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Summary

Neurons are complex cells that require contributions from many fields of scientific expertise in
order to advance our knowledge of their function and inner workings. Neuroscientists often
simplify the description of these cells into a small set of quantities such as the time-evolving
voltage in the cell body and level of neuronal discharge. However minimalistic, such descrip-
tion enables to capture important aspects that are relevant for information exchange between
neurons and their dynamical characteristics. Membrane potential dynamics and neuronal dis-
charge (or spikes) are causally related since spikes from connected neurons drive the evolution
of membrane potential that leads to the firing of the neuron. The membrane potential encodes
information on the state of the neuron but also on the activity level of afferent neuronal pop-
ulations. Computational models of neuronal activity for neurons and populations of neurons
are often based on this causal relationship. Improving our knowledge of the dynamical proper-
ties of membrane potential evolution may lead to more accurate models of neural activity and
potentially contribute to our understanding of neuronal dynamics and information exchange
between neurons. Such is the main objective and motivation of this work.

The characterization of membrane potential fluctuations is the principal subject of this the-
sis with focus on neuron models with passive membrane, i.e. without spiking mechanism. An
important aspect is the ”noisy” evolution of membrane potential due to irregular inputs re-
ceived from numerous other neurons in the network. The key question is therefore expressed
in probabilistic terms: For given statistics of presynaptic spikes, what are the statistics of membrane
potential fluctuations? One popular approach is to model membrane potential fluctuations as
noise with suitable characteristics, or at a lower level, to do so with synaptic input. This ap-
proach is very effective and is supported by a large body of analytical results that contributes
to its overall tractability. However, it will no longer account for spike timing information that
may be relevant for the particular neuronal system and function under investigation.

The main contribution from this thesis is a modeling framework that explicitly takes into ac-
count the effects of individual presynaptic spikes in the evolution of membrane potential. Ap-
plied to simple but popular neuronal models often used in computational studies, this frame-
work yields exact results for the statistical description of membrane potential fluctuations un-
der highly variable synaptic input rate that is thought to reflect behaving conditions. These
results may benefit computational models of neuronal activity with improved statistical accu-
racy. Statistical inference models of biological and dynamical characterization of neurons and
connected populations may also benefit from more precise data generation models. These exact
descriptions contribute to future work establishing biological and dynamical conditions under
which more tractable noise models are sufficient to fully capture neuronal dynamics.





Résumé

Les neurones sont des cellules complexes qui font appel à l’expertise de plusieurs domaines
scientifiques pour faire évoluer notre connaissance sur leurs fonctions et mécanismes internes.
Malgré cette complexité, la description des neurones peut se réduire à un nombre limité de
quantités telles que l’évolution temporelle du voltage à l’intérieur du corps cellulaire et la
fréquence de décharge neuronale. Une telle description réussit à capturer des aspects clés
de l’échange d’information entre les neurones et de leur évolution dynamique. Le potentiel
de membrane et la fréquence de décharge ont un lien de causalité car les potentiels d’action
des neurones en amont régissent l’évolution du potentiel de membrane, qui à son tour mène
à la décharge neuronale. Le potentiel de membrane encode de l’information sur l’état du neu-
rone mais aussi sur le niveau d’activité des populations afférentes. Les modèles computa-
tionnels d’activité neuronale pour des neurones individuels ainsi que leurs populations, sont
souvent basés sur cette relation causale. L’avancement de la connaissance des propriétés dy-
namiques du potentiel de membrane pourrait aboutir à des modèles d’activité neuronale plus
précis et contribuer ainsi à notre compréhension sur la dynamique neuronale et d’échange
d’information entre neurones. Ceci constitue l’objectif principal et la motivation de ce travail.

La caractérisation des fluctuations du potentiel de membrane est donc le sujet principal de
cette thèse et elle s’applique aux modèles de neurones à membrane passive, sans mécanisme
de décharge neuronale. L’évolution bruitée du potentiel de membrane est un aspect très im-
portant, conséquence des entrées synaptiques irrégulières reçues de nombreux neurones appar-
tenant aux populations afférentes. La question clé s’exprime en termes probabilistiques: Etant
donné les statistiques des entrées présynaptiques, quelles sont les statistiques des fluctuations du poten-
tiel de membrane ? Une approche fréquemment utilisée est celle de modéliser directement les
fluctuations du potentiel de membrane avec un processus aléatoire de bruit ou alors de le faire
au niveau des entrées synaptiques. Cette approche est très efficace et soutenue par un corps
important de résultats analytiques, ce qui contribue à la facilité de leur traitement. Cepen-
dant, l’information des temps de décharge neuronale est perdue, alors que celle-ci pourrait se
révéler importante pour la compréhension du système et des fonctions neuronales en question.

La contribution principale de cette thèse est de dériver un formalisme analytique qui tient
compte explicitement des effets des temps de décharge neuronaux. Ce formalisme a été ap-
pliqué à des modèles neuronaux simples, souvent utilisés dans des études computationnelles,
sous des entrées synaptiques à taux variable. Nous avons obtenu des résultats analytiques
exacts, ainsi que des approximations très efficaces pour ce type de système non stationnaire.
Ces résultats pourraient contribuer aux modèles computationnels d’activité neuronale. Les
modèles d’inférence statistique pour la caractérisation des neurones en termes biologiques et
dynamiques pourraient en bénéficier aussi, permettant l’éventuel développement de modèles
statistiques sous-jacents plus précis. Ces résultats analytiques pourront donc contribuer à
établir les conditions biologiques et dynamiques sous lesquelles des modèles de bruit de plus
simple traitement seraient suffisants pour capturer la dynamique neuronale.
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Part I

Introduction





Chapter 1

General Introduction

This chapter provides a general introduction to the subject and motivation of this thesis, and
relevant research context. This is complementary to the various introductions from subsequent
chapters.

1.1 Synopsis

The dynamical evolution of neurons is often described in terms of membrane potential fluc-
tuations and neuronal discharge. Such characterization is a vast simplification of the inner
workings of this complex cell. Nevertheless, it seems to capture important processes that are
relevant for information exchange between neurons. Membrane potential fluctuations are vari-
ations in the voltage difference between inside and outside of the cell, and are due to neuronal
discharge, or spikes, from other neurons in the network. Outgoing spikes occur under partic-
ular conditions of membrane potential evolution that are often modeled by the crossing of a
voltage threshold. Spikes have a major role in the exchange of information between neurons
whereas membrane potential fluctuations are an important characterization of their dynamical
states. The level of activity of afferent neural networks is inherently sampled by the neuron
and this information is encoded in membrane potential fluctuations. Computational models of
neuronal activity, at the level of neurons and populations of neurons, account for this causal
relationship between presynaptic activity, membrane potential fluctuations and neuronal dis-
charge. Improving our knowledge of the dynamical properties of membrane potential fluctu-
ations may lead to more accurate models of neural activity and potentially contribute to our
understanding of neuronal dynamics and information exchange between neurons. Such is the
main objective and motivation of this work.

The characterization of membrane potential fluctuations is the subject of this thesis and the
focus is on neuron models with passive membrane, i.e. without spiking mechanism. The mem-
brane equation describes how electrical currents generated from incoming spikes are translated
into membrane potential evolution. The membrane equation is often formulated in determin-
istic terms such that a particular time course of input current results in the same trace of mem-
brane potential. This reflects the experimental fact that subjecting a biological neuron to the
same sequence of presynaptic spikes results in very similar membrane potential evolution.
However, the timing of incoming spikes and synapses that receive them are considered ran-
dom from the perspective of the neuron. This results in complex membrane potential evolution
that is due to the contribution of numerous irregular, or ”noisy”, synaptic inputs received from
other neurons in the network. Such complex dynamics are best described in probabilistic terms
notwithstanding the deterministic response to synaptic input, since deterministic functions of
random quantities are in general random quantities as well. The key question of this study is
therefore expressed in probabilistic terms: For given statistics of presynaptic spikes, what are the

1
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statistics of membrane potential fluctuations?

Computational models of neuronal activity often start with the specification of the membrane
equation and noise model for synaptic input. Membrane equation models vary in complexity to
reflect the desired level of biological detail. Current and conductance synapses are two impor-
tant categories of the synapse model and specify how synaptic input translates to membrane
potential fluctuations. Current synapses lead to unbounded variation of membrane potential
whereas conductance synapses drive the evolution between minimum and maximum values.
Conductance-based models have higher biological accuracy and current-based models lead to
simpler and often more tractable analytical descriptions. The later may also yield good approx-
imations to membrane dynamics under certain synaptic input regimes.

Several strategies have been applied to model the stochastic nature of membrane potential
fluctuations. The membrane potential can be directly modeled as a noise process that reflects
basic statistical properties of membrane fluctuations, typically their mean and variance. An-
other possibility is to model the synaptic input as a noise process with appropriate statistical
properties. Noise processes that are typically used in both cases are supported by a large body
of analytical results that contributes to their tractability. Among these are white noise, Gaus-
sian noise, Wiener process, Ornstein-Uhlenbeck process, etc. Modeling membrane potential
or synaptic input with these noise processes will no longer account for spike timing informa-
tion since the objective is to capture the statistical effects of synaptic input rather than spike
times themselves. This is a trade-off in accuracy versus tractability, which is made under the
assumption that the statistical properties of these noise processes provides the most relevant
contribution to membrane potential dynamics. Depending on the particular neuronal system
and neuronal function under investigation, this hypothesis has been shown to be very effective
and in some cases quite sufficient. Under some other conditions however, these approaches
are not entirely successful since higher order statistics of synaptic input may play an important
role in membrane potential dynamics.

The proposed approach is to explicitly consider the effect of individual presynaptic spikes in
the evolution of membrane potential. This should provide access to exact statistics of mem-
brane potential fluctuations by integration of cause and effect mechanisms. This is the case for
the simple but popular class of neuronal models adopted in this study that is often used in
computational studies. These exact results apply to current and conductance synapse models
under highly variable synaptic input regimes that are thought to reflect behaving conditions.
This improvement in statistical accuracy opens the way to refine existing models of transfer
function that links membrane potential evolution to neuronal discharge. This transfer function
is a core element of computational models of neuronal activity since it compresses internal dy-
namics of neurons into an input to output firing relationship. Statistical inference models of
biological and dynamical characterization of neurons and their afferent neural networks also
benefit from these results since data generation models can be made more precise. These exact
descriptions may enable to develop new approximations and estimate the accuracy of existing
ones. They contribute to future work regarding biological and dynamical conditions under
which higher order statistics are essential to fully capture neuronal dynamics. This would con-
tribute to establish the validity domain of more tractable noise models.

Further details on the modeling assumptions and possible applications of this work are pre-
sented next.
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1.2 Framework Description

The main features and assumptions of the neuron model and key principles leading to the an-
alytical results developed in this thesis are presented here.

The neuron model is a point neuron without spatial extent that is characterized by a single
time-evolving value of membrane potential. As illustrated in Fig. 1.1, there is some simplifica-
tion when going from biological neuron, to morphological model and finally to point neuron.
The underlying assumption is that the membrane equation will account for the most impor-
tant biological processes that are relevant to the particular research question. The focus is on
the biological properties related to synapse type (current or conductance), the characteristics of
synaptic input (noise model) and the statistical properties of nonstationary membrane dynam-
ics. This leads to a passive and linear neuronal membrane without spiking mechanism that is
represented schematically in Fig. 1.1 by a point neuron with input edges only.

Figure 1.1 – Two common levels of simplification when modeling biological neurons (left). Some
models take into consideration the spatial extent of the neuron by characterizing membrane potential
values at different physical locations (middle). The adopted neuron model is a point neuron without
spatial extent that is described by a single time-evolving value of membrane potential (right).

The two final assumptions regard the statistics of presynaptic spikes and how synaptic input is
generated from them. Presynaptic spikes are assumed to be generated by Poisson point processes
(PPP) with intensity that can vary in time and synaptic input is shot noise generated from
these spikes. The shot noise assumption is motivated by experimental studies showing that
presynaptic spikes elicit stereotypical responses under low activity regimes [Hodgkin et al.,
1952, Hodgkin and Huxley, 1952, Fatt and Katz, 1952, Curtis and Eccles, 1960]. This neglects
changes in synaptic response due to synaptic saturation and short term plasticity that are cer-
tainly relevant in many synaptic input regimes of interest. Neglecting them however, provides
a reasonable first approximation. The Poisson assumption may not always hold, even for cells
undergoing spontaneous activity in the absence of external experimental stimuli [Rodieck et al.,
1962]. However, this hypothesis has significant tractability advantages and is often adopted in
computational studies. As shown in the article of Chapter 5 on synaptic correlations, PPP can
be used to build more complex synaptic input models. The relevant background information
and techniques are developed in Chapter 2.

The scheme in Fig. 1.2 illustrates these elements and assumptions: (1) Presynaptic spike times
are generated by a PPP (2) to produce synaptic input in the form of shot noise (3) that drives
membrane potential evolution.
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Figure 1.2 – General scheme of the model: Presynaptic spikes produce synaptic input (top) that
drives membrane potential fluctuations (bottom). Spike arrival times are generated by a Poisson
point process with intensity that can vary in time. The synaptic input is shot noise generated by
superposition of individual responses to presynaptic spikes.

As can be appreciated from this figure, the neuron model is a deterministic system with random
inputs, since synaptic drive and membrane potential fluctuations are deterministic functions
of random spike arrival times.

The quantities of interest are the value of membrane potential at different times, noted Vt ≡
V (t) for the value at time t and V1, . . . , VK for the values of Vt at times t1 ≥ t2 ≥ . . . tK . The
statistical properties of Vt characterize aspects such as mean value of membrane potential 〈Vt〉,
variance

〈

(Vt − 〈Vt〉)2
〉

≡
〈〈

V 2
t

〉〉

and probability density p(Vt = vt). The probabilistic nature

of membrane potential is encoded in p(vt). For example, the mean value of membrane potential
〈Vt〉 is obtained from p(vt) as follows:

〈Vt〉 =
∫

vt p(vt) dvt

where the integral runs over all possible values of Vt.

The approach proposed in this thesis is to model membrane potential fluctuations as a trans-
formation of presynaptic spikes generated by PPP. The first step is to determine the effect of
an arbitrary set of presynaptic spikes on membrane potential evolution. This defines the PPP
transformation for the neuronal membrane model of interest. In the second step, the statistics
of the PPP transformation are derived under the PPP. This requires access to the density of
presynaptic spike times ξ ≡ {x1, x2, . . . xn}, represented informally as p(ξ), and to the solution
of the membrane equation V (t, ξ) for arbitrary sets of presynaptic spike times ξ. This is illus-
trated in Fig. 1.3 where the effect of individual presynaptic spikes can be appreciated in the
membrane potential trace.
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Figure 1.3 – Modeling the transformation of presynaptic spike to membrane potential fluctuations.
Each presynaptic spike contributes to the evolution of membrane potential Vt.

The key steps in deriving exact membrane potential statistics for a particular neural membrane
model are the following:

1. Determine the solution of the membrane equation V (t, ξ) for arbitrary sets of presynaptic
spike times ξ generated by PPP

2. The transformation V (t, ξ) is analyzed and decomposed into one or several generic PPP
transformations

3. The statistics of Vt are accessible for those cases where the underlying PPP transforma-
tions are exactly or approximately tractable

This approach enables to obtain the statistical properties of Vt from the solution of the mem-
brane equation V (t, ξ) and the density of presynaptic arrival times p(ξ). Returning to the pre-
vious example of evaluating 〈Vt〉, this is equivalent to the following operation:

〈Vt〉 =
∫

vt p(vt) dvt =

∫

V (t, ξ) p(ξ) dξ

1.3 Applications

These analytical results may find applications in the context of statistical analysis of experi-
mental data and certain aspects of computational neuroscience models.

Intracellular recordings provide direct access to statistical properties of membrane potential
fluctuations. The recordings at the soma reflect important biological characteristics of the neu-
ron, such as the number of excitatory and inhibitory synapses N{e,i}, the synaptic time constant
τ{e,i} and synaptic strength h{e,i} of synaptic input. The dynamical state of afferent popula-
tions is likewise reflected in the statistics of fluctuations. This is illustrated in Fig. 1.4 where a
schematic intracellular recording is made at the soma of a neuron.
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Figure 1.4 – Membrane potential fluctuations carry information of the biological properties of the
neuron and the activity of afferent neural networks. The black arrow represents an intracellular
electrode recording the membrane potential Vt from which the mean 〈Vt〉 and variance

〈〈

V 2
t

〉〉

can be calculated. The activity of afferent neural networks is often characterized in terms of the
mean 〈λe,i〉 and variance

〈〈

λ2
e,i

〉〉

of neuronal discharge. Important biological properties include
the number of excitatory and inhibitory synapses Ne,i, the synaptic time constant τe,i and synaptic
strength he,i.

The raw data from intracellular recording is often processed to extract its statistical character-
istics. This provides a compact representation of the data that in order to yield insight into
biological properties and afferent population dynamics requires the interpretation of a statis-
tical inference model. The typical scheme is illustrated in Fig. 1.5 and involves two levels of
modeling: how the data was generated (statistical model) and how to estimate the parameters
from the data (statistical inference model).

Statistical  
Model Vt 

Biological Properties 
Input Statistics Gt 

 

Estimated 
Statistics Vt 

Statistical 
Inference Gt 

Measured 
Statistics Vt 

Estimated 
Biological Properties 
Input Statistics Gt 

Figure 1.5 – Common scheme for inference of biological and dynamical properties of neurons from
experimental measurements of membrane potential.

A statistical model of Vt has a set of parameters corresponding to biological and synaptic input
characteristics that when specified result in the prediction of Vt statistics. This is the level of
statistical modeling developed in this thesis. A statistical inference model corresponds to the
inverse problem under the assumption that membrane potential dynamics are well represented
by the statistical model, and the observed traces of Vt are realizations generated under partic-
ular sets of parameters. The statistical inference step evaluates the likelihood of particular pa-
rameters sets given the observed data. An example is provided by the VmD method [Rudolph
et al., 2005, 2007] that estimates mean and variance of excitatory and inhibitory synaptic in-
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put from recordings of membrane potential at different levels of injected current. This class
of statistical inference models relate the statistics of Vt measurements to biological properties
and synaptic input characteristics and the results developed in this thesis may provide basis for
improvement. Firstly, their exact nature provides more accurate statistical models of Vt for non-
stationary synaptic input. Secondly, analytical access to higher order statistics of Vt may enable
to extract additional information from raw data. Thirdly, statistical inference models critically
depend on the ability to assign probabilities to measured data for given parameters. An im-
portant result from this work are the accurate approximations for the nonstationary probability
distribution of Vt.

Another important aspect is the contribution of high order statistics in the description of mem-
brane potential dynamics. Synaptic input and membrane potential fluctuations are often mod-
eled by more tractable noise processes with appropriate statistical properties [Tuckwell, 1988a,
Burkitt, 2006a,b, Gerstner et al., 2014]. The spike timing information is no longer present in
such descriptions since the objective is to capture basic statistical properties of synaptic input,
such as mean and variance. This is illustrated in Fig. 1.6 where synaptic input generated from
shot noise and Ornstein-Uhlenbeck (OU) processes with equal mean and variance are shown
for a simple membrane model with single conductance synapse type (excitatory). The OU pro-
cess does not represent individual postsynaptic responses to spike arrivals, and may display
negative conductance that is without biophysical meaning. In terms of higher order statistics,
the OU process has cumulants of order higher than two equal to zero, whereas shot noise has
non-zero cumulants of all orders. As shown in this figure, these differences affect the standard
deviation of Vt, in addition to its higher order statistics (not shown but similar to Fig. 1.9). The
central moments expansion (CME), that is also developed in this work, can be used to show
that the mean of Vt is mostly affected by the mean and variance of input conductance, whereas
its standard deviation has important contributions from third and fourth order cumulants. In
particular, the third order cumulant of input conductance contributes to decrease the standard
deviation of Vt seen in this figure.
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Figure 1.6 – Simple membrane model with a single conductance synapse type (excitatory). Com-
parison of synaptic input generated from shot noise process GSN (left), Ornstein-Uhlenbeck process
GOU (center) and corresponding mean and standard deviation of Vt (right). The synaptic input
has the same mean and standard deviation but differs in higher order statistics. The synaptic in-
put realizations are not visually similar and the membrane potential generated from GSN has lower
standard deviation.

The OU process and similar noise models are successful in other synaptic input regimes, such
as the diffusion limit where fluctuations of the input are small when compared to the mean.
This is illustrated in Fig. 1.7 where realizations of synaptic input from both processes are very
similar and result in equally similar mean and standard deviation of Vt. The contribution of
higher order statistics of shot noise to the standard deviation of Vt is quite small in this regime.
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Figure 1.7 – Same comparison as Fig. 1.6 but in the diffusion limit regime where fluctuations of
the input are small when compared to the mean. The realizations of synaptic input are visually very
similar and result in equally similar mean and standard deviation of Vt.

The effects of high order statistics are also present in more complex membrane models, such as
the example shown below with two conductance synapse types (excitatory and inhibitory) and
nonstationary rates. The mean and variance of Vt and synaptic input are shown in Fig. 1.8. The
excitatory input Ge(t) of the neuron is stationary with constant mean and standard deviation
(in gray). The inhibitory input Gi(t) is highly variable as can be seen by time-varying mean and
standard deviation. These nonstationary statistics reflect alternating periods of spiking activity
that results in time-varying evolution of membrane potential statistics. This can be appreciated
by the evolution of mean and standard deviation in the lower plot. Two time points ta and tb
are marked in the abscissa of the lower plot and correspond to local minimum and maximum
in the mean of Vt.
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Figure 1.8 – Neuron model with excitatory and inhibitory conductance synapses under nonstation-
ary inhibitory input. Excitatory conductances Ge (top) and inhibitory conductances Gi (middle)
drive the membrane potential evolution Vt (bottom). Single realizations of Ge, Gi and Vt are shown
in black, mean and standard deviation (µ± σ) are shown in gray.

In order to illustrate the importance of higher order statistics, consider the values of Vt at times
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ta and tb. The distribution of membrane potential at those times can be estimated from the
histograms in Fig. 1.9. The histograms display the relative count of values that fall into a dis-
crete number of bins covering the range of observed values. Near ta, the local minimum, the
distribution of membrane potential p(Vt) is not well captured by a gaussian density as shown
in the left plot of Fig. 1.9, whereas at time tb, the local maximum, the gaussian fit is much im-
proved. In the right plot of this figure, higher order statistics (third and fourth order) are used
to approximate the distribution of Vt with more accurate results. Statistical models of mem-
brane potential fluctuations with second order statistics would not be able to fully capture the
dynamics of this particular example.
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Figure 1.9 – Histograms of membrane potential distribution p(Vt) measured at two different times
ta and tb corresponding to local minimum and local maximum, respectively. Gaussian approxima-
tion (left, black dash) is calculated from empirical mean and variance and manages to capture well
the distribution at time tb, but is less successful at time ta. An approximation based on higher order
statistics (fourth order) is able to better capture the time evolution of p(Vt).

Input 1

Input 2
Transfer 
Function 

Output

Figure 1.10 – Overview scheme of transfer function: statistics of presynaptic activity are the input
and an estimation of neuronal discharge under those input conditions is the output.

Membrane potential statistics are important in the development of the transfer function for com-
putational models of neural activity. This function encodes the relationship between neuronal
discharge rate of the neuron at time t′ and the presynaptic input rate at an earlier time t ≤ t′.
This is illustrated in Fig. 1.10 where histograms of presynaptic activity and neuronal discharge
are represented for the same neuron over many realizations. The transfer function for a given
neuron model is typically derived as follows: (1) the statistical relationship between synaptic
input and Vt is first derived and (2) the probability of neuronal discharge for a given level of Vt

is evaluated. A high degree of information compression is captured by the transfer function:
encoding and encapsulating all aspects regarding biological properties and membrane dynam-
ics that matter in regards to spiking activity. The first step may benefit from the exact statistics
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for synaptic input with nonstationary rate that are derived in this work. The second step of-
ten involves evaluating the membrane potential distribution p(Vt) and as illustrated in Fig. 1.9,
may be improved from the inclusion of higher order statistics. The transfer function can be cast
as a first passage problem [Amit and Brunel, 1997, Brunel, 2000] that is related to the density of
crossings [Rice, 1944, Badel, 2011]. The later requires statistical description of both membrane
potential level and its rate of change, which are readily accessible for conductance synapses in
the present formalism.

1.4 State of the Art and Main Contributions

The theoretical basis from this work can be found in two important developments: the basic
membrane model for the integrate-and-fire neuron introduced by Lapicque [Lapicque, 1907, Ab-
bott, 1999] and the discovery and modeling of shot noise by Campbell and Schottky [Campbell,
1909, Schottky, 1918].

Lapique’s membrane model describes deterministic current input and was later extended to
include stochastic currents, conductances and other biophysical aspects [Stein, 1965, Verveen
and DeFelice, 1974]. Further developments include non-linear membrane potential dynamics,
synaptic plasticity and adaptation but are not addressed here [Tuckwell, 1988b,a, Dayan and
Abbott, 2001, Gerstner et al., 2014].

Shot noise processes are simple yet powerful models of stochastic input that correspond to
the superposition of impulse responses arriving at random times according to a Poisson law.
The early works of Campbell and Schottky described current fluctuations in vacuum tubes but
many applications were later found in biology [Stevens, 1972, Siebenga et al., 1973], acoustics
[Kuno and Ikegaya, 1973], optics [Rousseau, 1971, Picinbono et al., 1970], wireless communi-
cations [Venkataraman et al., 2006] and many other fields [Snyder and Miller, 1991, Parzen,
1999]. Whereas Campbell derived the expressions for the stationary mean and variance of shot
noise, in-depth analysis of their probabilistic structure was performed by S.O. Rice (in addition
to many important properties of Gaussian processes) [Rice, 1944, 1945]. A modern review of
more recent developments are presented in Refs. [Rice, 1977, Snyder and Miller, 1991, Parzen,
1999]. Shot noise has a simple mathematical form but can display nonstationary and non-
Markovian characteristics: a time-varying rate of random arrival times yields nonstationary
shot noise, and the process is in general non-Markovian for a single state variable [Masoliver,
1987, Lund et al., 1999], with a notable exception being the exponential kernel. The shot noise
assumption is motivated by experimental studies showing that presynaptic spikes elicit stereo-
typical responses under low activity regimes [Hodgkin et al., 1952, Hodgkin and Huxley, 1952,
Fatt and Katz, 1952, Curtis and Eccles, 1960]. This neglects changes in synaptic response due to
synaptic saturation and short term plasticity that are certainly relevant but provides a reason-
able first approximation.

Poisson point processes are a natural model of random input arrival times that are distributed
according to a Poisson law that may vary in time. Application-oriented treatments of PPP the-
ory and PPP transformations can be found in Refs. [Moller and Waagepetersen, 2003, Streit,
2010]. Shot noise is an example of Filtered Poisson Process [Snyder and Miller, 1991, Parzen,
1999] that is generated by linear transformations of PPP. The Poisson assumption may not hold
in all cases [Rodieck et al., 1962] but is very tractable and popular in computational studies.

Membrane potential fluctuations are often studied as the starting point of neuronal popula-
tion activity models (but see Refs. [Stein, 1967, Bevan et al., 1979, Verveen and DeFelice, 1974])
where in general conductance-based shot noise input is analyzed with constant rate and par-
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ticular shot noise kernels (for example, exponential kernel [Richardson and Gerstner, 2005,
Rudolph and Destexhe, 2005] and alpha kernel [Kuhn et al., 2004]). The exact solution for con-
ductance shot noise has been first obtained by Wolff and Lindner for exponential kernel with
constant rate [Wolff and Lindner, 2008, 2010]. Other studies have analyzed the case of nonsta-
tionary shot noise input for exponential kernel conductance and arbitrary kernel for currents
[Cai et al., 2006, Amemori and Ishii, 2001, Burkitt, 2006b].

The main contributions of this thesis are the derivation of exact membrane potential statis-
tics in the general case of nonstationary shot noise with arbitrary kernel and their approximate
formulation in terms of the central moments expansion (CME). These results were applied to
several questions in computational neuroscience: the statistics of neuron models with multi-
ple independent synapse types, the statistical effects of afferent network inhomogeneities per
synapse type, the population-level statistics for inhomogeneities in neuronal input characteris-
tics, the effects of correlations between synapse types, including strictly causal correlations and
an estimate of timescale for membrane potential memory effects.

1.5 Thesis Outline

The developments of this thesis are presented in two parts: Analytical Tools and Research Articles.

In the first part, the analytical tools and techniques leading to the derivation of exact mem-
brane potential statistics are presented in Chapter 2. This chapter is more technical in content
and presentation and contains several results not included in the presented research articles
but may be useful for future work. The basic properties of PPP and their transformations are
presented in Sec. 2.1. The membrane equation is analyzed in terms of those transformations
and their exact statistics are derived under the PPP. The general solution is presented in Sec. 2.2
and is applied to models of current and conductance synapses and a more general model with
both synapse types. The asymptotic and stationary limits of the model are analyzed in Sec. 2.3
and the popular model of random Dirac Delta sums is analyzed under PPP transformations in
Sec. 2.4. A more general type of PPP is presented in Sec. 2.5 and CME is introduced in Sec. 2.6.
Several results and derivations are included in the Appendix A.

In the second part, the research articles developed in this thesis are presented together with
a compact introduction to each article. The article Nonstationary filtered shot noise processes and
applications to neuronal membranes is presented in Chapter 3 and analyzes the simple case of a
single conductance synapse. The effects of variation in synaptic properties are investigated in
Chapter 4 with the article The impact of synaptic conductance inhomogeneities on membrane poten-
tial statistics. The effects of causal correlations in membrane potential statistics is explored in
Chapter 5 with the article How causal correlations between synaptic inputs affect membrane potential
fluctuations. The memory effects of membrane potential are analyzed and estimated in Chap-
ter 6 in the article Estimating stochastic process memory in neuronal membranes.

A general discussion of this work and future research directions are presented in Chapter 7.
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Chapter 2

Analytical Tools

The key concepts and techniques that underlie the analytical results developed in this thesis
are presented here. These techniques are used to derive the statistical properties of membrane
potential fluctuations from the statistics of synaptic input, and are developed in the formalism
of Poisson point process (PPP) transformations that is briefly reviewed in Sec. 2.1. This presen-
tation is slower-paced and more general than in the research articles included in Chapters 3 to
6. The exact statistics for passive membrane equations with current and conductance synapses
under nonstationary shot noise input are derived in Sec. 2.2. Their asymptotic and stationary
limits are investigated in Sec. 2.3. The popular synaptic input model of Dirac delta functions is
analyzed under this formalism in Sec. 2.4. A more general type of PPP is presented in Sec. 2.5
and the central moments expansion (CME) is introduced in Sec. 2.6. Several results and deriva-
tions are included in the Appendix A.

2.1 Poisson Point Processes

The evolution of membrane potential for a passive neuronal membrane model can be expressed
as a transformation of presynaptic spike times. Since the statistics of spike times are assumed
to follow a Poisson law, the formalism of PPP provides a natural model for investigating these
transformations. Basic definitions and statistical properties of stochastic processes constructed
from transformations of PPP are first reviewed in Secs. 2.1.1 and 2.1.2. The membrane equa-
tions for current and conductance synapses are first-order linear ordinary differential equations
(ODEs) that when receiving shot noise input correspond to particular PPP transformations as
shown in Sec. 2.1.3. Their statistical properties are investigated in Sec. 2.1.4.

2.1.1 Poisson Point Processes in the Real Line

Poisson point processes model the distribution of points in arbitrary dimensions. The coordi-
nates of stars in a small section of the sky or the location of trees in a forest provide examples in
two or three spatial dimensions. In one dimension they can provide a model for the generation
of presynaptic spike times.

A PPP Ξ (S, λ) that generates points or event times in an interval S ⊆ R of the real line is
characterized by a non-negative rate function λ(x) ≥ 0 such that the quantity m(S) ≡

∫

S λ(x) dx
is finite for any bounded interval S . A PPP is said to be homogeneous if the rate function
λ(t) = λ is constant and inhomogeneous otherwise.

A realization of the PPP is a set ξ ≡ {n ≥ 0, {x1, . . . , xn} ∈ S} that specifies the number of
points n and their locations {x1, . . . , xn} ∈ S . These points are associated with presynaptic

13
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spike times of synaptic input. In order to simplify notations n is made implicit and ξ represents
the event times in order to write more compact expressions such as

∑

xj∈ξ
g(t, xj).

A realization ξ is obtained through a two-step sampling procedure: an integer n ≥ 0 is drawn
from a Poisson distribution with mean m(S); and for n > 0, each xj is independent and iden-
tically distributed (i.i.d.) with probability density p(xj) = λ(xj)/m(S). The condition of finite
m(S) over bounded S ensures a finite number of event times for realizations ξ over bounded S .
A well-known and simple implementation of this procedure is included in the Appendix A.1.
Examples of PPP realizations for both homogeneous and inhomogeneous PPP are shown in
Fig. 2.1.
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Figure 2.1 – Examples of rate function λ(t) for homogeneous PPP (top) and inhomogeneous PPP
(middle and bottom). The event times xj ∈ ξ of realization ξ are represented by gray dots above the
rate function.

The statistics of event arrivals and the estimation of rate function from a set of realizations ξ
have important applications in the analysis of spiking data, for example. Here the main focus
is on statistical properties of PPP transformations that are presented next.

2.1.2 PPP Transformations

Let F (t, ξ) be a transformation of Ξ that evaluates to a real number for any realization ξ and
real parameter t ∈ S . The transformation F (t, ξ) is assumed to be invariant under permuta-
tion of xj ∈ ξ when written as a regular function F (t, x1, . . . , xn) such that F (t, x1, . . . , xn) =
F (t, {x1, . . . , xn}). The expectation of F (t, ξ) under Ξ is evaluated according to the two-step
sampling procedure described earlier.

〈F (t, ξ)〉 =
∫

F (t, ξ) p(ξ) dξ

=
+∞
∑

n=0

p(n)

∫

S

· · ·
∫

S

F (t, x1, . . . , xn) p(x1, . . . , xn|n) dx1 . . . dxn

=
+∞
∑

n=0

p(n)

∫

S

· · ·
∫

S

F (t, x1, . . . , xn)

n
∏

j=1

p(xj) dxj
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with,

p(n) = e−m(S) (m(S))n
n!

p(xj) =
λ(xj)

m(S)

This results in the ensemble average over the number of events n and their arrival times
{x1, . . . , xn}:

〈F (t, ξ)〉 =
∞
∑

n=0

1

n!
e−m(S)

∫

S

· · ·
∫

S

F (t, x1, . . . , xn)
n
∏

j=1

λ(xj) dxj (2.1)

where the expectation 〈F (t, ξ)〉 only exists if right side exists as well.

The quantities evaluated by Eq. (2.1) are ensemble averages that correspond to repetition of
transformation 〈F (t, ξ)〉 over a large number of realizations ξ and averaging over the same
value of parameter t. This is illustrated in Fig. 2.2 where realizations from a particular trans-
formation F (t, ξ) are shown and the value of 〈F (t, ξ)〉 is evaluated over a range of 100 ms. The
transformation F (t, ξ) may be a continuous function of parameter t even though ξ is a discrete
set of points.
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F
(t
,ξ

)

F(t,ξ ) sample

〈F(t,ξ )〉

Figure 2.2 – Example of a PPP transformation F (t, ξ) that is a continuous function of parameter t.
One hundred realizations of F (t, ξ) are superposed and the value of the mean 〈F (t, ξ)〉 is evaluated
from 0 to 100 ms.

