
Implantations distribuées de modèles à base de

composants communicants par interactions multiparties

avec priorités : application au langage BIP

Jean Quilbeuf

To cite this version:

Jean Quilbeuf. Implantations distribuées de modèles à base de composants communicants par
interactions multiparties avec priorités : application au langage BIP. Autre [cs.OH]. Université
de Grenoble, 2013. Français. <NNT : 2013GRENM063>. <tel-01168470>

HAL Id: tel-01168470

https://tel.archives-ouvertes.fr/tel-01168470

Submitted on 25 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01168470


THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Jean Quilbeuf

Thèse dirigée par Marius Bozga
et codirigée par Joseph Sifakis

préparée au sein VERIMAG, UMR5104
et de MSTII

Distributed Implementations of
Component-based Systems with
Prioritized Multiparty Interactions.
Application to the BIP Framework.

Thèse soutenue publiquement le 16 septembre 2013,
devant le jury composé de :

Yassine Lakhnech
Professeur, Université Joseph Fourier, Président

Michel Raynal
Professeur, Université de Rennes, Rapporteur

Gul Agha
Professeur, University of Illinois, Rapporteur

Ugo Montanari
Professeur, Università di Pisa, Examinateur

Marius Bozga
Docteur, Université Joseph Fourier, Directeur de thèse

Joseph Sifakis
Professeur, Université Joseph Fourier, Co-Directeur de thèse





Remerciements

Je voudrais tout d’abord remercier mon directeur de thèse, Marius Bozga, qui a tou-
jours été disponible, patient et plein de ressources pour résoudre les différents problèmes
rencontrés. Je suis très honoré d’être son premier thésard “officiel”. Je voudrais également
remercier mon codirecteur de thèse, Joseph Sifakis, pour sa vision des choses et son ex-
igence de précision qui m’ont permis d’avancer réellement.
I would like to thank Gul Agha and Michel Raynal, for reading this thesis. Thanks

also to Ugo Montanari for taking part in my committee and to Yassine Lakhnech for
leading it. Once again, thanks to all of them for the meaningful and interesting questions
they asked.
Merci à Léon, Anakreontas, Paris, Petro pour avoir lu et commenté des chapitres de

cette thèse.
Merci à Laurent, pour m’avoir proposé un stage à Verimag. Merci à Borzoo pour

ses conseils de rédaction de papier et sa collaboration. Merci à Doron Peled, pour
ses idées et son efficacité. Merci à Saddek pour ses conseils et ses contacts. Merci
à Mohamad, Jacques, Ahlem pour leur collaboration et la bonne ambiance régnant
pendant les réunions. Merci à tous les membres de Verimag pour l’ambiance qui y
règne. C’est très agréable de travailler dans ce lieu, et les pauses midi de la cafeteria du
CTL resteront, pas forcément dans l’histoire, mais quelque part.
Merci à Nathalie et à Dominique pour leurs conseils concernant mes premières passes

devant des étudiants. Merci également aux collègues de C2i pour la bonne humeur
pendant les réunions de préparations et corrections de rattrapage.
Bashar, Simon, Thomas, Gérolin, Mélaine et Camille, je vous remercie pour cet atelier-

projet CIES en Palestine. Ce fut une agréable pause, bien qu’un peu caniculaire, dans
cette thèse.
Merci enfin à ceux qui ont été présents dans ces quatre (dernières) années grenobloises.

Qu’ils soient collègues, colocataires, mathématiciens, grimpeurs, anciens mathématiciens,
voisins de table de bar ou musiciens de tous niveaux, merci à eux pour avoir rendu
agréable cette période. Mention spéciale à Maximiliano, pour son art de l’artisanat, ses
cours de mécanique, ses petits tours et sa bonne humeur. Simon, sans tes questions sur
l’informatique en général, de la définition du mot algorithme à l’installation de Debian,
ma vie n’aurait pas été la même. Sans ton ukulele non plus. Bashar, merci pour ces



discussions du petit matin ou du grand soir, à quand la prochaine ? Thomas, merci
pour la musique (Maxime aussi) et les cours de vulgarisation sur le TR-909. Je me
lance, mais je vais en oublier, merci à Tof, Guilux, Aline, Gunnar, Abby, Fred, Ariadna,
Abby, Josue, Adrien, Lemon, Robin, Mathieu, Florence, Yvan, Florian, Valls, Alban,
Manon, Dorothée, Gentiane, Paris, Balaji, Emmanuel, Tesnim, Vasso, Jérôme, Steffen,
Eduardo, Julia, Artur, Julien, Mathilde, Fanny, Yan et Koju. Merci aussi à ceux que
j’ai oubliés. . .
Merci enfin à mon frère et mes parents qui m’ont permis d’arriver jusque là sans avoir

à m’occuper d’autre chose que de mes études. Merci aussi à eux pour la relecture du
résumé en français, et le pot !





Contents

Notations 9

Acronyms 12

Résumé en français 13

1 Introduction 32
1.1 Rigorous System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.2 Design Flow for Building Distributed Systems . . . . . . . . . . . . . . . . 34
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2 Multiparty Interactions 40
2.1 Specification Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.1.1 Link with Petri Nets . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.2 Distributed Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.2.1 Distributed Processes . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.2.2 Committee Coordination Problem and Conflict Resolution . . . . . 48
2.2.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3 Studied Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.1 Bagrodia’s EM and MEM . . . . . . . . . . . . . . . . . . . . . . . 50
2.3.2 Kumar’s Token . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
2.3.3 Joung’s Randomized Algorithm . . . . . . . . . . . . . . . . . . . . 56
2.3.4 α-Core/Parrow-Sjödin Algorithm . . . . . . . . . . . . . . . . . . . 57

2.4 Adding Priorities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.4.1 Extending Multiparty Interactions with Priorities . . . . . . . . . . 59

2.5 Other Extensions and other Distributed Models . . . . . . . . . . . . . . . 60
2.5.1 Multiparty Interactions Extension . . . . . . . . . . . . . . . . . . 60
2.5.2 Other Frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3 Knowledge 64
3.1 Distributed Knowledge based on Local State . . . . . . . . . . . . . . . . 66

3.1.1 Representation and Computation . . . . . . . . . . . . . . . . . . . 69
3.2 Knowledge with Perfect Recall . . . . . . . . . . . . . . . . . . . . . . . . 72

3.2.1 Representation and Computation . . . . . . . . . . . . . . . . . . . 73
3.3 Related Works about Knowledge . . . . . . . . . . . . . . . . . . . . . . . 74

6



4 High-level Models: BIP and BIC 76
4.1 Abstract Models of BIP and BIC . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Modeling Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 Modeling Glue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.3 Composition of Abstract Models . . . . . . . . . . . . . . . . . . . 79
4.1.4 Priority vs. Condition . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2 Concrete Model of BIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.1 Atomic Components . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2.2 Interactions and Connectors . . . . . . . . . . . . . . . . . . . . . . 83
4.2.3 Priority and Condition . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.4 Composition of Components . . . . . . . . . . . . . . . . . . . . . 86
4.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5 Breaking Atomicity of Interactions: Parallelism Between Components 92
5.1 Model Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Transformation from Centralized to Distributed Model . . . . . . . . . . . 94

5.2.1 Breaking Atomicity in Components . . . . . . . . . . . . . . . . . . 95
5.2.2 Implementing the Engine in BIP . . . . . . . . . . . . . . . . . . . 97
5.2.3 Connecting the Engine and the Distributed Components . . . . . . 100

5.3 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.1 Validity of the Target Model . . . . . . . . . . . . . . . . . . . . . 101
5.3.2 Observational Equivalence . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Taking Decision Earlier: Knowledge-Based Optimization . . . . . . . . . . 105
5.4.1 Building a Condition with Reduced Observation . . . . . . . . . . 105
5.4.2 Heuristics to Minimize Observed Components . . . . . . . . . . . . 107

6 Decentralizing the Engine 111
6.1 Conflicts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.2 Conflict-Free Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 3-Layer Send/Receive BIP . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3.1 Distributed Atomic Components . . . . . . . . . . . . . . . . . . . 119
6.3.2 Engines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.3.3 Conflict Resolution Protocol . . . . . . . . . . . . . . . . . . . . . 123
6.3.4 Connections between Layers . . . . . . . . . . . . . . . . . . . . . . 129
6.3.5 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.4 α-Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.4.1 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4.2 SR-BIP Implementation of α-Core . . . . . . . . . . . . . . . . . . 140

6.5 Optimization using Knowledge with Perfect Recall . . . . . . . . . . . . . 141
6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7 Implementation 145
7.1 The BIP Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7



7.2 The BIP Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2.1 Language Factory . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2.3 Source to Source Optimizations . . . . . . . . . . . . . . . . . . . . 150
7.2.4 Source to Source Decentralization . . . . . . . . . . . . . . . . . . 151
7.2.5 Execution/Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8 Experiments 158
8.1 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.1.1 Diffusing Computation . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.1.2 Utopar Transportation System . . . . . . . . . . . . . . . . . . . . 164

8.2 Running Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
8.2.1 Network Sorting Algorithm . . . . . . . . . . . . . . . . . . . . . . 168
8.2.2 Bitonic Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.3 Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.3.1 Dining Philosophers . . . . . . . . . . . . . . . . . . . . . . . . . . 173
8.3.2 Jukebox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

8.4 Optimizing conflict resolution . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.4.2 Building Support Automata for Participants . . . . . . . . . . . . 182
8.4.3 Performance of Distributed Implementation . . . . . . . . . . . . . 182

8.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

9 Conclusion 186
9.1 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
9.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

List of Figures 192

Bibliography 196

8



Notations

ǫ The empty string. 72

γ A set of BIP interactions. 77

κ Condition for a BIC model. 78

π A BIP priority rule. 78

σ The prefix of an execution trace. 72

τ A transition in a Petri net or in a concrete BIP atomic component. 44

Γ A BIP connector. 83

∆ Amount of time to wait in Joung’s randomized algorithm. 57

B The Boolean domain, i.e. {True, False}. 68

D Domain of definition of the data variables. 82

I Set of multiparty interactions. 42, 59

Ik The set of interactions managed by Mk. 52

Ki Support automaton for the process Pi or component Bi. 73

L Set of observed (Local) processes. 66

P A process involved in multiparty interactions. 40, 41, 52

R Set of reachable states. 66

R̃ Over approximation of the reachable states. 68

a An action or interaction. 41, 49, 77, 83

at ℓ Predicate that is true whenever the local state ℓ is active. 67

invlκ The set invlκ(a) contains the components that either participants in a or observed
by a. 88

observedκ The set observed(a) contains the components whose state is needed to eval-
uate the predicate associated to a by the Condition layer κ, but who are not
participants in a. 88

9



participants The set participants(a) contains the components that are participants in
the interaction a. 83

usedin The set usedin(φ) contains the variables that appear in the predicate φ. 86

A The set of actions of a process. 40, 41

B A component (or behavior), can be atomic or composite. Often denoted Bi when
atomic. 76

BSR A distributed component, can be atomic or composite. Often denoted BSR
i when

atomic. 94, 95, 119

C State predicate used to define a concrete priority rule. 86

CP Centralized version of the conflict resolution protocol. 123

DP Dining philosophers version of the conflict resolution protocol. 127

E The centralized engine. 98, 121

ENa State predicate that is true when the interaction a is enabled. 80, 89

ENpi State predicate that is true when the port pi is enabled. 80, 89

Exec The set of all valid execution prefixes. 49

I A subset of {1, . . . , n} that denotes indices of components/processes. It can be the
set of participants in an interaction. 42

KR̃
L φ Knowledge predicate that is true whenever the predicate φ holds in all global

states of R̃ that are indistinguishable from the local state of L. 68

KPR
Pi

φ Knowledge predicate that is true whenever the predicate φ holds in all global
states reached after executing any global execution prefix that is consistent with
the local history of Pi. 72

L Set of places for a Petri net or control locations for a concrete BIP atomic component.
44, 81

Mk A manager from Bagrodia’s solutions. 9, 52

P A set of communication ports. 77

Q Set of states. 40–42, 76

R Candidate observational equivalence in the proofs. 103, 133

TR Token ring version of the conflict resolution protocol. 125

X A set of data variables. 81

10



Y X The set of all applications from the set X to the set Y . 44

busy state State of a distributed atomic component/process corresponding to a compu-
tation and that will terminate by the emission of a message. 47, 96

conflicting Two interactions are conflicting if they need a common resource. 48

enabled An interaction is enabled if all its participants are ready to perform it. 42

externally conflicting An interaction is externally conflicting within an engine if it con-
flicts with at least one interaction handled by another engine. 120

internally conflicting An interaction is internally conflicting within an engine if it con-
flicts only with interaction handled by the same engine. 120

stable state State of a distributed atomic component/process where no computation
can occur until reception of a message. 47, 96

synchron Type of port depicted that needs to be activated to interact. 84

trigger Type of port depicted that can initiate an interaction. 84

� Condition conflict relation between interactions. 113

# Interaction conflict relation between interactions. 113

−→ A transition relation. 40–42

11



Acronyms

AADL Architecture Analysis and Design Language. 149

BBC Boolean Behavioral Constraints. 70

BDD Binary Decision Diagram. 152

BIC Behavior Interaction Condition. 76

BIP Behavior Interaction Priority. 33, 76

CA Condition-aware. 173

CCS Calculus of Communicating Systems. 60, 88

CSP Communicating sequential processes. 88

DOL Distributed Operation Layer. 149

GALS Globally Asynchronous Locally Synchronous. 61

LOTOS Language Of Temporal Ordering Specification. 57

LTS Labeled Transition System. 40, 42, 59

MB Multiparty-based. 173

MPI Message-Passing Interface. 33

PBLTL Probabilistic Bounded Linear Temporal Logic. 149

SCCS Synchronous Calculus of Communicating Systems. 88

12



Résumé en français

1 Introduction

Les systèmes conçus aujourd’hui ont de plus en plus recours à du logiciel distribué. La
principale raison est probablement l’efficacité, mais cela peut aussi être du à l’implantation
physique des capteurs et actuateurs qui impose d’avoir plusieurs unités de calculs physique-
ment séparées. Un système distribué est constitué d’un ensemble de processus commu-
nicant par envoi de messages. Raisonner directement à ce niveau est très difficile et la
vérification formelle devient vite impossible en raison de l’imposant espace d’états généré
par tous les ordonnancements possibles des messages.
Afin d’éviter ces écueils, notre approche se base sur un flot de conception permet-

tant de garantir la correction et l’efficacité de l’implémentation, ainsi que de limiter
l’intervention humaine autant que possible. La correction du flot est garantie par le fait
que chaque transformation le constituant est assez simple pour être prouvée correcte.
L’efficacité peut être optimisée en réglant les différents paramètres des transformations
afin d’adapter l’implémentation à la plateforme visée. Enfin, l’intervention humaine est
limitée au choix des paramètres, les tâches répétitives sont automatisées.
Dans [47], l’auteur affirme que l’envoi de message est trop bas niveau pour programmer

et propose d’utiliser les opérations collectives de MPI [41]. Ces opérations collectives
sont des synchronisations fortes entre plusieurs processus, mais requièrent que chacun
des processus ne propose d’effectuer qu’une seule opération de ce type à chaque étape.
Nous proposons d’utiliser des interactions multiparties où chacun des processus peut
proposer plusieurs interactions et le choix de l’interaction effectivement exécutée dépend
de celles qui sont possibles.
Les modèles que nous considérons sont décrits en BIP [10]. Un flot de conception

rigoureux [80] est utilisé pour construire une implémentation distribuée d’un tel modèle.
Un tel flot est constitué d’une série de raffinements menant du modèle original à un
modèle du logiciel tel qu’il sera implémenté. Le même cadre sémantique est utilisé
pour décrire tous les modèles intermédiaires. Ces modèles sont des assemblages de com-
posants, permettant de réutiliser du code de source hétérogène. Chacune des transfor-
mations est suffisamment simple pour être prouvée, permettant d’assurer la correction
de l’implémentation générée par construction. Enfin, le flot de conception est automa-
tisé autant que possible, par des outils effectuant les différentes transformations, seul le
choix, difficile, des paramètres est laissé au concepteur.
Notre flot de conception part d’un modèle contenant des composants, dont le com-

portement est décrit par un automate ou un réseau de Petri. Trois opérateur de compo-
sition permettent de coordonner les composants. Le premier est spécifié par un ensemble
d’interactions, chacune consistant en une synchronisation de transitions appartenant à

13



différents composants. Un interaction est active si tous les composants sont prêts à
exécuter la transition correspondante. L’exécution d’une interaction est atomique, tous
les composants changent d’états simultanément. Le deuxième opérateur, appelé Priorité,
définit un ordre partiel sur les interactions. Si deux interactions comparables sont active
à partir d’un état global, seulement celle de plus haute priorité peut être exécutée. Le
troisième opérateur, appelé Condition, qui est utilisé au dessus des interactions, comme
les priorités, assigne un prédicat à chaque interaction. L’interaction ne peut s’effectuer
que si le prédicat, qui dépend de l’état de certains composants, est vrai. L’opérateur
Priorité est facilement exprimé au moyen de l’opérateur Condition.
La première étape de décentralisation consiste à casser l’atomicité des interactions,

en séparant la participation des composants en deux temps. Dans un premier temps,
le composant envoie une offre, indiquant les actions localement possibles. Dans un
deuxième temps, il attend une notification lui indiquant laquelle des actions a été choisie.
Un engin centralisé implémente la sémantique de manière distribuée: il reçoit les offres
et renvoie les notifications conformément au modèle de départ.
L’engin centralisé prend la décision d’exécuter une interaction à partir d’un état global.

En particulier, pour implémenter l’opérateur Condition, il faut attendre de connâıtre
l’état de tous les composants nécessaires à l’évaluation du prédicat. Dans certain cas,
l’état d’une partie de ces composants est suffisant pour savoir que le prédicat est vrai.
Nous proposons de détecter ces cas en utilisant la théorie de la connaissance.
La deuxième étape de décentralisation sépare l’engin centralisé en un ensemble d’engins

décentralisés. Cela peut induire des conflits entre engins et nécessite le cas échéant
l’introduction d’un protocole de résolution de conflit.
Le protocole de résolution de conflit peut être optimisé en augmentant la connaissance

des composants. Dans ce cas, un composant n’envoie pas d’offre pour une interaction
localement active mais qu’il sait globalement non active.
Finalement, on obtient un modèle BIP dont les interactions sont limitées à l’envoi de

messages asynchrones. L’implémentation est obtenue en générant du code utilisant les
primitives disponibles sur la plateforme pour implémenter ces interactions.

2 Interactions Multiparties

Ce chapitre présente le concept d’interaction multipartie dont les différentes versions
sont présentées dans [56]. Dans cette thèse, une interaction multipartie est la synchroni-
sation d’un ensemble fixé de processus pour effectuer une action commune. Cette action
est atomique dans le sens où aucune autre action n’a lieu pendant l’exécution d’une
interaction.

2.1 Système de processus

On représente un processus par un automate, dont les transitions sont étiquetées par
des noms d’interactions. La composition de ces processus se fait en synchronisant les
transitions étiquetées par le même nom. L’ensemble des participants dans une interaction
est l’ensemble des processus dont au moins l’une des transitions est étiquetée par le nom

14



de l’interaction. La sémantique d’un tel système de processus est définie sur les états
globaux du système qui sont définis comme le produit cartésien des état locaux de
chacun des processus. Étant donné un état global, une interaction est active si tous ses
participants sont dans un état à partir duquel une transition étiquetée par le nom de
l’interaction est possible.
La sémantique d’un tel système est représentée par un automate dont les états sont

les états globaux du système et les transitions sont les interactions du système. On peut
obtenir un réseau de Petri ayant la même sémantique. On crée une place pour chaque
état de chaque processus. Pour chaque ensemble de places activant une interaction, on
crée une transition étiquetée par cette interaction qui déplace les jetons correspondants
vers les places correspondant à l’état atteint après l’interaction.

2.2 Exécution distribuée

La définition précédente de la sémantique des interactions multiparties se base sur l’état
global du système. L’une des principales difficultés est d’exécuter ces interactions dans
un cadre distribué. Pour cela, chacun des processus indique à un protocole la liste des
interactions qu’il peut effectuer, ce qui constitue son offre. Le processus attend alors une
notification du protocole indiquant quelle interaction exécuter, l’exécute puis renvoie
une nouvelle offre correspondant à l’état atteint. Le protocole doit récupérer les offres
et envoyer les notifications, de façon à respecter la sémantique du modèle de départ. Le
protocole peut prendre la forme d’un processus particulier, de plusieurs processus ou
être directement réparti dans chacun des processus originaux.
Un tel protocole doit résoudre les conflits entre interactions. Un conflit apparâıt entre

deux interactions lorsqu’elles ont au moins un participant en commun. Si deux interac-
tions en conflit sont exécutées simultanément par des processus distincts, la sémantique
du modèle de départ n’est pas respectée, car chaque processus ne peut participer qu’à
une seule interaction.
Dans la littérature, la sémantique des interactions multiparties est rarement définie à

partir des états globaux du système. La correction d’un protocole est dans ce cas énoncée
en termes de propriétés sur l’exécution distribuée. Ces propriétés comportent l’exclusion
mutuelle des interactions en conflit, la synchronisation des participants dans une même
interaction et le progrès si une interaction est active. Dans cette thèse, la correction
d’un protocole, ou plus généralement, d’un modèle distribué, est énoncée comme une
équivalence entre le modèle de départ et le modèle distribué.

2.3 Protocoles étudiés

Plusieurs auteurs ont proposé des protocoles pour exécuter des interactions multiparties
dans un contexte distribué. Dans [5, 6] Bagrodia propose plusieurs protocoles utilisant
des processus dédiés implémentant le protocole, appelés managers. Le plus simple utilise
un seul manager centralisé. Ce manager est ensuite décentralisé en plusieurs managers,
chacun responsable de l’exécution d’un ensemble d’interactions. L’exclusion mutuelle des
interactions en conflit est assurée soit par un jeton circulant entre les différents managers,

15



soit par un algorithme issu d’une solution au problème du d̂ıner des philosophes [32].
Un autre protocole, proposé par Kumar dans [61], n’utilise pas de processus externe

mais embarque le protocole dans les processus du système. Ce protocole associe un
jeton à chaque interaction, le jeton doit parcourir un chemin passant par tous les pro-
cessus de l’interaction. Lorsqu’un jeton traverse un processus, ce dernier est bloqué
par l’interaction correspondant au jeton, jusqu’à succès ou échec de l’interaction. Afin
d’éviter les interblocages, chaque jeton parcourt les processus selon un ordre global. Si
un jeton parvient au dernier processus du chemin, alors tous les processus sont bloqués
et l’interaction peut avoir lieu. Sinon, un message d’annulation est envoyé aux processus
déjà traversés afin qu’ils se débloquent et laissent passer un autre jeton.
Dans [55], Joung propose un algorithme randomisé, qui, comme celui de Kumar, ne

nécessite pas de processus externe. Chaque processus tire au hasard une interaction de
son offre et envoie, à chaque participant de l’interaction, un jeton étiqueté par cette
interaction. Ensuite le processus attend pendant un intervalle de temps déterminé.
Enfin, il redemande tous les jetons envoyés plus tôt. Durant son temps d’attente, chaque
processus reçoit des jetons de la part des autres processus. Si un processus détient, pour
une interaction donnée, un jeton de chacun de participants étiqueté par l’interaction,
alors cette dernière doit être exécutée, ce qui est signalé en rajoutant une marque sur les
jetons. Quand un processus récupère les jetons envoyés, si l’un d’entre eux est marqué,
il exécute l’interaction, sinon il tire au hasard une autre interaction et recommence.
Le dernier protocole considéré est α-core qui construit un participant pour chaque pro-

cessus et un coordinateur pour chaque interaction. Chaque coordinateur reçoit les offres
des participants et tente de les verrouiller un par un, chaque participant n’acceptant
d’être verrouillé que par un seul coordinateur à la fois. Tous les coordinateurs verrouil-
lent les participants selon un ordre global commun, afin d’éviter les interblocages. Si
un coordinateur parvient à verrouiller tous les participants de son interaction, il exécute
cette dernière. Sinon, une autre interaction en conflit a été exécutée et le coordinateur
relâche les participants déjà verrouillés.

2.4 Priorités

Pour diminuer le non-déterminisme du choix de la prochaine interaction à effectuer, on
peut équiper le système de priorités. Ces priorités sont décrites par un ordre partiel sur
les interactions, seule une interaction maximale pour cet ordre parmi les interactions
actives peut être exécutée. Les règles de priorité peuvent être utilisées pour éviter
d’atteindre certains états. Par exemple, l’interblocage atteint dans le modèle classique
du d̂ıner des philosophes où chacun prend la fourchette de gauche puis la fourchette de
droite peut être évité en donnant plus de priorité à l’interaction qui permet de prendre la
fourchette de droite. Une autre utilisation des priorités favorise l’exécution d’interactions
“utiles”. Par exemple, un système insérant un disque dans un lecteur puis l’éjectant,
sans jamais lire le disque, n’exécute pas d’interaction “utile”. Donner plus de priorité à
l’interaction permettant de lire qu’à l’interaction permettant d’éjecter le disque évite de
telles exécutions.
En général, les interactions multiparties sont présentées dans un cadre distribué où

16



la correction est exprimée par des propriétés sur les envois de messages. Dans un tel
cadre, la notion d’état global du modèle centralisé sous-jacent n’est pas définie, ce qui
empêche de définir des priorités. C’est pourquoi la littérature aborde peu le problème
des interactions multiparties régies par des priorités.

2.5 Extensions et autres modèles distribués

La notion d’interaction multipartie présentée ci-dessus peut être étendue, en définissant
une interaction comme un ensemble de rôles. L’interaction est alors active s’il existe
pour chacun des rôles un processus prêt à prendre ce rôle.
D’autres modèles existent et proposent de générer du code distribué à partir d’un

modèle haut niveau qui est généralement moins expressif que les interactions multiparties
avec priorités.

3 Connaissance

Le terme connaissance, dans cette thèse, est la somme d’informations détenue par un
agent ou une partie d’un système à propos de l’état global du système. Le concept de
connaissance est utilisé afin de formaliser ce que chaque agent sait ou peut déduire à
propos du système, en partant de ses observations.
Cette notion peut servir à formaliser le problème des “enfants boueux” [7] : Après

avoir joué ensemble, certains enfants d’un groupe ont de la boue sur leur front et risquent
d’être punis. Chaque enfant sait si les autres sont sales, mais pas s’il l’est lui-même, et
aucun autre enfant ne lui communique cette information. Quand les enfants rentrent, le
père leur dit qu’au moins l’un d’entre eux est sale, ce qui devient un fait connu de tous
les enfants. Le père demande ensuite qui peut affirmer avec certitude qu’il est sale, les
enfants répondent simultanément. Le père continue à poser la question et les enfants à
y répondre. La question est de savoir ce qui va se passer, en supposant que les enfants
ne mentent pas et qu’ils raisonnent parfaitement.
La question posée par le père est typiquement une question de connaissance où la

réponse est soit positive, auquel cas un fait est connu (l’enfant est sale et le sait), soit
négative auquel cas le fait peut être vrai ou faux (l’enfant ne sait pas s’il est sale). À
noter que chaque enfant, voyant k enfants sales, sait qu’il y en a au total soit k, soit
k + 1, suivant que lui-même est sale ou non.
La réponse au problème est que si k enfants sont sales, après la kième itération de la

question, les enfants sales répondent oui. Cela se prouve par récurrence sur k. S’il y a
un seul enfant sale, il ne verra pas d’autre enfant sale, déduira que c’est lui qui est sale
et répondra “oui” à la première question du père. S’il y en a deux, chacun d’entre eux
voit un enfant sale au début, et ne peut pas faire la différence avec le cas k = 1. Après
les réponses (toutes négatives) à la première question du père, le cas k = 1 est éliminé
par chacun des enfants sales, qui en déduit qu’il est lui-même sale et répond “non” à la
deuxième question du père. De même, s’il y a k+1 enfant sales, chacun d’entre eux sait
que le nombre d’enfants sales n’est pas k après la réponse à la kième question du père,
et, en déduisent qu’ils sont sales.

17



Dans ce problème, on raisonne sur la connaissance de chacun des enfants qui ont
une observation limitée du système mais sont capables d’inférer ce qu’ils ne voient pas.
Ce schéma s’applique aux systèmes distribués où, par définition, chacun des processus
n’observe que son propre état qui dépend des messages reçus. Différents niveaux de
connaissance sont définis. La plus faible est la connaissance distribuée, obtenue en
combinant la connaissance de plusieurs processus. Ce genre de connaissance requiert
une synchronisation pour être construite. La plus forte est la connaissance commune,
connue par tous les processus et dont les processus savent qu’elle est connue par tous les
processus.
La connaissance se base sur un ensemble d’univers, l’un d’entre eux étant celui dans

lequel le système évolue. Chacun des agents observe une partie des faits de cet univers et
peut en déduire que le système se trouve dans un univers cohérent avec les faits observés.
Toutefois, il ne peut faire la différence entre deux univers différant uniquement sur des
faits non observables.

3.1 Connaissance distribuée obtenue à partir de l’état local

Cette connaissance considère un sous-ensemble L des processus. On observe l’état local
de ce sous-ensemble, c’est-à-dire les états des processus qui le composent. Deux états
globaux dont la projection sur L donne le même état local sont dits indistinguables par
L.
Un invariant du système fournit une sur-approximation des états atteignables. Un

invariant est une formule qui est toujours vraie durant l’exécution du système. En
particulier, tout état ne satisfaisant pas l’invariant n’est pas atteignable. Ces invariants
sont obtenus en utilisant la théorie des réseaux de Petri. Les trappes fournissent ce
que l’on appelle des invariants booléens dans cette thèse. Les invariants linéaires sont
obtenus en considérant une base du noyau de la matrice place-transition du réseau de
Petri correspondant au système.
L’observation de l’état local de L indique que le système se trouve dans un état à

la fois cohérent avec cette observation et satisfaisant l’invariant. Si une formule Φ est
satisfaite par chacun de ces états globaux, alors l’état de L, combiné avec l’invariant,
permet d’assurer que Φ est vrai. On définit le prédicat de connaissance KLΦ qui est vrai
quand l’état local de L permet d’assurer que Φ est vrai. Si ce prédicat est faux, on ne
sait pas si Φ est vrai.
Par définition, on a KLΦ =⇒ Φ, c’est-à-dire que KLΦ est une sous-approximation de

Φ. On obtient une sur-approximation en considérant la contraposée de KL¬Φ =⇒ ¬Φ.
On sait que Φ contient les états pour lesquels on le sait vrai et ne contient pas les états
pour lesquels on le sait faux. Cet encadrement s’affine d’autant plus que le nombre de
processus observés est grand et devient une égalité si tout les processus sont observés.

3.2 Connaissance obtenue à partir de l’historique

Ce type de connaissance observe les interactions visibles par un processus, c’est-à-dire
les interactions dans lesquelles il est impliqué. Deux séquences d’exécution sont indis-

18



cernables par un processus si leurs restrictions aux interactions visibles sont les mêmes.
Dans le cas de processus ayant un ensemble d’états finis, cette connaissance se représente

par un automate dont les états sont des ensembles d’états globaux et les transitions sont
étiquetées par des interactions visibles par le processus. Chaque état de l’automate corre-
spond à un ensemble d’états globaux. L’état initial de l’automate contient tous les états
globaux accessibles depuis l’état initial du système en exécutant uniquement des interac-
tions non visibles. L’état de l’automate atteint après une séquence d’interactions visibles
contient tous les états accessibles par n’importe quelle séquence valide d’interactions in-
discernable de cette séquence.
Après avoir vu une séquence σ d’interactions visibles, le processus sait que l’état actuel

du système est contenu dans l’état de l’automate atteint après avoir joué σ. Si tous les
états globaux potentiellement atteints satisfont un prédicat Φ, le processus sait que Φ
est vrai. Cette construction donne plus d’informations que l’observation de l’état du
processus.

3.3 Travaux liés à la connaissance

Différentes notions de connaissance sont formalisées et étudiées dans [40, 50, 51]. Les
ensembles approximatifs (rough sets) [71] fournissent des approximations d’ensembles
d’objets dont seulement certaines caractéristiques sont observables.
Une application de la connaissance au contrôle décentralisé d’un système est proposée

dans [77]. D’autres travaux [8, 12, 19] proposent des contrôleurs distribués permet-
tant de forcer une propriété sur l’exécution d’un réseau de Petri. Ces travaux sup-
posent l’existence d’un mécanisme pour exécuter correctement les transitions du réseau
de Petri.

4 Modèles BIP et BIC

Ce chapitre présente les modèles BIP (Behavior Interaction Priority) et BIC (Behavior
Interaction Condition). Ces modèles sont décrits par des composants atomiques com-
posés par des opérateurs.

4.1 Modèles abstraits

Les modèles abstraits ne contiennent pas de données, seulement des états de contrôle.
Dans ce cadre un composant atomique est défini par un comportement et une interface.
L’interface est un ensemble de ports utilisé pour la communication. Le comportement
est un automate ou un réseau de Petri dont les transitions sont étiquetées par des ports.
Un composant peut exécuter une transition étiquetée par un port si son état de contrôle
active cette transition. Dans un tel état, le port est actif.
Le premier opérateur de composition est spécifié par des interactions. Une interaction

est un ensemble de ports. La sémantique d’un ensemble de composants composé par
des interactions est un système de transitions étiqueté par les interactions. Depuis un
état global du système, formé par le produit des états de chacun des composants, une

19



interaction est possible si chacun des ports qui la composent est actif pour l’état courant.
L’exécution d’une interaction ne change que l’état de ses composants.
On définit un opérateur de priorité en spécifiant, pour chaque état global, un ordre

partiel entre les interactions. Une interaction plus faible pour cet ordre a moins de
priorité que l’interaction qui la domine. Un tel opérateur inhibe l’exécution d’une in-
teraction de faible priorité uniquement lorsqu’une interaction de plus haute priorité est
active. En particulier, cet opérateur n’introduit pas d’interblocage car il bloque une
interaction seulement si une autre peut être exécutée. Une priorité est dite statique si
elle ne dépend pas de l’état global.
L’opérateur de condition associe un prédicat, dépendant de l’état global du système,

à chaque interaction. Cet opérateur inhibe l’exécution d’une interaction si le prédicat
associé n’est pas satisfait par l’état courant.
On peut construire un opérateur de condition dont le comportement est équivalent

à l’opérateur de priorité. On associe à chaque interaction de faible priorité le prédicat
qui est vrai uniquement quand toutes les interactions de plus haute priorité ne sont pas
actives.

4.1 Modèles concrets

Le modèle concret étend le modèle abstrait en rajoutant des variables dans les com-
posants. Chaque port est associé à un ensemble de variables. Ces variables peuvent être
lues et écrites durant une interaction contenant ce port. Chaque transition comporte une
garde, prédicat sur les variables qui doit être vrai pour autoriser la transition. Un état
du composant comporte l’état de contrôle et une valuation des variables. Le fait qu’un
port soit actif dépend de l’existence d’une transition depuis l’état de contrôle actuel et
des valeurs des variables à travers la garde associée à la transition. Enfin, quand la
transition est exécutée, les variables associées au port sont éventuellement modifiées par
l’interaction, puis une fonction, associée à la transition, est exécutée. Cette fonction
modifie localement les variables.
De même, les interactions sont étendues pour prendre en charge les données. Comme

pour les transitions dans les composants, l’exécution d’une interaction requiert que sa
garde soit vraie et entrâıne l’exécution d’une fonction. La garde et la fonction sont
définies sur l’ensemble des variables associées aux ports constituant l’interaction.
Les interactions peuvent être spécifiées en utilisant des connecteurs. Chaque con-

necteur est défini sur un ensemble de ports, son support, et autorise certaine interac-
tions utilisant ces ports. Les interactions autorisées dérivent d’un typage de chacun
des ports comme synchron ou trigger. Si le connecteur ne comporte que des synchrons,
alors seule l’interaction contenant tous les ports est autorisée. Sinon toute combinaison
contenant au moins un trigger est autorisée. Ces connecteurs peuvent être composés
hiérarchiquement, dans ce cas un connecteur exporte un port qui est utilisé dans le sup-
port d’un autre connecteur. Les variables associées au port exporté sont calculées par
une fonction de propagation dépendant des variables associées aux ports du support.
Ces variables sont utilisées par le connecteur dominant pour décider si la garde est vraie.
Si l’interaction s’exécute, une fonction de propagation vers le bas calcule les valeurs des

20



variables associées aux ports du support.
Les priorités sont définies par un ensemble de règles, comportant un prédicat et un

couple d’interactions. Le prédicat dépend des variables visibles par les interactions et
indique quand la règle doit s’appliquer. La première interaction du couple est celle de
basse priorité et l’autre est celle de haute priorité. Pour chaque état, l’ensemble des règles
s’appliquant doit donner un ordre partiel sur les interactions. Une priorité statique est
obtenue en prenant des tautologies comme prédicats.
Les conditions sont exprimées en associant à chaque interaction un prédicat qui dépend

de l’état de contrôle et des variables de certains composants. L’introduction des condi-
tions permet un intermédiaire entre participation et non-participation à une interaction.
Ce rôle particulier est tenu par les composants dont l’observation est nécessaire pour
déterminer si le prédicat associé à une interaction est vrai, mais qui ne sont pas partici-
pants dans cette interaction. De tels composants sont observés par l’interaction.
Comme précédemment, les priorités peuvent se réécrire en utilisant des conditions. De

plus, on peut transformer un modèle avec condition en un modèle utilisant uniquement
des interactions. Cela nécessite d’ajouter un port à chaque composant observé afin d’y
étendre les interactions qui l’observent. Le prédicat associé à l’interaction devient alors
une garde. Toutefois, les interactions restent une colle plus faible que les interactions
avec priorités ou conditions car il est nécessaire de modifier les composants pour avoir
un comportement équivalent.

5 Rupture de l’atomicité des interactions: parallélisme entre les
composants

Une interaction se décompose en une partie commune, matérialisée en BIP par la fonction
associée à l’interaction et une partie locale à chaque composant, consistant principale-
ment en l’exécution d’une fonction locale de mise à jour des variables. En exécutant
les composants dans des processus séparés, le parallélisme entre ces dernières apparâıt
naturellement.
Dans un cadre distribué, il n’est pas possible d’observer de façon simultanée l’état de

tous les composants, ni de déclencher simultanément des transitions dans des composants
séparés. Chaque composant envoie la liste des ses ports actifs vers un engin qui est un
composant particulier chargé de planifier l’exécution des interactions. L’engin calcule
les interactions possibles d’après les offres qu’il a reçues, choisit l’une d’elle, exécute la
partie commune et envoie une notification à chacun des composants participants pour
qu’ils exécutent leur partie locale de l’interaction.

5.1 Restriction de modèles

Les modèles considérés en entrée doivent avoir des composants dont le comportement
est décrit par un automate (et non par un réseau de Pétri). Les priorités doivent être
préalablement transformées en conditions.
Les modèles obtenus après transformation sont dits Send/Receive au sens où ils ne

21



comportent que des interactions modélisant l’envoi de message. Chaque composant
représente un processus autonome. Chaque port est soit un port d’envoi soit un port de
réception. Chacune des interactions contient un port d’envoi et un port de réception.
Un port d’envoi participe à exactement une interaction, c’est-à-dire est associé à exacte-
ment un port de réception (l’envoi est déterministe). Une interaction copie les variables
associées au port d’émission vers les variables associées au port de réception. Enfin,
si à un état donné un port d’envoi est actif, le port de réception correspondant doit
impérativement devenir actif. Cette dernière restriction assure que chaque message en-
voyé est reçu.
Un modèle Send/Receive est utilisé pour générer du code distribué. Chaque composant

devient un processus. Les transitions étiquetées par un port d’envoi déclenchent l’envoi
d’un message vers le port de réception associé. Les transitions étiquetées par un port de
réception sont exécutées à la réception du message correspondant.

5.2 Transformation vers le modèle distribué

La transformation est effectuée en transformant chaque composant atomique du modèle
de départ en une version distribuée, puis en rajoutant un engin.
Étant donné un composant atomique centralisé, on obtient sa version distribuée en

séparant une transition en deux parties. La première partie, exécutée avant d’atteindre
un état “stable” consiste en l’envoi d’une offre, cette transition est donc étiquetée par
un port d’envoi. Cette offre contient la liste des ports actifs dans l’état stable, ainsi que
les variables associées. De cet état stable sont possibles des interactions étiquetées par
des ports de réception, un pour chaque port possible depuis l’état correspondant dans
le composant atomique original. La réception d’une notification est alors possible et
entrâıne l’exécution de la transition associée, ce qui amène le composant dans un état
occupé, rajouté dans la construction. Depuis cet état, seul l’envoi d’une nouvelle offre
est possible, permettant de rejoindre le prochain état stable.
Le modèle distribué est complété par un engin chargé de recevoir les offres et d’envoyer

les notifications. Le comportement de cet engin est décrit par un réseau de Pétri. À
chaque composant du système original est associé un jeton dans ce réseau. Ce jeton
est soit dans une place d’attente, lorsqu’aucune offre n’a été reçue, soit dans une place
indiquant qu’une offre a été reçue, soit dans une place indiquant qu’il faut envoyer une
notification au composant. Le passage de la place d’attente à la place indiquant la
présence d’une offre se fait lors de la réception de cette dernière. Le passage de la place
indiquant la présence d’une offre à la place indiquant la nécessité d’envoyer une notifi-
cation se fait par une transition interne, correspondant à une interaction. Pour chaque
interaction du modèle, une telle transition déplace les jetons depuis les places indiquant
la présence d’une offre vers les places indiquant la nécessité d’un envoi pour les ports
constituant l’interaction. La garde associée à cette transition vérifie que l’interaction
est bien active, c’est-à-dire que les offres contiennent bien tous les ports de l’interaction,
et que la garde associée à l’interaction est vraie. Si l’interaction requiert l’observation
de composants, la transition nécessite la présence des jetons correspondants dans les
places indiquant la présence d’une offre et la garde vérifie également le prédicat associé

22



à l’interaction. L’exécution de cette transition déclenche le calcul de la fonction associée,
c’est-à-dire de la partie commune de l’interaction. Le passage d’une place indiquant la
nécessité d’envoyer une notification à la place d’attente du composant se fait par une
transition étiquetée par un port d’envoi. Chaque port a une place dédiée, permettant
de séparer les différentes notifications possibles pour chaque composant. Chaque port
d’envoi correspondant à une notification transmet également les valeurs des variables
associées au port, après leur mise à jour lors de l’interaction.
Les versions distribuées des composants atomiques et l’engin sont reliés par des inter-

actions de type Send/Receive. Chaque port d’envoi d’offre d’un composant atomique
est relié au port de réception d’offre correspondant de l’engin. Chaque port d’envoi de
notification de l’engin (il y en a un pour chaque port) est relié au port de réception de
notification correspondant dans le composant atomique distribué.

5.3 Correction du modèle distribué

Le modèle distribué est conforme aux restrictions imposées dans la première section de
ce chapitre. Par construction, les interactions se conforment au modèle Send/Receive.
De plus, l’envoi d’une offre active les ports de réception associés aux notifications corre-
spondantes et, symétriquement, l’envoi d’une notification entrâıne l’activation du port
de réception pour l’offre suivante. La propriété concernant l’activation des ports de
réception est donc vérifiée.
Le modèle distribué est observationnellement équivalent au modèle de départ. Pour

chaque état du système distribué, on considère l’état stable obtenu en effectuant tous les
envois de message possibles qui sont considéré comme invisibles. Dans un état stable,
chaque composant atomique distribué est dans un état qui est également un état du
composant atomique centralisé correspondant. Les états des composants atomiques dis-
tribués donnent alors un état global du système de départ considéré comme équivalent.
On peut alors montrer que depuis un état distribué et son état équivalent, les mêmes
transitions visibles, c’est-à-dire interactions, sont possibles et permettent d’atteindre des
états équivalents.

5.4 Utilisation de la connaissance pour prendre des décisions plus tôt

Pour évaluer un prédicat associé à une interaction, l’engin doit attendre une offre de
chacun des composants observés. Dans certains cas, en particulier lorsque la condition
dérive d’une priorité, cette décision peut être prise plus tôt, en considérant uniquement
un sous-ensemble de ces offres.
On spécifie arbitrairement, pour chaque interaction, un ensemble de composants à ob-

server. En pratique, on cherche à minimiser ce nombre de composants, afin de prendre la
décision le plus tôt possible. On considère ensuite la connaissance distribuée, au sens du
chapitre 3, du prédicat de condition obtenue à travers l’observation des participants et
des composants à observer. Si pour une observation donnée cette connaissance permet
d’assurer que le prédicat est vrai, alors l’interaction peut être exécutée sans compromet-
tre la correction de l’exécution globale du système. Dans le cas contraire, l’interaction

23



ne peut être exécutée. Ce comportement est obtenu en remplaçant le prédicat associé à
une interaction par le prédicat de connaissance permettant de l’approcher, c’est-à-dire
en construisant une nouvelle couche de condition.
En restreignant trop l’ensemble des composants à observer, on prend le risque de

n’avoir pas assez d’information pour exécuter les interactions et d’introduire des in-
terblocages dans le système. Afin d’éviter cela, on définit des niveaux de détection car-
actérisant le comportement du modèle utilisant la connaissance par rapport au modèle
original. Le niveau de détection basique garantit que l’on introduit pas d’interblocage
dans le système. Le niveau de détection complet garantit l’équivalence entre les deux
modèles.
L’approche présentée ici est paramétrée par les composants à observer pour chaque

interaction. En pratique, on cherche à minimiser ces ensembles tout en maintenant
un certain niveau de détection. À cette fin, on propose un algorithme de recuit simulé
permettant de minimiser les composants observés tout en assurant un niveau de détection
basique ou complet.

6 Décentraliser l’engin : parallélisme entre les interactions

La solution utilisant un engin centralisé exécute toutes les interactions dans le même
processus, ce qui interdit le parallélisme entre elles. Obtenir ce parallélisme requiert de
décentraliser l’engin en plusieurs engins. On paramètre cette décentralisation par une
partition des interactions, chaque classe de la partition étant gérée par un engin différent.

6.1 Conflits

De manière générale, un conflit se crée lorsque deux parties ont besoin de la même
ressource. Un composant participant dans deux interactions différentes est une source
potentielle de conflit. En particulier, si ces deux interactions sont exécutées dans des
engins distincts et sans coordination, elles peuvent être exécutées simultanément. Cela
contredit la sémantique des interactions multiparties où chaque composant ne participe
qu’à une seule interaction à la fois.
Nous définissons deux types de conflits entre les interactions, suivant le rôle (par-

ticipant ou composant observé) de chaque composant en lien avec l’interaction. Deux
interactions sont en conflit d’interaction lorsque elles ont au moins un participant en
commun. C’est le conflit classique entre des interactions multiparties. Considérons deux
interactions a et b, telles que a observe le composant B pour évaluer le prédicat de
condition et B participe à l’interaction b. Dans ce cas, l’interaction a est en conflit de
condition avec l’interaction b. Ce conflit est asymétrique car l’exécution de a ne com-
promet pas l’exécution de b, alors que l’exécution de b modifie l’état de B et peut donc
désactiver a.
Dans les deux cas, nous dirons que a et b sont en conflit. Notons que si a et b

observent un composant commun, il ne s’agit pas d’un conflit. On retrouve le même
comportement avec la mémoire transactionnelle : deux transactions accédant à la même

24



variable en lecture ne sont pas en conflit, mais dès que l’une des deux transactions accède
à la variable en écriture, on a un conflit.

6.2 Partitions sans conflits

Dans la version avec un seul engin, présentée au chapitre précédent, les conflits sont
résolus à l’intérieur de l’engin, par la sémantique même du réseau de Petri. En groupant
toujours deux interactions en conflit dans le même engin, on obtient une partition sans
conflits. Dans ce cas tous les conflits sont entre des interactions gérées par le même
engins et peuvent être résolus localement.
Chaque offre envoyée par un composant ne peut concerner qu’un seul engin à la

fois. En effet, une offre envoyée à deux engins différents serait une source de conflit
potentiel. De ce fait, on peut modifier les composants atomiques en ajoutant un port
d’envoi différent pour chaque engin. Chaque offre est alors envoyée uniquement à l’engin
concerné. La construction d’un engin à partir d’un ensemble d’interactions est la même
que précédemment.
Il est toujours possible de construire une partition sans conflit en groupant toutes

les interactions ensemble, ce qui revient au cas précédent. Dans certains cas, cette
partition ne peut être raffinée en restant sans conflit. Afin d’autoriser un partitionnement
arbitraire des interactions dans les engins, il faut ajouter un protocole de résolution de
conflits.

6.3 Modèle Send/Receive à 3 niveaux

On considère dans cette section un partitionnement arbitraire des interactions. Chaque
ensemble d’interactions du partitionnement est géré par un engin dédié. Le modèle
distribué obtenu contient alors 3 niveaux. Le premier est constitué par les composants
atomiques modifiés. Le deuxième contient les engins. Enfin, le troisième est un protocole
de résolution de conflits.
Le principe du protocole de résolution de conflits est basé sur les solutions de Bagro-

dia [6] utilisant des compteurs. Chaque composant compte les offres qu’il envoie et leur
associe la valeur de ce compteur. Un conflit correspond à la situation où deux interac-
tions peuvent utiliser la même offre, c’est-à-dire le même numéro. Résoudre les conflits
revient à s’assurer que chaque numéro d’offre n’est utilisé qu’une seule fois.
À partir des offres reçues, chaque engin détecte les cas où l’une des interactions dont

il est responsable peut s’exécuter. Une interaction dont tous les conflits sont internes
à l’engin peut être exécutée directement par ce dernier. Dans le cas contraire, une
requête contenant le numéro d’offre de chacun des participants est envoyée au protocole
de résolution de conflit. Si ce dernier répond positivement, l’interaction est exécutée.
En cas de réponse négative, l’engin essaye une autre interaction ou attend une nouvelle
offre.
Pour chaque composant, le protocole de résolution de conflit conserve le numéro d’offre

utilisé lors de la dernière participation du composant à une interaction. Cette informa-
tion permet de rejeter toute offre d’un composant dont le numéro d’offre est plus petit

25



ou égal au numéro de dernière participation, puisque l’offre correspondante a déjà été
utilisée. Le protocole de résolution de conflit répond positivement seulement si tous les
numéros d’offre de la requête sont encore valides, sinon il répond négativement.
On propose trois versions du protocole d’interaction. Le point crucial pour la correc-

tion du protocole est d’assurer l’atomicité de l’opération qui lit les numéros de dernière
participation pour vérifier la validité d’une requête et les modifie en cas de succès. La
première version consiste en un unique composant qui est le seul à accéder à ces numéros,
ce qui garantit l’atomicité. La seconde version utilise un jeton contenant les numéros.
Ce jeton circule entre les composants du protocole de résolution de conflits. Seul le
composant détenant le jeton peut modifier les numéros situés dessus, ce qui garan-
tit l’atomicité. La dernière version, plus décentralisée, est basée sur une solution du
problème du diner des philosophes. Chaque interaction correspond à un philosophe,
implémenté par un composant. Deux composants correspondant à deux interactions
en conflit s’échangent une fourchette qui contient les numéros de dernière participation
des composants causant le conflit. Un composant doit récupérer toutes les fourchettes
partagées avec d’autres composants pour modifier les numéros, ce qui assure l’atomicité.

6.4 α-core

Le protocole α-core est un autre protocole de résolution de conflit qui a été utilisé pour
générer un modèle distribué à partir d’un modèle centralisé. Ce protocole se compose
d’un processus pour chaque composant et pour chaque interaction. Nous n’avons pas
étendu ce protocole pour supporter les modèles avec condition.
Le modèle BIP distribué embarquant ce protocole est construit de manière hiérarchique.

Chaque composant du modèle original est obtenu comme composition de la version dis-
tribuée de ce protocole, d’un composant générique implémentant la partie composant
d’α-core, et de quelques composants nécessaires à la communication. De façon similaire,
chaque interaction est implémentée par la composition d’un composant exécutant la
fonction de l’interaction, d’un composant générique implémentant la partie interaction
d’α-core et de composants additionnels pour la communication.

