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Résumé 

La pollution par les nitrates des eaux de surface et des eaux souterraines a suscité une 

attention mondiale ces dernières années. La recharge des eaux souterraines via d’infiltraiton 

dans les zones cultivées est une source importante de la contamination des eaux de surfaces. 

Les plaines alluviales supportent une activité agricole intensive et subissent une pollution aux 

nitrates importante. Il a été démontré que les échanges entre les eaux de nappes et la rivière 

contribuent à la rétention et/ou transformation de l’azote dans le continuum eaux de surface-

eaux souterrains. La compréhension et la quantification des processus d’atténuation des 

concentrations en nitrates se produisant à l’interface nappe-rivière permettraient d’améliorer 

la connaissance du cycle de l’azote à l’échelle du bassin versant. Les objectifs de cette thèse 

sont : 1) quantifier les volumes d’eau échangés entre la rivière et l’aquifère alluvial dans les 

zones de plaine alluviale à l’échelle du bassin versant et 2) quantifier les taux de 

dénitrification dans les nappes alluviales à l’échelle du bassin versant et évaluer leurs 

influences sur les flux de nitrates de la rivière. Un échantillonnage sur le terrain ainsi qu’un 

travail de modélisation ont été effectués pour atteindre ces objectifs. Les campagnes 

d’échantillonnages sur le terrain ont eu lieu d’avril 2013 à mars 2014 sur le site d’étude de 

Monbéqui dans la plaine alluviale de la Garonne. Le modèle Soil and Water Assessment Tool 

(SWAT) qui est largement utilisé à travers le monde a été choisi pour simuler les processus 

hydrologiques et le cycle de l’azote. Cependant, la simulation des échanges nappe-rivière qui 

se produisent dans la plaine alluviale n’est pas prise en compte dans la version originale de 

SWAT. Premièrement, l’équation de Darcy a été introduite pour simuler les échanges nappe-

rivière à partir de la structure Landscape Unit (LU). L’influence des crues débordantes sur ces 

échanges a également été ajoutée dans le modèle. Le modèle modifié, SWAT-LUD, a d’abord 

été appliqué à un méandre de la plaine alluviale de la Garonne- Monbéqui (25 km²). Ensuite, 

un module supplémentaire représentant les processus de dénitrification dans les aquifères peu 

profonds des nappes alluviales a été développé et ajouté au modèle SWAT-LUD. Les flux de 

nitrates ainsi que les taux de dénitrification de l’aquifère alluvial de Monbéqui ont alors été 

quantifiés. Dans un deuxième temps, le modèle SWAT-LUD a été appliqué à l’échelle de la 

plaine alluviale de la Garonne dans son cours moyen (environ 4600 km²) et l’influence de la 

dénitrification de l’aquifère alluvial sur les flux de nitrates de la rivière a été quantifiée. 

Finalement, le modèle a été appliqué sur l’ensemble du bassin versant de la Garonne (environ 

51 500 km²) et l’influence des échanges nappes-rivières sur le cycle hydrologique du bassin 

versant a été évaluée. Les résultats ont montré que le modèle SWAT-LUD pouvait représenter 

de façon réaliste les échanges nappe-rivière ainsi que les taux de dénitrification dans les 

aquifères alluviaux à différentes échelles. Les flux échangés vont majoritairement de 

l’aquifère vers la rivière et contribuent pour 65% du volume total échangé. À l’échelle du 

bassin versant de la Garonne, le volume annuel échangé entre la nappe et la rivière représente 

environ 5% du débit annuel de la Garonne. A l'échelle du méandre, le taux annuel de 

dénitrification dans la zone riparienne a été estimé à environ 130 N-NO3
-
.ha

-1
.an

-1
. Près de 

40% des nitrates arrivant dans cette zone ont été dégradés via les processus de dénitrification. 

Dans le cours moyen de la Garonne, les taux de dénitrification annuels dans ces mêmes zones 

varient entre 55 et 120 kg N-NO3
- 
.ha

-1
.an

-1
.  
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Abstract 

Nitrate pollution in surface water and groundwater systems has attracted worldwide attention 

in recent decades. Recharged groundwater infiltrating through cultivated fields is an important 

source of the nitrate contamination of surface water. As alluvial plains support intensive 

agricultural activities, they often suffer from groundwater nitrate pollution. The exchanges 

between surface water and groundwater (SW-GW) were proved contributing to nitrate 

retention and/or transformation in the land-surface water continuum. The understanding and 

quantifying of nitrate attenuation processes occurring at the surface-groundwater interface 

would enhance understanding of nitrogen cycling at the catchment scale. The objectives of 

this thesis were: 1) quantifying the exchanged SW-GW volume in the floodplain area at the 

catchment scale and 2) quantifying the shallow aquifer denitrification rate in the floodplain 

area at the catchment scale and evaluating its influence on the nitrate flux in the river. Field 

sampling and modelling study were conducted to achieve these objectives. Monthly field 

work campaigns were carried out from April 2013 to March 2014 at the Monbéqui site in the 

Garonne river floodplain. The Soil and Water Assessment Tool (SWAT) which has been 

successfully applied all over the world was chosen to simulate the hydrologic processes and 

nitrogen cycle. However, the simulation of the water exchange between river and 

groundwater occurring in the floodplain area was not simulated in the original SWAT model. 

Firstly, the Darcy’s equation was implemented to simulate SW-GW exchanges based on the 

Landscape Unit (LU) structure in the floodplain area. The influence of flooding on the water 

exchange was also introduced to the model. The modified model was called SWAT-LUD and 

was applied to a meander of Garonne floodplain – Monbéqui (around 25 km
2
). Then, another 

module representing the denitrification processes in the floodplain shallow aquifer was 

developed and added to the SWAT-LUD model. The nitrate flux and shallow aquifer 

denitrification rates in Monbéqui was then quantified. Afterwards, the SWAT-LUD model 

was applied to the middle floodplain section of the Garonne River (around 4 600 km
2
) and the 

influence of shallow aquifer denitrification on the nitrate flux in the river was quantified. 

Lastly, the model was applied to the entire Garonne catchment (around 51 500 km
2
) and the 

hydrologic influence of SW-GW exchanges was evaluated. The results showed that the 

SWAT-LUD model could satisfactorily represent the SW-GW exchanges and shallow aquifer 

denitrification rate at different spatial scales. The main water flow direction is from the 

shallow aquifer to the river, with water flowing in this direction accounted for around 65% of 

the total exchanged water volume. In the Garonne catchment, the annual total exchanged 

water volume represented around 5% of the total discharge volume of the Garonne river. For 

the Monbéqui site, the simulated annual denitrification rate in the riparian zone was around 

130 kg N-NO3
-
ha

-1
y

-1
. Around 40% of the nitrate input in this zone was degraded through 

denitrification. In the middle floodplain section, the annual denitrification rate in the near 

bank zone ranges from 55 to 120 kg N-NO3
-
ha

-1
y

-1
.  
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1.Introduction générale  

 

La pollution par les nitrates des eaux souterraines et de surface a suscité une attention 

mondiale ces dernières années (Bijay-Singh et al., 1995; Carpenter et al., 1998; Jalali, 2011). 

Un excès de nitrate dans les masses d’eau peut être la cause d’eutrophisation et par suite 

impacter les écosystèmes aquatiques. Cela peut également engendrer des problèmes de santé 

publique tels que la Méthémoglobinémie ou certains cancers (McIsaac et al., 2001; Camargo 

and Alonso, 2006). L’Union Européenne et l’Organisation Mondiale de la Santé ont défini 

dans l’eau potable un standard de concentration en nitrate de 50 mg.L
-1

. Les activités 

agricoles sont reconnues pour être des sources significatives de nitrate vers les eaux 

souterraines (Hamilton and Helsel, 1995; Almasri and Kaluarachchi, 2004; Liu et al., 2005b). 

Les activités agricoles intensives étant souvent localisées dans la plaine alluviale, cette 

dernière est donc un lieu majeur de pollution par les nitrates, particulièrement dans les eaux 

souterraines (Sánchez Pérez et al., 2003a; Liu et al., 2005; Arrate et al., 1997; Almasri and 

Kaluarachchi, 2007). 

Les eaux de surface sont riches en oxygène et en matière organique, alors que les eaux 

souterraines sont riches en nutriments. Le mélange entre les deux systèmes a un impact 

significatif sur la qualité des eaux, sur les écosystèmes et les cycles biogéochimiques (Brunke 

and Gonser, 1997; Boulton et al., 1998; Sánchez-Pérez and Trémolières, 2003; Vervier et al., 

2009; Krause et al., 2013; Marmonier et al., 2012). Le continuum hydrologique connecte la 

plaine alluviale et la rivière au sein d’un écosystème complexe. Des matières particulaires et 

dissoutes sont échangées entre ces deux systèmes, à la fois via l’écoulement de surface et les 

écoulements souterrains (Tockner et al., 1999). 

La zone riparienne sert d’interface entre les écosystèmes terrestres et aquatiques, mais 

c’est également un outil efficace dans les processus de dénitrifications (Osborne and Kovacic, 

1993; Lowrance et al., 1997; Dosskey et al., 2010). Le carbone organique est habituellement 

admis pour être le facteur limitant des réactions de dénitrification dans les systèmes aquifères 

alluviaux, une forte concentration en carbone organique dans la zone riparienne peut alors 

permettre au système de supporter un taux de dénitrification élevé. Il a été démontré que la 

concentration en nitrate est atténuée dans la zone saturée, même dans les zones ripariennes où 
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le niveau de l’eau souterraine n’atteint pas la zone racinaire. Dans ces conditions, l’eau qui 

alimente la rivière, riche en matière organique, est importante pour simuler la dénitrification. 

(Iribar, 2007; Sánchez-Pérez et al., 2003b). 

Des modèles hydrologiques à grande échelle ont été développés pour simuler les 

processus hydrologiques à l’échelle du bassin versant ou de la région. SWIM (Krysanova et 

al., 1998), TOPMODEL (Franchini et al., 1996) et MODHYDROLOG (Chiew and 

McMahon, 1994) en sont des exemples. Cependant, l’interface nappe-rivière n’est 

généralement pas incluse dans ces modèles. D’autre part, la dénitrification peut être simulée 

par de nombreux modèles : Heinen (2006) a identifié plus de 50 modèles qui incluent les 

processus de dénitrification. Néanmoins, la plupart de ces modèles simulent la dénitrification 

seulement dans les sols, comme le modèle EPIC (Marchetti et al., 1997), le modèle DAISY 

(Hansen et al., 1991) et le modèle REMM (Lowrance et al., 2000). 

Le modèle Soil and Water Assessment Tool (SWAT) est un modèle déterministe, continu, 

semi-distribué, à l’échelle du bassin versant, qui permet la simulation d’un grand nombre de 

processus hydrologiques. Pour prendre en compte la connexion hydrologique entre l’amont et 

l’aval, une approche en chaine incluant des unités de paysages différents (hillslope, divide et 

foodplain) a été développée et incluse dans SWAT (Volk et al., 2007; Arnold et al., 2010, 

Rathjens et al., 2015). Un routage plus détaillé du ruissellement, des écoulements de 

subsurfaces et des eaux souterraines, peut alors être réalisé pour les parties à l’aval permettant 

l’évaluation des impacts de la gestion des zones amont sur les zones aval. (Arnold et al., 

2010; Bosch et al., 2010). Le modèle modifié est appelé SWAT-LU (SWAT Landscape Unit). 

Cependant, les processus hydrologiques restent unidirectionnels au sein du SWAT-LU et 

aucune fonction intégrant les échanges nappe-rivière bidirectionnels n’est incluse. Pendant un 

évènement de crue, la distance de débordement est fixée à cinq fois la largeur de la surface du 

lit de la rivière, et l’influence des crues sur le niveau des nappes n’est pas prise en compte. 

Les fonctions simulant la dénitrification dans le SWAT-LU sont les mêmes que dans le 

modèle SWAT, et les processus se déroulant dans l’aquifère alluvial ne sont pas inclus. Par 

conséquent, les objectifs principaux de cette thèse sont alors : 1) de quantifier les volumes 

d’eau échangés entre la nappe et la rivière dans la plaine alluviale à l’échelle du bassin versant 

incluant le débordement et 2) de quantifier le taux de dénitrification de l’aquifère alluvial de 

la plaine, à l’échelle du bassin versant, et évaluer son influence sur les flux de nitrate dans la 

rivière.  
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Structure de la thèse  

Chapitre 2 : revue de littérature des travaux existant sur le cycle de l’azote dans le 

système sol-plantes-atmosphère, la pollution aux nitrates dans les écosystèmes aquatiques, la 

caractérisation et les facteurs limitants des réactions de dénitrification, l’étude du système 

rivière-plaine d’inondation et les cycles biogéochimiques existant dans ce système. Les 

modèles permettant de simuler les processus biogéochimiques et hydrologiques à l’interface 

nappe-rivière sont introduits et les objectifs de la thèse sont décrits en détail. 

Chapitre 3 : matériels et méthodes utilisés pour attendre les objectifs. La méthode 

inclut l’introduction et la description des processus hydrologiques ainsi que des cycles de 

l’azote et du carbone simulés dans le modèle SWAT. Cela inclut également la description du 

développement du nouveau module qui permet la simulation des échanges eaux de surface-

eaux souterraines, l’influence des crues sur le niveau d’eau de surface et des nappes ainsi que 

la dénitrification se déroulant dans les aquifères alluviaux de la plaine. La partie matériels se 

concentre sur la description des sites d’études (le bassin versant de la Garonne, la moyenne 

section de la plaine alluviale de la Garonne et le site de Monbéqui) ainsi que sur les 

techniques d’échantillonnage et d’analyse de laboratoire pour la mesure des paramètres 

physico-chimiques. 

Chapitre 4 : description et définition de la structure Lanscape Unit (LU) dans la plaine 

alluviale, développement du module hydrologique SWAT-LUD (SWAT Landscape Unit 

Darcy) et son application sur le site de Monbéqui. Des mesures du niveau des nappes sur la 

période 1999-2000 ont été utilisées pour calibrer le modèle. Des mesures du niveau des 

nappes sur une période se déroulant d'avril 2013 à mars 2014, les échanges d’eau simulés à 

l’aide d’un modèle 2D distribué (2SWEM), les concentrations mesurées d’un traceur 

conservatif (chlorure) ainsi que la simulation du même traceur par 2SWEM, ont été utilisés 

pour valider les résultats du modèle. Le volume des échanges nappe-rivière a été quantifié et 

l’influence des conditions hydrologiques de la rivière sur ces échanges a été analysée. Ce 

chapitre est basée sur un article en cours de révision pour le journal Hydrological Processes. 

Chapitre 5 : description du nouveau module développé en ce qui concerne la 

simulation de la dénitrification dans l’aquifère alluvial et son application sur le site de 

Monbéqui. L’échange de nitrate entre l’aquifère alluvial et l’eau de la rivière à travers 
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l’infiltration latérale (rive) et verticale (surface) ainsi que l’influence des crues sur le lessivage 

des nitrates est prise en compte. L’influence du carbone organique dissout (COD) et du 

carbone organique particulaire (COP) sur la dénitrification est évaluée. La concentration en 

nitrates mesurée dans les eaux souterraines pendant les années 2005 et 2013 ainsi qu’une 

modélisation des flux d’eau et de nitrate avec le modèle STICS, sont utilisés pour calibrer le 

modèle modifié. Les flux de nitrate et le taux de dénitrification dans l’aquifère alluvial de 

Monbéqui sont également quantifiés. Ce chapitre a été écrit comme une publication soumise à 

Ecological Engineering. 

Chapitre 6 : description des applications du modèle SWAT-LUD dans la moyenne 

section de la plaine alluviale de la Garonne et dans le bassin versant de la Garonne. Différents 

sous-bassins classiques et sous-bassin-LUs ont été inclus dans la modélisation de cette zone 

d’étude, et la connectivité entre les deux entités a été implémentée. La fonction de stockage de 

l’eau dans la plaine alluviale en cas de crues est présentée et l’influence de la dénitrification 

dans la nappe de la plaine alluviale sur les flux de nitrates de la rivière est quantifiée. Ce 

chapitre a été écrit comme une publication prévue pour être soumise au Journal Sustainability 

of water qaulity and Ecology. 

Chapitre 7 : Conclusions générales reprenant les principaux résultats de cette étude 

ainsi que les perspectives basées sur ces recherches. 
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1. General introduction  
 

Nitrate pollution in surface water and groundwater systems has attracted worldwide 

attention (Bijay-Singh et al., 1995; Carpenter et al., 1998; Jalali, 2011). Excess nitrate in 

water bodies can cause eutrophication and impact aquatic ecosystems. It also potentially 

causing public health problems such as methaemoglobinaemia and cancer (Camargo and 

Alonso, 2006; McIsaac et al., 2001). The European Union and the World Health Organization 

have set the standard for nitrate concentration at 50 mg·l
-1

 for drinking water. Agricultural 

activities are known to be a significant source of nitrate in groundwater (Almasri and 

Kaluarachchi, 2004; Hamilton and Helsel, 1995; Liu et al., 2005). As alluvial plains support 

intensive agricultural activities, they often suffer from groundwater nitrate pollution (Sánchez 

Pérez et al., 2003a; Liu et al., 2005; Arrate et al., 1997; Almasri and Kaluarachchi, 2007). 

As surface water contains rich oxygen and organic matter and groundwater contains 

abundant nutriment elements, the water mix between those two systems has a significant 

impact on water quality, ecosystems and biogeochemistry cycling (Brunke and Gonser, 1997; 

Boulton et al., 1998; Sánchez-Pérez and Trémolières, 2003; Vervier et al., 2009; Krause et al., 

2013; Marmonier et al., 2012). The hydrologic connectivity links floodplains and rivers into 

integrated ecosystems. Particulate and dissolved matter exchanged between those two systems 

via both surface flow and groundwater flow (Tockner et al., 1999).. 

Riparian zones serve as interfaces between terrestrial and aquatic ecosystems and have 

proven to be efficient nitrate removal tools (Dosskey et al., 2010; Lowrance et al., 1997; 

Osborne and Kovacic, 1993). Since organic carbon usually identified as the major factor 

limiting denitrification rates in the shallow aquifers system, the rich content of organic carbon 

in riparian soil supported the high rate of denitrification. Denitrification has also been found 

efficient to attenuate nitrate in saturated zone of the riparian zones where groundwater levels 

are lower than soil root zones. In these conditions, the recharged river water, rich in organic 

matter, has allowed to stimulate the occurrence of denitrification (Iribar, 2007; Sánchez-Pérez 

et al., 2003b).   

Large-scale hydrological models have been developed to simulate hydrologic 

processes at catchment or regional scale. Examples of such models include SWIM 
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(Krysanova et al., 1998), TOPMODEL (Franchini et al., 1996) and MODHYDROLOG 

(Chiew and McMahon, 1994). However the river/groundwater interface is mostly not 

included in these models. Denitrification is simulated in numerous models: Heinen (2006) has 

identified more than 50 models that include denitrification. Nevertheless most of the models 

only simulate the denitrification process in the soil profile, such as the EPIC model (Marchetti 

et al., 1997), the DAISY model (Hansen et al., 1991) and the REMM model (Lowrance et al., 

2000).  

The Soil and Water Assessment Tool (SWAT) model is a deterministic, continuous, 

semi-distributed, watershed-scale simulation model that allows a large number of different 

hydrologic processes to be simulated. To reflect the hydrologic connection between upslope 

and downslope parts of a landscape, a catena approach including:, hillslope, divide and 

floodplain landscape units has been developed and included in SWAT (Volk et al., 2007; 

Arnold et al., 2010, Rathjens et al., 2015). Thanks to this catena, a more detailed downslope 

routing of surface runoff, lateral flow and groundwater can be accomplished, and the impact 

of upslope management on downslope landscape can be assessed (Arnold et al., 2010; Bosch 

et al., 2010). The modified model was called SWAT-LU (SWAT Landscape Unit). However, 

the hydrologic processes are still single tracks in SWAT-LU and the function of SW-GW 

exchange in both directions is not included. During flooding events, the flooded distance is 

fixed at five times the bank full width of the channel and the influence of flooding on 

groundwater levels is not taken into account. The denitrification function in SWAT-LU is 

simulated as in SWAT model, the denitrifying process in the shallow aquifer is not included. 

Mains objectives of the thesis were: 1) quantifying the exchanged SW-GW volume in the 

floodplain area at the catchment scale and 2) quantifying the shallow aquifer denitrification 

rate in the floodplain area at the catchment scale and evaluate its influence on the river nitrate 

flux. 
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Structure of the thesis  

Chapter 2 reviews studies about nitrogen cycling in the soil-plant-atmosphere system, 

the nitrate pollution in the aquatic ecosystem, the characterization and limit factors of 

denitrification function, the definition of river-floodplain system and the biogeochemical 

cycling occurs in this system. The models simulating the hydrologic and biogeochemical 

processes at the river-floodplain interface are introduced, and the objectives of the thesis are 

also described.  

Chapter 3 describes materials and methods used to achieve the objectives. The 

methods include the introduction of hydrologic, nitrogen and organic carbon cycling 

processes simulated in SWAT model. It also include the description of the development of the 

new module that simulate surface water and groundwater exchanges, the influence of flooding 

on surface and groundwater levels and denitrification process in the shallow aquifer of 

floodplain. The materials part focus on the description of study sites (Garonne watershed, 

middle floodplain of the Garonne basin and Monbéqui study site), the field sampling and 

laboratory analyse technics of the measured physico-chemical elements.  

Chapter 4 provides the description and definition of structure landscape unit (LU) in 

the floodplain area, the development of hydrologic module of SWAT-LUD (SWAT-

Landscape Unit Darcy) and its application at Monbéqui site. Measured groundwater levels in 

period 1999-2000 are used to calibrate the model. Measured groundwater levels in period 

2013, water exchange simulated with a 2D distributed model (2SWEM), measured 

concentrations of conservative tracer (chloride) and simulated concentrations of this same 

conservative tracer with 2SWEM are used to validate the simulated results. The SW-GW 

exchanged volume is quantified and the influence of river hydrologic conditions on SW-GW 

change is also analysed. This chapter presented the publication currently in a revising process 

of Hydrological processes.  

Chapter 5 describes the new module developed as regard with the denitrification in the 

shallow aquifer of alluvial floodplains and its application at Monbéqui site. Nitrate exchanges 

between the shallow aquifer and the recharged river water through both lateral (river bank) 

and vertical (surface) infiltration as well as the influence of flooding on nitrate leaching is 

considered. The influences of both dissolved organic carbon (DOC) and particulate organic 
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carbon (POC) on denitrification is evaluated.  Measured groundwater nitrate concentration in 

2005 and 2013 as well as simulated infiltrated water and nitrate of STICS model are applied 

to calibrate the modified model. The nitrate flux and denitrification rate occurred in the 

shallow aquifer of Monbéqui site is quantified. This chapter has been written as the 

publication submitted to Ecological Engineering.   

Chapter 6 describes the application of SWAT-LUD in the middle floodplain of the 

Garonne basin. Multiple classic subbasins and subbasin-LUs were included in the study area 

and the connection between both was implemented. The floodplain water storage function 

during flood event is presented and the influence of denitrification in the floodplain shallow 

aquifer on river nitrate flux is quantified. This chapter was written as the publication prepared 

to be submitted to Journal Sustainability of water qaulity and Ecology.  

Chapter 7 present the general conclusion that reviewed the main results of this study 

and perspectives based on this research. 
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Chapter 2. Nitrogen cycling, river-

floodplain system, modelling approach. 

 

This chapter reviews studies about nitrogen cycling in the soil-plant-atmosphere system, the 

nitrate pollution in the aquatic ecosystem, the characterization and limit factors of 

denitrification function, the definition of river-floodplain system and the biogeochemical 

cycling occurs in this system. The models simulating the hydrologic and biogeochemical 

processes at the river-floodplain interface are introduced, and the objectives of the thesis are 

described also. 
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2.1.1 Nitrogen  

Nitrogen is a fundamental component in living organisms, is a component in all amino 

acids and is present in the bases that make up nucleic acids such as RNA (Ribonucleic Acid) 

and DNA (Deoxyribonucleic Acid). It is also a key element that controls the functioning of 

lots of terrestrial, freshwater and marine ecosystems (Vitousek et al., 1997). Nitrogen exists in 

both organic and mineral form in the environment. The inorganic forms of nitrogen are shown 

in Table 1.   

Table 1 The oxidation state and the formula of inorganic nitrogen in the environment 

Formula  Oxidation state 

NO3
-
 +5 

NO2
-
 +3 

NO +2 

N2O +1 

N2 0 

NH3/NH4
+
 -3 

 

Large numbers of transformation of nitrogen exist in the soil-plant-atmosphere system, 

both biological and physico-chemical process are included. The movement and transform of 

nitrogen in the soil-plant-atmosphere system is shown in Figure 1. 

 

 

Figure 1. Nitrogen cycling in the soil-plant-atmosphere system (extracted from 

http://www.physicalgeography.net ) 

Nitrogen is the main component of atmosphere (78% by volume). The gaseous 

nitrogen in the atmosphere is very reactive and has limited availability for biological use. 

http://www.physicalgeography.net/
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Nitrogen enters into ecosystems main through biological fixation and artificial fertilization. 

Some free living or symbiotic bacteria could combine gaseous nitrogen with hydrogen to 

produce ammonia. The chemical fertilizers produced by industrial Haber-Bosch process 

which uses high temperature and pressure to convert nitrogen gas and a hydrogen source into 

ammonia is globally used in agricultural systems.  

NH4
+
 and NO3

-
 could be uptake by plants and microorganisms and incorporate into 

organic forms, this process is called immobilization.  Organic nitrogen is the main form of 

nitrogen in the soil, up to 90% of the nitrogen stored as organic form, either in living 

organisms or in humus originating from decomposition of organism residues. The organic 

nitrogen could be decomposed by microorganisms through mineralization and ammonium is 

produced by enzymatic degradation in this process. Fertilized and mineralized NH3 would 

escape to atmosphere by volatilization or convert to NO3
-
 by nitrification. Nitrification is the 

biological process that converts NH3 or NH4
+
 to NO2

-
 followed by the oxidation of NO2

-
 to 

NO3
-
, and NH4

+
 is rapidly converted to NO3

-
 in the majority of agriculture soil. NH4

+
 could 

also be converted into dinitrogen by anammox. Anammox is an important microbial process 

which was found in 1990s, NO2
-
 and NH4

+
 are converted directly into dinitrogen gas in this 

process in the anaerobic condition.  NO3
-
 could convert to N2 through the biological process 

called denitrification. The detail process of denitrification is described in 2.1.3.  

Nitrogen is usually a limiting element for primary production, fertilizer produced by the 

industry process has sustained the global increased population over the past century (Gruber 

and Galloway, 2008). However, the excessive chemical N-fertilization during the past century 

caused environmental and health problems, like more greenhouse gases - nitrous oxide and 

ammonia released to the atmosphere, soil and water body acidification and eutrophication 

caused by the excessive inorganic nitrogen in aquatic ecosystem.  

2.1.2 Nitrate pollution in the aquatic ecosystems  

Nitrate pollution that enter aquatic ecosystems via point and nonpoint sources had drawn 

worldwide attention for a long time (Bijay-Singh et al., 1995; Carpenter et al., 1998; Jalali, 

2011). The excess nitrate content in the water body could cause eutrophication, it could also 

cause health problems such as methaemoglobinaemic and cancer (Camargo and Alonso, 

2006; McIsaac et al., 2001). European Union and World Health Organization had both set the 

standard for nitrate concentration at 50 mg·L
-1

 for drinking water.  
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Nitrate, as a negatively charged ion, is repelled by the negative charged clay mineral 

surfaces in soil. Nitrate is the primary form of nitrogen leached into groundwater and the most 

common contaminant of nitrogen in aquifer systems (Freeze and Cherry, 1979). The leaching 

of nitrate away from soil profile is a problem to both agricultural production and environment 

quality. The main two factors that impact the leaching of nitrate from the root zone to shallow 

groundwater are the amount of nitrate in the soil profile that above the amount required by 

plant and the vertical drainage volume. Crop system condition (crop type, rotation, irrigation 

and fertilization) and climate condition are regarded as have influence on nitrate leaching 

(Meisinger and Delgado, 2002; Simmelsgaard, 1998).  

 The climate impacts the water cycle directly. The soil water content and percolated water 

volume are significantly influenced by precipitation, temperate and humidity. The climate 

change may cause changes in temperature and precipitation, and will impact the agricultural 

nitrate cycling through changes in both soil processes and agricultural productivity (Stuart et 

al., 2011).  

In the agriculture system, irrigation is a general action that provides water to crops during 

draught stress period. Irrigated water accounts for more than 60% of the freshwater use in 

southern Europe. After the irrigated water excess soil storage capacity, the nitrate would 

percolate to shallow groundwater along with soil water during heavy irrigation periods. Wang 

et al. (2010) found that the leached nitrate under heavy irrigation could arrive 60% of the 

accumulated N in the soil profile.  

Fertilizers were widely applied in the agriculture system to stimulate the crop production, 

preferentially in regions where irrigation is available, and soil and climatic conditions are 

favorable for the growth of crop plants (Bijay-Singh et al., 1995). The massive fertilization 

could lead to nitrate accumulation in the soil profiles after successive cropping rotation 

(Westerman et al., 1994; Zhao et al., 2006). In agricultural region, especially in the irrigation 

areas, fertilizer is the main source of nitrate contamination of groundwater (Mishima et al., 

2010).  

Crop type has influence on the nitrate uptake, soil water drainage and soil microbial 

communities composition (Bending et al., 2002; Canter, 1996). The land cover and crop type 

in crop rotation have important influence on the leaching of nitrate (Beaudoin et al., 2005; 

Justes et al., 1999). Johnson et al. (2002) compared standard, intermediate and protective 
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systems, the leaching of nitrate were found significantly different in these three systems, the 

protective system was proved able to substantially decrease nitrate losses.  

The characteristics and depths of soils have impact on the transfer of the water and the 

solute nitrate in the soil profile. The water storage capacity increased along with the rise of 

soil depth, and the clay soil has a greater water holding capacity than sandy soil. Beaudoin et 

al. (2005) found that the nitrate concentration in the shallow groundwater was lowest in deep 

loamy soils and greatest in shallow loamy sand soils in the agricultural area.  

2.1.3 Denitrification  

Denitrification is a biological process that transforms nitrate into N2 gas in the anaerobic 

environment, microaerophilic, and occasionally aerobic conditions. In this process, N oxides 

rather than the general preferred oxygen are the terminal electron acceptors.  It occurs in four 

steps, nitrate (NO3
-
) to nitrite (NO2

-
), NO2

-
 to nitric oxide (NO), NO to nitrous oxide (N2O) 

and N2O to N2, the process can be arrested at any of the intermediate stages. Each step is 

catalyzed by different enzymes, and not all the denitrifying bacterium have the capacity to be 

involved in  the sequence of the four steps (Bothe et al., 2006; Zumft, 1997) (Figure 2).  

 

Figure 2. denitrification processes with different steps (extracted from Iribar, 2007) 

 

The conditions required by denitrification are the presence of N oxides as the electron 

acceptors, and then the presence of organic carbon which is the electron donor, finally the 

anaerobic environment which controls the activity of denitrifying enzymes. Except the three 

conditions, pH and temperature are regularly identified as the limit factors also.  

Denitrification usually occurs at low dissolved oxygen concentration condition, Körner 

and Zumft (1989) found that the dissolved oxygen concentration thresholds of nitrate 

reductase, nitrite reductase were 5 mg·L-1
 and 2.5 mg·L-1 

independently. Rivett et al. (2008) 

reviewed the studies of the dissolved oxygen concentration threshold in the groundwater 

(Table 2). 
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Table 2. Dissolved oxygen concentration threshold of denitrification in groundwater (extracted from Rivett 

et al. 2008) 

Dissolved oxygen concentration (mg·L
-1

) Reference 

4 Böhlke and Denver (1995) 

2 Bates and Spalding (1998) 

2 Gillham (1991) 

1.2 Gallardo and Tase (2005) 

1 Böhlke et al. (2002) 

1 Christensen et al. (2000) 

1 Vogel et al. (1981) 

1 DeSimone and Howes (1998) 

1 Starr and Gillham (1993) 

0.2 Trudell et al. (1986) 

 

The relationship between pH and denitrification are complicate, both the rate of the 

process and the ratio of its gaseous products depend on pH. Studies found that the liberate of 

N2O and the ratio N2O:N2 increased along with the decrease of soil pH (ŠImek and Cooper, 

2002).  The optimum temperature range of denitrifying enzymes is between 25 and 35 °C, but 

denitrification could occur in the range 2–50 °C (Rivett et al., 2008).  

