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Abstract

This thesis investigates two aspects of Conformal Field Theories (CFTs) in d dimensions.

Its first part is devoted to conformal blocks, special functions that arise in the partial

wave expansion of CFT four-point functions. We prove that these conformal blocks admit

an expansion in terms of polar coordinates and show that the expansion coefficients are

determined by recursion relations. Conformal blocks are naturally defined on the complex

plane: we study their restriction to the real line, and show that they obey a fourth-order

differential equation there. This ODE can be used to efficiently compute conformal blocks

and their derivatives in general d. Several applications to the conformal bootstrap program

are mentioned. The second half of this thesis investigates RG flows that are defined by

perturbing a CFT by a number of relevant operators. We study such flows using the

Truncated Conformal Space Approach (TCSA) of Yurov and Zamolodchikov, a numerical

method that allows for controlled computations in strongly coupled QFTs. Two different RG

flows are considered: the free scalar field deformed by a mass term, and φ4 theory. The former

is used as a benchmark, in order to compare numerical TCSA results to exact predictions.

TCSA results for φ4 theory display spontaneous Z2 symmetry breaking at strong coupling:

we study the spectrum of this theory both in the Z2-broken and preserved phase, and we

compare the critical exponents governing the phase transition to known values. In a separate

chapter, we show how truncation errors can be reduced by adding suitable counterterms to

the bare TCSA action, following earlier work in d = 2 dimensions.



Résumé

Cette thèse examine deux aspects des théories conformes des champs (TCC) en d di-

mensions. Sa première partie est dédiée aux blocs conformes, des fonctions spéciales qui

contribuent au développement en ondes partielles des fonctions à quatre points dans les

TCC. On montre que ces blocs admettent un développement en coordonnées polaires dont

les coefficients se calculent par une récurrence. Les blocs conformes sont naturellement définis

sur le plan complexe : on considère alors leur restriction à l’axe réel, afin de montrer qu’ils

obéissent à une équation différentielle sur ce domaine, ce qui mène à un algorithme efficace

pour calculer les blocs conformes et leurs dérivées pour tout d. Quelques applications au

programme de bootstrap sont développées. La seconde partie de cette thèse examine les

perturbations d’une TCC par des opérateurs pertinents. On étudie de tels flots du groupe

de renormalisation en utilisant la Méthode de Troncature Conforme (MTC) de Yurov et

Zamolodchikov, une méthode numérique qui permet de faire des calculs non-perturbatifs en

théorie quantique des champs. Deux théories différentes sont considérées : le boson libre avec

un terme de masse, et la théorie φ4. Pour le dernier cas, les résultats de la MTC mettent en

évidence la brisure de symétrie Z2. Finalement, on développe une méthode pour réduire les

erreurs de troncature en ajoutant des contre-termes à l’action “nue” de la MTC, suivant des

travaux antérieurs en d = 2 dimensions.
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Introduction

A practical goal of theoretical physics, and quantum field theory in particular, is to make

quantitative predictions about experimentally accessible systems such as metals or liquids.

This is both a vast and complicated pursuit. Part of the complication originates in the large

hierarchies of scales that are involved: in ferromagnets, we try for example to understand

long-range order by modelling spins interacting over distances of a ∼ 10−10 cm.

Conceptually, problems like the above can be understood using the renormalization group

(RG). It asserts that we should describe phenomena at a characteristic distance L by an

effective Hamiltonian, the parameters of which depend on L. At very short distances L ∼ a,

we consider that the Hamiltonian in question is described by a set of couplings gi(a) that

control local interactions. The same physical system can be described at a slightly different

scale L = a + δL (with δL � a) using a Hamiltonian of the same form, but with different

couplings gi(L) 6= gi(a). By gradually increasing L, we can eventually construct an effective

Hamiltonian that controls physics at macroscopic distances.

A special role in this framework is played by scale-invariant theories. Physically, such

theories describe critical points, characterized by a diverging coherence length ξ. At the

same time, the additional scale invariance constrains the form such theories can take. It

turns out that scale invariance is generically enhanced to conformal invariance, 1 which is

even more restrictive.

Conformal bootstrap

This opens up a new way of studying critical phenomena: rather than constructing critical

theories as endpoints of RG flows, we may use conformal symmetry as a guiding principle.

Consider for example the Ising phase transition in three dimensions (or any other system in

the same universality class). The order parameter of a ferromagnet is its magnetization m,

which can be up or down: any description of this theory must have a Z2 symmetry that flips

the sign of m. It is then an interesting problem to classify all interacting three-dimensional

1. In two dimensions, this has been proven under mild assumptions [1, 2]. The general case is not yet

understood at the same level of rigor, see e.g. [3–5]. A physical argument is given in [6].

iii



quantum field theories that (a) are conformally invariant, (b) unitary and (c) have a global Z2

symmetry. If the requirements (a)—(c) single out a unique theory, the latter must describe

the critical point of the 3d Ising model. In particular, we may hope that such a strategy

could be used to predict critical exponents and other universal quantities. 2

We can therefore focus our attention to the problem of classifying all Conformal Field

Theories (CFTs) in d dimensions. This seems like a daunting task, but it can be attacked

systematically by considering the local observables of a CFT, i.e. the correlation functions

of its local operators Oi(x). It may for example be shown that all two-point functions

〈Oi(x)Oj(y)〉 are completely determined by the scaling dimensions ∆i of the operators in

question. Three-point functions are almost as constrained as two-point functions: the three-

point function 〈Oi(x1)Oj(x2)Ok(x3)〉 is fixed by conformal symmetry up to a constant of

proportionality cijk.

Surprisingly, it turns out that the data T = {∆i, cijk} completely specify all correlation

functions in a CFT. This follows from the fact that CFT correlation functions admit partial

wave expansions: for the four-point function of four scalars φi(xi), this expansion takes the

form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 ∼
∑
i

c12ic34iGOi(u, v) .

The notation ∼ means that we have omitted various unimportant x-dependent factors on

the right hand side, and u and v are two conformally invariant cross ratios:

u =
|x12|2|x34|2
|x13|2|x24|2

, v =
|x14|2|x23|2
|x13|2|x24|2

,

writing xij = xi−xj . The above sum runs over all operators Oi in the theory. 3 The function

GOi(u, v) therefore encodes the contribution of the operator Oi to the four-point function

〈φ1φ2φ3φ4〉: it is known as a conformal partial wave or a conformal block. These conformal

blocks are fixed by conformal invariance, and they are universal, in the sense that they do

not depend on the theory under consideration.

Although the above expansion is convergent, it ultimately arises from a short-distance

limit and holds only in a domain D where |x1 − x2| and |x3 − x4| are sufficiently small (in

a sense that can be made precise). There is some arbitrariness to this: we could obtain a

similar expansion in a domain D′ where |x2 − x3| and |x1 − x4| are both small. It turns out

that the intersection D ∩D′ of these domains is non-empty: imposing that both expansions

agree on this intersection, we find a consistency condition∑
i

c12ic34iGOi(u, v) ∼
∑
i

c32ic14iGOi(v, u)

2. A more precise formulation of this problem has been succesfully investigated in Refs. [7–9].

3. Technically, over all primary local operators, which transform homogeneously under conformal

transformations.



that involves both the spectrum {Oi} and the constants {cijk} appearing in the three-point

functions of the theory. There are infinitely many equations of this form, one for every four-

point function 〈φ1φ2φ3φ4〉: the full set of equations is known as the bootstrap system of the

theory.

Clearly, if a particular choice T of CFT data is to describe a consistent CFT, it must

satisfy the bootstrap system. The converse also holds: if T solves a bootstrap system,

it gives rise to a set of correlation functions consistent with conformal invariance. This

way, classifying CFTs reduces to a well-defined but non-trivial problem, namely solving an

infinite set of functional equations. This bottom-up approach to studying CFTs is known

as the bootstrap program, and it goes back to the work of Ferrara, Gatto and Grillo [10] and

Polyakov [11] in the 1970s.

The above ideas were soon applied to two-dimensional conformal field theories [12, 13],

where they led to a solution of many experimentally relevant critical systems. A crucial

ingredient there was the representation theory of the conformal group, which is infinite-

dimensional in two dimensions. In d > 2 dimensions, significant progress on the bootstrap

program was first made by Rattazzi, Rychkov, Tonni and Vichi in 2008 [14]. Their approach

relied on closed-form expressions for the conformal blocks GOi(u, v), that were found several

years before by Dolan and Osborn [15, 16]. 4 Such closed-form expressions exist for operators

Oi of any dimension ∆ and Lorentz spin ` in d = 2 and d = 4 dimensions, but have not

(yet?) been found in d = 3. Still, the bootstrap program has been applied to the 3d Ising

model [7] without knowing exact formulas for the conformal blocks, making clever use of

recursion relations that hold in general d [20].

It appears that advances in conformal block technology and progress in the conformal

bootstrap go hand in hand. In the first half of this thesis, we therefore concentrate on

developing new methods to compute these special functions. In chapter 2, we develop a new

way to represent conformal blocks, as a series expansion in terms of polar coordinates. We

focus on two sets of coordinates. The first one, labeled by z ∈ C, has been used earlier by

Dolan and Osborn. The second one, denoted by ρ ∈ C, was used in Ref. [21] in a different

context. We show that conformal blocks in the ρ coordinate have improved convergence

properties, in a way that will be made precise.

Chapter 3 has a different goal, namely to streamline the actual computations used in

conformal bootstrap applications. We focus on the ‘diagonal’ (where z = z̄ or ρ = ρ̄) and

show that conformal blocks restricted to this domain obey a fourth-order differential equation

(third-order for scalars). We then use Frobenius’ method to develop an efficient algorithm for

computing conformal blocks and their derivatives directly, avoiding the recursion relations

used in Ref. [7].

4. The study of conformal blocks was initiated by Ferrara, Gatto and Grillo [17–19] and Polyakov [11].



Two appendices provide additional material: appendix A contains a proof that coeffi-

cients in the ρ series expansion are bounded, and appendix B contains recursion relations on

the diagonal z = z̄, following Frobenius’ method.

Non-critical RG flows and TCSA

The conformal bootstrap allows to make predictions about CFTs, which correspond to

fixed points of the RG flow. Critical theories are however isolated points in the infinite-

dimensional ‘landscape’ of RG flows: 5 all other theories lie on some RG trajectory and have

a finite correlation length.

How can we then study such non-critical theories? In a limited number of cases, it is

possible to do renormalization group calculations analytically. This is notably the case when

the theory in question is close to a free theory, and all couplings gi are small. For such a

theory, the flow of the couplings can be computed in perturbation theory. More generally,

we can think of an RG flow as a deformation of a CFT:

A = ACFT +
∑
i

gi

∫
ddxOi(x) ,

where the Oi are conformal operators of dimension ∆i. For this to describe a non-trivial

RG flow, we require that the perturbing operators Oi are relevant (meaning that ∆i < d).

Turning on the couplings gi clearly breaks conformal invariance. Following the RG flow, the

couplings gi grow at a rate that is controlled by the scaling dimensions ∆i:

gi(L) ∼ Ld−∆i .

Consequently, the theory becomes non-perturbative at some scale L∗, even if all couplings

gi are tiny at short distances.

There is no simple way to obtain quantitative results beyond this intermediate scale L∗.

Let us mention at least one well-known method for doing computations at strong coupling,

which regulates the theory by putting it on a discrete lattice [22]. This scheme, known as

lattice quantum field theory, has proved very succesful in various theories, including QCD.

Its range of applicability is however limited by the computational resources that it requires.

Above, we considered RG flows as perturbations of CFTs. In that context, it is natural

to ask whether the conformal symmetry of the short-distance theory can be used to simplify

computations in the resulting RG flow. The answer is affirmative: Yurov and Al. Zamolod-

chikov proposed such a scheme, which works in two-dimensional theories and makes full use

of the broken conformal symmetry [23]. Their method is known as the Truncated Conformal

5. Some special CFTs (such as N = 4 super-Yang-Mills) are described by a finite-dimensional manifold

of conformal fixed points.



Space Approach (TCSA), and it puts the theory on the cylinder R×S1. The key idea behind

the TCSA is that CFTs have a Hamiltonian formulation on this geometry. After truncating

the Hilbert space to some maximum energy Λ, the Hamiltonian becomes a finite matrix that

can be diagonalized numerically. The radius R of the cylinder plays the role of RG scale:

when R is small, the flow is close to the UV, and by increasing R we approach the IR.

Following the seminal work of Yurov and Zamolodchikov, the TCSA has been very

succesful, especially in checking predictions in the realm of integrable RG flows (see e.g.

Refs. [24–26]). This begs the question to which extent the TCSA can be generalized to more

than two dimensions: the second half of this thesis is devoted to answering this question. In

chapter 4, we start by describing a generalization that puts the theory on the d-dimensional

cylinder R × Sd−1. Then we specialize to a particular CFT, the free massless scalar boson:

since this theory exists in any d, it forms a suitable starting point for investigations into

d-dimensional RG flows. In chapter 5 we consider a simple RG flow, the free boson with a

mass term 1
2m

2φ2. We explain how to do exact computations in this theory on the cylinder,

and compare the resulting predictions to numerical TCSA results.

Chapter 6 is more technical in nature: it is devoted to understanding the limit where

the cutoff Λ is taken to infinity. We explain how the TCSA Hamiltonian can be ‘improved’

in order to reduce truncation errors. In chapter 7 the TCSA is applied to φ4 theory. This

theory is supposed to have the same phase structure as the Ising model: depending on the

φ2 coupling, it can be in a Z2 preserving (paramagnetic) or broken (ferromagnetic) phase.

We observe this phase structure in TCSA computations, which we do in d = 2.5 for technical

reasons. For a critical value of the φ2 coupling, the theory should flow to a CFT, specifically

the critical Ising model; as a consistency check of the method, we compare TCSA predictions

for critical exponents in this theory to their actual values.

Appendix C provides details on how some computations in the free scalar CFT were

done. In appendix D, some details on TCSA renormalization are given.

Pedagogical remarks

Some familiarity with statistical field theory [27–30] and the renormalization group [31–

33] will be useful, but not strictly necessary. No prior knowledge of conformal field theory is

required: in chapter 1, the necessary formalism is developed.
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Résumé substantiel

Une des applications de la théorie quantique des champs (TQC) se trouve dans le domaine

des phénomènes critiques. Un exemple connu est fourni par les aimants : certains matériaux

perdent leur aimantation quand la température augmente au-delà de la température de Curie,

qui dépend du matériau en question. En revanche, la physique au voisinage de ce point

est indépendante du matériau. Il existe alors un certain nombre de quantités universelles,

partagées par tous les matériaux qui réalisent la même transition de phase. Cette universalité

est expliquée par la théorie du groupe de renormalisation [34].

Comment peut-on alors prédire ces quantités universelles ? On remarque que les théories

critiques sont invariantes sous les transformations d’échelle (voire toutes les transformations

conformes) : les classes d’universalité des transitions de phases sont ainsi en correspondance

avec les théories conformes des champs (TCC). Le but du programme de bootstrap est d’abord

de classifier les TCC, afin d’en extraire les quantités observables (comme les exposants

critiques). Ce programme est basé sur le fait que les fonctions à quatre points en TCC

se calculent de deux façons différentes :∑
i

c12ic34iGOi(u, v) ∼
∑
i

c32ic14iGOi(v, u) ,

où la somme porte sur tous les opérateurs Oi (avec spin `i et dimension d’échelle ∆i) de la

théorie en question, et les cijk sont des coefficients qui s’observent dans les fonctions à trois

points 〈OiOjOk〉. Toute la � cinématique � de cette équation est contenue dans les blocs

conformes GO(u, v), qui dépendent uniquement des deux rapports anharmoniques u et v et

des propriétés conformes de l’opérateur O.

Ces blocs conformes sont l’objet d’étude de la première partie de cette thèse. En cha-

pitre 2, on montre que ces blocs admettent un développement de la forme

GO(r, θ) =

∞∑
n=0

∑
j

Cn,j r
∆O+n Geg

(ν)
j (cos θ) ,

où on utilise des coordonnées polaires {r, θ} au lieu de u et v, et Geg
(ν)
j sont les polynômes

de Gegenbauer en d dimensions. Si la théorie en question est unitaire, les Cn,j sont auto-

matiquement positifs. Ensuite, on montre que ce développement converge uniformement sur

tout compact du disque unité, et que dans un jeu de coordonnées bien choisi (qui définit

une coordonnée radiale “ρ”), les coefficients Cn,j sont bornés pour tout ∆O. Finalement, on

établit des récurrences qui déterminent les Cn,j à partir de C0,`.

Dans le chapitre 3, on étudie la restriction de ces blocs conformes à la “diagonale” θ = 0.

En nous appuyant sur les équations de Casimir du groupe conforme (celle de 2e et de 4e

ordre), on montre qu’ils obéissent à des équations différentielles de la forme Dx f∆,`(x) = 0,

où Dx est un opérateur différentiel d’ordre quatre. Ici x est soit la coordonnée z de Dolan



et Osborn [15, 16], soit x = |ρ| pour la coordonnée radiale ρ mentionnée auparavant. La

méthode de Frobenius permet d’établir un développement convergeant pour x ∈ [0, 1) :

f∆,`(x) = x∆
∞∑
n=0

cn x
n ,

ce qui permet de calculer f et ses dérivées efficacement sur la diagonale.

La deuxième partie de cette thèse est dédiée à la Méthode de Troncature Conforme

(MTC) de Yurov et Al. Zamolodchikov [23]. La première étape de cette méthode consiste à

quantifier une théorie conforme sur la sphère Sd−1
R de rayon R, perturbée par un opérateur

pertinent V. Le hamiltonien de ce système est donné par

H = HTCC + g

∫
Sd−1
R

V ,

où g est une constante de couplage. Les états dans l’espace de Hilbert de la TCC sont en

correspondance avec les opérateurs locaux O(x). La seconde étape de la MTC consiste à

tronquer cet espace d’Hilbert, c’est-à-dire de garder seulement les opérateurs de dimension

∆ 6 ∆max dans le spectre de la TCC. Physiquement, l’opérateur V engendre un flot du

groupe de renormalisation ; on peut montrer que le rayon R joue le rôle d’échelle dans ce

flot.

La MTC a été utilisée uniquement en d = 2 auparavant, notamment pour le cas où la

théorie conforme en question est un modèle minimal de Virasoro M(p, q). On étudie dans

cette thèse sa généralisation à d > 2 dimensions : plus spécifiquement, on considère deux flots

différents qui partent de la théorie du champ scalaire libre φ (avec une masse nulle). Dans un

premier temps – au chapitre 5 – on considère la perturbation massive en d = 3, donnée par

le terme 1
2m

2φ2. Le spectre du boson massif sur R× Sd−1
R peut être calculé analytiquement,

ce qui permet de comparer les résultats numériques de la MTC à des résultats analytiques.

On conclut que les prédictions numériques sont en bon accord avec le spectre analytique,

bien au-delà du régime perturbatif.

Le chapitre 6 est dédié à une analyse des erreurs induites par la troncature de la MTC,

c’est-à-dire par la présence d’une énergie de coupure Λ = ∆max/R. On montre que la

dépendance des observables (ici : les valeurs propres En du hamiltonien) avec Λ est une

loi de puissance : En(Λ) ∼ c+ c′/Λα + . . ., où c, c′, . . . sont des constantes. Pour les théories

étudiées dans cette thèse, la limite continue Λ→∞ est finie. On développe dans ce chapitre

une méthode qui permet de réduire les erreurs de troncature, c’est-à-dire d’améliorer le taux

de convergence quand Λ → ∞, basée sur des travaux antérieurs pour la MTC et d = 2

(voir [35]).

Finalement, on étudie le flot engendré par 1
2m

2φ2 + λφ4, autrement dit la théorie de

Landau-Ginzburg. Afin de ne pas introduire des divergences de courte distance, on travaille

en d = 2.5 dimensions. Cette théorie exhibe une transition de phase : plus précisément, il



existe une valeur critique m2
∗ telle que la symétrie Z2 est préservée pour m2 > m2

∗, mais

brisée spontanément pour m2 < m2
∗. Ce phénomène est reproduit par la MTC : les résultats

numériques mettent en évidence que le spectre est doublement dégénéré. Finalement, on

remarque que cette théorie est censée décrire la transition de phase du modèle d’Ising. En

effet, les exposants critiques prédits par la MTC sont en accord avec leurs valeurs prédites

par le bootstrap et le groupe de renormalisation.



Conventions and special functions

Conventions

All computations in this thesis are done in Euclidean signature and using the Einstein

summation convention. The Ricci scalar is denoted by R. Sd−1 is the unit sphere of

dimension d− 1; it is naturally embedded in Rd as follows:

Sd−1 = {xµ ∈ Rd | |x|2 = 1}. (0.1)

The shorthand notation Sd denotes its volume:

Sd = Vol(Sd−1) =
2πd/2

Γ(d/2)
. (0.2)

The scaling dimension of the free, massless boson [φ] in d > 2 dimensions is given by

ν ≡ (d− 2)/2.

Special functions

We briefly review the special functions used in this manuscript. More details can be

found in Refs. [36–38]. The Pochhammer symbol (x)n is defined as

(x)n ≡
Γ(x+ n)

Γ(x)
. (0.3)

If n is a positive integer,

(x)n = (x+ n− 1) · · · (x+ 1)x, n ∈ N>0 . (0.4)

The hypergeometric function 2F1(a, b; c; z) can be defined as a series expansion around z = 0:

2F1(a, b; c; z) ≡ 2F1

[
a, b

c
; z

]
≡
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, |z| < 1 . (0.5)

Generalized hypergeometric functions pFq (a1, . . . , ap; b1, . . . , bq; z) are defined similarly. The

Gegenbauer polynomials Geg
(α)
n (z) are defined as follows:

1

(1− 2zt+ t2)α
≡
∞∑
n=0

tn Geg(α)
n (z). (0.6)

As a consequence, Geg
(α)
n (x) is an even (odd) polynomial of degree n in z when n is even

(odd):

Geg(α)
n (−z) = (−1)n Geg(α)

n (z). (0.7)

Useful closed-form expressions for even (odd) n are given by

Geg
(α)
2n (z) = (−1)n

(α)n
n!

2F1

[−n, n+ α

1/2
; z2

]
(0.8a)

Geg
(α)
2n+1(z)

z
= (−1)n

2α(α+ 1)n
n!

2F1

[−n, n+ α+ 1

3/2
; z2

]
. (0.8b)



Chapter 1

Elements of conformal field theory

This thesis uses the tools of conformal field theory heavily. In order to make this

manuscript reasonably self-contained, we have chosen to collect the necessary results about

CFTs in d > 2 dimensions. Readers familiar with the subject may skip this chapter, because

no new material is presented.

We have organized this introductory chapter as follows: in sections 1.1 and 1.2, we

describe the conformal group in d > 2 dimensions and its Lie algebra. Section 1.3 concerns

the representation theory of the conformal group, in particular the transformation laws for

tensor operators. Closely related are constraints that conformal invariance puts on corre-

lation functions, which are natural observables in CFTs; these are described in section 1.4.

Sections 1.5 and 1.6 introduce radial quantization, a method that is at the heart of the

Truncated Conformal Space Approach. Finally, sections 1.7 and 1.8 are intended as a brief

introduction to the conformal bootstrap program.

Because of the scope of the subject, we do not aim to give a comprehensive account of

the CFT literature. In particular, we do not discuss the relation of conformal invariance

to critical phenomena in statistical physics — we point the reader to Ref. [31] for details.

Furthermore, there are many pedagogical texts available focusing on different aspects of

conformal invariance, including [39–42, 28, 43, 44, 6]. Applications of conformal invariance

in two dimensions to string theory are discussed in many textbooks on the subject, includ-

ing [45–48]. An introduction to the bootstrap program is given in the dissertation [49].

Finally we point the reader to various sets of lecture notes, focusing either on CFTs [50–54]

or on the AdS/CFT-correspondence [55].

1



1.1 Conformal group

Conformal transformations x → x′ in d-dimensional Euclidean space are defined by the

requirement that the line element ds2 = δµν dxµdxν transforms as

ds2 → ds′2 = δµν dx′µdx′ν
must be

= Ω(x)2ds2 (1.1)

for some function Ω(x) > 0. Such transformations clearly form a group: if x → x′ and

x′ → x′′ are two conformal transformations, then the composition x → x′′ is conformal as

well.

Our goal in this section is to classify this group. We start by remarking that Eq. (1.1) is

equivalent to
∂x′µ

∂xα
∂x′ν

∂xβ
δµν = Ω(x)2 δαβ . (1.2)

From this equation, it follows that the Jacobian of any conformal transformation x→ x′ can

be decomposed as
∂x′µ

∂xν
= Ω(x)Λµν(x) , (1.3)

where the matrix Λµν(x) is orthogonal at every point x:

δµν Λµρ(x)Λνσ(x) = δρσ. (1.4)

Conversely, any transformation x → x′ whose Jacobian is of the form (1.3) is conformal.

Rigid transformations of the form

x → x′ = R · x+ a, tR = R−1 (1.5)

are obvious examples of conformal transformations, with a conformal factor Ω(x) = 1. Di-

latations

x → x′ = λx, λ > 0 (1.6)

are conformal transformations as well, satisfying Ω(x) = λ. A more involved example of a

conformal transformation is given by the inversion

I : xµ → x′µ =
xµ

x2
. (1.7)

It is an easy exercise to show that the inversion satisfies Eq. (1.3) with

Ω(x) =
1

x2
, Λµν(x) = δµν − 2

xµxν
x2

=: Iµν(x). (1.8)

Notice however that det I = −1, meaning that the inversion cannot be continuously con-

nected to the unit element of the conformal group. By composing an inversion with a trans-

lation xµ → xµ + aµ and a second inversion, one obtains a special conformal transformation

(SCT):

xµ → x′µ =
xµ + aµx2

1 + 2a · x+ a2x2
, (1.9)



which has the scale factor

Ω(x) =
1

1 + 2a · x+ a2x2
. (1.10)

Such SCTs are part of identity component of the conformal group, as may be seen by taking

the limit aµ → 0.

The above transformations generate the full conformal group: to be precise (see theorem

1.9 of [42]), any conformal transformation in d > 2 dimensions is a composition of transla-

tions, rotations, dilatations and SCTs. By counting parameters, it follows that the conformal

group has dimension 1
2(d+ 1)(d+ 2).

The case d = 2 is special, as can be seen by parametrizing the {x1, x2}-plane by a complex

coordinate z = x1+ix2. The Euclidean metric in this coordinate is ds2 = dz dz̄, which means

that any analytic transformation

z 7→ w(z) , z̄ 7→ w̄(z̄) (1.11)

is conformal. This implies that the 2d conformal group is infinite-dimensional. The analog

of the d > 2 conformal group is isomorphic to SL(2,C): this is a six-dimensional subgroup

of the full conformal group in two dimensions.

1.2 Conformal algebra

We will now discuss infinitesimal conformal transformations xµ → x′µ = xµ + αµ(x). The

requirement that x→ x′ is conformal is equivalent to

∂µαν(x) + ∂ναµ(x) =
2

d
(∂ · α)δµν , (1.12)

as follows from Eq. (1.2). It is a textbook exercise [39] to classify the solutions to Eq. (1.12)

in d > 2 dimensions; the results are shown in the table below. As foreseen, all infinitesimal

transformations can be derived from the finite transformations discussed in Sec. (1.1):

type αµ(x)

translations εµ

rotations ωµνxν [ωµν = −ωνµ]

dilatations εxµ

SCTs x2εµ − 2(ε · x)xµ

The Lie algebra of the conformal group can easily be found using this result. Let us define

the action of a group element g : x 7→ (gx) = x′ on an arbitrary function Ψ : Rd → C as

follows:

Ψ(x) → (TgΨ)(x) = Ψ(g−1x) . (1.13)



This forms a representation of the conformal group: to see this, it is sufficient to check that

Tg(ThΨ) = TghΨ. Consider now a group element g close to the identity: as such, it acts

infinitesimally on coordinates, and we may write (gx)µ = xµ + αµg (x). On the other hand,

we may expand Tg = 1− iω I
g GI , where the GI are group generators and the infinitesimal

numbers ω I
g parametrize g. Hence the action of the generators GI is fixed:

(TgΨ)(x) = Ψ(x)− αµ(x)∂µΨ(x) ⇒ ω I
g GIΨ(x) = −αµg (x)∂µΨ(x) . (1.14)

Working this out for all generators, we find:

(gx)µ Tg generator(s)

xµ + εµ 1− iεµPµ Pµ = −i∂µ
xµ + ωµνxν [ωµν = −ωνµ] 1− i

2ω
µνMµν Mµν = i(xµ∂ν − xν∂µ)

xµ + εxµ 1 + iεD D = ix · ∂
xµ + x2εµ − 2(ε · x)xµ 1− iεµKµ Kµ = −i

(
x2∂µ − 2xµ x · ∂

)
.

The non-vanishing commutators between the generators are:

[Mµν ,Mρσ] = i (−δµρMνσ + δµσMνρ + δνρMµσ − δνσMµρ) , (1.15a)

[Mµν , Xρ] = −iδµρXν + iδνρXµ, [Xµ = Pµ or Kµ] (1.15b)

[Kµ, Pν ] = 2i (δµνD +Mµν) , (1.15c)

[D,Pµ] = −iPµ, (1.15d)

[D,Kµ] = iKµ. (1.15e)

Eq. (1.15a) is the familiar Lie algebra of SO(d), whereas Eq. (1.15b) shows that Kµ and Pµ

transform as vectors under rotations. It is useful to think of the conformal algebra as being

graded by iD. With respect to this grading, Pµ (resp. Kµ) acts as a raising (resp. lowering)

operator, as can be seen from the last two commutators.

Casimir operators 1

We now turn our attention to the Casimir operators of the conformal algebra. To

construct these Casimirs, we first revisit the isomorphism between the conformal group

in d dimensions and and the Lorentz group in d+ 2 dimensions, SO(d+ 1, 1). To establish

this isomorphism, let us consider a set of generators LAB = −LBA (A,B = 0, 1, . . . , d+ 1)

defined as follows:

L0µ = X+
µ , L0 d+1 = D, Lµν = Mµν , Lµd+1 = X−µ , (1.16)

1. This section is included to provide a complete derivation of the Casimir eigenvalues of the conformal

group and is not essential to the rest of the text.



where X±µ ≡ 1
2(Pµ ±Kµ). In matrix form, LAB has the following structure:

LAB =


0 X+

µ D

Mµν X−µ

0

 (1.17)

We now claim the generators LAB satisfy the SO(d+ 1, 1) commutation relations:

[LAB, LCD] = i (−ηACLBD + ηADLBC + ηBCLAD − ηBDLAC) , (1.18)

where ηAB = diag(−1, 1, . . . , 1︸ ︷︷ ︸
d+1

) is the Minkowski metric in d + 2 dimensions. This may be

readily checked using the commutators (1.15) and

[D,X±µ ] = −iX∓µ , (1.19a)

[X±µ , X
±
ν ] = ±iMµν , (1.19b)

[X±µ , X
∓
ν ] = ±iδµνD, (1.19c)

[Mµν , X
±
ρ ] = −iδµρX±ν + iδνρX

±
µ . (1.19d)

The commutator (1.18) establishes that the conformal group is isomorphic to SO(d+ 1, 1).

With the isomorphism (1.16) in place, we can use some basic facts about the group

theory of SO(d + 1, 1) [56] to study the Casimirs of the conformal algebra. We recall that

the number of Casimirs of a given Lie algebra equals its rank, which is r for SO(2r) and

SO(2r + 1). Schematically, these Casimirs are of the form Ck ∼ tr Lk for k = 2, 4, . . .. For

SO(2r), one of the Casimir operators is given by εµ1···µ2rLµ1µ2 · · ·Lµ2r−1µ2r , where ε is the

Levi-Civita symbol in 2r dimensions.

For d = 2 and d = 3, there are thus two independent Casimirs, C2 and C4. The goal of the

rest of this section is to express these Casimirs in terms of the generators {D,Pµ,Kµ,Mµν}.
Any extra Casimirs that exist in d > 4 dimensions do not play a role in this thesis. 2

The quadratic Casimir is given by

C2 ≡ −1
2trL2 = 1

2LABL
AB

= 1
2MµνM

µν + iD(iD − d)− P ·K. (1.20)

The first term in Eq. (1.20) is of course the quadratic Casimir of the subgroup SO(d), which

we denote by

C2 ≡ 1
2MµνM

µν . (1.21)

It’s not hard to check that [C2, GI ] = 0 for all generators GI of the conformal algebra.

2. The cubic Casimir of the conformal group is discussed e.g. in [40, 57].



The next Casimir is quartic in the SO(d+ 1, 1) generators:

C4 ≡ 1
2trL4 = 1

2LABL
BCLCDL

DA. (1.22)

A straightforward but tedious calculation shows that

C4 = −D2(iD − d)2 + 1
2d(d− 1)iD(iD − d) + C4 − C2

+ 1
2

(
P 2K2 + PµP νKµKν

)
− 1

2(3d2 − d+ 2)P ·K
+ 2

(
D2P ·K + PµMµνM

νρKρ −DPµMµνK
ν
)

+ (3d+ 1)iDP ·K − (3d− 1)iPµMµνK
ν . (1.23)

The term C4 represents another SO(d) Casimir operator, namely

C4 ≡ 1
2MµνM

νρMρσM
σµ , (1.24)

which is independent from C2 for d > 3. Again, it may be verified that all commutators

[C4, GI ] vanish.

1.3 Local operators

In the previous sections, we have described the conformal group and its algebra. We

will now pass to CFTs: field theories that are invariant under conformal transformations.

In what follows, a CFT will be regarded as a set of local operators {Oi} together with their

Euclidean correlation functions 〈O1(x1) · · · On(xn)〉.

By assumption, all local operators can be organized in representations of the conformal

group. A subset of the {Oi} transforms homogeneously under conformal transformations;

such operators are called primary. 3 To be precise, we recall that any conformal transfor-

mation xµ → (gx)µ = x′µ is characterized by scale factor Ωg(x) and an orthogonal matrix

Λg(x), cf. Eq. (1.3). A primary operator O then transforms as [58–62, 39]

xµ → (gx)µ = x′µ

O(x) → O′(x′) = Ωg(x)−∆D[Λg(x)]O(x) , (1.25)

where D[Λg(x)] is a matrix that acts on the indices of O(x). Under a dilatation x→ λx, the

above transformation law reduces to

O(x) → O′(λx) = λ−∆O(x). (1.26)

The number ∆ is also known as the scaling dimension of O, and sometimes denoted as

[O] = ∆. Similarly, under a rotation x→ R · x, a primary O transforms as

O(x) → O′(R · x) = D[R]O(x) (1.27)

3. In the 2d CFT literature, such operators are called quasi-primary.



which requires that the matrix D[R] forms a representation of SO(d). In conclusion, the

transformation law (1.25) is completely determined by the dimension ∆ and the SO(d)

quantum numbers of O.

For now, we want to find the action of the generators GI on primary operators {O}.
In principle, this can be done analogously to the computation in Sec. 1.2, but using the

transformation law g : O 7→ O′ defined above in Eq. (1.25). This is rather tedious, and a

easier method is proposed by Mack and Salam [58]. 4

As a first step, we can restrict ourselves to the little group (the stabilizer subgroup of

x = 0), that consists of rotations, dilatations and SCTs. For the corresponding generators,

we find

[D,O(0)] = −i∆O(0), [Kµ,O(0)] = 0, [Mµν ,O(0)] = SµνO(0). (1.28)

The matrix Sµν = −Sνµ above is a generator of the SO(d) algebra, and it is defined by

imposing that under an infinitesimal rotation

Rµν = δµν + ωµν + O(ω2) with ωµν = −ωνµ (1.29)

the matrix D[R] is expanded to first order in ωµν as

D[R] = 1− i

2
ωµνSµν + O(ω2). (1.30)

As with the matrix D[R], the generator Sµν depends on the representation of O. Moreover,

it can be shown that the property [Kµ,O(0)] = 0 is equivalent to O being a primary operator.

Next, we notice that Pµ acts as a generator of translations:

O(x) = eix·PO(0)e−ix·P ⇒ [Pµ,O(x)] = −i∂µO(x). (1.31)

The action of a generator G at x 6= 0 therefore obeys

[G,O(x)] = eix·P [G′,O(0)]e−ix·P , G′ = e−ix·PGeix·P . (1.32)

The translated generator G′ is easily calculated using a variant of the Baker-Campbell-

Hausdorff formula:

G′ = G− ixµ[Pµ, G]− 1

2!
xµxν [Pµ, [Pν , G]] + . . . . (1.33)

Although a priori (1.33) is an infinite series, it truncates at the displayed order for all

generators, and we obtain:

D′ = D + x · P , (1.34a)

M ′µν = Mµν + xµPν − xνPµ , (1.34b)

K ′µ = Kµ − 2xµD + 2xλMλµ + x2Pµ − 2xµx · P . (1.34c)

4. See also [39] for a pedagogical treatment.



The commutators [G,O(x)] at x 6= 0 are therefore given by

[D,O(x)] = −i(∆ + x · ∂)O(x), (1.35a)

[Mµν ,O(x)] = {Sµν − i(xµ∂ν − xν∂µ)}O(x), (1.35b)

[Kµ,O(x)] =
{

2xκSκµ + 2i∆xµ + 2ixµx · ∂ − ix2∂µ
}
O(x). (1.35c)

As a consistency check of the above result, it may be shown that

[[G1, G2],O(x)] = [G1, [G2,O(x)]]− [G2, [G1,O(x)]] (1.36)

for any two generators G1, G2, provided that

[Sµν ,Sρσ]O(0) = i {δµρSνσ − δµσSνρ − δνρSµσ + δνσSµρ}O(0). (1.37)

The latter is the SO(d) commutator from Eq. (1.15a) with all signs reversed.

1.3.1 Tensor operators

We have seen that any SO(d) representation can be extended to a representation of the

conformal group. In this thesis, only a specific class of tensor operators will play a role,

namely traceless symmetric tensors (TSTs) Oµ1···µ`(x). If a TST has ` indices, we will refer

to it as having spin `. If Oµ1···µ`(x) has dimension ∆, then it transforms under a finite

conformal transformation xµ → x′µ as [63]

O′µ1···µ`(x
′) =

∣∣∣∣det
∂x′

∂x

∣∣∣∣(`−∆)/d ∂xν1

∂x′µ1
· · · ∂x

ν`

∂x′µ`
Oν1···ν`(x) . (1.38)

Reinstating the scale factor Ω(x) and the orthogonal matrix Λµν from the Jacobian ∂x′/∂x

as in equation (1.3), we can rewrite the above transformation law as

O′µ1···µ`(x
′) = Ω(x)−∆ Λ ν1

µ1
(x) · · ·Λ ν`

µ`
(x)Oν1···ν`(x) , (1.39)

where Λ ν
µ is the transpose (inverse) of Λµν . Obviously, scalars (with ` = 0) and vectors

(` = 1) are particular examples of TSTs.

In what follows, we will require the Casimir eigenvalue of C2 and C4 for the spin-`

representation. Let us start by remarking that the spin generator Sαβ is given by

(Sαβ) ν1···ν`
µ1···µ` = −i

∑̀
j=1

δ (ν1
µ1

· · ·
[
δαµjδ

νj
β − δβµjδ

νj
α

]
· · · δ ν`)

µ`
− traces in νj . (1.40)

Using this expression, it is straightforward to compute the Casimirs:

C2 = 1
2Sµν Sµν =λ` 1 , (1.41a)

C4 = 1
2Sσµ Sρσ Sνρ Sµν =

[
λ2
` + 1

2(d− 2)(d− 3)λ`
]
1 , (1.41b)

for λ` = `(`+ d− 2). Here 1 is the identity operator: 1 ν1···ν`
µ1···µ` = δ ν1

µ1 · · · δ ν`
µ` .



1.3.2 Descendants

Derivatives of primary operators do not transform homogeneously under conformal trans-

formations, as is easy to see. As an example, let us consider a scalar primary O∆ of dimension

∆, together with its derivative Vµ ≡ ∂µO∆(x). Using the transformation law (1.25), it can

easily be shown that Vµ transforms as

Vµ(x) → V ′µ(x′) = Ω(x)−(∆+1)Λ ν
µ (x)

[
Vν(x)−∆

∂ ln Ω(x)

∂xν
O∆(x)

]
. (1.42)

The second term is inconsistent with Vµ being a primary, although under dilatations and

rotations Vµ transforms just like a vector primary of dimension ∆ + 1. Algebraically, Vµ can

be defined as

Vµ(x) ≡ i[Pµ,O∆(x)]. (1.43)

The easiest way to see that Vρ is not primary is to remark that it is not annihilated by Kµ

at x = 0:

[Kµ, Vρ(0)] = 2i∆δµρO∆(0) (1.44)

which is non-zero unless ∆ = 0.

We can slightly formalize the above idea. Any operator that is an n-th derivative of a

primary O is called a descendant of O, having level n. It is easy to see that any level-n

descendant has scaling dimension [O] + n. For concreteness, we display the descendants of

levels n 6 3 of a scalar primary O in the table below. Various traces have been subtracted

in order to give all descendants a definite spin:

level spin-0 spin-1 spin-2 spin-3

0 O
1 ∂µO
2 ∂2O

(
∂µ∂ν − (1/d)δµν∂

2
)
O

3 ∂µ∂
2O (∂µ∂ν∂ρ − traces)O

. . .

The above easily generalizes to spin-` primaries, taking into account that derivatives can

both raise and lower the spin: the operator ∂µ`Oµ1···µ` has spin ` − 1, for example. As a

consequence, level-n descendants of a spin-` primary have their spin j restricted to

j ∈ max(`− n mod 2, `− n), . . . , `+ n , (1.45)

but only half of the spins in this interval occur.

A primary operator O together with its descendants forms an irreducible representation

of the conformal group, labeled by the dimension and spin of the primary of O. Such a

representation is also known as a conformal family. As a consequence of conformal invariance,



the set of local operators decomposes into conformal families: this means that every local

operator can be written as a sum of primaries and descendants.

1.4 Constraints on correlation functions

We now turn to a systematic study of the constraints imposed by conformal invariance

on correlation functions, in the same way that Poincaré invariance restricts correlation

functions in ordinary QFTs. Formally, correlation functions must be consistent with the

transformation laws from section (1.3). Consider for example a primary scalarO of dimension

∆. If xµ → x′µ is any conformal transformation with scale factor Ω(x), then any correlation

function involving O must satisfy

〈O(x′1) · · ·〉 = Ω(x1)−∆ 〈O(x1) · · ·〉. (1.46)

In this section, we will work out how these transformation laws constrain two, three and four

point functions.

1.4.1 Scalar correlators

Let us start by considering correlation functions of scalar primaries. As a warm-up

exercise, consider the one-point function of a scalar primary O with [O] = ∆. By translation

invariance, it must be constant: 〈O(x)〉 ≡ v. Applying a dilatation x → λx, we conclude

that v = λ∆v for all λ > 0, which is only possible if v = 0 or ∆ = 0. An operator with ∆ = 0

exists: it is the unit operator 1, which by definition satisfies 〈1〉 = 1. All other scalars have

a vanishing one-point function.

Consider now the correlator 〈O1O2〉 of two primaries with dimensions ∆1,∆2. By

translation, rotation and scale invariance, it must be of the form

〈O1(x1)O2(x2)〉 =
b

|x1 − x2|α
, α = ∆1 + ∆2 (1.47)

for some number b. To find a further constraint, we apply the inversion xµ → x′µ = xµ/x2.

Conformal invariance then requires that

b

|x′1 − x′2|α
= b
|x1|α|x2|α
|x1 − x2|α

must be
= |x1|2∆1 |x2|2∆2

b

|x1 − x2|α
(1.48)

which is satisfied if α = 2∆1 = 2∆2 or if b = 0. Consequently, the correlator 〈O1O2〉 vanishes

unless ∆1 = ∆2.