6.5 Optimisation utilisant la connaissance avec mémoire parfaite

Le protocole α-core implémente l’exclusion mutuelle des interactions en conflit sans avoir
recours à des compteurs. Lors de l’exécution d’une notification, chaque composant doit
explicitement annuler toutes les offres envoyées aux autres interactions et attendre une
confirmation pour chaque annulation. Dans ce cadre, il est intéressant de n’envoyer des
offres qu’aux interactions qui sont réellement possibles.
En utilisant la connaissance avec mémoire parfaite, chaque composant peut éventuellement

restreindre les offres qu’il envoie en se basant sur son état local, mais aussi sur l’historique
des interactions. Ce genre d’optimisation est utile lorsqu’un contexte particulier induit
un comportement précis à un composant générique. L’historique des interactions permet
dans ce cas de limiter les prochaines interactions possibles, alors que l’état du composant
ne le permet pas.

26



Le même principe peut être appliqué aux coordinateurs. Dans ce cas, l’historique
utilisé est celui des offres reçues et des notifications envoyées. La connaissance obtenue
permet de ne pas tenir compte de certaines offres, quand elles ne peuvent être utilisées
dans l’interaction. De plus, on peut considérer certaines offres comme acquises, quand
on sait qu’il n’y a pas d’autre interaction dans laquelle le composant correspondant peut
participer.

6.6 Discussion

Ce chapitre présente plusieurs méthodes pour exécuter des interactions en parallèle, ce
qui suppose de résoudre les conflits apparaissant lors de la décentralisation. La première
méthode utilise des compteurs et peut être plus ou moins distribuée. Cette méthode
permet de prendre en compte les modèles avec Condition.
La seconde méthode, α-core, utilise un processus par composant et un processus par

interaction. Il serait intéressant d’étendre cette méthode afin qu’elle prenne en compte
les modèles avec Condition.
De plus, l’optimisation proposée pour ce chapitre n’a été formalisée et expérimentée

que dans le cadre du protocole α-core. Il serait intéressant de l’intégrer à la première
méthode.

7 Implémentation

Ce chapitre présente l’implémentation de BIP, à travers le langage permettant de décrire
les modèles BIP et les outils permettant de manipuler ces modèles.
Le langage BIP est utilisé pour décrire des modèles. Les briques de base sont les

composants atomiques et les connecteurs qui sont décrit par leurs types. Une fois un type
de composant déclaré, on peut en créer plusieurs instances. Ces composants sont alors
connectés par des instances de connecteur qui sont définies à partir des ports exportés
par les composants. Un ensemble de composants et de connecteurs crée un type de
composant composé que l’on peut réutiliser pour former des composants hiérarchiques.

Un ensemble d’outils permet de générer, vérifier, transformer, optimiser et exécuter
des modèles décrits dans ce langage. Une première catégorie d’outils permet de générer
des modèles BIP à partir de modèles écrits dans d’autres langages. Les outils de
vérification permettent de garantir qu’un système valide une propriété donnée, soit à
l’aide d’invariants, pour des propriétés sur les états atteignables, soit à l’aide de model-
checking stochastique, pour des propriétés sur les séquences d’actions exécutées.
Un modèle BIP ayant des composants hiérarchiques peut être transformé en un modèle

équivalent ne comportant que des composants atomiques et des connecteurs. Une autre
transformation permet de fusionner deux composants atomiques en un seul. En itérant
cette transformation, on obtient un seul composant atomique équivalent au modèle
d’origine.
Les méthodes pour décentraliser un modèle présentées dans cette thèses sont également

implémentées comme des outils. Les tâches consistant à transformer des priorités en con-
ditions, optimiser les conditions en utilisant la connaissance, générer un modèle distribué

27



utilisant les compteurs pour résoudre les conflits, générer un modèle distribué utilisant
α-core sont implémentées par des outils dédiés.
L’exécution de modèles BIP peut se faire de manière séquentielle en utilisant un engin

centralisé. Pour cela, on génère automatiquement du code C++ à partir du modèle à
exécuter. Ce code fait appel à une librairie implémentant la sémantique de BIP au travers
d’un engin chargé d’ordonnancer l’exécution du code généré. On peut également utiliser
les méthodes décrites dans cette thèse pour générer un modèle distribué. À partir de ce
modèle, on génère un programme pour chacun des composants. Ces programmes utilisent
les primitives de communications disponibles sur la plateforme visée afin d’échanger
des messages. Les plateformes pour lesquelles on peut générer du code incluent celles
supportant les sockets POSIX, les thread POSIX ou MPI. Un autre prototype génère
des scripts ASEBA permettant de programmer le robot Marxbot.
Pour l’instant, chacun de ces outils est implémenté de façon indépendante. On peut

classer ces outils en 3 catégories : frontend, backend et middleend. Un flot de concep-
tion commence par un frontend, peut faire appel à plusieurs middleend et finalement
produit une implémentation au moyen d’un backend. Cette approche requiert un outil
permettant d’appeler ces différents modules avec les paramètres convenables.

8 Expérimentations

En utilisant les outils décrits dans le chapitre précédent, on propose d’évaluer les di-
verses implémentations obtenues. Ces évaluations portent sur l’influence des différents
paramètres.
Une première série d’expériences compare les performances obtenues en prenant différentes

partitions pour les interactions et différents protocoles pour la résolution des conflits.
Certains temps d’attente sont insérés pour simuler des temps de calcul ou de commu-
nication, selon diverses configurations. Une même partition peut être optimale pour
une configuration donnée et mauvaise pour une autre, ce qui suggère que le choix de la
partition doit être effectué en fonction de la plateforme.
Une deuxième série d’expériences compare une implémentation obtenue par notre

méthode avec une implémentation écrite à la main. Ces expériences sont effectuées sur
des applications demandant beaucoup de calcul. On observe que la perte de performance
par rapport à une version écrite à la main est assez faible. Dans certains cas, l’utilisation
d’outils de transformations pour ajuster le nombre de processus générés au nombre de
processeurs permet d’obtenir de meilleures performances.
Une troisième série d’expériences considère l’utilisation de l’opérateur de Condition et

l’optimisation utilisant la connaissance qui lui est associée. Passer d’une implémentation
n’implémentant que les interactions multiparties à une implémentation prenant en compte
l’opérateur de Condition permet un gain très important de performance et limite le nom-
bre de messages échangés. L’optimisation utilisant la connaissance se révèle efficace sur
les modèles n’utilisant que les interactions multiparties. En revanche, pour les modèles
utilisant la Condition, cette optimisation permet surtout de réduire le volume de com-
munication nécessaire à l’exécution du système.

28



La dernière série d’expériences évalue le gain de performance obtenu en utilisant la
connaissance avec mémoire parfaite. Suivant les modèles, la taille de l’automate encodant
la connaissance peut varier. Les versions optimisées sont plus rapides que les versions
originales.

9 Conclusion

Résultats

Flot de conception rigoureux pour une implantation distribuée

Dans cette thèse, nous présentons un flot de conception rigoureux, constitué d’une série
de transformations. Chaque transformation s’occupe d’un aspect particulier et leur
composition en châıne permet de transformer un modèle haut niveau en un ensemble de
programmes distribués. Le flot présente les caractéristiques suivantes.

Correction Les différentes transformations sont suffisamment simples pour être entièrement
formalisées et prouvées. En particulier chaque transformation assure la préservation des
propriétés fonctionnelles. De ce fait, vérifier la correction fonctionnelle du modèle haut-
niveau de départ assure la correction de l’implantation distribuée générée en utilisant la
châıne d’outils.

Performance/Efficacité Les solutions présentées dans cette thèse permettent différents
niveaux de décentralisation, notamment au niveau de la répartition des interactions dans
les engins. Cela conditionne le nombre de composants dans le modèle distribué généré et
donc le nombre de programmes dans l’implantation obtenue, permettant au concepteur
d’adapter l’implantation pour la plate-forme visée.
De plus, plusieurs optimisations sont proposées. Ces optimisations s’appliquent à

différents endroits du flot de conception et permettent d’améliorer la performance de
l’implantation finale générée.

Productivité Le même modèle sémantique est commun à toutes les transformations,
ce qui permet de les enchâıner. De plus, d’autres outils utilisant ce même modèle
sémantique permettent d’accomplir d’autre tâches, telles que la vérification de certaines
propriétés, l’aplatissement de la hiérarchie ou la fusion de deux composants.

Techniques d’optimisation fondées sur la connaissance

Deux optimisations sont présentées dans cette thèse. La première utilise la connais-
sance pour prendre une décision à partir d’une observation plus restreinte du système.
Cette optimisation permet de réduire le volume de communication et dans certains cas
d’améliorer les performances du système.
La deuxième optimisation intervient ultérieurement dans le flot de conception et per-

met de réduire le nombre de messages échangés pour résoudre les conflits. Dans certains

29



cas, la connaissance utilisée par cette optimisation permet de savoir qu’une seule inter-
action est possible parmi plusieurs potentiellement en conflit. Dans ce cas la version
optimisée ne fait pas appel au protocole de résolution de conflit.

Implantation et évaluation sur des études de cas

Les transformations et optimisations présentées dans cette thèse ont été implémentées
sous forme de prototypes. Cela a permis d’étudier les performances obtenues avec divers
paramètres sur différents modèles.
Dans un premier temps, on a étudié l’influence du partitionnement des interactions

sur les performances. La meilleure partition des interactions dépend fortement des car-
actéristiques de la plate-forme cible pour l’exécution.
En ce qui concerne les optimisations, le gain de performance le plus important est

obtenu en passant d’un protocole de résolution de conflit classique à un protocole
optimisé pour les Conditions. Les optimisations utilisant la connaissance permettent
également d’augmenter les performances, mais de façon moins importantes. Cela prêche
en faveur d’une extension des interactions multiparties prenant en compte la Condition,
c’est à dire introduisant la notion de composant observé mais non participant dans une
interaction. Une telle extension permet d’exprimer, entre autres, les priorités et est
relativement peu coûteuse à implémenter.

Perspectives

Partitionnement et déploiement Choisir une partition revient à faire un compromis
entre le niveau de parallélisme possible entre les interactions et le coût des commu-
nications pour résoudre les conflits. Une partition sans conflits minimise le coût de
communication nécessaire pour résoudre les conflits, mais peut limiter de façon impor-
tante le niveau de parallélisme possible entre les interactions. D’une manière duale, on
peut construire une partition préservant le parallélisme maximal autorisé par le modèle,
mais au prix d’une charge importante pour résoudre les conflits.
En pratique, ce compromis doit être guidé par la plateforme de destination. Dans ce

contexte, trouver une partition optimale peut être vu comme une extension du problème
consistant a trouver un déploiement optimal d’une application donnée sur une plate-
forme donnée. Le partitionnement des interactions permet de moduler le nombre de
processus, la charge de calcul correspondante et le volume des communications.

Systèmes temps réel Les modèle BIP peuvent être dotés d’une sémantique temps réel.
Dans ce cas, les composants atomiques sont étendus par des horloges et chacune des
transitions a une contrainte temporelle exprimée en fonction des horloges du composant.
Chaque interaction doit alors s’effectuer dans la zone correspondant à l’intersection des
contraintes de chacune des transitions qui la composent.
Les modèles BIP temporisés peuvent être exécutés soit par un seul processus ou par

une implémentation multi-thread avec un engin centralisé. Dans ce cas, l’engin a une
vue partielle du système, comme décrit au Chapitre 5. Avant d’effectuer une interaction,

30



il doit s’assurer qu’aucune interaction plus urgente n’est possible. On peut tirer un
parallèle avec les priorités, où il faut s’assurer qu’aucune interaction plus prioritaire
n’est possible. Dans le cas des priorités, il est toujours possible d’attendre que tous les
composants aient envoyé une offre avant de prendre une décision. Pour les contraintes
temporelles, cette stratégie peut entrainer le dépassement de certaines échéances. L’engin
centralisé reste toutefois capable de détecter ces dépassements.
Décentraliser un engin distribué temps-réel est d’un niveau de difficulté supérieur.

Avant d’exécuter une interaction, il faut s’assurer qu’aucune interaction en conflit n’est
possible plus tôt. De plus, détecter les dépassements d’échéances a posteriori devient
particulièrement délicat, car cela nécessite de pouvoir reconstruire l’ensemble des offres
valides à un instant donné.

Exécutions distribuée stochastique On peut également considérer l’exécution dis-
tribuée de modèles stochastiques. Par exemple, un processus de décision markovien
s’exécute en faisant à chaque étape un choix non-deterministe puis un choix proba-
biliste. Dans notre cas, on peut choisir de manière non-deterministe un composant, puis
de manière probabiliste l’une des interactions auxquelles il participe. L’implantation
distribuée d’un tel processus peut être parallélisée en choisissant plusieurs composants.
Toutefois deux composants ne peuvent être choisis simultanément s’il existe deux inter-
actions en conflit, impliquant chacune l’un des composants.

Alternative à la communication par envoi de message Dans cette thèse, nous avons
considéré uniquement des systèmes distribués communicant par envoi de messages. Ce
cadre est assez général, car la plupart des plateformes proposent des primitives permet-
tant de communiquer par envoi de messages, même si d’autre primitives sont disponibles.
Les plateformes massivement multicœurs proposent par exemple de la mémoire partagée
à plusieurs niveaux. Ces plateformes sont traditionnellement divisées en unités syn-
chrones, comportant plusieurs processeurs communicants par mémoire partagé ; la com-
munication entre ces unités se fait par envoi de message asynchrones. Un piste possible
est d’exploiter les plateformes proposant de la mémoire partagée, et, finalement, perme-
ttre de concevoir des implantations mélangeant divers types de communications.

31



1 Introduction

Systems designed today often require distributed computation. The main reason for
considering distributed systems is undoubtedly the efficiency. Doubling the frequency of
processors consumes twice as much energy as doubling the number of processors while
achieving comparable speedups provided the software is efficiently distributed.
Another reason for considering distributed systems lies in the geographical location of

the sensors and the actuators. Processing sensor data and controlling actuators requires
dedicated computing units in specific locations.
When implemented, a distributed system software consists of a set of autonomous and

independent processes. At each step, a process executes one of three different types of
action: sending a message, performing a local computation and waiting for an incoming
message. The decision of the next action to execute is taken locally by the process,
depending on the messages so far received and the computation results.
Programing directly using Send/Receive primitives requires several difficult problems

to be handled at the same time. The first problem is to decompose the application into
independent parts. Next, the designer has to define how the different parts communicate
to ensure correct execution of the application, that is to design a protocol. Finally, he has
to implement this protocol, by taking into account all possible interleavings of messages.
Each of these tasks is complex and tedious.
The implemented system must provide the functionality it was designed for, i.e. meet

the specifications. Ideally, specifications are expressed over the final system. In practice,
specifications are formalized using a model of the system. Reasoning in terms of processes
communicating through asynchronous message-passing impedes the verification and even
the formulation of these properties. Verification at this level becomes intractable owing
to the considerable amount of possible message interleavings.
In this thesis, we propose a methodology relying on a design flow to avoid the above

pitfalls. The design flow should provide significant help in addressing the following
challenges that arise when designing a distributed system.

Correctness In order to define how the system should operate, the designer provides
requirements and specifications. These specifications are often written in English; the
designer then formalizes them into a set of properties that must be verified by the
implementation. For the designer to have confidence in its formal specification, the
model or language used must be high-level enough so that the formal properties are
simple to write and understand.
In the context of distributed systems, a property may depend on several processes.

Verifying a distributed system is very difficult owing to the size of the state space ob-
tained when considering all message interleavings. Therefore, correctness cannot be

32



ensured a posteriori and must be considered from the beginning of the design process.

Performance/Efficiency The system should utilize resources in an optimal way to en-
sure the best performance at the lowest cost. The design flow should enable the designer
to parametrize as much as possible the deployment of the application software over the
hardware. In particular, the underlying model should provide methods for deploying the
same application over different platforms. Ideally, ensuring optimal deployment of the
software on a platform should be orthogonal to ensuring its functional correctness.

Productivity The design process should be focused on tasks where human intervention
is needed. In particular, tedious implementation tasks should be automated as much as
possible to allow designers to concentrate on important design choices.

The idea that message-passing primitives are of too low a level for programing is ex-
pressed in [47]. In that paper, the author advocates the use of Message-Passing Interface
(MPI) [41] collective operations. A collective operation is a strong synchronization be-
tween a subset of the processes and may involve data transfer. A process locally chooses
and commits to a single collective operation, then waits until the operation executes.
All processes must make the same choice for the collective operation to take place.
We consider higher-level application models where each step is a multiparty interac-

tion [56], that is a strong synchronization between processes. Contrarily to MPI collective
operations, the next interaction is chosen non-deterministically among the enabled ones
at the current global state. More precisely, at each state, a process proposes a set of
interactions to execute. An interaction is enabled if all participant processes propose to
execute it. At each step, an enabled interaction is chosen for execution.
These models are described within a component-based framework, namely Behavior

Interaction Priority (BIP) [10]. Formal verification methods allow validation of func-
tional properties of a system described using such a framework. Rigorous system de-
sign [80] allows the building of a distributed implementation preserving these properties
by successive applications of transformations. We present the concepts behind rigorous
system design, and then detail the design flow for obtaining a distributed implementation
from a BIP model.

1.1 Rigorous System Design

Rigorous system design [80] relies on a sequence of transformations guaranteeing that
essential requirements are met by the implementation. Figure 1.1 depicts an abstract
design flow starting from an application software and leading to an implementation. A
framework allowing rigorous system design exhibits the following characteristics.

Model Based. The design flow relies on a single semantics that is used consistently
throughout the flow. For instance, in Figure 1.1, the application software and the in-
termediate model n are written using a common syntax and rely on the same semantic

33



Application Software

Intermediate Model 1

Transformation 1

Intermediate Model n

Transformations

Implementation

Code Generation

Figure 1.1: A design flow.

rules. Intermediate models have different levels of abstraction, suitable for performing
various tasks such as verification, performance analysis and code generation. The last
model before code generation represents exactly the software to be implemented. Code
generation only implements the semantics of this model using a low-level programming
language such as C++.

Component Based. Basic blocks of the systems are enclosed in components that have
a well-defined interface. Components allow the embedding and the composition of het-
erogeneous pieces of software. Furthermore, built components can be reused in ulterior
designs.

Correct-by-construction. Each transformation preserves the functional properties of
the model. Correctness-by-construction guarantees that the intermediate model n is
functionally equivalent to the application software. In our case, the equivalence is either
trace equivalence or observational equivalence.

Finally, the design flow is implemented through a set of tools automatically performing
the different transformations. The designer provides a high-level model of the system
from which the implementation is generated. In particular, the mechanisms to handle
messages are generated automatically during the transformations. Human intervention
is required to choose the parameters of the transformations.

1.2 Design Flow for Building Distributed Systems

We focus on the part of the design flow that allows us to generate a distributed im-
plementation from a high-level model of the application software. A distributed imple-
mentation is represented by a set of components communicating through interactions
restricted to asynchronous message-passing. The challenge is to switch from the high-
level model, where multiparty interaction is a primitive, to the distributed model, where
only message-passing is allowed. We present each step of the flow and the optimizations
that can be performed at these steps.

34



Input Model

Figure 1.2 depicts an abstract model made of 4 components (B1, . . . , B4). Each com-
ponent is described as an automaton or a Petri net equipped with guards and update
functions on transitions. Components are composed using two composition operators,
namely Interaction and Priority. The Interaction operator is parameterized by a set of
interactions, which is {a, b, c} in our example, that are synchronizations of components’
transitions. The Priority operator is parameterized by a partial order on the interac-
tions, which is a < c on our example. Such a model has a global state semantics. A

B1 B2 B3 B4

a b c

a < c

Figure 1.2: A simple example of input model.

semantic step is done through an interaction that changes atomically the states of all
participants in the interaction. From a global state, an interaction can execute if:

• All its participants are ready to execute that interaction. For instance, executing
interaction a requires that B1 and B2 are ready to execute a transition allowing
interaction a. In that case, the interaction is enabled.

• No higher priority interaction is enabled at that global state. For instance, inter-
action a cannot execute if interaction c is enabled.

Interactions execute atomically; the state of all participants in the interaction is
changed in a single execution step. The states of other components are not modified.
From the reached global state, another enabled interaction is chosen to perform the next
execution step.
We define another composition operator named Condition, which, like Priority, is

defined over components composed by Interaction. Condition associates a predicate
κa to each interaction a. The predicate must be true for the interaction to execute.
The predicate depends on the states of some components. Components whose state is
observed to decide whether an interaction can execute, but which are not participant in
the interaction, are said to be observed by the interaction. Components observed by an
interaction influence its execution, but are not modified during it. Using the Condition
operator defines precisely the role of each component (participant or observed) in an
interaction.
Priority forbids the execution of a low priority interaction if there is a higher priority

interaction enabled. The condition operator encodes Priority by assigning, to a low
priority interaction, the predicate that is true when no higher priority interaction is
enabled. In our example, the predicate κa, stating that “c is not enabled”, is assigned

35



to interaction a. For interaction a, components B1 and B2 are participants whereas
components B3 and B4 are observed.

Breaking the Atomicity of Interactions

BIP semantics requires knowing the global state of the system to take a decision about
the next interaction to execute. In a distributed setting, there is no instance knowing
the global state of the system. Therefore, each component explicitly sends the set of
interactions it can perform, which we call offer, to a centralized engine E, as shown
in Figure 1.3. Initially, the engine has no information about the current state of the
system, but builds a partial view of the state based on the offer received. When enough
information is available, the engine selects a feasible interaction for execution and notifies
the participating components to execute. After sending a notification to a component,
the engine has no information about its state until the next offer.

BSR
1 BSR

2 BSR
3 BSR

4

E

Figure 1.3: First step: breaking the atomicity of interactions.

After this step, the model contains only Send/Receive interactions between compo-
nents, the original interactions of the model are transformed into actions in the engine.
By considering actions in the engine as observable, and Send/Receive interactions as
unobservable, the distributed model is equivalent to the original one. In a centralized
context, the execution of an interaction consists in the sequential execution of the corre-
sponding local computation in each component. In the distributed model, components
run concurrently and execute these local computations in parallel.

Optimization: Taking Decision Earlier

Evaluating a Condition predicate in the engine requires knowing the states of the ob-
served components, and therefore waiting for their offers. Note that the Condition
predicate κa associated to interaction a in our example is “c is not enabled”. Its eval-
uation requires waiting for offers from B3 and B4. Thus, for executing interaction a,
the engine requires offers from all components of the model. The proposed optimization
aims at reducing, for each interaction, the number of observed components.
The concept of knowledge [40] has been extensively studied for distributed systems

with respect, in particular, to their ability to execute actions [50]. Distributed Knowledge
[51] allows a set of components to “know” that a predicate holds based on a partial
observation. We assume that each interaction a observes the states of a set of components
La comprising participants in a. The knowledge predicate denoted KLaκa characterizes
the states where observing only components in La is sufficient to ensure that κa holds.

36



In other words, it characterizes states where the distributed knowledge of the set of
components La is sufficient to safely execute a. Restricting too much the set LA might
lead to cases where the distributed knowledge is not sufficient to ensure that a can
execute. We propose two detection levels that characterize how much of the original
interactions are also allowed in the knowledge-based version. Basic detection ensures
that no deadlocks are introduced. Complete detection ensures observational equivalence
with the original model.

Decentralizing the Engine

With the centralized engine, no parallelism between interactions is allowed. Enabling
parallelism between interactions requires their execution in separate engines. We decen-
tralize the engine by partitioning the interactions and building one engine for each class
of the partition. For instance, the partition {a, b}, {c} yields a distributed implementa-
tion of our example with two engines, as depicted in Figure 1.4.

BSR
1 BSR

2 BSR
3 BSR

4

E1 : {a, b} E2 : {c}

CRP

Figure 1.4: Second step: decentralizing the engine.

Having interactions executed in several engines creates conflicts. Generally speaking,
a conflict occurs when two entities are competing for a common resource. In the present
case, a conflict occurs when two interactions involving a common component are handled
in separate engines. The conflicting resource is the common component that can take
part in only one interaction. If two engines execute simultaneously two different inter-
actions involving a common component, the semantics is broken because this behavior
is not allowed in the centralized model.
We solve this problem by adding a conflict resolution protocol (see Figure 1.4). Be-

fore executing a conflicting interaction, the engine asks the conflict resolution protocol.
The latter grants the execution only if it does not break the semantics. Our solution
accommodates several implementations for the conflict resolution protocol, based on
Bagrodia [6]. In particular, we consider distributed conflict resolution relying either on
a token ring or on a solution to the dining philosophers problem.

Optimizing Conflict Resolution

In the above solution, an engine systematically calls the conflict resolution protocol
before executing an externally conflicting interaction. However, there might be some

37



states where components causing conflicts have no alternative interaction from their
local state. In that case, no conflict resolution is required for that component. This
case is similar to the MPI collective operations where a component commits to a single
interaction. A component can use a special message to notify that it commits to an
interaction, allowing the receiving engine to efficiently handle this particular offer. The
α-core protocol [73] implements such a mechanism.
There are some states where a component has locally a choice between two interactions,

but where the global state actually only allows one interaction. A component augmented
with knowledge with perfect recall can detect some of these states and send an offer only
for the allowed interaction. Reducing the number of possible interactions in the offer
leads to a more efficient implementation because it diminishes the number of actual
conflicts to resolve.

Code Generation

The final step of our transformation generates distributed code for a given platform
from a Send/Receive model. A Send/Receive model consists of a set of components
communicating through interactions representing asynchronous message-passing. Each
component is an automaton or a Petri net whose transitions correspond either to sending
or receiving a message.
The generated code contains one standalone program for each component of the

Send/Receive model. Such a program implements the Petri net or automaton repre-
senting the behavior of the component. Transitions corresponding to send actions are
executed as soon as they are enabled. If no send action is possible, the component waits
for a message that triggers a receive action.
Code generation is the same regardless of the role (component, engine, conflict resolu-

tion) of the distributed component considered. This scheme for generating code can be
applied to any platform providing message-passing. We generate code for general purpose
platforms (MPI, sockets) and code for domain specific platforms (ASEBA scripts [64]
for the Marxbot robot [25]).

1.3 Organization

The Chapters 2, 3 and 4 introduce multiparty interactions, knowledge and the BIP
framework,respectively , which constitute the prerequisites of this thesis. The main con-
tribution consists of the design flow, presented in Chapters 5 and 6, the tools, presented
in Chapter 7, and their evaluation in Chapter 8.
Chapter 2 formally presents the semantics of multiparty interaction, expressed as a

global state semantics. When attempting to implement the latter in a distributed man-
ner, conflicts between interaction appear. Therefore, distributed execution of multiparty
interactions is controlled by a protocol. Several protocols are outlined in the chapter.
Chapter 3 presents the notion of knowledge, that is the set of facts known by a part of

a system. This notion applies naturally to distributed systems, where, by definition, each

38



process acts upon the information it receives from other processes. The chapter presents
two concrete examples of knowledge, their representation and their computation.
In Chapter 4 we provide the abstract and concrete models of the BIP framework. The

BIP framework provide a single semantics used consistently throughout the design flow.
We also introduce the Condition operator, which is an alternative to Priority.
The first step towards decentralization consists in letting components run in parallel.

In Chapter 5, we present a decentralized solution relying on a centralized engine respon-
sible for scheduling all interactions. The obtained distributed model is observationally
equivalent to the original model. We provide a knowledge-based optimization that only
modifies the Condition operator and reduces the number of exchanged messages.
The next step towards decentralization consists in splitting the centralized engine into

several distributed engines. As explained in Chapter 6, partitioning interactions into
engines creates conflicts. Thus, distributed models built in this chapter include conflict
resolution protocols. We prove the correctness of the final distributed model through
trace equivalence. We present another protocol for executing multiparty interaction in a
distributed context, namely α-core, that can be embedded in a BIP model. Finally, we
show another knowledge-based optimization that aims to reduce the number of messages
exchanged to resolve conflicts.
Chapter 7 presents the set of tools involved in the BIP framework in general. It

focuses on tools related to the distributed implementation of BIP. The methods for
generating distributed code are explained for various platforms. The tools are evaluated
in Chapter 8. In particular, we assess the actual performance gains induced by the
aforementioned optimizations, the influence of partitioning, and the performance of the
various platforms.
Finally, we conclude and outline some future works in Chapter 9.

39



2 Multiparty Interactions

Multiparty interactions provide a high-level description of a distributed system in terms
of processes and interactions. An action of the system is an interaction, which is a
coordinated operation between an arbitrary number of processes.
In [56], Joung and Smolka classified different types of multiparty interactions. Accord-

ing to their taxonomy, we focus only on gate or multi-channel interaction constructs,
where each interaction has a fixed set of participant processes.
The problem of executing multiparty interactions in a distributed context has been

studied extensively in [5, 6, 32, 33, 55, 61, 70, 73]. These works state the problem and
establish correctness of protocols for multiparty interaction execution in a distributed
context only, without assuming an underlying global state semantic of the system.
In this chapter, we propose a more holistic approach. We first present in Section 2.1 an

abstract formalization of multiparty interactions, based on a global-state execution of the
system. Section 2.2 present the traditional view of multiparty execution in a distributed
context. In the presented approach, the correctness of a distributed implementation is
obtained by comparing it with the previous formalization. We then present in Section 2.3
some of the existing protocols implementing unprioritized multiparty interactions. The
Section 2.4 discusses an extension that adds priorities to multiparty interactions. Finally,
we consider another possible extension to multiparty interactions and other frameworks
for building distributed systems in Section 2.5.

2.1 Specification Model

Our specification model consists in a set of processes. In general, processes are com-
puting artifacts that, at some point of their execution, need to coordinate one of their
actions with some other processes of the system. In the sequel, we represent processes as
Labeled Transition Systems (LTSs), where transitions are labeled by actions that need
coordination. In particular, using LTSs abstracts away the inner computation of the
processes and allows us to focus on the interaction scheme.

Definition 2.1 (Process). A process P is defined by a tuple (Q,A,−→), where:

• Q is a set of states.

• A is a finite set of actions.

• −→⊆ Q×A×Q is a set of transitions.

Given two states q, q′ and an action a, we denote the transition (q, a, q′) ∈−→ by q
a
−→ q′.

We also denote by q
a
−→ (resp. q

a

6−→) if there exists (resp. doesn’t exist) a transition

40



labeled by a outgoing from state q. Throughout this thesis, we assume that processes
are deterministic. In the current context, deterministic means that given a state q there
is at most one outgoing transition from q labeled by a.

F L

load

unload

play

Figure 2.1: LTS representing a process.

Example 2.2. In Figure 2.1 we depict a process P = (Q,A,−→). This process repre-
sents a disc, whose state is either free (F ) or loaded (L), i.e. Q = {F,L}. The set of
actions of the process is A = {load , unload , play}. The transitions are −→= {(F , load ,L),
(L, unload ,F ), (L, play ,L)}. At state L, the actions play and unload are enabled. If the
process executes the action unload, it state changes to F .

An interaction is an action synchronized between several processes. In the adopted
formalism, an interaction is denoted by a common action symbol occurring in several
processes. That is, all processes that have a in their set of actions participate in in-
teraction a. Interaction a is enabled only if all its participants are in a state allowing
a transition labeled by a; its execution correspond to the synchronous execution of an
a-labeled transition by all participant processes.

Definition 2.3. A distributed system is given by a set of processes P1, . . . ,Pn, where
Pi = (Qi, Ai,−→i), with pairwise disjoint state sets: ∀i, j 1 ≤ i, j ≤ n ∧ i 6= j =⇒
Qi ∩Qj = ∅.

F1 L1

load1

unload1

play1

F2 L2

load2

unload2

play2

0

1

lo
a
d
1

u
n
lo
a
d
1

2

loa
d
2

u
n
loa

d
2

A

B

p
la
y
1

C

p
la
y
2 th

in
k

Jukebox

Listener

Disc1

Disc2

load1

unload1

load2

unload2

play1

play2

Figure 2.2: A model with multiparty interactions.

Example 2.4. Figure 2.2 depicts a system with 4 processes and 7 interactions. This
system contains a Listener process, that plays Disc1 then Disc2, then thinks. Each Disc

41



is a separate process. Playing a disc is possible only if it has been loaded in the Jukebox.
In order to make interactions visible, they have been added as black boxes on Figure 2.2.
For each box, the set of bound processes denotes the participants in the corresponding
interaction. We did not add a box for the unary interaction think as it involves only the
Listener process.
Assume that initially both discs are free (places F1 and F2 are active), the Jukebox

process is at state 0 and Listener at state A. From that state, interaction load1 can take
place since in both participants (Disc1 and Jukebox) there is an interaction labeled by
load1 from the active place.

We now formally define the behavior of distributed system. We denote by Ia = {i|a ∈
Ai} the indices of processes that participate in a.

Definition 2.5 (Global behavior of distributed systems). The behavior of a distributed
system (P1, . . . ,Pn), with Pi = (Qi, Ai,−→i) is a LTS (Q, I,−→) where:

• Q = Q1× . . .×Qn: the set of global states is obtained by the cartesian product of
the states of the processes.

• I =
⋃n

i=1Ai: the interactions are the union of all processes actions.

• −→⊂ Q× I ×Q is the least set of transitions satisfying the rule:

a ∈ I ∀i ∈ Ia qi
a
−→i q

′
i ∀j 6∈ Ia qj = q′j

(q1, . . . , qn)
a
−→ (q′1, . . . , q

′
n)

We say that an interaction a is enabled at global state q if all its participants are ready
to perform an action labeled with a. As for processes, we use the notation q

a
−→ to denote

that a is enabled at global state q and the notation q
a

6−→ to denote that a is not enabled
at global state q. The definition of the transitions expresses that moving from one state to
another is done by executing an enabled transition. It consists of synchronous execution
by all participants in a of their a-labeled transition. Furthermore, this transition is
atomic in the sense that non-participating processes do not alter their state during this
interaction.
In addition to the operational semantics of the system given by the composed transi-

tion relation, we have to provide an initial state for each process.
In Figure 2.3, we present the global behavior of the system depicted in Figure 2.2.

The global state of the system is defined by the local state of each individual process.
For instance, the initial state is (0, F1, F2, A), meaning that process Jukebox is in state
0, process Disc1 in state F1, process Disc2 in state F2 and process Listener in state A.
Each arrow represents the execution of an interaction. The only modification between the
source and target of an arrow is the state of processes participant in the corresponding
interaction.

Example 2.6. Figure 2.4 presents the beginning of a global execution of the system
depicted in Figure 2.2. On this Figure, each process corresponds to a vertical line,

42



th
in
k

0, F1, F2, A1, L1, F2, A 2, F1, L2, A

0, F1, F2, B1, L1, F2, B

play1

2, F1, L2, B

0, F1, F2, B1, L1, F2, C 2, F1, L2, C

play2

load1

unload1

load2

unload2

load1

unload1

load2

unload2

load1

unload1

load2

unload2

th
in
k

th
in
k

Figure 2.3: Global behavior of system from Figure 2.2.

that indicates the evolution of the process as the time passes. A global state execution
consists in a sequence of global steps. At each state, the set of possible transitions for
each process is represented by an outgoing arrow. From the initial state, both load1 and
load2 are enabled. The interaction play1 is not enabled because Disc1 cannot execute
a transition labeled by play1. First, load1 is executed, thus Disc1 and Jukebox execute
their corresponding transition. Disc2 and Listener do not move because they did not
take part in an interaction.

S
tep

s

Jukebox Disc1 Disc2 Listener

0
load1

load2
F1 load1

F2 load2
A play1

load1

load2
enabled

load1

1

1
unload1

L1

play1

unload1
F2 load2

A play1

play1

unload1
enabled

play1
2

Figure 2.4: A centralized execution of the distributed system from Figure 2.2.

The global behavior of systems encompassing multiparty interactions is defined based
on a global view of all the processes. This representation is useful to define the semantics
of such systems. However, in a distributed setting, we cannot assume a synchronization
between independent processes.

2.1.1 Link with Petri Nets

We recall here the definition of a Petri net. We show that the global behavior of a system
encompassing multiparty interactions can be expressed as a Petri net.

43



Definition 2.7. A Petri net is defined by a triple S = (L, I, T ) where L is a set of
places, I is a set of labels, and T ⊆ 2L × I × 2L is a set of transitions. A transition τ
is a triple (•τ, a, τ•), where •τ is the set of input places of τ and τ• is the set of output
places of τ .

A Petri net is often modeled as a directed bipartite graph G = (L ∪ T,E). Places are
represented by circular vertices and transitions are represented by rectangular vertices
(see Figure 2.5). The set of directed edges E is the union of the sets {(ℓ, τ) ∈ L × T |
ℓ ∈ •τ} and {(τ, ℓ) ∈ T × L | ℓ ∈ τ•}.
We depict the state of a Petri net by marking its places with tokens. Formally, a

marking is an application m : L→ N that indicates how many tokens are in each place.
We say that a place is marked if it contains a token. A transition τ is enabled if all its
input places are marked. Formally, τ is enabled if ∀ℓ ∈ •τ m(ℓ) > 0.
At a given marking m, any enabled transition can be executed. Executing a transition

τ corresponds to removing one token in each input place and adding one token in each
output place. Formally, by executing τ at marking m, one reaches the marking m′

characterized by:
∀ℓ ∈ L m′(ℓ) = m(ℓ)− τ−(ℓ) + τ+(ℓ)

where

τ−(ℓ) =

{

1 if ℓ ∈ •τ
0 otherwise

and τ+(ℓ) =

{

1 if ℓ ∈ τ•

0 otherwise.

We denote m
a
−→S m′ if the transition τ = (•τ, a, τ•) can be executed at marking m and

reaches marking m′. We denote by −→S the set of triples (m, a,m′) such that m
a
−→S m′.

The behavior of a Petri net S can be defined as an (infinite) labeled transition system
(NL, I,−→S), where NL is the set of states1, A is the set of labels, and −→S is the set of
transitions. The interested reader can find a survey about Petri Nets in [69].

p1

p2 p3

p4 p5t1

t2

t3

p1

p2 p3

p4 p5t1

t2

t3

Figure 2.5: A simple Petri net in two successive markings.

Example 2.8. Figure 2.5 shows an example of a Petri net in two successive markings.
It has five places {p1, . . . , p5} and three transitions {t1, t2, t3}. The places containing a
token are depicted with gray background. The marking on the right shows the resulting
state after executing transition t2.

Given a Petri net S = (L, I, T ) and an initial marking m0, the marking m is reachable

if there exists a sequence of transitions m0
a1−→S m1

a2−→S . . .
ak−→S m. We say that S

1In this thesis, we denote by Y X the set of all applications from the set X to the set Y .

44



with the initial marking m0 is 1-safe if in all reachable markings there is at most one
token per place. Note that a 1-safe Petri net has at most 2|L| markings. In this thesis,
we focus on 1-safe Petri nets.

Given a system of processes P1, . . . ,Pn, where Pi = (Qi, Ai,−→i), one can build a
Petri net S = (L, I, T ) which has the same semantics. This is done by considering the
following:

• L =
⋃n

i=1Qi: the set of places is the union of the processes states,

• I =
⋃n

i=1Ai: the set of labels is the set of interactions in the system,

• For each interaction a ∈ I, T contains the set of transitions

{(

⋃

i∈Ia

qi, a,
⋃

i∈Ia

q′i

)
∣

∣

∣

∣

∣

∀i ∈ Ia qi
a
−→i q

′
i

}

.

For each set of transitions qi
a
−→i q

′
i involving exactly once each participant in a, T

contains a Petri net transition moving tokens from places qi to places q′i.

A B C

L1 L2

F1 F2

0

1 2

think

play1 play2

load1

unload1

load2

unload2

Figure 2.6: Petri net obtained from the example in Figure 2.2.

Example 2.9. The system of processes depicted in Figure 2.2 yields the Petri net shown
in Figure 2.6. In this particular case, there is only one transition for each interaction.
The initial state of the system (F1, F2, 0, A) is encoded as the marking where the corre-
sponding places contain one token. These places are depicted with a gray background
on the figure. Consider the places corresponding to a given process, for instance the
places {A,B,C} corresponding to the process Listener. The LTS of the process can be
reconstructed by transforming the Petri net transitions adjacent to the process places
into labeled transitions.

45



In the previous construction, each process Pi corresponds to the subset Li of places.
Each transition either does not involve any place from Li, or it removes and places
exactly one token in Li. Therefore, the number of tokens within Li remains constant
throughout execution. Intuitively, a state (q1, . . . , qn) of the system of processes corre-
sponds to a marking where exactly one place of each subset Li contains a token. Thus,
starting from the marking corresponding to the initial state, one can only reach mark-
ings corresponding to global states of the system. In other words, with such an initial
marking the obtained Petri net is 1-safe.
We compare the behavior of the system of processes P1, . . . ,Pn and the behavior

of the corresponding Petri net. As stated before, we associate to each global state
q = (q1, . . . , qn) the marking

mq : ℓ 7→

{

1 if ℓ ∈ {q1, . . . , qn}
0 otherwise.

Executing the transition q
a
−→ q′ in the global behavior of the system of processes changes

only the states (qi)i∈Ia of the participants in a to the states (q′i)i∈Ia through the set of

processes transitions qi
a
−→i q

′
i. The corresponding Petri net contains by construction a

transition τ = (
⋃

i∈Ia
qi, a,

⋃

i∈Ia
q′i). We have equivalently q

a
−→ and τ enabled at the

corresponding marking mq. The marking m′ reached after executing τ removes tokens
from places qi and puts them in places q′i therefore m′ = mq′ . Thus, the behavior of the
system of processes and the behavior of the built Petri net are the same.

Note that switching to Petri net formalism removes boundaries between processes,
which are crucial for generating distributed systems. Furthermore, since the same inter-
action may correspond to several Petri net transitions, the representation with processes
is more compact. In the sequel, we use the Petri net formalism to compute invariants of
the system.

2.2 Distributed Execution

Distributed execution assumes a set of computational entities communicating through
asynchronous message-passing. Each of these entities may decide either to execute in-
ternal actions, to send messages to other entities or to wait for incoming messages. In
the global state model, the local execution of a transition labeled by a occurs only if
interaction a executes globally. In contrast, distributed execution assumes that exe-
cuting a local action (internal, send or wait) is decided based on the local state only,
independently of other entities state.

2.2.1 Distributed Processes

In a distributed context, each process of the global state model becomes a distributed
process that communicates with the environment to ensure correct execution with re-
spect to the global state model. Thus, a reasonable assumption is that each distributed
process publishes the list of available actions and waits for a decision on the interaction

46



to execute. Such a behavior is obtained by splitting each process transition in two parts;
one part publishes the offer and the other part executes the chosen action. This trans-
formation adds busy states as shown in Figure 2.7. Indeed, for each original state q of
the process, there is a new busy state denoted q⊥, that is reached before attaining q.
From these busy states, the only possible action is to publish a list of actions indicating
what is possible in the next state. Then, the process is in a stable state, waiting for the
next interaction to happen.
The Figure 2.7 depicts the distributed version of the process from Figure 2.1. The

distributed process starts in state F⊥, from which it can only publish the interactions
it can do from state F . In that case, there is only one possibility, that is load . After
publishing its offer, i.e. {load}, the process reaches the state F where it waits for the
message indicating to execute load before resuming execution.

F⊥

F{load}

L⊥

load

L {play , unload}

pla
y

unload

Figure 2.7: Distributed version of the process from Figure 2.1.

In most papers proposing protocols for multiparty interactions [5, 6, 55, 61, 73], a
distributed process has only two states: idle and active. The transition to idle from
active correspond to publishing the offer, the transition from idle to active correspond
to starting an interaction. Thus, for the remaining of this section, we only specify the
offers sent by the distributed processes.

T
im

e

Protocol Jukebox Disc1 Disc2 Listener

load1
load2OFFE

R

load1

OFFER

EXEC load
1

EXEC load1

load1

load2

OFFER
play1

OFFER

Figure 2.8: Beginning of a possible distributed execution of the model from Figure 2.2.

Example 2.10. Figure 2.8 shows the beginning of a distributed execution of the mul-
tiparty interaction system from Figure 2.2. Execution of interactions is done through a

47



protocol which listens to offers sent by the processes. On this figure, the protocol is rep-
resented as a single separate process. Alternative solutions provides protocol distributed
among several processes or even embedded in each process of the system. Note that we
do not assume a global view of the system since the protocol decides based on received
messages. Furthermore, decision may be based on a partial view of the system, e.g. the
execution of load1 is decided before receiving the offers from Disc1 and Listener.

2.2.2 Committee Coordination Problem and Conflict Resolution

The committee coordination problem, stated by Chandy and Misra in [33], describes the
general problem that such a protocol has to solve. A set of professors need to attend a set
of committees. Each committee requires full attendance to take place. Each professor
cannot attend two meetings simultaneously. At some point, a professor indicates in
which committees he wishes to participate next (i.e. his offer) and waits until one of the
committee happens. The problem is to devise a protocol such that if all members of a
committee are waiting to attend it, then at least one of these members will eventually
take part in a committee.
Similarly to meetings involving a common professor, interactions that involve a com-

mon process are conflicting. Conflicting interactions cannot execute in parallel. This
problem does not arise in the global behavior from Definition 2.5 because each interac-
tion is executed atomically. However, the problem appears in a distributed execution
context where separate entities are responsible for scheduling conflicting interactions.
Consider conflicting interactions load1 and load2 that both involve process Jukebox. If
the two interactions are simultaneously scheduled by two separate entities, then the pro-
cess Jukebox will receive two different EXEC messages, one for executing load1 and one
for executing load2. This clearly breaks the global state semantics where only one of the
interactions can take place.

A conflict graph is a convenient representation of conflicts between multiparty interac-
tions. Interactions are represented as nodes of the graph and edges show the conflicting
processes. Figure 2.9 shows the conflict graph of the model presented in Figure 2.2. For
instance, we see that play1 and load2 are not conflicting, and that play1 and play2 are
conflicting because of the process Listener.

play1 play2

load1

unload1

load2

unload2

Di
sc1

Disc
1

Disc
2

Di
sc2

J
u
k
eb

o
x

D
isc

1

J
u
k
eb

o
x

D
isc

2

Jukebox

Jukebox

Jukebox

Ju
ke
bo
x

Listener

Figure 2.9: Conflict graph for the model in Figure 2.2.

48



2.2.3 Correctness

Many papers, e.g. [5, 6, 55, 61, 73] state the correctness of a distributed multiparty
interaction protocol as the combination of the following properties:

• Exclusion: After scheduling the interaction a, all participant processes cannot
execute another interaction until they publish a new offer.

• Synchronization: If some process starts to execute the interaction a then all pro-
cesses involved in a will eventually execute a.

• Progress: If an interaction a is enabled, one of its participants will eventually
execute an interaction.

In this thesis, we prove the correctness by comparing the distributed execution with the
centralized execution. The following correctness statement relies on the notion of execu-
tion traces. Intuitively, a trace is a sequence of events (interactions, message exchanges,
processes internal actions) that occur during an execution of a specification model
or a distributed implementation. For instance, the trace obtained from Figure 2.4 is
load1, play1, the trace obtained from Figure 2.8 could be is (Jukebox,OFFER,Protocol),
(Disc1,OFFER,Protocol), (Protocol,EXEC, Jukebox), . . .. Note that here we consid-
ered message-passing as an atomic action, we could also have considered a trace made of
emission and reception of messages instead. Furthermore, the distributed setting does
not allow for a canonical trace associated to an execution since for events are not compa-
rable by Lamport’s happened-before relation [62], the ordering is not well defined. Given
a transition system, we denote by Exec the set of all valid execution prefixes, that is,
any sequence of action that can prefix a trace.
Using the notion of trace, the correctness of a distributed implementation is stated as

follows:

• There exists an application from traces of distributed executions to sequences of
centralized interactions.

• The image of a distributed trace is a trace of the centralized execution.

• A distributed trace that that is mapped to a prefix of a centralized trace can be
extended so that the length of its image increases.

Note that both correctness criteria imply deadlock-freedom preservation. A deadlock
is a state where no interaction or message exchange is possible. In the specification,
it corresponds to a state where no interaction is enabled. In a distributed context, it
corresponds to a state where all processes are waiting for some message, and there is
no pending message. A system is deadlock-free if no such state can be reached from
the initial state. With the first correctness criterion, deadlock-freedom preservation is
ensured by the Progress property. For the second correctness criterion, first remark that
a trace leading to a deadlock is finite and thus cannot be the proper prefix of another
trace. Therefore, a distributed execution reaching a deadlock that is not present in the
specification is not correct, as the third point above does not hold.

49



Fairness is another property considered for distributed implementation of multiparty
interactions. The notion of fairness is encountered in non-deterministic systems. Intu-
itively, an execution is fair when any choice resolving non-determinism is fair, in the
sense that there is no privileged nor prejudiced choice. This intuitive definition has
two variants: strong and weak fairness [3]. Weak interaction fairness ensures that “any
continuously enabled interaction is eventually executed”, strong interaction fairness guar-
antees that “any infinitely often enabled interaction is eventually executed”. Fairness can
also be refer to processes or groups of interactions.

2.3 Studied Protocols

In this section, we present different protocols that ensure correct execution of multiparty
interactions in a distributed setting. Notations and terminology have been adapted to
fit our previous definitions.

2.3.1 Bagrodia’s EM and MEM

Bagrodia proposes a set of protocols implementing multiparty interactions in a dis-
tributed context [5, 6]. In these protocols, each process sends its offer to one or several
entities called managers. Managers then select one of the enabled interactions, execute
it, and send a message to involved processes indicating that the interaction executed.

Centralized Manager

The first version of the protocol consists of a single manager, that receives offers from
processes. Whenever it detects enabled interactions, it selects and executes one of them
by sending an EXEC message to all the involved processes.

In order to ensure mutual exclusion of conflicting interactions, the manager maintains
two counters for each process P i:

• The offer-count ni which counts the number of offers sent by the process. This
counter increments each time the manager receives an offer from the process.

• The participation-count Ni which counts the number of interactions the process
participated in. This counter increments each time the manager selects an inter-
action involving P i for execution.

Initially, both counters are set to 0. Upon receiving the first offer from Pi, ni is incre-
mented and we have ni = Ni+1. This means than one offer from ni has been received by
the manager and no corresponding interaction has been executed yet. If for all processes
{Pi}i∈Ia participating in interaction a, the equation ni = Ni+1 holds and offers indicate
that the interaction is enabled, then the interaction a can execute. Upon execution of
the interaction, all counters Ni of involved processes {Pi}i∈Ia are incremented and we
have ni = Ni for all of them. This ensures that involved processes do not participate in
a new interaction before sending an offer.

50



Manager for {load1, unload1, play1, load2, unload2, play2}

P1

OFFER

EXEC

P2

OFFER

EXEC

P3

OFFER

EXEC

P4

OFFER

EXEC

Disc1 Disc2 ListenerJukebox

Figure 2.10: Bagrodia’s solution with Centralized manager.

A global view of the solution applied to the instance from Figure 2.2 is depicted in
Figure 2.10. Each process communicates exclusively with the Manager, by sending offers
and waiting for EXEC messages. The manager performs two types of tasks:

• Receiving an offer: when an incoming offer from a participant Pi is received, the
manager records the offer, i.e. the set of interactions in which Pi can take place,
and increments variable ni.

• Executing an interaction a. This task is possible only when interaction a is enabled
according to up to date participants. Freshness of the offers is obtained by checking
that ni = Ni+1 for each participant Pi in a. The manager sends an EXEC message
to each participant and increments the corresponding Ni variables.

Each one of these tasks executes atomically. When executing an interaction, the values
of ni and Ni variables are not modified by any other task.
Informally, the correctness of this protocol comes from two facts.

• Mutual exclusion of conflicting interactions is ensured by the counters. In par-
ticular, counters ensure that each offer cannot be consumed by more than one
interaction.

