
Control flow-based business workflow templates checking

: an approach using the knowledge-based systems

Thi Hoa Hue Nguyen

To cite this version:

Thi Hoa Hue Nguyen. Control flow-based business workflow templates checking : an approach
using the knowledge-based systems. Other [cs.OH]. Université Nice Sophia Antipolis, 2015.
English. <NNT : 2015NICE4033>. <tel-01175929>

HAL Id: tel-01175929

https://tel.archives-ouvertes.fr/tel-01175929

Submitted on 13 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

https://hal.archives-ouvertes.fr
https://tel.archives-ouvertes.fr/tel-01175929

UNIVERSITÉ NICE - SOPHIA ANTIPOLIS

ÉCOLE DOCTORALE STIC
SCIENCES ET TECHNOLOGIES DE L'INFORMATION

ET DE LA COMMUNICATION

T H È S E
pour l'obtention du grade de

Docteur en Sciences

de l'Université Nice - Sophia Antipolis

Mention : Informatique

Présentée et soutenue par

Thi Hoa Hue Nguyen

La véri�cation de patrons de work�ow
métier basés sur les �ux de contrôle

Une approche utilisant les systèmes
à base de connaissances

Thèse dirigée par Nhan LE-THANH

soutenue le 23 June 2015

Jury :
Rapporteurs : Parisa GHODOUS Université de Lyon I

Ladjel BELLATRECHE ISAE-ENSMA

Directeur : Nhan LE-THANH Université Nice Sophia Antipolis

Examinateur : Peter SANDER Université Nice Sophia Antipolis

Acknowledgments

First of all, I would like to express my sincerest and deepest gratitude to Prof.
Nhan LE-THANH. Thank you so much for introducing me to the �eld of research
and taking me on as a PhD candidate. I will always be greatly indebted to you for
your support and guidance.

I would like to express my gratefulness to Prof. Parisa GHODOUS and Prof.
Ladjel BELLATRECHE for agreeing to review this thesis. I want to say a sincere
thank to them for their time and thoughtful comments. And also, I would like to
express my gratefulness to the members of jury for agreeing to participate to the
presentation.

I would also like to express my sincere regards to Prof. Peter SANDER who
looked closely at the �nal version of the thesis for English style and grammar,
correcting both and o�ering suggestions for improvement. I would also like to extend
my thanks to Dr. Alain GIBOIN. You gave me encouragement and very valuable
advice for this thesis.

I warmly thank the members of WIMMICS team for their valuable advice on
my research methodology and contributions, especially Dr. Fabien GANDON, Dr.
Olivier CORBY and Dr. Catherine FARON-ZUCKER.

I am indebted to all my friends who have supported me over the last few years:
Oumy SEYE, Alexander SPETKO, Amosse EDOUARD, Amel BEN OTHMANE,
Tien Thinh NGUYEN, Jodi SCHNEIDER, Duc Phu CHAU, Imen TAYARI, Anh-
Tuan NGHIEM and DUONG Thi Quynh Anh. I would also like to thank my
Vietnamese friends in Nice and Sophia Antipolis. With them, I have a feeling like
to live in a big family.

Last but not least my family: Words cannot express how grateful I am to them.
My parents, my husband and my son, you have always believed in me. You are
always only and only supportive without questioning. I would like to thank you for
all of the sacri�ces that you have made on my behalf. I am very lucky to have a
family so great and so unique.

Résumé : Cette thèse traite le problème de la modélisation des patrons de
work�ow semantiquement riche et propose un processus pour développer des pa-
trons de work�ow. L'objectif est de transformer un processus métier en un patron
de work�ow métier basé sur les �ux de contrôle qui garantit la véri�cation syntax-
ique et sémantique. Les dé�s majeurs sont : (i) de dé�nir un formalisme permettant
de représenter les processus métiers; (ii) d'établir des mécanismes de contrôle au-
tomatiques pour assurer la conformité des patrons de work�ow métier basés sur un
modèle formel et un ensemble de contraintes sémantiques; et (iii) d'organiser la base
de patrons de work�ow métier pour le développement de patrons de work�ow.

Nous proposons un formalisme qui combine les �ux de contrôle (basés sur les
Réseaux de Petri Colorés (CPNs)) avec des contraintes sémantiques pour représenter
les processus métiers. L'avantage de ce formalisme est qu'il permet de véri�er non
seulement la conformité syntaxique basée sur le modèle de CPNs mais aussi la
conformité sémantique basée sur les technologies du Web sémantique.

Nous commençons par une phase de conception d'une ontologie OWL appelée
l'ontologie CPN pour représenter les concepts de patrons de work�ow métier basés
sur CPN. La phase de conception est suivie par une étude approfondie des propriétés
de ces patrons pour les transformer en un ensemble d'axiomes pour l'ontologie.
Ainsi, dans ce formalisme, un processus métier est syntaxiquement transformé en
une instance de l'ontologie. La véri�cation syntaxique d'un processus métier devient
simplement une véri�cation par inférence, par concepts et par axiomes de l'ontologie
sur l'instance correspondante. Nous introduisons aussi la dé�nition formelle de
contraintes sémantiques, qui exprime les dépendances entre les activités d'un pro-
cessus métier. Nous présentons un algorithme pour la véri�cation des contraintes
sémantiques redondantes et con�ictuelles. Un ensemble de contraintes sémantiques
véri�ées est transformé en une instance de l'ontologie de processus métier appelée
BP-ontology. Un patron de work�ow métier est ensuite développé en créant des
correspondances entre l'ontologie BP et l'ontologie CPN. Il permet les véri�cations
sémantiques d'un processus métier spéci�que.

Nous représentons l'ensemble des axiomes de l'ontologie CPN lié à la conformité
syntaxique ainsi que les questions de véri�cation sémantique liées à la conformité
sémantique en utilisant des requêtes SPARQL. A�n de véri�er les patrons de work-
�ow, nous utilisons le moteur sémantique Jena pour l'adaptation d'un graphe RDF
représentant un patron de work�ow métier de ces requêtes SPARQL. Si un patron
de work�ow métier est véri�é, il sera stocké dans une base de connaissances.

De plus, dans l'objectif de fournir un soutien supplémentaire pour la dé�ni-
tion de règles métiers, nous introduisons des règles sous forme de Condition Action
Événement (CEA), qui expriment l'exactitude des processus au niveau métier. Les
ensembles de règles CEA sont stockés avec le patron de work�ow métier correspon-
dant dans la même base de connaissances. La base est organisée pour faciliter la
capacité de partage et de réutilisation des patrons de work�ow. En�n, un prototype
est conçu pour démontrer la faisabilité et les avantages de l'approche.

iv

Mots clés : Contrainte Sémantique, Ontologie, Réseaux de Petri colorés,
SPARQL, Véri�cation, Work�ow métier

Abstract: This thesis tackles the problem of modelling semantically rich busi-
ness work�ow templates and proposes a process for developing work�ow templates.
The objective of the thesis is to transform a business process into a control �ow-
based business work�ow template that guarantees syntactic and semantic validity.
The main challenges are: (i) to de�ne a formalism for representing business pro-
cesses; (ii) to establish automatic control mechanisms to ensure the correctness
of a business work�ow template based on a formal model and a set of semantic
constraints; and (iii) to organize the knowledge base of work�ow templates for a
work�ow development process.

We propose a formalism which combines control �ow (based on Coloured Petri
Nets (CPNs)) with semantic constraints to represent business processes. The ad-
vantage of this formalism is that it allows not only syntactic checks based on the
model of CPNs, but also semantic checks based on Semantic Web technologies.

We start by designing an OWL ontology called the CPN ontology to represent the
concepts of CPN-based business work�ow templates. The design phase is followed
by a thorough study of the properties of these templates in order to transform them
into a set of axioms for the CPN ontology. In this formalism, a business process is
syntactically transformed into an instance of the CPN ontology. Therefore, syntactic
checking of a business process becomes simply a veri�cation by inference, by concepts
and by axioms of the CPN ontology on the corresponding instance.

We also introduce the formal de�nition of semantic constraints, which express
dependencies between the activities of a business process. We present an algorithm
to check redundant and con�icting semantic constraints. A set of well-checked se-
mantic constraints is transformed into an instance of a business process ontology
called the BP ontology. A business work�ow template is then developed by creat-
ing correspondences between the BP ontology and the CPN ontology. This enables
semantic checks related to a speci�c business process.

We represent the set of axioms of the CPN ontology related to syntactic checks
as well as the semantic veri�cation issues related to semantic checks as SPARQL
queries. In order to verify work�ow templates, we use the Jena semantic engine to
match an RDF graph representing a business work�ow template to graph patterns
of these SPARQL queries. If there are no matches, i.e., no shortcomings, a work�ow
template is then stored in a knowledge base.

In addition, to provide additional support for specifying business rules, we intro-
duce Event Condition Action (ECA)-like rules that express business level correctness
requirements. The sets of ECA-like rules are stored along with the corresponding
business work�ow template in the same knowledge base. The knowledge base is or-
ganized to facilitate the shareability and reusability of work�ow templates. Finally,
a prototype is developed to demonstrate the feasibility and bene�ts of the approach.

Keywords: Business Work�ow, CPN, Ontology, Semantic Constraint, SPARQL,
Veri�cation

Contents

1 General Introduction 1

1.1 Introduction . 1

1.2 Scenario . 2

1.2.1 fromOrdertoDelivery Process Model 3

1.2.2 Adapting templates stored in CBWTRepository to model the
fromOrdertoDelivery Process for CompanyA 6

1.3 Proposal and Main Contributions . 7

1.4 Thesis Outline . 9

2 Basic Concepts 11

2.1 Work�ows and Work�ow Languages 11

2.1.1 Business Work�ows versus Scienti�c Work�ows 11

2.1.2 Work�ow Charateristics . 15

2.1.3 Work�ow Languages . 16

2.2 Business Rules . 17

2.3 Knowledge Representation in the Semantic Web Models 19

2.3.1 Semantic Web Pyramid . 20

2.3.2 An Assertional Language: RDF 20

2.3.3 Ontology Representation Languages: RDFS and OWL 21

2.3.4 Representation of Queries: SPARQL 23

2.4 Conclusion . 24

3 Development of a Knowledge Base for Control �ow-based Business
Work�ow Templates 25

3.1 Modelling Business Processes with Coloured Petri Nets 26

3.1.1 Overview of Coloured Petri Nets 26

3.1.2 Coloured Petri Net-based Process Models 28

3.1.3 A simple Order Process Example 34

3.2 An Ontology for Coloured Petri Nets-based Business Work�ow Tem-
plates . 34

3.2.1 Representation of Coloured Petri Net with OWL DL Ontology 34

3.2.2 Realization . 37

3.3 Manipulation of Business Work�ow Templates 39

3.4 Related Work . 42

3.4.1 On Combining Work�ows with Ontologies 42

3.4.2 On Combining Petri Nets/High-Level Petri Nets with Ontologies 43

3.5 Discussion and Conclusion . 44

viii Contents

4 Semantic Business Process Modelling 45
4.1 Formal De�nition of Semantic Constraints 46
4.2 Implicit, Redundant and Con�icting Semantic Constraints 48

4.2.1 Algebraic Properties of Semantic Constraints 48
4.2.2 Algorithm for Validating a Set of Semantic Constraints 56

4.3 Organization of the Knowledge Base of Semantic Constraints 59
4.3.1 Development of a Business Process Ontology 59
4.3.2 Creation of Correspondences between Ontologies 61

4.4 Integration of Event-Condition-Action Rules 66
4.5 Related Work . 71
4.6 Discussion and Conclusion . 73

5 Veri�cation of Work�ow Templates 75
5.1 Syntactic Veri�cation Issues . 76

5.1.1 Syntactic Constraints related to the De�nition of Process Model 77
5.1.2 Syntactic Constraints Related to Uses of Control Nodes . . . 79
5.1.3 Compliance Checking of Work�ow Templates at the Syntactic

Level . 82
5.2 Semantic Veri�cation Issues . 87

5.2.1 Semantic Veri�cation Tasks 87
5.2.2 Compliance Checking of Work�ow templates at the Semantic

Level . 88
5.3 A Wrong Work�ow Example . 90
5.4 Related Work . 91

5.4.1 Approaches focusing on the Syntactic Level 91
5.4.2 Approaches focusing on the Semantic Level 94

5.5 Discussion and Conclusion . 95

6 Reuse of Work�ow Templates 97
6.1 Organization of the Knowledge Base of Control Flow-based Work�ow

Templates . 97
6.2 Process for Developing Work�ow Templates 101
6.3 Related Work . 103
6.4 Discussion and Conclusion . 104

7 Prototype 105
7.1 Introduction . 105
7.2 Technical Implementation of the CBWT Prototype 109

7.2.1 Web Technologies and Software Tools 109
7.2.2 De�nition of User's Scope of Interest to Search for Relevant

Work�ow Templates . 110
7.2.3 Creation of a new Semantic Constraint 111
7.2.4 Creation of a new Work�ow Template 111
7.2.5 Checking Redundant and Con�icting Semantic Constraints . 113

Contents ix

7.2.6 Work�ow Template Veri�cation 114
7.2.7 Creation of a Set of Event-Condition-Action Rules 115

7.3 Evaluation . 116
7.4 Conclusion . 117

8 Conclusions and Outlook 119
8.1 Summary of Contributions . 119
8.2 Limitations and Perspectives . 121

A Classi�cation of Business Rules 123

B The CPN ontology (CpnOnt.owl) 125

C Labelling Work�ow Activities 137

Bibliography 139

List of Figures

1.1 Order processing template . 5
1.2 Payment template . 5
1.3 Invoicing template . 6
1.4 Shipment template . 6
1.5 CompanyA variant of the fOtD process (excerpt) 7
1.6 Overview of thesis . 9

2.1 Business Process Management life cycle [Sonntag 2010] 13
2.2 Scienti�c Work�ow life cycle [Ludäscher 2009] 13
2.3 Brief comparison of Business Work�ows and Scienti�c Work�ows . . 14
2.4 A three dimensional view of a work�ow [van der Aalst 1998] 16
2.5 Caption for LOF . 20
2.6 Web Ontology Languages OWL . 22

3.1 Example of a CPN . 27
3.2 Five building blocks for modelling routing compositions 29
3.3 Order processing template modelled with CPNs 34
3.4 CPN ontology expressed in a description logic 36
3.5 Property connectsTrans and property connectsP lace 39
3.6 Mapping Individuals to Classes and Properties of the CPN ontology 39
3.7 An example of the INSERT DATA statement 40
3.8 An example of the DELETE WHERE statement 41
3.9 An example of the DELETE INSERT WHERE statement 41
3.10 An example of editing ordering relationships 42
3.11 Extended semiotic triangle �model�, �ontology� and �process� for the

semantic process modelling [Thomas 2009a] 43

4.1 Extract of the ontology building on top of a set of semantic constraints 60
4.2 De�nition of the Individual Provide_Payment_Methods in the

Payment template . 60
4.4 Representation of the set of semantic constraints SCCmulti in CPNs

(Algorithm 4) . 62
4.3 Representation of the set of semantic constraints SCDdep in CPNs

(Algorithm 3) . 65
4.5 Representation of two semantic constraints of the type coexistence

and one constraint of the type choice in CPNs (Algorithm 5) 66
4.6 An example of ontology mapping (excerpt) 68
4.7 Add correctness requirement dialog 69
4.8 Extract of a set of ECA-like rules de�ned for the fOtD process of

CompanyA . 70

xii List of Figures

4.9 Scopes for property speci�cation patterns 72
4.10 Property speci�cation patterns introduced in [Dwyer 1999] 72

5.1 Veri�cation of business work�ow templates 76
5.2 Deadlock simulations . 80
5.3 In�nite cycle simulation . 80
5.4 Missing synchronization simulation 81
5.5 A wrongly designed work�ow model for the fOtD process (excerpt) . 90
5.6 Checking deadlocks caused of the two control nodes Xor− split and

And− join . 91
5.7 A typical model checking work�ow 93

6.1 Example of the semantic annotation of a work�ow template 99
6.2 Extract of the annotation ontology used to annotate work�ow templates101
6.3 Development of reuse-based work�ow template 103

7.1 The conceptual architecture overview of the CBWT prototype 107
7.2 Interface used to browse and update work�ow templates 108
7.3 Interface used to browse and update ECA-like rules 109
7.4 Interface of the de�nition of criteria for searching templates 111
7.5 Interface of the creation of a semantic constraint 112
7.6 Interface of the development of a new template 112
7.7 Interface for checking redundant and con�icting constraints 113
7.8 Verifying and reporting non-compliance results at the semantic level 114
7.9 Choosing a work�ow template to be veri�ed 115
7.10 Time needed to check redundant and con�icting constraints 117
7.11 Detecting errors by manual searching and querying 118

List of Tables

1.1 Order processing template document 3
1.2 Invoicing template document . 4
1.3 Payment template document . 4
1.4 Shipment template document . 5

3.1 OWL constructors . 35
3.2 OWL axioms . 35

4.1 Algebraic properties identi�ed based on the parameter constraintType 49
4.2 Algebraic properties identi�ed based on the parameter order 53

Chapter 1

General Introduction

Contents
1.1 Introduction . 1

1.2 Scenario . 2

1.2.1 fromOrdertoDelivery Process Model 3

1.2.2 Adapting templates stored in CBWTRepository to model the

fromOrdertoDelivery Process for CompanyA 6

1.3 Proposal and Main Contributions 7

1.4 Thesis Outline . 9

1.1 Introduction

Nowadays, software systems that automate business processes have become more
and more available and advanced. According to [omg 2000], process models, which
are �rstly designed during the build-time phase on the basis of design requirements,
are then automated by software systems during run-time. Therefore, grasping the
requirements properly and then transforming them without losing any information
into a semantically rich speci�cation play an important role in supporting business
process management.

So far, various researchers have focused on process speci�cation techniques
[Ellis 1993, van der Aalst 1998] and conceptual models of work�ow [Barros 1997,
Koschmider 2005]. However, the existing practice of modelling business processes is
mostly manual and is therefore vulnerable to human error. A work�ow designed in-
correctly may lead to failed work�ow processes, execution errors or may not meet the
requirements of customers. Therefore, model quality, correctness and re-usability
become very important issues. It is desirable to develop a thorough and rigorous
method that automatically supports work�ow designers to ensure high quality and
semantically rich business processes.

In fact, existing techniques applied to check the correctness of work�ows are
particularly used in commercial business work�ow systems. Most of them assume
that a work�ow is correct if it complies with the constraints on data and control �ow
during execution [Lu 2006]. Whether the work�ow is in conformity with the design
requirements is neither speci�ed nor proved. Consequently, numerous approaches
have been developed to ensure work�ow correctness at the syntactic level (e.g.,

2 Chapter 1. General Introduction

avoiding deadlocks and in�nite cycles, etc.), however, it is usually not su�cient. In
fact, at the semantic level errors may still exist.

Let us take an example in a process for the order management activity, when an
order is approved, an order con�rmation has to be sent to the customer. However,
if the order con�rmation is sent before the approval of the order, a semantic error
occurs.

Recently, there is a little few research that focus on checking the semantic con-
formance of work�ows. Nevertheless, there is an inherent problem regarding the
combination of syntactic and semantic checks that needs to be taken into account.

In order to address the above-mentioned problem, we focus on machine-readable
knowledge bases. The objective is to support work�ow designers in generating se-
mantically rich business work�ow templates which allow syntactic and semantic
veri�cation. With regard to the former, a set of syntactic constraints is introduced
to provide automated support for work�ow designers. With regard to the latter,
we specify semantic constraints as domain speci�c restrictions on a business process

which express dependencies between activities and need to be conformed while the

process is executed. We concentrate on the following research questions relating to
the veri�cation of a business work�ow template:

1. How to model semantically business work�ow templates?

2. Can syntactic and semantic checks be supported?

3. How to organize the knowledge base of business work�ow templates for a
work�ow development process?

To better motivate our research, let us consider the following scenario, which
can serve as a typical example for better understanding the problem of modelling
business processes and reusing them. The scenario will illustrate the problem de-
scriptions that will be used as examples to demonstrate our proposed solution in
the next chapters.

1.2 Scenario

In the scenario we will mention:

• A repository, called CBWTRepository, contains business work�ow templates.
The templates stored in CBWTRepository are generic and can be used to
model speci�c process models according to the CBWTRepository customer's
requirements;

• A customer company, named CompanyA, has imported work�ow templates
from CBWTRepository to build its own business application.

In the following we describe a set of work�ow templates relating to the fro-

mOrdertoDelivery (fOtD) process. We also present the requirements of CompanyA

1.2. Scenario 3

concerning its business policy. Customer companies can use the work�ow templates
to model their own fOtD process in compliance with their requirements. In Section
1.2.1, the templates are mentioned and described in their generic form. In Sec-
tion 1.2.2, we introduce a CompanyA variant of the fOtD process and illustrate an
adaptation of the templates used to model the fOtD process for CompanyA.

There are a lot of work�ow templates used to model the fromOrdertoDelivery

process, such as templates for dunning, templates for returning purchased goods,
templates for claims and templates for noti�cation. However, to make this scenario
easier to understand, we just highlight the four main templates as follows:

(i) Order Processing

(ii) Invoicing

(iii) Payment

(iv) Shipment

1.2.1 fromOrdertoDelivery Process Model

1.2.1.1 Order Processing

The Order Processing template (see Figure 1.11.) is used to model an order pro-
cessing process. It is worth noting that a work�ow-step can be a sub-work�ow in
itself. For example, the step check item availability contains some work�ow-steps,
e.g., check internal item availability, check external item availability, which are not
illustrated in the �gure for the sake of simplicity.

Table 1.1: Order processing template document

Order processing template

Description This template covers the time from the creation of an order
to the approval of the order. An order can contain one
or more requested items and the information concerning
clients. Therefore, a checking phase, which may consist of a
validation of client's data and validation of the availability
of requested items, can be initiated after receiving an order
from a client. The result of this phase is then evaluated.
Based on the evaluation, a decision whether the order is
approved or rejected is made.

Purpose To represent a set of activities for modelling an order pro-
cessing process

Related templates Invoicing, Noti�cation, Payment, Shipment, Inventory,
Purchased Goods Returning

Keywords Approval, Checking, Con�rmation, Creation, Items, Order,
Submitting, Validation

1The templates are described in Section 1.2 based on BPMN [bpm 2011]

4 Chapter 1. General Introduction

1.2.1.2 Invoicing

The Invoicing template (see Figure 1.3) is used to model an invoicing process.

Table 1.2: Invoicing template document

Invoicing template

Description This template is used to model the process that generates
new invoices if ordered items have been shipped or if the
payment is obligatory to be handled before the shipmen-
t/delivery step.
An invoice is prepared to send to the client (purchaser,
buyer, customer) for each order.

Purpose To represent a set of activities for invoicing an order
Related templates Order Processing, Noti�cation, Payment, Shipment
Keywords Invoice, Bill

1.2.1.3 Payment

The Payment template (see Figure 1.2) is used to execute a payment process in
response to the received invoices.

Table 1.3: Payment template document

Payment template

Description This template is used to handle the payment process. In
this process, a client (purchaser, buyer, customer) has
to choose a payment method (through a payment service
provider or a bank) to pay the agreed monetary value to a
seller.
The template also contains activities to process overdue
payments and to remind the client about outstanding
debts.

Purpose To represent a set of activities for modelling a payment
process

Related templates Invoicing, Order Processing, Noti�cation, Shipment
Keywords Cash, Credit card, Payment

1.2.1.4 Shipment

The Shipment template (see Figure 1.4) is used to model a shipment process.

1.2. Scenario 5

Table 1.4: Shipment template document

Shipment template

Description In general, there are two contexts that a shipment process
can take place.

- A shipment process can be initiated after receiving a re-
quest against an order; or

- Ordered items can be shipped directly to the client from
the supplier when a shipment process is in `drop ship-
ment'.

In both cases, the ordered items are expected to be de-
livered to the correct address indicated by the client. A
shipment process terminates when the ordered items reach
the delivery address. Besides, some activities can be in-
volved in the shipment template, such as packing, service
delivery or transportation.

Purpose To represent a set of activities for modelling a shipment
process

Related templates Order Processing, Inventory, Invoicing, Order Processing,
Payment, Purchased Goods Returning, Noti�cation

Keywords Delivery, Goods, Items, Packing, Shipment scheduling,
Transportation

reject order

approve
order

evaluate
result

check
item

availability

receive
order

send
rejection

send
confirmation

Sa
le

s
d

iv
is

io
n

 a
n

d

re
la

te
d

 D
ep

ar
tm

en
ts

validate
client data

Receive_
order

Validate_
client_data

Check_
item_availability

Evaluate_result

Approve_order
Send_confirmation

Reject_order Send _rejection

Finish

Figure 1.1: Order processing template

request
payment

process
check or

cash
provide

payment
methods

A
cc

o
u

n
ti

n
g

 a
n

d

re
la

te
d

 D
ep

ar
tm

en
ts

process
 credit card

get payment
data

accept
payment

reject
payment

Figure 1.2: Payment template

6 Chapter 1. General Introduction

receive
invoice
amount

send
paper

invoice

send
electronic invoice

A
cc

o
u

n
ti

n
g

D
ep

ar
tm

en
t

an
d

re

la
te

d
 D

ep
ar

tm
en

ts

create
invoice

Figure 1.3: Invoicing template

receive
shipping
request

schedule
shipping

C
lie

n
t

Sh
ip

p
in

g
D

ep
ar

tm
en

t
an

d

C
u

st
o

m
 S

er
vi

ce
 D

ep
ar

tm
en

t

receive
shipping
schedule

and shipping
price

send
shipping
request

send shipping
schedule and
shipping price

calculate
shipping price

accept
shipping
schedule

and shipping
price

reject
shipping
schedule

change
shipping
method

receive
goods

ship
goods

create
shipping
request

receive
shipping

confirmation

enable
tracking

yes

no

Figure 1.4: Shipment template

In the upcoming section, we present the business of a company, namely compa-

nyA and describe how to apply the above templates to its fOtD process.

1.2.2 Adapting templates stored in CBWTRepository to model the
fromOrdertoDelivery Process for CompanyA

CompanyA, based in France, plans to create a fromOrdertoDelivery process. In-
stead of developing the process from scratch, this company has imported work�ow
templates from CBWTRepository to build its own business application.

Let us take a brief look at the company's policy concerning the fromOrder-
toDelivery process: CompanyA manages an online shopping website selling beauty
products. About payment, with regard to online cosmetic orders, all orders must
be prepaid. The company accepts credit cards, including VISA, MasterCard, and
American Express. For the promotional codes, only one code (if applicable) may be
used for one purchase.

An order can be shipped via an indicated shipping service. Back orders are not
accepted. Customers are allowed to change their shipping method before completing
their online order. Shipping charges are based on the order value and shipping
address as follows:

• Within France, goods which cost in excess of EUR 100 per order will be
delivered free of charge, conversely, a �at rate delivery charge of EUR 6.80

will be applied.

• Within the rest of the European Union (EU), goods which cost in excess of

1.3. Proposal and Main Contributions 7

EUR 150 per order will be delivered free of charge, conversely, a �at rate
delivery charge of EUR 7.50 will be made.

• Shipment to NON-EU countries will be free of charge for order values of EUR
200 or over. If the order value is less than EUR 200, a �at rate delivery charge
of EUR 10 will be made. Additional customs duties, taxes and charges may
be incurred for delivering to the NON-EU countries.

Charges are for each shipment and will be added to the invoice.
An order can be cancelled by calling to the Customer Service Department but

only if the shipment has not yet been con�rmed.
Customers can return their purchased goods by sending them back to the indi-

cated company's address. Returns must be accompanied by invoice and they can be
accepted only within 30 days of purchase. All returned products must be unused,
and in saleable condition.

Accepted returns will be re-credited to the corresponding customers. Requests
for refunds must be made in writing and will be granted only if no account balance
is due.

Figure 1.5 shows an excerption of the fOtD process applied to company Compa-

nyA. In this excerption we can see the re-use of two templates, i.e., Shipment and
Payment. Some steps of these templates are modi�ed or deleted. For example, a
set of steps, which is used to calculate shipping price, replaces the step calculate the

shipping price in the Shipment template.

Sa
le

s
d

iv
is

io
n

 a
n

d

re
la

te
d

 D
e

p
ar

tm
e

n
ts

receive
shipping
request

send shipping
schedule and
shipping price

request
payment

provide
payment
methods

process
 credit card

get
payment

information

accept
payment

reject
payment

notify
payment

calculate
total

amount

charge of 6.80 Euros
for shipping

schedule
shipping

charge of 7.5 Euros
for shipping

charge of 10 Euros
for shipping

free shipping

shipping amount is in excess of EUR 200 or in excess of
EUR 100 but shipping address is in France or in excess of
EUR 150 but shipping adress is in EU

C
lie

n
t

receive
shipping
schedule

and shipping
price

send
shipping
request

accept
shipping
schedule

reject
shipping
schedule

change
shipping options

yes

no

choose
payment
method

pay bill

receive
requested
payment

receive
acceptation

of
payment

receive
rejection of
payment

schedule is
accepted

receive
payment

notification

cancel
payment

Figure 1.5: CompanyA variant of the fOtD process (excerpt)

1.3 Proposal and Main Contributions

To answer the research questions mentioned in Section 1.1, we introduce a formalism
to represent control �ow-based business work�ow templates (CBWTs) in a knowl-

8 Chapter 1. General Introduction

edge base. The formalism is designed to facilitate the shareability and reusability
of work�ow templates. It combines control-�ow (based on Coloured Petri Nets
(CPNs)) with semantic constraints of business processes. This combination enables
syntactic checks based on the model of CPNs and semantic checks based on Semantic
Web technologies. Here are the main contributions of this thesis:

• Modelling semantically rich business work�ow templates:

On the one hand, for the formalization of control-�ow in work�ow templates,
we focus on modelling business processes with CPNs. We �rst design an OWL
ontology, called the CPN ontology, to represent the concepts of control �ow-
based business work�ow templates (i.e., templates of business processes mod-
elled with CPNs). Next, we thoroughly study the properties of the work�ow
templates in order to transform them into a set of axioms for the ontology. A
business process is thus syntactically transformed into an instance of the CPN
ontology. As a result, syntactic checks become simply a veri�cation by infer-
ence, by concepts and by axioms of the CPN ontology on the corresponding
instance.

On the other hand, a formal de�nition of semantic constraints is introduced
to model semantic business processes. A set of semantic constraints is gen-
erally speci�ed with the help of domain experts2. However, when de�ning a
set of semantic constraints, it may be redundant or con�icting. Therefore,
we introduce an algorithm to validate sets of semantic constraints. A set of
well-checked semantic constraints is then automatically transformed into an
instance of a business process ontology, called the BP ontology.

By creating correspondences between the CPN ontology and the BP ontol-
ogy, a work�ow template is developed. Semantic checks related to a speci�c
business process, therefore, are enabled.

• Providing automated support for syntactic and semantic checks related to a
work�ow template.

In this thesis, the set of axioms of the CPN ontology related to syntactic checks
as well as the semantic veri�cation issues related to semantic checks are repre-
sented as SPARQL queries. The Jena semantic engine is then used to match
an RDF graph representing a business work�ow template to graph patterns
of these SPARQL queries. If there are no matches, a work�ow template is
veri�ed and stored in a knowledge base.

• Expressing business level correctness requirements by using Event Condition
Action (ECA)-like rules.

In order to provide additional support for specifying business rules, we intro-
duce ECA-like rules to represent the business level correctness requirements
that semantic constraints cannot capture.

2A group of people who are responsible for relevant business processes working at operational

departments, where the business processes are intended to be run.

1.4. Thesis Outline 9

Chapter 2:
Basic concepts

Chapter 3:
Development of a

knowledge base for
control flow-based
business workflow

templates

Chapter 4:
Semantic business
process modelling

Chapter 5:
Syntactic and

semantic
verification
of workflow
templates

Chapter 6:
Reuse of
workflow
templates

Chapter 7:
Implementation

Figure 1.6: Overview of thesis

• Establishing a knowledge base to guide the appropriate work�ow templates
for the development of a business work�ow template.

1.4 Thesis Outline

This thesis is structured as follows (see Figure 1.6):

• Chapter 2 introduces the basic concepts of business work�ows and business
rules. Another objective of this chapter is to represent the knowledge involved
in knowledge bases relying on the Semantic Web models for the veri�cation of
a business work�ow template.

• Chapter 3 provides a formal de�nition of CPN-based process models. In ad-
dition, the CPN ontology, which is developed to represent the concepts of
CPN-based business work�ow templates, is also introduced.

• Chapter 4 gives a formal de�nition of semantic constraints and an algorithm
for inferring implicit semantic constraints and detecting shortcomings. A set
of well-checked constraints is then used to model a semantic business work�ow
template. In addition, to integrate domain knowledge, ECA-like rules are also
introduced to represent business level correctness requirements.

10 Chapter 1. General Introduction

• Chapter 5 concentrates on the syntactic and semantic veri�cation of a business
work�ow template. The veri�cation indicates that a template does or does not
conform to a set of given constraints.

• Chapter 6 describes a repository that contains business work�ow templates
and their ECA-like rules. It provides an organizational mechanism for CBWTs
to guarantee an e�ective search of work�ow templates. Thereby users can
select and modify the work�ow templates along with their ECA-like rules for
each use case.

• Chapter 7 provides an overview of the CBWT prototype which is implemented
to validate the concepts discussed in the previous chapters.

• Chapter 8 concludes this thesis and provides some future research tracks.

We utilise our journal, conference and workshop publications, includ-
ing [Nguyen 2013, Nguyen 2014a, Nguyen 2014b, Nguyen 2014c, Nguyen 2015,
Pham 2015], to complete some parts of this thesis.

