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émanant des établissements d’enseignement et de
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Abstract:

This Ph. D. work addresses the vulnerability analysis of safety-critical systems (e.g.,

nuclear power plants) within a framework that combines the disciplines of risk anal-

ysis and multi-criteria decision-making.

The scientific contribution follows four directions: (i) a quantitative hierarchical

model is developed to characterize the susceptibility of safety-critical systems to mul-

tiple types of hazard, within the needed ‘all-hazard’ view of the problem currently

emerging in the risk analysis field; (ii) the quantitative assessment of vulnerability

is tackled by an empirical classification framework: to this aim, a model, relying on

the Majority Rule Sorting (MR-Sort) Method, typically used in the decision anal-

ysis field, is built on the basis of a (limited-size) set of data representing (a priori-

known) vulnerability classification examples; (iii) three different approaches (namely,

a model-retrieval-based method, the Bootstrap method and the leave-one-out cross-

validation technique) are developed and applied to provide a quantitative assessment

of the performance of the classification model (in terms of accuracy and confidence

in the assignments), accounting for the uncertainty introduced into the analysis by

the empirical construction of the vulnerability model; (iv) on the basis of the models

developed, an inverse classification problem is solved to identify a set of protective

actions which effectively reduce the level of vulnerability of the critical system under

consideration. Two approaches are developed to this aim: the former is based on a

novel sensitivity indicator, the latter on optimization.

Applications on fictitious and real case studies in the nuclear power plant risk field

demonstrate the effectiveness of the proposed methodology.

Keywords: Safety-critical system, vulnerability analysis, risk analysis, multi-criteria

decision making, malevolent intentional attacks, hierarchical model, Majority Rule

Sorting (MR-Sort) classification model, Monte Carlo simulation, model-retrieval based

approach, bootstrap method, cross-validation, classification accuracy, confidence esti-

mation, protective actions, inverse classification problem, sensitivity analysis, nuclear

power plants
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Résumé:

Ce travail de thèse doctorale traite l’analyse de la vulnérabilité des systèmes critiques

pour la sécurité (par exemple, les centrales nucléaires) dans un cadre qui combine les

disciplines de l’analyse des risques et de la prise de décision de multi-critères.

La contribution scientifique suit quatre directions: (i) un modèle hiérarchique et quan-

titative est développé pour caractériser la susceptibilité des systèmes critiques pour la

sécurité à plusieurs types de danger, en ayant la vue de ‘tous risques’ sur le problème

actuellement émergeant dans le domaine de l’analyse des risques; (ii) l’évaluation

quantitative de la vulnérabilité est abordé par un cadre de classification empirique: à

cette fin, un modèle, en se fondant sur la Majority Rule Sorting (MR-Sort) Méthode,

généralement utilisés dans le domaine de la prise de décision, est construit sur la

base d’un ensemble de données (en taille limitée) représentant (a priori connu) des

exemples de classification de vulnérabilité; (iii) trois approches différentes (à savoir,

une model-retrieval-based méthode, la méthode Bootstrap et la technique de valida-

tion croisée leave-one-out) sont élaborées et appliquées pour fournir une évaluation

quantitative de la performance du modèle de classification (en termes de précision et

de confiance dans les classifications), ce qui représente l’incertitude introduite dans

l’analyse par la construction empirique du modèle de la vulnérabilité; (iv) basé sur

des modèles développés, un problème de classification inverse est résolu à identifier

un ensemble de mesures de protection qui réduisent efficacement le niveau de vul-

nérabilité du système critique à l’étude. Deux approches sont développées dans cet

objectif: le premier est basé sur un nouvel indicateur de sensibilité, ce dernier sur

l’optimisation.

Les applications sur des études de cas fictifs et réels dans le domaine des risques de

centrales nucléaires démontrent l’efficacité de la méthode proposée.

Mots-clés: système critique pour la sécurité, analyse de la vulnérabilité, analyse des

risques, prise de décision de multi-critères, attaques intentionnelles et malveillantes,

modèle hiérarchique, modèle de classification basé sur Majority Rule Sorting (MR-

Sort), simulation Monte Carlo, model-retrieval-based méthode, méthode Bootstrap,
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validation croisée, précision de la classification, estimation de la confiance, mesures

de protection, problème de classification inverse, analyse de sensibilité, centrales nu-

cléaires
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Chapter 1

INTRODUCTION

The focus of the present Ph.D. thesis is on the qualitative and quantitative assessment

and management of the vulnerbility of safety-critical systems to intentional hazards

(i.e., malevolent attacks). In the work developed, the vulnerability to intentional

hazards is first analyzed and represented within a hierarchical framework that sys-

tematically decompose it into the factors which influence it, down to “basic” factors

for which data and information can be collected. Then, the vulnerability analysis is

done qualitatively and quantitatively: first, a ranking method is employed to obtain

a “comparative” (relative) evaluation of the vulnerability of a group of safety-critical

systems; then, an empirical classification model is used to provide a quantitative

(absolute) assessment of system vulnerability. The accuracy and confidence of the

vulnerability assignments are also estimated, to cope with the uncertainty intrinsic in

the classification model. Finally, vulnerability is managed by optimizing the strategy

of protective actions to reduce it, based on sensitivity indicators and optimization

methods. The applications considered in this thesis work regard energy systems and,

in particular, nuclear power plants-NPPs. The work has been performed at the Lab-

oratoire Génie Industriel (LGI, Industrial Engineering Laboratory) under the Chair

on Systems Science and the Energetic Challenge, Foundation EDF, at Centrale &

Supélec, Paris, France.

This chapter aims to provide a general overview of the problems addressed in this dis-

sertation, and is organized as follows. The concept of vulnerability is defined and its
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characteristics are introduced in Section 1.1; in Section 1.2 the multi-criteria decision

making framework of vulnerability is discussed; Section 1.3 illustrates the issues and

the motivation of the research conducted; the synthesis of the contributions of the

thesis is drawn in Section 1.4; finally, in Section 1.5, the structure of the dissertation

is given.

1.1 Vulnerability

While the concept of risk is fairly mature and consensually agreed on, the concept

of vulnerability is still evolving and not yet established [76]. Risk is considered to

be quantifiable in terms of the probability of occurrence (frequency) of a specific

(mostly undesired/adverse) event leading to loss damage or injury, and its extent.

Vulnerability has been introduced to give an hazard-centric perception of disasters,

which would be too limited in terms of risks. The claim is that the estimated failure

probabilities quantified in a risk assessment and used in risk management to inform

decisions may be unreliable, if marred by insufficient knowledge and inappropriate as-

sumptions; moreover, unexpected events can occur, like unknown failure mechanisms

[61]. To inform the risk scenario one must, then, consider the level of vulnerability,

which makes the difference between a hazard of low intensity that could have severe

consequences and a hazard of high intensity that could have negligible consequences

[128].

Two main interpretations of vulnerability have been given: one relative to a global

system property and another one quantifying directly system components. The first

interpretation (closer to the concept of risk), seeks to account for the extent of adverse

effects caused by the occurrence of a specific hazardous event [61][76].

The concept of vulnerability as global system property embeds three other concepts

[76]:

• degree of loss and damages due to the impact of a hazard;

• degree of exposure to the hazard (defined as the likelihood of being exposed
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to hazards and as the susceptibility of an element at risk to suffer losses and

damages);

• degree of resilience i.e., ability of a system to anticipate, cope with/absorb,

resist and recover from the impact of a hazard or disaster.

In this view, resilience can be seen as an aspect of vulnerability. Actually, vulnera-

bility and resilience are two sides of the same coin, where the first one focuses more

on system protection and the second one on system recovery [45]. The second in-

terpretation associates vulnerability to critical components, i.e., those whose failure

causes large negative effects as the system. It can also be a flaw or weakness (inherent

characteristic, including resilience) in the design, implementation, operation and/or

management of a system, or its elements, that renders it susceptible to destruction or

incapacitation when exposed to a hazard or threat, or reduces its capacity to resume

new stable conditions [139].

The assessment of the vulnerability of a system requires an evaluation of the exposure

to different kinds of hazards [141]. An all-hazard approach [127][99], encompassing

a general view on the hazards targeting a given system is, thus, needed. In this

thesis work, vulnerability is conceptualized as a global system property related to

the system susceptibility to all hazards (intentional, random internal and natural)

and to resilience. Eventually, the research work is developed with such reference to

intentional hazards.

1.2 Multi-Criteria Decision Making (MCDM) frame-

work of vulnerability

A broad spectrum of approaches have been proposed for system vulnerability assess-

ment. In the all-hazard approach, malevolent acts, accidental and natural occurrences

are all considered. Yet, they require a different analytical treatment. Random acci-

dents, natural failures and unintentional man-made hazards are typically known and
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categorized by emergency planners. Their occurrence can be typically modeled within

a probabilistic framework typical of classical risk assessment approaches. Conversely,

terrorism is a hazard that eludes a quantification by probability theory due to the

intentional and malevolent planning it implies [140]: in such cases, alternative meth-

ods should be sought. The occurrence of malevolent acts brings issues related to the

time frame of the analysis and to uncertainty due to behaviors of different rationality.

As a result, classical risk analysis approaches can be very difficult to apply. Multi-

Criteria Decision Aid (MCDA) can provide a formal procedure for the assessment.

Indeed, significant advances in MCDA over the last three decades constitute a pow-

erful non-parametric alternative methodological approach for ranking, prioritization

and classification problems, which can be adopted also for the vulnerability assess-

ment of complex systems [13].

In all generality, MCDA aims at constructing a systematic view of the decision maker

preferences consistent with a certain set of assumptions, so as to give coherent guid-

ance to the decision maker in the search for the preferred solution (for example, in

the context of interest to the present thesis, the less/more vulnerable system config-

uration). This is achieved by constructing a model to represent the decision maker

preferences and value judgements. The model contains two primary elements, viz.:

1. Preferences in terms of each individual criterion, i.e., models describing the

relative importance or desirability of achieving different levels of performance

for each identified criterion.

2. Aggregation scheme, for allowing inter-criteria comparisons, in order to combine

preferences across criteria.

Then, according to the nature of the decision making problem the policy of the

decision maker and the overall objective of the decision, four different analyses can

be performed to provide (Figure 1-1):

1. identify the best alternative or select a limited set of the best alternatives;

2. rank-order the alternatives from best to worst ones;
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Figure 1-1: Decision making analysis

3. classify/sort the alternatives into pre-defined homogenous groups;

4. identify distinguishing features of the alternatives and perform their description

based on these features.

Three different classes of preference models are here briefly presented, viz. value mea-

surement, satisficing and aspiration-based methods and outranking.

1.2.1 Value measurement theory

The objective is to associate a real number to each alternative, in order to produce a

preference order on the alternatives which is consistent with the decision maker value

judgments [13]. In other words, one seeks to associate a number (or “value”) V (a) to

each alternative a, in such a way that a is judged to be preferred to b (a ! b), taking

all criteria into account, if and only if V (a) > V (b), which also implies indifference
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between a and b (a ⇠ b) if and only if V (a) = V (b).

Utility theory can be viewed as an extension of value measurement theory, relating

to the use of probabilities and expectations to deal with uncertainty. Multiattribute

value (or utility) theory (MAVT or MAUT) is one of the more widely applied mul-

tricriteria decision analysis methods [65][68]. Ever since its origins in the late 1960’s,

concerns for the practical application of multi-attribute value theory (MAUT) or,

more generally, multi-attibute utility theory (MAUT), have influenced developments

in the field [100][38][124][120][71]. The field has benefited from the longstanding inter-

ests of psychologists, engineers, management scientists and mathematicians which has

brought a countinuing awareness of behavioural and social issues. In recent years these

issues have become more widely embraced by the MCDA community as a whole, as

dicussed by Bouyssou et al. [19] and by Korhonen and Wallenius [74]. The problems

of preference and aggregation are considered attentively. A specific method, namely

ACUTA (Analytic Centre UTilité Additive) [17] is described in Chapter 2 and has

been applied in the present work for ranking safety-critical systems according to their

vulnerability.

1.2.2 Satisficing and aspiration-based methods

In some instances, the definition of a criterion may imply an objective ordering of the

set of alternatives in terms of this criterion. Such a well-defined measure of perfor-

mance is presented by a partial preference function, represented by zi(a), to show the

performance level or attribute value of the alternative a according to criterion i [13].

The satisficing and aspiration-based methods operate directly on the partial prefer-

ence functions without further transformation. The assumption, however, is that the

preference function values have cardinal meaning, i.e., are more than simply ordi-

nal or categorical, and relate to operationally meaningful and measurable attributes.

Decision makers focus initially on seeking improvements to what is perceived to be

the most important criterion. In effect, available alternatives are systematically elim-

inated until, in the view of the decision maker, a satisfactory level of performance

for this criterion has been ensured. At this point, attention shifts to the next most
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important criterion, and the search continues amongst the remaining alternatives for

those which ensure satisfactory performance on this criterion. Goal programming and

its variants [28][103][112][80][52][53][81] are linked to this concept.

1.2.3 Outranking

As with the satisficing models, outranking models are applied directly to partial pref-

erence functions, which are assumed to have been defined for each criterion. These

preference functions may correspond to natural attributes on a cardinal scale, or may

be constructed in some way, typically as oridnal or ordered categorical scales. The

general principle can be seen as follows: we noted that if for two alternatives a and b,

zi(a) ≥ zi(b) for all criteria i (with strict inequality zi(a) > zi(b) for at least one cri-

terion), then we can immediately conclude that a should be preferred to b (provided,

of course, that the set of criteria is sufficiently complete). In this event, we could say

that the evidence favouring the conclusion that alternative a is as good or better than

alternative b is unarguable, and a is said to dominate b. More generally, we shall say

that a outranks alternative b if there is “sufficient” evidence to justify a conclusion

that a is at least as good as b, taking all criteria into account [106][122][123]. The

two most prominent outranking approaches, the ELECTRE (ELimination Et Choix

Traduisant la REalité) family of methods [107], developed by Roy and associates

at LAMSADE (Laboratoire d’Analyse et Modélisation de Systèmes pour l’Aide à la

Décision), University of Paris Dauphine, and PROMETHEE (Preference Ranking Or-

ganization Method for Enrichment and Evaluation) [20][21], proposed by Brans from

the Free University of Brussels. A simplified version of ELECTRE III method is ap-

plied in our study (Chapter 3) to assign vulnerability classes to a set of safety-critical

systems (specifically, NPPs).

A number of examples of applications of MCDA approaches to the assessment/ranking/

prioritization of the vulnerability of safety-critical systems exist. Apostolakis and

Lemon [5] and Patterson and Apostolakis [95] focus on the identification of critical

locations in infrastructures; these are seen as geographical points that are exposed
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to intentional attacks. Critical locations are not limited to individual infrastructures

but may affect multiple infrastructures. For example, water and electrical distribu-

tion systems may occupy the same service tunnels. The vulnerabilities and their

ranking according to potential impacts are obtained by Multi-Attribute Utility The-

ory (MAUT) [90].

Konce et al. [73] have proposed a methodology for ranking components of a bulk

power system with respect to its risk significance to the involved stakeholders; the

likelihood and the extent of power outages when components fail to perform their

designed functions are analyzed; the consequences associated with the failures are

determined by considering the type and number of customers affected.

Johansson and Hassel [61] have proposed a framework for considering structural and

functional properties of interdependent systems and developed a predictive model in

a vulnerability analysis context.

Piwowar et al. [98] have proposed a systemic analysis which accounts for malevolence,

i.e., the willingness to cause damage.

Cailloux and Mousseau [25] have proposed a framework to evaluate and compare the

threats and vulnerabilities associated with territorial zones according to multiple cri-

teria (industrial activity, population, etc.) by using an adapted ELECTRE method.

1.3 Research Issues and Motivation

As mentioned above, the vulnerability of complex safety-critical systems and infras-

tructures (e.g., nuclear power plants) is of great concern, given the multiple and

diverse hazards that they are exposed to (intentional, random and natural).

The susceptibility associated with random internal hazards and natural hazards is

classically treated within a probabilistic framework to handle both the aleatory un-

certainty in the occurrence of the accident events and their consequences [76] and the

epistemic uncertainty on the hypotheses and parameters of the models used. Inten-

tional hazards relate to malevolent acts and lack of a well-established methodology for

accounting for uncertainty due to behaviors of different rationality [141][32]. Due to
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the nature of this kind of hazard (low probability of occurence but important effects),

an increased attention in building a proper framework for vulnerability analyses to

guide designers, managers, and stakeholders in the decision making process is moti-

vated.

The intentional hazards are ranged to the intended “error” of the spectrum of human-

related threats, targeted malicious attacks, either physical (e.g., explosive devices)

or cyber. This calls for very sophisticated models capable of describing a complex

human behavior under abnormal conditions, together with systems response models

to predict a potential damage to the system analyzed. There is a clear need to take

increased economic pressure into account when assessing human response behavior,

to modify maintenance strategies and spare-parts managing, to focus on the search

for entry points for hacker attacks after the industrial control systems have become

more open and less dedicated, etc [76].

With respect to all that mentionned above, the analysis is difficult to perform by

classical risk assessment methods [76][7][9]. For this reason, a combination of two dis-

ciplines, namely risk analysis and multi-criteria decision-making, is strongly advised.

The contribution of the present Ph.D. in this framework of analysis is detailed in the

next Section.

1.4 Synthesis of the contribution of the Thesis

In this Ph.D. thesis, the quantitative assessment and management of the vulnera-

bility to intentional hazards of complex systems are considered. This includes: (i)

the representation and modeling of the susceptibility to malevolent acts within a hi-

erarchical framework; (ii) the quantitative assessment of the vulnerability; (iii) the

optimal choice of the protective actions to reduce the vulnerability level (manage-

ment). These tasks are performed within a framework that combines the disciplines

of risk analysis and MCDA. Applications are given with reference to the nuclear power

plants.

The following contributions have emerged from the work performed during this Ph.D.:
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1. a hierarchical model is developed to characterize the susceptibility of safety-

critical systems to intentional hazards. This allows the systematic identification

of the main sources of vulnerability for the systems under analysis.

2. vulnerability is evaluated using the hierarchical framework described above, in

two ways:

a. the vulnerabilities of a group of safety-critical systems are composed and

ranked by an empirical method based on the Analytic Center UTilité Ad-

ditive (ACUTA) approach [17].

b. since the ACUTA approach can only provide a ranking (relative evalua-

tion) of the vulnerability, an empirical classification model, based on the

MR-Sort (Majority Rule sorting) method [82] is used to provide a quanti-

tative (absolute) assessment of the vulnerability of each system of interest.

The MR-Sort classification model contains a group of (adjustable) param-

eters that have to be calibrated by means of a set of empirical classification

examples (also called training set), i.e., a set of alternatives with the cor-

responding pre-assigned vulnerability classes.

3. due to the finite (typically small) size of the set of training classification ex-

amples usually available in the analysis of real complex safety-critical systems,

the performance of the classification model can be impaired. A quantitative

assessment of the performance of the classification model (in terms of accuracy

and confidence in the assignments) is needed, to account for the uncertainty

introduced into the analysis by the empirical construction of the vulnerabil-

ity classification model. This has been analyzed by three different approches,

namely, the model-retrieval-based method [82], the Bootstrap method [35] and

the leave-one-out cross-validation technique [11].

4. the classification examples provided by the experts for the construction of the

classification model may contain contradictions: a validation of the consistency

of the data set is, thus, opportune. In this thesis, two approaches are used to
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tackle this issue: in particular, the inconcsistencies in the data examples are

“resolved” by deleting or relaxing, respectively, some constraints in the process

of model construction [82].

5. a set of protective actions should be chosen to effectively reduce the level of vul-

nerability of the critical system under consideration: two frameworks, based on

sensitivity indicators and optimization-based approaches are proposed to this

aim. In particular, sensitivity indicators are originally introduced as measures

of the variation in the vulnerability class that a safety-critical system is expected

to undergo after the application of a given set of protective actions. These indi-

cators form the basis of an algorithm to rank different combinations of actions

according to their effectiveness in reducing the safety-critical systems vulnera-

bility. Then, three different optimization approaches have been explored: (i)

one single classification model is built to evaluate and minimize system vulner-

ability; (ii) an ensemble of compatible classification models, generated by the

bootstrap method, is employed to perform a “robust” optimization, taking as

reference the “worst-case” scenario over the group of models; (iii) finally, a dis-

tribution of classification models, still obtained by bootstrap, is considered to

address vulnerability reduction in a “probabilistic” fashion (i.e., by minimizing

the “expected” vulnerability of a fleet of systems).

In Chapters 2-5, all the above objectives are discussed, together with their relevance

to each case study described in the papers (cf Part II).

1.5 Structure of the Thesis

The thesis is composed of two parts: Part I, subdivided in six Chapters, introduces

the current issues and challenges pertinent to vulnerability analysis of complex safety-

critical systems, describes the research objectives undertaken, illustrates the methods

developed and applied in this Ph.D. work, discusses some of the results obtained in

the case studies and provides general conclusions and some future work perspectives.
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Part II is a collection of five selected papers, scientifically reporting on the outcomes

of the research work performed during the thesis, which the readers are referred to

for further details. Table 1.1 summarizes the thesis structure.

Chapter 2 starts with a brief critical discussion of the approaches based on decision

making ranking theory, that have been employed for the analysis of safety-critical

systems. Then, the hierarchical modelling framework for representing and describing

the vulnerability of complex energy systems to intentional hazards is proposed, which

can be leveraged efficiently to facilitate the management of complexity in the analysis

of large-scale complex systems. The empirical method based on ACUTA, used to

compare and rank the vulnerability of the complex systems is presented.

In Chapter 3, methods to provide an absolute quantitative evaluation of the vul-

nerability of the complex systems are considered. A study of available approaches is

presented. Then, the problem is formulated based on an empirical classification frame-

work using the majority rule sorting method (MR-Sort), a quantitative evaluation of

the vulnerability level of different critical systems is given. In addition, three different

methods are used to assess the performance of this classification model with respect to

its accuracy and confidence in the assignments (i.e., a model-retrieval-based method,

the Bootstrap method and the leave-one-out cross-validation technique). The meth-

ods used to deal with inconsistent data are also presented.

Chapter 4 focuses on the inverse multicriteria classification problem, i.e., the selec-

tion of a set of actions able to reduce the vulnerability (class) of a group of systems,

under given constraints. The problem is tackled by two perspectives, the first based

on a novel sensitivity indicator and the second on optimization. In particular, for

the second perspective, an optimization framework is proposed for properly selecting

protective actions in order to minimize the overall vulnerability of a group of safety-

critical systems.

Chapter 5 contains the applications of the proposed models and methodologies to

fictitious and real NPPs. Chapter 6 draws the conclusions of this Ph.D. study and

presents relevant open issues and perspectives for future research. Figure 1-2 provides

a pictorial view of the issues and the approaches considered in the present Ph.D. work
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on vulnerability analysis of safety-critical systems.

Part II of this thesis includes the collection of published and submitted papers, which

constitute the pillars of the present doctoral thesis. Paper (i) presents the hierarchi-

cal representation framework and its application to vulnerability analysis based on

decision making ranking theory (see Chapter 2 of Part I). Papers (ii) and (iii) con-

cern the classification of the vulnerability level of NPPs (see Chapter 3 and Chapter

5). Specifically, Paper(ii) addresses this analysis by also providing the accuracy and

confidence of the classification assignments. Paper (iii) gives a solution of how to deal

with the inconsistencies that may exist in the data available to build the classifica-

tion model. Papers (iv) and (v) form the basis for the study of inverse classification

problem detailed in Chapter 4. The introduction of a sensitivity indicator, used as

measures of the variation in the vulnerability class that a safety-critical system is

expected to undergo after the application of a given set of protective actions, is the

main contributions of Paper (iv). Finally, for Paper (v), the issue of selecting pro-

tective actions to reduce the vulnerability of safety-critical systems has been tackled

within different optimization-based frameworks relying on the empirical classification

model presented in Paper (ii).
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Table 1.1: Structure of the thesis
Topic PART I PART II

Chapter(s) Paper(s)

Vulnerability of critical systems 2 i
Hierarchical modeling i

Decision making ranking theory i
·Analytic Centre UTilité Additive method(ACUTA)

Vulnerability assessment 3 ii-iii
Decision making sorting theory ii

·Majority Rule sorting classification method(MR-Sort)
Accuracy and confidence of the classification model ii

·model-retrieval-based method
·bootstrap method

·leave-one-out cross-validation technique
Study of inconsistency in data iii
·constraints deletion approach
·constraints relaxation approach

Vulnerability management– 4 iv-v
Inverse classification problem

Sensitivity indicators iv
Optimization-based approaches v

·simple optimization
·robust optimization

·probabilistic optimization

Applications 5 i-v
Susceptibility to intentional hazards i,ii,iv,v

Overall level of safety-related criticality iii
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Figure 1-2: Pictorial view of the flow (topic; focus, applications and outputs) of the
present Ph.D. work on vulnerability analysis of safety-critical systems.
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Chapter 2

HIERARCHICAL DECISION

MAKING FRAMEWORK FOR

RANKING THE VULNERABILITY

TO INTENTIONAL HAZARDS

“A problem well structured is a problem half solved” is an oft-quoted statement which

is highly pertinent to the use of any form of modelling. Before any analysis can begin,

the various stakeholders, including facilitators and technical analysts, need to develop

a common understanding of the problem, of the decisions that have to be made, and

of the criteria by which such decisions are to be judged and evaluated.

The modelling of any real-life system for vulnerability analysis proposes well-defined

system criteria and usually simplifications of the system representation determined

by the context in which the model is used. The aim of this chapter is to critically

review previous inspiring research regarding the modelling of complex systems, as

well as to describe the author’s proposed modelling approach based on a decision

making ranking theory. In particular, the first Section briefly introduces the existing

system representation techniques and the decision making ranking theory. The second

Section details the general hierarchical modelling framework used in this thesis for
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representing the vulnerability of a complex energy system.

2.1 State of the art

2.1.1 Overview on the existing system representation tech-

niques

Several types of system representation approaches exist in literature and they rely

mainly on a hierarchy or graph structure.

Hierarchical Modelling have been often adopted to represent and model complex sys-

tems, since many organizational and technology-based systems are hierarchical in

nature [46]. “Frequently, complexity takes form of hierarchy, whereby a complex sys-

tem is composed of interrelated subsystems that have in turn their own subsystems,

and so on, until some lowest level of elementary components is reached” [31]. This

approach can be based on different perspectives, e.g., functional, technical, organiza-

tional, geographical, political, etc., and can allow simplifying the modelling process

and the ultimate management of the system as a whole [46].

Hierarchical functional models include Goal Tree Success Tree (GTST) – also com-

bined with Master Logic Diagram (MLD) – and Multilevel Flow Modelling (MFM).

The GTST is a functional hierarchy of a system organized in levels starting with a goal

at the top; the MLD, developed and displayed hierarchically, shows the relationships

among independent parts of the systems: the combined GTST – MLD provides a pow-

erful functional/structural description method. Finally, the dynamic version of the

approach, namely the GTST – Dynamic MLD (GTST-DMLD), allows describing the

temporal behavior of the systems [108]. Multilevel Flow Models [84][85], developed

in the field of artificial intelligence, have been proposed for qualitative reasoning, i.e.,

for representing and structuring knowledge about physical phenomena and systems.

They consider cause-effect relations and facilitate the reasoning at different levels of

abstraction on the basis of “means-end” and “whole-part” decomposition and aggre-

gation procedures. Goals, functions and flow of material, energy and information are
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connected to form a hyper graph. They are mainly used for measurement validation

(e.g., for checking the measurement of a mass or energy flow), alarm analysis (e.g,

for the identification of primary and secondary alarm), and fault diagnosis (i.e., for

the identification of the consequences and the root causes of a disturb in the system

functioning) [78].

In risk analysis, common representation techniques are hierarchical trees that are

commonly used to identify (i) the initiating causes of a pre-specified, undesired event

or (ii) the accident sequences that can generate from a single initiating event, through

the development of structured logic trees, i.e., fault and event trees, respectively [138].

In complex network theory, instead, complex systems are represented by networks

where the nodes stand for the components and the links describe the physical and

relational connections among them. Network-based approaches model interdepen-

dent critical infrastructures (CIs) on the basis of their topologies or flow patterns by

topology-based and flow-based methods, respectively.

Probabilistic modelling includes Petri nets, Bayesian networks and flowgraphs. A

Petri net is a directed graph that consists of places (i.e., conditions), transitions (i.e.,

events that may occur) and directed arcs describing which places are pre- and/or

post-conditions for each transition. They are well suited for modelling the behavior

of distributed systems. Laprie et al. have adopted Petri nets to describe and ana-

lyze high level scenarios that may take place when failures occur in two interdepen-

dent infrastructures (i.e., in information and electricity infrastructures), considering

the effect that failures in one infrastructure have on the other and accounting also

for malicious attacks [77]. Bayesian networks are based on directed acyclic graphs

where nodes are random variables representing the state of components and edges are

conditional dependencies, reflecting the causal relationships among adverse events.

Classical Bayesian networks provide static models of the system at each time step;

however, recently, dynamic Bayesian networks have been introduced [94]. Differently,

flowgraphs model the outcomes of random variables: in this framework, nodes iden-

tify the actual physical state of a system and edges model the allowable transitions,

the probabilities of different outcomes, and waiting times until the occurrence of out-
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comes of interest [51].

2.1.2 Decision making ranking theory

At this stage, let us assume that the problem structuring phases have generated a

set of alternatives (Which may be a discrete list of alternatives, or may be defined

implicitly by a set of constraints on a vector of decision variables), and a set of criteria

against which these alternatives are to be evaluated and compared (also based on the

chosen representation technique).

In the chapter, we consider the problem of vulnerability analysis as a “ranking prob-

lem”. In this context, the UTA family of methods is one of the most important one

(see also Jacquet-Lagrèze and Siskos [59]; Belton and Stewart [13]; Bouyssou et al.

[18] and Siskos et al. [114], for a general overview and Jacquet-Lagrèze [58]; Siskos et

al. [115], for software implementations). UTA methods are value-focused approaches,

i.e., they are based on the theory of multiattribute value functions or MAVT (Keeney

and Raiffa [68]), which rests on the hypothesis that any person facing a multiple

criteria decision problem intuitively attempts to maximize a function that aggregates

all criteria into a global evaluation of each alternative. MAVT-based methods differ

both in the way criteria are modeled and in the way values are aggregated; UTA

methods, in particular, model the perceived value of each criterion, called marginal

value function, by using piecewise linear functions and use the additive model in order

to aggregate them into a global value function.

2.2 Hierarchical framework for vulnerability analy-

sis

2.2.1 Proposed framework

Vulnerability is defined in different ways depending on the domains of application,

e.g.: vulnerability is a measure of possible future harm due to exposure to a haz-
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Figure 2-1: Hierarchical model Susceptibility to intentional hazards

ard [76]; the identification of weaknesses in security, focusing on defined threats that

could compromise a system ability to provide a service [93]; the set of conditions and

processes resulting from physical, social, economic, and environmental factors, which

increase the susceptibility of a community to the impact of hazards [47]. With the

focus on the susceptibility to intentional hazards, a four-layers hierarchical model is

built as shown in Figure 2-1. The idea behind the use of hierarchical representation

is that most complex systems are in the form of a hierarchy (see the previous Section

2.1). The Hierarchical Modelling allows studying the system at different level of de-

tails and extracting from each level the groups of criteria that are critical from the

safety viewpoint. The evaluation through the framework is shown by way of analysing

the susceptibility to intentional hazards of a safety-critical system, namely a Nuclear

Power Plant (NPP), considering the vulnerability sources and the related features,

the system technical and physical features, and the dependencies and interdependen-

cies on other systems.

The susceptibility to intentional hazards is characterised in terms of attractiveness
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and accessibility. These are hierarchically broken down into factors which influence

them, including resilience seen as pre-attack protection (which influences on acces-

sibility) and post-attack recovery (which influences on attractiveness). The decom-

position is made in 6 criteria (MCrit = {MCrit1,MCrit2, ...,MCriti, ...,MCritn}

with n = 6: physical characteristics (MCrit1), social criticality (MCrit2), possibil-

ity of cascading failures (MCrit3), recovery means (MCrit4), human preparedness

(MCrit5) and level of protection (MCrit6)) which are further decomposed into a layer

of basic subcriteria, for which data and information can be collected to make their

evaluation. In what follows, a description of the second layer criteria (attractiveness

and accessibility) is given.

Attractiveness

This second-layer criterion is intended to capture the interest that terrorists may have

to attack the system. Such interest is considered to be driven mainly by the effects

that the attack can cause, which include damages to the assets and environment,

injured people, deaths. These depend on the physical characteristics of the system,

its social criticality, the possibility of cascading effects and the system resilience. In

a general sense, resilience represents the ability to avoid the occurrence of accidents

despite the persistence of poor circumstances or to recover from some unexpected

events [41]. It is the ability of a system to anticipate, cope with/absorb, resist and

recover from the impact of a hazard (technical) or a disaster (social). Resilience

reflects a dynamic confluence of factors that promotes positive adaptation despite

exposure to adverse life experiences. In our model, it is presented in terms of capacity

of recovery, human preparedness and level of protection.

The preference direction characterising this factor is such that the more attractive

the system is, the more it should be protected.

Accessibility

Accessibility is introduced as a criterion in the second layer of the hierarchy to describe

the degree to which it is easy or difficult to arrive at a system in order to intentionally
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damage it. It is a function of resilience through the level of protection present to

defend against malevolent attacks.

Each third-layer criterion is constituted by several subcriteria (Table 2.1). The value

of the subcriteria can be crisp numbers or language terms according to the contents.

Each of the subcriterion is analysed in giving an explanation of the contribution on

the corresponding third-layer criterion. More details of the third-layer criteira can be

found in appended Papers (i) and (ii).

2.2.2 Decision making methodology for ranking the suscepti-

bility to intentional hazards

The hierarchical model just presented structures the susceptibility of a critical system

to intentional attacks in terms of a number of criteria. The 16 basic, bottom-layer

subcriteria are organised into 6 main ones: the physical characteristics, the social

criticality, the possibility of cascading failures, the recovery means, the human pre-

paredness and the level of protection.

For the quantitative assessment, each of the 16 basic subcriteria needs to be assigned

a value function in relation to the main criterion to which it contributes. The crite-

ria of the layers are defined and assigned preference directions for treatment in the

decision-making process (Table 2.1). The preference direction of a criterion indicates

towards which state it is desirable to lead it to reduce susceptibility, i.e., it is assigned

from the point of view of the defender of an attack who is concerned with protect-

ing the system. Although only the 6 criteria in the third level of the hierarchy will

be considered in the exemplary demonstration on the NPPs evaluation, examples of

scales of evaluation also of the basic subcriteria of the last layer are proposed, in rela-

tion to the characteristics of NPPs for exemplification purposes. The assignment can

be done in relative terms, by comparing different systems with different characteris-

tics. We perform a decision-making process for the evaluation of their characteristics

with respect to susceptibility to intentional attacks. Special focus is given to the

preference disaggregation analysis (PDA) of MCDA. The preference disaggregation
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Table 2.1: Criteria, subcriteria and preference directions

Criterion Physical characteristics Social criticality Possibility of

cascading failures

Subcriteria Number of workers Percentage of Connection distance

contribution to the welfare

Nominal power production Size of served cities

Number of production units

Preference direction Min Min Min

Criterion Recovery means Human preparedness Level of protection

Subcriteria Number of installed backup components Training Physical size of the system

Duration of backup components Safety management Number of accesses

Duration of repair and recovery actions Entrance control

External emergency measures Surveillance

Preference direction Max Max Max

approach refers to the analysis (disaggregation) of the global preferences (judgement

policy) of the decision maker in order to identify the criteria aggregation model that

underlies the preference result. It can be used to analyze the actual decisions taken by

the decision maker so that an appropriate model can be constructed representing the

decision maker system of preferences, as consistently as possible. As so, we first build

a ranking of fictitious NPPs, through the authors’ subjective preferential judgment of

indirect data. This serves for constructing the basis for the relative evaluation of the

characteristics of real NPPs. To carry out the decision-making process for the evalu-

ation, we resort to a multiple criteria decision aid (MCDA) technique named ACUTA

(Analytic Centre UTilité Additive) based on the computation of the analytic centre

of a polyhedron for the selection of additive value functions that are compatible with

holistic assessments of the preferences in the criteria [17]. Being central by definition

and uniquely defined, the analytic centre benefits from theoretical advantages over

the notion of centrality used in other meta-UTA methods. A brief explanation of the

method is given as follow.

Analytic Center

The idea of the analytic centre of a polyhedron was first introduced by Huard [49]

and later reintroduced by Sonnevend [117] in the context of convex optimization

techniques. The theoretical framework around this concept lies at the heart of interior-

point methods for solving linear programming optimisation problems. In ACUTA, it
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is suggested to compute a unique, well-defined and central solution for aggregation-

disaggregation methods based on additive piecewise linear value function models [17].

ACUTA

The UTA( UTilité Additive) method consists in building a piecewise linear additive

decision model from a preference structure using linear programming. Let x be the

set of possible alternatives and xL = {xp, p = 1, ..., N} the learning set. In xL,

alternatives are ranked in order of decreasing preference by the DM (Decision Maker),

i.e., xp % xp+1, p = 1, ..., N − 1, where % expresses that xp is either preferred (!) or

indifferent (⇠) to xp+1. The values of the n criteria, denoted by MCriti(i = 1, ..., n)

, belong to the interval [χi, χi] that, for each i, corresponds to the range between

the worst (χi) and best (χi) values found for attribute i among the alternatives in x.

Our purpose is to establish marginal value functions ⌫i(χi) for each criterion in order

to model the perceived value of each alternative. Since these values are piecewise

linear functions, the range of values on each criterion is divided into subintervals

using a predefined number of ↵i points such that χi = {χi = χ1
i , χ

2
i , ..., χ

αi

i = χi} .

The subdivision makes it possible to compute value functions by linear interpolation

between the values ⌫i(χl
i) that have to be estimated and hence appear as variables in

the linear program. Using the degrees of freedom in the definition of a value function,

we set ⌫i(χi) = 0 and

nX

i=1

⌫i(χi) = 1 (2.1)

This implies that ⌫i(χi) can be interpreted as the tradeoff associated to criterion i.