Two-point functions of primaries Oi,Oj with the same dimension ∆ are therefore fixed

by conformal invariance up to a coefficient bij . In reflection-positive CFTs (see section 1.6.2),



it is always possible to redefine the operators in way that makes bij diagonal, yielding

〈Oi(x)Oj(y)〉 =
δij

|x− y|2∆i
, (∆i = ∆j). (1.49)

Three-point functions of scalar primaries are also fixed by conformal symmetry, up to a

multiplicative constant [64]:

〈O1(x1)O2(x2)O3(x3)〉 =
c123

|x12|∆123 |x23|∆231 |x13|∆132
, (1.50)

for

xij = xi − xj , ∆ijk = ∆i + ∆j −∆k. (1.51)

The proof of Eq. (1.50) is analogous to the argument used to fix the two-point function. An

additional constraint comes from Bose symmetry, which requires that 〈O1O2O3〉 is invariant

under exchanging any two operator insertions Oi(xi)↔ Oj(xj). Applying this to (1.50), it

follows directly that cijk is symmetric in its indices i, j and k.

For n > 4 operator insertions, correlation functions are no longer fixed by conformal

kinematics alone. This is due to the existence of cross ratios that are invariant under any

conformal transformation. Using n = 4 coordinates x1, . . . , x4, there are two such ratios:

u =
|x12|2|x34|2
|x13|2|x24|2

, v =
|x14|2|x23|2
|x13|2|x24|2

. (1.52)

The most general four-point function of scalar primaries is then of the form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =

( |x24|
|x14|

)∆12
( |x14|
|x13|

)∆34 G1234(u, v)

|x12|∆1+∆2 |x34|∆3+∆4
(1.53)

where G1234(u, v) is an arbitrary function of u and v and ∆ij = ∆i −∆j .

Not all functions Gijkl(u, v) are allowed in the four-point function (1.53): we have not

yet considered the constraints coming from Bose symmetry. First, let us remark that all

permutations of the points {x1, x2, x3, x4} are generated by x1 ↔ x2, x3 ↔ x4 and x1 ↔ x3.

Mathematically, this is because the permutations (12) and (12)(34)(13) = (1234) together

generate all 4! permutations of four points. It is therefore sufficient to consider the constraints

coming from φ1(x1)↔ φ2(x2), φ3(x3)↔ φ4(x4) and φ1(x1)↔ φ3(x3).

Let us now consider these three permutations separately. Under the exchange x1 ↔ x2,

the cross ratios transform as u→ u/v and v → 1/v. From Eq. (1.53), it then follows that

G2134(u/v, 1/v) = v∆34/2 G1234(u, v). (1.54a)

Similarly, for x3 ↔ x4 and x1 ↔ x3, we find

G1243(u/v, 1/v) = v−∆12/2 G1234(u, v) (1.54b)

G3214(v, u) = u−(∆1+∆2)/2v(∆2+∆3)/2 G1234(u, v). (1.54c)



In general, these Bose symmetry constraints involve different functions Gijkl(u, v). Let us

now specialize to the correlator 〈φφφφ〉 ∼ Gφ(u, v) of four identical scalars. In that case, the

above constraints apply to a single function Gφ(u, v):

Gφ(u/v, 1/v) = Gφ(u, v) , Gφ(v, u) = (v/u)∆φ Gφ(u, v). (1.55)

Similar relations can be found for mixed correlation functions of the form 〈φ1φ1φ2φ2〉 [9].

1.4.2 Spinning correlators

The above discussion will be slightly extended here to cover certain two- and three-point

functions of primary operators with spin. The formalism required to establish these results

is presented in Ref. [61].

It can be shown that two-point functions of primaries with different spin or conformal

dimension vanish: this generalizes the selection rule found above for scalar primaries. Ex-

plicitly, the two-point function of a tensor primary Oµ1···µ` of spin ` and dimension ∆ is

〈Oµ1···µ`(x)Oν1···ν`(0)〉 =
1

|x|2∆
[Iµ1ν1(x) · · · Iµ`ν`(x) + symm.− traces] (1.56)

where Iµν(x) = δµν−2xµxν/x
2 was introduced in Eq. (1.8). The notation ‘+symm.− traces’

means that both the µ- and ν-indices must be symmetrized and made traceless.

Three-point functions of operators with spin require extra attention. In the case of

scalar (primary) three-point functions, only one x-dependent structure was consistent with

conformal invariance. This is not true in general: when the operators Oi,Oj ,Ok are in

different SO(d) representations, the correlator 〈OiOjOk〉 can also vanish or be a sum of

different conformally covariant tensor structures. Constructing these correlators is non-

trivial, see e.g. [65–68].

The situation simplifies if two out of the three operators (say Oi and Oj) are scalars. In

that case, it follows from conformal invariance that 〈OiOjOk〉 can only be non-vanishing if

Ok is a spin-` TST. Such scalar-scalar-spin ` correlators are of the form [14]

〈φ1(x1)φ2(x2)Oµ1···µ`(x3)〉 = fφ1φ2O
Zµ1 · · ·Zµ` − traces

|x12|∆123+`|x23|∆231−`|x13|∆132−` (1.57)

where fφiφjO is a constant and

Zµ =
xµ13

|x13|2
− xµ23

|x23|2
. (1.58)

For the scalar three-point function, we used Bose symmetry to argue that the coefficient

cijk must be symmetric under exchanging any two indices. For the scalar-scalar-spin `

correlator (1.57), a similar argument shows that

fφ2φ1O = (−1)` fφ1φ2O. (1.59)



This immediately implies that the correlator 〈φφO〉 of two identical scalars φ and a spin-`

tensor operator O vanishes if ` is odd.

1.4.3 Example: free scalar boson

One CFT that will be studied extensively in this thesis is the free, massless scalar field,

which is described by the Euclidean action

S[φ] =
1

2

∫
ddx (∂µφ)2 (1.60)

and satisfies the equation of motion ∂2φ(x) = 0. Correlation functions in this theory can be

defined by a path integral [69]:

〈φ1(x1) · · ·φn(xn)〉 =

∫
[dφ]φ1(x1) · · ·φn(xn) e−S[φ] , (1.61)

where the measure
∫

[dφ] is normalized such that 〈1〉 = 1. In particular, the two-point

function of φ is given by

〈φ(x)φ(0)〉 =
1

(d− 2)Sd

1

|x|d−2
, Sd =

2πd/2

Γ(d/2)
= Vol(Sd−1). (1.62)

It is customary to redefine φ→
√

(d− 2)Sd φ, after which the two-point function becomes

unit-normalized:

〈φ(x)φ(0)〉 =
1

|x|d−2
. (1.63)

We recall that the path integral (1.61) for the free theory is Gaussian, and correlation

functions of n > 2 fields are given by Wick’s theorem. A particular consequence is that odd

correlation functions vanish, consistent with the Z2 symmetry φ→ −φ of the action.

We remark that the action (1.60) is manifestly invariant under a dilatation x → λx,

provided that φ has scaling dimension ν ≡ (d− 2)/2. In section 1.5 we will prove a stronger

statement, namely that the theory is conformally invariant. An immediate consequence is

that φ transforms as a scalar primary of dimension [φ] = ν, consistent with (1.63). A non-

trivial check of conformal invariance is provided by the four-point function, which can be

computed using Wick’s theorem:

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
Gφ(u, v)

|x12|2ν |x34|2ν
, Gφ(u, v) = 1 + uν + (u/v)ν . (1.64)

This correlator has the functional form required by Eq. (1.53). Additionally, it may be

checked that Gφ(u, v) obeys the Bose symmetry constraints from Eq. (1.55).

Wick’s theorem also determines correlation functions involving composite operators. As

an exercise, it may e.g. be shown that the composite operator 5 O2 = :φ2 :/
√

2 is a scalar

5. The notation :X : denotes normal ordering. Concretely, it means that no Wick contractions between

fields in X are allowed.



primary of dimension [O2] = 2ν, and that it satisfies

〈O2(x)O2(0)〉 =
1

|x|4ν , 〈φ(x1)φ(x2)O2(0)〉 =

√
2

|x1|2ν |x2|2ν
. (1.65)

1.5 Weyl invariance

So far, we have restricted ourselves to study conformal field theories defined on flat space.

In the next sections, we will need to put CFTs (and deformations thereof) on curved spaces.

Formally, such a theory is described by a Euclidean action S[φ; gµν ] that is a functional of a

set of fields φI(x) and the metric gµν(x), turned on as a background field. Such a theory is

Weyl invariant if it is invariant under the rescaling of the metric

gµν(x) → g′µν(x) = Ω(x)2 gµν(x) (1.66)

and the simultaneous rescaling of the φI :

φI(x) → φ′I(x) = Ω(x)−ηI φI(x) . (1.67)

Note that the Weyl rescaling (1.66) leaves the coordinates xµ unchanged.

Weyl invariance reduces to conformal invariance in flat space, as defined in section 1.1.

To see why this is true, consider a conformal transformation x→ x′ with scale factor Ω(x).

We can implement such a transformation in two steps: first, we perform as Weyl rescaling,

which changes the metric as

δµν → g′µν(x) = Ω(x)2 δµν (1.68)

and rescales (primary) operators according to (1.67). Next, we perform a coordinate change

x → x′. This changes the metric g′µν(x) back to the Euclidean metric δµν . The fields φI

transform under this diffeomorphism according to their spin:

φ(x) 7→ φ′(x′) = φ(x) , Vµ(x) 7→ V ′µ(x′) =
∂xν

∂x′µ
Vν(x) (1.69)

and similarly for operators of spin ` > 1. Under the combined Weyl rescaling and subsequent

coordinate change, operators therefore transform as

φ(x) 7→ φ′(x′) = Ω(x)−ηφ φ(x) ,

Vµ(x) 7→ V ′µ(x′) = Ω(x)−ηV
∂xν

∂x′µ
Vν(x) (1.70)

etc., in agreement with the transformation law for primary operators from Eq. (1.39).

Weyl invariance can be rephrased in terms of the stress tensor Tµν , which is defined as

the linear response of the theory to an arbitrary change in the metric:

S[gµν + δgµν ]− S[gµν ] =
1

2

∫ √
g ddxTµν(x)δgµν(x) + O(δg2). (1.71)



An infinitesimal Weyl rescaling induces a change in the metric of the form δgµν(x) = ρ(x)gµν(x)

for a some function ρ(x), hence Weyl invariance requires that Tµµ ≡ 0. 6

The discussion so far has been classical. Weyl symmetry however extends to correlation

functions [46]. This is useful when doing computations in conformally flat backgrounds,

which are flat up to a Weyl rescaling:

ds2 = Ω2(x) δµνdxµdxν . (1.72)

Correlation functions 〈· · ·〉Ω on such backgrounds are related to flat-space correlation func-

tions by Weyl invariance: if O(x) is for example a scalar primary of dimension ∆, then 7

〈O(x1) · · ·〉Ω = Ω(x1)−∆ 〈O(x1) · · ·〉flat . (1.73)

Example computations involving the d-sphere Sd (which is conformally flat in stereographic

coordinates) are given in Refs. [75–78].

1.5.1 The free boson revisited

Let us now come back to the theory of the free, massless scalar field. Rather than

proving that the flat-space theory is conformally invariant, we will show that the theory can

be coupled to curvature in a way that makes it Weyl invariant. The flat-space action (1.60)

can be made diffeomorphism invariant as follows:

S[φ; gµν ] =
1

2

∫ √
g ddx gµν∂µφ∂νφ. (1.74)

The stress tensor of the theory (1.74) is (in the flat-space limit) given by

Tµν = −∂µφ∂νφ+
1

2
δµν (∂λφ)2 ⇒ Tµµ =

d− 2

2
(∂λφ)2 , (1.75)

hence it fails to be traceless in d 6= 2. Consequently, the theory described by Eq. (1.74) is

not Weyl invariant. The same conclusion can also be reached by a direct computation.

The minimally coupled theory (1.74) is however far from general: any local operator can

be coupled to the curvature invariants R (Ricci scalar), Rµν (Ricci tensor) etc., all of which

vanish in the flat-space limit. We can therefore write the Ansatz

S[φ; gµν ]
?
=

1

2

∫ √
g ddx

[
gµν∂µφ∂νφ+ λRφ+ κRφ2 + . . .

]
(1.76)

for a set of undetermined constants {λ, κ, . . .}. A rather obvious constraint on these curvature

terms is that they must preserve the global Z2 symmetry φ→ −φ; the term Rφ is therefore

6. In certain cases, a stress tensor with non-vanishing trace can be improved, see e.g. [2, 70].

7. An exception to this transformation law is the Weyl anomaly [71–74, 46], which implies that 〈Tµν(x)〉Ω
is in general non-zero on curved backgrounds in even d, although 〈Tµν〉 vanishes in flat space.



not allowed. A second constraint comes from imposing that physics at distances much shorter

than the typical radius of curvature ρ of the metric must agree with flat-space physics. This

means that only terms that are relevant (in the RG sense) may be written down. The

scaling dimensions of the invariants R,Rµν , . . . can be determined by power counting: the

Ricci scalar R ∼ 1/ρ2 e.g. has dimension [R] = 2. With some additional work, it may be

shown that Rφ2 is the only possible curvature term that satisfies this criterion.

We therefore expect that the theory

S[φ; gµν ] =
1

2

∫ √
g ddx

[
gµν∂µφ∂νφ+ κRφ2

]
(1.77)

is Weyl invariant, at least for a judicious choice of κ. Adding the Rφ2 term modifies the

stress tensor as follows:

Tµν → Tµν + κ (∂µ∂ν − δµν∂2)φ2 (1.78)

in the flat-space limit 8 [73]. Consequently, the stress tensor becomes traceless if we set

κ → κc ≡
d− 2

4(d− 1)
. (1.79)

Alternatively, after integration by parts and discarding a boundary term, the action (1.77)

can be rewritten as

S[φ; gµν ] =
1

2

∫ √
g ddxφ(x) ∆̃[κ]φ(x) , ∆̃[κ] ≡ −gµν∇µ∇ν + κR. (1.80)

If κ = κc, the differential operator ∆̃[κ] transforms under a Weyl rescaling as [71]

∆̃[κc] 7→ Ω(x)−(d+2)/2 ∆̃[κc] Ω(x)(d−2)/2 , (1.81)

which also proves that the action with κ = κc is Weyl invariant.

1.6 Radial quantization

At this stage, we can define a quantization procedure that applies to any CFT, called

radial quantization, which goes back to Fubini, Hanson and Jackiw [79]. This scheme sets

the CFT in question on the ‘cylinder’ R × Sd−1, where the sphere Sd−1 has radius R. For

d = 2 this geometry is really a cylinder; we employ the same name for d > 2. The cylinder

is naturally parametrized by coordinates (t,n) where t ∈ R is a time coordinate and nµ is a

unit vector on Sd−1, cf. figure 1.1.

Crucially, the cylinder is conformally flat [80]. In terms of the (t,n) coordinates, the

metric is given by

ds2
cyl = dt2 +R2dΩ (1.82)

8. This means that R and Rµν have been set to zero.



R× Sd−1

R

n
t

Rd

r = et/R

Figure 1.1: Left: the cylinder R × Sd−1 with time t running upwards. The red timeslice is

isomorphic to Sd−1 and parametrized by a unit vector n. Right: the same geometry, mapped to

flat space.

where dΩ is the canonical metric on Sd−1. Let us now define a new ‘radial’ coordinate r

through t = R ln r, in terms of which the metric is given by

ds2
cyl =

(
R

r

)2 [
dr2 + r2dΩ

]
. (1.83)

The factor inside brackets is obviously the flat-space metric on Rd, written in radial coor-

dinates (r,n). Eq. (1.83) proves that the cylinder is conformally flat, with the Weyl factor

given by Ω(r) = R/r. Explicitly, the map between flat space and the cylinder is given by

xµ(t,n) = et/R nµ . (1.84)

In principle, CFT correlation functions on the cylinder can be worked out using Weyl

invariance (1.73). A dimension-∆ scalar transforms for example as [21, 59]

〈O(t,n) · · ·〉cyl =
e∆t/R

R∆
〈O(x = et/R n) · · ·〉flat. (1.85)

The reader will remark that a time translation t → t + τ on the cylinder has the same

effect as rescaling r → eτ/R r. Alternatively, the dilatation operator D displaces points along

the time direction of the cylinder:

D = ix · ∂
∂x
→ iR

∂

∂t
. (1.86)

This observation can be used to quantize CFTs on the cylinder. As a starting point, we

postulate the existence of a ground state |0〉, that by conformal invariance must satisfy

Pµ|0〉 = Kµ|0〉 = Mµν |0〉 = D|0〉 = 0 . (1.87)

In the next section, we will construct the Hilbert space of the CFT. Abstractly, we can

already learn something about quantum mechanics on the cylinder. In the Schrödinger



picture (on the Euclidean cylinder), states |ψ(t)〉 should evolve as

∂

∂t
|ψ(t)〉 = −H|ψ(t)〉 , (1.88)

hence we should identify the Hamiltonian H with the dilatation operator: 9

H = iD/R. (1.89)

Notice that the factor of 1/R gives H dimensions of energy, as befits a Hamiltonian; the

factor of i is needed to make H self-adjoint. When dealing with local operators, it is more

convenient to use the Heisenberg picture, in which any operator A evolves as

A(t) = eHtA(t = 0) e−Ht. (1.90)

Physically, we can think of e−Ht as a transfer matrix that acts on timeslices Sd−1. This is

consistent with the fact that we are working on the Euclidean cylinder: on the Minkowski

cylinder (with time coordinate t→ it), time evolution of operators is unitary.

1.6.1 State-operator correspondence

With the basic framework of radial quantization in place, we will now construct a

complete basis of states on the cylinder. First, we remark that the SO(d) generators Mµν

commute with H: the Hilbert space can therefore be organized according to two quantum

numbers, energy E and spin j.

How can we define states |E, j〉 that fit this label? The key idea is to define states by

inserting local operators at the origin:

Oi(x) 7→ |Oi〉 ≡ lim
x→0
Oi(x)|0〉. (1.91)

The quantum numbers of these states can easily be computed using the commutators (1.35).

If O(x) is for example a primary of dimension [O] = ∆, then its energy is ∆/R:

H|O〉 = [H,O(0)]|0〉+O(0)H|0〉
= ∆/R |O〉 (1.92a)

9. In local CFTs, this can be further motivated via Noether’s procedure. The dilatation current in flat

space is jµ(x) = Tµνx
ν , hence dilatations around the origin are generated by [81, 79]∫

|x|= cst.

dσµ jµ(x) , dσµ = |x|d−2xµdn .

The dilatation current maps to the cylinder as |x|d−2xµjµ(x)flat = Rd Ttt(t,n)cyl for t = R ln |x|. In cylinder

coordinates, the above dilatation charge therefore maps to

R

∫
Sd−1

Ttt(t,n)Rd−1dn

which is a familiar expression for the Hamiltonian (up to a factor of R).



where we use that H|0〉 ∝ D|0〉 = 0. Similarly,

Kµ|O〉 = 0 , (1.92b)

Mµν |O〉 = Sµν |O〉 . (1.92c)

How about descendants of the primary O? If we insert the operator

∂µO(x) = i[Pµ,O(x)] (1.93)

at the origin, we obtain

|∂µO〉 ≡ lim
x→0

∂µO(x)|0〉 = i[Pµ,O(0)]|0〉 = iPµ|O〉. (1.94)

This can be iterated: the state

Pµ1 · · ·Pµn |O〉 = (−i)n lim
x→0

∂µ1 · · · ∂µnO(x)|0〉 (1.95)

corresponds to a level-n descendant of O inserted at x = 0. Using the commutation relation

[H,Pµ] = R−1Pµ, it is easy to see that the above state has energy (∆ + n)/R.

Let H be the vector space defined by inserting all local operators Oi at the origin. It

may now be shown that any state |Ψ〉 is included in H, hence H describes the full Hilbert

space of the CFT. This property of CFTs is known as the state-operator correspondence; for

details of the proof, we refer to [53].

1.6.2 Adjoint states and matrix elements

Although we have constructed a basis of states |Oi〉, no inner product 〈Oi|Oj〉 has yet

been specified. The goal of the current section is to define the adjoint 〈ψ| to any state |ψ〉.
As a starting point, we remark from Eq. (1.90) that formally the adjoint of any Heisenberg

operator A(t) is given by

[A(t)]† = e−HtA†(t = 0) eHt , (1.96)

using the fact that H is self-adjoint. If A = A(t = 0) is self-adjoint, the above equation

implies that [A(t)]† = A(−t). This may look confusing, but analytically continuing to

Minkowski space (with time t′ = −it) gives back the usual rule for hermitian operators:

[A(t′)]† = A(t′).

Using the operator-state correspondence, this Euclidean adjoint is all we need to com-

pletely define the map |ψ〉 7→ 〈ψ|. Recall that a basis of the Hilbert space is given by states

|Oi〉 that correspond to local operators:

|O〉 = lim
x→0
O(x)|0〉 . (1.97)



The adjoint 〈O| to such a state can in principle be computed as

〈O| = lim
x→0
〈0|[O(x)]† . (1.98)

To make this concrete, let us specialize to the case where O is a scalar primary with [O] = ∆.

To compute [O(x)]†, we can map O to the cylinder and back, using (1.85) twice. The result

is

[O(x)]† = |x|−∆[O(t,n)]† = |x|−∆O(−t,n) = |x|−2∆O(x′) , x′µ = xµ/x2. (1.99)

The above formula has a simple interpretation: the time reflection (t,n) 7→ (−t,n) maps

the corresponding point x = et/R n in flat space to the inverted point x′ = e−t/R n = x/|x|2.

Consequently, the adjoint state 〈O| is given by

〈O| = lim
x→0
|x|−2∆〈0|O(x′) = lim

w→∞
|w|2∆〈0|O(w). (1.100)

Similar formulas exists for adjoints of states with nonzero spin.

Without proof, we mention that the generators Pµ and Kµ are conjugate to one an-

other [21]:

K†µ = Pµ , P †µ = Kµ . (1.101)

This means that the adjoint to a descendant state

|χ〉 = Pµ1 · · ·Pµj |O〉 (1.102)

is given by

〈χ| = 〈O|Kµ1 · · ·Kµj . (1.103)

Since any non-primary state is a descendant, the above rules completely define an inner

product 〈Φ|Ψ〉 in radial quantization. If all states have a positive norm with respect to this

inner product, a theory is said to be reflection positive: this provides a natural generalization

of unitarity on the Minkowski cylinder.

We will treat two examples to show how the above formalism can be used to compute

actual matrix elements. First, we consider a set of scalar primaries {Oi} of identical scaling

dimension ∆. If the two-point functions 〈OiOj〉 are given by

〈Oi(x)Oj(y)〉 =
aij

|x− y|2∆
(1.104)

then the matrix elements 〈Oi|Oj〉 are given by

〈Oi|Oj〉 = lim
x→0
y→0

|x|−2∆〈[Oi(x)]†Oj(y)〉 = lim
y→0
w→∞

|w|2∆ aij
|w − y|2∆

= aij . (1.105)

The matrix aij therefore must be positive definite in a unitary theory; this proves an assertion

made in section 1.4.



As a second example, we consider a matrix element 〈Oi|Oj(x)|Ok〉 involving three scalar

primaries. Using the three-point function (1.50), the matrix element in question evaluates

to

〈Oi|Oj(x)|Ok〉 = lim
w→∞
y→0

|w|2∆i〈Oi(w)Oj(x)Ok(y)〉 =
cijk

|x|∆j+∆k−∆i
. (1.106)

1.6.3 Unitarity constraints on CFTs

Above, we defined an inner product on the Hilbert space of a CFT. It turns out that there

exists an easy criterion that determines whether this inner product is unitary. Roughly speak-

ing, unitarity requires that all primary states |Oi〉 and all descendant states Pµ1 · · ·Pµj |Oi〉
have a positive norm. 10 These norms can be computed using the conformal algebra (1.15):

therefore they depend on the scaling dimension ∆ and the SO(d) quantum numbers of the

primary Oi.

Through this argument, sufficient conditions for unitarity can be formulated as lower

bounds on scaling dimensions of primary operators, depending on the SO(d) representation

of the primary in question. The precise bounds for scalar and spin-` primaries are [60, 82]

` = 0: ∆ > (d− 2)/2 or ∆ = 0,

` > 0: ∆ > `+ d− 2.
(1.107)

These bounds are all saturated in known theories: ∆ = 0 is the dimension of the unit

operator, and ∆ = (d − 2)/2 is the dimension of the free scalar field. Similarly, spin-`

conserved currents automatically have dimension ∆ = ` + d − 2; such currents are easily

constructed in free theories. The converse holds too: a spin-` operator with a dimension

saturating the unitary bound (1.107) is automatically conserved, and a scalar of dimension

∆ = (d− 2)/2 has trivial correlation functions [83, 84].

Unitarity also puts constraints on three-point function coefficients. If Oi,Oj ,Ok are three

hermitian scalar primaries, then it follows from Eq. (1.106) that

cijk = 〈Oi|Oj(x)|Ok〉 = 〈Ok|Oj(x)|Oi〉 = ckji , (1.108)

provided that |x| = 1. Because cijk is symmetric in its indices, it follows that cijk is real.

This result extends to scalar-scalar-spin ` correlation functions (see [14] for a careful proof).

10. We use the fact that in a unitary CFT, there exists an orthonormal basis of primary operators, obeying

〈Oi|Oj〉 = δij . Consequently, descendants of different primaries do not overlap. If such a basis does not exist,

there are necessarily null or negative-norm states present.



1.7 Operator product expansion

We now turn our attention to a useful property of CFTs, known as the operator prod-

uct expansion (OPE). The OPE entails that the product of any two (primary) operators

O1(x1)O2(x2) admits a short-distance expansion in the limit x2 → x1:

O1(x1)O2(x2) =
∑

Ok primary

F12k(x12, ∂2)Ok(x2) , (1.109)

where the sum runs over all primary operators Ok in the theory and F12k is a (for now

undetermined) differential operator. For simplicity, all SO(d) indices are suppressed in this

equation.

The above OPE (1.109) O1 × O2 must be understood as a relation between correlation

functions:

〈XO1(x1)O2(x2)〉 =
∑

Ok primary

F12k(x12, ∂2) 〈XOk(x2)〉 (1.110)

where X = Oj1(y1) · · · Ojn(yn) is a string of other operators. We will briefly argue why this

relation is valid. 11 Let us suppose that the points x1 and x2 are ‘close together’, in the

sense that there exists a sphere S separating the points {x1, x2} from {y1, . . . , yn} in the

correlation function (1.110). We can then apply radial quantization around the center w of

S , inserting a complete basis of states 1 =
∑

n |n〉〈n| at the surface S :

〈0|XO1(x1)O2(x2)|0〉 =
∑
n

〈0|X|n〉〈n|O1(x1)O2(x2)|0〉. (1.111)

By the state-operator correspondence, the states |n〉 correspond to operators O inserted at

w; we can therefore write the above as∑
all operators O

fO(x12) 〈XO(w)〉, fO(x12) = 〈O|O1(x1)O2(x2)|0〉. (1.112)

To get this formula in the desired form (1.110), we separate the contributions from primaries

and descendants in the above sum and resum the descendants. This way, we can rewrite the

above formula as ∑
Ok primary

F̃k(x12, ∂w) 〈XOk(w)〉. (1.113)

As a final step, we need shift the exchanged operator Ok(w) to the point x2. This is done

by expanding Ok(w) = Ok(x2) + (w − x2)µ∂µOk(x2) + . . ., which changes the precise form

of F̃k. By a trivial rewriting, we obtain the desired result (1.110).

The above argument gives a sharp condition for the OPE to hold, namely the existence

of a sphere that separates x1, x2 from all other operator insertions yj . With some additional

11. A much more complete treatment is given in Ref. [21].



work, it may be shown that the OPE is convergent, even at finite x1 − x2; we refer to [85,

86, 21] for more details.

The differential operators Fijk(x12, ∂2) appearing in (1.109) are fixed by conformal invari-

ance, as we will discuss now. The crucial idea is that the OPE Oi×Oj ∼ Ok is in one-to-one

correspondence with the three-point function 〈Ok(y)Oi(x1)Oj(x2)〉 [61, 62]. For simplicity,

let us assume that all three operators are scalars. We can always translate x2 → 0 and

relabel x1 → x. Recall that the three-point function is restricted by conformal invariance to

the form (1.50)

J (x, y) ≡ 〈Ok(y)Oi(x)Oj(0)〉 =
cijk

|x|∆ijk |y|∆jki |x− y|∆ikj
(1.114)

writing ∆abc ≡ ∆a + ∆b − ∆c as before. In the domain |x| < |y|, the product Oi(x)Oj(0)

can be expanded using the OPE:

J (x, y) = lim
ε→0

∑
Ok′ primary

Fijk′(x, ∂ε) 〈Ok(y)Ok′(ε)〉

= lim
ε→0
Fijk(x, ∂ε) 〈Ok(y)Ok(ε)〉

= lim
ε→0
Fijk(x, ∂ε)

1

|y − ε|2∆k
. (1.115)

To pass from the first to the second line, we assume that all primaries are orthogonal, so

only the term with k′ = k contributes to the sum. In order to fix Fijk, we simply notice

that the OPE (1.115) must reproduce the correlator (1.114). It is now easy to establish that

Fijk(x, ∂) has the following properties:

— Fijk is proportional to cijk;

— by rotation invariance, Fijk(x, ∂) can only depend on |x|, x · ∂ and ∂2;

— under a dilatation x→ λx, Fijk scales as

Fijk(λx, λ−1∂) = λ−∆ijkFijk(x, ∂) . (1.116)

We deduce that Fijk is of the following form:

Fijk(x, ∂) =
cijk

|x|∆ijk

∞∑
m,n=0

βmn(x · ∂)m(x2∂2)n . (1.117)

The precise coefficients βmn above are determined by matching (1.115) to a Taylor expansion

of the correlator (1.114) around x = 0. Up to terms of order x3, we have for example 12

Fijk(x, ∂) =
cijk

|x|∆ijk

[
1 +

∆k + ∆ij

2∆k
x · ∂ +

(∆k + ∆ij)(∆k + ∆ij + 2)

8∆k(∆k + 1)
(x · ∂)2

−
∆2
k −∆2

ij

16∆k(∆k + 1)(∆k − ν)
x2∂2 + O(|x|3)

]
. (1.118)

12. For completeness, we remark that explicit expressions for the differential operators F are known in

some cases [17–19, 15], but they are not required in the rest of this thesis.



It is straightforward to show that the coefficients βmn depend on the ‘external’ dimensions

∆i and ∆j only through their difference ∆ij = ∆i−∆j . Because the coefficient cijk controls

the leading OPE behaviour as x→ 0, they are also known as OPE coefficients.

Having established the relation between the OPE and three-point functions, it is easy to

see which primaries Ok contribute a particular OPE Oi × Oj . In this thesis, we will only

be interested in the case where Oi and Oj are both scalars. Recall from section 1.4 that

only traceless symmetric tensor operators can have a nonvanishing three-point function with

two scalars. Consequently, only TSTs (and not other SO(d) representations) appear in a

scalar-scalar OPE O1 × O2. Moreover, if both scalars are identical (O1 = O2), then only

tensor operators of even spin appear (cf. the argument at the end of section 1.4).

1.7.1 Conformal block decomposition

Let us now consider a correlation function of four identical scalars ϕ, which is of the form

(cf. Sec. 1.4)

〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)〉 =
G(u, v)

|x12|2η|x34|2η
, η = [ϕ] (1.119)

for some function G(u, v) that only depends on the cross-ratios u and v. It turns out that

G(u, v) is completely determined by the OPE, and therefore the three-point functions of the

theory. To prove this, we apply the OPE twice to the correlator (1.119), both to the operator

product ϕ(x1)ϕ(x2) and to ϕ(x3)ϕ(x4). The question where these OPEs converge will be

postponed until the next section. Schematically, this double OPE can be expressed as a

double sum over all primary TST operators in the theory:

〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)〉 =
∑
Oi,Oj

primary TST

Fϕϕi(x12, ∂2)Fϕϕj(x34, ∂4) 〈Oi(x2)Oj(x4)〉. (1.120)

Working in a theory where the two-point functions are diagonal, Eq. (1.120) collapses to a

single sum:

〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)〉 =
∑

O prim. TST

(cϕϕO)2 WO(x1, x2, x3, x4). (1.121)

where we have extracted the OPE coefficients cϕϕO from the differential operators FφφO. The

functionWO resums the contribution of the primary O and its descendants to the correlator

〈ϕϕϕϕ〉. It may be shown [87] that WO has the same transformation properties under

conformal transformations as the four-point function 〈ϕ(x1)φ(x2)φ(x3)ϕ(x4)〉, meaning that

it can be written as

WO(x1, x2, x3, x4) =
1

|x12|2η|x34|2η
GO(u, v) (1.122)

for some function GO(u, v) that only depends on u and v. Such a function is called a

conformal block or a conformal partial wave, and it encodes the contribution of a primary O



and its descendants to the function G(u, v) appearing in the correlator (1.119):

G(u, v) =
∑

O prim. TST

(cϕϕO)2GO(u, v) (1.123)

as follows from Eq. (1.122). This is the desired result: we have shown that the a priori

arbitrary function G(u, v) is completely fixed by conformal invariance, and that it depends

only on the OPE coefficients cijk of the theory.

The x-dependence of G(u, v) is completely encoded by the conformal blocks GO(u, v)

appearing in Eq. (1.123). Notice that these functions are universal, in the sense that depend

on the dimension and spin of O, but not on any details of the CFT under consideration.

For completeness, we note the conformal block decomposition (1.123) applies to all CFT

four-point functions, not just those of identical scalars. In the case of four non-identical

scalars, we have

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 ∼ G1234(u, v) , G1234(u, v) =
∑

O prim. TST

c12Oc34OGO(u, v) .

(1.124)

The general case differs from the decomposition (1.123) in two ways: first, operators of any

spin ` > 0 are summed over here, whereas only even spins contribute to the correlator of

identical scalars (cf. the discussion in section 1.7). Second, in the general case the conformal

blocks GO(u, v) depend not only on the dimension and spin of O, but also on the external

dimensions ∆12 and ∆34. The same applies to four-point functions of non-scalar operators;

the situation there is however significantly more complicated, see e.g. [87, 66, 88, 89].

Domain of convergence

We have yet to analyze the domain of convergence of the conformal block decomposi-

tion (1.122). In what follows, we use a particular sequence of conformal transformations to

pass from a general configuration of the points {x1, x2, x3, x4} ∈ Rd to a specific configuration

that depends on a single complex parameter, greatly simplifying the ‘kinematics’ of the

problem.

First, the point x4 can be moved to infinity using an SCT, and a subsequent translation

puts x1 at the origin. The points {x1, x2, x3} then span a plane that passes through the

origin, which after a rotation can be made to align with the (12)-plane. We parametrize the

latter by a complex coordinate ζ = x1 + ix2. By a combined dilatation and rotation in the

ζ-plane, x3 can be moved to the point ζ = 1, which leaves x2 ≡ z as the only free parameter.

In this special configuration, the points xi are thus given by

x1 = 0, x2 = z, x3 = 1, x4 =∞ . (1.125)

This configuration of points is shown in Fig. 1.2. In the kinematics of Eq. (1.125), the cross



ϕ(0)

ϕ(z) ϕ(∞)

ϕ(1)

Figure 1.2: Configuration described from (1.125) in the (12) plane. Dashed: example of a circle

separating {0, z} from {1,∞}.

ratios are given by

u = zz̄, v = (1− z)(1− z̄), z̄ = z∗. (1.126)

In two dimensions, the above kinematics are well-known; in d > 2 dimensions, the parametriza-

tion of the cross ratios was first used by Dolan and Osborn [15].

It is now straightforward to see when the conformal block decomposition is valid. For the

OPE ϕ(0) × ϕ(z) to converge, the points {0, z} must be separated from the points {1,∞}
by a circle in the z-plane. Such a circle exists for all z outside of the half-line [1,∞). No

additional condition comes from imposing convergence of the ϕ(1)× ϕ(∞) OPE.

We therefore expect the conformal blocks GO(z, z̄) to be smooth, real-valued functions

everywhere on the domain z ∈ C \ [1,∞). It is instructive to compare this prediction to

closed-form expressions for conformal blocks in two [19, 90] and four [15, 16] dimensions. 13

These expressions make use of the hypergeometric function 2F1(a, b; c; z):

2F1(a, b; c; z) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
. (1.127)

The coefficients of 2F1(a, b; c; z) are written in terms of the Pochhammer symbol

(x)n ≡
Γ(x+ n)

Γ(x)
= x(x+ 1) · · · (x+ n− 1) , n ∈ N . (1.128)

The series (1.127) converges absolutely on the unit disk 14 but has a branch cut starting at

z = 1. Away from the branch cut [1,∞) on the real axis, the hypergeometric function can

be analytically continued (see e.g. sections 2.1.3 and 2.1.4 of Ref. [92]). Using the shorthand

notation

kβ(z) = zβ/2 2F1

(
1
2(β −∆12), 1

2(β + ∆34);β; z
)
, (1.129)

the conformal block G∆,` for an operator of spin ` and dimension ∆ is then

G∆,`(z, z̄) = k∆+`(z)k∆−`(z̄) + (z ↔ z̄) (1.130a)

13. Many details and references concerning the two-dimensional case can be found in Ref. [91].

14. On the circle |z| = 1, the series (1.127) converges absolutely if <(a+ b− c) < 0, it converges

conditionally (away from z = 1) if 0 6 <(a+ b− c) < 1, and it diverges on |z| = 1 otherwise [92].



in d = 2, and

G∆,`(z, z̄) =
zz̄

z − z̄ [k∆+`(z)k∆−`−2(z̄)− (z ↔ z̄)] (1.130b)

in d = 4. The analytic structure of the 2d and 4d conformal blocks is therefore the same

as the analytic structure of the hypergeometrics, apart from z = 0 where they behave as

G∆,` ∼ (zz̄)∆/2.

1.7.2 Conformal bootstrap

We can use the conformal block decomposition from the previous section to revisit the

relations (1.54) expressing the constraints coming from Bose symmetry (in this context also

known as crossing symmetry) on the functions G1234(u, v). Symmetry under the exchange

φ1(x1)↔ φ3(x3) for example required that

v(∆2+∆3)/2 G1234(u, v) = u(∆1+∆2)/2 G3214(v, u). (1.131)

To use a conformal block decomposition, we want to apply the OPE on both sides of this

equation simultaneously. On the LHS, this requires that both OPEs (12) and (34) exist,

while on the RHS we require the (23) and (14) OPEs. Suppose for now that these conditions

are all satisfied for suitable values of u and v. In that case, Eq. (1.131) can be expanded as

a sum over all primaries O in the theory:

v(∆2+∆3)/2
∑

O=(∆,`)

c12Oc34OG∆,`(u, v; ∆12,∆34)

= u(∆1+∆2)/2
∑

O=(∆,`)

c32Oc14OG∆,`(v, u;−∆23,∆14) , (1.132)

where we have made the dependence of the conformal blocks on the external dimensions ∆i

explicit. This equation involves both the spectrum of a CFT (the set of primary operators

O∆,`) and its OPE coefficients cijk. As such, it will form a non-trivial consistency requirement

on the CFT data {O∆,`, cijk}. Equations as (1.133) that follow from crossing symmetry are

known as bootstrap equations [10–12].

Notice that for every four-point function 〈O1O2O3O4〉 in a given CFT, an equation of

the form (1.133) may be written down. It seems very ambitious to attack this full system

of equations at once. In what follows, we will therefore focus on a single correlator of four

identical fields ϕ of dimension [φ] = η, in which case crossing symmetry requires that

vη
∑

O=(∆,`)

λOG∆,`(u, v) = uη
∑

O=(∆,`)

λOG∆,`(v, u) , λO = (cϕϕO)2 . (1.133)

We have yet to discuss the domain of validity of the crossing equation (1.133); as before,

we wil do so using the z-coordinate. Recall from the previous section that the (12) → (34)



OPE converges away from the branch cut [1,∞). The exchange x1 ↔ x3 is equivalent to

exchanging z → 1 − z; the two OPEs in the (23) → (14) channel therefore converge if z is

outside of the interval (−∞, 0]. In summary, the bootstrap equation (1.133) is well-defined

for every z in the domain

C \ (−∞, 0] ∪ [1,∞) . (1.134)

To solve the crossing symmetry equation (1.133), explicit expressions for the conformal

blocks are needed. Recall from the previous section that conformal blocks in the (12)→ (34)

channel converge absolutely inside the unit disk |z| < 1. The conformal blocks in the

(14) → (23) channel are obtained by replacing z → 1 − z, and thus converge absolutely

on the disk |z − 1| < 1. Without analytically continuing the conformal blocks, the crossing

symmetry equation (1.133) is therefore valid inside the domain max{|z|, |z − 1|} < 1.

Notice now that the point z = 1/2 plays a special role with respect to crossing symmetry:

it is the only point left invariant by the exchange x1 ↔ x3. Starting with Ref. [14], it

has become customary to study the bootstrap equation (1.133) in a neighborhood of this

point. To be precise, the authors of Ref. [14] Taylor expand the bootstrap equation around

z = z̄ = 1/2, keeping only a finite number of derivatives in the real and imaginary directions.

This derivative expansion has radius of convergence 1/2, due to the singularities at z = 0, 1.

We schematically draw the various domains of convergence in Fig. 1.3.

0 1

Figure 1.3: Light shaded area: domain of convergence of the conformal blocks in the z-plane.

Dark shaded area: domain of convergence of the series expansion around z = 1/2. Zigzag lines:

branch cuts of the conformal blocks. The arrows indicate how the Taylor expansion around

z = 1/2 must be understood.

The Taylor expansion reduces the crossing symmetry equation to a system of N linear

equations, where N is the total number of derivatives that is taken into account. After fixing

a spectrum {O∆,`}, these equations involve the squared OPE coefficients λO = (cϕϕO)2 as

unknown parameters. Generically, such a system is easy to solve, as long as sufficiently many

primary operators are added (such that the system is underdetermined). Unitary however



implies that cϕϕO is real, meaning that λO is positive; this requirement makes the linear

system much less trivial to solve. Using unitarity, it turns out that only certain spectra

{O∆,`} are consistent with crossing symmetry: if the ϕ× ϕ OPE is schematically given by

ϕ× ϕ ∼ 1+ ϕ′ + ( scalars of dimension > [ϕ′] ) + non-scalar primaries , (1.135)

then it can e.g. be shown that [ϕ′] is bounded from above [14].

In practice, different linear programming methods are used to either solve the crossing

equation or to rule out a possible solution, depending on the spectrum {O∆,`}. It is outside

the scope of this thesis to explain the methods used in any detail: we refer the reader to the

papers [93–99, 7, 100–104, 9, 105–114] to understand the various numerical methods that

are currently in use. 15

All of these methods have in common that they require as input derivatives of conformal

blocks G∆,`(z, z̄) for arbitrary values of ∆ and `, evaluated that the point z = 1/2:

(∂/∂z)m (∂/∂z̄)nG∆,`(z, z̄)
∣∣∣
z=1/2

. (1.136)

The method described above specializes to the point z = 1/2, although it may very well be

possible that future applications of the bootstrap focus on different points z0. For d = 2

and d = 4 dimensions, the closed-form expressions (1.130) may be used to compute these

derivatives, but for odd (or even noninteger) d, no simple strategy is known to find the above

derivatives. This problem will be dealt with in much detail in chapters 2 and 3.

1.8 Casimir differential equations

We conclude this introductory chapter by reviewing a method proposed by Dolan and

Osborn in Ref. [16] to compute conformal blocks. 16 For concreteness, we focus on the

correlator 〈ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4)〉 of four identical scalars, and we assume that the operators

ϕ(x1) · · ·ϕ(x4) are radially ordered. Eventually, we are interested in finding a differential

equation that governs a conformal partial wave GO(u, v) appearing in partial wave expansion

of 〈ϕϕϕϕ〉.

Let us first focus on the function WO(x1, x2, x3, x4), defined in Eq. (1.121). To single out

the contribution of WO, we use the projection operator∑
|n〉∈B

|n〉〈n| (1.137)

15. See also Refs. [115, 116] for an approach to the bootstrap that is not manifestly based on unitarity.

16. For other discussions of this method, we refer to [14, 66, 49].



where B is an orthonormal basis of the span of |O〉 and its descendants Pµ|O〉, P 2|O〉, et

cetera. We then have

WO(x1, x2, x3, x4) =
1

(cϕϕO)2

∑
|n〉∈B

〈0|ϕ(x1)ϕ(x2)|n〉〈n|ϕ(x3)ϕ(x4)|0〉 (1.138)

after dividing by the OPE coefficients cϕϕO to get the correct normalization from Eq. (1.121).