Organic carbon as the ‘energy’ of denitrifying bacteria is necessary in the denitrifying 

process. The complexity compositions of organic carbon in the ecosystems makes it difficult 

to identify the effective carbon source (Dodla et al., 2008; Hume et al., 2002). Dissolved 

organic carbon (DOC) or Bioavailable dissolved organic carbon (BDOC) are taken for carbon 

sources of denitrification in most studies (Hill et al., 2000; Inwood et al., 2005; Peterson et al., 

2013). Furthermore, particulate organic carbon (POC) could enhance denitrification rate in 

both aquatic and terrestrial ecosystems (Arango et al., 2007; Stelzer et al., 2014; Stevenson et 

al., 2011). The dominant limit factors of denitrification in terrestrial and aquatic systems are 

nitrate and organic carbon (McClain et al., 2003). The BDOC content is around 4-54 % of 

DOC in the surface water (Servais et al., 1989; Wickland et al., 2012; Wiegner et al., 2006) 

and only around 8 % in the groundwater (Shen et al., 2014). Compared with the surface water, 

the denitrification limitation caused by organic carbon availability in groundwater is more 

important. 

Denitrification is an essential branch of the global N cycle, is also the main biological 

process in charge of emissions of nitrous oxide. The spatially distributed global models of 

denitrification applied by Seitzinger et al. (2006) propose that the largest portion occurs in 

continental shelf sediments, which account for around 44% of total global denitrification. 
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Freshwater systems (groundwater, lakes, rivers) taken about 20% and estuaries 1% of total 

global denitrification. The denitrification in terrestrial soils and oceanic oxygen minimum 

zones represented 22% and 14% respectively.  

2.2 River-Floodplain system  

Floodplain is the flat land area adjacent to a stream or river that experience flooding 

during high discharge period, is the result of both erosion and deposition (Brown, 1997). The 

size, form and vegetation type of floodplains are highly variable depend on the size, location 

and hydraulic condition of the rivers. Floodplain take a significant proportion of the earth’s 

surface, around 2% of African, 3% of South America and a greater proportion of tropical Asia 

(Gerrard, 1992).  

 

 

Figure 3. Floodplain (extracted from http://www.uved.fr ). 

Alluvial soils are generally associated with floodplain, originated from ancient riverbeds 

and the deposited sediment taken by the river water during flooding periods. The soil 

materials and drainage condition are greatly influenced by the natural of alluviums, since 

alluviums vary in different sectors the basin, the characteristics of soils are different also. 

Except the origin alluvium, water dynamic, living organisms and time all have influence on 

local soil characteristics (Gerrard, 1992; Piégay et al., 2003).  

The hydrologic connectivity links floodplains and rivers into integrated ecosystems. 

Particulate and dissolved matter exchanged between those two systems via both surface flow 

and groundwater flow (Tockner et al., 1999). The concept-flood pulse is developed and flood 

pulses are regarded as the principle drive force for the existence of the system (Junk, 1989). 

http://www.uved.fr/
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The hydrologic connections have significant influence on the biotic communities and 

ecosystem process on both river and floodplain ecosystems (Bayley, 1995; Thomaz et al., 

2007). Large floodplains have an important role in the hydrologic cycle of watershed. In the 

flooding period, the water storage function of the floodplain could modify the river water and 

sediment transport (Frappart et al., 2005).  

2.2.1 Hyporheic zone (HZ) 

In the river-floodplain system, except flooding, the lateral flow also linked via beneath 

surface water and groundwater exchange also (Boulton et al., 2010). In recent decades, 

numerous studies indicated the importance of interactions between groundwater and surface 

water as they represent a substantial control on exchange of water, nutrients and organic 

matter in the connection area (Sophocleous, 2002).  One of the most promising linkage 

concepts has been the development of what is known as the hyporheic zone (HZ) (Figure 4). 

It was first presented by Orghidan (1959) as a special underground ecosystem, but numerous 

different definitions by ecologists, hydrologists and biogeochemists have since been 

proposed. The HZ is viewed as a special benthic dynamic ecotone by ecologists and the zone 

of saturated sediment beneath and lateral to a stream or river channel that receive surface 

water input by hydrologists (Storey et al., 2003; Sophocleous, 2002; Hancock et al., 2005). 

The most important character of HZ is the mixture of surface water and subsurface water.  

Depends on the local hydrologic conditions, the HZs could be categorized into three broad 

typologies:  1) groundwater-dominated, 2) surface water-dominated and 3) sites exhibiting 

transient water table features (Malcolm et al., 2005).  

 

Figure 4. Hyporheic zone (extracted from: www.bgs.ac.uk) 

http://www.bgs.ac.uk/
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The size and the flux of surface water groundwater (SW-GW) exchanges of the HZs vary 

both spatially and temporally according to the local conditions (Cardenas et al., 2004). The 

factors that regulatory SW-GW exchange in the hyporheic zone are different at different 

spatial scales. The key factors controlling HZ water exchange at riffle scale are found to be 

the hydraulic conductivity, the hydraulic gradient between upstream and downstream ends of 

the riffle and the flux of groundwater (Storey et al., 2003). Cardenas et al. (2004) found that 

streambed heterogeneity, stream curvature and bed form dynamically determined HZ 

geometry, fluxes, and residence time distributions. At the reach scale, the main factors are 

found to be the channel bed form, sediment permeability and particle size (Boano et al., 2007; 

Cardenas and Wilson, 2007a, 2007b). At the catchment scale, valley widths, depths of 

bedrock and aquifer properties are proved have influence on the HZ water flux (Bardini, 

2013; Brunke and Gonser, 1997a; Malcolm et al., 2005).  

The solute load capacity of HZs is highly dynamic, in the small channels, stream water is 

often completely exchanged with water storage in hyporheic zone within several kilometres 

(Jones and Mulholland, 1999). However, the ratio of HZ exchange flow compared with 

stream water discharge decreased as stream size increased (Wondzell, 2011).   

2.2.2 Riparian zone 

Riparian zones are known as the buffer zones that located between the terrestrial and the 

aquatic ecosystems (Gregory et al., 1991) (Figure 5). As ecotones, the ecosystem services 

values of riparian zones had been noticed for a long time. The relative function of riparian 

zones are different and depends on the size of the stream, the position of the stream within the 

drainage network, the hydrologic regime and the local geomorphology (Naiman and 

Decamps, 1997). Riparian zone as an efficient BMP (Best Management Practice) had been 

used all over the world (Ice, 2004; Lee et al., 2004; Matteo et al., 2006).   

 

Figure 5. Riparian zone (extracted from www.mtwatercourse.org) 
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The environmental services of riparian zone main fall into three major categories: 

1) Hydrology and sediment storage:  

The high hydraulic roughness of riparian vegetation contribute to the decrease of both 

runoff from upland to river during no-flood period and the kinetic energy of flood from river 

to upland during flood period (Tabacchi et al., 2000). Since water flow through riparian zone 

before enters the channel, riparian zone is also known the area to trap sediment erosion from 

the agricultural land. The buffer width and slope of the riparian zone were proved have the 

most important factors on sediment trap (Cooper et al., 1987; Liu et al., 2008).  The storage of 

water and sediment in the riparian zone could reduce damage from flood, stabilize river bank 

and reduce channel erosion also.  

2) Biogeochemistry and nutrient cycling intercept, cycle and accumulate 

The locations and the hydrologic conditions of riparian zones ensure their high 

biogeochemical activities. The saturate soil caused by inundation with river water and shallow 

confining layer make riparian zones are hot spots of anaerobic processes like denitrification 

(Hoffmann et al., 2009). The phosphorus attached on the sediment is trapped together with the 

sediment, however, the trapped phosphorus also could be release and enrich runoff waters in 

available soluble phosphorus (Surridge et al., 2007). Riparian vegetation could remove 

nutrients dissolved in the water and accumulate in the plants, lead to a short term 

accumulation of nutrients in non-woody tissues and a long term accumulation in woody 

tissues (Groffman et al., 1992; Peterjohn and Correll, 1984). At the same time, litter of 

riparian vegetation is source of organic matters to aquatic organisms (Jardine et al., 2011).  

3) Biodiversity maintenance  

As ecotones, riparian zone could increase regional specie richness (Sabo et al., 2005). 

Variations of flood duration and frequency and the succession of riparian vegetation created 

complex and shifting habitats to support high biodiversity in the riparian system (Malanson, 

1993).   

2.2.3 Biogeochemistry cycling  

2.2.3.1 Flooding  

Except the hydrologic impact, the connection in the floodplain-river systems also has 

great influence on the biogeochemistry process. Depend on the hydrograph and floodplain 

topography, the natural floodplains serve as sinks, sources, or transformers of dissolved and 

particulate organic matter, inorganic nutrients, and biota (Tockner et al., 1999). 
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The sedimentation and the buffer function of riparian zone in floodplain could lead to 

sediment and nutrients retention in floodplain.  Noe and Hupp (2005) compared sediment and 

C, N, and P accumulation rates in floodplains with different watershed land use and 

hydrogeomorphology conditions, it is found that watershed land use types have significant 

impact on sediment and nutrient retention in floodplains. The hydrologic disconnections 

between river channels and floodplains minimize material retention by floodplains.  

Floodplains usually are large pools of POC exist as litter or coarse woody debris 

(Robertson et al., 1999). The occurrence of flooding is proved increasing the turnover rates of 

organic matter and nutrients in the river-floodplain system (Bayley, 1995).  The flooded water 

was found led to increasing nutrient mobilization (Banach et al., 2009). Flood, especially the 

duration of flood was proved can increase leaf decomposition rate in the floodplain (Langhans 

and Tockner, 2006).   

Like the two pole water interaction, while sediment, nutrients and biota are transported 

from river channel to floodplain during flooding, the released DOC and nutrients during 

flooding and the POC storage in the floodplain tend to transported back into the river channel 

during flood recession. The study in the floodplain of Amazon river by Moreira-Turcq et al. 

(2013) illustrated that floodplains are important sources of organic carbon of the river main 

channels. Organic matter in the river is imported to floodplain during rising water period and 

the OM (organic materials) produced in the floodplain is exported to the river during high and 

falling water periods.  

          Baldwin and Mitchell (2000) illustrated the effects of the wetting-drying regime on 

nutrient cycles in floodplain system, four wetting-drying regimes were studied:  partial drying 

sediment, complete desiccation of sediments, rewetting of desiccated soils and sediments and 

inundation of floodplain soils. It was proved that they all have different impact on nutrient 

cycling in floodplain.  

2.2.3.2 Denitrification in riparian soil 

Floodplains support intensive agricultural activities, in Europe and North America, up to 

90% of floodplains are cultivated (Tockner and Stanford, 2002). Floodplains are important 

source of nutrients like N, P, pesticides and sediment (Bainbridge et al., 2009). Since 

recharged groundwater in cultivated fields is a major source of the nitrate contamination of 

surface water, the nitrate level in groundwater can have a major influence on the quality of 

surface water (Cey et al., 1999).  
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Numerous studies proposed that denitrification in riparian areas is an important process 

that decreases the nitrate load of groundwater discharging into streams (Hill, 1996; Maı̂tre et 

al., 2003; Martin et al., 1999). Since organic carbon usually identified as the major factor 

limiting denitrification rates in the shallow aquifers system, the rich content of organic carbon 

in riparian soil supported the high rate of denitrification. The importance of riparian 

hydrology on denitrification was identified and it was suggested that the denitrification may 

be strongly influenced by the riparian zone hydrogeological setting which contains surface 

topography, soils and the composition, stratigraphy and hydraulic properties of the underlying 

geological deposits (Vidon and Hill, 2005). Groundwater table fluctuations are influenced by 

the size and seasonality hydrologic connection between the adjacent uplands and riparian 

zone, the depths of confining layers and the permeable of sediments overlying confining 

layer. The shallow groundwater depth of riparian zone increases the interaction of 

groundwater with organic rich surface soils that favor denitrification (Gold et al., 2001; 

Roulet, 1990). The topography and soil texture have influence on the groundwater residence 

time, the long residence time enhanced the development of anaerobic conditions which is 

necessary for the occurrence denitrifying process (Burt et al., 2002; Vidon and Hill, 2004).   

2.2.3.3 Denitrification in hyporheic zone  

While the attenuate of nitrate in the riparian soil was widely investigated, the nitrate 

consummation processes in hyporheic zone (HZ) attracted interests also. HZ is regarded as a 

high biogeochemical activity zone, hyporheic sediments interact with nitrate contaminated 

groundwater before it enters the surface system (Boulton et al., 2010). The mixing of surface 

water which is rich in dissolved oxygen, nutrients and dissolved organic carbon and the 

groundwater that contains abundant nutriment elements enhance the biogeochemical activity 

and transformation rates (Boulton et al., 1998; Krause et al., 2009; Mulholland et al., 2008; 

Peyrard, 2008; Peyrard et al., 2011).  

HZs were proven active nitrogen sink areas, the importance of the HZ on attenuating 

nitrate has been highlighted in a number of recent studies (Curie et al., 2009; Harvey et al., 

2013).  Triska et al. (1993) found that denitrification potential in HZ increased with distance 

from the channel.  Zarnetske et al. (2011) illustrated that the main nitrate attenuate process in 

HZ is denitrification. Because of the complex hydrologic condition, the limit factors could be 

organic carbon, nitrate, oxygen and pH. Around all the elements, organic carbon is the main 

limit factor in most of the HZs. Since dissolved organic carbon (DOC) concentrations in most 

aquifers are relatively low, typically less than 5 mg·L-1
  (Rivett et al., 2007). The recharged C 
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rich surface water could largely illustrate the occurrence of denitrification (Iribar, 2007; J. M. 

Sánchez-Pérez et al., 2003).   

Schindler and Krabbenhoft (1998) found that the hyporheic zone acts as a source of DOC, 

however most of the other studies showed that HZ is the activity organic carbon sink zone. 

Findlay et al. (1993) found that almost half of stream water DOC disappeared from interstitial 

water moving along a hyporheic flow path below a gravel bar. Wong and Williams (2010) 

studied the seasonal dynamic of DOM (Dissolved Organic Matter) in HZ. The results 

illustrated that because of linkage with riparian zone and surface water, the sources of DOM 

in the hyporheic zone are seasonal variable. The allochthonous character of the DOM rise in 

the fall while the autochthonous character increased in spring and summer.  

While most of the study focus on the effect of DOC, POC (Particulate Organic Carbon) in 

HZ was proved could stimulate denitrification also. Hill et al. (2000) found that denitrification 

“hotspots” occurred near interfaces between sands and buried river channel deposits. It was 

generally considered that POC could stimulate denitrification directly and indirectly and 

different quality and quantity of POC had different influence on nitrogen transformation. The 

decomposition of POC could release DOC and create the anaerobic environment that both in 

favor of the denitrifying process (Arango et al., 2007; Stelzer et al., 2011, 2014). In the 

hyporheic zone, the biofilm as an important composer of POC has great impacts on the 

metabolism of river system (Fischer et al., 1996). It is regarded as an important organic matter 

storage site and absorption site for DOM because of its large internal surface area (Koutný 

and Rulík, 2007).  

2.3 Modelling approach of river-floodplain system  

Different methods are proposed on the study of river-floodplain system: field sampling, 

chemical analyzing, mathematical statistics, modeling…., in which modeling is an 

economical and efficient method to quantify the continually occurred processes especially on 

the research at large spatial scale and long temporal scale.   A model is the representation of 

simplified system that takes into account the important proprieties to represent the empirical 

objects, phenomena and physical processes of the studied system (Frigg and Hartmann, 

2012). Mathematical models were generally classified into three types: empirical model, 

conceptual model and physical based model.  The empirical models are models relate input to 

output through a very general relationship, with little or no attempt to identify the physical 

processes involved. Conceptual models are generally composed of interconnected conceptual 

elements, not fully physically based, but their developments are based on the understanding of 
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the physical processes.  Physical based models are based on the mathematical representation 

of physical processes, have a logical structure similar to the real system (Maskey, 2004; Singh 

and Singh, 2001).  

2.3.1 Models of river-floodplain system 

Most of the models developed for the floodplain were aimed at predict flooding and 

simulate the hydrologic conditions of both the flooded stream and floodplain (Townsend and 

Walsh, 1998; Dutta et al., 2000; Bates et al., 2006; Yamazaki et al., 2011; Jung et al., 2012). 

Rare of them simulate the integrated biogeochemical cycling in the river floodplain system 

(Helton et al., 2012, 2010). Numerous models included the denitrifying process in the soil 

profiles, Heinen (2006) reviewed more than 50 models with simplified process for 

denitrification and the majority of these models are based on potential denitrification. 

Compared with the denitrification in the soil profile, denitrification occurred in aquifer and 

HZ were less studied (Bailey et al., 2013; Kinzelbach et al., 1991; Lee et al., 2009, 2006). 

Moreover, the simulation of denitrification process occurred in the floodplain region at the 

catchment scale has not been investigated.  

2.3.1.1 Hyporheic zone models and denitrification  

As the hyporheic zone located at the interface between surface water and subsurface 

water system, models that simulate the hyporheic zone main consisting of three types of 

models:  models developed for surface water, models developed for subsurface water and 

models that integrated the interface of the two domains. 

The models developed to simulate surface water include QUAL2K (Park and Lee, 

2002) , WASP (Water Quality Analysis Program) (Vuksanovic et al., 1996) and OTIS (One-

Dimensional Transport with Inflow and Storage) model (Morrice et al., 1997). In these 

models the classical method is considers the hyporheic zone as a storage pool to keep water 

balance between upstream and downstream. This approach is easily to be applied in the large 

scale but most of them do not reflect the dynamic of hydrologic and biogeochemical process 

in the hyporheic zone.  

The widely used subsurface water model is MODFLOW -- the USGS’s three 

dimensional model, which has been successfully applied to simulate water flow through the 

hyporheic zone. Wroblicky et al. (1998) simulated the lateral SW-GW exchange through the 

HZ the lateral extent of the HZ along two first-order stream. Storey et al. (2003) simulated the 
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subsurface flow within a single riffle.  Lautz and Siegel (2006) simulated the water movement 

in hyporheic zone around deribs dams and meanders along a semi-arid stream. As a physical 

based model, MODFLOW require detail topography input and long computation time,  and it 

is difficult to be applied in large spatial scale.  MOHID (Modelo Hidrodinâmico) Land is a 

three dimension physically-based, spatially distributed model designed to simulate water 

cycle in hydrographic basins and aquifer (Braunschweig et al., 2004; Trancoso et al., 2009). 

Bernard-Jannin et al (submitted) applied the model to simulate the SW-GW exchange in 

floodplain, the influence of flooding and biogeochemical cycling in the floodplain. As 

physical based models, the limitations of these models are long computation time and detail 

input information when apply to a large spatial scale.  

Loague and VanderKwaak (2004) and Kollet and Maxwell (2006) reviewed the 

models that coupled surface and subsurface domains. Hussein and Schwartz (2003) developed 

FSTREAM model to simulate the water and contaminant transport between surface water and 

subsurface water systems. It coupled the aquifer model FTWORK with a 1D river water 

dynamic equation. A 2D model-2SWEM (Surface-Subsurface Water Exchange Model) model 

is developed by Peyrard et al. (2008) to simulate the water exchange between river and 

floodplain, horizontal 2D Saint-Venant equations for river flow and a 2D Dupuit equation for 

aquifer flow were coupled in the model to simulate the dynamic variation of HZ water level. 

Like the physically based model, the long computation time of this type of models prevent the 

application at large spatial and temporal scale. 

Hydrologic process are simulated firstly, modules present biogeochemical processes 

are then coupled with the hydrologic part. Boano et al. (2010) simulated the hyporheic flow in 

the meander that induced by the river sinuosity, the main biogeochemical reactions of organic 

carbon degradation was included in the model.  Gomez et al. (2012) simulated the 

biogeochemical zonation patterns with the concept of biogeochemical timescales. 

Denitrifying process in the hyporheic zones were simulated also. Zarnetske et al. (2012) 

integrated residence time model with a multiple Monod kinetics model that simulate the 

concentrations of oxygen (O2), ammonium (NH4
+
), nitrate (NO3

-
) and dissolved organic 

carbon (DOC). Sheibley et al. (2003) simulated nitrification and denitrification process in 

sediment perfusion cores from the hyporheic zone. In 2SWEM model, the model NEMIS was 

coupled into the model to simulate the denitrification process in the floodplain hyporheic zone 

(Peyrard, 2008). Most of the denitrification models could only be applied at local scale, the 
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model that simulated the nitrate attenuation process in the hyporheic zone with few input data 

at catchment scale still does not exist.  

2.3.1.2  Riparian zone models and denitrification  

The functions of riparian zone were simulated in many studies (Chen and MacQuarrie, 

2004; Pinay and Decamps, 1988; Smart et al., 2001). The riparian ecosystem management 

model (REMM) is the model developed as a tool to help make decisions on management of 

riparian buffers to control nonpoint source pollution (Lowrance et al., 2000). In the REMM 

model, the riparian zone system consisting of three zones parallel to the stream: the forest 

zone located near to the stream, the woody vegetation zone adjacent to the forest zone, and 

the herbaceous zone located in the out layer of the buffer zone. The processes simulated in 

REMM model include surface and subsurface water movement and storage, sediment 

transport and deposition, nutrients (carbon, nitrogen, phosphorus) transport and cycling and 

vegetative growth, denitrification function is included in the model. In REMM model, the 

processes simulated are all in soil layers, the shallow groundwater processes are not included 

and the exchange between surface water and subsurface water is not taken into account. 

Zone 3 Zone 2 Zone 1

 

Figure 6. The main components and the main hydrologic processes of REMM model (extracted from Altier et 

al., (2005). 

 

2.3.2 Catchment scale model and denitrification  

The sedimentation function, and the material attached on the sediment (phosphorus, 

metals and pesticides) of floodplain at catchment scale were studied. However, the influence 

of floodplain on biogeochemical cycling at catchment scale was rarely quantified. The 

influences of riparian zones on biogeochemical cycling at catchment scale were considered by 

several model, like RNM (Riparian Nitrogen Model) model, SWIM (Soil and Water 

Integrated Model) model and SWAT model.  
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RNM model was developed to simulate nitrate removal from groundwater and surface 

water through denitrification as they interact with riparian zone soil at catchment scale. Based 

on stream order, the model operates at two conceptual levels: ephemeral low order streams 

and perennial middle order streams (Rassam et al., 2005, 2008). In RNM model, 

denitrification was assumed occur only in root zone. SWIM model is a watershed scale model 

that was developed for hydrological and water quality modelling in mesoscale watersheds 

(Krysanova et al., 1998). Hattermann et al. (2006) added the wetland function in SWIM 

model, in which the influence of plant uptake and denitrification in the riparian zone on 

nitrogen cycling were included into the model.  In SWIM model, the denitrification occurs in 

the shallow aquifer was represented as a decay rate. SWAT model is a basin-scale, semi-

distributed model that was applied successfully all over the world (Fohrer et al., 2013; 

Jayakrishnan et al., 2005; Romanowicz et al., 2005). The functions of vegetative filter strip 

(VFS) is simulated in SWAT model, however, like other catchment model, SW-GW 

exchange and denitrification occurred in the shallow aquifer are not included in the model. To 

represent the hydrologic role of riparian zone,  Liu et al. (2008) developed a module to 

simulate the hydrologic and sediment storage function of the riparian zone in SWAT model. 

Nevertheless the transport of dissolved materials and denitrification occurred in the shallow 

aquifer were not included in the modified SWAT model. Nguyen et al. (2013) added a low 

slope strip to represent the riparian zone and integrated RNM model into the low slope zone 

to simulate the denitrification occurred in this region. To reflect the hydrologic connection 

between upslope and downslope parts of a landscape, a catena approach including divide, 

hillslope and floodplain landscape units has been developed and included in SWAT (Volk et 

al., 2007; Arnold et al., 2010, Rathjens et al., 2015). The catena approach in the modified 

model (SWAT-LU) represents an effort to impose a systematic upscaling from a topographic 

position to a watershed scale. Within the catena, a more detailed downslope routing of surface 

runoff, lateral flow and groundwater can be accomplished, and the impact of upslope 

management on downslope landscape positions can be assessed (Arnold et al., 2010; Bosch et 

al., 2010).  However, the hydrologic processes are still single track in SWAT-LU and the 

function of two direction SW-GW exchange is not included and shallow aquifer 

denitrification function still is not represented.  

2.4  Objective  

Nitrate pollution is a critical issue in agricultural catchments, and groundwater was proved 

a main contributor of the pollution. Denitrification was found play an important role in nitrate 
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pollution control and the importance of denitrificaiotn occurred in both the river bank riparian 

zone and beneath HZ on nitrate attenuation has been highlighted. The influence of SW-GW 

exchange through both flooding and underneath lateral flow on the biogeochemical cycling in 

the river-floodplain systems was demonstrated in a lot of studies. However the contribution of 

connected floodplain area on river water nitrate control at the catchment scale has never been 

quantified. Hence, an understanding of the processes occurring in the surface-groundwater 

interface could offer considerable insight for the purposes of water management at catchment 

scale. 

Modelling is an efficient role to study the hydrologic and biogeochemical cycling at large 

spatial and long temporal scale. However most of the models that simulate the hydrologic and 

denitrifying processes in the river-floodplain systems are physical based model, which would 

be difficult to be applied at large catchment. Moreover, rare of the models developed for large 

scale application considered the influence of SW-GW exchange on biogeochemical cycling. 

SWAT is a physically-based, deterministic, continuous, watershed-scale simulation model 

allowing a number of different physical processes to be simulated in a watershed.  Studies 

have been carried out to simulate nitrate pollution on a catchment scale with SWAT (Boithias 

et al., 2014; Cerro et al., 2014; Ferrant et al., 2013, 2011). However, the simulation of the 

two-direction water exchange between river and groundwater occurring in the floodplain and 

the denitrification occurs in the floodplain shallow aquifer has not been simulated in the 

SWAT model.  

The objectives of this thesis are: 1) quantifying the exchanged SW-GW volume in the 

floodplain area at the catchment scale with modified SWAT model and 2) quantifying the 

shallow aquifer denitrification rate in the floodplain area at the catchment scale and evaluate 

its influence on the river nitrate flux. 
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Chapter 3. Material and methods.  

 

 

This chapter describes materials and methods used to achieve the objectives. The 

methods include an overview of hydrologic, nitrogen and organic carbon cycling processes 

simulated in the initial SWAT model and the description of the development of the new 

modules that simulated surface water and groundwater exchange, the influence of flooding on 

surface and ground water levels and denitrification occurs in the shallow aquifer of 

floodplain. The materials main focus on the description of study sites (Garonne watershed, 

middle floodplain of the Garonne basin and Monbéqui study site) and the field sampling and 

laboratory analyse methods of the measured physico-chemical elements. These study sites are 

used to test the modules at different spatial and temporal scales.  
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3.1 Initial SWAT model  

SWAT model is a basin-scale, physical based, semi-distributed, and continuous-time 

model that operates on a daily time step. SWAT is designed to predict the impact of 

management on water, sediment, and agricultural chemical yields in ungauged watersheds 

(Arnold et al., 1998). The model is computationally efficient, and capable of continuous 

simulation over long time periods. Major model components include weather, hydrology, soil 

temperature, plant growth, nutrients, pesticides, and land management. In SWAT, a watershed 

is divided into multiple subwatersheds, which are then further subdivided into Hydrologic 

Response Units (HRUs) that consists of homogeneous land use, management, and soil 

characteristics. The HRUs represent percentages of the subwatershed area and are not 

identified spatially within a SWAT simulation. Alternatively, a watershed can be subdivided 

into only subwatersheds that are characterized by dominant land use, soil type, and slope. 

Two main dominants in SWAT model were simulated: land (HRU) and channel, hydrologic 

elements and dissolved and particulate matters in the HRUs are summed and flow into the 

river channel (Neitsch et al., 2009).  

 

Figure 7. The structure of the SWAT model and the definition of HRU (Hydrologic Response Unit). 

3.1.1 Hydrology in SWAT model  

The simulated hydrologic processes in the two dominants (land (HRU) and channel) are as 

follows:  

3.1.1.1 The hydrologic processes in HRU 

 

The hydrologic cycle in the soil phase is based on the water balance equation: 
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𝑆𝑊𝑡 = 𝑆𝑊0 + ∑(𝑅𝑑𝑎𝑦 − 𝑄𝑠𝑢𝑟𝑓 − 𝐸𝐴 − 𝑤𝑠𝑒𝑒𝑝 − 𝑄𝑔𝑤)

𝑡

𝑖=1

 

Where 𝑆𝑊𝑡 is the final soil water content (mm H2O), 𝑆𝑊0 is the initial soil water content (mm 

H2O), t is the time (days), 𝑅𝑑𝑎𝑦 is the amount of precipitation on day i (mm H2O),  𝑄𝑠𝑢𝑟𝑓 is the 

amount of surface water flow on day i (mm H2O),  𝐸𝐴 is the amount of evaporation on day i 

(mm H2O),  𝑤𝑠𝑒𝑒𝑝 is the amount of percolation and bypass flow exiting the soil profile bottom 

on day i (mm H2O),  𝑄𝑔𝑤 is the amount of return flow on day i (mm H2O).  

The hydrologic processes in the initial SWAT model are shown in Figure 8.  

 

Figure 8. hydrologic processes in the initial SWAT model (extracted from Neitsch et al., 2009) 

In SWAT model, two methods were provided for estimating surface flow: SCS curve 

number procedure and the Green & Ampt infiltration method. For the estimation of potential 

evapotranspiration (PET), three methods have been incorporated into SWAT: the Penman-

Monteith method, the Priestley-Taylor method and the Hargreaves method. For the lateral 

flow in the soil profile, SWAT incorporated a kinematic storage model developed by 

summarized by Sloan and Moore (1984). The detailed discripition about those methods could 

be found in Neitsch et al. (2009).  

The groundwater flow in initial SWAT model is calculated as follows: 

𝑄𝑔𝑤,𝑖 = 𝑄𝑔𝑤,𝑖−1 × 𝑒𝑥𝑝[−𝜕𝑔𝑤 × ∆𝑡] + 𝑤𝑟𝑐ℎ𝑟𝑔,𝑠ℎ × (1 − 𝑒𝑥𝑝[−𝜕𝑔𝑤 × ∆𝑡])         If 𝑎𝑞𝑠ℎ > 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑞 
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𝑄𝑔𝑤,𝑖 = 0               If 𝑎𝑞𝑠ℎ < 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑞 

Where 𝑄𝑔𝑤,𝑖 is the groundwater flow into the main channel on day i (mm H2O), 𝑄𝑔𝑤,𝑖−1 is 

the groundwater flow into the main channel on day i-1 (mm H2O),  𝜕𝑔𝑤 is the base flow 

recession constant, ∆𝑡 is the time step (1 day), 𝑤𝑟𝑐ℎ𝑟𝑔,𝑠ℎ is the amount of recharge entering the 

shallow aquifer on day i (mm H2O),  𝑎𝑞𝑠ℎ is the amount of water stored in the shallow aquifer 

at the beginning of day i (mm H2O), 𝑎𝑞𝑠ℎ𝑡ℎ𝑟,𝑞 is the threshold water level in the shallow aquifer 

for groundwater contribution to the main channel to occur (mm H2O).  