Furthermore, all value functions should be monotonic, that is ⌫i(χ
l+1
i ) − ⌫i(χ

l
i) >

λ(8 i and l = 1, ..., ↵i − 1) , with λ > 0. According to the additive model, the global

value ⌫(xp) of an alternative xp is given by the sum of its marginal values. In other

terms, if the value of the pth alternative on attribute i is denoted by xip , the global
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value of xp is given by

⌫(xp) =
nX

i=1

⌫i(xip) (2.2)

This analytic expression of an alternative’s global value allows for modelling the

preferences of the DM, as expressed in the ranking of the learning set, using the

following linear constraints, which we call preference constraints:

⌫(xp)− ⌫(xp+1) > δ if xp ! xp+1, (2.3)

⌫(xp)− ⌫(xp+1) = 0 if xp ⇠ xp+1. (2.4)

Here, λ is a positive number, called preference threshold, which is usually set to a small

value. The assessment of the ⌫i(χ
l
i) variables should be done in such a way that the

deviation from the preferences expressed by the DM in the subset xL is minimal. The

adaptation of the linear additive aggregation-disaggregation model to the analytic

centre formulation is quite straightforward and gives rise to the ACUTA method;

the introduction of slack variables into the objective function leads to the following

nonlinear optimisation problem, which can be solved without further modifications:

max

N−1X

p=1

ln(sj) =
nX

i=1

xi−1X

l=1

ln(sil), (2.5)

s.t. ⌫(xp)− ⌫(xp+1) = 0 if xp ⇠ xp+1, (2.6)

(⌫(xp)− ⌫(xp + 1))− δ = sp if xp ! xp+1, (2.7)

sil = (⌫(χl+1
i )− ⌫(χl

i))− λ, (2.8)
nX

i=1

⌫i(χi) = 1. (2.9)

Since this approach maximises the sum of slacks, parameters δ and λ can be omitted,

and this is considered an advantage. The essential advantage of this method, however,

is the centrality and uniqueness of the solutions it produces.
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Chapter 3

CLASSIFICATION MODEL FOR

THE QUANTITATIVE

ASSESSMENT OF THE

VULNERABILITY TO

INTENTIONAL HAZARDS

As mentioned previously, due to the specific features (low frequency but important

effects) of intentional hazards (characterised by significant uncertainties due to be-

haviours of different rationality) the analysis is difficult to perform by traditional risk

assessment methods [76][7][9]. For this reason, in the present thesis work we propose

to tackle the issue of evaluating vulnerability to malevolent intentional acts by an

empirical classification modelling framework. Classification refers to the assignment

of a finite set of alternatives into predefined groups. It can provide many benefits

to an organization such as reducing decision making time, improving the consistency

of decisions, and reducing dependence on scarce human experts. In our case, it can

give an absolute judgement of the vulnerability to intentional hazards of each single

alternative rather than a relative one (e.g., given by a rank).
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For several decades multivariate statistical analysis techniques such as discriminant

analysis (linear [39] and quadratic [116]), and econometric techniques such as logit

and probit analysis [87][88], the linear probability model, etc., have dominated the

field of classification problem. However, the parametric nature and the statistical as-

sumptions/restrictions of such approaches have been an issue of major criticism and

skepticism on the applicability and the usefulness of such methods in practice.

The continuous advances in other fields including operations research and artificial

intelligence led many scientists and researchers to exploit the new capabilities of

these fields, in developing more efficient classification techniques. Among the at-

tempts made one can mention neural networks [118][96][50][75][6], machine learning

[72][62][43], fuzzy sets [131][56][57][54][12] as well as multicriteria decision aid. Multi-

criteria decision aid (MCDA) has several distinctive and attractive features, involving,

mainly, its decision support orientation. The significant advances in MCDA over the

last three decades constitute a powerful non-parametric alternative methodological

approach to study classification problems [33].

3.1 State of the art

The focus of this study is based on Multicriteria decision aid (MCDA), which is an

advanced field of operations research and has evolved rapidly over the past three

decades both at the research and practical level.

The development of the MCDA field has been motivated by the simple finding that

resolving complex real-world decision problems cannot be performed on the basis

of unidimensional approaches. However, when employing a more realistic approach

considering all factors relevant to a decision making situation, one is faced with the

problem referring to the aggregation of the existing multiple factors. The complexity

of this problem often prohibits decision makers from employing this attractive ap-

proach.

The ELECTRE family of methods (ELimination Et Choix Traduisant la REalité

[104]) developed by Bernard Roy during the late 1960s set also the foundations of
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the outranking relation theory (ORT). Since then, it has been widely used by MCDA

researchers, mainly in Europe. The family of ELECTRE methods differ according to

the degree of complexity, or richness of the information required or according to the

nature of the underlying problem or problematique. The ELECTRE TRI method

[130] is a member of this family of methods, developed for addressing classification

problems. A simplified version of this method is applied in this work and presented

in the following sections.

3.2 The majority rule sorting method (MR-Sort)

The Majority Rule Sorting (MR-Sort) method is a simplified version of ELECTRE

TRI, an outranking sorting procedure in which the assignment of an alternative to

a given category is determined using a complex concordance non-discordance rule

[105][92].

3.2.1 The MR-Sort algorithm

We assume that the alternative to be classified (e.g., a safety-critical system or infras-

tructure of interests, e.g., a nuclear power plant) can be described by an n-tuple of

elements x = {x1, x2, ..., xi, ..., xn}, which represent the evaluation of the alternative

with respect to a set of n criteria (by way of example, in the present work the criteria

used to evaluate the vulnerability of a safety critical system of interest may include its

physical characteristics, social criticality, level of protection and so on: as presented

by the hierarchical model in the previous Chapter). We denote the set of criteria by

MCrit = {MCriti, i 2 {1, 2, ..., n}} and assume that the values xi of criterion i range

in the set Xi [102] (e.g., all the criteria range in [0, 1]). The MR-Sort procedure allows

assigning any alternative x = {x1, x2, ..., xi, ..., xn} 2 X = X1⇥X2⇥ ...⇥Xi⇥ ...⇥Xn

to a particular pre-defined category (in this work, a class of vulnerability), in a given

ordered set of categories, {Ah : h = 1, 2, ...,M}; M = 4 categories are considered in

this work: A1 = satisfactory, A2 = acceptable, A3 = problematic, A4 = serious.

To this aim, the model is further specialised in the following way:
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• We assume that Xi is a subset of R for all i 2 N and the sub-intervals (X1
i , X

2
i , ...,

Xh
i , ..., X

M
i ) of Xi are compatible with the order on the real numbers, i.e., for

all x1
i 2 X1

i , x
2
i 2 X2

i , ..., x
h
i 2 Xh

i , ..., x
M
i 2 XM

i , we have x1
i > x2

i > ... > xh
i >

... > xM
i . We assume furthermore that each interval Xh

i , h = 1, 2, ...,M − 1

has a smallest element bhi , which implies that xh
i ≥ bhi > xh+1

i . The vector

bh = {bh1 , b
h
2 , ..., b

h
i , ..., b

h
n} (containing the lower bounds of the intervals Xh

i of

criteria i = 1, 2, ..., n in correspondence of category h) represents the lower limit

profile of category Ah.

• There is a weight !i associated with each criterion i = 1, 2, ..., n, quantifying

the relative importance of criterion i in the vulnerability assessment process;

notice that the weights are normalised such that
Pn

i=1 !i = 1.

In this framework, a given alternative x = {x1, x2, ..., xi, ..., xn} is assigned to

category Ah, h = 2, ...,M − 1, iff

X

i2N:xi≥bhi

!i ≥ λ and
X

i2N:xi≥bh−1

i

!i < λ, (3.1)

where λ is a threshold (0  λ  1) chosen by the analyst. Rule (3.1) is inter-

preted as follows. An alternative x belongs to category Ah if: 1) its evaluations

in correspondence of the n criteria (i.e., the values {x1, x2, ..., xi, ..., xn}) are

at least as good as bhi (lower limit of category Ah with respect to criterion

i, i = 1, 2, ..., n), on a subset of criteria that has sufficient importance (in other

words, on a subset of criteria that has a weight larger than or equal to the

threshold λ chosen by the analyst); and at the same time 2) the weight of the

subset of criteria on which the evaluations {x1, x2, ..., xi, ..., xn} are at least as

good as bh−1
i (lower limit of the successive category Ah−1 with respect to criterion

i, i = 1, 2, ..., n), is not sufficient to justify the assignment of x to the successive

category Ah−1.

Notice that alternative x is assigned to the best category A1 if
P

i2N:xi≥b1i
!i ≥ λ

and it is assigned to the worst category AM if
P

i2N:xi≥bM−1

i
!i < λ. Finally, it is
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straightforward to notice that the parameters of such a model are the (M−1) ·n

lower limit profiles (n limits for the M−1 categories), the n weights of the crite-

ria !1, !2, ..., !i, ..., !n, and the threshold λ, for a total of n ·M +1 parameters.

3.2.2 Constructing the MR-Sort classification model

In order to construct an MR-Sort classification model, we need to determine the set

of n · M + 1 parameters described in the previous subsection, i.e., the weights ! =

{!1, !2, ..., !n}, the lower profiles b = {b1, b2, ..., bh, ..., bM−1}, with bh = {bh1 , b
h
2 , ...,

bhi , ..., b
h
n}, h = 1, 2, ...,M − 1, and the threshold λ; in this thesis work, λ is considered

a fixed, constant value chosen by the analyst (e.g., λ=0.9).

As presented in the previous Chapter, a disaggregation process is thus considered. The

decision maker provides a training set of classification examples DTR = {(xp,Γ
t
p), p =

1, 2, ..., N}, i.e., a set of N alternatives xp = {xp
1, x

p
2, ..., x

p
i , ..., x

p
n}, p = 1, 2, ..., N to-

gether with the corresponding real pre-assigned categories (i.e., vulnerability classes)

Γt
p (the superscript t indicates that Γt

p represents the true, a priori-known vulnerabil-

ity class of alternative xp).

The calibration of the n · M parameters is done through the learning process de-

tailed in [82]. In extreme synthesis, the information contained in the training set

DTR is used to restrict the set of MR-Sort models compatible with such information,

and to finally select one among them [82]. The a priori-known assignments gener-

ate constraints on the parameters of the MR-Sort model. In [82], such constraints

have a linear formulation and are integrated into a Mixed Integer Program (MIP)

that is designed to select one (optimal) set of such parameters !⇤ and b⇤ (in other

words, to select one classification model M⇤(·|!⇤, b⇤) that is coherent with the data

available and maximises a defined objective function. In [82], the optimal parameters

!⇤ and b⇤ are those that maximise the value of the minimal slack in the constraints

generated by the given set of data DTR. Once the (optimal) classification model

M⇤(·|!⇤, b⇤) is constructed, it can be used to assign a new alternative x (i.e., a new

nuclear power plant) to one of the vulnerability classes Ah, h = 1, 2, ...,M : in other

words, M⇤(x|!⇤, b⇤) = ΓM⇤

x where ΓM⇤

x is the class assigned by model M⇤(·|!⇤, b⇤) to
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alternative x and assumes one value among {Ah : h = 1, 2, ...,M}. Further mathe-

matical details about the training algorithm are not given here for brevity, they can

be found in [82] and appended Paper (ii).

3.2.3 Dealing with inconsistency in the training data

As highlighted before, sorting models consist in assigning alternatives evaluated on

several criteria to ordered categories. To implement such models, it is necessary to

set the values of the preference parameters used in the model. Rather than fixing

the values of these parameters directly, a usual approach is to infer these values from

assignment examples provided by experts and decision makers (DMs). However,

assignment examples provided by experts and DMs can be inconsistent, i.e., may not

“produce” any meaningful classification model. Such a situation can be understood

according to two perspectives: either the examples provided by the DM contradict

each other, or the preference model is not flexible enough to account for the way the

DM assigns alternatives holistically. In the first case, the DM would acknowledge

a misjudgment and would agree to reconsider his/her examples; in the second case,

the DM would not agree to change the examples and the preference model should be

changed. In both cases, we refer to an inconsistency situation. In any case, the DM

needs to know what causes inconsistency, i.e., which judgments should be changed if

the aggregation model is to be kept (which is our case) [92][91].

The MIP algorithm summarized in the previous section may prove infeasible in case

the assignments of the alternatives in the learning set are incompatible with all MR-

sort models. In order to help the DMs to understand how their inputs are conflicting

and to question previously expressed judgments, to learn about their preferences as

the interactive process evolves, we formulate two MIPs that are able to: (i) find

one MR-sort model that maximize the number of learning set alternatives correctly

assigned and (ii) propose accordingly a possible modification for each of the conflicting

alternatives.
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Figure 3-1: Representation of constraints deletion algorithm

Inconsistency resolution via constraints deletion

Resolving the inconsistencies can be performed by deleting a subset of constraints

related to the inconsistent alternatives. As shown in Figure 3-1, we take M = 4,

each alternative xp can provide one or two constraints with respect to its assignment:

for example, alternatives assigned to extreme categories, i.e., A1 and A4, provide one

constraint, whereas alternatives assigned to intermediate categories, i.e., A2 and A3,

introduce two constraints. Let us introduce a binary variable γp for each alternative

xp, which is equal to 1 if all the constraints associated to xp are fulfilled, and equal

to 0 otherwise.

The algorithm proceeds by “deleting” (i.e., removing) those constraints (i.e., those

alternatives) that do not allow the creation of a compatible classification model,

while maximizing the number of alternatives retained in the learning set (i.e., in

minimizing the number of alternatives that are not taken into account): by so doing,

we maximize the quantity of information that can be used to generate a classification

model correctly. In other words, we obtain a MIP that yields a subset D⇤
TR ✓ DTR

of maximal cardinality that can be represented by an MR-sort model.
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Figure 3-2: Representation of constraints relaxation algorithm

Inconsistency resolution via constraints relaxation

Based on the algorithm presented in the previous subsection, a subset of maximal

cardinality that can be represented by an MR-sort model is obtained. At the same

time, its complementary set is deleted. However, in order to help the DMs understand

in what way the identified inconsistent inputs conflict with the others; and guide them

to reconsider and possibly modify their judgments, a constraints relaxation algorithm

is here proposed.

As presented in previous situation, each alternative xp can provide one or two con-

straints with respect to its assignment. As presented in Figure 3-2, we introduce

the following binary variables: γp, for the alternatives originally assigned to extreme

categories, i.e., A1 and A4; γ+
p and γ−

p for the alternatives originally assigned to in-

termediate categories, i.e., A2 and A3: in particular, γ+
p refers to the fulfillment of

the constraint associated to the better category lower profiles, whereas γ−
p refers to

the fulfillment of the constraint associated to the worse category lower profiles.

As in the previous case, the algorithm identifies a subset D⇤
TR ✓ DTR of maximal

cardinality that can generate an MR-sort model with proper formulation. In addition,

for each of the alternatives that are not accepted into the subset D⇤
TR, the correspond-

ing inconsistent constraints are also targeted: for example, if for one alternative xp

we obtain γ+
p = 0 (resp., γ−

p = 0), then this alternative should be classified in a bet-
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ter (resp., worse) category; in other words, its original assignment is underestimated

(resp., overestimated). The same criterion is applied to the alternatives that are orig-

inally assigned to the best or worst category. More details of the inconsistency study

are presented in appended Paper (iii).

3.3 Performance assessment of the MR-Sort classifi-

cation model for the vulnerability assessment

Due to the finite (typically small) size of the set of training classification examples

usually available in the analysis of real complex safety-critical systems, the perfor-

mance of the classification model is impaired. In particular, (i) the classification

accuracy (resp., error), i.e., the expected fraction of patterns correctly (resp., incor-

rectly) classified, is typically reduced (resp., increased); (ii) the classification pro-

cess is characterised by significant uncertainty, which affects the confidence of the

classification-based vulnerability model: in this thesis work, the confidence in a clas-

sification assignment is defined as in [10], i.e., as the probability that the class assigned

by the model to a given (single) pattern is the correct one. Obviously, there is the

possibility that a classification model assigns correctly a very large (expected) frac-

tion of patterns (i.e., the model is very accurate), but at the same time each (correct)

assignment is affected by significant uncertainty (i.e., it is characterised by low con-

fidence). It is worth mentioning that besides the scarcity of training data, there are

many additional sources of uncertainty in classification problems (e.g., the accuracy

of the data, the suitability of the classification technique used, etc.): however, they

are not considered in this work.

The performance of the classification model (i.e., the classification accuracy - resp.,

error - and the confidence in the classification) needs to be quantified: this is of

paramount importance for taking robust decisions in the vulnerability analyses of

safety-critical systems [8][89][48].

In the present work, three different approaches are used to assess the performance
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of a classification-based MR-Sort vulnerability model in the presence of small train-

ing data sets. The first is a model-retrieval based approach [82], which is used to

assess the expected percentage error in assigning new alternatives. The second is

based on bootstrapping the available training set in order to build an ensemble of

vulnerability models [102][35]; the method can be used to assess both the accuracy

and the confidence of the model: in particular, the confidence in the assignment of a

given alternative is given in terms of the full (probability) distribution of the possible

vulnerability classes for that alternative (built on the bootstrapped ensemble of vul-

nerability models) [10]. The third is based on the Leave-One-Out Cross-Validation

(LOOCV) technique, in which one element of the available data set is (left out and)

used to test the accuracy of the classification model built on the remaining data: also

this approach is employed to estimate the accuracy of the classification vulnerability

model as the expected percentage error, i.e., the fraction of alternatives incorrectly

assigned (computed as an average over the left-out data).

3.3.1 Model-retrieval based approach

The first method is based on the model-retrieval approach proposed in [82]. A fic-

titious set Drand
TR of N alternatives {xrand

p : p = 1, 2, ..., N} is generated by random

sampling within the ranges Xi of the criteria, i = 1, 2, ..., n. Notice that the size N of

the fictitious set Drand
TR has to be the same as the real training set DTR available, for

the comparison to be fair. Also, a MR-Sort classification model M(·|!rand, brand)

is constructed by randomly sampling possible values of the internal parameters,

{!i : i = 1, 2, ..., n} and {bh : h = 1, 2, ...,M − 1}. Then, we simulate the be-

haviour of a Decision Maker (DM) by letting the (random) model M(·|!rand, brand)

assign the (randomly generated) alternatives {xrand
p : p = 1, 2, ..., N}. In other words,

we construct a learning set Drand
TR by assigning the (randomly generated) alterna-

tives using the (randomly generated) MR-Sort model, i.e., Drand
TR = {(xrand

p ,ΓM
p ) :

p = 1, 2, ..., N}, where ΓM
p is the class assigned by model M(·|!rand, brand) to alter-

native xrand
p , i.e., ΓM

p = M(xrand
p |!rand, brand). Subsequently, a new MR-Sort model

M 0(·|!0, b0), compatible with the training set Drand
TR , is inferred using the MIP for-
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Figure 3-3: The general structure of the model-retrieval approach

mulation summarised in Chapter 3.2.1 and in the appended Paper (ii). Although

models M(·|!rand, brand) and M 0(·|!0, b0) may be quite different, they coincide on the

way they assign elements of Drand
TR , by construction. In order to compare models

M and M 0, we randomly generate a (typically large) set Drand
test of new alternatives

Drand
test = {xtest,rand

p : p = 1, 2, ..., NTest} and we compute the percentage of assignment

errors, i.e., the proportion of these NTest alternatives that models M and M 0 assign

to different categories.

In order to account for the randomness in the generation of the training set Drand
TR

and of the model M(·|!rand, brand), and to provide robust estimates for the assignment

errors ✏, the procedure outlined above is repeated for a large number Nsets of random

training sets Drand,j
TR , j = 1, 2, ..., Nsets; in addition, for each set j the procedure is

repeated for different random models M(·|!rand,l, brand,l), l = 1, 2, ..., Nmodels. The se-

quence of assignment errors thereby generated, ejl, j = 1, 2, ..., Nsets, l = 1, 2, ..., Nmodels,

is then averaged to obtain a robust estimate for ✏. The procedure is sketched in Figure

3-3.

Notice that this method does not make any use of the original training set DTR (i.e.,

of the training set constituted by real-world classification examples). In this view,

the model retrieval-based approach can be interpreted as a tool to obtain an abso-
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lute evaluation of the expected error that an “average” MR-Sort classification model

M(·|!, b) with M categories, n criteria and trained by means of an “average” data set

of given size N makes in the task of classifying a new generic (unknown) alternative.

3.3.2 Bootstrap method

A way to assess both the accuracy (i.e., the expected fraction of alternatives correctly

classified) and the confidence of the classification model (i.e., the probability that

the category assigned to a given alternative is the correct one) is by resorting to the

bootstrap method [35], which is used to create an ensemble of classification models

constructed on different data sets bootstrapped from the original one [137]: the final

class assignment provided by the ensemble is based on the combination of the indi-

vidual output of classes provided by the ensemble of models [10].

The basic idea is to generate different training datasets by random sampling with

replacement from the original one [35]: such different training sets are used to build

different individual classification models of the ensemble. In this way, the individual

classifiers of the ensemble possibly perform well in different regions of the training

space and thus they are expected to make errors on alternatives with different charac-

teristics; these errors are balanced out in the combination, so that the performance of

the ensemble of bootstrapped classification models is in general superior than that of

the single classifiers [137][24]. This is a desirable property since it is a more realistic

simulation of the real-life experiment from which our dataset was obtained. In this

work, the output classes of the single classifiers are combined by majority voting : the

class chosen by most classifiers is the ensemble assignment. Finally, the accuracy of

the model is given by the fraction of the patterns correctly classified. The bootstrap-

based empirical distribution of the assignments given by the different classification

models of the ensemble is then used to measure the confidence in the classification of

a given alternative x that represents the probability that this alternative is correctly

assigned [10][11]. In more detail, the main steps of the bootstrap algorithm are as

follows (Figure 3-4):
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Figure 3-4: The bootstrap algorithm

1. Build an ensemble of B (typically of the order of 500−1000) classification models

{Mq(·|(!q, bq) : q = 1, 2, ..., B)} by random sampling with replacement from the

original data set DTR and use each of the bootstrapped models Mq(·|!q, bq) to

assign a class Γq
p, q = 1, 2, ..., B, to a given alternative xp of interest (notice

that Γq
p takes a value in Ah, h = 1, 2, ...,M). By so doing, a bootstrap-based

empirical probability distribution P (Ah|xp), h = 1, 2, ...,M for category Ah of

alternative xp is produced, which is the basis for assessing the confidence in

the assignment of alternative xp. In particular, repeat the following steps for

q = 1, 2, ..., B:

a. Generate a bootstrap data set DTR,q = {(xp,Γ
t
p) : p = 1, 2, ..., N}, by

performing random sampling with replacement from the original data set

DTR = {(xp,Γ
t
p) : p = 1, 2, ..., N} of N input/output patterns. The data

set DTR,q is thus constituted by the same number N of input/output pat-

terns drawn among those in DTR, although due to the sampling with re-

placement some of the patterns in DTR will appear more than once in

DTR,q, whereas some will not appear at all.

b. Build a classification model {Mq(·|!q, bq) : q = 1, 2, ..., B}, on the basis of
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the bootstrap data set DTR,q = {(xp,Γ
t
p) : p = 1, 2, ..., N}.

c. Use the classification model Mq(·|!q, bq) to provide a class Γq
p, q = 1, 2, ..., B

to a given alternative of interest, i.e., Γq
p = Mq(xp|!q, bq).

2. Combine the output classes Γq, q = 1, 2, ..., B of the individual classifiers by

majority voting: the class chosen by most classifiers is the ensemble assignment

Γens
p , i.e., Γens

p = argmaxAh [cardq{Γ
q
p = Ah}].

3. As an estimation of the confidence in the majority-voting assignment Γens
p (step

2, above), we consider the bootstrap-based empirical probability distribution

P (Ah|xp), h = {1, 2, ...,M}, i.e., the probability that category Ah is the correct

category given that the (test) alternative is xp [82]. The estimator of P (Ah|xp)

here employed is: P (Ah|xp) =
PB

q=1
I{Γq=Ah}

B
, where I{Γq = Ah} = 1, if Γq = Ah,

and 0 otherwise.

4. Finally, the error of classification is presented by the fraction of the number of

the alternatives being assigned by the classification model and the total number

of the alternatives. The accuracy of the classification model is defined as the

complement to 1 to the error.

3.3.3 Cross validation

Leave-One-Out Cross-Validation (LOOCV) is a particular case of the cross-validation

method. In cross-validation, the original training set DTR is divided into N partitions,

Pt1, P t2, ..., P tN , and the elements in each of the partitions are classified by a model

trained by means of the elements in the remaining partitions (Leave-p-out Cross-

Validation) [11]. The cross-validation error is, then, the average of the N individual

error estimates. When N is equal to the number of elements N in DTR, the result

is leave-one-out cross-validation (LOOCV), in which each instance xp, p = 1, 2, ..., N

is classified by all the instances in DTR except for itself [129]. For each instance

xp, p = 1, 2, ..., N in DTR, the classification accuracy is 1 if the element is classified

correctly and 0 if it is not. Thus, the average LOOCV error (resp. accuracy) over
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Figure 3-5: Leave-one-out cross-validation study procedure

all the N instances in DTR is ✏/N (resp. 1 − ✏/N), where ✏ (resp. N − ✏) is the

number of elements incorrectly (resp. correctly) classified. Thus, the accuracy in the

assignment is estimated as 1− ✏/N . With respect to the leave-p-out cross-validation,

the leave-one-out cross-validation (LOOCV) produces a smaller bias of the true error

rate estimator. However, the computational time increases significantly with the size

of the data set available. This is the reason why the LOOCV is particularly useful

in the case of small data sets. In addition, for very sparse datasets (e.g., of size

lower than or equal to ten), we may be “forced ” to use LOOCV in order to maximise

the number of training examples employed and to generate training sets containing

an amount of information that is sufficient and reasonable for building an empirical

model [44]. In Figure 3-5, the algorithm is sketched with reference to a training set

DTR containing N = 11 data (as in the application considered in Chapter 5).
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Chapter 4

INVERSE MULTICRITERIA

CLASSIFICATION PROBLEM:

IDENTIFYING PROTECTIVE

ACTIONS TO REDUCE

VULNERABILITY

What constitutes a “multiple criteria decision making (MCDM)” problem? Clearly

there must be some decision to be made! Such decision may constitute a simple choice

between two or more (perhaps even infinitely many) well-defined alternatives. The

problem is then simply that of making the “best” choice in some sense (as presented

in Chapter 2 and 3). At the other extreme, there may be a vague sense of unease

that we (personally or corporately) need to “do something” about a situation which

is found unsatisfactory in some way. The decision problem then constitutes much

more than simply the evaluation and comparison of alternatives. It involves also an

in-depth consideration of what it is that is “unsatisfactory”, and the creative genera-

tion of possible courses of actions to address the situation [13].

The classification problem has been widely studied in the literature because of its ap-
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plicability to a wide variety of problems [34][60][4][22][16][23][40][42][62], as presented

previously (Chapter 3). Based on the classification model and results obtained in the

previous Chapter, the problem is structured as an inverse multicriteira classification

problem [3][1][83]. The idea is that changes are made in the independent variables of

a sample so that the sample can be classified into a more desirable class [97][86][2].

In other words, we determine the features to be used to create a record which will

result in a desired class label. Particularly, in this work we aim to identify a set of

protective actions to reduce the vulnerability of a (group of) safety-critical system(s)

eventually under budget limitations. This system can be used for a variety of decision

support applications which have predetermined task criteria.

4.1 Inverse classification problem: general framework

In the inverse classification problem, we would like to determine the action oriented

feature variables for an incompletely specified test data set. Typically, these feature

variables are decision variables for an optimization or decision support application.

The aim is to decide the choice of the actions so that these feature variables are mod-

ified in such a way so as that the resulting records would belong to a set of desired

class variable values for the test data set.

If there is no limitation on the choices of the actions (e.g., number of actions that can

be applied) the problem can be formulated as that for the case of the training data

set, both the feature and class variables are completely defined in it. On the other

hand, for the case of the test data set, the class variables are completely defined but

the feature variables are not. Thus, each test data example has a desired class label

associated with it. The aim of the inverse classification problem is to choose the test

feature variables such that the corresponding classification accuracy with respect to

the desired test classes is maximized.

If there are action related constraints (e.g., number of actions can be applied at the

same time, budget limitation etc.) then the problem is modified. The class variables

and the feature variables are all not definitively defined. Under the given constraints
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concerning the choice of the actions, the aim of the inverse classification problem is

to choose the “optimal” set of actions that can modify the feature variables such that

the corresponding class variables are brought to a possibly “desired” class label.

The problem is “inverse” because the usual mapping is from a case to its unknown

category. The increased application of classification systems in business suggests that

this inverse problem can be of significant benefit to decision-makers as a form of sen-

sitivity analysis.

We note that the inverse classification problem is different from the classification or

imputation problem on missing data sets. In the classification problem on missing

data, we try to determine the unknown class variable with incompletely defined fea-

tures. On the other hand, in the inverse classification problem, we try to determine

the action-oriented missing variables in order to achieve a desired result which is re-

flected in the class variable. The inverse classification problem is useful for a number

of action-driven applications in which the features can be used to define certain ac-

tions which drive the decision support system towards a desired end-result [2].

4.2 Inverse classification problem: framework pro-

posed in the present thesis

To illustrate the methodology, we carry on the definition of the classification model

of the safety-critical systems presented in the previous Chapter: we consider a set

of N NPPs (xp, p 2 {1, 2, ..., N}) characterized by m = 16 basic features (critj, j 2

{1, 2, ...,m}). On the basis of these m = 16 features, the NPPs are assigned to M = 4

pre-defined categories (Ah 2 {1, 2, ...,M}, h 2 {1, 2, ..., N}), where A1 represents the

best situation, i.e., lowest vulnerability. Let act = {act1, act2, ..., actk, ..., actF} denote

the available set of actions, each of which can influence on one or more basic criteria

critj, j 2 {1, 2, ...,m} (Figure 4-1) with different intensity, as measured by a set of

coefficients {coeffkj, k 2 {1, 2, ..., F}, j 2 {1, 2, ...,m}}. In other words, coeffkj is
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Figure 4-1: Schema of direct actions for basic criteria

the “weight” of the influence of action k on attribute j (the higher the absolute value

of coeffkj, the stronger the effect of action k on attribute j). Notice that a positive

(resp. negative) coefficient coeffkj means that action k has an ameliorative (resp.

deteriorative) effect on attribute j, whereas if coeffkj is equal to zero, then criterion j

is not influenced by action k. The implementation of one or more actions modifies the

attribute values critj, j 2 {1, 2, ...,m} and as a result, the vulnerability of the system

(i.e., the assignment by the classification model) may change. In this work, we assume

that the total effect of the available set of actions act = {act1, act2, ..., actk, ..., actF}

on criterion j is obtained by a linear superposition of the effects of each action actk:

crit0j = critj +
FX

k=1

coeffkj ⇤ actk, k 2 {1, 2, ..., F}, j 2 {1, 2, ...,m}. (4.1)

where crit0j is the value of attribute j after the identified set of available actions has

been implemented.

Also, let Cost(xp, act
0), act0 ✓ act denote the cost of the combination of actions act0

applied to xp. If cpk(p 2 {1, 2, ..., N}, k 2 {1, 2, ..., F}) is the cost of action k on xp,
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then:

Cost(xp, act
0) =

X

k

cpk, k 2 {1, 2, ..., F}. (4.2)

The inverse classification problem can, then, be formulated as follows: given a limited

budget Bg for the entire group of NPPs considered, find out for each of the NPPs

the best combination of actions that provide the maximal possible reduction in their

vulnerability level Aλ0

p , A
λ0

p 2 {1, 2, 3, 4}, p 2 {1, 2, ..., N} (as presented in Chapter 2,

the smaller the category value, the less vulnerable the NPP) under budget constraint.

In particular, we have chosen the strategy to reduce, under budget constraint, the

global vulnerability of a group of alternatives in giving priority to the NPPs that

are originally assigned to the worst category, in other words, we try to maximize a

properly weighted sum of the ameliorations in the vulnerability categories undergone

by all the NPPs. This is mathematically represented by the objective function Ix

as an intermediate value of the objective function in considering a set of alternatives

x = {xp, p 2 {1, 2, ..., N}}:

Ix = ⇢3 ⇤Q43 + ⇢2 ⇤Q32 + ⇢1 ⇤Q21 (4.3)

where Qn(n−1)(n2Z) represents the number of NPPs among the N available ones {x|xp, p

2 {1, 2, ..., N}} that are ameliorated from category An to category A(n−1) by a given

combination of actions. The constants {⇢i|i 2 {1, 2, 3}} represent weights that we

assigned to the number of ameliorated NPPs Qn(n−1)(n2Z). We assign the following

set of weights:

⇢3 = 100, ⇢2 = 50, ⇢1 = 25. (4.4)

In this case, by maximizing the objective function Ix, high importance is given to the

amelioration of the worst (most vulnerable) NPPs.

To address the inverse classification problem, we first adopt a pragmatic approach

based on sensitivity analysis [110][55][111], introducing indicators that quantify the
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variation in the vulnerability class that a safety-critical system is expected to undergo

upon implementation of a given set of actions. Then, three different optimization

approaches will be explored: (i) one single classification model is built to evaluate and

minimize system vulnerability; (ii) an ensemble of compatible classification models,

generated by the bootstrap method, is employed to perform a “robust” optimization,

by considering the “worst-case” scenario; (iii) finally, a distribution of classification

models, still obtained by bootstrap, is considered to address vulnerability reduction

in a “probabilistic” fashion.

4.3 Solution to the inverse classification problem:

sensitivity indicators

All multicriteria methods call for the identification of the key factors which will form

the basis of an evaluation. These are referred to variously as: values, (fundamen-

tal) objectives, criteria, (fundamental) point of view. The extent to which, and the

way in which, these key factors are elaborated in the model structure differs between

the methodologies [13]. Research in classification analysis has focused on developing

models/algorithms for correct classification of training and holdout sample data (as

presented in Chapter 3). Most classification systems lack the ability to systematically

conduct sensitivity analysis [86]. In this thesis work, we have developed a process to

analyze the different actions based on several novel defined indicators as presented in

the following paragraphs:

We consider the group of N 0 vulnerability-class labeled known (available) safety-

critical systems (NPPs) used to train the MR-Sort classification model and study the

sensitivity of their categories of vulnerability to the implementation of the available

protective actions. We denote the original categories of these NPPs as Ah, Ah 2

{1, 2, ...,M}, h 2 {1, 2, ..., N 0} and the new categories resulting from the application

of a set of protective actions as Ah
λ, A

h
λ 2 {1, 2, ...,M}, h 2 {1, 2, ..., N 0}.

Let N " be the number of NPPs that are improved after the action(s):
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N "=
N 0X

h=1

Ch, h 2 N, (4.5)

Ch = 1, if Ah > Ah
λ, (4.6)

Ch = 0, if Ah < Ah
λ. (4.7)

Then, N"
N 0

can be interpreted as an estimate of the percentage of new (i.e., different

from the ones of the training set) NPPs that can be expected to be improved after

such action(s) is (are) implemented on them.

Dually, N #, is the number of NPPs that are expected to be deteriorated after the

action(s):

N #=
N 0X

h=1

Ch, h 2 N, (4.8)

Ch = 1, if Ah < Ah
λ, (4.9)

Ch = 0, if Ah > Ah
λ. (4.10)

Notice that a “deterioration” (i.e., an increase in the vulnerability category) is pos-

sible because some of the actions may have positive effects on some subcriteria but

negative effects on some others (cf Section 3). Then, N#
N 0

can be interpreted as an

estimate of the percentage of new NPPs (i.e., different from the ones of the training

set) that can be expected to be deteriorated after such action(s) is (are) implemented

on them.

We consider the quantity ∆N = N"
N 0

− N#
N 0

to combine the effects of both positive

and negative influences of the actions in the expected “net” amount of ameliorated

NPPs. Considering that the evaluation framework is based on M = 4 categories, it

seems reasonable to consider not only the number of NPPs that are ameliorated or

deteriorated, but also the amount of variation in category of vulnerability of each of

them. To this aim, we introduce the following indicators to combine the amount of
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variation in vulnerability with the number of NPPs whose vulnerability category has

changed after the actions.

In particular, ∆M " is defined as the total variation of category underwent by the

ameliorated NPPs:

∆M "=
N 0X

h=1

(Mh ⇤ Ch), h 2 N, (4.11)

Mh = Ah − Ah
λ, (4.12)

Ch = 1, if Ah > Ah
λ, (4.13)

Ch = 0, if Ah < Ah
λ. (4.14)

Thus, ∆M"
N 0

can be interpreted as the variation in vulnerability category that a new

ameliorated plant is expected to undergo when the chosen combination of actions is

applied.

Dually, ∆M # is defined as:

∆M #=
N 0X

h=1

(Mh ⇤ Ch), h 2 N, (4.15)

Mh = Ah − Ah
λ, (4.16)

Ch = 1, if Ah < Ah
λ, (4.17)

Ch = 0, if Ah > Ah
λ. (4.18)

Thus, ∆M#
N 0

can be seen as the variation in vulnerability category that a new deterio-

rated plant is expected to undergo when the chosen combination of actions is applied.

Finally, ∆M = ∆M"
N 0

− ∆M#
N 0

combines the effects of both positive and negative influ-

ences of the actions and it can be seen as the “net” variation in vulnerability category

that a newly analyzed NPP is expected to undergo after the application of the given

set of actions. The net expected variation in vulnerability category ∆M quantifies

the influence of the actions upon the NPPs. However, this measure does not take into
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account the original category assignment of the NPPs: for example, in practice there

is a difference between taking a NPP from category 4 to 3 and taking it from 2 to 1,

even if the category variation is 1 in both cases. To consider this, we introduce the

indicator ∆S " , defined as the ratio between the sums of the variations of vulnerabil-

ity category underwent by the ameliorated NPPs and the sum of the corresponding

maximum possible category variations (i.e., the sum of the category variations that

the NPPs would undergo if they were ameliorated to the best possible vulnerability

category):

∆S "=
∆M "

E
, (4.19)

E =
N 0X

h=1

(Ah − Abest) ⇤ Ch, h 2 N, (4.20)

Ch = 1, if Ah > Ah
λ, (4.21)

Ch = 0, if Ah < Ah
λ. (4.22)

The indicator ∆S " quantifies the influence of the actions on NPPs, relative to their

original categories: the lower ∆S " is, the higher the influence of the chosen set of

actions is on the NPPs originally of a relatively low category.

Based on the above indicators, an algorithm is proposed to rank different combinations

of actions according to their effectiveness in reducing the vulnerability of safety-critical

systems. The algorithm proceeds as follows:

1. Rank the (combinations of) actions according to the value of ∆M (the higher

the value of ∆M , the more effective the combination of actions in reducing

vulnerability):

• combinations of actions that have a negative value of ∆M (∆M < 0)

are expected to increase the vulnerability of a NPP: this is due to the fact

that some actions may have a deteriorated effect on some of the subcriteria

that more than counter balances the positive effects on their subcriteria.