Next, we recall that the conformal generators LAB act as first-order differential operators

LAB on the fields ϕ(xi):

[LAB, ϕ(xi)] ≡ L(i)
AB ϕ(xi) (1.139)

The explicit form of the LAB is derived in Eq. (1.35), but will not be needed for the rest

of this argument. In particular, the linear combination L(1)
AB + L(2)

AB ‘passes through’ the

product ϕ(x1)ϕ(x2) in the matrix element 〈0|ϕ(x1)ϕ(x2)|n〉:(
L(1)
AB + L(2)

AB

)
〈0|ϕ(x1)ϕ(x2)|n〉 = 〈0|[LAB, ϕ(x1)ϕ(x2)]|n〉

= −〈0|ϕ(x1)ϕ(x2)LAB|n〉. (1.140)

In passing from the first to the second line, we used that 〈0|LAB = 0 by conformal invariance.

The above trick holds for every term when acting on (1.138), hence(
L(1)
AB + L(2)

AB

)
WO = − 1

(cϕϕO)2

∑
|n〉∈B

〈0|ϕ(x1)ϕ(x2)LAB|n〉〈n|ϕ(x3)ϕ(x4)|0〉. (1.141)

Let us now define the second-order differential operator

E12 =
1

2

(
L(1)
AB + L(2)

AB

)(
L(1),AB + L(2),AB

)
(1.142)

that acts on x1 and x2. 17 From the above reasoning, acting with E12 on the function WO is

equivalent to acting with the quadratic Casimir C2 on the intermediate states |n〉:

E12WO(x1, x2, x3, x4) =
1

(cϕϕO)2

∑
|n〉∈B

〈0|ϕ(x1)ϕ(x2)C2|n〉〈n|ϕ(x3)ϕ(x4)|0〉. (1.143)

This sum can be computed term by term in n. Let us focus on the primary state |O〉 first.

If O has dimension ∆ and spin `, then |O〉 is an eigenstate of the quadratic Casimir:

C2|O〉 = c
(2)
∆,`|O〉 , c

(2)
∆,` = ∆(∆− d) + `(`+ d− 2) . (1.144)

The eigenvalue c
(2)
∆,` can be computed explicitly from Eq. (1.20), using the observation that

Kµ|O〉 vanishes. The second term in c
(2)
∆,` comes from the SO(d) Casimir C2 that was

computed in Eq. (1.41). Next, we remark that the Casimir C2 has the same eigenvalue

acting on a descendant state |n〉 6= |O〉: this follows from the fact that C2 commutes with

Pµ. Consequently, the function WO(x1, x2, x3, x4) obeys a second-order partial differential

equation [20, 87]: [
E12 − c(2)

∆,`

]
WO(x1, x2, x3, x4) = 0 . (1.145)

17. The indices on L(i)
AB are to be raised according to the Minkowski metric on SO(d+1, 1), cf. section (1.2).



Finally, we notice that the conformal block G∆,`(u, v) is by definition proportional to

WO(x1, x2, x3, x4), cf. equation (1.122). The above differential equation therefore descends

to one for G∆,`(u, v), schematically given by

Du,v G∆,`(u, v) = c
(2)
∆,`G∆,`(u, v) , (1.146)

where Du,v is a second-order differential operator in the coordinates u and v. An explicit for-

mula for Du,v is given in [16], Eq. (1.8). The equation (1.146) is called a Casimir differential

equation for the conformal block G∆,`(u, v). In order to completely determine G∆,`(u, v),

boundary conditions need to be specified, that essentially follow from the behaviour of the

ϕ(x1)× ϕ(x2) ∼ O(x2) OPE as x1 → x2 [15]. We will make these conditions precise in the

next chapter.

Similarly, a fourth-order differential equation exists for G∆,`(u, v), obtained by acting

with the quartic Casimir C4 (1.23):

C4|O〉 = c
(4)
∆,`|O〉 ,

c
(4)
∆,` = ∆2(∆− d)2 + 1

2d(d− 1)∆(∆− d) (1.147)

+ `2(`+ d− 2)2 + 1
2(d− 1)(d− 4)`(`+ d− 2).

Note that only terms on the first line of Eq. (1.23) contribute, because Kµ annihilates |O〉.
Furthermore, we have used both SO(d) Casimirs (1.41). The resulting quartic Casimir

differential equation is shown in Eq. (4.14) of Ref. [20].



Chapter 2

Conformal blocks in radial

coordinates 1

In chapter 1, we presented a first view at conformal blocks, functions of the cross-ratios

u and v that encode the contribution of a primary operator to four-point functions in

a conformal field theory. Because these conformal blocks play an important role in the

conformal bootstrap program, the current chapter (as well as the next one) is devoted to

computing them.

Little is known in general about conformal blocks. In fact, the closed-form results in d = 2

and d = 4 dimensions displayed in Eq. (1.130) are essentially the only exact expressions for

spin-` conformal blocks in d dimensions. 2 Early applications of the bootstrap, such as [14],

were therefore limited to studying bootstrap equations in two and four dimensions. In general

d, an approach to evaluating the conformal blocks and their derivatives was developed in

2012 in [7], and applied in a first bootstrap analysis of the 3d Ising model.

Nonetheless, conformal blocks remain rather mysterious special functions. The purpose

of this chapter is to ‘demystify’ them via a concrete approach. We use an idea that is rarely

used in d > 2 CFT but standard in the 2d CFT literature [12], namely that conformal blocks

are sums of matrix elements in radial quantization; all conformal blocks together sum up to a

four-point function. Recently [21], this point of view proved useful to study the convergence

rate of the conformal block decomposition. Here, we develop it to its logical end.

We start in section 2.1 by showing how conformal blocks can be represented using radial

quantization. The Dolan-Osborn variable z arises naturally, when placing one operator at

the radial quantization origin and by mapping a second operator to infinity. The conformal

blocks admit an expansion in terms of the radial coordinate |z| and the angular variable

1. This chapter is a reworked version of [117], which was written in collaboration with S. Rychkov.

2. It is also possible to compute conformal blocks in d = 6 (or higher even d), see [16].
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θ = arg z.

In section 2.2, we develop a different series expansion of conformal blocks in radial

quantization, inserting the operators symmetrically around the origin. This geometry defines

a new radial coordinate ρ, which has several advantages compared to the z-coordinate. In

particular, the ρ-series expansion converges in the full domain of regularity of the conformal

blocks; moreover, it has a faster converge rate.

The ρ-series has various potential applications to the conformal bootstrap program; we

outline two in section 2.3. A summary of the results is given in section 2.4.

Appendix A contains a proof that coefficients appearing in the ρ-expansion are bounded.

2.1 Conformal blocks in the Dolan-Osborn coordinates

In this thesis, we will only be concerned with scalar four-point functions in the Euclidean

domain, although a generalization to non-scalar four-point functions is possible. For sim-

plicity, we discuss here the correlator of four identical scalars, which is fixed by conformal

invariance

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 =
g(u, v)

|x12|2∆φ |x34|2∆φ
, (2.1)

where g(u, v) is a function of the conformally invariant cross ratios u and v. The partial

wave decomposition of this correlator takes the form:

g(u, v) =
∑
O
f2
OGO(u, v), (2.2)

where the GO(u, v) are the conformal blocks of the primary operators appearing in the φ×φ
OPE and fO ≡ fφφO are their OPE coefficients. We recall that in this conformal block

decomposition, the only exchanged primaries are traceless symmetric tensors of even spin

`. 3 The function g(u, v) computed from this expansion must satisfy the crossing symmetry

equation

v∆φg(u, v) = u∆φg(v, u) , (2.3)

which imposes constraints on the dimensions, spins, and OPE coefficients fO of the exchanged

operators. However, our main interest here is not in how to extract these constraints (this

will be briefly discussed in section 2.3), but in the conformal blocks themselves.

Starting from the work of Dolan and Osborn [15, 16], it has become customary to express

conformal blocks by changing coordinates from u, v to z and z̄ ≡ z∗:

u = zz̄, v = (1− z)(1− z̄) . (2.4)

3. In a four-point function of non-identical scalar operators, tensor operators of odd spin are exchanged

as well.



The geometrical meaning of the new variables has been discussed in Sec. 1.7.1; we recall that

it arises by assigning three points to 0, 1,∞ as in Fig. 2.1.

x1

x2

x4 →∞

x3 = 1

θ

|z|

x2 ≡ z = |z|eiθ

Figure 2.1: By conformal symmetry, three operators can be put at x1 = 0, x3 = (1, 0, . . . , 0),

x4 → ∞, with the fourth point x2 somewhere in the (12)-plane parametrized by the complex

coordinate z.

The complex coordinate z is consistently used in d = 2 dimensional CFT, yet its utility

for general d is not a priori obvious. Refs. [15, 16] discovered that conformal blocks in d = 4

and in all even dimensions take particularly simple expressions in these coordinates. We

will not specify any particular dimension d for now. In fact, the conformal blocks depend

analytically on d (when keeping all other data fixed), hence the crossing symmetry equation

can be formally considered for all d, as was done e.g. in the context of the Wilson-Fisher

theory [118]. 4

To avoid possible misunderstanding, we should stress that although we parametrize

the conformal blocks by a complex variable z, we never use complex analysis. In d = 2

dimensions, conformal blocks factorize as a holomorphic times antiholomorphic function [91],

meaning that GO(z, z̄) = f(z)f̃(z̄) for suitable functions f, f̃ . This property does not hold

for general d; we will simply treat conformal blocks as real functions in the z-plane. In

practice, we will parametrize the z-plane using the radial coordinates |z| and θ = arg z.

2.1.1 Dolan-Osborn kinematics in radial quantization

To exhibit the general structure of conformal blocks in the z, z̄ variables, we propose to use

radial quantization, as introduced in section 1.6. Our goal is to express the conformal blocks

GO(z, z̄) in terms of matrix elements of operators on the cylinder R × Sd−1, parametrized

by the coordinates (t,n). For simplicity, we set the radius R of the cylinder to one.

The flat-space four-point function with points assigned as in Fig. 2.2 maps to the cylinder

matrix element

〈φ|φ(t3,n3)φ(t2,n2)|φ〉 . (2.5)

4. Note added: after the publication of this work, various other analyses of CFTs in fractional d have

been undertaken [107, 110, 112].



The operators inserted at zero and infinity map to the radial quantization in- and out-states

|φ〉 and 〈φ|. The other two insertions are at the cylinder times t2 = log |z| and t3 = 0. We

〈φ|

|φ〉

n
φ(x2)

n′
φ(x3)

t = ln |z|

t = 0

Figure 2.2: Using a Weyl transformation, the configuration in Fig. 2.1 is mapped onto a cylinder

matrix element with operators inserted as shown.

keep both unit vectors n2 and n3 explicit for future use, but the only rotationally invariant

parameter is their scalar product

n2 · n3 = cos θ, θ = arg z . (2.6)

In order to find expressions for the conformal blocks, we first note that in the configuration

with x1 = 0 and x4 →∞, the flat-space correlator can be expressed as

〈φ|φ(x3)φ(x2)|φ〉 = lim
x1→0
w→∞

|w|2∆φ〈φ(x1)φ(x2)φ(x3)φ(w)〉 =
g(u, v)

|x2|2∆φ
. (2.7)

As a consequence, the function g(u, v) may be rewritten as follows:

g(u, v) = |x2|2∆φ〈φ|φ(x3)φ(x2)|φ〉 (2.8a)

= et2∆φ 〈φ|φ(0,n3)φ(t2,n2)|φ〉. (2.8b)

In the second line, we have mapped the operators to the cylinder, using t3 = 0 and

φ(t2,n2) = et2∆φφ(x2). The next step is to express (2.8b) by inserting a complete basis

of energy eigenstates on Sd−1:

〈φ|φ(0,n3)φ(t2,n2)|φ〉 =
∑
E

e(E−∆φ)t2〈φ|φ(0,n3)|E〉〈E|φ(0,n2)|φ〉 (2.9)

where we use the Heisenberg picture on the cylinder, cf. Eq. (1.90):

〈E|φ(t2,n2)|φ〉 = 〈E|eHt2φ(0,n2)e−Ht2 |φ〉 = et2(E−∆φ)〈E|φ(0,n2)|φ〉. (2.10)



Specializing to the Dolan-Osborn coordinates with t2 = ln |z|, we obtain

g(u, v) =
∑
E

|z|E〈φ|φ(0,n3)|E〉 〈E|φ(0,n2)|φ〉, (2.11)

after the cancellation of both factors of et2∆φ = |z|∆φ .

The exchanged states |E〉 on the sphere are in one-to-one correspondence with the local

operators appearing in the OPE φ×φ. For now we do not distinguish between primary and

descendant states. Every state will come in a multiplet of SO(d). In fact, only symmetric

traceless tensor multiplets of spin j > 0 can couple for the considered correlator. 5 The right

matrix element

〈Eµ1···µj |φ(0,n2)|φ〉 (2.12)

must be a rank-j symmetric traceless tensor constructed out of the vector n2, which is fixed

up to a constant:

const.
(
nµ1

2 nµ2
2 . . .n

µj
2 − traces

)
. (2.13)

Analogously, the left matrix element is fixed up to a constant, and so a general term in (2.11)

will be proportional to 6

(nµ1
2 nµ2

2 . . .n
µj
2 − traces)(nµ1

3 nµ2
3 . . .n

µj
3 − traces) =

2j

j!(ν)j
Geg

(ν)
j (n2 · n3) (2.14)

where Geg
(ν)
j (z) is a Gegenbauer polynomial. Gegenbauer polynomials are a particular class

of spherical harmonics in d = 2ν + 2 dimensions. In low dimensions, they reduce to familiar

special functions:

d = 2 : lim
ν→0

j!

(ν)j
Geg

(ν)
j (cos θ) = 2 cos(jθ), (j > 0) (2.15a)

d = 3 : Geg
(1/2)
j (cos θ) = Pj(cos θ), (2.15b)

d = 4 : Geg
(1)
j (cos θ) = Uj(cos θ) , (2.15c)

where Pj is a Legendre polynomial and Uj is a Chebyshev polynomial of the second kind.

We conclude that the function g(u, v) appearing in the four point function (2.1) must have

an expansion of the form:

g(u, v) = 1 +
∑

pE,j |z|EGeg
(ν)
j (cos θ) , pE,j > 0. (2.16)

where the sum is over all local operators of dimension E and spin j appearing in the OPE

φ × φ. Although the coefficients pE,j are left undetermined by this argument, we do know

that they must be non-negative. This is because for n2 = n3 the configuration in Fig. 2.2

5. One cannot construct an antisymmetric tensor out of a single vector n, and so the corresponding matrix

elements necessarily vanish.

6. This contraction formula follows from the theory of spherical harmonics and harmonic polynomials, see

[37], Vol.2 Section 11.2, Lemma 1, and [119], Chapter 4.



becomes reflection-positive. The matrix elements in (2.11) are then complex conjugates of

each other.

The appearance of Gegenbauer polynomials in this result is not surprising, as they already

arise in the theory of angular momentum in quantum mechanics. When two spinless particles

scatter through a spin-j resonance, it is well known that the amplitude is given by the

Legendre polynomial of the scattering angle (see Fig. 2.3).

k −k

p

−p

θ

1

Figure 2.3: Elastic center-of-mass scattering of two scalar particles. When a spin-j resonance

dominates the scattering process, the amplitude is proportional to Pj(cos θ).

Consider now a particular primary operator O of dimension ∆ and spin ` occurring in

the φ × φ OPE. If we restrict the sum (2.16) to its conformal multiplet, it must represent

the conformal block of O. The conformal multiplet will have descendants of integer-spaced

dimensions ∆ + n with spins at level n taking values 7

j = `+ n, `+ n− 2, . . . ,max(`− n, `− n mod 2) . (2.17)

Moreover, the coefficients pE,j within one conformal multiplet are not independent, since the

matrix elements for the descendants will be all proportional to the basic OPE coefficient fO.

We conclude that the conformal block must have the following expansion:

G∆,`(u, v) =

∞∑
n=0

|z|∆+n
∑
j

An,j
Geg

(ν)
j (cos θ)

Geg
(ν)
j (1)

, An,j > 0, (2.18)

where the positive coefficients An,j are some universal functions of ∆, `, and d that are fixed

by conformal symmetry. We normalize the total conformal block by the condition A0,` = 1. 8

The Gegenbauer normalization factors

Geg
(ν)
j (1) = (2ν)j/j! (2.19)

are included in (2.18) for later convenience and also to ensure a smooth ν → 0 limit for

d = 2.

7. For short representations (e.g. those of conserved currents or a free scalar field) some of these spins will

not be there.

8. This normalization relates to the one used by Dolan and Osborn in [15, 16] as Ghere
∆,` =

(−2)l(ν)`/(2ν)`G
there
∆,` .



The formula (2.18) is the main result of this section. It should be noted that Ref. [16]

already used an expansion of conformal blocks into Gegenbauer polynomials, because they

turn out to form a convenient basis for solving the Casimir differential equation recursively

(see the next section). Ref. [120], Eq. (78), observed that in any number of dimensions

conformal blocks can be expanded in cos(j θ) with positive coefficients. For d = 2 our result

says the same, although for general d our conclusion is stronger. To obtain their result,

one runs the above argument classifying states into multiplets with respect to the SO(2)

subgroup of SO(d) acting in the (12)-plane. In particular, the Gegenbauer polynomials for

any ν > 0 have positive expansions in cos(j′ θ), j′ 6 j.

The region of convergence of the expansion (2.18) will be limited to |z| < 1, which is the

condition for the operators φ2 and φ3 in (2.5) to be time-ordered on the cylinder. However,

the actual domain X of regularity (cf. the discussion in Sec. 1.7.1) of the conformal block as

a function of z is larger; it is given by the complex plane minus the [1,+∞) cut along the

real axis:

X = C \ [1,+∞) . (2.20)

Everywhere in this region the blocks will be real-analytic, except at z = 0 because of the

|z|∆ factor . In section 2.2 below we will construct expansions convergent in the full region

X, but first we would like to study the coefficients of the expansion (2.18).

2.1.2 Expansion coefficients from the Casimir equation

We would like to compute the coefficients An,j in (2.18). In principle, this can be done

following the radial quantization method to its logical end: imposing the constraints of

conformal invariance in the OPE and evaluating the norms of the descendants. The example

of scalar exchanged primaries and their first two descendant levels was considered in [21].

However, it is far more efficient to use the method based on Casimir differential equations,

first proposed in [16] and reviewed in section 1.8. The idea is that the conformal block satisfies

an eigenvalue equation of the form

Du,v G∆,`(u, v) = c
(2)
∆,`G∆,`(u, v), c

(2)
∆,` = ∆(∆− d) + `(`+ d− 2), (2.21)

whereDu,v is a second-order partial differential operator. In the z, z̄-coordinates, the operator

D takes the form [16]

1
2D = [z2(1− z)∂2

z − z2∂z] + [z̄2(1− z̄)∂2
z̄ − z̄2∂z̄] + 2ν

zz̄

z − z̄ [(1− z)∂z − (1− z̄)∂z̄] . (2.22)

For our purposes it will be convenient to express it in the coordinates

s = |z|, ξ = cos θ = (z + z̄)/(2|z|) . (2.23)



We find:

D = D0 +D1,

D0 = s2∂2
s + (2ν + 1) [ξ ∂ξ − s ∂s]−

(
1− ξ2

)
∂2
ξ , (2.24)

D1 = s
[
−ξs2∂2

s + 2
(
1− ξ2

)
s ∂s∂ξ − ξs ∂s −

(
2ν + ξ2

)
∂ξ + ξ

(
1− ξ2

)
∂2
ξ

]
.

The terms are grouped in such a way that D0 preserves homogeneity in s while D1 increases

it by one unit.

We now apply this operator to (2.18), which we write as

G∆,` =

∞∑
n=0

∑
j

An,jP∆+n,j , PE,j(s, ξ) ≡ sE
j!

(2ν)j
Geg

(ν)
j (ξ) . (2.25)

Using the properties of Gegenbauer polynomials, it is easy to see that PE,j are eigenfunctions

of D0. The eigenvalue depends on the dimension and spin in the same way as the Casimir:

D0 PE,j = c
(2)
E,j PE,j . (2.26)

The D1 also acts simply in this basis:

D1 PE,j = −γ+
E,jPE+1,j+1 − γ−E,jPE+1,j−1,

γ+
E,j =

(E + j)2(j + 2ν)

2(j + ν)
, γ−E,j =

(E − j − 2ν)2j

2(j + ν)
. (2.27)

Applying these formulas, equation (2.21) can be solved order by order in s. We find that

the coefficients An,j must satisfy the following recursion relation:(
c

(2)
∆+n,j − c

(2)
∆,`

)
An,j = γ+

∆+n−1,j−1An−1,j−1 + γ−∆+n−1,j+1An−1,j+1. (2.28)

Starting from the initial conditions

A0,j = δj` (2.29)

this recursion determines all coefficients An,j . One can check that

c
(2)
∆+n,j − c

(2)
∆,` > 0, γ±E,j > 0 (2.30)

if ∆ satisfies unitarity bounds and j is in the range (2.17). So the coefficients generated by

the recursion are manifestly positive, in agreement with the previous section.

For illustration, here is what the solution at the first two levels looks like:

A1,`+1, A1,`−1 =
(∆ + `)(`+ 2ν)

4(`+ ν)
,
(∆− `− 2ν)`

4(`+ ν)
,

A2,`+2, A2,`, A2,`−2 =
(∆ + `)(∆ + `+ 2)2(`+ 2ν)(`+ 2ν + 1)

32(∆ + `+ 1)(`+ ν)(`+ ν + 1)
,

(∆ + `)(∆− `− 2ν)[(∆− ν)`(`+ 2ν) + (∆− 2ν)(ν − 1)]

16(∆− ν)(`+ ν + 1)(`+ ν − 1)
,

(∆− `− 2ν)(∆− `− 2ν + 2)2`(`− 1)

32(∆− `− 2ν + 1)(`+ ν)(`+ ν − 1)
. (2.31)



Notice that low spins do not require a separate treatment: only descendants with positive spin

j > 0 may contribute to the conformal block, and indeed coefficients multiplying Gegenbauers

with spin j < 0 (like A1,`−1 for ` = 0 and A2,`−2 for ` = 0, 1) vanish automatically. This

follows from the fact that γ−E,0 = 0 and so (2.27) makes sense also for j = 0.

The recursion (2.28) has been found previously by Dolan and Osborn [16], Eq. (3.12), who

arrived at the ansatz (2.25) as the way to diagonalize the homogeneous part of D. They were

expanding in Jack polynomials symmetric functions in two variables z, z̄, which are identical

to our PE,j . They also give a closed-form solution of this recursion, Eq. (3.19), which is

however rather complicated (it involves 4F3). In practice, it may be faster to evaluate the

coefficients directly from the recursion.

2.1.3 Decoupling of descendants for the leading twist 9

One interesting special case where the recursion can be solved easily is for the ‘leading

twist’ operators O of dimension

∆ = `+ d− 2, ` = 0, 1, 2 . . . . (2.32)

In this case we find that at each level, only the maximal allowed spin j = `+n has a nonzero

coefficient. At the first two levels, this can be seen happening in Eq. (2.31). For general n,

this single nonzero coefficients takes the form: 10

An,`+n =
(`+ ν)n(`+ 2ν)n
n!(2`+ 2ν)n

. (2.33)

The massive decoupling of descendants implied by this result can be understood as follows.

The descendants at level n are obtained by acting with n derivatives

∂µ1∂µ2 . . . ∂µnO . (2.34)

If a µi is contracted with an index of O, such a state simply vanishes, because for ` > 1 the

dimension (2.32) is the minimal value allowed by the unitarity bound and corresponds to a

conserved current. If some of the µi are contracted with each other, we get a state involving

∂2 which has spin strictly less than `+ n. We should show that such states decouple. Since

they do not have zero norm, this can only happen via vanishing of the matrix elements in

(2.11). Equivalently, this means that the following limit of the three point function should

vanish:

lim
x1→∞

|x1|2∆φ〈φ(x1)φ(x2)∂2
yO(y)〉 = 0 . (2.35)

9. This section is independent of the main line of reasoning and can be skipped on the first reading.

10. For d = 3, this result is agreement with the integral representation in [20], Eq. (6.20).



Since the three point function 〈φφO〉 is known explicitly (see e.g. [15]), this is easy to check.

Sending x1 →∞, x2 → 0, the three point function becomes

〈φ|φ(0)Oµ1...µ`(y)〉 = λO(yµ1 · · · yµ`/|y|d−2+2` − traces)

∝ ∂µ1 · · · ∂µ`
1

|y|d−2
. (2.36)

That the second line takes care of the trace subtractions in the first line (up to a constant

factor) is obvious: it gives a tensor which has the right scaling in y and is also automatically

traceless (as well as conserved), due to the fact that the function 1/|y|d−2 is harmonic in d

dimensions. For the same reason, this formula implies that ∂2-descendants decouple.

We should stress that the decoupling of ∂2-descendants at leading twist is peculiar to

the kinematic configuration of Fig. 2.1. In particular, it will not happen when the points

are inserted symmetrically with respect to the origin, as in the next section. This is because

Eq. (2.35) is only true in the infinite x1-limit.

2.2 Conformal blocks in the ρ coordinate

We now wish to analyze the four point function (2.1) in a different, more symmetric,

configuration of operator insertions, shown in figure 2.4: specifically, we map the points xi

to

x1 = −ρ, x2 = ρ, x3 = 1, x4 = −1, ρ ∈ C . (2.37)

The parameter ρ can be fixed by imposing that the above configuration is related to the z-

configuration by a conformal transformation. It is easy to construct a Möbius transformation

that maps the configuration of Fig. 2.1 to the ρ-kinematics, namely

ζ 7→ −(1 + ρ)ζ − 2ρ

(1 + ρ)ζ − 2
, (2.38)

which is completely fixed by imposing that ∞ 7→ −1, 1 7→ 1 and 0 7→ −ρ. If we furthermore

require that z 7→ ρ, we find the following relation between the z and ρ coordinates:

ρ =
z

(1 +
√

1− z)2
⇔ z =

4ρ

(1 + ρ)2
. (2.39)

Alternatively, the above formula (2.39) can be found by requiring that the cross ratios u and

v agree.

The ρ-coordinate was considered in [21], where it was used to give an optimal estimate

for the convergence rate of the decomposition of a four point function as a sum of conformal

blocks, Eq. (2.2). Here we will use ρ to analyze the blocks themselves. As discussed at the

end of section 2.1, the blocks are expected to be regular in the region z ∈ C \ [1,+∞). The



x2

x1

x4 = −1 x3 = 1

α

x2 ≡ ρ = |ρ|eiα

Figure 2.4: This more symmetric configuration of operation insertions can be obtained from

the one in Fig. 2.1 by a global conformal transformation.

function ρ(z) maps this region onto the unit disk (see Fig. 2.5). 11 This suggests that this

coordinate should be particularly suitable to analyze the blocks. To begin with, conformal

block representations as power series in ρ will converge for |ρ| < 1, which is the full region

of interest. Other advantages will be discussed below.

z

1 1

ρ

Figure 2.5: The ρ coordinate maps the regularity domain X onto the unit disk.

Fig. 2.6 shows what the configuration of Fig. 2.4 looks like after the Weyl transformation

to the cylinder. This picture is similar to Fig. 2.2, however the final and initial states have

a slightly different form:

〈0|φ(0,−n′)φ(0,n′) resp. φ(t,n)φ(t,−n)|0〉 for t = ln |ρ|. (2.40)

As before, the dependence on the energy of an exchanged state is given by a factor of

etE → |ρ|E :

〈E|φ(t,n)φ(t,−n)|0〉 = |ρ|E〈E|φ(0,n)φ(0,−n)|0〉. (2.41)

The argument of section 2.1 that spin-j states are encoded by Gegenbauer polynomials of

n · n′ also goes through unchanged, and again the configuration with n′ = n is reflection

11. The easiest way to see this is to note that the inverse function z(ρ) maps any point ρ = eiα on the unit

circle |ρ| = 1 to

ρ = eiα 7→ 1

cos2(α/2)
∈ [1,+∞).

In particular, ρ = −1 corresponds to z =∞.



positive.

We can therefore state the following analog of Eqs. (2.18),(2.25): conformal block of a

dimension ∆, spin ` primary will have an expansion:

G∆,` =
∞∑
n=0

∑
j

Bn,jP∆+n,j(r, η), Bn,j > 0, (2.42)

where

r ≡ |ρ|, η = cos arg ρ . (2.43)

The non-negative coefficients Bn,j in this new expansion will of course be different from An,j .

The spins j at level n will still be subject to the constraint (2.17). However, notice that

only even spin states can be exchanged since the initial state φ(ρ)φ(−ρ)|0〉 is symmetric with

respect to ρ→ −ρ. 12 We conclude that only even levels n will have nonzero Bn,j .
13 This is

unlike in (2.25) where all levels have An,j 6= 0.

〈0|

|0〉

φ(x2)

φ(x1)

φ(x3)φ(x4)

t = ln |ρ|

t = 0

Figure 2.6: The analog of Fig. 2.2 for the new configuration.

We now turn to the problem of determining the coefficients Bn,j . The first method is

to convert from the old expansion (2.25) whose coefficients An,j we already know how to

compute. From (2.39), the relevant variables are related by:

s =
4r

1 + 2rη + r2
, ξ =

η(1 + r2) + 2r

1 + 2rη + r2
. (2.44)

Substituting into (2.25) and expanding the denominators, we will get a power series of the

form
∞∑
n=0

r∆+nQn(η), (2.45)

12. In fact the exchange 1↔ 2 corresponds to z → z/(z − 1), which is equivalent to ρ→ −ρ.

13. In an analogous expansion for a four point function of non-identical primaries, states of all levels will

be exchanged. However, if ∆1 = ∆2 and ∆3 = ∆4, then again only even levels will appear. This is even

though the exchanged primary may have both even and odd spin in this case.



with Qn(η) certain polynomials in η. To extract Bn,j , we have to reexpand Qn(η) into the

basis of Gegenbauers. This will give Bn,j at level n as a linear combination of An′,j′ for

n′ 6 n.

The second method is to set up an independent recursive procedure for Bn,j based on

the Casimir equation. The operator D in r, η coordinates takes the form:

D = D0 + D̃, (2.46)

where the homogeneity-preserving part D0 is the same as in (2.24) with s→ r, ξ → η. The

homogeneity-increasing part is given by

D̃ = 4r2

{[
1− 2η2 + r2

1 + r4 − 2r2(2η2 − 1)
− ν

1− r2

]
r∂r +

2η(1− η2)

1 + r4 − 2r2(2η2 − 1)
∂η

}
. (2.47)

Its action in the PE,j basis will look like

D̃ PE,j = −
∑

n=2,4,...

∑
j′

ΓE+n,j′

E,j PE+n,j′ . (2.48)

The series is over positive even n, since only such powers of r occur in the expansion of D̃.

The dependence of the Γ coefficients on j′ is found with the help of the following identities

involving the Gegenbauer polynomials (the radial dependence of PE,j is not important here):

(2η2 − 1)PE,j = a−j PE,j−2 + a0
jPE,j + a+

j PE,j+2 ,

2η(1− η2)∂ηPE,j = b−j PE,j−2 + b0jPE,j + b+j PE,j+2 , (2.49)

where

a−j =
j(j − 1)

2(j + ν)(j + ν − 1)
, a0

j =
ν(1− ν)

(j + ν + 1)(j + ν − 1)
, a+

j =
(j + 2ν + 1)(j + 2ν)

2(j + ν + 1)(j + ν)
,

b−j =
j(j − 1)(j + 2ν)

2(j + ν)(j + ν − 1)
, b0j =

j(j + 2ν)ν

(j + ν + 1)(j + ν − 1)
, b+j = −(j + 2ν + 1)(j + 2ν)j

2(j + ν + 1)(j + ν)
.

(2.50)

For example, for n = 2 we get

ΓE+2,j−2
E,j = 4(Ea−j −b−j ), ΓE+2,j

E,j = 4
[
E(a0

j + ν)− b0j
]
, ΓE+2,j+2

E,j = 4(Ea+
j −b+j ). (2.51)

The recursion relation for the Bn,j takes the form:(
c

(2)
∆+n,j − c

(2)
∆,`

)
Bn,j =

∑
n′=0,2,...n−2

∑
j′

Γ∆+n,j
∆+n′,j′Bn′,j′ , (2.52)

At level 0 we have the initial condition:

B0,j = k δj` . (2.53)



We will set k = 1, keeping in mind that the normalization of section 2.1 would correspond

to k = 4∆.

To find the Bn,j up to level N , one needs first to compute the coefficients ΓE+n,j′

E,j for

n 6 N . For example, Eq. (2.51) is sufficient to find the solution for level 2:

B2,`−2 =
`(`− 1)(∆− `− 2ν)

2(`+ ν − 1)(`+ ν)(∆− `− 2ν + 1)
, B2,` = ν

∆ν(ν − 1) + (∆− 1)`(`+ 2ν)

(∆− ν)(`+ ν + 1)(`+ ν − 1)
,

B2,`+2 =
(∆ + `)(`+ 2ν)(`+ 2ν + 1)

2(∆ + `+ 1)(`+ ν)(`+ ν + 1)
. (2.54)

2.2.1 Comparison between the z and ρ expansions

We have presented two ways to expand the conformal blocks: the “z-series” (2.25) and

the “ρ-series” (2.42). We will now argue that the second expansion is more efficient, in the

sense that it converges more rapidly and fewer terms need to be evaluated in order to get a

good approximation. This happens because of the better choice of the expansion parameter

and the better asymptotic behavior of the series coefficients.

Let us start with the expansion parameters. The interesting range for the ρ coordinate

is the unit disk |ρ| < 1. The ρ-series will converge absolutely, everywhere in this disk. To

prove this, we first restrict the expansion of the conformal block to the positive real axis:

G∆,`(ρ > 0 real) =

∞∑
n=0

ρ∆+n βn, βn =
∑
j

Bn,j > 0. (2.55)

Now fix ρ∗ > 0. By positivity of the βn, the sequence

gN (ρ∗) =
N∑
n=0

ρ∆+n
∗ βn (2.56)

grows monotically with N : therefore either it converges or it grows unboundedly (meaning

that limN gN (ρ∗) =∞). The latter cannot occur for ρ∗ < 1, because it would mean a

physical singularity in the conformal block. We conclude that the expansion (2.55) converges

pointwise on [0, 1).

As a corollary, it follows that G∆,`(ρ) increases on the interval [0, 1). To see this, notice

that for any two points ρ1, ρ2 satisfying 0 6 ρ1 6 ρ2 < 1, we have

G∆,`(ρ1) =

∞∑
n=0

ρ∆+n
2

[
βn(ρ1/ρ2)∆+n

]
6 G∆,`(ρ2). (2.57)

We will now prove a stronger statement, namely that for any ε > 0, convergence is uniform

on [0, 1 − ε]. 14 Notice that in this interval, the invidual terms in the expansion (2.55) are

bounded as follows:

|ρ∆+n βn| 6 βn (1− ε)∆+n ≡Mn. (2.58)

14. The definition of uniform convergence and various theorems are discussed in Sec. 7.7 of [121].



By the Weierstrass M-test, it is sufficient to show that sum
∑
Mn is finite

∞∑
n=0

Mn = G∆,`(ρ = 1− ε) <∞, (2.59)

from which uniform converge follows.

Elsewhere on the disk |ρ| < 1 (i.e. away from the real axis), convergence will be only

better. For general ρ, the conformal block can be expanded as

G∆,`(ρ = reiα) =

∞∑
n=0

r∆+n γn(α), γn(α) =
∑
j

Bn,j
Geg

(ν)
j (cosα)

Geg
(ν)
j (1)

. (2.60)

On the interval [−1, 1], the Gegenbauer polynomials Geg
(ν)
j (x) take their (absolute) maxi-

mum at x = 1. The coefficient γn(α) is therefore always smaller (in absolute sense) than

βn. Physically, this follows by the Cauchy inequality: γn(α) is the product of two matrix

elements, which for real α = 0 become Hermitian conjugates of one another [21]. In

particular, if we only keep the first N terms in the conformal block expansion, the ‘tail’

(i.e. the error induced by this truncation) is smaller away from the real axis:∣∣∣∣∣
∞∑

n=N+1

γn(α) r∆+n

∣∣∣∣∣ 6
∞∑

n=N+1

βn r
∆+n . (2.61)

Since the RHS goes to zero uniformly as N →∞, the LHS must do so at an even faster rate.

The same argument can be used to show that the z-series will converge absolutely in

the disk |z| < 1. As we discussed, this does not even cover the full regularity region of the

conformal blocks. Moreover, from the second Eq. (2.39) we have

|z(ρ)/ρ| > 1 (|ρ| < 1) . (2.62)

So even in the region where both series converge, the ρ-series will always have a strictly

smaller expansion parameter.

An additional bonus appears when considering conformal blocks for equal external dimen-

sions. As we have seen, in this case the ρ-series involves only even levels. So, the effective

expansion parameter becomes ρ2. In conformal bootstrap applications, one usually uses

conformal blocks evaluated near z = 1/2, which would correspond to ρ = 3− 2
√

2 ≈ 0.17

and ρ2 ≈ 0.03.

Let us now examine the expansion coefficients. We are interested in their asymptotic

behavior when ∆ or ` become large. In the large-∆ limit the coefficients An,j at level n grow

as

An,j ∼
∆→∞

O(∆n) . (2.63)

For n = 1, 2 this can be seen in Eqs. (2.31). The reason for this growth is that the operator

D1 is second order in ∂s, and consequently the coefficients γ±E,j in (2.27) are O(E2). On the



other hand the factor in the RHS of the recursion relation:

c
(2)
∆+n,j − c

(2)
∆,` = 2n∆ + n(n− d) + j(j + d− 2)− `(`+ d− 2) (2.64)

increases only linearly in ∆. So, going up one level in n, the coefficients An,j gain one power

in ∆.

Turning to the second expansion, we encounter a crucial difference. Unlike D1, the

operator D̃ in (2.46) is only first order in ∂r. So the coefficients Γ entering the Bn,j recursion

grow only linearly in E, and this growth cancels when dividing by (2.64). Contrary to the

previous case, going one level up in the recursion relation does not increase the leading power

of ∆. We conclude that the coefficients Bn,j remain bounded in the large-∆ limit. For n = 2

this is illustrated by Eqs. (2.54).

Keeping more careful track of the size of the relevant factors, one can show the following

sharper statement (see appendix A). Each coefficient Bn,j is uniformly bounded in the full

range of ∆ and ` allowed by the unitarity bounds, with the bound depending only on the

level n and on d:

max
∆,`

(
max
j
Bn,j

)
6 b(n, d) . (2.65)

The region close to the free scalar limit ` = 0, ∆ → ν is understood excluded when taking

the maximum. As is well known, the scalar conformal block becomes singular in this limit.

Physically this is due to the fact that the free scalar must be decoupled from everything else.

In our representation, the singularity first shows up in the coefficient B2,0 ∼ (∆− ν)−1, see

Eq. (2.54), and then feeds into higher levels.

Consider now the growth of the conformal block for real ρ → 1. It can be shown using

the results of Ref. [7] 15 that in this limit the conformal block has a power-law like singularity

of the form:

G∆,`(ρ real) ∼
ρ→1

1

(1− ρ)d−2

(
log

1

1− ρ for d = 2

)
. (2.66)

These asymptotics can be used to make a rigorous statement about the growth of the

coefficients βn =
∑

j Bn,j . We recall from Eq. (2.55) that the βn appear in the expansion of

G∆,` restricted to the real axis. Given the fact that the βn are positive and that the conformal

block expansion converges for all ρ < 1, the Hardy-Littlewood tauberian theorem [122,

theorem 7.4] implies for d > 2 that

N∑
n=0

βn ∼
N→∞

Nd−2 (2.67)

for any ∆ and `. Assuming that the sequence {βn} itself has a power-law like growth at

large n, we must have

βn ∼
n→∞

nd−3. (2.68)

15. This follows for ` = 0 from the explicit 3F2 representation on the real line, Eq. (4.10) of [7], and remains

valid for ` > 1 by the recursions in Appendix A of [7].



It would be interesting to know how the ratio βn/n
d−3 behaves for small and intermediate n.

The simplest possibility which accommodates both (2.65) and (2.68) is that βn 6 c(d)nd−3

for all n, ∆ and `. However, further study is needed to check this hypothesis.

The case d = 2, where the Hardy-Littlewood tauberian theorem does not apply, requires

special attention. It is certainly not true that

N∑
n=0

βn ∼
N→∞

constant, (2.69)

because in that case Abel’s theorem [121, theorem 8.2] implies that the limit G∆,`(ρ→ 1) is

finite. In various special cases, we find that βn ∼ (a lnn+ b)/n as n→∞, meaning that the

partial sums
∑

n6N βn asymptote to a (lnN)2/2 + b lnN as N → ∞. It may be interesting

to check these asymptotics at a more rigorous level, starting either from explicit expressions

for the 2d conformal blocks or using “logarithmic” tauberian theorems [123, 124].

To finish this section, we would like to demonstrate how the highlighted differences

between the z- and ρ-series can be seen in the explicit expressions for the conformal blocks

available for even d. These expressions [19, 15, 16, 20] are written in terms of the functions

ka(z) = za/22F1(a/2, a/2; a; z) (2.70)

with a = ∆ + ` and ∆− `− 2ν. For large ∆, the zn coefficient in the expansion of the 2F1

grows as an ∼ ∆n. This is the same growth as in (2.63). However, when the ρ variable is

used, the function ka can be transformed using a hypergeometric identity [38, Eq. 9.134.3]

ka

[
4ρ

(1 + ρ)2

]
= (4ρ)a/22F1

[
1/2, a/2

(a+ 1)/2
; ρ2

]
. (2.71)

As advertised, this is a function of ρ2 and the expansion coefficients

(1/2)n(a/2)n
n! (a/2 + 1/2)n

∼
a→∞

(1/2)n
n!

+ O(1/a) (2.72)

do not grow with a. 16

2.3 Outlook: potential applications to the conformal boot-

strap

In the previous section, we introduced a new way to represent the conformal blocks,

by expanding them in the polar coordinates associated with the complex variable ρ. Our

interests in the blocks stems from the role they play in the conformal bootstrap program.

16. We warn the reader that analysis of the coefficients βn à la Hardy-Littlewood is done at fixed ∆, and

that the ∆→∞ blocks from Eq. (2.72) do not satisfy the growth required by the Hardy-Littlewood theorem.



We believe that our new representation will turn out quite useful in this context. Here we

will list several ideas, leaving their complete development for the future.

We recall that most existing applications of the bootstrap program in d > 3 dimensions

follow a scheme first proposed in [14]. This scheme focuses on a single bootstrap equa-

tion, that is obtained by substituting the conformal block expansion (2.2) into the crossing

symmetry constraint (2.3) and takes the form:

(v∆φ − u∆φ) +
∑
i

f2
i [v∆φG∆i,`i(u, v)− (u↔ v)] = 0 . (2.73)

The sum is over all primary operators Oi appearing in the OPE φ × φ, with ∆i, `i, fi their

dimensions, spins, and OPE coefficients. The unit operator 1 contribution is separated

explicitly: its conformal block is trivial

Gunit(u, v) = Gunit(v, u) = 1 , (∆12 = ∆34 = 0) (2.74)

and its OPE coefficient equals one:

φ(x)φ(0) =
1

|x|2∆φ
1 + other operators. (2.75)

We would like to highlight two practical issues regarding this sum rule.

First, we remark that the bootstrap equation (2.73) looks rather complicated, and in

practice it is usually replaced by a finite-dimensional constraint that is less constraining

than the full bootstrap equation (2.73), but more tractable. As explained in section 1.7.2, it

is customary to Taylor expand the bootstrap equation up to a large order around the point

z = 1/2, corresponding to u = v = 1/4.

