex signal amplitude, and after some manipulations, the resulting adaptive
Kelly detector scheme takes the following form:

Λ
(N)
KellyΣ̂ =

|pH Σ̂
−1
CSCM (x− µ)|2(

pH Σ̂
−1
CSCMp

) (
N + (x− µ)H Σ̂

−1
CSCM (x− µ)

)
H1

≷
H0

λ , (1.29)

where λ = 1− η− 1
N+1 . As shown in Kelly (1986), the PFA for the Kelly test is given

by:
PFAKelly = (1− λ)N−m+1 . (1.30)
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The Kelly detector is a CFAR test, in which the PFA is independent of the true
covariance matrix. However, it has no known optimality property in the sense of max-
imizing the probability of detection for a given probability of false alarm as explained
in Kelly (1986). The AMF and the Kelly detector are based on the same assumptions
about the nature of the observations. It is therefore interesting to compare their
detection performance for a given PFA. The main difference between Eq. (1.21) and

Eq. (1.29) is the presence of the additional term 1
N

(x − µ)H Σ̂
−1
CSCM (x − µ). This

difference can be seen as a measure of the error in the estimate of the covariance
matrix from the N reference data. In particular, when N is large (N → ∞), this
term tends to 0, Σ̂ tends to its true value, Σ and the GLRT tends to MF. Thus, for
large values of N , the performances are substantially the same.

1.5.3 Adaptive Normalized Matched Filter

The Normalized Matched Filter (NMF) is obtained when considering that the covari-
ance matrix is different under the two hypotheses. That is to say that the background
has the same covariance structure but different variance.

{
H0 : x = b ∼ CN (µ, σ2

0Σ)

H1 : x = αp + b ∼ CN (αp + µ, σ2
1Σ).

(1.31)

Thus, the ML estimates of σ2
j are easily derived from σ̂2

j = arg max2
σ{f(x|σ,Hj)}, (j =

0, 1) and assuming normal distribution, one has:

σ̂2
0 =

1

2m
(x− µ)HΣ−1(x− µ) , (1.32)

σ̂2
1 =

1

2m
(x− (αp + µ))H Σ−1 (x− (αp + µ)) , (1.33)

After replacing the complex amplitude α by its estimate Eq. (1.18) when building
the LR and after some manipulations, one obtains Scharf and Friedlander (1994):

ΛNMF =
|pH Σ−1 (x− µ)|2

(pH Σ−1p)
(
(x− µ)H Σ−1 (x− µ)

)
H1

≷
H0

λ , (1.34)

where λ = 1− η− 1
m and for which one has Scharf and Friedlander (1994):

PFANMF = (1− λ)m−1 . (1.35)

The ANMF is generally obtained when the unknown noise covariance matrix is re-
placed by an estimate according to the two-step GLRT strategy Kraut et al. (2001):

Λ
(N)
ANMF Σ̂ =

|pH Σ̂
−1

(x− µ)|2(
pH Σ̂

−1
p
) (

(x− µ)H Σ̂
−1

(x− µ)
)
H1

≷
H0

λ . (1.36)



1.6. SUMMARY 19

And the PFA for an estimate following a Wishart distribution obtained with Σ̂ =
Σ̂CSCM can be written according to Kraut et al. (2001):

PFAANMF Σ̂ = (1− λ)a−1 2F1(a, a− 1; b− 1;λ) , (1.37)

where a = N −m+ 2 and b = N + 2.
This detection test has been widely studied in signal processing and it has been derived
independently by different authors following different approaches Korado (1968), Gini
(1997), Kraut and Scharf (1999). It also benefits from great popularity in HSI target
detection Manolakis et al. (2009, 2013). This detection test holds important CFAR
properties as its distribution is independent of the noise covariance matrix.

1.6 Summary

This chapter sets out the main characteristics of the hyperspectral imaging. The ac-
quisition process and the different representations for hyperspectral data are detailed.
Hyperspectral sensors are a new class of optical sensors that measures the spectrum
from each point in an image. There has been an increasing interest in the last decades
in the use of HSI for a wide range of applications, leading to the proliferation of new
signal processing methods for hyperspectral data exploitation such as unmixing, clas-
sification, feature extraction, etc. Notably, this thesis is focused on the detection of
small objects or targets in hyperspectral images. The two principal target detection
techniques in HSI, target detection and anomaly detection, are investigated in the
following chapters.
We have also introduced the basic blocks for classical target detection in Gaussian
environment. These techniques are found in many signal processing applications, par-
ticularly in radar domain. We propose in Chapter 2 to extend these classical methods
to the case where the background mean vector is unknown and has to be included in
the detection process. Moreover, when Gaussian assumption is not fulfilled, Chapter
3 describes detection schemes in non-Gaussian framework. Finally, this work intends
to provide a unified framework for target detection in HSI .
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2
Adaptive Target Detection in Gaussian

Background

2.1 Introduction

Interestingly, target detection methods have been extensively developed and analyzed
in the signal processing and radar processing Gini et al. (2001), Kelly (1986), Kraut
et al. (2001), Robey et al. (1992). In all these works as well as in several signal process-
ing applications, signals are assumed to be Gaussian with zero mean or with a known
MV that can be removed. In such a context, previous chapter has recapped several
well-known algorithms in Statistical Detection Theory Kay (1998), for instance the
MF and its adaptive versions, the Kelly detector Kelly (1986) or the ANMF Kraut
and Scharf (1999). However, when the MV of the noise background is unknown, these
techniques are no longer adapted and improved methods have to be derived by taking
into account the mean vector estimation. For this purpose, the aim of this chapter
is to generalize them to the case when the mean vector is unknown and has to be
estimated.

More precisely, this chapter deals with the classical AMF, the Kelly detection test
and the ANMF. Further, last section is devoted to anomaly detection methods, it
reviews classical anomaly detection schemes such as the widely spread Reed-Xiaoli
Detector and some of its variations. All these detectors have been derived under
Gaussian assumptions and benefit from great popularity in HSI target detection lit-
erature, see e.g. Manolakis et al. (2009, 2013). To evaluate the detector performance,
the classical process, according to the Neyman-Pearson criterion is first to regulate

21
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the false-alarm, by setting a detection threshold for a given PFA. Since the PFA is the
complementary CDF of the detection test, this process is equivalent to the derivation
of the detection test distribution. Then, the probability of detection is evaluated for
different SNRs. Therefore, keeping the false-alarm rate constant (CFAR) is essential
to set a proper detection threshold Gini and Greco (2002), Conte et al. (2002). The
aim is to build a CFAR detector which provides detection thresholds that are rel-
atively immune to noise and background variation, and allow target detection with
a constant false-alarm rate. The theoretical analysis of CFAR methods for adaptive
detectors is a challenging problem since in adaptive schemes, the statistical distribu-
tion of the detectors is not always available in a closed-form expression.

2.2 Adaptive non-zero mean Gaussian Detection

In this section, let us now assume that the mean vector µ is unknown as it is the
case for instance in HSI and let us derive the new corresponding detection schemes.
Then, using standard calculus on Wishart distributions, recapped in Section 1.4, the
distributions of each detection test are provided.

2.2.1 Adaptive Matched Filter Detector

When both the covariance matrix and the mean vector are unknown, they are replaced
by their estimates from the secondary data (two-step GLRT) in Eq. (1.19) leading
to the AMF detector of the following form:

Λ
(N)
AMF Σ̂,µ̂ =

|pH Σ̂
−1

(x− µ̂)|2

(pH Σ̂
−1

p)

H1

≷
H0

λ, (2.1)

where the notation Λ
(N)
AMF Σ̂,µ̂ is used to stress now the dependency on the estimated

mean vector µ̂. The distribution of this detection test is given in the next Proposi-
tion, through its PFA.

Proposition 2.2.1. Under Gaussian assumptions, the theoretical relationship be-
tween the PFA and the threshold is given by

PFAAMF Σ̂,µ̂ = 2F1

(
N −m, N −m+ 1; N ; − λ′

N − 1

)
, (2.2)

where λ′ = (N−1)
(N+1)

λ, Σ̂ = Σ̂SCM and µ̂ = µ̂SMV , recapped in Section 1.4.

Before turning into the proof, let us comment on this result.
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• Interestingly, this detector also holds the CFAR property in the sense that its
false-alarm expression depends only on the dimension m and on the number of
secondary data N , but not on the noise parameters µ and Σ. Note that the
only effect of estimating the mean is the loss of one degree of freedom and the
modification of the threshold compared to Eq. (1.22). Obviously, the impact
of these modifications decrease as the number of secondary data N used to es-
timate the unknown parameters increases.

• Moreover, the result has been obtained when using the MLEs of the unknown
parameters but the proof can be easily extended to other covariance matrix

estimators such as Σ̂ =
1

N − 1

N∑

i=1

(xi − µ̂)(xi − µ̂)H which is the unbiased co-

variance matrix estimate or Σ̂ =
1

N + 1

N∑

i=1

(xi − µ̂)(xi − µ̂)H .

Proof. For simplicity matters, the following notations are used: Σ̂ = Σ̂SCM and
µ̂ = µ̂SMV .

Since the derivation of the PFA is done under hypothesis H0, let us set ∀i =
1, ..., N,xi ∼ CN (µ,Σ) and x ∼ CN (µ,Σ), where all these vectors are independent.
Now, let us denote

ŴN−1 =
N∑

i=1

(xi − µ̂)(xi − µ̂)H ∼ CW(N − 1,Σ), (2.3)

Since µ̂ ∼ CN (µ, 1
N

Σ) and µ̂ is independent of x by construction, one has x− µ̂ ∼
CN (0, N+1

N
Σ). This can be equivalently rewritten as

√
N/(N + 1)(x− µ̂) ∼ CN (0,Σ). (2.4)

Now, let us set y =
√

N
N+1

(x− µ̂) with y ∼ CN (0,Σ).

When computing the SCM, one has

Σ̂SCM =
1

N

N∑

i=1

(xi − µ̂)(xi − µ̂)H =
1

N
ŴN−1. (2.5)

As we jointly estimate the mean and the covariance matrix, a degree of freedom
is lost, compared with the only covariance matrix estimation problem.

Let us now consider the classical AMF test (i.e. µ known) built from N − 1
secondary data, rewritten in terms of ŴN−1:

Λ
(N−1)
AMF Σ̂ = (N − 1)

|pH Ŵ−1
N−1 y|2

(pH Ŵ−1
N−1 p)

, (2.6)
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where y ∼ CN (0,Σ) and whose “PFA-threshold” relationship is given by Eq. (1.22)
where N is replaced by N − 1.

Now, for the joint estimation problem, the AMF can be rewritten as:

Λ
(N)
AMF Σ̂,µ̂ = N

|pH Ŵ−1
N−1 (x− µ̂)|2

(pH Ŵ−1
N−1 p)

= N
N + 1

N

|pH Ŵ−1
N−1 y|2

(pH Ŵ−1
N−1 p)

=
(N + 1)

(N − 1)
Λ

(N−1)
AMF Σ̂ , (2.7)

where (x− µ̂) has been replaced by
√
N + 1/N y with y ∼ CN (0,Σ), as previously.

Hence, one can determine the false-alarm relationship:

PFAAMF Σ̂,µ̂ = P
(

Λ
(N)
AMF Σ̂,µ̂ > λ;H0

)

= P

(
(N + 1)

(N − 1)
Λ

(N−1)
AMF Σ̂ > λ;H0

)

= P(Λ
(N−1)
AMF Σ̂ > λ′;H0) , (2.8)

where λ′ = (N−1)
(N+1)

λ, which leads to the conclusion.

2.2.2 Kelly Detector

The Kelly detector for both the unknown mean vector and the unknown covariance
matrix has now to be derived since it is not the previous Kelly in which an estimate
of the mean vector is plugged. Following the same lines as in Kelly (1986), we now
assume that both the mean vector and the covariance matrix are unknown. The
likelihood functions under H0 and H1 are given in Eq. (1.24). Under H0 and H1, the
maxima are achieved at:

max
Σ,µ

fi =

(
1

(πe)m|Ti|

)N+1

, for i = 0, 1, (2.9)

where now

(N + 1)T0 = (x− µ̂0)(x− µ̂0)
H +

N∑

i=1

(xi − µ̂0)(xi − µ̂0)
H , (2.10)

(N + 1)T1 = (x− αp− µ̂1)(x− αp− µ̂1)
H +

N∑

i=1

(xi − µ̂1)(xi − µ̂1)
H , (2.11)
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and

µ̂0 =
1

N + 1

(
x +

N∑

i=1

xi

)
, (2.12)

µ̂1 =
1

N + 1

(
x− αp +

N∑

i=1

xi

)
. (2.13)

And neglecting the exponent N + 1, one obtains the following LR:

Λ(x, α) =
|T0|
|T1|

H1

≷
H0

η . (2.14)

Then, as this LR still depends on the unknown amplitude α of the signal, it has to
be maximized w.r.t α, which is equivalent to minimize T1 w.r.t α. A way to do this
is to introduce the following sample covariance matrix:

Ŝ0 =
N∑

i=1

(xi − µ̂0)(xi − µ̂0)
H . (2.15)

Then, (N + 1)|T0| can be written as:

(N + 1)|T0| = |Ŝ0|
(

1 + (x− µ̂0)
H Ŝ−10 (x− µ̂0)

)
. (2.16)

In the same way, and after some manipulations, (N + 1)|T1| becomes:

(N + 1)|T1| = |Ŝ0|
(

N∑

i=1

(xi − µ̂1)
HŜ−10 (xi − µ̂1) + (x− αp− µ̂1)

HŜ−10 (x− αp− µ̂1)

)

= |Ŝ0|(A+B). (2.17)

Now, let us rewrite the two terms A and B to separate the terms involving α. By

recalling that µ̂1 = µ̂0 −
1

N + 1
αp, one obtains:

A =1 +
N |α|2

(N + 1)2
pHŜ−10 p +

2

N + 1
<
{
ᾱpHŜ−10

N∑

i=1

(xi − µ̂0)

}
, (2.18)

B =(x− µ̂0)
H Ŝ−10 (x− µ̂0) +

N2|α|2
(N + 1)2

pHŜ−10 p− 2N

N + 1
<
{
ᾱpHŜ−10 (x− µ̂0)

}
.

(2.19)

Notice that x− µ̂0 = −∑N
i=1(xi− µ̂0), then rearranging the expression of (N+1)|T1|

leads to:

(N + 1)|T1|
|Ŝ0|

=
(N + 1)|T0|
|Ŝ0|

+
N |α|2

(N + 1)
pHŜ−10 p− 2<

{
ᾱpHŜ−10 (x− µ̂0)

}
. (2.20)
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Now, the term depending on α can be rewritten as follows:

N

(N + 1)
pHŜ−10 p

∣∣∣∣∣α−
N + 1

N

pHŜ−10 (x− µ̂0)

pHŜ−10 p

∣∣∣∣∣

2

− N + 1

N

∣∣∣pHŜ−10 (x− µ̂0)
∣∣∣
2

pHŜ−10 p
. (2.21)

Minimizing |T1| w.r.t α is equivalent to cancel the square term in the previous equa-
tion. Thus, the GLRT can now be written according to the following definition.

Definition 2.2.1 (The generalized Kelly detector). Under Gaussian assumptions,
the extension of the Kelly’s test when both the mean vector and the covariance
matrix of the background are unknown takes the following form:

Λ =
β(N)

∣∣∣pHŜ−10 (x− µ̂0)
∣∣∣
2

(pHŜ−10 p)
(

1 + (x− µ̂0)
H Ŝ−10 (x− µ̂0)

)
H1

≷
H0

λ, (2.22)

where β(N) =
N + 1

N
, λ =

η − 1

η
and

• Ŝ0 =
N∑

i=1

(xi − µ̂0)(xi − µ̂0)
H ,

• µ̂0 =
1

N + 1

(
x +

N∑

i=1

xi

)
.

Let us now comment on this new detector. One can notice that both the covari-
ance matrix Ŝ0 as well as the mean µ̂0 estimates depend on the data x under test,
which is not the case in other classical detectors where the unknown parameters are
estimated from signal-free secondary data. Indeed, Ŝ0 depends on µ̂0 which depends
on x. Consequently, Ŝ0 and x − µ̂0 are not independent. Moreover, the covariance
matrix estimate Ŝ0 is not Wishart-distributed due to the non-standard mean estimate
µ̂0. Thus, the derivation of this ratio distribution is very difficult.

As for previous detector, it would be intuitive to conjecture that the proposed test
behaves as the classical Kelly’s test but for N − 1 degrees of freedom. To prove that
let us first rewrite Eq. (2.22) as follows:

Λ =

∣∣∣pHŜ−10 y
∣∣∣
2

(pHŜ−10 p)

(
1 +

N

N + 1
yH Ŝ−10 y

)
H1

≷
H0

λ , (2.23)
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where we use:

• (x− µ̂0) =
N

N + 1
(x− µ̂SMV ),

• µ̂SMV =
1

N

N∑

i=1

xi,

• y =

√
N

N + 1
(x− µ̂SMV ) ∼ CN (0,Σ).

Now, let us set Ŝ
(i)
0 =

∑N
i=1(xi − µ̂

(i)
0 )(xi − µ̂(i)

0 )H where µ̂
(i)
0 = 1/N(

∑N
j 6=i xj + x).

Then, the test becomes:

N + 1

N

∣∣∣pH(Ŝ
(i)
0 )−1(x− µ̂SMV )

∣∣∣
2

(pH(Ŝ
(i)
0 )−1p)

(
1 + (x− µ̂SMV )H (Ŝ

(i)
0 )−1 (x− µ̂SMV )

). (2.24)

One can notice that each xi (including x) plays the same role, thus the distribution
of this test is the same for every permutation of the (N + 1)-sample (x,x1, . . . ,xN).
However, the dependency between the covariance matrix estimate and the data under
test x still remains.

To fill this gap, another way of taking advantage of the Kelly’s detector when the
mean vector is unknown can be to use the classical scheme recalled in Eq. (1.29)
and to plug the classical estimator of the mean (two-step GLRT), based only on the
secondary data, i.e. µ̂SMV = 1/N

∑N
i=1 xi. This leads to the plug-in Kelly’s detector:

Λ
(N)
KellyΣ̂,µ̂ =

|pH Σ̂
−1
SCM (x− µ̂SMV )|2(

pH Σ̂
−1
SCMp

) (
N + (x− µ̂SMV )H Σ̂

−1
SCM (x− µ̂SMV )

)
H1

≷
H0

λ . (2.25)

In this case, the distribution can be derived. This is the purpose of the following
proposition.

Proposition 2.2.2. The theoretical relationship between the PFA and the thresh-
old is given by

PFAKellyΣ̂,µ̂ =

Γ(N)

Γ(N −m+ 1) Γ(m− 1)

∫ 1

0

[
1 +

λ

1− λ

(
1− u

N + 1

)]m−N
uN−m(1− u)m−2 du ,

(2.26)

where Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .



28 CHAPTER 2. TARGET DETECTION IN GAUSSIAN BACKGROUND

Proof. The detection test rewritten with Σ̂
−1
SCM = N ˆW−1

N−1 becomes:

Λ
(N)

Kelly Σ̂,µ̂
=

N2
∣∣∣pHŴ−1

N−1(x− µ̂)
∣∣∣
2

N
(
pH ˆW−1

N−1 p
) (

N +N yH ˆW−1
N−1 (x− µ̂)

) , (2.27)

and replacing (x− µ̂) by

√
N + 1

N
y, one obtains:

Λ
(N)

Kelly Σ̂,µ̂
=

N + 1

N
N2

∣∣∣pH Ŵ−1
N−1 y

∣∣∣
2

N
(
pH ˆW−1

N−1 p
)(

N +
N + 1

N
N yH ˆW−1

N−1 y

)

=

∣∣∣pH Ŵ−1
N−1 y

∣∣∣
2

(
pH ˆW−1

N−1 p
)( N

N + 1
+ yH ˆW−1

N−1 y

) , (2.28)

with y ∼ CN (0,Σ).

The classical Kelly detector obtained when the mean vector is known is recalled
here, built with N − 1 zero-mean Gaussian data, and written with ŴN−1:

Λ
(N−1)
Kelly Σ̂

=

∣∣∣pH Ŵ−1
N−1 y

∣∣∣
2

(
pH ˆW−1

N−1 p
)(

1 + yH ˆW−1
N−1 y

) . (2.29)

It is worth pointing out that the term N/(N + 1) resulting from the mean estimation

in Λ
(N)

Kelly Σ̂,µ̂
does not appear in the classical Kelly detector Eq. (2.29). This fact

prevents from relating the two expressions. Thus, a proof similar to the Proposition
2.2.1 is not feasible.

According to Kraut et al. (2001), Richmond (2000), an equivalent LR can be
expressed as:

κ̂2 =
Λ

(N)

Kelly Σ̂,µ̂

1− Λ
(N)

Kelly Σ̂,µ̂

H1

≷
H0

λ

1− λ . (2.30)

Following the same development proposed in Kraut et al. (2001), the statistic κ̂2

can be identified as the ratio θ/β between two independent scalar random variables
θ and β. For this particular development of Kelly distribution with non-centered
data, the scalar random variable β is found to have the same distribution as the
function 1−u/(N + 1) where u is a random variable following a complex central beta
distribution with N −m+ 1,m− 1 degrees of freedom:

u ∼ fu(u) =
Γ(N)

Γ(N −m+ 1) Γ(m− 1)
uN−m (1− u)m−2 ,
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whereas the PDF of the variable θ is distributed according to the complex F -distribution
with 1, N −m degrees of freedom scaled by 1/(N −m):

θ ∼ fθ(θ) = (N −m) (1 + θ)m−N−1 . (2.31)

One can now derive the cumulative density function of the Kelly test as:

P
(

Λ
(N)

Kelly Σ̂,µ̂
≤ λ

)
= P

(
κ̂2 ≤ λ

1− λ

)
= P

(
θ ≤ β

λ

1− λ

)

=

∫ 1

0

[∫ λ
1−λ (1−u/(N+1))

0

fθ(v) dv

]
fu(u) du . (2.32)

Solving the integral one obtains the “PFA-threshold” relationship:

PFAKellyΣ̂,µ̂ = (2.33)

Γ(N)

Γ(N −m+ 1) Γ(m− 1)

∫ 1

0

[
1 +

λ

1− λ

(
1− u

N + 1

)]m−N
uN−m(1− u)m−2 du .

(2.34)

However, the final expression cannot be further simplified and a closed-form expres-
sion as those obtained for the other detectors cannot be determined.

2.2.3 Adaptive Normalized Matched Filter

Similarly, the ANMF for both mean vector and covariance matrix estimation becomes:

ΛANMF Σ̂,µ̂ =
|pH Σ̂

−1
(x− µ̂)|2

(pH Σ̂
−1

p)
(

(x− µ̂)H Σ̂
−1

(x− µ̂)
)
H1

≷
H0

λ . (2.35)

Proposition 2.2.3. The theoretical relationship between the PFA and the thresh-
old is given by

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (2.36)

where a = (N − 1)−m+ 2 and b = (N − 1) + 2, Σ̂ = Σ̂SCM and µ̂ = µ̂SMV ,.

Proof. The proof is similar to the proof of Proposition 2.2.1. The main difference is

due to the normalization term (x − µ̂)H Σ̂
−1

(x − µ̂). Indeed, the correction factor
N/(N−1) appears both at the numerator and at the denominator, and consequently,
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it can be simplified. The same argument is also true for the factor N that arises from
the covariance matrix estimates, i.e. since the detector is homogeneous in terms of
covariance matrix estimates, this scalar also disappears. Thus, the distribution of the
ANMF with an estimate of the mean is exactly the same as in Eq. (1.37) where N is
replaced by N − 1.

2.2.4 Simulations

In this section, we validate the theoretical analysis on simulated data. The experi-
ments were conducted on m = 5 dimensional Gaussian vectors, for different values of
N , the number of secondary data and the computations have been made through 106

Monte-Carlo trials. The true covariance is chosen as a Toeplitz matrix whose entries
are Σi,j = ρ|i−j| and where ρ = 0.4. The mean vector is arbitrarily set to have all
entries equal to (3 + 4j).

2.2.4.1 False Alarm Regulation

The FA regulation is presented for previous detection schemes having a closed-form
expression, i.e. for all except the generalized Kelly detector.

Fig. 2.1 shows the false-alarm regulation for the MF, the AMF when only co-
variance matrix is unknown and the AMF where both the covariance matrix and the
mean vector are unknown for different values of N . The perfect agreement between
the green and yellow curves illustrates the results of Proposition 2.2.1. Moreover,
remark that when N increases both AMFs get closer to each other, and they ap-
proach the known parameters case characterized by the MF. Since the mean vector
(Eq. (1.5)) and the covariance matrix (Eq. (1.6)) estimates tend to the true value of
the mean µ and the true value of the covariance matrix Σ, when N tends to infinity
we also have the convergence in the probability of ΛAMF Σ̂,µ̂ to the MF Eq. (1.19).

P(ΛAMF Σ̂,µ̂ > λ) ∼
N→∞

P(ΛAMF Σ̂ > λ) −→
N→∞

P(ΛMF > λ) (2.37)

Consequently, when N tends to infinity, one can observe a convergence of Eq. (2.2)
to Eq. (1.22), and both of them to Eq. (1.20), as shown on Fig. 2.1. This fact also
occurs for the ANMF and for the Kelly test in Eq. (2.26) which converges to the
classical Kelly in Eq. (1.30).

Fig. 2.2 and Fig. 2.3 present the FA regulation for the Kelly detector and the
ANMF respectively, under Gaussian assumption. For clarity purposes, the results are
displayed in terms of the threshold η from Eq. (1.29), η = (1 − λ)−(N+1), and Eq.
(1.34), η = (1 − λ)−m, respectively and a logarithmic scale is used. This validates
results of Proposition 2.2.2 and 2.2.3 for the SCM-SMV. The same behavior when
N →∞ that appears in Fig. 2.1 is still valid for for the Kelly’s detection test and
for the ANMF.
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Figure 2.1: PFA versus threshold for the AMF when (1) µ and Σ are known (MF)
(red and black curves) (2) only µ is known (gray and blue curves) (3) Proposition
2.2.1: both µ and Σ are unknown (yellow and green curves).
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Figure 2.2: PFA versus threshold for the ”plug-in” Kelly detector when (1) only µ
is known (gray and blue curves) (2) Proposition 2.2.2: both µ and Σ are unknown
(yellow and green curves)
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Figure 2.3: PFA versus threshold for the ANMF when (1) µ and Σ are known (NMF)
(red and black curves) (2) only µ is known (gray and blue curves) (3) Proposition
2.2.3: both µ and Σ are unknown (yellow and green curves)

Remark that the derived relationships given by Eq. (2.2) and Eq. (2.36) are quite
similar to those for which the mean is known. However, as illustrated in Fig. 2.1 and
Fig. 2.3, there is an important difference for small values of N .

It is worth pointing out that the theoretical “PFA-threshold” relationships pre-
sented above depend only on the size of the vectors m and the number of secondary
data used to estimate the parameters N . Thus, the detector outcome will not depend
on the true value of the covariance matrix or the mean vector. These three detectors
hold the CFAR property with respect to the background parameters. However, their
distribution strongly relies on the underlying distribution of the background, i.e. if
Gaussian assumption is not fulfilled the “PFA-threshold” relationship will divert from
the theoretical results derived in this paper.

2.2.4.2 Performance Evaluation

The four detection schemes are compared in terms of probability of detection. Firstly,
one sets the probability of false alarm to a specific value. Here we set PFA = 10−3

with m = 5 and N = 10. Then, the threshold is adjusted to reach the desired
PFA, according to the false alarm regulation curves described above. For the gen-
eralized Kelly detector, the threshold is empirically computed to ensure the same
PFA = 10−3. The SNR is obtained according to: SNR = |α2|pHΣ−1p. Hence, one
can add artificial targets with steering vector p and the variation on the amplitude
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α will lead to the different SNR values. The artificial targets signature used for the
simulations is the unity vector p = [1, . . . , 1]T which corresponds to the non-prior
approach that does not introduce any information into the detector.

Fig. 2.4 presents the detection probability versus the SNR. When data follow a
multivariate normal distribution, the detectors delivering the best performance results
are the Kelly detectors (“Plug-in” and generalized). Actually, these detectors lead to
very similar performance with a small improvement of the generalized (resp. “plug
in”) one at low (resp. high) SNR. As expected, the AMF and the ANMF require
a higher SNR to achieve same probability of detection. For instance, for a given
PD = 0.8, the gain of Kelly’s test is of 3 dBs compared to the ANMF.

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR [dBs]

P
D

AMF

ANMF

“Plug-in” Kelly

Generalized Kelly

Figure 2.4: Probability of detection for different SNR values and PFA = 10−3 in
Gaussian case.
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2.3 Anomaly Detection

Target detection methods presented above require the knowledge of the spectra steer-
ing vector p of the desired targets. One could be interested in a large number of
possible targets each with different signatures. Thus, the variety of sought spectra
corresponding to the different kind of targets and the difficulties due to the atmo-
spheric compensation for the measured spectral signatures (used as steering vectors)
have led to the derivation of new algorithms that intend to distinguish unusual mate-
rials in a scene without reference to target signatures. In this section, we are focused
on anomaly detection (see e.g. Chang and Chiang (2002) and references therein).
It can be interpreted as a particular case of target detection in which no a priori
information about the spectra of the targets of interest is available. Hence, the aim of
anomaly detection is to locate objects in the image that are anomalous with respect
to the background. The type of interesting targets can differ significantly from one
application to another, e.g. in forestry applications infected trees are the anomalies
of interest, whereas in defense and intelligence applications the anomalies to be de-
tected are usually vehicles. Note that, since anomaly detectors do not use any a priori
knowledge, they cannot distinguish between true targets and detections of bright pix-
els of the background or targets that are not of interest. This fact makes extremely
difficult to define a false alarm rate for the detectors as highlighted in Matteoli et al.
(2010b).

