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Dr. Joan Decker École Polytechnique de Lausanne Examinateur

Année 2015 Graduate School de l’Ecole Polytechnique





Abstract

Une des propriétés clés des plasma est la décroissance de la force de friction resultant
des interactions Coulombiennes avec la vitesse des électrons. Ainsi, en présence d’un champ
électrique dépassant un certain seuil critique, les électrons ayant une vitesse suffisamment
élevée sont susceptibles d’être accélérés continuement. Ces électrons dénommés “découplés”
peuvent atteindre des énergies considérables, de l’orde de plusieurs MeV, et de ce fait sont
susceptibles de causer des dégâts importants dans ITER, le prochain tokamak de grande
taille. La population d’électrons découplés est susceptible d’être multipliée par les collisions
à large angle de déflection, processus au cours duquel un électron découplé de grande énergie
peut transfèrer une fraction significative de son énergie cinétique à un électron presque à
l’arrêt, tout en restant découplé. La compréhension du processus de formation des électrons
découplés est essentielle à la réduction de cette population de particules.

Dans ce contexte, la modélisation de la dynamique des électrons découplés is étudiée
avec le code cinétique LUKE résolvant l’équation 3-D relativiste et linéarisée de Fokker-
Planck, moyennée sur les orbites, avecun effort particulier concernant les collisions à large
angle de déflection de la part des électrons rapides sur les électrons thermiques, ce qui peut
conduire à une avalanche d’électrons relativistes. La théorie de ce mécanisme est d’abord
décrite dans la cadre d’un développement original, et l’opérateur associé est implanté dans
le code ciéntique LUKE. Les dépendances paramétriques du taux de croissance des éléctrons
découplés sont étudiées, en fonction de l’intensité du champ électrique, de la densité,
de la température du plasma ainsi que de sa configuration. L’importance relative entre
la génération primaire et secondaire des électrons découplés, cette dernière résultant du
phénomène d”avalanche est également analysée. On montre que les avalanches d’électrons
découplés peuvent être importantes même pour des régimes non-disprutifs, et que cet effet
peut devenir dominant dans la mise en place du faisceau d’électrons relativistes.

En raison de leur forte magnétisation, les électrons acquérant de l’énergie grâce au
processus de diffusion à large angle restent en général piégés. Leur population est donc
réduite hors de l’axe mégntique. Cet effet entraine une accumulation électrons découplés
dans la région centrale du plasma. La dynamique de ces électrons piegés dans le cadre de
la formation d’une population d’électrons découplés est étudiée.

Enfin, la formation des électrons découplés dans des décharges en régime Ohmique
réalisées dans les tokamaks Tore Supra et COMPASS est modélisé avec le code LUKE, à
partir des paramètres globaux du plasma comme le champ électrique ou l’équilibre MHD
toröıdal déterminé par le code METIS. Les caractéristiques de la fonction de distribution
en vitesse sont données, de même que la comparaison quantitative avec le rayonnement de
freinage non thermique pour le tokamak Tore Supra.
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Abstract

One of the key features of a plasma is that the collisional friction resulting from
Coulomb interactions decreases with the electron velocity. Therefore, in the presence of
a parallel electric field larger than a critical value, electrons with sufficient velocity will
be continuously accelerated. These so-called runaway electrons may reach energies on the
order of several MeVs and cause serious damage to plasma facing components in ITER -
the next large-scale tokamak. The runaway population may be multiplied through knock-
on collisions, where an existing runaway electron can transfer a significant fraction of its
energy to a secondary electron nearly at rest, while remaining in the runaway region. Un-
derstanding of the runaway electron formation processes is crucial in order to develop ways
to mitigate them.

In this context, modelling of runaway electron dynamics is performed using the 3-D
linearized relativistic bounce-averaged electron Fokker-Planck solver LUKE, with a partic-
ular emphasis on knock-on collisions of fast electrons on thermal ones, which can lead to
an avalanche of relativistic electrons. The theory of bounce-averaged knock-on collisions is
derived, and the corresponding operator is implemented in the kinetic solver LUKE. The
dependencies of the runaway electron growth rate on the electric field strength, density,
temperature and magnetic configuration, is investigated, in order to identify the relative
importance between primary and secondary runaway generation, the latter resulting from
the avalanche process. It is shown that avalanches of runaway electrons can be important
even in non-disruptive regimes and this effect may become dominant in the build-up of the
highly relativistic electron tail.

Owing to their high magnetization, most of the knock-on electrons are born into the
magnetic trapping domain in momentum space, which leads to a reduction of the runaway
population off the magnetic axis. This accumulates the runaway electrons near the mag-
netic axis. The dynamics of the trapped electrons in the framework of runaway electron
generation is investigated.

Finally, the runaway electron formation in Ohmic discharges performed in the Tore
Supra and COMPASS tokamaks is modelled with the LUKE code, using global plasma
parameters such as parallel electric field and the toroidal MHD equilibrium calculated with
the fast integrated modelling code, METIS. Details of the fast electron velocity distribution
function are provided as well as quantitative comparison with non-thermal bremsstrahlung
for the Tore Supra tokamak.
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Chapter 1

Introduction

The increasing global energy demand driven by population growth and rising standards of living
is causing environmental problems on Earth. The main energy sources currently in use are finite
and give rise to the greenhouse effect and pollution. To satisfy the energy demand of a growing
global population, sustainable energy production with much lower environmental impact than
conventional technologies must be developed. Controlled nuclear fusion has some very valuable
properties as an energy source. It can be made inherently safe and fuel resources are well
accessible all over the planet, ensuring that the method is available for us as well as future
generations. With no direct contribution to the greenhouse effect and absence of very long
duration waste that would burden future generations, fusion energy is an attractive candidate
for delivering clean, reliable and virtually inexhaustible energy.

Though still a somewhat exotic topic on Earth, nuclear fusion is the main energy source of
our universe. In the Sun and other stars, hydrogen nuclei fuse and release enormous amounts
of energy. Confined by strong gravitational pressure, the Sun is a gigantic fusion reactor that
sustains our existence on Earth. By combining light nuclei into heavier elements, energy is
released through the difference in binding energy of nuclei according to the formula E = mc2.
The goal of fusion energy research is to develop a reactor on Earth based on this principle.

There are several candidates for the fuel in a fusion reactor. The reaction between the
hydrogen isotopes deuterium (2H or D) and tritium (3H or T) has by far the largest cross-
section at the lowest energies (see Fig. 1.1) [8]. This makes the D-T fusion process

D + T→ 4He + n + 17.6 MeV, (1.1)

the most promising reaction for an energy producing system.
In the pursuit of a sustainable energy producing system, the fusion fuel also has to be

sufficiently abundant. Deuterium occurs naturally with a weight fraction of 3.3 × 10−5 in
water. Thus the fuel is abundant and accessible worldwide and on along term, given the water
available in the oceans. Tritium is a radioactive isotope of hydrogen with a half-life of 12.3
years. It decays into 3He

T → 3He + e− + ν̄e. (1.2)

Owing to its unstable character, no significant amount of tritium exists in nature, but it can
be produced with nuclear reactions of the neutrons from the D-T reaction and lithium:

n + 6Li → 4He + T + 4.8 MeV, (1.3)

n + 7Li + 2.5 MeV → 4He + T + n. (1.4)

As two nuclei approach, they repel each other because of their positive charge. In order to
fuse, they must be brought very close to each other, to a range on the order of 10−15 meters,
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Figure 1.1: The velocity averaged cross section of fusion reactions as a function of temperature,
obtained numerically from equal temperature Maxwellian distributions. The D-T reaction has
a maximum reaction cross section at a temperature of around 70 keV. Adapted from [1].

where the attractive nuclear force is strong enough to overcome the electrostatic potential
barrier. In the center of a star the enormous gravitational pressure provides the nuclei with
enough energy to exceed the Coulomb repulsion and fuse. For the nuclei to overcome the
electrostatic potential barrier they have to collide at very high speeds. This means that the
temperature of the fuel has to be extremely high, on the order of 100 million degrees. At these
temperatures, which are ten times higher than the core of the Sun, the nuclei of the fuel are
stripped from their electrons. This state of matter is called a plasma and is an ionized gas,
i.e. a mix of positively charged ions and free electrons. On Earth where we can not rely on
gravitational pressure to confine the plasma, other confinement methods must be applied to
keep the fuel in plasma state long enough for a significant part of it to fuse. The charged
particles in a plasma gyrate around magnetic field lines. This is the principle behind magnetic
confinement fusion, where strong magnetic fields direct the motion of the plasma particles
through the Lorentz force.

The aim of fusion research is to create a so called burning plasma, in which the heating
power released in fusion reactions keeps the plasma hot enough to require no external heating.
A fireplace is a chemical example of ignition. One uses a match to heat the fuel and once the
burning of the wood releases heat faster than the air can carry it away the fire ignites and
keeps burning. In a fusion reactor, one wants to initially heat up the fuel, and then let it burn
without having to add much external power.

At this point we have succeeded in achieving fusion reactions, but it has proven difficult to
confine the fuel well enough at high temperature to make nuclear fusion a practical source for
electrical power [9]. Fusion research is therefore focused on confining heat inside the plasma
so that the reactor can ignite. Recreating the controlled fusion process on Earth is a great
scientific and technological challenge. Mastering the complex technology of a fusion reactor
has an amazing reward: clean, safe and accessible energy that can meet the energy needs of a
growing population.

One of the most researched types of magnetic confinement devices for controlled fusion
is the tokamak. The name tokamak is an acronym for the Russian toroidal’naya kamera
magnitnymi katushkami (toroidal chamber with magnetic coils). The next large-scale tokamak
experiment, ITER, is currently under construction in Cadarache in southern France [10]. It
is an international experiment with the aim to demonstrate the technological and scientific
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feasibility of magnetic confinement fusion as a future energy source. This thesis deals with one
of the most important challenges for ITER; the formation of runaway electrons in tokamak
plasmas. Electrons in the plasma may under certain conditions get continuously accelerated.
These highly energetic electrons (? MeV), known as runaway electrons, pose a serious threat
in tokamaks as they strike the inner wall of the reactor. The mitigation or avoidance of these
relativistic electrons in the plasma first of all requires an understanding of the mechanisms
behind the runaway electron formation. Understanding and describing these mechanisms is the
motivation behind this work.

Given the complex non-linear processes that govern the generation of runaway electrons,
simpler theoretical estimates may be supplemented with more advanced numerical predictions.
In this thesis work such numerical predictions as well as interpretative modelling of runaway
electrons in tokamak scenarios are presented. The following chapters aim to present the results
of the runaway electron generation study. The principles of magnetic confinement fusion are
introduced in Chapter 2. In Chapter 3 the kinetic equation is presented along with the tool
used to model the evolution of the electron distribution function (the LUKE code) [7]. The
dynamics of so called secondary generation through knock-on collisions between a bulk electron
and a runaway electron is presented in Chapter 4 and the implementation of this mechanism in
the LUKE code and its consequence, the runaway avalanche mechanism, is further described in
Chapter 5. The effects on the runaway dynamics owing to the toroidal geometry of tokamaks
are investigated in Chapter 6. In Chapter 7, the formation of runaway electrons is modelled
with the LUKE code for tokamak scenarios and the results are compared to experimental
observations. Finally, in Chapter 8 the work is summarized and concluded.
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Chapter 2

Magnetized fusion plasmas

The aim of this chapter is to introduce fundamental concepts of toroidally shaped fusion plasmas
relevant for runaway electron studies.

2.1 Magnetic confinement of plasma

Since any material would melt in contact with the hot fuel necessary for fusion reactions to
occur, the plasma must be prevented from touching the walls of its confinement chamber. The
most promising solution is magnetic confinement fusion where the motion of charged particles
of the plasma is constrained by strong magnetic fields. The two main magnetic confinement
fusion concepts are the tokamak and the stellarator. Both devices confine the plasma in a torus
shaped magnetic cage, with a magnetic field consisting of toroidal and poloidal components
(φ and θ in Fig. 2.1). The main difference between the two confinement concepts is that
in a stellarator the magnetic field is created by complexly shaped external coils, whereas the
tokamak is axisymmetric and the poloidal magnetic field component is generated by a strong
electric current Ip flowing in the plasma. In reality a tokamak is not fully axisymmetric as the
finite number of magnetic coils give rise to magnetic field ripples.

A plasma consists mainly of free electrons, ions and usually neutrals. These charged particles
can move freely along magnetic field lines, but their movement perpendicular to the field lines

Figure 2.1: The toroidal (φ) and poloidal (θ) direction.
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is restricted by the Lorentz force (F = qv × B, where q is the charge of the particle, v the
particle velocity and B the magnetic field) acting on the positively charged nuclei and negatively
charged electrons. The Lorentz force guides the particles to move perpendicularly to magnetic
field lines in a circular motion resulting in gyrating particle orbits.

In a cylindrical magnetic confinement device the plasma particles would be confined per-
pendicularly to the field lines, but escape parallel to them at the ends of the cylinder. By
bending the cylinder into a torus these end losses are eliminated. A stable plasma equilibrium
can be obtained through twisted magnetic field lines by superimposing toroidal and poloidal
field components. Magnetic field lines wrap around the torus axis in a helix and constrain the
path of the charged particles, to counteract drift effects present in the plasma. In a tokamak
the toroidal component is generated by poloidal magnetic coils wound around the torus. The
poloidal magnetic field contribution is induced by driving a current in the plasma. Figure 2.2
shows a schematic view of the tokamak concept. The field lines trace out magnetic surfaces
referred to as flux surfaces of constant particle pressure which the currents flow within. Both
the poloidal and the toroidal magnetic field in a tokamak scale roughly as the inverse of the
major radius R and the poloidal field is significantly smaller than the toroidal magnetic field.

The particle velocity can be expressed in components parallel and perpendicular to the
magnetic field, v = v‖b+v⊥b, where b = B/B is the unit vector along the magnetic field
B. The radius of gyration, also known as the Larmor radius, is given by the balance of the
centripetal force and the Lorenz force:

mv2

rg
= qv⊥B → rg =

mv⊥
|q|B , (2.1)

where m is the particle mass, v⊥ is the component of the velocity perpendicular to the direction
of the magnetic field and B is the strength of the magnetic field. The Larmor radius is minimum
on the high field side (the inner side of the torus) and maximum on the low field side (the
outside). From v⊥ = ωcrg the gyration frequency, or cyclotron frequency, becomes

ωc =
|q|B
m

. (2.2)

The electron collision time characterizing electron collisions with ions is

τ =
4πε20m

2
ev

3

Z2e4ni ln Λ
, (2.3)

where ln Λ is the Coulomb logarithm which is the factor by which small-angle collisions are
more effective than large-angle collisions. The collisional mean free path between two collisions
in a plasma is given by the product of the thermal velocity (vth) and the electron collision time
in Eq. 2.3:

λcoll = vthτ, (2.4)

which for Z = 1 becomes

λcoll = 1.44 · 1023(T 2
e /ne ln Λ) m (Te [keV ]).

In a hot plasma (Te ∼ 10 keV and ne ∼ 1020 m−3 and ln Λ = 17) the mean free path is nearly
10 km. This is another reason for containing the plasma in a circular vessel.

At the densities and temperatures reached in fusion plasmas, significant kinetic pressure
is obtained in the plasma core and large pressure (p) gradients produce strong forces on the
plasma. The ∇p forces are balanced by j×B forces arising from the magnetic field interacting
with toroidal and poloidal plasma current density (j). This force balance is known as the
magnetic equilibrium.
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Figure 2.2: Schematic view of a tokamak. The plasma is confined by magnetic field lines running
helically around the toroidal axis. Picture from [2].

The poloidal magnetic field can be generated by using the plasma as a secondary circuit in
a transformer. In this setup the plasma acts as a single secondary loop generating the poloidal
magnetic field. A large current is induced in the plasma itself, which is an excellent electric
conductor. This plasma current produces heat, just as a wire warms up when an electric current
flows through it. To reach ignition, a self sustained plasma by power release from its own fusion
reactions, the fuel must be heated to around 100 million degrees. Maintaining the plasma at
this temperature requires control of its density and reduction of the heat losses. As a result
from any electron heating process, the resistance of the medium decreases with the temperature
as T−3/2

e , where Te is the electron temperature. Consequently, Ohmic heating is a convenient
method in the beginning of a discharge, but it becomes inefficient at higher temperatures and
additional heating methods must be implemented.

The inductive voltage in the plasma is the time derivative of the total flux (φp) [11], i.e.
the sum of the variation of stored magnetic energy and the Ohmic power. Thus, the inductive
voltage is:

Vind = − d

dt
(φp) = Vloop +

1

Ip

d

dt
(Emagn) , (2.5)

where Emagn = µ0RliI
2
p/4 is the internal magnetic energy, µ0 is the vacuum permeability, Ip is

the plasma current, R is the major radius and li is the internal inductance. Vloop = Pohm/Ip is
the resistive part of the voltage. In operation with constant plasma current, so called current
flattop, the second term in Eq. 2.5 vanishes. In tokamak experiments diagnostics usually
provide measurements of the inductive voltage at the plasma edge [12]. For analysis of current
drive and runaway electron experiments it is usually the Ohmic part of the inductive voltage,
i.e.. the first term in 2.5 that is of interest. Therefore estimations of the second term must be
subtracted in such analysis. Another difficulty in the data analysis is that the inductive loop
voltage is measured outside the wall, such that the voltage can at its best be measured at the
plasma surface. In some conditions, like in current flattop one can assume that the loop voltage
profile is flat.
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2.1.1 Particle trapping

The magnetic moment is defined as the product of the current associated with the gyro-motion
of a charged particle and its surrounding area:

µ = πr2
gI = πr2

g

q2B

2πm
=
mv2
⊥

2B
. (2.6)

The magnetic moment of a gyrating particle is a constant of motion or a so called adiabatic
invariant, a property of a physical system that stays constant when changes occur slowly. The
invariance of µ is important in the magnetic mirror effect, which occurs when the guiding center
of a particle approaches regions with stronger magnetic field. The magnetic mirror force acts
parallel to the magnetic field lines, opposite to ∇B:

F = −µ∇B, (2.7)

so that the parallel acceleration is

v̇‖ = − µ
m
∇‖B. (2.8)

Conservation of energy

E =
1

2

(
mv2
⊥ +mv2

‖

)
= µB +

1

2
mv2
‖, (2.9)

implies that
v‖ = ±

√
2 (E − µB). (2.10)

The particle is passing the high field regions if v‖ > 0, i.e. if

E =
1

2
mv2
‖,0 + µBmin > µBmax, (2.11)

where v‖,0 is the velocity parallel to the magnetic field lines on the minimum magnetic field
coordinate on a given magnetic flux surface. From this expression, the criterion for passing
particles is obtained

v‖,0

v⊥,0
>

√
Bmax
Bmin

− 1. (2.12)

If E < µBmax, the particle is trapped in the magnetic well, reflected at the point where its
parallel velocity equals zero.

2.2 Runaway electrons

The collisional friction force acting on an electron in a plasma increases linearly at small velocity,
like in a conventional fluid or gas, but reaches a global maximum value of F (v) = mvνee(v) at
the thermal velocity v = vth. The collision frequency for suprathermal electrons decreases with
the velocity as

νee =
e4ne ln Λ

4πε20m
2
ev

3
. (2.13)

Thus, in an electric field electrons with velocity above the critical value will be accelerated
continuously, in other words they run away. Ions are also accelerated but experience a higher
friction force. Also other plasma species, like positrons, may run away [13, 14].

Runaway electrons are often formed during disruptions. A disruption is a fast, unstable event
that leads to a sudden loss of plasma confinement. In typical tokamak plasmas macroscopic
instabilities are often present. In disruptions, the plasma can not recover from such instabilities.
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2.2. Runaway electrons

A typical chain of events in a plasma disruption is illustrated in Fig. 2.3 that shows data
from the DIII-D tokamak. When a stability limit of the plasma is reached, it may shift position
and come into contact with plasma facing components, which can lead to an influx of particles,
especially impurities, from the wall. The radiation due to the impurities and the heat conduction
leads to a loss of thermal energy; this phase is referred to as the thermal quench (TQ). In this
sudden relaxation of the equilibrium the plasma cools down quickly (on the order of ms), and
this dramatic drop of temperature causes a huge increase of the plasma resistivity (ρ) since

ρ ∼ T−3/2. (2.14)

The thermal plasma current is simply related to the electric field via Ohm’s law: jth = E||/ρ.
Hence, if E|| were not to change as a result the change of resistivity the plasma current would
decay very rapidly. However, the inductive property of the system prevents the current from
changing significantly on such short time scales. Instead it induces a sharp increase of the
parallel electric field so as to try to maintain the current. This can be seen more formally by
combining Maxwell’s equation into

∇2E = µ0
∂j

∂t
= µ0

∂

∂t
(E/ρ+ jre) , (2.15)

where, we have also introduced a current carried by non-thermal electrons, jre, the runaway
electron current. The boundary conditions are set by the tokamak structure, e.g. assuming a
perfectly conducting inner wall, the parallel electric field must be zero at the wall.

From Eq. 2.15 we can see that a decline in thermal current as a result an increasing
resistivity will result in an increase of the parallel electric field, which strives to maintain the
current. Consequently, the actual current decay, or current quench (CQ), occurs on a time scale
typically much longer than the thermal quench and a high electric field is therefore present
during a significant period of time. The latter leads to generation of runaway electrons, as
described in more detail below. On the longer time scale, the current carried by the runaway
electrons will partly replace the current initially carried by the thermal electrons. After the CQ
a plateau of runaway current may persist for long periods of time if the runaway electrons are
well confined.

In fact, we can be more precise about the evolution of the parallel electric field as a result
of the thermal quench. We start by assuming that the resistivity increases very rapidly (almost
like a step function in time). According to Eq. 2.15 the parallel electric field must then react
such that locally E|| ≈ ρj0, where j0 is the current density just before the start of the thermal
quench (if this were not the case the left hand side of the above equation would have to exhibit
a behaviour close to a delta function in time, which is clearly not possible). Thus, the parallel
electric field must react such that it not only prevents the total plasma current to decay rapidly
but also strive to maintain the local current density for a short period of time during the thermal
quench. However, it should be noted that Eq. 2.15 has the structure of a diffusion equation and
that on longer time scales, the electric field profile will diffuse and the simple relation above
between the electric field and and the initial current density is no longer valid (the characteristic
time scale for electric field diffusion is given by µ0σa

2, where a is the plasma minor radius; the
characteristic time is of the order a few 10 ms for a JET plasma at 10 eV, a temperature typical
of the post thermal quench phase). When simulating runaway generation during a disruption it
is therefore generally necessary to calculate the evolution of the electron distribution function
and the electric field self consistently.

The beam runaway electrons will eventually lose its stability or the runaways electrons will
acquire energies high enough for them to deconfine (due to orbit width effects). The result
is that they will strike the first wall of the tokamak vacuum vessel, and the associated highly
localised energy deposition can cause significant damage [15].

The most hazardous runaway electrons are formed in tokamak disruptions. However, the
formation of runaway electrons does not necessarily require the extreme conditions found in
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Figure 2.3: Chain of events in a typical disruption in the DIII-D tokamak [3].

disruptions. In low density plasmas, runaway electrons may also be generated during the
current flattop in a quiescent plasma [16], free of equilibrium transients, or during current ramp
up or ramp down. Runaway electrons have been detected in non-disruptive scenarios in several
of the existing tokamaks [6].

Various methods to mitigate the formation of runaway electrons in tokamak plasmas are
based on either increasing the plasma density, and thereby the collisionality, by so-called massive
gas injection (MGI) [17], or on deconfining the runaway electrons before they can reach too
high energy, by the means of resonant magnetic perturbations (RMP) [18]. Even though such
mitigation methods have been demonstrated in present tokamak experiments, they might not
provide a solution for runaways during disruptions in large tokamaks like ITER [19].

The generation of runaway electrons that were accelerated by the electric field are referred to
as Dreicer generation. This mechanism may lead to an additional amplification of the runaway
electron population when runaway electrons collide head on with bulk electron and transfer
some momentum so that they get kicked out into the runaway region in momentum space.
This multiplication of runaway electrons through knock on collisions is known as the avalanche
mechanism and is predicted to scale experimentally with the plasma current [5]. Consequently
runaway avalanches are expected to be of great concern for ITER.

2.2.1 Dreicer generation

The acceleration by a DC field of electrons that diffuse via small angle collisions beyond the
critical momentum (pc), defined as the minimum momentum for which collisions are too weak
to prevent acceleration of the electrons by the electric field to even higher energies, is referred
to as the Dreicer mechanism [20]. If the electric field exceeds the collisional friction force on
an electron, it will be continuously accelerated. Owing to the Dreicer mechanism a tail of the
Maxwellian electron distribution can run away above a critical velocity. The tail of the electron
distribution is continuously recovered through collisional processes which leads to a continuous
diffusion of electrons into the runaway region.
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Figure 1: The friction force as a function of electron energy [6]

runaway phenomena can also be described as that the fast electrons have such a
long mean free path that they do not collide enough to slow down while the strong
toroidal electric field accelerates them. This phenomenon is called the primary
or Dreicer generation and these fast electrons are called as runaway electrons
[7]. Runaway electrons are produced in large numbers in disruptions and because
of their high velocity they carry a substantial energy (10–100 MeV per runaway
electron whereas the thermal electrons have an energy of 5-25 keV). Other pri-
mary generation effects are also known, such as hot-tail generation [8], inverse
Compton scattering via energetic g rays, tritium decay [9] and others, but their
importance is low in this paper, since the simulation being discussed does not take
them into account and they are only significant in special scenarios.

The secondary generation is the avalanche effect when a high energy runaway
electron hits a thermal electron and passes enough energy to it to run away, while
the knocking particle still remains above the runaway threshold. The avalanche
generation is orders of magnitude stronger in large tokamaks, the gain is g ⇡
exp(2.5 · Ipl), where Ipl is the plasma current in MAs, which gives g ⇡ 104 for
JET (Ipl = 4 MA) and g ⇡ 1016 for ITER (Ipl = 15 MA) [4, 10]. Avalanche
generation can only happen if there are runaway electrons, which are produced by
the Dreicer or other primary generation mechanism.

1.2 Physical model of ARENA
ARENA was a breakthrough code in combining a significant number of effects in
one program and was famous for the self-consistent modeling of the electric field
induced by the runaway current [11, 12].

The physics model behind the code is derived from the six-dimensional kinetic
equation simplified to a three-dimensional Fokker-Planck by bounce-averaging,

4

Figure 2.4: The friction force as a function of electron energy, with its maximum at thermal
velocity. A suprathermal electron experiences less friction and in the presence of a local electric
field, electrons may run away if the accelerating force from the electric field exceeds the friction
force.

The electrons gyrate around the magnetic field lines, but are free to move along the magnetic
field lines. In the toroidal direction, a retarding friction force is experienced by the electrons.
The threshold for when electrons experience unbounded acceleration, if only accounting for
collisional losses, can be derived analytically and is called the critical electric field limit, Ec.
In the presence of a strong toroidal electric field (E) collisional drag may consequently be too
weak to counteract the acceleration of electrons, which may result in continuously accelerated
electrons.

The friction force is illustrated in Fig. 2.4. For slow electrons (v < vth) the friction force
increases with velocity, like in a conventional gas. For electrons moving faster than the thermal
velocity, the friction force decreases due to less frequent collisions as the fast electrons spend
less time in the vicinity of the particles they collide with

F (v) = mvνee ≈ mev
nee

4 ln Λ

4πε20m
2
ev

3
∼ 1

v2
. (2.16)

The velocity of an electron cannot exceed the speed of light, but its momentum can increase
continuously since the relativistic mass increases as γm0, wherem0 is the electron rest mass and
γ = 1/

√
1− (v/c)2 is the Lorentz factor. As the electron approaches the speed of light, it will

lose energy to synchrotron radiation, which adds a local minimum at the critical momentum
pc.

For an electron in an electric field the equation of motion becomes

me
dv

dt
= eE −mevν(v), (2.17)

which implies acceleration if E > mevν(v)/e. Thus, if no other loss mechanisms than the
collisional drag are present [21], runaway electrons may be generated if the electric field exceeds
the critical field [20]

Ec =
mevν

e
=

nee
3 ln Λ

4πε2
0mec2

, (2.18)

where ne is the electron density, c is the speed of light, e is the elementary charge, and ln Λ is
the Coulomb logarithm. From Eq. 2.17 also the critical velocity can be derived

11
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me
dv

dt
= eE

(
1− venee

4 ln Λ

4πε2
0mec2v3eE

)
= eE

(
1− v2

c

v2

)
. (2.19)

The critical velocity, at which Eq. 2.19 is zero, becomes

v2
c =

nee
3 ln Λ

4πε2
0meE

. (2.20)

At the Dreicer field limit ED(> Ec), all electrons will run away:

ED =
nee

3 ln Λ

4πε2
0Te

= Ec
mec

2

Te
, (2.21)

where Te = mev
2
th is the electron bulk temperature.

As the faster electrons run away they are replaced by electrons diffusing through the tail
of the distribution function. This rate has been calculated in literature [21, 22]. The number
of runaways generated per second through the Dreicer effect is defined as the flux of electrons
across the runaway threshold. It is derived for a completely ionized plasma in Ref. [23], and is
valid for E/ED � 1:

(
∂nr
∂t

)

D

∼ 2√
π
neν(vth)

(
E

ED

)1/2

exp

(
−ED

4E
−
(

2ED
E

)1/2
)
. (2.22)

The growth rate for a uniform plasma in a uniform electric field was calculated numerically by
Kulsrud [4] by solving the Fokker-Planck equation. These results are often used for benchmark-
ing.

2.2.2 Avalanche generation

It was first suggested by Sokolov [24] that the Dreicer effect alone can not be responsible for
the generation of runaway electrons and that the high runaway generation could be explained
by an additional amplifying mechanism. This secondary runaway generation is caused by close
collisions between existing runaways and thermal electrons. Such collisions might be infrequent,
but if they do occur there is a high chance that after the collision both electrons will have a
velocity that is higher than the critical momentum. This amplification of the runaway electron
population is called the avalanche mechanism. The avalanche effect results in an exponential
growth of the runaway population. It grows linearly with the electric field strength, as opposed
to the Dreicer effect that has an exponential dependence. A detailed description of the dynamics
of runaway avalanches due to knock-on collisions is given in Chapter 4. It is difficult to find an
exact solution for the avalanche growth rate. Exact analytical solutions were found in different
limits in Ref. [5]. An exact solution is found for E/Ec � 1 and Z = −1, corresponding to no
pitch-angle scattering:

(
∂nr
∂t

)

A

∼ nr
2τ ln Λ

(E/Ec − 1) . (2.23)

An expression of the avalanche growth rate was derived from a fit of the exact growth rate for
different limits [5]:

(
∂nr
∂t

)

A

∼ nr
E/Ec − 1

τ ln Λ

√
πϕ

3(Zeff + 5)
×

(
1− Ec

E
+

4π(Zeff + 1)2

3ϕ(Zeff + 5)(E2/E2
c + 4/ϕ2 − 1)

)−1/2

, (2.24)
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where ϕ = 1− 1.46ε1/2 + 1.72ε and ε = r/R is the inverse aspect ratio. This equation is valid
for small ε. In a cylindrical plasma the growth rate is found from the above expression by
ϕ(ε = 0) = 1. For Z = 1 the growth rate becomes

(
∂nr
∂t

)

A

∼
√
π

2

nr
3τ ln Λ

(E/Ec − 1) . (2.25)

2.3 Tokamak geometry

Electrons may be located by their position in phase space, the combination of configuration and
momentum space. Common phase space coordinates for runaway electron studies in tokamaks
are introduced in this section.

2.3.1 Configuration space

Toroidally shaped plasmas can conveniently be described by the cylindrical base (R,Z, φ), see
Fig. 2.1. The Z coordinate, defined on −∞ < Z < ∞ is taken along the toroidal axis, φ is in
the toroidal direction, defined on 0 ≤ φ < 2π and R is in the radial direction so that R = Z×φ
defined on 0 ≤ R <∞. The magnetic axis of the torus is at R = Rp.

Another convenient base for toroidal geometries are space-polar coordinates (ψ, θ, φ) where
θ is the poloidal angle, see Fig. 2.1. Assuming a plasma equilibrium, the radial direction may
be parametrised in closed flux-surfaces defined from the origin (Rp, Zp), with ψ =

´ ´
BpdS =

constant, where Bp is the poloidal magnetic field and dS the surface element. ψ(R, θ) must be
a monotonic function of R, which is ensured for nested flux-surfaces.

2.3.2 Momentum space

The position of an electron in phase space consists of the real space coordinate and the mo-
mentum space coordinate. Two curvilinear coordinate systems are considered. The first one is
the spherical coordinate system (p, ξ, ϕ), where ξ is the cosine of the angle between the particle
momentum p and the direction along the magnetic field line, known as the pitch angle, and ϕ
is the gyro-angle. The coordinates are defined on

0 ≤ p <∞ (2.26)
−1 ≤ ξ ≤ 1 (2.27)
0 ≤ ϕ ≤ 2π . (2.28)

The other coordinate system is the cylindrical coordinate system (p‖, p⊥, ϕ) where p‖ = ξp and
p⊥ =

√
1− ξ2p.

The motion of charged particles in a tokamak can be decomposed into a gyrating motion
perpendicularly to the magnetic field lines of the frequency |q|B/m and motion along the
magnetic field lines, known as guiding center motion. If the gyrating motion is fast compared
to other physical processes, this motion can be averaged over the leading order to study the
guiding-center motion. This process is known as gyro-averaging and eliminates ϕ so that the
momentum space coordinate base becomes

(p‖, p⊥, ϕ) → (p‖, p⊥) (2.29)
(p, ξ, ϕ) → (p, ξ). (2.30)

In the runaway electron calculations done in this thesis, such gyro-averaged momentum dynam-
ics are applied.
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Chapter 3

Kinetic description of a tokamak plasma

The basic difference between a gas and a plasma is that a plasma is composed of charged
particles, which react to electromagnetic forces. The most complete description of a plasma
with N particles would rely on the solution of the 3N equations of motion where the calculation
of the force acting on each particle has to account for the influence of all the other particles
in the system. Such calculations are not practical and moreover would generate a lot of un-
necessary information about the microscopic behaviour of every particle in the system. Since
we are interested in macroscopic quantities like density, temperature and currents, a statistical
approach is taken. The electromagnetic fields that determine the forces on each particle are
functions of the charge and current distributions in the plasma and hence of the distribution
function itself. Therefore the solution of the kinetic equation is very complicated even in the
collisionless limit.

The dominant effect of collisions in plasmas occurs through the cumulative effect of small
angle collisions. In this section we introduce the equation that describes the effects of these
collisions, known as the Fokker-Planck (FP) equation. We also introduce the LUKE code, a
solver of the relativistic bounce averaged FP-equation, and present some of its applications.

3.1 The Fokker-Planck equation

The evolution of the electron distribution in a plasma is governed by the Fokker-Planck equation,
a convection-diffusion equation in phase space. It describes the multiple scattering processes of
the particles in the plasma. The dominant interactions are Coulomb collisions (see Sec. 3.1.1),
which occur when two particles pass each other close enough to be within the so called Debye
sphere, where the particle is electrostatically influenced by other charged particles. The radius
of the Debye sphere is the scale over which charged particles screen out electric fields in plasmas
and is known as the Debye length

λD =

√
ε0Te
e2ne

(3.1)

= 2.35 · 105

(
Te
ne

)1/2

m (Te [keV ]), (3.2)

where ε0 is the vacuum permittivity, e the electron charge, Te the electron temperature and
ne the electron density. The Debye length is the characteristic length scale of the plasma and
is important since collisions in a plasma typically are on the order of this length scale since
the charge is shielded for impact parameters b � λD. In a typical tokamak plasma the Debye
length is on the order of 10−4 − 10−3 m.

The characteristic collision time (τ) between electrons corresponds to the required time for
cumulative small angle collisions to deflect the path of the electron by a significant angle (on
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the order of π/2):

τ =
4πε20m

2
ev

3

q4
ene ln Λ

, (3.3)

where v is the velocity of the electron relative to the thermal background and ln Λ is the
Coulomb logarithm which is the factor by which small-angle collisions are more effective than
large-angle collisions.

Besides collisions, the formulation can describe wave-plasma interaction and the force on
particles in an electric field. In plasma physics the Fokker-Planck equation is fundamental in
heating, current drive, resonant wave-particle interaction and runaway electron dynamics.

The total number of particles in the volume around the point z = (x, p) at the time t is
given by: ˆ

f(x,p, t) d3p d3x = N(t). (3.4)

The current density is given by

J(x, t) = q

˚
vf(x,p, t) d3p, (3.5)

where f(x,p, t) is the distribution function of particles with charge q, with x being the position
in configuration space, p is the relativistic momentum and v = p/(γme) with γ =

√
1 + p/mc.