A second issue is that the conformal blocks appearing in (2.73) are complicated functions,

even for d = 4 where explicit expressions in terms of hypergeometrics are known. Some

simplifications occur for specific values of ∆, but this does not help, since the dimensions of

Oi are unknown and should be allowed to vary freely between the unitarity bound and infinity.

For generic ∆, conformal block derivatives at z = 1/2 must be evaluated numerically. 17 For

this reason all the studies cited above used numerical analysis. Moreover, this evaluation is

an expensive operation and often presents a computational bottleneck.

We will now describe new ways of approaching these issues, made possible by the ρ-series

representation.

17. For even d, these derivatives can be written via the 3F2 functions (see appendix B.1 of [95]). It is not

known at present how to use these analytic expressions in practice, rather than as a starting point for the

numerical evaluation.



2.3.1 Inexpensive derivative evaluation for all ∆ and `

Let us briefly review the existing ways of evaluating conformal blocks and their derivatives

at the point z = z̄ = 1/2. For even d, one uses the explicit representations of Dolan and

Osborn [15, 16]. For d = 4 they take the form:

G∆,`(z, z̄) =
zz̄

z − z̄ [k∆+`(z)k∆−`−2(z̄)− (z ↔ z̄)] . (2.76)

By this formula, partial derivatives of G∆,`(z, z̄) can be represented as quadratic forms in the

derivatives of the function ka(z), defined in Eq. (2.70). One can now create an interpolated

lookup table of ka(z)’s derivatives at z = 1/2 for a range of a. This is a time-consuming

operation, because the hypergeometric function in (2.70) is expensive to evaluate. However,

one needs to do this only once. Once the table is created and stored, partial derivatives of

(2.76) can be computed quickly for any ∆ and `. Such a strategy was used in [93, 94, 96–98],

and a similar one in [95]. More recently, Ref. [99] found a way to dispense with the lookup

table altogether, computing the derivatives of ka(z) at z = 1/2 via a very rapidly convergent

infinite product representation.

Turning to general d, a method to evaluate conformal block derivatives was developed

in Ref. [7], where it was used to study the 3d Ising model. This method combines a variety

of ideas. One begins by evaluating partial derivatives along the z = z̄ line, first for ` = 0

and ` = 1 using explicit 3F2 expressions found by [7], then for higher ` using the recursion

relations from [20] reducing those blocks to the lower-spin ones. Then, partial derivatives

in the orthogonal direction are computed à la Cauchy-Kovalevskaya, using the fact that the

conformal blocks satisfy a second-order partial differential equation.

The ρ-series gives a new way to evaluate conformal blocks and their derivatives, which

works for general d and around any z. To achieve the necessary precision, one needs to

evaluate the coefficients Bn,j as a function of ∆ and ` up to a sufficiently high order, using

the recursion relation (2.52). It is important that the necessary number of terms will be

independent of ∆ and `, because of the bound (2.65). For example, to be able to compute

the conformal blocks with double precision (10−16) one would need the coefficients up to

level

n ≈ 16/ log10(1/ρ) , (2.77)

which gives n ≈ 20 for z = 1/2. This number is a bit of an underestimate, because it assumes

that the sum of the coefficients at level n is uniformly bounded, while in fact it grows with

n as in Eq. (2.68). Also more levels will be needed if one wants to evaluate derivatives.

It should also be rather easy to generalize the ρ-series method to the case of unequal

external dimensions ∆1 6= ∆2 and ∆3 6= ∆4. The extra terms in the Casimir operator for

unequal external dimensions are all first order in derivatives [16]. So, the operator D̃ will

remain first order, and we can expect that the boundedness properties of the coefficients



Bn,j will still hold. Such a generalization will be useful for the conformal bootstrap analysis

of several scalar correlators simultaneously.

2.3.2 Truncated bootstrap equation with an error estimate

Rather than using a derivative expansion around z = 1/2, one could also try to do

bootstrap imposing the bootstrap equation point by point at several z = zi, rather than in

the Taylor expansion around z = 1/2. We would like to discuss here the issues arising if

one wants to implement this technique. Conformal block evaluation for any z can be done

with the ρ-series. The next question is then how to distribute the sampling points. To get

an idea, let us consider the rate of convergence of the conformal block decomposition (2.2).

As shown in Ref. [21], the error induced by truncating (2.2) at some maximal dimension

∆ = ∆∗ is exponentially small:∣∣∣∣∣ ∑
O:∆(O)>∆∗

f2
O GO(z, z̄)

∣∣∣∣∣ . ∆
4∆φ
∗

Γ(4∆φ + 1)
|ρ(z)|∆∗ . (2.78)

To be precise, this estimate was shown to hold for ∆∗ � ∆φ/(1−|ρ(z)|) . Most importantly,

it holds in an arbitrary CFT with no extra assumptions about the φ×φ OPE. For example,

it might seem that having too many operators at high ∆, or a single operator with a huge

OPE coefficient, might invalidate this bound. However, the proof in [21] shows that such

situations cannot occur in a consistent CFT.

The estimate (2.78) is relevant to our discussion, because in most practical approaches to

the bootstrap one has to truncate the spectrum of considered operators from above (to make

the problem finite). Now we know that the error induced by this operation is controlled by

|ρ(z)|, while the error in the crossed channel will be controlled by |ρ(1 − z)|. Therefore it

seems natural to distribute the points zi in a region of the form (see Fig. 2.7)

λ(z) = max(|ρ(z)|, |ρ(1− z)|) 6 λc , (2.79)

where λc should be chosen commensurately with the eventual dimension cutoff ∆∗.

One way to choose ∆∗ is so that the error (2.78) is below the numerical precision one is

working with (say double precision) everywhere within the region (2.79). Alternatively, one

can choose ∆∗ lower, so that the error is non-negligible. Then one has to include this error

estimate directly into the bootstrap equation. Such a modified equation takes the form:∣∣∣ v∆φ − u∆φ +
∑

∆(O)6∆∗

f2
O [v∆φGO(u, v)− (u↔ v)]

∣∣∣ 6 E(z, z̄) ,

E(z, z̄) ' ∆
4∆φ
∗

Γ(4∆φ + 1)
max

(
|1− z|2∆φ |ρ(z)|∆∗ , |z|2∆φ |ρ(1− z)|∆∗

)
. (2.80)
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Figure 2.7: The contour plot of the function λ(z) in the plane (Re z, Im z). Only the region

Im z > 0 is shown, since the conformal blocks are symmetric in z, z̄.

We think it would be interesting to try to carry out bootstrap analysis based on this

‘truncated bootstrap equation’ rather than the conventional technique of expanding around

z = 1/2. There are many free parameters to choose: ∆∗, λc, the number of points zi at which

to impose (2.80); furthermore, the points can be different in many different ways over the

region (2.79). Once all these parameters are fixed, the problem of deciding whether (2.80)

has a solution with f2
O > 0 can be solved via the same linear programming algorithms that

are used in other bootstrap computations.

It’s worth pointing out an additional feature of Eq. (2.80), which makes it particularly

useful when the conformal blocks are computed via the ρ-series, whose coefficients can be

computed up to arbitrary order but whose closed form is unknown. Namely, it remains valid

when the conformal blocks GO(u, v) are replaced by the “truncated blocks”—the partial

sums of the ρ-series up to the level ∆ + n > ∆∗. This is because the error estimate (2.78)

is in fact valid when the contributions of all states of dimension above ∆∗ are included into

the LHS (and not just the conformal multiplets of primaries above ∆∗). It is in this stronger

form that the error estimate was proved in Ref. [21].

2.4 Summary

In this chapter we presented a new type of expansion for d > 2 conformal blocks, rooted

in their physical meaning as sums of exchanged states in radial quantization. We explained

how quantum mechanics fixes the structure of conformal block in radial coordinates: it

is an integer-spaced power series in the r with angular dependence given by Gegenbauer

polynomials. The coefficient of each term is positive as a consequence of unitarity. These



coefficients are easy to find using recursion relations that are derived from the quadratic

Casimir equation.

We highlighted the existing freedom in the choice of the radial coordinates. It is the same

freedom as when expanding the product of two operators φ(x1)φ(x2) into a sum of operators

inserted in some point x0, which becomes the radial quantization origin. Each choice gives

a different representation of the same conformal block, and it is not a priori clear which one

is more convenient. In this paper we analyzed in detail two natural choices, the end point

x0 = x1, and the middle point x0 = (x1 + x2)/2.

The end point choice (section 2.1) corresponds to working with the complex variable z

often used to represent conformal blocks, with explicit 2F1 representations available in even

dimensions d. For general d considered here, we expand conformal blocks in a power series in

|z| times Gegenbauers. The expansion coefficients An,j satisfy a three-term recursion relation,

also derived earlier from a different point of view by Dolan and Osborn [16]. An unpleasant

feature of these expansions is that the coefficients at level n grow with the exchanged primary

dimension as ∆n. For large ∆ many terms need to be evaluated to get a good approximation

to the conformal block.

Choosing the middle point (section 2.2), one passes from z to the complex variable

ρ =
z

(1 +
√

1− z)2
. (2.81)

This variable was recently used in Ref. [21] to study convergence of the conformal block

decomposition. As we showed here, this is also an ideal variable for constructing rapidly

convergent expansions of the conformal blocks themselves. The expansion coefficients Bn,j

satisfy a recursion relation which is a bit more involved than for the An,j : the coefficients at

level n are linear combinations of coefficients at all levels n−2, n−4, . . . up to zero, while for

An,j only the level n−1 contributes. But this complication pays off: the resulting coefficients

do not exhibit any growth with ∆ or `. This means that the coefficients computed and stored

up to some large and fixed level N can be used to evaluate conformal blocks of arbitrary

dimension and spin with uniform accuracy.

We believe that our ρ-series expansions will find future use in the bootstrap program.

Two possibilities are described in section 2.3. In the following chapter, we will develop a

way to compute conformal blocks inexpensively, using the ideas from section 2.3.1.



Chapter 3

Conformal blocks in the diagonal

limit 1

3.1 Introduction

In the previous chapter, we revisited the conformal block decomposition of scalar corre-

lation functions 〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉, where the fields φi are of scaling dimension ∆i.

Our main result was that any conformal block GO(u, v) in such an expansion admits various

series expansions of the form

GO(r, θ) =
∑
n,j

Cn,j r
∆O+n Geg

(ν)
j (cos θ) , [ν = (d− 2)/2]. (3.1)

We singled out two particular representations, corresponding to a “z” and a “ρ” configuration

of the four points x1, x2, x3, x4. The coefficients Cn,j in the series expansion (3.1) depend

on the chosen kinematics, the dimension ∆ and spin ` of the exchanged operator O, the

spacetime dimension d and furthermore on ∆12 = ∆1 − ∆2 and ∆34 = ∆3 − ∆4 if the

external scalar operators φ1, . . . , φ4 are non-identical.

As we showed, both expansions (3.1) converge absolutely inside the unit disk |r| < 1,

so they can be used to numerically compute the value of GO(r, θ) to arbitrary precision.

This requires knowledge of the coefficients Cn,j for arbitrary ∆ and ` (and ∆12 and ∆34,

if applicable), at least up to a level N � 1. For the z-kinematics, these coefficients are

known in closed form, or otherwise they can be easily computed by means of a two-term

recursion relation. For the ρ-kinematics, the coefficients are not known in closed form, and

furthermore the recursion relation used to compute them becomes increasingly involved as

n increases.

1. This chapter is a reworked version of Ref. [125], which was written in collaboration with H. Osborn and

S. Rychkov.
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Moreover, most bootstrap applications do not require the actual value of conformal blocks

at various points zi or ρi inside the unit disk: rather, they take as input derivatives ofGO(z, z̄)

at a given point z0 on the ‘diagonal’ z = z̄. It is the goal of this chapter to compute such

derivatives efficiently, both in the z and ρ kinematics.

In the previous chapter, our focus was on the four-point function of identical scalars. We

now consider a more general case, the correlator 〈φ1φ2φ3φ4〉 of four non-identical scalars.

By conformal invariance, the latter must be of the form

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =

( |x24|
|x14|

)∆12
( |x14|
|x13|

)∆34 g(u, v)

|x12|∆1+∆2 |x34|∆3+∆4
, (3.2)

where g(u, v) is a function of the conformally invariant cross-ratios u and v only. The four-

point function (3.2) can be expanded into conformal partial waves corresponding to the

primaries O appearing in the operator product expansions (OPEs) φ1× φ2 and φ3× φ4This

gives the following series representation for the function g(u, v):

g(u, v) =
∑
O
f12Of34OG∆,`(u, v) , (3.3)

Here the G∆,`(u, v) are the universal parts of the conformal partial waves; these are the

conformal blocks mentioned above. They depend on the dimension ∆ and spin ` of the

exchanged primary O, as well as on the external dimension differences ∆12 and ∆34. The

fijO are the OPE coefficients which depend on the CFT in question. In the case of non-

identical scalars, the OPE coefficients f12O and f34O are in general different.

An equivalent representation of the conformal blocks is expressed in terms of the sym-

metric functions of variables z, z̄ which are related to u, v via

u = zz̄, v = (1− z)(1− z̄) . (3.4)

To make contact with the literature [15, 16, 20], we will use a slightly different notation for

the conformal block G∆,`(u, v) in this chapter, namely

G∆,`(u, v) = Fλ1λ2(z, z̄) , (3.5)

for

∆ = λ1 + λ2, ` = λ1 − λ2 ∈ {0, 1, 2, . . .} . (3.6)

The normalization of conformal blocks is a matter of choice, for us 2

Fλ1λ2(z, z) ∼ z∆ as z → 0 . (3.7)

The work in this chapter is mainly motivated by a numerical approach to computing

conformal blocks that was developed by El-Showk et al. [7], where it was applied in the

2. Note that the limit z → 0 is taken along the real axis. This is the same normalization as the one used

in the previous chapter.



bootstrap analysis of the 3d Ising model. Rather than solving the Casimir differential

equation directly, the method advocated there computes the conformal blocks first on the

“diagonal” z = z̄, which turns out to be significantly simpler than for general z, z̄. Then,

one computes derivatives in the direction normal to the diagonal, using recursion relations

following from a second-order partial differential equation (PDE) that the blocks satisfy.

While this method cannot compute the blocks at a finite distance from the diagonal, 3 it

proved very efficient in computing them in the derivative expansion around z = z̄ = 1/2.

The latter information is sufficient for applying the existing conformal bootstrap algorithms.

Motivated by [7], here we analyze in more detail the diagonal limit of conformal blocks.

The central part of the chapter is section 3.2, where we systematically derive ordinary

differential equations (ODEs) satisfied on the diagonal. While it is well known that conformal

blocks as functions of z, z̄ satisfy PDEs (which arise from eigenvalue equations for the Casimir

operator), it is by no means evident that the diagonal limit satisfies an equation by itself.

As we will see, this follows from an interplay between the well-known quadratic and the

rarely-used quartic Casimir PDEs.

Next, in section 3.4 we propose to use the ODEs from section 3.2 as a basis for an efficient

algorithm which can numerically compute conformal blocks and their derivatives around any

point on the diagonal. This algorithm is a generalization and an improvement of the method

used in [7] for the case of equal external scalar dimensions.

We summarize the main aspects of this chapter in section 3.5. Appendix B discusses how

our ODEs can be used to generate power series expansions of the conformal blocks.

3.2 Differential equations on the diagonal

Mathematically, conformal blocks in d-dimensional CFTs can be extended to symmetric

functions of two complex variables z and z̄, analytic everywhere in C2 except for branch

points at z, z̄ = 0,1 and ∞. This is merely a trick: when actually evaluating conformal

blocks in Euclidean space, it is necessary to impose z̄ = z∗.

In this chapter we study conformal blocks on the “diagonal” z = z̄. For the Euclidean

section z = x + iy, z̄ = x − iy, for x, y real, the limit y → 0 is in general singular when it

approaches the branch cut x ∈ [1,∞) 4. Away from the cut, for arbitrary complex z, the

3. See [16] or the previous chapter for a proposal on how to do this, using power series expansions around

z, z̄ = 0.

4. This is also apparent from the four-dimensional result (1.130) which can be expressed in the form
f(z) g(z̄)−f(z̄) g(z)

z−z̄ where f(z), g(z) have branch cuts along the real axis for z > 1. Hence for x > 1, f(z), f(z̄)

and g(z), g(z̄) approach different limits as y → 0 and the denominator is not cancelled.



limit z̄ → z is well-defined and conformal blocks on the diagonal will be denoted by

fλ1λ2(z) = Fλ1λ2(z, z) . (3.8)

For most conformal bootstrap applications we require real z and 0 < z < 1, which includes

the crossing symmetric point z = z̄ = 1/2. These functions allow a power series expansion

of the form

fλ1λ2(z) = z∆
∞∑
n=0

anz
n , a0 = 1 , (3.9)

where a0 = 1 follows from the normalization condition (3.7). Following an argument in the

previous chapter, CFT properties imply that z−∆fλ1λ2(z) is analytic in z with singularities

at z = 1,∞ and so this expansion is convergent for |z| < 1 (see also [21]).

As functions of z and z̄, conformal blocks satisfy various PDEs, derived by acting on the

four-point function with the Casimir operators of the conformal group and demanding that

conformal partial waves be eigenfunctions. For general d, there are quadratic and quartic

Casimir operators, as explained in section 1.8. The corresponding second- [16] and fourth-

order [20] PDEs are

∆2 Fλ1λ2 = c2 Fλ1λ2 , ∆4 Fλ1λ2 = c4 Fλ1λ2 , (3.10)

where (ν = (d− 2)/2)

c2 = λ1(λ1 − 1) + λ2(λ2 − 1− 2ν) = 1
2 [`(`+ 2ν) + ∆(∆− 2− 2ν)] ,

c4 = `(`+ 2ν)(∆− 1)(∆− 1− 2ν) , (3.11)

and the differential operators can be written as

∆2 = Dz +Dz̄ + 2ν
zz̄

z − z̄
[
(1− z) d

dz
− (1− z̄) d

dz̄

]
, (3.12)

∆4 =

(
zz̄

z − z̄

)2ν

(Dz −Dz̄)

(
zz̄

z − z̄

)−2ν

(Dz −Dz̄) , (3.13)

in terms of the one-dimensional differential operator of the 2F1 type:

Dz ≡ Dz(a, b) = (1− z)z2 d2

dz2
− (a+ b+ 1) z2 d

dz
− ab z . (3.14)

Here and below we denote a = −1
2∆12 and b = 1

2∆34. The above operator Dz has the

functions kβ(z) from Eq. (1.129) as eigenfunctions:

Dz(a, b) kβ(z) = 1
4β(β − 2) kβ(z). (3.15)

For ` = 0 (when the exchanged operator O is a scalar) the quartic eigenvalue c4 vanishes.

In this case the quartic Casimir equation actually reduces to a second-order PDE [20](
Dz −Dz̄

)
Fλλ = 0 . (3.16)



Crucially, the two PDEs (3.10, 3.16) can be combined to yield a single ODE that controls

the ‘diagonal’ part of the conformal block. Conformal blocks are symmetric functions of z, z̄

and near the diagonal (3.8) can be extended to a power series expansion of the form:

Fλ1λ2(z, z̄) = fλ1λ2(t) + 1
4(z − z̄)2gλ1λ2(t) + O

(
(z − z̄)4

)
, t = 1

2(z + z̄) . (3.17)

Clearly the t-coordinate parametrizes the diagonal z = z̄. Only even powers of (z − z̄) can

appear, because Fλ1λ2(z, z̄) must be symmetric under z ↔ z̄. Remark that the quadratic

Casimir equation at z = z̄ gives one relation between f ≡ fλ1λ2 and g ≡ gλ1λ2 :[
1
2(1− z)z2 d2

dz2
− (1 + a+ b+ ν)z2 d

dz
− 2ab z− c2

]
f(z) + (1 + 2ν)(1− z)z2g(z) = 0 . (3.18)

A second relation follows from the quartic Casimir equation, which reduces to a third-

order PDE on the diagonal, so that the O
(
(z−z̄)4

)
terms omitted in (3.17) do not contribute.

This relation takes the schematic form

P3(dz)f(z) + P2(dz)g(z) = 0 . (3.19)

In addition, for ` = 0, substituting (3.17) into (3.16) and looking at the O(z− z̄) terms gives

an equation of the form

Q2(dz)f(z) +Q1(dz)g(z) = 0 , (3.20)

The Pi and Qi in the last two equations are certain differential operators of degree i

with polynomial coefficients, whose precise form is important for what follows but is of no

particular interest to write them down explicitly.

With the help of (3.18), we can eliminate g(z) from (3.19) and (3.20). This gives ODEs

for f(z) by itself, fourth-order for the general case, and third-order for ` = 0:

D(4,3)
z fλ1λ2(z) = 0 , (3.21a)

D(3,2)
z fλλ(z) = 0 , (3.21b)

where in general D(n) is a differential operators of the form

D(n)
z = (z − 1)n−1 zn

dn

dzn
+

n−1∑
r=2

(z − 1)r−1pr(z) z
r dr

dzr
+
∑
r=0,1

pr(z) z
r dr

dzr
, (3.22)

denoting by pr(z) polynomials of degree

deg pr(z) =

n− r, r > 2 ,

n− 1, r = 0, 1 .
(3.23)



The differential operators are symmetric functions of a, b and so, with P = 2ab, S = a + b,

the operator in (3.21a) is determined by

p3(z) = (4S − 2ν + 7)z + 4ν − 2 ,

p2(z) = [2P + (S − ν + 2)(5S − ν + 5)]z2 + 2 [c2 − P + (3S − ν + 3)(2ν − 1)]z

+ 4ν2 − 2ν − 2c2 ,

p1(z) = [4P + (2S + 1)(S − ν + 2)](S − ν + 1)z3

+ [c2(4S − 2ν + 1) + 2(2S + 1)(S − ν + 1)(2ν − 1) + P (−4S + 10ν − 5)]z2

+ [−6νP + P + 2(2S + 1)ν(2ν − 1) + c2(−4S + 6ν + 1)]z − 2c2(2ν + 1) ,

p0(z) = 2P (S − ν)(S − ν + 1)z3 + (S − ν)[c2(2S − 1) + P (6ν − 1)]z2

+ [c4 + 2(2ν + 1)(c2(S − 1) + Pν)]z − c4 + 2c2(2ν + 1) , (3.24)

with c2, c4 as in (3.11). In (3.21b)

p2(z) = (3S − ν + 3)z + 2ν ,

p1(z) = [2P + (2S + 1)(S − ν + 1)]z2 + 2(c2 − P + 2Sν + ν)z − 2c2 ,

p0(z) = 2P (S − ν)z2 + [P (2ν + 1) + c2(2S − 1)]z + 2c2 , (3.25)

where here c2 = 2λ(λ − 1 − ν). With these expressions for the differential operators, the

ODEs in (3.21) are the main result for this chapter. They allow for a direct analysis of the

diagonal limit of conformal blocks.

In passing, let us briefly show that the differential operators D
(n)
z above are consistent

with the permutation φ1(x1) ↔ φ2(x2), which changes a → −a but leaves b invariant. In

the z-kinematics, the swap x1 ↔ x2 is equivalent to changing

z 7→ z′ =
z

z − 1
, z̄ 7→ z̄′ =

z̄

z̄ − 1
(3.26)

as follows by imposing that the cross ratios u and v are invariant. Under this change of

coordinate, the conformal blocks transform as [15, 16, 20]

Fλ1λ2(z′, z̄′)
∣∣
a→−a = (−1)` (1− z)b(1− z̄)b Fλ1λ2(z, z̄) . (3.27)

Specializing to the diagonal limit z̄ → z, we have

fλ1λ2(z′)
∣∣
a→−a = e±iπ∆ (1− z)2b fλ1λ2(z) . (3.28)

The factor e±iπ∆ arises since z → z′ maps [0, 1) → (−∞, 0], with ± according which side

of the branch cut on the negative axis fλ1λ2(z′) is evaluated on. This leads to a consistency

requirement on the operators Dz. On the one hand, the function f(z′) on the LHS is a



solution to Dz′f(z′) = 0 in the z′-coordinate, but at the same time f(z) on the RHS solves

Dzf(z) = 0. By an explicit computation, it can indeed be shown that the D
(n)
z satisfy

(1− z)2b−2D(4)
z (1− z)−2b = D

(4)
z′

∣∣
a→−a ,

(1− z)2b−1D(3)
z (1− z)−2b = D

(3)
z′

∣∣
a→−a . (3.29)

A similar relation can be checked for the exchange φ3(x3)↔ φ4(x4), which changes b→ −b.

3.3 Frobenius’ method

Differential operators of the form (3.22) have regular singular points at 0,∞, 1. (This

is easiest seen after dividing by (z − 1)n−1, which brings these operators to their canonical

form.) This implies that power series solutions of D
(n)
z u(z) = 0 with leading behaviour

u(z) ∼
z→z0

(z − z0)α , z0 ∈ {0, 1,∞} (3.30)

can be constructed via Frobenius’ method. 5 The characteristic exponents α are determined

by indicial equations of n-th order (one for every singular point z0 separately). We are

eventually interested in expansions around z0 = 0, but for completeness we will first classify

all characteristic exponents α (also for z0 = 1,∞), since this is a relatively simple way to

characterize the differential operators D
(n)
z . Finding and solving the indicial equations is

straightforward; explicitly, we find that the different roots α are given in terms of ∆, `, a, b, ν

by

0 ∞ 1

∆ 2a 0

2 + 2ν −∆ 2b −2a− 2b

`+ 1 + 2ν a+ b− ν −a− b− ν
1− ` 1 + a+ b− ν 1− a− b− ν

(3.31a)

for D(4) (general `), and

0 ∞ 1

∆ 2a 0

2 + 2ν −∆ 2b −2a− 2b

1 a+ b− ν −a− b− ν

(3.31b)

for D(3) (` = 0 only). As a consistency check, we note that ∆ is an exponent for both

differential operators.

Let us now return to the case of physical interest, namely to find solutions of the form

f(z) = z∆
∑
anz

n. Frobenius’ method gives recursion relations by which all the coefficients

5. We refer the reader to [126, 127] for some background about ordinary differential equations.



an in (3.9) can be determined from a0 = 1. These recursions, four-term for the general case

and three-term for ` = 0, are given in appendix B.

The reader may remark that for particular values of ∆, Frobenius’ method breaks down:

this can occur when ∆ is smaller than one of the other exponents α by an integer. These

special cases are treated separately in appendix B.

In section 3.4 we will explain how these and related recursions can be used to efficiently

evaluate conformal blocks in the derivative expansion around any point on the diagonal (and

in particular the point z = z̄ = 1/2 relevant for the conformal bootstrap applications).

3.4 Computing conformal blocks and their derivatives effi-

ciently

In this section we will present an efficient algorithm to compute conformal blocks in the

derivative expansion around any point z = z̄ = t0 on the diagonal. Such expansions form

the basic input for the numerical conformal bootstrap algorithms, where t0 = 1
2 is normally

used. Our algorithm is an extension of the method first used in [7].

Let us now slightly formalize the problem. We start by generalizing the ‘near-diagonal’

expansion (3.17). If we denote by hm,n conformal blocks derivatives with respect to the

coordinates t, s (related by simple rescalings to a, b in [7]), we can write

Fλ1λ2(z, z̄) =
∑
m,n>0

1

m!n!
hm,n (t− t0)msn , (3.32)

where

z = t+
√
s, z̄ = t−√s ⇔ t = (z + z̄)/2, s = (z − z̄)2/4. (3.33)

The diagonal corresponds to s = 0 and (3.17) corresponds to keeping just n = 0, 1.

Conformal blocks being symmetric in z ↔ z̄, ensures that the expansion is in integer powers

of s.

The first observation is that the derivatives in the direction orthogonal to the diagonal

(s-derivatives) can be recursively determined from the derivatives along the diagonal. This

follows from a so-called Cauchy-Kovalevskaya argument that was used before in Ref. [7]: for

completeness, we reproduce it here. The recursion between different derivatives follows from

the quadratic Casimir equation in (3.10) and has the following schematic structure:

hm,n =
∑

m′6m−1

(. . .)hm′,n +
∑

m′6m+2

[
(. . .)hm′,n−1 + (n− 1)(. . .)hm′,n−2

]
. (3.34)

The above equation is obtained by inserting the Ansatz (3.32) into the quadric Casimir PDE.

The precise coefficients for a, b = 0 and for t0 = 1
2 were given in [7]; extension to a, b nonzero



and general 0 < t0 < 1 is straightforward. By this recursion, moving one unit up in n we

lose two units in m. So knowing the derivatives hm,0 for m = 0, . . . ,mmax is sufficient to

compute hm,n for all m+ 2n 6 mmax. In practical applications of numerical bootstrap, it is

common to use the derivatives in such a triangular table with mmax up to O(20) or more.

Hence, we are reduced to computing the derivatives hm ≡ hm,0 along the diagonal. We

next observe that hm satisfy another set of recursion relations as a consequence of the ODEs

(3.21). These recursions have the schematic form:

m(m− 1)(m− 2)(m− 3)hm =

m−1∑
m′=min(0,m−7)

(. . .)hm′ (` = 1, 2, . . . ) , (3.35)

m(m− 1)(m− 2)hm =

m−1∑
m′=min(0,m−5)

(. . .)hm′ (` = 0) . (3.36)

The coefficients follow trivially from (3.21) so we do not give them here. Assuming that the

first few hm are known (namely for m = 0, 1, 2, 3 for general ` and m = 0, 1, 2 for ` = 0), the

rest can be found by these recursions.

Thus, it remains to find a method to compute the derivatives hm at low m. This can be

done as follows. Conformal blocks on the diagonal have an expansion (3.9) around z = 0. As

we explained in section 3.2, the expansion coefficients an are fixed by the ODEs (3.21). The

closed-form expressions for an are not available, but they can be found up to an arbitrary

order via the recursion relations given in appendix B. Crucially, since z = 0 is a regular

singular point, the single normalization condition a0 = 1 is sufficient to determine all of an.

This is unlike the recursions (3.35) for derivatives hn around a regular point 0 < t0 < 1 where

derivatives up to the equation order minus one have to be supplied as the initial condition.

A natural method to compute the hm at low m is then just to evaluate an up to a

sufficiently high order N , and to sum up the series (3.9) by differentiating term by term:

hm = (∂z)
mfλ1λ2(z)|z=t0 ≈

N∑
n=0

an(∆ + n)(∆ + n− 1) . . . (∆ + n−m) t∆+n−m
0 . (3.37)

We propose to use this method but with a small modification, which greatly improves its

numerical efficiency. Namely, we will evaluate the conformal blocks and their derivatives

expanding not in z but in the variable ρ introduced in the previous chapter. We recall that

it is related to z by

ρ =
z

(1 +
√

1− z)2
, z =

4ρ

(1 + ρ)2
. (3.38)

For ρ the points 0, 1,∞ are mapped to 0, 1,−1 and z → z′ = z/(z − 1) corresponds to

ρ→ −ρ. The corresponding expansion coefficients will be denoted bn:

fλ1λ2(ρ) = (4ρ)∆
∞∑
n=0

bnρ
n, b0 = 1 . (3.39)



We also recall that the coefficients an grow as ∆n for large ∆, while bn remain bounded in

this limit. So for large ∆ more and more terms will have to be retained in the z-series, while

the ρ-series will not suffer from this drawback.

The ODEs (3.21) in the variable ρ take the following form:

D4fλ1λ2(ρ) = 0, D3fλλ(ρ) = 0, (3.40)

where

D4 = (ρ− 1)3ρ4(ρ+ 1)4 d4

dρ4
+ 2(ρ− 1)2ρ3(ρ+ 1)3

{
(2ν + 5)ρ2 + 8Sρ+ 2ν − 1

} d3

dρ3

− 2(ρ− 1)ρ2(ρ+ 1)2
{

[c2 − (ν + 4)(2ν + 3)]ρ4 + 4[P − 3S(2ν + 3)]ρ3

− 2
[
20S2 + 2ν2 + c2 + 4P + 3ν − 5

]
ρ2 + 4[P + S(3− 6ν)]ρ− 2ν2 + c2 + ν

} d2

dρ2

− 2ρ(ρ+ 1)
{

(2ν + 3)[c2 − 2(ν + 1)]ρ6 + [12νP + 6P + 8c2S − 8S(ν + 1)(2ν + 3)]ρ5

+
[
4{−4(4ν + 3)S2 − 2ν2 + 8P (S − ν) + ν + 3} − c2(2ν + 5)

]
ρ4

− 4
[
P (16S − 10ν + 5) + 2S

(
8S2 + 4ν2 + 2c2 − 5

)]
ρ3

+
[
−2νc2 + c2 + 16P (2S − 2ν + 1)− 2

(
16S2 + ν − 1

)
(2ν − 1)

]
ρ2

+
[
2P (6ν − 1) + 8S

(
−2ν2 + ν + c2

)]
ρ+ c2 + 2c2ν

} d

dρ

+ (1− ρ)
{

[c2(4ν + 2)− c4]ρ6 + 2[−c4 + 2c2(2S + 1)(2ν + 1) + 4Pν(2ν + 1)]ρ5

+
[
c4 − 16P (−6νS + S + 2ν2 − 3ν) + 2c2

(
16S2 + 16Sν + 8S + 6ν − 1

)]
ρ4

+ 4
[
c4 + 2c2(2S + 1)(4S + 2ν − 1) + 4P{8S2 + (6− 4ν)S + ν(2ν − 3)}

]
ρ3

+
[
c4 − 16P{−6νS + S + ν(2ν − 3)}+ 2c2{16S2 + 8(2ν + 1)S + 6ν − 1}

]
ρ2

+ 2[−c4 + 2c2(2S + 1)(2ν + 1) + 4Pν(2ν + 1)]ρ− c4 + c2(4ν + 2)
}
,

and

D3 =(ρ− 1)2ρ3(ρ+ 1)3 d3

dρ3
+ 2(ρ− 1)ρ2(ρ+ 1)2

{
(ν + 3)ρ2 + 6Sρ+ ν

} d2

dρ2

− 2ρ(ρ+ 1)
{

(c2 − 2ν − 3)ρ4 + 4(P − S(2ν + 3))ρ3

+
[
−2c2 − 8P − 2

(
8S2 + ν

)
+ 1
]
ρ2 + 4[P − 2Sν]ρ+ c2

} d

dρ

− 2(ρ− 1)
{
c2ρ

4 + 2[2Sc2 + c2 + P + 2Pν]ρ3

+ 2[4Sc2 + c2 + 2P (4S − 2ν + 1)]ρ2 + 2[2Sc2 + c2 + P + 2Pν]ρ+ c2

}
.

They imply recursion relations which determine all bn starting from b0 = 1. We do not

present these recursions here, since they are totally analogous to those for the an given and

analyzed in appendix B.



Our method for evaluating hm for low m is thus as follows. First evaluate bn up to a

sufficiently high order N so that the series

(∂ρ)
mfλ1λ2(ρ)|ρ=ρ0 ≈

N∑
n=0

bn(∆+n)(∆+n−1) . . . (∆+n−m)ρ∆+n−m
0 , ρ0 ≡ ρ(t0), (3.41)

give a good approximation to the RHS for all 0 6 m 6 m0, where m0 is the maximal needed

derivative order. The accuracy of this approximation can be controlled via the asymptotics

of the bn coefficients, which can be understood from the recursion relations that they satisfy.

For the reasons given above, the needed number of terms N in this series will be much

smaller than in (3.35). Via the inverse change of variables ρ → z, the derivatives in z can

then be expressed as linear combinations of derivatives in ρ.

3.5 Summary

In this chapter, we focused on a concrete problem in the theory of conformal blocks: the

computation of conformal blocks and their derivatives on the diagonal z = z̄. The main

result of this chapter was that the diagonal contribution fλ1λ2(z) obeys an ODE which is

of fourth order for spin ` > 0 and third order for ` = 0. Such differential equations were

known before only for spins ` = 0, 1 and only for the case of equal external scalar dimensions

∆1 = ∆2, ∆3 = ∆4 [7]. The quartic Casimir played a key role in deriving these ODEs.

Furthermore, in section 3.4 we proposed an algorithm for an efficient numerical evaluation

of conformal blocks and their derivatives around any point on the diagonal, generalizing the

method first used in [7] for the case of equal external scalar dimensions. We expect that

such an algorithm will prove immediately useful in conformal bootstrap applications.

One particular application of this algorithm involves the d-dimensional Ising model.

Starting from [14] and until the publication of this work, all numerical conformal bootstrap

studies have focused on correlators with equal external dimensions. The Ising model has

both a ‘spin’ operator σ and an ‘energy’ operator ε as lowest-dimension operators. Using our

algorithm, it seems feasible to perform a simultaneous analysis of several four-point functions,

e.g. 〈σσσσ〉, 〈σσεε〉, and 〈εεεε〉. Conformal blocks needed for the 〈σσεε〉 correlator could not

be computed before, as they involve unequal external dimensions in two out of three OPE

channels. 6

This point also marks the end of the first part of this thesis, which focuses on conformal

blocks: all following chapters solely focus on the Truncated Conformal Space Approach.

Some closing remarks concerning conformal blocks are presented in the Discussion, section 8.

6. Note added: this analysis has been done (in d = 3) in 2014 by Kos, Poland and Simmons-Duffin [9,

128]. The results described in the previous chapter played an important role, as they paved the way to

recursion relations used by these authors [103].



Chapter 4

TCSA for scalar fields d > 2

dimensions 1

4.1 Introduction

In the introduction to this thesis, we have set the stage for the Truncated Conformal

Space Approach (TCSA). In the rest of this thesis, we intend to use this method to study

two different RG flows starting at the free, massless scalar CFT. Because these computations

are somewhat involved, the current chapter is intended as a first introduction to the TCSA.

It is organized as follows: we start in section 4.2 with a general discussion of the TCSA.

Section 4.3 is devoted to the free massless scalar in d dimensions. We focus on the CFT

description of the spectrum of theory, via radial quantization. We touch on various technical

issues: the construction of the Hilbert space using a graph theory method, the computation

of the Gram matrix and the fact the Hilbert space in question has various redundancies (null

states) for integer d. As a byproduct of this discussion, we show in section 4.3.5 that the

free massless scalar in a fractional number of dimensions is a non-unitary theory—its Hilbert

space contains negative-norm states.

4.2 Truncated Conformal Space Approach: general setup

We would like to study an RG flow obtained by perturbing a d-dimensional CFT by a

scalar operator V (assumed to be primary) that is relevant, e.g. that has scaling dimension

∆V < d. 2 How can one find an appropriate scheme to deal with such RG flows? First, we

1. This and all subsequent chapters are based on Ref. [129], written in collaboration with S. Rychkov and

B. C. van Rees.

2. The generalization to several perturbing operators is straightforward.
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remark that a CFT by itself does not need to be regulated in the UV. In fact, many possible

regulators (e.g. putting the theory on a lattice) will break the conformal group down to a

smaller group, even before introducing the perturbation V.

We do need to regulate the CFT in the infrared. Notice that we already know examples

of IR regulators that preserve conformal invariance: using Weyl invariance, we can put the

theory on any finite, conformally flat geometry. On such a background, conformal invariance

is only broken when the perturbation V is turned on.

The cylinder R × Sd−1 is a particularly natural choice, because it manifestly preserves

SO(d) invariance. Furthermore, radial quantization endows the cylinder with a Hamiltonian,

which maps to the CFT dilatation generator in flat space. The CFT local operators Oi of

dimensions ∆i map to states |i〉 on the cylinder. In the theories we will be considering here,

there will be a unique ground state corresponding to the unit operator, with energy zero. 3

The Hamiltonian of the perturbed theory on the cylinder is

H = HCFT + V, V = λ

∫
Σ
V(t = 0,n) (4.1)

where the coordinates (t,n) parametrize the cylinder and the integral is taken over the

timeslice Σ ∼= Sd−1: ∫
Σ
f(t,n) ≡

∫
Sd−1

f(t,n)Rd−1dn. (4.2)

By dimensional analysis, the coupling λ has mass dimension [λ] = d−∆V . The key idea is

to think about this Hamiltonian as an infinite matrix in the Hilbert space of unperturbed

CFT states |i〉. The CFT Hamiltonian in this basis is simply related to the CFT operator

dimensions: 4

HCFT|i〉 = R−1∆i |i〉. (4.3)

The matrix 〈i|V |j〉 decomposes as factor into a prefactor that depends on λ and R and a

coefficient fO†iVOj
〈i|V |j〉 = R−1(λRd−∆V ) fO†iVOj

(4.4)

that is determined by a flat-space CFT three-point function:

fO†iVOj
≡ R∆V

∫
Sd−1

〈i|V(t = 0,n)|j〉 dn (4.5a)

= lim
u→0

∫
δ(|x| − 1) 〈[Oi(u)]†V(x)Oj(0)〉 ddx. (4.5b)

In passing from Eq. (4.5a) to (4.5b) we have used that the scalar primary V transforms as

V(t = 0,n) = R−∆V V(x = n) (4.6)

3. We will ignore the CFT Casimir energy density, nonzero in even dimensions. If needed, it’s trivial to

take it into account because it just shifts all eigenstates by const./R.

4. The actual matrix elements of the CFT Hamiltonian, given by 〈i|HCFT|j〉 = R−1∆j 〈i|j〉, are

proportional to the Gram matrix Gij = 〈i|j〉, see Sec. 4.3.3. In an orthonormal basis, both the Gram

matrix and the matrix 〈i|HCFT|j〉 are diagonal.



when mapped to flat space. In particular, it follows from Eq. (4.5b) that fO†iVOj
does not

depend on R.

The dimensionless coupling λRd−∆V =: λ̃(R) from Eq. (4.4) determines whether the

perturbation V is small. To be precise, the coupling λ defines an IR scale ΛIR for the RG

flow:

ΛIR ∼ λ
1

d−∆V . (4.7)

For R � Λ−1
IR we are close to the UV regime: the coupling λ̃(R) ∼ (RΛIR)d−∆V is small,

so V is a small correction to HCFT and perturbation theory is reliable. To probe the IR

physics, we must take instead

R� Λ−1
IR . (4.8)

Here V cannot be treated as a small perturbation, and the right thing to do would be to

diagonalize the whole Hamiltonian HCFT +V . But how can we do this given that this matrix

is infinite?

The proposal by Yurov and Al. Zamolodchikov in Ref. [23] is to introduce a UV cutoff

ΛUV and to truncate the Hilbert space keeping only the states below this maximal energy:

Ei 6 ΛUV . (4.9)

If the cutoff is chosen so that

ΛUV � ΛIR , (4.10)

we can hope that the IR physics is not much affected. Let us furthermore assume that the

UV CFT has a discrete spectrum, which will be true for most CFTs of interest. In this case,

the truncated Hilbert space is finite-dimensional, H is a finite matrix and can be numerically

diagonalized.

Many properties of a quantum field theory are encoded in its finite-volume spectrum, for

example:

— the ground state dependence on R gives the vacuum energy density;

— the number of ground states encodes the symmetry breaking pattern (in the case of

a global symmetry of the UV theory that is broken spontaneously in the IR);

— the excited states give the massive spectrum of the theory, including one-particle,

many-particle, and bound states;

— for flows ending in conformal fixed points we can extract the spectrum of IR operator

dimensions.

The truncation of the Hilbert space to states with energy E 6 ΛUV necessarily induces

truncation errors, which we expect to decrease when the cutoff ΛUV is increased. However,

increasing the cutoff also entails working with larger Hilbert spaces and requires more

computational resources. The success of the TCSA therefore depends on whether we can get

‘reasonable’ results with numerically tractable Hilbert space sizes.



Both the original paper [23] and all the subsequent TCSA literature known to us consider

d = 2. In two dimensions, it is very natural to put a QFT on R × S1: this simply entails

compactifying the spatial coordinate x as x ∼ x + 2πR. The analog of this in d > 2

dimensions means compactifying on the torus T d−1, which is not equivalent to the sphere

Sd−1. In fact, there are many inequivalent ways to put a theory on a finite volume in d > 2:

radial quantization requires however that we choose the cylinder R× Sd−1.

