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Abstract 

Globally obesity is one of the greatest public health challenges of 21st century, and is 

considered a major health risk factor. Obesity is responsible for the onset of various kinds of 

disorders including diabetes, cardiovascular diseases and cancer. Adipose tissue (AT) is a 

highly active endocrine organ which has intense secretory activity producing an assortment of 

over 600 factors that have versatile biological activities. Some of these factors are named 

adipocytokines and have gain an intensive focus on current metabolic and disease recent 

research. Accumulating data on adipocytokine research strongly suggest that adipose tissue is 

the key player in promoting chronic inflammation. Many chronic neurodegenerative diseases 

such as Amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases have been 
associated with inflammation in the Central Nervous System (CNS) in which microglia and 

astrocytes (glial cells) play a decisive role. Autotaxin (ATX) and Adiponectin (ADIPO) are 

mediators secreted by the AT. The role of these mediators in metabolic activities have been 

well studied but the potential role of these adipocyte secreted factors and its precise 

mechanisms in CNS vulnerability remains to be determined.  

Here we used, in vivo, two distinct inflammatory stimuli, lipopolysaccharide (LPS) and 

trimethyltin (TMT), to characterize the expression of inflammatory mediators in mouse CNS. 

Acute intraperitoneal (ip) injection of LPS (100µg/Kg bwt) mimics gram negative bacterial 

infection, while acute ip injection of organometal TMT (2mg/kg bwt), induces hippocampal 

neurodegeneration. Microglia and astrocytes are the major source of inflammatory factors in 

the brain. To investigate, in vitro, the role of ATX and ADIPO in inflammatory and oxidative 

stress condition, we generated stable over-expressing transfectant in murine microglia BV2 

cells for ATX and murine astrocyte CLTT cells for ADIPO. BV2 and CLTT stably transfected 

overexpressing clones were treated with LPS (1 µg/mL) and H2O2 (100µM). 

Our in vivo results demonstrated that ATX and ADIPO were expressed in the brain and 

LPS induced a transient neuroinflammatory response in three distinct regions of the brain 

hippocampus (HIP), cortex (COR) and cerebellum (CER). Besides this it was also found that 

with this mild dosage of 100 µg LPS/Kg bwt of mice, microglia and astrocytes were not 

activated in the brain (Project-1). Our in vitro results authenticate the anti-inflammatory effects 

of ATX in microglial cells demonstrated by the downregulation of microglial activation 

markers (CD11b, CD14, CD80 and CD86) and pro-inflammatory cytokine expression and 

secretion (TNF-α and IL-6) (Project-2).  Likewise, ADIPO put forth its anti-oxidant role in 

astrocyte cells mediated via significant mitigation of ROS, and as well by the significant down 

and upregulation of pro-oxidative inducible nitric oxide synthase (iNOS) and         

cyclooxygenase-2(COX-2) and anti-oxidative enzymes mRNA expression levels             

superoxide dismutase (SOD) and catalase (CAT) respectively (Project-3).  

Overall these results suggest that peripheral inflammation induced by infection will not 

induce neurodegeneration (unless a massive infection) but could prime the glial cells and make 

them more responsive to the next stimulation.  ATX and ADIPO may play a role in the 

regulation of neuroinflammation by regulating glial activation in stressed situations.  Further 

investigations will be needed to better understand the molecular mechanisms regulating brain 

inflammation and lead to new therapeutic strategies to combat neurodegenerative diseases. 

 

Key words: Adipose Tissue, Autotaxin, Adiponectin, Neuroinflammation, Neurodegeneration. 
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Résumé 
L'obésité est l'un des plus grands défis de santé publique du 21ème siècle et est considérée 

comme un facteur de risque majeur pour la santé. L’obésité est responsable de l'apparition de 

divers troubles, notamment du diabète, des maladies cardiovasculaires et de certains cancers. 

Le tissu adipeux (TA) est un organe endocrine très actif qui a une activité sécrétoire intense 

produisant un assortiment de plus de 600 facteurs qui ont des activités biologiques variées. 

Certains de ces facteurs sont appelés adipocytokines et font l’objet d’un intérêt particulier dans 

les recherches récentes sur le métabolisme et les pathologies associées. De nombreuses données 

sur les adipocytokines suggèrent fortement que le tissu adipeux est un élément clé dans le 

développement d’une inflammation chronique. De nombreuses maladies neurodégénératives 

chroniques telles que la sclérose latérale amyotrophique, la maladie d'Alzheimer et la maladie 

de Parkinson ont été associées à une inflammation du système nerveux central (SNC), dans 

lequel la microglie et les astrocytes (cellules gliales) jouent un rôle déterminant. L’autotaxin 

(ATX) et l’adiponectine (ADIPO) sont des médiateurs sécrétées par le TA. Le rôle de ces 
médiateurs dans les activités métaboliques a été bien étudié, mais leur rôle potentiel ainsi que 

les mécanismes précis dans la vulnérabilité du CNS restent à déterminer. 

Ici, nous proposons d'utiliser, in vivo, deux stimuli inflammatoires distincts le 

lipopolysaccharide (LPS) et le triméthylétain (TMT) pour caractériser l'expression de 

médiateurs de l'inflammation du SNC chez la souris. Une injection intrapéritonéale (ip) aiguë 

de LPS (100 µg/kg de poids corporel) mime une  infection bactérienne Gram négative, tandis 

que l'injection ip aiguë de TMT (2 mg/kg de poids corporel), induit une neurodégénérescence 

hippocampique. Les microglies et les astrocytes sont les principales sources de facteurs 

inflammatoires dans le cerveau. Afin de rechercher, in vitro, le rôle de l'ATX et de l’ADIPO 
sur ces cellules dans un état inflammatoire et de stress oxydatif, nous avons généré des 

tansfectants stables sur-exprimant l’ATX dans des cellules microgliales murines (BV2) et 
l’ADIPO dans des cellules astrocytaires murines (CLTT). Les clones BV2 et CLTT 

surexprimant ces facteurs ont été traitées avec du LPS (1 µg/ml) et du H2O2 (100μM). 

Nos résultats in vivo ont démontré que l’ATX et l’ADIPO sont exprimés dans le cerveau 
et que le LPS pourrait induire une réponse neuroinflammatoire transitoire dans trois régions 

distinctes du cerveau l'hippocampe (HIP), le cortex (COR) et le cervelet (CER). En outre, il a 

été également constaté qu’à cette dose modérée de 100µg de LPS / kg de poids corporel de la 

souris, la microglie et les astrocytes ne sont pas activés dans le cerveau (Projet-1). Nos résultats 

in vitro démontrent les effets anti-inflammatoires de l’ATX dans les cellules microgliales 
observables par la baisse d’expression des marqueurs d'activation microgliale  (CD11b, CD14, 
CD80 et CD86) et d’expression et de production de cytokines pro-inflammatoires (TNF-α et 

IL-6) (Project- 2). De même, nous avons montré que l’ADIPO a un rôle anti-oxydant dans les 

astrocytes via l'atténuation significative de ROS, une inhibition d’enzymes pro-oxydantes 

(iNOS et la COX-2) et une régulation positive d’enzymes anti-oxydantes (SOD et CAT) 

(Projet-3). 

Dans l’ensemble, ces résultats suggèrent qu’une inflammation périphérique induite par 
une infection ne provoque pas de neurodégénérescence (à moins d’une infection importante), 
mais pourrait sensibiliser les cellules gliales et augmenter leur réponse à la stimulation 

suivante. L’ATX et l’ADIPO pourraient jouer un rôle dans la régulation de la 
neuroinflammation en régulant l’activation gliale dans un contexte de stress. Des travaux 
supplémentaires seront nécessaires afin de mieux comprendre les mécanismes moléculaires 

régulant l’inflammation du SNC et aboutir à de nouvelles stratégies thérapeutiques pour 
combattre les maladies neurodégénératives.    

Mots clés: tissu adipeux, autotaxin, adiponectine, neuroinflammation, neurodégénérescence. 
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I. GLOBESITY 

- Global Epidemic Of Overweight And Obesity 
 

 

 
Obesity is a non-communicable chronic disease. It is not just the problem of an individual but 
the problem of the complete population in this lonely planet earth. Sedentary lifestyles such 
as passing most of the times in front of television (Prentice, 2006), increased consumption of 
energy dense food rich in saturated fats and sugars, reduced physical activity, immovable 
lifestyles, increased urbanization, industrialization and often the disappearance of traditional 
lifestyles (WHO, 2000) adds up to aggravate this obesity disorder. Major factors for this 
obesity pandemic are transmitted through multinational companies by providing cheap 
materials such as poorly refined fats, oils, and carbohydrates, labor-saving mechanized devices 
and affordable motorized transport. As a companion to these factors, now it is well 
appreciated that the progression to obesity represents the complex interaction between 
dietary, physical, genetical and metabolic activity levels.   

I. A. Body Mass Index (BMI) And Waist To Hip Ratio (WHR) As A Predictor Of   

        Obesity:  

Generally speaking overweight and obesity are defined as abnormal or excessive fat 
accumulation that may impair health. Clinically speaking, obesity can be defined by the 
measurements of body mass index (Mei et al., 2002) or waist circumference and waist to hip 
ratio (WHR) (Eckel et al., 2005). 

I. B. BMI Cut-Off Levels:  
Body mass index (BMI) is a simple index to classify overweight and obesity (Mei et al., 2002) 
and can be defined as the person’s weight in kilograms divided by the square of person’s height 
in meters which can be deduced by the formula;  
 
 
 
A person with a BMI of 30 or more is generally considered obese and a BMI equal to or 
more than 25 is considered overweight (Table I-1). 

  

BMI=kg/m2 
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TABLE I-1        Classification of Body Mass Index [BMI] 

Category BMI Range – kg/m2 

Very severely underweight less than 15 

Severely underweight 15.0 to 16.0 

Underweight 16.0 to 18.5 

Normal (healthy weight) 18.5 to 25 

Overweight 25 to 30 

Obese Class I (Moderately obese) 30 to 35 

Obese Class II (Severely obese) 35 to 40 

Obese Class III (Very severely obese) over 40 

Table Reference: (WHO, 2011) 
 

I.C. WHR Cut-Off Levels:   

The cut-off levels of WHR greater than 0.85 for women and 0.90 for men are generally 
indexed as obese (Prakash Shetty, 2008). 

Up to certain extent, obesity can be effectively preventable by the change of habitual lifestyles 
that requires long term strategic plans. The overall picture of the obesity in industrialized and 
developing countries reflects their social, cultural and economic problems faced by that 
particular country. Investigating the primary factors responsible for the onset of this obesity 
pandemic at an earlier stage is crucial for the predictions about the future impact in developing 
countries for a preventive action (WHO, 2000).  

I.D. Over Weight and Obesity - A Global Health Observatory and Demographical   

       Study: 

Worldwide obesity has nearly doubled since 1980. As per the WHO statistics, highest 
prevalence of overweight and obesity were recorded in the United States of America in which 
62% of the people were found to be overweight in both sexes and 26% for obesity and the 
lowest prevalence of overweight and obesity were reported in south east Asia in which 14% 
were overweight in both sexes and 3% for obesity (WHO, 2015b).  

The world health organization (WHO) has recently released its Global Status Reports on 
non-communicable diseases by 2014 (Figure I-1, I-2) to demonstrate the prevalence of obesity 
in males and females in different countries around the world.  The worldwide obesity maps 
(Men) depicts the red countries like the US, the UK, Canada, Australia, and others have more 
than 25% prevalence of obesity in men aged 18 years and over. 
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FIGURE I-1 Global Prevalence Of Obesity In Men  

Image Reference: (World Health Organization, 2014) 
 

Most interestingly, in all WHO regions, women are more likely to be obese than men.  As 
per the WHO reports, women have roughly double the obesity prevalence of men in the 
African, South-East Asia, and Eastern Mediterranean regions (Figure I-2).  

 

 
FIGURE I-2 Global Prevalence Of Obesity In Women 

Image Reference:(World Health Organization, 2014) 
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At least 3.4 million people die each year worldwide as a result of being overweight or obese 
with direct and indirect causes. The increase in rate of deaths are directly proportional to the 
increasing degrees of overweight.  The World Health Organization (WHO) in 2005 estimated 
the prevalence of obesity to be more than 1 billion overweight adults, with at least 500 million 
reaching the level of obese. In 2014, more than 1.9 billion adults, 18 years and older, were 
overweight. Of these over 600 million were obese. As this continues to increase, by 2015, 
WHO estimates the number of overweighed adults will balloon to 2.3 billion with more than 
700 million obese. Worldwide, obesity is currently responsible for 2-8% of health care costs 
and approximately 10-13% of deaths (WHO, 2015a). Apart from WHO, Organization for 
economic co-operation and development (OECD) affirms that education also plays a greater 
role in controlling obesity rate. Women who are poorly educated are likely to be twice obese 
than the educated women and a similar association had also been reported that men with less 
education are 1.8 times more likely to be obese than more educated men (OECD, 2014). 

I. D. a) Prevalence Of Obesity In USA: 

Until 2013, the United States of America had the highest obesity rate. Mexico had surpassed 
and crossed that figure by 2013 (Althaus, 2013). Obesity affected more than 34.9% of adults 
and approximately 17 percent of youth in the United States. In numbers it translates by 78 
million adults and 12 million children were considered obese (Trogdon et al., 2012).  

I. D. b) Prevalence Of Obesity In France: 

The first study carried out in France concerning obesity within the French population was by 
National Institute of Statistics and Economic Studies (INSEE) between 1980 and 1991 (Maillard 
et al., 1999). The survey result showed that, the obesity prevalence was 6.1% in 1980 and 
6.5% in 1991. The subjects for the survey were adults (50% men and 50% women). The 
conclusions of this study were thus not alarming. Indeed, France’s obesity is the lowest in 
Europe, at about 10%, compared to the UK’s 22% and the US’s 33% (Rozin et al., 2003). 
Recent survey from the reports of organization for economic co-operation and development 
(OECD) reported that one in eight adults is obese in France, and 40% are overweight and 
obese.  

I. D. c) Prevalence Of Obesity In India: 

November 26th is celebrated as Anti-Obesity Day (AOD) in various parts of the world, with 
several healthcare organizations and leading media primarily in India marking the day with 
activities to highlight how obesity is a public health hazard. On this day, doctors organizes special 
health camps in order to advice people to practice a healthy lifestyle. Obesity is one of the 
greatest public health challenges of 21st century in developing countries like India. The 
prevalence of obesity is increasing at an alarming rate in all the populations of India including 
women, men, and children.  A study conducted by Sidhu et al on 1,000 urban and rural adult 
males aged 20-50 years of Amritsar district of Punjab revealed that 55.8% were overweight and 
36.4% were obese (Sidhu, 2006). Another study lead by Nirmala on Southern Andhra Pradesh, 
India on 1119 individuals (456 males and 663 females), aged 18 to 75 years demonstrated that 
the BMI of the participants ranged from 12.6 to 35.1 in males and from 12.3 to 34.2 in females. 
Followed by this anthropometric study, there is an observed increasing trend in mean BMI until 
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about 50 years, followed by a decline. It was also recorded that women living in urban areas 
tends to accumulate increasing amounts of fat and became more obese than the women living 
in rural areas. Socioeconomic status, increased urbanization, behavioral variables, gender, 
physical and habitual activities were found to be the cardinal factors responsible for these 
obesity fluctuations (Reddy, 1998).  

I. E. Obesity And Its Consequences:  

Obesity is a medical state that may have a greater negative impact in affecting a person’s health 
status leading to reduced life expectancy and is responsible for causing various pathologies 
(Haslam and James; Awada et al., 2013a) which includes cardiovascular diseases (angina, 
myocardial infarction) (Yusuf et al., 2004; Poirier et al., 2006), high blood pressure, obesity 
related type 2 diabetes (DIABESITY), osteoarthritis (Haslam and James), pregnancy 
complications (Heslehurst et al., 2008), neurological ischemic stroke (Haslam and James), 
migraine (Bigal and Lipton, 2008), dementia (Beydoun et al., 2008), multiple sclerosis (Munger 
et al., 2009), various kinds of cancers (Reeves et al., 2007) and preventable causes of death 
(Allison et al., 1999; MokDad et al., 2004; Barness et al., 2007) 

I. F. Obesity And Its Multifactorial Origin: 
Obesity is the result of interplay between biological, behavioral, genetical, cultural, molecular 
and environmental factors (Barness et al., 2007). Energy imbalance over a long period of time 
results in obesity. 

I. F. a) Diet And Energy Imbalance: 

Disproportionate match of calories in your body, which is taking in more calories than you 
burn due to reduced physical inactivity can lead to obesity (Lau et al., 2007a) (Table I-2). 

TABLE I-2        Energy Balance Sheet 

Fluctuations in Weight Calories Balance Sheet 

Weight Loss 

Weight Gain 

No Weight Change 

 

Calories consumed < Calories used 

Calories consumed > Calories used 

Calories consumed = Calories used 

 Table Reference: (Drexel, 2015) 

I. F. b) Family History And Complex Interaction Of Genetic Metabolism: 

Genetics and heredity plays a pivotal role in regulating obesity. Overweight and obesity tend 
to run in families because the persons in the same family also share the same food, daily 
habitual and physical activities and a link also exists between the genes and the family 
environment (NHLBI, 2012). Fat mass and obesity-associated protein also known as alpha-
ketoglutarate-dependent dioxygenase (FTO) is an enzyme that is encoded by the FTO gene 
located on chromosome 16 is the principal gene responsible for this obese genetic alterations 
in humans (Loos and Yeo, 2014).  
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Genes can directly cause obesity in disorders such as Bardet-Biedl syndrome and Prader-Willi 
syndrome, cohen syndrome, MOMO syndrome Macrosomia (excessive birth weight), 
Obesity, Macrocephaly (excessive head size) and Ocular abnormalities (Walley et al., 2009). 
But it is also worth remembering that genes alone itself do not always predict the future 
health, but both the genes and the behavioral activities (diet, lifestyles) of an individual 
determines a person health towards the overweight or obesity progression.  

I. F. c) Gut Flora And Infectious Agents: 

Gut flora differs from lean to obese subjects in humans which affects the physiology and 
metabolical rate (DiBaise et al., 2008). In support of this statement, a similar hypothesis linking 
inflammation and obesity were supported by Burcelin’s group which involves the intestinal 
flora equilibrium. In this model, a high fat diet is proposed to increase the gram-negative 
bacteria proportion in the intestine; this increases intestine permeability and the absorption 
of lipopolysacharide (LPS; the wall component of the gram negative bacteria). Upon this 
increased absorption, Toll Like Receptor (TLR) activation leads to an upregulation of the 
inflammatory response (Cani et al., 2008; Nicholson et al., 2012). 

I. F. d) Auxiliary Obesity Devoting Factors: 

Apart from these contributing factors, hormonal changes, lack of sleep, smoking, pregnancy 
and medicines are other factors that adds on to obesity (NHLBI, 2012) 

I. F. d. i) Hormonal Effects - Leptin Resistance: obese people tends to accumulate 
increasing amounts of fat with proportional levels of leptin production, but leptin 
resistance is one of the critical factors for obese pathogenicity. 
I. F. d. ii) Sleep: Lack of sleep increases the risk of obesity. Sleep maintains the balance 
between hormones that makes you feel hungry (ghrelin) or full satiety feel (leptin). 
Altered sleeping patterns mismatches the hormonal equilibrium (ghrelin goes up and 
leptin goes down). This makes the people hungry even at a well-rested state. 
I. F. d. iii) Smoking: Nicotine increases the rate of calorie burning, when smoking is 
cut down the person will burn only few calories. Another reason for weight gain is that 
food often tastes and smells better after quitting smoking. 
I. F. d. iv) Pregnancy:  Women gain weight to support their baby’s growth and 
development. Post pregnancy women find it hard to lose the weight that leads to obesity. 
I. F. d. v) Medicines: Corticosteroids, antidepressants, and seizure medicines 
slowdowns calorie burning, increase the appetite and causes your body to hold on to 
extra water that leads to the promotion weight gain.  

Since obesity leads to the accumulation of fat in the white adipose tissue (WAT) and white 
adipose tissue was found to be the key player in chronic inflammation, this thesis focusses 
mainly on the factors (Adipocytokines) produced by the WAT and their potential implication 
in neuroinflammation and neurodegeneration. 
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II. ADIPOSE TISSUE 

- Key Player In Chronic Inflammation 

 

   

II. A. What Is Adipose Tissue And Where Is It Derived From? 

Adipose tissue (AT) is an anatomical term for loose connective tissue which is derived from 
preadipocytes. Preadipocytes arises from mesenchymal stem cell lineage. AT is majorly 
composed of adipocytes. Apart from adipocytes, they are also composed of preadipocytes, 
fibroblasts, vascular endothelial cells and adipose tissue immune macrophages (ATMs) 
(Depicted in figure II-1) altogether collectively known as stromal vascular fraction of cells 
(SVF).  

FIGURE II-1 Cell Types Present In The Fat Tissue 

Image Reference: (Awada et al., 2013a) 
 

II. B. What Are Adipocytes Doing Inside Our Body? 

Adipocytes are the only cells that are specially designed and perfectly adapted to store excess 
calories/energy such as lipids in the form of triacylglycerols (TAG) by the process of 
lipogenesis during the periods of abundant energy supply. The more the storage, the larger 
the cell becomes. Besides its protective padding and storing capacity, it also helps in the 
mobilization of the stored lipids to destined organs via lipolysis when there is a calorie deficit 
without compromising its functional integrity (Aarsland et al., 1997; Fonseca-Alaniz et al., 
2007).  
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II. C. How The Fat Tissue Are Distributed? (Adipose Tissue Storehouse) 

Predominantly adipose tissue will be deposited at four distinct anatomical locations: 
Abdominal fat (fat packed around abdomen - Panniculus or Pannus), subcutaneous fat (fat 
packed beneath skin), epicardial fat (packed fat around heart) and ectopic fat (storage of fat in 
tissues other than adipose tissue such as - eye balls, kidney, pancreas, muscles, and bone 
marrow) (Can be seen in figure II-2). The adipose tissue wrapped around these organs serves 
as a layer of protection and absorbs external shock.  
 

 
FIGURE II-2 Distribution of Fat: In humans, depots of white adipose tissue are found in 
areas all over the body, with subcutaneous and intra-abdominal depots representing the main 
compartments for fat storage. Brown adipose tissue is abundant at birth and still present in 
adulthood but to a lesser extent. Image Reference: (Gesta et al., 2007) 

Depending on its anatomical location, adipose tissue exhibits different functional properties.  
For example, a correlation exists between visceral obesity and increased risk of insulin 
resistance and cardiovascular diseases, while an increase of subcutaneous fat is associated with 
favorable plasma lipid profiles (Wronska and Kmiec, 2012). Women tend to accumulate more 
subcutaneous fat than men due to the differences in the sex hormones produced by them.  

II. D. Subcutaneous And Visceral Fat:    

Visceral fat is different from subcutaneous fat. Subcutaneous fat is present beneath the skin 
(thighs, hips and abdomen), whereas visceral fat or intra-abdominal fat is located inside the 
abdominal cavity (liver, intestine, kidneys, skeletal muscles, and gonads). The fat thus deposited 
around these organs were found to be metabolically active and secretes various kinds of 
bioactive molecules that interferes and plays a critical role on that particular and surrounding 
organ’s functionality (Mazurek et al., 2003). Genetic and behavioral factors greatly affects the 
deposition of these fats at different anatomical locations. Proper maintenance of physique and 
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maintaining optimum body weight levels are associated with enhanced organ functionality 
(Snel et al., 2012). 

Mammalian adipose tissue can be functionally and histologically divided into two categories; 
white adipose tissue (WAT) and brown adipose tissue (BAT). WAT is specialized in the 
storage of excess energy in the form of triacylglycerols (TAG’s - Lipogenesis) and acts as a 
mechanical cushion. Besides this, presence of stem cells in the WAT opened new perspectives 
and have led to extensive study of adipose tissue’s potential in therapeutic reparation and 
even for the treatment of obesity and metabolic disorders (Roche et al., 2007; Tran and Kahn, 
2010; Cawthorn et al., 2012).  

BAT is highly vascularized and has a plethora of mitochondria and cytochromes which confers 
the characteristic brown colored appearance of BAT. It has a strong innervation with 

sympathetic nervous terminals and acts on β-adrenoreceptors (Fruhbeck et al., 2009). In 
humans, until recently, it was thought that brown fat was only present in the new-borns and 
infant (Cannon and Nedergaard, 2004).The extensive use of positron emission tomography 
(PET) in cancer medical imaging has changed this dogma. An evaluation of fluorodeoxyglucose 
PET (FDG-PET) data from adult cancer patients indicated a high level of glucose consumption 
in specific body regions corresponding to brown fat (Cannon and Nedergaard, 2004), 
presumably in order to maintain normal body temperature. 

Despite of its difference in origin, structure and function in these two kinds of AT, the most 
common cells present in both types of fat are adipocytes and the formation of WAT are 
controlled by the adipose gene (WDTC1) which is associated with obesity (Suh et al., 2007; 
Lai et al., 2009).  

II. E. Brown Adipose Tissue & Thermogenesis: 

Brown adipose tissue with the help of thermogenin or uncoupling proteins (UCP1) across the 
inner mitochondrial membrane via the process of oxidative phosphorylation generates heat 
instead of generating ATP molecules when protons are pushed down to form an 
electrochemical gradient. This complete process is known as thermogenic process 
(Delineated in figure II-3) which is crucial for hibernating animals and as well for the neonates 
(Cinti, 2006) to maintain their body temperature and to protect themselves from shivering 
(Himms-Hagen, 1990). Thermogenesis in BAT is stimulated in response to cold exposure, 
sympathetic stimulation and energy intake.  
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FIGURE II-3 Thermogenin Cascade Activation In Brown Adipose Tissue: During 
the process of thermogenesis, substances such as free fatty acids (FFA) which are derived 
from triacylglycerols remove purine (ADP, GDP and others) inhibition of thermogenin 
(uncoupling protein-1), which causes an influx of H+ into the matrix of the mitochondrion and 
bypasses the ATP synthase channel. This uncouples oxidative phosphorylation, and the energy 
from the proton motive force is dissipated as heat rather than producing ATP from ADP, 
which would store chemical energy for the body's use. In a last step thermogenin inhibition is 
released (thermogenin activation) through the presence of FFA. The cascade is initiated by 

binding of norepinephrine to the cells β3-adrenoceptors.  Image Reference: (Wikipedia, 
2009) 

II. F. Beige/Brite Adipocytes: 

Brown adipocytes appearing in white adipose tissue are known as inducible, beige or brite 
adipocytes. These beige adipocytes are derived from mesenchymal stem cells and have a 
derivation lineage much closer to the white adipocyte lineage (Giralt and Villarroya, 2013) 
produced in response to various signaling factors and plays a vital role in reducing metabolic 
diseases such as obesity in mice and correlate with leanness in humans (Harms and Seale, 
2013). 
 

  

HEAT 
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TABLE II-1    Characteristic Features of Adipose Tissue - A Comparative Study 

Characteristics White Adipose Tissue (WAT) Brown Adipose Tissue (BAT) 

Location Subcutaneous abdominal, 
perirenal, inguinal, gonadal and 

retroperitoneal 

    Interscapular, paravertebral,       
         axillary and perineal 

Cell Shape Polyhedral to spherical Polygonal 

Cell Size 25 µm Up To 200 µm 
(May increases their volume by 

1000-fold) 

15–60 µm 

Cell Color White  (light ivory to strong 
yellow) 

Brown (light pink - dark red) 

Multicellularity High presence of other cell types 
such as preadipocytes, mature 

adipocytes, macrophages, 
endothelial cells, fibroblasts. 

Low presence of other cell types 

Nuclear Shape Flattened or cup-shaped Round or oval shaped 

Nuclear Position Peripheral occupying 2–3% of the 
cell volume 

Centrally located 

Lipid Droplets Unilocular single large lipid 
droplet that occupies 90% of the 

cell volume 

Multilocular with abundant 
small lipid droplets 

Mitochondria Few, small, elongated Abundant, large, round 
(responsible for the brown color) 

Endoplasmic 

Reticulum (ER) 

Sparse cisternae of rough ER,  
few tubules of smooth ER 

Poorly developed ER 

Tissue 

Organization 

Densely packed cells Glandular structure 

Vascularization Modest blood supply Rich blood supply 

Adipokine 

Secretory 

Activity 

Higher secretory activity of 
adipokines and growth factors 

Lower secretory activity of 
adipokines and growth factors 

Leptin High levels Present at birth, not in adults 

Uncoupling 

Proteins 

UCP2 UCP1, UCP2, UCP3 

Table Reference: (Fruhbeck et al., 2009) 
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II. G. Adipose Tissue – Dynamic Endocrine Organ Secreting Adipocytokines: 

Adipose tissue is highly active metabolic and endocrine organ. The dogma that adipose tissue 
just acts as a storage organ has been completely revisited by the discovery of leptin. Adipose 
tissue receives signals and acts as endocrine organ  producing an assortment of factors 

including hormones, inflammatory mediators such as cytokines (TNFα, IL-6, Leptin, 
Adiponectin), chemokines (MCP-1, MIP-1, RANTES) or adipo lipokines (LPA via Autotaxin) 
(Blüher and Mantzoros, 2015). The cellular signaling factors (cytokines) produced by the 
adipose tissue are popularly known as Adipocytokines (Portrayed in figure II-4). To date 
nearly 600 adipocytokines (Lehr et al., 2012) have been discovered. These factors are 
secreted by the different cell types of adipose tissue such as adipocytes, immune cells, 
fibroblasts or endothelial cells (Kelesidis and Mantzoros, 2006; Kelesidis et al., 2010; 
Dalamaga et al., 2012; Bluher, 2014). These adipocytokines have versatile biological activities 
in specified host system (Gale et al., 2004; Sahin-Efe et al., 2012; Bluher and Mantzoros, 
2015).  

 
FIGURE II-4 Adipose Tissue Secreting Adipocytokines 

Adipocytokines greatly influences the regulation of whole-body energy metabolism such as 
appetite, satiety, energy expenditure, insulin sensitivity and secretion, glucose and lipid 
metabolism, fat distribution, endothelial function, hemostasis, blood pressure,  
neuroendocrine regulation, inflammation and functions of the immune system  (Van Gaal et 
al., 2006; Catalan et al., 2009; Bluher, 2012; Sahin-Efe et al., 2012; Bluher, 2014) in target 
organs including the brain, immune system, liver, skeletal muscle, vasculature, heart, and 

pancreatic β-cells (Bluher and Mantzoros, 2015). With the versatile functionality of these 
adipocytokines affecting various target organs acting at physiological level, led adipocytokines 
gained an intensive focus on current metabolic and disease research nowadays.   

Adipocytokines were found to be key players involved in displaying a wide variety of functions 

in inflammation (TNF-α, adiponectin, monocyte chemoattractant protein-1, IL-1β, IL-6,           
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IL-10, CRP, osteopontin, progranulin, chemerin), immune response (interleukins, adipsin/ 
complement factor D, acylation-stimulating protein, serum amyloid A3) and glucose 
metabolism (leptin, adiponectin, dipeptidyl peptidase-4, fibroblast growth factor 21, resistin, 
vaspin), insulin sensitivity (leptin, adiponectin, chemerin), hypertension (angiotensinogen), cell 
adhesion (PAI-1), vascular growth and function (VEGF), atherosclerosis development 

(cathepsins, apelin), adipogenesis and bone morphogenesis (BMP-7), growth (IGF-1, TGF-β, 
fibronectin), lipid metabolism (CD36), regulation of appetite and satiety (leptin, vaspin), 
eating disorders such as anorexia nervosa (leptin, adiponectin, resistin) and allied biological 
processes (Catalan et al., 2009; Sahin-Efe et al., 2012; Bluher, 2014). Dysfunctioning of 
adipose tissue leads to the deregulation of the adipocytokines network that could contribute 
to different kinds of disease progression in the body (Ouchi et al., 2012). 

Besides adipose tissue and various immune cells, adipocytokines are also produced in the 
human’s breast milk. Breast milk is rich in a variety of nutrients, cytokines, peptides, enzymes, 
cells, immunoglobulins, proteins and steroids which are especially suited to meet the needs 
of newborn infants (Hawkes et al., 2004; Savino et al., 2010). In addition to these vital 
supplements, several peptides and hormones have recently been identified in human breast 
milk, including leptin, adiponectin, resistin, obestatin, nesfatin, irisin, adropin, copeptin, 
ghrelin, pituitary adenylate cyclase-activating polypeptide, apelins, motilin and cholecystokinin 
(Savino and Liguori, 2008; Aydin et al., 2013; Catli et al., 2014). 

II. G. a) Adipocytokines As Molecular Cues:  

Adipocytokines produced by adipocytes can be used as molecular cues to study, diagnose 
and monitor the etiology of discrete pathologies. This include testing of both pro and anti-
inflammatory cytokines. Pro-inflammatory cytokines worsens the immune system by 
producing inflammation, fever, tissue destruction, shock and even death, whereas anti-
inflammatory cytokines improvises and tranquilizes the immune system by neutralizing 
inflammation and by the promotion of cellular repair (Dinarello, 2000). Besides this, it is also 
worth remembering that controlled inflammation may be beneficial to fight against pathogens 
and overexpression of anti-inflammatory factors may also be detrimental. 
 
Cytokines include chemokines, interferons, interleukins, and tumor necrosis factor. They act 
via intracellular and extracellular receptors, and are especially important in regulating the 
growth, maturation and responsiveness of particular cell populations. Some cytokines 
enhance or inhibit the action of other cytokines in complex ways, which plays an 
indispensable role in health and disease, specifically in response to infection, immune 
response, inflammation, trauma, sepsis, cancer, and reproduction (Dinarello, 2007). In fact, 
the amount of cytokine, the nature of the target cell, nature of the activating signal, nature 
of produced cytokines, their timing, sequence of cytokine action and even the experimental 
model are the parameters which greatly influence the action of cytokine properties 
(Cavaillon, 2001). These cytokines are released by immune cells such as microglia, 
macrophages, mast cells, astrocytes, B-lymphocytes, T-lymphocytes and various kinds of 
other cell types including endothelial cells and fibroblasts (Lacy and Stow, 2011) that dictates 
the behavior of other cells in autocrine, (acting on its own Cell itself) paracrine (nearly 
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located cell), juxtacrine (contact dependent signaling) and endocrine fashion (far away located 
cells) (Kim and Moustaid-Moussa, 2000).   
 

TABLE II-2         Adipocyte Secretory Profile 

                      Adipocytokine         Biological Activity 

 

LEPTIN 

Promotes energy expenditure, represses 
food intake, and controls appetite via CNS 

anorexigenic effect. 

 

TNF-α 

  (Tumor Necrosis Factor-α or Lymphotoxin-α) 

Pro-inflammatory adipocytokine, negatively 
regulates hepatic and skeletal muscle 

insulin sensitivity via IRS-1 phosphorylation 
and by GLUT4 expression. 

 

 

ADIPONECTIN 

Insulin sensitivity promoting factor, 
increases glucose uptake, fatty acid 

oxidation, decreases gluconeogenesis, 
modulates food intake and energy 
expenditure, anti-atherogenic, anti-

inflammatory, anti-diabetic adipocytokine 

 

AUTOTAXIN 

Cell motility, migratory and proliferating 
factor, role in parturition. 

 

RESISTIN 

Insulin resistance aggravating factor, 
endothelial dysfunction, pro-atherogenic, 

pro-inflammatory, 
pro-diabetic adipocytokine 

MCP-1 

(Monocyte Chemotactic Protein-1 ) 

Promotes inflammation, insulin sensitivity 
antagonist 

MIF 

(Macrophage Migration Inhibitory Factor) 
Immunoregulator with paracrine action in 

WAT 

PAI-1 

(Plasminogen Activator Inhibitor-1) 

Inhibits plasminogen activation, fibrinolysis 

PG (Prostaglandins) 
Regulates various cellular processes, blood 
coagulation,  active during inflammation, 
ovulation and secretion of gastric acid 

IL-1 β (Interleukin-1 β) Pro-inflammatory adipokine 

IL-6 (Interleukin-6) 
Acute phase response, B-cell proliferation, 
thrombopoiesis, synergistic with IL-1 and 

TNF on T cells 

IL-10 (Interleukin-10) Inflammatory antagonist 

RANTES (Regulated on activation, 

normal T cell expressed and secreted) 

Pro-inflammatory,  pro-obese, augments 
Insulin resistance 

 Monocyte chemotactic activity 
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VISFATIN or PBEF or Nampt            

(Nicotinamide 

Phosphoribosyltransferase) 

Nampt-mediated systemic NAD 

biosynthesis is critical for β cell function 
Stimulates insulin secretion 

(Insulinomimetic) 

ADIPSIN Activates alternative complement pathway 

NESFATIN Anorexigenic effect 

OBESTATIN Anorexigenic effect 

 

OMENTIN 

Promotes insulin-stimulated glucose 
transport and                        

Akt phosphorylation in human adipocytes 

CHEMERIN 
Regulator of adipogenesis, potent anti-
inflammatory agent on macrophages 

PROGRANULIN Promotes adipose tissue inflammation 

APELIN Glucose lowering effects by BAT 
uncoupling proteins - UCP1, thermogenin 

VASPIN Insulin sensitivity agonist 

RBP4 (Retinol Binding Protein 4) Pro-inflammatory and promoter of Insulin 
resistance and visceral fat distribution. 

 

FGF21 (Fibroblast Growth Factor 21) 

Promotes thermogenesis, energy 
expenditure, fat utilization and             
glucose uptake into adipocytes 

TGF-β (Transforming Growth Factor β) 
Regulates the proliferation, differentiation, 
development and apoptosis of adipocytes 

IGF-1 (Insulin-Like Growth Factor 1) Stimulates proliferation and      
differentiation of adipocytes 

HGF (Hepatocyte Growth Factor) Stimulates differentiation and   
development of adipocytes 

VEGF 

(Vascular Endothelial Growth Factor) 
Stimulates vascular proliferation 

angiogenesis 

SFRP5 

(Secreted Frizzled-Related Protein 5) 
Inflammatory antagonist and              

modulates Wnt signalling 

 

II. G. b) Leptin: 

The adipocyte produced Leptin has been discovered 20 years ago (Friedman, 2014; Blüher 
and Mantzoros, 2015; Friedman and Mantzoros, 2015). In Greek language Leptos means Thin. 
Experiments conducted by the researchers during early 1950’s observed that non sense 
mutations caused by the disruption of functional polypeptide leptin in ob/ob mice negatively 
aggravates the feeding behavior (Table II-2), body weight and developed diabetic phenomenon 
(Campfield et al., 1995; Halaas et al., 1995; Pelleymounter et al., 1995). Whereas to confirm 
and to counteract this observed pathology, ob/ob mice were administered with leptin that 
significantly reduced the food intake behavior, body weight and reversed the diabetic 
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phenotype which confirmed the significance of leptin in ob/ob mice phenotype (Tartaglia et al., 
1995a; Chen et al., 1996; Lee et al., 1996a).  

Leptin is an adipose tissue derived signal which acts as a negative feedback loop for the 
maintenance of energy homeostasis in the brain and other tissues. It controls the appetite and 
feeding behavior of a living system by acting on the leptin receptors (OB-Rb) of hypothalamic 
arcuate nucleus, ventromedial hypothalamic nucleus, and dorsal medial hypothalamic nucleus 
of the CNS which are responsible in regulating the feeding behavior and acts via Janus-
Kinase/Signal Transducer and Activator of Transcription-3 (JAK-STAT) pathway (LA et al., 
1995) (Figure II-5).  

 

FIGURE II-5 Effect of Leptin on Feeding Behavior, Energy Expenditure, and 

Adiposity. (a) The net effects of leptin action are decreased food intake and increased 
energy expenditure, resulting in less lipid storage in adipocytes. (b) ob/ob mice are deficient 
in leptin: Loss of negative feedback from leptin results in increased adiposity.                       
         Image Reference: (Waki and Tontonoz, 2007b) 

Besides its effects on regulating food intake, leptin is also known to have beneficial effects in 
the promotion of energy expenditure (Figure II-5) (Cohen and Friedman, 2004) by the 
suppression of Steroyl CoA desaturase-1 (SCD-1) expression in liver (Coleman DL et al., 
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1969; Cohen P et al., 2002), prevents the ectopic accumulation of lipid molecules in pancreatic 

β cells  (Colombo et al., 2002) and also stimulates the oxidation of fatty acids in muscle and  
liver by activating 5-AMP-activated protein kinase (AMPK) in the central nervous system 
(Combs et al., 2003).  

The expression and secretion levels of leptin in the majority of obese patients and obese 
mouse models are characterized by elevated leptin levels in the circulation, in which cells fails 
to utilize the produced leptin (leptin resistance) (De Benedetti F et al., 1997; Eitzman DT et 
al., 2000; Eren et al., 2002). Leptin therapy in this context is ineffective due to its unclear 
precise mechanism, but transport across the blood-brain barrier and intracellular signaling are 
likely to be altered in leptin resistance (Farooqi et al., 2002; Fain et al., 2003; Farooqi IS et al., 
2005).  

After 20 years of intensive research efforts, recombinant leptin and the analog of human leptin 
Metreleptin (trade name Myalept) are available in the market as a therapeutic agent where 
administration and replacement of leptin in leptin deficient subjects improvises congenital 
leptin deficiency, hyperglycemia and hyperlipidemia in patients with lipodystrophy (Davis R. J 
et al., 2000; Oral et al., 2002; Friedman and Mantzoros, 2015).  
 

II. G. c) Tumor Necrosis Factor-α (TNF-α): 

TNF-α was first identified as an endotoxin-induced serum factor that caused necrosis of 
tumors (Trayhurn P, 2004) and was later found to be identical to cachectin (Trujillo ME, 2005) 
which shows its effects in inducing septic shock, cachexia and inhibits lipogenesis in adipocytes 
and various tissues. It is a biologically active trimer formed after the cleavage of 

transmembrane precursor protein produced by the action of TNF-α converting enzyme 
(TACE, also called ADAM17). It is a 26 kDa transmembrane secreted protein (Hotamisligil et 
al., 1993).  

TNF-α is a factor that is highly expressed in and secreted from adipose tissue (Table II-2) 
(Hotamisligil et al., 1993) and overexpressed in case of obese mice and human subjects 

(Wallach et al., 1999). Exposure of cells and animals to TNF-α for a prolonged period of time 

causes insulin resistance. In contrast, neutralization of TNF-α leads to an increase in uptake 
of peripheral glucose in response to insulin as observed in a mice and rat model of obesity 

(Hotamisligil et al., 1993). TNF-α shows its mode of action by reducing the tyrosine-
phosphorylation of IRS-1 activity by insulin (Uysal et al., 1997), which is stimulated by serine-

phosphorylation of IRS-1. Besides this in another way TNF-α activates serine/threonine kinase 

IKKβ which in turn leads to serine-phosphorylation of IRS-1 (Insulin receptor substrate 1)        
(F et al., 2002), thereby augments the levels of free fatty acid (FFA) in circulation and 

suppresses the expression of adiponectin (Vaughan, 2005). TNF-α executes its functions by 
binding to TNF receptors/death receptor (TNFR) regulating a wide range of cellular 
processes. (For example cell-survival in the CNS via TNF-R1, TNF-R2) (Pickering et al., 2005; 
Montgomery and Bowers, 2012; Arnoldussen et al., 2014). These receptors in turn 
cooperates with adaptor proteins such as Tumor Necrosis Factor Receptor Type 1-
Associated Death Domain Protein (TRADD), TNF Receptor Associated Factors (TRAF), 
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Receptor-Interacting Protein Kinases (RIP) that determines the inflammatory and apoptotic 
response.   

Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory circulating cytokine well-known 
for its role in chronic peripheral and central inflammation (Thaler et al., 2012; Arnoldussen et 
al., 2014). It is mainly produced by macrophages and its expression is increased at the mRNA 
and protein levels in obese and in type 2 diabetes models (Hotamisligil et al., 1993).  Besides 

its detrimental role in several tissues, TNF-α also demonstrates protective effects in the brain. 
It notably acts on neurogenesis, synaptic transmission and plasticity (Arnoldussen et al., 2014). 

Thus, TNF-α was notably described for its neuroprotective roles on hippocampal neurons by 
suppressing accumulation of ROS and by maintaining intracellular levels of calcium (Barger et 

al., 1995). In addition, TNF-α modulates glutamatergic transmission (Beattie et al., 2002). 

Furthermore, TNF-α favors neural progenitor cells survival by notably mediating anti-

apoptotic signals via TNFR2 (Marchetti et al., 2004). In rat, TNF-α appear to promote the 
survival of stroke-generated hippocampal and striatal neurons (Heldmann et al., 2005). In 

addition, TNF-α knock-out mice show cognitive impairment (i.e: significant poorer learning, 

retention and spatial learning), suggesting a strong role for TNF-α on these mechanisms 
(Baune et al., 2008). 
 
In the previous section, we have seen the versatile biological activities of the WAT in health 
and disease, and the coming section focusses majorly on the impact of factor produced by the 
WAT (ATX and ADIPO) which are potentially involved in obesity induced neurodegeneration. 

It is also worth remembering that these adipocytokines (ATX and ADIPO) and their receptors 
are not only present in the adipose tissue, but they are also well expressed in the CNS. 
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                      III. Candidate Genes: AUTOTAXIN and ADIPONECTIN 
 

III. A. AUTOTAXIN 

TABLE III-1                        III. A a)  AUTOTAXIN Portfolio 

Gene Name ENPP2 

Protein names Ectonucleotide pyrophosphatase/phosphodiesterase family member 2 

Defining Autotaxin A protein that is a translation product of ENPP2 gene 

Alternative names Autotaxin,  Extracellular lysophospholipase D, LysoPLD 

Synonyms Npps2, Pdnp2 

Lineage Eukaryota › Metazoa › Chordata › Craniata › Vertebrata › 
Euteleostomi › Mammalia › Eutheria › Euarchontoglires › Glires › 
Rodentia › Sciurognathi › Muroidea › Muridae › Murinae › Mus › Mus 

Organism Mus musculus (Mouse) 

 Chromosomal Locus Chromosome-8 (Humans)   Chromosome-15 (Mouse) 

Gene Details DNA: ~81118 b.p      mRNA*: 2772 - 3124b.p    Protein: 863 a.a 

Molecular Mass 125 kDa 

Diversified forms  Isoform -1 or β,     Isoform - 2 or α,             Isoform -3 or γ. 

Subunit interactions Interacts with zinc and copper co-factors  

Secretion Cancerous cells and Adipocytes. 

 Principal Involvement Acts as Cell Motility, Migratory, proliferating factor, parturition 

Therapeutic Activity Anti-cancer therapy 

Signaling pathway Follows LPA signaling pathway 

*mRNA transcript variants length depends on alternative splicing 
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TABLE III-2              III. A b) Functionality of AUTOTAXIN 

Catalytic Activity:  
Autotaxin has Lysophospholipase D (LysoPLD) activity that converts 
lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), which is responsible for 
its cell proliferating effects (Giganti et al., 2008; Prestwich et al., 2008). The interdomain 
disulfide bond between Cys-413 and Cys-805 is essential for catalytic activity (Nishimasu 
et al., 2011a; Kawaguchi et al., 2013). 

Lysophospholipase D (LysoPLD) activity: 
N-glycosylation, but not furin-cleavage, plays a critical role on secretion and LysoPLD 
activity (Pradère et al., 2007). 
 
Secretory Activity: 
Secretion requires simultaneous glycosylation on Asn-53 and Asn-410, while probable 
glycosylation of Asn-410 has a preferential role on LysoPLD activity (Not O-glycosylated) 
(Pradère et al., 2007). 
 
Anti-Inflammatory and Anti-oxidative Activity:  

Antagonizes and counteracts the effects of TNF-α by negatively regulating its expression 
(Awada et al., 2014) and inhibits intracellular reactive oxygen species (ROS) (Awada et al., 
2012), and inflammation mediated nuclear factor kappa beta (NFkβ) signalling. 

 
Miscellaneous Activities:  
Chemotaxis     Lipid degradation   Lipid metabolism 
 
Molecular Functionality:  
Lysophospholipase activity (Nishimasu et al., 2011a)     
phosphodiesterase-I activity (Bachner et al., 1999) 
nucleotide diphosphatase activity (Bachner et al., 1999)   
Zinc and Calcium binding activity (Nishimasu et al., 2011a)   
Polysaccharide binding activity (Houben et al., 2013) 
Scavenger receptor activity (Jansen et al., 2009)   
 
Biological Processivity:  
Positively Regulates: 
Cell Motility    Cell proliferation   Cell development 
  
Negatively Regulates: 
Inflammation     Oxidative stress 
Tumor necrosis factor production   Nuclear Factor kappa B-Cell (NF-kB) signalling 
 
Subcellular Location: 
Extracellular space   Integral component of plasma membrane  
Cell surface     Cell periphery  
 
Post translational modification (PTM): Formation of Disulfide bonds, Glycoprotein 
groups, undergoes Glycosylation (Pradère et al., 2007; Nishimasu et al., 2011a). 
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III. A. c) Autotaxin Alias Lysophospholipase D:  

Autotaxin alias Lysophospholipase D (LysoPLD) is a type II ectonucleotide pyrophosphate 
phosphodiesterase secreted enzyme that catalyzes the transformation of albumin bound or 
membrane-derived lysophosphatidylcholine (LPC) to produce equimolar amounts of bioactive 
lysophosphatidic acid (LPA) and choline (Tokumura et al., 2002; Umezu-Goto et al., 2002) 
with the help of Lysophospholipase D activity.  
 
Autotaxin is a protein of 125 kDa, which is anchored in the membrane by its amino-terminus, 
and released into the extracellular medium by proteolytic cleavage (Figure III-1). It is a member 
of the nucleotide pyrophosphatase/ phosphodiesterase family of ectoenzymes (E-NPP). ATX 
has a catalytic site in its extracellular portion that hydrolyzes phosphodiester bonds of various 
nucleotides such as ATP or ADP, and that turns lysophosphatidylcholine (LPC) into 
lysophosphatidic acid (LPA) (Stracke et al., 1992; Clair et al., 1997; Bollen et al., 2000; Goding 
et al., 2003; Saulnier-Blache, 2004).   
 

 
FIGURE III-1 Structure of membrane anchored ATX protein 

Image Reference: (Saulnier-Blache, 2004) 
   
ATX is secreted in most of the body fluids including: blister fluid (Mazereeuw-Hautier et al., 
2005) and cerebrospinal fluid (Hammack et al., 2004; Sato et al., 2005), whereas the catalytic 
activity of Autotaxin is present at high concentrations  in biological fluids such as plasma, serum 
and seminal plasma (Aoki, 2004) in various species including rabbit (Tokumura et al., 2002), 
bovine (Umezu-Goto et al., 2002), and humans (Masuda et al., 2008; Nakamura et al., 2008). 
ATX or LPA is also produced by adipocytes and cancerous cells during differentiation but not 
pre-adipocytes (Gesta et al., 2002).  
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III. A. d) Bioactive Phospholipid - “The Lysophosphatidic Acid (LPA)”: 
The lysophosphatidic acid (LPA) is a phospholipid consisting of glycerol-phosphate backbone 
which is able to generate growth factor-like activities in a wide Variety of normal and malignant 
cell type. ATX removes the choline head group from LPC and thereby produces LPA. So the 
bioactive LPA thus produced via ATX catalysis acts through six distinct guanine-nucleotide-
binding protein (G protein) coupled receptors (GPCRs) termed as LPA.  It shows both 
overlapping and distinct tissue distribution and signalling properties. Major G protein-linked 
effector pathways induced by LPA includes: the mitogenic RAS–extracellular signal-regulated 
kinase pathway; the phosphoinositide 3 kinase (PI3K)-AKT survival pathway; RHO and RAC-
mediated cytoskeletal remodeling and cell migration; and phospholipase C (PLC) activation, 
leading to Ca2+ mobilization (Figure III-2). 
 

