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Post-doctoral position (2012-2014) at SLAC National Accelerator Laboratory, Stanford, Palo Alto, CA, USA, and Post-

doctoral  position (from 2015) at Ecole Nationale Supérieur de Géologie, Nancy, France. 

82. Marang L (2007) Influence de la matière organique naturelle sur la spéciation des radionucléides en contexte géochimique. 

Thèse, Université Denis Diderot (Paris VII) & CEA-R-6187. http://tel.archives-ouvertes.fr/tel-00418723/fr/, Paris, France. 

Permanent position at EDF, Chatou, France. 

1.2.3. Post-doctorals 

 d’Orlyé F (2009-2011) Polychlorobenzenes-sediment interactions, and natural organic matter structure by cappilary 

electrophoresis. CEA and BRGM reports, and a publication (permanent position at ENSCP – ParisTech, Paris, France) 

 Brevet J (2007-2009) Europium(III)/natural organic matter interactions. CEA reports and publications (Engineering) 

 Claret F (2005-2007) Natural organic matter fractionation. CEA reports, EC reports, and publications (Head of the Storage 
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2. INTRODUCTION AND SUMMARY ON THE ORIGINALITY OF THE RESEARCH 

ACTIVITIES 

2.1. PRELIMINARY REMARKS 

Conducting research works in organization like the French “Commissariat à l’Energie Atomique et 

aux énergies alternatives” (CEA) is for sure an enjoyable situation. A substantial amount of public 

expenses is devoted to develop the ability for France to have a marking position in the “domain of 

research concerning atomic energy”.* But as it is happening now more and more in the academic research, 

the necessity to develop several axes of research is since long a reality in CEA. Moreover, some 

research cannot be the subject of publications, at least as long as confidentiality is required. This is the 

reason why some CEA researchers have non-linear career and are conducting rather “orthogonal” 

research projects, either because of funding issues, or of the necessity to develop specific 

competences. This was the case for me several times as I was hired in 1998 originally to develop a 

thematic linked to radionuclide-colloid interactions – metallic and non-metallic radionuclides and 

either inorganic or natural organic colloids –, then a couple of years later I was asked to adapt this 

competence to the cementitious systems in the presence of anthropogenic organic molecules. As I 

developed an expertise on complexation phenomena, some years later I was timely implied in high 

saline media generated by sludges, and more recently on complexation phenomena in radiolytic 

products of polymers. These different thematic generally helped me in building a wide vision of the 

different aspects of the nuclear fuel cycle, but may not help in constructing a specialized and in-depth 

expertise. 

During all these 17 years, I had the chance to keep an on-going thematic related to the interactions 

of natural organic matter and the radionuclides that are involved with the nuclear fuel cycle. I had the 

possibility to build a personal view on some aspects related to this thematic, of the particular and 

sometimes peculiar comportment of these media. In order to keep an certain coherence, I will focus 

this document on the 

 

Structure-reactivity relationships in the interactions between humic substances, metallic 

pollutants from the nuclear cycle, and mineral surfaces, 

 

and only mention, or sometimes just evade, the works on other thematics. 

2.2. GENERAL CONTEXT 

The majority of pollutants issued from nuclear activities are radionuclides. These nuclei are 

unstable and undergo disintegrations inducing ionising radiations. These disintegrations involve the 

                                                           

*
 http://www-centre-saclay.cea.fr/var/ezwebin_site/storage/original/application/389ab9d7a1c3798062cb160a06b4bd2d 

http://www-centre-saclay.cea.fr/var/ezwebin_site/storage/original/application/389ab9d7a1c3798062cb160a06b4bd2d
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formation of fission (FP) and activation (AP) products. The massive electricity production in the 

French nuclear power plants implies that the chemical and radiotoxic risks of these elements are 

accounted. Even if the proportion of these FPs and APs are low regarding the initial mass of 

actinides, the dose and chemical toxicity of these elements justify this risk assessment. 

Interactions of pollutants with natural organic molecules can be envisaged under different point of 

views: as a pollution vector, or as enhancement for detection. The different research programs that I 

have been involved in cover these aspects. I have been involved in the chemical risk assessment of the 

presence of radionuclides in an environment, and more particularly to the thematic linked to their 

interactions with natural organic matter (NOM); this comprises the interaction phenomena between 

radionuclides and NOM, between NOM and mineral surfaces, as well as the ternary systems, i.e., 

radionuclides/NOM/surfaces. As it will be developed through this document, the NOM structure is 

very sensitive to the modification of physico-chemical conditions. 

The complexation and migration issue of pollutants in the presence of NOM, particularly humic 

substances, which represents the alkaline extractible fraction, has been the subject of a vast literature 

from decades if not centuries. Actually, the first alkaline extraction of NOM goes back to the end of 

18th century by ACHARD (1786), and the first use of “humus” term was introduced by SAUSSURE 

(1804). A historical background can be found in STEVENSON (1985). 

The more marking examples of the influence of NOM on the migration of radionuclides are: 

 migration of plutonium in the soils from Nagasaki (MAHARA & MIYAHARA, 1984; MAHARA 

et al., 1988; MAHARA & KUDO, 1995; FUJIKAWA et al., 1999), from the Rocky Flats site 

(SANTSCHI et al., 2002), or from Chernobyl (AGAPKINA et al., 1995; OLLUI MBOULOU et al., 

1998; MATSUNAGA et al., 2004; BONDAR’KOV et al., 2006; BRUDECKI et al., 2009); 

 presence of plutonium in humic substances extracted from lakes (ERIKSSON et al., 2001); 

 migration of americium and curium in soils after surface disposal at the Oak Ridge or 

Savannah River National Laboratories (ALBERTS et al., 1986; MCCARTHY et al., 1998a; 

MCCARTHY et al., 1998b), or mobilisation of americium or plutonium at Rocky Flats 

(LITAOR et al., 1998; SANTSCHI et al., 2002); 

 migration of actinides in an aquifer after a forced injection of an NOM-amended natural 

groundwater (MARLEY et al., 1993; MCCARTHY et al., 1993); 

 migration of radionuclides after the formation of NOM in flooded technical galleries from 

the Nevada Test Site (ZHAO et al., 2011); 

 strong interaction between uranium and NOM but weak migration of uranium in an acidic 

podzol from the Landes, Gasconny, France (CRANÇON, 2001; CRANÇON & VAN DER LEE, 

2003; CRANÇON et al., 2010), or in depleted uranium contaminated sites (DONG et al., 2006; 

GRAHAM et al., 2008). 

In the following paragraph I will present the general framework and will make a brief summary of 

the works that are more developed in the rest of the document 
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2.3. STUDY ON THE STRUCTURE OF HUMIC SUBSTANCES 

The complexity and heterogeneity of these substrates, as well as the numerous possible interactions 

with a surrounding environment, imply a difficulty to obtain a clear and global vision of these 

mechanisms. As an example, the determination of the NOM structure has still not come to a general 

consensus. The structural models were, and are still, abundant. Up to recent times, the major part of 

these models proposed polymeric structures, when no repetition motif has been identified. Based on 

experimental evidence, some called for a new paradigm consisting of an aggregate vision of NOM and 

HS (WERSHAW, 1993, 2000; PICCOLO, 2001). 

I have been involved in structural studies mainly through electrospray ionisation mass 

spectrometry (ESI-MS) where we were able to propose early stages of analyses of different molecules 

constituting HS, mainly after iodination [20], after the work from PLANCQUE et al. (2001). Based on 

this work, we applied this strategy to the analysis of the modification of the composition of HS after 

adsorptive fractionation on mineral surface [26]. I have also participated in the promotion of the use 

of Taylor-Aris dispersion analysis (TDA) for the determination of the size of HS constituting entities 

[6]. I have also participated in the use of small-angle scattering, atomic force microscopy and surface 

tension for the determination of size range and organization of HS aggregates. This very promising 

work does not end-up under a published form yet, but provide quite an interesting piece of 

information [47]. 

2.4. COMPLEXATION 

The situation is intricate as well for the complexation of cations, interaction with halogens 

[26,35,36,40], interaction with organic pollutants [29]. It is worthy to notice that all these reactions do 

have an influence on the changing structure of NOM. The modelling of the complexation of metallic 

radionuclides by humic substances has been the subject of a vast literature, and no less than five 

different types of modelling, mostly operational, have been proposed, notwithstanding the kinetic 

control (WARWICK et al., 2000; BRYAN et al., 2005) and redox properties (AESCHBACHER et al., 2011) 

[53]. Surprisingly enough, even if the intimate structure of NOM is still mostly unknown and 

submitted to variations imposed by the chemical environment, these operational modelling provide an 

overall satisfying description of simple binary systems, i.e., metal/NOM. On the other hand, only a 

few models can satisfactorily describe competition between cations, especially between multi-charged 

radionuclides and alkaline-earths. Out of the radionuclides, actinides and lanthanides (Sm, Eu, Am, 

Cm) do have a prevalent chemistry at the +III redox state in water – under the form of a trivalent 

cations, M3+. Quite an extensive literature exists on the subject. Considering the strong analogy of the 

chemistry of these cations – particularly considering oxygen containing function (PEARSON, 1963) – 

the use of lanthanides to mimic the actinides(III)/NOM interactions were considered. In addition the 

extensive use of lanthanides, as part of the rare-earths family, in the modern industry (BINNEMANS et 

al., 2013a), and the need for recycling (BINNEMANS et al., 2013b), will lead the scientific community to 

address the outcome of increasing presence of lanthanides in the environment (MOERMOND et al., 
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2001; CENSI et al., 2010; CENSI et al., 2013). The reversibility of these interactions is also difficult to 

manage, particularly for the elements at the +IV redox state – under the form of a tetravalent cation, 

M4+ – that are particularly important for the redox sensitive actinides U, Np, and Pu. 

Humic substances non solum have an influence on the chemistry of cations, sed etiam the aromatic 

and oxido-reductive character of the constitutive entities gives them an important role on the more 

general environmental chemistry (SPOKES & LISS, 1995, 1996; ANDERSEN et al., 2002), on halogen 

biochemistry, and more particularly on iodine (HUANG et al., 1994; SPOKES & LISS, 1996; HERZIG et 

al., 2001; ANDERSEN et al., 2002) [35,36,40,26]. Humic substances are implied in inhibition of 

enzymatic reaction in the liver or thyroid (HUANG et al., 1995; FRÉCHOU et al., 2002a; FRÉCHOU et al., 

2002b; YANG et al., 2002). The reactivity of humic substances towards iodine is certainly at stake. 

Association of halogens with soil NOM is strong (LEE et al., 2001; ASHWORTH & SHAW, 2006a), 

whereas iodide adsorption on minerals is relatively weak (CROMIÈRES, 1996; JOHANSON, 2000). 

Halogenation of humic substances can be viewed as the halogenation of phenolic moieties (LEE, 

1967; JOHANSON, 2000; WARNER et al., 2000) [26,35,36,40]. This halogenation is also enzymatically 

catalysed (MORRISON & BAYSE, 1970; POMMIER et al., 1973; VAN PEE & UNVERSUCHT, 2003) by 

peroxidases, which are implied in the elimination of H2O2 from living organisms (WAGENKNECHT & 

WOGGON, 1997). 

This constitutes the main part of this document. I have been involved in the quantification of the 

interactions between humic substances and radionuclides, mainly Th(IV) as an analogue of other 

actinides(IV) [12,18,21,24], and Eu(III) as an analogue of actinides(III) [3,9,17]. Different modelling 

concepts were used that allowed me to propose different reviews [18,22,53]. The quantification were 

done either through separation techniques – ultrafiltration, competitive adsorption – or using 

spectroscopic techniques like time-resolved luminescence spectroscopy (TRLS) that also allows 

apprehending the chemical surrounding of the metals [9,11,13,15] – mainly lanthanides. 

2.5. ADSORPTION PHENOMENA 

In a natural medium, complexation phenomena are in direct competition with 

retention/adsorption/incorporation of radionuclides onto/into mineral phases. As NOM shows a 

strong affinity for cations, it also has a strong affinity for mineral surfaces. This can lead, as a function 

of medium conditions, either to an increase of mobility or to an immobilisation. Retention or 

adsorption properties of NOM influences the surface properties of minerals as the structure of NOM 

itself as well, and has numerous implications (VON LÜTZOW et al., 2006): preservation of NOM from 

mineralization (KAISER & GUGGENBERGER, 2000) or from bacterial degradation (CHENU & 

STOTZKY, 2002), and inhibition of crystallite growth (SUESS, 1970, 1973). 

The modelling of adsorption phenomena onto mineral surfaces has also given rise to a lot of 

models. From a general point of view, adsorption surface sites are either described as exchangers 

(GAINES & THOMAS, 1953; MOTELLIER et al., 2003; BRADBURY & BAEYENS, 2005; BEAUCAIRE et al., 

2008; BRADBURY & BAEYENS, 2009; TERTRE et al., 2009; TERTRE et al., 2010) considering that the 
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mineral is a neutral phases in equilibrium with aqueous solution, or that adsorption sites are 

amphoteric sites that are giving rise to surface charges, which induces the explicit account of the 

electrostatic description of the interface (DAVIS et al., 1978; DAVIS & LECKIE, 1978b, 1980; DZOMBAK 

& MOREL, 1990; LYKLEMA, 1995a, 1995b; HIEMSTRA & VAN RIEMSDIJK, 1996; LÜTZENKIRCHEN, 

1999a, 1999b). The efficiency of models in modelling either adsorption of cations [3] or simple anions 

as organic acids [4,52] has been shown. 

Humic substances can sometimes be considered as mixtures of organic complexants, or as 

polyelectrolyte of an oligomeric character.* This interaction can be sometimes modelled with a relative 

success, but it is most of the time confronted to the problems linked with the competition between 

cations, or more importantly to the particular evolution with ionic strength and to the fractionation of 

constitutive entities of NOM at the mineral surface [52]. Actually, the interaction of NOM with a 

charged and reactive surface has a great influence on their structural properties and functionality. 

I have been involved in the qualification as well as quantification of adsorption phenomena of HS 

onto minerals, mainly oxide, with the aim to understand their role in the ternary systems 

metal/HS/mineral [2-4,7-10,15,16,20,23,25]. Different approaches and techniques were used to 

characterize the different modification of the structure and composition of HS, from very simple, as 

UV-Visible spectroscopy and total organic carbon analysis [15], to much more advanced ESI-MS [20] 

– modification of composition –, scanning transmission X-ray microscopy [15] – STXM, modification 

of functionality –, or TRLS [2-4,7-9,10,15,16] – modification of the chemical surrounding of a 

luminescent lanthanides in ternary system. 

2.6. RATIONALE 

As a rationale, the NOM related subjects are highly intricate. It appears that the reactivity of NOM 

is strongly linked to its origin, composition, structure, and organisation in the environment where it 

stands or flows. A lot of models and a lot of hypotheses have been proposed to give an image of both 

their reactivity and structure. All these models often contradict each other and as “you cannot prove a 

vague theory wrong” (FEYNMAN, 1965, p. 158), and as there is no available analytical tool that can 

provide a definitive answer to the on-going questions on structure and reactivity of NOM, yet, a lot of 

problems are still under high controversy. Nevertheless, there are some possible routes that, to my 

humble opinion, would permit to get closer to, if not satisfying, an operational description of the 

difficult animal† that are still humic substances. Then, it could seem vain to propose a description of the 

NOM reactivity in real systems, i.e. interaction with radionuclides and minerals, without a previous 

consideration on their structural properties. This will be the link that I will try follow throughout this 

document. 

                                                           

* Polymers of low  polymerization degree 
† Thanks to Gunnar Buckau for this suggestion 
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3. HUMIC SUBSTANCES: DEFINITIONS AND STRUCTURAL STUDIES TO BETTER 

COMPREHEND STRUCTURE-PROPERTIES RELATIONSHIPS 

Following the introduction, one can understand that a thorough description of humic substances’ 

structure is up to now awkward. Not only the heterogeneity of these substrates renders this task very 

difficult, but the continuing arguing between the different defenders of the different paradigms makes 

it even more difficult. I will only recall what is absolutely necessary to follow the rest of the text and 

invite the reader to the reference documents (STEVENSON, 1982; AIKEN et al., 1985; WERSHAW, 2000; 

MACCARTHY, 2001a, 2001b). 

Humic substances can be extracted from almost every type of environment and are one of the 

most abundant form of organic matter in soils (WOODWELL & HOUGHTON, 1977; THURMAN, 1985). 

From aquatic surface to deep geological formation, the concentration of humic substances essentially 

depends on the evolution of the physico-chemical conditions of the medium, and of the maturation 

of organic molecules. Humic substances being the result of the degradation of living organisms, they 

are mainly composed of carbon ( 40-60%), oxygen ( 35-45%), hydrogen ( 5%), nitrogen (1-5%) 

and sulphur ( 2%) (RICE & MACCARTHY, 1991). These abundances are representative of the 

historical evolution of the mixtures. The ratio H/C and O/C can help in retrieving information on 

the origin (aquatic, marine, sedimentary…) and on the aromatic character of humic substances (RICE 

& MACCARTHY, 1991; KIM et al., 2003). 

3.1. DEFINITIONS 

Humic substances are showing oxido-reductive and pH-buffer properties, they contain a large 

amount of water, they are fixing metals and organic molecules, and catalyse photo-induced reactions 

(DAVIES et al., 2001) [48]. This group of molecules are extracted from natural waters of from soils, 

sediments and rocks by acidic “precipitation” or after alkaline extraction from soils, sediments or 

rocks. They represent a class of substances that are operationally defined, and do not follow any kind 

of “standard” definition of molecules such as polysaccharides, proteins or lipids. Humic substances 

can be defined either as: (i) “a series of relatively high-MW, brown to black colored substances, formed by secondary 

synthesis reactions” (STEVENSON, 1982); or (ii) as “a general class of biogenic, refractory, yellow-black organic 

substances that are ubiquitous, occurring in all terrestrial and aquatic environments” (AIKEN et al., 1985). 

Since the latter definitions are extremely vague, one can rely on the operational definition from 

their extraction procedure, which permits to obtain three fractions (THURMAN & MALCOLM, 1981; 

AIKEN et al., 1985; THURMAN, 1985): 

 fulvic acids (FA), which are soluble at whatever pH; 

 humic acids (HA), which are insoluble at acidic pH; 

 humine, which is the insoluble fraction at whatever pH; humine is actually composed of a 

mixture of humic and non-humic matter (BANERJEE et al., 1971; RICE & MACCARTHY, 

1990). 
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Based on this operational procedure, MACCARTHY (2001b) proposes the following definitions: 

 “humic substances comprise an extraordinary complex amorphous mixture of highly heterogeneous, 

chemically reactive yet refractory molecules,* produced during early diagenesis in the decay of biomatter, and 

formed ubiquitously in the environment via processes involving chemical reaction of species randomly chosen 

from a pool of diverse molecules and through random chemical alteration of precursor molecules.” 

 “The molecular heterogeneity inherent in humic substances renders the humic material highly refractory, 

thereby serving a role in Earth’s ecological system.” 

It is evident that these operational criteria involve other groups of molecules that are not extracted 

from flowing rivers, soils, or even from natural environments; the most extreme situation being the 

humic like substances (HULIS), present in atmospheric aerosols or in rain water – clouds, fog… 

(GRABER & RUDICH, 2006). Humic substances extracted from a particular environment can therefore 

be viewed as the signature of the NOM evolution. One can then ask oneself if these extracts do really 

exist, as they are extracted through non-natural processes. However, humic substances can be viewed 

as an analogue of the comportment of NOM (BENEDETTI et al., 1996b; SANTSCHI et al., 1997; 

ALLARD et al., 2002; HAMILTON-TAYLOR et al., 2002; AUCOUR et al., 2003; CANCES et al., 2003). 

Concentration of humic substances depends on the history of the physico-chemical conditions, 

and from the maturation of the constituting organic molecules. As an example, surface-extracted 

humic substances, in rivers or soils, are directly issued from the decay of living organisms. Whereas in 

deeper environments, such as in the aquifer above the Gorleben salt dome (Germany), oxidative 

alteration of sedimentary organic matter by intrusion of surface waters, has led to the formation of 

humic substances (ARTINGER et al., 2000; BUCKAU et al., 2000a; BUCKAU et al., 2000b). One can also 

note the alkaline alteration of the NOM associated to the argillite from Bure (France) or Mont-Terri 

(Switzerland), lead to the extraction of humic substances (CLARET et al., 2002; CLARET et al., 2003; 

SCHÄFER et al., 2003a; SCHÄFER et al., 2003b; CLARET et al., 2005),  when they are absent in the 

original pore water (COURDOUAN et al., 2007a; COURDOUAN et al., 2007b; COURDOUAN et al., 2008), 

or difficult to extract under acidic conditions (GRASSET et al., 2010) [66]. 

3.2. STRUCTURAL STUDIES 

As we will see, there is a strong correlation between structure and reactivity of humic substances; 

complexation is not easily described through usual thermodynamic models, and the adsorption 

comportment is rather comparable to the polyelectrolyte one. It is thus useful to keep a structural 

point of view when one tries to interpret complexation or adsorption experiments: (i) what is the size 

of the complexing entity?; (ii) what is the symmetry of the complexation site, and is it intra- or inter-

molecular?; (iii) what is the conformation at the mineral surface?; (iv) what size or conformation 

variation can one await vs. pH, ionic strength, metal concentration or mineral phase? 

                                                           

* The use of this term denotes here that macroscopically the properties do not seem to change. Very often the authors do not define relative to which 
property HS are refractory. Nevertheless MacCarthy (2001b) precises that it is the resistance to microbial degradation which is at stake.  
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Almost all techniques for size or molecular mass determinations, hydrodynamic or gyration radii 

have been applied to the particular case of humic substances. But each technique is limited by its own 

observation volume, which is not necessarily compatible with the others: 

 scanning or transmission electronic microscopy, required very low ambient pressure which 

induced dehydration of the sample (TAN, 1985), and an environmental scanning electron 

microscope is desirable (DOUCET et al., 2005; REDWOOD et al., 2005); 

 size exclusion chromatography is linked to a standardization with real polymers (CHIN & 

GSCHWEND 1991; PEURAVUORI & PIHLAJA, 1997; ZHOU et al., 2000), which humic 

substances are not (PICCOLO et al., 2001), and the measured size are often out of the 

calibration curves (CHIN & GSCHWEND 1991; CHIN et al., 1994); 

 mass spectrometry techniques require ionisation that can induce destructuration, and rely on 

the ionisation efficiency of the different constitutive molecules (PLANCQUE et al., 2001; 

THESE et al., 2004; BONHOMMEAU & GAIGEOT, 2013) [20,26]; 

 vapour pressure osmometry (AIKEN & MALCOLM, 1987; CHIN & GSCHWEND 1991; CHIN et 

al., 1994; PEURAVUORI & PIHLAJA, 1997) depends on the number of particles in solution 

and not on their nature, but is strongly influenced by the lowest fraction in molecular mass; 

 Taylor-Aris dispersion analysis requires a laminar flow in a capillary (TAYLOR, 1953; ARIS, 

1956), which can have interactions with humic substances [6]; 

 dynamic light scattering, from its R6
H
 dependence is more sensitive to bigger particles (RICE 

et al., 1999) [6]; 

 small angle neutrons or X ray scattering require rather high concentrations (RICE et al., 1999) 

[47]; 

 atomic force microscopy required the presence of an underlying surface (LEAD et al., 2005) 

[47]… 

These differences in observation volumes seem to be at the origin of the differences in the 

interpretation of the raw data by supporters of the different paradigms. 

The structure of humic substances has long been considered as the result of secondary 

polymerisation reactions during the degradation of living matter (STEVENSON, 1982): (i) reactions 

between amines by micro-organisms with lignin or degradation products; (ii) reactions between 

polyphenols oxidised in quinones and in amines; and (iii) reactions between reductive saccharides and 

amines. A review is proposed by CLAPP & HAYES (1999). These molecules can thereafter undergo 

series of degradation, either microbial or thermal, in soils and sediments. Humic substances are then 

considered as complex polyelectrolytes (GHOSH & SCHNITZER, 1980). 