The identification of the combination of actions with ∆M < 0 allows the
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Figure 4-2: Schema of decision logic for selecting an action

analyst to (i) study the mechanisms of influence of the actions on the basic

subcriteria (Layer 4 in Figures 2-1 and 4-1) and (ii) if possible, eliminate

the “negative connections”, i.e., the negative dependencies between some

actions and some criteria (e.g., by identifying alternative actions for dealing

with these “critical” subcriteria).

• the actions that have a positive value of ∆M (∆M > 0) are expected to

reduce the vulnerability and are assigned higher rankings (the higher ∆M ,

the higher the ranking).

2. If several combinations of actions have the same value of ∆M , then consider the

other indicators (i.e., N"
N 0

and ∆M"
N 0

): depending on the judgment of the DMs,

higher importance may be given to those actions that produce a larger expected

number of improved NPPs (N"
N 0

) or to those that generate a higher “expected

class improvement” (∆M"
N 0

).

3. If some combinations still have the same ranking, analyze indicator ∆S " to

check which actions have stronger impact on the NPPs of low categories.
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4.4 Solution to the inverse classification problem:

optimization

As presented in the previous section, the choice of the protective actions is studied

based on the sensitivity indicators. In this section, we adopt an optimization-based

decision-making approach solved by CPLEX solver. The study is carried in three

different circumstances, named simple optimization, robust optimization and proba-

bilistic optimization as presented in the following subsections. These optimizations

show three different views of how the choices of the protective actions for each of the

NPPs could be made in taking the classification evaluation model into account. The

mathematical formulation of the inverse problem is also adapted.

4.4.1 Simple optimization

As presented in Chapter 3, and in more details in [125], we are able to obtain a

compatible classification model as M⇤(·|!⇤, b⇤) (with !⇤ the weights and b⇤ the lower

profiles) based on all the pre-assigned alternatives in the given set DTR through a

disaggregation process. We name this model the “optimum” compatible classification

model. The optimization process aims at finding an optimal set of actions for each

of the NPPs for which the objective function Ix is maximized: this will improve the

performance of the group of NPPs, giving priority to the worst ones. In more detail,

the problem can be formulated as follows:

Find act0p = arg Max{act0p,p=1,2,...,N}(I
x(act0p,M

⇤)), (4.23)

s.t.
X

p

Cost(xp, act
0
p)  Bg, (4.24)

{x|xp, p 2 {1, 2, ..., N}}. (4.25)

Under the constraint of budget limitation, we find the combination of protective

actions that maximize the value of the objective function Ix, presented above.
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Figure 4-3: Representation of Simple optimization

4.4.2 Robust optimization

The optimization approach introduced above provides a choice of protective actions

for the NPPs using (only) the “optimum” classification model. However, for the

training set of pre-assigned alternatives there are a number of compatible classifica-

tion models. We aim at finding out the combination of protective actions (for each of

the NPPs) that can ameliorate the NPPs to a satisfactorily low level of vulnerability,

considering all compatible classification models. In other words, the combination of

actions that we obtain should be “robust” to the (model) vulnerability assessing from

the fact that the empirical classification model is trained with a finite set of data and,

thus, multiple models are compatible.

To this aim, the bootstrap method [35] is applied to create an ensemble of classifi-

cation models constructed on different data sets bootstrapped from the original one

[137].

The basic idea is to generate different training datasets by random sampling with

replacement from the original one [35]: such different training sets are used to build

different individual classification models of the ensemble. In this way, the individual

classifiers of the ensemble possibly perform well in different regions of the training

space.

In more detail, the main steps of the bootstrap algorithm are as follows (Figure 4-4):

Build an ensemble of B classification models {Mq(·|(!q, bq) : q = 1, 2, ..., B)} by ran-

dom sampling with replacement from the original data set DTR(xp, p 2 {1, 2, ..., N})

and integrate each of the bootstrapped models Mq(·|!q, bq) into the optimization pro-
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gram which later allow us to assign a class Γq
p, q = 1, 2, ..., B, to a given alternative

xp of interest (notice that Γq
p takes a value in {Ah : h = 1, 2, 3, 4}).

a. Generate a bootstrap data set DTR,q = {(xp,Γ
t
p) : p = 1, 2, ..., N}, by per-

forming random sampling with replacement from the original data set DTR =

{xp,Γ
t
p) : p = 1, 2, ..., N} of N input/output patterns. The data set DTR,q is

thus constituted by the same number N of input/output patterns drawn among

those in DTR, although due to the sampling with replacement some of the pat-

terns in DTR will appear more than once in DTR,q, whereas some others will

not appear at all.

b. Build a classification model {Mq(·|!q, bq) : q = 1, 2, ..., B}, on the basis of the

bootstrap data set DTR,q = {(xp,Γ
t
p) : p = 1, 2, ..., N}.

Given the bootstrapped ensemble, the mathematical formulation of the robust opti-

mization is as follows:

Find act0p = arg Max{act0p,p=1,2,...,N} Minq(I
x(act0p,Mq)), (4.26)

s.t.
X

p

Cost(xp, act
0
p)  Bg, (4.27)

{x|xp, p 2 {1, 2, ..., N}}, (4.28)

{M |Mq 2 M, q 2 {1, 2, ..., B}}. (4.29)

A large number B (=100) of compatible classification models {M |Mq 2 M, q 2

{1, 2, ..., B}} are typically generated by bootstrap. Correspondingly, the minimum

value MinM(Ix(act0i,Mq)) of objective function Ix(act0p,Mq) over the B compatible

models in correspondence of each set of actions can be gathered. In particular, a

distribution of vulnerability classes can be obtained for each NPP. Then, based on

the distribution and applying the majority-voting rule, we assign each NPP to its

most likely after-action category. Then, the optimization solver aims at finding the

optimal combination of actions that robustly and conservatively maximize the worst

value of the objective function Ix(act0p,Mq).

In more detail, the robust optimization algorithm proceeds as follows:
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Figure 4-4: Representation of Robust optimization

1. The solver proposes a set of actions for each xp; each bootstrapped classification

moedel Mq(·|!q, bq) is used to provide an after-action class Γq
p, q = 1, 2, ..., B to

a given alternative of interest, i.e., Γq
p = Mq(xp|!q, bq);

2. On the basis of the results obtained at step 1 above, a value of function

Ix(act0p,Mq) is computed for each compatible model Mq(·|!q, bq), q = 1, 2, ..., B,

to obtain an ensemble of values of Ix(act0p,Mq);

3. The minimum (i.e., worst) value among Ix(act0p,Mq), q = 1, 2, ..., B, is taken

as the objective function to maximize; in other words, we aim at identifying

the set of actions able to improve the “worst-case scenario” over the possible

compatible models;

4. We repeat the steps above for different combinations of actions act0p, p = 1, 2, ..., N

in order to find out the combination of actions for each of the considered NPPs

that can ameliorate the worst after action result to the possibly best situation.
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Figure 4-5: Representation of Probabilistic optimization

4.4.3 Probabilistic optimization

The main steps (Figure 4-5) are the same as those of the Robust optimization as

presented in Figure 4-4, but the objective function is changed. Instead of improving

the worst case over all the models, we choose to improve the expected value of the

probablity distribution of the function Ix. Thus, in this case, we “ignore” some of the

“extreme” classification models generated by bootstrap.

The mathematical formulation of the problem is as follows:

Find act0p = arg Max{act0p,p=1,2,...,N}
1

B

BX

q=1

(Ix(act0p,Mq)), (4.30)

s.t.
X

p

Cost(xp, act
0
p)  Bg, (4.31)

{x|xp, p 2 {1, 2, ..., N}}, (4.32)

{M |Mq 2 M, q 2 {1, 2, ..., B}}. (4.33)
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Chapter 5

APPLICATIONS

In this Chapter, the case studies considered within the Hierarchical Decision Making

Framework for vulnerability to intentional hazards of the safety-critical systems are

briefly illustrated. A relative evaluation of the vulnerability by ranking method is

first shown (Section 5.1.1); An absolute evaluation of the vulerability is then given by

applying the classification method with the corresponding sensitivity analysis (pre-

sented by confidence and accuracy of the assignment results) (Section 5.1.2); The

inverse classification problem aiming to choose the set of “optimal” set of protective

actions is tackled in two ways based on sensitivity indicators and optimization (Sec-

tion 5.2); And finally, the inconsistency study of a giving set of data is demonstrated

(Section 5.3). For further details the interested reader is referred to the corresponding

Papers (i)-(v) of Part II.

5.1 Analysis of the vulnerability of a fleet of Nuclear

Power Plants

Based on the methods presented in the previous Chapters, in this section, the vulner-

ability to intentional hazards is studied within a preliminary ranking framework, and

then mainly the classification framework. The classification model is built to assign

each alternative an pre-defined vulnerability class/category and the uncertainty of
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the model is also assessed by giving an accuracy and confidence of the results.

We assume that the attributes in the data are categorical. In fact, for the basic layer

criteria (presented in Chapter 2, detailed in Paper (i) and (ii)), there are several

cases when the records in the data are quantitative. This is quite simple to be tack-

led with, since quantitative variables can be transformed to categorical form using

discretization). We also note that since this technique will be used for action-driven

applications for the amelioration part in which the features define the actions that

may or may not happen, it is more natural to use categorical variables.

5.1.1 Vulnerability analysis by ranking

For illustration purposes, 9 fictitious plants (named F1 to F9) are considered to ob-

tain the value functions, which are in turn used to evaluate the susceptibility to

intentional attacks of 9 real plants (named R1 to R9). In simple words, the former 9

fictitious plants are evaluated with respect to their susceptibility to intentional haz-

ards, to build the base for comparison of the latter. Best (least vulnerable) and worst

(most vulnerable) fictitious plants are defined as bounding references, by taking the

best/worst conditions of all subcriteria considered. The details are presented in Paper

(i).

The analysis using ACUTA method needs a ranking of the fictitious NPPs to be-

gin with. It is usually given by the experts. In our case study, the utility func-

tions are first given by the authors. Let F be the set of the 9 fictitious plants

and FL = {Fj, j = 1, ..., 9} the learning set. The data of fictitiousWorst and

fictitiousBest are used to be the limit interval for the given criterion, divided into 5

subintervals. The utility functions are given such that all the data of fictitiousWorst

are set to 0 and the data sum of the fictitiousBest is set to 1.

Based on the utility functions of the main criteria and the data, we can obtain the

marginal value of the corresponding criterion for each fictitious NPP.

As a characteristic of the additive model, the global values which represent the sus-

ceptibility of the NPPs to intentional hazards are given by the sum of its marginal

values. These values are used to rank the NPPs. The ranking obtained is integrated
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Figure 5-1: Representation of the Value Functions

into the decision-making process to find out the value functions for the 6 criteria

through the ACUTA method. The intentional hazards of real plants is then anal-

ysed and represented by using Diviz (which is a software for designing, executing and

sharing Multicriteria Decision Aid (MCDA) methods, algorithms and experiments.

Based on basic algorithmic components, it allows combining these criteria for creating

complex MCDA workflows and methods.). The value functions of the 6 main criteria

(presented in Chapter 2) are shown in Figure 5-1.

The criteria preference directions can be recognised easily from the trends of the

curves. Also, for most part of each curve, it is natural that the vertical axis values

are roughly proportional to the abscissa axis ones. More importantly, we can figure

out the sensitive interval of each criterion. This can be an indicator to know better

the preference of the DMs during the ranking step and can also serve as a guidance

during the amelioration of the plants.

In using the value functions, the former data of the 9 real NPPs can then be taken into

account. We can compare the NPPs by single criterion. As shown in the 6 histograms

(Figure 5-2), for one criterion, each column represents the corresponding performance

83



Figure 5-2: Histograms of subcriteria of the NPPs

of a given NPP. The length of each column is proportional to the marginal values.

The longer the column, the better performance it has for the criterion. In the solid

line frame there are the representative columns for each criterion of the real plants.

As a characteristic of the additive model, the global values which represent the sus-

ceptibility of the NPPs to intentional hazards are given by the sum of the marginal

values. An overview of the 20 NPPs is presented graphically in Figure 5-3. Each

column represents the susceptibility performance of one NPP to intentional hazards.

Each column is constituted by 6 blocks with different textures that represent the 6

main criteria. As mentioned before, the height of each block of the representative

column is proportional to the value of the corresponding criterion data. The smaller

the height of the representative column of a plant is, the more susceptible it is in

facing an intentional hazard.
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Figure 5-3: Histogram of susceptibility to intentional hazards of the NPPs

5.1.2 Vulnerability assessment by empirical classification

The methods presented in Chapter 3 & 4 are here applied on an exemplificative case

study concerning the vulnerability analysis of Nuclear Power Plants (NPPs) [126]. We

identify n = 6 main criteria i = 1, 2, ..., n = 6 by means of the hierarchical approach

presented in [126], see Chapter 3: MCrit1 = physical characteristics, MCrit2 = so-

cial criticality, MCrit3 = possibility of cascading failures, MCrit4 = recovery means,

MCrit5 = human preparedness and MCrit6 = level of protection. Then, M = 4 vul-

nerability categories Ah, h = 1, 2, ...,M = 4 are defined as: A1 = satisfactory, A2 =

acceptable, A3 = problematic and A4 = serious. The training set DTR is constituted

by a group of N = 11 NPPs, xp, with the corresponding a priori-known categories

Γt
p, i.e., DTR = {(xp,Γ

t
p) : p = 1, 2, ..., N = 11}. The training set is summarised in

Table 5.1.

In what follows, the three techniques of Chapter 3 are applied to assess the per-

formance of the MR-Sort classification-based vulnerability analysis model built using

the training set DTR of Table 5.1.
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Table 5.1: Training set with N = 11 assigned alternatives
Alternatives, xp Vulnerability Class

Γ
t
p

x1 = {0.61, 0.6, 0.75, 0.86, 1, 0.94} A1

x2 = {0.33, 0.27, 0, 0.575, 0.4, 0.72} A3

x3 = {0.55, 0.33, 0.5, 0.725, 0.7, 0.71} A2

x4 = {0.55, 0.33, 0.75, 0.8, 0.7, 0.49} A3

x5 = {0.39, 0.23, 0.5, 0.6, 0.6, 0.62} A3

x6 = {0.39, 0.27, 0.75, 0.725, 0.7, 0.68} A2

x7 = {0.61, 0.7, 0.5, 0.725, 0.9, 0.94} A2

x8 = {0.16, 0.1, 0.5, 0.475, 0.3, 0.59} A4

x9 = {0.1, 0, 0.25, 0.5, 0.6, 0.61} A4

x10 = {0.1, 0, 0, 0.3, 0.3, 0.43} A4

x11 = {0.61, 0.7, 0.75, 1, 1, 0.94} A1

Application of the Model Retrieval-Based Approach

We generate Nsets = 1000 different training sets Drand,j
TR , j = 1, 2, ..., Nsets, and for

each set j, we randomly generate Nmodels = 100 models M(·|!rand,l, brand,l), l =

1, 2, ..., Nmodels = 100. By so doing, the expected accuracy (1-✏) of the corresponding

MR-Sort model is obtained as the average of Nsets · Nmodels = 1000 · 100 = 100000

values (1 − ✏jl), j = 1, 2, ..., Nsets, l = 1, 2, ..., Nmodels (see Chapter 3.3.1). The size

Ntest of the random test set Drand
TR is Ntest = 10000. Finally, we perform the proce-

dure of Chapter 3.3.1 for different sizes N of the random training set Drand
TR (even if

the size of the real training set available is N = 11, see Table 5.1): in particular, we

choose N = 5, 11, 20, 50, 100 and 200. This analysis serves the purpose of outlining

the behaviour of the accuracy (1 − ✏) as a function of the amount of classification

examples available.

The results are summarised in Figure 5-4 where the average percentage assignment

error ✏ is shown as a function of the size N of the learning set (from 5 to 200). As

expected, the assignment error ✏ tends to decrease when the size of the learning set N

increases: the higher the cardinality of the learning set, the higher (resp. lower) the

accuracy (resp. the expected error) in the corresponding assignments. It can be seen

that for our model with n = 6 criteria and M = 4 categories, in order to guarantee

an error rate inferior to 10% we would need training sets consisting of more than N

= 100 alternatives. Typically, for a learning set of N = 11 alternatives (like that
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Figure 5-4: Average Assignment error ✏ (%) as a function of the size N of the learning
set according to the model retrieval-based approach of Chapter 3.3.1

available in the present case study), the average assignment error ✏ is around 30%;

correspondingly, the accuracy of the MR-Sort classification model trained with the

data set DTR of size N = 11 available in the present case is around (1− ✏) = 70%: in

other words, there is a probability of 70% that a new alternative (i.e., a new NPP) is

assigned to the correct category of vulnerability.

In order to assess the randomness intrinsic in the procedure used to obtain the

accuracy estimate above, we have also calculated the 95% confidence intervals for the

average assignment error ✏ of the models trained with N = 11, 20 and 100 alternatives

in the training set. The 95% confidence interval for the error associated to the mod-

els trained with 11, 20 and 100 alternatives as learning set are [25.4%, 33%], [22.2%,

29.3%] and [10%, 15.5%], respectively. For illustration purposes, Figure 5-5 shows

the distribution of the assignment mismatch built using the Nsets ·Nmodels = 100000

values ✏jl, j = 1, 2, ..., Nsets = 1000, l = 1, 2, ..., Nmodels = 100, generated as described

in Chapter 3.3.1 for the example of 11 alternatives.

Application of The Bootstrap Method

A number B (= 1000) of bootstrapped training sets DTR,q, q = 1, 2, ..., 1000 of size

N = 11 is built by random sampling with replacement from DTR. The sets DTR,q are
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Figure 5-5: Distribution of the assignment mismatch for a MR-Sort model trained
with N = 11 alternatives (%)

then used to train B = 1000 different classification models {M1,M2, ...,M1000}.

This ensemble of models can be used to classify new alternatives. Figure 5-6 shows

the probability distributions P (Ah|xp), h = 1, 2, ...,M = 4, p = 1, 2, ..., N = 11,

empirically generated by the ensemble of B = 1000 bootstrapped MR-Sort classifi-

cation models in the task of classifying the N = 11 alternatives of the training set

DTR = {x1, x2, ..., xN}. The categories highlighted by the rectangles are those se-

lected by the majority of the classifiers of the ensemble (Figure 5-6): it can be seen

that the assigned classes coincide with the original categories of the alternatives of the

training set (Table 5.1), i.e., the accuracy of the inferred classification model based

on the given training set (with 11 assigned alternatives) is 1.

In order to investigate the confidence of the algorithm in the classification of the

test patterns, the results achieved testing one specific pattern taken in turn from the

training set are analysed. For each test of a specific pattern xp, the distribution of

the assignments by the B = 1000 classifiers shows the confidence of the assignment

of the classification model on this specific pattern. By way of example, it can be
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Figure 5-6: Probability distributions P (Ah|xp), h = 1, 2, ...,M = 4, p = 1, 2, ..., N =
11 obtained by the ensemble of B = 1000 bootstrapped MR-Sort models in the
classification of the alternatives xp contained in the training set DTR.

Table 5.2: Number of patterns classified with confidence value
Confidence range (0.4, 0.5] (0.5, 0.6] (0.6, 0.7]

Number of patterns 1 2 0
Confidence range (0.7, 0.8] (0.8, 0.9] (0.9, 1]

Number of patterns 1 2 5

seen that alternative x3 is assigned to Class A2(the correct one) with a confidence of

P (A2|x3) = 0.81, whereas alternative x6 is assigned to the same class A2, but with a

confidence of only P (A2|x6) = 0.56.

Notice that the most interesting information regards the confidence in the assignment

of the test pattern to the class with the highest number of votes, i.e., the class actually

assigned by the ensemble system according to the majority voting rule adopted [10].

In this respect, Table 5.2 reports the distribution of the confidence values associated

to the class to which each of the 11 alternatives has been assigned.

Thus, a 10/11 ⇡ 91% of all class assignments with confidence bigger than 0.5 are

correct.

89



Table 5.3: Comparison between the real categories and the assignments provided by
the LOOCV models

Assignments by

Alternative Real Categories, Γt
p LOOCV method

x1 1 1
x2 3 3
x3 2 2
x4 3 2
x5 3 3
x6 2 3
x7 2 2
x8 4 4
x9 4 4
x10 4 4
x11 1 1

Application of the Leave-One-Out Cross-Validation (LOOCV) Method

Based on the original training set DTR of size N = 11, we generate 11 “new” training

sets DTR,i, i = 1, 2, ..., 11 (each containing N − 1 = 10 assigned alternatives) by

taking out each time one of the alternatives from DTR. These 11 training sets are,

then, used to train 11 different classification models M1,M2, ...,M11. Each of these

11 models is used to classify the alternative correspondingly taken-out. Table 5.3

shows the comparison between the real classes Γt
p of the alternatives of the training

set and the categories assigned by the trained models. It can be seen that ✏ = 2 out

of the N = 11 alternatives are assigned incorrectly (alternatives x4 and x6). Thus,

the accuracy in the classification is given by the complement to 1 of the average error

rate, i.e., 1 − ✏/N = 1 − 2/11 = 1 − 0.182 = 0.818. Notice that the 95% confidence

interval for this recognition rate is [0.5901, 1].

For more details, the interested readers are invited to consult Paper (ii) in Part II.
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Table 5.4: Available protective actions

5.2 Identification of protective actions to reduce the

overall vulnerability of a fleet of Nuclear Power

Plants

The inverse classification model serves to generate an “optimal” set of protective

actions for the considered group of Nuclear Power Plants (NPPs).

5.2.1 Choice of the set of protective actions by means of sen-

sitivity indicators

As presented in Chapter 4, the choice of the set of protective actions under a budget

limitation is structured as an inverse classification problem. As shown in Figure 4-1

presented in Chapter 4, we define F = 13 direct actions (act = {act1, act2, ..., actk, ...,

actF}), each acting on one or more subcriteria (Table 5.4). The influence of each of the

actions have multiple influences on different criteria, with possibly positive or negative

effects and quantified by the different weights/coefficients. Also, for each action we

consider different levels of implementation lkp (lkp , l
k
p 2 {0, 1, 2, 3}, p 2 {1, 2, ..., N}, k 2

{1, 2, ..., F}), representing to what extent/how far/in which amount action k is applied

on system p (notice that lkp = 0 means that action k is not applied to system p).
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Finally, for simplicity we assume that the cost related to the application of a given

action is proportional to the level of the action (cpk(l
k
p) = lkp , k 2 {1, 2, ..., F}, p 2

{1, 2, ..., N}). More details of the action related parameters can be found in appended

Papers (iv) and (v).

In what follows, an analyses (based on the sensitivity indicators presented in Chapter

4) of different combinations of actions are ranked according to their ability in reducing

the vulnerability of a group of NPPs.

Ranking different combinations of actions based on ∆M

A set x of N(N = 20) NPPs (x = {xp, p 2 {1, 2, ..., N}}) is available: 10 of them

(NPPs from x6 to x15) are selected as a reference set xref to evaluate the sensitivity

indicators; the remaining NPPs are regrouped to form a set xtest(xtest = {xp, p 2

{1, 2, ..., 5} [ {16, 17, ..., N}}) used to test the combinations of actions ranked using

xref . Based on the reference set, we have performed an exhaustive calculation of the

value of ∆M for all the possible combinations of actions (in total, 413 combinations).

Then, we selected the ones (in total 29940 combinations) that have the (same) highest

value of ∆M (i.e., ∆M = 14): these represent the optimal combinations of actions

according to ∆M : in what follows, this set is referred to as act∆M .

All the combinations of actions belonging to the set act∆M are applied to each of the

N(N = 20) NPPs in x: the resulting categories (Aλ0

p , p 2 {1, 2, ..., N}) are reported

in Table 5.5. Note that the actions are ranked according to values of ∆M that are

evaluated on a group of reference plants (xref ): in this view, they provide an indica-

tion only on the expected performance of the actions on new plants and, thus, they

may not provide any indications about the combination of actions that is optimal for

one particular plant. Thus, in order to verify how close these sets of actions are to

the combinations that are optimal for a particular NPP, we compare the assignments

Aλ0

p (Table 5.5) with the best category that each NPP may reach (Aλ
p , p 2 {1, 2, ..., N})

(in other words, Aλ
p is the category that xp reaches after the application of a combi-

nation of actions that is the optimal one for that particular plant). In order to do so,

another exhaustive calculation is done upon the group x with the purpose of finding
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the actions that bring each particular NPP to the best category possible (notice that

for some NPPs, reaching A1 may not be possible). All the possible combinations of

actions are tested on each NPP in order to find the best assignment Aλ
p for each of

them. The results are shown in Table 5.5. The first column of the results shows the

original assignments for the NPPs in the studied set x. The second column shows

the corresponding possibly best assignments Aλ and the third column provides the

new assignments Aλ0

after the application of the combinations of actions included in

act∆M .

Analyzing the best assignments Aλ of the NPPs in the reference set Aλ
p , p 2 {6, 7, ..., 15},

we observe that they coincide perfectly (100%) with the assignments Aλ0

(Aλ0

p , p 2

{6, 7, ..., 15}) obtained after the application of the actions in act∆M . If we take the

NPPs in the test set as new NPPs and compare the assignments obtained by these

two methods with the original assignments A(Ap, p 2 {1, 2, ..., 5} [ {16, 17, ..., N}),

we find that: (i) all the NPPs are stable or ameliorated after the application of the

combinations of actions in act∆M ; (ii) there are 2 out of 10 NPPs that are not amelio-

rated to the best category Aλ
p (i.e., x16 and x19): they remain in the same category;

instead, 8 out of 10 NPPs are ameliorated to their best possible categories: then, the

probability that the combinations of actions act∆M ameliorate a new NPP to its best

possible category Aλ is 80%.

The analysis of inverse classification problem tackled using the sensitivity indica-

tors and taking into account the action costs and budget limitations is not presented

in this thesis work. For further details the interested reader is referred to the corre-

sponding Paper (iv) of Part II.

5.2.2 Choice of the set of protective actions with a limited

budget by optimization

After the analysis of the previous section we can have a rough idea of the capacity

of amelioration all combination of actions can have upon a group of alternatives. In
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Table 5.5: Comparison of assignments: Best possible Assignment Aλ
p and After-action

Assignment Aλ0

p listed with NPPs that are differently assigned highlighted (x16, x19).

what follows, carrying on the characteristics of the model, the inverse classification

problem is handled by the optimization approach with different perspectives (simple

optimization, robust optimization and probabilistic optimization) in order to choose

the set of protective actions to minimize the overall level of vulnerability of a group of

safety-critical systems with budget constraints. The training set DTR in this section

is constituted by a group of N = 18 NPPs with the corresponding a priori-known

categories Γt
p, i.e., DTR = {(xp,Γ

t
p) : p = 1, 2, ..., N = 18}. (We use the same training

set as in the previous section but considering only the NPPs that are pre-assigned to

A2, A3 or A4, since the alternatives originally assigned to the best category A1 are not

taken into account. The sequence numbers of the alternatives are also rearranged.)

Simple Optimization

Two tests are first carried out considering an unlimited or limited budget. The exam-

ple with unlimited budget aims at showing an ideal case of the inverse classification

problem that would lead, in principle, to the best after-action condition (same idea

as the exhaustive calculation in the previous section and the correponding best possi-

ble after-action categories for all alternatives are also coherent.). It can be seen that,

based on the original dataset of pre-assigned alternatives, there are certain NPPs (i.e.,
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Table 5.6: After-action assignments of the considered NPPs without budget con-
straint. White cases in the third column indicate unchanged assignment.

x1, x2 and x15) that can never be ameliorated to the best category A1 (Table 5.6).

The identification of the best (i.e., lowest) vulnerability category that one NPP can

be assigned to without budget restrictions represents an important base information

that provides the decision makers with a global view of the problem goals.

The optimization performed with budget constraints aims at solving the realistic

problem of finding out the combination of protective actions for each NPP, that ame-

liorate the groupe of NPPs with priority to the most vulnerable ones, managing the

“residual” resource to improve the others. With an unlimited budget, most of the

NPPs are ameliorated to a lower level of vulnerability. Actually, x1, x2 and x15 do

not change class because of their particular characteristics (e.g., the physical distance

between the site and the nearby cities is closer with respect to that of the other plants,

and such characteristic cannot be modified by any action). The minimum cost nec-

essary to improve each NPP to the best possible category is Bgmin
= 78. Fixing a

limited budget to Bg = 40, the optimization of the actions leads to the ameliorations

reported in Table 5.7. Obviously, x1, x2 and x15 still do not change class as in the
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Table 5.7: After-action assignments of the considered NPPs with budget constraint
Bg = 40(simple optimization). White cases in the third column indicate unchanged
assignment.

case with unlimited budget. Moreover, since the budget is lower than that necessary

to ameliorate all NPPs to their best category (Bgmin
= 78), there are other NPPs

(x5, x10 and x17) whose vulnerability category is not changed. On the contrary, all

NPPs originally assigned to the “worst” category A4 improve after action(s); then,

the rest of the budget is distributed to ameliorate the other NPPs as much as pos-

sible with the given budget. For example, x8 and x12 are improved by one category,

whereas they can be improved by two categories in the case of unlimited budget (Ta-

ble 5.6).

In the next two subsections, we present the results of the other two optimization

approches, considering only the realistic case of limited budget.

Robust Optimization

The results in the case of limited budget, Bg = 40 are shown in Table 5.8 and com-

pared to the original categories (obtained by majority-voting over the B compatible
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Table 5.8: After-action assignments of the considered NPPs with budget constraint
(robust optimization). White cases in the third column indicate unchanged assign-
ment. MV = majority-voting.

bootstrapped classification models). There are only 4 NPPs that are ameliorated: x13

is ameliorated from A4 to A3; x2, x3 and x18 are ameliorated from A3 to A2. There are

changes in the bootstrapped distributions of the categories of the other NPPs, but not

consistent enough to change their final assignments by majority-voting. In compari-

son with the results obtained in the previous subsection, there are less NPPs that are

ameliorated. This is reasonable for a “robust” solution, since “extreme” (worst-case)

compatible classification models affect the optimization.

Probabilistic Optimization

The probabilistic optimization is a variation of the Robust optimization. Instead of

maximizing MinM(Ix(act0p,Mq)) (i.e., the worst after-action objective function value),

we choose to maximize the expected value of the bootstrapped probability distribu-

tion of the weighted objective function Ix(act0p,Mq).

The results are shown in Table 5.9, in comparison with the original majority-voting

97



Table 5.9: After-action assignments of the considered NPPs with budget constraint
(probabilistic optimization). White cases in the third column indicate unchanged
assignment. MV = majority-voting.

category of each NPP. There are 8 NPPs that are ameliorated: x8, x13, x15 and x17

are changed from category A4 to A3; x2, x3 and x12 are changed from A3 to A2.

In comparison with the results of simple optimization, there are less NPPs that are

ameliorated; in addition, not all the NPPs that were originally assigned to the worst

category (A4) are improved. On the other hand, with respect to the results of the

robust optimization (which also considers an ensemble of different compatible mod-

els), the group of NPPs is globally improved. The results of the probabilistic case are

more satisfactory since most of the NPPs that were assigned to the worst category

(A4) are improved; then, the rest of the resources is used to ameliorate those plants

that were assigned to the second worst category (A3).

More details of the three optimization approaches can be found in the appended

Paper (v) in Part II.
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Figure 5-7: Criteria used to characterize the overall level of criticality of a complex
energy production system or plant.

5.3 Analysis of data inconsistency

In this case study, based on the characteristic of the given data (represented directly

by 6 main criteria), the hierarchical model is simplified and adapted to the problem,

we consider that the overall level of criticality of the system is characterized in terms

of: MCrit1 = level of safety, MCrit2 = level of security and protection, MCrit3 =

possible impact on the environment, MCrit4 = long-term performance, MCrit5 =

operational performance and MCrit6 = possible impact on the communication and

image of the operational enterprise, as shown in Figure 5-7: each criterion is evalu-

ated in 4 grades, ranging from best (grade ‘0’) to worst (grade ‘3’). Four levels (or

categories) of criticality are considered: satisfactory (0), acceptable (1), problematic

(2) and serious (3). Then, the assessment of the level of criticality can be performed

within a classification framework as in the previous case study. More details including

the “scoring” of the criticality of each criterion are presented in Paper (iii).

The application of the MR-sort disaggregation algorithm on the given set of alterna-

tives (Table 5.10)1 does not lead to the generation of any classification model, because

there are inconsistencies within the given data. There may exist different types of

1Data provided by EDF R&D - Management des Risque industriels.
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Table 5.10: Original training data set

inconsistencies, e.g., two alternatives (x16 and x27) with same value for all the six

criteria are assigned to different categories (resp., 3 and 2), an alternative (x19) with

better characteristics than another (x13) with respect to the six criteria, is assigned

to a worse category (3), etc.

Such inconsistencies are solved via constraints deletion (subsection 5.3.1) and con-

straints relaxation (subsection 5.3.2).

5.3.1 Inconsistency resolution via constraints deletion

We first consider finding out the consistent dataset with maximized number of pre-

assigned alternatives. We analyze the given data set by the constraints deletion

algorithm. In the given set D of 35 alternatives, 14 are deleted, which leaves a

consistent data set of 21 alternatives. The new consistent set Dad = {(xp,Γ
t
p) : p =

1, 2, ..., Nad = 21} is, then, used to generate a compatible classification model by the
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MR-sort disaggregation algorithm. Then, all the alternatives in the original data set

D are assigned a class by model Mad: such assignments agree with the results of

the constraints deletion process, i.e., only the deleted alternatives are not correctly

assigned (see Table 5.11, where the deleted alternatives are highlighted).

5.3.2 Inconsistency resolution via constraints relaxation

In the previous Section, we succeeded in obtaining a consistent data set from a given

inconsistent one by deleting the inconsistent alternatives of a “wrong” assignment.

However, from the point of view of the decision makers, it would be ideal to retain as

many alternatives as possible in the training set, especially when the size of the en-

semble is limited (which is always the case of the evaluation problem of safety-critical

infrastructures). This can be done by modifying the pre-defined (wrong) assignments

of the inconsistent alternatives.

We examine the same set D by means of the constraints relaxation algorithm pre-

sented in Chapter 3.2.3. After the application of the algorithm, we obtain the set

Dar = {(xp,Γ
t
p) : p = 1, 2, ..., Nar = 21}, which is identical to the set Dad = {(xp,Γ

t
p) :

p = 1, 2, ..., Nad = 21} obtained in the previous subsection (for the alternatives in

this set, the corresponding generated constraints are consistent). The remaining al-

ternatives form the set Dr = D − Dar. However, this algorithm also allows the

identification of two more sets: (i)Dup = {(xp,Γ
t
p)|γ

+
p = 0} (i.e., the set of alter-

natives whose assignments should be better than the original one, indicated in Ta-

ble 5.11 by a “+” in the shadowed Table cells in column “Constraint relaxation”);

(ii)Ddown = {(xp,Γ
t
p)|γ

− = 0}(i.e., the set of alternatives whose assignments should

be worse than the original one, indicated in Table 5.11 by a “-” in the shadowed Table

cells in the column “Constraints relaxation”).

Based on the indications given by the sets Dup and Ddown, we have modified each of the

alternatives in Dr by one category in the direction suggested by the relaxation algo-

rithm. Combining the alternatives thereby modified in Dr with the ones in Dar, we ob-

tain a new data set of 35 alternatives Drelax = {(xp,Γ
relax
p : p = 1, 2, ..., Nrelax = 35)},

based on which a compatible classification can be generated.
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Table 5.11: Original inconsistent dataset and the corresponding modifications oper-
ated by the constraint deletion and relaxation algorithms

In order to assess the performance of the classifications in terms of accuracy and con-

fidence in the assignments based on the set which contains “relaxed” data, a group of

N = 25 data of Drelax (marked as “TR” in the first column of Table 5.11) is used to

build the training set DTR for the model, i.e., DTR = {(xp,Γ
relax
p : p = 1, 2, ..., N =

25)}; the remaining 10 alternatives (marked as “TS” in the first column of Table 5.11)

are used for testing the model generated. The three approaches used in the previous

case study (namely, a model-retrieval-based approach, the bootstrap method, and

the Leave-One-Out Cross-Validation (LOOCV) technique) are applied. For further

details the interested reader is referred to the corresponding Paper (iii) of Part II.
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Chapter 6

CONCLUSIONS AND FUTURE

RESEARCH

6.1 Conclusions

This dissertation focuses on the vulnerability assessment and management of safety-

critical complex systems, with respect to their vulnerability to intentional hazards

(i.e., malevolent acts). A number of methods have been considered to represent,

rank, assess and finally improve the performance of safety-critical systems. A com-

prehensive methodology has been developed, which combines: (i) the representation

of the considered safety-critical complex systems within a hierarchical framework,

where vulnerability is decomposed into the factors that influence it; (ii) the qualita-

tive and quantitative evaluation of the vulnerability by two methods: (1) a ranking

approach for a “comparative” evaluation of the vulnerabilities of different systems;

(2) an empirical classification model to provide a quantitative “absolute” assessment

of the level of vulnerability of each system; (iii) the assessment of the performance

of the classification model in terms of accuracy and confidence in the assignments,

in order to cope with uncertainties; (iv) the identification and resolution of possible

inconsistencies in the data sets used to build the classification model; (v) the choice

of protective actions for each system in order to minimize their vulnerability under a

limited budget, by means of sensitivity indicators and optimization-based approaches.
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A challenge related to the study of any complex system lies in the inherent complexity

itself; thus, well-defined system boundaries and simplifications of the system repre-

sentation and analysis are usually required. Based on recent developments in the field

of complex system representation, this dissertation has introduced a method for the

hierarchical “decomposition” and analysis of a (group of) safety-critical system(s) with

respect to their vulnerability properties: this has been done within an “all-hazard”

persepctive and with main focus on the susceptibility to intentional hazards. The

availability of different scales of modeling resolution can be leveraged efficiently to

facilitate the management of complexity in the analysis of large-scale complex sys-

tems. The applications to case studies involving nuclear power plants (NPPs) have

demonstrated the effectiveness of the proposed method, in particular in identifying

the most important contributions to vulnerability.