The key observation is that a single realization ξ fully determines the transformation F (t, ξ).
The expectation of F (t, ξ) under Ξ therefore yields the statistics of the slave stochastic process
Ft ≡ F (t, ξ). Higher order moments or cumulants of Ft are obtained by forming the relevant
products of F (t, ξ) before taking the expectation. For example, the variance

〈〈

F 2
t

〉〉

is obtained

by evaluating the expectations
〈

F (t, ξ)2
〉

-〈F (t, ξ)〉2. The same follows for higher order statistics
involving the values F1, . . . , FK at times t1 ≥ t2 ≥ . . . tK , where we write 〈F1 · · ·FK〉 for joint
moments and 〈〈F1 · · ·FK〉〉 for joint cumulants. For example, the moment

〈

F1 F
2
2

〉

is evaluated
with the expectation

〈

F (t1, ξ)F (t2, ξ)
2
〉

. An example of PPP transformation is shown in Fig. 2.3
where the entire time course of Ft is determined by ξ.
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Figure 2.3 – Shot noise is an example of PPP transformation. The realization ξ fully determines
the slave stochastic process Ft ≡ F (t, ξ). Shot noise is a causal transformation where the value of
F (t2, ξ) ≡ F2 is determined by event arrivals xj ∈ ξ up to t2 (in blue) and is not affected by events
later than t2 (in gray). The gray dots represent the location of input arrival times xj ∈ ξ.

Modeling the time evolution of systems with PPP transformations requires the notion of causal-
ity. We therefore focus on transformations that are causal in the parameter t, such that arrivals
xj ∈ ξ later than t cannot affect the value of F (t, ξ). A shot noise process is an example of causal
transformation since it generates a superposition of unitary impulse responses that only affect
the process at times later than the response arrival times.

F (t, ξ) =
∑

xj∈ξ

g(t− xj)H(t− xj) =
∑

xj∈ξ

g(t, xj) (2.2)

where ξ is the set of shot noise arrival times, g(t−xj)H(t−xj) is the impulse response function
at time t for arrival time xj ∈ ξ and H(u) is the Heaviside function. The function g(t − xj) is
also known as shot noise kernel.

A realization of shot noise is shown in Fig. 2.3 and illustrates the characteristic superposition
of unitary impulse responses. The shot response function or shot noise kernel g(u) is assumed
to decay sufficiently fast for all joint cumulants to exist. Some popular choices of shot noise
kernels [Gilbert and Pollak, 1960, Verveen and DeFelice, 1974] are illustrated in Fig. 2.4.
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Figure 2.4 – Popular shot noise kernels g(u) in the literature: box, exponential, alpha, and bi-
exponential.

The analytical expressions for the shot noise kernels from Fig. 2.4 are presented below. Their
scaling is such as to yield the same stationary mean 〈Ft〉. In the Appendix A.7 are presented
expressions for stationary and nonstationary statistics up to second order cumulants under
constant rate. The nonstationary versions include the transient effects in the build-up to the
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stationary regime.

g(t, x)box = hH(τs − (t− x))H(t− x)

g(t, x)exp = h e−
t−x
τs H(t− x)

g(t, x)alpha = h
t− x

τs
e−

t−x
τs H(t− x)

g(t, x)bi-exp = h
τs

τs − τr

(

e−
t−x
τs − e−

t−x
τr

)

H(t− x)

2.1.3 Membrane Equation as PPP transformation

The membrane equation is formulated as a linear first-order ODE. The membrane equation for
current synapses of a single synapse type is given by:

τm
d

dt
V (t) = El − V (t) +Rm I(t) (2.3)

where τm is the membrane time constant, El is the resting potential, Rm is the membrane resis-
tance. The membrane potential V (t) is a filtered version of synaptic input I(t) since the ODE
changes the spectral characteristics of I(t). It is an additive noise process since noise in the
input is added to V (t).

The membrane equation for conductance synapses of a single synapse type are given by:

τm
d

dt
V (t) = El − V (t) + (Ee − V (t))

1

gl
G(t) (2.4)

where Ee is the excitatory reversal potential and gl is the leak conductance. This is a multiplica-
tive noise process since noise in the input multiplies or modulates V (t).

The membrane equation for both types of synapse are particular cases of the general form
of linear first-order ODE shown below with its solution:

τ
d

dt
Y (t) = −Q(t)Y (t) + J(t) (2.5)

Y (t) =
1

τ

∫

J(z) e−
1
τ

∫ t

z
Q(u) du dz (2.6)

where τ is a time constant and Q(t) and J(t) are the inputs to the system.

The filtering of shot noise input by Eq. (2.5) corresponds to four scenarios depending on whether
the inputs are shot noise or deterministic functions:

1. J(t, ξ) is shot noise and Q(t) is a function of time

2. Q(t, ξ) is shot noise and J(t) is a function of time

3. Both inputs are the same shot noise process (J(t, ξ) = Q(t, ξ))

4. J(t, ξ1) and Q(t, ξ2) are shot noise from realizations of independent PPP Ξ1 and Ξ2

The first case generates filtered process with additive noise and results in integrated random
sums:

Y (t, ξ) =
1

τ

∫

∑

xi∈ξ

j(z, xi) e
− 1

τ

∫ t

z
Q(u) du dz
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where j(t, x) is the shot noise kernel of J(t, ξ).

The second case generates filtered process with multiplicative noise and results in integrated
random products:

Y (t, ξ) =
1

τ

∫

J(z)
∏

xj∈ξ

e−
1
τ

∫ t

z
g(u,xj)du dz

where g(t, x) is the shot noise kernel of Q(t, ξ).

The third case results in integrated generalized random sums:

Y (t, ξ) =
1

τ

∫

∑

xi∈ξ

g(z, xi)
∏

xj∈ξ

e−
1
τ

∫ t

z
g(u,xj)du dz

The fourth case is a combination of the first two since the expectation Eq. (2.1) can be evaluated
independently for each PPP.

A small remark regarding the naming of PPP transformations. The term random sums is bor-
rowed from R. Streit [Streit, 2010] and by analogy random products and generalized random
sums is adopted for the other two cases. There doesn’t seem to be much convergence in the
literature regarding the naming of these PPP transformations.

2.1.4 Statistics of PPP transformations

In this section we review the basic statistics of random products, random sums, generalized
random sums and the integral transform.

Random products are introduced first since they are necessary to obtain the characteristic func-
tion of random sums. Random products are factorizations of the form F (t, ξ) =

∏

xj∈ξ
f(t, xj)

and their mean and joint moments are evaluated as follows:

〈Ft〉 =
∞
∑

n=0

1

n!
e−m(S)





∫

S

f(t, x)λ(x) dx





n

= exp





∫

S

(f(t, x)− 1)λ(x) dx





〈F1 . . . FK〉 =
〈

∏

xj∈ξ

K
∏

k=1

f(tk, xj)

〉

= exp





∫

S

(f(t1, x) · · · f(tK , x)− 1)λ(x) dx



 (2.7)

Random sums are factorisations of the form F (t, ξ) =
∑

xj∈ξ
f(t, xj). The shot noise process Gt

from Eq. (2.2) is a causal random sum with f(t, xj) = g(t−xj)H(t−xj). As in the previous case,
their statistical properties can be obtained explicitly from the expectation Eq. (2.1). However,
the characteristic function φ(s1, . . . , sK) of random sums has an analytical form that leads to
simpler derivation of relevant statistical properties.

φ(s1, . . . , sK) ≡
〈

eis1F1+···+isKFK
〉

=

〈

K
∏

k=1

e
isk

∑

xj∈ξ f(tk,xj)

〉

=

〈

∏

xj∈ξ

K
∏

k=1

eiskf(tk,xj)

〉

The expectation of the random product on the right side can be evaluated by Eq. (2.7) and
yields the general form of the Campbell Theorem [Campbell, 1909]:

φ(s1, . . . , sK) = exp





∫

S

(

e
∑K

k=1 iskf(tk,x) − 1
)

λ(x) dx



 (2.8)
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The probability density function (pdf) of random sums have known analytical forms for a small
number of shot noise kernels, among which the exponential kernel [Gilbert and Pollak, 1960].
The joint pdf, moments and cumulants of random sums are directly obtained from the charac-
teristic function, as follows:

p(F1, . . . , FK) =
1

(2π)K

∫

R

· · ·
∫

R

e
∑K

k=1 −iskFk φ(s1, . . . , sK) ds1 . . . dsK (2.9)

〈F1 · · ·FK〉 =
(

1

i

d

ds1

)

· · ·
(

1

i

d

dsK

)

φ(s1, . . . , sK)

∣

∣

∣

∣

s1=···=sK=0

(2.10)

〈〈F1 · · ·FK〉〉 =
(

1

i

d

ds1

)

· · ·
(

1

i

d

dsK

)

lnφ(s1, . . . , sK)

∣

∣

∣

∣

s1=···=sK=0

(2.11)

In particular, the mean and joint cumulants of random sums have the following well-known
expressions:

〈Ft〉 =
∫

S

f(t, x)λ(x) dx (2.12)

〈〈F1 . . . FK〉〉 =
∫

S

f(t1, x) · · · f(tK , x)λ(x) dx (2.13)

The expectation of more general forms of random sums are given by the Slivnyak-Mecke Theorem
[Slivnyak, 1962, Mecke, 1967]:

〈

∑

xj∈ξ

f
(

t, xj , ξ\xj

)

〉

=

∫

S

〈f (t, x, ξ)〉λ(x) dx (2.14)

where ξ\xj
is the set of events ξ except element xj . In particular, the expectation of random sum

of products that is relevant for conductance synapses is given by:

〈

∑

xj∈ξ

f(t, xj)
∏

xk∈ξ

g(t, xk)

〉

= 〈g(t, ξ)〉
∫

S

f(t, x) g(t, x)λ(x) dx

The third and last PPP transformation is the integral transform. The properties of causal PPP
transformations under the integral sign are now investigated. Following [Rice, 1945] and in-
tegral transform of F (t, ξ) in the interval U ⊆ R and in regards to a bounded function w(u,U)
can be defined as follows:

SF (U , ξ) =
∫

U

F (u, ξ)w(u,U) du

The mean and joint moments of the integral transform are calculated by interchanging the infi-
nite sum and integrals of the expectation Eq. (2.1) with the integral of the transform. Assuming
this leads to well defined quantities,

〈SF 〉 =
〈

∫

U

F (u, ξ)w (u,U) du
〉

=

∫

U

〈F (u, ξ)〉w (u,U) du (2.15)
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In the remainder of this document we’ll assume that the integral of the transform can be in-
terchanged with the integrals and infinite sum of the expectation. Under such conditions, the
autocovariance yields:

〈SF1 SF2〉 =
〈

∫

U1

F (u1, ξ)w (u1,U1) du1

∫

U1

F (u2, ξ)w (u2,U2) du2

〉

=

∫

U1

∫

U2

〈F (u1, ξ)F (u2, ξ)〉w (u1,U1) w (u2,U2) du1 du2

Which generalizes for joint moments of any order:

〈SF1 · · ·SFK〉 =
〈

K
∏

k=1

∫

Uk

F (uk, ξ)w (uk,Uk) duk

〉

=

∫

U1

· · ·
∫

UK

〈F (u1, ξ) · · ·F (uK , ξ)〉
K
∏

k=1

w (uk,Uk) duk

Since joint cumulants are expressed as partitions of joint moments, the following equality also
holds:

〈〈SF1 · · ·SFK〉〉 =
∫

U1

· · ·
∫

UK

〈〈F (u1, ξ) · · ·F (uK , ξ)〉〉
K
∏

k=1

w (uk,Uk) duk (2.16)

As shown in the Appendix A.3, this equality also holds for the more general case of N inde-
pendent PPP.

2.2 General Solution

The general form of the solution can be evaluated using the statistics of the relevant PPP trans-
formations under the integral sign. The mean and high order cumulants of the filtered pro-
cess Yt are obtained by forming the relevant products of Y (t, ξ) and evaluating the expectation
Eq. (2.1). We consider the case where both Q(t, ξ) and J(t, ξ) are shot noise generated from
the same PPP, and assume without loss of generality the initial value Y (t0) = 0 for t ≤ t0 and
Ui =]t0, ti]. The solution of the system for and arbitrary realization is given by:

Y (t, ξ) =
1

τ

∫

U

J(z, ξ) e−
1
τ

∫ t

z
Q(u,ξ) dudz

Applying Eqs. (2.15) and (2.16) yields:

〈Yt〉 =
1

τ

∫

U

〈

J(z, ξ) e−
1
τ

∫ t

z
Q(u,ξ) du

〉

dz (2.17)

〈〈Y1 · · ·YK〉〉 = 1

τK

∫

U1

· · ·
∫

UK

〈〈

K
∏

k=1

J(zk, ξ) e
− 1

τ

∫ tk
zk

Q(u,ξ) du

〉〉

dz1 . . . dzK (2.18)

The cases where only one of the inputs depends on ξ (i.e. R(t, ξ) and Q(t) and R(t) and Q(t, ξ))



21

are evaluated by taking the expectation on the stochastic term and using the properties of ran-
dom sums and random products, respectively.

The case where Q(t, ξ1) and R(t, ξ2) are shot noise generated from independent PPP Ξ1 and
Ξ2 are evaluated under multivariate PPP Ξ with 2 independent components. The expectation
under this PPP with N independent components is detailed in Appendix A.3. For the mean
and autocovariance,

〈Yt〉 =
1

τ

∫

U

〈R(z, ξ1)〉
〈

e−
1
τ

∫ t

z
Q(u,ξ2) du

〉

dz

〈〈Y1 Y2〉〉 =
1

τ2

∫

U1

∫

U2

〈〈

R(z1, ξ1) e
− 1

τ

∫ t1
z1

Q(u1,ξ2)du1 R(z2, ξ1) e
− 1

τ

∫ t2
z2

Q(u2,ξ2)du2
〉〉

dz1 dz2

with,
〈〈

R(z1, ξ1) e
− 1

τ

∫ t1
z1

Q(u1,ξ2)du1 R(z2, ξ1) e
− 1

τ

∫ t2
z2

Q(u2,ξ2)du2
〉〉

= 〈R(z1, ξ1)R(z2, ξ1)〉
〈

e
− 1

τ

∫ t1
z1

Q(u1,ξ2)du1−
1
τ

∫ t2
z2

Q(u2,ξ2)du2
〉

− 〈R(z1, ξ1)〉 〈R(z2, ξ1)〉
〈

e
− 1

τ

∫ t1
z1

Q(u1,ξ2)du1
〉〈

e
− 1

τ

∫ t2
z2

Q(u2,ξ2)du2
〉

2.2.1 Additive Noise

The well-known case of filtering with additive noise is revisited and applies to membrane mod-
els with current synapses. We start with the general form given by Eq. (2.5) and assume Q(t) is
a deterministic function and J(t) = J(t, ξ) is shot noise:

τ
d

dt
Y (t) = −Q(t)Y (t) + J(t, ξ) J(t, ξ) =

∑

xj∈ξ

r(t, xj)

The solution Eq. (2.6) is expressed by an integrated random sum:

Y (t, ξ) =
1

τ

∫

U

J(z, ξ) e−
1
τ

∫ t

z
Q(u) du dz =

∑

ti∈ξ

1

τ

∫

U

j(z, ti) e
− 1

τ

∫ t

z
Q(u) du dz

≡
∑

xi∈ξ

y(t, ti)

The cumulants of this filtered process are obtained by evaluating the expectation for terms
containing J(z, ξ) with the cumulants of random sums Eqs. (2.13) and (2.13), yielding:

〈Yt〉 =
1

τ

∫

U

∫

S

j(z, x) e−
1
τ

∫ t

z
Q(u) du λ(x) dx dz

〈〈Y1 · · ·YK〉〉 = 1

τK

∫

U1

· · ·
∫

UK

∫

S

K
∏

k=1

j(zk, x) e
− 1

τ

∫ tk
zk

Q(u) du
λ(x) dx dz1 · · · dzK

The probability density of Yt can be evaluated with the characteristic function φ(s) of random
sums by inverse Fourier transform (Eq. (2.9)), yielding:

p(Yt = z) =
1

2π

∫

R

exp



−isz +

∫

S

(

eisy(t,x) − 1
)

λ(x) dx



 ds (2.19)
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Figure 2.5 – Single realization and basic statistics of membrane model with single current-based
synapse type (excitatory). (Top) Random input arrival times xj ∈ ξ generate nonstationary shot
noise current It ≡ Q(t, ξ). (Bottom) Nonstationary membrane potential response Vt ≡ V (t, ξ)
driven by the shot noise input. The input arrival times are distributed with a variable Poisson rate
λ(t) that restricts the arrivals to occur between ta and tb. A single realization of random arrival
times ξ is represented by gray dots (top), realizations of It and Vt are shown in black. The mean and
standard deviation (µ± σ) of both processes are shown in gray and are clearly nonstationary.

The membrane equation for current-based synapses (Eq. (2.3)) can be recovered by the follow-
ing transformation of variables:

V (t) = Y (t) + EL Q(t) = 1 J(t, ξ) = RI(t, ξ)

In order to illustrate the exact nature of these results with nonstationary input dynamics, we in-
troduce the protocol from the article in Chapter 3 where the synaptic input is restricted to occur
between ta and tb ≥ ta with a constant Poisson rate λ. This corresponds to the rate function λ(t)
from the middle plot in Figure 2.1. Single realizations of shot noise input It and the membrane
potential time course Vt are shown in Fig. 2.5. The mean and standard deviation (µ±σ) of both
processes are clearly nonstationary since they vary in time. A comparison between numerical
simulations and analytical predictions for this model show excellent agreement, as illustrated
in Fig. 2.6 for the mean, standard deviation and autocorrelation. The autocorrelation at times
t1 and t2 of process Ft is given by ρ(F1 F2) = 〈〈F1 F2〉〉 /(σ(F1)σ(F2)) where 〈〈F1 F2〉〉 is the
autocovariance at times t1 and t2 and σ(Ft) is the standard deviation at time t. A comparison
between the empirical distribution and analytical prediction of Eq. (2.19) is shown in Fig. 2.7.

The numerical simulations were generated with exponential kernel g(t−x)exp = h exp (−(t− x)/τs)
for excitatory current. The rate function is represented in the middle plot of Fig. 2.1 with rate
λ = 1000 Hz when the PPP is active. Other parameters are τm = 0.02 s, El = −0.06 V, R = 100E6
Ω, h = 10E-12 A, and τs = 0.002 s.

This model can be easily extended to N synapse types by considering the multivariate form Ξ

of the PPP with N independent components. For clarity we now write Q(t) = 1.

τ
d

dt
Y (t) = −Y (t) + J(t, ξ) J(t, ξ) =

N
∑

n=1

∑

xj∈ξn

rn(t, xj)
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Figure 2.6 – Comparison with numerical simulations for nonstationary mean and standard devia-
tion (left) and the autocorrelation of the shot noise process It and membrane potential Vt. There is
excellent agreement between the simulations (gray and colored lines) and the analytic predictions
(black lines) with the respective lines overlapping. The autocorrelation ρ is evaluated at ta , ts, and
tb corresponding respectively to the onset of PPP activity, quasi-stationary It, and extinction of PPP
activity.

The solution Eq. (2.6) is expressed as a sum over each independent shot noise process:

Y (t, ξ) =
1

τ

∫

U

e−
t−z
τ

N
∑

n=1

Jn(z, ξn) dz

The cumulants of this filtered process have the same form as those of the previous case with
the expectations evaluated under the multivariate PPP Ξ.

〈Yt〉 =
1

τ

∫

U

e−
t−z
τ

N
∑

n=1

〈Jn(z)〉 dz (2.20)

〈〈Y1 · · ·YK〉〉 = 1

τK

∫

U1

· · ·
∫

UK

N
∑

n1=1

· · ·
N
∑

nK=1

〈〈

K
∏

k=1

Jnk
(zk) e

−
tk−zk

τ

〉〉

dz1 · · · dzK (2.21)

The linearity of the expectation and properties of cumulants yield the solution:

〈Yt〉 =
1

τ

∫

U

e−
t−z
τ

N
∑

n=1

∫

S

jn(z, x)λn(x) dx dz

〈〈Y1 · · ·YK〉〉 = 1

τK

∫

U1

· · ·
∫

UK

N
∑

n=1

∫

S

K
∏

k=1

jn(zk, x) e
−

tk−zk
τ λn(x) dx dz1 · · · dzK
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Figure 2.7 – Comparison with numerical simulations for nonstationary probability density function
of synaptic current p(It) (left) and membrane potential p(Vt) (right). Data histograms of empirical
distributions from simulations (gray) are compared with analytic predictions (black lines) at times
ta , ts, and tb.

2.2.2 Multiplicative Noise

The case of multiplicative noise corresponds to conductance synapses and is developed in the
articles of Chapters 3 and 4. In particular, the case of a single synapse type can be expressed as
a pure multiplicative noise process as shown in the article of Chapter 3. This leads to shorter
expressions by avoiding the usage of Slivnyak-Mecke Theorem. The solution for the case of
two independent shot noise inputs and a time dependent current is briefly derived here and
the complete derivation for the case J(t) = 0 is provided in Appendix A.4. Comparisons with
numerical simulations are shown in the relevant articles.

Starting with the general form given by Eq. (2.5) and assuming J(t) is a deterministic func-
tion and Q(t, ξ1) and Q(t, ξ2) are independent shot noise inputs:

τ
d

dt
Y (t) = (w1 − Y (t))Q1(t, ξ1) + (w1 − Y (t))Q1(t, ξ2) + J(t) (2.22)

Qn(t, ξn) =
∑

xj∈ξn

gn(t, xj) with n ∈ {1, 2} (2.23)

The solution Eq. (2.6) is expressed as a generalized random sum. Writing Q0(u, ξ) = 1 +
Q(t, ξ1) +Q(t, ξ2),

Y (t, ξ) =
1

τ

∫

U

(w1Q1(t, ξ1) +Q2(t, ξ2) + J(z)) e−
1
τ

∫ t

z
Q0(u,ξ) du dz

=
1

τ

∫

U





2
∑

n=1

wn

∑

xj∈ξn

gn(t, xj) + J(z)



 e−
t−z
τ

2
∏

m=1

e−
1
τ

∫ t

z
gm(u,ξm) du dz
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The cumulants of this filtered process are obtained by evaluating the expectation for terms
containing Qn(t, ξn) with the cumulants of random sums Eqs. (2.13) and (2.13), yielding:

〈Yt〉 =
1

τ

∫

U

〈(

2
∑

n=1

wnQn(z, ξn) + J(z)

)

e−
1
τ

∫ t

z
Q0(u,ξ) du

〉

dz

〈〈Y1 · · ·YK〉〉 = 1

τK

∫

U1

· · ·
∫

UK

〈〈

K
∏

k=1

(

2
∑

n=1

wnQn(zk, ξn) + J(zk)

)

e
− 1

τ

∫ tk
zk

Q0(u,ξ) duk

〉〉

dz1 . . . dzK

The key expectations are given by:

〈

Qn(z, ξn) e
− 1

τ

∫ t

z
Q0(u,ξ) du

〉

=
〈

e−
1
τ

∫ t

z
Q0(u,ξ) du

〉

z
∫

−∞

gn(z, x) e
− 1

τ

∫ t

z
gn(u,x)du λn(x) dx

〈

K
∏

k=1

e
− 1

τ

∫ tk
zk

Qn(u) du

〉

= exp





∫

S

(

K
∏

k=1

e
− 1

τ

∫ tk
zk

gn(u,x)du − 1

)

λn(x) dx





The cumulants of Vt are recovered with the following transformation:

〈Vt〉 = (Ee − Ei) 〈Yt〉+ El 〈〈V1 · · ·VK〉〉 = (Ee − Ei)
K 〈〈Y1 · · ·YK〉〉

with,

Qn(t, ξn) =
1

gl
Gn(t, ξn) J(t) = RI(t) wn =

En − El

Ee − Ei

2.2.3 General Case

The general case considered here has three independent shot noise inputs and a periodic re-
versal potential U(t). Two shot noise processes generate input current and a third shot noise
process generates input conductance. The input currents model additive noise to simulate mea-
surement error, are generated with high frequency rate and have opposite signs. The PPP Ξ1,
Ξ2 modeling current input have constant rate η and generate zero mean current J(t, ξ1, ξ2) =
J1(t, ξ1) + J2(t, ξ2). The third PPP Ξ3 modeling input conductance has the rate function λ(t) =
λH(t− ta)H(tb − t) illustrated in the middle plot of Fig. 2.1.

τ
d

dt
Y (t) = −Y (t) + (U(t)− Y (t))Q(t) + J(t) (2.24)

with,

J1(t, ξ1) =
∑

xi∈ξ1

f(t− xi)H(t− xi) U(t) = 1− U0 sin(2πωt)

J2(t, ξ2) =
∑

xk∈ξ2

f(t− xk)H(t− xk) Q(t, ξ3) =
∑

xj∈ξ3

g(t− xj)H(t− xj)
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The mean and autocovariance are given below and the derivation is provided in Appendix A.5.

〈Yt〉 =
1

τ

∫

U

(1− U0 sin(2πωz)) e
− t−z

τ

〈

Q(z, ξ3) e
− 1

τ

∫ t

z
Q(u,ξ3)du

〉

dz

〈〈Y1 Y2〉〉 =
1

τ2

∫

U1

∫

U2

(1− U0 sin(2πωz1)) (1− U0 sin(2πωz2))

〈〈

Q(z1, ξ3)Q(z2, ξ3) e
− 1

τ

∫ t1
z1

Q(u,ξ3) du−
1
τ

∫ t2
z2

Q(v,ξ3) dv
〉〉

dz1 dz2

+
2

τ2

∫

U1

∫

U2

〈〈J(x1, ξ1, ξ2) J(x2, ξ1, ξ2)〉〉
〈〈

e
− 1

τ

∫ t1
x1

Q(u,ξ3) du−
1
τ

∫ t2
x2

Q(v,ξ3) dv
〉〉

dx1 dx2

Comparison with numerical simulations are shown in Fig. 2.8 and display excellent agreement
with the analytical predictions.
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Figure 2.8 – Filtering of three independent shot noise processes. A zero mean current It is generated
by two shot noise processes with constant rate (left top). A multiplicative noise Qt is generated by
the third process and is only active between ta and tb ≥ ta (left middle). The filtered process Yt

has a time-varying reversal potential (left bottom). Single realizations of Jt, Qt and Yt are shown
in black, mean and standard deviation (µ ± σ) is shown in gray. Comparison between simulations
(gray) and analytic prediction (black) for the mean and standard deviation (µ±σ) of system response
Yt (right top). Comparison between simulations (colors) and analytic prediction (black) for the
autocorrelation ρ of system response Yt at times tb ≥ ts ≥ ta (right bottom).

The cumulants of Vt are recovered with the following transformation:

〈Vt〉 = (Ee − EL) 〈Yt〉+ EL 〈〈V1 · · ·VK〉〉 = (Ee − EL)
K 〈〈Y1 · · ·YK〉〉

with

J(t, ξ1, ξ2) = RI1(t, ξ1) +RI2(t, ξ2) Q(t, ξ3) =
1

gl
G(t, ξ3) E(t) = U(t) (Ee − El) + El
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The numerical simulations were generated with exponential kernel for current and conduc-
tance inputs. The current inputs have constant rate of 2000 Hz, and the conductance rate
function is represented in the middle plot of Fig. 2.1 with rate λ = 500 Hz when the PPP is
active. Other parameters are τ = 0.02 s, h = 0.5E-12 A and τs = 0.0005 s for current inputs and
h = 5E-9 S and τs = 0.005 s for conductance input.

2.3 Asymptotic and Stationary Limits

The statistical properties of long running shot noise process Qt and system response Yt are an-
alyzed in this section. A shot noise process generated from an homogeneous PPP will reach a
stationary regime after an initial transient period, assuming the appropriate convergence prop-
erties of the shot noise kernel to ensure the finiteness of cumulants (Eq. (2.13)). This may no
longer be the case under inhomogeneous PPP. However, an asymptotic limit may exist for cer-
tain periodic rate functions such as the example from Fig. 2.9.

The stationary or asymptotic limits of shot noise process Qt are obtained by setting the ori-
gin of event arrivals T0 at infinity (T0 → −∞). The stationary and asymptotic limits of system
response Yt are obtained by setting the start of input integration t0 in the same limit (t0 = T0,
T0 → −∞). The filtering of Qt may eventually be decoupled from the starting time of event
arrivals, as shown in the lower plots of the same Figure. Finally, the limit where Yt is driven
by stationary or asymptotic Qt and the initial Qt transients are neglected, is obtained by setting
T0 → −∞ and keeping t0 finite.
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Figure 2.9 – (Left) Transformations of homogeneous PPP may have have stationary limits (red).
(Right) Inhomogeneous PPP may display an asymptotic limit that is nonstationary (red). The sta-
tionary and asymptotic limits are obtained by setting the origin of event arrivals T0 at infinity
(T0 → −∞).

For example, the stationary or asymptotic limits of 〈Qt〉 and 〈Yt〉 illustrated in Fig. 2.9, are
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given by:

〈Qt〉 = lim
T0→−∞

t
∫

T0

g(t− x)λ(x) dx

〈Yt〉 = lim
T0→−∞

1− 1

τ

t
∫

t0

exp



− t− z

τ
+

t
∫

T0

(

e−
1
τ

∫ t

z
g(u−x)H(u−x) du − 1

)

λ(x) dx



 dz with t0 = T0

2.4 Random Dirac Delta Sums

Synaptic input under certain parameter regimes is well modeled by sums of Dirac delta func-
tions that result in a jump of the filtered process Y (t) for each presynaptic spike. In this section
we apply the formalism of PPP transformation by replacing the shot noise kernel g(t − xi)
with a Dirac delta function h τs δ(u − x). This corresponds to the limit of sharply peaked shot
noise and has been very successfully used in previous studies [Burkitt, 2001, Richardson, 2004].

The random product expectation Eq. (2.7) for random Dirac delta sums is given by:

〈

e−
1
τ

∫ t

z
Q(u,ξ) du

〉

= exp





∫

S

(

e−
hτs
τ

(H(t−x)−H(z−x)) − 1
)

λ(x) dx





〈

e
− 1

τ

∫ t1
z1

Q(u,ξ) du− 1
τ

∫ t2
z2

Q(u,ξ) du
〉

= exp





∫

S

(

e−
hτs
τ

(H(t1−x)−H(z1−x))−hτs
τ

(H(t2−x)−H(z2−x)) − 1
)

λ(x) dx





These expressions can be written in a more compact form in terms of the integrated rate func-
tion by reordering the integration limits of the expectation: {z1, t1, z2, t2} → {x1, x2, x3, x4}
with x1 ≥ x2 ≥ x3 ≥ x4. Writing γk =

(

1− e−
khτs
τ

)

and assuming t1 ≥ t2,

〈

e−
1
τ

∫ t

z
Q(u,ξ) du

〉

= e−γ1(m(t)−m(z))

〈

e
− 1

τ

∫ t1
z1

Q(u,ξ) du− 1
τ

∫ t2
z2

Q(u,ξ) du
〉

=

{

e−γ1(m(z1)−m(z2)+m(t1)−m(t2))−γ2(m(t2)−m(z1)) for t2 ≥ z1
e−γ1(m(t1)−m(z1)+m(t2)−m(z2)) otherwise

The cumulants for the filtered process with a single synapse type and nonstationary input are
derived in Appendix A.6. A comparison between predictions and numerical simulations is
shown in Fig. 2.10 for decreasing ratios of shot noise kernel time constant τs and relaxation
time τ of Yt.
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Figure 2.10 – Replacing the shot noise kernel with a Dirac delta yields the limit of sharply peaked
shot noise filtering. In each plot from left to right, the shot noise kernel time constant τs is succes-
sively divided by a factor of 10 while keeping the same value for the system response time constant
τ . The scale variable h is successively increased by the same amount in order to ensure the same sta-
tionary mean shot noise input. Comparison between simulations (gray) and analytic prediction with
random Dirac delta sums (black) for the mean and standard deviation (µ ± σ) of system response
Yt. The stationary limit has very simple analytic forms and is shown in red.

The stationary limit yields very compact expressions:

〈Yt〉stat =
λτ γ1

1 + λτ γ1
〈〈Y1 Y2〉〉stat =

τλ (2γ1 − γ2)

(1 + τλγ1)2(2 + τλγ2)
e−(1+λγ1)

t1−t2
τ

As expected, the stationary limit is only a good approximation whenever the typical rate of
change of λ(t) is small compared to the relaxation time τ of Yt. The autocovariance of the
system response Yt is greatly reduced in the limit of sharply peaked shot noise filtering. This is
illustrated in Fig. 2.11 by comparing the line tb +∆t between left and right plots.
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Figure 2.11 – Comparison between simulations (colors) and analytic prediction with random Dirac
delta sums (black) for the autocorrelation ρ of system response Yt at the same evaluation points as
in Figure 2.10.

Please note that Dirac delta sums are not random sums since they dot not share the same
characteristic function given by Eq. (2.8) that requires the impulse response function to be an
actual function rather than a distribution [Streit, 2010].

2.5 Compound PPP Transformations

Shot noise processes are particular types of random sums and belongs to a larger family of
stochastic processes called Filtered Poisson Process [Snyder and Miller, 1991, Parzen, 1999, Streit,
2010] that is characterized by linear transformations of PPP. This family includes transforma-
tions of Compound PPP where marks θj are generated independently from the points xj . This
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enables to extend the synaptic input model to include variations in shot noise kernel shape,
scale, etc. This leads to the following generalization of shot noise:

F (t, ξθ) =
∑

xj∈ξθ

f(t, xj ,θj)H(t− xj) (2.25)

where ξθ = {(x1,θ1), . . . , (xn,θn)} is a realization of the compound PPP with mark θj asso-
ciated with point xj . The marks are used to model the biological parameters θ = {θ1, . . . , θl}
of the shot noise kernel. For example, the exponential and alpha kernels have two biological
parameters θ = {h, τs} to characterize synaptic strength and synaptic time constant of impulse
responses.

The independence of the marks in regards to the points greatly simplifies the analysis of these
PPP transformations. The expectation of F (t, ξ) under the compound process Ξ given by:

〈

F (t, ξθ)
〉

=

∞
∑

n=0

1

n!
e−m(S)

∫

S

· · ·
∫

S

∫

Θ

· · ·
∫

Θ

F (t, (x1,θ1), . . . , (xn,θn))

n
∏

j=1

p(θj) dθj λ(xj) dxj

(2.26)

where integrals over the density p(θ) are replaced by the respective sums for parameters with
discrete values.

Variations in postsynaptic responses are expected to occur due to biological differences in
synapses and their impact in membrane potential statistics is explored in the article presented
in Chapter 4. Synaptic inhomogeneities are modeled by introducing individual synapses with
specific biological parameters for each type. Each synapse is driven by an independent shot
noise processes with rate adjusted to yield the desired cumulative rate. The limit of large num-
ber of synapses is modeled by generalized shot noise processes of the form Eq. (2.25), one for
each synapse type. This limit is approached quite rapidly, as discussed in the article and illus-
trated in Fig. 2.12 for synaptic time constant inhomogeneities τs ∼ p(τs). In the left plot of this
figure, presynaptic spikes from five synapses are color-coded to reflect the synapse of origin.
The synaptic responses are added to form the total synaptic output of the synapse type. The
right plot shows a realization of the limiting case. Even for a small number of synapses it may
be difficult to distinguish between the cases individually and a small difference is shown in the
variance.
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Figure 2.12 – Example of synaptic input generated with synaptic time constant inhomogeneities
τs ∼ p(τs). Small number of synapses (Ne = 5) with individual τs belonging to the same synapse
type (left) and the limit of very large number of synapses where postsynaptic responses are generated
with different τs for each spike arrival (right). The presynaptic spikes are color-coded to represent
the synapse of origin (left). This figure shows the limit case already yields quite good approximations
even for a small number of synapses, depending on particular synaptic time constant distributions
p(τs) and simulation parameters.
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The Slivnyak-Mecke theorem is still valid for transformations of compound PPP since the prob-
abilistic structure of the PPP is not changed. This enables to reuse the previous results under
compound PPP as shown in the article from Chapter 4.