Anomalies are defined with reference to a model of the background. As for the pre-
vious target detection methods, the background model is developed adaptively using
reference data. Most of these methods rely on classical Gaussian distribution assump-
tion and need for the statistical characterization of the background usually through
first and second order parameters (i.e. the mean vector and the covariance matrix).
In this case, the reference data are taken either from a local neighborhood around
the observation vector either using all the pixels in the image. Both approaches have
their benefits (see e.g. Stein et al. (2002)). Local strategy provides more realistic
scenario for the background characterization. However, it can be susceptible to the
presence of false alarms due to isolated anomalies. While the global approach is not
likely to generate this kind of false alarms, it will decrease the detection capability for
isolated targets. Local procedures will be considered in the following for the different
detection schemes.

Anomaly detection methods studied in this section are analyzed in the real case
as they were originally derived for HSI. Let us now recap here the most popular
Gaussian based anomaly detectors (see e.g. Nasrabadi (2014) for a complete survey
in anomaly detection methods).

2.3.1 Reed-Xiaoli Detector

The Reed-Xiaoli Detector (RXD) proposed in Reed and Yu (1990) is commonly con-
sidered as the benchmark anomaly detector for hyperspectral data. The considered
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signal model can be written as:

{
H0 : xi = bi, , i = 1, . . . , N

H1 : xi = αi p + bi, , i = 1, . . . , N,
(2.38)

where xi are the N available data vectors on the image of dimension m. bi ∼ N (0,Σ)
represents the residual background, p is the spectral signature of the possible anoma-
lous material assumed to be unknown; and αi stands for the amplitude of the intended
targets through the N available data, i.e. it is a known vector α = [α1 . . . αN ]T of
dimension N that indicates the strength and position of the sought targets over the
image. Remark that each vector from the available data can potentially contain an
anomaly while in classical detection problem secondary data are assumed to be signal-
free as stated in Eq. (1.9).

Thus, one can arrange the vector data on a matrix as:

X =




x1(1) . . . xN(1)
...

. . .
...

x1(m) . . . xN(m)


 , (2.39)

and the joint PDF under real Gaussian distribution takes the form:

fi(X) =

(
1

(2π)
m
2 |Σ| 12

exp[−1

2
Tr(Σ−1Ti)]

)N

for i = 0, 1. (2.40)

Similarly to Kelly (1986), the covariance matrix is supposed to be unknown and the
LR has to be maximized on a first step w.r.t. the matrix Σ. Thus, the matrices
maximizing the PDF fi are simply Ti and can be written according to:

T0 =
1

N

N∑

i=1

xix
T
i =

1

N
XXT , (2.41)

T1 =
1

N

N∑

i=1

(xi − αi p)(xi − αi p)T =
1

N
(X− pα)(X− pα)T , (2.42)

and the GLRT, neglecting the exponent N/2 is given by:

Λ(X,p) =
|T0|
|T1|

H1

≷
H0

η . (2.43)

It remains to maximize this expression over the unknown spectral signature p and
the resulting MLE takes the form:

p̂ =
XαT

ααT
. (2.44)
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Thus, replacing p by Eq. (2.44) into Eq. (2.43) yields the test:

Λ(X) =
|XXT |∣∣∣∣∣XXT − (XαT )(XαT )T

ααT

∣∣∣∣∣

, (2.45)

which is equivalent to the benchmark detector:

Λ(X) =
(XαT )T (XXT )−1(XαT )

ααT
. (2.46)

Since hyperspectral data are not zero mean, let us now consider that the background
bi is distributed according to N (µ,Σ) and the mean vector µ is supposed to be
known. In the case just one anomaly in the data under test is intended to be detected,
the corresponding amplitude vector can be written as αi = [0 . . . 0 1 0 . . . 0]T where
1 is at the ith position and the previous detector takes the form:

ΛRXD = (xi − µ)T Σ̂
−1
CSCM(xi − µ)

H1

≷
H0

λ . (2.47)

The distribution of the previous test is detailed in Reed and Yu (1990) and under H0

hypothesis takes the following form:

ΛRXD ∼ fRXD|H0(λ) =

Γ

(
N

2

)

Γ

(
N −m

2

)
Γ

(
m

2

) (1− λ)
N−m−2

2 λ
m−2

2 (2.48)

which corresponds to the β distribution with m
2

and N−m
2

degrees of freedom. The
PFA is obtained after integrating:

PFA =

∫ 1

λ0

fRXD|H0 dλ (2.49)

for a chosen threshold λ0.
Finally, since the mean vector is usually unknown, it can be replaced on the

detector in by its estimate µ̂SMV . The resulting detector, commonly known as two-
step GLRT, yields:

ΛARXD = (xi − µ̂SMV )T Σ̂
−1
SCM(xi − µ̂SMV )

H1

≷
H0

λ . (2.50)

The covariance matrix estimation Σ̂SCM in Eq. (2.50), is performed over all the data
set, i.e. including the vector xi under test. In the following, the test in Eq. (2.50) will
be referred as the Adaptive RXD (ARXD), to underline the fact that the unknown
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mean vector is replaced by its estimate.

Let us now discuss the presence of one anomaly s0 in the secondary data and its
impact on the covariance matrix estimate for the RXD scheme. According to the
model in Eq. (2.38), the anomalous signal can be written as s0 = α0p0 where α0

is the amplitude of the signal; and the received signal x = b + s0. Let us assume
without loss of generality that the mean of the noise b is µ = 0. In presence of an
anomaly, the covariance matrix estimate becomes:

Σ̂ =
1

N

(
N−1∑

i=1

bib
T
i + s0s

T
0

)
= Σ̂bb +

α2
0

N
p0p

T
0 . (2.51)

By the matrix inversion lemma, the inverse of the covariance estimate yields:

Σ̂
−1

= Σ̂
−1
bb −

Σ̂
−1
bb p0 pT0 Σ̂

−1
bb

N α−20 + pT0 Σ̂
−1
bb p0

. (2.52)

In case the test pixel contains an anomaly, we consider that the background signal is
negligible compared to the strong target. Thus, the quadratic form can be written
as:

sT0 Σ̂
−1

s0 =

(
α2

N + α2 pT0 Σ̂
−1
bb p0

)
pT0 Σ̂

−1
bb p0 . (2.53)

On the other hand, if the test pixel is only constituted of background, one obtains:

bi Σ̂
−1

bi =

(
N

N + α2 pT0 Σ̂
−1
bb p0

)
bTi Σ̂

−1
bb bi . (2.54)

Let us now analyze the effect of a great amplitude of the anomaly present in the
secondary data:

lim
α→∞

(
α2

N + α2 pT0 Σ̂
−1
bb p0

)
pT0 Σ̂

−1
bb p0 = 1 (2.55)

lim
α→∞

(
N

N + α2 pT0 Σ̂
−1
bb p0

)
bTi Σ̂

−1
bb bi = 0 (2.56)

Therefore, if the target is very strong, it will be still detected according to Eq. (2.55).
However, the dynamic range of the image is reduced to the values between 0 and 1
due to the presence of an outlier in the secondary data. Finally, the outlier will be
correctly suppressed if the signal only contains the background as in Eq. (2.56).

2.3.2 Kelly Anomaly Detector

Let us now detail a classical anomaly detector often mistakenly referred to as the
RXD.
Following the development proposed in Kelly (1986) and recalled in Section 1.5.2, we
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assume the same signal model as in Eq. (1.15), i.e. an observation vector x that
may contain the target and N signal free secondary data xi. However, the amplitude
of the signal α is supposed to be known and the unknown parameter is now the
steering vector p. As in classical Kelly detector, the covariance matrix is unknown.
In order to be coherent with Section 2.3.1, let us consider without loss of generality
real Gaussian distribution (instead of complex distribution). The likelihood functions
under H0 and H1 are analogous to those given in Eq. (1.24) and their maxima w.r.t
to the covariance matrix are achieved taking Eq. (1.25) and Eq. (1.26), in the real
case. Hence, the LR takes the same form than in Eq. (2.43) and one has to maximize
it now w.r.t. the spectral signature p. Then, one can write from Eq. (1.25) and Eq.
(1.26), (N + 1)|Ti| according to:

(N + 1)|T0| = |Ŵ|
(

1 + (x− µ)T Ŵ−1 (x− µ)
)
, (2.57)

(N + 1)|T1| = |Ŵ|
(

1 + (x− (αp + µ))T Ŵ−1 (x− (αp + µ))
)
. (2.58)

And the minimum of Eq. (2.58) is obtained at:

p̂ =
x− µ
α

. (2.59)

After replacing p by Eq. (2.59) into Eq. (2.43), it is easy to show that the resulting
GLRT is equivalent to:

ΛKellyAD Σ̂ = (x− µ)T Σ̂
−1
CSCM(x− µ)

H1

≷
H0

λ . (2.60)

The quadratic form in Eq. (2.60) corresponds to the Mahalanobis distance de-
tailed in Mahalanobis (1936). It performs statistically as an outlier detector. When
Gaussian assumption is valid, the quadratic form (x − µ)T Σ−1 (x − µ) follows a
χ2-distribution with m degrees of freedom for Σ and µ perfectly known. In case the
parameter Σ is replaced by its MLE, the CSCM, the distribution of the quadratic
form can be written according to (see Bilodeau and Brenner (1999)):

Λ
(N)

KellyAD Σ̂
= (x− µ)T Σ̂

−1
CSCM (x− µ) ∼ T 2 , (2.61)

becomes a Hotelling T 2 distribution and thus,

N −m+ 1

mN
Λ

(N)

KellyAD Σ̂
∼ Fm,N−m+1 (2.62)

where Fm,N−m+1 is the non-central F -distribution with m and N −m+ 1 degrees of
freedom Weisstein (2010) and the superscript (N) is used to stress the dependence on
the number of secondary data N . For high values of N, (N > 10m), the distribution
can be approximated by the χ2-distribution.
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Figure 2.5: Graphical interpretation in two-dimensional space for the ΛKellyAD detec-
tor.

As discussed above, when the mean vector is unknown, it can be replaced on the
detector (two-step GLRT) by its MLE leading to:

Λ
(N)

KellyAD Σ̂,µ̂
= (x− µ̂SMV )T Σ̂

−1
SCM(x− µ̂SMV )

H1

≷
H0

λ . (2.63)

Fig. 2.5 provides a graphical interpretation of the detector in a two dimen-
sional space. ΛKellyAD Σ̂ decision surfaces correspond to ellipsoids in multidimensional
spaces. Dots in blue correspond to water pixels and isolated red crosses represent the
anomalous pixels for ground materials.

Remark 2.3.1. Interestingly, note that ΛRXD (resp. ΛARXD) and the ΛKellyAD Σ̂

(reps. Λ
(N)

KellyAD Σ̂,µ̂
) differ only from the fact that the vector x under test is also

present in the covariance matrix estimation in Eq. (2.50). Therefore, in ΛRXD, the
N secondary data are not assumed to be signal free and the proposed detector aims
to compare every sample to the covariance matrix over all the samples. While in the
second approach, ΛKellyAD Σ̂, one intends to differentiate the observation vector from
the background statistically characterized using N samples. Hence, N + 1 vectors are
available in the latter and ΛKellyAD Σ̂ does not represent anymore a benchmark struc-
ture. Often, the local Kelly detector is mistakenly referred as the local RXD when the
users, either remove the vector xi from the secondary data or they prevent it to be
part of this set by using a guard window.
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The distribution of this detection test is given in the next Proposition.

Proposition 2.3.1. The distribution of the detector under Gaussian assumption
is given by

N −m
m (N + 1)

Λ
(N)

KellyAD Σ̂,µ̂
∼ Fm,N−m , (2.64)

with Fm,N−m is the non-central F -distribution with m and N−m degrees of freedom

and Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .

Proof. The proof is similar to the proof of Proposition 2.2.1. For simplicity matters,
the following notations are used: Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .
Let us set ∀i = 1, ..., N,xi ∼ N (µ,Σ) and x ∼ N (µ,Σ), where all these vectors are
independent. Now, let us denote

ŴN−1 =
N∑

i=1

(xi − µ̂)(xi − µ̂)T = N Σ̂SCM .

Note that as an application of the Cochran theorem (see e.g. Anderson (1984)), one
has

ŴN−1
dist.
=

N−1∑

i=1

(xi − µ)(xi − µ)T = (N − 1) Σ̂CSCM .

Since µ̂ ∼ N (µ, 1
N

Σ), and µ̂ is independent of x by construction, one has x−µ̂ ∼
N (0, N+1

N
Σ). This can be equivalently rewritten as

y =
√
N/(N + 1)(x− µ̂) ∼ N (0,Σ).

As we jointly estimate the mean and the covariance matrix, a degree of freedom is
lost, compared with the only covariance matrix estimation problem.
Let us now consider Λ

(N−1)
KellyAD Σ̂

(i.e. µ known) built from N − 1 secondary data,

rewritten in terms of ŴN−1:

Λ
(N−1)
KellyAD Σ̂

= (N − 1)
(

(x− µ)TŴ−1
N−1(x− µ)

)

where (x − µ) ∼ N (0,Σ) and whose distribution is given by Eq. (2.62) where N is
replaced by N − 1.
Now, for the joint estimation problem, the ΛKellyAD Σ̂,µ̂ can be rewritten as:

Λ
(N)

KellyAD Σ̂,µ̂
= N

(
(x− µ̂)TŴ−1

N−1(x− µ̂)
)

= N
N + 1

N

(
yTŴ−1

N−1y
)

dist.
=

N + 1

N − 1
Λ

(N−1)
KellyAD Σ̂
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This concludes the proof.

The “PFA-threshold” relationship is easily obtained as the complementary CDF
of the detector distribution, as pointed in Remark 1.5.1.

Remark 2.3.2. It is worth pointing out from Eq. (2.63) that ΛKellyAD Σ̂,µ̂ performs
similarly to a matched filter structure applied to x− µ̂SMV :

Λ(x) = cHT (x− µ̂SMV ) , (2.65)

where HT is the matched signal and c a constant that can be also a function on x.
The expression in Eq. (2.65) is completely characterized by the matched signal HT

and the scale constant c. Hence, one can identify from Eq. (2.63) the matched signal

HT = (x− µ̂SMV )T Σ̂
−1
SCM and c = 1.

2.3.3 Normalized-RXD and Uniform Target Detector

Following the same approach than in Eq. (2.65), one can derive many different
anomaly detection schemes. We recall here two popular variants of the Mahalanobis
distance described in Chang and Chiang (2002): the Normalized-RXD (N-RXD) and
the Uniform Target Detector (UTD).
The N-RXD takes the form:

ΛN−RXD =
(x− µ̂SMV )T

||x− µ̂SMV ||
Σ̂
−1
SCM

(x− µ̂SMV )

||x− µ̂SMV ||
H1

≷
H0

λ , (2.66)

where ||x − µ̂SMV ||2 = (x − µ̂SMV )T (x − µ̂SMV ) stands for the Euclidean norm
of the vector. The detection test in Eq. (2.66) can be immediately identified as the
normalized version of ΛKellyAD. In addition, ΛN−RXD takes also the form of a matched

filter specified in Eq. (2.65) with matched signal HT = (x− µ̂SMV )T Σ̂
−1
SCM the same

as in Eq. (2.60) and a different scale constant c = ||x− µ̂SMV ||−2.
The UTD is another widespread anomaly detection test. It was firstly introduced in
Harsanyi (1993) and can be defined as:

ΛUTD = (1− µ̂SMV )T Σ̂
−1
SCM(x− µ̂SMV )

H1

≷
H0

λ . (2.67)

with 1 = [1, . . . , 1]T is the m-dimensional unity vector. Once again the detector in

Eq. (2.67) can be interpreted as a matched filter where HT = (1 − µ̂SMV )T Σ̂
−1
SCM

is the matched signal. If there is no a priori information about the target spectra,
the non-prior approach is the one that does not introduce any information into the
detector and consists on assuming uniform distribution for the spectra over all the
bands.
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2.3.4 Generalized Kelly Anomaly Detector

In the previous detection schemes, it has not been taken into account in the derivation
of the test that both the mean vector µ and the covariance matrix Σ were unknown.
One simply replaced the mean vector by a plug-in estimate in the detector (two-step
GLRT). In case both covariance matrix and mean vector are unknown, we need to
derive a new detector. This strategy is similar to the one proposed in Section 2.2.2 for
the generalized Kelly detection test. The likelihood functions for the two competing
hypothesis are described by Eq. (1.24) and their maxima are achieved when taking
the same results detailed in Section 2.2.2 for both the covariance matrix (Eq. (2.10))
and the mean vector (Eq. (2.12)). Then, the LR can be written according to Eq.
(2.43) and it remains to maximize it w.r.t. p which is equivalent to minimize Eq.
(2.20). The minima is obtained by taking:

p̂ =
N + 1

N

(x− µ0)

α
. (2.68)

Hence, the resulting detector takes the form:

ΛG−KellyAD = (x− µ̂0)
H Ŝ−10 (x− µ̂0)

H1

≷
H0

λ , (2.69)

where Ŝ0 =
∑N

i=1(xi − µ̂0)(xi − µ̂0)
H , and µ̂0 =

1

N + 1

(
x +

∑N
i=1 xi

)
. Once again

the mean vector estimate µ0 and the covariance matrix S0 depend on the data under
test x. Hence, x − µ̂0 and Ŝ0 are not independent. Remark that one can write

(x − µ̂0) =
N

N + 1
(x − µ̂SMV ). Neglecting the multiplicative constants, the test in

Eq. (2.69) appears to be equivalent to the classical ΛRXD obtained throughout a
different approach but built with N + 1 available data.

2.3.5 Simulations

In this section, we validate the theoretical analysis on simulated data. Firstly, we val-
idate through Monte-Carlo simulations the distribution of ΛKelly AD detailed above.
The experiments have been conducted on Gaussian vectors of dimension m = 5 and
for different values of N . The computations have been made through 106 Monte-
Carlo trials. The true covariance is chosen as a Toeplitz matrix whose entries are
Σi,j = ρ|i−j| and where ρ = 0.4. The mean vector is arbitrarily set to have all entries
equal to 3. Exceedance plot shows the fraction of points in the data set whose Ma-
halanobis distance is larger than the indicated value. This is essentially a cumulative
histogram of Mahalanobis distance values which correspond to the “PFA-threshold”
relationship. Remark that the definition of false alarms is not unique and it depends
on the application. Thus, we will rather refer to the distribution of the detector in
target absent hypothesis.
Fig. 2.6 illustrates the distribution of the detector under null hypothesis. The case
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where both the covariance matrix and the mean vector are perfectly known corre-
sponds to the χ2-distribution and the adaptive versions of the quadratic form become
a Hotelling T 2. The perfect agreement between the the green and yellow curves bears
out the results of Proposition 2.3.1.
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Figure 2.6: PFA versus threshold for the ΛKelly AD when (1) µ and Σ are known
(Mahalanobis) (red and black curves) (2) only µ is known (gray and blue curves) (3)
Proposition 2.3.1: both µ and Σ are unknown (yellow and green curves).

Furthermore, we compare in Fig. 2.7 the five proposed anomaly detectors in
terms of probability of detection. The experiments were realized on Gaussian vectors
of dimension m = 5, for N = 10 and the artificial targets signature used for the
simulations is the unity vector p = [1, . . . , 1]T . The SNR is obtained according
to: SNR = |α2|pHΣ−1p. On a first step, the threshold is determined to ensure a
PFA = 10−3 obtained empirically from the data. The best results are obtained for the
Mahalanobis-based detectors, i.e. the classical RXD, Kelly AD and generalized Kelly
AD. The two detectors derived according to Kelly’s approach perform fundamentally
the same and slightly better than the RXD. This improvement may be due to the fact
that N+1 data are available for the Kelly’s strategies, while only N samples are used
in the classical RXD. The matched filter based detectors deliver poor performance.
In the case of the UTD, as the matching signal is the unity vector, the detector is
shown to be not optimal even in the case the artificial targets signature used for
the simulations is the unity vector. The N-RXD presents an almost flat curve. The
normalization factor grows as the SNR gets higher. The outcome of this detector can
be assimilated to the residual background level and its use in Gaussian environment
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Figure 2.7: Probability of detection for different SNR values and PFA = 10−3 in
Gaussian case.

should be avoided.

2.4 Summary

Four adaptive detection schemes, the AMF, Kelly detectors with a “plug-in” and a
generalized versions as well as the ANMF, have been analyzed in the case where both
the covariance matrix and the mean vector are unknown and need to be estimated.
In this context, theoretical closed-form expressions for false-alarm regulation have
been derived under Gaussian assumptions for the SCM-SMV estimates for three de-
tection schemes. The resulting “PFA-threshold” expressions highlight the CFARness
of these detectors since they only depend on the size and the number of data, but
not on the unknown parameters. The theoretical analysis has been validated through
Monte Carlo simulations and the performances of the detectors have been compared
in terms of probability of detection.

Finally, the last section of this chapter is dedicated to anomaly detection. The
classical RXD test is explored and compared to other four detectors. The different
advantages and drawbacks for the different detection schemes are commented. Fur-
thermore, the comparison is performed through Monte Carlo simulations in Gaussian
context.
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One difficulty for the background detection statistic is to assume a tractable model
or at least to account for robustness to deviation from the assumed theoretical model
in the detection scheme. Since Gaussian assumption is not always fulfilled for real
hyperspectral data, alternative robust estimation techniques are proposed in next
chapter. However, it is essential to notice that the derivations for many results in
robust detection contexts strongly rely on the results obtained in the Gaussian con-
text. For instance, this is the case of Pascal et al. (2006) in which the derivation of
a robust detector distribution is based on its Gaussian counterpart.
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3
Adaptive Target Detection in

non-Gaussian Background

3.1 Introduction

In the previous chapter, a complete analysis for detection problems has been derived
under Gaussian assumption. However, it has been shown in Manolakis and Marden
(2002), Frontera-Pons et al. (2012a) that the Gaussian distribution is not always a
good model for background characterization in HSI (see Fig. 3.1). To fill this gap,
one of the most general and acknowledged models for background statistics charac-
terization is the family of Elliptically Contoured Distributions, originally introduced
by Kelker in Kelker (1970) and extended to the complex case in Krishnaiah and Lin
(1986), Ollila et al. (2012). They account for non-Gaussianity by providing a long
tailed alternative to the multivariate Normal model. They are proven to represent
a more accurate characterization of HSI data than models based on the Gaussian
assumption Theiler et al. (2010), Niu et al. (2010).

Although elliptical distributions have already been introduced for background
modeling in HSI Manolakis and Marden (2002), the parameters estimation is of-
ten performed using classical Gaussian based estimators; for example the covariance
matrix, generally determined by the SCM and the mean vector with the SMV. As
mentioned previously in Section 1.4, these classical estimators correspond to the Max-
imum Likelihood Estimators (MLEs) for Gaussian assumption. However, they lead
to sub-optimal detection schemes when the noise is a non-Gaussian process. When
working on the elliptical distributions framework, the model can be used to assess
the robustness of statistical procedures and to derive alternative robust estimators of
the parameters: the mean vector and the covariance matrix Gini and Greco (2002).

47
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Figure 3.1: Exceedance plots are essentially a cumulative histogram of Mahalanobis
distance values, and they provide a useful way to visualize the fat tails of multivariate
distributions. This figure shows the theoretical results when Gaussian distribution
is assumed (yellow and red curves) and experimental hyperspectral data distribution
which diverts from the expected behavior for Hyperion NASA image.

In statistics, one is generally interested on the scatter matrix which corresponds to
a covariance structure estimate that is proportional to the covariance matrix and
on the location estimate related to the mean vector. Robust location and scatter
M -estimates were firstly introduced as a generalization of the MLEs. Up until now,
they have been extensively studied in statistics literature Huber (1964), Maronna
(1976), Bilodeau and Brenner (1999) and have been used in several signal processing
applications, such as radar detection Ollila et al. (2012), Mahot et al. (2012), Couillet
et al. (2012). When the underlying distribution is unknown, M -estimators provide an
alternative approach for robust parameter estimation of elliptical populations. These
can then be used as plug-in estimators (two-step GLRT) in place of the unknown
mean vector and of the covariance matrix. This is a simple but often efficient method
to obtain robust properties for signal processors derived under the Gaussian assump-
tion. We note that the use of robust signal processors is of fundamental interest due
to the occurrence of impulsive environments and outliers in real hyperspectral images.

The first part of this chapter reviews the main characteristics of the family of
Elliptically Contoured Distributions and provides some examples of distributions. In
Section 3.3 the corresponding robust M -estimators and their statistical properties
are detailed. On Section 3.4, we describe the different target detection techniques
analyzed. Section 3.5 presents the anomaly detectors in non-Gaussian environment.
Finally, Section 3.6 summarizes this work.
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3.2 Elliptically Contoured Distributions

The family of elliptical distributions is highly appreciated in signal processing, for its
high flexibility and the fact that it can represent a multitude of particular distribu-
tions. In many areas, when it turned out that the Gaussian model did not perfectly fit
the data, it is quite natural that it has turned to this family which included also the
Gaussian case. Thus, fairly extensive studies have been conducted on them in many
areas dealing with random data. These include the results obtained in finance-related
applications (e.g. Eberlein and Keller (1995), Frahm (2004), Frahm et al. (2005)).
In hyperspectral applications, elliptical distributions have been proposed for data
modeling in Manolakis and Marden (2002). Many other authors such Theiler et al.
(2010), Frontera-Pons et al. (2012b) have acknowledged this class of distributions
trying to promote their use. Thus, this large family deserves some attention since it
allows to represent all kinds of distributions slight or heavy tail, circular or not as
well as the compound Gaussian distributions. It provides a multivariate location-scale
class of distributions that primarily serve as long tailed alternatives to the multivari-
ate Normal model. Let us now present the class of complex elliptically contoured
distributions Krishnaiah and Lin (1986), Ollila et al. (2012), Frahm (2004).

3.2.1 Definition

Definition 3.2.1. A m-dimensional random complex vector z has a complex elliptical
(CE) distribution if its characteristic function is of the form:

Φz(c) = exp
(
j <(cH µ)

)
φ(cH Σ c) , (3.1)

for some function φ : R+ → R, called characteristic generator, a positive semidefinite
matrix Σ, called scatter matrix and µ ∈ Cm the location vector. We shall write
z ∼ CE(µ,Σ, φ).

Remark that the previous definition in 3.2.1 permits singular CE distributions
as the scatter matrix Σ could be singular (rank(Σ) ≤ m). In addition, the scatter
matrix and the characteristic generator do not uniquely define a particular CE dis-
tribution and a scale constraint, either on Σ either on φ, needs to be imposed for
identifiability purposes.

The family of CE(µ,Σ, φ) is closed under affine transformations for any given φ.
Let z ∼ CE(µ,Σ, φ), then:

Bz + b ∼ CE(Bµ+ b,BΣBH , φ) , (3.2)

for B ∈ Ck×m and b ∈ Ck. Hence, every affinely transformed and particularly
every linearly combined elliptical random vector is elliptical, too. An interesting
fact is that the generating variates of affinely transformed random vectors always
remain invariant. Thus, affinely transformed random vectors not only are elliptical
but even closed under the corresponding location-scale family, i.e. the corresponding
transformed random vector is of the same type that z.
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Therefore, a random vector x ∼ CE(0, Im, φ) is spherically distributed since
ΦX(c) = φ(cH c); and every affine transformation of a spherical random vector has
an elliptical distribution. The converse is true, according to the following theorem,
when the transformation matrix has full rank.

Theorem 3.2.1. (Stochastic Representation Theorem)
A m-dimensional random vector z ∼ CE(µ,Σ, φ) with rank(Σ) = k ≤ m if and only
if it admits the following representation:

z
d
= µ+RAU (k), (3.3)

where U (k) is a k-dimensional random vector uniformly distributed on the unit complex
k-sphere CSk; R is a non-negative random variable called generating variate, being
stochastically independent of U (k); µ ∈ Cm and Σ = A AH is a factorization of Σ
where A ∈ Cm×k with rank(A) = k.

The generating variate R determines the distribution’s shape, in particular the
tail of the distribution. Indeed, the generating variate can be connected to the charac-
teristic generator via its CDF as detailed in Frahm (2004). Hence, an m-dimensional

random vector x is spherically distributed if and only if x
d
= O x for all unitary matrix

O.
The stochastic representation provides a simple manner to simulate elliptically dis-
tributed random vectors. The uniform spherical distribution can be easily obtained
from a complex Normal distributed random vector, y ∼ CN (0, σ2 Im), when dividing

it by its length, U (k) d
= y/||y||2. Then, the transformation matrix A on the vector

U (k) produces elliptically contoured density surfaces. Thereupon, some knowledge
on the CDF of R is required to completely determine the shape of the distribution
and include the location vector µ. Remark that the dispersion on the elliptical dis-
tribution is uniquely determined by Σ, and the particular factorization A adds no
information.

From z ∼ CE(µ,Σ, φ), it does not follow that z has a PDF fz(·). If it exists,
it can be related to the density function of the generating variate R, provided R is
absolutely continuous. Then the PDF of z has the form:

fz(z) = cm,h|Σ|−1h
(
(z− µ)H Σ−1 (z− µ)

)
(3.4)

where h is a function such as (3.4) defines a PDF in Cm. The function h is usu-
ally called density generator and it is assumed to be only approximately known. It
satisfies:

γm,h =

∫ ∞

0

tm−1 h(t) dt <∞, (3.5)

to ensure the integrability of fz(·), cm,h is a normalizing constant which compels that
fz(·) integrates to 1 and is given by:

cm,h = 2(smγm,h)
−1, (3.6)
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sm =
2πm

Γ(m)
, (3.7)

where sm corresponds to the surface area of the complex hypersphere (m-sphere) in
CSm. The constant cm,h could be included into the function h, but with this no-
tation h can be independent of the dimension m. In some occasions for clarity, we
write hm to stress that h refers to the density generator of a random vector of di-
mension m. In the absolutely continuous case we shall write CE(µ,Σ, hm) instead of
CE(µ,Σ, φ). Remark that the PDF (3.4) depends on z only through the quadratic
form (z− µ)H Σ−1 (z− µ). Thus, the level sets of the density fz(z) are ellipsoids in
the complex Euclidean m-space.
The scatter matrix Σ describes the shape and orientation of the elliptical equiden-
sity contours. If the second-order moment exists, then Σ reflects the structure of
the covariance matrix M, i.e. the covariance matrix is equal to the scatter matrix
up to a scalar constant Σ = kM. Nevertheless, we can always find an appropriate
normalization constraint such that cov(z) = Σ. This constraint consists in taking
E[R2] = rank(Σ). Note that while the scatter matrix is always defined up to a scalar
constant, the covariance matrix does not exist for some CE distributions (e.g. Cauchy
distribution). We are interested on the information contained on the structure of the
matrix, but not on its scale. In HSI application, this matrix serves to characterize
the correlation pattern existing within the spectral bands.
The class of elliptical distributions includes a large number of well-known distribu-
tions, as for instance the multivariate Gaussian Goodman (1963), the K -distribution
Conte et al. (1991) or the multivariate t-distribution Krishnaiah and Lin (1986).

