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Introduction

Les modèles mathématiques représentent une contribution importante dans la lutte
contre les maladies infectieuses, comme ils représentent un outil pour définir des stra-
tégies pour réduire le nombre de cas, utiliser de façon optimale des ressources limitées,
faire face rapidement aux émergences, et mettre en place des mesures d’endiguement
efficaces. Depuis leur introduction, ces modèles, qu’on appelle modèles à compartiments,
sont basés sur la supposition que l’évolution et la transmission de la maladie puissent
être traduites en un ensemble de règles simples et qui peuvent être adaptées à des agents
pathogènes caractérisés par différents pathophysiologie, développement clinique, et étio-
logie (virus, bactéries, etc.). L’épidémie est donc interprétée comme un comportement
émergent de l’interaction parmi les hôtes [1–5]. Néanmoins, dans le passé, l’utilisation
de modèles mathématiques en santé publique a été limitée par le manque de données
sur les interactions humaines. Récemment, la situation a radicalement changé, grâce à
l’avènement de la science des données, grâce à laquelle il est devenu possible d’enregis-
trer de façon très précise les contacts et les transports responsables de la propagation
des maladies. Actuellement, on a des bases de données qui décrivent l’interaction entre
personnes, dans différents contextes et à différentes échelles : des contacts sociaux à la
mobilité, jusqu’aux contacts sexuels [6–34]. En outre, les activités humaines ne sont pas
le seul objet de recherche : il est maintenant possible de suivre les mouvements d’animaux
de ferme [35–40], afin d’étudier la propagation des nombreuses maladies qui menacent la
santé des animaux, l’économie, et finalement même la santé humaine.

Épidémies et réseaux

Afin de gérer ces structures des contacts complexes, de nouveaux outils théoriques ont
été adapté et développé, qui considèrent la propagation de maladies comme un processus
dynamique sur réseaux [41–48]. Les réseaux sont en fait devenus un outil essentiel qui, en
représentant les populations en tant de nœuds (hôtes potentiels de l’agent pathogène) et
des liens (interactions entre hôtes), permettent d’appliquer au contexte des maladies in-
fectieuses le formalisme de la physique statistique, la théorie des graphes, et des systèmes
dynamiques.
La dynamique épidémique sur réseau suppose que chaque nœud peut se trouver dans

une des stades de la maladie prédites par le modèle à compartiments de référence, et
que le processus de l’infection se déroule par les liens : chaque nœud a une probabilité
d’infecter (transmissibilité) un nœud susceptible auquel il est connecté.
Un aspect clé dans la modélisation épidémique concerne l’émergence du régime épidé-

mique. Quand un agent pathogène est introduit dans une population susceptible, deux
scénarios sont possibles : soit le nombre d’infectés va vite à zéro, en conduisant rapide-
ment à l’extinction, soit il augmente de façon exponentielle, ce qui entraîne une flambée
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épidémique. Être capable de prédire lequel des deux aura lieu est fondamental pour es-
timer la vulnérabilité de la population attaquée par un agent pathogène spécifique, et
ensuite pour évaluer les stratégies les plus efficaces d’immunisation. Ce concept de vul-
nérabilité de la population est formalisé en termes de seuil épidémique [4, 41], qui est la
valeur critique de la transmissibilité qui distingue extinction et régime épidémique. L’épi-
démiologie computationnelle a fourni des outils pour calculer analytiquement la valeur
du seuil épidémique pour de nombreux modèles épidémiques, et pour de différents types
de structures de contact. En particulier, grâce à l’intégration de la théorie des réseaux, il
a été possible d’évaluer l’impact des différentes caractéristiques topologiques sur la vul-
nérabilité, comme la présence de nœuds avec un degré (nombre de contacts) exception-
nellement élevé, qu’on appelle hubs. Il a été montré, en effet, que leur présence augmente
considérablement la vulnérabilité du réseau, en réduisant le seuil épidémique. Pour mon-
trer cela analytiquement, on va supposer un modèle susceptible-infecté-susceptible (SIS),
dans lequel les nœuds infectés transmettent la maladie aux voisins susceptibles avec une
probabilité �, et qui guérissent avec une probabilité µ. Ce modèle est clairement une
simplification du développement clinique réel d’une maladie ; il représente néanmoins un
modèle utile et applicable à des maladies qui admettent l’existence d’un état endémique,
comme un grand nombre d’infections bactériennes. On suppose en outre que P (k) soit
la distribution des degrés du réseau. Le seuil épidémique (�c) peut donc s’exprimer en
termes des moments de cette distribution [41, 49, 50] : �c = µhki

hk2i ; vu que la présence de
hubs induit de fortes variations de degré, le second moment de la distribution est très
grand. Cela signifie que le seuil est très bas, et diminue de plus en plus avec l’augmen-
tation de la taille de la population. Le valeur du seuil dans ce type d’approche découle
des propriétés statistiques des classes de réseaux (annealed) ; il est également possible
de prendre en compte la topologie explicite du réseau de contacts à travers le forma-
lisme de la matrice d’adjacence (quenched). En supposant un réseau de N nœuds, indicés
i, j = 1, · · · , N , on définit la matrice d’adjacence [51] A, de taille N ⇥N , et d’éléments
Aij = 1 si i est connecté à j, et Aij = 0 autrement. Le seuil épidémique peut ansi être
calculé en termes du spectre de la matrice d’adjacence [52,53] :

�c =
µ

⇢[A]
, (1)

où ⇢[A] est le rayon spectral de la matrice d’adjacence, soit le maximum parmi les valeurs
absolues de ses valeurs propres.

Seuil épidémique sur des réseaux temporels

Les résultats décrits ci-dessus ont été développées en supposant que les maladies se pro-
pagent sur des réseaux qui ne varient pas dans le temps, ou qu’ils le fassent à des échelles
de temps très différentes de celles de la diffusion de l’agent pathogène. Dans de différents
contextes, il a cependant été observé que les contacts et l’épidémie évoluent sur des temps
caractéristiques comparables ; il a également été montré que l’interaction entre l’évolution
du réseau et le processus de l’infection influence sensiblement le résultat du processus
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épidémique [13, 54–59], les conditions de déclenchement, de persistance et d’endémicité.
Par conséquent, une méthodologie qui aspire à une évaluation quantitative du risque doit
tenir compte de l’évolution temporelle de contacts. Le formalisme des réseaux temporels
(ou réseaux dynamiques) [60–62], où le réseau lui-même devient un processus dynamique
qui détermine l’évolution des liens, peut être utilisé efficacement pour représenter ce type
de structure ; cependant, il a été noté que les propriétés émergentes de ces nouveaux
systèmes sont conceptuellement et phénoménologiquement nouvelles, et ne peuvent gé-
néralement pas être considérées comme de simples extensions de ce qui est connu pour
les réseaux statiques. En particulier, l’étude du seuil épidémique a été limiteé à des ap-
proches numériques ou des approches analytiques pour des cas spécifiques [59, 63–67].
Dans cette thèse, nous proposons une nouvelle méthode, publiée dans [68, 69], pour cal-
culer analytiquement le seuil épidémique pour un réseau temporel générique. Le concept
fondamental derrière cette méthode est de représenter le réseau en termes d’un objet sta-
tique : le réseau multi-couches (ou multi-layer) [70, 71]. Dans ce type d’objet les nœuds
sont divisées en plusieurs couches, et les liens qui joignent des nœuds de la même couche
ou de couches différentes sont interprétées de manière différente. On propose une façon
innovatrice pour représenter le réseau temporel, où chaque pas de temps est représenté
comme une couche qui contient une copie de tous les nœuds du réseau, et les liens du
réseau temporel se traduisent en termes de liens entre les couches du réseau multi-couche.
Les règles de construction du réseau multi-couche sont illustrées dans la Figure R1. La
structure spécifique de cette projection permet de prendre en compte aussi la dynamique
de l’infection. Le résultat est un objet qui représente à la fois le processus dynamique
de l’évolution structurelle des contacts, et le processus de propagation de l’épidémie.
Cet aspect nous a permis de résoudre analytiquement le calcul du seuil épidémique ; en
particulier, on montre qu’il peut être dérivé à partir de ce que nous appelons propaga-
teur d’infection [69]. En supposant un réseau temporel de T pas de temps, chacun avec
matrice une d’adjacence At, le propagateur d’infection a la forme suivante :

P =
TY

t=1

(1� µ+ �At) . (2)

On montre que le seuil épidémique est la valeur minimale de transmissibilité �c pour
laquelle ⇢[P (�c, µ)] = 1 [72]. Le propagateur d’infection représente en fait le potentiel
de propagation, puisque l’élément Pij est égale à la probabilité que le nœud i, infectieux
au temps t = 1, donne lieu à un nœud j qui soit infectieux au temps t = T , dans
l’approximation quenched mean field [52, 53,73] avec laquelle on l’a calculé.
En [68] on n’a introduit cette méthode que pour le modèle de diffusion SIS ; dans [69]

on montre que la forme du propagateur d’infection décrite dans l’Equation 2 est valable
même pour des maladies qui confèrent l’immunité après la guérison, soit temporaire soit
permanente. La précision de notre mesure du seuil peut être estimée avec des simulations
numériques de l’infection, en mesurant la fraction de nœuds infectés en fonction de la
transmissibilité, lorsque la maladie atteint l’état endémique : la Figure R2A montre un
exemple de cette approche.
Étant donné que les bases des données disponibles qui caractérisent les réseaux de
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t t+1

temporal multilayer

node i existing at times t,t+1 (i,t)        (i,t+1)
(i,t)        (j,t+1)
(j,t)        (i,t+1)(i,t)        (j,t)

contacts

Figure R1: Représentation multi-couche du réseau temporel. Ici sont décrites les règles
pour construire notre représentation multi-couches du réseau temporel, en uti-
lisant seulement trois nœuds et deux pas de temps. Les liens qui joignent des
représentations du même nœud sont pondérées avec 1� µ, afin de représenter
le processus de guérison – plus précisément de non-guérison – en termes de
transmission de la maladie à soi-même dans le futur ; par contre, les liens qui re-
présentent les contacts du réseau temporel sont pondérés avec la transmissibilité
�.
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Figure R2: Validation du calcul du seuil, et influence du temps total du réseau sur le

seuil. On considère ici un réseau de contacts sociaux dans un lycée, enregistré
par Salathé et collaborateurs [7]. En A on montre la fraction des nœuds infectés à
l’équilibre (état endémique) en fonction de la transmissibilité, pour deux valeurs
de probabilité de guérison (en rouge et bleu). Les flèches montrent la valeur
théorique du seuil, calculée avec le propagateur d’infection. Les croix (MC) ont
été obtenues de la solution numérique du processus de Markov (Equation 2
dans [68]), tandis que les points gris représentent le résultat des simulations
microscopiques, dans lesquelles chaque nœud infectieux peut contaminer les
nœuds sains avec lesquels il est en contact (ses voisins). En B on montre la
valeur du seuil épidémique �c(T ) obtenu en considérant que le premiers T pas
de temps. L’histogramme en gris est en échelle linéaire et montre le degré moyen
associé au pas de temps T .
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contact empiriques registrent seulement une partie limitée dans le temps des interactions,
il est important d’évaluer l’impact d’une telle longueur temporelle sur l’estimation du
seuil, et par conséquent notre capacité à évaluer la vulnérabilité du système . En [68] on
explore cet aspect, en essayant d’identifier la période de prise de donnée minimale qui
soit optimale pour caractériser le propagateur d’infection ; on en montre un exemple en
Figure R2B.
En plus de la durée totale de la prise de données, le calcul du seuil permet d’éva-

luer l’impact d’autres caractéristiques des prises des données empiriques, y compris la
résolution temporelle, que nous analysons dans [69].
La représentation multi-couches du réseau temporel, qui est le cœur de notre métho-

dologie de calcul du seuil, n’est possible que si on suppose que l’évolution du réseau se
déroule en temps discret, ce qui représente une limite lorsque nous traitons des systèmes
pour lesquels le temps est un paramètre continu. Pour résoudre ce problème, on montre
que la limite continue du propagateur d’infection est obtenue en résolvant un système
différentiel qui contient la matrice d’adjacence A(t) du réseau temporel :

d

dt
P (t) = P (t) [�m+ lA(t)] , (3)

où l,m sont les taux de transmission et de guérison de la maladie. Une fois qu’on a trouvé
le propagateur d’infection, le seuil peut être calculé avec son rayon spectral, comme dans
le cas discret.
Les modèles épidémiques dont nous avons parlé jusqu’à maintenant ne prennent pas

en compte une caractéristique commune à nombreuses maladies : la période de latence,
c’est-à-dire le temps qui passe entre être infecté et devenir infectieux. Dans le cas des
réseaux statiques la latence n’a pas d’impact sur le seuil épidémique [50], par contre
cela n’est plus vrai pour les réseaux temporels, en raison de l’interaction entre les trois
échelles de temps en jeu : évolution du réseau, durée d’infection, et période de latence. Le
modèle SIS peut être modifié pour prendre en compte ce nouvel ingrédient, en devenant
susceptible-exposé-infectieux-sensible (SEIS). La progression de la maladie est similaire
au cas du SIS, sauf que les individus infectées ne sont pas immédiatement infectieux (E) ;
ils deviennent infectieux avec une probabilité ✏ à chaque pas de temps.
Notre objectif est de calculer le propagateur d’infection du modèle SEIS sur réseaux

temporels, et pour ce faire, nous utilisons à nouveau le formalisme des réseaux multi-
couches. En particulier, on part du cas statique, et on démontre que le modèle SEIS
sur un réseau A générique a le même seuil d’un modèle SIS sur un réseau à 2 couches.
La structure spécifique du réseau 2-couches et les paramètres du modèle SIS permettant
cette analogie sont décrits dans la Figure R3. Une fois démontré cette équivalence, la
généralisation au cas temporel est obtenue en appliquant les résultats précédents [68,69].
On obtient ansi le propagateur d’infection P̂ pour le modèle SEIS, en termes de matrices
composées de quatre blocs N ⇥N :

P̂ =
TY

t=1

✓
1� µ ✏
�At 1� ✏

◆
(4)
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A B

Figure R3: Représentation de la structure à deux couches pour le calcul du seuil

épidémique en incluant la latence. A représente le réseau statique initial. B
représente la projection multi-couches. Chaque nœud a une copie sur chaque
couche, et la copie dans la couche 2 est connectée à la copie dans la couche 1
avec un lien direct (flèches noires pointillées). Chaque lien présent en A se traduit
par deux liens directs de la couche 1 à la couche 2 (flèches rouges pointillées).
À cette structure on couple un processus SIS, dans lequel les liens noirs ont
une probabilité de transmission égale à ✏, tandis que les rouges �. De plus, la
probabilité de guérison dans la couche 1 est µ, et dans la couche 2 est ✏.

Réseaux de déplacements des bovins

Les maladies des animaux de ferme ont une grande pertinence dans le contexte de la
santé publique, car elles menacent la santé et le bien-être animal, et ont un effet négatif sur
l’économie, en termes de réduction de la productivité et de coûts de l’éradication [74,75].
De plus, elles représentent un danger direct pour la santé humaine [76].
En raison de sa position géographique et son marché de bétail intégré, l’Europe est

constamment menacée par divers agents pathogènes, y compris la fièvre aphteuse [74,77,
78], la diarrhée virale bovine [79–81], la tuberculose bovine [82–84] et la brucellose [85–87]
pour les bovins, la fièvre catarrhale du mouton pour tous les ruminants, la peste porcine
classique [88] et africaine [89] pour les porcs. Bien que ces maladies ont des caractéris-
tiques épidémiologiques très différentes les unes des autres, elles se propagent toutes,
exclusivement ou en partie, grâce aux mouvements d’animaux entre les structures ; pour
cette raison, l’étude des réseaux de mouvements est extrêmement importante. De nom-
breuses études ont déjà été publiées, sur des pays et espèces différents. Dans cette thèse,
nous nous concentrons sur le marché des bovins, et développons une analyse compa-
rative des mouvements dans trois pays européens : l’Italie, la Suède, la Hongrie, grâce
à la coopération avec les institutions compétentes 1. La Figure R4 montre la définition
des réseaux, et leur représentation agrégée. Ces réseaux sont intrinsèquement temporels,
parce que les mouvements sont enregistrés quotidiennement.
Nous avons observé que ces réseaux montrent une phénoménologie extrêmement riche

et diversifiée en termes de propriétés globales, temporelles, et géographiques. En par-

1. Istituto Zooprofilattico Sperimentale “G. Caporale” (Italie), Linköping University (Suède), Hunga-
rian National Food Chain Safety Office (Hongrie).
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Figure R4: Réseau bovin agrégé. Représentation du réseau des mouvements des bovins,
agrégé sur une période d’un an : 2008 pour l’Italie (A,B) et la Suède (E,F),
2010 pour l’Hongrie (C,D). Les nœuds (les structures qui participent au marché)
sont placés en fonction de leur position géographique ; les lien représentent les
déplacements de bovins d’un nœud à l’autre, composés de moins (A,C,E) ou
plus de 10 animaux (B,D,F).
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ticulier, les réseaux agrégés à échelles de temps différentes présentent des topologies
hétérogènes dans les trois pays. En outre, l’échelle de temps qui domine l’évolution de
chaque réseau est la semaine ; par contre les effets saisonniers tendent à être spécifiques
à chaque pays. Les caractères spatiaux aussi ont tendance à varier d’un pays à l’autre,
car ils répondent à la diversité climatique et géographique.

