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Introduction

Quick overview of the Sliding Mode Control field

Amongst the earliest documented (and accessible) studies on sliding motion, we have
some works from the German school by Flügge-Lotz [39] and the two papers of André
and Seibert [11, 12]. But the main developments definitively come from the Russian/Soviet
school, with the first research activities also dating back to the 50’s [7, 105]. Those research
efforts articulate around the discontinuous aspect of the control.

Contributions from various fields have to be acknowledged: for instance the evolu-
tion of dynamical systems with a discontinuous control can be described as an Ordinary
Differential Equation (ODE) with discontinuous right-hand side. This topic is shared
with the optimal control theory and thus the theory of Sliding Mode Control (SMC)
greatly benefited from the advances in the latter field. The works masterly summarized in
Filippov’s book [38] are a good example of such cross-fertilization.

In the 70’s, the theory of SMChasmatured and began to get knownworldwide thanks
to Itkis’s book [63] in 1976 and the review paper by Utkin [106] in 1977. The latter also
published a book on sliding modes in 1981 in Russian, later translated in English [107]. All
the developments up to then deal with what we refer to as “conventional” or “classical”
SMC.

The nextmajormilestone in the slidingmode field is the introduction ofHigher-Order
Sliding Mode (HOSM) by Levant, first in [34] but for the most part started with [73].
This sparked the development of a largewealth of literature at the end of the 90’s and in the
years 2000’s. The HOSM concept was applied to controllers, observers and differentiators.
A recent account of the development in both “conventional” or “classical” SMC and in
the HOSM field is given in [99].

However, one topic is usually left out, as mentioned in [99, p. 99]: the discrete-time
case. By this term, we refer to the setup where the control input can only change at isolated
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2 INTRODUCTION

time instants tk and the dynamical systemwe want to control is a continuous-time process.
In our context, this means that the control input is constrained to be a step function.
Let us motivate why it is interesting to study this case. Firstly this case appears when the
controller is digitally implemented, for instance with the help of a microcontroller. This
kind of setup is nowadays ubiquitous in benchmarks and industrial applications. Secondly
We also face this situation in numerical simulation. We shall state that we were inspired by
the research effort in nonsmooth mechanics to properly simulate some systems like those
with dry friction and/or unilateral constraints [64, 17].

Topics tackled in this work

This thesis started in the wake of the work of my two advisors, which can be found in [4]
and [5]. The main research effort is to work on the undesired phenomenon that systems
with SMC exhibit: the chattering. We characterize it as the fact that the state of the system
chatters in a neighborhood of the sliding manifold instead of converging on it and that the
control input is of the bang-bang type. In contrast to previous approaches, we single out
the chattering that is already seen in simulation, even with no disturbance and with perfect
knowledge of the dynamics. We refer to this one as the numerical chattering and one of its
distinct feature is the constant chattering, or high-frequency bang-bang behavior, of the
control input. This naturally induces a chattering of the sliding variable. We claim that
this type of chattering is usually predominant and that it is due to a bad (purely explicit)
discretization of the Sgn multifunction. We further discuss this topic in Section 1.3. Let
us now summarize the contribution of this thesis in the three main domains of control
theory1:

ANALYSIS We restrict ourselves to two controllers in discrete-time setting. Firstly for
the Equivalent-Control Based SlidingMode Control (ECB-SMC), proofs of finite-time
Lyapunov stability for the sliding variable dynamics are given. Those apply to a fairly
generic class of systems, which was not the case of previous approaches. The robustness of
the controller is also investigated, as well as SlidingMode Observers and an extension to
enhance the perturbation attenuation. Regarding Higher-Order Sliding Mode Controller
(HOSMC), the implicit discretization of the twisting controller is studied. This prompted
us to modify the discrete-time control input. A Lyapunov function can then be used to
prove finite-time stability. Those topics form the bulk of Chapter 2.

1in the author’s view



3

SIMULATION We present a Control toolbox implemented in siconos, a platform
developed at INRIA, and various algorithms to solve the optimization problems arising
from the control input computation. This part is briefly mentioned at the beginning of
Chapter 3, with some highlights on how to architect a simulation software to have reliable
and faithful simulations. Then we present some simulation results illustrating various
analytical results along with a numerical comparison of discretization schemes in the rest
of this chapter.

EXPERIMENTS Chapter 4 is devoted to the presentation and analysis of the experi-
mental data collected on two experimental benchmarks: an electropneumatic actuator in
Nantes and an inverted pendulum on a cart in Lille. On the first setup, we implemented
a classical first-order sliding mode controller, as well as the twisting algorithm. On the
second one, only a first-order SMCwas implemented. The results of those experiments
sustain the superiority of the implicit discretization introduced as shown in Chapter 2.

Before moving to the topics mentioned above, Chapter 1 is dedicated to the introduc-
tion of the topic and also the tools used in Chapter 2.

What is not discussed in this work

Given how large the SlidingMode Control field is, we have to focus on a subset of possible
research directions. In particular, we would like to stress that we will not discuss the
following topics:

– The design of the sliding surface: we mostly deal with the case where the latter is a
subspace of the state (σ = Cx), but we do not detail how the matrix C is chosen.
We only require that the dynamics on the sliding surface (σ = 0) is asymptotically
stable.

– Some classes of controllers like Integral or Terminal SMC and most HOSM con-
trollers: we only study the classical SMC, with an equivalent control input. In the
HOSM controller class, we study only the twisting algorithm. The controllers stud-
ied in this work fall into the square “fully discontinuous” category. The latter is
informally defined as the fact that the control input is only a discontinuous function
of the state, except for the equivalent part of the control, and the square part means
that there are as many discontinuous terms as the size of the sliding variable. Fully
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discontinuous controllers can be effectively modeled using the chosen frameworks
(Convex Analysis and Variational Inequality).

– We do not consider relay systems where the control input can only take value in a
finite discrete set. Filippov’s framework is also invoked in this case to regularize the
solution and understand what would be the behavior on the sliding manifold with
relaxed control. We consider that the control input is multivalued (u : Rp ⇒ U )
and takes value in a compact convex setU . Controllers with a discrete value control
set are an ongoing research topic, see for instance [54, 78].

Part of the results presented here lead to the following publications:

- O. Huber, V. Acary, B. Brogliato, and F. Plestan, Discrete-time twisting
controller without numerical chattering: analysis and experimental results with an
implicit method, in Decision and Control, 2014 53th IEEE Conference on, IEEE,
pp. 4373–4378.

- O. Huber, V. Acary, and B. Brogliato, Enhanced matching perturbation at-
tenuation with discrete-time implementations of sliding-mode controllers, in Control
Conference (ECC), 2014 European, IEEE, pp. 2606–2611.

- O. Huber, V. Acary, B. Brogliato, and F. Plestan, Comparison between
explicit and implicit discrete-time implementations of sliding-mode controllers, in
Decision and Control, 2013 52th IEEE Conference on, IEEE, pp. 2870-2875.



Chapter 1

BackgroundMaterial

We now present some background material on topics used mostly in Chapter 2. Firstly, we
shall quickly recall the basic theory of SMC, before touching on HOSMC. Then we skim
through the mathematical tools for the analysis of ODE with discontinuous right-hand
side and Differential Inclusion (DI). Finally we move to the time-discretization of SMC
and also some ODE, and we present a short literature review of this topic.

1.1 Sliding Mode Control in Continuous Time

In this brief exposition of basic SMC theory, let us consider the linear case, that is with
a Linear Time Invariant (LTI) system and a sliding variable defined as a linear subspace
of the state. Hence in the sequel, we consider well-posed linear systems (in the sense of
Filippov [38]) of the form




ẋ(t) = Ax(t) + Bu(t) + Bξ(t)
ucont(t) = ueqcont(t) + uscont(t)
σ (t) B Cx(t)
−uscont(t) ∈ α Sgn (σ (x(t))) ,

(1.1.1)

with x(t) ∈ Rn, ucont(t) ∈ Rp, σ (t) ∈ Rp, C ∈ Rp×n, and α > 0. The matched distur-
bance is denoted as ξ and if the system is nominal then ξ ≡ 0. Let us assume that C is
chosen such that the triplet (A, B, C ) has a strict vector relative degree (1, 1, . . . , 1). This
implies that the “decoupling matrix” CB is full rank.

5



6 CHAPTER 1. BACKGROUND MATERIAL

1.1.1 The Equivalent Control Based Sliding Mode Controller

With the ECB-SMC variant, the control input is split in two parts: the smooth equivalent
part ueqcont which makes the sliding surface invariant (and in linear case, any level set of
σ). The discontinuous part uscont which brings the system to the sliding manifold and
ensure the rejection of matched perturbations. Let us now derive the expression for the
two control inputs. For ueqcont, we start from the dynamics of the sliding variable in the
nominal system (1.1.1):

σ̇ (t) = CAx(t) + CBueq(t) + CBus(t).

The control law ueqcont is designed such that the system stays on the sliding surface once it
has been reached (in other word ueqcont makes the sliding surface invariant with uscont ≡ 0):

σ̇ (t) = 0 and uscont(t) = 0 ⇒ ueqcont(t) = −(CB)−1CAx(t). (1.1.2)

With this equivalent controller, the sliding variable dynamics reduces to




σ̇ (t) = CBus(t)
−uscont(t) ∈ α Sgn(σ (t)).

(1.1.3)

The dynamics in (1.1.1) can be rewritten as

ẋ(t) = (I − B(CB)−1C )Ax(t) + Bus(t),

or equivalently

ẋ(t) = ΠkerCAx(t) + Bus(t), (1.1.4)

withΠkerC B I − B(CB)−1C . Two interesting properties ofΠkerC are CΠkerC = 0 and
ΠkerC is a projector onkerC [33]. The regularity of x enables us to take the equivalent
integral representation of system (1.1.4)

x(t) = Φ(t, t0)x(t0) +
∫ t

t0
Φ(t, τ)Bus(τ)dτ,

withΦ(t, t0) = eΠkerCA(t−t0) the state transition matrix for the system (1.1.4). Some of the
properties ofΦ(· , ·) are given in the following lemma.

Lemma 1.1.1. One has Φ̇(t, t0) = ΠkerCAΦ(t, t0), Φ(t0, t0) = I , and CΦ(t, t0) = C for
all t ≥ t0.



1.1. SLIDING MODE CONTROL IN CONTINUOUS TIME 7

Proof. One has CΦ̇(t, t0) = 0 so CΦ(t, t0) = CΦ(t0, t0) = C for all t ≥ t0. �

The sliding surface C has to fulfill only one requirement: the “zero dynamics” on the
sliding manifold have to be stable. That is the dynamics of x with σ = 0. This can be for
instance achieve using a pole placement technique, see for instance [6, 107], or using other
principles, like in [92] where the effects of unmatched perturbations is reduced. We now
quickly recall the main points that made Sliding Mode Control popular.

FINITE-TIME LYAPUNOV STABILITY OF THE AUXILIARY SYSTEM

Let us study the stability of the system (1.1.3) with the Lyapunov functions proposed
in [107]. First we have the quadratic one V (σ) = σT (CB)−1σ , which is decreasing if CB is
symmetric positive-definite. The symmetry condition can be relaxed by considering the
function V (σ) B ‖σ ‖1 = −uscontσ . Both can be used to show that if the system is stable,
σ goes to 0 in finite-time. In Section 2.2.2, we show that the same function, only slightly
modified, can be used to prove the finite-time Lyapunov stability of the discrete-time
auxiliary system under similar conditions.

REJECTION OF MATCHED PERTURBATIONS

Besides finite-time stability, the rejection of matched perturbation makes SMC very
attractive. In the celebrated paper [31], the concept of matched perturbation is introduced.
Given a large enough control action, the perturbation has no action on the system if the
latter is in the sliding phase. The matched condition basically states that the perturbation
acts in the same subspace as the control input. In the linear case, with a perturbation of
the form FΓ, F ∈ Rn×p and Γ : R→ Rp, this condition amounts to

rank[B, F ] = rankB.

Given that this relation holds, we know that each column of F is a linear combination
of columns of B. Hence there exists some matrix Q ∈ Rp×p such that B = FQ. This
justifies the expression Bξ to denote the perturbation. In discrete-time we shall see that the
perturbation is not perfectly rejected, but rather its action is attenuated by the controller.
This is the topic of Section 2.2.2 and in Section 2.5 we propose an extension to enhance
the perturbation attenuation.
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1.1.2 Higher Order Sliding Mode

We shall here give a brief account of the concept of HOSM introduced by Levant in [73]
and later developed in [75] and many references. We introduce the twisting algorithm,
which is to the best of our knowledge the only “fully discontinuous square” HOSMC
and therefore can be studied with the tools we make use of here. Let us first define what
we mean by “fully discontinuous square” controller

Definition 1.1.2. A controller is said to be fully discontinuous if its control input is multi-
valued (or set-valued) anddefinedby adiscontinuous function (usuallySgn) of the sliding
variable(s) with an optional additive continuous term, the equivalent part of the control
input. It is said to be square if the dimension of the sliding variable and the number of
discontinuous terms in the control law are equal.

We allow the presence of the equivalent part of the control input since this one is
defined by the selection procedure arising from Filippov’s framework and therefore can
be considered as part of the Sgn function. Let us formally define the set-valued variant of
this function.

Definition 1.1.3 (Multivalued signum function). Let x ∈ R. The multivalued signum
function Sgn : R⇒ R is defined as:

Sgn(x) =




{1} x > 0

{−1} x < 0

[−1, 1] x = 0.

If x ∈ Rn, then the multivalued signum function Sgn : Rn ⇒ Rn is defined as: for all
j = 1, . . . , n, (Sgn(x))j B Sgn(xj).

The material shown in the sequel is adapted from [99].

Historically, the first HOSMCs are of the second order type, that is there is a relative
degree 2 between the sliding variable σ and the control input u:

σ̈ = fs(x, t) + gs(x, t)u, (1.1.5)

with x the state of the plant. The goal is first to bring both σ and σ̇ to 0 in finite-time
and then to maintain the trajectories of the system at the origin of the σ–σ̇ plane. Once
this is the case, a sliding motion occurs on the intersection of the hyperplanes σ = 0
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and σ̇ = 0. The stability analysis for this kind of controllers typically requires that the
following inequalities hold for some positive scalars Km, KM and C:

0 < Km ≤ gs(x, t) ≤ KM and |fs(x, t) | ≤ C for all x ∈ Rn and t.

Nowwe shall see how the control input is defined as a function of σ and σ̇ for the different
controllers.

The twisting algorithm

Let us start with the twisting algorithm, in which the control input is given by the relation

−u ∈ G(Sgn(σ) + β Sgn(σ̇)) with G, β > 0. (1.1.6)

The auxiliary system (1.1.5) is globally finite-time stable if the parametersG and β satisfy
the following conditions

G(1 + β)Km + C > G(1 − β)KM + C and G(1 − β)Km > C. (1.1.7)

A typical “phase-plot” of a dynamical system with the control input given by the twisting
algorithm is given in Figure 1.1.

1 0 1 2 3 4 5 6
σ

4

2

0

2

4

6

8

10

σ̇

Figure 1.1: Typical evolution of the sliding variables with the twisting algorithm.
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Other 2-Sliding Mode Controllers

Among the other controllers for system (1.1.5) based on the HOSM principle, we have the
suboptimal algorithm. The control input is in this case defined as:

−u ∈ r1 Sgn(σ − σ∗/2) − r2 sgn(σ∗) with r1 > r2 > 0,

where σ∗ is the value of σ at the last time σ̇ = 0. Another one is the controller with
prescribed convergence law, which has a set-valued control law given by

−u ∈ α Sgn(σ̇ + ξ(σ)) with α > 0.

Finally there is also the quasi-continuous controller, which defines u as:

u = −ασ̇ + β|σ |
1/2 sgn(σ)

|σ̇ | + β|σ |1/2 with α, β > 0.

Those controllers do not fulfill the conditions of Definition 1.1.2: the first one has a term
sgn(σ∗) which does not depend on a state variable. The second one has only one Sgn and
the last one has no multivalued Sgn function. Now that we have defined the controllers
that we study, let us expand a bit on Filippov’s framework.

1.2 ODE with Discontinuous Right-Hand Side

The study of existence of a solution of an ODE with discontinuous right-hand side fails
with the classical tools for ODE. If a surface of discontinuity is reached at a certain time
instant and the vector fields are locally directed towards it, it is not clear how to define a
solution after that instant. To overcome this difficulty, the idea is to recast the ODE as a
DI, that is

ẋ = f (x, t) ⇒ ẋ ∈ F (x, t), (1.2.1)

with F : Rn × R⇒ Rn a multifunction with some desirable properties. In what follows,
we require F to have compact convex images F (x, t). We also require it to be upper
semicontinuous (that is for all (x0, t0) ∈ Rn × R and open setN with F (x0, t) ∈ N ,
there exists a neighborhoodM of (x0, t0) such that F (M ) ⊂ N ). With those hypothesis,
existence of an absolutely continuous solution to the DI (1.2.1) is guaranteed, see for
instance [13,Theorem 3, p. 98].Absolutelt continuity is a nice property since it is equivalent
to differentiability almost everywhere. Now the preeminent task is to define F from the
function f . In Filippov’s book [38], several proposals are listed. It is worth noting that,
in general, a solution may or may not exist depending on how F is chosen. However in
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this work the (simple) cases we tackle do not require any particular way of constructing
F . We briefly mention three possible constructions given by Filippov at the beginning of
Chapter 2 in his book.

– The convex procedure introduced by Filippov in [37]: the idea is to take the convex
hull of all the vector fields in the neighborhood of the sliding surface which exists
on a set with a nonzero measure at a fixed time t. Mathematically speaking, this
means

F (x, t) =
⋂
δ>0

⋂
µ(N )=0

co f (x + δB N, t).

– The equivalent control method, credited to Utkin: we suppose that the ODE has
the form

ẋ = f (x, t, u)
with u a discontinuous function with each component discontinuous on a smooth
Si defined by φi(x, t) = 0. Let us introduce the following concept: a surface of dis-
continuity is given by a sliding surface S or the intersection of several sliding surfaces
Si with i ∈ I . If the point x is on a surface of discontinuity, then the equivalent
control ueq is computed such that the system would not leave the manifold while
each component ui of u is constrained to take value in a closed interval formed by
the value of ui on each side of surface Si. That is the equivalent control is implicitly
defined as

∇φi(x, t)f (x, t, ueq) = 0 ∀i ∈ I .

This is equivalent to the DI

ẋ ∈ f (x, t, U (t, x)) =
{
f (x, t, v) | v ∈ U (t, x)

}
C Feq(x, t),

where the setU is defined as the Cartesian product of the intervals we just men-
tioned.

– The method introduced by Aizerman and Pyatnitskii [8, 9]: consider the DI

ẋ ∈ co Feq(x, t),
and add the constraint that on a surface of discontinuityM , the velocity has to
remain tangent to it. Then letting K (x, t) be the intersection of co Feq(x, t) and
the tangent space to theM at x, we get

ẋ ∈ K (x, t).
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Now the main question is whether we have to be careful about the method used to get
F . Fortunately in our LTI context we do not have to. Considering the discussion in [38,
p. 56], if f is linear in u and if all the sliding surfaces are different and at their intersection
their normal vectors are linearly independent, then all methods yield the same DI. The
first condition on f is already satisfied since we already restricted ourselves to the nonlinear
affine in control case. For the second one, in the case of linear switching surfaces defined by
a matrix C , it means that the rows of C are linearly independent. In any case, the systems
we deal with in the sequel must satisfy such conditions.

1.3 The Chattering Problem

The concept of chattering is (unfortunately) paired with Sliding Mode Control but its
definition is not entirely accurate. The most common explanation is behavioral in nature:
the chattering is the “zigzag” motion around the sliding manifold [99, p. 8]. However
this phenomenon is also tied to the high frequency switching control input that is seen in
simulation and experiments. It is easy to see that if the control input has such behavior,
then the state and hence the sliding variable have such a “zigzag” motion.

Several attempts to model or approach the chattering phenomenon have been made,
see for instance [41, 76, 109]. However few have studied the chattering from an discretiza-
tion perspective, named “discretization chattering” in [109]. We can find in the works of
Galias, Yu and their collaborators [45, 46, 47, 117] a study of the relationship between the
chattering and the explicit discretization. We also engage in this direction: we highlight
the contribution of discretization issues to the chattering.

Definition 1.3.1. We callnumerical chattering the fact that the control input is switching at
a high frequency because of a bad discretization. Such control input induces a chattering
behavior on the sliding variable.

This chattering can be seen in simulation even with no perturbation and a perfect
model. The aim of this work is to suppress this numerical chattering. We would like
also to add that in Control Theory, the term chattering is only used in the context of
SMC. Yet the presence of noise, perturbation or unmodelled dynamics affects any control
law and should also produce “chattering”. We would like to underline that due to the
discontinuous nature of SMC, this control technique may be the one that is the most
affected by a bad discretization method. Hence chattering may be even more intimately
related than it is generally thought.
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We also introduce here a way to characterize quantitatively the chattering. We propose
to use the variation of a function as a measure of chattering. Twomainmotivations are the
fact that absolutely continuous functions are of bounded variation. Then this quantity
has to remain finite and the convergence of its value as h→ 0 is possible. The material in
the following definition is adapted from [10].

Definition 1.3.2. Let f : R → Rm be a right-continuous step function, discontinuous at
finitely many time instants tk and t0, T ∈ Rwith t0 < T . The variation of f on [t0, T ] is
defined as:

VarTt0 (f ) B
∑
k

f (tk) − f (tk−1)
 ,

with k ∈ N∗ such that tk ∈ (t0, T ]. If f is continuously differentiable with bounded
derivatives then the variation of f on [t0, T ] is defined as:

VarTt0 (f ) B
∫ T

t0

ḟ (τ) dτ.

1.4 Time Discretization

This work concentrates on discrete-time SMC, where the control input value changes only
at certain time instants. In order to compute the control input value, we need to discretize
the dynamics in time to get a recurrence relation describing how the system evolves in
time. We shall now quickly review the different discretization methods before mentioning
some work in the literature that aimed at tackle similar issues.

1.4.1 Time discretization of an ODE and discrete-time controller

The time discretization (or temporal discretization) is the action of transforming an ODE

ẋ = f (x, t)

into a recurrence or difference relation. For the one-step methods, the latter is of the form

xk+1 = F (xk, xk+1, tk, tk+1). (1.4.1)

Its study belongs to the field of Numerical Analysis. The main motivation behind this
transformation is the numerical simulation of dynamical systems governed by an ODE,
which requires a relation similar to (1.4.1) in order to perform computations. This process
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is called the numerical integration of the system. Indeed the time discretization is closely
related to the problem of quadrature, that is to approximate the value of an integral. With
the increased availability of computers, a large wealth of literature on this topic is now
available. Major developments can be found in [50, 51, 82]. A important notion developed
is the order of an integration scheme. Unfortunately there are two definitions for this
concept: the first one is that a numerical integration is of order p if it can exactly integrate
any polynomial of degree no greater than p. The second one is that if the error on the
solution is O(h p), then the order of the scheme is p. However those two definitions are
not consistent since the first one implies that the error is O(h p+1). Here we shall use the
second definition.

Two adjectives are commonly used to characterize an integration method: explicit and
implicit. A method is said to be explicit if the right-hand side F in (1.4.1) depends only the
known quantities tk, tk+1 and xk. Amethod is said to be (fully) implicit if F depends (only)
on tk, tk+1 and xk+1. Methods can also combine explicit and implicit parts. Usually there is
no closed-form formula for an implicit method: finding the next value xk+1 is equivalent
to a root-finding problem. Most of the time a Newton-Raphson method is used, which is
recognized as one of the most delicate part in the implementation of such scheme [51].

We shall highlight some peculiarities of the numerical integration of ODEs with
discontinuous right-hand side, for instance those coming from contact mechanics and
SMC. In general one wants to integrate an ODE with an high order method, even if the
computational cost increases since the faithfulness of the simulation also increases. Then
a compromise has to be found between the integration error and the computation time.
However for the type of aforementioned ODEs, it is not recommended to use a method
with higher order, especially for the argument of a discontinuous function like signum. It
induces spurious oscillations that may jeopardize the simulation, see [3, p. 273]. For our
case this is not a real restriction since the use of microcontroller to provide the control
input value to the plant imposes that the control input is constant on the interval [tk, tk+1).

Let us illustrate the difference between the explicit and implicit discretizations of a
sliding mode controller with the following academic example:

−ẋ(t) ∈ α sgn(x(t)),

with α > 0. We use the differential inclusion framework as we let sgn(0) to take any
value in [−1, 1] (this is formally stated in Definition 2.2.1 as Sgn). An explicit discretization
yields x(tk+1) ∈ x(tk) − hα sgn(x(tk)) whereas the implicit one yields x(tk+1) ∈ x(tk) −
hα sgn(x(tk+1)). As long as |x(tk) | � hα, there is no difference between the twomethods.
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But if |x(tk) | < αh, then the behavior changes with the type of discretization. With
0 < x(tk) < hα, in the explicit case, x(tk+1) ∈ x(tk) − hα sgn(x(tk)) < 0. The state
switches sign at every time instant tk, leading to the well-known chattering phenomenon.
Meanwhile in the implicit case, the control algorithm guarantees x(tk+1) = 0 by choosing
sgn(x(tk+1)) = x(tk)/ (αh) < 1. Hence the system reaches the origin and for all l ≥ k + 1,
we have xl = 0 since we can select sgn(xl ) = 0.

1.4.2 Previous work in discrete-time Sliding Mode Control

Let us finish this short review by mentioning researches that were, in the author’s eyes,
going into the right direction. First of all, one of the most promising id‘ea was developed
in [30], for the scalar case: both the state and the control input have dimension one.
The argument of the signum function is implicit even though it is not stated in those
terms. In the discrete-time SMC literature, this is in our view, the closest previous work
the developments in this thesis. The two authors later separately developed different
approaches with an accent on the equivalent part of the control. In [108], a deadbeat-like
control input is presented, with the control input being projected onto an admissible
set. In [104], the sgn part of the control input is also removed, and the proposed control
law includes a prediction of the control law to enhance the behavior around the sliding
manifold. This inspired us the development in Section 2.5 but with a different approach:
we still have a discontinuous part in the control input and the perturbation prediction is
an additional term to the control input.

Other major works in the domain of discrete-time SMC are, in a chronological order,
[97, 42, 48]. In the first one, the authors give a condition for the convergence of the
system to the slidingmanifold and also an upper and lower bound on the control input (as
opposed to the continuous-time casewhere there is only a lower bound). They also provide
an algorithm to compute the control law in the formof a linear feedbackwith varying gains.
The paper was latter criticized in [70] and [115] for the additional requirement of an upper
bound and in the second paper [115], the author claims to provide an example where the
algorithm of the original paper fails to induce stable trajectories. In the second paper [42],
the author proposes a discrete-time version of the equivalent control and a control law also
based on a varying state feedback. The last work [48] introduces the concept of reaching
law, which roughly speaking tries to impose the dynamics of the sliding variable and to
define the control law such as to impose some performances.

The present work differs from the aforementioned approaches in the following ways:
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– The accent is on the discontinuous part of the control input. We claim that it is
the implicit discretization of the Sgn multifunction that is the cornerstone of a
successful discrete-time SMC. The equivalent part in the control input has to be
properly discretized, but this is not mandatory to get a good behavior. We also
provide pointers for the analysis and design of SMCwith no (explicit) equivalent
control term.

– The conditions given in our stability results depend only on system or controller
parameters (like the gain for the control input, the matrix multiplying the control
input) instead of stating them in terms of the sliding variable evolution.

– Our results are valid for an arbitrary number of sliding variables and do not preclude
coupled evolution of sliding variables.

In the last decade, the behavior of the explicitly discretized SMCwas extensively studied,
see [45, 46, 47, 111, 117, 116] and other references therein. The main research axis was to
show the existence of limit cycles, defined in term of the signum of the sliding variable.
This further supports our claim that the explicit discretization should not be used for the
discontinuous part of the control.

Additional references on discrete-time SMC include [1, 43, 49, 61, 69, 71, 79, 84, 85,
101, 103, 111].

1.4.3 Previous work in the Control community

Looking at the control theory literature, the complementarity framework has already been
used for some feedback systems. Most of this body of literature comes from the Dutch
school, see [20, 21, 22, 53, 81, 91], where their mainly use the complementarity framework.
In Section 2.1 we present two frameworks that can be used to analyze the discrete-time
SMC and one of them is complementary. However in the present approach we decided
not to use it, but rather to use Variational Inequality (VI) and we give some reasons for
that choice.

1.4.4 Numerical Analysis

The discretization of differential inclusions has also some history. Major research efforts
have been done in the 90’s, see [29, 28, 67, 66, 72]. In those works, the discretization ofDIs
arising fromODEs with discontinuous right-hand side as well as general DIs is considered.
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The results are mainly focused on the convergence of the discretized solution as well as the
convergence order analysis. In [14], the special case of a DI with a multivalued maximal
monotone term is studied and orders of an half-implicit numerical scheme are provided.
Those results in the field of AppliedMathematics show that the use of an implicit scheme,
at least on the multivalued term, is sound by considering the properties of the numerical
solution.

However, to the best of our knowledge, those authors do not study the convergence of
the implicitly discretized multivalued term to the continuous-time one. We believed to be
the first ones to do so, until we stumbled upon [96] where this kind of study is done, also
in the context of DI with amultivaluedmaximal monotone term. It is noteworthy that the
author of the aforementioned work expressed the same view as we do: in his introduction,
he says “Little consideration was given to the convergence of A(uh) to A(u)”, with A a
multivalued maximal mapping. Indeed the value of the control input is one of utmost
importance for control engineers. Its study is one of the topic at the heart of control theory
and clearly separates this field from others that study dynamical systems from other points
of view.





Chapter 2

Analysis of Discrete-Time Sliding Mode
Controller

Let us now get to the heart of the matter with this chapter dedicated to the study of the
discrete-time SMC. First we introduce the main tool we use in our analysis: the Affine
Variational Inequality framework. We also present the Linear Complementary Problem
framework, which is close to the former. We try to give some motivation on why we chose
to use the Affine Variational Inequality (AVI) rather than the Linear Complementary
Problem (LCP). Amongst other mathematical tools we use, Convex Analysis comes sec-
ond and the reader feeling the need to brushing up in that topic may for instance read
Appendix A. After this laying of (mathematical) foundations, we study the discretization
ECB-SMC controllers. The discretization of both parts of the control input is studied. The
sliding variable is shown to be discrete-time finite-time Lyapunov stable. The perturbation
rejection is studied and a concept of discrete-time sliding phase is introduced. Then the
convergence of the discrete-time control input to the continuous-time one is investigated.
We then switch to HOSMCwith the twisting algorithm. We first try to simply discretize
it using the implicit method. However, with the resulting discrete-time controller for
almost all initial conditions, the state of the system ends up cycling between two values,
inducing numerical chattering. Fortunately, a small modification of the controller ensures
that it steers the states to the origin. With the dynamics given by the double integrator,
the resulting system is globally finite-time Lyapunov stable. The Lyapunov function is
inspired by the one used in [88] for the continuous-time case. Then, we touch upon two
topics: discrete-time sliding mode observers and better attenuation of matched perturba-
tions. The last subject being a trial at reducing the gap between the perfect rejection of
perturbation in continuous-time versus the attenuation in discrete-time

19
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2.1 Variational Inequalities and Complementarity
Problems

We shall now quickly present some aspects of the Complementary Problem (CP) and
Variational Inequality (VI) frameworks. Both have been extensively studied in the fields
of Mathematical Programming and Optimization. In the following we present some of
the basic concepts and results that emerged through all those investigations. We motivate
also in the last part the use of VI over Complementary Problem (CP) for the discrete-time
SMC.

2.1.1 Complementarity Problems

The field of complementary problems emerged as a way of unifying linear and quadratic
programming problems as well as bimatrix game problems. It became an object of study
of itself in the 60’s in mathematical programming and has since found applications in
contact mechanics among other engineering fields.

Let us first present an instance of LCP: givenM ∈ Rn×n, q ∈ Rn, the objective is to
find z ∈ Rn such that

w = q +Mz
0 ≤ z ⊥ w ≥ 0.

Such problem is denoted by LCP(q,M ). Let us connect the LCP with an object that the
reader might be more familiar with: the KKT conditions of a QP. Consider the following
quadratic program:

minimize
x

1
2xTMx + qTx

subject to x ≥ 0.

The necessary conditions for optimality are given by:

w =Msx + q
0 ≤ w ⊥ x ≥ 0,

withMs = (M +MT )/2 the symmetric part ofM . In this simple example, it is easy to
see that if the matrixM is symmetric (henceM =Ms), the LCP and the QP are tightly
related. IfM is positive-semidefinite, the QP is convex, and therefore solving the LCP or
the QP is completely equivalent. In the case whereM is not symmetric, the LCP(q,M )
cannot be directly interpreted as theKKTconditions of aQP. It is still possible to construct
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a QP related to an LCP(q,M ): following [27, p.23], if the quadratic program

minimize
z

zT (q +Mz)

subject to q +Mz ≥ 0 z ≥ 0.

has a solution z∗ with objective value of 0, then z∗ is also a solution to LCP(q,M ).

Let us now present some results on the existence and uniqueness of solution to an
LCP. Those properties are given in matrix-theoretic terms that we shall now define. A
good guide to the different classes of matrices and theirs relations is [26].

Definition 2.1.1 ([27, p. 147]). AmatrixM ∈ Rn×n is aP-matrix if one of those equivalent
properties holds:

– All principal minors ofM are positive: detMII > 0 for all I ⊆ {1, . . . , n}
– If for all i ∈ {1, . . . , n}, xi(Mx)i ≤ 0, then x = 0.

– For all I ⊆ {1, . . . , n}, the real eigenvalues ofMII are positive.

Theorem 2.1.2 ([27, p. 148]). A matrix M ∈ Rn×n is a P-matrix if and only if the
LCP(q,M ) has a unique solution for all q ∈ Rn.

Let us now investigate the relation between the well-known class of positive-definite
matrices and the P-matrices.

Fact 2.1.3. A positive-definite matrixM ∈ Rn×n is a P-matrix. The converse is true ifM
is symmetric.

Let us provide an example of a P-matrix that is not positive-definite.

Example 2.1.4 ([27, p. 147]). The matrixM =


1 −3
0 1


is a P-matrix but is not positive

definite. With x =


1
1


, we have xTMx = −1. More generally, every matrix of the form



A B
0 C


,

whereA andB areP-matrices, is aP-matrix.However in general thismatrix is not positive
definite.
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The theory of LCP goes way beyond what we have presented here. In particular
the existence of solution is not guaranteed for an arbitrary LCP. If the matrixM of
LCP(q,M ) is not P, the existence of solution may depend on the interplay betweenM
and q. Let us illustrate with the following instance: letM be a negative-definite matrix.
If q ≤ 0, then there is no solution to the LCP(q,M ). On the other hand, if q ≥ 0, then
there is at least one (trivial) solution z = 0 and w = q ≥ 0.

Before moving on to the next framework, let us state a result that has a counterpart in
the case of VI. But first let us introduce another class of matrices.

Definition 2.1.5 ([27, p. 147]). A matrixM ∈ Rn×n is a P0-matrix if one of those equiva-
lent properties holds:

– All principal minors ofM are nonnegative: detMII ≥ 0 for all I ⊆ {1, . . . , n}
– For each z , 0, there exists k ∈ {1, . . . , n} such that zk , 0 and zk(Mz)k ≥ 0.

– For all I ⊆ {1, . . . , n}, the real eigenvalues ofMII are nonnegative.

– For each ε > 0,M + εI is a P-matrix.

Now we can characterize the cases where the solution z of the LCP(q,M ) is not
unique, but the vector w is.

Theorem 2.1.6. LetM ∈ Rn×n. The following statements are equivalent:

– If the LCP(q,M ) is solvable and z̃, ẑ are any two solutions, then Mz̃ = Mẑ. If
this is the case, then we say that the w-uniqueness of the LCP holds.

– Every vector whose sign is reversed byM belongs to the nullspace ofM , that is

[zi(Mz)i ≤ 0 for all i ∈ {1, . . . , n}] ⇒ [Mz = 0].

– M is a P0-matrix and for each I ⊆ {1, . . . , n} with detMII = 0, the columns of
M•I are linearly dependent.

This theorem gives us both a uniqueness result for w and also the structure of the
solution set to LCP(q,M ). Let us now switch to the other optimization framework.
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2.1.2 Variational Inequalities

The variational inequality problem was first studied in the context of nonlinear partial
differential operator by Guido Stampacchia and his collaborators. Those developments in
an infinite-dimensional setting were paralleled in mathematical programming in finite-
dimensional spaces. In this work, we only need to consider the second case. The material
presented here is taken from [35]. We shall begin with the general form of a Variational
Inequality (VI).

Definition 2.1.7. Given K ⊆ Rn and a mapping F : K → Rn the variational inequality,
denoted VI(K, F ), is to find a vector x ∈ K such that

〈y − x, F (x)〉 ≥ 0, for all y ∈ K. (2.1.1)

In this thesis, we only deal with sets that are bounded, closed and convex, and with
continuous functions. IfK is closed and convex, the VI (2.1.1) can be reformulated as a
nonlinear Generalized Equation (GE)

0 ∈ F (x) +NK (x), (2.1.2)

with NK (x) the normal cone toK at x, introduced in Definition A.1.9. We make use of
this equivalence between (2.1.1) and (2.1.2) in the analysis of the discrete-time sliding mode
control. Moreover we study in particular the case where the mapping F is affine. This type
of VI is called AVI and an instance is denoted as AVI(K, q,M ) with F (x) =Mx + q. The
solution set of the VI(K, F ) is written as SOL(K, F ).