The movement of the particle in the plasma can be expressed as ż = (ẋ, ṗ). The distribu-
tion function must satisfy the continuity equation, expressing conservation of total number of
particles:

∂f

∂t
+

∂

∂z
(żf) = 0, (3.6)

which when the equations of motions are divergence free is known as the Vlasov equation:

∂f

∂t
+ v · ∇f + ṗ · ∂f

∂p
= 0. (3.7)

The electric and magnetic fields in ṗ = q(E + v × B) include the small-scale fluctuations
responsible for interaction of individual particles. In this context small-scale means less than
the Debye length (Eq. 3.1). The effects of these collisions can be included in a separate collision
operator CFP (f, fα), where α denotes all plasma particle species, including the electrons them-
selves. The Fokker-Planck equation, which now includes only the macroscopic average electric
(E) and magnetic fields (B), is the Vlasov equation with the effects of small scale fluctuations
gathered in a collision term on the right hand side:

df

dt
=
∂f

∂t
+ v · ∇f + ṗ · ∂f

∂p
= CFP (f, fα). (3.8)

Here ṗ = q (E+v×B) is the Lorentz force acting on the electrons from both constant equilibrium
and oscillating radio frequency electromagnetic fields. In general Eqs. 3.7 and 3.8 are not easy
to solve, essentially because the forces acting on the system can depend in complicated ways on
the distribution function itself. Charged particles in motion constitute a current and therefore
affect the electromagnetic fields. These equations are in general nonlinear integro-differential
equations.

3.1.1 Coulomb collisions

In a plasma the dominant interactions between particles are Coulomb collisions, which occur
when two particles pass each other so close enough for their own electric fields to interact. In
such events the impact parameter b, is of the order of the Debye length. The probability for a
head on collision is very small. Instead, the cumulative effect of several small angle deflections
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give rise to a geometrically large effect. The Coulomb collisions are defined as the change in
particle velocity after a certain amount of time during which the particle has experienced the
cumulative effect of many Coulomb interactions with other charged particles.

The Coulomb force experienced by the charged particle causes it to deviate from its original
path. The longer the particles are close to each other the longer the Coulomb force is active
and the more the path of the particle is affected. Thus electrons that are very fast experience
less effective collisions and the drag force associated with the collisions therefore decreases with
increasing speed for sufficiently fast electrons.

When an electron passes a stationary ion with charge Ze at the distance b it will experience
Coulomb force, directed along the line of sight between the particles:

FC⊥ =
Ze2

4πε0b2
, (3.9)

during the duration b/v, where v the relative velocity. The change in perpendicular momentum
is approximately given by

∆mev⊥ ≈
Ze2

4πε0vb
. (3.10)

As an electron passes through a field of ions with density n it will experience such Coulomb
collisions with many ions.

The form of the collision operator CFP (f, fα) on the right hand side of Eq. 3.8 can be found
by defining the rate of change of the electron distribution function owing to collisions during
the time ∆t:

CFP =
f(x,p, t+ ∆t)− f(x,p, t)

∆t
. (3.11)

The distribution function at the time (t+∆t) is obtained from the integrated effect of scattering
in ∆p:

f(x,p, t+ ∆t) =

ˆ
f(x,p−∆p, t)ψ(p−∆p,∆p) d(∆p), (3.12)

where ψ(p,∆p) is the probability for an electron with momentum p to be scattered by ∆p
during the time ∆t. The integrand in the above equation can be expanded in Taylor series in
∆p:

f(x,p−∆p, t)ψ(p−∆p,∆p) = f(x,p, t)ψ(p,∆p)−
∑

α

∂

∂pα
(fψ)∆pα (3.13)

+
1

2

∑

α,β

∂2

∂pα∂pβ
(fψ)∆pα∆pβ .

Given that
´
ψ(p,∆p) d(∆p) = 1 and by substituting Eq. 3.13 into Eq. 3.12 we have:

f(x,p, t+ ∆t)− f(x,p, t) =

−
∑

α

∂

∂pα

(
f(x,p, t)

ˆ
ψ(p,∆p)∆pα d(∆p)

)
(3.14)

+
1

2

∑

α,β

∂2

∂pα∂pβ

(
f(x,p, t)

ˆ
ψ(p,∆p)∆pα∆pβ d(∆p)

)
. (3.15)

Inserting the above equation into Eq. 3.11 gives the Fokker-Planck operator:
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b

Figure 3.1: An electron scattering of an ion with the deflection angle α depending on the impact
parameter b.

CFP = −
∑

α

∂

∂vα
(〈∆pα〉f) +

1

2

∑

α,β

∂2

∂pα∂pβ
(〈∆pα∆pβ〉f) , (3.16)

where

〈∆pα〉 =

ˆ
ψ∆pα d(∆p)/∆t, (3.17)

and

〈∆pα∆pβ〉 =

ˆ
ψ∆pα∆pβ d(∆p)/∆t (3.18)

give the average time rate of change of ∆pα and ∆pα∆pβ . Equation 3.17 represents the friction
and Eq. 3.18 the diffusion tensor. Thus, the first term in Eq. 3.16 describes the friction, or
slowing down, and the second the energy diffusion.

The assumption of small deflection angle, is fulfilled for Λ ≡ λD/bmin � 1. The so called
Coulomb logarithm becomes

ln Λ =
2π√
n

(
ε0Te
e2

)3/2

, (3.19)

which in a tokamak plasma is around 10 − 20. For a good approximation it is sufficient to
account for only collisions which marginally change the momentum of the incident particles.
The rarer head-on collisions, that represent a 1/ ln Λ correction, are not included in this small
angle collision model and need to be treated separately, as will be done in Chapter 4.

3.2 The bounce-averaged Fokker-Planck equation

In order to simulate the distribution function of electrons in an axisymmetric tokamak we
turn to the relevant gyro averaged Fokker-Planck equation and adopt a zero banana width
approximation [25]:

∂f

∂t
+ v‖ · ∇f − eE‖ · ∇pf = CFP (f), (3.20)
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where f is the distribution function on a given flux surface, which we will write as a function
of invariants of the unperturbed motion of an electron in the equilibrium magnetic field:

f = f(p, ξ0, ρ, θ), (3.21)

where p is the momentum ξ0 = p||0/p is the pitch angle evaluated at the position of the minimum
magnetic field along the flux surface, ρ is a flux surface label and θ is an angle determining
the poloidal position along a flux surface (it can be a generalised angle, see below); v|| is the
parallel guiding centre velocity; CFP (f) is a Fokker-Planck collision operator. Of course, with
the distribution function expressed in these invariants of the unperturbed motion one can easily
transform to local momentum space coordinates. In fact, only the local pitch angle, ξ, needs to
be transformed. Conservation of the magnetic momentum yields:

ξ2
0 = 1− Bmin

B(θ)

(
1− ξ2

)
(3.22)

Before we proceed further, it is useful to briefly consider the spatial coordinates. We use the
commonly adopted representation of the magnetic field in an axi-symmetric torus [26]:

B = I(ψ)∇φ+∇φ×∇ψ, (3.23)

where I(ψ) is a flux function, φ is the toroidal angle and ψ is the poloidal flux. The poloidal
coordinate θ is required to have a period of 2π and to vary only in the poloidal plane, i.e.
∇θ · ∇φ = 0; no further restrictions are made (it could e.g. be the angle in a straight field line
coordinate system). Below, however, we will specialise to straight θ angle, since it is used in
the LUKE code (see Sec. 3.3).

Expressing the coordinates in terms of the flux surface label, ρ = ρ(ψ), the coordinate
system (ρ, θ, φ) has a Jacobian given by:

√
g =

∂ψ
∂ρ

|∇θ · (∇φ×∇ψ)| =

∂ψ
∂ρ

|B · ∇θ| (3.24)

At this stage we are making the assumptions that the analysed electrons are in the banana
regime, which is well justified for runaway electrons. This means that an electron executes
many nearly identical orbits before it is significantly perturbed by collisions and the electric
field. Consequently, the collisional time scale τc is much longer than the bounce time τb, i.e.
the time for a complete revolution of an orbit. One can utilise this separation of time scales by
expanding the distribution function in a τb/τc series [27, 7]:

f = f0 +
τb
τc
f1 + . . . , (3.25)

where f0 is the distribution function of the unperturbed orbit and f1 represents a small perturb-
ation. Inserting this expansion in the Fokker-Planck equation (3.20) and noting that v|| ∼ 1/τb,
one finds to lowest order in τb/τc:

vg · ∇f0 = vg · ∇θ
∂f0

∂θ
= 0 (3.26)

Consequently, the zero order distribution function is independent of the poloidal position of a
particle along its unperturbed orbit when expressed as a function of invariants of the unper-
turbed motion. The poloidal orbit of a particle in the zero banana width approximation is
therefore determined by the two invariants of the unperturbed motion p and ξ0, cf. e.g. [7].
Thus, we can write:

f0 = f0(p, ξ0, ρ) (3.27)

To the next order in τb/τc we obtain:
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∂f0

∂t
+ v‖ · ∇θ

∂f1

∂θ
− eE‖ · ∇pf0 = CFP (f0) (3.28)

We now define the bounce average operator as the integral along the orbit:

{. . . } =
1

τb

ˆ θmax

θmin

(. . . )
dθ

v|| · ∇θ
=

1

τb

ˆ θmax

θmin

(. . . )
Bdθ

v‖B · ∇θ
=

1

τb

ˆ θmax

θmin

(. . . )
Bds

v‖Bp
, (3.29)

where the bounce time, τb, and the associated bounce frequency, ωb, are given by:

τb =
2π

ωb
=

ˆ θmax

θmin

Bdθ

v‖B · ∇θ
=

2π

ωb
=

ˆ smax

smin

Bds

v‖Bp
, (3.30)

where ds is a length element along a flux surface, given by the metric element ds =
√
gθθdθ in

the poloidal direction and the integral is over a closed orbit for a passing electron and between
the turning points for a trapped electron (i.e. over half the orbit). In practice this means
integrating from 0 to 2π for passing particles. For trapped particles the path along the inner
and outer leg along the orbit are identical in the zero banana width approximation, it is therefore
sufficient to carry out the integral between the lower, θmax, and upper, θmin, turning points. It
should, however, be pointed that only factors that are even in θ will give a finite contribution
to the bounce averaged operator for trapped particles. This is the case because the complete
integration over booth the inner and outer leg will give zero for factors that are odd in θ.

We now specialise the angle coordinates to normal toroidal ones (θ, φ), in these coordinates
the metric element above is simply given as, see Fig 3.2, √gθθ = r/|r̂ · ψ̂|, where r̂ and ψ̂ are
unit vectors on the direction of r and ∇ψ respectively, and r is the radius from the magnetic
axis to a point on the flux surface. The bounce average and the bounce time can be expressed
as,

{. . . } =
1

τb

[
1

2

∑

σ

] ˆ θmax

θmin

(...)
B

Bpv‖

rdθ

|r̂ · ψ̂|
(3.31)

and

τb =

ˆ θmax

θmin

B

Bpv‖

rdθ

|r̂ · ψ̂|
(3.32)

where the sum over σ applies to trapped particles only (i.e. we have made it explicit that only
factors that are odd functions of θ contributes to the bounce average).

Applying the bounce averaged operation to the first order equation above and recognising
that f1 must be periodic in θ yields:

∂f0

∂t
=
{
eE‖ · ∇pf0

}
+ {CFP (f0)} (3.33)

This is the 0th-order bounce averaged Fokker-Planck equation solved by LUKE.
An important feature to point out in this context is the fact that the zero order distribution

function is independent of the poloidal position when expressed as a function of the invariants
of the unperturbed motion. This does not mean that the distribution function expressed in
local momentum space coordinates at a poloidal point is independent of the position. Instead
we have the implicit dependence to take into account, such that

f0(p, ξ, ψ, θ) = f0 (p, ξ0(θ), ψ) (3.34)

Thus, for example an anisotropic distribution function will give rise poloidally varying density.

20



3.3. The LUKE code

α	  

α	  

Figure 3.2: The angle coordinates used for the bounce averaged Fokker-Planck equation.

3.3 The LUKE code

The LUKE code (LU solver for Kinetic Equation) solves the kinetic equation for a hot mag-
netized plasma placed in an axisymmetric magnetic configuration with nested magnetic flux
surfaces. It has previously been used for current drive and Dreicer runaway calculations, show-
ing good agreement with theoretical results [4] including the effect of the effective charge (see
Fig. 3.3). It uses the finite difference method to solve the bounce-averaged relativistic electron
kinetic equation

df

dt
=
∂f

∂t
+ v · ∇f + ṗ · ∂f

∂p
= CFP (f, fα) + S, (3.35)

which is Eq. 3.5 with an added source term represents any sources or sinks of particles. The
above equation is solved on a non-uniform or uniform radial, momentum and bounce-averaged
pitch angle grid (ρ, p, ξ) in non-uniform magnetic equilibrium where p = γv/c is the normalized
momentum and ξ = p‖/p is the cosine of the particle pitch angle which characterizes the particle
orbit around a magnetic field line. In these coordinates, the kinetic equation can be expressed
as:

∂f

∂t
+
eE‖

mec

(
ξ
∂f

∂p
+

1− ξ2

p

∂f

∂ξ

)
= CFP (f, fα) + S, (3.36)

where the second term represents the force from the electric field. The time evolution of the
electron distribution function f is found by solving the above equation with a usually taken
to be Maxwellian distribution as initial condition. Moments of the distribution functions are
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Figure 3.3: Dreicer growth rate calculated by LUKE shows excellent agreement with predictions
by Kulsrud [4].

evaluated, such as the plasma current density (Eq. 3.5). A detailed user manual for the LUKE
code is found in Ref. [7].

Calculations are valid in the region of the plasma where the weak collisional limit is satisfied,
in other words where electrons can complete a full poloidal orbit before being scattered off by
Coulomb interaction.

The model uses a relativistic collision operator for small angle collisions (CFP (f, fα) in
Eq. 3.36) and a recently added description of the large angle (knock-on) collisions leading to
the avalanche effect (S in Eq. 3.36), which enables a description of the full 2-D momentum
dynamics of the runaway population. Knock-on electrons are principally scattered off with a
perpendicular component of the momentum with respect to the local magnetic field direction.
In a non-uniform magnetic field configuration highly magnetized electrons could be subject to
magnetic trapping effects resulting in a runaway electron growth rate off the magnetic axis
that differs from the estimates for a cylindric geometry. Such toroidicity effects are studied
by implementing a 2-D kinetic description of the knock-on momentum dynamics, including the
momentum dynamics both perpendicular and parallel to the magnetic field lines.

Disruptions are interesting but complex processes for studying the birth of runaway elec-
trons, since they include magnetohydrodynamic (MHD) instabilities, anomalous transport and
complex evolution of the magnetic field topology [28]. However, the generation of runaway elec-
trons does not necessarily require the extreme conditions found in disruptions. In low density
plasmas, the electric field can exceed the critical electric field also during the current flattop in
a quiescent plasma, free of equilibrium transients, or during current ramp up or ramp down.
An advantage of studying runaway formation in these so called non-disruptive scenarios is that
the key parameters for the runaway electron mechanisms, mainly the electric field strength,
electron density and temperature, can be better diagnosed than in disruptions. Runaway elec-
trons have been detected in non-disruptive scenarios in several of the existing tokamaks [6].
Quiescent plasmas with nested magnetic flux surfaces are therefore more suitable for studying
the formation of runaway electrons.

In this work the formation of runaway electrons generated from the combined effect of
Dreicer and avalanche is studied with the LUKE code, a solver of the 3-D (one spatial and two
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velocity dimensions) linearized bounce-averaged relativistic electron Fokker-Planck equation
[7]. The motion of the electrons is gyro-averaged resulting in 2-D momentum dynamics, (p, ξ0).
Toroidal symmetry is assumed and the code is independent of the toroidal coordinate φ. The
LUKE code handles arbitrary shapes of the flux surfaces, but in this work the magnetic flux
surfaces are assumed to remain circular and concentric like in the Tore Supra tokamak except
for the modelling of the COMPASS scenarios where elongated scenarios have been modelled (see
Chap. 7). The flux surfaces are assumed to remain intact throughout the runaway formation
process, an assumption that is too restrictive for the thermal quench in disruptive scenarios.

3.3.1 Normalization

In the LUKE code, the momentum grid is normalized to the local (or central) thermal momen-
tum pth = mevth =

√
meTe. LUKE uses normalized, dimensionless operators normalized to the

reference density (n†e), reference temperature T †e and the reference (thermal) collision frequency
(ν†coll) [7]. The reference values are taken from the local flux surface or from values on the
magnetic axis. The electron density is given by integrating the electron distribution function f
over momentum space:

ˆ
f(r, p)d3p = ne(r). (3.37)

Normalized to a reference density n†e, which gives f̄ = f/n†e and n̄e = n(r)/n†e it becomes
ˆ
f̄(r, p)d3p = n̄e(r). (3.38)

The time scales are normalized to the local collisional time scale. The normalized time step in
the LUKE code is dtn = dt/τ †coll, where τ

†
coll is the thermal electron collision time.

3.3.2 Important time scales

Estimates of the time scale of the thermal quench, defined as the time scale of the convective
loss of the plasma along the field, is given in Ref. [28]

τTQ = kaL2/3B2/3T−5/6
e [ms], (3.39)

where L = πqR, B is the magnetic field strength, a is the minor radius, q is the safety factor,
k ≈ 6 , R the major radius and Te the temperature prior to the thermal quench near the
plasma edge. Equation 3.39 predicts the time scale of the outflow of plasma from the core.
The typical thermal quench time scale for a prescribed temperature evolution (Fig. 3.4a) and
Tore Supra like parameters is compared with the collisional time scale (Eq. 3.3), where the
velocity v = vth for thermal electrons and v = c for relativistic electrons in Fig. 3.4b. The
time scale of the thermal quench associated with transport of plasma because of stochastic and
non-closed field lines is found to be comparable with the thermal collision time but shorter than
the collisional time scale for relativistic electrons τ(c), making the possibility of self-consistent
calculation of the electron distribution function with the LUKE code in a rapid cooling event
highly questionable. As a consequence of the rapid loss of the plasma, a well confined seed
of runaway electrons near the magnetic axis may be all that remains from the suprathermal
electron population in the post thermal quench phase. After the thermal quench the runaway
electrons are in many cases well confined for seconds, in the so called runaway electron current
plateau [3]. The high confinement in this phase likely implies recovery of the nested magnetic
flux surfaces and the runaway electrons in the current plateau could in principle be modelled
with the LUKE code until their final deconfinement at the end of the current plateau. However,
since the non-Maxwellian electron distribution function after the thermal quench is unknown,
the initial conditions necessary for runaway calculations are undefined.

23



3. Kinetic description of a tokamak plasma

With the restrictions of disruption modelling in mind, the objective of this work is to study
the formation of runaway electrons in non-disruptive scenarios owing to the combined effect of
Dreicer and avalanche with a fast solver of the electron distribution function in order to make
predictions for the birth of runaway electrons in tokamak experiments.

The difficult task of modelling the transient temperature and electric field found in disrup-
tions, would require a proper description of the thermal quench with implemented radiative or
convective loss mechanisms of the plasma energy including MHD instabilities. The coupling
of the kinetic LUKE code with a fluid code such as JOREK [29], would be necessary for such
a purpose, but is beyond the scope of this work. The kinetic modelling of the formation of
runaway electrons is therefore done for non-disruptive scenarios as found in the current flattop
with constant electric field and plasma temperature.
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3.3. The LUKE code

(a)

(b)

Figure 3.4: A prescribed central temperature evolution in a thermal quench (a). Comparison
of typical time scale for thermal quench with the initial temperature near the edge Te = 400
eV (Eq. 3.39) with thermal and relativistic collisional time scales (b).
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Chapter 4

Dynamics of secondary generation of
runaway electron

In the conditions associated with large tokamak disruptions the plasma consists mainly of two
electron populations; bulk electrons at thermal energy and fast relativistic electrons that have
been accelerated by a strong electric field. The LUKE code [7] calculates the generation of pri-
mary runaway electrons by solving the Fokker-Planck equation. The modeling of the primary
runaway electron generation shows good agreement with theoretical results [4]. However, accel-
eration in electric field is not the only mechanism behind runaway electron generation. Through
knock-on collisions between electrons from the two populations, bulk electrons can receive an
energy kick from the fast electron and get knocked beyond the collisional momentum space,
where it can be accelerated to relativistic energies by the electric field. If the primary electron
remains above the critical momentum after the collision, a multiplication of the runaway elec-
tron has taken place. The electron that received an energy kick can then collide with a bulk
electron and the process is repeated, setting off an avalanche of relativistic electrons. This is
known as the avalanche mechanism or secondary generation of runaway electrons. Relativistic
electron populations originating from runaway electron avalanches have been frequently ob-
served in various plasmas, e.g. large tokamak disruptions [30] and electric discharges associated
with thunderstorms [31].

The description of the generation of secondary runaway electrons, also known as knock-
on collisions, which is expected to play a major roll in large tokamaks like ITER, is beyond
the Fokker-Planck approximation, that only includes distant collisions with slight variation in
momenta, in other words weak deflections. For secondary generation, when relativistic elec-
trons kick bulk electrons into the runaway region through close collisions, with small impact
parameters, the deflection is strong and a source term for the avalanche mechanism must be
incorporated beyond the Fokker-Planck collision operator. In this chapter the electron dynam-
ics of these close collisions is described. The scattering angle and an avalanche source term is
derived. Since such knock-on electrons are principally scattered off with a large perpendicular
component of the momentum with respect to the local magnetic field direction, these particles
are highly magnetized. Consequently, the momentum dynamics require a full 2-D kinetic de-
scription, since the electrons are highly sensitive to the magnetic non-uniformity of a toroidal
configuration. For this purpose, a bounce-averaged knock-on source term is implemented. Ow-
ing to the bounce-averaged formalism, the dimensionality of the problem is reduced from 4D
to 3D as the knock-on source term is averaged over the poloidal motion of the electrons.

4.1 Elastic electron-electron collisions

The dynamics of a bulk electron exchanging energy with a relativistic electron by close collisions
is illustrated in Fig. 4.1. The Lorentz factor is γ = 1√

1−(v/c)2
=
√

1 + p2 and the momentum
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p = γv/c, where the momentum is normalized to m0c. The energy of a particle is E = γm0c
2 =

m0c
2 + (γ − 1)m0c

2, where the first term is the rest energy and the second term the kinetic
energy.

The four-momentum, defined in Appendix A, is

P =
1

m0c
(
E

c
, γm0v) = γ(1,

v

c
)⇐⇒ P·P = γ2(1− v2

c2
) = 1. (4.1)

In the elastic collision between two electrons both energy and three-momentum is conserved:

P0 + P1 = P2 + P3 ⇐⇒ P0 + P1 −P2 = P3. (4.2)

By squaring both sides of the equation, and using the definition of four-momentum as in Ap-
pendix A we obtain:

1 + P0 ·P1 −P0 ·P2 −P1 ·P2 = 0, (4.3)

where
P0P1 = γ0γ1 − p0 · p1, P0P2 = γ0γ2 − p0 · p2, P1P2 = γ1γ2 − p1 · p2. (4.4)

In the system of two colliding electrons, we have the freedom of choosing the reference
frame. A reference axis along the motion of one of the electrons is chosen (we will call this
the longitudinal direction). We can then choose our reference frame so that the other electron
(the bulk electron) has no velocity in the parallel direction. Even if the parallel momentum of
the target electron (p0‖) can be considered negligible compared to the parallel momentum of
incoming electron p1‖, the target electron could still have some perpendicular momentum, in
which case γ0 > 1. Thus p1 = p1‖ and p0 = p0⊥. The momentum conservation gives

1 + γ0γ1 − γ0γ2 + p0p2sin(θ2)− γ1γ2 + p1p2 cos(θ2) = 0. (4.5)

The scattering angle ξ∗ = cos(θ2(γ0, γ1, γ2)) becomes:

ξ∗ = ±

√√√√p2
0 − (1+γ0γ1−γ0γ2−γ1γ2)2

p22

p2
0 + p2

1

+

(
(1 + γ0γ1 − γ0γ2 − γ1γ2)p1

p2(p2
0 + p2

1)

)2

(4.6)

− (1 + γ0γ1 − γ0γ2 − γ1γ2)p1

p2(p2
0 + p2

1)
,

which can also be expressed as

ξ∗ = ±
√

p2
0

p2
0 + p2

1

+
(1 + γ0γ1 − γ0γ2 − γ1γ2)2

p2
2(p2

0 + p2
1)

(
p2

1

p2
0 + p2

1

− 1

)
(4.7)

− (1 + γ0γ1 − γ0γ2 − γ1γ2)p1

p2(p2
0 + p2

1)
.

The full derivation is given in Appendix B. Note that in the limit p0 → 0 and γ0 → 1 the terms
under the root sign are zero and only the last term remains and equals to Eq. 4.10. From this
relation we can study the dependence of initial energies of the two electrons. The scattering
angle θ2 is found to be slightly sensitive to γ0 and γ1. See Fig. 4.2. For γ1 (10− 100) the angle
is affected, see Fig. 4.3. The thermal electrons of a 5 keV plasma are at γ0 ≈ 1.01. It is clear
that the initially slow electron will have significant transverse momentum after the collision.

If the target electron is assumed to be at rest, so that p0 = 0 and γ0 = 1:

P0P1 = γ1, P0P2 = γ2, P1P2 = γ1γ2 − p1p2 cos(θ2). (4.8)
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4.1. Elastic electron-electron collisions

(a)

(b)

Figure 4.1: Illustration of close collisions between a relativistic electron and an electron at rest
(a). Since the electron mass is proportional to the Lorentz factor γ the relativistic mass of the
relativistic electron is much larger than the mass of the electron at rest (b).

The momentum conservation becomes:

1 + γ1 − γ2 − γ1γ2 + p1p2 cos(θ2) = 0, (4.9)

so that the cosine pitch angle becomes

ξ∗ = cos(θ2) =
−(1 + γ1)(1− γ2)

p1p2
=
−(1 + γ1)(1− γ2)√

(γ2
1 − 1)(γ2

2 − 1)
=

√
γ1 + 1

√
γ2 − 1√

γ1 − 1
√
γ2 + 1

. (4.10)

By substituting ξ∗ = p2||/p2 and γ2
2 = 1 +p2

2||+p2
2⊥ we observe that the solutions lie on ellipses

in momentum space (p||, p⊥), of which the semi axes are defined by γ1:

(
p2||√
γ2

1 − 1
− 1

2

)2

+
p2

2⊥
2(γ1 − 1)

=
1

4
. (4.11)

See Appendix C for the full derivation of Eq. 4.11. In addition, γ2 will determine the point on
the ellipse that fulfills Eq. 4.11. For very energetic primary runaways γ1 →∞ and we get
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4. Dynamics of secondary generation of runaway electron

Figure 4.2: The dependence of the scattering angle of initial energies of the target electrons
(γ2). Black line is γ0 = 1, γ1 = 105. For blue lines γ0 = [1 : 0.01 : 1.1] and γ1 = 105 . Red line
is γ1 = 100 and γ0 = 1.

Figure 4.3: The scattering angle θ2 at various initial energies of the primary electron (γ1) as a
function of the energy of the initially slow electron (γ2). Here γ1 = 10 : 20 : 100 and γ0 = 1.
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4.2. The knock-on source term

Figure 4.4: Scattering angle of as a function of the Lorentz factor (γ2) and kinetic energy
(Ek = (γ2 − 1)m0c

2) of the secondary electron.

ξ∗ =

√
γ2 − 1

γ2 + 1
. (4.12)

The scattering angle θ2 = arccos(ξ∗) as a function of γ2 and kinetic energy Ek is shown in Fig.
4.4. Again, we note that unless the energy of the secondary electron is rather large after the
collision, its momentum will be mainly perpendicular to the magnetic field lines.

4.2 The knock-on source term

The relativistic differential cross section of electron electron elastic scattering in the laboratory
frame of reference was derived by Møller [32]. This cross section has been used to describe
electron electron knock on collisions in tokamak plasmas [5, 33] where electrons are knocked
out from the bulk distribution through large angle scattering. The avalanche process is described
with a knock-on source term, proportional to the Møller cross section. In previous runaway
avalanche calculations, the bulk electrons are assumed to be at rest in the laboratory frame
(γ0 = 1, where γ0 is the Lorentz factor of the bulk electrons) [5, 33]. In Ref. [5] the cross section
is used with the seed runaways of infinite energy and thus they experience no momentum loss
in the knock-on collision. On the other hand, in Ref. [33] the energy of the seed electron is
finite. In both cases, the target electron, which is part of the bulk is assumed to be at rest
before the collision.

The knock-on source term S determines to where in momentum space the secondary electron
is scattered, after it has experienced a collision with a primary relativistic electron. This
operator is to be incorporated in the LUKE code. It has the following form [5]:

S = nenrc
dσ

dΩ
. (4.13)

Here dσ/dΩ is the relativistic electron electron cross section given by quantum electrodynamic
calculations by Møller (see Appendix D for a full derivation) [32]:

dσ = 2πr2
e

∑
(γ1, γ2)dγ2 = 2πr2

e

∑
(γ1, γ2)

dγ2

dp2
dp2 = 2πr2

e

∑
(γ1, γ2)

p2

γ2
dp2, (4.14)

where dγ/dp = p/γ. The volume element is dΩ = 2πp2
2dp2dξ2 and re is the classical electron

radius:

31



4. Dynamics of secondary generation of runaway electron

re =
1

4πε0

e2

mec2
. (4.15)

Thus,

dσ

dΩ
= r2

e

∑
(γ1, γ2)

p2γ2
δ(ξ − ξ∗(p2)), (4.16)

where

∑
(γ1, γ2) =

γ2
1

(γ2
1 − 1)(γ2 − 1)2(γ1 − γ2)2

(4.17)

×
{

(γ1 − 1)2 − (γ2 − 1)(γ1 − γ2)

γ2
1

·
[
2γ2

1 + 2γ1 − 1− (γ2 − 1)(γ1 − γ2)
]}
.

The delta function in Eq. 4.16 corresponds to the angular relation imposed by energy and
momentum conservation (Eq. 4.10). The expression in Eq. 4.17 can be simplified, in the limit
for very energetic primary runaway electron (γ1 →∞):

•
γ2

1

(γ2
1 − 1)(γ2 − 1)2(γ1 − γ2)2

(γ1 − 1)2 ∼ γ4
1

γ4
1(γ2 − 1)2

→ 1

(γ2 − 1)2
,

•

γ2
1

(γ2
1−1)(γ2−1)2(γ1−γ2)2

(γ2−1)(γ1−γ2)
γ2
1

·
[
2γ2

1 + 2γ1 − 1− (γ2 − 1)(γ1 − γ2)
]

∼ γ2
1

γ4
1(γ2−1)

γ1
γ2
1
· 2γ2

1 ∼ 2γ5
1

γ6
1(γ2−1)

→ 0.

In this limit the expression simplifies to
∑

γ1→∞
(γ1, γ2) ≈ 1

(γ2−1)2 and the differential cross
section becomes

dσ

dΩ
= r2

e

1

pγ(γ − 1)2
δ(ξ − ξ∗(p)), (4.18)

where p is the momentum of the target particle after the collision. Here we have dropped the
index on γ2 and p2 since the expression is now independent of γ1 and p1. Equation 4.18 can
also be expressed as:

dσ

dΩ
= r2

e

1

p

d

dγ

1

(1− γ)
δ(ξ − ξ∗(p)) = r2

e

1

p2

d

dp
(

1

1−
√

1 + p2
)δ(ξ − ξ∗(p)). (4.19)

The knock-on source term is

S(p, ψ, ξ, θ) = nenrc
dσ

dΩ
= nenRcr

2
e

1

pγ(γ − 1)2
δ(ξ − ξ∗(p)). (4.20)

Using the definitions ne = n̄en
†
e, nr = n̄rn

†
e, where n†e is a reference density, p = p̄βth and

βth = vth/c we obtain

S(p, ψ, ξ, θ) = n̄en̄r
cr2
en
†2
e

β†th

1

p̄γ(γ − 1)2
δ(ξ − ξ∗(p̄)). (4.21)

The collision frequency in the bulk is

ν†coll =
n†eq

4 ln Λ†

4πε20m
2
ec

3β†3th
, (4.22)
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so that

re =
1

4πε0

e2

mec2
−→ cr2

e =
ν†collβ

†3
th

4πn†e ln Λ†
. (4.23)

Thus, S can be written as:

S(p, ψ, ξ, θ) =
1

4π

ν†collβ
†2
thn
†
e

ln Λ†
n̄en̄r

1

p̄γ(γ − 1)2
δ(ξ − ξ∗(p̄)). (4.24)

The knock-on source term in the equation ∂f
∂t = S has the unit

[
m−3s−1

]
. The normalized

expression is:

∂f̄n†e

∂tnτ
†
coll

= S ↔ ∂f̄

∂tn
=

Sτcoll

n†e
= S̄ =

S

S†
, (4.25)

where S† = n†eν
†
coll . The normalized knock-on source term is

S̄ =

1
4π

ν†collβ
†2
thn
†
e

ln Λ†
n̄en̄r

1
p̄γ(γ−1)2 δ(ξ − ξ∗(p̄))

n†eν
†
coll

, (4.26)

which simplifies to:

S̄ =
1

4π

β†2th
ln Λ†

n̄en̄r
1

p̄γ(γ − 1)2
δ(ξ − ξ∗(p̄)). (4.27)

This is the expression implemented for LUKE calculations. It can also be written

S̄ =
1

4π

1

ln Λ†
n̄en̄r

1

p̄2

d

dp̄
(

1

1−
√

1 + β2
thp̄

2
)δ(ξ − ξ∗(p̄)), (4.28)

where

ξ∗(p̄) =
σpβ†th√

1 + β†2thp
2

= σ

√
γ − 1

γ + 1
, (4.29)

and σ = sign(v||) indicates the direction of acceleration for the runaway electrons parallel to
the magnetic field. The momentum p̄ is normalized to pth = mvth.

4.2.1 Runaways with moderate energy

In the knock-on source term derived in Ref. [33], the avalanche is initiated by a runaway
electron distribution function, rather than a monokinetic beam of runaway electrons at the
speed of light. The distribution function gives the number of particles per unit volume in phase
space so that

nr(t, ψ) =

ˆ
f dV = 2π

ˆ +1

−1

δ(ξ1 − 1)dξ1

ˆ pmax

0

fr(t, ψ, p1)p2
1dp1 (4.30)

= 2π

ˆ pmax

0

fr(t, ψ, p1)p2
1dp1, (4.31)

with ξ1 = 1, i.e. no pitch angle on the incoming electrons, as a first approximation. nr is the
number of runaway electrons per unit volume. Using the above expression for the density in
Eq. 4.20 and v1 = p1/γ1 gives:
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S(p, ψ, ξ, θ) = 2πnecr
2
e

ˆ +1

−1

δ(ξ1 − 1)dξ1 ×
ˆ pmax

0

∑
(γ1, γ2)

p2γ2
δ(ξ2 − ξ∗(p1, p2))fr(t, ψ, p1)

p3
1

γ1
dp1. (4.32)

Using the general relation for Dirac’s delta function δ(g(x)) =
∑
k δ(x− xk)/|g′(xk)| where xk

are the zeros of the function g(x) and g′(x) = dg
dx , we get

δ(ξ2 − ξ∗(p1, p2)) =
∑

k

δ(p1 − pk)/|ξ∗′(pk)|, (4.33)

where using relation 4.10 gives

|ξ∗′(pk)| = |dξ
∗

dp1
| = ξ∗

p1γ1
. (4.34)

Thus

S(p, ψ, ξ, θ) = 2πnecr
2
e

[∑
(γ1, γ2)

p2γ2
fr(t, ψ, p1)

p4
1

ξ∗

]

ξ2=ξ∗(p1,p2)

, (4.35)

which agrees with the operator in Eq. (9) from Ref. [33]:

S = ncr2
ef(p1, t)p

2
1S0(γ, γ1), (4.36)

with
S0(γ1, γ2) =

∑
(γ1, γ2)

p2γ2ξ∗
, (4.37)

and f(p1, t) =
´ 1

0
dξ12πp2

1f(p1, t) for positive p1, while for negative p1 the limits of the integral
are −1 and 0. Since

cr2
e =

ν†collβ
3
th

4π ln Λ†
, (4.38)

the avalanche source term in normalized units becomes:

S̄(p, ψ, ξ, θ) = 2πne
ν†collβ

3
th

4π ln Λ†

[∑
(γ1, γ2)

p2γ2
fr(t, ψ, p1)

p4
1

ξ∗

]

ξ2=ξ∗(p1,p2)

/(n†eν
†
coll)

= n̄e
β†2th

2 ln Λ†

[∑
(γ1, γ2)

p̄2γ2
fr(t, ψ, p̄1)

(γ2
1 − 1)2

ξ∗

]

ξ2=ξ∗(p̄1,p̄2)

, (4.39)

where p1 satisfies β†2th p̄1p̄2ξ2 = (γ2 − 1)(γ1 + 1). Note that p1 is an implicit function of ξ∗2 and
p2 by the relation

p1 =
2p2ξ

∗
2

ξ∗22 (γ2 + 1) + 1− γ2
, (4.40)

derived from Eq. 4.10.
As observed in Ref. [33], the dependence of γ1 in S0 is weak (see Figure 4.5). As a

consequence S and the avalanche growth rate, also has a weak γ1 dependence. If the initial
momentum γ0 is varied so that γ0 > 1, (γ0 = 1 : 0.001 : 1.01), where 1.01 corresponds to Te = 5
keV, we note that γ0 affects the source function mainly at low γ2, see Fig. 4.6.