Chapter 2

Basic Concepts

Contents
2.1 Work�ows and Work�ow Languages 11

2.1.1 Business Work�ows versus Scienti�c Work�ows 11

2.1.2 Work�ow Charateristics . 15

2.1.3 Work�ow Languages . 16

2.2 Business Rules . 17

2.3 Knowledge Representation in the Semantic Web Models . 19

2.3.1 Semantic Web Pyramid . 20

2.3.2 An Assertional Language: RDF 20

2.3.3 Ontology Representation Languages: RDFS and OWL 21

2.3.4 Representation of Queries: SPARQL 23

2.4 Conclusion . 24

In this chapter, we focus on: (i) brie�y comparing business work�ows with sci-
enti�c work�ows; (ii) introducing the basic concepts of business work�ows and busi-
ness rules; (iii) the representation of the knowledge involved for the veri�cation of
a business work�ow template.

2.1 Work�ows and Work�ow Languages

2.1.1 Business Work�ows versus Scienti�c Work�ows

Over the years, work�ows have drawn an enormous amount of attention from the
research communities. Many work�ow products, which are mainly work�ow man-
agement systems (WfMSs), have become commercially available. Business, scienti�c
calculations and experiments are two main areas that drive and utilize work�ows.
In this section, we present the similarities and di�erences between business and
scienti�c work�ows based on their objectives from di�erent point of views

In fact, in the business world, the formal concept of work�ows has existed for a
long time. In [WFMC 1999], the Work�ow Management Coalition described a busi-
ness work�ow as �the automation of a business process1, in whole or part, during

1WfMC [WFMC 1999] de�ned a business process as �a set of one or more linked procedures or

activities which collectively realise a business objective or policy goal, normally within the context

of an organisational structure de�ning functional roles and relationships�

12 Chapter 2. Basic Concepts

which documents, information or tasks are passed from one participant to another

for action, according to a set of procedural rules�. On the other hand, to help sci-
entists to implement and execute complex analyses, scienti�c work�ows are de�ned
di�erently, �these are networks of analytic steps that may involve, e.g., database

access and querying steps, data analysis and mining steps, and many other steps

including computationally intensive jobs on high performance cluster computers�

[Ludäscher 2006].
For WfMSs that control aspects of a work�ow, scienti�c and business WfMSs

o�er di�erent sets of features. From the end-user's point of view, as stated in
[Yildiz 2009], they both refer to:

(i) model and specify processes with design primitives;

(ii) re-engineer developed processes, like veri�cation and optimization;

(iii) execute automatically processes by scheduling, controlling and monitoring the
tasks.

The design of business WfMSs is generally independent from the concrete busi-
ness area of employing enterprises. Consequently, this work�ow technology follows
the generic approach. Therefore, IT experts play an important role in implementing
business processes of the enterprise and establishing the software infrastructure (see
Figure 2.1). It is important to note that business work�ows aim to automate and
optimize an organization's processes in an administrative context to reduce costs
(e.g., human resources) and increase revenue. They often represent the products
of enterprises [Sonntag 2010], for example a reservation in a travel agency stands
for the product �reservation�. Up to now, there are more than a hundred business
WfMSs, such as FileNet2, SAP3, JBPM4 and Spi� Work�ow5. Insurance, banking
and health industries, for example, are domains using business work�ows.

In contrast to business counterparts, scienti�c WfMSs are often designed for a
speci�c application domain. Scienti�c work�ow systems focus on supporting scien-
tists in designing and implementing large-scale and complex e-science processes of
scienti�c applications. Figure 2.2 depicts the scienti�c work�ow life cycle. In this
context, work�ows implement scienti�c simulations, experiments, and computations
often dealing with large amounts of data [Sonntag 2010]. Scienti�c work�ows enable
scientists to integrate, structure, and orchestrate heterogeneous and distributed ser-
vices and applications into scienti�c processes [Lin 2008]. Obviously, scientists are
expert in their own research areas and of course, they are the main users able to
model, execute, monitor, and analyse their own work�ows without requiring deep
knowledge as professional software developers. Besides, in order to implement a

2http://www-01.ibm.com/software/ecm/filenet/
3http://help.sap.com/saphelp_46c/helpdata/en/c5/e4a930453d11d189430000e829fbbd/

content.htm
4http://www.jbpm.org/
5https://pypi.python.org/pypi/SpiffWorkflow

http://www-01.ibm.com/software/ecm/filenet/
http://help.sap.com/saphelp_46c/helpdata/en/c5/e4a930453d11d189430000e829fbbd/content.htm
http://help.sap.com/saphelp_46c/helpdata/en/c5/e4a930453d11d189430000e829fbbd/content.htm
http://www.jbpm.org/
https://pypi.python.org/pypi/SpiffWorkflow

2.1. Work�ows and Work�ow Languages 13

Modelling

Monitoring

Design Analysis

Execution

Phase

Legend

User:
(1) Business specialist
(2) IT Specialist
(3) Client/Employee
(4) Administrator (IT specialist)
 Business analyst
(5) Business analyst

(4)

(1)

(3)

(2) (5)

Figure 2.1: Business Process Management life cycle [Sonntag 2010]

work�ow design, work�ow engineers commonly are involved because of several com-
plex computing units and some technical skills. Furthermore, scienti�c work�ows
are usually executed in an evolving environment, therefore, the goal of scienti�c
work�ows is not only to reduce both human and computing cost, but also speed
up the transfer of large amounts of bits and bytes into knowledge and discovery. A
number of scienti�c WfMSs have been designed and developed such as Pegasus6,
Taverna7, Triana8 and Kepler9.

Hypothesis,
Experiment Goals

Workflow
Execution

Experiment/
Workflow Design

Post-Execution
Analysis

Workflow
Preparation

Runtime monitoring

User:
Scientists are typically
the only user group of a
system

Phase

Legend

Figure 2.2: Scienti�c Work�ow life cycle [Ludäscher 2009]

With regard to conceptual modelling and work�ow design, a set of features
and primitives is often provided to process designers. Both scienti�c and business

6http://pegasus.isi.edu/
7http://www.taverna.org.uk/
8http://www.trianacode.org/
9https://kepler-project.org/

http://pegasus.isi.edu/
http://www.taverna.org.uk/
http://www.trianacode.org/
https://kepler-project.org/

14 Chapter 2. Basic Concepts

WfMS use primitives to represent di�erent tasks, dependencies, decisions and models
of computational structures. The primary di�erence between them is that business
work�ows focus on modelling control-�ow oriented business processes while scienti�c
work�ows, which aim to model large-scale data-intensive and compute-intensive
scienti�c processes, tend to be data�ow oriented.

As depicted in Figure 2.3, an edge A → B in a business work�ow naturally
means that B is executed after A and they are only executed once, i.e., the edge
represents control-�ow. Furthermore, data�ow, which is implicit or modelled sepa-
rately, is often the secondary issue in business work�ows. Conversely, in a scienti�c
work�ow, A → B typically represents data�ow, i.e., actor B consumes the output
of actor A. In data�ow modelling, no precise execution order between tasks is men-
tioned. Therefore, in contrast to business work�ows where only tasks not on the
same paths can be executed concurrently, scienti�c work�ows can execute simulta-
neously a number of tasks on the same data�ow path as illustrated in Figure 2.3.
Consequently, data�ow and control-�ow are normally married in scienti�c work-
�ows. The advantage of the marriage is that the resulting model is often simpler
and allows stream-based, pipeline-parallel execution [Ludäscher 2009]. The disad-
vantage is that it is not easy to model certain work�ow patterns (for conditional
execution, for example) via data�ow.

Workflow design

Business Workflow Scientific Workflow

Both are executed once
but B is conducted after A

B uses the output of A
Designer Interpretation

C, D and E are conducted after B
according to transition conditions C, D and E use the output of B

ABCDEF C
 A B D F
 E

Only C, D and E are concurrently
conducted. B is preceded by the execution
of A and succeeded by C, D, E and after F

A, B, C, D, E and F can be
conducted concurrently

Execution Environment

Figure 2.3: Brief comparison of Business Work�ows and Scienti�c Work�ows

Each typical scienti�c work�ow can be seen as a computational experiment.
They are exploratory in nature and often conducted in a what-if or a trial-and-error
manner. Hence, the outcome of a scienti�c work�ow not only can validate/prove
or invalidate a scienti�c hypothesis, but also can serve some similar experimental

2.1. Work�ows and Work�ow Languages 15

goals. In contrast, the outcome of a business work�ow is already known before it
starts through business-driven goals. For example, when applying for a bank loan,
the proposal can be approved or rejected.

With regard to work�ow instances, large numbers of cases and independent work-
�ow instances can be handled by business work�ows at any given time. However,
truly independent instances are not as common in scienti�c work�ows. A scienti�c
work�ow can invoke multiple related and interdependent instances, for example, in
the context of parameter studies.

In compliance with our objective, business work�ows are chosen for our work. We
concentrate on the representation of control �ow-based business work�ow templates
in a knowledge base.

2.1.2 Work�ow Charateristics

In this Subsection, we introduce some basic concepts of business work-
�ows and their perspectives based on [van der Aalst 1998, van der Aalst 2002b,
van der Aalst 2003a].

According to [van der Aalst 1998], work�ows are case-based, i.e., tasks are ex-
ecuted for speci�c cases. Some examples of cases are an order, a tax declaration,
a wire transfer or a request for a medical examination. Each case has a unique
identity and a limited lifetime. For example, in case of a wire transfer, it begins at
the moment when the wire transfer is submitted and expires when the processing
of the wire transfer has been completed.

Similar cases have the same case type and in principle they can be handled in
the same way. A work�ow process is designed to handle similar cases as e�ciently
and e�ectively as possible. The work�ow process de�nition speci�es which tasks
need to be performed and in which order [van der Aalst 2002b]. Work�ow process
de�nition can also be regarded as `procedure', `�ow diagram' or `routing de�nition'.

Being a logical unit of work, a task is atomic and thus always executed in full.
Checking account information, informing a result, calculating a formula are some
examples of tasks. Since the task is done in a speci�c order, identifying conditions

which relate to causal dependencies between tasks is necessary. A condition holds or
does not hold (true or false) [van der Aalst 2003a]. Each task has pre-conditions and
post-conditions which should hold before and after the task is executed, respectively.

A task, which refers to a generic piece of work, is de�ned for a type of case
not for one speci�c case, i.e., the same task can be performed for many cases. In
addition, to avoid confusion between the task itself and its performance relating to
a particular case, the terms work item and activity are used. The former refers to a
task which needs to be executed for one speci�c case. The latter refers to the actual
execution of a work item.

Work items are executed by resources. Resources are human (e.g., workers,
employees, etc.) and/or non-human (e.g., machines). Resources are grouped into
classes in order to facilitate the allocation of work items to resources. Each resource

class contains a set of resources with similar characteristics. A resource class based

16 Chapter 2. Basic Concepts

on the capabilities of its members is call a role.
Figure 2.4 depicts three dimensions of a work�ow [van der Aalst 1998], including

the process (or control �ow), the resource and the case dimension.
A work item and an activity are both related to a speci�c case. Consequently,

the process dimension and the resource dimension are generic, not tailored towards
any speci�c case. Individual cases that are concerned with the third dimension are
executed in accordance with the process de�nition by the proper resources.

Resource dimension

Process dimension

Case dimension

case work item

task

activity

resource

Figure 2.4: A three dimensional view of a work�ow [van der Aalst 1998]

In this thesis, we concentrate on developing business work�ows which handle
cases. Therefore, we focus on the process and case dimension. By using Coloured
Petri Nets (CPNs) (see Section 3.1.1) as the work�ow language, the routing of cases,
which is one of the main issues of the two dimensions, is syntactically represented.
We will only present the mechanisms. Therefore, the resource dimension, which
relate to human resource aspects, as well as the mapping of resources to work items
will not be discussed in detail.

2.1.3 Work�ow Languages

Work�ow languages can be categorized into several classes according to their un-
derlying methodologies and meta models, such as graph-based, Petri-net based and
work�ow programming languages [Weske 1998]. The constructs and relationships of
work�ow models of certain work�ow languages are described through a meta model.

Graph-based languages allow the speci�cation of work�ows, which consists
of work�ow activities, their hierarchical relationships and constraints on their data
�ow and control �ow, by using directed graphs. Therefore, to cover the work�ow
aspects (i.e., the functional, behavioural, informational, operational and �exibility
aspect), these graphs need to be enhanced, for instance, using graph notation to
specify the functional and behavioural aspects. Graph-based languages support the
basic work�ow patterns as stated in [van der Aalst 2003b]. These languages also
provide work�ow modelling constructs, such as iteration and nesting.

2.2. Business Rules 17

The second class of work�ow languages is based on Petri Nets (PNs)
[Petri 1962]. A PN is a directed bipartite graph that comprises three main compo-
nents:

• Places: Holding tokens that represent states. The number of tokens in a place
can vary over time;

• Transitions: Representing activities or tasks. Transitions may consume and
produce tokens;

• Directed arcs: Linking transitions and places. An arc can only connect a place
with a transition or vice versa.

PNs have been developed as a tool to represent, validate and verify
work�ow procedures [van der Aalst 1997, van der Aalst 2000]. The authors in
[van der Aalst 2002a] stated three good reasons for using PNs as a work�ow lan-
guage, including: �(i) formal semantics despite the graphical nature; (ii) state-
based instead of (just) event-based; (iii) abundance of analysis techniques�. In
addition, PNs have been extended with colour and time, called high-level Petri
Nets, to improve expressiveness. High-level Petri net tools, e.g., CPN Tools
[The AIS group, Eindhoven University of Technology 2013] or ExSpect [exs 2000],
have been developed to incorporate these extensions and support work�ow design-
ers in modelling and analysing complex systems. Coloured Petri Nets are chosen as
the work�ow language in our work. Therefore, we will brie�y introduce CPNs in
Section 3.1.1.

The last class of work�ow languages are work�ow programming (or script)
languages. However, since script languages are often used in projects where system
development issues play a major role, in this research we will not pay much attention
to them.

2.2 Business Rules

The concept of `business rule' has been widely used in the context of expert systems.
According to the Business Rules Group (BRG)10, a business rule is �a statement

that de�nes or constrains some aspect of business. It is intended to assert business

structure or to control or in�uence the behaviour of the business.�.
Generally speaking, in a business process, there exist multiple decision points at

which a number of criteria (so-called business rules) are evaluated. The behaviour
of the business process is then changed based on these business rules. Consequently,
business rules play the core drivers role in the business processes of an enterprise.

Business rules represent particular business logic in a speci�c context. They
consist of internal and external business rules. The internal business rules of a

10The BRG is an independent organization which comprises experts in the �eld of systems

and business analysis methodology. Website: http://www.businessrulesgroup.org/first_paper/

br01c1.htm

http://www.businessrulesgroup.org/first_paper/br01c1.htm
http://www.businessrulesgroup.org/first_paper/br01c1.htm

18 Chapter 2. Basic Concepts

company are normally expressed by documents in natural language about operating
principles, marketing strategies and pricing policies, etc. However, some business
rules may exist as expert knowledge of some particular domain and have never been
written down. On the other hand, the external business rules are de�ned by other
instances, such as legal requirements.

It is worth noting that business rules tend to be changed often. Therefore, it
is di�cult and costly to change and maintain business rules if a business process
embeds its rules inside itself. According to [van Eijndhoven 2008], the solution to
avoid this issue is to separate business processes from business rules. Business Rules
Management Systems (BRMSs) [Resch 2010], tools for business rules management
coming from expert systems, are used for separating logic from the application code.

In literature, a number of approaches focus on describing business rules, such as
Semantics Of Business Vocabulary And Rules (SBVR) [sbv 2013], Production Rule
Representation (PRR) [prr 2009], Object Constraint Language (OCL) [ocl 2014].
Being adopted as a standard of the Object Management Group (OMG), SBVR is
proposed to formalize complex compliance rules, such as operational rules for an
enterprise, standard compliance or regulatory compliance rules. The objectives of
SBVR are to de�ne:

• the vocabulary and rules for documenting the semantics of business vocabu-
laries, business facts, and business rules in a certain business domain. Con-
sequently, SBVR rules capture �what� business rules are, rather than �how�
they can be executed;

• an XML representation for the interchange of business vocabularies and busi-
ness rules among organizations and between software tools.

In SBVR, each rule builds on at least one fact and facts build on concepts as ex-
pressed by terms. For example, �It is necessary that each customer has at least one
bank account� is a business rule11

Business rules can generally be seen as independent business knowledge units
which relate to some forms of reasoning. They are categorized based on certain char-
acteristics in order to easily handle the set of business rules. According to [sbv 2013],
business rules are divided into three types, i.e., static constraints, dynamic con-

straints and derivation rules. The authors in [Hay 2000] introduce a similar classi�-
cation which includes structural assertions, action assertions and derivations. Three
same types can be found in [Romanenko 2006] named as structural rules, dynamic

11There are four font styles used in the SBVR-based Structured English:

• term: The `term' font is used for designations for object types, noun concepts (other than

individual noun concepts).

• Name: The `name' font is used for designations of individual noun concepts � names.

• verb: The `verb' font is used for designations for verbs, prepositions, or combination thereof.

• keyword: The `keyword' font is used for linguistic symbols used to construct statements -

the words that can be combined with terms, Names and verb to create business rules.

2.3. Knowledge Representation in the Semantic Web Models 19

rules and derivation rules respectively. Eijndhoven et al. in [van Eijndhoven 2008]
identify two main categories, rules (consisting of derivation rules and action rules)
and constraints (enforcing certain limitations to the structure, behaviour or infor-
mation of an organisation or system). G. Wagner in [Wagner 2002] also de�nes
constraint, derivation and reaction rules. Among di�erent classi�cations just men-
tioned above, we will follow the classi�cation of SBVR. We use the denotations:
structural rules, action rules and derivation rules (see Appendix A).

In addition, business rules are often represented as Condition-Action rules (so-
called production rules) or Event-Condition-Action (ECA) rules to enforce business
rules directly by an automated system:

• A production rule, which is expressed in the format of �IF condition THEN
action�, speci�es that one or more concrete actions are executed in the case
that its conditions are ful�lled. Usually, users or an application can invoke
production rules but then a rule engine will process them automatically.

• An ECA rule speci�es that after an event (E) takes place, a clause condition
(C) is checked and if it is ful�lled then the action (A) is executed. The general
syntax of ECA rules is �ON event IF condition DO actions�.
Besides, ECA rules can be automatically triggered when certain events take
place. They can react to events in real time. Furthermore, depending on the
rule language is used, a ECA rule can specify a single (atomic) event or a
composite event. For example, a temporal composition of events is mentioned
in [Boley 2007, Bry 2005, Taveter 2001].

Production rules and ECA rules are widely supported by existing engine rules.
They can be regarded as two variants of action rules [van Eijndhoven 2008]. Besides,
it is necessary to underline that some structural rules and derivation rules can be
also represented in the form of production rules as well as ECA rules. Let us take
an example: The following structural rule:
It is obligatory that each rental car is owned by exactly one branch.
can be represented by the following production rule:
If a car is a rental car then it belongs to one branch.
Therefore, production rules and ECA rules are considered as the most convenient
way for representing business rules.

2.3 Knowledge Representation in the Semantic Web

Models

Our work aims to develop a knowledge base for work�ow process templates. There-
fore, we base on the Semantic Web models in which the accessibility, interoperabil-
ity, expressiveness, share and reuse of work�ow process templates are guaranteed.
This section provides a brief overview of the Semantic Web models and the for-
malisms that are currently used for knowledge representation: RDF, RDFS, OWL
and SPARQL.

20 Chapter 2. Basic Concepts

2.3.1 Semantic Web Pyramid

Being a proposition of Tim Berners-Lee who invented the World Wide Web, the
Semantic Web is characterized by a set of technologies, tools and standards. They
are organized into a Semantic Web Stack that is an expression of their interrela-
tionships. Figure 2.512 describes di�erent layers of the Semantic Web architecture
where each layer uses the capabilities of the layer below. The lower layers provide the
syntactic interoperability (URI, Unicode and XML). The upper layers correspond
to a standard model for data interchange on the Web (RDF), ontology modelling
languages (RDFS and OWL), a query language designed speci�cally to query RDF
databases (SPARQL) and rule languages (RIF and SWRL).However, according to
[Bénel 2010], the feasibility of the last three layers (i.e., the Logic, Proof and Trust
layers) still seems unclear.

Figure 2.5: Semantic Web layered architecture13

2.3.2 An Assertional Language: RDF

RDF (Resource Description Framework) [RDF 2014a] is a framework for represent-
ing information. It is a standard model for data interchange on the Web. RDF is
based on the idea of identifying things using Uniform Resource Identi�ers (URIs)
[Berners-Lee 2005] and describing resources in terms of simple properties and prop-
erty values. A URI is a string of characters used to identify a name of a resource.

12The coloured layers (in blue) have been standardized [Bénel 2010]
13http://en.wikipedia.org/wiki/Semantic_Web_Stack

http://en.wikipedia.org/wiki/Semantic_Web_Stack

2.3. Knowledge Representation in the Semantic Web Models 21

The basic structure of RDF is a graph (called �RDF graph�), composed of triplets.
An RDF triple contains three components conventionally written in the order {sub-
ject, predicate, object}, where:

• the subject is an RDF URI reference or a blank node;

• the predicate is an RDF URI reference;

• the object is an RDF URI reference, a literal or a blank node.

RDF is regarded as the basis of the Semantic Web. The Semantic Web is then
seen as a graph whose resources are interconnected via properties whereas the Web
connects documents via hyperlinks. RDF has an XML syntax and is recommended
by W3C14.

2.3.3 Ontology Representation Languages: RDFS and OWL

• RDF Schema (RDFS) [rdf 2014b], which is a W3C recommendation since
February 2004, semantically extends RDF. RDFS de�nes the vocabulary used
in RDF descriptions. In other words, RDFS provides mechanisms for describ-
ing groups of related resources and the relationships between these resources.
RDFS is written in RDF using its terms and intended to structure RDF re-
sources. It allows users to de�ne resources with classes, properties and values.

Although RDFS provides simple but powerful modelling primitives for cap-
turing basic semantics of the domain knowledge, it has some limitations. For
example, it is not able to express equivalence between properties and does
not have the capability of expressing the uniqueness and the cardinality of
properties [Cardoso 2007]. Therefore, by representing classes and properties,
RDFS is suitable for representing lightweight ontologies.

• The Web Ontology Language (OWL), a W3C Recommendation, is a fam-
ily of knowledge representation languages for authoring ontologies. OWL pro-
vides a greater ability to interpret Web content than that supported by XML,
RDF, and RDFS. Using RDF/XML syntax, OWL integrates a number of el-
ements of its predecessor RDFS. It provides more vocabulary for describing
properties, classes and relations between classes (e.g., owl : disjointWith),
cardinality (e.g., owl : someV aluesFrom), characteristics of properties (e.g.,
owl : TransitiveProperty).

In the �rst version of OWL (named OWL 1 [owl 2004]), OWL can be cate-
gorized into three sub-languages with an increasing degree of expressiveness:
OWL Lite, OWL DL, and OWL Full (see Figure 2.6):

� OWL Lite is the syntactically simplest OWL language and corresponds
to description logic SHIF(D). It supports creating simple class hierar-

14http://www.w3.org/

http://www.w3.org/

22 Chapter 2. Basic Concepts

 RDFS

OWL-DL

OWL Full

OWL 2 DL

OWL 2 Full

 RDFS

OWL 2 RL
OWL 2 QL

OWL 2 EL

OWL 1 OWL 2 Profiles

Figure 2.6: Web Ontology Languages OWL

chies and simple constraints (e.g., only cardinality values of 0 or 1 are
allowed).

� OWL DL, which stands for OWL Description Logic, is equivalent to De-
scription Logic SHOIN (D). It supports all OWL language constructs
with restrictions (e.g, type separation) and provides maximum expressive-
ness while always keeping computational completeness and decidability.

� OWL Full which is the most expressive sub-language of OWL. OWL
Full is intended to be used in applications where very high expressiveness
is more important than being able to guarantee the decidability or com-
putational completeness of the language. It is thus impossible to perform
automated reasoning on OWL-Full ontologies.

The second version of OWL (named OWL 2 [owl 2012]) has a very similar
overall structure to OWL 1. Although all OWL 1 Ontologies remain valid
in OWL 2 Ontologies, new ontological components are introduced in OWL
2. The axioms of disjoint union of classes, of new properties for expressing
quali�ed cardinality restrictions and of annotation properties; new data types
and data ranges; and the concept of property chains are some examples.

In addition to OWL 2 DL and OWL 2 Full, OWL 2 speci�es three pro�les
(see Figure 2.6):

� OWL 2 DL is de�ned from the set of primitives of OWL 2 under certain
conditions of use of these primitives similar to those previously stated for
OWL DL. It corresponds to the description logic SROIQ(D).

� OWL 2 EL, which corresponds to the description logic EL (Existential
Language), provides only the existential quanti�cation.

2.3. Knowledge Representation in the Semantic Web Models 23

� OWL 2 QL (Query Language) is a speci�c subset of primitives of OWL 2
for response operations to queries, which can be implemented by rewriting
the queries in a relational language like SQL.

� OWL 2 RL (Rule Language) is de�ned from OWL 2 by imposing certain
restrictions, i.e., it does not allow existential quanti�cation to a class,
union and disjoint union to class expressions. These restrictions allow
OWL 2 RL to be implemented using rule-based technologies such as rule
extended DBMSs and Prolog.

2.3.4 Representation of Queries: SPARQL

SPARQL [spa 2013] is a query language, inspired by SQL for querying RDF data. It
is adapted to the speci�c structure of RDF and relies on the triplets that constitute
them. SPARQL allows adding, removing, searching and/or modifying data in RDF
format. It can also be used to query RDFS or OWL vocabularies (written in RDF).

The SPARQL query language has the four following forms that use the solutions
from pattern matching to form result sets or RDF graphs:

• SELECT query is used to extract values, which are all, or a subset of the
variables bound in a query pattern match, from a SPARQL endpoint. The
variables, which contain the return values, are listed after a SELECT keyword.
In the WHERE clause, one or more graph patterns can be speci�ed to describe
the desired result;

• CONSTRUCT query is used to return an RDF graph constructed by substi-
tuting variables in a set of triple templates;

• ASK query is used to return a boolean indicating whether a query pattern
matches or not;

• DESCRIBE query is used to return an RDF graph that describes the resources
found.

Here are the reasons why we choose the SPARQL query language for the veri�-
cation of a work�ow template in Chapter 5:

(i) It is an RDF query language;

(ii) It is a W3C Recommendation and is widely accepted in the Semantic Web and
also Arti�cial Intelligence community;

(iii) Its syntax is quite simple which allows for a query to include triple patterns,
conjunctions, disjunctions and optional patterns;

(iv) It can be used with any modelling language.

24 Chapter 2. Basic Concepts

2.4 Conclusion

The key issue in ensuring the syntactic and semantic correctness of business work-
�ow templates during design time is to automate the process of checking whether a
work�ow template is or is not consistent with a set of prede�ned constraints. This
problem is characterized by a large amount of semantic constraints, which express
dependencies between activities of a business process, and a set of syntactic con-
straints using to model a business work�ow template. To e�ectively maintain this
knowledge, it is desirable to �rst formally represent it.

In this chapter, we have presented some basic concepts of business work�ows and
business rules. We have also introduced the models of the Semantic Web, which we
use to represent the knowledge involved in modelling semantically rich business
work�ow templates (Chapter 3, Chapter 4 and Chapter 6) and the veri�cation of
work�ow templates (Chapter 5).

Chapter 3

Development of a Knowledge Base
for Control �ow-based Business

Work�ow Templates

Contents
3.1 Modelling Business Processes with Coloured Petri Nets . . 26

3.1.1 Overview of Coloured Petri Nets 26

3.1.2 Coloured Petri Net-based Process Models 28

3.1.3 A simple Order Process Example 34

3.2 An Ontology for Coloured Petri Nets-based Business

Work�ow Templates . 34

3.2.1 Representation of Coloured Petri Net with OWL DL Ontology 34

3.2.2 Realization . 37

3.3 Manipulation of Business Work�ow Templates 39

3.4 Related Work . 42

3.4.1 On Combining Work�ows with Ontologies 42

3.4.2 On Combining Petri Nets/High-Level Petri Nets with Ontologies 43

3.5 Discussion and Conclusion . 44

According to [Jørgensen 2008], Coloured Petri Nets (CPNs) have formal seman-
tics and can describe any type of work�ow system, behavioral and syntax wise
simultaneously. They have been successfully applied in modelling work�ows and
work�ow systems. Therefore, CPNs are chosen as the work�ow language in our
work.

In this chapter, we introduce an ontological approach to represent Control �ow-
based Business Work�ow Templates (CBWTs) (i.e., templates of business processes
modelled with CPNs) in a knowledge base. In detail, we �rst introduce a formal
de�nition of CPN-based business process models which is used to transform a busi-
ness process into a control �ow-based business work�ow template. Next, the CPN
ontology is developed to represent Coloured Petri Nets with OWL DL. We then
introduce manipulation operations on work�ow templates for developing CBWTs.

26
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

3.1 Modelling Business Processes with Coloured Petri

Nets

In order to help readers easily understand the following de�nitions, we �rst provide
some syntax used to write the expressions:

• CMS denotes the multiset over set C. The notion of multiset is a generalization
of the notion of set in which elements can appear more than once;

• Type(v) denotes the type of variable v;

• V ar(E) denotes the set of variables in expression E;

• For each arc a, a.p and a.t denote place p and transition t connected by a;

• M(p) is the value of the token in place p.

3.1.1 Overview of Coloured Petri Nets

CPNs [Kristensen 1998] are extended from Petri Nets with colour, time and expres-
sions attached to arcs and transitions. A CPN is a directed bipartite graph, which
consists of places (drawn as ellipses) and transitions (drawn as rectangles) connected
by directed arcs (drawn as arrows). Each place holds a set of markers called tokens.
Each token can carry both a data value called its colour and a timestamp. A token
has the same type as its place.

Since transitions may consume and produce tokens, it is necessary to use arc

expressions to determine the input-output relations. An incoming arc indicates
that tokens may be removed by the transition from the corresponding place while
an outgoing arc indicates that tokens may be added by the transition. Consequently,
tokens are used to simulate control �ows in a business work�ow. They play a crucial
role in providing an instrument to check the syntactic correctness of the work�ow.

We next present a de�nition of CPNs, which is close to the one introduced in
[Kristensen 1998]. This provides the foundation for the de�nitions introduced in the
following section.

De�nition 1 (Coloured Petri Nets). A Coloured Petri net is formally de�ned as a
9-tuple CPN = (

∑
, P, T,A,N,C,G,E, I), where:

•
∑

is a �nite set of non-empty types, called colour sets.

• P is a �nite set of places.

• T is a �nite set of transitions.

• A is a �nite set of directed arcs such that: P ∩ T = P ∩A = T ∩A = ∅.

• N : A → P × T ∪ T × P is a node function. It is de�ned from A into
P × T ∪ T × P .

3.1. Modelling Business Processes with Coloured Petri Nets 27

<String, Int>

<String, Int>

<Int>

1`{a=“Article 01”, n=5} 1`{p=4}

(a,n)

(a,n*p)

(p)

Figure 3.1: Example of a CPN

• C : P →
∑

is a colour function. It is de�ned from P into
∑
.

• G : T → expression is a guard function. It is de�ned from T into expressions
such that:

∀t ∈ T : [Type(G(t)) = Bool ∧ Type(V ar(G(t))) ⊆
∑

]

• E : A → expression is an arc expression function. It is de�ned from A into
expressions such that:

∀a ∈ A :
[
Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆

∑]
where p(a) is the place of N(a).

• I : P → expression is an initialization function. It is de�ned from P into
closed expressions such that:

∀p ∈ P : [Type(I(p)) = C(p)MS]

Figure 3.1 depicts an example of a CPN. This CPN has three places and one
transition. Two places have a type String × Int and one has a type Int. When
the transition �res, it consumes two tokens from its input places and produces one
token to its output place.

Why is CPN chosen for our work?

There are many bene�ts to using CPNs as a work�ow language, such as:

• CPNs have very well-de�ned semantics. They have been developed into
a full-�edged language for the design, speci�cation, simulation, validation
and implementation of large-scale software systems;

28
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

• CPNs have a graphical representation. Their notation is similar to existing
work�ow languages;

• Since CPNs support di�erent types of data (i.e., colours) and the use
of global variables, it is easy to adapt CPNs to de�ne Object-Oriented
languages;

• The expressiveness of state and also behavioural changes are allowed in
CPNs simultaneously.

• CPNs provide hierarchical descriptions. They o�er interactive simulations
where the CPN diagram can present directly the results;

• CPNs are executable and allow for di�erent types of analysis, such as
state-space analysis and invariants [Pesic 2007];

• CPNs have computer tools, named CPN Tools
[The AIS group, Eindhoven University of Technology 2013], which
support their drawing, simulation and formal analysis.

3.1.2 Coloured Petri Net-based Process Models

To take advantage of using CPNs, we introduce here a formal de�nition of CPN-
based process models used to transform a business process into a control �ow-based
business work�ow template.

De�nition 2 (CPN-based process model). A CPN-based process model, PM, is
formally de�ned as a 8-tuple PM = (

∑
, P, T,A,C,G,E, I), where:

•
∑

is a �nite set of non-empty types.

• P = Pin ∪ Pout is a non-empty �nite set of places. Pin and Pout denote the
input and output states of the activity nodes in a process model, respectively.

� Place s ∈ Pin is the start point in a process model. It is the input place
of transition tstart ∈ Tact and has no entering arc. In a process model,
there is only one start point.

� Place e ∈ Pout is the end point in a process model. It is the output place
of transition tend ∈ Tact and has no leaving arc. In a process model, there
is only one end point.