Analyse du risque

Le calcul du seuil épidémique peut être utilisé comme une estimation du risque, pour
mesurer combien une population est vulnérable à l’introduction d’un agent pathogène
spécifique. Pour ce faire, nous nous sommes concentrés sur deux cas : le réseau des
mouvements de bovins italiens et le réseau de contacts sexuels humains (données en [34]).
Pour les bovins, nous avons calculé le seuil des modèles SIS, SIR, SIRS, qui ensemble
couvrent une bonne variété d’infections, et nous en avons étudié les variations dans le
temps et l’espace. Nous avons observé une forte hétérogénéité spatiale, avec la partie nord
de l’Italie extrêmement plus vulnérable que le Centre et le Sud, en raison des différences
dans les types d’élevage, comme on avait déjà trouvé en étudiant ce réseau. De plus, on
a trouvé une hétérogénéité temporelle probablement attribuable à des adaptations du
réseau suite à des urgences sanitaires, ou à l’adoptions de nouveaux règlements.
Dans le contexte des contacts sexuels humains, nous avons étudié l’impact de la latence

sur la vulnérabilité du réseau, en terme de différence du seuil épidémique entre le modèle
sans latence (SIS), et avec latence (SEIS). Nous nous sommes concentrés sur la propa-
gation de la syphilis à travers ce réseau, et nous avons observé comment, en explorant
les paramètres épidémiques, la latence peut représenter soit un facteur de risque soit un
facteur de protection.
Le calcul du risque avec le seuil épidémique a cependant une limitation due au fait

que les données de contact ne sont guère disponibles en temps réel, et en plus dans de
nombreux contextes – notamment pour les mouvements des bovins [38] – les mesures de
centralité calculées sur les données passées ne sont pas représentatives des développements
futurs. De plus, le seuil est une mesure de la vulnérabilité de l’ensemble de la population ;
elle n’est capable de fournir des prévisions spécifiques sur la probabilité qu’a un certain
nœud d’être infecté. Pour répondre à ces questions, nous avons développé dans [72] une
méthodologie pour prédire le risque épidémique au niveau des nœuds, en n’utilisant que
les données de contacts passées.
La quantité clé de cette méthode est ce que nous appelons loyalty, qui mesure la

tendance de chaque nœud à rétablir des connexions toujours avec les mêmes nœuds, en
opposition à la tendance à changer souvent de voisins. Si on considère les pas de temps t
et t+1 d’un réseau temporel, et Vt

i l’ensemble des voisins du nœud i au temps t, la loyalty
du nœud i entre les temps t et t+1 (✓t,t+1

i ) est donc ✓t,t+1
i =

��Vt
i \ Vt+1

i

�� /
��Vt

i [ Vt+1
i

�� . La
loyalty prend valeurs dans [0, 1] ; ✓ = 0 signifie qu’aucun voisin est maintenu, tandis que
✓ = 1 indique que le nœud conserve exactement les mêmes voisins. Cette mesure trouve
son inspiration dans le contexte des mouvements des bovins, comme une estimation de
la tendence de l’éleveur à acheter du bétail chez les mêmes fournisseurs. En considérant

Résumé – 9



Eugenio Valdano

à la fois les mouvements bovins et les contacts sexuels humains, nous avons effectué des
simulations épidémiques, en supposant un modèle susceptible-infecté, afin de modéliser
les premiers stades d’une épidémie [72]. Nous sommes ensuite allés observer les différences
dans la façon de propagation de l’épidémie, causée par les changements temporels dans
le réseau. Nous avons constaté qu’un nœud qui est infecté lors d’une flambée épidémique
au temps t, sera infecté par la même épidémie simulée au temps t+1 avec une probabilité
corrélée positivement avec sa loyalty. Ce résultat, observé numériquement dans les deux
réseaux, est à la base d’une méthode permettant de prédire le risque que qu’un nœud a
d’être infecté dans le futur par une épidémie spécifique.
Enfin, pour essayer de mieux comprendre les mécanismes responsables de la perfor-

mance de cette méthode, nous avons développé un modèle synthétique de réseau qui
garde uniquement les propriétés topologiques de base communes aux deux réseaux réels :
hétérogénéité de dégré à tout niveau d’agrégation temporelle, et un niveau de mémoire
dans l’évolution, en termes de distribution de loyalty, réglable par un paramètre. Nous
avons observé que ces ingrédients sont suffisants pour assurer la précision de nos prévi-
sions, et que la mémoire est ce qui règle la puissance prédictive, c’est-à-dire la fraction
de nœuds infectés par l’épidémie pour lesquels on a pu produire des prévisions de risque.

infection potential

di
st

rib
ut

io
n

disloyal
loyal

Figure R5: potentiel de propagation pour le réseau bovin italien. Les nœuds sont
classifiés comme disloyal (✓  0.1, orange) ou loyal (✓ > 0.1, vert). On montre
les distributions de la probabilité que un nœud disloyal (loyal), infecté pendant
la simulation pour l’année t, soit infecté par la même épidémie pendant l’année
t + 1 (potentiel de propagation). On observe que le potentiel de propagation
d’un nœud loyal est en moyenne 2.5 plus grand que celui d’un nœud disloyal.
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Conclusions

Dans cette thèse, on a développé de nouvelles méthodes pour estimer et prédire le
risque associé à l’émergence d’un nouveau pathogène, à la fois à l’échelle de la popula-
tion et à celle de l’hôte, et en utilisant des outils à la fois analytiques et numériques.
Nous avons testé ces méthodes dans des milieux différents, tous très pertinents dans le
contexte de la santé publique, avec un accent sur les réseaux des mouvements de bovins
dans de différents pays européens, pour lesquels nous avons proposé une analyse des
caractéristiques topologiques, spatiales et temporelles.
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Abstract

Infectious disease modeling represents a powerful tool for assessing the vulnerability of a

population to the introduction of a new infectious pathogen. The increased availability

of highly resolved data tracking host interactions is making epidemic models potentially

increasingly accurate. Integrating into them all the features emerging from these data,

however, still represents a challenge. In particular, the interaction between disease dy-

namics and the time evolution of contact structures has been shown to impact the way

pathogens spread. Specifically, it changes the conditions that lead to the wide-spreading

regime, as encoded in epidemic threshold, which is the critical transmissibility value

above which the epidemic breaks out. Up to now, through the formalism of tempo-

ral networks, researchers have characterized the epidemic threshold on time evolving

contact structures only through numerical approaches or in specific settings. Using a

multilayer formalism, we analytically compute the epidemic threshold on a generic tem-

poral network, accounting for several di↵erent disease features. We use this methodology

to assess the impact of time resolution and network duration on the estimation of the

threshold, given the importance that these features have in setting up an optimal data

collection strategy. We introduce several epidemiologically relevant datasets, and in par-

ticular we analyze the networks of cattle trade movements, highlighting the features that

can influence disease spreading. Then we use the analytical tools we have developed to

assess the global vulnerability of di↵erent systems to pathogen introduction, focusing

on Italian cattle trade movements, and on a network of human sexual contacts. Data

collection strategies often inform us only about past network configurations, and that

limits our prediction capabilities. We face this by developing a data-driven methodology

for predicting targeted epidemic that relies only past contact data, and apply to real and

synthetic networks. Our work provides new methodologies for assessing and predicting

the risk associated to an emerging pathogen, both at the population scale and targeting

specific hosts. We develop and test them in a wide variety of contexts, making our

results widely applicable.
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Introduction

Infectious diseases represent a major burden on welfare and society. They directly

threaten human health, and impact economy and development. In developing coun-

tries, they represent the top cause of death [4], and pose a particularly heavy burden on

child health, with pneumonia, diarrhea and malaria together accounting for more than

60% percent of child deaths [5]. Even in the developed World, where most deaths are due

to non-infectious diseases, the situation may worsen in the near future. Bacteria strains

are developing antibiotic resistance at a quicker pace than we can come up with new

drugs [6], and vector-borne diseases (for instance, Dengue Fever [7]) are now reaching

areas in which they were previously absent, as climate change impacts vector ecology.

Finally, the ever more globalized World we live in is prone to breakouts of pathogens

with pandemic potential, like SARS (2003) [8–10], H1N1 flu (2009) [11–15], or, more

recently MERS CoV [16–19] and Ebola [20–23]. In the fight against infectious diseases,

mathematical models have become an important tool, as they provide tools to reduce

the number of infections, optimally allocate limited resources, react promptly to emer-

gencies, and implement targeted containment strategies. Ever since their introduction

in 1927 by Kermack & McHendrick [24–26], these models are based on the assumption

that disease transmission and progression can be translated into a relative simple set of

mechanistic rules that can be adapted to pathogens with very diverse pathophysiology,

clinical symptoms, and causative agents (bacteria, viruses, etc.). The epidemic is then

an emerging collective behavior of the “microscopic” interactions among hosts [27–31].

This framework has allowed researchers to apply and develop several tools and tech-

niques borrowed from mathematics and statistical physics. Up until two decades ago,

however, the use of mathematical models in public health was limited by the lack of

data concerning human interactions. Simplified and coarse-grained assumptions limited

model applicability to real scenarios. The picture has dramatically changed in the last

years, with the outbreak of data science. The development of both new hardware and

software technologies has made it possible to track contacts and transports relevant for
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the spread of diseases in an extremely accurate and almost unsupervised way. We now

have detailed records of how people interact in di↵erent settings, and at di↵erent scales,

from face-to-face proximity encounters [32–45], to mobility patterns [46–58], to sexual

contacts [59, 60]. Detailed data do not concern only human activities: we can now keep

track of livestock displacements between farms, which are spreading routes for many

diseases threatening animal health, economy, and ultimately human health [61–66].

This “data deluge”1 has radically transformed infectious disease modeling, proving

to be both a huge resource and a great challenge. High resolution data have made it

possible to model entire populations down to single individuals [67–73], providing tailored

real-time predictions of epidemic outbreaks [15, 74, 75]. These simulations schemes are

e↵ective and perform well in specific settings, but cannot provide a general understanding

of the unfolding of epidemic processes. New theoretical tools have been developed in

order to deal with the complexity of interaction structures, treating diseases as dynamic

processes on networks [76–83]. Networks have indeed become a common and successful

tool to model populations in terms of nodes (hosts) and links (interactions among hosts)

of a graph [84–86]. This has made it possible to use all the tools already developed in

statistical physics, graph theory, and dynamical systems, to the context of infectious

diseases.

An important feature emerging from this huge amount of data is that contacts are

not fixed in time during the spread of the disease, but evolve in time. The complex

interplay between network evolution and disease di↵usion has been proven to impact the

outcome of the epidemic process, in several di↵erent contexts [39, 87–92]. This is due

to time correlations between contacts, that determine the shape and amount of routes

along which the disease can spread, and make traditional risk proxies, developed for

static contact patterns, insu�cient to characterize this new phenomenology [64,93].

As a result, a methodology that aims at assessing the threat a specific pathogen poses

to a population must account for the temporal evolution of contacts within that popula-

tion. This calls for new theoretical tools to handle the interaction between the dynamics

of network evolution, and the spread of the pathogen. Temporal networks represent an

e↵ective framework to model time-evolving contact patterns [94–96], but their interplay

with spreading dynamics has so far been investigated only though numerical approaches,

or in controlled settings [92,97–101]. In the first part of our work we focus on assessing

1The data deluge, The Economist, 25th February 2010.
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the vulnerability of a system to a disease, in term of its epidemic threshold, i.e., the

critical value of disease transmissibility above which the epidemic breaks out. We in-

troduce a new way of representing the unfolding of a disease on a time-evolving contact

structure in terms of a multilayer network [102,103], and use it to analytically compute

the epidemic threshold on a generic temporal network. Our computation can account for

various disease features, like immunity, waning of immunity and latency period. We then

focus on particular datasets that carry a notable epidemiological relevance. Specifically,

we provide a comparative analysis of the network of cattle trade movements in three

European countries, highlighting the structural features that can impact the spread of

an epidemic. In the last part of the thesis we develop a risk assessment analysis on these

specific datasets, focusing on particular classes of diseases. Thanks to our theoretical

findings, we can use the threshold as a measure of global network risk. Then, we focus

on a more targeted, host-centered, risk analysis. Given that, for many systems, contacts

are not reported in real time, the datasets that are commonly available inform us on

the structure of contacts in the past, and that limits our prediction capabilities. We

thus develop a data-driven methodology that, in case of a future epidemic outbreak of a

certain pathogen, is able to provide the risk a particular host will be hit, by relying only

to past contact data. We apply this methodology to di↵erent real scenarios, and develop

a generative network model to test which structural features of contacts determine the

performance of our prediction.

The goal of this thesis is thus to present new tools to assess and predict the risk asso-

ciated to the introduction of a pathogen onto a population, accounting for the dynamic

evolution of the pattern of contacts among hosts. We do that through new analytical

tools that are able to handle the interplay between network and disease dynamics, and

through data-driven analyses and models. The variety of datasets and disease models we

consider, albeit being a simplification of the actual progression of real pathogen, makes

our findings applicable to various contexts and scenarios.

In Chapter 1 we introduce the basics of epidemic modeling and networks. We also

define the epidemic threshold, and show how to compute it in di↵erent settings. In

Chapter 2 we define temporal networks, their epidemiological relevance, and their repre-

sentations. We also introduce some datasets that will be used in the following chapters.

We then describe some generative models and reference models for temporal networks.

In Chapter 3 we develop our methodology for computing the epidemic threshold on

temporal networks. We extend it to generic networks, and di↵erent disease models.
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We also assess the impact of temporal aggregation of contact data, and the length of

the period of data collection in empirical settings. This chapter includes two research

articles: Analytical computation of the epidemic threshold on temporal networks, pub-

lished on Physical Review X [1], and Infection propagator approach to compute epidemic

thresholds on temporal networks: impact of immunity and of limited temporal resolution,

currently under review [3]. In Chapter 4 we provide a comparative analysis of cattle dis-

placement networks in three European countries. In Chapter 5 we compute epidemic risk

in real settings, cattle trade movements (Chapter 4) and sexual contact network (Chap-

ter 2 and [60]). In this chapter we develop and apply our framework for computing node

epidemic risk from past contact data, contained in our article Predicting Epidemic Risk

from Past Temporal Contact Data, published in PLoS Computational Biology [2].
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1. Epidemics on static networks

Infectious diseases vary widely in their pathophysiology, clinical symptoms and etiology,

resulting in diverse progression and transmission patterns. Viral diseases, like influenza,

measles, chicken pox, usually confer permanent immunity after recovery, while bacterial

diseases (tuberculosis, syphilis) allow multiple re-infections of the same host. Many

diseases are transmitted by direct contact between hosts, while others require vectors,

such as malaria or bluetongue. Some, like cholera, require the ingestion of contaminated

water and food. Such diversity calls for modeling approaches that are general and

versatile enough to be adapted to each specific ailment, and still be a realistic description

of its epidemiological features [104]. This is commonly achieved through compartmental

models, which will be the first argument of this chapter. We will then explain how to

account for the contact structure of the host population, and how compartmental models

are adapted to complex population structures. Finally, we will investigate what are the

conditions that, following a pathogen introduction in a susceptible population, lead to

an epidemic outbreak. We will formalize this concept in terms of epidemic threshold,

and show how to compute it for several contact structures.