 
FIGURE III-2 LPA Signal Transduction: a) ATX-LPA receptor signalling; b) Structures 

of LPC and LPA. Image Reference: (Moolenaar and Perrakis, 2011) 
 
III. A. e) Two Major Synthetic Pathways Engendering Bioactive LPA:  

LPA can be generated via two major synthetic pathways. In the first pathway, the precursor 
phospholipids (phosphatidylcholine, phosphatidylserine, or phosphatidylethanolamine) will be 
converted to their corresponding lysophospholipids such as lysophosphatidylcholine (LPC), 
LPS, or LPE. In platelets, this occurs via phosphatidylserine-specific phospholipase A1 (PS-
PLA1) or secretory phospholipase A2 (sPLA2) activity. In plasma, LPC is produced by LCAT 
and PLA1 activity. In either location, lysophospholipids can then be converted to LPA via 
autotaxin (ATX) activity. In the second major pathway, phosphatidic acid (PA) is first produced 
from phospholipids through phospholipase D or from diacylglycerol (DAG) through 
diacylglycerol kinase. Then, PA is converted directly to LPA by the actions of either PLA1 or 
PLA2 (See Figure III-3).  
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FIGURE III-3 LPA Synthetic Pathways: a) Two major synthetic pathways engendering 
bioactive LPA; b) Summary of the major routes of LPA synthesis and the activated signaling 
pathways via the six cognate LPA receptors. Phosphatidylcholine (PC); 
phosphatidylethanolamine (PE); phosphatidylserine (PS); phospholipase D (PLD),  lecithin 
cholesterol acyltransferase (LCAT); phospholipase A1 (PLA1); phospholipase A2 (PLA2). 
Image Reference: (Yung et al., 2014) 
 
III. A. f) Expression Of Autotaxin’s Isoforms:  
The ATX gene is located on chromosome 8 in humans and chromosome 15 in the mouse. It 
has an intricate gene structure and contains 27 exons and have greater number of alternative 
splicings. The mRNA transcript variants length of Autotaxin usually depends on alternative 

Splicing.  (Murata et al., 1994). Autotaxin (ATX) has three isoforms, Isoform-1 or β, Isoform-

2 or α, Isoform-3 or γ. Isoform alpha expresses the intron 12 and has a cleavage site which is 
primarily responsible for the rapid catabolism of this particular isoform (Giganti et al., 2008). 

The ATX isoforms are differentially expressed. High levels of ATX β mRNA expression are 
detected in peripheral tissues, whereas lower expression levels are observed in the central 

nervous system. In contrast, the highest levels of mRNA expression for the ATX γ variant are 
detected in total brain, whereas significantly lower expression levels are observed in peripheral 

tissues. Among the three isoforms, ATX-α exhibits the lowest expression levels in both the 

central nervous system and peripheral tissues. The α isoform is very unstable because it 

contains an extra exon (exon 12) compared to isoforms β, and γ (Giganti et al., 2008). 
 

 

 

 

a 

b 
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III. A. g) Autotaxin’s Architectural Domain: 

Autotaxin has various domains (As seen in figure III-4), N-terminal intracellular domain 
(targeting to the plasma membrane), signal peptide, transmembrane domain, extracellular 
domain comprises two cysteine-rich somatomedin B (SMB) like domains located adjacent to 
a hydrophobic domain containing an RGD tripeptide (cell-extracellular matrix interactions), 
catalytic domain (lysophospholipase D activity), central PDE domain and nuclease-like domain 
located at its C-terminus NUC domain. N-Glycosylation of Asn53 and Asn410 and signal 
peptide cleavage are the key elements in the regulation of the enzyme secretory and catalytic 
activity (Murata et al., 1994). ATX has phosphodiesterase, pyrophosphatase and ATPase 
activities with a low catalytic capacity (Lee et al., 1996b) . 
 

 
FIGURE III-4 Domain Organization of Autotaxin 

    Image Reference: (Nishimasu et al., 2012) 
 
III. A. h) Autotaxin’s LPA Receptors (LPAR):  
So far six bona fide LPA receptors (LPAR1 to LPAR6) and several other intracellular PPARγ 
(An et al., 1998; Bandoh et al., 1999)  putative or accepted LPA receptors (GPR87 and p2Y) 
(Noguchi et al., 2003; Yanagida et al., 2009) and five sub-types of receptors other phospholipid 
bioactive, sphingosine-1-phosphate (Saulnier-Blache, 2004) have been identified. These 
receptors with seven transmembrane domains G protein-coupled belongs to the EDG family 
(Endothelial differentiation gene). Few biological roles of LPA can be mediated by ATX.  ATX 
can interact with target cells via specific cell-surface molecules such as integrins and heparan 
sulphate proteoglycans (HSPs), as well as by direct membrane association, to facilitate LPA 
release near to its cognate receptors. In this way, ATX not only drives the formation of LPA 
but also ensures specificity in LPA signalling (Moolenaar and Perrakis, 2011).  
 
LPA receptors are expressed in immune cells, including lymphocytes (Goetzl et al., 2000; 
Zheng et al., 2000) and dendritic cells (Panther et al., 2002; Chen et al., 2006b), and in lymphoid 
organs such as the spleen and thymus (Ishii et al., 2004; Kotarsky et al., 2006; Oh et al., 2008).  
 
III. A. i) LPA Receptor Expression in CNS: 

Apart from immune cells, adipocytes and cancer cells, central nervous system is another major 
hotspot for the LPA receptor expression (Weiner et al., 1998; Contos et al., 2000; Fukushima 
et al., 2001; Ishii et al., 2001) which regulates the activity of various neural cell types, such as 
neural cell lines, neural progenitors, primary neurons, oligodendrocytes, Schwann cells, 
astrocytes, and microglia (Choi et al., 2010). LPA levels are increased during pathological 
conditions of the brain, such as in response to injury, cerebral ischemia, and following 
disruption of the blood-brain barrier (Fukushima et al., 2002; Fukushima, 2004).   

 

 

SMB-like 
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III. A. j) Autotaxin’s Protein Stability: 
The optimum enzymatic activity of ATX can be noticed at pH 8, whereas the optimum 
temperature activity is 40 degree centigrade.  
 
III. A. k) Autotaxin in Pathophysiology:  

III. A. k. i) ATX in Obesity: 

Autotaxin is predominantly secreted by adipocytes whose expression is substantially               
upregulated in obese, diabetic db/db mice (Boucher et al., 2005).  
 

III. A. k. ii) ATX in Diabetes: 

Autotaxin expression was upregulated by treatment with TNF-α (insulin resistance-promoting 
cytokine), and downregulated by rosiglitazone treatment (insulin-sensitizing compound) in 
3T3F442A adipocytes. Adipose tissue autotaxin expression was significantly upregulated in 
patients exhibiting both insulin resistance and impaired glucose tolerance. Finally, it is showed 
that type 2 diabetes in humans is also associated with upregulation of adipocyte autotaxin 
expression. These observations suggested a possible involvement of autotaxin in the normal 
or pathological development of adipose tissue and/or pathologies associated with obesity 
(Ferry et al., 2003).  
 

III. A. k. iii) ATX in Fetal Development: 

ATX expression at the developing embryo and ATX-mediated LPA production and 
subsequent G-protein coupled receptor (GPCR) signaling are essential for vascular branching 
morphogenesis and chorio-allantoic fusion, which seem to be the primary causes of embryonic 
death in the absence of ATX. It also plays a key role in fetal development and mice deleted of 
the ATX gene are not viable (Tanaka et al., 2006; van Meeteren et al., 2006).  
 
III. A. k. iv) ATX in Neuropathology: 

It is worth noticing that ATX and its LPA receptors has also been expressed in CNS. That is 
why ATX role and activity has been mostly linked to various central nervous system diseases, 
oligodendrocyte function, myelination, wound healing and so on. One such includes 
neuropathic pain (Inoue et al., 2004) through its transformation of LPC into LPA in the spinal 
cord. Another such includes Autotaxin downregulates LPS-Induced microglia activation and 
pro-inflammatory cytokines production (Awada et al., 2014). Besides this, Autotaxin 
expression is enhanced in frontal cortex of Alzheimer-type dementia patients as reported by 
(Umemura et al., 2006) and  cell type ATX specific expression in the brain has been 
upregulated during development and after neurotrauma (Savaskan et al., 2007) 
 
III. A. k. v) ATX As A Biomarker And A Therapeutic Target: 

Ample of evidences confirmed that ATX expression has been significantly upregulated in 
various tumors such as breast cancer, renal cell cancer, hepatocellular carcinoma and thyroid 
cancer (Yang et al., 1999; Zhang et al., 1999; Zhao et al., 1999; Euer et al., 2002; Yang et al., 
2002; Kehlen et al., 2004) which suggests the potential role of Autotaxin as a 
chemotherapeutic target. In order to inhibit the dynamic enzymatic activity of ATX in various 
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forms of cancer, histidine (Clair et al., 2005), LPA analogues (Baker et al., 2006; Federico et 
al., 2008), albumin (Morishige et al., 2007) and cyclic phosphatidic acid can be used as a natural 
molecules that regulates this ATX activity.  FTY720 (van Meeteren et al., 2008), an immuno 
modulator at a concentration of 200 nM has been reported as the first compound that has 
anti-cancer activity and shows its effect by inhibiting the ATX’s uncontrolled enzymatic 
activity. 
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III. B. ADIPONECTIN 
 

TABLE III-3   III. B. a) ADIPONECTIN Portfolio 

Gene Name AdipoQ 

Protein names Adiponectin 

Defining Adiponectin A protein that is a translation product of AdipoQ gene 

Alternative names Adipocyte complement-related protein of 30 kDa (ACRP30) 

Gelatin binding protein of 28 kDa (GBP28) 

Adipocyte, C1q and collagen domain-containing protein 

Adipose most abundant gene transcript 1 protein 

Adipocyte-specific protein AdipoQ 

Synonyms Acrp30, GBP28, adipo, APN  Acdc, Apm1 

Lineage Eukaryota › Metazoa › Chordata › Craniata › Vertebrata › 

Euteleostomi › Mammalia › Eutheria › Euarchontoglires › 

Glires › Rodentia › Sciurognathi › Muroidea › Muridae › 

Murinae › Mus › Mus 

Organism Mus musculus (Mouse) 

Chromosomal Locus Chromosome-3 (Humans)        Chromosome-16 (Mouse) 

Gene Details DNA: ~11493 b.p  mRNA*: 947-1292 b.p  Protein: 247 a.a 

Molecular Mass 90 kDa (Basic Unit)   180 kDa (LMW)    360 kDa (HMW)    

Diversified forms 

(Adiponectin Bouquet) 

Monomer, dimer, trimer, hexamer, 12 to 18-mers which 
associates to form LMW, MMW or HMW complexes. 

Subunit interactions Aggregates via non-covalent interactions of the collagen-like 
domains in a triple helix and hydrophobic interactions within 
the globular C1q domain. 

Secretion Synthesized by adipocytes and secreted into plasma. 

Principal Involvement Regulates fat metabolism and insulin sensitivity 

Therapeutic Activity Anti-diabetic, anti-atherogenic and anti-inflammatory. 

Signaling pathway Follows AMPK pathway. 

*mRNA transcript variants length depends on alternative splicing (Murata et al., 1994) 
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TABLE III-4    III. B. b)  Functionality of ADIPONECTIN 

 
Insulin-Sensitizing Activity:  
Hydroxylation and glycosylation of the lysine residues within the collagen like domain of 
adiponectin are critically involved in regulating the formation and secretion of HMW 
complexes of adiponectin that contributes to the insulin-sensitizing actions of adiponectin 
in hepatocytes. HMW complexes are more extensively glycosylated than smaller 
oligomers. (Wang et al., 2002b) 
 
Anti-Inflammatory Activity:  

a. Antagonizes and counteracts the effects of TNF-α by negatively regulating its 
expression in various tissues such as liver and macrophages. (Ouchi and Walsh, 
2008; Moschen et al., 2012) 

b. Inhibits endothelial nuclear factor kappa B (NFkB) signalling through cAMP 
dependent pathway.(Zhang et al., 2013) 

 
Miscellaneous Activities:  
Cell growth      Angiogenesis   
Tissue remodeling in association with various growth factors with distinct binding 
affinities.  
 
Molecular Functionality:  
Hormonal activity (Berg et al., 2001)   
Receptor binding activity (Tsao et al., 2002)  
Identical protein binding (Suzuki et al., 2007)  
Sialic acid binding activity (Richards et al., 2010) 
   
Biological Processivity:  
Positively Regulates: 
Brown fat cell differentiation                  Insulin sensitivity  
Glucose homeostasis     Fatty acid beta oxidation 
cAMP dependent protein kinase activity. 
  
Negatively Regulates: 
Inflammation                   Oxidative stress  
Nuclear Factor kappa Beta (NFkβ) signalling   Tumor necrosis factor production   
Gluconeogenesis        Fat cell differentiation  
 
Subcellular Location: 
Cell surface      Cell periphery  
Endoplasmic reticulum    Extracellular space    
Collagen trimer     Perinuclear region of cytoplasm 
 
Post translational modification (PTM): Formation of disulfide bonds, glycoprotein 
groups, undergoes hydroxylation (Wang et al., 2006). 
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III. B. c) ADIPONECTIN - Anti-Obese & Anti-Diabetic Adipocytokine:  

Adiponectin (Adipo) is a 30kDa adipocyte secretory protein (Pajvani et al., 2003) 
(adipocytokine) with direct anti-diabetic and anti-inflammatory properties (Yamauchi et al., 
2001). Besides its exclusive secretion from adipose tissue, adiponectin is also secreted by the 
placenta during pregnancy (Chen et al., 2006a) into the blood stream.  It structurally belongs 
to the complement 1q family, hence the name AdipoQ. Adiponectin circulates in human 
plasma as middle molecular weight (MMW) hexamer and a high molecular weight (HMW) 
multimer. The major actions of adiponectin includes increased glucose uptake (Diez and 

Iglesias, 2003), improvises insulin sensitivity, β-oxidation, triglyceride clearance, weight loss 

(Nedvidkova et al., 2005), reduced levels of TNF-α, and increased levels of uncoupling proteins 
(Bauche et al., 2007) (Detailed under Table III-4). Adiponectin mRNA transcripts were highly 
expressed in both preadipocytes and adipocytes but relatively a greater degree of expression 
levels were reported in preadipocytes than adipocytes (Matsuzawa et al., 2004). 

III. B. d) Adiponectin’s Architectural Domains: 
Adiponectin have four distinct regions: a) Signal sequence (17a.a) that directs and targets the 
hormone for secretion outside the cell, b) variable domain (28a.a), a short region that lies 
next to signal sequence whose formation is highly variable from species to species, c) collagen 
like domain (65a.a) has a similarity to collagenous proteins d) and the last one is a globular 
domain (137a.a) (Goldstein et al., 2009b). Globular adiponectin (gAd) is produced after the 
proteolytic cleavage of full length adiponectin monomers by neutrophil elastase and circulates 
in human plasma (Thundyil et al., 2012a) (Figure III-5).  
 

 
FIGURE III-5 Structure of ADIPO.  

Image Reference: (Goldstein et al., 2009a) 
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III. B. e) Adiponectin’s Isoforms: 
Majorly Adiponectin molecules in humans are secreted from adipocytes as trimers (90 kDa; 
the basic unit), low molecular weight hexamers (180 kDa) and high molecular weight isoforms 
(12-18-mers; >400 kDa) (See Figure III-6). Adiponectin has the potentiality to automatically 
self-associate itself into larger molecular forms, where the three molecules of adiponectin 
binds together to form a homotrimer. This trimers continue to self-aggregate and forms 
hexamers or dodecamers. When compared to the different isoforms of adiponectin, HMW 
adiponectin has greater biological activity on glucose homeostasis than LMW, MMW 
molecular forms (Oh et al., 2007).  

III. B. f) Oligomerization/Multimerization of Adiponectin: 

Manufacturing the oligomeric forms of adiponectin are crucially dependent on the formation 
of disulfide bonds mediated by Cys-39. Mutations of Cys-39 results in trimers that are subject 
to proteolytic cleavage in the collagenous domain. So Cys-Ser mutation at amino-terminus, 
which are incapable of forming multimers more than a trimer were reported to diminish the 
effects of adiponectin AMPK pathway in hepatocytes. Hence this data suggests that impaired 
multimerization and impaired secretion of adiponectin were found to the pivotal reasons for 
the onset of diabetes (Pajvani et al., 2003). In connection to this, not only the total 
concentrations of adiponectin should be considered, but also the multimer distribution of 
adiponectin in circulation should also and always be considered as an important parameter in 
determining plasma adiponectin levels in both health and disease (Waki et al., 2003).  

III. B. g) Post Translational Modifications (PTMs) of Adiponectin:  

Post-translational modifications such as hydroxylation and glycosylation plays an essential role 
towards the regulation of adiponectin multimerization, secretion, biological activity and as 
well for its full length production. This process includes the hydroxylation of multiple 
conserved proline (Pro71, Pro76, and Pro95), lysine residues (at position - 68, 71, 80, and 
104) and glycosylation of hydroxylysines (Hyl65, Hyl68, and Hyl77). Hydroxylysines arises 
from the post-translational hydroxy modification of lysine. Mutation of modified lysine 
residues in the collagenous domain prevented the formation of HMW multimers which are 
related with anomalous functioning of adiponectin multimerization associated pathologies 
including T2DM (Richards et al., 2006; Wang et al., 2006) (Figure III-6).  
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FIGURE III-6 Regulation of synthesis, secretion and circulation of adiponectin:                        

(A) Adipocytes synthesize adiponectin mRNA in its monomeric form within the nucleus. This 

transcription is regulated and promoted by SIRT1/FOXO‐1 and PPARα. Once transcribed, 
the adiponectin protein monomer is released into the ER, where it undergoes various post‐
translational modifications, regulated by ER chaperones like ERp44 and ErO1‐ Lα to form 
trimers, hexamers and HMW (full‐length adiponectin) isoforms. (B) Following their packaging 
in the Golgi, the adiponectin isomers are released into the peripheral circulation. The HMW 
isomer is the most abundant and biologically active form of adioponectin. Another form of 
circulating adiponectin is the gAD leukocyte elastase‐mediated cleavage of the globular 
domain of the trimeric adiponectin. Image Reference: (Thundyil et al., 2012a) 

III. B. h) Adiponectin’s Stability: 
HMW adiponectin are very stable under basic conditions (pH 7-14), but they are labile under 
acidic conditions below pH 7 in both mouse and humans (Schraw et al., 2008). 

III. B. i) Adiponectin’s Adipo Receptors (AdipoR):  
So far two bona fide receptors have been identified for adiponectin (Figure III-7) in which one 
receptor have a homology similar to GPCRs (AdipoR1, AdipoR2) and another receptor 
similar to cadherin family (T-Cadherin-CDH13). Adiponectin receptor serves as an integral 
membrane proteins with an internalized amino-terminus and membrane externalized carboxy 
terminus, which is opposite to the topology of G-protein coupled receptors thereby binds to 
adiponectin molecules and further induces signal transduction. Whereas T-cadherin is a 
Glycophosphatidylinositol (GPI) anchored membrane receptor protein which binds to 
hexameric and HMW adiponectin in endothelial and smooth muscle cells (Buechler et al., 
2010a). AdipoR1 and AdipoR2 belong to the progestin and AdipoQ receptor (PAQR) family 
named after the two initially described ligands, progestin and adipoQ (Tang et al., 2005). 
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AdipoR1 mainly binds to gAd, while AdipoR2 binds to full-length adiponectin. Both AdipoR1 
and AdipoR2 exhibits identical effects but also have their own individual signalling preferences, 
in which AdipoR1 is more prominent in AMP-activated protein kinase (AMPK) 

phosphorylation, and AdipoR2 is involved in PPARα activation (Yamauchi et al., 2003a; 
Yamauchi et al., 2007; Lee et al., 2008). 

III. B. j) AdipoR Expression In CNS 

Adiponectin has the potentiality to cross the blood-CSF-barrier (BCB) and the blood-brain 
barrier (BBB) where the concentration levels of this adipocytokine in human cerebrospinal 
fluid (CSF) were found to 1000-fold less concentrated than in serum (Kos et al., 2007; 
Kusminski et al., 2007b; Neumeier et al., 2007). There are substantial evidences which suggests 
that adiponectin receptors are expressed widely in the brain and their expression has been 
detected in regions of the mouse hypothalamus, brainstem, cortical neurons and endothelial 
cells, as well as in whole brain and pituitary extracts. Cerebral blood vessels in the brain have 
tightly regulated membrane permeability which allows the selective passage of only the 
trimers, hexamers and possibly globular forms of adiponectin into the CNS. Whereas in 
contrast to this context, the peripheral counterparts even provides the access for HMW 
adiponectin molecules including trimers, hexamers and globular forms of adiponectin as well 
(Thundyil et al., 2012b).  In addition to this, both AdipoR1 and AdipoR2 receptor proteins 
are expressed in the hypothalamus and the paraventricular nucleus of the brain with AdipoR1 
being more pronounced thereby further suggesting that adiponectin exerts a specific role in 
the brain (Buechler et al., 2010b). Different adiponectin isomers bind to the AdipoRs with 
different binding affinities. For instance, gAd has greater binding affinity to AdipoRs when 
compared to the trimeric forms of adiponectin (As demonstrated by the thickness of the 
arrows in Figure III-7).   

 
FIGURE III-7 Peripheral and CNS cerebral circulation of Adiponectin signalling 

Image Reference: (Thundyil et al., 2012a) 
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III. B. k) Adiponectin In Pathophysiology: 

III. B. k. i) ADIPO In Obesity:  
Adiponectin circulation levels are inversely proportional to the weight reduction. It was also 
recorded that significant weight loss which corresponds to a mean of 14% decrease in BMI 
through intensive lifestyle changes can also result in increases in adiponectin levels.  
Adiponectin exerts some of its weight reducing effects via the brain. This is similar to the 
action of leptin [14] where it is transported into the brain, binds to its cognate receptors in 
the hypothalamus and activates the JAK-STAT pathway leading to the suppression of 
orexigenic peptides (neuropeptide Y and agouti-related protein - which normally increase 
food intake), and elevation of  anorexigenic peptides (proopiomelanocortin (POMC) and 
corticotrophin-releasing hormone, which normally decrease food intake) (Somogyi et al., 
2011). Both adiponectin and leptin can have synergistic effects in the brain (Nedvidkova et al., 
2005). In addition to the multiple peripheral effects of adiponectin in ameliorating insulin 
resistance, intracerebroventricular administration of adiponectin decreases body weight by 
stimulating energy expenditure thereby preventing obesity in rodents (Buechler et al., 2010a). 

III. B. k. ii) ADIPO In Diabetes: 

Adiponectin gene is located in chromosome 3q27, a susceptibility locus for T2DM and 
metabolic disorders (Hara et al., 2002). Adiponectin levels are reduced in diabetics when 
compared to non-diabetics. High-molecular-weight adiponectin was found to be associated 
with a lower risk of diabetes. Administration of adiponectin in combination with leptin has 
been shown to completely reverse insulin resistance as demonstrated in mice. In addition to 
this, it was also reported that supplementation by differing forms of adiponectin were found 
to improve blood glucose and triglyceride levels in mouse models (Chandran et al., 2003). 
Lindsay et al. in 2002 found that individuals with high concentrations of adiponectin protein 
were less likely to develop type II diabetes than with low concentrations of adiponectin in 
Indian patient subjects (Lindsay et al., 2002).  Low levels of maternal plasma adiponectin is a 
predictive of gestational diabetes mellitus (GDM), a condition that is biochemically similar to 
type II diabetes. A study led by Williams et al in 2004 demonstrated that Adiponectin 
concentrations were statistically significantly lower in women with GDM than controls and 
conclusively suggested an association between hypoadiponectinemia and risk of type II 
diabetes (Williams et al., 2004).   
 

III. B. k. iii) ADIPO In Neuropathology:  

Adiponectin apart from its defined role in metabolic syndromes such as obesity and T2DM, it 
also plays a contributing role in neurodegenerative disorders including Alzheimer’s disease 
(Song and Lee, 2013). Besides the expression of adiponectin receptors in skeletal muscle and 
liver, adipo receptors are also expressed in the hypothalamus and vascular endothelial cells of 
brain (Kubota et al., 2007; Psilopanagioti et al., 2009) and adiponectin was shown to be present 
in the cerebrospinal fluid (CSF) of rodents (Reaven, 1998; Qi et al., 2004) and human 
(Kusminski et al., 2007a; Une et al., 2011). Adiponectin also plays a promising role in immune 
system in the CNS where adiponectin decreases the expression of pro-inflammatory cytokines 

such as tumor necrosis factor-α (TNF-α) (Yokota et al., 2000) and increases the expression 
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of anti-inflammatory molecules such as interleukin (IL)-10, IL-1 receptor antagonist  (Wolf et 
al., 2004) and decreases the activation of the pro-inflammatory signal pathway such as nuclear 

factor-κB pathway (NF-κB) (Detailed under Table III-2). 
 
Various studies in the central nervous system suggest the neuroprotective actions of 
adiponectin (Jung et al., 2006; Jeon et al., 2009). One such includes Adiponectin protects 
hippocampal neurons against kainic acid-induced excitotoxicity and another such includes the 
protective role of adiponectin on astrocytes subjected to oxidative stress situation. Besides 
this Adiponectin also regulates severe brain inflammation in mild cognitive impairment and 
Alzheimer’s disease (Hivert et al., 2008; Forlenza et al., 2009; Diniz et al., 2010). It is also 
interesting to note that exercise induced release of adiponectin were associated with 
augmented hippocampal growth and reported to shown anti-depressive symptoms in mice 
(Yau et al., 2014). 

Glucose is the major energy source of brain in which Adiponectin plays a vital role in 
modulating brain metabolism and insulin sensitivity to maintain optimum glucose levels for a 
coordinated whole body energy metabolism including brain. So the dysregulation of insulin 
have been associated with reduced glucose utilization in brain which ultimately leads to the 

formation of neurofibrillary tangles and increased amyloid β aggregates by insulin degrading 
enzyme inhibition (Craft et al., 1999a; Craft et al., 1999b; Park et al., 2000; Kern et al., 2001; 

Plum et al., 2005; van der Heide et al., 2006). Accumulation of β Amyloid aggregates induces 
oxidative stress and mitochondrial dysfunction, and these dysfunctions induces Alzheimer’s 
disease pathogenesis (Moreira et al., 2009; Bonda et al., 2010) in which Adiponectin has been 

reported to be protective against amyloid β neurotoxicity in Alzheimer’s disease (Chan et al., 
2012). 

 Conclusively to sum up, chronic neurodegenerative disorders such as Alzheimer’s and 
Parkinson’s disease have been associated with inflammation and oxidative stress and 
accumulating data on adiponectin revealed it as an anti-inflammatory and anti-oxidative 
adipocytokine, which correlatively suggests that adiponectin could be a promising target for 
treating neurodegenerative disorders like AD and PD which are associated with 
neuroinflammatory process.  

III. B. k. iv) ADIPO As A Biomarker And A Therapeutic Target: 

Administration of adiponectin has been shown to improve insulin sensitivity in mouse models 
of diabetes Besides this, intraperitoneal (i.p) injection of full-length adiponectin resulted in a 
significant reduction of glucose levels in both wild-type and type-1, type-2 diabetic mice 
models (Chandran et al., 2003).  

Despite of the evidences supporting the beneficial effects of adiponectin administration in mice, 
but these methods were found to be difficult to achieve adiponectin as a therapeutic drug in 
clinical practices due to its larger protein structure and the need for its post translational 
processing. Henceforth, the indirect approach of upregulating adiponectin levels which 
includes the upregulation of adiponectin receptors and the use of adiponectin receptor 
agonists have become the focal point of therapeutic research in treating various adiponectin 
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associated pathologies such as T2DM and neurodegenerative diseases (Kadowaki et al., 2006). 
For instance, treatment of human subjects with thiazolidinedione (TZD) results in elevated 
circulating levels of HMW adiponectin in which TZD may have a direct impact on the synthesis 
and secretion of adiponectin by adipocytes (Phillips and Kung, 2010) (Depicted in Figure III-8). 
Apart from thiazolidinediones, statins and angiotensin converting enzyme (ACE) inhibitors are 
also the potential drugs that augments adiponectin production levels. Niacin acting via 
GPR109A receptor (Plaisance et al., 2009) and Zetia (Hiramitsu et al., 2010) (apart from TZD) 
have also been reported to have positive effects on circulating adiponectin levels humans. 

In addition to this, evidences supporting the upregulation of adiponectin was corroborated by 
the studies in 3T3L1 cells treated with thiazolidinediones which have shown an increase in 
the promoter activity of adiponectin along with an increase in the gene expression and 
secretion of adiponectin (Iwaki et al., 2003). In spite of these trials, the mechanism by which 
thiazolidinedione therapy and other drugs which results in an increase in circulating 
adiponectin levels are still unclear.  

 

FIGURE III-8 Adiponectin’s Interaction with Thiazolidinediones (TZD): 
Adiponectin interacts with at least two known cellular receptors (AdipoR1 and AdipoR2). 
Adiponectin expression is strongly up-regulated by thiazolidinediones by the activation of 

PPAR-γ. Activation of AdipoR1 and/or AdipoR2 by adiponectin stimulates PPAR-α, AMPK and 
p38 MAPK activation. Adiponectin regulates several pro- and anti-inflammatory cytokines. Its 

main anti-inflammatory function might be related to its capacity to suppress TNF and IFN-γ 
synthesis, and to induce anti-inflammatory cytokines, such as IL-10 and IL-1RA.                   
                         Image Reference: (Tilg and Moschen, 2008) 
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Regardless of the enormous accumulation of scientific documentation on adiponectin suggests 
that administration of adiponectin have been proven to improvise insulin resistance and 
hypoadiponectinemia disorders in animal models, but still the experimental clinical trials in 
humans were still in its infancy. So the extensive efforts are being made to understand how 
adiponectin levels can be elevated, in which the processing of post translational modifications 
and further secretion of adiponectin could be the promising areas for adiponectin as a 
potential therapeutic target to treat multitude of obesity-associated disorders. 

Exaggerated inflammatory and oxidative stress responses are the two different, reticulate but 
intertwined physiological cascades that wires up and drives the brain to a more pathological 
state manifested by the presence of inflammatory (pro-inflammatory cytokines) and oxidative 
stress (pro-oxidative cytokines, ROS) bio markers in the brain.  

In this regard, the peripheral effects of ATX and ADIPO were well studied, but the central 
actions of these factors remains poorly delineated. A major part of this thesis was 
concentrated on investigating the role of ATX on inflammatory conditions and ADIPO under 
oxidative stress conditions respectively.  
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IV. Candidate Physiological Process Monitored: Inflammation And Oxidative Stress 

 
 

 

 

                                IV. A. INFLAMMATION 

 

Before going on to have a knowledge on the implication of glial cells in inflammatory process 
which is responsible for the onset of various neurodegenerative disorders, first of all it is 
necessary to have a thorough insight on: what is inflammation, what the inflammation does in the 
mammalian CNS context refers to, what are the cells involved in it and the probable signaling 
mechanisms responsible for the onset of inflammation. 

IV. A. a) Inflammatory Response: 

Inflammation is a natural defense mechanism which offers resistance against various kinds of 
pathogens recognized by the immune system that are considered as potential threats to the host.  
2000 years ago a Roman encyclopaedist Celsus identified inflammation as a constellation of five 
physical signs: Heat, pain, redness, swelling and loss of function or in classical medical language, 
“Calor, dolor, rubor, tumor and imobilitate” (Rather, 1971; Cotran; Kumar, 1998; Parakrama 
Chandrasoma, 2005; Dormandy, 2006; Porth, 2007; Vogel, 2009) (Portrayed in Figure IV-1). 
These signs are readily visible in the inflammation which accompanies an infected wound or 
traumatized tissue.  

 

FIGURE IV-1 Inbuilt Mechanism of Inflammation  
Image Reference: (Lucas et al., 2006b)  
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Infection by pathogens, foreign bodies, chemical irritants, toxins, frostbite, stress, trauma and 
alcohol are the major contributors of inflammation (Schleimer, 1988). Inflammation can be 
categorized into acute and/or chronic inflammation. Acute inflammation can be diagnosed by 
the rapid movement of plasma and leukocytes from the blood to the site of injury. Prolonged 
inflammation leads to chronic inflammation which can be characterized by the rapid and 
progressive shift of cells at the inflammatory site, followed by the simultaneous destruction 
and healing of the tissue. Acute inflammation appears within minutes (immediate) and lasts for 
few days, whereas the onset of chronic inflammation takes longer time (delayed) but sustains 
in the body for months to years together (Feghali and Wright, 1997).  

Host immune cells (monocytes, macrophages, mast cells, lymphocytes, fibroblasts, dendritic 
cells) plasma derived mediators, (Bradykinin, thrombin, membrane attacking complex - 
complex of C5b, C6, C7, C8 and multiple units of C9) cell derived mediators (histamines, 

prostaglandins, TNF-α, IL-8, IL-1, IFN-γ) and blood vessels plays a vital role in the inflammatory 
process to counteract the initial cause of cell injury and repairs the damaged cell (Larsen and 
Henson, 1983).  

These cells have ligand-specific receptors known as pattern recognition receptors (PRRs) that 
identifies the molecules associated with groups of pathogens known as pathogen-associated 
molecular patterns (PAMPs) thereby operates the inflammatory process via the release of 
inflammatory mediators. Besides the cells and mediators of inflammation, components of 
complement pathway activated by the bacteria and coagulation and fibrinolysis activated by 
necrosis runs in parallel along with inflammatory cells to initiate and propagate the 
inflammatory response further (Rock and Kono, 2008; Gregor and Hotamisligil, 2011; Sun et 
al., 2012). 

Inflammation up to certain extent (clearance of pathogens) will be beneficial to the host 
system, whereas uncontrolled and prolonged inflammation leads to chronic inflammation and 
damages the cellular tissues. Besides chronic inflammation, uncontrolled acute inflammation 
can also lead to the progression of tissue damage. Therefore inflammatory response must be 
actively terminated when no longer needed to prevent unnecessary damage (Kumar, 1998). 
This includes: desensitization of receptors, downregulation of pro-inflammatory molecules 

such as TNF-α, MCP-1 (Eming et al., 2007), upregulation of anti-inflammatory molecules like 
Adiponectin, IL-10 (Sato et al., 1999), lipoxins such as lipoxinA4 (LXA4) and lipoxinB4 (LXB4) 

(Serhan, 2008), release of TGFβ growth factors (Ashcroft, 1999; Ashcroft et al., 1999; Werner 
et al., 2000), apoptosis of pro-inflammatory cells (Greenhalgh, 1998) and having short half-life 
for inflammatory mediators.  

IV. A. b) Neuroinflammation:  

Inflammation in CNS (i.e. neuroinflammation) is largely mediated by glial cells in which 
microglia (Rock et al., 2004b), astrocytes (Zhang and Jiang, 2015) and infiltrating lymphocytes 
(Lee and Imhof, 2008; Izcue et al., 2009) plays a predominant role.  This glial mediated 
neuroinflammation is characterized by the release of potential neurotoxic mediators such as 

cytokines (TNF-α, IL-1α and IL-1β) and chemokines (MCP-1, MIP-1α, and MIP-1β) both in vitro 

and in vivo. The transcription factor NF-κB plays a prominent  role (Chaudhari et al., 2014). 
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NF-κB is a prototypical pro-inflammatory transcription factor activated in response to 
cytokines (especially pro-inflammatory cytokines), stress and free radicals (Gilmore, 2006; 

Lawrence, 2009). NF-κB is expressed by both neuronal and non-neuronal glial cells (microglia 

and astrocytes). The activity of this factor NF-κB play a major role in the brain’s development, 
synaptic signaling and neuroprotection (Bhakar et al., 2002; Pizzi and Spano, 2006). In addition, 

NF-κB is necessary to neurogenesis (Zheng et al., 2013). On the one hand, it had been 

reported that activation of NF-κB in neuronal cells could be beneficial and protective via 

upregulating the expression of anti-apoptotic proteins such as TNF-α (dual role), Bcl-2 and 
Bcl-xL in hypoxic or nitric oxide-induced injury conditions (Cheng et al.; Mattson et al., 1997; 

Tamatani et al., 1999). On the other hand, the activation NF-κB can be detrimental in glial 
cells (microglia and astrocytes) via the increased expression of pro-inflammatory cytokines 

such as TNF-α, IL-1β, IL-6 and as well by priming the cells with overwhelmed ROS levels (John 
et al., 2003b; Kim and de Vellis, 2005; Hsiao et al., 2013).  

 

 

 

 

 

IV. B. Oxidative stress - OVERLOADED 

 

Oxidative stress is a state where the host system fails to balance reactive oxygen 
intermediates and system’s antioxidant capacity, in which the reactive oxygen species 
dominates and further contributes to neuronal loss (Gandhi and Abramov, 2012).  

Stable molecular oxygen and nitrogen species have their electrons paired up in their 
outermost orbital and each orbital can accommodate a maximum of two electrons. Each 
electron of these pair will have an opposite spin, which is essential for the stability of the 
molecules. On the contrary, a free radical is a molecule with one or more unpaired electrons 
in its outermost orbital, which makes this species very unstable and tending to react with 
other molecules to pair up with this unpaired electron in order to attain molecular stability. 
Free radicals have very short half-life and are therefore difficult to measure. Therefore the 
most common approach to measure free radicals is to measure the derivatives or end-
products of oxidation processes such as lipid peroxidation process (Holley and Cheeseman, 
1993). Aerobic cells demand oxygen to meet their energy requirements. When these cells 
undergo metabolic process they generate some free radicals. The percentage of oxygen in the 
atmosphere is 21% in dry air (Halliwell et al., 1992; Halliwell and Cross, 1994; Halliwell B, 
2007) and during normal metabolic conditions 2–5% of the O2 consumed by mitochondria is 
converted to reactive oxygen species (Lopaczynski W, 2007). So the balance of ROS in a host 
system determines the viability of a cell.  
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IV. B. a) Sources Of Oxidative Stress: 

Free radicals are inevitable and are continuously produced by the body's normal use of oxygen. 
These are produced by the mitochondria when cells use oxygen to generate energy. The by-
products produced are known as reactive oxygen species (ROS) as well as reactive nitrogen 
species (RNS) (Outlined in Table IV-1) that result from the cellular redox process. All the 
living beings are exposed to free radicals from exogenous or endogenous sources (Frei et al., 
1989; Halliwell, 2007).  
 
Exogenous sources of oxidative stress are: oxygen rich environment, ionizing radiation, U.V 
light, exposure to air pollution, industrial effluents, chemicals, or solvents (bisphenol A, 
polychlorinated biphenyl (PCBs), dioxin, alkylphenols, type-2 alkenes, polycyclic aromatic 
hydrocarbons, and other metals), radiation, anesthetics (Opara, 2006). Toxins exposure 
mimicking oxidative stress includes exotoxins such as heavy metals like mercury, lead and 
cadmium. Endotoxin exposure includes the ROS produced from bacteria, yeast, viruses, 
parasites, stress, allergens, cold, strenuous exercise, cigarette smoking, and alcohol 
consumption, dietary factors such as excess sugars, saturated fats and deep fried oils (Cadenas 
and Davies, 2000) (Demonstrated in Figure IV-2).   

 

 
FIGURE IV-2 Sources of Free Radicals and Its Impact on DNA Damage 

Image Reference: (Lam Kee, 2014)  
 
By-products formed as a result of aerobic metabolism that takes place primarily in 
mitochondria (power generator) which is mainly responsible for the production of cell’s 
energy is a major contributor of endogenous ROS. An alternative potential sources for 
endogenous production of ROS occurs in phagocytic cells (inflammation inducing cells as 
monocytes, macrophages, mast cells), when these phagocytic cells engulfs foreign particles 
such as bacteria, virus and other pathogens. This reaction is known as oxidative burst (Opara, 

2006; Lau et al., 2007b). Besides this, β-oxidation of fatty acids in peroxisomes, cytochrome 
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p450 metabolism of xenobiotic compounds also play a contributing role in the production of 
endogenous ROS (Cadenas and Davies, 2000). 

IV. B. b) Affinity Of Free Radicals Towards Biomolecular Degradation: 

Disrupting the redox balance in a cell, by environmental stress factors such as U.V exposure, 
ionizing radiations can cause lethal effects via the production of (ROS), peroxides, unstable 
oxygen and nitrogen species that degrades the essential biomolecules (nucleic acids, proteins, 
lipids) (Guetens et al., 2002) eventually progressing to tissue destruction (See Figure IV-3). 

 

FIGURE IV-3 Inbuilt Mechanism of Oxidative stress 

Image Reference: (Halliwell and Cross, 1994) 
 

IV. B. b. i) Mechanism Of DNA Damage By Free Radicals: 

Free radicals attacks the DNA directly either at the sugar-phosphate backbone or at the level 
of purine and pyrimidine bases. Indirect DNA damage by these radicals are mediated via 
intracellular divalent ca2+ ions that might cause structural alterations in DNA such as base pair 
mutations, rearrangement, unwanted insertions and deletions, sequence amplifications and by 
the creation of nicks (Rowe et al., 2008). It is estimated that in a given cell, 105 oxidative DNA 
lesions are formed each day (Powell et al., 2005). 

IV. B. b. ii) Mechanism Of Protein Damage By Free Radicals: 

Free radicals degrade proteins via denaturation and inactivation of proteins containing Sulphur 
containing amino acid, cysteine, and methionine. They majorly affects the enzymes (calcium 
ATPase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate 
dehydrogenase) and membrane ion transporters. These free radicals absorb a proton from 
these proteins and thereby oxidase the sulphydral moiety ultimately resulting in the 
generation of newly formed reactive unpaired electrons (Cabiscol et al., 2000).   
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IV. B. b. iii) Mechanism Of Lipid Damage By Free Radicals: 

Free radicals affect the lipids and cause the peroxidation of membrane associated fatty acids 
and cholesterol that alters the membrane characteristics and permeability finally leading to 
the extended lipid membrane damage (Betteridge, 2000). This extended chain of lipid 
peroxidation progressively leads to the formation of Malondialdehyde (MDA), which is now 
widely used as a marker for free radical mediated lipid damaging reactions (Andrade Júnior et 
al., 2005) (Figure IV-4). 

 

FIGURE IV-4 Mechanisms of Oxidative Cellular Damage: Free radicals are reduced 
into water with the cooperation of the three main antioxidant enzymes: SOD, Catalase, and 
GSHPx. The generation of hydroxyl radicals from hydroperoxide produces the development 
of oxidative cell injury: DNA damage; carboxylation of proteins; and lipid peroxidation, 
including lipids of mitochondrial membranes. By these pathways, oxidative damage leads to 
cellular death.  Image Reference: (Morón and Castilla-Cortázar, 2012) 

IV. B. c) Implication Of Oxidative Stress In Disease Progression: 

The process of oxidative stress is now strongly believed to be the key regulatory process 
involved in various kinds of pathologies and disease progression such as Alzheimer’s, 
Parkinson’s disease, Huntington's disease, Multiple sclerosis, obesity, atherosclerosis, heart 
failure, myocardial infarction, cancer and infection in humans (Galli et al., 2005). For instance, 
patients affected with Alzheimer’s disease had shown the evidence of various forms of ROS 
mediated injury (Outlined in Table IV-1), with lipid peroxidation markers of oxidative stress 
such as malondyaldehyde and 4-hydroxynonenal or 4-HNE (Portrayed in Figure IV-5) (Keller 
et al., 1997a) upregulated in brain and CSF fluids when compared to control patients (Lovell 
et al., 1995). In support to the evidences of human brain, prior to the appearance of amyloid 
plaques or neurofibrillary tangles, the markers of protein and lipid peroxidation had been 
found to be increased in the cortex and hippocampus of transgenic animal models of AD 
(Hensley et al., 1996). The impact of oxidative stress depends upon the dosage and the 
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concentration levels of the oxidative stress, as well as on the cell’s ability to regain into its 
previous state and functionality. Oxidative stress instils cell injury via two mechanisms, 
apoptosis and necrosis. For instance, moderate oxidation can trigger apoptosis, and more 
intense stress response may cause necrosis, whereas severe oxidative stress induced by ROS 
or RNS can cause cell death by nonphysiological necrosis or by regulated apoptotic pathways 
(Guetens et al., 2002; Ryter et al., 2007). 
 

 
 
FIGURE IV-5 Relative Impact of Oxidative Stress between Young and Aged 

Brains: a) Increased oxidative stress production in the normal and aged brain; 3- or 18-

months naïve old male mice were sacrificed and 40 μm brain sections were stained for 4-
Hydroxynonenal (4-HNE), a marker of lipid peroxidation. Mean Fluorescence intensity 
assessed by ImageJ program showed that aged animals, overt any pathological condition, had 
an increased expression of 4-HNE in cortical layers II-III, compared to young mice.                       
3 sections/animal for 4 animals were analyzed in each condition. Data are represented as 

Means ± SEM. Scale bar, 100 μm. b) Conspicuous mark of oxidative stress between young 
and old people. Image Reference: (Barreto et al., 2011; Befit, 2015) 
 
With respect to age (Ageing) all biological systems usually experiences some structural and 
functional modifications. In this regard, brain is not an exception. Brain has the well-defined 
potentiality to deploy its functions even at the late years of life. When the living beings are 
getting older, the pathways that have been used by the brain in olden days will no longer work. 
In this scenario brain exhibits appreciable plasticity to perform its functions well even at the 
late years by the establishing some new pathways as per the current demands of the living 
being (Stein et al., 2008).  
 
Both oxidative stress and inflammation infuriates the process of ageing especially in 
neurodegenerative disorders like Alzheimer’s and Parkinson’s (Cole et al., 2005; Pratico, 

a 

b 
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2005) in which microglial activation and reactive astrogliosis were found to be cardinal steps 
involved in such pathology which heightens the process of aging. Apart from oxidative stress 
and inflammation, ageing is another such and paramount factor that contributes to neuronal 
loss and neurodegeneration. The mechanisms that are implicated in this aging process which 
drives to neurodegenerative state remains still elusive and undiscovered. The by-products 
formed as a result of oxidative damage especially in mitochondria were predicted to the key 
process of aging and as well in Alzheimer’s disease, which is supported by reduced metabolic 
activity and reduced mitochondrial activity  in the Alzheimer’s and Parkinson’s brain subjects. 
(Alzheimer’s, Parkinson’s pathogenesis) (Moreira et al., 2006). In Parkinson’s patients, 
oxidative stress inside the cells were also found to be one of the major factors that damages 
the dopamine-producing cells in the substantia nigra that have been shown to operate by 
injuring the mitochondria (See Figure IV-6 ). These evidences clearly shows that oxidative 
stress is in fact an important pathological mechanism in neurodegeneration that begins early 
in the disease process (Pratico, 2002; Smith et al., 2002; Castellani et al., 2006a; Castellani et 
al., 2006b; Cortical biochemistry in MCI and Alzheimer  disease: Lack of correlation with 
clinical diagnosis.Lau et al., 2007). 
 

 
 

FIGURE IV-6 Age-Related Stress and Disease: Aging is associated with mitochondrial 
dysfunction, leading to reduced respiratory metabolism and increased generation of reactive 
oxygen species (ROS). Persistent DNA damage may arise from both increased oxidative 
damage and reduced efficiency of energy-intensive DNA repair, predisposing to apoptosis, 
senescence, and inflammation. Aging is also associated with increased protein misfolding and 
aggregation in the cytoplasm, nucleus, and endoplasmic reticulum. The various sites of age-
related cellular damage and the physiological decline that ensues contribute to the 
pathogenesis of age-related diseases, including metabolic syndrome, inflammatory disorders, 
cancer, and neurodegenerative diseases. Image Reference: (Haigis and Yankner) 
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Table IV-1           Types of Reactive Oxygen Species  

Reactive Oxygen Species Symbol Reactive Nitrogen Species Symbol 

Superoxide 

Hydroxyl 

Hydrogen peroxide 

Singlet oxygen 

Hypochloric acid 

Lipid peroxyl 

O2
.- 

OH- 

H2O2 

O2
-1 

HOCl 

LOO. 

Peroxy nitrate 

Peroxy nitrous acid 

Nitric oxide 

Nitrogen di oxide 

Nitrous acid 

Nitryl chloride 

OONO- 

ONOOH 

NO. 

NO.
2 

HNO2 

NO2Cl 

Table Reference: (Agarwal and Prabakaran, 2005) 

IV. B. d) Potential ROS Generators: 

Monoamine oxidase, mitochondrial electron transport chain (ETC) containing complex I 
(NADH dehydrogenase) and complex III (cytochrome bc1 complex) are the primary 
producers of ROS within mitochondrial system, where as in the cytosol NADPH oxidase 
(NOX) and xanthine oxidase (XO) are the large scale producers of ROS. These free radicals 
target and degrade the permeability transition pore (PTP) and mitochondrial DNA. 

IV. B. d. i) NADPH Oxidase (NOX) - Authentic Superoxide Manufacturer: NADPH 
oxidase a multi-subunit enzyme complex also called NOX2 or phagocytic oxidase (PHOX) 
belongs to NOX gene family. It contains membrane-bound cytochrome b558 (p22PHOX and 
the enzymatic subunit, gp91PHOX), several cytosolic proteins (p47PHOX, p67PHOX, and 
p40PHOX), and the Rac G-protein (Babior et al., 1973; Babior, 2004). NOX is widely 
expressed in microglia (Colton and Gilbert, 1987), astrocytes and neurons (Noh and Koh, 
2000; Abramov et al., 2005). When the cytosolic subunits are phosphorylated, NOX and Rac 
are activated further leading to the formation of NADPH oxidase - cytochrome b558 active 
complex. This activated enzyme complex thereby transfers the proton across the membrane 
that ultimately leads to the formation of superoxides (Babior, 2004). 

IV. B. d. ii) Xanthine Oxidase (XO):  Xanthine oxidase (XO) the key enzyme responsible 
for purine catabolism, have two convertible forms of Xanthine oxidoreductase (Xanthine 
oxidase or xanthine dehydrogenase). It is a molybdoflavoenzyme which is widely distributed 
and abundantly available in the mammalian milk (Harrison, 2002) and corneal epithelium of 
normal rabbit eye (Ardan et al., 2004). XO catalyzes the oxidation of substrates and can pass 
electrons to molecular oxygen to produce uric acid, superoxide, and hydrogen peroxide 
(Harrison, 2002). 

IV. B. d. iii) Mitochondria:  Mitochondria being the major responsible organelle that bears 
electron transport chain (ETC) system is a continuous generator of ROS (Figure IV-7). 
Respiratory complex-I; NADH dehydrogenase (ubiquinone), complex III; cytochrome bc1 
complex; and mitochondrially located flavoenzymes monoamine oxidase (MAO) are the 
potential producers of ROS in mitochondria (Gandhi and Abramov, 2012). Besides this, ROS 

in mitochondria are also produced by the other enzymes aconitase and α-ketoglutarate 
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dehydrogenase complex. The generation of these ROS solely depends on value of 
mitochondrial membrane potential (Tretter and Adam-Vizi, 2004; Andreyev et al., 2005). 
Mitochondria, which harbor the bulk of oxidative pathways, are tightly packed with various 
redox carriers and centers that can potentially leak single electrons to oxygen and convert it 
into superoxide anion, a progenitor ROS (Jensen, 1966; Loschen et al., 1971; Andreyev et al., 
2005).   