2.6 Central Moments Expansion

The central moments expansion (CME) enables to evaluate the contribution of shot noise cumu-
lants to the statistics of the membrane equation with conductance synapses. This corresponds
to the Delta Method [Cramér, 1946, Oehlert, 1992] for approximating expectations of random
variable transformations. For the case of single conductance synapse type presented in the
article of Chapter 3, the mean of the filtered process is given by:

〈Yt〉 = 1− 1

τ

∫

U

e−
t−z
τ

〈

e−
1
τ

∫ t

z
Q(u)du

〉

dz (2.27)

The purpose of the CME is to approximate the expectation inside the integral. This is done
by Taylor expansion of the integrated shot noise and only keeping the first and second order
terms. The mean integrated shot noise is first factored from the expectation in order to yield a
series in central moments of integrated shot noise.

〈

e−
1
τ

∫ t

z
Q(u) du

〉

= e−
1
τ

∫ t

z
〈Q(u)〉du

〈

e−
1
τ

∫ t

z
(Q(u)−〈Q(u)〉) du

〉

≃ e−
1
τ

∫ t

z
〈Q(u)〉du






1 +

1

2

〈



−1

τ

t
∫

z

(Q(u)− 〈Q(u)〉) du





2
〉







= e−
1
τ

∫ t

z
〈Q(u)〉du



1 +
1

2τ2

t
∫

z

t
∫

z

〈〈Q(u1)Q(u2)〉〉 du1 du2





Inserting into the integral of Eq. (2.27) yields the CME approximation of the mean of the filtered
process.

〈Yt〉2 = 〈Yt〉0 −
1

τ

∫

U

e−
t−z
τ

1

2τ2

t
∫

z

t
∫

z

〈〈Q(u1)Q(u2)〉〉 du1 du2 dz (2.28)

with,

〈Yt〉0 = 1− 1

τ

∫

U

e−
t−z
τ e−

1
τ

∫ t

z
〈Q(u)〉du dz

The term 〈Yt〉0 is the deterministic solution for mean shot noise input 〈Q(u)〉, i.e. without shot
noise fluctuations. The deterministic solution overestimates the mean of the filtered process,
which can be verified by applying Jensen’s inequality [Jensen, 1906] to the exponential function
and concluding that 〈exp(X)〉 ≥ exp(〈X〉). Applying this inequality to the mean of the filtered
process, yields:

〈Yt〉 = 1− 1

τ

∫

U

e−
t−z
τ

〈

e−
1
τ

∫ t

z
Q(u)du

〉

dz ≤ 1− 1

τ

∫

U

e−
t−z
τ e〈− 1

τ

∫ t

z
Q(u)du〉 dz = 〈Yt〉0

The positive quantity ∆Yt ≡ 〈Yt〉0 −〈Yt〉 determines the correction due to stochastic input. The
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CME for the mean (Eq. (2.28)) indicates that shot noise autocovariance is directly proportional
to the amplitude of ∆Yt. This relationship can be illustrated by transformations of shot noise
parameters that leave the mean unchanged. For example, by inversely varying rate and size
parameter h. The mean of shot noise is linearly proportional to rate λ(t) and h, whereas au-
tocovariance scales linearly with rate but quadratically with h (even in nonstationary case, see
Eqs. 2.12 and 2.13). Dividing the rate by α > 0 and multiplying h by the same factor keeps the
mean constant but increases the autocovariance by a factor of α, i.e. the scaling transformation
(λ(t), h) 7→ (λ(t)/α, hα) yields 〈〈Q1Q2〉〉 7→ α 〈〈Q1Q2〉〉. This can be verified by applying the
Campbell theorem (Eqs. 2.12 and 2.13) to the scaling transformation:

〈〈Qt〉〉 7→ αh

∫

S

f(t, x)
λ(x)

α
dx = h

∫

S

f(t, x)λ(x) dx = 〈〈Qt〉〉

〈〈Q1Q2〉〉 7→ (αh)2
∫

S

f(t1, x) f(t2, x)
λ(x)

α
dx = α 〈〈Q1Q2〉〉

This is illustrated in Fig. 2.13 where the scaling transformation (λ(t), h) 7→ (λ(t)/α, hα) is ap-
plied to different values of α.
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Figure 2.13 – Analyzing the scaling of system parameters using the central moments expansion
(CME). Scaling transformation (λ(t), h) 7→ (λ(t)/α, hα) with α = 1 (left), α = 4 (middle) and
α = 16 (right). The deterministic solution 〈Yt〉0 with mean shot noise input (black dash) is always
greater than the mean of the filtered process 〈Yt〉t due to the convexity of exponential function
(Jensen’s inequality). The difference between them ∆Yt ≡ 〈Yt〉0 − 〈Yt〉 is the correction due to
stochastic input. The CME for 〈Yt〉t indicates that ∆Yt increases by reducing the rate of shot noise
rate while increasing the mean in order to maintain constant mean of shot noise.

The Fig. 2.13 also shows the variance of the filtered process increasing with α. This is expected
since the scaling transformation increases the variance and this generally leads to increased
variance of the filtered process (certainly in the stationary case). However, the variance increase
seen in this figure could be mainly due to the autocovariance of shot noise or one of its higher
order cumulants. In order to investigate the dominant contribution, the CME can be developed
for the autocovariance of the filtered process. The first order CME for this cumulant is obtained
by keeping terms up to second order in shot noise:

〈〈Y1 Y2〉〉1 =
1

τ4

∫

U1

∫

U2

e
− 1

τ

∫ t1
z1

(1+〈Q(u)〉)du− 1
τ

∫ t2
z2

(1+〈Q(v)〉)dv

t1
∫

z1

t2
∫

z2

〈〈Q(u1)Q(u2)〉〉 du1 du2 dz1 dz2

(2.29)

The second order CME involves up to fourth order cumulants of integrated shot noise and is
provided in Chapter 3. Additional work is required to establish the convergence properties of
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the CME. Numerical simulations in the parameter regime of neuronal membranes show excel-
lent results for the mean, and often very good results for the first order of autocovariance. The
second order of the autocovariance appears to have the same order of accuracy as the mean,
which is consistent with being second order in the delta method. For example, keeping third
and fourth orders in the Taylor expansion for the mean either does not provide significant im-
provements or results in worse approximations. In the later case, in order to improve on the
second order for the mean, many more terms are often required since the argument of the ex-
ponential grows large very fast (in this parameter regime).

The stationary limit of the filtered process yields the statistics under shot noise input with con-
stant rate after dissipation of initial transients. The cumulants for this regime can be obtained
by placing the onset of input arrival times at −∞ and replacing the mean and second order
cumulants of shot noise in Eqs (2.28) and (2.29) with their stationary limits. After integration
by parts,

〈Yt〉0 =
〈Q〉

1 + 〈Q〉 (2.30)

〈Yt〉2 = 〈Yt〉0 −
〈〈

Q2
〉〉

(1 + 〈Q〉)2
1

τ

t
∫

−∞

e−
t−z
τ

(1+〈Q〉) r (t− z) dz (2.31)

〈〈Y1 Y2〉〉1 =
〈〈

Q2
〉〉

(1 + 〈Q〉)2
1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
(1+〈Q〉) r (|z1 − z2|) dz1 dz2 (2.32)

where 〈Q〉,
〈〈

Q2
〉〉

and 〈〈Q1Q2〉〉 =
〈〈

Q2
〉〉

r (|t1 − t2|) are respectively the mean, variance and
autocovariance of stationary shot noise.

These expressions consistent with previous analytical estimates for the mean and standard
deviation derived with alternative approaches: Fokker-Planck methods for exponential kernel
shot noise Richardson and Gerstner [2005], Rudolph and Destexhe [2005] and shot noise ap-
proach for alpha kernel Kuhn et al. [2004]. The extension to the autocovariance of exponential
and alpha kernels is provided in the article of Chapter 3.

The case of N independent shot noise inputs requires some changes in the expansion tech-
nique. The deterministic solution 〈Yt〉0 in this case is given by:

〈Yt〉0 =
1

τ

t
∫

−∞

e−
1
τ

∫ t

z
〈Q0(u)〉du

N
∑

n=1

wn 〈Qn(z)〉 dz (2.33)

Directly expanding the exponential of integrated shot noise would result in mixed products of
moments and central moments:

〈

Q(z)n e
− 1

τ

∫ t

z
Qn(u) du

〉

= e−
1
τ

∫ t

z
〈Qn(u)〉du



〈Qn(z)〉+
+∞
∑

m=1

1

m!

〈

Qn(z)



−1

τ

t
∫

z

(Qn(u)− 〈Qn(u)〉) du





m
〉





An expansion purely in terms of central moments can be obtained after some preparatory work
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that is detailed in the article of Chapter 4. The basic idea is to transform the mean of shot noise
into a central moment prior to the Taylor expansion and only keeping terms up to the second
order of every component.

〈

Qn(z) e
− 1

τ

∫ t

z
Qn(u)du

〉

= e−
1
τ

∫ t

z
〈Qn(u)〉du

(〈

(Qn(z)− 〈Qn(z)〉) e−
1
τ

∫ t

z
(Qn(u)−〈Qn(u)〉)du

〉

+ 〈Qn(z)〉
〈

e−
1
τ

∫ t

z
(Qn(v)−〈Qn(v)〉)dv

〉)

This for the mean of the filtered process with N independent shot noise inputs:

〈Yt〉2 = 〈Yt〉0 +
1

τ

t
∫

−∞

e−
1
τ

∫ t

z
〈Q0(u)〉du

N
∑

n=1



−1

τ

t
∫

z

wn 〈〈Qn(z)Qn(u)〉〉 du

+wn 〈Qn(z)〉
1

2τ2

t
∫

z

t
∫

z

N
∑

m=1

〈〈Qm(u1)Qm(u2)〉〉 du1 du2



 dz

(2.34)

Extending to joint moments is performed in similar manner and yields for the first order of
autocovariance:

〈〈Y1 Y2〉〉1 =
1

τ2

t1
∫

−∞

t2
∫

−∞

e
− 1

τ

∫ t1
z1

〈Q0(u1〉du1−
1
τ

∫ t2
z2

〈Q0(u2)〉du2

N
∑

n=1

(

w2
n 〈〈Qn(z1)Qn(z2)〉〉

+
N
∑

m=1

N
∑

m′=1

wnwm 〈Qn(z1)〉 〈Qm(z2)〉
1

τ2

t1
∫

z1

t2
∫

z2

〈〈Qm′(u1)Qm′(u2)〉〉 du1 du2

−
N
∑

l=1

wnwl

(

〈Qn(z1)〉
1

τ

t1
∫

z1

〈〈Ql(u1)Ql(z2)〉〉 du1

+ 〈Qn(z2)〉
1

τ

t2
∫

z2

〈〈Ql(u2)Ql(z1)〉〉 du2
))

dz1 dz2

(2.35)

The structure of the CME for N independent shot noise inputs confirms the important role of
the autocovariance for the mean and autocovariance of the filtered process. The simple scal-
ing transformations performed earlier are very informative of the statistical properties of the
filtered process. A more robust analysis may require the second order of the autocovariance,
depending on the convergence properties for the relevant parameter regime.

Proceeding as previously yields the stationary limits.

〈Yt〉0 =
1

〈Q0〉
N
∑

n=1

wn 〈Qn〉 (2.36)
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〈Yt〉2 = 〈Yt〉0 −
N
∑

n=1

1

〈Q0〉
(wn − 〈Yt〉0)

〈〈

Q2
n

〉〉 1

τ

t
∫

−∞

e−
t−z
τ

〈Q0〉 rn(t− z) dz (2.37)

〈〈Y1 Y2〉〉1 =
N
∑

n=1

(wn − 〈Yt〉0)2
〈〈

Q2
n

〉〉 1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
〈Q0〉 rn(|z1 − z2|) dz1 dz2

(2.38)

where 〈Qn〉,
〈〈

Q2
n

〉〉

and 〈〈Qn(t1)Qn(t2)〉〉 =
〈〈

Q2
n

〉〉

r (|t1 − t2|) are respectively the mean, vari-
ance and autocovariance of stationary shot noise conductance Qn(t).

The stationary limit of CME for the variance of Vt is obtained by setting y setting t1 = t2 = t
in Eq. (2.38). This can be used to analyze the impact of shot noise rate changes in the variance
of Vt. Changing the rate of shot noise conductance will change its variance by the same factor
since the autocovariance of shot noise is linearly proportional to rate λ(t) (see Eq. (2.12)). In
consequence, varying the stationary rate of a single conductance input will vary the variance
of Vt according to Eq. (2.38). Several experimental studies have measured decrease of Vt vari-
ance on stimulus onset that is accompanied by an increase of mean Vt [Churchland et al., 2010].
Such reduction of variance can be caused by a decrease of synaptic input rate. The observed si-
multaneous increase of mean Vt would imply a reduction in inhibitory input rate, as illustrated
in Fig. 2.13.
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Figure 2.14 – The mean Vt can be increased by raising the rate of excitatory conductance (left) or
by decreasing the rate of inhibitory conductance (middle). These scenarios lead to opposite changes
of Vt variance (conductance rate increase/decrease corresponds to V+ and V−, respectively) (right).
The simultaneous increase Vt mean and decrease of Vt variance that is consistent with several ex-
perimental studies may occur by decrease of inhibitory conductance rate.
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Appendix A

A.1 Sampling Procedure

Sampling inhomogeneous PPPs in more than one dimension requires some care (see [Streit,
2010]), and may be performed with an acceptance-rejection procedure. This method can also
be used in one dimension (see [Brette, 2009] for more general cases). An alternative and well-
known procedure was adopted in this work, but can only be applied for PPPs in one dimension.

1. Evaluate the cumulative distribution of p(x) in the interval S = [0, T ] given by Φ(t) =
m(t)/m(T )

2. There is a one-to-one correspondence between Φ(t) and t since Φ(t) is a strictly increasing
function of t

3. Draw the number of points n from Poisson distribution with rate m(T )

4. Sample N points {y1, . . . , yN} uniformly between 0 and 1, which is the range of Φ(t) since
Φ(0) = m(0)/m(T ) = 0 and Φ(T ) = m(T )/m(T ) = 1

5. The realization ξ = {x1, . . . , xN} is obtained by Φ−1(yn) = xn

A.2 Numerical Integration of Membrane Equation

The numerical integration schemes used in the simulations are described here. These schemes
assume constant input between integration time steps, which results in sampling the input
with time step ∆t.

Current Synapses

Consider the membrane equation for N synapse types, given by:

τm
d

dt
V (t) = El − V (t) +

N
∑

n=1

Rm In(t)

where τm is the membrane time constant, El is the leak potential, Rm is the membrane resis-
tance and In(t) is the shot noise current for synapse type n.

The solution V (t+∆t) at time t+∆t for an initial value V (t) at time t is given by:

V (t+∆t) = V (t) e−
∆t
τm +

N
∑

n=1

1

τm

t+∆t
∫

t

(

El +

N
∑

n=1

Rm In(z)

)

e−
t+∆t−z

τm dz

37
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Using the fact that input is constant between integration steps yields the solution:

V (t+∆t) = V (t) e−
∆t
τm +

(

El +
N
∑

n=1

Rm In(t)

)

(

1− e−
∆t
τm

)

Conductance Synapses

The numerical integration of current synapses follows the same scheme. The membrane equa-
tion for N synapse types, given by:

τm
d

dt
V (t) = El − V (t) +

N
∑

n=1

(En − V (t))
1

gl
Gn(t)

where τm is the membrane time constant, El is the leak potential, gl is the leak conductance,
En is the synaptic reversal potential for synapse type n, Gn(t) is the shot noise conductance for
synapse type n.

The solution V (t+∆t) at time t+∆t for an initial value V (t) at time t is given by:

V (t+∆t) = V (t) e
− 1

τmgl

∫ t+∆t

t
G0(u) du +

N
∑

n=1

1

τm

t+∆t
∫

t

(

El +

N
∑

n=1

En
1

gl
Gn(z)

)

e
− 1

τmgl

∫ t+∆t

z
G0(u) du dz

where 1
gl
G0(t) = 1 +

∑N
n=1

1
gl
Gn(t).

Using the fact that input is constant between integration steps yields the solution:

V (t+∆t) = V (t) e
− ∆t

τmgl
G0(t) +

gl
G0(t)

(

El +
N
∑

n=1

En
1

gl
Gn(t)

)

(

1− e
− ∆t

τmgl
G0(t)

)

A.3 Cumulants of Integral PPP Transformations

Joint cumulants are expressed in terms of products of moments according to the following
combinatorial expression:

〈〈X1 . . . XK〉〉 =
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π

〈

∏

i∈B

Xi

〉

where π runs through the list of all partitions of {1, . . . ,K}, B runs through the list of all blocks
of the partition π, and |π| is the number of parts in the partition.

Assuming the infinite sum and integrals the expectation commutes with the integrals of SI(UK , ξ)
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for 1 ≤ k ≤ K,

〈〈SF 1 · · ·SFK〉〉 =
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π

〈

∏

i∈B

SF (Ui, ξ)

〉

=
∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π

〈

∏

i∈B

∫

Ui

F (ui, ξ)h(ui,Ui) dui

〉

=

∫

U1

· · ·
∫

UK

∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π

〈

∏

i∈B

F (ui, ξ)

〉

K
∏

k=1

h(uk,UK) duk

=

∫

U1

· · ·
∫

UK

〈〈F (u1, ξ) · · ·F (uK , ξ)〉〉
K
∏

k=1

h(uk,UK) duk

This property can be extended to multivariate PPP with N independent components Ξ1(S, λ1)
to ΞN (S, λN ) with realizations ξ ≡ {ξ1, . . . , ξN} [Cox and Isham, 1980]. The cumulants of the
transformation F (t, ξ) are obtained under the expectation:

〈F (t, ξ)〉
Ξ
=

∞
∑

n1=0

· · ·
∞
∑

nN=0

1

n1!
e−m1(S) · · · 1

nN !
e−mN (S)

∫

S1

· · ·
∫

S

· · ·
∫

S

· · ·
∫

S

F
(

t, x11, . . . , x
1
n1
, . . . , xN1 , . . . , xNnN

)

N
∏

n=1

nN
∏

jn=1

λl(x
n
jn) dx

n
jn

where xnk is the time of the k-th event from realization ξn.

The extension for transformations of independent PPP assumes that the product of infinite
sums and integrals of the multivariate expectation commutes with the integrals of SI(UK , ξ)
for 1 ≤ k ≤ K,

〈〈SF 1 · · ·SFK)〉〉
Ξ
=

∫

U1

· · ·
∫

UK

∑

π

(|π| − 1)!(−1)|π|−1
∏

B∈π

〈

∏

i∈B

F (ui, ξ)

〉

Ξ

K
∏

k=1

h(uk,UK) duk

=

∫

U1

· · ·
∫

UK

〈〈F (u1, ξ) · · ·F (uK , ξ)〉〉
Ξ

K
∏

k=1

h(uk,UK) duk

A.4 Two Independent Conductance Inputs

The derivation of exact cumulants for the membrane equation with conductance synapses is
presented here. Consider the following ODE with two independent shot noise inputs:

τ
d

dt
Y (t) = −Y (t) (1 +QE(t) +QI(t)) + wE QE(t) + wI QI(t)

QE(t) =
∑

xi∈ξE

g(t− xi)H(t− xi) wE =
EE − EL

EE − EI

QI(t) =
∑

xi∈ξI

g(t− xi)H(t− xi) wI =
EI − EL

EE − EI
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The solution is given by:

Y (t, ξE , ξI) = Y (t0) e
− 1

τ

∫ t

t0
(1+QE(u)+QI(u))du +

1

τ

t
∫

t0

(wE QE(z) + wI QI(z)) e
− 1

τ

∫ t

z
(1+QE(u)+QI(u)) du dz

Setting Y (t0) = 0 and t0 → −∞,

Y (t, ξE , ξI) =
1

τ

t
∫

−∞

(wE QE(z) + wI QI(z)) e
− 1

τ

∫ t

z
(1+QE(u)+QI(u)) du dz

For 2nd order moments:

Y (t1, ξE , ξI)Y (t2, ξE , ξI) =
1

τ2

t1
∫

−∞

t2
∫

−∞

(wE QE(z1) + wI QI(z1)) (wE QE(z2) + wI QI(z2))

e−
1
τ

∫ t

z
(1+QE(u1)+QI(u1))du1−

1
τ

∫ t

z
(1+QE(u2)+QI(u2))du2 dz1 dz2

In terms of cumulants:

〈Yt〉 =
1

τ

t
∫

−∞

e−
t−z
τ

〈

(wE QE(z) + wI QI(z)) e
− 1

τ

∫ t

z
(QE(u)+QI(u)) du

〉

dz

=
1

τ

t
∫

−∞

e−
t−z
τ

(

wE

〈

QE(z) e
− 1

τ

∫ t

z
QE(u) du

〉〈

e−
1
τ

∫ t

z
QI(v) dv

〉

+wI

〈

QI(z) e
− 1

τ

∫ t

z
QI(u) du

〉〈

e−
1
τ

∫ t

z
QE(v) dv

〉)

dz

=
1

τ

t
∫

−∞

e−
t−z
τ

〈

e−
1
τ

∫ t

z
QE(u) du

〉〈

e−
1
τ

∫ t

z
QI(v) dv

〉



wE

z
∫

−∞

gE(z − x) e−
1
τ

∫ t

z
gE(u−x) du λE(x) dx+ wI

z
∫

−∞

gI(z − y) e−
1
τ

∫ t

z
gI(u2−x)du2 λI(y) dy



 dz
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For the autocovariance,

〈〈Y1 Y2〉〉 =
1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ

〈〈

(wE QE(z1) + wI QI(z1)) (wE QE(z2) + wI QI(z2))

e
− 1

τ

∫ t1
z1

(QE(u1)+QI(u1))du1−
1
τ

∫ t2
z2

(QE(u2)+QI(u2))du2
〉〉

dz1 dz2

=
1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ

(

w2
E

〈〈

QE(z1) e
− 1

τ

∫ t1
z1

(QE(u1)+QI(u1)) du1 QE(z2) e
− 1

τ

∫ t2
z2

(QE(u2)+QI(u2))du2
〉〉

+ w2
I

〈〈

QI(z1) e
− 1

τ

∫ t1
z1

(QE(u1)+QI(u1))du1 QI(z2) e
− 1

τ

∫ t2
z2

(QE(u2)+QI(u2))du2
〉〉

+ wE wI

〈〈

QE(z1) e
− 1

τ

∫ t1
z1

(QE(u1)+QI(u1))du1 QI(z2) e
− 1

τ

∫ t2
z2

(QE(u2)+QI(u2))du2
〉〉

+ wE wI

〈〈

QI(z1) e
− 1

τ

∫ t1
z1

(QE(u1)+QI(u1))du1 QE(z2) e
− 1

τ

∫ t2
z2

(QE(u2)+QI(u2))du2
〉〉

)

dz1 dz2

where,

〈

QS(z1)QS(z2) e
− 1

τ

∫ t1
z1

(QE(u)+QI(u)) du−
1
τ

∫ t2
z2

(QE(v)+QI(v)) dv
〉

=
〈

QS(z1)QS(z2) e
− 1

τ

∫ t1
z1

QE(u1)du1−
1
τ

∫ t2
z2

QE(u2)du2
〉〈

e
− 1

τ

∫ t1
z1

QI(u1)du1−
1
τ

∫ t2
z2

QI(v)dv
〉

=
〈

e
− 1

τ

∫ t1
z1

QE(u) du− 1
τ

∫ t2
z2

QE(u2) du2
〉〈

e
− 1

τ

∫ t1
z1

QI(u) du−
1
τ

∫ t2
z2

QI(u2) du2
〉

( min(t1,t2)
∫

−∞

gS(z1 − x) gS(z2 − x) e
− 1

τ

∫ t1
z1

gS(u1−x)du1−
1
τ

∫ t2
z2

gS(u2−x)du2λS(x) dx

+

t1
∫

−∞

gS(z1 − x) e
− 1

τ

∫ t1
z1

gS(u1−x)du1−
1
τ

∫ t2
z2

gS(u2−x)du2λS(x) dx

t2
∫

−∞

gS(z2 − y) e
− 1

τ

∫ t1
z1

gS(u1−y)du1−
1
τ

∫ t2
z2

gS(u2−y) du2λS(y) dy

)

and,

〈

QE(z1)QI(z2) e
− 1

τ

∫ t1
z1

(QE(u1)+QI(u1))du1−
1
τ

∫ t2
z2

(QE(u2)+QI(u2))du2
〉

=
〈

QE(z1) e
− 1

τ

∫ t1
z1

QE(u1)du1−
1
τ

∫ t2
z2

QE(u2)du2
〉〈

QI(z2) e
− 1

τ

∫ t1
z1

QI(u1)du1−
1
τ

∫ t2
z2

QI(u2)du2
〉

=
〈

e
− 1

τ

∫ t1
z1

QE(u1)du1−
1
τ

∫ t2
z2

QE(u2)du2
〉〈

e
− 1

τ

∫ t1
z1

QI(u1)du1−
1
τ

∫ t2
z2

QI(u2)du2
〉

t1
∫

−∞

gE(z1 − x) e
− 1

τ

∫ t1
z1

gE(u1−x)du1−
1
τ

∫ t2
z2

gE(u2−x)du2λE(x) dx

t2
∫

−∞

gI(z2 − y) e
− 1

τ

∫ t1
z1

gI(u1−y)du1−
1
τ

∫ t2
z2

gI(u2−y) du2λI(y) dy
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Yielding:

〈Y1 Y2〉 =
1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ

〈

e
− 1

τ

∫ t1
z1

QE(u1)du1−
1
τ

∫ t2
z2

QE(u2) du2
〉〈

e
− 1

τ

∫ t1
z1

QI(u1)du1−
1
τ

∫ t2
z2

QI(u2) du2
〉

(

w2
E

min(t1,t2)
∫

−∞

gE(z1 − x) gE(z2 − x) e
− 1

τ

∫ t1
z1

gE(u1−x)du1−
1
τ

∫ t2
z2

gE(u2−x)du2λE(x) dx

+ w2
I

min(t1,t2)
∫

−∞

gI(z1 − y) gI(z2 − y) e
− 1

τ

∫ t1
z1

gI(u1−y)du1−
1
τ

∫ t2
z2

gI(u2−y) du2λI(y) dy

+



wE

t1
∫

−∞

gE(z1 − x) e
− 1

τ

∫ t1
z1

gE(u1−x)du1−
1
τ

∫ t2
z2

gE(u2−x)du2λE(x) dx

+wI

t1
∫

−∞

gI(z1 − x) e
− 1

τ

∫ t1
z1

gE(u1−x)du1−
1
τ

∫ t2
z2

gE(u2−x)du2λI(x) dx







wE

t2
∫

−∞

gI(z2 − x) e
− 1

τ

∫ t1
z1

gI(u1−x)du1−
1
τ

∫ t2
z2

gI(u2−x)du2λE(x) dx

+wI

t2
∫

−∞

gI(z2 − x) e
− 1

τ

∫ t1
z1

gI(u1−x)du1−
1
τ

∫ t2
z2

gI(u2−x)du2λI(x) dx





A.5 General Case

In this appendix the expectations for general case of linear first-order ODE filtering with shot
noise input R(t, ξ) =

∑

xj∈ξ
f(t − xj)H(t − xj) and Q(t, ξ) =

∑

xk∈ξ
g(t − xk)H(t − xk) are

derived. Applying the Slivnyak’s theorem to the generalized random sums,

〈Yt〉 =
∫

U

〈

e−
1
τ

∫ t

z
Q(u,ξ) du

〉

∫

S

f(z, x) e−
1
τ

∫ t

z
g(u,x) du λ(x) dx dz

〈Y1 Y2〉 =
∫

U

∫

U

〈

e
− 1

τ

∫ t1
z1

Q(u,ξ) du−
∫ t2
z2

Q(v,ξ) dv
〉





∫

S

f(z1, x) f(z2, x) e
− 1

τ

∫ t1
z1

g(u,x) du− 1
τ

∫ t2
z2

g(v,x) dv
λ(x) dx

+

∫

S

f(z1, x) e
− 1

τ

∫ t1
z1

g(u,y) du− 1
τ

∫ t2
z2

g(v,y) dv
λ(y) dy

∫

S

f(z2, w) e
− 1

τ

∫ t1
z1

g(u,w) du− 1
τ

∫ t2
z2

g(v,w) dv
λ(w) dw



 dz1 dz2
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For the example with three independent PPP Ξ1, Ξ2 and Ξ3:

〈Yt〉 =
1

τ

∫

U

〈

((1− E0 sin(2πωz))Q(z, ξ3) + I1(z, ξ1)− I2(z, ξ3)) e
− 1

τ

∫ t

z
(1+Q(u,ξ3))du

〉

dz

=
1

τ

∫

U

(1− E0 sin(2πωz)) e
− t−z

τ

〈

Q(z, ξ3) e
− 1

τ

∫ t

z
Q(u,ξ3)du

〉

dz

The autocovariance is given by:

〈〈Y1 Y2〉〉 =
1

τ2

∫

U

∫

U

〈〈

((1− E0 sin(2πωz1))Q(z1, ξ3) + I1(z1, ξ1)− I2(z1, ξ2)) e
− 1

τ

∫ t1
z1

(1+Q(u,ξ3))du

((1− E0 sin(2πωz2))Q(z2, ξ3) + I1(z2, ξ1)− I2(z2, ξ2)) e
− 1

τ

∫ t2
z2

(1+Q(v,ξ3))dv
〉〉

dz1 dz2

=
1

τ2

∫

U

∫

U

(1− E0 sin(2πωz1)) (1− E0 sin(2πωz2))

〈〈

Q(z1, ξ3)Q(z2, ξ3) e
− 1

τ

∫ t1
z1

Q(u,ξ3) du−
1
τ

∫ t2
z2

Q(v,ξ3) dv
〉〉

dz1 dz2

+
1

τ2

∫

U

∫

U

〈〈(I1(x1, ξ1)− I2(x1, ξ2)) (I1(x2, ξ1)− I2(x2, ξ2))〉〉
〈

e
− 1

τ

∫ t1
x1

Q(u,ξ3) du−
1
τ

∫ t2
x2

Q(v,ξ3) dv
〉

dx1 dx2

where 〈I1(t)〉 = 〈I2(t)〉 leads once more to important simplifications. In the last integral for
example,

〈〈(I1(x1, ξ1)− I2(x1, ξ2)) (I1(x2, ξ1)− I2(x2, ξ2))〉〉
= 〈(I1(x1, ξ1)− I2(x1, ξ2)) (I1(x2, ξ1)− I2(x2, ξ2))〉 − 〈I1(x1, ξ1)− I2(x1, ξ2)〉 〈I1(x2, ξ1)− I2(x2, ξ2)〉
= 〈〈I1(x1, ξ1) I1(x2, ξ1)〉〉+ 〈〈I2(x1, ξ2) I2(x2, ξ2)〉〉

A.6 Random Dirac Delta Sums

Consider synaptic input in the form of random Dirac delta sums Q(t) =
∑

tk∈ξ
hτs δ(t − tk).

Writing γk =
(

1− e−
khτs
τ

)

,

〈

e−
1
τ

∫ t

z
Q(u,ξ) du

〉

=exp





∫

S

(

e−
hτs
τ

∫ t

z
δ(u−x) du − 1

)

λ(x) dx





= exp





∫

S

(

e−
hτs
τ

(H(t−x)−H(z−x)) − 1
)

λ(x) dx



 = exp





(

e−
hτs
τ − 1

)

t
∫

z

λ(x) dx





= exp (−γ1(m(t)−m(z)))

〈

e
− 1

τ

∫ t1
z1

Q(u,ξ) du− 1
τ

∫ t2
z2

Q(u,ξ) du
〉

= exp





∫

S

(

e−
hτs
τ

(H(t1−x)−H(z1−x))−hτs
τ

(H(t2−x)−H(z2−x)) − 1
)

λ(x) dx





Reordering the limits of the shot noise integrals {z1, t1, z2, t2} → {x1, x2, x3, x4} with x1 ≥ x2 ≥
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x3 ≥ x4 enables the following compact notation:

〈

e
− 1

τ

∫ t1
z1

Q(u,ξ) du− 1
τ

∫ t2
z2

Q(u,ξ) du
〉

= exp

(

− γ1(m(x3)−m(x4) +m(x1)−m(x2))

− γ2(m(x2)−m(x3)) (H(t2 − z1)H(t1 − t2) +H(t1 − z2)H(t2 − t1))

)

=

{

e−γ1(m(z1)−m(z2)+m(t1)−m(t2))−γ2(m(t2)−m(z1)) for t2 ≥ z1
e−γ1(m(t1)−m(z1)+m(t2)−m(z2)) otherwise

The solution of the filtered process has the following form with Ui = [t0, ti[,

Y (t) = 1− e
−

t−t0
τ

−
∑

tj∈ξ
hτs
τ

∫ t

t0
δ(u−tj)du − 1

τ

∫

U

e
− t−z

τ
−
∑

tj∈ξ
hτs
τ

∫ t

z
δ(u−tj)du

dz

The mean of the filtered process is given by:

〈Yt〉 = 1− e−
t−t0
τ

〈

e
−

∑

tj∈ξ
hτs
τ

∫ t

t0
δ(u−tj)du

〉

− 1

τ

∫

U

e−
t−z
τ

〈

e
−

∑

tj∈ξ
hτs
τ

∫ t

z
δ(u−tj)du

〉

dz

= 1− e−
1
τ
(t−t0+τγ1m(t)) − 1

τ

∫

U

e−
1
τ
(t−z+τγ1(m(t)−m(z)))dz

In the case of constant input rate λ(t) = λ,

1

τ

t
∫

t0

e−(1+λτγ1)
t−z
τ dz =

1

1 + λτγ1

(

1− e−(1+λτγ1)
t−t0
τ

)

〈Yt〉 = 1− e−(1+λτγ1)
t−t0
τ − 1

1 + λτγ1

(

1− e−(1+λτγ1)
t−t0
τ

)

=
λτγ1

1 + λτγ1

(

1− e−(1+λτγ1)
t−t0
τ

)

The stationary limit this yields the following compact result:

〈Yt〉stat =
λτγ1

1 + λτγ1

The autocovariance of the filtered process is given by:

〈〈Y1 Y2〉〉 =
〈〈

e−
1
τ

∫ t1
t0

(1+Q(u,ξ))du− 1
τ

∫ t2
t0

(1+Q(v,ξ))dv
〉〉

+
1

τ

∫

U1

〈〈

e
− 1

τ

∫ t1
z1

(1+Q(u,ξ))du− 1
τ

∫ t2
t0

(1+Q(v,ξ))dv
〉〉

dz1

+
1

τ

∫

U2

〈〈

e
− 1

τ

∫ t1
t0

(1+Q(u,ξ))du− 1
τ

∫ t2
z2

(1+Q(v,ξ))dv
〉〉

dz2

+
1

τ2

∫

U1

∫

U2

〈〈

e
− 1

τ

∫ t1
z1

(1+Q(u,ξ))du− 1
τ

∫ t2
z2

(1+Q(v,ξ))dv
〉〉

dz1 dz2
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The last term can be split in two integrals in order to use the compact formulation of the auto-
covariance.