Other complementary description propose that humic substances are aggregates of smaller 

molecules (WERSHAW, 1993; PICCOLO et al., 1996; WERSHAW, 1999; SIMPSON et al., 2001), the 

cohesion of which are being assured by weak forces and/or hydrogen bonds (CONTE & PICCOLO, 

1999), and structure being essentially fractal (WERSHAW et al., 1967; ÖSTERBERG & MORTENSEN, 

1992; RICE & LIN, 1993; ÖSTERBERG et al., 1995; REN et al., 1996; RICE et al., 1999; REDWOOD et al., 
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2005) [47].  As noted by RICE et al. (1999), humic substances could represent “the ultimate in molecular 

disorder”, but this must not prevent one from trying to understand its behaviour [48]. 

In the following, I will remind the results that were obtained using different techniques and I will 

propose an integrated vision before approaching complexation and adsorption phenomena in the next 

chapters. 

3.2.1. Electrospray ionisation mass spectrometry (ESI-MS) 

After the ESI-MS development for the analysis of proteins, many works have been reported on the 

application to the structure of humic substances during the last decade. After a systematic study of 

different fulvic extracts from different origin, we have proposed a generic structure of fulvic acid 

from MS-MS analyses (PLANCQUE et al., 2001) [26]. As it was explicitly written in the original paper 

from PLANCQUE et al. (2001), this proposition was based on the hypothesis that the majority of the 

extracted ions during the MS-MS fractionation were mono-charged ions, and that each mass peak 

represented a single molecule. If the first hypothesis seems to be well admitted (PICCOLO et al., 2010), 

it has been demonstrated that the mass peaks are in fact the sum of several unresolved peaks 

(KUJAWINSKI et al., 2002a; KUJAWINSKI et al., 2002b). The humic substances’ mass spectra always 

show a bell-like repartition (Figure 3-1) with m/z between 100 and 1000 Da for fulvic acids and 100 

and 3000 Da for humic acids. The number-averaged value of M
—

n = 873 g mol-1 and M
—

w = 1228 

g mol-1 for Aldrich humic acid (cf. Figure 5-9a, page 79) [20]. 

The problem in comparing different molecular mass determination techniques is often linked to 

their inherent hypotheses. For instance HPSEC were calibrated either with proteins or with polymers 

(polystyrene sulfonate, PSS), which can induce a five-fold difference between the calculated molecular 

masses (BECKETT et al., 1987). Recent development seem to show that some correlation between the 

intensity of the ESI signal and of PSS-calibrated HP-SEC (PEURAVUORI et al., 2007). Furthermore, 

these molecular mass ranges are also in general agreement with the values obtained in vapour pressure 

osmometry (AIKEN & MALCOLM, 1987; CHIN et al., 1994; PEURAVUORI & PIHLAJA, 1997; 

PEURAVUORI et al., 2007), even slightly lower. Nevertheless, the description of several ten thousands 

atomic mass units (a.m.u) entities is clearly linked to the packed structure of proteins and is not at 

stake for humic substances. 
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Figure 3-1. ESI-MS Mass spectrum in negative mode (120° C, 30 V) of a 150 mg L
-1

 fulvic acid 

solution (Mol, Belgium), and proposed generic structure – from  [26 © 2001 Wiley and Sons]. 

3.2.2. Surface tension 

In a general manner, the presence of humic substances in aqueous suspension induces the decrease 

of the surface tension (), which is linked to the hydrophobic expulsion of molecules and to their 

repartition at the water-air interface (TANFORD, 1980; LYKLEMA, 1995a). The analysis of the variation 

of  with concentration through the Gibbs equation, 

 Γmax = 
1

n RT 
d

dln C  (3-1) 

which allows estimating the minimal area Amin occupied by a molecule at the interface. 

 Amin = 
1

Γmax Na
 (3-2) 

From the available values in the literature, one can see that Amin values do share the same order of 

magnitude (Figure 3-3).  

Table 3-1 presents a compilation of the Amin values on Figure 3-3 and from the slopes of 

Figure 3-2. The concentrations of humic substances in mol L-1 are obtained from the molecular mass 

of 873 g mol-1 determined in ESI-MS for Aldrich extract [Supp. Info. of 20]. One can note that the 

value of the molecular mass does not have any influence on the value of the slope. Actually, for the 

low values of , the values of d/dlnC are far too weak and are not considered in the linear 

regressions (CHEN & SCHNITZER, 1978; TERASHIMA et al., 2004). Experiments at pH 6 on Aldrich, 

Suwannee River (IHSS), Leonardite (IHSS), and Gorleben (WOLF et al., 2004) humic acids show a 

satisfactory correlation with the literature values [47]. The obtained diameter values from the areas of 

the nanometric dimension. These sizes are in general agreement with radii of gyration determination 

in small angle X-ray scattering (THURMAN et al., 1982; AIKEN & MALCOLM, 1987). 
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Figure 3-2. Surface tension (water-

air) of aqueous HA solution: pH 6, 

[NaNO3] = 0.1 mol L
-1

:  PAHA, 

 Gorleben,  Leonardite, 

 Suwannee River [47]. 

Figure 3-3: Compilation of surface tension values – adapted 

and completed from [53]. 

 

 

 

Table 3-1: Comparison of Amin from the slope of  = f(Ln cHA g L
-1

). 

Authors  pH Amin ± σ (Å²/molecule) d (nm) 

WERSHAW et al. (1969) HA ? ? 62.9 ± 9.6  
TSCHAPEK & WASOWSKI (1976) HA brown coal 5 70.4 ± 3.2 0.95 ± 0.04 
  7 74.5 ± 2.0 0.97 ± 0.03 
  9 92.3 ± 4.4 1.08 ± 0.05 
CHEN & SCHNITZER (1978) FA sol 12.7 96.5 (121 ± 5) 1.24 ± 0.04 
 HA sol 12.7 40.4 (41.6 ±2.9) 0.73 ± 0.14 
HAYASE & TSUBOTA (1983) HA sediment 8 47.8 ± 1.7 0.78 ± 0.03 
 FA sediment 8 52.6 ± 0.6 0.82 ± 0.01 
GUETZLOFF & RICE (1994) HA Aldrich 12.3 126.9 ± 10.8 1.27 ± 0.11 
TUCKERMANN & CAMMENGA (2004) HA Merck ? 74.1 ± 3.1  
TERASHIMA et al. (2004) HA 6 63.1 ± 2.0 0.90 ± 0.08 
SVENNINGSSON et al. (2006) SRFA ( ?) ? 140 ± 45  

Purified Aldrich HA [47]  6 103.3 ± 3.0 1.15 ± 0.03 
Leonardite HA [47]  6 101.0 ± 3.9 1.13 ± 0.04 
Gorleben HA [47]  6 115.1 ± 2.5 1.21 ± 0.03 
Suwannee River HA [47]  6 80.9 ± 0.4 1.01 ± 0.06 

 

3.2.3. Atomic force microscopy (AFM) 

Atomic force microscopy allows the observation of height differences on a surface at the atomic 

level. In our case, it is necessary to observe the sample on an underlying surface, and to take care of 

the artefacts which may come from the pollution of the tip. Most of the time humic substances are 

deposited on the surface as a drop of solution, or adsorbed by soaking in a solution, rinsed and dried 

afterwards. 
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This can induce some biases: 

i. the deionised water rinsing, which implies an ionic strength shock that can desorb humic 

substances (WENG et al., 2007) [52]; 

ii. the entities which stay on the surface after rinsing are the more strongly adsorbed 

(chemisorbed), and the ones in weaker interactions are most probably carried away with 

the deionised water, when the lateral interactions are important in adsorption of humic 

substances (OCHS et al., 1994); 

iii. drying provokes a modification of the organisation of humic substances (TAN, 1985; 

REDWOOD et al., 2005). For all these reasons, an observation in liquid cell is desirable 

(LEAD et al., 2005), even if it implies a high concentration and a high covering of the 

surface; heights can be then very difficult to interpret if the tip cannot have access to the 

underlying surface, and nanometric entities have been reported after deposition from 

diluted solution and drying (BAALOUSHA & LEAD, 2007), as well as greater objects in liquid 

cell (PLASCHKE et al., 1999). 

In order to have information on different type of objects, we have sampled humic substances 

solutions deposited on silicon wafer before and after rinsing with deionised water [47]. This allowed 

us to evidence different types of objects under different types of conditions. AFM images show non 

regular objects being composed of sub-entities. All the extracts do not show the same morphologies. 

The compactness of the objects seems to vary as a function of their origin since HA from Gorleben 

and Suwannee River, extracted from purely aquatic environment, are visually less compact compared 

to Aldrich and Leonardite HA, extracted from a peat and from soil, respectively. In either case, the 

smaller aggregates are nanometric and the larger ones are 50-100 nm (Figure 3-4). For Suwannee 

River fulvic acid, the AFM images show nanometric objects but no bigger aggregates. It seems that 

fulvic acids are composed of a heterogeneous mixture of small aggregates with no interactions 

between these aggregates. This is in accordance with the intermediate adsorption comportment of 

FA, relative to ionic strength, between simple organic molecules and humic acids [52, and references 

therein]. 

a  b  

Figure 3-4. AFM images of Purified Aldrich (a) and Gorleben (b) humic acids samples – from [47]. 
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3.2.4. Small angle neutron and X-ray scattering (SANS, SAXS) 

Small angle diffusion of neutrons (SANS) or X-rays (SAXS), allows estimating the organisation in a 

material or in solution. Briefly, when a material is exposed to a beam of incident vector 
→
ki  and of 

wavelength λ, the scattered beam of vector 
→
kf  is observed at angle θ/2 (COTTON, 1991). The 

diffusion vector 
→
q   is the sum of the incident and scattered vector and q is (Figure 3-5), 

 q = | |→
q =| |→

ki  + 
→
kf  = 

4 π n
 λ  sin









 
θ
2  (3-3) 

where n ≈ 1 in the case of neutrons. The unity of q is an inverse of a distance. From the Bragg’s law, 

the relationship between the wavelength λ and angle θ/2 is, 

 λ = 2 d sin








 
θ
2  (3-4) 

The characteristic distance range of the colloidal particles, i.e., 2-200 nm, corresponds to q values 

of 0.3 to 0.003 Å-1, and small angles from 7° to 0.14°. 

 

Figure 3-5. Schematic representation of the beam scattering by a particle. 

→
kf  

→
ki  

→
kf  

→
ki  

→
q  

θ/2 
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a b  

c   

Figure 3-6. SANS patterns of PAHA (a), LHA (b), SRHA and Gorleben HA (c) in D2O, pD 5, I = 5 mM 

NaNO3. (a) and (b) for three different initial concentrations (squares) 8 g L
-1

 (circles) 3 g L
-1

 

(triangles) 1 g L
-1

, and (c) () SRHA and () GoHyHA at 8 g L
-1

 [47]. Black lines are the fits obtained 

with the function A.q
-n

 with two q range domain (i.e. a qcut off), the obtained value q
-n

 are indicated on 

the graph. The dashed lines are the fits obtained with only one q range domain for the function 

A.q
-n

. 

In the case of humic substances, the use of D2O is mandatory to have a sufficiently high contrast 

compared to protons. Under our conditions (Laboratoire Léon Brilloin, Saclay, France), the relatively 

low neutron flux induces the necessity to use relatively high concentration of humic substances (C  1 

g/L), which are not quite representative of environmental conditions. All the works from the 

literature showed a linear dependence of log10I(q) = f(log10q), with a slope n < 3, which exhibits a 

fractal organisation. From the low number of works, disparity of experimental conditions, and 

disparity of slopes it was not possible to propose a generic comportment. Henceforth, we proposed 

the complementary analyses of the SANS patterns of the samples which were already observed in 

surface tension and AFM [47]. As for the other works (WERSHAW et al., 1967; LINDQVIST, 1970; 

ÖSTERBERG & MORTENSEN, 1992, 1994; ÖSTERBERG et al., 1995; TOMBÁCZ et al., 1997; RICE et al., 

1999; PRANZAS et al., 2003; DIALLO et al., 2005), representations of log10I(q) = f(log10q) showed a 

linear dependence, and evidenced a fractal organisation in suspension. In the q range – from 3.44 10-3 

to 4.92 10-1 Å-1 in the reciprocal space, and approx. 0.2-30 nm in the real space –, the scattering objects 

are randomly organised. The awaited inflexion at low q value is not sufficient to have an estimation of 

the objects’ limits. The random organisation can then be at place at larger scales. 
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From Figure 3-6, the origin of the humic extract does have an influence on the SANS signal. Two 

samples from terrestrial origin, i.e. extracted after alkaline extraction – Aldrich and Leonardite HA – 

the slopes are close to 3 (Figure 3-6a,b). The size of the aggregates is larger than 18 nm and the size of 

the smallest units is below 0.12 nm. The larger dimension is in agreement with dynamic light 

scattering results (CACECI & BILLON, 1990; CACECI & MOULIN, 1991; SHINOZUKA & NIHEI, 1994; 

PINHEIRO et al., 1996; WAGONER & CHRISTMAN, 1998; RICE et al., 1999; MANNING & BENNETT, 

2000; PALMER & VON WANDRUSZKA, 2001) [6] where objects between 60 and 500 nm are evidenced. 

The smaller dimension is in agreement with previous determination (e.g. cf. Table 3-1) with various 

techniques (AIKEN & MALCOLM, 1987; CHIN & GSCHWEND 1991; CHIN et al., 1994; PEURAVUORI & 

PIHLAJA, 1997; BOUBY et al., 2002; BAALOUSHA & LEAD, 2007) [6,47]. The intensity being related to 

both concentration and contrast with solvent, the high scattering power of these two HA means that 

the formed aggregates are compact in agreement with the obtained scattering power law dimensions. 

For two other samples from a more aquatic origin – Suwannee River (USA) and Gorleben 

(Germany) HA –, less intensity, much lower slopes, and change in slopes (Figure 3-6c) are indicating 

that the objects are smaller and less dense than the previous ones. For Gorleben HA, the scattering 

behaviour is modified for a typical length in real space around 25 nm while for SRHA the typical 

dimension is larger (ca. 42 nm). These dimensions are close to the typical values obtained by AFM for 

the smallest aggregates [47]. These two samples could be representative of mass fractal dimensions, 

which is in agreement with previous determinations (ÖSTERBERG et al., 1994; ÖSTERBERG et al., 1995; 

RICE et al., 1999). One can also note that organic-containing sediment did not show either of these 

patterns (JARVIE & KING, 2007).. 

3.2.5. Dynamic light scattering (DLS) 

DLS is based on the analysis of the intensity variation of the light scattered by a particle in motion.  

 I = I0 
1 + cos²θ

2 r2  






2π

λ

4

 






n2 – 1

n2 + 2

2

 






DH

2

6

 (3-5) 

with 

 DH = 2RH = 2 
kB T

6πηD 

The dependence in D6
H
 implies that in a heterogeneous mixture the larger particles will scatter more 

intensely than the smaller ones. In the case of humic substances the range of observed sizes is from 

60 to 500 nm (CACECI & BILLON, 1990; CACECI & MOULIN, 1991; REID et al., 1991; SHINOZUKA & 

NIHEI, 1994; PINHEIRO et al., 1996; WAGONER & CHRISTMAN, 1998; RICE et al., 1999; MANNING & 

BENNETT, 2000; PALMER & VON WANDRUSZKA, 2001). In the same way, the size of the scattering 

entities of Aldrich and Suwannee River humic acids are about 100-200 nm [6]. The good quality data 
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for Aldrich HA indicate strongly cohesive entities, but the weak scattered intensity in the case of 

Suwannee River HA suggest poorly cohesive aggregates, as for SANS. 
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Figure 3-7. DLS-derived z-average RH values for the HS samples ( PAHA;  SRHA II) as a function 

of ionic strength (1–50 mmol L
-1

) in sodium carbonate buffers, pH 10 [6 © 2012 Elsevier Ltd]. 

3.2.6. Capillary electrophoresis 

Capillary electromigration techniques have been used to have access to size and mass distribution 

of humic substances from the analyses of the electropherograms (DUNKELOG et al., 1997; SCHMITT et 

al., 1997; SCHMITT-KOPPLIN & JUNKERS, 2003). Capillary electrophoresis allows using a large range of 

environmentally relevant physico-chemical conditions such as pH or ionic strength. Buffering of the 

medium is then mandatory. Characterisation are performed in silica capillary to minimize the electro-

osmotic flow (CIAVATTA et al., 1997). Adsorption properties of humic substances on silica [24] have 

to be taken into account nevertheless (FETSCH & HAVEL, 1998; FETSCH et al., 1998), an buffering the 

solution at pH 10 with carbonate buffer – Na2CO3/CO2(g) – seem to be an adequate solution to 

minimize this possible bias (POKORNÁ et al., 1999). The experimental set-up also allows evaluating 

diffusion coefficient through the TDA (TAYLOR, 1953; ARIS, 1956), which is relying on the detection 

of the dispersion of an analyte in a laminar flow (BELLO et al., 1994; BELONGIA & BAYGENTS, 1997; 

D’ORLYÉ et al., 2008); the Stockes radius RH is then estimated. 

Considering a mono-modal distribution, Aldrich humic acid, Suwannee River HA and FA are 

composed of 1.3, 1.2, and 0.9 nm objects, respectively (Figure 3-8), in agreement with other data (vide 

ante). But a closer inspection of the Taylor dispersion profiles indicates that one can account for a 

second population of a larger size. This is particularly marking in the case of Aldrich HA 

(Figure 3-8a), as a second larger size distribution (RH ≈ 10 nm) accounts for about 10%; the smaller 

size distribution (90%) should be around 1 nm. For Suwannee River FA and HA, the bimodal 

distributions also show a better fit, but the correlation between parameters is much too high. The 

ionic strength influence, the value of which is supposed to strongly influence the size of the humic 

substances’ aggregates, do not show any influence on RH values (Figure 3-10). The nanometric size of 

the entities is once again confirmed. 
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Figure 3-8. Experimental front concentration 

profiles (open circle; one tenth of the 

experimental points are represented for the sake 

of clarity) of HS samples (A- PAHA; B- SRHA II; 

C- SRFA II) at 0.5 g/L in a 20 mM Na2CO3/CO2(g) 

buffer (I = 50 mM), pH 10. Dotted and solid black 

lines are curves fitted to the analytical solution 

to the convection-diffusion equation assuming a 

mono-modal or bi-modal D distribution, 

respectively – from [6 © 2012 Elsevier Ltd.]. 

Figure 3-9. Electrophoretic mobilities of HS 

samples (7.A- PAHA; 7.B- SRHA II; 7.C- SRFA II) 

as a function of I / (1 + B a I) in carbonate 

buffers, pH 10, prepared with a variety of mono-

valent cations chosen within the alkali-metal 

series (Li
+
;  Na

+
; K

+
; Cs

+
) – from [6 

© 2012 Elsevier Ltd.]. 
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Figure 3-10. Taylor dispersion analysis derived RH values and distributions for the humic 

substances samples as a function of ionic strength in (i) 1–250 mmol L
-1

 sodium carbonate buffers, 

pH 10 ( PAHA;  SRHA II;  SRFA II); (ii) 1–50 mmol L
-1

 caesium carbonate buffers, pH 10 ( 

PAHA). Full and open symbols represent the largest and smallest entities characterized in each 

bimodal distribution, respectively –from [6 © 2012 Elsevier Ltd]. 

3.3. INTEGRATED VISION ON THE STRUCTURAL STUDIES 

Confrontation between these different data, and with literature data, allows proposing an 

integrated vision of the humic substances’ structure. 

It seems clearly now that fulvic acids do not form aggregates bigger than a nanometric dimension. 

All the size determinations seem to be in accordance with this order of magnitude. Interactions 

between aggregates seem to be weak, but, as we will see it later on, sufficiently important to be weakly 

influenced by ionic strength when adsorbed on a mineral surface (FILIUS et al., 2000; FILIUS et al., 

2003) [52 and references therein]. 

Humic acids show a different comportment. The measured sizes vary with the different 

techniques: from some nanometres in surface tension, AFM, SANS, and TDA – in accordance with 

osmometry –, up to some tens or hundreds of nanometres in AFM, and DLS. It seems then that HA 

are composed of heterogeneous mixtures of nanometric entities randomly organized, which are in 

turn randomly organized in larger entities. 

It would be tempting to make a direct link between the compositions of the molecules analysed in 

ESI-MS and size determination. We must nevertheless not forget that mass spectroscopy techniques 

are closely linked to their ionisation mode, and to their ionisation efficiency. Moreover, as written 

earlier on, the MS-MS analyses were done on mass peaks [26], which were actually composed of 

several molecules (KUJAWINSKI et al., 2002a; KUJAWINSKI et al., 2002b; THESE et al., 2004). 

Nevertheless, the combination of all these techniques should form the basis for a more advance 

analyses of the humic substances entities. 

One can also remind that the size of about 1 nm does not stand for the simple molecules 

evidenced in [26] nor in THESE et al. (2004). As an example one can remind that a polyacrylic acid of 

M
—

w = 1200 Da shows a RH of 0.8 ± 0.3 nm (BAIGORRI et al., 2007); this RH is on accordance with the 

size of fulvic acid we have shown in TDA and with fractal “scale” reported in SAXS (THURMAN et al., 
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1982; AIKEN & MALCOLM, 1987). Hence, even for the apparently simpler fulvic acid, the formation of 

aggregates of low molecular weight molecules seems to be a sound description. Figure 3-5 is an 

attempt to schematically visualize the general shape and organization of a humic acid aggregate, with 

the more hydrophobic entities regrouped inside the aggregate, creating hydrophobic cores, and the 

hydrophilic and amphiphilic entities regrouped on the outer rim of the aggregates. 

 

Figure 3-11. Schematic representation of a humic acid aggregate. The darker entities are the more 

hydrophobic – from [5]. 
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4. COMPLEXATION OF CATIONIC RADIONUCLIDES 

The knowledge of the speciation of cationic radionuclides in solution is a prerequisite for an 

accurate modelling of their migration in natural systems. Speciation is partly controlled by natural 

organic matter, the structure of which is important to define a “thermodynamic standard state” of the 

fulvic acid, humic acid, and eventually natural organic matter entities. As we will see it through the 

chapter, the current knowledge on the structure of natural organic matter is far from being sufficiently 

sound to provide univocal answer(s). From all the cations of interest in the nuclear cycle are 

caesium(I), cobalt(II), strontium(II), lanthanides, as radionuclides  – 150Sm, 152Eu… – as well as 

analogues of actinides(III) – plutonium, americium, and curium –, actinides(IV) – thorium, 

protactinium, uranium, neptunium, and plutonium –, actinides(V) – protactinium, neptunium, and 

plutonium –, and actinides(VI) – uranium, neptunium, and plutonium. Apart protactinium (KIM et al., 

1994; MAES et al., 2011), humic complexation of these elements has been widely studied during the 

last five decades. As we will see, the metal complexation by humic substances has been described 

through many models. I have proposed a compilation in an open CEA report [53], so I will only focus 

on the models that I have used, and will only mention the other models without entering into the 

details of their advantages and drawbacks. Amongst the different cations, particular emphasis will 

been given on alkaline metals [6], Co(II) [19,82], Eu(III) [9,11,13,14,17,81], Th,U,Pu(IV) 

[12,18,21,22,24], and U(VI) [49,82]. 

4.1. DIFFICULTIES IN THE ESTABLISHMENT OF A MODEL 

There are several difficulties in establishing a model describing the complexation of cations by 

humic substances: heterogeneity of composition and operational definition of their extraction are one 

of the most evident ones. It comes out that a lot of models have been proposed, mostly strongly 

empiric and using extra-thermodynamic functions. From this a series of questions can be addressed. 

4.1.1. Is there a standard state? 

One can argue that the definition of a standard state is currently out of reach. Humic substances 

are composed of a mixture(s) of thousands of molecules submitted to random aggregation mode(s). 

From this obstacle, the most usual way to represent humic complexation is through empirical models, 

based on more or less sound hypotheses. As noted by HUMMEL (1997) it ends with “a veritable jungle” 

of models, where the interaction constants are deeply linked to the basic foundations of the model 

and are sometimes difficult, or even impossible, to use outside the scope of their models. This 

statement is only an image of the reality that each and every scientist that works in this area of science 

has to deal with. Hence, to describe the experimental results within the analytical window of the 

method used, one has to use extra-thermodynamic concepts or functions to represent the inherent 

properties and heterogeneity of humic substances. 
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4.1.2. How to deal with the variation of properties? 