Let us now comment on an important subclass of the elliptical distributions, the
Spherically Invariant Random Vectors (SIRV).

3.2.2 The Class of Spherically Invariant Random Vectors

A SIRV is a complex compound Gaussian process with random power Yao (1973),
Rangaswamy et al. (1993). They represent an important subclass of CE distribu-
tions widely used in signal processing applications, e.g. wireless radio propagation
problems Yao et al. (2004), radar clutter echoes modeling Gini (1997), hyperspectral
background characterization Manolakis and Marden (2002), Ovarlez et al. (2011).
The main idea behind compound Gaussian distributions applied to signal processing
is to improve the modelization of the background by adding the assumption that the
background, locally Gaussian, presents spatially variable power. This intends to rep-
resent the information texture brought by the high resolution (or any other treatment
improvement). A random vector z has a compound Gaussian distribution if it can be
written as:

z
d
=
√
τ x + µ , (3.8)

where τ is a positive random variable called texture and x an m-dimensional inde-
pendent zero-mean complex Gaussian vector CN (0,Σ) called speckle. Given that
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rank(Σ) = m, the PDF of the SIRV always exists and can be expressed as:

fz(z) =
1

πm |Σ|

∫ +∞

0

1

τm
exp

(
−(z− µ)H Σ−1 (z− µ)

τ

)
fτ (τ) dτ , (3.9)

where fτ (·) is the texture PDF. The different choice of distribution for fτ (·) lead to
some well-known examples of SIRV distributions. The complex Normal distribution
is obtained when τ is Dirac-distributed, i.e. fτ (τ) = δ(τ − τ0). If τ is Gamma-
distributed, the resulting SIRV is a K -distribution. Its PDF presents long tails de-
pending on a shape parameter ν such that, for small values of ν the distribution is
heavy tailed and, when ν tends to infinity, the resulting distribution is the multivari-
ate Normal Jakeman (1980). This will be further detailed in the next subsection.
However, fτ (τ) cannot always be written on a closed form expression (e.g. Weibull
distribution).

It is worth pointing out that, as the SIRV are a subclass of CE distributions, they
admit the stochastic representation of the Theorem 3.2.1. Therefore:

z
d
= µ+

√
τ A x, (3.10)

where x ∼ CN (0, I) and Σ = A AH any factorization of Σ with rank(A) = rank(Σ) =
k.
SIRV distributions allow to extend several interesting properties from the well-known
multivariate Normal distribution. In the case of CE distributions, any marginal dis-
tribution of a random vector, whose distribution belongs to a specific elliptical family,
also belongs to the same family only if the elliptical distribution belongs to the class
of SIRV distributions Kano (1994). Although many of the commonly used CE dis-
tributions belong to the class of the SIRV distributions, there are many which do
not (e.g. multivariate generalized Gaussian distribution Pascal et al. (2013a)). It is
worth pointing out that SIRV distributions constitute a subclass of CE distributions
but it does not correspond to the subclass of spherically distributed random vectors
discussed above. Thus, they should not be mistaken with spherically distributions.

3.2.3 Examples of Complex Elliptical Distributions

Let us now discuss in detail some examples of CE distributions providing their prop-
erties such as their PDF, the distribution of the texture variable τ in case of SIRV
distributions. We consider in this section the absolutely continuous case so that the
PDF fz(·) exists and rank(Σ) = m.

3.2.3.1 Multivariate Normal distribution

Let z be an m-dimensional random vector, such as z follows a complex Normal dis-
tribution with mean vector µ ∈ Cm and scatter matrix Σ. Then, the PDF is of the
form detailed in (1.4). Thus, according to the CE framework, the complex Gaussian
distribution is obtained with the density generator h(t) = exp(−t), where s refers
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to the quadratic form t = (z − µ)H Σ−1 (z − µ) and cm,h = π−m. We shall write
CN (µ,Σ) for complex Normal model.

3.2.3.2 Multivariate t-distribution

A complex random vector z of dimension m has a multivariate t-distribution with
ν > 0 degrees of freedom if it has the SIRV representation (3.10). Thus, the texture

τ
d
= ν/x with x ∼ χ2

ν = Gam(ν/2, 2/ν), i.e. the inverse distribution of the texture is
gamma distributed with shape ν/2 and scale 2/ν. The density generator is given by:

h(t) =

(
1 +

2t

ν

)−2m+ ν

2
, (3.11)

and the normalizing constant:

cm,h =

2m Γ

(
2m+ ν

2

)

(πν)m Γ

(
ν

2

) . (3.12)

The multivariate t-distribution allows for tails heavier than the Gaussian model.
Hence, ν = 1 depicts the complex Cauchy distribution and when ν tends to infinity,
the Gaussian distribution is obtained. The covariance matrix exists for ν > 2, and
in that case, M = ν

ν−2 Σ. If we assume finite 2nd-order moments, one can model

τ
d
= (ν − 2)/x with x ∼ χ2

ν in which case E[τ ] = 1 and M = Σ. This constraint
is assumed for identifiability considerations. We shall write Ctν(µ,Σ) to denote this
distribution. Complex t-distribution has been used e.g. for modeling radar clutter
Younsi et al. (2009) and is the most widely spread distribution for hyperspectral
imaging Manolakis et al. (2005), Niu et al. (2010).

3.2.3.3 K-distribution

A complex random vector z is said to have a m-variate K-distribution with shape
ν > 0 if it has the SIRV representation (3.10) where τ ∼ Gam(ν, 1/ν). Thus, one has
E[τ ] = 1 and its PDF takes the form:

fτ (τ ; ν) =
νν

Γ(ν)
τ ν−1 e−ντ . (3.13)

And replacing (3.13) into (3.9) yields:

h(t) = t(ν−m)/2Kν−m(2
√
νt) , (3.14)



54 CHAPTER 3. TARGET DETECTION IN NON-GAUSSIAN BACKGROUND

−2 0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

z

f z
(z

)

Gaussian

ν = 1000

ν = 5

ν = 1

ν = 0.1

Figure 3.2: Comparison between probability density functions of Gaussian distribu-
tion and t-distribution with different values of ν .

as the density generator and Kα(·) denotes the modified Bessel function of the second
kind of order α. And the normalizing constant is written:

cm,h =
2 ν(ν+m)/2

Γ(ν) πm
. (3.15)

In the limit ν →∞, the K-distribution reduces to the multivariate Normal distribu-
tion. The K-distribution is widely used in radar signal processing (see for e.g. Gini
(1997)) and it will be used for simulation in non-Gaussian environments in Section
3.3.4 and Section 3.4.2.

3.3 Robust Estimation Procedures

In order to improve the parameter estimation, the objective is to find an appropriate
model and to use the corresponding MLEs. This method leads to asymptotically
efficient estimators but not necessarily robust. Indeed, the robust estimator is rather
one that is still fairly reliable, regardless of the data departure, failing to be optimal
in some scenarios. In a real life applications, although elliptical distributions offer a
great deal of possible distributions, the risk that the data do not follow the model
considered still remains. Thus, the models used always correspond to simplifications
of the reality. The fact that a slight deviation between reality and the model assumed
has little or no influence on the parameter estimates, is precisely the robustness of the
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estimator. Let us now recap the optimal estimators (MLE) in elliptical distributions
framework.

3.3.1 Maximum Likelihood Estimates

Assume z1, z2, . . . , zN an IID sample from a CE(µ,Σ, hm) defined with a perfectly
known function hm and with N > m. The log-likelihood function for both (µ,Σ) can
be written as:

Λ(µ,Σ) = c−N log |Σ|+
N∑

i=1

log
(
hm
(
(zi − µ)HΣ−1(zi − µ)

))
. (3.16)

By applying matrix derivatives with respect to µ and Σ and supposing hm real,
continuous and differentiable, one obtains:

N∑

i=1

u(ti) Σ̂
−1

(zi − µ̂) = 0 (3.17)

N∑

i=1

u(ti) Σ̂
−1

(zi − µ̂)(zi − µ̂)HΣ̂
−1 −NΣ̂ = 0 (3.18)

where ti = (zi − µ̂)HΣ̂
−1

(zi − µ̂) and u(t) = −h′m(t)/h(t) is a weight function
depending on the density generator, and h′m is the derivative with respect to t =
(z − µ)HΣ−1(z − µ). Thus, the MLE are obtained as fixed point solutions to the
following equations :

µ̂ML =

N∑

i=1

u(ti) zi

N∑

i=1

u(ti)

, (3.19)

Σ̂ML =
1

N

N∑

i=1

u(ti)(zi − µ̂)(zi − µ̂)H (3.20)

and an iterative algorithm is required to simultaneously solve both estimating equa-
tions. If there is information about the underlying CE, notably hm is perfectly known,
then MLEs provide the optimal approach to the parameters estimation problem.

For the Gaussian distribution (i.e. h(t) = exp(−t)), we have u(t) = 1, which
corresponds to the SMV in (1.5) and the SCM in (1.6) as the unique MLE of µ and
Σ respectively. In the general case, the function u(t) is not necessarily a constant.
If we consider the K-distribution detailed in (3.14), one can easily obtain the MLE

when taking: u(t) =

√
ν

t

Kν−m−1(2
√
νt)

Kν−m(2
√
νt)

as weight function.

The MLE for the multivariate t-distribution will be presented in the next section.
Indeed, these estimators belong to the wider class of robust M -estimators.
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3.3.2 M -Estimators

A family of estimators, the M -estimators have been introduced in this context as a
generalization of maximum likelihood estimates. They allow to take into account some
error in the model. When the density generator hm is unknown, M -estimators provide
an alternative approach for robust parameter estimation of elliptical populations.
Assume z1, z2, . . . , zN an IID sample from a CE(µ,Σ, hm) with N > m. The complex
M -estimators of location and scatter are defined as the joint solutions of:

µ̂N =

N∑

i=1

u1(ti) zi

N∑

i=1

u1(ti)

, (3.21)

Σ̂N =
1

N

N∑

i=1

u2
(
t2i
)

(zi − µ̂) (zi − µ̂)H , (3.22)

where ti =
(

(zi − µ̂)H Σ̂
−1

(zi − µ̂)
)1/2

and u1(·), u2(·) denote any real-valued weight-

ing functions on the quadratic form ti that satisfy a set of general assumptions detailed
below. Remark that ti here is nothing but the Mahalanobis distance and the main
purpose of u1(·) and u2(·) is to attenuate high contributions of this distance (outliers
rejection).
We have seen that within the framework of elliptical distributions, MLEs verify
u(t) = −h′m(t)/h(t) for a known density generator. The idea behind M -estimators is
to replace this function u(t) by another function with particular properties in order to
obtain a robust estimator on the whole family of elliptical distributions. The choice
of u1(.) and u2(.) does not need to be related to a particular elliptical distribution and
therefore, M -estimators constitute a wide class of estimates that includes the MLEs
for the particular case u1(t) = −h′m (t2) /hm (t2) and u2 (t2) = u1(t).

The M -estimators were analyzed firstly in the real case. Existence and uniqueness
have been proven provided functions u1(·), u2(·) satisfy a set of general assumptions
stated by Maronna Maronna (1976). Olilla has shown in Ollila and Koivunen (2003a)
that these conditions hold also in the complex case for the scale-only problem. They
are recalled in the following:

• u1 and u2 are non-negative, non increasing, and continuous on [0,∞).

• Define ψi(t) = tui(t), i = 1, 2. Then, ψ1 and ψ2 are bounded. Let Ki =
supt≥0 ψi(t).

• ψ2 is nondecreasing and is strictly increasing in the interval where ψ2 < K2.

• Let PN(·) the empirical distributions of z1, z2, . . . , zN . There exists a > 0 such

that for every hyperplane H, dim(H) ≤ 2m− 1, PN(H) ≤ 1− m

K2

− a.
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This last condition can be greatly relaxed Tyler (1988), Kent and Tyler (1991). More-
over, it relates the samples z1, z2, . . . , zN with the weight function u2 and it implies
that K2 > m for a = 0.

The solutions (µ̂N , Σ̂N) are estimates for the parameters (µ,Σ0) where:

Σ0 = E
[
u2
[
(z− µ)H Σ−10 (z− µ)

]
(z− µ) (z− µ)H

]
. (3.23)

For elliptical distributions, the implicit equation (3.23) admits a solution Σ0 and one
has:

Σ = σΣ0 =
1

c
cov (z) . (3.24)

Hence, σ is obtained solving the following equation given in Tyler (1982) and recapped
here. Multiplying (3.23) by Σ−10 and taking trace yields:

E
[
ψ2(σ|t|2)

]
= m. (3.25)

and t ∼ CE(0m, Im). This expectation can be evaluated as a simple integral where
the density of t = |t| can be written as:

f(t) = smt
2m−1h(t2) . (3.26)

Remark 3.3.1. A M-estimator of scatter (respectively location) can be interpreted
as an implicit weighted covariance matrix (respectively mean vector) estimator. In
general, a robust weighting function should decrease to zero. This means that small
weights are given to those observations that are highly outlying in terms of the
quadratic form ti. Observations which stay far-off from the background model will
have a smaller contribution to the parameters estimation. For example, the SCM
gives unit weight (u2(t) = u1(t) = 1) to all observations, and hence is naturally non-
robust. When dealing with heavy tailed background models, the use of robust estimates
decreases the impact of highly impulsive samples and possible outliers in the reference
cells.

3.3.2.1 Examples of M-estimators

We present here some examples of M -estimators of location and scatter.

3.3.2.1.1 Huber type M -estimators The Huber’s M -estimators proposed in
Huber (1964) are defined in the complex case by Ollila and Koivunen (2003b) when
taking in (3.21) and (3.22) the following weighting functions:

u1(t) = min (t, k) (3.27)

u2(t
2) =

1

β
min

(
t2, k2

)
(3.28)
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Thus, Huber’s M -estimators can be obtained as the solutions of the following implicit
equations:

µ̂Hub =
1

N

N∑

i=1


zi 1ti≤k + k

zi(
(zi − µ̂Hub)H M̂−1

Hub (zi − µ̂Hub)
)1/2 1ti>k


 , (3.29)

M̂Hub =

1

Nβ

N∑

i=1

[
(zi − µ̂Hub) (zi − µ̂Hub)H 1t2i≤k2 + k2

(zi − µ̂Hub)(zi − µ̂Hub)H

(zi − µ̂Hub)H M̂−1
Hub (zi − µ̂Hub)

1t2i>k
2

]
,

(3.30)

where t2i is the quadratic form (zi− µ̂Hub)H Σ̂
−1
Hub (zi− µ̂Hub) and 1(·) is the indicator

function defined as 1A = 1 if A and 1A = 0 otherwise.

The constants k and β are adjustable parameters that allow to choose the per-
centage of attenuated data (quadratic form higher than t > k) and the coefficient
of proportionality between the limit of the estimator and the scatter matrix of the
considered elliptical distribution (σ in (3.25)). The constant k is defined so that:

q = Fχ2
2m

(
2 k2

)
(3.31)

for a chosen value of q (0 < q ≤ 1), where Fχ2
2m

denotes the CDF of the χ2-distribution

with 2m degrees of freedom. And the scaling parameter β serves to make M̂Hub an
asymptotically unbiased estimate of the covariance matrix in the Gaussian case, i.e.
cov(z) = Σ, which yields:

β = Fχ2
2m

(
2 k2

)
+ k2

1− q
m

(3.32)

Hence, E[u2(t)t] = m is valid when z ∼ CN (0,Σ). In this case, the quadratic form
(z − µ)HΣ−1(z − µ) follows a (1/2)χ2

2m and σ = 1. The choice q = 1 gives u1 = 1
and u2 = 1 and the Huber estimators correspond to the classical SMV and SCM
respectively, whereas the choice q = 0 yields u1(t) = t−1 and u2(t

2) = mt−2 and
the Huber estimators correspond to Fixed Point Estimators to be defined below.
For intermediate value of q, the Huber -estimates might be interpreted as a mixture
between the Fixed Point and the classical SCM. The values of the quadratic form
below k2 are kept and treated as in the SMV and SCM estimates (corresponding to the
first summation); and the values of t2i higher than k2 are attenuated by the weighting
function similarly to the Fixed Point approach. In a complex Gaussian context, it
can be shown that when N tends to infinity, the proportion of data processed with
the SCM is equal to the parameter q. Note that the conditions specified above are
satisfied and K2 = k2/β > m.
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3.3.2.1.2 t-distribution M -estimators The t-distribution or Student M -esti-
mator corresponds to the MLE for the complex t-distributions presented above. The
weighting function takes the form:

u(t) =
ν + 2m

ν + 2 t
(3.33)

and u1(t) = u2(t
2). Note that the resulting estimator depend on the particular

shape of the t-distribution through the parameter ν. If the underlying distribution
is perfectly known, the value of the shape parameter ν is available and one can use
it in Eq. (3.19) and Eq. (3.20) leading to the MLEs for the t-distribution. If there
is no reliable information on the real value of ν, we rather choose a small value to
obtain an estimate robust to spiky distributions. Remark that taking ν = 1 leads to
the most pessimistic case corresponding to Cauchy MLE.

3.3.2.1.3 Fixed Point Estimators The Fixed Point Estimators (FPE) firstly
introduced in Tyler (1987), satisfy the following implicit equations:

µ̂FP =

N∑

i=1

zi(
(zi − µ̂FP )H M̂−1

FP (zi − µ̂FP )
)1/2

N∑

i=1

1
(

(zi − µ̂FP )HM̂−1
FP (zi − µ̂FP )

)1/2

, (3.34)

M̂FP =
m

N

N∑

i=1

(zi − µ̂FP ) (zi − µ̂FP )H

((zi − µ̂FP )H M̂−1
FP (zi − µ̂FP ))

, (3.35)

which are the particular cases of (3.21) and (3.22) for u1(t) = t−1 and u2 (t2) = mt−2.
They are specified by fixed point equations and can be easily computed using a recur-
sive algorithm. If the limit of the algorithm exists, it must be a solution. Although,
the theoretical convergence of the procedure has not been proven, the empirical be-
havior is suitable. The major difficulty is found when there is at least one sample
belonging to the secondary data which has the same value as the mean, or some
samples with values close to the mean. In that case, the algorithm will probably
diverge. Huber M -estimator described above could be used instead, as it overcomes
this possible algorithm divergence.

For the scale-only problem, the covariance matrix FPE has been widely inves-
tigated in statistics and signal processing literature Pascal et al. (2008a), Gini and
Greco (2002), Soloveychik and Wiesel (2014). We refer to Pascal et al. (2008b) for a
detailed performance analysis.
The main results on the statistical properties of M̂FP are recalled for elliptical dis-
tribution framework (and µ assumed to be known):

• M̂FP is a consistent and unbiased estimate of Σ;
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Figure 3.3: Empirical consistency of the FPE for the joint estimation problem.

• its asymptotic distribution is Gaussian and its covariance matrix is fully char-
acterized in Pascal et al. (2005);

• for N sufficiently large M̂FP behaves as a Wishart matrix with
m

m+ 1
N degrees

of freedom.

The asymptotic behavior for the whole family of M -estimators is further discussed
below. Remark that the distribution of M̂FP does not depend on the specific elliptical
distribution. In order to establish consistency and asymptotic normality, the popula-
tion distribution cannot be too heavily concentrated around the center. Consistency
and asymptotic distribution of M̂FP are demonstrated for the joint location-scatter
estimation in the real case in Tyler (1987). For identification purposes, one may
define a normalization constraint on the matrix estimate, e.g. Tr(M̂FP ) = m. In
the SIRV framework, the covariance matrix FPE has been obtained according to the
MLE approach in Gini and Greco (2002). Hence, considering the texture τ as a de-
terministic and unknown parameter, the scatter matrix estimate in (3.35) is the true
MLE but it corresponds to the approximate MLE when τ is a random variable.

The problem of both location and scatter estimation leads to consistent estimates.
Although we do not discuss here the proof for consistency, the empirical behavior
claims for consistent assumption. The empirical consistency has been analyzed over
K -distributed simulated data of dimension m = 10 and shape parameter ν = 0.1.
On Fig. 3.3, the x-axis represents the number of N secondary data beginning at
2m; and on the y-axis the relative error of the estimator ||µ̂FP − µ||F/||µ||F and
||Σ̂FP −Σ||F/||Σ||F .

Although FPE have the general form of M -estimators, it is a limit case as they
do not satisfy the conditions defined by Maronna. Indeed, their weighting function
ui is not defined in 0. Similarly, the SMV-SCM are not M -estimator in the sense of
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Figure 3.4: Comparison of weighting functions for the SMV-SCM, Huber, t-
distribution and FPE with m = 3.
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Maronna as the upper limit of the function ψi = tui(t) is infinite. Figure 3.4 compares
the weighting functions of the four estimators detailed above. Note that the SCM
and the FPE are the limit cases of Huber and t-distribution estimators.

3.3.2.2 Asymptotic distribution of the M-estimators

Let us specify the asymptotic distribution of the M -estimators firstly in the real case.
Assume z1, z2, . . . , zN an IID sample from a E(µ,Σ, hm).We shall denote Σ̂M and
µ̂M the real M -estimator that verify the equations (3.21) and (3.22) respectively and
the conditions from Maronna Maronna (1976) detailed above, h is decreasing and
E[ψ′1(σ

1/2x)] > 0 . We denote ΣM the solution of equation (3.23). Then,

√
N
(
Σ̂M −ΣM , µ̂M − µ

)
d−→ (N,n) , (3.36)

where N and n are independent and:

n ∼ N
(
0, (α/β2)ΣM

)
, (3.37)

N ∼ N
(
0, σ1 (I + Km)(ΣM ⊗ΣM) + σ2 vec(ΣM)vec(ΣM)T

)
. (3.38)

with σ beting the solution of E[ψ2(σt
2)] = m, where:

α = m−1E [ψ2
1(σ1/2t)] , (3.39)

β = E [ (1−m−1)u1(σ1/2t) + m−1ψ′1(σ
1/2t)] , (3.40)

σ1 = a1 (m+ 2)2 (2a2 +m)−2 , (3.41)

σ2 = a−22 {(a1 − 1)− 2a1 (a2 − 1) [m+ (m+ 4) a2] (2a2 +m)−2} , (3.42)

and:

a1 = [m (m+ 2)]−1E [ψ2
2(σt2)], (3.43)

a2 = m−1E [σt2ψ′2(σt
2)]. (3.44)

These results are due to Maronna (1976), but Tyler in Tyler (1982) obtained the
asymptotic variance parameters σ1 and σ2. Moreover, this results have been extended
for the covariance matrix estimators to the complex case in Ollila et al. (2012), Mahot
et al. (2013). Assume z1, z2, . . . , zN an IID sample from a CE(µ,Σ, hm). We shall
denote Σ̂N and µ̂N the complex M -estimator. We denote Σ0 the solution of equation
(3.23). Then, one has:

√
N(Σ̂N −Σ0)

d−→ CN
(
0, ν1 (ΣT

0 ⊗Σ0) + ν2 vec(Σ0)vec(Σ0)
H
)
, (3.45)

with:

ν1 =
E [ψ2

2(σt2)]

m (m+ 1) (1 + [m(m+ 1)]−1E [σt2ψ′2(σt
2)] )2

, (3.46)

ν2 =
E [(ψ2(σt)−mσ)2]

(m+ E [σt2 ψ′2(σt
2)] )2

− ν1

m
, (3.47)
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where ν1 > 0 and ν2 ≥ −
ν1

m
and σ solves Eq. (3.25).

Remark that the classical SCM verifies the previous conditions under Gaussian
assumption taking ν1 = 1 and ν2 = 0.

The problems analyzed in this work stand for continuous and differentiable func-
tions H, which are invariant with respect to the scale of the matrix (homogeneity of
degree 0), i.e. for any positive definite Hermitian matrix Σ and any positive scalar c
they satisfy H(Σ) = H(cΣ). It means that for any homogeneous of degree 0 function
H(·):

H(Σ) = H(cΣ) = H(M) = H(cM) , (3.48)

Moreover, one can define the processor as H(V), where V denotes the shape matrix,
defined as V = mΣ/Tr(Σ). Thus, let us now recall an important property of M -
estimators. LetH(V) be a a function on the set of complex positive definite Hermitian
m ×m matrices that satisfies H(V) = H(cV) for any positive scalar c. Moreover,
let us assume that all the partial derivates are continuous. Then, one has:

√
N
(
H(Σ̂)−H(Σ)

)
d−→ CN

(
0, ϑ1H

′(Σ)(ΣT ⊗Σ)H ′(Σ)H
)
, (3.49)

where H ′(Σ) =
dH(Σ)

dvec(Σ)
.

In addition, this property applied to Wishart matrices, i.e. the SCM under
Gaussian distribution and more generally the M -estimators in elliptical distribu-

tion framework, Tyler’s theorem allows to show that
√
N
(
H(Σ̂SCM)−H(Σ)

)
and

√
σ1N

(
H(Σ̂N)−H(Σ)

)
share the same distribution. In practice, H(·) corresponds

to a function that given a covariance matrix associates a parameter. For instance, in
target detection, the parameter of interest is the outcome of the detector. Generally,
it could be used with any function for which multiplying the covariance matrix by an
scalar does not change the result.

3.3.3 Robust shrinkage estimators

We address here high dimensional covariance estimation for elliptical distributed sam-
ples. HSI target detection methods usually involve the estimation of high-dimension
covariance matrix and mean vector. We present shrinkage methods that are suitable
for high dimensional problems with small number of samples (large m small N). In
these “large m small N” problems, classical estimators suffer from a distorted eigen-
structure and improved estimators are required. A common regularization approach
has been widely studied, the diagonally loaded approach introduced in Abramovich
(1981), Carlson (1988). Thus, in Gaussian context the regularized SCM takes the
form:

M̂SCM−DL(β) =
1− β
N

N∑

i=1

(zi − µ̂SMV ) (zi − µ̂SMV )H + β Im . (3.50)
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In presence of non-Gaussian, impulsive background the estimate in Eq. (3.50) suf-
fers from the same drawbacks than the SCM and the class of robust estimates are
more appropriate. Yet, the class of M -estimators described above exhibit impor-
tant shortcomings in high dimensional context and they cannot be computed for the
undersampling case when m > N . This section deals with shrinkage FPE.

3.3.3.1 Shrinkage Fixed Point Estimates

We extend here covariance matrix FPE to the high dimensional setting using shrink-
age regularization. Many estimation methods were proposed in the literature for the
shrinkage covariance matrix FPE. An original approach that introduces a normal-
ization constraint in the algorithm for the shrinkage FPE is found in Chen et al.
(2011b). Moreover, in Abramovich and Besson (2013b,a), Besson and Abramovich
(2013), this estimator has been used within the Expected Likelihood framework. The
optimization of the shrinkage parameter β has been discussed in Couillet and McKay
(2014).

Let us consider now the shrinkage FPE introduced in Pascal et al. (2013b) and
defined as the solution of the following fixed point equation:

M̂FP (β) = (1− β)
m

N

N∑

i=1

(zi − µ̂FP ) (zi − µ̂FP )H

((zi − µ̂FP )H M̂−1
FP (β) (zi − µ̂FP ))

+ β Im, (3.51)

for β =∈ (0, 1] and µ̂FP the same as given in Eq. (3.34).

The mean vector has to be included in the construction of the shrinkage FPE. One
solution would be to develop a joint algorithm that regularizes also the mean vector
to a chosen steering vector. However, this method would entail a decentralization
of the samples bringing them closer to the chosen direction. If the intended direc-
tion is perfectly known, it would correspond to the real value of the mean parameter
and it would not be necessary to estimate it. Therefore, this regularization strategy
does not make sense. We propose to use the mean FPE given in Eq. (3.34).The
choice of the mean vector estimate is not likely to have a significant impact on the
the shrinkage covariance estimate. We select a robust solution as the mean vector
plays a key role in the target detection schemes analyzed in this work. On the other
hand, notice that the mean vector estimate depends on the regularization parameter
β through the covariance matrix estimator. This fact can lead to unexpected behavior
for the shrinkage FPE when mean vector is unknown and has to be jointly estimated.
Statistical properties of these estimates should be further investigated for the joint
estimation problem.

Thus, it was shown in Pascal et al. (2013b), when mean vector is known, that Eq.
(3.51) admits a solution M if and only if β ∈ (β′, 1] where β′ := max(0, 1 − N/m).
Moreover, M satisfies:

Tr(M−1) = m. (3.52)
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Although this constraint on the trace was originally proven for a known mean vector,
it is easy to shown that it holds for the non-central case. When β tends to 0, the
proposed shrinkage FPE in Eq. (3.51) tends intuitively to the conventional FPE
in Eq. (3.35) whose inverse has its trace equal to m. Note that the normalization
constraint on the FPE in this case is different to the one proposed in Section 3.3.2.1
for identification purposes (Tr(M̂FP ) = m). The basis of the proposed method are
the Fixed Point Estimators. However, the approach presented here could be extended
to other M -estimators.

3.3.4 Simulations

This section is devoted to the different examples of M -estimators detailed above
comparing the estimation performances for elliptical distribution framework. We
compare here the performance of the different M -estimators for different scenarios
and show the advantages of the M -estimators from both robustness and performance
loss in non-optimal cases. The error is measured according to the criterion C1, namely
the Normalized Mean Square Error (NMSE) resulting from:

NMSE (µ̂) =
E[ ||µ̂− µ||2F ]

||µ||2F
(3.53)

NMSE (Σ̂) =
E[ ||Σ̂−Σ||2F ]

||Σ||2F
. (3.54)

For the criteria C1, we consider the overall error, i.e. C1 = NMSE(µ̂) + NMSE(Σ̂).
The expected error is approximated by 200 Monte-Carlo trials.