3.1.1.2 The hydrologic processes in the channel  

 

The water balance in the channel is as follows:  

𝑉𝑠𝑡𝑜𝑟𝑒𝑑,2 = 𝑉𝑠𝑡𝑜𝑟𝑒𝑑,1 + 𝑉𝑖𝑛 − 𝑉𝑜𝑢𝑡 − 𝑡𝑙𝑜𝑠𝑠 − 𝐸𝑐ℎ + 𝑑𝑖𝑣 +  𝑉𝑏𝑛𝑘 

Where 𝑉𝑠𝑡𝑜𝑟𝑒𝑑,2 is the volume of water in the reach at the end of time step (m
3
 H2O), 

𝑉𝑠𝑡𝑜𝑟𝑒𝑑,1  is the volume of water in the reach at the beginning of time step (m
3
 H2O), 𝑉𝑖𝑛 is the 

volume of water flowing into the channel during the time step (m
3
 H2O), 𝑉𝑜𝑢𝑡 is the volume of 

water flowing out of the channel during the time step (m
3
 H2O), 𝑡𝑙𝑜𝑠𝑠 is the volume of water 

lost from the reach via transmission through the bed (m
3
 H2O), 𝐸𝑐ℎ is the evaporation form the 

reach for the day (m
3
 H2O), 𝑑𝑖𝑣 is the volume of water added or removed from the reach for 

the day through diversion (m
3
 H2O), 𝑉𝑏𝑛𝑘 is the volume of water added to the reach via return 

flow from bank storage (m
3
 H2O).  

Manning’s equation was used to define the rate and velocity of flow. Two methods are 

incorporated in the SWAT model to calculate the water flow process in the channel, the two 

methods are the variable storage routing method and Muskingum river routing method. The 

detailed description of the two methods could be found in Neitsch et al. (2009).  

The water depth in the channel is calculated as follows:  

𝑐ℎ𝑑𝑒𝑝 =  √
𝐴𝑐ℎ

𝑧𝑐ℎ

+ (
𝑊𝑏𝑡𝑚

2 × 𝑧𝑐ℎ

)
2

−
𝑊𝑏𝑡𝑚

2 × 𝑧𝑐ℎ

 

Where 𝑐ℎ𝑑𝑒𝑝 is the depth of water in the channel (m), 𝐴𝑐ℎ is the cross sectional area of flow 

in the channel (m
2
), 𝑊𝑏𝑡𝑚 is the bottom width of the channel (m), 𝑧𝑐ℎ is the inverse of the 

channel side slope.  
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Flood is also simulated in SWAT model. Flood occurs when the volume of water in the 

channel exceeds the maximum amount that can be held by the channel. During flooding, the 

bottom width of the floodplain is considered to be five times of the channel bank full width.  

3.1.2 Nitrogen cycling in SWAT model  

3.1.2.1 The nitrogen cycling processes in HRU 

SWAT separated soil nitrogen into two main pools: mineral N and organic N. The mineral 

nitrogen in the soil profile is separated into 2 pools, which are NH4
+
 and NO3

-
. For the organic 

N, two methods are applied in SWAT model to calculate the organic material cycling. The 

basic method considers organic nitrogen storage in 3 pools, which were fresh organic N, 

active humus and stable humus (Figure 9). While the new method considers that there is one 

pool for soil organic N and separate pools for residue and manure N. The pools are not 

separated into active and stable pools. 

 

Figure 9. Simulated nitrogen cycling in the soil profile in the SWAT model (extracted from (Neitsch et al., 

2009). 

The growth cycles of plants were simulated, which was a simplified version of EPIC plant 

growth model. The management operations that control plant growth cycle like planting, 

harvest, tillage, fertilization application, pesticide application were applied in each HRU in 

SWAT model (Neitsch et al., 2009). 

Nitrate cycling in the shallow aquifer was simulated in SWAT model. The main processes 

were uptake by plants, percolation from the soil profile, recharge to the deep aquifer, and flux 

into the main channel. A decay rate of nitrate in the shallow aquifer was also simulated 

(Neitsch et al., 2009). The recharge of nitrate from soil profile to aquifer layer was calculated 

as follow.  
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𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖
= (1 − 𝑒𝑥𝑝 [−

1

𝜎𝑔𝑤

]) × 𝑁𝑂3𝑝𝑒𝑟𝑐
+ 𝑒𝑥𝑝 [−

1

𝜎𝑔𝑤

] ×  𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖−1
 

Where 𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖
 is the amount of nitrate in recharge entering the aquifers on day i (kg N·ha

-1
d

-

1
), 𝜎𝑔𝑤is the delay time or drainage time of the overlying geologic formations (days), 𝑁𝑂3𝑝𝑒𝑟𝑐

 is 

the total amount of nitrate exiting the bottom of the soil profile on day i (kg N·ha
-1

d
-1

), 

𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖−1
 is the amount of nitrate in recharge entering the aquifers on day i-1 (kg N·ha

-1
d

-1
).  

𝑁𝑂3𝑠ℎ,𝑖
=

𝑁𝑂3𝑠ℎ,𝑖−1
+ 𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖

𝑎𝑞𝑠ℎ,𝑖 + 𝑄𝑔𝑤 + 𝑤𝑟𝑒𝑣𝑎𝑝 + 𝑤𝑟𝑐ℎ𝑟𝑔,𝑑𝑝

× 𝑎𝑞𝑠ℎ,𝑖 

𝑁𝑂3𝑔𝑤
=

𝑁𝑂3𝑠ℎ,𝑖−1
+ 𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖

𝑎𝑞𝑠ℎ,𝑖 + 𝑄𝑔𝑤 + 𝑤𝑟𝑒𝑣𝑎𝑝 + 𝑤𝑟𝑐ℎ𝑟𝑔,𝑑𝑝

× 𝑄𝑔𝑤 

𝑁𝑂3𝑟𝑒𝑣𝑎𝑝
=

𝑁𝑂3𝑠ℎ,𝑖−1
+ 𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖

𝑎𝑞𝑠ℎ,𝑖 + 𝑄𝑔𝑤 + 𝑤𝑟𝑒𝑣𝑎𝑝 + 𝑤𝑟𝑐ℎ𝑟𝑔,𝑑𝑝

× 𝑤𝑟𝑒𝑣𝑎𝑝 

𝑁𝑂3𝑑𝑝
=

𝑁𝑂3𝑠ℎ,𝑖−1
+ 𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖

𝑎𝑞𝑠ℎ,𝑖 + 𝑄𝑔𝑤 + 𝑤𝑟𝑒𝑣𝑎𝑝 + 𝑤𝑟𝑐ℎ𝑟𝑔,𝑑𝑝

× 𝑤𝑟𝑐ℎ𝑟𝑔,𝑑𝑝 

Where 𝑁𝑂3𝑠ℎ,𝑖
 is the amount of nitrate in the shallow aquifer on day i (kg N·ha

-1
), 𝑁𝑂3𝑠ℎ,𝑖−1

 is 

the amount of nitrate in the aquifer on day i-1 (kg N·ha
-1

), 𝑁𝑂3𝑔𝑤
 is the amount of nitrate in 

groundwater flow from the shallow aquifer on day i (kg N·ha
-1

), 𝑁𝑂3𝑟𝑒𝑣𝑎𝑝
 is the amount of 

nitrate in revap to the soil profile from the shallow aquifer on day i (kg N·ha
-1

d
-1

), 𝑁𝑂3𝑑𝑝
 is the 

amount of nitrate in recharge entering the deep aquifer on day i (kg N·ha
-1

d
-1

). 𝑎𝑞𝑠ℎ,𝑖  is the 

amount of water stored in the aquifer on day i (kg N·ha
-1

d
-1

).  

The nitrate decay in the shallow aquifer is calculated as follows: 

𝑁𝑂3𝑠ℎ,𝑡
= 𝑁𝑂3𝑠ℎ,𝑜

× 𝑒𝑥𝑝(−𝑘𝑁𝑂3,𝑠ℎ
) 

Where 𝑁𝑂3𝑠ℎ,𝑡
 is the amount of nitrate in the shallow aquifer at time t (kg N·ha

-1
),  𝑁𝑂3𝑠ℎ,𝑜

 is 

the initial amount of nitrate in the shallow aquifer (kg N·ha
-1

),  𝑘𝑁𝑂3,𝑠ℎ
 is the rate constant for 

removal of nitrate in the shallow aquifer (day
-1

) and t is the time elapsed since the initial 

nitrate amount was determined (days).  

The rate constant is related to half-life as follows:  

𝑡1/2,𝑁𝑂3,𝑠ℎ = 0.693/𝑘𝑁𝑂3,𝑠ℎ 
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Where 𝑡1/2,𝑁𝑂3,𝑠ℎ  is the half-life of nitrate in the shallow aquifer (days). 

3.1.2.2 The nitrogen cycling processes in the channel 

The nitrogen cycling in the cycling is as follows:  

∆𝑁𝑂3𝑠𝑡𝑟
= (𝛽𝑁,2 × 𝑁𝑂2𝑠𝑡𝑟

− (1 − 𝑓𝑟𝑁𝐻4
× 𝛼1 × 𝜇𝑎 × 𝑎𝑙𝑔𝑎𝑒) × 𝑇𝑇) 

Where ∆𝑁𝑂3𝑠𝑡𝑟
 is the change in nitrate concentration (mg N·l-1

) on day i, 𝛽𝑁,2 is the rate 

constant for biological oxidation of nitrite to nitrate on day i-1 (day
-1

), 𝑁𝑂2𝑠𝑡𝑟
 is the nitrite 

concentration at the beginning of the day (mg N·l-1
), 𝑓𝑟𝑁𝐻4

 is the fraction of algal nitrogen 

uptake from ammonium pool, 𝛼1 is the fraction of algal biomass that is nitrogen (mg N·mg
-1

 

algae biomass),  𝜇𝑎 is the local growth rate of algae on day i-1 (day
-1

),  algae is the algal 

biomass concentration at the beginning of the day (mg algae·l
-1

), TT is the flow travel time in 

the reach segment (day).  

3.1.3 Organic Carbon in SWAT model  

Like the organic N, two methods are applied in SWAT model to calculate the organic 

carbon content in the soil profile. The basic method is that the organic carbon in soil profile is 

read as input value. The new method is as follows:  

There is one pool for soil organic C and separate pools for residue and manure C. The 

pools are not separated into active and stable pools.  

𝑑𝑆𝑐

𝑑𝑡
= ℎ𝑅𝑓𝐸𝑘𝑅𝑅𝑐 + ℎ𝑀𝑓𝐸𝑘𝑀𝑀𝑐 − 𝑘𝑆𝑆𝐶  

ℎ𝑅 = ℎ𝑥 (1 − (
𝑆𝐶

𝑆𝐶𝐶

)𝛼) 

ℎ𝑥 = 0.09(2 − 𝑒−5.5𝑐𝑙𝑎𝑦) 

ℎ𝑀 = 1.6ℎ𝑅 

𝑆𝐶𝐶 = 𝑆𝐵𝐷𝑍1(0.021 + 0.038𝑐𝑙𝑎𝑦) 

Where 𝑆𝐶 is the soil organic carbon content (kg·ha
-1

), 𝑅𝑐 is the residue pool organic carbon 

content (kg·ha
-1

), 𝑀𝑐 is the manure organic carbon content (kg·ha
-1

), ℎ𝑅 and ℎ𝑀 are the residue 

and manure humification rates (kg·kg
-1

), 𝑘𝑆 is the apparent organic matter decomposition rate 

(day
-1

), 𝑆𝐶𝐶 is the reference soil organic carbon content (kg·ha
-1

), when Sc = Scc, the 

humification is 0, clay is the soil layer clay fraction (kg clay·kg
-1

 dry soil), 𝑆𝐵𝐷 is the soil layer 
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bulk density (kg·m
-3

), 𝑍1 is the soil layer thickness (m), 𝛼 is a constant value that modulates 

the response of the humification of the current 𝑆𝐶.  

The organic carbon in shallow aquifer is not simulated in SWAT model.  

3.1.4 Denitrification in SWAT model  

Denitrification in the soil profiles is simulated in SWAT model: 

𝑁𝑑𝑒𝑛𝑖𝑡,𝑙𝑦 = 𝑁𝑂3,𝑙𝑦 × (1 − 𝑒𝑥𝑝[−𝛽𝑑𝑒𝑛𝑖𝑡 × 𝛾𝑡𝑚𝑝,𝑙𝑦 × 𝑜𝑟𝑔𝐶𝑙𝑦])   If 𝛾𝑠𝑤,𝑙𝑦 ≥ 𝛾𝑠𝑤,𝑡ℎ𝑟 

𝑁𝑑𝑒𝑛𝑖𝑡,𝑙𝑦 = 0     If 𝛾𝑠𝑤,𝑙𝑦 < 𝛾𝑠𝑤,𝑡ℎ𝑟 

Where 𝑁𝑑𝑒𝑛𝑖𝑡,𝑙𝑦 is the denitrification rate (kg N·ha
-1

), 𝑁𝑂3,𝑙𝑦 is the amount of nitrate in layer ly 

(kg N·ha
-1

), 𝛽𝑑𝑒𝑛𝑖𝑡 is the rate coefficient for denitrification, 𝛾𝑡𝑚𝑝,𝑙𝑦 is the nutrient cycling 

temperature factor for layer ly, 𝛾𝑠𝑤,𝑙𝑦 is the nutrient cycling water factor for layer ly, 𝑜𝑟𝑔𝐶𝑙𝑦 is 

the amount of organic carbon in the layer (%), 𝛾𝑠𝑤,𝑡ℎ𝑟 is the threshold value of nutrient cycling 

water factor for denitrification to occur.  

𝛾𝑡𝑚𝑝,𝑙𝑦 = 0.9 ×
𝑇𝑠𝑜𝑖𝑙,𝑙𝑦

𝑇𝑠𝑜𝑖𝑙,𝑙𝑦 + 𝑒𝑥𝑝[9.93 − 0.312 × 𝑇𝑠𝑜𝑖𝑙,𝑙𝑦]
+ 0.1 

Where 𝑇𝑠𝑜𝑖𝑙,𝑙𝑦 is the temperature for layer ly (°C). 𝛾𝑡𝑚𝑝,𝑙𝑦 is never allow to fall below 0.1.  

𝛾𝑠𝑤,𝑙𝑦 =
𝑆𝑊𝑙𝑦

𝐹𝐶𝑙𝑦

 

Where 𝑆𝑊𝑙𝑦 is the water content of layer ly on a given day (mm H2O), 𝐹𝐶𝑙𝑦 is the water content 

of layer ly at field capacity (mm H2O). 𝛾𝑠𝑤,𝑙𝑦 is never allowed to fall below 0.05. 

3.2 From SWAT to SWAT-LUD 

In the HRU delineation method of the usual SWAT model, flow is summed at the 

subbasin scale and not routed across the landscape. To reflect the hydrologic connection 

between upslope and downslope parts of a landscape, a new structure called landscape unit 

(LU) was developed. LU represents additional unit that takes place between a subbasin and an 

HRU. The modified model called SWAT-LU. A catena approach including divide, hillslope 

and floodplain LUs has been developed and included in SWAT and multiple HRUs based on 

soil and land use are distributed across the different LUs (Volk et al., 2007; Arnold et al., 

2010, Rathjens et al., 2015). Processes in each HRU were still computed separately, but 

instead of being summed at the subbasin scale, they were summed at the LU scale (Figure 
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10). Surface runoff, lateral and groundwater flow from the divide were routed through the 

hillslope to the valley bottom and then entered the river.  

• LU3: ten or more years flood return area

• LU1: one-year return flood area

• LU2: two to five years flood return area

HRU

 

Figure 10. Distribution of LU and HRU in one subbasin  

The hydrologic processes were still single tracks in SWAT-LU and the SW-GW 

exchanges function in both directions was not included. Furthermore, the flooded distance 

during flooding events was fixed at five times the width of the top channel and the influence 

of flooding on groundwater levels is not taken into account. To represent the SW-GW 

exchanges occurring in the alluvial plain, a new type of subbasin called subbasin-LU was 

developed. Subbasin-LU corresponds to the subbasin delimited by the floodplain and the LU 

structure was applied in subbasin-LU. Darcy’s equation was applied to calculate the SW-GW 

exchange. Processes in the upland area of floodplain were calculated according to the original 

SWAT model. Processes were simulated for each HRU and aggregated to the river. Upland 

and subbasin-LU were connected through the river. The modified model was called SWAT-

LUD. The evolution of SWAT model and the main modifications are shown in Figure 11. 
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Figure 11. The evolution of SWAT model, from initial SWAT to SWAT-LUD. 

3.2.1 SWAT-LU model  

The catena approach in the SWAT-LU represents an effort to impose a systematic 

upscaling from a topographic position to a watershed scale. Within the catena, a more detailed 

downslope routing of surface runoff, lateral flow and groundwater can be accomplished, and 

the impact of upslope management on downslope landscape positions can be assessed (Arnold 

et al., 2010; Bosch et al., 2010). The hydrologic processes in SWAT-LU are shown in Figure 

12.  
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Figure 12. Hydrologic processes in the SWAT-LU model, where ‘S’ is surface flow, ‘L’ is lateral flow, ‘I’ is 

infiltration, ‘G’ is groundwater flow (adapted from Volk et al., 2007 and Arnold et al., 2010). 

 

The calculation of hydrologic processes in HRU is kept as in SWAT model, but instead of 

summed at subbasin scale, the flows are summed at LU scale. For the surface runoff, it is 

accumulated in LU and then flow to the adjacent down slope LU.  The surface runoff from the 

upward LU is calculated as the rainfall input, it would infiltrate into the unsaturated soil 

profile. The lateral runoff in the soil profile is simulated like the surface runoff, the lateral 

flow from the adjacent up slope LU would infiltrate into the unsaturated soil profile firstly 

before flow to the adjacent down slope LU. The shallow groundwater flow in SWAT-LU is 

simulated as routing through a series of linear storage elements. Infiltrated water from soil 

profile in each LU added to the groundwater storage pools. The accumulated surface, lateral 

and groundwater flow in the floodplain flow to the river channel. More detail description of 

SWAT-LU model could be found in Volk et al. (2007) and Arnold et al. (2010). 

3.2.2 SWAT-LUD model 

To represent the SW-GW exchange occurs in the floodplain, a new type of subbain, called 

subbasin-LU, was created and integrated into the original SWAT model. The LU structure 

was applied in the subbasin-LU. The surface runoff and lateral flow calculation were kept as 

in SWAT-LU model.  Darcy’s equation was applied to calculate groundwater flow between 

the LUs and water exchanges between the river and the aquifer. The algorithms of river water 

and groundwater levels during flooding events were modified. Moreover, the transfer of 
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dissolved parameters along with the SW-GW exchange and groundwater flow was introduced 

to the model and the denitrification function occurred in the shallow aquifer of floodplain was 

added to the model. The modified model was called SWAT-LUD and the detailed description 

could be found in the following sections.   

3.2.2.1 Subbasin-LU 

The subbasin-LU was applied at floodplain area. Since alluvial soils are generally 

associated with floodplains, the distribution of floodplain was considered to be the same as 

the alluvial soil. The original subbasin that holds alluvial soil was separated into two 

subbasins: subbasin-LU and classic subbasin. Based on the soil types, the HRUs were divided 

into two groups: HRUs with the alluvial soil called alluvial HRU and HRUs without alluvial 

soil called no-alluvial HRU. The subbasin-LU was composed by the alluvial HRUs except 

alluvial HRUs with urban land cover, and the classic subbasin was composed by the no-

alluvial HRUs and the urban alluvial HRU (Figure 13).  

 

Figure 13. Locations of subbasin-LU and classic subbasin 

3.2.2.2 Landscape Unit in SWAT-LUD 

In SWAT-LUD model, LUs were considered located parallel to the channel and were 

defined by their widths and slopes. As in SWAT-LU model, three LUs were applied in each 

subbasin-LU, which correspondence to the different flood return area.  The definition of the 

widths of LUs was made according to the surface of floodplain covered by the flood return 
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period: LU1 represented the one-year return flood area, LU2 represented the two to five-year 

return flood area and LU3 corresponded to the ten or more years return flood area. As LUs 

were located on both sides of the channel, the width of each side of LU was half its total 

width. All three LUs in one subbasin were considered as being of the same length, which was 

the length of the channel. The length was defined based on the river’s hydromorphological 

structure. With the catena method, surface runoff and lateral flow from LU3 (which was 

furthest from the channel) were routed through LU2 to LU1 (which was nearest to the channel) 

and then entered the channel (Figure 14). Groundwater flow was calculated with Darcy’s 

equation which was introduced in 3.2.2.5. The location of LU and the hydrologic processes in 

SWAT-LUD are shown in Figure 13.  

 

Figure 14. The locations of LUs in the subbasin-LU and the hydrologic processes of SWAT-LUD model. 

‘A’ represents the location of subbasin-LU, ‘B’ represents subbasin-LU, and ‘C’ represents the hydrologic 

processes in the landscape units where ‘S’ is surface flow, ‘L’ is lateral flow, ‘I’ is infiltration, ‘G’ is 

groundwater flow, ‘O’ is overbank flow, ‘GWL’ is groundwater level and ‘WL’ is river water level. 

3.2.2.3 Distribution of HRUs in LUs  

Alluvial HRUs (except urban alluvial HRUs) in the subbasin-LU were simplified into 

three groups based on their land use type: forest alluvial HRU (F-HRU), pasture alluvial HRU 

(P-HRU) and agricultural alluvial HRU (A-HRU). The alluvial HRUs with land cover of all 

types of forest were integrated to be an F-HRU. The characters of the F-HRU were considered 

to be the same as the largest forest alluvial HRU before the integration. The alluvial HRUs 
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with pasture land cover or land types similar to the characters of pasture (like orchard or 

vineyard) were integrated to be a P-HRU, and the alluvial HRUs with agriculture land use 

were integrated to be an A-HRU. The characters of these two HRUs were chosen with the 

same method for the F-HRU, taken the characters of the largest HRU before the integration.  

Since the general natural distribution of land use in alluvial area is characterized by the 

succession of riparian forest, pasture and agriculture as the increase of the distance from the 

river. Based on this succession of land use, the distribution of HRUs into LUs was as follows: 

Firstly, F-HRU was assigned into LU1. If the area of the F-HRU is larger than LU1, the F-

HRU was separated into two HRUs, one corresponding to the area of LU1 and another to the 

remaining area. If the area of the F-HRU is smaller than LU1, then all F-HRU was assigned 

into LU1, and the empty area in LU1 was completed by P-HRU. In this case, if the P-HRU 

area is bigger than the empty area in LU1, the P-HRU was then separated into two HRUs, one 

corresponding to the area of the empty area in LU1, another one to the remaining area. If P-

HRU is smaller than the empty area in LU1, then all the P-HRU was assigned into LU1 and 

the empty area in LU1 was completed by A-HRU. In this condition, A-HRU was divided into 

2 HRUs. The same method was applied to distribute HRUs into LU2 and LU3. All the HRUs 

of the same type have the same characters.  

3.2.2.4 Create-LU tool 

A Fortran subroutine called Create-LU was developed to separate classic subbaisn and 

subbasin-LU, the parameters of LUs in the subbasin-LUs and the distribution of alluvial 

HURs into LUs were done with this tool also. The algorithm includes different steps which 

are: 1) Reading output files from initial SWAT project; 2) Defining LUs according to flooded 

area for different return periods; 3) distributing alluvial HRUs into LUs based on their land 

use and slope.  

3.2.2.5 Hydrologic connection between classic subbasin, subbasin-LU and 

channel 

The hydrologic connection between classic subbasin, subbasin-LU and channel is shown 

in Figure 15. In the classic subbasin, surface, lateral and groundwater flow calculated in the 

HRUs are then summed and flowed to the channel. In the subbasin-LU, surface and lateral 

flow from LU3 routed through LU2 to LU1 and then enter the channel. The groundwater 

exchanged between LUs and between LU1 and the channel. 
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Figure 15. The hydrologic connection between classic subbasin and subbasin-LU 

3.2.2.6  SW-GW interaction with LU structure  

Each LU was considered has a unique groundwater level, all the HRUs in the same LU 

have the same groundwater level. The groundwater levels in LUs were calculated as follows: 

𝐺𝐻 = 𝐺𝑀 × 𝑝/𝐿𝐴 

𝐺𝑀 = 𝐺𝑀 + 𝐼 − 𝐸 − 𝐷 

Where GH is the groundwater height in LU (m), GM is the groundwater volume in LU (m
3
), 

p is the porosity of shallow aquifer (%), LA is the surface area of LU (m
2
), I is the infiltrated 

water volume from soil profile (m
3
), E is the evaporated water volume from shallow aquifer 

(m
3
), D is the water volume infiltrated to the deep aquifer (m

3
). The calculation of I, E and D 

were kept as in SWAT model.  

The altitude of the river bed in each subbasin was assumed to be the referenced value 

of the hydraulic head used to compute groundwater and surface water levels. HRUs were 

assumed to be homogeneous inside, with no additional differentiation in soil and material 

underneath, and lateral flow and the infiltration from soil profile was stopped when 

groundwater reach the soil profile.  



Chapter 3. Material and methods. 

57 
 

Darcy’s equation was applied to calculate groundwater flow between the LUs and 

water exchanges between the river and to calculate groundwater flow between the LUs and 

water exchanges between the river and the aquifer.  

𝑄 = 𝐾 × 𝐴 ×
∆𝐻

𝐿
                                       

where Q is water flow (m
3
.d

-1
), A is the cross-sectional area between two units (m

2
), K is 

saturated hydraulic conductivity (m.d
-1

), ∆H is hydraulic head difference between two units 

(m) and L is the distance between two units through which the water is routed (m).  

As the river is filled by water, two implementations of Darcy’s equation were required:  

1) groundwater flow between two LUs:  

𝐾 =
(𝐾𝑙𝑢𝑎×𝑊𝑙𝑢𝑎)+(𝐾𝑙𝑢𝑏×𝑊𝑙𝑢𝑏)

(𝑊𝑙𝑢𝑎+𝑊𝑙𝑢𝑏)
                                                                          

𝑊 = (𝑊𝑙𝑢𝑎 + 𝑊𝑙𝑢𝑏)/4                                                                                  

𝑄 = 2 × 𝐾 × 𝐴 ×
(𝐻𝑙𝑢𝑎−𝐻𝑙𝑢𝑏)

𝑊
                                                                         

where K represents the averaged hydraulic conductivity values of the two LUs (Klua, Klub) 

based on their widths (m.d
-1

), Wlua and Wlub are the widths of the two LUs (m), Hlua and Hlub 

are the hydraulic heads of the two LUs (m), W is the distance between the centres of these 

two LUs on one side of channel. Since LUs located in two sides of the channel, each side got 

half of its width, W is a quarter of the total width of these two LUs (m). As groundwater flow 

occurs on both sides of the river, the flow was multiplied by two. 

2) Groundwater flow between LU1 and the river:  

𝐾 = 𝐾𝑙𝑢                                                                                                         

𝑊 = (𝑊𝑙𝑢)/4                                                                                               

𝑄 = 2 × 𝐾 × 𝐴 ×
(𝐻𝑙𝑢−𝐻𝑐ℎ)

𝑊
                                                                          

where K is the hydraulic conductivity value of LU1 (Klu) (m.d
-1

); W is the quarter width of 

LU1 (Wlu) (half of the width of one side of the channel) (m); and Hlu and Hch are hydraulic 

heads of LU1 and the river (m). 
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3.2.2.7 Influence of flooding on surface water and groundwater level  

The original algorithm for flooding events in the SWAT model only assumes that the 

flooded distance is five times the top channel width (Neitsch et al., 2009). The influence of 

floodplain geometry and the influence of flooded water on groundwater are not considered. 

The new algorithm was based on the water volume during a flood event: 

𝑈𝑓 = (𝑣 − 𝑣𝑚𝑎𝑥) × 𝑇                                                     

where Uf is the flood volume (m
3
), v is the discharge (m

3
s

-1
), vmax is the maximum discharge 

value at which water could stay in the channel (m
3
s

-1
) and T is the travel time of water passing 

through the channel (s).  

During a flood, the surface water level is the sum of the riverbank height and the water 

depth on the surface relative to the height of river bank: 

𝐴𝑓 = 𝐿𝑐ℎ ∗ (𝑊𝑐ℎ + 𝐿𝑓)                                     

𝐻𝑐ℎ = 𝐷𝑐ℎ +
𝑈𝑓

 𝐴𝑓
                                                

where Af is the flooded area (m
2
), Lch is the length of the channel (m), Wch is the width of the 

channel (m), Lf is the flood distance on one side of the river bank (m), Hch is the surface water 

level and Dch is the height of the riverbank (m).  

With regard to groundwater levels in the LUs during flood periods (if flood water 

arrives at a LU), the groundwater of this LU was assumed to be the same level as the surface 

water: 

𝐻𝑙𝑢𝑓 = 𝐻𝑐ℎ                                                                      

where Hluf is the groundwater level of LU during the flood (m). 

          The infiltrated flood water was calculated as follows: 

𝑉𝑖𝑛,𝑓 = (𝐻𝑙𝑢𝑓 − 𝐻𝑙𝑢) × 𝐴𝑙𝑢 × 𝑝𝑙𝑢                                   

Where 𝑉𝑖𝑛,𝑓  is the infiltrated flood water volume in LU (m
3
), 𝐴𝑙𝑢 is the surface area of the LU 

(m
2
), 𝑝𝑙𝑢 is the porosity of the LU (%). 

The overbank flow would return back to the river the next day after flooding, and 

discharge of river water was recalculated: 
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𝐼𝑁 = 𝐼𝑁 + 𝑈𝑓                                                                                                            

𝑣 = 𝐼𝑁/86400                                                                                                          

Where 𝐼𝑁 is the input water volume into the river (m
3
).  

3.2.2.8 Transfer of dissolved elements 

The transfer of dissolved elements between LUs and between LUs and surface water 

was calculated based on the water flow volume and concentration of the elements:  

𝑀𝑙𝑢 = 𝑀𝑙𝑢 + 𝑀𝑖𝑛 − 𝑀𝑜𝑢𝑡                                                                                      

𝑀𝑖𝑛 = ∑(𝑉𝑖𝑛 ∗ 𝐶𝑖𝑛)                                                                                                

𝑀𝑜𝑢𝑡 = ∑(𝑉𝑜𝑢𝑡 ∗ 𝐶𝑙𝑢)                                                                                            

𝐶𝑙𝑢 = 𝑀𝑙𝑢/𝑉𝑙𝑢                                                                                                        

where Mlu is the mass content of the element in LU (g), Min is the input mass (g), Mout is the 

output mass (g). Vin is input water volume (m
3
), Cin is the concentration of the elements in the 

input water (mg·l
-1

), Vout is the output volume (m
3
), Clu is the concentration of the element in 

calculated LU (mg·l
-1

) and Vlu is the water volume storage in LU (m
3
).  

3.2.2.9 Denitrification  

The nitrate and organic carbon degradation equations of the saturated shallow aquifer 

zone in the study of Peyrard et al. (2011) were introduced into the SWAT-LUD model. The 

nitrate degradation is taken as denitrification, and the influences of both POC and DOC on 

denitrification were taken into account.  

The denitrification rate was calculated as follows: 

𝑅𝑁𝑂3
= −0.8(𝜌 · (1 − 𝜑)/𝜑 · 𝑘𝑃𝑂𝐶[𝑃𝑂𝐶] · 106/𝑀𝑐 + 𝑘𝐷𝑂𝐶[𝐷𝑂𝐶]) · [𝑁𝑂3]/(𝑘𝑁𝑂3

+ [𝑁𝑂3])     

where 𝑅𝑁𝑂3
 is the denitrification rate (µmol·l

-1
·d

-1
), 𝜌 is dry sediment density (kg·dm

-3
), 𝜑 is 

sediment porosity, 𝑘𝑃𝑂𝐶 is mineralisation rate constant of POC (particulate organic carbon) (d
-

1
), POC is the POC content in the soil and aquifer sediment (‰), 𝑀𝑐 is carbon molar mass 

(g·mol
-1

), DOC is the concentration of DOC in the aquifer water (µmol·l
-1

) 𝑘𝐷𝑂𝐶 is the 

mineralisation rate constant of DOC (dissolved organic carbon) (d
-1

), 𝑘𝑁𝑂3
is half-saturation for 

nitrate limitation (µmol·l
-1

) and 𝑁𝑂3 is the nitrate concentration in the aquifer water (µmol·l
-1

). 
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3.2.2.10 Nitrate leaching during flood period 

On flood days, the portion of the nitrate storage in the soil profile was considered as 

having infiltrated into the aquifer along with infiltrated floodwater:  

𝑀𝑁𝑂3,𝑖
=  𝑀𝑁𝑂3,𝑖−1

+ 𝐼𝑁𝑂3,𝑖             

𝐼𝑁𝑂3,𝑖
= 𝐹𝑁𝑂3

× 𝑀𝑁𝑂3,𝑠𝑜𝑖𝑙,𝑖
           

where 𝑀𝑁𝑂3,𝑖
 is the mass content of nitrate in the LU (g N-NO3

-
) on day i, 𝑀𝑁𝑂3,𝑖−1

 is the mass 

content of nitrate in the LU (g N-NO3
-
) on day i-1,  𝐼𝑁𝑂3

 is the infiltrated nitrate from the soil 

profile into the aquifer during flood events on day i, 𝐹𝑁𝑂3
 is the coefficient (%) and 𝑀𝑁𝑂3,𝑠𝑜𝑖𝑙

 is 

the mass content of nitrate in the soil profile of LU (g N-NO3
-
) on day i. 