The first problem that one has to face is the apparent increasing strength with pH of the metals 

complexation by humic substances, which can be related to an increasing ionization (SCHNITZER & 

SKINNER, 1966, 1967). The proton consumption, and thus the progressive ionization, can be 

monitored on different titration curves from the literature but no clear pK can be defined. Different 

strategies were used to address this point. When one uses the assumption that humic substances are 

an indiscernible mixture of complexing sites, the easiest one is to define an extra-thermodynamic 

function which represents this increasing interaction strength with pH. One has to define either an 

apparent complexation constant which ‘varies’ with pH and a finite number of sites, or a progressive 

ionization function with a constant interaction parameter. From the applicative point of view these 

two approaches are equivalent and can be classified as discrete site approaches. Another way to deal 

with this problem is to define different pK’s, or distribution of pK’s. Using these kinds of models, the 

complexing sites are not indiscernible but either belongs to families of sites part of a ‘distribution of 

sites’. Extra-thermodynamic functions are still used at different degrees. 

Another problem is the variation of apparent constants with the total concentration of metals. This 

is particularly sensitive in the case of actinides since their concentrations in solution are supposed to 

be low in the environment. This was shown by MOULIN et al. (1992) for Cm(III), CACECI (1985), 

HUMMEL et al. (2000), and MARSAC et al. (2010) – using a different modelling strategies – on other 

lanthanides and actinides. When total metal(III) concentration is of the micromolar order, log10β is of 

the order of 5-6; for lower concentration, log10β can be of the order of 9-10. This implies the account 

of another extra-thermodynamic function, or the use of more advanced models. 

The influence of ionic strength on log10β is also an issue to address. Several authors noted a typical 

evolution of log10β as seen in Figure 4-1. We will discuss later about the evolution of the size of humic 

substances with ionic strength, the evolution of which is not straightforward to explain. 
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Figure 4-1. Evolution of formation constant of humic complexes vs. ionic strength for (a) Am,Cm(III) 

(digitized from CZERWINSKI et al., 1996), and (b) Pu(IV) [12 © 2010 de Gruyter]. 

4.1.3. How to deal with the charges? 

As there is several experimental evidence of the formation of particles by humic substances, the 

establishment of a potential, either at the surface or inside the particles, has been proposed. This is 

another major difficulty. The description of a double or a triple layer is intimately linked to the 

definition of a surface of a hard sphere of a finite size (DAVIS et al., 1978; DAVIS & LECKIE, 1978b; 

DZOMBAK & MOREL, 1990): these descriptions have given satisfying fitting [6], even if the outer limits 

of the humic substances aggregates are not easily evidenced [47], and strongly depend on the 

analytical technique [6]. Some indications suggest that these particles are soft and permeable (JONES & 

BRYAN, 1998; DUVAL et al., 2005). In the framework of these models, the description of the potential 



4.1. Difficulties in the Establishment of a Model 

36 

is approximated by a square function, which gives a constant potential inside the particles: a DONNAN 

(1924) potential. Thus, a satisfactory fitting on either model could be deceiving and hide other biases. 

4.1.4. How to deal with units? 

Another problem is the definition of the concentration of the humic substances, which is also an 

echo of the standard state definition. As seen previously, the definition of a molecular mass of these 

substrates is not univocal, and thus a molar concentration is very tricky to define. One of the most 

common ways is through size exclusion chromatography or mass spectrometry (SCHNITZER & 

SKINNER, 1966, 1967; RYAN et al., 1983), which can induce biases (DE NOBILI & CHEN, 1999; 

PERMINOVA, 1999). Another way is to define through the titration and defining a molar concentration 

of reactive sites. Here again biases can take place as the analytical window – 3  pH  9-10 – may 

appear too narrow for some functionality that are supposed to be present in humic substances, as 

phenolic moieties, which also bears carboxylic functions. Unfortunately, this definition is not always 

used in the literature and a lot of authors have either defined their cK values using mass concentration 

(g L-1), or K or β using a molar scale (mol L-1) but defined after a molecular mass defined in 

chromatography or mass spectrometry or even based on titration results. 

4.1.5. How to deal with competition? 

Different types of models can be proposed: 

i. discrete models where sites are considered indistinguishable and can be activated as a function 

of a parameter – pH for instance –; 

ii. continuous models where distribution of sites possess acid-base properties. 

Discrete models show the advantage of being simple and fast to implement. On the other hand, 

they are limited in their application. In natural systems, metals are always in competition with major 

cations – Ca2+ or Mg2+ – and other trace elements – Fe3+ or Al3+. Competition phenomena are often 

difficult to deal with using discrete models: some metals are in effective competition (KERNDORFF & 

SCHNITZER, 1980; ALBERTS & FILIP, 1998; PINHEIRO et al., 1999; LIPPOLD et al., 2007; LIPPOLD et al., 

2012), whereas others are not (HERING & MOREL, 1988; 1988; TIPPING et al., 1988; BIDOGLIO et al., 

1991; PINHEIRO et al., 2000; LIPPOLD et al., 2007). These competition phenomena are occurring for 

higher concentrations than the ones awaited from the independent systems, and seem to depend on 

the concentration ratio between metals (MOULIN et al., 1992; HELAL et al., 1998; MANDAL et al., 1999a; 

MANDAL et al., 1999b; TIPPING et al., 2002; KAUTENBURGER, 2009). 

4.1.6. Particular case of lanthanides and actinides 

Speciation of actinides has been the subject of a particular attention and of advanced critical 

reviews. The most recognized ones are the ones commissioned by the Nuclear Energy Agency from 

the Organisation for Economic Cooperation and Development (GRENTHE et al., 1992; SILVA et al., 
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1995; RARD et al., 1999; LEMIRE et al., 2001; GUILLAUMONT et al., 2003; BROWN et al., 2005; 

GAMSJÄGER et al., 2005; HUMMEL et al., 2005; OLIN et al., 2005; RAND et al., 2009). From the very 

reason of their excellence, these data bases are necessarily incomplete [30,37,27], because they are 

contributing to the identification of unreliable and missing data. From the large number of data on 

actinides and lanthanides complexation by humic substances, I have proposed compilations of data to 

be used with different modelling strategies [9,12,18,21,22,24,53]. 

4.1.7. Objectives of a modelling strategy 

As it is difficult, and even impossible, to define a “humic object” which satisfies the definition of a 

species, the building of a model that describes the humic complexation must answer to a limited 

number of question, the formulation of which were the preceding sections heads, plus another one: 

are the answers to all these points really necessary to answer the question in the timeframe? The 

answer to this last question is not always easy as it enforces the scientific to “lock up doors”. 

Nevertheless, there doors must be locked up from sound scientific arguments that validates the use of 

simpler, or even operational, solutions. This implies the full understanding of the limits of application 

of these simpler models, their advantages and drawbacks. 

4.2. DISCRETE MODELS 

Complexation properties of humic substances towards metals are known for long from a 

qualitative point of view, but the necessity to quantify these interactions could not rely on one 

established structure(s) or stoichiometry(ies) from the structural complexity and heterogeneity. A lot 

of authors have tried to adapt the law of mass action without making formal hypotheses on the 

charge of the complex. Given the wide variety of carboxylic, phenolic, or even enolic functions, the 

univocal interpretation of acid-base titration is very difficult as was the determination of formal 

thermodynamic constant for this functionality. This implied the proposition of apparent 

complexation constants between metals and humic substances, which can vary as a function of pH or 

as a function of metal concentration. 

4.2.1. General description 

These kinds of models has been applied to a large number of cases, including d-transition elements 

– Ca(II), Pb(II), Cd(II) – or f-block elements. As a microscopic description of metal-HS interactions 

is not straightforward, a macroscopic description based on operational hypotheses is necessary. The 

most accepted approach is to consider that the association of complexation is achieved via a certain 

amount of available sites: the acid-base functions of the humic substances. Actually, under these 

hypotheses, humic substances are not considered as a ligand, but as a number of available sites that 

can participate in the complexation of a cation. The underlying paradigm is that humic substances are 

a mixture of independent “ligands”. The total number of sites is determined by potentiometric 
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titration. Under these hypotheses an adaptation of the law of mass action can be written, with an 

interaction constant, HAβ, which describes the following equilibrium (4-1): 

M + A ⇄ MA HAβ = 
[MA]

[M]F [A] (4-1), 

where charges are omitted and A is a site. Ionisation can be also described by a deprotonation 

constant. 

HA ⇄ A– + H+ HAK = 
[A–] [H+]

[HA]  (4-2) 

From the preceding equations, it comes that conditional constants can be easily integrated in any 

modelling strategy, by analytical resolution or by integrating the conditional constants in software data 

bases. Nevertheless, as these parameters are operational and conditional, one must be cautious about 

their applicability outside of their parametric domain. 

4.2.2. The charge neutralization model (CNM) 

The charge neutralization model (CNM) was proposed by KIM & CZERWINSKI (1996). The 

advantages, drawbacks, weaknesses and insufficiencies were discussed elsewhere (TIPPING, 2002) [53]. 

The complexation equilibrium between a cation Mz+ and the available sites of natural organic matter 

supposes the maximum consumption of z sites to neutralize the charge of the metal. The equilibrium 

comes, 

Mz+ + HA(Z) ⇄ MHA(Z) β1.Z = 
[MHA(Z)]

[Mz+]F [HA(Z)]F

 (4-3),  

where [HA(Z)]F is the free concentration of humic sites in solution, [MHA(Z)] the concentration of 

metal-humic complex, and [Mz+]F is the concentration of free Mz+ in solution. The concentration in 

free humic sites in solution [HA(Z)]F is not straightforward to calculate. Besides, the total 

concentration of humic sites can be estimated from the proton exchange capacity (PEC eq[mol] g-1
HA) 

by potentiometric titration. Under this formalism, the humic sites that are participating in the 

complexation exactly neutralize the charge of the metal Mz+. The total concentration of humic sites 

[HA(Z)]T, can be defined as, 

 [HA(Z)]
T
 (molsite L

-1) = 
CHA (g L-1) × PEC (molsite g

-1) 
z

 (4-4),  

where CHA is the total mass concentration of humic acid (g L-1). The concentration [HA(Z)]T can be 

presented as the maximum concentration in metal of charge z that can be neutralised by the 

introduced humic acid. 
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Actually, this maximum concentration is never attained. As in other more simplistic cases, the 

hypothesis of a maximum loading capacity (LC) for the metal cation Mz+ is used. This LC(Z) is 

defined as the available fraction of humic sites that can be effectively engaged in the complexation 

reaction, 

 LC(Z) = 
[MHA(Z)]
[HA*(Z)]T

 = 
z [Mz+]*

PEC × CHA

 (4-5) 

where [MHA(Z)] = z [Mz+]*, represents the maximum concentration of cation Mz+ which can be 

implied in the complexation reaction for a humic substance sample. 

In order to monitor the fact that humic complexation keeps on increasing when hydrolysis of 

metals is taking place, the formation of mixed complexes has been included. The cumulative reactions 

are written as following. 

Mz+ + n OH– + HA(Z-n) ⇄ M(OH)nHA(Z-n) β1.n.Z = 
[M(OH)nHA(Z-n)]

[Mz+]F [OH–]n [HA(Z-n)]L

 (4-6),  

Mz+ + m CO2–
3  + HA(Z-2m) ⇄ M(CO3)mHA(Z-2m) β1.m.Z = 

[M(CO3)mHA(Z-2m)]

[ ]M
z+
 F [ ]CO2–

3

m [ ]HA(Z-2m) L

 (4-7). 

One must also note that LC(Z) is not accessible under these hypotheses as determinations are 

performed as a function of log10[OH–] or of log10[ ]CO2–
3 . Authors consider either that LC(z) = 1, from 

the pH values characteristic of these mixed complexes for lanthanides and actinides(III), or use an 

hypothetic ionisation of HA(II) in the case of uranium(VI) (ZEH et al., 1997). Another possibility is to 

use LC(II) for AnOHAH(II), or LC(I) from MARQUARDT & KIM (1998) on NpO+
2  for MOHHA(I). 

This analogy seems to be justified in the case of Pu(IV) at pH 4 when Pu(OH)+
3  is major in solution 

[12]. 

4.2.3. Alkaline metals 

The interactions of alkaline metals and humic substances is relatively weak compared to other 

cations, in particular caesium (SHABAN & MACÁŠEK, 1998). It seems that the inhibition of Cs+ 

adsorption on minerals in the presence of natural organic matter is more a consequence of a masking 

of adsorption sites that to a direct interaction with humic substances (VIDAL & RAURET, 1993; 

DUMAT & STAUNTON, 1999; RAJEC et al., 1999; RIGOL et al., 2002), which seems weak and non-

specific. The interaction seems also to occur with the fraction of low molecular  mass (RAJEC et al., 

1999). Nevertheless, as for other organic ligands, there is a possible interaction; only few reliable data 

are available. We have shown that there is a significant evolution of the electrophoretic mobility 

within the alkaline series, the value of which increases from Li+ to Cs+ – see Figure 3 from [6]. The 

inverse effect was expected because the alkaline cation mobilities are increasing from Li+ to Cs+. The 

relaxation effect should be more important and decrease the mobility of humic substances entities 
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(NIELEN, 1991). The solvent flux induces the counter-ions electromigration in the opposite direction 

to humic substances. This induces a retardation force, the intensity of which will depend on the 

nature of the counter-ion. As was described by MAUERHOFER et al. (2003), the low charge density 

alkaline cations (Cs+, K+), have a less organized hydration sphere than the high charge density alkaline 

metals (Li+, Na+). The friction effect on the hydration spheres should be less important for the former 

than for the latter. Low charge density cations are described as “structure breakers”, whereas high 

charge density cations are described as “structure makers” (BÉRUBÉ & DE BRUYN, 1968). If the 

friction effect is more important than the retardation effect, the electrophoretic mobility is then 

increasing from Li+ to Cs+. We have seen that the humic substances entities can be considered, as a 

first approximation, as hard sphere, on the size of which ionic strength does not have any influence. 

One can also think the electrophoretic mobility increase is directly linked to a decrease of the 

association between the alkaline counter-ion and the humic substances entities. In natural water, Na+ 

and K+ concentrations are far more important than Cs+. 

The log10
HAβ determined from the electrophoretic mobilities – see Table 3 in [6] – are of the same 

order of magnitude, but are decreasing from Li+ to Cs+. Hence, for a radioactive isotope of Cs+ 

(134,137Cs), the competition with Na+ and K+ is not favourable from every point of view of the law of 

mass action, i.e. log10
HAβ and the concentration ratio between cations. Interestingly, log10β(Li+) for 

polyacrylic acid (GREGOR & FREDERICK, 1957) is directly comparable to the humic substances values. 

4.2.4. Europium(III) 

Europium is a lanthanide that is often considered as a chemical analogue of the actinides(III), as 

Pu,Am,Cm(III). It is particularly justified in the case of oxygenated ligands. The first hydrolysis of 

these cations is occurring for pH values close to neutrality (FANGHÄNEL et al., 1994; HUMMEL et al., 

2002; GUILLAUMONT et al., 2003).* I proposed a compilation of log10β values for these elements [53]. 

As noted earlier (cf. § 4.1.2, page 34), the log10β value, in the case of undistinguishable discrete sites, is 

strongly dependant on the concentration of metals (CACECI, 1985; MOULIN et al., 1992): 10  log10β  

6 when -9  log10([M(III)] mol L-1)  -5. Using this kind of simplistic, but fast, models we have 

proposed a value of log10
HAβ = 6.7 ± 0.7 at pH 5, and [Eu(III)]T = 10-5 mol L-1, for a vertisol humic 

acid [9], perfectly in agreement with other data [53]. 

4.2.5. Actinides(IV) 

These works have been done during the 4th [75,77],† 5th [73],‡ and 6th [62-64,67,70]§ research and 

development FrameWork Program from the European Economic Community. 

                                                           

*
 M3+ + H2O ⇄ MOH2+ + H+, log10*β°1 (Eu3+)= -7.64, log10*β°1(Pu3+) = -6.9, log10*β°1(Am3+) = -7.2, log10*β°1(Cm3+) = -7.6 

†
 Effect of humic substances in the migration of radionuclides: complexation and transport of actinides (HUMICS) 

‡
 Humic substances in performance assessment of nuclear waste disposal: actinide and iodine migration in the far-field (HUPA) 

§
 Fundamental processes of Radionuclide Migration (FUNMIG) 
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Under the conditions of a deep geological disposal of radioactive wastes, the redox potential is 

awaited to be highly reductive (DE CRAEN et al., 2004; GAUCHER et al., 2006; GAUCHER et al., 2009). 

Redox sensitive actinides should be mainly under the +IV state. In more oxidant media, humic 

substances are known to promote the reduction of these sensitive elements. If the reduction of 

plutonium(VI) and (V) in plutonium(IV) and (III) in the presence of humic substances is rather fast 

(NASH et al., 1981; SANCHEZ et al., 1985; ANDRÉ & CHOPPIN, 2000), it is sufficiently slow in the case 

of reduction of neptunium(V) to neptunium(IV) (KIM et al., 1994; ZEH et al., 1999) to permit the 

study of NpO+
2  complexation by humic substances [53 and references therein]. No spontaneous 

reduction has been observed for uranium(VI) under laboratory conditions. Only the use of synthetic 

extracts containing catechol (SACHS et al., 2004), the hydrothermal degradation products of wood in 

flooded mines (ABRAHAM et al., 1999a; ABRAHAM et al., 1999b; BARANIAK et al., 1999; ABRAHAM, 

2002), or bacterial reduction (GU et al., 2005), have been shown to induce the reduction to 

uranium(IV). 

It is difficult to obtain data on actinides(IV) knowing the very low solubility of An(OH)4(s) or 

AnO2 solids (GUILLAUMONT et al., 2003; RAND et al., 2009), the propension to form colloidal particles 

(ALTMAIER et al., 2004), and the very important adsorption properties on a large selection of materials 

(RYDBERG & RYDBERG, 1952). Hydrolysis of An4+ cations is extensive and occurs from pH lower 

than 3 for Th(IV)* (RAND et al., 2009), and lower than 1 for U/Np/Pu(IV)† (GUILLAUMONT et al., 

2003). 

4.2.5.1. Thorium(IV) 

Even if thorium(IV) has no f-electrons, the chemical analogy with the other actinides(IV) 

complexation by oxygenated functions has not been contradicted. Some preliminary precautions are 

nevertheless needed when complexation constants are estimated, particularly concerning the 

differences between thermodynamic data, particularly the hydrolysis constants. 

The oldest data on humic complexation of Th(IV) are going back in the late seventies (IBARRA et 

al., 1979a; NASH, 1979; NASH & CHOPPIN, 1980), in the mid-nineties (TAO & GAO, 1994) and more 

recently [18,21,24,64], HELAL (2007) and BENEŠ (2009). The experiments from MURPHY et al. (1999) 

on a marine natural organic matter extract can be compared from an informative point of view. On 

the other hand, the data from HELAL et al. (2005) are difficult to use as they are presented on 

unreadable graphs. The major part of these studies are regrouped in a pH range lower than 6. 

We had obtained data on three different systems in a pH range between 3 and 9.2: 

i. a competitive system Th/HA/SiO2, where the non-adsorption of HA on SiO2 is checked [24]; 

                                                           

*
 Th4+ + H2O ⇄ ThOH3+ + H+ log10*β°1 = -2,5 

†
 An4+ + H2O ⇄ AnOH3+ + H+ -0,6 ≤ log10*β°1 ≤ 0,6 
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ii. a colloidal SiO2-grafted humic acid [18,21,64]*, the synthesis of which is described in SZABÓ et 

al. (1990); 

iii. by ultrafiltration of a humic acid suspension [18]. 

All these independent studies can from the basis of a compilation to establish an operational 

relationship describing humic complexation of Th(IV) in a wide parametric space, including the 

available raw data from IBARRA et al. (1979a) and BENEŠ (2009). The data from the Nash’s PhD thesis 

(NASH, 1979; NASH & CHOPPIN, 1980) are included for comparison but are not directly included.† In 

the same way, the data from HELAL (2007), the log10
HAβ values of which are available but not the raw 

data, are not included and used as comparison. One can propose a linear relationship (Figure 4-2), 

 log10
HAβ = (2.69 ± 0.13) pH – (2.23 ± 0.95) (4-8) 

with a 95% uncertainty of 2.1 on log10
HAβ at the centre of the regression. The other data from 

literature are satisfactorily distributed within the confidence hyperbole, with the exception of some 

data from NASH & CHOPPIN (1980). 

A deeper analysis can evidence changes of slopes, particularly for pH values higher than 6.5. 

Actually, as log10
HAβ values were corrected from the Th(IV) hydrolysis, the changes of slopes are 

imposed by the numerical treatment. This corresponds to the following equilibrium, using the 

hydrolysis data from NECK & KIM (2001). 

Th(OH)+
3  + H2O ⇄ Th(OH)4(aq) + H+ log10*Ko

4 = log10*βo
4 - log10*βo

3 = - 6.5 (4-9) 

BENEŠ (2009) proposed other data at pH 10-11. They are fairly well aligned with a slope of +4 

with other data above pH 6.5, but were obtained for pH values where alkaline hydrolysis of humic 

substances could occur (KUMKE et al., 2001). 

                                                           

*
 In collaboration with the National Research Institute for Radiobiology and Radiohygiene « Frédéric Joliot-Curie » from Budapest,  OSSKI, 

http://www.osski.hu/index_en.php 
†
 These data were obtained in liquid-liquid extraction in 1 M acetate media which complexes dominates the Th(IV) speciation. The authors have 

adjusted their 1 M data to 0.1 M using a modified Debye-Hückel expression, which is not directly comparable to the Davies expression– see 
discussion in [18] 

http://www.osski.hu/index_en.php
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Figure 4-2. Compilation of humic complexation data of thorium(IV) following a discrete model. The 

regression is done on data from IBARRA et al. (1979a), REILLER et al. [18,24], SZABÓ et al. [21], and 

BENEŠ (2009), using hydrolysis data from NECK & KIM (2001). Other data are given for comparison. 

4.2.5.2. Uranium(IV), neptunium(IV), and plutonium(IV) 

Experimental data on uranium(IV) complexation by humic substances are even more difficult to 

obtain. The only available data are from LI et al. (1980) and WARWICK et al. (2005). The former are 

biased from over saturation respective to uranium(IV) at pH 6: 0.1  [U]total mg L-1  10 being 

0.42  [U]total µmol L-1  42 when the maximum solubility is 3.16 nmol L-1: they can only be 

considered as comparison. We have corrected the data from WARWICK et al. (2005) in REILLER et al. 

[18].  

Neptunium shows four oxidation states in water. If KIM et al. (1994) and ZEH et al. (1999) observed 

the slow reduction from Np(V) to Np(IV), the only quantitative study on neptunium(IV) is available 

in the PhD thesis of PIRLET (2003), which has not been published elsewhere, except a communication 

in Migration 2003 conference (PIRLET & DELÉCAUT, 2003). These data can be treated following a 

simple discrete model Figure 4-3. The difference with the Th(IV) data mainly comes from  the 

difference between the hydrolysis and solubility constants. Coherence between these data and the 

ones on uranium(IV) is worthy to notice as the thermodynamic constants are comparable 

(GUILLAUMONT et al., 2003). 

Plutonium also shows a rich solution chemistry with four stable oxidation states in water [31,54] 

(GUILLAUMONT et al., 2003). The humic complexation of plutonium in general (ERIKSSON et al., 

2001), and of Pu(IV) in particular has often been considered important, even if there were only few 

data available. Some data were available in the Richard Torres’ PhD (TORRES, 1982) that permit an 

estimation of log10
HAβ(Pu4+) = 12.5 at pH = 3.78. CZERWINSKI & KIM (1997) estimated in the 

framework of the CNM that Pu(OH)3HA(I) should have of value of log10β1.3.I ≈ 56.4 – which gives 
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log10
HAβ(Pu4+) ≈ 38.6 in a discrete site model,* under the hypothesis that 90% of Pu(IV) were under 

the form of humic complex in natural waters. Dedicated experiments with SiO2-grafted humic acids 

gave values of 15.2  log10
HAβ(Pu4+)  22 in the interval 3.8  pH  5.9 (Figure 4-3) [12,67]. The very 

recent results from MARSAC et al. (2014) and TINNACHER et al. (2015) are also in excellent agreement 

with our previous estimation. The linear extrapolation of these data to pH 8 gives log10
HAβ(Pu4+) = 

28.8 ± 0.2 and log10
HAβ1.4.I = 52.4, which is in fair agreement with the estimation of CZERWINSKI & 

KIM (1997). Coherence with data on U(IV) and Np(IV) is fair as the hydrolysis and solubility data are 

also comparable. 
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Figure 4-3. Compilation of humic complexation data of actinides(IV) following a discrete model. 