1

τ2

t1
∫

t0

t2
∫

t0

〈〈

e
− 1

τ

∫ t1
z1

(1+Q(u,ξ))du− 1
τ

∫ t2
z2

(1+Q(v,ξ))dv
〉〉

dz1 dz2

=
2

τ2

t2
∫

t0

z1
∫

t0

〈〈

e
− 1

τ

∫ t1
z1

(1+Q(u,ξ))du− 1
τ

∫ t2
z2

(1+Q(v,ξ))dv
〉〉

dz1 dz2

+
1

τ2

t1
∫

t2

t2
∫

t0

〈〈

e
− 1

τ

∫ t1
z1

(1+Q(u,ξ))du− 1
τ

∫ t2
z2

(1+Q(v,ξ))dv
〉〉

dz1 dz2

=
2

τ2

t2
∫

t0

z1
∫

t0

e−
1
τ
(t1−z1+t2−z2+τγ1(m(z1)−m(z2)+m(t1)−m(t2))+γ2(m(t2)−m(z1))) dz1 dz2

+
1

τ2

t1
∫

t2

t2
∫

t0

e−
1
τ
(t1−z1+t2−z2+τγ1(m(t1)−m(z1)+m(t2)−m(z2))) dz1 dz2

In the case of constant input rate λ(t) = λ,

1

τ2

t1
∫

t0

t2
∫

t0

〈〈

e
− 1

τ

∫ t1
z1

(1+Q(u,ξ))du− 1
τ

∫ t2
z2

(1+Q(v,ξ))dv
〉〉

dz2 dz1

=
2

τ2

t2
∫

t0

e−
1
τ
(t1−z1+τλγ1(t1−t2)+τλγ2(t2−z1))

z1
∫

t0

e−
1
τ
(t2−z2+τλγ1(z1−z2)) dz2 dz1

+
1

τ2

t1
∫

t2

e−
1
τ
(t1−z1+τλγ1(t1−z1))

t2
∫

t0

e−
1
τ
(t2−z2+τλγ1(t2−z2)) dz2 dz1

− 1

τ2

t1
∫

t0

e−
1
τ
(t1−z1+τλγ1(t1−z1))dz1

t2
∫

t0

e−
1
τ
(t2−z2+τλγ1(t2−z2))dz2

=
2 e−(1+τλγ1)

t1−t2
τ

τ(1 + τλγ1)

t2
∫

t0

e−(2+τλγ2)
t2−z1

τ

(

1− e−(1+τλγ1)
z1−t0

τ

)

dz1

− 1

τ2

t2
∫

t0

e−(1+τλγ1)
t1−z1

τ dz1

t2
∫

t0

e−(1+τλγ1)
t2−z2

τ dz2

=
2 e−(1+τλγ1)

t1−t2
τ

1 + τλγ1

(

1

2 + τλγ2

(

1− e−(2+τλγ2)
t2−t0

τ

)

− 1

1− τλγ1 + τλγ2

(

e−(1+τλγ1)
t2−t0

τ − e−(2+τλγ2)
t2−t0

τ

)

)

− 1

(1 + τλγ1)2

(

e−(1+τλγ1)
t1−t2

τ − e−(1+τλγ1)
t1−t0

τ

)(

1− e−(1+τλγ1)
t2−t0

τ

)
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The remaining two integrals have the following expressions,

1

τ

t1
∫

t0

〈〈

e
− 1

τ

∫ t1
z1

(1+Q(u,ξ))du− 1
τ

∫ t2
t0

(1+Q(v,ξ))dv
〉〉

dz1

=
1

τ
e−

1
τ
(t2−t0+τλγ1(t1−t2))

t2
∫

t0

e−
1
τ
(t1−z1+τλγ1(z1−t0)+τλγ2(t2−z1)) dz1

− 1

τ
e−(1+τλγ1)

t2−t0
τ

t2
∫

t0

e−(1+τλγ1)
t1−z1

τ dz1

=
e−

1
τ
(t2−t0+τλγ1(t1−t2))

1− τλγ1 + τλγ2

(

e−
1
τ
(t1−t2+τλγ1(t2−t0)) − e−

1
τ
(t1−t0+τλγ2(t2−t0))

)

− e−(1+τλγ1)
t2−t0

τ

1 + τλγ1

(

e−(1+τλγ1)
t1−t2

τ − e−(1+τλγ1)
t1−t0

τ

)

1

τ

t2
∫

t0

〈〈

e
− 1

τ

∫ t1
t0

(1+Q(u,ξ))du− 1
τ

∫ t2
z2

(1+Q(v,ξ))dv
〉〉

dz2

=
1

τ
e−

1
τ
(t1−t0+τλγ1(t1−t2))

t2
∫

t0

e−
1
τ
(t2−z2+τλγ1(z2−t0)+τλγ2(t2−z2))dz2

− 1

τ
e−(1+τλγ1)

t1−t0
τ

t2
∫

t0

e−(1+τλγ1)
t2−z2

τ dz2

=
e−

1
τ
(t1−t0+τλγ1(t1−t2))

1− τλγ1 + τλγ2

(

e−
1
τ
(τλγ1(t2−t0)) − e−(1+τλγ2)

t2−t0
τ

)

− e−(1+τλγ1)
t1−t0

τ

1 + τλγ1

(

1− e−(1+τλγ1)
t2−t0

τ

)

〈〈

e−
1
τ

∫ t1
t0

(1+Q(u,ξ))du− 1
τ

∫ t2
t0

(1+Q(v,ξ))dv
〉〉

= e−
1
τ
(t1−t0+t2−t0+τλγ1(t1−t2)+τλγ2(t2−t0))

In the stationary limit this yields,

〈〈Y1 Y2〉〉stat =
1

τ2

t1
∫

t0

t2
∫

t0

〈〈

e
− 1

τ

∫ t1
z1

(1+Q(u,ξ))du− 1
τ

∫ t2
z2

(1+Q(v,ξ))dv
〉〉

stat
dz2 dz1

=
2 e−(1+τλγ1)

t1−t2
τ

(1 + τλγ1)(2 + τλγ2)
− e−(1+τλγ1)

t1−t2
τ

(1 + τλγ1)2
=

τλ (2γ1 − γ2)

(1 + τλγ1)2(2 + τλγ2)
e−(1+τλγ1)

t1−t2
τ

The filtered process Y (t) can also be expressed in terms of the counting process N(t).

Y (t) = 1− e−
t−t0
τ

−hτs
τ

N(t) − 1

τ

∫

U

e−
t−z
τ

−hτs
τ

(N(t)−N(z))dz

which yields the same result for 〈Y (t)〉, since:

〈

e−
hτs
τ

n
〉

=
∞
∑

n=0

(

m(t) e−
hτs
τ

)n

n!
e−m(t) = em(t) e−

hτs
τ e−m(t) = e

−m(t)

(

1−e−
hτs
τ

)
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A.7 Shot Noise Cumulants

Several statistics of shot noise are presented for exponential, alpha and bi-exponential kernels
under constant λ(u) = λ. The nonstationary cumulants are evaluated at T0 = 0 and the station-
ary cumulants are evaluated in the limit T0 → −∞.

〈〈F1 . . . FK〉〉 =
min(t1,...,tK)
∫

T0

f(t1, x) · · · f(tK , x)λ(x) dx

Box Kernel

Let f(t, x) = hH(x+ τs − t)H(t− x).

〈〈F1 · · ·FK〉〉 =











hK
∫ min(t1,...,tK)
max(0,max(t1,...,tK)−τs)

λ(x) dx if max(t1, . . . , tK)−min(t1, . . . , tK) ≤ τs

0 otherwise

Exponential Kernel

Let f(t, u) = h e−
t−x
τs H(t− x) and λ(x) = λ.

〈〈F1 · · ·FK〉〉 = λhKτs
K

e
∑K

k=1 −
tk
τs

(

e
K min(t1,...,tK)

τs − 1

)

In the stationary limit,

〈〈F1 · · ·FK〉〉stat =
λhKτs
K

e
∑K

k=1 −
tk−min(t1,...,tK)

τs

In particular,

〈Ft〉 = λhτs

(

1− e−
t
τs

)

〈〈

F 2
t

〉〉

=
λh2τs
2

(

1− e−
2t
τs

)

〈〈F1 F2〉〉 =
λh2τs
2

(

e−
t1+t2−2min(t1,t2)

τs − e−
t1+t2

τs

)

In the stationary limit,

〈Ft〉stat = λhτs

〈〈

F 2
t

〉〉

stat
=

λh2τs
2

〈〈F1 F2〉〉stat =
λh2τs
2

e−
t1+t2−2min(t1,t2)

τs
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Alpha Kernel

Let f(t, u) = h t−x
τs

e−
t−x
τs H(t− x) and λ(u) = λ.

〈Ft〉 = λh
(

τs − (t+ τs) e
− t

τs

)

〈〈

F 2
t

〉〉

=
λh2

4τs

(

τ2s −
(

2t2 + τs(2t+ τs)
)

e−
2t
τs

)

〈〈F1 F2〉〉 =
λh2

4τs
e−

t1+t2
τs

(

(

e
2min(t1,t2)

τs − 1

)

(2t1t2 + τs(t1 + t2 + τs))

− 2min(t1, t2) e
2min(t1,t2)

τs (t1 + t2 + τs −min(t1, t2))

)

In the stationary limit,

〈Ft〉stat = λhτs

〈〈

F 2
t

〉〉

stat
=

λh2τs
4

〈〈F1 F2〉〉stat =
λh2

4τs
e−

t1+t2−2min(t1,t2)
τs (2t1t2 + τs(t1 + t2 + τs)− 2min(t1, t2) (t1 + t2 + τs −min(t1, t2)))

Bi-Exponential Kernel

Let f(t, x) = h τs
τs−τr

(

e−
t−x
τs − e−

t−x
τr

)

H(t− x) with τs 6= τr and λ(u) = λ.

〈Ft〉 =
λhτs
τs − τr

(

τs

(

1− e−
t
τs

)

− τr

(

1− e−
t
τr

))

〈〈

F 2
t

〉〉

=
λ

2(τs + τr)

(

hτs
τs − τr

)2
(

τs (τs + τr)
(

1− e−
2t
τs

)

+ τr (τs + τr)
(

1− e−
2t
τr

)

−4τsτr

(

1− e−
t
τs

− t
τr

))

〈〈F1 F2〉〉 =
λ

2(τs + τr)

(

hτs
τs − τr

)2(

τs (τs + τr)

(

e
2min(t1,t2)

τs − 1

)

e−
t1+t2

τs

+τr (τs + τr)

(

e
2min(t1,t2)

τr − 1

)

e−
t1+t2

τr

−2τsτr

(

e

(

1
τs

+ 1
τr

)

min(t1,t2) − 1

)

(

e−
t1
τs

−
t2
τr + e−

t1
τr

−
t2
τs

)

)

In the stationary limit,

〈Ft〉stat = λhτs

〈〈

F 2
t

〉〉

stat
=

λ(hτs)
2

2(τs + τr)

〈〈F1 F2〉〉stat =
λ

2(τs + τr)

(

hτs
τs − τr

)2(

τs (τs + τr) e
−

t1+t2−2min(t1,t2)
τs + τr (τs + τr) e

−
t1+t2−2min(t1,t2)

τr

−2τsτr e

(

1
τs

+ 1
τr

)

min(t1,t2)
(

e−
t1
τs

−
t2
τr + e−

t1
τr

−
t2
τs

)

)
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A.8 Expectation of Random Product

Writing S = [T0, T [ and m(t) ≡
∫ t

T0
λ(x) dx with t ≥ T0 and f(u, x) = g(u− x)H(u− x),

ln
〈

e−
∫ t

z
Q(u,ξ) du

〉

=

∫

S

(

e−
∫ t

z
g(u−x)H(u−x) du − 1

)

λ(x) dx

= −m(t) +

z
∫

T0

e−
∫ t

z
g(u−x) du λ(x) dx+

t
∫

z

e−
∫ t

y
g(v−y) dv λ(y) dy

Random Dirac Delta Sums

Let g(t, x)delta = h τsδ(t− x),

ln
〈

e−
1
τ

∫ t

z
Q(u,ξ) du

〉

=

∫

S

(

e−
hτs
τ

(H(t−x)−H(z−x)) − 1
)

λ(x) dx

= −(m(t)−m(z))
(

1− e−
hτs
τ

)

ln
〈

e
− 1

τ

∫ t1
z1

Q(u,ξ) du− 1
τ

∫ t2
z2

Q(u,ξ) du
〉

=

∫

S

(

e−
hτs
τ

(H(t1−x)−H(z1−x))−hτs
τ

(H(t2−x)−H(z2−x)) − 1
)

λ(x) dx

= −
(

1− e−
hτs
τ

)

(m(x3)−m(x4) +m(x1)−m(x2))

−
(

1− e−
2hτs
τ

)

(m(x2)−m(x3)) (H(t2 − z1)H(t1 − t2) +H(t1 − z2)H(t2 − t1))

with {x1, x2, x3, x4} being a reordering of {z1, t1, z2, t2} such that x1 ≥ x2 ≥ x3 ≥ x4.

Box Kernel

Let g(t, x)delta = hH(t− x)H(x+ τ − t),

For z ≤ t ≤ τ :

ln
〈

e−
∫ t

z
Q(u,ξ) du

〉

box
= z eαh(t−z) +

1

αh

(

eαh(t−z) − 1
)

For {z, t− z} ≤ τ ≤ t:

ln
〈

e−
∫ t

z
Q(u,ξ) du

〉

box
= −λt+ λ(τ − (t− z)) eαh(t−z) du− λ

αh

(

eαh(τ−z) − eαh(t−z)
)

+
λ

αh

(

eαh(t−z) − 1
)

For z ≤ τ ≤ t− z ≤ t:

ln
〈

e−
∫ t

z
Q(u,ξ) du

〉

box
= −λt+

λ

αh

(

1− e−αhz
)

eαhτ +
λ

αh

(

eαhτ − 1
)

+ λ(t− z − τ) eαhτ

For t− z ≤ τ ≤ z ≤ t:

ln
〈

e−
∫ t

z
Q(u,ξ) du

〉

box
= −λt+ λ(τ − (t− z)) eαh(t−z) +

2λ

αh

(

eαh(t−z) − 1
)

+ λ(z − τ)

For τ ≤ {z, t− z}:

ln
〈

e−
∫ t

z
Q(u,ξ) du

〉

box
= −λt+

2λ

αh

(

eαhτ − 1
)

+ λ(z − τ) + λ (t− z − τ) eαhτ
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Exponential Kernel

Let g(t, x) = h e−
t−x
τs H(t− x).

ln
〈

e−
1
τ

∫ t

z
Q(u,ξ) du

〉

exp
= −λt− λτs Γ

(

0,
hτs
τ

(

1− e−
t−z
τs

)

,
hτs
τ

(

1− e−
t−z
τs

)

e−
z
τs

)

− λτs e
−hτs

τ Γ

(

0,−hτs
τ

,−hτs
τ

e−
t−z
τs

)

where Γ(z, a, b) =
∫ b

a
e−x xz−1 dx is the generalized incomplete gamma function.
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Chapter 3

Nonstationary filtered shot-noise
processes and applications to neuronal
membranes

Summary

In this article we derive the exact nonstationary cumulants for a passive neuronal membrane
model with a single synapse type with conductance synapses. The synaptic input is modeled
by a shot noise process with variable rate. This very basic case is important since it introduces
most techniques that are applied to more complex membrane models in the research articles
in Chapters 4 and 5. A single shot noise input enables to write the solution of the membrane
equation in terms of the key statistic of the model: the exponential of integrated shot noise.
This simplifies the derivation of the central moments expansion (CME) and avoids the longer ex-
pressions that result from applying the Slivnyak-Mecke theorem directly.

We start by presenting a simple model of filtered shot noise process with multiplicative noise
and variable input rate that is a scaled and translated version of the membrane equation. The
solution of the system is derived for an arbitrary realization of shot noise, followed by an in-
tegration by parts step that re-expresses the solution in terms of an integral of the exponential
of integrated shot noise. A small review of PPP statistics in the real line follows and the notion
of causal PPP transformation is introduced. The solution of the filtered system corresponds
to two PPP transformations: integral transform and random product. We investigate the mo-
ments and cumulants of these PPP transformations and use them to establish the cumulants
of the filtered process. The different steps of this derivation are comprised of well-known re-
sults and its merit is to establish the cumulants of the filtered process from first principles, and
extending to nonstationary input rate. Comparison with numerical simulations is made to il-
lustrate the exact nature of these results.

The case of single synapse type already leads to long and complex expressions for the cumu-
lants of the filtered process. The original formulation would result in even longer expressions,
with the variance written in three lines instead of one, for example. However, the exact solution
is still not trivial to analyze due to the superposed levels of integration, and in particular, does
not show explicitly which shot noise cumulants have major contributions to the cumulants of
the filtered process. The central moments expansion provides such insight. The CME corre-
sponds to a delta method for approximating the moments of a random variable with terms
up to the second order kept. The zeroth order corresponds to the deterministic solution of the
filtered system, where the shot noise input is replaced by its mean value. The first order CME
for a cumulant of order K is expressed in cumulants of integrated shot noise of same order.
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The second order includes cumulants of integrated shot noise of order up to 2K. Numerical
simulations illustrate the excellent accuracy for the mean of the filtered process since it is sec-
ond order of the delta method. The second order cumulants of the filtered process are well
approximated by the first order CME, but some parameter regimes may require the second or-
der CME. The stationary limit of CME enables to recover previously established results for the
exponential and alpha kernels in regards to the mean and variance. A novel expression for the
autocovariance is also provided.

These results are applied to a simple model of neuronal membrane with continuously vari-
able rate of presynaptic spikes. The membrane equation is a scaled and translated version
of the filtered process and its cumulants are obtained from the properties of cumulants under
such transformations. The nonstationary cumulants are used to approximate the time-evolving
distribution of Vm, which illustrates their importance in the statistical dynamics of the system.
A gaussian approximation is constructed with nonstationary mean and variance of Vm. Higher
order approximations integrate higher order cumulants of membrane potential using a trun-
cated Edegeworth series based on the gaussian distribution. The skweness and kurtosis are
well captured by the third and fourth order as illustrated by numerical simulations. A second
application of this formalism uses the nonstationary mean of shot noise to estimate the presy-
naptic rate from a small number of intracellular recordings of Vm recordings. The simulated
traces were corrupted with additive noise to simulate instrumental measurement noise.

The flow of derivations and results presented in the first part of this article are similar to those
included in Chapters 4 and 5.

This article has been accepted for publication in the journal Physical Review E on the 26th
March 2015.

Résumé

L’évolution de systèmes aux entrées stochastiques de type “shot noise” (appelé aussi bruit de
grenaille) a souvent été modelisée avec succès par des processus de shot noise filtré sur une
large variété de domaines d’application, allant de l’électronique à la biologie. En particuler,
ces processus peuvent modéliser le potentiel de membrane Vm des neurones sujet à des entrées
stochastiques. Ces processus filtrés arrivent à représenter les caractéristiques non-stationnaires
des fluctuations du Vm en réponse à des entrées pré-synaptiques à taux variable. Dans cet arti-
cle, nous appliquons le formalisme général des transformations de processus ponctuels de Poisson
dans le but d’analyser ces systémes dans le cadre général de systèmes à taux d’entrée variable.
Nous avons obtenu des expressions analytiques exactes, ainsi que des approximations très
efficaces, pour les cumulants joints des processus de shot noise filtré avec bruit multiplicatif. En-
suite, ces résultats généraux ont été appliqués à un modèle de membrane neuronale à conduc-
tance synaptique alimenté par shot noise à taux variable. Nous proposons des approximations
très efficaces pour l’évolution temporelle de la distribution du Vm, ainsi qu’une méthode sim-
ple pour estimer le taux pré-synaptique à partir d’un nombre très réduit de traces du Vm. Ces
résultats ouvrent la perspective d’obtenir un accès analytique à différentes statistiques impor-
tantes des modèles neuronaux à conductance tels que le temps de premier passage.
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Abstract

Filtered shot noise processes have proven to be very effective in modeling the evolution of systems
exposed to shot noise sources and have been applied to a wide variety of fields ranging from electronics
through biology. In particular, they can model the membrane potential Vm of neurons driven by
stochastic input, where these filtered processes are able to capture the nonstationary characteristics of
Vm fluctuations in response to presynaptic input with variable rate. In this paper we apply the general
framework of Poisson point processes transformations to analyze these systems in the general case of
nonstationary input rates. We obtain exact analytic expressions, as well as different approximations,
for the joint cumulants of filtered shot noise processes with multiplicative noise. These general
results are then applied to a model of neuronal membranes subject to conductance shot noise with
a continuously variable rate of presynaptic spikes. We propose very effective approximations for the
time evolution of the Vm distribution and a simple method to estimate the presynaptic rate from a
small number of Vm traces. This work opens the perspective of obtaining analytic access to important
statistical properties of conductance-based neuronal models such as the first passage time.

1 Introduction

We investigate the statistical properties of systems that can be described by the filtering of shot noise
input through a linear first-order ordinary differential equation (ODE) with variable coefficients. Such
systems give rise to filtered shot noise processes with multiplicative noise. The membrane potential Vm

fluctuations of neurons can be modeled as filtered shot noise currents or conductances [Verveen and De-
Felice, 1974, Tuckwell, 1988]. These fluctuations have been previously analyzed in the stationary limit of
shot noise conductances with constant rate [Kuhn et al., 2004, Richardson and Gerstner, 2005, Rudolph
and Destexhe, 2005, Burkitt, 2006a], and an exact analytical solution has been obtained for the mean
and joint moments of exponential shot noise [Wolff and Lindner, 2008, 2010]. However, many neuronal
systems evolve in nonstationary regimes driven by shot noise with variable input rate. A typical example
is provided by visual system neurons that receive presynaptic input with time-varying rate that reflects
an evolving visual landscape. Modeling studies often consider the exponential shot noise case, whereas
biological systems may display larger diversity including slow rising impulse response functions similar
to alpha and bi-exponential functions, for example. Previous studies have addressed nonstationary expo-
nential shot noise conductances and nonstationary currents [Cai et al., 2006, Amemori and Ishii, 2001,
Burkitt, 2006b].

Poisson point processes (PPP) provide a natural model of random input arrival times that are distributed
according to a Poisson law that may vary in time. Application-oriented treatments of PPP theory and
PPP transformations can be found in Refs. [Moller and Waagepetersen, 2003, Streit, 2010]. The key idea
of this article is to express the filtered process as a transformation of random input arrival times and to
apply the properties of PPP transformations to derive its nonstationary statistics. Using this formalism
we derive exact analytical expressions for the mean and joint cumulants of the filtered process in the
general case of variable input rate. We develop an approximation based on a power expansion of the
expectation about the deterministic solution. We apply these results to a simple neuronal membrane
model of sub-threshold membrane potential Vm fluctuations that evolves under shot noise conductance
with continuously variable rate of presynaptic spikes.

Shot noise processes are simple yet powerful models of stochastic input that correspond to the superpo-
sition of impulse responses arriving at random times according to a Poisson law. Systems evolving under
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shot noise input have been observed across many domains, such as electronics [Campbell, 1909, Schottky,
1918], optics [Picinbono et al., 1970, Rousseau, 1971], and many other fields [Snyder and Miller, 1991,
Parzen, 1999]. Shot noise was discovered in the early works of Campbell and Schottky [Campbell, 1909,
Schottky, 1918]. Key theoretical results were obtained by Rice [Rice, 1945] and a modern review of their
probabilistic structure is presented in Ref. [Rice, 1977]. Filtered shot noise processes with multiplicative
noise are an extension of filtered Poisson process [Snyder and Miller, 1991, Parzen, 1999, Streit, 2010]
that are generated by linear transformations of PPPs.

In this article, we start by presenting a simple model of filtered shot noise process with multiplica-
tive noise and variable input rate (Sec. 2). We next consider the general case of PPP transformations and
their properties (Sec. 3). Exact analytic expressions for the joint cumulants of the filtered process are de-
rived (Sec. 4) in addition to an approximation of the exact analytical solution (Sec. 5). Finally, we apply
these results to a simple neuronal membrane model of sub-threshold Vm fluctuations with continuously
variable rate of presynaptic spikes and explore several practical applications (Sec. 6).

2 Model of Filtered Shot Noise Process

In this section we present a simple model of filtered shot noise process with multiplicative noise. This
stochastic process results from the filtering of shot noise input through a linear first-order ODE with
variable coefficients. We show that under very simple input rate conditions the filtered process is non-
stationary. We derive the time course of the filtered process in terms of the shot noise arrival times. The
numerical simulation parameters are presented at the end of this section.

Consider the time evolution Y (t) of a system governed by a linear first-order ODE with variable co-
efficients that is driven by shot noise input Q(t):

τ
d

dt
Y (t) = −Y (t) + (1− Y (t))Q(t) (1)

Q(t) =
∑

xj∈ξ

g(t− xj)H(t− xj) (2)

where τ is a time constant, ξ is the set of shot noise arrival times, g(t − xj)H(t − xj) is the impulse
response function at time t for arrival time xj ∈ ξ and H(u) is the Heaviside function. The impulse
response function is also known as shot noise kernel.

The input arrival times ξ in Eq. (2) are distributed according to a Poisson law as is characteristic of
shot noise. The time evolution of this system is both stochastic and deterministic: stochastic since it
is driven by random input arrival times ξ, but also deterministic since to each ξ corresponds a unique
outcome. The system response Y (t, ξ) is said to be a filtered version of the shot noise process Q(t, ξ)
since Eq. (1) changes its spectral characteristics.

Nonstationary dynamics are introduced in the model by restricting input arrival times to occur be-
tween ta and tb ≥ ta with constant Poisson rate λ. A single realization of shot noise input Q(t, ξ) and
the resulting system response Y (t, ξ) are shown in Fig. 1. The mean and standard deviation (µ ± σ) of
both processes are clearly nonstationary since they vary in time.

2



ta ts tb
0

5

10

15

Q
t

(a)
µ ±σ
sample Qt

sample ξ

0 20 40 60 80 100

t (ms)

0.0

0.5

1.0

Y
t

(b)
µ ±σ
sample Yt

Figure 1 – Single realization and basic statistics of filtered shot noise process Yt under shot noise
input Qt. (a) Random input arrival times xj ∈ ξ generate nonstationary shot noise Qt ≡ Q(t, ξ).
The input arrival times are distributed with a variable Poisson rate λ(t) that restricts the arrivals
to occur between ta and tb. (b) Nonstationary system response Yt ≡ Y (t, ξ) driven by shot noise Qt.
A single realization of random arrival times ξ is represented by gray dots; realizations of Qt and Yt

are shown in black lines. The mean and standard deviation (µ±σ) of Qt and Yt are shown by gray
lines and are clearly nonstationary.

The system response Y (t, ξ) for a particular shot noise input Q(t, ξ) is obtained by solving Eq. (1). For
a given set of input arrival times ξ and initial value Y0 = 0,

Y (t, ξ) =
1

τ

t
∫

−∞

e−
t−z
τ Q(z, ξ) e−

1
τ

∫

t

z
Q(u,ξ) du dz

=
1

τ

t
∫

−∞

e−
t−z
τ

∑

xj∈ξ

g(z − xj)H(z − xj)
∏

xi∈ξ

e−
1
τ

∫

t

z
g(u−xi)H(u−xi) du dz (3)

The input arrival times ξ completely determine the time evolution of Y (t, ξ). Equation (3) also shows
that the response at time t for each input arrival xj also depends on later input arrivals xi ≤ t. For a
single shot noise source the solution can be further simplified using integration by parts:

Y (t, ξ) = 1− 1

τ

t
∫

−∞

e−
t−z
τ

∏

xi∈ξ

e−
1
τ

∫

t

z
g(u−xi)H(u−xi) du dz (4)

The remainder of this article addresses the question of how to obtain the cumulants of the quantity on
the left side of Eq. (4) from those on the right side, in the particular case of Poisson distributed input
arrival times ξ with variable rate λ(t). For reasons of concise presentation, instead of Eq. (3), we consider
the equivalent Eq. (4).

The numerical simulations were generated with the rate function λ(t) represented in Fig. 2(a) and expo-
nential kernel shot noise with g(t−x) = h exp (−(t− x)/τs). Other parameters are tmax = 0.1 s, τ = 0.02
s, λ = 500 Hz, h = 4 and τs = 0.0025 s.

3 Causal Point Process Transformations

We review the basic properties of PPP transformations and analyze the stochastic process generated by
causal PPP transformations. The expectation of PPP transformations yields the joint cumulants of the
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associated processes. We illustrate this approach with the shot noise process and compare the predicted
mean and second order cumulants with numerical simulations.

We consider a PPP Ξ (S, λ) that generates points in the interval S ⊆ R of the real line with rate
function λ(x) ≥ 0 such that m(S) ≡

∫

S
λ(x) dx is finite for any bounded interval S. A realization ξ of

Ξ contains a set of n ≥ 0 points {x1, . . . , xn} ∈ S that we associate with input arrival times. A PPP
is said to be homogeneous for constant λ(t) = λ and inhomogeneous otherwise. Example rate functions
and sample realizations of the associated inhomogeneous PPP are shown in Fig. 2. These rate functions
were used to generate input arrival times for the filtered shot noise process of Sec. 2 and the presynaptic
spikes for the neuronal membrane of Sec. 6.

ta tb
0
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λ
(H

z)

(a)

λ (t)
sample ξ

0 20 40 60 80 100

t (ms)

0

500

1000

λ
(H

z)

(b)

Figure 2 – Rate function λ(t) examples for inhomogeneous PPP. A single realization of input
arrival times ξ is represented by gray dots above the rate functions (blue lines) marking the location
of input arrival times xj ∈ ξ. (a) Rate function used to generate input arrival times for the filtered
shot noise process of Sec. 2. (b) Rate function used to generate presynaptic spike times for the
neuronal membrane of Sec. 6.

We consider a transformation F (t, ξ) that for each real parameter t ∈ S and realization ξ evaluates to a
positive real number Ft = F (t, ξ). The transformation is assumed invariant under permutation of xj ∈ ξ,
such that when written as a regular function we have F (t, x1, . . . , xn) = F (t, {x1, . . . , xn}).

The expectation of F (t, ξ) is obtained from the ensemble average over the number n of points and
their locations {x1, . . . , xn}:

〈F (t, ξ)〉 =
∞
∑

n=0

1

n!
e−m(S)

∫

S

· · ·
∫

S

F (t, x1, . . . , xn)
n
∏

j=1

λ(xj) dxj (5)

We now focus on the class of PPP transformations that are causal in the time parameter t. Such
transformations ensure that arrivals xj ∈ ξ later than t cannot affect the value of F (t, ξ). A single
realization ξ generates the entire time course of F (t, ξ) and we therefore associate a slave stochastic

process Ft ≡ F (t, ξ) to the causal PPP transformation F (t, ξ). By construction, the expectation of Ft is
the expectation of F (t, ξ) given by Eq. (5). This is illustrated in Fig. 3, where the value of shot noise
process Ft at different times is evaluated from the same realization ξ.
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Figure 3 – A shot noise process Ft is a causal PPP transformation F (t, ξ) of input arrival times
xj ∈ ξ. This particular PPP transformation is defined in Eq. (2) and its causality ensures that Ft

is not affected by input arrivals later than t. For example, the value of F2 = F (t2, ξ) is determined
by input arrivals xj ∈ ξ up to t2 (blue line) and is not affected by input arrivals later than t2 (light
gray line). The dots above Ft mark the location of input arrival times xj ∈ ξ.

We write F1, . . . , FK for the values of stochastic process Ft at times t1, . . . , tK , 〈F1 · · ·FK〉 for its joint
moments and 〈〈F1 · · ·FK〉〉 for its joint cumulants. The expectation of PPP transformations enables to
obtain analytical expressions for the joint moments and joint cumulants of Ft: its joint moments are
obtained by evaluating the expectation of suitable products F (t1, ξ) · · ·F (tK , ξ) and its joint cumulants
can be constructed explicitly from the joint moments. For example, the moment

〈

F1 F
2
2

〉

is evaluated by

the expectation
〈

F (t1, ξ)F (t2, ξ)
2
〉

.

The causality of F (t, ξ) enables to consider the PPP in the entire real line (S = R) with finite activity in-
tervals constructed by setting λ(t) = 0 outside the activity windows. This approach yields exact analytical
expressions for the joint cumulants of nonstationary processes generated from causal PPP transforma-
tions as illustrated next with the nonstationary shot noise process from Sec. 2. A shot noise process is a
particular type of random sum, which is a PPP transformation that factors as F (t, ξ) =

∑

xj∈ξ f(t, xj).

The joint cumulants of random sums are given by the Campbell Theorem [Campbell, 1909, Rice, 1945]
and are also derived for reference in Appendix A:

〈〈F1 . . . FK〉〉 =
∫

S

f(t1, x) · · · f(tK , x)λ(x) dx (6)

where f(t, x) is the impulse response function at time t for an input arrival time x. Shot noise is a causal
random sum with f(t, x) = g(t− x)H(t− x).

The expectation of more general forms of random sums, such as those in Eq. (3), are provided by the
Slivnyak-Mecke Theorem [Slivnyak, 1962, Mecke, 1967]. A comparison between numerical simulations
and Campbell Theorem predictions is shown in Fig. 4 with excellent agreement for the mean and second
order cumulants. The autocorrelation at times t1 and t2 is given by ρ(F1 F2) = 〈〈F1 F2〉〉 /(σ(F1)σ(F2))
where 〈〈F1 F2〉〉 is the autocovariance at times t1 and t2 and σ(Ft) is the standard deviation at time t.
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Figure 4 – Comparison with numerical simulations for (a) the mean and standard deviation and (b)
the autocorrelation of the shot noise process Qt from Sec. 2 as predicted by the Campbell Theorem
(Eq. (6)). There is excellent agreement between the simulations (gray lines) and the analytic
predictions (black lines) with the respective lines overlapping. The autocorrelation ρ is evaluated
at ta, ts, and tb corresponding respectively to the onset of PPP activity, quasi-stationary Qt, and
extinction of PPP activity.

4 Exact Analytical Solution

We use the properties of PPP transformations to derive exact analytical expressions for the cumulants
of filtered shot noise processes with multiplicative noise and variable input rate. We investigate trans-
formations that are relevant to these filtered processes: integral transform and random products. We
evaluate their cumulants and compare with numerical simulations the predicted mean and second order
cumulants of the filtered process.

According to Eq. (4), the filtered process Yt is the integral of a causal PPP transformation that fac-
tors as a product of exponentials of input arrival times xj ∈ ξ. We now investigate these transformations
and define an integral transform of F (t, ξ) with regards to a positive and bounded function w:

SF (t, ξ) =

t
∫

−∞

F (u, ξ)w(u, t) du (7)

The mean and joint moments of the integral transform are calculated by interchanging the infinite sum
and integrals of the expectation Eq. (5) with the integral of the transform provided any one side of the
equalities is finite (Fubini-Tonelli Theorem).

〈SFt〉 =
〈 t
∫

−∞

F (u, ξ)w (u, t) du

〉

=

t
∫

−∞

〈F (u, ξ)〉w (u, t) du (8)

〈SF1 · · ·SFK〉 =
t1
∫

−∞

· · ·
tK
∫

−∞

〈F (u1, ξ) · · ·F (uK , ξ)〉
K
∏

l=1

w (ul, tl) dul (9)

The linearity of integration extends Eq. (9) to the joint cumulants:

〈〈SF1 · · ·SFK〉〉 =
t1
∫

−∞

· · ·
tK
∫

−∞

〈〈F (u1, ξ) · · ·F (uK , ξ)〉〉
K
∏

l=1

w (ul, tl) dul (10)

We now analyze random products that are PPP transformations factoring as F (t, ξ) =
∏

xj∈ξ f(t, xj).
The joint moments of random products are well known, and as shown in Appendix A:

〈F1 . . . FK〉 = exp





∫

S

(

K
∏

k=1

f(tk, x)− 1

)

λ(x) dx



 (11)
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We have gathered all the elements to derive the mean and joint cumulants of the filtered process Yt.
Writing Q(t, ξ) = Q(t) and using the properties of joint cumulants,

〈Yt〉 = 1− 1

τ

t
∫

−∞

〈

e−
1
τ

∫

t

z
Q(u) du

〉

e−
t−z
τ dz (12)

〈〈Y1 · · · YK〉〉 =
(

−1

τ

)K
t1
∫

−∞

· · ·
tK
∫

−∞

〈〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Q(u) du

〉〉

K
∏

l=1

e−
tl−zl

τ dzl (13)

The expectation of the random product of exponentials is obtained from Eq. (11) and yields:

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Q(u) du

〉

= exp





∫

S

(

K
∏

k=1

e
− 1

τ

∫

tk
zk

g(u−x)H(u−x) du − 1

)

λ(x) dx



 (14)

Replacing Eq. (14) into Eqs. (12) and (13) yields the exact solution for the joint cumulants of filtered
shot noise process with multiplicative noise and variable input rate. The random product expectation
of Eq. (14) is the key element in the evaluation of the mean and joint cumulants, which was already
identified in previous work [Wolff and Lindner, 2008, 2010], where closed expressions were obtained for
expo- nential kernel shot noise with constant rate. As our derivation shows, this extends to any shot
noise kernel g(t−x)H(t−x) and variable input rate λ(t) and is the main original contribution of this work.