As for the LCP, let us try to connect the VI with the KKT conditions of an optimiza-
tion problem. Let us consider the following nonlinear one:

minimize
x

f (x)

subject to x ∈ K,
(2.1.3)

with f (·) a C 1 function on an open superset of K . Since K is convex, the minimum
principle in nonlinear programming implies that any minimizer x of (2.1.3) must satisfy:

〈y − x,∇f (x)〉 ≥ 0, for all y ∈ K. (2.1.4)

Furthermore if f is convex, then (2.1.3) and (2.1.4) are equivalent. At this point, one
natural question is whether a VI(K, F ) with a convex setK and a function F (·) is always
a stationary point of an optimization problem of the form (2.1.3). This would imply that
there exists a scalar function f (·) such that F (x) = ∇f (x) for all x ∈ K . Symmetry is
again a key part of the answer as stated in the following theorem.
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Theorem 2.1.8 ([35, p. 14]). Let F : K → Rn be C 1 on an open subset K ⊆ Rn. The
following statements are equivalent:

– there exists a real-valued function f (·) such that F (x) = ∇f (x) for all x ∈ K .

– the Jacobian matrix JF (x) is symmetric for all x ∈ K .

If we look at the affine case, the problem in (2.1.3) becomes a QP ifK is a polyhedron.
As in the LCP case, if the matrixM of the AVI is not symmetric, then it is not possible to
relate the program (2.1.3) with the AVI(K, q,M ).

Let us now present results about the existence of solution to a VI.

Theorem 2.1.9 ([35, p. 148]). Let K ⊆ Rn be compact convex and let F : K → Rn be
continuous. The set SOL(K, F ) is nonempty and compact.

This result is used in this thesis to show existence of the control input value. The
uniqueness of solution to a VI is not as definite as with LCP, even for AVI. We now
present some results for VI and AVI, and this topic is again discussed in Section 2.3.2.

Theorem 2.1.10. Consider AVI(K, q,M ), withK a rectangle (that isK = {x ∈ Rn | ai ≤
xi ≤ bi ∀i ∈ {1, . . . , n}} for some vectors a < b). IfM is a P-matrix, then the solution set
is always a singleton.

Proof. Using Theorem 4.3.2 p. 372 and Example 4.2.9 p. 361 in [35] yields the result. �

We shall now present a result similar in spirit to Theorem 2.1.6, but pertaining to a VI.
Let us first formally define the property we want to study.

Definition 2.1.11 (F-uniqueness). A VI(K, F ) is said to be F-unique if F (SOL(K, F )) is
at most a singleton. Then we say that the F-uniqueness of the VI holds.

Let us first introduce some characterizations of the mapping F .

Definition 2.1.12 ([35, p. 154]). Let x, y be elements of K . A mapping F : K ⊆ Rn → R

is said to be

– pseudo monotone onK if

(x − y)TF (y) ≥ 0 ⇒ (x − y)TF (x) ≥ 0;
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– monotone onK if

(F (x) − F (y))T (x − y) ≥ 0.

It is clear that a monotone mapping is pseudo-monotone. The uniqueness property
requires an additional assumption on the map F (·).

Definition 2.1.13. Let x, y be elements ofK . A mapping F : K ⊆ Rn → R is said to be

– pseudo monotone plus onK if it is pseudo monotone onK and if

[(x − y)TF (y) ≥ 0 and (x − y)TF (x) = 0] ⇒ F (x) = F (y);

– monotone plus onK if it monotone onK and if

(x − y)T (F (x) − F (y)) = 0 ⇒ F (x) = F (y). (2.1.5)

Now we can state the main uniqueness result for a VI.

Proposition 2.1.14. Let F : K → Rn be pseudo monotone plus on the convex set K ⊆ Rn.
The solution set SOL(K, F ) is F-unique.

Since we are working mainly with AVI, we specialize the aforementioned properties
to the case F (x) = q +Mx. Firstly the monotone plus property (2.1.5) is also known as
positive semi-definite plus (psd-plus), that is

xTMx = 0 ⇒ Mx = 0.

There exists a precise characterization of those matrices.

Proposition 2.1.15 ([83]). A matrix M ∈ Rn×n is psd-plus if and only if M can be de-
composed into the form ETAE for some matrix E ∈ Rr×n and some matrix A ∈ Rr×r of
the form A = I + B with B skew-symmetric and r the rank ofM .

In Section 2.3.2 we shall present uniqueness result for AVI with a class of matrices
larger than the psd-plus ones.
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2.1.3 Choice of framework for working with the inclusion −λ ∈ Sgn(σ)
We shall now see how we can express the auxiliary system in σ associated to a discrete-time
SMC in those two frameworks. In the second part we give some reasons on why we found
it more interesting to use VIs. In SMC, the inclusion −λ ∈ Sgn(σ) is the one modeled
using the aforementioned optimization tools. Let us study the simple discrete-time system:




σ = q +Mλ
− λ ∈ Sgn(σ)
σ, λ ∈ Rp,

(2.1.6a)

(2.1.6b)

within the two frameworks. Let us start with the approach using an LCP: following the
presentation in [81], let us split λ in positive and negative parts λ+ and λ−. To properly
define the value at λ = 0, we impose that

λ+ + λ− = 1. (2.1.7)

We also split σ in positive and negative parts σ+ and σ−. The inclusion −λ ∈ Sgn(σ) is
then transformed into the complementarity relations

0 ≤ σ+ ⊥ λ+ ≥ 0

0 ≤ σ− ⊥ λ− ≥ 0.
(2.1.8)

Starting from the relation (2.1.6a) and using (2.1.7), we get

σ+ − σ− = q +M (2λ+ − 1).

Coupled with the complementarity conditions (2.1.8), we get the LCP



σ+
λ−


=



q −M 1
1


+



2M I
−I 0





λ+
σ−



0 ≤


σ+
λ−


⊥



λ+
σ−


≥ 0.

Let us defineMLCP B



2M I
−I 0


and qLCP B



q −M 1
1


as well as the variables

z =


λ+
σ−


∈ R2p and w =



σ+
λ−


∈ R2p. (2.1.9)
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We can now write more compactly the LCP as

w = qLCP +MLCPz
0 ≤ z ⊥ w ≥ 0.

(2.1.10)

The matrixMLCP is not a P-matrix due to the lower-right 0 block. Take any vector z with
λ+ = 0 and σ− ∈ Rp nonzero. Then for all i ∈ {1, . . . , n}, we have zi(Mz)i = 0, which
precludesMLCP from being a P-matrix per the second statement inDefinition 2.1.1. Hence
the existence and uniqueness of λ does not immediately follow from the property of the
matrixM , but rather requires more work. We postpone this analysis to Appendix B since
the proposed approach requires some further results in LCP which are of no use for the
rest of this thesis.

On the other hand, let us transform the system (2.1.6) into an AVI. Merging the
relations (2.1.6a) and (2.1.6b) yields the Generalized Equation (GE)

0 ∈ σ − q +M Sgn(σ).

The inclusion −λ ∈ Sgn(σ) being equivalent to the inclusion σ ∈ N [−1,1]p (−λ) (see
Fact A.1.17), we can transform this GE into

0 ∈ q +Mλ −N [−1,1]p (−λ).

The hypercube [−1, 1]p being symmetric, we note that −N [−1,1]p (−λ) = N [−1,1]p (λ) and
thus we have the generalized equation

0 ∈ q +Mλ +N [−1,1]p (λ), (2.1.11)

which is the equivalent form of the AVI(K, q,M ) with K = B∞, the unit ball the
maximum norm.

We shall now compare the two approaches. First while working with the LCP (2.1.10),
we deal with vectors inR2p while with the AVI approach, we are still inRp. Furthermore
the vectors z and w in (2.1.9) are composite, in the sense that they comprise parts of the
sliding variable and the control input. On the other hand, the GE (2.1.11) involves only the
control input λ. These facts mostly pertain to the analysis of the discrete-time SMC: the
existence of the control input in the AVI case follows directly from Theorem 2.1.9. The
uniqueness is also characterized by the property of the matrixM : if it is a P-matrix, then
both σ and λ are unique for all q ∈ Rp.
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2.1.4 Discussion about Tools and Framework

A NOTE ON PB = CT We already saw the importance of symmetry to link either
an LCP or a VI to a “classical” optimization problem.We shall see that this play again a
role for the analysis of the discrete-time SMC. But before, let us do a small detour by the
continuous-time case: consider the Differential Inclusion (DI)

ẋ +A(x) 3 0. (2.1.12)

Asmentioned in Section 1.2, this DI enjoys some nice properties, like existence and unique-
ness of solution, if the multivalued mappingA is maximal monotone. In this case, results
on the discretization of the DI (2.1.12) are also available, in particular for an implicit dis-
cretization of the DI in [96]. There it is shown that both the discretized solution xλ and
the Moreau-Yosida ([95, p. 540]) approximant Aλ(xλ), which is in sliding mode the
action of control input (Bu in the linear case), converge to the continuous-time ones as
λ → 0. This approach tackles directly the full system in x, as opposed to our approach
which uses the auxiliary system in σ . It enables also to see that both the state, but more
critically the discrete-time control input converges to the continuous time one with a
full implicit discretization. In the linear case, we use a better discretization scheme since
Zero-Order Hold (ZOH) integrates the dynamics exactly. This enables us to go back-and
forth between the plant and the sliding dynamics. We shall state again that with an explicit
discretization, the discrete-time control does not converge to the continuous time one.
In the SMC context, we have on the linear case A(x) = BT (Cx), with T (·) = Sgn(·) a
maximal monotone mapping. Suppose that there exists a change of basis matrix R = RT
with z = Rx such thatRB = (CR−1)T . Then by TheoremA.2.5,A′(z) B RBT (CR−1z)
enjoys the maximal monotonicity property. Therefore the new DI

ż +A′(z) 3 0.

has all the nice properties. It is then of interest to determine whether it is possible to find
such a matrix R. First note the following equivalences:

RB = (CR−1)T ⇔ RTRB = CT ⇔ ∃P = PT > 0 s.t. PB = CT

For the last equivalence, the implication is direct. The reverse is true since it is always pos-
sible to find a square root of a symmetric positive-definite matrix (either by diagonalizing
it using the spectral theorem and by taking the square root of the (positive) eigenvalues or
we can use an SVD decomposition, which is also computationally more adequate). Hence



2.1. VI AND CP 29

the problem is reduced to finding a solution to PB = CT . Note that the existence of a
matrix P = PT > 0 solution to PB = CT is a common condition in passivity, through
the celebrated Kalman-Yakubovitch-Popov Lemma, see [19]. This kind of linear matrix
equality has been studied as early as the 70’s [68], but it seems that it is only in [60] that
we can find a suitable result. In this work, the authors study the linear matrix equation
BTPB = BTCT with P = PT > 0. It is clear that it is necessary that this problem has a
solution for the equationPB = CT to also have one. Let us show that a particular solution
to BTPB = BTCT is solution to PB = CT . We restrict ourselves to the case where CB is
positive-definite, which implies that kerB is reduced to a singleton. In the following, we
need the SVD of B ∈ Rn×p, which is

B = U


S
0


VT with VTV = Ip, UTU = In, (2.1.13)

and S ∈ Rp×p is a diagonal matrix with nonzero entries,V ∈ Rp×p, U ∈ Rn×n. Let us now
state the result we need from the aforementioned reference.

Theorem 2.1.16 (Theorem 2.2 in [60]). The linear matrix equation BTPB = BTCT has
a symmetric positive definite solution P if and only if

CB = BTCT , CB > 0,

in which case the general symmetric positive definite solution is

P = U


P0 P12

PT12 PT12P−1
0 P12 + Z22


UT , (2.1.14)

where P0 = S−1VTBTCTVS−1 and both P12 ∈ Rp×(n−p) and Z22 ∈ R(n−p)×(n−p) are
arbitrary.

Let us check that if BTPB = BTCT has a symmetric positive definite solution P as
in (2.1.14) with PT12 =

[
0 In−p

]
UTCTVS−1, then PB = CT . Let us first transform P0

using the SVD in (2.1.13):

P0 = S−1VTV
[
S 0

]
UTCTVS−1 =

[
Ip 0

]
UTCTVS−1.

Hence we have

PB = U


[
Ip 0

]
UTCTVS−1 P12

PT12 Z22





S
0


VT
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= U


[
Ip 0

]
UTCTV[

0 In−p
]
UTCTV


VT = CT .

The linear matrix equation PB = CT has a solution P = PT > 0 if and only if
CB is symmetric positive definite. Once again the symmetry plays an important role in
characterizing a system. In contrast, the results in the following section do not require this
property.

2.2 ECB-SMC

2.2.1 Discrete-time sliding mode controllers

Discretization methods for discrete-time controllers

Let us now tackle the construction of a discrete-time sliding mode controller. First let us
recall the definition of the multivalued signum function.

Definition 2.2.1 (Multivalued signum function). Let x ∈ R. The multivalued signum
function Sgn : R⇒ R is defined as:

Sgn(x) =




{1} x > 0

{−1} x < 0

[−1, 1] x = 0.
(2.2.1)

If x ∈ Rn, then the multivalued signum function Sgn : Rn ⇒ Rn is defined as: for all
j = 1, . . . , n, (Sgn(x))j B Sgn(xj).

The first step is to transform the continuous-time system (1.1.1) in a discrete-time one.
Using the ZOH scheme, we obtain:

xk+1 = eAhxk + B∗ueqk + B
∗usk, (2.2.2)

with

B∗ B
∫ tk+1

tk
eA(tk+1−τ)Bdτ. (2.2.3)

From now on, ueq and us are sampled control laws defined as right-continuous step func-
tions:

ueq(t) = ueqk t ∈ [tk, tk+1)
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us(t) = usk t ∈ [tk, tk+1).

The goal of the discretization process is to choose the sequences {ueqk } and {usk} such that
the discrete-time closed-loop system exhibits properties as close as possible to the ones
with a continuous-time set-valued controller. Let us introduce some possible definitions
of ueqk and usk obtained using classical discretization method. For the equivalent part ueq
we have

ueqk,e = −(CB)−1CAxk explicit input, (2.2.4a)

ueqk,i = −(CB)−1CAxk+1 implicit input, (2.2.4b)

ueqk,m = 1/2(ueqk,e + u
eq
k,i) midpoint input, (2.2.4c)

and the two possibilities for the discontinuous control usk are

usk = −α sgn(σk) explicit input, (2.2.5a)

usk ∈ −α Sgn(σk+1) implicit input. (2.2.5b)

Suppose that the implicit discretization (2.2.5b), introduced in [4] and [5], is used to
discretize the discontinuous part of the controller. Both the analysis and the computation
of the control law involve an auxiliary square subsystem combining the dynamics of the
sliding variable and the nonsmooth control law:




σ̃k+1 = σk + CB∗usk
−usk ∈ α Sgn(̃σk+1),

(2.2.6)

with two unknowns: σ̃k+1 and usk. This system can be seen as the is the discrete counterpart
of (1.1.3). The use of σ̃k+1 instead of σk+1 is deliberate in order to highlight that in general the
two quantities are different even in the nominal case: the state dynamics is given by (2.2.2)
with ueqk usually given by the discretization of its continuous-time version (1.1.2). Hence
nothing warrants that C (eAhxk + B∗ueqk ) = σk. We take care of this design issue in the last
part of this section. But before let us provide some details about the computation of the
control law in the most generic setting.

Definition and properties of the implicitly discretized discontinuous con-
trol input

We analyze the system (2.2.6) using the AVI formalism introduced at the beginning of
this chapter. Let N [−α,α]p (λ) be the normal cone to the box [−α, α]p at λ, as defined in
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Definition A.1.9. Using Fact A.1.17, we have the equivalence

−usk ∈ Sgn(̃σk+1) ⇐⇒ σ̃k+1 ∈ N [−α,α]p (−usk), (2.2.7)

which enables us to transform (2.2.6) into the generalized equation:

0 ∈ σk + CB∗usk +N [−α,α]p (usk). (2.2.8)

The inclusion (2.2.8) is satisfied if and only if usk is the solution of the AVI: Find z ∈
[−α, α]p such that

〈(y − z), (σk + CB∗z)〉 ≥ 0, ∀y ∈ [−α, α]p. (2.2.9)

Let SOL(CB∗, Cxk) denote the set of all solutions to the AVI (2.2.9). Its well-posedness is
studied as follows:

Lemma 2.2.2. The AVI (2.2.9) has always a solution.

Proof. Since the mapping z 7→ CB∗z + σk is continuous and the control set [α, α]p is
compact, we can apply Theorem 2.1.9. �

Lemma 2.2.3. The AVI (2.2.9) has a unique solution for all σk ∈ Rp if and only if CB∗ is
a P-matrix.

Proof. This is given by Theorem 2.1.10. �

In most ECB-SMC systems, CB∗ > 0, and therefore is a P-matrix. This AVI-based
approach enables us to analyze a larger class of systems, compared to previous approaches
where it is supposed that CB∗ is scalar as in [49]. The solution usk is a function of σk
(hence xk) and if CB∗ is a P-matrix, the solution map Cxk 7→ usk = SOL(CB∗, σk) is
Lipschitz continuous. It is also noteworthy that the controller is non-anticipative. Solving
the AVI (2.2.9) is the topic of Section 3.1.

Definition 2.2.4 (discrete-time sliding phase). When usk is in the interior of [−α, α]p, we
say that the closed-loop system is in the discrete-time sliding phase. The inclusion−σ̃k+1 ∈
N [−α,α]p (usk) implies that in this case the normal cone is reduced to the singleton {0}.
Thus the sliding variable σ̃k is zero in the discrete-time sliding phase (however in general
σk does not vanish).

Now that we have discussed the existence and uniqueness properties of solutions
to (2.2.6), we need to tackle the computation of the equivalent part of the control.
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Exact discrete equivalent control

Let us complete this slidingmode control scheme for a discrete-timeLTIplant byproviding
the equivalent part of the control. As recalled in (1.1.3), in continuous time, ueq is defined
such that the dynamics of the sliding variable depends only on the input us. Mimicking
the continuous-time design, we start from (2.2.2) and by multiplying by C , we obtain in
discrete-time the relation

σk+1 = Cxk+1 = CeAhxk + CB∗ueqk + CB
∗usk. (2.2.10)

Our design objective is to make σk+1 depend only on σk and us. Hence we want that
CeAhxk + CB∗ueqk = σk, which gives

ueqk = (CB∗)−1C (I − eAh)xk. (2.2.11)

If we substitute this expression for ueqk in (2.2.10), then, as expected, we obtain

σk+1 = σk + CB∗usk.

Using the implicitly discretized discontinuous part of the control −usk ∈ α Sgn(σk+1), the
discrete-time sliding variable dynamics is




σk+1 = σk + CB∗usk
−usk ∈ α Sgn(σk+1),

(2.2.12)

which is the discrete counterpart of (1.1.3). This system has the same structure as in (2.2.6),
although with the important difference that σ̃k+1 = σk+1. This system is studied in the
next section, where the finite-time stability and robustness is analyzed. Let us first state
the following result.

Lemma 2.2.5. If CB∗ is a P-matrix, then the only equilibrium pair of the system (2.2.12)
is (σ∗, us∗) = (0, 0).

Proof. A pair (σ, us) is an equilibrium of (2.2.12) if and only if CB∗us = 0. If CB∗ is a P-
matrix, then it has full-rank and CB∗us = 0 is equivalent to us = 0. From the definition
of the Sgn(·) multifunction in (2.2.1), this is only possible if σ = 0. �

To sum up, with the proposed scheme the two control inputs are




ueqk =
(CB∗)−1 C (I − eAh)xk

usk solution of (2.2.12).
(2.2.13)
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This controller is nonanticipative since ueqk depends only on the model parameters and xk.
Moreover usk is the unique solution to (2.2.12) given thatCB∗ > 0, using similar arguments
as in Lemma 2.2.3. This controller retains the structure of the continuous-time sliding
mode controller. It is different from the approach that can be found in [108] or [79] since
in our case, the equivalent part ueq is not chosen as the solution to a deadbeat control
problem. As a result, the magnitude of the control input in (2.2.12) is O(1) with respect
to the sampling period h, whereas it is O(h−1) in the deadbeat case, see [79]. In [42], this
expression for the equivalent control ueq was already derived, when the sliding variable is
scalar.

2.2.2 Stability and convergence properties

We shall now investigate the stability of the auxiliary system (2.2.12) and some convergence
properties of the control input us when the sampling period tends to 0. In the nominal case
we are able to prove convergence of the sliding variable to 0, using Lyapunov technique,
under some structural conditions that match closely the ones for the continuous-time
sliding mode controller. In the case where the dynamics include matched perturbations,
we show how the proposed controller attenuates their effects and that if the controller
action is large enough, the system remains in a neighborhood of the sliding manifold.
We study the convergence of the control input since for control theorist it is a crucial
variable and it received little attention in discretization studies of differential inclusions,
as mentioned in Section 1.4.4. Those results also underline the difference between the
implicit and explicit discretization methods. Every property shown for the “auxiliary”
system (2.2.12) remains valid for the closed-loop system (2.2.2) and (2.2.13), thanks to the
structure of the controller introduced in the previous section.

Stability in the nominal case

Let us start by considering the stability of the system (2.2.12). Note that the mapping
Sgn( · ), as introduced inDefinition 2.2.1, ismaximalmonotone.This concept is introduced
in Appendix A.2. This property, as well as another important one, is given by:

〈v1 − v2, x1 − x2〉 ≥ 0, ∀vi ∈ Sgn(xi), i = 1, 2 (2.2.14)

0 ∈ Sgn(x) ⇐⇒ x = 0. (2.2.15)

The positive-definitiveness property of CB∗ is pivotal to the results presented in this
section. Even if it is not explicit with the current notations, CB∗ depends on the sampling
period h. The following lemma gives some insight of when this condition is fulfilled.
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Lemma 2.2.6. Suppose that CB is positive definite and B∗ is the matrix given by the ZOH
integration of B as in (2.2.3). There exists an interval I = (0, h∗] ⊂ R+, h∗ > 0, such that
if the sampling period h ∈ I , then CB∗/h and CB∗ are positive definite.

Proof. Let h > 0, CBs and CB∗s be the symmetric parts of CB and CB∗, respectively. Let

∆ B CB∗s /h − CBs =
∞∑
l=1

CAlB + BT (Al )TCT
2(l + 1)!

hl = O(h). Since CBs is symmetric, it is

also normal. Hence we can apply Corollary D.3, which yields that for any eigenvalue µ of
CB∗s /h, min

λ
|λ − µ| ≤ ‖∆‖, with λ an eigenvalue of CBs and ‖ · ‖ the spectral norm. By

definition,∆ is a symmetric matrix with real entries. Hence ‖∆‖ = δmax, the largest mod-
ule of any eigenvalue of ∆. Let γ > 0 be the smallest eigenvalue of CBs. If δmax < γ, then
every eigenvalue of CB∗s /h is positive and since CB∗s /h is by definition symmetric, CB∗s /h
is positive definite. It is easy to see that ∆ → 0 as h → 0 and that ∆ depends continu-
ously on h. Therefore by Corollary D.2, the eigenvalues of ∆ are continuous functions
of h. Then it is always possible to find h∗ such that δmax < γ for all 0 < h < h∗, which
implies that CB∗s /h is positive definite as well as CB∗s . �

Lemma 2.2.7. If CB∗ is symmetric positive definite, then the equilibrium state σ∗ = 0
of (2.2.12) is globally Lyapunov stable with a quadratic Lyapunov function.

Proof. LetV (σk) B σTk PσkwithP =
(CB∗)−1 be a candidateLyapunov function.Along

the trajectories of the system (2.2.12), one obtains:

V (σk+1) − V (σk) = σTk+1Pσk+1 − σTk Pσk
= σTk+1Pσk+1 − (σk+1 − CB∗usk)TP(σk+1 − CB∗usk)
= −(usk)TCB∗usk + 2(usk)Tσk+1.

Using (2.2.14) with v1 = usk, v2 = 0, x1 = σk+1, and x2 = 0 yields (usk)Tσk+1 ≤ 0. Since
CB∗ is positive definite, the first term is always nonpositive and vanishes if and only if
uk = 0. Using (2.2.15) we then infer that σk+1 = 0 and (2.2.12) gives us that σk = 0. This
completes the proof. �

We can also use a non-quadratic Lyapunov function, inspired by the one presented
in [107] in the continuous-time case. As we shall see, it relaxes the symmetry condition on
the matrix CB∗.

Lemma 2.2.8. If CB∗ is positive definite, then the equilibrium state σ∗ = 0 of (2.2.12) is
globally Lyapunov stable.
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Proof. Let V (σk) B ‖σk‖1 = −(usk−1)
Tσk be the candidate Lyapunov function, and

−usk−1 ∈ α Sgn(σk). The functionV is positive definite, radially unbounded, and decres-
cent since −(usk−1)

Tσk = α‖σk‖2
1 and α > 0. Let us study the variations of V :

V (σk+1) − V (σk) = −(usk)Tσk+1 + (usk−1)
Tσk

= −(usk)T (σk + CB∗usk) + (usk−1)
Tσk

= −(usk)TCB∗usk + 〈usk−1 − usk, σk〉. (2.2.16)

The first term is always nonpositive with the hypothesis onCB∗. For the second term, let
us recall that from the relation (2.2.7),wehave σk ∈ N [−α,α]p (−uk−1). From thedefinition
of the normal cone, we know that the second term is always nonpositive. The proof is
then completed in a similar fashion to the previous one. �

Proposition 2.2.9. If the hypothesis of either Lemma 2.2.7 or 2.2.8 are satisfied, then the
fixed point (σ, u) = (0, 0) of (2.2.12) is globally finite-time Lyapunov stable.

Proof. In each case, the differenceV (σk+1)−V (σk) consists of−(usk)TCB∗usk plus a non-
positive term. Since CB∗ is positive definite, it holds that −(usk)TCB∗usk ≤ −β‖usk‖2,
with β > 0 the smallest eigenvalue of CB∗s . Note that if σk+1 , 0, then ‖usk‖ ≥ α
and V (σk+1) − V (σk) ≤ −α2β. Iterating, one obtains V (σk+1) − V (σ0) ≤ −kα2β.
Let k0 B dV (σ0)/βα2e and suppose that V (σk0+1) , 0. Then V (σk0+1) − V (σ0) ≤
−k0α2β ≤ −V (σ0). This yields V (σk0+1) ≤ 0, which implies V (σk0+1) = 0. Hence
σk0+1 = 0 and σk = 0 for all k > k0. �

To the best of our knowledge, these proofs of Lyapunov stability in the discrete-time
case are new and have never beem done before for discrete-time SMC.

Stability in the perturbed case

Let us now consider the case when a matched perturbation is acting on the system. The
evolution of the sliding variable σk is governed by

σk+1 = σk + CB∗usk + Cpk, (2.2.17)

where

pk B
∫ tk+1

tk
eA(tk+1−τ)Bξ(τ)dτ (2.2.18)
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and usk is the unique solution of the generalized equation (2.2.6). Although the system
neither reaches nor stays on the sliding manifold as in the continuous-time case, we shall
see that it enters the discrete-time sliding phase (see Definition 2.2.4) and stays in it. Let us
first present a technical lemma.

Lemma 2.2.10. LetM ∈ Rn×n andMs B 1/2(M +MT ). SupposeM is positive definite
and let β > 0 be the smallest eigenvalue ofMs. Then for all x ∈ Rn, ‖M−1x‖ ≤ β−1‖x‖.

Proof. M−1 exists sinceMs is positive definite. Let νmin (respectively νmax) be the smallest
(respectively largest) singular values ofM (resp.M−1). Two relations hold: νmax = ν−1

min,
see Fact D.4, and νmin ≥ β > 0 from Corollary D.5. Then using the spectral norm defini-
tion, we have ‖M−1x‖ ≤ ‖M−1‖‖x‖ = νmax‖x‖ ≤ β−1‖x‖. �

From now on, let CB∗s B 1/2(CB∗ + (CB∗)T ) and let β be its smallest eigenvalue.

Proposition 2.2.11. Suppose that CB∗ is positive definite. If the controller gain α > 0
is such that for all k ∈ N, ‖Cpk‖ < αβ, then the perturbed closed-loop system (2.2.6)
and (2.2.17) enters the discrete-time sliding phase in finite time and stays in it with σk+1 =

Cpk. Furthermore if h ∈ (0, h∗], as defined in Lemma 2.2.6, then there exists an upper
bound T ∗ on the duration of the reaching phase.

Proof. Let V (σk) B −usTk−1σk with −usk−1 ∈ α Sgn(σk). Assume that the system is initial-
izedoutside thediscrete-time slidingphase. It follows that ‖usk‖ ≥ α. Starting from(2.2.16),
doing as in the proof of Proposition 2.2.9 and adding the contribution of the perturba-
tion, we have V (σk+1) − V (σk) ≤ −β‖usk‖2 − (usk)TCpk. Using the Cauchy-Schwarz
inequality, we obtain |(usk)TCpk | ≤ ‖usk‖‖Cpk‖. To ensure that V (·) decreases strictly,
we need ‖Cpk‖ < β‖usk‖. This condition is satisfied using the hypothesis on the gain α
and the fact that β > 0. Note that even in the case with multiple switching surfaces,V (·)
decreases as long as the system is not “sliding” on the intersection of all the manifolds:
‖usk‖ < α can only hold when σ̃k+1 = 0. If σ̃k+1 = 0, then we enter the discrete-time
sliding phase.

The finite-time property is derived as in the proof of Proposition 2.2.9. Let κ =
αβ − ‖Cpk‖. By assumption, κ > 0 holds, therefore in the reaching phase, V (·) de-
creases by at least κα at each sampling period. Hence, V (σk) converges to 0 in finite-
time. Now if the system is in the discrete-time sliding phase at the time instant tk, then
σ̃k+1 = 0 and σk+1 = Cpk. At time tk+1, we have σ̃k+2 = Cpk + CB∗usk+1. Let us show
that usk+1 = −(CB∗)−1Cpk is the unique solution to the generalized equation (2.2.6).
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With this value, we have σ̃k+2 = 0. Using Lemma 2.2.10 and the hypothesis, we in-
fer ‖usk+1‖ ≤ β−1‖Cpk‖ < α. Relations between norms yield ‖usk+1‖∞ < α. Then
usk+1 ∈ (α, α)p ⊂ α Sgn(0) and usk+1 is a solution to (2.2.6). With the hypothesis of
the proposition, CB∗ is also a P-matrix. Then Lemma 2.2.3 can be applied and yields the
uniqueness property. Thus usk+1 = −(CB∗)−1Cpk is the unique solution to (2.2.6) at time
tk+1 and by induction the system stays in the discrete-time sliding phase.

In the following, we suppose that h ∈ (0, h∗]. Let δ∗max = ‖∆‖ = ‖CB∗s /h∗ − CBs‖
(from the proof of Lemma 2.2.6) with h = h∗. From the expression of k0 in the proof of

Proposition 2.2.9, the duration of the reaching phase is hk0 <
V (σ0)h
βα2 +h. Note that β/h

is an eigenvalue ofCB∗s /h. Applying againCorollaryD.3, we haveλ−β/h ≤ δmax ≤ δ∗max,
with λ an eigenvalue of CBs. This yields γ − δ∗max ≤ λ − δ∗max ≤ β/h. Using this in the
previous inequality, we get hk0 <

V (σ0)
α2(γ − δ∗max)

+ h∗ C T ∗. �

Remark 2.2.12. In continuous time, the usual condition is α > ‖ξ‖∞,R+ . If the perturba-
tion ξ is continuous, then it is still possible to link this condition to the one used in the
previous theorem, ‖Cpk‖ < αβ for all k ∈ N. Using the mean value theorem for integra-
tion, we get Cpk = hCeA(tk+1−t ′)Bξ(t′) = hCBξ(t′) +O(h2), with t′ ∈ [tk, tk+1]. Hence
the first-order estimation for ‖Cpk‖ is h‖CB‖‖ξ‖ ≤ h

√p‖CB‖‖ξ‖∞,R+ . From the proof
of Lemma 2.2.6, it follows that β = hλmin(CB) + O(h2), and from Corollary D.5 we
have ‖CB‖ > λmax(CB). For h small enough, we infer ‖CB‖√p/β ≥ 1 and therefore
‖Cpk‖ < αβ implies α > ‖ξ‖∞,R+ . If the sliding variable is a scalar, then the converse is
also true at the limit.

In the classical literature on discrete-time sliding mode, where the explicit discretiza-
tion (2.2.5a) is used as for instance in [84, 97, 42], two conditions related to the sliding
variable emerged: (σk+1 − σk)i(σk)i < 0 for all i = 1, . . . , n, which is necessary; and the
second one is |(σk+1)i | < |(σk)i |. With our approach the conditions for linear systems,
stated in Lemmas 2.2.7 and 2.2.8 as well as Proposition 2.2.11, are on the system parameters
and not on the evolution on the sliding variable, which derives from the dynamics. This is
much closer to the stability results obtained in continuous-time [107].

Looking at the value of the sliding variable in the discrete-time sliding phase, σk =
Cpk−1 implies by the definition of the right-hand side that ‖σk‖∞ has an upper bound
proportional to h‖ξ‖∞, see Remark 2.2.12. Let us now study the influence of the gain on
the control input.



2.2. ECB-SMC 39

Corollary 2.2.13. Suppose that α is such that for all k ∈ N, ‖Cpk‖ ≤ αβ. Then even
if the controller gain is increased to α′ > α, the control input us does not change in the
discrete-time sliding phase.

Proof. From the proof of Prop. 2.2.11, we have that usk is uniquely defined as the solution
to (2.2.6), and is equal to −(CB∗)−1Cpk which does not depend on the controller gain.

�

This is a major difference with the explicitly discretized controller, where a change
in the controller gain always influences the control input. This result is also similar to
the continuous-time case: within Filippov’s framework, when the system is in the sliding
phase, the control input is a selection of the set-valued right-hand side which does not
depend on the gain, given that the latter is large enough to dominate the perturbation.
In simulations (Section 3.4) and in experimental results (Chapter 4), those property have
been verified.

Remark 2.2.14. Let us highlight two similarities between the continuous-time sliding
mode control and the discrete-time we present here: the first is the expression of the con-
trol input value during the sliding phase. In continuous-time, with Filippov’s notion of
solution, we have uscont(t) = −ξ(t). In other words, the control input is the selection
of the set-valued right-hand side which exactly compensates for the disturbance. With
the implicit (discrete-time) controller, we have usk+1 = −(CB∗)−1Cpk and pk is an inte-
gral term involving ξ, remember (2.2.18). The connection between the two quantities is
the topic of the next section. The other point is the existence of an upper bound on the
reaching phase, which is denoted by T ∗, as in continuous-time.

Convergence of the control input

Let us now turn our attention to the relationship between the continuous time input
ucont and u. In particular, we study the convergence of u to ucont during the discrete-time
sliding phase, which is established after T ∗ < +∞. To the best of our knowledge, the only
convergence study of this type is in [96], with a slightly different approach but which
requires the symmetry of CB. We introduce the following notation: let w : R→ Rr and S
be any interval inR, ‖w‖∞,S = max

i
ess supt∈S |wi(t) |.

Proposition 2.2.15. Consider the discrete-time closed-loop system given by (2.2.17) and (2.2.6).
Let {hn}n∈N be any strictly decreasing sequence of positive numbers converging to 0 and
with h0 < h∗ (see Lemma 2.2.6). Suppose that the perturbation ξ : R → Rp is uniformly
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continuous, that CB is positive definite and that α > 0 is chosen such that the condi-
tions of Proposition 2.2.11 are satisfied for each sampling period hn. Then for any interval
S ⊆ [T ∗,∞), lim

hn→0
‖us − uscont‖∞,S = 0.

The proof is in Section 2.2.4. Let us recall that this convergence result does not hold
with an explicit discretization and that for control theorist, the control input is a quantity
of paramount importance. Also this result underlines that with an implicit method, we
“approximately observe” the perturbation ξ, in a consistent fashion. We expand on this in
Section 2.5.

It is also interesting to study the convergence of the variation of the control variable,
which we introduced in Section 1.3 as a measure of the control input chattering.

Proposition 2.2.16. Suppose that CB is positive definite, and ξ is a real-valued continuously
di�erentiable with bounded derivative function. Let {hn}n∈N be any strictly decreasing
sequence of positive numbers converging to 0 with h0 < h∗. Let α be chosen such that the
conditions of Proposition 2.2.11 are verified for each hn. Let T > T ∗ with T ∗ defined in
Proposition 2.2.11. Then lim

hn→0
VarTT ∗ (us) = VarTT ∗ (uscont).

The proof is in Section 2.2.4. In order to compare with the control input given by the
explicit discretization as in (2.2.5a) below, let us recall the conclusion from [47] and [93],
valid for a 2-D linear system with an explicit discretization of the sgn function: if the sam-
pling period is small enough, once the closed-loop system is close to the sliding manifold,
it spends at most 2 consecutive sampling period on each side of the sliding surface. The
control input variation is easy to compute as the sgn function is equal to +1 or −1: each
time the sliding manifold is crossed, the variation increases by 2. It is then easy to see that
for a small enough sampling period, the variation of the explicitly discretized control grows
linearly with the inverse of the sampling period, hence it explodes as h→ 0.

In Sections 4.1.2, 4.2.2 and 3.4, we illustrate some results presented in this section:
the similarity between the perturbation and the discrete-time control input (Proposi-
tion 2.2.11), alongside the convergence of the discrete-time control input to the continuous-
time one (Proposition 2.2.15).
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2.2.3 Discretization performance

The aim of this section is to analyze the performances of the controllers presented in
Section 2.2.1. We reproduce here their expressions: for the equivalent part ueq we have

ueqk,e = −(CB)−1CAxk explicit input,

ueqk,i = −(CB)−1CAxk+1 implicit input,

ueqk,m = 1/2(ueqk,e + u
eq
k,i) midpoint input,

and the two possibilities for the discontinuous control usk are

usk = −α sgn(σk) explicit input,

usk ∈ −α Sgn(σk+1) implicit input.