 

FIGURE IV-7 Mitochondrial Respiratory Chain: The electron transport chain receives 
electrons (e−) from NADH and FADH2 and mediates electron transfer from complex I to 
complex IV, via ubiquinone (Ub) and cytochrome c (C). At complex IV, electrons reduce 
molecular oxygen to form water. As the electrons are transported, a proton (H+) gradient is 
created across the inner mitochondrial membrane (IMM). Complex V (ATP synthase) uses 
this gradient to convert ADP to ATP. As a byproduct of the respiratory chain, reactive oxygen 
species (ROS) are generated. Superoxide (O2•−) is formed at complexes I and III and is 
dismutated to hydrogen peroxide (H2O2) by matrix manganese superoxide dismutase 
(MnSOD). H2O2 can then be safely reduced to water by catalase or glutathione peroxidase 
(GPX). Image Reference: (Yu and Bennett, 2014) 

IV. B. d. iv) Monoamine Oxidase (MAO): Monoamine oxidases are mitochondrially 
located outer membraned flavoenzymes. In humans there are two types of MAO: MAO-A, 
MAO-B. MAO-A is an enzyme that degrades amine neurotransmitters such as dopamine, 
norepinephrine, and serotonin, whereas MAO-B degrades dopamine neurotransmitter. 
MAO’s are widely expressed in the CNS, in which MAO-A is expressed in neurons and both 
MAO A and B in glial cells (Gandhi and Abramov, 2012). MAO with the help of FAD 
breakdown monoamines into aldehydes and the FAD-FADH2 cycle further generates 
hydrogen peroxide (Edmondson et al., 2009). 
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IV. B. e) Positive Face Of Free Radicals: 

Oxidative stress up to certain extent (clearance of pathogens) will be beneficial as it will be 
used by the immune system, whereas uncontrolled and prolonged oxidative stress damages 
the cell membrane and further contributes to tissue loss.  It is clearly evident from the reports 
of Gems and  Partridge, in which they  demonstrated that short-term oxidative stress may 
also be important parameter to prevent aging by inducing a process known as mitohormesis 
(Demonstrated in Figure IV-8 ) (Gems and Partridge, 2008). Low doses result in enhanced 
function, whereas higher doses result in dysfunction. In addition to this, low concentration of 
ROS is essential for normal physiological functions like gene expression, cellular growth and 
defense against infection.  
 

 

FIGURE IV-8 Dose-Response Curve of Oxidative Stress Treatment with a 

Hormetic Effect. Image Reference: (Gems and Partridge) 
 
Macrophages and neutrophils are the first line of defense of the innate immune system which 
generate ROS in order to kill the bacteria and parasites and engulfs them  by a process known 
as phagocytosis (Segal, 2005).  Together with this, ROS being majorly credited for the 
malfunctioning of tissues by attacking the biomolecules of the cell, in a paradox these free 
radicals plays a key role in the physiological reactions such as catalytic oxidation of 
endogenous compounds and xenobiotic.  
 
IV. B. f) Metallic Machinery: 

Metal ions acting as catalysts are mainly responsible for generating toxicity, in which Cu (II) 
and Fe (III) plays a contributing role. This has been observed by Fenton in 1876 (Prousek, 
2007) and the reaction can be summarized as: 
 
 
 
 

Fe2+ + H2O2                                      Fe3+ + OH• + OH– 
Fenton’s Reaction 
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Transition metals because of its ability to gain and lose electrons and being in possession of 
having one un paired electron in its outermost orbital shell renders them to acts as potential 
free radical generating oxidative stress in the host system. They plays a crucial role in most of 
the biological processes by activating or inhibiting enzymatic reactions or competing with 
metalloproteins or other elements for their binding sites (Huang et al., 1999). 

IV. B. g) Antioxidant System: 

One of the most crucial ways to counteract the destruction of free radicals and oxidative 
stress is by introducing the compounds that stops oxidation, known as Antioxidants. 
Antioxidants are large and complex molecules which donate electrons to free radicals to bond 
with its unpaired electron making them reactively stable. This effectively neutralizes the free 
radicals. Superoxide dismutase, catalase and glutathione peroxidase are the three vital 
enzymes that helps in the transformation of ROS into less reactive molecules (Gutteridge and 
Halliwell, 2010). 

IV. B. g. i) Potential ROS Neutralizers - Superoxide Dismutase (SOD): 

The composition of SOD exists in diversified isoforms with various metals acting as central 
metal ions with different amino acid constituency. SOD exists in three different forms in 
humans, they are cytosolic (Cu, Zn-SOD), mitochondrial (Mn-SOD) and extracellular SOD, 
whereas Fe-SOD exists in animals but not in humans. Of all the existing forms Mn-SOD have 
greater scavenging activity of O•– ultimately converting it to hydrogen peroxide and oxygen 
(Halliwell, 2007).  

Cu Zn-SOD and Mn-SOD catalyze the following reaction: 

 

 

The generated H2O2 is then removed mainly by peroxiredoxins, thioredoxin-dependent 
peroxidase enzymes (Halliwell, 2007) then catalase neutralizes the hydrogen peroxide (Miao 
and St Clair, 2009). 

IV. B. g. ii) Glutathione Peroxidase (Gpx): 

Glutathione is a tripeptide molecule with a free thiol group (-SH group - thioredoxins, cysteine 
and reduced glutathione) which consists of three amino acids joined together (glutamic acid, 
cysteine and glycine). It is highly abundant in the cytosol, nuclei and mitochondria (Valko et 
al., 2006).  Thiols are essential for overall protein function (Halliwell et al., 1992; Cengiz et al., 
2008). These are nucleophilic (donate electrons) and react avidly with free radicals. Injury 
causing reactive molecules such as radiation can be neutralized by these thiol groups by 
donating hydrogen (Navarro et al., 1997).  It acts as intracellular antioxidant mediating various 
physiological reactions including cellular signaling and prevents the protein -SH groups from 
oxidizing and cross-linking. Defective GSH metabolism leads to hemolysis, neurological 
disorders and brain damage. Glutathione peroxidase is a selenoprotein which converts 
reduced form of glutathione (GSH) to oxidized form of glutathione (GSSG).  The major 
biological role of GPx is to protect the host system from oxidative damage generated by 

2 O•– + 2 H+                                       H2O2 + O2 
Superoxide Dismutase 
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exogenous and endogenous ROS. There are four different isoforms of GPx selenium 
containing enzymes in mammals (GPx1, GPx2, GPx3, and GPx4). It oxidizes glutathione and 
reduces lipidic and non-lipidic hydroperoxides to alcohols and hydrogen peroxides (H2O2) to 
water  (Michiels et al., 1994).  
 
 
 
 
 

IV. B. g. iii) Catalase (CAT): 

Catalase is a ferriheme-containing enzyme that converts hydrogen peroxide to water (Droge, 
2002).  
  
 
 
Catalase is an important enzyme which is responsible in protecting the cell from oxidative 
damage by reactive oxygen species (ROS). It is localized in peroxisomes and may also be found 
in cytoplasm and mitochondria. Catalase has one of the highest turnover numbers of all 
enzymes. One catalase molecule can convert approximately 5 million molecules (Glenda 
Chidrawi, 2008) of hydrogen peroxide to water and oxygen each second (Goodsell, 2004).       
It has a minor role at low levels of hydrogen peroxide generation but becomes more 
important at higher levels of hydrogen peroxide production. 
 
IV. B. g. iv) Anti-Oxidative Mechanism: 

Exceeded levels of oxygen in the host system will be converted into superoxides. Under these 
conditions of stress, endogenous enzymes of cells such as Superoxide Dismuatase (SOD) 
converts superoxide to hydrogen peroxide, which is then detoxified to water either by 
catalase in the lysosomes or by glutathione peroxidase in the mitochondrial system 
(Semchyshyn, 2012). 
 
IV. B. g. v) List Of Anti-Oxidative Agents: 

Antioxidants shows its potential ROS neutralizing effects via diversified mechanisms  
(Halliwell, 2007) (Depicted in Table IV-2).  

  

2H2O2                           2H2O + 1/2 O2 Catalase 

H2O2 + 2GSH                                     GSSG + 2H2O 
Glutathione Peroxidase 
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TABLE IV-2   Potential Electron Donating Anti-Oxidative Agents 

Characteristic of Anti-oxidant Anti-Oxidant 

Enzymatic Antioxidants 

 

   Superoxide Dismutase (SOD), Catalase (CAT),            

   Glutathione Peroxidase (GPx), Glutathione Reductase (GSR) 

Non-Enzymatic Antioxidants Vitamin A, B1, B2, B6, B12, C, E 

Antioxidative Proteins Hemoglobin, Ceruloplasmine, Transferrin, Albumin, 
Lactoferrin, Protein Sulfhydryl (SH) groups (Thiols) 

Trace Elements 

 

Copper, Zinc, Selenium, Bilirubin, Glucose, Ubiquinone 
Coenzymes Q10 (CoQ10) 

Co-factors Folic Acid, Uric Acid, Albumin, Glutathione, Lipoic Acid and 
Carotenoids and Flavonoids 

Table Reference: (Gutteridge and Halliwell, 2010) 

 

Recently an association between adipose tissue (adipocytokines) and CNS have been equated 
that are coupled with the cellular process of inflammation and oxidative stress responses 
suggesting a probable role for neurodegeneration. Many chronic neurodegenerative diseases 
such as Amyotrophic lateral sclerosis, Alzheimer’s and Parkinson’s diseases have been 
associated with inflammation and oxidative stress in the CNS in which microglia and 
astrocytes were found to be the key players involved in the early and late onset of 
neuroinflammatory related neurodegenerative process in the CNS. These glial cells triggers 
the release of multitude of cytokines that plays a key role both in health and diseased 
conditions of the CNS.  

Major part of our research work was focused on these two glial cells (microglia and 
astrocytes) which were found to be the potential sources of inflammatory and oxidative stress 
factors in the CNS (Hallmark features of neurodegeneration). 
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 V. BRAIN - THE COMMANDING AND CONTROLLING ORGAN 

 

  

“Brain is an extremely complex and sophisticated organ which is central for all the 
information processing that defines and dictates the complete actions of a living being right 

from birth till death. In fact your brain tells who you are.”    
 

V. A. Architecture Of The Brain: 

The brain controls both voluntary, involuntary and the entire functions of the body. It receives 
information through five senses: sight, sense, touch, smell, hearing and taste and interprets 
the information from the external world. Brain has a defined endocrine system which secretes 
an array of chemical messengers known as hormones, in which blood is the major transporting 
medium that acts as a vehicle to transport the hormonal chemical message from one part of 
the body to another part of the body. The brain is well covered by the hardest skull known 
as cranium. Inside the skull, brain is covered by three protective layers known as cranial 
meninges which comprises of outermost dura, middle layered arachnoid and innermost 
piamatter. From the brain all the nerves, arteries and veins comes out through a slit like 
opening called Foramen Magnum and protrude throughout the body (from the head to the 
tip of the toes) which can be compared to all the cables that will be coming out from the back 
of a computer’s desk.  
 

The brain can be divided into three major parts:  forebrain, midbrain and hind brain which are 
developed from embryonic neural tube. Forebrain consists of the cerebrum, cerebral cortex 
and thalamus, hypothalamus, hippocampus (part of the limbic system), midbrain consists of 
the tectum and tegmentum, whereas the hindbrain is made of the cerebellum, pons and 
medulla.  Cerebrum is the largest part of the brain which is divided into left and right 
hemispheres. It contains four lobes; frontal, parietal, occipital and temporal lobes. It operates 
the learning process, remembering power, reasoning, problem solving, touch, hearing, speech, 
vision, emotions, control and the fine control of movements. The cranial nerves responsible 
for perceiving the smell and vision originates in the cerebrum. Sea horse shaped structure 
present deep inside the temporal lobe is known as hippocampus (HIP). Hippocampus is a part 
of limbic system which executes essential operations of the brain such as learning, memory 
and converts short term memory to permanent memory. The hippocampus is also called 
Cornu Ammonis (CA) which is further differentiated into CA1, CA2 and CA3, CA4 fields. 
Dentate gyrus is another noteworthy structure innervated in the hippocampus that plays a 
vital role in the formation of new episodic memories. Dentate gyrus is one of the few regions 
of the brain where neurogenesis takes place. The surface of the cerebrum is called cortex 
(COR). It has a folded appearance and looks like a wrinkled blanket. It compared to the crests 
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and troughs of a wave. The crest is called gyri and the troughs are called sulci.  It contains 
40% of outer grey matter (neuronal cell bodies, myelinated and unmyelinated axons, 
dendrites, capillaries and glial cells - astrocytes, oligodendrocytes) and 60% of inner white 
matter (mostly glial cells and myelinated axons). A number of glial cells will be present in both 
the tissues that serves as the supporting cells of the CNS but the majority will be in white 
matter. Simply white matter constitutes of axons and glial cells, whereas grey matter consists 
of neurons. Cerebellum (CER), also known as the little brain is the smaller structure and is 
located under the cerebrum. It plays a key role in muscular movements, maintaining postures 
and balance (Figure V-1, Figure V-2). 
 

 
FIGURE V-1 Mid-Sagittal Section of Human Brain.  

Image Reference: (Cummings, 2004) 
 

 
FIGURE V-2 Mid-Sagittal View of Mice Brain.  

Image Reference: (Atlas, 2015) 
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All the cells that are present in the brain will fall under two categories: neuronal and non-
neuronal cells (Glial cells). Neurons consists of a cell body, axon and dendrites. It conveys the 
message from one part of the neuron to another neuron via the release of chemical 
messengers called neurotransmitters which are stored in the bottom of neuron in a 
specialized sacs called synaptic knobs. The convey of this chemical messenger exchange occurs 
at a specified hotspots known as synapse. Dendrites are the projections from the neurons 
which acts as intracellular messengers that receives the neurotransmitter signal from one 
neuron and delivers the message to another neuron. As a consequence of this, the delivered 
neurotransmitter will bind into the specified receptors of another neuron and this is how the 
neurons will be stimulated and getting activated. Glial cells are the supporting cells of the CNS 
which provides structural, immunological and nourishment support to the neurons. These are 
10 to 50 times greater in number than neurons in density that depicts the importance of these 
cells in brain. Microglia, astrocytes, oligodendrocytes and ependymal cells are the predominant 
neuroglial cells exists in the brain. Implication of these glial cells in equilibrating the 
physiological functions (inflammation and oxidative stress) of the body especially in the CNS, 
and other essential activities are  specifically detailed under microglial and astrocyte sections 
(Hickey, 1991; Wood and Bunge, 1991; Hirschberg and Schwartz, 1995; Larner et al., 1995; 
Compston et al., 1997; Harrison et al., 1999; Bailey et al., 2006; Hines, 2013; NINDS-NIH, 
2014; Bruno Dubuc, 2015; Central, 2015). 
 
V. B. Developmental Origin Of Brain Cells 

V.B. a) Tracking Astrocytes & Microglia to its Origin 

Embryonic stem cells (ESC) are self-renewing and pluripotent cells derived from inner cell 
mass of a blastocyst that are able to differentiate into all derivatives of all three primary germ 
layers - endoderm, ectoderm and mesoderm (Evans and Kaufman, 1981; Martin, 1981; Brook 
and Gardner, 1997). When stimulated under defined culture conditions, these embryonic 
stem cells can differentiate into neural cells including neurons, oligodendrocytes and 
astrocytes (Faris Q. B. Alenzi, 2011) (Figure V-3) 
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         FIGURE V-3 Cellular Ontogeny in vitro and in vivo: Embryonic stem cells has the 
potential to develop into any cell type in the body. In respect to this, in vivo, the blastocyst 
containing inner cell mass of ESC flourishes into full fledged hematopietic stem cells that gives 
rise to blood cells, neuronal stem cells that develops into cells of central nervous system and 
mesenchymal stem cell that gives birth to adipocyte lineage, bone, cartilage and connective 
tissues in the body. Whereas in vitro, isolated innercell mass from the embryonic blastocyst, 
with the help of specific differentiators and growth factors (GDNF, CNTF, FGF and EGF) can 
switch the ESC to take a turn and assists in the development of a full fledged glial phenotype 
(Microglia and astocytes).  Image Reference: (Chaudry, 2004) 

                              
         In this regard, we are curious in understanding the mechanisms underlying the differentiation 

of microglia and astrocyte lineage that will enable us to understand the neurodegenerative 
complications. 

Recently, it was found that implication of astrocytes and microglia in the brain are very 
important to determine the optimal functioning and communication of neurons. External or 
internal factors disturbing the state of these glial cells in the brain may lead to dysfunctioning 
of microglia and astrocytes (Microglial activation and reactive astrogliosis) that eventually in 
the course of time engenders neurodegeneration in the brain (Figure V-4). 

 
FIGURE V-4 Glial Cells And It’s Unmatched Functions 

V.B. a. i) Microglia On The Brain Floor: 

Microglial cells are scavenger cells of the central nervous system, derived from hematopoietic 
stem cells (mesodermal in origin), and can be found in all the regions of the brain and spinal 
cord. Microglia continuously monitors the CNS for the presence of plaques, and infectious 
agents. In fact, these are the professional macrophages of the brain that performs phagocytic 
activity by engulfing the foreign infectious agents. They are mobile within the brain and multiply 
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when the brain is damaged. Microglia activation has been implicated in many 
neurodegenerative pathologies, such as Alzheimer and Parkinson disease and multiple 
sclerosis (Gonzalez-Scarano and Baltuch, 1999). During the pathogenesis of various 
neurodegenerative diseases, the number of microglial cells increases from approximately 2-
3% to as high as 12-15% of total brain cells. Microglial activation is always associated with 
neuronal inflammation and eventually neuronal apoptosis (Emerit et al., 2004). Microglia 
predominantly express LPA1 and LPA3 (Moller et al., 2001; Tham et al., 2003). Various cellular 
activities of LPA signaling have been identified, which include enhanced chemokinesis, cell 
proliferation, membrane hyperpolarization, membrane ruffling, and growth factor 
upregulation (Schilling et al., 2002; Tham et al., 2003; Schilling et al., 2004; Fujita et al., 2008). 
It also stimulates the migration of melanoma cells via pertussis toxin-sensitive G protein 
(Murata et al., 1994). LPA3 is upregulated in LPS-stimulated microglia (Goetzl et al., 1999), 
suggesting a role for LPA signaling in activated microglia during neuroinflammation.  

V.B. a. ii) Astrocytes On The Brain Floor: 

Astrocytes have first be considered just as glue and as a provider of physical support to 
neurons. This simplistic view is now obsolete with a variety of functions attributed to 
astrocytes. It has been demonstrated that astrocytes have a greater impact in CNS 
development, homeostasis and CNS vulnerability and pathology (Aschner and Kimelberg, 
1991). The complex biology of astrocytes and the reciprocal communicating networks 
between astrocytes, neurons and other cell types have made these cells the focus for studying 
the neurodegenerative diseases. 

Astrocytes displays a manifold of immune and other assorted functions. In which these star 
shaped cells plays a critical role in the brain antioxidant defense, it forms a close metabolic 
coupling with neurons, modulates the neuronal excitability, regulation of K+ buffering, 
clearance of glutamate. Major astrocyte functions can be grouped into three categories - 
guidance and support of neuronal migration during development, maintenance of the neural 
microenvironment, and modulation of immune reactions by serving as antigen-presenting cells 
(Montgomery, 1994).     
 
Interestingly, Vaccarino FM et al., reported that, astroglial cells can be the progenitors for the 
generation of neurons and oligodendrocytes that migrate to the cerebral cortex, replacing 
the cells that are lost in young mice. These findings were demonstrated in lineage studies first 
based on retroviruses in the embryonic CNS and then by genetic fate mapping in both the 
prenatal and postnatal CNS.  In response to the perinatal injury, the density of astroglial cells 
will be highly saturated at the neurogenic niches there by increases the expression of 
intermediate filaments, the GFAP expression (Vaccarino et al., 2007).  
 
Both astrocytes and microglia express wide range of germline encoded pattern recognition 
receptors such as toll-like receptors, scavenger receptors, mannose receptor, nucleotide-
binding oligomerization domains, double-stranded RNA dependent protein kinase and 
components of the complement system. They play an important role in neurodevelopmental 
and neurodegenerative processes. Astrocytes express all LPA receptors (Keller et al., 1997b) 
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and display a broad spectrum of LPA-induced responses in culture (Rao et al., 2003; Sorensen 
et al., 2003; Shano et al., 2008). When a stimulus binds these receptors, astrocytes and 

microglia are activated and secretes a wide variety of soluble mediators such as TNF-α, IL-6, 
IL-10, CCL2, CXCL2 and others, that will impact on both innate and adaptive immunity, 
provokes a neuroinflammation that may eventually leads to neurodegeneration (Liu et al.).  

 
V.B. b) Role Of Calcium In Gliogenesis: 

Calcium signalling plays a crucial role in the differentiation of ESC into the cells of the CNS 
(Berridge et al., 2000; Leclerc et al., 2012). So considering the implication of calcium signalling 
and associated factors that drives the ESC towards the gliogenic switch could be interesting 
to understand the process of gliogenesis. 
 
Calcium signaling is a ubiquitous intracellular signalling system responsible for controlling 
numerous cellular processes starting from fertilization through differentiation to 
organogenesis. In the nervous system, calcium signals plays an important role in maintaining 
the neural circuits, long term memory and as well majorly involved in the neural induction 
and differentiation of neural progenitors into neurons and the neuroglial cells (earliest steps 
of neural development) (Berridge et al., 2000). So the calcium levels should be maintained in 
substantial proportions to control diversified functions of the CNS such as neuronal 
proliferation and development. Disrupting the composure of this optimal calcium levels results 
in abnormal neuronal death via necrosis and apoptosis.  
 
Besides calcium signaling, several signaling systems are also known to play roles in the 
maintenance and differentiation of neural stem cells. For instance, Bone morphogenic proteins 
(BMPs) promote neuronal differentiation of cortical ventricular zone precursors. Wnt 
signaling has been implicated in the expansion of neural precursor cells in the embryo and 
regulates cell growth during the development of CNS. Ectopically expressed Wnt-1, Wnt-3a, 
and a constitutive active form of b-catenin, a component of the Wnt signaling pathway, cause 
expansion of neural precursor cells in the developing brain and spinal cord (Dickinson et al., 
1994; Chenn and Walsh, 2002; Megason and McMahon, 2002; Muroyama et al., 2004). 

Overexpression of Wnt-1 and Wnt-3a, as well as their signaling component, β-catenin, causes 
an increase in the number of cells undergoing mitosis in the ventricular zone of the spinal 
cord. This mitogenic effect of Wnt signaling is partly mediated by transcriptional activation of 
cyclin D1 and cyclin D2.  In addition, Gene Disruption Studies indicate that Wnt-1 and Wnt-
3a are required for the formation of several regions of the CNS, including the midbrain, 
diencephalon, hippocampus, and dorsal hindbrain (McMahon et al., 1992; Ikeya et al., 1997; 
Lee et al., 2000). Yuko Muroyama et al., showed that Wnt-3a proteins enhanced 
differentiation of neural stem cells into neurons and astroglias at the expense of self-renewal 
of neural stem cells at least in in vitro condition (Muroyama et al., 2004). Thus, Wnt signaling 
may promote differentiation of neural stem cells in vivo at the point when these cells must 
choose their fates between self-renewing and differentiation. FGF2 and EGF are required for 
neurosphere (clusters of free floating neural stem cells) formation (McMahon et al., 1992; Parr 
et al., 1993; Ikeya et al., 1997; Lee et al., 2000). The components of Notch signaling are also 
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needed for the maintenance of neural stem cells in vitro (Ohtsuka et al., 2001; Hitoshi et al., 
2002).  
 
V.B. c) Differentiation Program: 

Neurons and the glial cells which are typically found in the mature vertebrate CNS 
conventionally originate from a multipotent embryonic stem cell.  Prior to the production of 
these neuronal and glial cells, ESC produces the neuronal precursors cells at the first which 
sequentially proceeds towards the engendering of neurons and glial cells in the ventricular 
zone of fetal brain and spinal cord (Edlund and Jessell, 1999). Canonical signaling factors like 
Sonic hedgehog (SHH), Fibroblast growth factor (FGFs), WNTs and bone morphogenetic 
proteins (BMPs), provide positional information to developing macroglial cells through 
morphogen gradients along the dorsal-ventral, anterior-posterior and medial-lateral axes. This 
process is similar to neuronal cell specification and its sequential genesis to neurons. Change 
in the composition of receptor on the cell surface and its responsiveness to growth factors 
such as Epidermal and Fibroblast growth factor determines the shift more towards astroglial 
differentiation. Ciliary neurotrophic factor, Bone Morphogenetic Proteins, and Epidermal 
Growth Factor drives the glial precursors to take a turn more towards the astroglial direction 
(Muroyama et al., 2005).  

It has also been reported in the works of Wiese S et.al. that, however, the early astrocytes 
influence their environment not only by releasing and responding to diverse soluble factors 
but also express a wide range of extracellular matrix (ECM) molecules, in particular 
proteoglycans of the lectican family and tenascins. Lately these ECM molecules have been 
shown to participate in glial development. In this regard, especially the matrix protein           
Tenascin C (Tnc) proved to be an important regulator of astrocyte precursor cell proliferation 
and migration during spinal cord development (Wiese et al.). Before the process of terminal 
differentiation and after the specification of astrocyte has occurred in the developing CNS, it 
is believed that astrocyte precursors migrate to their final positions within the nervous system 
(As seen in Figure V-5) (Hochstim et al., 2008).   

V.B. d) Key Aspects Of Glial Cells Differentiation:   

1. Neural induction during gastrulation is the intial step towards neural stemcell formation. 
2. Formation of neural tube and its expansion into neuroepithelial stem cells and glial cells 
3. Formation of mitotically active precursors at ventricular zone. 
4. Terminal differentiation of progenitors into mature neuronal, oligodendrocyte and 

astrocyte phenotype. 

http://en.wikipedia.org/wiki/Sonic_hedgehog
http://en.wikipedia.org/wiki/Fibroblast_growth_factor
http://en.wikipedia.org/wiki/Wnt_signaling_pathway
http://en.wikipedia.org/wiki/Bone_morphogenetic_protein
http://en.wikipedia.org/wiki/Bone_morphogenetic_protein
http://en.wikipedia.org/wiki/Cellular_differentiation
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FIGURE V-5 Astrocyte Morphology And Function Changes Across Developmental 

Time: Neuroepithelial cells give rise to radial glia, which generate first neurons, and then 
become glial-committed, giving rise to precursors that proliferate and diversify into fibrous and 
protoplasmic astrocytes, which then go through a protracted stage of postnatal maturation. 
Astrocyte precursors at these different stages of maturation serve well-established stage-
specific roles in assisting myelination and synaptogenesis and may also influence other functions, 
such as neuronal migration, pruning, and so forth. Well-established adult roles for astrocytes, 
including supporting neuronal survival and homeostasis, likely develop in parallel.                      
          Image Reference: (Molofsky et al., 2012)  
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V. C. Neuroglia On The Brain Floor 
 

 

Candidate Cells: 

Microglia And Astrocytes 

 
   

Glial cells: The CNS is composed of interweaved mesh of neuronal and non-neuronal cells 
(glial cells). Glial cells can be typified into two categories macroglia (astrocytes, 
oligodendrocytes), and microglia each of them performing defined functions. The principal 
functions of these cells falls under 4 major categories: a) they surround the neurons and assist 
to withhold them in proper place, b) nurture the neurons with nutrients and oxygen 
supplements for their daily metabolic activities, c) provide insulation from one neuron to 
another in order to protect from external shocks (Shock Absorbers), d) act as scavengers to 
eliminate the pathogenic microbes and cell debris (Montgomery, 1994; Dong and Benveniste, 
2001; Maragakis and Rothstein, 2006; Belanger and Magistretti, 2009; Jain et al., 2010; 
Kimelberg and Nedergaard, 2010; Sofroniew and Vinters, 2010; Gandhi and Abramov, 2012; 
Ricardo Cabezas, 2013; Allen, 2014; George E. Barreto, December, 2011) (Figure V-6).  

 

 

FIGURE V-6 Glia-Neuron Interactions 

Image Reference: (Allen and Barres, 2009) 
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V. D. MICROGLIA or HORTEGA CELLS – The Gatekeepers Of Central Nervous System 
 

Pio del Rio-Hortega a Spanish neuroanatomist was the first to introduce the concept of 
microglia and is considered as the “father of microglial biology.” Besides the discovery of 
microglia, he was the first to demonstrate that microglia are of mesodermal in origin whereas 
neurons, astrocytes and oligodendrocytes are of neuroectodermal lineage (Rio-Hortega, 
1932a). 

 

TABLE V-1  Salient Features Of Pio Del Rio-Hortega Postulations During 1927 

- Microglia are the invading cells that enters the brain during early embryonic 
development. 

- They have amoeboid morphology and are of mesodermal origin.  
- They use vessels/vasculature and white matter tracts as guiding structures for migration 

and enter all brain regions.  
- They transform into a branched, ramified morphological phenotype in the more mature 

brain (known today as the resting microglia). 
- In the mature brain, they are found almost evenly dispersed throughout the central 

nervous system and display little variation.  
- Each cell seems to occupy a defined territory.  
- After a pathological event, these cells undergo a transformation.  
- Transformed cells acquire amoeboid morphology similar to the one observed early in 

development.  
- These cells have the capacity to migrate, proliferate and phagocytose. 

 

Table Reference:  (Rio-Hortega, 1919; 1924; 1924, 1925; 1927;  1920.;  1921) 
 

V. D. a) Microglial Backdrop:  

Microglia cells are hematopoietic stem cell derived products that differentiate in the bone 
marrow. During hematopoiesis, some of these stem cells differentiate into monocytes and 
travel from the bone marrow to the brain, where they settle and further differentiate into 
microglia (Figure V-7). Microglial cells are the invading cells which penetrates and migrates 
very quickly into the brain parenchyma during the early periods of postnatal fetal development 
and are found in every location within the nervous system (Rio-Hortega, 1932a). Over 95% 
of all microglia are generated after birth and subsequently remains after the formation of the 
blood–brain barrier (BBB).  
 
Microglia standout significantly from other types of brain macrophages such as meningeal, 
perivascular macrophages (Polfliet, 2001. ; Nguyen, 2002. ; Polfliet, 2002. ) and perivascular 
cells or pericytes (Thomas, 1999; Williams et al., 2001) by their distinguished parenchymal 
location and by their defined functions. They are present throughout the CNS including brain 
and spinal cord. The density and concentration of ramified microglial cells bearing markers 
such as CD68 and major histocompatibility complex (MHC) class II antigen positive cells are 
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thickly populated in medulla and white matter than in grey matter (Mittelbronn et al., 2001). 
Microglia constitutes about 10-15% ranging from 100 to 200 billion cells which largely depends 
upon health, infected and diseased conditions (Streit, 1995). The proliferation of these cells 
happens in response to infection, injury and also due to the presence of endogenously 
produced toxic proteins (Gehrmann, 1996; Aloisi, 2001). 
 

 

FIGURE V-7 Phenotypes and Morphologies of Microglia During Development And 
Adulthood And Under Normal And Inflammatory Conditions.                                              

Image Reference: (Soulet and Rivest, 2008b) 
 
V. D. b) Microglial Labelling: Isolectin IB4 conjugate: 

Isolectin B4 has been used to label and identify microglial cells which will be elevated during 
microglial activation. Isolectin IB4 is a glycoprotein isolated from the seeds of the tropical 
African legume Griffonia simplicifolia, formerly known as Bandeiraea simplicifolia. Isolectin IB4 
is cytotoxic to several normal and tumor cell types and has particularly strong affinity for brain 
microglial cells. Isolectin IB4 has been used effectively for tracing central and peripheral 
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neuronal pathways following local injections, as well as for labelling stimulated murine 
microglial macrophages (Murphy and Goldstein, 1977). 
 

V. D. c) Microglial Plasticity: 

Microglia are remarkably plastic (Gehrmann et al., 1995). In fact microglia are the first and 
foremost cells that will be reacting to both extrinsic and intrinsic insults in the CNS. Up on 
the detection of specific factors produced in response to infection, injury, neighboring glial 
and neuronal damage, microglia undergoes morphological transformations (resting/ramified, 
amoeboid, activated and granular gitter morphology) (Depicted in Figure V-8) that quickly 
reacts via the installation of genetic programs which neutralize and repair the damage 
occurred there by promoting the homeostasis of the CNS (Rio-Hortega, 1932b; Kreutzberg, 
1995).  

 
FIGURE V-8 Hortega’s Demonstration of Heterogeneous Human Microglial 

Phenotypes. Image Reference: (Rio-Hortega, 1932b) 
 
This kind of microglial transformations (morphology, phenotype and its functional 
characteristics) can be observed in most of the neuropathological conditions (Nayak et al., 
2014) such as neurodegenerative diseases (Streit, 2006),  traumatic brain injury (TBI) (Aloisi, 
2001; Streit, 2006), ischemic stroke (IS) (Rock et al., 2004b), infection and as well in the tumor 
formations in the brain (Gehrmann, 1996). 
 
V. D. d) Microglia Is Active Even At Resting State: 

Microglia constantly changes its morphological structures and functional adaptivity to the ever 
changing surroundings. Rivest et.al reported that in vivo two-photon imaging of mouse 
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MICROGLIA 



63 

 

neocortex microglial cells are actually highly active even in their resting state without any 
immune stimulus (Soulet and Rivest, 2008b). During resting and as well in activated phase, 
microglia will be constantly scavenging the CNS microenvironment for damaged neurons, 
plaques and infectious agents with their extremely motile processes and ramifications (Soulet 
and Rivest, 2008a). Suppressing the activity of these activated glial cells leads to compromised 
natural immune status that leads in turn to the accumulation of toxic chemicals. These cells 
may then produce inflammatory factors which may be detrimental to the neighboring cells. So 
the maintenance of these glial cells in a proper steady state is the key to counteract against 
various neuropathologies. This presents a clear view that microglial cells are never under an 
inactive state but dynamically patrols the brain environment for the clearance of toxic 
molecules to keep the brain in healthy and viable state. 
 
V. D. e) Microglial Receptors - Switch Mode Receptor Mediated Signaling: 

Cell surface makers pertaining to immune regulation such as MHC class-II molecules are 
constitutively expressed on ramified microglia in the normal adult brain. Besides the 
potentiality of the ramified resting microglial cells to transform into reactive migratory 
microglia during CNS insults, these cells also have the ability to rapidly upregulate a large 
number of receptor types. Activation of these receptors leads to the secretion of various 
secretory products which form the basis during the defense against pathogen invasion in the 
infected brain. A certain population of microglial have similar properties with dendritic cells 
and are known as dendritic cell-like microglia. These specialized cells appear during infectious 
and inflammatory conditions and act as antigen presenting cells (APC).They present the 
antigens to Th1 lymphocytes and CD4+, CD8+ lymphocytes that perform a key role in chronic 
neuroinflammation and acquired immune response respectively (Fischer and Reichmann, 
2001; Nguyen et al., 2002; O'Keefe et al., 2002; Zehntner et al., 2003).  
 
The secretory products of microglia demonstrate both neurodefensive (scavenging) and 
neurodestructive processes (immunologic and inflammatory) via autocrine, paracrine actions. 
Microglia exerts its destructive actions via the induction of pro-apoptotic death signals (BAD, 
Bax, cytochrome C, Smac/DIABLO), directly by the release of toxic mediators such as pro-

inflammatory cytokines (TNF-α, IL-1β) and pro-oxidative free radicals (iNOS, COX) or 
indirectly by attracting activated T cells, monocytes, and neutrophils into the CNS, whereas 
microglia performs defensive actions via anti-apoptotic (Bcl-2), and by the action of anti-
inflammatory (IL-4, IL-10) and anti-oxidative enzymes (SOD, CAT) (Gottschall et al., 1995; 
Gottschall and Deb, 1996; Anthony et al., 1997; Yoshiyama et al., 1998; Berman et al., 1999; 
Cross and Woodroofe, 1999; Ghorpade et al., 2001; Mayer et al., 2001; Rosenberg et al., 
2001).  

V. D. f) Functions Of Microglial Sentinels: 

Microgliogenesis and neurogenesis happens synchronously in the developing brain. Microglia 
share some space with astrocytes and oligodendrocytes in supporting the neurons. Disruption 
of these interactions severely affects the functioning and development of CNS in a negative 
manner. Despite the fact that astrocytes are the predominant cells in the CNS, interaction of 
astrocytes with microglia plays a critical role in microglial cell biology. 
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V. D. f. i) Surveillance On Neuronal Survival: 

Microglia provides a concrete foundation towards the survival of neurons via the release of 
an array of growth factors. For instance, insulin-like growth factor-1 (IGF-1) promotes the 
survival of layer V cortical neurons during postnatal development (Yamagata et al., 1995).  
Besides the secretion of IGF-1, these cells also secretes various trophic factors such as 
hepatocyte growth factor (HGF), epidermal growth factor (EGF), basic fibroblast growth 
factor (bFGF), platelet-derived growth factor, nerve growth factor (NGF), and brain-derived 
neurotrophic factor (BDNF) that plays a prominent role in the formation of neuronal circuits, 
neuronal development,  and promotes their survival (Araujo and Cotman, 1992; Yamagata et 
al., 1995).  
 
V. D. f. ii) Surveillance On Neuronal Cell Death - (Neuronal Expiry Date): 

Faulty neurons defective in the formation of coordinated neural circuits, inability to 
differentiate and migrate with in the CNS requires elimination via programmed cell death and 
an active and efficient clean up to remove the resultant cellular debris for the healthy 
functioning of the brain (Frade and Barde, 1998). This process can be initiated by cell intrinsic 
factors or by the microglial cells via the release of cell specific factors towards the targeting 
cells. For instance, neurons in the developing murine hippocampus are induced by microglia 
to undergo apoptosis via the release of ROS in a CD11b-dependent and DNAX activation 
protein of 12 kDa (DAP12)-dependent manner that induces neuronal death (Wakselman et 
al., 2008). In connection with this, blockage of CD11b downregulates the neuronal cell death 
processivity in the developing hippocampus. This evidence (Microglial positive maintenance of 
neuronal cell death) is further corroborated by the selective elimination of microglia 
decreasing the Purkinje neuronal cell death. The reason behind the successful elimination of 
these cells by the system was due to the fact that these microglial cells release excessive ROS 
that was in part responsible for the Purkinje neuronal cell death (Marin-Teva et al., 2004). 

V. D. f. iii) Scavenging Activity:  

Neurons are under continuous vigilance by microglia in the CNS. Maintaining closer proximity 
between microglial and neuronal membranes are necessary for the proper facilitation of cell 
to cell signaling interactions and specific signaling occurs between these cells via the diffusion 
of molecules (cytokines, chemokines, and cell specific factors) and cell surface receptors 
(Harrison et al., 1998; Nayak et al., 2014). Microglial cells both in amoeboid and ramified 
resting states regularly surveys (microglial movements in brain) and senses its CNS domains 
for the presence of foreign material, damaged cells, apoptotic cells, neurofibrillary tangles, 
DNA fragments, or plaques and act as antigen-presenting cells activating T-cells to prevent 
fatal damage in the CNS. Presence of unique potassium channels renders these cells to attain 
this extreme sensitivity (Davis et al., 1994; Aloisi, 2001). Detection of any of these materials 
will activate the microglia. They will phagocyte the material and thereby help in the clearance 
of cellular debris. This hypothesis can be justified by the following report. Amoeboid form of 
microglia is necessary for the active discharge of their macrophagic activity and they exhibited 
critical scavenging activity by removing the dead cells in the neocortex that die during the 
normal course of remodeling of the fetal brain (Aloisi, 2001; Rock et al., 2004b). 
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V. D. f. iv) Microglial Phagocytosis (EAT ME Signalling): 

Microglial activation in response to a stimulus will become highly motile secreting an array of 
inflammatory cytokines. They will reach the area of the lesion and initiate the process of 
phagocytosis in removing the cellular debris (Neumann et al., 2009). Extracellular nucleotides, 
such as UDP and UTP, trigger microglial phagocytosis through P2Y6R/ PLC/InsP3 pathway 
(Demonstrated in Figure V-9). Microglial phagocytosis requires specific receptors expressed 
on the cell surface to initiate the phagocytic activity such as the family of high affinity microbial 
pathogen binding toll like receptors (TLR2, TLR4), and the triggering receptor expressed on 
myeloid cells 2 (TREM-2) recognizes apoptotic cellular substances (Klesney-Tait et al., 2006; 
Napoli and Neumann, 2010; Veerhuis et al., 2011). An in vitro study lead by Paresce et al 
regarding Alzheimer’s disorder reported that, microglial cells exhibited greater phagocytic 
activity and the cultured microglial cells rapidly uptake the extracellular amyloid beta plaques 
within 15 minutes. Those vacuoles could reach the acidic endosomes and lysosomes within     
1 h and after 4 hours, most of the internalized plaques were completely degraded and released 
from cells (Paresce et al., 1997; Fu et al., 2014). 
 

 

FIGURE V-9 Microglial Activation Following CNS Injury: Microglia in the naive CNS 
are highly ramified and continuously scan the parenchyma as part of their homeostatic 
program. Upon focal brain injury that induces necrotic cell death, damaged tissue and 
surrounding astrocytes release extracellular ATP, which triggers activation of specific 
purinergic receptors expressed by microglia. For example, microglial detection of ATP via 
P2Y12R and P2X4R (two purinergic receptors) induces the extension of processes toward 
the injury epicenter and the concurrent retraction of all other processes. The extent of tissue 
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injury likely dictates how quickly microglia convert to a phagocyte and participate in lesion 
cleanup. For example, detection of UDP via P2Y6R causes microglia to invest their cellular 
material into a single phagocytic process, which is followed by retraction of the soma into this 
process. Uridine 5’-Diphosphate (UDP - mediator of microglial phagocytosis) induces 
chemokine expression in microglia and astrocytes through activation of the P2Y6 receptor. 
The resultant phagocyte then participates in the cleanup of cellular debris.                        
              Image Reference: (Koizumi et al., 2007; Nayak et al., 2014) 
 
V. D. f. v) Microglia In Possession Of Cell Repairing Kit - (Cell Repair): 

Post-inflammation, microglia undergo several steps to promote neurogenesis (Gemma and 
Bachstetter, 2013; Tobin et al., 2014). This process is achieved by the recruitment of neurons, 
astrocytes at the site of damage, by the secretion of anti-inflammatory cytokines and as well 
by the formation of gitter cells (cells formed after excessive phagocytic activity). Besides the 
promotion of repairing activity, microglial cells are also involved in remapping activity 
(Gehrmann et al., 1995). Absence of these microglial cells towards the promotion of repair 
would lead to slower regrowth, remapping or impossible vascular systems surrounding the 
brain and eyes (Gehrmann et al., 1995; Gehrmann, 1996; Ritter et al., 2006). 
 
V. D. g) Microglial Mediated Neuroinflammation:  
Unique anatomical niches (meninges, choroid plexus, and perivascular spaces) in the CNS are 
inhabited by specialized macrophages and dendritic cells acting as resident innate scavengers 
that orchestrates potent inflammatory responses in the brain (Nayak et al., 2012). Implication 
of microglia in neuroinflammation and neurodegenerative studies can be well supported and 
justified by the release of neurotoxic mediators produced in response to various 
microorganisms and microbial products (lipopolysaccharide). Accumulating evidences on 
microglia during the past several decades affirms that, microglial activation triggered in 
response to infectious agents have been implicated in various neuropathogenesis of 
inflammatory and neurodegenerative diseases such as multiple sclerosis (Merrill, 1992; Chiang 
et al., 1996; Greenlee and Rose, 2000; Smith, 2001; Nelson et al., 2002; Filipovic et al., 2003; 
Klesney-Tait et al., 2006), Alzheimer disease (Xia et al., 1998; Xia and Hyman, 1999; Halliday 
et al., 2000; Bamberger and Landreth, 2001; Benveniste et al., 2001; Cagnin et al., 2001; in t' 
Veld et al., 2001; EkDahl et al., 2003; Rosenthal and Khotianov, 2003; Solito and Sastre, 2012a; 
Li et al., 2014; Mosher and Wyss-Coray, 2014; Johansson et al., 2015), Parkinson disease (Le 
et al., 2001; Gao et al., 2002; Koutsilieri et al., 2002; Gao et al., 2003; Liu and Hong, 2003) 
amyotrophic lateral sclerosis (Koutsilieri et al., 2002), Huntington disease (Sapp et al., 2001) 
brain injury due to ischemia and  trauma (Giulian et al., 1993; Ivacko et al., 1996) as well as 
on neural stem cells (EkDahl et al., 2003; Monje et al., 2003), that plays an important role in 
new memory formations. 
 

V. D. g. i) Microglial Activation Under Inflammatory Settings: 

Inflammation and microglial activation are the interweaved conceptual terms that one will 
encounter while studying neurodegenerative disorders in the CNS context. Claims are now 
being made that microglial activation is one of the major and hallmark features of 



67 

 

neuroinflammation that resulted from brain damage during neurodegenerative disease and 
suppression of microglial activation is supposed to prevent the progression of 
neurodegeneration. Widespread microglial activation reflects widespread neuronal damage 
and synaptic alterations in neurodegenerative disorders (Demonstrated in Figure V-10).  

The proposition of monoclonal antibodies and lectins during 1980s stirred up the concept in 
detecting microglial activation in the damaged CNS. The discovery and detection of MHC 
molecules as markers for activated microglia in neurodegenerative disorders (Alzheimer’s and 
Parkinson’s diseases) from the McGeer group became the benchmark in microglial research 
during late 1980s. Histopathological observations of various neuropathologists had described 
the concept of microglial activation for almost over a century (Streit, 1995; Kreutzberg, 1996; 
Streit and Sparks, 1997).  

TABLE V-2            Unprecedented Features of Microglial Activation 

- Exhibits cellular hypertrophy.  
- They have characteristic bushy appearance because of extended cytoplasmic processes. 
- Displays increased phagocytic activity. 
- Exhibits remarkable morphological and phenotypic changes. 
- Upregulates thee expression of inflammatory and oxidative stress factors. 
- Post inflammation, they helps in the promotion of neural repair and neurogenesis. 

 

Table Reference: (Rio-Hortega, 1932b)   
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FIGURE V-10 Pathomechanistic Sequelae of Microglia Activation: Physiological 
functions of microglia, including tissue surveillance and synaptic remodeling, are compromised 

when microglia sense pathological amyloid β accumulations. Initially, the acute inflammatory 
response is thought to aid clearance and restore tissue homoeostasis. Triggers and 
aggravators promote sustained exposure and immune activation, which ultimately leads to 
chronic neuroinflammation. Perpetuation of microglia activation, persistent exposure to pro-
inflammatory cytokines, and microglial process retraction cause functional and structural 
changes that result in neuronal degeneration. Image Reference: (Heneka et al., 2015) 

These microglial activities are not only observed in neurodegenerative diseases, trauma and 
toxic lesions but also happens in the aging brain which serves as an important index to monitor 
the neuronal damage in the brain (Streit and Sparks, 1997).  
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V. D. g. ii) Dual Natured Microglia: 

Besides the tendency of exhibiting the positive face of microglia in CNS, a number of studies 
have also revealed the negative characteristics of microglia towards the brain damage. It is 
reported that conditioned media derived from primary microglial cultures are neurotoxic to 
cultured neurons which revealed the presence of nitric oxide, glutamate, and a small-
molecular weight microglial neurotoxin are responsible for causing neuronal cell death (Piani 
et al., 1991; Boje and Arora, 1992; Chao et al., 1992; Giulian et al., 1993).  
 
In a contradictory way in vitro studies demonstrated by Mallat et al disclosed that, microglial 
conditioned media producing neurotrophic factors promote the survival of cultured neurons 
(See Figure V-11).  This paradoxical behavior of microglia accounts for conflicting findings. 
One possible explanation could be that, neurons maintained in cell cultures are more 
susceptible to neurotoxic effects of conditioned media than neurons that are protected in the 
brain. And this activity might be due to the activity of microglial cells within the surroundings 
of neurons (neuronal vicinity) (Mallat et al., 1989; Nagata et al., 1993; Elkabes et al., 1996; 
Miwa et al., 1997).  In a contradictory way in vitro studies demonstrated by Mallat et al 
disclosed that, microglial conditioned media producing neurotrophic factors promote the 
survival of cultured neurons (See Figure V-11).  
 

         
 
FIGURE V-11 Fate of a healthy neuron (A). After toxin exposure or trauma. In the early 
stages after an insult, the neuron may swell and attract numerous satellite microglia, which 
cover the neuronal surface with their cytoplasmic processes (B). The nature and severity of 
the primary insult largely determines whether a neuron is able to recover from it or not 
(C, D). In addition, perineuronal satellite microglia can sense whether a neuron is destined 
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to regenerate or degenerate, and they consequently produce either trophic or toxic factors 
to promote regeneration or degeneration, respectively. Image Reference: (Aschner et al., 
1999) 

 
V. D. g. iii) Alternative Definition For Microglial Activation:  

Another explanation for this dual natured response of microglia can be corroborated from 
the reports from Aschner.M et al. In this study they considered interleukin-1 (IL-1) mRNA 
expression as one of the notable marker for microglial activation. They tested and compared 
the IL-1 mRNA levels between in vivo and in vitro microglia.  This study had revealed that IL-1 
mRNA levels in cultured, unstimulated (no lipopolysaccharides) microglia expressed 
approximately 1000-fold higher gene expression than in microglia of the normal CNS (Mallat 
et al., 1989; Aschner et al., 1999). The probable outcome of this experimentation further 
postulated that, once microglia are isolated and maintained in vitro, the cells attains and exists 
in a permanent state of near-maximal activation which can be characterized by the profused 
secretory activity of factors such as cytokines, neurotrophins, nitric oxide, and other potential 
neurotoxins. As a consequence of this processivity, these cells will achieve a higher microglial 
activation state (Detailed under Table V-2) through the exposure to stress (LPS, Hydrogen 
peroxide or other stimulants) and further become super active (See Figure V-12).  So 
depending on the kind of experimental setup used (in vitro or in vivo), the definition and 
behavior of microglia activation will takes a different turn.   
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FIGURE V-12 LPS Induced Inflammatory Cascade: Peripheral infection/inflammation 

causes the release of pro-inflammatory mediators, including cytokines (TNF-α, IL-1β, IL-6), 
arachidonic acid (AA), prostaglandins (PGs), and nitric oxide (NO) synthesis. The brain also 
mounts an inflammatory response to systemic inflammation, as well as to local injury 
(neurodegeneration, trauma, stroke), with the microglial cells responding soonest and with 
production of the greatest amounts of pro-inflammatory mediators. However, the central 
response appears to be under tighter control than the peripheral response in that it is delayed 
and more modest, probably in order to avoid the dire consequences of a full-blown 
inflammatory response within the confines of the skull. Image Reference: (Solito and Sastre, 
2012b) 

V. D. h) Microglial Mediated Oxidative Stress:  

Microglia are the resident macrophages of the brain and plays a critical role in the 
development and maintenance of the neural environment (Kraft and Harry, 2011). Although 
microglia continually survey the surrounding tissue, they remain in essentially  quiescent state 
under tight regulation until they become activated in response to perturbations in the brain’s 
microenvironment or changes in the neuronal structure (Hanisch, 2002; Kraft and Harry, 
2011).  

Up to certain extent free radicals (ROS, RNS) generated by the microglial cells can be 
protective and serves as an important defensive mechanism to fight against pathogens and 
toxic molecules released into the extracellular medium. Now it is a well-accepted that 
uncontrolled microglial mediated oxidative stress leads to the degeneration of neurons which 
is evidenced in the animal models Alzheimer’s (Solito and Sastre, 2012a) and Parkinson’s 
disease (Yoo et al., 2003; Peterson and Flood, 2012).  
 
NADPH oxidase (NOX) a key oxidative stress regulatory enzyme performs a major role in 
oxidative stress mediated neurodegeneration. This enzyme activity determines the fate of 
microglial mediated oxidative stress in case of PD (Peterson and Flood, 2012). This reaction 
in microglial cells can be mimicked by pro-inflammatory stimuli and are mediated via the 
activation of ERK signaling pathway leading to the phosphorylation and translocation of the 
p47phox and p67phox cytosolic subunits, the activation of membrane-bound PHOX, and the 
production of ROS. Phosphorylation of Ser345 on p47phox is a prerequisite to the 
degeneration of DA neurons. Significantly decreased DA neurotoxicity is seen in both 
PHOX−/− mice (in vivo) and PHOX−/− midbrain neuron/glia cultures (in vitro) compared to 
PHOX+/+ controls (Qin et al., 2004).  
 