Integrating the knock-on source term over momentum space gives the runaway rate:
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Figure 4.5: The source function S0 of Eq. 4.37 as a function of the secondary electron energy
after the collision (γ2) for various primary kinetic energies (γ1).

dnr
dt

=

ˆ
d3pS = 2π

ˆ ∞
0

dp p2

ˆ 1

−1

dξ S. (4.41)

The source term in Eq. 4.36 should be more accurate than Eq. 4.24, since it is weighted over
the distribution function of the runaway electrons where the Rosenbluth operator only takes
the seed density (nr) (with velocity vseed = c) into account. A divergence appears when S is
integrated over ξ at ξ = 1, that is for γ1 = γ2 (at all p). This comes from the 1/(γ1−γ2)2 factor
in the differential cross section (Eq. D.19). The problem appears when γ1 = γ2, i.e. when the
seed electron gives all its momentum to the target electron (exchange of the particles). This
is allowed by momentum conservation. The singularity problem is instead avoided by noting
that it is sufficient to integrate up to ξ = 1/2, since we can assume that the knocked electron
maximally receives half of the incident energy of the primary runaway electron [34]. In other
words, the two electrons are interchangeable and one of them will always have energy below
1/2 · γ1 after the interaction.

4.2.1.1 Legendre polynomial expansion

In the description of knock on collisions from a source of electrons with intermediate energy,
the full distribution in velocity and pitch-angle space of the primary electrons (f0) must be
taken into account. This calculation holds only in the limit where p2 � p1, so that the initial
electron distribution function is very weakly modified by the knock-on process. Otherwise, a
two-particle distribution function with appropriate averaging must be considered which is a
more difficult problem.
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4. Dynamics of secondary generation of runaway electron

Figure 4.6: Including γ0 > 1 (blue) for primary kinetic energy E1 = 100 MeV. Including some
(perpendicular) momentum of the target particle affects the magnitude of S0 (Eq. 4.37) for low
γ2.

The addition of a 3D description of the dynamics of the primary electrons implies high
computational effort. However, the required number of integrations may be reduced by taking
advantage of the azimuthal symmetry of the distribution function around the magnetic field line
direction using projection on Legendre polynomials. Legendre polynomial expansion is applied
to the pitch angle of the primary electron distribution function as well as to the angle around
the coordinate along the magnetic field line due to azimuthal symmetry. With this formulation,
the momentum of the knocked out electron is determined for any direction of observation with
the same numerical accuracy. The projection of the distribution function and the differential
cross-sections over the Legendre polynomial basis is equivalent to determining their value for
all azimuthal directions.

For a function h(x) we define the series:

h(x) =

∞∑

m=0

(
m+

1

2

)
h(m)Pm(x), (4.42)

where Pm is the mth degree of Legendre polynomial and

h(m) =

ˆ +1

−1

h(x)Pm(x) dx. (4.43)

The source term for the knock on process is:
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4.2. The knock-on source term

S(t, θ, ψ, p2, ξ2) = cne(t, ψ)

ˆ pmax

0

p1

γ1
p2

1dp1 ×
ˆ 2π

0

dϕ1

ˆ 1

0

dξ1
dσ

d3p2
(p1, p2, ξ

∗)f0(t, θ, ψ, p1, ξ1). (4.44)

From Fig. 4.7 the azimuthal angle ϕ1 is related to ξ1 = p̂1 · b̂ and ξ2 = p̂2 · b̂ by the relation:

p̂1 · p̂2 = ξ = ξ1ξ2 +
√

1− ξ2
1

√
1− ξ2

2 cosϕ1. (4.45)

Assuming an azimuthal symmetry of the distribution function around the magnetic field line
one gets f0(t, ψ, θ, p1, ξ1, ϕ1) = f0(t, ψ, θ, p1, ξ1) and the same for the probability of scattering
for the secondary electrons around the primary electron velocity direction, it is possible to
simplify the source term in Eq. (4.44) by using Legendre polynomials and perform the integral´ 2π

0
dϕ1 analytically and

´ 1

0
dξ1 by replacing it with a sum over Legendre polynomials. The

differential cross section becomes

dσ(m)

d3p2
(p1, p2) =

ˆ 1

−1

dσ

dΩ2
(p1, p2, ξ)Pm(ξ)dξ (4.46)

= r2
e

∑
(γ1, γ2)

p2γ2

ˆ 1

−1

δ (ξ − ξ∗(p1, p2))Pm(ξ)dξ (4.47)

= r2
e

∑
(γ1, γ2)

p2γ2
Pm(ξ∗(p1, p2)). (4.48)

In the above expression

ξ∗ =

√(
γ1 + 1

γ1 − 1

)(
γ2 − 1

γ2 + 1

)
, (4.49)

is the cosine pitch angle between the incoming electron and the scattered electron. The distri-

bution of source electrons is f (m
′
)

0 (t, θ, ψ, p1) =
´ 1

−1
f0(t, θ, ψ, p1, ξ1)Pm′ (ξ1)dξ1. Thus the source

term in Eq. (4.44) becomes:

S(t, θ, ψ, p2, ξ2) = cne

ˆ pmax

0

p1

γ1
p2

1dp1

ˆ 2π

0

dϕ1

ˆ 1

0

dξ1 ×
∞∑

m=0

∞∑

m′=0

(m+
1

2
)(m

′
+

1

2
)
dσ(m)

d3p2
Pm(ξ)f

(m
′
)

0 (t, θ, ψ, p1)Pm′ (ξ1) (4.50)

= cne

ˆ pmax

0

p1

γ1
p2

1dp1

∞∑

m=0

∞∑

m′=0

(m+
1

2
)(m

′
+

1

2
)
dσ(m)

d3p2
f

(m
′
)

0 (t, θ, ψ, p1) ×

ˆ 2π

0

dϕ1

ˆ 1

0

dξ1Pm(ξ)Pm′ (ξ1).

According to the spherical harmonic addition theorem

Pm(ξ) = Pm(ξ1)Pm(ξ2) + 2

m∑

n=1

(m− n)!

(m+ n)!
Pnm(ξ1)Pnm(ξ2) cos(nϕ1), (4.51)
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4. Dynamics of secondary generation of runaway electron

where Pnm is the associated Legendre polynomial. When integrating Eq. (4.51) over ϕ1 only
the first term will contribute, since the second term is proportional to

´ 2π

0
cos(nϕ1)dϕ1 = 0 .

Thus

S(t, θ, ψ, p2, ξ2) = cne

ˆ pmax

0

p1

γ1
p2

1dp1

∞∑

m=0

∞∑

m′=0

(m+
1

2
)(m

′
+

1

2
)
dσ(m)

d3p2
f

(m
′
)

0 (t, θ, ψ, p1)×

ˆ 2π

0

dϕ1

ˆ 1

0

dξ1Pm(ξ1)Pm(ξ2)Pm′ (ξ1). (4.52)

Performing the integrations in ξ1 and ϕ1 and using the orthogonality relation:

ˆ 1

−1

Pm(ξ1)Pm′ (ξ1)dx =
δmm′

m+ 1/2
, (4.53)

where δmm′ is the Kronecker delta, the source term becomes:

S(t, θ, ψ, p2, ξ2) = 2πcne

ˆ pmax

0

p1

γ1
p2

1dp1

∞∑

m=0

(m+
1

2
)
dσ(m)

d3p2
f

(m)
0 (t, θ, ψ, p1)Pm(ξ2)

= 2πcr2
ene

∞∑

m=0

(m+
1

2
)Pm(ξ2)

[ˆ pmax

0

p3
1

γ1
dp1

∑
(γ1, γ2)

p2γ2
Pm(ξ∗(p1, p2))f

(m)
0 (t, θ, ψ, p1)

]

= 2πcr2
ene

∞∑

m=0

(m+
1

2
)Pm(ξ2)

[ˆ pmax

0

p3
1

γ1
dp1

∑
(γ1, γ2)

p2γ2
Pm(ξ∗(p1, p2))

ˆ 1

−1

f0(t, θ, ψ, p1, ξ1)Pm′ (ξ1)dξ1

]
.(4.54)

As a verification we consider the case of a monokinetic beam of primary electrons, such that
f

(m)
0 (t, θ, ψ, p1, ξ1) ' f0(t, ψ, p1) = f0(t, ψ, p1)δ(ξ1 − 1). Then, using the orthogonality relation
(Eq. 4.53) so that

∑∞

m=0(m+ 1
2 )Pm(ξ2)Pm(ξ∗) = δ(ξ2 − ξ∗(p1, p2)) the expression reduces to:

S(t, θ, ψ, p2, ξ2) = 2πcr2
ene

ˆ pmax

0

p3
1

γ1

∑
(γ1, γ2)

p2γ2
f0(t, ψ, p1)δ(ξ2 − ξ∗)dp1. (4.55)

which agrees with the expression previously derived for the source function from a high velocity
monokinetic beam of runaway electrons in Eq. 4.32.

For implementation in LUKE, the operator must be projected on to the poloidal coordinate
for the minimum magnetic field so that ξ(θ)→ ξ(θ = θ0) = ξ0. Except for in the distribution
function, there is a poloidal dependence in the Pm(ξ). Thus, according to the definition of
bounce average, the bounce averaged knock-on source term becomes:
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4.2. The knock-on source term

{S}(ψ, p, ξ0) =
1

λq̃

[
1

2

∑

σ

]

T

ˆ θmax

θmin

dθ

2π

1

|ψ̂·r̂|
r

Rp

B

BP

ξ0
ξ
× (4.56)

2πcr2
ene

∞∑

m=0

(m+
1

2
)Pm(ξ)

ˆ pmax

0

p3
1

γ1
dp1

∑
(γ1, γ2)

p2γ2
Pm(ξ∗(p1, p2))f

(m)
0 (t, θ, ψ, p1)

=
1

λq̃

[
1

2

∑

σ

]

T

ˆ ξ(θmax)

ξ(θmin)

dξ

2π

2ξ

−Ψ′(1− ξ2
0)

1

|ψ̂·r̂|
r

Rp

B

BP

ξ0
ξ
× (4.57)

2πcr2
ene

∞∑

m=0

(m+
1

2
)Pm(ξ)

ˆ pmax

0

p3
1

γ1
dp1

∑
(γ1, γ2)

p2γ2
Pm(ξ∗(p1, p2))f

(m)
0 (t, θ, ψ, p1) =

1

λq̃

∑

k

1

2π

2ξ0
−Ψ′(ψ, θ∗k)(1− ξ2

0)

1

|ψ̂·r̂|θ∗k

rθ∗k
Rp

Bθ∗k
BP,θ∗k

× (4.58)

2πcr2
ene

∞∑

m=0

(m+
1

2
)Pm(ξθ∗k)

ˆ pmax

0

p3
1

γ1
dp1

∑
(γ1, γ2)

p2γ2
Pm(ξ∗(p1, p2))f

(m)
0 (t, θ∗k, ψ, p1)

=
1

λq̃π

∑

k

1

|ψ̂·r̂|θ∗k

rθ∗k
Rp

B0

BP,θ∗k

ξ0(1− ξ∗2)

−Ψ′(ψ, θ∗k)(1− ξ2
0)2
× (4.59)

2πcr2
ene

∞∑

m=0

(m+
1

2
)Pm(ξθ∗k)

ˆ pmax

0

p3
1

γ1
dp1

∑
(γ1, γ2)

p2γ2
Pm(ξ∗(p1, p2))f

(m)
0 (t, θ∗k, ψ, p1).

We use the relation

1− ξ∗2 = 1− γ − 1

γ + 1
=
γ + 1− γ + 1

γ + 1
=

2

γ + 1
: (4.60)

{S}(ψ, p, ξ0) =
1

λq̃π

∑

k

1

|ψ̂·r̂|θ∗k

rθ∗k
Rp

B0

BP,θ∗k

2

(γ + 1)

ξ0
−Ψ′(ψ, θ∗k)(1− ξ2

0)2
× (4.61)

2πcr2
ene

∞∑

m=0

(m+
1

2
)Pm(ξ∗)

ˆ pmax

0

p3
1

γ1
dp1

∑
(γ1, γ2)

p2γ2
Pm(ξ∗(p1, p2))f

(m)
0 (t, θ∗k, ψ, p1).

The electron distribution function, evaluated at the poloidal angle θ = 0 where the mag-
netic field is minimum (on the outer equatorial plane) is determined by numerically solving
the bounce-averaged Fokker–Planck equation in the zero banana width approximation. The
distribution function f0(t, ψ, θ, p1, ξ)→ f0(t, ψ, p1, ξ0) is obtained using the relation

ξdξ = Ψ(ψ, θ)ξ0dξ0. (4.62)

We obtain

f0(ξ0) =

∞∑

m=0

(
m+

1

2

)
f

(m)
0 Pm(ξ0), (4.63)

where Pm is the mth degree of Legendre polynomial.
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4. Dynamics of secondary generation of runaway electron

Figure 4.7: Directions of incident electron and knocked out electron with respect to the local
magnetic field direction.

f
(m)
0 =

ˆ +1

−1

f0(t, ψ, θ, ξ, p1)Pm(ξ) dξ = (4.64)

Ψ(ψ, θ)

ˆ +1

−1

f0(t, ψ, p1, ξ0)
ξ0
ξ
H(|ξ0| −

√
1− 1

Ψ(ψ, θ)
)Pm(ξ) dξ0 (4.65)

S(t, θ, ψ, p2, ξ2) = cne

ˆ pmax

0

p1

γ1
p2

1dp1

∞∑

m=0

∞∑

m′=0

(m+
1

2
)(m

′
+

1

2
)
dσ(m)

d3p2
f

(m
′
)

0 (t, θ, ψ, p1)×(4.66)

ˆ 2π

0

dϕ1

ˆ 1

0

Ψ(ψ, θ)
ξ0
ξ
dξ0Pm(ξ1)Pm(ξ2)Pm′ (ξ1). (4.67)

The implementation of the source term describing knock-on collisions initiated by runaway
electrons with intermediate energies (Eq. 4.66) would be the next step in improving the de-
scription of runaway avalanches in the LUKE code.

4.2.2 Bounce average of the knock-on source term

Since knock-on accelerated electrons emerge with high perpendicular momentum [5], it is neces-
sary to properly account for the guiding-center dynamics in non-uniform magnetic field geom-
etry and treat the full 2-D momentum electron dynamics. In a non-uniform magnetic field, the
magnetic moment is an adiabatic invariant such that the guiding center parallel velocity varies
along the electron trajectory. The avalanche source term presented in Eq. 4.28 is 4-dimensional
(p, ψ, ξ, θ). By averaging over the poloidal motion, a procedure known as bounce average, the
dimension is reduced to 3D (p, ψ, ξ0). The pitch angle coordinate ξ in Eq. 4.28 can be expressed
as a function of (ξ0, ψ, θ) where ξ0 is the pitch angle measured at the poloidal position θ0 of the
minimum magnetic field B0(ψ) on a magnetic flux surface. When the collisional time is longer
than the bounce period [7], the rapid poloidal motion ensures that the electron distribution
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4.2. The knock-on source term

Figure 4.8: Geometry in the toroidal plane. The guiding center velocity vs goes along the
poloidal field lines. φ̂ is the toroidal direction and ŝ the poloidal direction.

f(ψ, p, ξ0) is independent of the poloidal angle θ. The poloidal angle dependence can thus be
averaged out of the kinetic equation by bounce-averaging. The relation for bounce average of
an operator A is [7]:

{A} =
1

τb

[
1

2

∑

σ

]

T

ˆ smax

smin

dsA

|vs|
, (4.68)

where the sum over σ applies to trapped particles only. vs = ds/dt is the guiding center velocity
along the poloidal field lines defined in Fig. 4.8, where φ̂ is in the toroidal direction and ŝ in
the poloidal. v|| is the velocity parallel to the magnetic field lines so that

vs
v||

=
Bp
B

=⇒ 1

vs
=

1

v||

B

Bp
=

1

vξ

B

Bp
. (4.69)

Since v||/v ' p||/p = ξ in the weak relativistic limit, where ξ is the cosine of the pitch angle
defined in Eq. 4.10 and |v||| = vξ|ξ0|/ξ0. The bounce time, i.e. the time it takes for a passing
particle to complete a full orbit in the poloidal plane, or for a trapped particle to complete half
a bounce period is defined as:

τb =

ˆ smax

smin

ds

|vs|
=

ˆ smax

smin

ds

|v|||
B

BP
, (4.70)

where the limits smin and smax are the turning points for trapped electrons. The arc length
ds =

√
gθθdθ, where gθθ = r2/|ψ̂ · r̂|2 is the metric element in the flux coordinate system

(ψ, θ, φ), see [7]. The coordinate r is defined from the origin, or magnetic axis (Rp, Zp), so that
r =

√
(R−Rp)2 + (Z − Zp)2. We have ds = dθ r/|ψ̂ · r̂| and the bounce time becomes:

τb =
2π

v|ξ0|

ˆ θmax

θmin

dθ

2π

r

|ψ̂·r̂|
ξ0
ξ

B

BP
. (4.71)
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The bounce time can be normalized as

τb(ψ, ξ0) =
2πRp
v|ξ0|

q̃(ψ)λ(ψ, ξ0), (4.72)

where

λ (ψ, ξ0) =
1

q̃(ψ)

ˆ θmax

θmin

dθ

2π

1

|ψ̂ · r̂|
r

Rp

ξ0
ξ

B

BP
, (4.73)

q̃(ψ) ≡
2πˆ

0

dθ

2π

1

|ψ̂ · r̂|
r

Rp

B

Bp
, (4.74)

where Rp is the tokamak major radius. Using the normalized bounce time, the expression for
bounce average of an operator A becomes:

{A}(ψ, p, ξ0) =
1

λq̃

[
1

2

∑

σ

]

T

ˆ θmax

θmin

dθ

2π

1

|ψ̂·r̂|
r

Rp

B

BP

ξ0
ξ

A(ψ, p, ξ). (4.75)

The bounce average of the knock-on source term is:

{S̄} =
1

λq̃

[
1

2

∑

σ

]

T

ˆ
θmax

θmin

dθ

2π

1

|ψ̂ · r̂|
r

Rp

B

Bp

ξ0
ξ

S̄(ψ, p, ξ). (4.76)

’T’ is for trapped particle and Bp is the poloidal component of the magnetic filed. We write
the knock-on source term as S̄(p, ψ, ξ, θ) = S̄∗δ(ξ − ξ∗(p̄)) where

S̄∗ =
1

4π

β†2th
ln Λ†

n̄en̄R
1

p̄γ(γ − 1)2
. (4.77)

Since S̄∗ is independent of θ, {S̄} = S̄∗{δ (ξ − ξ∗(p̄))}:

{S̄} = S̄∗
1

λq̃

[
1

2

∑

σ

]

T

ˆ
θmax

θmin

dθ

2π

1

|ψ̂ · r̂|
r

Rp

B

Bp

ξ0
ξ
δ (ξ − ξ∗(p̄)) . (4.78)

where ξ is a function of θ according to the relation given in Appendix E:

ξ = σ
√

1−Ψ(ψ, θ)(1− ξ2
0). (4.79)

Here Ψ(ψ, θ) = B(ψ, θ)/B0(ψ) and σ = sign(v||) = sign(ξ0) indicates the direction of ac-
celeration of the runaway electrons. Using the general relation for Dirac’s delta function
δ(g(x)) =

∑
k δ(x− xk)/|g′(xk)| where xk are the zeros of the function g(x) and g′(x) = dg/dx

provided that g is a continuously differentiable function with g′ non-zero.

δ(ξ − ξ∗) =
∑

k

2δ(θ − θ∗k)|ξ∗|
|Ψ′(ψ, θ∗k)|(1− ξ2

0)
, (4.80)

where θ∗k is the poloidal angle where the secondary electron emerges and satisfies

σ
√

1−Ψ(ψ, θ∗k)(1− ξ2
0)− ξ∗ = 0, (4.81)

or

Ψ(ψ, θ∗k) =
Bθ∗k
B0

=
1− ξ∗2
1− ξ2

0

=
2

(1− ξ2
0)(γ + 1)

, (4.82)

which is the equation we use to evaluate θk. We obtain
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{δ(ξ − ξ∗)} =
1

λq̃

[
1

2

∑

σ

]

T

ˆ
θmax

θmin

dθ

2π

1

|ψ̂ · r̂|
r

Rp

B

Bp

ξ0
ξ

∑

k

2|ξ∗|
|Ψ′(ψ, θ∗k)|(1− ξ2

0)
δ(θ − θ∗k), (4.83)

and since the integrand is an even function of ξ the expression simplifies to

{δ(ξ − ξ∗)} =
1

λq̃

ˆ
θmax

θmin

dθ

2π

1

|ψ̂ · r̂|
r

Rp

B

Bp

ξ0
ξ

∑

k

2|ξ∗|
|Ψ′(ψ, θ∗k)|(1− ξ2

0)
δ(θ − θ∗k). (4.84)

Consequently

{δ(ξ − ξ∗)} =
1

λq̃

1

2π

∑

k

1

|ψ̂ · r̂|θ∗k

rθ∗k
Rp

Bθ∗k
Bp,θ∗k

ξ0
ξθ∗k

2|ξ∗|
|Ψ′(ψ, θ∗k)|(1− ξ2

0)
, (4.85)

or, since Bθ∗k = 1−ξ∗2
1−ξ20

B0 (see Eq. E.10) and ξθ∗k = ξ∗

{δ(ξ − ξ∗)} =
1

λq̃

1

π

∑

k

1

|ψ̂ · r̂|θ∗k

rθ∗k
Rp

B0

Bp,θ∗k
|ξ0|

(1− ξ∗2)

|Ψ′(ψ, θ∗k)|(1− ξ2
0)2

, (4.86)

and thus the normalized, bounce averaged knock-on source term is

{S̄} = S̄∗
1

λq̃

1

π

∑

k

1

|ψ̂ · r̂|θ∗k

rθ∗k
Rp

B0

Bp,θ∗k

|ξ0|(1− ξ∗2)

|Ψ′(ψ, θ∗k)|(1− ξ2
0)2

. (4.87)

Using the relation in Eq. 4.60

{S̄} =
1

4π

β†2th
ln Λ†

n̄en̄R
1

p̄γ(γ − 1)2

1

λq̃

2

π

∑

k

1

|ψ̂ · r̂|θ∗k

rθ∗k
Rp

B0

Bp,θ∗k

1

(γ + 1)

|ξ0|
|Ψ′(ψ, θ∗k)|(1− ξ2

0)2

=
1

2π2

β†2th
ln Λ†Rp

n̄en̄R
1

p̄γ(γ − 1)2(γ + 1)

B0

λq̃

|ξ0|
(1− ξ2

0)2

∑

k

[ 1

|ψ̂ · r̂|θ∗k

rθ∗k
Bp,θ∗k

1

|Ψ′(ψ, θ∗k)|
]
, (4.88)

which can, by the relation p2 = (γ2 − 1) = (γ − 1)(γ + 1) and p = p̄βth, be written as:

{S̄(p, ψ, ξ0)} =
1

2π2

1

ln Λ†Rp
n̄en̄R

1

p̄3γ(γ − 1)

B0

λq̃

|ξ0|
(1− ξ2

0)2

∑

k

[ 1

|ψ̂ · r̂|
r

Bp

1

|Ψ′|
]
θ∗k.

(4.89)

To evaluate the summation term in Eq. 4.89 we use the following relations in the coordinate
system (R,Z, φ):

r = (R−Rp)R̂+ (Z − Zp)Ẑ. (4.90)

This is illustrated in Fig. 4.9. Thus,

r(ψ, θ) =
√

(R(ψ, θ)−Rp)2 + (Z(ψ, θ)− Zp)2, (4.91)

r̂ = (r̂ · R̂)R̂+ (r̂ · Ẑ)Ẑ =

(
R−Rp

r

)
R̂+

(
Z − Zp

r

)
Ẑ, (4.92)

where Zp is Z(0, θ). Also, from [7]
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Figure 4.9: Coordinate system (R,Z, φ).

ψ̂ =
∇ψ
|∇ψ| , (4.93)

|ψ̂ · r̂| = (∇ψ · R̂)(R−Rp) + (∇ · Ẑ)(Z − Zp)
r|∇ψ| , (4.94)

where

∇ψ · R̂ = −RBZ , ∇ψ · Ẑ = RBR, Bp =
|∇ψ|
R

. (4.95)

Using these relations in Eq. 4.89 gives

{S̄(p, ψ, ξ0)} =
1

2π2

1

ln Λ†Rp
n̄en̄R×

1

p̄3γ(γ − 1)

B0

λq̃

|ξ0|
(1− ξ2

0)2

∑

k

[ (R−Rp)2 + (Z − Zp)2

| −BZ(R−RP ) +BR(Z − Zp)|
1

|Ψ′|
]
θ∗k

. (4.96)

This is the knock-on source term to be discretized and implemented in the LUKE code. The
source term is factorized as

{S̄} = S̄∗ ·BF, (4.97)

where the bounce factor BF equals 1 for cylindric geometry and BF = C ·α in the more general
case:

C =
2

π

|ξ0|
(1− ξ2

0)2

1

(γ + 1)

1

λq̃
, (4.98)

α =
∑

k

1

|ψ̂ · r̂|θ∗k

rθ∗k
Rp

B0

Bp,θ∗k

1

|Ψ′(ψ, θ∗k)| . (4.99)
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4.2.3 Discretization of the source term

The electron distribution function f solved in LUKE is calculated on a half grid on points
(i+1/2, j+1/2, l+1/2) in phase space (p, ξ0, ψ). The variables in the source term are therefore
also calculated on the half grid:

• p̄ and γ on the i+1/2 grid

• ξ0 on j+1/2

• q̃ on l+1/2

• λ on (j+1/2,l+1/2)

The analytic expression of the knock-on source term is implemented on discrete form on the
same grid. To determine θk(i+ 1/2, j + 1/2, l + 1/2) we use the relation (Eq. 4.82) :

Ψ(ψ, θ∗k) =
Bθ∗k
B0

=
1− ξ∗2
1− ξ2

0

=
2

(1− ξ2
0)(γ + 1)

. (4.100)

Ψi+1/2,j+1/2 is evaluated on each flux surface (l+1/2). The term to calculate in θk is:

∑

k

[ 1

|ψ̂ · r̂|
r

Bp

1

|Ψ′|
]
θ∗k

, (4.101)

which as in Eq. 4.96 can be expressed as:

∑

k

[ (R−Rp)2 + (Z − Zp)2

| −BZ(R−RP ) +BR(Z − Zp)|
1

|Ψ′|
]
θ∗k

. (4.102)

This term has a poloidal and flux surface dependence (θ and ψ). The term θk(i + 1/2, j +
1/2, l + 1/2) on discrete form is evaluated from:

Ψ(θ∗k,i+1/2,j+1/2,l+1/2) =
2

(1− ξ2
0,j+1/2)(γi+1/2 + 1)

. (4.103)

And the discretization of the source term is:

{S̄}i+1/2,j+1/2,l+1/2 =
1

2π2

1

ln Λ†Rp
n̄e,l+1/2n̄R,l+1/2× (4.104)

1

p̄3
i+1/2γi+1/2(γi+1/2 − 1)

B0

λj+1/2,l+1/2q̃l+1/2

|ξ0,j+1/2|
(1− ξ2

0,j+1/2)2

∑

k

[ 1

|ψ̂ · r̂|
r

Bp

1

|Ψ′|
]
θ∗
k,i+1/2,j+1/2,l+1/2

,

where the bounce coefficients are:

λ(ψ, ξ0) =
1

q̃

ˆ θmax

θmin

dθ

2π

B

Rp

[(R−Rp)2 + (Z − Zp)2]

|BR(Z − Zp)−BZ(R−Rp)|
ξ0
ξ
, (4.105)

q̃(ψ) =

ˆ 2π

0

dθ

2π

B

Rp

[(R−Rp)2 + (Z − Zp)2]

|BR(Z − Zp)−BZ(R−Rp)|
. (4.106)
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4.2.4 Analytic solution in circular concentric configuration

For the case of a circular, concentric configuration, the bounce-factor from Eq. 4.97 can be
evaluated analytically. From Eq. 4.98 and 4.99 we have:

C =
2

π

|ξ0|
(1− ξ2

0)2

1

(γ + 1)

1

λq̃
, (4.107)

α =
∑

k

1

|ψ̂ · r̂|θ∗k

rθ∗k
Rp

B0

Bp,θ∗k

1

|Ψ′(ψ, θ∗k)| . (4.108)

In a circular, concentric configuration |ψ̂ · r̂| = 1. The magnetic field can be expressed as:

B = B0
R0

R
= B0

Rp + r

Rp + r cos (θ)
= B0

1 + ε

1 + ε cos (θ)
, (4.109)

where R = Rp + rcos(θ) and R0 = Rp + r. Thus,

Ψ∗ =
B∗

B0
=

1 + ε

1 + ε cos (θ∗)
, (4.110)

with the inverse aspect ratio ε = r/Rp. From Eq. 4.82:

B∗ = B0
2

(1− ξ2
0)(γ + 1)

. (4.111)

Using the above equation and Eq. 4.109 yields an analytic expression for cos (θ∗):

2

(1− ξ2
0)(γ + 1)

=
1 + ε

1 + ε cos (θ∗)
⇒ (4.112)

cos (θ∗) =
1

ε

(
(1 + ε)(1− ξ2

0) (γ + 1)

2
− 1

)
. (4.113)

Also |Ψ′(ψ, θ∗k)| can be evaluated for the circular case using Eq. 4.110:

dΨ

dθ
=

d

dθ

(
1 + ε

1 + ε cos (θ)

)
= ε sin (θ)

(1 + ε)

(1 + ε cos (θ))
2 , (4.114)

|Ψ′(ψ, θ∗k)| = |ε sin (θ∗)
(1 + ε)

(1 + ε cos (θ∗))
2 |. (4.115)

Regarding the poloidal magnetic field (Bp) in 4.108, it can be evaluated through the relation

Bp(r, θ) = Bθ,cyl
Rp
R

=
Bθ,cyl

1 + ε cos (θ)
, (4.116)

Bp(r, θ) =
|∇ψ (r) |

R
=

|∇ψ (r) |
Rp(1 + ε cos (θ))

. (4.117)

Ampere’s law gives the integrated magnetic field around a closed loop to the electric current
passing through the loop:

2πˆ

0

Bθ,cyl (r) · r dθ =

ˆ ˆ

S

J · dS = µ0I (r) , (4.118)

Bθ,cyl =
µ0I (r)

2πr
, (4.119)
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where Bθ,cyl is the mean poloidal magnetic field at the radial position r (independent of θ).
Finally, the poloidal magnetic field in a circular concentric configuration is:

Bp(r, θ) =
|∇ψ (r) |

R
=

µ0I (r)

2πr(1 + ε cos (θ))
. (4.120)

The integral of the poloidal magnetic field around closed curve is proportional to the total
current (I) passing through a surface S (enclosed by the curve).

Bp (r) =
µ0I (r)

2πr
. (4.121)

Inserting these results into Eq. 4.108 gives

α =
∑

k

ε
B0

µ0I(r)
2πr (1 + ε cos (θ))

| (1 + ε cos (θ∗k))
2 |

|ε sin (θ∗k) (1 + ε) | , (4.122)

when approaching the cylindrical case, i.e. ε→ 0 α→∑
k

B0

µ0I(r)
2πr 1

| sin(θ∗)| .

4.2.5 Integrability of the avalanche source term

The bounce averaged knock-on source term in Eq. 4.96 diverges for the poloidal points corre-
sponding to the borders of the domain of the knock-on source term, where B = B0 (at θ = 0
and 2π) and B = Bmax at θ = ±π. In ξ-space the singularities are found at:

ξ0,min =
√

1− 2/(γ + 1), (4.123)

ξ0,max =

√
1− 2

B0

Bmax

1

(γ + 1)
. (4.124)

The singularity comes from the factor 1
|Ψ′(ψ,θ∗k)| in Eq. 4.108 where none of the other factors can

compensate when |Ψ′(ψ, θ∗k)| → 0 and 1
|Ψ′(ψ,θ∗k)| → ∞. For circular, concentric configuration,

according to Eq. 4.115:

|Ψ′(ψ, θ∗k)| = |ε sin (θ∗)
(1 + ε)

(1 + ε cos (θ∗))
2 |, (4.125)

Ψ′(ψ, θ∗k) ≈ ε sin (θ∗) (1 + ε) (1− 2ε cos (θ∗)) ≈ ε sin (θ∗) , (4.126)

1

Ψ′(ψ, θ∗k)
≈

1

ε sin (θ∗)
. (4.127)

We want to ensure the integrability of S over ξ0 in a circular, concentric geometry. From Eq.
4.112 an expression for ξ0 is obtained:

ξ2
0 = 1−K (1 + ε cos (θ∗))

(1 + ε)
=

1 + ε−K (1 + ε cos (θ∗))

(1 + ε)
=

1−K + ε (1−K cos (θ∗))

(1 + ε)
, (4.128)

where K = 2
γ+1<1 is a constant for a given γ. For a small ε the above expression can be

expanded as:

ξ2
0 =

1−K + ε (1−K cos (θ∗))

(1 + ε)
≈ (1−K + ε (1−K cos (θ∗))) · (1− ε) , (4.129)
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and in the first order of ε,

ξ0 ≈
√

1−K
(√

1 +
ε (1−K cos (θ∗))

1−K

)
≈
√

1−K
(

1 +
ε

2

(1−K cos (θ∗))

1−K

)
. (4.130)

4.2.5.1 At θ = 0 and 2π

By Eq. 4.130, at θ = 0

ξ0,lim =
√

1−K
(

1 +
ε

2

)
. (4.131)

ξ0 − ξ0,lim =
√

1−K
(
ε
2

(1−K cos(θ∗))
1−K − ε

2

)
≈
√

1−K ε
2

(
1−K

(
1− θ∗22

)
1−K − 1

)
= ε

4

(
Kθ∗2√
1−K

)
.

Thus,

θ∗ = ±
√
ξ0 − ξ0,lim · const., (4.132)

where const. =

√
4
√

1−K
εK . Finally,

1

Ψ′(ψ, θ∗k)
∼ 1

θ
∼ 1√

ξ0 − ξ0,lim
, (4.133)

which is integrable over ξ0 for ξ0 → ξ0,lim and therefore the knock-on source term S is integrable
(for p > 0).

4.2.5.2 At θ = ±π
At around Ψ∗ = Ψmax at θ = ±π Eq. 4.130 gives:

ξ0,lim =
√

1−K
(

1 +
ε(1 +K)

2(1−K)

)
, (4.134)

and

ξ0 ≈
√

1−K
(

1 +
ε

2

(1 +K (1− (π − θ∗)2
/2)

1−K

)
, (4.135)

where the expansion − cos (θ∗) = cos (π − θ∗) ≈ 1− (π−θ∗)2
2 is used. Then

ξ0,lim − ξ0 =
√

1−K ε

2

(
(1 +K)

(1−K)
− (1 +K (1− (π − θ∗)2

/2)

1−K

)
= (4.136)

√
1−K εK

4

(π − θ∗)2

1−K =
εK

4

(π − θ∗)2

√
1−K . (4.137)

Thus,

π − θ∗ = ±
√
ξ0 − ξ0,lim · const., (4.138)

where const. =

√
4
√

1−K
εK . Finally,

1

Ψ′(ψ, θ∗k)
∼ 1

π − θ ∼
1√

ξ0 − ξ0,lim
, (4.139)

which is integrable over ξ0 for ξ0 → ξ0,lim and therefore the knock-on source term S is integrable
(for p > 0).
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Chapter 5

The avalanche mechanism in the LUKE
code

In this chapter, the implementation of the avalanche mechanism in the LUKE code is described.
Calculations of the runaway electron formation from the combined effect of the Dreicer and the
avalanche mechanism are carried out. It is found that in certain conditions the runaway electron
population is initially built up by Dreicer acceleration, which lead to the set off of an avalanche
of runaway electrons. The importance of the avalanche mechanism is investigated by a para-
metric study in bulk electron temperature and parallel electric field space. Dependencies of key
parameters such as electric field strength, electron temperature, and density are investigated.
The kinetic modelling of the formation of runaway electrons is restricted to non-disruptive
scenarios as found in the current flattop with non-transient electric field and plasma temper-
ature. In these calculations runaway electrons are confined to the flux-surface where they are
generated, such that the growth rate derived herein should be considered as upper estimates.
The predictions are related to experimental data in discharges where runaway electrons are
detected in non-disruptive scenarios for several tokamaks [6]. In addition, non-disruptive Tore
Supra discharges in near critical electric field are analyzed.

5.1 Implementation of knock-on collisions in the LUKE code

Runaway electrons are commonly generated in the center of a tokamak, which corresponds to
the cylindrical limit. In this section the effect of the avalanche physics implemented in the
LUKE code is validated against analytic result [5] in cylindric geometry. To include the effect
of runaway avalanche in LUKE, the avalanche source term presented in Chapter 4 for the
cylindrical geometry [5] is implemented:

S(p, ψ, ξ, θ) = nenrc
dσ

dΩ
= nr

1

4πτ ln Λ

1

p2

d

dp
(

1

1−
√

1 + p2
)δ(ξ − ξ∗(p)). (5.1)

This source term differs from [5] with a factor of 2π due to a different normalization of the
distribution function. An analytic expression of the avalanche growth rate is obtained by
integrating the avalanche operator over the runaway region p > pc in momentum space. This
approach may overestimate the true avalanche rate, since it neglects the fact that some time
must elapse between an electron entering the runaway region and the electron gaining sufficient
energy to cause secondary generation.