We shall here provide results on the asymptotic behavior (ash→ 0) for both the equivalent
and the discontinuous parts of the control. In the last part, we discuss the case when there
is a matched perturbation.

Discretization of the state-continuous control

Let us begin with the discretization error on ueq and more specifically on its effect on
the sliding variable. In other words we analyze how the invariance property in (1.1.2) is
preserved after discretization. In the following, us is set to 0 as we want to evaluate how
the equivalent part of the control manages to keep the value of the sliding variable. To
this effect, let ∆σk B σk+1 − σk be the local variation of the sliding variable due to the
discretization error on ueq.

With an explicit discretization of ueq as in (2.2.4a), and using (2.2.2) the closed-loop
discrete-time system dynamics is

xk+1 = Φ
e
kxk, (2.2.21)

withΨ B
∫ tk+1

tk
eA(tk+1−τ)dτ =

∞∑
l=0

Alhl+1

(l + 1)!
,Φek B eAh−ΨΠBA andΠB B B(CB)−1C =

I − ΠkerC , whereΠ is the projection operator. In the implicit case, the recurrence equa-
tion (2.2.2) combined with (2.2.4b) yields

xk+1 = eAhxk − ΨΠBAxk+1, (2.2.22)

that is:

xk+1 =W−1eAhxk,
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withW = I + ΨΠBA. Starting from (2.2.4b), the control input value is

ueqk,i = −(CB)−1CAW−1eAhxk,

which is non-anticipative.

Lemma 2.2.17. Let us ≡ 0. With either an explicit or implicit discretization of ueq, the
discretization error ∆σk is O(h2). If the midpoint method (2.2.4c) is used, then the error
is O(h3).

Proof. Let us start with the implicit case. There exists a Taylor expansion for W−1 if
ΨΠBA has all its eigenvalues in the unit disk. SinceΨ → 0 as h→ 0, it is always possible
to find an h0 such that this condition holds for all h0 > h > 0. Since we are interested in
an asymptotic property, such restriction on h does not play any role. The finite expansion
ofW−1eAh is:

W−1eAh = I − (ΠBA −A)h +
(
ΠBAΠBA

2
− ΠBA2 +

A2

2

)
h2 +O(h3).

The variation of the sliding variable is

∆σk = σk+1 − σk = C (W−1eAh − I )xk
= h(−A +A)xk + h2

(CAΠBA
2

− CA
2

2

)
xk +O(h3)

=
h2

2
CA(I − ΠB)Axk +O(h3) = −h

2

2
CAΠkerCAxk +O(h3). (2.2.23)

For the explicit case, expanding the exponential andΨ terms yields

∆σk =
h2

2
CAΠkerCAxk +O(h3). (2.2.24)

With the midpoint method (2.2.4c), the recurrence equation is

xk+1 = 0.5(eAhxk − ΨΠBAxk) + 0.5(eAhxk − ΨΠBAxk+1).

The last two terms are the right-hand sides of (2.2.21) and (2.2.22). Thus the contribution
in h2 are given in (2.2.24) and (2.2.23). Hence the term in h2 is canceled and the error is
O(h3). �



2.2. ECB-SMC 43

Discretization of both control inputs

In the following, we consider the sliding variable dynamics with the state-continuous and
discontinuous control. It is expected that σ goes to 0 and once it reaches zero, stays at this
value. The proposed metric to measure the performance of the discrete-time controller
is the Euclidean norm of the sliding variable when the system state is close to the sliding
manifold. Let εk B ‖σk+1‖ be the discretization error when ‖σk‖ is small enough. We
consider also the case with a matching perturbation (which is O(h)), leading to dynamics
as in (2.2.17).

EXPLICIT DISCRETIZATION In the slidingmode literature, several proposals (seven
of themare listed in [44]) have beenmade to analyze the behavior of the closed-loop system
near the sliding manifold and to propose new variable structure control strategies. Despite
this, it is still difficult to analyze the behavior near the sliding manifold, besides stability.
Thus we only study the invariance of a close neighborhood of the sliding manifold, also
to provide an estimate of the chattering due to the discrete-time discontinuous control.

Lemma 2.2.18. Let the closed-loop system state in (2.2.2) be in an O(h2)-neighborhood of
the sliding manifold at t = tk, i.e. σk = O(h2), but with σk , 0. If the discontinuous
part us of the control is discretized using the explicit scheme (2.2.5a), then the discretization
error εk is O(h) and the system exits the O(h2)-neighborhood.

Proof. Starting from equation (2.2.2) and using the control inputs ueqk = −(CB∗)−1CAxk
and usk = −α sgn(Cxk), the following holds:

σk+1 = C (eAh − ΨΠBA)xk − CB∗ sgn(Cxk)

that is σk+1 = σk+∆k−CB∗ sgn(σk) with∆k B C (eAh− I −ΨΠBA)xk. Let us compute
the square of the norm of the sliding variable, which is given by:

‖σk‖2 + ‖∆k‖2 + ‖CB∗ sgn(σk)‖2 + σTk ∆k − σTk CB∗ sgn(σk) −∆Tk CB∗ sgn(σk). (2.2.25)

From Lemma 2.2.17, we have ‖∆k‖2 = O(h4). We can compute the order of the other
terms with respect to h:

‖CB∗α sgn(σk)‖2 =



∞∑
k=0
hl+1 CAlB

(l + 1)!
α sgn(σk)



2

≤ ‖hCBα sgn(σk)‖2 +O(h3)

∆
T
k CB∗α sgn(σk) = O(h3).
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Using the Cauchy-Schwarz inequality on the remaining terms yields

|σTk ∆k | ≤ ‖σk‖‖∆k‖
|σTk CB∗ sgn(σk) | ≤ ‖σk‖‖CB∗ sgn(σk)‖.

If ‖σk‖ = O(h2), then the above terms areO(h4) andO(h3). Hence, the dominant term
in (2.2.25) is ‖hCBα sgn(σk)‖2. Let {λi} be the spectrum of hCB, with λm = min

i
|λi |

and λM = max
i
|λi |. We have the following:

λmhα
√p ≤ ‖hCB sgn(σk)‖ ≤ λMhα

√p.
Inserting this in (2.2.25) yields that ‖σk+1‖ is O(h).

With a matched perturbation, the discrete-time dynamics of σ are given by (2.2.17).
Then ‖σk+1‖2 involves all the terms in (2.2.25), plus the following ones:

|σTk Cpk | ≤ ‖σk‖‖Cpk‖ = O(h3) by Cauchy-Schwarz

|∆Tk Cpk | ≤ ‖∆k‖‖Cpk‖ = O(h3) by Cauchy-Schwarz

(CB∗α sgn(σk))TCpk = O(h2)

‖Cpk‖2 = O(h2).

Thus the dominant terms are ‖Cpk‖, ‖CB∗α sgn(σk)‖ and (CB∗α sgn(σk))TCpk, all of
themO(h). Those terms induce chattering and they all have the same order with respect
to the sampling period h. �

Therefore in the nominal case, with an explicit discretization of us, the main error
comes from the discretization of the discontinuous control us, since it increases the error
by an order h. When there is a matched perturbation, it also introduce terms inO(h). The
dominant contribution is difficult to determine, a priori, but what remains is the (known)
fact that the gain of the controller plays a role in the magnitude of the sliding variable.

IMPLICIT DISCRETIZATION In the following, we are interested in studying the
discretization error in the same context as for the previous lemma.

Lemma 2.2.19. Let the closed-loop system be in the discrete-time sliding phase. In the nom-
inal case, if the discontinuous part us of the control is discretized using an implicit scheme,
then the total discretization error εk has the same order as the discretization error∆σk on ueq
(that is h2 for the methods (2.2.4a) and (2.2.4b), and h3 for the midpoint method (2.2.4c)).
If there is a matched perturbation, then the order is 1 and this increase of the order is due
to the perturbation.
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Proof. Let ∆k = C (eAh − I )xk + CΨBueqk , with u
eq
k given by any method in (2.2.4a)-

(2.2.4c). The system is supposed to be in the discrete-time sliding phase, that is usk ∈
(−α, α)p. Then σ̃k+1 = σk + CB∗usk = 0. From (2.2.2) one has:

σk+1 = σk + ∆k + CB∗usk = ∆k. (2.2.26)

Let us go through all the possible discretization methods for ueq: from Lemma 2.2.17,
we know that in both the implicit and explicit cases, ∆k is O(h2) and with the midpoint
method (2.2.4c) it is O(h3). When there is a perturbation, we add Cpk to (2.2.26):

σk+1 = σk + ∆k − CB∗ sgn(σk+1) + Cpk = ∆k + Cpk.

The chattering due to the perturbation is predominant and the sliding variable is O(h).
�

In Proposition 2.2.11, conditions were given to ensure that the system stays in the
discrete-time sliding phase once it reaches it, with or without perturbation. With the
controller from Section 2.2.1 the discretization error ∆k = 0: in this case the chattering is
solely due to the perturbation.

The simulation results of Section 3.4 indicate that the choice of discretization method
has a clear incidence on the closed-loop behavior. The analysis of the experimental data
will show that the order 1 can be recovered experimentally: this is what we observe in
Figure 4.3 for Figure 4.5 from experimental results.

2.2.4 Proofs of the propositions in Section 2.2.2

Proof of Proposition 2.2.15

Let us recall Proposition 2.2.15

Proposition. Consider the discrete-time closed-loop system given by (2.2.17) and (2.2.6).
Let {hn}n∈N be any strictly decreasing sequence of positive numbers converging to 0 and
with h0 < h∗ (see Lemma 2.2.6). Suppose that the perturbation ξ : R → Rp is uniformly
continuous, that CB is positive definite and that α > 0 is chosen such that the conditions
of Proposition 2.2.11 are satisfied for each sampling period hn. Then for any interval S ⊆
[T ∗,∞), lim

hn→0
‖us − uscont‖∞,S = 0.

Proof. Let{tk}be a sequence such that for allk ∈ N, tk+1−tk = hnwith t0 = inf S. For the
sake of clarity, we omit to write explicitly the dependence on n. From Proposition 2.2.11
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and Lemma 2.2.6, we know that for all k such that tk ≥ T ∗, usk = −(CB∗)−1Cpk−1 =

−(CB∗)−1C
∫ tk

tk−1

eA(tk−τ)Bξ(τ)dτ. During the sliding phase, the continuous-time con-
troller satisfies uscont(t) = −ξ(t). Let S be any time interval contained in [T ∗,+∞). Let
t ∈ S and k ∈ N is such that t ∈ [tk, tk+1). Hence us(t) = usk. Let us study usk − uscont(t):

usk − uscont(t) = −(CB∗)−1C
∫ tk

tk−1

eA(tk−τ)Bξ(τ)dτ + ξ(t)

= −(CB∗)−1
(∫ tk

tk−1

CeA(tk−τ)Bξ(τ)dτ − CB∗ξ(t)
)
.

Using (2.2.3), we obtain:

usk − uscont(t) = −(CB∗)−1
(∫ tk

tk−1

CeA(tk−τ)Bξ(τ)dτ −
∫ tk+1

tk
CeA(tk+1−τ)Bξ(t)dτ

)
.(2.2.27)

With the change of variableτ′ = τ+hn in the first integral, we can group the two integrals
in (2.2.27) as follows:

usk − uscont(t) = −(CB∗)−1
(∫ tk+1

tk
CeA(tk+1−τ)B(ξ(τ − hn) − ξ(t)dτ

)
= −(CB∗)−1

(∫ tk+1

tk
CB(ξ(τ − hn) − ξ(t))

+

∞∑
l=1

CAlB
l!

(
(tk+1 − τ)l (ξ(τ − hn) − ξ(t))

)
dτ

)
.

(2.2.28)

Using again (2.2.3), the first factor can be approximated by:

(CB∗)−1 = *
,
hnCB +

∞∑
l=1

CAlB
(l + 1)!

hl+1
n +

-

−1

= *
,
I +

∞∑
l=1

(CB)−1CAlB
(l + 1)!

hln+
-

−1

(hnCB)−1

=
(
I − (CB)−1CAB

2
hn +O(h2

n)
)
(hnCB)−1. (2.2.29)

The Taylor expansion holds if
∞∑
l=1

(CB)−1CAlB
(l + 1)!

hln has all its eigenvalues in the unit disk.

This is a mere technical restriction, since it is always possible to find a small enough posi-
tive number hn0 such this condition is satisfied. Since we are interested in the case where{hn} converges to 0, this requirement is supposed to hold. For the first term in the inte-
grand in (2.2.28), we apply the mean value theorem for integration. If ξ is a vector-valued
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function (this is the casewhen the sliding variable has dimension greater than 1), we apply

the theorem for each component separately. This yields for i = 1, . . . , n (
∫ tk+1

tk
ξ(τ −

hn)−ξ(t)dτ)i = hn(ξi(t′i −hn)−ξi(t)) for some t′i ∈ [tk, tk+1]. For the second part of the
integrand in (2.2.28), we exchange the summation and integral signs. This is possible since
the matrix exponential is normally convergent and ξ is bounded on any interval [tk, tk+1]
(ξ is continuous).Moreover for all l ≥ 1,withτ ∈ [tk, tk+1], (tk+1−τ)l (ξ(τ−hn)−ξ(t)) =

O(hn). Thus
∫ tk+1

tk
(tk+1−τ)l (ξ(τ−hn)−ξ(t))dτ = O(h2

n). Then (2.2.28) can be rewrit-
ten as:

usk − uscont(t) = −(I +O(hn))
(∫ tk+1

tk
h−1
n (ξ(τ − hn) − ξ(t))dτ +O(hn)

)
.

Taking the supremum norm and using standard estimation yields:

‖usk − uscont(t)‖∞ ≤ ‖I +O(hn)‖∞ *
,

max
i

sup
t ′∈[tk,tk+1]

|ξi(t′ − h) − ξi(t) | + ‖O(hn)‖∞+
-

≤ max
i

sup
t ′∈[tk,tk+1]

|ξi(t′ − hn) − ξi(t) | +O(hn). (2.2.30)

Since ξ is uniformly continuous, for every ε > 0, there exists δ > 0 such that for all
t1, t2 ∈ R, |t1 − t2 | ≤ δ implies ‖ξ(t1) − ξ(t2)‖ ≤ ε. Then the right-hand side of (2.2.30)
converges to 0 as hn → 0. Since this is true for all t ∈ S, the proof is complete. �

Proof of Proposition 2.2.16

Proposition. Suppose that CB is positive definite, and ξ is a real-valued continuously dif-
ferentiable with bounded derivative function. Let {hn}n∈N be any strictly decreasing se-
quence of positive numbers converging to 0 with h0 < h∗. Let α be chosen such that the
conditions of Proposition 2.2.11 are verified for each hn. Let T > T ∗ with T ∗ defined in
Proposition 2.2.11. Then lim

hn→0
VarTT ∗ (us) = VarTT ∗ (uscont).

Proof. Let {tk} be a sequence such that for all k ∈ N, tk+1 − tk = hn withT ∗ + hn > t0 ≥
T ∗ andN the largest integer such that tN ≤ T . Let us recall that, with the implicit con-
troller defined in Equations (2.2.17) and (2.2.6), the reaching phase duration is bounded
and that the sliding phase is established at t = T ∗ if hn is small enough. Recall that in
continuous time, uscont ≡ −ξ in the sliding phase. Let us study the difference between the
variations of us and uscont:

VarTT ∗ (us) − VarTT ∗ (uscont) =
∑
k
‖usk+1 − usk‖ −

∫ T

T ∗
‖ξ̇(τ)‖dτ,
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Without loss of generality, the integral is taken in the Riemannian sense. Hence for all
ε > 0, it is possible to find an index n0 such that for all n ≥ n0,∫ T

T ∗
‖ξ̇(τ)‖dτ = hn

∑
k
‖ξ̇(tk)‖ +

∫ t0

T ∗
‖ξ̇(τ)‖dτ +

∫ T

tN
‖ξ̇(τ)‖dτ ± ε.

This leads to the estimation

���VarTT ∗ (us) − VarTT ∗ (uscont)
��� ≤

∑
k
|‖usk+1 − usk‖ − hn‖ξ̇(tk)‖| + ε + 2hnM,

withM > 0 amajorant of ‖ξ̇(τ)‖ on [T ∗, T ]. Using the reverse triangle inequality yields

≤
∑
k
‖usk+1 − usk − hnξ̇(tk)‖ + ε + 2hnM.

Expanding the difference usk+1 − usk, we get

usk+1 − usk = (CB∗)−1
(∫ tk+1

tk
CB(ξ(τ) − ξ(τ − hn))dτ

+

∫ tk+1

tk
C (eA(tk+1−τ) − I )B(ξ(τ) − ξ(τ − hn))dτ

)
.

Using the approximation for (CB∗)−1 in (2.2.29) yields

usk+1 − usk − hnξ̇(tk) = (I +O(hn))
(∫ tk+1

tk

ξ(τ) − ξ(τ − hn)
hn

− ξ̇(tk)dτ

+

∫ tk+1

tk
(CB)−1C (eA(tk+1−τ) − I )Bξ(τ) − ξ(τ − hn)

hn
dτ

)
.

(2.2.31)

The first integral can be transformed into∫ tk+1

tk
h−1
n (ξ(τ) − ξ(τ − hn)) − ξ̇(τ)dτ +

∫ tk+1

tk
ξ̇(τ) − ξ̇(tk)dτ. (2.2.32)

Using the (uniform) continuity of ξ̇ on the bounded interval [T ∗, T ], the second integral
in (2.2.32) can be bounded by



∫ tk+1

tk
ξ̇(τ) − ξ̇(tk)dτ


≤ hnε′,

for any ε′ > 0 independent of the interval [tk, tk+1], by increasing the starting index of
the sequence {hn} if necessary. Using standard estimation inequalities, we obtain the fol-
lowing estimate for the second integral in (2.2.31):



∫ tk+1

tk
C (eA(tk+1−τ) − I )Bξ(τ) − ξ(τ − hn)

hn
dτ


≤
∫ tk+1

tk
‖C ‖‖B‖(e‖A‖hn − 1)


ξ(τ) − ξ(τ − hn)

hn


dτ.
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Let us now come back to our main computation

���VarTT ∗ (us) − VarTT ∗ (uscont)
��� ≤ ε + 2hnM

+ (1 +O(hn))
(∫ tN

t0

‖ξ(τ) − ξ(τ − hn) − hnξ̇(τ)‖
hn

dτ

+
∑
k
hnε′ + ‖(CB)−1‖‖C ‖‖B‖(e‖A‖hn − 1)

∫ tN

t0

‖ξ(τ) − ξ(τ − hn)‖
hn

dτ
)
.

(2.2.33)

The continuity of ξ, ξ̇ and ‖ · ‖ allows us to use the mean value theorem for integration
on both integrals:

∫ tN

t0

‖ξ(τ) − ξ(τ − hn) − hnξ̇(τ)‖
hn

dτ =

(tN − t0)
‖ξ(τ′) − ξ(τ′ − hn) − hnξ̇(τ′)‖

hn
.

Using Taylor’s theorem with the remainder in its Lagrange form on ξ, we can write

ξ(τ′ − hn) = ξ(τ′) − hnξ̇(τ′) + h2
nξ̇(τt ),

with τt ∈ [τ′ − hn, τ′]. Hence, this integral is O(hn). Switching to the second one, we
have ∫ tN

t0

‖ξ(τ) − ξ(τ − hn)‖
hn

dτ =

(tN − t0)
‖ξ(τ′′) − ξ(τ′′ − hn)‖

hn
−−−−→
hn→0

‖ξ̇(τ′′′)‖ ≤ M

for some τ′, τ′′, τ′′′ ∈ [t0, tN ]. Since e‖A‖hn − 1 = O(hn), this part of (2.2.33) vanishes as
h→ 0, which only leaves the sum

∑
k
hnε′ =

⌊
(T − T ∗)
hn

⌋
hnε′ ≤ (T − T ∗)ε′.

Hence we can rewrite (2.2.33) as

���VarTT ∗ (us) − VarTT ∗ (uscont)
��� ≤ ε + (T − T ∗)ε′ +O(hn),

where ε and ε′ can be set arbitrarily small by cutting the sequence {hn}. This completes
the proof. �
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2.3 Twisting Controller

Let us study the second type of “square fully discontinuous” controller: the twisting
algorithm that we introduced in Section 1.1.2. This section is organized as follows: we first
provide a discrete-time version of the algorithm based on an implicit discretization. The
matrix of the AVI we obtain is not a P-matrix: the analysis carried out in the previous
section cannot be applied directly. Hence, we derive some results on F-uniqueness of
AVI, a concept introduced in Definition 2.1.11. This enables us to further analyze the
implicitly discretized twisting algorithm. While doing so, we find some shortcomings
of this controller: the implicit discretization does not yield a system free of numerical
chattering. Therefore, we slightly modify the structure of the control law to prevent this
issue, which enables us to show that on the double integrator system, this controller
ensures the global finite-time Lyapunov stability of the origin.

2.3.1 Discrete-time twisting controller

We now study the discrete-time version of the twisting controller, whose continuous-time
dynamics is

σ̈ = a(x, t) + gs(x, t)u
−u ∈ a Sgn(σ) + b Sgn(σ̇),

with a > b > 0. Let consider the case of a double integrator, that is

σ̈ ∈ −a Sgn(σ) − b Sgn(σ̇).

Recasting this as a first order system, we get

Σ̇ = AΣ + Bλ with A = *
,

0 1
0 0

+
-
, B = *

,

0 0
a b

+
-
= *

,

0
1

+
-

(
a b

)
(2.3.1)

and Σ B *
,

σ
σ̇

+
-
,−λ ∈ Sgn *

,

σ
σ̇

+
-
= Sgn Σ.

Let us discretize the dynamics using the ZOHmethod. The discontinuous control input
is implemented with the semi-implicit method as:

Σk+1 = A∗Σk + B∗λk+1 with λk+1 = *
,

λ1,k+1

λ2,k+1

+
-

(2.3.2)

−λ1,k+1 ∈ Sgn(σk+1), −λ2,k+1 ∈ Sgn(σ̇k+1) (2.3.3)
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and A∗ = *
,

1 h
0 1

+
-
, B∗ = h *

,

h
2a h

2b
a b

+
-
= h *

,

h
2
1

+
-

(
a b

)
.

The discrete-time dynamics for each sliding variable are given by




σk+1 = σk + hσ̇k +
h2

2
(aλ1,k+1 + bλ2,k+1)

σ̇k+1 = σ̇k + h(aλ1,k+1 + bλ2,k+1).
Like with the classical SMC case, we use the equivalence

−λk+1 ∈ Sgn(Σk+1) ⇐⇒ −Σk+1 ∈ NH (λ) with H B [−1, 1]2, (2.3.5)

given in Fact A.1.18, to rewrite (2.3.2) and (2.3.3) as the generalized equation

0 ∈ AΣk + B∗λ +NH (λ). (2.3.6)

The sliding variables and control input are then given by:

Σk+1 = AΣk + B∗λ and uk = aλ1 + bλ2. (2.3.7)

Let us now study the existence and uniqueness of a solution to this AVI.

Lemma 2.3.1. The AVI (2.3.6) has always a solution.

Proof. Since themapping z 7→ B∗z+AΣk is continuous andH is compact, we can apply
Theorem 2.1.9. �

The study of uniqueness is not as easy as with the classical SMC. This is due to the fact
that B∗ is not a P-matrix and not even positive-semidefinite. To see this, let us compute
the symmetric part of B∗:

2B∗s = B∗ + B∗T = h *
,

ha a + h2b
a + h2b 2b

+
-
,

whose determinant is equal to

h
(
2abh −

(
a + h2b

)2)
= −h

(
a − h2b

)2 < 0.

Thus the matrix B∗ is indefinite. We could try to reformulate the AVI (2.3.6) into an LCP
and see if the w-uniqueness (remember Theorem 2.1.6) property holds, but this does not
work either. In the following, we derive F-uniqueness results for some classes of AVI that
are an extension of those for LCP, in the sense that the condition on the matrix is the same
or close to the one listed in Theorem 2.1.6.
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2.3.2 F-uniqueness of AVI

Let us recall the condition on the matrixM of the LCP(q,M ) for the w-uniqueness to
hold:

Definition 2.3.2. [27, p. 155]Given amatrixM ∈ Rn×n, we say that any vector whose sign
is reversed byM belongs to the nullspace ofM if the following inequality holds

[zi(Mz)i ≤ 0 for all i ∈ {1, . . . , n}] =⇒ [Mz = 0].

The results that we present here depend on the set and the matrix associated with the
AVI, but not the constant term q. Let us start by considering the case where the set is B∞,
the unit ball for the maximum norm before moving on to more generic sets.

Proposition 2.3.3. Consider an AVI(B∞, q,M ) in Rn with B∞ the unit ball for the max-
imum norm. If every vector whose sign is reversed by M belongs to the nullspace of M ,
then the AVI enjoys the F-uniqueness property.

Proof. Werewrite theAVI(B∞, q,M ) as the generalized equation0 ∈Mz+q+N B∞ (z).
Let w B Mz + q and recall from Fact A.1.17 that

−w ∈ N B∞ (z) ⇐⇒ −z ∈ Sgn(w).

Note that Sgn : Rn ⇒ Rn is amaximalmonotone operator with the remarkable property
that it is component-wise maximal monotone:

for all i ∈ {1, . . . , n} Sgni(w) = Sgn(wi).

This observation is pivotal to the proof.Now suppose that theAVIhasmultiple solutions
and let z1, z2 be any two of themwith∆z B z1 − z2. Let∆w B w1 − w2 =M∆z. Using
the definition of the maximal monotonicity gives:

〈z1
i − z2

i , w1
i − w2

i 〉 ≤ 0 for all i ∈ {1, . . . , n}
or more compactly written

(∆z)i(M∆z)i ≤ 0 for all i ∈ {1, . . . , n}.
This implies that the sign of ∆z is reversed byM . Hence by the hypothesis onM , ∆z
belongs to its nullspace and therefore ∆w = 0, completing the proof. �
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Let us now extend this to a bigger class of AVI by considering convex compact poly-
topes other than B∞. To do so, we need to recast the equivalence like (2.3.5) into a more
general framework. Fact A.1.17 states this relation in the more general setting of a relation
between the subdifferentials of an indicator function δ(·) and a support function h(·).
Therefore we shall now state the equivalence (2.3.5) as

−w ∈ N B∞ (z) = ∂δB∞ (z) ⇐⇒ z ∈ ∂hB∞ (−w).

The next proposition deals with AVI where the set is polytopic but anymore B∞ or even
box-shaped.

Proposition 2.3.4 (F-uniqueness of AVI). Consider an AVI(K, q,M ) in Rn with K a
non-empty convex polytope. If there exists a nondegenerate linear transformation, with a
matrix representation L ∈ Rn×n, from B∞ to K , and if every vector whose sign is reversed
by M̃ B LTML belongs to the nullspace of M̃ , then the AVI enjoys the F-uniqueness
property.

Proof. We try to show that the statement holds by transforming the AVI(K, q,M ) into
anAVI(B∞, q̃, M̃ ) and applying the previous result. The existence of the linear transfor-
mation L ∈ Rn×n enables us to write that for every z ∈ K , there exists a unique y ∈ B∞
such that z = Ly. The core part in the transformation between the two AVIs is how to
relate the normal cones of the setK and B∞. Let us start by stating the relation between
the indicator functions of the two sets: for all pair z and y such that z = Ly,

δK (z) = δB∞ (y) = δB∞ (L−1z),

since L is nondegenerate. Using the chain rule (Theorem A.1.15), we get

∂δK (z) = L−T∂δB∞ (L−1z)
LT∂δK (z) = ∂δB∞ (L−1z)

Rewriting this using normal cones, we have

LTNK (z) = N B∞ (L−1z). (2.3.8)

Now we transform the AVI(K, q,M )

0 ∈Mz + q +NK (z). (2.3.9)
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by noticing that z is solution to the previous AVI if and only if it is a solution to

0 ∈ LTMz + LTq + LTNK (z). (2.3.10)

Using (2.3.8) and moving to the y variable, we get

0 ∈ LTMLy + LTq +N B∞ (y).

Letting M̃ B LTML and q̃ B LTq, we obtain

0 ∈ M̃y + q̃ +N B∞ (y).

Wecan applyProposition 2.3.3 on thisAVI given thehypothesis onM̃ .Hence,we get that
for any solution y of this AVI, M̃y+ q̃ is unique, and if we have two distinct solutions y1

and y2, the difference∆y B y1 − y2 is in ker M̃ . This amount to the F-uniqueness of the
AVI (2.3.10) and the fact that there exists two distinct solutions z1 and z2, the difference
∆z B z1−z2 is in kerLTM = kerM sinceL is nonsingular. ThereforeMz+q is unique
for all solutions z of the AVI (2.3.9) and the proof is complete. �

Remark 2.3.5. It does not seem easy to characterize thematricesL andM such that every
vector whose sign is reversed by LTML belongs to the nullspace of LTML. Let us con-
sider the case whenM enjoys this property and is a rank-one matrix, that isM = vuT
for some u, v ∈ Rn. Now the matrix LTML = LT vuTL = (Lv)(Lu)T = ṽũT is another
rank-one matrix. By construction, the columns of LTML are linearly dependent, there-
fore this matrix is P0 if for all i, ṽiũi ≥ 0. The case when a diagonal element of LTML
is 0 requires special attention: the condition on the determinant implies that the column
must be the zero vector. This prevents any element of ũ from being zero.

Remark 2.3.6. Reasoning along the same lines, if we impose thatM (or LTML) is a
P-matrix, thenwe get the uniqueness of theAVI(K, q,M ). This result is already available
in the first case, when the setK is box-shaped. To the best of our knowledge, the second
proposition, whenK is a polytope has not been studied before.

Remark 2.3.7. In Section 2.1.2, we recall a result given for VI(K, F ) regarding the F -
uniqueness: the function F (·) has to be pseudo-monotone on K , that is for all x and
y inK ,

(x − y)TF (y) ≥ 0 ⇒ (x − y)TF (x) ≥ 0. (2.3.11)

This condition is not necessary fulfilled with an indefinite matrix that ensures the F-
uniqueness of the AVI. Let us illustrate this fact with an AVI over the square [−1, 1]2
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and with the following rank-one matrix

M = *
,

2 3
4 6

+
-

whose symmetric part is: Ms B *
,

2 7/2
7/2 6

+
-
.

The matrixM is indefinite since trMs = 8 and detMs = −1/4. The condition (2.3.11)
fails with y = 0 and x the eigenvector associated with the negative eigenvalue. In the
same Section 2.1.2, we present what is, to the best of our knowledge, the most general
result for F -uniqueness for AVI(K, q,M ), which requires the matrixM to be psd-plus.
Hence the positive semi-definiteness ofM is a necessary condition for the results from
the literature to apply. Note that the F-uniqueness of this AVI can be established using
Proposition 2.3.3.

2.3.3 Analysis of the implicit twisting controller

Let us now continue with the analysis of the controller, now that we can characterize the
solutions to the AVI (2.3.6). We use a generic form of this AVI([−1, 1]2, q,M ) where the
matrixM is rank-one and given by

M = c *
,

h
2
1

+
-

(
a b

)
, (2.3.12)

with c > 0 a given constant and the gain a > b > 0 and the sampling period h > 0. No
constraints are given on the vector q. This formulation allows for dynamics other than the
simple double integrator. This was the case while testing the twisting controller on the
electropneumatic experimental setup of Section 4.1. Let us recall that Σk+1 is defined as
q +Mλk+1, with λk+1 a solution to the AVI.

Lemma 2.3.8. Suppose that the dynamics of a system with state Σk and a control input
given by the implicit twisting controller, can be recast as the AVI(B∞, q,M ) with M as
in (2.3.12). Then for a given vector q, both Σk+1 and the control input value uk are unique.
Moreover if Σk+1 , 0, then the solution of the AVI is also unique.

Proof. The uniqueness of Σk+1 is a direct application of Proposition 2.3.3: by construc-
tionM is rank-one, and with 2 positive diagonal elements. Then by Definition 2.1.5 it
is P0. Its two columns are linearly dependent: the matrixM fulfills the requirements of
Proposition 2.3.3.

For the uniqueness of the control input value, remember from Proposition 2.3.3 that
if the AVI(K, q,M ) has more than one solution, then the difference ∆λ between two
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solutions has to lie in kerM , that is span (b,−a)T in our case. Note that in (2.3.7), uk is
defined as (a, b)λ. It is easy to see that any element of kerM is orthogonal to (a, b)T ,
which ensures uniqueness of uk.

For the last part of the statement, if λ1 and λ2 are solutions to the AVI, then they are
both in ∂h[−1,1]2 (−Σk+1), by the inverse relation given in Fact A.1.17 and the uniqueness
of Σk+1. Furthermore, we know from Fact A.1.14 that λ1 and λ2 are such that

〈λ1,−Σk+1〉 = 〈λ2,−Σk+1〉 = h[−1,1]2 (−Σk+1).

Whence ∆λ B λ1 − λ2 is orthogonal to Σk+1. Remember that

∆λ ∈ kerM = span
(
−ba

)
,

which means that Σk+1 = s
( a
b
)
, with s ∈ R. We are interested in the case Σk+1 , 0 which

imposes that s , 0. Given that a > b > 0, Σk+1 belongs to either the first or the third
quadrant. Hence,

∂h[−1,1]2 (−Σk+1) = arg sup
y∈[−1,1]2

〈y,−Σk+1〉 =



{(
1
1

)}
if s < 0{( −1−1

)}
if s > 0.

The two sets in the right-hand are both singletons: the solution λ of the AVI is therefore
unique whenever Σk+1 , 0. �

Remark 2.3.9. The same results hold in the continuous-time twisting algorithm (1.1.6),
where the selections−λ1 ∈ Sgn(σ) and−λ2 ∈ Sgn(σ̇) are uniquely defined, except when
u = 0. In this case the values lie on the segment defined by aλ1+bλ2 = 0 andλ1 ∈ [−1, 1].
It is also noteworthy that the set described by the last equality is span (b −a)T∩[−1, 1]2 =

kerM ∩ [−1, 1]2. This is related to the fact that B as in (2.3.1) andM have the same
nullspace.

Let us now go back to the study of the double integrator with the twisting algorithm.
For the reader’s convenience its dynamics is given again here:




σk+1 = σk + hσ̇k +
h2

2
(aλ1,k+1 + bλ2,k+1)

σ̇k+1 = σ̇k + h(aλ1,k+1 + bλ2,k+1).

(2.3.13a)

(2.3.13b)

and in matrix form, we have

Σk+1 = A∗Σk + B∗λk+1 with A∗ = *
,

1 h
0 1

+
-
, B∗ = h *

,

h
2a h

2b
a b

+
-
= h *

,

h
2
1

+
-

(
a b

)
.

(2.3.14)
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With the twisting algorithm, there are two switching surfaces

S1 = {(σ, σ̇) ∈ R2 | σ = 0}
S2 = {(σ, σ̇) ∈ R2 | σ̇ = 0}.

In continuous-time, we know that in each quadrant, the vector field is directed onto one
of them, but neither S1 nor S2 are invariant, if the conditions on the gains a and b are
fulfilled. In discrete-time, one natural question is whether this non-invariance property is
preserved. We unfortunately have to answer by the negative.

Lemma 2.3.10. The segment Sc of S1 defined by{
(0, σ̇) : |σ̇ | ≤ h

2
(a − b)

}

is invariant for the system with dynamics (2.3.13) coupled with the implicitly discretized
twisting controller.

Proof. Let us initialize the system in Sc, that is σk = 0 and |σ̇k | ≤ h2 (a − b). We proceed

as follows: we show that there exists λk+1 ∈ [−1, 1]2 such that σ̇k+1 = −σ̇k and −λk+1 ∈
Sgn(Σk+1). The previous proposition ensures the uniqueness of Σk+1, uk and λk+1 which
saves us from checking for other control input values.

Let us compute the value of λk+1 such that σk+1 = 0: using the discrete-time dynam-
ics (2.3.13), we get

0 = hσ̇k + h
2

2 (aλ1,k+1 + bλ2,k+2),

and the control input value is

uk = aλ1,k+1 + bλ2,k+1 = − 2
h σ̇k. (2.3.15)

Reporting this in (2.3.13b), we obtain

σ̇k+1 = −σ̇k. (2.3.16)

Let us check that there exists −λk+1 ∈ Sgn(Σk+1) which gives the control input value
in (2.3.15). Injecting the condition on σ̇k in (2.3.15), we have:

−a + b ≤ uk ≤ a − b. (2.3.17)

The value of λ2,k+2 can be anything in [−1, 1]. However since σk+1 = 0, λ1,k+1 can take
any value in [−1, 1]. Since a > b > 0, it is always possible to pickλ1,k+1 such that aλ1,k+1+

bλ2,k+2 takes any value in the range given by (2.3.17). Then we have a control input that
steers the system from (0, σ̇k) to (0,−σ̇k) if |σ̇k | ≤ h

2 (a − b). �
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The relation (2.3.16) indicates that cycling can occur for the discrete-time twisting we
study. Recalling that the B∗ matrix in (2.3.14) has rank one, we know that its range has
dimension one. In the following we study the set of points that can reach the origin, which
is the control objective.