V. D. h. i) Dichotomous Roles Of Microglia:  

Microglial activation is tightly regulated. Pathogens, structurally and genetically altered 
proteins and changes in the neuronal structure can activate the microglia and generate a pro-
inflammatory response towards the neighboring target cells. After a certain period of time 
microglia will mount a series of responses (oxidative stress response) and generates mediators 
that helps in the clearance of pro-inflammatory signalling (Hanisch, 2002; Kraft and Harry, 
2011). This activated microglia will perform dichotomous roles and exhibits both pro-
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oxidative and anti-oxidative status. When the pro-oxidative stimulus is removed, microglia 
can help in the facilitation of neurogenesis via the release of neurotrophins and anti-
inflammatory cytokines that promote neuroregeneration and wound healing within the 
striatum (Heese et al., 1998a; Heese et al., 1998b; Qin et al., 2004; Whitney et al., 2009; Kraft 
and Harry, 2011). 

V. D. h. ii) Microglial Activation Under Oxidative Stress Settings:  

Microglial cells are the key contributors of oxidative stress in the CNS in which microglial 
activation is the key step towards the production of ROS and NO in the damaged tissues 
(Colton et al., 2000). This activated glial mediated stress response can be operated via the 
release of an array of cytokine factors that destructs the dopamine producing DA neural tissue 
in case of PD (Liu et al., 2003a; Peterson and Flood, 2012).  Reactive microgliosis or microglial 
activation in the mice models of PD can be artificially mimicked by LPS (Bronstein et al., 1995; 

Araki et al., 2001; Liu et al., 2002), nitrated-α-synuclein (Zhang et al., 2005) and several 
neurotoxins such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and                        
6-hydroxydopamine (6-OHDA) can activate microglia through a process called reactive 
microgliosis that promotes DA neurotoxicity (Czlonkowska et al., 1996; Du et al., 2001; 
Cicchetti et al., 2002).   
 
Once activated, microglial cells produce a wide variety of inflammatory mediators such as 

ROS and NO that mediate innate immune response. NF-κB and MAP-kinase are the key 
signaling pathways that controls the gene expression of many of these pro-inflammatory 
cytokines, chemokines, and enzymes that produce these secondary inflammatory mediators. 
This statement is supported by the post mortem detection of upregulated levels of ROS and 
NO as in case of PD patients which affirms the implication of microglial mediated ROS and 
NO involvement in the chronic neurodegenerative process (Baldwin, 1996; Chandrasekar and 
Freeman, 1997; Baldwin, 2001). 
 
Neurons and endothelial cells within the CNS expressing CD200 and its interaction with the 
receptor CD200R is the key step towards the suppression of the reactive signals. Interaction 
between neurons and microglia containing CD200 and its CD200R receptor helps to keep 
the microglia in inactivated state (Neumann, 2001; Barclay et al., 2002; Lyons et al., 2007). 
Mice lacking the expression of CD200 exhibited heightened and upregulated the activation of 
microglial markers CD11b and CD45 that leads to the elevated levels of pro-inflammatory 

mediators such as TNFα, ROS, and NO subsequently contributing to compromised immune 
status (Hoek et al., 2000). 
 
V. D. i) Microglia As A Pharmacological Target: 

Penetration of the drug, optimal dose, perfect timing of drug administration, selective 
permeability, and many other biological considerations are the primary constrains  that needs 
to be carefully controlled while using microglial cells as therapeutic targets for a 
pharmacological action. Inflammatory mediators generated by the microglial cells having 
debilitative role in the pneumococcal meningitis (van de Beek et al., 2003) and tuberculous 
meningitis (Byrd and Zinser, 2001) can be effectively prevented by the use of glucocorticoids 
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and dexamethasone. In addition to these molecules, drugs such as minocycline (Tikka and 
Koistinaho, 2001; EkDahl et al., 2003) dextromethorphan (Liu et al., 2003b) and agents that 
up-regulate glutamate receptors (Gras et al., 2003; Taylor et al., 2003) have neuroprotective 
properties through their effects on microglial cells.   

 

      V. D. j) Neurodegenerative Therapies: 

TABLE V-3          Drugs Halting Neurodegenerative Disease Processing 

Drug Characteristic Specific Blocking Site 

Dexamethasone Steroidal anti-inflammatory 
drugs (SAIDs) 

Halts LPS induced 
neurotoxicity and 

dopaminergic 
neurodegeneration 

Aspirin and Ibuprofen Nonsteroidal anti-
inflammatory drugs 

(NSAIDS) 

Reduces inflammation by 
inhibiting COX activity 

IL-10 or TGF-β1 Endogenous anti-
inflammatory cytokines 

Halts the inflammatory 
process 

DPI 

(Diphenyliodonium)  

NADPH oxidase inhibitor 
(PHOX) 

Blocks Oxidative stress 
process  

L-DOPA 

(L-3,4-

dihydroxyphenylalanine)      

 

NADPH oxidase inhibitor 
(PHOX) 

 
Blocks Oxidative stress 

process 

DM 

(Dextromethorphan)  

Morphinan-related 
compounds 

Exhibits anti-inflammatory 
properties and inhibitory 

function towards microglia 
activation. 

Sinomenine Morphinan-related 
compounds 

Inhibits microglia activation. 

Other compounds  Agents that block pro-
inflammatory transcription 

factors (NF-κB, IKK) and by 
activating the peroxisome 

proliferator activated 

receptor-γ (PPARγ) 
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V. E. ASTROCYTES: Key Player In Neuroinflammation Induced Neurodegeneration 
 

V. E. a) Astrocyte Backdrop: 

Mihaly von Lenhossek in 1895 proposed the name Astrocyte for the first time to identify a 
specialized group of cells and suggested that the term neuroglia be used to encompass all 
supporting cells in the CNS (Tower DB, 1988). Astrocytes are the macroglial cells of the brain 
which constitutes about 50-60% and are ten times more numerous than neurons in the 
mammalian CNS (Hansson, 1988; A., 1991; Oberheim et al., 2006). These are 
neuroectodermal in origin (Richardson, 1997).  
 
V. E. b) Glial Fibrillary Acidic Protein Expression - An Astrocyte Biomarker  

             Sketch: 

Astrocytes activation is mainly indicated by the increases in GFAP immunoreactivity, which is 
often paralleled by increased GFAP mRNA synthesis. Glial fibrillary acidic protein (GFAP) is 
the most abundant intermediate filamentous and cytoskeletal protein expressed in mature 
astrocytes that balances the astrocyte motility and helps in stabilizing the astrocyte extensions. 
Formation of glial scar otherwise known as reactive astrogliosis is the predominant 
characteristic of astrocytes in response to brain insults (Eng et al., 1971; Eng et al., 2000). 
Expression of this filamentous glial fibrillary acidic protein have been found to be upregulated  
in various neurodegenerative disorders, traumatic brain injury and  stroke (Rosengren et al., 
1994; Rosengren et al., 1995; Herrmann et al., 2000; Nylen et al., 2002; Vos et al., 2004). 
 

V. E. c) Heterogeneous Population Of Astrocytes: 

Immunohistological studies of astrocytes during 18th century (Virchow, 1858) revealed the 
diversified forms of astrocytes which includes: protoplasmic astrocytes, fibrous astrocytes, 
radial glia, bergmann glia, muller cells, velate astrocytes, tanycytes, pituicytes, interlaminar 
astrocytes, perivascular and marginal astrocytes (Cajal, 1897.; WL., 1893). 
 
V. E. c. i) Fibrous astrocytes are located within the white matter. They exhibit long 
unbranched cellular processes and cellular extensions (perinodal processes) that contact 
axons at nodes of Ranvier. This form of astrocytes establish vascular, perivascular or subpial 
endfeet that maintains closer proximity with the outside capillary walls (Kettenmann and 
Verkhratsky, 2011). 
 
V. E. c. ii) Radial glia are the second biggest group of astrocytes. These are bipolar cells 
which have ovoid cell body and elongated processes. They have two main processes, one of 
them forming an endfeet at the ventricular wall and the other at the pial surface. They are 
buried deeply with in the gray matter. Radial glia plays a critical role in the developmental 
process and these are the first cells to be formed from neuronal progenitors. Once matured, 
radial glial cells disappear from many regions of the brain that takes a transformation phase 
and modifies into stellate astrocytes (Schmechel and Rakic, 1979; Misson et al., 1988). In 
exceptional cases such as in lower vertebrates these radial glial even after maturation will 
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remain in the retina as Mueller astrocytes which act as progenitors for both astrocytes and 
oligodendrocytes (Kettenmann and Verkhratsky, 2011). 
 

V. E. c. iii) Protoplasmic glia are extensively found within the grey matter and possess a 
greater quantity of organelles. They exhibit short and highly branched tertiary processes 
(Levison and Goldman, 1993; Zerlin et al., 1995). 
 

V. E. c. iv) Mueller cells have characteristic extending longitudinal morphology along the 
rods and cones of retina. They are present within the cerebellar cortex. Mueller cells and 
Bergmann glia with an exception will be present even in adulthood (Bhattacharjee and Sanyal, 
1975). Mueller cells occupy an overall volume of about 20 percent in the human retina and a 
single Mueller cell supports about 16 neurons in human retina and up to 30 neurons in rodents 
(Kettenmann and Verkhratsky, 2011) and helps in the formation of synapses and 
synaptogenesis (Bhattacharjee and Sanyal, 1975). 
 
V. E. c. v) Bergmann glia are the semi radial epithelial glial cells or Golgi epithelial cells.  
They are well distributed within the cerebellum and extend from the Purkinje cell layer to the 
pial surface (Riquelme et al., 2002; Yamada and Watanabe, 2002). 8 Bergmann glial cells in 
rodents surrounds a single Purkinje neuron and their extended processes form an 
ensheathment towards the Purkinje cell dendrites. Early in development these cells have 
contacts with true radial glial cells and behaves as such, but during the developmental process 
soon they lose the morphology of radial glial cells and attain a characteristic Bergmann glial 
granular morphology. These are required for the addition of synapses and provides coverage 
up to 8000 synapses (Kettenmann and Verkhratsky, 2011). 
 
V. E. c. vi) Ancillary Astrocyte populations: 

Pituicytes are the astrocytes present with in the neurohypophysis that surrounds 
neurosecretory axons and axonal endings under resting conditions (Hatton, 1988). 
Tanycytes are the astrocytes present in the hyphophysis and raphe part of spinal cord 
(periventricular organs) (Langlet et al., 2013). Velate astrocytes are found in the cerebellum. 
They forms a sheath that surrounds the granular neurons. Interlaminar astrocytes are 
profoundly located in cerebral cortex. They extends from the soma located within the 
supragranular layer to cortical layer IV. Perivascular and marginal astrocytes form 
numerous endfeet with blood vessels. They can be found very close to the pia matter 
(Kettenmann and Verkhratsky, 2011).  
 

V. E. d) Functions Of Astrocytes: 
The functions of astrocytes are multiple. Major astrocyte functions can be grouped into three 
categories-guidance and support of neuronal migration during development, maintenance of 
the neural microenvironment, and modulation of immune reactions by serving as antigen-
presenting cells (Montgomery, 1994). Interestingly, Vaccarino FM et al., reported that, 
astroglial cells can be the progenitors for the generation of neurons and oligodendrocytes 
that migrate to the cerebral cortex, replacing the cells that are lost in young mice. Astrocytes 
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localized in the neurogenic niches retains the properties of stem cells throughout their life 
span even in the adult stage that facilitates the promotion of neurogenesis and gliogenic activity 
(Vaccarino et al., 2007). Astrocytes together with microglia and other glial cells share some 
functional space in supporting the electrically excitable cells of the CNS (neurons), and 
performs vital functionalities including synaptic transmissions, uptake of neurotransmitters, 
recycling of neurotransmitters, detoxifying actions, supply of energy substrates to neurons, 
phagocytosis and many more. 
 
V. E. d. i) Synaptic Transmission: 

Neurons are surrounded by glial cells (astrocytes). More than just providing the structural 
support for neurons, it displays a manifold of reactions in which synaptic transmission is one 
of the key activity performed by the astrocytes towards neurons. Specialized chemical 
junctions which helps in the facilitation of communication from one neuron to another are 
called synapses (Waites et al., 2005). It is estimated that in adult hippocampus, a single 
astrocyte can contact up to 140,000-160,000 synapses (Bushong et al., 2002) from different 
neurons thereby it senses and integrate information from neighboring neurons. Astrocytes 
senses neurons via its fine bushy process. Traditional labelling of Astrocytes with GFAP 
antibody reveals the presence of only the cytoskeleton intermediate filaments which might 
not be sufficient enough to monitor the astrocyte-neuronal interaction of synaptic 
transmission. In order to rule out this approach, Shigetomi et al. in 2013, labelled astrocytes 
with cytosolic calcium indicator GCaMP3, which labels even the fine and bushy processes of 
the cells and are conspicuously visualized (Shigetomi et al., 2013). This synaptic 
neurotransmission involves the two key process such as uptake of neurotransmitters and 
recycling of neurotransmitters.  
 
V. E. d. i-a) Uptake Of Neurotransmitters: 

Neurotransmitters will be released at a very higher concentrations into the synaptic cleft 
during neurotransmission. Synaptic transmission termination requires uptake of these 
neurotransmitter molecules from the synaptic cleft. Astrocytes are rich in the enzyme 
glutamine synthetase which converts glutamate to glutamine in an ATP-requiring reaction 
(Figure V-13). Glutamine is transported to nearby presynaptic terminals where it is converted 
to glutamate for synaptic release. Finally astrocytes recapture the released glutamate via high 
affinity glutamate uptake system. Although glutamate transporters are present in neurons, 
astrocytes are the most active in removing glutamate. In the absence of the normal 
transmembrane Na+ gradient, maintained by the ATP-dependent Na+pump, the glutamate 
transporter ceases to remove glutamate and can run in reverse so that it pumps glutamate 
into the extracellular space (ECS). The probable mechanism to halt this neurotransmitter 
signaling process is the diffusion of transmitters into the synaptic cleft. Rapid removal of 
neurotransmitter is the key to maintain the spatial and temporal encoding of synaptic 
transmission. Illustration supporting this hypothesis were justified from the reports of Thomas 
et al. in 2011 (Thomas et al., 2011). The major pathway for glutamate clearance in the first 
postnatal week of developing hippocampus is via diffusion process. Later on after this time, 
due to the decrease in extracellular space, astrocytes upregulate the expression of glutamate 
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transporters (GLT-1 and GLAST) which facilitates the dominant mechanism of glutamate 
removal via transporter uptake mechanism (Lopez-Bayghen and Ortega, 2011). This synaptic 
activity is directly proportional to the transporter levels (Benediktsson et al., 2012). This 
astrocyte mediated neurotransmitter transporters (Glutamate, GABA, and glycine) 
expression will be located in the astrocytic process situated just next to synapse (Lopez-
Bayghen and Ortega, 2011). 
 

 
FIGURE V-13 Astrocytes in Glutamate Metabolism and Uptake 

Image Reference: (Pierre J. Magistretti, 2002) 
 
V. E. d. i-b) Astrocytes As Neurotransmitter Recycling Centers:  

Neurotransmitters can be reused or metabolized (Allen, 2014). Astrocytes besides having the 
potential to terminate synaptic transmission, also play a key role in recycling 
neurotransmitters. This mechanism can be achieved via glutamate-glutamine cycle (Uwechue 
et al., 2012). Glutamate can be converted to glutamine with the help of the enzyme glutamine 
synthetase which is localized in astrocytes and oligodendrocytes (Montgomery, 1994). This is 
released back into the extracellular space which is further taken up by the adjacent neurons 
at neuronal synapses (glutamatergic and GABAergic synapses) which prevents the demand for 
the synthesis of new neurotransmitters from peripherally located precursors (Liang et al., 
2006; Uwechue et al., 2012; Tani et al., 2014) (Figure V-14). 
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FIGURE V-14 Astrocytes Recycle the Neurotransmitter Glutamate via the 

Glutamate-Glutamine  Cycle: The neurotransmitter glutamate is stored in vesicles ready 
for release from presynaptic terminals. After glutamate is released, its action is terminated by 
uptake into neighboring astrocyte processes via glutamate transporters (EAATs). Within the 
astrocyte, glutamate is converted to glutamine by glutamine synthetase. Glutamine is exported 
from astrocytes by system N (SystN) glutamine transporters and taken up into neighboring 
neuronal presynaptic terminals by system A (SystA) glutamine transporters. Within the 
neuron, glutamine is converted back to glutamate by phosphate-activated glutaminase and 
repackaged into vesicles by vesicular glutamate transporters, ready to be used again.  
    Image Reference: (Allen, 2014)  
 
V. E. d. ii) Power Suppliers: 

Astrocytes are positioned in such a way in the brain, that it will have the direct access to 
blood vessels to take up the nutrients via its astrocytic endfeet and supply it to neurons via 
its fine bushy processes. Astrocytes produce lactate via glycolysis and shuttle it to neurons 
for further use in oxidative phosphorylation. This generates ATP molecules and facilitates 
synaptic transmission and the neuronal membrane potential (Harris et al., 2012). This 
glycolytic process power up the uptake of glutamate and simultaneous conversion into 
glutamine by astrocytes during synaptic transmission (Pellerin and Magistretti, 1994; Harris et 
al., 2012). 
 

V. E. d. iii) Neuronal Survival: 

Astrocytic presence is essential for neuronal survival. Removal of astrocytes in the mouse 
brain lead to neurodegeneration. The probable reasons accounting for this neuronal cell death 
were, removal of astrocytes lead to the excessive stimulation of neurons (excitotoxicity) 
caused by the failure to remove the excitatory neurotransmitter glutamate and by excessive 
activation of glutamate receptors (Montgomery, 1994).  
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V. E. d. iv) Detoxification Process: 

Astrocytes deploy it detoxifying actions via the uptake and sequestering of heavy metals such 
as lead. It also prevents the accumulation of potentially neurotoxic amino acids like glutamate 
via glutamine synthetase. Astrocytes contain specialized metal binding proteins known as 
Metallothionein. These metallothionein proteins are involved in metal metabolism which plays 
a critical role in the sequestration of specific metals (lead) and  facilitates the prevention of 
metal toxicity augmentation in the brain (Montgomery, 1994; Kimelberg and Nedergaard, 
2010). 
 
V. E. d. v) Astrocytes As APC Performing Phagocytosis: 

Expression of class II major histocompatibility complex (MHC) molecules renders the 
astrocytes to function like professional phagocytes of the CNS which are capable of 
performing phagocytic activity and acts as antigen presenting cells (APC). When an astrocyte 
senses a piece of neuronal debris via its astrocytic process (Astrocytic Arms), it pushes 
themselves towards the debris. As a result of this it eventually engulfs and digests the debris 
in order to prevent neighboring cells from further damage (Dong and Benveniste, 2001; 

Sokolowski and Mandell, 2011). Potential inducers of class II MHC molecules include IFN- γ 
and TNF-α and dibutyryl CAMP. These are known to elicit strong immune mediated response 

that triggers the activation of astrocytes (Reactive astrogliosis), whereas the TGF-b, IFN-β, 
IL-1, IL-4, IL-10, norepinephrine, glutamate, vasoactive intestinal peptide, nitric oxide are the 
inhibitors of class II MHC (Dong and Benveniste, 2001). 
 
The expression of class II MHC molecules acts like a switch on the astrocytes to trigger 
immune reactions. MHC class II molecules present the processed antigens to CD4+ T-helper 
cells and triggers the immune response. Class II MHC molecules are normally expressed in 
professional antigen presenting cells such as macrophages, dendritic cells, B cells, but 
astrocytes do not normally express class II MHC, or else if expressed it will be at a very low 
level (Montgomery, 1994). Overexpression of class II MHC molecules resulted in 
neurodegenerative diseases such as Multiple sclerosis, and inflammatory diseases such as 
rheumatoid arthritis, whereas under expression of class II MHC molecules in the hereditary 
bare lymphocyte syndrome (BLS) lead to patient death due to viral and bacterial infections 
(Grusby and Glimcher, 1995). Therefore the expression of class II MHC molecules should be 
carefully balanced in a host system. 

Antigen Presentation Process Reaction Mechanism: The primary contact between 
APCs and CD4+ T-cells are mediated by transient interaction between adhesion molecules 
such as intercellular adhesion molecule (ICAM) expressed on APC and Integrins on T-cells.  
Interaction between the T-cell receptor (TCR) and class II MHC molecules happens together 
with CD4 on the T-cell and establishes a specialized region known as immunological synapse 
(Monks et al., 1998; Grakoui et al., 1999).  

TCR interacts with Class II MHC and enhances the expression of CD40 on APC (Primary 
signal). This inductive interactions sequentially promotes the expression CD40 ligand 
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(CD40L) on the surface of T-cells which stimulates the APC to synthesize and express B7 
proteins (B7-1, B7-2) on the cell surface and express an array of cytokines, chemokines and 
other factors (Secondary signal) (Castle et al., 1993; Leveille et al., 1999). The B7 proteins 
thus produced will then reacts with constitutively expressed CD28 on the T cells delivering 
the tertiary signal, thereby finally completes the antigen presentation process (Lenschow et 
al., 1996; Lanzavecchia, 1997). 

V. E. e) Astrocytes Mounting Neuroinflammatory Response: 

Besides microglia, inflammation in the CNS are also mediated by astrocytes. Astrocyte 
activation (Detailed under Table V-4 and demonstrated under Figure V-15) has become a 
pathological hallmark of CNS structural lesions (Ridet et al., 1997; Pekny and Nilsson, 2005).  

 

TABLE V-4  Phenomenal Features Of Reactive Astrogliosis 

- Spectrum of morphological, molecular, cellular and functional changes. 
- Cellular proliferation, scar formation and cellular hypertrophic reactions. 
- Intracellular and intercellular molecular signaling changes. 
- Both protective and destructive actions towards the adjacent neuronal and glial cells  

 

Table Reference: (Sofroniew, 2014) 
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FIGURE V-15 Reactive Astrogliosis: Central nervous system (CNS) insults ranging from 
mild cellular disturbances to severe tissue damage and cell death lead to release of molecular 

mediators of reactive astrogliosis such as inflammatory cytokines interleukin-1β (IL-1β), 

tumor necrosis factor-α (TNF-α) and molecules of oxidative stress such as reactive oxygen 
species (ROS). These mediators in turn activate the local healthy astrocyte population by 
inducing a spectrum of changes in the microenvironment and intracellular signaling pathways 
resulting into reactive astrogliosis. Image Reference: (Neha and Anuja, 2012) 

 

TABLE V-5   Neuroprotective Actions Of Astrocytes  

Mediated via:  

- Uptake of excitotoxic glutamate neurotransmitter. 
- Production of glutathione that prevents cells from oxidative stress 
- Degradation of amyloid beta peptides and by the release of adenosine. 
- Blood brain barrier repair. 
- Protection from NH4

+ toxicity. 
- Mitigates vascular swelling after trauma and stroke. 
- Maintaining extracellular fluid stability and ionic balance. 
- Limiting the wide spread range of inflammatory cells, infectious and damaged 

products from the site of injury to the site of healthy cellular parenchyma. 
 

Table Reference:  (Sofroniew and Vinters, 2010) 
 

V. E. e. i) Astrocyte Mediated Neuroinflammation: 

Most of the neurodegenerative disorders in the CNS shares common pathophysiological 
pathways involving inflammation, oxidative stress (Niranjan, 2014), neurotransmitter 
dysregulation, metabolic failure and excitotoxicity (Allen, 2014), in which astrocytes 
counteract to neutralize the CNS damage. Neuroinflammation leading to reactive astrogliosis 
in the CNS can be mediated by a range of inflammatory factors (Table V-6) in which infection, 

injury, ischemia, cellular debris and misfolded protein aggregates (β-amyloid, tau, and                      

α-synuclein) play a contributing role (Mosley et al., 2012). It has both protective and 
destructive effects in the CNS (Sofroniew, 2009; Sofroniew and Vinters, 2010). 
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TABLE V-6   Molecular Triggers Of Astrocyte Activation 

Molecular Triggers Archetype 

Cytokines TNF-α, IL-6, IL-10, IFN-γ 
Growth Factors CNTF, TGFb, FGF2. 

Innate Immunity Mediators Lipopolysaccharide and TLR ligands 

Neurotransmitters Glutamate, Noradrenaline 

Purines ATP 

ROS Generators NO, singlet oxygen, superoxides 

Neurodegenerative Products β-amyloid, α-synuclein, Parkin, TNF-α  

Toxic Metabolites Ammonium (NH4+) 

Cell Proliferation Regulators Endothelin-1, EGF, FGF 

Other Factors Hypoxia and glucose deprivation 

Table Reference: (Khandelwal et al., 2011; Mosley et al., 2012) 
 

Besides microglia, astrocytes owing to the presence of class II MHC molecules also acts as 
immunocompetent cells in regulating the brain inflammation and as well in the participation 
of phagocytosis process (Montgomery, 1994; Dong and Benveniste, 2001). Activated 
astrocytes in response to stimulants produces repertoire of inflammatory mediators such as 

cytokines (IL-1β, TNF-α, IL-6, IL-10, IL-15, TGF-β), chemokines (MCP, MIP, RANTES) and 
growth factors (CNTF, BDNF, GDNF, EGF, FGF) that exhibits both neuroprotective and 
neurodestructive actions (Farina et al., 2007). Besides the production of inflammatory 
mediators, astrocytes are also capable of generating ROS that inhibits the neurite outgrowth 
and neurogenesis (Sofroniew, 2005). The balance between the production of these pro and 
anti-inflammatory cytokines in the CNS is tightly controlled and dysregulation of this 
equilibrium may lead to progressive neurodegenerative disorders. 

Cytokines produced by glial cells have pleiotropic effects (Nicola, 1994). Astrocytes operates 
this inflammatory process by expressing several soluble cytokine receptors and the cytokines 
produced acts via autocrine, paracrine and endocrine mechanisms (John et al., 2003a). The 
function of soluble receptor is to enhance or diminish the biological activity of the cytokine. 
Characterizing the precise effect of these cytokines in glial cells especially in astrocytes and 
microglia are extremely challenging, because of complex cellular and molecular interactions. 
Cytokines act either antagonistically or synergistically (John et al., 2003a; Trendelenburg and 
Dirnagl, 2005). This is the reason behind the execution of either beneficial or detrimental or 

both the effects. For instance upregulation of IL-1β both in vivo and in vitro accelerates neuronal 
damage (neurodestructive) (Relton and Rothwell, 1992; Lawrence et al., 1998; Thornton et 

al., 2006), at the same time IL-1β in a contradictory way had been involved in neuroprotective 
actions such as blood-brain barrier repair (Herx and Yong, 2001), remyelination (Mason et 
al., 2001), ischemic tolerance (Strijbos and Rothwell, 1995) and neurotrophic factor 
production (DeKosky et al., 1996; Ohtsuki et al., 1996; Herx et al., 2000; Juric and Carman-
Krzan, 2001). Hence the complex interplay between these numerous pro and anti-
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inflammatory cytokines released by the astrocytes, microglia and neighbouring target cells, 
the cytokine receptors expression, severity of the damage, time, concentration levels and 
various other parameters determines the fate of the CNS. 

V. E. e. ii) Astrocyte - Microglial Brotherly Hood: 
Astrocytes are the predominant cell type within the CNS, in which astroglia-microglia 
interactions appear to play an important role in glial cell biology towards the safeguarding 
target of neurons (Depicted in Figure V-16) (Milligan and Watkins, 2009; Shinozaki et al., 
2014). Astrocytes, in addition to their role in controlling neuroinflammation, also have a great 
impact on microglial cells. Astrocyte tends to participate in the suppression of microglial 
activation through negative feedback loops. Indeed, astrocytes presence together with the 
microglial cells, or use of astrocyte conditioned media on microglial cells downregulated the 
microglial activation and pro-inflammatory factors production and promotes the maintenance 
of neuronal survival and neuronal synaptic transmission (Vincent et al., 1997; Hailer et al., 
2001; Min et al., 2006; Block et al., 2007). This suppressive effects of astrocytes on the 

microglial activation could be at least partially explain by the involvement of TGF-β as 
suggested by experiments in animal models of excitotoxicity as well as in ischemic stroke 
(Prehn et al., 1993; Henrich-Noack et al., 1996; Ruocco et al., 1999).  
 

 
FIGURE V-16 Primed Glia And Impaired Regulation Of Active Microglia By 

Reactive Astrocytes. Astrocytes also have a more reactive profile with higher GFAP 
expression after traumatic brain injury (TBI) or in neurodegenerative disease. The long-term 
consequence of this reactive astrocyte profile in the brain is not well understood. One idea 
that this these altered profiles of astrocytes affects the dynamic interaction with active 
microglia. In this scenario, astrocytes help to regulate microglia activation. Thus it takes the 
appropriate interactions between these two glia cells types to make things go right.  

Image Reference: (Norden et al., 2014) 
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In addition to this, several other in vitro studies demonstrated that amoeboid microglial cells 
when layered on astrocytes have the potency to develop ramified branching process, which 
suggests the astrocytic induction of microglial morphological branching process even under 
resting microglial conditions (Rock et al., 2004a). Despite of its differential variation in 
structural, functional and morphological appearances, astrocytes and microglia, act in 
coherence for the fine tuning of intrinsic immune system of the CNS. 

V. E. f) Astrocytes Mounting Neurooxidative Stress Response: 
In conjunction with inflammation, oxidative stress is another substantial and decisive factor 
involved in the progression of neurodegenerative disorders, traumatic brain injury, and stroke 
which depicts the vulnerability of CNS towards oxidative stress injury (Slemmer et al., 2008).  
Billions of cells in the mammalian brain uses 20 to 25% of blood carrying oxygen which is 
sufficient to run almost all the activities and the metabolic activity and is remarkably constant 
over time (Raichle and Gusnard, 2002; Jain et al., 2010). This clearly represents the demand 
of oxygen for energy metabolism required by the brain which inevitably generates ROS with 
a lower anti-oxidative capabilities. Oxidative stress induced CNS damage is regarded as the 
hallmark feature of neuroinflammation and neurodegenerative disorders such as Alzheimer’s 
and Parkinsons disease (Luth et al., 2002; Pratico, 2008). 
 
Neurons share some functional relationships with astrocytes in order to protect themselves 
from oxidative stress (Wilson, 1997; Milligan and Watkins, 2009; Weber and Barros, 2015). 
This has been demonstrated by in vitro studies which showed that neurons cultured in the 
presence of astrocytes are more resistant to toxic materials such as nitric oxide (Tanaka et 
al., 1999; Gegg et al., 2003), H2O2 (Langeveld et al., 1995; Desagher et al., 1996; Fujita et al., 
2009), superoxide radicals and iron metals (Lucius and Sievers, 1996; Tanaka et al., 1999).   

Mitochondria are central for astrocyte and neuronal survival. Dysfunctioning of mitochondrial 
activities eventually lead to neuronal and glial cell death (Wilson, 1997; Chen and Swanson, 
2003). Oxidative stress generated reactive oxygen and nitrogen species (ROS, RNS) 
progressively deteriorates the nucleic acids, proteins, lipids and the power houses of the cell 
(mitochondria) which causes cell death in astrocytes and neurons (Motori et al.; Voloboueva 
et al., 2007).  

Astrocytes plays a pivotal role sequestering metals such as iron, preventing the brain from 
metal induced neurotoxicity, which can be accomplished by the expression of 
metallothioneins and ceruloplasmin known to have effects on metal ion binding and iron 
trafficking (Montgomery, 1994; Tiffany-Castiglion and Qian, 2001).  

V. E. f. i) Destructive Face Of Astrocytes: 

Astrocytic deposition of insoluble α-synuclein proteins in the substantia nigra of the brain 
resulted in the process of phagocytic microglial recruitment that leads to the nigral neuronal 
cell death (Figure V-17). The consequence of this insoluble protein deposits in the astrocytes 
towards the neuronal cell death clearly depicts the impact of astrocytes towards the 
neurodegenerative disease progression (Martin et al., 2006; Devi et al., 2008). Once astrocytes 
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are activated (reactive astrocytes) they release a spectrum of inflammatory cytokines that 
participates in aggravating neuronal cell death by activating apoptotic mechanisms via a series 

of cytokines like TNF-α, IL-1β, IL-6, IFN-γ. They also activate proapoptotic mechanisms 
through the activation of caspase 3, caspase 8, and cytochrome c and also generate various 
ROS such as nitric oxide (NO) production by using iNOS (Chao et al., 1996; Hu et al., 1998; 
Calingasan et al., 1999; Akiyama et al., 2000; Hensley et al., 2000; Hirsch et al., 2003). This 
generation of oxidative stress affects  neurons by breaking the DNA strands, induces lipid 
peroxidation and causes mitochondrial dysfunction (Hirsch et al., 2003; Halliday and Stevens, 
2011; Vives-Bauza and Przedborski, 2011).  
 
Additionally, deficiencies in astrocyte mitochondrial complex I in the substantia nigra of 
Parkinson’s patients led to exaggerated production of ROS that augmented lipid peroxidation 
(4-hydroxynonenal or 4-HNE), abnormal protein cross linkage and protein fragmentation 
suggesting a probable role for astrocytes mediated oxidative stress that culminates and finally 
ends up in neurodegeneration in the substantia nigra and adjacent parts of the brain (Chinta 
and Andersen, 2008). 
 

 

FIGURE V-17  Potential Neurotoxic Pathways Of Astrocytes: Astrocytes may also 
adversely affect the survival and function of dopaminergic neurons through the following 
mechanisms: 1) Release of pro-inflammatory cytokines under pathological conditions such as 

accumulation of aggregated α-synuclein; 2) Monoamine oxidase-B (MAO-B) mediated release 
of cytotoxic molecules such as dopamine-related oxidants and MPP+-like organic cations 
through the organic cation transporter (Oct3) into the extracellular space where they are 
subsequently transported into DA neurons through the dopamine transporter (DAT);             
3) Astrocytes can also release adenosine (ADO) directly or indirectly via ATP. As discussed 
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in the text, ADO may increase movement disorders in patients with PD through the A2A 
receptors in striatal medium spiny neurons. Image Reference: (Rappold and Tieu, 2010b) 
 
V. E. f. ii) Protective Face Of Astrocytes: 

At the same time it’s been clearly evident from the subjects of PD patients that astrocytic 
expression of various antioxidant molecules such as glutathione peroxidase, SOD, and catalase 
had suppressed the amplitude of dopaminergic neuronal cell death (Ramaswamy and 
Kordower, 2009; Rappold and Tieu, 2010a; Yasuda and Mochizuki, 2010). When compared 
to neurons, astrocytes possess highly effective functioning machineries to counteract ROS. 
This includes variety of antioxidant molecules such as glutathione (GSH), recycling of 
ascorbate, and vitamin E and express greater ROS-detoxifying enzymes such as glutathione S-
transferase, glutathione peroxidase, and catalase (Ricardo Cabezas, 2013) (Figure V-18).  
 
Of all these antioxidant compounds, thiol group containing glutathione acts as an predominant 
electron donor and donates electrons to the freely moving unstabilized free radicals to get 
paired up in order to make them reactively stable. Astrocytes possess a greater concentration 
of glutathione (3,8 mmol/L) than neurons (2.5 mmol). This higher levels of glutathione 
expression in astrocytes are solely mediated by the presence of astrocytic enzyme y-
glutamylcysteine synthethase (Rappold and Tieu, 2010a). Glutathione demonstrates great anti-
oxidative capacity that maintains redox homeostasis and defends the insulted CNS (Dringen, 
2000; Bambrick et al., 2004). Both neurons and astrocytes secrete this glutathione (GSH) 
tripeptide (L-glutamyl-Lcysteinylglycine) via glutamate cysteine ligase and glutathione 
Synthetase (Valko et al., 2006). Even though neurons have a moderate ability to secrete, they 
greatly depend on astrocytes for the production of GSH tripeptide. Indeed, when neurons 
are cultured in the presence of astrocytes, neurons exhibit greater GSH levels than when 
cultured alone. This is due to the fact that astrocytes release GSH tripeptide into extracellular 
space, which will be taken up by the neurons thereby ultimately improving the GSH protein 
production levels in the neurons (Aquilano et al., 2014). This demonstrates the significance of 
astrocytes antioxidant defense towards neurons (Maier and Chan, 2002; Slemmer et al., 2008; 
Giordano et al., 2009). In a similar context, increased glutathione peroxidase (GPx) levels led 
to decreased neuronal population death as observed in patients of PD which suggests the 
implication of glutathione peroxidase is considered as the critical factor responsible for the 
protective actions of astrocytes under oxidative stress conditions in PD patients (Damier et 
al., 1993). 
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FIGURE V-18 Potential Neuroprotective Pathways of Astrocytes: Genetic 
mutations, environmental toxicants or a combination of both may induce nigral dopaminergic 
neurotoxicity through mechanisms such as mitochondrial dysfunction and insufficient 
degradation of misfolded proteins. Astrocytes may mediate neuroprotection through the 
following pathways: 1) Release of trophic growth factors such as bFGF, GDNF and MANF); 

2) Release of glutathione (GSH) which is then cleaved by γ-glutamyltranspeptidase on 
astrocytic plasma membrane to generate glutamate and cysteinylglycine, which serves as 
precursors for neuronal GSH synthesis; 3) Activation of the transcription factor Nrf2 leads 

to expression of genes containing the antioxidant response element (ARE), including γ-
glutamylcysteine synthetase (GS) which is involved in GSH synthesis; 4) Activation of the 
transcription factor Nurr1 which suppresses the production of inflammatory cytokines;           

5) Removal and degradation of cytotoxic molecules such as α-synuclein. 
Image Reference: (Rappold and Tieu, 2010b) 

 
V. E. g) Astrocytes As A Pharmacological Target: 

Astrocyte dysfunctioning or the process of reactive astrogliosis is a potential mechanism that 
might contribute to the CNS disorders. Practical involvement of astrocytes in animal models 
of neurodegenerative Alzheimer’s, Parkinson’s disorders and as well as in clinical trials led 
some remarkable results in treating neurodegeneration. For instance, over the last years much 
research has focused on specific molecules produced by astrocytes that exert 
neuroprotection during brain injuries and diseases including PD, both through the reuptake 
of glutamate, or by producing gliotransmitters, antioxidant enzymes such as SODs, growth 
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factors and peptide hormones (Bambrick et al., 2004; Ouyang et al., 2011). For example, 
glutathione tripeptide a beneficial astrocyte produced antioxidant in the brain helps in the 
conversion of toxic methylglyoxal into non-toxic d-lactate by glyoxalase 1 (Yasuda and 
Mochizuki, 2010).   
 
Reactive astrocytes can exert both beneficial and detrimental effects in a context-dependent 
manner determined by specific molecular signaling cascades. Reactive astrocytes turned on in 
response to various insults exerts both protective and destructive functions which will be 
specifically regulated by bio-signalling pathways. So the use of astrocytes as potential 
therapeutic agents should be targeted in such a way, so as to accelerate the beneficial 
functionalities of reactive astrocytes at the same time decelerating or blocking the harmful 
activities. But the overall blockage of this complete reactive astrogliosis could render the 
treatment to be highly ineffective, besides rather it creates potential lethality than the 
beneficial aspects on adjacent cells towards their healthy existence. 

Conclusively, inhibition of exaggerated astrocyte activation (reactive astrogliosis) towards 
neuronal damage and suppressing the pro-inflammatory response via the inactivation of the 
transcription factor NFkB generated in these astroglial cells could be considered as promising 
therapies to heal inflammatory and oxidative stress implicated neurodegenerative disorders 
like Alzheimer’s and Parkinsons disorders. 

Accumulating scientific reports on the relation between influences of obesity on 
neurodegeneration strongly affirms that systemic inflammation is associated with obesity and 
obesity is a risk factor for neurodegenerative disorders.  

In this regard, we are curious in understanding and studying the anti-inflammatory properties 
of factors produced by the fat tissue and their potential involvement in neurodegeneration. 
This will enable us to understand the neurodegenerative disease progression in the CNS. 
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VI. SECRET TALK BETWEEN ADIPOSE TISSUE 

AND 

CENTRAL NERVOUS SYSTEM 
 

 

VI. A. Adipocytokines and Targets In The Brain 

Adipocytokines, as the combination between adipocytes and cytokines, are secreted by the 
adipose tissue and acting through receptors. It is also worth noticing that these adipocytokines 
and its soluble receptors are not only secreted inside the fat tissue, but as well expressed 
inside other system including the mammalian central nervous system. 
 
VI. A. a) Leptin is one of the most important adipose-derived hormones. It has weight-
reducing effects (Friedman and Halaas, 1998; Gorska et al., 2010) by acting on hypothalamic 
arcuate nucleus. In homeostatic conditions, leptin inhibits food intake and in extra-
hypothalamic sites leptin act on neurogenesis, synaptogenesis, neuronal excitability and 
neuroprotection (Arnoldussen et al., 2014; Bouret, 2010; Paz-Filho et al., 2010b).  In the 
CNS, Leptin and its receptors (OB-R or LepR) are also locally produced within the brain, 
notably in the cerebellum, the cortex, choroid plexus and the hypothalamus (Morash et al., 
1999; Wilkinson et al., 2000; Brown et al., 2007; Brown et al., 2008). Leptin negatively 
correlated with the development of Alzheimer's disease in lean humans (Paz-Filho et al., 
2010b; a) and leptin signaling seems to be dysregulated in Alzheimer's disease brains (Bonda 
et al., 2014).  
 
VI. A. b) Adiponectin is one of the most important adipocyte-derived hormones 
considering it’s abundance in plasma relative to many other hormones (Matsuzawa, 2005; 
Thundyil et al., 2012b). It modulates a wide range of metabolic processes such as body-weight 
regulation, glucose regulation, insulin sensitivity, lipid catabolism (fatty acid oxidation), 
modulation of endothelial function and also anti-atherogenic (Berg et al., 2002; Okamoto et 
al., 2002; Stefan and Stumvoll, 2002; Whitehead et al., 2006; Thundyil et al., 2012b). 
Adiponectin is well expressed at the mRNA and/or protein level by the placenta, the liver, 
epithelial cells, osteoblasts, myocytes and also by pituitary cells (Wilkinson et al., 2007; 
Psilopanagioti et al., 2009; Thundyil et al., 2012b). In the pituitary, adiponectin could have a 
role in the release of somatotrophs and gonadotrophs (Thundyil et al., 2012).  Adiponectin 
receptors appear to be widely expressed in the mammalian brain and their actions are 
mediated by three different receptor types: adiponectin receptor 1 (ADIPOR1), adiponectin 
receptor 2 (ADIPOR2) and T-cadherin (CDH13).  Recently, adiponectin receptor 1 and 2 
expression was described in primary human astrocytes (Wan et al., 2014). It also appears 
that adiponectin induces a pro-inflammatory response in human astrocytes, increasing 

notably IL-6 and MCP-1 through NF-κB, p38MAPK and ERK1/2 pathways (Wan et al., 2014). 
In contrast, adiponectin was described to inhibit pro-inflammatory signal, notably by 
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suppressing IL-6 release from blood brain barrier endothelial cells (Spranger et al., 2006). It 
results that adiponectin indirectly modulates inflammatory signaling across the blood brain 

barrier by negatively modulating Il-6 and TNF-α release. Adiponectin has also been shown 
to be expressed in the brain of mouse, rat, human and also pork in different brain structures 
such as the pituitary, the hypothalamus, in cortical and subcortical neurons (Degawa-
Yamauchi et al., 2003; Yamauchi et al., 2003b; Fry et al., 2006; Hoyda et al., 2007; 
Psilopanagioti et al., 2009; Repunte-Canonigo et al., 2010; Thundyil et al., 2010; Thundyil et 
al., 2012b). Interestingly, some studies documented adiponectin transcript expression in the 
brain. Thus, adiponectin was detected by RT-PCR and Northern analysis in the anterior 
pituitary gland and the diencephalon in chicken (Maddineni et al., 2005; Wilkinson et al., 
2007), in the human pituitary (Psilopanagioti et al., 2009).  
 

VI. A. c) LysoPhosphatidic Acid (LPA) and Autotaxin: ATX is a multifunctional 
phosphodiesterase that converts lysophospholipids (LPLs) into LPA through its 
lysophospholipase D activity. LPA is detected in several biological fluids and tissues including 
the brain (Tokumura, 2004). To date, LPA effects are mediated through five G protein coupled 
receptors. However, additional receptors have been identified for their potential 
responsiveness to LPA (Noguchi et al., 2003; Kotarsky et al., 2006; Noguchi et al., 2009). In 
the nervous system, neural progenitor cells, neurons, oligodendrocytes, Schwann cells, 
astrocytes and microglia have been documented for expressing different subsets of  LPA 
receptors (Noguchi et al., 2009). This partially explains why LPA exerts a wide variety of 
effects on these different cell-types. LPA also displays effect on cell morphology and neurite 
formation in both neural progenitors cells and neurons (Noguchi et al., 2009). LPA also exerts 
various effects on glial and microglial cells, by modulating intracellular calcium levels in 
oligodendrocytes, astrocytes and microglia (Noguchi et al., 2009). It notably favors astrocytes 
and microglia proliferation in vitro (Keller et al., 1997b; Moller et al., 2001). Interestingly, in 
human post-mortem brains LPA receptors 1-3 and autotaxin are only weakly expressed while 
LPAR2 is increased and autotoxin transcripts are decreased following brain injury. Such data 
also reinforce the fact that LPA signaling is involved in neurotrauma (Frugier et al., 2011). 
 

VI. B. Interplay Between Microglia, Astrocytes And Adipocytes  

Adipose tissue in addition to its storage capacity, also serves the purpose of bodily needs by 
acting as endocrine tissue producing a number of different factors including inflammatory-
related factors such as chemokines (MCP-1, MIP-1, RANTES), cytokines (adipocytokines - 
Leptin, Adiponectin) and others factors (Autotaxin / LPA)  acting at a physiological level that 
affects the whole-body energy metabolism. Control of energy homeostasis requires 
communication between the brain and adipose tissue (Turtzo and Lane, 2002).  Some of these 
adipocytokines act locally as paracrine factors, and others such as leptin and adiponectin have 
long-range effects that act on the feeding centers of the central nervous system notably in 
hypothalamus and hippocampus (Waki and Tontonoz, 2007a).  
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Here in this context we are coining a new term for the first time - “Astradipo / 

Micrastradipo” in relating this adipocytokine and neurodegenerative research to have a better 
perception that fits this adipocytokine arena.  

© Astradipo - Interaction between astrocytes and adipocytokines. 
© Micrastradipo - Interaction between microglia, astrocytes and adipocytokines 

 (Parimisetty et al., 2015b). 

It is now well accepted that adipose tissue is a key player in the development of inflammation 
(Weisberg et al., 2003). Excess fat tissue in the obese environment contributes to a low-grade 
chronic inflammation (Greenberg and Obin, 2006) with elevated production of pro-

inflammatory cytokines, such as tumor necrosis factor alpha (TNF-α), MCP-1, Interleukin -6 

(IL-6) and IL-1 (Tilg and Moschen, 2006; Moschen et al., 2007).  Increased TNF-α, MCP-1, 
CCL2, or other chemotactic factor expression in obese adipose tissue may trigger the 
recruitment of macrophages (ATMs). Macrophages infiltrate into adipose tissue from the 
circulation in obesity (As seen in Figure VI-1). MCP-1 acts by binding to its receptor CCR2 

on monocytes. Macrophages are a source of inflammatory factors such as TNF-α, IKKβ, iNOS, 
IL-6, and MCP-1 whose secretion may be elevated in obese status and might therefore 
contribute to the pathophysiological consequences of obesity such as insulin resistance, type 
2 diabetes (Lumeng et al., 2007) and obesity induced neurodegeneration (Gustafson et al., 
2004; Debette et al., 2010). Apoptosis of adipocytes in obese adipose tissue may also play a 
role in the recruitment of macrophages.  
 

 

FIGURE VI-1 Macrophage recruitment in adipose tissue under obese settings 

Image Reference: (Waki and Tontonoz, 2007a) 
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As previously stated, WAT can produce an array of inflammatory-related factors, whose 
expression levels may be modified in obesity (Figure VI-2).  

 

FIGURE VI-2 Inflammatory factors produced by WAT in obese situations 

Image Reference: (Awada et al., 2013a) 

It has been proposed that an obesity-related chronic low-grade inflammation can serve to 
change the environment and prime the brain for subsequent insults leading to a heightened 
inflammatory response and possibly exacerbation of the damage. While the causal nature of 
these processes to neurodegeneration has not been definitively established, it is widely 
accepted that neuroinflammation and oxidative stress responses occur with clinical 
manifestation of the disease. The mechanisms that initiate and trigger these processes are not 
yet totally elucidated, but different hypothesis have been proposed. A more recent association 
between obesity and neurological function is based upon correlations with biological 
processes of oxidative stress and inflammation (Awada et al., 2013a). 

VI. B. a) Adipocytokines And Neurodegeneration:  

It is only relatively recently that the concept that obesity could have an effect on the brain has 
been emerging.  Additional consideration has been raised that obesity may be linked to various 
progressive and aging-related neurodegenerative diseases such as Parkinson’s disease, 
Alzheimer’s disease (AD), and autoimmune nervous system diseases like multiple sclerosis.  
Given the recent reports of adipocytokines within the body fat and the elevation of these 
inflammatory factors with stimulation, a more direct linkage between obesity and various 
human diseases, including neurodegenerative disease, has been hypothesized  (Gustafson et 
al., 2003; Gustafson, 2006) (Demonstrated in Figure VI-3, Figure VI-5, Figure VI-6).  
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FIGURE VI-3 Adipocytokines and CNS Vulnerability: It is a well-admitted fact that 
systemic inflammation is associated with obesity and obesity is a risk factor for 
neurodegenerative disorders. Adipose tissue in response to the stress signals (high fat diet, 
infection, injury), triggers the release of diversified range of factors popularly known as 
adipocytokines. Depending on the cytokine (pro-inflammatory adipocytokines) produced it 
eventually leads to chronic or acute inflammation in and around the site of stress. Adipose 
tissue has now been regarded as a specialized endocrine organ. Because of its endocrine 
properties, the cytokines produced inside the fat tissue travels all along the blood and may 
reach the brain. The receptors of these factors produced by adipose tissue are present in the 
central nervous system (CNS) as well, including in resident microglia and astrocytes, further 
contributing to neuroinflammation and neurodegenerative status in the brain.  

  VI. B. b)  Evidences Supporting Obesity Induced Neurodegeneration: 
Emerging evidences from multiple clinical studies reveals the devastating effects of adiposity 
on cognitive dysfunctioning more particular on neuronal disorders such as Alzheimer’s and 
Parkinsons disorders (Gustafson; Gustafson et al., 2003; Kivipelto et al., 2005; Hayden et al., 
2006; Lafortuna et al., 2006; Whitmer et al., 2007; Whitmer et al., 2008; Fitzpatrick et al., 
2009; Gustafson et al., 2009; Lee, 2011; Bluher, 2013; Kiliaan et al., 2014). 
 
The first and foremost scientific report on the nexus between adiposity (higher BMI) and 
Alzheimer’s disease were published by Deborah Gustafson on 2003 in which a cohort of 392 
non-demented patients were followed up from the age of 70 to 88 for a period of 18 years 
by using neuropsychiatric, anthropometric and body mass index to examine whether 
overweight is a risk factor for dementia and Alzheimer’s disorders. This report affirmed that 
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“overweight at high ages is a risk factor for dementia, particularly Alzheimer’s disease, in women” 
(Gustafson et al., 2003). In relation to this cohort study, several other reports corroborated 
the linkage between adiposity and the dysfunctioning of the brain (neurodegeneration 
disorders) which demonstrates that people with higher BMI levels or adiposity have a two 
times higher risk of dementia in later life (Kivipelto et al., 2005; Whitmer et al., 2007; Whitmer 
et al., 2008; Gustafson et al., 2009). 

Alzheimer’s type of amyloid beta and tau protein expression (neuropathological change) were 
found to be significantly expressed in hippocampus from morbidly obese individuals with a 
BMI >45 (Mrak, 2009; Naderali et al., 2009). Besides this, when compared to non-obese 
patients, obese individuals exhibited lower dopamine D2 receptor availability in the striatum. 
Obese people are less active than non-obese individuals and lowered physical activities is one 
of the potential risk for developing Parkinson’ neurodegenerative disorder (Chen et al., 2014). 
High susceptibility to environmental toxins and accelerated pathological effects of PD are 
directly proportional to the exposure of high-fat diet treatment and as well with overweight 
and obesity (Bousquet et al., 2012; van der Marck et al., 2012; Chen et al., 2014).  