Thermodynamic data from RAND et al. (2009) for Th(IV) and GUILLAUMONT et al. (2003) for U/Np/Pu(IV). 

4.2.5.3. Generalisation of analogy between actinides(IV) 

The establishment of the operational relationship on Th(IV) can also be done on U(IV) as in [18] 

(Figure 4-4). Data from HELAL (2007) for Th(IV), from PIRLET (2003) for Np(IV), and from MARSAC 

et al. (2014) and TINNACHER et al. (2015) for Pu(IV) were not available at the time when reference [18] 

was written, but can be integrated in the relationship. For the establishment of this relationship all the 

raw data are corrected using the U(IV) hydrolysis (NECK & KIM, 2001).  

                                                           

*
 log HAβ ≈ 56,4 – 3 log (OH–) = 56,4 – 3 log(1,28 10-6) à pH 8 et 0,1 mol.L-1 
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Figure 4-4. Comparaison of the log10
HA
β(An

4+
) values for different actinides corrected from U(IV) 

hydrolysis (NECK & KIM, 2001): U-Aldrich HA, and U-Boom Clay HA (WARWICK et al., 2005) corrected 

in [18]; Th-SiO2-Aldrich HA [24]; Th-SiO2  [18,21,64]; Pu-SiO2-HA [18,67]; Th-Aldrich HA, Lake 

Bradford HA, and IHA (NASH & CHOPPIN, 1980); Th-SRHA (MURPHY et al., 1999); Th-Aldrich HA [18]; 

Pu-Lake Bradford HA (TORRES, 1982); Np-Boom Clay HA (PIRLET, 2003); and Th-HA (BENEŠ, 2009). 

The correlation is satisfactory regarding the varying origin of the data. This relationship can be 

easily transposed to Np(IV) and Pu(IV) using the ad hoc hydrolysis and solubility data, via the 

RINGBÖM (1963) coefficient α at each pH value, with an increasing uncertainty. The recent data from 

SASAKI et al. (2012) on Th(IV) and Pu(IV), as well as MARSAC et al. (2014) on Pu(IV) also fall into this 

correlation. 

It is worthy to notice anyway that above a critical concentration, the formation of colloids occurs 

within the HS’ structure (MARSAC et al., 2014), which could explains the lack of, or weak,  influence 

on the solubility of M(IV) metals, including Th(OH)4, observed at pH  4 (ANTONIOU & 

PASHALIDIS, 2014; PRODROMOU et al., 2014). As observed otherwise, HS act as inhibitors of 

crystallization (HOCH et al., 2000), which reduces the size of e.g. Th(OH)4 crystallites (PRODROMOU et 

al., 2014). I would suggest that it is not directly linked to the complexation mechanism of M(IV), but 

rather to structural issues that we could discuss later. 

4.2.5.4. Effect of humic complexation on the Nernst potentials 

Even if the redox properties of humic substances are known (ÖSTERBERG et al., 1995; ÖSTERBERG 

& SHIRSHOVA, 1997), the quantification of the humic complexes as a function of redox potential can 
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be estimated, and the Nernst potential of the complexes can be evaluated [22]. A Pourbaix diagram 

(Eh-pH) showing the predominance of hydrolysed species of uranium, neptunium, and plutonium can 

be proposed in Figure 4-5. The Eh-pH relationship for the redox potential of humic acids proposed 

by ÖSTERBERG & SHIRSHOVA (1997) is also reported. One can see that uranium(VI) can only be 

hardly reduced by humic substances as the Eh-pH relationship only crosses U(VI) complexes. On the 

contrary, in the case of neptunium(V) can be reduced under acidic pH conditions, but less easily in 

neutral media. Finally, plutonium(VI) and plutonium(V) should be readily reduced. It is also possible 

to propose the Eh-pH diagram of U, Np, and Pu, only considering the Nernst potentials induced by 

the humic complexation in carbonated media (Figure 4-5). At trace concentration, the predominance 

of humic complexes estimated in the framework of the CNM is rather clear.* 

                                                           

*
 The différence between predominances of UO2CO3(aq) and PuO2CO3(aq) on Figure 4-5b,c should come from a systematic error (Vitorge, Pers. 

Comm.) 
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Figure 4-5. EH-pH diagram of the Nernst potential 

of humic complexes of (a) neptunium, (b) 

plutonium, and (c) uranium. Redox properties of 

humic substances are not taken into account: 

[M] = 10
-10

 mol kg
-1

, c(HCO3)total = 8.2 

10
-3

 mol kg
-1

, c(HA) = 100 mg L
-1

, PEC = 5.4 

meqsite.g
-1

, [NaClO4] = 0.101 mol kg
-1

 – from [22 © 

2005 de Gruyter]. Dashed line are the data 

proposed in ÖSTERBERG & SHIRSHOVA (1997) 

4.2.6. Repartition of humic complexes for the redox sensitive actinides: case of 

plutonium 

One can draw an Eh-pH diagram in the particular case of plutonium accounting for the different 

constants available in the framework of the charge neutralization model (Figure 4-6), either from 

analogy with Am-Cm(III) for Pu(III), Np(V) for Pu(V), and U(VI) for Pu(VI), and after adaptation 

from Equation 4-8 for Pu(IV). One can see the extension of the domain of soluble Pu(III), Pu(IV) 

and Pu(VI). Species Pu(OH)4HA(I) is occurring at pH higher than 8 and is minor compared to total 

Pu, whereas major in solution (Figure 4-6c). The account of the atmospheric CO2 would lead to a 

decrease in Pu(OH)4HA(I) complex. 
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These diagrams do not account for the particular redox properties of HS. From the data in 

ÖSTERBERG & SHIRSHOVA (1997), it can be seen that in the presence of HS, Pu is a mixture of Pu(III) 

and Pu(IV) depending on pH. These estimations are in fair agreement with other data (MARQUARDT 

et al., 2004; DARDENNE et al., 2009). 

a b  

c  

Figure 4-6. Comparison between EH-pH diagram in 0.1 M NaCl of Pu (10
-8

 M) system calculated in 

the framework of the charge neutralization model, in the absence (a) and presence (b) of HS (160 

mg/L), and Pu (10
-12

 M) and atmospheric CO2 (c); thermodynamic data from the ThermoChime data 

basis provided in the PhreeqC 3 software package
*
 (GIFFAUT et al., 2014) 

4.2.7. Rationale of complexation constants for aquo-ions in the framework of 

discrete models 

The stepwise complexation constants show two systematic trends. The first one is associated with 

the general trend to higher complexation constants with higher cation charge of the metal ions. In the 

case of the neptunyl and uranyl ions, the higher effective charge in the equatorial plane than the 

overall formal charge is also reflected in the elevated complexation constants. The final reflection is, 

                                                           

*
 http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/, and http://www.thermochimie-tdb.com/ 

http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/
http://www.thermochimie-tdb.com/
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as already discussed above, that the ternary complexes with hydroxyl ions have higher humic 

complexation constants than expected. The reason is not yet known but its resolution would be a 

great piece in the puzzle around the humic acid metal ion complexation. Nevertheless, a rationale can 

be proposed on Figure 4-7, which shows some consistency with increase charge of the free ion. 
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Figure 4-7. Rationale of the different constants obtained for free ions in the framework of the 

discrete models:  Th
4+

 [18],  NpO+

2
 (KIM & SEKINE, 1991),  UO2+

2
 various authors [53],  Co-Mn

2+
 

(RYAN et al., 1983),  Li-Na-K-Cs
+
 [6],  Ln-An

3+
 various authors [53]; the line is a guide to the eye – 

adapted from [48]. 

4.3. CONTINUOUS MODELS – NICA-DONNAN 

The Non-linear Isotherm Competitive Adsorption-Donnan model has been developed at the 

University of Wageningen (The Netherlands). This description supposes that an ion i interacts with a 

charge-bearing gel in non-specific coulombic interaction, and then can be in specific interaction with 

different groups of sites, as schematized in Figure 4-8. 
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Figure 4-8. Schematic representation of the implied phenomena in the complexation of metallic 

cations by a humic substances in the framework of the NICA-Donnan model (KINNIBURGH et al., 

1999). 

As we will see afterwards, the denomination of these sites, i.e., « carboxylic » and « phenolic », can 

be viewed as a shortcut of the envisaged sites distribution, the log10Kmax values of which are 

compatible with the pKa of carboxylic acids and phenols. These pKa values can be strongly different 
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from the nominal values, i.e. pKcarb ≈ 4.5 and pKphen ≈ 8; for instance phthalic acid* has two carboxylic 

functions on a benzene cycle with pKa being 2.95 and 5.41. Salicylic acid† has a carboxylic function 

(pKa = 2.97) and a phenolic function (pKa = 13.74). It can then be envisaged that other types of acid-

base functions be included in the wider distribution as amine functions of aspartic acids‡ (pKa = 9.82), 

even if N-bearing functions are known to be minor. 

In the Donnan approach, humic substances are considered as an electrostatically neutral gel phase 

with a constant electrostatic Donnan potential, ΨD. The “structural charges” of humic substances are 

compensated by the counter-ions. Outside the Donnan gel structure, ΨD = 0. The activities in the gel 

phase in the gel ai,D and in the bulk solution ai are linked by a Boltzmann factor. 

 Ci,memb = Ci exp






– 

 zi F ΨD 
R T   (4-11) 

As the phase is electrically neutral: 

 
q

VD

 + 
i

 zi





ai,D

 
 – ai  = 0,  q = – VD 

i

 zi





a i,D

 
 – ai  (4-12) 

where VD is the volume of the Donnan phase, q is the charge of the humic substance extract and z the 

charge on the considered metal. For q values vs. pH for a known concentration of electrolyte, ΨD can 

be determined if VD = f(pH,Cs) is known. Practically, this value can only be estimated by the Einstein 

law, with the approximation of a “simple” form. BENEDETTI et al. (1996a) showed a logarithmic 

dependence between VD and ionic strength. 

 log10VD = a + b log10I (4-13) 

Actually, the authors remarked that VD tends to 0.1 L kg-1 for ionic strength higher than 10 mM. 

 log10VD = b (1 – log10I) – 1 (4-14) 

It is noteworthy that even if a polyelectrolyte structure is evoked for humic substances in 

BENEDETTI et al. (1996a) – with a three dimensional structure –, there is no inclusion of a molecular 

mass definition in the definition of the Donnan gel and of its electrostatic potential, contrary to 

Model VI (TIPPING, 1998) for instance where the definition of the potential that spreads out of the 

hard-sphere humic particles requires the use of a molecular mass. 

Within the Donnan phase, the cations complexation occurs with a distribution of sites. The 

quantity of fixed cations on the total number of sites θi,T is described by 

                                                           

*
 benzene-1,2-dicarboxylic acid 

†
 2-hydroxybenzoic acid 

‡
  (2S)-2-aminobutanedioic acid 
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 θi,T = 



 log Ki

θi,L ƒ(log Ki) d(log Ki)
 
  (4-15) 

where θi,L is the fixed quantity on a site i, ƒ(log10Ki) is the continuous distribution function of sites. 

From the Sips’ equation (SIPS, 1948, 1950), KOOPAL et al. (1994) has applied an Henderson-

Hasselbach treatment and proposed a general equation in the case of a cation i in competition with 

other species on a distribution of sites. As the model requires the electroneutrality of the phase, the 

complexation of an ion must be followed by the release of another cation. KINNIBURGH et al. (1999) 

have proposed the normalisation to the following expression for two distributions, 

 Qi,T = 
j

 






ni,j

nH,j
 Qmax i,j  × 
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i
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~
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~
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i
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i,j CD,i
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 pj

 (4-16)  

with Qi,T the total quantity of a compound i fixed to humic substances (mol kg-1
HA

), Qmax the maximum 

number of available sites (mol kg-1
HA

), CD,i the concentration of i in the Donnan phase, K
~

i the median 

affinity value of species i in the distribution, pj the width of the jth distribution or its intrinsic 

heterogeneity (the same for all the cations) (0  pj  1), and ni,j the heterogeneity or non-ideality of the 

ion i with the distribution j (0  ni,j  1). The parameter ni,j can be viewed as an inverse of 

stoichiometry, ni,j = 1 stoichiometry 1:1 or mono-dentate, and ni,j = 0.5 stoichiometry 1:2 or bi-

dentate (KOOPAL et al., 2005). This expression is actually rather equivalent to a Langmuir-Freundlich 

isotherm. In the case of H+, only the product mH+,j = nH+,j.pj can be experimentally obtained. 

Parameters nH+,j, pj¸and ni,j for other cations are determined from titration of the humic substance and 

from complexometric experiments. 

4.3.1. Cobalt(II) and the flux Donnan membrane technique. 

Cobalt is a structural element of the nuclear reactors alloys. After its activation it gives a major part 

of the radiation exposition. The radionuclide 60Co is also greatly used in the medical domain. This part 

has been done during the Laura Marang’s PhD thesis [19,82]. 

 

The flux Donnan membrane technique (FDM) is based in the Donnan Membrane Technique 

(DMT) (TEMMINGHOFF et al., 2000), which allows measuring free metal concentration in solution. 

The separation between free positive cations and negative humic complexes is done with a negatively 

charged membrane. The interferences which are due to other species in solution are weak compared 

to other speciation techniques. Under equilibrium condition the concentrations of free metal are the 

same at each side of the membrane and can be calculated following the Donnan equilibrium 
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(DONNAN, 1924). The concentrations in the Donnan phase (membrane) and in the solution are linked 

by the Boltzmann relation 

 Ci,memb = Ci exp






– 

 F Ψ 
R T   = Ci B  (4-17)  

Knowing that the membrane is electrically neutral, the negative charge is neutralized by the 

counter-ions. 

 q + 
i

 zi Ci exp






– 

zi F Ψ
R T  = q + 

i

 zi Ci B
zi = 0 (4-18)  

The counter-ion is generally a salt of a divalent cation to avoid the exchange between an alkaline 

cation and the studied metal. The Boltzmann coefficient B is calculated from the membrane 

parameters.* The originality of the work resides in the study of the cation flux through the Donnan 

membrane. In order to accelerate, or enforce, this flux a ligand is introduced in the acceptor side to 

create a stronger concentration gradient which promotes the migration from the donor side. Under 

equilibrium conditions, the concentration of free metal in the donor can be calculated from the metal 

concentration measured in the acceptor using the analytical relationships in WENG et al. (2005). The 

cation fluxes in the DMT cell can be limited by diffusion in the membrane or at the membrane-

solution interface – see. Figure S1 in ref. 19.† The ratio Ci,memb/Ci in Equation 4-17 gives the relative 

increase of cation concentration within the membrane (Table 4-1). This concentration increase has a 

great importance on the solubility of cations in the Donnan membrane as we will see it afterwards. 

The FDM has been developed in order to obtain quantitative information on the complexation of 

radionuclides by humic substances in a shorter time scale than DMT, and to decrease the limit of 

detection. The FDM is also a dynamic approach of the DMT but it is based on an experimental 

calibration [19], which allows to get rid of theoretical parameters and analytical solution of the cation 

transport. The FDM also allows obtaining information on the lability of the studied complex. The 

study of the flux is done in the presence of a strong ligand of the free cation in the acceptor. The 

lability criterion defined by VAN LEEUVEN et al. (2005) allows estimating that Co(II) humic complexes 

are inert during the time of the separation. 

The obtained NICA-Donnan parameters, i.e. log10K
~

i,j, ni,j, and pj for this humic acids in reference 

[19] can be compared to the proposed generic values. In the generic data compilation from MILNE et 

al. (2001; 2003), the fixation on the “carboxylic sites” was awaited to be mainly non-specific 

(log10K
~

Co2+,1= –0.24) whereas fixation on higher proton affinity sites was proposed and not adjusted 

(log10K
~

Co2+,2 = 1.0). In the dedicated study, log10K
~

Co2+,1 = 2.5 for the lower proton affinity sites, and 

                                                           

*
 B = 

zi

 – 
 q

zi Ci
 = 29.6,  for Ci = 2 mM, CaCl2 zi  = 2, δm = 0.16 mm, A = 7 cm², charge density – 0.8 mmol g-1, mass per surface 0.014 g cm-2, which  

gives q = – 0.7 mol.L-1 for the effective surface. if only 20% is effective q = –3.5 mol.L-1 
†
 http://pubs.acs.org/doi/suppl/10.1021/es060608t 

http://pubs.acs.org/doi/suppl/10.1021/es060608t
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log10K
~

Co2+,1 = 3.5, for the higher proton affinity sites, imply a more specific character of the 

cobalt(II)/HA association [19]. MILNE et al. (2003) proposed also correlations between ni,j and 

ni×log10K
~

i,j with first hydrolysis constants. From this correlation Co2+ was through to show a 

comportment which should be more comparable with alkaline-earth metals than with a d-transition 

element. The values from MARANG et al. [19] seem to show that the Co(II)/HA association is far 

more specific than anticipated. The reason behind this discrepancy is not easy to settle, but our data 

cover a wider parametric space. 

Table 4-1. Values of Boltzmann factors for different ionic strengths fixed by CaCl2 or Mg(NO3)2 for 

different charges for a membrane such as the ones used in Weng et al. (2005) and [19,82]. 

I (mmol L-1) M+ M2+ M3+ M4+ M– 

2 29.6 876.2 25 934.3 767 656.3 0.034 

20 9.4 88.4 830.6 7 807.5 0.106 

100 4.2 17.6 74.1 311.2 0.238 

 

4.3.2. Case of uranium(VI) 

4.3.2.1. Uranium(VI) and the limits of the FDM 

As noted earlier, uranyl ion (UO2+
2 ) is the only actinyle VI ion that is stable in water which 

reduction has not been observed in the presence of humic acid (MOULIN et al., 1992; CZERWINSKI et 

al., 1994), contrary to PuO2+
2  (NASH et al., 1981; SANCHEZ et al., 1985; ANDRÉ & CHOPPIN, 2000). 

Only catechol-containing synthetic extracts (SACHS et al., 2004), or hydrothermal alteration products 

of wood (ABRAHAM et al., 1999a; ABRAHAM et al., 1999b; BARANIAK et al., 1999; ABRAHAM, 2002), or 

bacterial reduction (GU et al., 2005), allow the reduction to U(IV). The major part of the authors agree 

on apparent humic complexation constant of UO2+
2 , the values of which are very close to the ones of 

actinides(III) – see compilation in [53]. 

Uranium(VI) has also been studied in FDM, under the same conditions than Co2+; MgCl2 was 

chosen instead of CaCl2 to limit the solubility of calcium uranates (GUILLAUMONT et al., 2003). As 

already seen in Table 4-1, the increase of UO2+
2  concentration in the Donnan membrane is of 876.2. 

One can anticipate solubility problems of shoepite (UO3:2H2O), or other hydroxide from Figure 4-9. 

Nevertheless, the UO2+
2  adsorption isotherm at pH 4 is satisfactory [49,82]. The values log10

~
KUO22+,1 = 

4.6 ± 0.05 and nUO22+,1 = 0.3 ± 0.1 are obtained keeping the values of log10

~
KUO22+,2 and  nUO22+,2 from 

Saito et al. (2004). 
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Figure 4-9. Solubility diagram of UO3:2H2O at I = 6 10
-3

 mol L
-1

 (plain line) and apparent solubility in 

the Donnan membrane for z = 2 (dotted line) (GUILLAUMONT et al., 2003) (a), and uranium(VI) 

complexation isotherm at pH 4 with Gorleben HA in FDM [49,82] (b). 

4.3.2.2. Use of an insolubilized humic acid 

In order to obtain fixation isotherm at high pH values the data on Gorleben humic acid were 

compared between FDM and an insolubilized humic acid (IHA) [49,82], used otherwise for Fe 

complexation (WEBER et al., 2006a; WEBER et al., 2006b). The fair agreement between FDM at pH 4 

and the IHA and literature values (SAITO et al., 2004) allows a reasonable level of confidence in the 

obtained NICA-Donnan data. The generic data proposed by MILNE et al. (2003) could be biased by 

high uranium concentration and low pH data under which HA may eventually not be soluble.* It 

would then be necessary to implement the data bases with other inner consistent data which were not 

taken into account – see compilation in [53]. 

The data in IHA at pH 4, 5, and 6 give log10K
~

UO2
2+,1 = 4.7 ± 0.1 and nUO2

2+,1 = 0.8 ± 0.1 [49], keeping 

the values of log10

~
KUO2

2+,1 and  nUO2
2+,1 from Saito et al. (2004). These data are greater than the generic 

data from MILNE et al. (2003), i.e. log10K
~

UO2
2+,1 = 2.45 and log10K

~
UO2

2+,1 = 4.81, part from the atypical 

experiments – see compilation in [53] –, and part from the differences in the proton parameters; 

log10K
~

H+,1 = 2.93 for generic humic acid from MILNE et al. (2001), and log10K
~

H+,2 = 4.11, and log10K
~

H+,1

= 4.5 for Gorleben HA [19] and IHA (WEBER et al., 2006a), respectively. 

4.3.2.3. Application to independent field data 

These data allows modelling experimental field data [49]. In the case of the Savannah river Site 

(SC, USA, in JACKSON et al., 2005), where pH varies in a range 4.5-5.96, and the organic carbon 

concentration varies between 44 and 199 mg L-1, more than 99.99% of uranium(VI) is complexed by 

natural organic matter (Figure 4-10a). Similarly, the data from CRANÇON et al. (2003; 2010) for an 

acidic podzol for Gascony (France) also ends in a complete humic complexation. 

                                                           

*
 pH ≤ 3 
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On the other hand, for more basic media, which has a greater carbonate and alkaline-earth 

concentration, humic complexation is not relevant due to the competition of carbonato complexes – 

UO2(CO3)
2-2n
n  (GUILLAUMONT et al., 2003) – and of mixed calcium and magnesium carbonato 

complexes – (Ca,Mg)nUO2(CO3)
-4+2n
3  (DONG & BROOKS, 2006). Noteworthy, it is the case for a 

Canadian site (RANVILLE et al., 2007), and a Finnish site (PRAT et al., 2009). In the former case, 

uranium(VI) is awaited under the form of ion pair complexes (Ca,Mg)nUO2(CO3)
-4+2n
3  (Figure 4-10b), 

and in the latter case, with lower concentration of Mg2+, under the form of CanUO2(CO3)
-4+2n
3  and 

UO2(CO3)
4-
3  complexes. 
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Figure 4-10. Speciation of uranium in natural waters from Savannah River Test site (JACKSON et al., 

2005) (a) and in a Canadian site (RANVILLE et al., 2007) (b) – from [49]. 

In the case of uranium, humic complexation is important as long as pH and carbonate 

concentration do not imply an extensive competition. This competition is more important than for 

lanthanides and actinides(III) that forms a cationic complex LnCO+
3 , which can interact with the 

negative structure of humic substances. On the other hand, the total concentration effect, which we 

briefly evoked beforehand (cf. § 4.1.2, page 34, and § 4.2.4, page 40), shows clearly that the association 

is awaited to be stronger (HUMMEL et al., 2000) for lower total uranium concentration. In 

Figure 4-11a,b,c is shown the theoretical calculation of humic-complexed uranium vs. total uranium 

concentration using the generic data from MILNE et al. (2001; 2003). One can then await a significant 

humic complexation of total uranium concentration lower than 10 nmol L-1. If the calculation from 

PRAT et al. (2009) would permit to predict a signification humic complexation of uranium 

Figure 4-11d, it has not been verified by the authors. 
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Figure 4-11. Speciation of uranium at pH 4 (a), pH 6 (b), and pH 8 (c), c(HA) = 10 mg L
-1

 et P(CO2) = 

10
-3.5

 atm, from the generic data from MILNE et al. (2001; 2003), and the same evolution under the 

condition of low uranium concentration Finnish water (d) (sample S10 from PRAT et al., 2009). 