Two approaches (based on ranking and classification) have been introduced in order

to provide a relative and an absolute evaluation of the vulnerability of a group of

systems, respectively. On the one hand, a case study of NPPs has been analysed

by using the Analytic Center UTilité Additive (ACUTA) method and the results

calculated with the software Diviz. A ranking of vulnerability “levels” of a given

group of plants has been, thus, obtained. On the other hand, a Majority Rule Sort-

ing (MR-Sort) classification model has been trained by means of a small-sized set of

data, representing a priori-known classification examples, to assign each alternative

to a pre-defined vulnerability class. The performance of the MR-Sort classification

model has been evaluated with respect to: (a) its classification accuracy (resp., error),

that is, the expected fraction of systems correctly (resp., incorrectly) classified; (b)

the confidence associated to the classification assignments (defined as the probability

that the vulnerability class assigned by the model to a given (single) system is the

correct one). The performance of the empirically constructed classification model has

been assessed by resorting to three approaches: a model-retrieval-based approach, the

bootstrap method, and the leave-one-out cross-validation (LOOCV) technique. To

the best of the authors’ knowledge, it has been the first time that:

• a classification-based hierarchical framework has been applied for the analysis
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of the vulnerability of safety-critical systems to intentional hazards;

• the confidence in the assignments provided by an MR-Sort classification model

has been quantitatively assessed by the bootstrap method, in terms of the prob-

ability that a given alternative is correctly classified.

From the results obtained, it has been concluded that although the model-retrieval-

based approach may be useful for providing an upper bound on the error rate of

the classification model (obtained by exploring the space of all possible compatible

random models and training sets), the bootstrap method seems preferable for the fol-

lowing reasons: (i) it makes use of the training data set available from the particular

case study at hand, thus characterizing the uncertainty intrinsic in it; (ii) for each al-

ternative (i.e., safety-critical system) to be classified, it is able to assess the confidence

in the classification by providing the probability that the selected vulnerability class

is the correct one. This is of paramount importance in the decision-making processes

involving the vulnerability assessment of safety-critical systems, since it provides a

metric for quantifying the “robustness” of a given decision.

The problems of inconsistency and contradictions in the initial training data set have

been addressed in order to tackle the “impossibility” to generate a compatible, “fea-

sible” classification model by means of the MR-Sort method in the presence of inco-

herent data. Specifically, we have introduced a binary variable to describe whether

one or more constraints provided by the data available should be considered or not

in the generation of a compatible classification model. Two algorithms are developed

to maximize the number of consistent data examples in the training set by deleting

or relaxing, respectively, some constraints in the process of model construction.

Finally, a pragmatic inverse classification framework has been proposed in order to

identify protective action(s) that reduce the vulnerability of safety-critical systems

with respect to intentional hazards: the framework is based on the MR-Sort classi-

fication model presented before. Two different approaches of increasing complexity

have been developed. Sensitivity indicators have been first introduced to evaluate

and rank different combinations of actions with respect to their “expected” ability to
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reduce the vulnerability of the safety-critical systems considered. A case study refer-

ring to NPPs vulnerability to intentional attacks has been worked out. The results

have shown that the actions ranked as best according to the proposed indicators give

a satisfactory performance in terms of reduction of vulnerability in test NPPs. Then,

the issue has been tackled within an optimization framework. In particular, the set

of protective actions to implement is chosen as the one minimizing the overall level

of vulnerability of a group of safety-critical systems. In this context, three different

optimization approaches have been explored: (i) one single classification model has

been built to evaluate and minimize system vulnerability; (ii) an ensemble of compat-

ible classification models, generated by the bootstrap method, has been employed to

perform a “robust” optimization, taking as reference the “worst-case” scenario over the

group of models; (iii) finally, a distribution of classification models, still obtained by

bootstrap, has been considered to address vulnerability reduction in a “probabilistic”

fashion (i.e., by minimizing the “expected” vulnerability of a fleet of systems). To

the best of the authors’ knowledge, it is the first time that an inverse classification

approach has been applied for the optimal selection of the choice of protective ac-

tions to apply to each considered safety-critical systems (e.g., Nuclear Power Plants),

considering different classification models and optimization approaches. From the

results obtained, it can be concluded that all the proposed optimization algorithms

work properly. Although the approach presented in the robust case may be useful for

providing a “conservative” choice of actions (“regardless” of any particular compatible

classification model), the formulation of the probabilistic case seems to be preferable

for real cases for the following reasons: (i) as the robust case, it makes use of the

training data set available from the particular case study at hand, thus characteriz-

ing the uncertainty intrinsic in it; (ii) with the objective of minimizing the “expected”

level of vulnerability over all the systems considered, the “extreme” and worst-case

scenarios (represented by “pathologic” models) are “neglected” or given “less weight”,

which is reasonable in real-world projects.

The proposed methodological framework provides a powerful tool for systematically

and pragmatically evaluating the vulnerability of complex, safety-critical systems.
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The study of the inverse classification problem is of paramount importance in the

decision-making processes involving the choice of protective actions under different

budgets constraints and the evaluation of the properties of the safety-critical systems

after the application of such actions.

6.2 Future research

Some limitations and open problems arising from this dissertation necessitate dis-

cussion for possible further study. Firstly, the hierarchical representation of the vul-

nerability proposed in Chapter 2 is partial and is not to be considered exhaustive.

Other properties such as the ‘cyber characteristics’ should also be taken into account

to better describe the susceptibility to intentional hazards. Cyber security refers to

the prevention and mitigation of the cyber threats beforehand and the appropriate

response if a cyber-attack occurs. Nuclear facilities have serious concerns regarding

cyber-attacks because of the vast and long-term effects of dangerous radioactive ma-

terials when an accident occurs [14][63][101][30][113][69].

In addition, the ranking model described in Chapter 2 gives a relative compari-

son of system vulnerability among the set of considered alternatives. An absolute

evaluation by a classification model is preferred with respect to its practical sig-

nificance. In this view, different classification models could be applied to different

problems. In our case, the vulnerability classes are given as discrete precise numbers

({Ah : h = 1, 2, ...,M}). However, while for certain alternatives the desired after

action classes are well defined (i.e., limited to one category), for other alternatives

they may be more vague and imprecise (e.g., for one alternative, which is originally

assigned to a good category, it may not be so important to define precisely a “target”

category of amelioration). In such cases, fuzzy set theory [131][134][135][136][79] may

be applied. A membership (characteristic) function fAh

S (x) of a fuzzy set S can be

generated to associate a “degree of membership” of the points x 2 S to class/category

Ah. In the context of interest to the present thesis, x may represent an aggregated

scalar value (obtained by Multi-Attibute Utility Theory) “synthesizing” the charac-
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teristics of a given safety-critical system of interest and Ah the vulnerability class. In

such a framework, a single system may be considered to belong to different vulnera-

bility classes with different degrees of membership at the same time [132][133].

Further, the focus of this dissertation is concentrated on the improvement of given

safety-critical systems. An inverse classification problem is solved to optimally choose

a set of protective actions for each considered system in order to improve its perfor-

mance (i.e., change its vulnerability class to a “desired” improved one). The opti-

mization process relies on the choice of an objective function that is arbitrary and

could depend on the given problem: e.g., imposing a set of “target” categories for

each considered alternative, minimizing the cost of the chosen set of protective ac-

tions [86], ameliorating the “worst” alternative to a better category considering many

possible compatible models etc. These are all interesting single-objective optimiza-

tion problems to be explored. However, the need to face real applications renders

the construction of a single objective function difficult and sometimes not feasible:

the introduction of a multi-objective optimization framework would allow to manage

more pieces of information and objectives at the same time. In our case, a model

that considers simultaneously two or more objectives could produce solutions show-

ing different trade-offs between, e.g., the cost of the actions and vulnerability of the

systems [26]. In other words, the notion of Pareto optimality should be introduced

[109][36][119]. Also, approaches such as the scalarization method [70], ✏-constraints

method [27], Goal Programming [29][28], Multi-level Programming [15][64][37][121] etc.

could be considered.

Finally, it is worth noting that in the inverse classification problem (Chapter 4), for a

given system it may be impossible to find out a set of protective actions that bring it

to a “better” class. This may be due to its original characteristics (e.g., the physical

distance of a NPP from a city can not be changed) and also to the set of available

protective actions. Decision making usually focuses on the choice of a preferred so-

lution among a set of alternatives. Typically, the decision maker concentrates first

on the alternatives and only afterwards he/she addresses the objectives or criteria

to evaluate such alternatives. This standard problem-solving approach is refered as
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alternative-focused thinking. However, focusing on alternatives is a limited way to

address decision-making situations. It is a reactive, not proactive attitude. It would

make sense to have more control over the decision situations we face. This standard

mode of thinking is backwards, because it puts the focus on identifying alternatives

before articulating values. Instead, values are fundamentally important in any de-

cision situation. Alternatives are relevant only because they are meant to achieve

our expected values. Thus, our thinking should focus first on values and later on

the alternatives that might achieve them [67][66]. This manner of thinking is refered

to as value-focused thinking [65]. Based on the study and results presented in this

dissertation, we have built a base to analyze the possible ways of ameliorating the

systems in an alternative-focused way. The results have shown the limitations of the

available and identified actions. With a value-focused thinking, instead, identifying

or creating new decision alternatives (i.e., “new” protective actions in our case) to

meet the goals and aspirations revealed through the MCDA process would be feasi-

ble. Also, it would be like a process of identification of “better decision” situations.

These “better decision” situations, which we “create” for ourselves, should be thought

of as decision opportunities, rather than as decision problems.
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ABSTRACT: Embracing an all-hazard view to deal with random failures, natural disasters,

accidents and malevolent intentional acts, a framework for the vulnerability analysis of safety-

critical systems and infrastructures is set up. A hierarchical structure is used to organise the

information on the hazards, which is then manipulated through a decision-making process for

vulnerability evaluation. We present the framework and its hierarchical model by way of as-

sessing the susceptibility of a safety-critical system to intentional hazards, considering criteria

of diverse nature, such as physical characteristics, social criticality characteristics, exposition to



cascading failures, resilience. We use a ranking method to compare systems of different charac-

teristics. The systematic process of analysis is presented with reference to the exemplary case

of nuclear power plants.

1 INTRODUCTION

The vulnerability of safety-critical systems and infrastructures is of great concern, given the

multiple and diverse hazards that they are exposed to and the potential large-scale consequences.

We conceptualise vulnerability as a global system property related to the system susceptibil-

ity to all hazards, intentional, random internal and natural, and to resilience. Notably, resilience

should not be considered separately but for its effects on the susceptibility to the three different

kinds of hazards.

The susceptibility associated with random internal hazards and natural hazards is classically

treated within a probabilistic framework to handle both the aleatory uncertainty in the occur-

rence of the accident events and their consequences (Kröger & Zio 2011) and the epistemic

uncertainty on the hypotheses and parameters of the models used. Intentional hazards relate to

malevolent acts and lack of a well-established methodology for accounting for uncertainty due

to behaviours of different rationality (Depoy & Phelan 2005).

In this paper, we illustrate a decision-making framework intended to guide analysts, man-

agers and stakeholders in the systematic identification of sources of vulnerability. Guided by

the framework, effective management can be performed in an all-hazard perspective addressing

questions like: what is the level of vulnerability of a site comparing with others? Which one

should be protected and ameliorated? How to proceed and how much will it cost?

The evaluation through the framework is shown by way of analysing the susceptibility to in-

tentional hazards of a safety-critical system, namely a Nuclear Power Plant (NPP), considering

the vulnerability sources and the related features, the system technical and physical features,

and the dependencies and interdependencies on other systems. The paper is organised as fol-

lows. In Section 2, the framework is presented with the focus on intentional hazards and by way

of the reference example of NPPs. In Section 3, the decision-making methodology for assess-

ing susceptibility is explained. In Section 4, an application is shown to exemplify the process.

Conclusions are drawn in Section 5.



Table 1: Criteria, subcriteria and preference directions

Criterion Physical characteristics Social criticality Possibility of cascading

failures

Subcriteria Number of workers Percentage of contribution to the welfare Connection distance

Nominal power production Size of served cities

Number of production units

Preference direction Min Min Min

Criterion Recovery means Human preparedness Level of protection

Subcriteria Number of installed backup components Training Physical size of the system

Duration of backup components Safety management Number of accesses

Duration of repair and recovery actions Entrance control

External emergency measures Surveillance

Preference direction Max Max Max

2 FRAMEWORK OF ANALYSIS

Vulnerability is defined in different ways depending on the domains of application, e.g.: vulner-

ability is a measure of possible future harm due to exposure to a hazard (Kröger & Zio 2011);

the identification of weaknesses in security, focusing on defined threats that could compromise a

system ability to provide a service (NWRA 2002); the set of conditions and processes resulting

from physical, social, economic, and environmental factors, which increase the susceptibility of

a community to the impact of hazards (Hofmann, Kjølle, & Gjerde 2012).

With the focus on the susceptibility to intentional hazards, a four-layers hierarchical model

is shown in Figure 1. The susceptibility to intentional hazards is characterised in terms of at-

tractiveness and accessibility. These are hierarchically broken down into factors which influence

them, including resilience seen as pre-attack protection (which influences on accessibility) and

post-attack recovery (which influences on attractiveness). The decomposition is made in 6 crite-

ria which are further decomposed in a layer of basic subcriteria, for which data and information

can be collected to make their evaluation. The criteria and subcriteria considered serve as ex-

amples and are not to be considered exhaustive.

In the following subSections, the criteria of the layers are defined and assigned preference

directions for treatment in the decision-making process. The preference direction of a criterion

indicates towards which state it is desirable to lead it to reduce susceptibility, i.e., it is assigned

from the point of view of the defender of an attack who is concerned with protecting the sys-



Figure 1: Hierarchical modelSusceptibility to intentional hazards

tem. Although only the 6 criteria in the third level of the hierarchy will be considered in the

exemplary demonstration on the NPPs evaluation, examples of scales of evaluation also of the

basic subcriteria of the last layer are proposed, in relation to the characteristics of NPPs for

exemplification purposes.

2.1 Attractiveness

This second-layer criterion is intended to capture the interest that terrorists may have to attack

the system. Such interest is considered to be driven mainly by the effects that the attack can

cause, which include damages to the assets and environment, injured people, deaths. These

depend on the physical characteristics of the system, its social criticality, the possibility of

cascading effects and the system resilience. In a general sense, resilience represents the ability

to avoid the occurrence of accidents despite the persistence of poor circumstances or to recover

from some unexpected events (Furniss, Back, & Blandfod 2011). It is the ability of a system

to anticipate, cope with/absorb, resist and recover from the impact of a hazard (technical) or

a disaster (social). Resilience reflects a dynamic confluence of factors that promotes positive

adaptation despite exposure to adverse life experiences. In our model, it is presented in terms of

capacity of recovery, human preparedness and level of protection.

The preference direction characterising this factor is such that the more attractive the system

is, the more it should be protected.



Table 2: Number of workers

Level Number of workers

1 500

2 1000

3 1500

4 2000

5 2500

2.2 Accessibility

Accessibility is introduced as a criterion in the second layer of the hierarchy to describe the

degree to which it is easy or difficult to arrive at a system in order to intentionally damage it. It

is a function of resilience through the level of protection present to defend against malevolent

attacks.

2.3 Examples of subcriteria

Each third-layer criterion is constituted by several subcriteria (Table 1). The value of the subcri-

teria can be crisp numbers or language terms according to the contents. Each of the subcriterion

is analysed in giving an explanation of the contribution on the corresponding third-layer crite-

rion.

2.3.1 Number of workers

This criterion can be seen to contribute to the attractiveness for an attack from various points

of view, for example: 1) the more workers, the more work injuries and deaths from an attack;

2) the more workers, the easier for the attackers to sneak into the system; 3) the more workers,

the higher the possibility that one of them can be turned into an attack. Limiting the number of

workers can then contribute to the security of the plant and, thus, reduce its attractiveness for an

attack. Table 2 reports some reference values, typical of NPPs.

2.3.2 Entrance control

This gives due count to the process and technology for entrance control. The more effective the

control at the entrance is, the less easy it is to enter the system with bad intentions. Table 3 gives

a 6 levels presentation.



Table 3: Entrance control

Level Type of entrance control

1 Completely open, no control, no barriers

2 Unlocked, non-complex barriers

3 Complex barriers, security patrols

4 Secure area

5 Guarded, secure area, alarmed

6 Completely secure

3 ASSESSMENT METHODOLOGY

The hierarchical model just presented structures the susceptibility of a critical system to in-

tentional attacks in terms of a number of criteria. The 16 basic, bottom-layer subcriteria are

organised into 6 main ones: the physical characteristics, the social criticality, the possibility of

cascading failures, the recovery means, the human preparedness and the level of protection.

For the quantitative assessment, each of the 16 basic subcriteria needs to be assigned a value

function in relation to the main criterion to which it contributes. The assignment can be done

in relative terms, by comparing different systems with different characteristics. To exemplify

how this is done, we consider NPPs as critical systems and perform a decision-making process

for the evaluation of their characteristics with respect to susceptibility to intentional attacks.

We first build a ranking of fictitious NPPs, through the authors’ subjective preferential judg-

ment of indirect data. This serves for constructing the basis for the relative evaluation of the

characteristics of real NPPs.

To carry out the decision-making process for the evaluation, we resort to a multiple crite-

ria decision aid (MCDA) technique named ACUTA (Analytic Centre UTilité Additive) based

on the computation of the analytic centre of a polyhedron for the selection of additive value

functions that are compatible with holistic assessments of the preferences in the criteria (Bous,

Fortemps, Glineur, & Pirlot 2010). Being central by definition and uniquely defined, the analytic

centre benefits from theoretical advantages over the notion of centrality used in other meta-UTA

methods. A brief explanation of the method is given in the subSections that follow.

For the practical computations, we use an implementation of the method available in the

Open Source software Diviz of the Decision Deck Project (http://www.decision deck.org/ ).



Figure 2: ACUTA analysis workflow for the illustrative example of Section 4

3.1 Analytic Center

The idea of the analytic centre of a polyhedron was first introduced by Huard (1967) and later

reintroduced by Sonnevend (1985) in the context of convex optimization techniques. The the-

oretical framework around this concept lies at the heart of interior-point methods for solving

linear programming optimisation problems. In ACUTA, it is suggested to compute a unique,

well-defined and central solution for aggregation-disaggregation methods based on additive

piecewise linear value function models (Bous, Fortemps, Glineur, & Pirlot 2010).

3.2 ACUTA

The UTA( UTilité Additive) method consists in building a piecewise linear additive decision

model from a preference structure using linear programming. Let A be the set of possible al-

ternatives and AL = {aj, j = 1, ..., k} the learning set. In AL, alternatives are ranked in order

of decreasing preference by the DM (Decision Maker), i.e. aj % aj+1, j = 1, ..., k− 1, where %

expresses that aj is either preferred (") or indifferent (⇠) to aj+1. The values of the n criteria,

denoted by xi(i = 1, ..., n) , belong to the interval [χi, χi] that, for each i, corresponds to the

range between the worst (χi) and best χi values found for attribute i among the alternatives

in A. Our purpose is to establish marginal value functions νi(χi) for each criterion in order to

model the perceived value of each alternative. Since these values are piecewise linear functions,

the range of values on each criterion is divided into subintervals using a predefined number of ai

points such that χi = {χi = χ1
i , χ

2
i , ..., χ

ai
i = χi} . The subdivision makes it possible to compute

value functions by linear interpolation between the values νi(χ
l
i) that have to be estimated and



hence appear as variables in the linear program. Using the degrees of freedom in the definition

of a value function, we set νi(χi) = 0 and

nX

i=1

νi(χi) = 1 (1)

This implies that νi(χi) can be interpreted as the tradeoff associated to criterion i. Furthermore,

all value functions should be monotonic, that is νi(χ
l+1

i )− νi(χ
l
i)> λ(8 i and l = 1, ..., ai = 1) ,

with λ > 0. According to the additive model, the global value ν(aj) of an alternative aj is given

by the sum of its marginal values. In other terms, if the value of the jth alternative on attribute i

is denoted by aij , the global value of aj is given by

ν(aj) =
nX

i=1

νi(aij) (2)

This analytic expression of an alternative’s global value allows for modelling the preferences of

the DM, as expressed in the ranking of the learning set, using the following linear constraints,

which we call preference constraints:

ν(aj)− ν(aj+1) > δ if aj # aj+1, (3)

ν(aj)− ν(aj+1) = 0 if aj ⇠ aj+1. (4)

Here, λ is a positive number, called preference threshold, which is usually set to a small value.

The assessment of the νi(χ
l
i) variables should be done in such a way that the deviation from the

preferences expressed by the DM in the subset AL is minimal. The adaptation of the linear ad-

ditive aggregation-disaggregation model to the analytic centre formulation is quite straightfor-

ward and gives rise to the ACUTA method; the introduction of slack variables into the objective

function leads to the following nonlinear optimisation problem, which can be solved without

further modifications:

max

k−1X

j=1

ln(sj) =
nX

i=1

ai−1X

l=1

ln(sil), (5)

s.t. ν(aj)− ν(aj+1) = 0 if aj ⇠ aj+1, (6)

(ν(aj)− ν(aj + 1))− δ = sj if aj # aj+1, (7)

sil = (ν(χl+1

i )− ν(χl
i))− λ, (8)

nX

i=1

νi(χi) = 1. (9)



Since this approach maximises the sum of slacks, parameters δ and λ can be omitted, and this

is considered an advantage. The essential advantage of this method, however, is the centrality

and uniqueness of the solutions it produces.

3.3 The Diviz tool

Diviz is a software for designing, executing and sharing Multicriteria Decision Aid (MCDA)

methods, algorithms and experiments. Based on basic algorithmic components, Diviz allows

combining these criteria for creating complex MCDA workflows and methods.

Once the workflow is designed, it can be executed on various data sets written accord-

ing to the XMCDA standard. This execution is performed on distant servers via web services

(http://www.decision deck.org/diviz/ ).

Once the execution is completed, the outputs of the different elementary components are

available and can be visualised in Diviz.

Figure 2 shows the workflow of the analysis of susceptibility to intentional hazards for the

illustrative example on NPPs of Section 4. This workflow uses, among other components, the

ACUTA component to determine value functions based on the ranking of the NPPs given by

the authors. These value functions are then applied to the real plants values and the whole data

is then analysed via some graphical representations.

4 ILLUSTRATIVE EXAMPLE

For illustration purposes, 9 fictitious plants are considered to obtain the value functions, which

are in turn used to evaluate the susceptibility to intentional attacks of 9 real plants. In simple

words, the former 9 fictitious plants are evaluated with respect to their susceptibility to inten-

tional hazards, to build the base for comparison of the latter. Best (least vulnerable) and worst

(most vulnerable) fictitious plants are defined as bounding references, by taking the best/worst

conditions of all subcriteria considered. The details are presented in the following subSections.

4.1 Case study preparation

In the hierarchical model of susceptibility, we consider 16 basic subcriteria and 6 main criteria.

4.1.1 Data preparation

In order to apply the ACUTA method, a data preparation is necessary.



For the 9 fictitious plants (named F1 to F9), the data of the 16 subcriteria are assigned arbi-

trarily by the authors. The data of one basic subcriterion are assigned to the different fictitious

sites in a way to ensure that all possible values of the subcriterion are included.

The worst (named fictitiousWorst) and best (named fictitousBest) fictitious plants are de-

fined by taking the worst/best values of each basic subcriterion. These two fictitious plants

bound, in worst and best, the situations that are expected from the other plants.

Then, the descriptive terms and values of the 16 subcriteria are scaled onto the categories.

To illustrate the procedure of comparison of the subcriteria, we refer to the level of the

six aggregated main criteria introduced in Section 2 and listed in Table 1. Their preference

directions are also presented. They convey the fact that it is preferable to limit the dimension

of the plant, minimise social criticality, control the cascading failure, maximise the recovery

means, give more training, be better prepared for emergency and take more protection measures.

To get the values of the six aggregated criteria, we apply a simple weighted sum to their

constituents subcriteria. For this, the weights for each subcriterion are arbitrarily assigned by

the authors. Then, the data of the 9 fictitious NPPs are normalised (that is, rescaled between 0

and 1).

Same steps are applied to the 9 real NPPs (named R1 to R9), whose data have been taken

from publicly available documents.

The weights of each basic subcriterion in the group for the main criteria are the same as for

the fictitious NPPs.

4.1.2 Ranking of fictitious NPPs

As presented in the previous Sections, the analysis using ACUTA method needs a ranking of

the fictitious NPPs to begin with. It is usually given by the experts. In our case study, the utility

functions are first given by the authors. As presented in Section 3.2, let N be the set of the 9

fictitious plants and NL = {Fj, j = 1, ...,9} the learning set. The data of fictitiousWorst and

fictitiousBest are used to be the limit interval for the given criterion, divided into 5 subintervals.

The utility functions are given such that all the data of fictitiousWorst are set to 0 and the data

sum of the fictitiousBest is set to 1. The value functions can be calculated and visualised in

Figure 3.

Based on the utility functions of the main criteria and the data, we can obtain the marginal

value of the corresponding criterion for each fictitious NPP.



Figure 3: Utility functions given by authors

As a characteristic of the additive model, the global values which represent the susceptibility

of the NPPs to the intentional hazards are given by the sum of its marginal values. These values

are used to rank the NPPs. The ranking obtained is integrated into the decision-making process

in the following subSection, to find out the value functions for the 6 criteria through the ACUTA

method. The intentional hazards of real plants is then analysed and represented by using Diviz.

Table 4: Ranking of the fictitious NPPs based on the utility functions given by the authors

Rank Name

1 fictitiousBest

2 F1

3 F2

4 F3

5 F4

6 F5

7 F6

8 F7

9 F8

10 F9

11 fictitiousWorst



Figure 4: Representation of the Value Functions

4.2 Results

Applying the ACUTA method on the 9 fictitious plants in Diviz, we can calculate the value

functions of the 6 criteria (Figure 4).

First of all, the criteria preference directions can be recognised easily from the trends of the

curves. Also, for most part of each curve, it is natural that the vertical axis values are roughly

proportional to the abscissa axis ones, because the vulnerability performance is roughly propor-

tional to the value of the related parameters. More importantly, we can figure out the sensitive

interval of each criterion. For example, for criterion 4, Recovery means, in the interval from 0.7

to 0.8 of the abscissa axis, there is an obvious change of gradient that is larger than before. This

phenomenon also occurs in intervals of the other criteria and is due to the authors’ preferences

in the judgments. The more recovery means, the less susceptible the NPPs are to intentional haz-

ards. Especially after a certain level (0.7 of the abscissa axis value), the extra-added measure

can substantially increase the protection. This can be an indicator to know better the preference

of the DMs during the ranking step and can also serve as a guidance during the amelioration of

the plants.

In using the value functions, the former data of the 9 real NPPs can then be taken into

account. We can compare the NPPs by single criterion. As shown in the 6 histograms (Figure

5), for one criterion, each column represents the corresponding performance of a given NPP.

The length of each column is proportional to the marginal values. The longer the column, the

better performance it has for the criterion. In the solid line frame there are the representative



Figure 5: Histograms of subcriteria of the NPPs

Figure 6: Histogram of susceptibility to intentional hazards of the NPPs

columns for each criterion of the real plants.

For the 6 criteria, the performances of most of the real NPPs are at least as good as the

fictitious ones. Especially for possibility of cascading failure and level of protection, the per-

formances of the real ones are nearly the best among all these 20 NPPs. But for the physical

characteristics of the system, there are 3 plants that are worse than the others because of their

higher production power and bigger size. For human preparedness, because of certain enhanced

training and safety management systems, there are 3 plants that present a better result. For re-

covery means, the differences among the NPPs are not very big. And for the social criticality,

they are more vulnerable than the fictitious ones.

As a characteristic of the additive model, the global values which represent the susceptibility

of the NPPs to the intentional hazards are given by the sum of the marginal values. An overview



Figure 7: Ranking of the 20 NPPs

Figure 8: Ranking of the Real NPPs

of the 20 NPPs is presented graphically in Figure 6. Each column represents the susceptibility

performance of one NPP to intentional hazards. Each column is constituted by 6 blocks with

different textures that represent the 6 main criteria. As mentioned before, the height of each

block of the representative column is proportional to the value of the corresponding criterion

data. The smaller the height of the representative column of a plant is, the more susceptible it is

in facing an intentional hazard.

Based on the performance values, we put the 20 NPPs in order as shown in Figure 7.

For the 9 real NPPs, according to the ranking, there are 5 that are among the first 10; all

of them are among the first 15. Most of their performances are better than the fictitious ones.

This is reasonable because for certain basic subcriteria, we have given some abnormally low

values to the fictitious NPPs (e.g. for the basic subcriterion Type of entrance control, we have

set certain fictitious plants to have unlocked barriers which is impossible for a real NPP). For the

real NPPs, in view of production safety and international standards, certain criteria are already

forced to be in limited intervals, that leads to improved situations than for the fictitious ones.

We then concentrate only on the real NPPs, whose ranking result is given in Figure 8.

In order to find out the weaknesses of the real NPPs, we have done first the comparison



Figure 9: Performance comparison of the Real NPPs



between the fictitiousBest and R1 (which is the best among all the Real NPPs) and then between

R1 and the rest of the Real NPPs, separately. The difference of the marginal value of each

criterion is shown in Figure 9.

R1 is as good as the fictitiousBest for two criteria. In comparing with the rest of the Real

NPPs, for R2, R5, R7 and R8, R1 is at least as good as them for each of the criteria. But for R3,

R4, R6 and R9, R1 has an advantage only on the sum of the differences. There are criteria for

which R1 is not as good as the others.

5 CONCLUSIONS

This paper proposes a decision making framework for analysing the vulnerability of critical

infrastructures. A hierarchical model of susceptibility to intentional attacks has been taken as

reference example. A case study of NPPs has been analysed by using the ACUTA method and

the results calculated with the software Diviz.

The main contributions of this paper are the establishment of the hierarchical modelling

framework for system vulnerability analysis and the decision making setting for its evaluation.
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1. INTRODUCTION

The vulnerability of safety-critical systems and infrastructures (e.g., nuclear power plants) is of great concern,

given the multiple and diverse hazards that they are exposed to (e.g., intentional, random, natural etc.) (1) and the

potential large-scale consequences. This has motivated an increased attention in analyses to guide designers, managers

and stakeholders in (i) the systematic identification of the sources of vulnerability, (ii) its qualitative and quantitative

assessment (2) (3) and (iii) the selection of proper actions to reduce it. In this paper, we are concerned only with intentional

hazards (i.e., those related to malevolent acts) and we mainly address issue (ii) above (i.e., the quantitative evaluation

of vulnerability).

With respect to that, due to the specific features (low frequency but important effects) of intentional hazards

(characterised by significant uncertainties due to behaviours of different rationality) the analysis is difficult to perform

by traditional risk assessment methods (1) (4) (5). For this reason, in the present work we propose to tackle the issue of

evaluating vulnerability to malevolent intentional acts by an empirical classification modelling framework. In particular,

we adopt a classification model based on the Majority Rule Sorting (MR-Sort) method (6) to assign an alternative of

interest (i.e., a safety-critical system) to a given (vulnerability) class (or category). The MR-Sort classification model

contains a group of (adjustable) parameters that have to be calibrated by means of a set of empirical classification

examples (also called training set), i.e., a set of alternatives with the corresponding pre-assigned vulnerability classes.

Due to the finite (typically small) size of the set of training classification examples usually available in the analysis

of real complex safety-critical systems, the performance of the classification model is impaired. In particular, (i) the

classification accuracy (resp., error), i.e., the expected fraction of patterns correctly (resp., incorrectly) classified, is

typically reduced (resp., increased); (ii) the classification process is characterised by significant uncertainty, which affects

the confidence of the classification-based vulnerability model: in our work, we define the confidence in a classification

assignment as in (10), i.e., as the probability that the class assigned by the model to a given (single) pattern is the correct

one. Obviously, there is the possibility that a classification model assigns correctly a very large (expected) fraction of

patterns (i.e., the model is very accurate), but at the same time each (correct) assignment is affected by significant

uncertainty (i.e., it is characterised by low confidence). It is worth mentioning that besides the scarcity of training data,

there are many additional sources of uncertainty in classification problems (e.g., the accuracy of the data, the suitability

of the classification technique used, etc.): however, they are not considered in this work.

The performance of the classification model (i.e., the classification accuracy - resp., error - and the confidence in the

classification) needs to be quantified: this is of paramount importance for taking robust decisions in the vulnerability

analyses of safety-critical systems (7) (8).

In this paper, three different approaches are used to assess the performance of a classification-based MR-Sort

vulnerability model in the presence of small training data sets. The first is a model-retrieval based approach (6), which

is used to assess the expected percentage error in assigning new alternatives. The second is based on bootstrapping the

available training set in order to build an ensemble of vulnerability models (9); the method can be used to assess both

the accuracy and the confidence of the model: in particular, the confidence in the assignment of a given alternative

is given in terms of the full (probability) distribution of the possible vulnerability classes for that alternative (built

on the bootstrapped ensemble of vulnerability models) (10). The third is based on the Leave-One-Out Cross-Validation
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Fig. 1. Hierarchical model for susceptibility to intentional hazards.

technique, in which one element of the available data set is (left out and) used to test the accuracy of the classification

model built on the remaining data: also this approach is employed to estimate the accuracy of the classification

vulnerability model as the expected percentage error, i.e., the fraction of alternatives incorrectly assigned (computed as

an average over the left-out data).

The contribution of this work is twofold:

• classification models have proved useful in a variety of fields including finance, marketing, environmental and

energy management, human resources management, medicine, risk analysis, fault diagnosis etc. (11), but to the

best of the authors? knowledge, this work is the first to propose a classification-based hierarchical framework for

the analysis of the vulnerability to intentional hazards of safety-critical systems;

• the bootstrap method is originally applied to estimate the confidence in the assignments provided by the MR-Sort

classification model, in terms of the probability that a given alternative is correctly classified.

The paper is organised as follows. The next Section presents the hierarchical framework for vulnerability analysis to

intentional hazards. §3 shows the classification model applied within the proposed framework. §4 describes the learning

process of a classification model by the disaggregation method. In §5, three approaches are proposed to analyse the

performance of the classification model. Then, the proposed approaches are validated on the case study of a group of

nuclear power plants in §6. Finally, §7 and §8 present the discussion and conclusions of this research.
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2. GENERAL FRAMEWORK: VULNERABILITY TO INTENTIONAL HAZARDS

Vulnerability is defined in different ways depending on the domains of application, e.g., a measure of possible future

harm due to exposure to a hazard (1), the identification of weaknesses in security, focusing on defined threats that could

compromise a system ability to provide a service (12), the set of conditions and processes resulting from physical, social,

economic, and environmental factors, which increase the susceptibility of a community to the impact of hazards (13).

With the focus on the susceptibility to intentional hazards, the three-layers hierarchical model developed in (14) is

considered and shown in Figure 1. The susceptibility to intentional hazards is characterised in terms of attractiveness

and accessibility. These are hierarchically broken down into factors which influence them, including resilience seen as

pre-attack protection (which influences on accessibility) and post-attack recovery (which influences on attractiveness).

The decomposition is made in 6 criteria, which are further decomposed into a layer of basic sub-criteria, for which data

and information can be collected. The details of the general framework of analysis are not given here for brevity; the

interested reader is referred to (14) and to the Appendix A at the end of the paper.

For the purpose of the present paper, only six criteria are considered: physical characteristics, social criticality,

possibility of cascading failures, recovery means, human preparedness and level of protection (Figure 1). These six

criteria are used as the basis to assess the vulnerability of a given safety-critical system of interest (e.g., a nuclear power

plant). Four levels (or categories) of vulnerability are considered: satisfactory, acceptable, problematic and serious. In

this view, the issue of assessing vulnerability is here tackled within a classification framework: given the characterisation

of a critical system in terms of the six criteria above, a proper vulnerability category (or class) has to be selected for

that system. A description of the algorithm used to this purpose is given in the following Section.

It is worthy to mention that the cyber characteristics are not taken into account in this work; in future work they

will be added for the criteria physical characteristics and protection.

3. CLASSIFICATION MODEL FOR VULNERABILITY ANALYSIS: THE MAJORITY RULE

SORTING (MR-SORT) METHOD

The Majority Rule Sorting Model (MR-Sort) method is a simplified version of ELECTRE Tri, an outranking

sorting procedure in which the assignment of an alternative to a given category is determined using a complex

concordance non-discordance rule (15) (16). We assume that the alternative to be classified (in this paper, a safety-

critical system or infrastructure of interests, e.g., a nuclear power plant) can be described by an n-tuple of elements

x = {x1, x2, ..., xi, ..., xn}, which represent the evaluation of the alternative with respect to a set of n criteria (by

way of example, in the present paper the criteria used to evaluate the vulnerability of a safety critical system of

interest may include its physical characteristics, social criticality, level of protection and so on: see §2). We denote

the set of criteria by N = {1, 2, ..., i, ..., n} and assume that the values xi of criterion i range in the set Xi
(9) (for

example, in the present paper all the criteria range in [0, 1]). The MR-Sort procedure allows assigning any alternative

x = {x1, x2, ..., xi, ..., xn} ∈ X = X1 × X2 × ... × Xi × ... × Xn to a particular pre-defined category (in this paper, a

class of vulnerability), in a given ordered set of categories, {Ah : h = 1, 2, ..., k}; as mentioned in §2, k = 4 categories

are considered in this work: A1 = satisfactory, A2 = acceptable, A3 = problematic, A4 = serious.

To this aim, the model is further specialised in the following way:
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• We assume that Xi is a subset of R for all i ∈ N and the sub-intervals (X1
i , X

2
i , ..., X

h
i , ..., X

k
i ) of Xi are

compatible with the order on the real numbers, i.e., for all x1
i ∈ X1

i , x
2
i ∈ X2

i , ..., x
h
i ∈ Xh

i , ..., x
k
i ∈ Xk

i , we have

x1
i > x2

i > ... > xh
i > ... > xk

i . We assume furthermore that each interval xh
i , h = 2, 3, ..., k has a smallest element

bhi , which implies that xh−1
i ≥ bhi > xh

i . The vector bh = {bh1 , b
h
2 , ..., b

h
i , ..., b

h
n} (containing the lower bounds of

the intervals Xh
i of criteria i = 1, 2, ..., n in correspondence of category h) represents the lower limit profile of

category Ah.

• There is a weight ωi associated with each criterion i = 1, 2, ..., n, quantifying the relative importance of criterion

i in the vulnerability assessment process; notice that the weights are normalised such that
Pn

i=1 ωi = 1.

In this framework, a given alternative x = {x1, x2, ..., xi, ..., xn} is assigned to category Ah, h = 1, 2, ..., k, iff

X

i∈N:xi≥bh
i

ωi ≥ λ and
X

i∈N:xi≥b
h+1
i

ωi < λ, (1)

where λ is a threshold (0 ≤ λ ≤ 1) chosen by the analyst. Rule (1) is interpreted as follows. An alternative x be-

longs to category Ah if: 1) its evaluations in correspondence of the n criteria (i.e., the values {x1, x2, ..., xi, ..., xn})

are at least as good as bhi ( lower limit of category Ah with respect to criterion i), i = 1, 2, ..., n, on a subset of

criteria that has sufficient importance (in other words, on a subset of criteria that has a weight larger than or

equal to the threshold λ chosen by the analyst); and at the same time 2) the weight of the subset of criteria

on which the evaluations {x1, x2, ..., xi, ..., xn} are at least as good as bh+1
i (lower limit of the successive category

Ah+1 with respect to criterion i), i = 1, 2, ..., n, is not sufficient to justify the assignment of x to the successive

category Ah+1.