• The protocol does not introduce deadlocks, i.e. cases where no action in the system
is possible. Consider a deadlock for the system. We assume that all processes
terminate their inner computation, otherwise the deadlock would also appear in
the global state model. In a deadlock state, all processes have sent an offer, but
no interaction is detected enabled. By replaying in the global state model the
sequence of interactions that have been played by the manager (and assuming that
processes are deterministic), the global behavior reaches a state where the deadlock
is also present. Thus, this protocol does not introduce any deadlock.

This protocol relies on a centralized manager. Next we consider a protocol using
several managers, in order to be able to execute in parallel non-conflicting interactions.

Token Ring: EM Algorithm

The token ring protocol is a decentralized variant of the centralized manager, in the
sense that the latter is replaced by a set of managers {M1, . . . ,Mℓ}. Each manager

51



Mk manages an arbitrary set of interactions Ik. Whenever it is ready to interact, each
process sends its offers to all managers that manage interactions in which it participates.
Each manager Mk maintains an offer-count nk

i for each process P from which it receives
offers. Because of transmission delays, there might be some differences between nk

i

maintained by Mk and nk′

i maintained by Mk′ .
In the previous version, incrementing the participation-count ensures mutual exclusion

of conflicting interactions. Since these counters are stored inside the centralized manager,
any modification is immediately visible. However, with multiple managers one needs to
ensure that the participation-count do not change between the check for executing and
the actual execution, that is, access to the participation-counts must be atomic for the
manager executing the interaction.

The first solution provided by Bagrodia, named “Event Manager” (EM) embeds the
participation-counts in a token. The token moves along a predefined cycle traversing all
managers. When a manager detects an enabled interactions, it waits to receive the token
and get the latest participation-count. If the latest values still allow the interaction, the
token executes the interaction and modifies accordingly the participation-count in the
token. Then it sends the token to the next manager in the cycle.

P1 P2 P4P3
Disc1 Disc2 ListenerJukebox

M3:

{

load1, unload1

load2, unload2

}

M1: {play1}

M2: {play2}
T

Figure 2.11: Bagrodia’s EM with 3 managers: M1 handles play1, M2 handles play2 and
M3 handles all “load/unload” interactions.

Figure 2.11 represents a global view of the EM algorithm applied to the example
from 2.2. In this example, we execute interactions play1 within manager M1, play2
within manager M2 and “load” and “unload” interactions within manager M3. Other
partitioning of interactions into managers are possible. A partitioning is valid as long
as each interaction is executed by at least one manager. In our case, the process P3
(Jukebox) is involved only in the “load” and “unload” interactions, which are all handled
by M3. Therefore it does not communicate with M1 and M2. Other processes are
involved in interactions handled by different managers, therefore they communicate with
several of them. Finally, the token circulates between the three managers according the
path depicted on the Figure.
Each manager shown in Figure 2.11 performs the same tasks (receives offers and exe-

cutes interactions) as the centralized manager. The main difference is that an interaction
executes only when its manager has the token. Upon reception of the token, the local
participation-count variables are updated to the values of the token.

52



Dining Philosophers: MEM Algorithm

Similarly to the EM algorithm, the MEM algorithm involves several managers, each of
them managing a subset of the interactions. MEM ensures atomicity of operations on
participation-count in a different manner than EM. One of the drawbacks of EM is that
a considerable number of token passings is needed, even in the absence of offers from
the processes, to ensure that each manager does not wait “too long” before being able
to schedule an interaction.
In MEM, instead of waiting for the token, each manager negotiates with other man-

agers to get exclusive control of the participation-count of conflicting processes. Let us
consider the example of Figure 2.2, with the same partitioning of interactions into man-
agers as with the token ring protocol. Graphically, a manager corresponds to a group of
nodes on the conflict graph in Figure 2.12. On this Figure, edges between two interactions

play1 play2

load1

unload1

load2

unload2

Di
sc1

Disc1

Disc2

Di
sc2

J
u
k
eb

o
x

D
isc

1

J
u
k
eb

o
x

D
isc

2

Jukebox

Jukebox

Jukebox

Ju
ke
bo
x

Listener

M3

M1 M2

Figure 2.12: The conflict graph of example from Figure 2.2 with the managers depicted
as set of nodes.

handled by the same manager do not require negotiation. Edges between interactions
handled by two different managers implies a negotiation between the managers before
executing one of these interactions. For instance, executing interaction load1 requires
that manager M3 negotiates with manager M1 to get access on the participation-count of
Disc1. Note that it does not require to negotiate for the participation-count of Jukebox,
since only M3 executes interactions involving Jukebox.
The problem of requesting access for each manager is equivalent to the dining philoso-

phers problem where each philosopher has a given number of neighbors (with whom he
shares a fork). At some point, a philosopher becomes hungry and tries to get the forks
its neighbors. A philosopher can eat only if it has all the forks. The problem is to devise
an algorithm for exchanging the forks so that no philosopher starves.
A so-called hygienic solution to this problem is proposed by Chandy and Misra in [32],

and is reused by Bagrodia. Each fork is either clean or dirty. Initially, all forks are clean.
Whenever some philosopher eats, all involved forks become dirty. The fork is cleaned
when it is sent to another philosopher. At each point, one of the philosophers has the fork
which his neighbor may request. Upon reception of a request, the philosopher having

53



the fork sends it only if it is dirty. Otherwise, it notes a request and gives the fork when
he finishes eating.
Intuitively, a clean fork gives precedence to the philosopher owning it and a dirty fork

gives precedence to the other philosopher. This precedence can be seen as an orientation
of the conflict graph, each directed edge pointing towards the interaction/philosopher
that has precedence. To avoid deadlocks, the obtained oriented graph must remain
acyclic. Note that this precedence order is modified only when a philosopher uses the
forks. On the graph, this operation corresponds to modifying the orientation of edges
incident to the philosopher so that he becomes a source, that is a vertex with only
outgoing edges. In particular, this operation cannot introduce cycles in the graph, since
any introduced cycle would go through one of the modified edges and thus through a
source.
A global view of the solution is presented in Figure 2.13. The interactions are grouped

into managers as explained above. Note that the forks between M1, M2 and M3 are de-
duced from the conflict graph depicted in Figure 2.12. In EM, a manager can execute an

P1 P2 P4P3
Disc1 Disc2 ListenerJukebox

M3:

{

load1, unload1

load2, unload2

}

M1: {play1}

M2: {play2}

N1

N2

N4

Figure 2.13: Solution obtained with MEM for the example from Figure 2.2, with the
manager M1 handling a and c, M2 handling b and M3 handling c.

interaction only if it has the token, which contains the participation-counts. In MEM, a
manager executes only if it has all forks shared with its neighbors. Each fork contains
participation-count of the participants causing the conflict between two neighbors. Un-
like in centralized and token ring solutions, there is no single variable Ni holding the
participation-count for a process Pi. The actual value of the participation-count for a
process is the maximum of participation-counts for that process in the forks. For in-
stance, to execute play1, managerM1 has to get the forks corresponding to participation-
counts N1 (Disc1) and N4 (Listener). Indeed, play1 is conflicting with both load1 and
unload1 because of the Disc1 process and it is conflicting with play2 because of the
Listener process.
Upon reception of a fork, the local values of each participation-count are updated if

needed, that is if the values on the received fork are greater. Whenever an interaction
takes place, the participation-counts on the forks are incremented. This coordination
scheme ensures that when a manager get forks from all conflicting interactions, then at

54



least one of them has the latest value of the participation-count.

Counter Overflow Since the solutions proposed by Bagrodia use counters, there is a
potential issue of counter overflow. In [6], Bagrodia proposes to extend the EM algorithm
in order to prevent counter overflow by temporarily stopping execution to ensure that all
counters have been reset. For MEM, he proposes to explicitly include a counter overflow
check and reset mechanism in the original specification of the processes and interactions.
Another solution is to evaluate the lifetime of the system and select the counter size

accordingly. As an example, a 64-bits counter that is incremented every 0.1 ns, that is
at a frequency of 10 Ghz lasts

264

1010
≃ 1.8× 109 s ≃ 58 years.

2.3.2 Kumar’s Token

In [61], Kumar presented another approach for implementing multiparty interaction.
The solution of Kumar does not require additional processes because it uses a protocol
embedded in the original processes.

P1

P2

P3 P4

Disc1

Disc2

ListenerJukebox

load1

unload1
play1

load2

unload2 play2

Figure 2.14: Global view of the solution proposed by Kumar.

The solution requires one token for each interaction. This token tries to progress
from least to greatest process of the interaction, according to a fixed global order on the
processes. On Figure 2.14, we show the path of each token, assuming that processes are
ordered by their indices. Intuitively, a token can progress only if the visited process can
commit to the corresponding interaction.
If the token traverses all processes in the interaction, then the interaction is safely

executed. The last process is responsible for notifying all other involved processes to
start the interaction. For instance, if the token for load1 reaches P3 (Jukebox) and the
latter commits to load1, then P3 sends an EXEC load1 message to P1.
Whenever a token (corresponding to an interaction) reaches a process, the process has

3 choices:

• propagate the token,

55



• hold the token, and wait, or

• hold the token and cancel the interaction.

Propagating the token is possible only if the process can execute the interaction corre-
sponding to the token and has not committed to another interaction yet. Once a token
is propagated, the component has committed to the corresponding interaction and waits
until the latter succeeds of fails.
If the token arrives in a process that is not ready to perform the corresponding inter-

action, the latter is canceled. Canceling an interaction means sending a cancel message
to each process that already propagated the token. After receiving a cancel message, a
process is not committed to the interaction anymore.
If the token arrives in a process that has already committed to another interactions,

it holds the newly received token until the other interaction succeeds or fails. In case
of failure, that is if a cancel message is received, one of the held tokens is propagated.
In case of success, for each token held by the process, the corresponding interaction is
canceled.
Note that even when the interaction is canceled, the token remains in the process it

was visiting. When the process finishes its local computation and reaches a stable state,
it sends backs each token corresponding to an enabled interaction to the first process of
its path.
Intuitively, the correctness of the protocol comes from the following facts:

• Mutual exclusion is ensured by the fact that each process allows only one token to
traverse at a time, then waits until the corresponding interaction succeeds or fails.
In particular, conflicting interactions involve at least one common process and this
process ensures their mutual exclusion.

• Synchronization comes from the fact that the start message is sent by the last
process on the interaction path to all the other involved processes.

• If an interaction is enabled, then either the corresponding token can travel along
the whole path and the interaction executes, or the token is blocked at the first
process shared with a conflicting interaction. The global order ensures that the
first conflicting component is the same for both interactions. Progress is ensured
by the fact that either the conflicting interaction succeeds or a cancel message
allows the token to go further along the path.

2.3.3 Joung’s Randomized Algorithm

In [55], Joung proposes a solution based on a randomized algorithm, that guarantees
strong interaction fairness. He proposes two alternatives, one based on message-passing
primitives, the other one uses shared memory. We focus only on the message-passing
implementation.
Joung’s solution is implemented through a protocol that is embedded in each process.

This solution relies on an “attempt, wait and check” pattern.

56



Whenever a process reaches a stable state, the corresponding part of the protocol
chooses randomly one of the locally enabled interaction. The protocol sends to each
participant in the interaction a token indicating the interaction and the process identifier.
The choice and the emission of the token constitutes the attempt part of the protocol.

Then, the process waits for a time ∆, during which it or another participant in the
interaction may observe the establishment of the chosen interaction. An interaction is
established if one process simultaneously holds one token from each participant, labeled
by the interaction. In that case, the process adds a SUCCESS tag on each of these
tokens.
After waiting ∆ units of time, the process sends messages to retrieve all tokens sent

during the attempt phase. Once it received back all tokens, it checks whether one of
them is tagged with SUCCESS. In that case, it executes the corresponding interaction.
Otherwise, it tries another “attempt, wait and check” cycle.
If processes have bounded computation time, then it is possible to compute a ∆

that ensures progress. Otherwise, the algorithm provided in [55] includes an adaptive
computation of ∆ ensuring strong interaction fairness.

• Mutual exclusion is guaranteed since each process chooses one interaction, and an
interaction can take place only if all processes have chosen it.

• Synchronization is guaranteed since the time elapsed between two processes starts
executing the same interaction is at most ∆.

• Progress is ensured by the value of ∆, that is adaptively computed.

2.3.4 α-Core/Parrow-Sjödin Algorithm

This solution, proposed by Pérez et al. in [73] and by Parrow and Sjödin in [70], relies on
two kinds of processes. There is one manager for each interaction and one participant for
each process of the original model. Communication occurs only between managers and
participants, as shown in Figure 2.15. This solution is used in [81] to provide a distributed
implementation for the Language Of Temporal Ordering Specification (LOTOS) [53].
The main idea of this algorithm is that each manager tries to lock all participants

involved in the corresponding interaction. To avoid deadlocks, locking is done according
to a global order defined on the processes. The idea is similar to Kumar’s Token algo-
rithm (Subsection 2.3.2), except that the locking is done by an external manager instead
of being propagated through a token.
The α-core protocol is detailed in Section 6.4.

2.4 Adding Priorities

With multiparty interactions, the next interaction is chosen non-deterministically. In
some cases, the designer might want to enforce a given scheduling, without encoding it
explicitly in the behavior of the processes. We provide below two motivating examples

57



P1

P2

P3 P4

Disc1

Disc2

ListenerJukebox

Mload1

Munload1

Mplay1

Mload2

Munload2

Mplay2

Figure 2.15: Distributed implementation obtained with α-core from the model in Fig-
ure 2.2.

where control of the scheduling is highly beneficial, and can be expressed with priority
rules.

Avoid Deadlock States. Some systems have deadlock states that are avoided by a
specific scheduling of the interactions. The dining philosopher example presents such
an example. In Figure 2.16, we have 3 philosophers and 3 forks. In order to eat, each
philosopher first grabs the fork to its left through a binary interaction grabL, then the
one to its right (interaction grabR). Once a philosopher has the two forks, it can eat
through a ternary interaction eat . If all philosophers grab the fork on their left, then
the system reaches a deadlock since no one of the philosophers can grab the fork on its
right.
Such a deadlock can be avoided by applying the following rule: “If at some global

state two philosophers can grab the same fork, then only the philosopher on the left can
grab it.” For instance, if Philo1 is at state 0 and Philo2 is at state 1, then both can
grab Fork2. To avoid reaching the deadlock state only Philo2 should take it. In other
words, we give higher priority to interaction grabR2 than to interaction grabL1. Thus,
the above rule can be stated through the three following priority rules: grabL1 < grabR2,
grabL2 < grabR3 and grabL3 < grabR1. A method to automatically produce this kind of
priorities is proposed in [34].

Enforce Progress. Some interactions are more rewarding than the others in terms of
progress. Consider again the Jukebox example shown in Figure 2.2. In this model,
interactions that make progress are the “play” interactions. In particular, we need to
exclude executions where the jukebox always loads and unloads discs without playing
any. These executions are avoided by enabling the “unload” interactions only if “play”
interactions are not enabled. Formally, it is expressed by unload1 < play1 and unload2 <
play2. Encoding this scheduling into the processes would require to know in advance the
sequence of discs asked by the Listener.

58



0

1
grabL

1

2

grabR1

ea
t 1

F

U

grabL1,
grabR2

eat1,
eat2

F

U

grabL3,
grabR1

eat3,
eat1

Fork2

Philo2 Philo3

Philo1

Fork1 Fork3

grabL1 grabR1

eat1

grabL2 grabR3

grabR2 grabL3

eat2 eat3

Figure 2.16: A model of the dining philosophers problem.

2.4.1 Extending Multiparty Interactions with Priorities

We now give a formal definition for the aforementioned priority rule.

Definition 2.11 (Priority). Given a system of processes P1, . . . ,Pn, where Pi = (Qi, Ai,
→i), a priority is a partial order <⊂ I×I on the interactions of the system I =

⋃n
i=1Ai.

The semantic of a system of processes communicating through prioritized multiparty
interactions is based on the semantic of the system without priorities.

Definition 2.12 (Global behavior of processes communicating through prioritized mul-
tiparty interactions). The behavior of a system of processes (P1, . . . ,Pn) equipped with
a Priority < is a LTS (Q, I,−→<), where (Q, I,−→) is the unprioritized behavior and −→<

is the least set of transitions satisfying the rule:

a ∈ I q
a
−→ q′ ∀b a < b, q

b

6−→

q
a
−→< q′

Note that rule only excludes transitions for which a higher priority interaction is
possible. In particular, it does not introduce deadlocks since an interaction is forbidden
only if at least one other interaction (with higher priority) is possible.
To our knowledge, there are no protocols implementing prioritized multiparty inter-

actions in a distributed context. This is mainly because in the literature multiparty

59



interactions are specified in a distributed context and not as the distributed implemen-
tation of a global state model. Indeed, in a distributed context it is unintuitive to express
the fact that an interaction is not possible, and what should be a correct execution of a
prioritized system. On the other hand, our approach allows us to state the correctness
of the distributed implementation by comparing it to the global state model.
Note that [49] provides a solution for building a distributed implementation of BIP

with priorities. However, the proposed solution does not directly handle models with
confusion, that is, where conflicts due to interactions and conflicts due to priorities are
mixed.

2.5 Other Extensions and other Distributed Models

In this section, we present related works regarding multiparty interaction and models
for generating distributed implementation in general. The first subsection discusses a
more dynamic version of multiparty interaction, that we do not consider. Finally, Sub-
section 2.5.2 presents some other frameworks that either rely on multiparty interactions
or allow distributed code generation.

2.5.1 Multiparty Interactions Extension

In this chapter, we define multiparty interactions, and present in Section 2.3 some pro-
tocols implementing them. Our definition assumes that each interaction has a statically
fixed set of components. Other definitions allow a more open behavior, to encompass
dynamic creation and deletion of processes. An extension of BIP [29] allows specifying
such constructs.
In [57], an interaction is specified as a set of roles. The interaction can take place

whenever each role is fulfilled by a distinct process. In that context, a single interaction,
that is a set of roles, defines several combinations of actual processes. Detecting the sets
of processes that can interact from a given state is therefore more difficult than in the
static case, where each interaction involves a fixed set of processes. The paper proposes
an algorithm where each process can coordinate the execution of an interaction. Another
solution, proposed in [72], separates detection of enabled interactions from selection of
the next interaction to execute. The focus is on the detection of enabled interactions.
The solution supports any selection algorithm provided it meets some criteria, allowing,
for instance, the use of a selection algorithm focused on fairness.

2.5.2 Other Frameworks

German’s Framework

In [46], German presents a framework providing multiparty interactions with priorities
as primitives. The processes are described using a notation similar to the Calculus of
Communicating Systems (CCS). Interactions are specified as composite action labels
made of conjunctions and negations of actions. For instance, the interaction unload1 of

60



the example from Figure 4.6 could be encoded as the action label un1∧d1u∧¬(rec1∧pl1),
assuming that BIP ports are mapped to simple actions. Encoding an interaction requires
an additional process, that contains a single rule with the corresponding action label.
The idea is to provide a language suitable for specifying distributed systems, with a

high-level description that can be executed for rapid prototyping. This framework was
used to model and verify a telephone switching application. To our knowledge, there is
no distributed implementation for this framework, although it was apparently one of the
goals in [46].

Reo

Reo [4] is a framework where components communicates using a basic set of dataflow
connectors that are combined to form a complex connector. At each round, each compo-
nent enables a set of input and output ports. In Reo, components are black boxes, only
their interface is known at each state. A Reo connector defines a set of allowed dataflow
interactions for each configuration of the enabled ports. A round consists of executing
such an interaction, which transfers data. Furthermore, Reo basic connectors include
FIFO1 connectors that can store one data item, allowing the composed connector to save
some data between two rounds. The FIFO connectors introduce a control state in the
composed connector, which differs from BIP where interactions have no memory.

The Dreams framework [74, 75] provides a distributed implementation for Reo. Each
basic connector is implemented as an actor. A round synchronizes the actors through
a consensus algorithm, in order to choose the next interaction. In order to achieve
a more decentralized behavior, a Globally Asynchronous Locally Synchronous (GALS)
architecture is obtained by cutting the complex connector into synchronous regions. Two
regions can be separated only if their only connections consist of FIFO connectors.

I/O Automata

I/O automata [63] were introduced to formally model distributed systems. In this frame-
work, each process is represented by an automaton whose transitions are labeled by
actions, similarly to processes from this chapter. As for systems of processes, each in-
teraction is represented through a common label that is used in several processes to
denote synchronization. However, I/O automata clearly distinguish between input (un-
controllable) actions and output (controllable) actions. Given an interaction label, there
is exactly one process for which this label is an output action, in other processes it can
appear only as an input action. Furthermore, from every state of an automaton, all
its input actions are required to be enabled. With these restrictions, an interaction is
completely controlled by the process for which it is an output action.
I/O automata interactions are similar to Send/Receive interaction as they are com-

pletely controlled by the sender and the receiver should not block the sender. In partic-
ular, the fact that an interaction is enabled or not is local to the process that controls
the corresponding output action. In that sense, there is no conflict between interactions.
However, if two interactions a and b are scheduled simultaneously by two separate pro-

61



cesses, the order should be consistent among all common participants in a and b. The
solution proposed in the first sketch of a distributed implementation [44] is to require that
each automaton reaches the same state for both orderings. In a later solution [45, 82],
this problem is solved by adding a handshake protocol.

Synchronizers

In [42, 39], Synchronizers are used to filter incoming messages for a set of actors. A
message is delivered if no synchronizer prevents it through a disable construct and the
message matches an enabled pattern. Such patterns include atomic synchronization of
a set of messages, that requires all involved messages to be pending before granting
their transmission. According to [39], synchronizers are implemented through dispatch-
ers located on the target actors, that is the actors for which incoming messages are
filtered. Upon reception of an incoming message, the dispatcher is responsible for check-
ing whether the message is allowed for transmission according to the synchronizers. In
case of atomic synchronization, this requires a protocol similar to the one for multiparty
interactions. The actors communicate through asynchronous message-passing, which
makes it difficult to exploit the synchronization of messages for verification purposes.
This framework is mainly concerned with providing practical constructs for program-
ming with actors.

Behavioral Programming

Another model of programming interactions between processes is described in [65]. In
that model, at each global state, each process provides three sets of actions: requested
actions, watched actions and blocked actions. A (centralized) scheduler selects an action
that is requested by at least a process and not blocked by any process. The selected
action is executed by all processes that requested it and all processes that watched it.
The system reaches the next global state by executing the selected action.
This model differs from multiparty interactions as the set of participants in the com-

mon action is not fixed, but depends on the state. Decentralizing the scheduler while
preserving centralized semantics requires to solve problems similar to Interaction and
Condition conflicts resolution. In particular, scheduling an action based on a partial set
of offers requires to ensure that this action will not be blocked by a subsequent offer.

Guesstimate

A framework for programming collaborative distributed model is proposed in [76]. This
framework allows several processes to work on a common set of objects. Each process
works with a local copy of the common objects and execute locally a series of actions
on them. A periodic synchronization gathers the sequences of actions performed by all
processes and interleaves them within a global sequence. Each process then replays these
actions from the last synchronization point. In case of conflicts between two actions,
that is, if executing one disables the other one, the last one in the global sequence is
simply discarded.

62



Such frameworks are suitable for systems where processes are always computing, and
may alter their states when taking the global execution sequence into account. Only the
synchronized part of the history correspond to a correct execution of the system. The
local actions executed in each process cannot, in general, be combined to obtain a valid
execution of the system.

63



3 Knowledge

In this thesis, knowledge refers to the knowledge of an agent, that is a part of a global
system, about the global system. Since the agent has only a limited view of the global
system, it cannot directly assess the truthfulness of properties about the global system.
However, assuming an agent can reason, it might infer more facts than those it observed.
Knowledge allows reasoning about what each agent knows about the global system. In
order to illustrate this kind of reasoning, let us consider the muddy children puzzle, which
is also known as the “cheating husband” or “unfaithful wives” puzzle. The following text
is quoted from [7].

Imagine n children playing together. The mother of these children has told
them that if they get dirty there will be severe consequences. So, of course,
each child wants to keep clean, but each would love to see the others get dirty.
Now it happens during their play that some of the children, say k of them,
get mud on their foreheads. Each can see the mud on others but not on his
own forehead. So, of course, no one says a thing. Along comes the father,
who says, “At least one of you has mud on your head,” thus expressing a
fact known to each of them before he spoke (if k > 1). The father then asks
the following question, over and over: “Can any of you prove you have mud
on your head?” Assuming that all the children are perceptive, intelligent,
truthful, and that they answer simultaneously, what will happen?

Here, the agents are the children. They can observe the forehead of other children,
as well as the questions asked by the father and their answers. At the beginning, the
knowledge of each child is the number q of other children that have mud on their forehead.
A child seeing q other muddy children knows that either k = q or k = q + 1, depending
whether it is itself muddy or not. After the father’s first announcement, it is common
knowledge that there is at least one muddy child. Furthermore, the announce being
public, each child knows that each child knows that there is at least one muddy child.
The progress of the situation is the following: the first k − 1 questions of the father

will be answered “no” by all the children and the kth question will be answered “yes”
only by the muddy children. This property can be proved by induction on the number
k of muddy children.

• If k = 1, the only muddy child sees no other muddy children, so it can deduce that
it is muddy and answer “yes” to the first question.

• If k = 2, each muddy children sees that there another one child who is muddy.
Thus, it cannot rule out the possibility that there is only one muddy child. Conse-
quently, it will answer “no” to the first question of the father. Since every child is

64



intelligent, it can do the same reasoning about the case where k = 1. This case is
ruled out as the other muddy child also answered “no”, to the first question of the
father. Thus, both of the muddy children will answer “yes” to the second question
of the father.

• If there are k + 1 muddy children, they cannot rule out the possibility that there
is only k muddy children. This possibility is actually ruled out when the other
muddy children answer “no” to the kth question of the father, since they would
have answered “yes” according to the induction hypothesis. Therefore, the k + 1
muddy children will answer “yes” to the next question of the father.

This puzzle and its variants have been studied and formalized in [50, 51]. In [50], a
similar problem is modeled as a knowledge-based protocol for a distributed system. The
framework provided by the concept of knowledge can be applied to distributed systems,
by considering each process as an agent. Each process sees a part of the system and
may infer a part that it does not see. In [51] Halpern and Moses define different levels
of knowledge among a group of processes.
The weakest level, distributed knowledge, is obtained by combining the knowledge of

all processes in the group. With this kind of knowledge, a fact can be known by the
group even if no process knows it. For instance, at the beginning of the muddy children
problem, distributed knowledge allows knowing which children are muddy, although
each children does not know whether it is muddy. Actually, the distributed knowledge
obtained by combining the knowledge of any two children is sufficient to know the global
state. Indeed, by taking the knowledge of one child, the only missing information is
whether this child is muddy, which is completed by adding the knowledge of a second
child. In practice, building this kind of knowledge implies a synchronization for processes
to share their observations.
Higher levels include facts that are known by at least one member of the group, facts

that are known by all members of the group and then facts that are known to be known
by all members of the group. The highest level of knowledge among a group of processes
is called common knowledge. It correspond to facts that are publicly announced, such
as “At least one of you has mud on your head.” in the muddy children puzzle.
Knowledge assumes that a set of universes is defined. In the case of the muddy

children puzzle, a universe is defined by specifying which children have mud on their
head. The global system is always in one single coherent universe. Each agent knows
the set of possible universes and the observed facts in the current one. In other words,
for each agent, the knowledge corresponds to the set of universes that are consistent with
its observations. In particular, this introduces, for each agent, an equivalence relation
between universes, that is called undistinguishability relation. Two universes are said to
be undistinguishable for an agent if its observations are coherent for both universes.
An important parameter to define the knowledge for a given process is to define which

observed facts determine the knowledge. For instance one can consider only the local
state of the agent. A stronger knowledge is obtained by assuming that each agent
remembers the history of all interactions it has participated in. This is called knowledge

65



with perfect recall [84]. Note that for the muddy children, one has to remember how
many times the father asked the question, that is, to remember history.
In this chapter, we present two concrete constructions of knowledge. Firstly, we focus

on distributed knowledge obtained by considering only the current state of a group of
processes. Secondly, we present how to build history with perfect recall for one process.
Finally, we discuss how knowledge has been used to actually implement distributed
systems.

3.1 Distributed Knowledge based on Local State

We assume a system of processes P1, . . . ,Pn as described in Section 2.1. In that case,
the set of possible universes is the set of reachable global states. Consider the global
behavior (Q, I,−→) of the system. We say that a global state q is reachable if there exists

a sequence of interactions a1, . . . , an such that q0
a1−→ q1 −→ · · ·

an−→ q, where q0 is the
initial state. We denote by R the set of reachable states of the system. For our Jukebox
example depicted in Figure 2.2, the reachable states are the states of the global behavior
depicted in Figure 2.3.
In this section, we focus on knowledge deduced by observing the local state of a subset

of processes L. This corresponds to the distributed knowledge of [51]. Given a subset
L = {Pi1 , . . . ,Pik} of processes, we define the projection q|L of a global state q on L
as the local states of processes in L when the system is at global state q. Formally, we
have:

. |L :
Q1 × . . .×Qn −→ Qi1 × . . .×Qik

(q1, . . . , qn) 7→ (qi1 , . . . , qik)

Two global states that have the same projected state on L are said to be undistinguish-
able. A global state is fully determined by its projection on L and its projection on the
complementary of L, that is L \ {P1, . . . ,Pn}.

Definition 3.1 (Undistinguishability relation). Two global states q and q′ of the system
are said to be undistinguishable by a set of processes L, denoted q ∼L q′, iff q|L = q′|L.

Given a set of processes L, the undistinguishability relation for L is an equivalence
relation on the global states of the system. A class of this equivalence relation corre-
sponds to the set of global states that extend a given local state of L. By combining the
undistinguishability relation ∼L and the reachable states, we obtain the set of reachable
states that are undistinguishable for a given local state of L. This corresponds to the
distributed knowledge of the processes in L at that local state.

Example 3.2. Consider again the example from Figure 2.2. As said above, the reachable
states are the states of the LTS in Figure 2.3. In Figure 3.1, we assume that only the
Jukebox process is observed, that is L = {Jukebox}. Each square corresponds to a
possible global state, characterized by two coordinates: a local state (the global state
projected on L) and a possible complement of the local state. If the local state is 0, the
corresponding global state is in the column corresponding to 0. In that case, considering

66



0 1 2

L1, L2, A

L1, L2, B

L1, L2, C

L1, F2, A

L1, F2, B

L1, F2, C

F1, L2, A

F1, L2, B

F1, L2, C

F1, F2, A

F1, F2, B

F1, F2, C

Local States

Possible
complements
of local states

Unreachable state

Reachable state

Figure 3.1: Global states of the example from Figure 2.2, decomposed by observing the
Jukebox process.

only the reachable states (white squares) 3 candidate global states remain. In each
one of them, the state of the discs is F1, F2, which is actually known by observing
only the jukebox and not the discs. In Figure 3.2, we assume that the Jukebox and
Reader processes are observed. In that case, for each local state, there is only one
indistinguishable reachable state. That is, observing only these two processes is sufficient
to know the complete global state.

0, A 0, B 0, C 1, A 1, B 1, C 2, A 2, B 2, C

F1, F2

F1, L2

L1, F2

L1, L2

Local States

Possible
complements
of local states

Unreachable state

Reachable state

Figure 3.2: Global states of the example from Figure 2.2, decomposed by observing Juke-
box and Reader processes.

The facts that we can express about the system are encoded using the local states
of the processes. If Pi = (Qi, Ai,−→i), we define for each local state ℓ ∈

⋃n
i=1Qi of a

process a predicate at ℓ which is true whenever ℓ is active. This predicate is defined over

67



the set of global states, that is Q = Q1 × . . . × Qn. In this thesis, we denote by B the
boolean domain, i.e. {True, False}.

at ℓ :
Q −→ B

(q1, . . . , qn) 7→ ∃i qi = ℓ

Since we assume that local states are pairwise disjoint, there is at most one i such that
ℓ ∈ Qi. In the sequel, we denote by φ a formula obtained using ¬,∧,∨ and atℓ predicates,
i.e. φ : Q→ B.

Intuitively, a set of processes L knows a formula φ if φ holds in all reachable states
indistinguishable from the current local state of L. In other words, a set of processes
knows a formula when the current local state ensures that no reachable state falsifies the
formula. Note that an over approximation R̃ of the reachable states R is sufficient to
define knowledge. Indeed, ensuring that no state in R̃ indistinguishable from the local
state falsifies the formula φ also ensures that no reachable state indistinguishable from
the local state falsifies φ. We represent this by a new predicate, that is defined over the
global states.

Definition 3.3 (Knowledge predicate). Given a system of processes P1, . . . ,Pn, such
that Q is the set of its global state, R̃ ⊇ R is an over approximation of the reachable
states, and a subset L ⊆ {P1, . . . ,Pn}, we define the knowledge predicate KR̃

L φ as
follows:

KR̃
L φ :

R̃ −→ B

q 7→ ∀q′ ∈ R̃ q′ ∼L q =⇒ φ(q′)

By definition, if q is a reachable global state, we have KR̃
L φ(q) =⇒ φ(q). In other

words, the distributed knowledge is truthful. Another consequence of this definition is
that KR̃

L φ depends only on the state of L. Indeed, the set [q] = {q′ ∈ R̃ | q′ ∼L q}
depends only on the local states (qi1 , . . . , qik) of the processes in L at global state q, and

KR̃
L φ holds if φ holds in all states in [q].
On our example, for the case where only the Jukebox process is observed (L =

{Jukebox}), the predicate KR
L atF1 holds at global state q = (F1, F2, 0, A). Indeed, atF1

holds in all reachable states that are undistinguishable from q by L, namely (F1, F2, 0, B)
and (F1, F2, 0, C). In that case, observing that Jukebox is at state 0 is sufficient to ensure
that atF1 holds.

The predicate KR̃
L φ tells whether observing the set L of processes is sufficient or not

to ensure truthfulness of φ at a given global state. Whenever this predicate is false,
there is no guarantee that φ is also false. For instance, consider the case where only the
Jukebox process is observed. If the Jukebox process is at state 0, the predicate KR

L atA
is false, because the state of the Reader process can be different than A. In other words,
KR̃

L φ gives a lower bound of φ. We can obtain an upper bound by considering the

complementary of KR̃
L ¬φ, that is the states where the local observation does not ensure

that φ is false. This is stated in Proposition 3.4.

Proposition 3.4. ∀q ∈ R̃ KR̃
L φ(q) =⇒ φ(q) =⇒ ¬KR̃

L ¬φ(q).

68



Proof. According to the definition 3.3, KR̃
L φ =⇒ φ holds for all states in R̃. The second

implication is the contraposition of KR̃
L ¬φ =⇒ ¬φ, that holds for all states in R̃.

Finally, when observing more processes, the knowledge predicate is more precise. For
instance, between the situation in Figure 3.1 and the situation in Figure 3.2, the Reader
process is also observed, completing information about the global state. Note that this
was a “clever” choice, as adding Disc1 or Disc2 would not have given any additional
information.

Proposition 3.5 (Monotonicity). The predicate KR̃
L φ is monotonic with respect to L,

i.e. L ⊆ L′ implies KR̃
L φ =⇒ KR̃

L′φ.

Proof. First, remark that if L ⊆ L′, then {q′ ∈ R̃ | q′ ∼L′ q} ⊆ {q′ ∈ R̃ | q′ ∼L q},

since states undistinguishable for L might differ on L′ \ L. Then, KR̃
L φ(q) means that

∀q′ ∈ R̃ q′ ∼L q =⇒ φ(q′) and by the above remark ∀q′ ∈ R̃ q′ ∼L′ q =⇒ φ(q′), that

is, KR̃
L′φ(q).

Notice that observing the whole system, i.e. taking L = {P1, . . . ,Pn}, fully charac-
terizes any predicate φ. In that case indeed the relation ∼L becomes the equality on Q.
Therefore, for every global state q, KR̃

L φ(q) is equal to φ(q).

3.1.1 Representation and Computation

In practice, the set R of reachable states or its over approximation R̃ is represented
through a predicate I defined of the global states. More precisely, if q = (q1, . . . , qn),
I(q) evaluates to true only if q ∈ R̃.
Given a subset L = {Pi1 , . . . ,Pik} of processes whose state is known, I characterizes

the possible states of the remaining processes L = {Pj1 , . . . ,Pjn−k
}. Assuming that

processes in L are at state (qi1 , . . . , qik), the possible states for remaining processes
L is {(qj1 , . . . , qjn−k

) | I(q1, . . . , qn)}. The global states obtained by combining the
known states of L and a possible state of its complementary L constitute the states
indistinguishable from L still validating I.
Given a predicate φ, the knowledge predicate KR̃

L φ is encoded as

(qi1 , . . . , qik) 7→ ∀qj1 . . . qjn−k
I(q1, . . . , qn) =⇒ φ(q1, . . . , qn).

The input range can be extended to the whole set of global states Q by simply ignoring
the states of processes in L. This formula gives valid results only if the input (qi1 , . . . , qik)
is the projection of a state in R̃ on L.

Computing Invariants

We detail below two kinds of invariants that yield suitable I predicates. The approxi-
mation provided by these invariants is obtained with a much lower computational com-
plexity than the exact set of reachable states. To describe how interaction invariants are
computed, we use Petri net formalism, relying on the equivalence described in Subsec-
tion 2.1.1.

69



Boolean Invariants correspond to traps or siphons in Petri nets [69, 36]. A trap is a
set of places F such that F • ⊆ •F , where F • (resp. •F )is the set of transitions that
have an input place (resp. an output place) in F . Any transition that might remove
tokens from F, that is a transition in F •, is also a transition in •F , that is a transition
that adds at least one token in F . Therefore, any trap initially containing a token will
contain at least one token in each state and provides an invariant. In the Petri net
depicted in Figure 2.5, the set {p1, p2, p3} is a trap. Indeed, if p1 initially contains a
token, any marking reached during further execution contains at least one token in the
places {p1, p2, p3}. The invariant corresponding to this trap is atp1 ∨ atp2 ∨ atp3 .
Boolean Behavioral Constraints (BBC) [15] encode the condition F • ⊆ •F . These

constraints involve boolean variables inF ℓ, where ℓ is a place. Any boolean assignment
that satisfies the BBC provides a trap, by taking the places ℓ for which inF ℓ is true.
The BBC state that if a place ℓ is in the trap, then for each global transition τ that
takes a token from ℓ, there is at least one output control location of τ that is also in F .
Using Petri net notations, the BBC obtained with ℓ is

inF ℓ =⇒
∧

τ∈ℓ•

∨

ℓ′∈τ•

inF ℓ′

For the example of Figure 2.5, the BBC would be

inF p1 =⇒ inF p2 ∨ inF p4

inF p2 =⇒ inF p3

inF p3 =⇒ true
inF p4 =⇒ inF p5

inF p5 =⇒ true

Note that {p1, p2, p3} actually corresponds to a solution of this system. The Boolean
invariant I obtained is equivalent to the conjunction of all solutions of the BBC that
correspond to initially non-empty traps. Efficient methods to compute incrementally
this invariant are provided in [15].

Linear Invariants are also originated from Petri net theory. A linear constraint is
denoted as a linear combination of atℓ predicates that is equal to a constant. For instance,
a linear constraint of the Petri net from Figure 2.5 is 2atp1 +atp2 +atp3 +atp4 +atp5 = 2.
Here, to evaluate whether the constraint is satisfied at a given state, we assume that atℓ
takes the value 1 if ℓ is active and 0 otherwise. A linear invariant is a conjunction of
linear constraints.

Methods for computing linear invariants are described in [60]. These methods are
based on linear algebra, and more precisely on the Place-Transition matrix. The latter
is a matrix M where each line corresponds to a transition and each column corresponds
to a place. The element Mij at line i and column j contains the effect of the transition i
on place j. For 1-Safe Petri nets, transition i either adds a token in place j (Mij = +1),
removes a token from j (Mij = −1), removes then adds a token (Mij = 0), or does not

70



involve place j (Mij = 0). We provide below the Place-Transition matrix for the Petri
net in Figure 2.5.

p1 p2 p3 p4 p5
t1
t2
t3





−1 1 0 1 0
0 −1 1 0 0
0 0 0 −1 1





The Place-Transition matrix can be used to compute the state reached after executing
a sequence σ of interactions. To perform this computation, Petri nets markings are
represented as column vectors, whose ith element indicates the number of tokens in the
place i. For 1-Safe Petri nets, this number is either 0 or 1. For instance, the marking
for the Petri net of the left of Figure 2.5 would be:

m =













0
1
0
1
0













p1
p2
p3
p4
p5

Similarly, we introduce a firing vector whose ith element indicates how many times
transition i is executed during the sequence. The order is not specified and it is not
checked that the sequence is a valid one. The firing vector for the sequence σ = t1t2 is

V (σ) =





1
1
0





t1
t2
t3

Using these notations, computing the marking m reached after executing the sequence
σ from initial marking m0 is a simple matrix computation:

m = m0 +MTV (σ)

A linear constraint is obtained from a vector I that cancels M , that is such that
MI = 0. By multiplying the previous equation by IT , we obtain:

ITm = ITm0 + (MI)TV (σ) = ITm0

The valueK of the scalar product ITm does not depend on σ, thus holds for any marking
reachable from m0. At global state q, the marking is m = [at ℓ1(q) . . . atℓn(q)]

T . By
denoting ki the ith element of I, the previous equation is rewritten

n
∑

i=1

kiatℓi(q) = K

The above equation holds for each reachable state q and thus is an invariant.
It is sufficient to find a basis (I1, . . . , Ik) of the kernel of M to be able to generate all

such constraints. Given such a basis, the obtained predicate I is
∧k

i=1 I
T
i m = ITi m0.

71



3.2 Knowledge with Perfect Recall

In this Section, we focus on the knowledge for only one process Pi. However, instead of
only considering its own state to compute the knowledge, we assume that the process
remembers the history of all interactions in which it participated. This kind of knowledge
has been studied in [84].
The process Pi = (Qi, Ai,→i) observes and remembers only the interactions in which

it is involved, that is the interactions in Ai. We denote by σ a prefix of a global execution
trace. We denote by Exec the set of all prefixes of traces of valid executions. Such a prefix
is a word of I∗. We denote by σj the jth interaction of the word and by ǫ the empty
string. Furthermore, if σ is a valid global execution prefix, then there is a sequence of
transitions from the initial state q0

σ1−→ · · ·
σk−→ q, reaching a state q. We denote by q0.σ

the state reached after executing σ from the initial state q0. We define the projection of
a global execution prefix on Ai as follows:

. |Pi
:

I∗ −→ A∗
i

σ1σ2 . . . σk 7→ σ′
1σ

′
2 . . . σ

′
k where σ′

j =

{

σj if σj ∈ Ai

ǫ otherwise

As for the global states, we say that two global execution prefixes are undistinguishable
by Pi if they have the same projection on Ai.

Definition 3.6 (Undistinguishability relation (for traces)). Two global execution pre-
fixes σ and σ′ of the system are said to be undistinguishable by the process Pi, denoted
σ ∼i σ

′, iff σ|Pi
= σ′|Pi

.

The undistinguishability relation is an equivalence relation. The equivalence classes
of this relation correspond to set of execution prefixes that cannot be distinguished by
Pi.

Example 3.7. For our example, the two execution prefixes load1, play1, unload1 and
load1, unload1 are undistinguishable by the Jukebox process, since it is not involved in
the interaction play1.

As for the previous case, we define a knowledge predicate in the case of perfect recall.

Definition 3.8 (Knowledge with perfect recall). Given a process Pi, a state predicate
φ, we define the knowledge with perfect recall KPR

Pi
φ as follows:

KPR
Pi

φ :
Exec −→ B
σ 7→ ∀σ′ ∈ Exec σ′ ∼Pi

σ =⇒ φ(q0.σ
′)

The main difference with the knowledge based on local state is that this new knowl-
edge predicate depends on the execution sequence leading to the current state. As for
the knowledge based on local state, the knowledge with perfect recall is truthful, i.e.
if KPR

Pi
φ(σ) holds, then by definition φ(q0.σ) also holds. The Proposition 3.4 can be

adapted for the knowledge with perfect recall.

72



Proposition 3.9. ∀σ ∈ Exec KPR
Pi

φ(σ) =⇒ φ(q0.σ) =⇒ ¬KPR
Pi
¬φ(σ).

Proof. According to the definition 3.8, KPR
Pi

φ(σ) =⇒ φ(q0.σ) holds for all execution pre-

fixes in Exec. The second implication is the contraposition of KPR
Pi
¬φ(σ) =⇒ ¬φ(q0.σ),

that holds for all execution prefixes in Exec.
Since we assume here that only one process is observed, we cannot observe more pro-

cesses to precise the above approximation. However, the knowledge with perfect recall of
the process Pi after executing a sequence σ is more precise than the knowledge obtained
by observing the same process at the state q0.σ, as shown in the next proposition.

Proposition 3.10. Given a process Pi, a global execution prefix σ ∈ Exec, and a state
predicate φ, we have KR

{Pi}
φ (q0.σ) =⇒ KPR

Pi
φ (σ).

Proof. Consider the set G = {q ∈ Q | ∃σ′ ∼Pi
σ q0.σ

′ = q} of global states that are
reached after executing any sequence undistinguishable from σ by Pi. By definition, all
states in G are reachable, i.e. G ⊂ R. Furthermore, in all states of G, the process Pi
has the same state since it played the same sequence σ|Pi

from the initial state (recall
that processes are deterministic). Therefore we have G ⊂ {q ∈ R | q ∼{Pi} q0.σ}. If

KR
{Pi}

φ (q0.σ) holds, then φ holds in all states of {q ∈ R | q ∼{Pi} q0.σ} and by the

previous inclusion φ also holds for all states in G. Thus we have KPR
Pi

φ (σ).

3.2.1 Representation and Computation

In order to compute the knowledge with perfect recall of the process Pi, we build its sup-
port automaton Ki as in [8, 16]. The support automaton Ki will follow the execution of
observable interactions for Pi, that is, all interactions in Ai. The remaining interactions
in Ui = I \ Ai are not observable by Ki. Informally, the state reached in Ki after any
sequence σ ∈ I∗ summarizes all the global states that can be reached after any sequence
σ′ ∈ I∗ such that σ and σ′ are undistinguishable by Pi. Formally, Ki is defined as the
LTS (Si, Ai,−→

PR
i ) where:

• The set of states Si = 2Q correspond to subsets of the global states Q.

• Given a state s and an interaction a, the transition relation −→PR
i contains one

transition s
a
−→

PR

i s′, where s′ = {q′ ∈ Q | ∃q ∈ s, ∃σ σ ∼Pi
a ∧ q.σ = q′}.

Informally, for any state s, its successor s′ through interaction a contains the set of
global states q′ that are reached from global states q in s by executing any sequence
of unobservable interactions and exactly one a.

• The initial state is s0i = {q ∈ Q | ∃σ ∈ (Ui)
∗, q0.σ = q}. Informally, s0i contains

all global states reachable by executing any sequence of unobservable interactions
starting from the initial global state q0.

73



{F1} ×

{

F2, 0
L2, 2

}

× {A}{L1, F2, 1, A}

load1

unload1

{L1, F2, 1, B}

play1

{F1} ×

{

F2, 0
L2, 2

}

×







A
B
C







unload1

{L1, F2, 1} ×







A
B
C







play1

load1 unload1

Figure 3.3: Support automata for the process Disc1.

Example 3.11. The support automaton for the process Disc1 is presented in Figure 3.3.
In the initial state of the system, the interaction load2 can take place. Since this in-
teraction is not visible to Disc1, it cannot distinguish between the two global states
F1, F2, 0, A and F1, L2, 2, A. Therefore the initial state of the support automaton is the
set formed by these two global states. The process Disc1 knows that until the first play1
interaction happens, the state of the Listener process has to be A. After this first oc-
currence, the process Disc1 loses track of the other processes state, except immediately
after an occurrence of play1, where it knows the global state of the system. This is an
example where the knowledge with perfect recall gives more information than the state-
based knowledge, which cannot distinguish after and before executing the interaction
play1. In particular, the process Disc1 knows that an execution sequence containing two
successive occurrences of play1 cannot happen.

3.3 Related Works about Knowledge

The formalization of different kinds of knowledge and the obtained logic have been
intensively studied [40, 50, 51].
A kind of sets for which only an upper and a lower bound are known are called

rough sets [71]. In rough sets theory, objects are defined through a set of attributes.
Intuitively, an attribute can be the shape, the color, the weight . . . of the object. Each
object is fully identified by the definition of its attributes. Given a subset of the objects,
deciding whether a given object is part of that subset is always achieved by observing
all attributes. Restricting the set of attributes that are observed creates a rough set,
that approximates the subset. In that case indeed, there could be some objects whose
membership in the subset depends on an unobservable attribute. One of the question
in this theory is to find a minimal set of attributes whose observation is sufficient to

74



distinguish any two objects [85].
In [77], Knowledge is applied to decentralized control of a plant. A plant is an automa-

ton whose interaction are labeled by actions, some of them being forbidden. Multiple
decentralized controllers are in charge of controlling the plant, through allowing or not
a given subset of the action. Each controller is defined by the set of actions it can ob-
serve and the set of actions it can control (i.e. execute). Knowledge is applied to allow
each controller to infer which actions are legal from the current state and thus can be
executed. An extension to distributed knowledge is proposed, whenever the information
available to only one controller is not enough to decide. A criterion, called “Kripke ob-
servability” decides whether the extension to distributed knowledge is enough to control
the plant.
In [12, 19, 8], the focus is on distributed controllers for executing Petri nets con-

strained by a given property. An example of such a constraining property is a priority
order. Processes are defined as sets of Petri nets transitions. A transition can be com-
mon to several processes, which describes a synchronization. Each process can observe
its neighborhood, that is the places that are adjacent to its transitions. In [12, 8], Knowl-
edge is used to build a support table for each process. This table indicates, for each local
configuration, which interaction can be safely executed. Knowledge based on the state
of the neighborhood is not always sufficient, two possible extensions are proposed. The
first one consists in using knowledge with perfect recall. The second one, also proposed
in [48] consists in accumulating knowledge through additional synchronizations between
processes. This additional synchronization is handled by a multiparty interaction pro-
tocol; α-core [73] is proposed. In [19], an optimization is proposed by considering only
executions satisfying the constraining property in order to build the knowledge. This
approach allows reducing the state space and possibly increase the knowledge of each
process.

75



4 High-level Models: BIP and BIC

The BIP –Behavior/Interaction/Priority– and BIC –Behavior/Interaction/Condition–
frameworks [10] aim at rigorous design, analysis and implementation of complex sys-
tems. Such systems are described as a set of atomic components, composed by a layered
application of glue operators.
BIP provides two glue operators, namely Interaction and Priority. Interaction de-

scribes multiparty interactions between atomic components, as defined in 2.1, although
in a more compact way. Priority is a partial order between interactions, as defined
in 2.4.1. Therefore, the BIP framework encompasses prioritized multiparty interactions
as presented in Chapter 2.
BIC provides a variant of BIP, where Priority is replaced by another operator, Condi-

tion. Condition expresses influence of non-participating components on the execution of
an interaction. More precisely, an interaction can take place only when non-participating
components satisfy a given state predicate.
We show that Priority rules can be rewritten using Condition. Therefore we can use

BIC to represent BIP models.
This Chapter is structured as follows. The abstract model of BIP and BIC are de-

scribed in Section 4.1 as an abstract formalization of the layers of Behavior, Interaction,
Priority and Condition. Section 4.2 describes the concrete model of BIP extended with
data.

4.1 Abstract Models of BIP and BIC

We provide a formalization of the BIP and BIC frameworks focusing on their individual
layers. For Behavior, Interaction and Priority, the abstract model is very similar to the
one presented in Chapter 2. In this section, we introduce formally each layer and then
give their semantics.

4.1.1 Modeling Behavior

An atomic component is the most basic BIP or BIC entity, which represents behavior.
A behavior is very similar to a process, as defined in Definition 2.1 from Section 2.1. A
formal definition for the behavior of a BIP atomic component is given below:

Definition 4.1 (Abstract Behavior). A behavior B is a labeled transition system rep-
resented by a triple (Q,P,−→), where:

• Q is a finite set of control states,

76



• P is a finite set of communication ports,

• −→⊆ (Q× P ×Q) is a set of transitions, each labeled by a port.