1.1. Compartmental models

In principle, the mathematical description of an infectious disease can explore di↵erent

scales, from describing pathogen population dynamics within a host, to ecological mod-

els that predict incidence in a population. We are interested in modeling the spread of a

disease on a host population, so we consider the health status of a host as the elementary

building block of our modeling approach. In particular, we assume that the health status

can be described as a discrete set of states (compartments). The two compartments that

characterize every epidemic model are susceptible (S) to being infected, and infectious

(I), i.e., infected and contagious. Another compartment commonly used is recovered (R),

i.e., immune to the disease. Hosts in the population are divided into compartments, ac-
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cording to their health status [28,105], and disease progression is modeled in terms of a

set of interaction and transition rules among compartments. The simplest conceivable

model is the susceptible-infected (SI). In the SI model, infectious hosts infect their sus-

ceptible neighbors with probability �, and no recovery is possible. Despite its extreme

simplicity, the SI model can be used, for instance, to approximate the initial stage of an

outbreak (Section 5.3 and [2]). Other widely used models are the susceptible-infectious-

susceptible (SIS) and susceptible-infectious-recovered (SIR) models. In both models,

infectious hosts infect their susceptible neighbors with probability �. In addition, they

recover with probability µ, going either back to the susceptible state (SIS), or to the

recovered state (SIR). In the SIR model recovered hosts are immune to re-infection.

Probabilities are usually defined in discrete time; when time is continuous we have rates

instead of probabilities, i.e., probabilities per infinitesimal time interval (see also Sec-

tion 3.3 and [3]). The success of these two models is due to two aspects. Firstly their

simplicity and their small number of free parameters make them analytically treatable,

and their results provide a general understanding of infection dynamics. Secondly, they

have proven adequate to model a wide range of diseases under simplifying assumptions.

SIS model applies quite well to bacterial infections (see, for instance, hospital acquired

MRSA [45], or STD’s [91]), while SIR model works well with viral diseases, like flu,

chicken pox [28], cattle Foot-and-Mouth [106]. More elaborate compartmental models

account of more complex infection dynamics. Among them, we describe two that we

will use in this thesis. The first is the SIRS model. Its progression is analogous to SIR

model, but recovered individuals lose their immunity with probability !, going back to

susceptible state. SIR model can indeed be seen as a particular case of SIRS, when

! = 0. The last model we use is the SEIS model. Many ailments are characterized by

a latency period, which is a time lag between being infected, and becoming infectious.

We can take this feature into account by adding a new compartment to the model, E

(Exposed). A susceptible agent is infected by an infectious neighbor, and becomes ex-

posed. It then turns infectious with a probability ✏. From then, the progression is the

same as the SIS model. Figure 1.1 schematically summarizes all the models we use in

this thesis. For a detailed description of compartmental models we refer to traditional

textbooks [27–31].
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Figure 1.1.: Compartmental models. The first row describes the four compartments used.

Susceptible is in blue, infectious in red, recovered in gray, and exposed in yellow.

Dynamics of SI, SIS, SIR, SIRS and SEIS is then described. Arrows showing

transitions from one compartment to the other are pictured with the respective

probability. The red (infectious) smaller point close to � indicates that infection

requires interaction with an infectious agent. All other processes are spontaneous

one-body transitions.
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1.2. Homogeneous mixing

In general, the choice of compartmental model, and the values of the parameters, are

informed by the epidemiology of the specific disease under study. The goal of infectious

disease modeling is to uncover and characterize the macroscopic behavior emerging from

applying such model to a population interacting in a certain way. In order to do that, it

is necessary to have information about the structure of contacts along which the disease

spreads.

The simplest framework is homogeneous mixing, which assumes no specific contact

structure. Every host in the population has the same probability of being in contact

with any other host. Despite its simplicity, homogeneous mixing still represents a suc-

cessful approximation in many contexts, especially within patches of meta-population

models [15, 107–111].

The traditional way to couple compartmental models to homogeneous mixing is repre-

sented by deterministic di↵erential equations, interpreting pathogen spread as a reaction

process. These equations compute the number of hosts in a compartment as a function

of time. Let S(t), I(t), R(t) be the number of susceptible (infectious, recovered) individ-

uals at time t. We call N the population size, and k the number of contacts every host

establishes. The equations of the SIS model are

8

<

:

Ṡ = ��k

N

SI + µI;

İ = �k

N

SI � µI.
(1.1)

For the SIR model are instead
8

>

>

>

<

>

>

>

:

Ṡ = ��k

N

SI;

İ = �k

N

SI � µI;

Ṙ = µI.

(1.2)

Last line in both Equation 1.1 and Equation 1.2 is redundant if we assume a fixed

population (Ṅ ⌘ 0).

Deterministic di↵erential equations, however, have two important limitations. They

treat the number of infected agents as a continuous variable, and they do not account for

stochastic e↵ects. In other words, they do not consider hosts as individual entities, which

have a certain probability of transmitting to a contact, or change infection status. As a

result, di↵erential equations produce accurate predictions only in large populations (in
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the limit N ! 1). Real populations, however, often cannot be treated as infinite, and

stochastic e↵ects kick in. They not only quantitatively change the predictions, but have

conceptual implications in defining what we mean by the persistence of an epidemic.

One way to account for stochastic e↵ects in the framework of homogeneous mixing is

through branching processes [112–114]. In a SIS branching process, any infectious host

in a given generation produces a random number of infectious hosts, sampled from a

given distribution, which make up the next generation. In practice we seed a certain

number of infectious hosts (first generation), they then will produce a certain number

of infectious (second generation), and so on.

1.3. Networks

Epidemiologists have been reconstructing who had been in contact with whom during

a particular time frame through surveys and questionnaires, asking, for instance, to

list list all people you had met that particular day. This strategy has been used for

di↵erent types of contacts, like face-to-face proximity [115–120], sexual encounters [121],

and needle share among injection drug users [122–124]. These data allowed researchers

to uncover features of human interactions, which prompted the need of going beyond

the homogeneous mixing assumption. Researchers found out that these these complex

contact structures could be represented as networks [76, 80, 82,83,125,126].

A network is a representation of an interacting population, in terms of a mathematical

entity, the graph [84–86,127,128]. A graph is composed of a set of nodes (vertices), and

links (edges) that connect pairs of nodes. In our context, nodes represent the hosts of

our population, and links represent the interactions relevant to the spread of the disease.

The first elementary concept that arises is the one of neighbor and neighborhood. Two

nodes are neighbors if there is a link among them, and the neighborhood of a node is

the set of its neighbor nodes. Networks can be undirected, when links represent mutual

interactions, or directed, like in the case of transport networks. In other words, in

directed networks the proposition “i is contact with j” does not imply “j is contact with

i”. Furthermore, links can be binary relationships, or weighted by an intensity factor,

modulating force-of-infection (weighted networks [128]). One of the advantages of the

network approach is that a graph has a natural algebraic representation in terms of

adjacency matrix [129, 130]. Given a network with N nodes labeled as i, j = 1 · · ·N , its

adjacency matrix A has entry A
ij

= 1 if i is connected to j, and zero otherwise. If the
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network is undirected, then A is symmetric (A = A†); if the network is weighted, A
ij

can

assume values other than 0, 1, encoding link weights. One of the most important graph-

theoretical measures is degree of a node [80], i.e., the number of connections this node

establishes with other nodes. For directed networks, we discriminate between incoming

and outgoing degree, and for weighted networks we also introduce strength of a node,

i.e. the sum of the weights of its links. Networks are often characterized in terms of

their degree distribution, i.e., the statistical distribution of node degrees. When nodes

establish links randomly, the resulting degree distribution is Poisson-like, with small

dispersion around a mean value [80, 128]. On the other hand, networks with deeply

non random connection patterns exhibit heterogeneous degree distributions, with large,

sometimes diverging, variance. The most popular heterogeneous distribution in this

context is the power-law P (k) ⇠ k�� [131,132], as many real networks are found to have

degree distribution closely related to it. We summarize essential definitions of network

theory in Appendix A.1. For a detailed introduction to networks, we refer to the books

by Newman [80] and Barabási [83].

1.4. Epidemics on networks

In order to model the spread of a disease on a network, we choose the appropriate

compartmental model. Then we infect a limited set of nodes (epidemic seeds). Assuming

discrete time, at each time step all infectious nodes infect their neighbors with probability

equal to disease transmissibility � (see Figure 1.1). At the same time, in each node the

disease progresses as required by the chosen model. For instance, in the case of SIR

model, at each time step every infectious node recovers with probability µ.

Many features of real interaction networks have proven to dramatically impact the

way diseases spread. The simplest, yet extremely crucial, among these features is the

presence of hubs (large degree nodes). Heterogeneous degree distributions generally

make the network more vulnerable to disease invasion and persistence, with respect to

homogeneous mixing [76,133–136]. As soon as the pathogen is able to infect the hubs, it

gets access to a large part of the network, making its containment more di�cult. Hubs

also make the network more vulnerable to disease invasion (see [133] and Section 1.5.2),

and more di�cult to immunize. Strategies based on homogeneous mixing predicate that

as soon as you immunize a critical fraction of the population, e.g. through vaccina-

tion, the disease is no longer able to turn epidemic. This phenomenon is called herd
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immunity [137,138]. For homogeneous mixing this fraction is lower than 100%, and herd

immunity can e↵ectively be reached [28, 76]. In heterogeneous networks, instead, hubs

have a higher spreading potential than the other nodes, and we will not be able to im-

munize the population, unless we target explicitly those hubs; random vaccination would

require a coverage approaching 100% to reach herd immunity [139]. On the contrary,

immunization strategies targeting preferentially hubs can e↵ectively immunize the pop-

ulation [76,134]. Several methodologies for achieving this goal have been proposed, both

assuming a global knowledge of the network [139], or a limited local knowledge [140].

Heterogeneous degree distribution is not the only feature that takes real social net-

works far from the homogeneous mixing assumption. Several other characteristics have

been uncovered over the years, and have a great influence on how disease spread. In

some networks, nodes with high degree have a higher than average probability of be-

ing in contact. These are called assortative networks [80]. If on the other hand they

have a lower than average probability, they are disassortative [141]. Researchers have

shown that assortative networks, as many social networks actually are, are more di�cult

to immunize [141, 142] than neutral or disassortative networks. The e↵ect is opposite

for the spread of cyber worms on the World Wide Web, which is disassortative [141].

Link weights have an impact on how diseases spread, too, as these change force-of-

infection [143,144]. Weights can represent the duration of the contact [36,38], or, in case

of transport networks, mobility fluxes [64, 71, 111]. Finally, clustering and community

structures influence the spread of epidemics, by determining the conditions for global

invasion, and the speed at which disease propagates [33].

1.5. The epidemic threshold

When a pathogen is introduced into a susceptible population, either it will cause an

epidemic outbreak, or it will quickly go extinct. The outcome will depend both on disease

features, and on the structure of contacts between hosts. Researchers in computational

epidemiology aim at finding a way of discriminating these two conditions, in terms of

the intrinsic transmissibility � of the pathogen. Systems show the existence of a critical

value �
c

of transmissibility, called epidemic threshold [30, 76], above which the disease

is likely to turn epidemic. Conversely, when � < �
c

, the outbreak will likely die out.

Finding �
c

for a given system (i.e. population of agents) is crucial, as it allows both to

predict the outcome of a potential pathogen introduction, and to assess the performance
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of prevention strategies. The definition of epidemic threshold is intuitively clear and

simple; its mathematical formulation, on the contrary, is not always straightforward,

and require caution. We need do distinguish between disease models that allow for an

endemic state, and models that do not. In the former category falls the SIS model and

in general all models that do not confer permanent immunity: after an initial transient,

the number of infectious individuals will saturate around a steady value. In the latter

category we have the SIR model, and all models giving permanent immunity. Every

infectious agent will eventually recover, until no more infections occur. Therefore, we

will talk about SIS-like and SIR-like models [126].

For SIS-like models the epidemic threshold discriminates between the existence of an

endemic state (above threshold), and the condition where the only stable steady state is

the disease-free state, when there are no infectious agents (below threshold) [126, 145].

For SIR-like models, instead, the threshold is related to the final attack rate, i.e. the

total fraction of agents that will have been infected during the whole course of the

epidemic [126,146]. SIR-like models above threshold will lead to a large final attack rate,

while below threshold the attack rate will be negligible. Despite the epidemic threshold

bearing di↵erent meanings in these two di↵erent families of models, conceptually it

always discriminate between the epidemic and the extinction scenarios, and for this

reason it represents a valid tool for assessing the vulnerability of a population to pathogen

introduction. From the mathematical point of view, too, the epidemic threshold has a

unified interpretation in terms of phase transition [147]. The two phases are clearly

disease extinction and epidemic outbreak. By tuning model transmissibility (control

parameter in the terminology of statistical mechanics) we pass from one phase to the

other each time we cross the epidemic threshold. As we have seen, the measure that

tells us in which phase we are (order parameter) is di↵erent for the two families of

models. For SIS-like models it is the average fraction of infected agents once the disease

reaches the endemic state, while for SIR-like models it is the final attack rate. The

generic phase diagram is schematized in Figure 1.2. We observe the typical behavior

of a phase transition: when one reduces transmissibility, the fraction of infected goes

down, up to a tipping point where it becomes zero. Below this point it continues to be

zero. Real systems, however, rarely show phase diagrams as “clean” as the one shown in

Figure 1.2, as finite-size e↵ects kick in, making the threshold more di�cult to define and

compute [148,149]. Before delving into this point, we will review the computation of the

threshold for continuous, deterministic models, for which everything is well defined.
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λ

J

Figure 1.2.: The epidemic threshold as a phase transition. The value of order parameter

J is plotted against disease transmissibility for an ideal setting. J corresponds to

the final attack rate of SIR-like models, and to the average endemic prevalence

for SIS-like models. The epidemic threshold is shown by the vertical arrow.
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1.5.1. Homogeneous mixing: R0

Equation 1.1 governs SIS dynamics in the framework of deterministic di↵erential equa-

tions. Clearly, the disease-free state I ⌘ 0 is a critical point, as İ = 0. Finding

the epidemic threshold translates into finding when such critical point is stable (below

threshold), as opposed to when a small number of infected (I(0) > 0) will bring the

system far from I = 0. We can do this through linear stability analysis [150, 151], by

keeping only terms that are linear in I, and remembering that population is constant

(S + I = N):

İ ⇡ (k�� µ) I. (1.3)

From this we directly see the critical value of the transmissibility: �
c

= µ/k. We can

generalize this result to more complex models, following the next-generation matrix ap-

proach [152]. Let us assume we have n
x

non-infectious compartments {x
i

, i = 1, · · ·n
x

},
and n

y

infectious compartments {y
↵

, ↵ = 1, · · ·n
y

}. We write the equations of a com-

pletely generic compartmental model, discriminating between infectious an non-infectious

compartments:
8

<

:

ẋ
i

= f
i

(x, y),

ẏ
↵

= g
↵

(x, y),
(1.4)

We concentrate on the equations for the infectious compartments, and note that we can

split g
↵

(x, y) into a recovery part g
(1)
↵

(y), and an infection part g
(2)
↵

(x, y). Comparing

this to SIS model (Equation 1.1), the only equation that matters is the second one,

with g(1) = �µI and g(2) = k�

µ

SI. We now define two Jacobian matrices, one for each

component of g:
8

>

>

<

>

>

:

J
(1)
↵�

= @g

(1)
↵

@y�

�

�

�

�

dfs

,

J
(2)
↵�

= @g

(2)
↵

@y�

�

�

�

�

dfs

,
(1.5)

where both Jacobians are computed in the disease-free state (dfs), which is the equilib-

rium point that we wish to study, and where y
↵

= 0. We now define the following key

quantity:

R0 = �⇢[J (2)(J (1))�1], (1.6)

where ⇢[X] is the spectral radius of matrix X, i.e., the largest among the absolute

values of eigenvalues of X. R0 is known in Epidemiology as basic reproductive num-

ber [28, 30, 153]. Matrix J (2)(J (1))�1 is referred to as next-generation matrix [152]. R0
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is closely related to the concept of epidemic threshold, as it discriminates between the

extinction phase R0 < 1 and the outbreak phase R0 > 1, as we show in Appendix A.4.