The comparison between numerical simulations and the predictions from Eqs. (12) and (13) are shown in
Fig. 5. There is excellent agreement even in such a nonstationary scenario with the system undergoing
transient evolution. The numerical evaluation of Eqs. (12) and (13) can be performed very efficiently
with the trapezoidal rule due to the double exponential in the integrand.
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Figure 5 – Comparison with numerical simulations for (a) the mean and standard deviation and
(b) the autocorrelation of the filtered process Yt predicted by the exact analytic solution given by
Eqs. (12) and (13). There is excellent agreement between the simulations (gray lines) and the
analytic predictions (black lines) with the respective lines overlapping. The autocorrelation ρ is
evaluated at ta, ts, and tb corresponding respectively to the onset of PPP activity, quasi-stationary
Yt, and extinction of PPP activity.

5 Central Moments Expansion

We propose an approximation of the exact analytical solution that is based on a power expansion about
the deterministic solution. The central moments expansion (CME) yields a series in the central moments
of integrated shot noise. We compare this approximation for the mean and second order cumulants with
numerical simulations, including the case of constant Poison rate.

The deterministic solution of Eq. (1) with mean shot noise input 〈Q(u)〉 is given by:

〈Yt〉0 = 1− 1

τ

t
∫

−∞

e−
t−z
τ e−

1
τ

∫

t

z
〈Q(u)〉 du dz
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This suggests an expansion about the deterministic solution 〈Yt〉0 by performing power expansions of the
random product expectations in Eqs. (12) and (13). The integrated mean shot noise is first factored out
of the random product and a power expansion of the resulting exponential is performed. This corresponds
to the delta method technique [Cramér, 1946, Oehlert, 1992] for approximating expectations of random
variable transformations and yields a series in the central moments of integrated shot noise. As shown
in Appendix B, the second order expansion for a single random product yields:

〈

e−
1
τ

∫

t

z
Q(u) du

〉

≃ e−
1
τ

∫

t

z
〈Q(u)〉du






1 +

1

2

〈



−1

τ

t
∫

z

(Q(u)− 〈Q(u)〉) du





2
〉







This provides the following approximation for the mean of the filtered process:

〈Yt〉2 = 1− 1

τ

t
∫

−∞

e−
1
τ

∫

t

z
(1+〈Q(u)〉)du



1 +
1

2τ2

t
∫

z

t
∫

z

〈〈Q(u1)Q(u2)〉〉 du1 du2



 dz (15)

where the subscript 2 represents the second order of the expansion.

Extending to joint cumulants is straightforward by expanding each exponential individually and col-
lecting terms of same order in 1/τ . The first order expansion for the autocovariance is given by:

〈〈Y1 Y2〉〉1 =
1

τ4

t1
∫

−∞

t2
∫

−∞

e
− 1

τ

∫

t1
z1

(1+〈Q(u)〉)du− 1
τ

∫

t2
z2

(1+〈Q(v)〉)dv

t1
∫

z1

t2
∫

z2

〈〈Q(u1)Q(u2)〉〉 du1 du2 dz1 dz2

(16)

The first order expansion for the variance is obtained from Eq. (16) by replacing t1 = t2 = t. The
comparison between numerical simulations and the predictions from Eqs. (15) and (16) are shown in
Fig. 6. There is good agreement for the mean but lower accuracy for second order cumulants. This can
be improved with the second order expansion for the autocovariance that is provided in Appendix B.
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Figure 6 – Comparison with numerical simulations for (a) the mean and standard deviation and
(b) the autocorrelation of the central moments expansion given by Eqs. (15) and (16). There is
good agreement between the simulations (full gray lines) and the approximation (full red lines)
for the mean but lower accuracy for second order cumulants. This is corrected by the second order
expansion for the autocovariance (dashed black lines) that is provided in Appendix B. The stationary
limit (dashed dotted gray lines) is also shown. The deterministic solution (dotted black line) displays
considerable approximation error.

We found that the second order expansion for the mean and autocovariance consistently provided good
results in the parameter regimes of neuron cells (as seen in Fig. 6(a) and Fig. 9 below). Under these
conditions, third and fourth order expansions either did not provide significant improvements over the
second order or even resulted in worse approximations, in which case much higher order expansions would
be required to improve on the second order. Under certain parameter regimes the first order expansion
for the autocovariance (Eq. (16)) may already provide good results (see Fig. 8 below).
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The stationary limit of the filtered process reflects the statistics of long running trials under shot noise
input with constant rate. The cumulants for this regime can be obtained by placing the onset of input
arrival times at −∞ and replacing the mean and second order cumulants of shot noise in Eqs (15) and
(16) with their stationary limits. After integration by parts,

〈Yt〉2 =
〈Q〉

1 + 〈Q〉 −
〈〈

Q2
〉〉

(1 + 〈Q〉)2
1

τ

t
∫

−∞

e−
t−z
τ

(1+〈Q〉) r (t− z) dz (17)

〈〈Y1 Y2〉〉1 =

〈〈

Q2
〉〉

(1 + 〈Q〉)2
1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
(1+〈Q〉) r (|z1 − z2|) dz1 dz2 (18)

where 〈Q〉,
〈〈

Q2
〉〉

and 〈〈Q1 Q2〉〉 =
〈〈

Q2
〉〉

r (|t1 − t2|) are, respectively, the mean, variance, and auto-
covariance of stationary shot noise.

The stationary limits for the mean and second order cumulants of the exponential and alpha kernels
are presented in Appendix B.1.

6 Application to Neuronal Membranes

We apply the previous results to a simple model of membrane potential Vm(t) fluctuations and explore
several practical applications. We first calculate the nonstationary cumulants and compare them with
numerical simulations. The central moment expansion (CME) is compared with previously published
analytical estimates for the stationary limit of Vm(t). The nonstationary cumulants are integrated in
truncated Edgeworth series to approximate the time-evolving distribution of Vm(t), which is compared
with numerical simulations. We propose a simple method to estimate λ(t) from a small number of noisy
realizations of Vm(t) and compare the inferred rate to the original presynaptic rate function. The numer-
ical simulation parameters are presented below.

We consider a simple model of the membrane potential Vm(t) for a passive neuron without spiking
mechanism that is driven by shot noise conductance G(t). This model has a single synapse type and is
directly applicable to experiments where one type of synapse is isolated [Okun and Lampl, 2008]. The
time evolution of Vm(t) under conductance shot noise input G(t) is given by the following membrane
equation:

τm
d

dt
Vm(t) = El − Vm(t) + (Es − Vm(t))

1

gl
G(t) (19)

1

gl
G(t) =

∑

xj∈ξ

g(t− xj)H(t− xj) (20)

where τm is the membrane time constant, El is the resting potential, Es is the synaptic reversal potential,
gl is the leak conductance and ξ is a set of presynaptic spike times.

The membrane equation is a scaled and translated version of Eq. (1) with the following change of variables:

Vm(t) = (Es − El)Y (t) + El Q(t) =
1

gl
G(t)

A single realization of conductance shot noise Gt ≡ G(t, ξ) and the resulting membrane potential response
Vt ≡ Vm(t, ξ) are shown in Fig. 7, where the mean and standard deviation of both processes are also
represented. The numerical simulations were generated with the rate function λ(t) represented in Fig. 2(b)
and alpha kernel shot noise with g(t−x) = h(t−x/τs) exp (−(t− x)/τs). Other parameters are τm = 0.02
s, El = −0.06 V, Es = 0 V and gl = 10e-9 S in addition to those detailed in Section 2. The quantal
conductance is 4e-9 S corresponding to h = 0.4.
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Figure 7 – Single realization and basic statistics of membrane potential Vt fluctuations under con-
ductance shot noise input Gt. (a) Random presynaptic spike times xj ∈ ξ generate nonstationary
shot noise conductance Gt ≡ G(t, ξ). The presynaptic spike times are distributed with a continu-
ously varying rate λ(t). (b) Nonstationary membrane potential Vt ≡ V (t, ξ) driven by shot noise
conductance Gt. A single realization of spike times ξ is represented by gray dots; realizations of Gt

and Vt are shown in black lines. The mean and standard deviation (µ± σ) of Gt and Vt are shown
with gray lines.

6.1 Nonstationary Cumulants

A first application of this formalism is to derive the mean and joint cumulants of Vt from those of Yt.
Using the properties of the mean and cumulants of random variables for each value of t yields the required
relationships:

〈Vt〉 = (Es − El) 〈Yt〉+ El 〈〈V1 · · ·VK〉〉 = (Es − El)
K 〈〈Y1 · · ·YK〉〉 (21)

The comparison between numerical simulations and the predictions from Eq. (21) is shown in Fig. 8. There
is excellent agreement with the predictions from both the exact analytical solution given by Eqs. (12)
and (13) and the CME given by Eqs (15) and (16). The deterministic solution is obtained from Eq. (21)
by replacing 〈Yt〉 with 〈Yt〉0 and displays good agreement with mean Vt.

0 20 40 60 80 100tc td te

t (ms)

−56

−48

−40

−32

V
t

(m
V

)

(a)
µ ±σ
deterministic
analytical
CME

0 5 10 15 20

∆t (ms)

0.0

0.5

1.0

ρ
(V

1
V

2
)

(b)

t1 = tc +∆t

t1 = te +∆t

analytical
CME

Figure 8 – Comparison with numerical simulations for (a) the mean and standard deviation and
(b) the autocorrelation of membrane potential Vt predicted by the exact analytical solution (full black
lines) and the central moments expansion (red squares). There is excellent agreement between the
simulations (full gray lines) and the analytic prediction for both methods with the respective lines
overlapping. The deterministic solution (dotted black line) also displays good agreement with mean
Vt. The autocorrelation ρ is evaluated at local maxima (tc) and minima (te) of mean Vt.

In this parameter regime, the approximation error of the CME is very low (on the order of 0.01 mV).
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However, additional terms of the expansion may be required to reach similar precision in other parameter
regimes. In order to illustrate this, we increase the quantal conductance by a factor of 20 (to 80 nS) with
the effect of raising mean Vt very close to the reversal potential Es. As shown in Fig. 9, the CME is still
in very good agreement for the mean but the approximation error is larger for the standard deviation (on
the order of several millivolts). The second order expansion for the standard deviation results in lower
approximation error (in the order of 1 mV) but requires evaluating third and fourth order cumulants of
integrated shot noise. The approximation error for the deterministic solution also increases to several
mV.

0 20 40 60 80 100

t (ms)

−32

−24

−16

−8
V

t
(m

V
)

µ ±σ
deterministic
CME
CME 2

Figure 9 – Same parameter regime as Fig. 8 but with quantal conductance increased by a factor of 20
(h = 80 nS). The mean and standard deviation of the numerical simulations (full gray lines) display
excellent agreement with the exact analytical solution but are omitted for clarity. The approximation
error for the CME (full red lines) remains low for the mean but increases significantly for both the
standard deviation and the deterministic solution (dotted black line). The second order expansion
for the standard deviation (dashed black lines) results in lower approximation error.

The Appendix B.2 provides analytical expressions for the CME in the stationary limit of Vt for the mean
and second order cumulants of exponential and alpha kernels. These expressions are obtained by applying
Eq. (21) to Eqs. (17) and (18) and are consistent with previous analytical estimates for the mean and
standard deviation that were derived with different approaches: Fokker-Planck methods for exponential
kernel shot noise [Richardson and Gerstner, 2005, Rudolph and Destexhe, 2005] given by Eqs. (24), and
a shot noise approach for alpha kernel shot noise [Kuhn et al., 2004] given by Eqs. (26). The extension
to the autocovariance is given by Eqs. (25), and (27) respectively.

6.2 Probability Distribution Approximation

A second application of this formalism is to use the nonstationary cumulants to approximate the time
evolving distribution of membrane potential fluctuations. The mean and standard deviation of Vt yield
a Gaussian approximation that successfully captures the time evolution of p(Vt) as illustrated in Fig. 10.
As expected, the skew of the distribution is not well captured by the Gaussian approximation, which has
been reported in both experimental [Destexhe and Paré, 1999] and theoretical studies [Richardson and
Gerstner, 2005, Rudolph and Destexhe, 2005]. The quantal conductance was increased by a factor of 4
(to 16 nS) in these simulations.
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Figure 10 – Nonstationary density of membrane potential p(Vt) evaluated at three different times
times: tc, td, and te corresponding to (a), (b), and (c), respectively, (see abscissa of Fig. 8(a)).
Comparison between the empirical histogram (gray) and the Gaussian approximation (dashed line)
based on nonstationary mean and variance of Vt. The time evolution of p(Vt) is captured successfully
by this approximation, which as expected also misses the skew of p(Vt).

Deviations from the Gaussian distribution are expected whenever cumulants of order three or higher are
present in p(Vt). We use a truncated Edgeworth series [Edgeworth, 1907, Cramér, 1946, Wallace, 1958]
to account for these deviations since it provides an asymptotic expansion of p(Vt) in terms of its cumu-
lants. In particular, we use the Edgeworth series expanded from the Gaussian distribution distribution as
discussed in [Badel, 2011]. This has the advantage of coinciding with the Gaussian approximation when-
ever cumulants of order three or higher are negligible. This is an important aspect since approximately
Gaussian shapes of p(Vt) are sometimes present in experimental intracellular recordings. In terms of the

normalized process Xt = (Vt − 〈Vt〉) /σt with σt ≡
√

〈〈V 2
t 〉〉, the truncated fourth order Edgeworth series

is given by:

pEw4 (Xt = x) =
1

σt

(

1 +
1

3!

〈〈

V 3
t

〉〉

σ3
t

(

x3 − 3x
)

+
1

4!

〈〈

V 4
t

〉〉

σ4
t

(

x4 − 6x2 + 3
)

+
10

6!

〈〈

V 3
t

〉〉2

σ6
t

(

x6 − 15x4 + 45x2 − 15
)

)

N (x)

(22)

where N (x) = exp(−x2/2)/
√
2π is the standard normal density and p(Vt = v) ≃ pEw

(

x = v−〈Vt〉
σt

)

. The

third order Edgeworth series is given by the the first two terms.

As illustrated in the left side of Fig. 11, the skewness of p(Vt) is indeed captured by the third order
of the Edgeworth series. Figure 11(c) also shows a slight overestimation near the peak of p(Vt), which is
successfully captured by the fourth order, as shown in the right side of this figure.
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Figure 11 – (a)-(c): Comparison at times tc, td, and te between the empirical histogram (gray),
Gaussian approximation (dashed black line), and the third order Edgeworth series (full red line).
(d)-(f): Comparison at times tc, td, and te between the empirical histogram (gray), third order
Edgeworth series (dashed black line), and fourth order Edgeworth series (full red line). The slight
discrepancy at the peak of the empirical histogram in (c) is successfully captured by the fourth order
Edgeworth series in (f).

Under more extreme parameter regimes, additional terms of the Edgeworth series may be needed to
approximate p(Vt). In such cases, the asymptotic character of the series becomes relevant since the
truncation error is of the same order as the first neglected term of the series. An important caveat is
that the truncated series may yield negative values for certain values of x. This is intrinsic to Edgeworth
series that are constructed in the set of orthogonal polynomials associated with the base distribution
(Hermite polynomials in the case of the standard normal distribution). The truncated series integrates
to unity but may result in an invalid density function since negatives values are possible. Algorithms for
computing an Edgeworth series to an arbitrary order are provided in Refs. [Petrov, 1962, Blinnikov and
Moessner, 1998].

6.3 presynaptic Rate Estimation

Another application of this formalism is to estimate the nonstationary presynaptic rate λ(t) from a small
number (N = 10) of membrane potential Vt traces that are independently generated from the same PPP.
Each trace has small amounts of additive noise to simulate measurement error that are independent
from the PPP. The traces of Vt are sampled at rate 1/∆t. A single realization of the noisy membrane
potential with mean and variance estimated from a small number of traces is shown in Fig. 12. The noisy
membrane equation is given by:

τm
d

dt
Vm(t) = El − Vm(t) + (Es − Vm(t))

1

gl
G(t) + ǫ(t) (23)

where ǫ(t) is a zero mean Gaussian white noise in units of voltage with σ(ǫ) = 0.2 mV.
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Figure 12 – (a) Single realization (black line) and basic statistics (gray lines) generated from a
small number (N = 10) of membrane potential Vt traces with additive noise to simulate measurement
error. (b) Extracted mean conductance (full gray line) and smoothed version Gs

t (dashed black line)
obtained with non-parametric smoothing.

The key expression that enables to estimate λ(t) from traces of Vt is the Campbell Theorem for the mean
of nonstationary shot noise given by Eq. (6). If the shot noise kernel is known then the rate function
can in principle be obtained by deconvolution of the mean conductance. However, this operation is very
sensitive to noise since small changes in the estimated mean conductance will result in large changes of
the estimated rate function. This aspect is dealt with by smoothing the estimated mean conductance
prior to performing the deconvolution step. From each trace of Vt we extract the input conductance by
inverting Eq. (23) and average them to obtain the estimated mean conductance:

〈

Ĝt

〉

=
1

N

N
∑

n=1

gl
∆t

τm
(

V n
t+∆t − V n

t

)

−∆t (El − V n
t )

Es − V n
t

where V n
t is the n-th trace of Vt and ∆t is the sampling interval.

The estimated mean conductance will be a noisy version of the actual mean conductance due to the
effects of the additive noise ǫ(t) in each trace of Vt. Non-parametric smoothing is performed using a
local linear smoother with tricube kernel and kernel bandwidth selected by cross-validation [Wasserman,

2006], yielding the smoothed version
〈

Ĝs
t

〉

shown in Fig. 12(b). Finally, we use the discrete convolution

theorem to estimate the presynaptic rate λ̂(t) from the smoothed mean conductance:

λ̂(t) =
1

∆t
DFT−1





DFT
{〈

Ĝs
t

〉}

DFT{g}





The result is shown in Fig. 13, where the estimated λ̂(t) rate compares favorably to the original presynaptic
rate λ(t). Estimating λ(t) from noisy shot noise data has been previously addressed [Sequeira and Gubner,
1995] in addition to methods that enable to estimate the shot noise kernel [Sequeira and Gubner, 1997].
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Figure 13 – Estimated presynaptic rate λ̂(t) (black dashed line) compared with original rate function
λ(t) (full blue line). The magnitude and variations are reasonably well captured considering the small
number (N = 10) of membrane potential traces used.
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7 Discussion

In this paper, we investigated important statistical properties of filtered shot noise processes with multi-
plicative noise, in the general case of variable input rate. These properties provide a compact description
of time-evolving dynamics of the system. Such processes arise from the filtering of nonstationary shot
noise input through a linear first-order ODE with variable coefficients. We have obtained general results
for this class of stochastic processes and results specific to applications in neuronal models.

We first identified the causal PPP transformation that corresponds to filtered shot noise with multi-
plicative noise. We investigated the statistical properties of this transformation to derive the exact
analytical solution for the joint cumulants of the filtered process with variable input rate. Excellent
agreement with numerical simulations was found for the mean and second order cumulants. We proposed
an approximation based on a CME about the solution of the deterministic system. We have shown with
numerical simulations that under parameter regimes relevant to neuronal membranes the second order
of this approximation provides good results for the mean and second order cumulants. Under certain
parameter regimes, the first order expansion for the second order cumulants may already provide effective
approximations.

These general results were then applied to a simple model of subthreshold membrane potential Vm fluctu-
ations subject to shot noise conductance with continuously variable rate of presynaptic spikes. Excellent
agreement with numerical simulations was found for the mean and second order cumulants for both the
exact analytical solution and the second order CME. This approximation is consistent with previously
published analytical estimates for stationary Vm . An expression for the stationary limit of autocovariance
is provided for exponential and alpha kernel shot noise input. An approximation for the time-evolving
distribution of Vm is proposed that is based on a truncated Edegeworth series using the nonstationary
cumulants obtained analytically. This approximation successfully captures the time evolution of Vm un-
der a large range of conditions. The nonstationary mean of shot noise is used to estimate the presynaptic
rate from a small number of intracellular Vm recordings with additive noise simulating measurement error.

In future work we will extend this formalism to multiple independent shot noise inputs by applying
the Slivnyak-Mecke Theorem. Such development would yield direct applications for neuronal membrane
models with different synapse types (such as excitatory and inhibitory synapses). Preliminary work indi-
cates that analytic treatment of filtered shot noise with correlated input is accessible with this formalism.
The present work also opens perspectives for the analytical development first passage time statistics based
on nonstationary approxima- tions of the filtered process distribution.
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Appendix

A Random Sums and Random Products

Random products are transformations of PPP that factor as F (t, ξ) =
∏

xj∈ξ f(t, xj). The expectation
of random products is obtained as follows:

〈Ft〉 =
∞
∑

n=0

1

n!
e−m(S)





∫

S

f(t, x)λ(x) dx





n

= exp





∫

S

(f(t, x)− 1)λ(x) dx





〈F1 . . . FK〉 =
〈

∏

xj∈ξ

K
∏

k=1

f(tk, xj)

〉

= exp





∫

S

(f(t1, x) · · · f(tK , x)− 1)λ(x) dx
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In the case of the random product with f(t, xj) = e−
1
τ

∫

t

z
g(u−xj)H(u−xj)du and S = R,

〈

e−
1
τ

∫

t

z
Q(u,ξ) du

〉

= exp





z
∫

−∞

(

e−
1
τ

∫

t

z
g(u−x) du − 1

)

λ(x) dx+

t
∫

z

(

e−
1
τ

∫

t

y
g(v−y) dv − 1

)

λ(y) dy





Random sums are transformations of PPP that factor as F (t, ξ) =
∑

xj∈ξ f(t, xj). The joint cumulants

of random sums are given by the Campbell Theorem [Campbell, 1909, Rice, 1945]. The characteris-

tic function φ(s1, . . . , sK) is the expectation of a random product, and its derivatives yield the joint
cumulants:

φ(s1, . . . , sK) ≡
〈

eis1F (t1,ξ)+···+isKF (tK ,ξ)
〉

=

〈

∏

xj∈ξ

K
∏

k=1

eiskf(tk,xj)

〉

= exp





∫

S

(

e
∑K

k=1
iskf(tk,x) − 1

)

λ(x) dx





〈〈F (t1, ξ) . . . F (tK , ξ)〉〉 =
(

1

i

d

ds1

)

· · ·
(

1

i

d

dsK

)

lnφ(s1, . . . , sK)

∣

∣

∣

∣

s1,...,sK=0

=

∫

S

f(t1, x) · · · f(tK , x)λ(x) dx

B Central Moments Expansion

A Taylor expansion of the random product about mean shot noise input results in a series of central
moments of the integrated shot noise. Expanding the exponential inside the expectation, keeping terms
of order (1/τm)2 and re-expressing in terms of cumulants, yields:

〈

e−
1
τ

∫

t

z
Q(u,ξ) du

〉

= e−
1
τ

∫

t

z
〈Q(u)〉du



1 +
+∞
∑

m=2

1

m!

〈



−1

τ

t
∫

z

(Q(u, ξ)− 〈Q(u)〉) du





m
〉





≃ e−
1
τ
SQ̄

(

1 +
1

2 τ2
〈〈

SQ2
〉〉

)

where SQ ≡
∫ t

z
Q(v, ξ) dv and SQ̄ ≡

∫ t

z
〈Q(u)〉 du.

Higher order cumulants are obtained in a similar manner by expanding each exponential individually
and collecting terms in the same order of 1/τm. The second order expansion for second order cumulants
involves the expansion of two random products and keeping terms up to order (1/τm)4, yielding:

〈〈

e
− 1

τ

∫

t1
z1

Q(u1,ξ) du1 e
− 1

τ

∫

t2
z2

Q(u2,ξ) du2

〉〉

≃ e−
1
τ
SQ̄1−

1
τ
SQ̄2

(

1

τ2
〈〈SQ1 SQ2〉〉 −

1

2τ3
(〈〈

SQ2
1 SQ2

〉〉

+
〈〈

SQ1 SQ
2
2

〉〉)

+
1

2τ4

(1

3

〈〈

SQ3
1 SQ2

〉〉

+
1

3

〈〈

SQ1 SQ
3
2

〉〉

+
1

2

〈〈

SQ2
1 SQ

2
2

〉〉

+ 〈〈SQ1 SQ2〉〉
(〈〈

SQ2
1

〉〉

+
〈〈

SQ2
2

〉〉

+ 〈〈SQ1 SQ2〉〉
)

)

)

where SQ1 ≡
∫ t1

z1
Q(v, ξ) dv and SQ̄1 ≡

∫ t1

z1
〈Q(u)〉 du, etc.

B.1 Stationary limit for Yt

The stationary limit of shot noise autocovariance can be written 〈〈Q1 Q2〉〉 =
〈〈

Q2
〉〉

r (|t1 − t2|), since:

〈〈Q1 Q2〉〉 = λ

min(t1,t2)
∫

−∞

g(t1 − x) g(t2 − x) dx = λ

+∞
∫

0

g(u) g(|t1 − t2|+ u) du =
〈〈

Q2
〉〉

r (|t1 − t2|)
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with r (|t1 − t2|) ≡
∫ +∞

0
g(u) g(|t1 − t2|+ u) du/

∫ +∞

0
g(v)2 dv.

For the exponential kernel shot noise r (|t1 − t2|) = e−
|t1−t2|

τs and the stationary mean and second order
cumulants are given by:

〈Q〉 = λhτs 〈〈Q1 Q2〉〉 =
λh2τs
2

e−
|t1−t2|

τs =
〈〈

Q2
〉〉

e−
|t1−t2|

τs

Writing Q0 ≡ 1 + 〈Q〉 and applying Eq. (17) yields the mean:

〈Yt〉2 =
〈Q〉
Q0

−
〈〈

Q2
〉〉

Q2
0

1

τ

t
∫

−∞

e−
t−z
τ

Q0

t
∫

z

e−
u−z
τs dz du = 〈Yt〉0 −

〈〈

Q2
〉〉

Q2
0

(

Q0 +
τ
τs

)

Applying Eq. (18) yields the autocovariance:

〈〈Y1 Y2〉〉1 =

〈〈

Q2
〉〉

Q2
0

1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
Q0 e−

|z1−z2|
τs dz1 dz2

=















〈〈Q2〉〉
Q2

0(Q0+
τ
τs
)(Q0−

τ
τs
)

(

e−
|t1−t2|

τs − 1
Q0

τ
τs

e−
|t1−t2|

τ
Q0

)

if Q0 6= τ
τs

〈〈Q2〉〉
2 τ Q3

0

(τs + |t1 − t2|) e−
|t1−t2|

τs otherwise

Setting t1 = t2 = t in the previous result yields the variance:

〈〈

Y 2
t

〉〉

1
=

〈〈

Q2
〉〉

Q3
0

(

Q0 +
τ
τs

)

For the alpha kernel shot noise r(|t1 − t2|) = e−
|t1−t2|

τs

(

1 + |t1−t2|
τs

)

and the stationary mean and second

order cumulants are given by:

〈Q〉 = λhτs 〈〈Q1 Q2〉〉 =
λh2τs
4

e−
|t1−t2|

τs

(

1 +
|t1 − t2|

τs

)

=
〈〈

Q2
〉〉

e−
|t1−t2|

τs

(

1 +
|t1 − t2|

τs

)

Proceeding as before yields:

〈Yt〉2 =
〈Q〉
Q0

−

(

Q0 + 2 τ
τs

)

〈〈

Q2
〉〉

Q2
0

(

Q0 +
τ
τs

)2

〈〈

Y 2
t

〉〉

1
=

(

Q0 + 2 τ
τs

)

〈〈

Q2
〉〉

Q3
0

(

Q0 +
τ
τs

)2

〈〈Y1 Y2〉〉1 =



























































〈〈Q2〉〉
Q2

0(Q0+
τ
τs
)
2
(Q0−

τ
τs
)
2

×
(

(

(

1 + |t1−t2|
τs

)(

Q0 +
τ
τs

)(

Q0 − τ
τs

)

− 2
(

τ
τs

)2
)

e−
|t1−t2|

τs

+ 2
Q0

(

τ
τs

)3

e−
|t1−t2|

τ
Q0

)

if Q0 6= τ
τs

〈〈Q2〉〉
4 τ Q3

0

(

3(τs + |t1 − t2|) + 1
τs

|t1 − t2|2
)

e−
|t1−t2|

τs otherwise

B.2 Stationary limit for Vt

We apply the transformation given by Eq. (21) to the results from the previous section to obtain the
cumulants for the membrane potential Vt. The expression for the stationary mean of the deterministic
system is the same for both shot noise kernels:

〈Vt〉0 =
〈G〉
G0

(Es − El) + El =
gl El + 〈G〉Es

G0
G0 = gl + 〈G〉
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The mean and variance of exponential and alpha kernel shot noise are consistent with those given in
Refs. [Richardson and Gerstner, 2005, Rudolph and Destexhe, 2005] and Ref. [Kuhn et al., 2004], respec-
tively. The extension to the autocovariance is also provided below. For exponential kernel shot noise and
using Ee − El =

G0

gl
(Ee − 〈Vt〉0),

〈Vt〉2 = 〈Vt〉0 −
〈〈

G2
〉〉

gl

(

G0

gl
+ τ

τs

)

G0

(Es − 〈Vt〉0)
〈〈

V 2
t

〉〉

1
=

〈〈

G2
〉〉

gl

(

G0

gl
+ τ

τs

)

G0

(Es − 〈Vt〉0)
2

(24)

〈〈V1 V2〉〉1 =



















〈〈G2〉〉
g2
l

(

G0
gl

+ τ
τs

)(

G0
gl

− τ
τs

)

(

e−
t1−t2

τs − τ
τs

gl
G0

e
−

t1−t2
τ

G0
gl

)

(Es − 〈Vt〉0)
2

if G0

gl
6= τ

τs

〈〈G2〉〉
2 τ gl G0

(τs + |t1 − t2|) e−
|t1−t2|

τs (Es − 〈Vt〉0)
2

otherwise

(25)

For alpha kernel shot noise,

〈Vt〉2 = 〈Vt〉0 −

(

G0

gl
+ 2 τ

τs

)

〈〈

G2
〉〉

gl

(

G0

gl
+ τ

τs

)2

G0

(Es − 〈Vt〉0)
〈〈

V 2
t

〉〉

1
=

(

G0

gl
+ 2 τ

τs

)

〈〈

G2
〉〉

gl

(

G0

gl
+ τ

τs

)2

G0

(Es − 〈Vt〉0)
2

(26)

〈〈V1 V2〉〉1 =



























































〈〈G2〉〉
g2
l

(

G0
gl

+ τ
τs

)

2
(

G0
gl

− τ
τs

)

2 (Es − 〈Vt〉0)
2

×
(

(

(

1 + t1−t2
τs

)(

G0

gl
+ τ

τs

)(

G0

gl
− τ

τs

)

− 2
(

τ
τs

)2
)

e−
t1−t2

τs

+2
(

τ
τs

)3
gl
G0

e
−

t1−t2
τ

G0
gl

)

if G0

gl
6= τ

τs

〈〈G2〉〉
4 τ gl G0

(

3(τs + |t1 − t2|) + 1
τs

|t1 − t2|2
)

e−
|t1−t2|

τs (Es − 〈Vt〉0)
2

otherwise

(27)
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Chapter 4

The impact of synaptic conductance
inhomogeneities on membrane
potential statistics

Summary

This article extends to N independent conductance inputs the simple case presented in Chap-
ter 3 for a single shot noise conductance input. The effect of synaptic inhomogeneities in the
statistics of membrane potential is also investigated.

A basic model of N synapse types is first introduced with one shot noise process per synapse
type. This corresponds for N = 2 to the the popular model of single excitatory and inhibitory
synapse types. Multiple synapse types (N > 2) can account for different reversal potentials
within the same synapse type. This basic model assumes homogeneous biological parameters
for the synapses of each synapse type. The exact cumulants are derived using the Slivnyak-
Mecke theorem and comparison with numerical simulations illustrates the accuracy for mean
and second order cumulants. A truncated Edgeworth series with cumulants up to third order
is used to approximate the time-evolving distribution of membrane potential fluctuations. The
key statistic in this model is a product of shot noise and the exponential of integrated shot noise.
The central moments expansion (CME) introduced in the article from Chapter 3 is extended to
multiple independent shot noise inputs and requires some adaptation in order to avoid terms
containing both moments and central moments of shot noise.

This basic model is extended to take into consideration biological characteristics of individ-
ual synapses. This is implemented by introducing synapses within each synapse type and each
synapse is driven by independent shot noise process with particular biological parameters. The
limiting case of a large number of synapses is analyzed in more detail, where variation in bi-
ological parameters is reflected in each postsynaptic response. The exact cumulants and CME
expansion are derived for this model. Interesting predictions on synaptic inhomogeneities ef-
fects in comparison to the homogeneous model can be derived by simple analysis of the CME
expansion. This extended model relates synaptic inhomogeneity to membrane potential statis-
tics and corresponds to the statistical model of Vt already mentioned in Sec. 1.3. This model
may provide basis for improvement of statistical inference models due to the exact nature of
these results and access to higher order statistics of Vt.
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Résumé

Les inhomogénéités synaptiques dues à la variabilité biologique affectent les propriétés statis-
tiques des entrées synaptiques, ainsi que les fluctuations du potentiel de membrane. Leur
impact est étudié dans un modéle de membrane passive qui évolue suivant des entrées à con-
ductance non stationnaires du type shot noise. Le cas de synapses multiples est considéré dans
la limite d’un grand nombre de synapses où la variation des paramètres biologiques se produit
à chaque réponse post-synaptique. Les cumulants exacts sont obtenus et leur approximation
en termes des cumulants de shot noise est dérivé dans le cadre d’une expansion des moments
centraux. Cela permet d’explorer les effets des cumulants d’ordre supérieur du shot noise dans
les statistiques des fluctuations du potentiel de membrane à la fois quantitativement et quali-
tativement.



The impact of synaptic conductance inhomogeneities on

membrane potential statistics

Marco Brigham, Alain Destexhe
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Abstract

Synaptic noise is usually modeled as arising from a large number of identical synapses, but in real
neurons, there is considerable diversity in the characteristics of synaptic responses. We investigate the
impact of these inhomogeneities by applying a generalization of the classic shot noise approach to a
passive membrane model evolving under nonstationary shot noise conductance with multiple synapse
types. Synaptic inhomogeneities are introduced in the limit of very large number of synapses where
diversity in synaptic properties is reflected in each postsynaptic response. Exact expressions for the
cumulants of membrane potential (Vm) fluctuations are derived, in addition to various approximations
based on a central moments expansion (CME). This enables to explore the effects of higher order
shot noise cumulants in the statistics of Vm fluctuations both quantitatively and qualitatively.

