
Systèmes de recommendation : adaptation Dynamique

et Argumentation

Julien Gaillard

To cite this version:

Julien Gaillard. Systèmes de recommendation : adaptation Dynamique et Argumentation.
Other [cs.OH]. Université d’Avignon, 2014. English. <NNT : 2014AVIG0201>. <tel-
01168476>

HAL Id: tel-01168476

https://tel.archives-ouvertes.fr/tel-01168476

Submitted on 25 Jun 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01168476

ACADÉMIE D’AIX-MARSEILLE
UNIVERSITÉ D’AVIGNON ET DES PAYS DE VAUCLUSE

THÈSE

présentée à l’Université d’Avignon et des Pays de Vaucluse
pour obtenir le diplôme de DOCTORAT

SPÉCIALITÉ : Informatique

École Doctorale 536 «Sciences et Agrosciences»

Laboratoire Informatique d’Avignon (EA 931)

Recommender Systems : Dynamic Adaptation and
Argumentation

par

Julien Gaillard

Soutenue publiquement devant le jury composé de :

Pr. Esther Pacitti LIRMM, Montpellier Rapporteur

Pr. Éric Gaussier LIG, Grenoble Rapporteur

Pr. Marc El-Bèze Université d’Avignon Directeur de thèse

Pr. Eitan Altman Université d’Avignon - INRIA Directeur de thèse

Pr. Emmanuel Ethis Université d’Avignon Directeur de thèse

Laboratoire Informatique d’Avignon

ii

Acknowledgments

First of all, I would like to thank all members of the PhD committee for having kindly agreed to

evaluate my work. I am honored that Esther Pacitti and Éric Gaussier have agreed to report on

my thesis.

I would like to warmly thank my supervisor Marc El-Bèze, for the constant support, help and

confidence he has shown me the last three years. Sharing the same office was a very enriching

experience: it allowed us to interact continuously and have many constructive discussions.

I warmly thank my co-supervisor Eitan Altman, for his support, inspiration and relevant ad-

vices. The brainstorming sessions were always enthralling.

I warmly thank my co-supervisor Emmanuel Ethis, for giving me the opportunity to approach

the problems from a sociological point of view, which is rather unusual and very enriching for

a computer scientist.

I would like to thank Agorantic and its members, for trusting in my thesis project since the

beginning. I also thank the European project Congas. I thank Cyril Barthet, Benoit de Malartic

and Chris Navas (Vodkaster) for providing the data and their feedback on my work.

I’d like to thank my fellow PhD students and collaborators who contributed to this research,

La Maison de la Recherche, Aude Mosca and Caroline Girerd-Potin. To my musician friends and

bandmates, thank you for all the music we have shared together and the support you gave me

during this thesis. I am very grateful to all of you.

Last but not least, I’d like to thank Jean-Michel Renders for inviting me to present my work at

the Xerox Research Center Europe and for our recent collaboration.

Finally, the writing of this thesis would not have been possible without the unlimited support,

understanding and love from my family. You are amazing.

To my grandparents, who were born in a time where studying was not always easy. I’d like to

have a special thought to my Grandpa’ Michel Cazorla, who had no choice but to leave school

at the age of 14 and start working as a baker to feed his family, when his father died.

Thank you so much everyone. This is just the beginning of a great adventure!

iv

Dedicated to my family.

vi

CONTENTS

Introduction xi

CHAPTER 1—State of the Art

1.1 Introduction . 5

1.2 Recommender Systems . 5

1.2.1 Definition . 5

1.2.2 Recommender Systems Function . 6

1.2.3 Data source . 8

1.3 Recommender system classification . 8

1.3.1 Simple and classical topology . 8

1.3.2 Burke’s classification . 9

1.4 Recommendation Techniques . 9

1.4.1 Collaborative Filtering . 10

1.4.2 Content-based Filtering . 11

1.4.3 Demographic . 12

1.4.4 Knowledge-Based . 12

1.4.5 Statistical Summarization . 12

1.4.6 Social Navigation Technique . 13

1.4.7 Hybrid Recommender System . 13

1.5 Data Mining techniques for Recommender Systems 13

1.5.1 Data Mining process . 14

1.5.2 K-Nearest Neighbor techniques (kNN) . 14

vii

1.5.3 Matrix Factorization techniques . 15

1.6 Marketing theory . 17

1.7 The Reasons Why to Explain . 18

CHAPTER 2—A Formal Framework for Automatic Recommendation

2.1 Introduction . 21

2.2 Similarity measure . 21

2.2.1 Pearson . 21

2.2.2 Cosine . 21

2.2.3 Jaccard . 22

2.2.4 Examples of similarities . 22

2.3 Rating prediction . 23

2.4 Gaps . 24

2.5 Automatic tuning through randomness . 25

2.5.1 Definition . 26

2.5.2 Specific judges . 26

2.5.3 Example . 26

2.6 Evaluation metrics . 27

2.6.1 Prediction-based metrics . 28

2.6.2 Decision-based metrics . 29

2.6.3 Rank-based metrics . 31

2.6.4 Choice of metrics . 32

2.7 Experiments . 32

2.7.1 Datasets . 33

2.7.2 Cold-start simulation . 34

2.7.3 Rating distribution . 35

CHAPTER 3—A sociological study of users

3.1 Introduction . 39

3.2 General observations . 39

3.2.1 Evolution of users average rating as a function of time 39

3.2.2 Evolution of users behavior as a function of the number of movies rated . 40

3.3 The MovieLens case . 42

3.3.1 Rating distribution as a function of age . 42

3.4 The Vodkaster case . 43

3.4.1 Questionnaire results . 44

3.4.2 Identity construction . 44

3.4.3 Principle of distinction . 44

3.4.4 Observations on words . 45

viii

3.5 Conclusions . 46

CHAPTER 4—Dynamic Adaptation

4.1 Introduction . 49

4.2 Related Work . 50

4.3 Methods . 50

4.3.1 Motivation . 50

4.3.2 Principle . 51

4.4 Dynamic Adaptation in classical a CF approach 52

4.4.1 A new application of a classical similarity measure 52

4.4.2 Time-based weighting . 53

4.4.3 Error adaptation: learning from mistakes. 54

4.5 Adaptive Matrix Completion . 55

4.5.1 Adaptation of ai and bj . 55

4.5.2 Adaptation of Li and Rj . 56

4.6 Results . 57

4.6.1 Baseline results . 57

4.6.2 Results with Classical Collaborative Filtering 57

4.6.3 Results with Adaptive Matrix Completion 62

4.7 Analysis . 64

4.7.1 Dynamic Adaptation impact on performances 64

4.7.2 Adapting with predictions . 65

4.7.3 Reflexion for sociological analysis . 65

4.7.4 Examples . 65

4.8 Conclusions . 66

CHAPTER 5—Argumentation

5.1 Introduction . 70

5.2 Argumentation . 70

5.3 Review segmentation: Hidden Markov Model and Viterbi algorithm 71

5.4 New similarity based on words . 71

5.5 Basic textual recommendation . 72

5.6 Extraction of specific arguments . 73

5.6.1 Principle . 73

5.6.2 Display . 73

5.7 Argumentation outputs . 74

5.7.1 Basic method outputs . 74

5.7.2 Specific arguments outputs (WBS) . 75

5.8 Results . 77

ix

5.9 Conclusion . 78

CHAPTER 6—Matching Games in Recommender Systems

6.1 Introduction . 81

6.2 The college admission problem . 81

6.3 Matching game transposed to recommendation . 82

6.3.1 Assignment criteria . 82

6.3.2 Example . 83

6.4 Algorithm . 83

6.4.1 Classical one-to-one algorithm . 83

6.4.2 From one-to-one to one-to-many . 84

6.5 Evaluation . 84

6.6 Results . 85

6.7 Conclusion . 86

CHAPTER A—Questionnaire Results - Vodkaster

List of figures 95

List of tables 97

Bibliography 99

x

INTRODUCTION

xi

This thesis presents the results of a multidisciplinary research project (Agorantic) on Recom-

mender Systems.

The goal of this work was to propose new features that may render recommender systems (RS)

more attractive than the existing ones. We also propose a new approach to and a reflection

about evaluation.

In designing the system, we wanted to address the following concerns:

1. People are getting used to receive recommendations. Nevertheless, after a few bad rec-

ommendations, users will not be convinced anymore by the RS.

2. Moreover, if these suggestions come without explanations, why people should trust it?

3. The fact that item perception and user tastes and moods vary over time is well known.

Still, most recommender systems fail to offer the right level of “reactivity” that users are

expecting, i.e. the ability to detect and to integrate changes in needs, preferences, popu-

larity, etc. Suggesting a movie a week after its release might be too late. In the same vein,

it could take only a few ratings to make an item go from not advisable to advisable, or the

other way around.

4. Users might be interested in less popular items (in the ” long tail”) and want less system-

atic recommendations.

To answer these key issues, we have designed a new semantic and adaptive recommender sys-

tem (SARS) including three innovative features, namely Argumentation, Dynamic Adaptation

and a Matching Algorithm.

• Dynamic Adaptation: the system is updated in a continuous way, as each new review/rating

is posted. (Chapter 4)

• Argumentation: each recommendation relies on and comes along with some keywords,

providing the reasons that led to that recommendation. This can be seen as a first step

towards a more sophisticated argumentation. We believe that, by making users more

responsible for their choices, it will prevent them from losing confidence in the system.

(Chapter 5)

• Matching Algorithm: allows less popular items to be recommended by applying a match-

ing game to users and items preferences. (Chapter 6)

The system should be sensed as less intrusive thanks to relevant arguments (well-chosen words)

and less responsible to unsatisfaction of the customers.

We have designed a new recommender system intending to provide textually well-argued rec-

ommendations in which the end user will have more elements to make a well-informed choice.

Moreover, the system parameters are dynamically and continuously updated, in order to pro-

vide recommendations and arguments in phase with the very recent past. We have included a

semantic level, i.e words, terms and phrases as they are naturally expressed in reviews about

xii

items. We do not use tags or pre-determined lexicon.

The performances of our system are comparable to the state of the art. In addition, the fact that

it provides argumentations makes it even more attractive and could enhance customers loyalty.

xiii

Publications & Talks
by Julien Gaillard

International Journals

• Majed Haddad, Julien Gaillard, Eitan Altman, Dieter Fems. Paradoxes in Semi-Dynamic

Evolutionary Power Control Game: When Intuition Fools You!

IEEE Transactions on Wireless Communications (2013)

French Journals

• Myriam Dougados, Jean-Louis Fabiani et Julien Gaillard. Qui m’aime me suive. Les usages

de Twitter dans la production et la diffusion des opinions esthétiques

Culture et Musées (2014)

International Conferences

• Jean-Valère Cossu, Julien Gaillard, Killian Janod, Emmanuel Ferreira and Marc El-Bèze.

LIA@Replab 2014 : 10 methods for 3 tasks. Proceedings of the 5th International Conference

of the CLEF initiative. (2014, Sheffield, UK)

• Julien Gaillard, Marc El-Bèze, Eitan Altman, Emmanuel Ethis. Flash reactivity: Adaptive

models in recommender systems.

Proceedings of the 2013 International Conference on Data Mining. (2013, Las Vegas, NV)

• Julien Gaillard, Marc El-Bèze, Eitan Altman, Emmanuel Ethis. Well-argued recommendation:

adaptive models based on words in recommender systems.

Proceedings of the 2013 Joint Conference on Empirical Methods on Natural Language

Processing - EMNLP (2013, Seattle, WA)

• Eitan Altman, Julien Gaillard, Dieter Fiems, Majed Haddad. Semi-Dynamic Hawk and Dove

Game Applied to Power Control.

The 31st Annual IEEE International Conference on Computer Communications - INFO-

COM (2012, Orlando, FL)

• Majed Haddad, Julien Gaillard, Eitan Altman, Dieter Fiems. A Semi-dynamic Evolutionary

Power Control Game.

The 11th International Conference on Networking (2012, Prague, Czech Republic)

• Julien Gaillard, Eitan Altman, Majed Haddad, Piotr Wiecek. Dynamic Hawk and Dove

Games within Flocks of Birds.

xiv

Proceedings of the 2011 International ICST Conference on Bio-Inspired Models of Net-

work, Information, and Computing Systems (2011, York, England)

French Conferences

• Jean-Valère Cossu, Julien Gaillard, Marc El-Bèze, Juan-Manuel Torres-Moreno. Contextu-

alisation de messages courts : l’importance des métadonnées.

13e Conférence Francophone sur l’Extraction et la Gestion des Connaissances. (2013,

Toulouse, France)

International Talks

• Julien Gaillard, Well-argued recommendation: adaptive models based on words in recommender

systems.

International Conference on Empirical Methods on Natural Language Processing - EMNLP.

Seattle, WA, October 2013

• Julien Gaillard, Flash reactivity: Adaptive models in recommender systems.

International Conference on Data Mining, WORLDCOMP’13

Las Vegas, NV, July 2013

• Julien Gaillard, Semi-Dynamic Hawk and Dove Game Applied to Power Control.

The 31st Annual IEEE International Conference on Computer Communications

Orlando, FL, March 2012

• Julien Gaillard, A Semi-dynamic Evolutionary Power Control Game.

The 11th International Conference on Networking

Prague, Czech Republic, May 2012

• Julien Gaillard, Dynamic Hawk and Dove Games within Flocks of Birds. .

International ICST Conference on Bio-Inspired Models of Network, Information, and Com-

puting Systems, BIONETICS

York, England, December 2011

xv

Notations

In this section, we list the objects that are manipulated by a recommender system. In the re-

mainder, we will use the following notations:

M: number of users

N: number of items

u, v ∈ (1, .., M): indexes for users

i, j ∈ (1, .., N): indexes for items

U: set of users

I: set of items

Su :⊆ I set of items rated by u

Ti :⊆ U set of users who rated i

ru,i: rating given by user u on item i

r̂u,i: predicted rating given by user u on item i

Sim(x, y): any similarity function

1

2

CHAPTER

1

STATE OF THE ART

3

Chapter 1. State of the Art

Contents

1.1 Introduction . 5

1.2 Recommender Systems . 5

1.2.1 Definition . 5

1.2.2 Recommender Systems Function . 6

1.2.3 Data source . 8

1.3 Recommender system classification . 8

1.3.1 Simple and classical topology . 8

1.3.2 Burke’s classification . 9

1.4 Recommendation Techniques . 9

1.4.1 Collaborative Filtering . 10

1.4.2 Content-based Filtering . 11

1.4.3 Demographic . 12

1.4.4 Knowledge-Based . 12

1.4.5 Statistical Summarization . 12

1.4.6 Social Navigation Technique . 13

1.4.7 Hybrid Recommender System . 13

1.5 Data Mining techniques for Recommender Systems 13

1.5.1 Data Mining process . 14

1.5.2 K-Nearest Neighbor techniques (kNN) 14

1.5.3 Matrix Factorization techniques . 15

1.6 Marketing theory . 17

1.7 The Reasons Why to Explain . 18

Abstract
The aim of this chapter is to give an overview of the most important concepts used in rec-
ommender systems and present existing research work. We will focus on classical methods
and explanation interfaces. Thus we will have a solid basis to start from.

4

1.1. Introduction

1.1 Introduction

Although automatic recommendation has emerged as an independent field of research and be-

came popular in the 1990’s, one could say that it is somehow taking root in the late 1970’s with

the work of Rich (Rich, 1979) in cognitive sciences, in which he uses stereotypes to perform a

user modeling task. Some work in information retrieval and forecasting theory might be con-

sidered as the beginning of recommendation as a research area (Salton, 1989) (Armstrong, 2001).

Experience goods (Nelson, 1970) identify assets that need to be consumed before knowing their

satisfaction level. Cultural contents can be seen as the quintessential experience good, one that

creates a multibillion-dollar global industry, one that is based on a myriad of genres and count-

less artists.

Consumers are faced with the difficult task of using their limited budgets to acquire some of

these contents, without fully knowing how fulfilling they are. In such situations, recommen-

dations can offer a substantial improvement in decision making of what to purchase. Online

stores that incorporate a recommender system are becoming more and more competitive with

respect to traditional stores. The last decade has shown a historical growth of websites offering

online services.

It is not only electronic commerce services that gain from recommendation, but any service

based on a large amount of contents. Indeed, there are several multimedia platforms contain-

ing a huge amount of cultural products such as Spotify (music), Netflix (video on demand) and

so on. Recommender systems aim at suggesting appropriate items to consumers from a large

catalog of products.

These systems are designed depending on the domain and the data source available. For in-

stance, Netflix users give ratings to the movie they watched, on a scale of 1 (disliked) to 5

(liked). Additionally, the system may have access to user-specific and item-specific profile at-

tributes such as demographics and product descriptions respectively.

Nowadays, recommender systems and their evaluation on real-world issues is a very active

area of research.

1.2 Recommender Systems

1.2.1 Definition

Basically, to keep things simple, a recommender system is able to provide suggestions (recom-

mendations) to users, in multiple contexts such as when they are making a choice among a large

5

Chapter 1. State of the Art

catalog of items or whenever they want to receive suggestions. (Meyer., 2012) identifies 4 key

features:

• Help to Decide: predicting a rating for a user for an item

• Help to Compare : rank a list of items in a personalized way for a user

• Help to Discover: provide a user with unknown items that will be appreciated

• Help to Explore: give items similar to a given target item

Most of the applications of recommender systems are on e-commerce websites. The site displays

a list of recommended items to the end user.

Resnick and Varian (Resnick et Varian, 1997) give a definition of a recommendation engine as

a system able to learn users’ preferences about different items and use these preferences to

propose new items that users might be interested in.

Herlocker and colleagues (Herlocker et al., 2000) describes a recommender system as one that

predicts which items might correspond to the tastes and needs of given users.

As we can see, while Herlocker’s description focuses more on the prediction aspect of rec-

ommender systems, Resnick and Varian’s approach is closer to a real-world recommendation

concept.

According to Burke (Burke, 2002), a recommender system must be able to provide individu-

alized recommendations and guide users in a personalized way. Burke’s definition adds new

notions such as individualization and personalization.

1.2.2 Recommender Systems Function

We previously defined recommender systems as tools and methods providing users with item

suggestions they might like to purchase or utilize. In this section, we aim at give a more refined

definition by illustrating a wider ranger of the possible uses a RS can be. The first distinction

that has to be made is between the user of the RS and the service provider (Ricci, 2002). For

instance, a restaurant or hotel recommender system is typically used by an intermediary (e.g

TripAdvisor) in order to increase its conversion rate, that is increase the number of people going

to a given restaurant, or to sell more hotel rooms.

On the other side, the user’s motivations for using a system like TripAdvisor are finding a

restaurant or hotel that corresponds to his tastes and needs, increasing thus his satisfaction.

As a matter of fact, there are several reasons why service providers employs recommendation

engines:

6

1.2. Recommender Systems

• Increase the revenue. In other words, it means increase the numbers of items that are sold.

This function is most likely to be the most important in an industrial context (commercial

RS). The goal here is to actually sell more items than there would have been without any

recommendations. To meet this objective, the system recommends items that are expected

to satisfy the user’s tastes and needs. However, we must distinguish between predicting

users interests in an item and the probability that users will actually choose/select the

recommended item.

• Increase diversity of items sold. The aim of this function is to incite users to select items

that would remain unknown without recommendation. For example, in the case of a book

RS (e.g Amazon bookstore), the service provider wants to be able to sell books from all its

catalogue and not only the top 5 most popular ones.

• Improve the user experience. If the system works correctly and is designed in a proper

manner, it can increase the user satisfaction. Indeed, by receiving interesting, diverse and

relevant suggestions, the user will appreciate the experience on the website or application.

• Understanding users. Another major function of a RS is to be able to describe users

preferences. These preferences may have been collected explicitly or by predicting them.

This data might be used by the service provider to better manage its production or stock.

We described the main reasons service providers are using RS. However, users must not be for-

gotten in the equation. A well designed RS should have a good equilibrium between users and

service providers (Burke, 2007).

We expose now the functions users might be interested in when using a RS.

• Rank a list of items. This is probably one of the most important function for a RS, that

is to provide some good items to the current user, according to the rating predictions. In

other words, recommend items that the user should like.

• Recommend a sequence. This function is aiming more at fitting the long-term preferences

of users. The principle is to generate a coherent sequence of recommendations instead

on providing a succession of independent ones. For instance, it would make sense to

recommend Matrix 2 Reloaded after having recommended Matrix 1. (Shani et al., 2005)

• Provide annotations. In this case, instead of generating a list of items, we consider an

already existing context such as the weekly movie release in movie theaters. The function

of the RS would be to emphasize movies that are more likely to correspond to the user’s

tastes and preferences.