Notice that alternative x is assigned to the best category A1 if
P

i∈N:xi≥b1
i
ωi ≥ λ and it is assigned to the

worst category Ak if
P

i∈N:xi≥b−k−1 ωi < λ. Finally, it is straightforward to notice that the parameters of such

a model are the k · n lower limit profiles (n limits for each of the k categories), the n weights of the criteria

ω1, ω2, ..., ωi, ..., ωn, and the threshold λ, for a total of n(k+1)+1 parameters.

4. CONSTRUCTING THE MR-SORT CLASSIFICATION MODEL

In order to construct an MR-Sort classification model, we need to determine the set of n(k+1)+1 parameters

described in the previous §2, i.e., the weights ω = {ω1, ω2, ..., ωn}, the lower profiles b = {b1, b2, ..., bh, ..., bk},with

bh = {bh1 , b
h
2 , ..., b

h
i , ..., b

h
n}, h = 1, 2, ..., k, and the threshold λ; in this paper, λ is considered a fixed, constant value

chosen by the analyst (e.g., λ=0.9).

To this aim, the decision maker provides a training set of ?classification examples?DTR = {(xp,Γ
t
p), p = 1, 2, ..., NTR},

i.e., a set of NTR alternatives (in this case, nuclear power plants) xp = {xp
1, x

p
2, ..., x

p
i , ..., x

p
n}, p = 1, 2, ..., NTR together

with the corresponding real pre-assigned categories (i.e., vulnerability classes) Γt
p (the superscript ?t? indicates that Γt

p

represents the true, a priori-known vulnerability class of alternative xp).

The calibration of the n(k+1) parameters is done through the learning process detailed in (6). In extreme synthesis,

the information contained in the training set DTR is used to restrict the set of MR-Sort models compatible with such

information, and to finally select one among them (6). The a priori-known assignments generate constraints on the

parameters of the MR-Sort model. In (6), such constraints have a linear formulation and are integrated into a Mixed
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Fig. 2. The general structure of the model-retrieval approach.

Integer Program (MIP) that is designed to select one (optimal) set of such parameters ω∗ and b∗ (in other words, to select

one classification model M(·|ω∗, b∗)) that is coherent with the data available and maximises a defined objective function.

In (6), the optimal parameters ω∗ and b∗ are those that maximise the value of the minimal slack in the constraints

generated by the given set of data DTR. Once the (optimal) classification model M(·|ω∗, b∗) is constructed, it can be

used to assign a new alternative x(i.e., a new nuclear power plant) to one of the vulnerability classes Ah, h = 1, 2, ..., k:

in other words, M(x|ω∗, b∗) = Γ
M
x where Γ

M
x is the class assigned by model M(·|ω∗, b∗) to alternative x and assumes

one value among {Ah : h = 1, 2, ..., k}. Further mathematical details about the training algorithm are not given here for

brevity: the reader is referred to (6) and to the Appendix B at the end of the paper.

Obviously, the number NTR of available classification examples is finite and quite small, in most of real applications

involving the vulnerability analysis of safety-critical systems. As a consequence, the model M(·|ω∗, b∗) is only a partial

representation of reality and its assignments are affected by uncertainty: this uncertainty, which needs to be quantified

to build confidence in the decision process, which follows the vulnerability assessment.

In the following Section, three different methods are presented to assess the performance of the MR-sort classification

model.

5. METHODS FOR ASSESSING THE PERFORMANCE OF THE CLASSIFICATION-BASED

VULNERABILITY ANALYSIS MODEL

5.1 Model Retrieval-Based Approach

The first method is based on the model-retrieval approach proposed in (6). A fictitious set Drand
TR of NTR alternatives

{xrand
p : p = 1, 2, ..., NTR} is generated by random sampling within the ranges Xi of the criteria, i = 1, 2, ..., n. Notice

that the size NTR of the fictitious set Drand
TR has to be the same as the real training set DTR available, for the comparison

to be fair. Also, a MR-Sort classification model M(·|ωrand, brand) is constructed by randomly sampling possible values
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of the internal parameters, {ωi : i = 1, 2, ..., n} and {bh : h = 1, 2, ..., k − 1}. Then, we simulate the behaviour of a

Decision Maker (DM) by letting the (random) model M(·|ωrand, brand) assign the (randomly generated) alternatives

{xrand
p : p = 1, 2, ..., NTR}. In other words, we construct a learning set Drand

TR by assigning the (randomly generated)

alternatives using the (randomly generated) MR-Sort model, i.e., Drand
TR = {(xrand

p ,ΓM
p ) : p = 1, 2, ..., NTR}, where Γ

M
p

is the class assigned by model M(·|ωrand, brand) to alternative xrand
p , i.e., ΓM

p = M(xrand
p |ωrand, brand). Subsequently,

a new MR-Sort model M 0(·|ω0, b0), compatible with the training set Drand
TR , is inferred using the MIP formulation

summarised in §3 and in the Appendix B. Although models M(·|ωrand, brand) and M 0(·|ω0, b0) may be quite different,

they coincide on the way they assign elements of Drand
TR , by construction. In order to compare models M and M 0, we

randomly generate a (typically large) set Drand
test of new alternatives Drand

test = {xtest,rand
p : p = 1, 2, ..., NTest} and we

compute the percentage of ?assignment errors?, i.e., the proportion of these NTest alternatives that models M and M 0

assign to different categories.

In order to account for the randomness in the generation of the training setDrand
TR and of the modelM(·|ωrand, brand),

and to provide robust estimates for the assignment errors ✏, the procedure outlined above is repeated for a large number

Nsets of random training sets Drand,j
TR , j = 1, 2, ..., Nsets; in addition, for each set j the procedure is repeated for

different random models M(·|!rand,l, brand,l), l = 1, 2, ..., Nmodels. The sequence of assignment errors thereby generated,

ejl, j = 1, 2, ..., Nsets, l = 1, 2, ..., Nmodels , is then averaged to obtain a robust estimate for ✏. The procedure is sketched

in Figure 2.

Notice that this method does not make any use of the original training set DTR(i.e., of the training set constituted

by real-world classification examples). In this view, the model retrieval-based approach can be interpreted as a tool

to obtain an absolute evaluation of the expected error that an ‘average’ MR-Sort classification model M(·|!, b) with k

categories, n criteria and trained by means of an ‘average’ data set of given size NTR makes in the task of classifying a

new generic (unknown) alternative.

5.2 The Bootstrap Method

A way to assess both the accuracy (i.e., the expected fraction of alternatives correctly classified) and the confidence

of the classification model (i.e., the probability that the category assigned to a given alternative is the correct one) is

by resorting to the bootstrap method (17), which is used to create an ensemble of classification models constructed on

different data sets bootstrapped from the original one (18): the final class assignment provided by the ensemble is based

on the combination of the individual output of classes provided by the ensemble of models (10).

The basic idea is to generate different training datasets by random sampling with replacement from the original

one (17): such different training sets are used to build different individual classification models of the ensemble. In this

way, the individual classifiers of the ensemble possibly perform well in different regions of the training space and thus

they are expected to make errors on alternatives with different characteristics; these errors are balanced out in the

combination, so that the performance of the ensemble of bootstrapped classification models is in general superior than

that of the single classifiers (18) (19). This is a desirable property since it is a more realistic simulation of the real-life

experiment from which our dataset was obtained. In this paper, the output classes of the single classifiers are combined

by majority voting : the class chosen by most classifiers is the ensemble assignment. Finally, the accuracy of the model is
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Fig. 3. The bootstrap algorithm.

given by the fraction of the patterns correctly classified. The bootstrap-based empirical distribution of the assignments

given by the different classification models of the ensemble is then used to measure the confidence in the classification

of a given alternative x that represent the probability that this alternative is correctly assigned (10) (20).

In more detail, the main steps of the bootstrap algorithm are as follows (Figure 3):

1. Build an ensemble of B (typically of the order of 500-1000) classification models {Mq(·|(ωq, bq) : q = 1, 2, ..., B)}

by random sampling with replacement from the original data set DTR and use each of the bootstrapped models

Mq(·|ωq, bq) to assign a class Γq
x, q = 1, 2, ..., B, to a given alternative x of interest (notice that Γq

x takes a value

in Ah, h = 1, 2, ..., k). By so doing, a bootstrap-based empirical probability distribution P (Ah|x), h = 1, 2, ..., k

for category Ah of alternative x is produced, which is the basis for assessing the confidence in the assignment

of alternative x. In particular, repeat the following steps for q = 1, 2, ..., B:

a. Generate a bootstrap data set DTR,q = {(xp,Γ
t
p) : p = 1, 2, ..., NTR}, by performing random sampling

with replacement from the original data set DTR = {(xp,Γ
t
p) : p = 1, 2, ..., NTR} of NTR input/output

patterns. The data set DTR,q is thus constituted by the same number NTR of input/output patterns

drawn among those in DTR, although due to the sampling with replacement some of the patterns in

DTR will appear more than once in DTR,q, whereas some will not appear at all.

b. Build a classification model {Mq(·|ωq, bq) : q = 1, 2, ..., B}, on the basis of the bootstrap data set

DTR,q = {(xp,Γ
t
p) : p = 1, 2, ..., NTR}.

c. Use the classification model Mq(·|ωq, bq) to provide a class Γ
q
x, q = 1, 2, ..., B to a given alternative of

interest, i.e., Γq
x = Mq(x|ωq, bq).

2. Combine the output classes Γ
q, q = 1, 2, ..., B of the individual classifiers by majority voting: the class chosen

by most classifiers is the ensemble assignment Γens
x , i.e., Γ

ens
x = argmaxAh [cardq{Γ

q
x = Ah}].

3. As an estimation of the confidence in the majority-voting assignment Γ
ens
x (step 2, above), we consider the

bootstrap-based empirical probability distribution P (Ah|x), h = 1, 2, ..., k, i.e., the probability that category
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Fig. 4. Leave-one-out Cross-Validation Study procedure.

Ah is the correct category given that the (test) alternative is x (6). The estimator of P (Ah|x) here employed is:

P (Ah|x) =
PB

q=1 I{Γq=Ah}

B
, where I{Γq = Ah} = 1, if Γq = Ah, and 0 otherwise.

4. Finally, the error of classification is presented by the fraction of the number of the alternatives being assigned

by the classification model and the total number of the alternatives. The accuracy of the classification model

is defined as the complement to 1 to the error.

5.3 The Leave-One-Out Cross-Validation (LOOCV) Technique

Leave-One-Out Cross-Validation (LOOCV) is a particular case of the cross-validation method. In cross-validation,

the original training set DTR is divided into N partitions, A1, A2, ..., AN , and the elements in each of the partitions are

classified by a model trained by means of the elements in the remaining partitions (Leave-p-out Cross-Validation) (20).

The cross-validation error is, then, the average of the N individual error estimates. When N is equal to the number

of elements NTR in DTR, the result is Leave-One-Out Cross-Validation (LOOCV), in which each instance xp, p =

1, 2, ..., NTR is classified by all the instances in DTR except for itself (21). For each instance xp, p = 1, 2, ..., NTR in DTR,

the classification accuracy is 1 if the element is classified correctly and 0 if it is not. Thus, the average LOOCV error

(resp. accuracy) over all the NTR instances in DTR is ✏/NTR(resp. 1 − ✏/NTR), where ✏(resp. NTR − ✏) is the number

of elements incorrectly (resp. correctly) classified. Thus, the accuracy in the assignment is estimated as 1− ✏/NTR.

With respect to the Leave-p-Out Cross-Validation, the Leave-One-Out Cross-Validation (LOOCV) produces a

smaller bias of the true error rate estimator. However, the computational time increases significantly with the size of the

data set available. This is the reason why the LOOCV is particularly useful in the case of small data sets. In addition, for

very sparse datasets (e.g., of size lower than or equal to ten), we may be “forced” to use LOOCV in order to maximise

the number of training examples employed and to generate training sets containing an amount of information that is
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Table I . Training set with NTR = 11 assigned alternatives

Alternatives, xp Vulnerability Class

Γt
p

x1 = {0.61, 0.6, 0.75, 0.86, 1, 0.94} A1

x2 = {0.33, 0.27, 0, 0.575, 0.4, 0.72} A3

x3 = {0.55, 0.33, 0.5, 0.725, 0.7, 0.71} A2

x4 = {0.55, 0.33, 0.75, 0.8, 0.7, 0.49} A3

x5 = {0.39, 0.23, 0.5, 0.6, 0.6, 0.62} A3

x6 = {0.39, 0.27, 0.75, 0.725, 0.7, 0.68} A2

x7 = {0.61, 0.7, 0.5, 0.725, 0.9, 0.94} A2

x8 = {0.16, 0.1, 0.5, 0.475, 0.3, 0.59} A4

x9 = {0.1, 0, 0.25, 0.5, 0.6, 0.61} A4

x10 = {0.1, 0, 0, 0.3, 0.3, 0.43} A4

x11 = {0.61, 0.7, 0.75, 1, 1, 0.94} A1

sufficient and reasonable for building an empirical model (22). In Figure 4, the algorithm is sketched with reference to a

training set DTR containing NTR = 11 data (like in the case study considered in the following §6).

6. APPLICATION

The methods presented in §5 are here applied on an exemplificative case study concerning the vulnerability analysis

of Nuclear Power Plants (NPPs) (? ). We identify n = 6 main criteria i = 1, 2, ..., n = 6 by means of the hierarchical

approach presented in (? ), see Chapter 3: x1 = physical characteristics, x2 = social criticality, x3 = possibility of

cascading failures, x4 = recovery means, x5 = human preparedness and x6 = level of protection. Then, k = 4

vulnerability categories Ah, h = 1, 2, ..., k = 4 are defined as: A1 = satisfactory, A2 = acceptable, A3 = problematic and

A4 = serious (Chapter 3). The training set DTR is constituted by a group of NTR = 11 NPPs xp with the corresponding

a priori-known categories Γt
p, i.e., DTR = {(xp,Γ

t
p) : p = 1, 2, ..., NTR = 11}. The training set is summarised in Table I.

In what follows, the three techniques of §5 are applied to assess the performance of the MR-Sort classification-based

vulnerability analysis model built using the training set DTR of Table I.

6.1 Application of the Model Retrieval-Based Approach

We generate Nsets = 1000 different training sets Drand,j
TR , j = 1, 2, ..., Nsets, and for each set j, we randomly

generate Nmodels = 100 models M(·|ωrand,l, brand,l), l = 1, 2, ..., Nmodels = 100. By so doing, the expected accuracy

(1-✏) of the corresponding MR-Sort model is obtained as the average of Nsets · Nmodels = 1000 · 100 = 100000 values

(1− ✏jl), j = 1, 2, ..., Nsets, l = 1, 2, ..., Nmodels(see §5.1). The size Ntest of the random test set Drand
TR is Ntest = 10000.

Finally, we perform the procedure of §5.1 for different sizes NTR of the random training set Drand
TR (even if the size of

the real training set available is NTR = 11, see Table I): in particular, we choose NTR = 5, 11, 20, 50, 100 and 200. This
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analysis serves the purpose of outlining the behaviour of the accuracy (1−✏) as a function of the amount of classification

examples available.

The results are summarised in Figure 5 where the average percentage assignment error ✏ is shown as a function of

the size NTR of the learning set (from 5 to 200). As expected, the assignment error ✏ tends to decrease when the size

of the learning set NTR increases: the higher the cardinality of the learning set, the higher (resp. lower) the accuracy

(resp. the expected error) in the corresponding assignments. Comparing these results with those obtained by Leroy et

al (6) using MR-Sort models with k = 2 and 3 categories and n = 3-5 criteria, it can be seen that for a given size of

the learning set, the error rate (resp. the accuracy) grows (resp. decrease) with the number of model parameters to be

determined by the training algorithm = n(k+1)+1. It can be seen that for our model with n = 6 criteria and k = 4

categories, in order to guarantee an error rate inferior to 10% we would need training sets consisting of more than NTR

= 100 alternatives. Typically, for a learning set of NTR = 11 alternatives (like that available in the present case study),

the average assignment error ✏ is around 30%; correspondingly, the accuracy of the MR-Sort classification model trained

with the data set DTR of size NTR = 11 available in the present case is around (1− ✏) = 70%: in other words, there is

a probability of 70% that a new alternative (i.e., a new NPP) is assigned to the correct category of vulnerability.

In order to assess the randomness intrinsic in the procedure used to obtain the accuracy estimate above, we

have also calculated the 95% confidence intervals for the average assignment error ✏ of the models trained with NTR =

11, 20 and 100 alternatives in the training set. The 95% confidence interval for the error associated to the models trained

with 11, 20 and 100 alternatives as learning set are [25.4%, 33%], [22.2%, 29.3%] and [10%, 15.5%], respectively. For

illustration purposes, Figure 6 shows the distribution of the assignment mismatch built using theNsets ·Nmodels = 100000

values ✏jl, j = 1, 2, ..., Nsets = 1000, l = 1, 2, ..., Nmodels = 100, generated as described in §5.1 for the example of 11

alternatives.

6.2 Application of The Bootstrap Method

A number B (= 1000) of bootstrapped training sets DTR,q, q = 1, 2, ..., 1000 of size NTR = 11 is built by random

sampling with replacement from DTR. The sets DTR,q are then used to train B = 1000 different classification models

{M1,M2, ...,M1000}.

Fig. 5. Average Assignment error ✏ (%) as a function of the size NTR of the learning set according to the model retrieval-based

approach of §5.1.
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This ensemble of models can be used to classify new alternatives. Figure 7 shows the probability distributions

P (Ah|xp), h = 1, 2, ..., k = 4, p = 1, 2, ..., NTR = 11, empirically generated by the ensemble of B = 1000 boot-

strapped MR-Sort classification models in the task of classifying the NTR = 11 alternatives of the training set

DTR = {x1, x2, ..., xNTR
}. The categories highlighted by the rectangles are those selected by the majority of the classifiers

of the ensemble: It can be seen that the assigned classes coincide with the original categories of the alternatives of the

training set (Table I), i.e., the accuracy of the inferred classification model based on the given training set (with 11

assigned alternatives) is 1.

In order to investigate the confidence of the algorithm in the classification of the test patterns, the results achieved

Fig. 6. Distribution of the assignment mismatch for a MR-Sort model trained with NTR = 11 alternatives (%).

Fig. 7. Probability distributions P (Ah|xp), h = 1, 2, ..., k = 4, p = 1, 2, ..., NTR = 11 obtained by the ensemble of B = 1000

bootstrapped MR-Sort models in the classification of the alternatives xp contained in the training set DTR.
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Table II . Number of patterns classified with confidence value

Confidence range (0.4, 0.5] (0.5, 0.6] (0.6, 0.7]

Numberofpatterns 1 2 0

Confidence range (0.7, 0.8] (0.8, 0.9] (0.9, 1]

Numberofpatterns 1 2 5

testing one specific pattern taken in turn from the training set are analysed. For each test of a specific pattern xi, the

distribution of the assignments by the B = 1000 classifiers shows the confidence of the assignment of the classification

model on this specific pattern. By way of example, it can be seen that alternative x3 is assigned to Class A2(the correct

one) with a confidence of P (A2|x3) = 0.81, whereas alternative x6 is assigned to the same class A2, but with a confidence

of only P (A2|x6) = 0.56.

Notice that the most interesting information regards the confidence in the assignment of the test pattern to the

class with the highest number of votes, i.e., the class actually assigned by the ensemble system according to the majority

voting rule adopted (10). In this respect, Table II reports the distribution of the confidence values associated to the class

to which each of the 11 alternatives has been assigned.

Thus, a 10/11 ≈ 91% of all class assignments with confidence bigger than 0.5 are correct.

6.3 Application of the Leave-One-Out Cross-Validation (LOOCV) Method

Based on the original training setDTR of sizeNTR = 11, we generate 11 “new” training setsDTR,i, i = 1, 2, ..., 11(each

containing NTR − 1 = 1− assigned alternatives) by taking out each time one of the alternatives from DTR. These 11

training sets are, then, used to train 11 different classification models M1,M2, ...,M11. Each of these 11 models is used

to classify the alternative correspondingly taken-out. Table III shows the comparison between the real classes Γt
p of the

alternatives of the training set and the categories assigned by the trained models.

It can be seen that ✏ = 2 out of the NTR = 11 alternatives are assigned incorrectly (alternatives x4 and x6). Thus,

the accuracy in the classification is given by the complement to 1 of the average error rate, i.e., 1− ✏/NTR = 1− 2/11 =

1− 0.182 = 0.818. Notice that the 95% confidence interval for this recognition rate is [0.5901, 1].

7. DISCUSSION OF THE RESULTS

The three proposed methods provide conceptually and practically different estimates of the performance of the

MR-Sort classification model.

The model retrieval-based approach provides a quite general indication of the classification capability of a vulnera-

bility model with given characteristics. Actually, in this approach the only constant, fixed parameters are the size NTR

of the training set (given by the number of real-world classification examples available), the number of criteria n and the

number of categories k (given by the analysts according to the characteristics of the systems at hand). On this basis, the

space of all possible training sets of size NTR and the space of all possible models with the above mentioned structure (n

criteria and k categories) are randomly explored (again, notice that no use is made of the original real training set): the
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Table III . Comparison between the real categories and the assignments provided by the LOOCV models

Assignments by

Alternative Real Categories, Γt
p LOOCV method

x1 1 1

x2 3 3

x3 2 2

x4 3 2

x5 3 3

x6 2 3

x7 2 2

x8 4 4

x9 4 4

x10 4 4

x11 1 1

classification performance is obtained as an average over the possible random training sets (of fixed size) and random

models (of fixed structure). Thus, the resulting accuracy estimate is a realistic indicator of the expected classification

performance of an ‘average’ model (of given structure) trained with an ‘average’ training set (of given size). In the case

study considered, the average assignment error (resp. accuracy) is around 30% (resp. 70%).

On the contrary, the bootstrap method uses the real training set available to build an ensemble of models compatible

with the data set itself. In this case, we do not explore the space of all possible training sets as in the model retrieval-based

approach, but rather the space of all the classification models compatible with that particular training set constituted

by real-world examples. In this view, the bootstrap approach serves the purpose of quantifying the uncertainty intrinsic

in the particular (training) data set available when used to build a classification model of given structure (i.e., with given

numbers n and k of criteria and categories, respectively). In this case study, the accuracy evaluated by the bootstrap

method is much higher (equals to one) than that estimated by the model retrieval-based approach: this is reasonable

because the latter evaluates the accuracy on a wider (i.e., in a broad sense, more uncertain) space of possible models and

training sets; on the other hand, in the former method the training set adopted is given and it represents possibly only

one of those randomly generated within the model retrieval-based approach. In addition, notice that differently from the

model retrieval-based approach, the bootstrap method does not provide only the global classification performance of the

vulnerability model, but also the confidence that for each test pattern a class assigned by the model is the correct one:

this is given in terms of the full probability distribution of the vulnerability classes for each alternative to be classified.

Finally, also the leave-one-out cross-validation method has been used to quantify the expected classification perfor-

mance of the model trained with the particular training data set available. In order to maximally exploit the information

contained in the training set DTR, NTR = 1 “reduced” (training) sets are built, each containing NTR − 1 = 10 assigned

alternatives: each “reduced” set is used to build a model whose classification performance is evaluated on the element
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correspondingly left out. The average error rate (resp. accuracy) turns out to be 18.2% (resp. 72.8%). The 95% confidence

interval for the error rate (resp. accuracy) is approximately [0, 0.4099] (resp. [0.5901, 1]).

8. CONCLUSIONS

In this paper, the issue of quantifying the vulnerability of safety-critical systems (in the example, nuclear power

plants) with respect to intentional hazards has been tackled within an empirical classification framework. To this

aim an MR-Sort model has been trained by means of a small-sized set of data representing a priori-known classification

examples. The performance of the MR-sort model has been evaluated with respect to: (i) its classification accuracy(resp.,

error), i.e., the expected fraction of patterns correctly (resp., incorrectly) classified; (ii) the confidence associated to the

classification assignments (defined as the probability that the class assigned by the model to a given (single) pattern

is the correct one). The performance of the empirically constructed classification model has been assessed by resorting

to three approaches: a model retrieval-based approach, the bootstrap method and the leave-one-out cross-validation

technique. To the best of the authors’ knowledge, it is the first time that:

• a classification-based hierarchical framework is applied for the analysis of the vulnerability of safety-critical

systems to intentional hazards;

• the confidence in the assignments provided by an MR-Sort classification model is quantitatively assessed by the

bootstrap method in terms of the probability that a given alternative is correctly classified.

From the results obtained it can be concluded that although the model retrieval-based approach may be useful for

providing an upper bound on the error rate of the classification model (obtained by exploring the space of all possible

random models and training sets), the bootstrap method seems to be advisable for the following reasons: (i) it makes use

of the training data set available from the particular case study at hand, thus characterising the uncertainty intrinsic

in it; (ii) for each alternative (i.e., safety-critical system) to be classified, it is able to assess the confidence in the

classification by providing the probability that the selected vulnerability class is the correct one. This is of paramount

importance in the decision-making processes involving the vulnerability assessment of safety-critical systems, since it

provides a metric for quantifying the ‘robustness’ of a given decision.
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APPENDIX A

As described in §2, the hierarchical model developed in (14) is considered to analyse the vulnerability of Nuclear

Power Plants (NPPs) to intentional hazards. The susceptibility to intentional hazards (first layer) is characterised

in terms of attractiveness and accessibility (second layer). These are hierarchically broken down into factors which

influence them, including resilience seen as pre-attack protection (which influences on accessibility) and post-attack

recovery (which influences on attractiveness); this decomposition is made in 6 criteria: physical characteristics, social

criticality, possibility of cascading failures, recovery means, human preparedness and level of protection (third layer).

These six third-layer criteria are further decomposed into a layer of basic sub-criteria, for which data and information

can be collected (fourth layer) (see Table I). The criteria of the layers are assigned preference directions for treatment

in the decision-making process. The preference direction of a criterion indicates towards which state it is desirable to

lead it to reduce susceptibility, i.e., it is assigned from the point of view of the defender of an attack who is concerned

with protecting the system. Although only the 6 criteria of the third level of the hierarchy are considered in the NPPs

vulnerability analysis considered in the present paper, examples of evaluation of the basic sub-criteria of the fourth
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Table I . Criteria, sub-criteria and preference directions

Criterion Physical characteristics Social criticality Possibility of

cascading failures

Sub-criteria Number of workers Percentage of contribution to the welfare Connection distance

Nominal power production Size of served cities

Number of production units

Preference direction Min Min Min

Criterion Recovery means Human preparedness Level of protection

Sub-criteria Number of installed backup components Training Physical size of the system

Duration of backup components Safety management Number of accesses

Duration of repair and recovery actions Entrance control

External emergency measures Surveillance

Preference direction Max Max Max

Table II . Number of workers

Level Number of workers

1 500

2 1000

3 1500

4 2000

5 2500

layer are proposed in what follows for exemplification purposes: in particular, we describe an example of the procedure

employed to calculate the numerical values of the third layer criteria on the basis of the characteristics of the fourth

layer sub-criteria.

In extreme synthesis, the sub-criteria of the fourth layer can be characterised by crisp numbers or linguistic terms,

depending on the nature of the sub-criterion. These descriptive terms and/or values of the fourth-layer sub-criteria are

then scaled into numerical categories. The influence to the corresponding third-layer criterion of each of the sub-criteria

is analysed.

To get the values of the six main third-layer criteria, (i) we assign arbitrary weights to each sub-criterion and (ii)

we apply a simple weighted sum to the categorical values of the constituent sub-criteria.

A.1 Illustrative example: evaluation of the criterion ?Physical characteristics?

The criterion “Physical characteristics” is taken as an illustrative example. It is constituted by the sub-criteria

“number of workers”, “nominal power production” and “number of production” or “service units”. The description and

category scales are presented as follows:
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Table III . Nominal power production

Level Nominal power production

1 1000 MWe

2 3000 MWe

3 5000 MWe

4 7000 MWe

5 10000 MWe

Table IV . Number of production or service units

Level Number of production or service units

1 2

2 4

3 6

Number of workers

This criterion can be seen to contribute to the attractiveness for an attack from various points of view, for example:

1) the more workers, the more work injuries and deaths from an attack; 2) the more workers, the easier for the attackers

to sneak into the system; 3) the more workers, the higher the possibility that one of them can be turned into an attacker.

Limiting the number of workers can, then, contribute to the security of the plant and, thus, reduce its attractiveness

for an attack. Table II reports some reference values, typical of NPPs.

Nominal capacity

The higher the production capacity, the larger the potential consequences of lost production or security in case of

an attack. Then, it is preferable to have a site with low capacity. Of course, for a fixed amount of total capacity needed,

this would lead to its distribution on multiple sites, with an increase in the number of multiple targets, though each of

them would lead to milder consequences if attacked. Table III shows some reference values of power generation capacity

at NPP sites.

Number of production or service units

Locally, within a single site, this criterion represents the number of potential attack points. Preference would go

towards having a small number of targets on a site. Table IV gives some reference values for NPPs.

We choose nuclear power plant x1 as an example to show the calculation of the numerical value associated to the

main criterion “Physical characteristics” starting from the data relative to the three corresponding sub-criteria (i.e.,

number of workers, nominal power production and number of production or service units). The original data of the

three sub-criteria of x1 is listed in Table V.

In scaling them onto corresponding category, we obtain the categorical value of alternative x1(Table VI).
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Table V . Corresponding sub-criteria original data of main criterion Physical characteristics of x1

Alternative Number of Nominal power Number of

workers production production or

(MWe) service units

x1 600 1000 2

Table VI . Categorical value for the sub-criteria corresponding to the main criterion “Physical characteristics” of nuclear power

plant x1

Alternative Number of Nominal power Number of

workers production production or

service units

x1 2 2 1

Table VII . Normalised categorical value for corresponding sub-criteria of main criterion Physical characteristics of x1

Alternative Number of Nominal power Number of

workers production production or

service units

x1 0.4 0.4 0.33

Table VIII . Weights of sub-criteria for Physical characteristics

Main Criterion: Number of Nominal power Number of

Physical workers production production or

Characteristics service units

weights 0.3 0.5 0.2

Then, the numerical values of Table VI are normalised (that is, rescaled between 0 and 1 based on the pre-defined

scales) as shown in Table VII.

Using the weights of these three sub-criteria (arbitrarily assigned by the authors) in Table VIII, we can apply a simple

weighted sum to calculate the cumulative value for main criterion “Physical characteristics”: 0.4∗0.3+0.4∗0.5+0.33∗0.2 =

0.386.

Finally, considering the preference directions of Table I (i.e., minimisation for criterion “Physical characteristics”)

and setting for each main criteria the value “0” as the worst case and “1” as the best one, we convert the cumulative

weighed value obtained above to its complement to “1”, i.e., 1− 0.386 = 0.614.

For the other five main third-layer criteria, the process of calculation is the same as for criterion “Physical

characteristics”.
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APPENDIX B

Mathematical details about the algorithm of disaggregation of a MR-Sort classification model

We consider the case involving k categories that are, thus, separated by (k-1) frontier denoted b = {b1, b2, ..., bh, ..., bk−1},

where bh = {bh1 , b
h
2 , ..., b

h
i , ..., b

h
n, h = 1, 2, ..., k}, n is the number of criteria that are taken into account. Let DTR =

{(xp,Γ
t
p), p = 1, 2, ..., NTR} be the training set, where NTR is the number of alternatives and, (A1, A2, ..., Ak) be the

partition of the training set, ordered from the ?best? to ?worst? alternatives.

For each alternative xp ∈ DTR, in category Ah of the learning set DTR(for h = 2, 3, ..., k − 1), let us define 2n

binary variables δ
h
ip and δ

h−1
ip , for p = 1, 2, ..., NTR, such that δ

l
ip equals to 1 iff gi(xp) ≥ bli for l = h − 1, h and

δ
h
ip = 0 ⇔ gi(xp) < bhi . We introduce 2n continuous variables clip(l = h − 1, h) constrained to be equal to !i if δlip = 1

and to 0 otherwise.

We consider an objective function that describes the robustness of the assignment. We introduce two more contin-

uous variables, yp and zp, for each xp ∈ DTR and ↵. In maximising ↵, we maximise the value of the minimal slack in

the constraints.

We resume all the constraints in the following mathematical program:

max ↵, (A.1)

↵ ≤ yp,↵ ≤ zp, ∀xp ∈ DTR, (A.2)
X

i,p∈N

clip + yp + ✏ = λ, ∀xp ∈ Al−1, (A.3)

X

i,p∈N

clip = λ+ zp, ∀xp ∈ Al, (A.4)

clip ≤ !i, ∀xp ∈ DTR, ∀i ∈ N, (A.5)

clip ≤ δ
l
ip, ∀xp ∈ DTR, ∀i ∈ N, (A.6)

clip ≥ δ
l
ip − 1 + !i, ∀xp ∈ DTR, ∀i ∈ N, (A.7)

Mδ
l
ip + ✏ ≥ gi(xp)− bli, ∀xp ∈ DTR, ∀i ∈ N, (A.8)

M(δlip − 1) ≤ gi(xp)− bli, ∀xp ∈ DTR, ∀i ∈ N, (A.9)
X

i,p∈N

!i = 1,λ ∈ [0.5, 1], (A.10)

!i ∈ [0, 1], ∀i ∈ N, (A.11)

clip ∈ [0, 1], δlip ∈ {0, 1}, ∀xp ∈ DTR, ∀i ∈ N, (A.12)

yp, zp ∈ R, ∀xp ∈ DTR, (A.13)

↵ ∈ R, (A.14)

M is an arbitrary large positive value, and ✏, arbitrary small positive quantity.

The case in which xp belongs to one of the extreme categories (A1 and Ak) is simple. It requires the introduction

of only n binary variables and n continuous variables. In fact, if xp belongs to A1 we just have to express that the
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subset of criteria on which xp is at least as good as b1 has sufficient weight. In a dual way, when xp lies in Ak, the worst

category, we have to express that it is at least as good as bk on a subset of criteria that has not sufficient weight.
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ABSTRACT 

The technical problem addressed by the present paper is the assessment of the safety-related criticality of 

complex energy production systems. An empirical classification model is developed, based on the 

Majority Rule Sorting method, to perform the evaluation of the class of criticality of the plant/system of 

interest. The model is built on the basis of a (limited-size) set of data representing (a priori-known) 

criticality classification examples provided by experts. 

The empirical construction of the classification model may raise two issues. First, the classification 

examples provided may contain contradictions: a validation of the consistency of the considered data set 

is, thus, required. Second, uncertainty affects the evaluation process: a quantitative assessment of the 

performance of the classification model is, thus, in order, in terms of accuracy and confidence in the 

assignments.  

In this paper, two approaches are used to tackle the first issue: the inconsistencies in the data examples are 

“resolved” by deleting or relaxing, respectively, some constraints in the process of model construction. 

Three methods are considered to address the second issue: (i) a model retrieval-based approach, (ii) the 

Bootstrap method and (iii) the cross-validation technique.  

Numerical analyses are presented with reference to a case study involving Nuclear Power Plants. 

KEYWORDS: Safety-criticality, classification model, data consistency validation, confidence estimation, 

MR-Sort, nuclear power plants 
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1. INTRODUCTION  

The ever-growing attention to Energy and Environmental (E&E) issues has led to emphasize a systemic 

view involving the trilemma of energy systems’ safety and security, sustainable development and cost 

effectiveness 
(1)

. In particular, the assessment of the level of safety-related criticality of the existing 

complex energy production systems for, possibly, their “informed” enhancement is extremely demanded. 

This has sparked a number of efforts to guide designers, managers and stakeholders in (i) the definition of 

the criteria for the evaluation of safety criticality, (ii) its qualitative and quantitative assessment 
(2)(3)

 and 

(iii) the selection of actions to reduce its level of criticality. In this paper, we mainly address the central 

issue (ii) above, i.e., the quantitative assessment of the level of safety-related criticality of complex, 

energy production systems, with particular reference to Nuclear Power Plants (NPPs).  

The analysis of the safety-related criticality of a system generally involves many different sources of 

uncertainty
 (4)

 such as long time frame, capital intensive investment and the involvement of a multiple  

stakeholders with different views and preferences 
(5)(6)

. Thus, it is difficult to proceed with traditional 

risk/safety assessment methods, such as statistical analysis or probabilistic modeling 
(7)

.  

In this paper, motivated by EDF (Electricité de France), as a methodology for aiding their decisions on 

selection of alternative safety barriers, maintenance options etc., we propose to tackle the problem within 

an empirical classification framework, to develop a classification model based on the Majority Rule 

Sorting  (MR-Sort) method
 (10)

 (which is a simplified ELECTRE model
 (8)(9)

) to assign an alternative of 

interest (i.e., a complex system or plant) to a given (criticality) class (or category). The MR-Sort 

classification model contains a group of (adjustable) parameters that have to be calibrated by means of a 

set of empirical classification examples (also called training set), i.e., a set of alternatives with the 

corresponding (criticality) classes pre-assigned by experts.  

Such empirical construction of the classification model may raise two practical issues. First, the 

classification examples provided by the experts may contain contradictions: a validation of the consistency 

of the data set is, thus, required. In this paper, two approaches are used to tackle this issue: the 
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inconsistencies in the data examples are “resolved” by deleting or relaxing, respectively, some constraints 

in the process of model construction
 (10)

. Second, due to the finite (typically small) size of the set of 

training classification examples usually available for the analysis of real complex safety-critical systems, 

the performance of the classification model is impaired. In particular, (i) the classification accuracy (resp., 

error), i.e., the expected fraction of patterns correctly (resp., incorrectly) classified, is typically reduced 

(resp., increased); (ii) the classification process is characterized by significant uncertainty, which affects 

the confidence of the classification-based evaluation model. In our work, we define the confidence in a 

classification assignment as in Ref. 10, i.e., as the probability that the class assigned by the model to a 

given (single) pattern is the correct one. The performance of the classification model (i.e., the 

classification accuracy – resp., error – and the confidence in the classification) needs to be quantified: this 

is of paramount importance for taking robust decisions informed by the integrated evaluation of the level 

of safety criticality of complex energy production systems 
(11)(12)

. In this paper, three different approaches 

are used to assess the performance of a classification-based MR-Sort evaluation model in the presence of 

small training data sets. The first is a model-retrieval based approach 
(10)

, which is used to assess the 

expected percentage error in assigning new alternatives. The second is Cross-Validation (CV): a given 

number of alternatives from the entire database is randomly selected to form the training set and generate 

the corresponding model, which is, then, used to classify the rest of the alternatives. By so doing, the 

expected percentage model error is estimated as the fraction of alternatives incorrectly assigned (as an 

average over the left-out data). The third, is based on bootstrapping the available training set in order to 

build an ensemble of evaluation models 
(13)

; the method can be used to assess both the accuracy and the 

confidence of the model: in particular, the confidence in the assignment of a given alternative is given in 

terms of the full (probability) distribution of the possible performance classes for that alternative (built on 

the bootstrapped ensemble of evaluation models) 
(14)

.   