On the contrary, BRUGGEMAN & MAES (2010) have clearly showed this effect in the case of the 

Mol site (Belgium). For total uranium concentration of 1 µmol L-1 no influence of HA on the 

adsorption of uranium on pyrite was neither observed nor awaited, whereas it decreases the 

adsorption for total uranium concentration lower than 10-7 mol L-1 (Figure 4-12a). The agreement 

between experimental data and predictive calculation is noteworthy. BRUGGEMAN & MAES (2010), 

assigned the significant decrease of uranium adsorption to the reduction from U(VI) to U(VI), but do 

not propose a mechanism. The use of NICA-Donnan data makes the representation of experimental 

data possible in a satisfactory manner without accounting for U(IV). Let’s remark that under these 

conditions, the formation of a UO2+x solid phase is possible; U3O8 was proposed by BRUGGEMAN & 

MAES (2010) to control the solubility or uranium in this system. 
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Figure 4-12. Calculated speciation of uranium-HA in the argillaceous water from the Boom site (Mol, 

Belgium) (BRUGGEMAN & MAES, 2010) as a function of the total uranium concentration. 

One would also to account for the recent determination (STEUDTNER et al., 2011a; STEUDTNER et 

al., 2011b) where a mixed UO2-CO3-HA complex at pH higher than 7 was evidenced. 

Recently, experimental evidence of the complexation of uranyl under high pH conditions was 

given (STOCKDALE & BRYAN, 2012; STOCKDALE et al., 2013). A comparison with the data from 

STOCKDALE et al. (2013) and the speciation of uranium obtained with the data from SAITO et al. (2004) 

leads to a slight underestimation. A higher value of log10

~
KUO22+,2 would be necessary to properly fit the 

data. 

a b  

Figure 4-13. Comparison of predicted speciation of uranium(VI) under high pH conditions from the 

parameters proposed by SAITO et al. (2004) and the experimental data digitized from (a) STOCKDALE 

et al. (2012), and (b) STOCKDALE et al. (2013). 

4.3.3. Europium(III) 

If the data on humic complexation of europium(III) are quite numerous – § 4.2.4, page 40, MILNE 

et al. (2003), and compilation in [53] –, the dedicated experiments of competition between 

lanthanide/actinides(III) and major cations were scarce. Overall, even if a difference of complexation 

sites, or types, between alkaline-earth and Ln/An(III) seemed to have reached a consensus, no 
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spectroscopic evidence was available. We have proposed dedicated experiments which combined the 

use of ion selective electrodes for Ca2+ and Cu2+ determinations and time-resolved laser-induced 

luminescence spectroscopy (TRLS), in the framework of the Laura Marang’s PhD thesis [82] in the 

framework of the European Integrated Project FUNMIG in collaboration with the Institute of 

Chemistry from the University of Potsdam [60]. The obtained data on the different systems were in 

agreement with the generic data from MILNE et al. (2003) [17], enhancing the highly specific character 

of the interaction between Eu3+ and humic substances. 

4.3.4. Consideration on the NICA-Donnan generic data for lanthanides and 

actinides 

4.3.4.1. Lanthanides/Actinides(III) 

Data on Eu(III) compared to Am(III) and Cm(III) in MILNE et al. (2003) are giving rise to some 

comments. The authors proposed correlation between ni, log10

~
Ki and the first hydrolysis constants of 

the metal. In Figure 1 of MILNE et al. (2003), it seems that the first hydrolysis of Cm3+ is not coherent 

with known thermodynamic data. The value is reported next to log10*β1(UO2+
2 ), i.e. -5.25, whereas it 

should be more in agreement with log10*β1(Am3+) = -7.2. This is the origin the difference between 

log10

~
KAm3+,1 = 0.94 and log10

~
KCm3+,1 = 2.7 on the low proton affinity sites for the generic humic acid in 

MILNE et al. (2001). On the other hand, MILNE et al. (2003) did not propose an important difference 

for the high proton affinity sites, i.e. log10

~
KAm3+,2 ≈ 5.8 and log10

~
KCm3+,2 ≈ 6.0. These log10

~
K Cm3+,1 values 

are from the following correlations: 

 





n1 = 0.14 – 0.0055 log10*β
o
1, r² = 0.85

n2 = 0.76 n1

n1 log10

~
Ki,1 = 0.26 log10*β

o
1 + 2.59, r² = 0.83

n2 log10

~
Ki,2 = 0.41 log10*β

o
1 + 4.98, r² = 0.71

  (4–19)  

As americium(III) was included in the regression, this difference was not noticed by the authors. 

From my point of view, as there is a profound chemical analogy in the humic complexation of these 

two actinides – see compilation in [53] –, it would be reasonable to propose at least similar data for 

nAn3+,j and log10

~
KAn3+,j. 

The uncertainties of the correlations in Equations 4–19 can be estimated after digitizing the figures 

from Figure 1 in MILNE et al. (2003). First, one must note that when ni,j is to be estimated from 

log10*βo
1 the expression should be calculated as log10*βo

1 = f(ni,j). From the original data (Figure 1 in 

MILNE et al., 2003), one can obtain a correlation which is very close to the one from MILNE et al. 

(2003), and the “correct” expression can be estimated as follows. 

  log10*βo
1 = (3.1 ± 1.1) – (19.0 ± 1.8) nj,1, r² = 0.9 
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The differences can be seen in Figure 4-14a. The 95% confidence hyperboles (2σ) give an 

indication of the uncertainties on the estimated ni,j values; at the mean value of log10β
o
1, i.e. -8.3, σ(ni,1) 

= 0.05. 

The same exercise can be done for the log10*βo
1 = f(ni,1 log10

~
Ki,1) relationship (Figure 4-14b). The 

obtained ni,1log10

~
Ki,1 = f(log10*βo

1) is close from the relationship given in Equation 4–19, and the 

“correct” expression is, 

 log10*βo
1 = (3.13 ± 0.46) ni,1log10

~
Ki,1 – (9.6 ± 0.4), r² = 0.82 

and for the mean log10β
o
1, ni,1log10

~
Ki,1 = 0.4, and σ(ni,1log10

~
Ki,1) = 0.44. 

For Sm3+, log10*βo
1 = –7.9 (SPAHIU & BRUNO, 1995) gives nSm3+,1 = 0.58 ± 0.05, and nSm3+,1 log10

~
KSm3+,1 

= 0.54 ± 0.44, and finally log10

~
KSm3+,1 = 0.96 ± 0.76. As usual, these kinds of correlations are useful for 

estimating missing data but are giving highly uncertain parameters. 
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Figure 4-14. Correlation between ni,1 and log10*β
o

1
 (a) and ni,1 log10

~
Ki,1 (b) for the case of humic acids, 

digitized from MILNE et al. (2003). The black lines are the original correlations, and the red lines are 

estimated in the document. Confidence hyperboles are 2σ. 

This is even more true for ni,2 = f(log10*βo
1) and ni,1 log10

~
Ki,1 = f(log10*βo

1) relationships. The very high 

dispersion of ni,2 = f(log10*βo
1) and apparent colinearity with ni,1 = f(log10*βo

1) drove MILNE et al. (2003) 

to propose ni,2 = 0.76 ni,1,
* which can be understood looking at the correlations in Figure 4-15a. 

calculating in the “correct” way, 

 log10*βo
1 = – (2.3 ± 0.1) – (12.6 ± 3.0) ni,2 

would give negative values of ni,2 for log10*βo
1  –2.3, e.g. for nFe3+,2 or for An(IV). The ni,2 log10

~
Ki,2 = 

f(log10*βo
1) is, 

 log10*βo
1 = (1.89 ± 0.32) ni,2 log10

~
Ki,2 – (11.33 ± 0.65) 

                                                           

*
 0.76 ± 0.16 being the mean of ni,2/ni,1 without Pb2+ considered as an outlier. 
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In the case of Sm3+, nSm3+,2 = 0.44 ± 0.18, and nSm3+,2 log10

~
KSm3+,2 = 1.81 ± 0.84, and finally log10

~
KSm3+,2 

= 4.11 ± 2.54. 
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Figure 4-15. Correlation between ni,2 and log10*β
o

1
 (a) and ni,2 log10

~
Ki,2 (b) for the case of humic acids, 

digitized from MILNE et al. (2003). The black lines are the original correlations, and the red lines are 

estimated in this document. Confidence hyperboles are 2σ. 

The values for Eu3+ from MARANG et al. [17] are in excellent agreement with the generic data from 

MILNE et al. (2003) and could form the basis for an implemented generic data for the actinides(III). 

One must not forget that each humic extract is particular. LUKMAN et al. (2012) and JANOT et al. [3,81] 

evidenced that some HA has a slightly lower log10

~
KEu3+,1. Recently, within the Yasmine Kouhail’s PhD 

we also obtained data on fulvic acid which are slightly different than the generic ones [45] : log10

~
KEu3+,1 

= –3.2 and log10

~
KEu3+,2 = 7.15, for log10

~
KEu3+,1 = –1.9 and log10

~
KEu3+,2 = 5.8 proposed in  MILNE et al. 

(2003). 

The best way to visualise the consequences of the different proposition is to perform the 

speciation calculation at low ionic strength, which favours the non-specific binding in the Donnan 

phase (Figure 4-16). For trace concentration almost no difference can be noted between the three 

different sets of data. It is noteworthy that the proportion of low proton affinity sites can be different, 

and that pH dependant complexation data  are not numerous, and are absent from the compilation 

from MILNE et al. (2003). A thorough review of these data seem to be necessary, with the inclusion of 

not included or latter data (PANAK et al., 1996; MORGENSTERN et al., 2000; POURRET et al., 2007a, 

2007b, 2007c) [3,17,81,82]. 
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Figure 4-16. Comparison of americium (a), 

curium (b) and europium (c) speciation in 20 

mg L
-1

 generic humic acid solution at 1 mmol L
-1

 

ionic strength at pH 4, 6, and 8 from MILNE et al. 

(2001; 2003). 

 

Another proposition is to calculate the proportion of EuHA complex at different ionic strength vs. 

the concentration of HA using the generic data from MILNE et al. (2003) on Figure 4-17. 
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Figure 4-17. Influence of ionic strength on the proportion of 10 µmolEu L
-1

 fixed to the generic humic 

acid defined by MILNE et al. (2003) at pH 4. 

 

4.3.4.2. M4+ cations and actinides(IV) 

MILNE et al. (2003) proposed estimated data for Th4+ from Equations 4–19, i.e. log10

~
KTh4+,1 ≈ 7.4 

and log10

~
KTh4+,2 ≈ 20. The values obtained using our estimations are given in Table 4-2. From the data 
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dispersion, one can think that the uncertainties on log10

~
Ki,j should be important and are to be used 

with great care in predictive calculations. 

It is difficult to comment the rather important values, particularly for U,Np,Pu(IV) without 

dedicated experimental data. One could propose the reinterpretation of literature data in the 

framework of NICA-Donnan. One can also note that An4+ ions are extremely minor in the usual 

calibration of NICA-Donnan model (pH 4, 6, and 8). The use of mixed complexes would be 

envisaged as for Fe3+ (WEBER et al., 2006a; WEBER et al., 2006b), but non-charged An(OH)4(aq) 

species are more difficult to account for, and would be major from pH 6 (NECK & KIM, 2001; RAND 

et al., 2009).* 

Table 4-2: Estimation of ni,j and log10
~
Ki,j values for actinides(IV) using our estimations and the first 

hydrolysis constant for Zr(IV) (BROWN et al., 2005), Hf(IV) (RAI et al., 2001), Th(IV) (RAND et al., 2009), 

and U,Np,Pu(IV) (GUILLAUMONT et al., 2003). 

 log10*Ko
1 nAn4+,1 nAn4+,1 log10

~
KAn4+,1 nAn4+,2 ± 0.18 nAn4+,2 log10

~
KAn4+,2 log10

~
KAn4+,1 log10

~
KAn4+,2 

Zr(IV) 0.32 0.14 ± 0.07 3.2 ±0.6 0.11 6.2 ± 1.1  22 ± 12 58 ± 98 

Hf(IV) -0.2 0.17 ± 0.07 3.0 ± 0.6 0.11 5.9 ± 1.1  18 ± 8 46 ± 64 

Th(IV) -2.5 0.29 ± 0.06 2.3 ± 0.5 0.22 4.7 ± 1.0  7.8 ± 2.4 21 ± 18 

U(IV) -0.54 0.19 ± 0.07 2.9 ± 0.6 0.14 2.9 ± 0.6  15 ± 6 39 ± 50 

Np(IV) -0.55 0.13 ± 0.07 3.2 ± 0.6 0.10 6.3 ± 1.1  25 ± 14 64 ± 116 

Pu(IV) 0.6 0.13 ± 0.07 3.2 ±0.6 0.10 6.3 ± 1.1  25 ± 14 64 ± 117 

 

4.3.4.3. Considerations on mixed complexes 

Justification of mixed complexes is not straightforward. A certain number of these mixed 

complexes was proposed from slope analyses  (DIERCKX et al., 1994; GLAUS et al., 1995; PANAK et al., 

1996; MORGENSTERN et al., 2000) [12,18,22], most of them in the framework of the CNM (KIM & 

CZERWINSKI, 1996), to counter balance the constraint of the limited number of available site when 

pH  7-8 (PANAK et al., 1996). POURRET et al. (2007c) seem to show that the mixed Eu(CO3)2HA 

complex proposed by DIERCKX et al. (1994) does not occur. Nevertheless, the analysis of the raw data 

from POURRET et al. (2007a, 2007c) seem to show that a complex like EuCO3HA(I) proposed by 

PANAK et al. (1996) would help in interpreting the disagreement between awaited and obtained data 

[53], as long as the analogy between Cm(III) and Eu(III) can be done. The evidence of the mixed 

complexes were from slope and spectroscopic analysis by PANAK et al. (1996) and MORGENSTERN et 

al. (2000). To my opinion there is nevertheless a bias as for the mixed hydroxo complexes, one cannot 

discriminate an H+ that is freed from the hydrolysis of water by Cm3+ and the release of an H+ from 

complexation. As in the principles of CNM, no sites are explicitly activated and are limited to pH ≈ 8, 

they can also be attributed to the hydrolysis of water by the metal to form Cm(OH)nHA. This does 

not mean that these complexes do not occur, but that they must be evidenced clearly. 

                                                           

 
An(OH)+

3  + H2O ⇄ An(OH)0
4 + H+ log10K° = -6.4 for Th(IV), -6.6 for U(IV), -6.1 for Np(IV), -6.2 for Pu(IV) 
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MORGENSTERN et al. (2000) noted that the luminescence spectra and decay time evolution were 

rather continuous, and did not allow to clearly define a species. We came to the same conclusion on 

Eu(III) [8,81]. These species were then defined by fitting the spectral evolution of Cm(III) between 

two extreme situations and looking for the lower number of species that can help in interpreting the 

spectral variation. Nevertheless, it seems difficult to obtain better results in this particular case. In the 

case of Eu(III) we also obtained a continuous evolution [8,81], which would be easier to interpret in 

the framework of a continuous distribution framework, like NICA-Donnan. We must nevertheless 

admit that fitting results, as satisfactory as they can be are not a direct evidence of the existence of a 

species. 
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Figure 4-18. Comparison of data from POURRET et al. (2007a) without carbonate (), from POURRET et 

al. (2007c) [HCO3] = 0.01 mol L
-1

 () with the estimations from CNM on Cm(III) (PANAK et al., 1996; 

MORGENSTERN et al., 2000): complexes MHA(III) and M(OH)nHA(III-n) without carbonate (), MHA(III) 

and M(OH)nHA(III-n) with carbonates (), MHA(III) + M(OH)nHA(III-n) + MCO3HA(I) with carbonate (). 

4.4. SPECTROSCOPIC STUDIES ON EUROPIUM(III) 

4.4.1. Time-resolved laser-induced luminescence 

The time-resolved laser-induced luminescence spectroscopy (TRLS) allows obtaining luminescence 

spectra as a function of excitation wavelength – obtained after the excitation of a pulsed laser –, as 

well as to the luminescence decay. It has been used for the detection of lanthanides/actinides(III) and 

uranium(IV) in various conditions (BERTHOUD et al., 1989; MOULIN et al., 1990; MOULIN et al., 1995; 

MOULIN et al., 1998), including micellar media (MOULIN et al., 1991) [41-44,51]. The time resolution is 

particularly important in organic media, as humic substances, to get rid of their very intense and fast 

decaying luminescence – τ < 100 ns, see figure 3 from BERTHOUD et al. (1989). Europium(III), as 

other lanthanides(III)* and actinides(III)†, shows luminescence properties. Its main transitions being 

from the 5D0,1 excited‡ to the fundamental 7Fj (0  j  5) manifolds (BÜNZLI, 1989; BÜNZLI et al., 

                                                           

*
 Ce3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+, Tm3+ 

†
 Am3+, Cm3+ 

‡
 υ(5D0) = 17 257 cm-1 
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2007). The luminescence decay time of aquo-ion is ca. 110 µs (HORROCKS & SUDNICK, 1979), weakly 

dependent of temperature (KUKE et al., 2010) contrary to UO2+
2  (MORIYASU et al., 1977) [51]. 

In our case, only the 5D0→
7F0 to 5D0→

7F2 transitions were obtained (Figure 4-19). Evolutions of 

the 5D0→
7Fj manifold (ALBIN & HORROCKS, 1985; FREY & HORROCKS, 1995; GÖRLLER-WALRAND 

& BINNEMANS, 1996), and of the ratio between 5D0→
7F2/

5D0→
7F1 transition (7F2/

7F1) give 

information on the symmetry of the formed complex (JØRGENSEN & JUDD, 1964), and on the 

covalence of the Eu-ligand bond, respectively. The 5D0→
7F0 transition is not allowed by the selection 

rules, but can this can be partly allowed if the symmetry has no centre of inversion (GÖRLLER-

WALRAND & BINNEMANS, 1996). In the case of europium(III), excitation is generally done by a 

tuneable laser source at λexc ≈ 394 nm (CARNALL et al., 1968), the value of which corresponds to the 

transition 5L6←
7F0. After inner conversion, and thanks to the time-resolution of the signal, one can 

observe the 5D0→
7Fj manifold. For the Eu(III)-HS complexes, the increase of luminescence, 

compared to Eu3+ is also due to an energy transfer from the excited chromophores of HS, from the 

triplet state 3ππ* to the 5Dj levels of Eu(III) (BÜNZLI et al., 2007). In the case of simple organic 

molecules, this triplet state is of about 19 000-25 000 cm-1 (KUMKE et al., 2005); in the case of natural 

organic matter, it seems that these levels should be around 14 000-15 500 and 20 500 cm-1 (ZEPP et al., 

1985; BRUCCOLERI et al., 1993). 

Even if luminescence data are existing on Eu(III)-HS (SHIN et al., 1995; THOMASON et al., 1996; 

MONSALLIER et al., 2003; PLANCQUE et al., 2003; KUMKE et al., 2005; JAIN et al., 2009), it is not always 

easy to have a general view on the luminescence properties of this system. We have undertaken a 

systematic exploration of the luminescence spectra and decay time of complexed-Eu(III) by the 

humic extracts that we are commonly using. Even if the humic substances show very similar 

complexation properties whatever the origin, it is noteworthy that there are slight differences in the 

chemical environments of our eight different samples [9,13,14],* the spectra of seven of which are 

presented in Figure 4-19. The very close 7F2/
7F1 ratios indicate that very close types of bonds are in 

play within these complexes (LAVÍN et al., 2001). 

The luminescence decay is described by a sum of first order kinetics. For a fully integrative system 

as a photo diode array, the following relationship is obtained, 

 F = 
i=1

n





D

D+W

 F
o
i  exp







– 

t
τi

  dt  = 
i=1

n

 F
o
i  i exp







– 

D

i

  






1 – exp







– 

W

i

   (4-20)  

where F is the total luminescence, F
o
i   is the initial luminescence of the ith decaying phenomenon, τi 

is the decay time of the ith decaying phenomenon, D is the observation delay after the laser flash, and 

W is the width of the observation gate. 

                                                           

*
 In the framework of europeen integrated project FUNMIG [56]. 
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In the presence of humic substances, the luminescence decay of lanthanides, i.e., Tb(III) and 

Eu(III), and actinides(III), i.e., Cm, is systematically bi-exponential (PANAK et al., 1996; 

MORGENSTERN et al., 2000; CHUNG et al., 2005; KUMKE et al., 2005; FREYER et al., 2009) 

[8,9,11,13,14]. 
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where F° is the overall initial luminescence, and x1 is the proportion of the first decay. 
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Figure 4-19. Normalised luminescence spectra of [Eu(III)] = 10 µmol L
-1

 in 0.1 mol L
-1

 NaClO4, CSH =  

200 mg L
-1

, pH 5, exc = 394 nm, Delay = 10 µs, gate width = 300 µs, grating 600 lines mm
-1

: Eu
3+

 (red 

circle), and Eu-HS complexes Suwannee River FA (SRFA, empty squares), Suwannee River HA 

(SRHA, empty diamonds), Kranishsee HA (KHA, crosses), Kranishsee FA (KFA, empty triangles), 

Gorleben HA (GoHyHA, filled squares), Leonardite HA (LHA, filled diamonds), Purified Aldrich HA 

(PAHA, filled triangles) [13 © 2009 Elsevier Ltd]. 

4.4.2. Luminescence spectra of Eu(III)-HS complexes 

As seen earlier, the bands of the 5D0→
7Fj manifold can be used to propose complex symmetry. 

The manifold is supposed to show at maximum 1 (5D0→
7F0), 3 (5D0→

7F1) and 5 (5D0→
7F2) lines. In 

aqueous solution these lines are not easily observed due to line broadening. The aquo-ion is mainly 

Eu(H2O)3+
9 . YAMAGUCHI et al. (1988) proposed 8.6 water molecules with equivalent distances. The 

awaited ideal symmetry of the aquo-ion can be D4h (8 H2O) or D3h (9 H2O). MARMODÉE et al. (2010) 

proposed decay times of ca. 110 µs for Eu(H2O)3+
9  and ca. 120 µs for Eu(H2O)3+

8 . From observation at 

4-5 K it seems that aquo-ion shows a C2v symmetry (MARMODÉE et al., 2010), which means that the 
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H2O molecules are not equivalent for Eu(H2O)3+
8  at 4-5 K, which also suggests that Eu(H2O)3+

9  is 

major in solution at ambient temperature. 

In every Eu(III)-HS complexes the 5D0→
7F0 transition – an induced electric dipole – is always 

apparent showing symmetry point group that have no centre of inversion [13] (GÖRLLER-WALRAND 

& BINNEMANS, 1996). The 5D0→
7F1 transition – magnetic dipole – is generally showing larger full 

width at mid heights than the aquo ion [13], and more than two bands can be proposed (GÖRLLER-

WALRAND & BINNEMANS, 1996; MARMODÉE et al., 2009b). The 5D0→
7F2 transition – electric dipole, 

which is hypersensitive to complexation (JØRGENSEN & JUDD, 1964) – is showing the major 

modifications of luminescence spectra. From the observation of spectra in Figure 4-19, it appears that 

differences are occurring in the shape of this 5D0→
7F2 transition. The use of a more dispersive 

grating* allows obtaining more detailed information. Generally, it seems that humic extracts from an 

aquatic environment are showing similar 5D0→
7F2 transitions with an important shoulder at 612 nm 

(Figure 4-20a) [13]. Concerning the extracts from a terrestrial environment, which are extracted after 

an alkaline treatment, the 612 nm shoulder is less apparent (Figure 4-20b,c) [9,13]. The origin of this 

difference in shape of the 5D0→
7F2 transition is not formerly identified but could be connected to the 

maturation or humification of the natural organic matter. As a matter of fact, a humic acid extracted 

from an Ethiopian vertisol (Ghinchi) seems showing an intermediate spectrum (Figure 4-20b) [9]. 

One can think that this surface extract has a lower maturation degree compared to deeper soils. 