1 Introduction

The biological characteristics of synapses are often assumed identical for a given synapse type [Stein,
1965, Tuckwell, 1988, Burkitt, 2006a,b] in order to improve the tractability of neural population activ-
ity models [Brunel and Hakim, 1999, Brunel, 2000, Gerstner, 2000, Abbott and van Vreeswijk, 1993,
Gerstner and van Hemmen, 1993] with very few exceptions in the literature [Richardson and Swarbrick,
2010]. However, biological neurons have considerable diversity in the characteristics of synaptic responses
[Markram et al., 1997, Golowasch et al., 1999]. In order to understand and quantify the impact of synaptic
inhomogeneities in the dynamical properties of neurons, we investigate the effects of synaptic parameter
variation in the statistics of membrane potential Vm. For this purpose we use a simple neuron model
with passive membrane that evolves under shot noise conductance with nonstationary rates. Variation
of synaptic parameters, such as synaptic strength and synaptic time constant, changes the statistical
properties of input conductance, which in turn affects the statistics of Vm.

We first consider a membrane model with N synapse types, each driven by an independent shot noise
process. In this homogeneous model, the synaptic responses from the same synapse type are identical.
This is extended to multiple independent synapses of the same synapse type with individual synaptic
parameters. Finally, the limit of very large number of synapses is considered where the variation of
synaptic parameters is reflected in each synaptic response. The exact nonstationary cumulants of these
membrane models are derived with the formalism of Poisson point process (PPP) transformations in-
troduced in previous work [Brigham and Destexhe, 2015]. Various approximations are obtained with a
central moments expansion (CME) about the deterministic solution of the system. Using these tools, we
explore how the hierarchy of shot noise cumulants, which directly reflects the inhomogeneities in synaptic
parameters, impacts the statistics of Vm fluctuations.

The homogeneous model is presented in Section 2, where exact cumulants and CME for the mean and
second order cumulants are derived. Synaptic inhomogeneities are introduced in Section 3 and the limit-
ing case of large number of synapses is examined in greater detail. The impact of exponential and uniform
distributions in synaptic strength are analyzed with the CME in Section 4. We discuss these results and
their applications in Section 5.

2 Model Description

We consider a simple passive membrane model with N types of conductance synapses characterized by
their reversal potentials En (1 ≤ n ≤ N). The synaptic input is modeled by independent shot noise

1
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Figure 1 – Single realizations, mean and standard deviation for simple passive membrane model
with single excitatory and single inhibitory synapse types. Excitatory conductances Ge (top) and
inhibitory conductances Gi (middle) drive the membrane potential Vt (bottom). Single realizations
of Ge, Gi and Vt are shown in black, realizations of ξe and ξi are represented by gray dots. Mean
and standard deviations (µ± σ) are shown in gray.

processes Gn(t) with presynaptic events xj ∈ ξn generated by a multivariate PPP Ξ with independent
components {Ξ1, . . . ,ΞN}. The shot noise conductance Gn(t) drive the evolution of the membrane
potential V (t) according to the membrane equation:

τm
d

dt
V (t) = El − V (t) +

N
∑

n=1

(En − V (t))
1

gl
Gn(t) (1)

1

gl
Gn(t, ξn) =

∑

xj∈ξn

gn(t− xj)H(t− xj) (2)

where τm is the membrane time constant, El is the leak potential, gl is the leak conductance, En is the
synaptic reversal potential for synapse type n, gn(t − xj)H(t − xj) is the impulse response function, or
shot noise kernel, for synapse type n and H(u) is the Heaviside function. The presynaptic spike times
are realizations from independent PPP Ξn (S, λn(t)) that are characterized by rate functions λn(t) > 0,
such that mn(S) ≡

∫

S
λn(x) dx is finite for any bounded interval S ⊆ R of the real line.

The Fig. 1 illustrates a membrane model with single excitatory and inhibitory synapse types (N = 2)
that is driven by stationary excitatory and nonstationary inhibitory shot noise conductances. The corre-
sponding PPP rates λe(t) and λi(t) are represented in Fig. 2. The numerical simulations are generated
with exponential kernel g(t − x)exp = h exp (−(t− x)/τs) for excitatory conductance and alpha kernel
g(t−x)alpha = h ((t−x)/τs) exp (−(t− x)/τs) for inhibitory conductance. The excitatory and inhibitory
rate are λe = 500 Hz and λi = 1000 Hz, respectively. Other parameters are τm = 0.02 s, El = −0.06 V,
Ee = 0 V, Ei = −0.08 V, gl = 10e-9 S, he = 2e-9 S, hi = 15e-9 S, τe = 0.0025 s, τi = 0.0015 s.

2.1 Exact Solution

The exact nonstationary cumulants for the homogeneous model are derived next. The membrane equation
is first transformed into a unitless system by writing E1 and EN for the highest and lowest reversal
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Figure 2 – Presynaptic rate functions for shot noise processes generating input conductance for
single excitatory and inhibitory synapse types (N = 2). The excitatory rate λe(t) is stationary
(green line) and inhibitory rate λi(t) is nonstationary (red line).

potentials, τ = τm and performing the following transformations:

Y (t) =
V (t)− El

E1 − EN

wn =
En − El

E1 − EN

Qn(t) =
1

gl
Gn(t) Q0(t) = 1 +

N
∑

n=1

Qn(t) (3)

yields the following unit-less system:

τ
d

dt
Y (t) = −Y (t) +

N
∑

n=1

(wn − Y (t))Qn(t) (4)

Qn(t, ξn) =
∑

xj∈ξn

gn(t− xj)H(t− xj) (5)

The system response Y (t, ξ) for shot noise inputs {Q1(t, ξ1), . . . , QN (t, ξN )} is obtained by solving Eq.
(4) for the realization ξ = {ξ1, . . . , ξN} of Ξ. Assuming without loss of generality Y0 = 0,

Y (t, ξ) =
1

τ

t
∫

−∞

e−
t−z
τ

N
∑

n=1

wn Qn(z, ξn) e
− 1

τ

∫

t

z
Q0(u,ξ) du dz

The cumulants of Yt are obtained by first forming the relevant products of Y (t, ξ) and evaluating their
expectation under Ξ, as detailed in Appendix A. This is multiple synapse extension of the method
introduced in previous work [Brigham and Destexhe, 2015] and generalizes the case of stationary input
rates addressed in [Wolff and Lindner, 2008, 2010]. For example, the autocovariance 〈〈Y1 Y2〉〉 between
times t1 and t2 is obtained by evaluating 〈Y (t1, ξ)Y (t2, ξ)〉 − 〈Y (t1, ξ)〉 〈Y (t2, ξ)〉 under Ξ. The mean
and joint cumulants of Yt are given by:

〈Yt〉 =
1

τ

t
∫

−∞

N
∑

n=1

〈

wn Qn(z) e
− 1

τ

∫

t

z
Q0(u) du

〉

dz (6)

〈〈Y1 · · ·YK〉〉 = 1

τK

t1
∫

−∞

· · ·
tK
∫

−∞

N
∑

n1=1

· · ·
N
∑

nK=1

〈〈

K
∏

k=1

wnk
Qnk

(zk) e
− 1

τ

∫

tk
zk

Q0(u) du

〉〉

dz1 · · · dzK (7)

The independence of the components Ξn and the Slivnyak-Mecke Theorem [Slivnyak, 1962, Mecke, 1967]
yield the expectations in the integrands. Explicit expressions for the mean and autocovariance are
provided in Appendix A with the key expectations given by:

〈

Qn(z) e
− 1

τ

∫

t

z
Q0(u) du

〉

=
〈

e−
1
τ

∫

t

z
Q0(u) du

〉

z
∫

−∞

gn(z − x) e−
1
τ

∫

t

z
gn(u−x)H(u−x)du λn(x) dx (8)
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〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Qn(u) du

〉

= exp





∫

S

(

K
∏

k=1

e
− 1

τ

∫

tk
zk

gn(u−x)H(u−x)du − 1

)

λn(x) dx



 (9)

The cumulants of Vt are recovered from Eqs. (6) and (7) with the following transformation:

〈Vt〉 = (E1 − EN ) 〈Yt〉+ El 〈〈V1 · · ·VK〉〉 = (E1 − EN )
K 〈〈Y1 · · ·YK〉〉 (10)

A comparison between numerical simulations and predictions from Eqs. (6) and (7) are shown in Fig. 3 for
the mean and second order cumulants, where the autocorrelation is given by ρ(V1 V2) = 〈〈V1 V2〉〉 /(σ(V1)σ(V2)).
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Figure 3 – Comparison with numerical simulations for the mean and second order cumulants of
membrane potential V (t) predicted by the exact solution given by Eqs. (6) and (7). There is excellent
agreement between the simulations (gray) and the analytic prediction (black). The autocorrelation
ρ is evaluated at ta and tb corresponding to local maxima and minima of Vt, respectively.

The exact cumulants given by Eqs (6) and (7) can be used to build very accurate approximations of the
time-evolving distribution of membrane potential with a truncated Edgeworth series [Edgeworth, 1907,
Wallace, 1958]. This series is an asymptotic expansion of p(Vt) in terms of its cumulants [Cramér, 1946]
and is provided for reference in Appendix C. The first term is a gaussian approximation with the second
and third terms adding the contribution from the skewness and kurtosis of the distribution, respectively.
As illustrated in Fig. 4, the skewness of p(Vt) at the local minima tb is well captured by the third order
of the truncated Edgeworth series.
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Figure 4 – Comparison with numerical simulations for the probability density function (pdf) of
membrane potential p(Vt) given by truncated Edgeworth series using exact second and third cumu-
lant of Vt. The pdf is evaluated at ta and tb that corresponds to local maxima and minima of Vt

respectively (see Fig. 3). There is good agreement between the simulations (gray) and the gaussian
approximation (black dash) at ta. The effect of third order cumulant (kurtosis) at tb is well captured
by the third order of the series.
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2.2 Central Moments Expansion

The central moments expansion (CME) was also introduced in previous work [Brigham and Destexhe,
2015] and enables to evaluate the contribution of shot noise cumulants to the statistics of Yt. This method
corresponds to first and second order delta method expansions [Cramér, 1946, Oehlert, 1992] about the
deterministic solution of the system. This is obtained by driving the system with input conductance with
amplitude equal to the mean of shot noise 〈Qn(t)〉 and is given by:

〈Yt〉0 =
1

τ

t
∫

−∞

e−
1
τ

∫

t

z
〈Q0(u)〉du

N
∑

n=1

wn 〈Qn(z)〉 dz (11)

Directly expanding the exponential of integrated shot noise results in terms with mixed products of
moments and central moments of shot noise. An expansion in terms of central moments is derived in
Appendix B. The second order of the expansion for the mean is given by:

〈Yt〉2 = 〈Yt〉0 +
1

τ

t
∫

−∞

e−
1
τ

∫

t

z
〈Q0(u)〉du

N
∑

n=1



−1

τ

t
∫

z

wn 〈〈Qn(z)Qn(u)〉〉 du

+wn 〈Qn(z)〉
1

2τ2

t
∫

z

t
∫

z

N
∑

m=1

〈〈Qm(u1)Qm(u2)〉〉 du1 du2



 dz (12)

where the subscript 2 represents the second order of the expansion for the mean.

Extending to joint cumulants is obtained in similar manner and yields for the first order expansion
for the autocovariance:

〈〈Y1 Y2〉〉1 =
1

τ2

t1
∫

−∞

t2
∫

−∞

e
− 1

τ

∫

t1
z1

〈Q0(u1〉du1−
1
τ

∫

t2
z2

〈Q0(u2)〉du2

N
∑

n=1

(

w2
n 〈〈Qn(z1)Qn(z2)〉〉

+
N
∑

m=1

N
∑

m′=1

wn wm 〈Qn(z1)〉 〈Qm(z2)〉
1

τ2

t1
∫

z1

t2
∫

z2

〈〈Qm′(u1)Qm′(u2)〉〉 du1 du2

−
N
∑

l=1

wn wl

(

〈Qn(z1)〉
1

τ

t1
∫

z1

〈〈Ql(u1)Ql(z2)〉〉 du1

+ 〈Qn(z2)〉
1

τ

t2
∫

z2

〈〈Ql(u2)Ql(z1)〉〉 du2

))

dz1 dz2 (13)

where the subscript 1 represents the first order of the expansion for the autocovariance.

The comparison between numerical simulations and the predictions for the mean and second order cu-
mulants are shown in Fig. 5. The deterministic solution and first order of the autocorrelation display
good agreement in this parameter regime, with the second order of the mean yielding higher accuracy.
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Figure 5 – Comparison with numerical simulations for the mean and second order cumulants of Vt

predicted by the central moments expansion (CME). The agreement between the simulations (gray
lines) and the approximation is good for the deterministic solution (black dots) and first order expan-
sion for the autocorrelation and variance (brown lines). The second order of the expansion for the
mean shows higher accuracy, as expected. The second order of the expansion for the autocovariance
may be required for more extreme parameter regimes.

The stationary limit yields the statistics of Yt under shot noise input with constant rate after dissipation
of initial transients. The cumulants for this regime are obtained by setting the onset of PPP activity at
−∞ and replacing the cumulants of shot noise by their stationary limits. Explicit expressions for the
mean and second order cumulants of exponential and alpha kernels are presented in the Appendix B.1.

〈Yt〉0 =
1

〈Q0〉
N
∑

n=1

wn 〈Qn〉 (14)

〈Yt〉2 = 〈Yt〉0 −
N
∑

n=1

1

〈Q0〉
(wn − 〈Yt〉0)

〈〈

Q2
n

〉〉 1

τ

t
∫

−∞

e−
t−z
τ

〈Q0〉 rn(t− z) dz (15)

〈〈Y1 Y2〉〉1 =
N
∑

n=1

(wn − 〈Yt〉0)
2 〈〈

Q2
n

〉〉 1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
〈Q0〉 rn(|z1 − z2|) dz1 dz2 (16)

where 〈Qn〉,
〈〈

Q2
n

〉〉

and 〈〈Qn(t1)Qn(t2)〉〉stat =
〈〈

Q2
n

〉〉

r (|t1 − t2|) are respectively the mean, variance
and autocovariance of stationary shot noise input Qn(t).

3 Synaptic Inhomogeneities

Variations in the synaptic responses of the same synapse type are expected to occur due to biological dif-
ferences in the synapses. These synaptic inhomogeneities are modeled by introducing individual synapses
with particular synaptic parameters Θn = {θ1, . . . , θNn

} that are distributed according to p(Θn). Each
synapse is driven by an independent shot noise processes with rate λn(t)/Nn. This leads to the the
following model of input shot noise:

Qn(t, ξn,Θn) =

Nn
∑

m=1

Qm(t, ξm,θm) =

Nn
∑

m=1

∑

xj∈ξm

gm(t− xj ,θm)H(t− xj) (17)

where θm ∼ p(Θn) are the synaptic parameters of synapse m of synapse type n.

For example, the exponential shot noise kernel is characterized by two parameters θ = {h, τs} represent-
ing the synaptic strength and synaptic time constant. The synaptic input from synapse m is generated
with parameters θm = {hm, (τs)m} that are drawn at the beginning of the simulations from p(Θn). This
is illustrated in the left plot of Fig. 6 where color-coded presynaptic spike times reflect the synapse of
origin.
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Figure 6 – Example of synaptic input with small number of synapses (Ne = 5) with individual
synaptic parameters from the same synapse type (left plot) where the presynaptic spikes are color-
coded to represent the synapse of origin. In the limit of very large number of synapses the synaptic
parameters change with each postsynaptic response (right plot). Comparing the realizations of both
cases illustrates that the limit case may yield good approximations for a small number of synapses,
depending on particular biological parameter distributions and simulation parameters.

The limiting case of large number of synapses corresponds to varying the synaptic parameters θ of shot
noise kernel for each presynaptic spike. This is a compact representation in computational and analytical
terms and leads to the following model of input shot noise:

Qn(t, ξ
θ
n) =

∑

xj∈ξθn

gn(t− xj ,θj)H(t− xj) (18)

where θ are the synaptic parameters of the post synaptic response elicited by presynaptic spike time xj .

This input model is illustrated in the right plot of Fig. 6 for excitatory conductance with synaptic
strength distribution following an exponential law p(h) with same mean as the homogenous model. The
limiting case is rapidly approached, with a few dozen synapses being sufficient to yield similar synaptic
input statistics. This is illustrated in Fig. 7 where a comparison for mean and variance is made for 5 and
50 synapses of each synapse type.
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Figure 7 – Comparison of membrane potential statistics for synaptic input generated from models
with small number of synapses (left plot: Ne = 5, Ni = 5, right plot: Ne = 50, Ni = 50) and
the limiting case of very large number of synapses (brown). The limiting case is approached quite
rapidly from just a few dozen synapses under this parameter regime.

This conductance input model corresponds to a general class of PPP transformations known as Filtered
Poisson Processes [Snyder and Miller, 1991, Parzen, 1999, Streit, 2010, Rice, 1977]. The presynaptic spike
times are generated by a Compound PPP Ξ

θ that for each point xj ∈ ξ generates a mark θj independent
of xj that represents the synaptic parameters, i.e. θj = {hj , (τs)j} in the previous example of exponential
kernel. A realization ξθ specifies both the presynaptic spikes and the marks: ξθ = {(x1, θ1), . . . , (xn, θn)}.
The Slivnyak-Mecke Theorem also applies to transformations of compound PPP since the properties of the
PPP are not changed, as shown in Appendix D. The exact cumulants of this model are given by Eqs. (6)
and (7). As before, the independence of Ξθ and the Slivnyak-Mecke Theorem yield the expectations in
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the integrands, with the key expectations given by:

〈

Qn(z) e
− 1

τ

∫

t

z
Q0(u) du

〉

=
〈

e−
1
τ

∫

t

z
Q0(u) du

〉

∫

Θ

z
∫

−∞

gn(z, x,θn) e
− 1

τ

∫

t

z
gn(u,x,θn)du λn(x) dx p(θn) dθn (19)

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Qn(u) du

〉

= exp





∫

Θ

t
∫

−∞

(

K
∏

k=1

e
− 1

τ

∫

tk
zk

gn(u,x,θn) du − 1

)

λ(x) dx p(θ) dθ



 (20)

A comparison between numerical simulations and predictions from Eqs. (6) and (7) with Eqs. (19) and
(20) is shown in Fig. 8 for the mean and standard deviation. The deterministic solution 〈Yt〉0 of this
model corresponds to input with mean shot noise under Ξθ:

〈Qn(t)〉 =
∫

Θ

t
∫

−∞

gn(z, x,θn)λn(x) dx p(θn) dθn

The central moments expansion is developed around the deterministic solution and results in the same
expressions as Eqs. (11), (12) and (13) but with shot noise expectations evaluated under Ξθ.
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−55

−50
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t
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V
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µ ±σ
analytical

Figure 8 – Comparison with numerical simulations for the exact mean and standard deviation
evaluated with Eqs. (19) (20) for the model with large number of synapses. There is excellent
agreement between the simulations (gray) and the analytic prediction (black).

4 Impact of Synaptic Inhomogeneities

In this section we investigate the impact of synaptic inhomogeneity distributions in the statistics of Vm
fluctuations. The examples from the previous section illustrate that synaptic input can be modeled with
different synaptic responses for each presynaptic spike due to the important number of synapses present in
biological neurons (from hundreds to many thousands). We assume the mean of the synaptic parameter
distribution to be the same as the homogeneous model, noted θ̄, i.e. 〈hn〉 = h̄n for synaptic strenght of
synapse type n. The effect of exponential and uniform distributions for the synaptic strength parameter
h are compared to the homogeneous model.

As shown in Fig. 9, the mean value of Vt is similar in all cases and the standard deviation increases
in the exponential case.

8



0 20 40 60 80 100

t (ms)

−65

−60

−55

−50

V
t

(m
V

)

µ ±σ
µ ±σ event

0 20 40 60 80 100

t (ms)

−65

−60

−55

−50

V
t

(m
V

)

µ ±σ
µ ±σ event

Figure 9 – Effect of exponential and uniform distributions of synaptic strenghts on mean and
standard deviation of membrane potential fluctuations. The mean is very similar in both cases and
standard deviation increases for the exponential case. Mean and standard deviation (µ± σ) shown
in gray and brown for the homogeneous and inhomogeneous models, respectively.

The CME enables to estimate this result under the assumption that the shot noise kernel is separable in
the synaptic strength parameter h, such that g(t) = h̄ f(t, τs). This results in the following factorization
of shot noise cumulants:

〈Qn(t)〉 = h f1(t, τs, λ(t))
〈〈

Qn(t)
2
〉〉

= h2 f2(t, τs, λ(t))

〈〈Qn(t1)Qn(t2)〉〉 = h2 f3(t1 − t2, τs, λ(t))

The mean of shot noise input 〈Qn(t)〉θ remains unchanged since 〈hn〉 = h̄n. The deterministic solution
also remains unchanged since it only depends on the mean input (Eq. (11)). The shot noise autocovariance
changes by a common multiplicative factor

〈

h2
n

〉

/h̄2
n since the synaptic parameters are assumed to be

drawn from the same distribution (but with different parameters). In consequence, the second order
expansion for the mean (Eq. (12)) and first order expansion for the autocovariance (Eq. (13)) are changed
by the multiplicative factor

〈

h2
n

〉

/h̄2
n. For the exponential distribution

〈

h2
n

〉

= 2 h̄2
n and for uniform

distribution
〈

h2
n

〉

= h̄2
n(1 + 1/12). This explains the small change in the mean since the correction from

the deterministic solution is already small in this parameter regime (see Fig. 5) and remains small when
multiplied by a small factor. The small change in the standard deviation of the uniform distribution is due
to the factor

√

1 + 1/12 ≈ 1.04. The variance and autocovariance are expected to increase by a factor of
two in the case of exponential distribution, as illustrated in Fig. 10. The Gaussian approximation in the
same figure is estimated from the homogeneous model with the variance multiplied by a factor

〈

h2
n

〉

/h̄2
n.
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Figure 10 – Estimating statistics of the inhomogeneous model from those of the homogeneous
model. To the first order of the CME, the variance increases by a factor of 2 when synaptic strength
parameter h ∼ p(h) is distributed exponentially with same mean as the homogeneous case. This
approximation is used to estimate the standard deviation (left) and gaussian approximation of prob-
ability distribution (right). The distribution is evaluated at ta and tb corresponding respectively to
the local maxima and minima of 〈Vt〉 shown in the left plot of Fig. 3.

The autocorrelation is expected to remain unchanged since the changes in second order cumulants of
shot noise is given by a constant factor. This prediction is compared to numerical simulations in Fig. 11
where the autocovariance is estimated separately.
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Figure 11 – The CME predicts no change in the autocorrelation (to the first order of correlation)
when introducing synaptic inhomogeneities under the same conditions in fig. 10 and predicts a
doubling of autocovariance magnitude. The approximations were estimated by multiplying by a
factor of two the second order statistics of the homogeneous model. The evaluations are made is
evaluated at ta and tb (see Figs. 3 and 10).

5 Discussion

The effects of synaptic inhomogeneities in the statistical properties of membrane potential (Vm) fluctu-
ations is investigated. A simple passive membrane model is used with conductance synapses driven by
nonstationary shot noise. An homogeneous model of synaptic input with N synapse types with identical
synaptic properties for each synapse type is first examined. This model is then extended to include
independent synapses with individual synaptic characteristics for each synapse type. In the limit of very
large number of synapses the synaptic inhomogeneity is reflected in the variation of synaptic responses
for each presynaptic spike.

The exact cumulants of the these models is obtained with the formalism of Poisson point process trans-
formations. The central moments expansion (CME) is derived in order to understand how the hierarchy
of shot noise cumulants impacts the statistics of Vm fluctuations. Under mild assumptions on factoring
properties of the shot noise kernel, the cumulants of Vm are estimated from those of the homogeneous
model.

The CME establishes the relationship between synaptic input statistics with synaptic inhomogeneities
and the statistics of Vm. This may contribute to refine existing models of statistical inference that address
the inverse problem of estimating the statistics of synaptic input from measures of membrane potential
statistics. Improvements may be obtained by including measures of autocovariance in addition to the
more common point statistics of mean and variance. An important pre-requisite is the experimental
estimation of biological parameter distributions for neurons.
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Appendix

A Multivariate PPP Transformation

The expectation of a bounded transformation F (t, ξ) of realizations ξ ≡ {ξ1, . . . , ξN} of the multivariate
PPP Ξ [Cox and Isham, 1980] with independent components {Ξ1(S, λ1(t)), . . . ,ΞN (S, λN (t)} is obtained
by summing over every possible number of arrivals for each component PPP and integrating over the
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location of each arrival.

〈F (t, ξ)〉 =
∞
∑

n1=0

· · ·
∞
∑

nN=0

1

n1!
e−m1(S) · · · 1

nN !
e−mN (S)

∫

S

· · ·
∫

S

· · · · · ·
∫

S

· · ·
∫

S

F
(

t, x1
1, . . . , x

1
n1
, . . . , xN

1 , . . . , xN
nN

)

N
∏

n=1

nn
∏

jn=1

λn(x
n
jn
) dxn

jn

where xn
j is the time of the j-th event from realization ξn.

The independence of the PPPs and the Slivnyak-Mecke Theorem [Slivnyak, 1962, Mecke, 1967] yields
the expectations inside the integrals of Eqs. (6) and (7). For the mean and autocovariance:

〈

Qn(z) e
− 1

τ

∫

t

z
Q0(u) du

〉

=
〈

e−
1
τ

∫

t

z
Q0(u) du

〉

z
∫

−∞

gn(z, x) e
− 1

τ

∫

t

z
gn(u,x) du λn(x) dx

N
∑

n=1

N
∑

m=1

〈

wn Qn(z1)wm Qm(z2)
2
∏

k=1

e
− 1

τ

∫

tk
zk

Q0(u) du

〉

=

〈

2
∏

k=1

e
− 1

τ

∫

tk
zk

Q0(u) du

〉







N
∑

n=1

w2
n

min(z1,z2)
∫

−∞

gn(z1 − x) gn(z2 − x)

2
∏

k=1

e
− 1

τ

∫

tk
zk

gn(u−x)H(u−x) du
λn(x) dx

+
N
∑

m=1

wm

z1
∫

−∞

gm(z1 − y)
2
∏

k=1

e
− 1

τ

∫

tk
zk

gm(v−y)H(v−y) dv
λm(y) dy

N
∑

l=1

wl

z2
∫

−∞

gl(z2 − z)
2
∏

k=1

e
− 1

τ

∫

tk
zk

gl(w−z)H(w−z) dw
λl(z) dz





since for n = m,

w2
n

〈

Qn(z1) e
− 1

τ

∫

t1
z1

Q0(u1)du1 Qn(z2) e
− 1

τ

∫

t2
z2

Q0(u2)du2

〉

= w2
n

〈

Qn(z1)Qn(z2) e
− 1

τ

∫

t1
z1

Qn(u1)du1−
1
τ

∫

t2
z2

Qn(u2)du2

〉〈

e
− 1

τ

∫

t1
z1

Q0\n(v1)dv1−
1
τ

∫

t2
z2

Q0\n(v2)dv2

〉

= w2
n e

−
t1−z1+t2−z2

τ

N
∏

l=1

〈

e
− 1

τ

∫

t1
z1

Ql(u1)du1−
1
τ

∫

t2
z2

Ql(u2) du2

〉

( min(t1,t2)
∫

−∞

gn(z1 − x) gn(z2 − x) e
− 1

τ

∫

t1
z1

gn(u1−x)du1−
1
τ

∫

t2
z2

gn(u2−x)du2λn(x) dx

+

t1
∫

−∞

gn(z1 − y) e
− 1

τ

∫

t1
z1

gn(u1−y)du1−
1
τ

∫

t2
z2

gn(u2−y)du2λn(y) dy

t2
∫

−∞

gn(z2 − w) e
− 1

τ

∫

t1
z1

gn(u1−w)du1−
1
τ

∫

t2
z2

gn(u2−w)du2λn(w) dw

)
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For n 6= m,

wn wm

〈

Qn(z1) e
− 1

τ

∫

t1
z1

Q0(u1)du1 Qm(z2) e
− 1

τ

∫

t2
z2

Q0(u2)du2

〉

= wn wm

〈

Qn(z1) e
− 1

τ

∫

t1
z1

Qn(u1)du1−
1
τ

∫

t2
z2

Qn(u2)du2

〉〈

Qm(z2) e
− 1

τ

∫

t1
z1

Q0\n(v1)dv1−
1
τ

∫

t2
z2

Q0\n(v2)dv2
〉

= wn wm

N
∏

l=1

〈

e
− 1

τ

∫

t1
z1

Ql(u1)du1−
1
τ

∫

t2
z2

Ql(u2) du2

〉

t1
∫

−∞

gn(z1 − x) e
− 1

τ

∫

t1
z1

gn(u1−x)du1−
1
τ

∫

t2
z2

gn(u2−x)du2λn(x) dx

t2
∫

−∞

gI(z2 − y) e
− 1

τ

∫

t1
z1

gI(v1−y) dv1−
1
τ

∫

t2
z2

gI(v2−y) dv2λI(y) dy

And in the general case,

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Q0(u) du

〉

=

N
∏

n=1

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Qn(u) du

〉

K
∏

k′=1

e−
t
k′−z

k′
τ

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Qn(u) du

〉

= exp





∫

S

(

K
∏

k=1

e
− 1

τ

∫

tk
zk

gn(u−x)H(u−x) du − 1

)

λn(x) dx





B Central Moments Expansion

The independence properties of Ξ lead to the following factorization for the mean of Yt. Writing Q0\n as
Q0 without Qn,

〈Yt〉 =
1

τ

t
∫

−∞

N
∑

n=1

wn

〈

Qn(z) e
− 1

τ

∫

t

z
Q0(u)du

〉

dz =
1

τ

t
∫

−∞

N
∑

n=1

wn

〈

Qn(z) e
− 1

τ

∫

t

z
Qn(u)du

〉〈

e−
1
τ

∫

t

z
Q0\n(v)dv

〉

dz

The expectation of exponential integrated shot noise on the right is derived in [Brigham and Destexhe,
2015] and we just need to derive the expectation the product of shot noise with the exponential integrated
shot noise. Directly expanding the exponential term would yield mixed products of moments and central
moments:

〈

Q(z)n e
− 1

τ

∫

t

z
Qn(u) du

〉

= e−
1
τ

∫

t

z
〈Qn(u)〉du



〈Qn(z)〉+
+∞
∑

m=1

1

m!

〈

Qn(z)



−1

τ

t
∫

z

(Qn(u)− 〈Qn(u)〉) du





m
〉





To recover an expansion in terms of central moments, we first form the shot noise central moment inside
the expectation before expanding the exponential term,

〈

Qn(z) e
− 1

τ

∫

t

z
Qn(u)du

〉

= e−
1
τ

∫

t

z
〈Qn(u)〉du

(〈

(Qn(z)− 〈Qn(z)〉) e−
1
τ

∫

t

z
(Qn(u)−〈Qn(u)〉)du

〉

+ 〈Qn(z)〉
〈

e−
1
τ

∫

t

z
(Qn(v)−〈Qn(v)〉)dv

〉)

= e−
1
τ

∫

t

z
〈Q〉(u)du



〈Qn(z)〉+
+∞
∑

m=1

1

m!





〈

(Qn(z)− 〈Qn(z)〉)



−1

τ

t
∫

z

(Qn(u)− 〈Qn(u)〉) du





m
〉

+
1

m+ 1
〈Qn(z)〉

〈



−1

τ

t
∫

z

(Qn(v)− 〈Qn(v)〉) dv





m+1
〉
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Keeping terms up to the second order in the central moments (m = 1) and expressing in terms of shot
noise autocovariance yields the final result:

〈

Qn(z) e
− 1

τ

∫

t

z
Qn(u)du

〉

≃ e−
1
τ

∫

t

z
〈Qn(u)〉du



〈Qn(z)〉 −
1

τ

t
∫

z

〈〈Qn(z)Qn(u)〉〉 du+ 〈Qn(z)〉
1

2τ2

t
∫

z

t
∫

z

〈〈Qn(u1)Qn(u2)〉〉 du1 du2





In terms of Yt,

〈Yt〉0 =
1

τ

t
∫

−∞

e−
1
τ

∫

t

z
〈Q0(u)〉du

N
∑

n=1

wn Q̄n(z)dz

〈Yt〉2 = 〈Yt〉0 +
1

τ

t
∫

−∞

e−
1
τ

∫

t

z
〈Q0(u)〉du

N
∑

n=1



−1

τ

t
∫

z

wn 〈〈Qn(z)Qn(u)〉〉 du+ wn 〈Qn(z)〉
1

2τ2

t
∫

z

t
∫

z

N
∑

m=1

〈〈Qm(u1)Qm(u2)〉〉 du1 du2



 dz

The autocovariance requires the evaluation of terms of the form:

〈〈Y1 Y2〉〉1 =
1

τ2

t1
∫

−∞

t2
∫

−∞

N
∑

n=1

N
∑

m=1

wn wm

〈〈

Qn(z1) e
− 1

τ

∫

t1
z1

Q0(u1)du1 Qm(z2) e
− 1

τ

∫

t2
z2

Q0(v) dv
〉〉

dz1 dz2

Expanding each exponential and forming products with central moments, for the case m = n,

w2
n

〈〈

Qn(z1) e
− 1

τ

∫

t1
z1

Q0(u1)du1 Qn(z2) e
− 1

τ

∫

t2
z2

Q0(u2)du2

〉〉

= w2
n

〈〈

(Qn(z1)− 〈Qn(z1)〉) e−
1
τ

∫

t1
z1

Q0(u1)du1 (Qn(z2)− 〈Qn(z2)〉) e−
1
τ

∫

t2
z2

Q0(u2)du2

〉〉

+ w2
n 〈Qn(z1)〉

〈〈

e
− 1

τ

∫

t1
z1

Q0(u1)du1 (Qn(z2)− 〈Qn(z2)〉) e−
1
τ

∫

t2
z2

Q0(u2)du2

〉〉

+ w2
n 〈Qn(z2)〉

〈〈

(Qn(z1)− 〈Qn(z1)〉) e−
1
τ

∫

t1
z1

Q0(u1)du1 e
− 1

τ

∫

t2
z2

Q0(u2)du2

〉〉

+ w2
n 〈Qn(z1)〉 〈Qn(z2)〉

〈〈

e
− 1

τ

∫

t1
z1

Q0(u1)du1e
− 1

τ

∫

t2
z2

Q0(u2)du2

〉〉

Up to the 2nd order in the cumulants,

≃ w2
n e

− 1
τ

∫

t1
z1

〈Q0(u1)〉du1−
1
τ

∫

t2
z2

〈Q0(u2)〉du2

(

〈〈(Qn(z1)− 〈Qn(z1)〉) (Qn(z2)− 〈Qn(z2)〉)〉〉+ 〈Qn(z1)〉 〈Qn(z2)〉
〈〈

1

τ

t1
∫

z1

Q0(u1) du1
1

τ

t2
∫

z2

Q0(u2) du2

〉〉

− 〈Qn(z1)〉
〈〈

1

τ

t1
∫

z1

Q0(u1) du1 (Qn(z2)− 〈Qn(z2)〉)
〉〉

− 〈Qn(z2)〉
〈〈

(Qn(z1)− 〈Qn(z1)〉)
1

τ

t2
∫

z2

Q0(u2) du2

〉〉)

13



Removing terms with independent values yields the final expression:

≃ w2
n e

− 1
τ

∫

t1
z1

〈Q0(u1)〉du1−
1
τ

∫

t2
z2

〈Q0(u2)〉du2

(

〈〈Qn(z1)Qn(z2)〉〉 − 〈Qn(z1)〉
1

τ

t1
∫

z1

〈〈Qn(u)Qn(z2)〉〉 du− 〈Qn(z2)〉
1

τ

t2
∫

z2

〈〈Qn(z1)Qn(v)〉〉 dv

+ 〈Qn(z1)〉 〈Qn(z2)〉
1

τ2

t1
∫

z1

t2
∫

z2

N
∑

m=1

〈〈Qm(u1)Qm(u2)〉〉 du1 du2

)

For the mixed terms m 6= n and following similar steps,

wn wm

〈〈

Qn(z1) e
− 1

τ

∫

t1
z1

Q0(u)du1 Qm(z2) e
− 1

τ

∫

t2
z2

Q0(u2)du2

〉〉

≃ wn wm e
− 1

τ

∫

t1
z1

〈Q0(u1)〉du1−
1
τ

∫

t2
z2

〈Q0(u2)〉du2

(

− 〈Qn(z1)〉
1

τ

t1
∫

z1

〈〈Qm(u)Qm(z2)〉〉 du− 〈Qm(z2)〉
1

τ

t2
∫

z2

〈〈Qn(z1)Qn(v)〉〉 dv

+ 〈Qn(z1)〉 〈Qm(z2)〉
1

τ2

t1
∫

z1

t2
∫

z2

(〈〈Qn(u1)Qn(u2)〉〉+ 〈〈Qm(u1)Qm(u2)〉〉) du1 du2

)

In terms of the filtered process,

〈〈Y1 Y2〉〉1 =
1

τ2

t1
∫

−∞

t2
∫

−∞

N
∑

n=1

(

w2
n

〈〈

Qn(z1) e
− 1

τ

∫

t1
z1

Q0(u1)du1 Qn(z2) e
− 1

τ

∫

t2
z2

Q0(u2) du2

〉〉

+
∑

m 6=n

wn wm

〈〈

Qn(z1) e
− 1

τ

∫

t1
z1

Q0(u1)du1 Qm(z2) e
− 1

τ

∫

t2
z2

Q0(u2) du2

〉〉

)

dz1 dz2

=
1

τ2

t1
∫

−∞

t2
∫

−∞

e
− 1

τ

∫

t1
z1

〈Q0(u1)〉du1−
1
τ

∫

t2
z2

〈Q0(u2)〉du2

N
∑

n=1



w2
n 〈〈Qn(z1)Qn(z2)〉〉+

N
∑

m=1

N
∑

m′=1

wn wmQ̄n(z1) Q̄m(z2)
1

τ2

t1
∫

z1

t2
∫

z2

〈〈Qm′(u1)Qm′(u2)〉〉 du1 du2

−
N
∑

l=1

wn wl



Q̄n(z1)
1

τ

t1
∫

z1

〈〈Ql(u1)Ql(z2)〉〉 du1 + Q̄n(z2)
1

τ

t2
∫

z2

〈〈Ql(u2)Ql(z1)〉〉 du2







 dz1 dz2

B.1 Stationary Limit

The stationary limit is obtained by setting the onset of PPP activity at an earlier point than membrane
potential integration, such that the cumulants of shot noise can be replaced by their stationary limits.