 

The contribution of this work is threefold:  
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• a verification of the consistency of the classification examples provided by the experts is carried 

out by resorting to two approaches: as a result, the training data set is modified accordingly before 

the process of model construction; 

• classification models are used in a variety of fields including finance, marketing, environmental 

and energy management, human resources management, medicine, risk analysis, fault diagnosis 

etc. 
(15)

: to the best of the authors’ knowledge, this is the first time that a classification-based 

framework is applied for the evaluation of the safety-related criticality of complex energy 

production systems (e.g., Nuclear Power Plants); 

• to the best of the authors’ knowledge, it is the first time that the confidence in the assignments 

provided by an MR-Sort classification model is quantitatively assessed by the bootstrap method, 

in terms of the probability that a given alternative is correctly classified.  

The paper is organized as follows. The next Section presents the basic framework for system criticality 

evaluation. Section 3 shows the classification model applied within the proposed framework. Section 4 

describes the learning process of a classification model by the disaggregation method. Section 5 deals with 

the inconsistency study of the pre-assigned data set. In Section 6, three approaches are proposed to 

analyze the performance of the classification model. Then, the proposed approaches are applied in Section 

7 to a case study involving a set of nuclear power plants. Finally, Sections 8 and 9 present the discussion 

of the results and the conclusions of this research, respectively. 

 

2 GENERAL FRAMEWORK FOR THE EVALUATION OF THE LEVEL 

OF SAFETY-RELATED CRITICALITY OF COMPLEX ENERGY 

PRODUCTION SYSTEMS AND PLANTS 

Without loss of generality, we consider that the overall level of criticality of the system is characterized in 

terms of a set of six criteria !′ = {!!′, !!′, !!′, !!′, !!′, !!′}: its level of safety, its level of security and 

protection, its possible impact on the environment, its long-term performance, its operational performance 
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and its possible impact on the communication and image of the operational enterprise (Figure 1.). These 

six criteria are used as the basis to assess the level of criticality of the system. Each criterion is evaluated 

in 4 grades, ranging from best (grade ‘0’) to worst (grade ‘3’). Further details about the “scoring” of the 

criticality of each criterion are given in Appendix A. Four levels (or categories) of criticality are 

considered: satisfactory (0), acceptable (1), problematic (2) and serious (3). Then, the assessment of the 

level of criticality can be performed within a classification framework: find the criticality category (or 

class) corresponding to the evaluation of the system in terms of the six criteria above. A description of the 

algorithm used to this purpose is given in the following Section. 

 

Figure 1. Criteria used to characterize the overall level of criticality of a complex energy production system or plant.  

 

3 CLASSIFICATION MODEL FOR THE EVALUATION OF THE LEVEL 

OF CRITICALITY OF COMPLEX ENERGY PRODUCTION SYSTMES: 

THE MAJORITY RULE SORTING (MR-SORT) METHOD  

The Majority Rule Sorting Model (MR-Sort) method is a simplified version of ELECTRE Tri, an 

outranking sorting procedure in which the assignment of an alternative to a given category is determined 
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using a complex concordance non-discordance rule 
(8)(9)

. We assume that the alternative to be classified (in 

this paper, a safety-critical energy production system, e.g., a nuclear power plant) can be described by an 

n-tuple of elements  (in our case, a 6-tuple x as described in the previous section), 

which represent the evaluation of the alternative with respect to a set of n criteria (by way of example, in 

the present paper the 6 criteria used to evaluate the level of safety-related criticality of the system of 

interest include safety, security, impact on the environment and so on, as described in Section 2). We 

denote the set of criteria by  and assume that the values  of criterion i range in the set 

 
(12)

. The MR-Sort procedure allows assigning any alternative 

 to a particular pre-defined category (in this paper, a 

class of overall criticality), in a given ordered set of categories, ; as mentioned in Section 2, 

k = 4 categories are considered in this work:  = satisfactory,   = acceptable,  = problematic,  = 

serious.      

To this aim, the model is further specialized in the following way: 

-We assume that  is a subset of  for all  and the sub-intervals  of  are 

compatible with the order on the real numbers, i.e., for all , we have 

. For example, in the present paper all the criteria are ranged from best (grade 

‘0’) to worst (grade ‘3’). Regarding the preference of the algorithm (bigger values are preferred) 

and the normalization purpose for the final value which combines all the characteristics of the 

chosen criteria, the original data are preferred to be transformed into new values within a range of 

[0, 1] by simple basic calculations: {!|!! = 1 − !!′ 3 , ! ∈ ! {1,2,… ,6}}. We assume, furthermore, 

that each interval  has a smallest element , which implies that . The vector 

 (containing the lower bounds of the intervals  of criteria  in 

correspondence of category h) represents the lower limit profile of category . 

-There is a weight  associated with each criterion , quantifying the relative 

importance of criterion i in the evaluation assessment process; notice that the weights are 
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normalized such that .  

In this framework, a given alternative  can be assigned to a range of [0,1], with 

“0” representing the worst situation, and “1” the best one. One alternative is assigned to category 

, iff  

    and  ,           (1) 

where  is a threshold  chosen by the analyst. Rule (1) is interpreted as follows. An 

alternative  belongs to category  if: (1) its evaluations in correspondence of the n criteria (i.e., 

the values ) are at least as good as  (lower limit of category  with respect to 

criterion i), , on a subset of criteria that has sufficient importance (in other words, on a 

subset of criteria that has a weight larger than or equal to the threshold  chosen by the analyst); 

and at the same time (2) the weight of the subset of criteria on which the evaluations 

 are at least as good as  (lower limit of the successive category  with 

respect to criterion i), , is not sufficient to justify the assignment of  to the successive 

category . 

Notice that alternative  is assigned to the best category  if and it is assigned to the 

worst category  if .  Finally, it is straightforward to notice that the parameters of 

such a model are the ! − 1 ∗ ! lower limit profiles (n limits for the k-1 categories, since the 

worst category doesn’t need one), the n weights of the criteria , and the threshold 

λ, for a total of ! ∗ ! + 1 parameters. 

 

4 CONSTRUCTING THE MR-SORT CLASSIFICATION MODEL 

In order to construct an MR-Sort classification model, we need to determine the set of ! ∗ ! + 1 

parameters described in the previous Sections, i.e., the weights , the lower profiles 

, with , and the threshold ; in this paper,  is considered a 
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fixed, constant value chosen by the analyst (e.g., =0.9).  

To this aim, the decision maker provides a training set of “classification examples” 

, i.e., a set of  alternatives (in this case, nuclear power plants) 

,  together with the corresponding real pre-assigned categories (i.e., 

criticality classes)  (the superscript ‘t’ indicates that  represents the true, a priori-known performance 

class of alternative ).  

The calibration of the ! ∗ ! parameters is done through the learning process detailed in 
(6)

. In extreme 

synthesis, the information contained in the training set  is used to restrict the set of MR-Sort models 

compatible with such information, and to finally select one among them 
(6)

. The a priori-known 

assignments generate constraints on the parameters of the MR-Sort model. In 
(6)

, such constraints have a 

linear formulation and are integrated into a Mixed Integer Program (MIP) that is designed to select one 

(optimal) set of such parameters  and  (in other words, to select one classification model ) 

that is coherent with the data available and maximizes a defined objective function. In 
(6)

, the optimal 

parameters and  are those that maximize the value of the minimal slack in the constraints generated by 

the given set of data . Once the (optimal) classification model  is constructed, it can be used 

to assign a new alternative  (i.e., a new nuclear power plant) to one of the performance classes 

: in other words,  where  is the class assigned by model  to 

alternative  and assumes one value among . Further mathematical details about the training 

algorithm are not given here for brevity: the reader is referred to 
(6)

 and to Appendix B at the end of the 

paper. 

There are two main issues related to this disaggregation process and to the empirical construction by the 

MR-Sort classification model. First, for the given set of pre-assigned alternatives, it is possible that some 

of the assignments are not consistent, due to fact that different experts may give different judgments upon 

similar situation (which causes an internal inconsistency); thus, the given data set has to be made 

consistent in order to obtain a compatible empirical classification model. Second, because of the finite and 

quite small number  of available classification examples in most of real applications involving the 
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evaluation of safety-critical systems, the model  is only a partial representation of reality and its 

assignments are affected by uncertainty: this uncertainty needs to be quantified to build confidence in the 

decision process, which follows the criticality level assessment. 

In the following Section, the methods used in this paper to study the consistency of a given training 

dataset are described in detail; then, in Section 6 three different methods are presented to assess the 

performance of the MR-sort classification model.  

 

5 CONSISTENCY STUDY: VALIDATION AND MODIFICATION OF 

THE SET OF ALTERNATIVES PRE-ASSIGNED BY EXPERTS 

As highlighted before, sorting models consist in assigning alternatives evaluated on several criteria to 

ordered categories. To implement such models, it is necessary to set the values of the preference 

parameters used in the model. Rather than fixing the values of these parameters directly, a usual approach 

is to infer these values from assignment examples provided by experts and decision makers (DMs). 

However, assignment examples provided by experts and DMs can be inconsistent, i.e., may not “produce” 

any meaningful classification model. Such a situation can be understood according to two perspectives: 

either the examples provided by the DM contradict each other, or the preference model is not flexible 

enough to account for the way the DM assigns alternatives holistically. In the first case, the DM would 

acknowledge a misjudgment and would agree to reconsider his/her examples; in the second case, the DM 

would not agree to change the examples and the preference model should be changed. In both cases, we 

refer to an inconsistency situation. In any case, the DM needs to know what causes inconsistency, i.e., 

which judgments should be changed if the aggregation model is to be kept (which is our case)
(16)

.   

The MIP algorithm summarized in the previous section may prove infeasible in case the assignments of 

the alternatives in the learning set are incompatible with all MR-sort models. In order to help the DMs to 

understand how their inputs are conflicting and to question previously expressed judgments, to learn about 

their preferences as the interactive process evolves, we formulate two MIPs that are able to: (i) find one 
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MR-sort model that maximize the number of learning set alternatives correctly assigned and (ii) propose 

accordingly a possible modification for each of the conflicting alternatives. 

 

5.1 Inconsistency resolution via constraints deletion  

Resolving the inconsistencies can be performed by deleting a subset of constraints related to the 

inconsistent alternatives. As shown in Figure 2, each alternative  can provide one or two constraints 

with respect to its assignment: for example, alternatives assigned to extreme categories, i.e., A1 and A4, 

provide one constraint, whereas alternatives assigned to intermediate categories, i.e., A2 and A3, introduce 

two constraints. Let us introduce a binary variable  for each alternative , which is equal to “1” if all 

the constraints associated to  are fulfilled, and equal to “0” otherwise.  

 

Figure 2. Representation of constraints deletion algorithm 

 

The algorithm proceeds by “deleting” (i.e., removing) those constraints (i.e., those alternatives) that do not 

allow the creation of a compatible classification model, while maximizing the number of alternatives 

retained in the learning set (i.e., in minimizing the number of alternatives that are not taken into account): 

by so doing, we maximize the quantity of information that can be used to generate a classification model 

correctly. In other words, we obtain a MIP that yields a subset  of maximal cardinality that 

can be represented by an MR-sort model. The reader is referred to Appendix B at the end of the paper for 

more mathematical details. 



! 12!

 

5.2 Inconsistency resolution via constraints relaxation 

Based on the algorithm presented in the previous subsection, a subset of maximal cardinality that can be 

represented by an MR-sort model is obtained. At the same time, its complementary set is deleted. 

However, in order to help the DMs understand in what way the identified inconsistent inputs conflict with 

the others; and guide them to reconsider and possibly modify their judgments, a constraints relaxation 

algorithm is here proposed.  

 

Figure 3. Representation of constraints relaxation algorithm 

 

As presented in Section 5.3, each alternative  can provide one or two constraints with respect to its 

assignment. As presented in Figure 3, we introduce the following binary variables: , for the alternatives 

originally assigned to extreme categories, i.e., A1 and A4;  and  for the alternatives originally 

assigned to intermediate categories, i.e., A2 and A3: In particular,  refers to the fulfillment of the 

constraint associated to the better category lower profiles, whereas  refers to the fulfillment of the 

constraint associated to the worse category lower profiles. 

As in the previous case, the algorithm identifies a subset  of maximal cardinality that can 

generate an MR-sort model with proper formulation. In addition, for each of the alternatives that are not 

accepted into the subset , the corresponding inconsistent constraints are also targeted: for example, if 
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for one alternative  we obtain  (resp., ), then this alternative should be classified in a better 

(resp., worse) category; in other words, its original assignment is underestimated (resp., overestimated). 

The same criterion is applied to the alternatives that are originally assigned to the best or worst category. 

The reader is referred to Appendix B at the end of the paper for more mathematical details.  

6 METHODS FOR ASSESSING THE PERFORMANCE OF THE 

CLASSIFICATION-BASED MODEL FOR THE EVALUATION OF THE 

LEVEL OF CRITICALITY OF COMPLEX ENERGY PRODUCTION 

SYSTEMS AND PLANTS 

6.1 Model Retrieval-Based Approach 

The first method of performance assessment is based on the model-retrieval approach proposed in 
(6)

. A 

fictitious set  of  alternatives  is generated by random sampling within the ranges 

 of the criteria, . Notice that the size  of the fictitious set  has to be the same as the 

real training set  available, for the comparison to be fair. Also, a MR-Sort classification model 

 is constructed by randomly sampling possible values of the internal parameters, 

 and . Then, we simulate the behavior of a Decision Maker (DM) by 

letting the (random) model  assign the (randomly generated) alternatives . In 

other words, we construct a learning set  by assigning the (randomly generated) alternatives using the 

(randomly generated) MR-Sort model, i.e., , where  is the class assigned by 

model  to alternative , i.e., . Subsequently, a new MR-Sort model 

, compatible with the training set , is inferred using the MIP formulation summarized in 

Section 3 and in the Appendix B. Although models  and  may be quite different, 

they coincide on the way they assign elements of , by construction. In order to compare models M and 

M′, we randomly generate a (typically large) set of new alternatives  and we 

compute the percentage of “assignment errors”, i.e., the proportion of these  alternatives that models 
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M and M′ assign to different criticality categories. 

In order to account for the randomness in the generation of the training set  and of the model 

, and to provide robust estimates for the assignment errors ε, the procedure outlined above is 

repeated for a large number  of random training sets ; in addition, for each set j the 

procedure is repeated for different random models . The sequence of 

assignment errors thereby generated, , is, then, averaged to obtain a robust 

estimate for ε. The procedure is sketched in Figure 4. 

Notice that this method does not make any use of the original training set  (i.e., of the training set 

constituted by real-world classification examples). In this view, the model retrieval-based approach can be 

interpreted as a tool to obtain an absolute evaluation of the expected error that an ‘average’ MR-Sort 

classification model  with k categories, n criteria and trained by means of an ‘average’ data set of 

given size  makes in the task of classifying a new generic (unknown) alternative.  

 

Figure 4. The general structure of the model-retrieval approach  

 

6.2 Cross-Validation Technique
 (17)(18)(19)

  

This approach is proposed to characterize the performance of the MR-Sort model in terms of average 

classification accuracy (resp., error).  
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The method proceeds as follows: 

0. Set the iteration number q=1;  

1. For a data set  with pre-assigned alternatives, select a learning set 

  (with ) by performing random sampling without replacement 

from the given . The remaining alternatives are used to form a test set , with 

. 

2. Build a classification model  on the basis of the training set . 

3. Use the classification model  to provide a class  to the elements of the corresponding 

test set . 

4. The classification error  on test set  is computed as the fraction of alternatives of  that are 

incorrectly classified. 

Steps 1-4 are repeated for  times (in this paper, B=1000). Finally, the expected classification 

error of the algorithm is obtained as the average of the classification errors , obtained on the 

B test sets , . The general structure of the algorithm is as shown in Figure 5.  

 

Figure 5. The general structure of the Cross-Validation Technique 
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6.3 The Bootstrap Method 

A way to assess both the accuracy (i.e., the expected fraction of alternatives correctly classified) and the 

confidence of the classification model (i.e., the probability that the category assigned to a given alternative 

is the correct one) is by resorting to the bootstrap method 
(20)

, which is used to create an ensemble of 

classification models constructed on different data sets bootstrapped from the original one 
(21)

. The final 

class assignment provided by the ensemble is based on the combination of the individual output of classes 

provided by the ensemble of models 
(13)

.  

The basic idea is to generate different training datasets by random sampling with replacement from the 

original one 
(22)

. The different training sets are used to build different individual classifications. The 

individual classifiers of the ensemble perform well possibly in different regions of the training space and, 

thus, they are expected to make errors on alternatives with different characteristics; these errors are 

balanced out in the combination, so that the performance of the ensemble is, in general, superior to that of 

the single classifiers 
(21)(22)

.  

In this paper, the output classes of the single classifiers are combined by majority voting: the class chosen 

by most classifiers is the ensemble final assignment. The bootstrap-based empirical distribution of the 

assignments given by the different classification models of the ensemble is used to measure the confidence 

in the classification of a given alternative , that represents the probability that such alternative is 

correctly assigned 
(13)(22)

.  

In more details, the main steps of the bootstrap algorithm here developed are as follows (Figure 6): 

1. Build an ensemble of B (typically of the order of 500-1000) classification models 

 by random sampling with replacement from the original data set  and 

use each of the bootstrapped models  to assign a class , q = 1, 2,..., B, to a given 

alternative  of interest (notice that  takes a value in ). By so doing, a bootstrap-

based empirical probability distribution  for category  of alternative  is 

produced, which is the basis for assessing the confidence in the assignment of alternative . In 

particular, repeat the following steps for q = 1, 2,..., B: 
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a. Generate a bootstrap data set , by performing random sampling 

with replacement from the original data set  of  input/output 

patterns. The data set  is, thus, constituted by the same number  of input/output 

patterns drawn among those in , although due to the sampling with replacement some of 

the patterns in  will appear more than once in , whereas some will not appear at all. 

b. Build a classification model , on the basis of the bootstrap data set 

. 

c. Use the classification model  to provide a class  to a given 

alternative of interest, i.e., . 

 

Figure 6. The bootstrap algorithm 

 

2. Combine the output classes  of the individual classifiers by majority voting: the 

class chosen by most classifiers is the ensemble assignment , i.e., . 

3. As an estimation of the confidence in the majority-voting assignment  (step 2, above), we 

consider the bootstrap-based empirical probability distribution , i.e., the 

probability that category  is the correct category given that the (test) alternative is  
(6)

. The 
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estimator of  here employed is: , where , if , and 

0 otherwise. 

4. Finally, the accuracy of classification is presented by the estimator  (ratio of the number 

of alternatives correctly assigned by the classification models to the total number of alternatives). 

The error of the classification model is defined as the complement to 1 to the accuracy. 

 

7 APPLICATIONS  

The methods presented in Sections 4 - 6 are applied on an exemplificative case study concerning the 

assessment of the overall level of safety-related criticality of Nuclear Power Plants (NPPs) 
(9)

. We identify 

n = 6 main criteria  by means of the approach presented in 
(9)

 (see Section 2): x1 = level of 

safety, x2 = level of security and radioprotection, x3 = possible impact on the environment, x4 = long-term 

performance, x5 = operational performance and x6 = impact on the communication and image of the 

enterprise. Then, k = 4 criticality categories  are defined as:  = satisfactory,  = 

acceptable,  = problematic and  = dangerous (Section 2). The entire original dataset is constituted by a 

group of 35 systems  with the corresponding a priori-known category  (Table I).  

In what follows, first we apply the two approaches for data consistency validation (Section 7.1); then, we 

use the three techniques of Section 6 to assess the performance of the MR-Sort classification-based model 

built using the training set  (Section 7.2).  

 

 

 

 

 

 

 

Table I. Original training data set  
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7.1 Consistency study results 

The application of the MR-sort disaggregation algorithm on the given set of alternatives 

 (Table I) does not lead to the generation of any classification model 

(infeasible solution by the MIP algorithm), because there are inconsistencies within the given data. There 

may exist different types of inconsistencies, as illustrated in Table II by two examples: 

 

Table II. Examples of inconsistent assignments  

Case 1: 

 

Case 2: 
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In Case 1, two alternatives (x16 and x27) with same value for all the six criteria are assigned to different 

categories (resp., 3 and 2). In Case 2, an alternative (x19) with better characteristics than another (x13) with 

respect to the six criteria, is assigned to a worse category (3).  

Such inconsistencies are solved via constraints deletion (Section 7.1.1) and constraints relaxation (Section 

7.1.2). 

 

7.1.1 Inconsistency resolution via constraints deletion  

We first consider finding out the consistent dataset with maximized number of pre-assigned alternatives. 

We analyze the given data set by the constraints deletion algorithm. In the given set  of 35 alternatives, 

14 are deleted, which leaves a consistent data set of 21 alternatives. The new consistent set 

 is, then, used to generate a compatible classification model 

 by the MR-sort disaggregation algorithm. Then, all the alternatives in the original data set 

 are assigned a class by model : such assignments agree with the results of the constraints deletion 

process, i.e., only the deleted alternatives are not correctly assigned (see Table III, where the deleted 

alternatives are highlighted).   

 

7.1.2 Inconsistency resolution via constraints relaxation 

In the previous Section, we succeeded in obtaining a consistent data set from a given inconsistent one by 

deleting the inconsistent alternatives of a “wrong” assignment. However, from the point of view of the 

decision makers, it would be ideal to retain as many alternatives as possible in the training set, especially 

when the size of the ensemble is limited (which is always the case of the evaluation problem of safety-

critical infrastructures). This can be done by modifying the pre-defined (wrong) assignments of the 
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inconsistent alternatives.  

We examine the same set  by means of the constraints relaxation algorithm presented in section 5.2. 

After the application of the algorithm, we obtain the set , which is 

identical to the set  obtained in the previous subsection (for the 

alternatives in this set, the corresponding generated constraints are consistent). The remaining alternatives 

form the set . However, this algorithm also allows the identification of two more sets: (i) 

 (i.e., the set of alternatives whose assignments should be better than the 

original one, indicated in Table III by a “+” in the shadowed Table cells in column “Constraint 

relaxation”); (ii)  (i.e., the set of alternatives whose assignments should be worse 

than the original one, indicated in Table III by a “-” in the shadowed Table cells in the column 

“Constraints relaxation”). 

Based on the indications given by the sets  and , we have modified each of the alternatives in  

by one category in the direction suggested by the relaxation algorithm. Combining the alternatives thereby 

modified in  with the ones in , we obtain a new data set of 35 alternatives 

. A group of  data of  (marked as “TR” in the first 

column of Table III) is used to build the training set  for the model, i.e., 

; the remaining 10 alternatives (marked as “TS” in the first column 

of Table III) are used for testing the model generated. In what follows, we consider the classification 

model generated using dataset  and we assess its performance in terms of accuracy and confidence in 

the assignments. 

 

Table III. Original inconsistent dataset and the corresponding modifications operated by the constraint deletion and relaxation 

algorithms  
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7.2 Methods for assessing the performance of the classification-based model for the evaluation of the 

criticality of complex systems 

7.2.1 Application of the Model Retrieval-Based Approach 

We generate  different training sets , and for each set j, we randomly generate 

 models . By so doing, the expected accuracy (1-ε) of the 

corresponding MR-Sort model is obtained as the average of  values 

 (see Section 6.1). The size  of the random test set  is 

. Finally, we perform the procedure of Section 6.1 for different sizes  of the random 

training set  (even if the chosen size of the training set in our following case study is , see 

Section 7.1.2): in particular, we choose . This analysis serves the purpose 

of outlining the behavior of the accuracy (1-ε) as a function of the amount of classification examples 

available.  



! 23!

The results are summarized in Figure 7, where the average percentage assignment error ε is shown as a 

function of the size  of the learning set (from 5 to 200). As expected, the assignment error ε tends to 

decrease when the size of the learning set  increases: the higher the cardinality of the learning set, the 

higher (resp. lower) the accuracy (resp. the expected error) in the corresponding assignments. Comparing 

these results with those obtained by Leroy et al 
(6)

 using MR-Sort models with k = 2 and 3 categories and n 

= 3-5 criteria, it can be seen that for a given size of the learning set, the error rate (resp. the accuracy) 

grows (resp. decreases) with the number of model parameters to be determined by the training algorithm = 

! ∗ ! + 1. It can be seen that for our model with n = 6 criteria and k = 4 categories, in order to guarantee 

an error rate inferior to 10% we would need training sets consisting of more than = 100 alternatives. 

Typically, for a learning set of  = 25 alternatives (as chosen in Section 7.1.2), the average assignment 

error ε is around 24%; correspondingly, the accuracy of the MR-Sort classification model trained with the 

data set  of size  available in the present case is around (1-ε) = 76%: in other words, there is 

a probability of 76% that a new alternative (i.e., a new NPP) is assigned to the correct category of 

performance. 

 

Figure 7. Average Assignment error ε (%) as a function of the size  of the learning set according to the model retrieval-based 

approach of Section 5.1  
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In order to assess the randomness intrinsic in the procedure used to obtain the accuracy estimate above, we 

have also calculated the 95% confidence intervals for the average assignment error ε of the models trained 

with  = 11, 20, 25 and 100 alternatives in the training set. The 95% confidence interval for the error 

associated to the models trained with 11, 20, 25 and 100 alternatives as learning set are [25.4%, 33%], 

[22.2%, 29.3%], [12.8%, 27.6%] and [10%, 15.5%], respectively. For illustration purposes, Figure 8 

shows the distribution of the assignment mismatch built using the  values 

, generated as described in Section 5.1 for the example of 25 

alternatives.  

 

Figure 8. Distribution of the assignment mismatch for a MR-Sort model trained with  = 25 alternatives (%) 

 

7.2.2 Application of the Cross-Validation Technique 

A loop of B (=1000) iterations is performed, as presented in section 6.2. We take  as the training set 

and generate a learning set  for each loop by performing random 

sampling without replacement from it. The test set is formed by the corresponding complimentary set of 

. The average error calculated is around 18%. 

 

7.2.3 Application of the Bootstrap Method 
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A number B (= 1000) of bootstrapped training sets  of size  = 25 is built by 

random sampling with replacement from  (see Section 7.1.2). The sets  are then used to train B = 

1000 different classification models . Then, all the data available (both the training and 

test elements) are classified by the ensemble. 

Notice that all the training patterns are assigned by majority voting to the correct class 
(13)

: in other words, 

the accuracy of the ensemble of models on the training set is 100%. Then, a confidence in the assignment 

is also provided. In this respect, Table IV reports the distribution of the confidence values associated to the 

class to which each of the 25 alternatives has been assigned. 

Table IV: Number of patterns classified with a given confidence value 

 

Thus, a fraction of  of all the alternatives (i.e., the critical plants) of the training set are correctly 

assigned with confidence bigger than 0.8. 

The ensemble of models can also be used to classify new alternatives, e.g., the alternatives in the test set 

 (see Section 7.1.2). Figure 9 shows the probability distributions of the 10 elements of 

, empirically generated by the ensemble of B = 1000 bootstrapped 

MR-Sort classification models in the task of classifying the  = 10 alternatives of the test set 

. The categories highlighted by the rectangles are the correct ones, as obtained by the 

constraints relaxation algorithm (Section 7.1.2, Table III). It can be seen that six alternatives (x26, x27, x28, 

x29, x30 and x33) over 10 are correctly assigned: in other words, the accuracy of the informed bootstrapped 

ensemble is around . 

Then, for each specific test pattern xi, the distribution of the assignments by the B = 1000 classifiers is 

analyzed to obtain the corresponding confidence. By way of example, it can be seen that alternative  is 

assigned to Class  (the correct one) with a confidence of , whereas alternative  is 

assigned to Class  but with a confidence of only . 
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More importantly, it can be seen that the 4 alternatives incorrectly classified (x31, x32, x34 and x35) are 

assigned a class close to the correct one; in addition, the “true” class is given the second highest 

confidence in the distribution. For example, alternative  is assigned to class  instead of  with 68% 

confidence; however, the true Class  is still given a confidence of 32%. 

 

Figure 9. Probability distributions examples of  obtained by the ensemble of B = 

1000 bootstrapped MR-Sort models in the classification of the alternatives  contained in the training set  

 

8 DISCUSSION OF THE RESULTS 

The analysis of the inconsistencies of the original dataset has ensured the generation of a coherent training 

set and, correspondingly of a compatible classification model for system criticality evaluation: 

, generated by constraints relaxation. 

Then, three methods have been used to assess the performance of the classification model thereby 

generated: the three methods provide conceptually and practically different estimates of the performance 

of the MR-Sort classification model.  

The model retrieval-based approach provides a quite general indication of the classification capability of 
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an evaluation model with given characteristics. Actually, in this approach the only constant, fixed 

parameters are the size  of the training set (given by the number of real-world classification examples 

available), the number of criteria n and the number of categories k (given by the analysts according to the 

characteristics of the systems at hand).  On this basis, the space of all possible training sets of size  

and the space of all possible models with the above mentioned structure (n criteria and k categories) are 

randomly explored (again, notice that no use is made of the original real training set): the classification 

performance is obtained as an average over the possible random training sets (of fixed size) and random 

models (of fixed structure). Thus, the resulting accuracy estimate is a realistic indicator of the expected 

classification performance of an ‘average’ model (of given structure) trained with an ‘average’ training set 

(of given size). In the case study considered, the average assignment error (resp. accuracy) is around 24% 

(resp. 76%). 

The cross-validation method has been also used to quantify the expected classification performance in 

terms of accuracy. In order to maximally exploit the information contained in the available data set, 

B=1000 training sets of size  are generated by random sampling without replacement from the 

original set. Each training set is used to build a model whose classification performance is evaluated on 

the ten elements correspondingly left out. The average error rate (resp. accuracy) turns out to be 18% 

(resp. 82%).  

On the contrary, the bootstrap method uses the training set available to build an ensemble of models 

compatible with the data set itself. In this case, we do not explore the space of all possible training sets as 

in the model retrieval-based approach, but rather the space of all the classification models compatible with 

that particular training set constituted by real-world examples. In this view, the bootstrap approach serves 

the purpose of quantifying the uncertainty intrinsic in the particular (training) data set available when used 

to build a classification model of given structure (i.e., with given numbers n and k of criteria and 

categories, respectively). In this case study, the accuracy evaluated by the bootstrap method is slightly 

lower than that estimated by the model retrieval-based approach, with an error (accuracy) rate equals 40% 

(60%). However, notice that differently from the model retrieval-based approach, the bootstrap method 
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does not provide only the global classification performance of the evaluation model, but also the 

confidence that for each test pattern a class assigned by the model is the correct one: this is given in terms 

of the full probability distribution of the performance classes for each alternative to be classified.  

 

9 CONCLUSIONS 

In this paper, the issue of assessing the criticality of complex energy production systems (in the example, 

nuclear power plants) with respect to different safety-related criteria has been tackled within an empirical 

framework of classification. An MR-Sort model has been trained by means of a small-sized set of data 

representing a priori-known criticality classification examples provided by experts. Inconsistencies and 

contradictions in the initial data set have been resolved by resorting to constraint deletion and relaxation 

algorithms that have maximized the number of consistent examples in the training set. The performance of 

the MR-sort model has been evaluated with respect to: (i) its classification accuracy (resp., error), i.e., the 

expected fraction of patterns correctly (resp., incorrectly) classified; (ii) the confidence associated to the 

classification assignments (defined as the probability that the class assigned by the model to a given 

(single) pattern is the correct one). In particular, the performance of the empirically constructed 

classification model has been assessed by resorting to three approaches: a model retrieval-based approach, 

the cross-validation technique and the bootstrap method. To the best of the authors’ knowledge, it is the 

first time that: 

• a classification-based framework is applied for the criticality assessment of energy production  

systems (e.g., Nuclear Power Plants) from the point of view of safety-related criteria; 

• the confidence in the assignments provided by the MR-Sort classification model developed is 

assessed by the bootstrap method in terms of the probability that a given alternative is correctly 

classified.  

From the results obtained in the case study, it can be concluded that although the model retrieval-based 

approach may be useful for providing an upper bound on the error rate of the classification model 
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(obtained by exploring the space of all possible random models and training sets), for practical 

applications the bootstrap method seems to be advisable for the following reasons: (i) it makes use of the 

training data set available from the particular case study at hand, thus characterizing the uncertainty 

intrinsic in it; (ii) for each alternative (i.e., safety-critical system) to be classified, it is able to assess the 

confidence in its classification by providing the probability that the selected performance class is the 

correct one. This seems of paramount importance in the decision-making processes performed by the 

assessed safety-criticality, since it provides a metric for the ‘robustness’ of the decision. The methodology 

can be further applied to more systems, e.g. the NRC's Risk-Informed Regulatory Oversight Program, in 

which reactors are placed in different classes, which affects the amount of regulatory oversight 

performed.   
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APPENDIX A. Criticality levels associated to the criteria used for the integrated assessment of a 

system from the point of view of safety criteria (Section 2) 

In what follows, the criticality “scores” associated to each classification criterion introduced in Section 2 

are specified. 

 

Figure A.1 “Scoring” of criticality for criterion “Level of Safety” 
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Figure A.2 “Scoring” of criticality for criterion “Level of Security and Radioprotection” 

 

Figure A.3 “Scoring” of criticality for criterion “Level of Possible Impact on the Environment” 

 

Figure A.4 “Scoring” of criticality for criterion “Level of Long-term performance” 
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Figure A.5 “Scoring” of criticality for criterion “Level of Operational performance” 

 

Figure A.6 “Scoring” of criticality for criterion “Level of Impact on the Communication and Image of the Operational Enterprise” 

 

 

APPENDIX B. Mathematical details about the algorithm of disaggregation of a MR-Sort 

classification model 

We consider the case involving k categories that are, thus, separated by (k-1) frontier denoted 

, where , n is the number of criteria that are taken into 

account. Let  be the training set, where  is the number of alternatives and, 

 be the partition of the training set, ordered from the “best” to the “worst” classes. 

For each alternative , in category  of the learning set  (for ), let us define 2n 

binary variables  and , for , such that  equals to 1 iff  for  and 

. We introduce 2n continuous variables  constrained to be equal to  if 

 and to 0 otherwise. 
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We consider an objective function that describes the robustness of the assignment. We introduce two more 

continuous variables,  and , for each  and . In maximizing , we maximize the value of the 

minimal slack in the constraints. 

We resume all the constraints in the following mathematical program: 

 

 

M is an arbitrary large positive value and ! an arbitrary small positive quantity. 

The case in which  belongs to one of the extreme categories (  and ) is simple. It requires the 

introduction of only n binary variables and n continuous variables. In fact, if  belongs to  we just have 

to express that the subset of criteria on which  is at least as good as  has sufficient weight. In a dual 

way, when  lies in , the worst category, we have to express that it is at least as good as  on a subset 

of criteria that has not sufficient weight. 

In case it is infeasible to generate a compatible model based on the given data, an inconsistency study of 

the data set is demanded (see Section 5). The formulation above is, then, modified accordingly as follows: 

B.1 The constraints deletion algorithm 
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 For each , as presented in Section 5.1, we introduce a binary variable , which is equal to 

“1” if alternative  is correctly assigned by the MR-sort model, and equal to “0” otherwise. To ensure 

that the  variables are correctly defined, the following constraints (2) of the basic disaggregation 

algorithm listed above  

     (2) 

are replaced by 

    (3) 

Correspondingly, the objective function becomes  

     (4) 

By so doing, we obtain a MIP that yields a subset  of maximal cardinality that can be 

represented by an MR-sort model.  

 

B.2 The constraints relaxation algorithm 

 As presented in Section 3, we consider the case involving k categories that are, thus, separated by (k-1) 

frontier denoted , where , n is the number of criteria that are 

taken into account. For each alternative , its predefined category is given by . For the ones that 

are assigned to the extreme categories, i.e., the best category 1 and the worst category k-1, only one 

constraint can be obtained, which shows that with respect to the best (resp., worst) set of lower profiles 

 (resp., ), they are even better (resp., worse).  For the rest of the 

alternatives that are assigned to the intermediate categories, two constraints are gathered, e.g., alternative 

 should be better with respect to the lower profile set , and 

worse with respect to the lower profile set .  
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As mentioned in Section 5.2, we introduce binary variables  (regarding to the better category’s lower 

profile set, except for ) and  (referring to the worse category’s lower profile set, except for ), 

which are equal to “1” if alternative  fulfills the constraints comparing with the corresponding lower 

profile sets, “0” otherwise. We modify the algorithm in the previous subsection (5.1) in the following way: 

        (5) 

Correspondingly, the objective function (4) is replaced by the new objective  

    (6) 

We, thus, obtain a MIP that yields a subset  of maximal cardinality that can generate an MR-

sort model. In addition, for each of the alternatives that are not accepted into the subset , the 

corresponding inconsistent constraints are also targeted: for example, if for one alternative

 we obtain  (resp., ), then this alternative should be classified in a 

better (resp., worse) category with respect to the lower profile set of category t-1 (resp., t); in other words, 

its original assignment is underestimated (resp., overestimated). The same criterion is applied to the 

alternatives that are originally assigned to the best or worst category. 
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ABSTRACT 

A classification model based on the Majority Rule Sorting method has been previously 

proposed by the authors to evaluate the vulnerability of safety-critical systems (e.g., nuclear 

power plants) with respect to malevolent intentional acts. 

In this paper, we consider a classification model previously proposed by the authors based on 

the Majority Rule Sorting method to evaluate the vulnerability of safety-critical systems (e.g., 

nuclear power plants) with respect to malevolent intentional acts. The model is here used as 

the basis for solving an inverse classification problem aimed at determining a set of protective 

actions to reduce the level of vulnerability of the safety-critical system under consideration.  