The use of dispersive grating allows distinguishing more than three lines in the 5D0→
7F2 transition 

of all the Eu(III)-HS complexes analysed so far (Figure 4-20b) [9,14]. Five lines were used to fit the 

shape of Eu(III)-SRFA(Figure 4-20d) [13]. This indicates that at the most the symmetry of 

Eu(III)-HS complexes are showing a C2v symmetry – 4 lines –, or even monoclinic (C2, CS) or triclinic 

(C1) symmetry – 5 lines – following GÖRLLER-WALRAND & BINNEMANS (1996) and as proposed by 

MARMODÉE et al. (2009b). One must not forget that a notable proportion of Eu(H2O)3+
8  exists and 

that it can participate to the degeneracy of the transition. The relative intensities of the lines are 

different but the straightforward assignment remains difficult. The exact geometry cannot be 

proposed as the number of ligands is not formerly known, and the use of H2O-D2O mixtures could 

help (HORROCKS & SUDNICK, 1979; SUPKOWSKI & HORROCKS, 2002). 

                                                           

*
 1800 lines mm-1 
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Figure 4-20. Comparison 
5
D0→

7
F2 transition of [Eu(III)] = 10 µmol L

-1
 in the presence of humic 

substances CSH = 200 mg L
-1

, I = 0.1 molNaClO4 L
-1

, grating 1800 lines mm
-1

 [9 © 2009 Elsevier 

Ltd,13 © 2011 Elsevier Ltd]. 

4.4.3. Luminescence decay time of Eu(III)-HS complexes 

From kinetics theory, bi-exponential decay necessarily implies two different excited states: ideally 

two different species. In the case of Eu(III)-HS complexes, the shorter decay time is shorter than 

Eu(H2O)3+
n . The second decay process is slower than Eu(H2O)3+

n  (Figure 4-21). 
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Figure 4-21. Comparison of luminescence decay time of free Eu
3+

 (red circles) and complexed by 

different humic extracts. The dashed lines are mono-exponential fitting and the plain lines are 

bi-exponential fitting – from [13 © 2009 Elsevier Ltd]. 
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As a multiple decay process originates from multiple excited states, we have tried connecting the 

decay times to the modifications of spectra vs. delay [11]. The originality of the approach lied in the 

necessary normalisation of the spectra, which was not done in the classical manner applying a 

homothetic factor at different delay but increasing the integration time with delay such as spectra of 

comparable intensities could be obtained. Using an 1800 lines mm-1 grating, significant differences in 

the 5D0→
7F0 and 5D0→

7F2 transitions can be observed as a function of delay, which allows proposing 

two different spectra for the two decay processes (Figure 4-22). 
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Figure 4-22. Propositions of luminescence spectra for the fast (C1) and slow (C2) decays of Eu(III) 

complexed by Suwannee River fulvic (left) and humic (right) acids – from [11 © 2010 Elsevier Ltd]. 

It is still difficult to formally assign a complex to these spectrum-decay time couples. Nevertheless, 

we have observed this type of phenomenon in various conditions, and it seems that the τ1 values are 

rather insensitive to physico-chemical conditions. As we will see it further in the text, Eu(III) also 

shows bi-exponential luminescence decay in ternary system Eu/HA/surface; the faster decay time is 

fairly insensitive to pH conditions [7,8,81]. A possible interpretation could be a fast exchange between 

excited (Eu3+)* and (Eu-HA)* complexes as proposed otherwise (TSUKAHARA et al., 2000; BILLARD & 

LÜTZENKIRCHEN, 2003; FREYER et al., 2009). KUMKE et al. (2005) proposed the participation of an 

intramolecular energy back transfer in the case of Tb(III)-HS complexes, but they do not observed 

the same phenomenon on Eu(III)-HS as observed otherwise [2,7,8,11,13]. Nevertheless, there is a 

possibility that these bi-exponential decays come from different complexation environments. KUKE et 

al. (2010) and PLANCQUE et al. (2005) reported that the decay time of Eu(III) complexed by salicylic 
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acid (2-hydroxybenzoic acid) or phenylacetic acid are showing a lower than τ(Eu3+) – ca.  90 µs and 50 

µs for salicylic and phenylacetic acid, respectively –, whereas the decay time of, e.g. glycolic acid,* was 

higher than τ(Eu3+). In the same manner, in the Pauline Moreau’s PhD thesis [1,80] we also showed 

that the decay time of Eu(III) complexed by a series of hydroxybenzoic acids (4-hydroxybenzoic, 3,4-

dihydroxybenzoic) are also either equal or lower than τ(Eu3+) (Figure 4-23). Thus, it cannot be 

excluded that the fast component of the bi-exponential decay is due to the complexation environment 

provided by hydroxybenzoic acids. Conversely, we also recently showed that benzoic acid induces an 

increase of decay time, although lower than Eu(III) complexed by acetic acid [79]. The lowering of 

the decay time, relative to monocarboxylic acids seems to be due to the presence of aromatic moieties. 

An illustration is proposed on Figure 4-23. Nevertheless, no aromatic ligand shows a bi-exponential 

decay. 
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Figure 4-23. Comparison between the mono-exponential decay profiles of different Eu(III) 

complexes: aquo complex (empty squares) [13], acetate (blue diamonds) [79], benzoate (red 

squares) [79], 4-hydroxybenzoate (green triangles) [1,80], and 3,4-hydroxybenzoate (purple circles) 

[1,80]. 

4.4.4. Competition Ln(III)-Ca(II) and Ln(III)-Cu(II) 

The analyses of both luminescence spectra (Figure 4-24) and decay times of Eu(III) in different 

solutions [14], allows showing that in the competitive Eu(III)/Cu(II)/HA system, the competition 

between metal for the complexing sites is important. From the complexation data in Marang et al. 

[17], it can be calculated that Cu(II) expulses Eu(III) from the specific complexing sites to the non-

specific Donnan volume, the nature of which is awaited to be close to the bulk aqueous solution. The 

                                                           

*
 hydroxyacetic acid 
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Eu(III) luminescence spectra are suggesting that the increase of Cu(II) changes the Eu(III) chemical 

environment to a less specific environment as the asymmetry ratio 7F2/
7F1 is strongly decreasing 

(Figure 4-24a). In the Eu(III)/Ca(II)/HA system, the competition was awaited to be less important 

[17]. Effectively, the competition of Ca(II) implies a lesser important modification of the chemical 

environment of Eu(III), which stays in specific interaction with HS from the 7F2/
7F1 ratio 

(Figure 4-24b). 
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Figure 4-24. Luminescence spectra of [Eu(III)] 5 µmol L
-1

 (left) and 7 µmol L
-1

 (right) in the presence 

of Gorleben humic acid c(HA) = 15 mg L
-1

 (left) and 20 mg L
-1

 (right), as a function of Cu(II) (left) and 

Ca(II) (right) concentration – from [14 © 2009 Elsevier Ltd,82]. 
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5. INFLUENCE OF NATURAL ORGANICS ON THE ADSORPTION OF 

LANTHANIDES AND ACTINIDES ONTO MINERAL SURFACES 

Once the interactions between radionuclides and humic substances are quantified, modelling of 

real systems requires the account of adsorption onto mineral surfaces. As in the case of simple 

organics (PARFITT et al., 1977a), it is clear that the main driving force of NOM adsorption is the ligand 

exchange that can be evidenced in Fourier transform infrared spectroscopy (PARFITT et al., 1977b; GU 

et al., 1994; YOON et al., 2004). But, as said earlier, an important part comes from the formation of 

sitting particles on the surface, which held together through lateral interactions (OCHS et al., 1994). 

The fact that there is an overcompensation of charges (VERMEER, 1996; AU et al., 1999) [25] during 

adsorption is a clear indication. Description of adsorption of simple ions onto surfaces (GAINES & 

THOMAS, 1953; DZOMBAK & MOREL, 1990; LYKLEMA, 1995a, 1995b; HIEMSTRA & VAN RIEMSDIJK, 

1996; BRADBURY & BAEYENS, 2005, 2009) [4,80] allows modelling simple organic systems with the 

help of synergetic surface complexes (ALI & DZOMBAK, 1996b; ALLIOT et al., 2005a; ALLIOT et al., 

2005b; ALLIOT et al., 2006). On the other hand, the case of humic substances is far more difficult to 

model. Several experimental evidence can be reminded, which are developed otherwise [52, and 

references therein]. As it has been seen in § 3.2, humic substances cannot be totally compared to 

simple organic molecules, nor to polyelectrolytes. In this case, the link between structure and 

reactivity is particularly important. The cohesion of the formed aggregates may appear weak, but the 

interactions with surfaces are particularly strong. 
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Figure 5-1. Adsorption of aromatic acids – phthalic, or 2-hydroxybenzoic (salicylic acid) – and 

polyphenols – 1,2-hydroxybenzene (catechol), or 1,3-dihydroxybenzene (resorcinol) – onto hematite 

(GU et al., 1995), ferrihydrite (3,4-dihydroxybenzoic acid or Protocatechuic, DAVIS & LECKIE, 1978a), 

gœthite (Phthalic, ALI & DZOMBAK, 1996a; protocatechuic, EVANKO & DZOMBAK, 1998), and δ-alumina 

(Salicylic, KRAEMER et al., 1998), on the basis of number of moles adsorbed per m² – from [52]. 

Some parameters can be steadily put forward: (i) pH, which fixes the  surface potential of the 

mineral surface, the ionisation of the humic extract, and the specific interaction between both; 
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(ii) ionic strength, which governs the distance of closest approach between the surface and the humic 

extract, as well as the interactions between nanometric humic entities – c.f. § 3.2, and [6] –; and 

(iii) the different affinities of the functional groups of the humic entities for the mineral surfaces, an 

illustration of which is given in Figure 5-1 [52] for aromatic acids and phenolic derivatives. These 

three parameters allow describing, but not necessarily quantifying, the differences in reactivity 

between humic fractions, but also the fractionation of natural organic matter at the surface. 

Indeed, using a linear additive model of the binary systems – i.e. metal/surface, metal/HS, and 

HS/surface – do not allow representing satisfactorily the ternary system in a wide parametric domain 

(ROBERTSON & LECKIE, 1994; ROBERTSON, 1996; VERMEER et al., 1999; CHRISTL & KRETZSCHMAR, 

2001; LUMSDON, 2004). This discrepancy is assigned mainly to the HS or NOM fractionation at the 

surface – also qualified as adsorptive fractionation – (HEIDMANN et al., 2005; BANAITIS et al., 2006). 

Even if the results may appear contradictory, the adsorptive fractionation has been evidence (DAVIS & 

GLOOR, 1981; GU et al., 1994; MEIER et al., 1999; ZHOU et al., 2001; HUR & SCHLAUTMAN, 2003; 

KAISER, 2003; HUR & SCHLAUTMAN, 2004; BANAITIS et al., 2006) [15,20]. A preferential adsorption of 

higher molecular weight fractions on oxides or clays was shown for lacustrine or aquatic NOM 

(DAVIS & GLOOR, 1981; GU et al., 1994; MEIER et al., 1999), whereas adsorption of low molecular 

weight fraction on iron oxides was proposed for commercial Aldrich HA (HUR & SCHLAUTMAN, 

2003). However, HUR & SCHLAUTMAN (2004) have shown in HP-SEC that the apparent molecular 

weight of non-sorbed fractions of purified Aldrich HA onto hematite was depending on pH: before 

the point of zero charge (pH 8), the apparent molecular weight was higher than the original one, 

whereas at higher pH value the apparent molecular weight seemed lower suggesting the preferential 

adsorption of higher molecular weight fractions. These observations are in accord with our ESI-MS 

observation of purified Aldrich HA adsorptive fractionation on hematite at pH 7 [20]. Conversely, 

ZHOU et al. (2001) observed the inverse effect for an aquatic FA/gœthite system with a preferential 

adsorption of higher molecular weight at low pH and intermediate molecular weight at high pH value. 

These latter results are in accord with MEIER et al. (1999) who noted a preferential adsorption of 

higher molecular weight fraction of HS on goethite and kaolinite at pH 4. 

 

Figure 5-2. Schematic representation of adsorptive fractionation of NOM onto mineral surfaces – 

adapted from [5]. 
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Another particular effect of NOM adsorption on mineral is the overcompensation of charges 

(VERMEER, 1996; AU et al., 1999) [25]. This can be interpreted by the adsorption of NOM aggregates 

that are fixed by ligand exchange but which cohesion is assured through a substantial amount of 

lateral interaction (OCHS et al., 1994). 

Thus, adsorptive fractionation of NOM onto mineral surfaces will be function of NOM origin, 

and of crystallo-chemistry of the surface. This modification of the composition of organic fractions at 

the surface and in solution necessarily has an influence on the functionality of these fractions, 

organisation of the nanometric entities, electrostatic interactions between entities, and complexation 

properties of the different entities. The link between reactivity and structure of humic substances, and 

of NOM in general, is here also at the centre of the problem. 

5.1. QUANTIFICATION OF THE COMPLEXATION SITES AT LOW HUMIC SUBSTANCES 

CONCENTRATIONS 

One of the most reliable methods to quantify the number of acid-base functions of humic 

substances is potentiometric titration. The main drawback of this method is the high concentration in 

solution – generally in the range of 1 g L-1 – necessary to obtain a signal, which can be considered as 

significantly different from the background electrolyte (RITCHIE & PERDUE, 2003) [10,19]. These 

conditions are often unrealistic compared to natural concentrations which can occur in current natural 

media – i.e. 0.1 and 100 mg L-1 –, a fortiori in supernatant of adsorption experiment under laboratory 

conditions in NOM/surface or metal/NOM/surface. Furthermore, the variety of possible acid-base 

sites leads to an indetermination on the end point of the titration curve. As an example, one can 

remind the deprotonation constant of phenolic functions of dihydroxybenzoic acids, the values of pK 

is higher than 12.5 (SILLÉN et al., 1971). This illustrates that acid-base data of humic substances are 

only valid within the limits of their determination domains, and carry an operational character 

(PERDUE et al., 1980). Several possible strategies can be used to estimate the functionality 

modifications of humic extracts in binary or ternary systems. Recently, WENG et al. (2008) proposed a 

modelling strategy of Cu(II) adsorption onto goethite in the presence of fulvic acid at various pH 

values, metal and FA concentrations using the Ligand and Charge Distribution (LCD) model, which 

describes HS adsorption onto mineral surfaces (FILIUS et al., 2003; WENG et al., 2006a; WENG et al., 

2006b). The free energy of the FA during adsorption is adapted without considering any modification 

of the FA functionality. This implies that the FA adsorptive fractionation has mainly physical sources. 

From experimental fact the chemical part is evident during adsorption of both FA and HA (YOON et 

al., 2005). 

In the framework of the Noémie Janot’s PhD [10,81], and following other previous works [15,20], 

we have evidenced the chemical origin of the adsorptive fractionation, and partly quantified the 

influence on functionality. We used the modification of UV/Visible absorbance of humic substances 

as a function of pH. Even if the spectrophometric properties of HS are thought to be of low use for 

the determination of functionality (MACCARTHY & RICE, 1985), its variation as a function of pH 
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seemed to be a valuable signal to study. However, it seems to be linked to more than a single 

phenomenon. 

Following the works on differential absorption spectrometry during titration of fulvic acids 

(DRYER et al., 2008), we have proposed an operational relationship between the evolution of 

absorbance of a humic acid on one hand, and the modification of its charge on the other hand. The 

probed functional groups in potentiometry are in close vicinity of the humic acids chromophores; the 

charge variations of the former influence the optical properties of the latter, but even also of all the 

structure. Ionic strength also influences the spectrophotometric properties of humic substances (DEL 

VECCHIO & BLOUGH, 2004), and chromism is also possible (VEKSHIN, 1987). Hence, the main 

objective was to evidence a relationship – even an operational one – between these phenomena. 

The differential absorption spectra were obtained using 

 ΔApH(λ) = 
1

ℓcell
  








 
ApH (λ)

DOC  – 
ApHref

 (λ)

DOCref
 (5-1)  

where ℓcell is the cell length (cm), DOC and DOCref (mgC L
-1) are the dissolved carbon concentrations in 

solution at the considered pH and at the reference pH, respectively. ApH(λ) and ApHref
(λ) are the 

measured absorbance at the wavelength λ at the considered pH and the reference pH, respectively. 

As the absorbance increase is more or less uniform vs. pH (Figure 5-3a), the ionic strength effect is 

minimised around 270 nm. The differential absorption spectra are analysed at 270 nm using an 

adapted NICA-Donnan equation (KINNIBURGH et al., 1999), and compared to the potentiometric 

titrations. 

Under the hypothesis of the minimisation of ionic strength on the UV/Visible signal at λ = 270 

nm, the increase of ΔA can be related to the increase of the number of charges vs. pH. The 

proportion of A1 and A2 are mostly invariant whatever the ionic strength (51/49). It is thus possible 

to consider the sum of these absorbencies to obtain the operational relationship between the increase 

of charges and the increase of absorbance. 

Surprisingly enough, this relationship is linear as a function of the logarithm of ionic strength 

(Figure 5-3a,b). The conversion factor can be established taking a high ionic strength, where the 

structure of the humic acid is more compressed, or the Debye length between the nanometric entities 

is minimal. Under these conditions, the ΔA = f([H+]) curves can be transformed in an ionic strength 

independent master curve ΔA = f([H+]D) (Figure 5-3c,d). 

As all operational expression, it does not allow answering the fundamental problems hidden 

behind its relative success: 

i. for which reason does the relationship is following a linear behaviour with the logarithm of 

ionic strength?* 

                                                           

*
 One can also remind that the Debye-Hückel correction is not straightforwardly applicable in the case of metal complexation by HS [18,53]. 



5. Influence of Natural Organics on the Adsorption of Lanthanides and Actinides onto Mineral Surfaces 

75 

ii. what is the origin of the absorbance increase in the wavelength range 200-500 nm, when the 

absorbance of the aromatic compound is limited to a lower range (ARAUJO et al., 2005; 

ANDRÉ et al., 2007)?; 

iii. does this expression, or protocol, can be applied to other humic extracts? 
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Figure 5-3. Establishment of the operational relationship between the absorbance of the purified 

Aldrich humic acid and its functionality obtain through titration: a. relation between total 

absorbance and ionic strength, b. relation between differential absorbance and charge, c. UV-

Visible titration, d. UV/Visible master curve [10 © 2010 American Chemical Society,81]. 

5.2. ADSORPTION OF HUMIC SUBSTANCES ONTO METAL OXIDES 

The adsorption of humic substances is not comparable to the case of simple organic molecules. 

Indeed, the ionic strength effect on the adsorption of the latter tends to decrease the adsorption by 

competition effect (SCHULTHESS & MCCARTHY, 1990; MESUERE & FISH, 1992a, 1992b; ALI & 

DZOMBAK, 1996a). In the case of fulvic acids this effect is low or absent  (SCHLAUTMAN & MORGAN, 

1994; FILIUS et al., 2000; FILIUS et al., 2003) [25], whereas for humic acids the adsorption onto 

minerals is increasing with ionic strength (MURPHY et al., 1994; SCHLAUTMAN & MORGAN, 1994; 

KRETZSCHMAR et al., 1997; AU et al., 1999; TOMBÁCZ et al., 2000; WENG et al., 2006a) [25,81] due to 

the concomitant effect of the decrease of the Debye length and the aggregation of HA. We have 
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verified this evolution on the particular cases of gœthite (α-FeOOH, Figure 5-4) [25],* and α-alumina 

[3,81]. 
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Figure 5-4. Adsorption of humic substances as a function of pH (a) c = 11.1 mg L
-1

 onto gœthite 500 

mg L
-1

 – squares, Aldrich humic acid; diamonds, Fanay-Augères fulvic acid; open symbols, I = 0.1 

mol L
-1

 NaClO4; closed symbols, I = 10
–3

 mol L
-1

 NaClO4 [25 © 2002, Elsevier Ltd] –  and of humic 

substances onto 1 g L
-1

 gœthite (b) –  I = 0.1 mol L
-1

 NaNO3; grey squares, I = 10
-3

 mol L
-1

 NaNO3 

(WENG et al., 2006a; WENG et al., 2007) –, and Aldrich humic acid onto 1 g L
-1

 α-alumina –  I = 0.01 

mol L
-1

 NaClO4,  I = 0.1 mol L
-1

 NaClO4 [3 © 2012 Elsevier Ltd,81]. 

In the case of NOM-assisted migration, it is possible to distinguish two extreme cases: (i) NOM 

migrates with a minimal interaction with the mineral phases, and fractionation is a second order 

phenomenon on the migration of a metal; and (ii) NOM suffers an important interaction with mineral 

phases, and fractionation noticeably modifies the composition of NOM. The former case can be 

symbolised by a HP-SEC immobile phase, which opposes a size based sorting out of the 

Eu(III)/NOM complexes [9]; the latter is approached through the different binary systems 

NOM/oxide [10,15,20,81]. 

5.2.1. Case of an immobile phase with a weak interaction 

The chemical environment of europium(III) complexed by HP-SEC fractions of a vertisol humic 

acid is only very weakly modified (Figure 5-5a); complexation constants are also very similar. Only the 

later eluted fractions, which are the smaller in relative size, seem to show a significant different 

symmetry, and a lower number of complexing sites (Figure 5-5b). 

It is then evident that in case of a weak interaction between NOM and mineral surfaces the 

fractionation of NOM is not an important phenomenon; it could even be neglected, as a first 

approximation in an operational modelling. This can be directly related to radionuclide transport in 

sandy soils column experiments in the presence of HA, where the migration of Am(III) or U(VI) 

could be modelled without accounting for the fractionation (SCHÜßLER et al., 2001; BRYAN et al., 2005; 

ABRAHAMSEN et al., 2007; BRYAN et al., 2007); the sandy soils being mainly composed of silica are not 

                                                           

*
 European project HUMICS [78] 
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strongly adsorbing NOM under near neutral pH conditions [24]. Column experiments with hematite 

as the mineral phases clearly required the account of fractionation (ABRAHAMSEN et al., 2008). 
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Figure 5-5. Normalised luminescence spectra of 

Eu(III) complexed by HP-SEC fractions of a 

vertisol humic acid, [Eu] = 10
-5

 mol L
-1

, I = 0.1 

mol L
-1

 NaClO4, CHA = 200 mg L
-1

, D = 10 µs, W = 

300 µs, λexc = 394 nm – from the Supp. Info. of [9]. 

Figure 5-6. Comparison of parameters of Eu(III) 

complexation by different HPSEC fractions of a 

vertisol humic acid [9 © 2011 Elsevier Ltd]. 

5.2.2. Case of mineral phases with a strong interaction and adsorptive 

fractionation 

The fractionation of a humic acid on a mineral surface, and the physico-chemical modification of 

their composition and structure, can be the origin of the relative failure of linear additivity of ternary 

systems metal/HS/surface. Though the analyses of humic acids adsorbed on α-alumina surface* or in 

the supernatant of adsorption experiments (α-Al2O3 or α-Fe2O3), we showed that the proportion of 

different types of carbon evolved with the surface coverage, i.e. mass of humic substances over mass 

of oxide [15,20,81]. Commonly used techniques, such as spectrophotometry and total organic carbon 

analysis, allow showing the decrease of aromatic moieties that absorb in the UV region [10,15,20,81] 

(Figure 5-7 and Figure 5-8). 