3.2.2.11 Organic carbon in SWAT-LUD 

The flux and content of DOC was not simulated in the initial SWAT model. In the 

SWAT-LUD model, the flux of DOC in the shallow aquifer was included, which was 

simulated as a dissolved element such as nitrate. As the fluctuations of DOC were small in the 

aquifers of the region that far away from the river, the concentrations of DOC in LU2 and LU3 

were assumed to be constant and the values were read as input values. DOC in the river water 

was assumed to be constant as well except during flood periods. As the concentration of DOC 

in the river water significantly increased during flooding days (Arango et al., 2007; Dalzell et 

al., 2005; Duan et al., 2007), a different value was given to the river water in flood periods. 

The DOC concentrations in LU1 were calculated as the mixture of LU2 and river water. 

DOC could be consumed by denitrifying bacteria. The consumption rate was:  

  

where RDOC is the DOC consumption rate (µmol·l
-1

·d
-1

). 

In the SWAT model, the POC contents in the soil profiles were read as input values and were 

not simulated in the shallow aquifers. In the SWAT-LUD model, the POC contents in the top 

soil layers were considered higher than the others and the POC pools were separated into two 

parts: the top layer pool and the second layer pool. The POC content in the two pools was 

read as input values. 

POC could be consumed by denitrifying bacteria as well. The consumption rate was: 

  

𝑅𝐷𝑂𝐶 = −𝑘𝐷𝑂𝐶[𝐷𝑂𝐶] 

𝑅𝑃𝑂𝐶 = −𝑘𝑃𝑂𝐶[𝑃𝑂𝐶] 
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where RPOC is the POC consumption rate (‰·d
-1

) 

3.3 Study site 

3.3.1 The Garonne River  

The Garonne River is the main river of the largest drainage basin in the southwest France, 

starting from Pyrenees mountains and flowing into the Atlantic Ocean.  It is an eighth ordered 

river and the third longest river in France with the length of 525km and has a drainage area 

about 51500 km
2 

at the last gauging station (Tonneins) (Figure 16). The basin includes most 

of the Aquitaine basin which is surrounded by the Massif Central mountain in the north-east, 

the Pyrenees mountains in the south and the Atlantic ocean in the west (Semhi et al., 

2000).The climate of the Garonne watershed is impacted both by the Atlantic Ocean and 

Mediterranean sea. The average annual rainfall is about 900 mm (Caballero et al., 2007). The 

monthly temperatures ranged from 5°C in January to 20°C in July. The hydrology of the area 

is mainly influenced by the three places (Pyrenees Mountain, Massif Central and Atlantic 

ocean). The largest discharges occur twice a year, in the spring as a result of snow melt and in 

late autumn caused by intense rainfalls (Sánchez-Pérez et al., 2003). According to the data 

recorded at the Tonneins gauging station which is the last gauging station for the Garonne 

watershed, the mean annual discharge for the past 100 years (1913-2013) is around 600 m
3
·s

-

1
. The highest is nearly 6000 m

3
·s

-1 
and the lowest around 80 m

3
·s

-1
. In a year, the mean 

higher discharge is in February (961 m
3
·s

-1
), and the lowest is found in August (176 m

3
·s

-1
) 

(Banque Hydro, http://www.hydro.eaufrance.fr/).  

 

Figure 16. The location of the Garonne River and the gauging stations in the Garonne catchment  

http://www.hydro.eaufrance.fr/


Chapter 3. Material and methods. 

62 
 

The main land use types in the Garonne watershed are pasture, agriculture and forest, 

which taken 34%, 31% and 19% of the total area respectively. The alluvial soil mainly exists 

in the Pyrenees area and Aquitaine basin, it occupied 5.8 % of the Garonne basin (Figure 15). 

The input data used to set up the SWAT model and the distribution of alluvial soil in the 

Garonne watershed are shown in Figure 17.  

 

Figure 17. The input data of the SWAT model and the distribution of alluvial soil in the Garonne watershed, ‘a’ 

represents the DEM (Digital Elevation Model), ‘b’ represents the land use distribution, ‘c’ represents the soil 

type distribution (66 types of soil), and ‘d’ represents the location of alluvial soil in the Garonne watershed.  

The sources of the input data are shown in Table 3.  

 

Table 3. The sources of the input data of the SWAT Garonne project  
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Data type Data source scale 

DEM NASA METI (ASTER, 2011) Grid cell 90 m × 90m 

Land use Corine Land Cover (CLC, 2006) 1:100 000 

Soil European Soil Database (ESDB, 2006) 1:1 000 000 

Climate Météo-France  

 

3.3.2 Floodplain area in the middle section of the Garonne River  

The floodplain area in the middle Garonne River is locateed between Toulouse city and 

the confluence of the Tarn River (Figure 18). The floodplain widens up to 2 - 4 km. Between 

4-7m of the coarse alluvium (sand and gravel) eroded from the Pyrenees Mountains during 

past glacial period deposited in the floodplain overlie impermeable molasse. The valley 

contains a classic flight of terraces that represent episodic bedrock valley deepening 

punctuated by lateral migration of deposition of sediments (Lancaster, 2005). A series of 

terraces exist in the floodplain, in which the high terrace delimited the floodplain. The middle 

terrace is cultivated and is rarely flooded (every 30–50 years), which has a width of about 2 

km. The lower terrace with the width of a few hundred is devoted to poplar plantations, is 

flooded about every 5 years. The riparian zone has a width of 10-100m, and is flooded almost 

each year (Peyrard et al., 2008). The common natural riparian vegetation types found along 

this reach of the Garonne River include willow and ash (Pinay et al., 1998). The floodplain is 

heavily cultivated, high production of corn, sunflower and sorghum were sustained by 

fertilization and irrigation. Shallow aquifer has a common nitrate concentration of 50 - 100 

mg· L
-1 

(Pinay et al., 1998; Sánchez-Pérez et al., 2003). The around region of the floodplain is 

heavily cultivated also, the agriculture land use occupied 72% of the floodplain watershed 

(Figure 19).  
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Figure 18. Location of the floodplain area of the middle section the Garonne River and the distribution of 

the alluvial soil along with the main channel  

 

The channel is a meandering, single-thread channel, is around 85 km long. In the past, the 

Garonne River was incised as a result of mining of gravel and cobble from the riverbed 

(Beaudelin 1989). The longitudinal gradient is around 0.001 with a mean coefficient of 

sinuosity of 1.3. Portet gauging station located at about 10 km downstream of Toulouse city.  

 

Figure 19. Land use types of the floodplain sub-watershed (a) and its alluvial soil region (b)  

3.3.3 Monbéqui  

The Monbéqui site is located in a meander of the alluvial plain of the Garonne River and 

the width of the floodplain in the area is about 4 km. The first 50 - 200 m of the riverbank is 

(a) (b) 
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covered by riparian forest and poplar plantations, surrounded by agricultural land. Several 

terraces exist in this area, generated by sediment deposition and washing out by flooding 

events. Artificial dykes have been constructed in the region to protect the agricultural land 

(Figure 20). The Verdun gauging station is located at about 4 km upstream of the study site-

Monbéqui. It is the nearest gauging station to the study site at the Garonne River. At the 

Verdun gauging station, the Garonne has a watershed size of 13 730 km
2 

and an annual 

average flow of about 200 m
3
·s

-1
. The monthly average flow ranges from about 75 m

3
·s

-1 
in 

August to about 340 m
3
·s

-1 
in May (Banque Hydro, http://www.hydro.eaufrance.fr/). The 

mean annual precipitation is about 690 mm in this area. Piezometers were installed in this 

site. The alluvium thickness ranges from 2.5 to 7.5 m, with an arithmetic mean of 5.7m (J. M. 

Sánchez-Pérez et al., 2003). The groundwater table varies from 2 to 5 m in low water periods 

and rise rapidly up to soil profile during floods (Weng et al., 2003). 

 

Figure 20. Location of Monbéqui study site and the distribution of piezometers and river sampling sites 

3.3.3.1 Measurements   

Groundwater, soil, and alluvial sediment samples were taken and analysed (Figure 21). 

Different piezometers were sampled in different period (Table 4). In which the field work in 

the 2013-2014 is the field sampling work of this thesis.  

http://www.hydro.eaufrance.fr/


Chapter 3. Material and methods. 

66 
 

Table 4. Piezometers in different periods and measured parameters 

Period Piezometers Samples Measured parameters 

1999-

2000 

P9, P15, P19, P22, P23 and 

P30 

Continuous groundwater 

level record (Orphimedes, 

OTT) 

Groundwater level 

2004-

2005 

P6, P10, P13, P18 and P29 Groundwater and alluvial 

sediment samples 

(monthly) 

Groundwater level, 

physico-chemical 

parameters, AFDM 

2013-

2014 

P2, P3, P6, P7, P9, P10, P11, 

P13, P14, P16, P17, P18, P22, 

P26, P28, P30, PA, PB, PC, 

PD, PE, PF, PG, PH, PI 

R1, R2 

Continuous groundwater 

level record (CTD-Diver, 

Schlumberger, Germany) 

Groundwater, river water 

and alluvial sediment 

samples (monthly) 

Groundwater level, 

physico-chemical 

parameters, AFDM 

 

 

Figure 21. Installed piezometers in Monbéqui study site. ‘a’ shows the piezometer, ‘b’ shows the water level 

sensor installed in the piezometers, ‘c’ shows sampled groundwater.  

Several piezometers were equipped with water-level sensors (Orphimedes, OTT (in 1999-

2000) and CTD-Diver, Schlumberger, Germany (in 2013)) to record changes in groundwater 

level every ten minutes (Figure 19, b). In 1999-2000, the groundwater levels of 6 piezometers 

(P9, P15, P19, P22, P23 and P30) were recorded with water-level sensors while groundwater 

samples were not taken, therefore physico-chemical parameters were not analysed during this 

period. In 2004-2005, groundwater and alluvial sediment samples from five piezometers (P6, 

P10, P13, P18 and P29) were taken monthly with electric submersible pump. In 2013-2014, 

25 piezometers and two river sites (R1, R2) were sampled monthly and groundwater-level 

sensors fitted in 5 piezometers (P7, P9, P14, P18 and P22), alluvial sediment were taken 

quarterly with  electric submersible pump  in this period. 

a b c 
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Electrical conductivity (EC), pH, redox potential, oxygen content and temperature were 

measured in the field with the instrument WTW (pH/Cond 340i /SET), other parameters such 

as nitrate, dissolved organic carbon (DOC) ,chloride, AFDM were analysed in the laboratory. 

Nitrate and chloride were analysed with Alpkem Flow Solution IV Autoanalyser through 

spectrophotocolorimetric.  DOC was analysed with TOC 2000A (Shimadzu) through thermal 

and infrared detection oxidation. For the AFDM, around 10g dry alluvial sediment was buried 

in the oven under 550°C during 4h. The AFDM content is the lost weight divided by the 

original alluvial sediment weight.  
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Chapter 4.  Improved simulation of river 

water and groundwater exchange in an 

alluvial plain using the SWAT model. 
 

This chapter provides the description and definition of structure landscape unit (LU) in the 

floodplain area, the development of hydrologic module of SWAT-LUD (SWAT-

Landscape Unit Darcy) and its application at Monbéqui site. Measured groundwater levels 

in period 1999-2000 are used to calibrate the model. Measured groundwater levels in 

period 2013, water exchange simulated with a 2D distributed model (2SWEM), measured 

concentrations of conservative tracer (chloride) and simulated concentrations of this same 

conservative tracer with 2SWEM are used to validate the simulated results. The SW-GW 

exchanged volume is quantified and the influence of river hydrologic conditions on SW-

GW change is also analysed. This chapter presented the publication currently in a revising 

process of Hydrological processes. 
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Abstract: Hydrologic interaction between surface and subsurface water systems has a 

significant impact on water quality, ecosystems and biogeochemistry cycling of both systems. 

Distributed models have been developed to simulate this function, but they require detailed 

spatial inputs and extensive computation time. The SWAT model is a semi-distributed model 

that has been successfully applied around the world. However it has not been able to simulate 

the two way exchanges between surface water and groundwater. In this study, the SWAT-LU 

model – based on a catena method that routes flow across three landscape units (the divide, 

the hillslope and the valley) – was modified and applied in the floodplain of the Garonne 

River. The modified model was called SWAT-LUD. Darcy’s equation was applied to 

simulate groundwater flow. The algorithm for surface water level simulation during flooding 

periods was modified and the influence of flooding on groundwater levels was added to the 

mailto:jose-miguel.sanchez-perez@univ-tlse3.fr


Chapter 4.  Improved simulation of river water and groundwater exchange in an alluvial plain using 

the SWAT model. 

72 
 

model. Chloride was chosen as a conservative tracer to test simulated water exchanges. The 

simulated water exchange quantity from SWAT-LUD was compared with the output of a 2D 

distributed model, 2SWEM. The results showed that simulated groundwater levels in the LU 

adjoining the river matched the observed data very well. Additionally, SWAT-LUD model 

was able to reflect the actual water exchange between the river and the aquifer. It showed that 

river water discharge has a significant influence on the surface-groundwater exchanges. The 

main water flow direction in the river/groundwater interface was from groundwater to river, 

water flowed in this direction accounted for 65 % of the total exchanged water volume. The 

water mixing occurs mainly during high hydraulic periods. Flooded water was important for 

the SW-GW exchange process, it accounted for 69 % of total water flowed from the river to 

the aquifer. The new module also provides the option of simulating pollution transfer 

occurring at the river/groundwater interface at the catchment scale.  

 

Keywords: SWAT model, Landscape Unit, water exchange, floodplain, Garonne River 

4.1 Introduction  

In recent decades, numerous studies have been carried out on the hydrological linkage 

between surface and subsurface (SW-GW) water systems (Grannemann and Sharp Jr., 1979; 

Harvey and Bencala, 1993; Wroblicky et al., 1998b; Malard et al., 2002). One of the most 

promising linkage concepts has been the development of what is known as the hyporheic 

zone. It was first presented by Orghidan (1959) as a special underground ecosystem, but 

numerous different definitions by ecologists, hydrologists and biogeochemists have since 

been proposed (Sophocleous, 2002; Hancock et al., 2005). In all the definitions, the most 

important characteristic of hyporheic zones is the area of mixing between surface and 

subsurface water (White, 1993; Wondzell, 2011). As surface water contains rich oxygen and 

organic matter and groundwater contains abundant nutriment elements, the water mix 

between those two systems has a significant impact on water quality, ecosystems and 

biogeochemistry cycling (Brunke and Gonser, 1997; Boulton et al., 1998; Sánchez-Pérez and 

Trémolières, 2003; Vervier et al., 2009; Krause et al., 2013; Marmonier et al., 2012). 

The processes occurring at the river/groundwater interface are particularly important 

for the alluvial plains. One of the important features of the alluvial plains is deposited 

sediment. Their depositional structure leads to higher hydraulic conductivity in the aquifer 

region than in adjacent upland (Woessner, 2000). As they support important agricultural 
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activities, groundwater in alluvial plains often suffer from nitrate pollution  (Arrate et al., 

1997; Sánchez-Pérez et al., 2003a; Liu et al., 2005a; Almasri and Kaluarachchi, 2007). 

Several studies show that the surface-groundwater interface contributes to nitrogen retention 

and/or transformation of the land-surface water continuum (Sabater et al., 2003; Weng et al., 

2003). This interface supports the purification of water by its ability to eliminate nitrates 

during their infiltration through the vegetation-soil system to groundwater, but also through 

diffusion from groundwater to surface water (Sanchez-Perez et al., 1991a, 1991b; Takatert et 

al., 1999) Hence, an understanding of the processes occurring in the surface-groundwater 

interface could offer considerable insight for the purposes of water management on a 

catchment scale.  

SW-GW interactions are complex processes driven by geomorphology, hydrogeology 

and climate conditions (Sophocleous, 2002). In addition, it has been stated that overbank flow 

is a key hydrologic process affecting riparian water table dynamics and ecological processes 

(Naiman and Decamps, 1997; Rassam and Werner, 2008). Models have been developed to 

simulate the hydrological conditions of the surface water, groundwater and river/groundwater 

interface. Rassam and Werner (2008) reviewed models at different complex levels that 

represented the surface and subsurface processes that have influence on SW-GW exchange. 

The simulation of the SW-GW exchange is mainly carried out by using three types of models: 

i) models developed for subsurface water, ii) models developed for surface water and iii) 

models that integrated the interface of the two domains. To account for complex geometry, 

hydrological conditions and materials composition, most of the models developed for 

subsurface water are distributed models, such as MODFLOW (Storey et al., 2003; Lautz and 

Siegel, 2006b) or HYDRUS (Langergraber and Šimůnek, 2005). These models usually 

require spatial inputs in high resolution and numerous parameters and are characterised by a 

significant computation time that inhibits their application on large scales. Models that are 

developed for surface water include QUAL2K (Park and Lee, 2002) and OTIS (Morrice et al., 

1997). In these models, the lateral floodplain operates as a storage pool to keep the upstream 

and downstream channel water balance. Loague and VanderKwaak (2004) and Kollet and 

Maxwell (2006) reviewed models that coupled surface and subsurface domains, FSTREAM 

(Hussein and Schwartz, 2003) and 2SWEM (Peyrard et al., 2008) are examples for this type 

of model. Most of these models are still too complicate to apply at large scale.  

Large-scale hydrological models have been developed to simulate hydrologic 

conditions at catchment or regional scale. Examples of such models include SWIM 
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(Krysanova et al., 1998), TOPMODEL (Franchini et al., 1996) and MODHYDROLOG 

(Chiew and McMahon, 1994). However, the river/groundwater interface is mostly not 

included in these models. To overcome this issue, the incorporation of conceptual and 

distributed models has been suggested, as in SWAT-MODFLOW (Sophocleous and Perkins, 

2000; Kim et al., 2008), WATLAC (Zhang and Li, 2009) and WASIM-ETH-I-MODFLOW 

(Krause and Bronstert, 2007). However these developments have still been unable to reflect 

the impacts of land use management on groundwater quantity or are not applicable in large 

watersheds. The Soil and Water Assessment Tool (SWAT) model is a deterministic, 

continuous, semi-distributed, watershed-scale simulation model that allows a number of 

different physical processes to be simulated in a watershed. SWAT can simulate a large 

watershed with readily available data and has been used successfully all over the world 

(Jayakrishnan et al., 2005; Romanowicz et al., 2005; Fohrer et al., 2014). To reflect the 

hydrological connection between upslope and downslope parts of a landscape, a catena 

approach including divide, hillslope and floodplain landscape units has been developed and 

included in SWAT (Volk et al., 2007; Arnold et al., 2010, Rathjens et al., 2015). The catena 

approach in the modified model (SWAT-LU) represents an effort to impose a systematic 

upscaling from a topographic position to a watershed scale. Within the catena, a more detailed 

downslope routing of surface runoff, lateral flow and groundwater can be accomplished, and 

the impact of upslope management on downslope landscape positions can be assessed (Arnold 

et al., 2010; Bosch et al., 2010).  However, the hydrological processes are still single tracks in 

SWAT-LU and the function of SW-GW exchange in both directions is not included. 

Furthermore, the flooded distance during flooding events is fixed at five times the width of 

the top channel and the influence of flooding on groundwater levels is not taken into account.  

In this study, a new module was developed to simulate the SW-GW exchange in the 

river/groundwater interface. The modified model was called SWAT-LUD. The SWAT-LUD 

model was tested on the example of the floodplain of the Garonne River, which has a typical 

alluvial plain starting from its middle section. Several distributed models (MODFLOW, 

MARTHE and 2SWEM) were applied to simulate the hydrological and biogeochemical 

processes in this area (Sánchez-Pérez et al., 2003b; Weng et al., 2003;Peyrard et al., 2008). 

Groundwater levels and water exchanges between SW-GW were simulated in the present 

study. The simulated groundwater levels were then compared with the groundwater levels 

measured by the piezometers, and the simulated water exchanges verified by detecting the 

concentration of conservative tracer and undertaking a comparison with the simulated results 

of a 2D distributed model - 2SWEM model.  



Chapter 4.  Improved simulation of river water and groundwater exchange in an alluvial plain using 

the SWAT model. 

75 
 

4.2 Methodology  

4.2.1 SWAT model  

The Soil and Water Assessment Tool (SWAT) model (Arnold et al., 1998) is a semi-

distributed, watershed-scale simulation model. It was developed to simulate the long-term 

impact of management on water, sediment and agricultural chemical yields in large river 

basins.  It is a continuous time model that is operating on a daily time step. To represent the 

spatial heterogeneity, the watershed is first divided into subbasins. The subbasins are then 

subdivided into hydrologic response units (HRUs) which are particular combinations of land 

cover, soil type and slope. SWAT is a process-based model, the major components include 

hydrology, nutrients, erosion and pesticides. In the SWAT model, processes are simulated for 

each HRU and then aggregated in each subbasin by a weighted average (Arnold et al., 1998; 

Neitsch et al., 2009).  

4.2.2 Model development  

4.2.2.1 Landscape Unit (LU) structure  

In the HRU delineation method of the usual SWAT model, flow is summed at the 

subbasin scale and not routed across the landscape. For this application, the watershed was 

divided into three landscape units (LUs): the divide, the hillslope and the valley bottom. A 

representative catena was selected and flow routed across the catena as shown in Figure 1 

(Volk et al., 2007). Landscape Units (LU) represent additional units that take place between a 

subbasin and an HRU. Each subbasin is composed of three LUs, and HRUs are distributed 

across the different LUs (Volk et al., 2007; Arnold et al., 2010; Bosch et al., 2010; Rathjens 

et al., 2015). To represent the SW-GW exchanges occurring in the alluvial plain, a new type 

of subbasin called subbasin-LU was developed. Subbasin-LU corresponds to the subbasin 

delimited by the floodplain and the LU structure was applied in subbasin-LU. Processes in the 

upland area of floodplain were calculated according to the original SWAT model. Processes 

were simulated for each HRU and aggregated to the river. Upland and subbasin-LU were 

connected through the river. The definition of the widths of LUs was made according to the 

surface of floodplain covered by the flood return period: LU1 represented the one-year return 

flood area, LU2 represented the two to five-year return flood area and LU3 corresponded to 

the ten or more years return flood area. LUs were located parallel to the channel and were 

defined by their widths and slopes. As LUs were located on both sides of the channel, the 

width of each side of LU was half its total width. All three LUs in one subbasin were 
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considered as being of the same length, which was the length of the channel. Processes in 

each HRU were still computed separately and then summed at LU scale. The length was 

defined based on the river’s hydromorphological structure. Finally, the processes were 

computed between LUs. With the catena method, surface runoff and lateral flow from LU3 

(which was furthest from the channel) were routed through LU2 to LU1 (which was nearest to 

the channel) and then entered the channel (Figure 1). A detailed description of the catena 

method can be found in Volk et al. (2007) and Arnold et al. (2010).  

 

Figure 1. The Catena method and its landscape unit structure in the SWAT-LUD model. The 

figure shows the location of subbasin-LU ,the landscape unit (LU) structure in the SWAT-

LUD model and the hydrologic processes: ‘A’ represents the location of subbasin-LU, ‘B’ 

represents subbasin-LU, ‘C’ represents the distribution of LUs in the subbasin-LU (plane), 

and ‘D’ represents the hydrologic processes in the landscape units where ‘S’ is surface flow, 

‘L’ is lateral flow, ‘I’ is infiltration, ‘G’ is groundwater flow, ‘O’ is overbank flow, ‘GWL’ is 

groundwater level and ‘WL’ is river water level (according to Volk et al., 2007 and Arnold et 

al., 2010) 

4.2.2.2 SW-GW interaction with LU structure  

Darcy’s (1856) equation (equation 2.2.2.1) was applied to calculate groundwater flow 

between the LUs and water exchanges between the river and the aquifer. Each LU had a 

unique groundwater level. The altitude of the river bed in each subbasin was assumed to be 
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the referenced value of the hydraulic head used to compute groundwater and surface water 

levels. HRUs were assumed to be homogenous inside, with no additional differentiation in 

soil and material underneath, and lateral flow was not simulated:  

𝑄 = 𝐾 × 𝐴 ×
∆𝐻

𝐿
                                                                                                                (2.2.2.1) 

where Q is water flow (m
3
.d

-1
), A is the cross-sectional area between two units (m

2
), K is 

saturated hydraulic conductivity (m.d
-1

), ∆H is hydraulic head difference between two units 

(m) and L is the distance between two units through which the water is routed (m).  

As the river is filled by water, two implementations of Darcy’s equation were required:  

3) groundwater flow between two LUs:  

𝐾 =
(𝐾𝑙𝑢𝑎×𝑊𝑙𝑢𝑎)+(𝐾𝑙𝑢𝑏×𝑊𝑙𝑢𝑏)

(𝑊𝑙𝑢𝑎+𝑊𝑙𝑢𝑏)
                                                                                                                  (2.2.2.2) 

𝑊 = (𝑊𝑙𝑢𝑎 + 𝑊𝑙𝑢𝑏)/4                                                                                                                            (2.2.2.3) 

𝑄 = 2 × 𝐾 × 𝐴 ×
(𝐻𝑙𝑢𝑎−𝐻𝑙𝑢𝑏)

𝑊
                                                                                                        (2.2.2.4) 

where K represents the averaged hydraulic conductivity values of the two LUs (Klua, Klub) 

based on their widths (m.d
-1

), Wlua and Wlub are the widths of the two LUs (m), Hlua and Hlub 

are the hydraulic heads of the two LUs (m), W is the distance between the centres of these 

two LUs on one side of channel. Since LUs located in two sides of the channel, each side got 

half of its width, W is a quarter of the total width of these two LUs (m). As groundwater flow 

occurs on both sides of the river, the flow was multiplied by two. 

4) Groundwater flow between LU1 and the river:  

𝐾 = 𝐾𝑙𝑢                                                                                                                                                 (2.2.2.5) 

𝑊 = (𝑊𝑙𝑢)/4                                                                                                                                         (2.2.2.6) 

𝑄 = 2 × 𝐾 × 𝐴 ×
(𝐻𝑙𝑢−𝐻𝑐ℎ)

𝑊
                                                                                                                (2.2.2.7) 

where K is the hydraulic conductivity value of LU1 (Klu) (m.d
-1

); W is the quarter width of 

LU1 (Wlu) (half of the width of one side of the channel) (m); and Hlu and Hch are hydraulic 

heads of LU1 and the river (m). 



Chapter 4.  Improved simulation of river water and groundwater exchange in an alluvial plain using 

the SWAT model. 

78 
 

4.2.2.3 Influence of flooding to surface water and groundwater level  

The original algorithm for flooding events in the SWAT model only assumes that the 

flooded distance is five times the top channel width (Neitsch et al., 2009). The influence of 

floodplain geometry and the influence of flooded water on groundwater are not considered. 

The new algorithm was based on the water volume during a flood event: 

𝑈𝑓 = (𝑣 − 𝑣𝑚𝑎𝑥) × 𝑇                                                                                                                            ( 2.2.3.1) 

where Uf is the flood volume (m
3
), v is the discharge (m

3
s

-1
), vmax is the maximum discharge 

value at which water could stay in the channel (m
3
s

-1
) and T is the travel time of water passing 

through the channel (s).  

During a flood, the surface water level is the sum of the riverbank height and the water 

depth on the surface relative to the height of river bank: 

𝐴𝑓 = 𝐿𝑐ℎ ∗ (𝑊𝑐ℎ + 𝐿𝑓)                                                                                                          (2.2.3.2) 

𝐻𝑐ℎ = 𝐷𝑐ℎ +
𝑈𝑓

 𝐴𝑓
                                                                                                                      (2.2.3.3) 

where Af is the flooded area (m
2
), Lch is the length of the channel (m), Wch is the width of the 

channel (m), Lf is the flood distance on one side of the river bank (m), Hch is the surface water 

level and Dch is the height of the riverbank (m).  

With regard to groundwater levels in the LUs during flood periods (if flood water 

arrives at a LU), the groundwater of this LU was assumed to be the same level as the surface 

water: 

𝐻𝑙𝑢𝑓 = 𝐻𝑐ℎ                                                                                                                                           (2.2.3.4) 

where Hluf is the groundwater level of LU during the flood (m). 

          The infiltrated flood water was calculated as follows: 

𝑉𝑖𝑛,𝑓 = (𝐻𝑙𝑢𝑓 − 𝐻𝑙𝑢) × 𝐴𝑙𝑢 × 𝑝𝑙𝑢                                                                                                           (2.2.3.5) 

Where 𝑉𝑖𝑛,𝑓  is the infiltrated flood water volume in LU (m
3
), 𝐴𝑙𝑢 is the surface area of the LU 

(m
2
), 𝑝𝑙𝑢 is the porosity of the LU (%). 

The overbank flow would return back to the river the next day after flooding, and 

discharge of river water was recalculated: 
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𝐼𝑁 = 𝐼𝑁 + 𝑈𝑓                                                                                                           (2.2.3.6) 

𝑣 = 𝐼𝑁/86400                                                                                                            (2.2.3.7) 

Where 𝐼𝑁 is the input water volume (m
3
) 

4.2.2.4 Transfer of dissolved elements 

The transfer of dissolved elements between LUs and between LUs and surface water 

was calculated based on the water flow volume and concentration of the elements:  

𝑀𝑙𝑢 = 𝑀𝑙𝑢 + 𝑀𝑖𝑛 − 𝑀𝑜𝑢𝑡                                                                                                                  (2.2.4.1) 

𝑀𝑖𝑛 = ∑(𝑉𝑖𝑛 ∗ 𝐶𝑖𝑛)                                                                                                                             (2.2.4.2) 

𝑀𝑜𝑢𝑡 = ∑(𝑉𝑜𝑢𝑡 ∗ 𝐶𝑙𝑢)                                                                                                                         (2.2.4.3) 

𝐶𝑙𝑢 = 𝑀𝑙𝑢/𝑉𝑙𝑢                                                                                                                                     (2.2.4.4) 

where Mlu is the mass content of the element in LU (g), Min is the input mass (g), Mout is the 

output mass (g). Vin is input water volume (m
3
), Cin is the concentration of the elements in the 

input water (mg·l
-1

), Vout is the output volume (m
3
), Clu is the concentration of the element in 

calculated LU (mg·l
-1

) and Vlu is the water volume storage in LU (m
3
).   

4.2.3 Study area  

The Garonne River is the third longest river in France. Its hydrology is influenced by 

Mediterranean climate and melting snow from the mountainous areas. The typical alluvial 

plain starts from the middle section of the Garonne River. It contains between 4 and 7 m 

coarse deposits (quaternary sand and gravel) eroded from the Pyrenees Mountains during the 

past glacial periods that overlie the impermeable layer of molassic substratum (Lancaster, 

2005). The Verdun gauging station is located at about 4 km upstream of the study site-

Monbéqui. It is the nearest gauging station to the study site at the Garonne River. At the 

Verdun gauging station, the Garonne has a watershed size of 13 730 km
2 

and an annual 

average flow of about 200 m
3
·s

-1
. The monthly average flow ranges from about 75 m

3
·s

-1 
in 

August to about 340 m
3
·s

-1 
in May (Banque Hydro, http://www.hydro.eaufrance.fr/). The 

greatest discharges occur twice a year, in the spring as a result of snow melt and in late 

autumn following intense rainfalls (Sánchez-Pérez et al., 2003c). Previous studies in the 

Garonne river basin have shown that the river/groundwater interface play an important role at 

the reach scale, both in the retention of nitrogen and phosphorous (Vervier et al., 2009) and in 

http://www.hydro.eaufrance.fr/
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controlling aquifer water quality (Iribar et al., 2008). The study area is characterised by high 

nitrate pollution caused by agriculture (Jégo et al., 2008, 2012a). 