For a pair of states q, q′ ∈ Q and a port p ∈ P , we write q
p
−→ q′, if and only if

(q, p, q′) ∈−→ and we say that p is enabled at state q. If such q′ does not exist, we write

q
p

6−→ and we say that p is disabled at state q.

This definition differs from the Definition 2.1 in two aspects. First, the set of states is
required to be finite. Second, the labels on the transitions are ports and not interaction
labels. These ports constitute the interface of the behaviors and are used to specify their
composition.

F L

lo

un

pl

pl lo

un

Disc

Figure 4.1: An example of abstract behavior.

Example 4.2. Figure 4.1 depicts a simple behavior, which corresponds to the example
from Figure 2.1. Formally this behavior is defined as (Q,P,−→), where Q = {F,L},
P = {lo, un, pl} and −→= {(F, lo, L), (L, pl, L), (L, un, F )}. The squares represent ports
that constitute the interface of the component.

4.1.2 Modeling Glue

A glue is a set of operators composing behaviors. Throughout this subsection, we con-
sider n behaviors B1, . . . , Bn, where for each i ∈ {1, . . . , n}, Bi = (Qi, Pi,−→i). We
assume that their respective sets of ports and sets of states are pairwise disjoint, i.e.,
for all i 6= j, we have Pi ∩ Pj = ∅ and Qi ∩ Qj = ∅. We define the set P =

⋃n
i=1 Pi of

all ports in the system, and the set of global states Q = Q1 × . . . × Qn. We consider
three composition operators, namely Interaction, Priority and Condition. Priority and
Condition assume that an Interaction operator has already been defined.

Interaction

In the BIP framework, interactions are explicitly defined as sets of ports. This differs
with the model from Chapter 2, where interactions are implicitly defined using a common
label.

Definition 4.3 (Interaction). An interaction a is a non-empty subset a ⊆ P of ports,
such that ∀i ∈ {1, . . . , n}, |a∩Pi| ≤ 1. We often denote a = {pi}i∈I , where I ⊆ {1, . . . , n}
contains the indices of components participating in a and pi is the only port in Pi ∩ a.

An interaction operator is specified by a set of interactions γ ⊆ 2P .

77



Priority

As motivated in Section 2.4, priority rules are expressed as a partial order on the inter-
actions.

Definition 4.4 (Priority). A priority operator is defined by a relation π ⊂ γ ×Q × γ,
such that ∀q ∈ Q, the relation πq = {(a, a

′) ∈ γ × γ | (a, q, a′) ∈ π} is a partial order.
If aπqa

′, interaction a has less priority than interaction a′ at state q.

This definition differs from Definition 2.11 since the partial order over the interactions
depends here upon the current global state. Priorities as in Definition 2.11, i.e. such
that the partial order is the same at each global state, are called static priorities.

Condition

A condition operator associates to each interaction a state predicate that must be true
for the interaction to execute.

Definition 4.5 (Condition). A condition operator κ associates a state predicate to each
interaction. Formally, κ : γ → BQ.

If a ∈ γ, we denote by κa the predicate κ(a). Intuitively, κa must hold to authorize
execution of a.

F1 L1

lo1

un1

pl1

pl1 lo1

un1

F2 L2

un2

lo2

pl2

pl2lo2

un2

d1l

d1u

d2l

d2u
0

1

d 1
l

d 1
u

2

d
2 l

d
2 u

A

B

rec1

C

rec2

th
in

k

rec1

rec2

think

Disc1

Disc2 Jukebox Listener

γ =
⋃2

i=1 {{pl i, reci}, {loi, dil}, {uni, diu}} ∪ {{think}}

κ : a 7→







¬atL1 ∨ ¬atA if a = {un1, d1u}
¬atL2 ∨ ¬atB if a = {un2, d2u}

true if a 6= {uni, diu}

π =
⋃2

i=1 {{uni, diu}} ×Q× {{pl i, reci}}

or

Figure 4.2: An example of abstract composition of 4 components using Interaction and
either Priority or Condition.

78



Example 4.6. Figure 4.2 presents an example of an abstract model. It corresponds to
the system of processes presented in Figure 2.2. Note that the last layer can either be a
priority π or a condition κ and both possibilities are represented. This model contains
4 atomic components and 7 interactions. The interaction {think} is a unary interaction
involving only one port. Note that by naming the interactions, play i = {pl i, reci},
load i = {loi, dil} and unload i = {uni, diu}, we obtain the same interaction labels as in
Figure 2.2.
The priority π states that at each state q ∈ Q, the interaction unload i has less priority

than the interaction play i. This implements the static priority provided in Section 2.4
for this Jukebox example. The condition κ associates a non trivial predicate to the
corresponding low priority interactions, i.e. unload i interactions.

4.1.3 Composition of Abstract Models

A composite component is obtained by application of a glueGL on componentsB1, . . . , Bn,
which is denoted GL(B1, . . . , Bn). We consider three different glues, namely Interaction
γ, Interaction subject to Priority πγ and Interaction subject to Condition κγ. For each
of them, we define the semantics below.

Definition 4.7 (Composition with Interaction γ). The composition of the atomic com-
ponents B1, . . . , Bn, parameterized by a set of interactions γ ⊆ 2P , is a transition system
B = (Q, γ,−→γ), where:

• Q = Q1 × . . .×Qn is the set of global states,

• −→γ is the least set of transitions satisfying the rule:

a = {pi}i∈I ∈ γ ∀i ∈ I qi
pi−→i q

′
i ∀j 6∈ I qj = q′j

(q1, . . . , qn)
a
−→γ (q′1, . . . , q

′
n)

Consider the model presented in Figure 4.2, without taking priority into account. The
semantics of this component is the LTS depicted in Figure 2.3.

Definition 4.8 (Composition with Interaction γ subject to Priority π). Let B =
(Q, γ,−→γ) be the behavior of the composite component γ(B1, . . . , Bn). We define the
behavior of πγ(B1, . . . , Bn) as the LTS B′ = (Q, γ,−→π), where −→π is the least set of
transitions satisfying the rule:

a ∈ γ q
a
−→γ q′ ∀a′ aπqa

′ =⇒ q
a′

6−→γ

q
a
−→π q′

Note that the two above semantics are slight generalizations of the ones defined in
Chapter 2. However, the composition with Interaction subject to Condition is new.

79



Definition 4.9 (Composition with Interaction γ subject to Condition κ). Let B =
(Q, γ,−→γ) be the behavior of the composite component γ(B1, . . . , Bn). We define the
behavior of κγ(B1, . . . , Bn) as the LTS B′ = (Q, γ,−→κ), where −→κ is the least set of
transitions satisfying the rule:

a ∈ γ q
a
−→γ q′ κa(q)

q
a
−→κ q′

As said before, a Condition operator simply associates a predicate to each interaction.
This predicate depends on the global state of the system, and not only on the states of
the participants in the interaction. For the interaction to execute, this predicate must
be true, which is stated in the last inference rule.

4.1.4 Priority vs. Condition

We show that given a Priority π one can obtain a Condition κπ such that the behaviors
of the composite components with priority and observation are identical. This is done
by forbidding execution of an interaction a if a higher priority interaction is enabled at
the current state.
Using atℓ predicates, we define the predicate ENa stating whether the interaction a

is enabled. First, we define the predicate EN i
pi

characterizing enabledness of port pi in
a component Bi = (Qi, Pi,−→i). Formally, ENpi

i =
∨

{qi|qi
pi−→i}

atqi . Then, the predicate

ENa can be defined by: ENa =
∧

pi∈a
EN i

pi
. Given a global state q = (q1, . . . , qn) ∈ Q,

we denote by atq the predicate atq1 ∧ . . . ∧ atqn .

Definition 4.10 (Condition obtained from Priority). Given the composite component
πγ(B1, . . . , Bn), we define the Condition obtained from Priority κπ as follows. For each
interaction a ∈ γ, we define

κπa =
∧

a πq a′

atq =⇒ ¬ENa′

The predicate κπa associated to the interaction a is false whenever there is a priority
rule for the current state q where a has low priority and the higher priority interaction
a′ is enabled. The predicate prevents executing a whenever it is forbidden according to
the priority π.

Example 4.11. Consider the model from Figure 4.2. We explicit the predicates asso-
ciated to low priority interactions in the Condition κπ obtained from Priority π. Since
the priority expressed in this model is a static priority, i.e. unload i has less priority than
play i, the predicate associated to unload i can be simplified into ¬ENplayi

. Consider the
interaction play1. It is enabled whenever both ports pl1 and rec1 are enabled, that is
when both places L1 and A are active. Thus ENplay1

= atL1 ∧atA. Similarly ENplay2
=

atL2 ∧ atB. Finally, the predicate associated to unload1 is κπunload1
= ¬atL1 ∨ ¬atA.

Similarly κπunload2
= ¬atL2 ∨ ¬atB.

80



Assume that the global state is (L1, F2, 1, A). The enabled interactions are unload1

and play1. In the model with Priority, the execution of interaction unload1 is forbidden
as play1 is enabled. In the model with Condition, the predicate κπunload1

is not satisfied,
which also forbids execution of unload1.

Proposition 4.12. The composite components πγ(B1, . . . , Bn) and κπγ(B1, . . . , Bn)
have the same behavior, that is −→π=−→κπ .

Proof. Let q ∈ Q be a global state and a ∈ γ be an interaction. If a can be executed from
state q according to −→π, then for all a′ such that a πq a

′, a′ is not enabled. Therefore the

predicate ¬ENa′ holds. Thus, the predicate κ
π
a also holds, and we have q

a
−→κπ . Similarly,

if q
a
−→κπ , then all interaction a′ such that a πq a

′ are disabled and q
a
−→π. Finally, the

two transitions have the same destination state q′ which is given by q
a
−→γ q′.

4.2 Concrete Model of BIP

The abstract models from the previous section focus on control. We now present how
data is handled in BIP (and in BIC). Data allows more succinct representation for com-
plex behavior like guards expressed over variables to prevent transitions and interactions.
Data is modified through update functions. The mechanisms to handle data added on
top of the abstract model constitute the concrete model of BIP.

4.2.1 Atomic Components

In BIP, atomic components are Petri nets equipped with a set of ports and a set of
variables. Each transition is guarded by a predicate on variables, triggers an update
function, and is labelled by a port. Ports are used for communication among different
components and are associated with some variables of the component.

Definition 4.13. An atomic component B is defined by B = (L, P , T , X, {Xp}p∈P ,
{gτ}τ∈T , {fτ}τ∈T ) where:

• (L,P, T ) is a Petri net (Definition 2.7).

• X is a set of variables.

• For each port p ∈ P , Xp ⊆ X is the set of variables exported by p (i.e., variables
visible from outside the component through port p).

• For each transition τ ∈ T , gτ is a predicate defined over X and fτ is a function
that updates the set of variables X.

It is required that the Petri net with its initial marking is 1-safe. As in the abstract
model, ports represents the interface of the component. However, the interface also
includes variables associated to ports.

81



F L

lo

c := c + 1

un

pl

cdatapl

lo

un

Figure 4.3: An atomic component.

Example 4.14. Figure 4.3 shows a concrete atomic component. The 1-safe Petri net
is actually an automaton, namely the one from Figure 2.1. It has been extended with
2 variables, data and c. The variable data is associated to the port play , that is the
value of data may be read and modified by an interaction involving the port play . This
variable is not read or modified locally. The variable c is associated to the port load .
The update function associated to the only transition labeled by play increments the
value of c. Note that the value incremented is actually the value after the interaction
has taken place.

Defining a semantic for the atomic components requires a notion of state. The state
of an atomic component is described in two parts: the control state and the state of the
variables. The control state is a marking of the Petri net. Since the Petri is 1-safe, a
marking m is a subset of the places, i.e. m ∈ 2L. The state of the variables is given
by a valuation. We assume that all variables are defined over a data domain D. Given
a set X of variables, we denote by DX the set of valuations defined on X. Formally,
DX = {σ : X → D}. If X ′ ⊆ X, and v ∈ DX , v′ ∈ DX′

, we denote by v[X ′ ← v′] the
valuation of X defined as

v[X ′ ← v′] : x 7→

{

v′(x) if x ∈ X ′

v(x) otherwise

Formally, a guard g over a set of variables X is a function DX → B. Similarly, an
update function f over a set of variables X is a function DX → DX .

Definition 4.15. The semantic of an atomic component B = (L, P , T , X, {Xp}p∈P ,
{gτ}τ∈T , {fτ}τ∈T ) is defined as the labeled transition system SB = (QB, PB,−→ B) where

• QB = 2L ×DX , where DX denotes the set of valuations on X.

• PB = P × DX × DX denotes the set of labels, that is, ports augmented with
valuations of variables.

• −→B is the set of transitions defined as follows. Let (m, v) and (m′, v′) be two states
in 2L × DX , p be a port in P , and vupp , vdnp be two valuations in DXp . We write

(m, v)
p(vupp ,vdnp )
−−−−−−→B (m′, v′), iff τ = (m, p,m′) is a transition of the behavior of the

Petri net (L,P, T ), gτ (v) is true, v
up
p = v|Xp and v′ = fτ (v[Xp ← vdnp ]), (i.e., v′ is

obtained by applying fτ after updating variables Xp by the values vdnp ). In this
case, we say that p is enabled in state (m, v).

82



In the LTS describing the semantics of an atomic component, each transition is labeled
by a port and 2 valuations of variables exported by that port. During an interaction,
these variables may be read and modified. The valuation vupp describes the values of
the variables exported by the port p before the interaction. These values may be read
during an interaction involving p. These values may also be modified during the interac-
tion. The valuation vdnp returns these modified values. Note that the LTS representing
the semantics of an atomic component can be seen as the abstract component from
Definition 4.1 with an infinite set of states and an infinite set of ports.

4.2.2 Interactions and Connectors

As for atomic components, we extend the definition of interactions to handle variables.
The support of an interaction is a set of ports. Furthermore, each interaction can read
and write the set of variables exported by its support. More precisely, a predicate on
these variables, called guard, has to be true for the interaction to be enabled. A data
transfer function modifies the variables upon execution of the interaction.
In the sequel, we assume a set of atomic component {B1, . . . , Bn}, where for each

i ∈ {1, . . . , n}, Bi is defined as (Li, Pi, Ti, Xi, {Xp}p∈Pi
, {gτ}τ∈Ti

, {fτ}τ∈Ti
) and its

semantics is given by (Qi, PBi
,−→Bi

). We require that the sets of control locations,
ports and variable of these components are pairwise disjoint (i.e., i 6= j implies that
Li ∩ Lj = ∅, Pi ∩ Pj = ∅ and Xi ∩ Xj = ∅). We denote by P =

⋃n
i=1 Pi the set of all

ports, X =
⋃n

i=1Xi the set of all variables and Q = Q1 × . . . × Qn the set of global
states.
Since two distinct components have disjoint sets of variables, there is no shared vari-

able. Each variable is local to a component. However, the values of the variables may
be exchanged between components through an interaction.

Definition 4.16 (Interaction). An interaction a is a triple (Pa, Ga, Fa), where:

• Pa ⊆ P is a set of ports such that ∀i ∈ {1, . . . , n}, |Pa ∩ Pi| ≤ 1. We denote
Pa = {pi}i∈I , where I ⊆ {1, . . . , n} is the indices of participants in a and pi is the
only port in Pa ∩ Pi.

• Ga is a predicate defined over the set Xa =
⋃n

i=1Xpi of variables involved in a.

• Fa is a data transfer function that modifies the variables Xa.

We denote by participants(a) the set of components that have ports involved in a.
Formally, participants(a) = {Bi | Pi ∩ a 6= ∅}.

Connectors As in the abstract model, interactions are used to parameterize the first
layer of glue. In order to avoid an explicit enumeration of all possible interactions, BIP
introduces the notion of connector. Each connector Γ is defined over a given set of ports
P , that forms its support and defines a set of interactions γΓ, that is, a subset of 2P .
A connector exports a port that can be reused in another, higher-level, connector. This
export mechanism allows construction of hierarchical connectors.

83



A connector is defined by typing each port of its support as a trigger or as a synchron.
BIP connectors form an algebra which is defined and studied in [22]. We do not define
formally this algebra, nor explain how the typing of the support port defines the set
of interaction of a connector. However, we give some intuitive examples of hierarchical
connectors.

p q r

Γ1: Rendezvous

p q r

Γ2: Broadcast

p q r
u

Γ3: Atomic
Broadcast

p q r
u

Γ4: Causality
Chain

Figure 4.4: Examples of connectors and hierarchical connectors.

Example 4.17. In Figure 4.4, we graphically depict 3 connectors defined on the same
support {p, q, r}. The connectors Γ1 and Γ2 are basic patterns.

• The connector Γ1 is called rendezvous, or strong synchronization. Here, all ports
are synchrons. The intuitive meaning of the synchron is that it has to wait for
other ports in order to execute the interaction. This connector defines only one
interaction: γΓ1 = {pqr} (to lighten the notations, we write pqr instead of {p, q, r}).

• The connector Γ2 is called broadcast. It includes one trigger (port p) and two
synchrons. The intuitive meaning of a trigger is that it can initiate the interaction,
even if all other ports are not enabled. This connector describes the set of all
interactions that contains at least p, that is γΓ2 = {p, pr, pq, pqr}.

The two following connectors are hierarchical connectors obtained by combining broad-
cast and rendezvous. The combination of connectors is obtained by including in the
support of a top connector Γt the exported port of a bottom connector Γb. Thus in the
following, the bottom connector Γb refers to the one exporting the port u, and the top
connector Γt refers to the other one. Intuitively, the set of interactions allowed by the
hierarchical combination of the connectors is obtained by “replacing” each occurrence
of u in γΓt with the set of interactions allowed by Γb. More precisely, if γΓt contains an
interaction p1 . . . pku, then the hierarchical connector allows all interactions formed as
the union of p1 . . . pk with an interaction allowed by Γb.

• The connector Γ3 is called atomic broadcast. The bottom connector Γb is a ren-
dezvous with support {q, r} and exports a port u. This connector allows only
interaction qr. The top connector Γt is a broadcast defined on the support {p, u}
and thus allows interactions p and pu. Therefore Γ3 allows both p and pqr.

• The connector Γ4 is called causality chain. The top connector allows the same
interactions as previously: γΓt = {p, pu}. The bottom connector is a broadcast
allowing both q and qr. Therefore, Γ4 allows p, pq and pqr. In particular, for r to
interact, it requires that both p and q interact as well.

84



For each example presented above, the corresponding set of interactions is defined
formally from the basic typing of ports using the algebra from [22].
Connectors provide a mechanism for hierarchically handling variables. Intuitively, the

mechanism implies two phases, an upward propagation, to decide whether the guard of
the interaction is true, and a downward propagation, in case of execution, to compute
the values to return. The full definition of a connector associates two functions to each
interaction (instead of a single data transfer function). The first one, called U , compute
the values to export for the top port of the connector during the upward propagation.
The second one, called D, compute the values to return in the support ports during the
downward propagation.

p q r

u

x y z

t1

t2

U1 : t1 = max(x, y)
D1 : x = t1; y = t1

U2 : t2 = max(t1, z)
D2 : t1 = t2; z = t2

Figure 4.5: A hierarchical connector computing the maximum of exported values.

As an example, consider the connectors depicted in Figure 4.5. The support of this
set of connectors is made of ports p, q and r, exporting respectively variables x, y and
z. The connector exporting the port u computes the max of x and y and this value is
exported by u, since t1 is bound to u. This constitutes its upward propagation function
U1. The top connector then computes the maximum of t1 and z and stores this value
into t2, as specified in U2. This terminates the upward propagation. At any level, a
guard prevents further upward propagation if it evaluates to false. If the interaction is
selected for execution, then the downward propagation first sets both z and t1 to the
maximum value that is stored in t2, according to D2. Then D1 sets both x and y to
this maximum value. These propagations happen atomically, and ti variables are not
remembered between two interaction executions. The connector from Figure 4.5 behaves
“as if” x, y and z where set to max(x, y, z) in one atomic step.
In [30], the authors show that hierarchical connectors can be replaced by a set of “flat”

interactions as defined in Definition 4.16. This is done by composing upward propagation
functions guards, to obtain a guard for the interaction. Similarly, the update function
is obtained by composing the downward propagation functions. More details about
hierarchical connectors can be found in [11, 28].

4.2.3 Priority and Condition

Recall that a priority operator assigns a partial order between interactions to each state.
However, since the state space Q may be infinite, priority operators are specified as a
set of rules including a state predicate and an order between two interactions.

Definition 4.18 (Priorities). Given a set γ of interactions defined over a set {B1, . . . , Bn}

85



of components, we define a priority as a relation π ⊆ BQ×γ×γ, such that ∀q ∈ Q, πq =
{(a, a′) ∈ γ×γ | C(q)∧ (C, a, a′) ∈ π} is a partial order. We add (C, a, a′) ∈ π to express
the fact that a has less priority than a′ whenever the predicate C holds. We require that
C depends only on variables visible by a or a′.

The predicate C depends on the variables exported by the participants in some in-
teractions, allowing the corresponding priority rule to be dynamically enabled. A static
priority is expressed by having C = True for all (C, a, a′) ∈ γ.

As for the abstract model, Condition is expressed by associating a state predicate κa
to each interaction a in γ.

Definition 4.19 (Condition). Given a set γ of interactions defined over a set {B1, . . . , Bn}
of components, we define a Condition as a function κ : γ → BQ. This function associates
a state predicate κa to each interaction a in γ.

The notation remains the same as for the abstract model. However, a global state
q ∈ Q contains both the control state and a valuation of the variables. Therefore, a
predicate κa is expressed using atℓ predicates as well as predicates depending on the
variables in X. Given a predicate φ defined over a set of variables X, we denote by
usedin(φ) the set of variables appearing in φ. In particular, usedin(κa) is the set of
control locations and variables that appear in κa. This is useful to define the set of
variables that have to be known to decide whether κa holds.
Expressing Condition by referring to the inner state of the components breaks the

encapsulation principle, where only the interface (ports and exported variables) are
visible outside the component. This implies that Condition cannot be used in a source
model, but rather in an intermediate model, as it facilitates further implementation.
Therefore, we do not provide a specific syntax for expressing Condition in a concrete
model.

4.2.4 Composition of Components

We compose the atomic components using the same three glues as for the abstract model.
The main difference is that a concrete model handles data within interactions.

Given a set of components {B1, . . . , Bn} and a set of interactions γ, we denote by
γ(B1, . . . , Bn) the composition of these components using the set of interactions γ.
Similarly, given a Priority π and a condition κ, we denote by πγ(B1, . . . , Bn) and
κγ(B1, . . . , Bn) the behaviors obtained by applying the corresponding glues.

Definition 4.20 (Composite Component: Semantics). The behavior of a composite
component γ(B1, ..., Bn), where Bi is an atomic component with semantics SBi

=
(Qi, PBi

,−→i), is a labeled transition system (Q, γ,−→γ), where

• Q = Q1 × . . .×Qn,

86



• −→γ the least set of transitions satisfying the rule:

a = ({pi}i∈I , Ga, Fa) ∈ γ Ga({v
up
i }i∈I)

{vdni }i∈I = Fa({v
up
i }i∈I) ∀i ∈ I qi

pi(v
up
i ,vdni )

−−−−−−−→i q
′
i ∀i 6∈ I. q′i = qi

(q1, . . . , qn)
a
−→γ (q′1, . . . , q

′
n)

Intuitively, this inference rule specifies that a composite component B = γ(B1, ..., Bn)
can execute an interaction a ∈ γ, iff (1) for each port pi ∈ Pa, the corresponding atomic
component Bi allows a transition from the current state labeled by pi (according to its
semantics), and (2) the guard Ga of the interaction evaluates to true with the current
values of the exported variables. If these conditions hold for an interaction a at global
state q, a is enabled at that state, denoted by q

a
−→γ . The execution of a modifies

the variables of participating component by first applying the data transfer function
Fa on exported variables and then update functions inside each interacting component
(according to their semantics). The (local) states of components that do not participate
in the interaction remain unchanged.
We define the behavior of the composite component πγ(B1, . . . , Bn) with priority, as

the labeled transition system (Q, γ,−→π) where −→π is the least set of transitions satisfying
the rule:

q
a
−→γ q′ ∀C, a′ s.t. (C, a, a′) ∈ π C(q) =⇒ q

a′

6−→

q
a
−→π q′

The inference rule filters out interactions which are not maximal with respect to the
priority order, according to the current state. In particular, if a priority rule (C, a, a′)
holds at the current state, that is the corresponding state predicate C is verified, then
execution of a requires that a′ is not enabled.

We define the behavior of the composite component κγ(B1, . . . , Bn) with Condition as
the labeled transition system (Q, γ,−→κ) where −→κ is the least set of transitions satisfying
the rule:

q
a
−→γ q′ κa(q)

q
a
−→κ q′

This rule is actually the same as for the abstract model, since the state of the components
now includes the variables.

Example 4.21. Figure 4.6 shows a graphical representation of a composite component
in BIP. It is a variation of the example from Figure 2.2. Variables have been added in
components: each disc has its own counter ci and some data datai, the jukebox has a
counter C and the listener has one variable sample for each disc. Each variable ci is
incremented whenever the corresponding disc is loaded; the variable C counts the total
number of loads. The guard on each load interaction (between brackets) balances the
number of loads for each disc, i.e. a disc can be loaded only when its own counter does

87



F1 L1

lo1

c1++

un1

pl1

c1data1pl
1

lo1

un1

F2 L2

lo2

c2++

un2

pl2

c2data2
pl

2

lo2

un2

d1l

d1u

d2l

d2u

0

1

2

d1l

C + +

d2l

C + +

d1u

d2u

C

A

B

C

rec1

rec2

think

cmp(sample1,

sample2)

rec1

rec2

think

sample1

sample2

load1
[

c1 ≤
C

2
+ 2
]

load2
[

c2 ≤
C

2
+ 2
]

unload1

unload2

play
1

sample1 := data1

play
2

sample2 := data2

Disc1

Disc2 ListenerJukebox

Figure 4.6: A composite component.

not exceed too much the average. During a play interaction, the data from the disc is
copied in the variable sample of the listener.
Recall that the static priority operator described in Section 2.4 gives more priority

to the play interaction than to the unload interaction. Such a priority is described as
π = {(true, unload1, play1 ), (true, unload2, play2 )}. Since none of these rules depends
on variables, the Condition predicates defined in Subsection 4.1.4, namely κπunload1 =
¬atL1 ∨ ¬atA and κπunload2

= ¬atL2 ∨ ¬atB, are still implementing this priority.

For a multiparty interaction, a component is either participant or non-participant.
Condition was introduced in [17] to allow for an intermediate between participation and
non-participation. This intermediate role is held by components that are observed by
the interaction to decide whether the Condition predicate holds, but do not participate
in the interaction. We denote by observedκ(a) the set of such components. Formally,
given a BIC model κγ(B1, . . . , Bn), observedκ(a) is the set of atomic components {Bi |
(Li∪Xi)∩usedin(κa) 6= ∅}\participants(a). We denote by invlκ(a) the set of components
that are involved in the interaction either as a participant or as an observed component.
Formally, invl(a) = participants(a) ∪ observedκ(a).

4.2.5 Discussion

In [23], the authors compare the expressiveness of glue operators found in different
models, e.g. Calculus of Communicating Systems (CCS) [67], Communicating sequential
processes (CSP) [52], Synchronous Calculus of Communicating Systems (SCCS) [68]

88



and BIP. Intuitively, a glue operator gl1 is strongly more expressive than another one
gl2 if any composition using gl2 can be rewritten in an equivalent composition using
gl1, without modifying components nor adding new components. A glue operator gl1
is weakly more expressive than another one gl2 if any composition using gl2 can be
rewritten in an equivalent composition using gl1, by adding coordination components.
It has been shown that the BIP glue without priority is strongly more expressive than
the other models cited above. Furthermore, the BIP glue with priority is strongly more
expressive than BIP glue without priority, and BIP glue without priority is not weakly
more expressive than BIP glue with priorities.

Rewriting Priority Operators as Condition Operators

The definition of the Condition κπ obtained from a Priority π has to be adapted to
handle variables as well. Adding variables changes the definition of the ENa predicates,
as they must take into account guards on transitions in atomic components as well as
guards on interactions. The predicate indicating whether a port pi of Bi is enabled
becomes

ENpi :
Qi → B
qi 7→ ∃q′i∃v

up
pi ∃v

dn
pi

(qi, (pi, v
up
pi , v

dn
pi
), q′i) ∈−→i

where −→i is the transition relation of Bi semantics. The predicate ENa takes into
account the predicates ENpi and the guard Ga of the interaction. Assume that Pa =
{pi}i∈I .

ENa :
Q → B

((m1, v1), . . . , (mn, vn)) 7→ Ga

(

{vi|Xpi
}i∈I

)

∧ ∀i ∈ I ENpi((mi, vi))

Recall that a priority rule is active if the associated predicate C holds. The Condition
κπ obtained from Priority π is, for each interaction a:

κπa =
∧

(C,a,a′)∈π

C =⇒ ¬ENa′

The resulting semantic −→κπ is equal to −→π. Indeed, κπa is equivalent to ∀C, a′ s.t.

(C, a, a′) ∈ π C(q) =⇒ q
a′

6−→ and replacing κπa by the latter expression yields the rule
for prioritized execution.

Encoding Condition Operators with Interaction Operators

A model with Condition can be transformed in an equivalent model expressed using
only Interaction, provided that atomic components are modified. This transformation
implements Condition predicates from the original model as guards on the interactions
of the built model. To this end, each interaction a is extended to form a new interaction
a′ such that components originally observed in a become participants in a′. This requires
a special port in observed components, that is used for exporting the state of the com-
ponent. The control state of the component is stored in an additional variable, denoted

89



@, that is updated on every transition. As the control state is the marking of a 1-safe
Petri net, @ contains the set of currently active places. This variable is exported by all
ports of the component along with the data needed to evaluate Condition predicates.
Formally, let κγ(B1, . . . , Bn) be a BIC model. We transform each atomic component

Bi = (Li, Pi, Ti, Xi, {Xp}p∈Pi
, {gτ}τ∈Ti

, {fτ}τ∈Ti
) into an observable component B′

i =
(Li, P

′
i , T

′
i , X

′
i, {Xp}p∈P ′

i
, {g′τ}τ∈T ′

i
, {f ′

τ}τ∈T ′
i
) where:

• L′
i = Li the control locations are not changed,

• P ′
i = Pi ∪ {obsi}, with obsi being an additional port,

• T ′
i = Ti ∪

⋃

ℓ∈L{({ℓ}, obsi, {ℓ})}, for each control location ℓ, τobsℓ is an additional
transition,

• X ′
i = Xi ∪ {@i}, with @i being an additional variable to store the current control

state of the component,

• Let Xκ
i = {@i} ∪

⋃

a∈γ(usedin(κa) ∩Xi) be the set of variables from Bi that are
needed to evaluate the Condition predicates. The port obsi exports the variables
Xobsi = Xκ

i , and each original port p ∈ Pi exports the variables X ′
p = Xp ∪Xκ

i ,

• for each τ ∈ Ti, g
′
τ = gτ , the guards are not modified. For each ℓ, the new transition

τobsℓ is guarded by gτobsℓ = true,

• for each ℓ, the update function of τobsℓ is the identity function. For each transition
τ ∈ Ti, the new update function f ′

τ first applies fτ and then updates @i as follows:
@i := (@i \

•τ) ∪ τ•.

A

B

C

rec1
@4 := B

rec2
@4 := C

think

cmp(sample1,

sample2)
@4 := A

obs4

obs4

obs4

obs4 rec1

rec2

think

sample1

sample2

@4

Figure 4.7: Observable version of the Listener component from Figure 4.6.

The variable @ initially contains the initial marking of the atomic component. Note
that if the underlying Petri net is an automaton, the transformed component is also an
automaton. In that case, updating the @ variable falls back to simply assigning it the

90



destination control state of the transition. For instance, in Figure 4.7, the control is
described as an automaton. The added variable @4 is exported by all the ports.

Given a BIC model κγ(B1, . . . , Bn), the equivalent model using only Interaction op-
erator is γ′(B′

1, . . . , B
′
n), where B′

i is the observable version of Bi and γ′ is defined as
follows. For each interaction a ∈ γ, γ′ contains the interaction a′ such that:

• Pa′ = Pa ∪
⋃

Bi∈observedκ(a)
obsi contains original ports in a as well as obs ports of

the components observed by a,

• Ga′ = Ga ∧Gκa , where Gκa is obtained by replacing each at ℓ predicate occurring
in κa by the predicate ℓ ∈ @i, where i is the index such that ℓ ∈ Li,

• Fa′ = Fa is not modified.

Again, if atomic components are actually automata, an at ℓ predicate can simply be
written as @i = ℓ. Consider the interaction unload1 from the example in Figure 4.6. The
associated Condition predicate is κunload1 = ¬atL1 ∨ ¬atA, meaning that the Listener
component is observed by unload1. Consequently, the set of ports involved in unload ′

1

additionally contains obs4. The port un1 of the observable version of Disc1 exports
the state variable @1, which indicates the current control state of Disc1. The guard
Gunload ′

1
= ¬(@1 = L1)∨¬(@4 = A) holds in states equivalent to the ones where κunload1

holds.
A global state q of κγ(B1, . . . , Bn) can be obtained from a global state q′ of γ′(B′

1, . . . , B
′
n)

by ignoring the valuation of the @i variables. We denote q = equ(q′) in that case. By
construction, in every reachable state q′ of γ′(B′

1, . . . , B
′
n), each state variable @i con-

tains the set of control locations that are active at the current marking mi. From a
global state q of κγ(B1, . . . , Bn), one builds a state q′ of γ′(B′

1, . . . , B
′
n) by assigning

to each variable @i the set of active places at marking mi. We denote q′ = equ′(q) in
that case. It always holds that q = equ(equ′(q)). Furthermore, for every reachable state
q′ of γ′(B′

1, . . . , B
′
n), we have q′ = equ′(equ(q′)). We use this bijection defined on the

reachable states to compare −→κ and −→γ′ .

If q
a
−→κ r then we have q

a
−→γ r and κa(q) holds. Since all ports obs are always

enabled, all ports of the interaction a′ are equivalently enabled at state equ′(q). Since
q

a
−→, Ga evaluates to true at q and thus at equ′(q). Since κa(q) holds, Gκa(equ

′(q))
holds. Therefore at state equ′(q) all ports of a′ are enabled and the guard of a′ hold,

thus equ′(q)
a′
−→γ′ r′. Since the effect of executing a from q and a′ from q′ is the same

except on @i variables, we have r = equ(r′) and thus, r′ = equ′(r).

Similarly, if q′
a′
−→γ′ r′, we have equ(q′)

a
−→κ equ(r′). Therefore, −→γ′ and −→κ are

equivalent.
This construction proves that from a BIP model with priority, one can build an equiv-

alent model without priority that has the same behavior. However, this result does not
contradicts the greater expressiveness of the glue with priority, as building the equivalent
model requires to modify the components, and not only the glue.

91



5 Breaking Atomicity of Interactions:
Parallelism Between Components

A BIP port could be defined as a basic synchronization unit, an interaction being formed
of several such units. Parallelism between components stems from independent com-
putations between two successive synchronizations. Independent parallel computation
requires to distribute components execution in different processes.

As we assume that distributed processes can either send a message, perform internal
computation or wait for a message, there is no direct distributed implementation for
ports and interactions. Therefore, we implement them through a two-way handshake
protocol. First, each component sends an offer to a centralized engine and then the
engine replies by indicating which interaction (and thus which port) to execute.
This distribution scheme separates the choice of the next interaction to execute from

the inner computations in the components. The centralized engine is a dedicated process
responsible for the first task. The second task is distributed, by creating a new process
for each atomic component.
In this Chapter, we start by enumerating in Section 5.1 the restrictions that we impose

on the source and target BIP/BIC models that we consider. Then, we define formally
the transformation from the centralized to distributed model in Section 5.2, and prove
its correctness in Section 5.3. Finally, we optimize the number of messages needed to
implement Condition in Section 5.4.

5.1 Model Restrictions

The restrictions that we impose on the source (centralized) model aim at simplifying the
transformation towards a distributed model. The restrictions on the target model aim
at implementability on a distributed platform. More precisely, the target model must
be simple enough to be implemented using basic (i.e. Send/Receive) message-passing
primitives.
The restrictions on the source model are as follows:

• We assume that our source model is flat, i.e. does not have hierarchical connectors.
These restriction can be met by using the flattening tool from Subsection 7.2.3,
which replaces all hierarchical constructs from a BIP model by an equivalent set of
flat constructs. Furthermore, we require that only synchrons are used to describe
connectors. This can be obtained by replacing a connector with a trigger by a set
of connectors implementing the same set of interactions.

92



• We assume that the Petri nets defining transitions between control locations in
atomic components are restricted to automata. Given a Petri Net with an initial
state, one can consider its behavior, as defined in Subsection 2.1.1. This behavior
is actually an automaton whose states are markings of the Petri net, and there
is a transition between two states if a Petri Net move is allowed between the
corresponding markings. In the worst case, the automaton representing the global
behavior of a Petri net has a number of states exponential in the number of places
in the Petri net.

Furthermore, we require that the automaton is deterministic. For each port, there
is at most one enabled transition labeled by this port at each state. In particular,
two transitions outgoing from the same control state and labeled with the same
port must have mutually exclusive guards.

• We assume that the source model is written using the Condition operator, not
the Priority operator. As explained in Subsection 4.1.4, Priority operators can be
rewritten using Condition operators.

F1 L1

lo1

c1++

un1

pl1

c1data1pl
1

lo1

un1

F2 L2

lo2

c2++

un2

pl2

c2data2pl
2

lo2

un2

d1l

d1u

d2l

d2u

0

1

2

d1l

C + +

d2l

C + +

d1u

d2u

C

A

B

C

rec1

rec2

think

cmp(sample1,

sample2)

rec1

rec2

think

sample1

sample2

load1
[

c1 ≤
C

2
+ 2
]

load2
[

c2 ≤
C

2
+ 2
]

unload1

κ : ¬atL1
∨ ¬atA

unload2

κ : ¬atL2
∨ ¬atB

play
1

sample1 := data1

play
2

sample2 := data2

Disc1

Disc2 ListenerJukebox

Figure 5.1: Version of the model from Figure 4.6 taking restrictions into account.

Example 5.1. In Figure 5.1, we present an equivalent version of the jukebox composite
component presented in Figure 4.6, which meets all the restrictions. Petri nets in atomic
components have been replaced by automata – in this particular case, it correspond to
simply replacing transitions by arrows. We will use this model as running example,
in particular for Condition obtained from Priority. Priority rules for the model from
Figure 4.6 are unload1 π play1 and unload2 π play2. As explained in Subsection 4.1.4,
these priority rules can be rewritten using Condition as follows: κπunload1

= ¬atL1 ∨¬atA
and κπunload2

= ¬atL2 ∨ ¬atB.

93



The target model aims to be implementable using basic message-passing primitives.
The execution of a distributed process is a sequence of actions that are either message
emission, message reception or internal computation. Consequently our target model
includes three types of ports: send ports, receive ports and unary ports. Unary ports
correspond to internal computation. They can only appear in unary interactions, that
is interactions involving only one component. Send and receive ports appear only in
message-passing interactions. Such an interaction has no guard, and the update function
copies variables exported by the send port to variables exported by the receive port. In
a canonic message-passing environment, each send action has a well-defined recipient.
Therefore, we require that each send port participates in exactly one Send/Receive
interaction. The latter ensures that for each send port there is a unique corresponding
receive port. Finally, the target model is described using synchronizations, whereas
message-passing is sender-initiated. Therefore, to the above syntactic restrictions, we
add a semantic restriction: at each state where a send port is enabled, the corresponding
receive port will become enabled unconditionally within a finite number of transitions
in the receiver component. This condition guarantees that the built model does not rely
on the sender for waiting until the receiver is ready to receive, which is not the most
general case.
The class of BIP models satisfying the above restriction are called Send/Receive BIP

models.

Definition 5.2. We say that BSR = γSR(BSR
1 , . . . , BSR

n ) is a Send/Receive BIP com-
posite component iff we can partition the set of ports of BSR into three sets Ps, Pr, and
Pu that are respectively the sets of send ports, receive ports, and unary ports, such that:

• Each interaction a = (Pa, Ga, Fa) ∈ γSR, is either (1) a Send/Receive interaction
with Pa = {s, r}, s ∈ Ps, r ∈ Pr, Ga = true and Fa copies the variables exported
by port s to the variables exported by port r, or, (2) a unary interaction Pa = {p}
with p ∈ Pu, Ga = true, Fa is the identity function.

• If s is a port in Ps, then there exists one and only one Send/Receive interaction
a = (Pa, Ga, Fa) ∈ γSR with Pa = {s, r} and the port r is a receive port. We say
that r is the receive port associated to s.

• Let a = (Pa, Ga, Fa) with Pa = {s, r} be a Send/Receive interaction in γSR. Let
BSR

i be the component exporting r. If s is enabled at some reachable state of BSR,
then BSR

i will reach a state where s is enabled in a finite number of transitions
labeled by either send or unary ports.

Our target model contains only interactions and no priorities or conditions. We graph-
ically denote a send port by a trigger ( ) and a receive or a unary port by a synchron ( ).

5.2 Transformation from Centralized to Distributed Model

We present here the formal definition of the distributed Send/Receive model obtained
from a centralized BIC model κγ(B1, . . . , Bn). We first explain how atomic components

94



are transformed in Subsection 5.2.1. Then we build a centralized engine that coordinates
distributed atomic components in Subsection 5.2.2. Finally, we define the connections
between these newly built Send/Receive atomic components in Subsection 5.2.3.

5.2.1 Breaking Atomicity in Components

We transform an atomic component B of a BIC model into a Send/Receive atomic com-
ponent BSR by decomposing each “atomic” synchronization into a send and a receive
action. The idea is the same as in [9] and in Subsection 2.2.1. The synchronization
between participants is implemented as a two-phase protocol between the atomic com-
ponents and the engine. First BSR sends an offer through a dedicated send port, then
it waits for a notification arriving on a receive port. The offer contains the information
to determine whether an interaction is enabled and whether the Condition predicates of
observing interaction hold. An offer includes the set of enabled ports of BSR through
which the component is currently ready to interact and the values of relevant variables.
Relevant variables include variables exported by the enabled ports, as they may be read
and written during an interaction. Furthermore, a Condition predicate may depend on
the variables and control location of any atomic component. Consequently, relevant vari-
ables also include the current control location of the component and the variables that
are needed to evaluate the Condition predicates. Since these additional relevant vari-
ables depend on the whole model, we add a parameter, denoted Xκ

i for the component
Bi, indicating which variable values are to be sent. Formally, given a full BIC model
κγ(B1, . . . , Bn), the set of variables to send for Condition is Xκ

i = Xi∩
⋃

a∈γ usedin(κa).
We encode enabled ports and current control state as follows. For each port p of

the transformed component BSR, we introduce a Boolean variable xp. We add a state
variable @ that contains the current control location. This variable ranges over the set
L of control locations of the atomic component. The newly added variables are modified
by an update function when reaching a new state. The variable xp is then set to true
if the corresponding port p becomes enabled, and to false otherwise. Similarly, before
reaching the control state ℓ, the variable @ is set to ℓ.
Since each notification from the engine triggers an internal computation in a compo-

nent, following [9], we split each control location ℓ into two control locations, namely,
ℓ itself and a busy control location ⊥ℓ. Intuitively, reaching ⊥ℓ marks the beginning of
an unobservable internal computation. We are now ready to define the transformation
from B into BSR.

Definition 5.3. Let B = (L, P , T , X, {Xp}p∈P , {gτ}τ∈T , {fτ}τ∈T ) be an atomic
component, and Xκ ⊆ X be a set of variables needed by the Condition layer. The corre-
sponding Send/Receive atomic component is BSR = (LSR, P SR, T SR, XSR, {XSR

p }p∈P ,
{gτ}τ∈TSR , {fτ}τ∈TSR), such that:

• LSR = L ∪ L⊥, where L⊥ = {⊥ℓ |ℓ ∈ L}.

• XSR = X ∪ {xp}p∈P ∪ {@}, where each xp is a new Boolean variable, and @ is a
control location variable.

95



• P SR = P ∪ {o}, where the offer port o exports the variables XSR
o = {@} ∪

⋃

p∈P ({xp} ∪ Xp) ∪ Xκ, that is the state variable, the new Boolean variables as
well as the exported variables associated to each port, and the variables needed
for the Condition layer. For all other ports p ∈ P , we keep XSR

p = Xp.

• For each location ℓ ∈ L, we include an offer transition τℓ = (⊥ℓ, o, ℓ) in TSR. The
guard gτℓ is true and the update function fτℓ is the identity function.

• For each transition τ = (ℓ, p, ℓ′) ∈ T , we include a response transition τp = (ℓ, p,⊥ℓ′

) in TSR. The guard gτp is true. The function fτp first applies the original update
function fτ , then sets the state variables to the next control location (i.e. @ := ℓ′)
and finally updates the Boolean variables:

for all r ∈ P xr :=

{

gτ ′ if ∃τ ′ = (ℓ′, r, ℓ′′) ∈ T
false otherwise

As said before, control locations that are in L⊥ are called busy control locations. Such
control locations are transient as the only outgoing transition, labeled by a send port, are
controlled by the distributed atomic component. Control locations L from the original
atomic components are said to be stable. Indeed, once it reached such a control location,
a distributed atomic component will remain in that state until it receives a notification.
In general, we say that a distributed atomic component is in a stable state if its current
control location is stable and in a busy state if its current control location is busy.

⊥F1

F1
o1

⊥L1

lo1

c1++;
uL1

;

L1
o1

pl1
uL1

;

un1

uF1
;

uF1
=















@1 := F1;
xlo1

:= T ;

xun1
:= F ;

xpl1
:= F ;

uL1
=















@1 := L1;
xlo1

:= F ;

xun1
:= T ;

xpl1
:= T ;

@1
xlo1

xun1
xpl1 c1 data1

un1 lo1 pl1
o1

Figure 5.2: Distributed version of the Disc1 atomic component from Figure 5.1.

Example 5.4. Figure 5.2 shows the distributed version of the atomic component Disc1
from Figure 5.1. It corresponds to the BIP version of the distributed process depicted
in Figure 2.7. Only the Condition predicate associated to unload1 depends on Disc1.
Since this predicate only requires to know the state of Disc1, we have Xκ = ∅. For each
original control location ℓ, a busy control location ⊥ℓ has been added, with a transition
labeled by the offer port o1 from ⊥ℓ to ℓ. Before executing these transitions, the update
functions uL1 or uF1 are called. Here, when reaching ⊥F1 , the variable @1 is set to F1

96



and the only guard variable set to true is xlo1 . The next offer transition (⊥F1

o1−→ F1)
sends these refreshed values to the engine through the port o1, so that the engine has
up-to-date informations from the component Disc1.

5.2.2 Implementing the Engine in BIP

As explained in [9], the engine works with a partial view of the global state. Initially, all
components are doing their initial computation and the engine does not know their state
until they send offers. Each offer received indicates to the engine the state of the sender
component, and thus gives more information about the global state. If the engine does
not take any decision, it will eventually receive all offers and know the global state.
For the sake of distributed implementation, it is worth taking a decision as soon as

possible. In the absence of priority, it is always correct to execute an interaction when
all participating components have sent an offer and are ready to execute the interaction.
Executing a low priority interaction requires to check that all higher priority interaction
are not currently enabled and won’t be enabled if the engine waits until it knows the
global state. Using Condition, the negative premise corresponding to the priority rule is
replaced by a predicate. If all components that are involved in the predicate have sent
an offer and the predicate holds, then it is safe to execute the interaction, since new
offers cannot disable it.
To summarize, the engine has to listen to the offers, to take decisions based only

on the offers received so far and to notify components when an interaction has taken
place. We recap here the construction of the engine as initially described in [24], and add
support for Condition. We represent the engine as a Petri net and associate each atomic
component to a token of this Petri net. From the engine point of view, a component
can have three different status, thus the associated token cycles between three kinds of
place, as illustrated on Figure 5.3:

w

r

s

Receive offer
from B

Execute
Interaction
involving B

Send notifi-
cation to B

Figure 5.3: Circuit of a single token, corresponding to a component B, in the engine.

• waiting place: Initially, and after each notification, the engine does not know the
state of the component until it sends an offer. In that case the engine is waiting for
the component offer. There is one waiting place for each component. In Figure 5.3,
the waiting place is labeled by w.

97



• received place: The token is there when an offer has been received, and the engine
has not scheduled any interaction involving the component. There is one received
place for each component. In Figure 5.3, the received place is labeled by r.

• sending place: The token is there when an interaction involving the component has
been scheduled. There is one such place for each port of the atomic components,
thus indicating which port is involved in the scheduled interaction. In Figure 5.3,
there is a single sending place labeled by s.

Each token starts in the waiting place. It moves to its received place when an offer
from the corresponding atomic component is received. An interaction involving this
component yields a Petri net transition taking several tokens from the receive places and
putting them in the send places corresponding to the ports involved in the interaction.
From the send place, the token moves back to the waiting place when sending the
notification to the atomic component.
Before defining the engine, we recall the different degrees of involvement for a given

component Bi in a given interaction a. A component Bi is a participant in a if it
exports a port that is part of a. We denote participants(a) the set of such components. A
component Bi is observed by a if the state of Bi is needed to decide whether κa holds, but
is not participant in a. We denote observedκ(a) the set of such components. A component
that is participant in an interaction needs to be notified whenever the interaction occurs,
to execute its inner computation. To the contrary, an observed component does not need
to be notified that it has been observed. Finally, we denote by invlκ(a) the set of all
components involved in the execution of a, i.e. invlκ(a) = participants(a)∪observedκ(a).

Definition 5.5. Let B = κγ(B1, . . . , Bn) be a BIC model. The centralized engine for
this model is defined as the Send/Receive BIP component E = (LE , PE , TE , XE ,
{Xp}p∈PE , {gτ}τ∈TE , {fτ}τ∈TE )

• The set LE of places is the union of the waiting places {wi | i ∈ {1, . . . , n}}, the
receive places {ri | i ∈ {1, . . . , n}} and the sending places {sp | p ∈ P}. Recall
that P is the set of all ports exported by the components B1, . . . , Bn.

• The set XE of variables contains a copy of each variable exported by an offer port
{xE | x ∈

⋃

i∈{1,...,n}X
SR
oi
}.

• The set PE of ports is {oEi | i ∈ {1, . . . , n}} ∪ {p
E | p ∈ P} ∪ γ, which are

respectively receive ports, send ports and unary ports. The variables attached to
each port oEi for i ∈ {1, . . . , n} are XoEi

= {xE | x ∈ XSR
oi
}. Similarly, the variables

attached to each port pE for p ∈ P are XpE = {xE | x ∈ Xp}. Unary ports do not
have any attached variables.

• The set TE of transitions consists of the following:

– receive offer : for each i ∈ {1, . . . , n}, TE contains the transition (wi, o
E
i , ri).

This transition has no guard nor update function.

98



– send notification: for each port p ∈ P , let i be the index of the component
exporting p, i.e. such that p ∈ Pi, T

E contains the transition (sp, p
E , wi).

This transition has no guard nor update function.

– execute interaction a: for each interaction a ∈ γ, TE contains the transition
τa = ({ri | Bi ∈ invlκ(a)}, a, {sp | p ∈ a} ∪ {ri | Bi ∈ observedκ(a)}). This
transition is guarded by

gEτa =
∧

p∈a

xEp ∧GE
a ∧ κEa

where the predicate φE is obtained by replacing each occurrence of a variable x
in the predicate φ by its local copy xE , and each occurrence of a at ℓ predicate
by the test @E

i = ℓ, where i is the index such that ℓ ∈ Li.