4.2.1 A case study for TCSA in d dimensions

In this thesis we will apply TCSA to study the Landau-Ginzburg theory, i.e. the free

massless scalar theory perturbed by a linear combination of :φ2 : and :φ4 : operators. This

is perhaps the simplest non-trivial d-dimensional RG flow. A priori, we are interested in

2 6 d < 4. However, in this first work we will have to stay away from the extremes of this

range, since the TCSA analysis becomes complicated near these extremes.

The reason why d close to 2 is hard for TCSA is that the scalar dimension ∆φ = (d− 2)/2

approaches zero in this limit, and the free scalar spectrum becomes dense and eventually

continuous in d = 2. 5 To have a sufficiently sparse spectrum, we will keep d not too close to

2.

On the other hand, the operator φ4 becomes marginal in d = 4 dimensions. As we will

see, TCSA works best for strongly relevant perturbing operators V. The more relevant the

operator is, the better-behaved perturbation problem is in the UV. The best situation is

realized when

∆V < d/2 , (4.11)

which for the perturbations considered here means

d < 8/3 (V = :φ4 :), d < 4 (V = :φ2 :) . (4.12)

When (4.11) is satisfied, the perturbation is simply UV-finite. At ∆V = d/2 the vacuum

energy becomes divergent, as can be seen at second order in perturbation theory. Other UV

divergences appear if we further increase ∆V , and these also affect the couplings of nontrivial

local operators (including V itself). These short-distance divergences have to be handled in

the usual QFT way – by adding counterterms. In this first work we would like to avoid

dealing with UV divergences, so we will stay within the bounds (4.12). This does not mean

however that we will altogether ignore cutoff dependence. Even in the range (4.12) when

there are no UV divergences, the accuracy of the method for a finite cutoff will be influenced

by power-suppressed corrections. This important issue will be discussed below.

5. The paper [130] discussing the two-dimensional Landau-Ginzburg theory using the TCSA (but in

a different basis of operators) was submitted to the arXiv the same day as our work. Note added: an

alternative analysis of the 2d Landau-Ginzburg flow, starting at the theory of a free massive boson, has been

done in Ref. [131].



As the reader must have noticed, we are considering the case of fractional d on equal

footing with the physically interesting integer d. We will see that the TCSA problem allows

a natural continuation to general d.

4.3 Free scalar in d dimensions

In this section we will discuss the UV CFT at which our RG flows will be starting—the

free massless scalar CFT in d dimensions, which has already been discussed in section 1.4.3.

These results presented here lay the groundwork for the numerical investigations and for the

renormalization, studied in the subsequent sections.

The local operators of the free boson theory are built by taking products of the funda-

mental field φ and of its derivatives, e.g.

:∂n1φ · · · ∂nkφ : (nj > 0) (4.13)

where some or all of the vector indices on the derivatives may be contracted. The operators

are all inserted at the same point, and the normal-ordering sign means as usual that we do

not consider Wick contractions within the operator when computing its correlation functions

with other operators.

We can classify the operators according to their spin, i.e. their SO(d) representation.

When we put the theory on the cylinder, the spin of an operator becomes the spin of the

state into which it maps under the state-operator correspondence. Eventually we will perturb

the theory by adding to the Hamiltonian an integral of a scalar operator over the sphere,

as in Eq. (4.1). Since this perturbation preserves rotation symmetry of the sphere, the

Hamiltonian matrix will split into blocks corresponding to the states of the same spin. 6

Crucially, SO(d) invariance is not broken by introducing a cutoff ΛUV, because rotations do

not mix states with different energy.

The scalar sector contains most of the states we are interested in: the ground state, one-

particle states at rest, and two-particle states in the center-of-mass frame. In the large-R

limit, many of the states of higher spin will correspond to spin-0 states slightly boosted along

the sphere. In principle, there could also exist additional states with intrinsic spin, which

could be thought of as bound states of fundamental scalars at strong coupling. This would

be analogous to vector mesons in gauge theories with matter. In this thesis we however focus

exclusively on the scalar sector.

The scalar boson (with arbitrary φ2 and φ4 couplings) has an additional parity symmetry

P that commutes with the TCSA Hamiltonian. States are therefore classified not only by

6. In some 2d TCSA papers, such as Ref. [24], the term ‘momentum’ rather than ‘spin’ is used.



their spin quantum numbers, but also by their parity. As a simplifying technical assumption,

we will restrict ourselves to states with P = +1.

4.3.1 Constructing the Hilbert space

We now turn our attention to the Hilbert space of the free boson. By the state-operator

correspondence, introducing a UV cutoff ΛUV is equivalent to only keeping states that

correspond to operators with dimension

∆ 6 ∆max ≡ RΛUV. (4.14)

Constructing the scalar, parity-even sector of the truncated Hilbert space is a well-defined

group theory problem, namely to find all parity-even scalars of scaling dimension ∆ 6 ∆max

in the tensor product of the spin-j tensors

∂µ1 · · · ∂µjφ. (4.15)

It seems however more convenient to use a graph theory approach. Notice that a basis of

scalar, parity-even operators is formed by operators of the form Eq. (4.13) having all indices

contracted. Such an operator can be drawn as a graph, by mapping every φ to a separate

vertex and by drawing an index contraction as an edge between two vertices. As an example,

the graph corresponding to the operator :φ2 φ,µ φ,µνρ φ,νρ : is displayed below:

CFT
massive

Z2-unbroken

massive

Z2-broken

m2m2
c

Because of the equation of motion ∂2φ = 0, we can ignore operators containing contractions of

derivatives acting on the same φ. As in the example above, two vertices may be connected by

more than one edge. In graph theory, graphs obeying these conditions are called multigraphs

without loops. 7 Depending on how derivatives are contracted, the graphs may have one or

several connected components. Notice finally that isomorphic graphs correspond to identical

operators, so they should not be counted separately.

Using this graph theory formalism, it is straightforward to find all scalar, parity-even

operators {Oi} below a certain cut-off dimension ∆max. Some details are given in appendix

C. By the state-operator correspondence, the truncated Hilbert space H is spanned by the

states |Oi〉 = Oi(0)|0〉. For d = 3, the spin-0 states with lowest energy are for example

|0〉, |φ〉, |φ2〉, . . . , |φ5〉, |(∂µφ)2〉, . . . . (4.16)

7. We can also replace n parallel edges by a single edge with n as a label. Then our graphs become simple

edge-colored graphs.



Finally, we remark that the discussion above focussed on parity-even operators. Parity-

odd operators involve a contraction with the Levi-Civita tensor εµ1···µd . Notice that the

P = −1 operators have quite high scaling dimensions, e.g. the lowest dimension one in d = 3

is

O− = εαβγδµ1µ2δν1ν2 φ,α φ,βµ1 φ,γµ2ν1 φ,ν2 (4.17)

which has dimension [O−] = 9.

4.3.2 Primaries and descendants

CFT local operators can be divided into primaries and descendants (cf. section 1.3.2). The

basis for the Hilbert space on the cylinder includes of course all states, those corresponding

to primaries and to descendants. In 2d TCSA applications, it is customary to organize the

Hilbert space into a set of primary states |hi, h̄i〉 and descendant states, which are obtained

by acting with the Virasoro generators L−1, L−2, . . . and L̄−1, L̄−2, . . .. In that case, matrix

elements involving descendants can be reduced using the Virasoro algebra to matrix elements

〈h1, h̄1|V|h2, h̄2〉 that involve only primaries [12]. The latter are OPE coefficients of the UV

CFT, assumed to be known. This way, all matrix elements 〈i|V |j〉 can be computed using

some straightforward computer algebra [132]. In particular, this strategy works for strongly

coupled CFTs, such as the Lee-Yang model [23] and the tricritical Ising model [24].

It seems natural to adapt this strategy to the conformal algebra in d > 2 dimensions,

where descendants are generated only by Pµ. However, the Hilbert space basis of graph

theory states is not suited to this method, since a generic state |Oi〉 ∈ H is neither a primary

nor a descendant, but a linear combination of both primary and descendant states. In

principle, one could with some additional work classify all states in terms of primaries and

descendants and imitate the 2d approach to compute all matrix elements. We will follow an

alternative approach, which consists of working directly with the graph theory states |Oi〉.
This is possible because in our case the UV CFT is free, and all matrix elements 〈Oi|V |Oj〉
can be evaluated using Wick’s theorem, bypassing the use of the conformal algebra.

Let us finally remark that the current mathematical understanding of the underlying

algebraic structure for CFTs in fractional d appears to be rather incomplete. In practice, the

computations in this thesis involve only scalar operators, which have all indices contracted;

such computations can be done directly for fractional d by setting ∆φ = (d − 2)/2 and

δµ
µ = d. For computations involving non-scalar operators, a better understanding of so(d)

representation theory for fractional d may be necessary.



4.3.3 Gram matrix

Although the above construction provides a basis |i〉 = |Oi〉 for the truncated Hilbert

space H, this basis has no reason to be orthonormal or even orthogonal. Rather, we will

have a nontrivial Gram matrix Gij ≡ 〈i|j〉. This Gram matrix is an essential ingredient

in the existing implementations of the TCSA in d = 2. In our case, the Gram matrix will

not play a crucial role. In fact, as we will see below, the perturbed spectrum computation

can be organized without using the Gram matrix at all. Nevertheless, the Gram matrix is a

conceptually important object, so we would like to discuss in some detail its definition and

evaluation.

As usual in radially quantized CFT, the map from a state |Oi〉 to its conjugate 〈Oi| is

defined with the help of the inversion transformation I : xµ → xµ/x
2 (see section 1.6.2).

The Gram matrix is then defined as

Gij = lim
x→0
〈[Oi(x)]†Oj(x)〉 , (4.18)

where the conjugate operator [Oi(x)]† is inserted at the point x′ = I(x). The rules for

construction of the conjugate operators are as follows (φ is the fundamental scalar; A,B any

two fields in the theory):

1. [φ(x)]† = |x|−2∆φ φ (I(x)) (since φ is a primary),

2. [A(x),µ]† = ∂
∂xµ [A(x)]† (since conjugation is antilinear),

3. [: A(x)B(x) :]† = :[A(x)]†[B(x)]† : . 8

Starting from Rule 1 and using Rule 2 repeatedly we can conjugate all derivatives of φ.

Then by applying Rule 3 we can conjugate all normal-ordered products of derivatives, and

in particular all scalar operators forming our basis.

Computation of the Gram matrix is thus reduced to evaluating two-point functions

of operators made of several φ’s acted upon by various derivatives. In principle, this is

straightforward to do using Wick’s theorem. The number of Wick contractions to perform

can be dramatically reduced by using selection rules. To begin with, the only nonzero entries

are those for which (a) Oi and Oj contain equal number of φ’s , and (b) ∆i = ∆j . These two

rules are subsumed by the following much more powerful rule. Let N`(O) be the number of

times the `th derivative ∂`φ occurs in the operator O (irrespectively of how its indices are

contracted). Then the Gram matrix entry 〈Oi|Oj〉 can be nonzero only if

N`(Oi) = N`(Oj) for all ` = 0, 1, 2 . . . (4.19)

8. To show this, start with [A(x)B(y)]† = [A(x)]†[B(y)]†, where the operators are inserted at the same

radial quantization “time”, so that no ordering issue arises. From here by induction in the number of

fundamental fields we get [: A(x)B(y) :]† = :[A(x)]†[B(y)]† :, and Rule 3 follows by taking the coincident

point limit.



Physically, the selection rule (4.19) can be understood via canonical quantization, where Nj

measures the occupation number of oscillators of spin ` – the selection rule is then a direct

consequence of SO(d) invariance. In practice, Eq. (4.19) implies that the Gram matrix is

block diagonal, where the blocks correspond to sectors that have all occupation numbers

N1, N2, . . . identical.

Putting it all together, the Gram matrix is thus evaluated as follows. First one computes

the overlaps

〈∂`{µ}φ|∂`{ν}φ〉 , (4.20)

by using the above prescription, or by using the conformal algebra, as explained e.g. in [21].

These are particular invariant tensors, symmetric and traceless in both groups of indices

{µ}, {ν}. Overlaps between general scalar states are then computed by contracting the basic

overlaps (4.20) between their constituents. Some additional details are given in appendix C.

Using this direct algorithm, we could compute the Gram matrix up to a rather high

cutoff in operator dimension (∆max = 23 in d = 4). An alternative, indirect, method for

computing the Gram matrix will be described in section 4.4.3. In any case, as we will see

below, the spectrum computations can be organized avoiding the use of the Gram matrix.

4.3.4 Null states in integer d

Although the Gram matrix Gij is non-trivial, it is natural to expect it to be positive-

definite, in which case the states |i〉 can be made orthonormal by a suitable change of basis

|i〉 → U j
i |j〉. This turns out to be false: for integer d > 3, some states |χ〉 in the Hilbert

space are null, meaning that they have zero overlap with any other state |ψ〉 in the theory,

i.e. 〈ψ|χ〉 = 0 for all states 〈ψ|. In particular, a null state has zero norm. The Gram matrix

Gij provides a simple way to characterize null states: a state |χ〉 = χi|i〉 is null if and only if

Gijχ
j = 0. Furthermore, the selection rule (4.19) implies that it is sufficient to check every

block of the Gram matrix (with definite occupation numbers Nj) separately for the presence

of null states.

Before we explain how to resolve this issue, we will discuss two simple examples of null

states in d = 3. The simplest null state occurs in the sector with N2 = 4 and Nj = 0 for all

other j. This sector consists of two states:

|1〉 =

CFT
massive

Z2-unbroken

massive

Z2-broken

m2m2
c

, |2〉 =

CFT
massive

Z2-unbroken

massive

Z2-broken

m2m2
c

CFT
massive

Z2-unbroken

massive

Z2-broken

m2m2
c

, (4.21)

which have scaling dimension ∆ = 4 + 2d → 10 in d = 3. Indeed, the Gram matrix in this

sector (
〈1|1〉 〈1|2〉
〈2|1〉 〈2|2〉

)
=

(
362880 181440

181440 90720

)
(d = 3) , (4.22)



has a null eigenvector |χ1〉 = |1〉 − 1
2 |2〉. To interpret this null state, we will rewrite the

states |1〉 and |2〉 in terms of the field φ and its derivatives. Using the shorthand notation

Mµν = φ,µν , we have

|1〉 = |tr M4〉, |2〉 = |(tr M2)2〉. (4.23)

The fact that |χ1〉 is null can now be proven from the properties of the matrix M. In fact,

the Cayley-Hamilton theorem asserts that M obeys a trace relation 9

M3 − 1
2(tr M2) M− 1

3(tr M3)13×3 = 0 (tr M = 0, d = 3). (4.24)

By multiplying the above relation with M and taking a trace, we immediately recover the

fact that |χ1〉 is null.

Starting from the Cayley-Hamilton formula (4.24), it is easy to find many more null

states. By for example multiplying it from both sides with the vector Vµ = φ,µ, we find a

second null state

|χ2〉 = |V ·M3 ·V〉 − 1
2 |V ·M ·V (tr M2)〉 − 1

3 |V ·V (tr M3)〉 (4.25)

of dimension ∆ = 3 + 5d/2→ 21/2 in d = 3. The same result can of course be obtained by

calculating that |χ2〉 is a null eigenstate of the Gram matrix. Null states continue to appear

at dimension ∆ > 11. 10

Let us remark that the situation in integer d > 4 is completely analogous to the 3d case.

At least one class of null states in integer d can be generated by the trace relation

Md − 1
2(tr M2) Md−2 − 1

3(tr M3) Md−3 + . . .+ c1d×d = 0 (tr M = 0). (4.26)

The coefficient c = (−1)d det M in this equation can be written in terms of the traces

tr M2, . . . , tr Md. As in d = 3, we make no attempt to systematically describe all null states

in integer d > 3.

The above discussion means that the Hilbert space H of graph theory states has various

redundancies in integer d, originating from trace relations. These redundancies are an

artefact of our description of the Hilbert space: the null states themselves are unphysical and

do not contribute to correlation functions or matrix elements. As usual, the Hilbert space

H′ of physical states is obtained by modding out null states: H′ = H/∼, where

|ψ〉 ∼ |ψ〉+ |null〉. (4.27)

It is easy to see that the Gram matrix restricted to H′ is positive-definite. In integer d, the

original Hilbert space H should be thought of as an extended Hilbert space, which contains

both physical and null states.

9. We remark that the matrix elements Mµν are operator-valued rather than c-numbers – in particular

Eq. (4.24) should be understood as an operator equation in radial quantization.

10. We have not investigated whether all null states in d = 3 follow from the trace relation (4.24).



It may be interesting to compare the relative size of the Hilbert spaces H′ and H for a

given cutoff. In Fig. 4.1, we therefore display the number N0(∆) of physical states and the

total number of states (both physical and null) at a given dimension ∆ (restricted to the

spin-0, P = +1 sector). The proportion of null states grows quickly: at ∆ = 18, which is

the maximal cutoff we will be working with, about a quarter of all states are null.
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Figure 4.1: The number of scalar, parity-even states d = 3 (note the logarithmic scale). Blue

squares: all states (physical + null). Red dots: null states. Black dotted curve: only physical

states.

4.3.5 Non-unitarity at fractional d

The above discussion of null states raises an interesting question: what is the precise fate

of the null states when one passes from integer d to a nearby fractional d? As we mentioned,

these states are then no longer null, but are they positive- or negative-norm? We claim that

some of these states acquire a negative norm.

To see a concrete example, let us take the operator O = tr M4 − 1
2 tr M2 that corre-

sponded to the first 3d null state |χ1〉 from section 4.3.4. By an explicit computation, its

two point function for general d is given by

〈O(x)O(0)〉 = C(d− 3)(d− 2)5(d− 1)2d5(d+ 1)(d+ 2)(3d+ 8)|x|−2∆O , C > 0 . (4.28)

Notice that the prefactor has zero at d = 3, which is of first order. For 2 < d < 3 the two

point function of O is negative, and so O must have an overlap with a negative-norm state.

This example can be easily generalized to show that there are negative norm states for any

fractional d. 11

11. This argument is reminiscent of how Ref. [133] showed that analytic continuations of O(n) models to

fractional n contain negative-norm states.



Alternatively, we can compute the Gram matrix in the sector of O for general d:

8(d− 2)4(d− 1)d2(d+ 2)

[
4d2

(
d2 + d+ 2

)
4d
(
2d2 + 3d− 6

)
4d
(
2d2 + 3d− 6

)
d4 + 5d3 − 6d2 − 36d+ 72

]
. (4.29)

Notice that this reduces to the matrix from Eq. (4.22) when for d→ 3. Substituting d = 3−ε,
one computes that one of the eigenvalues of the above matrix is −31104ε + O(ε2), which is

negative for sufficiently small ε > 0.

The presence of negative-norm states means that the free scalar theory in fractional d is

not unitary. To our knowledge, this observation has not been made before, although theories

in fractional dimensions have been extensively studied, especially in relation to critical

phenomena, where they form the basis of the epsilon expansion. As we will see below in

section 7.3, the lack of unitarity will lead to the presence of complex energy eigenvalues, once

the free theory is perturbed by the quartic coupling. However, the mass term alone leaves

all energy levels real, as follows from a canonical quantization argument – see section 5.1.

It has to be said that the first negative norm state has a quite high dimension:

∆neg =

8 + 4∆φ (2 < d < 3) ,

10 + 5∆φ (3 < d < 4) .
(4.30)

This must be the reason why they have not been noticed until now. Since the density of

states grows exponentially fast with dimension, a few negative norm states at high dimensions

probably do not have a strong effect on the low-energy physics. In a recent conformal

bootstrap study of the Wilson-Fisher fixed point in fractional dimensions [102] it was assumed

that these theories were unitary, and very reasonable results were obtained. 12

4.4 TCSA eigenvalue problem

4.4.1 Simple versus generalized eigenvalue problem

Before turning to the calculation of the matrix elements 〈i|V |j〉, it will be convenient to

formally state the TCSA eigenvalue problem. Energy levels on the cylinder are solutions of

the eigenvalue problem

H|ψ〉 = E|ψ〉 . (4.31)

We will be looking for scalar eigenstates, expanding them in a basis of states |j〉:

|ψ〉 = cj |j〉 (4.32)

12. More evidence for the mildness of the unitarity violation is provided by recent calculation [134] of the

free energy F of the free scalar and the Wilson-Fisher fixed point on Sd for non-integer d. It was found that

Fd changes monotonically along the flow, just as for unitary theories in integer dimensions.



The states |j〉 will be in one-to one correspondence with the scalar local operators of the

UV CFT (in this thesis, the free massless scalar theory). The Hamiltonian in this basis is

represented by a matrix:

H|j〉 = H i
j |i〉 . (4.33)

In terms of this matrix, Eq. (4.31) becomes a simple eigenvalue problem

H i
j c
j = Eci . (4.34)

Notice that the matrix H i
j is not hermitian. To transform the problem to a more familiar

form, we consider the matrix elements

Hij = 〈i|H|j〉 . (4.35)

We of course have

Hij = GikH
k
j , (4.36)

where Gik = 〈i|k〉 is the Gram matrix discussed above. The matrix Gij is hermitian, and Hij

is hermitian if the Hamiltonian is so as well, which is the case for the Landau-Ginzburg flows

with real couplings considered here. Actually, for the operator bases considered in this work,

these matrices will be real symmetric. We then have an equivalent symmetric generalized

eigenvalue problem:

Hij c
j = EGij c

j . (4.37)

In most existing d = 2 TCSA implementations we are aware of, one starts by computing

the matrices Gij and Hij , which naturally leads to the generalized eigenvalue problem (4.37).

One then usually multiplies both sides byG−1 and transform to (4.34). 13 Here, we will choose

an alternative path. Namely, we will directly compute the matrix H i
j and find eigenvalues

from (4.34). The method for computing H i
j is described below in section 4.4.3.

4.4.2 Working in the presence of null states

As mentioned in section 4.3.4, the Hilbert space H of all graphs contains null states in

integer d, arising from trace relations. When doing computations in a particular integer

dimension n ∈ N, it seems natural to work in a basis of physical states H′ which is smaller

than H. However, when passing to fractional d = n ± ε, the trace relations cease to

exist: consequently, all non-isomorphic graphs give rise to inequivalent states. In practice,

this approach makes it difficult to compare results in integer and fractional dimensions:

computing e.g. a spectrum in d = 3 dimensions requires working in a completely different

basis than in d = 3 ± ε dimensions. For simplicity, we therefore choose to work in the full

13. Strictly speaking, this is not necessary, since numerical methods for solving generalized eigenvalue

problems are readily available.



Hilbert space H both for integer and fractional d. For integer d, this approach means that

several unphysical states will appear in the spectrum. 14

In presence of null states the discussion of section 4.4.1 needs to be reconsidered. In

particular, the Hamiltonian matrix becomes ambiguous in integer d, since we can add an

arbitrary null state to the RHS in (4.33):

H|i〉 → H|i〉+ |null〉. (4.38)

Also, the eigenvalue problem (4.31) has to be considered modulo addition of an arbitrary

null state in the RHS. In practice, however, we do not have to deal with these subtleties. We

will compute the Hamiltonian matrix as if there were no null states, 15 and solve the original

eigenvalue problem (4.31). Our final spectrum for integer d will thus contain both physical

and null state eigenvalues. It is easy to see that the physical state eigenvalues are the same

as in the more rigorous treatment. 16 The null eigenvalues are unphysical: they need to be

separated and thrown out. There are many ways to do this in practice: one can follow a

null eigenvalue from the UV where its value is known; one can detect it by the presence of

crossings with physical states (physical eigenvalues don’t cross in RG flows which are not

integrable); one can check the nullness of the corresponding eigenvector. For the low-lying

spectrum this issue does not even arise, since the first null state has a relatively high scaling

dimension.

4.4.3 Matrix elements via the OPE method

The CFT piece of the Hamiltonian matrix is diagonal:

(HCFT)ij = R−1∆jδ
i
j . (4.39)

The nontrivial part is to compute the matrix of the perturbation. We compute this by using

the following OPE method. Namely, in radial quantization we are supposed to compute(∫
|x|=1

V(x)

)
Oj(0) , (4.40)

where V is the perturbing operator (in our examples it will be :φ2 : or :φ4 :), and Oj is the

operator corresponding to the state |j〉. Notice that we have already mapped the operator

14. In future work focusing on integer d, it will probably make sense to eliminate the null states, in order

to reduce the dimension of the Hilbert space and speed up the subsequent matrix diagonalization.

15. We keep d as a free parameter when computing matrix elements, and set d to the desired value before

the diagonalization.

16. A key to this argument is that null states can only be mapped into null states by the Hamiltonian.

In principle, the fact that we don’t solve (4.33) modulo the appearance of a null state could lead to some

physical eigenvectors disappearing, due to the Jordan block phenomenon. However, this is very non-generic

and would be easily detectable as we are varying parameters such as couplings and the radius of the cylinder.

We have never observed it happen.



V to flat space. Consider now the OPE

V(x)Oj(0) =
∑
k

Ck,{µ}(x)A{µ}k (0) (4.41)

where Ak(0) are local operators inserted at the origin, and Ck(x) are c-number coefficient

functions. Since we are in a free theory, this OPE can be worked out explicitly. Notice that

while V and Oj will be scalars, many of the operators Ak will be tensors, and {µ} stands

collectively for their indices, contracted with those of Ck. Now to evaluate (4.40) we just

integrate the OPE term by term, which amounts to integrating the coefficients:

∑
k

(∫
|x|=1

Ck,{µ}(x)

)
A{µ}k (0) . (4.42)

By rotation invariance, the integrals will produce invariant tensors, i.e. a number of Kronecker

deltas connecting the indices in {µ}. Contracting these with the indices of A{µ}k will give

scalar operators. Expressing the RHS of (4.42) in the original basis, we read off the matrix

V i
j . In the above discussion we were effectively setting R and g to unity. To restore the

dependence in these parameters, we need to multiply the resulting matrix by R−1(gRd−∆V ).

This, then, is how we compute the matrix entering the eigenvalue problem. Some

additional implementation details are given in appendix C. Notice that this approach is more

economical (involves fewer Wick contractions) than the direct computation of the three-point

functions 〈i|H|j〉.

The matrices V i
j computed by the OPE method can be subjected to a check. We know

that if we multiply them by the Gram matrix as in (4.36), the resulting matrix Vij must

be symmetric. As mentioned at the end of section 4.3.3, we can compute the Gram matrix

directly up to a rather high cutoff. Up to this cutoff, we can then check the symmetry of Vij

for the φ2 and φ4 perturbations—this check works.

In some cases, the Gram matrix can be computed indirectly, by turning the above

consistency check around. The logic is the following: given the matrices V i
j for the φ2

and φ4 perturbations, we may classify all matrices Qij that are (a) symmetric, (b) subject

to the selection rule (4.19) and (c) have the property that QijV
j
k is symmetric for both

perturbation matrices. If the constraints (a)-(c) completely determine Qij , then Qij must

coincide with the Gram matrix Gij . It turns out that up to the highest cutoffs explored in

this work, the solution to (a-c) is always unique, which means that we can always use this

indirect method to compute Gij .
17 It is by this method that we computed the Gram matrix

used to count the negative norm states in figure 7.12.

17. We have noticed that this indirect method breaks down for even higher cutoffs in d = 4.



Chapter 5

The φ2 flow in TCSA

In the previous chapter, we have set up the necessary formalism to do TCSA computations

in the theory of the massless boson in d dimensions. We now turn our attention to a specific

RG flow, namely the massive boson, which has the following TCSA description

H = HCFT + V, V = γ
m2

2

∫
Σ

:φ2(t = 0,n) :. (5.1)

The coefficient γ is related to the normalization of φ: a unit-normalized two-point function

〈φφ〉 requires that γ = 1/(d− 2)Sd (see section 1.4.3).

Needless to say, this RG flow is considered for illustrative purposes only, as we expect

to find the free massive scalar theory. In section 5.1, we use canonical quantization on

the cylinder to compute both the Casimir and the energy spectrum along the RG flow.

Section 5.2 is a short detour of the main line of thinking: it generalizes a known approach

in 2d TCSA, namely to calculate such observables using conformal perturbation theory. We

conclude in section 5.4 by showing the numerical results from TCSA.

5.1 Canonical quantization on the cylinder

Before doing any TCSA computations, we will compute the spectrum of the massive

boson on the cylinder R × Sd−1
R analytically, using canonical quantization. 1 Coupling the

massive boson to curvature is completely analogous to the procedure for the massless boson,

which was discussed in section 1.5). After adding a mass term 1
2m

2φ2, we therefore have

S[φ, gµν ] =
1

2

∫
ddx
√
|g|
[
gµν∂µφ∂νφ+ (m2 + κR)φ2

]
≡
∫

ddx
√
|g|L. (5.2)

1. In this section, we work in Euclidean cylinder in order to be consistent with the conventions used in

other chapters. The more familiar real-time approach of course leads to the same spectrum.
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In TCSA, it is crucial that the UV theory (with m2 = 0) is a CFT, which requires to set

κ to the specific value κc from Eq. (1.79). 2 Specializing to the cylinder with radius R, the

Ricci curvature is given by R = (d− 1)(d− 2)/R2.

Canonical quantization on Sd−1
R is similar to the familiar flat-space case. The only

subtlety comes from the Laplacian, which has hyperspherical harmonics f`,n(n) as eigen-

functions [135, 119]:

−∆Sd−1
R

f`,n(n) =
1

R2
`(`+ d− 2) f`,n(n), ` ∈ N0. (5.3)

The label ` indicates total angular momentum, whereas n is an additional quantum number

that labels all different states in the spin-` representation of SO(d). The dimension of the

spin-` representation is given by

D(`) = σd(`) + σd(`− 1) , σd(`) =

(
`+ d− 2

`

)
, (5.4)

hence n runs over n = 1, 2, . . . , D(`). In low dimensions, these hyperspherical harmonics are

familiar functions: for d = 2 they are simply f`,±(n) ∼ e±i`ϕ, and for d = 3 they are standard

spherical harmonics, f`,m(n) ∼ Y m
` (θ, ϕ). A particular class of hyperspherical harmonics in

any d is given by the Gegenbauer polynomials:

f`(n) ∼ Geg
(ν)
` (n · n′), n′ = fixed. (5.5)

We will need some basic properties of the hyperspherical harmonics, all of which carry

over from the d = 3 case. It will be convenient to introduce an L2 inner product on Sd−1
R :

((f, g)) ≡
∫
Sd−1
R

f∗(n) g(n)Rd−1dn. (5.6)

Clearly two harmonics f`,n, f`′,n′ are orthogonal with respect to this inner product if ` 6= `′.

Consequently, we can always work in a completely orthonormal basis:

((f`,n, f`′,n′)) = δ``′δnn′ . (5.7)

Furthermore, the hyperspherical harmonics are a complete basis of functions [136], in the

sense that any function ψ : Sd−1
R → C can be expanded as

ψ(n) =
∞∑
`=0

D(`)∑
n=1

ψ`n f`,n(n) , ψ`n = ((f`,n, ψ)). (5.8)

This implies a completeness relation

∞∑
`=0

D(`)∑
n=1

f`,n(n)f∗`,n(n′) =
1

Rd−1
δ(n− n′) (5.9)

2. This illustrates the fact that putting a QFT on curved space is ambiguous: here we use Weyl invariance

of the UV theory to resolve this ambiguity. Any other choice of κ would give rise to a different spectrum on

Sd−1
R , although in the limit R→∞ the κ-dependence drops out.



where the delta function δ(n) is defined as∫
Sd−1

δ(n− n′)ψ(n′) dn = ψ(n). (5.10)

After this rather technical discussion, the actual canonical quantization of the scalar field is

straightforward. The field φ has a mode expansion

φ(t,n) =

∞∑
`=0

D(`)∑
n=1

1√
2ω`

[
a`n e

−ω`t f`,n(n) + a∗`n e
ω`t f∗`,n(n)

]
, (5.11)

where the equation of motion fixes ω` to be

ω` =
√
m2 + (`+ ν)2/R2 . (5.12)

As usual, we promote the modes a`n, a
∗
`n to ladder operators a`n, a

†
`n that satisfy the com-

mutation rules

[a`n, a
†
`′n′ ] = δ``′δnn′ , [a`n, a`′n′ ] = [a†`n, a

†
`′n′ ] = 0 . (5.13)

It may readily be checked that the field φ(t,n) and its conjugate π(t,n) = δS/δφ̇(t,n) satisfy

canonical equal-time commutation relations

[φ(t,n), φ(t,n′)] = [π(t,n), π(t,n′)] = 0 , [φ(t,n), π(t,n′)] = δ(n− n′) . (5.14)

and that the Hamiltonian is given by

H =
∞∑
`=0

D(`)∑
n=1

ω`

[
a†`na`n + 1

2

]
. (5.15)

As usual, the Fock space of the oscillators a†`n forms the Hilbert space of the theory.

5.1.1 Casimir energy

A first observable that we want to compute is the ground state energy E0(m2) as a

function of m2. For the canonically quantized massive scalar, it is given by the zero point

energy of all oscillators

E0,can =
1

2

∞∑
`=0

D(`)ω` , (5.16)

with D(`) given by Eq. (5.4). The canonical ground state energy (5.16) however does not

match with the TCSA ground state energy. To see this, we will compute the latter to first

order in conformal perturbation theory. This is the usual Rayleigh-Schrödinger perturbation

theory applied to the Hamiltonian (5.1). At leading order in the perturbation 3 V , this gives

E0,TCSA = 〈0|HCFT|0〉+ γ
m2

2
〈0|V |0〉+ O(m4). (5.17)

3. Strictly speaking, the small parameter in this expansion is the dimensionless coupling µ ≡ mR.

Although this is not manifest from Eq. (5.1), this can be shown by extracting the R-dependence from the

matrix elements of V .



Since the conformal vacuum |0〉 has zero energy, the first term vanishes. Similarly, the second

term is an integral over the one-point function 〈φ2〉, which vanishes by conformal invariance.

We therefore expect that

E0,TCSA ∼
1

R
(mR)4 as m2 → 0 (5.18)

up to a prefactor that we will compute later.

Now consider the Casimir energy as computed according to Eq. (5.16). Its dependence

on m2 comes completely from ω`, which can be expanded around m2 = 0 as follows:

ω` =
1

R

[
`+ ν +

µ2

2(`+ ν)
− µ4

8(`+ ν)3
+ O

(
µ6
)]
, µ ≡ mR. (5.19)

This has the wrong m2-dependence: in order to match with the TCSA Casimir energy (5.18),

the first two terms (that are constant resp. quadratic in m) must be subtracted from ω`.

These subtractions can be justified by adding local counterterms to the bare action. 4

After taking these subtractions into account, we will pass to the computation of the

Casimir energy. For simplicity, we can rewrite the prefactor D(`) from Eq. (5.4) as

D(`) =
`+ ν

ν

(2ν)`
`!

=
2

Γ(2ν + 1)

(`+ ν)Γ(`+ 2ν)

Γ(`+ 1)
. (5.20)

Then after some algebra, we obtain

E0 =
1

2

∞∑
`=0

D(`)
[
ω` − ω`|m2=0 −m2 ∂ω`

∂m2

∣∣∣
m2=0

]
(5.21)

= − µ2

2Γ(2ν + 1)R

∞∑
`=0

H(`+ ν), (5.22)

where

H(z) =
Γ(z + ν)

Γ(z + 1− ν)

√
z2 + µ2 − z√
z2 + µ2 + z

. (5.23)

Because of subtractions, the general term in the series behaves at large ` as `2ν−3 = `d−5.

Consequently, the ground state energy is finite for d < 4.

For general R, we can compute E0 by numerically summing the series (5.22). In the large

volume limit µ � 1, the sum will be dominated by large-` terms and can be approximated

by an integral. The leading behavior in this limit scales as the volume of the sphere, with a

constant density set by the mass:

E0 ≈ −
1

R
Cd (mR)d (R� m−1) , (5.24)

4. The subtractions in (5.22) remove the divergences that originate from the normal ordering of the

operators in the bare CFT Lagrangian and the bare φ2 operator, respectively. These divergences are intrinsic

to the CFT and not associated with the RG flow.



for

Cd =
1

2Γ(2ν + 1)

∫ ∞
0

x2ν−1

√
1 + x2 − x√
1 + x2 + x

dx

=
Γ(1− ν)Γ (ν + 1/2)

4
√
πν(ν + 1)Γ(2ν + 1)

(2 < d < 4) . (5.25)

One can show that the first correction in this formula arises at order 1/R2. The presence of

these terms that power-like in R is due to the curvature of the general d-dimensional sphere.

Here we are observing such corrections in a free theory, and we expect them to be present in

an interacting situation as well. This can be contrasted with what happens when a QFT is

put on R×T d−1 (which for d = 2 is of course the same as R×Sd−1). In this case it has been

observed long ago [137] that masses in an interacting theory are affected by terms which are

exponentially small in the size of the torus.

5.1.2 Massive states on the cylinder

Apart from the Casimir energy, we are also interested in comparing the exact spectrum

of the massive theory of the cylinder to the TCSA eigenvalues. This is a very simple exercise,

since we have already canonically quantized the massive theory in section 5.1. All energy

levels can be expressed in terms of ω`, which has the following small- and large-R asymptotics:

ω` ∼
R→0

`+ ν

R

[
1 + O(µ2)

]
, ω` ∼

R→∞
m
[
1 + O(1/µ2)

]
. (5.26)

Close to the UV, in the limit R→ 0, the energy of a spin-` state becomes (ν+ `)/R, which is

precisely the energy of the spin-` tensor operator φ,µ1···µ` in the UV CFT. On the other hand,

in the infinite volume-limit R →∞, the energy ω` converges to m, as it should. Notice the

presence of power-like corrections ∼R−2 to the massive spectrum as R→∞, as we already

discovered for the Casimir energy.

Since we restrict our TCSA computation to the scalar, parity-even sector, we need to

select only scalar, parity-even states in the massive theory. Out of all the one-particle states

a†`n|0〉, we can for example only match with the ` = 0, n = 1 state, which has no momentum

on the sphere; its energy is

E1 =
√
m2 + ν2/R2 (1 particle at rest). (5.27)

Similarly, the state (a†`=0,n=1)j |0〉 is a j-particle state at rest with energy jE1.

More generally, scalar states can arise in a tensor product a†`1n1
· · · a†`jnj |0〉 — this is a j-

particle state, where the different particles are boosted along the sphere. Finding the scalars

in such a tensor product is a problem that we already encountered in section 4.3.1, in the

context of the construction of the Hilbert space. The problem therefore trivializes, and it is

easy to see the scalar states of the massive theory are in one-to-one correspondence with the



scalar states in the UV CFT. 5 In particular, a CFT state |∂n1φ · · · ∂nNφ〉 corresponds to a

massive state with energy

E =

N∑
i=1

ωni =
1

R

N∑
i=1

√
µ2 + (ni + ν)2 (5.28)

on the cylinder.

5.2 Intermezzo: computing observables using conformal per-

turbation theory

The massive boson has the attractive feature that it can be solved analytically along the

RG flow, for any value of R. For non-integrable RG flows, it is not possible to compare

TCSA results with exact spectra at finite R; at small R, Rayleigh-Schrödinger perturbation

theory can however be used to compute the spectrum. In the context of perturbed CFTs,

this method is also known as conformal perturbation theory, and it is a familiar technique

in two-dimensional RG flows (see e.g. [25]). In this section, we extend some 2d results to d

dimensions.

5.2.1 Casimir energy

Let us first consider the Casimir energy for a general TCSA Hamiltonian

H = HCFT + g

∫
Σ
V(t = 0,n) . (5.29)

We will later specialize to the massive boson and compare with the results found using

canonical quantization. Suppose for simplicity that all states are orthogonal, and let |0〉 be

the CFT ground state. According to perturbation theory, we then have

E0 = −g2
∑
i 6=0

1

Ei〈i|i〉

∣∣∣∣〈i|∫
Σ
V(0,n)|0〉

∣∣∣∣2 + O(g3). (5.30)

The O(g) term vanishes, because it is proportional to the CFT one-point function 〈V〉. To

compute the matrix element itself, we pass to flat space and expand around x = 0:∫
V(0,n)Rd−1dn |0〉 = Rd−1−∆V

∫
|x|=1

V(x = n)|0〉

= Rd−1−∆V

∫
|x|=1

[
V(0) + . . .+

1

(2n)!
(x · ∂)2nV(0) + . . .

]
|0〉. (5.31)

5. In integer d, the massive states are in correspondence with the physical states of the CFT – the null

states should be discarded.



Notice that only even derivatives contribute, since the integral is even under x→ −x. After

substituting ∂µ → iPµ, the n-th term in this expansion is given by∫
|x|=1

(−1)n

(2n)!
(x · P )2n|V〉 = (−1)n

Sd
4nn!(d/2)n

|Vn〉, |Vn〉 = (P 2)n|V〉. (5.32)

The x-integral is done using∫
|x|=1

dd−1xxµ1 · · ·xµ2n =
Sd

2n(d/2)n

[
δµ1µ2 · · · δµ2n−1µ2n + permutations

]
, (5.33)

and we note that on the right-hand side (2n−1)!! different pairings of the indices {µ1, . . . , µ2n}
appear. The state |Vn〉 has energy (∆V + 2n)/R and is orthogonal to any other state; its

norm is given by 6

〈Vn|Vn〉 = 16nn!(∆V)n(∆V − ν)n(d/2)n〈V|V〉. (5.34)

Inserting this into Eq. (5.30), we find that the second-order correction to the Casimir energy

is given by

E0 = − 1

R
g̃2S2

d〈V|V〉
∞∑
n=0

(∆V)n(∆V − ν)n
(∆V + 2n)n!(d/2)n

+ O(g̃3) , g̃ ≡ gRd−∆V . (5.35)

The summand grows like n2∆V−1−d at large n, so it converges when ∆V < d/2 and diverges

when ∆V > d/2: this is the advertised UV divergence from section 4.2.1. The computation

of this sum is straightforward and gives

E0 = − 1

R
g̃2S2

d〈V|V〉Kd(∆V) + O(g̃3) , (∆V < d/2) (5.36)

Kd(x) =
Γ(d/2− x)Γ(d/2)

4Γ(x)

[
Γ(x/2)

Γ[(d− x)/2]

]2

.

In the 2d case, we have K2(x) = 1
4γ(1− x)[γ(x/2)]2 for γ(z) = Γ(z)/Γ(1− z), in accordance

with known results [138, 25].

Notice that the case of multiple perturbations is straightforward. As long as the different

operators Va satisfy Va(x)Vb(0) ∼ δab 1, the Casimir energy at order O(g2) is the sum of

contributions of the form (5.36). At order O(g3), this no longer holds.

For the massive boson (with V = :φ2 :), we have ∆V = d − 2, 〈V|V〉 = 2, and

g̃ = µ2/[2(d− 2)Sd]. Substituting this into (5.36), we obtain

E0 = − 1

R

µ4

2(d− 2)2
Kd(d− 2) + O(µ6) , (d < 4) (5.37)

which can be shown to agree with canonical quantization.

6. This follows by noticing that 〈Vn| = 〈V|(K2)n and by recycling the computation of the matrix element

〈V|(K · x)n(P · y)n|V〉 done in section 3.3 of [21].



In practice, conformal perturbation theory predictions like the above can be used to check

TCSA computations close to the UV: in the regime where g̃ � 1, the TCSA Casimir energy

must agree with the perturbation theory result (5.35). Even better, keeping only states of

dimension ∆ 6 ∆max means that the sum should be truncated at nmax = (∆max −∆V)/2:

this way, the TCSA can be checked for different values of the cutoff.

5.2.2 Excited states

Similarly, the energy En of an excited state |n〉 can be computed using conformal

perturbation theory. At first order, we have

En(g) = En,CFT +
g̃

〈n|n〉〈n|
∫
|x|=1

V(x)|n〉+ O(g̃2). (5.38)

In particular, if O is a primary and |n〉 ≡ |O〉, the matrix element 〈n|
∫
V|n〉 is proportional

to the three-point function 〈OOV〉.