Moreover, in some cases, R0 has an interesting and concrete interpretation, that justifies

its name. Let us consider the SIS and SIR models. They both have

R0 =
k�

µ
. (1.7)

In this case R0 is made up of 1/µ, i.e. the average infectious period, �, i.e. the rate of

transmission, and k, i.e. the average number of contacts. Therefore, R0 is the average

number of secondary cases generated by a primary case during its infectious

period, in a fully susceptible population [28,30,153]. In this sense, it is clear that

an epidemic outbreak requires R0 > 1.

The basic reproductive number has yet another interpretation: it is related to the

exponential growth of the number of infected at the beginning of the disease. By solving

Equation 1.3 we get I(t) ⇡ I(0)eµ(R0�1)t, meaning that at the initial stage the disease

grows exponentially at a rate tuned by R0 � 1.

We have shown that the framework of deterministic di↵erential equations allows a for-

mal definition of epidemic threshold, in terms of basic reproductive number. We learn

that for R0 > 1 the disease will certainly turn epidemic, while when R0 < 1 the growth

is exponentially suppressed. We have already seen, however, that this kind of approach

does not account for stochastic e↵ects, and this qualitatively changes the definition itself

of epidemic threshold. Let us examine this point through a Galton-Watson branching

process [112–114]. Let I
n

be the number of (infectious) agents in generation n. Also

let X = 0, 1, 2.. be the number of secondary cases each case generates. P (X) be the

probability distribution of such variable, with probability generating function g(s). By

definition of basic reproductive number, E[X] = R0. Let g
n

(s) be the probability gen-

erating function of I
n

. Clearly, the following relation holds: I
n+1 =

P

In
j=1Xj

, where X
j

is the o↵spring of agent j in generation n. Given that X
j

are identically distributed,

g
n+1(s) = g

n

(g(s)). (1.8)

From this relation we can compute the expectation values:

E[I
n

] = g0
n

(1) = g0
n�1(g(1))g

0(1) = g0
n�1(1)g

0(1) = E[I
n�1]R0 = I0R

n

0 . (1.9)

Where I0 is the initial number of infected. Analogously to di↵erential equations, R0 = 1

is a threshold value in the sense that discriminates the case when the average number of
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infected grows or decays exponentially. These are however only expectation values, and

do not account for stochastic fluctuations. These fluctuations influence the extinction

probability, i.e. the probability that the disease will at some point stop due to lack of

infectious hosts.

Let us call q
n

= Prob[I
n

= 0], i.e. the probability of extinction by the n�th generation.

Clearly q
n

= g
n

(0). For simplicity, we assume just one initial infected: I0 = 1. Then

the following relation holds g
n

(g(s)) = g(g
n

(s)), and we can use it to get a recurrence

relation fot q
n

:

q
n+1 = g(q

n

). (1.10)

We can find the limiting value q1 as the smallest positive root of

q = g(q). (1.11)

q = 1 is always a solution of this equation. One can show that for R0 < 1 this is also

the smallest solution: q1(R0 < 1) = 1. When the disease is below threshold, the disease

always goes extinct, as we already know from expectation values. In order to see what

happens above threshold, we assume X ⇠ Poisson(R0). Then the above equation reads

q = eR0(q�1) (1.12)

When R0 > 1, this equation has a solution in (0, 1): this means that the extinction

probability is higher than zero even above threshold. As a result, if you run your epidemic

long enough, it will always goes extinct. Therefore the epidemic threshold in stochastic

models formally does not discriminate between extinction and no extinction, but between

a phase where the disease goes extinct exponentially fast (R0 < 1), and a regime where

the time to extinction is long, and increases with R0 (above threshold) [148, 154]. In

practice the extinction time often becomes so long, that can be considered as infinite,

recovering the meaning of the threshold found with di↵erential equations. Formally,

however, the active endemic state is always metastable, as fluctuations can always bring

it to the absorbing state of no infected, which the system cannot then leave. These

fluctuations become extremely suppressed only when R0 is high, and/or the population

is large.

We mention that the basic reproduction number, despite being a key quantity in

epidemiology, remains a controversial concept, as several other methods computing it

exist, and they do not always agree with one another [153]. We do not delve into this
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subject, as it would take us far from the scope of this thesis. We use R0 only as a tool

for defining and interpreting the epidemic threshold (R0 = 1).

The branching process is useful to introduce the stochasticity into the calculations,

and see how this changes the meaning of the epidemic threshold. It does not, however,

account for many features that we need to include. Since we assumed variable X is

identically distributed for all agents, we are assuming there are no heterogeneities in

the number of contacts each agent makes. In addition, since such distribution does not

change in time, we assume each infectious agent has always access to a fully susceptible

population.

In order to overcome these limitations, we will introduce the formalism of dynamical

processes on networks.

1.5.2. Static and annealed networks

Di↵erent approaches have been developed for computing the epidemic threshold on net-

works, for the SIS and SIR models. Conceptually, they can be classified according to

their way of taking into account the structure of the network [126,136]:

quenched network The structure of the network is fixed, and expressed in terms of

its adjacency matrix. The resulting epidemic threshold is characteristic of that

particular network.

annealed network Only one (or more) statistical property of the network is relevant,

i.e. its degree distribution. The threshold is then computed over the ensemble of

all possible network configurations respecting that property.

Here we review two approaches based on annealed networks: one using di↵erential

equations [76,133], and one using percolation theory [146]. We then review one approach

based on quenched networks [155, 156], which is the most relevant to the development

of our theory.

The first approach relying on annealed networks was developed by Romualdo Pastor-

Satorras and Alessandro Vespignani [76, 133]. The threshold is computed as a function

of a given degree distribution P (k) of the network. Its original formulation requires the

absence of degree-degree correlations, but can be generalized to include them [76, 142,

157]. Its core idea is to use the same di↵erential equation approach that we have seen

for homogeneous mixing (Equation 1.1), by splitting each compartment by degree. An
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infectious node of degree k, and one of degree k0 are no longer in the same compartment,

but in I
k

and I
k

0 , respectively. This approach is called degree-block approximation, or

degree-based mean field [76,77,126], and assumes that all nodes with the same degree are

statistically equivalent. Let S
k

, I
k

be the number of susceptible and infectious nodes in

degree class k. Densitites are obtained by dividing S
k

, I
k

by the number of nodes with

degree k: N
k

.
8

<

:

s
k

= Sk
Nk

,

i
k

= Ik
Nk

.
(1.13)

The average densities are obtained through the degree distribution P (k): s =
P

k

P (k)s
k

, i =
P

k

P (k)i
k

. The system of equations governing SIS dynamics is

di
k

dt
= �k

X

k

0

P (k0|k)i
k

0 � µi
k

. (1.14)

We study this system using linear stability around i
k

= 0 (disease-free state). We wish

to determine the conditions under which initial conditions around that point will lead

to an exponentially growing outbreak. We rewrite the equations neglecting superlinear

terms:
di

k

dt
=
X

k

0

⇥

�kP (k0|k)� µ�
kk

0
⇤

i
k

0 +O(i2
k

) =
X

k

0

C
kk

0i
k

0 +O(i2
k

), (1.15)

in which we have defined matrix C
kk

0 = �kP (k0|k)�µ�
kk

0 . We assume now uncorrelated

networks: P (k0|k) = k0P (k0)/hki. For this specific case a close result can be derived.

Treatment of the correlated case can be found in [76].

If we define two column matrices: (C1)
k

= k, and (C2)
k

= kP (k), we can rewrite the

uncorrelated C matrix as C = �C1C
†
2/ hki � µ. Therefore, C has rank equal to 1, and

its principal eigenvector is C1, with eigenvalue �
⌦

k2
↵

/ hki � µ. By setting to zero the

spectral radius of C: ⇢[C] = 0, we recover the epidemic threshold:
✓

�

µ

◆

critical

=
hki
hk2i . (1.16)

Within the same framework it is possible to derive the threshold for the SIR model, too.

Taking into account the fact that a node cannot re-infect the node it was infected by,

the threshold becomes
✓

�

µ

◆

critical

=
hki

hk2i � hki . (1.17)

These result are esepecially interesting in the case of heterogeneous degree distribu-

tions. In particular, when P (k) ⇠ k�� with 2 < � < 3, the second moment of the
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distribution diverges: hk2i ! 1 for N ! 1. Vespignani and Pastor-Satorras [133]

showed that in this case the epidemic threshold vanishes in the thermodynamic limit:

(�/µ)
critical

! 0. For real systems, that are not infinite, this means that heterogeneous

networks get indefinitely more vulnerable as they get bigger, because hubs get more and

more connected, and can easily sustain an epidemic.

The second approach relying on annealed networks was developed by Mark New-

man [146]. SIR dynamics is mapped onto a percolation problem [158], with link occu-

pation probability equal to �/µ. The threshold value of transmissibility is the minimum

transmissibility value for which percolating cluster size grows as the size of the network.

The threshold is derived in terms of probability generating functions (pgf) of two prob-

ability distributions: one is the degree distribution, and one is the probability of finding

a node of a specific degree by following an edge picked at random. Newman shows that

if G0(s) is the pgf of the former, then the pgf of the latter is G1(s) = G0
0(s)/hki. Then

he demonstrates that the epidemic threshold is
✓

�

µ

◆

critical

=
1

G0
1(1)

. (1.18)

This result converges to Equation 1.17 by noting that in case of uncorrelated networks

G0
1(1) = (hk2i � hki)/hki.
Finally, we review the approach based on quenched networks. By quenching we assume

a fixed network, represented by its adjacency matrix A. Time is considered discrete, and

at each time step a susceptible node can be infected by an infectious neighbor with

probability �. Analogously, it can recover with probability µ. Each node is assigned

a binary stochastic variable X
i

, corresponding to the infectious status (X
i

= 1), and

susceptible status (X
i

= 0). Infection dynamic is translated into a discrete-time Markov

process [159, 160] with 2N possible states, corresponding to the possible infection con-

figurations. The transition matrix among all these states cannot be written in general.

For this reason, it is customary to neglect correlation among infectious statuses at fixed

time [155, 156, 161]. Let us call p
i

(t) = Prob(X
i

(t) = 1). According to this approach,

called quenched mean field, it is possible to decompose the joint probabilities in terms

of single node probabilities:

Prob(X
i

(t) = 1 and X
j

(t) = 1 and X
k

(t) = 1 · · · ) = p
i

(t)p
j

(t)p
k

(t) · · · . (1.19)

In this way the probability of a particular configuration occurring can be written in

terms of single-node probabilities p
i

(t). The advantage is that for them an evolution
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equation can be written down:

p
i

(t+ 1) = 1� [1� (1� µp
i

(t))]
Y

j

[1� �A
ji

p
j

(t)] . (1.20)

This equation is the key to finding the threshold. For that, again we study its behavior

around the equilibrium point p
i

= 0. Analogously to what we did before, we wish to

compute the minimum � for which it is no longer a stable equilibrium, leading to an

epidemic outbreak. In order to do that, we linearize the equation around p
i

= 0:

p
i

(t+ 1) = (1� µ)p
i

(t) + �
X

j

A
ji

p
j

(t) +O(p2
i

). (1.21)

This can be rewritten in matrix form, by interpreting p
i

(t) as an element of a size N

vector p(t):

p(t+ 1) =
⇣

1� µ+ �A†
⌘

p(t). (1.22)

As a result, p moves away from 0 only when the largest eigenvalue (spectral radius) of

(1 � µ + �A) is larger than 1. From this we can find the threshold condition, as the

minimum � for which the following holds:

✓

�

µ

◆

critical

=
1

⇢[A]
. (1.23)

This result, derived for the SIS model, holds for the SIR model, too. In Section 3.3 we

show that this is true for temporal networks as well.

In the quenched mean field approach, the epidemic threshold on a generic network

of both the SIS and SIR model is completely determined by the spectral radius of the

adjacency matrix.
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2. Temporal networks

In the previous chapter we have seen that the structure of human interactions emerg-

ing from survey studies exhibited complex structures, that called for new mathematical

tools: networks. Two main problems, however, a↵ect these traditional ways of collecting

contact data, and the reliability of the resulting contact networks. They are potentially

prone to several sources of bias [162–164], which must be corrected for when using these

data. Surveys make it di�cult to get fine temporal resolution. Even when they give a

good coverage of the contacts occurring within a time frame, they generally can provide

neither the exact time at which they occurred, nor the order of their occurrence. As

a result, traditionally, the temporal dimension wasn’t taken into account in modeling

the spread of a disease, simply because no fine enough data were available. In recent

years this situation has dramatically changed. We now have ways to track contacts

both in an almost unsupervised way, and with an extremely accurate time resolution.

The former feature reduces the sources of bias, as individuals are no longer asked to

report their contacts. The latter allows, for the first time, to delve into the dynamic

evolution of contact networks. Developments in both hardware and software have driven

this revolution. RIFD technology allows to record face-to-face proximity with high pre-

cision and accuracy [32, 35, 45] in several di↵erent contexts, like conferences [37, 39],

museums [41], schools [33, 34, 38, 43]. We can track contacts among patients and health

care workers in hospitals, through healthcare records [165–167] and again RFID tech-

nology [36, 40, 42, 44, 45]. Mobile communication [46–53] and transport [54–58] tracking

shed new light on the dynamics of human mobility . Internet websites, forum and social

networks can become a proxy for actual contacts, as it is the case for sexual encoun-

ters [59, 60]. In addition, contact and mobility data do not concern only our species:

we can now study livestock mobility in Europe [61–66, 168], and proximity networks of

farmed and wild animals [169–171]. This increased availability of high resolution data has

prompted the need of new theoretical research in both network science and disease mod-

eling. Researchers have shown that the interplay between network and disease dynamics
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impacts the way epidemics break out, spread and persist in a population [39,87–92], mak-

ing it necessary to find new theoretical tools that can handle these new time-resolved

data. In this chapter we will define temporal networks, and describe the issues and

challenges induced by adding the temporal dimension, in terms of their epidemiological

relevance. We will introduce di↵erent representations of temporal networks, and how we

model the spread of diseases on these new structures. We will then introduce some syn-

thetic models of temporal networks, some null models, and some real contact datasets.

All of them will be used in the following of our thesis.

2.1. Definition and basic properties

When contact patterns evolve in time, we need to go from static representations in

terms of networks, to temporal networks [94, 95], i.e., networks whose links activate and

deactivate in time. In terms of adjacency matrix (Appendix A.1), we go from a single

matrix A for a static network, to a matrix which is function of time A(t). Hence, while

(static) networks are purely topologic objects, temporal networks have an embedded

dynamic process driving link evolution in time. For this reason some call them dynamic

networks. We stress that while the definition of temporal network is a straightforward

extension of the definition of (static) network, the emerging properties of these new

objects are conceptually and phenomenologically di↵erent, and cannot be in general

recovered as a simple extension of what we know about static networks. The first

conceptual problem arising from the temporal dimension is the definition of path and

reachability. A path on a static network is a set of edges such that an edge ends where

the next edge in the path begins. Paths matter a lot, as far as the spread of disease

is concerned, because if there is a path going from node i to node j, it means that i

can “influence” the state of j. To be more concrete, i has a possibility of infecting j if

and only if a path from i to j exists. If the static graph is undirected, then every path

connecting i to j will also connect j to i (see Figure 2.1A). This symmetry allow us to

embed a metrics on the network, i.e., a rule for computing distances among nodes. We

can do it only on static undirected networks because a metrics must be symmetric in its

arguments: the distance from i to j must be the same as from j to i. In static directed

networks this is no longer the case, as it may even occur that, while j is reachable from

i - i.e. there exists a path from i to j - i is not reachable from j (see Figure 2.1B). As a

result, directed networks are not metric spaces, and even reachability is not commutative.
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It is, however, transitive: if i ! j, and j ! k, then i ! k (see Figure 2.1B), where

we use ! in the sense can reach. Things get more complicated when we deal with

temporal networks, for which none of the above properties holds. This happens because

paths need to respect one more constraint: they need to be time-respecting [172]. Two

links, connecting i and j and j and k, represent a path from i to k clearly only if i� j

activates before j � k as in Figure 2.1C, otherwise, nothing in i will be able to reach k

(Figure 2.1D). As a result, not only it is impossible to define a metric, but reachability

is in general not transitive, as the chain i ! j ! k implies i ! k only if paths are

arranged in a time-respecting way. These complex features of temporal networks matter

a lot to us, because the spread of a disease on a network structure can be examined in

terms of infection paths, which themselves must be time-respecting.