� Place p ∈ P\{s, e} has one leaving arc and one entering arc.

The number of tokens in place p: ∀p ∈ P : [w(p) = 0]or[w(p) = 1].

• T = Tact ∪ Tctrl is a non-empty �nite set of transitions.

3.1. Modelling Business Processes with Coloured Petri Nets 29

� Tact is a non-empty �nite set of activity nodes. Each activity node has
one entering arc and one leaving arc.

� Tctrl is a �nite set of control nodes. A control node connects the output
states of activity nodes with the input states of other activity nodes.

• A ⊆ (P × T) ∪ (T × P) is a set of directed arcs connecting input places to
transitions or transitions to output places.

• C : P →
∑

is a colour function. It is de�ned from P into
∑
.

• G : T → expression is a guard function associating an operation with a
transition.

• E : A → expression is an arc expression function. It is de�ned from A into
expression such that:

∀a ∈ A :
[
Type(E(a)) = C(a.p) ∧ Type(V ar(E(a))) ⊆

∑]
• I : P → expression is an initialization function. It is de�ned from P into
closed expressions such that:

∀p ∈ P : [Type(I(p)) = C(p)]

A CPN-based process model is null if it has no places, activity nodes or arcs.
Business process models generally contain standard building blocks, including

Sequence, And− split, And− join, Xor− split and Xor− join as shown in Figure
3.2. It is worth noting that the two building blocks, Or − split and Or − join, are
not used in the work�ow modelling standards [van der Aalst 1998] nor in our work
(called control nodes). The reason is that an OR (i.e., Or − split and Or − join)
can be simulated by a combination of the two other building blocks (i.e., AND and
XOR) although that makes work�ows become more bulky.

Figure 3.2: Five building blocks for modelling routing compositions

The �ve building blocks are used to model sequential, parallel, conditional and
iterative routing.

30
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

• Sequential : The activities can be executed sequentially if the execution of one
activity is followed by the next activity. The control node Sequence is thus
necessary for this case.

• Parallel : Several activities can be executed at the same time or in any order.
The two control nodes And− split and And− join are required to model this
composition.

• Conditional : It means that there is a choice between two or more alternatives.
The two control nodes Xor − split and Xor − join are used to model the
choice.

• Iterative: A composition in which several activities are executed iteratively
until a given condition is satis�ed.

A routing composition is de�ned by a mapping between the outputs and the
inputs of activity nodes via control nodes. Consequently, each composition com-
prises at least two activity nodes, one control node, three places and six directed
arcs in total. We can decompose every business process model into exactly one set
of routing compositions. Subsequently, we present the de�nitions of the components
involved in routing compositions.

De�nition 3 (AF (Activity Function)). AF describes an operation in an activity
node and is de�ned as a 8-tuple:

NF = (
∑
, P, T,A,C,G,E, I) where:

•
∑

is a �nite set of non-empty types.

• P = Pin ∪ Pout is a �nite set of places de�ning the input and output states of
the AF.

Pin and Pout are the set of input and output places respectively where: P =

Pin ∪ Pout; Pin ∩ Pout = ∅; Pin = {pin}; Pout = {pout}.

• T is a �nite set of transitions denoted the behaviour of the AF.

T = {t} where transition t is an activity node containing the operation to be
executed.

• A ⊆ (P × {t}) ∪ ({t} × P) is a set of directed arcs connecting input places to
transitions or transitions to output places.

• C : P →
∑

is a colour function associating a type to each place. It is de�ned
from P into

∑
.

• G : {t} → expression is a guard function associating an operation to transition
t. It is de�ned from G into expression where:

Type(G(t)) = Type(V ar(G(t))) ∧ C(pout) ⊆
∑

3.1. Modelling Business Processes with Coloured Petri Nets 31

• E : A → expression is an arc expression function. It is de�ned from A into
expression where:

∀a ∈ A : E(a) =

{
M(a.p) if a.p ∈ Pin

G(a.t) otherwise

• I : {pin} → expression is an initialization function associating initial values
to the input place.

De�nition 4 (Sequence operator). Sequence operator maps the output place of
an AF to the input place of another AF. It is de�ned as 8-tuple: SequenceO =

(
∑
, P, T,A,C,G,E, I), where:

•
∑

is a �nite set of non-empty types.

• P is set of places de�ning the input and output states of the sequence operator.

P = Pin ∪ Pout; Pin ∩ Pout = ∅ where Pin = {pin} and Pout = {pout}.

• T is a �nite set of transitions.

T = {t} where transition t is a control node containing the sequence operator.

• A = ({pin} × {t}) ∪ ({t} × {pout}) = {ain, aout} is a set of directed arcs
connecting input places to transitions or transitions to output places.

• C : P →
∑

is a colour function associating a type to each place where:
C(pin) = C(pout).

• G : {t} → expression is a guard function associating an operation to transition
t where: Type(G(t)) = C(pout)

• E : A → expression is an arc expression function. It is de�ned from A into
expression where:

∀a ∈ A : E(a) =

{
M(a.p) if a.p = pin
G(a.t) otherwise

• I : {pout} → expression is an initialization function associating initial values
to pout.

De�nition 5 (And-split operator). And-split operator indicates that multiple
threads are generated. These threads can be executed in parallel or in any order. It
is de�ned as a 8-tuple:

AndsplitO = (
∑
, P, T,A,C,G,E, I) where:

•
∑

is a �nite set of non-empty types.

• P is a �nite set of places de�ning the input and output states of the And-split
operator.

P = Pin ∪ Pout; Pin ∩ Pout = ∅ where Pin = {pin} and Pout =

{pout1, pout2, . . . , poutM}.

32
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

• T is a �nite set of transitions.

T = {t} where transition t is a control node containing the And-split operator.

• A = ({pin} × {t}) ∪ ({t} × Pout) = {ain, aout1, aout2, . . . , aoutM}
is a set of directed arcs connecting input places to transitions or transitions
to output places.

• C : P →
∑

is a colour function associating a type to each place where:

C(pin) = C(pout1) ∧ C(pout2) ∧ . . . ∧ C(poutM)

• G : {t} → expression is a guard function associating an operation to transition
t where: Type(G(t)) = C(pin).

• E : A → expression is an arc expression function where Expr is a set of
expressions. It is de�ned from A into expression where:

∀a ∈ A : E(a) =

{
M(a.p) if a.p = pin
G(a.t) otherwise

• I : Pout → expression is an initialization function associating initial values to
output places.

De�nition 6 (And-join operator). And-join operator indicates that there is a con-
vergence with synchronization of multiple parallel threads. It is de�ned as a 8-tuple:

AndjoinO = (
∑
, P, T,A,C,G,E, I), where:

•
∑

is a �nite set of non-empty types.

• P is a �nite set of places de�ning the input and output states of the And-join
operator.

P = Pin ∪ Pout; Pin ∩ Pout = ∅ where Pin = {pin1, pin2, . . . , pinN} and Pout =

{pout}.

• T is a �nite set of transitions.

T = {t} where transition t is a control node containing the And-join operator.

• A = (Pin × {t}) ∪ ({t} × {pout}) = {ain1, ain2, . . . , ainN , aout}
is a set of directed arcs connecting input places to transitions or transitions
to output places.

• C : P →
∑

is a colour function associating a type to each place where:

C(pout) = C(pin1) ∧ C(pin2) ∧ . . . ∧ C(pinN)

• G : {t} → expression is a guard function associating an operation to transition
t where: Type(G(t)) = C(pout) ⊆

∑

3.1. Modelling Business Processes with Coloured Petri Nets 33

• E : A → expression is an arc expression function where Expr is a set of
expressions. It is de�ned from A into Expr where:

∀a ∈ A : E(a) =

{
G(a.t) if a.p = pout
M(a.p) otherwise

• I : {pout} → expression is an initialization function associating initial values
to the output place.

De�nition 7 (Xor-split operator). Xor-split operator indicates that only one of
multiple threads is to be executed. It is de�ned as a 8-tuple:

XorsplitO = (
∑

, P, T,A,C,G,E, I)

The Xor-split operator is de�ned similarly to the And-split operator except for
the two functions G and E. We de�ne these functions for XorsplitO as follows:

• G : {t} → expression is a guard function where:

Type(G(t)) = Bool ∧ Type(V ar(G(t))) ∧ C(pin) ⊆
∑

• E : A→ expression is an arc expression function where:

∀a ∈ A : if a.p = pin: E(a) = M(a.p) else: Either E(a) = G(a.t) or E(a) is
empty.

De�nition 8 (Xor-join operator). Xor-join operator indicates that whenever any
one of multiple activities is executed, it causes the following activity to be executed.
The operator is de�ned as a 8-tuple:

XorjoinO = (
∑

, P, T,A,C,G,E, I)

The Xor-join operator is de�ned similarly to the And-join operator except for
the two functions G and E. We de�ne these functions for XorjoinO as follows:

• G : {t} → expression is a guard function where:

Type(G(t)) = Bool ∧ Type(V ar(G(t))) ∧ C(pout) ⊆
∑

• E : A→ expression is an arc expression function where:

∀a ∈ A : if a.p = pout: E(a) = G(a.t) else: Either E(a) = M(a.p) or E(a) is
empty.

34
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

reject order

approve
order

evaluate
result

check
item

availability

receive
order

send
rejection

send
confirmation

Sa
le

s
d

iv
is

io
n

 a
n

d

re
la

te
d

 D
ep

ar
tm

en
ts

validate
client data

Receive_
order

Validate_
client_data

Check_
item_availability

Evaluate_result

Approve_order
Send_confirmation

Reject_order Send _rejection

Finish

Figure 3.3: Order processing template modelled with CPNs

3.1.3 A simple Order Process Example

Example 3.1.1. In Figure 3.3, we represent the Order processing template, which
is introduced in Section 1.2.1.1. To connect two activity nodes, we use one control
node. And− split and And− join are used to connect a group of tasks executed in
parallel, for example V alidate_client_data and Check_item_availability. Xor−
split and Xor− join are used to connect a group of alternative tasks. And control
nodes are used to connect tasks executed in sequence.

Although CPNs have been widely studied and successfully applied in modelling
work�ows and work�ow systems, the lack of semantic representation of CPN com-
ponents can make business processes modelled with CPNs (i.e., business work�ows)
di�cult to interoperate, share and reuse. Besides, an ontology with its components,
which provides machine-readable de�nitions of concepts, can play a pivotal role in
representing semantically rich work�ow de�nitions. Once work�ow de�nitions are
stored as semantically enriched work�ow templates, IT experts can easily develop
their appropriate software systems from the work�ow templates. In the upcoming
section, we will present the de�nition of semantic metadata for business work�ow
templates. The main purpose is to facilitate business work�ow templates to be
shared and reused among process-implementing software components.

3.2 An Ontology for Coloured Petri Nets-based Business

Work�ow Templates

3.2.1 Representation of Coloured Petri Net with OWL DL Ontol-
ogy

Our CPN ontology developed to represent Coloured Petri Nets with OWL DL, is
�rst proposed in [Nguyen 2014c]. Each element of CPNs is translated concisely into
a corresponding OWL concept. Figure 3.4 depicts the core concepts of our CPN

3.2. An Ontology for Coloured Petri Nets-based Business Work�ow
Templates 35

ontology. The CPN ontology is described based on DL syntax (summarized in Table
3.1) and the axioms (summarized in Table 3.2) supported by OWL.

Table 3.1: OWL constructors

Constructor DL syntax

intersectionOf C1 u . . . u Cn

unionOf C1 t . . . t Cn

complementOf ¬C
oneOf {x1 . . . xn}
allV aluesFrom ∀P.C
someV aluesFrom ∃r.C
hasV alue ∃r.{x}
minCardinality (> nr)

maxCardinality (6 nr)

inverseOf r−

Table 3.2: OWL axioms

Axiom DL syntax

subClassOf C1 v C2

equivalentClass C1 ≡ C2

subPropertyOf P1 v P2

equivalentProperty P1 ≡ P2

disjointWith C1 v ¬C2

sameAs {x1} ≡ {x2}
differentFrom {x1} v ¬{x2}
TransitiveProperty P transitive role
FunctionalProperty > v (6 1P)

InverseFunctionalProperty > v (6 1P−)

SymmetricProperty P ≡ P−

The meaning of the main elements in the CPN ontology is described as follows:

• The concept CPNOnt is de�ned for all possible PMs (cf. De�nition 2). This
concept can be glossed as `The class CPNOnt is de�ned as the intersection of:
(i) any class having at least one property hasP lace whose value is restricted to
the class Place and; (ii) any class having at least one property hasTransition

36
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

CPNOnt ≡≥ 1hasTrans.Transitionu ≥ 1hasP lace.P lace

u ≥ 1hasArc.(InputArc tOutputArc)
Place ≡ connectsTrans.Transitionu ≤ 1hasMarking.Token

Transition ≡ connectsP lace.P laceu = 1hasGuardFunction.GuardFunction

InputArc ≡≥ 1hasExpresion.Delete u ∃hasP lace.P lace
OutputArc ≡≥ 1hasExpression.Insert u ∃hasTrans.Transition
Delete ≡ ∀hasAttribute.Attribute
Insert ≡ ∃hasAttribute.Attribute
GuardFunction ≡≥ 1hasAttribute.Attributeu = 1hasActivity.ActNode

t = 1hasControl.CtrlNode

Token ≡≥ 1hasAttribute.Attribute

Attribute ≡≤ 1valueAtt.V alue

CtrlNode ≡≤ 1valueAtt.V alue

ActNode ≡= 1valueAtt.V alue

V alue ≡ valueRef.V alue

Figure 3.4: CPN ontology expressed in a description logic

whose value is restricted to the class Transition and; (iii) any class having
at least one property hasArc whose value is either restricted to the class
InputArc or the class OutputArc'.

• The concept Place is de�ned for all places of P . We consider the case in which
one place contains at most one token at one time. Therefore, this concept can
be glossed as `The class Place is de�ned as the intersection of: (i) any class
having at least one property connectsTrans whose value is equal to the class
Transition and; (ii) any class having at most one property hasMarking whose
value is restricted to the class Token'.

• The concept Transition is de�ned for all transitions of T . This concept can
be glossed as `The class Transition is de�ned as the intersection of: (i) any
class having at least one property connectsP lace whose value is equal to the
class Place and; (ii) any class having one property hasGuardFunction whose
value is restricted to the class GuardFunction'.

• The concept InputArc is de�ned for all directed arcs from places to transitions
in A. This concept can be glossed as `The class InputArc is de�ned as the
intersection of: (i) any class having at least one property hasExpression

whose value is restricted to the class Delete and; (ii) any class having at least
one property hasP lace whose value is restricted to the class Place'.

• The concept OutputArc is de�ned for all directed arcs from transitions to
places in A. This concept can be glossed as `The class OutputArc is de�ned
as the intersection of: (i) any class having at least one property hasExpression

3.2. An Ontology for Coloured Petri Nets-based Business Work�ow
Templates 37

whose value is restricted to the class Insert and; (ii) any class having at least
one property hasTrans whose value is restricted to the class Transition'.

• The concept Delete is de�ned for all expressions in input arcs. This con-
cept can be glossed as `The class Delete is de�ned as any class having all of
properties hasAttribute whose values are equal to the class Attribute'.

• The concept Insert is de�ned for all expressions in output arcs. This concept
can be glossed as `The class Insert is de�ned as any class having at least one
property hasAttribute whose value is restricted to the class Attribute'.

• The concept GuardFunction is de�ned for all transition expressions. This
concept can be glossed as `The class GuardFunction is de�ned as the in-
tersection of: (i) any class having at least one property hasAttribute whose
value is restricted to the class Token and; either any class having one property
hasActivity whose value is restricted to the class ActNode or any class having
one property hasControl whose value is restricted to the class CrtNode'.

• The concept Token is de�ned for all tokens in places. This concept can be
glossed as `The class Token is de�ned as any class having at least one property
hasAttribute whose value is restricted to the class Attribute'.

• The concept Attribute is de�ned for all attributes de�ned for the individuals.
This concept can be glossed as `The class Attribute is de�ned as any class
having at least one property value whose value is restricted to the class V alue'.

• The concept AtcNode is de�ned for occurrence operation in activity nodes.
This concept can be glossed as `The class AtcNode is de�ned as any class
having one property value whose value is restricted to the class V alue'.

• The concepts CtrNode is de�ned for the occurrence condition in control nodes.
This concept can be glossed as `The class CtrlNode is de�ned as any class
having at most one property value whose value is restricted to the class V alue'.

• The concept V alue is de�ned for all subsets of I1××I2× . . .× In where Ii is a
set of individuals. This concept can be glossed as `The class V alue is de�ned
as any class having at least one property valueRef whose value is equal to
the class V alue'.

3.2.2 Realization

We rely on OWL DL and use Protégé1, an OWL editor, to develop the CPN ontology.
First of all, it is necessary to note that two OWL class identi�ers, named owl :

Thing and owl : Nothing, are particularly prede�ned. The class extension of owl :
Thing is the set of all OWL individuals. The class extension of owl : Nothing is the
empty set. As a result, each user-de�ned class is absolutely a subclass of owl : Thing.

1http://protege.stanford.edu/

http://protege.stanford.edu/

38
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

Besides, the following types of properties in the Web Ontology Language (OWL)
are used to build an ontology:

• Object properties used to link an individual to another individual;

• Data properties used to link an individual to an RDF literal or an XML Schema
data type;

• Domains and ranges indicate that properties link individuals from one domain
to individuals from another domain;

• Datatypes: There are three types of data range speci�cations in OWL, in-
cluding a RDF datatype, the RDFS class rdfs : Literal and an enumerated
datatype;

• Restriction types: They are divided into three main categories,
such as Quanti�er Restrictions (allV aluesFrom, someV aluesFrom),
Cardinality Restrictions (minCardinality, maxCardinality,
cardinality, minQualifiedCardinality, maxQualifiedCardinality,
qualifiedCardinality) and hasV alue Restrictions. These types are
used to specify the restriction of individuals that belong to a class.

In the following we describe some axioms created for the CPN ontology. The full
description of the CPN ontology can be found in Appendix B.

With regard to classes, we start by creating the class axiom for the class
CPNOnt containing the properties hasP lace, hasTrans and hasArc. OWL pro-
vides the syntactic form EquivalentClasses(C1 . . . Cn) to express synonyms. There-
fore, the class axiom is created as follows:

EquivalentClasses(CPNOnt intersectionOf(restriction(hasP lace

allV aluesFrom(Place) minQualifiedCardinality(1)) restriction(hasTrans

allV aluesFrom(Transition) minQualifiedCardinality(1)) restriction(hasArc

allV aluesFrom(unionOf(InputArc OutputArc)) minQualifiedCardinality (1))));

In order to de�ne a class as a subclass of another one, an axiom written in
the syntactic form SubClassOf(C1, C2) is used. For example, the class Place is a
sub-class of the class CPNOnt, the class axiom is created as follows:

SubClassOf(Place CPNOnt);

If two classes are disjoint, an individual cannot be an instance of more than
one of the two classes. For example, the class Place and the class Transition
are mutually disjoint. This disjointness can be expressed using the syntactic form
DisjointClasses(C1 C2) as follows:

DisjointClasses(Place Transition);

With regard to properties, let us consider the property connectsTrans (as
depicted in Figure 3.4): The domain of this property is a union of the class
Place with the class InputArc. The range of this property is a union of the
class Transition with the class OutputArc. Therefore, we use the syntactic form

3.3. Manipulation of Business Work�ow Templates 39

<String, Int>

<String, Int>

<Int>

1`{a=“Article 01”, n=5} 1`{p=4}

(a,n)

(a,n*p)

(p)

connectsTrans connectsPlace

Figure 3.5: Property connectsTrans and property connectsP lace

SubClassOf(C1, C2) to express this coherence. We create the property axiom for
connecsTrans (Figure 3.5) as follows:

ObjectProperty(connectsTrans domain(unionOf(Place InputArc))

range(unionOf(Transition OutputArc)));

We next introduce the modelling of Individuals, which are the third OWL ele-
ment besides Classes and Properties. It is important to underline that individuals
or instances are chosen by the modeller and depend on the modelling objective. For
example, Figure 3.6 shows the mapping of the transition Receive_order, which is
depicted in Figure 3.3, to the classes and properties of the CPN ontology.

<Transition rdf:ID="Receive_order">

<connectsPlace rdf:resource="#Receive_order_out"/>

<hasGuardFunction>

<GuardFunction rdf:ID="Receive_order_guard">

<hasAttribute rdf:resource="#Receive_order_attribute_1"/>

...

<hasActivity ActNode rdf:resource="Receive_order_activity"/>

</GuardFunction>

</hasGuardFunction>

</Transition>

Figure 3.6: Mapping Individuals to Classes and Properties of the CPN ontology

We have introduced the CPN ontology represented in OWL DL. For the develop-
ment of CBWTs (i.e., business processes modelled with CPNs), in the next section,
we will introduce manipulation operations on their elements. We will also present
the corresponding manipulation statements written in the SPARQL language used
to store concrete CBWTs in RDF format.

3.3 Manipulation of Business Work�ow Templates

In order to develop a business work�ow template, the following basic types of oper-
ations on its elements are required:

(i) Inserting new elements (i.e., places, transitions or arcs, etc.) into a work�ow
template;

(ii) Deleting existing elements from a work�ow template;

40
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

(iii) Updating existing elements for adapting to a work�ow template;

(iv) Editing the order of existing elements in a work�ow template.

More complex operations can then be developed based upon these basic opera-
tions. For example, two separate CBWTs, which represent two business work�ow
templates, can be merged into a single CBWT by inserting all places, transitions
and arcs from one template to the other. A new arc is also inserted in order to link
these CBWTs.

We next de�ne the operations by the corresponding pseudo codes. We also
introduce the SPARQL statements being suitable to the operations, which enable
CBWTs to be stored in RDF format.

(i) Inserting new elements into a work�ow template.

INSERT ELEMENT {e1, e2, . . . , en} INTO PROCESS wf

[WHERE cond1, cond2, . . . , condm]; (n ≥ 1,m ≥ 1)

This statement means that `elements e1, e2, . . . , en, each of which has been
created, are inserted into a work�ow template named wf . The conditions
cond1, cond2, . . . , condm in the WHERE clause (if any) specify how to insert
these new elements into the work�ow template wf '.

The INSERT DATA statement or the INSERT WHERE statement in the
SPARQL query language can be used to insert new elements on work�ow
templates into RDF �les. As an example, Figure 3.7 illustrates a new place,
which contains a token and is connected to a transition, being inserted into a
work�ow template2.

INSERT DATA{

k:NameOfPlace a h:Place;

h:hasMarking k:NameOfToken.

k:NameOfWF h:hasPlace k:NameOfPlace.}

Figure 3.7: An example of the INSERT DATA statement

(ii) Deleting existing elements from a work�ow template.

DELETE ELEMENT {e1, e2, . . . , en} FROM PROCESS wf ; (n ≥ 1)

This statement means that existing elements e1, e2, . . . , en are completely
deleted from a work�ow template named wf .

The DELETE DATA statement or the DELETE WHERE statement in the
SPARQL query language can be used to delete existing elements from the

2Two pre�xes are assumed as:

PREFIXh :< http : //www.semanticweb.org/CPNWF# >

PREFIX k : < http : //WFTemplate# >

3.3. Manipulation of Business Work�ow Templates 41

RDF �le format. As an example, Figure 3.8 illustrates an existing place being
deleted from a work�ow template.

DELETE WHERE{

k:NameOfPlace ?pr1 ?o.

?s ?pr2 k:NameOfPlace. }

Figure 3.8: An example of the DELETE WHERE statement

(iii) Updating existing elements for adapting to a work�ow template.

UPDATE ELEMENT {e1, e2, . . . , en} ON PROCESS wf

[WHERE cond1, cond2, . . . , condm]; (n ≥ 1,m ≥ 1)

This statement means that elements e1, e2, . . . , en in a work�ow template
named wf , each of which has been created, are updated. The conditions
cond1, cond2, . . . , condm in the WHERE clause (if any) specify how to up-
date these elements in the template wf .

In this case, some statements in the SPARQL query language can be used,
such as the INSERT DATA statement, the INSERT WHERE statement or
the DELETE INSERT WHERE statement. As an example, in Figure 3.9, an
existing place in a work�ow template changes its token.

DELETE

{k:NameOfPlace h:hasMarking k:NameToken1}

INSERT

{k:NameOfPlace h:hasMarking k:NameOfToken2}

WHERE{

k:NameOfWF h:hasPlace k:NameOfPlace }

Figure 3.9: An example of the DELETE INSERT WHERE statement

(iv) Editing the order of existing elements in a work�ow template.

MODIFY PROCESS wf

WHERE cond1, cond2, . . . , condn

REPLACE condR1, condR2, . . . , condRm; (n ≥ 1,m ≥ 1)

This statement is used to edit ordering relationships in a work�ow template.
No element inserted, deleted or updated in the template.

The DELETE INSERT DATA statement is used to edit the order of existing
elements in the RDF �le format. As an example, in Figure 3.10, an exist-
ing place in a work�ow template changes its connection from a transition to
another transition.

42
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

DELETE

{k:NameOfPlace h:connectsTrans k:NameOfTrans1}

INSERT

{k:NameOfPlace h:connectsTrans k:NameOfTrans2}

WHERE{

k:NameOfWF h:hasTrans k:NameOfTransition1;

h:hasTrans k:NameOfTransition2;

h:hasPlace k:NameOfPlace. }

Figure 3.10: An example of editing ordering relationships

3.4 Related Work

To the best of our knowledge, the ontology-based approach for modelling work�ow
templates is not a new idea. There has been some work to build work�ow ontologies,
such as [Greco 2004, Koschmider 2005, Gasevic 2006, Sebastian 2008, Zhang 2011]
to support (semi-)automatic system collaboration and provide machine-readable
de�nitions of concepts and interpretable format. Section 3.4.1 describes approaches
focusing on combining work�ows with ontologies while approaches focusing on com-
bining Petri Nets with ontologies are described in Section 3.4.2.

3.4.1 On Combining Work�ows with Ontologies

By analysing work�ows for several active projects, the authors of [Sebastian 2008]
describe a set of work�ow properties. On this basis, they introduce an ontology to
represent di�erent aspects of work�ows for collaborative ontology development. The
ontology becomes a key component of the customizable work�ow support in Protégé.
However, this work refers to no existing process modelling languages. Therefore, to
work with a work�ow execution engine, it is necessary to map the top level of
the ontology to the process-modelling language required by the work�ow execution
engine. In contrast to this work, we develop the CPN ontology to represent CPNs,
a modelling language, with OWL DL.

O. Thomas and M. Fellmann in [Thomas 2009a] address a problem of semantic
process modelling. They introduce an extension of process modelling languages to
represent the semantics of process model element labels. As shown in Figure 3.11,
the labels formulated in natural language can be represented by terms from a formal
ontology. The bene�ts of this formalization of model element-related semantics are
that it eliminates the scope of interpretation related to the use of natural language
and it supports semantic validation. Furthermore, this work provides a very useful
inspiration for our work, but it does not discuss how to formulate semantic con-
straints and also does not mention the control-�ow perspective in process models as
does our approach.

3.4. Related Work 43

Ontology

Process Model

Referent Symbol

Term

refers to

refers to

creates references
represents

formalized in

represents

Figure 3.11: Extended semiotic triangle �model�, �ontology� and �process� for the
semantic process modelling [Thomas 2009a]

3.4.2 On Combining Petri Nets/High-Level Petri Nets with On-
tologies

The authors of [Gasevic 2006] propose a Petri Net ontology3, which is de�ned for
the semantic description of PN concepts and their relationships. The purpose of
this work is to enable sharing PNs on the Semantic Web and transform a speci�c
XML-based PN format into OWL. A PN UML model is used as the starting point
to implement the ontology. The resulting PN models are then represented using
Semantic Web languages, RDF(S) and OWL. So far, the Petri net ontology is also
extended for: P/T nets, Time Petri nets4 [Murata 1989], and Upgraded Petri nets5

[Strbac 2013]. With the development of the CPN ontology, our work aims to provide
the shareability and reusability of CPN-based business work�ow templates not only
for the Semantic Web, but also for business work�ow systems.

[Koschmider 2005] also introduces an ontology to describe business processes
modelled with Petri Nets (PNs). The ontology is aimed to facilitate the semantic
interconnectivity of semantic business processes that enables semantic information
exchange. Furthermore, the translation of traditional PNs into OWL is used to se-
mantically align business process models (see [Brockmans 2006]) and automatically
compute similarities between business process models (see [Ehrig 2007]) to support
(semi-)automatic interconnectivity of business processes.

3http://www.sfu.ca/~dgasevic/projects/PNO/RDFS/PNO.rdfs
4http://www.sfu.ca/~dgasevic/projects/PNO/RDFS/TimePNO.rdfs
5http://www.sfu.ca/~dgasevic/projects/PNO/RDFS/UpgradedPNO.rdfs

http://www.sfu.ca/~dgasevic/projects/PNO/RDFS/PNO.rdfs
http://www.sfu.ca/~dgasevic/projects/PNO/RDFS/TimePNO.rdfs
http://www.sfu.ca/~dgasevic/projects/PNO/RDFS/UpgradedPNO.rdfs

44
Chapter 3. Development of a Knowledge Base for Control �ow-based

Business Work�ow Templates

Our CPN ontology, a representation of Coloured Petri Nets with OWL DL on-
tology, is very close to the one proposed by [Koschmider 2005], however, there are
some di�erences. We focus on representing business work�ow templates developed
based on the ontology in a knowledge base, which is de�ned in order to share and
reuse them.

3.5 Discussion and Conclusion

This chapter focused on representing control �ow-based business work�ow tem-
plates. We �rst presented a formal de�nition of CPN-based business models. We
then de�ned the CPN ontology to represent CPNs with OWL DL. Each element of
CPNs has been translated into a corresponding OWL concept. In addition, some
of the axioms created for Classes and Properties in the CPN ontology have been
presented. Individuals, the third OWL element, have been also considered. As
a result, the combination of CPNs and ontologies provides not only semantically
rich business process de�nitions but also machine-processable ones. Moreover, in
order to model business processes, the basic types of manipulation operations on
the elements of process models have been presented. Besides, the SPARQL state-
ments, which correspond to the operations, have been indicated to develop or mod-
ify CBWTs encoded in RDF format. The results of this work were published in
[Nguyen 2013, Nguyen 2015, Nguyen 2014c].

We know that the speci�cation of a real-world business process is mostly manual
and is thus prone to human error, resulting in a considerable number of failed
projects. Therefore, to ensure the correctness of concrete CBWTs, we will implement
SPARQL queries to detect shortcomings in concrete work�ow templates at design
phase in Chapter 5.

Chapter 4

Semantic Business Process
Modelling

Contents
4.1 Formal De�nition of Semantic Constraints 46

4.2 Implicit, Redundant and Con�icting Semantic Constraints 48

4.2.1 Algebraic Properties of Semantic Constraints 48

4.2.2 Algorithm for Validating a Set of Semantic Constraints . . . 56

4.3 Organization of the Knowledge Base of Semantic Constraints 59

4.3.1 Development of a Business Process Ontology 59

4.3.2 Creation of Correspondences between Ontologies 61

4.4 Integration of Event-Condition-Action Rules 66

4.5 Related Work . 71

4.6 Discussion and Conclusion . 73

The veri�cation of a business work�ow generally covers the following aspects:

1. To check the syntactic correctness of a work�ow based on the general proper-
ties.

2. To check that a work�ow complies with a set of properties given by a formula.

In the previous chapter, a formal de�nition of CPN-based process models has been
introduced. It is intended to support the syntactic veri�cation of a business work�ow
template (Section 5.1). Therefore, in this chapter, we focus on a solution to mod-
elling semantic business processes, which aims to support the semantic veri�cation
related to the above-mentioned second aspect (Section 5.2).

The main purpose of this chapter is to formally describe a semantic business
work�ow template by identifying a set of semantic constraints. We �rst give a formal
de�nition of semantic constraints in form of a set of attributes. We then introduce an
algorithm to check redundant and con�icting constraints. A formalized repository
is thus constructed on the top of the set of well-checked1 semantic constraints, from
which a semantic business work�ow template is developed. In addition, we introduce
ECA-like rules to represent business level requirements. This allows for integrating
requirements into a work�ow template.

1A well-checked set of semantic constraints means that there are neither redundant constraints

nor con�icting constraints

46 Chapter 4. Semantic Business Process Modelling

4.1 Formal De�nition of Semantic Constraints

As mentioned previously, the veri�cation of business work�ows is an important
step before executable work�ow templates are deployed. The soundness veri�cation
concerning the control-�ow perspective of process models is a necessary but not suf-
�cient condition for correctness checks regarding the individual work�ow activities
and their semantics2. Hence, to ensure that a business work�ow works as intended,
their individual activities are needed to take into account - What are the mean-
ing and relations between activities in a work�ow? What do they actually execute
during their performance? In fact, no information about this can be found in tra-
ditional work�ows3 except the naming of the activities. For simple applications in
closed domains where the behavior of activities are understood in detail by involved
persons and/or not overly complicated, naming of model activities may be su�cient.
However, for more complicated applications, there is a strong demand for a powerful
method to describe semantically rich activities and the relations between them. It
is also useful to avoid issues which limit the use of work�ows as a medium for com-
munication or by di�erent agents in a heterogeneous and distributed environment.
For example, an activity in a work�ow is referred to as �goods� whereas in another
work�ow, a further activity is referred to as �merchandise� and of course both of
these activities represent the same object.

Indeed, the two questions stated above motivate us to design a semantic con-
straint speci�cation language which allows modellers to construct semantic business
process models. Semantic constraints are here used to represent various dependen-
cies between activities of a business process, such as ordering relations and existence
dependencies. Consequently, semantic constraints tackled in this thesis can be re-
garded as a subset of business rules.