• Navigation improved. Given a large catalog, the task of a RS can be to improve the

user’s browsing experience by helping her finding items that fit her tastes and needs.

(Brusilovsky, 1996).

7

Chapter 1. State of the Art

1.2.3 Data source

Recommender engines feed themselves with data. They collect different types of data such as

very simple and basic data (user ratings/evaluations), more knowledge dependent (ontologi-

cal description) or social relations and activities of users. No matter what the data source is, we

generally identify three entities: items, users and relations between users and items.

In our work, we will use basic data such as ratings (MovieLens, Netflix, Chapter 4) and more

knowledge dependent with Vodkaster (Chapter 5), as we will make use of the reviews posted

by users (textual content).

The most convenient data is high-quality explicit feedback, which includes explicit input by

users regarding their interest in products. For example, Netflix collects star ratings for movies,

and TiVo users indicate their preferences for TV shows by pressing thumbs-up and thumbs-

down buttons.

Usually, explicit feedback comprises a sparse matrix, since any single user is likely to have rated

only a small percentage of possible items.

When explicit feedback is not available, recommender systems can infer user preferences using

implicit feedback, which indirectly reflects opinion by observing user behavior including pur-

chase history, browsing history, search patterns, or even mouse movements.

1.3 Recommender system classification

Previous classifications ((Resnick et Varian, 1997),(Schafer et al., 1999),(Schafer et al., 2001)) of

recommendation techniques have already been published. We only give here some general

information about the main techniques.

1.3.1 Simple and classical topology

The most common way to describe and identify the different types of recommender systems is

the following:

1. Collaborative Filtering systems (CF)
2. Content-Based Filtering systems (CBF)
3. Hybrid systems (combination of CF and CBF techniques)

The typical Collaborative Filtering Item-based recommendation (like on Amazon) is entirely

based on user-item rating (e.g., a user rated a movie with 4 stars, or a user "likes" a movie).

8

1.4. Recommendation Techniques

When we compute the similarity between items, we are not supposed to know anything other

than all users’ history of ratings. Therefore, the similarity between items is computed based on

the ratings instead of the meta data of item content.

On the contrary, the point of Content-Based Filtering is that we have to know the so-called

”content” of both user and item. Usually a user-profile and item-profile are created using the

content of shared attribute space. For instance, for a movie, we represent it with the movie stars

in it and the genres (using a binary coding for example). For user profile, we can do the same

thing based on the users likes some movie stars etc. Then the similarity of user and item can be

computed using e.g., cosine similarity.

1.3.2 Burke’s classification

Burke (Burke, 2002) proposes a very complete classification of existing recommendation tech-

niques by identifying each method’s input data and its algorithm used. He defines five types of

recommendation techniques:

• Collaborative filtering

• Content-based

• Demographic

• Utility-based

• Knowledge-based

We describe these techniques in the following section (1.4).

Mark van Setten (Setten, 2005) gives another classification for recommendation techniques. He

introduced a social-based technique and an information-based technique.

1.4 Recommendation Techniques

Identifying useful items for users is the core function of a recommender system (Adomavicius

et Tuzhilin., 2005). In order to predict these, a RS has to be able to predict the utility of these

items. Then, based on the results, the system decides which items are recommendable.

9

Chapter 1. State of the Art

1.4.1 Collaborative Filtering

User-user Collaborative Filtering

User-user collaborative filtering is based on the central idea that users who have an interest

in same items and similar ratings will thus have similar preferences (Resnick et al., 1994),

(Shardanand et Maes, 1995). Given a similar rating behavior, the recommender system is able

to predict if a user might be interested in an unseen item. The process of a typical user-user

collaborative filtering is generally divided into three steps (Herlocker et al., 2000):

1. Similarity measurement The recommender system computes the similarities between the

active user and other users who have rated the same items. This step is a well-researched

area in the field of recommender systems.

2. Neighborhood Similar users are regrouped in a subset namely the « neighborhood » of

the active user. Typically, this neighborhood is made of the most similar users computed

during step 1.

3. Prediction and recommendation generation In the third and final step, the system gath-

ers information from the active user’s neighborhood. Then an algorithm generates a list

of items to be recommended. In the real world context of e-commerce websites, it is called

the « Top-N » recommendation list. Additionally, a rating prediction can be computed for

a specific item.

In their survey, Herlocker et al. (Herlocker et al., 2002) present several algorithms for the rec-

ommendation generation step. The strongest advantage of user-user collaborative filtering is

its domain independency.

Important: Indeed, the fact that similarity between users is calculated by using only rating

data makes the system adaptable to any type of products. However, the main flaw of this

technique is that the similarity, being computed with rating data only, cannot take into account

the reasons that led to a good or bad rating. And thus, two users might have liked the same

item, but for some totally different reasons. We present in Chapter 5 a new method that allows

a recommender system to include this new dimension.

Item-item Collaborative Filtering

Item-item collaborative filtering is somehow similar to user-user collaborative filtering. and can

be considered as the same approach but from an item point of view.

We have the following principle: items that have been rated in the same way are likely to share

some similar characteristics, thus users who like one of them should like the others that are

similarly rated (Herlocker et J., 2001).

10

1.4. Recommendation Techniques

Amazon is probably the most well-known e-commerce website to using item-item collabora-

tive filtering (Linden et al., 2003). Amazon, thanks to its highly effective and well-functioning

item-item recommendation technology made a large gain increase. As it also requires only the

rating data, item-item collaborative filtering has the same strengths and flaws of user-user col-

laborative filtering.

1.4.2 Content-based Filtering

Basically, Content-Based approaches build a model (or profile) of users interests based on the

characteristics of items they rated. To do so, the system analyze the description of items previ-

ously rated. The process of recommendation is essentially finding good matches between the

user profile and items features.

This technique presents advantages such as user independence, since CBF systems only use rat-

ings of the active user to build her model, as opposed to collaborative filtering techniques,

which rely on ”neighbors”. Additionally, when a new item appears and has not yet been

rated, CBF systems are able to recommend it. This is a collaborative filtering well-known is-

sue, namely cold-start or ”first-rater” problem.

However, these techniques suffers from over-specialization, as they are not capable of finding

unexpected items: the user will receive recommendations of items similar to the ones she rated

before. This problem of novelty is also know as the serendipity problem.

Important remark It is critical to note that the so-called Content-Based techniques are actually

not based on the real content of items. For example, in the context of book recommendation, a

CBF system does not really rely on the book content. It is only based on the mere description,

keywords or abstract in the best case. Most of the time, the ”content” is just the genre, author,

editor or other metadata. Additionally, those methods do not really take into account the tex-

tual content that has been written about items, by users, blogs or whatever. They generally

apply semantic analysis by using ontologies or Word Domain Disambiguation or Word Sense

Disambiguation. Examples of such attempts to introduce some semantics in the recommen-

dation process can be found in (Magnini et Strapparava, 2001), (Stefani et Strapparava, 1998),

(Degemmis et al., 2007), (Semeraro et al., 2009).

These approaches integrate linguistic knowledge in the process of learning user profiles. The

main drawback of these techniques is that the linguistic knowledge comes solely and exclu-

sively from the WordNet lexical ontology. Therefore, the so-called ”sense-based” profile repre-

sentation relies and depends on some deterministic concepts: it is not really learnt from users

writings about items. Moreover, these methods is language ans domain dependent.

We will see in Chapter 5 how to integrate the real textual content dimension with a domain and

language independent approach, by using a similarity based on words.

11

Chapter 1. State of the Art

1.4.3 Demographic

Demographic-based system are able to recommend items according to the demographical infor-

mation of users. This type of system rely on the hypothesis that each demographic class should

be recommended differently. It is a simple and effective personalization method. Websites can

easily adapt the displaying language according to the user’s country or language. Recommen-

dations can take into account the user’s age. These techniques have been more studied in the

marketing literature than in the RS area.

1.4.4 Knowledge-Based

This type of systems recommends items according to a specific information (knowledge) on the

relevance of a given item’s features for a given user’s needs. In knowledge-based systems, the

similarity gives a measure of the matching quality between user’s preferences (or needs) and

the items to be recommended. In this case, similarity can be assimilated to the utility for user

(Bridge et al., 2006).

1.4.5 Statistical Summarization

People generally trust statistics. The most often used statistical summarization techniques are

popularity and average. These methods are popular because they are efficient in explaining to

users the current system’s authority.

Popularity

Popularity-based recommendation techniques relies on a simple idea. Generally, e-commerce

platforms show a list top selling items on the homepage. Herlocker (Herlocker et al., 2000)

proposed a system that takes into account every users ratings and from this overall average, the

top rated items are selected. In fact, people have a tendency to be attracted to popular items

during an online shopping session.

Average

A simple and pragmatic technique is using the average combined with popularity. The inner

quality and popularity of an item is somehow encapsulated in its average rating.

For instance, the Internet Movie Database (IDMb.com) presents the average rating for each

movie. It allows users to have an insight into the general opinion (positive or negative) about a

given movie.

12

1.5. Data Mining techniques for Recommender Systems

On Vodkaster, a french VOD platform and social network for movies, another type of average is

presented, which is the average rating of friends. This is both a statistical and social information.

It is generally assumed this type of average is very persuasive (Herlocker et al., 2000).

1.4.6 Social Navigation Technique

The social navigation technique relies on the simple principle of showing the activity of others

users (e.g « User 1 likes/purchased Item 3 ») (Konstan et Riedl., 2002; Riedl et Konstan, 2002).

According to Herlocker et al. (Herlocker et al., 2000), users attach importance to what their

similar peers like.

Although Bonhard (Bonhard, 2004) proposed a more complex approach using social network-

ing, a simple social navigation interface improves the user’s recommendation experience, as his

neighbors are in fact potential recommenders.

More recently, (Pacitti et al., 2011a,b) proposed a social-based P2P recommendation system for

large-scale content sharing that leverages content-based and social-based recommendation. The

main idea is to recommend high quality documents related to query topics and contents held

by useful friends (of friends) of the users, by exploiting friendship networks.

1.4.7 Hybrid Recommender System

The techniques we have presented so far can be combined into a hybrid recommender system.

Indeed, by doing so, the weaknesses and shortcomings of each single technique may cancel

each other out and thus performance is improved too (Burke, 2002). For instance, Collaborative

Filtering techniques have to face the new-item problem, i.e they are not able to recommend

items that have not been rated yet. However, new items features (description) are generally

available and can be used with content-based methods.

As a matter of fact, a recommender system like the one operating on Amazon combines several

recommendation techniques, leading to more efficient and accurate predictions (Linden et al.,

2003).

1.5 Data Mining techniques for Recommender Systems

In this section, our goal is to provide an overview of the Data Mining methods used in this

thesis.

13

Chapter 1. State of the Art

1.5.1 Data Mining process

Typically, there are 3 steps in a Data Mining process: Data Preprocessing, Data Analysis and

Result Interpretation. Figure 1.1 shows the most important methods for each of these steps.

Figure 1.1: Main methods of Data Mining.

1.5.2 K-Nearest Neighbor techniques (kNN)

The K-Nearest Neighbor techniques are one of the most commonly used ones in the recommen-

dation area (Adomavicius et Tuzhilin., 2005). Generally based on binary or real-valued data,

these approaches use some association rule principles and generalize them to compare objects

(e.g items or users). Even if these methods are very well adapted for item-to-item recommen-

dations, they suffer from the lack of scalability. Indeed, the time to search neighbors increases

quadratically with the number of elements.

Usually, there are three main components for a collaborative filtering approach using kNN:

• A similarity measure

• A function that retrieves the neighborhood using the similarity measure

14

1.5. Data Mining techniques for Recommender Systems

• A rating prediction function based on the neighbors’ ratings

Depending on what association is used, we can distinguish two kNN techniques: item-based

and user-based.

kNN Item-based

In this approach, the rating prediction of a given user u on a given item i is computed using pre-

vious ratings of u on items that are similar to i. (Sarwar et al., 2001). kNN item-based approches

present a strong advantage in terms of computational complexity. Indeed, as mentioned above,

the neighborhood calculation time is proportional to the square of the number of objects to com-

pare. As a matter of fact, the number of users is almost always much larger than the number of

items. Therefore, item-based approches are often more efficient. However, one could argue that

this is less true on user-generated catalogs such as Youtube, since the number of videos is such

that item-item matrices are huge.

The most famous example of kNN Item-based approach is Amazon and its famous ”people who

have bought this item also purchased these items”.

Let n be the number of users, m number of items and K the number of neighbors considered.

Item-based approaches have a time complexity of O(m2 × n × K) to build the neighborhood

models and O(K) for a rating prediction. The space complexity is O(m × K)

kNN User-based

In this approach, the rating prediction of a given user u on a given item i is computed using

previous ratings of u’s neighbors on item i (Shardanand and Maes, 1995). Therefore, the matrice

of user-user similarities has to be computed. As before, the neighborhood has to be determined

and the set of K nearest neighbors is selected. In the end, the ratings of the neighbors are

combined in the rating prediction function.

1.5.3 Matrix Factorization techniques

The matrix factorization approach has become popular with the Netflix Prize, mainly because

they allow to deal with large amounts of data, while being quite accurate and fast (Bell et Koren,

2007). These methods are considered to be state-of-the-art for a static rating prediction task.

Indeed, the algorithms used in such techniques are easily implemented and quite efficient. This

has been verified during the Netflix Challenge. On the other hand it seems to be not adapted to

item-to-item recommendation as it is a pure scoring method.

General principles

In its basic form, matrix factorization characterizes both items and users by vectors of factors

inferred from item rating patterns. High correspondence between item and user factors leads to

15

Chapter 1. State of the Art

a recommendation. Recommender systems rely on different types of input data, which are often

placed in a matrix with one dimension representing users and the other dimension representing

items of interest.

Matrix Factorization model

Matrix factorization models are methods that project users and items to a common latent fac-

tors space of dimensionality k. In this new space, the interactions between user and item are

represented as inner products. Each item i is associated with a vector qi ∈ , and each user u is

associated with a vector pu ∈ .

To estimate user u’s rating of item i, we compute the dot product qT
i ṗu. which is denoted by ru,i:

r̂u,i = qT
i pu (1.1)

The mapping of each item and user to factor vectors qi, pu ∈ is the difficult part. Once this task

is done, the recommender system can use it to predict any r̂u,i, simply by using equation 1.1.

This technique is somehow similar to singular value decomposition (SVD) (Golub et Reinsch,

1970). In Information Retrieval, the SVD approach is often used to identify latent semantic fac-

tor. In the context of Collaborative Filtering, it is necessary to factorize the users-items rating

matrix. Such matrices are usually incomplete due to missing values and are therefore relatively

sparse. If handled without care, sparsity can induce overfitting.

Fill in the matrix and make it dense has been proposed in (Sarwar, 2000). The main issue with

this approach is the significant increase in the amount of data and distortion if imputation is

not accurate.

(Funk, 2006; Koren, 2008; Patarek, 2007), in more recent works proposed to model the observed

ratings only and avoid overfitting by using regularizers in their model. Hence, the factor vec-

tors pu and qi are learnt so that the regularized squared error on the set of known ratings is

minimized:

min
q,p ∑

(u,i)∈κ

(ru,i − qT
i ṗu)

2 + λ(‖qi‖
2 + ‖pu‖

2) (1.2)

κ is the set of the pairs (u, i) for which ru,i is known, that is the training set. The model is

fitted on the previously observed ratings. As the system has to be able to predict unknown

ratings, these previous observations have to be generalized. Hence, the learned parameters

have to be regularized. This is the role of λ (constant), that sets the intensity of regularization.

Cross-validation is usually employed to determine this constant. In the paper “Probabilistic

Matrix Factorization” (Salakhutdinov et Mnih, 2008), Ruslan Salakhutdinov and Andriy Mnih’s

propose a probabilistic approach for regularization.

16

1.6. Marketing theory

Drawbacks

Even if these methods offer a good scalability and predictive accuracy, their classical state-of-

the-art versions do no allow Dynamic Adaptation. Note that Dynamic Adaptation (presented

in Chapter 4) has to be distinguished from the ability to accept new users. Indeed, Sarwar

(Sarwar et al., 2002) presented an incremental singular value decomposition algorithm, that

actually computes an approximated decomposition, as space is not orthogonal. This allows to

accept new users without having to recompute the model built from existing data. However,

the parameters of users and items models are not updated neither adapted.

We propose in Chapter 4 a new approach that allows Dynamic Adaptation, by modifying the

models of a matrix factorization technique presented in (Recht et Re, 2011).

1.6 Marketing theory

Recommender systems are an essential feature for modern e-commerce website. And several

theories on marketing may have influenced the way recommender systems are designed, espe-

cially in terms of explanation interface.

Indeed, the role of the recommender system’s explanation interface has gained more and more

importance, due to the fact that, without sufficient argumentation / information / explanation,

people are less convinced to buy an item.

Mass Customization and Internet Marketing

“If I have 3 million customers on the Web, I should have 3 million stores on the Web.” Jeff Bezos,

CEO of Amazon.com

In the book “Mass Customization” (Pine, 1993), Joe Pine identified the need for modern vendors

to move their attention from “mass production” to “mass customization”. And recommender

systems are precisely successful at achieving that task.

Even if a recommender system cannot literally customize its items, it can customize the list of

products for a given user. Nowadays, customers are not only paying attention to the product’s

quality but they are also looking for good « user experience ».

The “black box” approach of most recommender systems does not present any satisfactory ex-

planation to their users (Bilgic et Mooney, 2005).

Internet marketing is a nearly related concept that has always been influenced the development

and evolution of recommender systems.

We find the same traditional business-to-business (B2B) model, business-to-consumer (B2C)

model and the newer peer-to-peer (P2P) model.

17

Chapter 1. State of the Art

Recommender systems is aimed to enhance the Internet marketing return on investment of all

three types of business and studies have been looking in this direction, but the role played by

the recommender system’s explanation interface has not been well-studied yet.

1.7 The Reasons Why to Explain

Recommender system literature has only been focusing on improving the accuracy of recom-

mendations. This is mainly due to the fact that it is generally assumed that improving accuracy

improves the user’s satisfaction and gives a better promotion effect. As a result, even if recom-

mender systems and collaborative filtering have been in the research focus for the last decade,

the « transparency » approach (or « white box » approach) integrating explanation interfaces

has only been studied recently, in the 2010’s. However, the existing approaches are not consis-

tent enough to be implemented as a recommender system with well-argued explanations and

good visualization interfaces.

Herlocker et al. (Herlocker et al., 1999) discuss two types of accuracy metrics: statistical ac-

curacy and decision-support accuracy. Popular measures such as Mean Absolute Error (MAE)

(Shardanand et Maes, 1995) and Coverage belong to the former group and so do Recall and

Precision (Sarwar, 2000).

The traditional “black box” approach of recommender systems tends to be counter-intuitive.

Indeed, asking family or friends for recommendations is a natural and transparent social pro-

cess.

It has been shown in previous studies on expert systems that justification for experts advice

play a major role in the way a system is designed (Buchanan et al., 2005).

Explanation is the link between the human and the system (Johnson et Johnson, 1993) (Koene-

mann et Belkin, 1996).

More recently, it has been argued (McNee et al., 2006) that most recommender algorithms have

almost the same results in terms of accuracy measurements, thus the next step is to improve the

human-recommender interaction.

18

CHAPTER

2

A FORMAL FRAMEWORK FOR

AUTOMATIC RECOMMENDATION

19

Chapter 2. A Formal Framework for Automatic Recommendation

Contents

2.1 Introduction . 21

2.2 Similarity measure . 21

2.2.1 Pearson . 21

2.2.2 Cosine . 21

2.2.3 Jaccard . 22

2.2.4 Examples of similarities . 22

2.3 Rating prediction . 23

2.4 Gaps . 24

2.5 Automatic tuning through randomness . 25

2.5.1 Definition . 26

2.5.2 Specific judges . 26

2.5.3 Example . 26

2.6 Evaluation metrics . 27

2.6.1 Prediction-based metrics . 28

2.6.2 Decision-based metrics . 29

2.6.3 Rank-based metrics . 31

2.6.4 Choice of metrics . 32

2.7 Experiments . 32

2.7.1 Datasets . 33

2.7.2 Cold-start simulation . 34

2.7.3 Rating distribution . 35

Abstract
In this chapter, we provide a general definition of what a recommender system is and what
it does. We present the objects involved in these systems: items, users, metadata on users
and items. We also list the core functions, main features and describe a formal framework
for recommender systems.