Time – the new ingredient of temporal networks – can be treated as a continuous or

a discrete variable. If time is discrete, the temporal network is a sequence of snapshots

which themselves can be seen as static networks. Assuming discrete time can be seen as

an approximation, but it is both practically sound, and theoretically convenient. Indeed,

most part of empirical datasets regarding temporal networks are intrinsically discrete.

Take, for instance, livestock movements [61–66]; animal displacements are recorded on

a daily basis, so the network naturally evolves in terms of daily snapshots. Analogously,

proximity data recorder with RFID technology have an intrinsic time scale determined,

which is around 20s to 30s [32, 35, 45], and below which it cannot detect contact with

high enough precision and accuracy. As a result, discrete time becomes a natural choice

in many empirical settings. For this reason, the theory we will develop in Chapters 3,5

assumes discrete time. There are, nonetheless, some contexts where this assumption

does not hold. For this reason we will also extend our findings to the continuous-time

case (Section 3.4).

2.2. Representations

Following [96], we divide the representations of temporal networks in lossless or lossy.

Lossless representations carry all the information about the temporal network, and in

practice we can identify them with the network itself. In lossy representation some

information about the original temporal network is lost. Here we describe only the

representations that are relevant for our thesis. For an exhaustive review we refer to [94,

96]. The most common lossy representation consists in projecting all the temporal
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Figure 2.1.: Path and reachability in static and temporal networks. We consider a

network of 3 nodes: i, j, k. A is a static undirected network. B is a static directed

network. C and D are two temporal networks composed of two discrete-time

snapshots. They comprise the same snapshots, but the order is reversed.
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dynamics onto a static, aggregated, network. Here we consider two aggregation schemes,

which we call hom and het, following the notation in [39]. hom aggregation consists

of building a single static network where two nodes are linked if they are in contact at

least once in the temporal network. het’s topology is the same as hom’s, but het links

are weighted by the amount of time they are in contact in the temporal network. het

aggregation, despite losing all temporal correlations, can account for the fact that some

ties are stronger than others, as they occur more frequently, or last longer. Researchers

have compared the performance of these aggregation schemes in real settings [39], and

provided theoretical evidence [173] of how heterogeneous tie strength can influence the

way diseases spread. We study how well these aggregation models can be used to compute

the epidemic threshold in Section 3.3 ( [3]). Other studies have put forward more complex

aggregation schemes [174]. They are designed to perform optimally in specific settings,

where they can actually retain a large amount of meaningful structural information

relevant to the spread of diseases. They are however out of the scope of this thesis.

Another static, lossy representation is the accessibility graph [94, 96, 175–178]. An

accessibility graph is a directed graph in which a link going from i to j exists if there is

a time-respecting path from i to j. It can be unweighted, or weighted by the number

of time-respecting paths. Accessibility graph can be interpreted as a single static entity,

encoding the whole temporal network, or as a growing object, containing only the time-

respecting paths present up to a certain time. This is what Lentz and collaborators call

unfolding accessibility graph [179]. Unfolding accessibility is of particular importance

to us, as it is related to our methodology for computing the epidemic threshold on

temporal networks, described in Chapter 3 and [2, 3]. In [179] the authors argue that

the adjacency matrix accessibility graph, and in particular its time evolution, can be

used to characterize the temporal network. In particular, they are able to recover the

distribution of shortest path lengths, and provide a measure of how good the aggregated

representation of the network is, in terms of how many paths present in the aggregated

network are actually present in the temporal network. We report here the definition of

the unfolding accessibility matrix as in [179].

P
t

=
T

Y

h=1

(1 +A
t

) . (2.1)

Time is assumed discrete, and A
t

is the adjacency matrix of tth snapshot of the tem-

poral network. More precisely, in [179] the authors are interested in the unweighted
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version of the accessibility graph, so addition and multiplication should be intended as

boolean operators: + ! OR, · ! AND. In [1, 3] (Chapter 3), we compare it to our

infection propagator (Equation 3.2), and see that they share some common properties.

In particular we will show that the accessibility matrix is a special case of our infection

propagator, in the case of deterministic disease di↵usion. The definition of accessibility

matrix arises from a well known property of adjacency matrices, namely that (A
t

A
t+1)ij

counts the number of paths that start at node i at time t and end in node j at time t+1.

Moreover, the presence of the identity matrix in Equation 2.1 accounts for the fact that

paths can contain waiting times. In other words, if we imagine a path as a route of a

walker, without the identity term such walker would have to move from node to node at

each time step. The identity terms allows it to stay still in one place indefinitely.

The need to add this identity term arises from an underlying conceptual di↵erence

between a path on a static network, and a path on a temporal network. A path on

a static network is a purely geometric object, just as a curve joining two points on

a plane. We have seen, on the other hand, that a temporal network is defined as a

dynamic process. Hence, a temporal path from i to j can only be defined by propagating

something from i to j according to some dynamical rules, like a random walker, or a

spreading process. This apparently idle subtlety is the reason behind the representation

we will use to compute the epidemic threshold on temporal networks, in which we merge

network evolution and disease di↵usion in a single dynamic process (Section 3.1).

We now turn to describing two lossless representations, which retain all the information

of the temporal network. The first, most natural one, is the sequence of snapshots. Given

a discrete-time temporal network of T time steps, we represent the links active at each

time step as a static graph. The temporal network thus becomes a ordered sequence

of graphs, or, algebraically, an ordered sequence of adjacency matrices {A1, A2, · · ·AT

}.
The second is the multilayer representation, which retains a special importance for the

development of our work.

A multilayer network is a network whose nodes can be grouped in di↵erent subsets

(layers), with intra-layer and inter-layer connections having a di↵erent meaning [103].

Layers, too, usually carry a meaning beyond network topology; they can for instance

represent di↵erent types of social interactions [180–182]. A temporal network formally

becomes a multilayer network when we consider time snapshots as layers, with a copy

of each node appearing in every layer. Given that multilayer networks can be handled

using tensor algebra [102], we can define an adjacency tensor of a temporal network by
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adding two “time indices” to the adjacency matrix, making it a rank 4 tensor. A
ts,ij

encodes the value of the link between i at time t and j at time s. Using the definitions

in [102], we provide a rigorous definition of this tensor in Appendix A.2. The natural

question that now arises is how to translate the links of the temporal network into the

multilayer object. Following the nomenclature defined in [103], we can find in A
ts,ij

three

di↵erent types of links, described in Figure 2.2. The most common way to proceed is to

map the link of each snapshot onto the corresponding layer, so that each layer, with its

intra-layer links, is a static representation of that snapshot. Then, in order to represent

the temporal flow, each node is connected to its copy in the next layer through a inter-

layer diagonal link. This representation has for instance been used to find communities

in temporal networks [183–185]. The drawback, however, lies again in the fact that the

multilayer network is a static geometric entity, while the temporal network is a dynamic

process. For this reason, there is not clear way to di↵erentiate – with di↵erent weights

– inter-layer links representing temporal flow, to intra-layer links representing contacts.

With no other information at hand, therefore, the intensity of inter-layer coupling must

be arbitrarily fixed, or explored. In Chapter 3 we introduce a novel multilayer mapping

that jointly represents both the temporal network and the spreading process. We will

see that this merging removes this ambiguity in the coupling, as the disease itself fixes

the value of all the coupling parameters.

2.3. Statistical properties

So far, we have dealt with topological features of temporal networks and their mathe-

matical representations, in terms of their impact on epidemic spread. In many contexts

we do not have, or we are not interested in, the exact structure of a network, but just

the statistical distribution of some microscopic properties, and want to study how they

influence di↵usion. In the context of static networks, researchers have characterized the

role of di↵erent centrality measures, like degree, betweenness, clustering. They have

shown how di↵erent distributions of these quantities alter the epidemic outcome. Doing

the same with temporal networks is not trivial, because one needs to find centrality mea-

sures that work for temporal network. A simple generalization of tools used in temporal

network does not always lead to some meaningful result. Let us consider degree, for

instance. Defined as the number of contacts, now degree changes in time. Then there

is also the aggregated degree, which can be either the total number of connection made

39



Eugenio Valdano

intra-layer
inter-layer diagonal
inter-layer nondiagonal

Figure 2.2.: Temporal network as a multilayer object. We represent a temporal network

of 3 nodes and 2 time steps. We picture the three possible types of links.

Intra-layer links (solid black) correspond to terms A
tt,ij

of the adjacency tensor.

Inter-layer diagonal links (black dashed) correspond to A
ts,ii

terms. Inter-layer

non-diagonal (red dashed) correspond to terms A
ts,ij

, with both t 6= s and i 6= j.
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(het), or the number of nodes met at least once (hom). These measures, however, have

proven to be ine↵ective in some contexts, as they say nothing about the epidemic risk.

This e↵ect visible, for example, in livestock networks, where animal holdings change

their number of contacts over time so dramatically, that hubs can become poorly con-

nected nodes in a short period, and vice versa, with no easily predictable patterns. That

makes their instantaneous degree di�cult to predict, and their aggregated degree not

representative of their behavior [64]. As a result, we clearly need new centrality mea-

sures that account for the timely behavior, and can be used as simple risk factors. In

the context of information di↵usion, Miritello et al. [186] define social strategy using

both instantaneous degree and aggregated degree [186]. Let us consider a discrete-time

temporal network of T snapshots. In [186] they fix a time window of �, and a time t.

We aggregate the network in the interval [t� �, t], following the het scheme. For every

node i we consider k
i

and s
i

as its degree and strength, respectively (see Appendix A.1

for definitions). Social strategy �
i

of node i at time t, and with time window �, is then

defined as

�
i

(t) =
k
i

s
i

. (2.2)

This is the definition we will use in this theses, and it is analogous to the one introduced

in [186], except for a normalizing factor �. � ! 0 means that the node makes almost

all its contacts always with the same set of nodes, while the opposite regime, � ! 1

characterizes a node which changes its neighbors often. Social strategy is thus able to

discriminate between a memory-driven behavior, and an exploratory one. We will use

this measure in Section 3.3 and [3], to measure the social behavior of students in a high

school (Section 2.4).

In Section 5.3 and [1], when dealing with two datasets, Italian cattle trade movements

(Chapter 4) and human sexual contacts (Section 2.4), we introduce a novel measure:

loyalty. Loyalty, like social strategy, aims at assessing node memory. However, while

social strategy is averaged over a time window, loyalty quantifies the behavior of a

node from one snapshot to one that immediately follows. We demand this because, as

we will see, we aim at providing a risk prediction methodology that requires the least

amount of past contact data, as we usually do not have a long time window to exploit.

Specifically, loyalty measures the fraction of preserved neighbors of a node for a pair of

two consecutive network configurations in time. Let us consider snapshots t and t + 1,

and let Vt

i

be the set of neighbors of node i in snapshot t. Then loyalty of node i from
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time t to time t+ 1 (✓t,t+1
i

) is defined as the Jaccard index between Vt

i

and Vt+1
i

:

✓t,t+1
i

=

�

�Vt

i

\ Vt+1
i

�

�

�

�Vt

i

[ Vt+1
i

�

�

(2.3)

Loyalty takes values in [0, 1]. ✓ = 0 means no neighbors are retained, while ✓ = 1 means

that the node keeps exactly the same neighbors from t to t + 1. In the case of cattle

trade network, which is directed, we choose to consider in-neighbors of i, i.e., nodes from

which i buys cattle from. In this sense we can interpret “loyalty” as the willingness of

farm i to keep buying cattle always from the same providers. In addition to Jaccard

index, loyalty can also be expressed in the adjacency matrix formalism, as follows:

✓t,t+1
i

=

P

j

(A
t

A†
t+1)ji

P

j

h

A
t,ji

+A
t+1,ji � (A

t

A†
t+1)ji

i . (2.4)

2.4. Datasets

We introduce here some datasets recording high-resolution host interactions, which are

naturally modeled as temporal networks, and which we will use in this thesis. They

cover di↵erent types of interactions, all extremely relevant from the epidemiological

perspective. We present two datasets recording human proximity interactions, which are

a potential route for the spread of respiratory viruses like flu [38], or bacterial infections

that can be transmitted through direct contacts, like Staphilococcus Aureus [45, 187].

We then describe a network of sexual contacts, through which we can study study the

spread of Sexually Transmitted Diseases (STDs), like syphilis (Section 5.2). We will

not limit ourself to the human species. We will present also the network of cattle trade

displacements in three European countries, which is extremely important for the spread

of diseases among farmed animals. Given the novelty and length of this analysis, we will

devote an entire chapter to it (Chapter 4).

Face-to-face interactions make use of Radio Frequency Identification (RFID) tech-

nology [32]. Individuals wear RFID tags on their chest. These tags can communicate

among themselves and with antennas by exchanging wave packets in the microwave

band. Whenever two tags are in contact, they signal their proximity to the closes an-

tenna, which records the identity of the interacting tags and the time. Wave packet

intensity is purposely low, so that tags record mutual proximity only when they are

closer than approximately 1m. Moreover, water in human body is able to shield wave
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packets completely, so that only face-to-face proximity is detected. This technology

works best in closed environments, like schools [33, 38, 43], conferences [37, 39], o�ces,

museums [41], hospital wards [36, 42, 45], where rooms can be equipped with receiver

antennas. Time evolution of these networks is intrinsically discrete, as a certain number

of wave packets must be received in order to confirm the statistical significance of the

contact, with respect to noise. Time resolution is however generally high, around 20s.

In our works we use

ht09 Face-to-face interactions during a scientific conference, recorded by the Sociopat-

terns1 group [37] (see Figure 2.3A,B);

school Face-to-face interactions in a high school, recorded by Salathé and collabora-

tors [33] (see Figure 2.3C,D);

sex Sexual encounters between female prostitutes and their male clients, recorded by

Rocha and collaborators though an escort rating web forum [60] (see Figure 2.4).

Table 2.1 provides a basic description of these datasets, and Figure 2.3,2.4 show the

temporal behavior of these networks, in terms of their activity timelines (number of

active contacts as function of time) and inter-activation time distributions.

dataset id nodes duration highest resolution ref

ht09 113 2.5 days 20s [37]

school 787 7 hours 20s [33]

sex 12500 2.5 years 1 day [60]

Table 2.1.: Human contact networks used.

We list some basic features of the datasets we use. Sometimes they di↵er from the

numbers in references, as we discard initial and final transients.

2.5. Synthetic models of temporal networks

The shape of real networks is a result of several driving forces, whose e↵ects are di�cult

to disentangle. As a result, these networks are generally highly correlated in space and

time. Gauging the impact of a specific property on disease di↵usion is, therefore, hard.

1www.sociopatterns.org
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HT09
A B

C D
SCHOOL SCHOOL

HT09

Figure 2.3.: Time evolution of ht09 and school networks. For both networks we

show activity timeline (ht09: A, ht09: C) and the distribution of node inter-

activation time (ht09: B, ht09: D). We show the whole school dataset, and

a full day of conference for ht09. In both we keep the finest possible resolution,

i.e., 20s.
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SEX
A B

SEX

Figure 2.4.: Time evolution of sex network. We show activity timeline (A) and the

distribution of node inter-activation time (B).

To overcome this issue, we make use of synthetic generative network models [91, 100,

174, 188–192]. A model is designed to exhibit just the features we wish to investigate.

Furthermore, we can tune the intensity and interplay between di↵erent characteristics,

and assess their impact on disease di↵usion in all possible regimes. We will use four

di↵erent models, which are now introduced. For all of them, we assume discrete time.

er and er-t: Erdős-Rényi sequences

A random graph – or Erdős-Rényi graph – with N nodes and M edges is a random

instance of the set of all possible graphs with those numbers of nodes and edges [193].

In practice, we fix a probability p, and connect each possible pair of nodes with that

probability. The two definitions converge for large N , provided M = pN(N � 1)/2. The

degree distribution of an Erdős-Rényi graph is thus a binomial with N � 1 as number of

trials, and p as success probability: k ⇠ Binomial(N�1, p). In particular, if we are inter-

ested in a large network with fixed average degree hki = p(N � 1), then k ⇠ Poisson(k).