Based on the analysis of the state-of-the-art concerning the division of semantic
constraints, we classify semantic constraints into four basic types as follows:

1. Mutual exclusion constraints (mExclusion) express that the presence of
an activity imposes the exclusion on another activity and therefore, the exe-
cution order between these activities is not speci�ed;

2. Choice constraints (choice) express that only one of two activities must
be executed and therefore, the execution order between these activities is not
speci�ed;

2Semantics refers to the study of meaning in language, which focuses on the relations between

words, phrase, signs and symbols, what they represent and denote. Linguistic semantics is the

study of meaning employed for comprehending human expression through language. In scienti�c

disciplines, the scienti�c meaning often refers to the conception of linguistics. �In this discipline,

semantics refers to the branch that deals with the meaning and signi�cance of language resp.

linguistic signs. In other words: the teaching of the meaning and the relations of signs for a certain

object. If this is transferred to process modeling languages, the semantics of a process model can

be understood as the relationship between the elements of a model (sign) and an existing or future

operational business process (universe of discourse)� [Fellmann 2011].
3In general, traditional work�ows focus on syntactical relationships between activities and their

black box character.

4.1. Formal De�nition of Semantic Constraints 47

3. Dependency constraints (dependency) express the presence of one activity
(called the source activity) imposes that the other activity (called the target
activity) must be included, but not conversely. These activities are executed
dependently (i.e., the source activity is executed before or after the target
activity).

4. Coexistence constraints (coexistence) express that two activities must be
both executed or both excluded. These activities are executed concurrently
or dependently (i.e., one is executed before or after the other).

De�nition 9 (Semantic Constraint). Let τ be a set of relevant activities4 in the
context of a speci�c business process. A 6-tuple
SC = (constraintType, appliedActivity, relatedActivity, order, description,

[Equivalence]) is called the semantic constraint de�nition, in which:

• constraintType ∈ {mExclusion, choice, dependency, coexistence};

• appliedActivity ∈ τ ;

• relatedActivity ∈ τ ;

• order ∈ {before, after, concurrence, notSpecified} ;

• description is used to describe a constraint;

• Equivalence is a set of activities which are equivalent to activity
appliedActivity, Equivalence ⊂ τ .

The �rst parameter constraintType denotes the type of a semantic con-
straint, it is mExclusion or choice or dependency or coexistence. Each value
of constraintType refers to the relationship between the executions of the source
activity expressed by the second parameter appliedActivity and the target activity
expressed by the third parameter relatedActivity. The parameter order speci-
�es the execution order between the source and target activity. The default value
notSpecified is assigned to the constraints of the type mExecution or choice. The
�rst four parameters are very important and obligatory when de�ning a semantic
constraint. The parameter description is used to describe the constraint in a natu-
ral language5. And the last parameter Equivalence6 is optional, which contains a
set of activities (if any) equivalent to the source activity.

Example 4.1.1. Let us continue the example of the fOtD process described in
Section 1.2. Consider the template Payment, which is presented in Section 1.2.1.3,
a set of relevant semantic constraints is created as follows:

4The issue relative to naming activities will be discussed in Appendix C.
5In our case, English is used to describe semantic constraints.
6In general, in a constraint, each value in the set Equivalence is equivalent to the value of the

parameter appliedActivity. With the implicit requirement relating to the naming of activities of

a work�ow template, if a name has been used for an activity in the parameter appliedActivity or

the parameter relatedActivity will not appear as a value in the parameter Equivalence and vice

versa to avoid confusion

48 Chapter 4. Semantic Business Process Modelling

sc1=(dependency, Get_payment_data, Provide_payment_methods, after,

‘‘after choosing one of provided payment methods, user must enter

payment data’’, {Get_payment_information})

sc2=(dependency, Process_check_or_cash, Get_payment_data, after,

‘‘paying by check or cash has to be checked and validated’’)

sc3=(dependency, Process_check_or_cash, Provide_payment_methods,

after, ‘‘processing check or cash is only executed after choosing a

payment method’’)

sc4=(dependency, Process_credit_card, Get_payment_data, after,

‘‘paying par credit card must be checked and validated’’)

sc5=(dependency, Process_check_or_cash, Get_payment_data, after,

‘‘paying by check or cash must be checked and valided’’)

sc6=(choice, Process_credit_card, Process_check_or_cash, notSpecified,

‘‘customers can only pay by credit card or check or cash’’)

4.2 Implicit, Redundant and Con�icting Semantic Con-

straints

4.2.1 Algebraic Properties of Semantic Constraints

Through the de�nition of semantic constraints, information about how to use activ-
ities and about the relations between those activities is captured. However, when
de�ning a set of semantic constraints, it may occur implicit, redundant or con-
�icting semantic constraints. Two constraints can be combined together to consti-
tute new constraints. This is demonstrated by the parameters constraintType and
order in the de�nition of semantic constraints. As stated previously, the parameter
constraintType expresses the semantic constraint's type and the parameter order
indicates the execution order of a source activity and a target activity. In this sec-
tion, we present the properties related to these properties in Table 4.1 and Table
4.2. The properties are used to infer implicit constraints (see Section 4.2.2) and
create business work�ow templates (see Section 4.3.2).

We use the notation: activity1 order_value activity2 to denote that
activity1 and activity2 are involved in a (inferred) semantic constraint like
(constraintType, activity1, activity2,order_value, description, [Equivalent]);
and the notation: activity1 constraint_type activity2 to denote that
activity1 and activity2 are involved in a (inferred) semantic constraint like
(constraint_type, activity1, activity2, order, description, [Equivalent]).

In Table 4.1, we present the associative, transitive and commutative properties
identi�ed based on the parameter constraintType where a1, a2 and a3 are activities.
It is important to note that for each associative property in Table 4.1, the value of
the parameter order in the dependency constraints must be the same.

4.2. Implicit, Redundant and Con�icting Semantic Constraints 49

Table 4.1: Algebraic properties identi�ed based on the parameter constraintType

Name Expression

Association

(1) a1 dependency a3, a2 dependency a3, a1 coexistence a2 →
(a1 coexistence a2) dependency a3

(2) a1 dependency a3, a2 dependency a3, a1 mExclusion a2 →
(a1 mExclusion a2) dependency a3

(3) a1 dependency a3, a2 dependency a3, a1 choice a2 →
(a1 choice a2) dependency a3

(4) a1 dependency a2, a1 dependency a3, a2 coexistence a3 →
a1 dependency (a2 coexistence a3)

(5) a1 dependency a2, a1 coexistence a3, a2 coexistence a3 →
(a1 dependency a2) coexistence a3

(6) a1 dependency a2, a1 mExclusion a3, a2 mExclusion a3 →
(a1 dependency a2) mExclusion a3

(7) a1 dependency a2, a1 choice a3, a2 choice a3 →
(a1 dependency a2) choice a3

(8) a1 coexistence a2, a1 coexistence a3, a2 dependency a3 →
a1 coexistence (a2 dependency a3)

(9) a1 mExclusion a2, a1 mExclusion a3, a2 dependency a3 →
a1 mExclusion (a2 dependency a3)

(10) a1 choice a2, a1 choice a3, a2 dependency a3 →
a1 choice (a2 dependency a3)

Transitivity
(1) a1 coexistence a2, a2 choice a3 → a1 choice a3
(2) a1 coexistence a2, a2 mExclusion a3 →

a1 mExclusion a3

Commutativity
(1) a1 coexistence a2 ⇔ a1 coexistence a2
(2) a1 choice a2 ⇔ a1 choice a2
(3) a1 mExclusion a2 ⇔ a1 mExclusion a2

In order to easily prove the algebraic properties presented in Table 4.1, we express
the execution of an activity as an integer programming formulation. Using function
exe(ai) to indicate whether activity ai ∈ τ must be executed or not. Each value of
function exe(ai) is considered as a propositional variable that ranges over domain
D = {0, 1}:

(i) exe(ai) = 0 indicates that activity ai must not be executed.

(ii) exe(ai) = 1 indicates that activity ai must be executed.

(iii) exe(ai) ≤ exe(aj) indicates that if activity ai is executed, activity aj must be
executed, but not conversely. It corresponds to a semantic constraint of the
type denpendency.

(iv) exe(ai) = exe(aj) indicates that two activities ai and aj must both be executed
or neither is executed. It corresponds to a semantic constraint of the type
coexistence.

50 Chapter 4. Semantic Business Process Modelling

(v) exe(ai) + exe(aj) ≤ 1 indicates that either the execution of two activities ai
and aj are mutually exclusive or these activities are not executed at all. It
corresponds to a semantic constraint of the type mExclusion.

(vi) exe(ai) + exe(aj) = 1 indicates that only one of two activities ai and aj is
executed. It corresponds to a semantic constraint of the type choice.

Based on this expression, the proofs of the algebraic properties related to the pa-
rameter constraitType are given below.

4.2.1.1 Associative Property of the Parameter constraintType

(i) Proof of the associative property (1): Consider the following semantic con-
straints sc1, sc2 and sc3 where:

• sc1 = (dependency, a1, a3, order1, description1, [activities_are_equivalent
_to_Activity_a1])

• sc2 = (dependency, a2, a3, order1, description2, [activities_are_equivalent
_to_Activity_a2])

• sc3 = (coexistence, a1, a2, order3, description3, [activities_are_equivalent
_to_Activity_a1])

In order to prove the associative property (1) of the parameter constraitType
(i.e., (a1 coexistence a2) dependency a3), we have to prove that exe(a1) =

exe(a2) ≤ exe(a3).

Proof. By using our expression of the execution of an activity and De�nition
9, we get:

a1 dependency a3 ⇒ exe(a1) ≤ exe(a3). (4.1)

a2 dependency a3 ⇒ exe(a2) ≤ exe(a3). (4.2)

a1 coexistence a2 ⇒ exe(a1) = exe(a2). (4.3)

By combining (4.1), (4.2) and (4.3), we get: exe(a1) = exe(a2) ≤ exe(a3)

(ii) Proof of the associative property (2): Consider the following semantic con-
straints sc1, sc2 and sc3 where:

• sc1 = (dependency, a1, a3, order1, description1, [activities_are_equivalent
_to_Activity_a1])

• sc2 = (dependency, a2, a3, order1, description2, [activities_are_equivalent
_to_Activity_a2])

• sc3 = (mExclusion, a1, a2, order3, description3, [activities_are_equivalent
_to_Activity_a1])

4.2. Implicit, Redundant and Con�icting Semantic Constraints 51

In order to prove the associative property (1) of the parameter constraitType
(i.e., (a1 mExclusion a2) dependency a3), we have to prove that exe(a1) +
exe(a2) ≤ exe(a3).

Proof. By using our expression of the execution of an activity and De�nition
9, we get:

a1 dependency a3 ⇒ exe(a1) ≤ exe(a3)⇒

 exe(a1) = 0, exe(a3) = 0

exe(a1) = 0, exe(a3) = 1

exe(a1) = 1, exe(a3) = 1
(4.4)

a2 dependency a3 ⇒ exe(a2) ≤ exe(a3)⇒

 exe(a2) = 0, exe(a3) = 0

exe(a2) = 0, exe(a3) = 1

exe(a2) = 1, exe(a3) = 1
(4.5)

a1 mExclusion a2 ⇒ exe(a1) + exe(a2) ≤ 1

⇒

 exe(a1) = 0, exe(a2) = 0

exe(a1) = 0, exe(a2) = 1

exe(a1) = 1, exe(a2) = 0

(4.6)

By combining (4.4), (4.5) and (4.6), we get:

exe(a1) = 0, exe(a2) = 0, exe(a3) = 0

exe(a1) = 0, exe(a2) = 0, exe(a3) = 1

exe(a1) = 0, exe(a2) = 1, exe(a3) = 1

exe(a1) = 1, exe(a2) = 0, exe(a3) = 1

⇒ exe(a1) + exe(a2) ≤ exe(a3) (4.7)

(iii) Proof of the associative property (4): Consider the following semantic con-
straints sc1, sc2 and sc3 where:

• sc1 = (dependency, a1, a2, order1, description1, [activities_are_equivalent
_to_Activity_a1])

• sc2 = (dependency, a1, a3, order1, description2, [activities_are_equivalent
_to_Activity_a1])

• sc3 = (coexistence, a2, a3, order3, description3, [activities_are_equivalent
_to_Activity_a2])

In order to prove the associative property (4) of the parameter constraitType
(i.e., a1 dependency (a2 coexistence a3)), we have to prove that exe(a1) ≤
exe(a2) = exe(a3).

52 Chapter 4. Semantic Business Process Modelling

Proof. By using our expression of the execution of an activity and De�nition
9, we get:

a1 dependency a2 ⇒ exe(a1) ≤ exe(a2) (4.8)

a1 dependency a3 ⇒ exe(a1) ≤ exe(a3) (4.9)

a2 coexistence a3 ⇒ exe(a2) = exe(a3) (4.10)

By combining (4.8), (4.9) and (4.10), we get: exe(a1) ≤ exe(a2) = exe(a3).

The rest of associative properties can be proven in the similar way.

4.2.1.2 Transitive Property of the Parameter constraintType

(i) Proof of the transitive property (1):

Consider the following semantic constraints sc1 and sc2 where:

• sc1 = (coexistence, a1, a2, order1, description1, [activities_are_equivalent
_to_Activity_a1])

• sc2 = (choice, a2, a3, order2, description2, [activities_are_equivalent
_to_Activity_a2])

In order to prove the transitive property (2) of the parameter constraitType
(i.e., a1 choice a3), we have to prove that exe(a1) + exe(a3) = 1.

Proof. By using our expression of the execution of an activity and De�nition
9, we get:

a1 coexistence a2 ⇒ exe(a1) = exe(a2) (4.11)

a2 choice a3 ⇒ exe(a2) + exe(a3) = 1 (4.12)

By combining (4.11) and (4.12), we get: exe(a1) + exe(a3) = 1.

(ii) Proof of the transitive property (2):

Consider the following semantic constraints sc1 and sc2 where:

• sc1 = (coexistence, a1, a2, order1, description1, [activities_are_equivalent
_to_Activity_a1])

• sc2 = (mExclusion, a2, a3, order2, description2, [activities_are_equivalent
_to_Activity_a2])

In order to prove the transitive property (2) of the parameter constraitType
(i.e., a1 mExclusion a3), we have to prove that exe(a1) + exe(a3) ≤ 1.

Proof. By using our expression of the execution of an activity and De�nition
9, we get:

a1 coexistence a2 ⇒ exe(a1) = exe(a2) (4.13)

a2 mExclusion a3 ⇒ exe(a2) + exe(a3) ≤ 1 (4.14)

By combining (4.13) and (4.14), we get: exe(a1) + exe(a3) ≤ 1.

4.2. Implicit, Redundant and Con�icting Semantic Constraints 53

4.2.1.3 Commutative Property of the Parameter constraintType

Consider the following semantic constraints sc1 and sc2 where:

• sc1 = (constraintType1, a1, a2, order1, description1, [activities_are_equivalent
_to_Activity_a1])

• sc2 = (constraintType1, a2, a1, order2, description2, [activities_are_equivalent
_to_Activity_a2])

• constraintType1 =

 coexistence

choice

mExclusion

In order to prove the commutative property (1-3) of the parameter constraitType,
we have to prove that: exe(a1) = exe(a2) ⇔ exe(a2) = exe(a1)

exe(a1) + exe(a2) = 1 ⇔ exe(a2) + exe(a1) = 1

exe(a1) + exe(a2) ≤ 1 ⇔ exe(a2) + exe(a1) ≤ 1

(4.15)

Proof. They are obviously true.

In Table 4.2, we present the symmetric, transitive and commutative properties
identi�ed based on the parameter order where a1, a2 and a3 are activities.

Table 4.2: Algebraic properties identi�ed based on the parameter order

Name Expression

Symmetrization (1) a1 before a2 ⇔ a2 after a1

Transitivity

(1) a1 before a2, a2 before a3 → a1 before a3
(2) a1 after a2, a2 after a3 → a1 after a3
(3) a1 concurrence a2, a2 concurrence a3 →

a1 concurrence a3
(4) a1 concurrence a2, a2 before a3 → a1 before a3
(5) a1 concurrence a2, a2 after a3 → a1 after a3

Commutativity
(1) a1 concurrence a2 ⇔ a2 concurrence a1
(2) a1 notSpecified a2 ⇔ a2 notSpecified a1

In order to easily prove the algebraic properties presented in Table 4.2, we express
the time when an activity is executed in a process by a real function. Using function
time(ai), ai ∈ τ to indicate the time, which is calculated from the start point of a
process, when an activity is executed. Function time(ai) returns a non-negative
number.

(i) time(ai) > 0 indicates that activity ai is executed.

(ii) time(ai) = 0 indicates that activity ai is not executed.

54 Chapter 4. Semantic Business Process Modelling

(iii) time(ai) ≤ time(aj) indicates that activity ai is executed before activity aj .

(iv) time(ai) ≥ time(aj) indicates that activity ai is executed after activity aj .

(v) time(ai) = time(aj) indicates that activity ai and activity aj are executed at
the same time.

(vi) time(ai)+ time(aj) ≥ 0 and time(ai)∗ time(aj) = 0 indicates that either only
one of two activities ai and aj is executed or both of them are not executed.

Based on this expression, the proofs of the algebraic properties related to the pa-
rameter order are given below.

4.2.1.4 Symmetric Property of the Parameter order

Consider the following semantic constraints sc1 and sc2 where:

• sc1 = (constraintType1, a1, a2, before, description1, [activities_are_equivalent
_to_Activity_a1])

• sc2 = (constraintType2, a2, a1, after, description2, [activities_are_equivalent
_to_Activity_a2])

In order to prove the symmetric property (1) of the parameter order, we have
to prove that a1 before a2 ⇔ a2 after a1.

Proof. By using our expression of the execution order of two activities and De�nition
9, we get:

a1 before a2 ⇒ time(a1) ≤ time(a2)⇔ time(a2) ≥ time(a1)⇒ a2 after a1
(4.16)

4.2.1.5 Transitive Property of the Parameter order

(i) Proof of the transitive property (1):

Consider the following semantic constraints sc1 and sc2 where:

• sc1 = (constraintType1, a1, a2, before, description1, [activities_are_
equivalent_to_Activity_a1])

• sc2 = (constraintType2, a2, a3, before, description2, [activities_are_
equivalent_to_Activity_a2])

In order to prove the transitive property (1) of the parameter order (i.e.,
a1 before a3), we have to prove that time(a1) ≤ time(a3).

4.2. Implicit, Redundant and Con�icting Semantic Constraints 55

Proof. By using our expression of the execution order of two activities and
De�nition 9, we get:

a1 before a2 ⇒ time(a1) ≤ time(a2) (4.17)

a2 before a3 ⇒ time(a2) ≤ time(a3) (4.18)

By combining (4.17) and (4.18), we get: time(a1) ≤ time(a3).

(ii) Proof of the transitive property (3):

Consider the following semantic constraints sc1 and sc2 where:

• sc1 = (constraintType1, a1, a2, concurrence, description1, [activities

_are_equivalent_to_Activity_a1])

• sc2 = (constraintType2, a2, a3, concurrence, description2, [activities

_are_equivalent_to_Activity_a2])

In order to prove the transitive property (3) of the parameter order (i.e.,
a1 concurrence a3), we have to prove that time(a1) = time(a3).

Proof. By using our expression of the execution order of two activities and
De�nition 9, we get:

a1 concurrence a2 ⇒ time(a1) = time(a2) (4.19)

a2 concurrence a3 ⇒ time(a2) = time(a3) (4.20)

By combining (4.19) and (4.20), we get: time(a1) = time(a3).

(iii) Proof of the transitive property (4):

Consider the following semantic constraints scC1 and sc2 where:

• sc1 = (constraintType1, a1, a2, concurrence, description1, [activities

_are_equivalent_to_Activity_a1])

• sc2 = (constraintType2, a2, a3, before, description2, [activities_are
_equivalent_to_Activity_a2])

In order to prove the transitive property (4) of the parameter order (i.e.,
a1 before a3), we have to prove that time(a1) ≤ time(a3).

Proof. By using our expression of the execution order of two activities and
De�nition 9, we get:

a1 concurrence a2 ⇒ time(a1) = time(a2) (4.21)

a2 before a3 ⇒ time(a2) ≤ time(a3) (4.22)

By combining (4.21) and (4.22), we get: time(a1) ≤ time(a3).

The rest of transitive properties in Table 4.2 can be proven in the similar way,.

56 Chapter 4. Semantic Business Process Modelling

4.2.1.6 Commutative Property of the Parameter order

(i) Proof of the commutative property (1):

Consider the following semantic constraints sc1 and sc2 where:

• sc1 = (constraintType1, a1, a2, concurrence, description1, [activities_are
_equivalent_to_Activity_a1])

• sc2 = (constraintType2, a2, a1, concurrence, description2, [activities_are
_equivalent_to_Activity_a2])

In order to prove the commutative property (1) of the parameter order, we
have to prove that time(a1) = time(a2)⇔ time(a2) = time(a1).

Proof. It is obviously true.

(ii) Proof of the commutative property (2):

Consider the following semantic constraints sc1 and sc2 where:

• sc1 = (constraintType1, a1, a2, notSpecified, description1, [activities_are
_equivalent_to_Activity_a1])

• sc2 = (constraintType2, a2, a1, notSpecified, description2, [activities_are
_equivalent_to_Activity_a2])

In order to prove the commutative property (2) of the parameter order, we
have to prove that:{
time(a1) + time(a2) > 0

time(a1) ∗ time(a2) = 0
⇔
{
time(a2) + time(a1) > 0

time(a2) ∗ time(a1) = 0
.

Proof. It is obviously true.

In order to describe a semantic business process, a set of semantic constraints
is de�ned with the help of domain experts. Consequently, implicit, redundant and
con�icting constraints may exist. Moreover, con�icting constraints may lead to
undesirable results. Hence, it is necessary to resolve con�icting constraints before a
set of semantic constraints can be used. In the upcoming section, we will present
our algorithm to validate a set of semantic constraints.

4.2.2 Algorithm for Validating a Set of Semantic Constraints

We use the properties presented in Table 4.1 and Table 4.2 to infer implicit semantic
constraints. The detection of them can help to eliminate redundant constraints and
to detect con�icting ones.

Given a set of semantic constraints, C, in the context of a speci�c business
process, we have the following notations:

4.2. Implicit, Redundant and Con�icting Semantic Constraints 57

• Let C
′
be the set of all semantic constraints stemming from the semantic

constraints in C.

• Let C∗ be the set of all possible constraints: C∗ = C ∪ C ′ .

By using these notations, we next introduce the two de�nitions of redundant and
con�icting semantic constraints.

De�nition 10 (Redundant semantic constraints). Constraint sci ∈ C :

sci = (constraintType1, a1, a2, order1, description1, [activities_are_equivalent_to
_Activity_a1])) is called a redundant constraint if and only if: ∃scj ∈ C∗ where:

• scj = (constraintType1, a1, a2, order1, description2, [activities_are_equivalent
_to_Activity_a1]); or

• scj = (constraintType1, a2, a1, oder1, description2, [activities_are_equivalent
_to_Activity_a2]) and constraintType1 ∈ {choice,mExclusion} and
order1 = notSpecified; or

• scj = (constraintType1, a2, a1, oder1, description2, [activities_are_equivalent
_to_Activity_a2]) and constraintType1 = coexistence and oder1 =

concurrence;

• scj = (constraintType1, a2, a1, oder2, description2, [activities_are_equivalent
_to_Activity_a2]) and constraintType1 = coexistence and order1, order2
are symmetric.

De�nition 11 (Con�icting semantic constraints). Constraint sci ∈ C :

sci = (constraintType1, a1, a2, order1, description1, [activities_are_equivalent_to
_Activity_a1])) is called a con�icting constraint if and only if: ∃scj ∈ C∗ where:

• scj = (constraintType1, a2, a1, order1, description2, [activities_are_equivalent
_to_Activity_a2]) and constraintType1 = coexistence and order1 6=
concurrence; or

• scj = (constraintType1, a2, a1, order1, description2, [activities_are_equivalent
_to_Activity_a2]) and constraintType1 6= coexistence and order1 =

concurrence; or

• scj = (constraintType1, a2, a1, order1, description2, [activities_are_equivalent
_to_Activity_a2]) and constraintType1 /∈ {choice,mExclusion} and
order1 = notSpecified; or

• scj = (constraintType1, a2, a1, order1, description2, [activities_are_equivalent
_to_Activity_a2]) and constraintType1 ∈ {choice,mExclusion} and
order1 6= notSpecified; or

• scj = (constraintType2, a1, a2, order1, description2, [activities_are_equivalent
_to_Activity_a1]); or

58 Chapter 4. Semantic Business Process Modelling

• scj = (constraintType1, a1, a2, order2, description2, [activities_are_equivalent
_to_Activity_a1]); or

• scj = (constraintType2, a2, a1, order2, description2, [activities_are_equivalent
_to_Activity_a2]) and order1, order2 are symmetric; or

• scj = (constraintType1, a2, a1, order2, description2, [activities_are_equivalent
_to_Activity_a2]) and order1, order2 are symmetric and constraintType1 =
dependency.

Example 4.2.1. Let us consider the three constraints, sc1, sc2 and sc3, expressed
in Example 4.1.1. According to the properties, Transitivity (4) in Table 4.1, Sym-
metrization (1) and Transitivity (1) in Table 4.2, a new constraint, namely sc1−2,
can be inferred from the constraints sc1 and sc2 as follows:

sc1_2=(dependency, Process_check_or_cash, Provide_payment_methods,

after,‘‘after choosing one of provided payment methods, user must

enter payment data; paying by check or cash has to be checked and

validated’’)

Since the �rst four attributes of sc1−2 and of sc3 are the same, the constraint
sc3 is redundant according to De�nition 10. Therefore, the constraint sc3 must be
removed.

When a set of constraints is large, we need an algorithm to resolve issues related
to redundancy and con�icting semantic constraints. In the following we present our
algorithm used to remove the redundancies and detect con�icts.

As shown in Algorithm 1, the procedure to validate the set of constraints will
stop as soon as it detects two con�icting constraints or a constraint that con�icts
with the implicit constraint inferred from two other constraints and a message is
generated to notify the users (line 5, line 11). Regarding redundancy checks, if two
constraints are redundant, one of them is removed (line 14). The boolean function
conflict is used to check the con�ict between two constraints, i.e., it returns true if
they are con�icting, otherwise, it returns false. The function infer is used to infer
implicit constraints. The time complexity of the algorithm is O(n3) where n is the
number of semantic constraints.

4.3. Organization of the Knowledge Base of Semantic Constraints 59

Algorithm 1 Validation of the semantic constraint set
sCValidation (sc)
Input: Initial semantic set vector sc
Output: Well-checked semantic constraint set vector sc

1: n = sc.size

2: for i = 1 to n− 1 do
3: for j = i+ 1 to n do
4: if conflict(sc[i], sc[j]) then
5: print The constraint sc[i] con�icts with the constraint sc[j]
6: break
7: else if isEmpty(infer(sc[i], sc[j]))=false then
8: scij = infer(sc[i], sc[j]) # existing an implicit constraint
9: for k = j + 1 to n do
10: if conflict(scij, sc[k]) then
11: print The implicit constraint inferred from sc[i] and sc[j] con�icts

with sc[k]
12: break
13: else if compare(scij, sc[k]) then
14: C.remove(sc[k]) # removing the redundant constraint sc[k]
15: end if
16: end for
17: end if
18: end for
19: end for

Since there are no redundant and no con�icting constraints, the set of constraints
is well-checked. In the next section, we describe an approach to construct a busi-
ness process ontology, on which a semantic business work�ow template is developed.

4.3 Organization of the Knowledge Base of Semantic

Constraints

4.3.1 Development of a Business Process Ontology

To provide the representation of semantic constraints related to process elements,
we propose an ontological approach to construct a formalized repository built on top
of a set of well-checked semantic constrains. We focus on formalizing the concepts
and relations corresponding to the knowledge required by process elements.

Let us consider the semantic constraint de�nition (cf. De�nition 9): SC =

(constraintType, appliedActivity, relatedActivity, order, description, [Equivalence]).
The main keystones of our approach to constructing a business process ontology,
namely the BP ontology, relied on the set of well-checked semantic constraints as
follows:

60 Chapter 4. Semantic Business Process Modelling

• SC is mapped to an instance of owl : Class. The rdfs : subClassOf property
is used to state that this class is a subclass of the class SemanticConstraints;

• appliedActivity and relatedActivity are mapped to two instances of owl :

Class. The rdfs : subClassOf property is used to state that these classes are
a subclass of the class SC;

• mExclusion, choice, dependency, coexistence, before, after, concurrence
and notSpecified are de�ned as instances of the built-in OWL class owl :
ObjectProperty;

• description is de�ned as an instance of the built-in OWL class owl : Datatype
Property;

• The built-in OWL property owl : sameAs, which is used to link an individ-
ual to an individual, states that the individuals have the same �identity�. This
property is used to describe each value of the parameter Equivalence is equiv-
alent to the value of the parameter appliedActivity in a semantic constraint.

Figure 4.1: Extract of the ontology building on top of a set of semantic constraints

Example 4.3.1. Consider Example 4.1.1, Figure 4.2 shows the de�nition of the
Individual Provide_Payment_Methods since the redundant constraint SC3 has
been removed.

<owl:NamedIndividual rdf:about="#Provide_Payment_Methods">

<rdf:type rdf:resource="#AppliedActivity"/>

<rdf:type rdf:resource="#RelatedActivity"/>

<dependency rdf:resource="#Request_Payment"/>

<after rdf:resource="#Request_Payment"/>

</owl:NamedIndividual>

Figure 4.2: De�nition of the Individual Provide_Payment_Methods in the
Payment template

The results of this work are used to model semantic business processes with
CPNs in a knowledge base, which tends to guarantee semantic and syntactic checks
at design phase.

4.3. Organization of the Knowledge Base of Semantic Constraints 61

4.3.2 Creation of Correspondences between Ontologies

In this section, we concentrate on creating correspondences to match semantics
between the BP ontology (presented in Section 4.3.1) and the CPN ontology (pre-
sented in Section 3.2). In our case, the articulation of two ontologies are used not
only to create semantically work�ow templates, but also to verify their correctness
(see Chapter 5).

We determine our use of the term �mapping� as follows: We consider two ontolo-
gies, O1 and O2. Mapping of an ontology with another one is de�ned as bringing
ontologies into mutual agreement in order to make them consistent and coherent. It
means that for a concept or a relation in the ontology O1, we �nd the same intended
meaning in the ontology O2. For an instance in the ontology O1, we map it into an
instance with the same name in the ontology O2.

In the following, we present some algorithms used to map the BP ontology,
which is developed based on a set of well-checked semantic constraints, namely C,
and the CPN ontology. We skip the descriptions of the other algorithms, which are
developed in the same way with the ones presented below, to keep the presentation
in this thesis short.

Algorithm 2 is �rstly applied to map the instances representing the activities
related to a set of constraints.

Algorithm 2 Mapping the instances representing the activities between the ontolo-
gies

mappingActivities(bpOnt)
Input: Given the BP ontology
Output: A set of instances in the CPN ontology represents the set of activities
Programmed Activities

1: setOfActity = ReadAppliedAct(bpOnt)∪ ReadRelatedAct(bpOnt) #
Read all the instances of the class
AppliedActivity and the class
RelatedActivity in the BP ontology
bpOnt

2: for all t ∈ setOfActity do
3: createActivity(t) # Create the instances: t of the class

Transition (expressed as an activity
node); pIn_t and pOut_t of the class
Place; a_in_t and a_out_t of the
classes InputArc and OutputArc, re-
spectively; delete_t and insert_t of the
classes Delete and Insert, respectively
in the CPN ontology

4: end for

After applying Algorithm 2 to map the instances of the classes AppliedActivity
and RelatedActivity into the CPN ontology, the relations between these instances

62 Chapter 4. Semantic Business Process Modelling

need to be considered. Among them, the relations of the instances representing
a set of dependency constraints are considered �rst. In the following, we present
Algorithm 3. This algorithm is used to create correspondences in the CPN ontol-
ogy to represent the relations between the activities related to a set of dependency
constraints SCDdep (i.e., SCDdep ∈ C), where:
∀sci ∈ SCDdep: sci = (dependency, a, bi, orderi, descriptioni, [activities_are_
equivalent_to_a]), orderi ∈ {before, after}; and
∀bk, bl : @sckl ∈ C,sckl = (constraintTypekl, bk, bl, orderkl, descriptionkl,

[activities_are_equivalent_to_a]), 1 ≤ i, k, l ≤ n, k 6= l.
The relations between the instances related to sets of choice, mutual exclusion

and coexistence constraints must be considered after those related to sets of depen-
dency constraints. Therefore, it is necessary to develop algorithms applied to these
relations.

Given a set of choice constraints SCCmulti ∈ C which rep-
resents the dependencies between the set of n activities, Act,
where ∀ai, aj ∈ Act: ∃scij ∈ SCCmulti : scij = (choice, ai, aj ,

notSpecified, descriptionij , [activities_are_equivalent_to_ai]) or
∃scji ∈ SCCmulti : scji = (choice, aj , ai, notSpecified, descriptionji,

[activities_are_equivalent_to_aj]), 1 ≤ i 6= j ≤ n. Algorithm 4 is used
to create instances for the set SCCmulti.

Xor-split

an

a1

Xor-join

ai choice aj

ai notSpecified aj

a2

…

Figure 4.4: Representation of the set of semantic constraints SCCmulti in CPNs
(Algorithm 4)

The algorithms, which are applied to map the instances representing activities
related to di�erent semantic constraints of the di�erent types, are developed based
on the properties introduced in Table 4.1 and Table 4.2. Algorithm 5, for example,
is developed based on the associative property (1) and the commutative property
(1) in Table 4.1.