In addition to these supporting evidences, within a cohort study of obese women it has been 
reported that there is a correlation between increase in total body fat irrespective of its body 
distribution, and a negative destructive activity on cognitive functioning of motor neurons 
(Lafortuna et al., 2006). 

Besides this, initial studies demonstrated a higher BMI and/or waist-to-hip ratio in middle-aged 
individuals associated with a reduction in whole brain volume. Over the last decade, a number 
of magnetic resonance imaging (MRI) and computed tomography (CT) studies have reported 
alterations in brain morphology of overweight/obese individuals (Figure VI-4) (Ward et al., 
2005; Taki et al., 2008; Bruce-Keller et al., 2009). In the past decade, a linkage has been 
demonstrated between being overweight in middle age and increased risk for Alzheimer’s 
disease and other forms of dementia (Gustafson et al., 2003; Gustafson, 2006). A similar 
association was observed with temporal lobe atrophy in elderly women with additional 
evidence of hippocampal atrophy (Gustafson et al., 2004). Debette et al. reported a link 
between abdominal fat and reduced brain volume in otherwise healthy middle-aged adults 
(Debette et al., 2010). In a cross-sectional study of normal elderly individuals showing no sign 
of cognitive deficit, tensor-based morphometry unveiled atrophy in the white and gray matter 
of the frontal lobes, anterior cingulate gyrus, hippocampus, and thalamus in both male and 
female subjects with a high BMI (BMI > 30) as compared to individuals with a normal BMI 
(18.5–25) (Raji et al.). Upon further investigation, the brain volume reduction in gray and white 
matter was found to be associated with a common variant of the fat mass and obesity 
associated (FTO) gene (Ho et al.). 
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FIGURE VI-4 Obesity and Brain Atrophy: Radiological Image of distinct regions of the 
brain associated with BMI in healthy elderly individual (top) and obesity linked FTO allele 
carrier individual (bottom). Image Reference: (Ho et al., 2010b)  

 

FIGURE VI-5 Adipocyte in Relation with Brain: Consumption of energy dense food 
rich in saturated fats, sugars, sedentary life styles and reduced physical activity contributes to 
accumulation of fat in the adipose tissue (obesity). It is a renowned fact that adipose tissue 
acts as an endocrine organ and secretes adipocytokines (over 600 in number) which have 
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diversified range of actions inside the cell. Secreted adipocytokines just because of their 
autocrine, paracrine and endocrine properties, make use of blood as a transporting vehicle 
to reach other systems. This includes, the brain and shows their potential effects on the 
neuroglial cells thereby elicits neuroinflammatory response that may eventually progress to 
life threatening neurodegenerative disorders (Alzheimer’s and Parkinson’s disease)                   
(? – symbolizes some uncertainty).   

 
 

Sequence: Stress Signal/Adipose Tissue/Adipocytokines/BBB/Glia/Adipocytokines/Target Cells [+/-] 

FIGURE VI-6 Relation between Adipocytokines and Glial Cells: Most probably, there 
are numerous factors that aggravates inflammatory response. Among them infections, trauma, 
aging, high fat diet, palmitate, exogenous factors (metals, dioxins, and radiations), endogenous 
factors (excess ROS formed due to aerobic metabolism, oxidative burst) and other factors 
plays a contributing role in generating stress to cells. Activated adipose tissue (Adipocytes, 
macrophages, fibroblasts, endothelial cells) in response to exogenous or endogenous stimulus 

triggers the release of array of factors including adipocytokines (Leptin, ATX, IL-1β), oxidants 

(NO, iNOS) and growth factors (TGF- β, HGF, IGF, VEGF). The factors thus secreted by fat 
tissue, just because of its endocrine properties it may reach the brain and further acts up on 
the brain resident microglia and astrocytes. It is worth noticing that these adipocytokines and 
its soluble receptors are not only expressed inside the adipose tissue but as well inside the 
central nervous system. 
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Endothelial cells present in the BBB are very stringent and permits the access to only few 
molecules to pass through the brain. The factors released by the adipocytes in response to 
the stimulus under compromised conditions crosses the blood brain barrier and reaches 
inside the brain. When the stimulus in the form of cytokine signalling reaches the brain, 
ramified resting microglia and brain resident astrocytes transforms into reactive migratory 
microglia (microglial activation) and activated astrocytes (reactive astrogliosis) which 
accelerates the recruitment of macrophages further mounts an inflammatory response as a 
result of peripheral inflammation (fat tissue). This reaction is further amplified or carried over 
by the glial cells and the same cytokines, nerve growth factors and trophic factors will be 
generated within selected regions of the brain. The factors thus produced can be pro or anti 
(inflammatory/oxidative) and further acts up on the neighboring target cells like microglia, 
oligodendrocytes, neurons, ependymal cells, astrocytes and blood derived macrophages. If the 
produced cytokines are anti-inflammatory, it will confer some neuroprotective effects such as 
glutamate uptake, neurotropic release, and trophic factors release. To the contrary, if the 
cytokines produced are pro-inflammatory they will have neurodegenerative actions on 
neighboring target cells such as neuroinflammation, neurodegeneration (Alzheimer’s, 
Parkinson’s), dementia (mental behavior) and central nervous system vulnerability.     
   Image Reference: (Parimisetty et al., 2015a) 

Therefore, understanding the inter-related mechanisms of inflammation and oxidative stress 
coupled with glial cells (microglia, astrocytes) and adipose tissue and its potential response 
towards the central nervous system are of great interest to find out the basic roots of 
neurodegenerative disorders.  
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FIGURE EXP-1 Bird’s Eye View On The Overall Project Design 
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Experimental Hypothesis 
 

Now it is clearly evident from the scientific literature that “Obesity is one of the crucial 
factors in chronic inflammation that plays a potential role towards the negative modulation 
of glial cells in CNS (Neurodegeneration) via the release of adipocyte secreted factors 
(Adipocytokines) acting in an endocrine fashion.” Therefore, our global aim of the research 
is to investigate the inflammatory properties of the factors produced by the adipose tissue 
(Autotaxin and Adiponectin) and its potential implication in neuroinflammation and 
neurodegeneration. The potential of these two factors will be evaluated, both in vitro in 
immortalized cell cultures and in vivo in neuroinflammatory, acute hippocampal 
neurodegenerative murine mice models.  

In vivo 
PROJECT-1:  
Does peripheral inflammation induce CNS vulnerability in the mice brain? 
Peripheral infection or inflammation could greatly affect the CNS in a negative context which 
are largely mediated by the upregulation of pro-inflammatory cytokine production. Here, we 
propose to use two distinct inflammatory stimuli (LPS and TMT) to characterize the 
expression of inflammatory factors (ATX and ADIPO) and to investigate glial cell activation 
(microglia and astrocyte) in mouse CNS. Acute intraperitoneal (ip) injection of 
lipopolysaccharide (LPS) (100 µg/Kg bwt) mimics gram negative bacterial infection, while 
acute ip injection of organometal trimethyltin (TMT) (2mg/kg bwt), induces hippocampal 
neurodegeneration.  

In vitro 
PROJECT-2:  
Does overexpression of ATX downregulate LPS induced microglial activation? 
Microglial cells are the major source of inflammatory factors in the brain and to investigate 
the role of ATX on these cells in inflammatory condition, we generated stable over-
expressing transfectant in murine microglia BV2 cells for Autotaxin. BV2 and stably 
transfected, overexpressing clones were treated with LPS (1 µg/mL) and investigated for the 
presence of inflammatory response. 
 
PROJECT-3:  
Does overexpression of ADIPO protect astrocytes against H2O2 induced 
oxidative stress? 
Astrocytes are a potential sources in generating oxidative stress factors in the brain and to 
investigate the role of ADIPO on these cells in oxidative stress condition, we generated 
stable over-expressing transfectant in murine Astrocyte CLTT cells for Adiponectin. CLTT 
and stably transfected, overexpressing clones were treated with H2O2 (100-200µM) and 
investigated for the presence of oxidative stress response. 

Henceforth, comprehending the inter-related mechanisms between factors secreted by the 
adipose tissue (adipocytokines) and its potential response towards the central nervous 
system especially on glial cells (microglia and astrocytes) coupled with  inflammation and 
oxidative stress physiological process are of great interest to find out the basic roots of 
neurodegenerative disorders and to fight against them. 
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Project-1: Article Introductory Preface 

 
Adiponectin, Resistin and Autotaxin Expression in Neuroinflammation and 

Neurodegeneration 

 

 

Aim: Does peripheral inflammation induce CNS vulnerability in the mice brain? 

 

Experimental Design:  

 Mice were handled, and sacrificed in accordance with the European Union regulations 
and strict efforts were taken concerning the protection of experimenting animals. 

 Housed mice were subjected to mimic neuroinflammation and neurodegeneration with 
LPS and TMT at a concentration of 100µg/kg and 2mg/kg bwt respectively. 

 Brains were sagittally sectioned and half of the hemisphere were used for 
immunohistochemistry and from the rest of the hemisphere hippocampus, cortex and 
cerebellum tissues were collected to study the gene expression of factors produced in 
response to LPS induced peripheral inflammation.  

 Gene expression of TNF-α, iNOS, ADIPO, RES and ATX mRNA levels were quantified 
by using quantitative real time PCR (qRT-PCR) approach. 

 LPS stimulated microglial activation and reactive astrogliosis were examined by 
immunohistology. 

 

Principal Findings: 

 Inflammatory mediators are expressed in the brain in response to i.p LPS and TMT 
peripheral stimulations. 

 Peripheral inflammation could induce a transient neuroinflammatory response in three 
distinct regions of the brain (HIP-COR-CER) that involved inflammation and oxidative 
stress physiological processes. 

 Peripheral inflammation induced by infection will not induce neurodegeneration unless a 
massive infection, but could prime the glial cells and make them more responsive to the 
next stimulation. 
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ABBREVIATIONS 

 

ADIPO  Adiponectin 

ANOVA  Analysis of Variance 

AP-1   Activator Protein-1 

ATX   Autotaxin 

BBB    Blood Brain Barrier  

BSA    Bovine Serum Albumin 

CER    Cerebellum 

CNS   Central Nervous System 

COR    Cortex  

COX    Cyclooxygenase 

CREB    cAMP Response Element-Binding Protein 

DEPC    Diethylpyrocarbonate 

FFA    Free Fatty Acids 

GAPDH   Glyceraldehyde-3-Phosphate Dehydrogenase 

GFAP    Glial Fibrillary Acidic Protein 

GOI    Gene of Interest 

HIP    Hippocampus 

IL-1    Interleukin-1 

IL-6    Interleukin-6 

i.p   Intraperitoneal  

iNOS    inducible Nitric Oxide Synthase 

LPA    Lysophosphatidic Acid 

LPC   Lysophosphatidyl Choline  

LPS    Lipopolysaccharide 

MCP-1   Macrophage Inflammatory Protein-1 

NF-kβ    Nuclear Factor-Kappa β 

NO    Nitric Oxide 

Nrf2/ NFE2L2    Nuclear Factor Erythroid-Derived 2-Like 2  

PBS     Phosphate Buffered Saline 

PG    Prostaglandin 

RES   Resistin 

TMT    Trimethyltin Hydroxide 

TNF-α   Tumor Necrosis Factor-α 
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ABSTRACT 

 

Background: Peripheral immune system activation stimulated in response to inflammation 

induces neuroinflammation in the central nervous system (CNS) with an elevated cytokine 

production. In spite of the accumulating data suggesting the involvement of cytokines in 

regulating neuroinflammation, the precise pathways responsible for the onset of these 

inflammatory changes in the CNS remains uncertain. 

Objective: We aimed at characterizing gene expression of inflammatory potential mediators 

generated in response to intraperitoneal lipopolysaccharide (LPS) and trimethyltin (TMT) 

stimulations. In parallel, we also examined microglial activation and reactive astrogliosis  

Methodology: Here, we propose to use two distinct stimuli to characterize the expression of 

potential inflammatory mediators on LPS and TMT challenged mouse brains via intraperitoneal 

injections, and examined the onset of inflammatory response and glial cell activation in 

different regions of the brain (hippocampus, cortex, and cerebellum). Acute intraperitoneal (i.p) 

injection of LPS (100 µg/Kg bwt) mimics gram negative bacterial infection, while acute ip 

injection of organometal trimethyltin TMT (2mg/kg bwt), induces hippocampal 

neurodegeneration. Gene expression mRNA levels of different factors (TNF-α, iNOS, 
Autotaxin (ATX), Adiponectin (ADIPO) and Resistin (RES)) on distinct regions of the brain 

including hippocampus (HIP), cortex (COR) and cerebellum (CER) were determined by qRT-

PCR, whereas microglial activation and reactive astrogliosis on the hemispheres of the brain 

were assessed by immunohistological approach. 

Results: LPS-induced peripheral inflammation resulted in an early response of TNF-α and 
iNOS in the hippocampus, cortex and cerebellum with a peak at 2-4 hours, while ADIPO 

showed its expression peak at 6, 120, 24 hours in hippocampus, cortex and cerebellum 

respectively. Whereas RES was significantly upregulated at 6h only in hippocampus, while no 

significant changes were observed for ATX. We confirmed that acute i.p injection of TMT 

heightened TNF-α and iNOS mRNA levels at 24 and 4 hours respectively, while elevated ATX 

and ADIPO mRNA levels in the hippocampus were demonstrated at 5 and 8 days respectively. 

Following i.p LPS injections, no microglial or astrocytes activation was observed by 

immunohistology.  

Conclusion: Taken together from our experimentational outputs our results confirm that 

inflammatory mediators are upregulated in vivo in the brain in response to i.p LPS and TMT 

injections and suggests that adipocytokines may play a role in the regulation of these induced 

neuroinflammation. The precise functions and mechanisms associated with these factors remain 

to be elucidated.    

 

 

Key words: Peripheral Inflammation, LPS, Cytokines, Neuroinflammation, TMT, 

Neurodegeneration. 
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INTRODUCTION 

Over the decades ago brain was considered as an immune privileged organ that depicted 

reduced inflammatory immune response. But the recent advances in neuroimmunology 

research unmasks the fact that, brain as well can exert the hall mark features of inflammation 

such as generation of inflammatory cytokines including the production of pro-inflammatory 

cytokines and free radicals by the resident cells of the CNS. This in turn induces the recruitment 

and local invasion of circulating immune cells and further leads to glial cell activation (Lucas 

et al., 2006a; Medzhitov, 2008). Brain is capable of influencing immune response via cytokine 

signalling at the same time immunological responses are capable of controlling brain (Wilson 

et al., 2002).   

Growing body of evidences suggests interaction between the peripheral immune system and 

the central nervous system mediated via cytokine signalling (Stitt, 1986; Saper and Breder, 

1992; Dantzer et al., 2000). Cytokines are the chemical messengers between immune cells and 

play a crucial role in mediating inflammatory and immune responses. They act as 

neuromodulators within the brain and have a potential impact both on normal and pathological 

conditions (Deverman and Patterson, 2009; Qi et al., 2009). Numerous studies have provided 

evidences that peripheral inflammation triggered acute phase reaction in the CNS which are 

largely mediated by pro-inflammatory cytokines such as TNF-α, IL-1β, IL-6 and MCP-1. The 

peripheral cytokines generated in response to inflammation under compromised conditions can 

cross the blood brain barrier, reaches the brain parenchyma and can signal the CNS via four 

possible mechanisms: a) passive  transport of cytokines into the brain at the sites having leaky 

or lacking blood-brain barrier system, b) binding of cytokines into the cerebral vascular 

endothelium, thereby inducing the generation of secondary messengers such as prostaglandins 

(PG) and nitric oxide (NO), c) carrier-mediated transport of cytokines into the brain, across the 

blood-brain barrier, and d) activation by cytokines of peripheral afferent nerve terminals at the 

site where cytokines are released (Freidin et al., 1992; Kronfol and Remick, 2000).  

Inflammation up to certain extent will be beneficial to the host system, it will help to the 

clearance of pathogens. However, uncontrolled and or prolonged inflammation may damage 

the tissues. Therefore, inflammatory response must be actively terminated when no longer 

needed to prevent unnecessary damage (Collins et al., 1998). Many chronic neurodegenerative 

diseases such as Alzheimer’s, Parkinson’s and amyotrophic lateral sclerosis have been 

associated with inflammation in the central nervous system. Inflammation in the CNS are 
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largely mediated by glial cells in which microglia and astrocytes play a dedicated role. They 

execute essential operations such as cytokine secretion, promotion of cell repair and performing 

scavenging activities in cleansing the brain in order to maintain a healthy and viable brain 

environment that should be free from cellular debris and toxic materials (Amor et al., 2010; 

Lull and Block, 2010). 

Lipopolysaccharide is the outermost layer of gram negative bacteria and induces a strong innate 

immune response. It acts as an endotoxin which promotes the secretion of pro-inflammatory 

cytokine production and reactive oxygen species generation (nitric oxide and superoxide) 

(Abbas and Abul, 2006). Acute exposure of mice to TMT results in extensive damage to dentate 

granule cells (Reuhl et al., 1983), accompanied by early activation of glial cells (Bruccoleri et 

al., 1998; Eskes et al., 2003). It is widely accepted that intraperitoneal administration of gram 

negative bacterial endotoxin (LPS) generates the peripheral production of pro-inflammatory 

cytokines which then crosses the BBB and reach the CNS. Once this inflammatory 

stimulus/mediators reaches the CNS, this reaction is further amplified and carried over by the 

glial cells and the same cytokines will be generated within selected regions of the brain. 

(Kronfol and Remick, 2000). A study led by Kozak et al., demonstrated that injecting high 

doses of LPS (500µg/kg) resulted in severe systemic inflammation and development of fever 

which reflects the symptoms of septic shock in mice (Kozak et al., 1997). Besides this, it is 

also reported that animals and humans typically encounters infectious pathogens that replicate 

in vivo and are exposed to lower concentrations of LPS over a more prolonged period of time 

(Teeling et al., 2007).  

Adipose tissue is highly active metabolic and endocrine organ. It produces an assortment of 

factors (also known as Adipocytokines) which includes hormones, inflammatory mediators 

such as cytokines (TNF-α, IL-6, Leptin, Adiponectin), chemokines (MCP-1, MIP-1, RANTES) 

or adipolipokines (LPA via Autotaxin) (Blüher and Mantzoros, 2015). These adipocytokines 

have versatile biological activities in specified host system (Gale et al., 2004; Sahin-Efe et al., 

2012; Bluher and Mantzoros, 2015) such as  neuroendocrine regulation, inflammation and 

functions of the immune system  (Van Gaal et al., 2006; Catalan et al., 2009; Bluher, 2012; 

Sahin-Efe et al., 2012; Bluher, 2014) in the target organs including the brain and immune 

system. For example, Adiponectin exhibits direct anti-inflammatory and anti-diabetic, effects 

(Yamauchi et al., 2001). Autotaxin is a secreted enzyme well known for its roles in cell motility, 

cell migratory and proliferation, notably in tumorigenesis (Nishimasu et al., 2011b), but the 

inflammatory properties of this particular adipocytokine in the CNS remains to be determined. 
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TNF-α is a known pro-inflammatory adipocytokine that facilitates the dysregulation of insulin 

sensitivity, and in a contradictory way TNF-α promotes the elevation of acute phase reactants 

(IL-1, IL-1β, IL-6). Resistin is an insulin resistance aggravating factor largely produced by the 

adipose tissue with direct pro-inflammatory and pro-diabetic effects (GS et al., 1994). Besides 

these adipocytokines, iNOS is a pro-oxidative signalling factor which is well-known for its 

potential oxidative stress mimicking actions. (Green et al., 1994) 

It is also worth noticing that these cytokines and their corresponding soluble receptors are not 

only produced by the adipose tissue but as well expressed in the CNS (Kronfol and Remick, 

2000). For example, there are substantial evidences showing that adiponectin receptors 

(AdipoR1 and AdipoR2) are widely expressed in the regions of the mouse hypothalamus, 

brainstem, cortical neurons, endothelial cells, pituitary extracts and as well as in whole brain 

(Thundyil et al., 2012a), whose (AdipoR) expression levels will be diminished during 

inflammatory status. In addition to this, apart from adipocytes and cancerous cells, central 

nervous system is another major hotspot for the Autotaxin’s produced lysophosphatidic acid 

(LPA) receptor expression (Contos et al., 2000; Fukushima et al., 2001; Ishii et al., 2001) 

regulates the activity of various neural cell types, such as neural cell lines, neural progenitors, 

primary neurons, oligodendrocytes, Schwann cells, astrocytes, and microglia (Choi et al., 

2010), and their whose (ATX) expression levels will be upregulated during pathological 

conditions.  

In spite of the extensive research and the growing body of evidences accumulating on this 

neuroimmunological pathways, the precise mechanisms responsible in establishing the link 

between the immune system activation and CNS inflammation via peripheral infection still 

remains questionable. In our current study, potential neuroinflammatory response in the mice 

were induced by using LPS. To mimic neurodegenerative effects, we employed a chemical-

induced model of hippocampal damage using the prototypic neurotoxicant, trimethyltin 

(TMT). Therefore we aimed to characterize the gene expression of inflammatory mediators 

generated in response to activated peripheral immune system as a result of defined 

intraperitoneal LPS and TMT stimulations. In addition to this, we also examined microglial 

activation and reactive astrogliosis (glial cell activation) with respect to LPS stimulus. The 

results thus obtained should bring about some knowledge in understanding the mechanisms 

underlying immune to brain interactions and CNS vulnerability stimulated via peripheral 

inflammation.  
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Altogether, our results put forwards that peripheral infection could induce a transient 

neuroinflammatory response in three distinct regions of the brain (HIP-COR-CER) that 

involved inflammatory (TNF-α, Adiponectin, Autotaxin, and Resistin) and oxidative stress 

mediators (iNOS) provoked by LPS and TMT challenges. Besides this, our observations on the 

absence effect of microglial and astrocyte activation suggests that peripheral inflammation 

induced by infection, will not induce neurodegeneration (unless a massive infection) but could 

prime the glial cells making them to be more responsive for further stimulation, and can 

generate transient neuroinflammatory response in the brain.   

 

MATERIALS & METHODS 

1. Mice facility or Mice housing: 

Fifty six day old OF1 mice and twenty-one day old CD-1 mice were randomly assigned to 

experimental groups and housed in air conditioned animal facility of the Cyclotron Réunion 

Océan Indien (CYROI). Mice were maintained in a controlled environment under constant 

temperature (21° ± 2°C), humidity (50% ± 5%) and photoperiod (12-hours light/12-hours dark 

in order to habituate to the environment) with free access to food and water. For the sacrifice, 

mice were euthanized with 4% isoflourane and the complete brain tissue was collected. Half 

of the hemisphere were fixed in 4% paraformaldehyde-PBS for immunohistochemistry and 

from the rest of the hemisphere hippocampus, cortex and cerebellum tissues were collected in 

order to study the gene expression of factors produced in response to peripheral inflammation. 

The brain samples were flash frozen immediately in dry ice and stored at -80°C.  

This study was approved by the regional research ethical committee for animal experimentation 

of the Cyclotron Réunion Océan Indien (CYROI) and as well by the French government. Mice 

were kept, handled, and sacrificed in accordance with the European Union regulations and 

strict efforts were taken concerning the protection of experimenting animals. 

 

2. LPS and TMT Treatment: 

Randomly assigned experimental groups of mice were administered a single intraperitoneal 

(i.p.) injection of either 100ug/kg bwt of LPS (Escherichia coli 0111:B4, Sigma, France) or 

saline (injection vol., 4 ml/kg). In a similar context in order to study the neurodegenerative 

response, randomly assigned experimental groups of mice were administered a single i.p. 

injection of either 2 mg/kg trimethyltin hydroxide (TMT, originally obtained from Alfa 
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Products, Danvers, MA, USA) or saline (injection vol., 2 ml/kg). At 0, 1, 2, 4, 6, 12, 24, 72, 

120 and 192 hours after LPS treatment, mice were anesthetized with 4% isoflourane and were 

cervically dislocated. The brain was quickly removed after decapitation and separated into 

hemispheres, cerebellum, hippocampus and cortex and stored at -80°C until further assay. 

 

3. RNA extraction: 

Flash frozen brain samples stored at -80°C were carefully thawed in ice and all the further 

experimentation were carried out in ice. Hippocampus, cortex and cerebellar brain tissue were 

homogenized by the use of Qiagen tissue lyser according to the manufacturer’s instructions. 

After homogenization, total RNA extraction was performed using TRIzol Reagent (Invitrogen 

Life Technologies, USA) according to the manufacturer’s protocol. The RNA samples were 

resuspended in 35 µL of DEPC (Diethylpyrocarbonate) treated nuclease-free water. The 

concentration and quantification of total RNA was measured with Eppendorf Biophotometer, 

with the OD260/OD280 ratio of all RNA samples 1.6-2.0.  

 

4. Quantification of gene expression by using Real Time PCR machine: 

Two micro gram of RNA was reversed transcribed to cDNA using random hexamer primers 

(Sigma, St. Louis, MO) and Moloney Murine Leukemia Virus (MMLV, Invitrogen). Each 

sample was tested in triplicate. Complementary DNA was amplified by PCR (Applied 

Biosystems, France) using the SYBR green master-mix (Eurogentec, Belgium) and specific 

murine primers (Table I, Eurogentec). Each PCR cycle was conducted for 15 s at 95 °C and 1 

min at 60 °C. RNA from adipose tissue (AT) of ob/ob mice treated with LPS were used to 

detect the gene expression of interest (GOI) of TNF-α, iNOS, ATX, Adipo, Res and GAPDH. 

When once detected, these adipose tissues were used for further assaying to generate standard 

curves (RNA standard) and as well to investigate the efficiency of the PCR with increasing 

dilutions of cDNA expressing the studied gene. Relative RNA amounts were calculated with 

relative standard curves for each mRNA of interest and GlycerAldehyde-3-Phosphate 

DeHydrogenase (GAPDH). Normalization against the house keeping gene GAPDH was 

conducted to account for experimental variability in terms of quality, concentration of total 

RNA, and RT efficiency. Results were analyzed using ABI Prism 7000 Sequence Detection 

software version 1.2.3. 
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TABLE RES-1  Primers tested for this study – Quantitative Real Time PCR 

Gene 

  

Sense Sequence Anti-Sense Sequence 

GAPDH 5′- TTCACCACCATGGAGAAGGC-3′ 5′- GGCATGGACTGTGGTCATGA-3′ 

TNF-α 5’-TGGCCTCCCTCTCATCAGTT-3’ 5‘-GCTTGTCACTCGAATTTTGAGAAG-3’ 

iNOS 5′-GCAGCCTGTGAGACCTTTG-3′ 5′-GCATTGGAAGTGAAGCGTTTC-3′ 

ATX 5’-TCCTGGAGAGAAGGGAGAGAAAG-3’ 5’-CAGCTCCTGTCATTCCAACATC-3’ 

ADIPO 5’-GACCCTAAAGCCATTATTGCTAA-3’ 5‘-GGGAAGGTGCTGTTTCATGT- 3‘ 

Resistin 5′-GTA-CCC-ACG-GGA-TGA-AGA-ACC-3 5′-GCA-GAC-CCA-CAG-GAG-CAG-3 

       

5. Immunohistochemistry (IHC): 

Immunohistochemistry and microglia labelling was performed on 10µm cryostat section. In 

brief, frozen brains were embedded in Tissue-Tek O.C.T. compound (product: 361603E, VWR 

Prolabo) before getting cut and mounted.  Slides were allowed to dry for 20 minutes at room 

temperature and post-fixed in 4%PBS-PFA. They were next washed in PBS (2 x 10 minutes) 

and antigen retrieval was performed in sodium citrate (pH 6) at 80°C for 5 min. For microglia 

labeling, slides were rinsed in distilled water then with PBS-triton 0.1% containing 1mM CaCl2 

and MgCl2 (PBST-Mg/Ca). A blocking step was performed immersing sections in PBST-

Mg/Ca with 1% BSA. Microglia labeling was realized by incubating slides for 2h with GSL I 

- isolectin B4 (FL-1201, Vector Labs). Sections were rinsed in PBST-Mg/Ca and cell nuclei 

were stained with DAPI. For astrocytes labeling, they were rinsed in PBS-triton 0.1% 

containing 1% BSA and incubated for 2h with anti-GFAP coupled with 488 dye (53-9892-80, 

e-Biosciences). Slides were finally rinsed in PBS-triton 0.1% and counterstained with DAPI 

before being mounting with the antifading medium Vectashield (Vector Laboratories Inc. 

Burlingame, CA) before conservation in a fridge at 4°C in the obscurity. 

 

6. Nikon fluorescent microscopy: 

Observations were carried out on an Eclipse 80i Nikon fluorescence microscope equipped with 

a Hamamatsu ORCA-ER digital camera. Micrographs were taken in the TIFF format using 

NIS Elements Software, allowing image superposition. Images were then prepared with ImageJ 

software for brightness or contrast adjustment before preparation of the figures. The 
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nomenclature is according to the Mouse Brain in Stereotaxic Coordinates, Third Edition by 

Keith B.J. Franklin and George Paxinos (Sep17, 2007).  

 

7. Statistical data analysis: 

Gene expression data were analysed by one-way analysis of variance (ANOVA) followed if 

significant by Tukey post-test for comparison of all pairs of data with multiple time points 

versus controls using GraphPad PRISM 5.01 software. Values were expressed as mean ± SEM 

with an N size of 3-8 performed in triplicate. A P-value of <0.05 was considered to indicate 

statistical significant difference. 

 

 

 



120 

 

RESULTS 

 

Dynamic expression of inflammatory markers - A time frame in vivo LPS kinetic study: 

In order to investigate the dynamic expression of inflammatory marker, we intraperitoneally 

injected OF1 mice with LPS (100µg/kg body weight). Next, we sacrificed mice at different 

time points (0, 2, 4, 6, 12, 24, 72, 120 hours) and  we analyzed inflammatory factor (TNF-α) 

fat tissue related factors (Adiponectin Autotaxin, Resistin) and oxidative stress factor (iNOS) 

gene expression using quantitative real time PCR in three brain regions: the cortex, the 

hippocampus and the cerebellum. 

The expression levels of the pro-inflammatory cytokine TNF-α were found to be significantly 

upregulated at 2 hours point of time period in the three regions of the brain: hippocampus, 

cortex and cerebellum, and still significantly increased at 4 hours in the hippocampus. Its 

expression levels plunged down to its basal control levels at almost 12 hours point of time 

(Fig.1 A, Fig.2 A, and Fig.3 A). 

A similar patterned expression of TNF-α’s levels were evident in case of iNOS for 

hippocampus and cerebellum. iNOS showed its transient expression peak at 4-6 hours points 

post injection in hippocampus, while the upregulation occurred at 2-4 hours in the cerebellum 

(Fig.1 B and Fig.3 B) but not in cortex (Fig.2 B) and their corresponding expression levels 

returned to its basal levels from 6 to 12 hours in the three brain regions studied. 

In response to LPS, the expression levels of anti-inflammatory cytokine adiponectin were 

found to be triggered at 6 hours, (Fig.1 C) 120 hour (Fig.2 C) and 24 hours (Fig.3 C) in 

hippocampus, cortex and cerebellum respectively. 

Transcriptional mRNA levels of Resistin showed its peak at 6 hours point of time period in 

hippocampus (Fig.1 D), whereas resistin failed to reach statistical significance in cortex and 

cerebellar tissues (Fig.2 D and Fig.3 D).  

Autotaxin mRNA levels were not statistically modified in the three regions of the brain (Fig.1 

E, Fig.2 E and Fig.3 E). 
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Dynamic expression of inflammatory markers - A time frame in vivo TMT kinetic study: 

Similar experiments were conducted with TMT (2mg/kg bwt) administrated intraperitoneally 

into mice. In vivo inflammatory effects of TMT on OF1 mice were determined by using real 

time PCR in hippocampus with variable points of time periods (0, 2, 4, 6, 12, 24, 72, 120, 192 

hours). 

 

In presence of 2mg/kg bwt of i.p TMT injection, the pro-inflammatory cytokine TNF-α showed 

its expression peak at 24 hours point of time period (Fig. 4 A) and the pro-oxidative factor 

iNOS at 4 hours (Fig. 4 B), whereas the anti-inflammatory cytokine Autotaxin and Adiponectin 

reached its statistical significant inflammatory response at 5 and 8 days respectively (Fig. 4 C 

and Fig. 4 D). 

 

Mild dosage of 100µg/kg LPS induced neuroinflammation but not glial cell activation:  

56 day old mice were subjected to low grade chronic inflammation by the administration of 

intraperitoneal LPS injections at concentration of 100µg/kg. Following LPS injections brains 

from mice for each time point of LPS treatment were investigated for the presence of microglial 

activation and reactive astrogliosis (glial cell activation) at specific points of time period 

including 24, 72, 120, 192 and 360 hours and were relatively compared to the PBS saline 

vehicle controls. Since TMT is well known for its potential impact in inducing microglial 

activation and reactive astrogliosis, we used TMT as our positive controls to compare the 

labelling between LPS and TMT treated mice brains. Isolectin B4 conjugates were employed 

to label microglial activation and glial fibrillary acidic protein GFAP antibodies were used to 

detect reactive astrogliosis in corresponding brain hemispheres with prime focus on dentate 

gyrus of the hippocampal brain regions.  

 

Following i.p LPS injections, no microglial nor astrocyte activation was observed with lectin 

and glial fibrillary acidic proteins labelling respectively (Figure 5). The expected reactive 

microglia cells were observed 3 days post TMT injection as well as reactive astrogliosis (Figure 

5).  
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DISCUSSION 

 

Communication between the cytokine network and brain is essential to maintain homeostasis 

of the CNS (Peferoen et al., 2014). Over the years, numerous studies have provided an insight 

into how the brain sense the presence of peripheral inflammation, but still the precise 

mechanisms responsible for the onset of this inflammatory response remains highly debatable. 

To further study the mechanisms underlying these observations, we subjected the mice to low 

grade chronic neuroinflammation and neurodegeneration with LPS and TMT treatments 

respectively and the potential mediators of neuroinflammatory, neurodegenerative response 

and the glial cell activation (microglial activation and reactive astrogliosis) in the mice brains 

were assayed by using quantitative real time PCR and immunohistological approaches. 

Inflammation in the CNS is differentially and tightly regulated in distinct regions of the brain 

such as hippocampus, cortex and cerebellum which are largely regulated by means of cytokines 

networking generated by the resident cells of the CNS (predominantly by microglia and 

astrocytes) in response to various environmental insults (Pierson et al., 2012; Perry and 

Teeling, 2013). Peripheral infection triggers transcriptional activation of genes. This reaction 

involves inflammatory and oxidative stress mediators and is highly dose and time dependent. 

This wide spread reactivity mediated by glial cells induces the expression of inflammatory 

genes, in which some genes are induced rapidly (early mediators of inflammation and oxidative 

stress - TNF-α, iNOS, Adiponectin, IL-1β, IκBα, CD14) whereas others will be detected from 

hours to days (late mediators of inflammation and oxidative stress - IL-6, COX, members of 

the complement family) (Kronfol and Remick, 2000).  

Taken together with our experimentation, more precisely in order to have a comprehensive 

understanding of the overall inflammatory response generated, we studied different localities 

of the brain (HIP, COR, CER) at defined points of time period (PBS Saline, 2h, 4h, 6h, 12h, 

24h, 72h, 120h, 192h and 360h) with defined dosage levels (LPS-100µg/kg, TMT-2 mg/kg) 

that should fetch us a logical conclusion of the overall coordinated brain inflammatory response 

happening in the CNS.  

LPS is a known inflammation inducing agent which triggers innate immune response 

characterized by the production of cytokines and immune system activation. Humans are more 

sensitive to LPS than mice, which can tolerate a dose up to a thousand times higher. For 

instance a dose of 1 µg/kg induces shock in humans (Warren et al., 2010). In conjunction with 
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the previous report, administration of Salmonella equi LPS (0.8 ng/kg) to healthy young human 

subjects resulted in negative effects on verbal and non-verbal declarative memory functions 

(long-term memory of human beings) and depression (Reichenberg et al., 2001; Cohen et al., 

2003). TMT is potential neurotoxicant well known for its neurodegenerative effects on the 

brain especially on hippocampus (Harry et al., 2004) and acts via TNFa pathway which plays 

a critical role for this neurodamage.  

In the current study we used LPS as a potential inflammation mimicking agent to study 

neuroinflammatory response in hippocampus, cortex and cerebellum, whereas TMT for 

studying neurodegenerative response of the hippocampus in the murine models. When once 

the LPS and TMT have been intraperitoneally injected, it diffused into   the mice system, 

 

Peripheral infection induced transient neuroinflammatory response in the brain: 

Adiponectin is a translation product of AdipoQ gene. The major actions of adiponectin includes 

the promotion of insulin sensitivity, increased glucose uptake, clearance of free fatty acids 

(FFA). It was also reported that, adiponectin antagonizes and counteracts the effects of TNF-α 

by negatively regulating its expression in various tissues such as liver and macrophages. (Ouchi 

and Walsh, 2008; Moschen et al., 2012) via the inhibition of endothelial nuclear factor kappa 

beta (NF-kβ) signalling through cAMP dependent pathway (Zhang et al., 2013). Adiponectin 

is the most abundant cytokine in the circulation but the levels of adiponectin are inversely 

proportional in obesity and diabetic subjects. Autotaxin also known as Lysophospholipase D 

(LysoPLD) is a type II ectonucleotide pyrophosphate phosphodiesterase secreted enzyme that 

catalyzes the transformation of albumin bound or membrane-derived lysophosphatidylcholine 

(LPC) to produce equimolar amounts of LPA and choline (Tokumura et al., 2002; Umezu-Goto 

et al., 2002) with the help of Lysophospholipase D activity. The specific binding of LPA to its 

LPA receptors triggers various physiological activities including blood vessel development, 

parturition, adipocytes differentiation and cellular proliferation. Elevated levels of Autotaxin 

expression was enhanced in frontal cortex of Alzheimer-type dementia patients as reported by 

(Umemura et al., 2006), multiple sclerosis [Hammack et al., 2004] and  cell type ATX specific 

expression in the brain has been upregulated during development and after neurotrauma 

(Savaskan et al., 2007). Despite the fact that, the role of these specific targets (ATX and 

ADIPO) in various physiological functions have been well defined, but the potential role of 

these inflammatory cytokines in CNS vulnerability still remains controversial. 
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This study showed the transcriptional mRNA expression of pro and anti-inflammatory 

cytokines in the neuroinflammatory LPS and neurodegenerative TMT models. A similar kind 

of study had also demonstrated the heightened production of IL-6, IL-1β and TNF-α in brain 

followed by intraperitoneal LPS injection (Teeling et al., 2010).  

Here in this present study for the first time we showed that, peripheral stimulation of OF1 mice 

induced a significant upregulation of ADIPO mRNA levels at 6, 120 hours (5 days), 24 hour 

in hippocampus, cortex and cerebellum respectively in LPS model, and at 192 hours (8 days) 

in hippocampus of TMT model. In addition to this we also demonstrated that, a significant 

increase of ATX mRNA expression could be detected at 120 hours (5 days) in the hippocampus 

of TMT treated mice, but autotaxin failed to reach its statistical significance in hippocampus, 

cortex and cerebellum in LPS treated OF1 mice. Recently we demonstrated that Autotaxin 

mRNA levels are expressed in  microglial cells and ATX’s overexpression downregulated 

LPS-induced microglial activation and pro-inflammatory cytokine production (TNF-α, IL-6) 

and elevated the upregulation of the anti-inflammatory cytokine (IL-10) suggesting that ATX 

could play a role in controlling neuroinflammation (Awada et al., 2014). 

Peripheral cytokines produced in response to inflammation are regulated in cascades, where 

the possible generation of one cytokine tends to augment the production levels of another 

cytokines and so on. For example, interleukin-1 stimulates the release of IL-2, IL-6, and TNF-

α. Circulating or endothelial cytokines can transduce a signal to neurons in the brain through 

informational substances such as Nitric oxide (NO) catalyzed by the enzyme inducible nitric 

oxide synthase (iNOS) further leading to signal amplification (Kronfol and Remick, 2000). 

This statement is in strong corroboration with our in vivo results in which we showed that post 

peripheral LPS injections the genes encoding iNOS are expressed in the brain where there is a 

significant upregulation of iNOS mRNA levels at 4h point of time period in hippocampus, 

cortex and cerebellum, associated with higher levels of resistin mRNA expression at 6h point 

of time period only in hippocampus but not in cortex and cerebellum. 

Low-grade chronic inflammation mimicked neuroinflammation but not glial cell activation: 

The brain is composed of about 1 to 5 trillion of supporting cells known as glia. Glial cells 

outnumbers the neurons in the brain. Microglia and astrocytes are the major sources of 

inflammatory factors that plays a decisive role in mediating inflammatory response in the CNS. 

Glial cell activation  is a hallmark feature of neurodegenerative disorders in which microglial 

activation triggered in response to infectious agents have been implicated and widely studied 
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in various neuroinflammation mediated neurodegenerative diseases such as Alzheimer disease 

(Mosher and Wyss-Coray, 2014; Johansson et al., 2015), Parkinson disease (Le et al., 2001; 

Gao et al., 2002; Gao et al., 2003) amyotrophic lateral sclerosis (Koutsilieri et al., 2002) and 

multiple sclerosis (Smith, 2001; Nelson et al., 2002; Klesney-Tait et al., 2006). Besides 

microglia, astrocytes are another cell type that responds to all sorts of insults in the CNS by a 

process known as reactive astrogliosis or astrocyte activation (Sofroniew and Vinters, 2010). 

The striking features of glial cell activation includes: the exhibition of cellular hypertrophy, 

increased phagocytic activity, have characteristic bushy appearance, exhibits remarkable 

morphological and phenotypic changes, upregulates the expression of inflammatory and 

oxidative stress factors that exhibits both protective and destructive actions towards the 

neighboring target cells (neuronal and glial cells) (Sofroniew, 2014). In order to validate our 

experimental hypothesis, whether this transient neuroinflammation generated in response to 

LPS probably due to microglia and astrocytes, we performed immunohistochemistry on LPS 

treated brains with varying time points of treatment (24, 72, 120, 192, 360 hours) and compared 

to corresponding PBS saline vehicle controls with our primary focus centered on microglial 

and reactive astrogliosis. Apart from LPS, since trimethyltin (TMT) is an organometal widely 

used over the years as a model of inducing hippocampal damage, we used TMT treated mice 

brains as our positive controls in order to compare the labelling of LPS induced microglial and 

astrocyte activation.  

Reactive astrogliosis can be characterized by the rapid synthesis of GFAP and is demonstrated 

by increase in protein content or by immunostaining with GFAP antibody (Eng et al., 2000). 

Expression of this filamentous glial fibrillary acidic protein have been found to be upregulated  

in various neurodegenerative disorders, traumatic brain injury and  stroke (Rosengren et al., 

1994; Rosengren et al., 1995; Herrmann et al., 2000; Nylen et al., 2002; Vos et al., 2004). 

The results of this study demonstrated that 100µg/kg LPS induced a transient inflammation in 

the brain without triggering microglial and astrocyte activation  

Altogether, our results suggests that (TNF-α), adipocytokines (ADIPO and RES), pro-oxidative 

enzyme (iNOS) and ATX are expressed in vivo in the brain in response to LPS and TMT 

treatments. These data showed that peripheral infection could induce a transient 

neuroinflammatory response in three distinct regions of the brain (HIP-COR-CER) that 

involved inflammatory cytokines and oxidative stress. Besides this, absence effect of astrocyte 

and microglial activation suggests that peripheral inflammation induced by infection, will not 
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induce neurodegeneration (unless a massive infection) but could prime the glial cells and make 

them more responsive to the next stimulation. 

Conclusively our results suggest that from the site of injection signals propagate from the 

periphery and reaches the CNS and that there is a potential link between peripheral infection, 

immune system activation and neuroinflammatory response in the CNS. Therefore, 

understanding the inter-related mechanisms of inflammation and oxidative stress generated as 

a result of peripheral infection coupled with glial cells and its potential response towards the 

CNS vulnerability are of great interest to find out the basic roots of neurodegenerative disorders 

that should open the doors to novel therapeutic strategies to fight against neurodegeneration. 

 

Overall Theme Of The Project 

 

Figure: Brain senses peripheral inflammation via cytokine signalling: This hypothesis 

proposes the secret talk between peripheral immune system activation and the central nervous 

system mediated via cytokine signalling. When once the stimulus in the form of peripheral 

inflammation  hits the system, the peripheral immune system will be activated that leads to the 

recruitment and  activation of local inflammatory cells such as macrophages and mast cells and 

upregulates the elevated production of inflammatory mediators (generation of Pro-

inflammatory cytokines, free radicals and chemokines). The inflammatory mediators thus 

generated in response to peripheral infection at the site of origin of inflammation travels inside 
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all along the host system acts via autocrine, paracrine and endocrine fashion and makes use of 

blood as a transporting vehicle to reach other systems (CNS).  

Endothelial cells present in the BBB are very stringent and restricts the entry to only few 

molecules to pass through the brain, but under compromised conditions these inflammatory 

mediators might cross the blood brain barrier and reaches inside the brain. It is also worth 

remembering that cytokines and its soluble receptors are not only present in immune cells and 

adipocytes, but also well expressed in the CNS. Inflammation in the CNS are largely mediated 

by glial cells especially by microglia and astrocytes. When once this inflammatory 

stimulus/mediators reaches the CNS, this reaction is further amplified or carried over by the 

glial cells and the same cytokines, nerve growth factors and trophic factors will be generated 

within selected regions of the brain.  

 

As a consequence of this reaction, when the stimulus in the form of stress signal (inflammatory 

mediators) acts upon  the brain cells, ramified resting microglia and brain resident astrocytes 

transforms into reactive migratory microglia (microglial activation) and activated astrocytes 

(reactive astrogliosis) which accelerates the recruitment of macrophages and activates 

signalling factors (NFkB, AP-1 or Nrf2, CREB). Depending on the intensity of the stimulus, 

the response might be detrimental or protective in the CNS. If the produced inflammatory 

mediators/cytokines are pro-inflammatory they confer neurodegenerative actions on 

neighboring target cells such as inducing neuroinflammation, neurodegeneration, dementia, 

affecting memory ultimately leading to central nervous system vulnerability. To a paradox if 

the cytokines produced are anti-inflammatory they confer neuroprotective actions such as 

glutamate uptake, neurotropic release and trophic factors release.  
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FIGURE LEGENDS 

 

Figure 1, 2, 3:  

Dynamic expression of inflammatory markers - A time frame in vivo LPS kinetic study:  

OF1 mice aged 8 weeks were subjected to inflammation in the absence or presence of intra-

peritoneal LPS injection (100µg/Kg bwt). mRNA encoding TNF-α (A),  iNOS (B), 

Adiponectin (C), Resistin (D), Autotaxin (E) levels were quantified in hippocampus, cortex 

and cerebellum by using Applied Biosystems quantitative Real Time-PCR. Results are the 

mean ± SEM from experiments performed having an N size 3-8. Statistics * p<0.05; ** p<0.01; 

*** p<0.001 LPS treated values (2,4,6,12,24,72,120 hours) were significantly different from 

control values (PBS Saline) as determined by one way ANOVA followed by post Tukey’s test 
(N=3-8 mice per group).  

 

 

Figure 4:  

Dynamic expression of inflammatory markers - A time frame in vivo TMT kinetic study: 

CD1 mice aged 8 weeks were subjected to inflammation in the absence or presence of intra-

peritoneal TMT injection (2mg/Kg bwt). mRNA encoding TNF-α (A), iNOS (B), Adiponectin 

(C), Autotaxin (D) levels were quantified in hippocampus by using Applied Biosystems 

quantitative Real Time-PCR. Results are the mean ± SEM from experiments performed having 

an N size 3-8. Statistics * p<0.05; ** p<0.01; *** p<0.001 LPS treated values 

(2,4,6,12,24,72,120, 192 hours) were significantly different from control values (PBS Saline) 

as determined by one way ANOVA followed by post Tukey’s test (N=3-8 mice per group). 

 

 

 

Figure 5: 

Microglial and astrocyte labelling with Isolectin IB4 and GFAP in the brain of adult mouse 

Representative examples of immunohistochemistry labelling for isolectin B4 (A, D, G, J, M, 

P, S), DAPI (B, E, H, K, N, Q, T), a nuclear marker. Merge corresponded to C, F, I, L, O, R, 

U. Representative examples of immunohistochemistry labelling for GFAP, DAPI corresponds 

to (a, b, c, d, e, f, g). 

GSL I-B4, Griffonia (Bandeiraea) Simplicifolia Lectin Isolectin B4; GFAP, Glial Fibrillary 

Acidic Protein; DAPI, 4,6-diamino-2-phenylindole. 
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Project-2: Article Introductory Preface 
 

Autotaxin Downregulates Lps-Induced Microglia Activation And                     

Pro-Inflammatory Cytokines Production 

 

Aim: Does overexpression of ATX downregulate LPS induced microglial activation? 

Experimental Design:  

 Murine Bv2 microglial cell line and cortical primary culture were cell cultured. 
 BV2 Microglial cells were stably transfected with pCDNA3 empty vector control and as 

well by the plasmid containing the cDNA of murine ATX. 
 Stably transfected cells were challenged with LPS at a concentration of 10ng-1µg/mL and 

1µM LPA for a time period of 4-24 hours. 
 LPS induced cytotoxicity levels were studied by means of MTT assay. 

 TNF-α, IL-10 and ATX mRNA time frame kinetic study were monitored by using qRT-
PCR. 

 Time frame kinetic study of TNF-α, IL-10 and ATX mRNA quantification by means of 
qRT-PCR. 

 Gene expression mRNA levels of TNF-α, IL-6, IL-10, ATX and LPAR1 were quantified by 
using quantitative real time PCR (qRT-PCR) approach. 

 Protein levels of TNF-α, IL-6, IL-10 levels were studied by using commercial ELISA kits. 
 Secreted LPA levels were determined by radio enzymatic assay 
 LPS stimulated microglial activation were investigated by the expression of membrane 

receptors CD11b, CD14, CD80 and CD86 using flow cytometry. 
 NF-kB and AP-1 activation were spectrophotometrically measured by using PNPP (para-

Nitrophenylphosphate) as a substrate on RAW-Blue macrophage reporter cell line. 
 

Principal Findings: 

 LPS elevated TNF-α and decreased IL-10 mRNA levels in BV2 cells. 
 LPS elevated ATX mRNA levels and induced LPA production. 

 Pro-inflammatory mRNA expression levels of TNF-α, IL-6 were significantly 
downregulated and the anti-inflammatory mRNA levels of IL-10 were significantly 
upregulated in ATX cells. 

 Pro-inflammatory protein production levels of TNF-α, IL-6 were significantly 
downregulated and the anti-inflammatory protein levels of IL-10 were significantly 
upregulated in ATX cells. 

 Microglial activation cell specific markers including CD11B, CD14, CD80, and CD86 were 
significantly lowered in the ATX cells under LPS pressure. 

 Conditioned media exposure on RAW-BlueTM cells from the overexpressing ATX clone 
partially inhibited LPS-induced NF-kB activation. 
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Project-3: Article Introductory Preface 
 

Role Of Adiponectin On Astrocytes Under Oxidative Stress Situation 

 

 

Aim: Does overexpression of ADIPO protect astrocytes against H2O2 induced oxidative 
stress? 

 

Experimental Design:  

 Murine CLTT astrocyte cell line were cell cultured. 
 CLTT astrocytes were stably transfected with pCDNA3 empty vector control and as 

well by the plasmid containing the cDNA of murine ADIPO. 
 Varying levels of overexpressing ADIPO clones were assessed by qRT-PCR. 
 Stably transfected cells were challenged with H2O2 at a concentration of 100µM for a 

time period of 24 hours. 
 H2O2 induced cytotoxicity levels were studied by means of MTT assay. 
 Gene expression mRNA levels of COX-2, iNOS, CAT, SOD, ADIPO and AdipoR1, 

AdipoR2 were quantified by using quantitative real time PCR (qRT-PCR) approach. 
 Astrocyte cell morphology and their nuclei were assessed by hematoxylin and eosin 

staining. 
 H2O2 induced intracellular oxidized proteins were studied by carbonyl ELISA kits. 
 H2O2 induced intracellular ROS generation were measured by DCF-HDA approach. 
 