20

2.1. Introduction

2.1 Introduction

In this chapter, we present a formal framework for automatic recommender systems.

We both present classical methods and our contribution to the state of the art.

2.2 Similarity measure

We have deliberately limited our work to simple methods with a view to allow the integration

of a fast online real-time adaptation. Similarity measures are the keystone of recommender

systems (Ziegler et al., 2005). Resnick (Resnick et Hal., 1997) was one of the first to introduce

the Pearson correlation coefficient to derive a similarity measure between two entities. Other

similarity measures such as Jaccard and Cosine have been proposed and are standards (Meyer.,

2012) (Sarwar et al., 2001).

As mentioned before, Su denotes the set of items rated by u, Ti the set of users who have rated

item i, ru,i the rating of user u on item i and rx the mean of x (user or item).

2.2.1 Pearson

The Pearson similarity between items i and j is computed as follows:

Pearson(i, j) =
∑u∈Ti∩Tj

(ru,i − ri)(ru,j − rj)√(
∑u∈Ti∩Tj

(ru,i − ri)2
) (

∑u∈Ti∩Tj
(ru,j − rj)2

) (2.1)

This similarity measure is often used in the literature (Adomavicius et Tuzhilin., 2005) (Rao et

Talwar, 2008). However, there is a problem in the case where two items have only one user in

common. Suppose this user gave the same rating to both items, then the similarity will be equal

to 1 (the maximum value). Furthermore, it will be the same if a thousand users give the equal

ratings to i ad j.

2.2.2 Cosine

The Cosine measure is defined as follows:

Cosine(i, j) =
∑u∈Ti∩Tj

ru,i × ru,j√(
∑u∈Ti∩Tj

r2
u,i

) (
∑u∈Ti∩Tj

r2
u,j

) (2.2)

It suffers from the same bias as Pearson. Moreover, in the case of collinear vectors, the cosine

similarity is maximum. In a pure geometrical context, this result can make sense but in our case

it does not. This problem as been well identified and described in (Breese et Kadie).

21

Chapter 2. A Formal Framework for Automatic Recommendation

For instance, assume we have two items (a,b) and Ta ∩ Tb = (u1, u2, u3, u4, u5). Suppose we

have the following ratings:

u1 u2 u3 u4 u5
Item a 1 1 1 1 1
Item b 5 5 5 5 5

Table 2.1: Example of failure

A quick calculation leads to the result Cosine(a, b) = 1, which is the maximum similarity. Yet,

a and b are totally different. An alternative to this problem is to take the union instead of the

intersection, at the denominator. This is true for both Cosine and Pearson formulae.

2.2.3 Jaccard

The Jaccard similarity can be useful to deal with dataset in which only binary events are re-

ported. In those cases, neither Pearson nor Cosine are interesting because they both are equal

to zero. Jaccard is also useful to compare two items based on their metadata, if any. It can also

be adapted in order to fit other situations, different from binary data.

Jaccard(i, j) =
|Ti ∩ Tj|

|Ti ∪ Tj|
(2.3)

2.2.4 Examples of similarities

The aim of this paragraph is to show the differences between different similarities.

To do so, we take two users u and v from the Netflix dataset, that have given respectively 204

and 205 ratings. They have 31 items in common. We also have have ru = 3.81 and rv = 3.29.

items i1 i2 i3 i4 i5 i6 i7 i8 i9 i10 i11 i12 i13 i14 i15 i16 i17
u 5 3 4 3 5 4 4 5 4 1 5 3 5 4 2 5 5
v 5 5 5 2 4 5 4 4 3 2 4 4 5 5 1 4 4

items i18 i19 i20 i21 i22 i23 i24 i25 i26 i27 i28 i29 i30 i31
u 5 4 2 5 5 3 1 5 4 5 3 2 3 2
v 5 2 4 4 5 1 3 3 2 3 4 2 2 3

Table 2.2: Example of similarity

Be giving a quick look, we can intuitively guess that these two users are more or less similar,

since we do not have many strong disagreement such ru,i = 5 and rv,i = 1. Wa have calculated

their similarity by using different methods:

• Pearson(u,v) = 0.504

• Cosine(u,v) = 0.948

22

2.3. Rating prediction

• Jaccard(u,v) = 0.082

• Manhattan(u,v) = 0.745 (MWC)

We can observe that the differences are quite significant. The MWC method seems to find

its place in between the Pearson and Cosine method, while Jaccard index is really far below

everything. While Pearson and MWC both take into account the average of users, then do not

operate similarly, as shown in these results. Indeed, Pearson subtracts the ru to each of its rating

and take the square if that difference whereas MWC takes into account the global difference

ru − rv.

MWC seems to be a good compromise between a too severe similarity such Pearson and a too

lax one like Cosine. Morevover, we avoid the mentioned drawbacks of these measures.

2.3 Rating prediction

Let us consider an item i and a user u. Since users are most of the time not allowed to put mul-

tiple ratings on the same item, we assume the pair (u, i) is unique. This rule applies to most of

social networks or video on demand platforms. Recommend or not item i to a user u amounts

to predict the rating r(u, i). Then depending on the rating prediction, the system will decide

whether item i is recommendable or not to user u.

The information available to the system are previous ratings of user u and ratings of item i

given by other users v ∈ Ti. From that perspective, when trying to predict r(u, i) we first need

to look if among users v who rated i before, some have items in common with u. If so, we are

able to compute a similarity between u and each of these other users. If not, the similarity will

be equal to zero.

Finally, we do a weighted average of previous ratings given by others users, in which the

weights are the similarities between u and v ∈ Ti.

Sim stands for some similarity function (as defined in section 2.2) in the following formula.

rating(u, i) =
∑v∈Ti

Sim(u, v)× rv,i

∑v∈Ti
|Sim(u, v)|

(2.4)

This approach is clearly user oriented in the sense that we take into account the similarities

between users.

A symmetrical formula rating(i, u) item-oriented can be derived from (6.1):

rating(i, u) =
∑j∈Su

Sim(i, j)× ru,j

∑j∈Su
|Sim(i, j)|

(2.5)

To consider both points of view, we do a linear combination.

23

Chapter 2. A Formal Framework for Automatic Recommendation

r̂u,i = β × rating(u, i) + (1 − β)× rating(i, u) (2.6)

In order to balance and somehow correct the prediction, we take into account ru and ri. These

two averages are combined with two coefficients: mi for ri and mu for ru., with mi + mu = 1.

We call this new function the weighted rating function:

r̂wu,i = γr̂u,i + (1 − γ)(αru + (1 − α)ri) (2.7)

If r̂u,i is not computable, we use a fallback solution relying on αru + (1 − α)ri. In the case where

i (or u) has no ratings, ri (or ru) does not exist. If one of these two averages is missing, we only

rely on the other one. We show in section 2.4 how we made further improvements of the rating

prediction function, by including “Gaps”.

2.4 Gaps

There exist user and item biases in the way that some users have a systematic tendency to give

higher ratings than others, and thus some items receive higher ratings than others. In (Bell et al.,

2007), the authors propose a solution to encapsulate those effects, with what they call baseline

predictors. The method is the following:

Denote by µ the overall average rating. Their baseline prediction for an unknown rating r(u, i)

is denoted by bui and accounts for the user and item effects:

bui = µ + bu + bi (2.8)

The parameters bu and bi indicate the observed deviations of user u and item i, respectively,

from the average. This approach allows to isolate the part of the signal that is really representa-

tive if the user-item interaction.

Keeping the same general idea, we have defined a more accurate function, namely the Gap

function, allowing us to adjust the rating prediction for each user. It is more accurate in the

sense that the Gap is not calculated with respect to the overall average. Indeed, it is derived

from each respective deviation to the rated items average. It is defined as follows:

Gap(u) =
∑i∈Su

(ru,i − ri)

|Su|
(2.9)

As said before, it allows to identify if the user has a certain tendency to give ratings above

(more tolerant) or below (more severe) the average. In the end, we use the Gap function during

the rating prediction process, in order to correct individually (each user has its own gap) the

item rating average.

24

2.5. Automatic tuning through randomness

Note that the Gap(u) is updated continuously, as it will be shown in the next chapter. Hence if

there is any change in the way a person behaves, the system will take it into account right away.

The same holds for items:

Gap(i) =
∑u∈Si

(ru,i − ru)

|Si|
(2.10)

There are four possible cases. Note that the Gap function can be negative.

Highly rated item Lowly rated item
Tolerant user Gap(u) > 0, Gap(i) > 0 Gap(u) > 0, Gap(i) < 0
Severe user Gap(u) < 0, Gap(i) > 0 Gap(u) < 0, Gap(i) < 0

Table 2.3: Possible cases in Gaps

For instance, let’s take a severe user Anthony and a highly rated item Star Wars: Episode V - The

Empire Strikes Back. By including the gaps, the system will take into account these two pieces of

information and thus compensate the rating prediction.

In concrete terms, the Gap function is integrated in the weighted rating function r̂wu,i (formula

2.7). It corrects both averages as follows:

mi (ri + Gap(u)) + mu (ru + Gap(i)) (2.11)

The item average is corrected by the Gap(u) and the user average by Gap(i). The reader may

ask why Gap(u) should correct the item average and not the user average. By definition, Gap(i)

is the ”result” or consequence of users who have rated item i. It reveals how item i is generally

rated with respect to each user’s average rating. Hence, it has to correct precisely the user

average mu in the rating prediction function, and not the item average. The same reasoning

holds for Gap(u), it has to correct the item average mi.

2.5 Automatic tuning through randomness

In this part, we present the method we have applied to optimize jointly several parameters of

the system. This is a key point in our system: the tuning process is automatic and random.

A large class of optimization problems can be handled by random search techniques. These

methods become competitive in some specific circumstances, for instance when the function

characteristics (except possibly function evaluations) are difficult to compute, when there is

only limited computer memory available, when the function to be minimized is very "bumpy,"

when it is highly desirable to find the global minimum of a function having many local minima,

etc. Random search techniques were first proposed by Anderson (Anderson, 1953) and later by

Rastrigin (Rastrigin, 1963) and Karnopp (Karnopp, 1963).

25

Chapter 2. A Formal Framework for Automatic Recommendation

2.5.1 Definition

Basically, random optimization algorithms work by iteratively moving to better positions in the

search-field which are sampled using for instance a normal distribution near the current posi-

tion (Sarma, 1990). We have modified this classic principle and adapted it to our recommender

system. Note that we do not adjust each parameter by intuition nor based on observations.

The idea is to combine K best random sets of parameters when predicting a rating. This way,

we will take benefit from these multiple points of view.

The process of this optimization is the following:

1. Run n experiences with a set of random parameters (judge).

2. Evaluate each judge on the development set, using the metric to be optimized (RMSE,...).

3. Select the K best judges.

4. Run on the Test set

5. Combine, for each pair (u, i), the ratings predicted by the K judges.

6. Evaluate.

In the method described above, we combine the K rating predictions rk(u, i) by doing a simple

average. In order to be more accurate, we employ a weighted average, i.e we give more weight

to the best judges. These weights Wk are directly proportional to the score of the associated

judge. Therefore, the final rating prediction is calculated as follows:

r̂u,i =
∑k rk(u, i)× Wk

∑k Wk
(2.12)

2.5.2 Specific judges

We describe here a more sophisticated approach, in which we select specific judges well-suited

for each part of the user population, and/or each set of items. To do so, we have first divided

the users and items population according to some indicator. This indicator could be extracted

from metadata, such as age, gender, country and so on. Unfortunately, it is generally difficult

to have access to such data in a academical context. Hence, we decided to split the population

of users and items with respect to variance, because it reflects rather well the users behavior.

2.5.3 Example

We present here some results of optimization through randomness on the Netflix dataset. In

this example, we have performed 10M experiences, each one of them corresponding to a set of

randomly chosen parameters. When then sorted them and keep the top 10.

26

2.6. Evaluation metrics

RMSE MAE α β γ

Judge 1 0.919 0.713 0.609 0.315 0.085
Judge 2 0.919 0.715 0.123 0.505 0.068
Judge 3 0.919 0.716 0.094 0.434 0.162
Judge 4 0.919 0.715 0.489 0.075 0.093
Judge 5 0.919 0.715 0.234 0.176 0.080
Judge 6 0.919 0.714 0.670 0.536 0.071
Judge 7 0.919 0.715 0.175 0.555 0.164
Judge 8 0.920 0.714 0.374 0.619 0.185
Judge 9 0.920 0.716 0.560 0.848 0.105

Judge 10 0.920 0.713 0.604 0.388 0.074

Table 2.4: Example of judges on Netflix

We observe that depending on the judge, the relationships between the parameters can change

significantly. Recall that:

• α is the weight of ru, (1 − α) for ri

• β is the weight of ratingu,i, (1 − β) for ratingi,u

• γ is the weight of the similarity based model, (1 − γ) for the average model

The first observation is that for all of the judges, γ is rather small (approx. 0.1). That is to say,

most of the models selected here relies on the average (or baseline) predictors.

If we look at judges 3 and 6, we observe that there is a big difference for α. Indeed, we have

α3 = 0.094 and α6 = 0.67. It means that judge 3 uses almost 100% of ri in its baseline predictor.

He relies only on the average of items and doesn’t take into account the users’ average. On the

contrary, judge 6 gives more weight to the average of users (67%).

Judges 4 and 9 are also very different, if we look at parameter β. We have the following:

β4 = 0.075 and β9 = 0.848. It means that in the similarity based model, judge 4 relies mostly on

ratingi,u whereas judge 9 relies mostly on ratingu,i.

Our point here is that by combining these very different points of view, we are able to reduces

the localness of our optimum. Therefore, when applying the same judges on the test dataset,

we will have more stable results than a best unique selected judge.

2.6 Evaluation metrics

Performance evaluation of recommender systems is a major issue.

It should be noted that we are not able to make online experiments. Therefore, we can not

measure the feedback on our recommendations. Therefore, we had to use the classical machine

learning test protocol, in which the predicted ratings are compared to the real ones.

27

Chapter 2. A Formal Framework for Automatic Recommendation

The literature mainly focuses on improving recommendation accuracy by proposing new al-

gorithms or new techniques.

Prediction accuracy measures the nearness of the system predictions to the users actual real rat-

ings, by simply comparing the estimated value r̂u,i for a given pair (u, i), with the true rating

ru,i. Many measures of prediction accuracy have been proposed in the past, and several authors

have made proposal about what should be used when comparing the accuracy of methods

applied to univariate time series data (J.E. Hanke, 1995) (B.L. Bowerman, 2004). Alternative

metrics have been proposed in addition to accuracy such as diversity, coverage, novelty and

many others.

We have used different types of metrics: the classical metric Root Mean Square Error (RMSE),

Mean Absolute Error (MAE), coverage, categorization accuracy and Mean Average Precision (MAP)

(Said et al., 2013).

The MAP is an interesting metric as it takes into account the users preferences. We define these

different metrics in the following.

2.6.1 Prediction-based metrics

Predictive metrics aim at comparing the predicted values against the actual values. The result

is the average over the deviations.

Root Mean Square Error (RMSE)

This measure namely Root Mean Square Error is often used to evaluate different methods applied

in RS. It It also has become popular in the recommender system field with the Netflix Challenge

(Bell et al., 2007). Let R be the set of the predicted ratings, the RMSE is defined as follows :

RMSE =

√√√√ 1
|R| ∑

(u,i,r)∈R

(r̂u,i − ru,i)2 (2.13)

It is widely assumed that reducing the RMSE amounts to increase the relevance and precision of

the recommendations (Su et Khoshgoftaar., 2009). However, one could argue that this measure

suffers from a discontinuous behavior. Indeed, by definition the RMSE gives more weight to

errors greater than one and less to the ones less than one.

28

2.6. Evaluation metrics

Mean Absolute Error (MAE)

The Mean Absolute Error (MAE) formula is the following:

MAE =
1
|R| ∑

(u,i,r)∈R

|r̂u,i − ru,i| (2.14)

Unlike the RMSE, this metric is even. And thus could also be criticized for being too lax on large

errors. One could take benefit from mixing MAE for errors less than 1 and the RMSE for others.

Mean Absolute Percentage Error (MAPE)

The mean absolute percentage error (MAPE), also known as mean absolute percentage devia-

tion (MAPD), is a measure of accuracy of a method for constructing fitted time series values in

statistics, specifically in trend estimation. It usually expresses accuracy as a percentage, and is

defined by the formula:

MAPE =
1
n

n

∑
t=1

∣∣∣∣
r̂u,i − ru,i

ru,i

∣∣∣∣ (2.15)

where ru,i is the actual value and r̂u,i is the predicted value.

The difference between ru,i and r̂u,i is divided by the Actual value ru,i again. The absolute value

in this calculation is summed for every fitted or forecasted point in time and divided again by

the number of fitted points n. Multiplying by 100 makes it a percentage error.

2.6.2 Decision-based metrics

Decision-based metrics evaluates the top-N recommendations for a user. Usually recommenda-

tions are a ranked list of items, ordered by decreasing relevance. Yet, the decision-based metrics

do not take into account the position -or rank- of the item in the result list.

There are four different cases to take into account:

• True positive (TP). The system recommends an item the user is interested in.

• False positive (FP). The system recommends an item the user is not interested in.

• True negative (TN). The system does not recommend an item the user is not interested in.

• False negative (FN). The system does not recommend an item the user is interested in.

Relevant Not relevant
Recommended True positive False positive

Not recommended False negative True negative

Table 2.5: Confusion matrix

29

Chapter 2. A Formal Framework for Automatic Recommendation

Precision (P) and recall (R) are obtained from the 2x2 contingency table (or confusion matrix)

shown in Table 2.5.

These measures need a threshold t defining what is recommendable and what is not. In the

remainder, we call it the recommendability threshold.

We could have considered a neutral class. But in fact, we are only interested by the positive class

since only this one will be used in the MRR measure which is described in the next section.

Precision

Precision measures the fraction of relevant items over the recommended ones.

Precision =
TP

TP + FP
(2.16)

Precision can also be evaluated at a given cut-off rank, considering only the top–n recommen-

dations. This measure is called precision–at–n or P@n. When evaluating the top–n results of a

recommender system, it is quite common to use this measure:

Precision =
|hitset|

N
(2.17)

where |hitset| = |test ∩ topN|.

Recall

Recall measures the coverage of the recommended items, and is defined as:

Recall =
TP

TP + FN
(2.18)

Again, when evaluating the top–N results of a recommender system, one can use this measure:

Recall =
|hitset|

|test|
(2.19)

F-measure

F–measure combines P and R results, using the weighted harmonic mean. The general formula

(for a non-negative real beta value) is:

Fβ =
(1 + β2) · (precision · recall)
(β2 · precision + recall)

(2.20)

Two common F–measures are F1 and F2. In F1 recall and precision are evenly weighted, whilst

F2 weights recall twice as much as precision.

30

2.6. Evaluation metrics

The main drawback of the decision–based metrics is that do not take into account the ranking

of the recommended items. Thus, an item at top–1 has the same relevance as an item at top–20.

To avoid this limitation, we can use rank–based metrics.

2.6.3 Rank-based metrics

We need to be careful with these metrics as it makes no sense to compute them if a user appears

only once in the test set. Additionally, since the ground truth data can have ties, rank-based

metrics are sometimes hard to interpret.

As a matter of fact, if we get rid of the cases mentioned above, only 1000 users are eligible to

these metrics among 20,000 on the Vodkaster dataset. Which is very few. Hence, rank-based

metrics have to be interpreted with precautions.

Spearman’s ρ

Spearman’s ρ computes the rank–based Pearson correlation of two ranked lists. It compares the

predicted list with the user preferences (e.g. the ground truth data), and it is defined as:

ρ =
1

nu

∑i(rui − r̄)(r̂ui − ˆ̄r)
σ(r)σ(r̂)

(2.21)

Kendall–τ

Kendall–τ also compares the recommended (topN) list with the user’s preferred list of items.

Kendall–τ rank correlation coefficient is defined as:

τ =
C+ − C−

1
2 N(N − 1)

(2.22)

where C+ is the number of concordant pairs, and C− is the number of discordant pairs in the

data set.

Mean reciprocal Rank

Mean Reciprocal Rank (MRR) is defined as:

MRR =
1
|Q|

Q

∑
i=1

1
ranki

(2.23)

Recommendations that occur earlier in the top–n list are weighted higher than those that occur

later in the list.