Given a set SCDO containing three constraints sc1, sc2 and sc3 where:
sc1 = (dependency, a1, a3, order1, description1, [activities_are_equivalent_to_
a1]) ; sc2 = (dependency, a2, a3, order1, description2, [activities_are_
equivalent_to_a2]), order1 ∈ {before, after}; and sc3 = (coexistence, a1, a2,

order3, description3, [activities_are_equivalent_to_a1]), order3 ∈

4.3. Organization of the Knowledge Base of Semantic Constraints 63

Algorithm 3 Mapping between the ontologies for the dependencies between the
activities related to the set SCDdep of the type dependency

mapping_dep_appliedAct(bpOnt,SCDdep)
Input: Given the BP ontology, bpOnt and the set of n instancesSCDdep repre-
senting a set of n dependency constraints SCDdep

Output: A set of correspondences in the CPN ontology represents the depen-
dencies between the activities related to the set SCDdep

Programmed Activities
1: setOfSCD = ReadInstanceSC(SCDdep)
2: n=setOfSCD.size
3: if n>=1 then
4: a=setOfSCD[1].appliedAct

5: if n=1 then
6: if isConnected(a,setOfSCD[n].relatedAct)=false then
7: ctra=createInstanceControl(Transition)

Create an instance, namely ctra of the
class Transition (expressed as one con-
trol node Sequence) in the CPN ontol-
ogy

8: if order(setOfSC[n]) = �before" then
9: connectSequence(a,setOfSCD[n].relatedAct,ctra)
10: else
11: connectSequence(a,setOfSCD[n].relatedAct,ctra)
12: end if
13: isConnected(a,setOfSCD[n].relatedAct)=true
14: end if
15: else
16: andSplita=createInstanceControl(And− split)
17: andJoina=createInstanceControl(And− join)
18: for i = 1 to n do
19: if isConnected(a,setOfSCD[i].relatedAct)=false then
20: if order(a,setOfSCD[i].relatedAct) = �before" and then
21: connectSequence(a,setOfSCD[i].relatedAct,andSplita)
22: else
23: connectSequence(setOfSCD[i].relatedAct,a,andJoina)
24: end if
25: isConnected(a,setOfSCD[i].relatedAct)=true
26: end if
27: end for
28: if isUsedToConnect(andSplita) =false then
29: delete(andSplita)
30: end if
31: if isUsedToConnect(andJointa) =false then
32: delete(andJoina)
33: end if
34: end if
35: end if

64 Chapter 4. Semantic Business Process Modelling

Algorithm 4 Mapping between the ontologies for the dependencies between the
activities related to the set SCCmulti of the type choice

mapping_choice_multi(bpOnt,SCCmulti)
Input: Given the BP ontology, bpOnt and the set of n instances SCCmulti

representing a set of n choice constraints SCCmulti

Output: A set of correspondences in the CPN ontology represents the depen-
dencies between the activities related to the set SCCmulti

Programmed Activities
1: setOfSCC = ReadInstanceSC(SCCmulti)
2: n=setOfSCC.size
3: createInstanceControl(xorSplit_scc_multi, Xor − split)
4: createInstanceControl(xorJoin_scc_multi, Xor − join)
5: for i=1 to n do
6: if isConnected(setOfSCC[i].appliedAct,setOfSCC[i].relatedAct)=false

then
7: connectXorSplit(setOfSCC[i].appliedAct,setOfSCC[i].relatedAct,

xorSplit_scc_multi)
8: connectXorJoint(setOfSCC[i].appliedAct,setOfSCC[i].relatedAct,

xorJoin_scc_multi) # setOfSCC[i].appliedAct,setOfSCC[i].
relatedAct are connected to-
gether via xorSplit_scc_multi and
xorJoin_scc_multi

9: isConnected(setOfSCC[i].appliedAct,setOfSCC[i].relatedAct)=true
10: end if
11: end for
12: if isUsedToConnect(xorSplit_scc_multi) =false then
13: delete(xorSplit_scc_multi)
14: end if
15: if isUsedToConnect(xorJoin_scc_multi)=false then
16: delete(xorJoin_scc_multi)
17: end if

4.3. Organization of the Knowledge Base of Semantic Constraints 65

a b1

bi a

a dependency b1

a before b1

a dependency b1

a after b1

n>1

And-split

bn

a dependency bi

a before bi

b1

…

bn

And-join

b1

a dependency bi

a after bi

a

a
…

n=1

Figure 4.3: Representation of the set of semantic constraints SCDdep in CPNs
(Algorithm 3)

66 Chapter 4. Semantic Business Process Modelling

And-split

a1

a2

And-join

a1 coexistence a2

a1 dependency a3

a2 dependency a3

a1 before a3

a2 before a3

a3

And-split

a1

a2

And-join

a1 coexistence a2

a1 dependency a3

a2 dependency a3

a1 after a3

a2 after a3

a3

Figure 4.5: Representation of two semantic constraints of the type coexistence and
one constraint of the type choice in CPNs (Algorithm 5)

{before, after, concurrence}. Algorithm 5 is used to create instances for
these constraints.

Example 4.3.2. Considering Examples 4.1.1 and 4.2.1, Figure 4.6 shows the map-
ping of some instances between the two onotologies, the CPN ontology and the BP
Ontology.

We have introduced the formal de�nition of semantic constraints and illustrated
how to model a work�ow template with CPNs based on speci�ed semantic con-
straints. In the next section we are going to show how to integrate business level
correctness requirements into semantic business work�ows.

4.4 Integration of Event-Condition-Action Rules

In order to ensure the semantic correctness of business processes, it is necessary
to integrate (semantic) domain knowledge (for example, a condition in which an
activity must be performed) into work�ow management systems. It is clear that
the combination of work�ow templates and ontologies enables the semantic repre-
sentation of work�ow templates. The de�nitions in the BP ontology (formalized in
OWL) can be used not only to standardize the terminologies, but also to seman-
tically verify work�ow templates. However, the terms and relations expressed in
this ontology only focus on representing the dependencies between activities of a

4.4. Integration of Event-Condition-Action Rules 67

Algorithm 5 Mapping between the two ontologies for the dependencies between
one semantic constraint of the type coexistencey and two constraints of the type
dependency

mapping_dependency_coexistence(bpOnt,SCDO)
Input: Given the BP ontology and the set SCDO

Output: A set of correspondences in the CPN ontology represents the relations
between the activities related to the constraints sc1, sc2 and sc3
Programmed activities

1: setOfSCDO = ReadInstanceSC(SCDO)
2: SCOmulti = ∅
3: m=setOfSCC.size
4: for i = 1 to m do
5: if setOfSCDO[i].constraintType = “coexistence′′ then
6: SCOmulti=SCOmulti ∪ {setOfSCDO[i]}
7: if isConnected(setOfSCDO[i].appliedAct,setOfSCDO[i].relatedAct)=false

then
8: mapping_coexistence_multi(bpOnt,SCOmulti)
9: isConnected(setOfSCDO[i].appliedAct,setOfSCDO[i].relatedAct)=true
10: end if
11: end if
12: end for
13: for i=1 to m do
14: if isExistAnd(SCOmulti) then
15: if setOfSCDO[i].constraintType = “dependency′′ then
16: if isConnected(setOfSCDO[i].appliedAct,setOfSCDO[i].relatedAct)=false

then
17: if setOfSCDO[i].order = “before′′ then
18: connectSequence(setOfSCDO[i].appliedAct,setOfSCDO[i].relatedAct,

getAndJoin(SCOmulti))
19: else
20: connectSequence(setOfSCDO[i].appliedAct,setOfSCDO[i].relatedAct,

getAndSplit(SCOmulti))
21: end if
22: isConnected(setOfSCDO[i].appliedAct,setOfSCDO[i].relatedAct)=true
23: end if
24: end if
25: end if
26: end for

68 Chapter 4. Semantic Business Process Modelling

Figure 4.6: An example of ontology mapping (excerpt)

4.4. Integration of Event-Condition-Action Rules 69

business process. They cannot capture business level correctness requirements, for
example, a constraint which speci�es that a certain user task has to be performed
in a certain activity of a business process, or through which activities have to be
enabled after the execution of a certain activity of a business process. Therefore, an
extension to the use of rules is needed especially for the representation of business
level correctness requirements.

As stated in Section 2.2, ECA rules can be automatically triggered when certain
events take place. Therefore, we decide to use Event-Condition-Action (ECA)-like
rules to express business level correctness requirements. By taking into account
expert knowledge, requirements are represented in a structured way as follows:

ON transition

IF condition

DO [action] [RAISE other_transition(s)]

A business level correctness requirement is expressed in the vocabulary given by
the two ontologies, the CPN ontology and the BP ontology. It can be developed by
using the Add ECA Rule editor as shown in Figure 4.7.

Figure 4.7: Add correctness requirement dialog

For each business work�ow template, a requirement can be de�ned on a tran-
sition and a transition can have several requirements. Therefore, the combo box
Transition o�ers all of the available transitions in a given work�ow template.

Regarding the IF condition statement, if the guard function of a chosen transi-
tion contains attributes that their values satisfy the given conditions, then:

• an action is performed in case the transition is an activity node. Otherwise,

• at least one transition is raised.

70 Chapter 4. Semantic Business Process Modelling

<rdf:Description rdf:about="http://ECARule/Shipment_0001/#Rule_0003">

<rule:on rdf:resource="http://WFTemplate#Calculate_

shipping_price"/>

<rule:if rdf:parseType="Resource">

<rule:attribute rdf:resource="http://WFTemplate

#Calculate_shipping_price _Attribute_Country"/>

<rule:property rdf:resource="http://www.semanticweb.org/CPNWF

#valueAtt"/>

<rule:keyword>=</rule:keyword>

<rule:value>France</rule:value>

</rule:if>

<rule:if rdf:parseType="Resource">

<rule:attribute rdf:resource="http://WFTemplate

#Calculate_shipping_price _Attribute_ Amount"/>

<rule:property rdf:resource="http://www.semanticweb.org/CPNWF

#valueAtt"/>

<rule:keyword><</rule:keyword>

<rule:value>100 E</rule:value>

</rule:if>

<rule:do rdf:parseType="Resource">

<rule:attribute rdf:resource="http://WFTemplate

#Calculate_shipping_price _Attribute_Charge"/>

<rule:property rdf:resource="http://www.semanticweb.org/CPNWF

#valueAtt"/>

<rule:value>6.80 E</rule:value>

</rule:do>

<rule:raise></rule:raise>

</rdf:Description>

Figure 4.8: Extract of a set of ECA-like rules de�ned for the fOtD process of
CompanyA

The statements IF condition and DO [action] are thus expressed in terms of
literals. Each literal of a condition or an action consists of a binary predicate
and a set of terms. Each binary predicate, also called a property, has exactly two
terms and a keyword which is o�ered in a combo box. The two terms relating to
every property are also called domain and range. Figure 4.7 illustrates the domain,
the property, and the range of a business level correctness requirement de�ned for
shipping charges presented in Section 1.2.2. With regard to our Add ECA Rule
editor, the domain of a literal is always a variable, whereas the range depends on
the property. More speci�cally, if the property is an object property, the range is a
variable. If the property is a data property, the range is a string value.

Although a set of business level correctness requirements is concerned in a cer-

4.5. Related Work 71

tain work�ow template, it should be maintained outside of the current technical
representatives of the work�ow template. More precisely, it is necessary to separate
them from the actual technical representatives of the work�ow template to ensure
their persistence, even if this work�ow template is redesigned or removed or even
deleted. Therefore, in our work, each set of correctness requirements de�ned for a
speci�c work�ow template is stored in RDF format (see Figure 4.8).

4.5 Related Work

In many application domains, processes must comply with business rules and policies
which are derived from domain speci�c requirements (e.g., standards, legal regula-
tions). For example, in the construction industry, technical guides [Bouzidi 2012]
can be considered as examples of domain requirements. As previously stated in Sec-
tion 1.1, our work focuses on domain speci�c requirements imposing constraints on
the relations of the execution of activities in a process instance. In retrospect, each
process instance can be described by a sequence of events related to the activities,
which are executed in the process. To date, many approaches addressing the issue
of business process speci�cation based on rules/constraints have been proposed in
the literature.

M. B. Dwyer et al. [Dwyer 1999] collect and analyze over 500 examples of
property speci�cations from di�erent domains. They indicate that most of these
examples are conformed to eight property patterns within �ve basic kinds of scopes.
A scope (depicted in Figure 4.9) is determined by the speci�cation of a starting
and an end state/event for each pattern. Most of them are self-explanatory, for
example, Before indicates that the execution up to a given state/event. Accord-
ing to [Dwyer 1999], the property patterns are organized into two major groups,
Occurrence and Order (see Figure 4.10) consisting of:

• Absence requires that the de�ned scope is free from a given state/event;

• Existence requires that a given state/event must occur within the scope;

• Bounded existence requires that a given state/event must occur at most a
speci�c number of times within the scope;

• Universality requires that a given state/event is true throughout the scope;

• Precedence requires that the occurrence of a given state/event prior to the
occurrence of another state/event in the scope.

• Response requires the occurrence of a given state/event must always be fol-
lowed by the occurrence of another state/event (i.e., cause-e�ect relationships);

• Chain Precedence requires that a given sequence of states/events must al-
ways be preceded by a sequence of other states/events in the scope;

72 Chapter 4. Semantic Business Process Modelling

Ater Q until R

Before Q

After Q

Between Q and R

Global

Q Q R

Q Q

Q Q

Q R Q

Q Q R Q R Q

Figure 4.9: Scopes for property speci�cation patterns

• Chain Response requires that a given sequence of states/events must always
occur as response to the occurrence of a sequence of other states/events in the
scope.

Chain
response

Property patterns

Occurrence Order

Absence Universality Existence Bounded
existence Precedence Response Chain

precedence

Figure 4.10: Property speci�cation patterns introduced in [Dwyer 1999]

Indeed, although their patterns express formal requirements related to the oc-
currence and order of states/events during system execution, they can be used as
fundamental for compliance rule speci�cation as we can see in the approaches brie�y
introduced in the following.

The authors in [Sadiq 2005] describe an approach for specifying and validating
process constraints for �exible work�ows. According to them, the key issue in �exible
work�ows is the speci�cation of subprocesses, from which a full work�ow speci�ca-
tion may be derived at runtime. They use di�erent types of constraints (i.e., serial,

4.6. Discussion and Conclusion 73

order, fork, inclusion and exclusion constraints) that express dependencies between
activities to restrict composition possibilities. A subprocess has to be validated
against the set of constraints before it is executed. By enabling the de�nition of
process models ranging from completely modelled to mainly constraint-based, this
approach provides an appropriate balance between �exibility and control. Another
formal speci�cation of semantic constraints is introduced in [Kumar 2010]. An in-
teger programming formulation is used to express semantic constraints and also to
detect and handle constraint violations. They focus on the occurrence of each activ-
ity in a process. An activity must be either executed (one or several times) or not
executed. In the relationship with other activities, they can be executed in choice,
in exclusion or in dependency or together. However, this method does not mention
the execution order between two activities.

In [Ly 2008], two fundamental kinds of semantic constraints, i.e., mutual exclu-
sion constraints and dependency constraints, are introduced. The former expresses
that two activities are incompatible and should not be performed together. The
later expresses that an activity is dependent on the other activity and they have to
take place together in the process. Practically speaking, there exist other kinds of
constraints, for example, constraints can express that two relevant activities must
be both included or be both excluded, or only one of two relevant activities must be
executed. Consequently, a precise classi�cation of semantic constraints is required.
We focus on both occurrence and ordering constraints on sequences of events. We are
able to represent the patterns in [Dwyer 1999] by using di�erent types of constraints
and di�erent execution orders between activities.

In the matter of correctness requirements related to business rules at design
time, [Namiri 2007, Namiri 2008] represents compliance requirements as production
rules according to the terms and concepts, which are de�ned in a formal ontology.
However, due to the emphasis they put on events of ECA rules, they are better
suitable for modelling the variable parts of a process �ow and for distributed ap-
plications [van Eijndhoven 2008, Berstel 2007]. Therefore, to develop semantically
rich control �ow-base work�ow templates, in our work, we use ECA-like rules to
express business level correctness requirements.

4.6 Discussion and Conclusion

This chapter has presented a formal method for describing semantic constraints used
for generating semantic work�ow templates. We �rst proposed a formal de�nition
of semantic constraints. We then introduced an algorithm for detecting redundant
and con�icting semantic constraints. A set of well-checked semantic constraints is
transformed into an instance of a business process ontology, called the BP ontology.
To develop work�ow templates, we have also presented a set of algorithms to create
correspondences between the BP ontology and the CPN ontology (cf. Chapter 3).
The results of this work were published in [Nguyen 2014b, Pham 2015].

In the following chapter, we show that the SPARQL query language is able to

74 Chapter 4. Semantic Business Process Modelling

check the syntactic and semantic correctness of concrete work�ow templates repre-
sented in RDF format.

Chapter 5

Veri�cation of Work�ow
Templates

Contents
5.1 Syntactic Veri�cation Issues 76

5.1.1 Syntactic Constraints related to the De�nition of Process Model 77

5.1.2 Syntactic Constraints Related to Uses of Control Nodes . . . 79

5.1.3 Compliance Checking of Work�ow Templates at the Syntactic

Level . 82

5.2 Semantic Veri�cation Issues 87

5.2.1 Semantic Veri�cation Tasks 87

5.2.2 Compliance Checking of Work�ow templates at the Semantic

Level . 88

5.3 A Wrong Work�ow Example 90

5.4 Related Work . 91

5.4.1 Approaches focusing on the Syntactic Level 91

5.4.2 Approaches focusing on the Semantic Level 94

5.5 Discussion and Conclusion . 95

Providing a high-level speci�cation of business processes is the objective of pro-
cess modelling. This makes process models independent of the target work�ow
management system. Arguably, high quality work�ow de�nitions play an important
role in the organization. A work�ow de�ned incorrectly may lead to unintended
consequences, for instance, a waste of time and e�ort, loss of trust in users. That is
why a work�ow de�nition should be analyzed and veri�ed1 before it is put into use.

In this chapter, we introduce a solution to verify work�ow templates at the design
phase. We focus on checking the syntactic and semantic correctness of business
work�ow templates as depicted in Figure 5.1.

1According to the IEEE 1012-2012 de�nition [iee 2012], �veri�cation� means to evaluate whether

or not a product, service, or system conforms to a set of given requirements. Hence, it relates to

the internal constitution of a model. In contrast, �validation� implies the appropriateness of a

model with regard to the needs of the customer and other identi�ed stakeholders. This means the

criteria involve something outside the model.

76 Chapter 5. Veri�cation of Work�ow Templates

Semantic
constraints

Semantic
Requirements

Workflow
Verification

Syntactic
Requirements

Coloured Petri Nets-
based Process Model

Business Process
Template Modelling

Workflow
Templates

with ECA rules
Repository

…

Figure 5.1: Veri�cation of business work�ow templates

5.1 Syntactic Veri�cation Issues

To provide automated support for work�ow designers in establishing the correctness
of ontology-based work�ow representations, the syntactic constraints are categorized
into two groups. Axioms related to these constraints are also de�ned using a DL as
SHOIN (D) to complete the CPN ontology.

First of all, let us de�ne some properties for CPN-based process models.

De�nition 12 (Reachability). A CPN-based process model PM = (
∑
, P, T,A, F,

C,G,E, I) and an initial state M0 where start place s contains one token. We say
that transition t makes stateM1 reachable from stateM0 if in stateM0, t is enabled

and �ring it results in state M1, written M0
t−→M1.

A state Mn is called reachable from state M0 i� there is a �ring sequence2

t1t2 . . . tj such that M0
t1−→M2

t2−→ . . .
tj−1−−→Mj and written M0

∗−→Mj .

De�nition 13 (Connected). A CPN-based process model PM = (
∑
, P, T,A, F,

C,G,E, I) is connected i� for every pair of places (one input place and one output
place) u and v, there exists a directed path either from u to v or from v to u.
Formally:

(i) ∀u ∈ Pin, v ∈ Pout,∃p1, t1, . . . , pk, tk, pk+1, pi ∈ P, ti ∈ T, u = p1, v = pk+1 :

piti ∈ A, tipi+1 ∈ A,∀i ∈ 1, . . . , k or

(ii) ∀u ∈ Pin, v ∈ Pout,∃p1, t1, . . . , pk, tk, pk+1, pi ∈ P, ti ∈ T, v = p1, u = pk+1 :

piti ∈ A, tipi+1 ∈ A,∀i ∈ 1, . . . , k

Where piti is the directed arc from place pi to transition ti, tipi+1 is the directed
arc from transition ti to place pi+1.

2Relying on the �ring rule in [van der Aalst 1997]

5.1. Syntactic Veri�cation Issues 77

De�nition 14 (Well-formed). A CPN-based process model PM = (
∑
, P, T,A,

F,C,G,E, I) is well-formed i�:

(i) Every element x ∈ P ∪ T is on a path from start point s to end point e.

(ii) For every state M ′ which is reachable from state Start M0 and every transi-
tion t ∈ T , there exists a state M ′′ reachable from state M ′ which activates
transition t.

The following de�nition is de�ned as the soundness property, which is very close
to the one proposed in [van der Aalst 1997].

De�nition 15 (Sound). A CPN-based process model PM = (
∑
, P, T,A, F,C,

G,E, I) is sound i�:

(i) PM is connected.

(ii) PM is well-formed.

(iii) For every state Mj reachable from state Start M0, there also exists another
�ring sequence starting from state Mj to state End Me. Formally:

∀Mj : (M0
∗−→Mj)⇒ (Mj

∗−→Me)

(iv) State End Me is the only state which is reachable from state Start M0 with
one token in place e.

(v) There is no deadlock, no in�nite cycle and no missing synchronization in PM .

As mentioned earlier, we aim at representing CBWTs in a knowledge base.
Therefore, the soundness property (De�nition 15) is used as the criterion to check
the correctness of work�ow templates at the syntactic level.

5.1.1 Syntactic Constraints related to the De�nition of Process
Model

• Constraints related to places.

Constraint 1. For every place p ∈ P , p connects and/or is connected with
transitions via arcs.

We create the axiom corresponding to Constraint 1 as follows:

hasP lace−.CPNOnt u ¬(∃connectsTrans.hasTrans−.CPNOnt t
∃connectsP lace−.hasTrans−.CPNOnt) v ⊥
Constraint 2. There is one and only one start point in a process model.

We create the axiom corresponding to Constraint 2 as follows:

CPNOnt u ¬(= 1 hasP lace.(connectsTrans.hasGuardFunction.hasActivity.

ActNoce u ¬(∃ connectsP lace−.hasTrans−.CPNOnt))) v ⊥

78 Chapter 5. Veri�cation of Work�ow Templates

Constraint 3. There is one and only one end point in a process model.

We create the axiom corresponding to Constraint 3 as follows:

CPNOnt u ¬(= 1 hasP lace.(connectsP lace−.hasGuardFunction.hasActivity.

ActNode u ¬(∃ connectsTrans.hasTrans−.CPNOnt))) v ⊥

Constraint 4. A place has no more than one leaving arc. If a place is
connected to a transition, there exists only one directed arc from the place to
the transition.

We create the axiom corresponding to Constraint 4 as follows:

Place u ¬(≤ 1 hasP lace−.InputArc) v ⊥

Constraint 5. A place has no more than one entering arc. If a transition is
connected to a place, there exists only one directed arc from the transition to
the place.

We create the axioms corresponding to Constraint 5 as follows:

Place u ¬(≤ 1 connectsP lace−.(= 1hasTrans−.OutputArc)) v ⊥

Constraint 6. There are no pairs of activity nodes connected via a place.

We create the axiom corresponding to Constraint 6 as follows:

Place u ∃connectsTrans.hasGuardFunction.hasActivity.ActNode u

∃connectsP lace−.hasGuardFunction.hasActivity.ActNode v ⊥

Constraint 7. There are no pairs of control nodes connected via a place.

We create the axiom corresponding to Constraint 7 as follows:

Place u ∃connectsTrans.hasGuardFunction.hasControl.CtrlNode u

∃connectsP lace−.hasGuardFunction.hasControl.CtrlNode v ⊥

• Constraints related to transitions.

Constraint 8. A transition is on the path from the start point to the end
point of a process model.

- If a transition has no input place, it will never be enabled.

- If a transition has no output place, it will not lead to the end.

Consequently, each transition in a work�ow must have at least one entering
arc and at least one leaving arc.

We create the axiom corresponding to Constraint 8 as follows:

Transition v ≥ 1 connectsP lace.P lace u ≥ 1 connectsTrans−.P lace

Constraint 9. An activity node has only one entering arc and one leaving
arc.

We create the axiom corresponding to the Constraint 9 as follows:

5.1. Syntactic Veri�cation Issues 79

hasGuardFunction.hasActivity.ActNode v = 1 connectsP lace.P lace u
= 1 connectsTrans−.P lace

Constraint 10. According to De�nitions 4-8, a control node does not have
both multi-leaving arcs and multi-entering arcs.

We create the axiom corresponding to the Constraint 10 as follows:

≥ 2 connectsP lace.P lace u ≥ 2 connectsTrans−.P lace u

hasGuardFunction.hasControl.CtrlNode v ⊥

• Constraints related to directed arcs.

Constraint 11. Directed arcs connect places to transitions or vice versa.

We create the axioms corresponding to the Constraint 11 as follows:

hasP lace−.InputArc ≡ connectsTrans.hasTrans−.CPNOnt

hasTrans−.OutputArc ≡ connectsP lace.hasP lace−.CPNOnt

5.1.2 Syntactic Constraints Related to Uses of Control Nodes

A poorly designed work�ow due to improper uses of control nodes can result in
deadlock, in�nite cycle or missing synchronization. However, these errors can be
detected when designing a work�ow template and therefore, we can get rid of them.
To do that, we next introduce Constraint 12 and the symptoms related to deadlock,
in�nite cycle or missing synchronization.

Constraint 12. There is no deadlock, no in�nite cycle and no missing synchro-
nization.

• Deadlock: A deadlock is a situation in which a process instance falls into a
stalemate such that no more activity can be enabled to execute [Verbeek 2001].

Accoding to [Bi 2004], there are two types of deadlock (deterministic and non-
deterministic deadlock) which relate to the combination of the building blocks,
i.e., Xor − split and And − join, And − join and Xor − split, And − join
and And− split.

It is necessary to note that the building blocks Or − split and Or − join are
not used in our work. One of the reasons is that the execution of an OR (i.e.,
Or− split and Or− join) is non-deterministic. If a transition Or− split �res,
it produces one token for at least one of its output places. Therefore, by not
using these building blocks, we can avoid the second type of deadlock. Figure
5.2 shows three simple deadlock simulations.

• In�nite cycle: An in�nite cycle is derived from structural errors where some
activities are repeatedly executed inde�nitely.

Starting with an entrance Xor-join and ending with an exit And-split, a cycle
is in�nite. A simple in�nite simulation is depicted in Figure 5.3.

80 Chapter 5. Veri�cation of Work�ow Templates

Figure 5.2: Deadlock simulations

Figure 5.3: In�nite cycle simulation

• Missing synchronization: Missing synchronization is a situation in which
the mismatch between the building blocks leads to neither deadlock nor in�nite
cycle, but results in unplanned executions. The mismatch is established by an
entrance And-split and an exit Xor-join. Figure 5.4 shows a simple simulation
of missing synchronization.

Therefore, we next create the axioms related to the control nodes, including And−
split, And−join, Xor−split and Xor−join used to detect deadlock, in�nite cycle
or missing synchronization.

• And-split
This transition is connected to at least two output places. Every output place
contains one token. We create the axiom corresponding to the transition And-

split as follows:

AndSplit v Transition u connectsP lace.hasMarking.Token u

5.1. Syntactic Veri�cation Issues 81

Figure 5.4: Missing synchronization simulation

connectsTrans−.hasMarking.Token u hasGuardFunction.hasControl.

CtrlNode u = 1 connectsTrans−.P lace u ≥ 2 connectsP lace.P lace

• And-join

There are at least two input places connected to the transition And-join. In
order to activate the transition And-join, every input place has to contain
one token. We create the axiom corresponding to the transition And-join as
follows:

AndJoin v Transition u connectsP lace.hasMarking.P lace u

connectsTrans−.hasMarking.Token u hasGuardFunction.hasControl.

CtrlNode u ≥ 2connectsTrans−.P lace u = 1 connectsP lace.P lace

• Xor-split

This transition is connected to at least two output places. Unlike the transition
And-split, at any time, one and only one output place of the transition Xor-

join can contain a token. We create the axiom corresponding to the transition
Xor-split as follows:

XorSplit v Transition u ¬AndSplit u hasGuardFunction.hasControl.

CtrlNode u = 1 connectsTrans−.P lace t ≥ 2 connectsP lace.P lace t

connectsTrans−.hasMarking.Token

• Xor-join

There are at least two input places connected to the transition Xor-join. Un-
like the transition And-join, the transition Xor-join is activated if one and
only one input place contains a token. We create the axiom corresponding to
the transition Xor-join as follows:

XorJoin v Transitionu¬AndJoin u connectsP lace.hasMarking.Token

u ≥ 2 connectsTrans−.P lace. u hasGuardFunction.hasControl.CtrlNode

u = 1 connectsP lace.P lace

We have introduced the axioms de�ned to support designers in verifying CPN-based
work�ow templates at the syntactic level. In the next section, we will show how to
use the SPARQL query language to detect syntactic errors of work�ow templates.

82 Chapter 5. Veri�cation of Work�ow Templates

5.1.3 Compliance Checking of Work�ow Templates at the Syntac-
tic Level

In order to verify a work�ow template, we initiatively query the work�ow template
to verify whether it contains syntactic errors or not. Two query forms are used in
our work, including ASK and SELECT. The following SPARQL veri�cation queries
are created based on the syntactic constraints.

• Query 1 is created relating to Constraint 1 to list all places not connected to
any arcs. They are not on any path from the start point to the end point of
a process model.

SELECT ?p WHERE

{ ?cp rdf:type h:CPNOnt

?cp h:hasPlace ?p

FILTER NOT EXISTS {

?p h:connectsTrans|^h:connectsPlace _:b}

}

• Queries 2.1 and 2.2: With regard to Constraint 2, two queries are created:

Query 2.1 is used to ask if the number of start points of the work�ow template
is not equal to 1.

ASK {

{ SELECT (COUNT(distinct ?p) AS ?c)

WHERE

{ ?i rdf:type h:InputArc

?i h:hasPlace ?p

?p h:connectsTrans/h:hasGuardFunction/h:hasActivity _:b

MINUS {

?cp rdf:type h:CPNOnt

?cp h:hasTrans ?t

?t h:connectsPlace ?p }

}

} FILTER (?c!=1)

}

Query 2.2 is a SELECT query, which comprises the same WHERE condition
with Query 2.1 and is executed to list all places designed as start points.

SELECT distinct ?p WHERE

{ ?i rdf:type h:InputArc

?i h:hasPlace ?p

?p h:connectsTrans/h:hasGuardFunction/h:hasActivity _:b

MINUS {

5.1. Syntactic Veri�cation Issues 83

?cp rdf:type h:CPNOnt

?cp h:hasTrans ?t

?t h:connectsPlace ?p }

}

For the sake of simplicity, ASK queries relating to the rest of Constraints are
omitted if there are SELECT queries containing the same WHERE condition
with them.

• Query 3 is created relating to Constraint 3.

Two queries (i.e., one ASK query and one SELECT query) are created. In the
following, we present the SELECT query created to list all places designed as
end points.

SELECT (COUNT(distinct ?p) AS ?c)

WHERE {

?t h:hasGuardFunction/h:hasActivity _:b1

?t h:connectsPlace ?p

FILTER NOT EXISTS

{

?p h:connectsTrans _:b2

}

}

} FILTER (?c>=2)

• Query 4 is created relating to Constraint 4 to list all places having more than
one leaving arc.

SELECT distinct ?p WHERE

{

?i1 rdf:type h:InputArc

?i2 rdf:type h:InputArc

?i1 h:hasPlace ?p

?i2 h:hasPlace ?p

FILTER (?i1!=?i2)

}

• Query 5 is created relating to Constraint 5 to list all places having more than
one entering arc.

SELECT ?p ?c WHERE {

{SELECT ?p (COUNT(?p) AS ?c)

WHERE {

?p rdf:type h:Place
_:b h:connectsPlace ?p

84 Chapter 5. Veri�cation of Work�ow Templates

} GROUP BY ?p

}

FILTER (xsd:integer(?c)>=2)

}

• Query 6 is created relating to Constraint 6 to list all pairs of activity nodes
which are connected via a place.

SELECT ?p WHERE

{

?t1 h:hasGuardFunction/h:hasActivity _:b1

?t2 h:hasGuardFunction/h:hasActivity _:b2

?t1 h:connectsPlace ?p

?p h:connectsTrans ?t2

}

• Query 7 is created relating to Constraint 7 to list all pairs of control nodes
which are connected via a place.

SELECT ?p WHERE {

?t1 h:hasGuardFunction/h:hasControl _:b1

?t2 h:hasGuardFunction/h:hasControl _:b2

?t1 h:connectsPlace ?p

?p h:connectsTrans ?t2

}

• Queries 8.1 and 8.2:
With regard to Constraint 8, two queries are created. The former is used to
�nd all transitions not having any input arcs while the latter is used to �nd
all transitions not having any output arcs.