The associated update function fE
τa is obtained by replacing each occurrence

of a variable x in the data transfer function Fa by its local copy xE , that is,
fE
τa = FE

a .

w1 w3 w2 w4

r1

oE1
r2

oE2
r3

oE3
r4

oE4

sun1slo1
spl1 sun2slo2

spl2sd1usd1l sd2l sd2u srec2srec1 sthink

unE
1loE

1 plE1 d1u
Ed1l

E recE1unE
2loE

2 plE2d2u
Ed2l

E recE2 thinkE

w1 w2w3 w4

load1 unload1 load2 unload2 play1 play2 think

Figure 5.4: Petri net of the centralized engine for the model from Figure 5.1.

Example 5.6. Figure 5.4 presents the Petri net of the centralized engine obtained from
the input model from Figure 5.1. Note that here we assume B1 = Disc1, B2 = Disc3,
B3 = Jukebox and B4 = Listener. The execution of the interaction load1 requires that
both offers from B1 (Disc1) and B3 (Jukebox) have been received, since it takes tokens in

places r1 and r3. Furthermore, this interaction is guarded by xElo1
∧xEd1l∧

[

cE1 ≤
CE

2 + 2
]

,

which ensures (1) that the port of the interaction are enabled and (2) that the guard
of the original interaction evaluates to true. Note that this guard uses the local copy of
the variables, which have been refreshed on the last offer as they are associated to the
offer port. The execution of this transition puts one token in slo1 and one token in sd1l ,
indicating that a notification has to be sent on these ports. As the original interaction
does not have a data transfer function, there is no update function on that transition.

99



The interaction unload1 yields a similar transition, with additional (dotted) edges from
and to the place r4. Indeed, unload1 is originally a low priority interaction and therefore
the engine must ensure that play1 cannot execute before executing unload1. This is
done through the Condition predicate ¬atL1 ∨ ¬atA, which needs to check the state of
B4 (Listener), i.e. B4 is in observedκ(unload1). The guard of the transition unload1

is xEun1
∧ xEd1u ∧

(

¬(@E
1 = L1) ∨ ¬(@

E
4 = A)

)

. The dotted edges ensure that there is a
token in the place r4, meaning that the offer has been received and not consumed yet
and therefore the value of @E

4 is still valid.

5.2.3 Connecting the Engine and the Distributed Components

The whole distributed model is obtained by composing the distributed version of the
atomic components and the engine using Send/Receive interactions.

Definition 5.7. Given a model κγ(B1, . . . , Bn), we define its distributed version with
a centralized engine as the Send/Receive BIP model γSR(BSR

1 , . . . , BSR
n , E), where γSR

is defined as follows:

• for each component Bi, γ
SR contains the Send/Receive interaction {oi, o

E
i } where

oi is a send port and oEi is a receive port.

• for each port p ∈ P , γSR contains the Send/Receive interaction {pE , p} where pE

is a send port and p is a receive port.

• for each interaction a ∈ γ, γSR contains the unary interaction {a}, where a is the
unary port exported by the engine.

BSR
1 BSR

2 BSR
3 BSR

4

o1
lo1

un1 pl1
o2

lo2
un2 pl2

o3
d1l d1u d2l d2u

o4 rec1 rec2 think

oE
1 loE

1
unE

1
plE

1

oE
2 loE

2
unE

2
plE

2

oE
3

oE
4 recE

1
recE

2 thinkEd1l
E d1u

E d2l
E d2u

E

Engine

load1 unload1 play1 load2 unload2 play2 think

Figure 5.5: Global view of the solution with the centralized engine for the model from
Figure 5.1.

Recall that a Send/Receive interaction copies variables attached to the send port to
variables attached to the received port. Here, the offer interaction from component Bi

copies the value of each variable x ∈ Xoi to the variable xE ∈ XE
oi
. Similarly, the

notification copies the value of the variable xE ∈ XE
p to the corresponding variable

x ∈ Xp. Figure 5.5 presents the Send/Receive BIP model obtained from the model in

100



Figure 5.1. This centralized solution is very similar to the one provided in [9], with the
difference that in our case, the engine is a component in the model. In particular, the glue
provided by the Send/Receive interactions can be replaced by Send/Receive primitives.
The Send/Receive model executed with the glue provided by low-level Send/Receive
primitives yields the same behavior as the Send/Receive model executed according to
the centralized BIP semantics.

5.3 Correctness

We show that the transformation developed in this chapter is correct, that is the dis-
tributed model is observationally equivalent to the original model. Before proving the
observational equivalence, we show that the built model is a valid Send/Receive model.

5.3.1 Validity of the Target Model

The Definition 5.2 specifies the class of Send/Receive models. The first two criteria of
this definition are syntactic, namely only Send/Receive or unary interaction are allowed
and each send port participate in exactly one Send/Receive interaction. These criteria
are met by the previous definition. The third criterion of the Definition states that
whenever a send port is enabled, the associated receive port will unconditionally become
enabled within a finite number of transitions in the receiver component. This criterion
requires more thorough attention. We prove in Lemma 5.8 a stronger assumption, that
is, the receive port is enabled as soon as the send port becomes enabled.

Lemma 5.8. Let γSR(BSR
1 , . . . , BSR

n , E) be the Send/Receive model obtained from κγ(B1,
. . . , Bn). Then, at each reachable state of the Send/Receive model, whenever a send-port
s is enabled, the associated receive-port r is already enabled.

Intuitively, this property holds since each component starts listening to any notification
as soon as it sends an offer. Dually, the scheduler starts listening again to offers from a
given component as soon as it sends a notification to that component.
Proof: Let BSR

i be a Send/Receive atomic component. We show that all Send/Receive
interactions involving BSR

i meet the statement of the lemma. Recall that each atomic
component has an associated token in the engine. The token is either in a waiting place,
in a receive place or in a sending place. We distinguish the following configuration, for
the state of BSR

i and the location of the corresponding token:

i) BSR
i is in a busy control location and the corresponding token is in the wi place.

(This is the initial state.) The send-port oi is enabled as well as the receive-
port oEi . Thus, the property holds for the initial configuration, and in general for
configurations of this form. Moreover, by executing this request interaction, we
fall into the second configuration.

ii) BSR
i is in a stable control location and the associated token is in the ri place. From

this configuration, no send-port involving a communication between BSR
i and E is

101



enabled. Only the token in the engine can move, provided a unary interaction is
executed.

iii) BSR
i is in a stable state and the associated token is in a sending place sp. At that

state, the send port pE is enabled. By construction, the place sp can be reached
only if the variable xp was previously set to true by BSR

i before sending the offer.
Therefore, from the current (stable) state in BSR

i , there is a transition labeled by
the receive port p. Thus, the Send/Receive interaction {pE , p} is possible and by
executing it, we reach back the first configuration. �

5.3.2 Observational Equivalence

In order to prove that the model obtained after transformation implements the original
model, we use the notion of observational equivalence. An observational equivalence
is defined between two transition systems A = (QA, P ∪ {β},−→A) and B = (QB, P ∪
{β},−→B). It is based on the usual definition of weak bisimilarity [66], where β-transitions
are considered unobservable.

Definition 5.9 (Weak Simulation). A weak simulation over A and B is a relation
R ⊆ QA × QB such that we have ∀(q, r) ∈ R, a ∈ P : q

a
−→A q′ =⇒ ∃r′ : (q′, r′) ∈

R ∧ r
β∗aβ∗

−−−−→B r′ and ∀(q, r) ∈ R : q
β
−→A q′ =⇒ ∃r′ : (q′, r′) ∈ R ∧ r

β∗

−→B r′

A weak bisimulation over A and B is a relation R such that R and R−1 are weak
simulations. We say that A and B are observationally equivalent and we write A ∼ B if
for each state of A there is a weakly bisimilar state of B and conversely.
To compare the original and the Send/Receive model, we have to precise which in-

teractions are observable. For the high-level BIC model the actions are the interactions
and all interactions are observable. The corresponding actions are the unary interactions
in the engine of the Send/Receive model. In particular, Send/Receive interactions are
unobservable.
Let us fix some notations. Let q⊥, r⊥ ∈ QSR be two states of BSR and a ∈ γSR be

an interaction such that q⊥
α
−→γSR r⊥. We rewrite q⊥

β
−→γSR t⊥ if α is a Send/Receive

interaction, otherwise α = a ∈ γ is a unary interaction and is observable in BSR.

Lemma 5.10. The transition system (QSR, {β},
β
−→γSR) is terminating and confluent.

Proof. The behavior of Send/Receive atomic components imposes that each offer is
followed by a notification and each notification is followed by an offer. A notification can
be immediately followed by an offer. However, between an offer and the corresponding
notification, one of the unary interaction must occur to move the token associated to the
component from the received to the waiting place. By doing only β transitions, at most
one notification can be received and one offer can be sent by each component. Therefore
the transition system terminates in at most 2n steps.

Recall that components are deterministic. By construction,β transitions affect in-
dependent places and variables in the engine. Therefore, if two β transitions can be

102



executed from a given state, both orderings are possible and reach the same state. Thus
the transition system is confluent.

Formally, for any state q⊥, we denote by [q⊥] the unique state that is reached by
executing all the possible Send/Receive interactions. The state [q⊥] verifies the property

q⊥ −→ β∗
SR[q

⊥] and [q⊥]
β

6→SR. Furthermore, Lemma 5.11 asserts that, at state [q⊥],
atomic components are in a stable state and variables in the engine have the same value
as the corresponding variables in components.

Lemma 5.11. At state [q⊥] = ((ℓ1, v1), . . . , (ℓn, vn), (m, vE)), we have

• ∀i ∈ {1, . . . , n}, ℓi /∈ L⊥, and

• ∀xE ∈ XE s.t. x ∈ Xi, vi(x) = vE(xE).

Proof. By construction of the distributed atomic components, for each busy state ⊥ℓ

there is one outgoing offer transition (to state ℓ) labeled by a send port, with a guard that
is always true. According, to Lemma 5.8 the associated offer transition is always possible
when the sender port is enabled. Therefore, at state [q⊥] every atomic component is in
a stable state.
According to the proof of Lemma 5.8, a token in the engine cannot be in its waiting

place whenever the corresponding component is in a stable state (unreachable configu-
ration). Sending places cannot contain tokens, since the notification interactions would

be possible, which contradicts [q⊥]
β

6→SR. Thus, tokens are in received places at [q⊥].
Furthermore, for each variable xE ∈ XE , the last modifying transition was the offer
from the corresponding atomic component Bi, which ensures vE(xE) = vi(x).

A direct corollary of Lemma 5.11 is that at state [q⊥] = ((ℓ1, v1), . . . , (ℓn, vn), (m, vE)),
the value of each the variable @E

i in E is the same as in the atomic component. In the
atomic components, the value of @i is the current stable state, therefore vE(@E

i ) = ℓi.
To prove the correctness of our transformation, we exhibit a relation between the

states of the original model and the states of the distributed model and prove that
it is an observational equivalence. We define the relation by assigning to each state
q⊥ ∈ QSR an equivalent state equ(q⊥) ∈ Q. This function considers only the states of
distributed atomic components at [q⊥]. According to Lemma 5.11, at [q⊥] = ((ℓ⊥1 , v

⊥
1 ),

. . . , (ℓ⊥n , v
⊥
n ), (m, vE)) atomic components are in stable control states. Therefore control

states ℓ⊥i are valid control states for the original atomic components. Similarly, by
restricting each valuation v⊥i to the variables that are present in the original atomic
component Bi, we obtain a valuation vi = v⊥i |Xi\X⊥

i
that is a valid valuation for Bi.

With the previous notations, we define equ(q⊥) = ((ℓ⊥1 , v1), . . . (ℓ
⊥
n , vn)).

Theorem 5.12. Let BSR = γSR(BSR
1 , . . . , BSR

n , E) be the Send/Receive model obtained
from B = κγ(B1, . . . , Bn). B and BSR are observationally equivalent when hiding all
Send/Receive interactions in BSR.

Proof. We define the relation R = {(q, q⊥) ∈ Q × QSR | equ(q⊥) = q}. Let q, r ∈ Q be
some states of B, q⊥, r⊥ ∈ QSR be some states of BSR, and a ∈ γ an interaction. Since

103



there is no unobservable action in the original model, R is an observational equivalence
if it meets the following properties:

(i) If (q, q⊥) ∈ R and q⊥
β
−→γSR r⊥, then (q, r⊥) ∈ R.

(ii) If (q, q⊥) ∈ R and q⊥
a
−→γSR r⊥, then ∃r ∈ Q such that q

a
−→κ r and (r, r⊥) ∈ R

(iii) If (q, q⊥) ∈ R and q
a
−→κ r then ∃r⊥ ∈ QSR, such that q⊥

β∗a
−−→γSR r⊥ and (r, r⊥) ∈ R

The property (i) is a direct consequence of the confluence of
β
−→: if q⊥

β
−→γSR r⊥ then

Lemma 5.10 implies [q⊥] = [r⊥] and thus equ(q⊥) = equ(r⊥).

q⊥ r⊥
a

[q⊥]

β∗

r′⊥
a

β∗

q r
a

[r⊥]
β∗

Figure 5.6: Point (ii) of the proof of Theorem 5.12.

To prove property (ii), we observe that the unary interaction a is enabled in the en-
gine at state q⊥. Therefore, offers from the participants in a as well as the components
observed by a have been received. The values of variables corresponding to these compo-
nents cannot be modified when reaching the state [q⊥], since β transitions, i.e. receiving
other offers, modify distinct variables in the engine. As shown in Figure 5.6, if a is
possible at state q⊥, it remains possible at state [q⊥]. Let us expand a as {pi}i∈I . If the
transition a is possible in the engine, each variable xEpi is true, and by construction of

the distributed atomic component Bi, we have qi
pi−→i. By Lemma 5.11, if GE

a evaluates
to true in E then Ga evaluates at state true equ(q⊥) = (q1, . . . , qn). Similarly, if κEa
evaluates to true in E, κa(equ(q

⊥)) also evaluates to true by Lemma 5.11. Thus we have
equ(q⊥)

a
−→κ r.

By applying update function FE
a and executing notification transitions, one reaches

a state where values in distributed atomic components participant in a is the same the
values in original atomic component after executing a. These values are not changed

through the subsequent offers, therefore (r, [r⊥]) ∈ R and since r⊥
β
−→ [r⊥], we have

(r, r⊥) ∈ R.
To prove (iii), we assume that q

a
−→κ r is valid in the original model. By definition

of [q⊥], we have q⊥
β∗

−→ [q⊥]. As in the previous case, the Lemma 5.11 ensures that
if the interaction a is possible in the original atomic component at state equ(q⊥), then

the transition a is also possible in the engine at state [q⊥]. Therefore we have q⊥
β∗

−→
[q⊥]

a
−→ r⊥. As previously, executing the transition in the engine and sending notification

to participating components yields the same results as executing the interaction in the
original model. Thus (r, r⊥) ∈ R.

104



5.4 Taking Decision Earlier: Knowledge-Based Optimization

Before executing an interaction a, the engine has to wait for an offer from each component
in participants(a) and in observedκ(a). Since executing an interaction changes the state
its participants, waiting for an offer from each of them cannot be avoided.
However, it is not always mandatory to wait for all observed components. Assume for

instance an interaction a whose condition predicate is κa = X ∨ Y , where X depends
only on component B1 and Y depends only on component B2. In the case where B1

has sent its offer and the offer satisfies X, then the predicate κa holds. In that case,
a could safely be executed but the engine waits that all components in observedκ(a)
have their offer. This pattern occurs very often with Condition predicates obtained from
Priority, whenever κa checks that an interaction is not enabled. For instance, if a has
less priority than b, which involves port p of B1 and port q of B2, then the predicate κa
is ¬EN1

p ∨ ¬EN2
q .

In this section, we propose to use distributed knowledge based on the local state, as
in Section 3.1, to replace a given Condition κ by a new one κ′. The new Condition κ′ is
based on knowledge obtained from an over approximation of the reachable states and,
for each interaction a, a restricted set of components to observe.

There is a tradeoff between minimizing the number of observed components in κ′ and
maximizing the number of transitions valid for κ that are also detected to be valid by
κ′. In the case of a Condition predicate κa = X ∨ Y , where X is entirely determined
by observing B1, and Y by observing B2, one could decide to observe only B1. The
resulting condition predicate κ′a = X would not detect that a can execute whenever only
Y holds. To characterize how much of originally valid transitions are detected, we define
detection levels. Such a detection level should guarantee, for instance, that no deadlocks
are introduced.
In Subsection 5.4.1, we show how distributed knowledge can be used to compute

a correct Condition layer, providing the set of components to observe is given. We
also define two detection levels that characterize the system according to the observed
components. In Subsection 5.4.2, we provide heuristics that try to minimize the number
of observed components, while ensuring a given detection level.

5.4.1 Building a Condition with Reduced Observation

This Subsection defines a new Condition κ′ built using the distributed knowledge of κ
as presented in Section 3.1. This new Condition is parameterized by assigning to each
interaction a ∈ γ a set of components obs(a) that restrict observation. We require that
obs(a) ∩ participants(a) = ∅. Furthermore, an over approximation R̃ of the reachable
states is needed to compute the knowledge. Such an approximation can be provided by
the invariants presented in Subsection 7.2.2.

Definition 5.13. Given a BIC model κγ(B1, . . . , Bn) and sets of observed components
{obs(a)}a∈γ , the Condition κ′ with reduced observation associates to each interaction
a ∈ γ the predicate

κ′a = KR̃
La
κa

105



where La = participants(a) ∪ obs(a).

According to Proposition 3.4, we have κ′a =⇒ κa. Furthermore, since κ′a is ac-
tually a knowledge predicate, it depends only on the state of components in La. In
other words, the actual set of observed component for each interaction a is exactly
observedκ′(a) = La \ participants(a). Since La is the disjoint union the participants in
a and the components in obs(a), we have observedκ′(a) = obs(a). Therefore, we assume
in the sequel that observedκ′(a) is a parameter of κ′.
By restricting too much the sets observedκ′(a), one takes the risk of always obtaining

κ′a = false, as the observation might not be sufficient to ensure knowledge of κa. We
define two criteria characterizing different detection levels, namely basic and complete.

Definition 5.14 (Detection levels). Let κγ(B1, · · · , Bn) be a BIC model and κ′ be the
Condition obtained by restricting observation in κ. The obtained Condition κ′ is:

• basic iff ∀q ∈ R̃
∨

a∈γ

ENa(q) ∧ κa(q) =
∨

a∈γ

ENa(q) ∧ κ′a(q).

• complete iff for each interaction a ∈ γ: ∀q ∈ R̃ κ′a(q) = κa(q).

Theorem 5.15 below, relates the detection levels and corresponding guarantees on
the model equipped with the computed Condition κ′. Baseness ensures that κ′ does
not introduce deadlocks. Completeness ensures that the global behavior of the model
equipped with κ and the model equipped with κ′ are the same.

Theorem 5.15. Let κγ(B1, · · · , Bn) be a BIC model and κ′ be the Condition obtained
by restricting observation in κ. Then, −→κ′⊆−→κ and:

1. If κ′ is basic, then q ∈ Q is a deadlock for −→κ′ only if q is a deadlock for −→κ.

2. If κ′ is complete, then −→κ′=−→κ.

Proof. Since for each a ∈ γ, κ′a =⇒ κa, we have −→κ′⊆−→κ.
1. By contraposition, let q ∈ Q be a deadlock-free state for −→κ, i.e. such that
∃a ∈ γ ENa(q)∧ κa(q). Baseness ensures that

∨

a∈γ ENa(q)∧ κ
′
a holds and thus ∃b ∈ γ

such that ENb(q) ∧ κ′b(q). Thus q
b
−→κ′ and q is a deadlock-free state for −→κ′ .

2. Assume that q
a
−→κ q′. Then κa(q) holds and q

a
−→γ q′. Completeness ensures that

κ′a(q) also holds. Thus q
a
−→κ′ q′.

These results characterize to what extent the original behavior can be captured through
partial observation. However, they do not state how to choose components in order to
ensure a given detection level. In the next subsection, we propose heuristics that min-
imize the number of observed atomic components, yet ensuring the required detection
level.

106



5.4.2 Heuristics to Minimize Observed Components

In this Subsection, we propose for each detection level defined in 5.14 a heuristic that
takes as input a BIC model and outputs minimized sets of observed components {observedκ′(a)}a∈γ .
Each of these heuristics guarantees that the reduced Condition κ′ built using the returned
sets of observed components meets the corresponding detection level. The results depend
upon the approximation R̃ of the reachable states used for computing the knowledge.
We assume throughout this subsection a fixed over approximation R̃ of the reachable
states.

Algorithm 1 Pseudo-code of Simulated Annealing

Input: An initial solution init, a cost function, an alter function.
Output: A solution with a minimized cost.
1: sol:=init
2: T :=Tmax

3: while T > Tmin do

4: sol′ := alter(sol)
5: ∆ := cost(sol′) - cost(sol)

6: if ∆ < 0 or random() < e
−∆
T then

7: sol:=sol′

8: end if

9: T := 0.99× T
10: end while

11: return sol

The proposed solution to the minimizing observation problem is based on simulated
annealing meta heuristic [59]. A pseudo-code for the simulated annealing is shown in
Algorithm 1. This heuristic allows searching for optimal solutions to arbitrary cost opti-
mization problems. The search through the solution space is controlled by a temperature
parameter T . At every iteration, temperature decreases slowly (line 9) and the current
solution moves into a new, nearby solution still ensuring either baseness or completeness
(line 4). If the new solution is better (i.e. observes fewer components), then it becomes
the current solution. Otherwise, it may be accepted with a probability that decreases
when (1) the temperature decreases or (2) the extra cost of the new solution increases
(line 6). The idea is to temporarily allow a bad solution whose neighbors may be better
than the current one. By the end of the process, the temperature is low, which prevents
bad solutions from being accepted. Now, we provide initial solutions init as well as
alter and cost functions that are used to ensure either completeness or baseness.

Ensuring Completeness

According to Definition 5.14, checking for completeness is performed interaction by in-
teraction, Therefore, minimizing observation can be carried out independently for each
interaction. Given an interaction a we are seeking for a minimal set of atomic compo-

107



nents La such that KR̃
La
κa = κa. Note that finding such a set La yields the corresponding

set of components to observe by taking observedκ′(a) = La \ participants(a).

Algorithm 2 Function alter for ensuring completeness

Input: A BIC component κγ(B1, . . . , Bn), an interaction a and a solution La.
Output: A solution L′a that is a neighbor of La.
1: L′a:=La
2: choose Bi in L

′
a \ participants(a)

3: L′a:=L
′
a \{Bi} //perturbation

4: while KR̃
L′
a
κa 6= κa do

5: choose Bi in {B1, . . . , Bn} \ L
′
a

6: L′a:=L
′
a ∪ {Bi} //completion

7: end while

8: if L′a = participants(a) then
9: return L′a

10: end if

11: choose B′
i in L

′
a \ participants(a)

12: while KR̃
L′
a\{B

′
i}
κa = κa do

13: L′a:=L
′
a \ {B

′
i} //reduction

14: if L′a = participants(a) then
15: return L′a
16: end if

17: choose B′
i in L

′
a \ participants(a)

18: end while

19: return L′a

The initial solution is obtained by taking the set of atomic components that are needed
to decide κa, that is inita = participants(a) ∪ observedκ(a). At each iteration of the
simulated annealing, a new solution is computed using the alter function shown in
Algorithm 2. First, one atomic component is removed from the solution (perturbation,
line 3), possibly breaking completeness. Then, new atomic components are added ran-
domly until the solution ensures complete detection again (completion, line 6). Finally,
atomic components are removed randomly, provided they do not contribute to complete-
ness (reduction, line 13).
After completion and during reduction steps, the completeness condition is checked

(line 12). On termination, this ensures that the solution returned by the heuristic is
complete. During this steps, if only participants in the interaction remain in L′a, then
the solution is optimal because no observed components can be further removed. In that
case, the set of participants is returned.
The cost of the solution is obtained by counting the number of atomic components

in observedκ′(a) = La \ participants(a). The cost function is thus cost(La) = |La \
participants(a)|.

During the completion step, the algorithm can choose to observe components that

108



were not originally observed. Indeed, for some models, observing components that are
not in observedκ(a) gives more knowledge than those originally in this set.

Ensuring Baseness

Baseness is achieved if for every state where an interaction is allowed by κ, at least
one interaction is also allowed in κ′. Baseness has to be ensured at a global level. On
one hand, allowing an interaction to observe additional atomic components may extend
the set of states where it knows that it can execute. On the other hand, reducing
observation of the interaction, while restricting the set of possible executions, might
not necessarily break the baseness. Therefore, a solution {La}a∈γ to the minimizing
observation ensuring baseness cannot be built independently for each interaction.

Algorithm 3 Function alter for ensuring basic detection of false conflicts

Input: A BIC component κγ(B1, . . . , Bn), a solution {La}a∈γ ,
Output: A solution {L′a}a∈γ that is a neighbor of {La}a∈γ .
1: {L′a}a∈γ :={La}a∈γ
2: choose b in γ and Bi in Lb \ participants(b)
3: L′b:=L

′
b \{Bi} //perturbation

4: while
∨

a∈γ ENa ∧KR̃
L′
a
κa 6=

∨

a∈γ ENa ∧ κa do

5: choose b in γ and Bi in {B1, . . . , Bn} \ Lb
6: L′b:=L

′
b ∪ {Bi} //completion

7: end while

8: if
∧

a∈γ L
′
a = participants(a) then

9: return {L′a}a∈γ
10: end if

11: choose b in γ and Bi in Lb \ participants(b)

12: while
∨

a 6=b

(

ENa ∧KR̃
L′
a
κa

)

∨
(

ENb ∧KR̃
L′
b
\{Bi}

κb

)

=
∨

a∈γ ENa ∧ κa do

13: L′b:=L
′
b \ {Bi} //reduction

14: if
∧

a∈γ L
′
a = participants(a) then

15: return {L′a}a∈γ
16: end if

17: choose b in γ and Bi in Lb \ participants(b)
18: end while

19: return {L′a}a∈γ

The initial solution assumes that each interaction a observes all atomic components
that are needed to decide κa, that is inita. Thus the initial solution is init = {inita}a∈γ .
As for completeness, the alter function for baseness presented in Algorithm 3 computes
a new solution based on the same three steps (perturbation,completion,reduction) being
performed on a family of sets of observed atomic components, instead of a single set.
After completion and during reduction steps, the baseness condition is checked (line 12).

This guarantees that the returned solution is basic. During reduction step, it can occur

109



that no observed components can be removed, that is, for each interaction a, La contains
only the participants in a. In that case, the solution is directly returned.

Here the cost of the solution is the sum of the number of atomic components observed
by each interaction. Thus, we define the cost function as cost({La}a∈γ) =

∑

a∈γ |La \
particpants(a)|.

The simulated annealing algorithm is evaluated in Section 8.3. We try to reduce the
set of observed for two different examples. We compare the costs of the best solution
found when using linear invariants and boolean invariants, for both basic and complete
implementations.

110



6 Decentralizing the Engine

In the previous chapter, we defined a distributed model relying on a single centralized
engine for executing all interactions. Such distributed models allow parallelism between
computations in the components. However, concurrency between interactions is not
possible since they are executed within the same distributed component.
This Chapter provides methods for decentralizing the engine into a set of concurrent

decentralized engines. Each decentralized engine is responsible for executing a given
subset of the interactions. The decentralization is therefore parameterized by a partition
of the interactions, each class of the partition corresponding to a separate engine.
Partitioning the interactions into several engines introduces conflicts between engines,

as explained in Section 6.1. These conflicts are caused either by the Interaction or by the
Condition layers. In the first case, conflicts happen when a component can participate
in two different interactions. In the second case, conflicts happen when interaction a
observes a component involved in interaction b.

A solution to avoid introducing conflicts between engines consists in grouping con-
flicting interactions in the same engines. This solution leads to a conflict-free partition.
The distributed model obtained from a conflict-free partition is sketched in Section 6.2.
Engines in this distributed model are very similar to the centralized engine.
As considering only conflict-free partitions restricts significantly the design choices, we

provide a solution that handles any partition in Section 6.3. In order to solve conflicts
between engines, this construction incorporate a conflict resolution protocol. We propose
three different conflict resolution protocols from Bagrodia [6], that rely on counters.
We prove correctness of the distributed model embedding the centralized version of
the conflict resolution protocol through observational equivalence. The correctness of
distributed models embedding other protocols is proven through trace equivalence.
Finally, we present another conflict resolution protocol, named α-core [73], in the

Section 6.4. The protocol is described by two generic automata, one implementing a
component, called participant, and one implementing a coordinator that is responsible
for one interaction. We quickly present how this protocol is implemented in a distributed
BIP model.
The α-core protocol avoids using counters but requires a handshake mechanism to

cancel each unused offer. We present in Section 6.5 an optimization for this protocol,
that reduces the number of messages. This optimization can be applied as well to the
3-layer model, although it is not described in this section.
Finally, in Section 6.6, we discuss the different approaches presented in the chapter.

In particular, we try to see how the interesting points of each solution can be applied to
the other ones.

111



6.1 Conflicts

In general, there is a conflict between two entities whenever there are competing to use
a given resource. When decentralizing the engine, the resources being used are the offers
sent by the components.

ℓ

p q

p q

a b

⊥ℓ

ℓ

o

p q

p qo

engine

handling a

engine

handling b

Decentralization

Figure 6.1: An interaction conflict between a and b.

Consider the simple fragment of model presented on the left of Figure 6.1. Whenever
the component reaches the control state ℓ, it can either execute the transition labeled
by p or the one labeled by q but not both.

When decentralizing the model, assuming that interactions a and b are handled by
separate engines, we obtain the fragment on the right of Figure 6.1. In the decentralized
case, the component first sends an offer during the transition from ⊥ℓ to ℓ. As the next
interaction involving the component can either be a through port p or b through port
q, the offer is sent to both the engine handling a and the engine handling b. At this
point, a conflict arises as only one of the engines should respond to the offer, since the
component can execute only one of the transitions outgoing from ℓ.

In the previous example, the conflict is said to be an interaction conflict as it comes
from the Interaction layer. This is a symmetric conflict. The Condition layer introduces
some asymmetric conflicts.

B2
ℓ

p

p

c. . . . . .

B1

p1

a
κa = at ℓ
. . .

B3

p3

b
κb = at ℓ

. . .

BSR
2

p

BSR
1

p1

BSR
3

p3o1

engine

for a

o2

engine

for c

o3

engine

for b

Decentralization

Figure 6.2: Condition conflicts and non-conflicts.

On the left of Figure 6.2, we represented a fragment of a model with Condition. In
that model, the component B2 is observed by a and b. Furthermore, B2 is a participant
in c.

112



When decentralizing this fragment, one obtains the fragment depicted on the right of
Figure 6.2. Since the component B2 is observed by a and b, it has to send its offer to the
engines handling a and b. The engine handling c can execute it directly (provided there
is no other conflicts). However, the engine handling a has to ensure that the Condition
predicate κa holds. In particular, if c is executed, the component B2 will move, possibly
falsifying the predicate κa. This is an asymmetric conflict between a and c: c can execute
without further check whereas a has to check that the component B2 did not move.

On the other hand, two interactions observing the same component are not conflicting.
Indeed, the execution of b in our example has no effect on the fact than a can execute,
although both a and b observe the component B2.

We define formally the Interaction and Condition conflict in the centralized model.

Definition 6.1 (Conflict states). Let B = κγ(B1, . . . , Bn) be a BIC model and a, b ∈ γ
be two interactions.

• a and b are Interaction conflicting if

– participants(a)∩ participants(b) 6= ∅, and

– there is at least a component Bi in the intersection containing a control lo-
cation with an outgoing transition labeled by a port of a and an outgoing
transition labeled by a port of b.

We denote this situation by a# b or equivalently b# a.

• a is Condition conflicting with respect to b if

– observedκ(a) ∩ participants(b) 6= ∅,

– there is a component Bi in the intersection that can execute a transition
labeled by a port of b.

We denote this situation by a � b. Note that this relation is asymmetric.

play1 play2

load1

unload1

load2

unload2

think

Disc1
atL1

#
Disc2
atL2

#

Jukebox
at0

#

� � �

�

�

�

Figure 6.3: Conflict graph of the example from Figure 5.1.

The conflict graph of the example from Figure 5.1
In general, we say that the interactions a and b are conflicting if either a# b, a� b or

b�a. Interaction that are not conflicting do not require a conflict resolution mechanism.

113



Definition 6.2 (Conflict-free interactions). Let B = κγ(B1, . . . , Bn) be a BIC model.
Two interactions a and b in γ are conflict-free if neither a# b, a � b nor b � a.
Two disjoint subsets γ1, γ2 of γ are conflict-free if for all couples (a, b) such that a ∈ γ1

and b ∈ γ2, a and b are conflict-free.

Although we defined conflicts in the centralized model, they only have a meaning
because of the decentralized model. Conflicts between interactions handled by the same
engine are solved locally by the engine, only conflicts between interactions from distinct
engines requires an additional resolution mechanism.

6.2 Conflict-Free Partitioning

In the centralized engine from Chapter 5, conflicts between interactions appear as con-
flicts between Petri net transitions. Interactions that are conflicting correspond to tran-
sitions that share a common input place. The conflict is solved as the Petri net semantics
ensures that if any one of these transitions executes, it consumes the token in the com-
mon input place, thus disabling the other transition. In particular, the semantics allows
conflicts occurring between two interactions to be resolved locally, within the same en-
gine.
A first solution for decentralizing the engine is to keep conflicts inside engines, and

separate only conflict-free interactions. This solution forbids to have two conflicting
interactions handled by different engines. In other words, it requires that the sets of
interactions handled by the different engines are pairwise conflict-free. A version of this
solution, not handling priorities nor Condition has been presented in [24].
Let B = κγ(B1, . . . , Bn) be a BIC model. Recall that a set of subsets γ1, . . . , γk of γ,

is a partition of γ if:

• γ = γ1 ∪ . . . ∪ γk and

• ∀i, j ∈ {1, . . . , k}, i 6= j =⇒ γi ∩ γj = ∅

Furthermore, γ1, . . . , γj is a conflict-free partition if the γi are pairwise conflict-free, that
is if for any two distinct integers i, j in {1, . . . , k}, γi and γj are conflict-free.
Assume that a separate engine is built for each class of a conflict-free partition. Let

BSR
i be a distributed component, sending an offer indicating which ports are enabled

from local state qi = (ℓi, vi). Following the Definition 6.1, all interactions that contains
a port enabled from state qi, or that can observe the component Bi are conflicting.
Since the partition is conflict-free, all these interactions are handled by the same engine.
Therefore, whenever the distributed component is at state (⊥ℓi , vi), it can choose to
which engine send the offer, based on vi.

We do not detail here how distributed atomic component from Definition 5.3 are
modified to handle this case. However, we present a conflict-free decentralized version
of the Jukebox example from Figure 5.1.
First, we need to identify the conflicts between interactions in the Jukebox example

and build a conflict-free partition. Interactions load1 and load2 are Interaction con-
flicting because at state 0, the Jukebox atomic component can execute both of them.

114



Interactions unload i and play i are Interaction conflicting because at state Li, the Disci
atomic component can execute both of them. Furthermore, the Condition predicate of
load i need to observe the state of the Listener component. Consequently, unload1 is
Condition conflicting with respect to play2, think and unload2 is Condition conflicting
with respect to play1, think . To obtain a conflict-free partition, the load i interaction
cannot be separated, neither can the interactions play i and unload i be. Thus we choose
the following partition: γ1 = {load i}i=1,2, γ2 = {unload i, play i}i=1,2 ∪ {think}.

⊥F1

F1o1
1

⊥L1

lo1

c1++;
uL1

;

L1 o2
1

pl1
uL1

;

un1

uF1
;

uF1
=















@1 := F1;
xlo1

:= T ;

xun1
:= F ;

xpl1
:= F ;

uL1
=















@1 := L1;
xlo1

:= F ;

xun1
:= T ;

xpl1
:= T ;

@1
xlo1

xun1
xpl1 c1 data1

un1 lo1 pl1o11 o21

Figure 6.4: Distributed version of the component Disc1 from Figure 5.1 for communicat-
ing with conflict-free engines.

We present the distributed component DiscSR1 in Figure 6.4. When reaching the
stable control location F1, DiscSR1 sends an offer that can only be used by the engine E1

handling γ1. There is a dedicated offer port o11 for this engine. Similarly, when reaching
the control location L1, DiscSR1 sends through the port o21 an offer that can only be used
by the engine E2 handling γ2. The modification consists mainly in creating a separate
offer port for each engine that need to receive offers from the component, and relabel
the offer transitions accordingly.
We present in Figure 6.5 the Petri net of the engine E2 handling the interactions

in γ2. This engine is very similar to the centralized engine, with the exception that
it executes only interactions from γ2. The name of the offer receive ports have been
changed to match the engine name (E2). Send ports do not require distinctive labels, as
conflict-freedom imposes that only one engine can notify a given component on a given
port.
The global conflict-free distributed model is presented in Figure 6.6. For the sake of

readability, the superscripts on engines ports labels have been dropped. This version
contains three additional Send/Receive interactions, as three of the components may
send an offer to both engine. Since the component B4 in not observed nor participant
in any interaction of E1, it sends only offers to E2.
This decentralization method is constrained by the Interaction and Condition conflicts

of the model. In particular, if there a chain of conflicts between any two interactions of
the model, one ends with the centralized engine solution. In order to decentralize the

115



w1 w3 w2 w4

r1

oE2
1

r2

oE2
2

r3

oE2
3

r4

oE2
4

sun1
spl1 sun2

spl2sd1u sd2u srec2srec1 sthink

unE
1 plE1 d1u

E recE1unE
2 plE2d2u

E recE2 thinkE

w1 w2w3 w4

unload1 unload2play1 play2 think

Figure 6.5: Engine E2 handling the class γ2 of the conflict-free partition for the example
from Figure 5.1.

BSR
1 BSR

2 BSR
3 BSR

4

o1
1

o2
1 lo1

un1 pl1 o1
2

o2
2 lo2

un2 pl2 o1
3

o2
3 d1l d2l d1u d2u o2

4
rec1 rec2 think

E1

load1 load2

E2

unload1 play1 unload2 play2 think

o1 lo1
o2 lo2

o3 d1l d2l
o2o1 un2 pl2

o3un1pl1 d1u d2u
o4 rec1 rec2 think

Figure 6.6: Global view of the conflict-free distributed model for the example from Fig-
ure 5.1.

116



engine according to an arbitrary partition, one needs a conflict resolution protocol.

6.3 3-Layer Send/Receive BIP

The 3-layer BIP model contains three kinds of distributed components:

• the distributed atomic components, obtained by transforming the atomic compo-
nents of the original model,

• the distributed engines and

• the conflict resolution protocol components.

These three kinds of components correspond to the three layers of the model. The
distributed atomic components and distributed engines are slightly modified with respect
to the centralized and conflict-free versions. Communication between these two layers
consists of offers and notifications.
In this new model, interactions that are conflicting only with local interactions are

executed through Petri net transitions, as in the centralized version. For executing inter-
actions that are conflicting with interactions from other engines, a reservation request is
sent to the conflict resolution protocol. The latter either grants or deny the execution,
depending on whether conflicting interactions have already executed or not.

B1 B2 B3

a b

Figure 6.7: An example with conflicting interactions.

We shall sketch the conflict resolution mechanism before describing the details. Our
solution relies on Bagrodia’s protocols, described in Subsection 2.3.1. As said at the
beginning of this chapter, the conflicting resources between interactions are the offers
from atomic components. Conflict resolution requires that each offer sent by a component
is used only once. By numbering the successive offers sent by the component, that is by
using a counter, this problem falls back to ensuring that each offer number is used only
once.
To illustrate the principle of conflict resolution based on offer numbers, we consider

the example depicted in Figure 6.7. We assume one engine Ea, handling a, and one
engine Eb, handling b. The resulting three layer model is sketched in Figure 6.8.
In this model, each atomic component Bi numbers the offers (starting from 1) and

stores this values in variable ni. This value is sent with the offer, and stored in the
engine as well.
Whenever an engine detects an enabled interaction, as a in our case, it tries to execute

it. Since a is conflicting with b, handled by another engine, Ea cannot directly execute a.

117



n1 = 1

BSR
1

n2 = 1

BSR
2

n3 = 1

BSR
3

Ea Eb

n1 = 1
n2 = 1

n2 = 1
n3 = 1

o(1) o(1) o(1) o(1)

N1 = 0 N2 = 0 N3 = 0

rsva

(

n1 = 1
n2 = 1

)

BSR
1 BSR

2 BSR
3

n1 = 2 n2 = 2 n3 = 1

Ea Eb

n1 = 1
n2 = 1

n2 = 1
n3 = 1

a a

N1 = 1 N2 = 1 N3 = 0

oka rsv b

(

n2 = 1
n3 = 1

)

a granted b denied

Figure 6.8: Principle of conflict resolution based on offer numbers.

Instead, it calls the conflict resolution protocol through a reservation rsva that contains
the offer numbers for which a has been detected enabled. The model on left of Figure 6.8
depicts the global state just before the reservation is sent.
For each component Bi, the conflict resolution protocol maintains the last offer number

used in a variable Ni. On the left of Figure 6.8, no interaction have been granted yet
and the values of all Ni variables is 0. Since all offer numbers ni in the reservation from
a are greater than the corresponding last used offer number Ni, execution is granted.
To prevent conflicting interactions from reusing the current offers from BSR

1 and BSR
2 ,

the conflict resolution protocol updates the last used offer numbers N1 to the value of
n1 and N2 to the value of n2.

On the right of Figure 6.8, a has executed and its participants have incremented their
offer number. From the point of view of Eb, the interaction b is enabled. Therefore Eb

also sends a reservation to the conflict resolution protocol. The offer number n2 in the
reservation is 1, which is not greater than the last offer number N2 used for BSR

2 . The
conflict resolution protocol thus denies execution of b by sending a fail b message (not
shown on the figure).
The above example shows an example of Interaction conflict resolution. It is the orig-

inal protocol from Bagrodia. The case of Condition conflicts needs a small modification.
Let a be an interaction. Components in participants(a) move after executing a, therefore
the offer that was sent to execute a is not valid anymore. The offer sent by a component
in observedκ(a) remains valid after a has executed, since the component did not move.
However, executing a requires to check that the offer sent by the observed component
is still valid. To this end, the reservation for a also includes the offer numbers from
the observed components. The interaction is granted only if for all components, the
offer number from the reservation is greater than the last offer number used. Only last
used offer variables of participants are updated, offers from observed components may
be reused.
We now detail the construction of the three layer model. The input parameters are

a BIC model κγ(B1, . . . , Bn) and a partition γ1, . . . , γk of the interactions. To illustrate
the construction of the Send/Receive model, we consider the example from Figure 5.1,

118



with the partition {load1, unload1}, {load2, unload2}, {play1, play2, think}.

6.3.1 Distributed Atomic Components

As in Definition 5.3, we obtain the distributed version of the atomic components by
breaking the atomicity of the transitions. This definition differs slightly from Defini-
tion 5.3. Namely, we add the offer count variable and a separate port oj for each class
γj of the partition. This port is used to send offers to the corresponding engine Ej .

Definition 6.3. Let B = (L, P , T , X, {Xp}p∈P , {gτ}τ∈T , {fτ}τ∈T ) be an atomic
component, and Xκ ⊆ X be a set of variables needed by the Condition layer. The corre-
sponding Send/Receive atomic component is BSR = (LSR, P SR, T SR, XSR, {XSR

p }p∈P ,
{gτ}τ∈TSR , {fτ}τ∈TSR), such that:

• LSR = L ∪ L⊥, where L⊥ = {⊥j
ℓ |j ∈ {1, . . . , k} ℓ ∈ L}.

• XSR = X ∪ {xp}p∈P ∪ {@} ∪ {n}, where each xp is a new Boolean variable, @ is
a control location variable and n is the offer count variable.

• P SR = P ∪ {o1, . . . , ok}, where each offer port oj exports the variables XSR
oj

=
{n,@} ∪

⋃

p∈P ({xp}∪Xp)∪X
κ, that is the offer count variable, the state variable,

the new Boolean variables as well as the exported variables associated to each port,
and the variables needed for the Condition layer. For all other ports p ∈ P , we
keep XSR

p = Xp.

• For each location ℓ ∈ L, we include the offer transitions {(⊥1
ℓ , o

1,⊥2
ℓ ), (⊥

2
ℓ , o

2,⊥3
ℓ ),

. . . (⊥k
ℓ , o

k, ℓ)} in TSR. Each of these transitions has true as guard and the identity
function as the update function.

• For each transition τ = (ℓ, p, ℓ′) ∈ T , we include a response transition τp = (ℓ, p,⊥ℓ′

) in TSR. The guard gτp is true. The function fτp first applies the original update
function fτ , increments the offer count variable n, then sets the state variables to
the next control location (i.e. @ := ℓ′) and finally updates the Boolean variables:

for all r ∈ P xr :=

{

gτ ′ if ∃τ ′ = (ℓ′, r, ℓ′′) ∈ T
false otherwise

The distributed version of the Disc1 component from the example in Figure 5.1 is
depicted in Figure 6.9. The input partition has 3 classes, therefore there are three
offer ports. Before reaching a stable state, each offer port has to send an offer to the
corresponding engine. Whenever the distributed component reaches a stable state, all
offer have been sent.
This version sends all the port variables, all data exported by at least one port and all

data needed to evaluate Condition predicate to each engine. An optimization would be
to send an offer to an engine only if the offer contains a port involved in the interaction
of the engine, or if the component is observed by an interaction of the engine. Similarly,
one could send data only if the port exporting them is enabled.

119



⊥1
F1

⊥2

F1

o1
1

⊥3

F1o2
1

F1

o3
1

⊥1
L1

lo1

c1++;
uL1

;

⊥2

L1

o1
1

⊥2

L1

o2
1

L1
o3
1

pl1
uL1

;

un1

uF1
;

uF1
=























n + +;
@1 := F1;
xlo1

:= T ;

xun1
:= F ;

xpl1
:= F ;

uL1
=























n + +;
@1 := L1;
xlo1

:= F ;

xun1
:= T ;

xpl1
:= T ;

@1 n xlo1
xun1

xpl1 c1 data1

un1 lo1 pl1o11 o12 o13

Figure 6.9: Distributed version of the Disc1 component.

6.3.2 Engines

For each class γj of the partition, one builds an engine Ej handling interactions γj . An
interaction of γj is externally conflicting if it conflicts with at least one interaction that
is not in γj , otherwise it is internally conflicting. An internally conflicting interaction
does not require to call the conflict resolution protocol as conflicts can be solved locally.
Such interactions are executed through a unary interaction, in a similar way as in the
centralized and conflict-free cases.

r1 r2 r3
o1 o2 o3

trya

sp2 sp3

rsva

oka

faila

o1
o2
o3

Figure 6.10: Reservation mechanism for interaction a involving ports p2 and p3 from
components B2 and B3 and observing component B1.

For externally conflicting interactions, we add a reservation mechanism. Figure 6.10

120



presents the skeleton of such a mechanism for an interaction a whose participants are
components B2 and p3, and that observes component B1. On the Figure, only transitions
between receive places and sending places have been represented ; other transitions
(receive offer and send notifications) are exactly the same as previously. Whenever
offers from B1, B2 and B3 have been received, the corresponding receive places r1, r2
and r3 contain a token. The transition rsva is then possible if both the interaction
guard Ga and as the Condition predicate κa evaluate to true. This transition does not
modify the variables, it only removes tokens from the receive places to prevent internally
conflicting interactions to execute. Execution of the transition rsva triggers the emission
of a reservation request to the conflict resolution protocol. The latter either grants the
execution, by answering on the port oka, or denies it, by answering on the port faila In
the first case, the data transfer function Fa is executed and the tokens corresponding to
participants are put in appropriate sending places. In the second case, the tokens are
put back in the receive places.
With this new construction, each offer is sent to all engines, and only one of the engines

actually executes an interaction based on that offer. After execution of the interaction,
each of its participants sends a new offer. From the point of view of all engines but
the one that executed the interaction, this corresponds to receiving two successive offers
from the participants. On Figure 6.10, offer transitions from the waiting places are not
represented, but from each receive place, an additional loop transition allows two offers
to be received successively. Furthermore, offers may be received whenever the engine
is waiting for an answer from the conflict resolution protocol. Indeed, for each offer oi
incoming from a component Bi involved in the interaction a, there is a loop transitions
from trya labeled by oi.

Definition 6.4. Let B = κγ(B1, . . . , Bn) be a BIC model, and γj ⊂ γ a subset of the
interactions. The centralized engine for this model is defined as the Send/Receive BIP
component E = (LEj , PEj , TEj , XEj , {Xp}p∈PEj , {gτ}τ∈TEj , {fτ}τ∈TEj )

• The set LEj of places is the union of the waiting places {wi | i ∈ {1, . . . , n}}, the
receive places {ri | i ∈ {1, . . . , n}}, the sending places {sp | p ∈ P} and the trying
places {trya | a ∈ γj , a externally conflicting}.

• The set XEj of variables contains a copy of each variable exported by an offer port
{xEj | x ∈

⋃

i∈{1,...,n}X
SR
oi
}.

• The set PEj of ports contains:

– the offer receive ports {o
Ej

i | i ∈ {1, . . . , n}}, with variables X
o
Ej
i

= {xEj |

x ∈ XSR
oi
} attached,

– the notification send ports {pEj | p ∈ P}, with variables X
p
Ej = {xEj | x ∈

Xp} attached,

– the unary port a, with no attached variables for each interaction a ∈ γj that
is internally conflicting,

121



– the send port rsv
Ej
a and the receive ports {ok

Ej
a , fail

Ej
a } for each interaction

a that is externally conflicting. The ports ok
Ej
a and fail

Ej
a do not have any

variable attached. The port rsv
Ej
a has the variables {n

Ej

i | Bi ∈ invlκ(a)}
attached.

• The set TEj of transitions consists of the following:

– receive offer : for each i ∈ {1, . . . , n}, TEj contains the transition (wi, o
Ej

i , ri)

and the transition (ri, o
Ej

i , ri). For each externally conflicting interaction

a, TEj contains the transitions {(trya, o
Ej

i , trya) | Bi ∈ invlκ(a)}. These
transitions have no guard nor update function.

– send notification: for each port p ∈ P , let i be the index of the component
exporting p, i.e. such that p ∈ Pi, T

Ej contains the transition (sp, p
Ej , wi).

This transition has no guard nor update function.

– For each interaction a ∈ γ, we define the guard

GEj (a) =
∧

p∈a

x
Ej
p ∧G

Ej
a ∧ κ

Ej
a

where the predicate φEj is obtained by replacing each occurrence of a variable
x in the predicate φ by its local copy xEj , and each occurrence of a at ℓ
predicate by the test @

Ej

i = ℓ, where i is the index such that ℓ ∈ Li. The
update function FEj (a) is obtained by replacing each occurrence of a variable
x in the data transfer function Fa by its local copy xEj .

If a is internally conflicting, TEj contains the transition τa = ({ri|Bi ∈
invlκ(a)}, a, {sp | p ∈ Pa} ∪ {ri|Bi ∈ observedκ(a)}). The guard and up-
date function are gτa = GEJ (a) and fτa = FEJ (a).

If a is externally conflicting, TEj contains the following transitions:

∗ τra = ({ri|Bi ∈ invlκ(a)}, rsv
Ej
a , {trya}), guarded by GEj (a),

∗ τ
ok

Ej
a

= ({trya}, ok
Ej
a , {sp | p ∈ Pa} ∪ {ri|Bi ∈ observedκ(a)}), with

update function FEJ (a).

∗ τfa = ({trya}, fail
Ej
a , {ri|Bi ∈ invlκ(a)}), with no guard nor update func-

tion.

As an example, consider the engine handling the partition class {load1, unload1}, de-
picted in Figure 6.11. On the figure, there are only places of the connected component
that contains transitions corresponding to reservation mechanism. Furthermore, the su-
perscripts on the port names have been dropped. Each reservation transition is possible
only if the interaction is enabled and the Condition predicates evaluates to true. The

port rsv load1 exports only the offer counts n
Ej

1 , n
Ej

3 of the atomic components participant
in load1. The responsibility of the conflict resolution protocol is only to check whether
the offer counts are still valid. Only the engine checks whether the interaction can be
executed, based on the partial view of the system obtained through these offers.