An analytic estimate of the avalanche growth rate is obtained by integrating the knock-on
source term in Eq. 4.28 over the runaway region p > pc in momentum space, as done in Ref.
[5]
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Figure 5.1: The knock-on process in LUKE (crosses) benchmarked against analytic growth rate
in Ref. [5] (dashed line), when using the same momentum space thresholds.

1

nr

∂nr
∂t

=
1

nr

ˆ ∞
pc

S d3p =
1

nr
2π

ˆ ∞
pc

ˆ 1

−1

S p2dp dξ =
1

2τ ln Λ

[
1

1−
√

1 + p2

]∞

pc

. (5.2)

If E/Ec � 1 and pc is small:

1

nr

∂nr
∂t

=
1

2τ ln Λ

(
1√

1 + p2
c − 1

)
≈ 1

2τ ln Λ

(
1

1 + 1
2p

2
c − 1

)
. (5.3)

For p2
c = 2Ec/E/(1 + ξ), p2

c(0) = 2Ec/E the growth rate for E > Ec becomes:

1

nr

∂nr
∂t

=
1

2τ ln Λ
(E/Ec − 1) . (5.4)

The term −1 has been added in the numerator to ensure that no runaway generation occurs
for E/Ec < 1.

The Rosenbluth model (4.28) for the runaway electron generation through knock-on colli-
sions is implemented in the code LUKE and benchmarked against the growth rate in Eq. 5.4
in the case of cylindrical geometry in Fig. 5.1, by using the same momentum thresholds as in
Ref [5].

In the LUKE code electrons with a momentum larger than pre ≡ max[pc; p(Ek = 1MeV)]
are accounted for in the population nr of primary runaway electrons for the knock-on collision
process. The numerical momentum grid boundary pmax must be chosen to be larger than or
equal to pre, and electrons leaving the domain through the boundary remain accounted for in
nr. To be valid, the Rosenbluth approximation requires that: (a) primary runaway electrons in
the knock-on collision process have a velocity near the speed of light, and (b) primary electrons
have a momentum much larger than target electrons. The condition (a) is ensured by the
1MeV minimum condition in pre, which corresponds to v/c ≥ 0.94, whereas the condition
(b) is guaranteed by restricting the model to plasmas with Te � 1 MeV. The growth rate is
evaluated by LUKE as the flux of electrons through pre when an electron gains enough energy
to diffuse through the momentum space boundary. The Rosenbluth approximation is further
justified by the weak dependence of the knock-on source term upon the incident electron energy
in the energy range 1− 100MeV (Fig. 4.5) [33].
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Figure 5.2: The LUKE momentum space is divided into two separate populations: the bulk
electrons with momentum p < pre and the runaway electrons p > pre. The knock-on collisions
between the populations nr and ne can lead to secondary runaway electrons. Electrons that
escape the domain p < pre either by electrons diffusing through pre or by getting contribute to
the runaway electron population nr.

The bulk electron density is defined as the integral of the bulk electron distribution in
momentum space:

ˆ pre

0

f(r, p)d3p = ne(r). (5.5)

The bulk and the runaway region, corresponding to p < pre and p > pre respectively, are shown
in Fig. 5.2. The runaway electron population is the integral over both Dreicer and knock-on
runaway fluxes

nr(t) =

ˆ t

0

(
γD +

ˆ pmax

pre

S d3p

)
dt, (5.6)

where γD =
˜

Sp(ψ, p, ξ) · dS is the integral of the particle flux through the surface p = pre.
In order to ensure conservation of number of particles in LUKE, a sink term is implemented to
compensate for the knock-on source term

S = S+− < S+ >
fM

< fM >
, (5.7)

where fM is the bulk distribution, assumed to be Maxwellian and < ... >=
´ pmax
0

... d3p. The
source and sink terms ensure that the number of electrons ne + nr = ntot is conserved.

5.1.1 Runaway electron growth rate

The runaway electron dynamics implemented in LUKE captures the combined effect of Dreicer
and knock-on processes. We investigate the evolution of the runaway electron population under
the influence of a constant electric field. Figure 5.3 shows the evolution of the runaway electron
population with and without the avalanche effect in a constant electric field. At first, there are
very few runaway electrons, the avalanche contribution becomes significant when a runaway
electron distribution has been built up by Dreicer effect. Then, an exponential growth of the
runaway electron population is observed - describing the avalanche effect. The growth rate
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consists of contributions from the two mechanisms Dreicer (D) and avalanche (A). Both mech-
anisms are proportional to the bulk density ne = ntot − nr such that the runaway production
rate can be expressed on the generic form

∂nr
∂t

= ne(γD + γA) → 1

(ntot − nr)
∂nr
∂t

= γD + γA. (5.8)

The avalanche growth rate is proportional to the runaway electron density (nr). To quantify
the avalanche growth rate, we express the avalanche term as:

γA = nrγ̄A, (5.9)

where γ̄A is an avalanche multiplication factor. The growth rate of runaway electrons can be
expressed as. Thus Eq. 5.8 becomes

1

(1− nr)
∂nr
∂t

= γD + nrγ̄A. (5.10)

It is important to note that the Dreicer growth rate is not directly comparable to the
avalanche factor γ̄A which is not a growth rate (it is normalized to the runaway electron pop-
ulation), but a factor depending on the electric field and trapping due to toroidal geometry.
Thus, the avalanche multiplication factor is a measurement of the intrinsic possibility of a run-
away avalanche, for a given magnetic equilibrium and parallel electric field. The actual runaway
production due to avalanche is a product of the avalanche multiplication factor (γ̄A) and the
runaway electron density (nr), γA = nrγ̄A. The total growth rate is thus dependent on the
momentaneous runaway electron population, and is therefore time dependent. For example,
γ̄A can be non-zero, even though the runaway electrons born due to avalanche is negligible,
until a seed of primary runaway electrons is established . Also, even with a significant existing
runaway electron population, when the knock on electrons get trapped to a large extent, the
avalanche production can be small.

Equation 5.10 is an affine function of nr(t), where the constant term is the Dreicer growth
rate and the avalanche multiplication factor is given by the slope. In Fig. 5.4 the growth rate
given by Eq. 5.10 is illustrated for E/Ec = 40 and 60 and Te = 0.5 keV. The growth rates from
the LUKE calculations are evaluated numerically, the Dreicer as a constant value (γD) and
the avalanche multiplication factor (γ̄A) from the slope of the curve. The Dreicer growth rate
calculated by LUKE agrees well with predictions from Kulsrud [4] where the Fokker-Planck
equation is solved numerically.

Since the secondary source term will enhance the fast electron density above pmin, for a given
electric field, the effect of strong Coulomb collisions will greatly increase the loss of runaway
electrons. All the history of the fast tail build-up plays a crucial role on the dynamics at time
t, and consequently, only a time evolution is meaningful for studying this problem which has
basically no stationary regime. A stationary regime may only be found if E‖ evolves so that
the plasma current is kept time-independent.

The runaway growth rate and runaway fraction for E/Ec = [2 : 8] is shown in Fig. 5.5a and
5.5b. The slope of the curve gives the avalanche factor (γ̄A), demonstrated in Fig. 5.6.

5.1.2 Treatment of suprathermal electrons

For the sake of simplicity, the Rosenbluth model in Ref. [5] considers only secondary electrons
born with a momentum larger than pc. However, electrons accelerated via a knock-on collision
to intermediate momentum pth < p < pc could contribute to the runaway growth rate indirectly
by populating the suprathermal region and thereby modifying the Dreicer flux. With the LUKE
code, it is possible to go beyond this estimate, for a more realistic description of the runaway
electron distribution function by also including the secondary electrons with momentum in the
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Figure 5.3: The fraction of runaway electrons (E/Ec = 30 and Te = 0.5 keV) as a function
of time normalized to thermal collision time, with and without the avalanche effect due to the
knock-on collisions. .

collisional momentum region p < pc. Numerically, three thresholds must be defined when im-
plementing the Rosenbluth model (4.28): the minimum and maximum values for the secondary
electron momentum, and the minimum value pre above which runaway electrons are counted as
primary electrons in the knock-on process. In order to determine these parameters, the lower
threshold above which knock-on collisions are included is varied and the results are shown in
Fig. 5.7 for electric field E/Ec = 2 and E/Ec = 5 (Te = 5 keV). We can see that the indirect
contribution of knock-on collisions to suprathermal energies pth < p < pc is negligible, such that
it is appropriate to set the lower threshold for secondary electron momentum at pc. A scan in
electric field strength for pmin = pth and pc presented in Fig. 5.8 leads to the same conclusion.
However, it must be pointed out that these calculations are done for constant electric field and
the knock-on born electrons near the runaway region could be crucial in a transient electric field
where the boundary between the runaway momentum region and the collisional region varies
in time.

The avalanche theory by Rosenbluth accounts for runaway electrons born due to knock-on
collisions in momentum space in the interval [pc,∞]. For the secondary runaway electrons
due to knock-on collisions in LUKE, a finite upper limit pmax must be chosen above which the
contribution to the runaway electron population is neglected (see Fig. 5.2). Energy conservation
imposes that the higher threshold for secondary electron momentum is lower than pre. The
knock-on production decreases with momentum, with the knock-on source term (Eq. 4.28)
S→ 0 for p→∞ . In LUKE pmax has to be defined at large enough momentum to account for
the dominant part of the knock-on collision contribution. The avalanche multiplication factor
(γ̄A) as a function of a lower cutoff (pmin) for the population of secondary electrons has been
computed in order to quantify at what value the avalanche production becomes negligible. It is
found that most contribution to the avalanche factor comes from the knock-on electrons born
near the critical momentum pc. We see in Fig. 5.7 that setting pre = 4pc is sufficient to account
for more than 80% of knock-on collisions.
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Figure 5.4: The growth rate in constant electric field and Te = 0.5 keV for E/Ec = 40 (the
curves with lower growth rate) and E/Ec = 60 (curves with higher growth rate) as a function of
the runaway electron density, with and without the avalanche effect. The Dreicer contribution
is in good agreement with Kulsrud’s theory [4]. The growth rates are normalized to the thermal
collision frequency (νth = 1/τ(vth)).

(a) . (b)

Figure 5.5: Runaway electron fraction (a) and growth rate (b) calculated with LUKE, including
runaway avalanches, for electric field strength E/Ec = [2 : 8] and β = 0.01.
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Figure 5.6: The avalanche multiplication factor (γ̄A) vs electric field strength.

Figure 5.7: Avalanche multiplication factor as a function of the lower momentum cut off
pmin/pth for Te = 5 keV, normalized to the avalanche factor at pmin = pc.
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Figure 5.8: The avalanche growth rate, including (pmin = pth) or excluding (pmin = pc) the
suprathermal knock on electrons.

5.2 The relative importance of runaway avalanches

The results presented in Sec. 5.1.1 (see Fig. 5.3) have shown that the runaway electron
distribution can be significantly modified by including the effect of knock-on collisions. In
order to understand the mechanisms that govern the runaway electron generation processes a
parametric study is performed with the aim to investigate which runaway formation process;
Dreicer or avalanche, that dominates in non-disruptive tokamak experiments.

The relative importance of the avalanche mechanism to the Dreicer mechanism can be
estimated by comparing the analytic avalanche growth rate in Eq. 5.4 and the Dreicer generation
from Eq. 2.22. The ratio of the two growth rates is

( ∂nr
∂t )

A/( ∂nr
∂t )

D
=
γA
γD
∼

∼
√
π

4

nr
ne

1

ln Λ

(vth
c

)3
(
E

Ec
− 1

)(
E

ED

)−1/2

exp

(
ED
4ED

+

√
2ED
E

)
. (5.11)

By letting a small fraction of the electrons run away in LUKE, the relative importance of the
avalanche effect as a function of plasma temperature and electric field strength can be evaluated
numerically from the fraction of the runaway electrons that originate from Dreicer and knock-on
collisions. In Fig. 5.9 the fraction of runaway electrons born from knock-on collisions is shown,
when 1% of the initial electron population has run away in a cylindrical magnetic configuration
with constant electric field, density and temperature. The fraction of runaway electrons has to
be small enough for the equilibrium parameters to remain constant and to consider the current
as driven by two separate populations; the bulk and the runaway tail. The relative importance
of secondary runaway electrons grows at lower temperature and electric field, as the slower
primary generation in high collisionality (low temperature) allows for runaway avalanches to
take off. The duration of the electric field required to reach the runaway fraction varies strongly
in the parameter space presented in Fig. 5.9. The time required for 1% of the electrons to run
away is illustrated for various electron temperatures (Te = 0.05, 0.5, 2 and 5 keV) in Fig. 5.10.
The formation of runaway electrons slows down as the collisionality increases at lower bulk

56
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Figure 5.9: The fraction of runaway electrons originating from knock-on collisions (nA/nr)
as modelled in LUKE. The analytic estimate of when 5% (cyan line), 50% (yellow line) and
90% (red line) of the runaway electrons come from avalanche is obtained from Eq. 5.11. The
parametric study is related to non-disruptive scenarios where runaway electrons were generated
in several tokamaks. All data points are taken from Ref. [6] except for the Tore Supra (TS)
point (discharge #40719) and COMPASS points (discharge #8555 and #8630).

temperature. The sensitivity of runaway electron formation on the electron temperature has
been shown in Ref. [35].

The numerical results are compared with the analytic estimate from Eq. 5.11 with nr/ne =
0.01. The condition for the dominance of the avalanche effect γA/γD > 1 is plotted in Fig. 5.9
along with the boundaries for which nA/nr = 5% and 90%.

In order to relate the study to experimental tokamak scenarios, it must be noted that
the simulations are performed for constant electric field and temperature. Consequently, the
study is restricted to non-disruptive scenarios with well-diagnosed and quiescent conditions
from several tokamaks, where runaway electrons have been observed in the current flattop
with the relevant plasma parameters maintained essentially constant. Results from scenarios
with reproducible measurements of electron density, loop voltage and plasma temperature at
the runaway electron onset from DIII-D, FTU, TEXTOR, Alcator C-Mod and KSTAR were
recently published in Ref. [6]. From this study the threshold electric field normalized to
the critical field is found to be significantly higher than predicted by collisional theory where
the birth of runaway electrons is expected at E/Ec > 1, provided that no additional runaway
electron loss mechanisms are present [4]. However, the condition for runaway onset in collisional
theory does not take the time required to generate runaway electrons into account. Estimations
from LUKE calculations in Fig. 5.10 shows that this time scale can be unrealistically large as
compared to the tokamak discharge duration. The time to generate a small fraction of runaway
electrons from a Maxwellian distribution is finite for E/Ec > 1 but as E/Ec → 1, the required
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5. The avalanche mechanism in the LUKE code

Figure 5.10: The time required for 1% of the initially Maxwellian electrons to run away, for
the electron temperature Te = 0.5 keV (dashed line), 2 keV (solid line and squares) and 5 keV
(solid line and circles) .

time to generate runaway electrons t → ∞. However, it is not the only explanation since the
study in Ref. [6] found that the E/Ec threshold for suppression is also well above unity.

Runaway electrons have been generated in the Tore Supra (TS) tokamak in low density dis-
charges (ne < 1019 m−3). The TS pulses #40719 and #40721 are performed after a boronization
and suprathermal electrons are observed in the former discharge but not in the latter. Both
are Ohmic discharges at Ip = 0.6 MA in the current flattop. Possible signature of suprathermal
electrons are observed in #40719 by the ECE edge chords at current ramp-down, when the den-
sity is low (< ne >= 0.4 ·1019 m−3), see Fig. 5.11a. The uniform E-field, estimated as the time
derivative of the resistive flux [11], is E‖ = 0.038± 0.003 V/m and the core temperature is 3.8
keV. The determination of the magnetic flux at the plasma boundary is described in Ref. [36].
No suprathermal electrons are detected by electron cyclotron emission (ECE) in the following
pulse #40721 at a higher electron density, see Fig. 5.11b. Similar result is found from HXR
measurements from the vertical camera detecting emission of 20− 200 keV (Fig. 5.15). A peak
of photo-neutrons is observed at the plasma termination for the lower density shot (#40719)
but not for the higher density shot (#40721), see Fig. 5.12. From the combined observations on
ECE, HXR and photo-neutron measurements, the presence of relativistic electrons during the
ramp-down of #40719 is identified. During the current flattop of #40719, the electron density
is < ne >= 0.64 · 1019 m−3, corresponding to E/Ec ≈ 8, but there is no clear signature of
runaway electrons until E/Ec ≈ 11. The suprathermal generation in #40719 is added to the
(E/Ec, Te) scan (see Fig. 5.9) and falls in the region where Dreicer generation is dominant. In
the higher density pulse (#40721) E/Ec ≈ 4 during the current flattop and no suprathermal
electrons are detected. These results are in line with those of Ref. [6] where E/Ec ∼ 3− 12 is
required to generate a detectable population of runaway electrons in the various tokamaks. The
runaway formation in these discharges is investigated through LUKE calculations in Chapter
7.

Relating the data from the experiments in Ref. [6] and the TS discharge #40719 to the
parameter scan done in LUKE (Fig. 5.9) reveals that the scenarios fall in or close to the
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(a) (b)

Figure 5.11: Signature of suprathermal electrons on the edge ECE chord at around t = 14.5
s are seen in the Tore Supra discharge #40719 (a). When the density is higher (#40721) (b),
there is no sign of supra thermal electrons.

region where the avalanche mechanism becomes significant for the runaway electron growth
rate (Fig. 5.9). Data from two COMPASS discharges where runaway electrons are observed
(#8555 and #8630) fall in the region where the Dreicer effect is dominant [37]. Runaway
electrons are commonly produced in the current ramp-up phase of the COMPASS tokamak, as
a consequence of relatively high E/Ec ratio (20 − 200). The circular 130 kA discharge #8555
is part of the line averaged electron density < ne > scan from 1− 4 · 1019 m−3, where < ne >
for this particular shot is 2 · 1019 m−3 during the flattop. The raise of runaway activity is
observed with HXR NaI(Tl) scintillator and photoneutron detector as the < ne > decreased
from discharge to discharge, while Parail-Pogutse instability appeared for all discharges with
n̄e lower than in the discharge #8555. The D-shaped 160 kA discharge #8630 was done for the
purpose of the sawteeth-runaway correlation studies with the electron density < ne >= 9 · 1019

m−3. Even though the discharge had relatively high < ne >, the runaway activity correlated
with the sawteeth instability is visible in HXR and photoneutron signals. Data from these
two COMPASS discharges #8555 and #8630 are plotted on Fig. 5.9, where E/Ec at runaway
electron onset in the ramp-up phase are 85 and 94, respectively. The electron density at the
time of the runaway detection is 1.1 · 1019 and 0.80 · 1019 m−3. In COMPASS, interferometry
is used for the line averaged electron density measurements, while Thomson scattering is used
for electron temperature Te and electron density ne profile measurements.

These observations suggest that knock-on collisions may be play an important role in the
formation of runaway electron generation in tokamak plasmas, even in non-disruptive scenarios.

We also relate the simulations to data from a typical DIII-D disruption [3] in Fig. 5.16. The
line averaged electron density originates from a mid plane horizontal interferometer and the
electron temperature is from 3rd harmonic ECE up to the current quench (CQ), then assuming
Te ∼ 5 eV during the CQ (from spectroscopy and L/R time) and then assuming Te ∼ 2 eV
during the RE plateau (from spectroscopy). Since the electric field is measured outside the
vacuum vessel, a central electric field is estimated with the 1D modelling tool GO [38], where
density and temperature data is used to model the electric field evolution. These results indicate
that in scenarios with large temperature drops, avalanche generation may be a crucial ingredient
in modelling of tokamak plasma disruptions.
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Figure 5.12: Photo-neutron signal in at the end of the current flattop and in the ramp down
for the two Tore Supra pulses. A peak of neutrons is observed at the plasma termination for
the low density shot (#40719) but none for the higher density shot (#40721).

(a) (b)

Figure 5.13: Electron cyclotron emission in the Tore Supra discharge #40719.
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(a) (b)

Figure 5.14: Electron cyclotron emission in the Tore Supra discharge #40721.

Figure 5.15: HXR data from the vertical camera (channels 1-21) in the energy range EHXR =
20− 200 keV. The HXR emission produced in the current ramp down in #40719 is a signature
of suprathermal electrons, whereas in the higher density discharge #40721 no HXR emission is
detected.
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Figure 5.16: Relation to E-field evolution in a DIII-D disruption (black circles), the pre-
disruptive phase illustrated with a yellow diamond, plotted on to the LUKE parameter scan.
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Chapter 6

Toroidal effects on runaway dynamics

In this chapter the effect of magnetic trapping on runaway electron formation processes through
the Dreicer and the avalanche mechanism is investigated. The numerical result of the avalanche
reduction off the magnetic axis obtained through LUKE calculations are compared with analytic
predictions. The fate of the trapped electrons is investigated by calculating the effect of Ware
pinch, where the trapped-electron runaways are transported inwards to less restrictive trapping
regions, where they may detrap and run away [39]. The knock-on collisions leading to runaway
avalanches are implemented through the bounce-averaged knock-on operator (Eq. 4.96).

6.1 Toroidal effects on runaway electron growth rate

The reduction of the Dreicer runaway rate away from the magnetic axis has been identified
in previous work [40], as well as with the code LUKE [7]. At least three effects contribute
to reduce the growth rate: the overall effect of the electric field on trapped electrons cancels
out over one bounce period; the acceleration of passing electrons is also reduced as their pitch
angle increases towards the high field side; the existence of a magnetic trapping cone creates
larger pitch-angle gradients in the circulating region, thereby increasing the effect of pitch-angle
scattering.

As discussed in Sec. 4.1, secondary electrons emerging from the knock-on collisions are
typically highly magnetized. Since the trapping effect increases off the magnetic axis in a non-
uniform magnetic field configuration, the further away from the magnetic axis the electrons
appear, the more they tend to be born trapped.

To quantify the tendency of magnetic trapping, the evolution of the runaway population is
calculated in a scenario with circular plasma cross section and magnetic non-uniformity, with
inverse aspect ratio ranging from ε = 0 to ε = a/R = 1. The inverse aspect ratio of the
Tore Supra tokamak is ε ≈ 0.3. The calculations in Fig. 6.1 show that the runaway electron
population grows significantly slower off the magnetic axis than in the center.

In order to study the trapping effects on the runaway population, the Dreicer growth rate γD
and the avalanche multiplication factor γ̄A are calculated with the code LUKE and quantified
separately. The Dreicer growth rate is found to be strongly affected by the non-uniformity
of the magnetic field, as shown in Fig. 6.2. A fit of the numerical results gives an analytic
expression of the Dreicer growth rate γD/γD,cyl = 1 −

√
2ε/(1 + ε). The results indicate that

for ε > 0.5 runaway generation from Dreicer acceleration vanishes.
Also for the avalanche effect, a reduction of γ̄A away from the magnetic axis is observed

in Fig. 6.3, with an avalanche multiplication factor that decreases with the inverse aspect
ratio. In order to derive an analytic estimate for the avalanche growth rate including the effect
of magnetic trapping owing to a non-uniform magnetic configuration, it is assumed that all
electrons with momentum p > pc will contribute to the runaway population (as in Ref. [5]),
except the secondary electrons that appear in the trapped momentum region p < pT . The
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Figure 6.1: The evolution of the runaway electron population, including the avalanche effect
owing to knock-on collisions, depends strongly on the radial position in a non-uniform magnetic
field configuration, where ε = r/R is the inverse aspect ratio coordinate. E/Ec = 40, Te = 0.5
keV and the time t is normalized to the thermal collision time τth.

Figure 6.2: Radial dependence of Dreicer growth rate, normalized to the growth rate for cylin-
drical case, i.e. ε = 0, compared to a fit (1− 1.2

√
2ε/(1 + ε)) [7].
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6.1. Toroidal effects on runaway electron growth rate

magnetic trapping criterion on the momentum pT of secondary electrons born via knock on
collisions is

B(θ)

Bmax
>

2√
1 + p2

T + 1
, (6.1)

where Bmax/B(θ) = (1 + ε cos θ)/(1− ε) in a circular concentric magnetic configuration. Elec-
trons are assumed to run away if their momentum exceeds both the critical momentum and
the trapping condition in Eq. 6.1. The lower integration limit pmin for the analytic estimate of
the avalanche growth rate is thus given by max(pc, pT ). An analytic expression for the inverse
aspect ratio dependent avalanche growth rate is obtained by integrating the source term from
over momentum space from pmin to pmax = ∞ , which results in a locally modified, inverse
aspect ratio dependent avalanche growth rate

dnr
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=
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(1− ε)2

2ε(1 + cosθ)

)
. (6.3)

The radial dependence is derived by finding a local expression in the poloidal angle θ for a
circular concentric configuration and averaging over the flux surface to find a global flux surface
dependent growth rate. The general relation for flux surface average of a volumic quantity is:

< Φ >V (ψ) =

´ ´
dV

Φ(ψ, θ)dV´ ´
dV
dV

, (6.4)

where
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Under the assumption of axisymmetry, it is shown in [7] that the flux surface average of an
operator Φ becomes:

< Φ >V (ψ) =
1

q̂(ψ)

ˆ 2π

0

dθ

2π

1

|ψ̂·r̂|
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B0(ψ)
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where q̂ is the pseudo safety factor

q̂ =

ˆ 2π

0

dθ

2π

1

|ψ̂·r̂|
r

Rp

B0

BP
. (6.7)

It is assumed that all electrons with momentum p > pc will run away, except the electrons
that appear in the trapped region p < pT obtained from the usual condition on magnetically
trapped electrons ξ0(ψ) ≤ ξ0T =

√
1− 1/Ψmax, where ξ0T (ψ) is the pitch angle, defined at

the minimum B0(ψ) on a given flux surface, such that the parallel velocity of the particle
vanishes at the maximum Bmax(ψ). The momentum of an electron has to exceed both the
critical momentum and the trapping condition to contribute to the runaway population. Thus
the lower integration limit pmin is given by max(pc, pT ). The flux surface averaged growth rate
becomes:
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where S̄∗ is the momentum dependent part of the knock-on operator
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The trapping condition is given by ξ = 0 by the following relation

ξ0 = ±
√

1− (1− ξ2)

Ψ(ψ, θ)
, ξ0T = ±

√
1− 1
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. (6.10)

The integration over ξ gives:
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This condition can be accounted for with the Heaviside step function H
(
|ξ0| −
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)
.

We perform a variable transform ξ → ξ0

δ(ξ − ξ∗(θ, p)) =
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which leads to
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The growth rate becomes:
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To express the argument of the Heaviside function in p, we have
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Thus,

γ(ξ0T ) =
2

(1− ξ2
0T )Ψ∗

− 1. (6.16)
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Using the trapping condition in Eq. (6.10)

γT = 2
Ψmax

Ψ∗
− 1 = 2
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)2

− 1, (6.17)

where B∗ = B(θ∗). In a circular concentric magnetic configuration

Bmax/B(θ) = Bmax/B(θ) = Bmax(1 + ε cos(θ))/(B0(1 + ε)) = (1 + ε cos(θ))/(1− ε). (6.18)

If the acceleration of the electrons is only limited by the trapping condition, the local growth
rate in the angle θ is
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The avalanche growth rate is obtained by integrating the source function over momentum space
from pmin = max(pc(E/Ec), pT (θ)) where

p2
T = 4ε(1 + cosθ)/(1− ε), (6.20)
p2
c = 2Ec/E. (6.21)

The growth rate becomes
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where Ē = E/Ec. For Ē finite we have pc > 0. Thus as the growth rate is averaged over the
poloidal angle pmin → pc as θ → π. The poloidal angle where pc = pT we name θbound and
it constitutes the boundary between the region where the avalanche rate is limited either by
the drag force or by the magnetic trapping effect. The angle is obtained from the condition
pc = pT :

1 + cosθbound = (1− ε)/(2εĒ), θbound = ± arccos((1− ε)/(2εĒ)− 1). (6.23)

If εĒ/(1− ε) < 1/4, pc constitutes the lower integration limit and if εĒ/(1− ε) > 1/4, pmin =
pT (θ). Averaged over the flux surface according to volumic flux surface average the growth rate
is:
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In the above calculation we used that for circular concentric flux surfaces |ψ̂·r̂|=1, ε = r/Rp
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Note that B/Bp is independent of θ. The first term within brackets in Eq. (6.24) is evaluated
as follows:
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The flux surface averaged growth rate in Eq. (6.24) becomes:

<
dnr
dtn

(θ, ψ) >V =
1

2 ln Λ†
n̄en̄rĒ ×

(
1

π

1

q̂(ψ)

ˆ θbound

0

1

|ψ̂·r̂|
r

Rp

B0(ψ)

BP

1

Ē
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2 ln Λ†
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(6.27)
Where

tan (θbound/2) =
sin(θbound)

1 + cos(θbound)
=

√
(1− ε)/(εĒ)− (1− ε)2/(2εĒ)2

(1− ε)/(2εĒ)
=

√
4εĒ − (1− ε)√

1− ε ,

(6.28)
and

ε

π
sin(θbound) =

ε

π

√
(1− ε)/(εĒ)− (1− ε)2/(2εĒ)2 =

1

π

√
ε(1− ε)
Ē

√
1− (1− ε)

4εĒ
. (6.29)

For εE/Ec � 1, θb → π , the growth rate is reduced by a factor (1 − ε)2/
(
π
√
εE/Ec

)
.

The inverse aspect ratio dependence of the estimated avalanche growth rate obtained from Eq.
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6. Toroidal effects on runaway dynamics

Figure 6.3: Radial dependence of the avalanche multiplication factor from bounce-averaged
LUKE calculations (circles), normalized to to the avalanche multiplication factor for the cylin-
drical case ε = 0. The numerical integration over the knock-on source term in Eq. 4.28 with the
toroidal dependence in the momentum integration boundary is plotted in squares. The solid
line shows the analytic estimate of the growth rate off the magnetic axis from Eq. 6.27.

6.3 is compared to numerical results. In addition, a numerical integration of the source term is
also performed, with the same criterion on the lower integration boundary in momentum space
pmin as the analytic estimate in Eq. 6.22. The analytic result is also compared to avalanche
growth rate from Fokker-Planck calculations with the LUKE code. In that case, the trapping
conditions are the same as in the analytic result, except for that the critical momentum is pitch
angle dependent p2

c = Ec/ (Eξ). The LUKE calculated avalanche multiplication factor and the
analytic estimate show good agreement (Fig. 6.3).

The growth rate obtained from bounce-averaged calculations suggests that the formation
of runaway electrons is slower the further away from the magnetic axis they appear. In other
words, the time scale of the local growth rate could be longer than suggested by collisional
theory [4, 5]. Potential loss mechanisms, such as transport of fast electrons due to magnetic
field perturbations [41] could therefore act more efficiently on the runaway electrons formed
off the magnetic axis than the ones formed on axis which could lead to well confined runaway
electrons at the center of the plasma.

The inverse aspect ratio dependence of the growth rate derived in the previous section
(see Eq. 6.27) is compared to numerical results. Numerical integration of the source term
is performed, with the same criterion on the lower integration boundary in momentum space
(pmin) as in the analytic formula. The upper integration boundary (pmax) is set to at least
four times the critical momentum. At momentum higher than that, the growth rate has shown
to be negligible. The analytic result is also compared to an avalanche growth rate obtained
from Fokker-Planck calculations with the LUKE code. In that case, the trapping conditions is
the same as in the analytic result, but the critical momentum is dependent on the pitch angle.
Since p2

c = 2Ec/(E(1 + ξ)) the analytic approximation of ξ = 0 made in Eq. 6.27 is an upper
estimate for pc. Thus, the growth rate calculated by LUKE can be expected to be smaller or
equal to the analytic estimate.

Figure 6.3 shows the reduction factor of the growth rate for E/Ec = 5, i.e. relative to the
growth rate in a cylindric plasma (ε = 0). The numerical integration of the source term shows
good agreement with the analytic result (Eq. 6.27). Close to the center, at low inverse aspect
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6.1. Toroidal effects on runaway electron growth rate

(a) (b)

Figure 6.4: Growth rate factor as a function of the inverse aspect ratio (ε) for E/Ec = 10 (a)
and E/Ec = 20 (b).

ratio, there is no effect of the trapping, due to the fact that the critical momentum is higher
than the trapped momentum over the whole flux surface. This effect becomes smaller with
increasing E/Ec (Figure 6.4a and 6.4b), since the critical momentum decreases and becomes
smaller compared to the trapping condition pT and thus less influential. However, for the
Fokker-Planck calculations the trapping influences the growth rate away from the magnetic axis.
This can be explained by the fact that pc, a function of ξ, is less restrictive than pc(ε = 0).
Another possible explanation is pitch angle collisions that couple the dynamics between the
trapped and the passing region.

In the Fokker Planck calculations the pitch angle dependence of the critical momentum has
been taken into account. It is also important to note that the analytic and numerical integration
case was performed for effective charge Z = −1 but the Fokker Planck calculation for Z = 1.

6.1.1 Verification of the bounce averaged knock-on operator

A flux surface averaged quantity can be obtained directly from the definition of the flux surface
average of a volumic quantity as shown in the previous section. The same result can be derived
from a relation including the bounce averaged quantity. Thus, the bounce averaged knock on
operator can be verified by calculating the flux surface averaged growth rate from knock on
collisions through two ways, that should give the same result:

1. Through the general relation of flux surface average of the growth rate from the knock on
operator S(ψ, p, ξ, θ), see Eq. (6.27).

2. From the bounce averaged operator {S̄}(ψ, p, ξ0), derived in the following subsection.

Growth rate from the bounce averaged knock on operator

The bounce averaged knock on operator is:

{S̄}(ψ, p, ξ0) = S̄∗
1

λq̃

[
1

2

∑

σ

]

T

ˆ
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dθ
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|ψ̂ · r̂|
r
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Bp

ξ0
ξ
δ (ξ − ξ∗(p̄)) (6.30)

=
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[ 1

|ψ̂ · r̂|
r
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1

|Ψ′(θ∗k)|
]
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. (6.31)
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It is shown in [7] that a flux surfaced averaged quantity can be retrieved from the bounce
averaged quantity through the relation:

<
dnr
dtn

>V (ψ) =
q̃

q̂

ˆ
p>pc

2πp2

ˆ
ξ0

λ{S̄}H
(
|ξ0| −

√
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)
dξ0dp (6.32)

=
q̃
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ˆ ∞
0

2πp2H(p > pc)
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|ξ0| −

√
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dξ0dp (6.33)

=
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× (6.34)
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0)2
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k

[ 1

|ψ̂ · r̂|
r

Bp

1

|Ψ′(θ∗k)|
]
θ∗k

dξ0dp. (6.35)

This includes a change of variables from (ξ, θ) ε [−1, 1], [−π, π] to (ξ0, θ) ε [−1, 1], [θmin, θmax].
The cancellation of λ and q̃ leads to:

<
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|ξ0|>ξ0T

1
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|ψ̂ · r̂|
r

Bp

1

|Ψ′(θ∗k)|
]
θ∗k

dξ0dp. (6.37)

At a given ξ0, Ψ = B(θ)/B0 is bijective and there is one solution on each θ interval [−π, 0] and
[0, π], thus one θ∗(ξ0) on each interval. From Eq. 6.15

∂Ψ∗

∂ξ0
=

4ξ0
(1− ξ2

0)2(γ + 1)
, (6.38)

|ξ0|
(1− ξ2

0)2
=

1

4
|∂Ψ∗

∂ξ0
|(γ + 1). (6.39)

The condition of the trapped electron contribution to the growth rate can be transformed from
ξ0T to a condition on pT . We get:
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We can rewrite the factor as

(γ + 1)

p̄3γ(γ − 1)
=

(γ + 1)

p̄(γ2 − 1)γ(γ − 1)
=

1

p̄γ(γ − 1)2
(6.42)

=
1

p̄2

d

dp

(
1

1−
√

1 + p̄2

)
(6.43)

The integration domain in ξ0 is limited by Ψ(θ) = 1, when ξ0 → ξ∗ at θ = −π (k = 1) and
Ψ(θ) = Ψmax, when ξ0 →

√
1− (1− ξ∗2)/Ψmax at θ = π (k = 2).
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Through a variable change ξ0 → θ∗k we obtain:
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For circular concentric flux surfaces |ψ̂·r̂|=1. The integral in momentum space goes from pmin
= max(pc(E/Ec), pT (θ)) where

p2
T = 4ε(1 + cosθ)/(1− ε), (6.46)
p2
c = 2Ec/E. (6.47)

Thus the growth rate becomes:
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6. Toroidal effects on runaway dynamics

We have recovered the same expression as in Eq. 6.24, that is the flux surface averaged growth
rate directly from the definition of flux surface average. This cross check verifies the imple-
mented bounce averaged operator in LUKE.