SELECT distinct ?t WHERE {

?cp rdf:type h:CPNOnt

?cp h:hasTrans ?t

FILTER NOT EXISTS {_:b h:connectsTrans ?t}

}

SELECT ?t WHERE {

?cp rdf:type h:CPNOnt

?cp h:hasTrans ?t

FILTER NOT EXISTS { ?t h:connectsPlace _:b}

}

5.1. Syntactic Veri�cation Issues 85

• Queries 9.1 and 9.2:
With regard to Constraint 9, in order to �nd activity nodes which have neither
input arcs nor output arcs, queries 8.1 and 8.2 are used. Therefore, we here
focus on how to �nd activity nodes which have at least two input arcs (Query
9.1):

SELECT distinct ?t WHERE

{

?p1 rdf:type h:Place

?p1 h:connectsTrans ?t

?p2 rdf:type h:Place

?p2 h:connectsTrans ?t

?t h:hasGuardFunction/h:hasActivity ?a

FILTER (?p1!=?p2)

}

or at least two output arcs (Query 9.2):

SELECT distinct ?t WHERE {

?o1 rdf:type h:OutputArc

?o1 h:hasTrans ?t

?o2 rdf:type h:OutputArc

?o2 h:hasTrans ?t

?t h:hasGuardFunction/h:hasActivity ?a

FILTER (?o1!=?o2)

}

• Query 10 is created relating to Constraint 10 to list all control nodes which
have at least two leaving arcs and at least two multi-entering arcs.

SELECT distinct ?t WHERE

{

?t h:hasGuardFunction/h:hasControl _:b

?p1 rdf:type h:Place

?p2 rdf:type h:Place

?t h:connectsPlace ?p1

?t h:connectsPlace ?p2

?p3 rdf:type h:Place

?p4 rdf:type h:Place

?p3 h:connectsTrans ?t

?p4 h:connectsTrans ?t

FILTER (?p1!=?p2 && ?p3!=?p4)

}

• Queries 11.1 and 11.2 are created relating to Constraint 11 to list all places
and transitions that do not satisfy this constraint, respectively. This means

86 Chapter 5. Veri�cation of Work�ow Templates

that there may exist directed arcs that are dangling (i.e., the absence of one
part or both relevant parts).

SELECT distinct ?p WHERE

{

{ ?p h:connectsTrans _:b1

MINUS { ?i rdf:type h:InputArc

?i h:hasPlace ?p }

}

UNION

{ ?i rdf:type h:InputArc

?i h:hasPlace ?p

MINUS { ?p h:connectsTrans _:b2}

}

UNION

{ ?p h:connectsTrans ?t

MINUS { ?cpn rdf:type h:CPNOnt

?cpn h:hasTrans ?t }

}}

SELECT distinct ?t WHERE

{

{ ?t h:connectsPlace _:b1

MINUS { ?o rdf:type h:OutputArc

?o h:hasTrans ?t }

}

UNION

{ ?o rdf:type h:OutputArc

?o h:hasTrans ?t

MINUS { ?t h:connectsPlace _:b2 }

}

UNION

{ ?t h:connectsPlace ?p

MINUS { ?cpn rdf:type h:CPNOnt

?cpn h:hasPlace ?p }

}

}

• Queries 12.1 and 12.2: We continue to check whether errors exist or not,
related to the improper uses of control nodes. However, for work�ow tem-
plates that contain certain overlapping routing transitions, we cannot check
Constraint 12 by only using the SPARQL query language. In order to detect
deadlock, in�nite cycle and missing synchronization, the reduction algorithm
in [Esparza 1994] must be applied. The algorithm is used to transform a

5.2. Semantic Veri�cation Issues 87

work�ow template into a simple form. We then can use the SPARQL query
language to query the simple forms of work�ow templates.

The following query, Query 12.1, is used for detecting if there exist any dead-
locks caused by the combination of control nodes Xor−split and And− join.
The query will return pairs of control nodes which make deadlocks happen.

SELECT distinct ?xorsplit ?andjoin WHERE

{

?xorsplit rdf:type h:Xor-split

?andjoin rdf:type h:And-join

?t1 h:hasGuardFunction/h:hasActivity _:b1

?t2 h:hasGuardFunction/h:hasActivity _:b2

?xorsplit h:connectsPlace/h:connectsTrans ?t1

?xorsplit h:connectsPlace/h:connectsTrans ?t2

?t1 h:connectsPlace/h:connectsTrans ?andjoin

?t2 h:connectsPlace/h:connectsTrans ?andjoin

FILTER(?t1!=?t2)

}

In order to detect in�nite cycles caused by the other combinations of control
nodes (shown in Figure 5.4), we create Query 12.2 as follows:

SELECT distinct ?xorjoin ?andsplit WHERE

{

?xorjoin rdf:type h:Xor-join

?andsplit rdf:type h:And-split

?t1 h:hasGuardFunction/h:hasActivity _:b1

?t2 h:hasGuardFunction/h:hasActivity _:b2

?xorjoin h:connectsPlace/h:connectsTrans ?t2

?t2 h:connectsPlace/h:connectsTrans ?andsplit

?andsplit h:connectsPlace/h:connectsTrans ?t1

?t1 h:connectsPlace/h:connectsTrans ?xorjoin

FILTER(?t1!=?t2)

}

The queries used to list all pairs of control nodes causing deadlock (depicted
in Figure 5.2) (b) and (c) are created similar to Query 12.2.

5.2 Semantic Veri�cation Issues

5.2.1 Semantic Veri�cation Tasks

We hereinafter pay attention to the research question relating to semantic veri�ca-
tion: Is the behavior of the individual activities satis�ed and does it conform to the

88 Chapter 5. Veri�cation of Work�ow Templates

control �ow? To answer this question, we address the following semantic veri�cation
issues:

(1) Are there activities whose occurrences are alternative choices or in mutual ex-
clusion, but these activities may be executed in parallel or in sequence?

(2) Are there activities whose executions are interdependent, but these activities
may be executed as alternative choices or in mutual exclusion or in parallel?

(3) Are there activities whose occurrences are coexistent, but these activities may
be executed as alternative choices or in mutual exclusion?

(4) Are there any couples of activities whose order executions are de�ned as one
before the other, but these activities may be executed in the opposite order?

(5) Are there any couples of activities whose order executions are de�ned as one
after the other, but these activities may be executed in the opposite order?

5.2.2 Compliance Checking of Work�ow templates at the Semantic
Level

In order to answer the above-mentioned semantic veri�cation issues, we continue
using the SPARQL query language. The following SELECT queries are created for
semantic checks:

• Queries 13.1 and 13.2 are created relating to the �rst semantic veri�cation
issue.
Query 13.1 is used to query if the model contains any pairs of activity nodes
whose occurrences are alternative choices, but that may be executed in paral-
lel. It is necessary to note that the properties k : choice and k : notSpecified,
which are de�ned in the BP ontology, indicate the semantic constraint between
activities ?t1 and ?t2. The rest of the properties, which are de�ned in the CPN
ontology, represent these activities restricted to the control �ow perspective.

SELECT ?t1 ?t2 WHERE

{

?t1 rdf:type h:Transition;

h:hasGuardFunction/h:hasActivity _:b1.

?t2 rdf:type h:Transition;

h:hasGuardFunction/h:hasActivity _:b2.

?t1 k:choice ?t2;

k:notSpecified ?t2.

?andsplit rdf:type h:And-split

?andjoin rdf:type h:And-join

?andsplit h:connectsPlace/h:connectsTrans ?t1;

h:connectsPlace/h:connectsTrans ?t2.

5.2. Semantic Veri�cation Issues 89

?t1 h:connectsPlace/h:connectsTrans ?andjoin

?t2 h:connectsPlace/h:connectsTrans ?andjoin

FILTER (?t1<?t2)

}

Query 13.2 is used to query any pairs of activity nodes whose occurrences are
alternative choices, but that may be executed in sequence.

SELECT ?t1 ?t2 WHERE

{

?t1 rdf:type h:Transition;

h:hasGuardFunction/h:hasActivity _:b1.

?t2 rdf:type h:Transition;

h:hasGuardFunction/h:hasActivity _:b2.

?t1 k:choice ?t2;

k:notSpecified ?t2.

?t3 rdf:type h:Transition;

h:hasGuardFunction/h:hasControl _:b3.

?t1 h:connectsPlace/h:connectsTrans ?t3

?t3 h:connectsPlace/h:connectsTrans ?t2

FILTER (?t1<?t2)

}

Queries, which are used to query any pairs of activity nodes whose occur-
rences are in mutual exclusion, but they may be executed in parallel or
in sequence, are created similar to Queries 13.1 and 13.2, respectively. In
addition, SPARQL queries are also created similar to queries 13.1 or 13.2 in
order to resolve the second and the third semantic issues.

• Query 14 is created relating to the fourth semantic veri�cation issue. Query
14 returns all pairs of activities whose occurrences are in dependency and
whose order executions are de�ned as one before the other, but they may be
executed in the opposite order.

SELECT ?t1 ?t2 WHERE

{

?t1 rdf:type h:Transition;

h:hasGuardFunction/h:hasActivity _:b1.

?t2 rdf:type h:Transition;

h:hasGuardFunction/h:hasActivity _:b2.

?t1 k:dependency ?t2;

k:before ?t2.

?t3 rdf:type h:Transition;

h:hasGuardFunction/h:hasControl _:b3.

90 Chapter 5. Veri�cation of Work�ow Templates

?t2 h:connectsPlace/h:connectsTrans ?t3

?t3 h:connectsPlace/h:connectsTrans ?t1

FILTER (?t1!=?t2)

}

The SPAQRL queries used to solve the other cases of the fourth and the �fth issue
can be created similarly to query 14.

5.3 A Wrong Work�ow Example

Example 5.3.1. Let us continue CompanyA variant of the fOtD process presented
in Section 1.2.2. Figure 5.5 illustrates an extraction of a wrongly designed CPN-
based business work�ow. The example work�ow contains not only syntactic errors
(e.g., a deadlock is caused by the combination of a Xor− split and an And− join),
but also semantic errors (e.g., the execution order between Schedule_shipping and
Receive_shipping_request).

We assume that the input place of the transition Xor − split contains a token
that enables this transition. If the transition Xor − split �res, it consumes the
token from its input place and then produces one token for only one of the output
places. Consequently, only one transition, i.e., Free or Charge_6.80_Euros or
Charge_7.50_Euros or Charge_10.00_Euros, can be activated. Because only
one transition can �re, not all input places of the transition And − join can get
its token. Since the transition And− join will never be enabled to �re, a deadlock
occurs.

In addition, the tasks Receive_shipping_request and Schedule_shipping are
de�ned by the semantic constraint sc_i where:

sc_i=(dependency, Receive_shipping_request, Schedule_shipping,after,

‘‘after receiving a shipping request, a shipment is scheduled’’)

However, as shown in Figure 5.5, the execution of Receive_shipping_request may
happen after that of Schedule_shipping. Consequently, a semantic error is found.

Receive_
shipping_request

And-join

Charge_6.80_Euros

Charge_7.5_Euros

Schedule_
shipping

Send_shipping_
schedule_and_
shipping_price

Free

Xor-split

Charge_10_Euros

Figure 5.5: A wrongly designed work�ow model for the fOtD process (excerpt)

5.4. Related Work 91

As a result of the execution of each SPARQL query introduced in Section 5.1.3
and Section 5.2.2, we obtain an XML �le which results in nodes consisting of re-
quired information (e.g., the name) and causes shortcomings. For example, Figure
5.6 shows the result of the execution of Query 12.1 applied to check whether the
work�ow, depicted in Figure 5.5, contains deadlocks or not.

<?xml version="1.0"?>

<sparql xmlns=’http://www.w3.org/2005/sparql-results#’>

...

<result>

<binding name=’xorsplit’>

<uri>

http://WFTemplate/Shipment#Receive_shipping_request_

Xor-split

</uri>

</binding>

<binding name=’andjoin’>

<uri>

http://WFTemplate/Shipment#Send_shipping_schedule_and_

shipping_price_And-join

</uri>

</binding>

</result>

...

</sparql>

Figure 5.6: Checking deadlocks caused of the two control nodes Xor − split and
And− join

5.4 Related Work

In this section, we provide an overview of existing approaches with respect to work-
�ow veri�cation.

5.4.1 Approaches focusing on the Syntactic Level

Checking the correctness by verifying process models against structural requirements
is a strategy mentioned in a number of related approaches. In the following, these
approaches are classi�ed based on the techniques used for conformity veri�cation.

• Petri Nets-based Approaches

92 Chapter 5. Veri�cation of Work�ow Templates

Petri Nets (PNs) is a class of modelling tools originated by Petri [Petri 1962].
PNs and their extensions have proven to be useful for the modelling and anal-
ysis of business processes. The existing research on PN-based work�ows is
referred to a concept called Work�ow nets (WF-nets), which is a subclass of
PNs. A Petri net PN = (P, T, F) is a WF-net if and only if:

� It has two special places, a source place i and a sink place o; and

� If a transition t connects the place i with the place o, the resulting PN
is strongly connected.

The veri�cation of WF-nets concentrates on the so-called soundness property.
The property involves a certain number of issues, such as liveness, bound-
edness, safeness, livelock, deadlock and dead activity [van der Aalst 1997,
van der Aalst 2000]. Furthermore, a sound WF-net always terminates prop-
erly, i.e., at the moment the WF-net terminates, the place o contains one token
and there are no tokens anywhere else.

Using the PN formalism brings signi�cant advantages, such as a formal theory
base, the representation of work�ow states is based on tokens and its tools
for analysing and verifying business work�ows (e.g., Wo�an [Verbeek 2001]).
However, with regard to the soundness veri�cation, only the control �ow per-
spective of work�ows is covered. It is essential to note that soundness is a
necessary but insu�cient condition to verify work�ows. Therefore, the issues
related to the semantic correctness of work�ows need to be taken into account.

• Model Checking Approaches

Model checking is well-researched and therefore many languages, techniques
and tools are provided. It provides techniques for verifying a system speci�-
cation (i.e., a model) against certain particular properties [Clarke 2001]. As
depicted in the Figure 5.7, the formal model de�ned in a language suitable
for the model checker's input language and the system property which needs
to be checked, are given as inputs to the model checker. The model checker
after that is invoked. In case the property could not apply, the model checker
typically generates a counterexample.

In order to specify properties, there are many di�erent languages available,
such as, temporal logics (e.g., the Linear Time Logic (LTL) or the Computa-
tion Tree Logic (CTL)) or automatons. Both these logics are well-researched
and can be seen as decidable notational variants of �modal� fragments of �rst-
order logic [Hustadt 2004]. However, the weakness of temporal logics is that
due to their complexity [Dwyer 1999], it is not easy for practitioners who are
non-experts to specify system properties.

A variety of approaches adopt model checking for business process model
veri�cation, such as [Förster 2007, Knuplesch 2010, Khaluf 2011, Feja 2011].
Förster et al. in [Förster 2007] introduce an approach which allows the ver-
i�cation of certain constraints like domain speci�c or quality management

5.4. Related Work 93

Figure 5.7: A typical model checking work�ow

requirements, so-called quality constraints. The process pattern de�nition
language (PPSL), an extension to UML Actitivies, is used for the speci�ca-
tion of these constraints. The PPSL patterns, in turn, can be transformed
into speci�cations in linear temporal logic (LTL) while the business process,
which is modelled by using UML Actitivies, is transformed into a transition
system. This technique allows formal veri�cation of process constraints in
business processes. Although model checking provides techniques for the ver-
i�cation of a given model against a certain speci�cation property, it has not
been concerned with ontologies, i.e., ontology axioms play a role as part of the
model to be checked.

• Graph Reduction Graph reduction [Kovalyov 1990, Esparza 1994,
Sadiq 2000] was developed to detect structural shortcomings like dead-
lock or missing synchronization while specifying large and complex business
processes. After eliminating the structures which never cause anomalies, the
work�ow model is reduced.

[Sadiq 2000] introduces the �ve reduction rules iteratively applied to retain
vertices in a model. These rules are terminal reduction, sequential reduction,
adjacent reduction, closed reduction and overlapping reduction. By reduc-
ing the graph repeatedly, computational e�ciency is improved. If a model
contains any deadlocks or missing synchronizations, it is impossible to com-
pletely reduce to an empty graph. The time complexity of their main graph
reduction algorithm in the worst case is O(n2). However, this graph reduction
technique is not applicable to process models containing cycles. Furthermore,
although special overlapping structures can be veri�ed by applying these graph
reduction rules, it is hard or even impossible to handle general overlapping
structures.

94 Chapter 5. Veri�cation of Work�ow Templates

With regard to PNs, the authors in [Esparza 1994] explore the reduction and
synthesis techniques for analysis of well-formed PNs3. They introduce the
complete kits of reduction rules, including abstraction and linear dependency
rules, for the analysis of well-formed PNs. A free-choice4 net is transformed
into a simpler one by a reduction rule while maintaining well-formedness.
This means that the original net is well-formed if and only if the reduced net
is well-formed. This reduction algorithm runs in polynomial time on the size
of the system. It can be easily transformed into an algorithm to check liveness
and boundedness of free-choice systems. More importantly, the algorithm can
be reversed to create a synthesis algorithm, which is used for the stepwise
construction of large systems. We use the reduction algorithm presented in
[Esparza 1994] to transform a work�ow template into a simple one to detect
deadlock, in�nite cycle and missing synchronization.

5.4.2 Approaches focusing on the Semantic Level

The veri�cation of process models has been studied mostly from the control �ow
perspective. However, as mentioned previously, in order to ensure that a business
model is built correctly, issues beyond pure control-�ow veri�cation also need to be
taken into account.

• Correctness beyond Formal Semantics

Recently, some research has gone beyond the syntactic and formal semantics,
especially in the context of compliance. Most approaches in this area focus
on detecting compliance violations related to the model structure or execution
semantics [Goedertier 2006, Lu 2008, Awad 2008]. [Lu 2008] introduces a very
interesting approach to support process designers in quantitatively measuring
the compliance degree between a given process model and a set of control
objectives. The calculation of the ideal and sub-optimal compliance degree
starts with the extraction of the set of ideal and sub-optimal execution se-
quences for each control rule. The degree of support for these sequences in
the process model is then calculated. This allows process designers to mea-
sure how well a given process model represents the ideal and sub-optimal
situations in control rules as well as to be better informed on the cost of
non-compliance. Some approaches also consider running processes, such as
[Ly 2008, Kumar 2010, Ly 2012]. [Ly 2008, Ly 2012] introduce techniques to
ensure semantic correctness for single and concurrent changes at process in-
stance level. Their approach checks a notion of semantic correctness based
on annotations for tasks. A process is semantically correct if it complies with
the annotations. Semantic constraints, which are de�ned over processes, are

3Well-formed PNs are a restrictions of the high-level nets. The main advantage of well-formed

PNs is the notion of symbolic reachability graph that is composed of symbolic states [Chiola 1995]
4According to [van der Aalst 1997], a Petri Net is a free-choice Petri Net if and only if, for every

two places p1 and p2 either p1 • ∩p2 • = ∅; or p1• = p2• where p• denotes the set of transitions

sharing p as an input place

5.5. Discussion and Conclusion 95

used to detect semantic con�icts caused by violation only of dependency and
mutual exclusion constraints.

Although these approaches concentrate on aspects of semantic correctness, in
contrast to our work they do not mention about the use of a standard ontology
language such as OWL.

• Ontology-based Correctness Checking

With regard to ontological approaches, aspects of semantic correctness are con-
sidered in some research, such as [Thomas 2009b, Weber 2010, Fellmann 2011].

The approach of [Weber 2010] focuses on annotated business processes to cap-
ture what the process activities actually do when executing them. The in-
dividual activities in process models are annotated with logical preconditions
and e�ects, speci�ed relative to an ontology. Therefore, both the annotation
of preconditions and e�ects are required to verify the overall process behavior
which stems from the interaction between control-�ow and behavior of indi-
vidual activities. Although this approach combines syntax for control �ow and
also semantic annotation but the ontology is not built on a formal represen-
tation of the semantics of individual activities.

In [Thomas 2009b, Fellmann 2011], individual model elements are annotated
with concepts of a formal ontology. And the SPARQL query language is thus
used to check the semantic correctness of ontology-based process representa-
tions. Constraints are characterized in four basic types (i.e., element �ow,
element occurrence, resource usage and resource occurrence). They are for-
malized as SPARQL queries which are executed against the ontology-based
process representation. Furthermore, the work in [Fellmann 2011] provides
a very useful inspiration for our work, but it does not cover aspects related
to the grammar of the modelling language used and checking the absence of
deadlocks and livelocks.

5.5 Discussion and Conclusion

In this chapter, we focused on verifying business process templates at the syntactic
and semantic level. At the syntactic level, we have described two groups of con-
straints that ensure the soundness of work�ow templates. We have concentrated
on de�ning the axioms corresponding to the syntactic constraints and the axioms
involving the use of control nodes. At the semantic level, we have introduced the
�ve semantic veri�cation issues related to a work�ow template.

We have also introduced the SPARQL queries, which are related to the syntactic
constraints and the semantic veri�cation issues, to check the correctness of concrete
CBWTs. By relying on Jena5, which is a free and open source Java framework to
build Semantic Web and Linked Data applications, we have demonstrated not only

5https://jena.apache.org/index.html

https://jena.apache.org/index.html

96 Chapter 5. Veri�cation of Work�ow Templates

the usage of the SPARQL query language for syntactic and semantic checks, but also
the usage of terminological background knowledge provided by the CPN ontology
and the BP ontology. The results of this work were published in [Nguyen 2014a,
Nguyen 2014b, Pham 2015]

Chapter 6

Reuse of Work�ow Templates

Contents
6.1 Organization of the Knowledge Base of Control Flow-based

Work�ow Templates . 97

6.2 Process for Developing Work�ow Templates 101

6.3 Related Work . 103

6.4 Discussion and Conclusion . 104

Nowadays, business process models have been used in a wide area of enterprise
applications. Along with their popularity, interest is growing in how to create them
correctly in terms of semantics and syntax while boosting the e�ciency of reusing
suitable parts of existing models are growing.

Let us consider the following scenario. A person plans to create an ordering
process for his own purpose. He has either some experience in working on it or none
at all. The question is how he can create his process model in the most e�ective
way without developing it from scratch.

In fact, the di�erent existing work�ow templates extracted from a set of process
models can support modellers to create new work�ows or process models by provid-
ing the knowledge about potential and suitable work�ow activities. Therefore, in
this chapter, we focus on the reuse of work�ow templates.

We are interested in the organization of the knowledge base which guides the
search for suitable work�ow templates in order to reuse them. Users can adapt
the resulting work�ow templates as well as their ECA-like rules for each speci�c use
case. This is the knowledge on how to model a business process reusing control �ow-
based business work�ow templates (CBWTs). Hence, the annotation and storage of
work�ow templates play a very important role in the success of reusable CBWTs.

This chapter describes the main ideas about the organization of the knowledge
base of work�ow templates in order to guarantee an e�ective search for modelling a
business process.

6.1 Organization of the Knowledge Base of Control

Flow-based Work�ow Templates

In literature, the main goals of work�ow reuse are to improve work�ow template
quality and to increase its development productivity [Kradolfer 2000]. In other

98 Chapter 6. Reuse of Work�ow Templates

words, the more work�ow templates are available, the more di�cult they are to
be suitable in a speci�c reuse case. It is also important to note that the reuse
of work�ow templates is only bene�cial if the cost to �nd and adapt an existing
work�ow template is smaller than the cost needed to develop a new one from scratch.

After �nding suitable work�ow templates, it is important for users to under-
stand what the work�ow templates actually do. Thus, there is a strong need that
the knowledge base of work�ow templates could provide enough information for
modellers to be able to determine which template is suitable for the reuse case at
hand.

It is important to note that the development of a work�ow template relies on
a set of semantic constraints and the structure of CPNs (cf. Chapters 3 and 4).
The work�ow template is formalized by an RDF graph in which the dependencies
between its activities are expressed. Besides, to provide adequate support for spec-
ifying business rules of a work�ow template that the set of semantic constraints
cannot capture, a set of ECA-like rules stored in RDF format is proposed.

We propose a method to semantically annotate work�ow templates. Their re-
trieval through meta-work�ow templates will model expert knowledge and guide
the use of existing work�ow templates. The idea of using content which character-
izes work�ow templates is not original. Indeed, it seems reasonable to use explicit
information to �nd suitable templates to build a business work�ow. This is partic-
ularly important for work�ow modellers to be able to deal with the great number
of work�ow templates.

Based on the analysis of the state-of-the-art concerning the organization and
reuse of work�ow templates, we annotate work�ow templates by the following prop-
erties:

• templateName: Description of the main task being enacted by the template.

• description: Description of the template.

• keywords: List of words that characterizes the template. It also includes the
words that name the template.

• listOfActivityLabels: The labels are extracted from activity labels in the
template.

• creationDate: The date when the template is created.

• modificationDate: The date the template is last modi�ed.

• relatedTemplates: List of related templates (if any). The related templates
can be predecessors and successors of the template.

• listOfECARuleF iles: List of the rule �les de�ned for the work�ow template.

• bpOnt: Indicating the business process ontology used to develop the template.

6.1. Organization of the Knowledge Base of Control Flow-based
Work�ow Templates 99

The properties templateName, description, keywords and relatedTemplates

are determined by using expert knowledge. In contrast, the values of the
properties creationDate and modificationData are automatically captured at
the moment of storing the template. Depending on all the activity labels
in the template, the value of the property listOfActivityLabels1 is automati-
cally retrieved. For example, to get all activity labels of the template http :

//WFTemplate#Payment_Processing, the following SPARQL query is �rst ex-
ecuted to get all IDs of its transitions:

SELECT distinct ?trans WHERE

{

k:Payment_Processing h:hasTrans ?trans

}

Then the labels of these transitions are cut from their IDs and added into the
list of activity labels. The properties listOfECARuleF iles and bpOnt capture the
names (or URLs) of the rule �les de�ned for the work�ow template and the business
process ontology �le, respectively. These properties lead us to the representation
of additional knowledge that facilitates modellers to search for suitable templates,
which can be used to design a new one.

As a result, we propose a semantic annotation of work�ow templates which
expresses knowledge relative to their properties. The expert knowledge is captured
as RDF annotations to conduct users to model new business processes. Figure 6.1
illustrates a simpli�ed example of such semantic annotation.

http://Annotation#Wf0012

Cash; Credit card;
Payment

This template is used to handle the payment process.
In this process, a client (purchaser, buyer, customer)
has to choose a payment method (through a payment
service provider or a bank) to pay the agreed monetary
value to a seller. The template also contains activities
to process overdue payments and to remind the client
about outstanding debts

May 4, 2014

Request payment; Provide payment
methods; Get payment data;
Process check or cash; Process
credit card; Accept payment; Reject
payment

http://WFTemplate#Shipment

http://WFTemplate#Notification

http://WFTemplate#Invoicing

http://WFTemplate#OrderProcessing

http://ECARule#Payment_0001

http://WFTemplate#Payment

http://BPOntology#Payment

Figure 6.1: Example of the semantic annotation of a work�ow template

We also develop an ontology to annotate work�ow templates. The ontology

1The problem of labelling work�ow activities is introduced in Appendix C

100 Chapter 6. Reuse of Work�ow Templates

describes the main classes and properties for RDF annotations of work�ow templates
(see Figure 6.2).

In fact, the semantic annotations of work�ow templates have been inspired by
this idea: the knowledge added into these annotations will be helpful for the (re-
)use of work�ow templates along with their ECA-like rules. Those meta-work�ow
templates allow retrieving a list of work�ow templates (and also a list of ECA-
like rules) that correspond to di�erent criteria. For example, to acquire all existing
work�ow templates relating to payment by credit card, two criteria are used: (i) one
keyword of such a template is credit card ; (ii) description of such template contains
payment procecss. This can be performed by the SPARQL2 query as follows:

SELECT * WHERE

{

?workflow anno:keywords ?keyword

FILTER (?keyword ~ "credit card"^^xsd:string)

?workflow anno:description ?descr

FILTER (?descr ~ "payment process"^^xsd:string)

?workflow anno:templateName ?name;

anno:listOfActivityLabels ?actLabel;

anno:relatedTemplates ?relatedTemp;

anno:listOfECARuleFiles ?ecaRule;

anno:creationDate ?crtDate;

anno:modificationDate ?modDate

}

It is important to emphasize that those meta-work�ow templates allow retrieving
work�ow templates, which are annotated with additional expert knowledge formal-
ized with the help of the CPN ontology, the BP ontology and also the sets of ECA-
like rules. In the following we introduce an excerpt of the RDF annotation related
to the work�ow template http : //WFTemplate#Payment depicted in Figure 6.1.

<rdf:RDF

xmlns ="http://ontWFTemplateAnnotationsURI.owl#"

xmlns:wf="http://WFTemplate#"

xmlns:rule="http://ECARule#"

... >

<TemplateAnnotation rdf:ID="wf0012">

<templateName rdf:resource="http://WFTemplate#Payment"/>

<keywords>Cash;Credit card; Payment; Payment processing

</keywords>

<listOfActivityLables>Request payment; Provide payment methods;

Get payment data; Process check or cash; Process credit card;

2PREFIX anno :< http : //ontWFTemplateAnnotationsURI.owl# >

6.2. Process for Developing Work�ow Templates 101

Accept payment; Reject payment

</listOfActivityLables>

<description>Template payment processing is used to handle

the payment process...

</description>

<relatedTemplates rdf:resource="http://WFTemplate#Invoicing"/>

<relatedTemplates rdf:resource="http://WFTemplate#

OrderProcessing"/>

...

<listOfECARuleFiles rdf:resource="http://ECARule#

Payment_0001"/>

<bpOnt rdf:resource="http://BPOntology#

Payment"/>

...

</TemplateAnnotation>

</rdf:RDF>

Figure 6.2: Extract of the annotation ontology used to annotate work�ow
templates

c

6.2 Process for Developing Work�ow Templates

In this section, we introduce a process for developing work�ow templates, which is
regarded as part of the process for developing an encompassing work�ow application.

102 Chapter 6. Reuse of Work�ow Templates

The process consists of the main following phases (see Figure 6.3):

1. Search for reusable work�ow templates: An analysis of the process(es)
is performed before implementing it. This results in a set of requirement
descriptions as well as a business process model. The information is then used
to start the process for developing work�ow templates which may involve the
search for reusable work�ow templates.

2. Understand and select potential, suitable templates: In this phase,
modellers have to carefully consider the found work�ow templates. They try
to understand them to decide which ones are (partly or fully) reused for their
application.

3. Modify selected templates: If the selected templates do not comply with
all the requirements, they have to be modi�ed accordingly. For example, some
new activities can be added into a selected template.

4. Create new sub-work�ow templates: Besides reusing part or all of the
existing templates, modellers might have to create new sub-work�ow templates
to meet all the requirements. However, the creation of a new sub-work�ow
template is only necessary if no existing templates can be reused instead for
the same purpose.

5. Complete work�ow templates: The last phase is to complete a new work-
�ow template. The existing unmodi�ed, modi�ed and new sub-work�ow tem-
plates are integrated into a new work�ow template for a speci�c use case.
Each of these work�ow templates is considered as a sub-work�ow of the new
work�ow template. It is then veri�ed at the syntactic and semantic level. In
case of errors, the errors have to be solved. The new work�ow template is
stored in the CBWT repository if and only if: there exist no syntactic errors
nor semantic errors; and at least one set of ECA-like rules is de�ned for the
new work�ow template.

To �nd suitable work�ow templates, users can de�ne their criteria by keyword,
by description or by activity label. If the search process returns only one template,
users can easily make their decision that the template is selected or not selected.
Otherwise, the value of the property RelatedTemplates can be used to provide more
information for users to make their decision.

To sum up, the semantic annotations of work�ow templates integrating expert
domain knowledge formalized by an RDF graph are used to organize and retrieve
work�ow templates, their business process ontologies and their sets of ECA-like
rules. The resulting templates and their rules can be used in a process for imple-
menting software components or in a process for developing work�ow templates.

6.3. Related Work 103

Requirements, Business Process Model

Select potential, suitable
templates

Search for reusable
workflow templates

Workflow Verification
Complete a workflow

template

Create new sub-
workflow templates

Modify selected
templates

Create ECA-like rules

Workflow
Templates with

ECA-like rules
Repository

Figure 6.3: Development of reuse-based work�ow template

6.3 Related Work

Up to now, the problem of reusing process models or work�ows is mentioned in
some existing approaches. In general, work�ows can be reused manually or semi-
automatically [Markovic 2008, Lu 2009, Koschmider 2015]. Moreover, modellers can
partly or fully reuse a work�ow [Mendling 2006, Eshuis 2008, Koschmider 2011,
Koschmider 2015].

The authors in [Mendling 2006] specify a method for business process design by
view integration which takes two process views as input. At �rst, semantic relation-
ships between elements of di�erent process models are formalized. On this basis, the
integrated process model applying the merge operator is calculated. [Eshuis 2008]
also presents a formal approach for constructing customized process views on struc-
tured process models to improve e�ective cross-organizational collaborations. Each
customized process is constructed by hiding and/or omitting activities not requested
by the process consumer. However, neither of them considers content-based reuse.
In order to overcome this issue, the authors in [Koschmider 2015] introduce a set of
Domain Process Patterns (DPPs) that capture process model parts. A DPP rep-
resents a speci�c business function of a process model part in a modelling domain.
DPPs facilitate reuse from a content perspective by focusing on domain-centered

104 Chapter 6. Reuse of Work�ow Templates

reuse of process model content. Nevertheless, DPPs do not provide any syntac-
tic needs for modelling business processes. However, by capturing process model
parts with a particular structure, DPPs do not support syntactic checks which are
supported in our approach.

6.4 Discussion and Conclusion

The concepts, which have been introduced in the previous chapters, provide useful
support for the development and modi�cation of work�ow templates, whereas the
tasks of searching and understanding work�ow templates have not been mentioned.
Therefore, in this chapter, we have presented a process for developing work�ow tem-
plates, which specially emphasizes the di�erent phases of work�ow template reuse
comprising the tasks of searching, understanding and modifying work�ow templates.