To guide the choice of the set of protective actions, sensitivity indicators are originally 

introduced as measures of the variation in the vulnerability class that a safety-critical system 

is expected to undergo after the application of a given set of protective actions. These 

indicators form the basis of an algorithm to rank different combinations of actions according 

to their effectiveness in reducing the safety-critical systems vulnerability. Results obtained 

using these indicators are presented with regard to the application of: (i) one identified action 
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at a time, (ii) all identified actions at the same time or (iii) a random combination of identified 

actions. The results are presented with reference to a fictitious example considering nuclear 

power plants as the safety-critical systems object of the analysis. 

  

KEYWORDS: safety-critical system, malevolent intentional attacks, vulnerability analysis, 

protective actions, Majority Rule Sorting (MR-Sort), classification model, inverse 

classification problem, sensitivity indicator 

 

Notations 

!"#$
!    subcriterion j 

!!                              main criterion i  

!""!    Nuclear power plant i 

!!    vulnerability category i 

!"#
!    protective action k 

!"#$$!"   weight of the influence of action k on attribute j 

!"#$′!    after action subcriterion j 

B    limited budget 

! ↑    number of NPPs that are improved after the action(s) 

!↑

!!
    estimate of the percentage of new NPPs that can be  

    expected to be improved 

! ↓     number of NPPs that are expected to be deteriorated after 

    the action(s) 

!↓

!!
    estimate of the percentage of new NPPs that can be  

    expected to be deteriorated 

∆! =
!↑

!!
−

!↓

!!
   expected “net” amount of ameliorated NPPs 

∆! ↑    total variation of category underwent by the ameliorated  
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    NPPs 

∆!↑

!!
    variation in vulnerability category that a new ameliorated 

    plant is  expected to undergo 

∆! ↓    total variation of category underwent by the deteriorated  

    NPPs 

∆!↓

!!
    variation in vulnerability category that a new deteriorated 

    plant is  expected to undergo 

∆! =
∆!↑

!!
−

∆!↓

!!
                        “net” variation in vulnerability category that a newly  

    analyzed NPP is expected to undergo. 

∆! ↑     ratio between the sums of the variations of vulnerability  

    category underwent by the ameliorated NPPs and the sum of 

    the corresponding maximum possible category variations 

!
!

!
    level of action j applied on system i 

 

 

  

1. INTRODUCTION 

The vulnerability of safety-critical systems and infrastructures (e.g., nuclear power plants) is 

of great concern, given the multiple and diverse hazards that they are exposed to (e.g., 

intentional, random, natural etc.) [1] and the potential large-scale consequences. This justifies 

the increased attention for analyses aimed at (i) the systematic identification of the sources of 

system vulnerability, (ii) the qualitative and quantitative assessment of system vulnerability 

[2][3] and (iii) the definition of effective actions of vulnerability reduction.  

In a previous work [6], we have proposed an empirical classification framework to tackle the 

issue (ii) of assessing vulnerability to malevolent intentional acts. Specifically, we have 

adopted a classification model based on the Majority Rule Sorting (MR-Sort) method [7] to 
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assign an alternative (i.e., a safety-critical system) to a given (vulnerability) class (or 

category). The MR-Sort classification model contains a group of (adjustable) parameters that 

are calibrated by means of a set of empirical classification examples (also called training set), 

i.e., a set of alternatives with the corresponding pre-assigned vulnerability classes [6][7]. For 

further details on this method, the interested reader can refer to the Appendix A at the end of 

the paper. It is worth mentioning that other majority rule voting methods are widely used in 

technical decision making problems for vulnerability analysis of systems, see, e.g., [21]. 

In this paper, we are still only concerned with intentional hazards (i.e., those related to 

malevolent acts) and address issue (iii) above (i.e., the definition of the actions to undertake 

for reducing the level of system vulnerability). This issue is difficult to be resolved by 

traditional risk assessment methods [1][4][5]. On the contrary, the base model developed in 

Ref. [6] can be extended to address the problem relates to the problem of optimal risk 

reduction, e.g. by optimization of protective measures [29][30][31]. In other words, an 

inverse classification problem [8][9][10] of determining a set of protective actions that can 

effectively reduce the level of vulnerability of a safety-critical system [11], taking into 

account a specified set of constraints (e.g., budget limits) [8].  

The present analysis can be considered part of an encompassing business process of safety 

management (see, e.g., [22]), where we seek for the best compromise among risks, costs and 

benefits in allocating investments in safety-critical systems in the presence of uncertainties 

[28]. Correspondingly, the presented algorithms can be considered part of an encompassing 

business process of safety management [22]. Mathematically speaking, the aim is to identify 

how to modify some features of the input patterns (i.e., the attributes of the safety-critical 

system under analysis) such that the resulting class is changed as desired (i.e., the 

vulnerability category is reduced to a desired level). To achieve this objective, novel 

sensitivity indicators [12] are introduced for quantifying the variation in the vulnerability 

class of a safety-critical system resulting from the application of a given set of protective 

actions [13]. Using these indicators as the basis for a ranking algorithm, changes in system 

vulnerability can be achieved considering: (i) one identified action at a time, (ii) all identified 
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actions at the same time or (iii) a random combination of identified actions. The proposed 

indicators also allow different combinations of actions to be ranked and their effectiveness in 

reducing the vulnerability under specified budget constraints can be evaluated on a new (test) 

set of (unknown) safety-critical systems (i.e., systems not used before to calibrate/train the 

classification model). In this context, it is known that existing risk assessment methodologies 

may fail to account for unknown and emergent risks that are typical of large-scale 

infrastructure investment allocation problems. On the other hand, in modern portfolio theory, 

it is well known that a diversified portfolio can be very effective to reduce non-systematic 

risks. The approach of diversification is equally important in choosing robust portfolios of 

infrastructure projects that may be subject to emergent and unknown risks [27]. The proposed 

methodology is expected to contribute also in this direction of optimal classification of 

options/investments and combinations of the same. 

The remainder of the paper is structured as follows. Section 2 recalls the modeling framework 

for the analysis of vulnerability to intentional hazards. With reference to that, Section 3 

introduces the problem of inverse classification. Section 4 describes the sensitivity analysis 

indicators introduced to tackle the inverse classification problem of Section 3. Section 5 

illustrates their use for the identification of protective actions. In Section 6, a case study is 

proposed to show the application of the method. Finally, Section 7 gives the discussion and 

conclusions of this research. 

 

2 THE CLASSIFICATION MODEL FOR THE ASSESSMENT OF 

VULNERABILITY TO INTENTIONAL HAZARDS  

We limit the vulnerability analysis of a system to the evaluation of the susceptibility to 

intentional hazards and adopt the three-layers hierarchical model developed in [6] (Figure 1). 

The susceptibility to intentional hazards (level 1 in Figure 1) is characterized in terms of 

attractiveness and accessibility (level 2 in Figure 1). These attributes are hierarchically broken 

down into factors which influence them, including resilience interpreted as pre-attack 
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protection (which influences on accessibility) and post-attack recovery (which influences on 

attractiveness). The disaggregation is made in 6 criteria (level 3 in Figure 1): physical 

characteristics (x1), social criticality (x2), possibility of cascading failures (x3), recovery 

means (x4), human preparedness (x5) and level of protection (x6). These six criteria are 

further decomposed into a layer of m=16 basic subcriteria {!"#$! , ! = 1,2,… ,! = 16}(level 4 

in Figure 1), for which data and information are collected in terms of quantitative values or 

linguistic terms depending on the nature of the subcriterion. The descriptive terms and/ or 

values of the fourth layer subcriteria are, then, scaled to numerical categories. The criteria 

included in the layers are defined and assigned “preference directions” for treatment in the 

decision-making process. The preference direction for a given criterion (e.g., a physical 

characteristic or parameter of the system) indicates the state towards which it is desirable to 

“move the parameter” in order to reduce system susceptibility: in other words, the preference 

direction is assigned from the point of view of a “defender” who is concerned with protecting 

the system from an attack [16]. Finally, to get the value of the six third-layer criteria 

{!!,! = 1,2, . . ,6}, (i) we assign weights to each subcriterion to indicate its importance and (ii) 

we apply a simple weighted sum to the categorical values of the constituent subcriteria 

{!"#$! , ! = 1,2,… ,! = 16}. These m=16 criteria {!"#$! , ! = 1,2,… ,! = 16} are evaluated to 

assess the vulnerability of a given safety-critical system of interest (e.g., a nuclear power 

plant – NPP).  

For the purposes of the present analysis, M = 4 levels (or categories) of system vulnerability 

{!"#$$ = !,! = 1,2,3,4} are considered: 1 = satisfactory, 2 = acceptable, 3 = problematic 

and 4 = serious. 

Then, the assessment of vulnerability corresponds to a classification problem: given the 

definition of the characteristics of a critical system in terms of the sixteen criteria above, 

assign the vulnerability category (or class) to which the system belongs. 

The classification model is based on the Majority Rule Sorting (MR-Sort) method 

[7][14][15]; the model contains a group of (adjustable) parameters that have to be calibrated 

by means of a set of empirical classification examples (the training set), i.e., a set of 
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alternatives with the corresponding pre-assigned vulnerability classes. Further details about 

the classification model are not reported here for brevity: the interested reader is referred to 

[16]. 

 

Figure 1. Hierarchical model for susceptibility to intentional hazards [16] 

 

3. INVERSE CLASSIFICATION PROBLEM FOR PROTECTIVE 

ACTIONS IDENTIFICATION 

We define an inverse classification problem aimed at finding a combination of actions 

reducing the vulnerability of a (group of) safety-critical system(s) eventually under budget 

limitations.  
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Figure 2. Schema of direct actions for basic criteria 

To illustrate the methodology, we consider a set of N NPPs (!""! , ! ∈ {1,2,… ,!} ) 

characterized by m = 16 basic features (!"#$! , ! ∈ {1,2,… ,!}). On the basis of these m=16 

features, the NPPs are assigned to M=4 pre-defined categories ( !! ∈ 1,2,… ,! , ! ∈

{1,2,… ,!} ), where !! = 1  represents the best situation, i.e., lowest vulnerability. Let 

!"# = {!"#!, !"#!,… , !"#!} denote the available set of actions, each of which can influence 

one or more basic criteria !"#$! , ! ∈ {1,2,… ,!}  (Figure 2) with different intensity, as 

measured by a set of coefficients {!"#$$!" , ! ∈ 1,2,… ,! , ! ∈ {1,2,… ,!}}. In other words, 

!"#$$!" is the “weight” of the influence of action k on attribute j (the higher the absolute 

value of !"#$$!", the stronger the effect of action k on attribute j). Notice that a positive (resp. 

negative) coefficient !"#$$!"  means that action k has an ameliorative, positive (resp. 

deteriorative, negative) effect on attribute j, that is, it changes the corresponding value 

towards (resp. away from) the “preference direction” of attribute j; on the contrary, if 

!"#$$!"  is equal to zero, then criterion j is not influenced by action k. “Negative” 

relationships objectively exist. Actually, taking one action to improve the performance of one 

specific criterion may lead to a “negative” change in some of the others. For example, 

increasing the number of backup components on site may lead to an increased number of 

workers to operate and maintain them, which may increase the possibility of a larger number 
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of injuries of the people exposed to an attack. If the analyst who builds the inverse 

classification model were not able to identify and quantify these “negative” connections (i.e., 

the coefficients !"#$$!"), then the (positive) effect of a given combination of actions on a 

system could be overestimated, with serious drawbacks on the process of resources allocation 

for system protection. 

Significant efforts have been made to assign numerical values to the impacts of actions, in 

order to represent the problem as realistically as possible. However in a non-fictitious 

situation, the task is expected to be more complex. Actually, the relations between the actions 

and the criteria taking into account the dependencies of different attributes and systems are 

always difficult to identify: in such cases, resorting to the judgment of real experts and 

possibly to real historical data will be mandatory. 

The implementation of one or more actions modifies the attribute values 

!"#$
! , ! ∈ {1,2,… ,!} and as a result, the vulnerability of the system (i.e., the assignment by 

the classification model) may change. In this paper, we assume that the total effect of the 

available set of actions !"# = {!"#!, !"#!,… , !"#!} on criterion j is obtained by a linear 

superposition of the effects of each action !"#!: 

!"#$′! = !"#$
!
+ !"#$$!" ∗ !"!!;!

!!!        

! ∈ 1,2,… ,! , ! ∈ 1,2,… ,! . (1) 

where !"#$′! is the value of attribute j after the identified set of available actions has been 

implemented. 

Also, let !"#$ !""! , !"!
! , !"#′ ⊆ !"# denote the cost of the combination of actions !"#′ 

applied to !""! . The inverse classification problem can then be formulated as follows: 

identify the set of actions !"!!! ⊆ !"# , ! = 1,2,… ,! that improve the vulnerability of the 

system to a demanded vulnerability category !!
! while minimizing the cost, i.e.,  

min !"#$ !""! , !"!
!
!

!

!!!

, !"#′! ⊆ !"#; 

!. !. !"#$$%&' !""! , !"!
!
! = !!

!
; 
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! ∈ 1,2,… ,! (2) 

Alternatively, if it is known that the budget Bi is limited for each plant NPPi, the formulation 

becomes: improve the systems to the best possible vulnerability category !!
!!
,!!

!!
∈

1,2,… ,! , ! ∈ {1,2,… ,!}, while keeping the cost below the available budget B: 

max !"#$$%&' !""! , !"!
!
! ; 

!. !.!"#$ !""! , !"!
!
! ≤ !! , !"!

!
! ⊆ !"#; 

! ∈ 1,2,… ,! . (3) 

To address the inverse classification problem, we adopt a pragmatic approach based on 

sensitivity analysis [17][18][19], introducing indicators that quantify the variation in the 

vulnerability class that a safety-critical system is expected to undergo upon implementation of 

a given set of actions. 

 

4 SENSITIVITY INDICATORS FOR DRIVING THE INVERSE 

CLASSIFICATION PROBLEM 

We consider the group of N’ vulnerability-class labeled known (available) safety-critical 

systems (NPPs) used to train the MR-Sort classification model and study the sensitivity of 

their categories of vulnerability to the implementation of the available protective actions. We 

denote the original categories of these NPPs as !! ,!! ∈ 1,2,… ,! , ! ∈ {1,2,… ,!′} and the 

new categories resulting from the application of a set of protective actions as !!
!
,!!

!
∈

1,2,… ,! , ! ∈ {1,2,… ,!′}.  

Let  be the number of NPPs that are improved after the action(s): 

! ↑= !! , ! ∈ ℕ

!
!

!!!

; 

!! = 1, !"!!! > !!
!
; 

!! = 0, !"!!! < !!
!
. (4) 

Then, 
!↑

!!
!can be interpreted as an estimate of the percentage of new (i.e., different from the 
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ones of the training set) NPPs that can be expected to be improved after such action(s) is (are) 

implemented on them. 

Dually, ! ↓, is the number of NPPs that are expected to be deteriorated after the action(s):  

! ↓= !! , ! ∈ ℕ

!
!

!!!

; 

!! = 1, !"!!! < !!
!
; 

!! = 0, !"!!! > !!
!
. (5) 

Notice that a “deterioration” (i.e., an increase in the vulnerability category) is possible 

because some of the actions may have positive effects on some subcriteria but negative 

effects on some others (see Section 3). Then, 
!↑

!!
!can be interpreted as an estimate of the 

percentage of new NPPs (i.e., different from the ones of the training set) that can be expected 

to be deteriorated after such action(s) is (are) implemented on them.   

We consider the quantity ∆! =
!↑

!!
−

!↓

!!
 to combine the effects of both positive and negative 

influences of the actions in the expected “net” amount of ameliorated NPPs. 

Considering that the evaluation framework is based on M=4 categories, it seems reasonable to 

consider not only the number of NPPs that are ameliorated or deteriorated, but also the 

amount of variation in category of vulnerability of each of them. To this aim, we introduce 

the following indicators to combine the amount of variation in vulnerability with the number 

of NPPs whose vulnerability category has changed after the actions.  

In particular, ∆! ↑ is defined as the total variation of category underwent by the ameliorated 

NPPs: 

∆! ↑!= !! ∗ !! , ! ∈ ℕ

!
!

!!!

; 

!! = !! − !!
!
; 

!! = 1, !"!!! > !!
!
; 

!! = 0, !"!!! < !!
!
. (6) 
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Thus, 
∆!↑

!!
 can be interpreted as the variation in vulnerability category that a new ameliorated 

plant is expected to undergo when the chosen combination of actions is applied. 

Dually, ∆! ↓ is defined as: 

∆! ↓!= !! ∗ !! , ! ∈ ℕ

!
!

!!!

; 

!! = !! − !!
!
; 

!! = 1, !"!!! < !!
!
; 

!! = 0, !"!!! > !!
!
. (7) 

Thus, 
∆!↓

!!
 can be seen as the variation in vulnerability category that a new deteriorated plant 

is expected to undergo when the chosen combination of actions is applied.  

Finally, ∆! =
∆!↑

!!
−

∆!↓

!!
 combines the effects of both positive and negative influences of the 

actions and it can be seen as the “net” variation in vulnerability category that a newly 

analyzed NPP is expected to undergo after the application of the given set of actions.  

The net expected variation in vulnerability category ∆! quantifies the influence of the actions 

upon the NPPs. However, this measure does not take into account the original category 

assignment of the NPPs: for example, in practice there is a difference between taking a NPP 

from category 4 to 3 and taking it from 2 to 1, even if the category variation is 1 in both cases. 

To consider this, we introduce the indicator ∆! ↑, defined as the ratio between the sums of the 

variations of vulnerability category underwent by the ameliorated NPPs and the sum of the 

corresponding maximum possible category variations (i.e., the sum of the category variations 

that the NPPs would undergo if they were ameliorated to the best possible vulnerability 

category): 

∆! ↑=
Δ! ↑

!
; 

! = !! − !
!"#$

∗ !! , ! ∈ ℕ;

!!

!!!

 

!! = 1, !"!!! > !!
!
; 
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!! = 0, !"!!! < !!
!
. (8) 

The indicator ∆! ↑ quantifies the influence of the actions on NPPs, relative to their original 

categories: the lower ∆! ↑ is, the higher the influence of the chosen set of actions is on the 

NPPs originally of a relatively low category.  

Based on the above indicators, an algorithm is proposed to rank different combinations of 

actions according to their effectiveness in reducing the vulnerability of safety-critical systems. 

The actions with positive influences are obviously preferred. On the contrary, concerning the 

ones with negative influences, the rationality of being chosen as ameliorative actions should 

be reconsidered. The analyst may replace/modify/delete them from the original considered 

action set. The algorithm proceeds as follows: 

(1) Rank the (combinations of) actions according to the value of ∆! (the higher the value of 

∆!, the more effective the combination of actions in reducing vulnerability): 

• combinations of actions that have a negative value of ∆! (∆! < 0) are expected to 

increase the vulnerability of a NPP: this is due to the fact that some actions may have 

a deteriorated effect on some of the subcriteria that more than counter balances the 

positive effects on their subcriteria. The identification of the combination of actions 

with ∆! < 0allows the analyst to (i) study the mechanisms of influence of the 

actions on the basic subcriteria (Layer 4 in Figures 1 and 2) and (ii) if possible, 

eliminate the “negative connections”, i.e., the negative dependencies between some 

actions and some criteria (e.g., by identifying alternative actions for dealing with 

these “critical” subcriteria);  

• the actions that have a positive value of ∆! (∆! > 0)  are expected to reduce the 

vulnerability and are assigned higher rankings (the higher ∆! , the higher the 

ranking); 

(2) If several combinations of actions have the same value of ∆!, then consider the other 

indicators (i.e., 
!↑

!!
 and 

∆!↑

!!
): depending on the judgment of the DMs, higher importance may 
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be given to those actions that produce a larger expected number of improved NPPs (
!↑

!!
) or to 

those that generate a higher “expected class improvement” (
∆!↑

!!
). 

(3) If some combinations still have the same ranking, analyze indicator ∆! ↑ to check which 

actions have stronger impact on the NPPs of low categories.  

 

Figure 3. Schema of decision logic for selecting an action  

5 CASE STUDY 

The sensitivity analysis proposed in Section 4 is applied on a case study concerning the 

vulnerability analysis of NPPs [6]. We refer to the n=6 main criteria ! = 1,2,… , ! = 6 of the 

hierarchical modeling presented in [6] and recalled in Section 2: physical characteristics (x1), 

social criticality (x2), possibility of cascading failures (x3), recovery means (x4), human 

preparedness (x5) and level of protection (x6); these criteria are numbers scaled in the range 

[0,1]. Then, the main criteria are successively broken into a layer of m=16 basic criteria 

(Figure 2). Finally, M=4 vulnerability categories !"#$$ = !,! = 1,2,3,4 are defined as: 1= 

satisfactory, 2= acceptable, 3= problematic and 4 = serious (Section 2).  

As shown in Figure 2 and anticipated in Section 3, we define F=13 direct actions (!"# =

{!"#!, !"#!,… , !"#!}), each acting on one or more subcriteria (Table 1). All the actions have 

multiple influences on different criteria, with possibly positive or negative effects: for 



! 15!

example, the action “reduce the number of workers” has an obvious direct influence on the 

subcriterion “Number of workers”, but may also imply, e.g., (i) reducing the number of 

production units, the number of accesses to the plant, the number of installed backup 

components and external emergency measures; (ii) increasing the duration of repair and 

recovery actions; (iii) enhancing the training; (iv) facilitating the safety management and 

entrancing control and surveillance. The strengths of the influences of the actions on the 

different criteria are quantified by the different weights/coefficients reported in Table 1.  

Also, for each action we consider different levels of implementation !
!

!
(!
!

!
, !
!

!
∈ 0,1,2,3 , ! ∈

1,2,… ,! , ! ∈ {1,2,… ,!}), representing to what extent/ how far/ in which amount action j is 

applied on system i (notice that !
!

!
= 0 means that action j is not applied to system i) (Table 

1). 

Finally, for simplicity we assume that the cost related to the application of a given action is 

equal to the level !
!

!
 of the action: for example, referring to Table 1, if we choose to reduce 

the number of workers by 20%, the related cost is 1 in arbitrary units (since the action 

corresponds to level !
!

!
=1); on the contrary, if we reduce the number of workers by 30%, the 

cost is 3 (since the action corresponds to level !
!

!
=3). The idea is that the cost of an action 

increases (resp. decreases) with its “level” of “strength” of implementation. Notice that 

however, the levels assigned to the actions are not always strictly “mathematically” 

proportional to the change of value they produce in the corresponding criteria. In fact, for 

different actions, the three levels of “effects” on the corresponding directly influenced criteria 

may be of different notice. Sometimes they may be represented by a quantitative discrete 

number (e.g., for action “reduce number of production units” we have -1 production unit for 

level 1, -2 production units for level 2, -3 production units for level 3); sometimes they may 

be a percentage (as for the number of workers mentioned above). In addition, the costs of an 

action and the corresponding change in a criterion value are not strictly proportional either 

(e.g., the cost of training enhance may be the same for 50 and for 80 people, but different for 

100). In this view, choosing the cost of an action equal to the level !
!

!
 of implementation of 
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the action is a (maybe rough) compromise between simplicity and pragmatic engineering 

sense. Obviously, in reality, the costs should be defined in a more sophisticated way and 

possibly they should be different for different levels of different actions towards different 

criteria. 

Table 1. Available actions and coefficients of influences of the actions on different subcriteria 
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In what follows, two analyses are performed: first, based on the indicators of Section 4, 

different combinations of actions are ranked according to their ability in reducing the 

vulnerability of a group of NPPs (Section 5.1); then, the inverse classification problem of 

Section 3 is tackled using the sensitivity indicators of Section 4 and taking into account the 

action costs and budget limitations (Section 5.2). 

5.1 Ranking different combinations of actions based on ∆! 

A set G of N (N=20) NPPs (! = {!""! , ! ∈ {1,2,… ,!}}) is available: 10 of them (NPPs from 

No.6 to No.15 !!"# = {!""! , ! ∈ {6,7,… ,15}}) are selected as a reference set to evaluate the 

sensitivity indicators; the remaining NPPs are regrouped to form a set !!"#!(!!"#! =

{!""! , ! ∈ {1,2,… ,5} ∪ {16,17,… ,!}}) used to test the combinations of actions ranked using  

!
!"#. Based on the reference set, we have performed an exhaustive calculation of the value of 

∆! for all the possible combinations of actions (in total, 4^13=67108864 combinations). 

Then, we selected the ones (in total 29940 combinations) that have the (same) highest value 

of ∆! (i.e., ∆!=14): these represent the optimal combinations of actions according to ∆!: in 

what follows, this set is referred to as !"#$%&'(%"&
∆!

!!"!!"#
.  

All the combinations of actions belonging to the set !"#$%&'(%"&
∆!

!!"!!"#
 are applied to each 

of the N (N=20) NPPs in G: the resulting categories (!!
!!
, ! ∈ {1,2,… ,!}) are reported in 

Table 2. Note that the actions are ranked according to values of ∆! that are evaluated on a 

group of reference plants (!!"#): in this view, they provide an indication only on the 

expected performance of the actions on new plants and, thus, they may not provide any 
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indications about the combination of actions that is optimal for one particular plant. Thus, in 

order to verify how close these sets of actions are to the combinations that are optimal for a 

particular NPP, we compare the assignments  !!! (Table 2) with the best category that each 

NPP may reach (!!
!
, ! ∈ {1,2,… ,!}) (in other words, !! is the category that NPPi reaches 

after the application of a combination of actions that is the optimal one for that particular 

plant). In order to do so, another exhaustive calculation is done upon the group G with the 

purpose of finding the actions that bring each particular NPP to the best category possible 

(notice that for some NPPs, reaching category 1 may not be possible). All the possible 

combinations of actions are tested on each NPP in order to find the best assignment !!
! for 

each of them. The results are shown in Table 2. The first column of the results shows the 

original assignments for the NPPs in the studied set G. The second column shows the 

corresponding possibly best assignments !!  and the third column provides the new 

assignments !!!  after the application of the combinations of actions included in 

!"#$%&'(%"&
∆!

!!"!!"#
.  

Analyzing the best assignments !! of the NPPs in the reference set (!!
!
, ! ∈ {6,7,… ,15}), we 

observe that they coincide perfectly (100%) with the assignments !!
!

(!!
!
!

, ! ∈ {6,7,… ,15}) 

obtained after the application of the actions in !"#$%&'(%"&
∆!

!!"!!"#
. If we take the NPPs in 

the test set as new NPPs and compare the assignments obtained by these two methods with 

the original assignments !(!! , ! ∈ {1,2,… ,5} ∪ {16,17,… ,!}), we find that:  (i) all the NPPs 

are stable or ameliorated after the application of the combinations of actions in 

!"#$%&'(%"&
∆!

!!"!!"#
; (ii) there are 2 out of 10 NPPs that are not ameliorated to the best 

category !!
! (i.e., NPPs 16 and 19): they remain in the same category; instead, 8 out of 10 

NPPs are ameliorated to their best possible categories: then, the probability that the 

combinations of actions !"#$%&'(%"&
∆!

!!"!!"#
 ameliorate a new NPP to its best possible 

category !! is 80%.  

Table 2. Comparison of assignments: Best possible Assignment !!
! and After action 
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Assignment !!
!! listed with NPPs that are differently assigned highlighted (NPP16, NPP19) 

 

 

5.2 Constrained inverse problem: identification of the best combination of actions 

considering constraints 

In a more realistic case, the cost of the protective actions should be considered. Although in 

reality the costs of different actions can be different, and the same action may cost differently 

when applied to different NPPs, for simplicity, in this paper we define the !"#$  of a 

combination of actions (in arbitrary units) as the sum of the levels !
!

!
 of the actions: 

!"#$ = !"#$!;

!

!!!

 

!"#$! = !
!

!
∗ !

!

!
;

!

!!!

 

!! = 1, !"!!
!

!
≠ 0; 

!! = 0, !"!!
!

!
= 0; 

! ∈ 1,2,… ,! , ! ∈ 1,2,… ,! . (9) 

We assume that a budget !! is allocated for the improvement of the generic power plant 

!""! : the budgets !! , ! ∈ {1,2,… ,!
!
!"#!

}allocated for the NPPs of the test set !!"#! =

{!""! , ! ∈ {1,2,… ,5} ∪ {16,17,… ,!}} are shown in Table 3.  
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Table 3. Budgets available for the NPPs belonging to the test set G
test 

 

As before, we take the reference set !!"# = {!""! , ! ∈ {6,7,… ,15}} to calculate the value of 

∆! for all possible combinations of actions. Then, for each NPP in the test set !!"#!, we 

identify the combination(s) of actions with the highest value of ∆!  and whose costs 

!"#$!(! ∈ {1,2,… ,!
!
!"#!

}) are lower than or equal to the given budgets !!: 

!"#$!!"#!: 

!"# ∆! !""! , !"#! ; 

!"#! ⊆ !"#; 

!. !.!"#$! ≤ !!; 

! ∈ 1,2,… ,!!
!"#!

. (10) 

The results are shown in Table 4. Among all the possible combinations of actions, the ones 

that present the highest value of ∆! (∆!
!"#

= 14) have a minimum cost !"#$!"# = 19. So, 

all the NPPs in the test set !!"#! that have a budget higher than or equal to !"#$!"# (i.e., 

NPP2, NPP16 and NPP18) can be ameliorated to their corresponding best possible categories 

(as presented in Section 4). Five of the remaining NPPs (i.e., NPP1, NPP3, NPP17, NPP19 

and NPP20) can still be ameliorated to the same category that would be obtained by the 

actions in the set !"#(!"#ℎ!!"#$ ≤ 10,15,10,9,17) , even though they have a budget, which 

is lower than, !"#$!"# = 19 and a performance lower than ∆!
!"#

= 14. 

Table 4. Assignments comparison 
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The situation is different for NPP4 and NPP5 (Table 5). They are originally assigned to 

category 3. NPP4 can be ameliorated by any combination of actions belonging to 

!"#(!"#ℎ!!"#$ ≤ 5). Among all the combinations of actions that have the best value of ∆! 

equal to 7 and cost limited by the given budget, 73.91% can bring NPP4 up to category 2 and 

26.09% can bring it to the best category. Instead, NPP5 cannot be ameliorated to the best 

category by any of the combinations: in particular, 18.52% of the actions leave such NPP in 

category 3 whereas 81.48% bring it up to category 2. 

Table 5. Assignments for NPP4 and NPP5 

 

 

6 CONCLUSIONS 

In this paper, we have developed a pragmatic inverse classification framework for identifying 

ameliorative action(s) to reduce the vulnerability with respect to intentional hazards of safety-

critical systems (in the example of reference, Nuclear Power Plants-NPPs). An MR-sort 

classification model calibrated on a small-sized set of data representing a priori-known 

classification examples has been used. Sensitivity indicators have been introduced to evaluate 

combinations of actions with respect to their ability to reduce the vulnerability of the safety-

critical systems considered. A case study referring to NPPs vulnerability to intentional attacks 

has been worked out. The results show that the actions ranked as best according to the 

proposed indicators give a satisfactory performance in terms of reduction of vulnerability in 
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test NPPs, even in presence of budget constraints: for example, in the case without budget 

constraints eight out of ten NPPs are ameliorated to their best possible categories, whereas 

two of them remain in the same categories; in the constrained case still six of the ten NPPs are 

brought to their best possible vulnerability classes. 

The proposed methodological framework provides a powerful tool for systematically and 

pragmatically evaluating the safety and vulnerability as well as other characteristics of critical 

systems. 

For future research, the following issues will be considered. Since one set of weights is 

usually an insufficient basis for giving priorities, the sensitivity of investment priorities to the 

weights of criteria can be tackle: for example, in [22][23][24] a "scenario" is introduced that 

reflects a set of weights for each stakeholder, such as emphasis on particular aspects of safety 

in the aftermath of a major nuclear incident.  

As presented in [25], an influential set of weights can suggest R&D priorities in protection of 

energy systems.  

Moreover, a set of weights can also be brought by other stakeholders, such as owners, 

operators and users etc: each set of weights presumably leads to variation in the preferred 

safety investments [26].  

In addition, although in this work significant efforts have been made to assign numerical 

values to the impacts of actions (in order to represent the problem as realistically as possible), 

in a non-fictitious situation the task is expected to be more complex. Actually, the relations 

between the actions and the criteria taking into account the dependencies of different 

attributes and systems are always difficult to identify: in such cases, resorting to the judgment 

of real experts and possibly to real historical data will be mandatory. 

Finally, the inverse classification problem could be tackled within an optimization framework. 

Proper optimization algorithms could be considered for the optimal selection of protective 

actions to apply to each considered safety-critical systems (e.g., NPP). The results can, then, 

be compared with the ones obtained by the sensitivity indicators proposed in the present paper. 
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APPENDIX A CLASSIFICATION MODEL FOR VULNERABILITY 

ANALYSIS: THE MAJORITY RULE SORTING (MR-SORT) METHOD 

The Majority Rule Sorting Model (MR-Sort) method is a simplified version of ELECTRE Tri, 

an outranking sorting procedure in which the assignment of an alternative to a given category 

is determined using a complex concordance non-discordance rule (14)(15). We assume that 

the alternative to be classified (in this paper, a safety- critical system or infrastructure of 

interests, e.g., a nuclear power plant) can be described by an n-tuple of elements x = {x1, x2, ..., 

xi, ..., xn}, which represent the evaluation of the alternative with respect to a set of n criteria 

(by way of example, in the present paper the criteria used to evaluate the vulnerability of a 

safety critical system of interest may include its physical characteristics, social criticality, 

level of protection and so on: see Section 2). We denote the set of criteria by N = {1, 2, ..., 

i, ..., n} and assume that the values xi of criterion i range in the set Xi (20) (for example, in the 

present paper all the criteria range in [0, 1]). The MR-Sort procedure allows assigning any 

alternative ! = {!!, !!,… , !! ,… , !! ∈ ! = !!×!!×…×!!×…×!!}  to a particular pre-

defined category (in this paper, a class of vulnerability), in a given ordered set of categories, 

{C
h
 : h = 1, 2, ..., M}; as mentioned in Section 2, M = 4 categories are considered in this work: 

A
1
 = satisfactory, A

2
 = acceptable, A

3
 = problematic, A

4
 = serious. 

To this aim, the model is further specialized in the following way: 

• We assume that Xi is a subset of ℝ for all ! ∈ ℕ  and the sub-intervals 

(!!
!
,!!

!
,… ,!!

!
,… ,!!

!) of !! are compatible with the order on the real numbers, i.e., 

for all !!
!
∈ !!

!
, !!

!
∈ !!

!
,… , !!

!
∈ !!

!
,… , !!

!
∈ !!

! , we have !!
!
> !!

!
> ⋯ > !!

!
>

⋯ > !!
! . We assume furthermore that each interval !!

!
, ℎ = 1,2,… ,! − 1  has a 

smallest element !!
! , which implies that !!

!
≥ !!

!
> !!

!!! . The vector 

!
!
= {!!

! , !!
! ,… , !!

!
,… , !!

!} (containing the lower bounds of in the intervals !!
!  of 

criteria ! = 1,2,… , ! in correspondence of category h) represents the lower limit profile 

of category !!. 

• There is a weight !! associated with each criterion ! = 1,2,… , !, quantifying the 
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relative importance of criterion i in the vulnerability assessment process; notice that the 

weights are normalized such that !!
!

!!! = 1. 

In this framework, a given alternative ! = {!!, !!,… , !! ,… , !!} is assigned to category 

!
! , ℎ = 2,3,… ,! − 1, iff  

!! ≥ !
!∈ℕ:!!!!!

! !!"#! !! < !
!∈ℕ:!!!!!

!!! ,!(A.1) 

where λ is a threshold (0 ≤ λ ≤ 1, e.g., in this paper λ=0.9) chosen by the analyst. Rule 

(A.1) is interpreted as follows. An alternative x belongs to category !!  if: 1) its 

evaluations in correspondence of the n criteria (i.e., the values {!!, !!,… , !! ,… , !!}) 

are at least as good as !!
! ( lower limit of category Ah with respect to criterion i), 

! = 1,2,… , !, on a subset of criteria that has sufficient importance (in other words, on a 

subset of criteria that has a weight larger than or equal to the threshold λ chosen by the 

analyst); and at the same time 2) the weight of the subset of criteria on which the 

evaluations {!!, !!,… , !! ,… , !!}  are at least as good as !!
!!!  (lower limit of the 

successive category !!!! with respect to criterion i ), ! = 1,2,… , !, is not sufficient to 

justify the assignment of x to the successive category !!!!.  

Notice that alternative x is assigned to the best category !! if  !! ≥ !
!∈ℕ:!!!!!

! !and it 

is assigned to the worst category !!  if !! < !
!∈ℕ:!!!!!

!!! . Finally, it is 

straightforward to notice that the parameters of such a model are the (M-1) · n lower 

limit profiles (n limits for each of the M-1 categories), the n weights of the criteria 

!!,!!,… ,!! ,… ,!!, and the threshold λ, for a total of (n·M+1) parameters. 
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ABSTRACT: An empirical classification model based on the Majority Rule Sorting (MR-

Sort) method has been previously proposed by the authors to evaluate the vulnerability of

safety-critical systems (in particular, nuclear power plants) with respect to malevolent inten-

tional acts. In this paper, the model serves as the basis for an analysis aimed at determining a set

of protective actions to be taken (e.g., increasing the number of monitoring devices, reducing

the number of accesses to the safety-critical system, etc) in order to effectively reduce the level

of vulnerability of the safety-critical systems under consideration.

In particular, the problem is here tackled within an optimization framework: the set of pro-

tective actions to implement is chosen as the one minimizing the overall level of vulnerability

of a group of safety-critical systems. In this context, three different optimization approaches

have been explored: (i) one single classification model is built to evaluate and minimize system

vulnerability; (ii) an ensemble of compatible classification models, generated by the bootstrap

method, is employed to perform a “robust” optimization, taking as reference the “worst-case”

scenario over the group of models; (iii) finally, a distribution of classification models, still ob-

tained by bootstrap, is considered to address vulnerability reduction in a “probabilistic” fashion

(i.e., by minimizing the “expected” vulnerability of a fleet of systems). The results are pre-

sented and compared with reference to a fictitious example considering nuclear power plants as

the safety-critical systems of interest.

KEYWORDS: safety-critical system, malevolent intentional attacks, vulnerability analysis, pro-

tective actions, Majority Rule Sorting (MR-Sort), classification model, inverse classification

problem, optimization-based approach, bootstrap, robust optimization, probabilistic optimiza-

tion

1 INTRODUCTION

The vulnerability of safety-critical systems, like nuclear power plants, is of great concern, given

the multiple and diverse hazards that they are exposed to (e.g., intentional, random, natural etc.)

(Kröger & Zio 2011) and the potential large-scale consequences. This justifies the increased

attention for analyses aimed at (i) the systematic identification of the sources of system vulner-

ability, (ii) the qualitative and quantitative assessment of system vulnerability (Aven 2003)(Aven

2010) and (iii) the definition of effective actions of vulnerability reduction.