Lemma 2.3.11. The origin of system (2.3.13) is only reachable from the line segment

S0 B

{
(σk, σ̇k) ∈ R2 : σk +

h
2
σ̇k = 0, |σ̇k | ≤ h(a + b)

}
. (2.3.18)

Proof. Let us first study the set of pointsΣk such thatΣk+1 = (0, 0). Using the recurrence
relations (2.3.13a) and (2.3.13b), we get the system




σk + hσ̇k +
h
2

(ahλ1,k+1 + bhλ2,k+1) = 0

σ̇k + ahλ1,k+1 + bhλ2,k+1 = 0.

(2.3.19a)

(2.3.19b)

Inserting (2.3.19b) in (2.3.19a) yields σk =
h2

2
(aλ1,k+1+bλ2,k+1). Combiningwith (2.3.19b)

we get

σk +
h
2
σ̇k = 0. (2.3.20)

Hence the origin can only be reached from the hyperplane defined by (2.3.20). Since λk+1

is in [−1, 1]2, the relation (2.3.19b) gives the additional constraints |σ̇k | ≤ h(a + b). �

Now that we studied how the origin of the closed-loop system can be reached, let us
investigate the set of initial conditions which can reach the origin.

Proposition 2.3.12. Consider system (2.3.13). The set of initial positions that can reach the
origin is a union of countably many segments. Therefore it has measure zero.

Proof. Lemma 2.3.11 characterizes the pre-image of the origin as the line segment S0. To
further study the set of points that can reach the origin, we compute the successive pre-
images of this segment. We now show that each pre-image is a union of segments. We
shall proceed by induction with the statement been that the set of points reaching the
origin inN steps is a union of segments, which have a finite negative slope. The segment
S0 satisfies those requirements. Now we tackle the inductive step of the proof. We want
to compute the pre-image is a union of segments. First we consider the intersections of a
segmentwith the interior of each quadrant.We consider only the non-empty ones, which
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are themselves segments. The control input uk is then constant for each point of the pre-
image. Let us suppose that the intersection admits the following representation: σ̇k+1 =

ckσk+1 + dk. Therefore we are interesting in solving the following linear system:




σk+1 = σk + hσ̇k +
h2

2
uk

ckσk+1 + dk = σ̇k + huk.

(2.3.21a)

(2.3.21b)

Since ck < 0 by the statement, we have 1 − hck , 0 and computing (2.3.21a) − h(2.3.21b),
we get

σk+1 =
1

1 − hck σk +
hdk

1 − hck +
h2

2(1 − hck)uk. (2.3.22)

Using (2.3.21b), one obtains

σ̇k = ckσk+1 + dk − huk.

Substituting σk+1 with its value in (2.3.22) gives

σ̇k =
ck

1 − hck︸  ︷︷  ︸
ck+1

σk +
dk

1 − hck − h
2 + hck

2(1 − hck)uk︸                        ︷︷                        ︸
dk+1

. (2.3.23)

Let us check that if ck < 0, then ck < ck+1 < 0. From (2.3.23)

1
ck+1
=

1
ck
− h,

Therefore, ck is always finite, negative, monotonically increasing and upper bounded by
0. Hence the preimage of this intersection is defined by the linear transformation (2.3.23)
and is therefore a segment, with a negative slope. Now we have to deal with the points
that are on the surface S1 or S2. Let us compute the preimage of such a point. We start
with the case Σk+1 ∈ S1: σk+1 = 0, σ̇k+1 , 0. The system of equations is




0 = σk + hσ̇k + h
2

2 uk
σ̇k+1 = σ̇k + huk.

(2.3.24a)

(2.3.24b)

We use the value of the control input in (2.3.24b) in (2.3.24a) to get:

0 = σk + hσ̇k + h2 σ̇k+1 − h2 σ̇k
h
2 σ̇k = −σk − h2 σ̇k+1

σ̇k = − 2
hσk − σ̇k+1
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The bound on uk define a segment on this line of negative slope, which has a point in S1

as image. If Σk+1 ∈ S2, we have σk+1 , 0, σ̇k+1 = 0.




σk+1 = σk + hσ̇k + h
2

2 uk
0 = σ̇k + huk.

(2.3.25a)

(2.3.25b)

As before, we use the value of the control input in (2.3.25b) in (2.3.25a) to get:

σk+1 = σk + h2 σ̇k
σ̇k = − 2

hσk − 2
hσk+1

Again the segment that has for image a point in S2 has a finite negative slope.

Thus, every point in the set that reach the origin inN + 1 steps belongs to a segment
of negative slope. Then all the pre-images of the origin are defined as an union of sets of
measure zero, union of line segments. Invoking the countably subadditivity of ameasure
completes the proof. �

Remark 2.3.13. From (2.3.16) in the proof of Lemma 2.3.10, one can see that if the system
does not start from very specific initial conditions, at some points it may cycle between
two values (0, α) and (0,−α) with |α| < (ah + bh)/2, but does not reach the origin. It
is not possible to control the value of α: it varies with both the initial condition and the
sampling period. Here are some numerical experiments that illustrate this effect.

OnFigure 2.1, we can see some simulation results illustrating this phenomenon.On the
left picture, it is easy to see that the system can end up cycling far from the origin. On the
right picture, the segment S0, defined in (2.3.18), in yellow and going through the origin,
can be seen as well as some of its preimages. The logarithmic scale better illustrates that
the initial conditions reaching the origin are of measure zero as stated in Proposition 2.3.12.
The cycling behavior induces a numerical chattering, which is surely undesirable. In the
next section, we present a modified discrete-time twisting algorithm for which the origin
is globally finite-time reachable and which has the same computational complexity as the
implicitly discretized algorithm.

2.3.4 Modified implicit twisting controller

Themain issuewith the implicit discretization of the twisting algorithm is that the segment
S0 is reachable only from initial conditions with measure zero in R2. We want that the
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σ̇

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03
σ

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

σ̇
0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32

final |σ̇k|
10−15 10−13 10−11 10−9 10−7 10−5 10−3 10−1

final |σ̇k|

Figure 2.1: Asymptotic behavior of the double integrator with the implicit twisting. One million
simulations with initial conditions in [−0.03, 0.03] × [−0.3, 0.3] were run. Each initial position
is then colored with the value of |σ̇k | at the end. The state cycles in all cases but one, due to the
finite numerical precision: the state magnitude in this case is close to the machine precision. The
sampling period is 50ms a = 10 and b = 3. The only difference between the two pictures is the
scale: linear on the left and logarithmic on the right.

trajectories starting from any initial conditions reach the origin. Therefore, we present a
modified twisting algorithm, featuring a different set for its AVI, which is globally finite-
time stable.

The basic idea is to consider the λ variable to be defined as

−λk+1 ∈ ∂h−K (Σk+1), (2.3.26)

withK a bounded polytopic convex set. This allows us to extend the inclusion

−λk+1 ∈ Sgn(Σk+1),

which given that Sgn(·) = ∂h[−1,1]2 (·) can be rewritten as

−λk+1 ∈ ∂h[−1,1]2 (Σk+1).

Using this approach based onAVI is interesting since wewant to be able to design a control
law that steers a set with positive measure to S0. To achieve this, we can modify the setK ,
where λ takes value, such that, at least, an half-line containing a part of −S0 is one of the
normal cone toK . We consider the case whereK is a convex polytope, defined as

K = {x ∈ R2 | Ex ≤ b} with E ∈ R4×2 and b ∈ R4. (2.3.27)
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From Fact A.1.10, we know that the normal cone is generated by the rows of E. Hence,
a simple way to have an half-line containing a part of −S0 as at least one of the normal
cones, is to include as a constraint, that is at least one row of E has to be proportional to
(h/2,−1). To be more concrete, the square [−1, 1]2 admits the representation

{
x ∈ R2 | Hx ≤ b

}
with H =

*......
,

1 0
0 1
−1 0
0 −1

+//////
-

and b =
*......
,

1
1
1
1

+//////
-

.

We propose to use the matrix

E =
*......
,

1 0
−h/2 1
−1 0
h/2 −1

+//////
-

in (2.3.27). The choice of the vector b depends on the constraints we want to impose on
the control inputs. Let us discuss three possible choices:

b1 =

*......
,

1
1
1
1

+//////
-

b2 =

*......
,

1
1 − h/2

1
1 − h/2

+//////
-

b3 =

*......
,

1
1 + h/2

1
1 + h/2

+//////
-

.

With b1, we obtain a parallelogram, which is not contained in the square [−1, 1]2. If the
original control constraints were important to respect, then by using the vector b2, the
resulting set is a parallelogram contained in the unit square. Finally another choice could be
b3, which gives a set containing the original square. Note that all those sets are symmetric
with respect to the origin.

In the following, we still consider that the sliding variables have the dynamics (2.3.13)
but now the discontinuous control variables are defined by the inclusion (2.3.26) with
the setK defined as (2.3.27) with the choice b1. The transformation from [−1, 1]2 toK is
given by

L = *
,

1 0
h
2 1

+
-
.

The control input is still given as

uk = aλ1,k+1 + bλ2,k+1. (2.3.28)
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The wellposedness of the controller is now investigated.

Lemma 2.3.14. The system composed of the double integrator system and modified implicit
twisting controller as defined in (2.3.26) enjoys the uniqueness of Σk+1 and uk. Moreover,
if Σk+1 , 0, then λk+1 is also unique.

Proof. The dynamics of the system is the same as in Lemma 2.3.8. Hence the uniqueness
of Σk+1 and uk follows from the same type of arguments as the proof of this lemma. We
just need to show that the conditions for the F-uniqueness of the AVI are fulfilled. As
noted in Remark 2.3.5, since B∗ as in (2.3.14) is a rank-one matrix, LTB∗L is the rank-one
matrix given by

LTB∗L = h *
,

1 h
2

0 1
+
-

*
,

h
2
1

+
-

(
a b

) *
,

1 0
h
2 1

+
-
= h *

,

h
1

+
-

(
a + h2b b

)
.

This matrix is singular with positive diagonal elements. By construction its columns are
linearly dependent.Hence,wehavebyProposition 2.3.4 theuniqueness ofΣk+1.As shown
in theproof of this proposition, this implies that the difference between any two solutions
is in kerM . Aswith the implicitly discretized twisting controller, this ensures the unique-
ness of the control input value uk. For the last part of the statement, the uniqueness of
Σk+1 implies that if λ1 and λ2 are two distinct solutions, then their opposite are both in
the set ∂h−K (Σk+1). Furthermore, we know from Fact A.1.14 that this means that

〈−λ1, Σk+1〉 = 〈−λ2, Σk+1〉 = h−K (Σk+1).

Whence ∆λ B λ1 − λ2 is orthogonal to Σk+1. But we know that

∆λ ∈ kerM = span
(
−ba

)
,

which means that Σk+1 = s
( a
b
)
, with s ∈ R. We are interested in the case Σk+1 , 0 which

means that s , 0. Given that a > b > 0, we get that:

∂h−K (Σk+1) = arg sup
y∈−K

〈y, Σk+1〉 =



{( 1
1+h2

)}
if s > 0{( −1

−1−h2

)}
if s < 0.

The two sets in the right-hand are both singletons: the solution λ of the AVI is therefore
unique whenever Σk+1 , 0. �
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Let us now turn our attention to the stability analysis. The conditions on the gain
now read:

a >
(

1 +
h
2

)
b > 0,

which comes from the forthcoming Lyapunov analysis. Before searching for a candi-
date Lyapunov function, let us provide some relations between the variables used in the
modified twisting controller (2.3.13) and (2.3.26). First note that we can link the support
functions of the setK and [−1, 1]2:

h−K (x) = sup
y∈−K

〈y, x〉 = sup
z∈−[−1,1]2

〈Lz, x〉 = sup
z∈[−1,1]2

〈z, LTx〉 = h[−1,1]2 (LTx).

Using the chain rule (Theorem A.1.15), we get: for all Σ ∈ R2,

∂h−K (Σ) = L∂h[−1,1]2 (LTΣ).

Thus the relation (2.3.26) can be rewritten equivalently as:

−λ1,k ∈ Sgn(σk +
h
2
σ̇k) (2.3.29)

−λ2,k ∈ Sgn(σ̇k) +
h
2

Sgn(σk +
h
2
σ̇k) (2.3.30)

This gives rise to the following bounds:

|λ1,k+1 | ≤ 1 (2.3.31)

|λ2,k+1 | ≤ 1 + h2 (2.3.32)

|uk | ≤ a + b(1 + h2 ). (2.3.33)

Now let us compute the set of points reaching the origin in one step.

Lemma 2.3.15. The origin of the double integrator with the controller defined as (2.3.26)
is only reachable from the line segment

S′0 B
{

(σk, σ̇k) ∈ R2 : σk + h2 σ̇k = 0, |σ̇k | ≤ h(a + b(1 + h2 ))
}
.

Proof. With the same computation as in the proof of Lemma 2.3.11, the origin can only
be reached from the hyperplane defined by σk + h

2 σ̇k = 0. Since λk+1 is in K , the new
upper bound on uk given in (2.3.33) gives the constraint |σ̇k | ≤ h(a + b(1 + h2 )). �

Now let us provide additional relations between the controller and sliding variables.
The inclusion (2.3.29) can be inverted as:

σk +
h
2
σ̇k ∈ N [−1,1](−λ1,k)
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or for all λ′1 ∈ [−1, 1], (λ′1 + λ1,k)
(
σk +

h
2
σ̇k

)
≤ 0. (2.3.34)

Note that from (2.3.29), we have

�����
σk +

h
2
σ̇k

�����
= −λ1,k

(
σk +

h
2
σ̇k

)
.

Also if h < 2, the relation (2.3.30) implies that

−λ2,kσ̇k > 0 if σ̇k , 0 and − λ2,kσ̇k = 0 if σ̇k = 0, (2.3.35)

since for σ̇k , 0, the first term in the right-hand side of (2.3.30) always dominates the
second one.

Now that we have those relations ready for use, let us look for a candidate Lyapunov
function. We shall try the following function

Vk = V (σk, σ̇k) = a
�����
σk +

h
2
σ̇k

�����
+

1
2
σ̇2
k −
h
2
bλ2,kσ̇k. (2.3.36)

Introducing the variable λk+1 yields

= −aλ1,k(σk +
h
2
σ̇k) +

1
2
σ̇2
k −
h
2
bλ2,kσ̇k

=

(
−aλ1,k

1
2

(σ̇k − ahλ1,k − hbλ2,k)
)
Σk. (2.3.37)

Starting from (2.3.36) andusing (2.3.35), it is easy to assess that ifh < 2, thenV (·) is positive
everywhere except at the origin where it vanishes, and that it is also radially unbounded.
The remaining part is to prove that this function decreases between two iterates, that is
∆Vk B Vk+1 − Vk < 0. Let us first recall the dynamics of the system:




σk+1 = σk + hσ̇k + h
2

2 (aλ1,k+1 + bλ2,k+1)

σ̇k+1 = σ̇k + h(aλ1,k+1 + bλ2,k+1).
(2.3.38a)

(2.3.38b)

First note that using (2.3.38b) in (2.3.37), we can write

Vk+1 = −aλ1,k+1σk+1 +
1
2 σ̇kσ̇k+1.

Nowwe investigate the evolution of V :

∆Vk = −aλ1,k+1

(
σk + hσ̇k + h

2

2

?︷                ︸︸                ︷
(aλ1,k+1 + bλ2,k+1)

)
+ aλ1,kσk
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+ 1
2 (σ̇kσ̇k+1 − σ̇k(σ̇k

?

−ahλ1,k − hbλ2,k)).

Using (2.3.38b), we substitute the terms tagged with? to get

∆Vk = a(λ1,k − λ1,k+1)σk − ah2 λ1,k+1(σ̇k+1 + σ̇k) + h2 (aλ1,k+1 + bλ2,k+1 + aλ1,k + bλ2,k)σ̇k

= a(λ1,k − λ1,k+1)(σk + h2 σ̇k) + h2 (−aλ1,k+1σ̇k+1 + (aλ1,k+1 + bλ2,k+1 + bλ2,k)σ̇k)

We replace σ̇k+1 with its expression in (2.3.38b).

= a(λ1,k − λ1,k+1)(σk + h2 σ̇k) + h2 (−ahλ1,k+1(aλ1,k+1 + bλ2,k+1) + (bλ2,k+1 + bλ2,k)σ̇k).

Using again relation (2.3.38b) to replace the term λ2,k+1σ̇k, we get

∆Vk = a(λ1,k − λ1,k+1)(σk + h2 σ̇k) + h2
(
−ahλ1,k+1(aλ1,k+1 + bλ2,k+1) + bλ2,k+1σ̇k+1

− hbλ2,k+1(aλ1,k+1 + bλ2,k+1)) + bλ2,kσ̇k
)
.

A final rearrangement in the second term yields

∆Vk = a(λ1,k − λ1,k+1)(σk + h2 σ̇k) − h
2

2 (aλ1,k+1 + bλ2,k+1)2 + bh2 (λ2,k+1σ̇k+1 + λ2,kσ̇k).
(2.3.39)

Let us analyze the last equality term by term: using the fact that σk+
h
2
σ̇k ∈ N [−1,1](−λ1,k)

and using (2.3.34), the first term is nonpositive. The second term is clearly nonpositive and
the third one too, using the relation (2.3.35). To conclude the proof, let us show that the
variation ∆Vk is negative as long as the origin is not reached. The second term in (2.3.39)
is zero only if

aλ1,k+1 + bλ2,k+1 = 0. (2.3.40)

Using (2.3.31) and (2.3.32)we get thatwith the condition a > (1+h/2)b, the latter equation
has a solution if and only if |λ1,k+1 | < 1. Thus we have (2.3.40) if and only if

σk+1 +
h
2
σ̇k+1 = 0. (2.3.41)

Using (2.3.40) in the dynamics (2.3.38b), we get that

σ̇k+1 = σ̇k.
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Going back to the analysis of (2.3.39), using (2.3.35), the last term in the right-hand side is
zero if and only if

σ̇k+1 = σ̇k = 0,

which combined with (2.3.41) implies that

σk+1 = 0,

and by (2.3.29) that σk = 0. Whence ∆Vk can be zero only when the system has already
reached the origin.

For the finite-time stability, remember that the three terms in the right-hand side
of (2.3.39) are all nonpositive. Hence we can find an upper bound of ∆Vk by considering
only one of those terms. Let us take a closer look at the second one:

−h2

2 (aλ1,k+1 + bλ2,k+1) = h2

2 uk.

Note that since a > b > 0, as long as λ1,k+1 , 0, which is true for σk+1 +
h
2 σ̇k+1, it holds

that |uk | ≤ a − b(1 − h2 ). Hence, if this condition on the sliding variable holds, then we
have

∆Vk ≤ −h
2

2
(a − b(1 − h2 ))2. (2.3.42)

From Lemma 2.3.15, we know that if the state of the system belongs to S′0, the origin
is reached at the next time instant tk+2. So if we prove that this segment is reachable in
finite-time from any initial conditions, then the origin is globally finite-time reachable.
Hence, given that (2.3.42) hold everywhere except on the line (2.3.41), just need to bound
∆Vk away from 0 if σk+1 belongs to the line (2.3.41) minus S′0. For this reason, suppose
that Σk+1 belongs to the line (2.3.41) and that |σ̇k+1 | > h(a + b). In the third term we have
the following expression

λ2,k+1σ̇k+1 = −|σ̇k+1 | − h2λ1,k+1σ̇k+1 ≤ −(1 − h
2

) |σ̇k+1 | ≤ −h(1 − h
2

)(a + b).

Hence we have the estimate

∆Vk ≤ −bh
2

2
(1 − h

2
)(a + b). (2.3.43)

For all k, ∆Vk is smaller than the maximum of the right-hand side of (2.3.42) and (2.3.43).
Both quantities being negative constants, the finite-time convergence to S′0 holds, hence
the finite-time convergence to the origin.We summarize the developments in the following
proposition.
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Proposition 2.3.16. Let h < 2. The origin is the unique equilibrium of the system (2.3.38)
with the controller given by (2.3.26) and is globally Lyapunov finite-time stable.

Remark 2.3.17. This discrete-time Lyapunov function V is close to the one used in [88]:
a|σ | + σ̇2/2.

Corollary 2.3.18. Let h < 2. The origin is the unique equilibrium of the continuous-time
system (2.3.1) with the controller given by (2.3.26) and is globally Lyapunov finite-time
stable.

Proof. The ZOH discretization being exact, we know by the previous proposition that
there exists k0 ∈ N such that Σk0 = 0. Then for all k > k0, Σk = 0, with the control input
uk = 0, as we can easily infer from (2.3.38). On each sampling interval, the continuous-
time system has the dynamics

Σ̇ = *
,

0 1
0 0

+
-
Σ + *

,

0 0
a b

+
-

0 = 0.

This concludes the proof. �
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0.3

σ̇

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
final |σ̇k| ×10−15

Figure 2.2: Asymptotic behavior of the double integrator with the modified implicit twisting. The
setup is the same as in Figure 2.1: one million simulations with initial conditions in [−0.03, 0.03]×
[−0.3, 0.3] were run. Each initial position is then colored with the value of |σ̇k | at the end. The
sampling period is 50ms a = 10 and b = 3.

Let us finish this study of the modified discrete-time twisting controller by showing
simulation results mirroring the ones given in Figure 2.1 for the implicitly discretized
twisting controller. On Figure 2.2, it is clear that for any initial condition, the system is
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steered to the origin. Note that the scaling factor for the final values of σ̇k is 10−15. The
values of σ̇k are close to the machine precision and no pattern can be seen. The cycling
problem has been sucessfully removed and the stability result given by Proposition 2.3.16
is also illustrated.

2.4 Sliding Mode Observers

The problem of observation being closely related to the control problem, we touch upon
the sliding mode observer topic. We first recall the continuous-time version, before dis-
cretizing the observer using the same spirit. Then we switch to a version based on the
equivalence-based control. Then we tackle the choice of the matrix gain before illustrating
with simulation results.

Let us consider a linear time-invariant system




ẋ(t) = Ax(t) + Bu(t) + Bξ(t, x)
y(t) = Cx(t),

(2.4.1)

whereA ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n. We further assume that B is full column rank
and that C is full row rank. The system is supposed to be observable.

The time instants at which themeasurements aremade form the sequence {tk}, k ∈ N.
The availablemeasurements are yk B Cxk = Cx(tk).We suppose that the control function
u is piecewise constant and that we have the knowledge of the time where it changes, such
that we can compute the quantity

B∗k B
∫ tk+1

tk
exp(Aτ)Bu(τ)dτ

for all time instants tk of interest.

2.4.1 Utkin’s observer

As in [33], we apply the state transformation T B


C
HC


, whereHC spans the null space

of C . The matrix T is invertible by the full row-rank assumption. This defines

TAT−1 C



A11 A12

A21 A22


= Ā
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and

TB C


B1

B2


= B̄.

Let z ∈ Rn−p and Tx B [y, z]T . The variable z is the unknown part of the state x.
In the new coordinate system, C andHC are transformed into C̄ B

[
Ip 0p×n−p

]
and

N̄C B
[
0n−p×p In−p

]
. We can rewrite the dynamical part of the system (2.4.1) as

ẏ(t) = A11y(t) +A12z(t) + B1u(t) (2.4.2)

ż(t) = A21y(t) +A22z(t) + B2u(t). (2.4.3)

The sliding mode observer proposed by Utkin [107] has the structure




˙̂y(t) = A11ŷ(t) +A12ẑ(t) + B1u(t) − ν(t)
˙̂z(t) = A21ŷ(t) +A22ẑ(t) + B2u(t) − L̄ν(t)
ν(t) ∈M Sgn(ŷ(t) − y(t)),

(2.4.4)

withM ∈ R+ and L̄ ∈ Rn−p×p the gain matrix. The design of the observer consists of
choosing the matrix L̄ such that the estimate ẑ → z.

2.4.2 Discrete-time version of the observer

We present now the discretized version of the observer, using Zero-Order Hold (ZOH)
and an implicit discretization of the Sgn(·) multifunction in (2.4.4). Rewriting the equa-
tions (2.4.2) and (2.4.3) in discrete time, with a ZOH discretization, yields

yk+1 = C̄Ā∗


yk
zk


+ C̄ B̄∗k (2.4.5)

zk+1 = N̄C Ā∗


yk
zk


+ N̄C B̄∗k, (2.4.6)

where Ā∗ = exp(Āh) and B̄∗k B TB∗k. To simplify the discrete-time dynamics, let us
slightly modify the observer dynamics by introducing the termΨ−1 before the nonsmooth

part of the dynamics, withΨ B
∫ h

0
exp(Āτ)dτ. The rational for this modification will

become clear in the forthcoming analysis. Then the observer state x̂ B
[
ŷ ẑ

]T
has the

continuous-time dynamics

˙̂x(t) = Āx̂(t) + B̄u(t) − Ψ−1


Ip
L̄


ν(t), (2.4.7)
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with ν : R→ Rp a piecewise constant function, changing at time tk. By integration over
[tk, tk+1), we obtain the recurrence relations:

x̂k+1 = Ā∗x̂k + B∗k −


Ip
L̄


νk (2.4.8)

and:

ŷk+1 = C̄Ā∗


ŷk
ẑk


+ C̄B∗k − νk (2.4.9)

ẑk+1 = N̄C Ā∗


ŷk
ẑk


+ N̄CB∗k − L̄νk. (2.4.10)

We proceed in two steps. First we extract information from the measurement y at time tk.
Then we use it in the observer. For all k ∈ N∗, at time tk, we have the knowledge of yk,
yk−1 and ẑk.

Let ỹ = ŷ − y and z̃ = ẑ − z be respectively the error on the measured (respectively
reconstructed) part of the state. In the following we detail the compute of the variable νk.

2.4.3 Analysis of the discrete-time observer

The first approach to compute νk is to use a discretized version of (2.4.4). As with the
SMC, the specificity of our approach is to use an implicit Euler method, sometimes called
backward Euler, for the argument of the Sgn(·) multifunction. The situation is as follows:
the current time is tk+1 and the measurement yk+1 is available. Our objective is to use it
to update the states of the observer, that is to determine the value of ŷk+1 and ẑk+1. The
implicit discretization of ν yields

νk+1 =M Sgn(ŷk+1 − yk+1),

which added to the dynamics (2.4.9) and (2.4.10) gives the system




x̂k+1 = Ā∗x̂k + B∗k −


Ip
L̄


νk+1

νk ∈M Sgn(ŷk+1 − yk+1).
(2.4.11)

In order to deterthe SMC, tine the value of νk+1, we look at the error dynamics of ỹ =
ŷ+1 − yk+1. The dynamics in (2.4.11) onto the subspace spanned by C̄ are given by the
relation




ŷk+1 − yk+1 = C̄Ā∗x̂k + C̄B∗k − yk+1 − νk+1

νk+1 ∈M Sgn(ŷk+1 − yk+1).
(2.4.12)
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This system has 2 unknowns: ŷk+1 and νk+1. It has the same form has the closed-loop
reduced dynamics studied in Section 2.2. The same approach applies and therefore the
system (2.4.12) is non-anticipative and has a unique solution, that can be simply computed
as

νk+1 = proj[−M,M ]p (C̄Ā∗x̂k + C̄B∗k − yk+1). (2.4.13)

This result is due to the particular structure of the system (2.4.12), namely that the non-
smooth part due to the Sgn(·) is only left-multiplied by the positive scalarM in the
recurrence relation (2.4.12). This is the consequence of the introduction of the termΨ in
the continuous-time dynamics (2.4.7).

Beyond solvability property, the system (2.4.12) is also Lyapunov finite-time stable,
that is if ŷ0 − y0 = ỹ0 , 0, then there exists k0 ∈ N such that ỹk0 = 0. However, in the
context of measurements of a linear subspace of a state, it is not clear that this situation is
of interest. Indeed at the time instant t0, start of the estimation process, one can always
update the initial estimate such that C̄ x̂0 = 0. A simple procedure is to solve by least square
the problem C̄ x̂c = C̄ x̂0 − y0 and then to update the estimated state by x̂+0 = x̂0 − x̂c.
After this operation, C̄ x̂+0 = y0. The solution of the least square problem is given by
x̂c = C̄ (C̄T C̄ )−1C̄T (C̄ x̂0 − y0), which implies that N̄C x̂c = 0. Therefore the value of z̃ is
not affected by this update.

Furthermore, the convergence of the observer is conditional on the error been small
with respect toM , see [33, p. 128]. The error

[
ỹ z̃

]T
may leave the slidingmanifold ỹ = 0

as well. This motivates us construct an observer which evolves unconditionally on this
sliding manifold.

2.4.4 Equivalent-based observer

The main idea behind sliding mode observer is to constrain the error to evolve in the
subspace ỹ = 0. The idea is to consider νk as a Lagrangemultiplier in (2.4.9), which ensures
that the constraint ŷk+1 = yk+1 is satisfied. Imposing this relation in (2.4.8) yields the value
of νk:

νk = C̄Ā∗x̂k + C̄ B̄∗k − yk+1. (2.4.14)

The right-hand side contains only known quantities at time tk+1. At this point it should be
noted that the value of νk+1 in (2.4.13) is the one obtained from (2.4.14) and projected onto
anMB∞. Aswe shall see in Section 2.4.5, νk+1 contains important information on the error
on the nonmeasured part z. Therefore wewill tend to use the formula in (2.4.14), since the
projection onto an hypercube can be seen has a reduction of the available information the
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observer gets from the measurement. We can also make a connection with the notion of
equivalent part of the control used in classical sliding mode control. The latter is designed
such that it makes the sliding manifold positively invariant, by forcing the derivative to be
in the tangent space.

2.4.5 Pole placement

If we combine the relations in (2.4.5) and (2.4.9), we have

C̄Ā∗


yk
zk


= C̄Ā∗



ŷk
ẑk


− νk+1.

Therefore

νk+1 = C̄Ā∗


0
ẑk − zk


= Ā∗12̃zk, (2.4.15)

where Ā∗ is split as


Ā∗11 Ā∗12

Ā∗21 Ā∗22


, with blocks of the same dimensions as for Ā. By com-

puting νk+1 using (2.4.14), some information about the error on the non measurable state
variable z is available. We use this quantity in the equation (2.4.10) to make the estimate
converge to the true value.

In a similar fashion to the continuous-time case, substituting (2.4.15) in (2.4.10), and
computing the error z at time tk+1, by using (2.4.6) and (2.4.10), yields

z̃k+1 = ẑk+1 − zk+1 = N̄C Ā∗


0
ẑk − zk


− L̄Ā∗12̃zk

= (Ā∗22 − L̄Ā∗12 )̃zk

Using [102, Prop. 6.2.11, p. 275], if (Ā, C̄ ) is observable and h(λ−µ) , 2lπi for all l ∈ Z∗,
with λ, µ any two eigenvalues ofA, then (Ā∗, C̄ ) is also observable. We can then use a
result in [33, p. 128], to claim that if (Ā, C̄ ) is observable, then the pair (Ā∗22, Ā∗12) shares
this property. Thus it is possible to findL to place the eigenvalues of thematrix Ā∗22−LĀ∗12

at any desired values. If those eigenvalues are in the unit circle, then z̃ shrinks exponentially
fast to the origin, ensuring the convergence of the state estimate to the real one.

Finally, combining (2.4.10) and (2.4.14), the update equations for the observer are

ŷk+1 = yk+1
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ẑk+1 = Ā∗21ŷk + Ā∗22ẑk + C̄ B̄∗k − L̄νk
= (Ā∗21 − L̄Ā∗11)ŷk + (Ā∗22 − L̄Ā∗12)ẑk + (C̄ − L̄N̄C )B̄∗k + L̄yk+1.

This observer is of reduced order. Compared to previous approach there is no chattering
problem, as mentioned in [52], neither a need for an auxiliary controller. The simulation
results presented in Section 2.4.7 illustrate this.

2.4.6 With nonlinear terms and/or perturbations

One of themain appeals for constructing discontinuous observers is their ability to provide
a good estimate even if the dynamics includes bounded nonlinearities and/or uncertainties.
We shall now turn our attention to this case. With our notation, we now have ξ . 0 and it
is a function of t and x. Let us denote by F : Rn ×R ×R→ Rn the map that gives xk+1 in
terms of the triple (xk, tk, tk+1). With an LTI system, we have F (xk, tk, tk+1) = A∗xk, with
the difference tk+1 − tk hidden in Ā∗. The measurement from the system is of the form

yk+1 = C̄F (xk, tk, tk+1)

Using the same procedure as before, (2.4.14) is equivalent to

νk = C̄Ā∗


ŷk
ẑk


+ C̄ B̄∗k − C̄F (xk, tk, tk+1),

which leads to the error dynamics

z̃k+1 = N̄C (x̂k+1 − xk+1) = N̄C Ā∗x̂k − L̄C̄Ā∗x̂k + (L̄C̄ − N̄C )F (xk, tk, tk+1). (2.4.16)

Let us tackle the case where we have a state-independent perturbation term, that is ξ
is only a function of t. This additional constraint on ξ gives us a closed-form expression of
F , namely

F (xk, tk, tk+1) = A∗xk + pk (2.4.17)

with

pk B
∫ tk+1

tk
eA(tk+1−τ)Bξ(τ)dτ.

We can then go further in the analysis of the error dynamics: using (2.4.17) in (2.4.16) yields

z̃k+1 = (Ā∗22 − L̄Ā∗12 )̃zk + (L̄C̄ − N̄C )pk
One can see that the choice of the gain matrix L̄ is affecting both the linear part of the
dynamics and how the perturbation affects the error. Hence careful attention has to be
given to the choice of L̄.
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2.4.7 Simulation results

Let us illustrate the effectiveness of the proposed discrete-time sliding observer. We use the
same example as in [110], that is a simple pendulum. The ideal dynamics of this system is

mlθ̈ +mg sin θ = 0,

which can be put into the state-space form

*
,

ẋ(1)

ẋ(2)
+
-
= *

,

0 1
0 0

+
-

*
,

x(1)

x(2)
+
-
+ *

,

0
− sin x(1)

+
-
,

with x(1) = θ and ξ(2) = θ̇. In the aforementioned reference, the scalar output was chosen
as

yk B
(
1 1

) *
,

x̂(1)
k
x̂(2)
k

+
-

The gain matrix is chosen as

L B *
,

0
1

+
-
.

The dynamics of the observer is

*
,

x̂(1)
k+1
x̂(2)
k+1

+
-
= *

,

1 h/2
0 1

+
-

*
,

x̂(1)
k
x̂(2)
k

+
-
+ Lνk.

The non measurable part of the state has dynamics characterized by an eigenvalue at
0.9, inside the unit circle. We compare the performance of this observer with a classical
Luenberger one. The dynamics of the latter is

*
,

x̂(1)
k+1
x̂(2)
k+1

+
-
= *

,

1 h/2
0 1

+
-

*
,

x̂(1)
k
x̂(2)
k

+
-
+ L(ŷk − yk),

with the same gainmatrixL. This places the eigenvalues ofA∗+LC , of the error dynamics,
at 0.89 and 0.11, inside the unit circle.

2.5 Perturbation Attenuation Improvements

2.5.1 Problem statement

In continuous time, while in the sliding phase, the discontinuous control input uscont takes
values to reject the perturbation action, according to Filippov’s concept of solutions. Let
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Figure 2.1: Evolution of the system states and the estimates
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Figure 2.2: Evolution of the errors between the estimates and the true values
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Figure 2.3: Innovation and estimated output ŷ

us illustrate this using an academic example, ẋ(t) ∈ − Sgn(x) + d(t), x scalar and d a
continuous unknown perturbation, with |d(t) | ≤ 1 for all t. In the sliding phase, the value
taken by Sgn(x(t)) is d(t). In Section 2.2, it was established that in the discrete-time sliding
phase the input us is approximating the opposite of contribution of the perturbation in
the evolution of the sliding variable. But this action is a posteriori, in the sense that at time
tk, us corrects for the contribution of the perturbation over the time interval [tk−1, tk].
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Hence the attenuation of the perturbation is limited since the control is lagging by one
sampling period.

Our approach to enhance the perturbation attenuation consists in using the past
values of the sliding variable in order to predict the contribution of the perturbation on
the next time interval. Then we take into account this prediction in the control input
that is going to be applied for this time interval. As we shall see, this additional control
input is computed independently of the other ones. The idea presented here shares some
similarities with previous work like [80, 104]

Let us study the dynamics of the ZOH-discretized discrete-time systemwith a nonzero
perturbation. We suppose the system has been in the discrete-time sliding phase for more
than 1 sampling period. Adding the perturbation term to (2.2.2), we get

xk+1 = eAhxk + B∗ueqk + B
∗usk + B∗u

p
k + pk,

where the new control inputU pk will be used to enhance the disturbance compensation.
With ueqk as in (2.2.11), the sliding variable dynamics is

σk+1 = σk + CB∗(usk + u
p
k) + Cpk, (2.5.1)

with

pk B
∫ tk+1

tk
eA(tk+1−τ)Bξ(τ)dτ. (2.5.2)

We refer to pk or Cpk as the effect, or contribution, of the perturbation. From (2.2.6), in
the discrete-time sliding phase σ̃k+1 = 0, so σk + CB∗usk = 0. Therefore the relation (2.5.1)
becomes

σk+1 = Cpk + CB∗upk. (2.5.3)

If we have an estimate C̃pk of Cpk at the time tk, then we can use this information in the
control input upk, defined as

upk B −(CB∗)−1C̃pk. (2.5.4)

Then injecting (2.5.4) in (2.5.3), we get:

σk+1 = Cpk − C̃pk C Cp̂. (2.5.5)

The Algorithm 1 summarizes the computation of upk.
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Algorithm 1 Computation of upk
Require: vector buf of previous Cpl
while uk−1 < (−α, α)p do {Reaching phase}
upk ← 0

end while
repeat {Initialize the prediction}
upk ← 0
Prepend σk+1 = Cpk−1 to buf

until buf is full
loop {Iteration in the discrete-time sliding phase}
Cpk−1 ← σk+1 + C̃pk−1
Erase the last value of buf and prepend Cpk−1 to buf
Compute C̃pk and project C̃pk onto Bαβ
upk ← −(CB∗)−1C̃pk

end loop

In the rest of this note, we name the quantity denoted byCp̂ the residual perturbation.
The chattering on the output σ is equal to the prediction error on the effect of the pertur-
bation. Therefore to reduce the chattering imputable to perturbations like unmodeled
dynamics, we can try to find a good prediction of the value of the perturbation. The better
it is, the smaller the chattering will be. In the next section, we build an estimate C̃pk of
Cpk at the time tk.