Moreover, in order to better support the search for suitable work�ow templates,
the annotation ontology has been developed to annotate work�ow templates. The
ontology provides adequate information about the work�ow templates and their
ECA-like rules for work�ow modellers to determine whether a work�ow template is
able to be reused.

Chapter 7

Prototype

Contents
7.1 Introduction . 105

7.2 Technical Implementation of the CBWT Prototype 109

7.2.1 Web Technologies and Software Tools 109

7.2.2 De�nition of User's Scope of Interest to Search for Relevant

Work�ow Templates . 110

7.2.3 Creation of a new Semantic Constraint 111

7.2.4 Creation of a new Work�ow Template 111

7.2.5 Checking Redundant and Con�icting Semantic Constraints . 113

7.2.6 Work�ow Template Veri�cation 114

7.2.7 Creation of a Set of Event-Condition-Action Rules 115

7.3 Evaluation . 116

7.4 Conclusion . 117

In this chapter, we present an overview of the CBWT prototype that is imple-
mented to validate the concepts presented in the previous chapters. It is necessary
to underline that the prototype is not developed to become a full-�edged work�ow
template management system. It is just a proof of concept which supports modellers
in developing a new work�ow template from a set of semantic constraints and/or
by reusing some existing work�ow templates.

The rest of this chapter is divided into four sections: Section 7.1 introduces
an overview of the functionality of the prototype. In Section 7.2, details of the
implementation are presented. In Section 7.3, we discuss the evaluation of the
prototype. Finally, a conclusion of the chapter is given in Section 7.4.

7.1 Introduction

In order to validate our approach for representing semantically Control �ow-based
Business Work�ow Templates (CBWTs) in a knowledge base, we implement the
CBWT prototype allowing us to develop, verify and reuse work�ow templates. The
conceptual architecture of the CBWT prototype is depicted in Figure 7.1. The
functionality of the CBWT prototype corresponds to the main components of our
process for developing work�ow templates.

106 Chapter 7. Prototype

At the upper part of Figure 7.1(a), a use case model1 shows the functionality
of the CBWT prototype. There are two types of actors consisting of expert user
(i.e., the work�ow modeller) and end-user, who interact with the prototype. The
communication associations between actors and use cases are represented by arrows.
The direction of each arrow is used to indicate the entity (either actor or use case)
initiating the communication.

The current version of the CBWT prototype focuses on supporting expert users
in the work�ow template development process. Therefore, in the following we de-
scribe six use cases intended for expert users (i.e., modellers), which are provided
by the CBWT prototype:

• Search for work�ow (WF) templates: Users can search for potential,
suitable work�ow templates through search criteria as keywords, description
and even activity labels.

• Browse work�ow templates and ECA-like rules: Users can browse a
work�ow template via an interface illustrated in Figure 7.2. On the left side
of the form (see area (1)), a list of work�ow templates is shown. By clicking
on a work�ow template, the information concerning the work�ow template is
shown in the right part of the form (see area (2)). To browse the detail of a set
of ECA-like rules of the work�ow template, users can click on its name (see
area (3)) and all the rules in that selected set will be displayed in the other
form (Figure 7.3). The lower part of the form displays the set of semantic
constraints used for developing the template (see area (4)). There are also the
set of buttons used to modify the template (see area (5)).

• Download work�ow templates along with their ECA-like rules: Users
can download couples of a work�ow template and a set of ECA-like rules
de�ned for the work�ow template in RDF format. It is done by selecting
the name of the work�ow template and the name of ECA-like rules and then
clicking on the button Download Work�ow Template.

• Modify work�ow templates and ECA-like rules: A couple of a work-
�ow template and a set of ECA-like rules can be modi�ed and updated by
modellers (expert user) by applying the manipulation operations (see Chapter
3). A modi�ed work�ow template is not stored in the repository if there exist
syntactic or semantic errors. With regard to modifying the set of ECA-like
rules, if a modi�cation operation would violate one of the ECA-like rules, it
is not performed and modellers are informed by a noti�cation. For example,
when modellers try to de�ne a duplicate rule for an activity in a work�ow
template, an error message is sent out.

1A use case model describes the proposed functionality of a new system. Two main constructs

of a use case model are actors and use cases. An actor, which can be a human or an external

system or time, represents a role played by an entity that interacts with the system. A use case

represents what is done by the system [Booch 2005].

7.1. Introduction 107

Expert User End User

Search for WF templates

Select and Modify
SPARQL queries

Create new WF templates
along with ECA rules

Browse WF templates
and ECA rules

Download WF templates
along with ECA rules

Modify WF templates
and ECA rules

Client

(a)

Workflow

Templates with
ECA-like rules

Repository

Workflow Manager

Jena

Server

(c)

(b)

request

response
Client Server

Figure 7.1: The conceptual architecture overview of the CBWT prototype

108 Chapter 7. Prototype

• Create new work�ow templates along with their ECA-like rules:
A new work�ow template can be developed from scratch or by reusing the
existing unmodi�ed or modi�ed work�ow templates.

• Select and modify SPARQL queries: Modellers can choose a level (se-
mantic or syntactic or both) to verify a work�ow template. There is a set of
SPARQL queries corresponding to the set of constraints presented in Chapter
5 that modellers can select for work�ow veri�cation. Modellers can also mod-
ify the existing queries or de�ne new queries. When the work�ow template is
well-veri�ed (there are no errors in the work�ow template,), modellers can de-
�ne a set of ECA-like rules for the work�ow template. The work�ow template
and its set of ECA-like rules are then saved in the repository.

Figure 7.2: Interface used to browse and update work�ow templates

The serve-side contains two components as follows:

• Work�ow manager maintains work�ow templates and provides the manipu-

7.2. Technical Implementation of the CBWT Prototype 109

Figure 7.3: Interface used to browse and update ECA-like rules

lation operations to modify and update the work�ow templates and ECA-like
rules. It supports the modi�cation of work�ow templates to avoid incorrect
results.

• Work�ow Templates with ECA-like rules Repository contains the high
quality work�ow templates, verifying the syntactic and semantic correctness,
their business process ontologies and ECA-like rules.

7.2 Technical Implementation of the CBWT Prototype

This section describes the implementation of the CBWT prototype. First, we brie�y
introduce the Web technologies and software tools which are used to develop our
prototype and make it work. Second, we describe technical details of the CBWT
prototype as a simple Web application.

7.2.1 Web Technologies and Software Tools

We hereinafter brie�y introduce the standard technologies used to implement our
work�ow template development process model. For the veri�cation of work�ow tem-
plates, the CBWT prototype relies on Jena, an open source Semantic Web frame-
work for Java, for querying RDF data sources.

The prototype has been encoded with the following technologies:

110 Chapter 7. Prototype

• Java programming language2 was originally developed and �rstly released as
Java 1.0 in 1995 by Sun Microsystems3. The development of the prototype
is done with the Eclipse4 4.3.2 Platform (Kepler), which is an integrated de-
velopment environment (IDE) comprising extensible application frameworks,
tools, and a runtime library for software development and management.

• Vaadin Framework5 is a Java web application development framework that
enables creation and maintenance of high quality web-based user interfaces.
It supports di�erent programming models, including server-side and client-
side. Programming with Vaadin helps programmers to forget the web and to
just program user interfaces. It looks like they are programming a desktop
application with conventional Java toolkits such as AWT, Swing or SWT but
easier. We use Vaadin 76 to develop the prototype.

• Jena7 is a free and open source Java framework for building Semantic Web and
Linked Data applications, originally developed by researchers in HP Labs8 in
UK in 2000. Jena provides extensive Java libraries for developing code that
handles RDF, RDFS, RDFa, OWL and SPARQL in accordance with published
W3C recommendations. It contains a rule-based inference engine, which can
perform reasoning based on OWL and RDFS ontologies. It also contains a
number of storage strategies to store RDF triples in memory or on disk. The
prototype is developed with the version apache-jena-2.12.09.

In the following, we introduce some interfaces used for the development process of
work�ow templates.

7.2.2 De�nition of User's Scope of Interest to Search for Relevant
Work�ow Templates

The functionality shown in Figure 7.4 allows users to de�ne criteria to search for
work�ow templates, which are appropriate to a business process model they want
to develop. Criteria can be de�ned as keywords, description and activity labels.

• Input: The criteria provided by a user to start a search for relevant templates.

• Process: Matching the desired values with the values of the corresponding
attributes in the annotation ontology.

• Output: A set of relevant templates contains a series of the potential, suitable
activities along with their ECA rule �les.

2http://www.oracle.com/technetwork/java/index.html
3Oracle acquired Sun Microsystems in 2010
4http://www.eclipse.org/
5https://vaadin.com/home
6https://vaadin.com/download
7https://jena.apache.org/index.html
8http://www.hpl.hp.com/
9https://jena.apache.org/download/index.cgi

http://www.oracle.com/technetwork/java/index.html
http://www.eclipse.org/
https://vaadin.com/home
https://vaadin.com/download
https://jena.apache.org/index.html
http://www.hpl.hp.com/
https://jena.apache.org/download/index.cgi

7.2. Technical Implementation of the CBWT Prototype 111

Figure 7.4: Interface of the de�nition of criteria for searching templates

7.2.3 Creation of a new Semantic Constraint

In order to develop a high quality work�ow template, a set of elements (e.g., activi-
ties, control nodes, business rules) of the work�ow template as well as the relation-
ship between them must be de�ned.

The functionality shown in Figure 7.5 allows users to input all the necessary
information to specify a semantic constraint for a given model.

• Input: The information provided by a user to create a new semantic con-
straint. It is named automatically or manually.

• Process: A set of necessary information that is �lled to create a new semantic
constraint. The new constraint is then checked with the set of existing ones to
avoid duplication. The new constraint is regarded as a duplicate of the other
ones when their four parameters consisting of constraintType, appliedTask,
relatedTask and order are the same.

• Output: A new semantic constraint is stored if it does not duplicate any exist-
ing ones in the set of de�ned constraints semantics. Otherwise, a noti�cation
will be sent out.

7.2.4 Creation of a new Work�ow Template

The functionality shown in Figure 7.6 allows users to complete the preparation of a
new work�ow template.

112 Chapter 7. Prototype

Figure 7.5: Interface of the creation of a semantic constraint

Figure 7.6: Interface of the development of a new template

• Input:

(i) Information provided by the work�ow designer to create a work�ow tem-

7.2. Technical Implementation of the CBWT Prototype 113

plate;

(ii) The CPN ontology.

• Process: A work�ow template can be developed by integrating the existing
unmodi�ed, modi�ed and new work�ow templates. Therefore, the �rst step of
the process for developing work�ow templates is to locate reusable work�ow
templates. The second step is to understand and select potential work�ow
templates. The third step is to modify the chosen templates if needed. And
the last step is to add a set of semantic constraints which is used to complete
the new work�ow template.

• Output: The preparation of a new work�ow template in RDF format.

7.2.5 Checking Redundant and Con�icting Semantic Constraints

The functionality shown in Figure 7.7 allows users to valid the set of semantic
constraints.

• Input: A set of semantic constraints.

• Process: The set of semantic constraints have to be checked whether they
contain redundant, con�icting constraints or not before it is used to develop a
new work�ow template. The check is done by applying Algorithm 1. The vari-
able checkRedundance (shown in Figure 7.7 as the column REDUNDANCE)
consists of two possible values: True if a semantic constraint is redundant
and False, otherwise. The variable checkCon�ict (shown in Figure 7.7 as the
column CONFLICT) has integer values: value -1 means that the constraint
does not con�ict with the other constraints; a positive value means that the
constraint con�icts directly with the other constraint; a negative value (except
value -1) means that the constraint con�icts with an inferred constraint.

• Output: The result of checking redundant and con�icting semantic con-
straints.

Figure 7.7: Interface for checking redundant and con�icting constraints

114 Chapter 7. Prototype

7.2.6 Work�ow Template Veri�cation

The functionality shown in Figures 7.8 and 7.9 allows users to check the correctness
of work�ow templates at the syntactic and semantic level.

• Input: A work�ow template.

• Process: Work�ow veri�cation is executed by matching an RDF graph repre-
senting a work�ow template to graph patterns of SPARQL queries concerning
the syntactic and semantic constraints (see Chapter 5). If there is at least one
match, an XML �le is returned to indicate why the errors occur (e.g., see Fig-
ure 5.6). The work�ow template has to be repaired until it is well-veri�ed and
thereafter the work�ow template is added to the work�ow templates reposi-
tory.

• Output: An XML �le which results nodes comprising required information
and causes errors.

Figure 7.8: Verifying and reporting non-compliance results at the semantic level

7.2. Technical Implementation of the CBWT Prototype 115

Figure 7.9: Choosing a work�ow template to be veri�ed

7.2.7 Creation of a Set of Event-Condition-Action Rules

In each use case of a business work�ow template, a set of requirements may be
changed. Therefore, as mentioned in Section 4.4, the requirements must be de�ned
and maintained outside of the current technical representatives of the business pro-
cess. The functionality shown in Figures 7.3 and 4.7 allows users to de�ne a set of
Event-Condition-Action rules.

• Input:

(i) Information provided by the work�ow modeller to de�ne a set of ECA-like
rules;

(ii) An existing work�ow template.

• Process: An existing work�ow template contains a set of activities and control
nodes. A requirement can be de�ned for each node according to the syntax
mentioned in Section 4.4.

116 Chapter 7. Prototype

• Output: The set of business rules in RDF format.

7.3 Evaluation

In this section, we discuss the evaluation of the proposed approach by performing
an experiment with 6 participants consisting of:

• 4 PhD students in Computer Science (2) and Business Studies (2);

• 2 participants have graduated in Information Systems (1) and Business Man-
agement Studies (1).

The participants were divided into two groups to analyse the Procure to pay

business process. We interviewed 4 economics experts in two companies in Sophia
Antipolis, France.

The process was split into two main sub-processes due to its complexity and the
di�erent roles involved:

1. Requisition to Receipt Process (RRP): This sub process starts by the
creation and management of purchase requisitions and corresponding purchase
orders to the moment the warehouse sta� receives the merchandise.

2. Supplier Invoice to Payment (SIP): This sub process continues the pre-
vious one by registering the supplier invoices and closes it by paying supplier
invoices.

Each group focused on one sub process. They determined activities and depen-
dencies between these activities to model the sub process. We received 38 activities
for the �rst sub process and 26 activities for the second one. The activities were then
divided into sets based on their function. There were four sets (i.e., Purchase req-

uisition processing, Checking, Contact and Inventory) and two sets (i.e., Invoicing
and Payment) of activities from the �rst and the second sub process, respectively.
We decided to reuse the Payment template presented in Section 1.2.1 to model the
Payment set.

By taking these results, each group created necessary sets of semantic constraints
to model the sub processes. The sets were checked for redundant and con�icting
constraints (a) by manual search with the tool Microsoft Excel 201310 or (b) by
using the proposed prototype.

In order to evaluate the e�ectiveness of our algorithm for checking redundant and
con�icting constraints, we measured the time required for �nding the shortcomings
as shown in Figure 7.10. This �gure indicates that using our prototype is faster.

The sets of semantic constraints were then modi�ed (if required) to be validated.
Based on these sets, the work�ows were developed. To measure the correctness of
the mapping method between the BP ontology and the CPN ontology, we checked

10https://products.office.com/en-us/home-and-student

https://products.office.com/en-us/home-and-student

7.4. Conclusion 117

Figure 7.10: Time needed to check redundant and con�icting constraints

the work�ows manually for any redundant instances. We found 1 redundant instance
of the class Transition (expressed as a control node Sequence) in the purchase req-
uisition work�ow which is developed from 52 semantic constraints with 12 activities.
Consequently, the prototypes have been improved to avoid similar redundancies.

In order to evaluate the e�ectiveness of SPARQL queries for syntactic and seman-
tic checks we counted the correct, incorrect and missing answers to determine the
quality of results. We compared the results obtained by using the SPARQL query
language and the ones obtained by manual search. Figure 7.11 shows the number of
syntactic and semantic errors of these work�ows detected by the SPARQL language
and by manual. These results indicate that using SPARQL queries to verify complex
work�ows is better regarding the accuracy of the results.

7.4 Conclusion

As mentioned at the beginning of this chapter, the CBWT prototype is developed
for the process of work�ow template development to validate the concepts that we
have introduced in the previous chapters of this thesis. We have concentrated on
developing the six use cases for expert users who are work�ow modellers.

By developing the prototype, we have received useful feedback to improve the
concepts relating to model semantically rich work�ow templates. For example, in
the �rst version of our prototype, sub-work�ows were not supported, which was then
considered as a major shortcoming. Therefore, we have expanded the old prototype
to allow users to not only create a new work�ow template containing one or more

118 Chapter 7. Prototype

Figure 7.11: Detecting errors by manual searching and querying

sub-work�ow templates, but also to check its syntactic and semantic correctness.

Chapter 8

Conclusions and Outlook

Contents
8.1 Summary of Contributions . 119

8.2 Limitations and Perspectives 121

This chapter concludes our doctoral research work by summarizing the main con-
tributions. We also discuss the limitations of the proposed approach for developing
work�ow templates and the current version of our CBWT prototype. Subsequently,
we identify directions for possible future research.

8.1 Summary of Contributions

There are four major contributions of this thesis. Firstly, the CPN ontology has
been developed to represent the concepts of CPN-based business work�ow tem-
plates. Secondly, a formal de�nition of semantic constraints and a structure of
ECA-like rules have been introduced to model semantic business processes. In order
to check redundant and con�ict constraints, an algorithm has been presented. In
addition, to develop a work�ow template, a set of algorithms used to create corre-
spondences between the BP ontology (a business process ontology) and the CPN
ontology has also been described. Thirdly, the problem of work�ow veri�cation has
been investigated. A set of syntactic constraints as well as the issues of semantic
veri�cation have been determined. They are represented as SPARQL queries used
for syntactic and semantic checks related to a speci�c business process. And lastly,
concepts to better support the process for developing work�ow templates have been
suggested.

In fact, process speci�cation techniques and conceptual models of work�ow have
been presented in various research papers. However, in most cases, they focused
on checking the correctness of a work�ow either at the syntactic or at the semantic
level only. As the result, this is not su�cient for guaranteeing the correctness
of a work�ow template at both levels. In contrast, our approach focused on the
combination of control �ow (based on CPNs) and semantic constraints that enables
syntactic and semantic checks related to a work�ow template.

To summarize, in comparison with the current approaches, our approach has the
following distinguishing features:

120 Chapter 8. Conclusions and Outlook

• Representing semantically rich business work�ow templates: The CPN on-
tology has been developed to represent the concepts of CPN-based business
work�ow templates. A business process is thus syntactically transformed into
an instance of the CPN ontology, which enables syntactic checks based on
CPNs. The purpose of the CPN ontology is to semantically enrich work�ow
templates. Once work�ow de�nitions are stored as semantic enriched work�ow
templates, IT experts can easily develop their appropriate software systems
from the work�ow templates.

• Describing semantically a business process by identifying a set of semantic

constraints and ECA-like rules.

Semantic constraints are speci�ed as domain speci�c restrictions on a business
process. They express the dependencies between activities, such as existing de-
pendencies and ordering relations. A set of semantic constraints is transformed
into an instance of the BP ontology if there is no redundant and con�icting
constraints. A business work�ow template is then developed by creating a
correspondence between the BP ontology and the CPN ontology.

The de�nitions in the BP ontology are used not only to standardize the ter-
minologies, but also to check the semantic correctness of work�ow templates.
However, semantic constraints can not capture some business level correctness
requirements, such as the constraint specifying that a certain user task has to
be performed in a certain activity of a business process. Therefore, ECA-like
rules are proposed to express those requirements. The combination of seman-
tic constraints and ECA-like rules supports work�ow modellers in modelling
semantic business processes.

• Correctness criteria for business work�ow templates: The correctness criteria
are considered at the two levels, syntactic and semantic.

Since a business work�ow template is developed based on the CPN and the
BP ontology, it allows syntactic and semantic checks. The performance of
the former relies on the classi�cation of syntactic constraints in modelling
business processes. The latter is performed in order to answer the �ve semantic
veri�cation issues of a work�ow template.

Furthermore, since work�ow templates are encoded in RDF format, the
SPARQL query language is used to check their correctness. Correctness cri-
teria are formalized as SPARQL queries, which can be asked against an RDF
graph describing a work�ow template.

In order to modify work�ow templates and their ECA-like rules, a set of manipula-
tion operations has been proposed that allows modifying and updating the work�ow
templates and their ECA-like rules. The set includes operations to add, delete, up-
date work�ow elements and ECA-like rules as well as to modify the order of the
existing work�ow elements.

8.2. Limitations and Perspectives 121

Moreover, the issue of reusing work�ow templates is addressed. This contains
several phases: searching, understanding, modifying and integrating work�ow tem-
plates. Each phase provides adequate support to facilitate the reuse of work�ow
templates. The annotations of each work�ow template help users to �nd and select
the most suitable ones. The selected work�ow templates along with their ECA-like
rules then can be adapted and modi�ed by applying the proposed manipulation op-
erations. The integration of the existing modi�ed, unmodi�ed and new sub-work�ow
templates (if any) is supported by enabling the composition of sub-work�ows.

Finally, the CBWT prototype has been implemented to demonstrate the feasi-
bility of the concepts introduced in this thesis.

8.2 Limitations and Perspectives

In this section, we discuss limitations of our approach as well as provide a brief
description of the main perspectives of our research.

The main limitation of our research comes from the complexity of modelling
domain knowledge. The research has been particularly oriented to model semantic
business processes and business level requirements by expert-users. It is sometimes
di�cult to specify semantic constraints and to represent all business level require-
ments as ECA-like rules. For a set of complex semantic constraints, e.g., an activity
which may relate to a lot of semantic constraints, the automated approach, which
is used to create correspondences between the BP ontology and the CPN ontology
to develop a work�ow template, may result in redundant control nodes. Therefore,
the resulting work�ow template in some cases need to be manually optimized.

Another limitation is that at the moment only design time is supported and there
is no support for multiple modellers who might be involved in work�ow modelling.

In the following, several other directions to extend the results presented in this
thesis are identi�ed:

• Support of multiple work�ow modellers (i.e., expert users): The CBWT
prototype has been developed as a simple web application. Thus, it can be fur-
ther extended to support multiple work�ow modellers who might be involved
in modelling a business process. To address the problem of concurrency access,
the following solutions are mentioned:

� Locking the template �le for writing. It means that once an expert user
(modeller) starts to modify an existing work�ow template (�le) nobody
else can commit any change to this �le.

� Using workspaces (or named repositories). A workspace is a named repos-
itory on the server. The access right is controlled by the server. It
is mandatory to apply some forms of version management and sharing
strategy to the repository (i.e., work�ow templates can be merged, mod-
i�ed and copied, etc.).

122 Chapter 8. Conclusions and Outlook

• Work�ow veri�cation at runtime: To resolve the limitation related to the
veri�cation of process instances at runtime, new research has begun in 2014 in
the research team Wimmics1. Based on the results of our research, this new
research action will adopt and extend our process for developing work�ow
templates. It will focus on business level correctness requirements as well as
the veri�cation of process instances.

• Authorization constraints: There is usually no expectation that such mis-
sions as modifying a work�ow template, changing business level requirements,
completing a work�ow template, etc., can be performed by all expert users. In-
stead, each expert user should only be permitted to undertake a clearly-de�ned
set of missions. In this case, the de�nition of authorization constraints should
be possible and is enforced by the WFMS. Therefore, the approach introduced
in this thesis can be extended to support authorization constraints.

1https://wimmics.inria.fr

https://wimmics.inria.fr

Appendix A

Classi�cation of Business Rules

In our work, we classify business rules into three groups as follows:

• Structural rules detail a speci�c, static aspect of the business. They express
restrictions on business concepts and facts. For example:

At a time, a customer can rent at most one car.

It is obligatory that each rental car is owned by exactly one branch.

• Action rules that concern some dynamic aspect of the business. They estab-
lish when certain activities should take place. For example:

A car can be handed over to the customer if and only if the deposit has been
con�rmed.

If a customer is blacklisted, his/her rental reservation must not be accepted.

• Derivation rules are generated by an inference or a mathematical calculation
from terms, facts, other derivations or even action rules. Consequently, they
are based on one or more business rules. Therefore, it is unnecessary to store
them explicitly. For example:

� Derivation/Inference: Each French is a person who is a citizen of country
`FR'.

� Derivation/Mathematical calculation: The `rental amount' in Rental is
equal to the `rental rate' times its `number of days'.

Note that the most important di�erence between action and structural rules
is that the former is related to a concrete event (e.g., the rejection of a rental
reservation related to a customer in a blacklist in the examples above), when the
latter does not imply any relevant event (e.g., a customer can always reserve one
car at a time, whoever she/he is).

Appendix B

The CPN ontology (CpnOnt.owl)

<?xml version="1.0"?>

<!DOCTYPE rdf:RDF [

<!ENTITY owl "http://www.w3.org/2002/07/owl#" >

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" >

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" >

]>

<rdf:RDF xmlns="http://www.semanticweb.org/CPNWF#"

xml:base="http://www.semanticweb.org/CPNWF"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<owl:ObjectProperty rdf:about="#connectsPlace">

<rdfs:range rdf:resource="#InputArc"/>

<rdfs:domain rdf:resource="#OutputArc"/>

<rdfs:range rdf:resource="#Place"/>

<rdfs:domain rdf:resource="#Transition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#connectsTrans">

<rdfs:domain rdf:resource="#InputArc"/>

<rdfs:range rdf:resource="#OutputArc"/>

<rdfs:domain rdf:resource="#Place"/>

<rdfs:range rdf:resource="#Transition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasActivity">

<rdfs:range rdf:resource="#ActNode"/>

<rdfs:domain rdf:resource="#GuardFunction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasArc">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:domain rdf:resource="#CPNOnt"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<rdf:Description rdf:about="#InputArc"/>

126 Appendix B. The CPN ontology (CpnOnt.owl)

<rdf:Description rdf:about="#OutputArc"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasAttribute">

<rdfs:range rdf:resource="#Attribute"/>

<rdfs:domain rdf:resource="#Delete"/>

<rdfs:domain rdf:resource="#GuardFunction"/>

<rdfs:domain rdf:resource="#Insert"/>

<rdfs:domain rdf:resource="#Token"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasControl">

<rdfs:range rdf:resource="#CtrlNode"/>

<rdfs:domain rdf:resource="#GuardFunction"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasExpression">

<rdf:type rdf:resource="&owl;FunctionalProperty"/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<rdf:Description rdf:about="#Delete"/>

<rdf:Description rdf:about="#Insert"/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<rdf:Description rdf:about="#InputArc"/>

<rdf:Description rdf:about="#OutputArc"/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasGFunction">

<rdfs:range rdf:resource="#GuardFunction"/>

<rdfs:domain rdf:resource="#Transition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasMarking">

<rdfs:domain rdf:resource="#Place"/>

<rdfs:range rdf:resource="#Token"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasPlace">

127

<rdfs:domain rdf:resource="#CPNOnt"/>

<rdfs:range rdf:resource="#Place"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasTrans">

<rdfs:domain rdf:resource="#CPNOnt"/>

<rdfs:range rdf:resource="#Transition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#valueAtt">

<rdfs:domain rdf:resource="#ActNode"/>

<rdfs:domain rdf:resource="#Attribute"/>

<rdfs:domain rdf:resource="#CtrlNode"/>

<rdfs:range rdf:resource="#Value"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#valueRef">

<rdfs:domain rdf:resource="#Value"/>

<rdfs:range rdf:resource="#Value"/>

</owl:ObjectProperty>

<owl:Class rdf:about="#ActNode">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#valueAtt"/>

<owl:onClass rdf:resource="#Value"/>

<owl:qualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:qualifiedCardinality>

</owl:Restriction>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#GuardFunction"/>

</owl:Class>

<owl:Class rdf:about="#Attribute">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#valueAtt"/>

<owl:onClass rdf:resource="#Value"/>

<owl:maxQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:maxQualifiedCardinality>

</owl:Restriction>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#Delete"/>

<rdfs:subClassOf rdf:resource="#Insert"/>

<rdfs:subClassOf rdf:resource="#Token"/>

</owl:Class>

<owl:Class rdf:about="#CPNOnt">

128 Appendix B. The CPN ontology (CpnOnt.owl)

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="#hasArc"/>

<owl:onClass>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<rdf:Description rdf:about="#InputArc"/>

<rdf:Description rdf:about="#OutputArc"/>

</owl:unionOf>

</owl:Class>

</owl:onClass>

<owl:minQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:minQualifiedCardinality>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasPlace"/>

<owl:onClass rdf:resource="#Place"/>

<owl:minQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:minQualifiedCardinality>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasTrans"/>

<owl:onClass rdf:resource="#Transition"/>

<owl:minQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:minQualifiedCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

<owl:Class rdf:about="#CtrlNode">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#valueAtt"/>

<owl:onClass rdf:resource="#Value"/>

<owl:maxQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:maxQualifiedCardinality>

</owl:Restriction>

129

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#GuardFunction"/>

</owl:Class>

<owl:Class rdf:about="#Delete">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasAttribute"/>

<owl:allValuesFrom rdf:resource="#Attribute"/>

</owl:Restriction>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#InputArc"/>

</owl:Class>

<owl:Class rdf:about="#GuardFunction">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="#hasActivity"/>

<owl:onClass rdf:resource="#ActNode"/>

<owl:qualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:qualifiedCardinality>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasControl"/>

<owl:onClass rdf:resource="#CtrlNode"/>

<owl:qualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:qualifiedCardinality>

</owl:Restriction>

</owl:unionOf>

</owl:Class>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasAttribute"/>

<owl:onClass rdf:resource="#Attribute"/>

<owl:minQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:minQualifiedCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

130 Appendix B. The CPN ontology (CpnOnt.owl)

<rdfs:subClassOf rdf:resource="#Transition"/>

</owl:Class>

<owl:Class rdf:about="#InputArc">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="#hasPlace"/>

<owl:someValuesFrom rdf:resource="#Place"/>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasExpression"/>

<owl:onClass rdf:resource="#Delete"/>

<owl:minQualifiedCardinality

"&xsd;nonNegativeInteger">1 rdf:datatype=

</owl:minQualifiedCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#CPNOnt"/>

</owl:Class>

<owl:Class rdf:about="#Insert">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasAttribute"/>

<owl:someValuesFrom rdf:resource="#Attribute"/>

</owl:Restriction>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#OutputArc"/>

</owl:Class>

<owl:Class rdf:about="#OutputArc">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="#hasTrans"/>

<owl:someValuesFrom rdf:resource="#Transition"/>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasExpression"/>

<owl:onClass rdf:resource="#Insert"/>

<owl:minQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

131

</owl:minQualifiedCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#CPNOnt"/>

</owl:Class>

<owl:Class rdf:about="#Place">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="#connectsTrans"/>

<owl:allValuesFrom rdf:resource="#Transition"/>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasMarking"/>

<owl:onClass rdf:resource="#Token"/>

<owl:maxQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:maxQualifiedCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#CPNOnt"/>

</owl:Class>

<owl:Class rdf:about="#Token">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasAttribute"/>

<owl:onClass rdf:resource="#Attribute"/>

<owl:minQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:minQualifiedCardinality>

</owl:Restriction>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#Place"/>

</owl:Class>

<owl:Class rdf:about="#Transition">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

132 Appendix B. The CPN ontology (CpnOnt.owl)

<owl:onProperty rdf:resource="#connectsPlace"/>

<owl:allValuesFrom rdf:resource="#Place"/>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasGFunction"/>

<owl:onClass rdf:resource="#GuardFunction"/>

<owl:qualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1

</owl:qualifiedCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#CPNOnt"/>

</owl:Class>

<owl:Class rdf:about="#Value">

<owl:equivalentClass>

<owl:Restriction>

<owl:onProperty rdf:resource="#valueRef"/>

<owl:allValuesFrom rdf:resource="#Value"/>

</owl:Restriction>

</owl:equivalentClass>

<rdfs:subClassOf rdf:resource="#ActNode"/>

<rdfs:subClassOf rdf:resource="#Attribute"/>

<rdfs:subClassOf rdf:resource="#CtrlNode"/>

</owl:Class>

<owl:Class rdf:about="#And-join">

<rdfs:subClassOf>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="#connectsPlace"/>

<owl:allValuesFrom>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasMarking"/>

<owl:allValuesFrom rdf:resource="#Token"/>

</owl:Restriction>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasGFunction"/>

<owl:allValuesFrom>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasControl"/>

133

<owl:allValuesFrom rdf:resource="#CtrlNode"/>

</owl:Restriction>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty>

<rdf:Description>

<owl:inverseOf rdf:resource="#connectsTrans"/>

</rdf:Description>

</owl:onProperty>

<owl:allValuesFrom>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasMarking"/>

<owl:allValuesFrom rdf:resource="#Token"/>

</owl:Restriction>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty>

<rdf:Description>

<owl:inverseOf rdf:resource="#connectsTrans"/>

</rdf:Description>

</owl:onProperty>

<owl:onClass rdf:resource="#Place"/>

<owl:minQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">2</owl:minQualifiedCardinality>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#connectsPlace"/>

<owl:onClass rdf:resource="#Place"/>

<owl:qualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#And-split">

<rdfs:subClassOf>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Restriction>

<owl:onProperty rdf:resource="#connectsPlace"/>

<owl:allValuesFrom>

134 Appendix B. The CPN ontology (CpnOnt.owl)

<owl:Restriction>

<owl:onProperty rdf:resource="#hasMarking"/>

<owl:allValuesFrom rdf:resource="#Token"/>

</owl:Restriction>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasGFunction"/>

<owl:allValuesFrom>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasControl"/>

<owl:allValuesFrom rdf:resource="#CtrlNode"/>

</owl:Restriction>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty>

<rdf:Description>

<owl:inverseOf rdf:resource="#connectsTrans"/>

</rdf:Description>

</owl:onProperty>

<owl:allValuesFrom>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasMarking"/>

<owl:allValuesFrom rdf:resource="#Token"/>

</owl:Restriction>

</owl:allValuesFrom>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty rdf:resource="#connectsPlace"/>

<owl:onClass rdf:resource="#Place"/>

<owl:minQualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">2</owl:minQualifiedCardinality>

</owl:Restriction>

<owl:Restriction>

<owl:onProperty>

<rdf:Description>

<owl:inverseOf rdf:resource="#connectsTrans"/>

</rdf:Description>

</owl:onProperty>

<owl:onClass rdf:resource="#Place"/>

<owl:qualifiedCardinality rdf:datatype=

"&xsd;nonNegativeInteger">1</owl:qualifiedCardinality>

</owl:Restriction>

135

</owl:intersectionOf>

</owl:Class>

</rdfs:subClassOf>

</owl:Class>

...