6.2 The fate of the trapped electrons

Following the results of the previous section, we found that in a non-uniform magnetic configur-
ation, a fraction of the electron population that would have directly contributed to the runaway
population in a cylindrical plasma, is momentaneously reduced due to magnetic trapping. In
this section, the fate of these trapped-electron runaways is investigated. In a tokamak, trapped
electrons subject to a strong electric field cannot run away immediately, because their parallel
velocity does not increase over a bounce period. However, they do pinch towards the tokamak
center. As they pinch towards the center, the trapping cone becomes more narrow, so eventually
they can be detrapped and run away. When they run away, trapped electrons will have very a
different signature from circulating electrons subject to the Dreicer mechanism.

Let us describe more precisely the expected signature of the trapped runaways. As opposed
to circulating electrons, trapped electrons cannot run away immediately, because their parallel
velocity cannot increase. However, to conserve canonical angular momentum, they do pinch
towards the tokamak center. As they pinch towards the center, the trapping effect becomes
weaker, so eventually they do run away. We call this the trapped-electron runaway effect, by
which we refer to electrons that were initially trapped, before running away. However, when
they do run away, trapped electrons will have very different signatures from the circulating
electrons that run away in several ways.

First, the initially-trapped runaway electrons can only run away in the center of the tokamak,
near the magnetic axis. Second, since they were initially trapped, they must initially have had a
relatively high perpendicular velocity (say measured at the maximum over the trapped-electron
orbit of the parallel velocity), at least on the order of the maximum parallel velocity. Now,
during the process of detrapping, when the electron drifts toward the magnetic axis, neither
this maximum parallel velocity nor this perpendicular velocity can change by much. Since
the parallel velocity must be on the order of the runaway speed to eventually run away when
detrapping occurs, then so must the perpendicular velocity. More specifically, the trapped-
electron runaways will have a distinct pitch angle depending on the radial location where they
appear.

This suggests that, as opposed to initially-circulating runaway electrons, the initially-trapped
runaway electrons will have two very different characteristics: one, they will be even more tightly
focused near the magnetic axis of the tokamak than the circulating runaways; and, two, they
will have very high perpendicular velocities, on the order of the critical velocity. In this section
we aim to quantify these two signatures of the trapped-electron runaways. Moreover, we calcu-
late also the birth-delay time of these runaways, since, upon application of a DC electric field,
these electrons first need to undergo detrapping, before the run away can progress.

How important are the trapped-electron runaways? For an initially Maxwellian distribution
function, there will be very few trapped-electron runaways compared to the usual runaways.
This is because both types of runaway electrons are drawn just from the far tail of the electron
parallel velocity distribution function, but the trapped-electron runaways are further drawn
only from the far tail electron perpendicular velocity distribution function. However, the re-
lative number of trapped-electron runaways might increase importantly for two reasons: one,
the usual runaway electrons may not be well-confined, whereas, the trapped-electron runaways,
since born near the magnetic axis, are very well confined; and, two, knock-on collisions with
runaway electrons produce a non-thermal spectrum of secondary runaway electrons, of which
a significant number may be trapped-electron runaways due to their high perpendicular velo-
cities [42]. This might produce a runaway avalanche effect, not dependent on the confinement
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6.2. The fate of the trapped electrons

of circulating runaway electrons, in which confined trapped runaways produce more trapped
runaway electrons.

6.2.1 Radial detrapping condition

First, we derive the detrapping condition due to the inward drift of energetic trapped electrons,
in the absence of collisions. These electrons would run away on the basis of having large enough
parallel velocity, except that a large perpendicular velocity initially prevents that through the
magnetic trapping.

Let the electric field in the toroidal direction (φ) be given by:

Eφ = −∂Aφ
∂t

. (6.49)

where A is the magnetic vector potential. The toroidal canonical momentum is a constant of
motion because of axisymmetry. It is given by:

Pφ = R(γm0vφ + qeAφ), (6.50)

where R is the distance from the rotational axis to the magnetic axis. The toroidal velocity is
related to the velocity component parallel to the magnetic field by:

vφ =
Bφ
B
v‖. (6.51)

Thus Eq. (6.50) becomes:

Pφ = R(γm0
Bφ
B
v‖ + qeAφ). (6.52)

Since Pφ is a constant of the motion, we have

d

dt
(Pφ) = 0. (6.53)

Consider the canonical toroidal momentum of a trapped particle at the turning point of the
banana orbit at minor radius and time (r, t), where v‖ = 0. The next turning point will be at
(r + δr, t+ δt). At these points we have:

Pφ = RqeAφ. (6.54)

From Eqs. (6.53) and (6.54) we obtain:

δr
∂(RAφ)

∂r
+ δtR

∂(Aφ)

∂t
= 0. (6.55)

In the first term, assuming axisymmetry, we find the poloidal magnetic field

Bθ = − 1

R

∂

∂r
(RAφ) , (6.56)

which inserted in Eq. (6.55) gives a drift speed towards the magnetic axis:

− δrRBθ − δtREφ = 0 → δr

δt
= −Eφ

Bθ
. (6.57)

This drift is known as the Ware pinch [43] and acts on all trapped particles. For a trapped
electron with kinetic momentum (p‖, p⊥) we will investigate the detrapping due to this drift.
The trapping condition is given by
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Figure 6.5: The inward radial displacement (∆ε) required for trapped electron initially at radial
position ε and pitch angle ξ0 to become circulating.

|ξ0| < ξ0T (ψ) =

√
1− (1− r

R )

1 + r
R

, (6.58)

where ξ0T is the pitch angle, defined at the minimum B0(ψ) on a given flux-surface, such that
the parallel velocity of the particle vanishes at the maximum Bmax(ψ). R is the major radius
and r the radial coordinate. As the electron drifts radially inwards from r to r− δr during the
time δt the local trapping condition experienced by the electron will change.

Consider now a magnetically trapped electron at inverse aspect ratio coordinate ε = r/R

with momentum p =
√
p2
‖ + p2

⊥. On a given poloidal coordinate, at for example the minimum
magnetic field, the particle has parallel and perpendicular momentum p‖0 and p⊥0 so that its
pitch angle on the minimum magnetic field is ξ0 = p‖0/p. At the turning point in the banana
orbit the momentum is p‖ = 0 and p⊥ = p.

As the trapped electrons undergo inward pinch, the trapping condition changes, i.e.

ξ0T − ξ0 = ∆ξ0 → 0. (6.59)

Hence, an electron with a given ξ0 will remain trapped until it reaches the radial position
ε
′

= r/R where ξ0 = ξ0T (ε
′
). At this radial position, its parallel momentum component

is sufficient for the electron to become passing. The position where the trapped electrons
transition from trapped to passing is:

ξ0 → ξ0T =

√
1− 1− ε′

1 + ε′
→ ε

′
=

ξ2
0

2− ξ2
0

. (6.60)

Hence, the inward radial displacement required for detrapping is

∆ε = ε− ε′ = ε− ξ2
0

2− ξ2
0

. (6.61)

Figure 6.5 shows the required displacement ∆ε and Fig. 6.6 the radial position (ε′ = r/R)
where the electrons can detrap and run away. ε and ξ0 are its initial radial position and cosine
pitch angle.

Thus, there results a distribution of runaway electrons with a distinct radially-dependent,
pitch-angle profile, as calculated from Eq. (6.60), and as presented in Fig. 6.6.
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Figure 6.6: The trapped-electron runaways will appear with a distinct pitch angle (ξ0) in the
radial extent.

6.2.2 Runaway time

Suppose an electron is just reaching the point of being detrapped. Its parallel velocity is
v‖0 ≤

√
2ε

1−εv⊥0 until the electron reaches the critical radius (ε
′
) that satisfies

v‖0 =

√
2ε′

1− ε′ v⊥0, (6.62)

where ε
′

=
ξ20

2−ξ20
is given by Eq. (6.60). As opposed to usual runaway electrons, with v⊥ ∼ vth

and v|| > vc, where vc is the critical velocity, the trapped-electron runaways will have higher
perpendicular velocity

v⊥0 ≥
√

1− ε′
2ε′

vc =

√
1− ξ2

0

ξ2
0

vc. (6.63)

The unique pitch angle of the trapped runaway electrons ξ0(ε), defined in Eq. (6.60), shows
that the trapped-electron runaways will appear with high perpendicular momentum. From
this criterion we will now predict the velocity distribution of the trapped-electron runaways.
If the passing electron has high enough velocity, it runs away on detrapping. The pitch angle
dependent critical momentum for E/Ec � 1 is estimated as [5, 40]:

p2
c ≈

2

1 + ξ0

Ec
E
, (6.64)

where pc is normalized to m0c and Ec is the critical electric field, the minimum electric field
that runaway electrons may be generated if no other loss mechanisms than the collisional drag
are present. The minimum perpendicular velocity of the trapped-electron runaways is presented
in Fig. 6.7, normalised to vc(ξ0 = 1).

The time it takes for the initially trapped electron to approach ∆ξ0 → 0 is given by
Eq. (6.57):

dtW = −Bθ
Eφ

R∆ε = −Bθ
Eφ

R

(
ε− ξ2

0

2− ξ2
0

)
. (6.65)

For an equilibrium with Bθ = 0.05 T and Eφ = 0.8 V/m. The time required for a trapped
electron to become passing is shown in Fig. 6.8.
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Figure 6.7: The radial distribution of the minimum perpendicular velocity of the trapped-
electron runaways, normalised to the critical velocity for ξ0 = 1.

Figure 6.8: Time (s) for trapped electrons at (ξ0, ε) to reach the radial position where they
become passing electrons, for Bθ = 0.05 T, Eφ = 0.8 V/m and R = 1 m.

In a disruption in an ITER-like scenario the toroidal electric field can be much stronger;
around 38 V/m has been predicted [15]. In that case, the Ware pinch detrapping time scale
would be much shorter; see Fig. 6.9.

Note that the calculations regarding both the detrapping time and the detrapping radius
are not particularly sensitive to the current profile, or what is called also the q-profile, at least
in the limit that the excursion from the flux surface is small compared to the radius of the flux
surface. To see this, note that if a trapped electron lies close to a flux surface, it will see a
magnetic mirror ratio of the field at the inboard side to the field at the low-field side. Since this
effect is independent of the poloidal magnetic field, the detrapping condition, expressed by Eq.
6.60, is likewise dependent only on the radial coordinate and not on the poloidal field profile.
Corrections due to the Shafranov shift of the flux surfaces, the banana orbit widths, the other
deviations from the magnetic surfaces, can then be addressed as corrections to the main effect
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Figure 6.9: Time (s) for trapped electrons at (ξ0, ε) to reach the radial position where they
become passing electrons, for Bθ = 0.01 T, Eφ = 38 V/m and R = 1 m.

described.
Although poloidal magnetic field Bθ has little effect on the detrapping condition, it does

have a strong effect on the detrapping time. This time is in fact proportional to Bθ. For
simplicity, we took the Eφ/Bθ velocity to be constant. In fact, as the electron pinches inward,
the poloidal field decreases, thereby speeding the drift. Thus, a more precise formulation of Eq.
6.65 would involve an integral over dr, where Eφ/Bθ is treated as dependent on r. However,
the detrapping time will be dominated by the slow speeds, so that, for example, the vanishing
of the poloidal field at the plasma center will not deeply affect the characteristic detrapping
time. In any event, very near the magnetic axis, the approximations used here break down,
particularly those concerning the deviation from the flux surface compared to the radius of the
flux surface.

6.2.3 Collisional effects

These calculations describe an electron born trapped but energetic enough to be collisionless,
so that it will spend some time being trapped and then run away closer to the magnetic axis.
However, in fact, the electron also experiences slowing down from collisions, so it might not be
energetic enough once it becomes detrapped. The collision free approximation would be valid
when the pinch time is small compared to the slowing down time of runaway electrons. However,
if the time scale of the pinch is longer, the electron may slow down such that it may not have
the energy required to run away when it finally detraps. If the pinch time is on the order of the
slowing down time, the initial momentum has to be larger than the critical momentum. If the
effective charge Zeff is small, we might imagine that slowing down affects p‖ and p⊥ equally,
so the detrapping condition does not change.

The change in momentum due to collisions during the time the electron is trapped (∆t) is
∆pfr. Thus the initial momentum required for an electron to run away has to be larger than
the usual critical momentum pc (Eq. 6.64). Hence, the effective critical momentum required for
a trapped electron to eventually run away can be formulated as

pc,eff = pc + ∆pfr(dtW ), (6.66)
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where dtW is the time it takes for the electron to detrap; initially trapped electrons run away
if p > pc,eff . The collisionless predictions of the trapped-electron runaway effect is valid under
the assumption that the time for pitch angle scattering is not smaller than the time it takes to
detrap due to the Ware pinch. This gives a condition on the Ware pinch time. The relativistic
collision time

τc =
4πε20m

2
0c

3(p/m0c)
3

γq4ne ln Λ
, (6.67)

must be larger scale than the time for detrapping (Eq. 6.65). Comparing the Ware pinch time
with the collision time gives:

dtW = −∆ε
BθR

Eφ
<

4πε20m
2
0c

3(p/m0c)
3

γq4ne ln Λ
. (6.68)

For a maximum inward displacement, ∆ε = −1, the above condition tells us that collisional
effect can only be neglected when:

(p/m0c)
3

γ
= γ2(v/c)3 >

BθneR

Eφ

q4 ln Λ

4πε20m
2
0c

3
. (6.69)

The above expression tells us that for high enough energy (γm0c
2), compared to the right hand

side, where the parameters are Bθ, Eφ, ne and R, the collision free approach can be taken. If
the condition in Eq. 6.69 is not fulfilled, collisions should be included in the calculations.

For ITER-like parameters and an assumed current profile the solution to the energy is
shown in Fig. 6.10. The density is ne = 1020 m−3 and the electric field strength is assumed
to be constant; Eφ = 10 V/m, 38 V/m and 100 V/m. The magnetic field is calculated from a
current density profile with a total plasma current of Ip = 15 MA. The assumed current profile
has small current density near the edge, so that the maximum of the poloidal magnetic field is
not at the edge. This explains the maximum in the energy condition. The radial dependence
of the density and the electric field strength are not taken into account.

The minimum energy required for the collision time to be longer than the Ware pinch
time is on the order of MeV for ITER-like parameters during a disruption (see Eq. 6.76).
Considering that runaway electrons have many tens of MeV, it can be expected that runaway
electrons produced from knock-on collisions should well be in this range where collisions can
be neglected. Of course, there can trapped-electron runaways with energy less than that, but
then account must be taken of collisions. That regime is left for a future study.

Also, the time of radial drift due to the Ware pinch must be compared to the time needed
for the electron to be deflected so that it is no longer on a trapped orbit. In the limit ε � 1,
the change of the pitch angle necessary to make trapped particles become detrapped can be
approximated as

∆ξ0 ∼ ξ0T '
√

2ε

(1 + ε)
∼ √ε. (6.70)

The small angle collisions a random-walk change in the pitch angle ξ0, the effective collision
frequency for detrapping is approximately

νc,eff ∼
νc

∆ξ2
0

∼ νc
ε
. (6.71)

Thus the average time for detrapping due to pitch angle scattering goes like:

τeff ∼ τcε. (6.72)

If the condition dtW < τeff applies, the Ware pinch may be dominant over pitch angle scattering
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6.2. The fate of the trapped electrons

Figure 6.10: The minimum energy needed for the Ware pinch to be faster than the collision
time, for the parameters Eφ = 10 V/m, 38 V/m and 100 V/m, ne = 1020 m−3 and R = 6.2 m.
The poloidal magnetic field is calculated from a current density profile with a total plasma
current of Ip = 15 MA.

−∆εR
Bθ
Eφ

<
4πε20m

2
0c

3(p/m0c)
3

γq4ne ln Λ
ε. (6.73)

For −∆ε ≈ ε we get:

Bθ
Eφ

R <
4πε20m

2
0c

3(p/m0c)
3

γq4ne ln Λ
, (6.74)

and the same requirement on the energy of the electrons as in Eq. (6.69). In order to get a more
comprehensible condition, we consider the condition for γ � 1 and obtain for E = γm0c

2:

E >

√
BθneR

Eφ

q4 ln Λc

4πε20
, (6.75)

which gives

E & 2.8

√
BθneR

Eφ
[MeV], (6.76)

where ne given in 1020 m−3, Bθ in T, Eφ in V/m and R in m.
Just like the collisional slowing down, the synchrotron reaction force [44] limits the energy

of the particle. This additional drag scales with the particle momentum as [45]:

Frad, p = −γp(1− ξ
2)

τr
, (6.77)

where τr is the radiation damping scale:
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τr =
6πε0γ(m0c)

3

q4B2
≈ 5.2

γ

Z4B2
. (6.78)

In addition the synchrotron reaction force limits the pitch angle

Frad, ξ = −pξ
√

1− ξ2

γτr
. (6.79)

This force could affect the trapped-electron runaways in the Ware pinch process, as electrons
would detrap faster, i.e. at a larger radius than predicted in Sec. 6.2.1, if p⊥/p‖ decreases.
The limitations of the collisionless theory was discussed and a regime was identified where the
Ware pinch detraps trapped runaway electrons fast enough for the collisions to be negligible
(dtW � τc). A similar condition can be set for the radiation loss time dtW � τr. By comparing
the time scale of collisional damping with the one of the radiation damping:

τc
τr

=
2ε0

3mene ln Λ
γ
(v
c

)3

Z4B2 ≈ 0.04
γ

ne,19

(v
c

)3

Z4B2, (6.80)

for ln Λ = 16 where ne,19 is the electron density in the unit 1019 m−3. For relevant plasma
parameters and electrons for this problem and v/c < 1, the condition τc � τr is fulfilled unless
γ gets very large. From the minimum energy defined in Fig. 6.10, where the Lorentz factor
γ is in the range of 1 − 6, for higher γ the time scale of the synchrotron reaction force may
be short enough to change the pitch before the detrapping radius is reached, if the product
B2Z4/ne becomes large. To properly account for the combined effect of synchrotron reaction
and collisional drag on the trapped-electron runaway distribution during the Ware pinch would
require further investigation by numerical studies.

6.2.4 Trapped-Electron Runaway Growth Rate

The runaway electron growth rate can be expressed as a sum of the Dreicer generated runaway
electrons (first term) and the runaway electrons generated through the knock-on process (second
term):

dnRE
dt

=

[
dnRE
dt

]

D

+
nRE
τRE

. (6.81)

If we include toroidicity in the equation we get a loss term, T (ε), from the electrons that are
born into the trapped region and can not instantly run away [42]. However, owing to the Ware
pinch, there is a correction to the growth rate loss. The growth rate including these corrections
can be expressed as:

dnRE
dt

=

([
dnRE
dt

]

D

+
nRE
τRE

)
[1− T (ε)(1−W (ε, t))] , (6.82)

where T (ε) is the growth rate loss from the trapped electrons. The Ware pinch (W (ε, t)) is the
correction to the reduction of magnetic trapping effect in Eq. (6.60). The time dependent Ware
pinch term is obtained by integrating the distribution function of trapped electrons fT (ε) from
the boundary between passing and trapping condition ε = ξ2

0/(2− ξ2
0) to the minimum radius

at which the Ware pinch can release a trapped electron εW (t) = ε+
Eφt
BθR

.

W (ε, t) =

ˆ εW (t)

ε

fT dε. (6.83)

The trapped-electron distribution function can be estimated as fT (ε) ≈ const.
√
ε [42]. In that

case the Ware pinch correction becomes:
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Figure 6.11: The radial distribution function of the trapped-electron runaways, given the initial
trapped electron distribution function fT ≈

√
ε for the parameters Eφ = 10 V/m, Bθ = 0.01 T

and R = 1 m.

W (ε, t) = const.

ˆ εW (t)

ε

√
ε dε = const.

(
(εW −H(εW − 1)(εW − 1))3/2 − ε3/2

)
, (6.84)

where H is the Heaviside step function due to the fact that ε ≤ 1. In Fig. 6.11 the time
dependent distribution function of the trapped-electron runaways (fTER(ε, t)) is plotted for
Bθ = 0.01 T, Eφ = 10 V/m and R = 1 m. It shows the expected trapped-electron runaway
distribution in the radial extent, if we assume that collisional effects are negligible.

The appearance of the trapped-electron runaways in the radial extent can be found by study-
ing the time dependent release of trapped-electrons owing to the Ware pinch. The avalanche
growth rate decays off the magnetic axis and can be estimated as the integral of the knock-on
source term (S) [5] with the lower integration limit as the maximum of the critical momentum
and the momentum that coincides with the trapped/passing boundary [42]:

1

nr

∂nr
∂t

=
1

nr
2π

ˆ ∞
pc

ˆ 1

ξT

S p2dp dξ. (6.85)

To estimate the appearance of the trapped-electron runaways, the contribution to the ava-
lanche will instead originate from the source term between the minimum pitch angle at which
electrons may be pinched (ξ0W (ε, t)) to the position of detrapping ξ0T (ε). From the bounce-
averaged knock-on operator implemented in the 3-D Fokker-Planck solver LUKE [46] a radial
distribution of trapped-electron runaways is obtained. The time dependent contribution to the
runaway population from the Ware pinch is obtained by integrating the source term of trapped
knock-on electrons from the trapped/circulating boundary ε = ξ2

0/(2 − ξ2
0) to the minimum

radius at which the Ware pinch can release a trapped electron εW (t) = ε +
Eφt
BθR

. This results
in a radial distribution of used to be trapped electrons born in knock-on collisions, shown in
Fig. 6.12. The distribution function is normalized to the central value of the time where the
distribution function saturates, i.e. when all remaining trapped electrons are too collisional
to run away. This calculation shows that the trapped-electron runaways will appear near the
center and may contribute to the avalanche growth rate.
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Figure 6.12: The radial distribution function of the trapped-electron avalanche, with Eφ =
10 V/m and Bθ = 0.01 T, calculated from the bounce-averaged knock-on operator implemented
in the LUKE code.

6.2.5 Discussion

The effect that we described in this section is how initially trapped electrons become runaway
electrons. They eventually run away because they do have high parallel velocity, comparable
to the critical runaway velocity. But they are trapped in the first place because also their
perpendicular velocity is comparable to the critical runaway velocity. Hence, they drift towards
the axis, where they become detrapped with perpendicular velocity comparable to the critical
runaway velocity. That will distinguish the trapped runaways from the passing runaways, which
have average perpendicular energies.

In this picture, there are several signatures to the trapped-electron runaways: First, and
most significantly, there is the high perpendicular velocity, which will produce more intense
synchrotron radiation. Second, they will be concentrated in the plasma center, with the highest
perpendicular velocities and therefore the most intense (per electron) emission, found closest to
the axis (where the trapping is weakest). Third, in a disruption, there will be a turn-on time
for the electrons to reach the radial detrapping position and only then to begin to run away. All
these signatures should be most prominent during a disruption, where the electric field is large,
and might be used to inform on plasma conditions. These signatures, as diagnosed through the
synchrotron radiation, should be distinct from the synchrotron radiation of normal runaways
[47, 48]. For very long times, however, the synchrotron radiation may eventually deplete the
perpendicular energy, making the signatures less distinctive.

Apart from the synchrotron radiation signature, the large perpendicular energies of the
trapped-electron runaways suggest that they may be easier to control magnetically. Runaway
electrons can be lost through interactions with ripple fields [49, 50], coherent wave instabilities
such as Alfvénic instabilities [51], or magnetic perturbations [52]. In all of these cases, the
strength of the interaction will be larger for larger perpendicular velocities.

Recently, there has been interest in the creation of runaway positrons in tokamaks, and
the information that might be obtained from them upon annihilation [13, 14, 53]. When large
tokamaks disrupt, large electron-positron pair production is expected to occur. The positron
runaways behave just like runaway electrons, only they run away in the opposite direction.
Just like there are circulating positron runaways, there will be trapped positron runaways.
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These trapped positron runaways will pinch towards the tokamak magnetic axis just like the
trapped-electron runaways. Except they will travel in the opposite toroidal direction, which
will affect the Doppler shift of the synchrotron radiation, the trapped positron runaways will
have a completely analogous signature to the trapped-electron runaways. Moreover, since the
positrons would only be produced in large numbers through the avalanche effect involving very
high energy runaways, there will be relatively more of the trapped positron runaways (compared
to the usual positron runaways) than there would be trapped-electron runaways (compared to
the usual runaway electrons). This effect would be enhanced to the extent that the most
energetic runaways – and those most capable of the pair production – would be found near the
low field side of the tokamak [54], where the trapping effect is also most significant.

Note that the trapped-electron runaway effect that we discuss is for runaway electrons that
run away eventually in the direction in which they support the plasma current. The same is
true for the runaway positrons. When the tokamak current is maintained by a DC electric field,
it is after all the thermal electrons that carry the toroidal current, and the runaway electrons
carry current in the same direction, only they are accelerated to far higher energies. This would
also be true during start-up of the tokamak [55], if the start-up relies on an inductive current.
In such a case, there is also danger from runaway electrons, since the plasma may not be dense
enough to hold back the runaways. Moreover, in the case of radio frequency (RF) assisted
start-up of the current, like through electron cyclotron heating, there might be more electrons
produced at higher energies, which could then run away in the direction in which the runaways
support the current.

Whether or not the runaways are in a direction to support the plasma current is an important
distinction that comes into play in non-inductive start-up of the tokamak current. In the case
of non-inductive current drive, for example by RF waves [56], there is the opportunity to start
up the tokamak or to recharge the transformer [57]. In such a case, the loop voltage is driven
negative; in other words, as the RF current in increased, a loop voltage is induced which opposes
the RF-driven current. This DC electric field also produces runaway electrons, only now they
are so-called backwards runaways, which are runaway electrons that carry current counter to
the toroidal current [58]. However, in the case of very sudden ramp-up with RF waves, when
the RF current is overdriven, in other words, when the RF-driven current is made much larger
than the inductive current, then the opposing loop voltage can be much larger than the normal
loop voltage in a tokamak [59, 60, 61]. There is then the concern that there could be damage
caused by the runaways that might be produced by the unusually strong electric field induced
to counteract the current. Note, however, that in such a case, any runaways produced will be
traveling in the direction unsupportive of the tokamak current, as opposed to the usual case
of in support of the tokamak current. In this case, in conserving toroidal angular momentum,
the DC electric field causes trapped-electrons to move away from the magnetic axis rather
than toward it. This has a profound consequence, because the trapped electrons, in moving
outward, encounter a more stringent trapping condition. Hence, in the case of RF ramp-up,
while circulating backwards runaways are produced, no production whatsoever can be expected
of backwards trapped-electron runaways (or, for the same reason, backwards trapped-positron
runaways). Thus, in vigorous RF ramp-up regimes, while the circulating backwards runaways
might be of some concern, at least the trapped-electron runaways do not add to that concern.

A recurring question is to what extent RF current drive generates runaway electrons. This
question should also be posed for the trapped-electron runaways. In the case of RF current
drive, if the current drive effect relies on RF wave interactions with suprathermal electrons,
there is risk of producing runaway electrons. It is particularly the case for lower hybrid current
drive [62], where a suprathermal electron tail is formed at high parallel velocities that could
supply more runaway electrons than could a Maxwellian distribution. It is also the case for
electron cyclotron current drive [63], where heating in perpendicular velocity makes electrons
collide less frequently and become more likely to run away. In these cases, the RF heating of
passing electrons enhances the runaway current through the usual runaway effect. However,
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there is also a trapped particle runaway effect when the RF current drive affects trapped
electrons. Consider first waves that provide parallel momentum to energetic trapped electrons,
such as low parallel-phase-velocity waves [64]. Since the particles remain trapped, there is
an RF-pinch effect similar to the Ware pinch effect [65]. If the wave momentum is in the
direction supportive of the total current, then as with the Ware pinch effect, the pinch will be
inwards. Moreover, like with the Ware pinch, the trapped electrons experience less stringent
trapping conditions when they pinch, so they can eventually run away like a trapped runaway.
One important difference is that, as opposed to the Ware pinch effect where the electric field
pinches the electron, without increasing its energy, in the case of the RF pinch effect, the RF
waves pinch the electron, while increasing its energy. As a result the trapped runaways become
detrapped sooner, and so run away at larger radii. It must be pointed out that the RF pinch
may only occur if the wave-particle resonance is present continuously through the pinching
process, i.e. if the spatial distribution of the waves has sufficient radial extent. In any event,
in inputting parallel momentum with waves that would be supportive of the toroidal current,
whereas targeting electrons with higher parallel velocity can increase the number of runaway
electrons, targeting electrons with low parallel velocity can increase the number of trapped
runaways.

In contrast, in the case of perpendicular heating rather than parallel heating of trapped
electrons, such as by electron cyclotron waves, there is no pinch effect bringing electrons to
less stringent trapping conditions. In fact, the perpendicular heating causes the electrons to be
more deeply trapped. Hence, there is no trapped-particle runaway effect for heating by electron
cyclotron waves.
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Chapter 7

Modelling of runaway electrons in
tokamak plasmas

As described in Sec. 3.3 the properties of the LUKE code restricts the modelling to non-
disruptive tokamak plasmas with non-ergodic magnetic flux surfaces. However, recent equilibria
reconstructions show that in the central region of the plasma the flux surfaces are nested during
the runaway electron plateau [66]. This phase of the disruption might be possible to model with
LUKE, given an estimate of the seed of runaway electrons formed during the thermal quench.
Those studies are left for future work.

Flattop scenarios with rather constant plasma parameters, like in current flattop usually
with low density are suitable for studying the formation of runaway electrons with the LUKE
code. Data from such scenarios are available from several machines. Current ramp-up and
ramp-down can also be modelled given the existence of reliable temperature and density mea-
surements. In this chapter modelling with the code LUKE for non-disruptive tokamak scenarios
is presented. Global plasma parameters such as parallel electric field and plasma equilibrium are
calculated with the fast integrated modelling code METIS [67] for the Tore Supra and COM-
PASS tokamaks. Several suitable discharges have ben modelled. Results are validated against
experimental observations. For Tore Supra scenarios the modelling is compared to tomographic
HXR emission from the fast electron population through HXR signal reconstruction accounting
for geometry and detector specifications [68]. This allows for comparison of both profile and
amplitude of the fast electron Bremsstrahlung.

One of the difficulties in predicting the formation lies in the appearance of sawtooth in-
stabilities in the #40719 Tore Supra discharge, as a consequence of the low density. For this
purpose, equilibria with high enough time resolution to capture the sawtooth oscillations, based
on ECE temperature measurements, are calculated with the CRONOS code [67, 69] and the
electron distribution function through a few sawteeth periods can be calculated with LUKE.

The modelling presented in this chapter is a first step in validating the LUKE code against
experimental observations in order to use the code for predictions for future scenarios. The
equilibria and kinetic profiles prescribed by METIS are based on experimental data from various
diagnostics, but does not take the presence of runaway electrons into account in the equilibrium
and kinetic profile reconstruction. The use of METIS modelling without coupling with the
LUKE code for self-consistent calculation of electric field and runaway electron current is valid
as long as the runaway electron population is only a perturbation to the Ohmic current, i.e.
small enough to influence the electric field negligibly. Future work includes a self-consistent
equilibrium reconstruction where the influence of the runaway current on the electric field profile
is accounted for. That would result in a valid description of runaway formation in scenarios with
rather high runaway current. It is assumed that the flux surfaces remain intact throughout the
simulation period. The reason is that the runaway electrons formed on a certain flux surface
coordinate are assumed to remain there during the remaining part of the discharge. Modelling
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of disruptive scenarios is outside the validity range of the tools in their present form, as loss
mechanisms and MHD stabilities are not described in the codes. The coupling of the kinetic
LUKE code with a fluid code such as JOREK [29], would be necessary for such a purpose, but
is beyond the scope of this work.

7.1 Modelling of non-disruptive scenarios with LUKE/METIS

The global discharge evolution, MHD equilibrium and kinetic profiles for each plasma scenario
are obtained from the fast integrated tokamak simulator METIS (Minute Embedded Tokamak
Integrated Simulator). METIS provides interpretative simulations of Tore Supra discharges
yielding particle and impurity densities, ion and electron temperature profiles, bootstrap current
and plasma momentum. It also calculates the electric field radial profile parallel to the magnetic
field lines E‖(r), used for simulation of inductive discharges [67]. The METIS code computes
the time evolution of the global plasma quantities for given waveforms of the control parameters.
It solves the current diffusion equation assuming an approximate equilibrium evolution.

The temperature and density profiles are fitted from experimental data from the Tore Supra
database. Equilibrium files are prescribed by the METIS code, using experimental temperature
and density data as input, weighted with Bayesian analysis [70]. The advantage of the Bayesian
analysis is increased reliability of the reconstruction of the plasma profiles from experimental
data. METIS provides magnetic field, parallel electric field, temperature and density profiles as
well as effective charge estimates. Input files are prepared along the discharge time evolution,
the frequency depending on how steady the plasma parameters are. For example in the current
flattop, the results are not very sensitive to the time step, but in ramp-up and ramp-down
higher time resolution is needed.

Based on the METIS input, the LUKE code calculates the effect of the runaway mecha-
nisms on the electron distribution function. The time evolution of the distribution function is
considered and the external runaway electron population at the end of one time slice is given
as input in the following time step:

nre,init,t = nre,end,t−1, (7.1)

which is equivalent to assuming that the runaway electrons remain confined throughout the
entire discharge at the flux surface coordinate where they were formed. Experiments show that
runaway electrons are usually ejected from the plasma along the discharge [71, 72, 6, 37], but
the processes of runaway confinement and loss mechanisms are complex and not included in
our model. In other words, runaway electrons that are generated are assumed to remain at the
same radial position throughout the rest of the discharge.

The momentum grid of the LUKE code is normalized to the local thermal momentum, as
a consequence the grid needs to be normalized to the temperature changes and input from
previous time steps are interpolated onto the new momentum grid. In the first time step the
initial distribution function is taken to be Maxwellian (fM ). Given the initial distribution
function the LUKE code calculates the effect on the distribution function during the time dtn.
The internal runaway electron population is transferred between time steps by interpolating the
electron distribution function onto the new momentum grid. The calculated non-Maxwellian
distribution function is used as initial distribution function in the consecutive time step, with
local temperature and density (nb = ne − nre) updated through addition/subtraction of a
Maxwellian function and by renormalization onto the momentum grid, normalized to the new
thermal momentum. Thus, the evolution of the distribution function becomes
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finit,t = fend,t−1 + (nb,t − nb,t−1)fM (ne,t, Te,t), (7.2)
finit,0 = fM (ne0, Te0). (7.3)

The ’init’ index denotes that the value or function is used in the initial part of the time slice.
Given this criteria, the time slice has to be small enough for the equilibrium to remain rather
constant within the time slice.

A term for anomalous fast electron radial transport in the kinetic equation is implemented
in the LUKE code and can be introduced in the calculations as a free parameter [73]. The
transport model is based on transport model by Rechester and Rosenbluth [74]. It has the
usual form of

Dr = Dr0

(
v‖/v̂th

)
H
(
v‖ − 3.5v̂th

)
, (7.4)

where Dr0 is a radial transport coefficient and v̂th is the thermal velocity taken at the center
of the plasma. The v‖ offset for the transport is a free parameter but in our simulations it is
set to 3.5v̂th, thereby affecting only suprathermal electrons. Fast electron radial transport has
previously been used in lower hybrid current drive (LHCD) to smooth out local peaks in the
power absorption. For example, in Ref. [75], it is found that adding a small radial transport
(Dr0 = 0.1 m2/s) in calculations of LHCD in Tore Supra leads to optimal agreement between
reconstructed fast electron Bremsstrahlung emission and experimental measurements from hard
X-ray tomography.

7.2 Tore Supra

Runaway electrons have been detected in the Tore Supra tokamak in low density discharges
(n̄e < 1019 m−3) in the current ramp down by electron cyclotron emission (ECE), hard X-
ray (HXR) and photoneutron measurements. Such observations are seen in discharge #40719,
where the electron density in the current flattop is n̄e = 0.64 · 1019m−3, corresponding to
E/Ec ≈ 8 and E/ED ≈ 0.06. However, in a similar discharge (#40721) with higher density,
no runaway electrons are observed even though the electric field exceeds the threshold field
(E/Ec ≈ 4 and E/ED ≈ 0.02). The signatures of runaway electrons were presented in Sec. 5.2.
The evolution of the two discharges are presented in Fig. 7.1.

There is an experimental level on the diagnostics below which no detection can be done.
Therefore, absence of runaway signatures does not guarantee that no runaway electrons or
suprathermal electrons are formed, it could simply be a consequence of that the population is
too small to be detected by the diagnostics. With METIS/LUKE simulations we can investigate
whether any suprathermal electrons are formed also in the two pulses without runaway signature
(#40721 and #39173), where E > Ec. The central temperature in #40719 and #40721 are
different, but off the magnetic axis they are very similar. Most of the contribution to the
resistivity comes from off axis, which explains why the loop voltages do not differ too much to
drive the same current, see Fig. 7.2.

In order to understand the different outcome of the two non-disruptive TS scenarios, the
formation of runaway electrons from the combined effect of Dreicer and avalanche is studied
with the LUKE code. There are no direct measurements of the effective charge but in #40719
there is no gas puffing so the plasma is assumed to consist of deuterium. In #40721 helium is
injected so the Zeff is expected to be slightly higher.
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(a) (b)

Figure 7.1: Measured line averaged electron density, plasma current and parallel electric field
strength in discharge #40719 (a) and #40721 (b).