〈Yt〉0 =

N
∑

n=1

wn 〈Qn〉
1

τ

t
∫

−∞

e−
t−z
τ

〈Q0〉 dz =
1

〈Q0〉
N
∑

n=1

wn 〈Qn〉

The stationary limit of shot noise autocovariance can be written 〈〈Q1 Q2〉〉stat =
〈〈

Q2
〉〉

r (|t1 − t2|),
since:

〈〈Q1 Q2〉〉stat = λ

min(t1,t2)
∫

−∞

f(t1 − x) f(t2 − x) dx = λ

+∞
∫

0

f(u) f(|t1 − t2|+ u) du =
〈〈

Q2
〉〉

r (|t1 − t2|)

14



with r (|t1 − t2|) ≡
∫ +∞

0
f(u) f(|t1 − t2|+ u) du/

∫ +∞

0
f(v)2 dv

For the second order of the mean, integrating by parts the inner integrals yields:

〈Yt〉2 = 〈Yt〉0 +
N
∑

n=1

〈〈

Q2
n

〉〉 1

τ

t
∫

−∞

e−
t−z
τ

〈Q0〉



−wn

1

τ

t−z
∫

0

rn(u) du+

N
∑

m=1

wm 〈Qm〉 1

2τ2

t
∫

z

t
∫

z

rn(|u1 − u2|) du1 du2



 dz

= 〈Yt〉0 +
N
∑

n=1

〈〈

Q2
n

〉〉 1

〈Q0〉
1

τ

t
∫

−∞

e−
t−z
τ

〈Q0〉



−wn rn(t− z) +
N
∑

m=1

wm 〈Qm〉 1

τ

t−z
∫

0

rn(v) dv



 dz

= 〈Yt〉0 −
N
∑

n=1

1

〈Q0〉
(wn − 〈Yt〉0)

〈〈

Q2
n

〉〉 1

τ

t
∫

−∞

e−
t−z
τ

〈Q0〉 rn(t− z) dz

Proceeding in the same manner for the autocovariance,

〈〈Y1 Y2〉〉1 =
1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
〈Q0〉

N
∑

n=1



w2
n

〈〈

Q2
n

〉〉

rn(|z1 − z2|) +
N
∑

m=1

N
∑

m′=1

wn wm 〈Qn〉 〈Qm〉
〈〈

Q2
m′

〉〉 1

τ2

t1
∫

z1

t2
∫

z2

rm′(|u1 − u2|) du1 du2

−
N
∑

l=1

wn wl 〈Qn〉
〈〈

Q2
l

〉〉





1

τ

t1
∫

z1

rl(|u1 − z2|) du1 +
1

τ

t2
∫

z2

rl(|z1 − u2|) du2







 dz1 dz2

=
1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
〈Q0〉

N
∑

n=1

(

w2
n

〈〈

Q2
n

〉〉

rn(|z1 − z2|) +
wn 〈Qn〉
〈Q0〉

N
∑

m=1

(〈Yt〉0 − 2wm)
〈〈

Q2
m

〉〉

rm(|z1 − z2|) dz1 dz2
)

=
N
∑

n=1

(wn − 〈Yt〉0)
2 〈〈

Q2
n

〉〉 1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
〈Q0〉 rn(|u1 − u2|) dz1 dz2

For exponential kernel shot noise,

〈Yt〉2 = 〈Yt〉0 −
N
∑

n=1

〈〈

Q2
n

〉〉

〈Q0〉
(wn − 〈Yt〉0)

1

τ

t
∫

−∞

e−
t−z
τ

〈Q0〉e−
t−z
τn dz = 〈Yt〉0 −

N
∑

n=1

〈〈

Q2
n

〉〉

〈Q0〉
(

〈Q0〉+ τ
τn

) (wn − 〈Yt〉0)

where τn is the synaptic time constant of shot noise conductance Gn(t).

For the autocovariance,

〈〈Y1 Y2〉〉1 =

N
∑

n=1

(wn − 〈Yt〉0)
2 〈〈

Q2
n

〉〉 1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
〈Q0〉 e−

|z1−z2|
τn dz1 dz2
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Assuming t1 ≥ t2,

〈〈Y1 Y2〉〉1

=

N
∑

n=1

(wn − 〈Yt〉0)
2 〈〈

Q2
n

〉〉

1

τ2

t2
∫

−∞

e−
t2−z2

τ
〈Q0〉





z1
∫

−∞

e−
t1−z1

τ
〈Q0〉 e−

z1−z2
τn dz1 +

t2
∫

z1

e−
t1−z1

τ
〈Q0〉 e−

z2−z1
τn dz1 +

t1
∫

t2

e−
t1−z1

τ
〈Q0〉 e−

z1−z2
τn dz1



 dz2

Evaluating the integrals yields the final expression:

〈〈Y1 Y2〉〉1 =

N
∑

n=1

〈〈

Q2
n

〉〉

(

〈Q0〉+ τ
τn

)(

〈Q0〉 − τ
τn

)

(

e−
|t1−t2|

τn − τ

τn

1

〈Q0〉
e−

|t1−t2|
τ

〈Q0〉

)

(wn − 〈Yt〉0)
2

〈〈

Y 2
〉〉

1
=

N
∑

n=1

〈〈

Q2
n

〉〉

〈Q0〉
(

Q0 +
τ
τn

) (wn − 〈Yt〉0)
2

Expressing in terms of Vt yields:

〈Vt〉0 =
1

〈G0〉

(

gl El +
N
∑

n=1

〈Gn〉En

)

〈Vt〉2 = 〈Vt〉0 −
N
∑

n=1

〈〈

G2
n

〉〉

gl 〈G0〉
(

〈G0〉
gl

+ τ
τn

) (En − 〈Vt〉0)
〈〈

V 2
t

〉〉

=
N
∑

n=1

〈〈

G2
n

〉〉

gl 〈G0〉
(

〈G0〉
gl

+ τ
τn

) (En − 〈Vt〉0)
2

〈〈V1 V2〉〉1 =
N
∑

n=1

〈〈

G2
n

〉〉

g2l

(

〈G0〉
gl

+ τ
τn

)(

〈G0〉
gl

− τ
τn

)

(

e−
t1−t2

τn − τ

τn

gl
〈G0〉

e
−

t1−t2
τ

〈G0〉
gl

)

(En − 〈Vt〉0)
2

For alpha kernel shot noise,

〈Yt〉2 = 〈Yt〉0 −
N
∑

n=1

(

〈Q0〉+ 2 τ
τn

)

〈〈

Q2
n

〉〉

〈Q0〉
(

〈Q0〉+ τ
τn

)2 (wn − 〈Yt〉0)
〈〈

Y 2
t

〉〉

=
N
∑

n=1

(

〈Q0〉+ 2 τ
τn

)

〈〈

Q2
n

〉〉

〈Q0〉
(

〈Q0〉+ τ
τn

)2 (wn − 〈Yt〉0)
2

〈〈Y1 Y2〉〉1 =

N
∑

n=1

〈〈

Q2
n

〉〉

(

〈Q0〉+ τ
τn

)2 (

〈Q0〉 − τ
τn

)2 (wn − 〈Yt〉0)
2

((

(

1 +
|t1 − t2|

τn

)(

〈Q0〉+
τ

τn

)(

〈Q0〉 −
τ

τn

)

− 2

(

τ

τn

)2
)

e−
|t1−t2|

τn

+2

(

τ

τn

)3
1

〈Q0〉
e−

|t1−t2|
τ

〈Q0〉

)

In terms of Vt,

〈Vt〉2 = 〈Vt〉0 −
N
∑

n=1

(

〈G0〉
gl

+ 2 τ
τn

)

〈〈

G2
n

〉〉

gl

(

〈G0〉
gl

+ τ
τn

)2

〈G0〉
(En − 〈Vt〉0)

〈〈

V 2
t

〉〉

1
=

N
∑

n=1

(

〈G0〉
gl

+ 2 τ
τn

)

〈〈

G2
n

〉〉

gl

(

〈G0〉
gl

+ τ
τn

)2

〈G0〉
(En − 〈Vt〉0)

2
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〈〈V1 V2〉〉1 =
N
∑

n=1

〈〈

G2
n

〉〉

g2l

(

〈G0〉
gl

+ τ
τn

)2 (
〈G0〉
gl

− τ
τn

)2 (En − 〈Vt〉0)
2

((

(

1 +
|t1 − t2|

τn

)( 〈G0〉
gl

+
τ

τn

)( 〈G0〉
gl

− τ

τn

)

− 2

(

τ

τn

)2
)

e−
|t1−t2|

τn

+2

(

τ

τn

)3
gl

〈G0〉
e
−

|t1−t2|
τ

〈G0〉
gl

)

C Edgeworth Expansion

In terms of the normalized process Xt = (Vt − 〈Vt〉) /σt with σt ≡
√

〈〈V 2
t 〉〉, the truncated fourth order

Edgeworth series is given by:

pew (Xt = x) ≃ 1

σt

(

1 +
1

3!

〈〈

V 3
t

〉〉

σ3
t

(

x3 − 3x
)

+
1

4!

〈〈

V 4
t

〉〉

σ4
t

(

x4 − 6x2 + 3
)

+
10

6!

〈〈

V 3
t

〉〉2

σ6
t

(

x6 − 15x4 + 45x2 − 15
)

)

N (x) (21)

where N (x) = exp(−x2/2)/
√
2π is the standard normal density and p(Vt = v) = pew

(

x = v−〈Vt〉
σt

)

. The

third order and fourth order of the series is given by the first and second lines, respectively.

D Compound PPP Transformations

The expectation of F (t, ξ) under the compound process Ξ is given by:

〈F (t, ξ)〉 =
∞
∑

n=0

1

n!
e−m(S)

∫

S

· · ·
∫

S

∫

Θ

· · ·
∫

Θ

F (t, (x1,θ1), . . . , (xn,θn))
n
∏

j=1

p(θj) dθj λ(xj) dxj

If F (t, ξ) ≡ Gt is a shot noise process we obtain the familiar factorization:

〈

eisGt(ξ)
〉

= e−m(S)
∞
∑

n=0

1

n!





∫

S

∫

Θ

eisg(t,x,θ) p(θ)λ(x) dθ dx





n

= exp





∫

S

∫

Θ

(

eisg(t,x,θ) − 1
)

p(θ)λ(x) dθ dx





The k-th cumulants of Gt and G1, . . . , GK are given by:

〈〈

Gk
t

〉〉

=

(

1

i

d

ds

)k

log
〈

eisGt(ξ)
〉

∣

∣

∣

∣

∣

s=0

=

∫

S

∫

Θ

g (t, x,θ)
k
p(θ)λ(x) dθ dx

〈〈G1 · · ·GK〉〉 =
(

1

i

d

ds1

)

· · ·
(

1

i

d

dsK

)

log
〈

eisG1(ξ)+···isGK(ξ)
〉

∣

∣

∣

∣

s1=···=sK=0

=

∫

S

∫

Θ

g (t1, x,θ) · · · g (tK , x,θ) p(θ)λ(x) dθ dx

The Slivnyak-Mecke Theorem extends to transformations of compound PPP, which can be verified as
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follows:
〈

∑

xj∈ξ

f
(

t, xj , ξ\xj
,θ
)

〉

=
∞
∑

n=0

1

n!
e−m(S)

∫

S

· · ·
∫

S

∫

Θ

· · ·
∫

Θ

∑

xj∈ξ

f (t, (xj ,θj), {(x1,θ1) . . . , (xn,θn)} \ (xj ,θj))
n
∏

j=1

p(θj) dθj λ(xj) dxj

=

∞
∑

n=0

1

(n− 1)!
e−m(S)

∫

S

· · ·
∫

S

∫

Θ

· · ·
∫

Θ

f (t, (xn,θn), {(x1,θ1) . . . , (xn−1,θn−1)})
n
∏

j=1

p(θj) dθj λ(xj) dxj

=

∫

S

∫

Θ

∞
∑

n=0

1

(n− 1)!
e−m(S)

∫

S

· · ·
∫

S

∫

Θ

· · ·
∫

Θ

f (t, (x,θ), {(x1,θ1) . . . , (xn−1,θn−1)})

n−1
∏

j=1

p(θj) dθj λ(xj) dxj p(θ) dθ λ(x) dx

=

∫

S

∫

Θ

〈f (t, x,θ, ξ)〉 p(θ) dθ λ(x) dx

In particular, the expectation of a sum of products is given by:

〈

∑

xj∈ξ

f(t, xj ,θj)
∏

xk∈ξ

w(t, xk,θk)

〉

=

〈

∏

xk∈ξ

w(t, xk,θk)

〉

∫

S

∫

Θ

f(t, x,θ)w(t, x,θ) p(θ) dθ λ(x) dx
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Chapter 5

How causal correlations between
synaptic inputs affect membrane
potential fluctuations

Summary

This article builds on the extension to multiple synapse types presented in Chapter 4 and in-
vestigates the effects of correlations in synaptic input. Experimental and computational studies
report various degrees of correlation that are reflected in the statistics of membrane potential
fluctuations and may convey information to the neuron. This article proposes a simple model
of synaptic correlation and evaluates its impact in membrane potential statistics.

A basic model of passive membrane with two synapse types (excitatory and inhibitory) is first
introduced with synaptic correlations being generated by inserting common presynaptic spikes
in the inputs. This model displays strong correlation effects since common spikes are coinci-
dent between synapse types. Adding random displacements to common spikes removes spike
coincidence and enables arbitrary cross-correlation function between presynaptic spikes. This
enables to generate causal correlations between synapse types by adding strictly positive ran-
dom displacements to one synapse type. The exact cumulants of both models are derived in
addition to the central moments expansion (CME). These analytical results are compared with
numerical simulations.

This approach to analyze correlated synaptic input is possible by explicitly considering the
effect of individual presynaptic spikes in the evolution of membrane potential.

This research article is work in progress with its main analytical results already derived.

Résumé

Les corrélations des entrées pré-synaptiques sont sensées avoir un rôle important dans la dy-
namique de populations neuronales et ces corrélations se reflètent aussi dans le potentiel de
membrane de neurones individuels. Nous étudions l’effet des entrées synaptiques corrélées
dans les statistiques des fluctuations du potentiel de membrane pour une modèle passif de
membrane neuronale avec des synapses excitatrices et inhibitrices à conductance alimentées
par des processus shot noise. Les cumulants exacts et leurs approximations sont obtenus en
termes des cumulants du shot noise dans le cadre d’une expansion des moments centraux. Un
modèle simple de corrélations causales des entrées synaptiques est analysé.
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Abstract

Correlations in presynaptic input are thought to have an important role in the dynamics of neu-
ronal populations and are reflected in the membrane potential of individual neurons. We investigate
the effect of correlated synaptic input in the statistics of membrane potential fluctuations for a pas-
sive neuronal membrane with excitatory and inhibitory synapses driven y shot noise conductance.
Exact cumulants are obtained and their approximation in terms of shot noise cumulants is derived
with a central moments expansion. A simple model of causal correlation between synaptic input is
investigated.

1 Introduction

Experimental studies have reported varying degrees of correlation in membrane potential of neurons and
related neural correlates [Ts’o et al., 1986, Gray et al., 1989, Gawne and Richmond, 1993, Zohary et al.,
1994, Prut et al., 1995, Lee et al., 1998, Renart et al., 2010]. Several theoretical and computational
studies have investigated the impact of correlations in input spike trains [Brette, 2009, Macke et al.,
2009], synaptic input currents and conductances [Rudolph and Destexhe, 2006], neuronal membranes
[Rosenbaum et al., 2010] and neuronal firing [Salinas and Sejnowski, 2000, Moreno et al., 2002, Kuhn
et al., 2003, Renart et al., 2010, Rossant et al., 2011, Hertz, 2010].

In this article we investigate the effects of presynaptic correlation in membrane potential statistics for a
passive membrane model driven by excitatory and inhibitory shot noise conductance with nonstationary
input rates. Correlations are generated by adding common spikes to presynaptic inputs. Several models
of presynaptic correlations are investigated. Arbitrary crosscovariance functions between excitatory and
inhibitory spike trains are enabled by adding random displacements to common spikes [Brette, 2009].
Strictly positive or negative displacements results in causal correlations. The exact cumulants are ob-
tained for each case and the central moments expansion is used to analyze the structure and consequence
of synaptic correlation in membrane potential statistics.

2 Model of Correlated Shot Noise Input

We consider a simple passive membrane model with excitatory and inhibitory conductance synapses.
Each synapse type is driven by independent shot noise processes generated by presynaptic events ξe
and ξi. We introduce correlation between excitatory and inhibitory synapses by adding a third set of
independent presynaptic events ξc to each synapse type. This results in the following shot noise input
model:

Ge(t) =
∑

xj∈ξe

ge(t− xj)H(t− xj) +
∑

xl∈ξc

ge(t− xl)H(t− xl) (1)

Gi(t) =
∑

xi∈ξi

gi(t− xi)H(t− xi) +
∑

xl∈ξc

gi(t− xl)H(t− xl) (2)

where gs is the impulse response function (shot noise kernel) for synapse type s ∈ {e, i} and H(u) is the
Heaviside function. The presynaptic events ξ = {ξe, ξi, ξc} are realizations of three independent compo-
nents of multivariate Poisson point processes (PPP) Ξ on the real line with rate functions λn(t) > 0 ,
n = {e, i, c} such that mn(S) ≡

∫

S
λn(x) dx is finite for any bounded interval S ⊆ R of the real line.
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The shot noise input drives the evolution of the membrane potential V (t) according to the following
membrane equation:

τm
d

dt
V (t) = El − V (t) + (Ee − V (t))

1

gl
Ge(t) + (Ei − V (t))

1

gl
Gi(t) (3)

where τm is the membrane time constant, El is the leak potential, gl is the leak conductance, Es is the
synaptic reversal potential of synapse type se.

Two examples of synaptic correlation generated by this model are illustrate in Fig. 1.
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Figure 1 – Two examples of neuron model with excitatory and inhibitory conductance synapses
under correlated synaptic input between ta and tb ≥ ta. Excitatory conductance Ge (top) and
inhibitory conductance Gi (middle) drive the membrane potential evolution Vt (bottom). Single
realizations of Ge, Gi and Vt are shown in black, realizations of ξe and ξi are marked by gray dots
and xl ∈ ξc is marked by magenta dots. Mean and standard deviation (µ ± σ) are shown in gray.
Correlated input is implemented by adding common presynaptic spikes to Ge and Gi. In the example
from the left plot common input is cumulative with the original rates. In the right plot the total
synaptic rates are unchanged. The simulation parameters are detailed at the end of this Section.

In both examples the membrane potential is first driven to a stationary regime at time ta > 0 with shot
noise conductances with constant rates λe and λi. The original realizations of presynaptic spike times
ξe and ξi from these processes are represented by gray dots. Between times ta and tb > ta common
presynaptic events ξc are added to synaptic input. In the first scenario, the common input rate is
cumulative to the original rates and in the second scenario the synaptic rates remain constant. The rate
functions used to implement them are shown in Fig. 2.
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Figure 2 – Rate functions for the examples of synaptic correlation shown in Fig. 1. The excitatory
and inhibitory rates are represented with red and green lines, respectively. The common input rate
is represented with dashed gray line.

The introduction of common presynaptic spikes between ta and tb affects the membrane potential and
input conductance in different ways. According to the Campbell theorem, the mean and variance of the
synaptic input are linear in the rate and their values between ta and tb are given by:

〈Gn(t)〉 = λn

ta
∫

−∞

gn(t− x) dx+
(

λ̃n + λc

)

t
∫

ta

gn(t− x) dx

〈〈

Gn(t)
2
〉〉

= λn

ta
∫

−∞

gn(t− x)2 dx+
(

λ̃n + λc

)

t
∫

ta

gn(t− x)2 dx

where n ∈ {e, i} and λ̃n is the rate of independent synaptic input between ta and tb.

In this first scenario the mean membrane potential 〈V (t)〉 experiences a transient increase followed by a
decrease, with its variance

〈〈

V (t)2
〉〉

also decreasing after the initial transient. This decrease in variance
occurs while the variance of the conductance inputs increases (linearly). In the second example 〈V (t)〉
experiences a slight decrease, and

〈〈

V (t)2
〉〉

displays a considerable reduction. These two examples illus-
trate that correlations in the synaptic input can affect the statistics of membrane potential fluctuations
in non-trivial ways. We are interested in understanding qualitatively and quantitatively such effects,
and more generally, in understanding how the statistics of common presynaptic input events affect the
statistics of mean membrane potential 〈V (t)〉.

The numerical simulations were generated with exponential kernel g(t − x)exp = h exp (−(t− x)/τs)
for excitatory conductance and alpha kernel g(t−x)alpha = h ((t−x)/τs) exp (−(t− x)/τs) for inhibitory
conductance. The excitatory and inhibitory rate are λe = 600 Hz and λi = 400 Hz, respectively. The
conductance rate functions are represented in Fig. 2 for both examples. Other parameters are τm = 0.02
s, El = −0.06 V, Ee = 0 V, Ei = −0.08 V, gl = 10e-9 S, he = 5e-9 S, hi = 16e-9 S, τe = 0.0025 s,
τi = 0.0015 s.

2.1 Exact Solution

In this section we derive the exact cumulants for this neuron model with correlated synaptic input due to
injection of common spikes between synapse types. The membrane equation Eq. (3) is first transformed
to its unit-less version and responses to common presynaptic events ξc are grouped into a third shot noise
process since ξc is independent from ξe and ξi. The analytical structure of this correlated input model is
in fact equivalent to a membrane model with three independent conductance synapse types.

The membrane equation (Eq. 3) is transformed to its unit-less version by applying the following trans-
formations:

Y (t) =
V (t)− El

Ee − Ei

w1 =
Ee − El

Ee − Ei

w2 =
Ei − El

Ee − Ei

w3 = 1
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yielding,

τ
d

dt
Y (t) = −Y (t)Q0(t) + w1 Q1(t) + w2 Q2(t) + w3 Q3(t) (4)

where,

Q0(t) = 1 +Q1(t) +Q2(t) + Q̂3(t)

Q1(t) =
1

gl
Ge(t, ξe) =

∑

xj∈ξe

g1(t− xj)H(t− xj)

Q2(t) =
1

gl
Gi(t, ξi) =

∑

xi∈ξi

g2(t− xi)H(t− xi)

Q̂3(t) =
1

gl
Ge(t, ξc) +

1

gl
Gi(t, ξc) ≡

∑

xl∈ξc

ĝ3(t− xl)H(t− xl)

Q3(t) =
w1

gl
Ge(t, ξc) +

w2

gl
Gi(t, ξc) ≡

∑

xl∈ξc

g3(t− xl)H(t− xl)

where Gs(t, ξn) represents synaptic input of synapse type s restricted to spike arrivals from realization
ξn, and ĝk(t− xl) = gk(t− xl) for k ∈ {1, 2}.

Writing explicitly in terms of conductances,

Q̂3(t) =
1

gl

∑

xl∈ξc

ge(t− xl)H(t− xl) + gi(t− xl)H(t− xl)

Q3(t) =
1

gl

∑

xl∈ξc

w1 ge(t− xl)H(t− xl) + w2 gi(t− xl)H(t− xl)

The system response Y (t) for arbitrary and independent shot noise conductance Q1(t), Q2(t) and Q3(t)
is obtained by solving Eq. (4) for the corresponding realizations of presynaptic events ξ = {ξe, ξi, ξc}.
Assuming without loss of generality an initial value Y0 = 0,

Y (t, ξ) =
1

τ

t
∫

−∞

3
∑

n=1

wn Qn(z) e
− 1

τ

∫

t

z
Q0(u) du dz

The cumulants of Yt ≡ Y (t, ξ) correspond to filtering of three independent shot noise inputs with multi-
plicative noise. As shown in [Brigham and Destexhe, 2015], the mean and higher order cumulants of the
filtered process are given by:

〈Yt〉 =
1

τ

t
∫

−∞

3
∑

n=1

〈

wn Qn(z) e
− 1

τ

∫

t

z
Q0(u) du

〉

dz (5)

〈〈Y1 · · ·YK〉〉 = 1

τK

t1
∫

−∞

· · ·
tK
∫

−∞

3
∑

n1=1

· · ·
3
∑

nK=1

〈〈

K
∏

k=1

wnk
Qnk

(zk) e
− 1

τ

∫

tk
zk

Q0(u) du

〉〉

dz1 · · · dzK (6)

Using independence of Ξ and applying the Slivnyak-Mecke Theorem yields the expectations inside the
integrals. Explicit expressions for the mean and autocovariance are provided in Appendix A with key
expectations given by:

〈

Qn(z) e
− 1

τ

∫

t

z
Q0(u) du

〉

=
〈

e−
1
τ

∫

t

z
Q0(u) du

〉

z
∫

−∞

gn(z − x) e−
1
τ

∫

t

z
ĝn(u−x)H(u−x) du λn(x) dx

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Qn(u) du

〉

= exp





∫

S

(

K
∏

k=1

e
− 1

τ

∫

tk
zk

ĝn(u−x)H(u−x) du − 1

)

λn(x) dx
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Comparison with numerical simulations for the mean and standard deviation is shown in Fig. 3 and
illustrates the excellent accuracy provided by the exact solutions.
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Figure 3 – Comparison of exact solutions with numerical simulations for mean and second order
cumulants of membrane potential V (t). There is excellent agreement between the simulations (gray)
and the analytic prediction (black).

The exact cumulants of membrane potential fluctuations (Eqs (5) and (6)) can be used to build very accu-
rate approximations of the time-evolving distribution of membrane potential with truncated Edgeworth
series [Edgeworth, 1907, Cramér, 1946, Wallace, 1958]. This series is an asymptotic expansion of p(Vt)
in terms of its cumulants and the second order coincides with the gaussian approximation. The third
and fourth order take into consideration the skewness and kurtosis of the distribution, respectively. The
truncated series up to the fourth order is included in Appendix B. As illustrated in Fig. 4, the skewness
of p(Vt) at the local minima tb is well captured by the third order of the truncated Edgeworth series.
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Figure 4 – Comparison with numerical simulations for the probability density function (pdf) of
membrane potential p(Vt) given by truncated Edgeworth series using exact second and third cumu-
lant of Vt. The pdf is evaluated at ta and tb that corresponds to local maxima and minima of Vt

respectively (see Fig. 5). There is good agreement between the simulations (gray) and the gaussian
approximation (black dash) at ta. The effect of third order cumulant (kurtosis) at tb is well captured
by the third order of the series.
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2.2 Central Moments Expansion

The central moments expansion (CME) provides an approximation of the exact cumulants in terms of
integrated shot noise. This enables to investigate the role of shot noise cumulants in membrane potential
statistics and directly exposes the shot noise process generated by common input. This is the particular
case for N = 3 that is developed in general in [Brigham and Destexhe, 2015]. The deterministic solution
of Eq. (4) with mean shot noise input 〈Qn(t)〉 is given by:

〈Yt〉0 =
1

τ

t
∫

−∞

e−
1
τ

∫

t

z
〈Q0(u)〉du

3
∑

n=1

wn 〈Qn(z)〉 dz (7)

The correction to the mean 〈Yt〉 due to the stochastic nature of shot noise input is given by the second
order of the CME for the mean:

〈Yt〉2 = 〈Yt〉0 +
1

τ

t
∫

−∞

e−
1
τ

∫

t

z
〈Q0(u)〉du

3
∑

n=1



−1

τ

t
∫

z

wn 〈〈Qn(z)Qn(u)〉〉 du

+

3
∑

m=1

wn 〈Qn(z)〉
1

2τ2

t
∫

z

t
∫

z

〈〈Qm(u1)Qm(u2)〉〉 du1 du2



 dz (8)

where the subscript 2 represents the second order of the expansion of the mean.

The above expression makes explicit the important role of shot noise autocovariance in the stochas-
tic correction of the mean 〈Yt〉 in regards to the deterministic solution 〈Yt〉0. The first order of CME for
the autocovariance is given by:

〈〈Y1 Y2〉〉1 =
1

τ2

t1
∫

−∞

t2
∫

−∞

e
− 1

τ

∫

t1
z1

〈Q0(u1)〉du1−
1
τ

∫

t2
z2

〈Q0(u2)〉du2

3
∑

n=1

(

w2
n 〈〈Qn(z1)Qn(z2)〉〉

+
3
∑

m=1

3
∑

m′=1

wn wm 〈Qn(z1)〉 〈Qm(z2)〉
1

τ2

t1
∫

z1

t2
∫

z2

〈〈Qm′(u1)Qm′(u2)〉〉 du1 du2

−
3
∑

l=1

wnwl

(

〈Qn(z1)〉
1

τ

t1
∫

z1

〈〈Ql(u1)Ql(z2)〉〉 du1

+ 〈Qn(z2)〉
1

τ

t2
∫

z2

〈〈Ql(u2)Ql(z1)〉〉 du2

))

dz1 dz2 (9)

where the subscript 1 represents the first order of the expansion for the autocovariance.

The first order of CME for the autocovariance generally provides good approximations in the range of
biological parameters. Some conditions may require the the second order of the expansion that includes
contributions up to fourth order cumulants.
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Figure 5 – Comparison with numerical simulations of approximate solution given by central mo-
ments expansion (CME) for mean and standard deviation of membrane potential V (t). There is
excellent agreement between the simulations (gray) and the approximate solution (brown).

The stationary limit of Vt yields the statistics shot noise input with constant rate after dissipation of
initial transients and is obtained by setting the onset of PPP activity at an earlier time than the start of
membrane potential integration. Under such conditions the cumulants of shot noise can be replaced by
their stationary limits.

〈Yt〉0 =
1

〈Q0〉
3
∑

n=1

wn 〈Qn〉 (10)

〈Yt〉2 = 〈Yt〉0 −
3
∑

n=1

1

〈Q0〉
(wn − 〈Yt〉0)

〈〈

Q2
n

〉〉 1

τ

t
∫

−∞

e−
t−z
τ

〈Q0〉 rn(t− z) dz (11)

〈〈Y1 Y2〉〉1 =

3
∑

n=1

(wn − 〈Yt〉0)
2 〈〈

Q2
n

〉〉 1

τ2

t1
∫

−∞

t2
∫

−∞

e−
t1−z1+t2−z2

τ
〈Q0〉 rn(|z1 − z2|) dz1 dz2 (12)

where 〈Qn〉,
〈〈

Q2
n

〉〉

and 〈〈Qn(t1)Qn(t2)〉〉stat =
〈〈

Q2
n

〉〉

r (|t1 − t2|) are respectively the mean, variance
and autocovariance of stationary shot noise conductance Qn(t).

3 Random displacements

Adding random displacements to common presynaptic spikes enables to implement arbitrary crosscovari-
ance functions between the spike trains and results in the following synaptic input model:

Ge(t) =
∑

xj∈ξe

ge(t− xj)H(t− xj) +
∑

xl∈ξc

ge(t− (xl + ηl))H(t− (xl + ηl))

Gi(t) =
∑

xi∈ξi

gi(t− xi)H(t− xi) +
∑

xl∈ξc

gi(t− (xl + θl))H(t− (xl + θl))

where ηl ∼ pe(η) and θl ∼ pi(θ) are independent random displacements.

The common spikes are generated by a Compound PPP Ξη
c that assigns independent marks ηl ∼ pe(η)

and θl ∼ pi(θ) to each arrival time tl ∈ ξc. A realization ξc of the compound PPP specifies both the
common arrival times and the random displacements, i.e. ξc = {(x1, η1, θ1), . . . , (xL, ηL, θL)}.

The correlated input model analyzed in the previous sections results in delta-correlated crosscovari-
ance between excitatory and inhibitory spike trains. Arbitrary crosscovariance functions are generated
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by adding random displacements to the common spikes [Brette, 2009]. The results from the previous
sections can be used with the following changes:

Q̂3(t) =
1

gl

∑

xl∈ξc

ge(t− xl − ηl)H(t− xl − ηl) + gi(t− xl − θl)H(t− xl − θl)

Q3(t) =
1

gl

∑

xl∈ξc

w1 ge(t− xl − ηl)H(t− xl − ηl) + w2 gi(t− xl − θl)H(t− xl − θl)

The structure of the solution given by Eqs. (5) and (6) remains unchanged for this model. The indepen-
dence of Ξ and the Slivnyak-Mecke theorem yields the expectations inside the integrals with expectations
involving ξc evaluated under Ξη

c . The key expectations are given by:

〈

Q3(z) e
− 1

τ

∫

t

z
Q0(u) du

〉

=
〈

e−
1
τ

∫

t

z
Q0(u) du

〉

∫ ∫

z
∫

−∞

e−
1
τ

∫

t

z
(g1(u−x−η)H(u−x−η)+g2(u−x−θ)H(u−x−θ))du

(

w1 g1(z − x− η)H(z − x− η)

+ w2 g2(z − x− θ)H(z − x− θ)
)

λc(x) pe(η) pi(θ) dx dη dθ (13)

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Q3(u) du

〉

= exp

(

∫ ∫ ∫

S

(

K
∏

k=1

e
− 1

τ

∫

tk
zk

(g1(u−x−η)H(u−x−η)+g2(u−x−θ)H(u−x−θ))du − 1

)

λc(x) pe(η) pi(θ) dx dη dθ

)

(14)

The deterministic solution 〈Yt〉0 of this model is evaluated as in the previous section with the following
change:

〈Q3(t)〉 =
∫ ∫

t
∫

−∞

(w1 g1(z − x− η) + w2 g2(z − x− θ))λc(x) pe(η) pi(θ) dx dη dθ

The central moments expansion is developed around the deterministic solution and results in the same
expressions as Eqs. (7), (8) and (9) but with expectations involving ξc evaluated under Ξη

c .