The repartition of the molecules, which build up the humic aggregate, are also strongly disturbed 

during the adsorption onto oxides. We observed these changes in the supernatant of adsorption 

experiments of a purified Aldrich humic acid onto α-Fe2O3 by ESI-MS [20] (Figure 5-9a-d). There is a 

shift in the centroid of masses, and an increase in the average “molecular mass”, in number and in 

weight, when the relative concentration of HA decreases, i.e. when the saturation of the surface sites is 

achieved (Figure 5-9e). This can be directly linked to the decrease of the relative permittivity of water 

(εr) under the effect of an electrostatic field of charged particles (BOOTH, 1951; OLHOEFT, 1981; 

SHANNON, 1993). It clearly appears that important portions of mass spectra are not present in 

fractionated samples. Estimations of the number- and weight-averaged masses – or more precisely 

number- and weight-averaged intensities I
–

n and I
–

w, respectively – show an increase in mass (intensity) 

                                                           

*
 European Integrated Projet FUNMIG [59,65] 
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distribution for the weaker concentrations of humic acid in the supernatant. This is in agreement with 

the preferential adsorption of the smaller molecules onto the surface for short contact times (GU et al., 

1994; VAN DE WEERD et al., 1999). Afterwards, a progressive decrease of the averaged masses 

(intensities) is observed when the surface is saturated (Figure 5-9e). From the mass spectra the 

fraction of intermediate masses (m/z ≈ 900 Da) would be more impacted by the fractionation 

process. 
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Figure 5-7. Partition coefficient Rd (mL/g) evolutions for the Suwannee River fulvic acid (SRFA, filled 

symbols) and purified Aldrich humic acid (PAHA, empty symbols) adsorbed on α-Al2O3 determined 

in UV-Visible (squares) and in TOC (diamonds) as a function of the ratio between the mole of HS 

and of surface reactive sites RHS (a), pH 6, I = 0.1 mol kg
-1

 NaClO4 – [15 © 2008 American Chemical 

Society]. 
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Figure 5-8. Evolution (a) of the ratio A253/A203, 

for the purified Aldrich HA (PAHA) adsorbed on 

500 mg L
-1

 α-Fe2O3, pH 7 – Supp. Info. from [20] 

–, and SUVA from comparable experiments on 

α-Al2O3 for (b) Suwannee River fulvic acid 

(SRFA, ), and PAHA I = 0.1 mol kg
-1

 (NaClO4) 

, pH 6.1 [15 © 2008, American Chemical 

Society], et (c)  pH 6.2 – Supp. Info. from [7]. 
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Figure 5-9. ESI Q-ToF Mass spectra of negative 

ions of purified Aldrich humic acid (PAHA) pH  7 

(a) before adsorption: c(HA) = 11 mg L
-1

; (b-d) in 

the supernatant experiment c(α-Fe2O3) = 500 

mg L
-1

, for different initial concentrations of 

PAHA: c(HA) = 33 mg L
-1

 (b), 11 mg L
-1

 (c), 3.3 

mg L
-1

  (d), and evolution of the number- and 

weight-averaged « molecular masses » – from [20 

© 2006 American Chemical Society]. 

Figure 5-10. C(1s) NEXAFS Spectra obtained 

before adsorption (plain line), and in the 

supernatant of adsorption experiment onto 

-Al2O3 for different RHS ratios for SRFA 

(dashed and dotted line), and smoothed 

spectrum of the SRFA covered α-Al2O3 sample 

at RSRFA = 10.9 (circle) (a), and supernatant of 

PAHA (b), pH 6.1, I = 0.1 mol kg
-1

 – from [15 

© 2008 American Chemical Society]. 
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Figure 5-11. Evolution of the 
7
F2/

7
F1 ratios as a function of [Eu(III)]/TOC (µmolEu L

-1
/mgC L

-1
) for the 

Suwannee River fulvic acid (SRFA, a) and purified Aldrich HA (PAHA, b), for different values of RHS, 

pH 4, I = 0.1 mol kg
-1

: the dashed and dotted are the 
7
F2/

7
F1 ratios of Eu

3+
 at pH 4 – from [15 © 2008 

American Chemical Society]. 

In the supernatant of adsorption experiment onto α-Al2O3, as well as on the surface, the different 

types of carbon were observed in scanning transmission X-ray microscopy (STXM).* The relative loss 

of aromatic (285.2 eV) and phenolic (286.6 eV) carbon in the supernatant seen in spectrophotometry 

is verified (Figure 5-10). A relative enrichment of aromatic carbon is also noteworthy onto the 

surface. 

It is thus clear that the adsorption of humic substances onto oxides involves an extensive 

modification of the chemical composition of these extracts, and of the formed entities (aggregates). 

This can be probed in an indirect manner by TRLS (cf. § 4.4, page 63), through the evolution of the 

chemical environment of europium(III) in contact with the supernatant from adsorption experiments. 

In the case of Suwannee River fulvic acid and purified Aldrich humic acid shown in Figure 5-11 [15], 

the 7F2/
7F1 ratios are decreasing with the RHS ratio between the mass of HS over the mass of α-Al2O3. 

The decreasing proportion of aromatic molecules that can provide an energy transfer to the 5Di 

manifold via their triplet state induces the decrease of the 7F2/
7F1 ratio. The ratios of the most 

fractionated sample are comparable to those obtained on simple organic acids such as acetic acid or 

glycolate (PLANCQUE et al., 2005; KUKE et al., 2010) under comparable conditions. STUMPF et al. 

(2002a) reported different 7F2/
7F1 ratios for the Eu(III) glycolate system, but for different conditions.† 

One can think that the complexes are not the same. 

As we have seen in the previous chapter on structural studies (cf. § 3.2, page 20), humic substances 

are showing fractal structures in aqueous suspension. The studies on mineral colloids are also showing 

such aggregation processes (AMAL et al., 1990). In mineral/HS systems, the presence of humic 

substances imposes a surface fractal organisation. AMAL et al. (1992) evidenced a fractal organisation, 

the structure of which evolves with time; at low surface coverage, a surface fractal dimension is 

evidenced, the slope of which is decreasing with the HS/surface ratio, to finally end up with a fractal 

                                                           

*
 Collaboration with the Institut für Nukleare Entsorgung from Karlsruhe Institut of Technology, Forshungszentrum Karlsruhe,  Germany; 

http://www.fzk.de/fzk/idcplg?IdcService=FZK&node=0048&lang=en 
†
 [Eu] = 3 10-6 mol.L-1, c(glycolate) = 1 mol/L, I = 2 mol.L-1 (NaClO4) 

http://www.fzk.de/fzk/idcplg?IdcService=FZK&node=0048&lang=en
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dimension of less compact object. It seems then that the structure of humic substances, and most 

likely NOM, is in constant evolution as a function of the coverage ratio and physico-chemical 

conditions. 

5.3. TERNARY SYSTEMS METAL/HUMIC SUBSTANCES/OXIDES 

In the light of the results on the HA/surface system, one can understand that the linear additivity 

of binary systems is generally not respected, or at least strongly deviates either on oxides (ROBERTSON 

& LECKIE, 1994; VERMEER et al., 1999; CHRISTL & KRETZSCHMAR, 2001; LUMSDON, 2004; 

HEIDMANN et al., 2005), or even on clays (SAMADFAM et al., 1998b). Almost thirty years ago, Tipping 

et al. (1983) perceived that the reactivity of adsorbed HA was modified during adsorption and that 

“extra uptake sites” with higher reactivity were created on the surface, or more likely revealed during 

adsorption. The modifications of structure and functionality allow apprehending these differences, at 

least from a qualitative point of view. It is noteworthy that the fruitful attempts were met in the case 

of fulvic acids (HEIDMANN et al., 2005; WENG et al., 2008), which are farther less sensitive to 

aggregation processes compared to humic substances. Commonly, the linear additivity under-predicts 

the metal adsorption in the ternary systems above the adsorption pH-edge (VERMEER et al., 1999; 

CHRISTL & KRETZSCHMAR, 2001; KAR et al., 2011). 
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Figure 5-12. Influence of pH on the Eu(III) adsorption on oxides (FAIRHURST et al., 1995a, 1995b; 

FAIRHURST & WARWICK, 1998; TAN et al., 2008). Lines are guides to the eye – from [81]. 

In soils the comportment of lanthanides and actinides(III, IV) is strongly linked to the fate of 

natural organic matter (PÉDROT et al., 2009). The adsorption of these metals is often comparable as a 

function of pH in the case of oxides for different humic extracts. Referring to the metal/surface pH 

isotherm (Figure 5-12), humic substances induces an increase of adsorption for the pH before the 

pH-edge and a decrease of adsorption after the pH-edge. As shown otherwise the position of the 

adsorption edge is strongly correlated to the first hydrolysis of the metal (DEGUELDRE, 1997; 

BRADBURY & BAEYENS, 2005, 2009). BRADBURY & BAEYENS (2005, 2009) proposed a linear free 

energy relationship between log10*β and log10
SK. 
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We have mainly focused our work on ternary systems with actinides, or analogues: europium(III) 

for actinides(III), and thorium for actinides(IV). Mineral surface were metallic oxides: α-alumina 

(α-Al2O3) and hematite (α-Fe2O3). 

5.3.1. Europium(III)/aluminium oxide system 

5.3.1.1. Macroscopic studies 

a. Influence on the adsorption of the humic extract 

Even if the linear additivity of binary systems is not respected, it is essential to have quantitative 

information on the binary systems to either model or make predictive calculations on the ternary 

systems. It is also important to compare the different information. As an example the quantification 

of humic acid adsorption in the HA/surface system is scarcely verified for the ternary systems 

metal/HA/surface. KŘEPELOVÁ et al. (2006) have proposed this information in the HA/kaolinite and 

U(VI)/HA/kaolinite systems, but only reported an important difference for a 0.01 mol L-1 ionic 

strength and not at 0.1 mol L-1 (NaClO4). For the Eu/HA/α-Al2O3 system we evidenced an increase 

of the adsorbed humic acid proportion in the presence of Eu(III) – Figure 5-13, from [8]. The 

commonly proposed interpretation is the formation of metallic bridge between the surface sites and 

the humic complex. This proposition is particularly difficult to verify. The modification of the HS 

structure in bigger aggregates after complexation could also be envisaged (CACECI & BILLON, 1990; 

CACECI & MOULIN, 1991; PLASCHKE et al., 2002). This would also satisfy the observations from 

KŘEPELOVÁ et al. (2006). The increase in size of the aggregates when ionic strength is decreasing, also 

observed in ultrafiltration [40], or in viscosity (REY et al., 1996; AVENA et al., 1999; RICE et al., 1999), 

would allow understanding the lack of U(VI) effect on the adsorption of the synthetic humic acid 

from KŘEPELOVÁ et al. (2006) at 0.1 mol L-1 (NaClO4), but at a lower ionic strength. 
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Figure 5-13. Adsorption of Aldrich HA onto α-alumina as a function of pH in the Eu(III)/HA system 

and in the Eu(III)/HA/α-Al2O3 system – from [8 © 2011 American Chemical Society,81]. 

b. Quantification of the modification of functionality of adsorbed and non-adsorbed humic 

substances 

From the different experiments that we have done so far, the fractionation of NOM is strikingly 

similar [15,20,81]. The spectrophotometric titration protocol in § 5.1 (page 73), from differential 
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absorption spectra [10], was applied to the supernatant of PAHA/α-Al2O3 experiments at pH 6.8. 

Here also, the different “humps” which were identified in JANOT et al. [10], were also observed for the 

supernatant, but with significantly different ratios [7,81]. The titration of the supernatant were treated 

with operational conversion factor [10] between absorbance and charge variation which ends up in a 

significant decrease of both Q1 and log10

~
KH+,1 as fractionation increases, i.e. as the coverage ratio R 

decreases; no significant variation of the heterogeneity parameter mH+,1 can be evidenced. Also, no 

variation of the high affinity sites could be evidenced as only a non-significant proportion of these 

sites are ionized at pH 6.8. These variations in Q1 and log10

~
KH+,1 mean that the fractionated humic acid 

samples are showing a lower functionality with higher acidity. The latter parameter can be reconciled 

with the comportment of low molecular weight organic acids, the maximum adsorption of which are 

directly correlated with their pKa value; at a certain pH, the lower the pKa, the lower the adsorption – 

see Figure 5-1 from [52]. One can also remind that the first pKa of aromatic phthalic and salicylic acids 

are approx. 3 and are showing a very low adsorption (GU et al., 1995; KRAEMER et al., 1998). By 

analogy, under the neutral pH conditions of our experiments, those kinds of ortho substituted 

benzoic acids would be comparatively less adsorbed than para substituted benzoic acids, e.g. 

protocatechuic acid* (DAVIS & LECKIE, 1978a; EVANKO & DZOMBAK, 1998). 

 

Figure 5-14. Differences in the distribution of functionality at two different surface coverage ratios 

expressed in mgPAHA.g-1

α-Al2O3
– adapted from [7 © 2010 Elsevier Ltd,81]. 

Knowing the functionality of the original PAHA and of the supernatants of the fractionated 

samples, the functionality of the adsorbed sample is obtained through mass balance. If the log10

~
KH+,1 

values are comparable to the original sample, the Q1 value is increasing for the adsorbed PAHA. As 

there is no modification in the high affinity-type sites in the supernatant the parameters of the 

adsorbed sample are also identical for the second distribution. A visual evolution of the affinity 

distribution is given in Figure 5-14. 

c. Influence on the adsorption of metals 

From our results on the chemical environment of Eu(III) in the supernatant of adsorption 

experiment [15], there is a modification of the chemical composition of humic substances during the 

adsorption onto mineral surface. This fractionation includes a modification of composition, as well as 

                                                           

*
 3,4-dihydroxybenzoic acid 
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functionality (Figure 5-14), the quantification of which were done in an operational manner by 

spectrophotometric titration (see § 5.1, page 73) [10]. This operational strategy was applied to the 

prediction of adsorption experiments in the Eu(III)/PAHA/α-Al2O3 system (Figure 5-15). 

One can remind the proposition of TIPPING et al. (1983) of the creation of extra uptake HA sites of 

high affinity upon adsorption, which are more likely revealed by the adsorption and fractionation 

process. 

The modelling of the adsorption of the Eu(III)/α-Al2O3 system – square symbols in Figure 5-15a 

adapted from [3,81] – was done using CD-MUSIC model (HIEMSTRA et al., 1989a; HIEMSTRA et al., 

1989b; HIEMSTRA & VAN RIEMSDIJK, 1996). The pH-edge is comparable to other system (see 

Figure 5-12, page 81) and is weakly dependant on ionic strength suggesting inner-sphere surface 

complexation (RABUNG et al., 1998; RABUNG et al., 2000; CHRISTL & KRETZSCHMAR, 2001; WANG et 

al., 2006; TAN et al., 2009). The obtained constants were satisfactorily tested on independent data from 

γ-Al2O3 (RABUNG et al., 2000) and hydrous alumina (TAN et al., 2008). 

Another factor is the influence of metal-HS complexation on HS adsorption onto mineral. This 

has been evidenced on different systems – Pb(II)-FA in HEIDMANN et al. (2005), and Eu(III)-HA in 

the Janot’s PhD thesis [81] – but this is not common to all systems – Cu-FA in HEIDMANN et al. 

(2005). HEIDMANN et al. (2005) noted that the difference between Cu(II)- and Pb(II)-FA systems were 

linked to the H+/M2+ molar exchange  ratios, i.e., ca. 1 for Pb2+, and ca. 1.5 for Cu2+, respectively 

(CHRISTL et al., 2001). The authors linked the differences in adsorption comportment to the possible 

metal-induced aggregation of FA after the decrease in negative charge. The molar H+/Mn+ ratios 

means that 1 mole of complexed M2+ leads to the release of 1 mole of H+ for Pb2+, and 0.67 mole for 

Cu2+, respectively for (CHRISTL et al., 2001; HEIDMANN et al., 2005). Hence, the reduction in negative 

charge due to complexation is more important for Pb2+. In the case of Eu3+, we obtained a H+/Eu3+ 

molar exchange ratios of ca. 1.3 and 1.6 [2,3,10,17,19,81], which are comparable to the H+/Cu2+ 

system, but with a higher metal charge; the reduction in negative charge is thus more important for 

Eu3+ than for Cu2+, and is coherent with the proposition of HEIDMANN et al. (2005). It is worth noting 

that HEIDMANN et al. (2005) studied a clay (kaolinite) whereas we used α-alumina [2,3,10,81]. 
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Figure 5-15. Evolutions as a function of pH and ionic strength (NaClO4) of the adsorption of Eu(III) in 

Eu/α-Al2O3 (squares) and Eu/HA/α-Al2O3 (circles) systems – from [3 © 2013 Elsevier Ltd.,81]. 

The difficulty to describe the ternary system is due to HA fractionation and modification of 

reactivity after adsorption onto the mineral surface. After the spectrophotometric quantification of 

the non-sorbed PAHA, two PAHA pools are defined: one staying in solution after centrifugation of 

the suspension, noted PAHAsol, and one adsorbed onto the mineral, noted PAHAads; each one having 

different NICA-Donnan parameters. The parameters determined by spectrophotometric titrations of 

supernatant from adsorption experiments of binary PAHA/α-Al2O3 systems [7,81] to modify original 

PAHA europium(III) binding parameters. Hence, log10
ads~KEu3+,i were modified according to log10

ads~KH+,i, 

i.e. log10
ads~KEu3+,1 = 0.9 and log10

ads~KEu3+,2 = 4.05. The pj, ni,j values were not modified according to the 

non-modified mi,j for H+. The prediction in Figure 5-15a is satisfying without any further fitting. The 

increasing adsorption of Eu(III) with ionic strength is also well represented as also noted by CHRISTL 

& KRETZSCHMAR (2001). It is noteworthy that this increase of log10
ads~KEu3+,i is reminiscent to the 

proposition of TIPPING et al. (1983) on the modification of reactivity on the surface, without creating 

more sites. 

The data at varying coverage ratios in Figure 5-15b show the limitations of the approach. The 

adsorption data of PAHA/α-Al2O3 system was obtained at pH 6.8; hence the data at pH 6.2 are well 

described as well as those at pH 7.4. Even if the general trend is present, the behaviour of Eu(III) at 

pH 4 is clearly overestimated. Under these conditions the fractionation is more extensive, with a high 

adsorption of PAHA and a greater modification of reactivity. The disagreement between experimental 

and calculated concentrations under these conditions may be due to the values chosen for adapted 

protonation parameters of both PAHA fractions, which correspond to a median fractionation 

(around 70 %). This may be the reason for the difference at pH 4 and 0.01 molNaClO4 L
-1. Moreover, 

the protonation parameters used for the modelling were calculated from titrations made on 

supernatant from binary PAHA/α-Al2O3 system. Now, presence of Eu(III) may have an influence on 

the fractionation of humic moieties, as complexation supposedly involves mainly the carboxylic 

groups at low pH values (NABER et al., 2006). 

It seems that the affinity of Eu(III) for an adsorbed humic acid is effectively greater than for the 

original sample. The implication is that the non-linear additivity of binary systems seems to be the 
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cause of a stronger metal adsorption on the humic covered surface than anticipated from the 

individual binary systems additivity – see also Figure 4 of CHRISTL & KRETZSCHMAR (2001), for 

Cu/FA/hematite. 

5.3.1.2. Spectroscopic studies 

a. Structural aspects of the binary metal/surface systems 

The europium(III) chemical environment at the surface of sapphire (aluminium oxide, 1
–
102) mono 

crystal probed in scanning near-field optical microscopy using TRLS [16], revealed the presence of 

different surface complexes. But these observations are not easily transferable to natural conditions as 

the (1
–
102) face is not major on the natural oxide, and that the acid-base properties of massive surfaces 

are not the same as the ones of the individual faces (FRANKS & MEAGHER, 2003; FLÖRSHEIMER et al., 

2008). In the Eu(III)/α-Al2O3 system, the evolution of the Eu(III)chemical environment is strongly 

modified during adsorption (Figure 5-16): the forbidden 5D0→
7F0 transition is increasing with the on-

going adsorption, as well as the asymmetry ratio 7F2/
7F1 (see also RABUNG et al., 2000 for γ-alumina). 

The 5D0→
7F1 transition, which is not very sensitive to complexation, undergoes a broadening 

[2,8,46,80,81] (see also STUMPF et al., 2002b, for the Eu(III)/smectite system). On the other hand, 

ionic strength does not seem to have a great influence on the chemical environment of the adsorbed 

Eu(III) species as it was awaited from the macroscopic data. 
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Figure 5-16. Comparison of luminescence 

spectra of Eu(III) at different pH values at 0.01 

(a) and 0.1 (b) molNaClO4 L
-1

 in the Eu(III)/α-Al2O3 

system [2 © 2013 Elsevier Ltd,81], and 

comparison of the 
7
F2/

7
F1 ratios of the 

Eu(III)/α-Al2O3 [2 © 2013 Elsevier Ltd,81] and 

Eu(III)/γ-Al2O3 (RABUNG et al., 2000) systems. 
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b. Temporal aspects of the luminescence in the Eu(III)/surface systems 

The luminescence decay time after the pH-edge is systematically higher than τ(Eu3+), evidencing a 

higher de-excitation probability of the excited complex (Figure 5-17). Conversely, before the pH-edge, 

there are two groups for the Eu(III)/surface systems: (i) a group where τ < τ(Eu3+) (TAKAHASHI et al., 

2000; KOWAL-FOUCHARD et al., 2004; TERTRE et al., 2006) [16]; and (ii) a group where τ  τ(Eu3+) 

(RABUNG et al., 2000; STUMPF et al., 2002b; RABUNG et al., 2005) [2,81] and τ  τ(Cm3+) (WANG et al., 

2004). The comparison of the experimental protocols of these two groups also allows evidencing that 

in the former the solid phases were centrifuged and more or less dried before the TRLS analyses, 

whilst in the latter group, the TRLS observations were done directly in suspension. The presence of 

iron(III) in the phases of the former group is also an important luminescence quenching parameter 

(HARTMANN et al., 2008). In the latter group the authors observed the progressive adsorption of 

Eu(III) onto the surface and a mix of free Eu3+ and weakly adsorbed species. On the other hand, in 

the former group the authors extracted the weakly adsorbed complexes leaving free Eu3+ in the 

supernatant; in the particular case of reference [16], the mono crystalline surfaces were soaked into a 

Eu(III) solution and dried before SNOM/TRLS analyses. HARTMAN et al. (2008) in the case of 

Cm(III) propose the luminescence quenching by Fe(III) in the case of montmorillonite and of 

synthetic clays, which is less likely in the case of kaolinite (TERTRE et al., 2006) or of sapphire mono-

crystals [16]. 
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Figure 5-17. Evolutions of the luminescence decay times as a function of pH and ionic strength. 

C(α-Al2O3) = 1 g L
-1

, [Eu(III)] = 10
-6 

mol L
-1

. Eu(III)/γ-Al2O3 system, (RABUNG et al., 2000) compared to 

Eu(III)/α-Al2O3 system [2 © 2013 Elsevier Ltd,81]. 

c. Spectral aspects of ternary systems 

The comparison of the different ternary system is not straightforward as: (i) the Eu/HA/surface 

systems were obtained with different gratings (TAN et al., 2008) [2,81], which implies different signal 

convolutions with the spectrometer parameters; and (ii) one must compare Eu(III) and Cm(III) that 

are showing different de-excitation patterns – de-excitation of Eu3+ (5D0→
7Fj) and of Cm3+ 

(6D7/2→
8S7/2) are different, and the information retrieved by the spectra are not totally comparable 

(CARNALL et al., 1968; CARNALL & RAJNAK, 1975). For europium(III), a non-degenerated level is 

transferring energy to a degenerated level, more peaks are observed which intensities are varying with 
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very weak peak shift*; for Cm(III), both implied levels are showing the same degenerescence, a broad 

massif undergoes shift and change in shape as a function of complexation strength.† From our 

observations, it seems that the chemical environment of Eu(III) in the ternary systems is always under 

the influence of HA. As a function of pH, the asymmetry ratios, as well as the shapes of the 

transitions, are not directly comparable between Eu(III)/α-Al2O3 (Figure 5-16) and 

Eu(III)/HA/α-Al2O3 (Figure 5-18) systems. On the other hand, the 7F2/
7F1 ratio of the Eu(III)/HA 

system is very much alike the one of the ternary Eu(III)/HA/α-Al2O3 system, as long as the pH value 

is not greater than the pH-edge – Figure 5-19a from [8]. For higher pH values, a broadening the 
5D0→

7F2 transition is observed with the increase in λmax – Figure 5-19b from [2,81] –, the 

comportment of which is similar the binary Eu(III)/α-Al2O3 system. Nevertheless, as the asymmetry 

ratios are not totally comparable between the binary and the ternary systems, it is evident that the 

chemical environment of Eu(III) is strongly influenced by the presence of the adsorbed HA fractions. 
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Figure 5-18. Luminescence spectra of Eu(III) in the ternary systems at different pH at I = 0.01 mol L
-1

 

(a) and 0.1 mol L
-1

 (b) NaClO4 (R = 27.4 ± 0.5 mgPAHA.g
-1

α-Al2O3
) – from [2 © 2013 Elsevier Ltd,81]. 
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Figure 5-19. Evolution (a) of the asymmetry ratios 
7
F2/

7
F1 and (b) of the max of the 

5
D0→

7
F2 transition 

of the different systems – from [2 © 2013 Elsevier Ltd,8 © 2011 American Chemical Society,81]. 