3.3.4.1 Gaussian analysis

The experiments have been conducted on Gaussian vectors for different dimensions
m and for different number of secondary data N . The true covariance is chosen as
a Toeplitz matrix whose entries are Σi,j = ρ|i−j| and for different values of ρ and the
mean vector is set to have all entries equal to (3 + 4j).
Fig. 3.5 depicts the evolution of the error with the number of secondary data. In this
case, m = 10 and the true covariance matrix is a Toeplitz matrix with ρ = 0.4. Notice
that the error decreases as the number of secondary data increases. The estimators
that provide better performance in terms of NMSE are the SMV-SCM as expected,
as they are the MLE for Gaussian case. Note that the error is slightly higher and
the performances slightly worse for the considered M -estimators. One can observe
that robust M -estimators represent a good trade-off between efficiency and robust-
ness which is a general result widely known in estimation theory. The most robust
estimators are the FPE, then Huber’s M -estimators and Student M -estimators, and
the classical SMV-SCM are the less robust solutions. The order in robustness corre-
spond to the inverse order for efficiency. Finally, note that Huber’s M -estimators and
Student M -estimators perform similarly in Gaussian environment.

Fig. 3.6 illustrates the NMSE as a function of the dimension m. In this experiments
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Figure 3.5: Performance comparison for different estimators for samples drawn from
Gaussian distribution for m = 10 and ρ = 0.4.

we have N = 200 and the true covariance matrix is a Toeplitz matrix with ρ = 0.4.
It is interesting to notice that for a fixed value N , when the dimension m grows the
error increases. Fig. 3.6 reveals that the estimation is deteriorated for high values of
m and it is essential to take into account this high-dimensionality in estimation prob-
lems. For this reason, we have presented Shrinkage estimators (brown, purple and
orange curves). The results are shown for three values of the parameter β, β = 0.2,
β = 0.5 and β = 0.8. The choice of this value will impact on the resulting NMSE
and the evolution of the error with m will change for different values of the β. The
optimal β depends on the underlying true covariance matrix and theoretical methods
for optimizing over β are detailed in Couillet and McKay (2014), Chen et al. (2011b).
Note that the error remains almost the same for the Shrinkage FPE with β = 0.8
among the different values of m. This enforces the fact that Shrinkage FPE are more
suitable in high-dimensional problems. Finally, the main comments on the previous
figure concerning robustness and efficiency are still valid.

We analyze in Fig. 3.7 the NMSE for different covariance matrices. In this experi-
ments m = 10 and N = 200. The coefficient ρ is related to the covariance correlation.
For ρ = 0.4 the same errors than in the previous figures are found. It is worth pointing
out that the error drops when the covariance matrices structure becomes more corre-
lated (high values of ρ). Thereupon, M -estimators are robust for badly conditioned
matrices outperforming the SMV-SCM estimators, even in Gaussian case.
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Figure 3.6: Performance comparison for different estimators for samples drawn from
Gaussian distribution for N = 200 and ρ = 0.4.
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Figure 3.7: Performance comparison for different estimators for samples drawn from
Gaussian distribution for m = 10 and N = 200.
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Figure 3.8: Performance comparison for different estimators for samples drawn from
K-distribution with shape parameter ν = 0.5 for m = 10 and ρ = 0.4.

3.3.4.2 Non-Gaussian analysis

This section compares the different estimators in non-Gaussian environment. The
experiments have been conducted on a K-distribution with shape parameter ν = 0.5
(see Section 3.2.3.3) for different dimensions m and for different number of secondary
data N . The true covariance is chosen as a Toeplitz matrix whose entries are Σi,j =
ρ|i−j| and for different values of ρ and the mean vector is set to have all entries equal
to (3 + 4j).
Fig. 3.8 is the analogous to Fig. 3.5 and presents the NMSE variation with the number
of secondary data. The NMSE decreases as the number of secondary data increases.
The estimators providing the best performance are the FPE. It is worth pointing
out that the results with the FPE are the same under Gaussian distribution and
under K-distribution, i.e. their performance do not depend on the real distribution
(distribution-free). Huber’s M -estimators perform slightly worse than the FPE, but
better than Student M -estimators. Huber’s M -estimators can be interpreted as a
mixture between the FPE and the SMV-SCM. Thus, they deliver very good results in
both Gaussian and non-Gaussian environments. Notice that the error obtained with
classical SMV-SCM has considerably increased under non-Gaussian assumption.
Fig. 3.9 details the NMSE for different values of the dimension m. It is important
to notice that the error is considerably higher for the classical SMV-SCM estimates.
The FPE performance drop for high values of m while Huber’s M -estimators hold the
smaller error in terms of NMSE. This can be explained through the robustness analysis
of the M -estimators studied in Mahot (2012). On the other hand, the Shrinkage FPE
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Figure 3.9: Performance comparison for different estimators for samples drawn from
K-distribution with shape parameter ν = 0.5 for N = 200 and ρ = 0.4.

presents almost the same error through the different values of m. The regularization
parameter β has been fixed here to β = 0.8. Notice that the results with the Shrinkage
FPE are the same than in Gaussian case (see Fig. 3.6). Thus, the Shrinkage FPE is
also distribution-free.

Fig. 3.10 depicts the NMSE as a function of the true covariance matrix. Remark
that the FPE present a smaller value for the NMSE for the different values of the
correlation coefficient ρ. Once again robust M -estimators allow for a smaller error
than classical Gaussian-based SMV-SCM.

We conclude that the robust methods presented in this chapter outperform sig-
nificantly the classical Gaussian based SMV-SCM. Therefore, M -estimators offer a
versatile alternative to Gaussian estimates. They allow to obtain better performances
in impulsive environments while keeping good results in Gaussian background.

3.4 Adaptive non-Gaussian Detection

Through this non-Gaussian assumption, this section highlights the fact that robust
estimation procedures presented in Section 3 are an interesting alternative to classical
methods and can bring some great improvement to the detection process. The goal
of this Section is to extend classical Gaussian based detectors to non-Gaussian frame-
work. Furthermore, theoretical closed-form expression for false-alarm regulation is
derived and the CFAR property is pursued to allow the detector to be independent of
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Figure 3.10: Performance comparison for different estimators for samples drawn from
K-distribution with shape parameter ν = 0.5 for m = 10 and N = 200.

nuisance parameters. This section presents the most important contribution of this
work.

3.4.1 Adaptive Normalized Matched Filter

In non-Gaussian context, the ANMF detector takes advantage of its invariance prop-
erties and delivers better results than the other Gaussian based detectors, the AMF
and the Kelly test, Gini and Greco (2002). If the background does not fulfill the
Gaussian hypothesis, the detector performance can be deteriorated, increasing the
false-alarm rate. To take into account the heterogeneity and non-Gaussianity for
background modeling, a possible way is to use of the ANMF test built with robust
estimates.
If some a priori knowledge of the noise statistics (e.g., K -distribution, t-distribution,
etc.) is available, then Σ and µ can be estimated by the MLEs Σ̂ and µ̂ of the covari-
ance matrix and the mean vector of the assumed elliptical model. When there is no
reliable statistical information on secondary data, they are assumed to be IID random
samples from an unknown CE distribution. Then, practically any robust M -estimator
could be used in the detector scheme. For heavy-tailed non-Gaussian background,
robustness of the selected M -estimator is perhaps the most important design criterion.

We replace the covariance matrix and the mean vector by a robust MLE or M -
estimator of scatter and location as they are consistent estimators of the covariance
matrix up to a positive scalar and the mean vector within the class of CE distributions



3.4. ADAPTIVE NON-GAUSSIAN DETECTION 71

(two-step GLRT). Thus, the ANMF for both the mean vector and the covariance
matrix estimation takes the form (see Eq. (2.35)):

ΛANMF Σ̂,µ̂ =
|pH Σ̂

−1
N (x− µ̂N)|2

(pH Σ̂
−1
N p)

(
(x− µ̂N)H Σ̂

−1
N (x− µ̂N)

)
H1

≷
H0

λ . (3.55)

where µ̂N and Σ̂N stand for any couple of M -estimators and where N stresses the
dependency with the number of secondary data. Note that the ANMF falls into
the class of homogeneous functions H(·) of degree 0, i.e. the resulting detector does
not depend on the scale factor of the matrix. When robust M -estimators are used
jointly with the ANMF, the false-alarm can be regulated according to the following
proposition.

Proposition 3.4.1. The theoretical relationship between the PFA and the thresh-
old for the ANMF, built with M-estimators of location and scatter µ̂N and Σ̂N , is
given by:

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (3.56)

with a = σ1(N − 1) − m + 2 and b = σ1(N − 1) + 2, where N is the number of
secondary data and m the dimension of the vectors. σ1 is related to the particular
choice of M-estimators and is obtained according to:

σ1 =
E [ψ2

2(σt2)]

m (m+ 1) (1 + [m(m+ 1)]−1E [σt2ψ′2(σt
2)] )2

. (3.57)

Proof. The “PFA-threshold” relationship for the ANMF detector is perfectly known
in Gaussian context and when the used estimators are the SMV and a Wishart matrix
obtained with the SCM. The “PFA-threshold” is derived in Section 2.2.3 and recalled
here :

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (3.58)

where a = (N − 1) −m + 2 and b = (N − 1) + 2 and 2F1(·) is the hypergeometric
function detailed in Eq. (1.23).
The statistical behavior of the M -estimators has been analyzed in Section 2.2.3. It
has been shown that for N large enough all M -estimators are Wishart distributed.
Therefore, their distribution rely on the asymptotic variance of the considered M -
estimators, σ1, detailed above. Compared with the classical SCM-SMV, the only
change is the correction factor σ1 acting on (N − 1). For the general case of M -
estimators, the relationship in Eq. (3.58) is verified for N large enough replacing
N − 1 by (N − 1)/σ1.
This allows to give an approximated “PFA-threshold” relationship for theM -estimators
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and for functions in the class of homogeneous functions of degree 0 (as it is the case
for the ANMF). Indeed, we note that the test statistic in Eq. (3.55) stays the same
if one substitutes Σ̂ by Σ̂/Tr(Σ̂). Thus, for N sufficiently large, the “PFA-threshold”
relationship is given by:

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (3.59)

with a = σ1(N−1)−m+2 and b = σ1(N−1)+2. This function depends only on the
size m of the vectors and on the number N of secondary data used for the estimation
stage as well as the asymptotic variance σ1 of the considered M -estimators.

Remark 3.4.1. Note that the variance of the mean estimator will not affect the dis-
tribution as it appears both at the numerator and the denominator and subsequently,
it disappears.

Although FPE do not belong to the class of M -estimators (as they do not satisfy
the conditions of Maronna), these results can also be extended to the FPE. The ap-
proximated “PFA-threshold” is obtained replacing in Eq. (2.36) N−1 by m

m+1
(N−1)

as σ1 = m+1
m

which is an extension of Pascal et al. (2006) for unknown mean vector.

The CFAR property of this detector in any heterogeneous and/or non Gaussian
background is reached when FPE are used. On the other hand, as the background is
non-Gaussian and/or heterogeneous, statistical distribution of the ANMF built with
the SCM estimate cannot be predicted but will surely vary with the background.
The ANMF built with M -estimators (and particularly FPE) does overcome the non-
Gaussianity and/or heterogeneity of the data. This implies, thanks to the properties
of the CE, that the detector behaves according to the same distribution regardless of
the true CE, i.e., it is distribution-free (see Ollila and Tyler (2012)). In addition, the
asymptotic variance σ1, which is always greater than 1, quantifies the loss of perfor-
mance for the detector in Gaussian distributed background. Despite this small loss
in Gaussian case, M -estimators bring robustness to the detection scheme and allow
for perfect false-alarm regulation within the class of CE distributions. The improve-
ment pointed for false alarm regulation leads to a better performance in probability
detection terms. Notably, the SNR required to detect a target can be considerably
decreased.

3.4.2 Simulations

In this section, we illustrate the properties of the selected detection test on simulated
data. Firstly, false alarm regulation is analyzed for different scenarios and the pro-
posed robust estimation procedures. Then, the performance of the different detection
schemes is compared in terms of probability of detection.

3.4.2.1 False Alarm Regulation

Firstly, the FA regulation is presented for the ANMF detection test.
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Figure 3.11: PFA-threshold for the ANMF under Gaussian distribution for m = 10
and N = 50 when (1) the SCM-SMV are used (red and black curves) (2) Proposition
3.4.1: the Huber estimates with q = 0.75 are used (purple and orange curves)

3.4.2.1.1 Gaussian analysis

The experiments were conducted on m = 10 dimensional Gaussian vectors for
N = 50 secondary data and the computations have been made through 106 Monte-
Carlo trials. The true covariance is chosen as a Toeplitz matrix whose entries are
Σi,j = ρ|i−j| and where ρ = 0.4. The mean vector is arbitrarily set to have all entries
equal to (3 + 4j). For clarity purposes, the results are displayed in terms of the
threshold η which corresponds to take η = (1− λ)−m.

Fig. 3.11 presents the FA regulation for the ANMF under Gaussian assump-
tion, for both the Huber’s M -estimators and the SCM-SMV. The perfect agreement
between theoretical relationship (purple curve) and simulated data (orange curve)
validates the results of Proposition 3.4.1 and it shows that the correcting factor used
for Huber’s M -estimators (Eq. (3.57)) allows to perfectly regulate the FA, even in
Gaussian context. Notice that the value of σ1 is close to 1 and the gap between the
ANMF (SMV-SCM) and the ANMF (Huber) is very small. In order to to better ap-
preciate the separation between the curves, a zoom on a part of the figure is displayed
at the bottom-left.

Fig. 3.12 and Fig. 3.13 present the results for the Student M -estimators and the
FPE respectively analogous to those obtained with the Huber’s M -estimators. The
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Figure 3.12: PFA versus threshold for the ANMF under a Gaussian distribution for
m = 10 and N = 50 when (1) the SCM-SMV are used (red and black curves) (2)
Proposition 3.4.1: the Student M -esimtators are used (blue and gray curves)

value of σ1 is greater for the FPE compared to the other estimators. Thus, the loss
in performance is larger and the gap between ANMF (SMV-SCM) and the ANMF
(FPE) is larger. However, this reduction in efficiency is offset by a greater robustness
as it has been discussed above.

Further, Fig. 3.14 illustrates the fact that ANMF (FPE) built with (m+ 1)/mN
secondary data (dark green curve) reaches the same performance than the ANMF
built with SMV-SCM estimates (red curve) under Gaussian distribution. Regular
FPE built with N secondary data is also plotted for comparison (yellow curve). It
is worth pointing out that the error compared to the optimal case can be estimated
as (m + 1)/m and this correction factor allows us to regain the optimal solution.
Moreover, the results for the ANMF (FPE) built with (m + 1)/mN secondary data
are very accurate even for small values of N (here N = 21) and the approximation is
adequate.

3.4.2.1.2 Non-Gaussian analysis

In this section, the experiments have been realized over a K-distribution with
shape parameter ν = 0.5 (see Section 3.2.3.3) for m = 10 dimensional vectors, N = 50
secondary data and the computations have been made through 106 Monte-Carlo tri-
als. Under a K-distribution, as shown on Fig. 3.15, Fig. 3.16 and Fig. 3.17, the
theoretical “PFA-threshold” relationship in Eq. (3.56) is in perfect agreement with
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Figure 3.13: PFA versus threshold for the ANMF under a Gaussian distribution for
m = 10 and N = 50 when (1) the SCM-SMV are used (red and black curves) (2)
Proposition 3.4.1: the FPE are used (yellow and green curves)

the Monte-Carlo simulations for the Huber’s M -estimates, Student M -estimators and
FPE respectively, while for the SCM-SMV, the theoretical “PFA-threshold” relation-
ship obtained in Section 2.2.3 is not valid anymore (since the Gaussian assumption is
not respected anymore). We have left the theoretical “PFA-threshold” relationship
for Gaussian estimators (black curve) for information.

Notice that on both Gaussian and K-distribution contexts, the FA regulation for
the FPE leads to the same results. Thus, the curve just depends on the size of the
vector m and on the number of secondary data N . This fact emphasizes the maximal
invariance obtained with the ANMF built with the FPE, i.e. the distribution of
the detector under only background hypothesis remains the same for all different
impulsive distributions within the class of CE distributions. If one considers the
subclass of SIRV distributions, the secondary data can be written according to the
following representation: x = µ+

√
τ z where z ∼ CN (0,Σ). It is easy to show that

the texture τ , that brings the spatial variation in power and determines the underlying
SIRV distribution, disappears if we replace x on the ANMF detector in Eq. 3.55 by
its SIRV representation. However, the detector’s distribution will not depend on
the particular SIRV only if the covariance matrix estimator does not depend on the
underlying distribution. This is the case only for the FPE, which are distribution-
free, when used with an homogenous function, here the ANMF detection test. This
has been referred as CFAR property and will be further detailed below.
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Figure 3.14: PFA versus threshold for the ANMF under a Gaussian distribution for
m = 3 and N = 21 for (1) the SCM-SMV estimates (red) (2) the FPE (yellow) and
(3) the FPE built m+ 1/mN (dark green).

3.4.2.1.3 Dependency on m and N

As pointed out previously, the theoretical “PFA-threshold” relationship for the
ANMF detection scheme only depends on the dimension of the vector m and on the
number of secondary data N used to perform the parameters estimation. Hence, Fig.
3.18 shows the behavior of the ANMF detector built with the FPE as a function of
the dimension m. The experiments were conducted on Gaussian distribution data for
different values of m, with N = 50 secondary data and the computations have been
made through 106 Monte-Carlo trials. The true covariance is chosen as a Toeplitz
matrix whose entries are Σi,j = ρ|i−j| and where ρ = 0.4. The mean vector is arbi-
trarily set to have all entries equal to (3 + 4j). In this figure, the results are displayed
in terms of the threshold η = (1 − λ) which also does not depend on m. It is worth
pointing out that for m = 25 and N = 50, the FPE does not yield in asymptotic
regime and the conditions for the Proposition 3.4.1 are not satisfied. Further, Fig
3.19 exemplifies the dependency of the detector’s distribution through the number of
secondary data N . As N grows, the curves get closer to each other and tend to the
known covariance matrix and known mean vector NMF. This is due to the fact that
when N →∞ the detector converges in distribution to the NMF.
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Figure 3.15: PFA-threshold under K-distribution with shape parameter ν = 0.3 for
m = 10 and N = 50 when (1) the SCM-SMV are used (red and black) (2) Proposition
3.4.1: the Huber estimators with q = 0.75 are used (orange and purple)
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Figure 3.16: PFA-threshold under K-distribution with shape parameter ν = 0.3 for
m = 10 and N = 50 when (1) the SCM-SMV are used (red and black) (2) Proposition
3.4.1: the Student M -estimators are used (gray and blue curves)
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Figure 3.17: PFA versus threshold for the ANMF under a K-distribution with shape
parameter ν = 0.3 for m = 10 and N = 50 when (1) the SCM-SMV are used (red
and black curves) (2) Proposition 3.4.1: the FPE are used (yellow and green curves)
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Figure 3.18: PFA versus threshold for the ANMF under a Gaussian distribution for
the FPE obtained with N = 50 secondary data and for different values of m.
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Figure 3.19: PFA versus threshold for the ANMF under a Gaussian distribution with
m = 5 for the FPE and for different values of N secondary data.

3.4.2.1.4 CFAR properties

One of the most attractive properties of the ANMF (FPE) detector is its distribu-
tion invariance to the true matrix (CFAR-matrix), to the true mean vector (CFAR-
mean) and to the underlying distribution itself (CFAR texture), i.e. the distribution
of the detector remains the same even for impulsive distributions and for different
parameters of the corresponding distributions. This fact is highlighted by the next
figures. The experiments were conducted for m = 3 with N = 21 secondary data and
the computations have been made through 106 Monte-Carlo trials. Fig. 3.20 depicts
the detector for different values of the true covariance matrix chosen as a Toeplitz
matrix and different values of the correlation coefficient, ρ = 0.01, 0.25, 0.5, 0.75 and
0.99. Is it clear than the resulting distribution does not depend on the true value
of the covariance matrix. Moreover, the same experiments were realized for different
values of the mean vector in Fig. 3.21 leading to the same distribution. Thus, the
ANMF (FPE) detector holds the CFAR property with respect to the distribution
parameters, the covariance matrix and the mean vector.
The most interesting property stands from the fact that the detector behaves accord-
ing to the same distribution regardless of the true elliptical distribution, i.e. it is
distribution-free. This is evidenced in Fig. 3.22 for different impulsive distributions.
However, this is the case only for the FPE and not for the other M -estimators.
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Figure 3.20: PFA versus threshold for the ANMF under a Gaussian distribution with
m = 3, N = 21 for the FPE and for different values of ρ secondary data CFAR
MATRIX.
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Figure 3.21: PFA versus threshold for the ANMF under a Gaussian distribution with
m = 3, N21 for the FPE and for different values of µ secondary data.
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Figure 3.22: PFA versus threshold for the ANMF under a Gaussian distribution with
m = 3 and N21 for the FPE for different underlying distributions Gaussian and
K-distribution with shape parameter ν.

3.4.2.2 Performance evaluation

The classical SCM-SMV are compared to the robust M -estimators (Huber’s M -
estimators, Student M -estimators and FPE) in terms of probability of detection for
the ANMF detection test. In addition, we plot the results for the classical Gaussian
detector studied in Chapter 2. The experiments were conducted on K-distributed
vectors with shape parameter ν = 0.1, dimension m = 10 and N = 50. The true
covariance is chosen as a Toeplitz matrix whose entries are Σi,j = ρ|i−j| and where
ρ = 0.4. The mean vector is arbitrarily set to have all entries equal to (3+4j). Firstly,
one sets the probability of false alarm to a specific value, PFA = 10−3 . Then, the
threshold is adjusted to reach the desired PFA, according to the false alarm regulation
curves described above. The SNR is obtained according to: SNR = |α2|pHΣ−1p.
Hence, one can add artificial targets with steering vector p and the variation on the
amplitude α will lead to the different SNR values. The artificial targets signature used
for the simulations is the unity vector p = [1, . . . , 1]T which corresponds to the non-
prior approach that does not introduce any information into the detector. When data
follow a multivariate K-distribution, the detector delivering the best performance re-
sults is the ANMF built with the robust M -estimators, notably with the FPE see Fig.
3.23. The performances obtained with classical SMV-SCM estimates are deteriorated
for small SNR values. The target may be blurred in highly impulsive background.
The required SNR is slightly smaller for the ANMF (FPE) detector for a given PD
compared to the other M -estimators. Note that the classical Gaussian-based de-
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tectors, the AMF and the Kelly test, are not suited for non-Gaussian background
and need for a higher SNR. For instance, for PD = 0.5, the required SNR for the
ANMF(FPE) is 8 dBs lower than for the ANMF (SMV-SCM) and more than 20 dBs
smaller compared to the classical AMF and Kelly detectors.
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Figure 3.23: Probability of detection for different SNR values and PFA = 10−3 in
non-Gaussian environment.

3.5 Anomaly Detection

All the detection schemes explained in Chapter 2 are derived under Gaussian assump-
tion. In this section, we explore the use of robust estimation methods presented above
for anomaly detection. These can then be used as plug-in estimators in place of the
unknown mean vector and/or of the covariance matrix in the detection scheme. This
is a simple but often efficient method to obtain robust properties for signal proces-
sors derived under the Gaussian assumption. As mentioned previously, the anomaly
detectors allowing for better results are the Mahalanobis based anomaly detectors.

3.5.1 Robust Kelly Anomaly Detector

The Kelly anomaly detector has the advantage that the mean vector and the covari-
ance matrix are independent to each other and to the observation vector, which is
not the case for the Generalized Kelly or the classical RXD. This allows replacing the
unknown parameters by the MLE or robust M -estimators and the detector can be
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written as:

ΛKellyAD Σ̂,µ̂ = (x− µ̂N)T Σ̂
−1
N (x− µ̂N)

H1

≷
H0

λ, (3.60)

and µ̂N and Σ̂
−1
N are the same as in Eq. (3.21) and Eq. (3.22). It is important to

highlight that the distribution of this detector is still an open question, as far as the
authors are aware. In fact, it will surely depend on the underlying particular CE
distribution, i.e. the distribution will change with the choice of hm(·).

3.5.2 Binary Partition Trees

In this section we propose to use a binary partition tree (BPT)-based approach to
define the secondary data. The BPT is a hierarchical tree representation of the data
that exploits the spatial and spectral information contained in the image as detailed
in Salembier and Garrido (2000). This BPT-based definition of the secondary data
allows to overcome the limitations of the conventional sliding window approach. On
one hand it helps to define more homogeneous background regions and on the other
hand it is more flexible in order to fit adequately the geometry of the background.

In the BPT representation, the leaf nodes correspond to an initial partition of
the image, which can be the individual pixels, or a coarser segmentation map. From
this initial partition, an iterative bottom-up region merging algorithm is applied until
only one region remains. This last region represents the whole image and corresponds
to the root node. All the nodes between the leaves and the root result from merging
two adjacent children regions. An example of BPT is displayed in Fig. 3.24. If the
initial partition contains n leaf nodes, the final BPT contains 2n− 1 nodes.

Figure 3.24: Construction of the Binary Partition Tree (BPT).

Two notions are of prime importance when defining a BPT:
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1. The region model MR which specifies how a region R is modeled,

2. The merging criterion O(MRα ,MRβ), which is a distance measure between the
region models of any two regions Rα and Rβ.

Each merging iteration involves the search of the two adjacent regions which achieve
the lowest pair-wise similarity among all the pairs of adjacent regions in the current
segmentation map. Those two regions are consequently merged.

Given a hyperspectral region R, with NR hyperspectral samples xi ∈ Rm, i ∈
1, . . . , NR, the first-order parametric modelMR is defined by the sample mean vector
of the hyperspectral samples µ̂R:

MR : µ̂R =
1

NR

NR∑

i=1

xi. (3.61)

Using the first-order parametric model (3.61), a merging criterion is defined as the
spectral angle distance, dSAM, between the sample mean vectors of any two adjacent
regions Veganzones et al. (2013):

O
(
MRα ,MRβ

)
: dSAM

(
µ̂Rα , µ̂Rβ

)
, (3.62)

where dSAM (a,b) = arccos
(

ab
‖a‖‖b‖

)
.

The building of a BPT may suffer from small and meaningless regions resulting in
a spatially unbalanced tree. To overcome this limitation, a priority term is included
in the merging criterion that forces those regions smaller than a given percentage of
the average region size to be merged first as explained in Tochon et al. (2012).

Let a branch of the observation test, x, denoted as B (x), define the sequence of
nodes ascending on the BPT representation from the leaf containing the observation
test up to the root node. For instance, given the BPT representation depicted in
Fig. 3.24, the branch of an observation vector in the leaf number 5 is: B (x) =
{5→ 7→ 9}. This branch definition is a sorted list of nodes starting in the leaf node
and ending in the root node. Then, the guard and outer nodes as defined as follows:

• The guard node of an observation vector, G (x), is the first node in the obser-
vation vector’s branch, B (x), containing the observation vector and at least, a
given number of guard pixels that will be dismissed in the estimation stage.

• The outer node of an observation vector, O (x), is the first node in the observa-
tion vector’s branch, B (x), containing the observation vector, the guard pixels
and at least, a given number of secondary pixels used to perform the parameters
estimation.

Thus, in order to define the guard and outer nodes it is necessary to set the number of
guard and secondary pixels, which works in a similar manner to the guard and outer
windows size respectively. The secondary data, S (x), is then defined by the pixels
contained in the outer node once the pixels in the guard node has been removed:

S (x) = O (x) \G (x) , (3.63)

where A\B denotes the complement operation between sets A and B.



3.6. SUMMARY 85

3.6 Summary

We have detailed the class of complex elliptical distributions as a general model
for background characterization in Hyperspectral Imaging. Elliptical distributions
account for heterogeneity and long tail distributions present in real hyperspectral
data. Once established that hyperspectral data cannot fit a multivariate Normal
distribution, the use of the Gaussian MLE (SCM and SMV) does not provide the
optimal parameter estimation. We propose the use of robust estimates for the mean
vector and the covariance matrix. We have described the M -estimators, notably
the Huber type estimators, t-distribution estimators and the Fixed Point approach.
Further, we have described robust shrinkage estimators suited for high-dimensional
estimation problems. The joint estimation of both covariance matrix and mean vector
is a new challenging problem that opens many unknowns. We have introduced the
use of these estimates on classical detection methods. We conclude that the robust
estimation tools presented in this chapter offer a versatile alternative to Gaussian
estimates. We remark that proposed M -estimators in Gaussian environment are
capable of reaching the same results as the SCM and SMV. On the other hand,
they outperform the classical estimation methods in case of non-Gaussian impulsive
noise. This adaptability and their robustness make them suitable estimates in most
scenarios.
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4
Application to Hyperspectral Imaging

4.1 Introduction

As mentioned previously, Hyperspectral data represent the radiation at a large num-
ber of wavelength for each position in an image. Therefore, they are real and positive
and the classical zero-mean (or known mean) Gaussian hypothesis is not valid any-
more. The mean vector has to be jointly estimated with the covariance matrix and
included in the adaptive detection scheme. For this purpose, Chapter 2 establishes
the theoretical framework for adaptive non-zero mean Gaussian target detection.
However, the performance of these detection methods strongly relies on the statisti-
cal parameters estimation. Accordingly, when the background is non-homogeneous
or the noise independence assumption is not fulfilled, the detector performance can
be deteriorated. Chapter 3 details the class of elliptical distributions for background
characterization as a generalization of Gaussian model. In this context, robust estima-
tion methods are considered for joint mean vector and covariance matrix estimation.
These methods are introduced for the corresponding adaptive detectors.
The aim of this work is to highlight the improvement arising from the robustness of
the M -estimators described in the previous chapter. Although M -estimators are not
adapted to high dimensional problems, we have explored some dimensionality reduc-
tion techniques in order to decrease the number of bands in real hyperspctral data.
However, shrinkage approach detailed in the previous chapter or the use of projection
methods could be more suitable solutions.