 
 
Principal Findings: 

 Overexpressing ADIPO clone improved cell resistance against H2O2 mediated stress 
 Overexpressing ADIPO clone significantly mitigated ROS generated in response to H2O2.  
 Overexpressing ADIPO clone significantly mitigated H2O2 mediated ROS generation.  
 Overexpressing ADIPO clone significantly mitigated H2O2 mediated carbonyl protein 

accumulation.  
 Pro-oxidative mRNA expression levels of iNOS, COX-2 were significantly downregulated 

and the anti-oxidative mRNA levels of SOD and CAT were significantly upregulated in 
ADIPO cells. 

 H2O2 significantly elevated AdipoR1 mRNA levels in overexpressing ADIPO clone. 
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ABSTRACT   

Oxidative stress (OS) reflects that antioxidant defenses are overwhelmed with reactive oxygen 

species (ROS) generation, inducing cellular damages evidenced in several neurodegenerative 

disorders. Astrocytes, the most abundant glial cells in the central nervous system (CNS), appear 

as key players in neuroprotection. Adiponectin is an adipocytokine secreted by fat tissue, but 

also in other organs. Its functions in metabolism regulation are well described, but its role in 

the CNS during OS is still unclear. Here, we investigate the potential role of adiponectin in 

astrocytes submitted to OS.  

We subcloned the cDNA of adiponectin in eukaryotic expression vectors and stably transfected 

in mouse CLTT astrocyte cells. Overexpressing adiponectin cells, as monitored by qRT-PCR, 

as well as non-transfected cells were treated with hydrogen peroxide (H2O2). Relative toxicity 

was determined using trypan blue and MTT assays. Protein oxidation and ROS levels were 

quantified by measuring carbonyl content and rates of DCF oxidation, respectively. CLTT cell 

expression of adiponectin receptors (AdipoR1, AdipoR2), SOD, iNOS, COX-2 and Catalase 

expression were determined by qRT-PCR.  

We demonstrate that adiponectin overexpression in CLTT cells protect from OS-induced 

cellular damages, improve cell viability, reduce intracellular ROS formation and carbonylated 

protein accumulation. Pro-oxidative enzymes iNOS, COX-2 were inhibited in H2O2 treated 

cells while the anti-oxidative enzyme catalase was increase at both mRNA and activity levels.  

Our results suggest that adiponectin set up in the CNS could represent a mechanism to protect 

nervous system against oxidative stress induced during an inflammatory response. 

 

 

 

 

 

Keywords: Oxidative stress, neurodegeneration, astrocytes, adiponectin 
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Introduction 

Oxidative stress (OS) is the imbalance between reactive oxygen species (ROS) generation and 

the actions of antioxidant defenses [1]. ROS such as hydrogen peroxide (H2O2) are chemically 

reactive molecules containing oxygen, produced during cellular respiration and enzymatic 

activity and are involved in various signaling pathways [2]. However, ROS used to be 

considered potentially toxic because of their ability to damage vital cellular components, such 

as lipids, proteins and DNA, or act directly as a signaling molecule to activate apoptotic 

pathways and lead to cell death [3]. The human brain, even if it represents 2% of the body 

weight, uses 20% of breathed oxygen. The brain is also an abundant provider of transition 

metals and produces higher level of ROS than any other organs during increased oxidative 

metabolic state. 

Many evidences show that OS is one of the most important causes of neuronal injury and cell 

death in acute and chronic conditions. In consequence, many neurodegenerative diseases like 

Parkinson’s, Huntington’s and Alzheimer’s diseases and brain injury states such as ischemia, 

hypoxia and trauma have been shown to be coupled to increased OS level [4–6]. To maintain 

the brain functions, neurons and glial cells play an important role in modulating the cell death 

in addition to neuronal injury in neurodegenerative situations (Rojo et al., 2008). Glial cells 

which are about 10 fold more abundant than neurons in the brain, maintain the capacity to 

undergo cell division and replace themselves in the adult central nervous system (CNS) where 

most neurons cannot regenerate. The most important glial cells types in the CNS are: microglial 

cells which are the CNS macrophages and macroglial cells constituted by oligodendrocytes 

that constitute the myelin sheath and astrocytes which are star shaped cells that anchor neurons 

to blood supply with their numerous projections. Astrocytes, the most abundant macroglial and 

glial cells, were at first identified as cells holding neurons together and expressing the 

intermediate filament glial fibrillary acidic protein (GFAP). But this notion has evolved by 

subsequent findings that revealed many essential astrocytes functions in the CNS. In fact 

astrocytes maintain the brain regular physiology due to their regulation of the blood flow [7]. 

In addition, they are implicated in neurotransmission via glutamate uptake and glutamine 

release [8], in ionic buffering, in the elimination of  extracellular toxic compounds and  in the 

control of neurons functions via many secreted cytokines [9]. On the one hand, when a damage 

occurs in the CNS, astrocyte cells protect neurons by restricting neuroinflammation [10] and 

by an upregulation of antioxidants enzymes expression like superoxide dismutase (SOD) that 

decomposes superoxide to H2O2, in addition to glutathione peroxidase and catalase that are 
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both involved in conversion of H2O2 into water [11]. On the other hand, in response to brain 

insults, astrocytes can increase the expression of inducible nitric oxide synthase (iNOS) [12], 

and cyclooxygenase COX-2 [13] that induce the release of nitric oxide (NO) and prostaglandin 

(PGE) respectively, triggering detrimental role in neurodegeneration [14]. 

It has been recently suggested that adiponectin and its receptors could be involved in neuronal 

functions. Indeed, adiponectin presence has been described in human cerebrospinal fluid 

(CSF)[15], and the expression of adiponectin receptors Adipo R1 and R2 in neurons and 

astrocytes [16]. Adiponectin is an adipocytokine which secretion by white adipose tissue is 

reduced in obese patients, inhibits energy expenditure, promotes food intake centrally, and 

stimulates free fatty acids (FFA) consumption in peripheral tissues and plays a role in down 

regulating inflammation [16]. Adiponectin is involved in peripheral tissues OS mechanisms: it 

has been shown that adiponectin inhibits oxidative stress via generation of catalase and SOD 

in human prostate carcinoma cells [17]. Despite the expression of adiponectin in the CNS [18], 

its effects in neurodegenerative conditions is still unclear.  

Hence this study is achieved to evaluate the potential role of adiponectin in astrocyte cells 

submitted to oxidative stress.  Overexpressing adiponectin astrocytes were generated and 

submitted to an oxidative stress. Then we assessed the response of astrocytes to OS by 

evaluation of cells viability, estimation of the OS state and quantification of pro-oxidative and 

anti-oxidative enzymes expression.  
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Materials and Methods 

Cell Culture 

The astrocyte CLTT cell line derived from transgenic mice expressing a polyoma virus 

oncogene T was obtained from Pr. Philippe Gasque’s laboratory (GRI, la Reunion, France), 

and was cultured in Dulbecco's modified Eagle's medium (DMEM; Biotech, South America) 

with 10% fetal bovine serum (FBS with < 0.02 ng/mL endotoxin), L-glutamine (2 mM), 

penicillin (10000 U/mL), and streptomycin (10 mg/mL). Cells were grown in a 5% CO2 

incubator at 37°C. Confluent cultures were passaged 30 times maximum by trypsinization. For 

all experiments, cells were plated in triplicate for each condition, at a density of 10
4

cells per 

well in sterile 96-well plates for cytotoxicity analyses and at a density of 10
5

cells per well in 

sterile 6-well plates for reactive oxygen species (ROS) assays.  

 

Plasmid construction and generation of stable cell line  

Murin adiponectin (mAdiponectin) complete cDNA in pT7T3-Pac (clone image 1329799) 

were purchase from Geneservice (Cambridge, UK). To construct the recombinant pcDNA3.1-

Zeo-mAdiponectin vector, Clone image were submitted to a double digestion with EcoRI and 

NotI (NewEnglands Biolabs, Ozyme, France). The digested fragments corresponding to 

mAdiponectin were purified and finally subcloned in pcDNA3.1-Zeo(+) (Invitrogen, 

FRANCE) previously linearized with the same restriction enzyme and dephosphorylated with 

Calf Alkaline Phosphaste as indicated by manufacturer (NewEnglands Biolabs, Ozyme, 

France). Ligation was performed using fast ligation system as describe by supplier (Promega, 

Madison, USA). To reduced self-ligation of vector, EcoRV (Promega, Madison, USA) were 

added at the end of ligation reaction. Insert in pCDNA3.1-zeo (+) was controlled by DNA 

sequencing (Genoscreen, France).  

CLTT cells were plated in sterile 6 wells plates then transfected with 2 μg of pCDNA3.1zeo 

(+) vector alone (empty-vector control) or pCDNA3.1-zeo (+) expression vector containing the 

cDNA of adiponectin using Lipofectamine and Plus Reagent (Invitrogen, France). Stable 

transfectants were selected with 700 µg/mL Zeocin (Invivogen,USA) for 48 hours. A control 

clones empty-vector (EV) and adiponectin-overexpressing clones (Adipo) were chosen for 

characterization. All further experiments were performed on at least three independent 

experiments with selected clones.  
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Hydrogen peroxide (H2O2) Treatment 

CLTT untransfected, empty-vector-transfected cells (EV) and adiponectin-overexpressing 

cells (Adipo) were cultured in 96-, 6- or 4-well plates. Once 80% confluent, cells were washed 

and fresh medium containing hydrogen peroxide (H2O2) (sigma, France) was added for 24 

hours. In control experiments untransfected CLTT were culture in presence of recombinant 

adiponectin 10µg/mL (mAcrp30, Biological industries; KBH Israel). This concentration was 

used based on previously published data [19]. For almost all the experiments H2O2 treatment 

concentration was 100µM, except for MTT assay where increasing concentrations of H2O2              

(50 µM-1000 µM) were added for 24 hours. Upon medium change, individual wells of 

confluent cells were randomly assigned to serve as controls with normal culture medium.  Cell 

viability was assessed by trypan blue counting.   

 

MTT assay 

A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Sigma, France) assay 

was conducted to evaluate the effect of H2O2 on cell proliferation. The MTT assay is based on 

cleavage of a yellow tetrazolium salt (MTT) by metabolically active cells, yielding a purple 

formazan, which can be photometrically quantified. An increase in the number of living cells 

results in an increase in total metabolic activity and thus increased color formation. After 

overnight incubation of cells in the presence of various reagents, MTT dye (5 mg/mL) was 

added to each well, followed by 4 h of incubation. After the medium was discarded, 100 μL of 

dimethylsulfoxide (DMSO) (Sigma, France) was added to each well and plates were agitated 

in the dark for 30 min to solubilize the resulting dark blue formazan crystals. Plates were read 

using a microplate reader at a wavelength of 595 nm.  

 

Cell viability 

Cell viability was monitored by the trypan blue exclusion technique. Briefly, 20 μL of trypan 

blue (Sigma, France) was added to 20 μL of cell suspension; cell count was assessed by 

Mallasez counting chamber and results were expressed as the percentage of dye-impermeable 

cells to the total cell number. 

 

Cytology staining 

To assess cells morphology, cell nuclei were stained blue with hematoxylin (Vector 

Laboratories, Cliniscience, France), and cytoplasm was counterstained red with eosin. CLTT 
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cells, EV cells, Adipo-overexpressing cells were seeded on glass coverslips (Assistant, 

Germany) in four-well plates and randomly selected wells were treated with 100 μM H2O2 

(control cells were untreated). After 24 h treatment, cells were fixed in pure acetone at −20°C 

for 5-10 min and stained with hematoxylin solution. Cells were washed 10 times in 2% glacial 

acetic solution and incubated in bluing solution (1.5 mL of ammonium hydroxide (NH4OH) 

30% stock solution in 98.5 mL of 70% ethanol (C2H6O)) for 1 min, rinsed with water, and 

stained by incubation with eosin solution for 7 min. Cells were imaged using a Nikon Eclipse 

microscope and NIS-Element software (Nikon, USA). 

 

Quantification of astrocyte genes expression by real time q PCR 

Twenty-four hours after treatment in six well-plates, total RNA was extracted from cell cultures 

using Trizol reagent (Invitrogen, France). RNA integrity was checked by running an aliquot 

containing 1 μg of RNA on agarose gel stained with ethidium bromide (Et Br).  RNA (6 μg) 

was reverse transcript to cDNA using Random Primers hexamers (Sigma, France) and 1 µL of 

200 U RT superscript II enzyme (Invitrogen, Canada) incubated  for 50 min at 42ºC. The cDNA 

was amplified by PCR (ABI Prism), using the SYBR green master mix and two specific 

oligonucleotide murine primers (purchased from Eurogentec, Belgium). The primer sequences 

for all studied genes expression are cited in table 1. Each PCR cycle was run for 15 s at 95°C 

and 1 min at 60°C. For each gene expression a standard curve was established and mRNA 

quantified. Results were analyzed using ABI Prism 7000 SDS software. All primer mRNA 

levels were normalized to GAPDH.  

 

Quantification of intracellular ROS levels 

After Twenty-four hours treatment, cells were washed with PBS and incubated for 30 min at 

37°C with 10 μM dichlorohydrofluorescein diacetate (DCF-HDA). Then, cells were washed 

once with PBS, and the fluorescence intensity of the oxidized form 2′, 7′ dichlorofluorescin 

(DCF) was measured in presence of PBS, in a 96 well spectrofluorimeter microplate reader 

(BMG Labtech, Germany) at 492 nm (excitation) and 520 nm (emission).  Fluorescence values 

per well were calculated after control value subtraction, by the formula: (Fx − F0) / Total cell 

number per well, where Fx = fluorescence of the sample x and F0 = fluorescence of the control 

using identical conditions without cells. Values expressed in percentage of ROS generation 

were normalized by division of the value in each treated cell type over the untreated of the 

same type (CTRL). 
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Quantification of intracellular oxidated proteins: Carbonyl contents by ELISA 

Confluent cells in six well plates, treated or not, were scraped with cold PBS then lysed with 

50 μl of lysis buffer (Tris 25 mM, KCl 10 mM, EDTA 1mM and Triton 1%). Carbonylated 

proteins were analysed as previously described [20]. Briefly, Protein concentration 

measurements were perfomed on cell lysates using the bicinchoninc acid agent. carbonylated 

proteins were analysed using an Oxyblot kit (oxyblot Detection, Chemicon International Inc). 

Absorbances were red at 450 nm and subtracted from the absorbance at 570 nm. The data were 

shown as a function of increasing amount of protein and the degree of oxidation (carbonylation) 

of modified proteins and was calculated as follows: % carbonyl = [(B−A)/A] ×100, where A is 

the slope value of carbonylated proteins in cells expressing adiponectin and B is the slope value 

of control proteins cells (in this experiment protein levels in CLTT and EV at basal conditions 

or after treatment were considered as control). 

 

Catalase activity assay 

The catalase activity assay is based on the properties of catalase enzyme to reduce hydrogen 

peroxide (H2O2) into oxygen (O2) and water (H2O) [21]. Transfected and non-transfected 

CLTT cells were grown to near confluence in 25-T flasks before treatment with and without 

H2O2 (100 µM) in DMEM-BSA 1% for 4 hours. After these stimulations, treated cells were 

washed with PBS and lysed with 200 µL of phosphate buffer (NaH2PO4 [50 mM], protease 

inhibitor, pH 7.4) using a Hielscher GmbH ultrasonic device model UP200S (4 probe 

sonications for -10 sec, pause 60 sec, amplitude 70% on ice) and stored at -80°C. Assays were 

carried on approximatively 80 µg of protein lysate in 50 mM phosphate buffer (pH 7.4). A first 

measure at 240 nm is performed with only the samples (blank) before adding 80 µL of H2O2 

(10 mM final) to start the reaction. Catalase activity was assayed spectrophotometrically by 

measuring the decrease in absorbance of H2O2 at 240 nm in Infinite M200 pro 

spectrophotometric analyzer (TECAN). The decomposition of hydrogen peroxide initially 

follows that of a first-order with H2O2 concentration and the rate constant K for the overall 

reaction is given by: 
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t
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Each measurement was considered with 4 replicates and data are expressed as catalytic unit 

(U) per mg of total protein. Protein concentrations of cell lysates were measured according to 

the bicinchoninic acid (BCA) method. 

Statistical analysis 

Data were expressed as the means ± Standard error of the mean (SEM) from three independent 

experiments, which were each performed in triplicate. Statistical analyses were performed 

using unpaired Student's t tests or one-way ANOVA (followed by the Tukey test). In some 

cases, two-way ANOVA was used for multiple comparisons. P values <0.05 were considered 

statistically significant. 

 

 

Results 

Expression of adiponectin, Adipo R1 and R2 receptors in astrocyte cells 

We confirmed that the astrocytic CLTT cells expressed adiponectin receptors adipoR1 and 

adipoR2. These receptors expression has been demonstrated on human astrocytic cells and in 

rat brain  [22][18][15]. As assessed by quantitative real time PCR (qRT-PCR) the level for 

adiponectin was low but detectable as well as the level of adipo R2. The level of AdipoR1 was 

higher (data not shown).  Adipo R1 and Adipo R2 protein levels in the cells were also 

investigated by western blot and low levels were detected (data not shown). 

 

Characterization of stably adiponectin-transfected astrocyte cells 

To evaluate the effects of adiponectin over expression, CLTT cell line has been transfected 

separately with pcDNA3.1-Zeo (+) empty vector (EV control cells) or with pcDNA3.1-Zeo (+) 

containing murine adiponectin cDNA (Adipo cells). Stably transfected cells were used to 

investigate the role of adiponectin in the astrocyte cells response to oxidative stress. To have 

the best assessment we selected several clones from each transfected CLTT. Then by qRT-

PCR we found that adiponectin was significantly overexpressed in two clones, with clone 3 

expressing the most abundantl (Fig 1). We selected this clone for the upcoming experiments. 

As the expressions of adiponectin were similar CLTT and EV cells, either cellular types have 

been used as controls for the following experiments. 
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Effect of adiponectin on H2O2 - mediated stress  

To evaluate if there is any protective or deleterious effect induced by adiponectin on astrocytes 

viability in OS states, we investigated the relative cellular metabolic activity and the cell 

proliferation (MTT assay) and the cell viability (trypan blue counting). CLTT, EV and Adipo 

were treated with H2O2 (50-1000 μM) which represents an acute oxidative stress for 24 h. In 

presence of H2O2, overexpression of adiponectin maintained the metabolic activity induced 

high levels in presence of 50 to 500 µM of H2O2 in comparison with EV or CLTT cells (Fig 

2A). Therefore, in the following experiments, we chose a H2O2 concentrations of 100 µM for 

cellular treatments for 24 h. This concentration has been chosen as physiologically, in extreme 

conditions as oxidative burst during pathogen invasion H2O2 concentration can reach 100 µM 

locally in vivo (Chen et al.).  

In addition, cell viability was assessed by the trypan blue exclusion technique after treatment 

with 100 μM H2O2. As shown in (Fig 2B), the adiponectin overexpression increased 

significantly cells viability in comparison with EV cells. Furthermore, this protective effect 

was confirmed in CLTT non-transfected cells in presence of recombinant adiponectin (Fig 2B). 

Cell morphology was investigated by Hematoxylin-eosin staining. Overexpression of 

adiponectin modified the cell morphology, which appeared bigger, rounder and showed a loss 

of the star-shape, typical of astrocytes (Fig 2C). Upon exposure to 100 μM H2O2, many control 

cells lost their star-shaped morphology. In contrast, some adiponectin overexpressing cells 

cultured for 24 h in presence of 100 μM H2O2 maintained the round shape seen without 

treatment, whereas others appears stretched out. These results showed that adiponectin 

improved cell resistance against H2O2-mediated stress. 

Adiponectin effect on the regulation of oxidative stress  

To assess the regulation of OS in presence of adiponectin, two techniques have been used, 

namely, DCF-HDA and Carbonyl ELISA. We evaluated intracellular ROS levels using              

DCF-HDA assay in basal conditions considered as control and in treated cells with H2O2. 

Results showed that treatment with H2O2 increased significantly ROS generation in CLTT cells 

as well as in cells transfected with the EV cells. Addition of recombinant adiponectin in non 

tranfected cells or overexpression of adiponectin (adipo clone) regulates ROS generation as 

compared to CTRL after H2O2 treatment (Fig 3A). As an index of OS, we evaluate also the 

amount of carbonyl content in modified proteins using Carbonyl ELISA based on 

phenylhydrazine formation reaction. As shown in figure 3B, H2O2 treatment induced an 

accumulation of oxidized proteins in the controlled cells. A decrease in protein oxidation was 
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observed when adiponectin is overexpressed is the non-stressed cells and this low amount of 

oxidated proteins is maintained after H2O2 treatment. 

 

Expression of pro and anti-oxidants enzymes in adiponectin overexpressing cells 

Adiponectin overexpression in non-treated astrocytes down regulated the pro-oxidative 

enzymes COX-2 and iNOS. In response to H2O2 treatment, COX-2 and iNOS mRNA levels 

were statistically increased in CLTT and EV cells, while the level of COX-2 remained very 

low in overexpressing adiponectin cells (Fig 4A and B). A similar pattern of response was 

observed with iNOS, but did not reached significance during OS (Fig 4B).  

There was not significant change in SOD or Catalase mRNA expression due to OS in CLTT 

cells. But once adiponectin was present an important variation in antioxidative enzymes was 

seen in comparison with CLTT (CTRL). The adiponectin overexpression induced an increase 

in SOD mRNA expression in basal and under OS situations (Fig 4C). While an increase of 

catalase mRNA expression was observed only in OS situations (Fig 4D). The changes in 

mRNA level seen with SOD were not observed for its activity (Fig 5B). In accordance with 

mRNA expression results, there were no significative differences in catalase activity attributed 

to oxidative stress induced by H2O2 treatment in transfected astrocyte cells as well as non-

transfected CLTT.  Besides, as shown in figure 5A, adiponectin overexpression in CLTT cells 

induced an increase in catalase activity in normal and oxidative conditions. By contrast, no 

upregulation of catalase activity is noticed for adiponectin transfected cells due to oxidative 

stress. Thus in OS conditions, adiponectin down regulated pro oxidant and up regulated anti-

oxydant enzymes. 

Expression of AdipoR1 and AdipoR2 receptors 

To determine the effect of OS on the expression of Adipo R1 receptors, we assessed their 

expression by qRT-PCR after OS formation. The overexpression of adiponectin upregulates 

Adipo R1 expression in basal state and after H2O2 treatment (Fig 6). No significative difference 

was observed between CTRL cells (CLTT and EV cells). Adipo R1 expression increased in 

presence of adiponectin in basal state and in OS situation. No significant change in Adipo R2 

expression was observed upon H2O2 treatment (data not shown). 

The presence of adiponectin receptors in CLTT cells was monitored by fluorescence 

microscopy after immunostaining and no receptors were detected in untransfected cells. 

However, in cells overexpressing adiponectin a detectable fluorescence appears due to Adipo 

R1 presence (data not shown).  
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Discussion 

Neurodegenerative diseases are a major health issue and with the increase of aging population 

the rate of people affected by these diseases are likely to continue to progress. 

Neurodegenerative diseases are usually associated with OS which plays a key role in CNS cells 

death [23].  Adiponectin is an abundantly expressed adipokine in adipose tissue and has 

recently attracted much attention because of its antidiabetic and antiatherogenic effects [5]. In 

addition to these peripheral actions, adiponectin has also been reported to have central actions 

[24]. It has been shown to be present in the CSF of rodents and human  and to enter the CSF 

from the circulation [15].  

Beside its anorexigenic effects [25], other roles of adiponectin in the CNS has been recently  

investigated. Studies with mice deficient, overexpressing or injected with adiponectin 

demonstrated that adiponectin have protective effects in ischemic stroke through endothelial 

nitric oxide synthase and by inhibiting NADPH oxidase-mediated oxidative damage  [26,27]. 

The protective effects of adiponectin are not limited to ischemic stroke, as osmotin, a plant 

homolog of adiponectin protect against ethanol-induced apoptotic neurodegeneration in the 

developing brain [28]. Furthermore, in vitro, Adiponectin protects hippocampal neurons from 

excitotoxicity induced by kanaic acid [29].  

In addition to adiponectin presence, the adiponectin receptors adipoR1was found to be 

expressed in most the region of the brain while adipoR2 expression was more restricted to 

region such as cortex, hippocampus and hypothalamus [25]. 

Different cell types in the brain express adiponectin receptors including endothelial cells, 

neurons and astrocytes [18,30,31].  

We confirmed the expression of adiponectin  receptors in the cellular model of astrocyte (CLTT 

astrocytic cell line) we used in this study in agreement with previous study in vivo and in other 

cell lines [18,22]. To evaluate the potential role of adiponectin in astrocytes submitted to OS,   

we stably transfected the CLTT astrocytic cells with a plasmid overexpressing adiponectin and 

submit these cells to OS (H2O2 challenge). Here, we show that adiponectin had a protective 

effect against cell-death induced OS. The role of adiponectin in the astrocyte cells is further 

supported by the decreased free radical formation and reduced accumulation of carbonylated 

proteins observed in adiponectin overexpressing cells treated with 100µM H2O2. The 

concentration used in our study may be physiologically relevant, and could be encountered in 

vivo under extreme conditions [32].  
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Our results are in agreement with studies in others cell types showing an inhibition of oxidative 

stress by adiponectin in colon cancer [17], in hyperlipidemia [33] as well as in cardiac and 

cerebral ischemia [27,34].  

Several studies have demonstrated inhibition of adiponectin secretion during inflammation 

[35]. OS connects the inflammation of adipose tissue to ROS generation and the inhibition of 

adiponectin secretion. In addition, H2O2 treatment in cultured adipocytes confirms the negative 

modulation of adiponectin by OS (42). This is in agreement with our results showing that ROS 

generation in astrocyte cells after H2O2 treatment tends to down regulate the adiponectin 

expression suggesting the same effect in the CNS (data not shown).   

Adiponectin appears to  modulate OS via upregulation of anti-oxidative enzymes as SOD that 

transform the ion superoxide (O2- ) to H2O2 coupled with Catalase action that abolish 

cytotoxicity effect of H2O2 via converting it to water. Our data are consistent with previous 

work showing that adiponectin inhibits oxidative stress via generation of catalase in human 

prostate carcinoma cells [17]. SOD seems to have modification of its mRNA level, while its 

activity didn’t change significantly. This difference in regulation between mRNA and activity 

has been already described. In addition, adiponectin presence induces a down regulation of 

pro-oxidative stress enzymes triggering a decrease of proteins oxidation. 

AdipoR1 and AdipoR2, the two adiponectin receptors, appear to be integral membrane 

proteins; the N-terminus is internal and the C-terminus is external-opposite to the topology of 

all other reported G protein-coupled receptors (GPCRs) (40). AdipoR1 and AdipoR2 serve as 

receptors for full-length adiponectin and mediate increased AMP-activated protein kinase 

(AMPK), peroxisome proliferator-activated receptor (PPAR)-alpha and p38 MAP kinase 

activities as well as fatty-acid oxidation and glucose uptake by adiponectin.   

Adiponectin adjusts generation of OS-related products in the liver and adipose tissue via adipo 

R1 and R2 receptors by increasing AMPK activation and PPARα signaling pathways, 

respectively. Activation of AMPK reduced gluconeogenesis, whereas expression of the 

receptors increased fatty acid oxidation and lead to a regulation of glucose and lipid 

metabolism, inflammation and oxidative stress in vivo (43). The antioxidant effects of 

adiponectin have been recently linked also to activation of AdipoR1 and the resulting 

downstream release of intracellular calcium together with increased activation of AMPK (44). 

AdipoR1 and AdipoR2 were found to be abundantly expressed in the hypothalamus, and their 

expression levels were comparable to those in the liver (40). In addition, the expression of 
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AdipoR1 increased significantly action in overexpressing adiponectin cells (Adipo) during OS 

(Fig.6), whereas that of AdipoR2 remained unchanged (data not shown).   

In conclusion, our study shows for the first time that adiponectin modulate the OS in astrocytes 

and could be objects of interest as new therapeutic targets in neuroprotection strategies due to 

their protective effect on astrocytes cells.  
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Figure legends 

Figure 1 : Characterization of stably adiponectin-transfected astrocyte cells. 

Adiponectin mRNA levels were quantified after 24 hours of culture from CLTT cells 

transfected with pcDNA3.1-Adiponectin (clones 1,2,3,4 and 5) or empty vector (EV 1, 2 and 

3), or from untransfected CLTT cells. Results are the mean ± SD from experiments performed 

in triplicate. ***p<0.001 significantly different from CLTT as determined by Dunnett’s t-test 

post hoc analysis following a significant overall ANOVA. 

 

Figure 2: Hydrogen peroxide effect on adiponectin overexpression cell proliferation and 

viability. 

Non transfected cells (CLTT), Empty-vector (EV), adiponectin (Adipo) transfected cells and 

recombinant adiponectin treated cells were incubated for 24 h at 37ºC in the absence or 

presence of H2O2. Various concentrations of H2O2 were used for proliferation MTT assay (A). 

After incubation with 100 μM H2O2 for 24 h, the cell viability was evaluated by trypan blue 

exclusion (B) and the cell morphology was visualized following cell H&E staining as described 

in the methods section (C). Bars correspond to 20 μm. Results are the mean ± SD from 

experiments performed in triplicate. ***p<0.001 values were obtained using Tukey’s two ways 

ANOVA to compare Adipo with EV cells (n=3). 

 

Figure 3: Effect of adiponectin overexpression on oxidative stress. 

Intracellular ROS generation was evaluated by DCF-HDA assay (A) in CLTT and recombinant 

adiponectin treated cells incubated for 24 h in the absence (CTRL) or presence of 100 µM 

H2O2.  Evaluation of carbonyl contents using Carbonyl ELISA (B) was performed on non-

transfected cells (CLTT), Empty-vector (EV), adiponectin (Adipo) transfected cells  incubated 

for 24 h in the absence (CTRL) or presence of 100 µM H2O2. EV cells were used to assess the 

carbonyl formation in absence of adiponectin. Results are the mean ± SD from experiments 

performed in triplicate. *P<0.05 and **P<0.01 compare to control cells using Tukey’s two 

ways ANOVA for unpaired samples (n=3).  

 

Figure 4: Regulation of anti-oxidative and pro-oxidative enzymes expression via 

adiponectin’s overexpression during oxidative stress. 

Non transfected cells (CLTT), Empty-vector (EV) and adiponectin (Adipo) transfected cells 

were incubated for 24 h in the absence (CTRL) or presence of 100 µM H2O2. Adiponectin’s 
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effect respectively on COX-2 (A), iNOS (B), SOD (C) and Catalase (D) expression were 

evaluated by Real Time Q-PCR. Catalase activity (A.U/100 mg protein) of non-transfected 

cells (CLTT), EV and Adipo transfected cells incubated for 4 h in the absence (CTRL) or 

presence of 100 µM H2O2 (E). Results are the mean ± SD from experiments performed in 

triplicate or quadruplet. Tukey’s two ways ANOVA analysis is *P<0.05, **P<0.01 and 

***P<0.001 compared to non-tranfected CLTT. 

 

Figure 5: Regulation of catalase and SOD activity via adiponectin’s overexpression 

during oxidative stress. 

Non transfected cells (CLTT), Empty-vector (EV) and adiponectin (Adipo) transfected cells 

were incubated for 24 h in the absence (CTRL) or presence of 100 µM H2O2. Catalase (A) and 

SOD (B) activities (A.U/100 mg protein) of non-transfected cells (CLTT), EV and Adipo 

transfected cells incubated for 4 h in the absence (CTRL) or presence of 100 µM H2O2. Results 

are the mean ± SD from experiments performed in triplicate or quadruplet. Tukey’s two ways 

ANOVA analysis is *P<0.05, **P<0.01 and ***P<0.001 compared to non-tranfected CLTT. 

 

Figure 6: Overexpression of adiponectin upregulates the expression of Adipo R1 and 

Adipo R2 receptor. 

Non transfected cells (CLTT), empty vector (EV) or adiponectin (ADIPO) transfected cells 

were incubated for 24 hours in the absence or presence of 100 µM H2O2. Adipo R1 and Adipo 

R2 mRNA expression were assessed by Real time q-PCR. Results are the mean ± SD from 

experiments performed in triplicate. Tukey’s two ways ANOVA analysis for RT q-PCR results 

is *P<0.05 compared to non-tranfected CLTT.  
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FIGURE R-1 Results Defined 
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Global Discussion of Thesis: 
This section discusses and emphasizes the key findings of the thesis. A more detailed 

elucidation of the results and further information on the association between adipocytokines 
and its impact on central nervous system can be found in the corresponding articles. 

The impact of adipose tissue had gained significant importance during early 1990’s with the 
discovery of leptin. This had made the researchers to ponder about the impact of 
adipocytokines in health and disease. Substantial data in the arena of adipose tissue biology 
strongly affirms that obesity is one of the crucial factor and is responsible for the onset of 
various pathophysiological diseases including insulin resistance (Kahn and Flier, 2000), T2DM 
(Eckel et al., 2011), CVD and atherosclerosis (Rocha and Libby, 2009). But the recent advances 
in neuroimmunological research and as well multiple clinical studies reveals the detrimental 
effects of adiposity on neurodegenerative diseases. For example, one of the first and foremost 
scientific report on the association between adiposity (higher BMI) and Alzheimer’s disease 
were published by Deborah Gustafson on 2003, who stated that “Overweight at high ages is a 

risk factor for dementia, particularly AD, in women” (Gustafson et al., 2003). Following this 
research, several other studies reported the potential link between obesity and 
neurodegeneration (Bruce-Keller et al., 2009; Debette et al., 2010). These significant 
discoveries for nearly two decades had buildup to lay even more concrete foundation in 
understanding the relation between adipocytokines and central nervous system.  

Control of energy homeostasis requires communication between brain and adipose tissue 
(Turtzo and Lane, 2002). Many chronic neurodegenerative diseases such as Alzheimer’s and 
Parkinson’s disease have been associated with physiological processes of inflammation and 
oxidative stress in the CNS in which glial cells such as microglia and astrocytes were found to 
be the  key players involved in neurodegeneration. Besides the active involvement of these 
glial cells in repairing the CNS, microglia and astrocytes were found to be the richest sources 
of cytokines and adipocytokines (Leptin, ADIPO and ATX) found in the brain. It is also worth 
noticing that these adipocytokines and their receptors are not only expressed in the adipose 
tissue but well expressed in the CNS. Despite of the accumulating information indicating the 
involvement of adipocytokines on CNS vulnerability, the precise mechanistic pathways 
responsible for the onset of variable changes in the CNS remains uncertain.  

Henceforth, we aimed to investigate the properties (inflammatory and oxidative stress) of the 
factors produced by the adipose tissue (Autotaxin and Adiponectin) and their potential 
implication in neuroinflammation and neurodegeneration. The potential of these two factors 
were evaluated, both in vitro in glial cell lines (microglia and astrocytes) and in vivo in 
neuroinflammatory, acute hippocampal neurodegenerative mice models. In order to 
accomplish this task, we designed our experimental setup into three individual projects. The 
results thus obtained from these three projects were conglomerated to have an overall 
opinion that should fetch us a rational conclusion on how these factors secreted by the adipose 
tissue are acting on the brain glial cells both in vivo and in vitro.  
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Adiponectin, Resistin and Autotaxin Expression in Neuroinflammation and 

Neurodegeneration  

The current study was undertaken to characterize the gene expression of inflammatory 
mediators generated in response to defined intraperitoneal LPS and TMT stimulations in vivo 
in mice. In addition to this, we also examined microglial activation and reactive astrogliosis 
with respect to LPS stimulus that should lead us to comprehend the mechanisms underlying 
the nexus between immune system activation towards brain signalling following peripheral 
inflammation. Various neuroimmunologists had doubted the fact that peripheral immune 
system could signal the brain? This is majorly due to the assumption that cytokines could not 
cross the bloodbrain barrier. BBB exceptionally refines all the biomolecules such as (glucose, 
amino acids, soluble lipids), gases such as (O2, CO2) water, hormones, cytokines (McLay et al., 
1997) and selective antibiotics (Raza et al., 2005) that allows to pass through the brain. Under 
compromised conditions, the cells lining BBB will lose its selective permeability in allowing 
these molecules, thereby microscopic infectious agents such as bacteria, virus and various 
pathogenic agents diffuses into the brain which ultimately leads to vulnerable brain status. 
However, recent works have demonstrated that there are several routes by which peripheral 
cytokines can either directly cross the BBB or indirectly signal the brain through other 
informational substances (iNOS, IL-1) or via the leaky regions of endothelia under 
compromised brain status (Kronfol and Remick, 2000). 

Growing body of evidences on immune to brain interactions suggests that, activated 
peripheral immune system in response to exogenous or endogenous insults cross talk with 
the CNS mediated via cytokine signalling. For example, peripheral cellular immune activation 
and cytokine response to low grade inflammation (LPS-100µg/kg) and their potential impact 
towards brain can be justified from the works of Teeling and his team. In this work, the 
authors had demonstrated that the expression and secretion of cytokine signalling factor IL-

1β was found to be significantly upregulated in peripheral organs such as liver and spleen with 

respect to LPS treatment. Cells expressing IL-1β were morphologically recognized to be 
Kupffer cells and neutrophils in the liver, and dendritic cells and neutrophils in spleen (Teeling 
et al., 2007). Another study from Quan et al in 1997 put forward that peripheral 

administration of 2.5 mg/kg bwt of LPS into mice induced the upregulation of IkB-α mRNA. 
IkB controls the activity of NFkB, which regulates the transcription of many immune signal 

molecules. IkBα thus produced were found to be highly localized especially in endothelial cells, 
astrocytes rather than microglia or perivascular monocytes. This data represents that 
cytokines signals had reached brain parenchyma and importantly, the responsive astrocytes 
are probably producing centrally derived cytokines (Quan et al., 1997). 

LPS is the outermost layer of gram negative bacteria which elicits strong innate immune 
response both in animals and humans. Gram negative bacteria are responsible for mounting 
various kinds of inflammation related infectious disorders in the brain such as meningitis. Since 
LPS produces pronounced inflammatory effects in both animals and humans, interaction 
between LPS and inflammation related toll like receptor (TLR) has been widely used to study 
inflammation related disorders both in vitro and in vivo. Peripheral infection with LPS triggers 
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transcriptional activation of genes that could induce a transient neuroinflammatory response 
in the brain mediated via microglia, astrocytes in the brain parenchyma. This reaction involves 
inflammatory and oxidative stress cytokines and is highly dose and time dependent. This wide 
spread reactivity mediated by these cells mimics the expression of genes, in which some genes 

are induced rapidly (early mediators of inflammation and oxidative stress - TNF-α, iNOS, 

Adiponectin, IL-1β, IκBα, CD14) whereas others will be detected from hours to days (late 
mediators of inflammation and oxidative stress - members of the complement family, COX, 
IL-6). TMT is a derivative of tin and is used as a plastic stabilizer. It distributes throughout the 
body and is well known for its toxic effects on CNS that produces sound effect especially on 

hippocampal neurodegeneration (Reuhl et al., 1983) via TNF-α pathway (Neurodegenerative 
TMT model). 

Acute intraperitoneal injection of mice with LPS and TMT provokes strong inflammatory 
response accompanied by the activation of glial cells in the CNS (microglial activation and 
reactive astrogliosis) which are found to be the hallmark features of neurodegenerative 
disorders (Bruccoleri et al., 1998; Eskes et al., 2003). Reactive microglial cells can be identified 
by its display of striking features such as cellular hypertrophy, exhibition of remarkable 
morphological and phenotypic changes, having characteristic bushy appearance because of 
extended cytoplasmic processes, display of increased phagocytic activity and as well by 
upregulating the expression of inflammatory and oxidative stress factors. Reactive astrogliosis 
can be characterized via spectrum of morphological, molecular, cellular and functional 
changes, significant upregulation of astrocyte-specific structural intermediate filamentous 
protein, glial fibrillary acidic protein, cellular proliferation, scar formation and cellular 
hypertrophic reactions. As a result of this, these glial cells will promote the extensive 
upregulation of expressing the inflammatory cytokines that will have a greater impact on the 
CNS.  

Despite of the accumulating data suggesting the involvement of cytokines in regulating 
neuroinflammation, the precise pathways responsible for the onset of these inflammatory 
changes in the CNS remains uncertain. Henceforth, we set up this project in order to 
comprehend the interactions between immune system and CNS vulnerability.  

Here in our current study, low grade peripheral inflammation was induced in mice using            
100 µg/kg LPS to mimic aspects of gram negative bacterial infection (Neuroinflammatory LPS 
model). Apart from neuroinflammatory LPS model, we used organometal TMT (2mg/kg bwt) 
as a chemically induced potential neurotoxicant to induce both neuroinflammatory and 
neurodegenerative response in the mouse CNS.  

Here, we show that i.p injection of LPS in mice, results in an early response of TNFα and 
iNOS in the hippocampus, cortex and cerebellum with a peak at 2-4 hours, while ADIPO 
showed its expression peak at 6h, 120h and 24h in hippocampus, cortex and cerebellum 
respectively, whereas Resistin showed its inflammatory peak at 6h point of time period only 
in hippocampus, while no significant changes were observed for ATX. We confirmed that an 

acute ip injection of TMT induces an increase in TNF-α, iNOS mRNA (peak at 24h, 4h 
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respectively). Elevated ATX and ADIPO mRNA levels in the hippocampus were demonstrated 
in mice 5 and 8 days respectively following the TMT injection.  

Summing up from our experimentational outputs, we demonstrated that LPS and TMT could 
induce a transient neuroinflammatory response in three distinct regions of the brain (HIP-

COR-CER) that involved inflammatory (TNF-α, Adiponectin, and Resistin) and oxidative 
stress mediators (iNOS). Besides the absence of microglial and astrocyte activation suggests 
that low grade inflammation induced by infection, will not induce neurodegeneration (unless 
a massive infection) but could prime the glial cells making them to be more responsive for 
further stimulation. This particular dosage of LPS (100µg/Kg bwt) is sufficient enough to trigger 
transient neuroinflammatory response in the brain, but not to induce the glial cell activation. 
Higher LPS dosage (1 mg/kg bwt), such as described in other studies demonstrated LPS-
induced microglial activation and reactive astrogliosis in the hippocampus 3 days post 
intraperitoneal LPS treatment (Okuyama et al., 2013).  

Conclusively our results are in strong agreement with the hypothesis that peripheral immune 
system could signal the brain via cytokine signalling and there exists a relationship between 
immune system activation and neuroinflammatory response in the CNS. 
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Autotaxin Downregulates LPS-Induced Microglia Activation and Pro-

Inflammatory Cytokines Production 

 

In the current study, we investigated the impact of ATX’s interaction in microglial CNS cells 
under inflammation settings. Long been the CNS was considered an immune privilege organ 
because of its isolation from the immune system by the blood brain barrier, and as well by 
the inability of the glial cells (especially microglia) to initiate an immunological reaction leading 
to the process of neuroinflammation. But this misconception was dramatically altered with 
the various scientific documentations unravelling the facts that peripheral immune cells can 
cross the intact BBB and glial cells can actively regulate CNS interactions (Carson et al., 2006).   

Microglia make up the innate immune system of the CNS and are the key cellular mediators 
of neuroinflammatory processes and plays an active role in both acute and chronic 
neuroinflammatory responses (Roy et al., 2008). Acute neuroinflammation includes immediate 
response of early glial cells, including microglia which is the first and foremost defensive 
reaction that prepares the repairing mechanism. Whereas chronic inflammation persists when 
the inflammatory trigger or stimulus persists. The concept of inflammation is more pertinent 
in the context of the understanding of brain neurodegenerative disorders that involve some 
degree of chronicity. Microglia are the major effector cells of the CNS that initiates an immune 
response following CNS trauma. Microglia in possession of its immunocompetent phagocytic 
activity serves as sentinels after infection, injury, ischemia and process of neurodegeneration. 
It is also involved in the clearance of cellular debris after CNS trauma. In addition to this, 
several data in the literature suggest a beneficial role of microglia following a 
neurodegenerative episode (Gemma and Bachstetter, 2013). 

Autotaxin is a secreted Lysophospholipase D responsible for the synthesis of lysophosphatidic 
acid (LPA). ATX by means of the LPA and LPA1 receptor present on the surface of the 
microglia could participate in several physiological activities (Kanda et al., 2008). The role of 
ATX in inflammation is controversial. ATX or LPA receptor expression and/or secretion 
were elevated as demonstrated in the patients suffering from inflammatory disorders including 
rheumatoid arthritis, multiple sclerosis and others. Besides this, LPA inhibition of LPS induced 
inflammation in macrophages demonstrates the anti-inflammatory properties of ATX in mice. 

However, the role of ATX in microglial CNS cells under inflammation has never been studied 
before. Here in the current study, we proposed to use lipopolysaccharide (LPS) to mimic 
inflammatory signalling in microglial cells. LPS stimulates the transcriptional activity of 
inflammatory genes in brain parenchymal microglia. Indeed, LPS causes a sharp increase in 
terms of the transmembrane receptors CD14 and TLR4 on the surface of these microglial 
cells. These receptors form a complex with LPS and My88 protein which initiates NF-kB 

signaling that triggers the transcription of pro-inflammatory genes such as TNF-α. 

First of all, we stimulated microglia with two different concentrations of LPS (10ng-1µg/mL) 

and then we investigated the effects of LPS on TNF-α, IL-10 and ATX time course expression.  

We observed that LPS augmented TNF-α, ATX mRNA levels and diminished the IL-10 levels. 
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We then transfected the microglial cells with a plasmid vector containing ATX gene. Following 
post transfection, mRNA expression levels of the ATX, LPA1 and LPA production were 
determined. LPS heightened the production of LPA. Besides this, we also confirmed that 
microglia express LPA1 receptor and the over expression of ATX significantly upregulated 
this receptor expression which suggests that LPA is responsible for most of the biological 
effects caused by ATX mediated via the activation of G protein-coupled receptor. 

From this study we observed that ATX prevented microglial activation which can be 
supported from the data that LPS induction of mRNA and protein levels of pro-inflammatory 

cytokines TNF-α and IL-6 were significantly inhibited in Autotaxin transfected cells, while the 
anti-inflammatory cytokine IL-10 was elevated in these cells. Inhibition of NF-kB may be partly 
responsible for the inhibition of these inflammatory cytokines, as shown in the conditioning 
effect of microglial overexpressing ATX transfected cells. The effect of the conditioned 
medium was similar to the effect LPA in the presence of LPS. Besides this, different markers 
were used to monitor microglial activation. CD11b, CD14 are the markers of activation well 
known for microglia. B7.1 (CD80) and B7.2 (CD86) are costimulatory molecules of the family 
of glycoproteins and found that the expression of these molecules was reduced in cells 
overexpressing ATX, indicating not only regulation of innate immunity microglia, but also their 
adaptive immune functions.  

With these results we show for the first time, an anti-inflammatory role of ATX in microglia 
cells subjected to inflammation. Summarizing the results, we have shown that LPS induced the 
production of the ATX in microglia and that overexpression of autotaxin inhibits inflammation 

induced by LPS and as well inhibits NF-kB activation by suppressing the expression of TNF-α 
and IL-6. Besides this we had also demonstrated that ATX blocks the induction of CD11b, 
CD14, B7.1 and B7.2 induced by LPS at the surface of microglia. Finally, our results strongly 
suggest the ATX downregulates LPS induced microglial activation and pro-inflammatory 
cytokine production. Conclusively, our results are consistent with the work of Fan et al. on 
macrophages suggesting a beneficial role of ATX in the CNS injury by protecting the microglial 
cells and downregulating their activation under inflammatory conditions. These potential 
beneficial actions could open new therapeutic perspectives for ATX or LPA. 
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Role Of Adiponectin On Astrocytes Under Oxidative Stress Situation 

The present study investigated the role of Adiponectin in astrocytic CNS cells subjected to 
oxidative stress situations. Astrocytes have first been considered just as glue and as a provider 
of physical support to neurons. This simplistic view is now obsolete with a variety of functions 
attributed to astrocytes. It has been demonstrated that astrocytes have a greater impact in 
CNS development, homeostasis and CNS vulnerability and pathology (Aschner et al., 1999). 
The complex biology of astrocytes and the reciprocal communicating networks between 
astrocytes, neurons and other cell types have made these cells the focus for studying the 
neurodegenerative diseases. Astrocytes constitutes about 50-90% of all the brain cells and 
displays a manifold of immune and other assorted functions in which these star shaped cells 
plays a critical role in the brain antioxidant defense. Recently, it was found that implication of 
astrocytes and microglia in the brain are very much important to determine the optimal 
functioning and communication of neurons (Norden et al., 2014). So the malfunctioning of 
these brain resident astrocytes eventually leads to a process called reactive astrogliosis which 
could subsequently lead to various neurodegenerative brain diseases, including Alzheimer’s 
disease, Parkinson’s disease, and various forms of dementia.  

This remarkable glial cell activation is induced by LPS as well by IFNs and involves various 
inflammatory molecules including receptor (TLR), transcription factor (NF-kB), signalling 
pathway (STATs). STATs function as sensors of cellular stress, including oxidative stress. 
Although antioxidant enzyme systems in the brain especially in astrocytes are well developed, 
there is a tipping point in the redox balance beyond which it is virtually impossible for the 
brain to recover from oxidative injuries. In this context, it is critical for the brain to be able 
to detect ROS rapidly enough to mount an antioxidant response capable of maintaining redox 
homeostasis (Park et al., 2012). 

Adiponectin (Adipo) is a 30kDa adipocyte secretory protein (Pajvani and Scherer, 2003) 
(adipocytokine) with direct anti-diabetic and anti-inflammatory properties (Yamauchi et al., 
2001). Adiponectin has the potentiality to cross the blood-CSF-barrier (BCB) and the blood-
brain barrier (BBB) and there are substantial evidences which suggests that adiponectin 
receptors are expressed widely in the brain. Adiponectin receptors expression has been 
detected in whole brain and pituitary extracts, in specific regions such as  hypothalamus, 
brainstem, and in cell types (cortical neurons and endothelial cells) (Thundyil et al., 2012a). 
Adiponectin apart from its defined role in metabolic disorders such as obesity and T2DM, 
also plays a contributing role in neurodegenerative disorders including Alzheimer’s disease 
(Song and Lee, 2013). Despite of these considerations, the role of ADIPO in oxidative stress 
conditions still remains debatable. Besides this, Adiponectin also plays a promising role in 
immune system in the CNS where adiponectin decreases the expression of pro-inflammatory 

cytokines such as tumor necrosis factor-α (TNF-α), increases the expression of anti-
inflammatory molecules such as interleukin (IL)-10 and IL-1 receptor antagonist (Wolf et al., 
2004) and decreases the activation of the pro-inflammatory signal pathway such as nuclear 

factor-κB pathway (NF-κB). 
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Various studies in the central nervous system suggest the neuroprotective actions of 
adiponectin (Jung et al., 2006). One includes protection of hippocampal neurons against kainic 
acid-induced excitotoxicity (Jeon et al., 2009) and another one includes regulation  of severe 
brain inflammation in mild cognitive impairment and Alzheimer’s disease (Hivert et al., 2008; 
Forlenza et al., 2009).  

However, the potential role of ADIPO in astrocyte CNS cells under oxidative stress 
conditions has never been studied before. In this regard, we were curious in understanding 
the mechanisms underlying the impact of adiponectin in CNS astrocytes under oxidative 
stress conditions. Here in the current study, we proposed to use hydrogen peroxide (H2O2) 
to mimic oxidative stress signalling in astrocytes. H2O2 stimulates the transcriptional activity 
of oxidative stress genes in which astrocytes sense H2O2 by rapidly phosphorylating the 
transcription factor STAT6. STAT6 phosphorylation can be induced by generators of other 
reactive oxygen species (ROS) and reactive nitrogen species. This can be justified from the 
reports of Soo Jung Park et al., in which they had demonstrated that ROS-induced STAT6 
phosphorylation in astrocytes can modulate the functions of neighboring cells, including 
microglia, through cyclooxygenase-2 induction and subsequent release of PGs (Park et al., 
2012). 