Let us specialize to the massive theory and focus on the state |n〉 = |φn〉, which has norm

〈φn|φn〉 = n!. The matrix element 〈φn|:φ2 :|φn〉 can be computed using the OPE:

:φ2(x) : :φn(0) : ∼ 2n

|x|d−2
:φn(0) : + . . . , (5.39)

hence

〈φn|:φ2(x) :|φn〉 =
2nn!

|x|d−2
. (5.40)

Substituting this into Eq. (5.38), we obtain

En(m2) = R−1

[
nν +

nµ2

2ν
+ O(µ4)

]
. (5.41)

which agrees with canonical quantization.

5.3 TCSA setup

In section 5.1, we explained how to compute the Casimir energy and spectrum of the φ2

flow. At this point, we will turn our attention to TCSA calculations in this theory. First,

we need to choose in which dimension d the numerical computations are done. As already

mentioned in section 4.2.1, the case d→ 2 is expected to be difficult, as the CFT spectrum

is becoming dense in the limit. For d > 4 the vacuum energy will be divergent. Here we will

show results for the physical value d = 3. We have also performed checks for other nearby

values of d and they work equally well.

As mentioned in the previous chapter, we work with a fixed cutoff ∆ 6 ∆max. As we

vary R, this means that the effective UV cutoff varies too:

ΛUV = ∆max/R (5.42)



The TCSA can be expected to reproduce the IR spectrum roughly below this cutoff. As we

increase R, the sliding cutoff decreases and eventually becomes comparable with m. At this

point TCSA results can no longer be trusted. 7

Furthermore, we recall from Sec. 4.4.2 that we will be working in an extended Hilbert

space which for integer d is somewhat larger than the physical Hilbert space, since it includes

some null states.

The success of any TCSA calculation will depend on whether reasonable results can be

obtained with a manageable ∆max. The computational bottleneck in TCSA computations

is the diagonalization of the Hamiltonian matrix, which scales polynomially with the size of

the Hilbert space. As a rule of thumb, we find that such an eigenvalue problem is feasible

in Mathematica on a laptop or desktop computer if the Hilbert space contains at most

O(103 − 104) states. This should be compared with the actual number of states at low ∆,

printed in Fig. 4.1. We consider cutoffs up to ∆max = 18, which corresponds to 4573 scalar

P -even states. 8

5.4 Numerical results

We will now show our numerical TCSA results and compare them with theoretical

expectations. The TCSA computation starts by constructing the truncated Hilbert space.

We then construct the Hamiltonian matrix H i
j . The CFT part is given by the diagonal

matrix (4.39). The perturbing part is computed using the OPE method from section 4.4.3,

for the operator V = :φ2 :. We then diagonalize the Hamiltonian matrix to find the spectrum

of the perturbed theory.

Since the perturbation preserves the Z2 symmetry which maps φ→ −φ, the Hamiltonian

matrix does not mix Z2-even and Z2-odd states. The two sectors have roughly equal number

of states, and it makes sense to do the computation separately in each of them, reducing

the size of the matrices to be diagonalized by factor ∼ 2. The ground state belongs to the

Z2-even sector.

7. The range of validity of TCSA will be somewhat extended due to the fact that the induced ground

state energy is negative.

8. We note that the total number of states (of any spin, both primaries and descendants) in a d-dimensional

CFT grows with ∆ exponentially [139]

N(∆) ∼ exp
[
λ∆(d−1)/d

]
, (5.43)

where λ is a theory-dependent constant – see [21] for a review. For the UV CFT in question (the free massless

scalar), we have λ = d[ζ(d)]1/d/(d − 1)1+1/d, as has been computed in Ref. [139]. It can be argued that the

number of states in every spin-` subsector of the Hilbert space grows exponentially with the same exponent,

although with a smaller prefactor.



5.4.1 Casimir energy
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Figure 5.1: The ground state energy of the φ2 flow in d = 3 as a function of R (we set m = 1).

Solid black curve: theory prediction (5.22). Dotted black: theory limit at large R, Eq. (5.24).

Blue curves marked ‘raw’: raw TCSA results, i.e. before applying any correction. Red curves

marked ‘ren.’: renormalized TCSA results, see section 6.3.1. Dashed and solid TCSA curves

correspond to cutoff ∆max = 12(18).

In figure 5.1, we plotted E0 as a function of R. In this and other plots in this section, we

set m = 1, which means that we measure R in units of m−1 and energies in units of m. The

black solid curve shows the theoretical prediction for E0(R) obtained by summing the series

in Eq. (5.22). The TCSA results are displayed in blue (with the label ‘raw’): results obtained

at cutoff ∆max = 12 (18) are shown as a dashed (solid) line. We see that the agreement is

good up to R ∼ 1, while for larger R there are noticeable deviations.

It is clear that the results of TCSA computations depend on the chosen cutoff ∆max.

The more states are taken into account (or equivalently, the higher the cutoff), the better

we expect the TCSA computations to agree with the exact Casimir energy. Indeed, the

∆max = 18 results are in better agreement with the exact result than the ∆max = 12 curve.

In the next chapter, we will discuss this cutoff dependence in more detail. Furthermore, we

will renormalize the TCSA Hamiltonian H, which entails adding counterterms to H in order

to reduce the cutoff dependence. We have chosen to already display these ‘renormalized’

TCSA predictions in Fig. 5.1, plotted in red. The agreement with the exact results is greatly

improved; it now extends up to R ∼ 2.5. Notice that the corrected results also exhibit a

smaller dependence on the cutoff.

5.4.2 Massive excitations

We now turn to the excitations above the vacuum. In figure 5.2 we plot the energies of

these excitations, subtracting the vacuum energy. We have two plots, one for the Z2-even
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Figure 5.2: A few lowest massive excitations from the raw TCSA spectra at ∆max = 18 (blue

dots connected with a line to guide the eye) vs exact spectrum (magenta lines). Left(right):

Z2-even (odd) sector. The gray region indicates the sliding UV cutoff (5.42).

and one for the Z2-odd sectors. To keep the plots from cluttering, we show the lowest five

eigenvalues in each sector. Notice that in both cases we subtract the same quantity E0,

which is the lowest energy in the Z2-even sector. Blue dots are computed using TCSA for

∆max = 18, while lines joining them are added to guide the eye.

In the same plot thin magenta lines show the exact free massive scalar spectrum, as

discussed in section 5.1.2. In the Z2-even sector the lowest state corresponds to two particles

at rest, while the states above it correspond to two particles with some angular momentum

on the sphere combined in a state of total spin zero. Then there comes the state with four

particles at rest etc. In the Z2-odd sector we recognize one particle at rest, three particles

at rest, then three-particle states in relative motion, etc.

5.4.3 Discussion

In this chapter, we have produced some first numerical TCSA results and compared them

to exact predictions. At this stage, it may be interesting to discuss the quality of the the

TCSA results from section 5.4. We found that TCSA was reliable in the domain R . 2.5: is

this a promising result?

To answer this, we first remark that this domain extends significantly beyond the radius

of convergence RPT of perturbation theory, which is RPT = 1
2(d−2)→ 1

2 in d = 3. 9 Second,

we argue that R ∼ 2.5 corresponds to a relatively large volume in physical units. The

wavefunction of a massive particle has a characteristic length scale ξ ∼ 1/m, whereas the

circumference of the sphere is L = 2πR. The radius R ∼ 2.5 therefore corresponds to a

9. As determined by the leading singularity in the exact expressions for the vacuum energy density and

the massive spectrum (cf. Eq. (5.27), located at m2R2 = −ν2.



‘box size’ L/ξ ∼ 15 which is significantly larger than 1. Third, we remark that the finite-

volume effects are reasonably small at R ∼ 2.5: the leading finite-size corrections to both

the Casimir energy and the massive spectrum are of order R−2 ∼ 15% there. This indicates

that it should be possible to systematically estimate these finite-size effects from the TCSA

data in order to obtain reliable R→∞ extrapolations. We have not taken this approach in

the case of the massive scalar, but it may prove useful for non-integrable theories.

Finally, we point to the fact that the plots in 5.4 did not contain error bars: we only

checked whether the TCSA results were reliable by computing the spectrum for two different

values of the cutoff. In the next chapter, we will develop a more systematic method to

deal with these truncation errors; in particular, in section 6.3.2 we recompute the massive

spectrum using renormalized TCSA.



Chapter 6

Cutoff dependence and

renormalization

In this chapter we will be concerned with the presence of the cutoff ∆max ∼ ΛUVR in

TCSA. We have already seen that computed spectra depend on ∆max, but eventually we

want to obtain predictions that are cutoff-independent. Fortunately, there exists a method

to systematically reduce the cutoff-dependence: in this chapter, we develop the necessary

formalism to do so. First, let us slightly formalize the problem. In the TCSA, as we advocated

so far, we use a Hamiltonian with ‘bare’ couplings ga:

H = HCFT + ga
∫

Σ
Va(t = 0,n) , (6.1)

where summation over a is understood. The dependence of the spectrum on the cutoff comes

only from the size of the Hilbert space: the higher ∆max is chosen, the more states are taken

into account.

This begs the question of what happens in the limit ΛUV → ∞. We have already seen

that this limit is not always well-defined: if [Va] > d/2 for one of the perturbing operators

Va the ground state energy diverges, cf. section 5.2.1. Such divergences have been observed

in the 2d TCSA, for example in the RG flow induced by the so-called subleading energy

operator ε′ in the tricritical Ising model [24].

In this thesis, we avoid all UV divergences by restricting d to d < 4 for the φ2 flow and

d < 8/3 for the φ4 flow. The ‘continuum limit’ ΛUV →∞ is therefore finite. Still, the TCSA

energy levels En = En(Λ) depend on the cutoff. We will argue in this chapter that the cutoff

dependence is power-law like: 1

En(Λ) ∼ lim
Λ→∞

En(Λ) +
c1

Λα1
+

c2

Λα2
+ . . . (0 < α1 < α2 < . . .) (6.2)

1. In special cases, a logarithmic cutoff dependence ln Λ or Λn ln Λ is also possible. This is however

non-generic in interacting theories.
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with the powers αi depending on the RG flow under consideration and the state |n〉. 2 If

α1 � 1 is large, the truncation effects in (6.2) decrease quickly with ∆max, and using a

moderate cutoff it will be possible to obtain a good approximation to the physical value

En(Λ→∞). If however α1 = O(1), reducing the truncation error is numerically expensive.

As usual in quantum field theory, we may hope to improve this situation by adding Λ-

dependent counterterms. This means adding to the bare Hamiltonian H an improvement

term ∆H in such a way that the leading cutoff dependence is cancelled. Such ideas are not

new: in lattice-regulated QFTs, a similar method [140] known as Symanzik improvement is

well-studied. In the TCSA, improved Hamiltonians were first introduced in the context of

boundary RG flows in two dimensions [35, 141, 142]; later, these ideas were applied to 2d

bulk RG flows by Giokas and Watts [143].

This chapter is organized as follows. In Sec. 6.1, we study φ4 theory in flat space as a

toy model to make the above ideas about truncation errors and improvement quantitative.

In section 6.2, we will formalize the problem in TCSA, and in section 6.2.2 we show how to

compute leading counterterms to leading order. In section 6.3.1, we explain how this method

applies to the φ2 flow and recompute the massive spectrum from the previous chapter.

6.1 Warm-up: improving φ4 theory in flat space

Before we start with a rather technical discussion about cutoff effects in TCSA, we want

to illustrate the main points in a simpler setting. Let us consider the φ4 theory in flat

(Euclidean) space in 2 6 d < 4 dimensions, with Lagrangian

L =
1

2
(∂φ)2 +

1

2
m2:φ2 : +

1

4!
g:φ4 : . (6.3)

The φ4 coupling g has mass dimension [g] = 4−d, and we take m2 > 0. Perturbation theory

is valid provided that
g

m4−d � 1. (6.4)

For convenience, we can set g ≡ λm4−d, such that λ is dimensionless; the above condition

then translates to λ� 1. We can imitate the TCSA regulator by truncating all loop integrals

at a fixed momentum scale |k| = Λ. 3 For Λ to be a UV cutoff, we require that Λ� m.

How do physical observables depend on this cutoff? As an example, we consider the

four-point vertex function Γ(4)(p1, p2, p3, p4) at zero incoming momentum (pi = 0). At one

2. If αi < 0, this indicates a UV divergence.

3. This is straightforward to implement at one-loop order, but requires some extra care to define at higher

orders in perturbation theory.



loop, only the diagram displayed in fig. (6.1) contributes:

Γ(4)(pi = 0) = λm4−d − 3

2
λ2m2(4−d)

∫
|k|<Λ

ddk

(2π)d
1

(k2 +m2)2 (6.5a)

= λm4−d − b λ2m2(4−d)

∫ Λ

0

κd−1

(κ2 +m2)2
dκ, b ≡ 3 Sd

2(2π)d
. (6.5b)

Since the integrand grows as κd−5 for large κ, the integral is UV-finite in the continuum

limit Λ→∞ if d < 4.

Figure 6.1: The only diagram contributing to Γ(4) at one-loop order.

Let us now make precise how Γ(4) depends on the cutoff. The Λ-dependence can be

extracted by rewriting the loop integral in Eq. (6.5b):

m4−d
∫ Λ

0

κd−1

(κ2 +m2)2
dκ = − π(d− 2)

4 sin(dπ/2)
−
∫ ∞

Λ/m

xd−1

(x2 + 1)2
dx . (6.6)

The first term is physical, and encodes what remains after the cutoff Λ is sent to infinity.

The second term encodes the truncation error; it may be systematically expanded as a series

in m2/Λ2 as follows:∫ ∞
Λ/m

xd−1

(x2 + 1)2
dx =

1

4− d
(m

Λ

)4−d
− 2

6− d
(m

Λ

)6−d
+ O(1/Λ8−d) . (6.7)

In particular, we see that the leading truncation error in Γ(4) scales as 1/Λ4−d.

Usually in QFT, we have in mind that we are working in the continuum limit Λ→∞, in

which (finite) cutoff effects like those of Eq. (6.7) vanish. For now, we consider Λ to be fixed,

yet we will try to reduce the cutoff dependence by adding a counterterm to the action (6.3):

L → L +
1

4!
δλ(Λ)m4−d:φ4 :. (6.8)

With the counterterm present, the vertex function is given by

Γ(4)(pi = 0) = [Λ− indep.] + δλ(Λ)m4−d +
bλ2m4−d

4− d
(m

Λ

)4−d
+ O(1/Λ6−d). (6.9)

By a judicious choice of the counterterm,

δλ(Λ) = − bλ2

4− d
(m

Λ

)4−d
(6.10)

the leading dependence of vertex function Γ(4) on Λ can indeed be cancelled. In principle,

we can also cancel subleading effects from Eq. (6.7) by adding suitable terms to δλ(Λ).



A more refined point of view is given by the renormalization group. Suppose that we

cancel the cutoff dependence for some very large cutoff Λ1. Next, we lower the cutoff by an

infinitesimal amount δΛ� Λ1, such that the new cutoff is given by Λ2 = Λ− δΛ. Obviously,

we should compensate for this change in cutoff by adjusting the counterterm δλ. After we

have adjusted the counterterm, we can iterate the above procedure and flow to a much lower

cutoff Λn � Λ1.

The above logic can be used to obtain a differential equation that controls the coun-

terterms. In order to simplify the next computation, we join the bare coupling λ and the

counterterm δλ into the ‘renormalized’ coupling λren(Λ) = λ+ δλ(Λ). Notice first that the

vertex function Γ(4) must be cutoff-independent, since it is a physical observable. From

Eq. (6.5b), it follows that λren(Λ) must be adjusted as follows under a change in Λ:

Λ
∂

∂Λ
λren(Λ) = b λren(Λ)2m4−d Λd

(Λ2 +m2)2
. (6.11)

This RG equation is exact at one-loop order. The value of λren(Λ) is determined by

integrating this ODE (either analytically or numerically) starting from an initial scale Λ1. For

the counterterm in question, we can extrapolate to Λ1 →∞ and choose λren(Λ =∞) = λ as

an initial condition; when any of the observables is UV divergent, a different renormalization

condition at some finite scale must be chosen.

If we drop the m2 term in the denominator of (6.11), we can solve the above RG equation

in closed form:

λren(Λ) = λ

[
1 +

bλ

4− d(µ/Λ)4−d
]−1

(6.12)

= λ− λ2 b

4− d
(m

Λ

)4−d
+ λ3 b2

(4− d)2

(m
Λ

)8−2d
+ O(λ4).

By integrating the one-loop RG equation (6.11), we have not only obtained the leading

counterterm (6.10), but infinitely many extra terms that correspond to higher-loop diagrams.

We stress that only some higher-loop diagrams are taken into account: to obtain the full

counterterm at order λn+1, an n-loop analysis is required.

We can now go on to compute Γ(4) at two and higher-loop order and find the appro-

priate counterterms. Notice however that in a superrenormalizable theory these higher-loop

counterterms are cutoff-suppressed. This follows from power counting: the observable under

consideration has mass dimension [Γ(4)] = 4 − d, hence by dimensional analysis the n-loop

contribution scales as

Γ(4) ⊃ cst.

Λn(4−d)
(λm4−d)n+1 + O(1/Λn(4−d)+2) (6.13)

omitting terms that are suppressed by factors of m2/Λ2. If the cutoff is large compared to

m, such terms are tiny at large enough n, regardless of the value of λ.



This last point is important in the context of TCSA. There, we are generally not in the

perturbative regime, since the dimensionless couplings gaRd−∆a in the Hamiltonian may be of

order one. Yet the above power counting argument explains that we can still use (conformal)

perturbation theory at finite order to make the truncation error arbitrarily small. To be very

concrete, let us return to the above example, setting the cutoff to Λ/m = 10 and choosing

d = 3. If we want to make the truncation error in Γ(4) to be at most O(10−n), then it is

sufficient to compute counterterms at n-th order in perturbation theory, even if λ ∼ 1.

We have so far focused on the φ4 coupling, but the regulator Λ generates many more

operators. The most obvious one is the mass renormalization δm2(Λ) :φ2 : and the cosmolog-

ical constant renormalization δE0(Λ). Usually, we do not keep track of the latter, since it is

unobservable in flat space. In TCSA, the ground state energy is observable, cf. section 5.4.

These counterterms (computed using the vertex function Γ(2) and the partition function Z)

are generated by the diagrams in Fig. 6.2. By power counting, they scale with Λ as follows:

δm2(Λ) ∼ (λm4−d)2 (1/Λ)6−2d , (6.14a)

δE0(Λ) ∼ (λm4−d)2 (1/Λ)8−3d . (6.14b)

We remark that δm2(Λ) diverges logarithmically in d = 3 and that the cosmological constant

diverges starting from d = 8/3, in agreement with conformal perturbation theory.

Figure 6.2: Left: the two-loop diagram contributing to Γ(2). Right: three-loop diagram

contributing to the cosmological constant.

Many other operators are generated, most of which are irrelevant (in the RG sense) and

strongly suppressed in 1/Λ. It may for example be shown that :φ6 : and :φ8 : are generated

with coefficients 1/Λ6−d (resp. 1/Λ8−d).

It turns out that most of the lessons learned in this simple example generalize to the

TCSA. This is unsurprising, because truncation effects only reflect the short-distance be-

haviour of the theory under consideration: the fact that TCSA puts the theory on the

sphere Sd−1
R does not play a role. 4 We also remark that even in flat space, it is not necessary

to compute counterterms using Feynman diagrams: we could just as well have computed the

counterterms δλ, δm2 and δE0 using position space techniques [144]. In summary, we have

seen that:

4. In particular, the counterterms computed in this method can be compared to those computed directly

for the Landau-Ginzburg theory in TCSA, cf. appendix D.2.1.



— Truncation effects in a hard cutoff scheme are power-law like suppressed; in special

cases (like the mass renormalization in d = 3), there can be logarithms;

— These cutoff effects can be systematically cancelled by demanding that well-chosen

observables are cutoff-independent;

— In superrenormalizable theories (such as those used in the TCSA), it is sufficient to

compute counterterms up to a finite order in perturbation theory;

— Computing counterterms computed by integrating RG equations partially resums

higher orders in perturbation theory.

6.2 Cutoff dependence in TCSA

6.2.1 General remarks

Let us now turn to the actual problem at hand, namely the analysis of truncation effects

that originate from the TCSA regulator. In TCSA, it seems easiest to discuss the cutoff

dependence directly in terms of the Hamiltonian spectrum. We work in the Hilbert space of

the unperturbed CFT on the cylinder, which is divided into the low (l) and high (h) energy

parts:

H = Hl ⊕Hh , (6.15)

where Hl includes all states of energy up to ΛUV. The full Hamiltonian is a block matrix:

H =

(
Hll Hhl

Hlh Hhh

)
. (6.16)

where Hab maps Hb into Ha. The TCSA truncated Hamiltonian is the upper left corner:

Hll = HTCSA. The full eigenvalue problem is

H.c = Ec, c = (cl, ch)t , (6.17)

or, in components,

Hll.cl +Hlh.ch = Ecl , Hhl.cl +Hhh.ch = Ech . (6.18)

Let us now eliminate ch by using the second equation. We get:(
Hll −Hlh.(Hhh − E)−1.Hhl

)
.cl = Ecl , (6.19)

This exact equation should be compared to the truncated equation used in TCSA:

Hll.c̄l = Ēc̄l (TCSA) . (6.20)

Here, we write Ē, c̄ rather than E, c to indicate that these are solutions to the truncated

equation rather than Eq. (6.17).



We conclude that the TCSA will converge if the matrix correction in (6.19) can be

neglected in the limit ΛUV →∞. Naively, this seems likely since it is suppressed by Hhh−E,

and we are assuming that E belongs to the low-energy spectrum, while the eigenvalues of

Hhh will be presumably large. However, the precise statement will depend also on the size

of the matrix elements mixing Hh into Hl. This mixing being due to the perturbation, we

can expect that the importance of corrections will depend on ∆V .

Let us view the problem from a practical angle. Suppose we know an eigenvalue Ē and

the corresponding eigenvector c̄ of the truncated problem (6.20). How can we correct Ē to

get closer to the solution of the exact eigenvalue equation? Let us write the full Hamiltonian

as

H = H0 +H1, H0 =

(
HTCSA 0

0 HCFT,h

)
, H1 =

(
0 Vlh

Vhl Vhh

)
. (6.21)

We took into account that the off-diagonal elements Hhl and Hlh are associated only with

the perturbation V . The eigenvalues of H0 are known—these are the TCSA eigenvalues and

the unperturbed eigenvalues of the diagonal HCFT,h. We will now view H1 as a perturbation

and compute corrections to the TCSA eigenvalues. By the usual Rayleigh-Schrödinger

perturbation theory we get:

E = Ē + 〈c̄|∆H|c̄〉 , (6.22)

∆H = −Vlh.(HCFT − Ē)−1.Vhl + . . . (6.23)

Further corrections terms are simple to write down. For example, the next one is given by

Vlh.(HCFT − Ē)−1.Vhh.(HCFT − Ē)−1.Vhl . (6.24)

We will only use the term shown in (6.23) in this paper, but in the future increasing the

accuracy of the renormalization procedure will likely require mastering (6.24) and perhaps

even further terms.

Our job is not yet finished, since evaluating the correction term (6.23) requires an infinite

summation over the states in Hh. It would be desirable to find a simplified approximate form

for this correction:

∆H ≈
∑
c

Vc , (6.25)

where Vc act simply on Hl. For example, Vc might be of the same form as V itself, i.e. an

integral of a local operator Vc over the sphere. If this is the case, then adding ∆H to the

TCSA Hamiltonian can be thought of as renormalizing the couplings, analogously to the

discussion in the previous section.

A difference between the situation here and in section 6.1 is that the ‘improvement term’

∆H is constructed after diagonalizing the bare Hamiltonian. In particular, it depends on the

energy Ē of the state under consideration. At this stage, it is not obvious whether the same



improvement can be obtained by adding an improvement term ∆H ′ to the bare Hamiltonian

H before diagonalizing. We will come back to this issue later.

6.2.2 Computation of ∆H via two-point functions

The above discussion has been completely abstract and applies to any perturbation V .

We now specialize to a general TCSA perturbation

V =
∑
a

ga
∫

Σ
Va(t = 0,n) (6.26)

where Va is a primary scalar of dimension ∆a. In the rest of this chapter, we will not write

the sum over a explicitly.

To find the correction terms, we examine the matrix element of ∆H (6.23) between two

states i, j ∈ Hl:

(∆H)ij = −
∑

En>ΛUV

(Mn)ij
En − Ē

, (Mn)ij ≡
∑

k:∆k=∆n

V i
kV

k
j , (6.27)

where En = ∆n/R stands for the unperturbed CFT energy. We will estimate the large

energy asymptotics of Mn. The key idea is to consider the correlation function:

C(t) = 〈i|V (t/2)V (−t/2)|j〉

= gagb 〈i|
∫
Sd−1
R

dnVa (t/2,n)

∫
Sd−1
R

dn′Vb
(
−t/2,n′

)
|j〉 . (6.28)

We assume that t > 0, in order for the above correlator to be time-ordered. The operators

V (t) and Va(t,n) at time t 6= 0 are time-translated by the unperturbed Hamiltonian HCFT:

V (t) = eHCFTt V (t = 0) e−HCFTt, Va(t,n) = eHCFTt Va(t = 0,n) e−HCFTt. (6.29)

Inserting the resolution of unity 1 =
∑

k |k〉〈k|, this correlation function can be represented

through the same Mn as

C(t) =
∑
n

(Mn)ije
−[∆n−(∆i+∆j)/2]t . (6.30)

The large energy behavior of Mn can then be extracted from the part of C(t) which is

non-analytic as t→ 0, since the low energy states give rise to an analytic contribution.

A moment’s thought shows that nonanalyticity for t→ 0 can appear only from the region

where the nonintegrated correlator has a singularity, i.e. from n close to n′. In this region

we can use the OPE

Va(x)Vb(y) ≈
∑
c

f c
ab

Vc(1
2(x+ y))

|x− y|h , h = habc = ∆a + ∆b −∆c . (6.31)



To the accuracy needed below, it will be sufficient to use only the shown leading term in

the OPE. Moreover, we will be considering only scalars in the RHS of the OPE. With a

Poincaré-invariant cutoff, non-scalar operators are not induced in the renormalization group

flow. However, the TCSA regulator is more subtle. We break the Poincaré group to SO(d)

times dilatations. Furthermore, since we are working in a Hamiltonian formalism, we may

find integrals of tensorial operators induced by the RG flow. As an example, the appearance

of the stress tensor Tµν on the RHS gives (after integrating over the sphere) a contribution

of the form ∫
Sd−1

nµnνTµν ∝ HCFT (6.32)

so it leads to a renormalization of the coefficient of HCFT in the TCSA Hamiltonian. 5

However, since the stress tensor and other operators with spin have high dimension, their

effects will be suppressed compared to the effects of the scalars by a higher power of ΛUV.

Each term in the OPE will give rise to a term in the t→ 0 asymptotics of the correlator.

The prefactor will be given by the matrix element of Vc integrated over the sphere, while

the dependence on t will come from the integral of the OPE kernel. Up to O(t2) accuracy

we have (see Appendix D.1):

C(t) ⊃ B(h)Γ(h− d+ 1)td−h−1[1 +O(t2)]× gagbf c
ab 〈i|

∫
Sd−1

Vc(x)|j〉 ,

B(h) =
2d−hπd/2

Γ(h/2)Γ(h/2− ν)
. (6.33)

This non-analytic behavior can be reproduced provided that the large-dimension distribution

of the coefficients Mn contains a component with a power law:

[M(∆)]ij ⊃
B(h)

[∆− 1
2(∆i + ∆j)]d−h

gagbf c
ab 〈i|

∫
Sd−1

Vc(x)|j〉 . (6.34)

It should be kept in mind that Mn is a discrete sequence, and so the given continuous

distribution is supposed to approximate it only on average. Below we will discuss the

accuracy of this approximation in more detail. Also, for the renormalization of the φ2

flow we will work out the asymptotics of the sequence Mn via an alternative method.

For the moment, to get an expression for ∆H, we introduce the shown asymptotics into

(6.27) and perform the sum approximating it by an integral. Gathering all the prefactors,

reinstating the dependence on the coupling constant and on R, we obtain the following

formula for the correction term:

∆H ≈ −gagbK c
ab (Λ)

∫
Sd−1
R

Vc(x) (6.35)

K c
ab (Λ) = f c

ab B(h)

∫ ∞
Λ

1

[t− 1
2(∆i + ∆j)/R]d−h(t− Ē)

dt, h = habc . (6.36)

5. This term is the analogue of wave function renormalization in ordinary perturbation theory.



For very large Λ we are allowed to drop the corrections due to Ē and ∆i + ∆j in the

denominator, which yields

K c
ab (Λ) ' f c

ab

B(h)

d− h
1

Λd−h
, (Λ� Ē, (∆i + ∆j)/R). (6.37)

As in section 6.1, we can in principle expand the integral from Eq. (6.36) as a series in 1/Λ

to obtain subleading corrections.

6.2.3 RG improvement

In the above discussion we were assuming that ∆H is very small, and correcting eigen-

values by the leading-order perturbation formula (6.22) is adequate. For this, ΛUV has to

be taken sufficiently large so that the renormalizations of all the couplings implied by (6.36)

are small compared to their values in the bare TCSA Hamiltonian. This condition is rather

restrictive and in fact in our main example below—the Landau-Ginzburg flow—we will not

be able to satisfy it, as the mass renormalization due to the quartic coupling will sometimes

be comparable to the bare mass.

Concretely, using the form of ∆H given in (6.36) and assuming that the corrections due

to ∆i + ∆j and Ē can be ignored, this procedure results in RG equations of the form:

Λ
∂

∂Λ
gc(Λ) = f c

ab ga(Λ)gb(Λ)B(h)
1

Λd−h
(Λ� Ē, (∆i + ∆j)/R) . (6.38)

In this way we obtain a flow in the space of Hamiltonians, which we can integrate all the

way down to the desired cutoff ΛUV. It may be expected that, under certain circumstances,

the final ‘resummed’ Hamiltonian obtained by such a procedure will have a larger range of

applicability (i.e. work for smaller ΛUV) than the first-order correction formula. This will be

the case if the subleading on the right-hand side of (6.23), such as (6.24), are less important

than the terms we are proposing to resum.

As already mentioned, in the examples considered below we will want to keep track of

the corrections due to (∆i + ∆j)/R and Ē in (6.36). These corrections are state-dependent,

and taking them into account completely would require a separate RG flow for every value

of these parameters—a complication that we wish to avoid. Instead, we would like to find a

practical way to represent them by operators. The easiest way to do so is to expand in powers

of the inverse cutoff and keep only the first-order terms. In that case we can replace ∆/R by

HCFT and Ē by H. For example, in the case where Vc = 1, the first of these two subleading

corrections can be thought of as ‘wave function’ renormalization of the coefficient of HCFT

in the TCSA Hamitonian, 6 while the second correction becomes a uniform overall rescaling

of all couplings. Both of these can be taken into account easily by a slight modification

6. This shows once again that corrections due to integrals of non-scalar operators, Ttt in this case, can be

induced by the flow with the TCSA cutoff. In the previous subsection, we pointed out that the correction due



of (6.38). The situation is more complicated if Vc 6= 1. In this case, the expansion generates

terms of the form 7

HCFT.Vc + Vc.HCFT, H.Vc + Vc.H, Vc ≡
∫
Sd−1
R

Vc . (6.39)

Not only are these terms not present in the original Hamiltonian, they are also of a qualita-

tively different type—they are not given as an integral of a local operator over the sphere. In

other words, these terms are nonlocal. While this may seem confusing, a moment’s thought

shows that this was to be expected. The reason is that the TCSA regulator—throwing out

all states above a certain energy—is not a fully local UV regulator. 8 So we have to learn to

live with nonlocal correction terms. Fortunately, from the practical point of view the terms

(6.39) pose no problem. First of all, they are easily computable, since they are given by

products of matrices which we anyway have to compute in the earlier stages of the TCSA

procedure. Secondly, although in principle the non-local terms would appear also on the

right-hand side of the RG flow equations, which would substantially complicate the flow, in

practice we found that they remain rather small compared to the local terms. This happens

because their running is suppressed by one extra power of the cutoff. Therefore, in this work

we will ignore backreaction of the non-local terms on the other running couplings.

Although the above procedure correctly takes into account the leading Ē/Λ dependence,

we realized that expanding in Ē/Λ is actually not a reasonable thing to do at large R. The

point is that the ground state energy E0 grows at large R like Rd−1, and even for moderately

large R becomes non-negligible compared to ΛUV. Whether this is a problem depends on the

sign of E0. If E0 were to become large and positive, there would be no magic way out—the

correction procedure would break down as soon as E0 ∼ ΛUV, as seen e.g. by the blow up

of the integral in (6.36). Fortunately, the ground state energy density at large R is usually

negative. 9 In this case, although E0 becomes large in absolute value, nothing bad occurs

with the correction in (6.36); it even decreases with respect to the E0 = 0 case. However,

to the direct appearance of Tµν in the OPE would be suppressed, since the corresponding coefficient h is quite

large. However, here we are discovering another way for the appearance of this correction—as a subleading

term accompanying the unit operator in the OPE.

7. Notice that these corrections, as written, preserve the hermiticity of the Hamiltonian.

8. The TCSA regulator reproduces exact correlators as long as the insertion points are separated in the

time direction by � ΛUV
−1. In particular, correlation functions on a constant time slice are not faithfully

reproduced no matter how far the points are separated in the space direction. By a fully local UV regulator

we mean a regulator which reproduces exact correlation functions as long as points are separated in some

direction, time or space, by � ΛUV
−1. E.g. the point splitting procedure, used in conformal perturbation

theory, is a fully local regulator.

9. The second-order correction to the ground state energy is negative. Assuming that higher-order

corrections don’t change the situation, we may expect negative energy density at large R. Studying many

examples of RG flows known in d = 2, this seems to be invariably true. The only exceptions happen when the

dimension of the perturbing operator exceeds d/2. In this case the renormalized ground state energy density

may be positive, although the non-renormalized, divergent energy density is still negative. In both concrete

examples of d > 2 flows studied in this work, the ground state energy density is negative at large R.



were one to expand in Ē/Λ, one would unnecessarily introduce large corrections even in this

benign case.

We will therefore adopt the following prescription. We will replace the estimate Ē in

(6.36) by Er+(Ē−Er) where Er is a convenient reference energy that we estimate to be close

to the expected value of Ē. For example, we may choose Er to be around the ground state

energy as obtained by extrapolation from lower values of the radius, or around the energy of

the first excited state. In fact, the end results for the spectrum should not depend much on

the chosen value of Er, which provides a consistency check for the method. We then expand

not in Ē/Λ but instead in the difference (Ē −Er)/Λ, which is not expected to become large

in the large volume limit. The RG evolution is then performed keeping track of the exact

dependence on Er (no expansion) through the simple substitution Λd−h+1 → Λd−h(Λ− Er)
in the denominator of (6.38). Since we will expand in (Ē − Er)/Λ, the leading correction

in (6.39) should be modified by replacing H → (H − Er). In appendix D.2.1, we will see a

concrete example of how this works, when discussing the Landau-Ginzburg flow.

6.2.4 Other treatments of renormalization

Cutoff dependence and renormalization have been discussed in the context of the d = 2

TCSA studies, most importantly in [143] (following [35, 142]). In particular, Section 3 of

[143] discusses in detail how the cutoff dependence can be analyzed using the OPE, and gives

renormalization group equations similar to our (6.38) for the couplings of the local operators.

At leading order, then, their results are basically equivalent to ours. 10

Ref. [143] also initiated a discussion of subleading terms. For example, the first of the two

subleading terms in (6.39) may be discerned in their equations, for the special case where

Vc is the identity operator. However, significant differences do exist between us and them at

how these subleading effects are implemented.

According to the prescription in Section 4.2 of [143], on top of leading RG improvement,

each IR state should get a subleading correction factor computed from the conformal per-

turbation theory applied to a UV state from which the IR state in question originates. This

prescription, as well as a more recent detailed discussion in Section 3 of [145], are designed

to fix up, order by order in the coupling, the discrepancies between TCSA and conformal

perturbation theory. On the other hand, our discussion uses from the very beginning the

fact that the true expansion parameter is the inverse cutoff rather than the couplings, which

become large in the IR.

Let’s illustrate the differences by looking at the correction in Eq. (6.22). Our derivation

10. A factor 1
2

seems to be missing in their Eq. (3.7). Even having corrected this misprint, we did not

manage to reproduce their figure 1(c).



demonstrates clearly that one should compute ∆H with the nonperturbative energy Ē and

take the matrix element between the nonperturbative states c̄. A similar correction in

Eq. (3.11) of [145] uses the UV energy and the UV state in place of Ē and c̄. At small

R the two methods would give very similar results, but at large R the difference will be

significant. Indeed, the IR states at large R will have a complicated composition, in which

the original UV state carries little weight (see e.g. figure 6.5). Also the energy in the IR will

get a very large correction, implying a large change in the denominator in (6.23). As a result

the whole correction may be modified at O(1). Out of curiosity, we compared our method

to that of [145] for the φ2 flow discussed in the next section. We found that at large R our

method is more effective in reducing the discrepancy from the exact results.

It should be noted that [145], using their renormalization prescription, achieved an

excellent agreement of TCSA data with the results obtained by exact integrability methods

applicable for the model they studied. This success is puzzling to us, since as we explained

we believe that their prescription is problematic at large R. This question deserves further

analysis.

Finally, we would like to compare our renormalization prescription to the more recent one

proposed in Ref. [131] for φ4 theory in two dimensions, considered as a deformation of the

massive free boson. There are many similarities between the approach taken there and in this

thesis, but the precise methods used are quite different: the authors of Ref. [131] quantize

the massive theory canonically on S1 and use the resulting Fock space as a Hilbert space,

keeping only states with a total energy 6 Emax. As far as the renormalization procedures

are concerned, both works take the exact equation (6.19) as a starting point. The precise

meaning of the matrices Hll, Hhh, etc. in both works is of course different, but we will not

insist on these details.

After this point, the two renormalization procedures differ. In this work, ∆H is foremost

a correction to the energy Ē of a state |c̄〉, computed to first order in Rayleigh-Schrödinger

perturbation theory. The actual renormalization procedure consists of two steps: first, we

expand ∆H into a basis of local operators, see Eq. (6.36). In the second step, we compute

their appropriate couplings by integrating RG equations. The physical motivation of this

procedure is rooted in the renormalization group, cf. the discussion in section 6.1. The

renormalization prescription in Ref. [131] is more streamlined: ∆H is considered as an

operator (rather than a first-order correction to the spectrum) and computed directly in

terms of the bare couplings appearing in the Hamiltonian. Only at the very end, ∆H

is expanded in terms of local operators. Both prescriptions agree at leading order, but

appear to differ at the level of subleading terms. This alternative method from Ref. [131]

appears somewhat simpler to work with, and it may be interesting to revisit the TCSA

renormalization using this new point of view.



6.3 Renormalization for the φ2 flow

6.3.1 Renormalization details

The general method of renormalization was presented in section 6.2. Here we will describe

particular issues which arise when the procedure is applied to the φ2 flow. The leading

contributions to the correction term ∆H are expected to come from the low-dimension

operators in the φ2 × φ2 OPE:

:φ2(x) :× :φ2(0) : =
2N2

d

|x|2(d−2)
1 +

2Nd

|x|d−2
:φ2 : + :φ4 : + . . . , (6.40)

Here Nd is the normalization factor in the two point function of the canonically normalized

massless scalar:

〈φ(x)φ(0)〉 = Nd/|x|d−2, Nd = 1/[(d− 2)Sd] . (6.41)

Now, curiously, although the operators φ2 and φ4 appear in the OPE (6.40), their

contributions to the renormalization corrections vanish. Indeed, the coefficient B(h) given

by (6.33) is zero for the corresponding h’s. The reasons this happens are not difficult to

understand; they are ultimately related to the fact that the UV CFT we are perturbing is

free. Starting with φ4, notice that since the dimensions factorize, ∆(φ4) = 2∆(φ2), and the

OPE kernel is just a constant. Clearly, the t→ 0 limit discussed in section 6.2.2 is perfectly

analytic in this case, and so B(h) must vanish. For φ2, although the OPE kernel is singular,

it is a harmonic function of x − y. By the mean value property, the integral of a harmonic

function over a sphere is equal to its value at the center of the sphere. This implies that also

in this case the t→ 0 limit is analytic, and B(h) = 0. 11

Thus the only leading non-vanishing correction is for Vc = 1. 12 We will have to include

this correction taking into account the subleading dependence on ∆i + ∆j and Ē. Indeed,

were we to drop these subleading parts, we would get a constant counterterm which would

shift all eigenvalues in the same way. This would have a chance to improve the agreement

for the ground state energy, but would have no effect on the spectrum of massive excitations.

However, the raw TCSA massive spectra in figure 5.2 do show noticeable deviations, which

we would also like to improve.

In fact, we will be able to do even better. Not only will we include the above-mentioned

subleading effects, but we will also take into account the discreteness of the sequence Mn.

11. This argument shows that, more generally, corrections will vanish for the φn+m and φn+m−2 operators

in the φn × φm OPE. This observation will be useful for the general Landau-Ginzburg flow in section D.2.1.

12. This also implies that the RG improvement discussed in section 6.2.3 is not of much use for this

particular example: the mass parameter never appears on the right-hand side of the renormalization group

equations (6.38), so their solution is straightforward and essentially given by (6.36), i.e. the unimproved

equation.



Recall that the general formula (6.34) gives this sequence only on average. However, it

turns out that for the φ2 flow the tail of the Mn sequence can be worked out explicitly,

independently of the argument in section 6.2.2. As we show in appendix D.2, Mn at ∆n � ∆j

is nonzero only if ∆n −∆j −∆(φ2) = 2p is an even integer, in which case it’s given by

(Mn)ij =
2(2ν)p(ν)p
p!(ν + 1)p

(NdSd)
2δij

d=3→ 2

2p+ 1
(NdSd)

2δij . (6.42)

It’s not difficult to see that on average this sequence does agree with the continuous distri-

bution (6.34), which also provides a check for the general argument.

We next evaluate ∆H via Eq. (6.27). When doing the sum, we use the expression

(6.42) for all terms. This is not quite true, since (6.42) was derived under the assumption

∆n � ∆j , which does not hold for the external states i, j just below and n just above the

cutoff. However, the induced error cannot be large, since the states i, j close to the cutoff

will anyway contribute little to the renormalization, having small weight in the eigenvector

c̄; see figure 6.5 below. We will therefore tolerate this little imprecision. The infinite sum

over p becomes a 4F3 hypergeometric sum, and specializing to d = 3 we obtain the digamma

function ψ(z). Reinstating the coupling and radius dependence, we get:

(∆H)ij ≈ −(1
2m

2)2 R3

(d− 2)2

ψ((Kj + ∆j −RĒ)/2)− ψ(Kj/2)

∆j −RĒ
δij , (6.43)

where Kj is defined as the smallest odd integer such that ∆j +Kj > ∆max.

The leading term in ∆H for large ∆max is a state-independent correction ∝ ∆−1
max. As

mentioned above, keeping only this correction would not be adequate. Instead, we will use

the full expression (6.43) to compute corrected (‘renormalized’) eigenvalues Eren from the

raw TCSA eigenvalues Ē via the formula (6.22):

Eren = Ē + c̄i(∆H)ij c̄
j . (6.44)

It is these ‘renormalized’ results which were used to produce figures 5.1,6.3. Here c̄ is the

eigenvector corresponding to the raw TCSA eigenvalue Ē. In this approach, each energy

level is corrected separately.

Note that to apply formula (6.44) we need to compute both right eigenvector c̄j , as in

(4.34), and the left eigenvector c̄i:

H i
j c̄
j = Ēc̄j , c̄iH

i
j = Ēc̄i . (6.45)

The eigenvectors are assumed normalized via c̄ic̄
i = 1. Of course these two eigenvectors are

related, up to normalization, via the Gram matrix:

c̄i ∝ Gij c̄j . (6.46)

As mentioned in section 4.3.3, computing the full Gram matrix may be expensive, although

we did find an indirect way to do it, described in section 4.4.3. If one has access to the



Gram matrix, one can use it to compute the left eigenvectors via (6.46). Without the Gram

matrix, one simply finds c̄i from the second eigenvalue problem in (6.45). 13

6.3.2 Numerical results

In section 5.4, specifically Fig. 5.2, we displayed the ‘raw’ spectra for the massive boson,

computed using the bare TCSA Hamiltonian at cutoff ∆max = 12 (18). In figure 6.3 we show

the same but for the spectra computed using renormalized TCSA. We see from these plots

that renormalization extends the range of R where TCSA is in agreement with the exact

results from R . 2 to R . 3.
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Figure 6.3: Same as figure 5.2, but for the renormalized TCSA spectra.