31

Chapter 2. A Formal Framework for Automatic Recommendation

Mean Average Precision

Mean Average Precision (MAP) is defined as:

MAP =
∑

Q
q=1 AP(q)

Q
(2.24)

where Q is the number of queries, and Average Precision (AP) equals:

AP =
∑

n
k=1(P(k)× rel(k))

number of relevant documents
(2.25)

where P(k) is Precision at top-k, and rel(k) is an indicator function equaling 1 if the item at rank

is a relevant document, and zero otherwise.

Recommendations that occur earlier in the top–n list are weighted higher than those that occur

later in the list.

2.6.4 Choice of metrics

Spearman and Kendall–τ are not very easily readable because they do not handle ties. In the

context of recommendation, it is very frequent to have identical ratings due to the discrete na-

ture of the scale (usually integers from 1 to 5, included). For that reason, we decided to put

these two metrics aside.

The Mean Reciprocal Rank is a good rank-based measure, but it does not consider the order of

the predicted list of elements and their rank. Hence, as we want to be able to evaluate the ability

of our system to order and rank a list of items, MRR is not useful and will not be used.

The Mean Average Precision, however, does take into account the order and rank of elements

in the predicted list. The MAP will be the only rank-based metric in our evaluation protocol.

2.7 Experiments

This work has been carried out in partnership with the website Vodkaster 1, a Cinema social

network. To be able to compare our results with others, we also have tested our system on the

famous dataset extracted from the video on demand platform Netflix and on the public dataset

MovieLens.

1www.vodkaster.com

32

2.7. Experiments

2.7.1 Datasets

We evaluated our system with three different datasets, Netflix, Vodkaster and MovieLens. Net-

flix and MovieLens have the advantage to be public and comparable to other techniques. Vod-

kaster allows to work on the semantic level since the dataset contains not only ratings but also

textual comments. Like Netflix and MovieLens, users rate and comment movies.

For the Netflix and MovieLens data, the log is structured as follows userID, itemID, rating, date.

For Vodkaster, it includes the text or review about the item. Moreover, users and items are

not identified by a numerical ID but by username and title. The log for Vodkaster is then:

userID, itemID, rating, review, date.

Unlike on Netflix and MovieLens, there was no recommender system on Vodkaster. Therefore,

the distribution of pairs (u, i) could be more neutral on Vodkaster. Indeed, the fact that a rec-

ommender system is operating on Netflix and MovieLens could have had an influence on the

users behavior. Still, we can fairly assume that the impact on the users tastes is negligible.

Vodkaster

The corpus has been extracted from Vodkaster’s database in May 2014. Users post micro-reviews

(MR) to express their opinion on a movie and rate it, within a 140 characters Twitter-like length

limit. At this date, the corpus was containing about 200k MR and 2M ratings. We divided the

corpus into three parts, chronologically sorted: training (Tr), development (D) and test (T). Note

that in our experiments, the date is taken into account since we also work on Dynamic Adapta-

tion.

Tr D Tr+D T Total
Size 2M 20k 2,02M 20k 2,04M

Nb of Films 26 097 5520 26 248 5683 26 344
Nb of Users 19922 1426 2041 1412 20213

Table 2.6: Statistics on Vodkaster dataset

Netflix

The dataset used for the Netflix Prize is very large (100M ratings, 400k users, 17k movies). To

be able to compare results obtained on Vodkaster and MovieLens datasets, we took a subset of

the whole Netflix dataset. We chose to keep the data of year 2005, because it has a higher rating

density. The dataset was still too large, so we chose to keep 6000 random users with at least 50

ratings. We have then split the data as follows: Training set, Development set and Test set. We

33

Chapter 2. A Formal Framework for Automatic Recommendation

have respected the chronological order of the ratings.

Tr D Tr+D T Total
Size 1,3M 20k 1,32M 20k 1,5M

Nb of Films 15345 4416 15419 4562 15497
Nb of Users 6000 6000 6000 6000 6000

Table 2.7: Statistics on Netflix dataset

MovieLens

This dataset contains 1M anonymous ratings of approximately 3,900 movies made by 6040

MovieLens users who joined MovieLens in 2000. Each user has at least 20 ratings. Again here,

the chronological order is respected.

Tr D Tr+D T Total
Size 980k 10k 990k 10k 1M

Nb of Films 3701 2503 3703 2432 3706
Nb of Users 6039 356 6039 348 6040

Table 2.8: Statistics on MovieLens dataset

2.7.2 Cold-start simulation

To observe explicitly the effect of Dynamic Adaptation, we need two conditions. The first one

is that both training and test sets are chronologically sorted, from older ratings to more recent.

The second one is to encounter cold-starts during the test phase, for users and items, or both.

The Dynamic Adaptation makes really sense on real data. That is, data that have not been

modified at all. The only real world and full dataset we have is the one from Vodkaster. The

MovieLens and Netflix dataset are only partial and have been modified (and/or filtered). We’ll

see in the next chapter that the impact of Dynamic Adaptation is much greater on Vodkaster

(full real data).

This being said, we do not need to intensify artificially the cold-start on Vodkaster since the

dataset has not been modified whatsoever and thus reflects a real world situation. Hence, we

have decided to take the number of cold starts on Vodkaster as a reference, that is 178 cold-starts

for users and 114 for items. The extreme case where a new user rates a new item occurs only 9

times on the whole dataset.

After treatment, we introduced the same proportion (1%) of cold-starts on the MovieLens and

Netflix datasets.

34

2.7. Experiments

2.7.3 Rating distribution

Figure 2.1 shows that globally the rating distributions on MovieLens, Netflix and Vodkaster are

rather similar (4 stars being the most common rating). However, we can notice that Vodkaster

users are less likely to give a 5 stars rating. They are also more likely to give 1 and 2 stars

rating. This makes sense as Vodkaster users are movie-buffs and therefore more severe when

they evaluate a movie.

Figure 2.1: Rating distribution

35

Chapter 2. A Formal Framework for Automatic Recommendation

36

CHAPTER

3

A SOCIOLOGICAL STUDY OF

USERS

37

Chapter 3. A sociological study of users

Contents

3.1 Introduction . 39

3.2 General observations . 39

3.2.1 Evolution of users average rating as a function of time 39

3.2.2 Evolution of users behavior as a function of the number of movies rated 40

3.3 The MovieLens case . 42

3.3.1 Rating distribution as a function of age 42

3.4 The Vodkaster case . 43

3.4.1 Questionnaire results . 44

3.4.2 Identity construction . 44

3.4.3 Principle of distinction . 44

3.4.4 Observations on words . 45

3.5 Conclusions . 46

Abstract
The goal of this chapter is to provide a sociological study of Vodkaster and MovieLens
users. We try to define the main typologies of users by studying different variables such
as age, occupation or the way users express themselves about movies. We have performed
several experiments and interviewed Vodkaster users online. Ultimately, the aim of this
work is to incorporate a sociological dimension in the way we approach the recommenda-
tion problem.

38

3.1. Introduction

3.1 Introduction

In this chapter, we present a sociological study of MovieLens and Vodkaster users.

The aim is to have a better understanding of how users behave and identify typologies. Even-

tually, the results of this study will be taken into account in our approach to automatic recom-

mendation.

These two datasets complete each others as the MovieLens dataset provides demographical

information about users while the Vodkaster dataset contains textual reviews associated with

ratings. Therefore, on one side we have quantitative data (MovieLens) and on the other side,

we have qualitative data (Vodkaster).

Note that is the sociological research area, it is very rare to have and work with large amounts

of qualitative data such as we do on Vodkaster.

3.2 General observations

3.2.1 Evolution of users average rating as a function of time

In this graph (Figure 3.1), the time is represented implicitly by and relatively to the order of

ratings. We compute the average n-th rating for each user and plot it as a function of n. Note

that these ratings are ordered in the chronological order so we can clearly see the evolution in

time.

We observe that the first ratings are higher than the rest. This is observable on average for every

user.

We can thus assume that users have a certain tendency to rate movies they appreciate first.

This allow us to introduce the notion of Pantheon movies. That is, great movies, not necessarily

the greatest movies, for which users have a personal connection to and love so much they define

the users tastes. We give some insight about what movies are generally rated first. In their book

Les films de campus, l’Université au cinéma, Emmanuel Ethis and Damien Malinas tell us that, as

we reach adulthood and go to the university, we carry with us the movies that we loved as

teenagers and we look back at them with a sense of nostalgia. They are the movies we grew

up with, that helped us build ourselves and that we learn to love. We can then assume that the

movies that we rate first are those particular movies, as they are the ones we constantly carry

with ourselves, wherever we go.

39

Chapter 3. A sociological study of users

0 50 100 150 200

3
.0

3
.1

3
.2

3
.3

3
.4

3
.5

3
.6

Évolution moyenne des 200 premières notes

Temps

N
o
te

 m
o
y
e
n
n
e

Users Average Rating’s evolution on 200 firsts ratings

A

v

e

r

a

g

e

Number of ratings

Figure 3.1: Evolution of users average rating as a function of time - Vodkaster dataset

3.2.2 Evolution of users behavior as a function of the number of movies
rated

We observe in Figure 3.2 the evolution of the users severity (average rating), as a function of

the number of movies they have seen. The global trend is a decrease of the average rating as

users rate more movies. This observation shows that, the more users watch movies, the more

the become severe and critical.

In the next paragraph, Figure 3.3 supports our hypothesis. Before going further, we need to

introduce the notion of “gap”.

The gap is an individual parameter defined as the average deviation of a user with respect to

the average rating of the movies she rates. Hence, the gap forms a good indicator to situate a

user with respect to the average appreciation of movies.

Note that a positive gap (greater than 0) is the reflection of a person who globally gives ratings

higher than the average rating of items she rates. On the contrary, a person with a negative gap

(less than 0) globally gives ratings lower than the average rating of items she rates.

40

3.2. General observations

0 500 1000 1500

2
.6

2
.8

3
.0

3
.2

3
.4

3
.6

3
.8

4
.0

Users average rating as a function of the number of ratings

Number of ratings

A
v
e

ra
g

e
 R

a
ti
n

g

Figure 3.2: Evolution of user average rating as a function of the number of movies rated - Vodkaster dataset

The following graph (Figure 3.3) displays the gap evolution as a function of the number of

movies rated.

Note that this is the average gap, calculated for all users. Therefore, we observe a global behav-

ior.

We can notice a main tendency in Figure 3.3. Indeed, as people rate more movies, their gap

becomes negative and decreases (dark blue area).

However, this tendency does not seem linear. For instance, when users have rated approxi-

mately 350 400 movies, the gap drops rather dramatically and passes through the zero line. It

means people are getting more severe.

This phenomena can be interpreted as some kind of maturation or evolution process during

which the critique sense and value judgment change. Additionally, this standpoint might re-

veal the fact that people want to distinguish themselves from the others.

It is also interesting to observe an increase right after the drop. One could assume that people

have found their tastes and thus select movies accordingly.

41

Chapter 3. A sociological study of users

0 500 1000 1500

-0
.2

-0
.1

0
.0

0
.1

0
.2

Users average gap as a function of the number of ratings

Number of ratings

A
v
e

ra
g

e
 G

a
p

Figure 3.3: Evolution of user gap as a function of the number of movies rated - Vodkaster dataset

3.3 The MovieLens case

In this section, we aim to study the MovieLens users with respects to their demographics.

3.3.1 Rating distribution as a function of age

We present here the rating distribution for each age range. The 18-24 years old population

seems to be more “critical” and severe than the average.

As mentioned before, the 18-24 category is the most severe. We can observe a tendency of giv-

ing higher ratings as users grow older. We could make two assumptions. Maybe users become

more and more tolerant as they become older. They have lowered their expectations. Or maybe

they know more and more their tastes and do not take too many risks. This phenomena could

also be due to a combination of these two hypothesis.

The 18-24 category seems to be an exploration phase. The individuals might be seeking their

tastes as they are building their cultural personality. As a result, they tend to assert their cultural

preferences without being moderate. Their young cultural age makes them being in a paradigm

where they either love or hate a movie because they’re still trying to define who they are. And

42

3.4. The Vodkaster case

Figure 3.4: Rating distribution as a function of age - MovieLens dataset

at the beginning of the cultural construction that they go through, they need those radical notes

as it helps them shape who they are.

Figure 3.5: (Histogram) Rating distribution as a function of age - MovieLens dataset

3.4 The Vodkaster case

After a rather quantitative study of the data provided by MovieLens and the general observa-

tions we concluded from it, we have decided to focus on the users of Vodkaster.

43

Chapter 3. A sociological study of users

3.4.1 Questionnaire results

We administered an online questionnaire and gathered 194 responses. The complete results are

available in Appendix A. We can see that 53% of people that responded are between the age of

18 and 25, 29% are between the age of 25 and 35, 7% are under 18 and 10% are above 35 years

old. Therefore, 90% of the people that answered are under the age of 36, and 67% of them are

under the age of 25. Hence, we can assume from that sample that the vast majority of Vodkaster

users are still in a phase of constructing their cultural identity.

3.4.2 Identity construction

The fact that people construct their cultural identity is even more important when we talk about

Vodkaster users. Indeed, Vodkaster is a social media on which we can create a profile and other

people (”friends” or ”connections”) are able to see the rating we give to and what we write

about movies.

Thus, we also build our cultural identity relatively to others. This is why it is interesting to

incorporate the Gap whenever we consider a user. We have presented in Chapter 2 how we

integrate the gap in our models.

The social aspect of our cultural and general identity construction is extremely important: we

do not necessarily like the same movies depending on the context. That is, we do not show the

same face of ourselves when we are alone and when people are watching.

This brings us to the idea of « guilty pleasure ». The whole point of having a « guilty pleasure »

is that it is guilty. But why is it guilty? It is because of the image this movie has in our social

group. Guilty movies are not the same in every group and we are all subject, especially in the

18-24 age category, of what one could call a cultural peer pressure. Therefore, if we go back to

the context of recommendation, we should take into account that our main data source, that is

users rating history, might be somehow biased by their cultural peer pressure.

3.4.3 Principle of distinction

Another way of analyzing these data would be through the principle of distinction defined by

Pierre Bourdieu in his work called La distinction. Critique sociale du jugement (1979). Bourdieu

writes that our cultural choices are a social production and reveal our social status but also

where we want to stand socially.

Hence, according to the principle of distinction, to achieve a higher social rank, or to aspire

to a higher social rank, we need to distinguish ourselves from what we perceive as the lower

44

3.4. The Vodkaster case

class. To do so, we need to inform our friends, through social media (Facebook via Vodkaster

for instance), that we do not like movies that we consider to be not worthy enough of our social

rank. Or on the other hand, that we like some movies that we consider worthy enough for us.

The principle of distinction might be a way to understand the evolution of the gap in users

ratings, associated with the fact that Vodkaster is a social media, hence a social space, in which

a latent hierarchy in social groups is created. Looking at the comments under a micro-reviews

shows that some are agreeing and some are disagreeing and an actual discussion between mem-

bers of two different parties takes place. In these discussions, people often refer to the other

movies that the person they are arguing with liked and disliked, creating a social hierarchy, in

this social space that is Vodkaster. Even if this is based solely of movies, the whole process of

rating and posting reviews reveals a deeper understanding our social class.

3.4.4 Observations on words

Most common words (4-grams) used for the first movie rated and reviewed

We have looked the most common expressions and phrases used when users post their first

review. Results are shown in Table 3.1

High ratings Low ratings
“ du début à la fin “ “ Casse pas trois pattes à un canard “
“ une mise en scène “ “ Dommage que la mise en scène “
“ le meilleur film de “ “ Ne suffit pas à faire un “
“ un très bon film “ “ Moins bon de la saga “
“ à voir et à revoir “ “ Du début à la fin “
“ le film le plus “ “ Est au cinéma ce que “
“ à couper le souffle “ “ Mais il lui manque un “
“ au sommet de son art “ “ Plus c’est long moins c’est bon “
“ un des meilleurs films “
“ ne laisse pas indifférent “
“ une ode à la “
“ dans le rôle de “
“ de tous les temps “
“ dans toute sa splendeur “

Table 3.1: Most common phrases employed on first reviews (sample)

We observe that users are mainly focused on describing aspects of the movie such as scenario,

special effects, direction, characters rather than the feeling they had while watching the movie.

However, the way users speak about movies does not seem to be formatted, in the sense that

each user has its own style and cinephilic vocabulary. Therefore, we will have to take this

fact into account when using words and phrases to build users profiles. Using pre-determined

targets or concepts would be too restrictive as the diversity and richness in vocabulary is so

45

Chapter 3. A sociological study of users

important.

Usage of the pronoun ”je” (first person)

In Table 3.2, we observe that most of the time, “je” is followed by “ne” which is the negation

in French. Users have thus tendency to describe themselves as what they are NOT. This is

somehow coherent with the principle of distinction (see 3.4.3), in which a user defines himself

with respect to his differences with others.

Phrase Frequency (%)
je ne sais pas 9.46
je ne suis pas 7.03
je ne comprends pas 3.57
je ne peux pas 2.48
je ne me suis 2.33
je crois que je 2.12
je m’attendais à un 2.12
je n’arrive pas à 1.96
je ne vois pas 1.96

Table 3.2: Most common phrases starting with first person. Frequency is computed with respect to all phrases
starting with ”je”.

These observations show the importance of negation in the way users express their opinions.

3.5 Conclusions

We have made several observations on the users of MovieLens and Vodkaster. We have discov-

ered that users had to be considered as dynamic object, that evolve with time. We will see how

to integrate the user’s dynamics in Chapter 4. We have also seen that there was a bias induced

by the image users want to promote about themselves, and therefore we will try to take that into

account too. We also observed that the way users express themselves in reviews is very rich and

diverse, therefore the analysis, processing and use of these textual data can not be reduced to

some fixed, pre-determined targets.

46

CHAPTER

4

DYNAMIC ADAPTATION

47

Chapter 4. Dynamic Adaptation

Contents

4.1 Introduction . 49

4.2 Related Work . 50

4.3 Methods . 50

4.3.1 Motivation . 50

4.3.2 Principle . 51

4.4 Dynamic Adaptation in classical a CF approach 52

4.4.1 A new application of a classical similarity measure 52

4.4.2 Time-based weighting . 53

4.4.3 Error adaptation: learning from mistakes. 54

4.5 Adaptive Matrix Completion . 55

4.5.1 Adaptation of ai and bj . 55

4.5.2 Adaptation of Li and Rj . 56

4.6 Results . 57

4.6.1 Baseline results . 57

4.6.2 Results with Classical Collaborative Filtering 57

4.6.3 Results with Adaptive Matrix Completion 62

4.7 Analysis . 64

4.7.1 Dynamic Adaptation impact on performances 64

4.7.2 Adapting with predictions . 65

4.7.3 Reflexion for sociological analysis . 65

4.7.4 Examples . 65

4.8 Conclusions . 66

Abstract
In this chapter, we describe the dynamic and adaptive framework. We present a method based on
adaptation in real time (”on the fly”) providing recommendations in phase with the very present
instant. The system includes a Dynamic Adaptation to enhance the accuracy of rating predictions
by applying a new similarity measure. We did several experiments on real world data, showing that
systems incorporating Dynamic Adaptation improve significantly the quality of recommendations
compared to static ones (static matrix factorization for instance).

48

4.1. Introduction

4.1 Introduction

Recommender systems are designed to suggest appropriate items to users from a large cata-

log of products. Those systems are individually adapted by using a profile for each user, itself

made upon an analysis of past ratings. The most common techniques used in automatic recom-

mendation are Content-Based Filtering (CBF) and Collaborative Filtering (CF). Hybrid systems

combine collaborative and content-based techniques, thus taking advantages from both meth-

ods.

The fact that item perception and user tastes and moods vary over time is well known. Still,

most recommender systems fail to offer the right level of “reactivity” that users are expecting,

i.e. the ability to detect and to integrate changes in needs, preferences, popularity, etc. Suggest-

ing a movie a week after its release might be too late (?). In the same vein, it could take only a

few ratings to make an item go from not advisable to advisable, or the other way around.

One of the motivations of this work was based on the observation of the dramatic drop in per-

formance when going from random train/test splits as in a standard cross-validation setting

towards a strict temporal split. For instance, the difference in rating prediction accuracy as

measured by the RMSE (Root Mean Squared Error) exceeds 5% (absolute) when using the fa-

mous MovieLens (1M ratings) data set. Another motivation was to ensure the efficiency and the

scalability of the algorithms, to respect the real-time constraints on very large recommendation

platforms, so that we excluded from our scope some approaches based on Bayesian, probabilis-

tic inference methods (e.g. those based on probabilistic matrix factorizations and non-linear

Kalman filters).