The theoretical proposals have been analyzed in the previous chapters through
simulations. Here, we discuss the results obtained in real hyperspectral images. The
detection schemes are evaluated for four data sets: the NASA Hyperion Image, the
Blind Test HYMAP Image, the Rural scene and synthetic galaxies MUSE project.

87
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4.2 NASA Hyperion Image

The scene analyzed is the NASA Hyperion sensor dataset displayed in Fig. 4.1. The
image is constituted of 798×253 pixels and 116 spectral bands after water absorption
bands have been removed.

In oder to satisfy Gaussian distribution assumption, the analysis has been done on
a homogenous part of the image corresponding to the water region on the top-right
of the image. The extracted part consists in 60 × 20 pixels. To ensure the validity
of the proposed methods, we show in Fig. 4.2 the outcome of a classical Gaussianity
test “Q-Q plot” for the selected region over the band 42. In addition, Fig. 4.3 depicts
the histogram for the reflectance values of the pixels belonging to the chosen area and
the approximative fit with a Gaussian distribution. Even if this allows to “validate”
the Gaussianity of each band, it cannot ensure the Gaussianity of the corresponding
multivariate vector.

Since hyperspectral data are real and positive, we propose to use a Hilbert filter
in order to render them complex to fit the derived expressions for target detection
techniques. A downsampling taking one over two consecutive bands is required to
avoid redundant information that can reduce the covariance matrix rank. However,
it is important to note that the real component after Hilbert transform is still the
original signal. To avoid the well-known problem due to high dimensionality, we have
chosen sequentially six bands in the complex representation. In this approach, both
covariance matrix and mean vector are estimated using a sliding window of size 5×5,
having N = 24 secondary data.

4.2.1 False Alarm Regulation

The outcome of the AMF, Kelly test and ANMF detection schemes under null hy-
pothesis for this image are shown on the Fig. 4.4, Fig. 4.5 and Fig. 4.6 respectively.
The axis in Fig. 4.4 represent the threshold λ of the detector for the AMF test in
Eq. (2.1). While the results in Fig. 4.5 and Fig. 4.6 are displayed in terms of the
threshold η from Eq. (1.29), η = (1 − λ)−(N+1) for Kelly’s test, and Eq. (1.34),
η = (1 − λ)−m for the ANMF detector, respectively and a logarithmic scale is used.
The results obtained on real HSI data on a Gaussian distributed region agree with
the theoretical relationships presented above. Remark that the false-alarm rate that
can be achieved depends on the number of points on which the detector is calculated
(in a similar manner to the Monte-Carlo trials). As the homogenous area is bounded
and the data set is small, the distribution of the detectors may divert for small values
of the PFA directly related to the size of the region.

Depending on the underlying material, the distribution of the detector might
divert from the expected behavior when Gaussian distribution is assumed. This
is the case on these real data since the extracted area is not perfectly Gaussian.
Moreover, we have studied other regions of this image for which we have observed
a strong non-Gaussianity. Fig 4.7 (a) depicts the corresponding “Q-Q plot” of an
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Figure 4.1: True color composition of the Hyperion scene.

extracted region on the top-left part of the image (in orange in the true color image)
over the band 8 and Fig. 4.7 (b) shows the results of the Gaussianity test on the
cloudy region on the bottom-left over band 20. Notice that the tails deviate from the
Gaussian distribution. This suggests the use of non-Gaussian distributions to model
the background for hyperspectral imaging.

4.2.2 Performance Evaluation

We present here the results in terms of probability of detection in a real hyperspectral
scene. Foremost, the threshold is determined to ensure a PFA = 10−2 according to
the “PFA-threshold” relationships detailed in Section 4.2.1. In contrast, the threshold
for the generalized Kelly test is obtained empirically from the data. As pointed
above, we analyze here an homogenous Gaussian distributed region. The SNR is
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Figure 4.2: Q-Q Plot of the data sample versus the Normal theoretical distribution.
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Figure 4.3: Histogram of the data sample and comparison with the Gaussian proba-
bility density function.
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Figure 4.4: AMF false-alarm regulation for a real HSI image
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Figure 4.5: Kelly false-alarm regulation for a real HSI image
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Figure 4.6: ANMF false-alarm regulation for a real HSI image
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Figure 4.7: Q-Q Plot of data sample versus the Normal theoretical distribution.
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obtained according to: SNR = |α2|pHΣ−1p. Hence, one can add artificial targets
with steering vector p and the variation on the amplitude α will lead to the different
SNR values. The artificial targets signature used for the simulations is the unity vector
p = [1, . . . , 1]T which corresponds to the non-prior approach that does not introduce
any information into the detector. The goal of this experiment is to retrieve the same
behavior and the same performance as in Fig. 2.4. Thus, the proposed generalized
Kelly performs similarly to the classical Kelly test. Moreover, Kelly detection test
allows for a lower SNR requirements compared to the AMF and the ANMF detectors,
as expected.
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Figure 4.8: Probability of detection for different SNR values and PFA = 10−2 for
real HSI data.

4.2.3 Anomaly Detection

Fig. 4.9 shows the resulting distribution of Kelly anomaly detector on real data.
The distribution of the detector is plotted in red. We also depict the theoretical
relationship defined by Eq. (2.64). Results obtained on real HSI data on a Gaussian
distributed region agree with the theoretical relationships presented above.

Finally, we illustrate the detection capability of the proposed methods when arti-
ficial anomalies with known spectral signature are inserted on the real hyperspectral
image. For this purpose, we extract the spectral signature from ground materials in
Fig. 4.1 and the anomaly spectra used as steering vector is depicted in Fig. 4.10.
Fig. 4.11 (a) details the position and the shape of the targets. For a fixed value of
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Figure 4.9: Kelly AD complementary CDF of the Mahalanobis distance for a real
HSI image
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Figure 4.10: Endmember used in the experiment which corresponds to land materi-
als.



4.2. NASA HYPERION IMAGE 95

FA, PFA = 0.1, we present in Fig. 4.11 the outcome of the different detectors. All
the results are displayed for a same PFA value, regardless of the real image scale,
i.e. the color level is obtained with respect to the background contrast. For that
purpose, we compare only PFA and PD and not the absolute scale of the image in
terms of power. The detectors based on the Mahalanobis distance, the RXD, the
Kelly AD and the Generalized Kelly, deliver best results for detection purposes as
expected and the matched filter based detectors, the N-RXD and the UTD, do not
detect properly the artificial targets. These detection maps are in agreement with
the SNR figure detailed above. Moreover, Kelly AD and Generalized Kelly detec-
tor provide the best detection results while keeping the false alarm lower. Classical
RXD allows for detection of the one-pixel targets, while UTD detection results locate
only some of the targets. N-RXD results are very poor, strong residual background
samples are detected instead of the targets. Its use should be avoided for anomaly
detection in Gaussian environment. Remark that the two-pixel targets are not de-
tected by any of the detection schemes. This problem is due to the presence of a
strong target in the secondary data that pollutes the covariance matrix estimation.
Its occurrence has a significant impact on the detection process and it degrades the
detectors’ performances.

Fig. 4.12 shows the results of the ΛKelly AD built now with FPE and with shrinkage
estimators, both SCM and FPE. The same value of FA, PFA = 10−1 is considered.
For the shrinkage estimators, the regularization parameter β has been fixed to β = 0.8.
We have empirically optimized the results over β leading to the chosen value. Note
that there are theoretical techniques for optimizing over β, detailed in Couillet and
McKay (2014), Chen et al. (2011b), that could be used instead. Remark that all
the anomalies of interest are now detected even those bigger than one pixel. FPE
and shrinkage FPE take advantage of their robustness to outliers and in this case, the
outliers are the strong targets present in the secondary data. Thereafter, the proposed
estimation methods allow for better detection results even in Gaussian case.
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(a) Original (b) RXD (c) Kelly AD

(d) G-Kelly (e) N-RXD (f) UTD

Figure 4.11: Anomaly detection for artificial targets in real HSI.
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(a) FP (b) SCM-DL (c) Shrinkage FPE

Figure 4.12: Kelly AD built with robust estimates for artificial targets in real HSI.
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4.3 Blind Test HYMAP Image

Experimental hyperspectral scenes cannot be characterized using only classical Gaus-
sian models. As it was mentioned in Manolakis and Marden (2002), HSI data often
present tails heavier than the Normal distribution. Hence, the class of elliptical dis-
tributions is chosen as a more general assumption.

We illustrate here the non-Gaussianity of a real hyperspectral image. The scene
analyzed is the Target Detection blind test provided in Snyder et al. (2008). The
image was collected in July 2006 around the small town of Cooke City, Montana, USA.
The hyperspectral imagery was collected by the HyMap sensor operated by HyVista.
The HyMap imagery has approximately 3 meter ground resolution. Civilian vehicles
and small fabric panels were used as targets. The image is constituted of 280 × 800
pixels and 126 spectral bands. The true color composition of the scene is depicted on
Fig. 4.13.

Figure 1. Color rendering of self test hyperspectral image.

 

 

Figure 2. Screenshot of home page for Target Detection Blind Test website. 

 

,,������

Figure 4.13: True color composition of the HyMap scene.

Fig. 4.14 exhibits the “Q-Q plot” of the data contained in the bands 25th, 50th,
75th and 100th. On this examples, we observe that the tails are different from Gaus-
sian distribution. Moreover, Fig. 4.15 depicts the histogram for the reflectance values
and the approximative fit with a Gaussian distribution, notice that the Gaussian dis-
tribution does not characterize properly the empirical distribution. As the marginal
distributions cannot fit a Normal univariate distribution, neither will the joint distri-
bution. This suggests the need of non-Gaussian distributions to model the background
for hyperspectral imaging.

Exceedance plots, as mentioned in the previous chapter, are essentially cumulative
histograms of Mahalanobis distance values, and they provide a useful way to visualize
the fat tails of multivariate distributions. Fig. 4.16 shows the theoretical results when
Gaussian distribution is assumed and experimental hyperspectral data distribution
which diverts from the expected behavior.
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Figure 4.14: Q-Q Plot of data sample versus the Normal theoretical distribution.
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Figure 4.15: Histogram of the data sample and comparison with the Gaussian prob-
ability density function.
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Figure 4.16: Complementary CDF of the Mahalanobis distance P(T 2 > λ) for the
Hymap image (blue) and the theoretical relationship for multivariate Normal distri-
bution (yellow and red).
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4.3.1 False Alarm Regulation

Again, since hyperspectral data are real and positive, we propose to use a Hilbert
filter in order to render them complex to match the target detector distribution. To
avoid the well-known problem due to high dimensionality, we have chosen sequentially
eight bands in the complex representation. In this approach, both covariance matrix
and mean vector are estimated using a sliding window of size 11× 9, having N = 98
secondary data.

We show in Fig. 4.17 the outcome of the ANMF detection scheme built with
classical SMV-SCM (red curve) and with robust FPE (yellow curve). Moreover, the
theoretical “PFA-threshold” relationships are depicted for the SMV-SCM estimates
(black curve) and the FPE (green curve). The results obtained on real HSI data on a
non-Gaussian distributed region agree with the theoretical relationship derived for the
FPE, while the distribution of the detector built with the SMV-SCM do not follow
anymore the theoretical “PFA-threshold” relationship in non-Gaussian distributed
background. Remark that the distribution of the detector under the null hypothesis
does not depend on the underlying material, for the ANMF-FPE. Moreover, the
distribution of the detector might divert from the expected behavior when Gaussian
estimators are used. This fact emphasizes the interest of robust estimators in target
detection for HSI and suggests its use in other HSI applications where covariance
matrix and mean vector are unknown and have to be estimated from the background
(e.g. classification, unmixing, etc.).



102 CHAPTER 4. APPLICATION TO HYPERSPECTRAL IMAGING

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Threshold log10 η

lo
g
1
0
(P
F
A

)

ANMF(SCM-SMV) Eq.(2.36)

ANMF(SCM-SMV) MC

ANMF(FPE) Eq.(3.56)

ANMF(FPE) MC

Figure 4.17: PFA versus threshold for the ANMF for real HSI scene and m = 8 and
N = 98 when (1) the SCM-SMV are used (red and black curves) (2) the FP estimates
are used (yellow and green curves).
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4.3.2 Anomaly Detection

Let us now present some results for anomaly detection on a real hyperspectral image
in which the background cannot be characterized with Gaussian distribution and
artificial targets were introduced as anomalies.

4.3.2.1 Robust Kelly Anomaly Detector

The original data set consists on 50× 50 pixels with 126 bands. This set corresponds
to the top-left region from the scene in Fig. 4.13 from which we have chosen sequen-
tially nine bands. For the artificial targets with known spectral signature introduced
as anomalies in the background we used the spectra of Fig. 4.19 (a) as endmember.
It characterizes the tissue material from Fig. 4.19 (b) measured in a laboratory and
available in the Target Detection Blind test project. Fig. 4.18 shows the spatial
position and the shape of the considered targets. For this example, both covariance
matrix and mean vector are estimated using a sliding window of size 9 × 9 having
N = 80 secondary data.
The results for the ΛKelly AD built with classical SMV-SCM, FPE and shrinkage esti-
mators are shown in Fig 4.20, the FA is fixed at a value of PFA = 0.03. Once again,
the regularization parameter β has been fixed to β = 0.8 for the shrinkage estimators.
We have empirically optimized the results over β leading to the chosen value. In this
case, FPE and notably shrinkage FPE are capable of locating all the artificial targets
and exhibit a lower number of false alarms. This improvement is due to the fact that
FPE treat the outliers and impulsive samples in order for them to have a smaller
contribution to the background characterization process, while the SMV-SCM esti-
mators (and its respective diagonal loaded version) suffer from the presence of strong
reflectance pixels in the secondary data. Remark that the shrinkage FPE allow for a
better detection compared to FPE.

Figure 4.18: Original data set and position of the artificial anomalies.
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Figure 4.19: (a) Endmember used in the experiment which corresponds to (b) a fabric
panel.
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(a) SCM (b) SCM-DL

(c) FPE (d) Shrinkage FPE

Figure 4.20: Kelly AD built with robust estimates for artificial targets in real HSI.
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4.3.2.2 Binary Partition Trees

Let us now consider all the real targets embedded in the image. Three civilian vehicles
and four small (1m-3m) fabric panels were used as targets, for a total of 129 target
pixels in the image. Fig. 4.21 shows the location of the targets in the map.

Figure 4.21: Location of the targets in the image.

The output of the Kelly anomaly detector, either using the sliding window or
the BPT-based approaches, has been calculated using Eq. (3.60). Moreover, for the
sliding window approach, we have studied both SMV-SCM estimates and FPE. For
the sliding window approach, the guard window is only the observation vector which
is not involved in the parameters estimation and the number of secondary data is
N = 15 × 15. For the BPT-based approach, the guard node should include the ob-
servation vector while the outer node should have at least 196 pixels.

Performances are often compared and summarized by the Receiver Operating
Characteristics (ROC) curves, widely used in detection theory. ROC curves plot PD
against PFA for different values of threshold Kay (1998). Experimental performance
can be evaluated for a specific operating scenario by knowing the locations of the
targets of interest within the image. These ratios are computed by averaging the
detection threshold λ and counting the number of targets properly detected and the
corresponding number of false alarms.

Fig. 4.22 shows the ROC curve comparing the sliding window strategy built with
SMV-SCM estimates and the FPE against the BPT-based adaptive Kelly anomaly
detector over the dataset. The plot shows that the BPT-based approach outperforms
the SMV-SCM sliding window approach in almost all the PFA range. This improve-
ment is due to the selection of more homogeneous regions to perform the estimation
stage. Moreover, the results obtained with the FPE are comparable to the BPT ap-
proach. However, the computational cost of the BPT strategy is significantly higher
than the sliding window approach. Thus, robust estimation procedures allow for good
performance while keeping the computational time reduced. It is worth pointing out
that the comparative performance gain increases as the number of secondary data (i.e.
the size of the window) grows. The fact that all curves are close to the diagonal (bad
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Figure 4.22: PD-PFA plot comparing classical sliding window against BPT strategy

performances, high PFA for small values of the PD) is due to the size of the image.
As we have 280 × 800 pixels for only 129 target pixels, it is difficult to keep a small
false alarm rate. One could just analyze a smaller region containing the targets, in or-
der to obtain ROC curves closer to the top-left corner (small PFA for high PD values).

Fig. 4.23 show the detection maps obtained by the Kelly anomaly detector for
fixed values of the FA, PFA = 0.1 using the conventional windowing approach, SMV-
SCM and FPE, and the proposed BPT-based approach. Remark that for a given
PFA, the SMV-SCM solution in Fig. 4.23 (a) provides false detection all over the
image. The result is very noisy and the only shape easily observed is the road crossing
from the bottom-left of the image to the top-right of the image. This can be due to the
use of the sliding window with Gaussian estimators in a non-Gaussian environment.
Fig 4.23 (b) illustrates the improvement for real target detection purposes compared
to the classical SMV-SCM and to the BPT proposal. In this case, one can locate
the intended targets by visual inspection on the center of the image as they are
found in an homogenous zone. The buildings corresponding to the urban area are
detected as anomalies, as they are different from their background, while the forest
on the bottom-right of the image yields an homogenous region. Finally, Fig 4.23 (c)
show the results for the BPT-approach. Although, the number of FA is considerable
smaller than with SMV-SCM estimators (the white pixels are less concentrated), it is
difficult to find an interpretation related to the selection of homogenous regions used
to perform the estimation.
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(a) SMV-SCM

(b) FPE

(c) BPT

Figure 4.23: Detection maps for sliding window using (a) Gaussian estimates, (b)
FPE and (c) BPT-approach
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4.4 Rural scene

The hyperspectral image analyzed is a Rural scene displayed in Fig. 4.24. The image
is constituted of 742× 226 pixels and 180 spectral bands.

4.4.1 False Alarm Regulation

Again, since hyperspectral data are real and positive, we use the Hilbert filter to
render data complex for target detector distribution. To reduce dimensionality, and
because many of the bands are corrupted by noise, we have chosen sequentially five
bands in the complex representation. In this approach, both covariance matrix and
mean vector are estimated using a sliding window of size 19 × 19, having N = 360
secondary data.

Fig. 4.25 depicts the results of the ANMF detector built with classical SMV-SCM
(red curve) and with robust FPE (yellow curve). Moreover, the theoretical “PFA-
threshold” relationship are plotted for the SMV-SCM estimates (black curve) and
the FPE (green curve). The results obtained on real HSI data on a non-Gaussian
distributed region agree with the theoretical relationships derived for the FPE, while
the distribution of the detector built with the SMV-SCM divert greatly from the
expected behavior.

4.4.2 Anomaly Detection

We present now some results on anomaly detection.The results for the ΛKelly AD built
with classical SMV-SCM and FPE are shown in Fig 4.26, the FA is fixed at a value
of PFA = 0.01. For the outcome of the detector built with the SMV-SCM, firstly
note that, detected pixels are scattered over the whole image. The edges of the cor-
responding roads can be appreciated. It is worth point out that the vertical lines on
the image correspond to misalignments originated in the spectrometer. On the other
hand, the results obtained with the FPE allow to distinguish more easily different
parts of the images. The line on the top of the image is sharply delineated and the
edges of the roads and even of the trees are enhanced. Moreover, on the center-left
of the image, one can observe a homogenous part which corresponds to the smooth
green part in the true color image. The presence of a strong anomaly on the bottom-
left of the image is more clearly detected with the FPE. Finally, as the misalignment
lines are found regularly over the image, the detection test built with the FPE only
detects one of the lines which is stronger in power to the others. Interestingly these
lines cannot be visually identified in the true color image.
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Figure 4.24: True color composition of the Rural scene.
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Figure 4.25: PFA versus threshold for the ANMF for real HSI scene and m = 8 and
N = 98 when (1) the SCM-SMV are used (red and black curves) (2) the FP estimates
are used (yellow and green curves).
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(a) SMV-SCM (b) FPE

Figure 4.26: Kelly AD built with (a) Gaussian SMV-SCM and (b) robust FPE.
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4.5 MUSE project

The robust anomaly detector has also been applied for galaxy detection on the MUSE
data cube. The Multi Unit Spectroscopic Explorer (MUSE) project 1 aims to provide
astronomers with a new generation of optical instrument, capable of simultaneously
imaging the sky (in 2D) and measuring the optical spectra of the light received at a
given position on the sky. MUSE was installed on the VLT telescope and operational
in 2013, and its performances are expected to allow observation of far galaxies up to
100 times fainter than those presently detectable. MUSE will deliver a 3D data-cube
made of a stack of images recorded at 3578 different wavelengths over the range 465-
930 nm. Each monochromatic image represents a field of view of 60 × 60 arcsec,
recorded with a spatial sampling of 0.2 arcsec. Each record results in a data cube of
size 1570 MB encoding 3578 images of 300×300 pixels, possibly containing thousands
of objects (galaxies) existing over different subsets of wavelengths.
An example of MUSE data cube image is displayed in Fig. 4.27 (a), from the 3578
available bands, we have chosen one band of each 100. The results for anomaly
detection are presented in Fig. 4.27 for a fixed value FA PFA = 10−3. Note that
detection with FPE (c) provides results with lower false alarm rate than classical ones
(b).

These examples illustrate the robust behavior of FPE in non-Gaussian environ-
ments or for close targets detection problems.

1http://muse.univ-lyon1.fr/
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(a) MUSE data cube

(b) SMV-SCM (c) FP estimates

Figure 4.27: Classical and Fixed-point anomaly detection in a hyperspectral image
of 300× 300 in 3578 channels.
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4.6 Summary

Finally, the theoretical framework described in Gaussian and non-Gaussian environ-
ments have been investigated for real hyperspectral data. The detection schemes and
the closed-form expressions derived for false-alarm regulation have been validated
through several hyperspectral images. Moreover, the improvement brought by ro-
bust estimation methods is exemplified in terms of probability of detection over real
target detection problems. Ultimately false-alarm regulation is reached in most real
scenarios due to the robustness and invariance of the proposed techniques.
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Conclusion

Summary

Target detection and anomaly detection of multidimensional signals have proved to
be valuable techniques in a wide range of applications, including search-and-rescue,
surveillance, rare mineral and land mines detection, etc. Target detection aims to
discover the presence of a specific signal of interest among a set of signals. Statisti-
cal target detection is based on the Neyman-Pearson criterion, which maximizes the
probability of detection for a given probability of false alarm. Anomaly detection
is a special case of target detection in which no a-priori target is provided. Hence,
the goal of anomaly detection is to detect signals that are anomalous respect to the
background. However, the performance of the classical detection methods strongly
relies on the statistical parameters estimation. Accordingly, when the background is
non-homogeneous or the noise independence assumption is not fulfilled, the detector
performance can be deteriorated. This work intends to provide a unified framework
for different target detection problems in most scenarios.

Classical target detection schemes are usually obtained deriving the likelihood ra-
tio under Gaussian hypothesis and replacing the unknown background parameters by
their estimates. In most applications, interference signals are assumed to be Gaussian
with zero mean or with a known mean vector that can be removed and with unknown
covariance matrix. When the mean vector is unknown, it has to be jointly estimated
with the covariance matrix, as it is the case for instance in hyperspectral imaging. In
this work, the adaptive versions of the classical Matched Filter and the Normalized
Matched Filter, as well as two versions of the Kelly detector are first derived and
then are analyzed for the case when the mean vector of the background is unknown.
More precisely, theoretical closed-form expressions for false-alarm regulation are de-
rived and the CFAR property is pursued to allow the detector to be independent of
nuisance parameters. It is worth pointing out that closed-form expressions are essen-
tial to automatically set the detector’s threshold. Otherwise, numerical methods or
Monte-Carlo simulations have to be used leading to less accurate results.

This thesis also proposes a new kind of robust detectors allowing to get over
non-Gaussianity and heterogeneity of real Hyperspectral data. When accounting for
heterogeneity and non-Gaussianity, elliptically symmetric distributions provide reli-
able models for background characterization. Through this non-Gaussian assumption,

117
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this work highlights the fact that robust estimation procedures are an interesting al-
ternative to classical Gaussian estimators. M -estimators for the mean vector and
the scatter matrix are described. In particular, Huber’s M -estimators, Student M -
estimators and FPE are detailed. The performances of robust estimators have been
studied. This analysis reveals the superiority of M -estimators in non-Gaussian en-
vironment. Moreover, the loss in performance is quantified for Gaussian distributed
background. The goal of this thesis is then not only to recall well-known methodolo-
gies for target detection but also to propose ways to extend them to non-Gaussian
framework. Furthermore, theoretical closed-form expressions for false-alarm regu-
lation are again derived and CFAR property reached within the class of elliptical
distributions.

Anomaly detection methods are used for target detection in which no a priori
information about the spectra of the targets of interest is available. Some classical
anomaly detection schemes are reviewed such as the widely spread Reed-Xiaoli De-
tector, the Kelly-based anomaly detector and some of its variations. Moreover, the
Mahalanobis distance based detector, rigorously derived from a Kelly’s test-based ap-
proach, is analyzed and its exact distribution is derived when both mean vector and
covariance matrix are unknown and have to be estimated. Although, most of these
techniques are based on Gaussian distribution, we have also propose ways to extend
them to non-Gaussian framework. For this purpose, we show that using robust esti-
mators as plug-in estimators in anomaly detectors leads to some great improvement
in the detection process. Notably, the use of the FPE allow for a higher probability
of detection for a fixed value of the PFA.

Once the theoretical framework has been established for both target detection
and anomaly detection, the proposed methods have been investigated for four real
hyperspectral images. The false alarm regulation expressions derived under Gaussian
assumption are validated in experimental data, once the Gaussianity of an extracted
region has been accepted. In addition, detection schemes have been evaluated in
terms of probability of detection for target detection methods and detection maps
are provided for anomaly detection purposes. In most scenarios, HSI cannot be
characterized only through Gaussian distribution. Thereupon, robust M -estimators
are considered for parameters estimation and the improvement brought by robust
estimation methods is illustrated over real target detection problems. Ultimately
false-alarm regulation is reached in most real scenarios due to the robustness and
invariance of the proposed techniques.
Generally, this work finds its purpose in signal processing methods for which both
mean vector and covariance matrix are unknown.
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Perspectives

The analysis detailed for false-alarm regulation could be extended to the target
present hypothesis. When including in the derivation of the detector’s distribution
the SNR, theoretically, one could obtain the corresponding expressions for the prob-
ability of detection. However, such techniques rarely lead to closed-form equations
and the resulting threshold is usually computed numerically.

One of the majors challenges encountered in hyperspectral imaging is the high-
dimensionality of data. In addition, the proposed estimation methods for the co-
variance matrix and the mean vector suffer for some limitations for high-dimensional
vectors. Indeed, the robustness of the M -estimators decreases with the number of
bands. One solution considered in this work is the use of Shrinkage FPE more ap-
propriate than conventional FPE. However, other solution can be further explored.

One could use low rank techniques for adaptive target detection Kirsteins and
Tufts (1994). Studies carried on hyperspectral data show that the background infor-
mation often lies on subspace lower than the number of spectral bands. Thus, instead
of a covariance matrix estimator, it would be appropriate to use an estimate of the
projector for the orthogonal to the background space Rangaswamy et al. (2004). To
follow this idea of low rank, using a projector presents the drawback of renouncing
to much of the information contained in the covariance matrix. Thus, only part of
the eigenvectors are used, excluding any information provided by the small eigen-
values. This treatment reduces the number of samples needed for the estimation,
it also implies a loss of performance. Therefore, it may be advantageous to study
the resulting projectors built with FPE and M -estimators, in order to obtain robust
projectors within the class of elliptical distribution. These ideas are being currently
explored in the work of A. Breloy Breloy et al. (2014) applied to radar target detection.

Related to the high-dimensionality problem, authors have proposed many dimen-
sionality reduction methods. One of the most popular is the Principal Component
Analysis (PCA) which involves the singular value decomposition of the covariance ma-
trix. This operation can be interpreted as the opposite process to anomaly detectors,
in particular, the studied Mahalanobis based detector. In anomaly detection tech-
niques, one is interested in rare objects usually lying in the space associated to small
eigenvalues, while principal component analysis tries to identify the dominant direc-
tions and dismiss those directions associated to small eigenvalues. Thus, it would be
interesting to explore the use of robust M -estimators for principal component analysis
in dimensionality reduction. This techniques will probably lead to robust methods for
feature extraction. Any other techniques found in HSI that requires the estimation
of the mean vector or covariance matrix could be revisited through elliptical distri-
butions and robust estimation procedures.

Further, methods of random matrix theory could be investigated. These are suit-
able for analyzing high-dimensional covariance matrix estimates, i.e. given a small
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sample size compared to the number of dimensions. Classical results of random ma-
trix theory Edelman and Rao (2005) fail if the sample covariance matrix is used in the
context of elliptically distributions and heavy tailed data. The Marčenko-Pastur law
can be used to analyze the eigenspectrum of high-dimensional distributions Marčenko
and Pastur (1967). The key idea is that this can be done even if the sample size is
small compared to the number of dimensions whereas classical statistical analysis
fails in that case. Moreover, the eigenspectrum can be analyzed even if the number
of data points falls below the number of dimensions. Thereupon, the use of robust
estimators in classical random matrix theory investigated in Couillet et al. (2012,
2011a,b,c) could be explored for hyperspectral data processing.
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A CLASS OF ROBUST ESTIMATES FOR DETECTION IN HYPERSPECTRAL IMAGES
USING ELLIPTICAL DISTRIBUTIONS BACKGROUND

J. Frontera-Pons1, M. Mahot1, J.P. Ovarlez1,3, F. Pascal1, S.K. Pang2, J. Chanussot4

ABSTRACT

When dealing with impulsive background echoes, Gaussian
model is no longer pertinent. We study in this paper the class
of elliptically contoured (EC) distributions. They provide a
multivariate location-scatter family of distributions that pri-
marily serve as long tailed alternatives to the multivariate nor-
mal model. They are proven to represent a more accurate
characterization of HSI data than models based on the multi-
variate Gaussian assumption. For data in Rk, robust propos-
als for the sample covariance estimate are the M-estimators.
We have also analyzed the performance of an adaptive non-
Gaussian detector built with these improved estimators. Con-
stant False Alarm Rate (CFAR) is pursued to allow the de-
tector independence of nuisance parameters and false alarm
regulation.