An Erdős-Rényi graph is therefore homogeneous, in the sense that it does not exhibit

large degree fluctuations:
p

Var(k)/k = 1/
p
k. An Erdős-Rényi graph, being completely

uncorrelated and homogeneous, is a perfect null model for real networks, which often

exhibit heterogeneous degree distributions [131] and correlations [76]. We extend this

model to the temporal case, by building a sequence of uncorrelated Erdős-Rényi net-

works (er), all with the same edge creation probability. In addition to the absence of
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within-snapshot correlations, er has no temporal correlations as well. Moreover, network

evolution is Markovian: each node (or edge) has no memory of its past behavior. The

number of time steps �t occurring between two consecutive activations of the same edge

is thus geometrically distributed: �t ⇠ p(1� p)�t�1, which is the discrete equivalent of

the exponential distribution, typical feature of memoryless dynamics. Again many real

systems exhibit inter-event time distributions which deviate largely from the exponential

distribution, with power law-like behavior, and large variance [64,90,91,94,126]. In this

sense, many real networks exhibit a heterogeneous behavior for inter-contact times, too,

as opposed of the more homogeneous behavior (smaller variance) of er.

er-t is a variation of er, in which again microscopic correlations are present neither

in topology, nor in time. This time, however, we allow for a time-varying activation

pattern: the number of links in each snapshots – equivalently, its average degree –

exhibits externally driven fluctuations. We implement this by letting the edge creation

probability depend on time: p(t). Let us define the activity timeline of a network the

number of active contacts in each time step. Analogously we could use average degree,

or any measure that gives a macroscopic, coarse-grained information of the level of

activity in time. Then er-t is useful to enforce a non-trivial activity timeline and to

study, for instance, the impact of periodic, seasonal-like variations in the global activity

of the network, decoupled from microscopic memory e↵ect and correlations. We can

characterize er-t as non-autonomous, as its parameters depend on time. We will use

er-t in Section 3.4.

activity: Activity-driven model

This model was put forward by N. Perra and collaborators [100]. Its main goal is to

provide a simple mechanistic explanation of the evolution in time of a realistic network,

that could lead to the observed heterogeneous degree distributions of the aggregated

representation. They assign each node an activity potential a
i

, sampled from a given

distribution f(a). At each discrete time steps, nodes become active each with probabil-

ity a
i

. Active nodes establish each m connections with other nodes, selected randomly

among both active and inactive ones. Degree distribution in each snapshot is homo-

geneous, as it is binomially distributed for both active and inactive nodes. As links

are renewed at every snapshot, the process is memoryless, and the inter-activation time

distribution is geometric, just as in et. And indeed et (with edge-creation probabil-
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ity p) can be seen as a special case of activity, with constant activity a
i

= a, and

p = 2ma(1� a)/N . However, activity’s interest lies in the opposite regime, i.e., when

a distribution is broad. They show the aggregated degree distribution over T time steps

has the same shape of the activity distribution: P (k) ⇠ f(k/Tm), in the limit of small

k/N and k/T . In [100] they set f(a) ⇠ a�� , and a 2 [✏, 1]. With this choice, they man-

age to recover a power law shaped aggregated degree distribution. While the topology of

each snapshot is extremely simple, the heterogeneous behavior in time evolution is thus

able to produce the rich phenomenology we observe in real network. Another advantage

of this model is that it is analytically treatable, and in particular its epidemic threshold

can be computed using heterogeneous mean field (see Chap. 3). A second version of the

activity driven model also exists, and integrates non-Markov behavior in time evolution,

namely nodes retain memory of their past dynamic, and when they establish links, they

are likelier to choose past neighbors [173].

bursty: Heterogeneous inter-activation time

Both er and activity share a homogeneous inter-activation time distribution. However,

we’ve seen how many real systems exhibit heterogeneous ones. This is the rationale

behind the bursty model, defined by L. Rocha and collaborators in [91]. They first

fix a distribution g(t) ⇠ t�↵e��t, which is a power law (i.e., heterogeneous), with an

exponential cuto↵. At each time step, each node computes the time passed since last

time it had been active: �t, then activates with probability g(�t). In this way inter-

activation time is forced to be heterogeneous.The overall level of heterogeneity can be

tuned using the parameters: ↵ = 0 is completely homogeneous and Markov-like, while

� = 0 is fully heterogeneous. At each time step active nodes connect among themselves,

with just one link each. Consequently, in each snapshot, active nodes have all degree

equal to 1, but the model can be straightforwardly generalized to an arbitrary degree k.

Tab. 2.2 summarizes the main features of the models we have defined.

2.6. Null models for temporal networks

We have seen that, unlike real networks, models allow us analyze the impact of each

specific temporal property, disentangling it from the others. They are, however not the

only way. Indeed we may decide to adopt the opposite course of action, start from the

real temporal network, and destroy in turn some of its features, obtaining several null
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model instantaneous

degree (k)

aggregated

degree (k)

inter-activation

time (�t)

au-

tonomous

er hom (k ⇠ Poisson) hom

(k ⇠ Poisson)

hom

(�t ⇠ Geometric)

yes

er-t hom hom hom no

ac-

tiv-

ity

hom het (k ⇠ k��) hom

(�t ⇠ Geometric)

yes

bursty fixed hom het

(�t ⇠ �t�↵e���t)

yes

Table 2.2.: Models of temporal networks, and their basic features.

models. Conceptually, while a model allows you to control exactly which features you

put in, a null model of a real network lets you choose what features you take out, leaving

all the residual properties, which you may or may not know. We describe here some null

models, which serve di↵erent purposes.

Firstly, reshuffle is a randomization of snapshot order. Secondly, let us define a

timestamped contact as a triplet (i, j, t), i.e., a link between i and j occurring at time

step t. reconfigure consists in a random reassignment of contact timestamps: Two

contacts (i, j, t), (k, l, s) are randomly selected, and their timestamp switched: (i, j, s),

(k, l, t). At the macroscopic level, both null models preserve the aggregated network.

reshuffle clearly destroys the activity timeline, breaking all possible seasonal or circa-

dian patterns. reconfigure, on the other hand, preserves it. Microscopically, reshuf-

fle preserve link correlations inside each snapshot, while reconfigure does not. They

both destroy all time correlations and self-correlations in link activation: memory is lost,

bursty inter-activation time is lost, time-respecting paths and temporal motifs (corre-

lation patterns in link activations [64, 194]) are broken. Finally, in anonymize we

randomize the identity of the nodes, independently inside each snapshot. anonymize

preserves only the activity timeline, while destroying anything else, including aggregated

network. Tab. 2.3 summarizes the features of all these null models.
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model activity

timeline

aggregated

network

snapshot

topology

microscopic time

correlations

reshuf-

fle

destroy preserve preserve destroy

recon-

figure

preserve preserve destroy destroy

anonymize preserve destroy destroy destroy

Table 2.3.: Null models for real temporal networks: What they destroy and what they

preserve.

2.7. Epidemics on temporal networks

If we represent the temporal network in terms of a sequence of snapshots, the way of

simulating the spread of a disease is similar to the static case (Section 1.4). Recovery

and the other spontaneous processes which do not depend on the network are exactly

the same as in the static case. Then, at each time step we let the disease spread along

the contacts that are active in the corresponding snapshot. The only issue is when the

duration of the temporal network is shorter than the epidemic wave we wish to study.

In this case we have to make up for the missing contact data, by re-using contacts in

past configurations. The most common way to do it is to impose periodic boundary

conditions: when we reach the last snapshot of the network, we plug in the first one and

repeat the network as long as we need to. Formally, this clearly breaks causality, and that

may induce unwanted e↵ects. Practically, however, if the data collection period is long

enough, spurious e↵ects due to causality violations are suppressed enough, and periodic

conditions can be safely enforced. In particular, in Section 3.2 and [1] we show that

periodic boundary conditions do not impact the epidemic threshold in several synthetic

models and real networks.

In [39] the authors explore other ways to reuse past data beyond periodic conditions,

by reshu✏ing, for instance, node identities both randomly, and respecting some node-

activity correlations.
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3. The epidemic threshold on temporal

networks

As we learned in Chapters 2,4, many contact structures relevant for the spread of several

diseases evolve in time. Human face-to-face interactions, responsible for the spread of

airborne diseases, or sexual interactions, relevant for the di↵usion of STDs, all result in

highly dynamic contact networks (see Section 2.4). Livestock transport networks, which

are responsible for the spread of many animal diseases, exhibit a highly dynamic nature,

too, as we have seen in Chapter 4. The interaction between network evolution and dis-

ease di↵usion is known to influence the dynamics and outcome of the epidemic process

(see [37, 59, 87–92, 97–100] and Chapter 2). Specifically, such interaction alters the epi-

demic threshold (Section 1.5), a↵ecting the conditions that lead to the wide-spreading

regime. For this reason, being able to compute the epidemic threshold, while accounting

for network dynamics, is a crucial step towards accurately assessing the vulnerability

of the system to a particular pathogen. Up to now, researchers have analytically com-

puted the epidemic threshold in the two limiting scenarios described in Section 1.5.2;

quenched and annealed. These are accurate in the regime of time scale separation,

i.e., when network evolution and disease di↵usion occur at very di↵erent paces, with

the network evolving much slower than disease (quenched) or much faster (annealed).

When the two time scales are comparable, and thus fully coupled, researchers have so far

resorted to numerical simulations, or provided analytical calculations only for specific

cases [92, 97–101]. In this chapter we introduce a particular multilayer mapping that

allows us to analytically compute the epidemic threshold of a generic temporal network.

In the first part (Sections 3.1,3.2) we introduce the methodology, we test its accuracy

on di↵erent synthetic networks and real datasets, and also explore how the overall time

of observation of the temporal network impacts the accuracy of the threshold. We then

devote the following of the chapter to extend it to general settings and di↵erent disease

models. More in detail, in Section 3.3 we generalize our computation of the threshold
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to weighted and directed networks, in order to account non-symmetric contact patterns

and heterogeneous force-of-infection. We also go beyond the SIS model, allowing for

temporary and permanent immunity (SIRS and SIR models).

Our multilayer approach intrinsically assumes discrete time. Given, however, that in

some contexts temporal networks are modeled through continuous-time dynamics [87,90],

in Section 3.4 we derive an equation for computing the threshold in continuous time,

and explicitly solve it in a particular case.

Finally, in Section 3.5, we study the impact of disease latency period on the epi-

demic threshold. We realize that, unlike recovery, latency cannot be included into our

computation as a simple extension. We thus develop a novel methodology that, again

through multilayer tools, is able to compute the epidemic threshold of the SEIS model

on a generic temporal network. We find that latency impacts the value of the epidemic

threshold in many contexts, unlike what happens in the static case, where the threshold

depends only on the infectious period. We then explore what are the features of network

dynamics that, through coupling to latency period, alter the epidemic threshold.

3.1. A novel multilayer mapping of network evolution and

disease dynamics

Here we present a novel multilayer mapping of the temporal network, which we will

use to compute the epidemic threshold. This mapping is contained in the articles [1, 3]

which make up the following sections. Nonetheless, given its crucial importance in our

threshold computation methodology, we devote this section to its description.

Let us consider a discrete-time, undirected, unweighted temporal network, of N nodes

and T time steps. We will extend the methodology to weighted, directed in Section 3.3,

and take care of continuous time in Section 3.4. Let {A1, A2, · · ·AT

} be the sequence

of adjacency matrices representing the snapshots. We now define a multilayer structure

composed of T layers, one for each snapshot, each containing a copy of all the N nodes.

Hence, each node of the multilayer is identified by a pair (i, t), with i = 1, · · · , N and

t = 1, · · · , T . We define links among layers as follows:

• each node in layer t is connected to its own image in layer t+1 via a directed link

(orange arrows in Figure 3.1);

• a link between i and j at time t (A
t,ij

= 1) translates into a pair of directed links,
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one going from i at in layer t to j in layer t+1, and one going from j at in layer t

to i in layer t+ 1 (black arrows in Figure 3.1);

• we enforce periodic boundary conditions: layer T is connected to layer 1 with the

above rules, assuming the equivalence T + 1 ⌘ 1.

We now call A the adjacency tensor of the multilayer network, as defined in Section 2.2.

The only non-zero terms in A are A
t,t+1,ii = 1 and A

t,t+1,ij = A
t,ij

. We stress that

in our multilayer there are no intra-layer links, resulting in a multipartite structure. In

Figure 3.1 we schematically show the structure of our multilayer structure. The rationale

t t+1

temporal multilayer

node i existing at times t,t+1 (i,t)        (i,t+1)
(i,t)        (j,t+1)
(j,t)        (i,t+1)(i,t)        (j,t)

contacts

Figure 3.1.: Multilayer representation of the temporal network. We show the rules to

build our multilayer representation of the temporal network. We focus on 3

nodes and 2 time steps.

behind this representation lies in the spreading process that we wish to couple to it. Let

us consider a SIS spreading dynamics, with transmissibility � and recovery probability

µ. We suppose now that node i is infectious at time t. If nodes i and j are connected

at time t, there is a chance (�) that i will infect j, resulting in an infectious j at time

t + 1. This explains why link i � j at time t is represented through non-diagonal links

going from layer t to t + 1 (black arrows in in Figure 3.1). Moreover, going from t to
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t+1, node i may either recover or remain infectious. We interpret the probability that i

does not recover, as the probability it does not transmit the disease to its future image

at t+ 1. We implement that through the diagonal inter-layer links (orange arrows in in

Figure 3.1). Given that recovery occurs with probability µ, the probability that infection

is passed from i at time t, to i at time t + 1 is 1 � µ. In addition we stress that the

absence of undirected links and intra-layer links in the multilayer structure guarantees

that causality in temporal evolution is preserved.

The mapping we have defined thus naturally couples network dynamics to disease

di↵usion, which fixes the intensity of the di↵erent types of links. Non-diagonal links will

have a weight � as they transmit the pathogen among di↵erent nodes, while diagonal

links will be weighted by 1� µ, encoding recovery dynamics.

Instead of identifying each node of the multilayer with (i, t), we can consider the whole

network as composed of NT distinct nodes, flattening out the layer structure. Nodes

are now identified by ↵ = 1, · · · , NT , with (i, t) ! ↵ = Nt + i. Algebraically, we

are exploiting the fact that the tensor space RN ⌦ RT in which the multilayer lives is

isomorphic to RNT . Thanks to this, instead of dealing with a tensor, we can now switch

to the supra-adjacency matrix formalism [102,195,196], by writing the adjacency matrix

of the NT graph. Such matrix will be of size NT ⇥ NT , and composed of T 2 blocks

of size N ⇥N , representing the original layers. In addition, given that we already have

added disease dynamics, we weigh links accordingly. The resulting matrix is

M =

0

B

B

B

B

B

B

B

B

@

0 1� µ+ �A1 0 · · · 0

0 0 1� µ+ �A2 · · · 0
...

...
...

...
...

0 0 0 · · · 1� µ+ �A
T�1

1� µ+ �A
T

0 0 · · · 0

1

C

C

C

C

C

C

C

C

A

, (3.1)

in which each term indicates a block.

In the next section we show that this matrix accurately models the di↵usion of a SIS

process on the temporal network {A1, A2, · · ·AT

}, and provides the key to compute the

epidemic threshold.
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3.2. Article: Analytical computation of the epidemic threshold

on temporal networks

In the following article [1], using the multilayer mapping we have just introduced, we

compute the epidemic threshold of the SIS model on a generic temporal network. We

find that the threshold can be found using the following matrix, which we dub infection

propagator [3]:

P =
T

Y

h=1

[1� µ+ �A
h

] . (3.2)

In particular, the threshold is the value of the transmission parameter � for which

the spectral radius1 of P is equal to 1: ⇢[P (�
c

, µ)] = 1. In the article we also test

the performance of our calculation against numerical simulations in di↵erent network

models, and real datasets. Moreover, by studying how the epidemic threshold varies as

a function of T , we show that through our methodology we can compute the optimal

data collection time interval for an experimental contact tracing setting.

1The spectral radius ⇢[X] of matrix X is the maximum of the absolute values of its eigenvalues. See

also Section 1.5.1.
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The time variation of contacts in a networked system may fundamentally alter the properties of
spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic
threshold. Despite the great interest in the problem for the physics, applied mathematics, computer
science, and epidemiology communities, a full theoretical understanding is still missing and currently
limited to the cases where the time-scale separation holds between spreading and network dynamics
or to specific temporal network models. We consider a Markov chain description of the susceptible-
infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective,
we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of
a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is
confirmed on a set of temporal models and empirical networks and against numerical results.
In addition, we explore how the threshold changes when varying the overall time of observation
of the temporal network, so as to provide insights on the optimal time window for data collection
of empirical temporal networked systems. Our framework is of both fundamental and practical
interest, as it offers novel understanding of the interplay between temporal networks and spreading
dynamics.