Figures 5.1 and 6.3 do demonstrate that our renormalization procedure works—upon

applying the renormalization corrections, the discrepancy from the exact results is reduced

compared to the raw TCSA data. Figure 6.4 demonstrates the same as a function of the UV

cutoff: we show how the TCSA ground state energy and the massive spectrum converge to

their exact values with the gradual increase of ∆max. We do this plot for one value R = 2, but

the picture is qualitatively the same for all R. This figure shows that not only the accuracy

is greatly improved after the renormalization, but the convergence rate is also improved.

This is because the error terms remaining after the leading renormalization subtractions are

suppressed by higher powers of 1/ΛUV.

One last aspect we would like to discuss here is an assumption implicit in the entire

procedure of renormalization, namely that the contribution of high energy states to low

13. It should be noted that the nonsymmetric eigenvalue problems are somewhat more difficult to solve

numerically than the symmetric ones, and more prone to numerical instabilities. In our work we overcome

the instabilities by applying the transformation H → (H−σ)−1 to the matrix H before diagonalization. This

transformation focuses on the eigenvalues nearest to σ. We also checked some of our results by working at a

higher number of digits. In future work, it would be interesting to keep looking for other, more numerically

efficient diagonalization procedures.
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Figure 6.4: Convergence rate before and after renormalization. Left: ground state energy.

Right: lightest states in the massive spectrum, Z2-even (solid) and Z2-odd (dashed).

energy observables is suppressed. It is possible to make this assumption more quantitative

by studying the distribution of eigenstate components in energy, defined as:

w(∆) =
∑

i:∆i=∆

c̄i c̄
i . (6.47)

In figure 6.5, we plot this distribution for the lowest Z2-even massive excitation (the one

which is interpreted as a state of two particles at rest) and for several values of R. As

expected, for small R the distribution is strongly peaked at ∆ = ∆(φ2) = 1. As R is

increased, the distribution becomes wider and wider, but its high-energy tail does remain

suppressed. The same qualitative behavior is true for the other states. One can wonder what

it would mean if for very large R the distribution becomes flat or even peaked at high ∆.

Does this ever happen for CFTs perturbed by a relevant operator? Presumably the method

would completely break down for such R, but for the values of R explored in this work this

does not happen.
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Figure 6.5: The distribution of eigenstate components in energy, Eq. (6.47), plotted for the

lowest Z2-even massive excitation, for R = 0.5 (solid), 1 (dashed), 2 (dot-dashed), 3 (dotted).



Chapter 7

The Landau-Ginzburg flow

In the free massive flow considered in the previous chapter, we could compare TCSA

results with their exact theoretical values for all observables. Although the massive flow

forms a good pedagogical example of the TCSA in action, we would like to use the TCSA

to study strong-coupling phenomena that do not occur in free theories. In this chapter, we

will therefore apply the TCSA to a more interesting model, namely the φ4 theory, described

in flat space by the Euclidean action

S[φ] =

∫
ddx

(
1
2(∂φ)2 + V [φ]

)
, V [φ] = 1

2m
2:φ2 : + λ :φ4 : . (7.1)

In d dimensions, the quartic coupling λ has dimension [λ] = 4 − d, meaning that it is

relevant when d < 4. In order for the potential to be bounded from below, we require that

λ be positive.

φ

V
[ϕ
]

Figure 7.1: Orange (resp. blue) plot: φ4 potential with m2 > 0 (resp. m2 < 0). Black dots:

minima of V [φ] for m2 < 0.

It is well-known that the action (7.1) displays spontaneous symmetry breaking at low

energies. Qualitatively, this can be understood using a tree-level analysis of the action (7.1).

When m2 > 0, there is a unique vacuum with order parameter 〈φ〉 = 0, and the Z2 symmetry
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φ→ −φ is preserved. If on the other hand m2 < 0, there are two vacua with

〈φ〉 = ±
√
−m

2

4λ
6= 0 (7.2)

and the theory is in a broken phase, cf. figure 7.1. We do not expect the actual boundary

between these phases be at m2 = 0, because the φ4 coupling additively renormalizes the bare

mass. It is not even obvious whether the critical value of m2 will be positive or negative. In

our TCSA exploration of this theory, we will simply scan over a range of values of the bare

mass m2 to find its critical value.

Indeed, the action (7.1) is a phenomenological model for the Z2 phase transition that

occurs in many systems, including ferromagnets and binary liquids [146]. A comprehensive

explanation of the Landau theory of phase transitions is outside the scope of this thesis;

we refer the reader to any of the textbooks [29, 31, 30] for more details. In the light of

this analogy with the theory of phase transitions, the action (7.1) will also be referred to as

Landau-Ginzburg theory.

It is the goal of this chapter to reproduce the above phase diagram using the TCSA. In

section 7.1, we will explain in more detail how we expect to find symmetry breaking; the

numerical results are presented and discussed in section 7.2. All TCSA computations in this

chapter will be done in non-integer d, for which the Hilbert space is not positive-definite.

The consequences of these unitarity violations are discussed in 7.3. In appendix D.2.1, we

detail the renormalization procedure used.

7.1 Theoretical expectations

Let us now discuss more precisely the theoretical expectations for the TCSA Hamiltonian

H = HCFT +

∫
Σ

[
1

2
m2:φ2 : + λ :φ4 :

]
, (7.3)

where HCFT is the CFT Hamiltonian of the free massless boson. We will be agnostic about

the sign of m2 for now. The low-energy physics of this theory can only depend on the

dimensionless ratio

t ≡ m2/λ2/(4−d). (7.4)

The case of small quartic coupling corresponds to |t| � 1. In this regime the theory in

the IR describes weakly interacting massive particles, and predictions can be obtained from

perturbation theory. This is regardless of the sign of m2. For positive (and still large) t, the

perturbative vacuum is at φ = 0, and the Z2 symmetry φ→ −φ is preserved. On the other

hand, for negative t, perturbation theory is developed around one of two degenerate vacua

of the double-well potential displayed in Fig. 7.1, where the Z2 symmetry is spontaneously

broken.



Any non-trivial physics must happen for t = O(1), when the IR theory is strongly

coupled, and perturbation theory is not useful. One generally expects that the Z2 broken

and preserving phases extend into the strongly coupled region, where they are separated by

a second-order phase transition at a critical value t = tc, see figure 7.2. At t = tc the theory

is expected to flow in the IR to a CFT, belonging to the Wilson-Fisher family of fixed points

in the Ising model universality class.

CFT
massive

Z2-unbroken

massive

Z2-broken

tc t

Figure 7.2: The commonly accepted phase diagram for the Landau-Ginzburg flow. Our

calculations will indicate that tc > 0 in d = 2.5 dimensions.

In this paper we will only study the m2 > 0 (i.e. t > 0) part of the phase diagram. Instead

of varying t as in figure 7.2, we will find it convenient to work in the units m = 1, and vary

λ. Using TCSA, we will compute how the finite volume spectrum of the theory depends on

λ. As we will see, for small λ the spectrum will be consistent with preserved Z2 symmetry,

while for λ > λc our calculations will indicate spontaneous Z2 symmetry breaking. Thus

we will obtain qualitative confirmation of the phase diagram in figure 7.2, and quantitative

information about the massive spectrum in the strongly coupled region. We will determine

the critical value λc with some precision. For λ = λc we will observe the mass gap going to

zero, indicating that the IR theory is conformal. We will be able to get a rough estimate

of the leading critical exponents at the phase transition point and compare them with the

known values in the Ising universality class.

Notice that since our calculations indicate a positive value of tc = 1/λ
(4−d)/2
c , the whole

region t < 0 is expected to be in the Z2-broken phase. However, we have not explored this

region numerically.

7.2 Numerical results

We will now perform TCSA analysis of the Landau-Ginzburg flow. We already remarked

that the φ4 perturbation induces UV divergences for d > 8/3 ∼ 2.67. In order to avoid these

UV divergences, we are forced to work in non-integer d. We choose the value d = 2.5, in

order to stay far from the d→ 2 limit, where the spectrum of the free scalar CFT becomes

dense. We will work with a cutoff of ∆max = 17, which corresponds to 5494 (4907) Z2-even

(odd) states in d = 2.5.



As already mentioned above, we will set m2 = 1. The spectrum will depend on λ and

the TCSA radius R. We will explore the region R . 3 and λ . 1.15 (see figure 7.3). Raw

TCSA without renormalization corrections would give converged predictions only in the

lower left corner of this region, corresponding to weak coupling and small physical volume.

To extend the range of applicability of the method, we will apply a renormalization procedure

as described in section 6.2, with the theory specific details described in section D.2.1 below.

To reduce the number of plots, we will only show results with all renormalization corrections

taken into account.
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Figure 7.3: The range of R and λ explored in our study. Subsequent figures will show the

spectrum dependence along the vertical and horizontal sections of this region, shown by the

arrows.

Spectrum for a fixed R and varying λ

To visualize the spectrum dependence, we will plot it along a number of vertical and

horizontal sections in the two-dimensional range in figure 7.3. Let us start with plots at a

fixed R and varying λ. In figure 7.4 we show the results for R = 2.5. The ground state

energy E0 is defined as the lowest energy in the Z2 even sector. The excitation spectra are

given by Ei − E0, in the Z2-odd and the Z2-even sectors, respectively.

We see that as λ is increased, the excitation energies first decrease, and then, for λ >

λc ≈ 0.5 - 0.6, start increasing again. An interesting feature of the spectrum at λ > λc is

an approximate double degeneracy of states in the Z2-even and odd sectors, well visible for

the vacuum and the first couple of excited levels. This behavior is the telltale sign that the

theory for λ > λc is in the phase of spontaneously broken Z2 symmetry. We then expect

that the theory at λ = λc is conformal. This expectation will be further tested below.

It may be somewhat counterintuitive that the Z2 symmetry breaks for a positive value of

m2 (remember that we fixed m = 1). In fact, there is no paradox. The m2 is a UV parameter

defining the initial direction of the flow, while the breaking is an IR phenomenon. As we flow



from UV to IR, m2 is renormalized and the effective squared mass may become negative. 1 In

other words, we may imagine that a double-well potential is generated by quantum effects.

In this case there will be two degenerate vacua, and all excitations above the vacua should

be degenerate as well. The degeneracy would be exact in infinite volume. In finite volume we

expect some mixing due to the potential barrier tunneling, 2 so that the exact eigenstates are

Z2-even or Z2-odd and split by a small amount (exponentially small for large volume). The

mixing and the splitting are expected to become more important for higher energy states,

for which the tunneling is not suppressed. All these intuitive expectations are confirmed by

figure 7.4.
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Figure 7.4: The ground state energy (left panel) and the spectrum of low-lying massive

excitations (right panel) as a function of λ for R = 2.5. We plot 4 lowest Z2-even (dashed

blue) and 5 lowest Z2-odd (solid red) states.

Another interesting feature of the spectra in figure 7.4 is the absence of level crossing:

eigenstates belonging to the same Z2 sector don’t cross. There are several values of λ when

a pair of same Z2-parity eigenstates come close to each other, but then repel. This should be

contrasted with the free massive flow spectra, which do show level crossings, reproduced by

TCSA calculations. The difference stems from the fact that the φ2 flow is integrable, while

the Landau-Ginzburg flow is not. This way of distinguishing integrable and non-integrable

flows has long been noticed in the d = 2 TCSA literature (see e.g. [24, 148]), and here we

are observing it in d > 2.

Mass gap as a function of λ and determination of λc

We will now further test the expectation that the theory at λ = λc is conformal. In figure

7.5 we plot the low-lying spectrum of excitations (just the first three states) for λ varying

from 0 to 1.15 and for three values of R = 2, 2.5, 3. We see that the excitation energies

1. See section D.2.1 for the RG equations for the Landau-Ginzburg flow.

2. Such tunneling effects were for example studied in TCSA in Ref. [147].



are decreasing with R for λ near λc. This is especially noticeable for the second and third

excited level. Away from λc the spectrum is relatively stable with R. 3
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Figure 7.5: The spectrum of three lowest excitations as a function of λ for three values of R:

2 (short dashed), 2.5 (longer dashed), 3 (solid).

The decrease of the spectrum with R at λ = λc is what one should expect if the critical

theory is conformal. Indeed, for a flow ending in a conformal fixed point the excitation

energies should behave at large R as ∆IR
i /R where ∆IR

i are the IR CFT operator dimensions.

We will test this expectation in the next section.

Let us now determine the critical value of the coupling λc with some precision. According

to the standard renormalization theory, the mass gap for λ near λc should depend on λ as

Mgap ≈ C|λ− λc|ν , (7.5)

where ν is a critical exponent, 4 which in the case at hand is related to the dimension of

ε—the first Z2-even scalar operator at the Wilson-Fisher fixed point:

ν = 1/(d−∆ε) . (7.6)

In our case the mass gap is E1−E0 for λ < λc and E2−E0 for λ > λc. We will fit E1−E0 in

the region λ < λc to determine λc and ν. We exclude the region λ > 0.5 from the fit since it is

clearly affected by finite R effects which smear out the expected power-law behavior. We also

exclude the region λ < 0.3 since Eq. (7.5) is expected to be valid only in the λ → λc limit.

We thus perform the fit in an interval [λ1, λ2], and to estimate the systematic uncertainty

we vary λ1 between 0.3 and 0.4 and λ2 between 0.45 and 0.5. This gives the following rough

estimates for the critical coupling and the exponent ν (see figure 7.6):

λc = 0.535 - 0.555 , ν = 0.65 - 0.8 , (7.7)

with a positive correlation between λc and ν.

3. Or even slightly increasing. We observed that this slight increase of the spectrum with R is reduced

when raising the cutoff, so it must be attributed to truncation effects.

4. This critical exponent ν should not be confused with the shorthand notation ν ≡ (d−2)/2 used before.
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Figure 7.6: Left panel: We fit the R = 2.5 and R = 3 mass gap in the region [λ1, λ2], for

several λ1 and λ2 values chosen within the ranges 0.3 . . . 0.4 and 0.45 . . . 0.5, respectively. Right

panel: a scatter plot for the λc and ν parameters resulting from these fits.

We will now compare our determination of ν with the results by other approaches. The

dimension ∆ε for d = 2.5 dimensions can be extracted from the Borel-resummed epsilon-

expansion series [149]. It can also be determined from the conformal bootstrap under the

assumption that the Wilson-Fisher fixed point lives at a kink in the region of the (∆σ,∆ε)

plane [102]. The latter analysis was done under the assumption that the Wilson-Fisher fixed

point in fractional dimensions is unitary, which as we now know is not necessarily true.

However, as noticed in section 4.3.5, a small fraction of high-dimension negative-norm states

should not have strong influence on the conformal bootstrap predictions. This probably

explains why [102] found no disagreement with the results of [149]. Both analyses predict:

∆ε ≈ 1.175 (d = 2.5) , (7.8)

which gives a value ν ≈ 0.755, close to the upper end of the confidence interval for ν

determined by our fitting procedure above. Assuming this precise value of ν and repeating

the fits leads to a somewhat more accurate determination of the critical coupling:

λc ≈ 0.55 - 0.56 . (7.9)

Spectrum for a fixed λ and varying R

We next present how the spectrum depends on R for a fixed value of λ (figure 7.7).

We pick three representative values of the quartic: λ = 0.3 for the Z2-preserving phase,

λ = 0.55 near the presumed critical point, and λ = 0.9 in the Z2-breaking phase. We will

now comment upon what we see in those plots, first for the ground state energy, and then

for the massive spectra.

Ground state energy

The ground state energy is expected to grow for large R as a constant times Rd−1, corre-
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Figure 7.7: Left panels: The spectrum of excitations as a function of R for three values of the

coupling: λ = 0.3, 0.55, 0.9. Solid red (dashed blue): Z2-odd (-even) states. Right panels: The

ground state energy for the same couplings. Dots: numerical data. Black curves: fits of the data

by const.Rd−1 in the range R = 1.4 - 3 (R = 1 - 2 for λ = 0.9).



sponding to a finite energy density (cosmological constant) induced by the RG flow. This

behavior is clearly visible in the data for λ = 0.3, 0.55, while for λ = 0.9 the fit is not so good

and there are significant deviations for R & 2. These deviations decrease with ∆max and are

thus due to truncation effects. Jumping a bit ahead, notice that there are no comparably

flagrant deviations in the massive excitation spectrum for λ = 0.9 and large R. This is

because the largest truncation effects are expected in the coefficient of the unit operator,

which has the smallest possible dimension (0), and the unit operator affects the ground state

energy but not the spectrum.

Excitations for λ = 0.3

Since the energies are observed to tend to finite nonzero limits for R→∞, we conclude that

the IR theory is massive. The lightest Z2-odd state E1 is a scalar particle of mass

M = lim
R→∞

(E1 − E0) ∼ 0.6 , (7.10)

The next two excitations, belonging to the Z2-even sector, are readily interpreted as two-

particle states. The former, of mass ≈ 2M , must have both particles at rest, while in the

latter the particles must be in relative motion with respect to each other, with total angular

momentum zero. Higher up, we observe a state of three particles at rest, of mass ≈ 3M , and

orbital excitations thereof.

The appearance of this hierarchy of states, quantized in units of the lowest excitation, is

a nontrivial consistency test on the results. It is also a prediction for the absence of bound

states. At weak coupling, the two-particle interaction is repulsive in the Z2-symmetric phase

of the φ4 theory, so we wouldn’t expect bound states. Our results show that this conclusion

remains valid at strong(er) coupling. Notice that the physical mass M is significantly less

than the bare mass m, so that the theory we are examining is presumably moderately to

strongly coupled.

It is interesting to study the rate with which the excitation energies approach their infinite

volume limits. Focussing first on the lowest excitation, the leading correction is expected to

arise from coupling to curvature and scale as 1/R2:

E1 − E0 = M + ∆Mcurv + . . . , ∆Mcurv =
A(d− 2)2

8MR2
, (7.11)

where A is a (theory-dependent) constant. Indeed, when the theory is put in a weakly

curved background, it should be possible to describe corrections to the lightest state energy

by an effective Lagrangian of the same form as the free massive scalar Lagrangian (5.2) with

m → M and an effective κ which will, in general, be different from κc in the UV. Then we

get (7.11) with A = κ/κc.
5

5. Notice that for d = 2 the curvature vanishes, and the modification of the mass spectrum is entirely

due to boundary conditions. The leading correction in this case is exponentially small [137]: E1 − E0 =

M +O(e−
√

3/2ML), L = 2πR .



In figure 7.8 we test Eq. (7.11) for the lowest excitation of the λ = 0.3 spectrum. We see

that it describes the large R approach reasonably well up to R ∼ 1.5, where the truncation

effects apparently kick in and make the error to increase rather than decrease with R. Fitting

the correction in the range R = 0.4 - 1.5 we determine M ≈ 0.57, A ≈ 1.05.

One could wonder why A is so close to one in the case at hand. As already mentioned, we

don’t expect that A should be universal. We will encounter A < 0 below in the Z2-broken

phase. Moreover, the coupling to curvature will be suppressed if the state in question is

a pseudo-Goldstone boson, as may happen for more complicated flows with a continuous

global symmetry. So, for the pion in QCD we expect A ∼ (mπ/ΛQCD)2 � 1.
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Figure 7.8: Left panel: the lowest Z2-odd excitation of the λ = 0.3 spectrum. We see that

the excitation energy decreases for R . 2 and then starts somewhat increasing, likely due to

truncation effects. In the right panel we test Eq. (7.11) in the range R . 2. Red curve:

E1 − E0 −M (log-log scale). Dotted line: ∆Mcurv. The parameters M = 0.57, A = 1.05 have

been determined by performing a fit in the range R = 0.4 - 1.5. The agreement is good.

We next discuss the rate of approach for the two-particle states, starting with the two-

particle state at rest. The energy of this state can be approximated as

E2 − E0 = 2(M + ∆Mcurv) + ∆Mscat , (7.12)

where the last correction is due to the interaction (scattering) between two particles put into

a finite volume. Since the interaction is short-range, we expect the leading correction of this

type to scale as the inverse volume of the box [150]. In figure 7.9 we plot E2 −E0 − 2M for

the λ = 0.3 spectrum. We see that the difference is not well described by the finite-volume

correction 2 ∆Mcurv alone. A much better agreement can be obtained including a correction

with the scaling ∝ 1/Rd−1, as would be expected from a scattering correction. Notice that

the sign of the so determined scattering correction is positive, corresponding to a repulsion

between the constituent particles. Indeed, as we already mentioned above, at weak coupling

in the unbroken phase, λφ4 interaction is repulsive; here we see the same effect persisting

at strong coupling. In principle, it should be possible to relate the size of the scattering



correction to the scattering length, as was done for a flat torus by Lüscher [150]. In would

be interesting to work out the corresponding theory for the sphere.
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Figure 7.9: Blue curve: E2 − E0 − 2M for the ‘two-particles at rest’ state in the λ = 0.3

spectrum (log-log scale). Dashed black line: 2 ×∆Mcurv. We use the best fit value M = 0.57,

A = 1.05. Dotted black: 2×∆Mcurv plus ∆Mscat = 0.12/Rd−1.

Finally, in figure 7.10 we plot the difference Ei − E0 − 2M for the lowest two orbital

excitations in the two-particle sector, which should consist of two particles moving in the ` =

1 and ` = 2 angular momentum modes, combined to have the total angular momentum zero.

Thus their finite volume mass correction should have an extra orbital term (see Eq. (5.12))

2×∆Ml, ∆Ml = `(`+ d− 2)/(2MR2) . (7.13)

As is clear from figure 7.10, Ei − E0 − 2M decrease way too slowly with R to be described

in the asymptotic region by just the sum of the curvature and orbital corrections. It must

be that the difference is due to the scattering correction, although it looks hard to make a

quantitative conclusion using the data in the R < 3 region.
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Figure 7.10: Blue curves: Ei − E0 − 2M for the lowest two orbital excitations in the two-

particle sector of the λ = 0.3 spectrum corresponding (log-log scale). We excised by hand a state

which asymptotes to 4M and thus looks like a four-particle state at rest. Dashed black lines:

2(∆Mcurv + ∆Ml) for l = 1, 2.



Excitations for λ = 0.55

A very different behavior presents itself in the spectrum dependence on R for λ = 0.55,

which is close to the critical coupling. Instead of energies tending to finite limits, we see

them all gradually decrease with R.

As already mentioned in section 7.2, at λ = λc we expect the excitation energies to

scale at large R as ∆IR
i /R, where ∆IR

i are the IR CFT operator dimensions. To test this

expectation, we plot in figure 7.11 the excitation energies times R. We vary λ in the range

0.53 . . . 0.56, roughly the range determined in section 7.2 to contain the critical coupling.

Apart from the state ε in the Z2-even sector, of dimension ≈ 1.175 (see Eq. (7.8)), we expect

Figure 7.11: Z2-odd (red solid) and Z2-even (blue dashed) excitation energies multiplied by R,

as a function of R. The shaded regions show the variation when λ varies in the range 0.53 . . . 0.56

(when the coupling is increased all the excitation energies go down). On the right border of the

plot we indicate the expected dimensions of the lowest-lying states of the Wilson-Fisher fixed

point in d = 2.5 dimensions (see the text). The curves must tend to the indicated finite limits.

They do reach these limits for R ≈ 3, but would overshoot them (except for σ) for larger R.

to see a Z2-odd operator σ of dimension ≈ 0.305 (as extracted again from [149, 102]). We

also expect to see the states corresponding to operators ∂2ε and ∂2σ, of dimension two units

higher. Finally, we may hope to see the next primary Z2-even operator ε′, whose dimension

for d = 2.5 is not precisely known but may be expected to lie between 3.5 and 4. 6

Interestingly, for R ≈ 3 we can observe all of the above mentioned states in the spectrum

in figure 7.11, at the dimensions where they are supposed to be and with the right Z2

quantum number. The agreement of theory and our numerical results remains imperfect in

that the curves don’t really approach finite limits very well. Perhaps one could claim that

for the lowest two states σ and ε, whose variation with R is not huge. However, the higher

6. It’s 4 in d = 2 and in d = 4− ε, and ≈ 3.83 in d = 3 [151–153, 8].



states definitely exhibit growth with R and would overshoot the theoretical prediction for

their dimension, were we to extend this plot to higher values of R. We hope that this issue

will get resolved in the future by improving the accuracy of the method (see section D.2.1).

We would like to mention here that while TCSA should in principle be able to reproduce

long-distance physics both in the gapped (massive) and the gapless (CFT) phases, it may

not be the best approach from the point of view of numerical accuracy if one is interested

only in the IR CFT. The conformal bootstrap is likely to give higher-precision results (see

e.g. [7, 8, 103, 9, 114] for ongoing work concerning the Ising and O(N) models in d = 3).

We would also like to mention in this respect the recent work [154] describing a Monte

Carlo simulation of the critical point of the 3d Ising model not in the traditional R3 geometry,

but in the S2×R geometry, identical to the one used in this work. In principle, this method

could be used to simulate the full flow, not just the critical point, but one has to be careful

about the approach to the continuum limit, making sure that the quartic coupling becomes

small at the cutoff scale. Another issue faced by the lattice simulations on S2 × R is that

it is hard to lattice-discretize the theory on the two-sphere, because of its curvature. That

is the reason why [154] uses a discretized icosahedron rather than the sphere. Preparatory

work to find a true spherical discretization is ongoing [155, 156], and we are looking forward

to realistic simulations.

Excitations for λ = 0.9

Finally, we consider the spectrum for λ = 0.9. 7 The first eye-catching feature of the spectrum

is the approximate degeneracy of Z2-even and odd states in the region of large R. This

degeneracy is clearly visible for the first excitation, which becomes degenerate with the

vacuum, and for two more pairs of states. The interpretation of this phenomenon was

already discussed in section 7.2—it means that the Z2-symmetry is spontaneously broken.

There will be two vacua |0〉L (resp. |0〉R), corresponding to the vacuum with 〈φ〉 < 0 (resp.

〈φ〉 > 0). By hermiticity, the matrix elements of the Hamiltonian between these states are

of the form

HLL = HRR = E0, HLR = HRL = δ0 . (7.14)

The off-diagonal matrix element δ0 depends on the tunneling rate between both wells, and

therefore it decreases exponentially with the volume of space (see e.g. chapter 19 of [157]):

δ0 ∼ exp (−CV ) , V = Vol(Sd−1
R ) = SdR

d−1. (7.15)

The coefficient C > 0 can in principle be computed, at least in a semi-classical approximation,

but its precise value is not important for this argument. The eigenstates of the Hamiltonian

7. It’s interesting to compare the discussion below with section VI of the contemporaneous work [130]

devoted to Landau-Ginzburg flows in d = 2.



are then

|0,±〉 =
1√
2

(|0〉L ± |0〉R) , (7.16)

and their energies are E0,± = E0 ± δ0. Notice that the states |0,±〉 are even (odd) under

φ→ −φ; as usual in quantum mechanics, we expect that the Z2-even combination will have a

smaller energy than the Z2-odd one. From Eq. (7.15), we conclude that the splitting between

both vacua decreases in the infinite-volume limit as exp(−const.Rd−1).

A similar argument can be used to argue that the excited states |i〉L (resp. |i〉R) above

each well form Z2 even and odd energy eigenstates

|i,±〉 =
1√
2

(|i〉L ± |i〉R) , (7.17)

with energies Ei,± = Ei± δi. For these excited states, we confirm that the Z2 even state has

lower energy than its odd counterpart: this can be seen in figure 7.7—in each of the three

approximately degenerate pairs, the Z2-even state is the lower one.

The above tunneling argument seems to predict that the even/odd state pairs should

be split roughly symmetrically with respect to the infinite volume limiting value. In fact,

since the excitation energies are defined as Ei−E0 and E0 belongs to the Z2-even sector, we

expect the Z2-even excitations to shift down by (δi−δ0), while the Z2-odd ones to move up by

(δi+ δ0). Since the tunneling probability strongly depends on the energy, we expect δ0 � δi,

and the shifts should be roughly symmetric. However, that’s not what we see in the λ = 0.9

plots in figure 7.7—it rather looks that the negative shift of the Z2-even excitations is much

larger than the positive shift of the Z2-odd ones. For the first pair of massive excitations, it

even looks like both the Z2-odd and the Z2-even state have a negative shift.

The most natural explanation of this phenomenon is that we are forgetting the modifica-

tion of the mass spectrum via coupling to curvature, see Eq. (7.11). This effect goes as 1/R2

and for low-lying states should be larger than the splitting, which is exponentially small in

the volume of sphere. The fact that both states in the first Z2-odd/even pair have a negative

shift can then be explained by taking A negative in Eq. (7.11).

In fact, it is not totally unexpected that A should be negative for the lowest massive

excitation at λ = 0.9. The same occurs for the Landau-Ginzburg flow in the weakly coupled

part of the Z2-broken phase, i.e. for negative m2 and a small quartic coupling. We did not

study this part of the phase diagram numerically, but it’s easy to understand what happens

analytically. The full mass parameter of the UV theory, including the coupling to curvature,

is m2 + κcR. Since m2 < 0, we have to reexpand the Lagrangian around the true vacuum,

and when we do this, the mass parameter picks up the usual −2 factor. We thus conclude

that κ = −2κc, giving A = −2 at weak coupling in the Z2 broken phase.

This finishes the discussion of splittings at finite R. Next, we would like to say a few

words about the overall structure of the massive spectrum at large R. We identify the two



near-degenerate pairs of even/odd states with two massive excitations, of mass

M1 ≈ 1.6 , M2 ≈ 2.5 . (7.18)

A very interesting feature of this spectrum is that M2 < 2M1. This is unlike the spectrum at

λ = 0.3, which was neatly quantized in the units of the lightest excitation. In the situation

at hand, the state of mass M2 should probably be interpreted as a bound state of two M1

particles.

The appearance of such bound states was found long ago, and their masses measured,

in the lattice simulations of the broken phase of the Ising model and of the φ4 theory in

d = 3 dimensions [158]. In the weakly coupled regime, the existence of these states follows

from the fact that the λφ4 interaction becomes attractive in the broken phase, the cubic

exchange diagrams overwhelming the repulsive effect of the contact term interaction [159].

Their binding energy, exponentially small at weak coupling, is known in the leading and

first subleading exponential approximation [159, 160]. Apparently, here we are observing the

same effect in d = 2.5 dimensions and at strong coupling.

7.3 Non-unitarity and complex energy levels

As we observed in section 4.3.5, the free massless scalar theory in fractional d is not

unitary: its Hilbert space contains negative norm states. In d = 2.5 the lowest negative-

norm state occurs for ∆ = 9. In figure 7.12 we show the total number of scalar states and

the number of negative norm states as a function of ∆.
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Figure 7.12: The number of scalar P -even states in the Hilbert space of free massless scalar

theory in d = 2.5 on the cylinder. Blue squares: all states. Red dots: negative-norm states.

What are the consequences of having these negative-norm states? One expected con-

sequence is that once we perturb the theory, complex eigenvalues will appear. The purely

massive perturbation 1
2m

2φ2 is an exception, since in this case the spectrum should agree

with the canonical quantization spectrum, which is fully real-valued, cf. section 5.1.

What if we turn on λφ4? As we saw in the previous sections, numerics indicate that the



low-energy spectrum is still real. This may not be so surprising, since the negative norm

states all have high energies. To see complex eigenvalues, we may expect to have to go to high

energies. We will now present several computations which show that complex eigenvalues do

occur.

Let us first of all examine the case of very small R. In this limit we can treat m and λ as

perturbations, with dimensional couplings m2R2 and λRd−4ν . The second coupling decreases

less slowly as R→ 0, and will dominate at very small R. The effects of the perturbation is to

split the degenerate energy levels of the CFT Hamiltonian. The splittings are proportional

to the eigenvalues of the perturbation diagonalized within each degenerate subspace. In

high-energy subspaces, which contain negative-norm states, some of the eigenvalues may

and do turn out to be complex. We find that this happens for the first time at ∆ = 11.5,

which is an 88-dimensional subspace with 7 negative-norm states. We find that the matrix

of the φ4 perturbation within this subspace has one pair of complex conjugate eigenvalues

≈ 1.85± 0.04i. This implies that for very small R the energy levels will be complex.

The above argument is confirmed numerically in figure 7.13, where we show the spectrum

around ∆ = 11.5 for m2 = 1, λ = 0.55, and 0 < R < 0.15. We see precisely one pair of

complex conjugate eigenvalues emerging out of the ∆ = 11.5 group for small R. For larger R,

the spectrum shows intricate structure. We see many avoided level crossings in the real part

of the spectrum. We also see a second pair of complex conjugate eigenvalues appearing at

R ≈ 0.04 and then disappearing at R ≈ 0.07. Zooming in on this line of complex eigenvalues,

one notices that it joins collision points for pairs of real eigenvalues.

This last observation may seem to create a minor paradox. Didn’t we say that the

Landau-Ginzburg flow is not integrable, and that in non-integrable flows energy levels do

not cross? The resolution is that this last statement requires a qualification in presence of

negative norm states. If two energy levels which head for a collision are both positive-norm

(or both negative-norm), they will generically repel. However, in a subspace with non-sign-

definite Gram matrix, no-level-crossing rule does not apply. To see this, consider a toy-model

2× 2 symmetric generalized eigenvalue problem

H.c = EG.c , H =

(
h11 h12

h12 h22

)
, G =

(
1 0

0 σ

)
, (7.19)

where σ = ±1 depending on whether we are dealing with a subspace of positive or non-sign-

definite norm. We are assuming that the Hamiltonian matrix is symmetric and real. The

distance between the two eigenvalues is controlled by the discriminant:

D = (h11 − σh22)2 + σh2
12 . (7.20)

For σ = 1 the discriminant is a sum of two squares, and level crossing cannot generically

happen. On the other hand, for σ = −1 the discriminant is not positive definite, and can



Figure 7.13: The spectrum around ∆ = 11.5 for m2 = 1, λ = 0.55, and 0 < R < 0.15 with

a step of 10−4. We are plotting energy levels multiplied by R. Light blue: real eigenvalues.

Black: real part of eigenvalues with nonzero imaginary part. These are raw TCSA data with

∆max = 12.

readily change sign if the off-diagonal matrix element increases beyond a critical value. When

this happens, we go from having two real eigenvalues to a complex conjugate pair.

As another illustration, in figure 7.14 we show the spectrum with REi ∈ [8, 11] for the

same couplings as above but in a wider range 0 < R < 2. We clearly see several points where

real eigenvalues collide and form a complex conjugate pair, which sometimes reemerges as a

pair of real eigenvalues for a slightly larger value of R. The most prominent such collision

happens at R ≈ 0.7.

To resolve the multitude of eigenvalue curves in figures 7.13, 7.14, we had to compute

the spectrum with a very small R step. For reasons of speed and numerical stability, we

have performed these bulky computations with a relatively small ∆max. Since the complex

eigenvalues observed in these plots lie relatively close to the cutoff, their energies are likely

to shift considerably when the cutoff is increased. However, we don’t expect the complex

eigenvalues to disappear. In fact, we performed checks for a few selected values of R,

computing the spectrum with a higher cutoff and, for higher numerical stability, with a

higher number of digits rather than at machine precision. The complex eigenvalues were

always present.

Notice that the eigenstates corresponding to the complex eigenvalues necessarily have

zero norm (computed with respect to the Gram matrix). In a unitary theory a state of zero

norm has zero overlap with any other state. Such a state is unphysical; it can be kept in the



Figure 7.14: The spectrum at REi ∈ [8, 11] for m2 = 1, λ = 0.55, and 0 < R < 2 with a step

of 10−3. We are plotting energy levels multiplied by R. Light blue: real eigenvalues. Black: real

part of eigenvalues with nonzero imaginary part. These are raw TCSA data with ∆max = 11.

The jittering spread noticeable in some of the eigenvalue curves at R & 1.5 is due to numerical

instabilities in the Mathematica diagonalization routine.

Hilbert state or thrown out without physical consequence. This was the situation with the

scalar theory in d = 3 in section 5, whose extended Hilbert state included some null states,

but only as a matter of convenience. In a non-unitary theory, as the one we are discussing

now, states of zero norm do not in general have zero overlap with other states. They cannot

be removed from the theory without modifying it.

To summarize, the Landau-Ginzburg theory in d = 2.5 dimensions is a non-unitary

interacting quantum field theory. Its spectrum on a sphere of finite radius contains negative-

norm states with real energies, as well as zero-norm (but physical) states with complex

energies. The negative-norm and zero-norm states belong to the high-energy part of the

spectrum, and so their effect on the low-energy physics may not be huge, but the mere

presence of these states is a proof that the theory is not unitary. We expect complex

eigenvalues to be present also in the limit R → ∞. In particular, the critical point of

the theory should have operators with complex scaling dimensions. The same should be true

for theories in any fractional d.



Chapter 8

Discussion and outlook

This thesis focused on two distinct, but related concepts. The first chapters were devoted

to conformal blocks, special functions that encode the contribution of a single conformal

family to a CFT four-point function. Pragmatically, conformal blocks can be thought of as

solutions to a second-order PDE, the Casimir differential equation. In special cases, this

PDE can be solved analytically, but in odd d (or even non-integer d), new ideas are needed

to systematically compute conformal blocks.

In chapter 2, we computed conformal blocks in radial quantization. Although this does

not lead to closed-form expressions, radial quantization shows that conformal blocks admit

a series expansion in polar coordinates. Unitarity and conformal invariance were used to

prove various properties of such expansions: they imply that the expansion coefficients are

positive, that the expansion converges uniformly and that the conformal block is analytic

inside the unit disk. For practical applications, we advocated the use of a ρ-coordinatethat

covers the full range of regularity of the conformal blocks and has a rapidly convergent series

expansion.

The subsequent chapter 3 focused on a practical problem, namely the computation of

conformal blocks on the diagonal z = z̄. This diagonal plays an important role in the

conformal bootstrap program: in most applications, conformal blocks are expanded around

the point z = z̄ = 1/2. The key result from this chapter was that two Casimir differential

equations (the quadratic and quartic one) can be combined to produce a single fourth-order

ODE on the diagonal (third-order for scalars). Frobenius’ method gives a practical way to

solve the ODE in question. Combined with a Cauchy-Kovalevskaya argument, we explained

how Frobenius method’ gives an efficient way for computing derivatives around any point t0

on the diagonal.

Since the above work was published, it has found applications in the conformal bootstrap.

These applications use a rational approximation of conformal blocks in the ρ-coordinate, first
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proposed by Kos, Poland and Simmons-Duffin [103]. Notably, these rational approximations

to conformal blocks were applied in computations of critical exponents of the 3d Ising model,

by analyzing a single correlator [8] and multiple correlators simultaneously [9]. More rece-

cently, two publicly available algorithms (SDPB and JuliBootS) for bootstrap computations

have made use of the ρ-coordinate [128, 161].

We would like to mention at least one possible generalization that pertains to conformal

blocks contributing to a non-scalar four-point function 〈O1O2O3O4〉 [87, 66]. 1 In that case,

we must consider all operators O that appear in both the O1 × O2 and O3 × O4 OPEs.

Depending on the Oi, not only spin-j traceless symmetric tensor operators may contribute,

but also tensors of mixed symmetry or even fermionic operators. The conformal blocks GO

can still be computed in radial quantization, for example in the ρ kinematics; the matrix

elements there will be of the form

〈0|O1(0,−n)O2(0,n)|E, λ〉 and 〈E′, λ′|O3(0,n′)O4(0,−n′)|0〉,

where λ, λ′ label SO(d) representations. By contracting such matrix elements, we can find

the corresponding ‘building blocks’ for the ρ series expansion, that will however no longer

be Gegenbauer polynomials in n · n′. We expect that the expansion coefficients can still be

found by means of the Casimir differential equation. It would be interesting to carry out

this computation in detail.

More speculatively, we note that the conformal blocks restricted to the diagonal are

particularly simple: they are functions of a single variable and are solutions to an ODE,

rather than a PDE. Whenever ∆1 = ∆2, the ODE in question can even be solved analytically,

yielding a sum over 3F2 hypergeometric functions. 2 We believe that it may be interesting

to consider the crossing symmetry equation restricted to the diagonal. In particular, if it

is possible to express the cross-channel blocks fλ1λ2(1 − z) in terms of the normal blocks

fλ′1λ′2(z), this would open the door to better understanding crossing symmetry analytically.

In various special cases (e.g. in the large-N limit), such analytic results have already been

obtained [162, 120, 163–165].

In the second part of this thesis, we presented a generalization of the Truncated Conformal

Space Approach to d > 2 dimensions. We studied two flows starting at the free massless

boson. In chapter 5, we computed the spectrum of the massive boson in d = 3 on the cylinder

analytically, and compared these predictions to numerical TCSA results, finding that the data

were reliable well beyond perturbation theory. Second, we considered the Landau-Ginzburg

theory in d = 2.5: there, we found that Z2 symmetry of the theory was broken at strong

coupling, and we obtained critical exponents that were roughly in agreement (within error

bars) with their exact values. In order to obtain these results, we used a renormalization

1. This problem is already fully understood in two-dimensional CFT [91].

2. These closed-form solutions are presented in the published version of chapter 3, i.e. Ref. [125].



group method to reduce the cutoff dependence that is inherent to the TCSA.

These initial results open the door to several new problems. Various RG flows are closely

related to the Landau-Ginzburg flow: we point to the O(N) theory and the tricritical Ising

model (generated by a φ6 interaction). At a first glance, it does not appear very complicated

to adapt our methods to study these theories using the TCSA.

Likewise, we only considered the φ4 theory in d = 2.5, where it is UV-finite. For physical

reasons, it would be interesting to consider the d = 3 case: this however entails dealing with a

logarithmic divergence for the φ2 operator. To get high-accuracy results for the IR spectrum

and for critical exponents, it may be necessary to first obtain a better understanding of cutoff

effects. In any case, we believe that the renormalization procedure proposed in this work

can be significantly improved, e.g. by developing a systematic way to deal with subleading

truncation effects.

A technical, but conceptually important matter was non-unitarity of the free boson in

fractional d. We showed that the free, massless theory was non-unitary for any non-integer d

and using numerical TCSA methods, we established that the Landau-Ginzburg Hamiltonian

had complex energy eigenvalues on the cylinder. It should be possible to obtain a better

insight into these unitarity violations by studying the Wilson-Fisher theory in d = 4 − ε

dimensions [166], which is perturbative. For future bootstrap applications in fractional d,

it may also be interesting to have rigorous (or at least asymptotic) bounds on unitarity

violations in terms of OPE coefficients and scaling dimensions.

Next, one may consider RG flows starting at free CFTs with a richer field content.

Starting from a CFT with both fermions and scalars, one may consider the Yukawa, Gross-

Neveu or Gross-Neveu-Yukawa interactions [167]. Even more interesting are gauge theories

(either Abelian or non-Abelian), although it is not quite obvious how to implement gauge

invariance in the TCSA framework. This is an important problem for the future.

A different research direction involves computing new observables, different from the

spectrum of the Hamiltonian. Various 2d TCSA studies have already computed form factors

and one-point functions [168, 169]. In d > 2 dimensions, it would be interesting to have

access to correlation functions to probe RG flows (or Wilson loops, in the case of gauge

theories).