2.5.2 Prediction of the perturbation

The method we propose to make use of is finite difference, itself based on the Taylor
expansion of a function. For instance if we suppose that a function f : R→ Rn is twice
differentiable, it holds that

f (x + h) = f (x) + hḟ (x) + h
2

2
f̈ (x) +O(h3).

To use this recurrence formula for the prediction at the next time instant, one needs to
estimate the values of the first and second derivatives of the function. We use again the
finite difference method to get them. We suppose we have access to Cpk for the previous r
sampling periods.HoweverCp(t) is not a continuous function. It is piecewise smooth, but
only right-continuous. From the definition in (2.5.2), we have Cp(t+k ) = 0 for all k ∈ N.
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This prevents us from directly applying the Taylor expansion to Cp(t) itself. Nonetheless,
we can use the Taylor expansion formula on the perturbation ξ and then derive the one
for the prediction of Cpk. Let us illustrate this using a second order expansion of ξ:

ξ(τ + h) = ξ(h) + hξ̇(τ) +
h2

2
ξ̈(τ) +O(h3).

Multiplying by eA(tk−τ) and integrating, we get:∫ tk

tk−1

eA(tk−τ)Bξ(τ + h)dτ =
∫ tk

tk−1

eA(tk−τ)Bξ(τ)dτ+

h
∫ tk

tk−1

eA(tk−τ)Bξ̇(τ)dτ + h
2

2

∫ tk

tk−1

eA(tk−τ)Bξ̈(τ)dτ +O(h4). (2.5.6)

Using the change of variable τ′ = τ + h in the left-hand side of (2.5.6) and using (2.5.2),
we obtain the relation

Cpk = Cpk−1 + hC
∫ tk

tk−1

eA(tk−τ)Bξ̇(τ)dτ

+
h2

2
C
∫ tk

tk−1

eA(tk−τ)Bξ̈(τ)dτ +O(h4). (2.5.7)

Let us define Cp(i)
k B C

∫ tk

tk−1

eA(tk−τ)ξ(i) (τ)dτ. We use the finite difference method to

estimate the second and third terms in (2.5.7).

Lemma2.5.1. Suppose we have an r-step approximation of the i-th derivative of ξ, ξ(i) (τ) =
r∑
l=0
αlξ(τ − lh) + O(hr−i+1) with r ≥ i. Then the approximation formula for Cp(i)

k is
r∑
l=0
αlCpk−l and is of order O(hr−i+2).

Proof. Starting from the approximation relation for the derivative and with basic opera-
tions, we get:

C
∫ tk+1

tk
eA(tk+1−τ)Bξ(i) (τ)dτ =

r∑
l=0
αlC

∫ tk+1

tk
eA(tk+1−τ)Bξ(τ − lh)dτ +O(hr−i+2).

For each integral, we use the change of variable τ′ = τ − lh.

C
∫ tk+1

tk
eA(tk+1−τ)Bξ(i) (τ) =
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r∑
l=0
αlC

∫ tk+1−l

tk−l
eA(tk+1−l−τ′)Bξ(τ′)dτ′ +O(hr−i+2)

=

r∑
l=0
αlCpk−l +O(hr−i+2).

�

Using Lemma 2.5.1 for the approximate values of the first and second derivatives
in (2.5.7) yields:

Cpk ≈ Cpk−1 + h
r1∑
l=0
αlCpk−l +

h2

2

r2∑
l=0
α′lCpk−l . (2.5.8)

where r1 and r2 (both ≤ r) are the orders for the prediction of the first and second deriva-
tives. Those, with the coefficients αl and α′l , are taken from [40]. As Equation (2.5.8)
illustrates it, the i-th derivative estimate is multiplied by hi. By Lemma 2.5.1 we know that
the approximation error for the i-th derivative is of order O(hr−i+2). Then the approxi-
mation error introduced by the i-th derivative is of order O(hr+2).

Let us present some possible prediction formulæ. Using only the first derivative, we
have the relation

Cpk = 2Cpk−1 − Cpk−2 +O(h3)

= C̃pk +O(h3), (2.5.9)

where both the approximation of the first derivative and the prediction have the same
order. Adding the second derivative yields

Cpk =
5
2
Cpk−1 − 2Cpk−2 +

1
2
Cpk−3 +O(h3)

= C̃pk +O(h3). (2.5.10)

The order is the same as in (2.5.9) since we use a 1-step approximation for Cp(1)
k , of order 1

which introduces an error of order O(h3) in (2.5.10). Therefore to achieve an overall error
of order O(h4), we need an estimate with an order 2 for Cp(1)

k , yielding

Cpk = 3Cpk−1 − 3Cpk−2 + Cpk−3 +O(h4)

= C̃pk +O(h4). (2.5.11)

From now on, let us refer to (2.5.9) as a linear or order 1 prediction and to (2.5.10) as an
order 2 prediction. Both predictions are said to be high-order in contrast with the one
given by the relation

C̃pk = Cpk−1, (2.5.12)
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which is said to be constant.Note that the order of the prediction indicates also the number
of times the perturbation ξ(t) has to be differentiable for the approximation order to be
guaranteed.

2.5.3 Controller implementation

Let p ∈ N be the approximation order. As long as the closed-loop system is not in the
discrete-time sliding phase, we set up ≡ 0. Let k0 ∈ N be such that σ̃k0 = 0, that is the
system is in the discrete-time sliding phase, and let k > k0. For k0 ≤ k < k0 + p, we let
upk = 0 and we save σk, which isCpk−1 according to (2.5.3). For k ≥ p+ k0, we compute the
prediction of the perturbation C̃pk using one of the formulæin (2.5.9), (2.5.11) or (2.5.12)
and we set upk = (CB)−1C̃pk. At this point, we cannot know Cpk−1 directly from σk since
upk changes the dynamics. From (2.5.5), at time tk, Cpk−1 is obtained through the relation

Cpk−1 = σk + C̃pk−1,

where σk is measured and C̃pk−1 is known from the last estimation.

InProposition 2.2.11, the condition ‖Cpk‖ ≤ αβ for allk, withβ the smallest eigenvalue
of CB∗s B (CB + (CB∗)T )/2, was used to guarantee a finite-time reaching phase and
that the system does not exit the discrete-time sliding phase. This inequality condition
‖Cpk‖ < αβ gives us a “feasibility set” for the prediction C̃pk. If C̃pk > αβ, then we project
the estimate onto the ball of radius αβ centered at the origin. With this refinement of our
algorithm, we make a first step towards some stability properties, which are studied in
Section 2.5.6.

2.5.4 Numerical example

We illustrate themethod on a simple 2 dimensional system, that we use again in Section 3.4:




ẋ(t) = Ax(t) + Bu(t) + Bξ(t)
σ = Cx
u(t) = ueq(t) + us(t)

A = *
,

0 1
19 −2

+
-
,

B = *
,

0
1

+
-
, CT = *

,

1
1
+
-
.

(2.5.13)

The perturbation ξ is a simple sinusoid: ξ(t) = sin(4πt). It was chosen as an example of
unmodeled dynamics in a mechanical system. The matrixA has the eigenvalues λ1 = 3.47

and λ2 = −5.47. The dynamics on the sliding surface is given by *
,

0 1
0 −1

+
-
, which has
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eigenvalues 0 and −1. The initial state is (−15, 20)T and the sampling period is 10−2s.
Simulation have been done with 4 different controllers: the classical implicit one, one
with the assumption that the perturbation is constant (2.5.12), one with the prediction
presented in (2.5.9) and the last onewith the prediction formula in (2.5.11). The simulations
run for 150 s and were carried out with the siconos software package [2]1. Figures were
created using Matplotlib [62]. We present plots of the state variables in Figures 2.1, 2.2
and 2.3. Then we display the evolution of the discontinuous control us in Figures 2.4
and 2.5. On each figure depicting the state space evolution, the black line is the hyperplane
σ = 0.
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Figure 2.1: Simulations of system (2.5.13), zoomed around the origin, with h = 10−2s.

In Figure 2.1, the state values for the last second are displayed,when each system features
some kind of steady-state behaviour. The improvement obtained using the prediction is
clearly visible, to the point that we need to zoom to see the chattering with higher-order
estimations. In Figure 2.2, detail of Figure 2.1, only the trajectories of the closed-loop
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Figure 2.2: Detail of Figure 2.1, with only the trajectories of the closed-loop systems with prediction
visible.

systems with prediction are displayed. The behaviour between sampling times can be
seen with the constant prediction (order 0). Each high-order prediction (order 1 and 2),

1http://siconos.gforge.inria.fr

http://siconos.gforge.inria.fr
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yields a closed-loop system featuring even less chattering, as we can see in Figure 2.3. At

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
x1 1e−5
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−1
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1

2
x 2

1e−4

Order 1
Order 2

Figure 2.3:Detail of Figure 2.2, with only the trajectories of the closed-loop systemwith higher-order
prediction visible.

this level of detail, the difference between the two estimations with high-order becomes
visible. Markers indicate the state of the system at each time instant tk, that is when the
control values change. We see that for those particular values, the prediction with order 2
yields better results, with a chattering one order of magnitude smaller. However with the
small contribution of the residual perturbation, the inter-sampling dynamics provides
an important contribution to the behaviour of the system. For the present example, the
advantages of using a prediction order higher than 1 are not so striking as the ones from
using at least a linear prediction. Therefore it is important to take into account the inter-
sampling dynamics when designing the prediction of the perturbation.
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Figure 2.4: Evolution of us for simulations of system (2.5.13) with h = 10−2s.

Let us turn our attention to the control input. Firstly we plot the evolution of the
discontinuous part us, which is, up to a constant, equal to the residual perturbation (2.5.5).
In Figure 2.4, the evolution of us for the last 2 seconds is displayed. As expected, the
better the approximation, the smaller us is. In Figure 2.5, detail of Figure 2.4, the same
phenomenon can be seen for the high-order estimations. Let us turn our attention to up, as
displayed in Figure 2.6. In Section 2.2, it is shown that with no perturbation prediction, us
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Figure 2.5: Detail of Figure 2.4.
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Figure 2.6: Evolution of up for simulations of system (2.5.13)

approximates the perturbation with a delay of h. Recall that with an order 0, the predicted
value of the effect of the perturbation is the one the system just measured. In this case, the
values taken by up are the ones that us would take with no perturbation prediction. What
we can see from Figures 2.6 and 2.7 is that with a high-order prediction, this lag of one
sampling period h seems to have vanished. This is easier to assess on Figure 2.7, where if
we shift the solid green curve (corresponding with the constant prediction) by −h on the
time axis, then it would more or less overlap with the two other curves. This observation
can also be explained in the following way: with an estimation of order 0, there is no use
of a derivative of ξ to “look into the future”. When this is the case, as for the order 1 and
2, the main difference between the different predictions is the value that upk takes. This
highlights the fact that using high-order estimation yields a prediction, hence a chattering
attenuation, substantially better than a constant one. A last interesting comparison is the
control effort used in each of these closed-loop systems. In particular, we want to compare
the sum us + up with the discontinuous input us in the case where up ≡ 0. In Figure 2.8,
one can see that all the control inputs are quite close, in terms of shape and value. At this
level of detail, there is no difference between the closed-loop system with prediction. The
main difference is that without prediction, the control is shifted by hwith respect to the
one with a prediction. Adding a perturbation prediction yields no extra control effort in
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Figure 2.7: Detail of Figure 2.6.
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ūs
(t)
+
ūp
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Figure 2.8: Evolution of us + up for simulations of system (2.5.13)

this example.

2.5.5 Multirate sampling

As we have seen in Section 2.5.2, the prediction process consists in two stages: first the
different derivatives are approximated and then the prediction ismade. The same sampling
period hwas used for both stages. In the following we change the sampling period used
for the estimation of the coefficients. We assume that we can sample the output of the
systemmore often than we can change the control. Let us denote by hs > 0 the sampling
time interval for the state of the system. To simplify the analysis, we assume that the ratio
between h and hs is an integer s. We also need tomeasure the whole state. Previously, it was
sufficient to be able to measure the sliding variable. However this requirement is not too
restrictive since for the computation, it is generally required to measure the full state since
it is needed for the computation of the equivalent part of the control input. Let us define

the quantity pk+ ls B
∫ tk+ ls h

tk
e(tk+ ls h−τ)ξ(τ)dτ. During the first step of the algorithm, we

have to be able to compute the derivative up to a certain order using the availablemeasured
variables. The following lemma contains a formula relating the two quantities.

Lemma 2.5.2. Suppose that we have an estimate of the i-th derivative of ξ: ξ(i) (tk) =
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s∑
l=1
αlξ(tk − lhs ). Then the approximation formula for Cp(i)

k is

s∑
l=1
αlCpk+ s−ls +

s∑
l=1
αleA

(s−l)h
s Cpk−1 − eAh

s∑
l=1
αlCpk−1+(s−l)/s

Proof. As in the proof of Lemma 2.5.1, we consider the estimate formula and transform
it to obtain the desired quantity:∫ tk+1

tk
eA(tk+1)Bξ(i) (tk) =

s∑
l=1
αl
∫ tk+1

tk
eA(tk+1)Bξ(τ − lhs)dτ. (2.5.14)

Let us study each element of the sum separately. We apply the change of variable τ′ =
τ − lh/s = τ − lhs:∫ tk+1

tk
eA(tk+1)Bξ(τ − lhs)dτ =

∫ tk+1−lhs

tk−lhs
eA(tk+1−lhs−τ′)Bξ(τ′)dτ′

= Cpk+ s−ls +
∫ tk

tk−lhs
eA(tk+(s−l)hs−τ′)Bξ(τ′)dτ′

= Cpk+ s−ls + e
A(s−l)hs

∫ tk

tk− lhs
eA(tk−τ′)Bξ(τ′)dτ′

= Cpk+ s−ls + e
A(s−l)hs

(∫ tk

tk−1

eA(tk−τ′)Bξ(τ′)dτ′

−
∫ tk−1+ (s−l)h

s

tk−1

eA(tk−τ′)Bξ(τ′)dτ′
)

= Cpk+ s−ls + e
A(s−l)hs

(
Cpk−1 − eAlhsCpk−1+ s−ls

)
= Cpk+ s−ls + e

A(s−l)hsCpk−1 − eAhCpk−1+ s−ls
.

Then using this expression in (2.5.14) yields:∫ tk+1

tk
eA(tk+1)Bξ(i) (tk) =

s∑
l=1
αlCpk+ s−ls

+

s∑
l=1
αleA

(s−l)h
s Cpk−1 − eAh

s∑
l=1
αlCpk−1+(s−l)/s.

Using this expression back in the original approximation formula completes the proof.
�

The prediction step has the same sampling period h as before. However it might be
interesting to use a higher-order extrapolation formula: the estimates of the “derivatives”
Cp(i)
k are know with a higher precision since hs is supposed the be smaller than h.
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2.5.6 Stability properties

One natural question arising from this prediction procedure is whether the use of a bad
prediction can degrade the closed-loop performance instead of improving it. SlidingMode
Control is known for its robustness and such a feature should not be lost while trying to
reduce the chattering.

First we characterize the robustness with a discrete-time feedback loop. Since we use an
implicit discretization of the discontinuous control us, we can divide the evolution of the
closed-loop system in two phases: the reaching phase, were us has at least one of its element
taking the maximum value ±α and the discrete-time sliding phase fromDefinition 2.2.4.
We define the robustness as the feature that the system does not leave the discrete-time
sliding phase, once it enters it.

Proposition 2.5.3. Suppose that CB∗s is positive-definite and β > 0 is its smallest eigenvalue.
Let the estimate C̃pk be obtained by the mean of one of the formulæin Section 2.5.2. If
α > 0 is such that for all k ∈ N, 2‖Cpk‖ < αβ and C̃pk is projected onto the admissible
set {v ∈ Rp : ‖v‖ < αβ}, then the perturbed closed-loop system given by (2.5.1) and (2.2.6)
enters the discrete-time sliding phase in finite time, and stays in it.

Proof. Let V (σk) B −usTk−1σk, usk−1 ∈ −α Sgn(σk), be the Lyapunov function candidate.
The functionV ( · ) is positive definite, radially unbounded, anddecrescent sinceV (σk) =
α‖σk‖2

1 and α > 0. Assume that the system is initialized outside the discrete-time sliding
phase, and recall that in the reaching phase, up ≡ 0. FromDefinition 2.2.4, it follows that
‖usk‖ ≥ α. Let us study the variations of V ( · ):

V (σk+1) − V (σk) = −(usk)Tσk+1 + (usk−1)
Tσk

= −(usk)T (σk + CB∗usk + Cpk) + (usk−1)
Tσk

= −(usk)TCB∗usk + (usk)TCpk + 〈usk−1 − usk, σk〉.

The inclusion −usk ∈ α Sgn(σk+1) is equivalent to σk+1 ∈ N αB∞ (−usk). This implies that
the last term is always nonpositive by the definition of the normal cone. Therefore we
have V (σk+1) − V (σk) ≤ −β‖usk‖2 − (usk)TCpk. Using the Cauchy-Schwarz inequality,
we obtain |(usk)TCpk | ≤ ‖usk‖‖Cpk‖. To ensure that V ( · ) decreases strictly, we need
‖Cpk‖ < β‖usk‖. This condition is satisfied using the hypothesis on the gainα and the fact
that β > 0. Note that even in the case with multiple switching surfaces, V ( · ) decreases
as long as the system is not “sliding” on the intersection of all the manifolds. If σ̃k+1 = 0,
thenwe enter the discrete-time sliding phase. Let κ = αβ− ‖Cpk‖. From the assumption,
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κ > 0 holds. In the reaching phase, V (·) decreases by at least κα at each sampling period.
Hence, V (σk) converges to 0 in finite-time.

Let the systembe in the discrete-time sliding phase at tk. Then from (2.2.6) and (2.5.4)
σ̃k+1 = 0, upk = −(CB∗)−1C̃pk and σk+1 = Cp̂k. At time tk+1, we have σ̃k+2 = Cp̂k +
CB∗usk+1 + CB∗u

p
k+1. Let us show that usk+1 = −(CB∗)−1Cp̂k is the unique solution to

the generalized equation (2.2.6). With this value, σ̃k+2 = 0. Note that ‖Cp̂k‖ ≤ 2‖Cpk‖
since we project the estimate C̃pk. Using Lemma 2.2.10 and the hypothesis 2‖Cpk‖ < αβ,
we get ‖usk+1‖ ≤ β−1‖Cp̂k‖ < α. Relations between norms yield ‖usk+1‖∞ < α. Then
usk+1 ∈ (α, α)p ⊂ α Sgn(0) andusk+1 is a solution to (2.2.6).Remember fromLemma2.2.3
that this solution is unique since CB∗ is positive-definite. Thus usk+1 = −(CB∗)−1Cp̂k
is the unique solution to (2.2.6) at time tk+1, and by induction, the system stays in the
discrete-time sliding phase. �

The closed-loop system does not exit the discrete-time sliding surface, even if the
estimate is quite far from the actual value. In theworst case themagnitude of the chattering
is doubled. The only change required by the prediction is to double the bound on the
discontinuous control input us. This is possible without degrading the performance with
the implicit discretization of us, since the numerical chattering is non-existent with a LTI
system discretized using ZOH.

Remark 2.5.4. If it is not possible to double the bound α, it is possible to project the esti-
mate onto a ball with a smaller radius γαβ, where (1+γ)α is less than the componentwise
upper bound on the control input. It is then easy to adapt the previous proposition to
have a result with this estimate. However the chattering reduction might be less appeal-
ing.

Conclusion

This chapter begins with the study of the discretization of the ECB-SMC controller. After
a quick presentation of the different discrete-time controllers, we focus on the ones that
feature an implicitly discretized Sgn(·) multifunction. Several properties of this sliding
mode controller are provided: Lyapunov stability of the discrete-time sliding variable,
finite-time reachability of the sliding surface, convergence of the discrete-time control
input to the continuous-time one and perturbation attenuation. Those results, mainly for
the sliding variable, are valid for the closed-loop system using a special discrete-time sliding
mode control scheme on the equivalent part. When the latter is discretization in another
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way, this correspondence fails to hold. We also consider several time discretizations of the
classical ECB-SMC controller and underline the influence of the discretization method
for the state-continuous part of the input. This topic is again tackled in Section 3.4:
we provide an example where the use of an explicit method can make the closed-loop
system diverge, whereas with the other methods it reaches the sliding surface. Finally we
provide a performance analysis of the different discretization methods, which highlights
the ability of the implicit one to alleviate or suppress the numerical chattering. The implicit
discretization method is also applied on the twisting algorithm. However, it turns out
that the origin can only be reached from very specific initial positions. Subsequently,
the structure of the controller is modified by considering the underlying AVI. With this
modification, the finite-time Lyapunov stability for simple dynamics can be shown. We
touch upon the topic of observation by studying some simple sliding mode observers.
Finally, a modified discrete-time sliding mode controller is proposed, which can improve
the perturbation attenuation of smooth perturbations. The core idea is to use the previous
values of the sliding variable to provide an estimate of the effect of the perturbation on
the system for the next sampling period. The method proposed here is adapted from
finite-difference formulæ. Stability properties of the resulting controller are also discussed.





Chapter 3

Simulations of Sliding Mode Controllers

The simulation of the control loop in an important step in the process of designing a
controller. It offers a fast and competive way to test a design, which enables fast develop-
ment cycles. In the fields of control theory, the pair MATLAB®–Simulink® is almost the
only tool used to perform simulations. Extensions known as toolboxes can extend the
functionalities such as providing away to translate a Simulink® model into C code, in order
to run the control loop on an embedded controller. However,MATLAB®–Simulink® has
some weaknesses, in particular in the numerical integration. It is not possible to integrate
parts of a dynamics in a fully implicit way. The results from the previous chapter underline
that it is paramount to implicitly discretize the argument of the Sgn multifunction. This
prompted us to disregard this platform for simulation purposes. Instead we developed a
Control toolbox in the INRIA siconos platform and simulated control loops using this
software.

In this chapter we first present some algorithm to compute the control input value
when it is the solution of an AVI. Then we move to the topic of the computation of
the control input with nonlinear dynamics. Section 3.3 is dedicated to a presentation of
the siconos platform with a particular attention given to the work done by the author.
The last two sections present some simulation results: the first one is an analysis from a
numerical point of view of the various discretization schemes introduced in Section 2.2.
The last section presents some simulation results illustrating the benefits from using the
method proposed in Section 3.2.

91
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3.1 Solvers for the Computation of the Control Input

This section is dedicated to the computation of a solution to the AVI arising in the discrete-
time SMC case. We shall proceed here from the simplest case to the most general one.
But first, let us recall the task at hand: with p the dimension of the control input, the
AVI(K, q,M ) consists in the following: given a polyhedral set K , a vector q ∈ Rp and
matrixM ∈ Rp×p, we want to find λ ∈ K such that

〈y − λ, q +Mλ〉 ≥ 0, ∀y ∈ K,

or equivalently in terms of a generalized equation

0 ∈ q +Mλ +NK (λ). (3.1.1)

In our case, we consider thatK is a closed bounded convex polytope.

SCALAR CASE (P = 1) The set K is then an interval [a, b], a, b ∈ R. The control
input can be computed as a simple projection ontoK :

λ = −ΠK (q/M ), (3.1.2)

withΠ the projection mapping. This formula is justified later on.

DIAGONAL POSITIVE DEFINITEM WITH K A BOX By box we refer to a set
defined as the Cartesian product of intervals:K =∏

i Ii. It can also be seen as a scaled ball
for the maximum norm. In this case, the same method as in the scalar case can be applied
component-wise:

λi = −ΠIi (qi/mii) ∀i ∈ {1, . . . , n}. (3.1.3)

This expression is a special case of the next method.

SYMMETRIC POSITIVE DEFINITEM We develop here a projection algorithm
which takes advantage of the structure ofM . Recall from Section 2.1.4 that a symmetric
positive definitematrix admits a square root: there existsR = RT > 0 such thatRTR =M .
Starting from the generalized equation (3.1.1), we use the transformation λ̂ = Rλ:

0 ∈ RT λ̂ + q +NK (R−1λ̂)

0 ∈ λ̂ + R−Tq + R−TNK (R−1λ̂). (3.1.4)
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Recalling that NK = ∂δK and using the chain rule for subdifferential given in Theo-
rem A.1.15, we get

∂
(
δK ◦ R−1

)
(λ̂) = R−TNK (R−1λ̂).

Note that if R−1λ̂ ∈ K , then λ̂ ∈ K̂ , with

K̂ B
{
x ∈ Rp | AKR−1x ≥ BK r

}
if K = {x ∈ Rp | AK x ≥ BK } . (3.1.5)

Whence it holds that
(
δK ◦ R−1

)
(λ̂) = δK̂ (λ̂) and therefore N K̂ (λ̂) = R−TNK (R−1λ̂).

This identity enables us to transform (3.1.4) into

0 ∈
(
I +N K̂

)
λ̂ + R−Tq.

Using Proposition A.1.19 we get the identityΠK̂ = (I +N K̂ )−1. Therefore, the solution
is obtain as

λ̂ = ΠK̂ (−R−Tq),

which in the original basis is given by

λ = R−1
ΠK̂

(
−R−Tq

)
. (3.1.6)

We shall now specialize this result withM a diagonal positive definite matrix and K a
box to derive the expression provided earlier in (3.1.2) and (3.1.3). In this case, R is also a
diagonal positive definite matrix and therefore K̂ is also box-shaped as we shall see. If we
rewrite (3.1.5) for a box-shaped setK , we get

K =


x ∈ Rp | *

,

I
−I

+
-
x ≥ *

,

a
−b

+
-



,

and lettingD B diag
{√mii} the square root ofM , we have from (3.1.5)

K̂ =


x ∈ Rp | *

,

D−1

−D−1
+
-
x ≥ *

,

a
−b

+
-



,

which can be rewritten as

K̂ =


x ∈ Rp | *

,

I
−I

+
-
x ≥ *

,

Da
−Db

+
-



.

We can then write K̂ =∏
i Îi with Îi = [diiai, diibi]. With a box-shaped set, the operator

ΠK̂ is componentwise defined as(
ΠK̂ (x)

)
i = ΠÎi (xi).
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Now from (3.1.6), the value of λi is defined as

λi = d−1
ii ΠÎ

(
−d−1
ii qi

)
=




−d−1
ii diiai = −ai if qi < ai

−d−1
ii diibi = −bi if qi > bi

−d−1
ii d−1

ii qi = −qi/mii if ai < qi < bi

Therefore, we infer that

λi = ΠIi
(
−qi/mii

)
,

which is the relation we sought.

GENERICM In this case, we opt to use the algorithm proposed in [24], which finds
a solution whenever the set K is a bounded convex polytope, as mentioned in the last
paragraph of Section 4 of this reference. Thismethod realizes a scheme given in [32], which
is also a warmly recommended reading if one wants to understand the algorithm. Further
references include the PhD theses [23, 77]. The former contains additional informations
with respect to the article and in the latter, a variant of the algorithm better suited to sparse
problems is proposed. We aim here at providing a description from an implementation
viewpoint rather then a theoretical one which is given in the aforementioned references.
We shall present a simplified version as implemented by the author in siconos, and that
is used for the simulations presented in this thesis. This algorithm has different stages,
in which the problem is transformed and finally solved. We describe only the last two:
the transformation of the AVI into an LCP-like problem, and the procedure to solve
this problem using a method similar to the well-known Lemke scheme for LCP. In what
follows, we assume that the setK is convex bounded and given as

K B {x ∈ Rp | Hx ≥ b} with H ∈ Rm×p, b ∈ Rm, m > p (3.1.7)

To build the LCP-like problem, we need a vertex v ofK which can be found by solving
a simple linear program (LP) with the constraint that the solution is in K . With v is
associated a set of independent active constraints A such that the square matrix HA ,
which consists of the rows associated with the active constraints, is full rank. LetI be the
complement ofA , that is the set of inactive constraints. Then we compute the following
quantities:

M = *
,

−H−TA HTI H−TA MH−1
A

0 HIH−1
A

+
-

and q = *
,

H−TA MH−1
A bA +H−TA q

HIH−1
A bA − bI

+
-
. (3.1.8)
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Now the method used to solve the LCP-like problem is to augment the problem with an
auxiliary variable µ and a covering vector d:

w = q +Mz + µd 0 ≤ z ⊥ w ≥ 0 with z, w, d ∈ Rm. (3.1.9)

The term µd is here to ensure that by choosing µ big enough, we can start the method
withw ≥ 0 and z = 0. The transformation of the AVI into this complementarity problem
leads to the following definitions:

w = *
,

rA
sI

+
-
, z = *

,

rI
sA

+
-
, d = *

,

1

0
+
-

with the initial values rA ≥ 0, sI ≥ 0, rI = 0, sA = 0 and µ ≥ 0.

The variable s can be seen as a slack variable for the inequalities defining the setK in (3.1.7):
Hx − s = b for all x ∈ K . The vector r is related to the normal cone operator ofK : at a
point x ∈ K an element of the normal cone NK (x) is given by −HT r. Then we have for
all i: ifHi•x = bi then ri ≥ 0, otherwise ri = 0. It is easy to see that the two variables are
related by complementarity: 0 ≤ r ⊥ s ≥ 0. A solution to the AVI is recovered as

λ = H−1
A (sA + bA ) (3.1.10)

Rather deriving the transformation from the AVI to this LCP-like problem, let us verify
that the vector given in (3.1.10) is indeed a solution to the AVI. First we need to check that
λ ∈ K . The second half of the LCP-like problem gives us the relation

sI = HIH−1
A sA +HIH−1

A bA − bI
= HI λ − bI .

Combining this with (3.1.10) gives us

Hλ = s + b. (3.1.11)

Since by definition s ≥ 0, this ensures that λ ∈ K . Now let us check that the generalized
equation (3.1.1) holds with λ given by (3.1.10). First remember that the solution of (3.1.9)
gives us s the slack variable from (3.1.11), and also r such that −HT r is an element of the
normal cone NK (λ). The first half of the LCP-like problem gives us the relation

rA = −H−TA HTI rI +H−TA MH−1
A sA +H−TA MH−1

A bA +H−TA q
HTA rA +HTI rI =MH−1

A sA +MH−1
A bA + q
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HT r =Mλ + q
0 =Mλ + q −HT r.

We have now checked that there exists en element (−HT r) of the normal cone of K at
λ such that the generalized equation (3.1.1) holds. Hence, the vector given in (3.1.10) is a
solution to the AVI.

Moving on to the algorithmic part, note that whenµ goes to 0, a solution to (3.1.9) is at
hand, as with Lemke’s algorithm. Also if q ≥ 0, the problem is already solved: w = q and
z = 0. If µ is positive, the idea is to take one of variable ri or si out of w by setting it to zero
and we exchange it with another one from the vector z, which then become non-negative.
Hence we always have w ≥ 0 and z = 0, which guarantees that the complementarity
constraint 0 ≤ w ⊥ z ≥ 0 is always satisfied. When we swap variables between w and z,
M and q have to be updated.

In the following, we suppose that q � 0: whence, µ becomes non-zero, and one of
the variables in w has to become 0. More precisely, it will be rj, with j ∈ A chosen as
j = arg min

{
−qi | qi < 0, 1 ≤ i ≤ p

}
. BothM and q have to be updated as in Step 2

below, except that the columnM •β has to be replaced by d. Then we set β to be the
position of sj in z. We can now describe one iteration of the algorithm to solve this LCP-
like problem.

Step 1: Find α = arg min
i

{
− qimiβ | miβ < 0

}
. This determines the variable that is going

to be set to 0, which is said to be the blocking variable.

Step 2: Perform the update ofM, q, also known as the pivoting step:

with i , α, j , β mij ← mij −
miβ
mαβ

mαj

with j , β mαj ← −
mαj
mαβ

with i , α qi ← qi −
miβ
mαβ

qα miβ ←
miβ
mαβ

qα ← −
qα
mαβ

mαβ ← 1
mαβ

Step 3: If the variable at wα is µ, we are done since µ = 0 now and this subproblem is
solved with w = q. Otherwise we have to update β or in other words select the
variable which is going to be set to a non-negative value. That is, if we have rj at
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wα, the variable that should leave z and enter wα is sj and vice-versa. This keeps
the complementarity constraint 0 ≤ r ⊥ s ≥ 0. Hence β is set to the position of
the variable leaving z at the next iteration. Note that this is where this algorithm
differs from Lemke’s one. In the latter we would just set β = α. And we go back
to Step 1.

Once a solution to (3.1.9) has been found, we can recover a solution the AVI as

λ = H−1
A (sA + bA ).

Let us state few remarks on the implementation of this algorithm. First the fact that if
q ≥ 0 in (3.1.8) then we directly have a solution, indicates that the choice of the vertex
v can greatly reduce the computational load, for instance by using a warm start. Here,
a warm start or hot start means that we use the previous solution of the AVI or one of
the closest vertex as v. Remember that we solve an AVI each time we want to compute
the control input and note that as long as the system is not in the discrete-time sliding
phase (as given in Definition (2.2.4)), two successive values of the control input may have
some components equal. On the other hand if we always use the same vertex as v, most
of the computations required to build (3.1.8) can be done offline. In some cases, like for
linear systems, the matrixM of the AVI does not depend on the current time instant,
only q does. Thus the only term that depends on the AVI data isH−TA q. Therefore, if this
computation has to be done in realtime, it may be interesting to consider this option.

An interesting special case is when the set K is box-shaped, a particular choice of v
greatly reduces the computational load:K can be described as



x ∈ Rp | *

,

I
−I

+
-
x ≥ *

,

lb
−ub

+
-



.

We can setHA = I ,HI = −I , bA = lb and bI = ub. Then we can write (3.1.8) as

M = *
,

I M
0 −I

+
-

and q = *
,

M lb − q
−lb + ub

+
-
.

The solution is also easily recovered asλ = sA +lb. This is close to the decomposition in [89,
Sections 6.3 and 8.7] and [20] that we already mentioned in Section 2.1.3. However it is
worth noting that with latter method, a standard LCP is solved and The complementarity
variables from the latter do not have the same interpretation as r and s. For instance,
remember that the variable λ = Sgn(x) is split in positive λ+ and negative part λ−.
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More details on the numerical aspects and solvers for this kind of problems can be
found in [36, 27] and [3].

3.2 Control Input Computation for Nonlinear Systems

In Chapter 2, we mostly dealt with linear systems since we can exactly integrate these using
the ZOHmethod. However, in most applications the dynamics is nonlinear and using
the explicit Euler discretization fails to properly capture it. As mentioned in Section 1.4,
the discretization scheme provides us with a recurrence relation

xk+1 = F (xk, xk+1, tk, tk+1, uk), (3.2.1)

which influences the quality of the control input, especially when the system states are
close to the sliding surface. Suppose that this is the case: at time tk, the control input is
computed to bring the sliding variable to 0. If the approximated dynamics given by (3.2.1)
is not accurate enough, the system states at time tk+1 will be far from the manifold. Some
chatteringmight be seen on the control input, if the system states cross the slidingmanifold
during each sampling period. To alleviate those issues, we now present a discretization
method named the θ − γ scheme, which is analogous to the trapezoidal rule, a well known
quadrature method. Let us first state the type of systems we consider:

ẋ = f (x, t) + g (x, λ, t) f : Rn × R→ Rn (3.2.2)

σ = h(x) with g : Rn × Rp × R→ Rn

−λ ∈ ∂h−S (σ) or − σ ∈ N S (λ) h : Rn → Rp, (3.2.3)

where S ⊂ Rp is a bounded convex polytope where λ take values. The control input u
is defined as a function of λ: most of the time, we have u = λ. However, it is possible
for u and λ to have different sizes: remember the twisting algorithm from Section 2.3,
where u = G(λ1 + βλ2). Note that the discretization of the relation (3.2.2) is independent
of the discretization of the inclusion (3.2.3), for which we shall only consider an implicit
discretization.

3.2.1 Presentation of the θ − γ Scheme
In the following we assume that the control input (and therefore λ) is constant on every
time interval [tk, tk+1).We also suppose that the solution to theODE (3.2.2) is an absolutely
continuous function. This enables us to write the following recurrence relation:

xk+1 = xk +
∫ tk+1

tk
f (x, t) + g (x, λk+1, t)dt. (3.2.4)
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Now, finding a good recurrence relation boils down to deriving a good approximation to
the integral. To avoid too heavy notations, we choose not to index the internal variables
of the scheme with k and we let τ B tk+1 − tk. The standard θ − γ scheme is close to the
trapezoidal rule, giving rise to the following approximations:∫ tk+1

tk
f (x, t)dt ≈ τθf (xk+1, tk+1) + τ(1 − θ)f (xk, tk)∫ tk+1

tk
g (x, λk+1, t)dt ≈ τγg (xk+1, λk+1, tk+1) + τ(1 − γ)g (xk, λk+1, tk).