122



w1 w3 w4

r1

o1o1
r3

o3o3
r4

o4o4

tload1
tunlo1

o1
o3

o1
o3
o4

sun1slo1 sd1l sd1u

un1lo1 d1ud1l

w1 w3

rsv load1

ok load1

fail load1 rsvunload1

okunload1

failunload1

Figure 6.11: The distributed engine handling the class {load1, unload1} of the partition.

6.3.3 Conflict Resolution Protocol

In [6], Bagrodia provides three different implementations for the conflict resolution pro-
tocol. The global principle is to keep the last offer number used for each component.
Whenever a reservation arrives from of the distributed engines, each offer number from
the request is compared against the value of the last offer number used in the conflict
resolution protocol. If each number from the request is greater than the corresponding
one in the conflict resolution protocol, the interaction is granted to execute. Otherwise
execution is forbidden.

Centralized Protocol

The first version implements this behavior in a single process. The BIP version is a
single component denoted CP .

Definition 6.5. Given a BIC model κγ(B1, . . . , Bn) and a partition γ1, . . . , γk of the
interactions, the centralized reservation protocol is the component CP = (LCP , PCP ,
TCP , XCP , {Xp}p∈PCP , {gτ}τ∈TCP , {fτ}τ∈TCP ), where:

• XCP contains the last used offer variable Ni for each component Bi.

• For each externally conflicting interaction a:

– LCP contains the waiting place wa and the receive place ra.

– PCP contains the ports rsva, oka and faila.

– XCP contains the variables {na
i | Bi ∈ invlκ(a)}. The variables associated to

the port rsva are Xrsva = {na
i | Bi ∈ invlκ(a)}. The ports oka and faila do

not have associated variables.

123



– TCP contains the transitions τrsva = (wa, rsva, ra), τoka = (ra, oka, wa) and
τfaila = (ra, faila , wa). The transition τrsva has no guard and no update func-
tion. The transition τoka is guarded by Gτoka

=
∧

Bi∈invlκ(a)
na
i > Ni and

its update function updates the Ni variables of the participants: foreach

Bi ∈ participants(a) do Ni := na
i . The transition τfaila has no guard and no

update function.

wunload1

runload1

rsvunload1

(n
unload1
1

> N1)

∧(n
unload1
3

> N3)

∧(n
unload1
4

> N4)

okunload1

N1 := n
unload1
1

N3 := n
unload1
3

failunload1

N3N1 N4

nunload1
3nunload1

1 nunload1
4

rsvunload1 okunload1
failunload1

Figure 6.12: Fragment of the centralized conflict resolution protocol for handling
unload1.

The Figure 6.12 presents the places, transitions, variables, guards and update functions
involved in handling the interaction unload1. Initially, there is a token in the place
wunload1 . Whenever a reservation for executing unload1 arrives, this token moves to the
place runload1 . From this place, if the guard of the transition labeled by okunload1 is true
according to the current values of Ni variable and freshly received nunload1

i variables, the
transition can take place. The transition labeled by failunload1

is always possible. If two
reservation requests for executing conflicting interactions are simultaneously received,
one of the two ok labeled transition will be selected and executed, according to the Petri
net semantics. The unselected ok transition will then become disabled, leaving only the
fail transition to reach back the waiting state.

In general, the correctness of the protocol is ensured by the atomic access to the Ni

variables. Here, atomicity is achieved through the semantics of atomic component’s
execution. The two remaining protocols are actually protocols to ensure atomicity for
accessing the Ni values.

Token Ring Protocol

The next version of the conflict resolution protocol is inspired by the token-based algo-
rithm due to Bagrodia [6]. The token ring protocol includes one component for each
externally conflicting interaction. A token circulates between all the components. Atom-

124



icity of access to the Ni variables is ensured as only the component holding the token
can modify these variables.

Definition 6.6. Given a BIC model κγ(B1, . . . , Bn) and a partition γ1, . . . , γk of the
interactions, the component handling reservations for interaction a is TRa = (LTRa ,
PTRa , TTRa , XTRa , {Xp}p∈PTRa , {gτ}τ∈TTRa , {fτ}τ∈TTRa ), where:

• LTRa contains the waiting place wa, the receive place ra, the token place ta and
the send token place sta.

• PTRa contains the ports rsva, oka and faila as well as the ports RT a, ST a.

• XTRa contains the variables {na
i | Bi ∈ invlκ(a)}, and a variable Ni for each

component Bi. The variables associated to the port rsva are Xrsva = {na
i | Bi ∈

invlκ(a)}. The variables associated to ports ST a and RT a are {N1, . . . , Nn}. The
ports oka and faila do not have associated variables.

• TTRa contains the transitions:

– τrsva = (wa, rsva, ra), with no guard and no update function.

– τoka = (ta, oka, sta) guarded by Gτoka
=
∧

Bi∈invlκ(a)
na
i > Ni, with foreach

Bi ∈ participants(a) do Ni := na
i as update function.

– τ1faila = (ra, faila , wa) and τ2faila = (ta, faila , sta), guarded by ¬Gτoka
with no

update function.

– τSTa = (sta,ST a, wa), with no guard and no update function.

– τ1RTa
= (wa,RT a, sta) and τ2RTa

= (ra,RT a, ta), with no guard and no update
function.

Figure 6.13 presents the component that handles interaction unload1 in the conflict
resolution protocol. Initially, the component is at state wunload1 . From that state it can
either receive the token RT or receive a reservation request rsv . Receiving the token
updates the Ni variables, the only next possible action is to propagate the token RT .
Upon reception of a reservation request (rsv), if the current values of Ni variables already
discard the request, and a fail message is sent back. Otherwise, the component waits
to receive the token and takes the decision to grant or deny the execution based on the
latest Ni values.
We assume that externally conflicting interactions are numbered, i.e. they are written
{a1, . . . , am}. The token ring protocol is obtained by building one component TRaj

for each externally conflicting interaction. These components are connected by the set
γTR of Send/Receive interactions between the following couples of ports (ST a1 ,RT a2),
(ST a2 ,RT a3), . . . , (ST am−1 ,RT am), (ST am ,RT a1).

Dining Philosophers Protocol

A more decentralized conflict resolution protocol is obtained by embedding a distributed
solution to the dining philosophers problem, as the one provided by Chandy and Misra

125



wunload1

runload1

stunload1

tunload1

rsvunload1

(n
unload1
1

≤ N1)

∨(n
unload1
3

≤ N3)

∨(n
unload1
4

≤ N4)

failunload1

(n
unload1
1

> N1)

∧(n
unload1
3

> N3)

∧(n
unload1
4

> N4)

okunload1

N1 := n
unload1
1

N3 := n
unload1
3

(n
unload1
1

≤ N1)

∨(n
unload1
3

≤ N3)

∨(n
unload1
4

≤ N4)

failunload1

RT unload1

RT unload1

ST unload1

N3N1 N4

nunload1
3nunload1

1 nunload1
4

rsvunload1 okunload1
failunload1

RT unload1
ST unload1

Figure 6.13: Component handling reservation for unload1 in the token ring conflict res-
olution protocol.

in [32]. In this conflict resolution protocol, there is one atomic component DPa for each
externally conflicting interaction a. If the interactions a and b are in external conflict,
the two components DPa and DP b share a fork carrying the Ni variables for components
involved in both interactions. In order to ensure atomic access to the Ni variables, each
component must obtain all the forks before granting execution.
Initially, the component DPa is at state wa. From that state, it can receive a rsva

message indicating that the interaction wants to execute. Upon reception of this message,
tokens are put in wfb places, to start negotiating the fork with each component DP b

corresponding to an interaction b in external conflict with a. The negotiation terminates
when all forks have been obtained. At this point, the component DPa is the only one
able to modify the Ni variables of components involved in a and can therefore take the
decision to grant or deny execution. Transition oka and faila are enabled from that state
and manipulate the Ni variables as in the previous cases.

Given two interactions a and b, we denote by conf κ(a, b) = invlκ(a)∩ invlκ(b) the set
of components that are involved in both interactions. We denote by extconf κ(a) the set
of interactions b that are in external conflict with a.

Negotiation of forks between components of the dining philosophers is done through
the transitions depicted in Figure 6.14. More precisely, the figure shows the transitions
from the component DPa that are used to communicate with component DP b, assuming
that a and b are in external conflict. For each interaction c that is in external conflict
with a, DPa contains a copy of these transitions and additional places wfc and rfc . All
ports whose name starts with S are send ports and all ports whose name starts with R
are receive ports.

126



wa

wfb

rfb

reqb ∧ forkb

Sf ab
forkb := false

Rrab
reqb := true

reqb ∧ ¬forkb

Srab
reqb := false

dirtyb ∧ reqb

Sf ab
forkb := false

forkbua

Rf ab
forkb := true

dirtyb := false

foreach Bi ∈ conf (a, b)

Ni := max(Ni, N
b
i
)

foreach c ∈ extconf (a)
foreach Bi ∈ conf (a, c)

Nc
i

:= Ni

Rrab
reqb := true

wa

dirtyb := true

Figure 6.14: Mechanism to exchange forks between components of the dining philoso-
phers protocol.

For the component DPa, the status of its negotiation with b is encoded through the
boolean variables reqb, fork b and dirtyb. The variables reqb (respectively fork b) are true
whenever DPa hold the request (respectively the fork) shared with b. The variable dirtyb
indicates whether the fork is dirty, in which case DPa cannot keep it upon reception of
a request.
Whenever the negotiation starts, if DPa already holds the fork shared with b, the

unary transition ua brings the token directly in rfb . Otherwise, the request reqb is sent
to b (trough the port Srab ) and the component awaits for the fork to reach rfb . A newly
received fork is always considered as clean. Furthermore, the values of Ni variables are
updated on reception of the fork.
The component DPa may receive a request when it holds the fork (at state rfb). This

request is honored either immediately if the fork is dirty, otherwise the component keeps
the fork until it takes a decision that brings back the component in wa state. As soon
as a decision is taken, either granting or denying execution of a, the fork is considered
as dirty. The dirty fork may be reused as long as no request for it is received.

Definition 6.7. Given a BIC model κγ(B1, . . . , Bn) and a partition γ1, . . . , γk of the
interactions, the component handling reservations for interaction a is DPa = (LDPa ,
PDPa , TDPa , XDPa , {Xp}p∈PDPa , {gτ}τ∈TDPa , {fτ}τ∈TDPa ), where:

• LDPa contains the waiting place wa, and the received place ra.

• PDPa contains the ports rsva, oka, faila and ua.

• XDPa contains the variables {na
i | Bi ∈ invlκ(a)}, and the variables {Ni | Bi ∈

invlκ(a)}. The variables associated to the port rsva are Xrsva = {na
i | Bi ∈

invlκ(a)}. The ports oka and faila do not have associated variables.

• For each interaction b ∈ extconf κ(a):

127



– LDPa contains the additional places wfb and rfb .

– XDPa contains the additional variables {N b
i | Bi ∈ conf (a, b)}, fork b, reqb

and dirtyb.

– PDPa contains the additional ports Sf ab , Rf
a
b , Sr

a
b and Rrab . The variables

{N b
i | Bi ∈ conf (a, b)} are associated to both ports Sf ab and Rf ab . Ports Srab

and Rrab do not have associated variables.

– TDPa contains the transitions:

∗ (wa,Rr
a
b , wa) no guard and has reqb := true as update function.

∗ (wa,Sf
a
b , wa), guarded by reqb ∧ fork b guard and with forkb := false as

update function.

∗ (wfb ,SR
a
b , wfb), guarded by reqb∧¬fork b, with the update function reqb =

false.

∗ (wfb , ua, rfb), guarded by fork b, with no update function.

∗ (wfb ,Rf
b
b, rfb), with no guard the following update function:

dirtyb := false
fork b := true
foreach Bi ∈ conf (a, b)

Ni := max (N b
i , Ni)

foreach c ∈ extconf κ(a)
foreach Bi ∈ conf (a, c)

N c
i := Ni

∗ (rfb ,Rr
a
b , rfb), with no guard and reqb := true as update function.

∗ (rfb ,Sf
a
b , wfb), guarded by dirtyb∧ reqb and with fork b := false as update

function.

• TDPa contains the transitions:

– τrsva = (wa, rsva, ra), with no guard and no update function.

– τoka = ({rfb |b ∈ extconf (a)}, oka, wa) guarded by Gτoka
=
∧

Bi∈invlκ(a)
na
i >

Ni, with the following update function:
foreach Bi ∈ participants(a)

Ni := na
i

foreach b ∈ extconf κ(a)
dirtyb := true
foreach Bi ∈ conf (a, b)

N b
i := Ni

– τchecka = (ra, ua, {wfb | b ∈ extconf κ(a)}), guarded by Gτoka and without
update function.

– τfaila = (ra, faila , wa) and τ2faila = ({rfb |b ∈ extconf (a)}, faila , wa), guarded by

¬Gτoka
. The transition τfaila has no update function. The transition τ2faila has

128



the following update function:
foreach b ∈ extconf κ(a)

dirtyb := true

The interactions γDP between components of this conflict resolution protocol transmit
the requests and the forks. For any couple (a, b) of interactions in external conflict, γDP

contains the two Send/Receive interactions:

• a Send/Receive interaction from port Sf b
a to port Rfa

b , and,

• a Send/Receive interaction from port Srba to port Rrab .

Furthermore, for each externally conflicting interaction, γDP contains the unary inter-
action involving the port ua.

6.3.4 Connections between Layers

To complete the description of the three layer model, we have to define the interactions
between the distributed components. Between the components layer and the engines
layer, offers and notifications are exchanged as in the previous cases. Communication
between the engines layer and the conflict resolution protocol layer involves rsv , ok and
fail messages transmission.

Definition 6.8. Given a BIC model κγ(B1, . . . , Bn) and a partition γ1, . . . , γk of the
interactions, the cross-layer Send/Receive interactions γSR of the distributed model in-
clude:

• for each component Bi and each class γj of the partition, a Send/Receive interac-

tion from port oji to port o
Ej

i ,

• for each port p ∈
⋃n

i=1 Pi and each class γj of the partition, a Send/Receive
interaction from port pEj to port p,

• for each externally conflicting interaction a:

– a Send/Receive interaction from port rsv
Ej
a to port rsva,

– a Send/Receive interaction from port oka to port ok
Ej
a , and

– a Send/Receive interaction from port faila to port fail
Ej
a .

Let B = κγ(B1, . . . , Bn) be a BIC component and γ1, . . . , γk a partition of the inter-
actions. We denote by {a1, . . . , am} the set of externally conflicting interactions. We
define for each conflict resolution protocol the corresponding 3-layer BIP model:

• BSR
CP = γSR(BSR

1 , . . . , BSR
n , E1, . . . , Ek,CP), embedding the centralized conflict res-

olution protocol,

129



• BSR
TR = (γSR ∪ γTR)(BSR

1 , . . . , BSR
n , E1, . . . , Ek,TRa1 , . . . ,TRam), embedding the

token ring conflict resolution protocol and

• BSR
DP = (γSR ∪ γDP )(BSR

1 , . . . , BSR
n , E1, . . . , Ek,DPa1 , . . . ,DPam), embedding the

dining philosophers conflict resolution protocol.

6.3.5 Correctness

We first show that the 3-layer model BSR
CP is indeed a Send/Receive model as defined

in Section 6.3. We then prove that the initial high-level BIC model is observationally
equivalent to BSR

CP . Finally, we prove trace equivalence of models embedding other
implementations of the conflict resolution protocol with the original BIC model.

Compliance with Send-Receive Model

We need to show that receive port of BSR
CP will unconditionally become enabled when-

ever one of the corresponding send ports is enabled. Intuitively, this holds since com-
munications between two successive layers follow a request/acknowledgement pattern.
Whenever a layer sends a request, it enables the receive port to receive acknowledgement
and no new request is sent until the first one is acknowledged.

Proposition 6.9. Given a BIC model B and a partition of its interaction, the model
BSR

CP meets the properties of Definition 5.2.

Proof. The send ports and receive ports determined in Definition 6.8 respect the syntax
presented in the two first properties of Definition 5.2. We now prove the third property,
that is whenever a send port is enabled, its associated receive port will unconditionally
become enabled.
Between engines and conflict resolution protocol layers, for rsv , ok and fail interactions

related to a ∈ γj it is sufficient to consider the places trya in the engine Ej , wa and ra
in the conflict resolution protocol layer. Initially, the configuration is as follows: trya is

empty, and wa is active. From that configuration only the send port rsv
Ej
a of the engine

might be enabled, and the receive port rsva is enabled. If the rsva message is sent, in
the reached configuration trya is active. Only send ports oka and faila in the conflict
resolution protocol might be enabled, and the associated receive ports in engines are
enabled. Then, if either an ok or a fail interaction takes place, we switch back to the
initial configuration.
Concerning interactions between a component BSR

i and the engines, we consider a

first configuration where no s
Ej
p place is active, for p exported by Bi. Note that the

initial state falls in that case, In this configuration, only send ports corresponding to
offer interaction may become enabled and by construction of the engine the associated
received ports are enabled as well. The property thus holds in this configuration.
The other configuration considered is reached by executing either a transition labelled

by a or oka in one of the engines. In the first case, no other interaction involving
the current round of offers from Bi can take place; otherwise, it would be externally

130



conflicting with a. In the second case, according to the conflict resolution protocol,
oka is given for the current participation number for the component BSR

i and no other
interaction using this number will be granted. Thus in all cases, for each round of offers
from BSR

i there is only one active place sp with p exported by Bi among all the engines
and thus one notification send port for BSR

i enabled. The latter may have to finish
sending all the offers to reach the stable state from which the receive port p is enabled.
Thus, the property holds in that configuration as well.
This proof ensures that any component ready to perform a transition labeled by a

send port will not be blocked by waiting for the corresponding receive ports. In other
terms, it proves that any Send/Receive interaction is initiated by the sender.

Observational Equivalence between Original and Transformed Models

We show thatB andBSR
CP are observationally equivalent. We consider the correspondence

between actions of B and BSR
CP as follows. To each interaction a ∈ γ of B, we associate

either the binary interaction oka or the unary interaction a of BSR
CP , depending whether

a is externally conflicting. All other interactions of BSR
CP (offer, notification, reserve, fail)

are unobservable and denoted by β.
We proceed as follows to complete the proof of observational equivalence. Among

unobservable actions β, we distinguish between β1 actions, that are interactions between
the atomic components layer and the engines (namely offer and notification), and β2
actions that are interactions between the engines and the conflict resolution protocol
(namely reserve and fail). We denote by q⊥ a state of BSR

CP and q a state of B. A state
of BSR

CP from where no β1 action is possible is called a stable state, in the sense that any
β action from this state does not change the state of the atomic components layer.

Lemma 6.10. From any state q⊥, there exists a unique stable state [q⊥] such that

q⊥
β∗
1−→ [q⊥].

Proof. The state [q]SR exists since each Send/Receive component BSR
i can do at most

k + 1 β1 transitions: receive a response and send an offer to each engine. Since two
β1 transitions involving two different components are independent (i.e. modify distinct
variables and places), the same final state is reached independently of the order of
execution of β1 actions. Thus [q]SR is unique.
The above lemma proves the existence of a well-defined stable state for any of the
transient states reachable by the distributed model BSR

CP . The state [q⊥] verifies the

property q⊥
β∗
1−→SR [q⊥] and [q⊥]

β1

6→SR. Furthermore, Lemma 6.11 asserts that, at state
[q⊥], atomic components are in a stable state and variables in the engine have the same
value as the corresponding variables in components.

Lemma 6.11. At state [q⊥] = ((ℓ1, v1), . . . , (ℓn, vn), (m
E1 , vE1), . . . , (mEk , vEk), (mCP , vCP )),

we have

• ∀i ∈ {1, . . . , n}, ℓi /∈ L⊥, and

131



• ∀j ∈ {1, . . . , k}∀xEj ∈ XEj s.t. x ∈ Xi, vi(x) = vEj (xEj ).

Proof. By construction of the distributed atomic components, for each busy state ⊥j
ℓ

there is one outgoing offer transition labeled by a send port, with a guard that is always
true. Therefore, at state [q⊥] every atomic component is in a stable control location.

In each engine Ej , at a stable state, the last message received or transition executed
cannot be a unary interaction a or rsv message, since they would trigger a notification
followed by an offer, which contradicts stability of the state. Therefore the last transition
executed is either an offer or a fail message reception or a rsv message emission. For each
variable xE ∈ XE , the last modifying transition was the offer from the corresponding
atomic component Bi, which ensures vEj (xEj ) = vi(x).

As for the centralized engine, the value of each the variable @
Ej

i in Ej is the same as in
the atomic component. In the atomic components, the value of @i is the current stable

state, therefore vEj (@
Ej

i ) = ℓi. Furthermore, the values of the ni variables are the same

in the atomic components and in the engines ∀i, j ∈ {1, . . . , n} × {1, . . . , k}, ni = n
Ej

i .

Lemma 6.12. When BSR
CP is in a stable state, for each pair i ∈ {1, . . . , n}, we have

ni > Ni.

Proof. Initially, for each component Bi, Ni = 0 and ni = 1. By letting all components
sending offers to all engines, we reach the first stable state where the property holds,
since β1 actions do not modify the Ni variables.
The variables Ni in the conflict resolution protocol are updated upon execution of an

oka transition, using values provided by the engines, that are values from components
according to Lemma 6.11. Thus, in the unstable state reached immediately after an
oka transition, we have ni = Ni for each component BSR

i participant in a. Then, the
notification transition increments participation numbers in components so that in the
next stable state ni > Ni. For components Bi′ not participating in a, by induction on
the number of ok interactions, we have ni′ > Ni′ .
Lemma 6.12 shows that the participation numbers propagate in a correct manner. In

particular, at any stable state the conflict resolution protocol has only previously used
values and engines have the freshest values, that is the same as in the atomic components.
To prove the correctness of our transformation, we exhibit a relation between the

states of the original model and the states of the distributed model and prove that
it is an observational equivalence. We define the relation by assigning to each state
q⊥ ∈ QSR an equivalent state equ(q⊥) ∈ Q. This function considers only the states of
distributed atomic components at [q⊥]. According to Lemma 6.11, at [q⊥] = ((ℓ⊥1 , v

⊥
1 ),

. . . , (ℓ⊥n , v
⊥
n ), . . .) atomic components are in are stable control states. Therefore control

states ℓ⊥i are valid control states for the original atomic components. Similarly, by
restricting each valuation v⊥i to the variables that are present in the original atomic
component Bi, we obtain a valuation vi = v⊥i |Xi\X⊥

i
that is a valid valuation for Bi.

With the previous notations, we define equ(q⊥) = ((ℓ⊥1 , v1), . . . (ℓ
⊥
n , vn)).

Theorem 6.13. B ∼ BSR
CP .

132



Proof. We define the relation R = {(q, q⊥) ∈ Q × QSR | equ(q⊥) = q}. Let q, q ∈ Q be
some states of B, q⊥, r⊥ ∈ QSR be some states of BSR, and a ∈ γ an interaction. Since
there is no unobservable action in the original model, R is an observational equivalence
if it meets the following properties:

(i) If (q, q⊥) ∈ R and q⊥
β
−→γSR r⊥, then (q, r⊥) ∈ R.

(ii) If (q, q⊥) ∈ R and q⊥
a
−→γSR r⊥, then ∃r ∈ Q such that q

a
−→κ r and (r, r⊥) ∈ R

(iii) If (q, q⊥) ∈ R and q
a
−→κ r then ∃r⊥ ∈ QSR, such that q⊥

β∗a
−−→γSR r⊥ and (r, r⊥) ∈ R

The property (i) is a direct consequence of Lemma 6.10: if q⊥
β
−→γSR r⊥ then either:

• β is a β2 action and does not modify the state of atomic components. Thus
equ(q⊥) = equ(r⊥).

• β is a β1 action and by definition [q⊥] = [r⊥] which implies equ(q⊥) = equ(r⊥).

To prove property (ii), we assume that either the transition a is possible in the engine
handling a or the transition oka is possible in the component CP . These transitions
are enabled according to values of variables in the engine handling a. If a is not ex-
ternally conflicting, these values cannot be modified when reaching the state [q⊥], since
β1 transitions modify distinct variables in the engine. If a is externally conflicting, oka
is enabled, meaning that for each component Bi involved in a, ni > Ni. In particular,
for each involved component Bi, the offer corresponding to the number ni has not been
consumed yet. In both cases, the values of variables associated to component involved
in the engine handling a remain the same when reaching the next stable state [q⊥].

Let us denote a by {pi}i∈I . If the transition a (or rsva is possible in the engine,
each variable xEpi is true, and by construction of the distributed atomic component Bi,

we have qi
pi−→i. By Lemma 6.11, if G

Ej
a evaluates to true in Ej then Ga evaluates at

state equ(q⊥) = (q1, . . . , qn). Similarly, if κ
Ej
a evaluates to true in Ej , κa(equ(q

⊥)) also

evaluates to true by Lemma 6.11. Thus we have equ(q⊥)
a
−→κ r.

By applying update function F
Ej
a and executing notification transitions, one reaches

a state where the values in distributed atomic components participant in a are the as
same the values in original atomic component after executing a. These values are not

changed through the subsequent offers, therefore (r, [r⊥]) ∈ R and since r⊥
β
−→ [r⊥], we

have (r, r⊥) ∈ R.
To prove (iii), we assume that q

a
−→κ r is valid in the original model. By definition of

[q⊥], we have q⊥
β∗
1−→ [q⊥]. As in the previous case, the Lemma 6.11 ensures that at state

[q⊥], the values of variables in distributed atomic component and engines are the same.
By doing all possible fail interactions, which can be executed even if the interaction
could be granted, all tokens are brought back in ri places in engines. Then if a is not
externally conflicting, it can be executed directly. Otherwise, the reserve interaction rsva
is possible and can be executed to reach another stable state. According to Lemma 6.12,

133



we have ni > Ni for every component Bi, thus the transition oka is enabled. In both

cases, we have q⊥
β∗
1−→ [q⊥]

β∗
2−→

a
−→ r⊥. As previously, executing the transition in the

engine and sending notifications to participating components yields the same results as
executing the interaction in the original model. Thus (r, r⊥) ∈ R.

Interoperability of Reservation Protocol

The centralized implementation CP of the conflict resolution protocol can be seen as a
specification. Two other implementations, namely token ring and dining philosophers,
can be used as conflict resolution protocol. However, these implementations are not
observationally equivalent with the centralized implementation. More precisely, the cen-
tralized version defines the most liberal implementation: if two reservation requests a1
and a2 are received, the protocol may acknowledge them in any order. This general
behavior is not implemented neither by the token ring nor by the dining philosophers
implementations, which are focused on ensuring progress. In the case of token ring, the
response may depend on the order the token travels through the components. In the
case of dining philosophers, the order may depend on places and the current status of
forks.
Nevertheless, we can prove observational equivalence if we consider weaker versions

of the above implementations. More precisely, for the token ring protocol, consider
the weaker version TR(w) which allows each conflict resolution component to release
the token or provide a fail answer regardless of the values of counters. Likewise, for
the dining philosophers protocol, consider the weaker version DP (w), where forks can
always be sent to neighbors, regardless of their status, and a fail answer can always be
issued. Clearly, a weakened conflict resolution protocol is not desirable for a concrete
implementation since it does not enforce progress. But, it is an artifact for proving the
correctness of our approach. The following proposition establishes the relation between
the different implementations of the Reservation Protocol.

Proposition 6.14. CP ∼ TR(w) ∼ DP (w)

Proof. The observable actions are requests rsva, oka and faila messages. The unobserv-
able actions are token passings for TR(w) and forks exchange for DP (w).

Given a state sTR of the TR protocol or a state sDP of the DP protocol, we construct
a state sCP for the centralized protocol as follows. For each interaction a ∈ γ:

• If a request for a is pending in sTR or sDP , the equivalent state sCP is defined such
that the place ra contains a token. Otherwise, the place wa contains a token.

• For each component Bi involved in a, we set the participation number na
i associated

to the pending requests in sCP to the value of ni held in the component managing
interaction a, that is TRa or DPa.

Moreover, we set the last used participation number Ni in sCP to:

• the value of variable Ni stored on the token in sTR, or

134



• the maximum value among variables {N b
i }b externally conflicting stored on the forks in

sDP .

In TR(w) and DP (w), it is clear that any unobservable action does not change the
associated state sCP .
Weakening makes the above relation an observational equivalence. Indeed, whenever

an action (either oka, fa or ra) is possible at sCP , then by moving the token, (resp. the
forks), we can always reach a state sTR (respectively sTR) where this action is possible
as well. Reciprocally, if an action is possible in either sTR or sDP then, in the equivalent
state sCP , the same action is allowed and reaches an equivalent state.
Recall that we denote BSR

X the 3-layer model obtained from the initial system B and
that embeds the Reservation Protocol X, which ranges over CP ,TR and DP . Also,
let us denote by Tr(B) the set of all possible traces of observable actions allowed by
an execution of B. We now show the correctness of the implementation, by using the
weak implementations of TR and DP . Since the real implementations of these protocols
restrict the behavior of their weak version, we only state correctness as trace inclusion
with respect to the original model. The traces of the distributed implementation are
included in the traces of the original model.

Proposition 6.15. (i) B ∼ BSR
CP ∼ BSR

TR(w) ∼ BSR

DP(w)

(ii) Tr(B) ⊇ Tr(BSR
TR) and Tr(B) ⊇ Tr(BSR

DP ).

Proof. (i) The leftmost equivalence is a consequence of Theorem 6.13. The other equiv-
alences come from Proposition 6.14 and the fact that observational equivalence is a
congruence with respect to parallel composition.
(ii) Trace inclusions come from the fact that any trace of TR (respectively DP) is also

a trace of TR(w) (respectively DP (w)).

Practical Aspects The 3-layer model relies on unbounded counters for execution. At
the end of Subsection 2.3.1, we recall Bagrodia’s suggestion to reset these counters and
also suggest to dimension counters according to system’s lifetime. However, some solu-
tion without counters exists, such as Kumar’s token [61], presented in subsection 2.3.2
and α-core. The distributed implementation of LOTOS presented in [81] embeds an
algorithm similar to α-core but still relies on counters. In the next section, we present
the α-core protocol.

6.4 α-Core

The α-core protocol [73] provides a fully distributed solution where each interaction is
handled by a separate coordinator. Contrarily to the previous solution, α-core is able to
solve conflicts without using counters. The α-core protocol implements only multiparty
interactions. Models with Condition can be implemented through the transformation
provided in Subsection 4.2.5.

135



The α-core protocol specify two different behaviors for participants and coordinators.
There is one participant for each atomic component and one coordinator for each in-
teraction. Each participant communicates only with coordinators and each coordinator
communicates only with participants.

6.4.1 Protocol Description

The main idea of the protocol is that each coordinator tries to lock all the participants in
the interaction it handles. All coordinators lock components sequentially, according to
a global order. If a and b are (Interaction) conflicting, the intersection participants(a)∩
participants(b) is not empty. The conflict between a and b is solved as the minimal
component in the intersection will be locked either by a or b, but not both.

In α-core, the following messages are sent from a participant to a coordinator:

PARTICIPATE A participant is interested in a single particular interaction (hence it
can commit to it), and notifies the related coordinator.

OFFER A participant is interested in one out of several potentially available interac-
tions (a non-deterministic choice).

OK Sent as a response to a LOCK message from a coordinator (described below) to
notify that the participant is willing to commit on the interaction.

REFUSE Notify the coordinator that the previous OFFER is not valid anymore. This
message can respond to a LOCK message from the coordinator.

Messages from coordinators are as follows:

LOCK A message sent from a coordinator to a participant that has sent an OFFER,
requesting the participant to commit to the interaction.

UNLOCK A message sent from a coordinator to a locked participant, indicating that
the current interaction is canceled.

START Notifying a participant that it can start the interaction.

ACKREF Acknowledging a participant about the receipt of a REFUSE message.

Figure 6.15 describes the extended state machine of a participant. Transitions are trig-
gered either by an incoming message or a guard becoming true. If the same incoming
message has different effects depending on the state of the variables, several transitions
with different guards are provided. This description is not a Send/Receive BIP compo-
nent, as the send function is called in the update functions. Each participant process
keeps some local variables and constants:

IS : a set of coordinators for the interactions the participant is interested in.

locks: a set of coordinators that have sent a pending LOCK message.

136



unlocks: a set of coordinators from which a pending UNLOCK message was received.

locker : the coordinator that is currently considered.

n: the number of ACKREF messages required to be received from coordinators until a
new coordination can start.

α: the coordinators that asked for interactions and subsequently refused.

active

sync

[n = 0]

ACKREF
n := n − 1

UNLOCK

LOCK idle

PEN
IS := {a ∈ γ | Pa ∩ PEN 6= ∅}

waiting

[|IS| > 1]

foreach a ∈ IS

send(a,OFFER)

locked

LOCK
locker := sender

locks := ∅
unlocks := ∅
send(locker ,OK)

[locks = ∅] UNLOCK
foreach a ∈ unlocks ∪ {sender}

send(a,OFFER)

[IS = {a}]
locker := a

locks := ∅
unlocks := ∅
send(a,PARTICIPATE)

LOCK
locks := locks ∪ {sender}

[locks 6= ∅] UNLOCK
if (sender = locker)

locker :=random(locks)
locks := locks \ {locker}
unlocks := unlocks ∪ {sender}
send(locker ,OK)

else

locks := locks \ {sender}
unlocks := unlocks ∪ {sender}

START
α := IS \ (unlocks ∪ {sender}
n := |α|
foreach a ∈ α

send(a,REFUSE)
execute(a)

Figure 6.15: Behavior of a participant in α-core.

Initially, a participant is active, that is doing some internal computation. Upon termi-
nation of its computation, the participant becomes idle with a given set of enabled ports
PEN and computes the set of interactions IS that involve these ports. In the sequel, we
denote by a both the interaction a and the corresponding coordinator. If only one inter-
action is possible, the participant sends a PARTICIPATE message to the corresponding
coordinator and directly goes to state locked. Otherwise, the participant is the source of
a conflict and requires to be locked in order to solve that conflict. It sends an OFFER

message to each coordinator in IS and waits for incoming LOCK messages. The first
LOCK is always granted, all other ones are recorded.

When locked, the participant can receive a START message indicating that the lock-
ing interaction took place. This triggers execution of the interaction and emission of
REFUSE messages to all coordinators that could potentially lock the participant. Before
resuming internal execution, the participant waits for all coordinators to acknowledge
the REFUSE.

When locked, the participant may also receive an UNLOCK message, because the
locking interaction failed to execute. If some other coordinators have sent a LOCK

message, one of them is chosen randomly to be the next locking coordinator. Otherwise
offers are sent again to coordinators that previously sent the sequence LOCK UNLOCK.

137



The behavior presented here has been modified on two points from the one in [73]:

• In the original version, the places active and idle are merged and there is no
transition labeled by PEN . The latter was added to link this protocol with the
BIP concepts.

• The transition triggered by the UNLOCK message when the set locks is not empty
has been modified. In the original version, it is assumed that the sender of the UN-

LOCK message is always the locking coordinator. It is also possible that another
coordinator sent that message in which case the version from [73] deadlocks.

accepting

OFFER
n := n + 1

shared := shared ∪ {sender}

PARTICIPATE
n := n + 1

locked := locked ∪ {sender}

REFUSE
if (sender ∈ shared)

n := n − 1
shared := shared \ {sender}

send(sender ,ACKREF) [n = |a| ∧ shared = ∅]
foreach (Bi ∈ locked)

send(Bi,START)
shared := ∅
locked := ∅
n := 0

OK

locking
[n = |a| ∧ shared 6= ∅]
current :=smallest(shared)
waiting := shared \ {current}
send(current,LOCK)

[shared = ∅] OK
locked := locked ∪ {current}
waiting := ∅
foreach (Bi ∈ locked)

send(Bi,START)
shared := ∅
locked := ∅
n := 0

REFUSE
α := (locked ∩ shared) ∪ {current, sender}
foreach (Bi ∈ α)

send(Bi,UNLOCK)
send(sender ,ACKREF)
shared := shared \ α

locked := locked \ α

n := n − |α|

[shared 6= ∅] OK
locked := locked ∪ {current}
current :=smallest(shared)
waiting := shared \ {current}
send(current,LOCK)

Figure 6.16: Behavior of a coordinator for interaction a in α-core.

The coordinator handling interaction a is depicted in Figure 6.16. Initially, the coordi-
nator is accepting incoming OFFER and PARTICIPATE messages, and counts them in
the n variable. We denote by |a| the number of participants in a. Whenever |a| OFFER

or PARTICIPATE messages have been received, the interaction is enabled. If there is
no shared participant, that is all participants have sent a PARTICIPATE message, the
interaction a is not conflicting at that state. In that case, there is no need to lock partici-
pants and a START message can be directly issued. Otherwise, the coordinator switches
to the locking state and sends the first LOCK message to the smallest participant to
lock, according to the global order on the participants.
In the locking state, when the coordinator receives an OK message, it marks the

sending participant as locked and sends a LOCK message to the next participant to
lock, according to the global order. If all participants have been locked, the coordinator
switches back to the accepting state, emits START messages and reset the variables for
the next execution. If a REFUSE message arrives before the locking is complete, the
coordinator sends an UNLOCK message to each locked participants and switches back

138



to the initial state. Participants that sent a PARTICIPATE message are still locked,
however other ones have to resend an OFFER before the locking phase restarts.
Finally, if a REFUSE message arrives while the coordinator is waiting for offers, the

number of participants ready to execute the interaction (n) is decremented, if the sender
is in the list of participants that sent an offer (called shared). The refusing participant
is also removed from that list.
This last transition (receiving REFUSE from the accepting state) was modified from

the version in [73], as the latter one would unconditionally decrement n. Such a behavior
leads to a deadlock as it can remove twice the same participant from the number of ready
participants, thus preventing the locking to start. This bug was detected and corrected
automatically using code mutation techniques in [58].

D1 load1 J load2 D2

PARTICIPATE OFFE
R OFFER PARTICIPATE

LOCK LOCK

OK

START START
REFUSE

ACKREF

Figure 6.17: First messages exchanged in the α-core protocol during execution of the
model from Figure 5.1.

We illustrate the execution of this protocol on our running example from Figure 5.1.
Recall that α-core does not take Condition into account. Execution of this example starts
by resolving the conflict between load1 and load2. Figure 6.17 depicts the corresponding
messages in the α-core protocol. First all participants send OFFER or PARTICIPATE

messages. Since each disc Di can only perform the load i interaction, it sends a PARTIC-

IPATE message. The jukebox can perform either load1 or load2 and sends an offer to
both. Once the coordinator for load i has received the two offers, it starts locking partic-
ipants. In the example, only the jukebox is a shared participant. In the execution from
Figure 6.17, the LOCK message from load2 arrives first at J and therefore load2 wins
the conflict. After receiving the OK message from J , the coordinator load2 has locked
all the participant and can issue START messages so that the participants start execut-
ing. Finally, J reports to load1 that it lost the conflict through a REFUSE message.
Upon reception of the REFUSE message, the coordinator load1 forgets the offer from J
and returns to the state accepting. However, it recalls that D1 sent a PARTICIPATE

message.

139



6.4.2 SR-BIP Implementation of α-Core

We do not formally define the SR-BIP implementation of α-core but rather give an
overview of its construction. Each atomic component from the initial BIP model is
implemented through a set of components. One of these components is the α-core par-
ticipant behavior from Figure 6.15. Other components include components for receiving
and sending message and the distributed version of the atomic components. Similarly,
each interaction is implemented through a set of components. The communications be-
tween the set of components implementing an interaction and the set of components
implementing an atomic component remain asynchronous message-passing.

DSR
1

α-core
participant

Send
Data

lo1
un1 pl1lo

ad
1

un
lo
ad

1

pl
ay

1

PENdata

Receive

LOCK

UNLOCK

START

ACKREF

Sendsend

load1

unload1

play1

Eload1

α-core
coordinator

Receive

Send

OFFER

PARTICIPATE

REFUSE

OK

send

D1

J

guard

start

D1J

dataD1

dataJ

Figure 6.18: Fragment of the distributed BIP model using α-core protocol implementing
the component D1 and the interaction load1.

Figure 6.18 presents a fragment of the α-core based distributed implementation of the
example from Figure 5.1. This fragment contains a set of components implementing the
atomic component D1 and a set of components implementing the interaction load1.
The grey dashed line at the bottom of the Figure delimits the part corresponding to

the atomic component D1. This part contains a distributed version DSR
1 of D1, which is

similar to the distributed version for the centralized engine. The main difference is that
the offer is cut in two parts, first data to send is copied to a dedicated component for
sending data to the right engines, then the set of enabled ports is copied to the component
implementing the behavior from Figure 6.15. Two additional components are responsible
for receiving and sending messages. In particular, the Receive component stores the
received messages until they are consumed by the α-core participant component, through
one of the synchronizations. The Send component has one port send exporting a message

140



and a set of recipients. Upon activation of this port, the message is sent to all the
recipients.
Similarly, the part implementing the interaction load1 contains a version of a dis-

tributed engine that receives the data, evaluates the guard and computes the data
transfer function. The guard interaction is used by the coordinator to decide whether
to start locking, i.e. locking happens only if the guard is true. Similarly, when issuing
the message START, the coordinator triggers computation of the data transfer function
trough the start interaction. The engine directly notifies the distributed component so
that computation of the latter start immediately. In the meantime, the α-core partic-
ipant component receive the START and reaches the sync state to wait for ACKREF

messages.
Finally, by merging together local components using the technique presented in 7.2.3,

one obtains a Send/Receive BIP model. In that model, each component and each in-
teraction is implemented through a dedicated component, that is the composition of
previously described components.

6.5 Optimization using Knowledge with Perfect Recall

The protocol α-core implements a very simple but efficient optimization through the dis-
tinction between OFFER and PARTICIPATE messages. Emission of a PARTICIPATE

message happens whenever the component knows that there is only one interaction it
can execute next. Note that within the BIP context, even if only one port is possible,
there might be several interactions involving that port.
With the α-core protocol, executing an interaction a involving n components that have

no other choice than executing a requires 2n messages: a PARTICIPATE and a START

message for each component. The same interaction using OFFER messages requires at
least additional LOCK and OK messages, that is at least 4n messages to execute a.
Furthermore, once the OFFER is consumed by a coordinator, it has to be canceled by a
REFUSE message sent to conflicting coordinators. Thus it is highly beneficial to detect
cases where PARTICIPATE messages can be sent instead of OFFER messages.

A component basically knows its local state and for each port the set of corresponding
interactions. A PARTICIPATE message is sent in the case where only one transition is
possible from the current state and this transition is labeled by a port that is involved
in only one interaction. For instance, the component D1 from the example in Figure 5.1
can only take part in load1 interaction from the state F1.

However, there are some global states where only one interaction is enabled, but each
component sees locally that it can participate in several of them. Consider the Figure 2.3
presenting the interactions allowed by the control state of the Jukebox example. At state
{L1, F2, 1, B}, only the interaction unload1 is possible. The component D1 is at control
state L1 from where both ports un1 and pl1 are enabled, and hence sends an OFFER.
We propose to use knowledge with perfect recall in components so that such cases can

be detected [16]. Our approach relies only on control states and does not take data into
account. In particular, if an interaction is not enabled because of its guard, our method

141



0

1

2

play1

unload1

load1

unload1

Figure 6.19: Support automata for D1.

considers it as enabled. The support automaton for a component Bi of a BIP model
B = γ(B1, . . . , Bn) is obtained as follows:

• Building the global control behavior Bctrl = (Q, γ,−→γ
′) that is obtained by con-

sidering the behavior of B assuming that all guards in B are true, The states of
this automaton contain only control state information.

• Defining Ai as the set of interactions {a ∈ γ | Pa∩Pi 6= ∅} in which Bi participates,

• Finally, building the support automaton Ki as prescribed in Section 3.2 by consid-
ering Bctrl as global behavior and Ai as visible actions.

In Figure 6.19, we present the minimized version of the support automata for the com-
ponent D1 from Figure 5.1. States are numbered instead of containing a set of global
states, as in Figure 3.3. This automaton can be played in parallel with the component,
that is, whenever an interaction involving the component takes place, the corresponding
transition of the support automaton is executed as well. On this example, the state
0 correspond to the control location F1 and that both states 1 and 2 correspond to
the control location L1 of the component. In particular, the support automaton recalls
whether play1 has been executed (state 2) or not (state 1). If the support automaton is
at state 2 the component locally knows that only unload1 is possible.

By construction, the global behavior (Q, γ,−→) from Definition 2.5 of the system of
processes K1, . . . ,Kn is actually Bctrl . Since in Bctrl all guards are true, the transitions
allowed in B are a restriction of the transitions allowed in Bctrl . Therefore, we have that
−→γ⊆−→. In other words, by considering only interactions allowed by the composition of
the support automata Ki, we have an over approximation of the interactions actually
allowed in B.
We use this property to build a correct and optimized version of α-core participant.

The modified participant includes a variable q that contains the current state of the
support automaton. The support automaton is encoded as a transition function δ such
that δ(q, a) returns the unique state q′ such that q

a
−→Ki

q′. We denote by ENKi
(q) the

set of interactions that are possible from the state q of the support automaton. Formally,
ENKi

(q) = {a ∈ γ | q
a
−→Ki
}. The modified α-core participant differs in two points from

the original α-core participant:

• In the transition from active to idle, the set IS is computed as
IS := {a ∈ γ | Pa ∩ pEN 6= ∅} ∩ ENKi

(q).

142



• In the transition from locked to sync, the following computation is added:
q := δ(q, a).

The first modification actually restricts the set of interactions to which an offer has to
be sent. In the case where the size of the restricted set is 1, a PARTICIPATE message
is issued. The second modification updates the state of the support automaton.
In [16], we proposed the same kind of construction for α-core coordinator. In that case,

the knowledge automaton takes into account the offers and the interactions executions
(transitions that issue START messages in the coordinator). This support automaton
can be used in two manners:

• discard offers that will be received again later (which can be seen on the automa-
ton),

• avoid locking participants that cannot send an offer before the next interaction
involving them.

This last optimization relies on the fact that each α-core participant waits for all coor-
dinators to acknowledge a REFUSE message before sending new offers. This is not the
case in the 3-layer BIP implementation, where each component can resend an offer as
soon as it received a notification.
The correctness of the two optimizations are proved in [16]. To prove the first one, we

remark that composing all support automata obtained from the components gives back
the global behavior of the original model. The correctness of the second (not explained
here) construction is show through a trace equivalence. Note that the two optimizations
can be combined, provided the second one is computed using the support automata
from the first optimization instead of the original behavior of the components. Indeed,
as the second optimization takes offer into accounts, it has to take into account possible
restrictions of these offers.

6.6 Discussion

In this chapter, we presented several solutions to resolve conflicts arising between inter-
actions. The conflict-free solution can be seen as a degenerate case of the 3-layer solution
where no conflict resolution is needed. The 3-layer solution is very general and flexible
but requires to use unbounded counters. The protocol α-core provides a solution that
does not use counters.
Each of these solutions exhibits different features. The 3-layer BIP solution en-

compasses Condition and is parameterized by an arbitrary partitioning of the inter-
actions. The α-core solution dynamically disables unneeded conflict resolution on a per
component-basis. This last feature can be optimized by adding knowledge with per-
fect recall in components. We have not extended each solution to support each feature,
however it seems possible.
Extending α-core to support Condition can be done by having coordinators locking

both participants and observed components. Whenever the interaction starts, partic-
ipants are sent a START message and observed components an UNLOCK message.

143



Multiple coordinators may lock the same observed component, as observing the same
component does not create a conflict.
Having a single α-core coordinator for handling several interactions requires heavier

modifications. In particular, in the original α-core version, OFFER and PARTICIPATE

messages are simply counted. A modified coordinator would handle several interactions
and need a separate count for each interactions. Furthermore, each participant would
have to indicate the set of interactions in the offers they send, instead of a simple message.
Implementing an equivalent of α-core PARTICIPATE message has several implica-

tions on the 3-layer BIP. In that case, a such message would be sent when only one
engine is the recipient of the offer.

• In the engines, if an interaction is externally conflicting but all its participants sent
a PARTICIPATE message, the engine can execute the interaction without calling
the conflict resolution protocol.

• In the conflict resolution protocol, checking the validity of the offer numbers is
needed only for components that sent an OFFER message. Only the dining
philosophers protocol would benefit of this optimization as the set of forks to
acquire would be reduced.

Concerning the knowledge-based optimization, the support automaton can be embed-
ded in the distributed version of the corresponding atomic component. We leave these
extensions as future work.

144



7 Implementation

This chapter discusses the implementation of the methods for generating distributed
implementations using the BIP toolbox. We start by presenting in Section 7.1 the BIP
language which provides a common textual representation for all the different models
used. In Section 7.2, we present the existing BIP tools and focus on the tools imple-
menting the methods presented in the previous chapters. Finally, Section 7.3 presents
how the different tools could be organized in a coherent tool for generating distributed
implementations.

7.1 The BIP Language

The BIP language represents components of the BIP framework [10]. BIP language
provides syntactic constructs for describing systems. In practice, variables, data type
declarations, expressions and statements are written in C, although another language
could be used. The BIP language can be seen as a set of structural syntactic constructs
for defining component behavior, specifying the coordination through connectors and
describing the priorities. The basic constructs of the BIP language are the following:

• atomic component: to specify behavior, with an interface consisting of ports. Be-
havior is described as a set of transitions.

• connector: to specify the coordination between the ports of components, and the
associated guarded actions.

• priority: to restrict the possible interactions, based on conditions depending on
the state of the integrated components.

• composite component: to specify systems hierarchically, from other atoms or com-
pounds, with connectors and priorities.

• model: to specify the entire system, encapsulating the definition of the components,
and specify the top level instance of the system.

We now detail some parts of the Jukebox example from Figure 4.6. In the BIP lan-
guage, one starts by defining types that are later instantiated, allowing several instances
of the same element (components, connectors or ports) to created by using the same
type. The most basic types are the port types. Each port has a type, which defines a
generic name for each variable that is exported by such a port, as well as a type for each
variable. Here we assume that CD DATA is a declared C type.

145



port type IntPort (int i)

port type CdDataPort (CD DATA data)

port type EventPort

As an example, we provide the BIP code for the Disc atomic component of Figure 4.3.

atomic type Disc

data int c

data CD DATA data

export port IntPort lo(c)

export port CdDataPort pl(data)

export port EventPort un

place F,L

initial to F do { c=0 ; }

on lo from F to L provided true

do {c = c+1 ;}

on pl from L to L

on un from L to F

end

The description starts with variables, ports and control declaration. Upon port decla-
ration, the variables that are bound to the port are explicitly given, and their type match
those in the port type definition. The construct initial to specifies the initial transition,
and possibly some initialization function to execute. Each transition of the behavior is
declared, with a port (after on), a (set of) initial and final state(s) (after from and to),
a guard (after provided) and an update function (after do). The functions and guards
are written using a subset of the C syntax.
We now present the connector types used to describe load and play interaction.

connector type LoadConn(IntPort disc, IntPort jk)

define disc jk

on disc jk

provided disc.i ≤ jk.i/2 + 2

end

connector type PlayConn(CdDataPort input, CdDataPort output)

define input output

on input output

provided true

down {output.data = input.data }

end

146



A connector type is parameterized by a list of port types that describes its support.
The construct define defines the set of interactions allowed by the connector, using an
algebraic notation. In the example, we have only two synchrons. A trigger would be
specified by appending a quote to the port name. For each interaction allowed by the
previous expression, a guard and an update function can be provided. Here the update
function is provided with the down construct. The dotted notation, i.e. port.var is
used to access the variable var associated to the port port, as defined in the port type
declaration.
The connector described above does not allow hierarchical composition as presented

in Subsection 4.2.2. Recall that hierarchical composition requires to export a port “on
top” of the connector, which can be done through an export construct in the connector
definition. An upward propagation function, useful only within a hierarchical connector,
may be define with the up construct.
A compound component is a new component type defined from existing components

by creating their instances, instantiating connectors between them and specifying the
priorities. A compound offers the same interface as an atom, hence externally there
is no difference between a compound and an atomic component. We define below the
compound type that corresponds to the Figure 4.6, assuming that the atomic types
Jukebox and Listener have been defined according to the Figure.

compound type FullJukebox

component Disc disc1

component Disc disc2

component Jukebox jukebox

component Listener listener

connector LoadConn load1 (disc1.lo, jukebox.d1l)

connector LoadConn load2 (disc2.lo, jukebox.d2l)

connector PlayConn play1 (disc1.pl, listener.rec1)

connector PlayConn play2 (disc2.pl, listener.rec2)

connector EventConn unload1 (disc1.un, jukebox.d1u)

connector EventConn unload2 (disc2.un, jukebox.d2u)

connector Singleton think (listener.think)

priority π1 unload1 < play1

priority π2 unload2 < play2

end

This compound type mainly create one instance for each component, bind them using
new instances of connectors and define priority between connectors. Note that when
creating connectors and priority, each of them must be named. The dotted notation
port.comp is used to denote the port port of the component instance comp. Finally, to
complete the description in the BIP language, one must add a top level instance of the
main compound type to execute.