The study site is located in a meander of the alluvial plain of the Garonne River 

(Monbéqui) and the width of the floodplain in the area is about 4 km. The mean annual 

precipitation is about 690 mm in this area. The alluvium thickness ranges from 2.5 to 7.5 m, 

with an arithmetic mean of 5.7m (Sánchez-Pérez et al., 2003c). The groundwater table varies 

from 2 to 5 m in low water periods and rise rapidly up to soil profile during floods (Weng et 

al., 2003). The first 50 - 200 m of the riverbank is covered by riparian forest and poplar 

plantations, surrounded by agricultural land. Several terraces exist in this area, generated by 

sediment deposition and washing out by flooding events. Artificial dykes have been 

constructed in the region to protect the agricultural land (Figure 2).  

Figure 2. The Garonne River and the Monbéqui study site. ‘A’ represents the location of the 

Garonne River, ‘B’ represents the location of the alluvial plain and Monbéqui, and ‘C’ 

represents the piezometers in Monbéqui, the grid lines show the rough locations of LUs.  

 

4.2.3.1 Measurements  

Twenty-nine piezometers were installed in the study area, nine of which were equipped 

with water-level sensors (Orphimedes, OTT (in 1999-2000) and CTD-Diver, Schlumberger, 
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Germany (in 2013)) to record changes in groundwater level every ten minutes. In addition, 

groundwater samples were taken monthly for analysis of physicochemical parameters. While 

pH, redox potential, electrical conductivity, oxygen content and temperature were measured 

in the field, other parameters such as nitrate, dissolved organic carbon and chloride were 

analysed in the laboratory. 

In 1999-2000, the groundwater levels of 6 piezometers (P9, P15, P19, P22, P23 and P30) 

were recorded with water-level sensors while groundwater samples were not taken, therefore 

physicochemical parameters were not analysed during this period. In 2013, 25 piezometers 

(all the piezometers in Figure 2 except P15, P19, P23 and P29) and two river sites (R1, R2) 

were sampled monthly and groundwater-level sensors fitted in 5 piezometers (P7, P9, P14, 

P18 and P22). Piezometers were recorded in both periods are: P9, P22 and P30 (Figure 2).  

 

4.2.4 Landscape Unit parameters  

For the purposes of simplification, only one subbasin-LU was simulated in this study 

and each LU only contained one HRU. The daily discharge data of the Verdun gauging 

station were used as input data. Based on the flooded area of the Garonne River during 

different periods, the LU parameters are presented in Table 1, the values of porosity were 

given based on the study of Seltz (2001) and Weng et al. (2003). The distributions of 

piezometers with installed sensors in the three LUs were as follows: five piezometers were 

located in LU1: P9, P14, P15, P18 and P19; two piezometers, P22 and P23, were located in 

LU2; P30 located in LU3.  

Table 1. Parameters of LUs and channel 

 

In the model, each LU had one groundwater level value. With Darcy’s equation, the 

altitude of the riverbed in each subbasin-LU was assumed to be the referenced hydraulic head. 

As the river sloped, the altitude of the riverbank was variable within one subbasin-LU. One 

referenced value had to be chosen for comparison with the measured groundwater levels in 

 LU1 LU2 LU3             Channel  

Width (km) 0.4 0.8 3.0 0.22 

Length (km) 6.374 6.374 6.374 6.347 

Slope (lateral) 0.002 0.005 0.005 -- 

Slope (vertical) -- -- -- 0.001 

Porosity  0.1 0.1 0.1 -- 

Depth (m) -- -- -- 4.0 



Chapter 4.  Improved simulation of river water and groundwater exchange in an alluvial plain using 

the SWAT model. 

82 
 

each subbasin-LU. At the study site, P9 was the only piezometer with groundwater level 

sensors fitted during 1999-2000 and 2013 in LU1. The groundwater level of LU1 was more 

important to the calculation of the SW-GW exchange than that of the other two LUs. The 

altitude of the riverbed was set at 84.75 m NGF (National Geographique Français: the general 

levelling of France, with ‘zero level’ determined by the tide gauge in Marseille). It was 

calculated based on the altitude of the soil surface of P9 (88.95m NGF) minus 4 m, 

corresponding to the height of the riverbank minus 0.2 m and the slope of LU1 which was 

0.002.  

4.2.5 Calibration and validation  

4.2.5.1 Groundwater levels 

The calibration of the groundwater levels was performed manually. Since the flood 

that occurred in 2000 was the largest event in the recent 20 years, and the groundwater level 

sensors were installed in all the three LUs in the period of 1999-2000, the observed 

groundwater levels in this period were used as calibration data. The observed data from 2013 

were taken as validation data. The simulated groundwater levels of the LUs (average value) 

were compared with corresponding piezometers (point value). To limit the error caused by the 

vertical slope, piezometers were chosen for comparison with the simulated groundwater levels 

in each LU based on their location relative to P9. In LU1, P15 and P9 had similar observed 

values in the calibration period (1999-2000), but P15 had a longer available time series than 

P9. In LU2, P22 was closer to P9 than P23. P30 was located upstream of P9, but was the only 

piezometer with a groundwater level sensor installed in LU3. Therefore the observed 

groundwater levels of P15, P22, P30 during the calibration period (1999-2000) and P9, P22, 

P30 during the validation period (2013) were used for comparison with the simulated results 

of LU1, LU2 and LU3 respectively.  

4.2.5.2 SW-GW exchanged water  

Chloride as a well-known groundwater conservative tracer (Harvey et al., 1989; Cox 

et al., 2007) was chosen to verify the simulated water exchange between the river and LU1. 

Since the concentrations of chloride were measured monthly, there is a lack of continuous 

observed data as input values of the model. However, the variations of the chloride 

concentrations in surface water and groundwater in LU2 as well as in LU3 were only slight, 

constant concentration values were given for the river, LU2 and LU3 during simulation. 

Concentration values were set based on the measured data in 2013 (Table 2), since this was 
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the only year in which surface water and groundwater samples were taken and analysed. The 

concentration values in LU1 were simulated based on the mix of surface water and LU2. The 

comparison of simulated and observed chloride concentrations in LU1 could be used to verify 

the simulated SW-GW exchange in LU1. Since the transport of chemistry elements was more 

complicated than water flow, it would be more difficult to match the simulated data for a LU 

with the observation from a certain piezometer. The chloride concentrations measured in all 

the 16 piezometers in LU1 were compared with the simulated data. 

Table 2. Detected values (in 2013) and constant values of chloride of river water and groundwater of LU3 and 

LU2  

Zone   Chloride (Mean±SE)  (mg·l
-1

) Constant chloride (mg·l
-1

) 

River R1 8.97±1.05  

 R2 9.38±1.14 9.00 

LU2 P22 78.22±3.60 75.00 

LU3 P26 54.88±2.67 50.00 

 P30 38.28±1.45  

 

2SWEM (Surface-Subsurface Water Exchange Model) is a 2D hydraulic model. 

Horizontal 2D Saint Venant equations for river flow and a 2D Dupuit equation for aquifer 

flow were coupled in the model to simulate the dynamic variation of aquifer water level. It 

was originally developed to simulate water exchange occurring in the river/groundwater 

interface (Peyrard et al., 2008). Peyrard (2008) simulated surface water and groundwater 

exchange on the right side of the riverbank in the Monbéqui study area. The simulation was 

carried out for a 3.1 km length of the riverbank using the 2SWEM model at a daily time step. 

The result of the SWAT-LUD simulation was adjusted (total exchanged volume divided by 

the length of channel (6.374 km) then multiple by 3.1km) to match the distance of 3.1 km and 

then divided by two to compare it with the output of the 2SWEM model.  

The coefficient of determination (R
2
), Nash-Sutcliffe efficiency (NSE), Percent Bias 

(PBIAS) and RMSE observations standard deviation ratio (RSR) were chosen as evaluating 

parameters. 

4.3 Results  

4.3.1 Calibrated parameters 

Hydraulic conductivities were determined by pumping tests and slug tests, varying from 

10
-2

 to 10
-5

 m·s
-1

 (Weng et al., 2003; Peyrard et al., 2008). Since the simulations with the 
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SWAT-LUD model were carried out at a daily step, the converted daily hydraulic 

conductivities varied from 860 to 1 m·d
-1

. Calibrated parameters are given in Table 3. 

Table 3. Manually-calibrated parameters  

Parameters Default value Calibrated values 

Manning roughness coefficient  0.014 0.070 

Hydraulic conductivity (LU1) (m·d
-1

) undefined 300 

Hydraulic conductivity (LU2) (m·d
-1

) undefined 200 

Hydraulic conductivity (LU3) (m·d
-1

) undefined 100 

 

4.3.2 Groundwater levels  

Figure 3 shows the shallow water tables in the study site based on the measured data of all 

the piezometers in two periods in 2013.  

 

Figure 3. Contour maps of groundwater level in two periods. ‘a’ represents the groundwater 

levels in flood period and ‘b’ represents the groundwater levels in low hydraulic period. 

 

It shows that in the period between two floods, the direction of groundwater flow in the 

meander is from river to floodplain and groundwater flowed from the floodplain to river in 

the stable low flow period. 

The comparison of observed and simulated groundwater levels in the three LUs is 

shown in Figure 4. 
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Figure 4. Observed and simulated groundwater levels in the calibration (1999-2000) and 

validation (2013) periods 

 

The results demonstrated that observed and simulated values matched very well in 

LU1, especially in 2013 when simulated and observed values almost overlapped (R
2
 = 0.96, 

NSE = 0.95). There was considerable variation in the observed and simulated well heights in 

LU2. The lower water level values of the simulations were under the observations and LU2 

was flooded too often compared to the observed data. For LU3, the result showed that 
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simulated values were much lower than the observed data in LU3, but the two curves had the 

same variation trend (R
2
 = 0.94) (Table 4). The graph also showed that with an increase in 

distance from the river, there was a decrease in the fluctuation in groundwater.  

Table 4. Parameters for evaluating the accuracy of groundwater levels simulated by the SWAT-LUD model 

  R
2
 NSE PBIAS RSR 

LU1 Calibration 0.79 0.25 -0.27 0.87 

 Validation  0.96 0.95 -0.05 0.22 

LU2 Calibration 0.38 -0.42 -0.15 1.19 

 Validation  0.78 0.48 0.09 0.72 

LU3 Calibration 0.94 -4.14 1.12 2.27 

 Validation 0.75 -72.3 2.68 8.56 

 

4.3.3 Water exchange between surface water and groundwater 

4.3.3.1 Water exchange—verified with conservative elements 

  To verify simulated exchanged water, simulated concentration values of chloride (Cl
-
) 

were compared with the mean values from the 16 piezometers. The simulated groundwater 

level in LU1 was compared with P15 and P9, but only P9 was sampled in 2013. The detected 

values of Cl
-
 of P9 were also compared with the simulated data (Figure. 5).  

 

Figure 5. Comparison of concentration of chloride in LU1 between the SWAT-LUD model’s 

simulation and values detected from field sampling 
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Figure 5 shows large variations in observed values within LU1, matching the mean 

values more closely than P9.   

4.3.3.2 Comparison with simulations by the 2SWEM model 

Figure 6 shows the comparison between the results of the SWAT-LUD model and the 

results of the 2SWEM model. The models produced reasonably close results given the R
2
 of 

0.62 and NSE of 0.51 (Figure. 6). In the period before May 2005, SWAT-LUD predicted less 

surface water entering the aquifer than the 2SWEM model and the lag time of groundwater 

flow to the river was greater in 2SWEM than in SWAT-LUD. After a large peak in May 

2005, the results of the two models were almost identical.   

 

Figure 6. Comparison of the simulated water exchange between the SWAT-LUD model and 

the 2SWEM model 

 

4.3.3.3 Surface water and groundwater exchange 

The water quantity exchanged annually between the river and the aquifer throughout 

the entire period simulated (1993-2013) is shown in Figure 7.  
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Figure 7. Annually exchanged water quantity between the river and the aquifer during the 

entire simulated period (1993-2013).  

 

Water flow can occur in two directions: from the river to the aquifer and from the 

aquifer to the river. It was found that the dominant net flow direction was from the aquifer to 

the river and water exchange quantities varied annually. Water flowing from the river to the 

aquifer can be separated into two parts: (1) water infiltrating through the riverbank and (2) 

flooded water percolating through the surface of the LUs. Flooded water percolating through 

the soil surface accounted for 69 % of water flowed from the river to the aquifer. The 

annually flooded water volume and flooded days are shown in Figure 8. 
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Figure 8. Annually flooded water volume and flooded days during the entire simulated period 

(1993-2013).  

 

To understand the influence of river water discharge on the SW-GW exchanged water 

volumes, three river water discharge measurements were correlated with four simulated 

exchanged water volume components. The discharge measurements were annual mean 

discharge (Qm), annual maximum discharge (Qmax) and annual discharge variation (∆𝑄 =

√∑(Q −  𝑄
𝑚

)2 ). The exchanged water volumes were the annual absolute exchanged water 

volume flowing in two directions (from river to aquifer and from aquifer to river), net 

exchanged water volume and total absolute exchanged volume. Results are shown in Figure 9. 

This demonstrated that river water discharge had a significant impact on the exchanged water 

quantities between the river and the aquifer. Along with the increase of Qm, Qmax and ∆Q, the 

water volumes flowing from the river to the aquifer and from the aquifer to the river also 

increased. Water flow from the aquifer to the river is better correlated with ∆Q. Qmax played 

the most significant role in water flowing from the river to the aquifer and total exchanged 

water volume. However, net exchanged water volumes were not significantly influenced by 

the discharge.  
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Figure 9. Correspondence between river water discharge and exchanged water volume 

between the river and the aquifer 

 

Based on the discharge values, simulated data were separated into two parts: low 

hydraulic period and high hydraulic period. The bound discharge value was set at 200 m
3
·s

-1
, 

which is the long-term mean discharge of the Verdun gauging station
 

(http://www.hydro.eaufrance.fr/). The results are given in Table 5. During the entire 

http://www.hydro.eaufrance.fr/
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simulation period, the water that flowed from the aquifer to the river accounted for 65 % of 

the total exchanged water volume (exchanged water volume in two directions). The low 

hydraulic period contributed 57 % of the water that flowed from the aquifer to the river. The 

main water flow from the river to the aquifer occurred during the high hydraulic period, 

which amounted to 97 % of the total flow in this direction. 

Table 5. Simulated exchanged water quantity between river and aquifer in two hydraulic periods (low water 

period and high water period) throughout the simulated period (1993-2013) (A to R means from aquifer to river, 

R to A means from river to aquifer) 

Discharge All Low (< 200 m
3
·s

-1
)

 
High (> 200 m

3
·s

-1
) 

 Value % Value %(total) %(period) Value %(total) %(period) 

Number of days 7670  5348 0.70  2322 0.30  

Exchanged water (A to R) 

(10
7
m

3
) 

13.21  0.65   7.47  0.57 0.98 5.74  0.43 0.46 

Exchanged water (R to A) 

(10
7
m

3
) 

  6.98 0.35   0.18 0.03 0.02 6.80  0.97 0.54 

Total (10
7
m

3
) 20.19    7.65 0.38  12.54 0.62  

Daily average (10
4
m

3
·d

-1
)   2.63     1.43   5.40   

 

 In the low hydraulic period, the main water flow direction was from the aquifer to the 

river, which was 98 % of the total water exchange in this period. The low flow period 

represented 70 % of the simulated days, but the amount of exchanged water was only 38 % of 

the total volume. 

During the high hydraulic period, more water flowed from the river to the aquifer than 

from the aquifer to the river (54:46). However, the difference between those two flow 

directions was not as high as it was during the low flow period. The daily average flow in this 

period (5.40×10
4
 m

3
·d

-1
) was much greater than during the low water period (1.43×10

4
 m

3
·d

-

1
).  

4.4 Discussion   

The SWAT-LU model was modified by adding in the floodplain area the module 

simulating SW-GW water exchange at the river/groundwater interface. The algorithms 

calculating surface water and groundwater levels during flooding were also modified in 

agreement with the module. The comparison of simulations and observations proved that the 

modified model was able to reflect accurately the actual hydrological dynamics in the aquifer 

of the floodplain of the Garonne River. Darcy’s equation was used to calculate water 

exchanges caused by the difference in hydraulic heads between the channel water and 

groundwater levels in LU1 - hydraulic conductivities are important parameters for calculating 
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the SW-GW interaction (Sophocleous, 2002). The comparison of simulations and observed 

groundwater levels confirmed that the model can accurately simulate groundwater levels. 

Moreover, the simulated SW-GW exchange was verified by comparing it with the detected 

values of tracer from field samples and the simulated water exchange with a 2D distributed 

model: the 2SWEM model. The results demonstrated that the SWAT-LUD model was able to 

simulate SW-GW water exchange accurately in terms of fluxes.  

The model was able to reproduce the two-way interactions occurring in SW-GW 

exchanges. The contribution of surface water to subsurface flow is not considered in most of 

the existing catchment scale models such as SWIM (Krysanova et al., 1998), TOPMODEL 

(Franchini et al., 1996) or MODHYDROLOG (Chiew and McMahon, 1994). However the 

results from this study showed its importance, since it accounted for 35 % of total SW-GW 

exchanges over a long period. The two-way interaction controls water mixing in the 

river/groundwater interface  is an important driver in biogeochemical reactions occurring in 

this area (Amoros and Bornette, 2002). The SWAT-LUD model presented here provides a 

solid basis for further model development aiming at the simulation of biogeochemical 

processes in floodplain areas at catchment scale. 

Previous research and this study have proven that discharge in the channel is the main 

driving factor of the SW-GW exchange in the study site (Peyrard et al., 2008). As the main 

water flow direction during low hydraulic periods is from the aquifer to the river, the water 

mixing in river/groundwater interface occurs mainly during high hydraulic periods. Flooding 

has been proven to influence the plant communities of wetlands, both in terms of soil nitrate 

reduction and groundwater flow (Hughes, 1990; Casanova and Brock, 2000; Brettar et al., 

2002; Alaoui-Sossé et al., 2005). In the present study, flooded water was found to be 

important for the SW-GW exchange process, which needs further investigation in future. As a 

daily step model, SWAT-LUD could not reflect the detailed processes occurring during 

flooding events. In this study, during flood periods the groundwater levels of LUs reached by 

floodwater were considered to have the same value as the river water levels. The time lag of 

water infiltration was not taken into account and as the LU has a unique groundwater level, 

the risk of overestimating infiltrated flooded water increased along with the increase of the 

width of LUs. Since the surface area of LU3 is much larger than the two other LUs, if flooded 

water arrives in LU3, the infiltrated flooded water could be more easily overestimated. The 

large flood that occurred during the calibration period reached LU3. This probably explained 

the high simulated groundwater levels in LU2 and LU1 after the flooding event. The algorithm 
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is still simple and the simulated exchanged water volume should be compared with the results 

of a distributed model or observed data in a future study.  

The water loss caused by plant evapotranspiration especially in the riparian forest 

zones were stated in many studies (Boronina et al., 2005; Butler et al., 2007; Gribovszki et 

al., 2008). However because the groundwater table is usually beneath the root zone in the 

study site except during flood period, water uptake by plants is negligible and was not stated 

in this study. The influences of pumping on groundwater and river water flow were stated also 

in some researches (Hunt, 1999; Cooper et al., 2003; Rassam and Werner, 2008). This 

process was not included in the model yet, but it could be easily added to the model as an 

output source of groundwater in the future study. Due to the chosen model philosophy, the 

pumped water in each LU would be summed together and influence of pumping on 

groundwater level fluctuation would be simulated at LU scale (in contrast to more complex 

procedures in physically based models).  

As a semi-distributed model, the SWAT-LUD model cannot consider detailed 

topographic information. In the model, each LU has a unique slope value, and mean hydraulic 

conductivity. Since the model was applied at floodplain scale, the impermeable layer was 

considered to be flat in the model, the complex topography of channel and adjacent floodplain 

was only considered to be mean slope for each LU. Channel processes and SW-GW water 

exchange were calculated at subbasin scale. Moreover, the groundwater was assumed to be 

flowing in a horizontal direction (perpendicular to the river flow). The vertical gradient of the 

groundwater hydraulic heads shown in Figure 10 was not considered. The existence of the 

vertical gradient was explained by the height difference between simulated groundwater 

levels and the observed values of P30 in LU3. In LU2, piezometer P22 was located just behind 

an artificial dyke, which was built to protect agricultural land from flooding. Flooded water 

has to move to the top of the dyke before it arrives at P22. As the model could not consider 

this local detailed information, LU2 was oversaturated compared with the observation from 

P22. In addition, the simulated groundwater levels represented the average situations of all the 

LUs, so it would be difficult for the output of the model to match data from one piezometer 

closely. Moreover, hydraulic conductivity was a mean value in each LU. However, in reality, 

hydraulic conductivities are extremely heterogeneous (Weng et al., 2003), so the uncertainties 

of water level simulations as a result of mean values linked to the mean values of hydraulic 

conductivities could be important when compared to local piezometers. To evaluate the 

uncertainties, a sensitivity analysis of hydraulic conductivity would be required.  
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Figure 10. Observed groundwater levels in LUs with more than one piezometer equipped with 

a water level sensor. 

 

The SWAT-LUD was not able to provide a detailed spatial distribution of hydraulic 

heads of the kind provided by physically-based models (MODFLOW(Sánchez-Pérez et al., 

2003b), MARTHE model (Weng et al., 2003), 2SWEM (Peyrard et al., 2008)). However, the 

objective of the study was not to provide accurate spatial representations of groundwater 

levels like the physically-based models, but to provide a good estimation of SW-GW 

interactions over a long timescale with a simple model. The model aimed to simulate large 

catchment sizes to support river basin water management. Therefore the complexity of 

physically-based models leading to long computation times for the simulation of small-scale 

areas (Lautz and Siegel, 2006b; Helton et al., 2014) is not suitable. Moreover physically-

based models need very detailed input information that can be difficult to collect, while this 

model needs only basic parameters. Nevertheless SWAT-LUD gave similar results for SW-

GW interactions when compared with the physically-based 2SWEM model (Peyrard et al., 
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2008). Although the shapes of the channels and LUs in the SWAT model were assumed to be 

straight and homogeneous, the values for exchanged water between river and aquifer 

simulated by the SWAT-LUD model were identical to the physically-based 2SWEM model. 

This showed that the SWAT-LUD model could accurately reflect the actual water exchange 

occurring at reach scale. SWAT-LUD was able to reproduce the spatial and temporal patterns 

of SW-GW exchanges at reach scale in a simple way, which means it can be used for large 

catchment simulation and to support river basin management studies. 

4.5 Conclusions  

This paper has described the new module of the SWAT-LUD model created to 

simulate surface water and floodplain groundwater. Darcy’s equation was introduced to the 

model to simulate groundwater flow and SW-GW exchange occurring through the riverbank. 

The algorithms of river water and groundwater levels during flooding events were also 

modified. This new module was tested in a meander of the floodplain of the Garonne River in 

France. Comparisons between simulation results with observations from piezometers 

illustrated that the SWAT-LUD model could satisfactorily simulate groundwater levels near 

the area of the bank. Conservative tracer measured from field samples were used to validate 

the simulations, and SW-GW exchange modelling results with this approach corresponded 

well with the results obtained by a complex hydraulic model. This model was able to reflect 

accurately the actual water exchange between surface and subsurface systems of the alluvial 

plain of the Garonne River. River water discharge was found to have a great influence on the 

SW-GW exchange process. The main water flow direction was from groundwater to river, 

water flowed in this direction in the river/groundwater interface accounted for 65 % of the 

total exchanged water volume. The water mixing occurs mainly during high hydraulic 

periods. Flooded water was important for the SW-GW exchange process, it accounted for 69 

% of total water flowed from the river to the aquifer. As a catchment-scale model, SWAT-

LUD could easily be applied to a large catchment with basic available data. The SWAT-LUD 

model enabling simulation of GW-SW exchange processes at catchment scale would be a 

useful tool for evaluating the role of river buffer strips and wetlands in improving water 

quality. Future work should include: i) an application of the modified model in a larger 

catchment with multiple subbasins, and ii) the simulation of land management operations and 

biogeochemical processes in the river/groundwater interface.   
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This chapter describes the new module developed to represent the denitrification in the 

shallow aquifer of alluvial floodplains and its application in Monbéqui site based on the study 

of chapter 4. Nitrate exchanges in the shallow aquifer caused by the recharged river water 

through both lateral (river bank) and vertical (surface) infiltration and the influence of 

flooding on nitrate leaching were considered. The influences of both dissolved organic carbon 

(DOC) and particulate organic carbon (POC) on denitrification were evaluated. The measured 

groundwater nitrate concentration in 2005 and 2013 and the simulated infiltrated water and 

nitrate of STICS model were applied to calibrate the modified model. The nitrate flux and 

denitrification rate occurred in the shallow aquifer of Monbéqui site were quantified. This 

chapter written in the publication submitted to Ecological Engineering.   
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Abstract: As alluvial plains support intensive agricultural activities, they often suffer from 

groundwater nitrate pollution. Denitrification is recognised as an important process in nitrate 

pollution control in the riparian zone. In shallow aquifer zones influenced by recharged 

surface water, denitrification efficiently attenuates nitrate in groundwater as well, and the 

exchange between surface water and groundwater has a significant impact on the occurrence 

of denitrification. Denitrification is simulated in numerous models, however most models do 

not take account of the denitrification occurring in shallow aquifers or the influence of 

recharge surface water in the alluvial aquifer with organic carbon and bacteria. In this study, a 

new module was developed that represents the occurrence of denitrification in the shallow 

aquifer of alluvial floodplains. Nitrate exchanges in the shallow aquifer caused by the 

recharged river water through both lateral (river bank) and vertical (surface) infiltration and 

the influence of flooding on nitrate leaching were added to the SWAT-LUD model (SWAT- 

Landscape Unit Darcy). The influences of both dissolved organic carbon (DOC) and 

particulate organic carbon (POC) on denitrification were evaluated. The modified model was 
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applied on an experimental site located in the floodplain of the Garonne River (southwest 

France). Results showed that the modified SWAT-LUD model was able to simulate the 

aquifer nitrate concentration in the near bank zone (riparian zone) satisfactorily. The near 

bank zone in the floodplain played the most important role in attenuating nitrate through 

denitrification. The annual denitrification rate in the near bank zone was around 130 kg N-

NO3
-
·ha

-1
·y

-1
, and around 40 % of the nitrate input to this zone was denitrified. POC is more 

important than DOC in the denitrification process, especially in the near bank zone, where 

98 % of the nitrate was attenuated by POC. Relationships between denitrification rates, 

groundwater levels and total input nitrate masses in the near bank zone were determined. The 

results illustrated that groundwater levels were positively related to the denitrification rates in 

the near bank zone, the absolute denitrification rate increased along with the increase in 

nitrate content, and the relative consumption rate by denitrification decreased as the nitrate 

content increased. 

 

Keywords:  SWAT-LUD model; denitrification; floodplain aquifer; Garonne River  

5.1 Introduction  

        Nitrate pollution in surface water and groundwater systems has attracted worldwide 

attention (Bijay-Singh et al., 1995; Carpenter et al., 1998; Jalali, 2011). Excess nitrate in 

water bodies can cause eutrophication and impact aquatic ecosystems, also potentially causing 

health problems such as methaemoglobinaemia and cancer (McIsaac et al., 2001; Camargo 

and Alonso, 2006). The European Union and the World Health Organization have set the 

standard for nitrate concentration at 50 mg·l
-1

 for drinking water. 

Agricultural activities are known to be a significant source of nitrate in groundwater 

(Hamilton and Helsel, 1995; Almasri and Kaluarachchi, 2004; Liu et al., 2005b). As alluvial 

plains support intensive agricultural activities, they often suffer from groundwater nitrate 

pollution (Sánchez Pérez et al., 2003a; Liu et al., 2005; Arrate et al., 1997; Almasri and 

Kaluarachchi, 2007). Studies have shown that due to the rich content of oxygen and organic 

matter in surface water and abundant nutriment elements in groundwater, the water mix 

between those two systems contributes to nitrogen retention and/or transformation of the land-

surface water continuum (Sabater et al., 2003). The surface-groundwater interface supports 

the purification of water by eliminating nitrates during their infiltration through the 

vegetation-soil system to groundwater and through diffusion from groundwater to surface 
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water (Sanchez-Perez et al., 1991a, 1991b; Takatert et al., 1999). An understanding of nitrate 

attenuation processes occurring at the surface-groundwater interface would enhance 

understanding of nitrate cycling at catchment scale.  

Riparian zones serve as interfaces between terrestrial and aquatic ecosystems and have 

proven to be efficient nitrate removal tools (Osborne and Kovacic, 1993; Lowrance et al., 

1997; Dosskey et al., 2010). The dominant nitrate attenuation processes in riparian zones are 

plant uptake, denitrification and microbial immobilisation, of which denitrification has been 

recognised as the most important of these processes (Korom, 1992; Rivett et al., 2008; Ranalli 

and Macalady, 2010; Vidon et al., 2010). However, most of the studies have focused on 

riparian zones with shallow groundwater levels, with high moisture and high organic carbon 

storage in the soil profile triggering intense denitrification (Cooper, 1990; Hill, 1996; Burgin 

and Hamilton, 2007; Ranalli and Macalady, 2010). The hydrological conditions at the 

river/groundwater interfaces have been shown to have a significant impact on denitrifying 

processes in aquifers (Lamontagne et al., 2005; Rassam et al., 2008). In riparian zones where 

groundwater levels are lower than soil root zones, denitrification has been found to attenuate 

nitrate efficiently in groundwater. In these conditions, the recharged river water, rich in 

organic matter, has stimulated the occurrence of denitrification (Iribar, 2007; Sánchez-Pérez 

et al., 2003b).   

Organic carbon is the ‘energy’ required to denitrify bacteria in the denitrification 

process. The complex composition of organic carbon in ecosystems makes it difficult to 

identify the effective carbon source (Hume et al., 2002; Dodla et al., 2008). Dissolved organic 

carbon (DOC) or bioavailable dissolved organic carbon (BDOC) have been taken as carbon 

sources of denitrification in most studies (Hill et al., 2000; Inwood et al., 2005; Peterson et al., 

2013, Iribar et al., 2015). Furthermore, particulate organic carbon (POC) has been found to 

enhance the denitrification rate in aquatic and terrestrial ecosystems as well (Arango et al., 

2007; Stevenson et al., 2011; Stelzer et al., 2014). The DOC in groundwater is less 

bioavailable than DOC in rivers (Stutter et al., 2013; Shen et al., 2014), and DOC in 

recharged river water has been found to alter the composition and bioavailability of DOC in 

the groundwater mixing zone (Wong and Williams, 2010).  

Since denitrification is highly variable spatially and temporally, modelling has proved to 

be an efficient tool for estimating the denitrification rate, especially on large spatial scales. 

Denitrification is simulated in numerous models. Heinen (2006) has introduced more than 50 
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models that include denitrification, such as the EPIC model (Marchetti et al., 1997), the 

DAICY model (Hansen et al., 1991) and the REMM model (Lowrance et al., 2000). 

However, most of the models only simulate the denitrification process in the soil profile. 

Peyrard et al. (2011) has developed a 1D model to simulate denitrification in the hyporheic 

zone, but as a reach scale model, the influence of the surrounding landscape, such as 

agricultural activities, is not simulated in the model. The Soil and Water Assessment Tool 

(SWAT) is a physically-based, deterministic, continuous, watershed-scale simulation model 

allowing a number of different physical processes to be simulated in a watershed, which has 

been successfully applied all over the world (Jayakrishnan et al., 2005; Romanowicz et al., 

2005; Fohrer et al., 2013).  Studies have been carried out to simulate nitrate pollution on a 

catchment scale with SWAT (Ferrant et al., 2011, 2013; Boithias et al., 2014; Cerro et al., 

2014). However, the simulation of the two-direction water exchange between river and 

groundwater occurring in the floodplain has not been simulated in the SWAT model. To solve 

this problem, a new structure called a landscape unit (LU) was developed and Darcy’s 

equation was used to simulate the water exchange in the river/groundwater interface. The 

modified model was called SWAT-LUD (SWAT-Landscape Unit Darcy) (Sun et al., in 

press). Nevertheless, denitrification occurring at the river-groundwater interface was still not 

being taken into account.  