In order to investigate the potential effects of adiponectin in astrocytic cells under H2O2 
mediated oxidative stress, we sub cloned the complementary DNA of adiponectin in 
eukaryotic expression vectors and stably transfected it in mouse CLTT astrocyte cells. 
Overexpressing adiponectin and non-transfected cells were treated with hydrogen peroxide 
(50-1000µM H2O2). Relative toxicity was determined using trypan blue and MTT assays. 
Protein oxidation and ROS levels were quantified by measuring carbonyl content and rates of 
DCF oxidation, respectively. CLTT astrocyte cell expression of adiponectin receptors 
(AdipoR1, AdipoR2), SOD, iNOS, COX-2 and Catalase expression were determined by qRT-
PCR.  

Here we successfully showed that adiponectin overexpression in CLTT cells protects from 
oxidative stress induced cellular damages, improves cell viability and reduces intracellular ROS 
formation and carbonylated protein accumulation. We observed that ADIPO controlled the 
oxidative stress situation in astrocytes which can be supported by the data that H2O2 
stimulated induction of mRNA levels of pro-oxidative factors iNOS, COX-2 were significantly 
inhibited in Adiponectin transfected cells, while the anti-oxidative factors SOD, CAT were 
significantly elevated in these ADIPO overexpressing cells. Besides the protective effects of 
ADIPO, it is interesting to note that wan et al in 2014 reported the pro-inflammatory effects 
of gAd in human astrocytic (U373 MG) cells in which gAd induced secretion of IL-6 and         

MCP-1, and gene expression of IL-6, MCP-1, IL-1β and IL-8 (Wan et al., 2014). This depicts 
the varied and vast effects of Adiponectin. So deepening on the nature of the target cell, nature 
of produced cytokines, timing, sequence of cytokine action and even the experimental model 
are the parameters that greatly influences the action of cytokine properties (Cavaillon, 2001). 

To our knowledge, this is the first report to demonstrate that ADIPO exerted its protective 
anti-oxidative effects in astrocyte cells under oxidative stress situation. In summary, we have 
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shown the expression of adiponectin, adiponectin receptors R1 and R2 in murine CLTT cell 
line. Overexpression of adiponectin induced a significantly higher cell survival rate in OS states 
in comparison with EV or CLTT cells. Besides this, our results demonstrated that treatment 
with H2O2 significantly increased ROS generation in CLTT cells as well as in cells transfected 
with the EV cells whereas the overexpression of adiponectin regulates ROS generation as 
compared to control after H2O2 treatment. In addition to this, a decrease in protein oxidation 
was noticed in adiponectin overexpressing transfected clones when compared to the non-
transfected CLTT and CLTT-EV. After H2O2 treatment cells overexpressing adiponectin had 
also maintained a lower amount of oxidized proteins than the corresponding control cells.  
Conclusively our results suggest that adiponectin set up in the CNS could represent a 
mechanism to protect central nervous system against oxidative stress which could lead to the 
novel therapeutic strategies of Adiponectin in treating neurodegenerative disorders. 
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Conclusions And Future Vision 
The current study was undertaken to address the anti-inflammatory properties of factors 
produced by the fat tissue and its potential implications towards neurodegenerative process. 
In order to accomplish this hypothesized task we had generated neuroinflammatory LPS mice 
model and neurodegenerative TMT model to investigate the assumed postulations that, 
peripheral inflammation could induce CNS vulnerability in vivo. Besides this, we also made our 
experimental setup in vitro on immortalized glial cell lines transfected with adipocytes 
produced factors (ATX and ADIPO) and the stable transfectant clones thus obtained were 
analyzed under both inflammatory and oxidative stress situations respectively.  

Based on our research investigations, we made evident that activated peripheral immune 
system in response to infection or inflammation could signal the CNS via cytokine signalling 
and depending on the intensity of the stimulus the response could trigger glial cell activation. 
Under in vitro settings, our results authenticate the anti-inflammatory properties of ATX in 
microglial cell line under inflammatory settings, whereas ADIPO performed its anti-oxidative 
role in astrocyte cell line under oxidative stress context - that justified the thesis title. 

Table CON-1   Statements Drawn From Thesis 

Fat Tissue, Inflammatory And Oxidative Stress Factors Were Expressed in vivo In The Brain. 

 

Autotaxin Exhibited Anti-Inflammatory Actions In Microglia Under Inflammatory Settings. 

 

Adiponectin Showcased Anti-Oxidative Effects In Astrocytes Under Oxidative Stress. 

 

The results procured through our in vivo investigations are quite promising that LPS and TMT 
can induce neuroinflammatory response in the different localities of the brain that involved 
inflammation and oxidative stress cytokines. Henceforth, we planned our further 
investigations on the treatment of mice with adipocyte specific factors Lysophosphatidic Acid, 
Recombinant Adiponectin) on neuroinflammatory and neurodegenerative mice models to 
advance on this project. This should give us better insight into the molecular mechanisms of 
brain inflammation regulation. 

From our in vitro observations, we put forward the anti-inflammatory properties of ATX in 
microglial cells under inflammatory settings and anti-oxidant role of ADIPO in astrocyte cells 
in oxidative stress situations. In conjunction with our microglial and astrocyte in vitro studies, 
it will be pertinent and interesting to understand the inter-related signal transducing 
mechanisms of neuronal and endothelial transfection studies with adipocytokines that should 
bring about novel outputs to comprehend the link between adipose tissue and CNS 
vulnerability.  
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Beyond any doubt with the accumulating evidences on the relation between obesity and CNS 
research, now it is certain that adipose tissue can affect human physiology through its secreted 
products (adipocytokines-Leptin, ADIPO and ATX) which mediate complex crosstalk 
between various organs including CNS. But still the pathophysiological significance of these 
adipocytokines towards CNS vulnerability remains poorly portrayed.  

So a prudent approach is thus warranted and much more research should be appreciated on 
these specific areas to address obesity induced neurodegenerative research that might bring 
about novel therapies by exploiting adipocyte specific factors (ATX, ADIPO) and glial cells 
(Microglia, Astrocytes) as potential therapeutic hotspots to reduce the risk and to treat 
obesity induced neurodegenerative disorders. 
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ABSTRACT 

 

It is an obsolete fact that adipose tissue just acts as a storage organ in the form of fat. Now the 

scene has completely changed with the discovery of leptin and by showing its long range effects 

in the brain that lead to fascinating discoveries in the adipokine research. Apart from its storage 

capacity, adipose tissue is well renowned to act as an endocrine organ, secreting an array of 

bioactive factors known as adipocytokines acting at physiological level and plays a vital role 

in whole body energy metabolism and as well in innate immune response. The global effect of 

these adipocytokines in the metabolic activities have been well established, but the impact of 

these adipocytokines, its potential neurodegeneration remains poorly defined. 

Recently an association between adipose tissue (via their secreting factors i.e. adipocytokines) 

and CNS have been equated. As these factors are coupled with the regulation of inflammation 

and oxidative stress, there is a potential link with neurodegeneration. Many chronic 

neurodegenerative diseases such as Amyotrophic lateral sclerosis, Alzheimer and Parkinson 

diseases have been associated with inflammation and oxidative stress in the Central Nervous 

System (CNS). Inflammation and oxidative stress are two major physiological process 

involved in neurodegeneration. Glial cells are the most abundant cells of the CNS and 

maintains intimate interaction with neurons. Microglia and astrocytes are involved in the early 

and late onset of neuroinflammation and related neurodegenerative process in the brain. These 

glial cells triggers the release of multitude of cytokines that plays a key role in the defense and 

the damage of the CNS. Therefore the meticulous and painstaking balance between pro and 

anti-inflammatory cytokines are tightly controlled as dysregulation of this equilibrium may 

leads to progressive neurodegenerative disorders.  Hence, manipulating and orchestrating these 

adipocytokines and glial cells as potential therapeutic targets could be an interesting lead to 

novel therapeutic strategy in order to counteract neurodegenerative disorders. 
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INTRODUCTION 

 

Obesity and type 2 diabetes mellitus (T2DM) are main health issues in our modern societies 

and constitute greatest public health challenges of the 21st century (Awada et al., 2013b; 

(WHO), 2015b; a). The World Health Organization (WHO) reported that worldwide obesity 

has more than doubled since 1980 and more than 1.9 billion adults were overweight in 2014 

((WHO), 2015b).  Following the same trends,  WHO has predicted that diabetes will be the 7th 

leading cause of death in 2030, comprises 90% of Type 2 diabetes mainly resulting from excess 

body weight and physical inactivity (Alberti and Zimmet, 1998; Roglic et al., 2005; (WHO), 

2015a). In parallel, 35.6 million people display dementia and 7.7 million new cases are reported 

every year, Alzheimer’s disease (AD) being the main cause of dementia (Reisberg et al., 1997; 

(WHO), 2012). Interestingly, an increasing number of data recently highlight that metabolic 

syndrome, notably obesity and type 2 diabetes, are correlated with an increased risk to develop 

neurodegenerative disease such as AD, as well as neurological and neurovascular disorders 

(Gustafson et al., 2009; Arnoldussen et al., 2014; Kiliaan et al., 2014; Nguyen et al., 2014b). 

Consequently, adiposity has been proposed as an independent factor favoring the development 

of AD (Beydoun et al., 2008; Whitmer et al., 2008; Letra et al., 2014). Interestingly, it has been 

suggested that the misexpression of adipose-derived factors called adipokines or 

adipocytokines may disrupt directly or indirectly brain homeostasis and functions. Adipokines 

are semantically referring to cytokines secreted by adipose tissue. However, a certain number 

of adipose-derived factors are also referred as adipokines but correspond in fact to adipose-

derived hormones.  

 

 In this review, we aimed at first describing the links between adiposity, adipokines 

levels and neurological disorders. Secondly, we will focus on adipokines signaling in the 

central nervous system (CNS), highlighting their potential effects on cognition, neurogenesis, 

and brain functioning. Finally, we will discuss how adipokines could disturb brain physiology 

and functions through blood brain barrier disruption resulting from increased inflammation and 

oxidative stress. 
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1 - Adipose Tissue: Not Just For Energy Storage Anymore 

 1.1 - Adipose tissue secretes adipokines 

 WAT was originally described to store energy in the form of fat. However, since the 

discovery of the leptin hormone in 1994, WAT is also recognized as a major endocrine organ 

secreting a wide variety of biologically active factors collectively called adipokines or 

adipocytokines (Lehr et al., 2012; Adamczak and Wiecek, 2013). To date, about hundred 

adipokines constituting the adipokinome have been documented to be released from white 

adipocytes (Chaldakov, 2007). Among the most studied adipokines, there are leptin, 

adiponectin, apelin, resistin, monocytes, and macrophage chemotactic protein 1 (MCP1), 

interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-10 (IL-10), tumor-necrosis factor-

alpha (TNF-α) and transforming growth factor (TGF)-β. In addition to adipokines, lipid-

derived factors such as the lysophosphatidic acid are also important mediators produced by the 

fat tissue (Trayhurn and Wood, 2004; Ouchi et al., 2011). There are also a wide variety of 

others chemokines, cytokines, proteins involved in the fibrinolytic system, as well as lipids and 

lipid transporter proteins belonging to the adipokine family (Kershaw and Flier, 2004; 

Adamczak and Wiecek, 2013). The most important pro-inflammatory adipokines are leptin, 

TNFα and IL-6, while the two main anti-inflammatory ones corresponding to adiponectin and 

the secreted frizzled-related protein 5 (sFRP5) (Maeda et al., 2002; Xu et al., 2003; Ouchi et 

al., 2011). Adipokines exert pleiotropic effects on different tissues such as lung, skeletal 

muscle, heart, liver, blood vessels and regulate numerous physiological functions such as 

appetite, energy expenditure, insulin sensitivity and secretion, fat distribution, lipid and glucose 

metabolism, endothelial function, blood pressure, hemostasis, neuroendocrine functions and 

also immunity (Ahima et al., 2000; Trayhurn and Beattie, 2001; Trayhurn and Wood, 2004; 

Lehr et al., 2012; Leal Vde and Mafra, 2013; Bluher, 2014; Bluher and Mantzoros, 2015). So, 

the data generated over the last 20 years considerably change our view on adipose tissue as 

WAT plays a wide-ranging role in metabolic regulation and physiological homeostasis (Lehr 

et al., 2012; Adamczak and Wiecek, 2013). 

 

 1.2 - Adipokines and diseases: focus on neurological disorders and diseases 

  The dysregulation of adipokine production and/or levels has been correlated with 

several diseases and could notably promote and/or result in obesity-linked metabolic disorders 

(Maury and Brichard, 2010; Bluher and Mantzoros, 2015). Thus, low plasmatic leptin 

concentrations are associated with an increase risk for cardiovascular troubles (Ku et al., 2011). 

In contrast, higher plasmatic adiponectin levels seem to be associated with decreased risk for 
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developing TD2M (Spranger et al., 2003). Other data also show relationships between MCP-1 

serum levels and insulin resistance, diabetic people exhibiting highest MCP-1 levels (Herder 

et al., 2006). In the same line of evidences, it appears that the inflammatory state of WAT in 

obese patients might be a key player linking high WAT mass to insulin resistance. Interestingly, 

an increasing number of studies reported links between metabolic disorders (i.e.: TD2M and 

obesity), brain homeostasis and functioning (Gustafson et al., 2003; Gustafson, 2006; Lee, 

2011; Arnoldussen et al., 2014; Gianfrancesco et al., 2014; Letra et al., 2014; Nguyen et al., 

2014a; Versini et al., 2014; Zhang and Tian, 2014). This concept according to which metabolic 

syndrome could have an effect on brain homeostasis and functions is relatively new and 

innovative. Initial studies demonstrated that a higher BMI and/or waist-to-hip ratio in middle-

aged individuals is associated with a reduction in whole brain volume. Indeed, over the last 

decade, a number of magnetic resonance imaging (MRI) and computed tomography (CT) 

studies also reported alterations in brain morphology of overweight/obese individuals (Ward 

et al., 2005; Taki et al., 2008; Bruce-Keller et al., 2009). Studies notably documented a link 

between abdominal fat and reduced brain volume in healthy middle-aged adults notably the 

temporal lobe volume and the hippocampus (Gustafson et al., 2004; Debette et al., 2010). In a 

cross-sectional study of normal elderly individuals showing no sign of cognitive deficit, tensor-

based morphometry also unveiled atrophy in the white and gray matter of the frontal lobes, 

anterior cingulate gyrus, hippocampus, and thalamus in both male and female subjects with a 

high BMI (BMI > 30) as compared to individuals with a normal BMI (18.5–25) (Raji et al., 

2010). Upon further investigation, the brain volume reduction in gray and white matter was 

found to be associated with a common variant of the fat mass and obesity associated (FTO) 

gene (Ho et al., 2010a). In addition, a growing body of studies also show that obesity in mild-

life is a predictor of mild cognitive impairment with aging and altered executive function and 

short-term memory compared to normal weight counterparts (Cournot et al., 2006; Lokken et 

al., 2009; Sabia et al., 2009; Nguyen et al., 2014a). Such data are also confirmed in rodents for 

which high fat diets result in impaired cognitive functions including a decrease in memory 

performance, learning and executive functions (Murray et al., 2009; McNeilly et al., 2011; 

Nguyen et al., 2014a). In addition, during the development of obesity in rodent models, it 

appears that neurochemical changes occurs in the brain altering cognition processes, reward 

neurocircuitry and stress responsiveness (Morris et al., 2014). Consequently, numerous studies 

described association between rich diets (sugar and/or fat) and cognitive defects in rodents and 

humans (Morris et al., 2014; Nguyen et al., 2014a) and it seems that such effects of diets could 

occur through the disruption of neurovascular function (Li et al., 2013; Lynch et al., 2013; 
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Morris et al., 2014). In addition, a linkage has been demonstrated between overweight, 

neuroinflammation and neurodegenerative diseases namely AD, Parkinson’s disease (PD) and 

autoimmune nervous system diseases such as multiple sclerosis (Gustafson et al., 2003; 

Gustafson, 2006; Lee, 2011; Arnoldussen et al., 2014; Gianfrancesco et al., 2014; Letra et al., 

2014; Versini et al., 2014; Zhang and Tian, 2014). Similarly, T2DM is associated to impaired 

cognition, peculiarly learning and memory deficits such as shown in rodents and humans while 

such effects are rarely observed in type 1 diabetes (McCrimmon et al., 2012; Zhou et al., 2014). 

This is peculiarly interesting given that T2DM patients are mostly overweight or obese 

compared to type 1 diabetic. Studies have revealed cortical and subcortical atrophy as well as 

hippocampal gray matter reduction of T2DM patients with cognitive impairment (Zhang et al., 

2015). Interestingly, a recent study working on 80 T2DM patients and 80 healthy controls 

demonstrated that cognition impairment was correlated with reduced hippocampal CA1 size in 

the diabetic group (Zhang et al., 2015). Interestingly, diabetes is associated with an increased 

risk of Alzheimer’s disease and vascular dementia, supported by increasing oxidative stress 

and inflammation and impaired insulin and amyloid metabolism (MacKnight et al., 2002; 

Haan, 2006; Whitmer, 2007; Biessels et al., 2008; Cheng et al., 2012; McCrimmon et al., 2012). 

TD2M people also display lower cerebral blood flow and neural slowing on recordings of 

sensory-evoked potentials (McCrimmon et al., 2012). Numerous studies performed on rodents 

also show an impact of diabetes on neurogenesis, depression and cognition (Ho et al., 2013). 

 Taken together, these data show that obesity and diabetes have negative effects on brain 

structures and/or functions. It also raises the question of the roles of adipokines in such 

neurological disorders. However, the rational of such events are still poorly understood. One 

interesting hypothesis is that abnormal adipokines concentrations, such as increase pro-

inflammatory adipokines TNFα, resistin, leptin, IL-1β and also IL-6, could influence the blood 

brain barrier integrity and disrupt brain homeostasis through oxidative stress and inflammation 

(Ouchi et al., 2011; Letra et al., 2014).  In the following part, we aim at further described effects 

of the main adipokines in the brain, regarding their transport in the central nervous system and 

their signaling. 
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2 - Adipokines and Targets in The Brain 

 As previously mentioned in this review, WAT is an important and a major endocrine 

secretory organ, releasing endocrine and paracrine signaling molecules called adipokines 

(Ouchi et al., 2003; Berg and Scherer, 2005). In this part, we will focus on the main adipokines 

(leptin, resistin, adiponectin, TNFα and also on a lipokine of interest, the lysophosphatidic 

acid), their targets in the brain and their potential impact on brain inflammation and functions. 

 2.1 - Leptin 

 Leptin is one of the most important adipose-derived hormones. Leptin which is mainly 

produced by adipocytes exert its effects both peripherally and centrally (Zhang et al., 1994; 

Trayhurn and Beattie, 2001; Trayhurn and Wood, 2004; Adamczak and Wiecek, 2013). This 

adipokine play key functions in regulating energy intake and expenditure, metabolism and 

behavior by directly acting on the CNS. Mice invalidating for leptin (ob/ob mice) display 

obesity, insulin resistance and hyperphagia showing notably the impact of this adipose-derived 

hormone on feeding behavior (Friedman and Halaas, 1998). Peripheral leptin exert its central 

effect through its binding at the level of choroid plexus leading to its transport across the blood 

brain barrier (Banks et al., 1996; Devos et al., 1996; Banks et al., 2000; Zlokovic et al., 2000). 

Such a transport involved leptin receptors and probably other mechanisms that are still poorly 

understood (Arnoldussen et al., 2014). However, leptin has been shown to be also locally and 

de novo produced in the brain, in the cerebellum, the cortex and the hypothalamus (Morash et 

al., 1999; Wilkinson et al., 2000; Brown et al., 2007; Brown et al., 2008), suggesting other 

specific and local functions for leptin than those previously described. Leptin receptors belong 

to the family of cytokine receptors, and at least five different isoforms have been identified in 

mouse: Ob-Ra to Ob-Re (Friedman and Halaas, 1998; Gorska et al., 2010). In the CNS, leptin 

receptors (Ob-R or LepR) were first described by Tartaglia and colleagues in choroid plexus 

and in the hypothalamus (Tartaglia et al., 1995b; Tartaglia, 1997). Among all Ob-R isoforms, 

only the full-length isoform (Ob-Rb) appears to fully transduce the activation signal at least in 

the brain and is essential for leptin's weight-reducing effects (Friedman and Halaas, 1998; 

Gorska et al., 2010). Ob-Rb is strongly and mainly expressed in the hypothalamic nuclei 

notably in the arcuate nucleus (ARC), the dorsomedial nucleus (DMH), paraventricular nucleus 

(PVN), the ventromedial hypothalamic nucleus (VMH) and the lateral hypothalamic nucleus 

(LH) (Mercer et al., 1996; Friedman and Halaas, 1998; Yi et al., 2013), but is also detected in 

the neocortex, the medulla and the cerebellum (Burguera et al., 2000). In addition, a weaker 

expression was also detected by in situ hybridization in the hippocampus and the thalamus 
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(Mercer et al., 1996). In the hypothalamus, the primary leptin targets are the orexigenic AgRP 

(Agouti-related peptide) neurons and the anorexigenic POMC (Pro-opiomelanocortin) neurons 

that are involved in feeding behavior. Thus, in the CNS, leptin activates anorexigenic POMC 

neurons through a neural network in the arcuate nucleus (Cowley et al., 2001). The appetite 

stimulating effects of AgRP/NPY are inhibited by leptin in the arcuate nucleus avoiding the 

release of orexigenic factors (Baskin et al., 1999; Enriori et al., 2007). Furthermore, leptin 

receptors were also documented to be expressed in glutamatergic and GABAergic neurons 

(Vong et al., 2011; Xu et al., 2013; Yi et al., 2013). Vong and colleagues (2011) show that the 

main effect of leptin are mediated by GABAergic neurons and only barely by glutamatergic 

neurons (Vong et al., 2011). However, it was recently shown that glutamate release mediates 

leptin action on energy expenditure (Xu et al., 2013). We realize now that the effects of leptin 

on these different neuronal types and brain nuclei are not so easy to understand as first though. 

In homeostatic conditions, leptin inhibits food intake and in extra-hypothalamic sites leptin act 

on neurogenesis, synaptogenesis, neuronal excitability and neuroprotection (Bouret, 2010; Paz-

Filho et al., 2010b; Arnoldussen et al., 2014). Leptin was also shown to improve cognition and 

mood in depressed and anxious animal models, notably by improving long term potentiation 

(Arnoldussen et al., 2014). Leptin levels negatively correlated with the development of 

Alzheimer's disease in lean humans (Paz-Filho et al., 2010b; a) and leptin signaling seems to 

be dysregulated in Alzheimer's disease brains (Bonda et al., 2014). Interestingly, there are also 

positive correlations between plasma levels of leptin and body weight (Salbe et al., 2002; 

Fleisch et al., 2007). Additionally, in obese people, leptin resistance takes place impairing 

memory, neurogenesis and neuroprotection (Arnoldussen et al., 2014). 

 

 2.2 - Resistin 

 Resistin (or adipose tissue-specific secretory factor: ADSF) is a cysteine-rich adipose-

derived peptide hormone, encoded by the RETN gene and known for its implication in 

inflammatory processes (Wang et al., 2002a; Ouchi et al., 2011). Its expression increases in 

parallel to adiposity (Degawa-Yamauchi et al., 2003; Vendrell et al., 2004; Lee et al., 2005) 

and is strongly related to insulin resistance notably in obese rodents (Park and Ahima, 2013). 

Interestingly, in humans, resistin is mainly expressed and secreted by macrophages while 

adipocytes are the main source in rodent (Park and Ahima, 2013). Resistin is known to play a 

key role in the CNS notably by regulating pituitary somatotrope cell functions (Broglio et al., 

2005), affecting hypothalamic and peripheral insulin responsiveness, thermogenesis, feeding 

behavior and also by enhancing renal sympathetic nerve activity (Kosari et al., 2012; Yi and 
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Tschop, 2012; Kosari et al., 2013). However, the resistin receptor and the molecular 

mechanisms sustaining such effects are poorly understood and mainly unexplored until 

recently. Although resistin receptor has not be clearly identified, it has been shown that resistin 

administration modulates or activates several signaling pathway involving Gs protein-

dependent mechanisms, the adenylate cyclase/cAMP/protein kinase A pathway, the 

phosphatidylinositol 3-kinase/Akt pathway, the protein kinase C, and extracellular Ca2+ 

signaling through L-type voltage-sensitive Ca2+ (Kosari et al. 2013; Rodríguez-Pacheco et al. 

2009). More recently, an isoform of decorin (a small proteoglycan associated with collagen 

fibrils) was reported to be a resistin receptor on the surface of adipose progenitor cells. In 

addition, tyrosine kinase-like orphan receptor-1 (ROR1) was reported to mediate resistin effect 

on glucose uptake and adipogenesis in 3T3-L1 cells (Sánchez-Solana, Laborda, and Baladrón 

2012), and that resistin utilizes the IGF-1R pathway in rheumatoid arthritis (Boström et al. 

2011). Such puzzling data strongly suggest that resistin could potentially interact with different 

receptors depending on tissue and cell-types. Furthermore, resistin also regulates the synthesis 

and secretion of other pro-inflammatory cytokines TNF-α and IL-6 through nuclear factor-κB–

dependent pathway in macrophage (Bokarewa et al., 2005; Silswal et al., 2005; Olefsky and 

Glass, 2010) .Recently, Toll-like receptor (TLR) 4 receptors were identified as potential 

receptor for resistin in the hypothalamus, leading to the activation of JNK and p38/MAPK 

pathways (Benomar et al., 2013). Interestingly, resistin was also reported to be expressed in 

the hypothalamus and the cortex and to inactivate hypothalamic neurons (Morash et al., 2002; 

Brown et al., 2005; Wilkinson et al., 2007). By modulating the activation of ERK1/2, resistin 

modulates the effects of central resistin on reducing thermogenesis (Kosari et al., 2013). In the 

rat brain,  resistin is de novo produced suggesting specific roles for this local synthesis 

(Wilkinson et al., 2007). Interestingly, traumatic brain injury (TBI) increased resistin mRNA 

expression in the ipsilateral cortex without any effects on the contralateral hemisphere. 

However, resistin expression is up-regulated after TBI in the ipsi-and contralateral 

hippocampus (Brown et al., 2008). One explanation is that given TBI compromises the 

integrity of the blood brain barrier, it could result in the changes in gene expression in the 

contralateral side of the hippocampus by exposing the brain to circulating factors of peripheral 

origin (Brown et al., 2008). The increase of resistin expression following TBI (at 12 h post-

injury), is in contrast to the delayed upregulation of resistin in hypoxic ischemic mouse brain 

(>7 days) (Wiesner et al., 2006). Thus resistin could participate in the acute responses to 

cerebral damage probably through inflammatory mechanisms. In a recent study, resistin was 

shown to not be related to cognitive function performance (Miralbell et al., 2013). 
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 2.3 - Adiponectin 

 Adiponectin was discovered in 1995 by Scherer and collaborators (Scherer et al., 1995). 

It is one of the most important adipokines considering it’s abundance in plasma relative to 

many other hormones (Matsuzawa, 2005; Thundyil et al., 2012b). Adiponectin self-associates 

into larger structures forming homotrimers that also self-associate and form hexamers or 

dodecamers. A globular fraction, named globular adiponectin, resulting from the cleavage of 

the full-length monomer was also documented (Waki et al., 2003). Adiponectin is mainly 

synthesized and secreted by adipocytes. However, it is now well admitted that adiponectin is 

expressed at the mRNA and/or protein level by the placenta, the liver, epithelial cells, 

osteoblasts, myocytes and also by pituitary cells (Wilkinson et al., 2007; Psilopanagioti et al., 

2009; Thundyil et al., 2012b). Interestingly, some studies documented adiponectin transcript 

expression in the brain the diencephalon in chicken (Maddineni et al., 2005; Wilkinson et al., 

2007), in the human pituitary (Psilopanagioti et al., 2009). In the pituitary, adiponectin could 

have a role in the release of somatotrophs and gonadotrophs (Thundyil et al., 2012b). It also 

modulates a wide range of metabolic processes such as body-weight regulation, glucose 

regulation, insulin sensitivity, lipid catabolism (fatty acid oxidation), endothelial function and 

also anti-atherogenic process (Berg et al., 2002; Okamoto et al., 2002; Stefan and Stumvoll, 

2002; Whitehead et al., 2006; Thundyil et al., 2012b). Such effects are mediated by three 

different receptor types: adiponectin receptor 1 (ADIPOR1), adiponectin receptor 2 

(ADIPOR2) and T-cadherin (CDH13) and involved different signaling pathway including 

notably AMPK, p38-MAPK, JNK, PPAR-α and NF-kB. These Receptors appear to be widely 

expressed in the mammalian brain including mouse, rat, human and pork their expression was 

documented in different brain structures such as the pituitary, the hypothalamus, in cortical and 

subcortical neurons (Degawa-Yamauchi et al., 2003; Yamauchi et al., 2003a; Fry et al., 2006; 

Hoyda et al., 2007; Psilopanagioti et al., 2009; Repunte-Canonigo et al., 2010; Thundyil et al., 

2010; Thundyil et al., 2012b). In their recent review, Thundyil and colleagues (2012) 

documented adiponectin receptors expression in the central nervous system showing that 

AdipoR1 is mainly expressed in the hypothalamus, the brainstem and the pituitary gland while 

AdipoR2 seems to be mostly expressed in the cortex. Furthermore, AdipoR1 is strongly 

expressed in neurons and a bit in astrocytes while AdipoR2 is figured to be only weakly 

expressed in astrocytes and neurons (Thundyil et al., 2012b). However, until now, AdipoR 

expression in microglia is not really clear. Concerning T-cadherin receptor, it seems to be 

temporally and spatially expressed in different neuronal populations during axon growth 
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(Ranscht and Dours-Zimmermann, 1991). Furthermore, T-cadherin showed broad expression 

in the cerebral cortex, basal ganglia, amygdala, and hippocampus in the developing postnatal 

telencephalon of marmoset (Callithrix jacchus) (Matsunaga et al., 2013). In mouse, cdh13 was 

also shown to be expressed by projection neurons within the main and accessory olfactory 

bulbs. Interestingly, adiponectin deficiency is associated with exaggerated inflammatory 

response in critical illness or septic patients (Venkatesh et al., 2009; Hillenbrand et al., 2010; 

Hillenbrand et al., 2012). Recently, AdipoR1 and AdipoR2 expression was described in both 

U373 MG cell line and primary human astrocytes (Wan et al., 2014). It also appears that 

adiponectin induces a pro-inflammatory response in human astrocytes, increasing notably IL-

6 and MCP-1 through NF-κB, p38MAPK and ERK1/2 pathways (Wan et al., 2014). In contrast, 

adiponectin was described to inhibit pro-inflammatory signal, notably by suppressing IL-6 

release from BBB endothelial cells (Spranger et al., 2006). It results that adiponectin indirectly 

modulates inflammatory signaling across the BBB by negatively modulating Il-6 and TNFα 

release. In vitro experiment of hippocampal neurons reveals that adiponectin exerts 

neuroprotective effects through AMPK pathway (Qiu et al., 2011). Such neuroprotective 

effects of adiponectin is further reinforced by the fact that knock-out mice for adiponectin 

exhibit more brain damages after ischemic stroke to controls (Nishimura et al., 2008). This 

neuroprotective action acts through an endothelial nitric oxide synthase-dependent mechanism 

(Nishimura et al., 2008). 

 

 2.3 - Tumor necrosis factor α 

 TNFα is a pro-inflammatory adipokine well-known for its role in chronic peripheral 

and central inflammation (Thaler et al., 2012; Arnoldussen et al., 2014). TNFα is primarily 

produced as a transmembrane protein that self-associated into stable homotrimers (Kriegler et 

al., 1988; Tang et al., 1994). Such homotrimers could be cleave by the TNFα converting 

enzyme (TACE, also called ADAM17), allowing the release of secreted form of TNFα (Black 

et al., 1997). TNFα is mainly produced by macrophages and its expression is increased at the 

mRNA and protein levels in obese and in T2DM models (Hotamisligil et al., 1993). TNFα 

actions are mediated by two receptors: TNF-Receptor 1 (TNF-R1) and TNF-Receptor 2 (TNF-

R2). TNFR1 is expressed in most tissues, and can be fully activated by both the membrane-

bound and soluble trimeric forms of TNF, while TNFR2 is found only in cells of the immune 

system, and respond to the membrane-bound form of the TNF homotrimer (Arnoldussen et al., 

2014). As most information regarding TNF signaling is derived from TNFR1, the role of 

TNFR2 is likely underestimated. In rodents, TNFα has been shown to be transported across the 
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BBB, but to be also locally produced by microglia, astrocytes and neurons in the brain 

(Lieberman et al., 1989; Chung and Benveniste, 1990; Morganti-Kossman et al., 1997). In the 

CNS, TNFα acts through TNF-receptors on neurons and astrocytes regulating a wide range of 

cellular processes such as cell-survival (Pickering et al., 2005; Montgomery and Bowers, 2012; 

Arnoldussen et al., 2014). More widely, TNFα exhibits pleiotropic effects with positive and 

negative outcomes on the brain. It notably acts on neurogenesis, synaptic transmission and 

plasticity (Arnoldussen et al., 2014). Thus, TNFα was notably described fort its neuroprotective 

roles on hippocampal neurons by suppressing accumulation of ROS and by maintaining 

intracellular levels of calcium (Barger et al., 1995). In addition, it modulates glutamatergic 

transmission (Beattie et al., 2002). Furthermore, TNFα favors neural progenitor cells survival 

by notably mediating anti-apoptotic signals via TNFR2 (Marchetti et al., 2004). In rat, TNFα 

appear to promote the survival of stroke-generated hippocampal and striatal neurons 

(Heldmann et al., 2005). In addition, TNFα knock-out mice show cognitive impairment (i.e: 

significant poorer learning, retention and spatial learning), suggesting a strong role for TNF-α 

on these mechanisms (Baune et al., 2008). Indeed, TNFα also exhibits a dark face, as reported 

in numerous other studies. It is notably involved in myelin damages (Selmaj and Raine, 1988), 

in favoring glutamate excitotoxicity (Hermann et al., 2001), in inhibition of long term 

potentiation in CA1 and in the dentate gyrus of the hippocampus in rat (Cunningham et al., 

1996; Butler et al., 2004; Pickering et al., 2005) and in decreasing neurogenesis (Iosif et al., 

2006; Lan et al., 2012). 

Altogether, these data established that the roles of TNFα is not so easy to understand. This 

adipokine or locally produced cytokines could exhibit multiple faces exerting neuroprotective 

versus neurotoxic roles, pro versus anti-neurogenic effects according to the conditions 

(concentrations, physiological or pathological conditions…). Neuroinflammation and 

metabolic disorders such as obesity could act on these mechanisms through an excess of TNFα 

secretion. 

 

 2.4 - Lysophosphatidic acid (LPA) 

 Among the factors secreted by the adipose tissue, there are a lot of lipids from the 

lipokine family such as PGE2, anandamide and also lysophosphatidic acid (LPA). LPA is a 

bioactive signalling phospholipid acting on a wide range of biological processes including cell 

growth, migration and morphology (Frisca et al., 2012). LPA is detected in several biological 

fluids and tissues including the brain (Tokumura, 2004). It is synthesized from different 

enzymatic activities involving notably phospholipase A1 and A2, monoacylglycerol kinase, 
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but the main enzyme leading to LPA synthesis is autotaxin (Noguchi et al., 2009). Autotaxin 

is a multifunctional phosphodiesterase that converts lysophospholipids into LPA through its 

lysophospholipase D activity. To date, LPA effects are mediated through five G protein 

coupled receptors. However, additional receptors have been identified for their potential 

responsiveness to LPA (Noguchi et al., 2003; Kotarsky et al., 2006; Noguchi et al., 2009). 

Using knock-out mice for the five most known LPA receptors, it was shown that LPA plays 

key roles on inflammation (Zhao and Natarajan, 2013), angiogenesis (Chen et al., 2013), 

reproduction (Ye et al., 2005; Ye et al., 2008; Ye and Chun, 2010), brain development and 

neurogenesis (Estivill-Torrus et al., 2008; Matas-Rico et al., 2008). Indeed, LPA exert 

pleomorphic effects on neural progenitor cells from cortex, and notably calcium mediated 

conductance (Dubin et al., 2010). In the nervous system, neural progenitor cells, neurons, 

oligodendrocytes, Schwann cells, astrocytes and microglia have been documented for 

expressing different subsets of LPA receptors (Noguchi et al., 2009). It partially explains why 

LPA exerts a wide variety of effects on these different cell-types. Thus, LPA can favor 

proliferation and differentiation of neural progenitor cells as shown by treatment on ex vivo 

embryonic brain slice cultures resulting in an increase cell survival and differentiation 

(Kingsbury et al., 2003). In contrast, LPA promotes proliferation and differentiation in 

neurospheres (Svetlov et al., 2004; Fukushima et al., 2007). LPA also displays effect on cell 

morphology and neurite formation in both neural progenitors cells and neurons (Noguchi et al., 

2009). It exhibits both cell-death and survival properties on neurons possibly due to differences 

in LPA concentration or signaling through different receptors (Holtsberg et al., 1998; Zheng et 

al., 2004; Zheng et al., 2005). For instance, it induces apoptosis and necrosis in hippocampal 

neurons (Holtsberg et al., 1998). LPA also exerts various effects on glial and microglial cells, 

by modulating intracellular calcium levels in oligodendrocytes, astrocytes and microglia 

(Noguchi et al., 2009). It notably favors astrocytes and microglia proliferation in vitro (Keller 

et al., 1997b; Moller et al., 2001). Interestingly, in human post-mortem brains LPA receptors 

1-3 and autotaxin are only weakly expressed while LPAR2 is increased and autotaxin 

transcripts are decreased following brain injury. Such data also reinforce the fact that LPA 

signaling is involved in neurotrauma (Frugier et al., 2011). 
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DISCUSSION 

 

It is well-known that T2DM is strongly associated with overweight and adiposity. In this 

review, we highlighted the striking correlations between metabolic syndrome and the 

prevalence of neurological disorders and dementia including AD. Adipose tissue was not 

initially envisioned as a source of inflammatory factors.  However, it is now well accepted that 

adipose tissue is a key player in the development of inflammation associated with adiposity 

and consequently obesity (Weisberg et al., 2003). Thus, excess fat tissue in the obese 

environment contributes to a low-grade chronic inflammation (Greenberg and Obin, 2006) with 

elevated production of pro-inflammatory cytokines, such as TNFα, IL-6 and IL-1 (Tilg and 

Moschen, 2006; Moschen et al., 2007). In contrast, loss of adipose tissue is associated with a 

decrease in inflammation markers (Clement et al., 2004; Berg and Scherer, 2005). Interestingly, 

chronic and low-grade inflammation has been proposed to favor neurodegenerative diseases 

through the disruption of the BBB. Indeed, the blood brain barrier is a key interface linking 

systemic inflammation, neuroinflammation and neurodegeneration (Takeda et al., 2014), 

inflammatory factors being a main cause of the BBB disruption (Mauro et al., 2014). For 

instance, studies established positive correlations between mid-life adiposity in women with 

disruption of BBB integrity, showing that overweight/obesity could favor the onset of vascular 

disorders increasing BBB permeability later in life (Gustafson et al., 2007). In the same line of 

evidence, rats fed with Western diet, known for promoting diabetes and obesity, display a 

leakier BBB due to the decreased expression of tight junctions (Kanoski et al., 2010). Kanoski 

and colleagues also show that a primary cerebral target following BBB disruption is the 

hippocampus, well-known for its involvement in cognitive processes (Kanoski et al., 2010). 

This is of peculiar interest given that AD patients display hippocampal atrophy and disruption 

of fronto-hippocampal connections early in the course of the disease (Whitwell, 2010; Remy 

et al., 2015; Wisse et al., 2015). This is further reinforced by the fact that AD in human and 

rodent models is strongly linked to an increase permeability of the BBB (Ujiie et al., 2003; 

Bowman et al., 2007). Consequently, the chronic low-grade inflammation that takes place in 

obese and diabetic people could favor brain inflammation and degeneration through BBB 

disruption. While the causal nature of these processes leading to neurodegeneration has not 

been definitively established, it is widely accepted that neuroinflammation and oxidative stress 

responses occur with clinical manifestation of the disease. In this review we notably described 

the negative impact of pro-inflammatory adipokines (TNFα, IL-6 and leptin) on brain 

homeostasis and functions. In addition, pro-inflammatory adipokines plays a major role in the 
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production of reactive oxygen species (ROS) (Laurikka et al., 2014; Matsuda and Shimomura, 

2014). Due to its ability to secrete adipokines that promote ROS production, WAT has been 

regarded as an independent factor provoking oxidative stress (Furukawa et al., 2004; 

Vachharajani and Granger, 2009; Fernandez-Sanchez et al., 2011). Exposure to obese state for 

a long time in a host system, down-regulates and depletes the activity of antioxidant enzymes 

such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), these 

enzymes being found to be significantly lowered compared with healthy persons which in turn 

leads to the development of obesity-related health problems (Ozata et al., 2002). In addition to 

this levels of vitamin A, levels of serum antioxidants, such as vitamin E, vitamin C, and β-

carotene, as well as glutathione, are also decreased in obesity (Vincent et al., 2005). When 

compared to the normal or lean individuals, obese individuals exhibit high levels of biomarkers 

of oxidative damage and inflammation such as C-reactive protein, LDL oxidation, and 

Triglyceride levels (Pihl et al., 2006). Thus, apart from inflammation, which is quite well-

known to be one of the critical factors that damages the brain, production of ROS which 

exceeds the antioxidant defenses in the host system is another factor can also result in brain 

damages. Cytokines produced by the monocytes and macrophages in WAT are the potent 

stimulators for the production of reactive oxygen and nitrogen species which generates 

oxidative stress. Adipose tissue also has the secretory capacity of angiotensin II, which 

stimulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity. NADPH 

oxidase comprises the major route for ROS production in adipocytes (Morrow, 2003). Thus, 

obesity results in an increased oxidative stress status that can lead to neural dysfunction and 

death (Rodriguez-Rodriguez et al., 2014; Ruszkiewicz and Albrecht, 2015). It has been 

reported that obesity may induce systemic oxidative stress and, in turn, oxidative stress is 

associated with an irregular production of adipokines, which contributes to the development of 

the metabolic syndrome (Esposito et al., 2006). In parallel, oxidative stress is implicated in 

numerous neurological diseases and/or disorders such as AD, PD, amyotrophic lateral sclerosis 

(ALS), multiple sclerosis (MS), cerebral ischemia/reperfusion injury and TBI, promoting 

neurodegeneration (Freeman and Keller, 2012). An increasing number of studies using, in vitro 

models and knock-out animals demonstrate that oxidative stress disrupt the BBB permeability 

(Lochhead et al., 2010; Freeman and Keller, 2012; Enciu et al., 2013).  

 Taken together, these data suggest that in pathological conditions adipokines released 

by WAT promote inflammation and ROS production that may disrupt the BBB permeability 

and could directly or indirectly act on different brain structures, the hippocampus being one of 

the most sensitive area. It could explain why metabolic syndrome is associated with 
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hippocampus atrophy and an increase risk to develop dementia such as AD. One main issue in 

people suffering from metabolic syndrome should be to struggle against inflammation and 

reduce oxidative stress in order to decrease their potential effects on brain neurodegeneration 

and their adverse effects. 

 

 

CREDITS 

This work was supported by the grants from Conseil Régional de La Réunion and Europe 

(CPER/FEDER). AP is funded by fellowships from ‘Conseil Régional de La Réunion’.            

ND and CLH were supported by the grants from Europe (CPER/FEDER).   

  



327 

 

REFERENCES 
 

(WHO) WHO. 2012. Dementia. http://wwwwhoint/mediacentre/factsheets/fs362/en/. 

(WHO) WHO. 2015a. Diabetes. http://wwwwhoint/mediacentre/factsheets/fs312/en/. 

(WHO) WHO. 2015b. Obesity and overweight. 

http://wwwwhoint/mediacentre/factsheets/fs311/en/. 

Adamczak M, Wiecek A. 2013. The adipose tissue as an endocrine organ. Seminars in 

 nephrology 33(1):2-13. 

Ahima RS, Saper CB, Flier JS, Elmquist JK. 2000. Leptin regulation of neuroendocrine 

 systems. Front Neuroendocrinol 21(3):263-307. 

Alberti KG, Zimmet PZ. 1998. Definition, diagnosis and classification of diabetes mellitus and 

 its complications. Part 1: diagnosis and classification of diabetes mellitus provisional 

 report of a WHO consultation. Diabetic medicine : a journal of the British Diabetic 

 Association 15(7):539-553. 

Arnoldussen IA, Kiliaan AJ, Gustafson DR. 2014. Obesity and dementia: Adipokines interact 

 with the brain. European neuropsychopharmacology : the journal of the European 

 College of Neuropsychopharmacology. 

Awada R, Parimisetty A, Lefebvre d'Hellencourt C. 2013. Influence of obesity on 

 neurodegenerative diseases. Neurodegenerative Diseases Chapter 16:381-401. 

Banks WA, Clever CM, Farrell CL. 2000. Partial saturation and regional variation in the blood-

 to-brain transport of leptin in normal weight mice. American journal of physiology 

 Endocrinology and metabolism 278(6):E1158-1165. 

Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. 1996. Leptin enters the brain by a 

 saturable system independent of insulin. Peptides 17(2):305-311. 

Barger SW, Horster D, Furukawa K, Goodman Y, Krieglstein J, Mattson MP. 1995. Tumor 

 necrosis factors alpha and beta protect neurons against amyloid beta-peptide toxicity: 

 evidence for involvement of a kappa B-binding factor and attenuation of peroxide and 

 Ca2+ accumulation. Proceedings of the National Academy of Sciences of the United 

 States of America 92(20):9328-9332. 

Baskin DG, Hahn TM, Schwartz MW. 1999. Leptin sensitive neurons in the hypothalamus. 

 Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones 

 et metabolisme 31(5):345-350. 

Baune BT, Wiede F, Braun A, Golledge J, Arolt V, Koerner H. 2008. Cognitive dysfunction 

 in mice deficient for TNF- and its receptors. American journal of medical genetics Part 

 B, Neuropsychiatric genetics : the official publication of the International Society of 

 Psychiatric Genetics 147B(7):1056-1064. 

Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK, Von Zastrow M, Beattie MS, 

 Malenka RC. 2002. Control of synaptic strength by glial TNFalpha. Science 

 295(5563):2282-2285. 

Benomar Y, Gertler A, De Lacy P, Crepin D, Ould Hamouda H, Riffault L, Taouis M. 2013. 

 Central resistin overexposure induces insulin resistance through Toll-like receptor 4. 

 Diabetes 62(1):102-114. 

Berg AH, Combs TP, Scherer PE. 2002. ACRP30/adiponectin: an adipokine regulating glucose 

 and lipid metabolism. Trends in endocrinology and metabolism: TEM 13(2):84-89. 

 Berg AH, Scherer PE. 2005. Adipose tissue, inflammation, and cardiovascular disease. 

 Circulation research 96(9):939-949. 

Beydoun MA, Beydoun HA, Wang Y. 2008. Obesity and central obesity as risk factors for 

 incident dementia and its subtypes: a systematic review and meta-analysis. Obesity 

 reviews : an official journal of the International Association for the Study of Obesity 

 9(3):204-218. 



328 

 

Biessels GJ, Deary IJ, Ryan CM. 2008. Cognition and diabetes: a lifespan perspective. Lancet 

 Neurol 7(2):184-190. 

Black RA, Rauch CT, Kozlosky CJ, Peschon JJ, Slack JL, Wolfson MF, Castner BJ, Stocking 

 KL, Reddy P, Srinivasan S, Nelson N, Boiani N, Schooley KA, Gerhart M, Davis R, 

 Fitzner JN, Johnson RS, Paxton RJ, March CJ, Cerretti DP. 1997. A metalloproteinase 

 disintegrin that releases tumour-necrosis factor-alpha from cells. Nature 

 385(6618):729-733. 

Bluher M. 2014. Adipokines - removing road blocks to obesity and diabetes therapy. Molecular 

 metabolism 3(3):230-240. 

Bluher M, Mantzoros CS. 2015. From leptin to other adipokines in health and disease: facts 

 and expectations at the beginning of the 21st century. Metabolism: clinical and 

 experimental  64(1):131-145. 

Bokarewa M, Nagaev I, Dahlberg L, Smith U, Tarkowski A. 2005. Resistin, an adipokine with 

 potent pro-inflammatory properties. Journal of immunology 174(9):5789-5795. 

Bonda DJ, Stone JG, Torres SL, Siedlak SL, Perry G, Kryscio R, Jicha G, Casadesus G, Smith 

 MA, Zhu X, Lee HG. 2014. Dysregulation of leptin signaling in Alzheimer disease: 

 evidence for neuronal leptin resistance. Journal of neurochemistry 128(1):162-172. 

Bouret SG. 2010. Neurodevelopmental actions of leptin. Brain research 1350:2-9. 

 Bowman GL, Kaye JA, Moore M, Waichunas D, Carlson NE, Quinn JF. 2007. Blood-

 brain barrier impairment in Alzheimer disease: stability and functional significance. 

 Neurology 68(21):1809-1814. 

Broglio C, Gómez A, Durán E, Ocaña FM, Jiménez-Moya F, Rodríguez F, Salas C. 2005. 

 Hallmarks of a common forebrain vertebrate plan: specialized pallial areas for spatial, 

 temporal and emotional memory in actinopterygian fish. Brain research bulletin 66(4-

 6):277-281. 

Brown R, Imran SA, Belsham DD, Ur E, Wilkinson M. 2007. Adipokine gene expression in a 

 novel hypothalamic neuronal cell line: resistin-dependent regulation of fasting-induced 

 adipose factor and SOCS-3. Neuroendocrinology 85(4):232-241. 

Brown R, Thompson HJ, Imran SA, Ur E, Wilkinson M. 2008. Traumatic brain injury induces 

 adipokine gene expression in rat brain. Neuroscience letters 432(1):73-78. 

Brown R, Wiesner G, Ur E, Wilkinson M. 2005. Pituitary resistin gene expression is 

 upregulated  in vitro and in vivo by dexamethasone but is unaffected by rosiglitazone. 

 Neuroendocrinology 81(1):41-48. 

Bruce-Keller AJ, Keller JN, Morrison CD. 2009. Obesity and vulnerability of the CNS. 

 Biochimica et biophysica acta 1792(5):395-400. 

Burguera B, Couce ME, Long J, Lamsam J, Laakso K, Jensen MD, Parisi JE, Lloyd RV. 2000. 

 The long form of the leptin receptor (OB-Rb) is widely expressed in the human brain. 

 Neuroendocrinology 71(3):187-195. 

Butler MP, O'Connor JJ, Moynagh PN. 2004. Dissection of tumor-necrosis factor-alpha 

 inhibition of long-term potentiation (LTP) reveals a p38 mitogen-activated protein 

 kinase-dependent mechanism which maps to early-but not late-phase LTP. 

 Neuroscience  124(2):319-326. 

Chaldakov GN. 2007. The Adipobiology of Disease. Immunology, Endocrine & Metabolic 

 Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry - Immunology, 

 Endocrine and Metabolic Agents) Volume 7, Number 2, April 2007,: pp. 105-105. 

Chen Y, Ramakrishnan DP, Ren B. 2013. Regulation of angiogenesis by phospholipid 

 lysophosphatidic acid. Frontiers in bioscience 18:852-861. 

Cheng G, Huang C, Deng H, Wang H. 2012. Diabetes as a risk factor for dementia and mild 

 cognitive impairment: a meta-analysis of longitudinal studies. Internal medicine journal 

 42(5):484-491. 