We would like to conclude on a more general note. The TCSA is a natural scheme to

investigate RG flows that start at strongly coupled CFTs for which the CFT data are known

(as is the case for the Virasoro minimal models). Let us make two different remarks with

regard to this point. First, we are not aware of any non-SUSY strongly coupled CFT in

d > 2 that is ‘solved’, in the sense that its low-energy spectrum (up to ∆max ∼ 20) and

OPE coefficients can be computed to high precision. Can conformal bootstrap techniques be



refined in order to provide these data as input to the TCSA? Second, many interesting RG

flows in d > 2 (like 4d Yang-Mills theory) emanate from free theories in the UV. For such

theories, alternative Hamiltonian truncation methods may also be promising: we have in

mind light-cone methods (see e.g. [170–174]) and truncation methods that use a Fock space

basis (see e.g. [175, 176, 131]). Surprisingly, few of these methods have been explored in

d > 3 dimensions. Nevertheless, we are optimistic that such truncation methods will prove

to be useful in the near future as a quantitative approach to understanding strongly coupled

QFTs.
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Appendix A

Boundedness of the ρ-series

coefficients

In this appendix we show that the coefficients Bn,j on each level n are uniformly bounded

for all ∆ and `, as stated in Eq. (2.65). We have already shown in the main text that Bn,j

remain bounded as ∆→∞ for each fixed `. So here it suffices to consider the case of ` large

with respect to n, say ` > n.

We will proceed by induction, and assume that the inequality has already been shown

for all levels n′ < n. Using Eq. (2.52), the bound at level n will follow if we show that

Γ∆+n,j
∆+n′,j′/(c

(2)
∆+n,j − c

(2)
∆,`) (A.1)

is bounded by a constant which depends only on n and ν.

Our first observation is that the Γ’s satisfy the bound∣∣∣Γ∆+n,j
∆+n′,j′

∣∣∣ 6 const ∆ + const (A.2)

with constants which depends only on n and ν. To show this, notice that large contributions

to Γ’s appear from only two sources. First, through the action of r∂r, which gives a factor

of (∆ + n′). Second, through the action of 2η(1 − η2)∂η, which gives factors bj′ = O(j′).

On the other hand, all the factors produced via the expansion of denominators in (2.47) will

depend only on n and ν. Notice in particular that aj = O(1).

Passing to the Casimir difference in (A.1), we write it as

c
(2)
∆+n,j − c

(2)
∆,` = k2 + 2k(`− n+ ν) + 2n(τ + n− 1) , (A.3)

where j = `−n+ k, k = 0, 2, . . . , 2n, and τ = ∆− `− 2ν > 0 by the unitarity bounds. Since

we are assuming ` > n, this is a manifestly monotonically increasing function of k and n.

132



Consider first the case k > 2. In this case we have a lower bound:

c
(2)
∆+n,j − c

(2)
∆,` > [(A.3) for k = n = 2] = 4(∆− ν) (k > 2) . (A.4)

Combining this with (A.2), we see that (A.1) is indeed bounded independently of ∆ and `,

except in the region near the free scalar unitarity bound ∆ = ν, excluded from consideration

as discussed in the main text.

It remains to consider the case k = 0, when the Casimir difference

c
(2)
∆+n,`−n − c

(2)
∆,` = 2n(τ + n− 1) (A.5)

can remain small even though both ∆ and ` become large. However, precisely in this case

the bound (A.2) can also be improved. The relevant recursion relation coefficients are

Γ∆+n,`−n
∆+n′,j′=`−n′ . (A.6)

The coefficients with j′ 6= ` − n′ will be zero, because lowering the spin via Eqs. (2.49) is

accompanied by raising the dimension by at least the same amount. We will now show that

all coefficients of the form (A.6) are bounded by cst τ + cst. Together with (A.5), this will

prove the boundedness of Bn,`−n and will complete the proof.

For the case n− n′ = 2, this stronger bound can already be suspected in the expression

(2.51) for ΓE+2,j−2
E,j , which contains two near-canceling terms. In detail, this coefficient can

be expressed as

Γ∆+n′+2,`−n′−2
∆+n′,`−n′ = 4(τ + 2n′)a−`−n′ , (A.7)

and satisfies the claimed bound, since a−j 6 1/2 for all j.

For the general case, we notice that the action of D̃ on P∆+n′,`−n′ can be written as

follows:

D̃ P∆+n′,`−n′ = −
4(τ + 2n′)a−`−n′

1− 2r2(2η2 − 1)
P∆+n′+2,`−n′−2 + . . . (A.8)

Here we computed explicitly the action of (1− 2η2)r∂r and 2η(1− η2)∂η. We omitted many

terms (. . .) which cannot contribute to the relevant Γ coefficients, because they raise the

dimension without lowering the spin by the same amount. The Γ coefficients (A.6) with

n− n′ = 4, 6, . . . are obtained by expanding the denominator in (A.8). They are given by

Γ∆+n,`−n
∆+n′,`−n′ = 2(τ + 2n′)

∏
j=`−n′,`−n′−2,...,`−n+2

(2a−j ) , (A.9)

and clearly satisfy the claimed bound.

The reader will have noticed that the coefficients Bn,`−n, which required a separate

analysis in the above proof, satisfy a recursion relation among themselves. This is because



the relevant Γ’s in (A.6) vanish for j′ 6= `−n′. Due to this fact, these coefficients can in fact

be computed explicitly:

B2m,`−2m =
(1/2)m
m!

(`+ 1− 2m)2m

(`+ ν + 1− 2m)2m

(τ/2)m
(τ/2 + 1/2)m

. (A.10)

Their boundedness is also obvious from this formula.



Appendix B

Recursion relations for an

Via Frobenius’ method, the ODEs (3.21) imply recursion relations for the coefficients an

in (3.9), four-term for general `:

n(∆ + `+ n− 1)(∆− `+ n− 2ν − 1)(2∆ + n− 2ν − 2)an =
3∑
i=1

γi,n an−i, (B.1)

where

γ1,n = 3n4 +
(
4S + 12∆− 10ν − 19

)
n3

+
[
8ν2 − 2(6S + 15∆− 22)ν − 4c2 + 2P + 3(2∆− 3)(2S + 3∆− 5)

]
n2

+
[
12∆3 + 12S∆2 − 57∆2 − 36S∆ + 90∆ + 4(2S + 4∆− 5)ν2 + 26S

+ P (4∆− 6ν − 5)− 2(3∆− 4)(4S + 5∆− 8)ν + c2(−4S − 8∆ + 6ν + 13)− 47
]
n

+
[
∆(3∆− 4ν − 10) + S(4∆− 4ν − 6) + 6ν + 9

]
(∆− 1)(∆− 2ν − 2)

+ c4 + P (∆− 2ν − 1)(2∆− 2ν − 3)

+ c2

[
− 10ν + S(−4∆ + 4ν + 6) + ∆(−4∆ + 6ν + 13)− 11

]
,

γ2,n = (∆ + n+ S − ν − 2)
{
−3n3 +

[
− 5S − 9∆ + 5(ν + 4)

]
n2

+
[
2c2 − 4P − 3(7ν + 15) + S(−10∆ + 8ν + 21) + ∆(10ν + 40− 9∆)

]
n

+ c2(2S + 2∆− 5) + P (−4∆ + 6ν + 7)

− (∆− 2)
[
S(5∆− 8ν − 11) + ∆(3∆− 5ν − 14) + 11ν + 17

] }
,

γ3,n = (∆ + 2a+ n− 3)(∆ + 2b+ n− 3)(∆ + n+ S − ν − 3)(∆ + n+ S − ν − 2),

and three-term for ` = 0:

n(∆ + n− 1)(2∆ + n− 2ν − 2) an =
2∑
i=1

ξi,n an−i , (B.2)
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for

ξ1,n = 2n3 + 3
(
S + 2∆− ν − 3

)
n2

+
[
2P + S(6∆− 4ν − 9) + 7ν + ∆(5∆− 4ν − 16) + 13

]
n

+ 1
2

[
2P + (∆− 2)(2S + ∆− 2)

]
(2∆− 2ν − 3) ,

ξ2,n = − (∆ + 2a+ n− 2)(∆ + 2b+ n− 2)(∆ + S + n− ν − 2) .

Apart from a few cases listed below, these recursion relations determine an for n > 1

starting from a0 = 1 and imposing an = 0 for n < 0. The exceptions occur when the factor

multiplying an in the LHS vanishes for some n = n0 > 1. These are the cases when ∆

is smaller by the positive integer, n0, than the largest characteristic exponent at z = 0 in

(3.31). Frobenius’ method requires a special treatment in such situations. As we will see

below, in our case potential ambiguities can be resolved using as an extra physical input the

fact that conformal blocks should be continuous functions of ∆.

There are actually only three exceptional cases consistent with the unitarity bounds and

assuming d > 2. We consider them one by one.

1. ` > 0,∆ = `+ 2ν, n0 = 1 in (B.1)

This corresponds to a spin ` > 0 primary higher spin conserved current saturating the

unitarity bound. Conformal block of such a primary are defined only for a = b = 0, since

three-point functions with scalars of unequal dimension vanish by imposing conservation.

Thus we should not worry that eq. (B.1) predicts a1 →∞ for a or b nonzero and ∆→ `+2ν.

However, for a = b = 0 conformal blocks should be continuous in this limit.

Indeed, for n = 1 and a = b = 0, γ1,1 factorizes:

γ1,1 = 1
2(∆− `− 2ν)(2∆− 2ν − 1)∆(∆ + `) . (B.3)

The offending factor (∆−`−2ν) now appears on both sides of the recursion relation defining

a1. Cancelling this factor gives an equation for a1 which is continuous in the full range

including the unitarity bound. Once a1 is computed according to this prescription, the rest

of the coefficients follow from the recursion relation unambiguously.

We note in passing that the diagonal limit of spin ` blocks saturating the unitarity bound

is known in closed form for arbitrary d, see section 2.1.3 and Eq. (2.33) in particular.

2. ` = 0,∆ = ν + 1
2 , n0 = 1 in (B.2)

Again, these conformal blocks can and should be defined by continuity. Namely, one can

check that for n = 1 and any a and b the RHS of (B.2) factorizes, so that the problematic

factor (2∆ − 2ν − 1) can be cancelled from both sides of the recursion relation. Once a1 is

defined this way, the rest of the coefficients follow from the recursion.



3. ` = 0,∆ = ν, n0 = 2 in (B.2)

This case corresponds to a scalar field at the unitarity bound, so it is not particularly

interesting. This conformal block can occur only in the free scalar theory, and only if the

external field dimensions differ by the free scalar dimension ε. We have in mind the OPE

: φO :×O ⊃ φ. One can check that in this case, i.e. for a, b = ±ε/2, the free scalar block

can be defined by continuity exactly as above. Namely the RHS of (B.2) for n = 2 can be

factored (plugging in a1 computed in the previous recursion step) and the offending factor

cancelled. For all the other choices of a, b the scalar block diverges when ∆→ ν.



Appendix C

TCSA computations in practice

In this appendix, we present some methods and algorithms that were used in finding a

basis for the Hilbert space, constructing the OPE matrices V j
i for both the φ2 and the φ4

interaction, and for computing the Gram matrix directly.

C.1 Constructing the Hilbert space

First, we focus on constructing the Hilbert space H for the free scalar CFT, containing

all scalar and parity-even states with energy 6 ∆max. All necessary ideas are explained in

section 4.3.1. We recall that states in H are in one-to-one correspondence with composite

operators :∂k1φ · · · ∂knφ : that have all derivatives contracted. These operators can in turn

be represented as graphs, each φ being denoted as a vertex and an index contraction

corresponding to an edge that joins two vertices. Note that a graph Γ with V vertices

and E edges maps to an operator with scaling dimension

∆Γ = 1
2(d− 2)V + 2E, (C.1)

hence imposing ∆Γ 6 ∆max restricts the values V and E can take. We also recall that

isomorphic graphs represent the same local operator, hence only one graph per isomorphism

class must be added to the Hilbert space (otherwise, one introduces additional null states).

In the graph theory language, the set of necessary graphs can then be constructed using

the following algorithm:

1. Build a list of all connected simple graphs (having at most one edge joining any two

vertices), subject to the constraint (C.1). Test this list for isomorphisms, and keep

only one graph per isomorphism class.

2. Given any connected simple graph Γ, build all multigraphs of the same topology

satisfying (C.1) by adding edges in all possible ways. Keep only one graph for every
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isomorphism class. This yields a list of all connected multigraphs.

3. Join these connected multigraphs in all possible ways, with the total number of

vertices V and edges E satisfying (C.1).

The resulting set of all disconnected multigraphs then forms a basis for the truncated Hilbert

space H. We stress that this procedure does not take null states in integer d into account,

see section 4.3.4.

Both in principle and in practice, all above graph manipulations can be done in Mathematica.

We remark however that Mathematica has limited support for multigraphs, and in particular

the function IsomorphicGraphQ that tests whether two graphs are isomorphic does not

support them. The specialized graph theory package NetworkX 1 for Python is a useful

alternative.

C.2 OPE matrices

Next, we turn to the computation of the OPE matrices. Let us denote these OPE matrices

as
(
C[N ]

) j
i

for N = 2, 4:

1

Sd

∫
|x|=1

dd−1x :φN (x) :|Oi〉 ≡
(
C[N ]

) j
i
|Oj〉 + states with ∆ > ∆max . (C.2)

An approach for calculating the OPE matrices was sketched in section (4.4.3). In summary,

the OPE matrices C[N ] are computed state-by-state: for any i, we pick the state |Oi〉 and

compute the left-hand side of Eq. (C.2); after expanding it in the basis {|Oj〉}, the coefficients

(C[N ])
j
i can be read off. This procedure is well-defined in fractional d, but ambiguous for

integer d due to the presence of null states; for integer d, we therefore define the OPE

coefficients by analytic continuation in d.

These OPEs can be computed in the following way:

1. Use Wick’s theorem to expand the state :φN (x) :|Oi〉 = :φN (x) ::Oi(0) :|0〉.
2. Expand any factors of φ(x) around x = 0.

3. Integrate the result over the sphere Sd−1 using the spherical integral (5.33).

Let us illustrate the above algorithm using a concrete example: we take N = 2 and

compute the OPE of
∫
φ2(x) with the in-state |Oi〉 = |(∂µφ)2〉.

1. For our example, this gives

:φ2(x) :|(∂µφ)2〉 = 2〈φ(x)∂µφ(0)〉2|0〉
+ 4 〈φ(x)∂µφ(0)〉 |φ(x)(∂µφ)〉+ |φ(x)2(∂µφ)2〉 . (C.3)

1. This can be found at the website http://networkx.github.io.

http://networkx.github.io


The factors 〈φ(x)∂kφ(0)〉 are easily worked out using

〈φ(x)∂µ1 · · · ∂µ`φ(0)〉 = 2`(ν)`
xµ1 · · ·xµ` − traces

|x|d−2+2`
. (C.4)

Applying this to the OPE (C.3), we obtain

:φ2(x) :|(∂µφ)2〉 =
2(d− 2)2

|x|2d−2
|0〉+

4(d− 2)xµ

|x|d |φ(x) ∂µφ〉+ |φ(x)2 (∂µφ)2〉. (C.5)

2. Let us work this out explicitly for the second term in Eq. (C.5):

xµ|φ(x) ∂µφ〉 = xµ|φ∂µφ〉+ xµxλ1 |∂λ1φ∂µφ〉+
1

2!
xµxλ1xλ2 |φ,λ1λ2 φ,µ〉+ . . . . (C.6)

Note that adding a derivative of φ increases the dimension of a state by one unit. As

a consequence, these Taylor expansions must be truncated after a finite number of

terms.

3. For the first term in (C.5), this integration is trivial. For the second term, we obtain

1

Sd

∫
|x|=1

dd−1x
xµ

|x|d |φ(x) ∂µφ〉 = (1/d)δµα|∂αφ∂µφ〉 = (1/d)|(∂µφ)2〉 (C.7)

because all higher-order terms vanish after integration. Performing the integral over

the third term of (C.3) as well, we find that

1

Sd

∫
|x|=1

dd−1x:φ2(x) :|(∂µφ)2〉 = 2(d− 2)2|0〉+
4(d− 2)

d
|(∂µφ)2〉+ |φ2(∂µφ)2〉

+
1

d
|(∂λ1φ)2(∂µφ)2〉+

1

2d(d+ 2)
|(φ,λ1λ2)2(φ,µ)2〉+ . . .

(C.8)

Here, we have only written down the first terms that come from expanding the state

|φ(x)2(∂µφ)2〉 in (C.5) around x = 0.

.

C.2.1 Index-free formalism

The algorithm presented in Sec. (C.2) can produce large expressions: derivatives of

the two-point function Eq. (C.4) contain many different trace terms and the spherical

integration (5.33) results in a sum of many different tensor structures. To avoid both of these

issues, we can use an index-free formalism for traceless symmetric tensors [177, 178]. 2 The

rationale behind this formalism is that any TST Tµ1···µ` can be encoded using an auxiliary

vector uµ that satisfies u2 = 0. After contracting with such a vector, the result is a polynomial

in u:

T (u) ≡ Tµ1···µ` u
µ1 · · ·uµ` . (C.9)

2. See [65, 87] for a pedagogical treatment.



Using the differential operator

Dµ[u] ≡
(
ν + uα

∂

∂uα

)
∂

∂uµ
− 1

2
uµ

∂2

∂uα∂uα
, ν ≡ (d− 2)/2 (C.10)

the original tensor, with open indices, can be recovered:

Tµ1···µ` =
1

`!(ν)`
Dµ1···µ` [u]T (u) . (C.11)

Here we have used the shorthand notation

Dµ1···µ` [u] ≡ Dµ1 [u] · · · Dµ` [u] . (C.12)

Let us apply this to the computation of OPE matrices.

Encoding states as differential operators

As a first application of the index-free formalism, we show that it is possible to encode

any state |Oi〉 as a differential operator acting on a polynomial. For concreteness, let us

consider the state |A〉 = |φ2 (φ,µ1···µ8)2〉. Using two auxiliary vectors v1, v2, both satisfying

v2
i = 0, |A〉 can be rewritten as

|A〉 = DA[v] |φ2 (v1 · ∂)8φ (v2 · ∂)8φ〉 , (C.13)

where

DA[v] =
1

[8!(ν)8]2
Dµ1···µ8 [v1]Dµ1···µ8 [v2] (C.14)

is a differential operator that acts on the auxiliary vectors vµi . This formula follows directly

from Eq. (C.11).

Next, notice that the differential operator DA[v] commutes with the OPE, in the sense

that

:φN (x) :|A〉 = DA[v]
[
:φN (x) :A(0; v)

]
|0〉 , (C.15)

where

A(x; v) = :φ2(x) (v1 · ∂x)8φ(x) (v2 · ∂x)8φ(x) :. (C.16)

The advantage of this approach is that OPE manipulations no longer involve sums of many

different tensor structures that come from derivatives of two-point functions, such as in.

Eq. (C.4). In fact, after contracting with an auxiliary vector vµi , any such derivative 〈φ(x)(vi ·
∂)`φ(0)〉 consists of a single term:

〈φ(x)(v · ∂)`φ(0)〉 = 2`(ν)`
(x · v)`

|x|d−2+2`
, (v2 = 0) . (C.17)

As a next step, the operator DA[v] is used to contract as many indices as possible. As an

example, we isolate a single term from the φ4 ×A OPE:

:φ4(x) :|A〉 ⊃
[
DA[v] 〈φ(x) (v1 · ∂)8φ(0)〉〈φ(x) (v2 · ∂)8φ(0)〉

]
|φ2(x)〉. (C.18)



Acting with DA[v] on the two-point functions, we obtain

:φ4(x) :|A〉 ⊃ 28(ν)8(2ν)8

|x|2d−4+2`
|φ2(x)〉. (C.19)

Notice in particular that the auxiliary vectors vµi are no longer present.

Spherical integrals

After manipulating the OPE, what remains to be done is a number of spherical integrals.

The index-free formalism can be used to simplify their computation drastically. In order to

explain this improvement, we consider a typical integral that arises when calculating OPE

coefficients:

1

Sd

∫
|x|=1

dd−1xxµ1 · · ·xµ8xν1xν2xρ1 · · ·xρ6 |φ,µ1···µ8 φ,ν1ν2 φ,ρ1···ρ6〉. (C.20)

As explained below Eq. (5.33), performing this integral yields a sum of 15!! ∼ 2 · 106

tensors, all of which need to be contracted with the state |φ,µ1···µ8 φ,ν1ν2 φ,ρ1···ρ6〉 =: |Ψ〉.
Notice however that the state |Ψ〉 is traceless in all indices µi, νi and ρi; this means that a

large fraction of these tensor contractions will vanish. In fact, the integral (C.20) must be

proportional to |Ψ〉 itself, since there are no other ways to contract the indices.

Fortunately, the index-free formalism allows for a major simplication. The key point is

the following: because the state |Ψ〉 is traceless in three groups of indices, we may subtract

various traces from the integrand

xµ1 · · ·xµ8xν1xν2xρ1 · · ·xρ6

→ (xµ1 · · ·xµ8 − traces) (xν1xν2 − trace) (xρ1 · · ·xρ6 − traces) (C.21)

without changing the result. This new integrand is a product of three TSTs, that we can

encode using the auxiliary vectors u1, u2, u3, all of which satisfy u2
i = 0:

xµ1 · · ·xµ8xν1xν2xρ1 · · ·xρ6 → (x · u1)8 (x · u2)2 (x · u3)6 . (C.22)

The resulting integral can be calculated by taking derivatives of a generating function:

1

Sd

∫
|x|=1

dd−1x (x · u1)8 (x · u2)2 (x · u3)6 = (∂τ1)8(∂τ2)2(∂τ3)6 GF3(u; τ)
∣∣∣
τi=0

, (C.23)

GFn(u; τ) ≡ 1

Sd

∫
|x|=1

dd−1x exp

(
n∑
i=1

τi x · ui
)
. (C.24)

The generating function in question may be calculated explicitly:

GFn(u; τ) = 0F1

d
2

;
1

2

∑
i<j

τiτj ui · uj

 , (u2
i = 0) (C.25)



where 0F1[a;x] is a confluent hypergeometric function:

0F1[a;x] =
∞∑
n=0

xn

(a)nn!
. (C.26)

The proof of (C.25) is as follows: for any vector wµ, we can use Eq. (5.33) to obtain

1

Sd

∫
|x|=1

dd−1x ew·x =
∞∑
n=0

(w2)n

(2n)!

(2n− 1)!!

2n(d/2)n
= 0F1

[
d

2
;
w2

4

]
. (C.27)

To obtain the second equality, we use that (2n − 1)!! = 2n(1/2)n and (2n)! = 4nn!(1/2)n.

Setting

wµ =

n∑
i=1

τi u
µ
i , (C.28)

leads immediately to the desired result.

Using formula (C.25), we obtain

1

Sd

∫
|x|=1

dd−1x (x · u1)8 (x · u2)2 (x · u3)6 =
40320

d(d+ 2) · · · (d+ 14)
(u1 · u2)2(u1 · u3)6. (C.29)

Strictly speaking, we should open now up all indices again using the differential opera-

tors (C.10). However, this step is superfluous: all different tensor structures that appear and

their multiplicities can be directly read off from (C.29). For the case under consideration,

we find that the integral (C.20) evaluates to

40320

d(d+ 2) · · · (d+ 14)
|φ,ν1ν2ρ1···ρ6 φ,ν1ν2 φ,ρ1···ρ6〉. (C.30)

This method can be straightforwardly extended to any tensor integral; in general, several

different terms appear after integrating.

C.3 Gram matrix

In section 4.3.3, we explained all rules needed to computate the Gram matrix Gij =

〈Oi|Oj〉. In this section, we will explain how to exploit the index-free formalism to improve

the method presented there. Let us first fix the notation. We will calculate some matrix

element 〈A|B〉, writing A as A = :ϕ1 · · ·ϕn :. Here, ϕi is a shorthand notation: it represents

the field φ, acted on by ki derivatives. Similarly, B is written as B = : ϕ̃1 · · · ϕ̃n :, where ϕ̃j

is equal to φ but with k′j derivatives acting on it. By assumption, both states are scalars,

hence all derivatives will be contracted.



Notice that we can always order the fields in A and B in order of increasing spin, such

that k1 6 k2 6 . . . 6 km, and similarly k′1 6 . . . 6 k
′
n. To A (resp. B) we can then associate

the partition

PA = (k1, k2, . . . , kn), PB = (k′1, k
′
2, . . . , k

′
n). (C.31)

In section 4.3.3, we established that the matrix element 〈A|B〉 vanishes unless PA = PB. We

also proved that

[A(x)]† = :[ϕ1(x)]† · · · [ϕn(x)]† : . (C.32)

Then Wick’s theorem implies that

〈A|B〉 = lim
x,y→0

∑
σ∈Sn

〈[ϕ1(x)]†ϕ̃σ(1)(y)〉 · · · 〈[ϕn(x)]†ϕ̃σ(n)(y)〉. (C.33)

The sum runs over all n! permutations that form the symmetric group Sn. All factors

〈[ϕi(x)]†ϕ̃σ(i)(y)〉 can be calculated by taking derivatives of the two-point function

〈[φ(x)]†φ(y)〉 =
1

(1− 2x · y + x2y2)(d−2)/2
(C.34)

and using the fact that derivatives commute with taking the adjoint:

[∂µ1 · · · ∂µ`φ(x)]† =
∂

∂xµ1
· · · ∂

∂xµ`
[φ(x)]†. (C.35)

Alternatively, the calculation can be done using the conformal algebra (1.15); this follows

by writing

|φ,ν1···ν`〉 ≡ lim
y→0

∂

∂yν1
· · · ∂

∂yν`
φ(y)|0〉 = i`Pν1 · · ·Pν` |φ〉, (C.36a)

〈φ,µ1···µ` | ≡ lim
x→0

∂

∂xµ1
· · · ∂

∂xµ`
〈0|[φ(x)]† = (−i)`〈φ|Kµ1 · · ·Kµ` . (C.36b)

The order of the different Pµ’s (resp. Kµ’s) is unimportant, as [Pµ, Pν ] = [Kµ,Kν ] = 0. All

matrix elements can then be worked out using the conformal algebra (1.15) and

Mµν |φ〉 = Kµ|φ〉 = 0 , D|φ〉 = −iν|φ〉 , (C.37)

since φ is a scalar primary of dimension [φ] = ν = 1
2(d− 2).

As a simple example, consider the operator A = :(∂µφ)2 : and let’s compute the norm 〈A|A〉
according to the above methods. According to (C.33), we must calculate

〈A|A〉 = 2

[
lim
x,y→0

∂

∂xµ
∂

∂yν
〈[φ(x)]†φ(y)〉

]2

(C.38)

since both permutations in S2 act identically. Working out the derivatives as follows

lim
x,y→0

∂

∂xµ
∂

∂yν
〈[φ(x)]†φ(y)〉 = (d− 2)δµν , (C.39)



we obtain the result 〈A|A〉 = 2d(d − 2)2. Alternatively, using the conformal algebra, we

would have

〈A|A〉 = 2〈∂µφ|∂νφ〉2 = 2〈φ|KµPν |φ〉2 = 2(2δµν〈φ|iD|φ〉)2 . (C.40)

which gives the same result.

Index-free approach

A more efficient way to calculate matrix elements again the index-free approach from

section C.2.1. Following section (C.2.1), we can decompose any matrix elements 〈A|B〉 as

〈A|B〉 = DA[u]DB[v] p(u, v) (C.41)

where DA[u] (resp. DB[v]) is a differential operator that acts on auxiliary vectors uµi (resp.

vµj ), and p(u, v) is the polynomial

p(u, v) ≡ 〈(u1 · ∂)k1φ · · · (un · ∂)knφ|(v1 · ∂)k
′
1φ · · · (vn · ∂)k

′
nφ〉 (C.42a)

=
∑
σ∈Sn

〈(u1 · ∂)k1φ|(vσ(1) · ∂)
k′
σ(1)φ〉 · · · 〈(un · ∂)knφ|(vσ(n) · ∂)

k′
σ(n)φ〉. (C.42b)

Notice that p(u, v) only depends on the partitions PA = PB of both states, and not on the

way the indices in both states are contracted. Any matrix element 〈(ui · ∂)kφ|(vj · ∂)k
′
φ〉

consists of a single term:

〈(ui · ∂)kφ|(vj · ∂)k
′
φ〉 = δkk′ 2

kk!(ν)k(ui · vj)k , (u2
i = v2

j = 0) . (C.43)

The delta function δkk′ enforces the selection rule (4.19). Practically speaking, this means

that p(u, v) factorizes into a product of polynomials that encode spin-` states.

As an example, consider the operator A = :φ,µ φ,ν φ,µν :. Let us try to compute its norm

〈A|A〉 using the index-free formalism. The differential operators DA[u], DA[v] for this state

are given by

DA[u] =
1

[1!(ν)1]22!(ν)2
Dλ1 [u1]Dλ2 [u2]Dλ1λ2 [u3],

DA[v] =
1

[1!(ν)1]22!(ν)2
Dµ1 [v1]Dµ2 [v2]Dµ1µ2 [v3].

According to Eq. (C.42a), the polynomial p(u, v) is given by

p(u, v) = 〈u1 · ∂φ u2 · ∂φ (u3 · ∂)2φ | v1 · ∂φ v2 · ∂φ (v3 · ∂)2φ〉
= 2d(d− 2)3(u1 · v1 u2 · v2 + u1 · v2 u2 · v1)(u3 · v3)2.



Applying the differential operators DA[u] and DA[v] to p(u, v), we find that

〈A|A〉 = 2(d− 2)3(d− 1)d(d+ 2) .



Appendix D

Renormalization in TCSA:

computations

D.1 Asymptotics of C(t)

In this appendix we will give some details concerning the derivation of Eq. (6.33). We

start from the definition of C(t) in Eq. (6.28). We do the Weyl transformation which maps

the correlation function on the cylinder into one in flat space. In flat space the operation

insertions look like:

w

∫
Sd−1
r

dxVa(x)

∫
Sd−1

1/r

dy Vb(y) , r = et/2 , (D.1)

where

w = r∆a(1/r)∆b = 1 + (∆a −∆b)t/2 +O(t2) . (D.2)

is the product of factors picked up by the operators under the Weyl transformation. To the

shown order in t, which is the one we need, the effect of w will average to zero when summed

over a↔ b. We next use the flat space OPE:

Va(x)Vb(y)→ |x− y|−h[Vc(x)− 1
2(x− y)µ∂µVc(x) + . . .] . (D.3)

Instead of inserting the RHS operator at the middle-point as in (6.31), we put it at one of the

endpoints, since this facilitates the subsequent integration. However, the needed accuracy

then requires the inclusion of the shown first subleading term.

We now have to do the integral over y running over the sphere of radius 1/r = e−t/2.

By rotation invariance we can take x = (~0, r). The nonanalytic behavior of the integral as

t→ 0 will come from the region of the y sphere closest to x, i.e. its northern cap, which we

parameterize as

y = (~ρ,
√
e−t − ρ2) , |x− y|2 ≈ ρ2(1 + t) + t2 , (D.4)
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where we kept the approximation needed to get C(t) to O(t2). We are led to evaluate the

integral ∫ ∞
0

dρ
Sd−1ρ

d−2

[ρ2(1 + t) + t2]h/2
[Vc(x)− (t/2)∂zVc(x)] . (D.5)

Rescaling ρ→ ρ/
√

1 + t and doing the integral over ρ we obtain

(1 + t)−(d−1)/2td−1−hSd−1
Γ((d− 1)/2)Γ((h− d+ 1)/2)

2Γ(h/2)
[Vc(x)− (t/2)∂zVc(x)] . (D.6)

Next we replace Vc(x) − (t/2)∂zVc(x) ≈ Vc(x̄), x̄ = e−t/2x. The factor (1 + t)−(d−1)/2 is

absorbed when we transform the remaining integral in x ∈ Sd−1
r into an integral in x̄ over

the unit sphere. The remaining coefficient in (D.6) equals B(h)Γ(h− d+ 1) in (6.33).

D.2 Mn sequence for φ2 × φ2

The purpose of this appendix is to derive Eq. (6.42), which gives the exact asymptotics

for the Mn sequence in the case of the φ2 perturbation. We thus consider the matrix V i
j

defined as ∫
|x|=1

:φ2(x) :|Oj〉 ≡ V i
j |Oi〉. (D.7)

We will describe two methods to get the answer. The first one is direct: we will study the

matrix elements V k
j and V i

k and identify the states of energy ∆k � ∆i,∆j which contribute

to the sum defining Mn. To compute V k
j , we consider the OPE φ2(x)×Oj(0). By Wick’s

theorem, we can write:

:φ2(x) :Oj(0) = :φ2(x)Oj(0) :

+
∑
〈φ(x)∂(α)φ(0)〉:φ(x)Ôj(0) :

+
∑
〈φ(x)∂(α)φ(0)〉〈φ(x)∂(β)φ(0)〉 ˆ̂Oj(0) . (D.8)

Here in the second and third line we put terms where one or two φ’s out of φ2(x) are

contracted with the φ’s making up Oj , which can possibly carry several derivatives denoted

collectively as (α), (β). The operators Ôj and ˆ̂Oj are Oj minus the contracted parts.

The operators in the third line have all dimension < ∆j , so they are not relevant for

the asymptotics. The operators coming from the second line will appear by expanding φ(x)

under the normal ordering sign into the Taylor series and picking up terms which will not

vanish upon integration over the unit sphere, with 〈φ(x)∂(α)φ(0)〉 as a weight. A moment’s

thought shows that the only surviving operators will be :∂(α)φ(x)Ôj(0) :, i.e. where φ(x) is

expanded at order α. These operators have dimension ∆j and are also irrelevant for the

asymptotics.



Thus, all the operators with asymptotically large dimensions come from the first line.

Expanding around x = 0 and integrating, we get:∫
|x|=1

:φ2(x)Oj(0) :|0〉 =
∞∑
p=0

Sd
p! 4p(d/2)p

|�p(φ2)Oj〉 . (D.9)

Here � ≡ ∂2, and we used the integral (5.33).

We conclude that the large dimension states appearing in the OPE are the states |�p(φ2)Oj〉,
whose dimension is ∆j + ∆(φ2) + 2p. To complete the calculation, we need to compute V i

k

for k being one of these states and Oi an operator of low scaling dimension. We have∫
|x|=1

:φ2(x) ::�p(φ2)Oj(0) : =

∫
|x|=1

2p+1〈φ(x)∂µ1 · · · ∂µpφ(0)〉2:Oj(0) :

+ operators of high dimension. (D.10)

This equation expresses the fact that the only way to lower the dimension drastically is to

contract both φ’s out of φ2 with φ’s under the �p sign. The first line evaluates to

SdN
2
d 22p+1(2ν)p(ν)p|Oj〉 . (D.11)

Multiplying the factors in (D.9) and (D.11), we obtain exactly Eq. (6.42).

D.2.1 Renormalization details for the φ4 flow

The renormalization in the Landau-Ginzburg flow is determined through the leading

OPEs of the deforming operators in (7.3), given by

φ2(x)× φ2(0) =
2 N2

d

|x|h220
1 + . . . ,

φ4(x)× φ4(0) =
24 N4

d

|x|h440
1 +

96 N3
d

|x|h442
φ2 +

72 N2
d

|x|h444
φ4 + . . . ,

φ2(x)× φ4(0) =
12 N2

d

|x|h422
φ2 + . . . ,

(D.12)

where hijk = ∆(φi) + ∆(φj)−∆(φk) = (i+ j − k)ν. We have ν = 1/4 in d = 2.5.

In the RHS of (D.12) we omitted the operators whose associated function B(h) vanishes

because of the remark in footnote 11. All the retained operators have nonzero B(h) and will

be relevant for the renormalization. The effect of φ2 and φ4 in the RHS will be to make

the couplings λ and m2 non-trivial functions of the cutoff. We are in a position to use the

RG-improved formalism of section 6.2.3.

A crucial ingredient in the renormalization is the relation between the above OPEs and

the asymptotics of the matrix (Mn)ij in (6.27). For the φ2 flow we were able to determine

the asymptotics of this matrix exactly including the discrete structure, see equation (6.42).



In the future, such exact asymptotics may be also worked out with the φ4 coupling switched

on, see the end of Appendix D.2 for a discussion, although the task looks more challenging.

In this work, we will use the continuum approximation (6.34). We checked the accuracy of

this approximation for many choices of external states i, j against the exact expression for

Mn within the range ∆n 6 ∆max where we know V and can compute Mn numerically. These

checks convinced us that the approximation is adequate.

One such check is shown in figure D.1, where we plot both the exact and the approximate

behavior of (Mn)ij for V = :φ4 : and for Oi = Oj = :φ2 :. The blue dots represent the

individual values (notice that Mn is nonzero only for half-integer ∆n). The red dashed line

shows moving average of these values within the interval [∆ − 1,∆ + 1]. The solid black

line is our approximation as given in (6.34), including the contributions of all three leading

operators in the φ4 × φ4 OPE shown in (D.12). We see that the agreement between the

moving average and the approximation becomes very good at ∆ ∼ 17, which is also the

cutoff we used in this study. The agreement for other choices of Oi and Oj is similarly good.
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Figure D.1: The behavior of (Mn)ij for the φ4 deformation and one particular choice of i, j

(see text). Exact values are given in blue (isolated dots), a moving average in red (dashed line),

and our continuum approximation in black (smooth curve).

From the OPEs (D.12) we can directly generate the RG equations discussed in section

6.2.3 for the couplings of the local operators. They are given by:

δg0(Λ)

δΛ
=

f̃220 g
2
2(Λ)

Λd−h220(Λ− Er)
+

f̃440 g
2
4(Λ)

Λd−h440(Λ− Er)
,

δg2(Λ)

δΛ
=

f̃442 g
2
4(Λ)

Λd−h442(Λ− Er)
+

2f̃422 g4(Λ)g2(Λ)

Λd−h422(Λ− Er)
,

δg4(Λ)

δΛ
=

f̃444 g
2
4(Λ)

Λd−h444(Λ− Er)
,

(D.13)

where we denoted by g0, g2 and g4 the coupling associated to 1, :φ2 :, and :φ4 :. We also



introduced

f̃abc = fabcB(habc) (D.14)

with the OPE coefficients fabc given in (D.12) and B(h) was defined in (6.33). The renor-

malized couplings are then found by integrating these equations numerically from Λ = ∞
to the desired value of the cutoff Λ = ΛUV = ∆max/R. We impose boundary conditions at

infinity such that g0 = 0 and g2 and g4 are given by their bare UV values:

g4(∞) = λ , g2(∞) = 1
2m

2 . (D.15)

As we explained in section 6.2.3, the above RG equations depend on a reference energy

Er. In our study we found it convenient to choose Er to be around the energy of the first

excited state in the Z2 even sector. An estimate for this energy was obtained by extrapolating

the earlier obtained results for lower values of the radius or the coupling, or by performing

a quick computation with a smaller ∆max.

We also discussed in section 6.2.3 the subleading dependence on (∆i + ∆j)/R and on

Ē−Er. This dependence is taken into account by adding to the correction Hamiltonian the

additional non-local terms given in (6.39). Their coefficients, which we denote as g
(HCFT)
i

and g
(H)
i , are determined by solving separate RG flow equations. For example, for i = 0 we

have

δg
(HCFT)
0 (Λ)

δΛ
=

(d− h220)f̃220 g
2
2(Λ)

Λd−h220+1(Λ− Er)
+

(d− h440)f̃440 g
2
4(Λ)

Λd−h440+1(Λ− Er)
,

δg
(H)
0 (Λ)

δΛ
=

f̃220 g
2
2(Λ)

Λd−h220(Λ− Er)2
+

f̃440 g
2
4(Λ)

Λd−h440(Λ− Er)2
.

(D.16)

The equations for other i are determined by modifying the corresponding equation in (D.13)

in a similar manner. We integrate these equations with boundary conditions zero at infinity.

Notice that we ignore the backreaction of these terms in the sense that they do not appear

on the right-hand sides of the flow equations. 1

In figure D.2 we present an example of the flow of several couplings. We see that g2

receives substantial corrections, demonstrating the need for the RG improvement. On the

other hand, we see that the relative change in g4 is small, and that g
(HCFT)
0 remains small

compared to 1 (coefficient of HCFT in the bare Hamiltonian) throughout the flow.

With the correction terms described up to now, the results we obtained already looked

reasonable. We were however able to take into account one further correction, which turned

1. For g
(HCFT)
0 and g

(H)
0 , which multiply local terms in the Hamiltonian, it would be possible to incorporate

such a backreaction rather easily. At every step of RG one should factor out the modified coefficient of HCFT,

which leads to an overall rescaling of the remaining couplings. The product of all rescalings Z should be

stored separately to undo the rescaling at the end of the computation. This procedure resembles wavefunction

renormalization in perturbative RG. We implemented it, but found the numerical effect of this improvement

to be very small.
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Figure D.2: The relative change in a few of the running couplings as a function of the cutoff.

In this example we set R = 3, and λ = 0.7 and m2 = 1 in the UV. We used Ēr = −6.

out to give a noticeable improvement mainly for small values of λ. Namely, we constructed

a new nonlocal counterterm which completely takes into account the dependence on (∆i +

∆j)/R and (Ē − Er), beyond expanding to first order as above. The coefficient of this

correction is computed by running the RG flow again (once more ignoring the backreaction

of this nonlocal term) but separately for each value of κ = 1
2(∆i+∆j)/R and Ē. In equations,

this means that we update this extra nonlocal correction in each RG step as follows,

δ∆Hnl(κ, Ē)ij
δΛ

=
∑
a,b,c

ga(Λ)gb(Λ)f̃abc

(∫
Sd−1

Vc
)
ij

×
{

1

[Λ− κ]d−habc(Λ− Ē)
− 1

Λd−habc(Λ− Er)
− Ē − Er

Λd−habc(Λ− Er)2
− (d− habc)κ

Λd−habc+1(Λ− Er)

}
.

Inside curly brackets, we subtract the zeroth- and first-order terms in κ and Ē − Er, since

these terms were already taken into account above.

Let us summarize. We integrate all the above RG equations from Λ = ∞ to Λ = ΛUV

and obtain the correction terms. We divide them into four groups:

— ∆Hloc which reflects the change in all local couplings;

— ∆H1 and ∆H2 which include the nonlocal terms proportional to HCFT.Vc + Vc.HCFT

and (H − Er).Vc + Vc.(H − Er), respectively;

— ∆Hnl.

It is now time for numerical diagonalization. We add ∆Hloc and ∆H1 directly to the bare

TCSA Hamiltonian, and diagonalize. Let’s call the resulting eigenvalues and eigenvectors

En and cn. In principle, we would also have liked to add ∆H2 before the diagonalization.

Unfortunately, we found that doing this destabilizes the numerics. This instability must

have its origin in the fact that the factor (H −Er) is not small for states of high energy, and

even for states of low energy it’s not manifestly small, being a difference of two separately

large quantities. We therefore chose to add the effect of ∆H2 only after the numerical

diagonalization. We found it necessary, and sufficient, to do this to the second order in



∆H2. The correction is computed by the usual Hamiltonian perturbation formula:

∆En = cn.∆H2.cn +
∑
m 6=n

(cn.∆H2.cm)(cm.∆H2.cn)

En − Em
. (D.17)

The sum over m in the second-order term is rapidly convergent, and it’s enough to sum

over the first few eigenstates. Notice that one has to appropriately insert the right and left

eigenvectors. This is not reflected in the notation but explained in detail in section 6.3.1.

Finally, we compute one last correction due to ∆Hnl, which turns out to be very small,

so doing it to first order is sufficient:

(∆En)nl = cn.∆H
nl(En).cn = (cn)i(∆H

nl(En))ij(cn)j . (D.18)

When evaluating this correction, we are supposed to set Ē in the definition of ∆Hnl to the

energy of the state we are correcting. Also recall that ∆Hnl depends on κ = 1
2(∆i + ∆j)/R,

and this dependence comes into play when evaluating the scalar product.

This completes the description of the renormalization procedure used to produce the plots

in section 7.2. As the above discussion shows, an efficient implementation of the leading-

order truncation effects given in (6.38) is subject to various subtleties, mostly due to the

non-negligible presence of (∆i + ∆j)/R and Ē in the correction terms. In this exploratory

paper we have not aimed to present a complete analysis of these effects. Instead, we discussed

various recipes for dealing with them at a practical level. The details we provided should be

sufficient to reproduce our results. In the future it would certainly be interesting to perform

a more systematic study of all the subtleties.
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