DOI: 10.1103/PhysRevX.5.021005 Subject Areas: Complex Systems,
Interdisciplinary Physics,
Statistical Physics

I. INTRODUCTION

A wide range of physical, social, and biological phe-
nomena can be expressed in terms of spreading processes
on interconnected substrates. Notable examples include the
spread of directly transmitted infectious diseases through
host-to-host contacts [1], the spatial propagation of epi-
demics driven by the hosts’ mobility network [1–3], the
spread of cyber viruses along computer connections [4], or
the diffusion of ideas mediated by social interactions [5,6].
These phenomena are the result of a complex interplay
between the properties of the spreading dynamics and the
network’s structural and temporal features, hindering their
full understanding.

A fundamental issue characterizing spreading processes
is the identification of the critical condition for the wide-
spreading regime, encoded in the epidemic threshold
parameter. This issue is of critical importance for epidemic
containment [1], as well as for control of the diffusion of
information [7] and cyber viruses [4]. Extensive studies
have characterized this parameter in the time-scale sepa-
ration approximation, i.e., when the time scales of the
spreading process and network evolution strongly differ.
This includes the two limiting regimes, quenched and
annealed [4,8–15]. In the first case, the network is regarded
as static, as it evolves on much slower time scales than the
ones characterizing the spreading process. The epidemic
threshold in this case is computed from the adjacency
matrix describing the network connectivity pattern [8,9].
In the second case, the underlying network evolves so
rapidly with respect to the dynamical process that only its
time-averaged properties are relevant to the spreading
dynamics. Approaches like the heterogeneous mean field
[4], the generating function [11], and percolation theory
[10] provide, in this regime, estimates of the threshold in
the infinite size limit.
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Recently, the extensive empirical characterization
of social interactions at different scales and settings
[16–22] has shown that networks often display non-
Poissonian and non-Markovian temporal evolutions
unfolding at time scales similar to the ones of many
spreading processes of interest, stressing the need for novel
theoretical tools able to overcome current limitations. Much
research has focused on spreading processes occurring on
time-varying networks [16,17,21,23–31], modeled either as
a discrete-time sequence of networks [16,28] or as con-
tinuous-time dynamics of links [17,26]; however, so far,
only a few studies have provided an analytical calculation
of the epidemic threshold in specific cases [24,27–32].
These are all based on models for time-varying networks
integrating the microscopical laws governing the network
evolution, under context-specific assumptions. An analyti-
cal framework for the computation of the epidemic thresh-
old for an arbitrary time-varying network is still missing. To
fill such a gap, we present here a novel approach that, by
reinterpreting the tensor formalism of multilayer networks
[33,34], extends the Markov chain approach adopted
for static networks [8,9] to their temporal counterpart.
The approach is applied to discrete time-varying network
models and empirical networks to highlight the role of
different dynamical features on the spreading potential.
The role of the observation time window is then analyzed
in depth in order to provide indications on how this factor
alters the estimated epidemic threshold.

II. DERIVATIONOF THE EPIDEMIC THRESHOLD

We consider the susceptible-infected-susceptible (SIS)
model [1] in discrete time, where individuals (i.e., the nodes
of the network) can be in one of two mutually exclusive
states—susceptible or infectious. At each time step, infec-
tious individuals may transmit the infection to susceptible
neighbors with probability λ along each contact, and they
recover spontaneously with probability μ becoming sus-
ceptible once again. We consider the temporal network
forming the substrate of the spreading process to be a
sequence of undirected and unweighted static networks.
The generalization of the following treatment to the
directed and weighted case is outlined in Ref. [35].
In order to describe the spreading dynamics on such a

substrate, we extend the Markov chain approach for static
networks [8,9] to the case of temporal networks. The
SIS propagation on a generic network with N nodes and
adjacency matrix A is given by

pðtÞ
i ¼ 1 −

h
1 − ð1 − μÞpðt−1Þ

i

iY

j

h
1 − λAjip

ðt−1Þ
j

i
; ð1Þ

where pðtÞ
i is the probability for the node i to be in the

infectious state at time t. The Markovian model of Eq. (1),
widely adopted in different fields [12,36], is based on
the mean-field assumption of the absence of dynamical

correlations among the states of neighboring nodes [37].
For both directed and undirected networks [38,39], the
study of the asymptotic state yields the derivation of
the epidemic threshold ðλ=μÞ ¼ 1=ρðA†Þ, where ρðA†Þ is
the spectral radius of the transposed adjacency matrix A†

[8,9]. This is known to be a lower bound estimate of the
real epidemic threshold, approaching the real value with
surprisingly high accuracy given the simplicity of the
expression and its derivation [37,40].
We extend this paradigm to a temporal network by

letting the adjacency matrix in Eq. (1) depend on time:

pðtÞ
i ¼ 1−

h
1− ð1− μÞpðt−1Þ

i

iY

j

h
1− λAðt−1Þ

ji pðt−1Þ
j

i
: ð2Þ

Here, AðtÞ is the adjacency matrix associated with the tth
snapshot of the evolving network. In order to ensure the
asymptotic solution of the SIS process in a generic temporal
network, we assume periodic boundary conditions for the
network dynamics. With T being the total number of
network time snapshots, we impose AðTþ1Þ ≡ Að1Þ. This
does not imply any loss of generality given that T may be
completely arbitrary.We notice that, as a consequence of the
assumed periodic temporal dynamics ofAðtÞ, the asymptotic
solution of Eq. (2) is, in principle, periodic, with period T.

We now define a more convenient representation of the
coupled dynamics adopting the multilayer approach intro-
duced in Ref. [33]. We map the temporal network to the
tensor space RN ⊗ RT , where each node is identified by
the pair of indices ði; tÞ, corresponding to the node label i
and the time frame t, respectively. A multilayer represen-
tation of the temporal network can be introduced through
the following rules:

(i) Each node, at time t, is connected to its future self
at tþ 1.

(ii) If i is connected to j at time t, then we connect i at
time t to j at time tþ 1, and j at time t to i at
time tþ 1.

The second rule is termed “nondiagonal coupling” in the
multilayer-network framework [34]. The first rule is
consistent with the ordinal coupling in such a framework
[34,41], but unlike in that representation, no links are
found connecting nodes on the same layer since layers
cease to correspond to the adjacency matrices of the
temporal snapshots. The so-defined network is therefore
multipartite since only pairs of nodes belonging to differ-
ent layers are linked together (see Fig. 1 for a schematic
illustration of this transformation). While formally falling
into a specific subcase of the classification introduced
in Ref. [42], the proposed mapping from the network
temporal sequence to a multilayer object provides a novel
representation of the temporal network that preserves the
information relevant for the spreading process. The tensor
representation of the obtained multilayer network is the
following:
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Att0
ij ¼ δt;t

0þ1½δij þ AðtÞ
ij &: ð3Þ

Analogously to the definition of A, we can also write,
in this representation, the tensor associated with the SIS
dynamics of Eq. (2), coupling together contagion and
network dynamics:

Mtt0
ij ¼ δt;t

0þ1½ð1 − μÞδij þ λAðtÞ
ij &: ð4Þ

The multilayer representation and the definition of the
tensor M introduce a simplified expression for Eq. (2).
The tensor space can be represented in single-index
notation through the isomorphism RN ⊗ RT ≃RNT .
In other words, similarly to the definition of the supra-
adjacency matrix in Refs. [33,43,44], we can mask the
tensorial origin of the space through the map
ði; tÞ → α ¼ Ntþ i, with α running in f1;…; NTg,
allowing us to write the network tensor M in matrix form:

M ¼

0

BBBBBBBBBB@

0 1 − μþ λAð1Þ 0 ' ' ' 0

0 0 1 − μþ λAð2Þ ' ' ' 0

..

. ..
. ..

. ..
. ..

.

0 0 0 ' ' ' 1 − μþ λAðT−1Þ

1 − μþ λAðTÞ 0 0 ' ' ' 0

1

CCCCCCCCCCA

:

M provides a network representation of the topological
and temporal dimensions underlying the dynamics of
Eq. (2), which are interrelated and flattened here. Its
directed nature preserves the causality of the process,
while its weights account for the SIS transition proba-
bilities. The Markov process is now described by a
trajectory in RNT where the state vector p̂αðτÞ represents
the probability of each node to be infected at each time
step t included in the interval ½τT; ðτ þ 1ÞT&. Consis-
tently, Eq. (2) becomes

p̂αðτÞ ¼ 1 −
Y

β

½1 −Mβαp̂βðτ − 1Þ&: ð5Þ

Given that vector p̂ encodes a one-period configuration,
the T-periodic asymptotic state of the SIS process is now
mapped into the steady state p̂αðτÞ ¼ p̂αðτ − 1Þ. The
latter can be recovered as a solution of the equilibrium
equation:

p̂α ¼ 1 −
Y

β

ð1 −Mβαp̂βÞ; ð6Þ

which is formally the same as the stationary condition
imposed in Eq. (1) for the static network case, and it is
similar to the Markov chain approaches used to solve

contagion processes in multiplex and interconnected
networks [43–45]. We can then follow Refs. [8,9] and
linearize Eq. (6), recovering the necessary and sufficient
condition for the asymptotically stable zero solution,
ρðM†Þ < 1 [46]. Considering that the uniform zero
solution in the RNT representation is mapped to a
uniform zero solution in the original RN representation,
this yields the threshold condition

ρðM†Þ ¼ 1 ð7Þ

for the critical values of λ and μ above which the
transmission becomes epidemic [8,9,43–45].
The spectral radius of M can be simplified with the

following relation (see Appendix A):

ρðMÞ ¼ ρðPÞ1=T; ð8Þ

where P ¼
QT

t¼1 ð1 − μþ λAðT−tÞÞ represents a weighted
version of the accessibility matrix [47], having connectivity
weighted by λ and waiting timeweighted by 1 − μ. This last
passage ensures a simplification of the numerical compu-
tation of the epidemic threshold, allowing an execution
time scaling as ∼TN5=2 (see Ref. [48] for an analysis of the
numerical performance of our approach).

j

i

j

i

j

i
t tt+1 t+1

1
0

0( )1
0
0

0( )0 ( )0
0

0
0

1
1

1
1

0
0

0
0

0
0

0
0

FIG. 1. Schematic example of the supra-adjacency matrix of
the multilayer representation of the temporal network. For
simplicity, we consider a network of two nodes i; j, and
two time steps. The left panel represents the network as a
sequence of static adjacency matrices. This is translated into
a multilayer representation (right panel), where each node
points to itself in the future and to the future image of its
present neighbors.
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The quenched and annealed regimes can be recovered
within this general framework as particular limiting
solutions. In the first case, it is to be noted that the
sequence of temporal snapshots naturally defines the
minimum time scale of the process. In order to consider
contagion dynamics that are much faster than the time-
varying process of the network, we thus rely on the
commonly adopted assumption regarding the temporal
network as static, so AðtÞ ≡ A. In this particular case,
P ¼ ð1 − μþ λAÞT . Therefore, ρðMÞ ¼ ρð1 − μþ λAÞ ¼
1 − μþ λρðAÞ. The requirement ρðM†Þ ¼ 1 thus recovers
the expression known for the quenched case.
The study of the annealed regime is less trivial. In the

assumption that λ and μ are very small, corresponding to a
very slow disease dynamics with respect to the time scale of
the network evolution, it is possible to replace P with its
linear expansion in λ=ð1 − μÞ, yielding

Pslow ¼ ð1 − μÞT
!
1þ λ

1 − μ
A
"
;

where A ¼
P

t A
ðtÞ is a weighted static representation of

the network, formed by the sum of all the snapshots.
Temporal correlations are lost, and edges count for the
number of times they are active during the whole period
T. Equation (7) for the epidemic threshold thus simplifies
to ðλ=μÞc;slow ¼ T=ρðAÞ [49], and the aggregated matrix
contains all the relevant information for spreading
dynamics.

III. VALIDATION AND COMPARISON WITH
STOCHASTIC SIMULATIONS

In the following, we validate the analytical method and
compare its predictions with the behavior of a simulated
SIS spreading process. For this purpose, we consider
six networks, three of which are built from models for
time-varying networks; the other three are obtained from
empirical measures. The first network, ER, is formed by a
sequence of random Erdős-Rényi graphs [50] with a given
number of nodes and edges. It represents a simple and
completely uncorrelated example of a temporal network.
The second network, ACTIVITY, is a realization of the
activity-driven model [28] where each node is assigned
an activity potential, representing the probability of being
active in a certain snapshot. Once activated, the node
establishes a fixed number of connections that are renewed
at each snapshot. We consider a heterogeneous activity
distribution so that the obtained networks are characterized
by a temporally uncorrelated sequence of snapshots with a
heterogeneous aggregated degree distribution. BURSTY is
built from the model introduced in Ref. [23] and accounts
for a heterogeneous activation pattern describing a
sequence of homogeneous networks where the intercontact
time is power-law distributed. Size and period are chosen
arbitrarily for all these networks since the choice of these
parameters does not impact the method validation, as

discussed in more detail in the following section. As
examples of real time-varying networks, we choose data
sets describing different kinds of human contact: HT09 is
the network of face-to-face proximity during a 2.5-day
scientific conference [16]; SEX is a 1-year network of sexual
contacts between prostitutes and their clients [18]; SCHOOL
is a contact network describing one day in a high school
[51]. Size, period, and topological properties are con-
strained by the measurements and are very diverse.
Further information about the six networks can be found
in Appendix B and in Table I.
To verify the validity of the proposed analytical expres-

sion, we numerically solve the Markov equation (2). For
given λ and μ, we iterate the equation until the periodic state
is reached and compute the average prevalence over
a period hiMCi ¼

P
i;t p

ðtÞ
i =ðTNÞ. Predictions are then also

compared with the threshold behavior obtained from
numerical simulations of the stochastic and microscopic
SIS dynamics on the evolving networks. We use the
quasistationary state method [52] (see Appendix C) to
measure the average prevalence hisimi over the time series
for different values of λ, after an initial transient time is
discarded.
Figure 2 shows hiMCi and hisimi as functions of λ for two

different values of μ (μ ¼ 0.2 and μ ¼ 0.5) for all networks
under study. The average prevalence displays the expected
transition behavior. The solution of the Markov chain
equation hiMCi is equal to zero for small values of λ until
the critical value of λ is reached, after which a rapid growth
is observed signaling an epidemic affecting a finite fraction
of the network. The transition is well predicted by the
analytical expression of Eq. (7). The threshold behavior
obtained from numerical simulations is also very similar to
the mean-field prediction. The two curves of hiMCi and
hisimi are nearly superimposed, showing that the mean-field
approximation in Eq. (2) is valid in all conditions of

TABLE I. Temporal networks considered for the validation.
The first three networks are single realizations obtained from
synthetic models for time-varying networks; the other three are
empirical networks. The ER model is a sequence of random
graphs with 500 nodes and 750 edges, so hki ¼ 3. The ACTIVITY

model is a sequence of snapshots built with parameter values:
Δt ¼ 1, m ¼ 2, η ¼ 10, γ ¼ 2.8, ϵ ¼ 3 × 10−2, in the notation
of Ref. [28]. The BURSTY network is built with a power-law
distributed interactivation time, with exponent −2, and cutoff
equal to the period of the network. For the real networks, the
collection time is the total time considered in the data set.

Network Number of nodes Period T Aggregating window

ER [50] 500 13 % % %
ACTIVITY [28] 1000 20 % % %
BURSTY [23] 500 50 % % %
HT09 [16] 113 30 1 hour
SCHOOL [51] 787 42 10 mins
SEX [18] 6866 13 28 days
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network size and average connectivity here considered.
The presence of correlations shows its effects in proximity
to the transition, which is smoother for hisimi with respect
to hiMCi. This is particularly evident for the network
HT09 and is a consequence of its small size (N ¼ 113).
In Ref. [53], we report the analysis of the dynamical
correlations.
The good agreement between the computed epidemic

threshold, the solution of the Markov chain equation, and
the numerical simulation results is thus maintained under a
range of different temporal network properties (presence or
absence of temporal correlations, heterogeneous vs homo-
geneous distributions characterizing temporal and struc-
tural observables, and the possible presence of community
structure as in the case of school) and sizes (from
approximately 102 nodes to 104). It is important to mention
that periodic boundary conditions in the case of real
networks may, in principle, induce nonexisting phenomena
(such as, for example, temporal paths [54]) that could
alter the threshold estimation by influencing the spreading
process. We analyze the effect of our technical assumption
of adopting periodic constraints in the following section,
also in relation to data availability and collection.