The main objectives of this study were: i) to add the simulation of denitrification in the 

SWAT-LUD model, ii) to apply the modified SWAT-LUD to the alluvial floodplain of the 

Garonne River, iii) to quantify the dynamic nitrate removal rate through denitrification, iv) to 

quantify the nitrate circulation in the floodplain of the Garonne River, and v) to determine key 

parameters involved in denitrification processes.  

5.2 Methodology  

5.2.1 SWAT-LUD model  

The Soil and Water Assessment Tool (SWAT) model is a semi-distributed, watershed-

scale and continuous time model that operates on a daily time step (Arnold et al., 1998). In 

SWAT, the watershed is divided into subbasins; subbasins are then separated into hydrologic 

response units (HRUs), which are the lumped area comprising the unique combination of land 

cover, soil type and slope. Processes have been simulated for each HRU and then aggregated 

into a subbasin by weighted average (Arnold et al., 1998; Lam et al., 2010).  
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With the traditional HRU delineation method, flow was not routed across the 

landscape. To represent the natural downward flow path, a new structure called a landscape 

unit (LU) was developed and the modified model called the SWAT-LU model. Each subbasin 

consisted of three LUs: the divide, the hillslope and the valley bottom. HRUs were distributed 

across the different LUs (Volk et al., 2007; Arnold et al., 2010; Bosch et al., 2010; Rathjens 

et al., 2014). Via this structure, processes in each HRU were still computed separately, but 

instead of being summed at the subbasin scale, they were summed at the LU scale. Surface 

runoff, lateral and groundwater flow from LU3 (the divide) were routed through LU2 (the 

hillslope) to LU1 (the valley bottom) and then entered the river. However, the SWAT-LU 

model did not involve the surface water-groundwater (SW-GW) exchange function and the 

influence of flooding on groundwater. Since SW-GW exchange mainly occurs in the alluvial 

plain, a new type of subbasin called a subbasin-LU was developed to represent the floodplain 

area and the LU structure was applied to the subbasin-LU. Processes in the upland area were 

calculated using the original SWAT model, and upland and subbasin-LU were connected 

through the river. A new module was added to the SWAT-LU model to simulate the SW-GW 

exchange. In this module, Darcy’s equation was applied to quantify exchanged water based 

on the LU structure. The influence of flooding on groundwater levels was simulated, and the 

transfer of dissolved elements between LUs and between LUs and surface water was also 

included in the model. Furthermore, the algorithm of the influence of flooding on river water 

level was modified. The modified model is called the SWAT-LUD model (Sun et al., in 

press). The location of LUs and the water flow path in a subbasin-LU are shown in Figure 1, 

and a detailed description can be found in Volk et al. (2007), Arnold et al. (2010) and Sun et 

al. (in press).  
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Figure 1. Location of subbasin-LU and the landscape unit (LU) structure in the SWAT-LUD model. The figure 

shows the hydrological processes: ‘A’ represents the location of subbasin-LU, ‘B’ represents subbasin-LU, ‘C’ 

represents the distribution of LUs in the subbasin-LU (plane), and ‘D’ represents the hydrologic processes in the 

landscape units where ‘S’ is surface flow, ‘L’ is lateral flow, ‘I’ is infiltration, ‘G’ is groundwater flow, ‘O’ is 

overbank flow, ‘GWL’ is groundwater level and ‘WL’ is river water level (according to Volk et al., 2007 and 

Arnold et al., 2010) (extracted from Sun et al. (in press))   

5.2.2 Nitrogen cycle in the SWAT-LUD model  

5.2.2.1 Nitrogen cycle in soil profile  

In the SWAT-LUD model, nitrogen cycles in the soil profile were kept as in the SWAT 

model except that the calculation of denitrification was replaced by equation 2.2.2.2. The 

nitrogen in the soil profile was separated into five pools. Two of the pools were inorganic 

forms, NH4
+
 and NO3

-
, while the other three were organic forms: fresh organic N, active 

humus and stable humus. The growth cycles of plants were simulated, which was a simplified 

version of the EPIC plant growth model (Williams et al., 1999). The management operations 

that control the plant growth cycle, such as planting, harvest, tillage, fertilisation application 

and pesticide application, were applied in each HRU (Neitsch et al., 2009). All of these 

functions were retained in the SWAT-LUD model. The fluxes of nitrate in surface flow and 

lateral flow were modified in the SWAT-LUD model, such as water flow, and nitrate flowing 

from LU3, passing through LU2, entering LU1 and then flowing into the river.  
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5.2.2.2 Nitrate cycle in shallow aquifer  

Nitrate cycling in the shallow aquifer was simulated in the SWAT model. The main 

processes were uptake by plants, percolation from the soil profile (equation 2.2.2.1), recharge 

to the deep aquifer, and flux into the main channel. A decay rate of nitrate in the shallow 

aquifer was also simulated (Neitsch et al., 2009). In SWAT-LUD, the processes of 

percolation from soil profile, uptake by plant and the recharge to the deep aquifer remained as 

in the SWAT model. The decay of nitrate was replaced by denitrification, which was 

calculated with equation 2.2.2.2. The nitrate flow was calculated as a dissolved element in the 

shallow groundwater, flowing between LUs and between LUs and surface water, rather than 

flowing from each HRU into the main channel directly. The detailed description of the 

calculation of the transfer of dissolved elements can be found in Sun et al. (in press). 

The recharge of nitrate from the soil profile to the aquifer layer was calculated as follows:  

𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖
= (1 − 𝑒𝑥𝑝[−1/𝜎𝑔𝑤]) × 𝑁𝑂3𝑝𝑒𝑟𝑐

+ 𝑒𝑥𝑝[−1/𝜎𝑔𝑤] ×  𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖−1
     2.2.2.1 

where 𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖
 is the amount of nitrate in recharge entering the aquifers on day i (kg N-

NO3
-
·ha

-1
), 𝜎𝑔𝑤is the delay time for aquifer recharge (days), 𝑁𝑂3𝑝𝑒𝑟𝑐

is the total amount of 

nitrate exiting the bottom of the soil profile on day i (kg N-NO3
-
·ha

-1
), and 𝑁𝑂3𝑟𝑐ℎ𝑟𝑔,𝑖−1

is the 

amount of nitrate in recharge entering the aquifers on the day i-1.  

The nitrate and organic carbon degradation equations in the study of Peyrard et al. (2011) 

were introduced into the SWAT-LUD model. The nitrate degradation is taken as 

denitrification, and the influences of both POC and DOC on denitrification were taken into 

account.  

The denitrification rate was calculated as follows: 

𝑅𝑁𝑂3
= −0.8(𝜌 · (1 − 𝜑)/𝜑 · 𝑘𝑃𝑂𝐶[𝑃𝑂𝐶] · 106/𝑀𝑐 + 𝑘𝐷𝑂𝐶[𝐷𝑂𝐶]) · [𝑁𝑂3]/(𝑘𝑁𝑂3

+ [𝑁𝑂3])         2.2.2.2 

where 𝑅𝑁𝑂3
 is the denitrification rate (µmol·l

-1
·d

-1
), 𝜌 is dry sediment density (kg·dm

-3
), 𝜑 is 

sediment porosity, 𝑘𝑃𝑂𝐶 is mineralisation rate constant of POC (particulate organic carbon) (d
-

1
), POC is the POC content in the soil and aquifer sediment (‰), 𝑀𝑐 is carbon molar mass 

(g·mol
-1

), DOC is the concentration of DOC in the aquifer water (µmol·l
-1

) 𝑘𝐷𝑂𝐶 is the 

mineralisation rate constant of DOC (dissolved organic carbon) (d
-1

), 𝑘𝑁𝑂3
is half-saturation for 

nitrate limitation (µmol·l
-1

) and 𝑁𝑂3 is the nitrate concentration in the aquifer water (µmol·l
-1

). 
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5.2.2.3 Nitrate leaching during flood periods 

On flood days, the portion of the nitrate storage in the soil profile was considered as 

having infiltrated into the aquifer along with infiltrated floodwater:  

𝑀𝑁𝑂3,𝑖
=  𝑀𝑁𝑂3,𝑖−1

+ 𝐼𝑁𝑂3,𝑖            2.2.3.1 

𝐼𝑁𝑂3,𝑖
= 𝐹𝑁𝑂3

× 𝑀𝑁𝑂3,𝑠𝑜𝑖𝑙,𝑖
          2.2.3.2 

where 𝑀𝑁𝑂3,𝑖
 is the mass content of nitrate in the LU (g N-NO3

-
) on day i, 𝑀𝑁𝑂3,𝑖−1

 is the mass 

content of nitrate in the LU (g N-NO3
-
) on day i-1,  𝐼𝑁𝑂3

 is the infiltrated nitrate from the soil 

profile into the aquifer during flood events on day i, 𝐹𝑁𝑂3
 is the coefficient (%) and 𝑀𝑁𝑂3,𝑠𝑜𝑖𝑙

 is 

the mass content of nitrate in the soil profile of LU (g N-NO3
-
) on day i. 

5.2.3 Organic carbon in SWAT-LUD 

The flux and content of DOC was not simulated in the SWAT model. In the SWAT-LUD 

model, the flux of DOC in the shallow aquifer was included, which was simulated as a 

dissolved element such as nitrate. As the fluctuations of DOC were small in the aquifers of 

the region that far away from the river, the concentrations of DOC in LU2 and LU3 were 

assumed to be constant and the values were read as input values. DOC in the river water was 

assumed to be constant as well except during flood periods. As the concentration of DOC in 

the river water significantly increased during flooding days (Dalzell et al., 2005; Arango et 

al., 2007; Duan et al., 2007), a different value was given to the river water in flood periods. 

The DOC concentrations in LU1 were calculated as the mixture of LU2 and river water. 

DOC could be consumed by denitrifying bacteria. The consumption rate was:  

 2.3.1 

where RDOC is the DOC consumption rate (µmol·l
-1

·d
-1

). 

In the SWAT model, the POC contents in the soil profiles were read as input values and were 

not simulated in the shallow aquifers. In the SWAT-LUD model, the POC contents in the top 

soil layers were considered higher than the others and the POC pools were separated into two 

parts: the top layer pool and the second layer pool. The POC content in the two pools was 

read as input values. 

POC could be consumed by denitrifying bacteria as well. The consumption rate was: 

     2.3.2 

𝑅𝐷𝑂𝐶 = −𝑘𝐷𝑂𝐶[𝐷𝑂𝐶] 

𝑅𝑃𝑂𝐶 = −𝑘𝑃𝑂𝐶[𝑃𝑂𝐶] 
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where RPOC is the POC consumption rate (‰·d
-1

) 

5.2.4 Study site 

The Garonne River is the largest river in southwest France. The typical alluvial plain 

starts from its middle section. The study site at Monbéqui is located in a meander of the 

floodplain, about 40 km north of the city of Toulouse. The mean annual precipitation is about 

690 mm in this area. The nearest gauging station – the Verdun gauging station – is located 

about 4 km upstream of Monbéqui. In this area, the Garonne river has a watershed of 13,730 

km
2 

and an annual average flow of about 200 m
3
·s

-1
 which ranges from 10 m

3
·s

-1
 to 2900 

m
3
·s

-1 
(Banque Hydro, http://www.hydro.eaufrance.fr/). The alluvial plain is about 4 km wide 

and contains a 4-7 m depth of deposited quaternary sand and gravel that overlie the molassic 

substratum impermeable layer (Lancaster, 2005, Sánchez-Pérez et al., 2003b).  

The riparian forest and poplar plantations cover the first 50-200 m from the riverbank, 

beyond which lies agricultural land that accounts for 75 % of the total area. The main crops in 

the study area are corn and winter wheat; there is also sunflower, soybeans and rapeseed.  

Twenty-six piezometers were installed in the meander. Groundwater level sensors were 

installed in five piezometers to record the groundwater levels every 10 min. From April 2013 

to March 2014, groundwater and sediment samples from all the piezometers and two river 

points except P29 were taken monthly for analysis of physicochemical parameters. To ensure 

the water sample corresponded to the aquifer and not to stagnant water accumulated in the 

piezometer, water samples were taken until conductivity of the extracted groundwater was 

constant (Sánchez-Pérez, 1992). Redox potential, pH, electrical conductivity, oxygen content 

and temperature were measured in the field. Other elements were analysed in the laboratory, 

such as nitrate, DOC, chloride and the AFDM (ash-free dry mass) contents of the sediment. In 

2005 (January to July), groundwater samples from five piezometers (P6, P10, P13, P18 and 

P29) were taken monthly and elements such as nitrate, DOC and chloride were analysed.  

http://www.hydro.eaufrance.fr/
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Fig 2. Locations of the piezometer in the Monbéqui study site. ‘A’ represents the location of the Garonne River, 

‘B’ represents the location of the alluvial plain and Monbéqui, and ‘C’ represents the piezometers in Monbéqui, 

the grid lines show the rough locations of LUs.  

5.2.5 LU parameters 

The LUs in this study site were defined based on the flood return periods. LU1 

corresponded to the area that was flooded every year, which was mainly covered by riparian 

forest and poplar plantations, and 16 piezometers in 2013 and four piezometers in 2005 were 

located in this area. LU2 represented the area that was flooded every two to five years, with 

two piezometers (P11 and P22) in 2013 and P29 in 2005 located in this zone. LU3 

corresponded to the area that was flooded every ten or more years, with P26 in 2013 located 

in this zone. LU2 and LU3 were mainly covered by agricultural land. The parameters of the 

LUs are given in Table 1.  

Table 1. LU parameters 

 

 

 

 

 

 

 LU1 LU2 LU3             

Width (km) 0.4 0.8 3.0 

Length (km) 6.374 6.374 6.374 

Slope (lateral) 0.002 0.005 0.005 

Porosity  0.1 0.1 0.1 

    



Chapter 5. Assessment of the denitrification process in alluvial wetlands at floodplain scale using 

SWAT model. 

115 
 

The crop rotations applied in the LUs were based on data collected during 2005-2007 

by Jégo (2008), which are shown in Table 2. In LU1, the poplar plantation was considered to 

be deciduous forest. 

 

Table 2. Land cover and crop rotation and management in the LUs 

 LU1 LU2 LU3 

year Land 

cover 

Crops Mineral 

fertilisation 

Irrigation Crops Mineral 

fertilisation 

Irrigation 

1 Forest Soybean 0 0 Winter 

wheat 

0 0 

2 Forest Pea 0 0 Rapeseed 150 0 

3 Forest Corn 150 175 -- -- -- 

 

The concentration of nitrate in the river water was considered constant in this study 

and the value was determined based on the measured data in 2013, which was 2.26 (N-NO3
-
) 

mg·l
-1

. The DOC concentrations in the LUs and in the river water were determined based on 

the measured data in 2013. The topsoil layer was considered to be 0.5 m and the POC 

contents in this layer were given based on the measured data by Jégo (2008). The POC 

contents in lower layers, which were below the top 0.5 m, were given based on the measured 

AFDM values in 2013. The carbon content in AFDM was considered to be 50 % based on 

recent studies (Hauer and Lamberti, 2011; Wagner et al., 2011; Griffiths et al., 2012) (Table 

3).  

Table 3. Measured DOC and POC in the LUs and the river in 2013 and given constant values 

 DOC (mg·l
-1

) 

(Measured) 

DOC (mg·l
-1

) 

(Constant) 

AFDM (%) 

(Measured) 

POC (>50 cm) 

(%) (Constant) 

POC (top 50cm) 

(%) (Constant) 

LU1  simulated 0.55±0.03 0.275 1.5 

LU2 P11 0.92±0.15 0.85 0.65±0.08 0.275 1.0 

P22 0.83±0.09 0.46±0.07 

LU3 P26 0.66±0.11 0.65 0.56±0.07 0.325 1.0 

P30 0.65±0.13 0.74±0.04 

River R1 1.72±0.15 1.7    

 R2 1.69±0.20 3 (During 

flooding) 
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5.2.6 Calibration and evaluation of the SWAT-LUD model 

The simulation was carried out between 1993 and 2013. The calibration and validation of 

hydrological conditions can be found in Sun et al. (in press). In this study, nitrate 

concentrations in the shallow aquifer, measured in 2005 and 2013, and DOC concentrations in 

LU1, measured in 2013, were used as calibration data. The simulated percolated water and 

leached nitrate from the soil profiles of the SWAT-LUD model in 2005-2007 were compared 

with the output of the STICS model to evaluate the simulated results. STICS is a dynamic 

soil-crop-atmosphere simulation model that has been successfully applied in the study site to 

simulate the water and nitrate content in the soil layers (Brisson et al., 2003). More details of 

the STICS model can be found in Brisson et al. (2003, 1998). Data obtained with SWAT were 

compared with the simulated results of Jégo et al. (2012) using the STIC model on the same 

study site. Percent bias (PBIAS) and root mean square error (RMSE) were chosen as 

evaluating parameters.  

5.3 Results  

5.3.1 Calibrated parameters  

Manual calibration was performed to calibrate the daily simulated nitrate and DOC 

concentrations in the shallow aquifer. The calibrated parameters and values are shown in 

Table 4. 

Table 4. Manually calibrated parameters 

 Description  Unit Calibrated value 

kPOC1 kPOC in LU1 d
-1

 0.80×10
-5

 

kPOC2 kPOC in LU2 d
-1

 0.20×10
-6

 

kPOC3 kPOC in LU3 d
-1

 0.15×10
-6

 

kNO3 half-saturation concentration of nitrate µmol·l
-1

 30 

kDOC1 kDOC in LU1 d
-1

 0.005 

kDOC2 kDOC in LU2 d
-1

 0.002 

kDOC3 kDOC in LU3 d
-1

 0.002 

FNO3 Percentage of leached nitrate from soil profile during flooding  % 30  

 

The results showed that the calibrated kPOC and kDOC in LU1 were much higher than in the 

other two LUs. 
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5.3.2 STICS and SWAT-LUD model comparison  

A comparison of simulated percolated water and nitrate in the SWAT-LUD model and the 

STICS model in LU1 and LU2 is given in Figure 3.  

 

Figure 3. Simulated accumulated infiltrated water (in mm) and nitrate (kg N-NO3
- 
ha

-1
) with SWAT-LUD and 

STICS models in LU1 (deciduous forest) and LU2 (crop system) 

The results showed that the simulated results of these two models matched very well in 

both LUs. In LU2, the main difference between the percolated water of the two models was in 

May 2007, while the STICS model simulated more infiltrated water. The comparison between 

those two LUs showed that infiltrated water and nitrate in LU1 were much lower than in LU2.  

5.3.3 Nitrate concentrations in shallow aquifer  

Figure 4 shows the comparison of simulated nitrate concentrations with observed values 

in the shallow aquifer over two periods (2005, 2013).  
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Figure 4. Simulated and observed nitrate concentrations in the aquifer of LUs during the years 2005 and 2013, 

where ‘Dilution’ is the simulated results with recharged river water and ‘Dilution + Denitrification’ is the 

simulated results with recharged river water and denitrification processes. 

This showed that the observed values matched better with the simulated results with 

denitrification. The simulations that considered denitrification overestimated the groundwater 

nitrate concentration, but still were in good agreement with the observed data (Fig. 5). 
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Figure 5. Observed and simulated (dilution plus denitrification) groundwater nitrate concentration in the two 

periods (2005, 2013) 

The evaluated values between observed nitrate concentrations and simulated results 

with dilution plus denitrification in each LU for the two periods are shown in Table 4. 

Table 4. Parameters for evaluating the accuracy of simulated nitrate concentrations in the shallow aquifer using 

the SWAT-LUD model 

  PBIAS (%) RMSE(mg N-NO3
-
.L

-1
) 

LU1 2005 3.86 2.43 

2013 -2.91 2.24 

LU2 2005 -8.99 1.60 

2013 22.60 7.50 

LU3 2005 -- -- 

2013 -2.54 4.05 

 

The observations and simulations matched well in LU1 in both periods. The matching of 

LU2 in 2013 was unsatisfactory. After the flooding (discharge ≥ 1008 m
3
/s), the simulation 

decreased by the dilution of river water, however the observations in LU2 kept the value high. 

As there was no observation of LU3 in 2005, the comparison was only made in 2013. The 

measured nitrate concentration increased in August and September of 2013, however it was 

not reflected in the simulation. The results also illustrated that denitrification significantly 

decreased the nitration concentration in the floodplain aquifer.  
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5.3.4 DOC concentrations in the shallow aquifer   

The simulated DOC concentrations were compared with the measured data of LU1 in 2013 

(Fig. 6).  

 

Figure 6. Simulated and observed DOC concentrations in 2013 

The results showed that the simulated DOC concentration matched well with 

observations, except the observed data in July where just after the flooding the observation 

was higher than the simulations. 

5.3.5 Denitrification rate  

The simulated annual denitrification rate is shown in Figure 7. The denitrification rate in 

LU1 was much higher than in the other two LUs, with average denitrification rates in LU1, 

LU2 and LU3 for the entire simulation period (1993-2013) of 132.54±3.88, 6.13±0.25, 

9.06±0.40 kg N-NO3
-
·ha

-1
·y

-1
 for the surface respectively. The groundwater depth in the three 

LUs are 1.62±0.06, 2.29±0.09, 3.97±0.19 m. And the denitrification rate  for per unit of 

sediment in the three LUs are 8.09±0.18, 0.27, 0.23 g N-NO3
-
·m

-3
·y

-1
  respectively. For per 

kilometre length of the river, it turn to be 61.91±2.77 T N-NO3
-
· km

-1
·y

-1
.  
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Figure 7. Simulated annual denitrification rates (a. annual total denitrification rates, b. annual denitrification 

rates triggered by DOC and POC) in the three LUs  

Since two organic carbon sources were included in the model, the denitrification 

triggered by DOC and POC was separated and compared. The results are also shown in 

Figure 5. This revealed that POC played an extremely important role in the occurrence of 

denitrification. The nitrate consumption triggered by DOC was only 1.80 % of the total nitrate 

consumption in LU1; in LU2 and LU3 the ratios were 20.93 % and 18.57 % respectively.  

The annual flux of nitrate between LUs and between LUs and the river is shown in Figure 

8. Since LU1 was covered by forest, less nitrate leached into the shallow aquifer in LU1 than 

in the other two LUs. LU2 and LU3 were the main sources of nitrate in the shallow aquifer. In 

LU1, the quantity of nitrate recharged by river water (lateral flow and flooding) was almost 

the same as that infiltrated from soil. The nitrate consumption rates in LU3, LU2 and LU1 were 

31.37±2.35 %, 4.34±0.29 %, 43.92±2.31 % respectively, but around 52.6 T N-NO3
-
 still 

flowed to the river each year.  
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Figure 8. Simulated annual flux of nitrate (N-NO3
-
) in the floodplain area of Monbéqui     

5.3.6 The influence of hydraulic conditions and nitrate content on denitrification 

Since the denitrification rate of nitrate in LU1 was much higher than in the other two LUs, 

the correspondence between denitrification rates and hydraulic conditions in LU1 was 

analysed. Since river water discharge, recharged river water volume and groundwater flow 

corresponded positively to the groundwater level (Table 5).  

Table 5. The coefficient of determinations between hydraulic elements in LU1 based on the simulations of 

the entire simulated period (1993 to 2013) 

 Groundwater level 

(m) 

River water discharge 

(m3·s-1) 

Recharged river water volume 

(m3·d-1) 

Groundwater flow 

(m3·d-1)  

Groundwater level (m) -- -- -- -- 

River water discharge  

(m3·s-1) 

0.88 

P < 0.01, n = 21 

-- -- -- 

Recharged river water volume 

(m3·d-1) 

0.31 

P < 0.01, n = 21 

0.30 

P < 0.01, n =21 

-- -- 

Groundwater flow (m3·d-1) 0.77 

P < 0.01, n = 21 

0.44 

P < 0.01, n = 21 

0.24 

P < 0.05, n = 21 

-- 
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Since river water discharge, recharged rive water volume and groundwater are positivily 

related with groundwater level, an analysis of correspondence between groundwater levels 

and denitrification rate was performed (Fig. 9). 

 

Figure 9. Correspondence between annual denitrification rate and groundwater level in the entire simulated 

period (1993-2013) 

Results showed that denitrification rates were significantly positively correlated with 

groundwater level, with R
2
 reaching 0.88 (p<0.01).   

The relationship between nitrate input in LU1 and denitrification rates in LU1 were also 

examined. The absolute (denitrification rate) and relative (denitrification efficiency) 

denitrification abilities were compared with the total input nitrate mass in LU1 (Fig. 10). It 

showed that the absolute consumption rate increased along with the increase in nitrate 

content, however the relative consumption rate decreased as the nitrate content increased, 

which meant that more nitrate entered LU1 and more nitrate flowed into the river. 
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Figure 10. Relationship between denitrification (a. denitrification rate b. denitrification efficiency) and annual 

input nitrate in LU1 

5.4 Discussion  

5.4.1 Denitrification  

This study illustrated that the modified SWAT-LUD model could realistically simulate 

nitrate concentrations in groundwater while simulating the dilution of recharge from river 

flooding and denitrification in riparian areas at the alluvial floodplain scale. Models have 

previously been developed to simulate denitrification in aquifers (Kinzelbach et al., 1991; Lee 

et al., 2006, 2009; Bailey et al., 2013), but the influence of recharged surface water has not 

been considered. The denitrification in the hyporheic zone has also been simulated, but these 

models are numerical models and cannot feasibly be applied on a large scale (Sheibley et al., 

2003; Zarnetske et al., 2012). Compared with other denitrification models, SWAT-LUD 

simulated the two-direction SW-GW water exchange and denitrification that occurred in the 

shallow aquifer on a large spatial and temporal scale.  

Denitrification was found to play an important role in nitrate pollution control at the study 

site, especially in the zone near the riverbank where river water and groundwater are well 

mixed, as it consumed about 40 % of the nitrate flowing through this zone. Denitrification is a 

complex process and the numbers of bacteria and enzymes were found to have an influence 

on this process (Philippot and Hallin, 2005; Bothe et al., 2006; Wallenstein et al., 2006). 

Several studies have demonstrated that the microenvironments play a significant role in the 

occurrence of denitrification, and hot moments and hotspots have been found to be crucial to 

the entire nitrate attenuation process (Groffman et al., 2009; Iribar et al., 2008, 2015; Vidon et 

al., 2010). However, the LUs in the SWAT-LUD model were assumed to be homogeneous; 
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denitrification occurred uniformly in each LU, making it difficult to match the simulated 

results with observed points. Since the SWAT-LUD model was developed for large river 

basins, the aim of the new module was to represent denitrification in the floodplain aquifer at 

catchment scale with relatively few input parameters and computational time, but not to 

represent detailed localised information. 

5.4.2 Influence of hydraulic conditions on denitrification   

Groundwater levels were found to have a significant influence on denitrification rates. As 

POC was found to be the main organic carbon source of denitrification in this study, the 

contact area between groundwater and POC increased with the rise in groundwater levels. The 

groundwater level increased with the rise of river water discharge too, so other than the DOC 

transported with the recharged river water, the enlarged groundwater levels also stimulated 

the occurrence of denitrification.  

5.4.3 Nitrate dynamics 

Since the STICS model has been shown to represent accurately the soil water content 

and nitrate at the study site (Jégo, 2008; Jégo et al., 2012), the comparison between SWAT 

and STICS illustrated that the SWAT model represented the leached water and nitrate 

correctly. The influence of flooding on the nitrate concentration in the aquifer was taken into 

account in this study. Wang et al. (2010) have found that the leached nitrate under heavy 

irrigation could contribute 60 % of the accumulated N in the soil profile. Since nitrate 

infiltration data was not collected during flooding at the study site, the parameter that 

represented this function was calibrated. The simulated nitrate concentrations in LU2 matched 

more closely with the observations in 2005 than in 2013. There are several potential reasons 

for this. These include: 1) cropping systems may have changed between 2005 and 2013 and 2) 

flooding occurred in 2013 but not in 2005, making it more difficult to simulate the 

groundwater nitrate concentration with the influence of flooded water. After the flooding at 

the beginning of June 2013, the simulated results showed that the recharged river water 

diluted the nitrate concentration in LU2, while the observed data maintained high values. 

Artificial dykes were built to protect agricultural land from flooding. Furthermore, as the 

simulated results represented the average condition of the LU, it was difficult to match the 

simulated results to the spatially observed points.  

Corn is the common crop planted in the south of France, whose growth cycle is usually 

from May to October. However, the Mediterranean climate leads to dry summers in the 
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Garonne watershed. As corn needs more water than other crops, it is generally irrigated 

during the dry summer. The leached nitrate along with the irrigated water could explain the 

increase of nitrate in LU3 in August and September 2013. The lack of continuously recorded 

and detailed crop rotation information also limited the ability of the SWAT-LUD model to 

represent the detailed localised nitrate concentration.  

5.4.4 Influence of POC and DOC on denitrification  

Among the two carbon sources, it was determined that POC played an extremely 

important role in the denitrifying process. The interior mechanisms of the influence of POC 

on denitrification are still not clear. It was generally considered that POC could stimulate 

denitrification directly and indirectly. The different quality and quantity of POC had a varying 

influence on nitrogen transformation. The decomposition of POC could release DOC and 

create the anaerobic environment, simultaneously increasing the denitrifying process (Arango 

et al., 2007; Stelzer et al., 2011, 2014). In the hyporheic zone, biofilm is an important 

component of POC and was found to have large impacts on the metabolism of river systems 

(Fischer et al., 1996). Biofilm is regarded as an important organic matter storage site and 

absorption site for DOM owing to its large internal surface area (Koutný and Rulík, 2007).  

 

A comparison of the influence of DOC and POC on denitrification in the aquifer had 

never been carried out before. Iribar (2007) measured the potential denitrification rate (DEA) 

in the groundwater and aquifer sediment, and DEA in the sediment was found to be 1000 

times greater than in the groundwater. Bacteria have been found to be a medium of carbon 

storage (Ogawa et al., 2001), however the contribution of bacteria-derived DOC in the 

groundwater has rarely been studied. A recent study found that around 20 % of the 

groundwater DOC is bacteria derived (Shen et al., 2014). Since the riparian zone is most 

frequently recharged by river water, the bacteria of the biofilm attached to the aquifer 

sediment could be altered by the recharged DOC dissolved in the surface water. The riparian 

zone was flooded regularly, so buried POM could contribute to the denitrifying activity as 

well. Moreover, as this zone is mainly covered with riparian forest, more DOC infiltrated 

from the soil layer in the forest area than that from other land use types (Chantigny, 2003; 

Sanderman and Amundson, 2008).  

The Garonne River is a poor organic carbon nutrient river, with a DOC concentration 

usually less than 3 mg/l in the river water and less than 1 mg/l in the groundwater. 

Considering that the content of BDOC is around 4-54 % of DOC in the surface water (Servais 
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et al., 1989; Wiegner et al., 2006; Wickland et al., 2012) and only around 8 % in the 

groundwater (Shen et al., 2014), there was not enough BDOC to support the decreased nitrate 

at the study site. kDOC is a highly variable parameter (it could range from 0.0001 to 1.22) 

depending on the organic carbon components and the specific biogeochemical environment 

(Rifai and Bedient, 1990; Hunter et al., 1998; Boano et al., 2007). In this study, the value 

kDOC was calibrated based on the observed DOC concentrations in LU1, the nitrate 

concentration and the location of LUs. Since LU1 is the LU nearest to the river, it has a higher 

value than other LUs. Tillman et al. (2003) studied the decay rate of leaves buried within the 

river sediment and the decay rate was considered to be 1.7×10
-3

 and 9.7×10
-4 

d
-1

 in the 

downwelling and upwelling reach respectively. In the study of Peyrard et al. (2011), kPOC was 

calibrated to be 1.1×10
-4 

d
-1

. Compared with these studies, the POC decay was low, but since 

it was applied in the shallow aquifer, the biogeochemical activity was lower in this area than 

the gravel bar and hyporheic zone under the river channel. In the present study, the kPOC in 

LU1 was much higher than in the other two LUs and kPOC1 was increased to match the 

simulated results with the low measured nitrate concentration in LU1. It was assumed that the 

organic carbon storage in the POC significantly stimulated the occurrence of denitrifying 

process. Anammox is another important anaerobic nitrogen attenuating process that produces 

dinitrogen gas with ammonium and nitrite directly. Anammox organisms have been identified 

in groundwater (Clark et al., 2008; Humbert et al., 2009). Moore et al. (2011) and Vetter et al. 