Now combining the relation (3.2.4) with the two previous ones, we end up with the
nonlinear system of equation:

R (x, λ) = 0 (3.2.5)

R (x, λ) B x − xk − τθf (x, tk+1) − τ(1 − θ)f (xk, tk) − τγg (x, λ, tk+1) − τ(1 − γ)g (xk, λ, tk),

with x and λ as unknowns and R can be sought as a residual. In the sequel, we opt
to tackle (3.2.5) as a root-finding problem and we choose to use a method based on the
Newton-Raphson algorithm. It is built on the idea of solving a series of linear systems,
which generates a sequence {xα, λα}α∈N of successive iterates, converging to a root of
the nonlinear function under suitable assumptions. The two sequences are initialized as
follows:

x0 = xk and λ0 = λk,

with λk the value of λ during the previous time interval [tk−1, tk). In our context, those
linear systems are based on a linearization of the nonlinear equation (3.2.5). Therefore we
define the linearized version of the residual at (xα, λα) as

R α
L (x, λ) B R (xα, λα)+[∇xR (xα, λα)](x−xα)+[∇λR (xα, λα)](λ−λα). (3.2.6)

Let us introduce some matrices:

Aα B ∇xf (xα, λα) Bα B ∇λg (xα, λα)

K α B ∇xg (xα, λα) Bαc B ∇λg (xk, λα),

which are related to the Jacobians of R by the relations

Jαx B ∇xR (xα, λα) = I − τθAα − τγK α (3.2.7)

Jαλ B ∇λR (xα, λα) = −τγBα − (1 − γ)τBαc . (3.2.8)
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We now detail one iteration of the algorithm. We look for xα+1 and λα+1 solutions to the
linear system R α

L (x, λ) = 0. Starting from (3.2.6) and using the notations from (3.2.7)
and (3.2.8), we have

Jαx (xα+1 − xα) = −R (xα, λα) − Jαλ (λα+1 − λα).

We suppose that the square matrix Jαx is invertible, an assumption that holds for τ or θ
and γ small enough, see (3.2.7). Then xα+1 can be expressed as the solution of the previous
linear system:

xα+1 = xα − (Jαx )−1R (xα, λα) + (Jαx )−1Jαλ (λα+1 − λα),

where λα+1 is the only unknown in the right-hand side. Now with this relation between
xα+1 and λα+1, we can eliminate xα+1 and the normal cone inclusion (3.2.3) gives the VI

0 ∈ h(xα+1(λ)) +N S (λ), (3.2.9)

which can be solved using a dedicated solver. Yet we continue to detail the iteration of
our algorithm by transforming this VI into an AVI. This is motivated by the fact that in
many applications the sliding variable σ is a linear function of the state, in which case the
VI (3.2.9) is already an AVI. On the other hand, one of the most successful approaches to
solving such VI is to apply a Newton method known as Newton-Josephy, which, roughly
speaking, is based on solving a sequence of AVI. To this end, let us linearize h at current
iterate xα:

hαL(x) = h(xα) + Cα(x − xα) with Cα B ∇xh(xα).

Substituting this in (3.2.9) gives the AVI:

0 ∈ qαAVI +M α
AVIλ +N S (λ),

with

M α
AVI B Cα(Jαx )−1Jαλ
qαAVI B h(xα) − Cα(Jαx )−1R (xα, λα) +M α

AVIλα.

The description of one iteration of the algorithm is now finished. The two stopping
criteria are

|R (xα+1, λα+1) −R α
L (xα+1, λα+1) | ≤ ε

|h(xα+1) − hαL(xα+1) | ≤ ε,



3.3. THE SICONOS PLATFORM 101

for a given “tolerance” ε > 0. The second condition could be replaced by checking whether
λα+1 solves the (nonlinear) VI (3.2.9). We do not present a theoretical analysis for this
algorithm. The two main steps would be the analysis of the Newton-Josephy method if
the sliding variable is a nonlinear function of the state. This one can be found for instance
in [36, Section 7.3]. The analysis of the root-finding method could follow the one used for
the Newton-Raphson one.

3.3 The siconos platform

3.3.1 Overview of the siconos platform

siconos aims at providing a general and common tool for the simulation of nonsmooth
problems in various scientific fields like AppliedMathematics,Mechanics, Control Theory,
Electrical circuits, Robotics, . . . It originated from the European project SICONOS IST–
2001–37172, which lasted from 2002 to 2006. Most of the development has been done at
INRIA Grenoble Rhône-Alpes by BIPOP teammembers and members of SED, a service
dedicated to support software developments.

On Figure 3.1 we can see the layered architecture of the siconos platform. We give a

Swig
Python

Siconos/
Control

Siconos/
Mechanics

Siconos I/O

ODEPACK

Siconos Architecture

Siconos/FrontEnd (Python)

Siconos/Kernel (C++)

Boost C++
Graph
uBlas

Siconos/Numerics (C, F77)

BLAS LAPACK

Operating System: Linux, MacOS, Windows

Figure 3.1: Synopsis of the siconos libraries
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brief overview of the different modules as well as the work done by the author.

NUMERICS The optimization algorithms and numerical integration routines (ODE-
PACK, “Hairer’s library”) are the foundation of siconos. There are algorithms (imple-
mented in C) for the following nonsmooth problems: LCP, MLCP, NCP, AVI, VI and
friction contact problems. The main contribution of the author was the implementation
of the algorithm for solving AVI described in Section 3.1.

KERNEL It is composed of three main parts: one deals with the modeling of dynamical
systems, the second one is for the simulation of nonsmooth systems and the third one
provides the data structure and also linear algebra routines. For the modeling part, we
support 3 types of formalisms: the classical first order systems with ẋ = f (x, t), the
Lagrangian mechanics with generalized coordinates q and velocities q̇ and the Newton-
Euler formalism for multi-body systems.

To simulate a given nonsmooth dynamical system, two strategies are available: the
event tracking and the event capturing methods. Some differences between those two
types of schemes are given in Table 3.1. The first type of integrators are wrappers around
existing code (LSODAR fromODEPACK1 [56], HEM52 [16]) and when an event (like an
impact) is detected, a nonsmooth problem (like an LCP) is solved. The second category
has for representative the time-stepping algorithm byMoreau [87] which is implemented
in C++, alongside other integrators. siconos can be used as a C++ library in which case the
user specifies the simulation data and type of integrator in a C++ program. This module
uses Numerics to solve the nonsmooth problems that were given during the modeling
phase. The author implemented an integrator for linear first-order system based on the
ZOH discretization and reworked the way events are processed.

CONTROL This module contains all control-related functionalities. A prototype was
already available in the Kernel with just the base classes implemented. It has now SMC
controllers and observers. We detail this module in Section 3.3.2.

MECHANICS This module is using the Newton-Euler formalism from the Kernel and
provide some features like contact detection (for instance via Bullet) that are useful for
multi-body simulations. It also contains specialized dynamical systems like disk, spheres
and also objects to simulate various interactions (sphere-sphere, sphere-plan, . . . ).

1https://computation.llnl.gov/casc/odepack
2http://www.unige.ch/~hairer/software.html

https://computation.llnl.gov/casc/odepack
http://www.unige.ch/~hairer/software.html
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I/O Thismodule enables the user to save a given simulation in a file while the simulation
is running and to resume it from the saved data. It provides also a visualization tool.

FRONTEND Python bindings are provided for all the aforementionedmodules. Those
are very convenient since they empower the user with the ease-of-use of the Python
language and the whole scientific ecosystem. For instance the author was able to easily
plot the simulation results with the Matplotlib library and to perform simulations with
parameters varying in a given range. All the simulation results presented in this thesis are
done in this way.

Let us focus on the event-driven and time-stepping simulation strategies. The first one
is better known in the control community: it has been used to simulate hybrid systems
where the events are defined when the system exists the domain of the current mode.
Some of the weaknesses of this scheme like the inability to simulate system with Zeno
phenomenon is well-known. On the other hand, a time-stepping scheme does not require
such event-handling procedure and is able to “go through Zeno”: such method can be
proved to be convergent even in the presence of events accumulations. This kind of
approach is perfectly suited for the computation of the control law when the latter is a
step function: the fact that the control input value is constant during the sampling period
is already part of our modeling. The pro and cons of the two strategies are summarized in
the following table. To expand a bit on the time-stepping approach, it consists (roughly

Method Advantages / Weaknesses

Event tracking schemes � high accuracy integration of event-free periods
(a.k.a event-driven) � no proof of convergence

� sensibility to numerical thresholds
� reformulation of constraints at higher degree

Event capturing schemes � robust, stable and proof of convergence (Zeno)
(a.k.a time-stepping) � able to deal with finite accumulation

� low kinematic level for the constraints
� low order of accuracy even in free flight

Table 3.1: Qualitative comparisons of time-stepping schemes for nonsmooth dynamics

speaking) in the time-discretization of the whole dynamical system: ODE and nonsmooth
relation. While doing so, we form a One-Step NonSmooth Problem (OSNSP) which has
to be solved at each time step. Hence the main stages of the process are:
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1. integrate the dynamics without constraints, to get some “free” solutions.

2. construct and solve an OSNSP (an AVI for instance in SMC).

3. update the dynamics with the OSNSP solutions to get the full state update.

We detail in Section 3.2 this procedure in the context of the computation of the control
input value.

3.3.2 Control Architecture in siconos

We now go into the specific of the simulation for control purposes with the canonical
structure given in Figure 3.2.

We suppose that the plant we want to control is a continuous-time process and the con-

Plant Measurements
x

Controller

yu

Figure 3.2: Classical control structure

troller (and observer) is implemented using amicroprocessor. Hence we have two different
“time domains”: the plant, actuator and sensor are in continuous-timewhereas the observer
and controller are discrete-time. It is of paramount importance to keep this separation
in the simulation: failure to do so seriously jeopardize the faithfulness of the simulation,
for instance in the presence of nonlinear dynamics. It is also interesting to decouple the
computation of the control input from the integration of the system to avoid perform-
ing the same approximations in both cases and hiding their effects. Just a note on the
terminology: by timestepwe refer to the difference between two time instants at which the
solution to an ODE is evaluated. It is not always required to specify this timestep: suppose
we want the solution of an ODE at time T starting from t0 and we have little interest in
the solution values inside this interval. Then we can use a smart integration routine like
LSODAR or CVODE3 [25], we need only to specify the interval [t0, T ]: the timestep, as
well as the integration method, is chosen internally in order to provide an accurate result.
In contrast the sampling period is fixed and indicates when the control input changes.

3https://computation.llnl.gov/casc/sundials/main.html

https://computation.llnl.gov/casc/sundials/main.html
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We took the following approach in the design of the Control toolbox: there are two
types of simulations that run “simultaneously”: first we use a high-precision integrator like
LSODAR for the nonlinear continuous-time processes and the ZOH scheme for linear
ones. In both cases, the contribution to the control input is added either to the derivative
in the first case, or directly to the solution in the second one. The control input value has
already been computed by the controller at the beginning of each sampling period, by
the mean of a simulation with a nonsmooth dynamical system. This simulation has for
timestep the sampling period while for the first one, the timestep is not required to be
small: in the ZOH case we can perfectly integrate the system and an integration routine
like LSODARwe in fact specify an interval over which the system has to be integrated.
This interval only specifies the frequency at which we get values for the system states. We
now go into some implementation details on functionalities implemented or enhanced
by the author.

Managing the different parts of the simulation

The need to run concurrently at least two types of simulation schemes and to properly
separate the different components in Figure 3.2 requires us to create an infrastructure to
properlymanage the run of a simulation. It consists in Events associatedwith the different
parts of the simulation,which forma stackmanaged by theEventsManager. The concept
of Event was already in siconos since with an event-driven scheme, the impacts are
modeled as events. We add the following types of Event: Sensor for measurement-
related actions, Controller for updating the control input and Observer to provide a
new estimate of the state. Each Event has for attribute a time instant and a given priority,
which enables us to provide a strict total order between the different types. Let e1 and e2
be two Events. They are compared in the following way:

e1 ≺ e2 if e1.time < e2.time or if e1.prio > e2.prio when e1.time = e2.time

The comparison on the time instants is not donewith floating-point arithmetic: we convert
those to integers when we store this information. This enables us to form a stack of events:
the time of the first Event defines the current time in the simulation. This Event has
already been processed and is kept to give this reference in time. The second Event defines
the action that is executed. First the integration of the dynamical system(s) is performed
to the time of the Event. Then the action associated with the Event is performed: for a
TimeDiscretisation it saves the current state, for a Sensor it gets the current state of
the plant connected to it.With an Observer an update to the estimated state is performed
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and with a Controller the control input is updated. Then the first Event gets updated:
the timestep or sampling period is added to its current time and if the result is smaller or
equal to the end time of the object, it is reintroduced in the stack.

There are a few hurdles to properly get the simulation running in this way. Firstly
the update of the time of each Event has to be done with great care. The most natural
way to proceed would be to add the sampling period or timestep to the current value.
However, this operation is done thousand of times and the IEEE-754 standard used for
floating point computation cannot guarantee that this operation is done exactly. And by
reusing the previous result over and over, the errors accumulate and some drifting appear.
Let us illustrate this by the following C program.

#include <float.h>
#include <stdio.h>

int main(void)
{

double h[] = {1e-1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8, 1e-9, 1e-10, 1e-11, 1e-12};
double t[12] = {0.};
unsigned long long iter = 10;

printf("timestep\t\tbad summation\t\t\t\tbetter summation:\n");
for(unsigned i = 0; i < 12; ++i)
{

for(unsigned long long j = 0; j < iter; ++j)
{

t[i] += h[i];
}
double tmul = 0.0 + h[i]*iter;
printf("h = %e\tt = %.*e\tt = %.*e\n", h[i], DECIMAL_DIG, t[i], DECIMAL_DIG, tmul);
iter *= 10;

}
return 0;

}

The output is given in Table 3.2. The increasing drift is striking: the value of time should

timestep bad summation better summation:
h = 1.000000e-01 t = 9.999999999999998889777e-01 t = 1.000000000000000000000e+00
h = 1.000000e-02 t = 1.000000000000000666134e+00 t = 1.000000000000000000000e+00
h = 1.000000e-03 t = 1.000000000000000666134e+00 t = 1.000000000000000000000e+00
h = 1.000000e-04 t = 9.999999999999061861544e-01 t = 1.000000000000000000000e+00
h = 1.000000e-05 t = 9.999999999980837550595e-01 t = 1.000000000000000000000e+00
h = 1.000000e-06 t = 1.000000000007918110612e+00 t = 1.000000000000000000000e+00
h = 1.000000e-07 t = 9.999999997501699544600e-01 t = 1.000000000000000000000e+00
h = 1.000000e-08 t = 1.000000002289867184757e+00 t = 1.000000000000000000000e+00
h = 1.000000e-09 t = 9.999999925399328803977e-01 t = 1.000000000000000000000e+00
h = 1.000000e-10 t = 1.000000069475623476478e+00 t = 1.000000000000000000000e+00
h = 1.000000e-11 t = 1.000000082064894657563e+00 t = 9.999999999999998889777e-01
h = 1.000000e-12 t = 9.999844088760581062303e-01 t = 1.000000000000000000000e+00

Table 3.2: Drift occuring with different summations strategies
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always be 1, as it is almost always the case with the better summation strategy. Furthermore
it is important to note that this drift can go in both direction, depending on the added
number. In the case where the sampling period is 1ms for the control-related Event and
the timestep of the simulation is 0.1ms, the drifts are in opposite directions. This induces
a lack of precision but also generates issues within the integration process. An integration
routine like LSODAR terminates with a fatal error if asked to integrate over an interval
with a small length. When this drift occurs, we will end up in this situation. The proper
solution was to make the update in the following way: given a period ∆, we compute
time instants as tk = t0 + k∆. This eliminates the drift but does not rule out another
floating-point issue: it is possible that the for a given time instant multiple of both the
sampling period and the timestep, the floating-point numbers do not coincide. This error
does not propagate: at the next time instant the two Events should coincide, they will.
However this can induce a fatal error: for instance with LSODAR, we will ask to integrate
between the two Events and the routine will refuse and terminates with an error. To
prevent such case, we set the same time instant for two Events if they differ by less than a
given tolerance.

Implementation of the Control toolbox

For the control-related functionalities, we implemented an integrator using the ZOH
scheme. For an LTI system, the update of the state variable is given by

xk+1 = A∗xk + B∗uk,

whereA∗ and B∗ are computed as

A∗ B exp(Ah) and B∗ B
∫ h

0
exp(A(h − τ))Bdτ,

with A and B the matrices from the classical representation. Following the guidelines
in [86], those two matrices are computed as the solution X ∈ Rn×n and Y ∈ Rn×n

evaluated at time h to the matrix ODEs

Ẋ = AX and Ẏ = AY + B
X (0) = I and Y (0) = 0.

LSODAR is the integration scheme used to get those matrices and the solutions are
computed one column at a time. Given the way these matrices are computed, it is only
interesting to compute them in the LTI case with all Events synchronized, that is there is
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no delay between them. Even if only the sampling period varies or if the solution x has
to be evaluated between two time instants, it is better to directly integrate the dynamics
using LSODAR instead or computing firstA∗ and B∗ and then update the state value.

The second integrator we use to run the simulation is based on the LSODAR integra-
tion routine. This one is more versatile than the previous one, since we can evaluate the
solution x at any time. This enables us to model delays for instance on the Sensor or the
Controller and to consider also nonlinear dynamics.

For the computation of the control input value, the EulerMoreauOSI integrator is
used. It is based on the θ − γ scheme we presented earlier. The only addition here was
to be able to simulate a nonlinear system with a contribution of the control of the form
g (x)u or g (x, u), that is with a state-dependent function g.

Those integrators belong to the Kernelmodule and may be used for in very different
contexts. Hence, we do not want to put this control-specific part in the integrators. The
solution was to add an interface for additional contributions to the dynamics. By default,
there is no action, but we can in the Control Simulation classes, we set one according to
the type of integrator. The contributions fall into 2 main categories: we either add a term
to the derivative ẋ like for LSODAR or to the solution xk+1 as for ZOH.

To finish this part on the programming side, let us digress a bit on the object-oriented
programming (OOP) paradigm. In order to be able to simulate the fully nonlinear case,
that is nonlinear dynamics and a sliding variable defined as a nonlinear function of the
state, an overhaul of the way computations on the nonsmooth relation are done was
required. The reason was that in the Newton loop of this algorithm, we need to perform
computation using the iterates xα and λα. However with OOP, the values are usually
stored as attribute of the object, and the computation of a quantity tends to have side
effects like the update of some internal quantity, which are undesirable in our case since
that would erase for instance xk, the current value of the state. Some parts of siconos
have been reworked to move away from this paradigm. A practically functional style4

was used instead, that is the functions used to compute quantities operates only on their
arguments. This removes the problem of unwanted side effects like the update of a class
attribute while computing an iterate of the Newton loop.

4See for instance John Carmack’s post on http://gamasutra.com/view/news/169296/
Indepth_Functional_programming_in_C.php

http://gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
http://gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php
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3.4 Numerical Analysis of the Control Input Discretization

In this section we present a thorough numerical analysis of the influence on the closed-
loop behavior with different types of discretization of both ueq and us. We also illustrate
some results from Section 2.2, for the order of convergence of the different discretization
methods. We consider a 2D system, in order to plot the state evolution, and which enables
us to show a variety of behaviors. We ended up with this system:




ẋ(t) = Ax(t) + Bu(t)
σ = Cx
u(t) = ueq(t) + us(t)

A = *
,

0 1
19 −2

+
-
,

B = *
,

0
1

+
-
, CT = *

,

1
1
+
-
.

(3.4.1)

The matrix A has the eigenvalues λ1 = 3.47 and λ2 = −5.47. The dynamics on the sliding

surface is given byΠA = *
,

0 1
0 −1

+
-
, which has eigenvalues 0 and −1. Through this section,

we chose α = 1. The initial state is (−15, 20)T . The first set of simulations uses a sampling
period 0.3 s for the control and the second one a sampling period 0.03 s. The simulations
run for 150 s and were carried out with the open source siconos software package [2]5,
as described in the previous section. Figures were created using Matplotlib [62].

Let us provide simulation results not only for the controller studied in Section 2.2 but
also for some other inputs. The objective in this section is to provide an overview of the
different behaviors of the closed-loop systemwhen various discretizationmethods are used.
A more formal study of their properties and performances is done in Section 2.2.3. From
all the possible time-discretization schemes, we focus on the one-step explicit, implicit,
and midpoint ones. With the expressions for ueq and us in (1.1.2) and (1.1.3), the proposed
discretized values for the equivalent control ueqk are:

ueqk,e = −(CB)−1CAxk explicit input, (3.4.2a)

ueqk,i = −(CB)−1CAxk+1 implicit input, (3.4.2b)

ueqk,m = 1/2(ueqk,e + u
eq
k,i) midpoint input, (3.4.2c)

and the two possibilities for the discontinuous control usk are:

−usk = α sgn(σk) explicit input, (3.4.3a)

−usk ∈ α Sgn(σk+1) implicit input. (3.4.3b)
5http://siconos.gforge.inria.fr

http://siconos.gforge.inria.fr
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We use the single-valued signum function in (3.4.3a) since the case σk = 0 is not worth
considering for explicit inputs. Moreover with the set-valued Sgn function, if σk = 0, then
we would have Sgn(σk) ∈ [−α, α]p and there is no proper selection procedure to get a
value for usk, whereas the selection procedure in the implicit case is presented in Section 2.2.
The most commonly used control law is the combination of (3.4.2a) and (3.4.3a). This
kind of discretization has been studied in [45, 47, 114], with a focus on the sequence
formed by σk once the system state approaches the sliding manifold. The value of (3.4.2b)
is detailed in Section 2.2.3. The ZOH sampled-data version of the system (3.4.1) is used for
the discrete-time dynamics. In Section 3.4.1, the nominal system (3.4.1) is simulated and in
a matching perturbation is added in Section 3.4.2. For each set of simulations, three types
of figures are shown. The first one presents an overview of the trajectories of the different
closed-loop systems (like Figures 3.1 and 3.4). The next one displays some details around
the origin (Figures 3.2, 3.5 and 3.7). Finally, we present plots of the different discontinuous
inputs (Figure 3.3, 3.6 and 3.8). Markers are also added to help visualize the position of the
closed-loop system at some of the time instants tk.

3.4.1 Nominal case

The trajectories for the different closed-loop systems are plotted on Figure 3.1. The motion
in the reaching phase depends only on the discretization method used for the equivalent
control ueq. It is only near the sliding manifold that the discretization method of the
discontinuous control us plays a role. If the explicit scheme in (3.4.2a) is used for the
discretization of ueq, the system diverges (Figure 3.1a and 3.1b, curves (ei) and (ee)). This
discretization method can destabilize a system which is stable in continuous time. If the
implicit scheme in (3.4.2b) is used for the discretization of ueq, then the discretization
error may not affect stability but it can induce some unexpected behavior. As we can see
in Figure 3.1, curves (ii) and (ie), the trajectories are crossing the sliding manifold. This
phenomenon can be explained by the following fact: let ∆k be the discretization error on
ueq at time tk. We have the relation σk+1 = σk + ∆k + CB∗usk. Let us consider the implicit
discretization of us. If 0 < σk < CB∗, then the system should enter the discrete-time
sliding phase. However if ∆k + σk < −2CB∗, then for any value of usk, σk+1 < −CB∗.
Hence, due to the discretization error, us fails to bring σk+1 to 0 and the trajectory of the
system crosses the sliding manifold. The same happens with the explicit discretization of
us. With the midpoint method in (3.4.2c), curves (mi) and (me), and with the new control
scheme (2.2.13), curve (ex), the system state reaches the sliding manifold directly.

Near the sliding manifold (Figures 3.2a and 3.2b), the behavior of the system is more
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(a) Implicit discretization of us. (ei) is for pair (3.4.2a)–(3.4.3b); (ii) for (3.4.2b)–(3.4.3b); (mi) for (3.4.2c)–
(3.4.3b); (ex) for (2.2.13).
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(b) Explicit discretization of us. (ee) is for pair (3.4.2a)–(3.4.3a); (ie) for (3.4.2b)–(3.4.3a); (me) for (3.4.2c)–
(3.4.3a).

Figure 3.1: Simulations of system (3.4.1) using different discretization methods, with h = 0.3 s and
α = 1.

sensitive to the discretization of us. In the implicit case (method (3.4.3b), Figure 3.2a) and
in the discrete-time sliding phase, σk is very close to 0 (σk = 0 with the exact method). In
each case, the state converges to the origin (at the machine precision). This is visible on
the zoom box in Figure 3.2a, where markers indicate the state of the system at each time
instant tk, during the last second of each simulation. When the explicit method (3.4.3a) is
used, the system chatters around the sliding manifold, within a neighborhood of order h
(0.3 s here), see Figure 3.2b.

In Figure 3.3b, the explicitly discretized discontinuous control us takes its values in
{−1, 1} and starts at some point a limit cycle, as studied in [47]. This cycle is also visible
on the zoom box in Figure 3.2b with the help of the markers. In Figure 3.3a, for each
discretization of ueq, us converges to 0, which is the value that uscont takes in the sliding
phase. In the implicit and midpoint cases, at the beginning of the discrete-time sliding
phase, us takes non zero values since there are discretization errors on ueq. That is, if σk = 0,
σk+1 , 0. The discontinuous control tries to bring σk+1 to 0 and counteracts the effects of
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Figure 3.2: Detail of Figure 3.1, h = 0.3 s, α = 1.
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Figure 3.3: Evolution of us for different discretization methods, with h = 0.3 s and α = 1.

the error. As the state goes to the origin, the error converges to 0. The simulation results
seem to indicate that the discretization error is smaller in the midpoint case than in the
implicit case. This observation is formally stated in Lemma 2.2.17. With the exact method
of Section 2.2.1, us goes to 0 after one sampling period in the discrete-time sliding phase.
In Figures 3.3a and 3.3b, with the explicit discretization of ueq, us takes always the same
value, since the closed-loop system moves away from the sliding manifold. In terms of
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convergence to the sliding manifold, the first closed-loop system to enter the discrete-time
sliding phase is the exact method (Figure 3.3a), then the midpoint, finally the implicit
method.With the explicitmethodonueq, the systemmoves away from the slidingmanifold
and thus cannot enter the discrete-time sliding phase.
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Figure 3.4: Simulations of system (3.4.1) using different discretization methods, with h = 0.03 s
and α = 1.

The next set of simulations uses the same parameters as the previous one, except for
the sampling period which is smaller: h = 0.03 s. In contrast with the results presented
in Figure 3.1, the closed-loop system is stable in all cases, see Figure 3.4. As expected, the
discretization error is smaller and no trajectory crosses the sliding manifold. It is not
possible to distinguish the solution associated with the midpoint method from the one
obtainedwith the exactmethod inFigure 3.4a. InFigure 3.5awith the implicit discretization
of us, the states converge again to a very small ball near the origin. In the explicit case, there
is some numerical chattering, again with the same order of magnitude as the sampling
period (h = 0.03 s, Figure 3.5b). In Figure 3.6a, once in the discrete-time sliding phase,
us counteracts the discretization error on ueq, which is smaller than in Figure 3.3a. The
discretization error for themidpoint discretization in (3.4.2c) is much smaller, and its curve
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Figure 3.5: Detail of Figure 3.4, h = 0.03 s, α = 1.
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Figure 3.6: Evolution of us for different discretization methods, with h = 0.03 s and α = 1.

overlaps completely with the one of the exact discretization method. In Figure 3.6b the
same bang-bang behavior as in Figure 3.3b is seen, with a higher frequency of switching.

The results presented here bring into view the numerical chattering caused by an
explicit discretization of us, while the implicit method is free of it. The importance of
the discretization of ueq is also illustrated, with the explicit method leading to a diverging
system and the counterintuitive behavior yielded by the implicitmethod.An analysis of the
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different phenomena is provided in the next section. The exact method from Section 2.2.1
produces good results and in agreement with the theoretical results.

3.4.2 Perturbed case

Wenowadd aperturbation in the system (3.4.1),which takes the form ξ(t) = 0.6exp(min(6−
t, 0)) sin(2πt) in the next set of simulations. Note that for all t, |ξ(t) | ≤ 0.6. This par-
ticular ξ has been chosen to highlight that if the perturbation vanishes, with the implicit
discretization in (3.4.3b), us goes also to 0, whereas in the explicit case (3.4.3a), us contin-
ues to switch between −1 and 1. With the implicit discretization of us (Figure 3.7a) the
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Figure 3.7: Simulations of system (3.4.1) usingdifferent discretizationmethods forueq andh = 0.03 s
(perturbed case).

closed-loop system enters the discrete-time sliding phase at some point. Recall that in this
case, if the assumptions in Proposition 2.2.11 are satisfied, then usk = −(CB∗)−1Cpk−1. It
takes such value in order to counteract the effect of the perturbation during the elapsed
time interval, hence imitating the solutions defined using Filippov’s framework. However
the trajectories are now clearly only in a neighborhood of the sliding manifold. Finally in
each case in Figure 3.8a, usk settles to 0, as in continuous time. Indeed, the perturbation ξ
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used in this simulation goes to 0 exponentially fast at some point. On the other hand, with
an explicit discretization of us (Figure 3.8b), it is much harder to see the influence of the
perturbation on us since filtering would be necessary to see the effect. The control input
chattering is striking with the explicit discretization in Figures 3.3b, 3.6b, and 3.8b. We
shall see the same difference in the analysis of the experimental results, like for instance on
Figures 4.5, 4.3 and 4.2. In Figure 3.9 we further illustrate the phenomenon in the implicit
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Figure 3.8: Evolution of us for different discretizationmethods for ueq and us, h = 0.03 s. (perturbed
case)
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Figure 3.9: Evolution of us and the perturbation using the new control scheme for two different
sampling periods.

case: us approximates −ξ with a delay proportional to h. This illustrates the convergence
of us to uscont, as stated in Proposition 2.2.15 in Section 2.2.2.

The simulation results displayed in Figure 3.10 and 3.11 illustrate that with an implicit
discretization of us, the chattering in the discrete-time sliding phase is solely due to the
perturbation. The setup is the same as in Section 3.4.1, except that there is a perturbation
ξ(t) = 0.9 sin(t) and α, the magnitude of the discontinuous control, changes. For the



3.4. NUMERICAL ANALYSIS OF THE CONTROL INPUT
DISCRETIZATION 117

present set of simulations, we use α = 1, 3 and 10, values large enough to ensure that
the action of the perturbation is always dominated by the control. On Figure 3.10a, we
cannot distinguish the three trajectories in the discrete-time sliding phase, since even if
usk takes value in a larger set, the selected value within (α, α) does not change. This is
supported by the Figure 3.11a: it is again not possible to differentiate the values taken by the
controllers. On the contrary, in Figure 3.10b, three different trajectories are clearly visible.
Here we conclude that the numerical chattering is dominant: each time we increase α, the
amplitudes of the oscillation around the manifold are getting bigger. The precision of the
system seems to be affected by the magnitude of the control. The bigger it is, the farther
the system oscillates from the origin.
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Figure 3.10: Simulations of system (3.4.1) with a perturbation, using different values for α and with
h = 0.1s.

3.4.3 Comparison with saturated SMC

Now we would like to compare the controller from Section 2.2.1 against an implemen-
tation using the “saturation trick”, on a system subjected to perturbation. A proper
numerical analysis of the saturated case is difficult. Therefore we settled for a numerical
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Figure 3.11: Evolution of us, using different values for α and with h = 0.1 s.

experiment: we simulate the system (3.4.1) with a perturbation ξ(t) = sin 4πt. Instead of
using a discontinuous control, we use the following input: uscont(t) = − satε(σ (t)) with

satε(x) =



x/ε if |x | ≤ ε
sgn(x) if |x | > ε

. Each simulation lasts 150s. We use twometrics to measure

the performance of the different controllers. To measure the (output) chattering, due to
the discretization and the perturbation, we sum the absolute value of the sliding variable
σk for the last 20s: C1 B

∑
k
|σk |. To measure the control effort (or input chattering), we

measure the variation of the control for the last 20s: C2 B VarTT−20(us). Each quantity
defines the performance index in Figure 3.12 or 3.13. We choose to consider only the last
20s of each simulation to capture the behavior near the sliding manifold. Let us recall that
without perturbation, the implicit controller always supersedes the saturated explicit one,
since it suppresses numerical chattering and usk = 0 in the discrete-time sliding phase.

With both indexes, we can divide the space into 3 cones, numbered 1, 2 and 3 in
Figure 3.12 and 3.13. This separation helps us to compare both controllers. In Figure 3.12a
the performance in terms of chattering is presented. For large values of ε, the chattering
does not change when the sampling period varies: the control action does not attenuate
the effect of the perturbation. With a small ε, the behavior is more complex, as depicted in
Figure 3.12b. On Figure 3.12b, the overall best performance is obtained with small values
for both ε and h. However for small values of ε, the performance can degrade rapidly if the
sampling period h is not small enough, as seen in Region 1. The dark points indicate for
each value of h the pair (ε, h) of parameters yielding the best performance. It seems that



3.4. NUMERICAL ANALYSIS OF THE CONTROL INPUT
DISCRETIZATION 119

there is a linear relationship between those values. However it is unclear if this observation
on one particular system remains valid with a different perturbation. The level sets in
Figure 3.12b are used to compare the performance of the implicit and the saturated explicit
controllers. On Figure 3.13, the performance in terms of control cost is presented. The best
performance is achieved for large ε since the slope of the saturated function is gentle. On
the other hand in Figure 3.13b, with a small ε, the cost increases and explodes with ε close
to 0, as in Region 1. The level sets indicate the difference between the costs of the two
different controllers. It is worth noting that in Region 2 where the saturated controller is
better in Figure 3.12b, it has a higher cost in term of control (Figure 3.13b). In Region 3,
where the saturated controller performs less in terms of chattering (Figure 3.12a), it has
a smaller cost in terms of control (Figure 3.13a). Indeed with a large ε, the control input
is small when the closed-loop system is close to the sliding manifold. The cost is then
very small, but the disturbance is not attenuated at all. The implicit controller appeals to
us as the best compromise between the input and output chattering. It is also very easy
to use, since it requires no particular tuning with respect to the sampling period or the
perturbation.
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(a) Simulation results with 100 regularly spaced values for the sampling period h and 100 logarithmically
spaced values for the saturation parameter ε.
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(b) Detail of Figure 3.12a, 300 values for h and 1000 values for ε, forming a regular grid. Level sets were also
added to show the difference in performance between the implicit discretization and the explicit one with
saturation. If the difference is positive, the explicit saturated control is performing better than the implicit
one.

Figure 3.12: Simulation results of a perturbed system controlled using slidingmodewith a saturation.
The performance index is the sum of the |σk | for the last 20s.
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(a) Simulation results with 100 regularly spaced values for the sampling period h and 100 logarithmically
spaced values for the saturation parameter ε.
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(b) Detail of Figure 3.13a, 300 values for h and 1000 values for ε, forming a regular grid. Level sets were also
added to show the difference in performance between the implicit discretization and the explicit one with
saturation. If the difference is positive, the explicit saturated control is performing better than the implicit
one.

Figure 3.13: Simulation results of the same perturbed system controlled using sliding mode with a
saturation. The performance index is the sum of the |usk+1 − usk | for the last 20s.
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3.5 Simulation of a Nonlinear System

Let us now present some simulation results on a nonlinear system to illustrate the θ–γ
scheme presented in Section 3.2 while using the architecture exposed in Section 3.3. We
choose to simulate the electropneumatic setup onwhichwe implemented both the classical
ECB-SMC and the twisting controller. A detailed presentation of the dynamics and the
experimental results is available in the next chapter, in Section 4.1. Let us just start with
the dynamics of a piston, with two chambers P andN and a mass attached to the end of
the rod:

ṗP =
κrT
VP (y) [φP +ψPu − SrT pPv]

ṗN =
κrT
VN (y) [φN −ψNu + SrT pN v]

v̇ =
1
M [S

(
pP − pN

)
− bvv]

ẏ = v,

(3.5.1)

with pP (resp. pN ) two pressures, y and v being the position and velocity of a moving
mass. The constant κ is the polytropic index, r the ideal gas constant, T the temperature
(supposed the same inside and outside the chambers) and bv the viscous friction coefficient.
The volumes in each chamber are VP and VN , both depending on the actuator position y.
The constant piston section is S. Finally, φX andψX (X being P orN ) are both 5th order
polynomial functions versus pX .

Compared to the experimental setup, we consider that the whole state is known and
that there is no perturbation. We want to illustrate the accuracy provided by the θ–γ
method with respect to a crude approximation of the nonlinear dynamics. To this end, we
shall compare three different controllers:

– An implicitly discretized twisting algorithm, in a “classical” way as in (2.3.3) with
the θ–γ scheme. The control input is computed as

−λk+1 ∈ Sgn *
,

σk+1

σ̇k+1

+
-

and uk = G(λ1,k+1 + βλ2,k+1)

– The same controller, but without the θ–γ scheme: to compute the control input at
time tk, the dynamics is linearized around xk.
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– The twisting algorithmas studied in Section 2.3.4 anddefinedby (2.3.26) and (2.3.28),
coupled with the θ–γ scheme. The computation of the control input value is then

−λ ∈ ∂h−K *
,

σk+1

σ̇k+1

+
-

and u = G(λ1 + βλ2),

with K =
{
x ∈ R2 | Ex ≥ b

}
and E =

*......
,

1 0
−h/2 1
−1 0
h/2 −1

+//////
-

, b =
*......
,

−1
−1
−1
−1

+//////
-

.

Note that the three controllers are defined in an implicit way. We do not consider an
explicit discretization of the control input. The control objective is to make the mass at
the end of the piston track a given trajectory, which is sinusoidal here. Therefore, we want
to design the control input such as to set the tracking error e B y − yd to 0. From the
dynamics in (3.5.1), it is easy to see that the relative degree is 3 between e and u. Thus we
need to define our control input in the following way:

σ B αe + ė and σ̇ = αė + ë

Details on the control strategy for this setup can be found in Section 4.1.1. We just mention
that in continuous-time, the parameter α influences the speed of convergence for the
tracking error e: once the sliding phase σ = 0 is established, the evolution of the error
is governed by the ODE αe + ė = 0. Then increasing α speeds up the convergence of e
towards 0.