</rdf:RDF>

<!--Generated by the OWL API(version 3.4.2)http://owlapi.sourceforge.net-->

Appendix C

Labelling Work�ow Activities

Chapter 4 introduces a formal de�nition of semantic constraints. We only concen-
trate on how to represent dependencies between activities in a business process while
omitting the discussion of activity labels, which are captured through the de�nition
of semantic constraints. However, activity labels play an essential role in searching
for work�ow templates in accordance with their intended use. Therefore, for the
purpose of organization of the knowledge base of work�ow templates discussed in
Section 6.1, it is necessary to take a look at labelling work�ow activities.

In fact, some classes of activity labels have been found in practice. According
to [Mendling 2010, Leopold 2012], they are mainly divided into verb-object labels,
action-noun labels and a rest category. A verb�object label contains an action
followed by a business object, such as �Create invoice�. An action-noun label may
start with a business object followed by an action (e.g., � Schedule approval �) or
a noun phrase containing a prepositional phrase (e.g., �Creation of speci�cation�)
or a verb in -ing form (e.g., �Creating version�). Regarding to a rest category, it
consists of descriptive labels, e.g., Accounting creates invoice� and no-action labels,
e.g., �Error �, etc. Furthermore, action-noun labels can be automatically refactored
to verb-object labels by using the refactoring approach of [Leopold 2012]. Therefore,
we recommend work�ow modellers to use the verb�object style.

Bibliography

[Awad 2008] Ahmed Awad, Gero Decker and Mathias Weske. E�cient Compliance

Checking Using BPMN-Q and Temporal Logic. In Business Process Manage-
ment, 6th International Conference, BPM 2008, Milan, Italy, September 2-4,
2008. Proceedings, pages 326�341, 2008. (Cited on page 94.)

[Barros 1997] Alistair P. Barros, Arthur H. M. ter Hofstede and Henderik Alex
Proper. Essential Principles for Work�ow Modelling E�ectiveness. In PACIS,
page 15, 1997. (Cited on page 1.)

[Bénel 2010] Aurélien Bénel, Chao Zhou and Jean-Pierre Cahier. Beyond Web 2.0

. . . and Beyond the Semantic Web. In David Randall and Pascal Salembier,
editeurs, From CSCW to Web 2.0: European Developments in Collaborative
Design, Computer Supported Cooperative Work, pages 155�171. Springer
London, 2010. (Cited on page 20.)

[Berners-Lee 2005] Tim Berners-Lee, Roy Fielding and Larry Masinter. Request

for Comments: 3986: Uniform Resource Identi�er (URI): Generic Syntax.
http://tools.ietf.org/html/rfc3986, January 2005. (Cited on page 20.)

[Berstel 2007] Bruno Berstel, Philippe Bonnard, François Bry, Michael Eckert and
Paula-Lavinia P trânjan. Reactive Rules on the Web. In Grigoris Antoniou,
Uwe Abmann, Cristina Baroglio, Stefan Decker, Nicola Henze, Paula-Lavinia
P trânjan and Robert Tolksdorf, editeurs, Reasoning Web, volume 4636 of
Lecture Notes in Computer Science, pages 183�239. Springer Berlin Heidel-
berg, 2007. (Cited on page 73.)

[Bi 2004] Henry H. Bi and J. Leon Zhao. Applying Propositional Logic to Work�ow

Veri�cation. Information Technology and Management, vol. 5, no. 3-4, pages
293�318, 2004. (Cited on page 79.)

[Boley 2007] Harold Boley, Michael Kifer, Paula-Lavinia P trânjan and Axel
Polleres. Rule Interchange on the Web. In Grigoris Antoniou, Uwe Abmann,
Cristina Baroglio, Stefan Decker, Nicola Henze, Paula-Lavinia P trânjan and
Robert Tolksdorf, editeurs, Reasoning Web, volume 4636 of Lecture Notes in
Computer Science, pages 269�309. Springer Berlin Heidelberg, 2007. (Cited
on page 19.)

[Booch 2005] Grady Booch, James Rumbaugh and Ivar Jacobson. Uni�ed Modeling
Language User Guide, The (2Nd Edition) (Addison-Wesley Object Technol-
ogy Series). Addison-Wesley Professional, 2005. (Cited on page 106.)

[Bouzidi 2012] Khalil Riad Bouzidi, Bruno Fiés, Catherine Faron-Zucker, Alain
Zarli and Nhan Le Thanh. Semantic Web Approach to Ease Regulation Com-

140 Bibliography

pliance Checking in Construction Industry. Future Internet, vol. 4, no. 3,
pages 830�851, 2012. (Cited on page 71.)

[bpm 2011] Business Process Model and Notation, V2.0. http://www.bpmn.org/,
2011. (Cited on page 3.)

[Brockmans 2006] Saartje Brockmans, Marc Ehrig, Agnes Koschmider, Andreas
Oberweis and Rudi Studer. Semantic Alignment of Business Processes. In
ICEIS 2006 - Proceedings of the Eighth International Conference on Enter-
prise Information Systems: Databases and Information Systems Integration,
Paphos, Cyprus, May 23-27, 2006, pages 191�196, 2006. (Cited on page 43.)

[Bry 2005] François Bry and Massimo Marchiori. Ten Theses on Logic Languages for
the Semantic Web. In Principles and Practice of Semantic Web Reasoning,
Third International Workshop, PPSWR 2005, Dagstuhl Castle, Germany,
September 11-16, 2005, Proceedings, pages 42�49, 2005. (Cited on page 19.)

[Cardoso 2007] Jorge Cardoso. The syntactic and the semantic web. IGI Global,
2007. (Cited on page 21.)

[Chiola 1995] G. Chiola. Characterization of Timed Well-formed Petri Nets Be-

havior by Means of Occurrence Equations. In Proceedings of the Sixth In-
ternational Workshop on Petri Nets and Performance Models, PNPM '95,
pages 127�, Washington, DC, USA, 1995. IEEE Computer Society. (Cited
on page 94.)

[Clarke 2001] Edmund M. Clarke, Orna Grumberg and Doron Peled. Model check-
ing. MIT Press, 2001. (Cited on page 92.)

[Dwyer 1999] Matthew B. Dwyer, George S. Avrunin and James C. Corbett. Pat-
terns in Property Speci�cations for Finite-state Veri�cation. In Proceedings
of the 21st International Conference on Software Engineering, ICSE '99,
pages 411�420, New York, NY, USA, 1999. ACM. (Cited on pages 71, 72,
73 and 92.)

[Ehrig 2007] Marc Ehrig, Agnes Koschmider and Andreas Oberweis. Measuring

Similarity between Semantic Business Process Models. In Conceptual Mod-
elling 2007, Proceedings of the Fourth Asia-Paci�c Conference on Conceptual
Modelling (APCCM2007), Ballarat, Victoria, Australia, January 30 - Febru-
ary 2, 2007, Proceedings, pages 71�80, 2007. (Cited on page 43.)

[Ellis 1993] Clarence A. Ellis and Gary J. Nutt. Modeling and Enactment of Work-

�ow Systems. In Application and Theory of Petri Nets, pages 1�16, 1993.
(Cited on page 1.)

[Eshuis 2008] Rik Eshuis and Paul W. P. J. Grefen. Constructing customized process
views. Data Knowl. Eng., vol. 64, no. 2, pages 419�438, 2008. (Cited on
page 103.)

Bibliography 141

[Esparza 1994] Javier Esparza. Reduction and Synthesis of Live and Bounded Free

Choice Petri Nets. Inf. Comput., vol. 114, no. 1, pages 50�87, October 1994.
(Cited on pages 86, 93 and 94.)

[exs 2000] ExSpect 6.41. http://www.exspect.com/, 2000. (Cited on page 17.)

[Feja 2011] S. Feja, S. Witt and A Speck. BAM: A Requirements Validation and

Veri�cation Framework for Business Process Models. In Quality Software
(QSIC), 2011 11th International Conference on, pages 186�191, July 2011.
(Cited on page 92.)

[Fellmann 2011] Michael Fellmann, Oliver Thomas and Bastian Busch. A Query-

Driven Approach for Checking the Semantic Correctness of Ontology-Based

Process Representations. In BIS, pages 62�73, 2011. (Cited on pages 46
and 95.)

[Förster 2007] A. Förster, G. Engels, T. Schattkowsky and R. Van Der Straeten.
Veri�cation of Business Process Quality Constraints Based on Visual Process

Patterns. In Theoretical Aspects of Software Engineering, 2007. TASE '07.
First Joint IEEE/IFIP Symposium on, pages 197�208, June 2007. (Cited on
page 92.)

[Gasevic 2006] Dragan Gasevic and Vladan Devedzic. Petri net ontology. Knowl.-
Based Syst., vol. 19, no. 4, pages 220�234, 2006. (Cited on pages 42 and 43.)

[Goedertier 2006] Stijn Goedertier and Jan Vanthienen. Designing Compliant Busi-
ness Processes with Obligations and Permissions. In Business Process Man-
agement Workshops, BPM 2006 International Workshops, BPD, BPI, ENEI,
GPWW, DPM, semantics4ws, Vienna, Austria, September 4-7, 2006, Pro-
ceedings, pages 5�14, 2006. (Cited on page 94.)

[Greco 2004] Gianluigi Greco, Antonella Guzzo, Luigi Pontieri and Domenico Saccà.
An Ontology-Driven Process Modeling Framework. In Fernando Galindo,
Makoto Takizawa and Roland Traunmüller, editeurs, Database and Expert
Systems Applications, volume 3180 of Lecture Notes in Computer Science,
pages 13�23. Springer Berlin Heidelberg, 2004. (Cited on page 42.)

[Hay 2000] David Hay, Keri Anderson Healy and et al. GUIDE Business Rules

Project - Final Report. Rapport technique, The Business Rules Group, July
2000. (Cited on page 18.)

[Hustadt 2004] U. Hustadt, R. A. Schmidt and L. Georgieva. A Survey of Decid-

able First-Order Fragments and Description Logics. Journal of Relational
Methods in Computer Science, vol. 1, page 2004, 2004. (Cited on page 92.)

[iee 2012] 1012-2012 - IEEE Standard for System and Software Veri�cation and Val-

idation. http://standards.ieee.org/�ndstds/standard/1012-2012.html, 2012.
(Cited on page 75.)

142 Bibliography

[Jørgensen 2008] Jens Bæk Jørgensen, Kristian Bisgaard Lassen and Wil M. P.
van der Aalst. From task descriptions via colored Petri nets towards an

implementation of a new electronic patient record work�ow system. STTT,
vol. 10, no. 1, pages 15�28, 2008. (Cited on page 25.)

[Khaluf 2011] Lial Khaluf, Christian Gerth and Gregor Engels. Pattern-Based Mod-

eling and Formalizing of Business Process Quality Constraints. In Haralam-
bos Mouratidis and Colette Rolland, editeurs, Advanced Information Sys-
tems Engineering, volume 6741 of Lecture Notes in Computer Science, pages
521�535. Springer Berlin Heidelberg, 2011. (Cited on page 92.)

[Knuplesch 2010] David Knuplesch, Linh Thao Ly, Stefanie Rinderle-Ma, Holger
Pfeifer and Peter Dadam. On Enabling Data-Aware Compliance Checking of

Business Process Models. In Je�rey Parsons, Motoshi Saeki, Peretz Shoval,
Carson Woo and Yair Wand, editeurs, Conceptual Modeling � ER 2010,
volume 6412 of Lecture Notes in Computer Science, pages 332�346. Springer
Berlin Heidelberg, 2010. (Cited on page 92.)

[Koschmider 2005] Agnes Koschmider and Andreas Oberweis. Ontology Based Busi-
ness Process Description. In EMOI-INTEROP, pages 321�333. Springer,
2005. (Cited on pages 1, 42, 43 and 44.)

[Koschmider 2011] Agnes Koschmider, Thomas Hornung and Andreas Oberweis.
Recommendation-based editor for business process modeling. Data Knowl.
Eng., vol. 70, no. 6, pages 483�503, 2011. (Cited on page 103.)

[Koschmider 2015] Agnes Koschmider and Hajo A. Reijers. Improving the process

of process modelling by the use of domain process patterns. Enterprise IS,
vol. 9, no. 1, pages 29�57, 2015. (Cited on page 103.)

[Kovalyov 1990] A. V. Kovalyov. On Complete Reducibility of Some Classes of Petri

Nets. In Proceedings of the 11th International Conference on Application
and Theory of Petri Nets, 1990, Paris, France, pages 352�366, 1990. Newslet-
terInfo: 36. (Cited on page 93.)

[Kradolfer 2000] Markus Kradolfer. A work�ow metamodel supporting dynamic,

reuse-based model evolution. PhD thesis, 2000. (Cited on page 97.)

[Kristensen 1998] Lars M. Kristensen, Soren Christensen and Kurt Jensen. The

practitioner's guide to coloured Petri nets. International Journal on Software
Tools for Technology Transfer, vol. 2, pages 98�132, 1998. (Cited on page 26.)

[Kumar 2010] Akhil Kumar, Wen Yao, Chao-Hsien Chu and Zang Li. Ensuring

Compliance with Semantic Constraints in Process Adaptation with Rule-

Based Event Processing. In RuleML, pages 50�65, 2010. (Cited on pages 73
and 94.)

Bibliography 143

[Leopold 2012] Henrik Leopold, Sergey Smirnov and Jan Mendling. On the refac-

toring of activity labels in business process models. Inf. Syst., vol. 37, no. 5,
pages 443�459, 2012. (Cited on page 137.)

[Lin 2008] Cui Lin, Shiyong Lu, Zhaoqiang Lai, A. Chebotko, Xubo Fei, Jing Hua
and F. Fotouhi. Service-Oriented Architecture for VIEW: A Visual Scienti�c

Work�ow Management System. In Services Computing, 2008. SCC '08. IEEE
International Conference on, volume 1, pages 335�342, July 2008. (Cited on
page 12.)

[Lu 2006] Shiyong Lu, Arthur J. Bernstein and Philip M. Lewis. Automatic work�ow
veri�cation and generation. Theor. Comput. Sci., vol. 353, no. 1-3, pages 71�
92, 2006. (Cited on page 1.)

[Lu 2008] Ruopeng Lu, Shazia Sadiq and Guido Governatori. Compliance Aware

Business Process Design. In Arthur ter Hofstede, Boualem Benatallah and
Hye-Young Paik, editeurs, Business Process Management Workshops, vol-
ume 4928 of Lecture Notes in Computer Science, pages 120�131. Springer
Berlin Heidelberg, 2008. (Cited on page 94.)

[Lu 2009] Ruopeng Lu, Shazia Sadiq and Guido Governatori. On Managing Busi-

ness Processes Variants. Data Knowl. Eng., vol. 68, no. 7, pages 642�664,
July 2009. (Cited on page 103.)

[Ludäscher 2006] Bertram Ludäscher, Ilkay Altintas, Chad Berkley, Dan Higgins,
Efrat Jaeger, Matthew Jones, Edward A. Lee, Jing Tao and Yang Zhao.
Scienti�c Work�ow Management and the Kepler System: Research Articles.
Concurr. Comput. : Pract. Exper., vol. 18, no. 10, pages 1039�1065, August
2006. (Cited on page 12.)

[Ludäscher 2009] Bertram Ludäscher, Mathias Weske, Timothy McPhillips and
Shawn Bowers. Scienti�c Work�ows: Business as Usual? In Umeshwar
Dayal, Johann Eder, Jana Koehler and HajoA. Reijers, editeurs, Business
Process Management, volume 5701 of Lecture Notes in Computer Science,
pages 31�47. Springer Berlin Heidelberg, 2009. (Cited on pages 13 and 14.)

[Ly 2008] Linh Thao Ly, Stefanie Rinderle and Peter Dadam. Integration and ver-

i�cation of semantic constraints in adaptive process management systems.
Data Knowl. Eng., vol. 64, no. 1, pages 3�23, 2008. (Cited on pages 73
and 94.)

[Ly 2012] Linh Thao Ly, Stefanie Rinderle-Ma, Kevin Göser and Peter Dadam. On
enabling integrated process compliance with semantic constraints in process

management systems - Requirements, challenges, solutions. Information Sys-
tems Frontiers, vol. 14, no. 2, pages 195�219, 2012. (Cited on page 94.)

[Markovic 2008] Ivan Markovic and Alessandro Costa Pereira. Towards a For-

mal Framework for Reuse in Business Process Modeling. In Proceedings

144 Bibliography

of the 2007 International Conference on Business Process Management,
BPM'07, pages 484�495, Berlin, Heidelberg, 2008. Springer-Verlag. (Cited
on page 103.)

[Mendling 2006] Jan Mendling and Carlo Simon. Business Process Design by View

Integration. In Business Process Management Workshops, BPM 2006 Inter-
national Workshops, BPD, BPI, ENEI, GPWW, DPM, semantics4ws, Vi-
enna, Austria, September 4-7, 2006, Proceedings, pages 55�64, 2006. (Cited
on page 103.)

[Mendling 2010] J. Mendling, H. A. Reijers and J. Recker. Activity Labeling in Pro-

cess Modeling: Empirical Insights and Recommendations. Inf. Syst., vol. 35,
no. 4, pages 467�482, June 2010. (Cited on page 137.)

[Murata 1989] Tadao Murata. Petri nets: Properties, analysis and applications.
Proceedings of the IEEE, vol. 77, no. 4, pages 541�580, Apr 1989. (Cited on
page 43.)

[Namiri 2007] Kioumars Namiri and Nenad Stojanovic. Pattern-Based Design and

Validation of Business Process Compliance. In On the Move to Meaningful
Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM
Confederated International Conferences CoopIS, DOA, ODBASE, GADA,
and IS 2007, Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part
I, pages 59�76, 2007. (Cited on page 73.)

[Namiri 2008] Kioumars Namiri. Model-Driven Management of Internal Controls

for Business Process Compliance. PhD thesis, Universität Karlsruhe, 2008.
(Cited on page 73.)

[Nguyen 2013] Thi-Hoa-Hue Nguyen and Nhan Le-Thanh. Representation of RDF-

Oriented Composition with OWL DL Ontology. In Web Intelligence/IAT
Workshops, pages 147�150, 2013. (Cited on pages 10 and 44.)

[Nguyen 2014a] Thi-Hoa-Hue Nguyen and Nhan Le-Thanh. Ensuring the Correct-

ness of Work�ow Processes at the Syntactic Level: An Ontological Approach.
In The International Cross Domain Conference and Workshop (CD-ARES
2014)(Accepted), pages 1�15, September 2014. (Cited on pages 10 and 95.)

[Nguyen 2014b] Thi-Hoa-Hue Nguyen and Nhan Le-Thanh. Ensuring the Semantic
Correctness of Work�ow Processes: An Ontological Approach. In Grzegorz J.
Nalepa and Joachim Baumeister, editeur, Proceedings of 10th Workshop on
Knowledge Engineering and Software Engineering (KESE10) co-located with
21st European Conference on Arti�cial Intelligence (ECAI 2014), volume
1289. CEUR Workshop Proceedings, Prague, Czech Republic, August 2014.
(Cited on pages 10, 73 and 95.)

Bibliography 145

[Nguyen 2014c] Thi-Hoa-Hue Nguyen and Nhan Le-Thanh. An Ontology-Enabled

Approach for Modelling Business Processes. In Beyond Databases, Archi-
tectures, and Structures, volume 424 of Communications in Computer and

Information Science, pages 139�147. Springer International Publishing, 2014.
(Cited on pages 10, 34 and 44.)

[Nguyen 2015] Thi-Hoa-Hue Nguyen and Nhan Le-Thanh. Coloured Petri Nets-

based Approach for Manipulating RDF Data. Journal of Automation and
Control Engineering (JOACE), vol. 3, no. 2, pages 171�177, April 2015.
(Cited on pages 10 and 44.)

[ocl 2014] Object Constraint Language (OCL), Version 2.4.
http://www.omg.org/spec/OCL/2.4/, February 2014. (Cited on page 18.)

[omg 2000] Work�ow Management Facility Speci�cation, V1.2.
http://www.work�owpatterns.com/documentation/documents/00-05-
02.pdf, 2000. (Cited on page 1.)

[owl 2004] OWL Web Ontology Language Overview .
http://http://www.w3.org/TR/owl-features/, February 2004. W3C
Recommendation. (Cited on page 21.)

[owl 2012] OWL 2 Web Ontology Language Document Overview (Second Edition).
http://www.w3.org/TR/owl2-overview/, December 2012. W3C Recommen-
dation. (Cited on page 22.)

[Pesic 2007] Maja Pesic and Wil M. P. van der Aalst. Modelling work distribution

mechanisms using Colored Petri Nets. STTT, vol. 9, no. 3-4, pages 327�352,
2007. (Cited on page 28.)

[Petri 1962] Carl Adam Petri. Communication with Automata (Kommunikation mit

Automaten, in German). PhD thesis, University of Bonn, 1962. (Cited on
pages 17 and 92.)

[Pham 2015] Tuan Anh Pham, Thi-Hoa-Hue Nguyen and Nhan Le Thanh.
Ontology-based work�ow validation. In The 2015 IEEE RIVF International
Conference on Computing & Communication Technologies - Research, In-
novation, and Vision for Future, RIVF 2015, Can Tho, Vietnam, January
25-28, 2015, pages 41�46, 2015. (Cited on pages 10, 73 and 95.)

[prr 2009] Production Rule Representation (PRR) Version 1.0.
http://www.omg.org/spec/PRR/1.0/, December 2009. (Cited on page 18.)

[RDF 2014a] RDF 1.1 Concepts and Abstract Syntax.
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/, February
2014. (Cited on page 20.)

[rdf 2014b] RDF Schema 1.1. http://www.w3.org/TR/rdf-schema/, February 2014.
(Cited on page 21.)

146 Bibliography

[Resch 2010] Olaf Resch. Six Views on the Business Rule Management System. e-
Journal of Practical Business Research, vol. 11, page 8, 2010. (Cited on
page 18.)

[Romanenko 2006] Inna Romanenko, Aufgabesteller Prof, François Bry, Betreuer
Prof, François Bry, Paula lavinia P trânjan and Abgabetermin Januar.
Use Cases for Reactivity on the Web: Using ECA Rules for Business Pro-

cess Modeling. Rapport technique, Institut für informatik der der Ludwig-
Maximilian-Universität München, 2006. (Cited on page 18.)

[Sadiq 2000] Wasim Sadiq and Maria E. Orlowska. Analyzing process models using
graph reduction techniques. Information Systems, vol. 25, no. 2, pages 117
� 134, 2000. The 11th International Conference on Advanced Information
System Engineering. (Cited on page 93.)

[Sadiq 2005] Shazia W. Sadiq, Maria E. Orlowska and Wasim Sadiq. Speci�cation
and validation of process constraints for �exible work�ows. Information Sys-
tems, vol. 30, no. 5, pages 349 � 378, 2005. (Cited on page 72.)

[sbv 2013] Business Vocabulary And Business Rules (SBVR), V1.2.
http://www.omg.org/spec/SBVR/1.2/, November 2013. (Cited on
page 18.)

[Sebastian 2008] Abraham Sebastian, Natalya Fridman Noy, Tania Tudorache
and Mark A. Musen. A Generic Ontology for Collaborative Ontology-

Development Work�ows. In Knowledge Engineering: Practice and Patterns,
16th International Conference, EKAW 2008, Acitrezza, Italy, September 29
- October 2, 2008. Proceedings, pages 318�328, 2008. (Cited on page 42.)

[Sonntag 2010] Mirko Sonntag, Dimka Karastoyanova and Frank Leymann. The

Missing Features of Work�ow Systems for Scienti�c Computations. In Soft-
ware Engineering 2010 - Workshopband (inkl. Doktorandensymposium),
Fachtagung des GI-Fachbereichs Softwaretechnik, 22.-26.02.2010, Paderborn,
pages 209�216, 2010. (Cited on pages 12 and 13.)

[spa 2013] SPARQL 1.1 Query Language. http://www.w3.org/TR/sparql11-
query/, March 2013. W3C Recommendation. (Cited on page 23.)

[Strbac 2013] Perica Strbac and Gradimir V. Milovanovi¢. Upgraded Petri net model
and analysis of adaptive and static arithmetic coding. Mathematical and
Computer Modelling, vol. 58, no. 7-8, pages 1548�1562, 2013. (Cited on
page 43.)

[Taveter 2001] Kuldar Taveter and Gerd Wagner. Agent-Oriented Enterprise Mod-

eling Based on Business Rules. In Proceedings of the 20th International
Conference on Conceptual Modeling: Conceptual Modeling, ER '01, pages
527�540, London, UK, UK, 2001. Springer-Verlag. (Cited on page 19.)

Bibliography 147

[The AIS group, Eindhoven University of Technology 2013] The AIS group,
Eindhoven University of Technology. CPN Tools, version 4.0.0.
http://cpntools.org/, September 2013. (Cited on pages 17 and 28.)

[Thomas 2009a] Oliver Thomas and Michael Fellmann. Semantic Process Modeling -

Design and Implementation of an Ontology-based Representation of Business

Processes. Business & Information Systems Engineering, vol. 1, no. 6, pages
438�451, 2009. (Cited on pages 42 and 43.)

[Thomas 2009b] Oliver Thomas and Michael Fellmann. Semantic Process Modeling -

Design and Implementation of an Ontology-based Representation of Business

Processes. Business & Information Systems Engineering, vol. 1, no. 6, pages
438�451, 2009. (Cited on page 95.)

[van der Aalst 1997] W.M.P. van der Aalst. Veri�cation of Work�ow Nets. In Pro-
ceedings of the 18th International Conference on Balbo Petri Nets, ICATPN
'97, pages 407�426, London, UK, 1997. Springer-Verlag. (Cited on pages 17,
76, 77, 92 and 94.)

[van der Aalst 1998] Wil M. P. van der Aalst. The Application of Petri Nets to

Work�ow Management. Journal of Circuits, Systems, and Computers, vol. 8,
no. 1, pages 21�66, 1998. (Cited on pages 1, 15, 16 and 29.)

[van der Aalst 2000] W. M. P. van der Aalst and Arthur H. M. ter Hofstede. Veri�-
cation Of Work�ow Task Structures: A Petri-net-baset Approach. Inf. Syst.,
vol. 25, no. 1, pages 43�69, 2000. (Cited on pages 17 and 92.)

[van der Aalst 2002a] Wil M. P. van der Aalst and A. H. M. Ter Hofstede. Work�ow

Patterns: On the Expressive Power of (Petri-net-based) Work�ow Languages.
In of DAIMI, University of Aarhus, pages 1�20, 2002. (Cited on page 17.)

[van der Aalst 2002b] Wil M. P. van der Aalst and Kees M. van Hee. Work�ow
management: Models, methods, and systems. MIT Press, 2002. (Cited on
page 15.)

[van der Aalst 2003a] Wil M. P. van der Aalst. Business Process Management De-

mysti�ed: A Tutorial on Models, Systems and Standards for Work�ow Man-

agement. In Lectures on Concurrency and Petri Nets, Advances in Petri Nets
[This tutorial volume originates from the 4th Advanced Course on Petri Nets,
ACPN 2003, held in Eichstätt, Germany in September 2003. In addition to
lectures given at ACPN 2003, additional chapters have been commissioned],
pages 1�65, 2003. (Cited on page 15.)

[van der Aalst 2003b] Wil M. P. van der Aalst, Arthur H. M. ter Hofstede, Bartek
Kiepuszewski and Alistair P. Barros. Work�ow Patterns. Distributed and
Parallel Databases, vol. 14, no. 1, pages 5�51, 2003. (Cited on page 16.)

148 Bibliography

[van Eijndhoven 2008] Tim van Eijndhoven, Maria-Eugenia Iacob and María Laura
Ponisio. Achieving Business Process Flexibility with Business Rules. In 12th
International IEEE Enterprise Distributed Object Computing Conference,
ECOC 2008, 15-19 September 2008, Munich, Germany, pages 95�104, 2008.
(Cited on pages 18, 19 and 73.)

[Verbeek 2001] H. M. W. (Eric) Verbeek, Twan Basten and Wil M. P. van der
Aalst. Diagnosing Work�ow Processes using Wo�an. The Computer Journal,
vol. 44, no. 4, pages 246�279, 2001. (Cited on pages 79 and 92.)

[Wagner 2002] Gerd Wagner. How to Design a General Rule Markup Language? In
XML Technologien FÜR Das Semantic Web - XSW 2002, Proceedings Zum
Workshop, pages 19�37, 2002. (Cited on page 19.)

[Weber 2010] Ingo Weber, Jörg Ho�mann and Jan Mendling. Beyond soundness: on
the veri�cation of semantic business process models. Distributed and Parallel
Databases, vol. 27, no. 3, pages 271�343, 2010. (Cited on page 95.)

[Weske 1998] Mathias Weske and Gottfried Vossen. Work�ow Languages. In Peter
Bernus, Kai Mertins and Günter Schmidt, editeurs, Handbook on Architec-
tures of Information Systems, International Handbooks on Information Sys-
tems, pages 359�379. Springer Berlin Heidelberg, 1998. (Cited on page 16.)

[WFMC 1999] WFMC. Work�ow Management Coalition Terminology and Glossary

(WFMC-TC-1011), Document Number WFMC-TC-1011. Rapport tech-
nique, 1999. (Cited on page 11.)

[Yildiz 2009] U. Yildiz, A. Guabtni and A.H.H. Ngu. Business versus Scienti�c

Work�ows: A Comparative Study. In Services - I, 2009 World Conference
on, pages 340�343, July 2009. (Cited on page 12.)

[Zhang 2011] Fu Zhang, Z. M. Ma and Slobodan Ribaric. Representation of Petri

net with OWL DL ontology. In Eighth International Conference on Fuzzy
Systems and Knowledge Discovery, FSKD 2011, 26-28 July 2011, Shanghai,
China, pages 1396�1400, 2011. (Cited on page 42.)

Bibliography 149

	General Introduction
	Introduction
	Scenario
	fromOrdertoDelivery Process Model
	Adapting templates stored in CBWTRepository to model the fromOrdertoDelivery Process for CompanyA

	Proposal and Main Contributions
	Thesis Outline

	Basic Concepts
	Workflows and Workflow Languages
	Business Workflows versus Scientific Workflows
	Workflow Charateristics
	Workflow Languages

	Business Rules
	Knowledge Representation in the Semantic Web Models
	Semantic Web Pyramid
	An Assertional Language: RDF
	Ontology Representation Languages: RDFS and OWL
	Representation of Queries: SPARQL

	Conclusion

	Development of a Knowledge Base for Control flow-based Business Workflow Templates
	Modelling Business Processes with Coloured Petri Nets
	Overview of Coloured Petri Nets
	Coloured Petri Net-based Process Models
	A simple Order Process Example

	An Ontology for Coloured Petri Nets-based Business Workflow Templates
	Representation of Coloured Petri Net with OWL DL Ontology
	Realization

	Manipulation of Business Workflow Templates
	Related Work
	On Combining Workflows with Ontologies
	On Combining Petri Nets/High-Level Petri Nets with Ontologies

	Discussion and Conclusion

	Semantic Business Process Modelling
	Formal Definition of Semantic Constraints
	Implicit, Redundant and Conflicting Semantic Constraints
	Algebraic Properties of Semantic Constraints
	Algorithm for Validating a Set of Semantic Constraints

	Organization of the Knowledge Base of Semantic Constraints
	Development of a Business Process Ontology
	Creation of Correspondences between Ontologies

	Integration of Event-Condition-Action Rules
	Related Work
	Discussion and Conclusion

	Verification of Workflow Templates
	Syntactic Verification Issues
	Syntactic Constraints related to the Definition of Process Model
	Syntactic Constraints Related to Uses of Control Nodes
	Compliance Checking of Workflow Templates at the Syntactic Level

	Semantic Verification Issues
	Semantic Verification Tasks
	Compliance Checking of Workflow templates at the Semantic Level

	A Wrong Workflow Example
	Related Work
	Approaches focusing on the Syntactic Level
	Approaches focusing on the Semantic Level

	Discussion and Conclusion

	Reuse of Workflow Templates
	Organization of the Knowledge Base of Control Flow-based Workflow Templates
	Process for Developing Workflow Templates
	Related Work
	Discussion and Conclusion

	Prototype
	Introduction
	Technical Implementation of the CBWT Prototype
	Web Technologies and Software Tools
	Definition of User's Scope of Interest to Search for Relevant Workflow Templates
	Creation of a new Semantic Constraint
	Creation of a new Workflow Template
	Checking Redundant and Conflicting Semantic Constraints
	Workflow Template Verification
	Creation of a Set of Event-Condition-Action Rules

	Evaluation
	Conclusion

	Conclusions and Outlook
	Summary of Contributions
	Limitations and Perspectives

	Classification of Business Rules
	The CPN ontology (CpnOnt.owl)
	Labelling Workflow Activities
	Bibliography