Figure 7.2: Temperature profiles for two Tore Supra discharges (#40719 and #40721) during
the current flattop.
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Figure 7.3: Schematic view of the hard X-ray tomographic system in Tore Supra. Blue lines
show the lines of sight of the detectors, also called chords.

7.2.1 FEB reconstruction (R5X2)

Diagnostic for the fast electron physics in the Tore Supra tokamak is provided by fast electron
Bremsstrahlung (FEB) emission measured by the HXR cameras. The HXR signal detected from
vertical (chords 1 − 21) and horizontal lines of sights (chords 22 − 59) consisting of cadmium
telluride (CdTe) detectors and provide information on the suprathermal electron population.
Each detector measures the signal in a poloidal section of the plasma, integrated along the
line of observation, see Fig. 7.3. Given the detector response function, a count rate signal is
retrieved for each chord. The two cameras view the same circular and concentric plasma, which
ideally would give similar count rate amplitude and profile from the two cameras. The vertical
camera views the limiter, which may add background radiation under certain circumstances.

A synthetic diagnostic of the bremsstrahlung emission from suprathermal electrons by the
code R5X2 allows for a direct comparison of simulations with experimental FEB emission.
A unique reconstruction of the electron distribution from the measured FEB emission is not
possible due to the mixing between angular, radial and momentum dependence of the fast
electron tail [68]. The ill-conditioned character of this problem makes R5X2 an important
synthetic tool, yielding a line integrated emission from the electron distribution based on the
specifications of the HXR tomographic detection system [76].

The code R5X2 reconstructs the local emissivity of non-thermal bremsstrahlung from fast
electrons in an arbitrary axisymmetric magnetic configuration using Legendre polynomial de-
composition. Bremsstrahlung emission in the HXR photon energy lies in the energy range
30 − 200 keV. In R5X2 the bremsstrahlung emission is reconstructed as a function of chord
number, yielding an output which is directly comparable to the experimental HXR data.

7.2.2 Discharge #40719

An additional signature of the runaway electron population is the remaining current (∼ 50 kA)
at 15.7 − 16 seconds, at the termination of the plasma as seen in Fig. 5.13a. This remaining
current plateau could originate from a beam of well confined runaway electrons. Such a current
is not observed in the higher density discharge (#40721).
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7. Modelling of runaway electrons in tokamak plasmas

(a) (b)

Figure 7.4: Central electric field evolution calculated with the METIS code, normalized to Ec
(a) and ED (b) in discharge #40719.

The central electric field evolution as calculated by METIS normalized to Ec and ED are
shown in Fig. 7.4. For #40719 the METIS/LUKE simulations show that runaway electrons are
progressively formed during the current flattop (Fig. 7.5), concentrated near the magnetic axis.
Even though the density is lower off-axis and the E-field profile is rather flat, E/ED decreases
with the radius due to the temperature profile. This would explain the slower Dreicer generation
off the magnetic axis. Also, the increase of magnetic trapping effects off-axis contributes to
a reduced runaway rate, as shown in Chap. 6. The simulations predict a fast build up of
suprathermal electrons, see Fig. 7.6a.

Figure 7.6b shows the calculated current density profile as carried by external runaway
electrons (with kinetic energy (Ek > 1 MeV), when assuming that they move at the speed of
light, compared to the current density profile of the bulk. The calculated Ohmic plasma current
in the flattop at 13 s is 0.54 MA, compared to the experimental plasma current of 0.55 MA. To
match the plasma currents, the effective charge had to be reduced from the one used in METIS
(Zeff = 3.9) to Zeff = 2.6.

At the end of the current flattop the METIS/LUKE predicted current carried by external
runaway electrons (Ek > 1 MeV) is 33 kA, which is consistent with the level of remaining
current (Ip = 50 kA) likely carried by a well confined beam of runaway electrons, as observed in
the termination of the plasma (Fig. 5.15). It is possible that runaway electrons are lost during
the current (and density) ramp-down, but 50 kA may be considered as a lower estimate of the
runaway electron current at the end of the current flattop. The HXR reconstruction with R5X2
in the energy range 50− 110 keV is compared with the experimental count rate profile in Fig.
7.7. LUKE simulations predict a runaway electron population concentrated near the magnetic
axis. The shape and amplitude of reconstructed FEB emission shows reasonable agreement
with measurements.
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(a) (b)

Figure 7.5: Internal (nri) and external (nri) runaway electron population, normalized to bulk
density (a) and unnormalized (b).

(a) Electron distribution function at ξ = 1 in current
flattop during 1 s.

(b) Current density of bulk (black) and current density car-
ried by runaway electrons (Ek > 1MeV).

Figure 7.6: Modelling results from TS discharge #40719.
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Figure 7.7: Reconstructed FEB profile in discharge #40719, compared to measured FEB emis-
sion from HXR cameras.

Figure 7.8: Sawteeth in discharge #40719 seen on ECE measurements. The dashed/circled line
shows the temperature data points used for CRONOS simulations.

Data analysis of sawtooth activity

In #40719 there is a signature of sawteeth, likely due to the low density. The thermal collision
time at the electron temperature minima is 85% of the collision time at the maxima. The gener-
ation of suprathermal electrons during sawtooth crashes in the TCV tokamak were investigated
in Ref. [77].

The sawteeth oscillations are not accounted for in the METIS simulations, but with the
CRONOS code the oscillating electron temperature can be included; at least for a part of the
discharge (see Fig. 7.8). In order to investigate the effect of oscillating temperature and elec-
tric field strength, LUKE simulations are performed with core plasma modelled by CRONOS.
Given an initial seed, from METIS/LUKE simulations for the same discharge, at the starting
time of the CRONOS/LUKE simulations the effect of the oscillating temperature and electric
field strength is investigated. The simulations show no direct correlation between the saw-
teeth crashes and runaway electron formation. The influence of the sawteeth on suprathermal
electrons and runaway electrons requires further studies.
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(a) (b)

Figure 7.9: Central electric field evolution calculated with the METIS code, normalized to Ec
(a) and ED (b) in discharge #40721.

7.2.3 Discharge #40721

Helium is injected in this discharge, which is taken into account in the METIS simulations
where including helium in the impurities induces a small change in the ion temperature. The
on-axis electric field strength as calculated by METIS, normalized to Ec and ED are presented
in Fig. 7.9.

With METIS/LUKE simulations we can investigate whether suprathermal electrons are
formed also in the discharge without experimental runaway signature (#40721), where E > Ec.
The METIS/LUKE simulations show that only a small population of suprathermal electrons
is formed during this pulse (see Fig. 7.10a and 7.10b). The simulation of #40721 confirms the
experimental observations; the runaway production is negligible as the simulations show that
the population of suprathermal electrons is formed during this pulse is negligible. In addition,
the reconstructed FEB signal is close to zero, as seen on the experimental measurements (Fig.
7.11). The external runaway electron population, i.e. electrons with kinetic energy Ek > 1
MeV, is so small that it would only carry a current of around 5 mA at the end of the 10 seconds
long current flattop.

The study predicts that, for an initial Maxwellian distribution function, 10 seconds of
E/Ec ≈ 2.5 is not sufficient for a significant runaway electron population to form in a 3
keV plasma. This result is consistent with the parametric study of runaway formation per-
formed in Sec. 5.2 (Fig. 5.10), where it is found that 10 seconds of local electric field strength
E/Ec ≈ 2.5 is not sufficient for a significant runaway electron population to form in a 3 keV
plasma. Furthermore, these results support the experimental observations of Ref. [6] where at
least E/Ec ∼ 3 − 12 is required to generate a detectable population of runaway electrons in
various tokamaks.
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(a) Electron distribution function at ξ = 1 in current
flattop during 1 s.

(b) Internal (nri) and external (nri) runaway electron
population.

Figure 7.10: Modelling results from TS discharge #40721.

Figure 7.11: No HXR emission is predicted by LUKE, in agreement with experimental mea-
surements.

7.2.4 Discharge #39173

A discharge with density between those of #40719 and #40721 has also been modelled. The
plasma current is 0.6 MA and line averaged electron density is 0.92 · 1019 m−3. No sawteeth
oscillations are observed. As expected E/Ec and E/ED are of intermediate values to the two
other Tore Supra discharges, the central values as predicted by METIS are seen in Fig. 7.12.
No signatures of runaway electrons are seen on the HXR or ECE signals.

The METIS/LUKE simulations show a build up of a suprathermal population as seen on
the distribution function (Fig. 7.13a), but the external runaway electron population remains
very low throughout the discharge (Fig. 7.13b). Likely this low level of runaway electrons is
beyond the detection limits of the diagnostics.
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(a) (b)

Figure 7.12: Central electric field evolution as calculated by the METIS code, normalized to
Ec (a) and ED (b) in discharge #39173.

(a) Electron distribution function at ξ = 1 in current
flattop during 1 s.

(b) Internal (nri) and external (nri) runaway elec-
tron population.

Figure 7.13: Modelling results from TS discharge #39173.

7.3 COMPASS

The COMPASS tokamak [78, 79] at the Institute of Plasma Physics (IPP) in Prague, Czech
Republic is used extensively for runaway electron and disruption experiments [37]. It is a
medium size tokamak with major radius of 0.56 m and minor radius of 0.20 m. The plasma
can be circular or D-shaped with elongation up to 1.8. The plasma current Ip reaches up to
400 kA.

The discharges with runaway electrons in the current flattop in the COMPASS tokamak
are rather different from the Tore Supra discharges. With a typical pulse length of 0.4 s,
the discharge duration is much shorter than in Tore Supra, but the electric field relative to
the critical field is much higher. The principle diagnostics for detection of runaway losses are
NaI(Tl) scintillator detector for HXR emission and a photoneutron detector, positioned about 5
m from the vessel. The photoneutron detectors are more commonly referred to as lead shielded
HXR detector as they are covered with 10 cm of lead. Thus, they detect HXR from electrons
with around 1 MeV and above [80]. In the campaign of 2015, a Cherenkov detector was installed.
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Figure 7.14: Experimental data from COMPASS shot #8555 shows clear signatures of runaway
electron losses.

It is placed near the scrape-off layer and is the first diagnostics to detect the runaway electrons.
It should be pointed out that the HXR and Cherenkov detectors show the signal of runaway
losses, when runaway electrons are ejected from the plasma and strike surrounding structures
(the wall for HXR and the detector itself for Cherenkov).

7.3.1 Discharge #8555

The circular 130 kA discharge #8555 (Fig. 7.14) is part of a set of discharges with line averaged
electron density n̄e scan from 1− 4 · 1019 m−3, where n̄e for this particular shot is 2 · 1019 m−3

during the flattop. The raise of runaway losses is observed with HXR NaI(Tl) scintillator and
photoneutron detector as the n̄e decreased from discharge to discharge, while Parail-Pogutse
instability appeared for all discharges with n̄e lower than in the discharge #8555. In COMPASS,
interferometry is used for the line averaged electron density measurements, while Thomson
scattering is used for electron temperature and electron density profile measurements.

The plasma shape is reconstructed by the equilibrium fitting code EFIT [81, 82], and based
on that METIS calculates the equilibrium with this given shape, Ip, n̄e and Zeff . The on-axis
electric field strength calculated by METIS, normalized to Ec and ED are shown in Fig. 7.15.
The METIS/LUKE simulations predict a significant runaway electron population in the flattop
(Fig. 7.16 and 7.17). Signature of runaway electrons is found on the HXR detectors in the
ramp-up as well as in the current flattop. In the absence of tomographic HXR detection, it is
not possible to validate the simulated radial profile of the runaway electrons, but as for the Tore
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(a) (b)

Figure 7.15: Central electric field evolution as predicted by the METIS code, normalized to Ec
(a) and ED (b) in discharge #8555.

Supra scenarios they are found to be centrally concentrated. The calculated current carried by
runaway electrons is estimated from the current of the external runaway electrons with velocity
near the speed of light which results in a too high Ip. The LUKE simulation overestimates the
runaway electron population, as in the end of the discharge, the accumulated runaway electron
population would carry a current of 1 MA, i.e. about eight times the flattop plasma current
level. Clearly this result is unrealistic. These simulations assume that the runaway electrons
are completely confined at the position of formation throughout the entire discharge. Drift
losses occur, as seen on the elevated HXR signal in Fig. 7.14. The lack of losses in the model
could explain the elevated runaway electron population.

Adding fast electron radial transport in the simulations reduce the runaway current. It is
found that with a fast electron radial transport of Dr0 = 0.8 m2/s, the current carried by
runaway electrons drops to 70 kA, see Fig. 7.18. The transport is added to the suprathermal
electrons in the LUKE domain. In other words, the electrons that have already diffused through
the upper limit of the momentum grid are not affected by transport in our model. However,
increasing the grid from 1 MeV up to 10 MeV, has a negligible effect on the results. This
indicates that the runaway electrons are lost owing to transport before they can accelerate to
higher energies.

With the large runaway electron population detected in this discharge, there is possibly a
need for self-consistent calculations between the current carried by runaway electrons and the
toroidal electric field. Such calculations could lead to a smaller and more realistic runaway
electron population.

99



7. Modelling of runaway electrons in tokamak plasmas

Figure 7.16: Runaway electron formation (a) and electron distribution function at ξ = 1 (b) in
COMPASS discharge #8555 in current flattop during 0.1 s.

(a) (b)

Figure 7.17: LUKE predicts a significant runaway electron population through discharge #8555.

(a) (b)

Figure 7.18: Current profile carried by external runaway electrons without radial transport (a)
and with radial transport (Dr0 = 0.8 m2/s) (b) for discharge #8555.
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Figure 7.19: Experimental data from COMPASS shot #10007.

7.3.2 Discharge #10007

In this discharge, performed during the COMPASS runaway electron campaign in the spring
2015, the plasma current during flattop is 154 kA and the line averaged density 2.97 · 1019 m−3

(Fig. 7.19). The plasma is elongated (κ = b/a = 1.4, where a is the plasma minor radius and
b is the height of the plasma measured from the equatorial plane). During the current flattop
the loop voltage is dropped three times.

Comparing #10005 (κ = 1.2) and #10006 (κ = 1.1) it is found that in the higher elongation
discharge, a stronger MHD activity is observed. The activity decreases during the current drops
while runaway electron losses on the shielded HXR are enhanced. This could indicate that
runaway electrons are confined inside magnetic islands and released in the current drops when
the islands disappear. In other words, changing the MHD activity affects runaway electrons.
On the other hand, if there is less MHD activity (#10006), the voltage drops did not affect
the runaway loss signal. This could mean that the runaway electrons remain well-confined.
Understanding the mechanisms between runaway electrons and plasma elongation would require
further studies.

For the LUKE simulations, the internal runaway electron population is very reactive to
the change of loop voltage as seen in Fig. 7.20. The loop voltage drops and flattening in the
evolution of the external runaway populations are also found to be correlated.

As for the other discharges, LUKE predicts a runaway electron population concentrated
near the magnetic axis (Fig. 7.21). In this case, the runaway signals are lower than for the
#8555 discharge. The LUKE calculated current is on a more reasonable order as the current
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Figure 7.20: Evolution of external and internal runaway electron population, normalized to
reference density.

(a) (b)

Figure 7.21: Simulation results at three radial positions; ρ = 0.028, 0.16, 0.35.

carried by runaway electrons reaches around 70 kA at the most (Fig. 7.22) compared to the
total plasma current (154 kA).

7.3.3 Plasma elongation scan

The COMPASS discharge #10007 is part of a plasma elongation scan, in the range κ = 1.0−1.4.
The ramp-up phases of plasma current are equivalent and the discharge specific shaping are
applied in the beginning of the current flattop. The measured runaway losses (Fig. 7.23)
indicate that the runaway electrons are somehow better confined in elongated plasmas. In the
lower elongation plasmas we see runaway electrons escaping during the entire discharge while
in elongated plasmas they are ejected at ramp-down (#10008).
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Figure 7.22: Evolution of current carried by runaway electrons with Ek > 1 MeV.

Figure 7.23: Runaway losses for discharges with different elongation during the current flattop.
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Figure 7.24: Magnetic geometry calculated by METIS for κ=1.2,1.4 and 1.6.

Figure 7.25: There is slightly more runaway electrons generated centrally for the higher elon-
gation case but less off-axis than for the less elongated magnetic geometry.

MHD instabilities (i.e. magnetic islands) associated with the elongation could explain the
different confinement of the runaway electrons. In order to investigate whether also the run-
away formation processes depend on elongation, LUKE simulations are performed for various
elongations based on the COMPASS scenarios. Different elongation also lead to slightly dif-
ferent density, temperature and electric field profiles. Therefore, in order to study the effect
of elongation identical profiles are assumed and only the magnetic geometry is different (Fig.
7.24).

It is found that the predicted runaway formation does not differ much between the different
elongations. At the end of the discharge there is very marginal difference, only a few percent,
in the runaway electron population between κ = 1.6 and κ = 1.2. Higher elongation implies
more runaway electrons near the center but less runaway electrons away from the center, as
shown in Fig. 7.25.

The conclusion is that the magnetic geometry itself does not influence the runaway formation
processes significantly. Likely the dependencies of elongation in plasma parameters (density,
temperature and electric field profile) are important for the runaway formation processes.
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7.4 Summary of modelling of non-disruptive scenarios

The Fokker-Planck solver LUKE is used to model runaway electron formation through Dreicer
and avalanche mechanisms in non-disruptive Tore Supra scenarios in near-critical E-field with
the background plasma simulated with the METIS code. Three non-disruptive Tore Supra
scenarios with E > Ec are studied. Simulations reveal progressive build-up of a suprathermal
electron population during the flattop in the discharge where runaway electrons are detected
(#40719) with E/Ec ≈ 8, but not in the higher density discharge (#40721) where E/Ec ≈ 4.
A discharge with intermediate density and E/Ec (#39173) is studied. No clear signature of
runaway electrons is observed and the LUKE simulations predict only a small suprathermal
population, that is likely too small to be detected by the HXR cameras. These results agree
with experimental observations from various other tokamaks [6] where it is found that at least
E/Ec ≈ 3 − 12 is required for a detectable runaway electron population to form. The order
of magnitude of the current carried by runaway correspond well to experimental indications.
The profile of the reconstructed FEB emission from suprathermal electrons is in reasonable
agreement with measurements and shows concentration of runaway electrons in the center of
the plasma.

A common point for all these non-disruptive discharges is that runaway electrons are mainly
formed near the magnetic axis. Even though the density is lower off-axis, so is the temperature
which makes E/ED decreases with the radius. This would explain the slower Dreicer generation.
Also, as discussed in Chapter 6, magnetic trapping effects increase off-axis, adding further to
the slower Dreicer generation rate.

LUKE/METIS modelling is also performed for non-disruptive COMPASS discharges. These
results are more difficult to validate due to the absence of tomographic HXR diagnostics. Sev-
eral non-disruptive scenarios have been modelled. One of them (#8555) results in unrealistically
high runaway fraction when no runaway loss mechanisms are taken into account. In such sce-
narios, where the runaway current is more than just a perturbation of the Ohmic current, the
toroidal electric field should be calculated self-consistently with the runaway electron popu-
lation. Such a self-consistent coupling between METIS and LUKE will be the next step in
this work. When adding radial transport of fast electrons in the model, the predicted current
carried by runaway electrons decreases rapidly. A reasonable level of current is found for a
transport coefficient of Dr0 = 0.8 m2/s. However, in runaway scenarios with less runaway
electron population (#10007), the order of magnitude of the current that would be carried by
energetic runaway electrons is on a reasonable order of magnitude even without any effect of
radial transport.
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Chapter 8

Conclusion

In this work formation of runaway electrons is studied through modelling of the electron dis-
tribution function under the combined influence of Dreicer and avalanche mechanisms. Run-
away avalanches are described with a knock-on source term from the work of Rosenbluth and
Putvinski [5], implemented as a bounce-averaged particle conserving source/sink term within
the kinetic equation in the 3-D Fokker-Planck solver LUKE. Dependencies of key parameters
such as electric field strength, electron temperature and density are investigated. It is found
that under certain conditions the knock-on collisions leading to runaway electron avalanches
amplify the conventional Dreicer generation in such a way that avalanches born runaway elec-
trons dominate over Dreicer generated runaway electrons at low electron temperatures and low
E/Ec, i.e. near critical field scenarios. In these scenarios a valid description of runaway electron
formation processes therefore require inclusion of knock-on processes.

Since knock-on accelerated electrons emerge with high perpendicular momentum, the full
2-D guiding-center momentum dynamics is taken into account in the model, numerically man-
ageable through a bounce-averaged description. Given the inhomogeneity of the magnetic field
in toroidal plasmas, electrons that would contribute to the runaway population if the plasma
was cylindrical may be trapped poloidally. The magnetic mirror effect is investigated, revealing
strong reduction of both Dreicer and avalanche mechanisms off the magnetic axis. An analyt-
ical approximation for avalanche growth rate accounting for magnetic trapping is derived. A
good agreement is found with numerical simulations performed with the LUKE code, which
shows that a significant proportion of secondary electrons are knocked into the trapped region
off the magnetic axis and therefore do not contribute directly to the runaway population. As
a consequence the time scale of runaway electron formation is longer at the plasma edge than
at the center. It means that potential loss mechanisms such as radial electron transport could
compete with the acceleration of runaway electrons at the edge as there is more time for loss
mechanisms to act on these runaway electrons.

The fate of the trapped electrons is also investigated analytically and the trapped-electron
runaway effect is identified as detrapping of trapped energetic electrons as they Ware pinch
towards the magnetic axis and less strict trapping conditions. Key parameters that distinguish
these runaway electrons are calculated, namely the large perpendicular energy, the dependency
of the perpendicular energy on radius, and the turn-on time for the appearance of the runaway
electrons. We identified when these effects might be expected (in the case of positrons) and
when they would be absent (in the case of RF ramp-up). Possible observables would be based
on signals sensitive to perpendicular energy, such as synchrotron radiation. Similarly, the degree
of manipulation by waves or magnetic perturbations is also sensitive to perpendicular energy.

The kinetic modelling of the formation of runaway electrons with the model is restricted to
non-disruptive scenarios as may be found in the current flattop with non-transient electric field
and plasma temperature. In the LUKE code, the magnetic flux surfaces are assumed to remain
intact and concentric throughout the runaway electron formation process. The difficult task
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of modelling the transient temperature and electric field typically found in disruptions would
require a proper description of the thermal quench with implemented radiative or convective
loss mechanisms of the plasma energy including MHD instabilities. The coupling of the kinetic
LUKE code with a fluid code such as JOREK [29] would be useful for such a purpose, but is
beyond the scope of this work. At the present the model, in which the flux surfaces are assumed
to remain intact during the runaway electron formation process, can be considered to give an
upper estimate of the runaway formation, since possible additional losses from magnetic field
stochastization that may reduce the confinement of the electrons are not accounted for.

Moreover, quantifying the relative importance of avalanche generation as a function of
plasma temperature and electric field strength, the simulations reveal that runaway electrons
originating from knock-on collisions completely dominate over the Dreicer effect at low temper-
ature and electric field strength and likely play a significant role in runaway generation processes
in several tokamaks in non-disruptive scenarios that are presented in Ref. [6]. The onset of
runaway electrons found in these experiments are related to LUKE simulations of corresponding
electric field and temperature in order to gauge the importance of the avalanche effect, revealing
that avalanches from knock-on collisions play a significant role even in non-disruptive scenarios.

The compilation of runaway electrons detected in non-disruptive scenarios from Ref. [6]
in five different tokamaks (DIII-D, FTU, TEXTOR, Alcator C-Mod and KSTAR) is related
to LUKE simulations of corresponding electric field and temperature in order to investigate
the importance of the avalanche effect. In addition a low density scenario from the Tore Supra
tokamak, where suprathermal electrons are detected across several diagnostics when E/Ec = 11
shows agreement with this study that suggests that E/Ec = 3− 12 is required for a detectable
runaway electron population to form.

The LUKE calculations predict runaway electron generation also in a near critical field, in
agreement with collisional theory if no other runaway electron loss mechanisms than collisional
damping are present. However, the time to generate runaway electrons is found to be signif-
icantly large compared to the duration of the phase in which E/Ec > 1 in near critical field
experiments. In addition, the required time for runaway electron formation is very sensitive to
the bulk electron temperature. The lack of runaway electron signatures near the critical electric
field could therefore be explained by the long time scale required for their formation given a
Maxwellian initial distribution function. To further understand the discrepancy between ob-
servations and theory, the existence of additional loss mechanisms that dominate during the
current flattop must be addressed. One possible candidate is transport of fast electrons due to
magnetic field perturbations [41]. Once such additional runaway electron loss mechanisms have
been identified, the LUKE code may form an excellent test bed for quantifying such effects,
which will be the objective of future work.

Finally, the modelling is applied to real tokamak scenarios. With equilibria obtained from
METIS simulations, interpretative modelling is performed for non-disruptive scenarios where
runaway electrons are detected in the current flattop in discharges from the Tore Supra and
COMPASS tokamak. Simulations show progressive build-up of a suprathermal population
during the flattop in the discharge where runaway electrons are detected (#40719), but not in
the higher density discharge (#40721) where E/Ec ≈ 4. Also a discharge with intermediate
density and E/Ec (#39173) is studied. No clear signature of runaway electrons is observed
and the LUKE simulations predict only a small suprathermal population, that is likely too
small to be detected by the HXR cameras. These results agree with experimental observations
from various other tokamaks [6] where at least E/Ec ≈ 3 − 12 is required for a detectable
runaway population to form. The order of magnitude of the current carried by runaway electrons
correspond well to experimental indications. The reconstructed FEB emission profile from
suprathermal electrons shows concentration of runaway electrons in the center of the plasma.
It is in good agreement with experimental measurements.

LUKE/METIS modelling is also performed for non-disruptive COMPASS discharges. These
results are more difficult to validate due to the absence of tomographic HXR diagnostics. Several
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non-disruptive scenarios have been modelled. In one of them (#8555) the current carried
by runaway electrons quickly dominates the Ohmic current, resulting in unrealistically high
runaway fraction when no runaway loss mechanisms are taken into account. In such scenarios,
where the runaway current is more than just a perturbation of the Ohmic current, the toroidal
electric field should be calculated self-consistently with the runaway population. Such a self-
consistent coupling between METIS and LUKE will be the next step in this work. When
adding radial transport of fast electrons in the model, the predicted current carried by runaway
electrons decreases rapidly. A reasonable level of current is found for a transport coefficient of
Dr0 = 0.8 m2/s. However, in runaway scenarios with less runaway population (#10007), the
order of magnitude of the current that would be carried by energetic runaway electrons is on a
reasonable order of magnitude even without the effect of radial transport.

A common point for all the non-disruptive discharges is that runaway electrons are found to
form near the magnetic axis. The density is lower off-axis, which for a flat electric field profile
makes E/Ec increase away from the magnetic axis. Since also the temperature is centrally
peaked in the scenarios we model, E/ED decreases with the radius. The temperature depen-
dence would explain the slower formation of runaway electrons from the Dreicer mechanism.
Also, as discussed in Chapter 6, magnetic trapping effects increase off-axis, adding further to
the slower Dreicer generation rate and concentration of runaway electrons near the magnetic
axis.

The LUKE/METIS simulations allow for investigation of the effect of plasma shaping effects
on the runaway electron formation. In the spring of 2015 several similar discharges but with
different elongation during the current flattop were carried out in the experimental campaign of
the COMPASS tokamak. It appears as the runaway electrons are better confined in elongated
plasmas. In the lower elongation plasmas runaway electrons losses occur during the entire
discharge while in elongated plasmas they are ejected first in the current ramp-down. Only
a marginal difference in the runaway electron formation processes is found for the different
elongation scenarios in LUKE, given plasmas with identical density, temperature and electric
field profiles and only different magnetic geometry. Likely consequences of the shaping on other
plasma profiles or MHD instabilities such as magnetic islands play an important role for the
formation or/and the confinement of the suprathermal electrons.
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[51] T. Fülöp and S. Newton. Alfvénic instabilities driven by runaways in fusion plasmas. Phys.
of Plasmas, 21(8):080702, 2014.
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G. Huysmans, E. Joffrin, S.H. Kim, F. Köchl, J. Lister, X. Litaudon, P. Maget, R. Masset,
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Appendix A

Definition of the four momentum

The four momentum describes the normalized energy and normalized momentum. The defini-
tion is

P ≡ γ(1,
v

c
), (A.1)

where the normalization is m0c
2 and m0c respectively. The scalar product of four vectors is

defined as:

A ·B ≡ A1B1 −A2B2 −A3B3 −A4B4. (A.2)

Using this terminology for the calculations in Sec. 4.1, we get

P0 ·P1 = γ0(1,
v0

c
) · γ1(1,

v1

c
) = γ0γ1 −

γ0γ1

c2
v0 · v1. (A.3)

P0 ·P2 = γ0(1,
v0

c
) · γ2(1,

v2

c
) = γ0γ2 −

γ0γ2

c2
v0 · v2, (A.4)

P1 ·P2 = γ1(1,
v1

c
) · γ2(1,

v2

c
) = γ1γ2 −

γ1γ2

c2
v1 · v2. (A.5)

In the case of v0 ≈ 0 and γ0 ≈ 1 Eq. A.3 becomes

P0 ·P1 = γ1, (A.6)

P0 ·P2 = γ2, (A.7)

P1 ·P2 = γ1γ2 − p1p2 cos(θ2). (A.8)
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Appendix B

Derivation of scattering angle

We start from the momentum conservation equation (Eq. 4.5):

1 + γ0γ1 − γ0γ2 + p0p2sin(θ2)− γ1γ2 + p1p2 cos(θ2) = 0.

If ξ∗ = cos(θ2) then sin(θ2) =
√

1− ξ∗2 and we get:

1 + γ0γ1 − γ0γ2 + p0p2

√
1− ξ∗2 − γ1γ2 + p1p2ξ

∗ = 0.

We group all the terms not containing ξ∗, so that χ = 1 + γ0γ1 − γ0γ2 − γ1γ2:

p0p2

√
1− ξ∗2 + p1p2ξ

∗ + χ = 0,

p0p2

√
1− ξ∗2 = −p1p2ξ

∗ − χ.
Squaring both sides leads to

(p0p2)2(1− ξ∗2) = (−p1p2ξ
∗ − χ)2 = (p1p2ξ

∗)2 + χ2 + 2p1p2ξ
∗χ,

(1− ξ∗2) =
(p1p2ξ

∗)2

(p0p2)2
+

χ2

(p0p2)2
+

2p1p2ξ
∗χ

(p0p2)2
=⇒ ξ∗2 +

2p1p2ξ
∗χ(

1 +
p21
p20

)
(p0p2)2

=
1− χ2

(p0p2)2(
1 +

p21
p20

) ,


ξ∗ +

p1p2χ(
1 +

p21
p20

)
(p0p2)2




2

=
1− χ2

(p0p2)2(
1 +

p21
p20

) +


 p1p2χ(

1 +
p21
p20

)
(p0p2)2




2

,

ξ∗ = ±

√√√√√
1− χ2

(p0p2)2(
1 +

p21
p20

) +


 p1p2χ(

1 +
p21
p20

)
(p0p2)2




2

− p1p2χ(
1 +

p21
p20

)
(p0p2)2

.

Which leads to:

ξ∗ = ±

√√√√p2
0 − (1+γ0γ1−γ0γ2−γ1γ2)2

p22

p2
0 + p2

1

+

(
(1 + γ0γ1 − γ0γ2 − γ1γ2)p1

p2(p2
0 + p2

1)

)2

− (1 + γ0γ1 − γ0γ2 − γ1γ2)p1

p2(p2
0 + p2

1)
,

which may also be expressed as

ξ∗ = ±
√

p2
0

p2
0 + p2

1

+
(1 + γ0γ1 − γ0γ2 − γ1γ2)2

p2
2(p2

0 + p2
1)

(
p2

1

p2
0 + p2

1

− 1

)
− (1 + γ0γ1 − γ0γ2 − γ1γ2)p1

p2(p2
0 + p2

1)
.
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Appendix C

Ellipse of momentum conservation

In Sec. 4.1 we arrived at the momentum conservation equation:

1 + γ1 − γ2 − γ1γ2 + p1p2ξ
∗ = 0, (C.1)

where ξ∗ = cos(θ2) = p2||/p2. We also have γ2
2 = 1 + p2

2|| + p2
2⊥. Therefore, Eq. C.1 becomes

(1 + γ1)(1− γ2) = −p1p2ξ
∗, (C.2)

(1− γ2) = − p1p2ξ
∗

(1 + γ1)
, (C.3)

γ2
2 =

(
1 +

p1p2ξ
∗

(1 + γ1)

)2

, (C.4)

γ2
2 =

(
1 +

p1p2||

(1 + γ1)

)2

, (C.5)

1 + p2
2|| + p2

2⊥ =

(
1 +

p1p2||

(1 + γ1)

)2

, (C.6)

1 + p2
2|| + p2

2⊥ =

(
p1

1 + γ1

)2

p2
2|| + 2

p1p2||

1 + γ1
+ 1, (C.7)

(
γ2

1 − 1− (1 + γ1)2

(1 + γ1)2

)
p2

2|| + 2
p1p2||

1 + γ1
− p2

2⊥ = 0, (C.8)

(
2(1 + γ1)

(1 + γ1)2

)
p2

2|| − 2

√
γ2

1 − 1p2||

1 + γ1
+ p2

2⊥ = 0, (C.9)

(
2

1 + γ1

)
p2

2|| − 2

√
γ2

1 − 1p2||

1 + γ1
+ p2

2⊥ = 0. (C.10)

By multiplying this expression with 1/(2(γ1 − 1)) we obtain
(

1

(γ2
1 − 1)

)
p2

2|| −
p2||√
γ2

1 − 1
+

p2
2⊥

2(γ1 − 1)
= 0. (C.11)

We complete the square and arrive at an elliptic equation:
(

p2||√
γ2

1 − 1
− 1

2

)2

+
p2

2⊥
2(γ1 − 1)

=
1

4
. (C.12)
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Appendix D

Derivation of the electron-electron
differential cross section

For demonstration, the main steps of the quantum electro dynamic (QED) derivation of the
electron electron differential cross section are presented, further details can be found in [83].
The Minkowski metric tensor definition chosen for the calculations through this section is

gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 .

Let us consider the scattering of an electron with 4-momenta p1 by an electron with 4-
momenta p2 which result in two electrons (p

′

1 and p
′

2 ). The 4-momentum pa = (εa,pa) where
the first element is the energy and the second the 3-momentum. The conservation of 4-momenta
is expressed as

p1 + p2 = p
′

1 + p
′

2. (D.1)

In theoretical physics, the Mandelstam variables [84] are numerical quantities that encode
the energy and momentum of particles in a scattering process of two particles to two particles.
Mandelstam variables, also called kinetic invariants since they are equal in all reference systems
[84]. Using that p2

a = m2
a, they are expressed as:

s = (p1 + p2)2 = p2
1 + p2

2 + 2p1p2 = 2(m2 + p1p2), (D.2)

t = (p1 − p
′

1)2 = 2(m2 − p1p
′

1), (D.3)

u = (p1 − p
′

2)2 = 2(m2 − p1p
′

2), (D.4)

which leads to

s+ t+ u = 6m2 + 2p1(p2 − p
′

1 − p
′

2) = 4m2, (D.5)

where m is the electron mass. The cross section in the center of mass system is expressed
according to Ref. [83]:

dσ =
1

64π
|Mfi|2

dt

I2
, (D.6)

where
I2 =

1

4
(s− (m1 +m2)2)(s− (m1 −m2)2) =

1

4
s(s− 4m2),
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D. Derivation of the electron-electron differential cross section

(a) t-channel (b) u-channel.

Figure D.1: Feynman diagrams.

since all the particles are electrons. Mfi is the amplitude of the two Feynman diagrams cor-
responding to the electron electron scattering process, one in the t-channel and one in the
u-channel (Fig. D.1). The matrix element of the operator M for transition from initial state
i to final state f is 〈f |M |i〉 or Mfi. We write down the amplitude using the Feynman rules of
QED.

The calculation of the differential scattering cross section consists of the following steps:

1. drawing the Feynman diagrams

2. writing −iMfi using the Feynman rules

3. squaring Mfi and using the Casimir trick to get traces

4. evaluate the traces

5. apply kinematics of the chosen frame

As an example, for the t-channel diagram, the matrix element is built by following fermion lines
with a factor for each propagator (ū(pa) for outgoing fermion (ū is the complex conjugate of
u), u(pb) for incoming fermion, −igµν/(pa−pb)2 for propagating photon) and vertex (ieγν), see
Fig. D.2. gµν is the Minkowski metric tensor and γν denotes the Dirac matrices (γ0, γ1, γ2, γ3)
in the original Dirac representation. Here u

′

a and ua is the Dirac spinor related to a plane-wave
(with wave vector p) for each electron before and after the interaction. Note that u without
index is one of the Mandelstam variables in Eq. D.4. Writing −iMfi using the Feynman rules
gives

−iMfi = (ū
′

2ieγ
νu2)(

−igµν
(p2 − p′2)2

)(ū
′

1ieγµu1) = ie2 1

t
(ū
′

2γ
µu2)(ū

′

1γµu1).