Introducing random displacements in one synapse type and allowing strictly positive or negative dis-
placements in the other synapse type generates causal correlations in the synaptic input. We apply these
results to a membrane model with periodic common input shown in Fig. 6 and random displacements
with exponential distribution (µ = 5 ms) on common spikes from inhibitory input.
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Figure 6 – Neuron model with excitatory and inhibitory conductance synapses under periodic cor-
related synaptic input. The synaptic input rates for excitatory and inhibitory synapses is constant
and the common input oscillates periodically. Random displacements with exponential distribution
(µ = 5 ms) are added to common spikes from inhibitory input.

The rate functions used to implement this model are shown in Fig. 7.
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t (ms)
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λ
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Figure 7 – Rate functions for periodic common input (dashed gray) and constant excitatory and
inhibitory rates (red and green, respectively).

Comparison with numerical simulations for the mean and standard deviation is shown in Fig. 8 for mean
and variance and result in excellent accuracy. An approximation for the membrane potential distribution
using truncated Edgeworth series is also shown.
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Figure 8 – (Left) Comparison of exact solutions with numerical simulations for mean and second
order cumulants of membrane potential V (t). There is excellent agreement between the simulations
(gray) and the analytic prediction (black). (Right) Approximation of probability density function
(pdf) using truncated Edgeworth series of third order. The pdf is evaluated at ta and tb that corre-
sponds to local maxima and minima of Vt shown in the left plot.

4 Conclusion

The effect of synaptic input correlations in the statistics of membrane potential is investigated, in the
case of passive neuronal membrane driven by nonstationary shot noise conductance. Input correlations
are introduced by adding common presynaptic spikes to the inputs. Such input model displays a degree of
coincident presynaptic spikes that may not be biologically relevant. Arbitrary crosscorrelation functions
are implemented by adding random displacements to common input spikes. Causality can be enforced by
only adding random displacements to one synapse type and choosing a distribution with strictly positive
or negative values. The exact cumulants of these models is obtained under the formalism of Poisson Point
Process transformations. The central moments expansion (CME) is derived and expresses the cumulants
of membrane potential fluctuations in terms of the correlated shot noise inputs. Approximations to the
time-evolving distribution are obtained with truncated Edgeworth series based on the nonstationary cu-
mulants.

The CME relates the hierarchy of correlated shot noise cumulants to the statistics of membrane po-
tential fluctuations and may contribute to refine existing models of statistical inference by including
the effects of correlation in synaptic input. Future research questions will address the effect of input
correlation in the firing rate of the cell.
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Appendix

A Exact Cumulants

Using independence of Ξ and applying the Slivnyak-Mecke Theorem [Slivnyak, 1962, Mecke, 1967] yields
the expectations inside the integrals. For the mean and autocovariance,

〈

Qn(z) e
− 1

τ

∫

t

z
Q0(u) du

〉

=
〈

e−
1
τ

∫

t

z
Q0(u) du

〉

z
∫

−∞

gn(z, x) e
− 1

τ

∫

t

z
ĝn(u,x) du λn(x) dx
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3
∑

n=1

3
∑

m=1

〈

wn Qn(z1)wm Qm(z2)

2
∏

k=1

e
− 1

τ

∫

tk
zk

Q0(u) du

〉

=

〈

2
∏

k=1

e
− 1

τ

∫

tk
zk

Q0(u) du

〉







3
∑

n=1

w2
n

min(z1,z2)
∫

−∞

gn(z1 − x) gn(z2 − x)
2
∏

k=1

e
− 1

τ

∫

tk
zk

ĝn(u−x)H(u−x) du
λn(x) dx

+
3
∑

m=1

wm

z1
∫

−∞

gm(z1 − y)
2
∏

k=1

e
− 1

τ

∫

tk
zk

ĝm(v−y)H(v−y) dv
λm(y) dy

3
∑

l=1

wl

z2
∫

−∞

gl(z2 − z)

2
∏

k=1

e
− 1

τ

∫

tk
zk

ĝl(w−z)H(w−z) dw
λl(z) dz





In the general case,

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Q0(u) du

〉

=
3
∏

n=1

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Qn(u) du

〉

e−
t1−z1+t2−z2

τ

〈

K
∏

k=1

e
− 1

τ

∫

tk
zk

Qn(u) du

〉

= exp





∫

S

(

K
∏

k=1

e
− 1

τ

∫

tk
zk

ĝn(u−x)H(u−x) du − 1

)

λn(x) dx





B Truncated Edgeworth Expansion

In terms of the normalized process Xt = (Vt − 〈Vt〉) /σt with σt ≡
√

〈〈V 2
t 〉〉, the truncated fourth order

Edgeworth series is given by:

pew (Xt = x) ≃ 1

σt

(

1 +
1

3!

〈〈

V 3
t

〉〉

σ3
t

(

x3 − 3x
)

+
1

4!

〈〈

V 4
t

〉〉

σ4
t

(

x4 − 6x2 + 3
)

+
10

6!

〈〈

V 3
t

〉〉2

σ6
t

(

x6 − 15x4 + 45x2 − 15
)

)

N (x) (15)

where N (x) = exp(−x2/2)/
√
2π is the standard normal density and p(Vt = v) = pew

(

x = v−〈Vt〉
σt

)

. The

third order and fourth order of the series is given by the first and second lines, respectively.
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Chapter 6

Estimating stochastic process memory
in neuronal membranes

Summary

This article explores a complementary aspect of membrane potential dynamics, namely mem-
ory effects due to recent activity. Actual physical processes may have a characteristic memory
time during which recent history is important for the evolution of the system. In the case
of neuronal membranes with conductance synapses, the solution of the membrane equation
displays long range memory: the contribution of a past presynaptic spike depends on all sub-
sequent spikes. However, the most recent presynaptic input has higher impact on membrane
potential evolution resulting in an effective memory range of finite duration. The membrane
equation for current synapses does not have this type of memory effects since the contribution
of presynaptic spikes is independent of other spikes. However, the form of postsynaptic re-
sponse may also introduce a characteristic memory time.

In order to explore this question, we analyze the relaxation properties of these filtered pro-
cesses following the extinction of presynaptic activity. The second time derivative of the auto-
correlation can capture the effect of recent history when evaluated in a sliding window after
the extinction time. Beyond a critical time interval τcrit only residual memory effects remain by
this measure.

However, there is a free parameter related to the residual value of decorrelation that can be
neglected. We propose to constrain it by testing the loss of markov property with a two sample
Kolmogorov-Smirnov (K-S) test. This test rejects to a p-level of significance the baseline hy-
pothesis that the samples originate from the same distribution, which is chosen according to
the Markov hypothesis.

Quantifying the extent of memory effects and establishing their range provides a time scale
for the dynamics of neuronal population activity models beyond which memory effects can
be neglected. The characteristic memory time of membrane potential fluctuations in biologi-
cal neurons can be estimated from intracellular recordings containing up and down epochs by
aligning the end of up states.

Résumé

La présence d’effets de mémoire augmente la complexité de l’analyse des processus stochas-
tiques, et ce type d’effet est souvent négligé au profit de processus sans effet de mémoire dans
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les applications pratiques. Neanmoins, ces effets peuvent être étudiés analytiquement pour
des processus de shot noise simples ou filtrés, en analysant leurs propriétés de relaxation suite
à l’extinction du processus ponctuel de Poisson associé. Les effets de temps de mémoire car-
actéristique se manifestent par la décorrélation résiduelle dans la phase de relaxation. Une
échelle du temps pour cet effet de mémoire peut être estimée en se fixant un seuil de décorrélation
résiduelle maximale. Ceci permet d’évaluer une échelle de temps effective endeans laquelle le
processus présenterait des corrélations à longue portée tout en ayant des effets de mémoire
négligeables. Cependant, ce seuil critique est un paramètre libre du modèle qui peut être re-
streint par des simulations numériques avec le test de Kolmogorov-Smirnov à deux échantillons.
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Abstract

Memory effects often impair the tractability of stochastic processes and lead to consider their
memory-less approximations in actual applications. These effects can be investigated analytically for
shot noise and filtered shot noise processes by analyzing their relaxation properties after extinguishing
the associated Poisson point process. Any existing characteristic memory time results in residual
decorrelation in the relaxation phase. A time scale for process memory can be estimated by setting
a critical threshold of maximal residual decorrelation. This enables to determine the effective time
scale for which the process still has long range correlations but negligible memory effects. This critical
threshold is a free parameter of the method that can be constrained by numerical simulations with
two sample Kolmogorov-Smirnov (K-S) test.

1 Introduction

The prospect of only evaluating the present in order to successfully estimate the future is an important
property across many activities. This is also the case in the study of stochastic processes to the extent
of carrying a dedicated name: the Markov Property. The tractability of stochastic processes is greatly
improved by this property since only a very small set of conditional densities is required to completely
define them [Gillespie, 1992, Van Kampen, 1992]. Actual physical processes may have a characteristic
memory time during which recent history is important [Gardiner, 2009] and defines the shortest time
scale for which system dynamics can be modeled as Markovian. Computational neuroscience models
often assume the Markov property in state variables such as neuronal membrane potential or synaptic
input. Such hypothesis is an approximation for membrane models with conductance synapses since the
membrane equation has long term memory effects [Tuckwell, 1988, Gerstner et al., 2014]. Quantifying
the extent of these effects and establishing their characteristic memory time provides a time scale for
models of neuronal population activity beyond which memory effects can be considered minimal.

We explore this question by considering a passive membrane model with conductance synapses driven by
shot noise input and analyze the relaxation properties of membrane potential following the extinction of
synaptic input. The membrane potential and the synaptic input of this model are deterministic transfor-
mations of presynaptic spike times. Stopping the arrival of new spikes produces a transition between the
stochastic evolution of these filtered processes and their deterministic regimes and enables to gain access
to the characteristic memory time. The autocorrelation is measured after input extinction in order to
assess the level of residual decorrelation that typically decreases during relaxation. This provides a quan-
titative measure of process memory effects that can be applied to both membrane potential fluctuations
and synaptic input. These results extend to membrane models with current synapses since the latter
kind can also be considered shot noise processes.

This method has a free parameter related to the level of residual decorrelation that is considered neg-
ligible. We use an empirical test of effective memory timescale with the two sample version of the
Kolmogorov-Smirnov (K-S) test [Kolmogorov, 1933, Smirnov, 1939, Kolmogoroff, 1941]. The K-S test
has the ability to reject to a p-level of significance whether samples originate from the same (unknown)
distribution. We test samples from relevant empirical conditional distributions that are equivalent under
the Markov hypothesis. If the K-S test rejects the hypothesis that samples are drawn from the same dis-
tribution then the Markov hypothesis does not hold. This procedure has the power to reject the Markov
hypothesis but not to confirm it, which is sufficient for our purposes. The problem of evaluating the
Markov property from time series data is complex and has been the subject of recent interest [De Matos
and Fernandes, 2007, Aı̈t-Sahalia et al., 2010, Chen and Hong, 2012]. This empirical procedure estimates
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the level of memory effects that violates the Markov property over a large number of realizations and
therefore constraints the free parameter related to residual decorrelation.

2 Filtered Process Memory

We consider shot noise and filtered shot noise processes that are generated from a Poisson point process

(PPP) with nonstationary rate. These processes can display different time scales of memory effects as can
be appreciated by their relaxation following the extinction of PPP events. This is illustrated in Fig. 1,
where superposed realizations are shown for exponential and alpha kernel shot noise and their filtered
versions by a conductance-base membrane. The PPP extinction time text is marked by a vertical line.
The exponential kernel shot noise decays in an orderly manner after text . Realizations from the other
processes may display amplitude increases after text but after a short period all realizations also decay
rather orderly. The cases of amplitude increase beyond text reflects memory effects for these examples
since they originate in the particular history of the realizations prior to text.
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Figure 1 – Realizations from exponential (left) and alpha kernel (right) shot noise and their filtered
versions by a conductance-base neuronal membrane following the extinction of the underlying Pois-
son Point Process (PPP) at time text. The realizations of exponential shot noise decay in an orderly
manner after text whereas realizations of the other processes may still display amplitude increases
after text. These amplitude increases after the extinction of PPP reflect deviations from the mean
decay trajectory of the processes and are a form of recent history effect.

Ameasure of decay uniformity is given by the autocorrelation ρ, since the possibility that some realizations
increase in amplitude while the mean decays after text contributes to a decrease in ρ. The autocorrelation
ρ(X1 X2) is given by ρ(X1 X2) = 〈〈X1 X2〉〉 /(σ(X1)σ(X2)) where 〈〈X1 X2〉〉 is the autocovariance at
times t1 and t2 and σ(Xt) is the standard deviation at time t. In what follows, the autocorrelation will
be measured at times posterior to ts and text with ts < text. This is illustrated in Fig. 2 with realizations
from the alpha kernel shot noise.
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Figure 2 – Shot noise and filtered shot noise processes are generated from transformations of
Poisson point process (PPP) realizations. The PPP is active at time ts and inactive from time
text onwards (extinction time). The times ts and text are marked with vertical blue lines. The
extinction time marks a transition between the stochastic evolution of these filtered processes and
their deterministic regime.

Measuring the autocorrelation at ts while the PPP is still active is not very informative of decay behavior
following the extinction of the PPP. All processes from Fig. 1 have long tailed autocorrelations as shown
in the left plot of Fig. 3. A very different picture is obtained when measuring the autocorrelation after
text, as shown in the right plot of the same figure. At times later than text, the exponential kernel shot
noise Gexp is fully autocorrelated and its filtered process Vexp displays higher autocorrelation ρ than both
of the alpha kernel-based processes.
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Figure 3 – The autocorrelation ρ displays quite different characteristics when measured from time
ts (left) and time text onwards (right). The exponential kernel shot noise Gexp is fully autocorrelated
from text onwards, and its filtered process Vexp displays higher autocorrelation than the alpha kernel-
based processes. The ranking in autocorrelation as measured at ∆t = 20 ms can be compared with
decay orderliness at time text + 20 ms in Fig. 1.

The numerical simulations were generated with shot noise input with exponential kernel g(t − x)exp =
h exp (−(t− x)/τs) and alpha kernel g(t−x)alpha = h ((t−x)/τs) exp (−(t− x)/τs) for excitatory conduc-
tance. The stationary PPP rate λ = 500 Hz is the same in both cases. Other parameters are τm = 0.02
s, El = −0.06 V, Ee = 0 V, gl = 10e-9 S, he = 2e-9 S, τs = 0.0025 s.

3 Estimating Memory Time Scale

Measuring autocorrelation ρ after the extinction of the PPP reflects the evolution of decay uniformity for
each process but also between them. For example, the reversal in autocorrelation for alpha kernel-based
processes that occurs between times ∆t = 5 ms and ∆t = 20 ms corresponds to the reversal in decay
uniformity between these processes. The alpha kernel shot noise has lower decay uniformity at time
∆t = 5 ms due to its higher initial variance, whereas the situation is reversed at time ∆t = 20 ms due to
the possible amplitude increases for the filtered process.
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The autocorrelation ρ(X1 X2) of the process Xt at times t1 ≥ t2 is measured from t2 to t1 = t2 + ∆t.
Moving the starting time t2 to the right of text results in increasingly autocorrelated processes, as illus-
trated in the left plot of Fig. 4 for filtered alpha kernel shot noise. Beyond a critical value t2 = text+ τcrit
particular to each process, all processes become very autocorrelated reflecting states where most realiza-
tions follow the mean decay trajectory to their rest value. This time interval τcrit is our estimate for the
characteristic memory time of these processes with τcrit = 0 for exponential shot noise and τcrit > 0 for
the other examples.
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Figure 4 – The autocorrelation (left) and its first derivative (right) measured from extinction time
text onwards for the filtered process of alpha kernel shot noise. The filtered process becomes increas-
ingly autocorrelated and its first derivative approaches zero as the starting time of measure t2 moves
to the right of text. The characteristic memory time of the process is estimated by τcrit, which is
the smallest value of t2 that yields a process nearly autocorrelated with first derivative close to zero
(dashed line). The second derivative of ρ evaluated at the origin decreases as the first derivative
approaches zero.

The value of τcrit can be estimated from the first derivative of ρ evaluated at t2 as it decreases and
approaches zero when moving to the right of text. This is illustrated in the right plot of Fig. 4. Setting a
small threshold value c for this first derivative leads to ρ ≃ 1 close to unity. In more quantitative terms,

τcrit = argmin
τ
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∂t22
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∣

∣
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∣
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d
dt

Xt

〉〉2

〈〈X2
t 〉〉

−

〈〈
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d
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)2
〉〉2

〈〈X2
t 〉〉

2 (2)

The simple derivation of the second partial derivative of ρ is shown in Appendix A and explicit expres-
sions for PPP transformations can be evaluated using using expressions provided in Appendix B.

Setting c = 1 results in τcrit = 9.9 ms or filtered alpha kernel shot noise and yields the dashed trace of
ρ and its first derivative shown in Fig. 4. However, this process already has ρ quite close to unity with
∆t ≃ τs and illustrates the ambiguity in defining the level of residual decorrelation. For alpha kernel
shot noise and the filtered process of exponential kernel shot noise setting c = 1 yields τcrit = 5.4 ms and
τcrit = 5.9 ms, respectively. The second derivative of ρ for each process is shown in the left plot of Fig. 5
and the corresponding traces of ρ are shown in the right plot of the figure.

4



0 5 10 15 20

τcrit (ms)

0

−1

−2

−3

−4∂
2
/∂

t2
ρ
(X

1
X

2
)

Gexp

Vexp

Galpha

Valpha

0 10 20 30 40

∆t (ms)

0.0

0.5

1.0

ρ
(X

1
X

2
)

Gexp

Vexp

Galpha

Valpha

Figure 5 – Setting a threshold value c for the second derivative of ρ evaluated at the origin (left)
corresponds to very low levels of residual decorrelation in ρ (right). Each process crosses the thresh-
old c at different values of t2 = text + τ defining the value of τcrit. As can be appreciated from
the traces of ρ in the right plot there is some ambiguity on the level of decorrelation that can be
considered negligible.

4 Testing the Markov Hypothesis

The free parameter c determines the value of τcrit that in turn specifies the level of residual decorrelation
deemed negligible. We would like to constrain this parameter to values that are relevant to applications.
One possibility is to find the minimal interval τmv for which the stochastic process can be empirically
tested as non-Markovian and ensure that τcrit ≥ τmv. For any N ≥ 3 and x1 ≥ x2 ≥ · · · ≥ xN a first
order Markov process is characterized by:

p(x1|x2, . . . xN ) = p(x1|x2)

Choosing particular values of the process at times t2 and t3 and showing that p(x1|x2, x3) 6= p(x1|x2)
violates the condition for N = 3 and proves the process is not first order Markovian. In this case, X1 is
the value of the process at time t1 ≥ text and we set t2 = text and t3 ≤ text. This is illustrated in Fig. 6
where realizations of the process are selected when crossing a small neighborhood around the median of
the process at times t2 and both t2 and t3. A two sample Kolmogorov-Smirnov (K-S) test can reject to
a p-level of significance whether two sets of samples originate from the same (unknown) distribution, i.e.
we set H0 : p(x1|x2, . . . xN ) = p(x1|x2). The distance between the conditional distributions p(x1|x2) and
p(x1|x2, x3) according to K-S statistic is simply the maximum distance between the empirical cumulative
distribution functions (CDFs) of both distributions:

D = max |P (x1|x2)− P (x1|x2, x3)|

where P (x1|x2) and P (x1|x2, x3) are the empirical CDFs for separate sets of realizations.
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Figure 6 – Examples of alpha kernel shot noise realizations from the conditional distributions
(X1 |X2 = x2) and (X1 |X2 = x2, X3 = x3) with t1 ≥ text, t2 = text and t3 ≤ text. The
realizations are selected in a small neighborhood around the time-evolving median.
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We generate realizations of Xt and extract two sets of samples {ya} and {yb} with the values of the
process at t1 = text +∆. The samples {ya} and {yb} cross a small neighborhood around the median of
the process at time t2 = text, and those of {yb} also cross the same region at time t3 = text −∆t. These
are samples from the empirical distributions ya ∼ p(x1|x2 = p50) and yb ∼ p(x1|x2 = p50, x3 = p50)
where p50 denotes the value of the median at those times. The hypothesis H0 states that ya and yb are
drawn from the same distribution and the K-S test rejects H0 with a p-level of significance whenever
that is not the case (p(x1|x2) 6= p(x1|x2, x3)). The result of this procedure is illustrated in Fig. 7 for a
single run of stationary alpha kernel shot noise. In the left plot of the figure the K-S test is seen to reject
H0 for ∆t ≃ τs/2 = 2 ms after only a few hundred samples but cannot converge to a low p-value for
∆t = 2 τs = 10 ms. The value of the D statistic is shown in the right plot of the figure and is shown to
converge very quickly for ∆t = 2 ms.
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Figure 7 – Example of P-value and D-statistic for the two sample K-S test evaluated at an increasing
number of samples from stationary alpha kernel shot noise. The two sample sets are drawn from
empirical conditional distributions ya ∼ p(x1|x2 = p50) and yb ∼ p(x1|x2 = p50, x3 = p50) where
p50 the median of the process. The samples were evaluated at t1 = text + ∆t and cross a small
neighborhood around the median of the process at time t2 = text, and those of {yb} also cross the
same region at time t3 = text −∆t.

We ran the test for 2 million realizations separated in two sets and applied the K-S test fifty times to
evaluate the mean p− value for ∆t ranging from 2 ms to 10 ms. We first validate that the test does not
reject H0 for exponential kernel shot noise Gexp since it is known to have the Markov property. This is
indeed the case as shown in Fig. 8 for this amount of realizations with the case ∆t = 2 ms showing a
slight downward trend. The K-S test rejects H0 for the filtered version of the process Vexp for ∆t = {2, 4}
ms and displays a downward trend for ∆t = 2 ms.
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Figure 8 – P-value and D-statistic averaged over 50 trials for one million realizations for each
sample set of the exponential kernel shot noise Gexp (left) and its filtered version Vexp (right). The
K-S test could not reject H0 for Gexp. The test rejects H0 for Vexp at ∆t = {2, 4} ms but cannot
converge to a low p-value for higher values of ∆t.

The same procedure was ran for the alpha kernel-based processes and the result is shown in Fig. 9. The
K-S test rejects H0 for Galpha at ∆t = {2, 4} ms and for all but ∆t = 10 ms for the filtered version of the
process Vexp.
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Figure 9 – Result of the K-S test for alpha kernel shot noise Gexp (left) and its filtered version Vexp

(right) under the same conditions as Fig. 8. The K-S test rejects H0 for Gexp at ∆t = {2, 4} ms
and Vexp for all but ∆t = 10 ms.

These results show that the K-S statistic is sensitive to deviations from the Markov property under these
simulation parameters and for one million of realizations for each sample set. Simulations under different
parameters and nonstationary conditions show similar results. For some values of ∆t the average p-value
displayed a downwards trend indicating that H0 may be rejected for larger sample sets. In the case of
exponential kernel shot noise this may be related to numerical characteristics of the simulations where a
trade-off between accuracy and memory size had to be made in terms of sampling frequency and floating
point accuracy. For the other cases it seems to indicate that residual process memory effects violating the
Markov property are present but are not strong enough to trigger the rejection of H0. This is precisely
the type of constraint required to motivate the choice of free parameter c, which in this case is compatible
with the choice c = 1.

5 Conclusion

We investigated the memory effects of shot noise and filtered shot noise processes by extinguishing the
associated PPP and analyzing their relaxation properties in terms of the autocorrelation. The level of
decorrelation in the relaxation phase expresses the extent of memory effects and can therefore be used to
estimate the characteristic memory time of these processes. This enables to determine an effective time
scale in neural population activity models for which the process has long range correlations and negligible
memory effects. However, this method contains a free parameter that sets the level of decorrelation in
the relaxation phase that can be neglected.

This measure of characteristic memory is compared with an empirical two sample Kolmogorov-Smirnov
(K-S) test on conditional samples of the processes. This non-parametric statistical test rejects to a p-level
of significance whether the Markov hypothesis holds for the samples and provides an indication of the
level of residual memory effects that can be neglected for practical purposes. This provides a constraint
for the free parameter regulating the level of decorrelation in the relaxation phase.

These results can also be applied to estimate the characteristic memory time of membrane potential
fluctuations in intracellular recordings containing up and down epochs by measuring the autocorrelation
at the extinction of up states.

Future research directions include analysing whether this approach can be applied to other types of
synaptic input models, such as white and colored noise and the Ornstein-Uhlenbeck process.
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Appendix

A Second Time Derivative of Autocorrelation

In what follows we assume ρ (X1 X2) to be twice derivable for both arguments. Writing t1 = t2 + τ ,

∂

∂τ
ρ(X1 X2) =

∂

∂τ

〈〈X(t2 + τ)X(t2)〉〉
√

〈〈X(t2 + τ)2〉〉
√

〈〈X(t2)2〉〉

=

〈〈

d
dτ

X(t1)X(t2)
〉〉

√

〈〈X(t1)2〉〉
√

〈〈X(t2)2〉〉
−
〈〈

X(t1)
d
dτ

X(t1)
〉〉

〈〈X(t1)2〉〉
ρ(X1 X2)

Applying the second partial derivative,

∂2

∂τ2
ρ(X1 X2) =

〈〈

d2

dτ2 X(t1)X(t2)
〉〉

√

〈〈X(t1)2〉〉
√

〈〈X(t2)2〉〉
−

〈〈

d
dτ

X(t1)X(t2)
〉〉

√

〈〈X(t1)2〉〉
√

〈〈X(t2)2〉〉

〈〈

X(t1)
d
dτ

X(t1)
〉〉

〈〈X(t1)2〉〉

−





〈〈

(

d
dτ

X(t1)
)2
〉〉

+
〈〈

X(t1)
d2

dτ2 X(t1)
〉〉

〈〈X(t1)2〉〉
− 2

(

〈〈

X(t1)
d
dτ

X(t1)
〉〉

〈〈X(t1)2〉〉

)2


 ρ(X1 X2)

−
〈〈

X(t1)
d
dτ

X(t1)
〉〉

〈〈X(t1)2〉〉
∂

∂τ
ρ(X1 X2)

Setting τ = 0 yields the expression in Eq. (2).

B First Partial Derivative d/dt 〈F (t, ξ)〉 for PPP transformations

Let F (t, ξ) be a transformation of PPP Ξ The expectation of F (t, ξ) is obtained from the ensemble average
over the number n of points and their locations {x1, . . . , xn} [Moller and Waagepetersen, 2003, Streit,
2010]:

〈F (t, ξ)〉 =
∞
∑

n=0

1

n!
e−m(S)

∫

S

· · ·
∫

S

F (t, x1, . . . , xn)
n
∏

j=1

λ(xj) dxj

d

dt
〈F (t, ξ)〉 = d

dt

∞
∑

n=0

1

n!
e−m(S)

∫

S

· · ·
∫

S

F (t, x1, . . . , xn)

n
∏

j=1

λ(xj) dxj =

〈

d

dt
F (t, ξ)

〉

For F (t, ξ) a causal transformation of ξ,

d

dt
〈F (t, ξ)〉 = d

dt

∞
∑

n=0

1

n!
e−m(S)

∫

S

· · ·
∫

S

F (t, x1, . . . , xn)
n
∏

j=1

λ(xj) dxj

=
d

dt

∞
∑

n=0

1

n!
e−m(t)

t
∫

−∞

· · ·
t
∫

−∞

F (t, x1, . . . , xn)

n
∏

j=1

λ(xj) dxj

= −λ(t) 〈F (t, ξ)〉+
∞
∑

n=1

1

(n− 1)!
e−m(t)

t
∫

−∞

· · ·
t
∫

−∞

F (t, t, x1, . . . , xn−1)

n−1
∏

j=1

λ(xj) dxj +
〈

∂̃tF (t, ξ)
〉

= −λ(t) 〈F (t, ξ)〉+ λ(t) 〈F (t, t, ξ)〉+
〈

∂̃tF (t, ξ)
〉

= λ(t) (〈F (t, t, ξ)〉 − 〈F (t, ξ)〉) +
〈

∂̃tF (t, ξ)
〉

where
〈

∂̃tF (t, ξ)
〉

is the expectation of the partial time derivative of F (t, ξ) without explicitly considering

causality. In the case of shot noise processes this corresponds to the time derivative of the shot noise
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kernel g(t).

Applying to alpha and exponential-based shot noise:

d

dt
〈Gexp(t, ξ)〉 = −1

τ
〈Gexp(t, ξ)〉+ hλ(t)

d

dt
〈Galpha(t, ξ)〉 =

1

τ
〈Gexp(t, ξ)〉 −

1

τ
〈Galpha(t, ξ)〉

These results can be verified directly by evaluating the expectation over the entire real line in order to
pass the derivative inside the expectation:

〈

d

dt

∑

tj∈ξ

g(t− tj)H(t− tj)

〉

=

〈

∑

tj∈ξ

(

d

dt
g(t− tj)

)

H(t− tj)

〉

+

〈

∑

tj∈ξ

g(t− tj) δ(t− tj)

〉

=

〈

∑

tj∈ξ

(

d

dt
g(t− tj)

)

H(t− tj)

〉

+ g(0)λ(t)

However, factoring out the terms ensuring causality in F (t, ξ) may not be very straightforward in some
cases, like for example filtered multiplicative noise where terms explicitly involving t appear due to the
integration of the input. For the case of single shot noise input Q(u, ξ) and passing the derivative inside
the expectation as done previously,

Y (t, ξ) =
1

τ

+∞
∫

0

Q(t− x, ξ) e−
1
τ

∫

t

t−x
Q(u,ξ) du e−

x
τ dx = 1− 1

τ

+∞
∫

0

e−
1
τ

∫

t

t−x
Q(u,ξ) du e−

x
τ dx

d

dt
〈Y (t, ξ)〉 =

〈

d

dt
Y (t, ξ)

〉

= −1

τ

+∞
∫

0

〈

∂t e
− 1

τ

∫

t

t−x
Q(u) du

〉

e−
x
τ dx =

1

τ2

+∞
∫

0

〈

(Q(t)−Q(t− x)) e−
1
τ

∫

t

t−x
Q(u) du

〉

e−
x
τ dx

= −1

τ
〈Y (t, ξ)〉+ 1

τ
〈Q(t)(1− Y (t, ξ))〉
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Chapter 7

General Discussion

The work developed in this thesis focuses on statistical properties of nonstationary neuronal
membrane fluctuations. These results apply to passive membrane equations without spiking
mechanism for both current and conductance synapses when driven by shot noise processes
with time-varying rates. These highly variable synaptic input regimes are important since they
are thought to reflect synaptic activity during behaving conditions. Exact cumulants are ob-
tained for both synapse types from ”first-principles”, where the effect of each presynaptic spike
on membrane potential is taken into account. This answers the stated research question: For
given statistics of presynaptic spikes, what are the statistics of membrane potential fluctuations? The
exact cumulants can be integrated in truncated Edgeworth series to provide very accurate ap-
proximations of time-evolving distribution of membrane potential. These key results are devel-
oped in the article Nonstationary filtered shot noise processes and applications to neuronal membranes
presented in Chapter 3 for the simple case of a single conductance synapse.

Several extensions of this basic results are obtained. The first extension concerns multiple in-
dependent synapse types. This is particularly useful for conductance synapses where different
excitatory and inhibitory reversal potentials can be associated to relevant ion channels. The ef-
fect of synaptic inhomogeneities due to biological differences between synapses is investigated
and implemented at the levels of synapse and synapse type. At synapse level, each synapse
is modeled by an independent shot noise processes with biological parameters generated from
suitable distributions. At the synapse type level, one single shot noise process generates the
synaptic input for the synapses of that type, and postsynaptic responses are generated with
unique characteristics generated from suitable distributions. This enables to model neurons
with a small number of synapses or with multi-modal and sharply distributed biological pa-
rameters, in addition to neurons with a large number of synapses. This is exposed in the article
The impact of synaptic conductance inhomogeneities on membrane potential statistics presented in
Chapter 4.

Another extension concerns the effects of synaptic input correlations on membrane potential
fluctuations. A simple model of synaptic correlation is analyzed where common presynaptic
spikes are added to synaptic input. These spikes can be sharply timed or with random delays
or jitter. The effects of causal correlations can be accounted by choosing a range of strictly pos-
itive values jitter distribution. This simple model enables to investigate the impact of synaptic
correlations in the statistics of neuronal membrane fluctuations and is developed in the arti-
cle How causal correlations between synaptic inputs affect membrane potential fluctuations presented
in Chapter 5. This approach to analyze correlated synaptic input was made possible by the
underlying strategy of explicitly considering the effect of individual presynaptic spikes in the
evolution of membrane potential.
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The exact cumulants for conductance synapses result in long and complex expressions that
may not easily provide insight into the dynamics of membrane statistics. In particular, it does
not explicitly show which cumulants of synaptic input have major contributions to membrane
potential fluctuations. The central moments expansion (CME) is developed to addresses this
question. The CME expresses the statistical dynamics of membrane potential fluctuations in
terms of the cumulants of synaptic input. The second order of this expansion yields very accu-
rate approximations in the biological range of parameters and provides a simple path to obtain
the stationary limits that are relevant in some applications. The exact cumulants obtained in
the articles of Chapters 3, 4 and 5 are approximated with CME versions in each article and fa-
cilitate analytical access to the statistical structure of the relevant membrane models.

Conductance synapses induce long range memory effects in membrane potential fluctuations.
This memory effect has an effective range due to ”forgetting mechanisms” of the membrane
that place more importance in the most recent recent presynaptic input. This memory effect is
quantifiable by the autocorrelation when measured after extinction of presynaptic input. This
enables to measure the time scale of memory effects under nonstationary input. The time scale
thus obtained is consistent an empirical test for the loss of Markov property based on the two
sample version of Kolmogorov-Smirnov (K-S) test. These results can be applied to estimate the
characteristic memory time of membrane potential fluctuations from intracellular recordings
containing ”up-and-down” states. In this case the autocorrelation is measured by alignment of
”down” states under the necessary assumptions of statistical regularity. The memory effects of
membrane potential are analyzed in the article Estimating stochastic process memory in neuronal
membranes in Chapter 6.

The research articles presented in Chapters 3, 4, 5 and 6 focuses in conductance-based synapses
due to their higher biological relevance and lower abundance of established results. Treatment
of current synapses mostly recovers previous results in the literature and is presented in Chap-
ter 2.

The results developed in this thesis may benefit statistical inference models for biological and
dynamical characterization of neurons and their afferent neural networks. These models crit-
ically depend on data generation assumptions that can be made more precise and general by
including higher order statistics, nonstationary regimes and synaptic inhomogeneities. Using
measures of autocorrelation in addition to the more common point statistics given by mean
and variance may also yield more robust results. A prerequisite to successfully include synap-
tic inhomogeneity effects is the development of experimental measures of biological parameter
distributions.

Existing models of transfer function, which links membrane potential evolution to neuronal
discharge, may also benefit from the exact results and approximations developed in this the-
sis. The transfer function is a core element of computational models of neuronal activity that
compresses internal dynamics of neurons into an input to output firing relationship. The statis-
tics of membrane potential are key to the derivation of transfer functions. These results may
contribute with the exact and approximate formulations of higher order statistics and accurate
approximations of membrane potential distribution.

Future research possibilities include extending the formalism to synaptic saturation mecha-
nisms and shot-term plasticity. While this represents a departure from the shot noise input
model that enabled to obtain exact statistical results, approximations may be developed with
the central movements expansion. Another important direction of research is to determine the
range of biological and dynamical conditions that requires higher order statistics to fully cap-
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ture neuronal dynamics, and perhaps more importantly for applications, the conditions where
these can be neglected and more tractable noise models used instead. Determining the con-
vergence properties of the central moments expansion is also an important subject for future
research.
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