In this chapter, we propose a “‘reactivity” mechanism in the similarity-based approach to Col-

laborative Filtering, which updates the similarity measures between users and between items

with some form of forgetting factor, allowing to decrease the importance of old ratings. We

also propose an Adaptive Matrix Completion method that makes the system very flexible with

respect to dynamic behaviors. The factor matrices are dynamically and continuously updated,

in order to provide recommendations in phase with the very recent past. It should be noted

that the method is truly adaptive and not only incremental, in the sense that it could give more

weight to recent data – and not uniform weights to all observations – if this is needed. We are

considering the case where no other information than the a set of <user, item, ratings> tuples

is given and, consequently, we are not addressing the “(strictly) cold start” problem, where a

completely new user or a new item is appearing, with no associated information. The method’s

principle is that, when receiving a new observation (<user, item, rating> tuple), we update the

corresponding entries (rows and columns) of the factor matrices, controlling the trade-off be-

tween fitting as close as possible to the new observation and being smooth and consistent with

respect to the previous entries. This gives raise to some least-squares problem with temporal

regularization, coupling the update of both users- and items-related factors. We will show that

the problem could be solved by a simple iterative algorithm (requiring the inversion of a K × K

49

Chapter 4. Dynamic Adaptation

matrix, where K is the reduced rank in the matrix factorization), converging in a few iterations

(typically 2 or 3), so that it could easily update the models even with a rating rate of several

thousands ratings per second.

In section 4.2, we present previous works that take into account the temporal and dynamic

aspects of recommender systems environment into account. Then, we motivate our approach

and describe its constituent algorithms in section 4.5. Finally we report experimental results on

three different real-world data sets in section 5.8.

4.2 Related Work

One of the first works to stress the importance of temporal effects in Recommender Systems and

to cope with it was the timeSVD++ algorithm (Koren, 2010). The approach is to explicitly model

the temporal patterns on historical rating data, in order to remove the “temporal drift” biases.

It means that the time dependencies are modelled parametrically as time-series, typically under

the form of linear trends, with a lot of parameters to be identified. Other approaches (Lu et al.,

2009; Agarwal et al., 2010; Stern et al., 2009) rely on a Bayesian framework and on probabilistic

matrix factorization, where a state-space model is introduced to model the temporal dynamics.

One of their main advantages is that they could easily be extended to include additional user-

or item-related features (addressing in this way the cold-start problem). But, in order to remain

computationally tractable, they update only either the user factors, or the items factors, but

never both factors simultaneously; otherwise, they should rely on rather complex non-linear

Kalman filter methods. An earlier work (Rendle et Schmidt-thieme, 2008) also proposed to

incrementally update the item- or user-related factor corresponding to a new observation by

performing a (stochastic) gradient step of a quadratic loss function, but allowing only one factor

to be updated; the updating decision is taken based on the current number of observations

associated to a user or to an item (for instance, a user with a high number of ratings will no

longer be updated).

Interestingly, tensor factorization approaches have also been adopted to model the temporal

effects of the dynamic rating behavior (Xiong et al., 2010): user, item and time constitute the 3

dimensions of the tensors. Tensor factorization is useful for analyzing the temporal evolution

of user and item-related factors, but it could hardly extrapolate rating behavior in the future.

4.3 Methods

4.3.1 Motivation

There many situations in various area in which it is very hard to consider adapting models. For

instance in Natural Language Processing, the adaptation is almost always an important issue

50

4.3. Methods

because it would mean that users have to be involved in the process. Unfortunately, users are

often times quite opposed to requests from systems trying to engage them into a collaborative

procedure.

In the context of recommendation, and in particular with public datasets such as Netflix and

MovieLens, we have the great opportunity to make use of users explicit feedback. The key idea

of Dynamic Adaptation is to take advantage of this opportunity.

4.3.2 Principle

The adaptive framework we have presented in (Gaillard et al., 2013a) makes it possible for the

system to have a continuous and Dynamic Adaptation along time. By doing so, we can over-

come most of the drawbacks due to the cold-start. This section describes the process used to

obtain such a framework. The key idea follows the simple principle that each update or new

pair (u, i) needs to be taken into account instantaneously by the system.

On one hand, we can assume that delaying it for some days would not make sense since every-

thing changes so fast nowadays. It could already be too late and thus lead to bad recommen-

dations, especially for the ones based on a few number of ratings. One log of rating can make a

big difference.

But on the other hand, one could think that it is wiser to wait for some time before adapting the

models. This could also be a parameter for each user, adjusting the ”stabilization time”.

Updating continuously a recommender system is challenging and very demanding in terms

of resources. Matrices of similarities have to be updated at each iteration. Such matrices are

usually huge. Therefore, depending on the complexity level of the similarity update, continu-

ous adaptation can be very difficult, not to say impossible.

For instance, the Pearson or Cosine similarity measure are not easily handled to pre-calculate

similarities because of the structure of the formulae (square root, sum of squared differences) .

It is therefore very hard to consider updating continuously.

Hence, a new function had to be designed allowing the system to update items-to-items and

users-to-users similarities in a very efficient way.

51

Chapter 4. Dynamic Adaptation

4.4 Dynamic Adaptation in classical a CF approach

We present here the methods that have been developed in order to implement Dynamic Adapta-

tion in a classical collaborative filtering system, without dimension reduction or pre-processing

on data.

4.4.1 A new application of a classical similarity measure

We derived a similarity measure from the distance of Manhattan, also known as the taxicab

distance (Krause, 1987). Since we want to have a similarity measure, we take its complement to

one. Hence, the more ratings are close, the more the distance is short, the more the similarity

tends to 1. And therefore the more users or items are considered to be alike.

In the remainder, this similarity function is used for both users and items. In the following k

is either an item or user, x, y is a pair of items or users depending on the case. D is a contant

standing for the maximum difference between two ratings.

Manhattan(x, y) = 1 −
∑k∈Tx∩Ty

|rk,x − rk,y|

|Tx ∩ Ty| × D
(4.1)

As mentioned before, users can be on average more or less tolerant. To make allowance for

these different behaviors, the difference rx − ry is added to the formula, with a coefficient F.

For instance, let us look at the similarity between user a and user b. User a has a certain ten-

dency to be very severe on items he rates. On the contrary, b is more indulgent. This difference

of behaviors between a and b is somehow related to the difference of average ratings. In the

end, this heterogeneity is taken into account in the similarity by a coefficient F.

Note that it is not the same as the gap function, that is used to adjust individually the rating

prediction function. Here, we are dealing with similarities between two users or two items.

Manhattan(x, y) = 1 −
∑k∈Tx∩Ty

|rk,x − rk,y|+ F|rx − ry|

(|Tx ∩ Ty|+ F)D
(4.2)

We use a coefficient proportional to the cardinality of the intersection Tx ∩ Ty as a confidence

measure. Therefore we are giving more weight to items sharing a greater number of users. We

call this similarity measure the Manhattan Weighted Corrected similarity (MWC).

MWC(x, y) = Manhattan(x, y)×

(
1 + ǫ −

1
|Tx ∩ Ty|α

)
(4.3)

The Manhattan Weighted Corrected function (eq. 4.3) is designed to address the need of reac-

tivity. We thus reduced the complexity by one degree, keeping our system very well-fitted to

Dynamic Adaptation.

52

4.4. Dynamic Adaptation in classical a CF approach

For instance, we look at the similarity between item a and item b. User robert has previously

rated item a and now rates item b, that he has never rated before. Why this new similarity

measure is easy to update? Let us take a look at the numerator sum in the MWC function:

∑
u∈Ta∩Tb

|ru,a − ru,b|

We need to add |rrobert,a − rrobert,b| to the pre-calculated sum, as robert is now belonging to

Ta ∩ Tb. Then, the cardinality of the intersection Ta ∩ Tb has to be incremented by one. rrobert and

rb are easily updated. And we are done. We have updated the database by doing four simple

additions. The same process is applicable for items.

Taking advantage of this property, we ran the updating algorithm on the training corpus. The

complexity has been reduced from o(n2) to o(n) (square to linear). If we consider the whole set

of updates, we reduced from o(n3) to o(n2).

Additionally, a logical extension of the adaptation principle would be to give more weight to

recent ratings (or less to old ones), wether it is in a similarity measure or a rating prediction.

The algorithm has been designed to do so, by applying a time-based filter, described in the next

paragraph.

4.4.2 Time-based weighting

Following the idea of adaption, we applied a time-based weighting function on ratings. Hence,

more recent ratings will have more weight in the prediction of a rating, for a given user and a

given item. By doing so, we aim to follow the evolution of tastes and stay close to them as time

goes on.

Here is the formula we have used for recency. Our approach is more to penalize the past than

enhance the present, but we could have combined both. Basically, we define a time penalty

function P.

Let:

• rx be a rating,

• tx date it has been given,

• t the current time.

Then we have:

53

Chapter 4. Dynamic Adaptation

P(rx) =
1

(t − tx)α
(4.4)

The tricky part is the unit to use for time difference and α. In our case, we used months and α =

0.33

We used months because it seemed an easily time scale to interpret to us. The parameter α has

been determined so that a 6-months-old rating has twice less weight as a "present" rating.

Note that the time at which the rating has been given is not the only one that could be consid-

ered. Indeed, users can watch and rate a movie on two different days. That data could somehow

be integrated in the model. Unfortunately, we do not have access to this data.

4.4.3 Error adaptation: learning from mistakes.

We are in an ideal case since once we have predicted a rating, we have access to the real one. It

gives us a explicit feedback on how good our system is. Of course, we have access to these only

once we have performed the rating prediction.

Therefore, for each user, we are able to compute an average error eu. It is defined as follows:

eu =
1

|Su|
∑

i∈Su

ru,i − r̂u,i (4.5)

In this case, Su includes the training set, so that we have more data to compute the estimation

of eu. By applying this correcting factor in equation 2.7 presented in Chapter 2, as follows:

r̂wu,i = γr̂u,i + (1 − γ)(αru + (1 − α)ri) + K × eu (4.6)

We performed several experiments with by varying the constant K on [0, 1]. Surprisingly, the

effect of this correcting factor did not change significantly the performance of the system, ac-

cording to the RMSE metric.

The work of sociologist Emmanuel Ethis (Ethis, 2004) on the interaction between the public

and a movie supports this results. That is, no matter how hard we try to be accurate, there

will always be an unpredictable part and something unique when a person and a movie come

across.

54

4.5. Adaptive Matrix Completion

4.5 Adaptive Matrix Completion

Starting from one of the standard static settings of matrix completion for Collaborative Filtering

(CF), we will extend it to the time-varying case, by adopting an incremental, on-line approach

based on temporal regularization.

Let R be a n × m rating matrix (n users, m items), with of course a lot a missing data. One of the

standard state-of-the-art CF approaches amounts to approximate R by a low-rank matrix X that

optimizes a criterion mixing:

• the approximation quality over observed ratings, typically the sum of squared errors;

• a complexity penalty, typically the nuclear norm (a.k.a. trace-norm) of X, as a way to

recover a low-rank matrix.

Assuming the decomposition X = L. R’ (with L and R having K columns if X is rank K at most),

and introducing user- and item-specific biases (often called user subjective bias and item pop-

ularity) noted as a and b, the nuclear norm problem can be approximated by the following

minimization problem (Recht et al., 2010):

min ∑
(i,j)∈ω

(ri,j − m − ai − bj −
K

∑
k=1

Li,kRj,k)
2 + µa‖a‖2 + µb‖b‖2 + µL‖L‖2

F + µR‖R‖2
F (4.7)

where ω designates the set of available rating tuples, m is the average rating over ω, ai, bj, ri,j,

Li,k and Rj,k are respectively the elements of a, b, R, L and R, corresponding to user i, item j and

latent factor k. ‖M‖2
F is the Frobenius norm of matrix M.

It should be noted that the regularization terms, including the ones related to a and b, are partic-

ularly critical in our case. Indeed, in real world cases, the test sets are chronologically posterior

to the training and development sets so that, in practice, the standard iid (independent and

identically distributed) assumption between the training and the test sets is far to be verified

and a strong regularization is needed. One usual way of solving this optimisation problem is

to use Alternating (Regularized) Least Squares or Stochastic Gradient Descent, see (Recht et Ré,

2013) for instance. Typically, the choice of the µa, µb, µL, µR, K parameters are done by grid

search on a development set. In practice, we first look for the best values of the µa and µb pa-

rameters without any factor matrix in the model (i.e. a simple ri,j ≈ m + ai + bj model); then we

fix them and optimize for the remaining parameters.

4.5.1 Adaptation of ai and bj

Let us first consider the simple model including only the item and user biases, before describing

the extension to the complete model based on matrix factorization (MF). When observing a new

tuple < i, j, ri,j >, we update ai and bj by minimizing the following criterion

55

Chapter 4. Dynamic Adaptation

min(ri,j − m − ai − bj)
2 + α1(ai − ãi)

2 + β1(bj − b̃j)
2 (4.8)

where ãi and b̃j are the values before the adaptation. This criterion is a trade-off between ap-

proximation quality with respect to the new observation and smoothness in the evolution of the

biases. For new users and items, ãi and b̃j are set to 0. The values of α1 and β1 are obtained by a

grid search on a development set, which is chronologically posterior to the training set.

Solving this optimization problem leads to the following simple update equations:

ai =
(α1 + α1/β1)ãi + ri,j − m − b̃j

1 + α1 + α1/β1
(4.9)

bj =
(β1 + β1/α1)b̃j + ri,j − m − ãi

1 + β1 + β1/α1
(4.10)

4.5.2 Adaptation of Li and Rj

Latent factor terms L and R are adapted too, according to the same idea: observe < i, j, ri,j >

then update Li and Rj (respectively the i-th row of L and the j-th row of R), such that:

min(r̂i,j − ∑
k

Li,kRj,k)
2 + α2‖Li − L̃i‖

2
F + β2‖Rj − R̃j‖F (4.11)

where r̂i,j is equal to ri,j − m − ai − bj (i.e. the residual rating), while L̃i and R̃j are the values of

the corresponding rows before adaptation. For new users and items, the entries of L̃i and R̃j are

set to 0. The values of α2 and β2 are obtained by a grid search on the development set.

Unfortunately, there is no closed-form solution to this problem, due to the coupling between

Li and Rj. However, this could be solved iteratively by applying recursively the following

equations:

L
(t)
i = (α2 I + R

′(t−1)
j .R(t−1)

j)−1.(α2L
(t−1)
i + r̂i,j.R

(t−1)
j) (4.12)

R
(t)
j = (β2 I + L

′(t−1)
i .L(t−1)

i)−1.(β2R
(t−1)
j + r̂i,j.L

(t)
i) (4.13)

with L
(0)
i = L̃i and R

(0)
j = R̃j. Experimentally, for all datasets we used and the corresponding

values of α2 and β2, two or three iterations were sufficient to converge.

We observe important differences across datasets. Vodkaster and Netflix are totally opposed to

each other. The weight given to recent ratings for Vodkaster users is 10 times higher (10%) than

the one used on Netflix users (1%). This is coherent with what we observed in 4.5.1. Indeed,

we have seen that Vodkaster users are dynamic and prone to changes in time. Therefore, it

makes sense to put the emphasis on recent ratings. The contrary is true for items, that are more

static on Vodkaster than on Netflix or MovieLens. We have studied and investigated where this

difference of nature between datasets might come from in Chapter 2 and in Chapter 3.

56

4.6. Results

4.6 Results

In this section, we present the results obtained with and without adaptation, on Vodkaster, Net-

flix and MovieLens datasets. We also provide baseline results, that is without adaptation, for

both collaborative filtering and matrix factorization techniques.

Experiments have been performed on 3 datasets: MovieLens (1M ratings), Vodkaster (2M), Net-

flix (2M), divided into 3 temporal (chronologically ordered) splits: Train , Dev (20k), Test (20k).

Recall that Vodkaster is a rather new Movie Recommendation website, dedicated to rather

movie-educated people. These datasets show very different characteristics: Netflix has a high

number of users and is spread over a short time period (less than 10 months, Dev and Test sets

represent each 1 week). MovieLens has a high number of users and is spread over a long time

period. Vodkaster has a low number of users and is spread over a short time period (one year),

but users are very “loyal” and active.

4.6.1 Baseline results

We present here the results obtained with our baseline.

Dataset RMSE MAE
Netflix 1.0484 0.8669

MovieLens 1.0976 0.9097
Vodkaster 1.1158 0.8924

Table 4.1: Results with Baseline 1, xi,j = µ

4.6.2 Results with Classical Collaborative Filtering

In this section, we want to explicit the effect of adaptation on different metrics and on different

datasets at full coverage, with a classical collaborative filtering kNN method.

Tables

We can see in Table 4.4, that every metrics has been improved. The gain is approximately 10%

on RMSE and MAE. Remark: optimization and tuning of the model has been performed ac-

cording to RMSE on the development set. However, the results with Dynamic Adaption on

the Development and Test sets are close, and this is true across datasets (Netflix, MovieLens,

Vodkaster). Therefore, Dynamic Adaptation is a robust approach.

57

Chapter 4. Dynamic Adaptation

Netflix Dev set Netflix Test set
No Adaptation Adaptation No Adaptation Adaptation

MAE 0.753 0.713 0.772 0.728
RMSE 0.986 0.920 0.999 0.927

Precision users 0.807 0.833 0.795 0.822
Recall users 0.904 0.931 0.896 0.925
F score users 0.841 0.868 0.831 0.858

Precision items 0.832 0.849 0.824 0.843
Recall items 0.879 0.898 0.875 0.894
F score items 0.850 0.868 0.843 0.862

MAP 0.629 0.648 0.621 0.633

Table 4.2: Results on Netflix

MovieLens Dev set MovieLens Test set
No Adaptation Adaptation No Adaptation Adaptation

MAE 0.759 0.708 0.793 0.692
RMSE 0.984 0.908 1.035 0.885

Precision users 0.754 0.756 0.778 0.784
Recall users 0.876 0.868 0.882 0.882
F score users 0.801 0.800 0.820 0.824

Precision items 0.695 0.673 0.712 0.701
Recall items 0.798 0.770 0.801 0.779
F score items 0.733 0.708 0.744 0.730

MAP 0.549 0.527 0.512 0.483

Table 4.3: Results on Movielens

Vodkaster Dev set Vodkaster Test set
No Adaptation Adaptation No Adaptation Adaptation

MAE 0.992 0.634 0.771 0.652
RMSE 1.293 0.830 1.007 0.834

MAP Precision users 0.726 0.784 0.769 0.794
Recall users 0.846 0.910 0.891 0.916
F score users 0.770 0.831 0.815 0.841

Precision items 0.653 0.788 0.709 0.757
Recall items 0.713 0.857 0.787 0.833
F score items 0.674 0.813 0.737 0.784

MAP 0.743 0.719 0.748 0.742

Table 4.4: Results on Vodkaster

We can observe that the effect of adaptation is much stronger on the Vodkaster dataset. Indeed,

the RMSE without adaptation is 1.293 and with adaptation 0.830, which represents a gain in

accuracy of 35%. This could be explained by the fact that the data extracted from Vodkaster are

58

4.6. Results

real-world unmodified data and continuous from a chronological point of view. Moreover, the

dataset is ”full” and not a subset of a larger dataset.

Additionally, users behavior could be more heterogenous since there is no recommendation en-

gine on Vodkaster. On the contrary, MovieLens and Netflix have always had recommendations,

leading to a more stable, controlled and homogenous behavior of users. Consequently, on these

datasets, the effect of Dynamic Adaptation is less important as users tastes are more static and

thus predictable.

Another difference might come from the fact that Vodkaster is a movie lovers community; users

may be a little sharper when they come to evaluate a movie and they may also take risks and

explore new genre of movies. Hence their tastes might evolve more than on other datasets like

Netflix and MovieLens. This is also coherent with our previous observations in 4.5.1.

On Figure 4.2, it is very interesting to note that on the Netflix Test set (red plain line), as we

move temporally away from the Training set, the RMSE increases significantly (from 1.0 up to

1.25). This shows clearly the fundamental importance of Dynamic Adaptation.

Curves

We present here a specific type of graph that allows to explicit the effect of Dynamic Adapta-

tion. Figure 4.5 displays explicitly the effect of dynamic adaptation over time. Each point of

coordinates x = n corresponds to the average RMSE after observing n ratings from the user

(starting from the beginning of the test set), the average being computed over the users who

have rated at least n items in the test set. This corresponds to a relative user-centric timescale

and shows that, without adaptation, prediction errors increase, while it is stabilizing to a much

lower value with adaptation.