147



7.2 The BIP Toolbox

This section presents the toolbox available with the BIP framework. The BIP toolbox
provides a complete implementation, with a rich set of tools for modeling, executing and
verifying BIP models.

C nesC Lustre Simulink AADL DOL BIP

Translation into BIP

Language Factory

BIP
Software
Model

Send/Receive
BIP

Model

Decentralization

BIP
Hardware
ModelHardware

Components
Library

s2s

s2s

BIP
System
Model

Architecture

Integration

Source
To Source

DFinder

Statistical

Model

Checking

Validation

Centralized

Code Generator

Code

Engine

Distributed

Code Generator

Code Code Code

Distributed Platform

Simulation
Execution

Figure 7.1: Overview of the BIP toolbox.

An overview of the BIP toolbox is shown in Figure 7.1. We distinguish between
four categories of tools, namely Language Factory, Source To Source, Validation and
Simulation/Execution. We now detail each of theses categories.

7.2.1 Language Factory

These tools translate into BIP existing software that rely on a different model of com-
putation. The input can model the application software, the hardware architecture,
or both of them. Existing transformations includes transformations from synchronous
languages, i.e. transformations from Lustre [31] and Simulink [79]. These transforma-
tions target synchronous BIP [78], that is an extension of BIP dealing efficiently with
synchronous models.

148



Other input languages model both the application software and the hardware archi-
tecture. These models can be transformed either into two separate models: one for
the software and the other for the architecture or into a single model including both
of them, called system model. Transformations to hardware model often rely on a li-
brary of hardware components such as memories, buses, processors, that are modeled
in BIP. BIP models can be generated from the Architecture Analysis and Design Lan-
guage (AADL) [35], from nesC/TinyOS [13] and from the Distributed Operation Layer
(DOL) [27].

7.2.2 Verification

The BIP toolbox provides tools to validate models. DFinder [20, 21] verifies that a
given BIP model satisfies a given property, based on invariants that can be computed in
a compositional manner. Statistical model checking [18] allows properties expressed on
the execution sequences of the model to be statistically checked.

DFinder

DFinder compositionally checks that a BIP model always satisfies a given property dur-
ing its execution. Example of such properties include enablement of a given interaction
(i.e. ENa predicate), and by extension enablement of at least one interaction. By check-
ing that the property “at least one interaction is enabled” always holds, one actually
checks that the system is deadlock-free.
DFinder relies on invariants such as the ones presented in Chapter 3, that are incre-

mentally computed. These invariants provide an over-approximation R̃ = {q ∈ Q | I(q)}
of the reachable states of a BIP model. Assume a property φ to check, for instance that
at least one interaction is enabled: φDF =

∨

a∈γ ENa. Verifying that this property holds
during execution is done by checking that I ∧ ¬φ is not satisfiable. It means that the
intersection between the states violating the property and the states satisfying the in-
variant is empty. Thus the property holds for all reachable states, since they all satisfy
the invariant.

Statistical Model Checking

Statistical model checking is performed using properties described with Probabilistic
Bounded Linear Temporal Logic (PBLTL) formulas. These properties refer to the traces
of the model. The model has to be expressed using stochastic BIP [18]. One can either
ask the probability that a formula holds, or given a formula and a probability rate,
ask whether the probability of the formula is higher than the given rate. Checking
is performed by interactive cycles of model executions and statistical analysis. More
precisely, results of the executions (i.e. traces) are fed to the analyser, which in turn can
trigger some additional execution if needed. The process is parameterized by a degree
of confidence as it relies on statistical methods.

149



7.2.3 Source to Source Optimizations

These transformations are presented in [30] and [54]. Flattening replaces a set of hier-
archical connectors into an equivalent set of flat connectors, that are not hierarchically
composed. Merging two components yields a single component with the same behav-
ior and interface as the composition of the two original components. Flattening a BIP
model and then merging all the components into a single one improves efficiency of the
generated code [30]. In Figure 7.1, these tools appear as “s2s” boxes.
As said in the concrete BIP model presentation, we consider only flat models in this

thesis. The flattening tool is therefore a crucial requirement in the toolbox, since it
allows us to handle hierarchically composed models, at the cost of a pre-transformation
to flat models. Intuitively, flattening of connectors is done by composing upwards and
downwards data transfer function into a single data transfer function. In Figure 7.2,

p q r

u

x y z

t1

t2
U1 : t1 = max(x, y)
D1 : x = t1; y = t1

U2 : t2 = max(t1, z)
D2 : t1 = t2; z = t2

p

=⇒

q rx y z

t U : t = max(max(x, y), z)
D : x = t; y = t; z = t

Figure 7.2: Flattening a connector.

we intuitively show how the connector from Figure 4.5 is flattened. The global upwards
data transfer function U is obtained from U2 by replacing each occurrence of t1 with the
value computed by U1, i.e. U = U2◦U1. Similarly, we replace in D1 each occurrence of t1
with the value computed by D2, i.e. D = D1 ◦D2. We can obtain a single data transfer
function by taking F = D ◦U = D1 ◦D2 ◦U2 ◦U1. Note that here, only one interaction
is allowed by this connector. Whenever several interactions are possible, flattening will
create the corresponding connectors.
Merging can be done on flat models only. The main idea is that an interaction between

components to merge becomes a single Petri net transition into the component resulting
of the merge. Figure 7.3 presents a simple example where two components are merged

ℓ1

ℓ2

q

p q
ℓ3

ℓ4

r

r s
ℓ1 ℓ3

ℓ2 ℓ4

qr

p s

=⇒

Figure 7.3: Merging components.

into a single one. The interaction qr between the two components is replaced by a single
Petri net transition. By merging all components, one obtains a single Petri net that can
be implemented as a standalone program since it does not require synchronizations with
other components.

150



7.2.4 Source to Source Decentralization

BIP

BIC

Send/Receive
BIP

Prio2Cond

Knowledge-Based

Optimization
Cond2Inter BIP

no priority

Compute

Support

Automata

Support
Automata

Bic2SrBip Bip2SrBip
α-core

embedding

optimized

α-core

embedding

Figure 7.4: Tools involved in the decentralization process.

The methods presented in this thesis have been implemented through a set of tools
that we detail here. A global overview of the different options to generate a distributed
model from a BIP model is shown on Figure 7.4. Initially, only BIP models without
priority where handled, through the following tools:

Bip2SrBip This tool generates a 3-layer Send/Receive model. Condition is not sup-
ported. It is parameterized by a partition of the interactions and the choice of the
conflict resolution protocol.

α-core embedding This tool generates a Send/Receive BIP model that embeds the α-
core protocol, as explained in Section 6.4. There are no parameters except the BIP
model. This tool relies on the merging tool to build the final distributed model.

The idea of replacing Priority by Condition has been later introduced to add priority
support. Furthermore, Condition can be optimized by using knowledge, as explained in
Section 5.4. The following tools are prototypes and handle only Condition predicates
containing control locations (i.e. Condition depending on data is not supported).

Prio2Cond This tool simply rewrites priorities as Condition predicates. This transfor-
mation is presented in Subsection 4.2.5.

Knowledege-Based Optimization This tool implements the techniques presented in
Section 5.4. It relies on DFinder to compute the invariants used as an approx-
imation of the global states. The tool can be used in two ways. First, without

151



any input, it tries to minimize the set of observed components using the simulated
annealing approach. This first pass outputs a set of observed components for each
interaction. Second, given a set of observed components for each interaction, it
replaces the input Condition predicates with their knowledge approximation ac-
cording to the observed components.

Cond2Inter This tool transforms a BIC model into an equivalent BIP model that has
no priority. The transformation is described in Subsection 4.2.5.

Bic2SrBip This tool was obtained by extending the Bip2SrBip tool to support Condi-
tion. Given a BIC model, a partition of the interaction and a conflict resolution
protocol, it generates a 3-layer Send/Receive BIP model as described in Section 6.3.

The last idea is to use knowledge for optimizing the conflict resolution protocol. We
applied this idea to the α-core protocol through the following tools:

Support Automata Computation This tool computes the support automaton for each
atomic component of a BIP model, as described in Section 3.2. During computa-
tion, the states of the automaton, which are sets of global states, are represented
using Binary Decision Diagrams (BDDs).

optimized α-core embedding This tool was obtained by modifying the α-core embed-
ding tool. From a BIP model without priority and the corresponding support
automata, it generates a distributed model embedding the optimized version of
α-core described in Section 6.5.

7.2.5 Execution/Simulation

These tools aim to produce code for either simulation or execution of a BIP model. One
option is to use a centralized BIP execution Engine, which directly implements the BIP
operational semantics. It plays the role of the coordinator in selecting and executing
interactions between the components, taking into account the glue specified in the input
component model. Executing a BIP model against a centralized engine can be done
within a single thread or in a multi-threaded fashion, where the engine constitutes one
thread and each component executes in its own thread as well. Finally, we present
the distributed code generation, that transforms a Send/Receive BIP model into a set
of standalone programs communicating through the primitives available on the target
platform.

The BIP Engine for Single Thread Execution

From a BIP model, a compiler is used to generate code, which is currently C++, for
atomic components and glue. The code is orchestrated by a sequential engine, imple-
mented in C++ as well, that enforces the BIP operational semantic.
An execution cycle of the centralized Engine is depicted in Figure 7.5. This cycle

executes an interaction, moving the system from a global state to another global state.

152



Global
State

Compute
Enabled ports

Compute Enabled
interactions

Filter low priority
interactions

Choose randomly
an interaction

Execute data
transfer function

Execute transitions
in atomic components

DEADLOCK

∅

Figure 7.5: Execution of the centralized engine.

The Engine first computes the set of enabled ports for each atomic component. Then, the
set of enabled interactions is computed, according to the enabled ports and the guards
of the interactions. If no interaction is possible, the Engine stops and indicates that it
reached a deadlock. The next step removes interactions that are not maximal for the
priority order (among the enabled interactions). Then the data transfer function of the
interaction is computed. The remaining computations are the transitions corresponding
to ports involved in the interaction. The Engine sequentially executes these transitions
in the corresponding atomic components to reach the next global state.
In practice, the code of the BIP model is compiled to run with the centralized imple-

mentation of the engine. More precisely, each BIP element (atomic components, con-
nectors, compound components) is implemented as a C++ class. Each of these classes
calls functions that constitute the implementation of the centralized engine. In turn,
the engine may call functions of the generated code when needed, for instance when
executing the data transfer function of an interaction.

BIP Engine for Multi-Threaded execution

The multi-threaded implementation with centralized engine assumes that each compo-
nent is a separate thread. The engine is executed in another thread. Contrarily to the
previous version, the global state is not known to the engine as an atomic component
performing an internal computation has an undefined state. Therefore the engine exe-
cutes according to a partial state semantics [9], that takes into account the fact that the
state of some components may be unknown.
As presented in Figure 7.6, the execution of the multi-thread engine is very similar to

the execution of the centralized engine. The Engine knows only a partial state, given by
the offers received so far. From this set of offers, the multi-thread engine computes the set
of enabled interactions. Checking enabledness of an interaction is not enough to ensure
that it can execute, as further offers may enable a higher priority interaction. Therefore,
the multi-thread engine relies on an oracle that must be true for the interaction to
execute. A correct oracle allows only interactions such that no offer can enable a higher

153



Partial
State

offer

Compute
Enabled interactions

Filter interactions
forbidden by oracle

Choose randomly
an interaction

Execute data
transfer function

Notify
atomic components

no enabled
interaction

no allowed
interaction

Figure 7.6: Execution of the multi-threaded engine.

priority interaction. The execution of the data transfer function is executed in the engine.
Finally, each component executes its update function independently.
As in the centralized code, generated code contains a class for each BIP element. Each

atomic component constitutes a separated thread. Communication between the atomic
components and the engine (i.e. offers and notifications) is done through function calls.
The variables are exchanged using shared memory.

Distributed Execution

The last step for obtaining an executable distributed implementation is to generate code
from a Send/Receive model. In such a model, the only interactions between components
are message-passing. To obtain an implementation, one generates a separate program
for each component, and binds these programs by using the message-passing primitives
available on the target platform.
Consider a Send/Receive BIP model. Each component is a Petri net, whose transitions

are labeled by ports. The Definition 5.2 allows only three kinds of ports: send ports,
receive ports, and unary ports. A send port is used to trigger the emission of a message.
Therefore, the code generated from a transition labeled by a send port includes a call
to a send function. The contents to send is specified by the set of variables attached to
the port. According to Definition 5.2, there is a single receive port associated to each
send port, which specifies the recipient of the message.
A unary port corresponds to an action in which only the local component is involved.

The corresponding generated code does not involve any communication primitives.
The transitions labeled by send and unary ports can be executed as soon as they

are enabled, according to the current state of the Petri net. To the contrary, transitions
labeled by receive ports can be executed only if there is an incoming message correspond-
ing to that port. Therefore, before executing a transition labeled by a receive port, the

154



component needs to wait for an incoming message. In order to reduce waiting time, the
component starts waiting only if no unary transition or send transition is enabled.
For a given state of the Petri net, there may be several possible incoming messages.

For instance, an engine may initially receive any offer. Even if only one receive port is
enabled, there might be several potential senders. For instance, an atomic component
may have a port involved in two externally conflicting interactions, in which case the
engine winning the conflict will send the notification. In that case, the sender depends
on who wins the conflict. Therefore, when waiting for a message, the component cannot
know from which sender or on which port the message will arrive. This implies to
have a select function that blocks until an incoming message is detected. The select
function indicates to the component where the message comes from. The component
then executes the transition labeled by the corresponding receive port. The content of
the message is obtained through a call to a receive function.

Assuming a platform that provides the three functions presented above, one generates
for each atomic component a program whose skeleton is presented in Algorithm 4. First
the communication are initialized according to the platform requirements. Then a while
loop is executed. The loop first checks whether a message can be sent, that is if a send
port is enabled. If it is indeed possible, the message is sent and the loops restarts.
Otherwise, the loop continues by checking if an internal action is possible. Again, if
such an action is possible, it is executed and the loop restarts. Finally, if no send or
unary actions is possible, the select function is called and blocks until a message arrives.
The next incoming message is then received and the loop restarts. Sending messages as
soon as they the corresponding send port is enabled ensures progress of the system.
We have written code generators for the following platforms:

POSIX sockets. The generated code can be compiled and run on any POSIX compliant
platform. The generated code conforms to the pseudo code. It uses the POSIX
socket functions called respectively send, recv and select as implementations of
the send, receive and select functions from the pseudo-code. The code generator
requires a mapping file assigning an IP address and a TCP port to each component
of the Send/Receive BIP model.

POSIX threads. The generated code implements the functions send, receive and select
by using shared memory. More precisely, for each atomic component, the imple-
mentation contains a shared-memory FIFO buffer, a semaphore, and a mutex. The
function send is implemented by directly writing the contents of the message in
the FIFO buffer of the recipient, and incrementing the semaphore. Each compo-
nent watches its semaphore to implement the function select. Finally, receive
is done by reading the local buffer. The mutex is used to ensure exclusive access
to the FIFO buffer.

MPI. MPI [41], which stands for message-passing interface, is a library reference de-
scribing functions to handle message-passing. There are open-source and vendor-
specific MPI implementations. Vendor-specific implementations usually optimize

155



Algorithm 4 Pseudo-code for executing a distributed Send/Receive BIP component.

1: // Initialization
2: InitializeConnections();
3: PrepareInitialState();

4: while true do

5: // Send messages
6: if there exists an enabled send port then
7: send(...);
8: PrepareNextState();
9: goto line 4;

10: end if

11: // Internal computation
12: if there exists an enabled unary port then
13: DoInternalComputation();
14: PrepareNextState();
15: goto line 4;
16: end if

17: // Receive messages
18: select(...);
19: receive(...);
20: PrepareNextState();
21: end while

156



the library for a specific hardware. We mainly used the OpenMPI implementa-
tion [43] which is open-source.

The MPI Send function is used to implement send. The MPI IRecv function is
used to implement receive. Using this implementation of the receive function let
the MPI runtime receive the message whenever it arrives, without triggering the
transition. The function select is then implemented with MPI Waitsome.

ASEBA. There is a prototype code generator targeting ASEBA scripts. ASEBA [64] is a
set of tools for programing robots, through a script language. The tool requires to
specify, for each component, the micro controller on which the component should
be deployed. Communication between the processes is done through D-Bus. We
used this tool to generate an ASEBA script from a BIP model. The script was run
on a Marxbot robot [25].

7.3 Discussion

The BIP tool set is conceived to use BIP as a common semantic model along the design
flow. However, most of the tools presented above are standalone in the sense that they
include a parser to construct the BIP model from the textual representation and a BIP
code generator to do the opposite. To overcome this, a more modular approach has
been used to redevelop some of the tools. This approach relies on a set of front-ends,
middle-ends and back-ends that can be combined to form a chain, corresponding to a
path in the design flow.
Front-ends include a BIP parser, but should also contain the language factory tools.

The middle-ends should be designed to ensure maximal reuse between them. For in-
stance, the knowledge-based tool to minimize the number of observed components utilizes
the invariants computed by DFinder. Therefore, one could imagine to have a middle-end
in charge of computing invariants. The invariants could then be stored, e.g. as annota-
tions, in the BIP model. The model enriched with invariants could then be used to check
deadlock-freedom of the model in a dedicated middle-end. The same model could also
be used to perform the knowledge-based optimization in another middle-end. Similarly,
for each target platform, a code generator could be implemented as a back-end.

157



8 Experiments

We present here some experiments to illustrate how our design flow behave. Several
transformations and optimizations have been introduced along the previous Chapter.
Some of the transformations, for instance the construction of the 3-layer model, are
tuned by several parameters, that control the degree of parallelism. The obtained dis-
tributed model is generic enough to allow its deployment on several platforms. In Sec-
tion 8.1, we simulate different platform by adding delays either on computations or on
communications. The idea is to see how different protocols and partitions behave when
the characteristics of the platform are modified. These experiments have been done with
model without priority.
In a second section, we use sorting algorithms that are more computationally intensive

examples. In that context, we compare the implementations obtained with different code
generators.
Sections 8.1 and 8.2 consider only BIP examples without priority and the correspond-

ing 3-layer model. These first experiments compare different partitions and conflict
resolution protocol performance. In Section 8.1, arbitrary waiting times are added to
simulate computation times and communication times. In Section 8.2, we use more
computationally intensive examples and do not introduce additional waiting times. The
Section 8.3 presents how priority rules are handled through Condition and assess the ben-
efits of the different optimizations. The optimization based on knowledge with perfect
recall is studied in Section 8.4. Finally, the results are discussed in Section 8.5.

8.1 Simulations

We conducted simulations to study the impact of different choices of conflict resolution
protocol and partition of interactions. We emphasize that we distinguish between simula-
tions (results in this section) and an experiments (results in Section 8.2). In distributed
systems, the execution of a task or network communication may take a considerable
amount of time depending on the underlying platform. Thus, we provide simulations by
adding communication delays and computation times to take into account the dynam-
ics of different target platforms. Unlike simulations, all parameters and results in the
experiments are determined by real platform characteristics.
We denote each simulation scenario by (i,X), where i is the number of engines and X

is one among the three conflict resolution protocols described in Subsection 6.3.3 (i.e.,
CP , TR, or DP). For the cases where partition of interactions results in having no
external conflicts and, hence, requires no conflict resolution, we use the symbol ‘−’ to
denote absence of conflict resolution protocol. The scenarios considered in this Section
are referred to as ‘simulations’, because we consider a large number of processes running

158



on a limited number of stand-alone machines. Thus, we model communication delays
by temporarily suspending communicating processes.
All simulations are conducted on five quad-Xeon 2.6 GHz machines with 6GB RAM

running under Debian Linux and connected via a 100Mbps Ethernet network. Our
aim is to show that different conflict resolution algorithms and partitions may result in
significantly different performance. In Subsection 8.1.1, we present simulation results for
a distributed diffusing computation algorithm. In Subsection 8.1.2, we describe results
for a distributed transportation system.

8.1.1 Diffusing Computation

R

Propagation Wave

R

Completion Wave

Figure 8.1: Two phases of the Diffusing computation example.

We model a simplified version of Dijkstra-Scholten termination detection algorithm
for diffusing computations [38] in BIP. Diffusing computation consists in propagating
a message across a distributed system; i.e., a wave starts from an initial node and
diffuses to all processes in a distributed system. Diffusing computation has numerous
applications including traditional distributed deadlock detection and reprogramming
of modern sensor networks. One challenge in diffusing computation is to detect its
termination. In our version, we consider a torus (wrapped around grid) topology for a
set of distributed processes, where a spanning tree throughout the distributed system
already exists. Figure 8.1 presents an example of this algorithm on a 5× 5 torus. Each
process has a unique parent and the root process, depicted by R on the figure, is its own
parent. Termination detection is achieved in two phases: (1) the root of the spanning
tree possesses a message and initiates a propagation wave, so that each process sends
the message to its children; and (2) once the first wave of messages reaches the leaves of
the tree, a completion wave starts, where a parent completes once all its children have
completed. When the root has completed, termination is detected.
For a torus of size n ×m, the BIP model has n ×m atomic components (see Figure

8.2 for a partial model). Each component participates in two types of interactions:

159



a1

a

a2

a0

a3

Figure 8.2: Partial BIP model for diffusing computations.

(1) four binary rendezvous interactions (e.g., a0 · · · a3) to propagate the message to its
children (as in a torus topology, each node has four neighbors and, hence, potentially
four children), and (2) one 5-ary rendezvous interaction (e.g., a) for the completion
wave, as each parent has to wait for all its children to complete. Finally, in order to
make our simulations realistic, we require that execution of each interaction involves
10ms suspension of the corresponding engine.

Influence of Partition

Our first set of simulations is for a 6×4 torus. We used different partitions as illustrated
in Figure 8.3. Figure 8.4 shows the time needed for 100 rounds for detecting termination
of diffusing communication for each scenario. In the first two scenarios, the interactions
are partitioned, so that all conflicts are internal and, hence, resolved in the engines. In
case (2,−), all interactions of the propagation wave are grouped into one engine and
all interactions related to the completion wave are grouped into the second component.
Such grouping does not allow parallel execution of interactions. This is the main reason
for poor performance of (1,−) and (2,−) shown in Figure 8.4.

(24,[DC,TR,DP])

(1,DC) (2,_) (2,[DC,TR,DP])

(4,[DC,TR,DP])

Figure 8.3: Different scenarios for diffusing computations.

Other scenarios group all interactions involved in components 1 · · · 12 into one com-
ponent and the remaining interactions in a second engine. These provide simulations

160



(2,CP), (2,TR), and (2,DP). Such partitions allow more parallelism during propaga-
tion and completion waves, as an interaction in the first class can be executed in parallel
with an interaction in the second class. Recall that execution of each interaction involves
10ms of suspension of the corresponding engine. This is why (2,CP/TR/DP) outper-
forms (1,−) and (2,−). As almost all propagation interactions conflict with each other
and so do all completion interactions, the conflict graph is dense. Hence, to make a de-
cision within DP , each philosopher needs to grab a high number of forks, which entails a
lot of communication. Thus, the performance of (2,TR) is slightly better than (2,DP).
It can also be seen that (2,CP) performs as well as (2,TR) and (2,DP). This is due
to the fact that we have only two classes, which results in a low number of reservation
requests.

Figure 8.4: Performance of termination detection in diffusing computation in different
scenarios for torus 6× 4.

Figure 8.4 also shows the same type of simulations for 4 and 24 partition classes. As
for two partitions, TR and CP for 4 and 24 partition classes have comparable perfor-
mance. However, CP and TR outperform DP . This is due to the fact that for DP ,
each philosopher needs to acquire the forks corresponding to all conflicting interactions,
which requires a considerable amount of communication. On the contrary, TR does not
require as much communication, as the only task it has to do is releasing and acquiring
the token. Moreover, the level of parallelism in DP for a 6× 4 torus is not high enough
to cope with the communication volume.
Following our observations regarding tradeoff between communication volume and

parallelism, we design a scenario illustrating the advantages of DP . Recall that each
component in DP resolves conflicts through communication involving only its neighbor-
ing components. This is not the case for TR, since the token has to travel through a large
number of components. For a 20 × 20 torus, as can be seen in Figure 8.5, DP outper-
forms TR. This is solely because, in TR, the token travels along the ring of components
and enables interactions sequentially. On the contrary, in DP , the conflict resolution
protocol components act in their local neighborhood and although more communication

161



is needed, a higher level of concurrency is possible and, hence, more interactions can be
enabled simultaneously. We expect for increasing size of the torus, DP outperforms CP
as well.

Figure 8.5: Performance of termination detection in diffusing computation in different
scenarios for torus 20× 20.

Influence of Communication Delays and Execution Times

We now study the influence of communication delays and execution times of functions
attached to interactions. We simulate different environments by adding execution times
and communication delays. The idea is to provide some guidelines on whether one
should use a coarse or fine grain partition and which protocol to choose, depending on
the application software and the architecture.
Note that adding execution times within atomic components will slow down the sys-

tem regardless of the partition and committee coordination algorithm. The response
time to a notification is the time needed for the reception of the notification, parallel
execution of transitions in atomic components and emission of offer messages. Since we
have parallelism between components, the response time to a notification is determined
by the response time of the slowest component and does not depend on the partition of
interactions or the conflict resolution protocol used. Therefore, we do not model exe-
cution times on atomic components transitions, nor the communication delay between
atomic components and engines.
We consider three different environments, each of them defined by the following pa-

rameters:

• tinter is the execution time for an interaction.

• tE↔CP is the communication delay between the engines and the conflict resolution
protocol.

• tCP↔CP is the communication delay between components inside the conflict reso-
lution protocol.

162



In the first environment, we assume tinter = 10ms for an interaction execution time, as
for the previous simulation, and no communications delay (tE↔CP = tCP↔CP = 0ms).
In the second environment, we still assume the same execution time and we add a delay
of tE↔CP = 10ms for communication between the engines and the conflict resolution
protocol. In the third environment, we assume slower processors with tinter = 100ms
interaction execution time. Furthermore, we assume tE↔CP = 10ms for communica-
tions between the engines and the conflict resolution protocol and tCP↔CP = 1ms for
communications inside the conflict resolution protocol.
For each of these environments, we executed a different scenario of diffusing compu-

tation built on a 5 × 5 grid. We used three different partitions of the 5 × 5 torus: a
centralized one, a partition with 5 engines (similar to the one with 4 engine components
depicted in Figure 8.3), and the fully decentralized one, with 25 engines. The total
execution time of these scenarios in the three environments described above, are shown
in Figure 8.6, Figure 8.7, and Figure 8.8 respectively.

Figure 8.6: Simulation of a diffusing computation on a 5 × 5 torus. tinter = 10ms,
tE↔CP = 0ms, tCP↔CP = 0ms

Figure 8.7: Simulation of a diffusing computation on a 5 × 5 torus, tinter = 10ms,
tE↔CP = 10ms, tCP↔CP = 0ms

Notice that in the first environment, the best performance is achieved for the most

163



Figure 8.8: Simulation of a diffusing computation on a 5 × 5 torus, tinter = 100ms,
tE↔CP = 10ms, tCP↔CP = 1ms

decentralized partition, as in Figure 8.4, since there are no communication delays. In the
second environment, where we made the assumption that one communication and one
interaction execution require the same time, the best performance is obtained for the
centralized solution. In this case, the communication between the engines and conflict
resolution protocol is too expensive compared to the speedup obtained by having inter-
actions running in parallel. Finally, in the third environment, where the communication
costs 10 times less than executing an interaction, the solution with 5 interaction protocol
components gives the best performance, except for the token ring protocol. Indeed, the
bottleneck is the time needed for the token to cycle through all conflict resolution proto-
col components. Having more engines increases the number of pending reservations and
thus diminishes the time between two granted reservations. Increasing the communica-
tion time tRP↔RP (experiments not shown here) penalizes token ring much more than
dining philosophers.

8.1.2 Utopar Transportation System

Utopar is an industrial case study proposed in the context of the European Integrated
Project SPEEDS1. Utopar is an automated transportation system managing requests
for transportation. The system consists of a set of autonomous vehicles, called U-cars,
a centralized automatic control (Central-Station), and calling units (see Figure 8.9).
We model a simplified version of Utopar in BIP. The overall system architecture is

depicted in Figure 8.10. It is a composition of an arbitrary (but fixed) number of
components of three different types: U-Cars, Calling-Units, and Central-Station. The
Utopar system interacts with external users (passengers). Users are also represented as
components, however, their behavior is not explicitly modeled.
The overall behavior of the system is obtained by composing the behavior of the

components using the following set of interactions:

• awake: handling awake calls of cars by Central-Station;

1http://www.speeds.eu.com/

164

http://www.speeds.eu.com/


Figure 8.9: Utopar transportation system.

• request: handling car requests by users at Calling-Units;

• destination: handling destination requests by users seating within U-Cars;

• enter: handling the step on (resp. off) of users into U-Cars;

• departure: handling departure commands issued by Central-Station towards U-
Cars;

• posChanged, arrival: information provided by moving U-Cars towards Central-
Station;

• open, close: handling the opening/closing of U-Cars doors, while parked at Calling-
Units.

Our first set of simulations consists of 25 = 5 × 5 calling units and 4 cars. For
each calling unit, we group all the interactions it is involved, in one engine. Moreover,
for each car, we define one engine handling all interactions involving the central unit.
Thus, we obtain 29 engines. Using this partition, we generate the corresponding 3-
layer Send/Receive model for the three conflict resolution protocols. We simulate the
target platform as follows. We consider that there exists a machine on each calling unit.
Moreover, each machine is connected to its four neighbours and the communication time
between two neighbour machines is 1ms.
We generate the corresponding C++ executables as follows. We merge each calling

unit with its associated engine and map the resulting code into the machine located
on the calling unit. In a similar way, we merge each car with its associated engine
and map the resulting code into an arbitrary machine, such that two different cars are
located in different machines. Regarding CentralStation, we map its code into the central
(midmost) machine. Regarding the conflict resolution protocol, in the case of CP , the
best choice is to map its code into the central machine as well. In the case of TR and

165



CentralStation

departurei=1,N

openi=1,N

awakei=1,N

destinationi=1,N

posChangedi=1,N

arrivali=1,N

closei=1,N

enterk,l=1×M,1×M

requestk,l=1×M,1×M

request
enteri=1,N

departure

open

awake

UCar(N)

CallingUnit(M ×M)

close

arrival

posChanged

destination

Figure 8.10: A BIP model for Utopar system.

 55

 56

 57

 58

 59

 60

 61

 62

(2
9
,C

E
N

T
)

(2
9
,T

R
)

(2
9
,D

P
)

T
o
ta

l 
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Scenario

Figure 8.11: Performance of responding 10 requests per calling unit in Utopar System
in different scenarios for 5× 5 calling units and 4 cars.

166



 120

 125

 130

 135

 140

 145

 150

(5
3
,C

E
N

T
)

(5
3
,T

R
)

(5
3
,D

P
)

T
o
ta

l 
E

x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
s
)

Scenario

Figure 8.12: Performance of responding 10 requests per calling unit in Utopar System
in different scenarios for 7× 7 calling units and 4 cars.

DP protocols, we map the code of each component in the same machine as the engine
communicating with it.
Figure 8.11 shows the time needed for responding to 10 requests by each calling unit.

Clearly, (29,DP) outperforms (29,TR) and (29,CP). This is due to the overhead of
communications for the case of TR and CP . More precisely, regarding CP the overhead
is due to the communication between the engines and the conflict resolution protocol,
since the centralized conflict resolution protocol is placed in the central machine. Re-
garding TR, the overhead is due to communications between conflict resolution protocol
which depend on the number of components in this layer. To the contrary, in DP , the
conflict resolution protocol components act in their local neighborhood although more
communication is needed.
Figure 8.12 also shows the same type of simulations by taking 4 cars and 49 = 7 × 7

calling units. Performance becomes worse for TR since the token has to travel a long
way through the components of the conflict resolution protocol layer.
We conclude this section by stating the main lesson learned from our simulations. Dif-

ferent partitions and choice of committee coordination algorithm for distributed conflict
resolution, suit different topologies and settings although they serve a common purpose.
Designers of distributed applications should have access to a library of algorithms and
choose the best according to parameters of the application.

8.2 Running Experiments

In this section, we present the results of our experiments on two popular parallel sorting
algorithms: (1) network sorting algorithm (see Subsection 8.2.1), and (2) bitonic sorting

167



(see Subsection 8.2.2). Unlike simulations in Section 8.1, all results in this section are
determined by physical computation and communication times.
All experiments are conducted on quad-Xeon 2.6 GHz machines with 6GB RAM

running under Debian Linux and connected via a 100Mbps Ethernet network. We show
that our method allows evaluation of parallel and multi-core applications modeled in
BIP. Moreover, we show that different mergings of components may result in significantly
different performance.

8.2.1 Network Sorting Algorithm

We consider 2n atomic components, each containing an array of N items. The goal is to
sort the items, so that all the items in the first component are smaller than those of the
second component and so on. Figure 8.13 shows a BIP model of the Network Sorting
Algorithm [2] for n = 2 using incremental and hierarchical composition of components.
The atomic components B1 . . . B4 are identical. Each atomic component computes in-
dependently the minimum and the maximum values of its array. Once this computation
completes, interaction a1 compares the maximum value of B1 with the minimum value
of B2 and swaps them if the maximum of B1 is greater than the minimum of B2. Other-
wise, the corresponding arrays are correctly sorted and interaction a2 gets enabled. This
interaction exports the minimum of B1 and the maximum of B2 to interaction a5. The
same principle is applied to components B3 and B4 and interactions a3 and a4. Finally,
interaction a5 works in the same way as interaction a1 and swaps the minimum and the
maximum values, if they are not correctly sorted.

...... ... ...

a5

a2
a1

a4
a3

B1 B2 B3 B4

Figure 8.13: A BIP model for Network Sorting Algorithm.

All interactions in Figure 8.13 are in conflict. We choose to construct a single engine
E1 that encompasses all these interactions (see Figure 8.14). We try different merging
schemes in order to study the degree of parallelism for each scenario. More precisely,
we run experiments for five configurations 1c, 2c, 3c, 4c, and 5c. For 1c, we merge
all components to obtain a single component, as described in Subsection 7.2.3. For
2c, we merge components [BSR

1 , BSR
2 , E1] and [BSR

3 , BSR
4 ], obtaining two Send/Receive

components. For 3c, we merge components [BSR
1 , E1], [B

SR
2 , BSR

3 ], and [BSR
4 ], obtaining

three Send/Receive components. For 4c, we merge components [BSR
1 , E1], [B

SR
2 ], [BSR

3 ],
and [BSR

4 ], obtaining four Send/Receive components. Finally, for 5c we do not merge
components, hence, we have five Send/Receive components (see Figure 8.14).

168



Table 8.1 shows performance of the automatically generated C++ code using POSIX
sockets and POSIX threads. The implementation using POSIX threads slightly outper-
forms POSIX sockets. This is due to the fact that the number of messages exchanged
per component is huge, making the socket-based implementation slower, as it requires
network communication. Performance clearly depends on the size of the input array as
well. Also, notice that configuration 5c outperforms all the other configurations. In-
deed, the computation load is much higher than the communication load. The added
communication does not entail the performance gained by distributing the computation
load.

1c 2c 3c 4c 5c

k C++/Threads

1 1.78 1.61 0.93 0.73 0.53

5 9.72 8.75 5.08 4.21 2.88

10 21.52 19.42 11.21 9.42 6.52

50 191.14 171.12 98.07 82.96 63.43

k C++/Socket

1 1.8 1.94 1.27 1.07 0.83

5 9.81 9.44 5.85 4.91 3.53

10 21.7 20.55 12.56 10.03 7.51

50 191.47 177 104.1 86.17 65.84

Table 8.1: Performance (execution time in seconds) of NSA (n = 2), where k × 103 is
the size of array to sort.

8.2.2 Bitonic Sorting

Bitonic sorting [14] is one of the fastest sorting algorithms suitable for distributed im-
plementations or in parallel processor arrays. A sequence is called bitonic if it is initially
non-decreasing, then it is non-increasing. The first step of the algorithm consists in con-
structing a bitonic sequence. Then, by applying a logarithmic number of bitonic merges,

...... ... ...

BSR
1

BSR
2

BSR
3

BSR
4

E1

Figure 8.14: 3-layer Send/Receive BIP model for Network Sorting Algorithm.

169



the bitonic sequence is transformed into a totally ordered sequence. We provide an
implementation of the bitonic sorting algorithm in BIP using four atomic components,
each handling one quarter of the array. These components are connected as shown in
Figure 8.15.

... ... ... ...

step1

step2

step3

step1 step2

B1

a2

a5

a4

a1

a3 a6

step3

step1

step2

step3

step1 step2

step3

B2

step1

step2

step3

step1 step2

step3

B3

step1

step2

step3

step1 step2

step3

B4

Figure 8.15: A BIP model for Bitonic Sorting Algorithm.

The six interactions are non-conflicting. Moreover, interactions a1, a2, and a3 cannot
run in parallel. The same holds for interactions a4, a5, and a6. Thus, two engines
suffice to obtain maximal parallelism between interactions. The first engine E1 handles
interactions a1, a2, and a3 and the second engine E2 handles interactions a4, a5, and
a6. Furthermore, since all interactions are non-conflicting, there is no need for conflict
resolution protocol. According to this partition of interactions, we obtain the 3-layer
Send/Receive BIP model shown in Figure 8.16. In this example, each component sends
only three messages containing the array of values.

...... ......

B
SR
4B

SR
1 B

SR
2 B

SR
3

a2a1 a3 a5a4 a6

E1 E2

Figure 8.16: 3-layer Send/Receive BIP model for Bitonic Sorting Algorithm (6c).

We choose different merging schemes to study the degree of parallelism with respect
to each configuration. More precisely, we run experiments for four configurations 1c,
2c, 4c, and 6c (see Figure 8.17). For 1c, we merge all components in one component.
For 2c, we merge components [BSR

1 , BSR
2 , E1] and [BSR

3 , BSR
4 , E2], obtaining two

components. For 4c, we merge components [BSR
1 , E1], [B

SR
2 ], [BSR

3 ], and [BSR
2 , E2],

obtaining four components. Finally, for 6c we do not merge components, hence, we have
six Send/Receive components (see Figure 8.16).

170



...... ... ...... ...

... ...

...... ............

B
SR
4B

SR
1 B

SR
2 B

SR
3

a2a1 a3 a5a4 a6

E1 E2

PetriNet

B
SR
2 B

SR
3

B
SR
2 B

SR
3

B
SR
1

a2a1 a3 a5a4 a6

E1 E2

B
SR
4

PetriNet1 PetriNet2
PetriNet1 PetriNet2

B
SR
1 B

SR
2 B

SR
3

a2a1 a3 a5a4 a6

E1 E2

B
SR
4

2c1c 4c

Figure 8.17: Merging schemes applied on Send/Receive BIP model of Bitonic Sorting
Algorithm.

Table 8.2 shows performance of the automatically generated C++ code using POSIX
sockets, POSIX threads (shared memory), and MPI. Clearly, the configuration 6c outper-
forms the other configurations for POSIX sockets and for POSIX threads. Furthermore,
the overall performance of these implementations is quite similar. This is due to the fact
that, in contrast to the previous example, the number of messages exchanged per com-
ponent is small. More precisely, each component performs three steps in order to obtain
a totally ordered sequence. Each step requires a binary synchronization and leads to one
message exchange between an atomic component and an engine. On the other hand, at
each step the amount of computation per atomic component is huge with respect to the
communication time.
For the MPI implementation, configuration 4c outperforms the other configurations.

This is due to the fact that MPI uses active waiting, which entails CPU time consumption
when a component is waiting. The MPI code consisting of four processes is therefore the
best fitting the four cores available on the target machine and yields best performances.
Moreover, Table 8.2 shows performance of the handwritten C++ code using MPI

collective communication primitives (e.g., Gather and Scatter) instead of Send/Receive
to transfer data. We notice that the best performance of automatically generated C++
code (obtained in configuration 6c) is comparable to the performance of handwritten
code (and run on configuration 4c).

The main observation from these experiments is that determining adequate component
merging and communication primitives depends on (1) the topology of the system with
respect to communication delays, and (2) the computational load of the system, and (3)
the target architecture on which the system is deployed.

8.3 Condition

We compare the execution time and the number of exchanged messages for several
distributed implementations of a BIC component. This component is obtained from a

171



1c 2c 4c 6c

k C++/Threads

1 0.02 0.01 0.01 0.01

10 1.8 0.96 0.75 0.54

50 44 23.57 18.37 12.04

100 178.42 94.71 73.22 48.1

k C++/Socket

1 0.02 0.02 0.34 0.27

10 1.8 1 1.01 0.75

50 44 24.1 18.57 12.3

100 178.42 95.32 74.01 48.7

k MPI

1 0.26 0.8 1.15 1.16

10 1.93 2.06 1.92 2.03

50 44.85 24.04 19.47 23.08

100 179.4 95.83 74.59 85.37

k Handwritten

1 1.54

10 2.01

50 13.47

100 49.67

Table 8.2: Performance (execution time in seconds) of bitonic sorting (n = 2), where
k × 103 is the size of array for sorting.

172



BIP component with priority as described in Figure 8.18. The transformation called
“KB Opt. basic” and “KB Opt. complete” are done by calling the Knowledge-Based
optimization tool from Figure 7.4 and asking to obtain either a basic or a complete BIC
model. This first transformation from a BIP to a BIC model is parameterized by:

• The level of optimization (no opt, basic or complete)

• The invariant used for the computation (boolean or linear invariant)

BIP BIC
no opt

Prio2Cond

KB Opt.

Basic

KB Opt.

Complete

BIC
basic

BIC
complete

Figure 8.18: Sequence to generate BIC models.

Given a BIC model, regardless whether it is optimized or not, we consider two different
implementations:

• A Condition-aware (CA) implementation obtained by directly calling the Bic2SrBip
tool.

• A Multiparty-based (MB) implementation obtained by calling the tool Cond2Inter
and then Bip2SrBip (See Figure 7.4).

For both cases, we use the centralized version of the conflict resolution protocol.

8.3.1 Dining Philosophers

thinking

eating

eat

cleaning
clnl

clnr

clnl clnr

eatPi

free

used

cln eat

eat

cln

Fi

free

used

cln eat

eat

cln

Fi+1

eatieat i−1

Ei

eat i+1

cleanleft i cleanright icleanright i−1 cleanleft i+1

Ci Ci+1

Figure 8.19: Fragment of the dining philosopher component. Braces indicate how inter-
actions are grouped into engines.

173



We consider a variation of the dining philosophers problem, denoted by PhiloN where
N is the number of philosophers. A fragment of this composite component is presented in
Figure 8.19. In this component, an “eat” interaction eat i involves a philosopher and the
two adjacent forks. After eating, philosopher Pi cleans the forks one by one (cleanleft i
then cleanright i). We consider that each eat i interaction has higher priority than any
cleanleft j or cleanright j interaction.
This example has a particularly strong priority rule. Indeed, executing one “clean”

interaction potentially requires to check that all “eat” interactions are disabled, that
is to observe all components. This example allows the different implementations to be
compared under strong priority constraints.
As explained in Section 6.3, the construction of our distributed implementation is

structured in 3 layers. The second layer is parameterized by a partition of the inter-
actions. For this example, the partition is built as follows. There is one engine Ei for
every eati interaction and one engine Ci for every pair cleanright i−1, cleanleft i. Only the
latter deals with low priority interactions and need to observe more components than
the participants in the interactions it manages.

Minimizing Observed Components

As interactions are grouped into engines, we assume that they share their observations.
If interactions a and b are handled by the same engine, we impose that La = Lb. This
restriction actually assigns a set of observed components to each engine, which limits
the size of the solutions space.
Minimizing the number of observed component in a complete Condition κ′ is done

independently for each engine. Table 8.3 shows the results, that is the number of observed
components, obtained for the engine C0 with the heuristic for ensuring completeness
described in Subsection 5.4.2. The total number of atomic components in the composite
component is indicated in Column Size. Columns true, BI and LI provide the cost of
the solutions obtained when using respectively true, the boolean invariant and the linear
invariant as over approximation of the global states. Note that the cost of the solution
is the number of components that are observed by at least one interaction of C0 and
not participant in any of the interactions handled by C0. For instance, the component
P0 being observed by interaction cleanrightN−1 (handled by C0) does not increase the
cost as P0 is already participant in C0 through the interaction cleanleft0. Using true as
invariant does not allow actual optimization, therefore it shows the number of observed
component in the initial Condition κ. The column optimal indicates the cost of an
optimal solution.
Here, the linear invariant gives better results than the boolean invariant, which is not

precise enough to allow reducing observation comparatively to the true invariant. For
N = 3, we provide the boolean and linear invariants respectively in Figures 8.20 and
8.21. As an example, consider the linear constraint (8.15). It ensures that interaction
cleanleft0 and interaction eat1 cannot be enabled concurrently, otherwise, control loca-
tions P0.eating and F1.free would be active and the sum in constraint (8.15) would be
equal to 2. Thus, the priority cleanleft0 π eat1 never forbids execution of cleanleft0. A

174



Eng. Component Size true BI LI optimal

C0

Philo3 6 3 3 1 1
Philo4 8 5 5 2 2
Philo5 10 7 7 3 3
Philo10 20 17 17 8 8
Philo20 40 37 37 18 18
Philo100 200 197 197 108 98

Table 8.3: Minimal observation for completeness.

Component Size true BI LI

Philo3 6 9 9 0
Philo4 8 20 20 4
Philo5 10 35 35 6
Philo10 20 170 170 23

Table 8.4: Minimal observation for baseness.

related boolean constraint, that is constraint (8.3) of boolean invariant guarantees that
at least one of these locations is active. However, this constraint is not strong enough
to discard the case where two of them are active.
In general, the approximations of reachable states provided by boolean and linear in-

variants are not comparable. Consider the global state P0.cleaning∧F0.used∧P1.cleaning∧
F1.used ∧ P2.cleaning ∧ F2.used . This state satisfies all the constraints of the linear in-
variant, but does not satisfy the constraint 8.8 of the boolean invariant.

∀i ∈ {0, 1, 2} (atFi.free ∨ atFi.used ) (8.1)

∧ ∀i ∈ {0, 1, 2} (atPi.thinking ∨ atPi.eating ∨ atPi.cleaning ) (8.2)

∧ (atP1.eating ∨ atP0.eating ∨ atP0.cleaning ∨ atF1.free) (8.3)

∧ (atP2.eating ∨ atP1.eating ∨ atP1.cleaning ∨ atF2.free) (8.4)

∧ (atP0.thinking ∨ atF0.used ∨ atP0.cleaning ∨ atP2.thinking ) (8.5)

∧ (atP0.thinking ∨ atF1.used ∨ atP1.cleaning ∨ atP1.thinking ) (8.6)

∧ (atP2.cleaning ∨ atF0.free ∨ atP2.eating ∨ atP0.eating ) (8.7)

∧ (atF1.free ∨ atF2.free ∨ atF0.free ∨ atP1.eating ∨ atP2.eating ∨ atP0.eating ) (8.8)

∧ (atF2.used ∨ atP2.cleaning ∨ atP1.thinking ∨ atP2.thinking ) (8.9)

∧ (atF2.used ∨ atP2.cleaning ∨ atP1.thinking ∨ atF0.free ∨ atP0.eating ) (8.10)

∧ (atF1.free ∨ atP1.eating ∨ atF0.used ∨ atP0.cleaning ∨ atP2.thinking ) (8.11)

∧ (atP0.thinking ∨ atF2.free ∨ atF1.used ∨ atP2.eating ∨ atP1.cleaning ) (8.12)

Figure 8.20: Boolean invariant for the Dining Philosophers example with N = 3.

The results for computing basic solutions are presented in Table 8.4. The column

175



(atP0.thinking + atP0.eating + atP0.cleaning = 1) (8.13)

∧ ∀i ∈ {0, 1, 2}(atFi.free + atFi.used = 1) (8.14)

∧ (atP1.eating + atP0.eating + atP0.cleaning + atF1.free = 1) (8.15)

∧ (atP1.thinking − atP0.eating − atP0.cleaning + atF1.used + atP1.cleaning = 1) (8.16)

∧ (atP2.eating − atP0.eating − atP0.cleaning + atF1.used + atP1.cleaning − atF2.used = 0) (8.17)

∧ (atP2.cleaning + 2 ∗ atP0.eating + atP0.cleaning − atF1.used − atP1.cleaning + atF2.used − atF0.used = 0) (8.18)

∧ (atP2.thinking − atP0.eating + atF0.used = 1) (8.19)

Figure 8.21: Linear invariant for the Dining Philosophers example with N = 3.

Size contains the total number of atomic components in the composite component.
The columns true, BI and LI contains respectively the cost of the solutions obtained
when using respectively true, the boolean invariant and the linear invariant. For Philo3,
baseness is achieved when each engine observes only the components involved in the
interactions it handles (i.e. no additional atomic component), therefore the cost is 0.

Comparing Obtained Implementations

The goal of this subsection is to compare the different implementations that we obtained
for the dining philosophers example. First, we consider different levels of optimization
for the Condition operator:

• No optimization: the Condition operator is the direct rewriting of priorities
rules, we do not apply any knowledge-based optimization.

• Basic: observation required by the Condition operator is minimized while still
ensuring baseness.

• Complete: observation required by the Condition operator is minimized while
still ensuring completeness.

As showed in the previous subsection, the Boolean invariant is not strong enough to
reduce the number of observed components comparatively to the non-optimized version.
Therefore, the basic and complete version of the Condition operator have been com-
puted using the linear invariant. For each optimization level considered, we generate
a Multiparty-based (MB) and a Condition-aware (CA) implementation. Once we have
built the distributed components, we use a code generator that generates a standalone
C++ program for each atomic component. These programs communicate by using Unix
sockets.
The obtained code has been run on a UltraSparc T1 that allows parallel execution of

24 threads. For each run, we count the number of interactions executed and messages
exchanged in 60 seconds, not including the initialization phase. For each instance we
consider the average values obtained over 20 runs. The number of interactions executed

176



Figure 8.22: Number of interactions executed in 60s for different implementations of the
dining philosophers example. MB: Multiparty-based. CA: Condition-aware.

Figure 8.23: Number of messages exchanged in 60s for different implementations of the
dining philosophers example. MB: Multiparty-based. CA: Condition-aware.