Index Terms— hypespectral imaging, target detection,
elliptical distributions, M-estimators

1. INTRODUCTION

Anomaly detection and detection of targets or activity such as
chemical plumes, aerosols, vehicles, anomalous targets, arise
in many military and civilian applications [1]. Hyperspectral
imaging sensors provide 2D spatial image data containing
spectral information. This information can be used to address
such detection tasks. Hyperspectral imaging sensors measure
the radiance or reflectance of the materials within each pixel
area at a very large number spectral wavelength bands.
It is often assumed that signals, interferences, noises, back-
ground are Gaussian stochastic processes. Indeed, this as-
sumption makes sense in many applications. In these con-
texts, Gaussian models have been widely investigated in the
framework of Statistical Estimation and Detection Theory.
They have led to appealing and well known algorithms as for
instance the Matched Filter and its adaptive variants in radar
detection [2, 3]. The mathematical framework for the design
and evaluation of detection algorithms is provided by the well
known binary hypothesis testing procedure. The basic prob-
lem of detecting a complex signal corrupted by an additive
noise c in a m-dimensional complex vector y can be stated as

1 : SONDRA Research Alliance, Supélec, France, 2 : DSO National
Laboratories, Singapore, 3 : French Aerospace Lab, ONERA DEMR/TSI,
France, 4 : GIPSA-LAB, Grenoble Institute of Technology, France

a binary hypothesis test with two competing hypotheses H0

and H1. In practice the c background statistics are unknown
and have to be estimated from K secondary data ci’s. Under
hypothesisH1, it is assumed that the observed data y consists
in the sum of a signal s = αp and background noise c, where
p is a perfectly known complex steering vector (characteriz-
ing for example the spectral material to detect) and α is the
signal amplitude.
Generally, the statistical parameters (covariance matrix M,
mean µ, ...) of the background can be estimated by using
all pixels within an area of interest. The size of the area has
to be chosen large enough to ensure the invertibility of the
covariance matrix and small enough to justify both spectral
homogeneity (stationarity) and spatial homogeneity. In hy-
perspectral imaging, the actual response of a detector to the
background pixels differs from the theoretically predicted
distribution for Gaussian backgrounds. In fact, as stated in
[5], the empirical distribution usually has heavier tails com-
pared to the theoretical distribution, and these tails strongly
influence the observed false-alarm rate of the detector. Since
the two hypotheses contain unknown parameters (for exam-
ple, the covariance matrix of the background) that have to be
estimated from the data, the detector has to be adaptive, and
it is usually designed by using the Generalized-Likelihood-
Ratio Test (GLRT) approach.
One of the most general and elegant impulsive noise model
often used in radar detection schemes is provided by the
so-called Spherically Invariant Random Vectors (SIRV). A
SIRV y is a compound process, it is the product of a Gaus-
sian multivariate process x ∼ N (µ,M) and the square root
of a non-negative random scalar variable τ called the tex-
ture. Thus, the SIRV is fully characterized by the texture
(representing an unknown intensity) and the unknown co-
variance matrix of the Gaussian vector. Another statistical
framework is based on the use of Elliptical Random Process
which generalizes the SIRV processes. In that framework, the
multidimensional vector x (supposed to be Gaussian in SIRV
theory) is here uniformly distributed on the hyper-sphere.
That means that a SIRV is also elliptically distributed
One of the major challenging difficulties in SIRV or Spher-
ically distributed random process modeling, is to estimate
these two unknown quantities. For example, the classical
Sample Covariance Matrix used in adaptive detection in
Gaussian noise is not at all the best estimate and does not



correspond to the Maximum Likelihood estimator. In SIRV
context, these problems have been investigated in [6] for the
texture estimation while [7] and [8] have proposed different
estimates for the covariance matrix. A complete statistical
analysis of these covariance matrix estimates has been real-
ized in [9]. For Elliptical process, the estimation of the mean
and covariance is known as M-estimation theory introduced
by [10, 11].

2. ELLIPTICAL DISTRIBUTION

A m-dimensional random complex vector y is said to have a
complex elliptical distribution if its probability density func-
tion (PDF) has the form

fy(y) = |Σ|−1hy((y − µ)HΣ−1(y − µ)), (1)

where H denotes the conjugate transpose operator and hy :
[0,∞)→ [0,∞) is any function such as (1) defines a PDF, µ
is the mean vector and Σ is the scatter matrix. The function
hy,usually called density generator, is assumed to be only ap-
proximately known. Note that it produces density contours
corresponding to elliptical surfaces. If the second moments
exist, then Σ reflects the structure of the covariance matrix
of the elliptically distributed random vector y, i.e. the covari-
ance matrix equates the scatter matrix up to a scaling con-
stant. We shall denote this complex elliptical distribution by
EC(µ,Σ, h). It is worth pointing that the EC class includes
an infinity of distributions, notably the Gaussian one, multi-
variate t distribution or multivariate Cauchy.

3. M- ESTIMATORS

Let (c1, . . . , cK) be a K-sample of m-dimensional complex
independent vectors with ci ∼ EC(µ,Σ, h), i = 1, . . . ,K.
The complex M-estimators of location and scatter are defined
as the joint solutions to the estimating equations:

µ̂ =

K∑

n=1

u1(tn)cn

K∑

n=1

u1(tn)

M̂ =
1

K

K∑

n=1

u2(t2n)(cn − µ̂)(cn − µ̂)H

(2)

where tn =
(
(cn − µ̂)HM̂−1(cn − µ̂)

)1/2
and u1, u2 are

two weighting functions on the quadratic form tn. Note t2n is
in fact, the widely used Mahalanobis distance. M-estimators
have first been studied in the real case, defined as solution of
(2) with real samples. Existence and uniqueness have been
proven in the real case, provided functions u1, u2 satisfy a set
of general assumptions stated by Maronna [11] . Olilla has
shown in [12] that these conditions hold also in the complex

case. M-estimators are particularly suited for estimating the
mean vector and the scatter matrix of an elliptical population.
When dealing with heavy tailed clutter models, as in HSI, the
use of robust estimates decreases the impact of highly impul-
sive samples and possible outliers.
Remark that if u1 and u2 are chosen to be constant and equal
to one, the arising estimators correspond to the Sample Mean
Vector and Sample Covariance Matrix respectively. They are
indeed the the Maximum Likelihood estimators when Gaus-
sian distributions are considered.
We state below two particular estimates belonging to the fam-
ily of M-estimators. Besides the indicated statistical robust-
ness , they involve some CFAR properties useful for detection
issues.

3.1. The Fixed Point estimates

According to the Fixed point approach, the joint estimation of
M and µ leads to [13]:

M̂FP =
m

K

K∑

k=1

(ck − µ̂)(ck − µ̂)H

(ck − µ̂)HM̂−1
FP (ck − µ̂)

(3)

and

µ̂ =

K∑

k=1

ck

(ck − µ̂)HM̂−1
FP (ck − µ̂)

K∑

k=1

1

(ck − µ̂)HM̂−1
FP (ck − µ̂)

(4)

Obtained when choosing u1(s) = s−1 and u2(s) =
ms−1. For the matrix estimate, existence and uniqueness
have been established in [14]. Although the proof for si-
multaneous scatter and location estimates is still an open
question, they have been found to be useful and reliable for
elliptical contours estimation parameters because of its easy
implementation. They are specified by implicit equations and
can be easily computed using a recursive algorithm. We refer
to [9] for a detailed performance analysis of the Fixed Point
covariance matrix estimate. The main results of the statistical
properties of the M̂FP are summarized: M̂FP is a consistent
and unbiased estimate of M; its asymptotic distribution is
Gaussian and its covariance matrix is fully characterized in
[15]; its asymptotic distribution is the same as the asymptotic
distribution of a Wishart matrix with mK/(m + 1) degrees
of freedom.

3.2. The Huber’s M-estimates

Using the well-known Huber’s ψ function [10] defined as,

ψk(s) = min(s, k) (5)

with k > 0. One can obtain Huber’s M-estimator by taking
u1(s) = ψk(s)/s and u2(s) = ψk2/s. We remark that the
Huber function can be seen as a mix between the Fixed Point



estimate and the conventional SCM estimate. Extreme val-
ues of t2n outside [0, k2] are strongly attenuated by the 1/s
decreasing function (as for the Fixed Point) while normal val-
ues below k2 are uniformly kept (SCM behavior).

4. THE ANMF BUILT WITH THE M-ESTIMATORS

Different types of adaptive non-Gaussian detectors were de-
rived for target enhancement purposes in radar applications.
We focus here on the study of the GLRT-Linear Quadratic
[16], also known as Adaptive Cosine Estimate,

Λ(M̂, µ̂) =
|pHM̂−1(y − µ̂)|2

(pHM̂−1p)((y − µ̂)HM̂−1(y − µ̂))

H1

≷
H0

λ

(6)
where p is the spectral steering vector, y the cell under test
and λ the decision threshold.Note that the mean µ̂ is gener-
ally omitted in radar detection (and therefore not estimated)
as the noise is always zero mean. So, in hyperspectral imag-
ing, as the data represent intensity values and are positive,
we need to estimate it, jointly with the covariance matrix M.
Used with the Fixed Point estimates, this detector has essen-
tial CFAR properties like texture-CFAR (independent of den-
sity generator function), matrix-CFAR (indepedent of M) and
mean-CFAR. Hence, the detector GLRT Λ(M̂FP , µ̂) behaves
according to the same distribution regardless of the elliptical
distribution used and for different covariance matrices. This
is of a major interest in areas of background transition, like
for example, in coastal areas (ground and sea) or at the edge
of forests (fields and trees) because the detector resulting dis-
tribution should be insensitive to the different clutter areas.

4.1. Detector performance

The performance analysis has been realized over the data set
provided by DSO National Laboratories, the normalized hy-
percube is shown in figure 1. The resulting ROC curves (Re-
ceiver Operating Characteristic) compare the output of the
detector built with the Fixed Point estimates, the Huber M-
estimators and the classical SCM. The test conducted con-
sists in placing an artificial target with a fixed SNR through
each pixel of the image. For all the possible threshold values,
both probability of false alarm and probability of detection
are computed. The outcome is illustrated in figure 2.
These preliminary results show the improvement in perfor-
mance introduced by the use of M-estimators regarding the
conventional SCM. The desired robustness properties previ-
ously mentioned lead to a higher Pd for small values of the
Pfa.

4.2. False Alarm Regulation

The ANMF test statistics distribution is well-known for
zero-mean Gaussian model. When M is estimated accord-
ing to the SCM, it follows a complex Wishart distribution
CW(K,m;M). Taking into account that the Fixed Point

Fig. 1. Normalized data set.

Fig. 2. ROC curves depicting the performance of the detector
built with the SCM (in red), the Fixed Point (in blue) and the
Huber type (in black) estimates. Probabilities are given in
log10 scale.

Matrix asymptotic distribution is the same as the asymp-
totic distribution of a Wishart matrix with mK/(m + 1)
degrees of freedom. A theoretical relationship between the
detection threshold λ and the Probability of False Alarm
Pfa = P(Λ > λ|H0) has been stated in [17]:

Pfa = (1− λ)a−1
2F1(a, a− 1; b− 1;λ) (7)

where a = m
m+1K − m + 2, b = m

m+1K + 2 and 2F1 is
the Hypergeometric function. This expression holds when µ
is completely known and can be removed from the data. As
the joint estimation of M and µ is needed, (7) is no longer
valid and a gap is evidenced between theoretical and empiri-
cal curves.

When µ is included in the estimation of the SCM, M
is distributed as a complex Wishart with K − 1 degrees of
freedom. The theoretical Pfa- threshold relationship for the
Gaussian case and SCM estimation has been derived resulting
in an expression as in (7) where a = (K − 1) −m + 2 and
b = (K − 1) + 2. Figure 3 (a) exhibits the regulation of
the false alarm for the detector when Gaussian data model is
considered.
Simulations held in elliptical distributions context show the
early empirical distribution for the detector built with the
Fixed Point estimates, hinting its curve analytical expression
and its CFAR-texture properties. The figure 4 (b) exemplifies



the empirical results for a K-distribution with shape param-
eter ν = 0.1. Although a more detailed analysis need to be
done.
Note that the previous Pfa-threshold has been derived assum-
ing radar data being complex and is not valid for real data. As
the hyperspectral data are real and positive, they have been
passed through an Hilbert filter to render them complex.

Fig. 3. Pfa- threshold relationship for Gaussian model and
SCM estimation.

Fig. 4. Pfa- threshold relationship for K-distribution with
shape parameterν = 0.1 and FP estimation.

5. CONCLUSIONS

We consider the family of elliptical contoured distributions
for impulsive clutter characterization in hyperspectral imag-
ing. In this context, we study different robust estimators for
statistical modeling of the background. Particularly, we de-
scribe two M estimators, so the Fixed Point and the Huber
type, pointing its robust behavior. The main contribution of
this article is the analysis performed on the ACE detector
when built with these newfangled estimates, showing a bet-
ter performance in probability of detection terms. Finally we
introduce a theoretical relationship for false alarm regulation,
when covariance matrix and mean are jointly estimated, fore-
most for the gaussian case. Empirical simulation results are
highlighted for elliptical distribution model.
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Adaptive non Zero-Mean Gaussian Detection and
Application to Hyperspectral Imaging

Joana Frontera-Pons, Student Member, IEEE, Frédéric Pascal, Senior Member, IEEE, and Jean-Philippe
Ovarlez, Member, IEEE

Abstract—Classical target detection schemes are usually ob-
tained by deriving the likelihood ratio under Gaussian hypothesis
and replacing the unknown background parameters by their
estimates. In most applications, interference signals are assumed
to be Gaussian with zero mean (or with a known mean vector)
and with unknown covariance matrix. When the mean vector
is unknown, it has to be jointly estimated with the covariance
matrix, as it is the case for instance in hyperspectral imaging.
In this paper, adaptive versions of the classical Matched Filter
and the Normalized Matched Filter, as well as two versions of
the Kelly detector are first derived and then analyzed for the
case where the mean vector of the background is unknown.
More precisely, theoretical closed-form expressions for false-
alarm regulation are derived and the Constant False Alarm Rate
property is pursued to allow the detector to be independent of
nuisance parameters. Finally, the theoretical contributions are
validated through simulations and the proposed detectors are
tested on real hyperspectral scenes.

Index Terms—Hyperspectral Imaging, adaptive target detec-
tion, non zero-mean Gaussian distribution, false alarm regulation.

I. INTRODUCTION

HYPERSPECTRAL imaging (HSI) extends from the fact
that for any given material, the amount of radiation

emitted varies with wavelength. HSI sensors measure the
radiance of materials within each pixel area at a very large
number of contiguous spectral bands and provide image
data containing both spatial and spectral information (see
[1] for more details and reference therein). Hyperspectral
processing involves various applications such as unmixing
[2], classification and dimensionality reduction [3], detection,
... Among them, hyperspectral detection is an active research
topic that has led to many publications e.g. [4], [5], [6], [7].
More precisely, hyperspectral target detection methods are
commonly used to detect targets embedded in the background
and that generally cannot be solved by spatial resolution
[8]. Furthermore, Detection Theory [9] arises in many
different military and civilian applications and has been
widely investigated in several signal processing domains such
as radar, sonar and communications, see [10] for various
references. There are two different methodologies for target
detection purposes in the HSI literature [11]: Anomaly

J. Frontera-Pons is with SONDRA, Supelec, Plateau du Moulon,
3 rue Joliot-Curie, F-91190 Gif-sur-Yvette, France (e-mail:
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J.-P. Ovarlez is with ONERA, DEMR/TSI, Chemin de la Hunière, F-91120
Palaiseau, France (e-mail: jean-philippe.ovarlez@onera.fr)

Detection [5], [6] and Target Detection [4].

In many practical situations, there is not enough information
about the target to detect, thus Anomaly Detection methods
are widely used. The most widespread detector, the RX
detector [12] is based on the Mahalanobis distance [13].
This detector and most of its variants search for pixels in
the image with spectral characteristics that differ from the
background. On the other hand, when the spectral signature
of the desired target is known, it can be used as a steering
vector in Target Detection techniques [11].

Interestingly, target detection methods have been extensively
developed and analyzed in the signal processing and radar
processing [10], [14], [15], [16]. In all these works as well
as in several signal processing applications, signals are
assumed to be Gaussian with zero mean or with a known
mean vector (MV) that can be removed. In such context,
Statistical Detection Theory [9] has led to several well-known
algorithms, for instance the Matched Filter (MF) and its
adaptive versions, the Kelly detector [14] and the Adaptive
Normalized Matched Filter [17]. Other interesting approaches
based on subspace projection methods have been derived and
analyzed in [15]. However, when the mean vector of the
noise background is unknown, these techniques are no longer
adapted and improved methods have to be derived by taking
into account the mean vector estimation. For this purpose,
some preliminary results have been given in [18]. One of the
contributions of this work is to extend and generalize these
original results.

More precisely, this work deals with the classical Adaptive
Matched Filter (AMF), the Kelly detection test and the
Adaptive Normalized Matched Filter (ANMF). These
detectors have been derived under Gaussian assumptions and
benefit from great popularity in HSI target detection literature,
see e.g. [19], [20]. To evaluate the detector performance, the
classical process, according to the Neyman-Pearson criterion
is first to regulate the false-alarm, by setting a detection
threshold for a given probability of false-alarm (PFA). Since
the PFA is related to the cumulative distribution function
(CDF) of the detection test, this process is equivalent to the
derivation of the detection test statistic. Then, the probability
of detection can be evaluated for different Signal-to-Noise
Ratios (SNR). Therefore, keeping the false-alarm rate constant
(CFAR) is essential to set a proper detection threshold [21],
[22]. The aim is to build a CFAR detector which provides
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detection thresholds that are relatively immune to noise
and background variation, and allow target detection with a
constant false-alarm rate. The theoretical analysis of CFAR
methods for adaptive detectors is a challenging problem
since in adaptive schemes, the statistical distribution of the
detectors is not always available in a closed-form expression.

The theoretical contributions of this paper are twofold.
First, we derive the expression of each adaptive detector
under the Gaussian assumption where both the mean vector
and the covariance matrix (CM) are assumed to be unknown.
Then, the exact derivation of the distribution of each proposed
detection scheme under null hypothesis, i.e. when no target is
supposed to be present, is provided. Thus, through Gaussian
assumption, closed-form expressions for the false-alarm
regulation are obtained, which allow to theoretically set the
detection threshold for a given PFA.

One the other hand, one difficulty for the background
detection statistic is to assume a tractable model or at least
to account for robustness to deviation from the assumed
theoretical model in the detection scheme. Since Gaussian
assumption is not always fulfilled for real hyperspectral data,
alternative robust estimation techniques are proposed in [23].
However, it is essential to notice that the derivations for
many results in robust detection contexts strongly rely on the
results obtained in the Gaussian context. For instance, this
is the case in [24] where the derivation of a robust detector
distribution is based on its Gaussian counterpart.

This paper is organized as follows. Section II introduces
the required background on classical detection techniques
as well as the obtention of the adaptive detectors for both
unknown MV and CM. Then, Section III provides the main
theoretical contributions of the paper by deriving the exact
”PFA-threshold” relationship for the AMF, the ”plug-in” Kelly
detector and the ANMF under Gaussian assumption while a
generalized version of the Kelly detector is derived. Finally,
in Section IV, the theoretical analyses are validated through
Monte-Carlo simulations and real HS data are processed to,
first, extract homogeneous, let’s say Gaussian, data and then,
highlight the agreement with the proposed theoretical results.
Conclusions and perspectives are drawn in Section V.

In the following, vectors (resp. matrices) are denoted by
bold-faced lowercase letters (resp. uppercase letters). T and
H respectively represent the transpose and the Hermitian
operators. |A| represents the determinant of the matrix A and
Tr(A) its trace. j is used to denote the unit imaginary number.
∼ means ”distributed as”. Γ(·) denotes the gamma function.
Eventually, <{x} represents the real part of the complex vector
x.

II. BACKGROUND

After providing the general background in non-zero mean
Gaussian detection, this section is devoted to review the
expressions of the adaptive detectors.

The problem of detecting a signal corrupted by an additive
noise b in a m-dimensional complex vector x can be stated
as a the following binary hypothesis test:

{
H0 : x = b

H1 : x = s + b ,

and the signal s can be written in the form αp, where
α is an unknown complex scalar amplitude, and p is the
steering vector describing the signal which is sought. Since
the background statistics, i.e. the MV and the CM, are
assumed to be unknown, they have to be estimated from
x1, ...xN ∼ CN (µ,Σ) a sequence of N independent and
identically distributed (IID) signal-free secondary data. Then,
the adaptive detector is obtained by replacing the unknown
parameters by their estimates. In practice, an estimate may
be obtained from the pixels surrounding the pixel under test,
which play the role of the N IID signal-free secondary data
vectors. The sample size N has to be chosen large enough
to ensure the invertibility of the covariance matrix and small
enough to justify both spectral homogeneity (stationarity) and
spatial homogeneity. Let us now recall the detectors under
interest in this work

A. Adaptive Matched Filter

The MF detector is the optimal linear filter for maximizing
the SNR in the presence of additive Gaussian noise with
known parameters [9]. It corresponds to the Generalized Like-
lihood Ratio Test (GLRT) when the amplitude α of the target
to be detected is an unknown parameter. The MF detection
scheme can be written as:

ΛMF =
|pH Σ−1 (x− µ)|2

(pH Σ−1 p)

H1

≷
H0

λ , (1)

where H0 and H1 denote respectively the hypothesis of
the absence and the presence of a target to detect. Note
that it differs from the classical MF (zero-mean Gaussian
Noise) by the term µ, the background mean, but without any
consequence since x− µ ∼ CN (0,Σ). Moreover, the ”PFA-
threshold” relationship is given by [9]:

PFAMF = exp (−λ).

The two-step GLRT, called the AMF and denoted Λ
(N)
AMF Σ̂ to

underline the dependency with N , is usually built replacing
the covariance matrix Σ by any estimate Σ̂ obtained from the
N secondary data {xi}i∈[1,N ] ∼ CN (µ,Σ). If we consider a
known mean vector µ, the adaptive version becomes:

Λ
(N)
AMF Σ̂ =

|pH Σ̂
−1

(x− µ)|2

(pH Σ̂
−1

p)

H1

≷
H0

λ . (2)

By choosing Σ̂ = Σ̂CSCM where Σ̂CSCM is the Centered
Sample Covariance Matrix (CSCM) defined in Appendix A,
the theoretical ”PFA-threshold” relationship related to the test
given in (1) is given by [16]

PFAAMF Σ̂ = 2F1

(
N −m+ 1, N −m+ 2; N + 1; − λ

N

)
,

(3)
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where 2F1(·) is the hypergeometric function [25] defined as,

2F1(a, b; c; z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1(1− t)c−b−1
(1− tz)a dt .

This detector holds the CFAR properties in the sense that
its false alarm expression only depends on the dimension of
the vector m and the number N of secondary data used for
the estimation. Note that it is also independent of the noise
covariance matrix Σ and the mean vector µ, therefore the
detector is said to be CFAR.

B. Adaptive Kelly detector
The adaptive Kelly detector was derived in [14] and it is

based on the Generalized Likelihood Ratio Test (GLRT) as-
suming Gaussian distribution. In this case, only the covariance
matrix Σ is unknown and the mean vector µ is assumed to
be known. The Kelly detection test is obtained according to:

Λ
(N)
KellyΣ̂CSCM

(4)

=
|pH Σ̂

−1
CSCM (x− µ)|2(

pH Σ̂
−1
CSCMp

) (
N + (x− µ)H Σ̂

−1
CSCM (x− µ)

)
H0

≷
H0

λ .

(5)

As shown in [14], the PFA for the Kelly test is given by:

PFAKelly = (1− λ)N−m+1 . (6)

The Kelly detector is a CFAR test, in which the PFA is
independent of the true covariance matrix and the mean vector.
The AMF (two-step GLRT-based) and the Kelly detector
(GLRT-based) have been derived on the same assumptions
about the nature of the observations. It is therefore interesting
to compare their detection performance for a given PFA. Note
that for large values of N the performances are substantially
the same.

C. Adaptive Normalized Matched Filter
The Normalized Matched Filter (NMF) [26] was obtained

in Gaussian noise hypothesis but when considering that the
covariance matrix is of the form σ2 Σ with an unknown
variance σ2 but known structure Σ. The GLRT leads to

ΛNMF =
|pH Σ−1 (x− µ)|2

(pH Σ−1p)
(
(x− µ)H Σ−1 (x− µ)

)
H1

≷
H0

λ, (7)

The PFA-threshod relationship is given [26]:

PFANMF = (1− λ)(m−1) .

The two step-GLRT, called ANMF, is generally obtained when
the unknown noise covariance matrix Σ is replaced by an
estimate [15]:

Λ
(N)
ANMF Σ̂ =

|pH Σ̂
−1

(x− µ)|2(
pH Σ̂

−1
p
) (

(x− µ)H Σ̂
−1

(x− µ)
)
H1

≷
H0

λ.

For the choice for Σ̂ = Σ̂CSCM , the PFA follows [15] :

PFAANMF Σ̂CSCM
= (1−λ)a−1 2F1(a, a−1; b−1;λ) , (8)

where a = N −m+ 2 and b = N + 2.

III. MAIN RESULTS

In this section, let us now assume that the mean vector µ is
an unknown parameter as it is the case for instance in HSI and
let us derive the new corresponding detection schemes. Then,
using standard calculus on Wishart distributions, recapped
in Appendix B, the distributions of each detection test is
provided.

A. Adaptive Matched Filter Detector
When both covariance matrix Σ and mean vector µ are

unknown, the two-step GLRT procedure leads to replace them
by their estimates Σ̂ and µ̂ built from the N secondary data
{xi}i∈[1,N ] in (1) leading to the AMF detector of the following
form:

Λ
(N)
AMF Σ̂,µ̂ =

|pH Σ̂
−1

(x− µ̂)|2

(pH Σ̂
−1

p)

H1

≷
H0

λ,

where the notation Λ
(N)
AMF Σ̂,µ̂ is used to stress now the

dependency on the estimated mean vector µ̂. Under Gaussian
assumption, and for the particular MLE choice Σ̂ = Σ̂SCM

and µ̂ = µ̂SMV defined in Appendix A, the distribution of
this detection test is given in the next Proposition, through its
PFA.

Proposition III.1 Under Gaussian assumptions, the theoreti-
cal relationship between the PFA and the threshold λ is given
by

PFAAMF Σ̂,µ̂ = 2F1

(
N −m, N −m+ 1; N ; − λ

N + 1

)
,

(9)
where Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .

Before turning into the proof, let us comment on this result.
• Interestingly, this detector also holds the CFAR property

in the sense that its false-alarm expression depends only
on the dimension m and on the number of secondary
data N , but not on the noise parameters µ and Σ. Note
that the only effect of estimating the mean is the loss
of one degree of freedom and the modification of the
threshold compared to (3). Obviously, the impact of these
modifications decrease as the number of secondary data
N used to estimate the unknown parameters increases.

• Moreover, the result has been obtained when using the
MLEs of the unknown parameters but the proof can be
easily extended to other covariance matrix estimators

such as Σ̂ =
1

N − 1

N∑

i=1

(xi − µ̂)(xi − µ̂)H which is the

unbiased covariance matrix estimate

Proof: For simplicity matters, the following notations are
used: Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .
Since the derivation of the PFA is done under hypothesis H0,
let us set {xi}i∈[1,N ] ∼ CN (µ,Σ) and x ∼ CN (µ,Σ), where
all these vectors are independent. Now, let us denote

ŴN−1 =
N∑

i=1

(xi − µ̂)(xi − µ̂)H = N Σ̂SCM .
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Note that as an application of the Cochran theorem (see e.g.
[27]), one has

ŴN−1
dist.
=

N−1∑

i=1

(xi − µ)(xi − µ)H = (N − 1) Σ̂CSCM ,

where dist.
= means is distributed as.

Since µ̂ ∼ CN
(
µ,

1

N
Σ

)
, one has x − µ̂ ∼

CN
(

0,
N + 1

N
Σ

)
. This can be equivalently rewritten as

√
N/(N + 1)(x− µ̂) ∼ CN (0,Σ).

Now, let us set y =

√
N

N + 1
(x− µ̂) with y ∼ CN (0,Σ).

As we jointly estimate the mean and the covariance matrix,
a degree of freedom is lost, compared to the only covariance
matrix estimation problem.
Let us now consider the classical AMF test (i.e. µ known) built
from N − 1 secondary data, rewritten in terms of ŴN−1:

Λ
(N−1)
AMF Σ̂ = (N − 1)

|pH Ŵ−1
N−1 y|2

(pH Ŵ−1
N−1 p)

,

where y ∼ CN (0,Σ) and whose ”PFA-threshold” relationship
is given by (3) where N is replaced by N − 1.

Now, for the joint estimation problem, the AMF can be
rewritten as:

Λ
(N)
AMF Σ̂,µ̂ = N

|pH Ŵ−1
N−1 (x− µ̂)|2

(pH Ŵ−1
N−1 p)

,

= N
N + 1

N

|pH Ŵ−1
N−1 y|2

(pH Ŵ−1
N−1 p)

,

dist.
=

(N + 1)

(N − 1)
Λ
(N−1)
AMF Σ̂ .

where (x− µ̂) has been replaced by
√
N + 1/N y with y ∼

CN (0,Σ), as previously.
Hence, one can determine the false-alarm relationship:

PFAAMF Σ̂,µ̂ = P
(

Λ
(N)
AMF Σ̂,µ̂ > λ|H0

)
,

= P

(
(N + 1)

(N − 1)
Λ
(N−1)
AMF Σ̂ > λ|H0

)
,

= P
(

Λ
(N−1)
AMF Σ̂ > λ′|H0

)
,

where λ′ =
(N − 1)

(N + 1)
λ, which leads to the conclusion.