Note that the more x increases, the less users will be remaining. Therefore, we had to put a

lower threshold on the number of users below which it does not make sense to compute an av-

erage. We chose to stop when only 25 users are remaining. This is why, depending on datasets,

xmax is different.

59

Chapter 4. Dynamic Adaptation

RMSE as a function of relative time

 MovieLens dataset

Time

R
M
S
E
(t
)

0 20 40 60 80

0
.7

0
.8

0
.9

1
.0

1
.1

1
.2

1
.3

Test No Adaptation

Dev No Adaptation

 Test Adaptation

Dev Adaptation

Figure 4.1: RMSE as a function of relative time MovieLens Dataset

RMSE as a function of relative time

 Netflix dataset

Time

R
M
S
E
(t
)

0 20 40 60 80 100 120

0
.8

1
.0

1
.2

1
.4

1
.6 Test No Adaptation

Dev No Adaptation

 Test Adaptation

Dev Adaptation

Figure 4.2: RMSE as a function of relative time Netflix Dataset

60

4.6. Results

RMSE as a function of relative time

 Vodkaster dataset

Time

R
M
S
E
(t
)

0 50 100 150

0
.6

0
.8

1
.0

1
.2

1
.4

1
.6 Test No Adaptation

Dev No Adaptation

 Test Adaptation

Dev Adaptation

Figure 4.3: RMSE as a function of relative time Vodkaster Dataset

61

Chapter 4. Dynamic Adaptation

4.6.3 Results with Adaptive Matrix Completion

RMSE MAE MAPE

Vodkaster

Baseline 1 xi,j = m 1.1158 0.89239 0.5296
RegLS 0.8465 0.6603 0.3477
MF(on residuals) 0.8177 0.631 0.3294
Adapting ai and bj - Li and Rj 0.7805 0.5993 0.3031

Netflix

Baseline 1 xi,j = µ 1.0484 0.8669 0.3209
RegLS 0.9344 0.7322 0.2755
MF(on residuals) 0.9161 0.7118 0.27
Adapting ai and bj - Li and Rj 0.8685 0.6678 0.2506

MovieLens

Baseline 1 xi,j = µ 1.0976 0.90965 0.385
RegLS 0.9194 0.713 0.3011
MF(on residuals) 0.9047 0.7012 0.2943
Adapting ai and bj - Li and Rj 0.8435 0.6528 0.2576

Table 4.5: Results with Matrix Factorization on Vodkaster, Netflix and MovieLens Test sets. RegLS cor-
responds to the simple model with biases identified by regularized least squares, while MF designates the
prediction model based on Matrix Factorization

The results show that Adaptive methods improve the performances according to RMSE, MAE

and MAPE metrics (Table 4.5). The gain in RMSE is much stronger on Netflix (0.916 to 0.868)

and MovieLens (0.904 to 0.843) than on Vodkaster (0.817 to 0.78).

RMSE as a function of time

 MovieLens Test dataset

Time

R
M
S
E
(t
)

10 20 30 40 50 60

0
.7
5

0
.8
0

0
.8
5

0
.9
0

0
.9
5

RegLS

Static MF

Adaptive MF

Figure 4.4: RMSE as a function of relative time MovieLens Test set - MF

It is very interesting to see on Figure 4.7, how users change their bias and how items change

62

4.6. Results

RMSE as a function of time

 Netflix Test dataset

Time

R
M
S
E
(t
)

5 10 15 20 25

0
.8
4

0
.8
6

0
.8
8

0
.9
0

0
.9
2

0
.9
4

0
.9
6

0
.9
8

RegLS

Static MF

Adaptive MF

Figure 4.5: RMSE as a function of relative time Netflix Test set - MF

RMSE as a function of time

 Vodkaster Test dataset

Time

R
M
S
E
(t
)

10 20 30 40 50

0
.8
0

0
.8
1

0
.8
2

0
.8
3

0
.8
4

0
.8
5

RegLS

Static MF

Adaptive MF

Figure 4.6: RMSE as a function of relative time Vodkaster Test set - MF

their popularity along time. We observe that Netflix and Vodkaster datasets are totally different

for a dynamical point of view. On Vodkaster, users are very dynamic while items are rather

static in term of popularity, or at least it varies much more slowly. On Netflix, we observe the

63

Chapter 4. Dynamic Adaptation

exact opposite tendency (static users and dynamic items).

Figure 4.7: Examples of Adaptation on individual cases, Vodkaster

We observe important differences across datasets. Vodkaster and Netflix are totally opposed to

each others. The weights (α1, α2) given to recent ratings for Vodkaster users is 10 times higher

(10%) than the one used on Netflix users (1%). This is coherent with what we observed in

4.5.1. Indeed, we have seen that Vodkaster users are dynamic and prone to changes in time.

Therefore, it makes sense to put the emphasis on recent ratings. The contrary is true for items,

that are more static on Vodkaster than on Netflix or MovieLens.

4.7 Analysis

In this section, we analyze the results and give some examples of good recommendations and

some failures.

4.7.1 Dynamic Adaptation impact on performances

The effect of Dynamic Adaptation is observable on the three datasets on which we have tested

our system and for both techniques we have used, namely classical Collaborative Filtering and

Matrix Factorization.

We observe that Dynamic Adaptation improves significantly the performances on all datasets

and that Adapted Matrix Factorization techniques beat the classical Collaborative Filtering ap-

proach.

64

4.7. Analysis

4.7.2 Adapting with predictions

We have performed experiments where the system was adapted according to predictions in-

stead of real values observed. We used the classical CF approach in these experiments. The

results on the Test set of Netflix are the following MAE = 0.739, RMSE = 0.946 on the Develop-

ment set and MAE = 0.750 RMSE = 0.964 on the Test set.

Recall that, with same method on the same dataset, without adaptation RMSE = 0.999 and with

adaptation RMSE = 0.927. Hence, even if we did not have access to the real feedback, the Dy-

namic Adaptation would still be efficient and an improvement.

4.7.3 Reflexion for sociological analysis

We think that the focus should no longer be on proper ratings themselves, but only on the

ai and bj. We have to uncorrelate users and items and thus use the user bias and the item

popularity. Finally it is not the rating in itself that matters, because it combines two things: the

item (movie) and the user’s sensitivity. Whereas, when we uncouple these two components into

two separated variables ai and bj, it allows to see a certain regularity. It is like if users would

give ratings that are independent from the movie rated. This is why it is more interesting to

observe the evolution (if any) of the item popularity along time (bj), because it does not depend

on a particular user. The same thing is true for users: if someone always watches great movies

that everybody likes, we will assume this person always gives high ratings. But it is wrong,

this user gave high ratings because the movies were very good and the global opinion about

them was also very good. So once we have uncoupled the item popularity and the rating, what

remains is much more representative of the user.

4.7.4 Examples

We present some examples of good recommendations and mistakes too.

• The Hobbit : An Unexpected Journey (2011, USA) recommended to user Zarai.

#ratings in training #ratings in test Average
The Hobbit 0 7 3.76

Zarai 0 87 4.4
Predicted rating 5 Real rating 5

We are able to recommend a film that has not been rated yet to a user unseen in the

training. Thanks to adaptation, this becomes possible and the prediction is a very good

one.

• Le Père Noël est une ordure (1982, France) recommended to user Fernand.

65

Chapter 4. Dynamic Adaptation

#ratings in training #ratings in test Average
Le Père Noël... 14 2 4.1

Fernand 0 45 4.2
Predicted rating 5 Real rating 5

We recommend this film seen 14 times in the training corpus to a user named Fernand

unseen in the training corpus (does not include any movie rated by him). However, at the

moment we recommend this movie, we can take into account all of his ratings found in

the test so far. This example is a good proof of the interest of a short-term adaptation.

• The Nightmare Before Christmas 3D (2006, USA) recommended to user Bart.

#ratings in training #ratings in test Average
The Nightmare... 2 (r = 1, 3) 2 (r = 4.5, 5) 3.4

Bart 0 31 4.68
Predicted rating 4.7 Real rating 2.5

This is the first error observed when the predictions values are sorted in decreasing order.

The user has rated this movie 2.5. However, it has been well rated in the test and it’s

probably the main reason we have recommended it. Before the recommendation has been

done, Bart’s average rating was 4.68, which is very high. In this case, adaptation misleads

the system.

4.8 Conclusions

In order to obtain a flash reactivity, we have proposed a new application of the similarity mea-

sure based on the distance of Manhattan. This new measure named Manhattan Weighted Cor-

rected similarity leads to a significant decrease in complexity and allows an instantaneous adap-

tation. Hence we are able to update the parameters of the recommender system step by step,

whenever a new rating occurs.

We have also proposed an Adaptive Matrix Completion method that allows Recommender

Systems to be highly dynamic. Experimental results showed that this method improves sig-

nificantly the accuracy of predicted ratings, even if there is still a residual noise which seems

unavoidable when using only rating data and no other features. Future works should now

focus on extending this scheme to time-varying user- and item- features, but also investigate

other matrix regularizers to automatically determine the optimal reduced rank K. Ideally, we

should also introduce some meta-adaptation that allows the adaptation rates (α1, β1, α2, β2) to

vary over time.

66

4.8. Conclusions

Thanks to this new approach, we obtained results outperforming the one’s obtained with a

classical static system. Moreover, by applying the same algorithm during the training phase,

we have dramatically reduced its complexity. We have also shown that this method allows us

to perform a detailed analysis of the prediction errors (bad recommendations).

This is coherent with our conception of recommendation. We believe that nowadays recom-

mender systems have to be instantaneous, giving the right recommendation at the right time,

learning from their mistakes, and adapting the model not to repeat again and again the same

errors.

However, we have seen that perfection is obviously unreachable. This why efforts should be

put on finding new approaches to the recommendation problem, that are not only based on a

prediction problem. In fact, it might even be necessary to reformulate the problem and model

the task differently.

67

Chapter 4. Dynamic Adaptation

68

CHAPTER

5

ARGUMENTATION

Contents

5.1 Introduction . 70

5.2 Argumentation . 70

5.3 Review segmentation: Hidden Markov Model and Viterbi algorithm 71

5.4 New similarity based on words . 71

5.5 Basic textual recommendation . 72

5.6 Extraction of specific arguments . 73

5.6.1 Principle . 73

5.6.2 Display . 73

5.7 Argumentation outputs . 74

5.7.1 Basic method outputs . 74

5.7.2 Specific arguments outputs (WBS) . 75

5.8 Results . 77

5.9 Conclusion . 78

Abstract
In this chapter, we present an innovative proposal for designing a domain-independent Semantic
Recommender System relying on a word based similarity function (WBS), providing textually well-
argued recommendations to users. Moreover, this system has been developed in a dynamic and
adaptive framework presented in chapter 4. This might be the first step really made towards an
anthromorphic and evolutive recommender.

69

Chapter 5. Argumentation

5.1 Introduction

Some systems incorporate semantic knowledge to improve quality. Generally, they apply a

concept-based approach to enhance the user modeling stage and employ standard vocabular-

ies and ontology resources. For instance, ePaper (scientific-paper recommender), computes the

matching between the concepts constituting user interests and the concepts describing an item

by using hierarchical relationships of domain concepts (Maidel et al., 2008). Codina and Cecca-

roni (Codina et Ceccaroni, 2010) propose to take advantage of semantics by using an interest-

prediction method based on user ratings and browsing events. However, none of them are

actually based on the user opinion as it is expressed in natural language.

We have designed a highly dynamic system relying on textual content, extracted from movie

reviews.

5.2 Argumentation

In this section, we describe in details the methods already introduced in (Gaillard et al., 2013b)

to provide textual argumentation. Also, we propose new enhancements we have implemented

since then.

Sim can be replaced by several similarity such as Pearson, Cosine or MWC similarity, in formula

(6.1) (Tan et al., 2005).

These measures are used to estimate the likeliness between two users, or items. Based on that

estimation, we consider that two users or items are alike, or not. Before going further, it would

be a good idea to define what “alike“ should mean in the particular case of recommendation.

Assume two users rate the same movies with equals ratings. Then, according to all of these

similarities, which will be maximal, these two users will be identical.

Still, they might have totally different reasons to rate the same movies identically. Therefore, is

not obvious that they are ”alike”.

By the same token, none of these similarity functions is able to provide the reasons why two

users or items are similar. The fact that they rely on ratings only make them very hard to inter-

pret.

70

5.3. Review segmentation: Hidden Markov Model and Viterbi algorithm

5.3 Review segmentation: Hidden Markov Model and Viterbi

algorithm

Reviews might have good parts and bad parts. To be able to extract which features users like

and dislikes about a given item, we need to identify positive and negative segment within re-

views.

To do so, we use the well-known Viterbi algorithm combined with Hidden Markov Models

(HMM). Let’s consider the following simple HMM. This model is composed of two states, Pos

(positve) and Neg (Negative).

There are several paths through the hidden states (Pos and Neg) that lead to the given sequence,

but they do not have the same probability. The Viterbi algorithm is a dynamical programming

algorithm that allows us to compute the most probable path (as well as its probability).

It requires knowledge of the parameters of the HMM model and a particular output sequence

and it finds the state sequence that is most likely to have generated that output sequence. It

works by finding a maximum over all possible state sequences.

In fact there are often many state sequences that can produce the same particular output se-

quence, but with different probabilities. It is possible to calculate the probability for the HMM

model to generate that output sequence by doing the summation over all possible state se-

quences. This also can be done efficiently using the Forward/Backward algorithm, which is

also a dynamical programming algorithm.

Finally, we use this approach to segment micro-reviews into positive and negative parts. This

will be useful when we display arguments for recommendation (see section 5.7)

5.4 New similarity based on words

We have proposed in (Gaillard et al., 2013b) a new similarity method, taking into account words

used by users in their past reviews about items. In the remainder, we call it the Word Based Sim-

ilarity (WBS).

For each user x (or item), we define a vocabulary set Vx. Each word w ∈ Vx is associated

with a set of ratings Rw,x. Since in most cases, words are used several times, we compute for

each w its average rw.

71

Chapter 5. Argumentation

Some words are more or less important and thus their weight in the similarity should be bal-

anced. To do so, we define a weight function Fw, mixing the well-known Inverse Document

Frequency IDF(w) with the variance σ2
w.

Consequently, words commonly employed and words w with very heterogenous ratings Rw,x

(i.e a high variance) will have a smaller contribution in the similarity.

Nw is the number of items in which the word w appears. Ntot is the total number of items.

D is the maximum difference between two ratings.

Note that Fw has to be updated at each iteration. Consequently, we have to update the σ2
w and

IDF(w) at each iteration, for every word. Paying attention to avoid a whole re-estimation of

these two variables, we derived an iterative relation for the two of them.

Fw = −log

(
Nw

Ntot

)
×

1
σ2

w
(5.1)

Finally, the Word Based Similarity is defined as follows:

WBS(x, y) =
∑w∈Vx∩Vy

(D − |rw,x − rw,y|)Fw

D × |Vx ∩ Vy|∑w∈Vx∩Vy
Fw

(5.2)

The Manhattan Weighted and Corrected similarity (MWC), that we introduced in Chapter 2

and (Gaillard et al., 2013a), will be used as a point of comparison. Again, note that the textual

content is not taken into account.

5.5 Basic textual recommendation

Using this method, the similarity measure employed does not need to be based on words. The

system actually provides selected reviews from user u and item i (written by other people).

To incite u to choose i, the system shows the following reviews:

• Among reviews written about i and associated with the highest ratings, select the one

posted by the most alike user v, with respect to u.

• Among reviews written by u and associated with the highest ratings, select the one posted

about the most alike item j, with respect to i.

On the contrary, to recommend against choosing i, the system displays the following reviews:

• Among reviews written about i and associated with the lowest ratings, select the one

posted by the most alike user v, with respect to u.

• Among reviews written by u and associated with the lowest ratings, select the one posted

72

5.6. Extraction of specific arguments

about the most alike item j, with respect to i.

This method is quite simple but turns out to be reasonably efficient. Examples of outputs are

given in section 5.7.1, page 74.

5.6 Extraction of specific arguments

This second innovative feature somehow amounts to predict what particular characteristics a

user is going to like or dislike about an item. This has been made possible thanks to the new

similarity measure (WBS), introduced above.

5.6.1 Principle

Let us consider a user u and an item i.

The system has access to what u has written on other items in the past and what other users

have written on item i. When doing rating prediction, it computes the similarities between u

and v ∈ Ti and between i and j ∈ Su.

For each of these similarities, we select the term that have contributed the most in the calcula-

tion of WBS(i, j) and WBS(u, v), that is word associated to the greatest element in the sum (see

equation 5.2). We define a set B containing of tuple (words, rating) that we sort by relevance

using Fw. Then, we define two subsets: Pw contains previously selected words associated with

a high rating in i and Nw for low ratings.

Finally, we display the top 5 most relevant arguments contained in both Pw and Nw, and each

of them is given in the context they have been used for item i. As an example, some outputs are

shown in section 5.7.2.

5.6.2 Display

In order to be more readable, we put the top 5 list of selected arguments back into their original

context. To do so, we have to keep track of where these words come from with an inverse index.

If a given word has been used by many neighbors, we choose the context of the nearest one, i.e

the most similar to the current user.

The context is delimited by positive and negative segments, i.e if a selected word, once put back

into its original context, lies inside a positive part, we will show the positive context only.

73

Chapter 5. Argumentation

5.7 Argumentation outputs

In this paragraph, we show some outputs of our system. We first show two examples of outputs

given by the basic method.

5.7.1 Basic method outputs

Here are some outputs:

Arguments

For the recommendation of “New York 1997” to Olga85.

❯What Hal5000 wrote about “New York 1997” with a rating = ⋆ ⋆ ⋆ ⋆ ⋆ :

“Genre film, but committed, cult and transgressive. The city as a character. A hero-synthesis. A darkness

assumed, delicious. Memorable.”

You and Hal5000 are 82 % alike.

❉What Cityhunter wrote about “New York 1997” with a rating = ⋆ :

“Saw the french version. It is a quiet film, losing the pace in some parts and boring characters.”

You and Cityhunter are 78 % alike.

❯What you wrote about “Gataca” with a rating = ⋆ ⋆ ⋆⋆ :

“For once, the trailer is a true reflection of the movie. Not unpleasant at all.”

“New York 1997” and “Gataca” are 83 % alike.

❉What you wrote about “The Dandelions” with a rating = ⋆⋆ :

“Pretentious film with a spectacular start but does not keep its promises.”

“New York 1997” and “The Dandelions” are 92 % alike.

74

5.7. Argumentation outputs

Arguments

For the recommendation of “The Wicker Man” to Truman.

❯What Nicolas23 wrote about “The Wicker Man” with a rating = ⋆ ⋆ ⋆⋆ :

“Shamefully too little known. We are taken in by this atmosphere that gets our goat right from the start

and it is confirmed by the ending.”

You and Nicolas23 are 88 % alike.

❉What Tomy1 wrote about “The Wicker Man” with a rating = ⋆ :

“Yet another rubbish film for Nicolas Cage.”

You and Tomy1 are 71 % alike.

❯What you wrote about “Mr. Nobody” with a rating = ⋆ ⋆ ⋆:

“A good futuristic movie but it has died out. Some lengthy parts.”

“The Wicker Man” and “Mr. Nobody” are 79 % alike.

❉What you wrote about “Seed” with a rating = ⋆⋆:

“Bad, really bad. Full of incoherences and a pathetic ending. Total failure.”

“The Wicker Man” and “Seed” are 81 % alike.

5.7.2 Specific arguments outputs (WBS)

We took the same examples so that comparison is easy. The most relevant elements extracted

(in bold) are put back into their context. The number next to each argument is its weight, on a

scale from 0 to 100.

Some words are present in both methods. This shows that in both case, the arguments are rele-

vant or at least they are coherent.

75

Chapter 5. Argumentation

Arguments

For the recommendation of “New York 1997” to Olga85.

❯What you might like

71 One of the best sci-fi movie, real thing.

69 Fifteen amazing minutes

45 Poetical and delicate

27 Gets our goat right from the start

❉What you might dislike

63 Boring characters

49 Losing the pace in some parts.

Arguments

For the recommendation of “The Wicker Man” to Truman.

❯What you might like

85 Every now and then, a real comedy

74 Some really touching scenes

37 Gore, funny and cult.

32 Gets our goat right from the start

❉What you might dislike

72 Purely and simply rubbish

64 Cage-ish crap, good start though.

29 pathetic ending

76

5.8. Results

5.8 Results

Table 5.1 shows the results for 4 different methods: the classical Pearson (PEA) method with-

out adaptation, the MWC method with and without adaptation (MNA) and WBS. Within the

confidence interval, in terms of accuracy, the same performances are obtained by MWC and

WBS. Both outperform PEA and MNA. Note that the key point here is the comparison between

results obtained the baseline, i.e Pearson without adaptation and the method we propose, WBS.