Let us now present some simulation results with the following parameters values:
θ = 0.5, γ = 1,G = 10−2,α = 10 and h = 0.1s. The sampling period is chosen deliberately
large to highlight the good performances of the θ–γ scheme, even in such setup. The
initial state is y = v = 0 and values of the pressures pP and pN are selected such that to
ensure that we start from a (physical) equilibrium.

On Figure 3.1 the evolution of the position and the speed of the load is depicted.
The control input computed with the explicit discretization of the dynamics performs
poorly compared to the two others: on Figure 3.1a the tracking error is clearly larger than
with the other two controllers. This controller fails to generate a sinusoidal trajectory,
whereas the two others managed to do so. On Figure 3.1b, we can see some chattering
appearing at some point with this controller, which is never the case with the two others.
Let us continue with the tracking error on y as depicted on Figure 3.2: on the left, it is
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Figure 3.1: Simulations results for the system (3.5.1) with the 3 controllers.
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Figure 3.2: Tracking error on position, on the left with the 3 controllers, on the right only with the
2 using the θ–γ scheme.

easy to conclude that the tracking performance of the controller with explicitly discretized
dynamics is an order of magnitude worst than the two others. On the right, Figure 3.2b,
the controllers with theNewton loop are indeed performing better.We can see a difference
between those two: the sliding variable with the modified one has a smaller magnitude
than with the simply discretized controller. On the other hand the latter manages to keep
the error to much smaller values during some period. Moving on to the sliding variables,
on Figure 3.3 we again see the benefit of the θ–γ scheme. The controller using this method
alongside the modified twisting algorithm is able to keep σ two orders of magnitude
smaller than the controller with the basic discretization. On the right picture we see that
two controllers yield a sliding variable σ with a shape similar to the tracking error. The
evolution of the second sliding variable σ̇ can be found in Figure 3.4. On the left, we can
see again the chattering behavior with the explicitly discretized dynamics. Between the two
other controllers, there is not much difference, except for some spikes. With Figure 3.5, we
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Figure 3.3: Sliding variable σ evolution: on the left with the 3 controllers, on the right only with the
2 using the θ–γ scheme.
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Figure 3.4: Evolution of the sliding variable σ̇ , on the left with the 3 controllers, on the right only
with the 2 using the θ–γ scheme.

look at the control input values. The chattering phenomenon we have been noticing can
also be seen here. The magnitude of the control input remains the same for all controllers.
The chattering-like behavior is mostly due to the high-frequency switching of one control
input.

To sum up, the following benefits from using the θ–γ scheme are illustrated: better
tracking performances and no chattering-like behavior. Note that we are going to see those
degraded performances again when investigating the experimental results for this system
in Section 4.1. We shall see in Section 4.1.3 that some parameters, including α, have to be
carefully tuned in order to get good results. With a better integration of the dynamics,
it appears that the controller performance may be less sensitive to the parameter α. This
could be interesting to investigate, as well as the differences between the two twisting
controllers.
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Figure 3.5: Control input evolution, on the left with the 3 controllers, on the right only with the 2
using the θ–γ scheme.

Conclusion

In this chapter we presented the numerical workhorse for the simulation and computation
of the control input: First we gave algorithms to solve the AVI(K, q,M ) whose solution
is either the control input value or part of it, like in the twisting case. In particular we gave
a detailed description of the algorithm by Cao and Ferris which finds a solution for every q
andM whenever the setK is closed convex bounded. We also show with the θ–γ scheme
how one could deal with nonlinear dynamics in a more efficient way than just discretizing
it explicitly.We discussed some implementation details within the siconos platform,with
a particular attention given to the Control toolbox that emerged as one of the outcomes
of this PhD. Those software developments enabled us to realize the numerical study
in Section 3.4, where we illustrate some theoretical results from Section 2.2. In the last
section,we highlight the importance of the discretization of the nonlinear dynamics, which
influences the quality of the control input given by the controller. With the large sampling
period we considered, the advantages of using this method are nicely illustrated. We use
this opportunity to put into action the modified discrete-time controller we proposed
in Section 2.3. The results look promising and further studies should be undertaken as
well as an implementation on the experimental setup. The next chapter is exactly devoted
to the presentation of experimental results with both the ECB-SMC and the twisting
controller. However we did not perform the implementation of neither the θ–γ scheme,
nor the modified twisting controller since at the time the experiments had to be done, we
lacked perspective on those two aspects and we opted to first implement the basic version.
It turned out that it was already a challenge to properly tune the different parameters in
the control loop.



Chapter 4

Experimental Results with Sliding Mode
Controllers

This last chapter is dedicated to the experimental validations of the discrete-time slid-
ing mode controllers presented in Chapter 2. We already illustrated the good behavior
and some theoretical results in Chapter 3, but in Control it is important to go beyond
simulation and to test the control laws on experimental setups. Those experiments were
conducted as part of the ChaSlim project, founded by the ANR1. This project is a collab-
oration between the NON-A team at INRIA Lille – Nord Europe, the IRCCyN lab in
Nantes and the BIPOP team at INRIA Grenoble Rhône-Alpes. We present experimental
results for two setups: an electropneumatic actuator from the IRCCyN lab and an inverted
pendulum at École Centrale de Lille. We tested both the classical sliding mode controller
(but without an equivalent part) and the twisting algorithm.

In the presentation we focus on the discretization of the Sgn(·) multifunction since it
is this one that influences the most the behavior of the control loop. Therefore, we mainly
compare the results obtained with an implicit discretization of the Sgn(·) multifunction
versus an explicit discretization. Both systems have nonlinear dynamics which could be
discretized with the θ–γ scheme presented in Section 3.2. But we wanted first to get results
on the discretization of controllers and collecting good data proved to be time-consuming.
The fact that none of the setups is located at INRIA Grenoble did not help testing the
control laws. This is why we only present results with the same discretization of the
dynamics.

1ANR BLANCANR–11–BS03–0007 http://chaslim.gforge.inria.fr/
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4.1 Electropneumatic System

In this section, we present results from an implementation of both explicit and implicit
twisting controllers on an electropneumatic plant, as depicted on Figure 4.1. This setup

Figure 4.1: Electropneumatic system

is located at the IRCCyN lab (École Centrale de Nantes, France). The control problem
at hand is the tracking of a sinusoidal trajectory for the position of the end of the piston,
and this despite the perturbation induced by the other piston. In the following, we first
present the model of this system and the twisting control law that we use. Note that we
used only the one obtained by the implicit discretization and not the one discussed in
Section 2.3.4. The later was studied after the experiments were done. Then we move to
the analysis of the captured data, highlighting the importance of the discretization process
which is unfortunately often overlooked.We also discuss the influence of some parameters,
like the choice of the sliding variable, on the closed-loop behaviour.

4.1.1 Setup Description

Plant Dynamics, Actuators and Sensors

Let us now present the physical system, actuators and sensors. The electropneumatic
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Figure 4.2: Schematic of the electropneumatic system

system, as depicted on Figure 4.2, has two actuators. On the left-hand side, there is a double
acting electropneumatic actuator (the “main” one) controlled by two servodistributors
and composed of two chambers denoted P andN . The piston diameter is 80 mm and
the rod diameter is 25 mm. With a source pressure equal to 7 bars, the maximum force
developed by the actuator is 2720 N. The air mass flow rates entering the chambers are
modulated by two three-way servodistributors. The pneumatic jack horizontally moves
a load carriage of massM . This carriage is coupled with the second electropneumatic
actuator, the “perturbation” one, on the right-hand side. The goal of the latter is to
impress a dynamic load force on the main actuator. This actuator has the samemechanical
characteristics as the main one, but the air mass flow rate is modulated by a single five-way
servodistributor. The control variable u is constrained to take values between −10 and 10
volts. The position y, the pressures pP , pN are available but both the speed v and acceleration
are computed using a filtered differentiator given in frequency domain by

D(s) = s
1 + τs . (4.1.1)

Under some assumptions detailed in [100], the plant dynamics can be written as a
nonlinear system affine in the control input [uP uN ]T , with uP (resp. uN ) the control
input of the servo distributor connected to the P (resp.N ) chamber. Themodel is divided
in two parts: the first two equations describe the pressure dynamics in each chamber
and the motion of the piston is given by the last two equations. There is a single control
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objective which is to force the load position to track a reference trajectory. Therefore we
set u B uP = −uN , and the dynamics of the electropneumatic experimental setup is

ṗP =
κrT
VP (y) [φP +ψPu − SrT pPv]

ṗN =
κrT
VN (y) [φN −ψNu + SrT pN v]

v̇ =
1
M [S

(
pP − pN

)
− bvv − F ]

ẏ = v,

(4.1.2)

with pP (resp. pN ) the pressure in the P (resp.N ) chamber, y and v being the position and
velocity of the load. The constant κ is the polytropic index, r the ideal gas constant, T
the temperature (supposed the same inside and outside the chambers) and bv the viscous
friction coefficient. The volumes in each chamber are VP and VN , both depending on the
actuator position y. The constant piston section is S. The external force applied by the
perturbation actuator is denoted by F . Finally, φX andψX (X being P orN ) are both 5th

order polynomial functions versus pX [98], that characterize the mass flow rate qX in the
chamberX in the following way

qX = φX (pX ) +ψX (pX , sgn(uX ))uX .

The sources of uncertainty can be the polytropic index κ, the mass flow, the tem-
perature T , the massM , the viscous friction coefficient bv and the disturbance force F .
They can be modeled by additive bounded functions added to the nominal part of each
parameter. As an example, the massM can be viewed as the sum of a nominal part and
an uncertain one:M C Mn + ∆M , where ∆M is a bounded uncertainty andMn the
nominal value.

Control Strategy

The presence of uncertainties motivates the use of a sliding mode control scheme, well-
known for its robustness. A first study was already conducted for equivalent-based slid-
ing mode controller, with a comparison between explicit, implicit and saturation meth-
ods [112]. The experiments we present here were carried on with the discrete-time twisting
controller presented in Section 1.1.2. Since we are interested in a tracking problem for the
position of the load, y is the variable to be controlled. The desired position of the piston is
yd and the position error in the tracking problem is e B y − yd . The choice of this output
leads to a relative degree 3. Therefore, to bring the relative degree between the sliding
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variable and the control input to 2, so as to apply the twisting algorithm, we define the
sliding variable as

σ B αe + ė. (4.1.3)

Its first and second derivatives are

σ̇ = αė + ë and σ̈ = αë + y(3) − y(3)
d ,

where

y(3) = v̈ = 1
M [S

(
ṗP − ṗN

)
− bvv̇ − Ḟ ].

Using the relation in (4.1.2), we get

y(3) =
SκrT
M

(φP
VP
− φNVN

)
− S

2κ
M

( pP
VP
+
pN
VN

)
v

− bv
M 2

(
S(pP − pN ) − bvv − F

)
− ḞM

+
SκrT
M

(ψP
VP
+
ψN
VN

)
u. (4.1.4)

Let us define the following functions

Φ B
SκrT
M

(φP
VP
− φNVN

)
− S

2κ
M

( pP
VP
+
pN
VN

)
v

− bv
M 2

(
S(pP − pN ) − bvv

)
+ αë − y(3)

d

and

Ψ B
SκrT
M

(ψP
VP
+
ψN
VN

)
. (4.1.5)

Finally, the sliding variable dynamics is

σ̈ = Φ + ∆Φ + (Ψ + ∆Ψ)u (4.1.6)

given that we consider that all the uncertainties are “additive”, that is the vector fields can
be written as the sum of a nominal partΦ andΨ and uncertain terms ∆Φ and ∆Ψ. The
latter include for instance the modeling errors and the action of the perturbation actuator
like F and Ḟ in (4.1.4).

The implicit controller is constructed in the following way: the control input is dis-
cretized using the implicit discretization, that is

uk = G(1 β)λ and − λ ∈ Sgn(Σ̃k+1), (4.1.7)
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with β = 2/3 and Σ̃k+1 = (̃σk+1,˜̇σk+1) the value of the sliding variables given by discrete-
time dynamics that we now derive. Writing the sliding variable dynamics as a first-order
ODE, we get

Σ̇ = AΣ + F + Bλ (4.1.8)

with Σ = *
,

σ
σ̇

+
-
,A = *

,

0 1
0 0

+
-
,B = *

,

0 0
GΨ βGΨ

+
-
and F = *

,

0
Φ

+
-
. We discretize the nonlinear

termsΦ andΨ using the explicit Euler scheme: we consider thatΦ(t) =Φk B Φ(tk) and
Ψ(t) = Ψk B Ψ(tk) for t ∈ [tk, tk+1). For the last step in the discretization of (4.1.8), we
use the ZOHmethod, which yields

Σ̃k+1 = A∗Σk + F ∗k + B∗kλ, (4.1.9)

withA∗ B eAh = *
,

1 h
0 1

+
-
,Bk B GΨk *

,

0 0
1 β

+
-
andB∗k B

∫ tk+1

tk
eAτBkdτ = hGΨk *

,

h/2 βh/2
1 β

+
-
,

Fk B *
,

0
Φk

+
-
and F ∗k B

∫ tk+1

tk
eAτFkdτ = *

,

h2
Φk/2
hΦk

+
-
. Hence we get the system

σ̃k+1 = σk + hσ̇k +
h2

2
Φk +

h2

2
GΨk[λ1 + βλ2] (4.1.10)

˜̇σk+1 = σ̇k + hΦk + hGΨk[λ1 + βλ2] (4.1.11)

−λ1 ∈ Sgn(̃σk+1) (4.1.12)

−λ2 ∈ Sgn(̃σ̇k+1), (4.1.13)

with unknowns λ1, λ2, σ̃k+1 and ˜̇σk+1. Note that this composite discretization procedure
differs from discretizing the dynamics (4.1.8) explicitly (or with θ = 0 as presented in
Section 3.2 and 3.5). Let us check how the results from Chapter 2 can be applied on this
closed-loop system. It follows from Lemma 2.3.1 that this system has always a solution.
Uniqueness properties are givenbyLemma2.3.8: the control inputuk is uniquely defined as
well asλ if σ̃k+1 , 0.We solve the AVI associated to the twisting controller by enumeration:
the code is given in Appendix C.2.

4.1.2 Experimental Results

This section is devoted to the analysis of the experimental results obtained on the elec-
tropneumatic setup. Recall that the control objective is to make the position of the piston
track a sinusoidal trajectory. In the following, the desired trajectory is

yd B Ampl sin(0.2πt).
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The controller was implemented as a Simulink model and then transferred onto a DS1005
dSpaceboard.Wewere able to get resultswith the samplingperiodh in the range [3, 100]ms
and with the gainG in the range [10−2, 107]. The sliding surface parameter α and the two
filtered differentiator time constants in (4.1.1) require proper tuning for each sampling
period. They can drastically alter the performances of the controller. Since it appears that
both have to be tuned together, preliminary values were obtained using simulations, with
a selection based on the average error or precision, and were later refined on the plant.
Section 4.1.3 is dedicated to the tuning of those parameters and to the analysis of their
influences.

We now present results for two criteria: the tracking accuracy and the chattering
magnitude on both the input and the output. In each case, we first compare the explicit
and implicit methods, before analyzing in more depth the performances of the implicit
method.

Tracking accuracy

The tracking error e = y − yd is the quantity we aim to minimize through the twisting
controller. Due to the high relative degree of the system, the controller does not bring
e to 0 in finite time, but rather σ = αe + ė. Once the sliding phase σ = 0 occurs, the
convergence of e to 0 is then exponentially fast if α > 0. The latter parameter controls the
speed of convergence: the bigger α is, the faster the error decreases.

To measure the accuracy of the tracking, we compute the average of the absolute value
of the error over an interval of 60s. We call this quantity the precision and we denote it ē.
Its analytical formula is

ē B
N∑
k=1

|e(tk) |
N with tN − t1 = 60s. (4.1.14)

On Figure 4.3, the precision with both the implicit and explicit controllers is displayed
for different sampling periods. The implicitly discretized controller clearly yields a better
performance than the explicit one, for each sampling period where the comparison is
possible. Indeed it was not possible to get reliable data for large sampling periods with
the explicit controller, since the plant was becoming unstable. The precision appears to
increase linearly with h, or in other word it is in O(h). This is underscored by the linear
regression plotted on Figure 4.3. Thismay be surprising since we use a second-order sliding
mode controller and the order should be O(h2). However, recall that σ = αe + ė, with



134 CHAPTER 4. EXPERIMENTAL RESULTS WITH SMC

0 20 40 60 80 100

Sampling period (ms)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ec
isi
on

implicit
explicit
linear regression

Figure 4.3: Evolution of the precision ē with respect to the sampling time for both implicit and
explicit discretizations. The gain used in every capture wasG = 105.

the derivative being computed by a simple filtered differentiator. Looking at the C code
generated using the Real-Time Workshop Toolbox, we can see that the approximated
derivative ṽ of y is computed as the output of the following LTI system:




ak = Aak−1 + yk
ṽk = Cak +Dyk

,

withA = −τ−1, D = τ−1 and C = −τ−2, τ being the time constant in (4.1.1). This one-
step approximation is of order h. Hence in (4.1.10), the term σk is known with a precision
only in O(h), which can be seen as a non-matching perturbation. Most of the time, in
this tracking problem, the control action tries to bring σ̃k+1 to 0, see Figure 4.12 at the
end of this section. The equation (4.1.10) is then the one used for the computation of
the control input, propagating the error. This problemmight be alleviated by the use of
another differentiator, like the one proposed in [74].
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Figure 4.4: Real and desired position trajectories with h = 10ms andG = 105.

Let us show more detailed results for a specific sampling period: h = 10ms. On
Figure 4.4a and 4.4b, the real and desired trajectories are depicted with, respectively, an
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implicit and an explicit controller. On Figure 4.4a, the tracking is very accurate: at the
given scale, the real position and the desired one are very close to each other. On the
other hand, on Figure 4.4b, the chattering of the real trajectory is visible in the form of a
boundary layer around the reference trajectory. Therefore the output chattering has been
drastically reduced with the use of an implicit controller. Turning our attention to the
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Figure 4.5: Evolution of the control input u for both implicit and explicit discretizations with
h = 10ms andG = 105.

control input, Figures 4.5a and 4.5b illustrate the evolution of this quantity in the implicit
and explicit cases. In the first case, the control values are in the range [−3, 3.3], which is
well inside the constraints u ∈ [−10, 10]. Although the control is affected by the noise
from the measurements, there is an underlining periodical signal, which is also seen on
simulation results, see Figure 4.13a. The root cause of the oscillations is likely to be the
approximations done to get the discrete-time model in (4.1.9). It is difficult to analyze the
data on Figure 4.5b since the control input is switching at a very high frequency between
the 2 extremal values −10 and 10, sign of a chattering input. It is pretty clear that the main
source of chattering is the explicit discretization of the controller.

Let us finish with the tracking error measured with the same two twisting controllers,
as shown on Figure 4.6. Comparing the ranges, we can see that in the implicit case (Fig-
ure 4.6a), the tracking error is one order of magnitude smaller than in the explicit case
(Figure 4.6b). The spike in Figure 4.6a around t = 22s is due to the perturbation of the
second actuator, which periodically switched its force acting on the moving mass from
1000N to −1000N and vice-versa. We further analyze the chattering in the second part of
this section.

Having exposed the superiority of the implicit discretizationwith respect to the explicit
one, let us further present the good performances that it yields. Firstly it is possible to
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Figure 4.6: Evolution of the tracking error for both implicit and explicit discretization with h =
10ms andG = 105.
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Figure 4.7: Real and desired positions with an implicit discretization, h = 100ms andG = 105.

increase the sampling period while keeping a good tracking and a system stable in practice.
Figure 4.7 illustrates this fact: even with a sampling period of 100ms, the tracking takes
place, althoughwith degraded performances compared to the one in Figure 4.4a. However
the precision is still better than with an explicit controller with a sampling period one
order of magnitude smaller as shown in Figure 4.3 and 4.4b. Another very nice feature of
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Figure 4.8: Evolution of the precision and the control input amplitude when the gain (G in (4.1.7))
varies for 3 different sampling periods.
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the implicit discretization is the fact that the control input value is computed as a selection
of a set-valued term, as mentioned earlier. One implication is that the gain just needs to be
large enough with respect to the perturbation to ensure the robustness (remember (1.1.7)),
but a further increase in the gain does not harm the performances. This is illustrated in
Figure 4.8, where we display data obtained in the following way: the experiment is run
with the same control 10 times, increasing the gain 10 fold each time, from 10−2 to 107.
This was repeated for 3 different sampling periods. On Figure 4.8, both the precision ē and
the amplitude of the control input are plotted versus the gainG. For each sampling period,
the precision varies only by less than 5%, which is solely due to the noise in the plant. The
random evolution, with respect to the gain further supports this claim. Regarding the
amplitude of the control input, we compute it as the mean of the top 5% values of |uk |,
to which were subtracted the 10 top values, as to remove any outlier. Again, we see only
random variation when the gain is increased. This is close to the result we obtained for the
classical SMC in Corollary 2.2.13. To get a closer look, we have in Figure 4.9 the implicit
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Figure 4.9: Implicit signum selections (4.1.15) for 2 values of gain: 10−2 and 107 and with a sampling
period of 10ms.
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Figure 4.10: Control inputs for two values of gain: 10−2 and 107 and with a sampling period of
10ms.

signum selections, and in Figure 4.10 the control inputs for the two extremal values of
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gain: 10−2 and 107. We call implicit signum selection the quantity

λ1 + βλ2, (4.1.15)

where λ1 and λ2 are as in (4.1.12) and (4.1.13). Multiplied by the gainG, it is equal to the
control input value, see (4.1.7). The shape of the implicit signum selection is similar with
both gains, however the range of the values is [−0.08, 0.1] with Ga = 10−2 whereas it
is [−0.6 10−10, 10−10] with Gb = 107. The ratio between the extremal values is close to
Ga/Gb. Now moving on to the control input in Figure 4.10, it does not change much:
with both gains, the control input u is in the range [−3, 4.5]. As long as the gain G is
large enough, the control input does not change much. The loose coupling between the
control input and the gain is only possible with an implicit discretization, which enables
us to compute the control input value as a selection. With an explicit discretization, it is
well-known that the increase of the gain eventually leads to an increase in the control input
and therefore an increase for both input and output chattering. The insensitivity of the
discontinuous controller with respect to the increase in the gain has also been verified for
the ECB-SMC controller in [112]. This is an expected property given the use of Filippov’s
framework. Let us switch focus on the chattering for the rest of this section.

Input and output chattering

We propose to characterize the chattering of a variable with the variation of the associated
signal. Let us recall fromDefinition 1.3.2, the expression of the variation of a real-valued
step function f (·) on an interval [t, T ]:

VarTt (f ) B
∑
k
|f (tk) − f (tk−1) |,

with k ∈ N∗ such that tk ∈ (t, T ] and tk are the time instants where the control input value
changes. Though this quantity is not commonly used in Control Engineering, it provides
a nice characterization of the chattering on either the control input or the sliding variables.
We pay attention to both input and output chattering, since the first one contributes to the
second and it can also induce rapid wear of actuators, especially if they are mechanical ones.
Furthermore, it may also be linked to the energy consumption of the actuator. As before,
we present the evolution of the control input chattering with respect to the sampling
period for both implicit and explicit controllers. From Figure 4.11a, we can infer that the
trend in both cases is a decrease of the variation with an increase in the sampling period.
Again the implicit controller performs much better, having a control input variation two
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Figure 4.11: Evolution of the control input variation and the error variation with respect to the
sampling time for both implicit and explicit discretizations. The gain used in every capture was
G = 105.

orders of magnitude smaller than the explicit one. This reduced chattering can also be
assessed on site with a huge reduction of the noise made by the actuators2.

Moving on to the output chattering, the same conclusion follows: the implicit method
performs better than the explicit one, this time by an order of magnitude (see Figure 4.11b).
Thismeans that the output chattering is notably reduced. Indeed a bang-bang type control
input, like the one the explicit discretization yields, tends to change the sign of the sliding
variable very frequently. This leads to a large variation of the error, with respect to the
variationwith an implicit controller. At the same time, this behavior does not yield a better
tracking, as illustrated by Figure 4.3.

Let us finishwith an analysis of the values takenbyλ1 andλ2, defined respectively in (4.1.12)
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Figure 4.12: Values of the two variables λ1 and λ2, as defined in (4.1.12) and (4.1.13), withG = 10−2

and h = 10ms.

and (4.1.13). They are the selections of the set-valued inputs, that is the real values taken
2The reader is invited to watch the videos at http://bipop.inrialpes.fr/people/huber/

http://bipop.inrialpes.fr/people/huber/
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by the controller. On Figure 4.12, we can see that λ2 is equal to either 1 or −1 whereas λ1

takes value in (−.745,−.656) ∪ (0.660, 0.776). Then from equations (4.1.10) to (4.1.13)
we deduce that σ̃k+1 = 0 and ˜̇σk+1 , 0. Therefore the control action tries to bring σ (tk+1)
to 0 at each time instant tk. Based on this observation, one sees that (4.1.10) is in fact the
equation giving its value to the implicit selectionλ1+βλ2. This explains the propagation of
the error in the computation of ė from σk to the control input mentioned in Section 4.1.2.
It also provides an heuristic for the computation of the control: after a short period of
time the tracking takes place and then the controller always brings σ̃k+1 to 0. Hence if
we solve the AVI given in (4.1.11) by enumeration, we can firstly try the two cases where
σ̃k+1 = 0.

4.1.3 Parameters selection

We mentioned at the beginning of Section 4.1.2 that the tuning of the sliding surface
parameter α and of the two filtered differentiator (τv and τa) is important and drastically
affects the closed-loop behavior. In this section, we present the procedure to get initial
values for those parameters and then analyze their influences on the performances. First
let us recall some basic facts about the parameters we deal with. In continuous time,
the sliding surface parameter α influences the error dynamics once the origin is reached.
In this case, the ODE in (4.1.3) becomes αe + ė = 0 and the exponential decrease is
controlled by the value of α. Therefore we expect the performances to improve with
higher values of α. Regarding the filtered differentiators, the constants on the low-pass
filter should be tuned such that the dynamics of the closed-loop system are preserved
as much as possible and that a major part of the measurement noise is rejected. It looks
reasonable to assume that when the sampling period decreases, the high frequency part of
the dynamics is richer since the control input changes more frequently. Hence, we expect
the optimal value of those coefficients to decrease with the sampling period. This search
for parameters is motivated by the fact that even in simulation, the closed-loop system
with the implicit controller is giving good results only for a small range of sampling periods
with chattering appearing suddenly with a small change in the sampling period, which is
not at all consistent with the theory presented in Section 1.1.2 and 4.1.1. The fact that both
the input and output chattering imputable to the controller have been greatly reduced
enabled us to see the influence of other parameters. The material presented here reflects
our progress with respect to this new problem: in the first subsection, we present the
method used to get initial values for the parameters using a simulation-based approach. In
the second subsection, we analyze the experimental data capture while varying the sliding
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parameter α, which is part of the twisting controller. The choice of its value is one of the
final step of the controller design. We hope that the material presented here and in the
aforementioned reference can be used as guidelines for the selection of those parameters
and help to enhance on-site fine tuning.

Simulation-based Parameters Selection

Let us recall how the parameter αwas introduced: in Section 4.1.1, the sliding variable is
defined as

σ = αe + ė with e = y − yd,

This choice is imposed by the relative degree 3 between the tracking error e and the control
input u. Let us present some simulation results illustrating the difference of behavior
when α changes. On Figure 4.13a, the controller with α = 100 is able to achieve a tracking
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Figure 4.13: Tracking errors for two simulations with an implicit controller and h = 15ms. The
controller parameters are the same, except the value of α.

performance that is an order of magnitude better than the controller with the sliding
coefficient α = 10. Let us underline here the fact that with an explicit discretization, it
is much more difficult to see such changes: the tracking error is one order of magnitude
bigger both in simulation and on the plant, see 4.3. Hence, the improvements we see
on Figure 4.13a are lost in the numerical chattering. Going back to the tuning of α, this
parameter value cannot be increased at will: even in simulation, some (numerical) noise
is present and degrades the performances. This is illustrated on Figure 4.13b, where the
value of α is doubled to 200. The tracking error is two order of magnitude higher than
previously and the chattering is huge.
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As mentioned in Section 4.1.1, the position y is measured but neither the speed nor
the acceleration of the piston. However those quantities are required for the computation
of the sliding variables σk and σ̇k. They are then computed using the filtered differentiator
given in (4.1.1). The effects of a badly tuned filtered differentiator parameter are already vis-
ible in simulation, without purposely adding any noise. On Figure 4.14, the tracking error
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Figure 4.14: Tracking errors for two simulations with an implicit controller and h = 15ms. The
controller parameters are the same, except the filtered differentiator parameters.

with two different sets of filtered coefficients is displayed. We reproduced the same con-
troller as for the last simulation (α = 100, τv = τa = 0.2) and for the second simulation,
we changed the coefficients to be both equal to 0.05. It looks like a phase with an important
chattering appears periodically, which considerably degrades the precision of the tracking.
It quickly appeared that it was not possible to tune separately the differentiator (τv, τa)
from (4.1.1) and sliding (α) coefficients. We opted for a simulation-based approach, where
a range for all the coefficients is selected. We imposed the two differentiator coefficients τv
and τa to be equal as to reduce the number of configurations to test. Given a sampling
period, the closed-loop system runs in simulation for 30s and then we compute different
metrics as the min, max and the mean absolute value of the tracking error on the position.
We select only data which correspond to a simulation time in the interval [15, 30]s, as
to eliminate any transient phase. Indeed the initial value for the physical quantities used
to start the simulation may not yield a system in steady-state. This hypothesis is backed
up by the fact that we sometimes see such a transient phase in simulation but we never
did on the physical plant. Based on the average absolute value of the tracking error, we
select which triplet of parameters should be consider as initial value for the tuning on the
plant. The simulation results indicate that there are 3 orders of magnitude between the
best configuration and the worst: best precision is close to 2 · 10−4, whereas the worst is
close to 0.1, see Figure 4.15. It also illustrate how the precision is affected by the change in
the various coefficients. This numerical research of the best coefficients was performed for
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Figure 4.15: Heat map of the precision for various values of the differentiator coefficients and the
sliding coefficients. The sampling period was set to 15ms.

a range of sampling periods {1, 3, 5, 7, 10, 15, 20, 35, 50, 75, 100}ms and we used those as
initial values for the parameters.

Analysis of the influence of the parameter α on the experimental setup
Let us nowpresent an analysis of some experimental data collected on the electropneumatic
setup. We concentrate here only on the sliding parameter αwhich is part of the twisting
controller. The choice of its value is one of the final step of the controller design. For the
remainder of this section, all the data presented on the figures are from the experimental
setup. The parameter αwas tuned online by considering the noise produced by the plant,
which can be linked to the actuator chattering, on this setup. Two examples of the relation
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Figure 4.16: Control variation relationship with the sliding parameter α and the precision.

between the precision and the input chattering are given in Figure 4.16: after a quick
improvement in the precision, the best value is obtained. Then the tracking error increases
with the control input variation. It is also apparent on the left plot in Figure 4.16 that the
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control variation is increasing with the sliding coefficient α. Thus a good tuning strategy is
to increase α until the precision seems to deteriorate and the chattering increases. Having
narrowed the interval for the optimal α, we can then try to track it.
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(a) Filtered coefficient values: τv = 0.1, τa = 0.05.
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Figure 4.17: Evolution of the precision versus the sliding coefficient. The sampling period is 5ms
and the filtered differentiator coefficients are the only parameters changing between the two
experiments.

We continue our analysis by displaying the evolution of the precision with respect to
the sliding coefficient α in Figure 4.17.We aim at a better understanding of the influence of
the sliding surface on the closed-loop system performance. In the figures, we added plots
of functions trying to capture the behavior of the system. To choose them, we started from
two observations based on the asymptotic behavior: for small values of α, the evolution
of the precision looks like 1/x and for the large values, the tracking error increases quasi-
linearly. Therefore we tried to capture the behavior using rational functions where the
degree of the numerator is the degree of the denominator plus one. We can also set the
constant term of the denominator to be 0, as to impose an asymptotic behavior close to
1/x near 0. Nonetheless we tried with one function (f4, see below) that does not have this
property. The three functions that we tried are the following ones:

f3(x) B ax
2 + bx + c
x f4(x) B ax

2 + bx + c
x + d

f5(x) B ax
3 + bx2 + cx + d
x2 + ex .

The fittingof the coefficientswas done inPythonwith the functionscipy.optimize.curve_fit
from SciPy [65], which internally calls least-square solving routines fromMINPACK. If
we go back to Figure 4.17, it is apparent that the curve associated with the function f3 is
not a good fit for the measures we got from the plant. With 4 or 5 parameters, the curves
capture the behavior more faithfully. On Figure 4.17a the two functions give very close
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results. On Figure 4.17b, the function f5 better fits the data. To confirm this, we would
need to gather more data with α > 130.

Let us now investigate the two asymptotical behaviors as seen in Figure 4.17. Let us
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Figure 4.18: Evolution of the mean absolute value of the sliding variable σ versus the sliding
coefficient.

first focus on the behavior when α is small: in this case, we can see on Figure 4.18 that the
mean absolute value of σ is constant forα between 10 and 60. This is also true for themean
absolute value of the control input in Figure 4.19, and the system is in the discrete-time
sliding phase since the control bounds are never hit.The system is trying to bring the
sliding variable value to 0 in one sampling period. Let us formalize this observation by the
following relation

σk+1 = αek+1 + ėk+1 = Pk,

where Pk accounts for all the noise and unmodeled dynamics effects. Let us approximate
ėk+1 by

ek+1 − ek
h , which transforms the last equation into

ek+1 =
ek

1 + αh +
h

1 + αhPk. (4.1.16)

This relation implies that the error ek forms an arithmetico-geometric sequence, with the
common ratio r = Pk/α. In the following we compute the expected value of the error ek
under the hypothesis that the expected value of Pk is independent of k and is therefore
denoted by E[|P |]. The quantity we display in Figure 4.17 is

∑
k
|ek |/N . From (4.1.16),

we get the following bounds:

h
1 + αhPk −

1
1 + αh |ek | ≤ |ek+1 | ≤ 1

1 + αh |ek | +
h

1 + αhPk.
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SummingN times this relation, ignoring the terms at the powerN , and working with
expectation of the error yields

N E[|P |]
1 + α + h−1 −

(
|e0 | + E[|P |]

1 + α + h−1

) (
1 + αh
2 + αh

)
≤

∑
k
|ek | ≤

(
|e0 | − E[|P |]

α

) (
1 + αh
αh

)
+N E[|P |]

α .

Neglecting the constant terms divided byN , we finally get

E[|P |]
1 + α + h−1 ≤

∑
k

|ek |
N ≤ E[|P |]

α

at the limit. This small derivation corroborates the data in Figure 4.17 for small values of
α, where the asymptotical behavior is like 1/α.

For large values of α, the precision looks like a linear function of the sliding parameter.
This appears to be also the case for the mean absolute value of the control input, see the
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Figure 4.19: Evolution of the mean absolute value of the control input and the percentage of
control input values that are saturated versus the sliding parameter α.

left plot in Figure 4.19. An interesting phenomenon is the appearance of saturation on the
control input: on the right plot in Figure 4.19, for values ofα greater than 90 (or 110 for the
other differentiator parameters), u is hitting its bound, and it occursmore frequently when
α increases. Hence we infer that the definition of the sliding variable σ can greatly affect the
behavior. This is linked to the loss of homogeneity in the discrete-time controller, which is
far beyond the scope of this paper. It is noteworthy that this degradation of performances
was already seen in simulation, remember Figure 4.13b, where α = 100 yields very good
performance while α = 200 yields very poor performance. Hence we suspect that this
deterioration is related to the approximation on either the computation of the derivative
or the discrete-time model (4.1.9). It would be of interest to see whether the use of a better
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Figure 4.20: Evolution of the sliding variable parameter α versus the sampling period.

differentiator and a more accurate discrete-time model enable the use of higher values of α
and if the precision is improved. Let us finish by looking at the evolution of αwhen the
sampling period changes. The values of α presented in Figure 4.20 are those yielding the
best performance in term of precision. The overall trend is an increase of the “optimal”
value of αwith the sampling period. With our experimental data, values are spanned from
α = 25 for h = 3ms to α = 6500 for h = 100ms. This important variation underlines
the importance of properly tuning this sliding surface parameter when the sampling period
changes.

4.1.4 Comparison to the classical first-order sliding mode controller

Let us present some results with an implicit sliding mode controller instead of a twisting
controller. For a comparison between explicitly and implicitly discretized controller for
the ECB-SMC, see [113], where it is shown that the implicit controller gives much better
results than the explicit one. The implicit controller in the first-order sliding mode case
has the following structure:

−uk ∈ G Sgn(σk+1)

The relative degree between the output y and the input u forces us to define the following
sliding surface:

σ = ë + 2ξωė + ω2e, (4.1.17)

with twodesign parameters: ξ andω. To keep the search of the best sliding surface trackable,
we fixed ξ = 0.7 in an analogy to the second-order ODE analysis, to theoretically ensure
the fastest convergence within a 5% boundary layer of the sliding manifold. The value of ω
was then tuned online to provide the best performances, see Figure 4.21. A good tuning
is also instrumental in getting good results, however we do not discuss this in depth: the
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Figure 4.21: Evolution of the best value of ω versus the sampling period for an implicit slidingmode
controller.

same procedure as presented for the twisting controller in Section 4.1.3 has been applied.