177



by each implementation is presented in Figure 8.22. The total number of messages
exchanged for the execution of each implementation is presented in Figure 8.23.
First, remark that switching from a Multiparty-based (gray) to a Condition-aware

(black) implementation improves performance, that is the number of interactions exe-
cuted in 60 seconds. Furthermore, it always reduces the number of messages exchanged.
The improvement is very visible with the unoptimized version (No opt). This can be
explained as follows. Evaluation Condition predicates requires to observe all compo-
nents for executing a cleanlefti or a cleanrighti interaction. In the Multiparty-based
implementation, observed components must synchronize to execute some interaction
cleanlefti or cleanrighti . Between two “clean” executions, each component has to receive
a notification and to send a new offer. This strongly restricts the parallelism. In the
observation-aware implementation, a component offer is still valid after execution of an
interaction observing that component. After a “clean” interaction, only components
that participated may need to send a new offer before another “clean” interaction can
be executed. This explains the speedup.
Second, when comparing Multiparty-based (gray) implementations, one sees that the

Condition operator ensuring completeness gives the best performance. The basic im-
plementations exhibit poor performance because restricting observation in that case
also restricts parallelism. For the example with 9 philosophers, Multiparty-based im-
plementation with optimized Condition (Complete - MB) shows a significant gain in
performance compared to the non optimized version (No opt - MB). The performance
gained by optimizing the Condition operator into a complete one is not visible anymore
when switching to Condition-aware (black) implementation. However, the optimization
remains interesting in that case since it reduces the number of messages needed for 60
seconds of execution.

8.3.2 Jukebox

The second example is a jukebox depicted in Figure 8.24. It is a more advanced version
than our previous running example that has two parallel jukeboxes allowing two discs
to be loaded at a time. It represents a system, where a set of readers R1 . . . R4 access
data located on 3 discs D1, D2, D3. Readers may need to access any disc. Access to
discs is managed by jukeboxes J1, J2 that can load any disc to make it available to
the connected readers. The interaction load i,k (respectively unload i,k) allows loading
(respectively unloading) the disc Di in the jukebox Jk. Each reader Rj is connected to
a jukebox through the read j interaction. Once a jukebox has loaded a disc, it can either
take part in a “read” or “unload” interaction. Each jukebox repeatedly loads all N discs
in a random order.
If unload interactions are always chosen immediately after a disc is loaded, then readers

may never be able to read data. Therefore, we add the priority unloadi,k π readj , for all
i, j, k. This ensures that “read” interactions will take place before corresponding discs
are unloaded. Furthermore, we assume that readers connected to J1 need more often disc
1 and that readers connected to J2 need more often disc 2. Therefore, loading these discs
in the corresponding jukeboxes is assigned higher priority: loadi,1 π load1,1 for i ∈ {2, 3}

178



D1

load unload

D2

load unload

D3

load unload

J1
load unload

data

read
R1

read
R2

J2
load unload

data

read
R3

read
R4

Figure 8.24: Jukebox component with 3 discs.

and loadi,2 π load2,2 for i ∈ {1, 3}. Each interaction is handled by a dedicated engine.
The main difference with the dining philosopher examples is that here priority rules

do not restrict parallelism since they are expressed between interactions that are in
Interaction conflict. Here a priority rule is used to express a scheduling policy that aims
to improve the efficiency of the system, in terms of “read” interactions. Removing this
priority rule results in a system that does less “read” interactions.

Minimizing Observed Components

Results of the simulated annealing heuristic are presented in Table 8.5. Engines handling
a “read” interaction do not need to observe additional atomic components since there
is no interaction with higher priority. The boolean invariant allows removing some
observed atomic components, in the basic solution. As for PhiloN components, the
linear invariant is stronger than the boolean invariant. Therefore, attaining the same
level of detection requires less observed atomic components.

Interaction true BI(basic) BI(complete) LI(basic) LI(complete)

unloadi,k 5 3(k = 1) or 5(k = 2) 5 2 2
loadi,k 1 0 1 0 1

Table 8.5: Minimal observation cost to ensure baseness or completeness.

Comparing Obtained Implementations

For this example, knowledge using the Boolean invariant (BI) allows the number of
observed components to be reduced and yields implementations to be evaluated. We
consider the optimization levels: No optimization, Basic (I), and Complete (I), where I
is either the boolean invariant BI or the linear invariant LI. For each optimization level,
we compare Multiparty-based and Condition-aware implementations. The number of

179



Figure 8.25: Number of interactions executed in 60s for the jukebox example.

interactions executed during 60 seconds is presented in Figure 8.25. Here the perfor-
mance of Condition-aware implementation is not significantly better than performance
of Multiparty-based implementation. The best results are obtained with the basic opti-
mization level using linear invariant. These results come from the fact that no parallelism
is allowed between low priority interactions since they are in interaction conflict. More
precisely, the only gain in performance consists in time involving actually sending and
receiving messages, not in waiting unneeded offers.
Figure 8.26 shows that significantly fewer messages are exchanged with the Condition-

aware implementation. Intuitively, this difference corresponds to the notifications and
subsequent offers to and from observed components, that are not necessary with the
Condition-aware implementation. Interestingly, the implementation giving the best per-
formance (Basic (LI) optimization with Condition-aware implementation) is also the one
requiring the least number of messages.

Figure 8.26: Number of messages exchanged in 60s for the jukebox example.

180



8.4 Optimizing conflict resolution

We present experimental results relative to the computation of the support automata for
participants, as presented in Section 3.2. We then present the performance gained when
embedding these automata inside the α-core participants, as presented in Section 6.5.

8.4.1 Examples

Our first example is the modified dining philosophers depicted in Figure 8.19, but without
priority rules.

0 1
acqi∗

2
a
cq

i ∗

rel i∗
,∗

Masteri

0

i1

ac
q

i 1
j

re
l
i 1

∗,
j

ik
acq i

kj

rel i
k∗
,j

. . .

Slavej

Figure 8.27: Master Slave example

The second example, called Master/Slave, is presented as a system of processes as
introduced in Chapter 2. We assume a set of N masters and M slaves. Each master
wants to perform a task for which it needs two slaves that it can chose amongst a pool
of size K. We denote msNMK such an instance. If the slave j is in the pool of the
master i, then the interaction acqij allows master i to acquire slave j, which brings
the slave in state i so that it remembers that i acquired it. On completion on the
task, the master i releases simultaneously the two acquired slaves j1 and j2 through the
relij1,j2 interaction. Figure 8.27 shows respectively, the behavior of a master and a slave.
Since the actual number and labels of transitions between two states depends on the
parameters of the example, we represented only one transition with a label representing
all possible transitions between these two states. Note that the automata of the slave is
such that only the master who acquired it can release it.

0

1

mvi,1,0

2

Nodei

0

mvi,1,0

12

Nodei−1

0

1
mvi,1,0

2

Nodei+1

Figure 8.28: Three consecutive nodes of the transmission protocol.

The third example models a transmission protocol that propagates values amongst a
chain of memories. At every time, each memory node stores a single value. A fragment
of this example is shown in Figure 8.28, expressed as a system of processes. The rule is
to propagate (copy) the new value (from the left) only if the memory on the right has
already copied the local value. Propagation steps are implemented as ternary interactions

181



denoted by mvi,v1,v2 , which correspond to the case where memory i changes its value
from v1 to v2. As an example, the interaction mvi,1,0 in the Figure 8.28 changes the
value in Nodei from 1 to 0 if Nodei+1 already changed its value to 1 and the next value
(in Nodei−1) is 0. For our experiment, the memories form a ring, thus the sequence of
values seen by each memory depends only on the initial state of the system. Note that
propagation is enabled at places where the ring contains two consecutive nodes holding
the same value. We denote by tpN (resp. tpN ′) an example with N nodes and one
(resp. two) enabled propagations.

8.4.2 Building Support Automata for Participants

We compute the support automaton for each participant by using the corresponding
tool. In Table 8.4.2, we present the results of this analysis by giving the average number
of states in the original automata and in the support automata. The number of states
gives an indication on the size needed to store the knowledge, and the memory needed
to execute of the support automata.

0

1

clnR1

eat1 2

clnL2

eat2

Figure 8.29: Support automaton for participant Fork2.

For the philoN instances, the support automaton of philosophers is the same as the
original automaton. For the forks, there is only one additional state, as shown in Fig-
ure 8.29. The added state distinguishes who acquired the fork (left or right). Conse-
quently, only one offer is sent, avoiding unneeded conflict resolution.
In the Master/Slave example, the automaton describing a master is very generic. The

corresponding support automaton contains all the possible sequences for acquiring two
slaves and then releasing them. In particular, after having acquired two slaves, there is
only one possible release interaction, thus only one offer is sent.
Finally, in the transmission protocol example, the size of each support automaton

is much larger since it depends on the number of nodes in the chain, that is on the
sequence of values seen by each node. If two propagations are possible, then the size of
the support automaton is slightly increased, since the two propagations may conflict.

8.4.3 Performance of Distributed Implementation

We obtain a distributed BIP model by embedding the α-core participants and coordi-
nators. From this model, we generate a set of C++ programs communicating through
POSIX sockets. We ran the obtained code for both standard α-core and knowledge-
optimized α-core on a UltraSparcT1 allowing parallel execution of 24 processes. In
Table 8.4.2, we provide the number of interactions executed during 60 seconds of ex-
ecution (not including initialization) for both standard and optimized version of each

182



Average
number of

states

Number of
interactions during

60s
Name Components in Bi in Ki Standard Optimized
philo3 6 2.5 3 1129 2251
philo4 8 2.5 3 1811 2499
philo5 10 2.5 3 2261 4448
philo6 12 2.5 3 2624 4542
philo7 14 2.5 3 3093 4603
ms232 5 2.6 3 1491 1504
ms233 5 3 4.6 1128 1129
ms342 7 2.7 3.1 642 1885
ms343 7 3.1 4.9 1278 1265
ms344 7 3.6 7 1256 1251
tp3 3 3 6 750 1499
tp6 6 3 15 750 1500
tp6’ 6 3 16 1498 1557
tp9 9 3 24 750 1509
tp9’ 9 3 28 1497 3725
tp12 12 3 33 749 1513

Table 8.6: Results: average size of original and support automaton and performance of
the obtained implementation, for each test instance.

test instance. On the dining philosopher instances, the optimized version is up to twice
faster than the standard version. On the Master/Slave instances, except for one, the
performance is the same for both versions. On the transmission protocol instances, we
have a speedup of at least two, except for the tp6′ example.

Figure 8.30: Dining philosophers:
messages per interac-
tion, standard version.

Figure 8.31: Dining philosophers: messages per
interaction, optimized version.

In order to evaluate the distributed execution of standard vs. optimized versions, we
compare the average number of messages needed to perform an interaction for the three
examples. For the dining philosophers, these average numbers are shown in Figures
8.30 and 8.31. We can observe a reduction of approximatively 25%, mainly because
some OFFER messages from the fork participants are transformed in PARTICIPATE

messages. In turn, this reduces the number of participants to lock, and thus the number

183



of messages.

Figure 8.32: Master/Slave: mes-
sages per interaction,
standard version.

Figure 8.33: Master/Slave: messages per interac-
tion, optimized version.

For the Master/Slave, the average number of messages needed to complete one inter-
action for standard and optimized α-core are shown in Figures 8.32 and 8.33. Here the
number of conflicts depends on the size of the pool of slaves assigned to each master.
Since there are many conflicts, the number of offers sent to execute an interaction is
quite big. Recall that on this example, performance of both versions is comparable.
However, the number of exchanged message is smaller in the optimized version, because
less offers are sent.

Figure 8.34: Transmission protocol:
messages per interac-
tion, standard version.

Figure 8.35: Transmission protocol: messages per
interaction, optimized version.

For the transmission protocol, the average number of messages exchanged to execute
one interaction for standard and optimized executions is shown in Figures 8.34 and
8.35. For the non-primed versions, since there is no dynamic conflict, each participant
sends only PARTICIPATEmessages and each coordinator can directly answer a START

message. This reduces drastically the number of exchanged messages (6 per interaction,

184



since they are ternary interactions). For the primed version, in some cases a node may
participate in two interactions and thus send two OFFER messages, which is still much
less than in the original version.

8.5 Discussion

In order to evaluate the diverse transformations and optimizations presented in this
thesis, several experiments have been conducted. The Section 8.1 tries to explore the
different parameters that are involved in the flow from the centralized model to the
distributed implementation. These parameters includes the partition of the interactions
and the choice of the conflict resolution protocols. Adding delays to artificially create
several situations reveals that there is no best choice. Depending on the conditions in
which the model is executed (i.e. cost of computation between cost of communication),
the same parameter choice may range from the worst solution to the best one.
In Section 8.2, the examples are more computationally intensive and no delays are

added. This section shows that speedup is indeed achieved when distributing this kind
of applications. Moreover, the difference between code generated for sockets and code
generated for MPI is very interesting. In the first case, receiving a message triggers
an interruption whereas in the second case active polling is required. Having more
processes than processors does not incur overhead for sockets but severely limits MPI
performance. Using the BIP framework, this problem can be solved by either changing
the interaction partition to limit the number of processes or by merging some components
at the Send/Receive BIP level.
In Section 8.3, we evaluate the use of Condition to implement the priority. There are

two aspects to evaluate: the use of a Condition-aware protocol and the possible opti-
mization of the Condition predicates. Note that using a regular multiparty interaction
protocol requires to transform each component by adding observation ports, as explained
in Subsection 4.2.5. The results of the experiments show that the Condition-aware pro-
tocol is much more efficient than the Multiparty-based implementation. Furthermore,
optimizing the Condition predicates allows a significant performance gain when using the
Multiparty-based implementation. However, this optimization only reduces the number
of messages with the Condition-aware implementation.
The last optimization proposed is evaluated with the α-core protocol in Section 8.4.

The optimization consists in reducing as much as possible the offers, to avoid unneeded
conflict resolution mechanisms. Results show that the number of messages needed to
execute an interaction can be significantly reduced. Indeed, sending less interaction
offers requires to cancel less offers when an interaction is actually executed. Furthermore,
coordinators have more chances to succeed executing an interaction when it is detected
enabled, because the corresponding offers were not discarded by knowledge with perfect
recall.

185



9 Conclusion

9.1 Achievements

Rigorous flow for Distributed Implementation

In this thesis, we presented a part of a rigorous design flow, whose goal is to transform
a centralized model into a decentralized one. This task is not performed at once but
through a sequence of transformations, each of them taking into account a particular
aspect of the decentralization. Some of these transformations are enhanced by optimiza-
tions. This decomposition into several transformations addresses in the following way
the challenges listed in the introduction.

Correctness Each transformation is simple enough to be fully formalized. As both
input and output models are expressed using the BIP semantics, one can prove their
functional equivalence, either as observational equivalence or as trace equivalence. This
guarantees that the final distributed model preserves the functionality of the original
high-level model. Checking that the original model meets the desired properties is done
through the verification tool of the framework.

Performance/Efficiency First, the solutions provided in this thesis allow for a broad
range of decentralization levels. Each atomic component yields an autonomous program
in the final implementation. After decentralization, the distributed model contains addi-
tional components, named engines, that execute interactions of the original model. The
partitioning of interactions into engines is a parameter of the transformation, leaving to
the designer the choice that best suits his needs.
Second, several optimizations have been proposed to increase performance of the sys-

tem or reduce utilization of the network. In particular, introducing the Condition oper-
ator allows priorities to be implemented in an efficient manner. The Condition operator
can be optimized, by using distributed knowledge, to minimize the number of exchanged
messages which may in turn increase the speed of the system. A lower-level optimiza-
tion, based on knowledge with perfect recall, allows unneeded conflict resolution to be
avoided.

Productivity Each transformation and optimization is implemented as a prototype
tool. As all transformations are described using the same semantic model, they can
be chained to provide a complete flow from the original model to the implementation.
Different flows can be defined to fit different platforms. Furthermore, other tools from the
toolbox provide additional functionalities. The verification tool permits the validation

186



the original model, while the flattening tool allows models with hierarchical connectors to
be handled. Finally, the merging tool reduces the number of distributed processes in the
final implementation by merging several components into a single one in the distributed
model.

Knowledge-Based Optimization Techniques

The outline of the thesis first presents the model with a centralized engine, then the
decentralization of the engine. In practice, the model with the centralized engine is
never built, but has been used for the clarity of the presentation. From a high-level
model, our tool constructs directly the decentralized model with distributed engines.
Similarly, the two optimizations presented in this thesis derive from artifacts computed
on the original model, but which are introduced at the decentralization level for which
they are intended.
The first optimization proposed relies on invariants to approximate the global states

and compute distributed knowledge associated with a set of components. This optimiza-
tion only modifies the Condition layer of a high-level model. In the case of complete
detection, the input and output models are strictly equivalent, and their centralized ex-
ecution gives the same results. However, when switching to a distributed context, the
optimized model requires less communication. Furthermore, some decisions are taken
earlier which increase performance.
The second optimization is done in two steps. The first step consists in computing a

support automaton for each component of the original model. Composing the support
automata yields the same control behavior as the original model. Therefore there is
no gain in a centralized execution. To generate the distributed model, these support
automata are embedded within alpha-core participants during a second phase. The
optimized version sends offers containing fewer interactions, which reduces the workload
of the conflict resolutions protocol.

Implementation and Evaluation on Case Studies

The various transformations and optimizations proposed in this thesis have been im-
plemented. Tools for computing knowledge, based both on invariants and support au-
tomata, rely on functions provided by the verification tool DFinder. These prototype
implementations allow the performances of the different implementations as well as the
influence of the parameters to be compared. Initial results focus on models without pri-
ority and mainly study the influence of the partition and the conflict resolution protocol
chosen. Other experiments study the efficiency of the optimizations.
Simulations show that depending on the target platform characteristics, the best par-

tition may range from fully centralized to fully decentralized. Similarly, depending on
the platform simulated, the best performance is obtained with different conflict resolu-
tion protocols. The conclusion is that all these parameters should be available to the
designer in order to optimize the distributed model for the target platform.
Running computation intensive code shows that depending on the platform used, the

187



number of parallel processes has a significant impact on the performances. For instance,
POSIX sockets give better performance with more processes than available cores whereas
MPI gives better performance with exactly one process per core. If it is not achieved
with the partition, using the merging tool can limit the number of processes in the
final implementation. For the token ring and dining philosophers protocols, where each
conflict resolution component corresponds to an interaction, one can merge each conflict
resolution component with the engine managing the corresponding interaction.
Experiments concerning the first optimization actually evaluated two different param-

eters. The first parameter is the level of detection for the optimization. The second pa-
rameter is the expressiveness allowed by the conflict resolution protocol, that is whether
it handles Condition or only multiparty interactions. Regardless of the optimization
level, using a Condition-aware protocol gives the best performance. Nonetheless, the
optimization allows a reduction in the number of messages which sometimes increases
performance.
Finally, experiments concerning the second optimization showed that it reduces the

number of messages needed to execute an interaction. In turn, the optimization increases
the performance as well.
Interestingly, handling Condition efficiently in a distributed protocol seems to be the

source of the most important speedup obtained. Thus, it seems fitting to consider the
extension of multiparty interactions where their execution is guarded by a predicate
depending both on participants and non-participants in the interactions. This extension
increases the expressiveness because it encompasses priorities, can be easily implemented,
and it gives good performances.

9.2 Future Works

Here, we present some leads for following up this work. The first one is related to the
choice of the partition that parameterizes the decentralization process, which is left to
the designer. Two other leads are considering extensions of the BIP model, namely real-
time and stochastic extension, for which distributed execution is challenging. Finally,
considering other primitives than message-passing in the distributed model, such as
shared memory is another direction.

Partitioning and Mapping

The partition of the interactions is an important parameter of our transformation. A
first issue is whether there exists a partition that is better than the others. Intuitively,
the choice of the partition is a tradeoff between the parallelism between interactions and
the message complexity needed to solve conflicts.
Conflict-free partitions are of interest because they guarantee the lowest message com-

plexity, namely an offer and a notification per participating component in an interaction.
Such partitions are interesting when communications are expensive. There is a single
conflict-free partition that maximizes the number of engines.

188



By contrast to the conflict-free approach, one can consider partitions that preserve
maximal parallelism. Such partitions do not allow to group in the same engine interac-
tions that are not directly conflicting. These partitions correspond to clique decompo-
sition of the conflict graph. Hence, there may be several such partitions that minimize
the number of engines.
Note that conflict-free partitions might be further separated by using knowledge from

support automata. Indeed, these automata may reveal that interactions statically con-
flicting are actually not conflicting when considering the dynamics of the system. In the
case of parallelism-preserving partition, one could group together interactions that are
never enabled concurrently according to an invariant of the system.
The tradeoff between lower message complexity and higher parallelism might be guided

by considering a specific target platform. Hence, a second question is to find the best
partition for a specific platform. This question is related to the problem of mapping an
application on a platform, as in [37]. The platform is modeled as a graph whose nodes are
processors and edge are connections. An application consists of a set of processes with
communications between them. Mapping aims to associate each process to a processor
while balancing the load between processors and minimizing communication volume.
Searching for an optimal partition while taking the platform into account corresponds

to an extended mapping problem. The extension allows the merging or splitting of some
processes of the application by modifying the partition. In order to evaluate the cost of
a given mapping, one has to provide the communication and computation loads of the
application. These loads can be obtained through a centralized execution of the model.
However, a centralized execution does not take parallelism into account. Therefore, the
search space for partitions can be limited by some criteria related to parallelism and
conflict resolution.

Real-Time Systems

The BIP framework provides a real-time semantics for BIP models [1]. Each interaction is
equipped with a timing constraint consisting of a time zone expressed over a set of clocks
and an urgency [26]. The time zone indicates when the interaction can be executed, the
urgency indicates whether the model authorizes the time to progress before executing
the interaction. For instance, an interaction with urgency eager has to be executed at
the instant it becomes possible; time should not progress while such an interaction is
enabled. The timing constraint associated to an interaction is actually obtained from the
timing constraints associated to the corresponding transitions in the atomic components.
Models with timing constraints can be executed using a single-thread implementation

relying on a real-time engine. More recently, a multi-thread implementation with a
centralized engine has been proposed in [83]. As described in Chapter 5, such an engine
works with a partial view of the system based on the offers received so far. Before
scheduling an interaction, the engine has to ensure that no interaction with an earlier
deadline is enabled. This case is similar to executing a low priority interaction where
the engine has to ensure that no higher priority interaction is enabled. In the case of
priority, waiting for more offers is always safe, though sometimes inefficient, whereas

189



waiting for more offers in the context of a timed system might lead to a deadline miss.
The solution chosen in [83] is to rely on an oracle that is true whenever no interaction
with an earlier deadline than the current one might be enabled by a subsequent offer.
If the oracle is false, the engine waits for more offers before scheduling any interaction.
Note that the centralized engine detects and stops execution whenever a deadline miss
occurs.
Decentralizing the engine is even more challenging. Before scheduling an interaction,

one has to ensure that no conflicting interaction with an earlier deadline is enabled.
Even if an interaction is enabled and urgent, it cannot be executed directly. Indeed,
executing that interaction will disable all conflicting interactions, which may hide a
deadline miss for them. Detecting deadline misses a posteriori requires the history of
offers to be remembered and to know which sets of offers correspond to an actual coherent
observation of the system.
The problem of implementing multiparty interactions with real-time constraints in a

distributed setting is difficult. When implementing multiparty interaction with priority,
waiting for more information does not break the semantics. With timing constraints,
waiting might sometimes be necessary, and sometimes could be harmful. To distinguish
between the two cases, deeper analysis techniques of the system are required.
A more pragmatic approach, where an enabled interaction is executed whenever its

deadline is met, is not safe. This approach authorizes some interactions not enabled in
the original model. Furthermore, the system may fail to detect a posteriori that the
current execution is incorrect.

Distributed Stochastic Execution

Another direction is to consider stochastic models that are equipped with probabilities.
For instance, a Markov decision process executes a step by making a non deterministic
choice followed by a probabilistic choice. In our case such an execution is obtained by
first choosing a component, non deterministically, then choosing probabilistically one
interaction in which the component participates. Each component defines a discrete
probability for each possible subset of interactions in which it participates. The prob-
abilistic choice is done according to the probability associated to the subset of enabled
interactions.
This semantics can be executed in a distributed manner. Each step starts by choosing

a master, so that two components involved in a common interaction are not both masters.
A master then locks all its slaves, which ensures a stable view of the global state for
computing the enabled interactions in which the master participates. The master then
chooses and executes an interaction according to the probability associated to the current
subset of enabled interactions. Several components may be master at the same time,
provided they are not involved in a common enabled interaction.
This approach enables the distributed execution of Markov decision processes, which

can be used for simulation purposes. The decision to execute an interaction is based on
a partial state comprising all components involved in at least one common interaction
with the master. A question is to see what kind of properties, beyond correctness, can

190



be ensured by such executions. Fairness is a candidate property that could be ensured
by such semantics.

Beyond Message-Passing

In this thesis, we consider that a distributed system relies on message-passing for commu-
nication. This assumption aims at generality, because most platforms provide message-
passing even if they have other means of communications. Manycore platforms often
provide shared memories, at different levels. Such platforms might be divided in tiles,
that incorporate several cores with a shared memory between them. Communication
between these tiles is asynchronous message-passing.
A future direction is to handle shared memory for communication between processes.

Similarly to the Send/Receive models, one could define a class of model representing
applications communicating through shared memory. Then one could envision hybrid
models allowing both message-passing and shared memory communication, for describing
applications intended to run on platforms providing both primitives.

191



List of Figures

1.1 A design flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
1.2 A simple example of input model. . . . . . . . . . . . . . . . . . . . . . . . 35
1.3 First step: breaking the atomicity of interactions. . . . . . . . . . . . . . . 36
1.4 Second step: decentralizing the engine. . . . . . . . . . . . . . . . . . . . . 37

2.1 LTS representing a process. . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.2 A model with multiparty interactions. . . . . . . . . . . . . . . . . . . . . 41
2.3 Global behavior of system from Figure 2.2. . . . . . . . . . . . . . . . . . 43
2.4 A centralized execution of the distributed system from Figure 2.2. . . . . 43
2.5 A simple Petri net in two successive markings. . . . . . . . . . . . . . . . 44
2.6 Petri net obtained from the example in Figure 2.2. . . . . . . . . . . . . . 45
2.7 Distributed version of the process from Figure 2.1. . . . . . . . . . . . . . 47
2.8 Beginning of a possible distributed execution of the model from Figure 2.2. 47
2.9 Conflict graph for the model in Figure 2.2. . . . . . . . . . . . . . . . . . . 48
2.10 Bagrodia’s solution with Centralized manager. . . . . . . . . . . . . . . . 51
2.11 Bagrodia’s EM with 3 managers: M1 handles play1, M2 handles play2

and M3 handles all “load/unload” interactions. . . . . . . . . . . . . . . . 52
2.12 The conflict graph of example from Figure 2.2 with the managers depicted

as set of nodes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.13 Solution obtained with MEM for the example from Figure 2.2, with the

manager M1 handling a and c, M2 handling b and M3 handling c. . . . . 54
2.14 Global view of the solution proposed by Kumar. . . . . . . . . . . . . . . 55
2.15 Distributed implementation obtained with α-core from the model in Fig-

ure 2.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.16 A model of the dining philosophers problem. . . . . . . . . . . . . . . . . 59

3.1 Global states of the example from Figure 2.2, decomposed by observing
the Jukebox process. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.2 Global states of the example from Figure 2.2, decomposed by observing
Jukebox and Reader processes. . . . . . . . . . . . . . . . . . . . . . . . . 67

3.3 Support automata for the process Disc1. . . . . . . . . . . . . . . . . . . . 74

4.1 An example of abstract behavior. . . . . . . . . . . . . . . . . . . . . . . . 77
4.2 An example of abstract composition of 4 components using Interaction

and either Priority or Condition. . . . . . . . . . . . . . . . . . . . . . . . 78
4.3 An atomic component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Examples of connectors and hierarchical connectors. . . . . . . . . . . . . 84

192



4.5 A hierarchical connector computing the maximum of exported values. . . 85
4.6 A composite component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.7 Observable version of the Listener component from Figure 4.6. . . . . . . 90

5.1 Version of the model from Figure 4.6 taking restrictions into account. . . 93
5.2 Distributed version of the Disc1 atomic component from Figure 5.1. . . . 96
5.3 Circuit of a single token, corresponding to a component B, in the engine. 97
5.4 Petri net of the centralized engine for the model from Figure 5.1. . . . . . 99
5.5 Global view of the solution with the centralized engine for the model from

Figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6 Point (ii) of the proof of Theorem 5.12. . . . . . . . . . . . . . . . . . . . 104

6.1 An interaction conflict between a and b. . . . . . . . . . . . . . . . . . . . 112
6.2 Condition conflicts and non-conflicts. . . . . . . . . . . . . . . . . . . . . . 112
6.3 Conflict graph of the example from Figure 5.1. . . . . . . . . . . . . . . . 113
6.4 Distributed version of the component Disc1 from Figure 5.1 for commu-

nicating with conflict-free engines. . . . . . . . . . . . . . . . . . . . . . . 115
6.5 Engine E2 handling the class γ2 of the conflict-free partition for the ex-

ample from Figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.6 Global view of the conflict-free distributed model for the example from

Figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.7 An example with conflicting interactions. . . . . . . . . . . . . . . . . . . 117
6.8 Principle of conflict resolution based on offer numbers. . . . . . . . . . . . 118
6.9 Distributed version of the Disc1 component. . . . . . . . . . . . . . . . . . 120
6.10 Reservation mechanism for interaction a involving ports p2 and p3 from

components B2 and B3 and observing component B1. . . . . . . . . . . . 120
6.11 The distributed engine handling the class {load1, unload1} of the partition.123
6.12 Fragment of the centralized conflict resolution protocol for handling unload1.124
6.13 Component handling reservation for unload1 in the token ring conflict

resolution protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.14 Mechanism to exchange forks between components of the dining philoso-

phers protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
6.15 Behavior of a participant in α-core. . . . . . . . . . . . . . . . . . . . . . . 137
6.16 Behavior of a coordinator for interaction a in α-core. . . . . . . . . . . . . 138
6.17 First messages exchanged in the α-core protocol during execution of the

model from Figure 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
6.18 Fragment of the distributed BIP model using α-core protocol implement-

ing the component D1 and the interaction load1. . . . . . . . . . . . . . . 140
6.19 Support automata for D1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

7.1 Overview of the BIP toolbox. . . . . . . . . . . . . . . . . . . . . . . . . . 148
7.2 Flattening a connector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.3 Merging components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.4 Tools involved in the decentralization process. . . . . . . . . . . . . . . . . 151

193



7.5 Execution of the centralized engine. . . . . . . . . . . . . . . . . . . . . . 153
7.6 Execution of the multi-threaded engine. . . . . . . . . . . . . . . . . . . . 154

8.1 Two phases of the Diffusing computation example. . . . . . . . . . . . . . 159
8.2 Partial BIP model for diffusing computations. . . . . . . . . . . . . . . . . 160
8.3 Different scenarios for diffusing computations. . . . . . . . . . . . . . . . . 160
8.4 Performance of termination detection in diffusing computation in different

scenarios for torus 6× 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.5 Performance of termination detection in diffusing computation in different

scenarios for torus 20× 20. . . . . . . . . . . . . . . . . . . . . . . . . . . 162
8.6 Simulation of a diffusing computation on a 5 × 5 torus. tinter = 10ms,

tE↔CP = 0ms, tCP↔CP = 0ms . . . . . . . . . . . . . . . . . . . . . . . . 163
8.7 Simulation of a diffusing computation on a 5 × 5 torus, tinter = 10ms,

tE↔CP = 10ms, tCP↔CP = 0ms . . . . . . . . . . . . . . . . . . . . . . . . 163
8.8 Simulation of a diffusing computation on a 5 × 5 torus, tinter = 100ms,

tE↔CP = 10ms, tCP↔CP = 1ms . . . . . . . . . . . . . . . . . . . . . . . . 164
8.9 Utopar transportation system. . . . . . . . . . . . . . . . . . . . . . . . . 165
8.10 A BIP model for Utopar system. . . . . . . . . . . . . . . . . . . . . . . . 166
8.11 Performance of responding 10 requests per calling unit in Utopar System

in different scenarios for 5× 5 calling units and 4 cars. . . . . . . . . . . . 166
8.12 Performance of responding 10 requests per calling unit in Utopar System

in different scenarios for 7× 7 calling units and 4 cars. . . . . . . . . . . . 167
8.13 A BIP model for Network Sorting Algorithm. . . . . . . . . . . . . . . . . 168
8.14 3-layer Send/Receive BIP model for Network Sorting Algorithm. . . . . . 169
8.15 A BIP model for Bitonic Sorting Algorithm. . . . . . . . . . . . . . . . . . 170
8.16 3-layer Send/Receive BIP model for Bitonic Sorting Algorithm (6c). . . . 170
8.17 Merging schemes applied on Send/Receive BIP model of Bitonic Sorting

Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
8.18 Sequence to generate BIC models. . . . . . . . . . . . . . . . . . . . . . . 173
8.19 Fragment of the dining philosopher component. Braces indicate how in-

teractions are grouped into engines. . . . . . . . . . . . . . . . . . . . . . . 173
8.20 Boolean invariant for the Dining Philosophers example with N = 3. . . . . 175
8.21 Linear invariant for the Dining Philosophers example with N = 3. . . . . 176
8.22 Number of interactions executed in 60s for different implementations of

the dining philosophers example. MB: Multiparty-based. CA: Condition-
aware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

8.23 Number of messages exchanged in 60s for different implementations of the
dining philosophers example. MB: Multiparty-based. CA: Condition-aware.177

8.24 Jukebox component with 3 discs. . . . . . . . . . . . . . . . . . . . . . . . 179
8.25 Number of interactions executed in 60s for the jukebox example. . . . . . 180
8.26 Number of messages exchanged in 60s for the jukebox example. . . . . . . 180
8.27 Master Slave example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.28 Three consecutive nodes of the transmission protocol. . . . . . . . . . . . 181
8.29 Support automaton for participant Fork2. . . . . . . . . . . . . . . . . . . 182

194



8.30 Dining philosophers: messages per interaction, standard version. . . . . . 183
8.31 Dining philosophers: messages per interaction, optimized version. . . . . . 183
8.32 Master/Slave: messages per interaction, standard version. . . . . . . . . . 184
8.33 Master/Slave: messages per interaction, optimized version. . . . . . . . . 184
8.34 Transmission protocol: messages per interaction, standard version. . . . . 184
8.35 Transmission protocol: messages per interaction, optimized version. . . . . 184

195



Bibliography

[1] T. Abdellatif, J. Combaz, and J. Sifakis. Model-based implementation of real-time
applications. In Proceedings of the tenth ACM international conference on Embedded
software, EMSOFT ’10, pages 229–238, New York, NY, USA, 2010. ACM.

[2] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n parallel steps. Combina-
torica, 3(1):1–19, 1983.

[3] K. R. Apt, N. Francez, and S. Katz. Appraising fairness in distributed languages.
In Proceedings of the 14th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, POPL ’87, pages 189–198, New York, NY, USA, 1987.
ACM.

[4] F. ARBAB. Reo: a channel-based coordination model for component composition.
Mathematical Structures in Computer Science, 14:329–366, 5 2004.

[5] R. Bagrodia. A distributed algorithm to implement n-party rendevouz. In Founda-
tions of Software Technology and Theoretical Computer Science, Seventh Conference
(FSTTCS), pages 138–152, 1987.

[6] R. Bagrodia. Process synchronization: Design and performance evaluation of
distributed algorithms. IEEE Transactions on Software Engineering (TSE),
15(9):1053–1065, 1989.

[7] J. Barwise. Scenes and other situations. Journal of Philosophy, 78(7):369–397,
1981.

[8] A. Basu, S. Bensalem, D. Peled, and J. Sifakis. Priority scheduling of distributed
systems based on model checking. Formal Methods in System Design, 39:229–245,
2011.

[9] A. Basu, P. Bidinger, M. Bozga, and J. Sifakis. Distributed semantics and im-
plementation for systems with interaction and priority. In Formal Techniques for
Networked and Distributed Systems (FORTE), pages 116–133, 2008.

[10] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time components
in BIP. In Software Engineering and Formal Methods (SEFM), pages 3–12, 2006.

[11] A. Basu. Component-based Modeling of Heterogeneous Real-time Systems in BIP.
PhD thesis, Université Joseph Fourier, 2008.

196



[12] A. Basu, S. Bensalem, D. Peled, and J. Sifakis. Priority scheduling of distributed
systems based on model checking. In A. Bouajjani and O. Maler, editors, Computer
Aided Verification, volume 5643 of Lecture Notes in Computer Science, pages 79–93.
Springer Berlin Heidelberg, 2009.

[13] A. Basu, L. Mounier, M. Poulhiès, J. Pulou, and J. Sifakis. Using bip for modeling
and verification of networked systems – a case study on tinyos-based networks. In
NCA, pages 257–260, 2007.

[14] K. E. Batcher. Sorting networks and their applications. In AFIPS ’68 (Spring):
Proceedings of the April 30–May 2, 1968, spring joint computer conference, pages
307–314, 1968.

[15] S. Bensalem, M. Bozga, A. Legay, T.-H. Nguyen, J. Sifakis, and R. Yan. Incremental
component-based construction and verification using invariants. In Formal Methods
in Computer-Aided Design (FMCAD), 2010, pages 257 –256, oct. 2010.

[16] S. Bensalem, M. Bozga, D. Peled, and J. Quilbeuf. Knoweldge-based transactional
behavior. In HVC, 2012. To appear.

[17] S. Bensalem, M. Bozga, J. Quilbeuf, and J. Sifakis. Optimized distributed im-
plementation of multiparty interactions with observation. In AGERE, 2012. To
appear.

[18] S. Bensalem, M. Bozga, B. Delahaye, C. Jegourel, A. Legay, and A. Nouri. Statistical
model checking QoS properties of systems with SBIP. In T. Margaria and B. Steffen,
editors, Leveraging Applications of Formal Methods, Verification and Validation.
Technologies for Mastering Change, volume 7609 of Lecture Notes in Computer
Science, pages 327–341. Springer Berlin Heidelberg, 2012.

[19] S. Bensalem, M. Bozga, S. Graf, D. Peled, and S. Quinton. Methods for knowledge
based controlling of distributed systems. In Proceedings of the 8th international
conference on Automated technology for verification and analysis, ATVA’10, pages
52–66, 2010.

[20] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. D-finder: A tool for compo-
sitional deadlock detection and verification. In CAV, pages 614–619, 2009.

[21] S. Bensalem, M. Bozga, T.-H. Nguyen, and J. Sifakis. Compositional verification
for component-based systems and application. IET Software, 4(3):181–193, 2010.

[22] S. Bliudze and J. Sifakis. The algebra of connectors - structuring interaction in bip.
IEEE Trans. Computers, 57(10):1315–1330, 2008.

[23] S. Bliudze and J. Sifakis. A notion of glue expressiveness for component-based
systems. In CONCUR, pages 508–522, 2008.

197



[24] B. Bonakdarpour, M. Bozga, M. Jaber, J. Quilbeuf, and J. Sifakis. Automated
conflict-free distributed implementation of component-based models. In IEEE Sym-
posium on Industrial Embedded Systems (SIES), pages 108 – 117, 2010.

[25] M. Bonani, V. Longchamp, S. Magnenat, P. Rétornaz, D. Burnier, G. Roulet,
F. Vaussard, H. Bleuler, and F. Mondada. The MarXbot, a Miniature Mobile
Robot Opening new Perspectives for the Collective-robotic Research. In Inter-
national Conference on Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ,
IEEE International Conference on Intelligent Robots and Systems, pages 4187–4193.
IEEE Press, 2010.

[26] S. Bornot and J. Sifakis. An algebraic framework for urgency. Inf. Comput.,
163(1):172–202, 2000.

[27] P. Bourgos, A. Basu, M. Bozga, S. Bensalem, J. Sifakis, and K. Huang. Rigorous
system level modeling and analysis of mixed hw/sw systems. In MEMOCODE,
pages 11–20, 2011.

[28] M. Bozga. Component-based design of real-time systems, 2009. Habilitation à
Diriger des Recherches, Université Joseph Fourier.

[29] M. Bozga, M. Jaber, N. Maris, and J. Sifakis. Modeling dynamic architectures using
dy-bip. In Proceedings of the 11th international conference on Software Composi-
tion, SC’12, pages 1–16, Berlin, Heidelberg, 2012. Springer-Verlag.

[30] M. Bozga, M. Jaber, and J. Sifakis. Source-to-source architecture transformation for
performance optimization in bip. IEEE Trans. Industrial Informatics, 6(4):708–718,
2010.

[31] M. D. Bozga, V. Sfyrla, and J. Sifakis. Modeling synchronous systems in bip. In
Proceedings of the seventh ACM international conference on Embedded software,
EMSOFT ’09, pages 77–86, New York, NY, USA, 2009. ACM.

[32] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Trans.
Program. Lang. Syst., 6(4):632–646, October 1984.

[33] K. M. Chandy and J. Misra. Parallel program design: a foundation. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1988.

[34] C.-H. Cheng, S. Bensalem, Y.-F. Chen, R. Yan, B. Jobstmann, H. Ruess, C. Buckl,
and A. Knoll. Algorithms for synthesizing priorities in component-based systems.
In ATVA, pages 150–167, 2011.

[35] M. Y. Chkouri, A. Robert, M. Bozga, and J. Sifakis. Models in software engineering.
chapter Translating AADL into BIP - Application to the Verification of Real-Time
Systems, pages 5–19. Springer-Verlag, Berlin, Heidelberg, 2009.

198



[36] F. Chu and X.-L. Xie. Deadlock analysis of petri nets using siphons and mathe-
matical programming. Robotics and Automation, IEEE Transactions on, 13(6):793
–804, dec 1997.

[37] S. Cotton, O. Maler, J. Legriel, and S. Saidi. Multi-criteria optimization for mapping
programs to multi-processors. In Industrial Embedded Systems (SIES), 2011 6th
IEEE International Symposium on, pages 9–17, 2011.

[38] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing computa-
tions. Information Processing Letters, 11(1):1–4, 1980.

[39] P. Dinges and G. Agha. Scoped synchronization constraints for large scale actor
systems. In Proceedings of the 14th international conference on Coordination Mod-
els and Languages, COORDINATION’12, pages 89–103, Berlin, Heidelberg, 2012.
Springer-Verlag.

[40] R. Fagin, J. Y. Halpern, Y. Moses, and V. M. Y. Reasoning about Knowledge. MIT
Press, 1995.

[41] M. P. I. Forum. MPI: A Message-Passing Interface Standard, Version 3.0. High
Performance Computing Center Stuttgart (HLRS), 2012.

[42] S. Frølund and G. Agha. A language framework for multi-object coordination. In
In Proceedings of ECOOP, pages 346–360. Springer Verlag, 1993.

[43] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, and T. S. Woodall. Open MPI: Goals, concept, and design of a next
generation MPI implementation. In Proceedings, 11th European PVM/MPI Users’
Group Meeting, pages 97–104, Budapest, Hungary, September 2004.

[44] S. J. Garland and N. Lynch. Foundations of component-based systems. chapter
Using I/O automata for developing distributed systems, pages 285–312. Cambridge
University Press, New York, NY, USA, 2000.

[45] C. Georgiou, N. Lynch, P. Mavrommatis, and J. Tauber. Automated implementa-
tion of complex distributed algorithms specified in the ioa language. International
Journal on Software Tools for Technology Transfer, 11(2):153–171, 2009.

[46] S. M. German. Programming in a general model of synchronization. In R. Cleave-
land, editor, CONCUR, volume 630 of Lecture Notes in Computer Science, pages
534–549. Springer, 1992.

[47] S. Gorlatch. Send-receive considered harmful: Myths and realities of message pass-
ing. ACM Trans. Program. Lang. Syst., 26(1):47–56, January 2004.

[48] S. Graf, D. Peled, and S. Quinton. Achieving distributed control through model
checking. Form. Methods Syst. Des., 40(2):263–281, April 2012.

199



[49] I. B. Hafaiedh, S. Graf, and S. Quinton. Building distributed controllers for systems
with priorities. J. Log. Algebr. Program., 80(3-5):194–218, 2011.

[50] J. Y. Halpern and R. Fagin. Modelling knowledge and action in distributed systems.
Distributed Computing, 3(4):159–177, 1989.

[51] J. Y. Halpern and Y. Moses. Knowledge and common knowledge in a distributed
environment. J. ACM, 37(3):549–587, 1990.

[52] C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1985.

[53] ISO/IEC. Information Processing Systems – Open Systems Interconnection: LO-
TOS, A Formal Description Technique Based on the Temporal Ordering of Obser-
vational Behavior, 1989.

[54] M. Jaber. Centralized and Distributed Implementations of Correct-by-construction
Component-based Systems by using Source-to-source Transformations in BIP. PhD
thesis, Université de Grenoble, 2010.

[55] Y.-J. Joung. Two decentralized algorithms for strong interaction fairness for systems
with unbounded speed variability. Theretical Computer Science, 243:307–338, 2000.

[56] Y.-J. Joung and S. A. Smolka. A comprehensive study of the complexity of multi-
party interaction. J. ACM, 43(1):75–115, January 1996.

[57] Y. jzer Joung and S. A. Smolka. Coordinating first-order multiparty interactions.
ACM Transactions on Programming Languages and Systems, pages 209–220, 1994.

[58] G. Katz and D. Peled. Code mutation in verification and automatic code correction.
In Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
volume 6015 of LNCS, pages 435–450. 2010.

[59] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220(4598):671–680, 1983.

[60] F. Krückeberg and M. Jaxy. Mathematical methods for calculating invariants in
petri nets. In Advances in Petri Nets 1987, volume 266 of LNCS, pages 104–131.
Springer Berlin / Heidelberg, 1987.

[61] D. Kumar. An implementation of n-party synchronization using tokens. In ICDCS,
pages 320–327, 1990.

[62] L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, July 1978.

[63] N. A. Lynch and M. R. Tuttle. An introduction to input/output automata. 1988.

200



[64] S. Magnenat, P. Rétornaz, M. Bonani, V. Longchamp, and F. Mondada. Aseba:
A modular architecture for event-based control of complex robots. Mechatronics,
IEEE/ASME Transactions on, 16(2):321–329, 2011.

[65] A. Marron, G. Weiss, and G. Wiener. A decentralized approach for programming
interactive applications with javascript and blockly. In Proceedings of the 2nd edition
on Programming systems, languages and applications based on actors, agents, and
decentralized control abstractions, AGERE! ’12, pages 59–70, New York, NY, USA,
2012. ACM.

[66] R. Milner. Communication and concurrency. Prentice Hall International (UK) Ltd.,
Hertfordshire, UK, 1995.

[67] R. Milner. A calculus of communicating systems. Springer-Verlag, Berlin New York,
1980.

[68] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science,
25(3):267 – 310, 1983.

[69] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the
IEEE, 77(4):541 –580, apr 1989.

[70] J. Parrow and P. Sjödin. Multiway synchronizaton verified with coupled simulation.
In International Conference on Concurrency Theory (CONCUR), pages 518–533,
1992.

[71] Z. Pawlak and A. Skowron. Rudiments of rough sets. Information Sciences, 177(1):3
– 27, 2007.

[72] J. A. Pérez, R. Corchuelo, D. Ruiz, and M. Toro. An enablement detection algorithm
for open multiparty interactions. In Proceedings of the 2002 ACM symposium on
Applied computing, SAC ’02, pages 378–384, New York, NY, USA, 2002. ACM.

[73] J. A. Pérez, R. Corchuelo, and M. Toro. An order-based algorithm for implementing
multiparty synchronization. Concurrency and Computation: Practice and Experi-
ence, 16(12):1173–1206, 2004.

[74] J. Proença. Synchronous Coordination of Distributed Components. PhD thesis,
Leiden University, 2011.

[75] J. Proença, D. Clarke, E. de Vink, and F. Arbab. Dreams: a framework for dis-
tributed synchronous coordination. In Proceedings of the 27th Annual ACM Sym-
posium on Applied Computing, SAC ’12, pages 1510–1515, New York, NY, USA,
2012. ACM.

[76] K. Rajan, S. Rajamani, and S. Yaduvanshi. Guesstimate: a programming model
for collaborative distributed systems. In Proceedings of the 2010 ACM SIGPLAN
conference on Programming language design and implementation, PLDI ’10, pages
210–220, New York, NY, USA, 2010. ACM.

201



[77] S. Ricker and K. Rudie. Know means no: Incorporating knowledge into discrete-
event control systems. IEEE Trans. on Automatic Control, 45(9):1656–1668, 2000.

[78] V. Sfyrla. Modeling Synchronous Systems in BIP. PhD thesis, Université de Greno-
ble, 2011.

[79] V. Sfyrla, G. Tsiligiannis, I. Safaka, M. Bozga, and J. Sifakis. Compositional trans-
lation of simulink models into synchronous BIP. In SIES’10, pages 217–220, 2010.

[80] J. Sifakis. Rigorous System Design, volume 6 of Foundations and Trends in Elec-
tronic Design Automation. Now Publishers, 2013.

[81] P. Sjödin. From LOTOS specifications to distributed implementations. PhD thesis,
docs, 1991. Available as report DoCS 91/31.

[82] J. A. Tauber. Verifiable Compilation of I/O Automata without Global Synchroniza-
tion. PhD thesis, MASSACHUSETTS INSTITUTE OF TECHNOLOGY, 2005.

[83] A. Triki, J. Combaz, S. Bensalem, and J. Sifakis. Model-based implementation of
parallel real-time systems. In V. Cortellessa and D. Varró, editors, FASE, volume
7793 of Lecture Notes in Computer Science, pages 235–249. Springer, 2013.

[84] R. van der Meyden. Common knowledge and update in finite environments. Inf.
Comput., 140(2):115–157, 1998.

[85] J. Zhou, D. Miao, Q. Feng, and L. Sun. Research on complete algorithms for minimal
attribute reduction. In P. Wen, Y. Li, L. Polkowski, Y. Yao, S. Tsumoto, and
G. Wang, editors, Rough Sets and Knowledge Technology, volume 5589 of Lecture
Notes in Computer Science, pages 152–159. Springer Berlin Heidelberg, 2009.

202


	Notations
	Acronyms
	Résumé en français
	Introduction
	Rigorous System Design
	Design Flow for Building Distributed Systems
	Organization

	Multiparty Interactions
	Specification Model
	Link with Petri Nets

	Distributed Execution
	Distributed Processes
	Committee Coordination Problem and Conflict Resolution
	Correctness

	Studied Protocols
	Bagrodia's EM and MEM
	Kumar's Token
	Joung's Randomized Algorithm
	-Core/Parrow-Sjödin Algorithm

	Adding Priorities
	Extending Multiparty Interactions with Priorities

	Other Extensions and other Distributed Models
	Multiparty Interactions Extension
	Other Frameworks


	Knowledge
	Distributed Knowledge based on Local State
	Representation and Computation

	Knowledge with Perfect Recall
	Representation and Computation

	Related Works about Knowledge

	High-level Models: BIP and BIC
	Abstract Models of BIP and BIC
	Modeling Behavior
	Modeling Glue
	Composition of Abstract Models
	Priority vs. Condition

	Concrete Model of BIP
	Atomic Components
	Interactions and Connectors
	Priority and Condition
	Composition of Components
	Discussion


	Breaking Atomicity of Interactions: Parallelism Between Components
	Model Restrictions
	Transformation from Centralized to Distributed Model
	Breaking Atomicity in Components
	Implementing the Engine in BIP
	Connecting the Engine and the Distributed Components

	Correctness
	Validity of the Target Model
	Observational Equivalence

	Taking Decision Earlier: Knowledge-Based Optimization
	Building a Condition with Reduced Observation
	Heuristics to Minimize Observed Components


	Decentralizing the Engine
	Conflicts
	Conflict-Free Partitioning
	3-Layer Send/Receive BIP
	Distributed Atomic Components
	Engines
	Conflict Resolution Protocol
	Connections between Layers
	Correctness

	-Core
	Protocol Description
	SR-BIP Implementation of -Core

	Optimization using Knowledge with Perfect Recall
	Discussion

	Implementation
	The BIP Language
	The BIP Toolbox
	Language Factory
	Verification
	Source to Source Optimizations
	Source to Source Decentralization
	Execution/Simulation

	Discussion

	Experiments
	Simulations
	Diffusing Computation
	Utopar Transportation System

	Running Experiments
	Network Sorting Algorithm
	Bitonic Sorting

	Condition
	Dining Philosophers
	Jukebox

	Optimizing conflict resolution
	Examples
	Building Support Automata for Participants
	Performance of Distributed Implementation

	Discussion

	Conclusion
	Achievements
	Future Works

	List of Figures
	Bibliography