The issues at stake involve uncertainty given the long time frame, capital intensive investment

and large number of stakeholders with different views and preferences, and call for suitable de-

cision analysis (DA) methods (Leroy, Mousseau, & Pirlot 2001) and particularly multiple cri-

teria decision-making (MCDM) (Doumpos & Zopounidis 2002)(Belton & Stewart 2002). In a

previous work (Wang, Mousseau, & Zio 2013), the authors have proposed an empirical classifi-

cation framework to tackle issues (i) and (ii) above, considering the analysis of the vulnerability

of nuclear power plants to malevolent intentional acts. Specifically, we have developed a clas-

sification model based on the Majority Rule Sorting (MR-Sort) method (Leroy, Mousseau, &

Pirlot 2001) to assign an alternative (i.e., a nuclear power plant) to a given (vulnerability) class

(or category). The MR-Sort classification model contains a group of (adjustable) parameters

that are calibrated by means of a set of empirical classification examples (also called training

set), i.e., a set of alternatives with pre-assigned vulnerability classes (Leroy, Mousseau, & Pirlot

2001)(Wang, Mousseau, & Zio 2013). The performance of the classification-based vulnerabil-

ity analysis model in terms of accuracy and confidence in the assignments has been thoroughly

and systematically assessed in (Wang, Mousseau, Pedroni, & Zio 2014).

In this paper, we are still concerned with intentional hazards (i.e., those related to malevolent

acts) and address issue (iii) above, i.e., the definition of the actions to undertake for reducing

the level of system vulnerability. In particular, the empirical classification model developed in

(Wang, Mousseau, & Zio 2013) is tailored to address the corresponding inverse (classification)

problem (Aggarwal, Chen, & Han 2010)(Aggarwal, Chen, & Han 2006)(Li, Zhou, & Zhang

2012)(Mousseau & Slowinski 1998), i.e., the problem of determining a set of protective actions

which can effectively reduce the vulnerability class of (a group of) safety-critical systems (Aven

& Flage 2009), taking into account a specified set of constraints (e.g., budget limits) (Aggar-

wal, Chen, & Han 2010). Mathematically speaking, the aim is to identify how to modify some

features of the input patterns to the classification model (i.e., the attributes of the safety-critical

system under analysis) such that the resulting class is changed as desired (i.e., the vulnerability

category is reduced to a desired level).

To this aim, an optimization-based framework is here undertaken in order to find one set of

protective actions for each of the considered alternatives, such that the overall vulnerability

level of the group of safety-critical systems under consideration is minimized under given con-

straints. In this context, three different optimization approaches have been sought: (i) one single

classification model is built to evaluate and minimize system vulnerability, (ii) an ensemble of
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compatible classification models, generated by the bootstrap method, is employed to perform

a “robust” optimization, taking as reference the “worst-case” scenario over the group of mod-

els; (iii) finally, a distribution of classification models, still obtained by bootstrap, is considered

for the vulnerability reduction task, by minimizing the “expected” vulnerability of the fleet of

plants. All three optimization problems are numerically solved by CPLEX. The remainder of

the paper is structured as follows. Section 2 recalls the classification model for the assessment

of vulnerability to intentional hazards. With reference to that, Section 3 introduces the problem

of inverse classification for choosing protective actions and the optimization decision-making

approach. In Section 4, case studies are proposed to show the applications of the method. Fi-

nally, Section 5 gives the discussion and analysis of the results. The conclusions of this research

is drawn in Section 6.

2 CLASSIFICATION MODEL FOR THE ASSESSMENT OF VULNERABILITY TO

INTENTIONAL HAZARDS

We limit the vulnerability analysis of a system to the evaluation of the susceptibility to inten-

tional hazards and adopt the three-layers hierarchical model developed in (Wang, Mousseau,

& Zio 2013) (Figure 1). The susceptibility to intentional hazards (layer 1 in Figure 1) is char-

acterized in terms of attractiveness and accessibility (layer 2 in Figure 1). These attributes are

hierarchically broken down into factors which influence them, including resilience interpreted

as pre-attack protection (which influences on accessibility) and post-attack recovery (which

influences on attractiveness). The disaggregation is made in n criteria (layer 3 in Figure 1) de-

scribed by the n-tuple MCrit = {MCrit1,MCrit2, ...,MCriti, ...,MCritn} with n = 6 in

this case: physical characteristics (MCrit1), social criticality (MCrit2), possibility of cascad-

ing failures (MCrit3), recovery means (MCrit4), human preparedness (MCrit5) and level

of protection (MCrit6). These six criteria are further decomposed into a layer of m = 16

basic subcriteria {critj, j = 1,2, ...,m = 16}(layer 4 in Figure 1), for which data and infor-

mation are collected in terms of quantitative values or linguistic terms depending on the na-

ture of the subcriterion. The descriptive terms and/ or values of the fourth layer subcriteria

are, then, scaled to numerical categories. Finally, to get the value of the six third-layer criteria

MCrit = {MCrit1,MCrit2, ...,MCriti, ...,MCritn}, n = 6, (i) we assign weights to each

subcriterion to indicate their importance and (ii) we apply a simple weighted sum to the cate-

gorical values of the constituent subcriteria {critj = j = 1,2, ...,m= 16}. These m= 16 criteria
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Figure 1: Hierarchical model for susceptibility to intentional hazards

{critj = j = 1,2, ...,m = 16} are evaluated to assess the vulnerability of a given safety-critical

system of interest (e.g., a nuclear power plant NPP). For the purpose of the present analysis,

M = 4 levels (or categories) of system vulnerability {Ah : h = 1,2,3,4} are considered: A1 =

satisfactory, A2 = acceptable, A3 = problematic, A4 = serious. Then, the assessment of vulner-

ability corresponds to a classification problem: given the definition of the characteristics of a

critical system in terms of the sixteen criteria above, assign the vulnerability category (or class)

to which the system belongs.

The classification model, indicated as M(·|(ω, b)), is based on the Majority Rule Sorting (MR-

Sort) method (Leroy, Mousseau, & Pirlot 2001)(Roy 1991)(Mousseau & Slowinski 1998). The

model contains a group of (adjustable) parameters, i.e., the weights ω = {ω1, ω2, ..., ωn} of the

n criteria and the lower “boundaries” defining each category h = 1,2, , k with respect to each

criterion i = 1,2, ...n (notice that bh = {bh1 , b
h
2 , ..., b

h
i , ..., b

h
n} ): further details can be found in

(Wang, Mousseau, Pedroni, & Zio 2014). These parameters are calibrated through a disaggre-

gation process by means of a set of empirical classification examples (the training set DTR =

{(xp,Γ
t
p), p= 1,2, ...,N}, i.e., a set of N alternatives xp = {xp

1, x
p
2, ..., x

p
i , ..., x

p
n}, p= 1,2, ...,N

together with the corresponding real pre-assigned categories (i.e., vulnerability classes) Γt
p (the
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superscript t indicates that Γt
p represents the true, a priori-known vulnerability class of alterna-

tive xp). Further details about the generation of classification models are not reported here for

brevity: the interested reader is referred to (Wang, Mousseau, Pedroni, & Zio 2014).

3 INVERSE CLASSIFICATION PROBLEM FOR PROTECTIVE ACTIONS

IDENTIFICATION: AN OPTIMIZATION-BASED DECISION MAKING APPROACH

We define an inverse classification problem aimed at finding a combination of actions reducing

the vulnerability of a (group of) safety-critical system(s) eventually under budget limitations.

To illustrate the methodology, we consider a set of N alternatives (xp, p ∈ {1,2, ...,N}) charac-

terized by m = 16 basic features (critj, j ∈ {1,2, ...,m}). Each vector xp represents one safety-

critical system (in our case, a NPP). On the basis of these m= 16 features, the NPPs are assigned

to M = 4 pre-defined categories ({Ah : h = 1,2,3,4}), where A1 represents the best situation,

i.e., lowest vulnerability, as presented in the previous section. Let act = {act1, act2, ..., actF}

denote the available set of actions, each of which can influence on one or more basic criteria

critj, j ∈ {1,2, ...,m} (Figure 2) with different intensity, as measured by a set of coefficients

coeffkj, k ∈ {1,2, ..., F}, j ∈ {1,2, ...,m}. In other words, coeffkj is the “weight” of the influ-

ence of action k on attribute j (the higher the absolute value of coeffkj , the stronger the effect

of action k on attribute j). Notice that a positive (resp. negative) coefficient coeffkj means that

action k has an ameliorative (resp. deteriorative) effect on attribute j, whereas if coeffkj is

equal to zero, then criterion j is not influenced by action k. The implementation of one or more

actions modifies the attribute values critj, j ∈ {1,2, ...,m} and as a result, the vulnerability of

the system (i.e., the assignment by the classification model) may change. In this paper, we as-

sume that the total effect of the available set of actions act = {act1, act2, ..., actF} on criterion

j is obtained by a linear superposition of the effects of each action actk:

crit0j = critj +
FX

k=1

coeffkj ∗ actk, k ∈ {1,2, ..., F}, j ∈ {1,2, ...,m}. (1)

where crit0j is the value of attribute j after the identified set of available actions has been

implemented.

Also, let Cost(xp, act
0), act0 ⊆ act denote the cost of the combination of actions act0 applied to

xp. If c
p

k(p ∈ {1,2, ...,N}, k ∈ {1,2, ..., F}) is the cost of action k on xp, then:

Cost(xp, act
0) =

X

k

c
p

k, k ∈ {1,2, ..., F}. (2)
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Figure 2: Schema of direct actions for basic criteria

The inverse classification problem can, then, be formulated as follows: given a limited budget

Bg for the entire group of NPPs considered, find out for each of the NPPs the best combination

of actions that provide the maximal possible reduction in their vulnerability level Aλ0

p ,A
λ0

p ∈

{1,2,3,4}, p ∈ {1,2, ...,N}(as presented in the previous Section, the smaller the category value,

the less vulnerable the NPP). In particular, we have chosen the strategy to reduce, under budget

constraint, the global vulnerability of a group of alternatives in giving priority to the NPPs that

are originally assigned to the worst category; in other words, we try to maximize a properly

weighted sum of the ameliorations in the vulnerability categories undergone by all the NPPs.

This is mathematically represented by the objective function:

Ix = ρ3 ∗Q43 + ρ2 ∗Q32 + ρ1 ∗Q21 (3)

where Qn(n−1)(n ∈ Z) represents the number of NPPs among the N available ones {x|xp, p ∈

{1,2, ..., N}} that are ameliorated from category An to category An−1 by a given combination

of actions. The constants {ρi|i ∈ {1,2,3}} represent weights that we assign to the number of

ameliorated NPPs Qn(n−1)(n ∈ Z), in particular:

ρ3 = 100,ρ2 = 50,ρ1 = 25. (4)

In this case, by maximizing the objective function Ix high importance is given to the ameliora-

tion of the worst (i.e., most vulnerable) NPPs.

In this context, three different optimization approaches have been undertaken: (i) one single

classification model is built to evaluate and minimize system vulnerability, (ii) an ensemble of
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Figure 3: Representation of Simple Optimization

compatible classification models, generated by the bootstrap method, is employed to perform

a “robust” optimization, by considering the “worst-case” scenario; (iii) finally, a distribution of

classification models, still obtained by bootstrap, is considered to address vulnerability reduc-

tion in a “probabilistic” fashion.

3.1 Simple Optimization

As presented in Section 2, and in more details in (Wang, Mousseau, Pedroni, & Zio 2014), we

can construct a classification model as M⇤(·|ω⇤, b⇤)(with ω⇤ the weights and b⇤ the lower pro-

files) compatible with all the pre-assigned alternatives in the training set DTR through a disag-

gregation process. We name this model the “optimum” classification model. The optimization-

based inverse classification process aims at finding an optimal set of actions for each of the

NPPs for which the objective function Ix is maximized: this will improve the performance of

the group of NPPs, while giving priority to the worst ones. In more detail, the problem can be

formulated as follows:

Find act0p = arg Max{act0p,p=1,2,...,N}(I
x(act0p,M

⇤)), (5)

s.t.
X

p

Cost(xp, act
0
p) ≤ Bg, (6)

{x|xp, p ∈ {1,2, ...,N}} (7)

Under the constraint of budget limitation, we find the combination of protective actions that

maximize the value of the objective function Ix, presented above.

3.2 Robust Optimization

The optimization approach introduced above provides a choice of protective actions for the

NPPs using (only) the “optimum” classification model M⇤(·|ω⇤, b⇤). However, for the training
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Figure 4: Representation of Robust Optimization

set of pre-assigned alternatives there are a number of compatible classification models. To ac-

count for this model uncertainty, we aim at finding the combination of protective actions (for

each of the NPPs) that can ameliorate the NPPs to a satisfactorily low level of vulnerability,

considering all compatible classification models. In other words, the combination of actions

that we obtain should be “robust” to the (model) uncertainty arising from the fact that the em-

pirical classification model is trained with a finite set of data and, thus, multiple models are

compatible.

To this aim, the bootstrap method (Efron & Thibshirani 1993) is applied to create an ensemble

of classification models constructed on different data sets bootstrapped from the original one

(Zio 2006). The basic idea is to generate different training datasets by random sampling with

replacement from the original one (Efron & Thibshirani 1993): such different training sets are

used to build different individual classification models of the ensemble. In this way, the individ-

ual classifiers of the ensemble possibly perform well in different regions of the training space.

In more detail, the main steps of the bootstrap algorithm are as follows (Figure 4):

a. Generate a bootstrap data set DTR,q = {(xp,Γ
t
p) : p = 1,2, ...,N}, by performing random

sampling with replacement from the original data set DTR = {(xp,Γ
t
p) : p = 1,2, ..., N}

of N input/output patterns. The data set DTR,q is thus constituted by the same number N

of input/output patterns drawn among those in DTR, although due to the sampling with
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replacement some of the patterns in DTR will appear more than once in DTR,q, whereas

some others will not appear at all.

b. Build a classification model {Mq(·|ωq, bq) : q = 1,2, ...,B}, on the basis of the bootstrap

data set DTR,q = {(xp,Γ
t
p) : p = 1,2, ...,N}.

Given the bootstrapped ensemble, the mathematical formulation of the robust optimization is as

follows:

Find act0p = arg Max{act0p,p=1,2,...,N} Minq(I
x(act0p,Mq)), (8)

s.t.
X

p

Cost(xp, act
0

p) ≤ Bg, (9)

{x|xp, p ∈ {1,2, ...,N}}, (10)

{M |Mq ∈ M,q ∈ {1,2, ...,B}}. (11)

A large number B(= 100) of compatible classification models {M |Mq ∈ M,q ∈ {1,2, ...,B}}

are typically generated by bootstrap. Correspondingly, the minimum value MinM(Ix(act0p,Mq))

of objective function Ix(act0p,Mq) over the B compatible models in correspondence of each set

of actions can be gathered. In particular, a distribution of vulnerability classes can be obtained

for each NPP. Then, based on the distribution and applying the majority-voting rule, we assign

each NPP to its most likely after-action category. Then, the optimization solver aims at finding

the optimal combination of actions that robustly and conservatively maximize the worst value

of the objective function Ix(act0p,Mq).

In more detail, the robust optimization algorithm proceeds as follows:

1. The solver proposes a set of actions for each xp; each bootstrapped classification model

Mq(·|ωq, bq) is used to provide an after-action vulnerability class Γq
p, q = 1,2, ...,B to each

alternative of interest, i.e., Γq
p = Mq(xp|ωq, bq);

2. On the basis of the results obtained at step 1 above, a value for function Ix(act0p,Mq) is

computed for each compatible model Mq(·|ωq, bq), q = 1,2, ...,B, to obtain an ensemble

of values Ix(act0p,Mq);

3. The minimum (i.e., worst) value among Ix(act0p,Mq), q = 1,2, ...,B, is taken as the ob-

jective function to maximize; in other words, we aim at identifying the set of actions able

to improve the “worst-case scenario” over the possible compatible models;

10



Figure 5: Representation of Probabilistic Optimization

4. We repeat the steps above for different combinations of actions act0p, p = 1,2, ...,N in

order to find out the combination of actions for each of the considered NPPs that can

ameliorate the worst case situation as much as possible.

3.3 Probabilistic Optimization

The main steps (Figure. 5) are the same as those of the Robust Optimization presented in Figure

4, but the objective function is changed. Instead of improving the worst case over all the models,

we choose to improve the expected value of the probablity distribution of the function Ix. Thus,

in this case, we “ignore” some of the “extreme” classification models generated by bootstrap.

The mathematical formulation of the problem is as follows:

Find act0p = arg Max{act0p,p=1,2,...,N}
1

B

BX

q=1

(Ix(act0p,Mq)), (12)

s.t.
X

p

Cost(xp, act
0

p) ≤ Bg, (13)

{x|xp, p ∈ {1,2, ...,N}}, (14)

{M |Mq ∈ M,q ∈ {1,2, ...,B}}. (15)

11



Table 1: Basic Criteria

4 APPLICATION

The methods presented in Section 3 are applied on a case study concerning the vulnerabil-

ity analysis of NPPs (Mousseau & Slowinski 1998). We identify n = 6 main criteria i =

1,2, ..., n = 6 by means of the hierarchical approach presented in (Leroy, Mousseau, & Pirlot

2001) (see Section 2): MCrit1 = physical characteristics, MCrit2 = social criticality, MCrit3

= possibility of cascading failures, MCrit4 = recovery means, MCrit5 = human prepared-

ness and MCrit6 = level of protection. Then, these 6 criteria are decomposed into m = 16

basic criteria {critj, j = 1,2, ...,m = 16} (see Table 1). Finally, k = 4 vulnerability categories

Ah, h = 1,2,3,4 are defined as: A1 = satisfactory, A2 = acceptable, A3 = problematic and A4 =

serious (Section 2).

The training set DTR is constituted by a group of N = 18 NPPs with corresponding a priori-

known categories Γt
p (all the considered NPPs are pre-assigned to A2,A3 or A4, since the

alternatives originally assigned to best category A1 are not taken into account), i.e., DTR =

{(xp,Γ
t
p) : p = 1,2, ...,N = 18} . The training set of plants with the corresponding values of

the basic criteria is summarized in Table 2. Taking as reference the 16 basic criteria, 13 actions

“directly” impacting on them are defined (Table 3): for example, for the criterion Number of

workers, the direct action is Reduce number of workers. On the other hand, there are certain

12



Table 2: Training set with N = 18 assigned alternatives

basic criteria that cannot have a corresponding action: for example, for criterion connection

distance; it is not possible to physically reduce the distance between sites. Additionally, in our

case study, the actions have 3 different influence/impact levels; for example, with reference to

action Reduce number of workers, the 3 levels imply a reduction of the number of workers of

the chosen site by 1) 20%, 2) 25% or 3) 30%. This adds degrees of freedom to the choice of

actions. Considering the costs associated to the actions, for the sake of simplicity, we define the

cost to be “1” for level 1, “2” for level 2 and “3” for level 3, in relative units, for all actions

and NPPs. In what follows, the three optimization-based approaches of Section 3 are applied to

obtain the “best” combination of protective actions for each of the NPPs.

4.1 Simple Optimization

Two tests are first carried out considering an unlimited or limited budget. The example with

unlimited budget aims at showing an ideal case of the inverse classification problem that would

lead, in principle, to the best after-action condition. It can be seen that, based on the original

dataset of pre-assigned alternatives, there are certain NPPs (i.e., x1, x2 and x15) that can never

be ameliorated to the best category A1 (Table 4). The identification of the best (i.e., lowest)

vulnerability category that one NPP can be assigned to without budget restrictions represents an

important base information that provides the decision makers with a global view of the problem

13



Table 3: Available protective actions

goals.

The optimization performed with budget constraints aims at solving the realistic problem of

finding out the combination of protective actions for each NPP, that ameliorate the group of

NPPs with priority to the most vulnerable ones, managing the “residual” resource to improve

the others. With an unlimited budget, most of the NPPs are ameliorated to a lower level of vul-

nerability. Actually, x1, x2 and x15 do not change class because of their particular characteristics

(e.g., the physical distance between the site and the nearby cities is closer with respect to that

of the other plants, and such characteristics cannot be modified by any action). The minimum

Table 4: After-action assignments of the considered NPPs without budget constraint. White cases in the third

column indicate unchanged assignment.
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Table 5: After-action assignments of the considered NPPs with budget constraint Bgmin
= 40 (simple optimiza-

tion). White cases in the third column indicate unchanged assignment.

cost necessary to improve each NPP to the best possible category is Bgmin
= 78. Fixing a lim-

ited budget to Bgmin
= 40, the optimization of the actions leads to the ameliorations reported in

Table 5. Obviously, x1, x2 and x15 still do not change class as in the case with unlimited budget.

Moreover, since the budget is lower than that necessary to ameliorate all NPPs to their best

category (Bgmin
= 78), there are other NPPs (x5, x10 and x17) whose vulnerability category is

not changed. On the contrary, all NPPs originally assigned to the “worst” category A4 improve

after action(s); then, the rest of the budget is distributed to ameliorate the other NPPs as much as

possible. For example, x8 and x12 are improved by one category, whereas they can be improved

by two categories in the case of unlimited budget (Table 4).

In the next two subsections, we present the results of the other two optimizations approaches

considering only the realistic case of limited budget.

4.2 Robust Optimization

The results in the case of limited budget, Bg = 40, are shown in Table 6 and compared to the

original categories (obtained by majority-voting over the B compatible bootstrapped classifi-

cation models). There are only 4 NPPs that are ameliorated: x13 is ameliorated from A4 to

A3; x2, x3 and x18 are ameliorated from A3 to A2. There are changes in the bootstrapped dis-

tributions of the categories of the other NPPs, but not consistent enough to change their final

assignments by majority-voting. In comparison with the results obtained in the previous subsec-

tion, there are less NPPs that are ameliorated. This is reasonable for a “robust” solution, since
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Table 6: After-action assignments of the considered NPPs with budget constraint (robust optimization). White

cases in the third column indicate unchanged assignment. MV = majority-voting

“extreme” (worst-case) compatible classification models affect the optimization.

4.3 Probabilistic Optimization

The probabilistic case is a variation of the Robust Case of Section 4.2. Instead of maximizing

MinM(Ix(act0p,Mq))(i.e., the worst after-action objective function value), we choose to maxi-

mize the expected value of the bootstrapped probability distribution of the weighted objective

function Ix(act0p,Mq).

The results are shown in Table 7, in comparison with the original majority-voting category of

each NPP. There are 8 NPPs that are ameliorated: x8, x13, x15 and x17 are changed from cate-

gory A4 to A3; x2, x3 and x12 are changed from A3 to A2. In comparison with the results of

Section 4.1, there are less NPPs that are ameliorated; in addition, not all the NPPs that were

originally assigned to the worst category (A4) are improved. On the other hand, with respect to

the results of the robust optimization (which also considers an ensemble of different compatible

models), the group of NPPs is globally improved. The results of the probabilistic case are more

satisfactory since most of the NPPs that were assigned to the worst category (A4) are improved;

then, the rest of the resources is used to ameliorate those plants that were assigned to the second

worst category (A3).
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Table 7: After-action assignments of the considered NPPs with budget constraint (probabilistic optimization).

White cases in the third column indicate unchanged assignment. MV = majority-voting

5 DISCUSSION AND ANALYSIS OF THE RESULTS

The three optimizations considered provide conceptually and practically different solutions to

the choice of protective actions for the NPPs.

The simple optimization provides a quite specific and limited indication of the amelioration

capability of a set of actions with reference to a single classification model with given char-

acteristics. In this case, the classification model is fixed (generated through a disaggregation

process based on the number of real-world classification examples available): the number n of

main criteria, the number m of basic criteria and the number M of categories (given by the

analysts according to the characteristics of the systems at hand). On this basis, the space of all

possible combinations of actions for each of the NPPs of the group (and consequently the space

of all possible objective functions with the structure mentioned above, i.e., n criteria and M cat-

egories) are exhaustively explored by the optimization solver. The weighted objective function

defined fulfills the original purpose of ameliorating the NPPs group overall performance, giving

preference to those NPPs that were originally assigned to the worst categories.

The robust optimization is inevitably more conservative, given the uncertainty in the compat-

ible models. By the bootstrap method applied on the training set available, an ensemble of B

compatible models is built. By so doing, we explore the space of all the classification models

compatible with that particular training set. In this view, the bootstrap serves the purpose of

accounting for the uncertainty related to using a specific and finite (training) data set for build-
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ing a classification model of given structure (i.e., with given numbers n and M of criteria and

categories, respectively). In addition, the objective function Ix for the optimization represents

the “worst-case scenario” over all models and this injects additional conservatism in the choice

of the protective actions for the NPPs.

The probabilistic optimization approach applied to the same set of B compatible models aims

at the objective of maximizing the expected value of the weighted function Ix. The overall im-

provement of the NPPs turns out to be satisfying. Comparisons and thorough discussions are

presented in the following subsections.

5.1 Comparison of the assignments of the NPPs after protective actions

Three different perspectives of optimization have been carried out under a limited budget (Bg =

40), where the simple case considers one “optimum” classification model, whereas the ro-

bust and probabilistic cases consider B(= 100) compatible models obtained by the bootstrap

method. For fair comparison of the after-action assignments, an adaptation of the results of the

simple case is needed.

The set of protective actions generated in the simple case is now applied to the group of alterna-

tives for all B compatible models of the robust and probabilistic cases. Then, the assignments

are obtained by the majority-voting rule. This shows the effect that a set of action “optimisti-

cally” obtained by resorting to one single “optimum” model has on the NPPs, when applied to

an ensemble of compatible models in light of the uncertainties. The results are listed in Table

8. First, we compare the data of the first and second columns. In the first column, there are the

original assignments for all the NPPs, evaluated by the single “optimum” classification model;

in the second column, there are the assignments for the same group of NPPs obtained by ma-

jority voting based on the B(= 100) models. It can be seen that there are some differences of

assignments for some NPPs (x2, x5, x15, x17 and x18): with the single “optimum” model, the

vulnerability of these NPPs is “underestimated”. This shows the importance of adopting the

robust and probabilistic approaches.

Then, we compare the results of the following three columns, which represent the three cases

employing B(= 100) compatible classification models. For the simple case results, there are

some ameliorations in the group, whereas there is one NPP (x16) that is assigned to a worse

category than before. This is explained as follows. In the procedure of majority voting, the
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Table 8: Resume of after-action assignments of the considered NPPs with budget constraint and B = 100. White

cases of the third to the sixth comlumns indicate unchanged assignments.

number of models that originally assign x16 to A3 is slightly lower than that to A4. With the

actions obtained by the simple optimization, some models that originally assigned x16 to A3,

now evaluate it in category A2; at the same time, the number of models that assign it to A4 does

not change, becoming the majority. This further calls for the adoption of robust and probabilis-

tic approaches. Indeed, the robust case gives a better result than the simple one. No NPPs are

assigned to a worse category as before (x16). More NPPs are improved (x2 and x18) but there is

still only one NPP that is ameliorated from the worst category (A4).

Finally, the probabilistic case shows a more promising way to choose the set of protective ac-

tions. Actually, 8 out of 18 NPPs are ameliorated. Among these, 4 were originally assigned to

A4, whereas the other 4 were originally assigned to A3. This matches well our “expected use”

of the limited resources (Bg = 40), implicitly defined by the weighted objective function Ix.

5.2 Explanation of the behavior of the robust and probabilistic optimizations

As presented in the previous subsection, the robust case shows a better amelioration perfor-

mance than the simple one. However, the robust approach is in principle expected to amelio-

rate the group performance by giving preferential consideration to the NPPs that are originally

assigned to the worst category: in this view, it does not provide a satisfactory performance, es-

pecially because it does not improve as many NPPs in category 4 as the probabilistic approach
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does.

For further understanding, additional calculations and verifications have been carried out.

Based on the original assignments obtained by majority voting (results in column 2 of Table 8)

and considering B(= 100) compatible classification models, we choose all the NPPs that are as-

signed to the worst category (A4) as a reduced study set xworst = {xp, p ∈ {7,8,9,13,15,17}}.

Then, imposing a limited budget (Bg = 40, as in the previous calculations) and an unlimited

budget (conveniently set in the numerical algorithms to Bg = 1000 >> Bgmin
= 78), we ap-

ply the robust and probabilistic optimizations to ameliorate the set xworst. It turns out that for

both cases, no feasible solution can be found by the robust algorithm. It means that considering

only the NPPs originally assigned to the worst category (A4), there is no way to generate a set of

actions that can produce an amelioration of the group of plants for any of the B(= 100) compat-

ible models. In other words, for any set of actions and considering all the B(= 100) compatible

models, there is at least one after-action objective function value equal to “0”.

In order to verify this hypothesis and find out for how many of the bootstrapped models the

objective function value is “0”, we use the optimal set of actions obtained in the robust op-

timization for the full set of alternatives (x) and the same budget limit (Bg = 40 and 1000)

to ameliorate the NPPs of xworst, taking into account the B(= 100) classification models. A

bootstrapped distribution of the objective function Ix
worst

is obtained (Figure 6, left). We repeat

the same process with the optimal set of actions obtained for the probabilistic case (Figure 6,

right). In order to have a clearer view of the results, the Figures show the values of the objective

function for the bootstrapped models rearranged in increasing order. For the two cases and the

two different budgets (limited and unlimited), the corresponding objective function values for

some compatible models are always “0” (especially for the robust case with a limited budget,

Bg = 40). In comparing the results based on the given budgets, although for some compatible

models with the given set of actions the performance cannot be ameliorated, the results of the

case of an unlimited budget (Bg = 1000) are better than the ones of a limited budget (Bg = 40).

With the same budget, the results of the probabilistic case are always better than the robust case.

Except for the robust case with limited budget (Bg = 40), for the other three tests the number

of models for which no plant is ameliorated is 6. In addition, they are the same 6 models for the

three cases (named Mna). It is due to their characteristics of lower profiles and to the weights

that the NPPs in xworst can never be elevated to a better category after any set of actions.

If we consider the full alternatives set (x), the two approaches always produce feasible solu-
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Figure 6: Distribution of after-action objective function values for xworst in considering B = 100 classification

models

tions. With the same budgets, similar calculations are done and the distribution of the objective

function Ix of the whole group of NPPs can be obtained (Figure 7).

From Figure 7, we can find out that, except for the probabilistic case with Bg = 40, all the after-

action objective function values are positive. Especially for the robust cases, if we go into the

details of the ameliorations of the group, we can find out that, in correspondence of the 6 models

in Mna that do not allow any after-action ameliorations for the NPPs of xworst (mentioned in

the previous paragraph), the after-action ameliorations for the whole NPPs group concentrate

on the changes of the NPPs that are originally assigned to A3.

Thanks to these new tests, we have a further understanding of the robust case and probabilistic

case. The aim of our optimization is to find out a set of protective actions in order to ameliorate

the group performance in giving a preferential consideration of the NPPs that were originally

assigned to a relatively worse category. For the robust case, the amelioration of the worst case

over all the models is demanded. In other words, the obtained set of actions should have a

positive effect on the objective function value for any classification models. In this case, the

optimization algorithm tries to improve the objective functions produced by those compatible

models that produce the worst results and possibly presents particularly “pathological” features

(in our case the models in Mna). Since in these configurations it is not possible to ameliorate

the NPPs that are originally assigned to A4, but we still force the algorithm to finally improve
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Figure 7: Distribution of after-action objective function values for x in considering B = 100 classification models

the objective function Ix, the algorithm then tries to target the NPPs that are originally assigned

to A3 (which is the second worst original category): actually, according to the definition of the

objective function, increasing preference is given to NPPs with high vulnerability. This is also

the reason why, if we apply this set of actions on the whole group of NPPs and evaluate them

by the B models, the ones that are originally assigned to the worst category (A4) are not im-

proved as we might expect. On the contrary, for the probabilistic case, an expected value over B

models is maximized. Since the amelioration of NPPs that are originally assigned to the worst

categories is given a higher weight, the NPPs that are originally assigned to A4 are more tar-

geted. If the budget is not sufficient to improve at least one NPP for all models, such “extreme”

models are “in practice” neglected by the algorithm. As a result, as presented in Figure 7, for

the probabilistic case with a limited small budget, the expected value of the objective function

is increased, but for some models, the corresponding value of function Ix is still “0”.

For verification purposes, we considered a study of a new group of compatible models. We take

the previous B(= 100) compatible classification models and remove the models in the group

Mna to form group Ma where the remaining 94(= 100− 6) compatible models are considered.

We repeat the optimizations with a budget limitation of Bg = 40 as before (subsection 5.1), with

only the 94 models in Ma. The results are listed in Table 9. Comparing the results with those

of (Table 8), it can be seen that in the first two columns they are exactly the same: for example,

22



Table 9: Resume of after-action assignments of the considered NPPs with budget constraint and B = 94. White

cases of the third to the sixth comlumns indicate unchanged assignment.

in the first column, we always consider the same single “optimum” classification model; also

since there are only 6 models that are removed, the original assignments of all the NPPs by

majority voting rule are not changed either. The results of the following columns show the same

tendency as before (subsection 5.1).

There is one difference with the results of the simple case: x2 is originally assigned to A3 and in

the bootstrap cases with B = 100, the after-action assignment is also A3. However, with B = 94,

the after-action assignment is either to A2 or A3, because the number of models that assign it to

the two different categories remains the same. It means that the set of action generated by the

simple optimization in considering the “optimum” classification model does not have a satis-

factory influence under the evaluation of the models in Mna (assigned to A3). The “optimum”

classification model is generated based on the maximum number of pre-assigned training alter-

natives. The set of actions generated from this model is not robust enough but should be more

efficient than a random one. The fact that the results based on the models in Mna are relatively

worse proves the fact that these models are not as similar to the “optimum” one as the others.

This is also the reason why the results of the robust case with B = 94 are better than the ones

with B = 100. Firstly, one more NPP is improved (x8, from A4 to A3) and there is one change

of amelioration target: x17 is ameliorated (from A4 to A3) instead of x18 (from A3 to A2). This

means that, after having removed the models in Mna from the considered group of compatible
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classification models, the NPPs that are originally assigned to the worst category (A4) are more

likely to be improved based on the other 94 models. However, the overall results are still not

as good as the probabilistic case (which remain the same as before). Although after the dele-

tion of the models in Mna, the optimization algorithm will consider some other models that

are less “extreme” than the ones in Mna, they still present a variability that may prevent the

improvement of some NPPs to a better category. On the contrary, the probabilistic approach

always searches to maximize the average value over the compatible models: thus, in practice,

the models that give a poor output (i.e., the “tails” of the distribution) are given less importance.

5.3 Rationality of the weighted-sum objective function in the probabilistic optimization

As presented in the previous sections, the set of protective actions generated from the prob-

abilistic case has a more satisfactory result than the others. A verification study is done with

respect to this.

We consider the whole group of NPPs and the B = 100 compatible classification models. The

weights used to represent the importance of changes from A4 to A3, A3 to A2 and A2 to A1

are 100,50,25. Now, we change to a uniform set of weights (100,100,100) and count the cu-

mulative number of changes from each category to its adjacent improved category for all NPPs

and all models. The changes are compared for each NPP between its original and the corre-

sponding after-action category evaluated independently by each compatible model. A change

of categories more than one for a NPP is considered as the combination of single changes from

different “original” assigned categories (e.g., for one NPP that is ameliorated from A4 to A3, it

is counted as one change from A4 to A3, one from A3 to A2 and one from A2 to A1).

We discover that, reasonably, with a very small amount of budget (e.g., Bg < 10), the algorithm

can be infeasible since the given resource is not enough to make any amelioration. With a very

large budget (e.g., Bg > 702 = total cost of all highest level actions applied on all NPPs),

since the resource is adequate, there is no need for the weights to steer its allocation: for the dif-

ferent weights set, the final ameliorations are the same. Focusing on realistic cases of limited and

relatively small budgets, we consider 4 different budgets, Bg = 20,40,50 and 90 and run two

optimizations with the weights of the objective function set at (100,50,25) and (100,100,100),

respectively. The results are shown in Figure 8. It is obvious that, the bigger the budget, the

bigger the number of cumulative changes after actions. For budgets Bg = 40,50 and 90, the
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Figure 8: Distribution of number of cumulative changes of category for x in considering B = 100 classification

models, two sets of weights of objective function and 4 different budgets

number of ameliorated NPPs originally assigned to the worst category (A4) is bigger in the

case of the objective function with weights (100,50,25) than in the case of uniform weights

(100,100,100). For the budget Bg = 20, the number of ameliorated NPPs originally assigned

to the worst category (A4) is the same with both weights sets. But with the set (100,50,25),

a larger number of NPPs originally assigned to the second worst category (A3) is ameliorated

than with uniform weights (100,100,100).

These results show that the probabilistic optimization with the objective function that contains

a set of priority weights (100,50,25) is, indeed, able to steer the allocation of the linked bud-

get on protective actions that can ameliorate the performance of the NPPs, with preferential

consideration to those originally assigned to worse categories.

6 CONCLUSIONS

We have addressed the issue of selecting a set of protective actions for minimizing the vulnera-

bility of safety-critical systems (in the case study, nuclear power plants), within an optimization

framework based on an empirical classification model. In particular, an MR-Sort model trained

by means of a small-sized set of data representing a priori-known classification examples has

been used.

Three optimization approaches have been developed and investigated: (i) one single classifi-
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cation model is built to evaluate and minimize system vulnerability; (ii) an ensemble of com-

patible classification models, generated by the bootstrap method, is employed to perform a

“robust” optimization, taking as reference the “worst-case” scenario over the group of models;

(iii) a distribution of classification models, still obtained by bootstrap, is considered to address

vulnerability reduction in a “probabilistic” fashion (i.e., by minimizing the “expected” vulner-

ability of a fleet of systems). To the best of the authors’ knowledge, it is the first time that an

inverse classification problem is formulated and considered for the optimization of the choice of

protective actions to reduce the vulnerability of a group of safety-critical systems (e.g., Nuclear

Power Plants), taking into account the uncertainty associated to the classification models.

From the results obtained, it can be concluded that a combination of protective actions can be

obtained using only a single classification model, but this set of actions is not robust with respect

to the uncertainty of the classification model. The robust optimization may, then, be used for a

more conservative set of actions, coping with model uncertainty. Eventually, the probabilistic

optimization seems most practical for real cases, for the following reasons: (i) as for the robust

case, it handles the uncertainty coming from the finite data set available and the compatible

models; (ii) by maximizing the expected value of the bootstrapped probability distribution of

the objective function, some “ extreme” compatible models of the bootstrapped ensembles are

“neglected”, which is reasonable and more realistic.
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