The control scheme is as follows: the sliding surface (4.1.17) has the dynamics

σ̇ = y(3) − y(3)
d + 2ξωë + ω2ė,

which leads to dynamics close to the twisting case (4.1.6). The nominal version of those is

σ̇ = Φ′ + Ψu,

whereΦ′ B y(3)−Ψu+2ξωë+ω2ė andΨ is the same as in (4.1.5). The discrete-timemodel
is then derived using the same procedure as for the twisting controller. The nonlinear
terms are approximated by constant terms over [tk, tk+1] and hence we get the system

σk+1 = σk + hΦ′(tk) + hΨ(tk)uk
−uk ∈ Sgn(σk+1),

which turns out to be also an equivalent form of an AVI. Therefore the existence and
uniqueness properties of the control input value can be check by using the tools from
Section 2.2.1. For the implementation of the controller, we used the one given in C.1, which
turns out to be very simple since the sliding variable is scalar.

The resulting performances, again in term of the precision (4.1.14) are displayed in
Figure 4.22, alongside the results obtained with the implicit twisting controller. As with
the latter, the controller is able to provide good performance. The relationship between
the precision and the sampling period appears to be linear. The implicit twisting and the
classical SMC controllers yield very similar results on this experimental setup. Amongst
the differences, one of the most prominent was the tuning of the sliding surface. Indeed in
Figure 4.22, for a sampling period of 1ms, the closed-loop systemwith the implicit twisting
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Figure 4.22: Comparison of the precision with the implicit twisting and the implicit sliding mode
controller, for sampling periods in the range [1, 100]ms.

controller performs poorly. The precision is one order of magnitude worse than with the
sampling period 3ms. This is in our opinion due to the fact that we could not find a good
set of parameter values (τv, τa, α) such that the system behaves well. The behavior of the
closed-loop systemwas similar to the case where the parameters were not properly set. This
illustrates the fact that with the twisting controller, the online tuning of the parameters
was getting harder as the sampling period h decreased, to the point that we failed to tune
them for h = 1ms. For the same sampling periods, the tuning with the implicit classical
sliding mode controller was much easier. However for the largest sampling periods, the
situation was reversed: the implicit classical SMC controller was harder then with the
twisting-based controller.

The data presented here have to be put into perspective: the performance of the
closed-loop system is usually limited by the weakest component in the control loop. Our
interpretation of the results obtained from this experiment is that the “limiting” component
is not the controller, but rather the ones that generate the data used to feed it, like the filtered
di�erentiators and the linearization scheme. Enhancing those part of the controller scheme
may yield better performance and might enable us to see a clear di�erence between the two
controllers.

4.2 Inverted Pendulum

The system, on which the experiments were conducted, is an inverted pendulum on a cart,
located in the laboratory LAGIS, École Centrale de Lille, France. Only the classical, first
order SMC was implemented on this setup. As with the previous experiments, a lot of
effort has been put in the tuning of the filtered differentors. Again we can see the enhanced
performances given by the implicitly discretized controller versus the explicit one in both
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tracking accuracy and the chattering. We were able to get good results for the sampling
period in a given range. In the last part we present two limitations of the plant that can
explain this limited range.

4.2.1 Experimental setup

Plant dynamics, actuators and sensors

The setup consists in a linear motor to which the pendulum is fixed. The mechanism

M

θ

ma, l

x

Figure 4.1: Inverted pendulum on a cart.

is sketched on Figure 4.1. We use the following linearized model around the unstable
equilibrium xeq =

(
0 0 0 0

)T
:




ẋ = Ax + Bu
y = Hx

with x =

*......
,

x
ẋ
θ
θ̇

+//////
-

, (4.2.1)

and A =

*........
,

0 1 0 0
0 0 −maM g 0

0 0 0 1

0 0
(M +ma)
Ml g 0

+////////
-

, B =
*.......
,

0
a
M
0

− aMl

+///////
-

, HT =
*......
,

1
0
1
0

+//////
-

.

The masses of the cart and the pendulum areM = 3.9249kg andma = 0.2047kg. We
denote by l = 0.2302m the length of the pendulum, g = 9.81m/s2 the gravitational
constant and a = 25.3 the motor gain. The scalar control input u is proportional to the
input voltage of the linear motor. The use of the linearized model contributes to the
uncertainties as well as the friction between the cart and the rod of the linear motor. It
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seems reasonable to qualify those uncertainties as matched, which is backed up by the
small magnitude of the sliding variable during the experiments.

Regarding the input and output of the system, the control variable u is constrained to
take values between −1 and 1. The position x and the angle θ are available but both the
speed v and angular velocities vθ are computed using a filtered differentiator of the form

D(s) = s
1 + τs

in the frequency domain.

Control strategy

The control objective is to maintain the pendulum at the unstable equilibrium xeq. The
sliding variable is scalar since there is only one control input. Sincewe use a simplified linear
model (4.2.1) of the setup, the ZOH scheme is applied to get the following discrete-time
dynamics

xk+1 = A∗xk + B∗uk, with A∗ B eAh and B∗ =
∫ h

0
eA(h−τ)dτB.

We are looking for a matrix C ∈ R1×4 to define the sliding variable σ . We use the LMI-
based procedure given in [55] for relay systems to compute C . The matrix we used to get
the experiments was C = (1.38050, 1.35471, 4.13410, 0.62497). The computation of the
control input is easy since the sliding variable is scalar: its dynamics is given by

σk+1 = CA∗xk + CB∗uk and we have the relation − uk ∈ Sgn(σk+1).

We rewrite this as the scalar generalized equation

0 ∈ CA∗xk + CB∗uk +N [−1,1](uk).

The computation of the control input is easy since this AVI has a scalar unknown: we can
use the first technique from Section 3.1, that is

uk = −Π[−1,1]
CA∗xk
CB∗ . (4.2.2)

The Matlab code used to implement the implicit sliding mode controller is given in
Appendix C.1.
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4.2.2 Experimental results

This section is devoted to the analysis of the experimental results obtained on the inverted
pendulum setup. The experiments were done with an initial position close to the unstable
equilibrium in order to avoid the additional complexity of a switching logic between a
local sliding mode controller and global controller. Therefore the reaching phase is short
or nonexistent and the closed-loop system is mostly in the discrete-time sliding phase.

Tracking accuracy

Let us start with a comparison between two controllers which differ in the way the signum
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Figure 4.2: Experiments: implicit controller with h = 20ms, α = 1.
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Figure 4.3: Experiments: explicit controller with h = 20ms, α = 1.

function was discretized: one was implicitly discretized (Figure 4.2) and the other one
explicitly (Figure 4.3). In each case, the sliding variable and the discontinuous control input
us are depicted. With the sampling period set to 20ms, the scalar CB∗ is equal to 0.1978,
meaning that all the results from Section 2.2 hold. Looking at the amplitudes of the sliding
variable σ in Figure 4.2 and Figure 4.3, it is clear that the implicitly discretized controller
is able to maintain the value of the sliding variable an order of magnitude smaller than
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the explicitly discretized one. Looking at the control input, the difference is even more
striking: on Figure 4.2, the control input takes values that are proportional to the sliding
variable and the control bounds are never reached, whereas in the explicit case Figure 4.3,
it is a high-frequency bang-bang input.

Input and output chattering

Aswith the analysis of the first experimental setup in Section 4.1, we propose to characterize
the chattering of a variable with the variation of the associated signal. Remember from
Definition 1.3.2 that the variation of a step function f (·) on [t, T ] is defined as

VarTt (f ) B
∑
k
|f (tk) − f (tk−1) |, (4.2.3)

with k ∈ N∗ such that tk ∈ (t, T ]. We pay attention to both input and output chattering,
since the first one contributes to the second and it can also induce rapid wear of actuators,
especially if they are mechanical ones. Furthermore, it can also be linked to the energy
consumption of certain types of actuator. The value of the variations for the data of
Figure 4.2 and Figure 4.3 are displayed in Table 4.1. In both cases the implicit discretization
reduces the variation (or chattering) by one order of magnitude.

Controller Var10
0 (u) Var10

0 (σ)

Implicit 96.24 3.10

Explicit 1332.89 44.74

Table 4.1: Control input and sliding variable variationswith both the implicit and explicit controller.

In Corollary 2.2.13, we stated that with the implicit controller in the discrete-time sliding
phase, the control input value does not change if the gain is increased. On Figure 4.4,
this property is verified: the gain is increased threefold, but the bounds and shape of the
control input are the same.

Let us also quickly present another property of the closed-loop systemwith an implicit
controller. Figure 4.5 illustrates the good behavior of the controller when the sampling
period is increased. We choose to define the precision of the controller as the mean of
the absolute value of the measured values of σ . The linear regression, with slope 1.27 and
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Figure 4.4: Experiments: control input values with 2 different gains: α = 1 on the left and α = 3
on the right; h = 7ms.
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Figure 4.5: Experiments: evolution of the precision with respect to the sampling period

y-intercept 2.77 · 10−4 (close to h2 = 4 · 10−4), indicates an evolution of the precision that
is linear with respect to h. Given the value of the y-intercept, it looks like the precision is
O(h). This is close to the result stated in Lemma 2.2.19.

This experimental data shows that the implicitly discretized controller supersedes the
explicitly discretized one. Both the input and output chattering are greatly reduced. This
is further investigated with the numerical simulations in the next section.

Limitation from the plant

Let us first discuss some limitations arising from the plant, which greatly limit the sampling
period that can be used to get meaningful results. The first one comes from the accuracy
of the sensor for the angular position θ. The precision of the closed-loop system increases
when the sampling period decreases, which means that the angular position is closer and
closer to 0. With the sampling period less than 3ms, the tracking is so accurate that the
quantization arising from the accuracy of the sensor is visible, see Figure 4.6a and 4.6b. On
those figures, we can see that the accuracy of the sensor is indeed π/1000. In Figure 4.6a
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(a) The quantization is clearly visible.
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(b) Detail of the left picture illustrating the behavior
at the sampling period scale.

Figure 4.6: Evolution of the angular position θ with h = 1ms.

over a time interval of 10s, the sensor give only 13 different values of θ. This has two
consequences: first the precision of the closed-loop system cannot improve much beyond
even if the sampling period decreases. The second one is more problematic: the numerical
derivative of this quantity has to be computed to get the value of the sliding variable σk.
Given that we use a numerical differentiator coupled with only a first-order filter, the
resulting values are not accurate and there is numerical chattering, see Figure 4.7a and 4.7b.
This precludes the extended use of the implicit controller at small sampling period, since
the control input has a lot of chattering, see Figure 4.8.
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(a) Due to the quantization on θ, there is an impor-
tant chattering.
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Figure 4.7: Evolution of the angular speed θ̇ with h = 1ms

Let us analyze further the “composition” of the chattering on the control input u. Starting
from the definition of the variation in (4.2.3) and doing simple computations we have the
relation

VarTt (σ) ≤ γ1VarTt (x) + γ2VarTt (v) + γ3VarTt (θ) + γ4VarTt (θ̇),
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Figure 4.8: Control input with h = 1ms. Due to the quantization on θ, there is an important
chattering.

with γi the components of the row matrix defining the sliding surface. This leads us to
compute the variations of the state variables and of the control input for various sampling
periods. The data is displayed in Figure 4.9 Two points are worth noting here: first the
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Figure 4.9: Experiments: evolution of the variations for the state and sliding variables with respect
to the sampling period

control output chattering increases by one order ofmagnitude for sampling periods smaller
than 4ms. This sudden augmentation is to be understood as a consequence of sensors
accuracy issue mentioned before. This claim is backed-up by the fact that the output
variation and the angular speed variation are of the same order of magnitude, whereas
the other variations are all smaller. For the small sampling period the gap between the
variations of u and θ̇ increases to at least one order of magnitude. Hence the behavior
on small sampling periods is due to the numerical noise introduced by the sensor and
its differentiation. More generally, it is also clear that the main two contributions to the
sliding variable variation come from the two variables we have to numerically differentiate.

The other limitation arising from this experimental setup is as follows: there is some
friction between the bar and the cart, which is not taken into account in the simple
linear model used for the computation of the control input. However this nonsmooth
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phenomenon is adding equilibriumswhen u , 0 to the closed-loop system.OnFigure 4.10
this phenomenon is illustrated. With the control strategy in use, the scalar control input
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Figure 4.10: Example of an undesired stabilization by the friction

is computed as a projection, see (4.2.2). Suppose that the value of CB∗ increases with
h (this should hold when h is small enough). This means that for a given xk such that
CA∗xk/CB∗ ∈ (−1, 1), an increase of h decreases the magnitude of uk. Also the set of
states such that CA∗xk/CB∗ ∈ (−1, 1) increases with h. Hence, if at given position of the
bar, the control input action for a given sampling period dominates the frictional effects,
increasing the sampling period may reduce enough its magnitude such that this position
may become an equilibrium of the controlled system.

Conclusion

In this chapter we presented the results of two experimental studies of discrete-time sliding
mode controllers. The main objective was the comparison of the implicit and explicit
versions of the sliding mode controllers. We collected data on two experimental setups: an
electropneumatic system and an inverted pendulum. In the first case, extensive experiments
were conducted in the context of a position tracking problem, with both the twisting and
classical SMC. The analysis of the data reveals that on this electropneumatic setup, the
implicit twisting controller outperforms the explicit one on three criteria: the tracking
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error and both the input and output chattering. Despite the complexity of the control
loop arising from the high relative degree, meaningful illustrations of theoretical results
are provided, like the insensitivity with respect to an increase in the gain, once the latter
is large enough. The implicit discretization allows to drastically reduce both the output
and the input chattering, without modifying the controller structure compared to its
continuous-time version. It also allows us to study the influence of design parameters
in order to select good values. With the explicit discretization, their influence is hidden
by the numerical chattering. This highlights that the implicitly discretized controller is
not the “weakest” component of the control loop: other components, like the filtered
differentiators, are the ones limiting the performances. This is in our view, the main reason
why no significant difference between the classical SMC and twisting algorithm can be
seen. On the second experimental setup, only the first-order SMC was tested. Again it
performs much better than the explicit one in the three criteria. And the sampling period
range for which meaningful data can be collected is also limited by two external factors:
the filtered differentiator and the friction between the rod and the cart.



Conclusion

In this thesis, the discrete-time slidingmode controllers are studied. The cornerstone idea is
to use the implicit discretization for the Sgnmultifunction, instead of the explicit one. The
main feature is that the resulting controller is still set-valued, which permits the removal
of the numerical chattering phenomenon. Indeed we are able to investigate the Lyapunov
stability and robustness of the closed-loop system. In many ways, the analysis is eased by
the use of well-developed theories like ConvexAnalysis andVariational Inequalities. Those
tools have already found their way in applied fields like Contact Mechanics. However
we added a control theoretic flavor by relating those to classical concepts like Lyapunov
functions. Also, we give an hint on how to design a controller using AVI with themodified
twisting controller. Let us now summarize the main aspects of this threefold work.

ANALYSIS Expanding the ideas from [4] and [5], we further characterize the discrete-
time controllers obtained through an implicit discretization of the Sgnmultifunction. The
main highlights in the ECB-SMC case are the Lyapunov stability analysis, the convergence
of the control input to the continuous-time one, and the robustness analysis. The second
important topic was the discrete-time twisting algorithm. The modified version we intro-
duced is shown to be globally finite-time Lyapunov stable, with the help of a Lyapunov
function close to the continuous-time one. We also quickly derive a discrete-time sliding
mode observer, which takes the form of a reduced observer. We also investigate how one
could further attenuate the effect of matched disturbances, as an indication on how to
reduce the gap with the perfect attenuation in the continuous-time case.

SIMULATION The core part of the work was to implement a control toolbox in the
siconos platform. This enables us to conduct numerical experiments complementing the
theoretical analysis. The numerical results provide meaningful illustrations of theoretical
results but also enable us to go beyond and provide some insights on topics that are difficult
to tackle theoretically. We also underline the need for using better integration strategies
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with nonlinear dynamics, such as the θ–γmethod.

EXPERIMENTS Both the classical SMC and the twisting algorithm have been imple-
mented on experimental setups. The main objective of those tests was to confirm that the
implicit discretization of the controller outperforms the explicit one. This was verified
on three criteria: the tracking error or precision, the input chattering and the output
chattering. Some of the well-known properties of SMC, that were shown to hold for
the implicitly discretized controller in Chapter 2, are confirmed by the analysis of the
experimental data. The tests were conducted on an electropneumatic system at IRCCyN
(Nantes) and on an inverted pendulum on a cart at CRIStAL (Lille).

Perspectives

The following theoretical aspects may be interesting to investigate:

– The double integrator coupled with modified twisting controller introduced in
Section 2.3 was shown to be globally finite-time Lyapunov stable. This property
should hold with more generic dynamics as it is the case with the continuous-time
version.

– The definition of the control input value u, constrained to belong to a compact
convex control set U ⊆ Rp, as −u ∈ ∂h−U (σ) provides a nice starting point to
generalize some of the results from Chapter 2, when the control setU is not box-
shaped. In particular, the relationship between the Lyapunov function and the
support function ofU is worth investigating.

– The differentiators based on sliding modes like the ones introduced by Levant [74]
look like a promising replacement for filtered differentiators used in the control
loops for both experimental setups. Their implicit discretizations should also en-
hance their discrete-time implementations.

Regarding the experimental side, the following items are deemed worth looking at:

– The use of Levant’s differentiator, once a study of its discretization and the resulting
properties

– To implement the θ–γ scheme from Section 3.2. The benefits from using this
method, instead of the too simple explicit Euler method, to integrate nonlinear
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dynamics were already illustrated through simulations in Section 3.5. Hence, it
looks interesting to implement this technique in a control loop and to test, for
instance on the electropneumatic plant of Section 4.1, and see if this improves the
tracking performance. The monitoring of the computational load of this method is
particularly important and might limit its applicability.





Appendix A

Convex Analysis and Variational Analysis

A.1 Basics of Convex Analysis

In this Appendix, we collect basic results from Convex Analysis used in Chapter 2 for
the theoretical part of this thesis. Our main references for this topic are [58, 94, 95]. We
choose to expose specialized (or simplified) versions of theorems and properties since we
do not need the results in their full generality. One of the peculiarities of Convex Analysis
is to work with the extended real line, that is we consider functions that have an image in
R ∪ +{∞} C R. Another one is the use of the epigraph, the set of points lying above the
graph of a function. Let us formally define those two terms.

Definition A.1.1. The graph of a function f : Rn → R is the set of points

gph f B
{

(x, f (x)) | x ∈ dom f
}
.

The epigraph of f (·) is set defined as

epi f B
{

(x, α) ∈ Rn × R | α ≥ f (x)
}
.

Let us define the following assumptions (denoted byA) on a function f : Rn → R:

– f (·) is a convex function: for all x, y ∈ dom f and λ ∈ [0, 1]:

f (λx + (1 − λ)y) ≤ λf (x) + (1 − λ)f (y);

– f (·) is finite everywhere (dom f = Rn), implying that f is proper;
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– there is an affine function minorizing f (·) on Rn: there exists (s, r) ∈ Rn × R such
that for all x ∈ Rn

f (x) ≥ 〈s, x〉 − r;

– f (·) is lower semi-continuous (lsc), that is for all x ∈ Rn, f (x) = lim inf
y→x f (y);

– f (·) is closed, that is its epigraph {(x, y) ∈ Rn ×R | y ≥ f (x)} is a closed set. If f (·)
is convex and lsc, then it is closed.

Those assumptions hold with most of the functions used we now present and enable us
to simplify the statements of the results in this appendix. Let us start with some basic
definitions.

Definition A.1.2 ([58, p. 211]). The conjugate of a function f is the function f ∗ defined by

Rn 3 s 7→ f ∗(s) B sup
x∈Rn

{
〈s, x〉 − f (x)

}
.

The mapping f 7→ f ∗ is usually called the conjugacy operation, or the Legendre-
Fenchel transformation.

Definition A.1.3. Let K be s subset of Rn. The indicator function δK : Rn → R of K is
defined as

δK (x) =



0 if x ∈ K
+∞ if x < K.

Definition A.1.4. The support function hK : Rn → R of a convex set K in Rn is defined
by

hK (x) B sup
y∈K
〈x, y〉.

Fact A.1.5. The indicator function δK (·) and the support function hK (·) are conjugate
of each other.

This can be easily checked fromDefinitionA.1.2. Someuseful properties of the support
function are now provided.

PropositionA.1.6 ([58, p. 134]). The support function of K is finite everywhere if and only
if K is bounded.
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PropositionA.1.7 ([58, p. 137]). ForK ⊆ Rn nonempty, the support functions ofK , hK (·),
and of its convex hull, hcoK (·), are identical.

Example A.1.8 (‖ · ‖1 as the support function hB∞). First let us denote by V the set of
vertices of B∞. Starting with the previous property, we get that for any vector x,

hB∞ (x) = hV (x) = sup
v∈V
〈v, x〉 =

∑
i

max{xi,−xi} =∑
i
|xi | = ‖x‖1.

Definition A.1.9. The normal cone to a closed convex setK is defined by

NK (x) = {d ∈ Rn | 〈d, y − x〉 ≤ 0,∀y ∈ K}.
Fact A.1.10 ([58, p. 67]). LetK be a closed convex polyhedron defined as:

K = {x ∈ Rn | Hx ≤ b} , with H ∈ Rm×n, b ∈ Rm.

The normal cone at a point x ∈ K is generated by the outward normals of the actives
constraints:

NK (x) =
{
HTα•r, r ≥ 0

}
,

with α ∈ {1, . . . , m} the set of active constraints, that is for all i ∈ α, we haveHi•x = bi.
Definition A.1.11 ([94, p. 214]). A vector g ∈ Rn is said to be a subgradient of a convex
function f (·) at a point x if

f (z) ≥ f (x) + 〈 g, z − x〉, ∀z ∈ Rn. (A.1.1)

Definition A.1.12 ([94, p. 215]). The set of all subgradients of f (·) at x is called the subdif-
ferential of f (·) at x and is denoted by ∂f (x). Themultivaluedmapping ∂f : x 7→ ∂f (x)
is called the subdi�erential.

Fact A.1.13 ([94, p. 215]). The normal cone operator NK (·) is the subdifferential of the
indicator function δK (·).

Fact A.1.14. The subdifferential of hK (·) at x is equal to the set of points realizing the
sup
y∈K
〈y, x〉:

g ∈ ∂hK (x) ⇐⇒ g ∈ arg sup
y∈K
〈y, x〉.

This follows from the definition of a subgradient: take z = 0 in (A.1.1), which gives us

0 ≥ sup
y∈K
〈y, x〉 − 〈g, x〉 ⇐⇒ 〈g, x〉 ≥ sup

y∈K
〈y, x〉.
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The fact that

∀z, hK (z) ≥ 〈 g, z〉

enables us to conclude.

Theorem A.1.15 (Chain Rule [94, p. 225]). Let f B g ◦ A with g : Rn → R a function
satisfying assumptions A and A a linear transformation from Rm to Rn. Then for all
x ∈ Rm,

∂f (x) = AT∂g (Ax).

Theorem A.1.16 ([94, p. 219]). Let f (·) be a function satisfying assumptions A. The map-
pings ∂f ∗ and ∂f are inverses in the sense of multivalued mappings:

y ∈ ∂f (x) ⇐⇒ x ∈ ∂f ∗(y).

One important application of this theorem is the case of the indicator and support
functions.

Fact A.1.17. The subdifferentials of the indicator and the support function are inverses:

y ∈ ∂hK (x) ⇐⇒ x ∈ NK (y).

Let us specialize this to the case K = B∞, the unit ball for ‖ · ‖∞. In Example A.1.8 we
highlight that hB∞ = ‖ · ‖1. Hence, we have

∂hB∞ (x) = ∂‖x‖1 = ∂
∑
i
|xi |.

Let us analyze the scalar case: if x , 0, then |x | is differentiable with derivative Sgn(x),
the multivalued signum function. Using (A.1.1), we can see that the only subgradient is
Sgn(x). When x = 0, we get from (A.1.1) that for any z > 0,

z ≥ 〈g, z〉 ≥ −z.

It is then easy to see that the subdifferential of | · | at 0 is [−1, 1] = Sgn(0). Therefore

∂hB∞ (x) = Sgn(x),

and we conclude with the equivalence

y ∈ Sgn(x) ⇐⇒ x ∈ N B∞ (y). (A.1.2)
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Fact A.1.18. Let S ⊆ Rn and x, y ∈ Rn. The following equivalence holds:

−y ∈ ∂h−S (x) ⇐⇒ −x ∈ N S (y),

and the case where S = B∞ gives:

−y ∈ Sgn(x) ⇐⇒ −x ∈ N B∞ (y).

To see this, we start from (A.1.2) in Fact A.1.17:

−y ∈ ∂h−S (x) ⇐⇒ x ∈ N −S (−y)
⇐⇒ 〈v + y, x〉 ≤ 0 for all v ∈ −S
⇐⇒ 〈−v − y,−x〉 ≤ 0

⇐⇒ 〈w − y,−x〉 ≤ 0 with w = −v
⇐⇒ −x ∈ N S (y) since w ∈ S.

Proposition A.1.19 ([95, p. 213]). With a closed convex set K , the normal cone and Eu-
clidean projector (or projection mapping) ΠK onto K are related by

NK = Π−1
K − I and ΠK = (I +NK )−1.

A.2 MonotoneMappings

The main resource for the material presented here is [95, Chapter 12] for operators in
finite-dimensional spaces. Similar results hold in the infinite-dimensional case, see [90]
for instance. The main idea behind the concept of monotone mapping is to generalize
the monotonicity property of a function, like the positive-semidefiniteness for linear
mappings. The next statements are given for set-valued functions, so let us define the
graph of a multiapplication.

Definition A.2.1. The graph of a set-valued function A : X ⇒ Y , with X ⊆ Rn, Y ⊆
Rm, is the set of points

gph A B {(x, v) | v ∈A(x)} .
Definition A.2.2 ([95, p. 533]). A mapping A : Rn ⇒ Rn is said to be monotone if it has
the property that

〈v − v̂, x − x̂〉 ≥ 0 whenever v ∈A(x) and v̂ ∈A(x̂).
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It is said to be maximal monotone if no enlargement of its graph is possible in Rn × Rn
without destroyingmonotonicity: for all (x, v) ∈ (Rn×Rn) gph A, there exists (x̂, v̂) ∈
gph A such that 〈v − v̂, x − x̂〉 ≤ 0.

We shall now investigate the relation between convex functions and monotone map-
pings.

TheoremA.2.3 ([95, p. 542]). Any function f (·) satisfying assumptions A is convex if and
only if its subdi�erential ∂f (·) is monotone.

Fact A.2.4 ([95, p. 543, 536]). For a closed convex set K , ∅, the normal cone operator
NK (·) and the subdifferential of the support function ∂hK (·) are maximal monotone
mappings.

TheoremA.2.5 ([95, Theorem 12.43, p. 556]). If S : Rm ⇒ Rm is maximal monotone with
e�ective domain Rm, then for any matrix A ∈ Rm×n, the mapping T (x) B ATS(Ax) is
maximal monotone.

This property as already been used in the control litterature, see [18] for example.



Appendix B

Analysis of SMCModeled as an LCP

In Section 2.1.3, the existence of a solution to the LCP formulation of the auxiliary sys-
tem (2.1.6) has been left out. We shall now investigate this matter: the LCP under study
is:

w = qLCP +MLCPz
0 ≤ z ⊥ w ≥ 0.

(B.1)

MLCP B


2M I
−I 0





λ+
σ−


, qLCP B



q −M1

1


, z =



λ+
σ−


∈ R2p and w =



σ+
λ−


∈ R2p.

(B.2)

Recall that the matrixMLCP does not enjoy the P property due to the lower-right 0 block.
Still it is easy to see that zTMLCPz = 2λT+Mλ+. Hence ifM is positive semi-definite,
thenMLCP is also positive semi-definite. Let us suppose that in the sequel,M is positive
definite. Now the following theorem gives us a good starting point in the study of the
solvability of the LCP stated in (B.2).

Theorem B.1 ([27, p. 139]). LetM be positive semi-definite. If the LCP(q,M ) is feasible,
then it is solvable.

An LCP(q,M ) is said to be feasible whenever there exists z ∈ Rp such that

z ≥ 0 and q +Mz ≥ 0. (B.3)

A feasible vector z is a solution to the LCP if the complementarity condition zT (q+Mz) =
0 holds. It turns out that this holds for the LCP (B.1) given thatM is positive definite. Let
us first state the following result.
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Lemma B.2 ([27, p. 140]). If M is a positive definite matrix, then there exists a vector z
such that

Mz > 0, z > 0.

The second inequality in (B.3) in the case of the LCP (B.1) gives

q −M1 + 2Mλ+ + σ− ≥ 0 (B.4)

1 − σ− ≥ 0. (B.5)

A simple way to satisfy those constraints is to set

σ− = 0 and λ+ = 1
21 + λ′,

with λ′ to be determined. This choice ensures that (B.5) is satisfied, and (B.4) is then
reduced to

q + 2Mλ′ ≥ 0. (B.6)

Lemma B.2 guarantees the existence of λ′ such thatMλ′ > 0. Therefore by appropriate
scaling, (B.6) holds. Hence, the LCP is feasible and by Theorem B.1 it is also solvable. Let
us now study the uniqueness of λ and σ whenM is positive definite. To see this, let us
first present a characterization of the solution set of an LCP.

Theorem B.3 ([27, p. 141]). Let N ∈ Rn×n be positive semi-definite, and let r ∈ Rn be
arbitrary. If LCP(r,N ) has a solution, then SOL(r,N ) is polyhedral and equals to

{
z ∈ Rn+ | r +Nz ≥ 0, rT (z − z̄) = 0, Ns(z − z̄) = 0

}
, (B.7)

where z̄ is an arbitrary solution of LCP(r,N ) and Ns is the symmetric part of N .

Applying this result to the LCP (B.1), we get from the third condition (B.7) that

*
,

2Ms 0
0 0

+
-

(z − z̄) = 0,

which implies that

z − z̄ = *
,

0
?

+
-
= *

,

λ+ − λ̄+
σ− − σ̄−

+
-
.

Hence λ+ = λ̄+ and since λ+ + λ− = 1, we infer λ = λ̄. Whence σ is also unique asM is
positive definite.
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MATLAB Code

C.1 MATLAB code for implicit scalar SMC

We present here the code used in the implementation of the implicit first order sliding
mode controller in the case where the sliding variable is scalar. This code has been used
to get the results from Section 4.1 and 4.2. The controller is created in Simulink inside a
“Matlab function” block, with the codewritten in theMatlab language. It is then translated
into C and compiled for the targeted microcontroller by the real-time workshop toolbox.

function u_k = fcn(G, h, s_k, CBk)

toProj = -s_k/(G*CBk*h);

if toProj > 1.0
u_k = G;

elseif toProj < -1.0
u_k = -G;

else
u_k = G*toProj;

end

end

C.2 MATLAB code for the implicit twisting algorithm

The following code was used to implement the implicit twisting algorithm in its non-
modified version. It was used to get the experimental results from Section 4.1 with the
same implementation method as with the previous code.

171



172 APPENDIX C. MATLAB CODE

function [lambda1,lambda2] = fcn(sigma, sigmaDot, K, beta, h, Psi, Phi, pL1, pL2)
%construct matrices
mat(2,:) = K*Psi*[h h*beta]; mat(1,:) = h/2*mat(2,:);
q = [sigma + h*sigmaDot + h*h/2*Phi; sigmaDot + h*Phi];
% first try the previous value
lambda = zeros(1, 2); lambda1 = 0; lambda2 = 0; lambda(1) = pL1; lambda(2) = pL2;
if abs(lambda(1)) ~= 1.0

lambda(1) = 1.0;
end
if abs(lambda(2)) ~= 1.0

lambda(2) = 1.0;
end

nbIter = 0; nposIdxOld = 0; idxZero = 0; nbIterMax = 9;
alreadyDone = zeros(9, 1); alreadyDone(lambda(1) + 2*lambda(2)+6) = 1;
posIdxOld = zeros(1, 2); oldLambdaV = lambda;

while nbIter < nbIterMax
% see if we can reach the origin
if (lambda(1) == 0) && (lambda(2) == 0)

lambda = oldLambdaV; nposIdx = 1; posIdx = abs(lambda(1) + lambda(2))/2 + 1;
posIdxOld = zeros(1, 2); nposIdxOld = 0;

else
if idxZero > 0

if idxZero == 1 % try lambda(1) in [-1, 1]
valU1 = -(q(1) + mat(1, 2)*lambda(2));
if (abs(valU1) < mat(1, 1))

lambda(1) = valU1/mat(1, 1); Sigma = q + mat*lambda’;
eps0 = abs(Sigma) < eps; Sigma(eps0) = 0.0;
if sign(Sigma(2)) == -sign(lambda(2))

lambda1 = lambda(1); lambda2 = lambda(2); return;
end

end
lambda = oldLambdaV; nposIdxOld = 0; posIdx = abs(lambda(1) + lambda(2))/2 + 1;
nposIdx = 1; posIdxOld = zeros(1, 2);

else % try lambda(2) in [-1, 1]
valU2 = -(q(2) + mat(2, 1)*lambda(1));
if abs(valU2) < mat(2, 2)

lambda(2) = valU2/mat(2, 2); Sigma = q + mat*lambda’;
eps0 = abs(Sigma) < eps; Sigma(eps0) = 0.0;
if sign(Sigma(1)) == -sign(lambda(1))

lambda1 = lambda(1); lambda2 = lambda(2); return;
end

end
lambda = oldLambdaV; posIdxOld = zeros(1, 2);
posIdx = abs(lambda(1) + lambda(2))/2 + 1;
nposIdx = 1; nposIdxOld = 0;

end
else % lambda is one of the vertex of K

Sigma = q + mat*lambda’; eps0 = abs(Sigma) < eps; Sigma(eps0) = 0.0; nposIdx = 0;
sLambda = sign(lambda)’; sProd = sLambda.*sign(Sigma); posIdx = [-1, -1];
if sProd(1)>0

posIdx(1) = 1; nposIdx = 1;
end
if sProd(2)>0

if nposIdx == 0
posIdx(1) = 2;

else
posIdx(2) = 2;
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end
nposIdx = nposIdx + 1;

end
if nposIdx == 0 % if this is true, we are done

lambda1 = lambda(1); lambda2 = lambda(2); return;
end

end
end

% prepare next iteration
idxZero = 0; oldLambdaV = lambda; hasZero = 0;
for ii=1:nposIdx

idx = posIdx(ii);
if (nposIdxOld == nposIdx) && (((nposIdxOld >= 1) ...

&& (idx == posIdxOld(1))) || ((nposIdxOld >= 2) && (idx == posIdxOld(2))))
lambda(idx) = 0; idxZero = idx; hasZero = 1;

elseif hasZero == 0
lambda(idx) = lambda(idx) - 2*sign(lambda(idx));
lambda(idx) = lambda(idx)/abs(lambda(idx));

end
end
nbIter = nbIter + 1; nposIdxOld = nposIdx; posIdxOld(1:nposIdx) = posIdx(1:nposIdx);
if hasZero == 0 && (lambda(2) ~= 0)

idxConfig = lambda(1) + 2*lambda(2) + 6;
elseif (lambda(1) == 0) && (lambda(1) == 0)

idxConfig = 1;
else

idxConfig = 6 + 2*(lambda(1)-1);
end
if (alreadyDone(idxConfig) == 0)

alreadyDone(idxConfig) = 1;
else

oldLambdaV = lambda;
% find next available config
if nbIter == nbIterMax

break
end
jj = mod(idxConfig, nbIterMax) + 1;
while 1

if (alreadyDone(jj) == 0)
alreadyDone(jj) = 1; break;

else
jj = mod(jj, nbIterMax) + 1;

end
end
idxZero = 0;
switch(jj)

case 1, lambda = [0 0];
case 2, lambda = [-1 0]; idxZero = 2;
case 3, lambda = [-1 -1];
case 4, lambda = [0 -1]; idxZero = 1;
case 5, lambda = [1 -1];
case 6, lambda = [1 0]; idxZero = 2;
case 7, lambda = [-1 1];
case 8, lambda = [0 1]; idxZero = 1;
case 9, lambda = [1 1];

end
end
end
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end



Appendix D

Matrix Facts

We collect here a few facts about matrices used in proofs, for the reader’s convenience.

Definition D.1. A matrixA ∈ Rn×n is normal if

AAT = ATA.

Corollary D.2 ([57, Corollary 4.2.4, p. 399]). Suppose that I ⊂ R is an interval and
A(τ) ∈ Cn×n depends continuously on τ ∈ I . Then there exist (single valued) continuous
functions λi : I → C such that

Λ(A(τ)) = (λ1(τ), . . . , λn(τ)), τ ∈ I,

withΛ(A) the unordered n-tuple of the eigenvalues ofA taking into account multiplicities.

Corollary D.3 ([57, Corollary 4.2.16, p. 405]). Let A ∈ Cn×n be normal and ∆ be arbi-
trary. If µ is an eigenvalue of A + ∆ and ‖ · ‖2,2 denotes the spectral norm, then

min
λ
|λ − µ| ≤ ‖∆‖2,2,

with λ an eigenvalue of A.

Fact D.4 ([15, Fact 6.3.28, p. 410]). IfA ∈ Rn×n is nonsingular, then the following rela-
tion between singular values holds:

νmin(A) =
1

νmax(A−1 ).

CorollaryD.5 ([59,Corollary 3.1.5, p.151]). LetA ∈ Rn×n be given with its ordered singular
values, being

ν1(A) ≥ . . . ≥ νn(A).
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Let As = 1
2 (A +AT ) with its algebraically decreasingly ordered eigenvalues being

λ1(As) ≥ . . . ≥ λn(As).

Then
νi ≥ λi(As) for i ∈ {1, . . . , n}.
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