                                                           

*
 Shift of some nm for Eu(III) 

†
 Shit of some 10 nm for Cm(III). 
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d. Temporal aspects of the ternary system 

The temporal aspects of the ternary metal/HA/surface systems were not extensively observed in 

TRLS. TAN et al. (2008) proposed values of decay times τ, but the step between each delay seem to 

prevent them from evidencing the bi-exponential decays, which we evidenced [8,81]. The most 

striking evolutions are seen on Figure 5-20. First, one can clearly see that at whatever pH value the 

luminescence decay is always bi-exponential in presence of HA. No systematic variations can be 

evidenced for the fast decay τ1. But one can see the differences of decay times between the binary 

Eu/HA and the ternary Eu/HA/α-Al2O3, when pH  8. Even more interesting is the difference 

before the Eu adsorption edge, e.g. when pH  5. Under these conditions no or only weak adsorption 

can be awaited on α-Al2O3, and the increase in Eu adsorption occurs through the bonding of Eu-HA 

complex. Nevertheless, there is a large increase in τ2, which can be interpreted either as a loss of a 

water molecule in the first hydration shell (KIMURA & CHOPPIN, 1994), or as a decrease in the 

probability to lose energy through other mechanisms than radiative de-excitation. The first hypothesis 

implies a modification in the geometry of the complex at the surface, which would also imply a 

modification of its symmetry and a change in the spectrum; this was not observed here. According to 

the relationship from KIMURA & CHOPPIN (1994)*, this would mean that ca. 7.5 water molecules 

would be present in the binary complex and ca. 2.5 would remain at the surface with no change in the 

complex’s structure. This seems rather unlikely. The second hypothesis is more likely in the light of 

the recent works from EITA (2011a, 2011b) who showed that a Gorleben humic acid is more rigid on 

the surface of alumina. This increased rigidity would offer greater constrains in the adsorbed HA and 

would then increase the radiative de-excitation of Eu(III). Moreover, EITA (2011b) showed that 

Gd(III) was not in contact with the surface at low pH values in  the presence of HA. 

WANG et al. (2004) showed a decrease in τ2 for the Cm(III)/HA/γ-Al2O3 system, but as already 

stressed, the luminescence processes of Cm(III) and Eu(III) are different, the direct comparison may 

not be straightforward. 

                                                           

*
  n(H2O) = 

1.07

τ  – 0.62 
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Figure 5-20. Luminescence decay times of Eu(III) in ternary system at I = 0.01 and 0.1 mol L
-1

 NaClO4 

as a function of pH (R = 27.4 ± 0.5 mgPAHA.g-1

α-Al2O3
)  – from [8 © 2011 Americal Chemical Society,81]. 

5.3.2. Importance of the addition order: the particular case of tetravalent cations? 

From a thermodynamic point of view, if the systems are comparable the addition order of the 

constituents must not be important. Nevertheless, the effect of addition order has been observed in 

some cases in ternary systems:  Cu/HA/Al2O3 (DAVIS, 1984), Cd/HA/α-Fe2O3 (DAVIS & 

BHATNAGAR, 1995; VERMEER, 1996), Zr-Hf/HA/SiO2 (TAKAHASHI et al., 1999), Th/HA/α-Fe2O3 

[23], Cm/HA/γ-Al2O3 (WANG et al., 2004), Pu(III)/HA/kaolinite (BUDA et al., 2008), or 

Cm/HA/SiO2 (KAR et al., 2011). In the case of Cm3+ cations, it seems that this effect is only apparent 

at short contact time and not at long contact times (WANG et al., 2004). But it also seems that this 

effect is linked with the total concentration of metal for Cd2+/HA/α-Fe2O3 (DAVIS & BHATNAGAR, 

1995). Hence, it is quite plausible that this effect is due to incorporation into the structure of the 

mineral. 

BUDA et al. (2008) also observed this effect on the initially Pu(III)/HA/kaolinite system. No 

difference was observed below the pH-edge of the binary Pu(III)/kaolinite when clear differences 

appeared above the pH-edge. One must recall that MARQUARDT et al. (2004) noted an oxidation of 

Pu(III) to Pu(IV) for pH ≥ 6. Moreover, BUDA et al. (2008) report that adsorbed Pu on kaolinite is at 

the +IV oxidation state. The oxidation of Pu(III) during the experiment cannot be rejected a priori. 

As noted earlier, the pH-edge of a metal is strongly linked to its first hydrolysis constant. An4+ 

cations undergo a pH-edge onto oxides ca. pH 2 (ÖSTHOLS, 1995) [23-25].* Since the operational 

definition of humic acids implies precipitation at acidic pH it is often not straightforward to observe 

the awaited increase of the adsorption of a metal before the pH-edge (Figure 5-21 and Figure 5-22). 

The ternary systems with a tetravalent element are implying a particular difficulty, which is the 

addition order of the different compounds. In a more classical system, the humic extract is 

                                                           

*
 Projet européen HUMICS [76,77] 
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equilibrated with the surface beforehand, and the metal is added afterwards. When this protocol is 

followed, the evolution of the system is directly comparable to other elements. The interpretation of 

the data beyond the pH-edge is the same as for Eu(III)/HA/α-Al2O3 system; the increase of humic 

acid concentration prevents the metal adsorption on the mineral surface. The evolution as a function 

of pH is also comparable to the other metals; the adsorption of the metal is decreasing as long as the 

surface concentration of humic acid is important and increase when the humic acid is mainly in 

aqueous solution. In the case of silica, beyond pH 6.5 the system is purely competitive as the 

adsorption of humic acid can be neglected [24]. Conversely, the case of hematite is directly 

comparable to α-Al2O3 since the humic acid adsorption is important up to pH 9-10 [25]. 

The influence of ionic strength is also apparent in Figure 5-22 when Th(IV) is added first. 
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Figure 5-21. Evolution of the adsorption of 

thorium(IV) as a function of pH onto colloidal 

silica, I = 0.1 mol L
-1

 NaClO4, CSiO2 = 0.25 g L
-1

, 

[Th(IV)] = 1.5 10
-12

 mol L
-1

,  CHA = 0,  1 mg L
-1

, 

 10 mg L
-1

,  50 mg L
-1

,  100 mg L
-1

 – from [24 

© 2003 de Gruyter]. 

Figure 5-22. Influence of the addition order for 

the Th(IV)/HA/hematite system: circles, CHA = 0; 

diamonds, HA added first; triangles, Th(IV) 

added first – from [23 © 2005 American 

Chemical Society]. 

The influence of the addition order on the adsorption in ternary systems M4+/HA/surface was 

evidenced by TAKAHASHI et al. (1999) on the Zr-Hf4+/HA/kaolinite system. This process also occurs 

in the Th(IV)/HA/α-Fe2O3 system [23], comparing to a preceding study [25] where the HA/α-Fe2O3 

system was equilibrated beforehand. The evolution of the pH-isotherm is also reflected in the 

different concentration isotherms (Figure 5-23a), but the decrease in adsorption is farther less 

important when the Th(IV)/α-Fe2O3 binary system is equilibrated beforehand and the humic acid is 

added afterwards. 

Several hypotheses can be proposed: (i) the adsorptive fractionation of humic acid favours the 

adsorption of the most hydrophobic fraction, and leaves the more hydrophilic fractions in solution 

(VAN DE WEERD et al., 1999), the reactivity of which should be more important towards Th(IV) by 

analogy to marine organic matter (GUO et al., 2002; QUIGLEY et al., 2002); and (ii) during the 24 hours 

equilibration thorium(IV) can be incorporated in the hematite structure and is not longer available for 

complexation by humic acid. To test the latter hypothesis, kinetic experiments were done 
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(Figure 5-23b). It appears that a longer contact time of the previously equilibrated systems would 

induce a convergence of the different system, but did not allow proposing a definitive conclusion. 

Spectroscopic information would be interesting but would require rather high concentration of 

Th(IV), for instance in X-ray spectroscopy. 
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Figure 5-23. Influence of a humic acid on the adsorption of thorium(IV) onto hematite and of the 

addition order after 24 hours of equilibration. Closed symbols – from [25 © 2002 Elsevier Ltd.] –: HA 

added beforehand; open symbols: Th(IV) added beforehand; (a) [Th] = 10
-12

 mol L
-1

; C(-Fe2O3) = 

500 mg L
-1

; I = 0.1 molNaClO4 L
-1

 – from [23 © 2005 American Chemical Society] –, and (b) kinetic test 

at pH ≈ 7 – adapted from [23 © 2005 American Chemical Society]. 
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6. PERSPECTIVES 

Even if important advances have been done on the relationship between structure and reactivity of 

humic substances in the past fifteen years, there still lies several “shadowed areas”. The structure of 

the humic substances constituents is still a matter of controversy. Every complexation models are still 

in essence operational models using extra-thermodynamic function and/or correlation with high 

uncertainties. The variations of parameters as a function of pH, ionic strength, or total concentration 

of metal are clear illustrations. 

As the results and implications were rather detailed in the presentation of research, I only will here 

give personal point of views on perspectives, and stress on some points that I hopefully will be 

exploring. 

6.1. STRUCTURE AND COMPOSITION OF HUMIC SUBSTANCES 

In the light of the most recent developments, it seems that humic substances are composed of 

small entities that are forming larger aggregates [6]. These aggregates can fractionate under various 

conditions, and the forces that are at stake to “hold these aggregates together” are necessary weak. The 

vision of micellization of the smaller entities is tempting (GUETZLOFF & RICE, 1994; PICCOLO et al., 

1996; VON WANDRUSZKA et al., 1997; VON WANDRUSZKA, 1998; TERASHIMA et al., 2004), and maybe 

misleading. Nevertheless, the theoretical background that permits to mathematically describe the 

aggregation phenomenon is still missing in such heterogeneous mixtures. 

It seems clear now that the organization of humic substances aggregates in solution is showing a 

strong fractal character (WERSHAW et al., 1967; ÖSTERBERG & MORTENSEN, 1992; RICE & LIN, 1993; 

ÖSTERBERG et al., 1995; REN et al., 1996; RICE et al., 1999; REDWOOD et al., 2005) [47], that seems to 

slightly depend on the origin and composition of the extract. As it was done for the titration and 

complexation data (TIPPING, 1998; MILNE et al., 2001; MILNE et al., 2003; TIPPING et al., 2011), there 

is a need to gather information on the diversity and commonalities in the structure of humic 

substances extracts. As an example, we have seen that extracts from different origins are showing 

similar properties – i.e. size determined in surface tension [47,53], TDA [6] –, but are showing slightly 

different aggregate structure [47], and composition (PLANCQUE et al., 2001) [26]. But even then, the 

physical description of the aggregation mode(s) will still remain to be built. 

6.2. INFLUENCE OF IONIC STRENGTH AND HS CONCENTRATION 

The influence of ionic strength and HS concentration on the complexation of metals is either not 

easily represented by Debye-Hückel related models, or under the form of a potential of various kinds. 

The interrogations of SAITO et al. (2005) on the very nature of this potential of the humic entities 

leaves open questions. 

Very recently, in the framework of Yasmine Kouhail’s on-going PhD works [45], we evidenced 

two different regimes of Eu-FA interactions (Figure 6-1). The first occurs at lower FA concentration, 
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whereas a second regime occurs at higher FA concentration. These two different regimes are not 

described by existing complexation models. The typical behaviour obtained at varying concentration 

of metal, here Eu(III), is observed for the two environments. But the influence of ionic strength is 

not straightforward to interpret. If the typical complexation behaviour – decrease of interaction with 

ionic strength in agreement with the Debye-Hückel Theory (LYKLEMA, 1995a) – occurs for the first 

regimes, i.e., at the lower FA concentration, the opposite effect if occurring at higher FA 

concentration – an increase of interaction with ionic strength. 

One plausible interpretation of the second regime can be the interaction of Eu(III) with different 

FA entities or aggregates. These entities are showing surface potential that are influenced by their 

Debye length. With increasing ionic strength, different entities can see their distance of approach 

varying with ionic strength, and fixed Eu(III) could then act as a bridge between two different entities. 

This proposition is difficult to integrate within the NICA-Donnan model. As described in SAITO et al. 

(2005), within the NICA-Donnan model the description of the surface potential is not needed; only a 

Donnan potential within the particles is considered. Nevertheless, SAITO et al. (2005; 2009) proposed 

that a combined Donnan electric double layer model could also be considered. Further works are on-

going on this point. 
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6.3. COMPETITION BETWEEN CATIONS 

From the point of view of the competition between cations, as satisfactory as they may appear, the 

confrontation between our spectroscopic and potentiometric results should not obfuscate the semi-

empiric nature of these models. On the other hand, if the simplest (discrete) models allow presenting 

an efficient representation of laboratory cases on actinides, there is a too much level of uncertainty on 

the treatment of competition. As such, the uncertainties on the NICA-Donnan parameters for the 

actinides(III), and the incoherence on the estimated parameters for actinides(IV), prevent from 

reliable speciation calculation of real systems where the competition between cations of similar 

charges should occur. It seems that a compilation effort – comparable to the works from MILNE et al. 
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(2003) –  should be done particularly for the actinides(IV), especially for Np and Pu that are 

particularly sensitive to the redox properties of humic substances. 

A certainly interesting point would be competition between lanthanides. Only few data were 

reported. The works from POURRET et al. (2007a, 2007c) were actually performed in competitive 

conditions – 50 ppb of each elements, i.e. 0.36 µmol L-1 for La and 0.29 µmol L-1 for Lu –  but no 

information on eventual competition between complexation modes in HS could be obtained. The use 

of time-resolved luminescence would certainly allow attaining such information. Competition between 

luminescent lanthanides (Sm, Eu, Tb, Dy), in conditions near to those of POURRET et al. (2007a, 

2007c) could be done following Eu(III) or Tb(III) luminescence following the works from MARANG 

et al. [14] on Eu(III)-Cu(II) and Eu(III)-Ca(II). 

6.4. FORMATION OF MIXED COMPLEXES 

The formation of mixed complexes, i.e. M-OH-HA or M-CO3-HA complexes, should also draw 

attention as they are still a matter of debate (PANAK et al., 1996; POURRET et al., 2007c). The 

determination of mixed hydroxo and carbonato complexes of uranium(VI) is certainly a great 

advance, but the interaction constants rely on inherent hypotheses that makes then not easy to adapt 

to other models. Reinterpretation of raw data and dedicated experiments should be undertaken, 

including the variety of humic samples. 

Particularly we have seen that POURRET et al. (2007c) seemed to reject the formation of mixed 

carbonato complexes, whereas it seems that a close inspection of their data reveals the formation of a 

mixed complex. Furthermore, the spectroscopic data from PANAK et al. (1996) are rather 

demonstrative of the presence of a mixed complex, even if too few data point were presented. 

DIERCKX et al. (1994) proposed the formation of carbonate mixed complexed that are questioned by 

POURRET et al. (2007c). GLAUS et al. (1995) evidenced weaker than expected mixed complexes, but 

significant nonetheless. MOULIN et al. (1999) also proposed the formation of a mixed carbonato 

humic complex. 

Within the Yasmine Kouhail’s PhD thesis work we are focusing on both the evidence of a 

complexation humic mode in carbonate media in luminescence spectroscopy, which is particularly 

adapted both to Eu(III)-HS [11,13] and carbonate studies (BERTHOUD et al., 1989; VERCOUTER et al., 

2005). 

Also the case of actinides(IV) could be of interest. As stressed earlier (cf. Figure 4-6, page 48), the 

example of carbonate competition or mixed complex formation is an illustration. The major 

environmental inorganic ligand of cationic radionuclides is CO2–
3 . In the case of actinides(IV) high 

concentration are necessary to out-compete hydrolysis. Using the operational expression (Equation 

4-8) to calculate the log10
HAβ for ThHA at each pH value, and imposing an equilibrium with 

atmospheric CO2(g), carbonates would only have an influence for pH higher than 8.5 (Figure 6-2). As 
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the prevalence of An(IV)-NOM complexes covers a wide pH range (STOCKDALE et al., 2013) [18,22], 

it would be important to check the limitation of this range by the carbonate competition. 
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6.5. MICRO-SOLUBILITY EFFECT 

As seen earlier, the total concentration of metal, particularly An(IV), shows a marked influence of 

the interaction with humic substances: interaction decreases with the ratio between metal and HS, and 

the formation of micro-phases within the structure of HS seems to occur (PLASCHKE et al., 2004; 

WEBER et al., 2006b; ANTONIOU et al., 2011; MARSAC et al., 2014; PRODROMOU et al., 2014), the 

presence of which could be at the origin of the lack of, or at least limited influence, on the solubility. 

It can be envisaged that this effect is linked to the existence of the Donnan potential within the 

structure of HS. In § 4.3.2.1 (page 53) it has been proposed that the apparent solubility of 

uranium(VI) in a Donnan membrane is lowered due to the Donnan potential (Equation 4-17). If in 

the case of UO2+
2  a factor of ca. 20 is computed at 0.1 mol L-1, a factor of ca. 75 is awaited for Fe(III), 

lanthanides, and actinides(III), and ca. 300 for actinides(IV) – see Table 4-1 page 53. 

It could be interesting to address this problem through (i) coupled studies of complexation, 

including spectroscopic data on the metal; (ii) solubility studies of mineral phases including structural 

characterisations of mineral phases with the evaluation of crystallites size; and (iii) apparent sizes of 

HS aggregates using different determination techniques. 

6.6. SPECTROSCOPIC AND LUMINESCENCE DECAY DATA ON LANTHANIDES/ACTINIDES-HUMIC 

COMPLEXES 

The analysis of spectroscopic data on luminescent lanthanides(III) and actinides(III) complexed by 

– and adsorbed on mineral surfaces with – humic substances are not numerous (WANG et al., 2004; 

KUMKE & EIDNER, 2005; RABUNG et al., 2005; RABUNG et al., 2006; TAN et al., 2008; HUITTINEN et 

al., 2009; MARMODÉE et al., 2009a; RABUNG & GECKEIS, 2009; ANTONIOU et al., 2011) [2,7,8,11,13]. 

The univocal determination of the Ln(III)-HS complexes’ symmetry could be attained either using 

high dispersing gratings directly in solution, or by using low temperature measurements (MARMODÉE 

et al., 2009a; KUKE et al., 2010). 
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The origin of the bi-exponential decay of lanthanides and Cm(III) complexes is also a matter of 

concern. There is a lack of compilation of data which would help in levelling the importance of the 

complexation environment vs. the physical phenomena hidden behind the bi-exponential decay. 

Necessarily, there are two different deexcitation mechanisms if a bi-exponential decay occurs, the 

nature of which is still up to now totally concealed by the heterogeneity of these substances and the 

impossibility to propose a structure. The fact that the faster decays of Eu(III) and Cm(III) are not 

comparable, i.e. faster than free aquo-ion Eu3+ (and also Tb3+) and mostly equal to Cm3+, does not 

help for comparison. The interesting advance proposed on Cm(III)-HS complexation (FREYER et al., 

2009) has to be checked at least on Eu(III) and Tb(III), which are showing the longest decay times. 

The systematic study of relevant simple complexants, e.g. based on EXAFS decomposition as in 

MANCEAU & MATYNIA (2010), could be of a great help. Link to the evolution of aromatic acids is also 

to consider (cf. Figure 4-23, page 69). 

6.7. ADSORPTIVE FRACTIONATION 

The fractionation of natural organic matter and adsorption onto surface is not always easily linked 

to the modification of NOM. The operational relationships that we have proposed cannot be 

straightforwardly applied without verification to other systems, but the methodology could be applied 

to other samples without any major difficulties. We also have seen the difficulties in the extrapolation 

of these relationships outside their calibration domains. However, we have shown that it is necessary 

to account for the chemical modifications of humic substances during adsorption. From my point of 

view, adapting the electrostatic properties of the adsorbed humic substances without modifying the 

interaction properties with protons and eventually with metal is only a partial approach. The account 

of the chemical modification will certainly be time consuming because it would have to cover a wide 

parametric domain. This is directly linked to the difficulty to propose a clear definition of the HS’ 

structure and composition. 

6.8. APPLICATION TO IN-FIELD DATA 

The history of nuclear events has shown that a better knowledge of the interaction between NOM 

and metallic pollutants is of particular concern (OLLUI MBOULOU et al., 1998; FUJIKAWA et al., 1999; 

BRUDECKI et al., 2009; XU et al., 2014). In the case of reactor accident, Pu isotopes, Am, 137Cs, 131I, and 
90Sr are released to the environment (KAWASE & YOKOYAMA, 1973; LEE & LEE, 2000; QUANG et al., 

2004). The interaction of the short lived 131I with NOM is well known [26,35,36,40] and observed in-

field (BULMAN, 1986; ASHWORTH & SHAW, 2006b; SCHWEHR et al., 2009; KAPLAN et al., 2011; 

TANAKA et al., 2012; KAPLAN et al., 2014). The case of 137Cs is less clear as the interaction with NOM 

is rather low (SHABAN & MACÁŠEK, 1998) [6], but the indirect influence of NOM is clear (VIDAL & 

RAURET, 1993; DUMAT & STAUNTON, 1999; RAJEC et al., 1999; RIGOL et al., 2002). Strontium also 

show a moderate interaction with NOM (JUO & BARBER, 1969; IBARRA et al., 1979b; SAMADFAM et al., 

1996; HELAL et al., 1998; SAMADFAM et al., 1998a; PAULENOVA et al., 2000) and its adsorption on 
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minerals is affected (BUNZL et al., 1998; SHABAN & MACÁŠEK, 1998; MACÁŠEK et al., 1999; 

BELLENGER & STAUNTON, 2008). The knowledge and quantification of the Cs- and Sr-HS 

interactions are of great importance when it comes to discuss about remediation strategies. 

Very recently, a French national project “DEMETERRES*”, financed through the Program 

“Investissement d’Avenir”,† proposes to address the problems of remediation and rehabilitation of 

contaminated soils, using phytoremediation, decontamination either by ligands in supercritical CO2, or 

by flotation techniques. Our role will be to provide quantification of Cs and Sr interaction with soils 

components, including mainly clays and NOM. A PhD thesis has begun in October 2014 for three 

years. 

6.9. RATIONALE 

As a rationale, I would certainly stress that the main missing brick in the knowledge of humic subs-

tances’ reactivity is the difficulty to propose a theoretical background for their structure. At least we 

cannot, up to now, compute every observable data. As a matter of fact, even if the amount of 

individual component of the mixtures can theoretically be known, then the question of the physical 

and chemical forces that hold the humic substances aggregates together is still not at hand, yet. Maybe 

following FEYNMAN (1965 page 164) we would have to find some moos or goos to provide a description 

of the experimental data. To my opinion, no single analytical technique could help in unravelling the 

mystery of humic substances structure. The eluding structure of these fractal objects (mixtures) must be 

taken into account. 

A lot of advances have been achieved since our works on the application of ESI-MS to the 

characterisation of humic substances. The use of the exact mass determination, via Fourier transform 

ESI-MS, allows now determining more precise repartition of molecules from the very complex humic 

substances mixtures (CHO et al., 2012; WITT, 2013; GALINDO & DEL NERO, 2014). Nevertheless, as 

powerful as these analyses may be, they do not give information on the particular aggregation 

comportment of humic substances, the extent of which largely controls the complexation and 

adsorption behaviours 

Only the confrontation of the different point of views of different advanced techniques can help. 

The proposition of a humeomic science (PICCOLO et al., 2006; NEBBIOSO & PICCOLO, 2011, 2012; 

NEBBIOSO et al., 2014) is certainly an interesting input and would require a much broader community 

that would have a common interest. 

 

                                                           

*
 Développement de Méthodes bio- et Eco- Technologiques pour la Remédiation Raisonnée des Effluents et des Sols en appui à une stratégie de 

réhabilitation agricole post-accidentelle. http://portail.cea.fr/dsv/ibeb/Pages/recherches/projets-ibeb.aspx?Type=Chapitre&numero=1 
†
 Recherche en matière de Sûreté Nucléaire et Radioprotection 
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