(2013) have both proved the importance of anammox in nitrogen assumption in the 

groundwater. However, the anammox process was not considered in this study and it was 

probably the ‘dark zone’ that explained the low nitrate in LU1 which was represented by the 

higher kPOC1. Moreover, constant values of POC and DOC in LUs were given in the present 

study. However, POC and DOC are interactional and dynamically variable. The soil-derived 

DOC and POC were also not included in the SWAT-LUD model and the soil source may 

explain the difference between the simulated and observed DOC in June and July. 

5.5 Conclusions  

This paper describes the new module developed to simulate denitrification occurring in a 

floodplain aquifer. The denitrification equation that considered the influence of both POC and 

DOC was introduced to the model based on the new modules in SWAT-LUD described in 

Sun et al. (in press). The dilution of nitrate in the aquifer caused by the recharged river water 

through both lateral (river bank) and vertical (surface) infiltration was integrated into the 

model. The modified model was applied in the floodplain of the Garonne River. Simulated 
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leached water and nitrate from the soil profile were compared with the simulated results of the 

STICS model, which demonstrated that the SWAT-LUD model simulated the nitrate and 

water inputs from the soil profile correctly both spatially and temporally. The comparison 

with measured groundwater nitrate concentrations found that the modified SWAT-LUD 

model could correctly simulate the aquifer nitrate concentration in the near bank zone. The 

near bank zone in the floodplain played the most important role in attenuating nitrate through 

denitrification. The annual denitrification rate in the near bank zone was around 130 kg N-

NO3
-
·ha

-1
·y

-1
, and around 40 % of the nitrate input to this zone was denitrified. POC was 

more important than DOC in the denitrifying process, especially in the near bank zone, and 

98 % of the nitrate was attenuated by POC. The relationships between denitrification rates, 

groundwater levels and total input nitrate masses in the near bank zone were analysed. The 

results illustrated that groundwater levels were positively correlated to the denitrification rates 

in the near bank zone and the absolute consumption rate increased along with the increase in 

nitrate content. However, the relative consumption rate decreased as the nitrate content 

increased. The modified SWAT-LUD model was found to be a useful tool for quantifying the 

attenuation of nitrate pollution in the floodplain aquifer. Future work should include: i) an 

improvement to the module of carbon cycling in soil and river water in the model, ii) 

application of the modified model to a larger catchment with more subbasins and continuity 

on the river network.  
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water - groundwater exchange and 

shallow aquifer denitrification in the 

floodplain area using the SWAT-LUD 

model. 
 

This chapter describes the application of SWAT-LUD in the middle floodplain of the 

Garonne basin. Multiple classic subbasins and subbasin-LUs were included in the study area, 

the connection between classic subbasin and subbasin-LU was carried out. The floodplain 

water storage function was presented and the influence of denitrification in the floodplain 

shallow aquifer on river nitrate flux was quantified. This chapter is written in the publication 

prepared to be submitted to Sustainability of water quality and ecology.  
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Abstract: Floodplains support intensive agricultural activities, since recharged groundwater in 

cultivated fields is an important source of the nitrate contamination of surface water, the 

nitrate level in groundwater can have a significant influence on the quality of surface water. 

As surface water contains rich oxygen and organic matter and groundwater contains abundant 

nutriment elements, numerous studies indicated the importance of interactions between 

groundwater and surface water (SW-GW). Denitrification is known as an important process 

that decreases the nitrate load of groundwater discharging into streams. However, rare of the 

large scale models included floodplain shallow aquifer denitrification functions. The SWAT-

LUD model is developed based on the SWAT model. Modules that represented SW-GW 

exchange and shallow aquifer denitrification in the floodplain area were involved in the 

model. In this study, the SWAT-LUD model was applied in the middle floodplain area of the 

Garonne catchment. Observed river water discharges, groundwater levels and shallow aquifer 

nitrate concentrations were used for calibration. Results proved that SWAT-LUD model could 

represent the SW-GW exchange and shallow aquifer denitrification appropriately. The 
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simulated results illustrated that the main water flow direction at this interface is from aquifer 

to river, which taken 66% of the total exchanged water volume. The denitrification in the 

shallow aquifer reduced groundwater nitrate concentration obviously, it consumed almost 

50% of nitrate originated from the simulate area flow to the channel. POC played an 

extremely important role in the occurrence of denitrification. More than 90% of the 

denitrification is triggered by POC. In the studied river section, the nitrate main come from 

the upstream river water. The channel nitrate concentration was recuded around 0.13 mg· L-1 

with the shallow aquifer denitrification function in the alluvial plain area.  

Keywords:  SWAT-LUD model; denitrification; floodplain aquifer; Garonne River  

6.1 Introduction  

The excessive chemical N fertilization during the past century caused environmental and 

health problems, like more greenhouse gases - nitrous oxide and ammonia released to the 

atmosphere, soil and water body acidification and eutrophication caused by the excessive 

inorganic nitrogen in aquatic ecosystem (Gruber and Galloway, 2008). Nitrate pollution that 

enter aquatic ecosystems via point and nonpoint sources had drawn worldwide attention for a 

long time (Bijay-Singh et al., 1995; Carpenter et al., 1998; Jalali, 2011). Floodplains support 

intensive agricultural activities, in Europe and North America, up to 90% of floodplains are 

cultivated (Tockner and Stanford, 2002). Recharged groundwater in cultivated fields is an 

important source of the nitrate contamination of surface water, and the nitrate level in 

groundwater can have a significant influence on the quality of surface water (Cey et al., 

1999).  

The hydrologic connectivity links floodplains and rivers into integrated ecosystems. 

Particulate and dissolved matter exchanged between those two systems via both surface flow 

and groundwater flow (Tockner et al., 1999). As surface water contains rich oxygen and 

organic matter and groundwater contains abundant nutriment elements, numerous studies 

indicated the importance of interactions between groundwater and surface water as they have 

significant influence on the biotic communities and ecosystem process on both river and 

shallow aquifer ecosystems (Bayley, 1995; Thomaz et al., 2007).  

Riparian zones are known as the buffer zones that located between the terrestrial and the 

aquatic ecosystems (Gregory et al., 1991). Numerous studies have proposed that 

denitrification in riparian areas is an important process that reduces the nitrate load of 
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groundwater discharging into streams (Hill, 1996; Maı̂tre et al., 2003; Martin et al., 1999). 

Since organic carbon is usually identified as the major factor that limiting denitrification rate 

in shallow aquifer system, the rich content of organic carbon in riparian soil was identified 

support the high rate of denitrification (Hill, 1996). The importance of riparian hydrologic 

condition on denitrification was recognized (Lamontagne et al., 2005; Rassam et al., 2008) 

and it was suggest that the denitrification may be strongly influenced by the riparian zone 

hydrogeological setting and hydraulic properties of the underlying geological deposits (Vidon 

and Hill, 2005). The shallow depth of groundwater increases the interaction of groundwater 

with organic rich surface soils which favors denitrification (Gold et al., 2001; Roulet, 1990). 

Compared with the study of denitrification in the riparian soil, the denitrification occurs in the 

groundwater was paid much less attention. Studies proved that the denitrification in the 

shallow aquifer played an important role in nitrate depletion also (Iribar, 2007; Sánchez-Pérez 

et al., 2003) and Sun et al (submitted) found that around 40% of upland nitrate entered into 

the riparian zone was consumed through denitrification.  

SW-GW interaction is a complex process that driven by geomorphology, hydrogeology 

and climate conditions (Sophocleous, 2002). Most of the models involved this function are 

distributed models, such as MODFLOW (Lautz and Siegel, 2006; Storey et al., 2003), 

MOHID (Bernard-Jannin et al. submitted), HYDRUS (Langergraber and Šimůnek, 2005) or 

2SWEM (Peyrard et al., 2008). This type of model usually requires spatial inputs in high 

resolution, numerous parameters and are characterised by a significant computation time that 

inhibit their application on large scales. The river/groundwater interface is mostly not 

included in large scale conceptual hydrological models. To overcome this issue, conceptual 

and distributed models have been incorporated, such as SWAT-MODFLOW (Kim et al., 

2008; Sophocleous and Perkins, 2000), WATLAC (Zhang and Li, 2009) and WASIM-ETH-I-

MODFLOW (Krause and Bronstert, 2007), but the limitation of distributed model still exist in 

the incorporated model. 

Denitrification occurs in the soil profile is contained in numerous models. Heinen (2006) 

has reviewed more than 50 models that include simplified denitrification process in the soil 

layers. The riparian ecosystem management model (REMM) is the model developed to help 

make decisions on management of riparian buffers to control nonpoint source pollution 

(Lowrance et al., 2000). Denitrification function was included in the REMM model, but like 

other model, it was considered only occur in soil profile, the shallow groundwater processes 

were not included, and the exchange between surface water and subsurface water wasn’t 

taken into account. Moreover, REMM model is a field scale model, the upland process should 
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be simulated by other models, and the carbon cycling in the model is complicate, it would be 

difficult to be applied at catchment scale. The influences of riparian zones on biogeochemical 

cycling at catchment scale were involved in several model, like RNM (riparian nitrogen 

model) model, SWIM (soil and water integrated model) model and SWAT (The Soil and 

Water Assessment Tool) model. RNM model was developed to simulate nitrate removal from 

groundwater and surface water through denitrification as they interact with riparian zone soil 

at catchment scale (Rassam et al., 2005, 2008), the groundwater levels are simulated in this 

model. Hattermann et al. (2006) added the wetland function in SWIM model, in which the 

influence of plant uptake and denitrification in the riparian zone on nitrogen cycling were 

included into the model. In SWIM model, a decay rate was applied to represent the 

denitrification occurs in the shallow aquifer. In SWAT model, a decay coefficient of shallow 

aquifer nitrate was introduced also, but instead of depending on the actual nitrate 

concentration in SWIM model, the decay rate depends on the initial nitrate concentration in 

the shallow aquifer in SWAT model. The SW-GW exchange and denitrification occurred in 

the shallow aquifer are not simulated by these models.  

To represent the SW-GW exchange, a new type of subbasin called subbasin-LU was 

developed in SWAT model and the landscape unit (LU) structure was introduced into the 

subbasin-LU, the modified model is called SWAT-LUD (Sun et al. revised). The shallow 

aquifer denitrification function was added to SWAT-LUD model, the influence of SW-GW 

exchange and flooding on nitrate cycling were involved in the model also. The modified 

model was applied only in one subbasin-LU and the impact of shallow aquifer denitrification 

on channel nitrate content was not carried out. The objectives of this study are test the 

applicability of the SWAT-LUD model at larger scale and quantify the influence of SW-GW 

exchange and shallow aquifer denitrification on nitrate transport both in the river and shallow 

aquifer.  

6.2 Method  

6.2.1 SWAT-LUD 

The SWAT model is a process-based, semi-distributed and watershed-scale model 

(Arnold et al., 1998). To represent the spatial heterogeneity, the SWAT model includes three 

main constructions: basin, subbasin and hydrologic response unit (HRU). The basin is 

separated into subbasins; subbasins are divided into HRUs, which are particular combinations 

of land cover, soil type and slope. In the SWAT model, processes are simulated for each HRU 
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and then aggregated in each subbasin by a weighted average (Arnold et al., 1998; Lam et al., 

2010). With the traditional HRU delineation method, flow is summed at the subbasin scale, 

the natural downward flow that routed across the landscape is not represented. For this 

application, an additional unit called Landscape Units (LU) that take place between a 

subbasin and an HRU was developed and added to the model (Volk et al., 2007). Each 

subbasin is composed of three LUs (the divide (LU3), the hillslope (LU2) and the valley 

bottom (LU1)), and HRUs are distributed across the different LUs, the modified model was 

called SWAT-LU. In SWAT-LU, the hydrologic processes are still single tracks (flow from 

LU3 routed through LU2 to LU1 and then entered the river), the function of two direction SW-

GW exchanges and the influence of flooding on groundwater are not included. To represent 

the SW-GW exchanges occur in the alluvial plain, the subbasin that holds alluvial soil was 

separated into two subbasins: subbasin-LU and classic subbasin. Subbasin-LU corresponds to 

the subbasin delimited by the floodplain and the LU structure was applied in it. In subbasin-

LU, Darcy’s equation was applied to calculate water exchanges between LUs and between 

LU1 and the river based on the LU structure. The recharged flood water volume during 

flooding and the transfer of dissolved elements between LUs and between LU1 and river 

water were also involved in the model. In the upland classic model, the processes were kept as 

in initial SWAT model, processes were simulated for each HRU and aggregated to the river. 

The subbasin-LU and classic subbasin were linked through the river, and the modified model 

was called SWAT-LUD (Sun et al, revised). The evolution of SWAT model and the main 

modifications were shown in Figure 1.  
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Figure 1. Evolution of the SWAT model and the main modifications  

The hydrologic processes in SWAT-LUD model were shown in Figure 2. The 

denitrification occuring in the shallow aquifer that triggered by both dissolved organic carbon 

(DOC) and particulate organic carbon (POC) was added to the model, and the recharged soil 

nitrate along with infiltrated floodwater was considered also by the model (Sun et al., 

submitted). In this study, the denitrification occurs in the soil profile was kept as in SWAT 

model except when groundwater arrive soil profile, in that case, the denitrification was 

calculated with the equation that applied for shallow aquifer. The detailed description of the 

modification in the model could be found in Sun et al (revised) and Sun et al (submitted).  
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Figure 2. The hydrologic process of SWAT-LUD ‘a’ represents the location of subbasin-LU and the connection 

between subbasins, ‘b’ represents the hydrologic processes in subbasin-LU and classic subbasin and their 

connection through the river.  

6.2.2 Definition of LUs and distribution of HRUs 

In the previous studies, only one subbasin-LU was simulated and each LU contained 

only one HRU. The definition of the widths of LUs was made according to the surface of 

floodplain covered by the flood return period: LU1 represented the one-year return flood area, 

LU2 represented the two to five-year return flood area and LU3 corresponded to the ten or 

more years return flood area (Sun et al, revised, Sun et al., submitted). With multiple 

subbains, the boundary of floodplain and return flooded areas are more difficult to be 

definited. Since alluvial soils are generally associated with floodplains, the distribution of 

floodplain was considered to be the same as the alluvial soil. The surface area of LU1, LU2 

and LU3 were considered to be 10%, 20% and 70% of the alluvial soil area respectively which 

correspondence to the flood return periods (1 year, 2-5 years and 10 or more years 

respectively).    

6.2.2.1 Distribution of HRUs in LUs  

Alluvial HRUs (except urban alluvial HRUs) in the subbasin-LU were simplified into 

three groups based on their land use type: forest alluvial HRU (F-HRU), pasture alluvial HRU 
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(P-HRU) and Agricultural alluvial HRU (A-HRU). The alluvial HRUs with land cover of all 

types of forest were integrated to be an F-HRU. The characters of the F-HRU were considered 

to be the same as the largest forest alluvial HRU before the integration. The alluvial HRUs 

with pasture land cover or land types similar to the characters of pasture (like orchard or 

vineyard) were integrated to be a P-HRU, and the alluvial HRUs with agriculture land use 

were integrated to be an A-HRU. The characters of these two HRUs were chosen with the 

same method for the F-HRU, taken the characters of the largest HRU before the integration.  

Since the general natural distribution of land use in alluvial area is characterized by the 

succession of riparian forest, pasture and agriculture as the increase of the distance from the 

river. Based on this succession of land use, the distribution of HRUs into LUs was as follows: 

Firstly, F-HRU was assigned into LU1. If the area of the F-HRU is larger than LU1, the F-

HRU was separated into two HRUs, one corresponding to the area of LU1 and another to the 

remaining area. If the area of the F-HRU is smaller than LU1, then all F-HRU was assigned 

into LU1, and the empty area in LU1 was completed by P-HRU. In this case, if the P-HRU 

area is bigger than the empty area in LU1, the P-HRU was then separated into two HRUs, one 

corresponding to the area of the empty area in LU1, another one to the remaining area. If P-

HRU is smaller than the empty area in LU1, then all the P-HRU was assigned into LU1 and 

the empty area in LU1 was completed by A-HRU. In this condition, A-HRU was divided into 

2 HRUs. The same method was applied to distribute HRUs into LU2 and LU3. All the HRUs 

of the same type have the same characters.  

6.2.3 Study site 

The Garonne River is the main river of the largest drainage basin in the southwest France, 

starting from Pyrenees mountains and flowing into the Atlantic Ocean.  It is an eighth ordered 

river and the third longest river in France with the length of 525 km and has a drainage area 

about 51 500 km
2 

at the last gauging station (Tonneins). The basin includes most of the 

Aquitaine basin which is surrounded by the Massif Central in the north-east, the Pyrenees 

mountains in the south and the Atlantic ocean in the west (Semhi et al., 2000).The climate of 

the Garonne watershed is impacted by the Atlantic Ocean and Mediterranean sea. The average 

annual rainfall is about 900mm (Caballero et al., 2007). The monthly temperature ranged 

from 5°C in January to 20°C in July. The hydrology of the area is mainly influenced by the 

three places (Pyrenees Mountain, Massif Central and Atlantic Ocean). The largest discharges 
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occur twice a year, in the spring as a result of snow melt and in late autumn caused by intense 

rainfalls (Sánchez-Pérez et al., 2003). 

The studied floodplain area is located in the middle Garonne River, between Toulouse city 

and the confluence of the Tarn River. The floodplain widens up to 2-4 km. Between 4-7m of 

the coarse alluvium (sand and gravel) eroded from the Pyrenees Mountains during past glacial 

periods deposited in the floodplain overlie impermeable molasse. The valley contains a 

classic flight of terraces that represent episodic bedrock valley deepening punctuated by 

lateral migration of deposition of sediments (Lancaster, 2005). A series of terraces exist in the 

floodplain, in which the high terrace delimited the floodplain. The middle terrace is cultivated 

and is rarely flooded (every 30–50 years), which has a width of about 2 km. The lower terrace 

with the width of a few hundred is devoted to poplar plantations, is flooded about every 5 

years. The riparian zone has a width of 10-100m, and is flooded almost each year (Peyrard et 

al., 2008). The common natural riparian vegetation types found along this reach of the 

Garonne River include willow and ash (Pinay et al., 1998). The floodplain is heavily 

cultivated, high production of corn, sunflower and sorghum were sustained by fertilization 

and irrigation. Shallow aquifer has a common nitrate concentration of 50 - 100 mg L
-1

(Pinay 

et al., 1998; Sánchez-Pérez et al., 2003) (Figure 4). 

The channel is a meandering, single-thread channel, is around 85 km long with a mean 

coefficient of sinuosity of 1.3.  In the past, the Garonne River was incised as a result of 

mining of gravel and cobble from the riverbed (Beaudelin 1989).  The longitudinal gradient is 

around 0.001in this section, the river bed altitude along with the main channel is shown in 

Figure 5. Portet gauging station located at about 10 km downstream of Toulouse city. The 

average daily flow is around 200 m
3
·s

-1
, but it ranges from about 20 m

3
·s

-1 
to about 4300 m

3
·s

-

1 
(Banque Hydro, http://www.hydro.eaufrance.fr/). Four piezometers with continuous record 

of groundwater levels documented by BRGM (Bureau de Recherches Géologiques et 

Minières) located in the study site (Figure 3).  

Monbéqui is located in a meander of the alluvial plain. In Monbéqui, the first 50 - 200 m 

of the riverbank is covered by riparian forest and poplar plantations, surrounded by 

agricultural land. Several terraces exist in this area, generated by sediment deposition and 

washing out by flooding events. Artificial dykes have been constructed in the region to 

protect the agricultural land. Piezometers were installed in this site. The alluvium thickness 

ranges from 2.5 to 7.5 m, with an arithmetic mean of 5.7m (Sánchez-Pérez et al., 2003). The 

http://www.hydro.eaufrance.fr/
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groundwater table varies from 2 to 5 m in low water periods and rise rapidly up to soil profile 

during floods (Weng et al., 2003). 

 

Figure 3. Location of the study site. ‘a’ represents the location of the Garonne River, ‘b’ represents the location 

of studied floodplain, ‘c’ represents the location of piezometers in the three subbasin-LUs and ‘d’ represents the 

distribution of piezometers in Monbéqui.  
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Figure 4. Altitude of the river bed in the studied floodplain (according to Sauvage et al., 2003). 

6.2.4 Subbasins and LUs parameters  

The subbasin-LU and LU parameters are presented in Table 1. Subbasin-LU (1) is the 

subbasin-LU near to the Portet gauging station, and subbasin-LU (3) is the subbasin-LU 

farthest from the Portet gauging station. The values of porosity were given based on the study 

of Seltz (2001) and Weng et al. (2003). 

Table 1. The parameters of the three subbasin-LUs and the LUs. 

 
Area 

(km2) 

Channel LUs 

Long 

(km) 

Width 

(m) 

Slope 

(m/m) 
 

Slope 

(m/m) 
porosity 

Area 

(km
2
) 

HRUs 

Land 

use 

Fraction of 

LU (%) 

Subbasin-

LU (1) 
57.27 22.11 200 0.00063 

LU1 0.002 0.1 5.73 
PAST 0.1 

FRSD 0.9 

LU2 0.005 0.1 11.45 PAST 1.0 

LU3 0.005 0.1 40.09 
PAST 0.36 

AGRR 0.64 

Subbaisn-

LU (2) 
87.95 40.53 200 0.00078 

LU1 0.002 0.1 8.79 FRSD 1.0 

LU2 0.005 0.1 17.59 

PAST 0.5 

FRSD 0.35 

AGRR 0.15 

LU3 0.005 0.1 61.56 AGRR 1.0 

Subbasin-

LU (3) 
22.26 13.04 200 0.00069 

LU1 0.002 0.1 2.23 
PAST 0.7 

FRSD 0.3 

LU2 0.005 0.1 4.45 PAST 1.0 

LU3 0.005 0.1 15.58 
PAST 0.1 

AGRR 0.9 
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The crop rotations applied in the agricultural area was given based on the study of the 

Save River (Boithias, 2012; Boithias et al., 2014) (Table 2).  

Table 2. Crop rotations applied in the agriculture area 

Year Month Day Operation Crop Type Quantity Unit 

1 7 25 Tillage  Generic Conservation Tillage   

1 10 1 Tillage  Generic Conservation Tillage   

2 1 31 Tillage  Harrow 10 Bar Tine 36 Ft   

2 4 1 Plant Corn    

2 4 1 Fertilization  18-46-00 150 kg·ha
-1

 

2 6 7 Fertilization  46-00-00 435 kg·ha
-1

 

2 7 1 Irrigation   30 mm 

2 7 10 Irrigation   30 mm 

2 7 20 Irrigation   30 mm 

2 8 1 Irrigation   30 mm 

2 8 20 Irrigation   30 mm 

2 9 1 Irrigation   30 mm 

2 9 10 Irrigation   30 mm 

2 10 15 Harvest and kill     

2 11 1 Plant Wheat    

3 1 25 Fertilization  15-15-00 200 kg·ha
-1

 

3 3 10 Fertilization  33-00-00 200 kg·ha
-1

 

3 7 10 Harvest and kill     

3 9 8 Tillage  Generic Fall Plowing Operation   

4 4 1 Tillage  Harrow 10 Bar Tine 36 Ft   

4 4 15 Plant Sunflower    

4 4 15 Fertilization  15-15-00 300 kg·ha
-1

 

4 8 25 Harvest and kill     

4 11 1 Plant Wheat    

5 1 25 Fertilization  15-15-00 200 kg·ha
-1

 

5 3 10 Fertilization  33-00-00 200 kg·ha
-1

 

5 7 10 Harvest and kill     

 

The daily discharge data of the Portet gauging station were used as input data. The 

concentration of nitrate in the input river water was considered to be constant in this study. 

The value was determined based on the measured data in Blagnac station (exit of Toulouse 

city) to take into account the influence of Toulouse city (www.eaufrance.fr ), which is 1.13 

(N-NO3
-
) mg·L

-1
. The constant DOC concentrations in the shallow aquifers of LUs were 

http://www.eaufrance.fr/
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given based on the measured data in 2013, the DOC concentrations in the river water were 

given based on the measured data in Blagnac, Verdun and St-Aignan stations 

(www.eaufrance.fr ).  

The topsoil layer was determined to be 0.5 m. The POC contents in the topsoil layers and 

lower layers were given based on the measured values by Jego (2008) and the measured 

AFDM (Ash Free Dry Mass) values of the alluvial sediment in 2013 respectively. The POC 

content in AFDM was considered to be 50 % based on recent studies (Griffiths et al., 2012; 

Hauer and Lamberti, 2011; Wagner et al., 2011). (Table 3) 

Table 3. The given constant values of DOC in shallow aquifer and river water and POC in soil and shallow 

aquifer sediment 

 
DOC (mg·l

-1
) 

(Constant) 
POC (>50 cm) (%) (Constant) POC (top 50cm) (%) (Constant) 

LU1 simulated 0.275 1.5 

LU2 0.85 0.275 1.0 

LU3 0.65 0.325 1.0 

River 
2.3   

4.5 (During flooding)   

 

6.2.5 Calibration and evaluation  

The simulation was carried out between 1997 and 2013. The calibration was performed 

automatically and manually. The observed discharges from the Larra, Verdun and 

Lamagistère gauging stations were used for the automatically calibration with SWAT-Cup. 

The observed groundwater levels of the four piezometers (P91, P170, P286 and P3247) were 

used for annually calibration. Since there is no piezometer located in subbasin-LU (3), 

observed groundwater levels in P91 were used to calibrate the simulated groundwater level in 

subbasin-LU (3). The shallow aquifer nitrate concentration observation is located only in the 

Monbéqui site, the measured nitrate concentration in 2004-2005 and 2013 in Monbéqui were 

used for manually calibration. The distributions of piezometers in the three LUs of the two 

periods in Monbéqui are shown in Table 4. Percent bias (PBIAS) and root mean square error 

(RMSE) were chosen as evaluating parameters.  

 

 

 

http://www.eaufrance.fr/
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Table 4. The distributions of piezometers in the three LUs for the calibration of shallow aquifer nitrate 

 LU1 LU2 LU3 

2004-2005 P6, P18 P10 P29 

2013 P6, P18, P17, P16, P2, 

PA, PD 

P2, P3, P7, P9, P10, P13, 

P14, PB, PC, PF, PH, PI, 

PE, PG 

P26, P22, P11 

 

6.3 Results  

6.3.1 Calibrated parameters  

The automatically calibrated parameters are shown in Table 5. 

Table 5. Automatically calibrated parameters  

  File  Type Verdun Larra Lamagistère  

Description  Subbasin Numbers 

 9 5,4,6,8 1,2,7 

CN2 SCS runoff curve number .mgt r -0.014 -0.040 -0.048 

ALPHA_BF Baseflow recession constant (1/days) .gw v 0.44 0.89 0.35 

GW_DELAY Groundwater delay time (days) .gw a -27.33 59.49 -23.19 

GWQMN Threshold depth of water in the shallow 

aquifer required for return flow to occur (mm 

H2O) 

.gw a -43.67 -77.67 181.67 

ESCO Soil evaporation compensation factor .hru v 0.72 0.72 0.93 

GW_REVAP Groundwater “revap” coefficient .gw v 0.062 0.028 0.072 

RCHRG_DP Deep aquifer percolation fraction .gw a 0.033 0.013 0.0073 

SOL_AWC Avaiable water capacity of the soil layer (mm 

H2O/mm soil) 

.sol r 0.0087 0.046 -0.019 

REVAPMN Threshold depth of shallow aquifer revap or 

percolation to the deep aquifer to occur (mm 

H2O) 

.gw c -303.67 449.67 -443.00 

CANMX Maximum canopy storage (mm H2O) .hru v 22.65 28.25 13.65 

CH_K1 Effetive hydraulic conductivity in tributary 

channel alluvium (mm/hr) 

.sub r 3.63 7.25 36.77 

CH_S1 Average slope of tributary channels (m/m) .sub r -0.012 -- -- 

SHALLST Initial depth of water in the shallow aquifer 

(mm H2O) 

.gw v 595 -- 958.33 

DEEPST Initial depth of water in the deep aquifer (mm 

H2O) 

.gw v 3241.67 -- 1865.00 
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GW_SPYLD Specific yield of the shallow aquifer (m
3
/m

3
) .gw r 0.17 -- -- 

GWHT Initial groundwater height (m) .gw r 0.31 7.91 -- 

CH_W1 Average width of tributary channels (m) .sub r -- -0.02 0.045 

CH_N1 Manning’s N value for the tributary channels .sub r -- -0.011 -- 

Types of the parameters: r, relative (means the existing parameter value is multiplied by (1+a given value)); a, 

absolute (means the given value is added to the existing parameter value); v, replace (means the existing 

parameter value is to be replaced by the given value).  

The manually calibrated parameters are shown in Table 6. The manually calibrated 

parameters were considered have the same values in the three subbasin-LUs.  

Table 6. Manually calibrated parameters  

 Description Unit 
Calibrated values 

Subbasin-LU   

CHD Depth of the channel m 5 

CH_N Manning n -- 0.06  

KLU1 Hydraulic conductivity of LU1 m/d 100  

KLU2 Hydraulic conductivity of LU2 m/d 50  

KLU3 Hydraulic conductivity of LU2 m/d 50  

KNO3 half-saturation concentration of nitrate µmol·l
-1

 30 

kPOC1 Kpoc of LU1 d
-1

 0.8e-5 

kPOC2 Kpoc of LU2 d
-1

 1.5e-6 

kPOC3 Kpoc of LU3 d
-1 0.4e-6 

kDOC1 Kdoc of LU1 d
-1 0.005  

kDOC2 Kdoc of LU2 d
-1 0.002  

kDOC3 Kdoc of LU3 d
-1 0.002 

FNO3 Percentage of leached nitrate from soil profile during flooding % 30 

6.3.2 Surface water - groundwater exchange  

6.3.2.1 Groundwater levels  

The comparison of simulated and observed groundwater levels in the three subbasin-

LUs are shown in Figure 5.  
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Figure 5. Simulated and observed groundwater levels in the three subbasin-LUs 

The results showed that simulations and observations matched very well in the three 

subbasin-LUs in the long simulated period (Table 7).  

Table 7. Parameters for evaluating the accuracy of simulated groundwater levels of the shallow aquifer using the 

SWAT-LUD model 

 LU RMSE PBIAS 

Subbasin-LU(1) LU3 0.19 -0.10 

Subbasin-LU(2) 
LU2 0.27 0.01 

LU3 0.47 -0.13 

Subbasin-LU(3) LU3 0.57 -0.02 
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5.1.1.1 Flood peak  

The floodplain water storage function added in the model is shown in Figure 6, which 

appearances the flood peak of the largest flood event in the simulated period.  It was proved 

that the flood peak decreased significantly (from 3040 to 1970 m
3
/s) after flooded path the 

floodplain and the flooded water rested three days on the floodplain before totally return back 

to the channel.  

 

Figure 6. Simulated output of discharge during the flood peak (in which, input is the input water discharge of 

subbasin-LU (1), output is the output discharge of subbasin-LU (3)).  

5.1.1.2 Exchanged water  

The annually exchanged water quantity between the river and the aquifer in the three 

subbasin-LUs throughout the entire period simulated (1997-2013) is shown in Figure 8. 
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Figure 8. Annually exchanged water quantity between the river and the aquifer during the entire simulated period 

(1997-2013). Flooded means infiltrated flooded river water, R to G means infiltration of river water enter into 

aquifer through river bank, G to R means groundwater flow to the river, recharged means infiltrated soil water, 

net means the difference between the two direction flow.  

It was found that the main water flow direction is from aquifer to river, which taken 

66% of the total exchanged water volume. The water recharged from soil profile played an 

important role in SW-GW exchanged (33% of the total exchange). The over bank infiltration 

taken around 14% of the total exchanged water volume in the entire simulated period.  

6.3.3 Denitrification  

6.3.3.1 Groundwater nitrate concentration  

The simulated groundwater nitrate concentrations were compared with the observed 

data in Monbéqui (Figure 8).  
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Figure 8. Simulated and observed nitrate concentrations in the aquifer of LUs during the years 2005 and 2013, 

where ‘Dilution’ is the simulated results with recharged river water and ‘Dilution + Denitrification’ is the 

simulated results with recharged river water and denitrification processes. 
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Figure 9. Observed and simulated (dilution plus denitrification) groundwater nitrate concentration in the two 

periods (2005, 2013) 

It showed that the denitrification reduced groundwater nitrate concentration obviously. 