The same method is used for the term from the u-channel diagram. The two terms represent
the two possible Feynman diagrams of the process:

Mfi = −4πe2(
1

t
(ū
′

2γ
µu2)(ū

′

1γµu1)− 1

u
(u
′

1γ
νu2)(ū

′

2γνu1)). (D.7)

Exchanging the two initial or the two final particles (s → s, t → u, u → t) should change the
sign of the scattering amplitude, and expression D.7 indeed fulfills this criterion.

The state polarization (spins) of the electrons in the reaction must be taken into account,
by summation over initial (σ1, σ2) and final (σ3, σ4) polarization:
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Figure D.2: t-channel Feynman diagram with Feynmann rules.

¯|M |2fi =
∑

σ1,σ2

∑

σ3,σ4

|Mfi|2.

In the calculation of |Mfi|2 = M∗fiMfi, the following identity is needed:

[ūγµv]∗ = [u†γ0γµv]† = v†γµ†γ0u = [v̄γµu].

Thus,

|M̄fi|2 = e4

4 (
1

t2

∑

σ1,2,3,4

(ū
′

2γ
µu2)(ū

′

1γµu1)(ū2γ
µu
′

2)(ū1γµu
′

1) +

+
1

u2

∑

σ1,2,3,4

(...)− 1

tu

∑

σ1,2,3,4

(...)− 1

tu

∑

σ1,2,3,4

(...)).

Sums over polarizations are performed using the following manipulation, known as the Casimir
trick. It turns the summation over the electron spins into traces. First we write

∑
(ū
′

1γµu1)(ū1γµu
′

1)
with explicit spinor indices α, β, γ, δ = 1, 2, 3, 4:

∑

σ1,σ2

(ū
′

1αγµαβu1β)(ū1γγµγδu
′

1δ). (D.8)

We can now move u
′

1δ to the front (it is just a number, an element of u
′

1 vector, so it commutes
with everything), and then use a relation, known as the completeness relation:

∑

σ1

u
′

1δū
′

1α = (γp
′

1 +m)δα

and ∑

σ2

u1β ū1γ = (γp1 +m)βγ ,

which turns a sum like D.8 into a trace:

(γp
′

1 +m)δαγ
µ
αβ(γp1 +m)βγγ

ν
γδ = Tr((γp

′

1 +m)γµ(γp1 +m)γν)
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D. Derivation of the electron-electron differential cross section

Thus all the spinors are eliminated and only with traces of Dirac matrices remain. Mfi

is squared and the summation over initial and final polarization is done with Casimir’s trick,
where ρ = 1

2 (γp + m) is the density matrix, not taking polarization into account (because we
have averaged over the polarization). The full expression becomes:

|Mfi|2 = M∗fiMfi = 16π2e4(
1

t2
Tr(ρ

′

2γ
µρ2γ

ν)Tr(ρ
′

1γµρ1γν) +

+
1

u2
Tr(ρ

′

1γ
µρ2γ

ν)Tr(ρ
′

2γµρ1γν)−

− 1

tu
Tr(ρ

′

2γ
µρ2γ

νρ
′

1γµρ1γν)− 1

tu
Tr(ρ

′

1γ
µρ2γ

νρ
′

2γµρ1γν)). (D.9)

The evaluation of the traces are and summation over the indices µ and ν are performed with
help of the FeynCalc package 1 in Mathematica, and in agreement with [83] the cross section
becomes:

dσ = r2
e

4πm2dt

s(s− 4m2)
×

{
1

t2

[
1

2
(s2 + u2) + 4m2(t−m2)

]
+

1

u2

[
1

2
(s2 + t2) + 4m2(u−m2)

]
+

4

tu
(
1

2
s−m2)(

1

2
s− 3m2)

}

where re = e2/m. In the laboratory system where one of the electrons have zero parallel
momentum before the collision (say electron number 2), the cross section can be expressed in
terms of energy gained by the target electron:

∆ =
ε1 − ε

′

1

m
=
ε2 − ε

′

2

m
= γ2 − γ

′

2. (D.10)

The Mandelstam variables expressed in energy transfer are:

s = 2(m2 + ε1ε2 − p1 · p2) ≈ 2(m2 + ε1ε2), (D.11)

t = −2m2∆, (D.12)

u = −2(ε1ε2 −m2 −m2∆). (D.13)

Where ε = mγ. Substituting the variables into the above cross section equation yields:

dσ = 2πred∆

(
∆4 + ∆3(2− 2γ0γ1) + 3∆2γ2

0γ
2
1 + ∆

(
−2γ3

0γ
3
1 + 3γ0γ1 − 1

)
+ γ2

0γ
2
1(γ0γ1 − 1)2

)

∆2 (γ2
0γ

2
1 − 1) (∆− γ0γ1 + 1)2

.

If we did not ignore the parallel momentum of the target particle the expression is:

1http://www.feyncalc.org/
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dσ = 2πred∆((2∆4m4 − 4∆3(−1 + γ0γ1)m4 − 2∆(−1 + γ0γ1)m2 ×

×
((
−1 + 2γ0γ1 + 2γ2

0γ
2
1

)
m2 − 4

√
−1 + γ2

1p0‖

)
+

+∆2

(
6γ2

0γ
2
1m

4 − 8
√
−1 + γ2

1m
2p0‖

)
+ (−1 + γ0γ1)2 ×

×
(

2γ2
0γ

2
1m

4 − 2γ0γ1

√
−1 + γ2

1m
2p0‖ + p0‖

(
−2
√
−1 + γ2

1m
2 +

(
−1 + γ2

1

)
p0‖

))
/

/
(

2∆2(1 + ∆− γ0γ1)2
((
−1 + γ0

2γ2
1

)
m4 − 2γ0γ1

√
−1 + γ1

2m2p0‖ +
(
−1 + γ1

2
)
p0‖

2
))

)).

This reduces to D.18 for γ0 = 1. In the limit γ1 →∞ .
If the secondary electron is assumed to initially be at rest the energy transfer and Mandel-

stam variables become:

∆ =
ε1 − ε

′

1

m
=
ε2 −m
m

= γ2 − 1, (D.14)

and

s = 2(m2 + ε1ε2) = {ε2 → m} = 2m(m+ ε1), (D.15)

t = −2m2∆, (D.16)

u = −2(ε1m−m2 −m2∆) = −2m(ε1 −m−m∆). (D.17)

Substituting the variables into the above cross section equation yields:

dσ = 2πred∆

(
∆4 − 2∆3(γ1 − 1) + 3∆2γ1

2 + ∆
(
−2γ1

3 + 3γ1 − 1
)

+ (γ1 − 1)2γ2
1

)

∆2 (γ1
2 − 1) (∆− γ1 + 1)2

, (D.18)

or

dσ = 2πr2
e

d∆

γ2
1 − 1

[
(γ1 − 1)2γ2

1

∆2(γ1 − 1−∆)2
− 2γ2

1 + 2γ1 − 1

∆(γ1 − 1−∆)
+ 1

]
. (D.19)

The kinetic energies of the two electrons after the collision will be ∆ and γ − 1−∆. The cross
section expressed in γ1 = γ and γ2 = ∆ + 1 becomes:

dσ = 2πr2
e

γ2
1

(γ2
1 − 1)(γ2 − 1)2(γ1 − γ2)2

×

{
(γ1 − 1)2 − (γ2 − 1)(γ1 − γ2)

γ2
1

·
[
2γ2

1 + 2γ1 − 1− (γ2 − 1)(γ1 − γ2)
]}
dγ2.

which is the Møller expression [32]. In the limit γ1 →∞ the differential cross section becomes
dσ = 2πr2

e
d∆

(γ2−γ0)2 and for γ0 = 1, this corresponds to the differential cross section used in [5].
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Appendix E

Particle motion in magnetic field

The particle motion along the magnetic field lines exhibits a constant of the motion, the energy
(or the total momentum p), and an adiabatic invariant, the magnetic moment µ. They are
given by the following equations:

p2 = p2
|| + p2

⊥, (E.1)

µ =
p2
⊥

2meB
(E.2)

such that, as a function of the moment component (p||0, p⊥0) at the location θ0 at minimum
B-field, we have

p2
||0 + p2

⊥0 = p2
|| + p2

⊥, (E.3)

p2
⊥0

B0(ψ)
=

p2
⊥

B(ψ, θ)
. (E.4)

The transformation from (p||, p⊥) to (p, ξ) is given by

p =
√
p2
|| + p2

⊥ (E.5)

and

ξ =
p||√

p2
|| + p2

⊥

. (E.6)

We invert this to:

p|| = pξ, (E.7)

p⊥ = p
√

1− ξ2. (E.8)

Thus Eq. E.4 can be written as:

p2
0 = p2 (E.9)

1− ξ2
0

B0(ψ)
=

1− ξ2

B(ψ, θ)
(E.10)

which leads to an expression for ξ:
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E. Particle motion in magnetic field

ξ(ψ, θ, ξ0) = σ
√

1−Ψ(ψ, θ)(1− ξ2
0) (E.11)

where Ψ(ψ, θ) = B(ψ, θ)/B0(ψ) and σ = sign(v||) = sign(ξ0) indicates the direction of acceler-
ation for the runaway electrons.
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Appendix F

Flux surface average of avalanche operator

This section describes how a flux surface averaged avalanche operator could look like. The
general relation for flux surface averaging is:

< Φ >V (ψ) =

´ ´
dV

Φ(ψ, θ)dV´ ´
dV
dV

. (F.1)

In order to obtain a flux surface dependent avalanche operator it can be flux surface averaged
accordingly. Here pmin and pmax corresponds to the runaway threshold pc and the upper
momentum boundary of the integration domain of the Fokker-Planck equation.

< S̄ >V (ψ) =
2π

q̂

ˆ 2π

0

dθ

2π

1

|ψ̂·r̂|
r

Rp

B0(ψ)

BP

ˆ pmax

pmin

2πp2dp

ˆ +1

−1

S̄(ψ, p, ξ)dξ, (F.2)

=
2π

q̂

ˆ 2π

0

dθ

2π

1

|ψ̂·r̂|
r

Rp

B0(ψ)

BP

ˆ pmax

pmin

2πp2S̄∗dp

ˆ +1

−1

δ(ξ − ξ∗)dξ.

Since
´ +1

−1
δ(ξ − ξ∗)dξ = 1 and q̂ =

´ 2π

0
dθ
2π

1
|ψ̂·r̂|

r
Rp

B0

BP
the expression simplifies to:

< S̄ >V (ψ) = 4π2

ˆ pmax

pmin

p2dpS̄∗(ψ, p) =
π

ln Λ†
n̄en̄R

[
1

1−
√

1 + β†2th p̄
2

]p̄max

p̄min

. (F.3)

Which in the limit β†thp
2
max � 1 simplifies to:

< S̄ >V (ψ) =
π

ln Λ†
n̄en̄R(t)

1√
1 + β†2th p̄

2
min − 1

. (F.4)
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Abstract
Runaway electrons can be generated in tokamak plasmas if the accelerating force from the 
toroidal electric field exceeds the collisional drag force owing to Coulomb collisions with 
the background plasma. In ITER, disruptions are expected to generate runaway electrons 
mainly through knock-on collisions (Hender et al 2007 Nucl. Fusion 47 S128–202), where 
enough momentum can be transferred from existing runaways to slow electrons to transport 
the latter beyond a critical momentum, setting off an avalanche of runaway electrons. Since 
knock-on runaways are usually scattered off with a significant perpendicular component of 
the momentum with respect to the local magnetic field direction, these particles are highly 
magnetized. Consequently, the momentum dynamics require a full 3D kinetic description, 
since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal 
configuration. For this purpose, a bounce-averaged knock-on source term is derived. The 
generation of runaway electrons from the combined effect of Dreicer mechanism and 
knock-on collision process is studied with the code LUKE, a solver of the 3D linearized 
bounce-averaged relativistic electron Fokker–Planck equation (Decker and Peysson 2004 
DKE: a fast numerical solver for the 3D drift kinetic equation Report EUR-CEA-FC-1736, 
Euratom-CEA), through the calculation of the response of the electron distribution function to 
a constant parallel electric field. The model, which has been successfully benchmarked against 
the standard Dreicer runaway theory now describes the runaway generation by knock-on 
collisions as proposed by Rosenbluth (Rosenbluth and Putvinski 1997 Nucl. Fusion 37 
1355–62). This paper shows that the avalanche effect can be important even in non-disruptive 
scenarios. Runaway formation through knock-on collisions is found to be strongly reduced 
when taking place off the magnetic axis, since trapped electrons can not contribute to the 
runaway electron population. Finally, the relative importance of the avalanche mechanism is 
investigated as a function of the key parameters for runaway electron formation, namely the 
plasma temperature and the electric field strength. In agreement with theoretical predictions, 
the LUKE simulations show that in low temperature and electric field the knock-on collisions 
becomes the dominant source of runaway electrons and can play a significant role for runaway 
electron generation, including in non-disruptive tokamak scenarios.

Keywords: plasma physics, runaway electrons, knock-on collisions, tokamak, Fokker–Planck, 
runaway avalanches
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1. Introduction

Runaway electrons have been observed in magnetic confine-
ment fusion experiments during tokamak operation [1, 4]. 
They are also encountered in nature in solar flares and electric 
discharges associated with thunderstorms [5]. Collisional fric-
tion forces acting on the electrons reach a global maximum at 
the thermal velocity (vth) and decrease for higher velocities. In 
the presence of a strong toroidal electric field (E) collisional 
drag may consequently be too weak to counteract the accel-
eration of electrons, which results in continuously acceler-
ated electrons, known as runaway electrons. If no other loss 
mechanisms than the collisional drag are present [6], runaway 
electrons may be generated if the electric field exceeds the 
critical field [7]

πε
= Λ

E
n e

m c

ln

4
,c

e
3

0
2

0
2 (1)

where ne is the electron density, m0 is the electron rest mass, 
c is the speed of light, e is the elementary charge, and Λln  
is the Coulomb logarithm. The acceleration by a DC field of 
electrons that diffuse via small angle collisions beyond the 
critical momentum (pc), defined as the minimum momentum 
for which collisions are too weak to prevent acceleration of 
the electrons by the electric field to even higher energies, is 
referred to as the Dreicer mechanism [7]. In addition, these 
relativistic electrons can undergo close collisions with bulk 
electrons and transfer part of their momentum so that also the 
target electrons may get kicked into the runaway momentum 
region, while the momentum of the primary electrons remains 
above the critical momentum. These knock-on collisions lead 
to multiplication of the number of runaway electrons, com-
monly referred to as runaway avalanche [3].

Various methods to mitigate the formation of runaway 
electrons in tokamak plasmas are based on either increasing 
the plasma density and thereby Ec by so-called massive gas 
injection (MGI) [8], or on deconfining the runaway electrons 
before they can reach too high an energy, by the means of 
resonant magnetic perturbations (RMP) [9]. Even though 
such mitigation methods have been demonstrated in present 
tokamak experiments, they might not provide a solution for 
runaways during disruptions in large tokamaks like ITER 
[10]. Therefore the formation of the runaway electron popula-
tion is a topic in urgent need of investigation.

Disruptions are interesting but complex processes for 
studying the birth of runaway electrons, since they include 
magnetohydrodynamic (MHD) instabilities, anomalous trans-
port and complex evolution of the magnetic field topology 
[11]. However, the generation of runaway electrons does not 
necessarily require the extreme conditions found in disrup-
tions. In low density plasmas, the electric field can exceed the 
critical electric field also during the current flattop in a qui-
escent plasma [12], free of equilibrium transients, or during 
current ramp up or ramp down. An advantage of studying 
runaway formation in these so called non-disruptive scenarios 
is that the key parameters for the runaway electron mecha-
nisms, mainly the electric field strength, electron density and 

temperature, can be better diagnosed than during disruptions. 
Runaway electrons have been detected in non-disruptive sce-
narios in several of the existing tokamaks [12, 13]. In this work 
the formation of runaway electrons generated from the com-
bined effect of Dreicer and knock-on collision mechanisms is 
studied with the code LUKE, a solver of the 3D (one spatial 
and two momentum dimensions) linearized bounce-averaged 
relativistic electron Fokker–Planck equation  [2]. The code 
LUKE handles arbitrary shapes of the flux surfaces, but in this 
work the magnetic flux surfaces are assumed to remain cir-
cular and concentric as in the Tore Supra tokamak. They are 
assumed to remain intact throughout the runaway formation 
process, an assumption that would be too restrictive for the 
thermal quench in disruptive scenarios.

Modelling the evolution of the temperature and electric 
field in disruptions would require a proper description of the 
thermal quench including radiative or convective loss mecha-
nisms and MHD instabilities. The coupling of a kinetic code 
capable of handling 3D magnetic topologies and open field 
lines with a fluid code such as JOREK [14] would be neces-
sary for such a purpose, but is beyond the scope of this work. 
The kinetic modelling of the formation of runaway electrons 
is therefore done for non-disruptive scenarios as found in the 
current flattop with constant electric field and plasma temper-
ature. With the restrictions of disruption modelling in mind, 
the objective of this work is to study the formation of runaway 
electrons in non-disruptive scenarios owing to the combined 
effect of Dreicer and knock-on collisions with a fast solver for 
the electron distribution function, in order to make predictions 
for the birth of runaway electrons in tokamak experiments.

The LUKE code has previously been used for current drive 
and Dreicer runaway calculations. The model uses a relativ-
istic collision operator for small angle collisions and a recently 
added description of the large angle (knock-on) collisions 
leading to the avalanche effect, which enables a description 
of the full 2D momentum dynamics of the runaway popula-
tion. Runaway electrons generated via knock-on collisions are 
typically scattered off with a significant perpendicular com-
ponent of the momentum with respect to the local magnetic 
field direction. In a non-uniform magnetic field configuration, 
highly magnetized electrons could be subject to magnetic 
trapping effects resulting in reduced runaway electron growth 
rate off the magnetic axis in comparison to estimates obtained 
for a cylindric geometry. Such toroidicity effects are studied 
by implementing a 2D kinetic description of the knock-on 
momentum dynamics, including the momentum dynamics 
both perpendicular and parallel to the magnetic field lines.

Knock-on collisions are included in the kinetic equa-
tion  through a source term from [3], implemented along 
with a sink term to ensure a particle conserving form of the 
process. The bounce-averaged knock-on source term is pre-
sented in section 2. In section 3 the effect of magnetic field 
non-uniformity is investigated. The role played by the mag-
netic mirror force on the runaway population off the magnetic 
axis, owing to a reduction in Dreicer growth rate as well as the 
high magnetization of the knock-on electrons, is described. 
Finally, in section 4, the relative importance of the avalanche 
effect compared to the Dreicer mechanism is quantified as 
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a function of plasma temperature and toroidal electric field 
strength. The parametric dependencies of the relative impor-
tance of the avalanche effect obtained from the numerical 
modelling are related to both analytic predictions and experi-
mental data from runaway observations in non-disruptive 
scenarios from several tokamaks. The comparison includes a 
low density flattop pulse from the Tore Supra tokamak, during 
which suprathermal electrons are observed. The analysis of 
this scenario supports recently published results [13], showing 
that runaway electron formation requires lower density than 
expected from collisional theory, which suggests the existence 
of additional runaway electron loss mechanisms.

2. Knock-on collisions model

A knock-on collision between an existing runaway electron 
and a slower electron is considered. This paper follows the 
model from [3] in which the target electron is assumed to be 
at rest whereas the initial runaway travels at the speed of light 
in the direction of the magnetic field. This approximation will 
be justified later in this section. The target electron gains a 
momentum p from the close collision. As both energy and 
momentum must be conserved in the collision process, the 
secondary electron is scattered with a pitch-angle with respect 
to the direction of the incoming electron, which cosine ξ* is 
given by the relation

ξ γ
γ

* = −
+

1

1
, (2)

where γ = + p1 2  is the relativistic factor and the momentum 

p is normalized to m0c.
The relativistic electron electron differential cross sec-

tion derived by Møller [15] yields

σ
γ γ

δ ξ ξΩ = ( − ) ( − *( ))r
p

p
d

d

1

1
,e

2
2 (3)

where πε= ( )r e m c/ 4e
2

0 e
2  is the classical electron radius. As 

σ Ωd /d  decrease rapidly with momentum, a large fraction 
of secondary electrons have a moderate kinetic energy with 
γ − ≪1 1 and are thus scattered with a large pitch-angle char-
acterized by ξ*≪ 1. Hence it is necessary to properly account 
for the 2D guiding-center momentum dynamics in non-uni-
form magnetic field geometries, where the electrons are influ-
enced by the magnetic trapping effect.

The source term originally formulated in [3] is proportional 
to both the target population, i.e. the bulk electron density ne 
and the existing runaway electron population nr

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ψ ξ ψ ψ σ ξ

πτ
δ ξ ξ

( ) = ( ) ( ) Ω ( )

= Λ − +
( − *( ))

p n n c p

n

p p p
p

S , ,
d

d
,

4 ln

1 d

d

1

1 1
,

e r

r
2 2

 (4)
where ψ  is the poloidal magnetic flux surface coordinate. In the 
expression above, the collision time for relativistic electrons

τ
πε= Λ

m c

n e

4

ln
,0

2
e
2 3

e
4

 (5)

has been introduced.
An analytic estimate of the avalanche growth rate is 

obtained from integration of the knock-on source term in 
equation  (4) over the runaway region >p pc in momentum 
space, as done in the work by Rosenbluth, which yields the 
following expression for >E Ec [3]

⎛
⎝
⎜

⎞
⎠
⎟

τ
∂
∂ = Λ −

n

n

t

E

E

1 1

2 ln
1 .

r

r

c
 (6)

2.1. Implementation of knock-on collisions  
in the LUKE code

The Rosenbluth model (equation (4)) for the runaway gen-
eration through knock-on collisions is implemented in 
the code LUKE. Electrons with a momentum larger than 

≡ [ ( = )]p p p Emax ; 1 MeVkre c  are accounted for in the popu-
lation nr of primary runaways for the knock-on collision pro-
cess. The numerical momentum grid boundary pmax must be 
chosen to be larger or equal to pre and electrons leaving the 
domain through the boundary remain accounted for in nr.

To be valid, the Rosenbluth approximation requires that: 
(a) primary runaways in the knock-on collision process have a 
velocity near the speed of light, and (b) primary electrons have 
a momentum much larger than target electrons. The condition 
(a) is ensured by the 1 MeV minimum condition in pre, which 
corresponds to ⩾v c/ 0.94, whereas the condition (b) is guar-
anteed by restricting the model to plasmas with ≪T 1e  MeV. 
The Rosenbluth approximation is further justified by the weak 
dependence of the knock-on source term upon the incident 
electron energy in the energy range 1–100 MeV [16].

The bulk electron density is defined as the integral of the 
bulk electron distribution in momentum space:

∫ ( ) = ( )f r p p n r, d .3
e

p

0

re

 (7)

The bulk and the runaway region, corresponding to <p pre and 
>p pre respectively, are shown in figure 1. The runaway elec-

tron population is the integral over both Dreicer and knock-on 
runaway fluxes

∫ ∫γ( ) = +⎛

⎝
⎜

⎞

⎠
⎟n t S p t d  d ,r D

3
t

p

p

0 re

max

where ∫ ∫γ ψ ξ= ( ) ⋅pS S, , dpD  is the integral of the particle 
flux through the surface =p pre. In order to ensure conserva-
tion of number of particles in LUKE, a sink term is imple-
mented to compensate for the knock-on source term

= − < > < >+ +
f

f
S S S ,M

M
 (8)

where fM is the bulk distribution, assumed to be Maxwellian 

and ∫< >= p... ... d
p 3

0

max . The source and sink terms ensure 

that the number of electrons + =n n ne r tot is conserved.
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2.2. Runaway electron growth rate

The runaway electron dynamics implemented in LUKE cap-
tures the combined effect of Dreicer and knock-on processes. 
The evolution of the runaway electron population under the 
influence of a constant electric field is calculated. Figure  2 
shows the evolution of a runaway electron fraction with and 
without knock-on collisions. At first, there are very few run-
away electrons, the knock-on contribution becomes significant 
only when a primary runaway electron population has been 
built up by the Dreicer effect. Then, an exponential growth 
of the runaway electron population is observed—describing 
the avalanche effect—and quickly becomes dominant over the 
Dreicer generation.

The avalanche mechanism is proportional to the bulk den-
sity = −n n ne tot r, such that the runaway production rate can 
be expressed in the generic form

γ γ γ γ∂
∂ = ( + ) → ( − )

∂
∂ = +n

t
n

n n

n

t
 

1
.r

e D A
tot r

r
D A (9)

To quantify the avalanche growth rate, the avalanche term 
may be expressed as γ γ= ¯nA r A, where γ̄A is an avalanche mul-
tiplication factor. Thus, equation (9) becomes:

γ γ( − )
∂
∂ = + ¯

n n

n

t
n

1
.

tot r

r
D r A (10)

Equation (10) is an affine function of ( )n tr , where the con-
stant term is the Dreicer growth rate and the avalanche mul-
tiplication factor is given by the slope. In figure 3 the growth 
rate given by equation (9) is illustrated for =E E/ 60c , =T 0.5e  
keV and = ⋅n 2 10e

19 m−3. The growth rates from the LUKE 
calculations are evaluated numerically, the Dreicer as a con-
stant value (γD) and the avalanche multiplication factor (γ̄A) 
from the slope of the curve. The Dreicer growth rate calcu-
lated by LUKE agrees well with predictions from Kulsrud [17] 
where the Fokker–Planck equation is solved numerically. The 
avalanche multiplication factor γ̄A characterizes the tendency 

of a runaway avalanche to develop, for a given magnetic equi-
librium and parallel electric field. The actual runaway produc-
tion due to avalanche is however time dependent since it is a 
product of the avalanche multiplication factor γ̄A and the time 
dependent runaway electron density nr. For example, γ̄A can be 
non-zero, even though the number of runaway electrons born 
from knock-on collisions is negligible until a seed of primary 
electrons is established.

For the sake of simplicity, the Rosenbluth model in [3] con-
siders only secondary electrons born with a momentum larger 
than pc. However, electrons accelerated via a knock-on col-
lision to an intermediate momentum < <p p pth c could con-
tribute to the runaway growth rate indirectly by populating the 
suprathermal region and thereby modifying the Dreicer flux. 
Numerically, three thresholds must be defined when imple-
menting the Rosenbluth model (4): the minimum and max-
imum values for the secondary electron momentum, and the 
minimum value pre above which runaways are counted as pri-
mary electrons in the knock-on process. In order to determine 
these parameters, the lower threshold above which knock-on 
collisions are included is varied and the results are shown in 
figure 4 for electric field =E E/ 2c  and =E E/ 5c  ( =T 5e  keV). 
We can see that the indirect contribution of knock-on colli-
sions to suprathermal energies < <p p pth c is negligible, such 
that it is appropriate to set the lower threshold for secondary 
electron momentum at pc. Energy conservation imposes that 
the higher threshold for secondary electron momentum is 
lower than pre. We see that setting =p p4re c is sufficient to 
account for more than 80% of knock-on collisions while 
ensuring energy conservation.

2.3. Bounce-averaged knock-on source term

Since knock-on accelerated electrons emerge with high per-
pendicular momentum [3], it is necessary to properly account 
for the guiding-center dynamics in non-uniform magnetic 

Figure 1. The LUKE momentum space is divided into two separate 
populations: the bulk electrons with momentum <p pre and the 
runaway electrons >p pre. The knock-on collisions between the 
populations nr and ne can lead to secondary runaway electrons. 
Electrons that escape the domain <p pre by diffusion through pre 
contribute to the runaway electron population nr. 

Figure 2. The fraction of runaway electrons ( =E E/ 30c , =T 0.5e  
keV and = ⋅n 2 10tot

19 m−3) as a function of time normalized to 
thermal collision time (here τ ≈ ⋅ −3.5 10th

6 s), with and without the 
avalanche effect due to the knock-on collisions.
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field geometry and treat the full 2D momentum electron 
dynamics. In a non-uniform magnetic field, the magnetic 
moment is an adiabatic invariant such that the guiding center 
parallel velocity varies along the electron trajectory. The pitch 
angle coordinate ξ in equation (4) can be expressed as a func-
tion of ξ ψ θ( ), ,0  where ξ0 is the pitch angle measured at the 
poloidal position θ0 of the minimum magnetic field ψ( )B0  on 
a magnetic flux surface. When the collisional time is longer 
than the bounce period [2], the rapid poloidal motion ensures 
that the electron distribution ψ ξ( )f p, , 0  is independent of the 
poloidal angle θ. The poloidal angle dependence can thus be 
averaged out of the kinetic equation  by bounce-averaging, 
defined as

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ ∫∑

ψ ξ

λ
θ
π ψ

ξ
ξ

ψ ξ

{ }( )

= ˜ ˆ ⋅ ˆ ( )
σ θ

θ

p

q r

r

R

B

B
p

S

S

, ,

1 1

2

d

2

1
, , ,

p p

0

T

0

min

max

 (11)
where Rp is the major radius, θmin and θmax are the poloidal 
turning points for the trapped electrons, Bp is the poloidal 
component of the magnetic field B and the sum over σ applies 
to trapped particles (T) only. The normalized bounce time is

∫λ ψ
ψ

θ
π ψ

ξ
ξ

( ) = ˜( ) ⋅θ

θ

q r

r

R

B

B

1 d

2

1
ˆ ˆ

,
p p

0

min

max

 (12)

with

∫ψ θ
π ψ

˜( ) ≡ ˆ ⋅ ˆ
π

q
r

r

R

B

B

d

2

1
.

p p0

2

 (13)

In the code LUKE, the electron distribution is normalized to 
a reference density ne

† and the time evolution is normalized 
to the reference thermal collision frequency ν τ= ( )v1/coll

†
th , 

so that the resulting source term is ¯ =S S/S† where S is from 

equation (4) and ν= nS†
e
†

coll
†  Momentum is normalized to the 

thermal momentum ¯ =p p p/ th. The knock-on source term is 
decomposed as ψ ξ θ δ ξ ξ( ) = * ( − *( ))S S¯ p, , , ¯ p̄  where

π
β

γ γ
¯* = Λ ¯ ¯ ¯ ( − )n n

p
S

1

4 ln

1

1
,th

†2

† e r 2
 (14)

is independent of θ, so that δ ξ ξ{¯} = ¯*{ ( − *( ¯))}pS S , where 

β = v c/th
†

th
†  and ξ is the pitch angle cosine at the poloidal angle 

position θ

ξ ξ ψ θ σ ψ θ ξ( ) = − Ψ( )( − ), , 1 , 1 .0 0
2 (15)

Here ψ θ ψ θ ψΨ( ) = ( ) ( )B B, , / 0  and σ ξ= ( ) = ( )∥vsign sign 0  
indicates the direction of the electrons along the magnetic 
field line. Using the general relation for Dirac’s delta func-
tion δ δ( ( )) = ∑ ( − ) ∣ ( )∣′g x x x g x/k k k  where xk are the zeros of 
the function g(x) and ( ) =′g x g xd /d  provided that g(x) is a con-
tinuously differentiable function and ( )′g x  is non-zero:

∑δ ξ ξ
δ θ θ ξ
ψ θ ξ

( − *) = ( − *)∣ *∣
∣Ψ ( *)∣( − )′

2

, 1
,

k

k

k 0
2 (16)

where θ*
k  is the poloidal angle at which the secondary electron 

emerges. From equation (15) θ*
k  is given by

σ ψ θ ξ ξ− Ψ( *)( − ) − * =1 , 1 0,k 0
2 (17)

or

ψ θ ξ
ξ ξ γ

Ψ( *) = = − *
− = ( − )( + )

θ*B

B
,

1

1

2

1 1
.k

0

2

0
2

0
2

k
 (18)

Using equation (16), the delta function can be expressed as

∑δ ξ ξ
λ π ψ

ξ
ξ

ξ
ψ θ ξ

{ ( − *)} = ∣ ⋅ ∣
∣ *∣

∣Ψ ( *)∣( − )

∼

′

*

θ

θ θ

θ θ*
*
* *q r

r

R

B

B

1 1 1
ˆ ˆ

, 1
.

k p p

k

,

0

0
2

k

k k

k k

Figure 4. Avalanche multiplication factor as a function of the 
lower momentum cut off p p/min th for =T 5e  keV, normalized to the 
avalanche factor at =p pmin c.

Figure 3. The growth rate in constant electric field in =T 0.5e  keV 
and = ⋅n 2 10tot

19 m−3 for =E E/ 60c  i.e. =E E/ 0.06D  as a function 
of the runaway electron density, with and without the avalanche 
effect. For <n n/ 0.05r tot  ( τ≲ ≈t 2400 8th  ms) the growth rate has 
yet to reach its asymptotic value. The Dreicer contribution is in 
good agreement with Kulsrud’s theory in the asymptotic limit [17]. 
The growth rates are normalized to the thermal collision frequency 
(ν τ= ( ) ≈ ⋅v1/ 2.9 10th th

5 s−1).
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and since ξ ξ= ( − * ) ( − )θ*B B1 / 12
0
2

0k
 with ξ ξ= *θ*

k
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 (19)

and the normalized, bounce-averaged avalanche operator 
becomes
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 (20)

using the relation γ γ γ= ( − ) = ( − )( + )p 1 1 12 2  and β= ¯p p th.

3. Effect of toroidicity

The reduction of the Dreicer runaway rate away from the 
magnetic axis has been identified in previous work [18] 
including with the code LUKE, which solves the bounce-
averaged kinetic equation [2]. The poloidal dependence of the 
electric field is accounted for and the input value is the flux-
surface averaged elecric field. At least three effects contribute 
to reduce the growth rate: the overall effect of the electric field 
on trapped electrons cancels out over one bounce period; the 
acceleration of passing electrons is also reduced as their pitch 
angle increases towards the high field side; the existence of a 
magnetic trapping cone creates larger pitch-angle gradients in 
the circulating region, thereby increasing the effect of pitch-
angle scattering.

As discussed in section  2, secondary electrons emerging 
from the knock-on collisions are typically highly magnetized. 
Since the trapping effect increases off the magnetic axis in 
a non-uniform magnetic field configuration, the further away 
from the magnetic axis the electrons appear, the more they 
tend to be born trapped [3].

To quantify the tendency of magnetic trapping, the evolu-
tion of the runaway population is calculated in a scenario with 
circular plasma cross section  and magnetic non-uniformity, 
with the inverse aspect ratio ranging from ϵ = 0 to ϵ = =a R/ 1. 
The inverse aspect ratio of the Tore Supra tokamak is ϵ ≈ 0.3. 
The calculations in figure 5 reveal that the runaway electron 
population grows significantly slower off the magnetic axis 
than in the center.

In order to study the trapping effects on the runaway popu-
lation, the Dreicer growth rate γD and the avalanche multipli-
cation factor γ̄A are calculated with the bounce-averaged code 
LUKE and quantified separately. The Dreicer growth rate is 
found to be strongly affected by the non-uniformity of the 
magnetic field, as shown in figure 6. A fit of the numerical 
results gives an analytic expression of the Dreicer growth 

rate γ γ ϵ ϵ= − ( + )1 2 / 1D/ D,cyl . The results indicate that 

for ϵ > 0.5 runaway generation from Dreicer acceleration 
vanishes.

A reduction of γ̄A away from the magnetic axis is observed 
in figure  7, with an avalanche multiplication factor that 
decreases with the inverse aspect ratio. In order to derive an 
analytical estimate for the avalanche growth rate including the 
effect of magnetic trapping owing to a non uniform magnetic 
configuration, it is assumed that all electrons with momentum 

>p pc will contribute to the runaway population (as in [3]), 
except the secondary electrons that appear in the trapped 
momentum region <p pT. The magnetic trapping criterion on 
the momentum pT of secondary electrons born via knock on 
collisions is 

(21)θ( ) >
+ +

B

B p

2

1 1
,

max
T
2

Figure 5. The evolution of the runaway electron population, 
including the avalanche effect owing to knock-on collisions, 
depends strongly on the radial position in a non-uniform magnetic 
field configuration, where ϵ = r R/  is the inverse aspect ratio 
coordinate. =E E/ 40c , =T 0.5e  keV, = ⋅n 2 10e

19 m−3 and the time t 
is normalized to the thermal collision time τ ≈ ⋅ − s3.5 10th

6 .

Figure 6. Radial dependence of Dreicer growth rate, 
normalized to the growth rate for cylindrical case ϵ = 0 and a fit 
γ γ ϵ ϵ= − ( + )1 1.2 2 / 1D/ D,cyl .
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where θ ϵ θ ϵ( ) = ( + ) ( − )B B/ 1 cos / 1max  in a circular concen-
tric magnetic configuration. Electrons will run away if their 
momentum exceeds both the critical momentum and the trap-
ping condition in equation  (21). The lower integration limit 
pmin for the analytical estimate of the avalanche growth rate 
is thus given by max( )p p,c T . An analytical expression for 
the inverse aspect ratio dependent avalanche growth rate is 
obtained by integrating the source term from over momentum 
space from pmin to = ∞pmax  , which results in a locally modi-
fied, inverse aspect ratio dependent avalanche growth rate

⎛
⎝
⎜

⎞
⎠
⎟

θ ϵ

ϵ
ϵ θ

( ) = Λ ¯ ¯
+ −

= Λ ¯ ¯ ( − )
( + )

n

t
n n

p

n n
E

E

d

d
,

1

2

1

ln

1

1 1

1

2

1

ln
min ,

1

2 1 cos
.

n

r
† e r

min
2

† e r
c

2
 (22)

The flux surface averaged growth rate is derived in appendix 
A. For ϵ ≫E E/ 1c , θ π→b , the growth rate is reduced by a 

factor ( )ϵ π ϵ( − ) E E1 / /2
c . The inverse aspect ratio depen-

dence of the estimated avalanche growth rate obtained from 
equation  (22) is compared to numerical results. In addition, 
a numerical integration of the source term is also performed, 
with the same criterion on the lower integration boundary 
in momentum space pmin as the analytic estimate in equa-
tion (A.4). The analytic result is also compared to avalanche 
growth rate from Fokker–Planck calculations with the LUKE 
code. In that case, the trapping conditions are the same as in 
the analytic result, except for that the critical momentum is 

pitch angle dependent ξ= ( )p E E/c
2

c . The LUKE calculated 
avalanche multiplication factor and the analytical estimate 
show good agreement (figure 7).