Our word based approach is thus able to offer the arguments feature without any loss of per-

formances with respect to any others RS methods that we know of.

Set Method RMSE MAE %Precision CI
D PEA 1.302 0.997 71.2 1.49
E MNA 1.293 0.992 72.6 1.26
V MWC 0.83 0.634 78.4 1.12

WBS 0.85 0.651 77.2 1.16
T PEA 1.01 0.78 75.7 1.51
E MNA 1.007 0.771 76.9 1.30
S MWC 0.834 0.652 79.4 1.22
T WBS 0.857 0.672 79.1 1.24

Table 5.1: Results with Pearson (PEA), MWC, MWC without Adaptation (MNA), WBS. CI is the radius
confidence interval estimated in % on accuracy (Acc.).

MNA (MWC without adaptation) being better and more easily updated than Pearson (PEA),

we have decided to use the adaptive framework only for MWC. We want to point out that the

results are the same for both MWC and WBS methods, within a confidence interval (CI) radius

of 1.16%.

Unfortunately, it is impossible to evaluate directly the quality of the arguments proposed. How-

ever, considering the fact that they have been selected according to their weights in the rating

prediction function and that results in terms of accuracy are not deteriorated; we can assume

and estimate that the selection of these particular arguments is relevant. In short, from a qual-

itative point of view, these results can be seen as an assessment of our approach based on words.

77

Chapter 5. Argumentation

5.9 Conclusion

Our conception of relevance is not binary. Items should not be either recommendable or not.

We want to capture the whole spectrum of relevancy by letting users make their own choice,

by providing them interpretable guidelines, i.e arguments. Eventually, improving the RMSE by

5% does not look so important. What really matters is finding a way to let relevance speak from

itself, through the critical judgement of people using our recommender system.

The goal of this chapter was to make an innovative proposal for designing a domain-independent

semantic recommender system relying on a word based similarity function (WBS), providing

textually well-argued recommendations to users. Moreover, this system has been developed in

a dynamic and adaptive framework. This might be the first step really made towards an an-

thropomorphic and evolutive recommender.

As a perspective of improvement, we ask the following open question: is generating a real

argumentation fully articulated, sentenced and personalized within or out of our reach?

78

CHAPTER

6

MATCHING GAMES IN

RECOMMENDER SYSTEMS

79

Chapter 6. Matching Games in Recommender Systems

Contents

6.1 Introduction . 81

6.2 The college admission problem . 81

6.3 Matching game transposed to recommendation 82

6.3.1 Assignment criteria . 82

6.3.2 Example . 83

6.4 Algorithm . 83

6.4.1 Classical one-to-one algorithm . 83

6.4.2 From one-to-one to one-to-many . 84

6.5 Evaluation . 84

6.6 Results . 85

6.7 Conclusion . 86

Abstract
In this chapter, we transpose a famous problem in game theory known as matching games to the

recommendation problem. The idea is to satisfy both side of the recommendation: users and items.
Finally, the system will find a stable equilibrium that maximize both utilities on the users and items
side.

80

6.1. Introduction

6.1 Introduction

As we have seen in Chapter 2, when the system performs a rating prediction for a pair (u, i), it

actually does a linear combination of two rating predictions. Here is a quick reminder:

rating(u, i) =
∑v∈Ti

Sim(u, v)× rv,i

∑v∈Ti
|Sim(u, v)|

(6.1)

This approach is clearly user oriented in the sense that we take into account the similarities

between users.

A symmetrical formula rating(i, u) item-oriented can be derived from (6.1):

rating(i, u) =
∑j∈Su

Sim(i, j)× ru,j

∑j∈Su
|Sim(i, j)|

(6.2)

Thanks to these two rating functions, we can derive the predicted preferences for users and

items, on a given test dataset.

One of the main goals of a recommendation engine is to provide a personalized ranked list of

items to users. The main difference here is that we no longer perform some linear combina-

tion of these two rating predictions and then sort items according to this combination. Instead,

we approach the a recommendation list with a general assignment problem, using a matching

game algorithm.

The idea behind using this approach is to make the algorithm less systematic and less oriented

towards the rating prediction alone. We aim to give more importance to items not popular but

that might be potentially interesting for a given user. Users satisfaction is not only measured by

how precise the system is.

6.2 The college admission problem

This problem is in fact very common. Suppose we have the following typical situation: consid-

ering a set of n applicants to a college able to admit a quota of only q. The admissions office has

to decide which students to admit, with respect to their qualifications. The method consisting

in admitting only the q best applicants is not satisfactory in most cases, since we can not be sure

that all who are offered admission will actually accept. For that reason, if a college wants to

receive q acceptances, it will often have to accept more than q candidates. The choice of which

ones and how many to admit is quite tricky and is often done by experimented recruiters.

In this type of situation, for a given applicant, we might not know:

81

Chapter 6. Matching Games in Recommender Systems

• If he has applied in other colleges

• How he has ranked his preferences

• If other colleges will accept him

Hence, there is a important part of unknown, leading to problems for both students and col-

leges. In (Gale et Shapley, 1962), the authors propose a procedure for assigning applicants to

colleges which should be satisfactory to both groups. Assuming there are enough applicants,

this method allows each college to attain precisely its quota.

6.3 Matching game transposed to recommendation

The idea is quite simple, we replace applicants by users and colleges by items. In the remain-

der, for easy understanding purpose, we personify users and items, as if they were active in the

process. They are actually passive, and every choice is made automatically by the system.

6.3.1 Assignment criteria

Assume we have a set of n users. Each one of them has to be assigned among m items. Each

item i has a quota qi. Users and items order of preferences have been predicted.

If a user has no preference between two (or more) items, he still needs to list them in order, so

that ties are avoided. In a similar way, each item ranks the users who have been to it in order of

preference. Now that we have the quotas of the items and the two sets of orderings, we need to

find an assignment of users to items.

To make things clear, let us take an example. Assume we have two items i1, i2 and two users u1,

u2. Suppose u1 prefers i1 and u2 prefers i2. But i1 prefers u2 and i2 prefers u1. In that particular

case, no assignment can be satisfactory to all preferences.

However, it obvious that items (products) exist for users (consumers) rather than the other way

around. Therefore, it would be right to assign u1 to i1 and u2 to i2. We can thus consider that

users should receive more consideration than items.

We define an unstable assignment as follows:

if there are two users u1 and u2 who are assigned to items i1 and i2, respectively, although u2

prefers i1 to i2 and i1 prefers u2 to u1.

This assignment would be "unstable" in the way that it could be upset by a item and user acting

together in a sense which benefits both.

It has been proved that a stable assignment always exist in (Gale et Shapley, 1962). We define

an optimal stable assignment:

82

6.4. Algorithm

A stable assignment is called optimal if every users is at least as well off under it as under any

other stable assignment.

6.3.2 Example

We are considering here the particular case where there are the same number of users (n) and

items (m), and the quota for each item is equal to one. We assume that each user and each item

has its ordered list of preferences. Suppose we have a ranking matrix of three users u, v and w,

and three items, i,j, and k.

i j k

User u 1,3 2,2 3,1
User v 3,1 1,3 2,2
User w 2,2 3,1 1,3

Table 6.1: Example

The first number of each pair in the matrix gives the ranking of items by users, the second

number is the ranking of users by items. Therefore, u ranks i first, j second, k third. i ranks v

first, w second, and u third, and so on. In this example, there are six possible sets of assignments.

Three are stable.

One of these is achieved by giving each user his first choice, thus u is assigned to i, v to j, and

w to k. Even if each item gets his last choice, the arrangement is stable. Another one is to take

each item first choice, that is u assigned to k, v to i and w to j. The last stable arrangement is

realized by giving each item and user its second choice: u assigned to j, v to k and w to i. All

other arrangements are unstable.

6.4 Algorithm

We present here a classical one-to-one algorithm used to obtain a stable arrangement between

users and item and then modify it to have stable arrangements with many items to one user.

6.4.1 Classical one-to-one algorithm

We present here a simple procedure leading to a stable set of assignments.

First step Each item is assigned to his favorite user. Each user receiving more than one item

rejects all but its favorite item from among those who have been assigned to it. However, the

user does not definitely choose this item yet, but puts him aside in case someone better may

come along later.

83

Chapter 6. Matching Games in Recommender Systems

Second step items who were rejected in the first step are now ”proposed” to their second

choices. Each user receiving new proposals chooses its favorite item among the new items and

the one kept in the first step. Once again, the user rejects every items but its favorite.

Then the process goes on in the same way. items rejected at the second step are proposed to

their next choices, and the users again reject all but the best proposal they have had so far.

Finally, in at most n2 − 2n + 2 iterations (n being the number of items), every user will have

received a proposal. Indeed, as long as any user has not been proposed to there will be rejections

and new proposals. But since no item can be proposed to the same user more than once, every

user is sure to get a item in due time. The resulting set of assignments is stable.

It is not necessary to have the same number of users and items. Suppose there are n items and

m users with n < m. Then the iterative process will stop as soon as n users have received a item.

In the case where n > m, the process ends when every item is temporary selected by an user or

rejected by all of them. In both cases, the set of assignment is stable.

Obviously, there exists a symmetrical way of doing things, in which users are proposed to items.

Note that generally, the solutions are not the same. Indeed, when items are proposed to users it

is optimal for items and vice-versa.

6.4.2 From one-to-one to one-to-many

The idea is to follow the same principle described in the classical one-to-one algorithm and

repeat it. So, now each iteration consists in finding a one-to-one stable arrangement.

The principle is the following:

First step Apply the stable mariage algorithm.

Second step When the stable arrangement is found, each user saves the item that has been

attributed to him. Every item has found a user and thus removes this user from his preferences.

Then, every item goes back to his new favorite user. Go back to step one and so on.

In the end, we obtain for each user a list of items ordered in a stable way, that satisfies and

optimize both users and items utilities. The idea

6.5 Evaluation

The idea in this section is to compare the performance of the same system with and without

the matching algorithm. Obviously, the metrics involved here are rank-based, as a matching

84

6.6. Results

game has not effect the predicted ratings. However, it modifies the order of the top-N list of

recommendations.

Therefore, we will compare the Mean Average Precision of the predicted list before and after

the matching algorithm.

6.6 Results

We have performed our experiments on Netflix, MovieLens and Vodksater Test sets.

Dataset MAP before MAP after
Netflix 0.63 % 0.55%

MovieLens 0.48% 0.40%
Vodkaster 0.74% 0.66%

Table 6.2: Results before and after matching algorithm

We observe in Table 6.2 that the matching algorithm has a negative effect on the MAP. However,

an interesting result is shown in Table 6.3.

We observe in Table 6.3 that the Matching Algorithm encourages the presence of less popular

movies in the top-10 recommendation list. We also discover that the most popular item appears

first in the recommendation list.

Firgure 6.1 display the same phenomena. We can see that the blue curve (matching) is more flat

and less monotone than the orange one (no matching).

N-th recommendation After Matching Before Matching
1 1589 2454
2 1482 2147
3 1312 1993
4 1350 1714
5 1336 1700
6 1438 1644
7 1307 1609
8 1166 1546
9 1117 1658

10 1237 1537

Table 6.3: Average number of times the n-th recommended movie has been seen. Results before and after
matching algorithm on the Netflix dataset.

85

Chapter 6. Matching Games in Recommender Systems

Figure 6.1: Average Item popularity as a function of rank in the Top-N recommendation list

6.7 Conclusion

We have presented a new approach to generate top-N recommendation list by applying a

Matching Game algorithm. We show that this methods leads to a loss of performance of 10%

according to the MAP metric. However, it has the interesting property of making the top-N

recommendation list less ”systematic”, by introducing less popular items, that wouldn’t have

been selected without the Matching Algorithm.

86

DISCUSSION AND CONCLUSION

Discussion

We can not content ourselves with rating predictions only, no matter how accurate results are,

from a numerical point of view. However small the margin error may be, it could put the user

at risk of disappointment. This risk is even larger, especially as we are not certain to have found

the evaluation criteria measuring the ability of systems to satisfy the expectations of a passive

user.

The alternative we propose with argued recommendations is aimed to give relevant elements,

so that the user’s decision may be active, participative, collaborative, well-reasoned and based

on actual real contents. This innovative approach enables us to tone down the controversial

issue about evaluation.

If our system’s results were poor, one could suspect us of trying to hide any weakness. But this

is really not what the bill is all about. The results of current systems in the literature (including

ours) are good, even very good. But we do know that perfection is clearly out of reach and the

implementation of ideal criteria is impractical.

We want to include the end-user in the loop, give him the best position to auto-recommend him-

self what he is most likely to appreciate. This is the way we propose to adopt. This approach

borrows some notions in Information Retrieval (IR) and Question Answering (QA) areas.

87

Chapter 6. Matching Games in Recommender Systems

Navigation inside the system will be a main feature as the user will be an actor of his recom-

mendations. And a good thing is that our system provides an accurate ranked list of items, in

which the user could just click on the item and see why he ought to or not to choose it.

Conclusion

We have proposed an Adaptive Matrix Completion method that allows Recommender Systems

to be highly dynamic. Experimental results showed that this method improves significantly the

accuracy of predicted ratings, even if there is still a residual noise which seems unavoidable

when using only rating data and no other features. Future works should now focus on ex-

tending this scheme to time-varying user- and item- features, but also investigate other matrix

regularizers to automatically determine the optimal reduced rank K. Ideally, we should also in-

troduce some meta-adaptation that allows the adaptation rates (α1, β1, α2, β2) to vary over time.

We have also presented an innovative approach to recommendation by designing a domain-

independent semantic recommender system, relying on a word based similarity function (WBS),

providing textually well-argued recommendations to users. Moreover, the aesthetic preferences

of users are now taken into account, not only their ratings. Additionally, the system runs in a

dynamic and adaptive framework that makes it very efficient in catching instantaneously every

single change.

We have described a new optimization process based on randomness through which we obtain

very good results and a strong robustness. We proposed a game-theoretic approach that allows

less popular items to be more represented in recommendation lists.

Finally, we have discussed how the production of textual arguments helps the end user to un-

derstand the reasons that led to the recommendation.

We do believe that calling forth the user’s free-will allows us to put things into perspective

about the importance of benchmarking.

As a future work, we are currently working on generating a full sentence based on extracted

relevant arguments.

This is coherent with our conception of where the intelligence has to be located in the relation-

ship between human beings and “intelligent” systems.

88

APPENDIX

A

QUESTIONNAIRE RESULTS -

VODKASTER

89

194 réponses

Résumé Afficher les réponses complètes

Consultezvous les avis émis sur Vodkaster avant d'aller voir un film ?
Oui 148 76%

Non 43 22%

Si oui, pour quelle(s) raison(s) ?
L'avis général peut influencer mon choix 41 21%

L'avis de mes amis Vodkaster peuvent influencer mon choix 43 22%

Je consulte à titre informatif mais mon choix est déjà fait 62 32%

Other 48 25%

Combien de temps s'écoule en moyenne entre le visionnage d'un film et la publication de votre microcritique ?
1 heure 68 35%

1 jour 102 53%

1 semaine 19 10%

Allezvous regarder d'autres avis (ou notes) sur Vodkaster concernant un film avant de publier votre propre microcritique ?
Oui 80 41%

Non 22 11%

Parfois 89 46%

Lors dela rédaction d'une microcritique, de quelle manière procédezvous ?
En un seul jet et sans réécriture 14 7%

Spontanée puis corrigée 109 56%

Longuement réfléchie 67 35%

Lors de la rédaction d'une microcritique, quel style cherchezvous à adopter ?
Je cherche la formule qui "fait mouche" 44 23%

J'écris ce qui me vient naturellement 95 49%

La question ne se pose pas 26 13%

Other 29 15%

De manière générale, êtesvous gêné par la limite de 140 caractères ?
Oui 73 38%

Non 118 61%

Comment contournezvous cette contrainte ?
Abréviations, suppressions de certains mots 88 45%

Fragmenter en plusieurs microcritique 2 1%

Commenter ma propre microcritique 22 11%

Other 82 42%

Pour vous, une microcritique est bonne si :
Elle permet de découvrir des aspects importants auxquels je n'aurais pas prêté attention 118 61%

Elle génère un débat (en commentaires) 51 26%

Elle peut me faire changer d'opinion 19 10%

Avant d'aller voir un film, vous êtes influencé par :
La moyenne globale 67 35%

La moyenne amis 42 22%

La répartition des notes 19 10%

Aucun 63 32%

Hors du contexte Vodkaster, vous êtes influencé par :
Les affiches 13 7%

Les bandesannonces 48 25%

Les publicités dans la presse 2 1%

Les prix reçus (Oscar, César, Palme d'Or...) 22 11%

La presse spécialisée 64 33%

Les blogs 8 4%

Other 37 19%

Le plus souvent, vous allez sur le site Vodkaster depuis :
Un ordinateur 175 90%

Un smartphone (Iphone, Android, Blackberry...) 14 7%

Une tablette (Ipad, Android...) 2 1%

Lorsque vous êtes sur Vodkaster, vous êtes :
Au travail 9 5%

Chez vous 175 90%

Au cinéma 0 0%

Other 10 5%

Parlezvous des microcritiques en dehors de votre cercle d'amis Vodkaster ?
Oui 108 56%

Non 83 43%

Si oui, vous en parlez à :
Vos collègues de travail 11 6%

Vos amis nonadhérents de Vodkaster 77 40%

Votre famille 15 8%

Other 91 47%

Combien de films voyezvous par an ?
654764 250 150 100 150 Un peu plus d'une centaine environ 200 180 82 en 2012 120 200 50 80 250 300 entre 10 et

30 50 100 220 150 200 150 300 250 365,6 Environ 300 200 environ 250 200 100 plus de 100 sorties en salles, plus de 10 ...

Lisezvous des magazines de Cinéma ?
Oui 120 62%

Non 71 37%

Si oui, lesquels ?
Cahiers du cinéma So Film Studio Cine Live, Premiere, So Film, Cinema Teaser Positif et les Cahiers So Film, les Cahiers, Positif. Cahiers du CInéma Abonné à

Studio Ciné Live, So Film, Les Cahiers du Ciné ...

Quel est LE critique que vous préférez ?
Cyril Béghin Je ne lis pas de critiques cinéma (seulement des dossiers, reportages et interviews) Moi. Pas le meilleur, mais le plus fiable. Aucun Michel Ciment Serge

Daney Joachim Lepastier Aucune idée Phi ...

Combien de fois par an participezvous à des manifestations culturelles autres que cinématographiques (expositions, théâtre, concerts, danse...) ?
5 10 25 10 Une dizaine 20 30 52 25 15 2 10 10 2 2 15 10 20 Entre 12 et 24 fois 30 50 10 ~ Environ 20

5 10 2 10 environ une dizaine 1 5 0 20 10 0 8 1 à 2 fois grand maxi 15 10 fois 12 2 Je ne sais pas Au moins 50

soirées/concerts 20 Rarement ...

Catégorie socioprofessionnelle
Agriculteur exploitant 0 0%

Artisan, commerçant et chef d’entreprises 4 2%

Cadre, professions intellectuelles supérieures 36 20%

Professions intermédiaires 3 2%

Employé 28 16%

Ouvrier 0 0%

Retraité 1 1%

Étudiant 99 55%

Other 14 8%

Les utilisateurs peuvent cocher plusieurs cases, donc les pourcentages peuvent être

supérieurs à 100 %.

Niveau de diplôme
Sans diplôme ou Brevet des collèges

CAP ou BEP

Baccalauréat général, technologique ou professionnel

Diplômes de niveau Bac plus 2 (DUT, BTS, DEUG, écoles des formations sanitaires ou sociales,...)

Diplômes de 2nd ou 3e cycle universitaire (licence, maîtrise, master, DEA, DESS, doctorat) ou diplômes de grande école

Other

Les utilisateurs peuvent cocher plusieurs cases, donc les pourcentages peuvent être supérieurs à 100 %.

Sexe
Féminin 38 20%

Masculin 152 80%

Les utilisateurs peuvent cocher plusieurs cases, donc les pourcentages peuvent être
supérieurs à 100 %.

Âge
<18 14 7%

1825 100 53%

2635 56 29%

3645 14 7%

4655 4 2%

+55 2 1%

Les utilisateurs peuvent cocher plusieurs cases, donc les pourcentages peuvent être
supérieurs à 100 %.