B. Kelly Detector

The exact GLRT Kelly detector for both unknown mean
vector µ and covariance matrix Σ has now to be derived
since it does not correspond to the Kelly detector given in
(4) in which an estimate of the mean is simply plugged (two-
step GLRT). Following the same lines as in [14], we now

assume that both the mean vector and the covariance matrix
are unknown. The likelihood functions under H0 and H1 are
given by:

fi(x) =

(
1

πm|Σ| exp
[
−Tr

(
Σ−1Ti

)]
)N+1

, (10)

for i = 0, 1 and where

(N+1) T0 = (x−µ0)(x−µ0)H+
N∑

i=1

(xi−µ0)(xi−µ0)H ,

(N+1) T1 = (x−αp−µ1)(x−αp−µ1)H+
N∑

i=1

(xi−µ1)(xi−µ1)H ,

and

µ0 =
1

N + 1

(
x +

N∑

i=1

xi

)
, (11)

µ1 =
1

N + 1

(
x− αp +

N∑

i=1

xi

)
. (12)

Under H0 and H1, the maxima are achieved at

max
Σ,µ

fi =

(
1

(πe)m|Ti|

)N+1

, for i = 0, 1,

And neglecting the exponent N+1, one obtains the following
LR:

L(α) =
|T0|
|T1|

H1

≷
H0

η .

Then, as this LR still depends on the unknown amplitude α
of the signal, thus, it has to be maximized w.r.t α, which is
equivalent to minimize T1 w.r.t α. A way to do this is to
introduce the following sample covariance matrix:

S0 =
N∑

i=1

(xi − µ0)(xi − µ0)H . (13)

Then, (N + 1) |T0| can be written as

(N + 1) |T0| = |S0|
(
1 + (x− µ0)H S−10 (x− µ0)

)
.

In the same way, and after some manipulations, (N + 1) |T1|
becomes

(N + 1) |T1| =|S0|
(

N∑

i=1

(xi − µ1)H S−10 (xi − µ1)

+ (x− αp− µ1)H S−10 (x− αp− µ1)

)
,

= |S0| (A+B).

Now, let us rewrite the two terms A and B to separate the

terms involving α. By recalling that µ1 = µ0 −
1

N + 1
αp,
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one obtains:

A =1 +
N |α|2

(N + 1)2
pH S−10 p

+
2

N + 1
<
{
ᾱpH S−10

N∑

i=1

(xi − µ0)

}
,

B =(x− µ0)H S−10 (x− µ0) +
N2 |α|2

(N + 1)2
pH S−10 p

− 2N

N + 1
<
{
ᾱpH S−10 (x− µ0)

}
.

Notice that x − µ0 = −
N∑

i=1

(xi − µ0), then rearranging the

expression of (N + 1)|T1| leads to

(N + 1) |T1|
|S0|

=
(N + 1) |T0|
|S0|

+
N |α|2

(N + 1)
pH S−10 p

− 2<
{
ᾱpH S−10 (x− µ0)

}
.

Now, the term depending on α can be rewritten as follows

N

(N + 1)
pH S−10 p

∣∣∣∣∣α−
N + 1

N

pH S−10 (x− µ0)

pH S−10 p

∣∣∣∣∣

2

−N + 1

N

∣∣pH S−10 (x− µ0)
∣∣2

pH S−10 p
.

Minimizing |T1| w.r.t α is equivalent to cancelling the square
term in the previous equation. Thus, the GLRT can now be
written according to the following definition.

Definition III.1 (The generalized Kelly detector) Under
Gaussian assumptions, the extension of Kelly’s test when both
the mean vector and the covariance matrix of the background
are unknown takes the following form:

Λ =
β(N)

∣∣pHS−10 (x− µ0)
∣∣2

(pHS−10 p)
(
1 + (x− µ0)H S−10 (x− µ0)

)
H1

≷
H0

λ, (14)

where β(N) =
N + 1

N
and

• S0 =
N∑

i=1

(xi − µ0)(xi − µ0)H ,

• µ0 =
1

N + 1

(
x +

N∑

i=1

xi

)
.

Let us now comment on this new detector. One can notice
that both the covariance matrix S0 as well as the mean µ0

estimates depend on the data x under test, which is not
the case in other classical detectors where the unknown
parameters are estimated from signal-free secondary data.
Consequently, S0 and x−µ0 are not independent. Moreover,
the covariance matrix estimate S0 is not Wishart-distributed
due to the non-standard mean estimate µ0. Thus, the
derivation of this ratio distribution is very difficult.

As for previous detector, it would be intuitive to think that
the proposed test behaves as the classical Kelly’s test but for

N − 1 degrees of freedom. To prove that let us first rewrite
(14) as follows:

Λ =

∣∣pH S−10 y
∣∣2

(
pH S−10 p

)
(

1 +
N

N + 1
yH S−10 y

)
H1

≷
H0

λ ,

where we use:

• (x− µ0) =
N

N + 1
(x− µ̂SMV ),

• µ̂SMV =
1

N

N∑

i=1

xi,

• y =

√
N

N + 1
(x− µ̂SMV ) ∼ CN (0,Σ).

Now, let us set S
(i)
0 =

N∑

i=1

(
xi − µ(i)

0

) (
xi − µ(i)

0

)H
,

where µ(i)
0 =

1

N




N∑

j 6=i
xj + x


. Then, the test becomes

N + 1

N

∣∣∣pH S
(i)
0

−1
(x− µ̂SMV )

∣∣∣
2

(
pH S

(i)
0

−1
p
) (

1 + (x− µ̂SMV )
H

S
(i)
0

−1
(x− µ̂SMV )

).

One can notice that each xi (including x) plays the same
role, thus the distribution of this test is the same for every
permutation of the (N+1)-sample (x,x1, . . . ,xN ). However,
the dependency between the covariance matrix estimate and
the data under test x still remains.

To fill this gap, another way of taking advantage of the
Kelly’s detector when the mean vector is unknown can be to
use the classical scheme recalled in (4) and to plug the classical
estimator of the mean, based only on the N secondary data,

i.e. µ̂SMV =
1

N

N∑

i=1

xi. This leads to the the two-step GLRT

Kelly’s detector:

Λ
(N)
KellyΣ̂SCM ,µ̂SMV

=

|pH Σ̂
−1
SCM (x− µ̂SMV )|2(

pH Σ̂
−1
SCMp

) (
N + (x− µ̂SMV )H Σ̂

−1
SCM (x− µ̂SMV )

)
H1

≷
H0

λ .

In this case, the distribution can be derived. This is the purpose
of the following proposition.

Proposition III.2 The theoretical relationship between the
PFA and the threshold is given by

PFAKellyΣ̂SCM ,µ̂SMV
=

Γ(N)

Γ(N −m+ 1) Γ(m− 1)

×
∫ 1

0

[
1 +

λ

1− λ

(
1− u

N + 1

)]m−N
uN−m(1− u)m−2 du .

(15)
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Proof: The detection test rewritten with Σ̂
−1
SCM =

N ˆW−1
N−1 becomes:

Λ
(N)

Kelly Σ̂,µ̂
=

N2
∣∣∣pHŴ−1

N−1(x− µ̂)
∣∣∣
2

N
(
pH ˆW−1

N−1 p
) (

N +N yH ˆW−1
N−1 (x− µ̂)

) ,

and replacing (x− µ̂) by

√
N + 1

N
y, one obtains:

Λ
(N)

Kelly Σ̂,µ̂
=

=

N + 1

N
N2

∣∣∣pH Ŵ−1
N−1 y

∣∣∣
2

N
(
pH ˆW−1

N−1 p
)(

N +
N + 1

N
N yH ˆW−1

N−1 y

)

=

∣∣∣pH Ŵ−1
N−1 y

∣∣∣
2

(
pH ˆW−1

N−1 p
)( N

N + 1
+ yH ˆW−1

N−1 y

)

with y ∼ CN (0,Σ).
The classical Kelly detector obtained when the mean vector is
known is recalled here, built with N − 1 zero-mean Gaussian
data, and written with ŴN−1:

Λ
(N−1)
Kelly Σ̂

=

∣∣∣pH Ŵ−1
N−1 y

∣∣∣
2

(
pH ˆW−1

N−1 p
)(

1 + yH ˆW−1
N−1 y

) . (16)

It is worth pointing out that the term N/(N + 1) resulting
from the mean estimation in Λ

(N)

Kelly Σ̂,µ̂
does not appear in the

classical Kelly detector (16). This fact prevents from relating
the two expressions. Thus, a proof similar to the Proposition
III.1 is not feasible.
According to [15], [28], an equivalent LR can be expressed
as:

κ̂2 =
Λ
(N)

Kelly Σ̂,µ̂

1− Λ
(N)

Kelly Σ̂,µ̂

H1

≷
H0

λ

1− λ .

Following the same development proposed in [15], the statistic
κ̂2 can be identified as the ratio θ/β between two independent
scalar random variables θ and β. For this particular develop-
ment of Kelly distribution with non-centered data, the scalar
random variable β is found to have the same distribution as the
function 1−u/(N+1) where u is a random variable following
a complex central beta distribution with N − m + 1,m − 1
degrees of freedom:

u ∼ fu(u) =
Γ(N)

Γ(N −m+ 1) Γ(m− 1)
uN−m (1− u)m−2 ,

whereas the p.d.f. of the variable θ is distributed according to
the complex F -distribution with 1, N −m degrees of freedom
scaled by 1/(N −m):

θ ∼ fθ(θ) = (N −m) (1 + θ)m−N−1

One can now derive the cumulative density function of the
Kelly test as:

P
(

Λ
(N)

Kelly Σ̂,µ̂
≤ λ

)
= P

(
κ̂2 ≤ λ

1− λ

)
= P

(
θ ≤ β λ

1− λ

)

=

∫ 1

0

[∫ λ
1−λ (1−u/(N+1))

0

fθ(v) dv

]
fu(u) du .

Solving the integral one obtains the ”PFA-threshold” relation-
ship:

PFAKellyΣ̂,µ̂ =
Γ(N)

Γ(N −m+ 1) Γ(m− 1)

×
∫ 1

0

[
1 +

λ

1− λ

(
1− u

N + 1

)]m−N
uN−m(1− u)m−2 du .

However, the final expression can not be further simplified
to a closed-form expression as those obtained for the other
detectors can not be determined.

C. Adaptive Normalized Matched Filter

Similarly, the ANMF for both mean vector and covariance
matrix estimation becomes:

ΛANMF Σ̂,µ̂ =
|pH Σ̂

−1
(x− µ̂)|2

(pH Σ̂
−1

p)
(

(x− µ̂)H Σ̂
−1

(x− µ̂)
)
H1

≷
H0

λ .

Proposition III.3 The theoretical relationship between the
PFA and the threshold is given by

PFAANMF Σ̂,µ̂ = (1− λ)a−12F1 (a, a− 1; b− 1;λ) , (17)

where a = (N − 1) − m + 2, b = (N − 1) + 2 and where
Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .

Proof: The proof is similar to the proof of Proposition
III.1. The main difference is due to the normalization term
(x−µ̂)H Σ̂

−1
(x−µ̂). Indeed, the correction factor N/(N−1)

appears both at the numerator and at the denominator, and
consequently, it disappears. The same argument is also true for
the factor N that arises from the covariance matrix estimates,
i.e. since the detector is homogeneous of degree 0 in terms of
covariance matrix estimates (i.e. ΛANMF Σ̂,µ̂ = ΛANMF γ Σ̂,µ̂

for any real γ), this scalar also disappears. Thus, the distribu-
tion of the ANMF with an estimate of the mean is exactly the
same as in (8) where N is replaced by N − 1.

IV. SIMULATIONS

In this section, we validate the theoretical analysis on
simulated data. The experiments were conducted on m = 5
dimensional Gaussian vectors, for different values of N , the
number of secondary data and the computations have been
made through 106 Monte-Carlo trials. The true covariance is
chosen as a Toeplitz matrix whose entries are Σi,j = ρ|i−j|

and where ρ = 0.4. The mean vector is arbitrary set to have
all entries equal to (3 + 4j).
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µ known theo.
µ known MC
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µ unknown MC

Fig. 1: PFA versus threshold for the AMF for different values
of N (m = 5, p = [1, . . . , 1]T , ρ = 0.4, µ = (4 + 3 j) p)
when a) µ and Σ are known (MF) (red and black curves), b)
only µ is known (gray and blue curves) and c) Proposition
III.1: both µ and Σ are unknown (yellow and green curves).

A. False Alarm Regulation

The FA regulation is presented for previous detection
schemes having a closed-form expression, i.e. for all except
the generalized Kelly detector. Fig. 1 shows the false-alarm
regulation for the MF, the AMF when only the covariance
matrix is unknown and the AMF for both covariance matrix
and mean vector unknown. The steering vector used for the
simulations is the unity vector p = [1, . . . , 1]T without loss
of generality as all the PDF are found to be independent of
the steering vector p. The perfect agreement of the green
and yellow curves illustrates the results of Proposition III.1.
Moreover, remark that when N increases both AMF get closer
to each other, and they approach the known parameters case
MF.

Fig. 2 and Fig. 3 present the FA regulation for the
Kelly detector and the ANMF respectively, under Gaussian
assumption. For clarity purposes, the results are displayed in
terms of the threshold η = (1− λ)−(N+1) for Adaptive Kelly
detectors, and η = (1−λ)−m for ANMF and NMF detectors,
respectively and a logarithmic scale is used. This validates
results of Proposition III.2 and III.3 for the SCM-SMV.

Remark that the derived relationships given by eqs. (9)
and (17) are quite similar to those for which the mean is
known. However, as illustrated in Fig. 1 and Fig. 3, there
is an important difference for small values of N . It is worth
pointing out that the theoretical ”PFA-threshold” relationships
presented above depend only on the size of the vectors m and
the number of secondary data used to estimate the parameters
N . Thus, the detector outcome will not depend on the true
value of the covariance matrix or the mean vector. These
three detectors hold the CFAR property with respect to the
background parameters. However, their distribution strongly
relies on the underlying distribution of the background, i.e.

0 1 2 3 4 5 6 7 8
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

N = 6

N = 10

N = 20

PUtain de merdre mandfkjqsjkdhfsqkjhdfjklsq

Threshold η

lo
g
1
0
(P
F
A
)

µ known theo.
µ known MC
eq.(15)
µ unknown MC

Fig. 2: PFA versus threshold for the ”plug-in” Kelly detector
for different values of N (m = 5, p = [1, . . . , 1]T , ρ = 0.4,
µ = (4 + 3 j) p) when a) only µ is known (gray and blue
curves) and b) Proposition III.2: both µ and Σ are unknown
(yellow and green curves).

0 1 2 3 4 5 6 7 8
−4
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NMF Monte-Carlo
NMF theo.
µ known theo.
µ known MC
eq.(17)
µ unknown MC

Fig. 3: PFA versus threshold for the ANMF for different values
of N (m = 5, p = [1, . . . , 1]T , ρ = 0.4, µ = (4 + 3 j) p)
when a) µ and Σ are known (NMF) (red and black curves),
b) only µ is known (gray and blue curves) and c) Proposition
III.3: both µ and Σ are unknown (yellow and green curves).

if Gaussian assumption is not fulfilled the ”PFA-threshold”
relationship will divert from the theoretical results derived in
this paper.

B. Performance Evaluation

The four detection schemes are compared in terms of
probability of detection. The experiments were conducted to
detect a vector αp embedded in Gaussian noise with the same
distribution parameters than for false alarm regulation. The
Monte-Carlo simulation was set for dimensions m = 5 and
N = 10 and for the probability of false alarm PFA = 10−3.
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Fig. 4: Probability of detection for PFA = 10−3 correspond-
ing to different values of SNR = α2 p Σ−1 p in Gaussian case.
(m = 5, N = 20, p = [1, . . . , 1]T , ρ = 0.4).

Then, the threshold λ has been adjusted according to the false
alarm regulation relative to each detectors (AMF, ANMF,
two-step GLRT Kelly, Generalized Kelly). Fig. 4 presents the
detection probability versus the SNR defined as α2 pH Σ−1 p
with the known steering vector p = [1, . . . , 1]T . The
detectors delivering the best performance results are the
Kelly detectors (”two-step GLRT” and generalized). Actually,
these detectors lead to very similar performance with a small
improvement of the generalized (resp. ”two-step GLRT”)
one at low (resp. high) SNR. As expected, the AMF and
the ANMF require a higher SNR to achieve same performance.

C. Hyperspectral Real Data

The same experiments have been conducted on a
experimental hyperspectral image. The scene analyzed is
the NASA Hyperion sensor dataset displayed in Fig. 5. The
image is constituted of 798 × 253 pixels and 116 spectral
bands after water absorption bands have been removed. The
analysis has been done on a homogenous part of the image
corresponding to the water region on the top left of the image
(blue part). The part extracted consists in 60 × 20 pixels. In
order to ensure the validity of the proposed methods, we show
in Fig. 6 the outcome of a classical Gaussianity test ”Q-Q
plot” for the selected region over the band 42. However, these
techniques allow to ”validate” the Gaussianity of each band
but cannot ensure the Gaussianity of the corresponding vector.

Since hyperspectral data are real and positive, the data have
been passed through a Hilbert filter to render them complex.
A downsampling taking one over two consecutive bands is
required to avoid redundant information that can reduce the
covariance matrix rank. However, it is important to note
that the real component after Hilbert transform is still the
original signal (principle of analytic signals). The only goal
of this procedure is simply to be in the same assumptions

Fig. 5: True color composition of the Hyperion scene.

than those of the proposed PDF test statistics developed in
complex case and which are very difficult (or impossible) to
derive in real case. We have chosen sequentially six bands
(m = 6) in the complex representation. In this approach,
both covariance matrix and mean vector are estimated using
a sliding window of size 5×5, having N = 24 secondary data.

The outcome of the detectors under H0 hypothesis for this
image are shown on the Fig. 7, Fig. 8 and Fig. 9 respectively.
The results obtained on real HSI data on a Gaussian distributed
region agree with the theoretical relationships presented above.
Remark that the experimental false-alarm rate that can be
achieved depends on the number of points on which the
detector is calculated (in a similar manner to the Monte-Carlo
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Fig. 6: Q-Q Plot of the data sample versus the Normal
theoretical distribution.
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Fig. 7: AMF false-alarm regulation for a real HSI image. m =
6, N = 24, p = [1, . . . , 1]T .

trials). As the homogenous area is bounded and the data set
is small, the distribution of the detectors may divert for small
values of the PFA directly related to the size of the region.

Depending on the underlying material, the distribution of
the detector might divert from the expected behavior when
Gaussian distribution is assumed. This is the case on these
real data since the extracted area is not perfectly Gaussian.
This suggests the use of non-Gaussian distributions to model
the background for hyperspectral imaging.

V. CONCLUSION

Four adaptive detection schemes, the AMF, Kelly detectors
with a ”two-step GLRT” and a generalized versions as well
as the ANMF, have been analyzed in the case where both
the covariance matrix and the mean vector are unknown and
need to be estimated. In this context, theoretical closed-form
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Fig. 8: Kelly false-alarm regulation for a real HSI image. m =
6, N = 24, p = [1, . . . , 1]T .
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Fig. 9: ANMF false-alarm regulation for a real HSI image.
m = 6, N = 24, p = [1, . . . , 1]T .

expressions for false-alarm regulation have been derived under
Gaussian assumptions for the SCM-SMV estimates for three
detection schemes. The resulting ”PFA-threshold” expressions
highlight the CFARness of these detectors since they only
depend on the size and the number of data, but not on the un-
known parameters. The theoretical analysis has been validated
through Monte Carlo simulations and the performances of the
detectors have been compared in terms of probability of detec-
tion. Finally, the analysis on experimental hyperspectral data
validates the theoretical contribution through real application,
in which a homogeneous subset of data has been extracted. But
more generally, this work finds its purpose in signal processing
methods for which both mean vector and covariance matrix are
unknown.
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APPENDIX A
COMPLEX NORMAL DISTRIBUTIONS

A m-dimensional vector x = u+ jv has a complex normal
distribution with mean µ and covariance matrix Σ = E[(x−
µ)(x − µ)H ], denoted CN (µ,Σ), if z = (uT ,vT )T ∈ R2m

has a normal distribution [29]. If rank(Σ) = m, the probability
density function exists and is of the form

fx(x) = π−m|Σ|−1 exp{−(x− µ)HΣ−1(x− µ)}.

The resulting Maximum Likelihood Estimates (MLE) are the
well-known SCM and SMV defined as:

µ̂SMV =
1

N

N∑

i=1

xi Σ̂SCM =
1

N

N∑

i=1

(xi − µ̂)(xi − µ̂)H ,

where the xi are IID CN (µ,Σ). Further, we shall denote the
Centered SCM (CSCM) as:

Σ̂CSCM =
1

N

N∑

i=1

(xi − µ)(xi − µ)H . (18)

APPENDIX B
WISHART DISTRIBUTION

Let x1, ...,xN be an IID N -sample, where xi ∼ CN (µ,Σ).
Let us define µ̂ = µ̂SMV and Ŵ = N Σ̂SCM referred to as
a Wishart matrix. Thus one has (see [30] for the real case):
• µ̂ and Ŵ are independently distributed;
• µ̂ ∼ CN (µ, 1

NΣ);
• Ŵ ∼ CW(N − 1,Σ) is Whishart distributed with N − 1

degrees of freedom
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Abstract—Anomaly detection methods are used for target
detection in which no a priori information about the spectra
of the targets of interest is available. This paper reviews classical
anomaly detection schemes such as the widely spread Reed-Xiaoli
Detector and some of its variations. Moreover, the Mahalanobis
distance based detector, rigorously derived from a Kelly’s test-
based approach, is analyzed and its exact distribution is derived
when both mean vector and covariance matrix are unknown
and have to be estimated. Although, most of these techniques
are based on Gaussian distribution, we also propose here ways
to extend them to non-Gaussian framework. For this purpose,
elliptical distributions are considered for background statistical
characterization. Through this assumption, this paper describes
robust estimation procedures more suitable for non-Gaussian
environment. We show that using them as plug-in estimators
in anomaly detectors leads to some great improvement in the
detection process. Finally, the theoretical contribution is validated
through simulations and on real hyperspectral scenes.

Index Terms—Hyperspectral Imaging, anomaly detection, el-
liptical distributions, M-estimation.

I. INTRODUCTION

TARGET detection and anomaly detection of
multidimensional signals have proved to be valuable

techniques in a wide range of applications, including
search-and-rescue, surveillance, rare mineral and land mines
detection, etc (see for e.g. [1], [2], [3]). Target detection
aims to discover the presence of a specific signal of interest
among a set of signals. Statistical target detection is based
on the Neyman-Pearson (NP) criterion, which maximizes the
probability of detection for a given probability of false alarm.

Classical target detection methods require the knowledge
of the spectra of the desired targets. One could be interested
in a large number of possible targets each with different
signatures. Thus, the variety of sought spectra corresponding
to the different kind of targets and the difficulties due to
the atmospheric compensation for the measured spectral
signatures (used as steering vectors) have led to the derivation
of new algorithms that intend to distinguish unusual materials
in a scene without reference to target signatures. In this
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3 rue Joliot-Curie, F-91190 Gif-sur-Yvette, France (e-mail:
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work, we are focused on anomaly detection (see e.g. [4] and
references therein). It can be interpreted as a particular case
of target detection in which no a priori information about the
spectra of the targets of interest is available. Hence, the aim
of anomaly detection is to locate objects in the image that
are anomalous with respect to the background. The type of
interesting targets can differ significantly from one application
to another, e.g. in forestry applications infected trees are the
anomalies of interest, whereas in defense and intelligence
applications, the anomalies to be detected are usually vehicles.
Note that, since anomaly detectors do not use any a priori
knowledge, they cannot distinguish between true targets and
detections of bright pixels of the background or targets that
are not of interest. This fact makes extremely difficult to
define a false alarm rate for the detectors as highlighted in [5].

Anomalies are defined with reference to a model of
the background. As for the previous target detection
methods, the background model is developed adaptively
using reference data. Most of these methods rely on the
classical Gaussian distribution assumption and need for
the statistical characterization of the background usually
through first and second order parameters (i.e. the mean
vector and the covariance matrix). In this case, the reference
data are taken either from a local neighborhood around the
observation vector either using all the pixels in the image.
Both approaches have their benefits (see e.g. [6]). Local
strategy provides more realistic scenario for the background
characterization. However, it can be sensitive to the presence
of false alarms due to isolated anomalies. While the global
approach is not likely to generate this kind of false alarms,
it will decrease the detection capability for isolated targets.
Local procedures will be considered in the following for the
different detection schemes. We consider on the first part of
the paper the most popular Gaussian-based anomaly detectors
(see e.g. [7] for a complete survey in anomaly detection
methods).

However, the actual distribution of the background pixels
differs from the theoretically predicted under Gaussian
hypothesis. In fact, as stated in [8], the empirical distribution
usually has heavier tails compared to the Gaussian distribution,
and these tails strongly influence the observed false-alarm rate
of the detector. Therefore, the class of Elliptical distributions
is assumed for background statistics characterization and
recalled in the second part of this work. The family of
Elliptical distributions were originally introduced by Kelker



2

in [9] and widely studied in [10]. They account for non-
Gaussianity providing a long tailed alternative to multivariate
normal model. They are proven to represent a more accurate
characterization of HSI than models based on Gaussian
assumption [8]. Therefore, the classical Gaussian-based
estimators do not provide anymore optimal performance and
the Fixed Point estimators (also known as Tyler’s estimators
[11]) are proposed for the parameters estimation. These
can then be used as plug-in estimators in place of the
unknown mean vector or/and of the covariance matrix in the
detection scheme (see for e.g. [12], [13]). This is a simple
but often efficient method to obtain robust properties for
signal processors derived under the Gaussian assumption.
One of the contributions of this work is to extend the results
presented in [14].

More precisely, this paper provides a rigorous derivation
of the Mahanalobis distance through a Kelly’s test-based
approach. Moreover, one of the theoretical contribution
is the derivation of the exact distribution for the classical
Mahalanobis-based anomaly detector when both mean vector
and covariance matrix are unknown in Gaussian environment.
Furthermore, robust estimation methods are considered in
classical anomaly detection schemes and the improvement
brought in most scenarios is pointed out.

This paper is organized as follows. Section II revisits clas-
sical anomaly detection schemes and provides the theoretical
contribution of this paper by deriving the distribution of one
of the detectors. Section III describes the family of elliptical
distributions and the robust estimation methods studied in this
paper for target detection purposes. Section IV illustrates the
theoretical analysis through simulations and Section V reveals
the theoretical improvement over real hyperspectral images.
Finally Section VI concludes this work.

In the following, vectors (resp. matrices) are denoted by
bold-faced lowercase letters (resp. uppercase letters). T rep-
resents the transpose operator. |A| represents the determinant
of the matrix A and Tr(A) its trace. j is used to denote the
unit imaginary number. ∼ means ”distributed as”. Γ(·) denotes
the gamma function. Eventually, ||x|| represents the Euclidean
norm of the vector x.

II. ADAPTIVE ANOMALY DETECTION METHODS

Before detailing the analysis of the corresponding detectors,
let us recap the most common Gaussian-based estimators.
Along with their well-known properties and their simplicity
of analysis, the Sample Covariance Matrix (SCM) and the
Sample Mean Vector (SMV) are the most extended estimates
since they are the Maximum Likelihood Estimators (MLE) for
Gaussian case, as shown in [15]:

µ̂SMV =
1

N

N∑

i=1

xi, (1)

Σ̂SCM =
1

N

N∑

i=1

(xi − µ̂SMV )(xi − µ̂SMV )T . (2)

Further, we shall denote the Centered SCM (CSCM) as:

Σ̂CSCM =
1

N

N∑

i=1

(xi − µ)(xi − µ)T . (3)

where N denotes the number of secondary data. However,
such widespread techniques are suboptimal when the noise is
a non-Gaussian stochastic process. Section III reviews some
robust procedures particularly suited for estimating the covari-
ance matrix and the mean vector of elliptical populations.
Let us now detail the most popular Gaussian-based anomaly
detectors .

A. Reed-Xiaoli Detector

The original Reed-Xiaoli Detector (RXD) proposed in [16]
is commonly considered as the benchmark anomaly detector
for hyperspectral data. The considered signal model can be
written as:{

H0 : xi = bi, , i = 1, . . . , N

H1 : xi = pαi + bi, , i = 1, . . . , N,

where xi are the N available data vectors on the image of
dimension m. bi ∼ N (0,Σ) represents the residual back-
ground, p is the spectral signature of the possible anomalous
material assumed to be unknown; and αi stands for the ampli-
tude of the intended targets through the N available data, i.e. it
is a known vector α of dimension N that indicates the strength
and position of the sought targets over the image. Remark that
each vector from the available data can potentially contain an
anomaly while in classical detection problem secondary data
are assumed to be signal free. Thus, one can arrange the vector
data into a matrix as X = [x1,x2, . . . ,xN ], and the detection
scheme derived in [16] takes the form:

Λ(X) =
(XαT )T (XXT )−1(XαT )

ααT

H1

≷
H0

λ .

Since hyperspectral data are not zero mean, let us now consider
that the background bi is distributed according to N (µ,Σ)
and the mean vector µ is supposed to be known. In the case
just one anomaly in the data under test is intended to be
detected, the corresponding amplitude vector can be written
as αi = [0 . . . 0 1 0 . . . 0]T where 1 is at the ith position and
the previous detector takes the form:

ΛRXD = (xi − µ)T Σ̂
−1
CSCM (xi − µ)

H1

≷
H0

λ .