329 

 

Chung IY, Benveniste EN. 1990. Tumor necrosis factor-alpha production by astrocytes. 

 Induction by lipopolysaccharide, IFN-gamma, and IL-1 beta. Journal of immunology 

 144(8):2999-3007. 

Clement K, Viguerie N, Poitou C, Carette C, Pelloux V, Curat CA, Sicard A, Rome S, Benis 

 A, Zucker JD, Vidal H, Laville M, Barsh GS, Basdevant A, Stich V, Cancello R, Langin 

 D. 2004. Weight loss regulates inflammation-related genes in white adipose tissue of 

 obese subjects. FASEB J 18(14):1657-1669. 

Cournot M, Marquie JC, Ansiau D, Martinaud C, Fonds H, Ferrieres J, Ruidavets JB. 2006. 

 Relation between body mass index and cognitive function in healthy middle-aged men 

 and women. Neurology 67(7):1208-1214. 

Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ. 

 2001. Leptin activates anorexigenic POMC neurons through a neural network in the 

 arcuate nucleus. Nature 411(6836):480-484. 

Cunningham AJ, Murray CA, O'Neill LA, Lynch MA, O'Connor JJ. 1996. Interleukin-1 beta 

 (IL-1 beta) and tumour necrosis factor (TNF) inhibit long-term potentiation in the rat 

 dentate gyrus in vitro. Neuroscience letters 203(1):17-20. 

Debette S, Beiser A, Hoffmann U, Decarli C, O'Donnell CJ, Massaro JM, Au R, Himali JJ, 

 Wolf  PA, Fox CS, Seshadri S. 2010. Visceral fat is associated with lower brain 

 volume in healthy middle-aged adults. Ann Neurol 68(2):136-144. 

Degawa-Yamauchi M, Bovenkerk JE, Juliar BE, Watson W, Kerr K, Jones R, Zhu Q, 

 Considine RV. 2003. Serum resistin (FIZZ3) protein is increased in obese humans. The 

 Journal of clinical endocrinology and metabolism 88(11):5452-5455. 

Devos R, Richards JG, Campfield LA, Tartaglia LA, Guisez Y, van der Heyden J, Travernier 

 J, Plaetinck G, Burn P. 1996. OB protein binds specifically to the choroid plexus of 

 mice and rats. Proceedings of the National Academy of Sciences of the United States 

 of America 93(11):5668-5673. 

Dubin AE, Herr DR, Chun J. 2010. Diversity of lysophosphatidic acid receptor-mediated 

 intracellular calcium signaling in early cortical neurogenesis. The Journal of 

neuroscience  : the official journal of the Society for Neuroscience 30(21):7300-7309. 

Enciu AM, Gherghiceanu M, Popescu BO. 2013. Triggers and effectors of oxidative stress at 

 blood-brain barrier level: relevance for brain ageing and neurodegeneration. Oxid Med 

 Cell Longev 2013:297512. 

Enriori PJ, Evans AE, Sinnayah P, Jobst EE, Tonelli-Lemos L, Billes SK, Glavas MM, Grayson 

 BE, Perello M, Nillni EA, Grove KL, Cowley MA. 2007. Diet-induced obesity causes 

 severe but reversible leptin resistance in arcuate melanocortin neurons. Cell metabolism 

 5(3):181-194. 

Esposito K, Ciotola M, Schisano B, Misso L, Giannetti G, Ceriello A, Giugliano D. 2006. 

 Oxidative stress in the metabolic syndrome. J Endocrinol Invest 29(9):791-795. 

Estivill-Torrus G, Llebrez-Zayas P, Matas-Rico E, Santin L, Pedraza C, De Diego I, Del Arco 

 I, Fernandez-Llebrez P, Chun J, De Fonseca FR. 2008. Absence of LPA1 signaling 

 results  in defective cortical development. Cerebral cortex 18(4):938-950. 

Fernandez-Sanchez A, Madrigal-Santillan E, Bautista M, Esquivel-Soto J, Morales-Gonzalez 

 A, Esquivel-Chirino C, Durante-Montiel I, Sanchez-Rivera G, Valadez-Vega C, 

 Morales-Gonzalez JA. 2011. Inflammation, oxidative stress, and obesity. International 

 journal of molecular sciences 12(5):3117-3132. 

Fleisch AF, Agarwal N, Roberts MD, Han JC, Theim KR, Vexler A, Troendle J, Yanovski SZ, 

 Yanovski JA. 2007. Influence of serum leptin on weight and body fat growth in children 

 at high risk for adult obesity. The Journal of clinical endocrinology and metabolism 

 92(3):948-954. 



330 

 

Freeman LR, Keller JN. 2012. Oxidative stress and cerebral endothelial cells: regulation of the 

 blood-brain-barrier and antioxidant based interventions. Biochimica et biophysica acta 

 1822(5):822-829. 

Friedman JM, Halaas JL. 1998. Leptin and the regulation of body weight in mammals. Nature 

 395(6704):763-770. 

Frisca F, Sabbadini RA, Goldshmit Y, Pebay A. 2012. Biological effects of lysophosphatidic 

 acid in the nervous system. International review of cell and molecular biology 296:273-

 322. 

Frugier T, Crombie D, Conquest A, Tjhong F, Taylor C, Kulkarni T, McLean C, Pebay A. 

 2011.  Modulation of LPA receptor expression in the human brain following 

 neurotrauma.  Cellular and molecular neurobiology 31(4):569-577. 

Fry M, Smith PM, Hoyda TD, Duncan M, Ahima RS, Sharkey KA, Ferguson AV. 2006. Area 

 postrema neurons are modulated by the adipocyte hormone adiponectin. The Journal of 

 neuroscience : the official journal of the Society for Neuroscience 26(38):9695-9702. 

Fukushima N, Shano S, Moriyama R, Chun J. 2007. Lysophosphatidic acid stimulates neuronal 

 differentiation of cortical neuroblasts through the LPA1-G(i/o) pathway. 

 Neurochemistry international 50(2):302-307. 

Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, 

 Makishima M, Matsuda M, Shimomura I. 2004. Increased oxidative stress in obesity 

 and its impact on metabolic syndrome. The Journal of clinical investigation 

 114(12):1752- 1761. 

Gianfrancesco MA, Acuna B, Shen L, Briggs FB, Quach H, Bellesis KH, Bernstein A, 

 Hedstrom AK, Kockum I, Alfredsson L, Olsson T, Schaefer C, Barcellos LF. 2014. 

 Obesity during childhood and adolescence increases susceptibility to multiple sclerosis 

 after accounting for established genetic and environmental risk factors. Obesity 

 research & clinical practice 8(5):e435-447. 

Gorska E, Popko K, Stelmaszczyk-Emmel A, Ciepiela O, Kucharska A, Wasik M. 2010. Leptin 

 receptors. European journal of medical research 15 Suppl 2:50-54. 

Greenberg AS, Obin MS. 2006. Obesity and the role of adipose tissue in inflammation and 

 metabolism. Am J Clin Nutr 83(2):461S-465S. 

Gustafson D. 2006. Adiposity indices and dementia. Lancet Neurol 5(8):713-720. 

Gustafson D, Lissner L, Bengtsson C, Bjorkelund C, Skoog I. 2004. A 24-year follow-up of 

 body mass index and cerebral atrophy. Neurology 63(10):1876-1881. 

Gustafson D, Rothenberg E, Blennow K, Steen B, Skoog I. 2003. An 18-year follow-up of 

 overweight and risk of Alzheimer disease. Arch Intern Med 163(13):1524-1528. 

Gustafson DR, Backman K, Waern M, Ostling S, Guo X, Zandi P, Mielke MM, Bengtsson C, 

 Skoog I. 2009. Adiposity indicators and dementia over 32 years in Sweden. Neurology 

 73(19):1559-1566. 

Gustafson DR, Karlsson C, Skoog I, Rosengren L, Lissner L, Blennow K. 2007. Mid-life 

 adiposity factors relate to blood-brain barrier integrity in late life. J Intern Med 

 262(6):643-650. 

Haan MN. 2006. Therapy Insight: type 2 diabetes mellitus and the risk of late-onset 

 Alzheimer's disease. Nature clinical practice Neurology 2(3):159-166. 

Heldmann U, Thored P, Claasen JH, Arvidsson A, Kokaia Z, Lindvall O. 2005. TNF-alpha 

 antibody infusion impairs survival of stroke-generated neuroblasts in adult rat brain. 

 Experimental neurology 196(1):204-208. 

Herder C, Baumert J, Thorand B, Koenig W, de Jager W, Meisinger C, Illig T, Martin S, Kolb 

 H. 2006. Chemokines as risk factors for type 2 diabetes: results from the 

 MONICA/KORA Augsburg study, 1984-2002. Diabetologia 49(5):921-929. 



331 

 

Hermann GE, Rogers RC, Bresnahan JC, Beattie MS. 2001. Tumor necrosis factor-alpha 

 induces cFOS and strongly potentiates glutamate-mediated cell death in the rat spinal 

 cord. Neurobiology of disease 8(4):590-599. 

Higdon JV, Frei B. 2003. Obesity and oxidative stress: a direct link to CVD? Arterioscler 

 Thromb Vasc Biol 23(3):365-367. 

Hillenbrand A, Knippschild U, Weiss M, Schrezenmeier H, Henne-Bruns D, Huber-Lang M, 

 Wolf AM. 2010. Sepsis induced changes of adipokines and cytokines - septic patients 

 compared to morbidly obese patients. BMC surgery 10:26. 

Hillenbrand A, Weiss M, Knippschild U, Wolf AM, Huber-Lang M. 2012. Sepsis-Induced 

 Adipokine Change with regard to Insulin Resistance. International journal of 

 inflammation 2012:972368. 

Ho AJ, Stein JL, Hua X, Lee S, Hibar DP, Leow AD, Dinov ID, Toga AW, Saykin AJ, Shen 

 L, Foroud T, Pankratz N, Huentelman MJ, Craig DW, Gerber JD, Allen AN, 

 Corneveaux JJ, Stephan DA, DeCarli CS, DeChairo BM, Potkin SG, Jack CR, Jr., 

 Weiner MW, Raji CA, Lopez OL, Becker JT, Carmichael OT, Thompson PM. 2010. A 

 commonly carried allele of the obesity-related FTO gene is associated with reduced 

 brain volume in the healthy  elderly. Proceedings of the National Academy of 

 Sciences of the United States of America 107(18):8404-8409. 

Ho N, Sommers MS, Lucki I. 2013. Effects of diabetes on hippocampal neurogenesis: links to 

 cognition and depression. Neuroscience and biobehavioral reviews 37(8):1346-1362. 

Holtsberg FW, Steiner MR, Keller JN, Mark RJ, Mattson MP, Steiner SM. 1998. 

Lysophosphatidic acid induces necrosis and apoptosis in hippocampal neurons. Journal 

of neurochemistry 70(1):66-76. 

Hotamisligil GS, Shargill NS, Spiegelman BM. 1993. Adipose expression of tumor necrosis 

 factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87-91. 

Hoyda TD, Fry M, Ahima RS, Ferguson AV. 2007. Adiponectin selectively inhibits oxytocin 

 neurons of the paraventricular nucleus of the hypothalamus. The Journal of physiology 

 585(Pt 3):805-816. 

Iosif RE, EkDahl CT, Ahlenius H, Pronk CJ, Bonde S, Kokaia Z, Jacobsen SE, Lindvall O. 

 2006. Tumor necrosis factor receptor 1 is a negative regulator of progenitor 

 proliferation in adult hippocampal neurogenesis. The Journal of neuroscience : the 

 official journal of the  Society for Neuroscience 26(38):9703-9712. 

Kanoski SE, Zhang Y, Zheng W, Davidson TL. 2010. The effects of a high-energy diet on 

 hippocampal function and blood-brain barrier integrity in the rat. Journal of Alzheimer's 

 disease : JAD 21(1):207-219. 

Keller JN, Steiner MR, Holtsberg FW, Mattson MP, Steiner SM. 1997. Lysophosphatidic acid-

 induced proliferation-related signals in astrocytes. Journal of neurochemistry 

69(3):1073- 1084. 

Khan NI, Naz L, Yasmeen G. 2006. Obesity: an independent risk factor for systemic oxidative 

 stress. Pak J Pharm Sci 19(1):62-65. 

Kiliaan AJ, Arnoldussen IA, Gustafson DR. 2014. Adipokines: a link between obesity and 

 dementia? Lancet Neurol 13(9):913-923. 

Kingsbury MA, Rehen SK, Contos JJ, Higgins CM, Chun J. 2003. Non-proliferative effects of 

 lysophosphatidic acid enhance cortical growth and folding. Nature neuroscience 

 6(12):1292-1299. 

Kosari S, Camera DM, Hawley JA, Stebbing M, Badoer E. 2013. ERK1/2 in the brain mediates 

 the effects of central resistin on reducing thermogenesis in brown adipose tissue. 

 International journal of physiology, pathophysiology and pharmacology 5(3):184-189. 

Kosari S, Rathner JA, Badoer E. 2012. Central resistin enhances renal sympathetic nerve 

 activity via phosphatidylinositol 3-kinase but reduces the activity to brown adipose 



332 

 

 tissue via extracellular signal-regulated kinase 1/2. Journal of neuroendocrinology 

 24(11):1432- 1439. 

Kotarsky K, Boketoft A, Bristulf J, Nilsson NE, Norberg A, Hansson S, Owman C, Sillard R, 

 Leeb-Lundberg LM, Olde B. 2006. Lysophosphatidic acid binds to and activates 

 GPR92,a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. 

 The Journal of pharmacology and experimental therapeutics 318(2):619-628. 

Kriegler M, Perez C, DeFay K, Albert I, Lu SD. 1988. A novel form of TNF/cachectin is a cell 

 surface cytotoxic transmembrane protein: ramifications for the complex physiology of 

 TNF. Cell 53(1):45-53. 

Ku IA, Farzaneh-Far R, Vittinghoff E, Zhang MH, Na B, Whooley MA. 2011. Association of 

 low leptin with cardiovascular events and mortality in patients with stable coronary 

 artery disease: the Heart and Soul Study. Atherosclerosis 217(2):503-508. 

Lan X, Chen Q, Wang Y, Jia B, Sun L, Zheng J, Peng H. 2012. TNF-alpha affects human 

 cortical neural progenitor cell differentiation through the autocrine secretion of 

 leukemia inhibitory factor. PloS one 7(12):e50783. 

Laurikka A, Vuolteenaho K, Toikkanen V, Rinne T, Leppanen T, Tarkka M, Laurikka J, 

 Moilanen E. 2014. Adipocytokine resistin correlates with oxidative stress and 

 myocardial injury in patients undergoing cardiac surgery. European journal of cardio-

 thoracic surgery : official journal of the European Association for Cardio-thoracic 

 Surgery 46(4):729-736. 

Leal Vde O, Mafra D. 2013. Adipokines in obesity. Clinica chimica acta; international journal 

 of clinical chemistry 419:87-94. 

Lee EB. 2011. Obesity, leptin, and Alzheimer's disease. Annals of the New York Academy of 

 Sciences 1243:15-29. 

Lee JH, Bullen JW, Jr., Stoyneva VL, Mantzoros CS. 2005. Circulating resistin in lean, obese, 

 and insulin-resistant mouse models: lack of association with insulinemia and glycemia. 

 American journal of physiology Endocrinology and metabolism 288(3):E625-632. 

Lehr S, Hartwig S, Sell H. 2012. Adipokines: a treasure trove for the discovery of biomarkers 

 for metabolic disorders. Proteomics Clinical applications 6(1-2):91-101. 

Letra L, Santana I, Seica R. 2014. Obesity as a risk factor for Alzheimer's disease: the role of 

 adipocytokines. Metabolic brain disease 29(3):563-568. 

Li W, Prakash R, Chawla D, Du W, Didion SP, Filosa JA, Zhang Q, Brann DW, Lima VV, 

 Tostes RC, Ergul A. 2013. Early effects of high-fat diet on neurovascular function and 

 focal ischemic brain injury. American journal of physiology Regulatory, integrative and 

 comparative physiology 304(11):R1001-1008. 

Lieberman AP, Pitha PM, Shin HS, Shin ML. 1989. Production of tumor necrosis factor and 

 other cytokines by astrocytes stimulated with lipopolysaccharide or a neurotropic virus. 

 Proceedings of the National Academy of Sciences of the United States of America 

 86(16):6348-6352. 

Lochhead JJ, McCaffrey G, Quigley CE, Finch J, DeMarco KM, Nametz N, Davis TP. 2010. 

 Oxidative stress increases blood-brain barrier permeability and induces alterations in 

 occludin during hypoxia-reoxygenation. Journal of cerebral blood flow and metabolism  

 official journal of the International Society of Cerebral Blood Flow and Metabolism 

 30(9):1625-1636. 

Lokken KL, Boeka AG, Austin HM, Gunstad J, Harmon CM. 2009. Evidence of executive 

 dysfunction in extremely obese adolescents: a pilot study. Surgery for obesity and 

 related  diseases : official journal of the American Society for Bariatric Surgery 

 5(5):547-552. 



333 

 

Lynch CM, Kinzenbaw DA, Chen X, Zhan S, Mezzetti E, Filosa J, Ergul A, Faulkner JL, Faraci 

 FM, Didion SP. 2013. Nox2-derived superoxide contributes to cerebral vascular 

 dysfunction in diet-induced obesity. Stroke 44(11):3195-3201. 

MacKnight C, Rockwood K, Awalt E, McDowell I. 2002. Diabetes mellitus and the risk of 

 dementia, Alzheimer's disease and vascular cognitive impairment in the Canadian 

 Study  of Health and Aging. Dementia and geriatric cognitive disorders 14(2):77-83. 

Maddineni S, Metzger S, Ocon O, Hendricks G, 3rd, Ramachandran R. 2005. Adiponectin gene 

 is expressed in multiple tissues in the chicken: food deprivation influences adiponectin 

 messenger ribonucleic acid expression. Endocrinology 146(10):4250-4256. 

Maeda N, Shimomura I, Kishida K, Nishizawa H, Matsuda M, Nagaretani H, Furuyama N, 

 Kondo H, Takahashi M, Arita Y, Komuro R, Ouchi N, Kihara S, Tochino Y, Okutomi 

 K, Horie M, Takeda S, Aoyama T, Funahashi T, Matsuzawa Y. 2002. Diet-induced 

 insulin  resistance in mice lacking adiponectin/ACRP30. Nature medicine 8(7):731-

 737. 

Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel UL. 2004. Tumor necrosis factor (TNF)-

 mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-

 methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated 

 phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. The Journal of 

 biological chemistry 279(31):32869-32881. 

Matas-Rico E, Garcia-Diaz B, Llebrez-Zayas P, Lopez-Barroso D, Santin L, Pedraza C, Smith-

 Fernandez A, Fernandez-Llebrez P, Tellez T, Redondo M, Chun J, De Fonseca FR, 

 Estivill-Torrus G. 2008. Deletion of lysophosphatidic acid receptor LPA1 reduces 

 neurogenesis in the mouse dentate gyrus. Molecular and cellular neurosciences 

 39(3):342-355. 

Matsuda M, Shimomura I. 2014. Roles of adiponectin and oxidative stress in obesity-associated 

 metabolic and cardiovascular diseases. Reviews in endocrine & metabolic disorders 

 15(1):1-10. 

Matsunaga E, Nambu S, Oka M, Iriki A. 2013. Differential cadherin expression in the 

 developing postnatal telencephalon of a New World monkey. J Comp Neurol 

 521(17):4027-4060. 

Matsuzawa Y. 2005. Adiponectin: Identification, physiology and clinical relevance in 

 metabolic and vascular disease. Atherosclerosis Supplements 6(2):7-14. 

Mauro C, De Rosa V, Marelli-Berg F, Solito E. 2014. Metabolic syndrome and the 

 immunological affair with the blood-brain barrier. Frontiers in immunology 5:677. 

Maury E, Brichard SM. 2010. Adipokine dysregulation, adipose tissue inflammation and 

 metabolic syndrome. Molecular and cellular endocrinology 314(1):1-16. 

McCrimmon RJ, Ryan CM, Frier BM. 2012. Diabetes and cognitive dysfunction. Lancet 

 379(9833):2291-2299. 

McNeilly AD, Williamson R, Sutherland C, Balfour DJ, Stewart CA. 2011. High fat feeding 

 promotes simultaneous decline in insulin sensitivity and cognitive performance in a 

 delayed matching and non-matching to position task. Behavioural brain research 

 217(1):134-141. 

Mercer JG, Hoggard N, Williams LM, Lawrence CB, Hannah LT, Trayhurn P. 1996. 

 Localization of leptin receptor mRNA and the long form splice variant (Ob-Rb) in 

mouse  hypothalamus and adjacent brain regions by in situ hybridization. FEBS letters 387(2-

 3):113-116. 

Miralbell J, Lopez-Cancio E, Lopez-Oloriz J, Arenillas JF, Barrios M, Soriano-Raya JJ, Galan 

 A, Caceres C, Alzamora M, Pera G, Toran P, Davalos A, Mataro M. 2013. Cognitive 

 patterns in relation to biomarkers of cerebrovascular disease and vascular risk factors. 

 Cerebrovascular diseases 36(2):98-105. 



334 

 

Moller T, Contos JJ, Musante DB, Chun J, Ransom BR. 2001. Expression and function of 

 lysophosphatidic acid receptors in cultured rodent microglial cells. The Journal of 

 biological chemistry 276(28):25946-25952. 

Montgomery SL, Bowers WJ. 2012. Tumor necrosis factor-alpha and the roles it plays in 

 homeostatic and degenerative processes within the central nervous system. Journal of 

 neuroimmune pharmacology : the official journal of the Society on NeuroImmune 

 Pharmacology 7(1):42-59. 

Morash B, Li A, Murphy PR, Wilkinson M, Ur E. 1999. Leptin gene expression in the brain 

 and pituitary gland. Endocrinology 140(12):5995-5998. 

Morash BA, Willkinson D, Ur E, Wilkinson M. 2002. Resistin expression and regulation in 

 mouse pituitary. FEBS letters 526(1-3):26-30. 

Morganti-Kossman MC, Lenzlinger PM, Hans V, Stahel P, Csuka E, Ammann E, Stocker R, 

 Trentz O, Kossmann T. 1997. Production of cytokines following brain injury: beneficial 

 and deleterious for the damaged tissue. Molecular psychiatry 2(2):133-136. 

Morris MJ, Beilharz JE, Maniam J, Reichelt AC, Westbrook RF. 2014. Why is obesity such a 

 problem in the 21st century? The intersection of palatable food, cues and reward 

 pathways, stress, and cognition. Neuroscience and biobehavioral reviews. 

Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H, Tilg H. 2007. 

 Visfatin, an adipocytokine with pro-inflammatory and immunomodulating properties. 

 Journal of immunology 178(3):1748-1758. 

Murray AJ, Knight NS, Cochlin LE, McAleese S, Deacon RM, Rawlins JN, Clarke K. 2009. 

 Deterioration of physical performance and cognitive function in rats with short-term 

 high-fat feeding. FASEB J 23(12):4353-4360. 

Nguyen JC, Killcross AS, Jenkins TA. 2014a. Obesity and cognitive decline: role of 

 inflammation and vascular changes. Frontiers in neuroscience 8:375. 

Nguyen S, Major K, Demonet JF, Smith C, Rubli E, Humbert M, Bula C. 2014b. [Diabetes and 

 dementia: the dangerous liaisons? ]. Revue medicale suisse 10(449):2090-2092, 2094-

 2096. 

Nishimura M, Izumiya Y, Higuchi A, Shibata R, Qiu J, Kudo C, Shin HK, Moskowitz MA, 

 Ouchi N. 2008. Adiponectin prevents cerebral ischemic injury through endothelial 

 nitric oxide synthase dependent mechanisms. Circulation 117(2):216-223. 

Noguchi K, Herr D, Mutoh T, Chun J. 2009. Lysophosphatidic acid (LPA) and its receptors. 

 Current opinion in pharmacology 9(1):15-23. 

Noguchi K, Ishii S, Shimizu T. 2003. Identification of p2y9/GPR23 as a novel G protein-

 coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. 

 The Journal of biological chemistry 278(28):25600-25606. 

Okamoto Y, Kihara S, Ouchi N, Nishida M, Arita Y, Kumada M, Ohashi K, Sakai N, 

 Shimomura I, Kobayashi H, Terasaka N, Inaba T, Funahashi T, Matsuzawa Y. 2002. 

 Adiponectin reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation 

 106(22):2767-2770. 

Olefsky JM, Glass CK. 2010. Macrophages, inflammation, and insulin resistance. Annual 

 review  of physiology 72:219-246. 

Ouchi N, Kihara S, Funahashi T, Matsuzawa Y, Walsh K. 2003. Obesity, adiponectin and 

 vascular inflammatory disease. Current opinion in lipidology 14(6):561-566. 

Ouchi N, Parker JL, Lugus JJ, Walsh K. 2011. Adipokines in inflammation and metabolic 

 disease. Nature reviews Immunology 11(2):85-97. 

Ozata M, Mergen M, Oktenli C, Aydin A, Sanisoglu SY, Bolu E, Yilmaz MI, Sayal A, Isimer 

 A, Ozdemir IC. 2002. Increased oxidative stress and hypozincemia in male obesity. 

 Clin Biochem 35(8):627-631. 



335 

 

Park HK, Ahima RS. 2013. Resistin in rodents and humans. Diabetes & metabolism journal 

 37(6):404-414. 

Paz-Filho G, Wong ML, Licinio J. 2010a. Leptin levels and Alzheimer disease. JAMA : the 

 journal of the American Medical Association 303(15):1478; author reply 1478-1479. 

Paz-Filho G, Wong ML, Licinio J. 2010b. The procognitive effects of leptin in the brain and 

 their clinical implications. International journal of clinical practice 64(13):1808-1812. 

Pickering M, Cumiskey D, O'Connor JJ. 2005. Actions of TNF-alpha on glutamatergic synaptic 

 transmission in the central nervous system. Experimental physiology 90(5):663-670. 

Pihl E, Zilmer K, Kullisaar T, Kairane C, Magi A, Zilmer M. 2006. Atherogenic inflammatory 

 and oxidative stress markers in relation to overweight values in male former athletes. 

 International journal of obesity 30(1):141-146. 

Psilopanagioti A, Papadaki H, Kranioti EF, Alexandrides TK, Varakis JN. 2009. Expression 

 of adiponectin and adiponectin receptors in human pituitary gland and brain. 

 Neuroendocrinology 89(1):38-47. 

Qiu G, Wan R, Hu J, Mattson MP, Spangler E, Liu S, Yau SY, Lee TM, Gleichmann M, Ingram 

 DK, So KF, Zou S. 2011. Adiponectin protects rat hippocampal neurons against 

 excitotoxicity. Age 33(2):155-165. 

Raji CA, Ho AJ, Parikshak NN, Becker JT, Lopez OL, Kuller LH, Hua X, Leow AD, Toga 

 AW, Thompson PM. 2010. Brain structure and obesity. Hum Brain Mapp 31(3):353-

 364. 

Ranscht B, Dours-Zimmermann MT. 1991. T-cadherin, a novel cadherin cell adhesion 

 molecule in the nervous system lacks the conserved cytoplasmic region. Neuron 

 7(3):391-402. 

Reisberg B, Burns A, Brodaty H, Eastwood R, Rossor M, Sartorius N, Winblad B. 1997. 

 Diagnosis of Alzheimer's disease. Report of an International Psychogeriatric 

 Association Special Meeting Work Group under the cosponsorship of Alzheimer’s 
 disease International, the European Federation of Neurological Societies, the World 

 Health  Organization, and the World Psychiatric Association. International 

 psychogeriatrics / IPA 9 Suppl 1:11-38. 

Remy F, Vayssiere N, Saint-Aubert L, Barbeau E, Pariente J. 2015. White matter disruption at 

 the prodromal stage of Alzheimer's disease: Relationships with hippocampal atrophy 

 and episodic memory performance. NeuroImage Clinical 7:482-492. 

Repunte-Canonigo V, Berton F, Cottone P, Reifel-Miller A, Roberts AJ, Morales M, 

 Francesconi  W, Sanna PP. 2010. A potential role for adiponectin receptor 2 

 (AdipoR2) in the regulation of alcohol intake. Brain research 1339:11-17. 

Rodriguez-Rodriguez A, Egea-Guerrero JJ, Murillo-Cabezas F, Carrillo-Vico A. 2014. 

 Oxidative stress in traumatic brain injury. Current medicinal chemistry 21(10):1201-

 1211. 

Roglic G, Unwin N, Bennett PH, Mathers C, Tuomilehto J, Nag S, Connolly V, King H. 2005. 

 The burden of mortality attributable to diabetes: realistic estimates for the year 2000. 

 Diabetes care 28(9):2130-2135. 

Ruszkiewicz J, Albrecht J. 2015. Changes in the mitochondrial antioxidant systems in 

 neurodegenerative diseases and acute brain disorders. Neurochemistry international. 

Sabia S, Kivimaki M, Shipley MJ, Marmot MG, Singh-Manoux A. 2009. Body mass index 

 over the adult life course and cognition in late midlife: the Whitehall II Cohort Study. 

 Am J  Clin Nutr 89(2):601-607. 

Salbe AD, Weyer C, Lindsay RS, Ravussin E, Tataranni PA. 2002. Assessing risk factors for 

 obesity between childhood and adolescence: I. Birth weight, childhood adiposity, 

 parental obesity, insulin, and leptin. Pediatrics 110(2 Pt 1):299-306. 



336 

 

Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. 1995. A novel serum protein 

 similar to C1q, produced exclusively in adipocytes. The Journal of biological chemistry 

 270(45):26746-26749. 

Selmaj K, Raine CS. 1988. Tumor necrosis factor mediates myelin damage in organotypic 

 cultures of nervous tissue. Annals of the New York Academy of Sciences 540:568-570. 

Silswal N, Singh AK, Aruna B, Mukhopadhyay S, Ghosh S, Ehtesham NZ. 2005. Human 

 resistin stimulates the pro-inflammatory cytokines TNF-alpha and IL-12 in 

 macrophages by NF-kappaB-dependent pathway. Biochemical and biophysical 

 research communications  334(4):1092-1101. 

Spranger J, Kroke A, Mohlig M, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF. 2003. 

 Adiponectin and protection against type 2 diabetes mellitus. Lancet 361(9353):226-

 228. 

Spranger J, Verma S, Gohring I, Bobbert T, Seifert J, Sindler AL, Pfeiffer A, Hileman SM, 

 Tschop M, Banks WA. 2006. Adiponectin does not cross the blood-brain barrier but 

 modifies cytokine expression of brain endothelial cells. Diabetes 55(1):141-147. 

Stefan N, Stumvoll M. 2002. Adiponectin--its role in metabolism and beyond. Hormone and 

 metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme 

 34(9):469-474. 

Svetlov SI, Ignatova TN, Wang KK, Hayes RL, English D, Kukekov VG. 2004. 

 Lysophosphatidic acid induces clonal generation of mouse neurospheres via 

 proliferation  of Sca-1- and AC133-positive neural progenitors. Stem cells and 

 development 13(6):685-693. 

Takeda S, Sato N, Morishita R. 2014. Systemic inflammation, blood-brain barrier vulnerability 

 and cognitive/non-cognitive symptoms in Alzheimer disease: relevance to pathogenesis 

 and therapy. Frontiers in aging neuroscience 6:171. 

Taki Y, Kinomura S, Sato K, Inoue K, Goto R, Okada K, Uchida S, Kawashima R, Fukuda H. 

 2008. Relationship between body mass index and gray matter volume in 1,428 healthy 

 individuals. Obesity (Silver Spring) 16(1):119-124. 

Tang P, Hung MC, Klostergaard J. 1994. TNF cytotoxicity: effects of HER-2/neu expression 

 and inhibitors of ADP-ribosylation. Lymphokine and cytokine research 13(2):117-123. 

Tartaglia LA. 1997. The leptin receptor. The Journal of biological chemistry 272(10):6093-

 6096. 

Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield 

 LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays 

 GG, Wool EA, Monroe CA, Tepper RI. 1995. Identification and expression cloning of 

 a leptin receptor, OB-R. Cell 83(7):1263-1271. 

Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, Zhao X, Sarruf DA, Izgur 

 V, Maravilla KR, Nguyen HT, Fischer JD, Matsen ME, Wisse BE, Morton GJ, Horvath 

 TL, Baskin DG, Tschop MH, Schwartz MW. 2012. Obesity is associated with 

 hypothalamic injury in rodents and humans. The Journal of clinical investigation 

 122(1):153-162. 

Thundyil J, Pavlovski D, Sobey CG, Arumugam TV. 2012. Adiponectin receptor signalling in 

 the brain. British journal of pharmacology 165(2):313-327. 

Thundyil J, Tang SC, Okun E, Shah K, Karamyan VT, Li YI, Woodruff TM, Taylor SM, Jo 

 DG, Mattson MP, Arumugam TV. 2010. Evidence that adiponectin receptor 1 

 activation exacerbates ischemic neuronal death. Experimental & translational stroke 

 medicine 2(1):15. 

Tilg H, Moschen AR. 2006. Adipocytokines: mediators linking adipose tissue, inflammation 

 and immunity. Nature reviews Immunology 6(10):772-783. 



337 

 

Tokumura A. 2004. Metabolic pathways and physiological and pathological significances of 

 lysolipid phosphate mediators. Journal of cellular biochemistry 92(5):869-881. 

Trayhurn P, Beattie JH. 2001. Physiological role of adipose tissue: white adipose tissue as an 

 endocrine and secretory organ. The Proceedings of the Nutrition Society 60(3):329-

 339. 

Trayhurn P, Wood IS. 2004. Adipokines: inflammation and the pleiotropic role of white 

 adipose tissue. The British journal of nutrition 92(3):347-355. 

Ujiie M, Dickstein DL, Carlow DA, Jefferies WA. 2003. Blood-brain barrier permeability 

 precedes senile plaque formation in an Alzheimer disease model. Microcirculation 

 10(6):463-470. 

Vachharajani V, Granger DN. 2009. Adipose tissue: a motor for the inflammation associated 

 with obesity. IUBMB Life 61(4):424-430. 

Vendrell J, Broch M, Vilarrasa N, Molina A, Gomez JM, Gutierrez C, Simon I, Soler J, Richart 

 C. 2004. Resistin, adiponectin, ghrelin, leptin, and pro-inflammatory cytokines: 

 relationships in obesity. Obesity research 12(6):962-971. 

Venkatesh B, Hickman I, Nisbet J, Cohen J, Prins J. 2009. Changes in serum adiponectin 

 concentrations in critical illness: a preliminary investigation. Critical care 13(4):R105. 

Versini M, Jeandel PY, Rosenthal E, Shoenfeld Y. 2014. Obesity in autoimmune diseases: not 

 a passive bystander. Autoimmunity reviews 13(9):981-1000. 

Vincent HK, Vincent KR, Bourguignon C, Braith RW. 2005. Obesity and postexercise 

 oxidative stress in older women. Medicine and science in sports and exercise 37(2):213-

 219. 

Vong L, Ye C, Yang Z, Choi B, Chua S, Jr., Lowell BB. 2011. Leptin action on GABAergic 

 neurons prevents obesity and reduces inhibitory tone to POMC neurons. Neuron 

 71(1):142-154. 

Waki H, Yamauchi T, Kamon J, Ito Y, Uchida S, Kita S, Hara K, Hada Y, Vasseur F, Froguel 

 P, Kimura S, Nagai R, Kadowaki T. 2003. Impaired multimerization of human 

 adiponectin mutants associated with diabetes. Molecular structure and multimer 

 formation of  adiponectin. The Journal of biological chemistry 278(41):40352-40363. 

Wan Z, Mah D, Simtchouk S, Klegeris A, Little JP. 2014. Globular adiponectin induces a pro-

 inflammatory response in human astrocytic cells. Biochemical and biophysical research 

 communications 446(1):37-42. 

Wang H, Chu WS, Hemphill C, Elbein SC. 2002. Human resistin gene: molecular scanning 

 and evaluation of association with insulin sensitivity and type 2 diabetes in Caucasians. 

 The Journal of clinical endocrinology and metabolism 87(6):2520-2524. 

Ward MA, Carlsson CM, Trivedi MA, Sager MA, Johnson SC. 2005. The effect of body mass 

 index on global brain volume in middle-aged adults: a cross sectional study. BMC 

 Neurol 5:23. 

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. 2003. Obesity 

 is associated with macrophage accumulation in adipose tissue. The Journal of clinical 

 investigation 112(12):1796-1808. 

Whitehead JP, Richards AA, Hickman IJ, Macdonald GA, Prins JB. 2006. Adiponectin--a key 

 adipokine in the metabolic syndrome. Diabetes, obesity & metabolism 8(3):264-280. 

Whitmer RA. 2007. Type 2 diabetes and risk of cognitive impairment and dementia. Current 

 neurology and neuroscience reports 7(5):373-380. 

Whitmer RA, Gustafson DR, Barrett-Connor E, Haan MN, Gunderson EP, Yaffe K. 2008. 

 Central obesity and increased risk of dementia more than three decades later. Neurology 

 71(14):1057-1064. 

Whitwell JL. 2010. Progression of atrophy in Alzheimer's disease and related disorders. 

 Neurotoxicity research 18(3-4):339-346. 



338 

 

Wiesner G, Brown RE, Robertson GS, Imran SA, Ur E, Wilkinson M. 2006. Increased 

 expression of the adipokine genes resistin and fasting-induced adipose factor in 

 hypoxic/ischaemic mouse brain. Neuroreport 17(11):1195-1198. 

Wilkinson M, Brown R, Imran SA, Ur E. 2007. Adipokine gene expression in brain and 

 pituitary gland. Neuroendocrinology 86(3):191-209. 

Wilkinson M, Morash B, Ur E. 2000. The brain is a source of leptin. Frontiers of hormone 

 research 26:106-125. 

Wisse LE, Reijmer YD, Ter Telgte A, Kuijf HJ, Leemans A, Luijten PR, Koek HL, Geerlings 

 MI, Biessels GJ. 2015. Hippocampal Disconnection in Early Alzheimer's Disease: A 7 

 Tesla MRI Study. Journal of Alzheimer's disease : JAD. 

Xu A, Wang Y, Keshaw H, Xu LY, Lam KS, Cooper GJ. 2003. The fat-derived hormone 

 adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. The 

 Journal of clinical investigation 112(1):91-100. 

Xu Y, Kim ER, Zhao R, Myers MG, Jr., Munzberg H, Tong Q. 2013. Glutamate release 

 mediates leptin action on energy expenditure. Molecular metabolism 2(2):109-115. 

Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, Sugiyama T, Miyagishi M, 

 Hara K, Tsunoda M, Murakami K, Ohteki T, Uchida S, Takekawa S, Waki H, Tsuno 

 NH, Shibata Y, Terauchi Y, Froguel P, Tobe K, Koyasu S, Taira K, Kitamura T, 

 Shimizu T, Nagai R,  Kadowaki T. 2003. Cloning of adiponectin receptors that 

 mediate antidiabetic metabolic effects. Nature 423(6941):762-769. 

Ye X, Chun J. 2010. Lysophosphatidic acid (LPA) signaling in vertebrate reproduction. Trends 

 in endocrinology and metabolism: TEM 21(1):17-24. 

Ye X, Hama K, Contos JJ, Anliker B, Inoue A, Skinner MK, Suzuki H, Amano T, Kennedy G, 

 Arai H, Aoki J, Chun J. 2005. LPA3-mediated lysophosphatidic acid signalling in 

 embryo implantation and spacing. Nature 435(7038):104-108. 

Ye X, Skinner MK, Kennedy G, Chun J. 2008. Age-dependent loss of sperm production in 

 mice  via impaired lysophosphatidic acid signaling. Biology of reproduction 

 79(2):328-336. 

Yi CX, Meyer CW, Jastroch M. 2013. Leptin action in the brain: How (and when) it makes fat 

 burn. Molecular metabolism 2(2):63-64. 

Yi CX, Tschop MH. 2012. Brain-gut-adipose-tissue communication pathways at a glance. 

 Disease models & mechanisms 5(5):583-587. 

Zhang P, Tian B. 2014. Metabolic syndrome: an important risk factor for Parkinson's disease. 

 Oxid Med Cell Longev 2014:729194. 

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. 1994. Positional cloning 

 of the mouse obese gene and its human homologue. Nature 372(6505):425-432. 

Zhang YW, Zhang JQ, Liu C, Wei P, Zhang X, Yuan QY, Yin XT, Wei LQ, Cui JG, Wang J. 

 2015. Memory Dysfunction in Type 2 Diabetes Mellitus Correlates with Reduced 

 Hippocampal CA1 and Subiculum Volumes. Chinese medical journal 128(4):465-471. 

Zhao Y, Natarajan V. 2013. Lysophosphatidic acid (LPA) and its receptors: role in airway 

 inflammation and remodeling. Biochimica et biophysica acta 1831(1):86-92. 

Zheng ZQ, Fang XJ, Qiao JT. 2004. Dual action of lysophosphatidic acid in cultured cortical 

 neurons: survival and apoptogenic. Sheng li xue bao : [Acta physiologica Sinica] 

 56(2):163-171. 

Zheng ZQ, Fang XJ, Zhang Y, Qiao JT. 2005. Neuroprotective effect of lysophosphatidic acid 

 on AbetaP31-35-induced apoptosis in cultured cortical neurons. Sheng li xue bao : 

 [Acta  physiologica Sinica] 57(3):289-294. 

Zhou H, Liu J, Ren L, Liu W, Xing Q, Men L, Song G, Du J. 2014. Relationship between 

 [corrected] spatial memory in diabetic rats and protein kinase Cgamma, caveolin-1 in 



339 

 

 the hippocampus and neuroprotective effect of catalpol. Chinese medical journal 

 127(5):916-923. 

Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrell CL. 2000. Differential 

 regulation of leptin transport by the choroid plexus and blood-brain barrier and high 

 affinity transport systems for entry into hypothalamus and across the blood-

 cerebrospinal  fluid barrier. Endocrinology 141(4):1434-1441.    



Autotaxin and Adiponectin Expression In Neuroinflammation and It’s Effects On Microglial Cells
Avinash Parimisetty, Rana Awada, Dorothee Girard, Aurelie Catan, Cynthia Planesse,  Philippe Rondeau, Nicolas Diotel, Christian Lefebvre d’Hellencourt

EA 4516 – Groupe d’Etude sur l’Inflammation Chronique et l’Obésité (GEICO), Plateforme CYROI, Université de La Réunion- 15, Avenue René Cassin  97490 Saint Denis, France

Neuroinflammation is an intricate and tightly regulated biological process that eventuates inside the central nervous system (CNS) in response to host injury [1]. Many chronic neurodegenerative diseases

such as amyotrophic lateral sclerosis, alzheimer's and parkinson's diseases have been associated with inflammation in the CNS. Glial cells are the most abundant cells of the brain, in which microglial cells

were found to be the key players involved in neurodegeneration.The balance between pro and anti-inflammatory cytokines are tightly controlled as dysregulation of this equilibrium may lead to progressive

neurodegenerative disorders [2]. Autotaxin (ATX) and adiponectin (ADIPO) have anti-inflammatory properties, but the precise mechanisms mediating this response in the CNS remains to be determined.

RESEARCH TASK To characterize the expression and effects  of Autotaxin and Adiponectin  in mouse CNS under inflammatory settings.
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 Autotaxin expression was significantly enhanced in LPS or TMT treated BV2.

 Autotaxin down-regulated the pro-inflammatory cytokine TNFα. 

 Autotaxin up-regulated the anti-inflammatory cytokine IL-10.

Experiments with Adiponectin overexpressing BV2 are in progress……….
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RESULTS

IN VITRO   Study 

LPS MODEL

Neuroinflammatory  LPS Model Neurodegenerative TMT Model

STATISTICAL RELEVANCE

Graph Pad PRISM 5.01

Peripheral infection could induce a transient neuroinflammatory response in three distinct regions of the brain (HIP-COR-CER) that involved inflammatory cytokines and oxidative stress. [In vivo]

Autotaxin could have anti-inflammatory effects on microglia stimulated or not by LPS and TMT  [In vitro]

Depending on the factor produced, pathways for these anti-inflammatory effects may be different.

Further investigations are under progress which involves the treatment of mice with these factors. This should give us better insight into the molecular mechanisms in regulating the brain inflammation.
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Abstract 

Globally obesity is one of the greatest public health challenges of 21st century, and is 

considered a major health risk factor. Obesity is responsible for the onset of various kinds of 

disorders including diabetes, cardiovascular diseases and cancer. Adipose tissue (AT) is a highly 

active endocrine organ which has intense secretory activity producing an assortment of over 600 

factors that have versatile biological activities. Some of these factors are named adipocytokines 

and have gain an intensive focus on current metabolic and disease recent research. Accumulating 

data on adipocytokine research strongly suggest that adipose tissue is the key player in promoting 

chronic inflammation. Many chronic neurodegenerative diseases such as Amyotrophic lateral 

sclerosis, Alzheimer’s and Parkinson’s diseases have been associated with inflammation in the 

Central Nervous System (CNS) in which microglia and astrocytes (glial cells) play a decisive role. 

Autotaxin (ATX) and Adiponectin (ADIPO) are mediators secreted by the AT. The role of these 

mediators in metabolic activities have been well studied but the potential role of these adipocyte 

secreted factors and its precise mechanisms in CNS vulnerability remains to be determined.  

Here we used, in vivo, two distinct inflammatory stimuli, lipopolysaccharide (LPS) and 

trimethyltin (TMT), to characterize the expression of inflammatory mediators in mouse CNS. 

Acute intraperitoneal (ip) injection of LPS (100µg/Kg bwt) mimics gram negative bacterial 

infection, while acute ip injection of organometal TMT (2mg/kg bwt), induces hippocampal 

neurodegeneration. Microglia and astrocytes are the major source of inflammatory factors in the 

brain. To investigate, in vitro, the role of ATX and ADIPO in inflammatory and oxidative stress 

condition, we generated stable over-expressing transfectant in murine microglia BV2 cells for 

ATX and murine astrocyte CLTT cells for ADIPO. BV2 and CLTT stably transfected 

overexpressing clones were treated with LPS (1 µg/mL) and H2O2 (100µM). 

Our in vivo results demonstrated that ATX and ADIPO were expressed in the brain and 

LPS induced a transient neuroinflammatory response in three distinct regions of the brain 

hippocampus (HIP), cortex (COR) and cerebellum (CER). Besides this it was also found that with 

this mild dosage of 100 µg LPS/Kg bwt of mice, microglia and astrocytes were not activated in the 

brain (Project-1). Our in vitro results authenticate the anti-inflammatory effects of ATX in 

microglial cells demonstrated by the downregulation of microglial activation markers (CD11b, 

CD14, CD80 and CD86) and pro-inflammatory cytokine expression and secretion (TNF-α and           

IL-6) (Project-2).  Likewise, ADIPO put forth its anti-oxidant role in astrocyte cells mediated via 

significant mitigation of ROS, and as well by the significant down and upregulation of pro-

oxidative inducible nitric oxide synthase (iNOS) and cyclooxygenase-2(COX-2) and anti-oxidative 

enzymes mRNA expression levels superoxide dismutase (SOD) and catalase (CAT) respectively 

(Project-3).  

Overall these results suggest that peripheral inflammation induced by infection will not 

induce neurodegeneration (unless a massive infection) but could prime the glial cells and make 

them more responsive to the next stimulation.  ATX and ADIPO may play a role in the regulation 

of neuroinflammation by regulating glial activation in stressed situations.  Further investigations 

will be needed to better understand the molecular mechanisms regulating brain inflammation and 

lead to new therapeutic strategies to combat neurodegenerative diseases. 
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Résumé 
L'obésité est l'un des plus grands défis de santé publique du 21ème siècle et est considérée 

comme un facteur de risque majeur pour la santé. L’obésité est responsable de l'apparition de 

divers troubles, notamment du diabète, des maladies cardiovasculaires et de certains cancers. Le 

tissu adipeux (TA) est un organe endocrine très actif qui a une activité sécrétoire intense produisant 

un assortiment de plus de 600 facteurs qui ont des activités biologiques variées. Certains de ces 

facteurs sont appelés adipocytokines et font l’objet d’un intérêt particulier dans les recherches 

récentes sur le métabolisme et les pathologies associées. De nombreuses données sur les 

adipocytokines suggèrent fortement que le tissu adipeux est un élément clé dans le développement 

d’une inflammation chronique. De nombreuses maladies neurodégénératives chroniques telles que 

la sclérose latérale amyotrophique, la maladie d'Alzheimer et la maladie de Parkinson ont été 

associées à une inflammation du système nerveux central (SNC), dans lequel la microglie et les 

astrocytes (cellules gliales) jouent un rôle déterminant. L’autotaxin (ATX) et l’adiponectine 
(ADIPO) sont des médiateurs sécrétées par le TA. Le rôle de ces médiateurs dans les activités 

métaboliques a été bien étudié, mais leur rôle potentiel ainsi que les mécanismes précis dans la 

vulnérabilité du CNS restent à déterminer. 

Ici, nous proposons d'utiliser, in vivo, deux stimuli inflammatoires distincts le 

lipopolysaccharide (LPS) et le triméthylétain (TMT) pour caractériser l'expression de médiateurs 

de l'inflammation du SNC chez la souris. Une injection intrapéritonéale (ip) aiguë de LPS (100 

µg/kg de poids corporel) mime une  infection bactérienne Gram négative, tandis que l'injection ip 

aiguë de TMT (2 mg/kg de poids corporel), induit une neurodégénérescence hippocampique. Les 

microglies et les astrocytes sont les principales sources de facteurs inflammatoires dans le cerveau. 

Afin de rechercher, in vitro, le rôle de l'ATX et de l’ADIPO sur ces cellules dans un état 

inflammatoire et de stress oxydatif, nous avons généré des tansfectants stables sur-exprimant 

l’ATX dans des cellules microgliales murines (BV2) et l’ADIPO dans des cellules astrocytaires 
murines (CLTT). Les clones BV2 et CLTT surexprimant ces facteurs ont été traitées avec du LPS 

(1 µg/ml) et du H2O2 (100μM). 

Nos résultats in vivo ont démontré que l’ATX et l’ADIPO sont exprimés dans le cerveau et 
que le LPS pourrait induire une réponse neuroinflammatoire transitoire dans trois régions distinctes 

du cerveau l'hippocampe (HIP), le cortex (COR) et le cervelet (CER). En outre, il a été également 

constaté qu’à cette dose modérée de 100µg de LPS / kg de poids corporel de la souris, la microglie 

et les astrocytes ne sont pas activés dans le cerveau (Projet-1). Nos résultats in vitro démontrent 

les effets anti-inflammatoires de l’ATX dans les cellules microgliales observables par la baisse 

d’expression des marqueurs d'activation microgliale (CD11b, CD14, CD80 et CD86) et 

d’expression et de production de cytokines pro-inflammatoires (TNF-α et IL-6) (Project-2). De 

même, nous avons montré que l’ADIPO a un rôle anti-oxydant dans les astrocytes via l'atténuation 

significative de ROS, une inhibition d’enzymes pro-oxydantes (iNOS et la COX-2) et une 

régulation positive d’enzymes anti-oxydantes (SOD et CAT) (Projet-3). 

Dans l’ensemble, ces résultats suggèrent qu’une inflammation périphérique induite par une 
infection ne provoque pas de neurodégénérescence (à moins d’une infection importante), mais 
pourrait sensibiliser les cellules gliales et augmenter leur réponse à la stimulation suivante. L’ATX 
et l’ADIPO pourraient jouer un rôle dans la régulation de la neuroinflammation en régulant 
l’activation gliale dans un contexte de stress. Des travaux supplémentaires seront nécessaires afin 
de mieux comprendre les mécanismes moléculaires régulant l’inflammation du SNC et aboutir à 
de nouvelles stratégies thérapeutiques pour combattre les maladies neurodégénératives.    

Mots clés: tissu adipeux, autotaxin, adiponectine, neuroinflammation, neurodégénérescence. 
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