Nombre de réponses quotidiennes

LIST OF FIGURES

1.1 Main methods of Data Mining. 14

2.1 Rating distribution . 35

3.1 Evolution of users average rating as a function of time - Vodkaster dataset 40

3.2 Evolution of user average rating as a function of the number of movies rated -

Vodkaster dataset . 41

3.3 Evolution of user gap as a function of the number of movies rated - Vodkaster

dataset . 42

3.4 Rating distribution as a function of age - MovieLens dataset 43

3.5 (Histogram) Rating distribution as a function of age - MovieLens dataset 43

4.1 RMSE as a function of relative time MovieLens Dataset 60

4.2 RMSE as a function of relative time Netflix Dataset 60

4.3 RMSE as a function of relative time Vodkaster Dataset 61

4.4 RMSE as a function of relative time MovieLens Test set - MF 62

4.5 RMSE as a function of relative time Netflix Test set - MF 63

4.6 RMSE as a function of relative time Vodkaster Test set - MF 63

4.7 Examples of Adaptation on individual cases, Vodkaster 64

6.1 Average Item popularity as a function of rank in the Top-N recommendation list 86

95

List of Figures

96

LIST OF TABLES

2.1 Example of failure . 22

2.2 Example of similarity . 22

2.3 Possible cases in Gaps . 25

2.4 Example of judges on Netflix . 27

2.5 Confusion matrix . 29

2.6 Statistics on Vodkaster dataset . 33

2.7 Statistics on Netflix dataset . 34

2.8 Statistics on MovieLens dataset . 34

3.1 Most common phrases employed on first reviews (sample) 45

3.2 Most common phrases starting with first person. Frequency is computed with

respect to all phrases starting with ”je”. 46

4.1 Results with Baseline 1, xi,j = µ . 57

4.2 Results on Netflix . 58

4.3 Results on Movielens . 58

4.4 Results on Vodkaster . 58

4.5 Results with Matrix Factorization on Vodkaster, Netflix and MovieLens Test sets.

RegLS corresponds to the simple model with biases identified by regularized

least squares, while MF designates the prediction model based on Matrix Factor-

ization . 62

97

List of Tables

5.1 Results with Pearson (PEA), MWC, MWC without Adaptation (MNA), WBS. CI

is the radius confidence interval estimated in % on accuracy (Acc.). 77

6.1 Example . 83

6.2 Results before and after matching algorithm . 85

6.3 Average number of times the n-th recommended movie has been seen. Results

before and after matching algorithm on the Netflix dataset. 85

98

BIBLIOGRAPHY

(Adomavicius et Tuzhilin., 2005) G. Adomavicius et A. Tuzhilin., 2005. Toward the next gener-

ation of recommender systems: A survey of the state of the art and possible extensions. IEEE

Transactions on Knowledge and Data Engineering, pp. 734–749. 9, 14, 21

(Agarwal et al., 2010) D. Agarwal, B.-C. Chen, et P. Elango, 2010. Fast online learning through

offline initialization for time-sensitive recommendation. Dans les actes de Proceedings of the

16th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD), 703–

712. ACM. 50

(Anderson, 1953) R. L. Anderson, 1953. Recent advances in finding best operating conditions.

Dans les actes de J. Amer. Statist. Assoc, 789–798. 25

(Armstrong, 2001) J. S. Armstrong, 2001. Principles of Forecasting, A Handbook for Researchers

and Practitioners. Kluwer Academic Publishers. 5

(Bell et Koren, 2007) R. Bell et Y. Koren, 2007. Lessons from the netflix prize challenge. SIGKDD

Explorations. 15

(Bell et al., 2007) R. Bell, Y. Koren, et C. Volinsky., 2007. The bellkor 2008 solution to the netflix

prize. The Netflix Prize. 24, 28

(Bilgic et Mooney, 2005) M. Bilgic et R. Mooney, 2005. Explaining recommendations: Satisfac-

tion vs. promotion. Dans les actes de Proceedings of the Workshop Beyond Personalization 2005.

17

(B.L. Bowerman, 2004) A. K. B.L. Bowerman, R.T. O’Connell, 2004. Forecasting, time series and

regression: An applied approach. 28

99

List of Tables

(Bonhard, 2004) P. Bonhard, 2004. Improving recommender systems with social networking.

Dans les actes de Proceedings Addendum of CSCW. 13

(Breese et Kadie,) H. D. Breese, J. et C. Kadie. Empirical analysis of predictive algorithms for

collaborative filtering. Dans les actes de 14th Conference on Uncertainty in Artificial Intelligence.

21

(Bridge et al., 2006) G. Bridge, M. Göker, L. McGinty, et B. Smyth, 2006. Case-based recom-

mender systems. The Knowledge Engineering review. 12

(Brusilovsky, 1996) P. Brusilovsky, 1996. Methods and techniques of adaptive hypermedia.

User Modeling and User-Adapted Interaction.. 7

(Buchanan et al., 2005) G. Buchanan, S. Cunningham, A. Blandford, J. Rimmer, et C. Warwick.,

2005. Information seeking by humanities scholars. Dans les actes de Proceedings of the Euro-

pean Conference on Digital Libraries. 18

(Burke, 2002) R. Burke, 2002. Hybrid recommender systems: Survey and experiments. User

Modeling and User-Adapted Interaction.. 6, 9, 13

(Burke, 2007) R. Burke, 2007. Hybrid web recommender systems. The Adaptive Web, 377–408.

7

(Codina et Ceccaroni, 2010) V. Codina et L. Ceccaroni, 2010. Taking advantage of semantics in

recommendation systems. Dans les actes de Proceedings of the 13th International Conference of

the Catalan Association for A.I, 163–172. 70

(Degemmis et al., 2007) Degemmis, P. M., Lops, et G. Semeraro, 2007. A content-

collaborative recommender that exploits wordnet-based user profiles for neighborhood for-

mation. user modeling and user- adapted interaction. The Journal of Personalization Research

(UMUAI) 17(3), 217–255. 11

(Ethis, 2004) E. Ethis, 2004. Pour une po(i)etique du questionnaire en sociologie de la culture. Le

spectateur imaginé. Logiques sociales SOCIOLOGIE EUROPE France. 54

(Funk, 2006) S. Funk, 2006. Netflix update: Try this at home. 16

(Gaillard et al., 2013a) J. Gaillard, M. El-Beze, E. Altman, et E. Ethis, 2013a. Flash reactivity:

adaptive models in recommender systems. Dans les actes de Proceedings of the 2013 Interna-

tional Conference on Data Mining (DMIN), WORLDCOMP. 51, 72

(Gaillard et al., 2013b) J. Gaillard, M. El-Beze, E. Altman, et E. Ethis, 2013b. Well-argued rec-

ommendation: adaptive models based on words in recommender systems. Dans les actes de

Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing (EMNLP).

70, 71

(Gale et Shapley, 1962) D. Gale et L. Shapley, 1962. College admissions and the stability of

marriage. The American Mathematical Monthly 68(1). 82

100

List of Tables

(Golub et Reinsch, 1970) G. Golub et C. Reinsch, 1970. Singular value decomposition and least

squares solutions. Dans les actes de Numerische Mathematik. 16

(Herlocker et J., 2001) J. Herlocker et K. J., 2001. Content-independent, task-focused recom-

mendation. IEEE Internet Computing. 10

(Herlocker et al., 1999) J. Herlocker, J. Konstan, A. Borchers, et J. Riedl, 1999. An algorithmic

framework for performing collaborative filtering. Dans les actes de In proceedings of the 1999

Conference on Research and Development in Information Retrieval. 18

(Herlocker et al., 2000) J. Herlocker, J. Konstan, et J. Riedl, 2000. Explaining collaborative

filtering recommendations. Dans les actes de ACM Conference on CSCW. 6, 10, 12, 13

(Herlocker et al., 2002) J. Herlocker, J. Konstan, et J. Riedl, 2002. An empirical analysis of design

choices in neighborhood-based collaborative filtering algorithms. Information Retrieval. 10

(J.E. Hanke, 1995) A. R. J.E. Hanke, 1995. Business forecasting. 28

(Johnson et Johnson, 1993) H. Johnson et P. Johnson, 1993. Explanation facilities and interactive

systems. Dans les actes de In proceedings of International Workshop on Intelligent Interfaces. ACM

Press. 18

(Karnopp, 1963) D. C. Karnopp, 1963. Random search techniques for optimization problems.

Dans les actes de Automatica, 111–121. 25

(Koenemann et Belkin, 1996) J. Koenemann et N. Belkin, 1996. A case for interaction: A study

of interactive information retrieval behavior and effectiveness. Dans les actes de Proceedings

of the Human Factors in Computing Systems Conference. 18

(Konstan et Riedl., 2002) J. A. Konstan et J. Riedl., 2002. Collaborative filtering: Supporting social

navigation in large, crowded infospaces. Springer Verlag. 13

(Koren, 2008) Y. Koren, 2008. Factorization meets the neighborhood: A multifaceted collabo-

rative filtering model. Dans A. Press (Ed.), 4th ACM SIGKDD Int’l Conf. Knowledge Discovery

and Data Mining, pp. 426–434. 16

(Koren, 2010) Y. Koren, 2010. Collaborative filtering with temporal dynamics. Communications

of the ACM 53(4), 89–97. 50

(Krause, 1987) E. F. Krause, 1987. Taxicab Geometry. Dover. 52

(Linden et al., 2003) G. Linden, B. Smith, et J. York, 2003. Amazon.com recommendations:

Item-to-item collaborative filtering. IEEE Internet Computing. 11, 13

(Lu et al., 2009) Z. Lu, D. Agarwal, et I. S. Dhillon, 2009. A spatio-temporal approach to col-

laborative filtering. Dans les actes de Proceedings of the third ACM conference on Recommender

systems (RecSys), 13–20. ACM. 50

101

List of Tables

(Magnini et Strapparava, 2001) B. Magnini et C. Strapparava, 2001. Improving user modelling

with content-based techniques. Dans les actes de Proceedings of the 8th International Conference

of User Modeling. 11

(Maidel et al., 2008) V. Maidel, P. Shoval, B. Shapira, et M. Taieb-Maimon, 2008. Evaluation of

an ontology-content based filtering method for a personalized newspaper. Dans les actes de

RecSys’08: Proceedings, 91–98. 70

(McNee et al., 2006) S. McNee, J. Riedl, et J. Konstan, 2006. Making recommendations better:

An analytic model for human-recommender interaction. Dans les actes de Proceedings of the

ACM Human Factors in Computing Systems Conference. 18

(Meyer., 2012) F. Meyer., 2012. Recommender systems in industrial contexts. Thèse de Doctorat,

University of Grenoble, France. 6, 21

(Nelson, 1970) P. Nelson, 1970. Information and consumer behavior. The Journal of Political

Economy.. 5

(Pacitti et al., 2011a) E. Pacitti, F. Draidi, et B. Kemme, 2011a. P2prec: A p2p recommendation

system for large-scale data sharing. T. Large-Scale Data- and Knowledge-Centered Systems 3,

87–116. 13

(Pacitti et al., 2011b) E. Pacitti, F. Draidi, D. Parigot, et G. Verger, 2011b. P2prec: a social-based

p2p recommendation system. Dans les actes de Proceedings of the 20th ACM Conference on

Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom, October 24-28,

2011, 2593–2596. 13

(Patarek, 2007) A. Patarek, 2007. Improving regularized singular value decomposition for

collaborative filtering,. Dans les actes de KDD Cup and Workshop,, pp. 39–42. ACM Press. 16

(Pine, 1993) J. Pine, 1993. Mass Customization. Harvard Business School Press. 17

(Rao et Talwar, 2008) N. Rao et V. Talwar, 2008. Application domain and functionnal classifica-

tion of recommender systems a survey. Journal of library and information technology (Desidoc).

21

(Rastrigin, 1963) L. A. Rastrigin, 1963. The convergence of the random search method in the

extremal control of a many-parameter system. Dans les actes de Automat. Remote Control,

Numéro 24, 1337–1342. 25

(Recht et al., 2010) B. Recht, M. Fazel, et P. Parrilo., 2010. Guaranteed minimum rank solutions

of matrix equations via nuclear norm minimization. SIAM Review. 55

(Recht et Re, 2011) B. Recht et C. Re, 2011. Parallel stochastic gradient algorithms for large-scale

matrix completion. 17

(Recht et Ré, 2013) B. Recht et C. Ré, 2013. Parallel stochastic gradient algorithms for large-scale

matrix completion. Mathematical Programming Computation 5(2), 201–226. 55

102

List of Tables

(Rendle et Schmidt-thieme, 2008) S. Rendle et L. Schmidt-thieme, 2008. Online-updating reg-

ularized kernel matrix factorization models for large-scale recommender systems. Dans les

actes de Proceedings of the 2008 ACM conference on Recommender systems (RecSys) ACM. 50

(Resnick et Hal., 1997) P. Resnick et R. V. Hal., 1997. Recommender systems (introduction to

special section.). Communications of the ACM. 21

(Resnick et al., 1994) P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, et J. Riedl, 1994. Grou-

plens: An open architecture for collaborative filtering of netnews. Dans les actes de Proceed-

ings of ACM 1994 Conference on Computer Supported Cooperative Work. 10

(Resnick et Varian, 1997) P. Resnick et H. R. Varian, 1997. Recommender systems. Communi-

cations of the ACM. 6, 8

(Ricci, 2002) F. Ricci, 2002. Travel recommender systems. IEEE Intelligent Systems. 6

(Rich, 1979) E. Rich, 1979. User modeling via stereotypes. Cognitive Science, 328–353. 5

(Riedl et Konstan, 2002) J. Riedl et J. A. Konstan, 2002. Word of Mouse: The Hidden Marketing

Power of Collaborative Filtering. Warner Business Books. 13

(Said et al., 2013) A. Said, S. Berkovsky, et E. D. Luca, 2013. Movie recommendation in context.

ACM Trans. Intell. Syst. Technol. (TIST) 4(1). 28

(Salakhutdinov et Mnih, 2008) R. Salakhutdinov et A. Mnih, 2008. Probabilistic matrix fac-

torization. Advances in Neural Information Processing Systems 20 (NIPS 07), pp. 1257–1264.

16

(Salton, 1989) G. Salton, 1989. Automatic text processing. Addison-Wesley. 5

(Sarma, 1990) M. Sarma, 1990. On the convergence of the baba and dorea random optimization

methods. Journal of Optimization Theory and Applications. 26

(Sarwar, 2000) B. Sarwar, 2000. Application of dimensionality reduc- tion in recommender

system—a case study. Dans A. Press (Ed.), Workshop on Web Mining for e-Commerce: Challenges

and Opportunities (WebKDD). 16, 18

(Sarwar et al., 2001) B. Sarwar, G. Karypis, J. Konstan, et J. Reidl, 2001. Item-based collaborative

filtering recommendation algorithms. Dans les actes de Proceedings of the 10th International

Conference on World Wide Web. 21

(Sarwar et al., 2002) B. Sarwar, G. Karypis, J. Konstan, et J. Riedl, 2002. Incremental singular

value decomposition algorithms for highly scalable recommender systems. Dans les actes de

5th International Conference on Computer and Information Technology (ICCIT). 17

(Schafer et al., 1999) J. Schafer, J. Konstan, et J. Riedl, 1999. Recommender systems in electronic

commerce. Dans les actes de Proceedings of the ACM Conference on Electronic Commerce. 8

103

List of Tables

(Schafer et al., 2001) J. Schafer, J. Konstan, et J. Riedl, 2001. E-commerce recommender appli-

cations. Data Mining and Knowledge Discovery. 8

(Semeraro et al., 2009) G. Semeraro, P. Basile, de Gemmis M., et P. Lops, 2009. Handbook of

Research on Digital Libraries: Design, Development and Impact, Chapter User Profiles for Person-

alizing Digital Libraries. Y.L. Theng and S. Foo and D.G.H. Lian and J.C. Na. 11

(Setten, 2005) M. Setten, 2005. Supporting People in Finding Information-Hybrid Recommender

Systems and Goal-Based Structuring. Thèse de Doctorat, Telematica Instituut. 9

(Shani et al., 2005) G. Shani, D. Hackerman, et R. Brafman, 2005. An mdp-based recommender

system. Journal of Machine Learning Research. 7

(Shardanand et Maes, 1995) U. Shardanand et P. Maes, 1995. Social information filtering: Al-

gorithms for automated "word of mouth". Dans les actes de Proceedings of the Human Factors

in Computing Systems Conference. 10, 18

(Stefani et Strapparava, 1998) A. Stefani et C. Strapparava, 1998. Personalizing access toweb

sites: The siteif project. Dans les actes de Proc. of second Workshop on Adaptive Hypertext and

Hypermedia. 11

(Stern et al., 2009) D. H. Stern, R. Herbrich, et T. Graepel, 2009. Matchbox: large scale online

bayesian recommendations. Dans les actes de Proceedings of the 18th international conference

on World wide web (WWW), 111–120. ACM. 50

(Su et Khoshgoftaar., 2009) X. Su et T. M. Khoshgoftaar., 2009. A survey of collaborative filter-

ing techniques. Adv. Artificial Intellegence. 28

(Tan et al., 2005) P. Tan, M. Steinbach, et V. Kumar., 2005. Introduction to Data Mining. Addison-

Wesley. 70

(Xiong et al., 2010) L. Xiong, X. Chen, T.-K. Huang, J. G. Schneider, et J. G. Carbonell, 2010.

Temporal collaborative filtering with bayesian probabilistic tensor factorization. Dans les

actes de Proceedings of the SIAM International Conference on Data Mining (SDM), Volume 10,

211–222. SIAM. 50

(Ziegler et al., 2005) C. Ziegler, S. McNee, J. Konstan, et G. Lausen., 2005. Improving recom-

mendation lists through topic diversification. Dans les actes de Fourteenth International World

Wide Web Conference. 21

104

	Introduction
	State of the Art
	Introduction
	Recommender Systems
	Definition
	Recommender Systems Function
	Data source

	Recommender system classification
	Simple and classical topology
	Burke's classification

	Recommendation Techniques
	Collaborative Filtering
	Content-based Filtering
	Demographic
	Knowledge-Based
	Statistical Summarization
	Social Navigation Technique
	Hybrid Recommender System

	Data Mining techniques for Recommender Systems
	Data Mining process
	K-Nearest Neighbor techniques (kNN)
	Matrix Factorization techniques

	Marketing theory
	The Reasons Why to Explain

	A Formal Framework for Automatic Recommendation
	Introduction
	Similarity measure
	Pearson
	Cosine
	Jaccard
	Examples of similarities

	Rating prediction
	Gaps
	Automatic tuning through randomness
	Definition
	Specific judges
	Example

	Evaluation metrics
	Prediction-based metrics
	Decision-based metrics
	Rank-based metrics
	Choice of metrics

	Experiments
	Datasets
	Cold-start simulation
	Rating distribution

	A sociological study of users
	Introduction
	General observations
	Evolution of users average rating as a function of time
	Evolution of users behavior as a function of the number of movies rated

	The MovieLens case
	Rating distribution as a function of age

	The Vodkaster case
	Questionnaire results
	Identity construction
	Principle of distinction
	Observations on words

	Conclusions

	Dynamic Adaptation
	Introduction
	Related Work
	Methods
	Motivation
	Principle

	Dynamic Adaptation in classical a CF approach
	A new application of a classical similarity measure
	Time-based weighting
	Error adaptation: learning from mistakes.

	Adaptive Matrix Completion
	Adaptation of ai and bj
	Adaptation of Li and Rj

	Results
	Baseline results
	Results with Classical Collaborative Filtering
	Results with Adaptive Matrix Completion

	Analysis
	Dynamic Adaptation impact on performances
	Adapting with predictions
	Reflexion for sociological analysis
	Examples

	Conclusions

	Argumentation
	Introduction
	Argumentation
	Review segmentation: Hidden Markov Model and Viterbi algorithm
	New similarity based on words
	Basic textual recommendation
	Extraction of specific arguments
	Principle
	Display

	Argumentation outputs
	Basic method outputs
	Specific arguments outputs (WBS)

	Results
	Conclusion

	Matching Games in Recommender Systems
	Introduction
	The college admission problem
	Matching game transposed to recommendation
	Assignment criteria
	Example

	Algorithm
	Classical one-to-one algorithm
	From one-to-one to one-to-many

	Evaluation
	Results
	Conclusion

	Questionnaire Results - Vodkaster
	List of figures
	List of tables
	Bibliography