The simulated groundwater nitrate concentration with the consideration of denitrification 

matched well with the observed data (Figure 9).  

6.3.3.2 Denitrification rate  

The simulated annual denitrification rates are shown in Figure 10. 
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Figure 10. Simulated annual denitrification rates (a. annual total denitrification rates, b. annual denitrification 

rates triggered by DOC and POC) in the three subbasin-LUs  

It was found that the denitrification rates occurred in LU1s were more important than other 

two LUs in all the three subbasin-LUs. The average annual denitrification rates in the LU1s of 

the three subbasin-LUs range from 55-120 Kg N-NO3
-·ha

-1
, which is 26-38 T N-NO3

-
· km

-1
 

for per kilometre length of the river. POC played an extremely important role in the 

occurrence of denitrification, more than 90% of the denitrification in the three subbasin-LUs 

is triggered by POC. 

6.3.4 The influence of hydraulic conditions and nitrate content on denitrification 

An analysis of correspondence between groundwater levels, groundwater nitrate 

concentrations and denitrification rate in LU1s were performed (Fig. 11, 12).  

 

Figure 11. Correspondence between annual denitrification rates and nitrate concentrations in the entire simulated 

period (1997-2013) 

It was proved that shallow aquifer denitrification rates highly related with the groundwater 

nitrate concentrations. The denitrification rate increase rapidly along with the rise of nitrate 

concentration during low nitrate content period. It became relatively stable after groundwater 

nitrate concentration was higher than 5 mg·L-1
. 

 

R² = 0.84 

0

50

100

150

200

0 5 10 15 20 25 30

D
en

it
ri

fi
ca

ti
o

n
 r

a
te

  

 (
N

-N
O

3
- k

g
·h

a
-1

y
-1

) 

Nitrate Concentration (N-NO3
- ) (mg·L-1) 



Chapter 6.  Assessment of the surface water - groundwater exchange and shallow aquifer 

denitrification in the floodplain area using the SWAT-LUD model. 

162 
 

  

  

 

Figure 12. Correspondence between annual denitrification rates and relative groundwater levels in the entire 

simulated period (1997-2013) 

The correspondence between groundwater levels and shallow aquifer denitrification 

rates showed that denitrification rate positively related with relative groundwater level in the 

three subbasin-LUs.  

6.3.5 Channel nitrate balance  

The comparison between simulated and observed nitrate contents that flow out of the 

simulated area is shown in Figure 13. It showed the simulations corresponding well with the 

observations, the nitrate output contents were simulated appropriately.  
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Figure 13. Simulated and observed nitrate content in the output of the study area  

The average annual nitrate balance in the studied area is shown in Figure 14.  

 

Figure 14. Average annual nitrate (N-NO3
-
) balance (ton·y-1

) in the study area in the entire simulated period 

(1997-2013) 

It indicated that the main nitrate source is the upstream river (87% of the total nitrate 

input), and denitrification in the floodplain consumed almost 50% of nitrate flow to the river 

originated from the studied area.  

The annual reduced nitrate output discharges and nitrate concentration in the output of 

simulated area (output of subbaisn-LU (3)) caused by added shallow aquifer denitrification 

are shown in Figure 15.  
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Figure 15. Annually reduced nitrate output content (a) and concentration (b) through denitrification  

The annual N-NO3
-
 total nitrate discharge in the output of simulated area was reduced 

150-680 Ton with the consideration of denitrification in the shallow aquifers of the subbasin-

LUs. The reductions of N-NO3
-
 concentration range from 0.07 to 0.19 mg· L-1

.  

6.4 Discussion  

SWAT-LUD was applied in the middle Garonne floodplain area, numerous classic 

subbasins and subbasin-LUs were involved in the study area. The comparison between 

simulated and observed groundwater levels in the three subbasin-LUs proved that SWAT-

LUD could represent the SW-GW exchange process occurred in floodplain region at large 

scale appropriately. The denitrification occurred in the shallow aquifer underneath the root 

zone was rarely paid attention. Gomez et al. (2012) simulated the biogeochemical zonation 

patterns with the concept of biogeochemical timescales. Denitrifying process in the hyporheic 

zones were simulated also. Zarnetske et al. (2012) integrated residence time model with a 

multiple Monod kinetics model that simulate the concentrations of oxygen (O2), ammonium 

(NH4
+
), nitrate (NO3

-
) and dissolved organic carbon (DOC). Sheibley et al. (2003) simulated 

nitrification and denitrification process in sediment perfusion cores from the hyporheic zone. 

In 2SWEM model, the model NEMIS was coupled into the model to simulate the 

denitrification process in the floodplain hyporheic zone (Peyrard, 2008). However most of 

these models could only be applied at local scale, the model that simulated the nitrate 

attenuation process at river-floodplain interface at catchment scale still does not exist. The 

added modules in SWAT-LUD model provided the possible to simulate the SW-GW 

exchange and shallow aquifer denitrification in the floodplain area at the catchment scale. It 
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supplemented the modelling method of hydrologic and biogeochemical cycling that 

developed for the large scale application.  

Most of the catchment scale hydrological models did not involve the contribution of 

surface water to subsurface flow, such as SWIM (Krysanova et al., 1998), TOPMODEL 

(Franchini et al., 1996) or MODHYDROLOG (Chiew and McMahon, 1994). The results from 

this study showed that it accounted for 34 % of total SW-GW exchanges over a long period in 

the floodplain area, which is almost the same as infiltrated rainfall (33%). Infiltrated flooded 

water was proved played an important role on the SW-GW exchange (Sophocleous, 2002; 

Wett et al., 2002; Sun et al, revised; Bernard-Jannin et al, submitted). In this study, the 

infiltrated flooded river water taken 13.60% of the total exchanged water volume. Except the 

influence on groundwater, the floodplain played water storage function also during flood 

period that reduced the river water discharge (Frappart et al., 2005). The topographies of the 

channel and the connected floodplain have important influence of floodplain water storage 

capacity during flooding events (Roni et al., 2005). SWAT-LUD is a daily time step model, 

and the parameters that represented the topography of floodplain in SWAT-LUD are simple, 

each LU was defined with only unique width and slope. It limited the precise simulation of 

the water storage. As a semi-distributed model, the objective of the SWAT-LUD is to 

represent hydrologic condition the at large spatial and long temporal scale, it restricted the 

ability of detail representation.    

The comparison of denitrification rate triggered by POC and DOC illustrated that 

compared with DOC, POC played an extremely important role. Since denitrification is a 

biological process, the identification of sources and bioavailability of POC in the shallow 

aquifer would be key factors of the understanding of shallow aquifer denitrification. The 

possible sources of POC in the shallow aquifer are: 1) buried organic material; 2) transported 

along with infiltrated river water; 3) transferred by bacterial from DOC; 4) infiltrated from 

soil. The POC content in the shallow aquifer of LU1 is the same as in LU2 and lesser than in 

LU3, Kpoc in LU1 was increased to match the simulated groundwater nitrate concentration 

with the observed low nitrate concentration. It suggested that the POC in LU1 is more 

bioavailable than other two LUs.  Since LU1 is the most active zone interacts with river water, 

the POC and DOC in the river water would have more important influence on this zone than 

other two farther zones. Since POC and DOC of river water are more bioavailable than 

shallow aquifer, it could improve the denitrification rate in LU1. Moreover, LU1 is mainly 

covered with riparian forest, the POC content in the top layer of LU1 is higher than other two 
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LUs also (Jego, 2008). The riparian forest root probably provided more bioavailable POC. 

Anammox is another important anaerobic nitrogen attenuating process in the shallow aquifer 

(Moore et al., 2011; Vetter, 2013). The anammox process was not considered in this study, 

and it probably could explain the low nitrate in LU1 which was represented by the higher 

kPOC1.  

The shallow aquifer nitrate concentration is significantly reduced through denitrification. 

The shallow aquifer denitrification consumed almost 50% of nitrate originated from the 

simulate area flow to the channel. It suggested the importance of the addition of shallow 

aquifer denitrification.  

6.5 Conclusion 

SWAT-LUD model was applied in the middle floodplain of Garonne River, several 

classic subbain and subbasin-LUs are involved in the simulated area. The SW-GW exchange at the 

river floodplain interface and denitrification occurs in the shallow aquifer were simulated and 

quantified. The influence of over bank water infiltration on groundwater level and dilution of 

groundwater nitrate pollution are considered and the floodplain water storage function during flooding 

is taken into account also.  Simulate results were compared with the measured groundwater levels in 

the three subbasin-LUs and groundwater nitrate concentrations measured from the Monbéqui site. 

Results proved that SWAT-LUD could represent the SW-GW exchange and shallow aquifer 

denitrification appropriately.  The main water flow direction at this interface is from aquifer to 

river, which taken 66% of the total exchanged water volume. The denitrification in the 

shallow aquifer obviously decreased groundwater nitrate concentration, it consumed almost 

50% of nitrate originated from the simulate area flow to the channel. POC played an 

extremely important role in the occurrence of denitrification. The nitrate main comes from the 

upstream river water. The channel nitrate concentration was recuded around 0.13 mg· L-1 
with 

the shallow aquifer denitrification function in the alluvial plain area. 
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6.6 Assessment of surface water-groundwater exchanges in alluvial 

floodplain at the catchment scale using SWAT model 

6.6.1 Introduction  

The hydrologic connectivity links floodplains and rivers into integrated ecosystems 

(Tockner et al., 1999).  This connection  has significant influence on the biotic communities 

and ecosystem process on both river and floodplain ecosystems (Bayley, 1995; Thomaz et al., 

2007). Large floodplains have an important role in the hydrologic cycle of watershed. In the 

flooding period, the water storage function of the floodplain could modify the river water and 

sediment transport (Frappart et al., 2005).  

The SWAT model is a process-based, semi-distributed and watershed-scale model 

(Arnold et al., 1998). However the surface water and groundwater exchange process was not 

included in the SWAT model. Modules represented exchanges between the river and its 

accompanying alluvial aquifer and biogeochemical processes in shallow aquifer of alluvial 

plain were developed. They were added to the SWAT model and the modified model was 

called SWAT-LUD. The SWAT-LUD model was applied at the small basin area (Monbéqui 

site in chapter 4 and floodplain area in chapter 6. The results proved that the SWAT-LUD 

model could represent the water exchange and shallow aquifer denitrification processes 

occurred at the floodplain satisfactory. In this study, a tool was developed to generate input 

files for the SWAT-LUD model and the SWAT-LUD model was applied at the Garonne 

catchment.  

6.6.2 Method  

6.6.2.1 Create-LU tool  

A Fortran subroutine called Create-LU was developed to separate classic subbaisn and 

subbasin-LU, the parameters of LUs in the subbasin-LUs and the distribution of alluvial 

HURs into LUs were done with this tool also. The algorithm includes different steps which 

are: 1) Reading output files from SWAT initial project; 2) Defining LUs according to flooded 

area for different return periods; 3) distributing alluvial HRUs into LUs based on their land 

use and slope.   

6.6.2.2 Garonne Catchment  

The Garonne River is an eighth ordered river and the main river of the largest drainage 

basin in the southwest France. It is the third longest river in France with the length of 525km 

and has a drainage area about 51500 km
2 

at the last gauging station (Tonneins).  The main 
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land use types in the Garonne watershed are pasture, agriculture and forest, which taken 34%, 

31% and 19% of the total area respectively. The alluvial soil occupied 5.8 % of the Garonne 

basin. The distribution of alluvial soil in the Garonne Catchment is shown in Figure 22. The 

detailed discription of the Garonne catchment could be find in section 3.3.1.  

 

Figure 22. The location of alluvial soil in the Garonne watershed and the distribution of subbasins in the initial 

SWAT project  

6.6.2.3 Distribution of subbasin and LUs in the Garonne Catchment 

The initial subbasin number of the SWAT project is 150, and 64 of them content 

alluvial soil. After the separation of classic subbasin and subbasin-LU, the total subbasin 

number (classic subbasin and subbasin-LU) is 213 (one of the initial subbasin is consisted 

with only alluvial soil) (Table 5).  

Table 5. Numbers of subbasin and reach of the SWAT-LUD project 

 subbasin Subbasin-LU Classic subbasin  Reach  

Number  213 64 149 150 

 

The area of LU1, LU2, LU3 in the subbasin-LUs are considered to be 10%, 20% and 

70% of the total area of the subbasin-LUs respectively according to the covered area in the 

floosplain with different flood return periods (1 year, 2-5 years and more than 10 years). The 
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saturated hydrologic conductivity are consider to be the same in different subbasin-LUs, 

which are 300, 200 and 100 m·d-1
 in the three LUs according to the study in Monbéqui site 

(Table 6). The lengths of the three LUs are the same as the length of channel, the width of 

each LU are calculated based on the area and length.  

Table 6. The character of LUs in each subbasin-LU  

 LU1 LU2 LU3 

Area (% of the area of subbasin-LU) 10 20 70 

K (Hydraulic conductivity) 300 200 100 

 

6.6.3 Main results and discussion  

The comparisons between simulations of SWAT-LUD and SWAT with the observed 

river water discharges at Tonneins gauging station are shown in Figure xx and Figure 23 and 

it showed that simulations of SWAT-LUD model matched better with observations than 

simulation of SWAT model. The main difference between the two simulated results is the 

discharge peaks of the flood events, the simulations of SWAT-LUD are significantly lower 

than the simulations of SWAT model.  

 

Figure 23.  The comparison of simulated river water discharge of SWAT and SWAT-LUD model with 

observations at the Tonneins Gauging station 

The different response of the SWAT and SWAT-LUD model for the flooding event is 

shown in Figure 24. The comparison of simulations and observation showed that the large 

discharge arrived two days before the observation and the simulated peak of SWAT-LUD 
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model are closer to the observed data. It illustrated that the flooding function added in SWAT-

LUD model decreased the flood peak significantly. Since the simulated peak arrived two days 

before the observation, it suggested that lag of surface flow is underestimated in the study 

region.  

 

Figure 24. The comparison of simulations of SWAT and SWAT-LUD model with observations during a flood 

period at the Tonneins Gauging station  

The total exchanged water volume in all the Garonne catchment is shown in Figure 25. 

The water storage on the surface of floodplain during flooding was not included in the 

exchanged volume.  
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Figure 25. Annually SW-GW exchanged water volume in the Garonne catchment (2000-2010). In which Flood 

means infiltrated flooded river water, R to G means infiltration of river water enter into aquifer through river 

bank, G to R means groundwater flow to the river, net means the difference between the two direction flow  

The results showed that the exchanged water volumes through the two directions are 

equilibrium at the catchment area. The infiltrated flooded river water taken almost 50% of the 

total water volume flowed from river to aquifer.  

The relative importance of annual SW-GW exchanged volume is shown in Figure 26. 

 

Figure 26. Relative importance of surface water – groundwater exchange compared with the river water 

discharge at catchment scale  

The total exchanged water volume and the water volume flowed from river to shallow 

aquifer taken around 5% and 2% respectively of output discharge at catchment scale.  

 

6.6.4 Conclusion  

A tool called Create-LU was developed to generate input files for the SWAT-LUD model 

and the SWAT-LUD model was applied at the Garonne catchment. The results showed that 

simulated river water discharge of SWAT-LUD model matched better with observations than 

simulation of SWAT model at Tonneins gauging station. The main difference between the 

two simulated results is the discharge peaks of the flood events, the simulations of SWAT-

LUD are significantly lower than the simulations of SWAT model. The analyse of the total 

exchanged water volume in the catchment scale showed that the infiltrated flooded river water 
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taken almost 50% of the total water volume flowed from river to aquifer. The total exchanged 

water volume and the water volume flowed from river to shallow aquifer taken around 5% 

and 2% of output discharge. In this study, the SW-GW exchange was analyzed at the 

catchment scale only, the different response at different section should be analyzed. 

Moreover, the simulation and quantification of denitrification rate in the shallow aquifer of 

floodplain at the catchment scale should be carried out in the future study.  
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7. Conclusions and perspectives 

7.1 Conclusions 

The objective of this thesis was to quantify SW-GW exchanged water volume and the 

shallow aquifer denitrification function in the floodplain area at the catchment scale based on 

modelling approach. The SWAT model is a semi-distributed operating at the watershed scale. 

It can simulate a large watershed with readily available data and has been used successfully 

all over the world. The SWAT model was chosen to simulate the hydrologic processes and 

nitrogen cycling in this study. However, the processes that represented the two direction water 

exchanges between river and groundwater and the denitrification processes occurring in the 

floodplain shallow aquifer has not been included in the SWAT model. To achieve the 

objective, modules representing the SW-GW exchange processes, the floodplain water storage 

function during the flood period, the transfer of dissolved elements along with the SW-GW 

exchange and the denitrification processes taking place in the shallow aquifer of floodplain 

area were developed and added into the SWAT model. The modified model was applied at 

different spatial scales to quantify the exchanged water volume and the mitigation of nitrate 

pollution in groundwater and river systems. The different steps carried out in this thesis were: 

i) development of the hydrologic module to simulate SW-GW exchange and application of 

the modified model to a meander of the floodplain-Monbéqui; ii) development of the shallow 

aquifer denitrification module to evaluate the influence of shallow aquifer denitrification, and 

validation of the module at the meander of Monbéqui; iii) application of the modified model 

at the catchment scale.  

1) Hydrologic module   

Since dissolved elements are transported along with the water flow, the module that 

represented SW-GW exchanges was firstly developed and tested. In the module, Darcy’s 

equation was introduced to simulate groundwater flow and SW-GW exchange occurring 

through the riverbank based on the Landscape Unit structure at the floodplain area. The 

algorithms calculating the river water and groundwater levels during flooding events were 

also modified. The new levels were calculated based on the flooded water volume. The 

module was integrated to the SWAT model, and the modified model was called SWAT-LUD.  

The developed module was tested at different spatial scales. Firstly in chapter 4, the new 

developed module was applied to a floodplain meander of the Garonne river (around 25 km
2
). 

Then in chapter 6, the module was applied to the middle floodplain section of the Garonne 
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catchment (around 4 600 km
2
) and finally to the entire Garonne catchment (around 51 500 

km
2
). The results showed that the modified hydrologic module have the ability to 

satisfactorily represent SW-GW exchange at different scales.  

The exchanged SW-GW water volume was quantified. It was found that the river water 

discharge has a great influence on the SW-GW exchanges processes. The water mixing occurs 

mainly during high hydraulic periods and flooded water was important for the SW-GW 

exchange process. At the meander and middle floodplain scale, the main water flow direction 

is from groundwater to river, and water flowing in this direction accounted for around 65 % 

of the total exchanged water volume. At the catchment scale, the exchanged water volumes 

flowing through the two directions are almost at equilibrium. The annual total exchanged 

water volume represented around 5% of the total river discharge. The application of new 

algorithm representing the floodplain water storage function proved that the flood peak 

decreased significantly and the simulated results matched better with the observed data when 

considering this function. 

2) Shallow aquifer denitrification module 

The module representing the transport of dissolved elements and shallow aquifer 

denitrification processes occurring in a floodplain aquifer was developed. The transport is 

calculated according to the exchanged water volume and the concentration of the elements, 

and the influence of flooding on nitrate leaching was also taken into account. The influences 

of both dissolved organic carbon (DOC) and particulate organic carbon (POC) on 

denitrification were evaluated. 

The developed module was applied at the meander and at the middle floodplain section of the 

Garonne catchment as shown in chapter 5 and 6 respectively. The comparison with measured 

groundwater nitrate concentrations proved that the added module could correctly represent the 

aquifer nitrate concentration in the near bank zone. In the meander, the annual simulated 

denitrification rate in the near bank zone was around 130 kg N-NO3
-
·ha

-1
·y

-1
, and around 40 

% of the nitrate input to this zone was denitrified. In the middle floodplain section, the annual 

denitrification rate in the near bank zone of three subbasin-LUs ranged from 55 to 120 kg N-

NO3
-
·ha

-1
·y

-1
. The shallow aquifer denitrification consumed almost 50% of nitrate originating 

from the surrounding area and flowing to the channel. Compared with DOC, POC played an 

extremely important role in the occurrence of denitrification. In the near bank zone, 98 % of 

the nitrate was attenuated through POC consumption.  
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The correspondence between denitrification rates, groundwater levels and total input nitrate 

masses in the near bank zone were analysed at the meander scale. The results illustrated that 

groundwater levels were positively correlated to the denitrification rates in the near bank zone 

(R
2 

= 0.88) and the absolute consumption rate increased along with the increase in nitrate 

content (R
2 

= 0.79). However, the relative consumption rate decreased as the nitrate content 

increased (R
2 

= 0.93). In the middle floodplain section, the influence of shallow aquifer 

denitrification on river nitrate flux was analysed. It was found that the nitrate mainly come 

from the upstream river water. The nitrate concentration in the output of the simulated area 

was decreased around 0.13 mg·L-1
 due to the influence of the floodplain shallow aquifer 

denitrification function.  

7.2 Perspectives 

1) Organic carbon 

The quantification of the influence of floodplain shallow aquifer denitrification at 

catchment scale should be simulated and analyzed. Organic carbon is a necessary element in 

the occurrence of denitrification. In the studies at the meander and at the middle floodplain 

section scales, constant values of DOC concentration were set to the river water and shallow 

groundwater. At the large catchment scale, the DOC concentration should be different for 

different subbasins. However since the cycle of DOC was not simulated in the SWAT and 

SWAT-LUD model, the new module that represented the DOC cycle in river water and 

groundwater should be developed and added to the model. The simulation of DOC 

concentration at the river water with the SWAT model was tested at Save River by Uhart 

(2013).  The equation based on the study of Ludwig et al. (1996) was introduced in the model, 

which is as follows: 

𝐹𝐷𝑂𝐶 = 0.0040𝑄 − 8.76𝑆𝑙𝑜𝑝𝑒 + 0.095𝑆𝑜𝑖𝑙𝐶 

Where 𝐹𝐷𝑂𝐶 is the DOC flowing out of the basin (T·km
-2·y-1

); Q is the output discharge of the 

catchment (mm); slope is the average slope of the basin (radian); and SoilC is the soil organic 

carbon content (kg·m-3
).  

This equation could be applied to the Garonne catchment to simulate the river water DOC 

flux. 

The DOC dynamic in the shallow groundwater is rarely studied, and most of the 

models that take into account the shallow aquifer DOC cycle are physically based model, 



Conclusions and perspectives 

182 
 

likein the study of Chapelle et al. (2014). As SWAT model is a semi-distributed model, a 

simplified equation should be chosen and tested in the SWAT model.  

The POC content in the soil profile could be simulated or read in as input data in the 

SWAT model, but the POC content in the shallow aquifer sediment was not simulated. 

Moreover, the results in the Garonne catchment suggested that POC played an extremely 

important role, the measurement and simulation of this value would be important. In this 

study, the measured AFDM content in the shallow aquifer sediment was used to evaluate 

POC content. The simulation and definition of POC content in the shallow aquifer would be a 

challenge in the future study.  

2) Linkage of upland and floodplain 

In the SWAT-LUD model, the upland classic subbasin and floodplain subbasin-LU are 

connected through the river and the influence of the upland area on the floodplain was not 

represented. As in the SWAT-LUD model, the output water flowing out of the upland classic 

subbasin is summed together before flowing into the river. To improve the connection the 

surface, lateral and groundwater flow in the upland should be separately summed and then 

routed to the downward subbasin-LU, instead of having all subbasin and subbasin-LU water 

flows being summed together.  

3) Underneath hyporheic zone  

In the SWAT-LUD model, the altitude of the river bed in each subbasin was assumed to 

be the reference value for the hydraulic head used to compute groundwater and surface water 

levels. The storage water volume in the shallow aquifer is calculated based on the average 

height of LU (the height in the middle of each LU) and the porosity of shallow aquifer. 

Moreover, the height of LU is calculated based on the height of river bank and slopes of LUs. 

The water storage beneath hyporheic zone (beneath the river bed) is not taken into account. In 

the Garonne catchment, the deposited sediment in the floodplain overlies impermeable 

molasses and rare water exists beneath the hyporheic zone. However in many other 

catchments, the water storage beneath the hyporheic zone can have a great influence on the 

biogeochemical cycles also. To apply the SWAT-LUD model in the river with deep hyporheic 

zone, the storage groundwater in the zone below the river bed should be included in the 

model. To solve this problem, another water pool should be added to represent the water 
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storage in the underneath sediment. The transfer between the top layer shallow aquifer and 

this pool and the denitrification processes occurred in this zone should also be considered.  

4) SW-GW exchange  

Since Darcy’s equation is used to calculate the SW-GW exchange, the exchanged water 

volume is based on the difference of water levels in the two domains. The simulation of river 

water level would have a great influence on the accuracy of simulated SW-GW exchange. The 

river water height is greatly influenced by the width and slope of the channel (section 3.1.1.2). 

The infiltrated flooded water was found to play an important role on the SW-GW exchange. 

Finally the maximum river channel water flow storage capacity is also influenced by the 

channel shape. The definition of the channel section is calculated only based on the drainage 

area in the SWAT-LUD model, the correspondence between simulated and actual channel 

widths and depths should be carried out.  

5) Sensitivity analyse and application in other catchments  

The sensitivity analyse should be carried out with the new added parameters and the 

parameters in the initial SWAT model that are connected with the new modules. This would 

help to understand the importance of the different parameters and improve calibration 

procedure in the future studies. The modified SWAT-LUD model should also be applied to 

other catchments, especially in larger catchment than the Garonne catchment with wide 

riparian zone and floodplain area such as the Amazon River and the Yangtze River.  

6) User manual preparation  

In order to help other researchers to apply the SWAT-LUD model in other basins, a user 

manual should be prepared to explain the details of the new developed modules and to list the 

necessary input data files and format.  
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CONCLUSIONS 

L’objectif principal de cette thèse était de quantifier les volumes d’eau échangés entre la 

nappe et la rivière ainsi que l’importance des processus de dénitrification dans les aquifères 

alluviaux à l’échelle du bassin versant en s’appuyant sur un travail de modélisation. Le 

modèle SWAT est un modèle semi-distribué, opérant à l’échelle du bassin versant. Il permet 

de simuler des bassins versants de grandes tailles avec des données facilement disponibles et a 

été appliqué avec succès dans de nombreuses études à travers le monde. Le modèle SWAT a 

été choisi pour simuler les processus hydrologiques et le cycle de l’azote dans cette étude. 

Cependant, la simulation des échanges nappe-rivière dans les deux directions ainsi que les 

processus de dénitrification qui se produisent dans les aquifères peu profonds de la plaine 

alluviale ne sont pas pris en compte dans la version originale de SWAT. Afin d’atteindre 

l’objectif, des modules représentant les échanges nappe-rivière, la rétention de l’eau dans la 

plaine alluviale pendant les crues débordantes, le transport des éléments dissous via les 

échanges nappe-rivière et les processus de dénitrification se produisant dans les aquifères 

alluviaux ont été développés et ajoutés dans le modèle SWAT. Le modèle modifié a ensuite 

été appliqué à différentes échelles spatiales pour quantifier les volumes d’eau échangés ainsi 

que l’atténuation de la contamination par les nitrates des eaux souterraines et de la rivière. Les 

différentes étapes accomplies dans cette thèse ont été : i) le développement d’un module 

hydrologique pour simuler les échanges nappe-rivière et son application à l’échelle d’un 

méandre de la plaine alluviale, Monbéqui ; ii) le développement d’un module pour simuler les 

processus de dénitrification dans les aquifères alluviaux et son application au site de 

Monbéqui et iii) l’application du modèle modifié à l’échelle de la plaine alluviale de la 

Garonne dans son cours moyen puis à l’échelle de tout son bassin versant. 

1) Module hydrologique 

Comme les éléments dissous sont transportés par les flux hydrologiques, le module simulant 

les échanges nappe-rivière a été développé et testé en premier. Dans ce module, l’équation de 

Darcy a été introduite pour simuler les écoulements souterrains et les échanges nappe-rivière 

localisés au niveau des berges du fleuve, sur la base de la structure Lanscape Unit, au niveau 

de la plaine alluviale. L’algorithme calculant les niveaux d’eau de la rivière et de la nappe 

pendant les épisodes de crues a également été modifié pour ajuster les niveaux d’eau en 
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fonction du volume d’eau inondant la plaine. Ce module a été intégré au modèle SWAT et la 

version modifiée du modèle a été appelée SWAT-LUD. 

Le nouveau module a été testé à différentes échelles spatiales. Tout d’abord, dans le chapitre 

4, le module a été appliqué à un méandre de la Garonne (25 km²). Ensuite, dans le chapitre 6, 

le module a été appliqué à l’échelle de la plaine alluviale de la Garonne (4 600 km²) et 

finalement à tout le bassin versant de la Garonne (51 500 km²). Les résultats ont montré que le 

module hydrologique a la capacité de représenter les échanges nappe-rivière de façon réaliste 

à différentes échelles. 

Le volume d’eau échangé entre la nappe et la rivière a été quantifié. Il est apparu que le débit 

de la rivière a une grande influence sur les échanges nappe-rivière. Le mélange entre les eaux 

de nappe et la rivière se produit surtout pendant les périodes de hautes eaux et les volumes 

d’eau débordante jouent un rôle important dans les échanges nappe-rivière. À l’échelle du 

méandre et de la moyenne section de la plaine alluviale, l’eau s’écoule principalement de la 

nappe vers la rivière contribuant pour près de 65% des échanges totaux. À l’échelle du bassin 

versant, le volume d’eau échangé est quasiment identique selon les deux directions. Le 

volume annuel d’eau échangé entre la nappe et la rivière représente environ 5% du débit 

annuel de la Garonne. L’application du nouvel algorithme représentant le stockage de l’eau de 

débordement dans la plaine alluviale a montré que les pics de crues diminuent 

significativement et que les résultats simulés correspondent mieux à la réalité en prenant en 

compte cette fonction. 

2) Module de dénitrification dans les aquifères alluviaux 

Un module représentant le transport des éléments dissous et les processus de dénitrification 

dans les aquifères alluviaux a été développé. Le transport des éléments est calculé en fonction 

du volume d’eau échangé et de la concentration de l’élément considéré. Le lessivage des 

nitrates via l’infiltration de l’eau débordante a également été intégré dans le module. Le rôle 

du carbone organique dissous (COD) et du carbone organique particulaire (COP) sur la 

dénitrification ont également été évalués. 

Ce module a été appliqué à l’échelle du méandre et de la plaine alluviale de la Garonne dans 

son cours moyen. Les résultats sont présentés respectivement dans les chapitres 5 et 6. La 
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comparaison avec les concentrations de chlorure mesurées dans la nappe a montré que le 

module pouvait représenter correctement les concentrations en nitrates de l’aquifère dans la 

zone riparienne. À l’échelle du méandre, le taux annuel de dénitrification simulé est d’environ 

130 kg N-NO3
-
.ha

-1
.an

-1
 et environ 40% des nitrates arrivant dans cette zone ont été dégradés 

à travers la dénitrification. À l’échelle de la plaine alluviale de la Garonne, le taux annuel de 

dénitrification simulé pour la zone riparienne varie entre 55 et 120 N-NO3
-
.ha

-1
.an

-1
. Environ 

50 % des nitrates provenant des zones voisines ont été dégradés via les processus de 

dénitrification au lieu de rejoindre la rivière. En comparaison avec le COD, le POC joue un 

rôle prépondérant dans le déroulement des processus de dénitrification. Dans la zone 

riparienne, 98% des nitrates atténués l’ont été via la consommation de POC par les bactéries 

responsables de la dénitrification. 

Les correspondances entre les taux de dénitrification, les niveaux de nappe et les apports de 

nitrates dans la zone riparienne ont été analysées à l’échelle du méandre. Les résultats ont 

montré que les taux de dénitrification sont positivement corrélés avec les niveaux de la nappe 

(R²=0.88) et avec les concentrations en nitrates (R²=0.79). Cependant les taux de 

dénitrification relatifs à la concentration en nitrates sont négativement corrélés avec les 

concentrations en nitrates (R²=0.93). À l’échelle de la plaine alluviale, l’influence de la 

dénitrification dans l’aquifère alluvial sur les flux de nitrates dans la rivière a été analysée. Il a 

été montré que les nitrates sont majoritairement apportés par la rivière en amont du domaine 

simulé. La concentration en nitrate en aval du domaine simulé a diminué de 0.13 mg.L
-1

 due à 

la dénitrification se produisant dans les aquifères alluviaux. 
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