Figure 7 shows the reduced growth rate for =E E/ 5c , rela-
tive to a cylindric plasma, equivalent to the growth rate on 

the magnetic axis (ϵ = 0). Numerical integration of the source 
term shows good agreement with the analytic result (equa-
tion (A.4)). Close to the center, at low inverse aspect ratio, the 
effect of trapping is not visible, since the critical momentum 
is higher than the trapped momentum over the whole flux sur-
face. This effect decreases with increasing E E/ c as the critical 
momentum pc decreases and becomes less restrictive com-
pared to the trapping condition pT, which explains the flat top 
seen in figure 7. However, for the FP calculations the mag-
netic trapping effect influences the growth rate also close to 
the magnetic axis. A possible explanation is pitch angle col-
lisions that couple the dynamics between the trapped and the 
passing region.

The growth rate obtained from bounce-averaged calcu-
lations suggest that the formation of runaway electrons is 
slower the further away from the magnetic axis they appear. 
In other words, the time scale of the local growth rate could be 
longer than suggested by collisional theory [3, 17]. Potential 
loss mechanisms, such as transport of fast electrons due to 
magnetic field perturbations [19] could therefore act more 
efficiently on the runaway electrons formed off the magnetic 
axis than the ones formed on axis which could lead to well 
confined runaway electrons at the center of the plasma.

4. The relative importance of the avalanche effect

The results presented in section 2.2 (see figure 2) have shown 
that the runaway electron distribution can be significantly 
modified by including the effect of knock-on collisions. In 
order to understand the mechanisms that govern the runaway 
electron generation processes a parametric study is performed 
with the aim to investigate which runaway formation process, 
Dreicer or avalanche, dominates in non-disruptive tokamak 
experiments.

The relative importance of the avalanche mechanism to the 
Dreicer mechanism can be estimated by comparing the ana-
lytic avalanche growth rate in equation  (6) and the Dreicer 
generation that is derived in [6]:
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where = ( )E c v E/D th
2

c is the electric field at which even 
thermal electrons will run away, known as the Dreicer field. 
The ratio of the two growth rates is

γ
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(23)

By letting a small fraction of electrons run away in LUKE, 
the relative importance of the avalanche effect as a func-
tion of plasma temperature and electric field strength can be 
evaluated numerically from the fraction of the runaway elec-
trons that originate from Dreicer and knock-on collisions. In 
figure 8 the fraction of runaway electrons born from knock-on 
collisions is shown, when %1  of the initial electron population 
has run away in a cylindrical magnetic configuration with con-
stant electric field, density and temperature. The fraction of 

Figure 7. Radial dependence of the avalanche multiplication factor 
from bounce-averaged LUKE calculations (circles), normalized 
to to the avalanche multiplication factor for the cylindrical case 
ϵ = 0. The numerical integration over the knock-on source term 
in equation (4) with the toroidal dependence in the momentum 
integration boundary is plotted in squares. The solid line shows 
the analytic estimate of the growth rate off the magnetic axis from 
equation (A.4).
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runaway electrons has to be small enough for the equilibrium 
parameters to remain constant. The relative importance of 
secondary runaway electrons grows at lower temperature and 
electric field, as the slower primary generation in high col-
lisionality (low temperature) allows for runaway avalanches 
to take off. The time required to reach the runaway fraction 
varies strongly in the parameter space presented in figure 8. 
The time required for 1% of the electrons to run away is illus-
trated for various electron temperatures ( =T 0.05, 0.5, 2e  and 
5 keV) in figure 9. The formation of runaway electrons slows 
down as the collisionality increases at lower bulk temperature.

The numerical results are compared with the analytical 
estimate from equation (23) with =n n/ 0.01r e . The condition 
for the dominance of the avalanche effect γ γ >/ 1A D  is plotted 
in figure 8 along with the boundaries for which =n n/ 5A r % 
and 90%.

In order to relate the study to experimental tokamak sce-
narios, it must be noted that the simulations are performed 
for constant electric field and temperature. Consequently, the 
study is restricted to non-disruptive scenarios with well-diag-
nosed and quiescent conditions from several tokamaks, where 
runaway electrons have been observed in the current flattop 
with the relevant plasma parameters maintained essentially 
constant. Results from scenarios with reproducible measure-
ments of electron density, loop voltage and plasma temperature 
at the runaway electron onset from DIII-D, FTU, TEXTOR, 
Alcator C-Mod and KSTAR were recently published in [13]. 
From this study the threshold electric field normalized to the 
critical field is found to be significantly higher than predicted 
by collisional theory where the birth of runaway electrons is 
predicted at >E E/ 1c , provided that no additional runaway 
electron loss mechanisms are present [17]. However, the con-
dition for runaway onset in collisional theory does not take 
the time required to generate runaway electrons into account. 
Estimations from LUKE calculations in figure 9 shows that 
this time scale can be unrealistically large as compared to 

the tokamak discharge duration. The time to generate a small 
fraction of runaway electrons from a Maxwellian distribu-
tion is finite for >E E/ 1c  but as →E E/ 1c , the required time 
to generate runaway electrons → ∞t . However, it is not the 
only explanation since the study in [13] found that the E E/ c 
threshold for suppression is also well above unity.

Runaway electrons have been generated in the Tore Supra 
(TS) tokamak in low density discharges ( <n 10e

19 m−3). The 
TS pulses #40719 and #40721 are performed after a boroni-
zation and suprathermal electrons are observed in the former 
discharge but not in the latter. Both are ohmic discharges at 
Ip   =   0.6 MA in the current flattop. A possible signature of 
suprathermal electrons is observed in #40719 by the ECE 
edge chords at current ramp-up and ramp-down, when the 
density is low (< > = ⋅n 0.4 10e

19 m−3), see figure 10(a). The 
uniform E-field, estimated as the time derivative of the resis-
tive flux [20], is = ±∥E 0.038 0.003 V m−1 and the core tem-
perature is 3.8 keV. The determination of the magnetic flux 
at the plasma boundary is described in [21]. No suprathermal 
electrons are detected by electron cyclotron emission (ECE) 
in the following pulse #40721 at a higher electron density, 
see figure 10(b). Similar result is found from HXR measure-
ments from the vertical camera detecting emission of 20–200 
keV (figure 11). A peak of photo-neutrons is observed at the 
plasma termination for the lower density shot (#40719) but not 
for the higher density shot (#40721). It must be noted that the 
ECE signal alone is not a definite signature of runaway elec-
trons, as its interpretation depends on the optical thickness of 
the plasma. However, it is from the combined observations on 
ECE, HXR and photo-neutron measurements, that the pres-
ence of relativistic electrons during the ramp-down of #40719 
is identified. During the current flattop of #40719, the electron 
density is < > = ⋅n 0.64 10e

19 m−3, corresponding to ≈E E/ 8c  
or ≈E E/ 0.06D , but there is no sign of suprathermals until 

≈E E/ 11c . The suprathermal generation in #40719 is added to 
the (E E T/ ,c e) scan (see figure 8) and lands in the region where 
Dreicer generation is dominant. In the higher density pulse 

Figure 9. The time required for 1% of the Maxwellian electrons to 
run away, for the electron temperature =T 0.5e  keV (dashed line),  
2 keV (solid line and squares) and 5 keV (solid line and circles).

Figure 8. The fraction of runaways originating from knock-on 
collisions ( )n n/A r  as modelled in LUKE. The analytic estimate of 
when 5% (cyan line), 50% (yellow line) and 90% (red line) of the 
runaways come from avalanche is obtained from equation (23). 
Non-disruptive scenarios where runaway electrons were generated 
in several tokamaks are taken from [13] except for the Tore Supra 
(TS) point (discharge #40719) and COMPASS points (discharge 
#8555 and #8630).
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(#40721) ≈E E/ 4c  or =E E/ 0.02D  during the current flattop 
and no suprathermal electrons are detected. These results are 
in line with those of [13] where ∼E E/ 3c –12 is required to 
generate a detectable population of runaway electrons in the 
various tokamaks.

Relating the data from the experiments in [13] and the 
TS discharge #40719 to the parameter scan done in LUKE 
(figure 8) reveals that the scenarios fall in or close to the 
region where the avalanche mechanism becomes significant 
for the runaway electron growth rate (figure 8). Data from 
two COMPASS discharges where runaways were observed 
(#8555 and #8630) fall in the region where the Dreicer effect is 
dominant [22]. Runaway electrons are commonly produced 
in the current ramp-up phase of the COMPASS tokamak, due 
to the relatively high E E/ c ratio (20–200). The circular 130 kA  
discharge #8555 was part of the flattop line averaged 

electron density < >ne  scan from 1– ⋅4 1019 m−3, where 
< >ne  for this particular shot was ⋅2 1019 m−3 during the 
flattop. The rise in runaway activity was observed with 
HXR NaI(Tl) scintillator and photoneutron detector as 
the < >ne  decreased from discharge to discharge, while 
Parail–Pogutse instability appeared for all discharges with 
< >ne  lower than in the discharge #8555. D-shaped 160 
kA discharge #8630 was done for the purpose of the saw-
teeth-runaway correlation studies with the electron density 
< > = ⋅n 9 10e

19 m−3. Even though the discharge had rela-
tively high < >ne , the runaway activity correlated with the 
sawteeth instability was visible in HXR and photoneutron 
signals. These two COMPASS discharges #8555 and #8630 
are plotted on figure  8, where E E/ c at the ramp-up phase 
were 85 and 94, respectively. The electron density at the 
time of the runaway detection is ⋅1.1 1019 and ⋅0.80 1019 
m−3. In COMPASS, interferometry is used for the line aver-
aged electron density < >ne  measurements, while Thomson 
scattering is used for electron temperature Te and electron 
density ne profile measurements.

These observations suggest that knock-on collisions may 
contribute to the formation of runaway electron generation in 
tokamak plasmas, even in non-disruptive scenarios. The study 
predicts that avalanches can play an important role during 
current flattop. A self consistent electric field and equilibrium 
solver would be necessary to study avalanches with LUKE in 
disruptions, but is beyond the scope of the current work.

5. Conclusion

In this work the growth of runaway electron populations 
through the combined effect of Dreicer and knock-on collision 
mechanisms is studied. The Rosenbluth [3] model is extended 
to non-uniform magnetic field configurations and imple-
mented as a bounce-averaged conservative source/sink term 
within the kinetic equation  in the 3D Fokker–Planck solver 
LUKE. Dependencies of key parameters such as  electric field 

Figure 10. Possible signature of suprathermal electrons on the edge ECE chord (Te,edge) at around t   =   14.5 s are seen in the Tore Supra 
discharge 40719 (left). In a following discharge, with higher density (right), there is no sign of suprathermal electrons on the ECE 
measurements. El is the electric field strength, <ne>is the line averaged density and lp is the plasma current. 

Figure 11. HXR data from the vertical camera (channels 1–21) in 
the energy range =E 20HXR –200 keV. The HXR emission produced 
in the current ramp down in 40719 is a signature of suprathermal 
electrons, whereas in the higher density discharge 40721 no HXR 
emission is detected.
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strength, electron temperature, and density are investigated. 
In addition, magnetic trapping effects are quantified in a non-
uniform magnetic equilibrium, resulting in a reduced runaway 
population off the magnetic axis for both the Dreicer and the 
avalanche mechanism.

The kinetic modelling of the formation of runaway elec-
trons is restricted to non-disruptive scenarios as found in the 
current flattop with non-transient electric field and plasma 
temperature. Modelling the rapidly varying temperature and 
electric field found in disruptions would require a proper 
description of the thermal quench with implemented radia-
tive or convective loss mechanisms of the plasma energy, 
including MHD instabilities. The extension of the kinetic code 
LUKE to 3D magnetic configuration and its coupling with a 
fluid code such as JOREK [14] would be necessary for such 
a purpose and is beyond the scope of this work. In the present 
paper, runaways are confined to the flux-surface where they 
are generated, such that the growth rate derived herein should 
be considered as upper estimates.

Since knock-on accelerated electrons emerge with 
high perpendicular momentum, the full 2D guiding-center 
momentum dynamics is taken into account via a bounce-aver-
aged description. The effect of magnetic trapping of the elec-
trons in a non-uniform magnetic field configuration, known 
as the magnetic mirror effect, has been investigated, revealing 
reduction of both Dreicer and avalanche mechanisms off the 
magnetic axis. An analytical expression for avalanche growth 
rate accounting for magnetic trapping is derived. It is in agree-
ment with numerical simulations and shows that a signifi-
cant proportion of secondary electrons are knocked into the 
trapped region off the magnetic axis. The reduction of the off 
axis growth rate implies that the time scale of runaway forma-
tion is longer at the edge than close to the center, which means 
that potential loss mechanisms such as radial electron trans-
port could compete with the acceleration of runaway electrons 
at the edge.

Moreover, quantifying the relative importance of ava-
lanche generation as a function of plasma temperature and 
electric field strength, the simulations reveal that runaway 
electrons originating from knock-on collisions dominate at 
low temperature and electric field strength and likely play a 
significant role in runaway generation processes in several 
tokamaks with data from non-disruptive scenarios that are 
presented in [13]. The onset of runaway electrons found in 
these experiments is related to LUKE simulations of corre-
sponding electric field and temperature in order to evaluate 
the importance of the avalanche effect, revealing that knock-
on collisions may play a significant role also in non-disruptive 
scenarios. The LUKE calculations predict runaway electron 
generation also in a near critical field, in agreement with col-
lisional theory if no other runaway electron loss mechanisms 
than collisional damping are present. However, the time to 
generate runaway electrons can be significantly greater com-
pared to the duration of the phase in which >E E/ 1c  in experi-
ments. In addition, the required time for runaway electron 
formation is very sensitive to the bulk electron temperature. 

The lack of runaway electron signatures near the critical elec-
tric field could therefore be explained by the long time scale 
required for their formation. To understand this discrepancy 
between observations and theory, the existence of additional 
loss mechanisms that dominate during the current flattop 
must be addressed. One possible candidate is transport of 
fast electrons due to magnetic field perturbations [19]. Once 
such additional runaway electron loss mechanisms have been 
identified, the LUKE code may form an excellent test bed 
for quantifying these effects, which will be the objective of 
future work.
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Appendix A.  Derivation of toroidicity dependent 
avalanche growth rate

As described in section  3, the avalanche growth rate is 
evaluated by the flux surface averaged knock-on source 
term in equation  (4) where the lower integration boundary 
is set by the maximum of the critical momentum pc and the 
momentum defining the boundary of a passing and a trapped 
electron pT, given by the trapping condition in equation (21). 
For finite E E/ c, the critical momentum >p 0c . As the growth 
rate is averaged over the poloidal angle, →p pmin c as the high 
field side is approached ( →p 0T  as θ π→ ). The growth rate 
becomes:
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The poloidal angle θbound where =p pc T constitutes the 
boundary between the region where the avalanche rate is lim-
ited either by the drag force or by the magnetic trapping effect. 
This angle is obtained from the condition =p pc T:
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In the above calculation circular concentric flux surfaces 

are considered so that ̂ψ∣ ⋅^∣=r 1, ϵ=r R/ p  and
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In a tokamak, trapped electrons subject to a strong electric field cannot run away
immediately, because their parallel velocity does not increase over a bounce period.
However, they do pinch toward the tokamak center. As they pinch toward the center,
the trapping cone becomes more narrow, so eventually they can be detrapped and
run away. When they run away, trapped electrons will have a very different signature
from circulating electrons subject to the Dreicer mechanism. The characteristics of
what are called trapped-electron runaways are identified and quantified, including their
distinguishable perpendicular velocity spectrum and radial extent.

1. Introduction
Under acceleration by a constant toroidal electric field, circulating electrons in

tokamaks run away when their velocity parallel to the magnetic field is so large
that the frictional collision forces become too small to impede acceleration by the
electric field. The runaway velocity is the demarcation velocity: the electric field
cannot prevent electrons slower than this velocity from slowing down further due to
collisions; collisions are too weak to prevent electrons faster than this velocity from
undergoing acceleration by the electric field to even higher energies. This demarcation
velocity is called the critical velocity (Dreicer 1959). However, since collisions are
random events, it is not quite precisely put to term an electron as a runaway or
not. A more precise description would be to assign to each electron a probability of
running away, based on its initial set of coordinates (Fisch 1986; Karney and Fisch
1986). To the extent that this probability is a sharp function of velocity, the notion
of a critical velocity then becomes useful.

Runaway electrons are sensitive, in addition to collisions, to other energy loss
mechanisms such as the synchrotron radiation reaction force (Stahl et al. 2013).
They are also sensitive to perturbation of the magnetic field, which lead to enhanced
transport (Zeng et al. 2013). In addition, the runaway population that would arise
in a tokamak magnetic field configuration is diminished owing to magnetic trapping
effects in a non-uniform magnetic field, since trapped electrons cannot immediately
contribute to the runaway electron population (Nilsson et al. 2015). The fate of
the suprathermal electrons, whether trapped or circulating, is determined from the
balance of the accelerating electric field and various radiative, convective and diffusive
loss mechanisms.

† Email address for correspondence: emelie.nilsson@cea.fr
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Runaway populations can be quite deleterious to the operation of a tokamak. In
the case of a disruption, the loop voltage spikes, so that large numbers of runaway
electrons reach relativistic velocities and damage the tokamak wall. Various means of
mitigating the runaway damage have been suggested, since concerns are increasing as
tokamaks become larger and carry more current, like in ITER (Hender et al. 2007;
Izzo et al. 2011; Paz-Soldan et al. 2014). It is clearly important to understand the
behavior of the runaway electrons in order to optimize a runaway electron mitigation
strategy.

The runaway electron population in tokamaks typically arises from the acceleration
of electrons with large parallel velocities, on the order of the critical velocity, and
average perpendicular velocities, on the order of the thermal velocity. These electrons
born via the Dreicer mechanism are circulating. In addition, a knock-on collision
between an existing runaway and slow electrons can result in two runaway electrons.
This secondary runaway generation process can generate an avalanche of runaway
production and dominate the Dreicer effect, in particular during disruptions. These
large angle collisions between runaways and slow electrons can result in electrons
with perpendicular energies on the order of the parallel energies. When the knock-
on runaways are created near the magnetic axis, trapped particle effects are not
important (Rosenbluth and Putvinski 1997; Parks et al. 1999; Eriksson and Helander
2003). However, these electrons will be trapped if they are created far enough away
from the magnetic axis. In fact, since circulating runaway electrons tend to move
substantially radially outwards as they are accelerated by the electric field (Guan
et al. 2010), the secondary electrons generated via collision with these runaways may
not be near the magnetic axis at all and could be trapped. Alternatively, a significant
population of suprathermal trapped electrons can be generated via interaction with
electron cyclotron waves.

The present paper focuses on electrons with a large enough parallel velocity to run
away in a tokamak, but are magnetically trapped because of their large perpendicular
velocity, and therefore incapable of running away. These trapped electrons drift
radially inwards due to the Ware pinch (Ware 1970). Nearer the magnetic axis the
trapping cone contracts such that these electrons could be detrapped and run away.
When they run away, they will have a distinct signature, which is identified in this
work.

The paper is organized as follows: In Sec. 2, we describe how trapped runaways are
generated and provide their phase-space characteristics. In Sec. 3, we discuss collisional
effects on the trapped runaways. In Sec. 4, we offer perspectives on runaway positrons
and runaway interaction with RF current drive.

2. Signature of trapped runaways
Let us describe more precisely the expected signature of the trapped runaways.

As opposed to circulating electrons, trapped electrons cannot run away while they
remain on the same flux surface, because their interaction with the electric field results
in no net gain in parallel velocity over a bounce period. However, according to the
conservation of canonical angular momentum, they pinch toward the tokamak center.
As they pinch toward the center, the trapping condition changes such that eventually
they do run away. We call this the trapped-electron runaway effect, by which we refer
to electrons that were initially trapped, before running away. However, when they do
run away, trapped electrons will have a very different signature from the circulating
electrons that run away in several ways.
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First, the initially-trapped runaway electrons will run away closer to the magnetic
axis of the tokamak than they were initially. Second, the trapped electron runaways
will have a distinct pitch angle corresponding to the detrapping condition at the
radial location where they run away, which implies a high-perpendicular velocity
on the order of the critical velocity. In addition, upon application of a DC electric
field these initially trapped electrons first need to undergo the Ware pinch and
associated detrapping before running away. This process creates a delay in the
runaway generation process, which can occur only if not disrupted by collisions or
other mechanisms in the meantime.

For an initially Maxwellian distribution function, the fraction of trapped-electron
runaways compared to Dreicer runaways would be small, although it increases with
the effective charge. However, the relative importance of trapped-electron runaways
might increase significantly for three reasons: first, the usual runaways may not be
well confined, whereas, the trapped-electron runaways, since born nearer the magnetic
axis, are very well confined; second, knock-on collisions between existing runaways
and thermal electrons produce a non-thermal population of secondary runaways of
which a significant number may be trapped due to their high-perpendicular velocities
(Nilsson et al. 2015). Third, tokamak plasmas are typically non-Maxwellian, and a
significant population of suprathermal electrons with high-perpendicular momentum
can be created, for instance, via resonant interaction with electron cyclotron waves.

Assuming a circular plasma and neglecting the radial excursion of electron orbits,
the unperturbed motion of an electron guiding center can be characterized by its
radial position r , its momentum p, and the value ξ0 of its pitch angle cosine ξ = p‖/p
on the outboard midplane where θ = 0 and the magnetic field is at a minimum. Here
p‖ is the momentum projected in the direction of the magnetic field. Electron trapping
derives from the adiabatic invariance of the magnetic moment μ = p2(1 − ξ 2)/(2mB)
along the particle orbit, such that electrons in a non-uniform magnetic field B(r, θ) =
B0(r)/(1 + ε cos θ) are trapped if |ξ0| < ξT (r) with

ξT (r) =

√
2ε

1 + ε
,

where ε = r/R0 is the local inverse aspect ratio.
Due to the conservation of toroidal canonical momentum in an axisymmetric

configuration, all trapped particles orbits subject to a toroidal electric field Eφ drift
toward the plasma center according to the Ware pinch (Ware 1970)

dr

dt
= −Eφ

Bθ

, (2.1)

where Bθ is the poloidal magnetic field. An otherwise unperturbed electron initially
trapped on the flux surface r with |ξ0| < ξT (r) will drift inwards to the surface r ′

where ξT (r ′) = |ξ0|. There, it will be detrapped and can run away if its parallel velocity
is above the critical value. The electron will thus become circulating at the radial
location ε ′ with

ε ′ =
ξ 2
0

2 − ξ 2
0

. (2.2)

Figure 1 shows the required displacement �ε = ε − ε ′ and Fig. 2 shows the radial
position (ε ′ = r/R) where the electrons can detrap and run away.

Runaway electrons born at a given radial location via this detrapping process driven
by the Ware pinch will have a specific pitch-angle according to the local trapping
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Figure 1. The inward radial displacement (�ε) required for trapped electron initially at
radial position ε and pitch angle ξ0 to become circulating.
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Figure 2. The trapped-electron runaways will appear with a distinct pitch angle (ξ0) in the
radial direction.

condition. The minimum perpendicular velocity of the trapped electron runaways
is presented in Fig. 3, normalized to vc(ξ0 = 1). The time it takes for these initially
trapped electrons to become runaways is derived from the Ware pinch velocity and
radial displacement until detrapping occurs

dtW =
Bθ

Eφ

R

(
ε − ξ 2

0

2 − ξ 2
0

)
. (2.3)

For an equilibrium with Bθ = 0.05 T and Eφ = 0.8 Vm−1. The time required for a
trapped electron to become passing is shown in Fig. 4.

In a disruption in an ITER-like scenario the toroidal electric field can be much
stronger; around 38 Vm−1 has been predicted (Hender et al. 2007). In that case, the
Ware pinch detrapping time scale would be much shorter; see Fig. 5.

Corrections to the detrapping radius and detrapping time due to the Shafranov
shift, non-circular plasma shape, grad-B and curvature drifts are beyond the scope of
this paper. It is important to note that very near the magnetic axis the approximations
made in this paper break down.

Although the poloidal magnetic field Bθ has little effect on the detrapping condition,
it does have a strong effect on the detrapping time. For simplicity, we took the Eφ/Bθ
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velocity to be constant. In fact, as the electron pinches inward, the poloidal field
decreases, thereby speeding up the drift. Thus, a more precise formulation of (2.3)
would account for the Eφ/Bθ dependence upon r .

3. Limitations of the collisionless approach
The collisionless approximation used in Sec. 2 is valid if the pinch time is small

compared to both the collisional slowing down and detrapping times of runaway
electrons. If the pinch time is longer than the slowing-down time, the electron may
slow down such that it may not have the energy required to run away when it finally
detraps. If the electron undergoes significant pitch-angle scattering during the pinch
time, it may be detrapped at a different radial location.

Since the collision time increases with velocity, the validity condition for the
collisionless approach must be evaluated from the pitch angle dependent critical
momentum (Rosenbluth and Putvinski 1997)

p2
c ≈ 2

1 + ξ0

Ec

E
, (3.1)
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where the critical field Ec is proportional to the plasma density. The slowing-down
time for electrons with velocity vc/c = pc/γc is

τc =
4πε2

0m
2
ev

3
c

q4ne lnΛ
.

Slowing-down can thus be neglected if dtW � τc.
Collisional detrapping via pitch-angle scattering occurs over a shorter time than

the collision time that is proportional to the square of the width ξT of the trapping
region and can be estimated as

τdt ∼ ετc

1 + Zeff

.

If the condition dtW � τdt is not satisfied, trapped-electron runaways will still be
generated, but the detrapping radial distribution will be different.

The collisionless condition is shown in Fig. 6 for ITER-like parameters and various
values of the electric field. The density is ne = 1020 m−3. The magnetic field is calculated
from a current density profile, peaked on-axis and with a total plasma current of
Ip = 15 MA. With the current profile assumed in this calculation, the maximum of
the poloidal magnetic field is located inward from the plasma edge, which explains
the maximum in the energy condition. The radial dependence of the density and the
electric field strength are not taken into account.

The minimum energy required for the collision time to be longer than the Ware
pinch time is on the order of MeV for ITER-like parameters during a disruption.
Considering that runaway electrons have many tens of MeV, it can be expected that
runaways produced from knock-on collisions should be in the range where collisions
can be neglected. For trapped electron runaways with lower energy, collisions must
be accounted for. That regime is left for a future study.

Just like the collisional slowing down, the synchrotron reaction force (Pauli 1958)
limits the energy of the particle.

The relativistic characteristic time for the radiation reaction force is

τr =
6πε0γ (m0c)

3

q4B2
≈ 5.2

γ

Z4B2
. (3.2)
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The poloidal magnetic field is calculated from a current density profile with a total plasma
current of Ip = 15 MA.

In addition the synchrotron reaction force limits the pitch angle θ = arccos(ξ )
(Helander et al. 2002)

Frad, ξ = −pξ
√

1 − ξ 2

γ τr

. (3.3)

This force could affect the trapped electron runaways in the Ware pinch process, as
electrons would detrap faster, i.e. at a larger radius than predicted in Sec. 2, if p⊥/p‖
decreases.

Limitations of the collisionless theory was discussed previously in this section and
a regime was identified where the Ware pinch detraps trapped runaways fast enough
for the collisions to be negligible (dtW � τc). A similar condition can be set for the
radiation loss time dtW � τr. We compare the time scale of collisional damping with
the one of the radiation damping

τc

τr

=
2ε0

3mene lnΛ
γ
(v

c

)3

Z4B2 ≈ γ

ne,19

(v

c

)3

Z4B2
[5T], (3.4)

where ne,19 is the electron density in the unit 1019 m−3 and B[5T ] in units of 5 T. For
relevant plasma parameters, the condition τc � τr is fulfilled unless γ gets very large.
From the minimum energy defined in Fig. 6, where the Lorentz factor γ is in the range
of 1–6, for higher γ the time scale of the synchrotron reaction force may be short
enough to change the pitch before the detrapping radius is reached, if the product
B2Z4/ne becomes large. Since this effect would speed up the detrapping process, the
prediction in Sec. 2 can be considered as an upper estimate of the detrapping time
and lower estimate of the detrapping radius. To properly account for the combined
effect of synchrotron reaction and collisional drag on the trapped-electron runaway
distribution during the Ware pinch would require further investigation by numerical
studies.
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4. Discussion
This paper describes how initially trapped electrons may become runaway electrons

if their parallel velocity is above the critical runaway velocity as they become
detrapped following the inward Ware pinch. These runaway electrons are born
nearer the magnetic axis as compared to their initial location, and with a high-
perpendicular velocity corresponding to the trapped/circulating boundary. That will
distinguish the trapped runaways from the passing runaways, which have average
perpendicular energies. They will produce a relatively more intense synchrotron
radiation than Dreicer runaways. The production dynamics of the trapped-electron
runaways is determined by the Ware pinch time. There will be a turn-on time for
the electrons to reach the radial detrapping position and only then to begin to
run away. The presence of trapped-electron runaways may affect the radial profile
of runaway electrons since they are concentrated near the magnetic axis. Even in
the case where primary generation would be small in the center, for example for
very peaked density, one could still expect a centrally concentrated runaway electron
population under some circumstances. This would be the case if the avalanche growth
rate from knock-on collisions decays strongly off-axis owing to magnetic trapping
effects as found for toroidal geometries (Nilsson et al. 2015). At the same time, the
trapped-electron runaways are concentrated near the center, as found in the previous
section.

In other words, the radial dependence of the growth rate of runaways depends on
various effects, where the avalanche effect and the trapped-electron runaway effect
would weigh the runaway distribution toward the center. Quantitative predictions of
the radial profile of runaway electrons are left to future studies. All these signatures
should be most prominent during a disruption, where the electric field is large, and
might be used to provide information on plasma conditions. The combination of high
synchrotron emission and specific dynamics could make it possible to identify the
signature of trapped-runaway electrons during disruptions when a large number of
energetic trapped electrons is generated via knock-on collisions.

The large perpendicular energies of the trapped-electron runaways also suggest
that they may be easier to control than conventional Dreicer runaways, as they can
be deconfined through interactions with ripple fields (Laurent and Rax 1990; Rax
et al. 1993), coherent wave instabilities (Fülöp et al. 2006; Fülöp and Newton 2014)
or magnetic perturbations (Papp et al. 2011). In all of these processes, the strength of
the interaction increases with perpendicular momentum.

Recently, there has been interest in the creation of runaway positrons in tokamaks,
and the information that might be obtained from them upon annihilation (Helander
and Ward 2003; Fülöp and Papp 2012; Liu et al. 2014). When large tokamaks disrupt,
large electron–positron pair production is expected to occur. The positron runaways
behave just like electron runaways, only they run away in the opposite direction. Just
as there are circulating positron runaways, there will be trapped positron runaways.
These trapped positron runaways will pinch toward the tokamak magnetic axis just
like the trapped electron runaways. Except that they will travel in the opposite
toroidal direction, which will affect the Doppler shift of the synchrotron radiation,
the trapped positron runaways will have a completely analogous signature to the
trapped electron runaways. Moreover, since the positrons would only be produced
in large numbers through the avalanche effect involving very high energy runaways,
there will be relatively more of the trapped positron runaways (compared to the
usual positron runaways) than there would be trapped electron runaways (compared
to the usual electron runaways). This effect would be enhanced to the extent that the
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most energetic runaways – and those most capable of the pair production – would be
found near the low field side of the tokamak (Guan et al. 2010), where the trapping
effect is also most significant.

Note that the trapped-electron runaway effect that we discuss is for runaway
electrons that run away eventually in the direction in which they support the plasma
current. The same is true for the runaway positrons. When the tokamak current is
maintained by a DC electric field, it is after all the thermal electrons that carry the
toroidal current, and the runaway electrons carry current in the same direction, only
they are accelerated to far higher energies. This would also be true during start-up
of the tokamak (Mueller 2013), if the start-up relies on an inductive current. In such
a case, there is also danger from runaway electrons, since the plasma may not be so
dense as to hold back the runaways. Moreover, in the case of RF-assisted start-up of
the current, such as through electron cyclotron heating, there might be more electrons
produced at higher energies, which could then run away in the direction in which the
runaways support the current.

Whether or not the runaways are in a direction to support the plasma current
is an important distinction that comes into play in non-inductive start-up of the
tokamak current. In the case of non-inductive current drive, for example by RF
waves (Fisch 1987), there is the opportunity to start up the tokamak or to recharge
the transformer (Fisch 2010). In such a case, the loop voltage is driven negative; in
other words, as the RF-current is increased, a loop voltage is induced which opposes
the RF-driven current. This DC electric field also produces runaway electrons, only
now they are so-called backwards runaways, which are runaway electrons that carry
current counter to the toroidal current (Fisch 1986; Karney and Fisch 1986). It is also
important to note that the trapped-electron runaways are not a concern in the case
of backward runaways. In this case, which may occur during the startup or flattop
phases in the presence of strong RF current drive (Karney et al. 1985; Fisch 1987,
2010; Ding et al. 2012; Li et al. 2012), the electric field opposes the plasma current
such that the pinch is directed outward where the trapping cone widens. Hence, in
the case of RF ramp-up, while circulating backwards runaways are produced, there
is no production whatsoever of backwards trapped-electron runaways (or, for the
same reason, backwards trapped-positron runaways). Thus, in vigorous RF ramp-up
regimes, while the circulating backwards runaways might be of some concern, at least
the trapped-electron runaways do not add to that concern.

A recurring question is to what extent RF current drive generates runaway electrons.
This question should also be posed for the trapped-electron runaways. In the case
of RF current drive, if the current drive effect relies on RF wave interactions with
suprathermal electrons, there is risk of producing runaway electrons. It is particularly
the case for lower hybrid current drive (Fisch 1978), where a suprathermal electron
tail is formed at high parallel velocities that could supply more runaway electrons
than could a Maxwellian distribution. It is also the case for electron cyclotron
current drive (Fisch and Boozer 1980), where heating in perpendicular velocity makes
electrons collide less frequently and become more likely to run away. In these cases,
the RF heating of passing electrons enhances the runaway current through the usual
runaway effect. However, there is also a trapped particle runaway effect when the
RF current drive affects trapped electrons. Consider first waves that provide parallel
momentum to energetic trapped electrons, such as low parallel-phase-velocity waves
(Wort 1971). Since the particles remain trapped, there is an RF-pinch effect similar
to the Ware pinch effect (Fisch and Karney 1981). If the wave momentum is in
the direction supportive of the total current, then as with the Ware pinch effect,
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the pinch will be inwards. Moreover, as with the Ware pinch, the trapped electrons
experience less stringent trapping conditions when they pinch, so they can eventually
run away like a trapped runaway. One important difference is that, as opposed to
the Ware pinch effect where the electric field pinches the electron, without increasing
its energy, in the case of the RF-pinch effect, the RF waves pinch the electron, while
increasing its energy. As a result, the trapped runaways become detrapped sooner,
and so run away at larger radii. It must be pointed out that the RF pinch may only
occur if the wave-particle resonance is present continuously through the pinching
process, i.e. if the spatial distribution of the waves has sufficient radial extent. In any
event, in inputting parallel momentum with waves that would be supportive of the
toroidal current, whereas targeting electrons with higher parallel velocity can increase
the number of runaway electrons, targeting electrons with low parallel velocity can
increase the number of trapped runaways.

In contrast, in the case of perpendicular heating rather than parallel heating of
trapped electrons, such as by electron cyclotron waves, there is no pinch effect bringing
electrons to less stringent trapping conditions. In fact, the perpendicular heating causes
the electrons to be more deeply trapped. Hence, there is no trapped-particle runaway
effect for heating by electron cyclotron waves.

5. Summary
To sum up, we identified the trapped-electron runaway effect. We calculated the key

parameters that distinguish these runaways, namely the large perpendicular energy,
the dependency of the perpendicular energy on radius, and the turn-on time for the
appearance of the runaways. We identified when these effects might be expected (in
the case of positrons) and when they would be absent (in the case of RF ramp-up).
Possible observables would therefore be based on signals sensitive to perpendicular
energy, such as synchrotron radiation. Similarly, the degree of manipulation by waves
or magnetic perturbations is also sensitive to perpendicular energy. Thus, we hope that
these observations and calculations will assist in formulating methods of controlling
those runaways or in utilizing measurements of their behavior for informing on other
processes in the plasma.
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