Finally, since the mean vector is usually unknown, it can
be replaced on the detector in by its estimate µ̂SMV . The
resulting detector, commonly known as two-step Generalized
Likelihood Ratio Test, yields:

ΛARXD = (xi − µ̂SMV )T Σ̂
−1
SCM (xi − µ̂SMV )

H1

≷
H0

λ . (4)

The covariance matrix estimation Σ̂SCM in Eq. (4), is per-
formed over all the data set, i.e. including the vector xi under
test. In the following, the test in Eq. (4) will be referred as
the Adaptive RXD (ARXD), to underline the fact that the
unknown mean vector is replaced by its estimate.
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B. Kelly Anomaly Detector

We detail here a classical anomaly detector often mistakenly
referred as the RXD. Following the development proposed in
[17], let us now assume the following signal model:

{
H0 : x = b, xi = bi , i = 1, . . . , N

H1 : x = αp + b, xi = bi , i = 1, . . . , N,

and the b1, . . .bN are assumed to an independent identically
distributed (IID) sample from a Gaussian distribution bi ∼
N (µ,Σ) As in classical Kelly detector, the covariance matrix
Σ is unknown and the mean vector µ is supposed to be known.
However for anomaly detector derivation, the amplitude of the
signal α is supposed to be known and the unknown parameter
is now the steering vector p. Therefore, N+1 m-dimensional
vectors are observed under each hypothesis and the joint
probability density function (p.d.f.) of the the N secondary
data and the observation vector x under the two hypotheses
Hi can be written as:

fi(x) =

(
1

2π
m
2 |Σ| 12

exp[−1

2
Tr(Σ−1Ti)]

)N+1

, (5)

where Ti is the composite sample covariance matrix con-
structed from both the secondary data and observation vector:

T0 =
1

N + 1

(
(x− µ)(x− µ)T + Ŵ

)
,

T1 =
1

N + 1

(
(x− (αp + µ))(x− (αp + µ))T + Ŵ

)
,

and Ŵ = N Σ̂CSCM . The first step is to maximize with
respect to (w.r.t) the unknown covariance matrix Σ. Thus,
the matrix maximizing the PDF fi is simply Ti. When this
estimator is replaced in the PDF, one obtains:

max
Σ
fi =

(
1

(πe)m|Ti|

)N+1
2

. (6)

and the GLRT, neglecting the exponent (N+1)/2 is given by:

Λ(x,p) =
|T0|
|T1|

H1

≷
H0

η . (7)

It remains to maximize this expression over the unknown
spectral signature p and the resulting MLE takes the form:

p̂ =
x− µ

α
. (8)

After replacing p by Eq. (8) in Eq. (7), it is easy to show that
the resulting GLRT test is equivalent to:

ΛKellyAD Σ̂ = (x− µ)T Σ̂
−1
CSCM (x− µ)

H1

≷
H0

λ . (9)

The quadratic form in Eq. (9) corresponds to the Maha-
lanobis distance detailed in [18]. It performs statistically as
an outlier detector. When Gaussian assumption is valid, the
quadratic form (x−µ)T Σ−1 (x−µ) follows a χ2-distribution
with m degrees of freedom for Σ and µ perfectly known. In
case the parameter Σ is replaced by its MLE, the CSCM, the

distribution of the quadratic form can be written according to
(see [19]):

Λ
(N)

KellyAD Σ̂
= (x− µ)T Σ̂

−1
CSCM (x− µ) ∼ T 2 , (10)

becomes a Hotelling T 2 distribution and thus,

N −m+ 1

mN
Λ
(N)

KellyAD Σ̂
∼ Fm,N−m+1 (11)

where Fm,N−m+1 is the non-central F -distribution with m
and N−m+1 degrees of freedom [20] and the superscript (N)

is used to stress the dependence on the number of secondary
data N . For high values of N, (N > 10m), the distribution
can be approximated by the χ2-distribution.

As discussed above, when the mean vector is unknown, it
can be replaced on the detector (two-step GLRT) by its MLE
leading to:

Λ
(N)

KellyAD Σ̂,µ̂
= (x− µ̂SMV )T Σ̂

−1
SCM (x− µ̂SMV )

H1

≷
H0

λ .

(12)

Remark II.1. Interestingly, note that ΛRXD (resp. ΛARXD)
and the ΛKellyAD Σ̂ (reps. Λ

(N)

KellyAD Σ̂,µ̂
) differ only on

the fact that the vector x under test is also present in the
covariance matrix estimation in Eq. (4). Therefore, in ΛRXD,
the N secondary data are not assumed to be signal free
and the proposed detector aims to compare every sample
to the covariance matrix over all the samples. While in the
second approach, ΛKellyAD Σ̂, one intends to differentiate
the observation vector from the background statistically
characterized using N samples. Hence, N + 1 vectors are
available in the latter and ΛKellyAD Σ̂ does not represent
anymore a benchmark structure. Often, the local Kelly
detector is mistakenly referred as the local RXD when the
users, either remove the vector xi from the secondary data or
they prevent it to be part of this set by using a guard window.

The distribution of this detection test is given in the next
Proposition.

Proposition II.1. The distribution of the detector under Gaus-
sian assumption is given by

N −m
m (N + 1)

Λ
(N)

KellyAD Σ̂,µ̂
∼ Fm,N−m , (13)

with Fm,N−m is the non-central F -distribution with m and
N −m degrees of freedom.

Proof: For simplicity matters, the following notations are
used: Σ̂ = Σ̂SCM and µ̂ = µ̂SMV .
Let us set ∀i = 1, ..., N,xi ∼ N (µ,Σ) and x ∼ N (µ,Σ),
where all these vectors are independent. Now, let us denote

ŴN−1 =
N∑

i=1

(xi − µ̂)(xi − µ̂)T = N Σ̂SCM .

Note that as an application of the Cochran theorem (see e.g.
[21]), one has

ŴN−1
dist.
=

N−1∑

i=1

(xi − µ)(xi − µ)T = (N − 1) Σ̂CSCM ,
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where dist.
= means is distributed as.

Since µ̂ ∼ N (µ, 1
NΣ), one has x − µ̂ ∼ N (0, N+1

N Σ).
This can be equivalently rewritten as

y =
√
N/(N + 1)(x− µ̂) ∼ N (0,Σ).

As we jointly estimate the mean and the covariance matrix, a
degree of freedom is lost, compared with the only covariance
matrix estimation problem.
Let us now consider Λ

(N−1)
KellyAD Σ̂

(i.e. µ known) built from

N − 1 secondary data, rewritten in terms of ŴN−1:

Λ
(N−1)
KellyAD Σ̂

= (N − 1)
(

(x− µ)TŴ−1
N−1(x− µ)

)

where (x−µ) ∼ N (0,Σ) and whose distribution is given by
Eq. (11) where N is replaced by N − 1.
Now, for the joint estimation problem, the ΛKellyAD Σ̂,µ̂ can
be rewritten as:

Λ
(N)

KellyAD Σ̂,µ̂
= N

(
(x− µ̂)TŴ−1

N−1(x− µ̂)
)

= N
N + 1

N

(
yTŴ−1

N−1y
)

dist.
=

N + 1

N − 1
Λ
(N−1)
KellyAD Σ̂

This concludes the proof.

The ”PFA-threshold” relationship is easily obtained as the
complementary cumulative density function (c.d.f.) of the
detector distribution.
It is worth pointing out from Eq. (12) that ΛKellyAD Σ̂,µ̂

performs similarly to a matched filter structure applied to
x− µ̂SMV :

Λ(x) = cHT (x− µ̂SMV ) , (14)

where HT is the matched signal and c a constant that can be
also a function on x. The expression in Eq. (14) is completely
characterized by the matched signal HT and the scale constant
c. Hence, one can identify from Eq. (12) the matched signal
HT = (x− µ̂SMV )T Σ̂

−1
SCM and c = 1.

C. Normalized-RXD and Uniform Target Detector

Following the same approach than in Eq. (14), one can de-
rive many different anomaly detection schemes. We recall here
two popular variants of the Mahalanobis distance described in
[4]: the Normalized-RXD (N-RXD) and the Uniform Target
Detector (UTD).
The N-RXD takes the form:

ΛN−RXD =
(x− µ̂SMV )T

||x− µ̂SMV ||
Σ̂
−1
SCM

(x− µ̂SMV )T

||x− µ̂SMV ||
H1

≷
H0

λ ,

(15)
where ||x − µ̂SMV ||2 = (x − µ̂SMV )T (x − µ̂SMV ) stands
for the Euclidean norm of the vector. The detection test in Eq.
(15) can be immediately identified as the normalized version
of ΛKellyAD. In addition, ΛN−RXD takes also the form of a
matched filter specified in Eq. (14) with matched signal HT =

(x − µ̂SMV )T Σ̂
−1
SCM the same as in Eq. (9) and a different

scale constant c = ||x− µ̂SMV ||−2.

The UTD is another widespread anomaly detection test. It was
firstly introduced in [22] and can be defined as:

ΛUTD = (1− µ̂SMV )T Σ̂
−1
SCM (x− µ̂SMV )

H1

≷
H0

λ . (16)

with 1 = [1, . . . , 1]T is the m-dimensional unity vector. Once
again the detector in Eq. (16) can be interpreted as a matched
filter where HT = (1−µ̂SMV )T Σ̂

−1
SCM is the matched signal.

If there is no a priori information about the target spectra,
the non-prior approach is the one that does not introduce any
information into the detector and consists on assuming uniform
distribution for the spectra over all the bands.

D. Generalized Kelly Anomaly Detector

In the previous detection schemes, it has not been taken into
account in the derivation of the test that both mean vector µ
and covariance matrix Σ were unknown. One simply replaced
the mean vector by a plug-in estimate in the detector (two-step
GLRT). In case both covariance matrix and mean vector are
unknown, we need to derive a new detector. This strategy is
similar to the one proposed in [23] for the generalized Kelly
detection test. The likelihood functions under H0 and H1 are
given in (5). Under H0 and H1, the maxima are achieved at

max
Σ,µ

fi =

(
1

(πe)m|Ti|

)N+1
2

, for i = 0, 1,

where

(N+1)T0 = (x−µ0)(x−µ0)T +
N∑

i=1

(xi−µ0)(xi−µ0)T ,

(N + 1)T1 = (x− αp− µ1)(x− αp− µ1)T

+
N∑

i=1

(xi − µ1)(xi − µ1)T ,

and

µ0 =
1

N + 1

(
x +

N∑

i=1

xi

)
, (17)

µ1 =
1

N + 1

(
x− αp +

N∑

i=1

xi

)
. (18)

Following the same lines than in [23], one has to maximize
the LR in Eq. (7) w.r.t. p. This is obtained by taking:

p̂ =
N + 1

N

(x− µ0)

α
. (19)

Hence, the resulting detector can be written according to:

ΛG−KellyAD = (x− µ0)H S−10 (x− µ0)
H1

≷
H0

λ , (20)

where S0 =
∑N
i=1(xi − µ0)(xi − µ0)H , and µ0 =

1

N + 1

(
x +

∑N
i=1 xi

)
. Once again the mean vector estimate

µ0 and the covariance matrix S0 depend on the data under test
x. Hence, x − µ0 and S0 are not independent. Remark that
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one can write (x − µ0) =
N

N + 1
(x − µ̂SMV ). Neglecting

the multiplicative constants, the test in Eq. (20) appears to
be equivalent to the classical ΛRXD obtained throughout a
different approach but built with N + 1 available data.

III. ROBUST ANOMALY DETECTION

In this section, the class of elliptical distributions and robust
estimation procedures are reviewed.

A. Elliptical Distributions

Hyperspectral data have been proven not to be multivariate
normal but long tailed distributed [8]. In order to take into
account these features, the class of elliptical distributions is
considered to describe clutter statistical behavior (see for e.g.
[10], [24] for a complete survey on elliptical distributions). An
m-dimensional random complex vector x has a multivariate
elliptical distribution if its characteristic function is of the
form:

Φx(c) = exp
(
jcTµ

)
φ

(
1

2
cT Σ c

)
, (21)

for some function φ : R+ → R, called characteristic generator,
a positive semidefinite matrix Σ, called scatter matrix and
µ ∈ Cm the location vector. We shall write x ∼ E(µ,Σ, φ).
From Eq. (21), it does not follow that x has a p.d.f. fx(·), but
if exists, it has the form:

fx(x) = cm,h|Σ|−
1
2 hm

(
1

2
(x− µ)T Σ−1 (x− µ)

)
, (22)

where cm,h is a normalization constant and hm(·) is any
function such as Eq. (22) defines a p.d.f. in Rm. The function
hm is usually called density generator and it is assumed to
be only approximately known. In this case, we shall write
E(µ,Σ, hm) instead of E(µ,Σ, φ). Remark that the p.d.f.
in Eq. (22) depends on x only through the quadratic form
(x − µ)T Σ−1 (x − µ). Thus, the level sets of the density
fx(x) are ellipsoids in the Euclidean m-space.

If the second-order moment exists, then Σ reflects the
structure of the covariance matrix of the elliptically distributed
random vector x, i.e. the covariance matrix is equal to the
scatter matrix up to a scalar constant. It serves to characterize
the correlation structure existing within the spectral bands. It
is worth pointing out that the family of elliptical distributions
includes a large number of distributions, notably the Gaus-
sian distribution, multivariate t-distribution, K-distribution or
multivariate Cauchy. Thus, it allows for heterogeneity of the
background power with the texture.

B. Robust parameters estimation

1) Fixed Point Estimators: The Fixed Point (FP) estimators,
according to the definition proposed by Tyler in [11], satisfy

the following equations:

µ̂FP =

N∑

i=1

xi
(

(xi − µ̂FP )T Σ̂
−1
FP (xi − µ̂FP )

)1/2

N∑

i=1

1
(

(xi − µ̂FP )T Σ̂
−1
FP (xi − µ̂FP )

)1/2

(23)

Σ̂FP =
m

N

N∑

i=1

(xi − µ̂FP ) (xi − µ̂FP )T

((xi − µ̂FP )T Σ̂
−1
FP (xi − µ̂FP ))

(24)

The FP estimates have been widely investigated in statistics
and signal processing literature. We refer to [25] for a detailed
performance analysis. It is worth pointing out that Σ̂SCM and
Σ̂FP have the same asymptotic Gaussian distribution which
differs on their second order moment by a factor m+1

m N , i.e.
for N sufficiently large, Σ̂FP behaves as a Wishart matrix
with m

m+1 degrees of freedom. Indeed, these estimators
belong to the wider class of robust M-estimators.

2) Shrinkage estimators: We present now shrinkage meth-
ods that are suitable for high dimensional problems with small
number of samples (large m small N ). In these ”large m
small N” problems, classical estimators suffer from a distorted
eigen-structure and improved estimators are required.
A common regularization approach has been widely studied,
the Diagonal Loading (DL) approach introduced in [26], [27].
Thus, in Gaussian context the regularized SCM takes the form:

M̂SCM−DL(β) =

1− β
N

N∑

i=1

(xi − µ̂SMV ) (xi − µ̂SMV )T + β Im . (25)

In presence of non-Gaussian, impulsive background the esti-
mate in Eq. (25) suffers from the same drawbacks than the
SCM and the class of robust estimates are more appropriate.
Yet, the FP estimators described above exhibit important
shortcomings in high dimensional context and they can not
be computed for the undersampling case when m > N .

Morover, we extend here FP covariance matrix estimator to
the high dimensional setting using shrinkage regularization.
Let us consider now the shrinkage FP introduced in [28] and
defined as the solution of the following fixed point equation:

M̂FP (β) =

(1− β)
m

N

N∑

i=1

(xi − µ̂FP ) (xi − µ̂FP )T

((xi − µ̂FP )T M̂−1
FP (β) (xi − µ̂FP ))

+ β I,

(26)

for β =∈ (0, 1] and µ̂FP the same as given in Eq. (23).
It was shown in [28] that when β tends to 0, the proposed
shrinkage estimator in Eq. (26) tends to the FP estimator in
Eq. (24) whose inverse has its trace equal to m. A different
approach that introduces a normalization constraint in the
algorithm for the shrinkage FP estimates is found in [29].
Moreover, in [30], [31], [32], this estimator has been used
within the Expected Likelihood framework. The optimization
of the shrinkage parameter β has been discussed in [33].
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Fig. 1: PFA versus threshold for the ΛKelly AD when (1) µ
and Σ are known (Mahalanobis) (red and black curves) (2)
only µ is known (gray and blue curves) (3) Proposition II.1:
both µ and Σ are unknown (yellow and green curves).

The basis of the proposed method are the FP estimators.
However, the approach presented here could be extended to
other M -estimators.

IV. SIMULATIONS

In this section, we validate the theoretical analysis on
simulated data. Firstly, we validate through Monte-Carlo sim-
ulations the distribution of ΛKelly AD detailed above. The
experiments have been conducted on Gaussian vectors of
dimension m = 5 and for different values of N . The compu-
tations have been made through 106 Monte-Carlo trials. The
true covariance is chosen as a Toeplitz matrix whose entries
are Σi,j = ρ|i−j| and where ρ = 0.4. The mean vector is
arbitrary set to have all entries equal to 3. Exceedance plot
shows the fraction of points in the data set whose Mahalanobis
distance is larger than the indicated value. This is essentially
a cumulative histogram of Mahalanobis distance values which
correspond to the ”PFA-threshold” relationship. Remark that
the definition of false alarms is not unique and it depends on
the application. Thus, we will rather refer to the distribution
of the detector in target absent hypothesis.

Fig. 1 illustrates the distribution of the detector under null
hypothesis. The case where both covariance matrix and mean
vector are perfectly known corresponds to the χ2-distribution
and the adaptive versions of the quadratic form become a T 2

Hotelling. The perfect agreement of the green and yellow
curves bears out the results of Proposition II.1.

Furthermore, we compare the five proposed anomaly detec-
tors in terms of probability of detection. The experiments were
on Gaussian vectors of dimension m = 5, for N = 10 and the
artificial targets signature used for the simulations is the unity
vector p = [1, . . . , 1]T .On a first step, the threshold is deter-
mined to ensure a PFA = 10−3 obtained empirically from the
data. The best results are obtained for the Mahalanobis-based
detectors, i.e. the classical RXD, Kelly AD and generalized
Kelly AD. The two detectors derived according to Kelly’s
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Fig. 2: Probability of detection for different SNR values and
PFA = 10−3 in Gaussian case.

approach perform fundamentally the same and slightly better
than the RXD. This improvement may be due to the fact that
N + 1 data are available for the Kelly’s strategies, while only
N samples are used in the classical RXD. The matched filter
based detectors deliver poor performance in the case of the
UTD, as the matching signal is the unity vector, which is
shown to be not optimal even in the case the artificial targets
signature used for the simulations is the unity vector. The N-
RXD presents an almost flat curve as the normalization factor
grows as the SNR gets higher. The outcome of this detector
can be assimilated to the residual background level and its use
in Gaussian environment should be avoided.

V. REAL HYPERSPECTRAL DATA

A. Gaussian Background

The same experiments that in simulations have been con-
ducted on a real hyperspectral image. The scene analyzed is
the NASA Hyperion sensor dataset displayed in Fig. 3. The
image is constituted of 798 × 253 pixels and 116 spectral
bands after water absorption bands have been removed. The
analysis has been done on a homogenous part of the image
corresponding to the water region on the top left of the image.
The part extracted consists on 60 × 20 pixels. In order to
ensure the validity of the proposed methods, we show in Fig.
4 the outcome of a classical Gaussianity test ”Q-Q plot” for
the selected region over the band 42. Even if this allows to
”validate” the Gaussianity of each band, it cannot ensure the
Gaussianity of the corresponding multivariate vector.

To avoid the well-known problem due to high dimension-
ality, we have chosen sequentially six bands in the complex
representation. In this approach, both covariance matrix and
mean vector are estimated using a sliding window of size 5×5,
having N = 24 secondary data. Fig. 5 shows the distribution
of the ΛKellyAD Σ̂,µ̂ in real hyperspectral data (red curve).
We also plot the theoretical relationship defined by Eq. (13).
The results obtained on real HSI data on a Gaussian distributed
region agree with the theoretical relationships presented above.

Finally, we illustrate the detection capability of the pro-
posed methods when artificial anomalies with known spectral
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Fig. 3: True color composition of the Hyperion scene.

signature are inserted on the real hyperspectral image. For
this purpose, we extract the spectral signature from ground
materials in Fig. 3 and the anomaly spectra is depicted in Fig.
6. Fig. 7 (a) details the position and the shape of the targets.
For a fixed value of FA PFA = 0.1, we present in Fig. 7
the outcome of the different detectors. The detectors based
on the Mahalanobis distance deliver best results for detection
purposes as expected and the matched filter based detectors
do not detect properly the artificial targets. These detection
maps are in agreement with the SNR figure detailed above.
Remark that the two-pixel targets are not detected by any of
the detection schemes. This problem is due to the presence
of a strong target in the secondary data that pollutes the
covariance matrix estimation. Its occurrence has a significant
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impact on the detection process and it degrades the detectors’
performances.

(a) Original (b) RXD (c) Kelly AD

(d) G-Kelly (e) N-RXD (f) UTD

Fig. 7: Anomaly detection for artificial targets in real HSI.

Fig. 8 shows the results of the ΛKelly AD built now with FP
estimators and with Shrinkage estimators, both SCM and FP.
The same value of FA PFA = 10−1 is considered. Remark
that all the anomalies of interest are now detected even those
bigger than one pixel. Thereafter, the proposed estimation
methods allow for better detection results in Gaussian case.

B. Non-Gaussian Background

Let us now present some results on a real hyperspectral
image in which the background can not be characterized with
Gaussian distribution and artificial targets were introduced as
anomalies. The original data set consists on 50 × 50 pixels
with 126 bands, from which we have chosen sequentially
nine bands, see Fig. 9 (a). For this example, both covariance
matrix and mean vector are estimated using a sliding window
of size 9× 9 having N = 80 secondary data. The results for
the ΛKelly AD built with classical SMV-SCM, FP estimates
and shrinkage estimators are shown in Fig 9, the FA is fixed

(a) FP (b) SCM-DL (c) FP-DL

Fig. 8: Kelly AD built with robust estimates for artificial
targets in real HSI.

at a value of PFA = 0.03. In this case, FP estimators and
notably shrinkage FP estimates are capable of locating all the
artificial targets and exhibit a lower number of false alarms.
This improvement is due to the fact that FP estimates treat
the outliers and impulsive samples in order for them to have
a smaller contribution to the background characterization
process, while the SMV-SCM estimates (and its respective
diagonal loaded version) suffer from the presence of strong
reflectance pixels in the secondary data. Remark that the
shrinkage FP estimates allow for a better detection compared
to FP estimates.

The algorithm has also been applied for galaxy detection on
the MUSE data cube. The Multi Unit Spectroscopic Explorer
(MUSE) project (see [34]) aims to provide astronomers with
a new generation of optical instrument, capable of simulta-
neously imaging the sky (in 2D) and measuring the optical
spectra of the light received at a given position on the sky.
MUSE was installed on the VLT telescope and operational in
2013, and its performances are expected to allow observation
of far galaxies up to 100 times fainter than those presently
detectable. MUSE will deliver a 3D data-cube made of a stack
of images recorded at 3578 different wavelengths over the
range 465- 930 nm. Each monochromatic image represents
a field of view of 60 × 60 arcsec, recorded with a spatial
sampling of 0.2 arcsec. Each record results in a data cube of
size 1570 MB encoding 3578 images of 300 × 300 pixels,
possibly containing thousands of objects (galaxies) existing
over different subsets of wavelengths.
An example of MUSE data cube image is displayed in Fig. 10
(a), from the 3578 available bands, we have chosen one band
of each 100. The results for anomaly detection are presented in
Fig.10 for a fixed value FA PFA = 10−3. Note that detection
with FP estimators (c) provides results with lower false alarm
rate than classical ones (b).

These examples illustrate the robust behavior of FP es-
timators in non-Gaussian environments or for close targets
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(a) Original (b) SCM (c) SCM-DL

(a) FP (b) FP-DL

Fig. 9: Kelly AD built with robust estimates for artificial targets in real HSI.

detection problems.

VI. CONCLUSION

The classical RXD test is explored and compared to other
four detectors. The different advantages and drawbacks for the
different detection schemes are commented. Furthermore, the
comparison is performed through Monte Carlo simulations in
Gaussian context and extended to real hyperspectral data with
simulated anomalies. The family of elliptical distributions
is considered for impulsive background characterization in
hyperspectral imaging. In this context, robust estimation
methods for mean vector and covariance matrix are used
to overcome the non-Gaussianity of the background and
the presence of outliers or strong scatters in the secondary
data. Moreover the robust methods presented in this
work outperform significantly the classical Gaussian-based
SMV-SCM. Therefore, robust estimators offer a versatile
alternative to Gaussian estimates. They allow to obtain better
performances in impulsive environments while keeping good
results in Gaussian background. The theoretical improvement
provided by the robustness of the esimtators is borne out
through two real hyperspectral images.
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signal. PhD thesis, École normale supérieure de Cachan-ENS Cachan.

Mahot, M., Pascal, F., Forster, P., and Ovarlez, J. (2013). Asymptotic properties of
robust complex covariance matrix estimates. Signal Processing, IEEE Transactions
on, 61(13):3348–3356.

Mahot, M., Pascal, F., Forster, P., and Ovarlez, J.-P. (2012). Robust ANMF test
using huber’s m-estimator. In Sensor Array and Multichannel Signal Processing
Workshop (SAM), 2012 IEEE 7th, pages 373–376. IEEE.

Manolakis, D., Lockwood, R., Cooley, T., and Jacobson, J. (2007). Robust matched
filters for target detection in hyperspectral imaging data. In Acoustics, Speech and
Signal Processing (ICASSP), 2007 IEEE International Conference on, volume 1,
pages I–529. IEEE.

Manolakis, D., Lockwood, R., Cooley, T., and Jacobson, J. (2009). Is there a best
hyperspectral detection algorithm? In SPIE Defense, Security, and Sensing, pages
733402–733402. International Society for Optics and Photonics.



158 BIBLIOGRAPHY

Manolakis, D. and Marden, D. (2002). Non gaussian models for hyperspectral al-
gorithm design and assessment. In Geoscience and Remote Sensing Symposium,
(IGARSS), 2002 IEEE International, volume 3, pages 1664–1666. IEEE.

Manolakis, D., Marden, D., and Shaw, G. (2003). Hyperspectral image processing for
automatic target detection applications. Lincoln Laboratory Journal, 14(1):79–116.

Manolakis, D., Rossacci, M., Cipar, J., Lockwood, R., Cooley, T., and Jacobson,
J. (2005). Statistical characterization of natural hyperspectral backgrounds us-
ing t-elliptically contoured distributions. In Defense and Security, pages 56–65.
International Society for Optics and Photonics.

Manolakis, D. and Shaw, G. (2002). Detection algorithms for hyperspectral imaging
applications. Signal Processing Magazine, IEEE, 19(1):29–43.

Manolakis, D., Truslow, E., Pieper, M., Cooley, T., and Brueggeman, M. (2014).
Detection algorithms in hyperspectral imaging systems: An overview of practical
algorithms. Signal Processing Magazine, 31(1):24–33.

Manolakis, D., Truslow, E., Pieper, M., Cooley, T., Brueggeman, M., and Lipson,
S. (2013). The remarkable success of adaptive cosine estimator in hyperspectral
target detection. In SPIE Defense, Security, and Sensing, pages 874302–874302.
International Society for Optics and Photonics.
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Abstract 

Hyperspectral imaging (HSI) extends from the fact that for any given material, the amount of emitted 
radiation varies with wavelength. HSI sensors measure the radiance of the materials within each pixel 
area at a very large number of contiguous spectral bands and provide image data containing both 
spatial and spectral information. Classical adaptive detection schemes assume that the background is 
zero-mean Gaussian or with known mean vector that can be exploited. However, when the mean 
vector is unknown, as it is the case for hyperspectral imaging, it has to be included in the detection 
process. We propose in this work an extension of classical detection methods when both covariance 
matrix and mean vector are unknown. 
However, the actual multivariate distribution of the background pixels may differ from the generally 
used Gaussian hypothesis. The class of elliptical distributions has already been popularized for 
background characterization in HSI. Although these non-Gaussian models have been exploited for 
background modeling and detection schemes, the parameters estimation (covariance matrix, mean 
vector) is usually performed using classical Gaussian-based estimators. We analyze here some robust 
estimation procedures (M-estimators of location and scale) more suitable when non-Gaussian 
distributions are assumed. Jointly used with M-estimators, these new detectors allow to enhance the 
target detection performance in non-Gaussian environment while keeping the same performance than 
the classical detectors in Gaussian environment. Therefore, they provide a unified framework for 
target detection and anomaly detection in HSI. 
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Résumé 

L'imagerie hyperspectrale (HSI) repose sur le fait que, pour un matériau donné, la quantité de 
rayonnement émis varie avec la longueur d'onde. Les capteurs HSI mesurent le rayonnement des 
matériaux au sein de chaque pixel pour un très grand nombre de bandes spectrales contiguës et 
fournissent des images contenant des informations à la fois spatiale et spectrale. Les méthodes 
classiques de détection adaptative prennent généralement pour hypothèse un fond gaussien à vecteur 
moyenne nul ou connu. Cependant, quand le vecteur moyenne est inconnu, comme c'est le cas pour 
l'image hyperspectrale, il doit être inclus dans le processus de détection. Nous proposons dans ce 
travail d'étendre les méthodes classiques de détection pour lesquelles la matrice de covariance et le 
vecteur moyenne sont tous deux inconnus. 
Cependant, la distribution statistique multivariée des pixels de l'environnement peut s'éloigner de 
l'hypothèse gaussienne classiquement utilisée. La classe de distributions elliptiques a déjà été 
popularisée pour la caractérisation de fond pour l’HSI. Bien que ces modèles non gaussiens aient déjà 
été exploités dans la modélisation du fond et dans la conception de détecteurs, l'estimation des 
paramètres (matrice de covariance, vecteur moyenne) est encore généralement effectuée en utilisant 
des estimateurs conventionnels gaussiens. Dans ce contexte, nous analysons des méthodes 
d’estimation robuste plus appropriées à ces distributions non-gaussiennes : les M-estimateurs. Ces 
méthodes de détection couplées à ces nouveaux estimateurs permettent,  d'une part d'améliorer les 
performances de détection dans un environnement non-gaussien, mais d'autre part de garder les 
mêmes performances que celles des détecteurs conventionnels dans un environnement gaussien. Elles 
fournissent ainsi un cadre unifié pour la détection de cibles et la détection d'anomalies pour la HSI.  
 
Mots clés : Détection de cibles, Imagerie Hyperspectrale, Distributions elliptiques, Estimation 
robuste 
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