IV. OPTIMAL DATA COLLECTION TIME

Available data sets characterizing empirical networks
only account for a portion of the real contact process, and

the extent of the recording time window may affect the
prediction of the epidemic threshold. One may expect that,
when the data-collection period is long enough, the data
would represent an approximately complete reconstruction
of the temporal network properties, thus leading to an
accurate estimate of the epidemic threshold. Given the
resources needed for the setup of data-collection deploy-
ments, here we explore the role of the period T aimed at
identifying a minimum length of observation of the contact
process that is optimal in providing a reliable characteri-
zation of the spreading potential.
We thus compute the epidemic threshold from Eq. (8) for

increasingly larger values of the period T up to the entire
data-collection time window, for the three empirical net-
works under study. Figure 3 shows a saturation behavior for
λc, indicating that the data-collection period is long enough
to characterize the epidemic dynamics. Such behavior and
its associated relaxation time strongly depend on the
network’s typical time scale and on the temporal variability
of its structure. Inmore detail, a simple structural measure—
the variation of the average degree along the period—is
shown to strongly impact the predicted λc (Fig. 3 and
Ref. [55]). This is particularly evident in the SCHOOL

network, where the daily activity of students determines
considerable variations in the average degree and induces
marked oscillations in the resulting threshold. In addition to
the empirical networks, we also consider the BURSTY net-
work model as it includes nontrivial temporal correlations.
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FIG. 2. Validation of the analytical method and comparison with microscopic numerical simulations. Top panel: Network models.
Bottom panel: Empirical networks. Cross symbols represent hiMCi as a function of λ for two different values of μ (μ ¼ 0.2 in blue and
μ ¼ 0.5 in red), i.e., the average prevalence obtained from the numerical solution of the Markov chain, Eq. (2). Circles represent hisimi,
i.e., the average prevalence obtained from stochastic microscopic numerical simulations of the SIS process, for the same values of μ. The
arrows indicate the analytical predictions of the threshold from Eq. (8) (one single realization of the network models is considered in
each panel).
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In this case, the critical transmission probability λc rapidly
saturates to a constant value (Fig. 3), and an even more
rapid saturation is observed for the other two network
models (see Ref. [56]). The average degree is indeed
relatively stable, so small temporal windows are enough
to fully characterize λc.
Different values of the recovery probability μ lead, in

general, to similar behaviors of λc towards saturation,
differing essentially by a scaling factor. The effect of μ on
saturation time is instead visible for the BURSTY network. In
this case, when the period length is smaller than the average
duration of the infection, the truncation in the intercontact
time distribution clearly alters the estimation of the threshold.
These results indicate that it is possible to identify a

minimum length of the observation window of a real
system for contact data collection, highlighting the pres-
ence of well-defined properties and patterns characterizing
the system that can be captured in a finite time.

V. CONCLUSION

Being able to provide a reliable and accurate estimation
of the epidemic threshold for a spreading process taking
place on a given networked system is of the utmost
importance, as it allows predictions of the likelihood of
a wide-spreading event and identification of containment
measures (crucial for infectious disease epidemics) or
strategies for enhancing the propagation (desired in the

case of information diffusion). While analytical approaches
have so far targeted only specific contexts, our framework
allows the analytical computation of the epidemic threshold
on an arbitrary temporal network, requiring no assumption
about the network topology or time variation. The proposed
approach is based on the spectral decomposition of the
flattened matrix representation of the topological and
temporal structure of the network, extending the Markov
chain model introduced for the static network case to its
temporal counterpart. The predicted epidemic threshold,
validated against the numerical solution of the model, also
reproduces the behavior observed in stochastic microscopic
numerical simulations of the spreading process with high
accuracy.
The technical requirement of periodic conditions does

not limit the general applicability of our approach, as the
method is valid for an arbitrary period length. Moreover,
this feature allows us to inform data-collection endeavors
on the time period of observation of the system required
to fully characterize its spreading properties. Our focus on
the discrete time formulation of the process is prompted by
the study of several empirical networks for which time is
naturally discrete, the time step being dictated by the
resolution of the data-collection procedure. Extensions to
the continuous-time case would be needed when the
continuous-time description is more appropriate, as for
example with some modeling approaches.
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FIG. 3. Epidemic threshold estimated from different period lengths. λcðTÞ is the epidemic threshold computed by considering only the
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Our framework thus introduces a multilayer formulation
of spreading phenomena on time-varying networks that
opens the path to new theoretical understandings of the
complex interplay between the two temporal processes,
disentangling the role of the network’s dynamical features,
such as activation rate, temporal correlations, and temporal
resolution.
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APPENDIX A: PROOF OF EQ. (8)

Computing the eigenvalues of M† means solving the
equation det ðx −M†Þ ¼ 0, where the determinant is com-
puted on the RNT space (detNT). Given that x −M† is
composed of T2 blocks of size N × N, we can use the
findings in Ref. [57] to reduce the dimensionality of the
problem, i.e., detNT → detN . Moreover, given that several
blocks of x −M† are zero, the general result in Ref. [57]
simplifies to detNTðx −M†Þ ¼ ð−1ÞNTdetNðxT − PÞ.
Equation (8) immediately follows.

APPENDIX B: NETWORKS CONSIDERED
FOR VALIDATION

In this section, we provide the details of the six networks
used for the validation of the threshold expression.

ER: The network is formed by a sequence of random
Erdős-Rényi graphs [50] with 500 nodes and 750 edges,
so hki ¼ 3.

ACTIVITY: In the activity-driven model by Perra et al.
[28], nodes that are active in a certain snapshot establish a
fixed number of connections (in our case, 2) with other
nodes picked at random (both active and inactive). All links
are renewed after every snapshot. The activity potential is
assigned by sampling numbers x ∈ ½ϵ; 1% from a power-law
distribution (in our case, with exponent 2.8 and
ϵ ¼ 3 × 10−2) and then converting them to activity poten-
tials a ¼ 1 − e−ηx. η is a free parameter used to tune the
average degree; here, η ¼ 10.

BURSTY: The network is built from the model introduced
by Rocha et al. [23], where a node becomes active at time t
with a probability that depends on the time it was last

active, t0. If active, it then forms a link with another active
node. All links are removed before proceeding to the
following snapshots. To enforce a BURSTY interevent time
distribution, the probability of becoming active is sampled
with the distribution ðt − t0Þ−α1e−α2ðt−t0Þ, with α1 ¼ 2 and
α2 ¼ 5 × 10−4.

HT09: The data set was collected by the Sociopatterns
group [16], and it records the interactions among partic-
ipants at a scientific conference. Links represent face-to-
face proximity recorded by wearable radio-frequency
identification (RFID) tags. Time resolution of the signal
is 20 sec. Each tag emits wave packets that may be recorded
by other tags, thus signaling proximity. Tags were
embedded in conference badges; their signal intensity
was set to be detectable at a maximum distance of 1 m
and completely shielded by the human body. With these
settings in effect, only close proximity in a face-to-face
position resulted in interaction [58].

SEX: This is a network of sexual contacts between female
prostitutes and their male clients as inferred from posts on a
Brazilian online escort forum where customers could rate
their experience with a certain sex worker. The date of
the post was taken as a proxy for the time of the sexual
intercourse. The (anonymized) data set can be found in
Ref. [18].

SCHOOL: This network represents the face-to-face prox-
imity interactions during a day in a high school [51].
Students and staff were given wearable RFID sensors,
and proximity was recorded in a similar fashion as for
HT09 [59].

APPENDIX C: ESTIMATION OF THE EPIDEMIC
THRESHOLD FROM NUMERICAL

SIMULATIONS

The computation of hisimi in proximity to the transition is
difficult because surviving configurations are rare and a
very large number of realizations of the process is needed
to collect substantial statistics. We use the quasistationary
state (QS) method [52,60] to overcome this difficulty and
increase our computational efficiency. The QS method is
based on the idea of constraining the system in an active
state. Every time the absorbing state (i.e., no infected) is
reached by the system, it is substituted with an active
configuration that is randomly taken from the history of the
simulation. In particular, 50 active configurations for each
network snapshot are kept in memory. Whenever an active
configuration is reached, it replaces one of the 50 with
probability 0.2. When the absorbing state is reached, an
active configuration is chosen among these 50 of that
particular snapshot. For each simulation, after a relaxation
time of 3 × 103 time steps, statistics are collected during
105 time steps. The method produces a time series that is
long enough to accurately compute the observables hisimi.
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1 Optimal data collection time

1.1 ER and ACTIVITY

Fig. S1 completes the picture given in Fig. 3 of main paper, by showing how period
length T affects the epidemic threshold for the models ER and ACTIVITY. In both cases
the threshold converges very quickly to a constant value, so that for T > 5 there are
no significant oscillations. This is associated with low variations in the average degree
among the different snapshots (variations being exactly equal to zero in the ER network
by constructions). A small number of snapshots needs to be generated in order to correctly
compute the epidemic threshold.

1.2 More on the correlation between threshold and degree fluctua-
tions

In main paper we show how the oscillations of �c are associated with the instantaneous
fluctuations of the average degree of the network, as the period T varies. As T increases,
�c fluctuations are damped, because they are cumulatively calculated on longer periods.
Adding a snapshot to a short period T has indeed a greater relative influence on the thresh-
old than adding it to an already long period. Similarly, damped oscillations are observed
when we monitor the cumulative average degree of the network, calculated on all snap-
shots up to period T (Figure S2).



Valdano et al.

0

0.02

0.04

0.06

0.08

T
15131197531 17 19

λc

0

0.4

0.8

0.16

0.12

0

0.2

0.05

0.15

0.1

0

0.1

0.2

0.4

0.3

λc

T

μ=0.2
μ=0.5

3

1.5

1.8

131195 731

ER ACTIVITYa b

Figure S1: Epidemic threshold estimated from different period lengths. �c(T ) is the
epidemic threshold computed by considering only the first T snapshots of the network.
For each panel, blue (red) curve corresponds to µ = 0.2 (µ = 0.5). The scale of the
former is on the left side of the plot, while the scale of the latter is on the right. The gray
bar chart shows the mean network degree associated to the snapshot at time T . Bar charts
are in linear scale and min and max values are placed on the corresponding bars.
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Figure S2: Epidemic threshold estimated from different period lengths. �c(T ) is the
epidemic threshold computed by considering only the first T snapshots of the network.
For each panel, blue (red) curve corresponds to µ = 0.2 (µ = 0.5). The scale of the
former is on the left side of the plot, while the scale of the latter is on the right. The gray
bar chart shows the average of the mean network degree of snapshots up to time T . Bar
charts are in linear scale and min and max values are placed on the corresponding bars.
The measure of the real time is also reported.

2 Higher order correlations

The quenched mean field approach disregards spatial correlations among the probabilities
of nodes being infected. Let Xi(t) = 0, 1 be the infectious status of node i at time t.
The quenched mean field then assumes that hXiXji = hXii hXji. In order to assess the
impact of such approximation, at least in the case of two point correlations, we compute
in the simulations the following quantity for each pair of nodes:

�ij =
hXiXji � hXii hXjiq

hX2
i i � hXii2

q⌦
X2

j

↵
� hXji2

, (1)
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where the moments are computed on a time interval well after the initial transient: hY i =⇥Pt1
t=t0

Y (t)
⇤
/ (t1 � t0). �ij ⇡ 1 indicates that Xi, Xj are highly correlated, while low

values of that quantity indicate no correlations. Figure S3 shows the distribution for �ij

on all possible pairs of nodes, for ER and HT09. For ER almost no correlations are visible
among nodes, as expected, except for small fluctuations around �ij = 0. For HT09, on
the other hand, we see that �ij is peaked around a small but nonzero value, indicating the
presence of two point correlations, albeit weak. This is in accordance with the finding
that the threshold computation is more accurate for ER than for HT09 (see Figure 2a,d of
main paper).
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Figure S3: Two-point correlations for ER and HT09. Distribution of � = �ij for
the model ER and the real network HT09. Distributions are computed using � = 0.3,
µ = 0.5 for both networks. Moments are computed over 2 · 105 time steps, after a
relaxation time of 3 · 103.

3 Weighted and directed networks
For sake of simplicity, in the main paper we deal with undirected unweighted temporal
networks, i.e. A(t)† = A(t) and A(t)

ij 2 {0, 1}. Here we briefly show that our methodology
can be extended to the more general case, if needed.

The proposed approach does not require A(t) to be symmetric (moreover M↵� is not
symmetric even when the A(t) matrices are). Therefore a generalisation to the directed
case is straightforward, and it is simply based on the replacement of A with A† in the
computation of the threshold in the annealed approximation.

The weighted case is tractable too, provided that the probability of transmitting the
infection is defined in terms of the weight, according to the given context under study (the
weight could for example represent the movements of hosts from one node to another).

It is customary to compute the probability of transmission along a link ij as 1 �
(1� �)A

(t)
ij (see, for instance, [1]). When the weights are integer numbers, this means
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considering the binomially distributed probability of at least one infection givenA(t)
ij trials.

By plugging this contribution intoMtt0
ij , equation (4) of the main paper thus becomes

Mtt0

ij = �t,t
0+1

h
(1� µ) �ij + 1� (1� �)A

(t)
ij

i
. (2)

The computation of the threshold can then be carried out in the same way as described in
main paper.

4 Computational performance
In this section we discuss the performance and scalability of the numerical algorithm
we use to compute the spectral radius of matrix P . The algorithm is implemented in
Python 2.7 and uses numpy and scipy libraries for sparse matrix representation
and multiplication, numpy.dot and scipy.sparse.csr. The spectral radius of P
is computed through a modified version of the well known power iteration method [2]. We
tested the scaling of the execution time by varying the number of nodes N and the period
T of an uncorrelated sequence of Erdős-Rény with hki = 2. The execution time grows
linearly with the period and as the 5/2-th power of the number of nodes, t ⇠ TN5/2. As
a point of reference, the average execution time for N = 103 and T = 102 is 15 seconds
on an Intel Core i5 3.2G Hz with RAM DDR3 8 GB and 1.6 GHz.
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3.3. Article: Infection propagator approach to compute

epidemic thresholds on temporal networks: impact of

immunity and of limited temporal resolution

In many real scenarios, like cattle trade networks (Chapter 4), contacts are modeled

through weighted, directed links, to account for non-homogeneous one-directional force

of infection. In addition, the SIS model is not the adequate choice for diseases that

exhibit immunity after recovery. In the following article we extend the calculation of the

threshold to weighted, directed networks, and to the SIR and SIRS compartmental mod-

els (for their description see Figure 1.1). We apply the approach to two temporal network

models and one empirical dataset. We find that immunity and loss of immunity, features

of these new compartmental models, do not a↵ect the estimation of the epidemic thresh-

old through the infection propagator approach. Furthermore, we show that aggregating

the temporal network causes the estimated epidemic threshold to rapidly lose accuracy.

We test both topological and weighted aggregation schemes (see Chapter 2), and find

that weight-topology correlations are found to be the critical factor to be preserved to

improve accuracy in the prediction.
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Abstract

The epidemic threshold of a spreading process indicates the condition for the occurrence of the
wide spreading regime, thus representing a predictor of the network vulnerability to the epidemic.
Such threshold depends on the natural history of the disease and on the pattern of contacts of the
network with its time variation. Based on the theoretical framework introduced in (Valdano et al.
PRX 2015) for a susceptible-infectious-susceptible model, we formulate here an infection propa-
gator approach to compute the epidemic threshold accounting for more realistic effects regarding
a varying force of infection per contact, the presence of immunity, and a limited time resolution of
the temporal network. We apply the approach to two temporal network models and an empirical
dataset of school contacts. We find that immunity and loss of immunity do not affect the estimation
of the epidemic threshold through the infection propagator approach. Comparisons with numerical
results show the good agreement of the analytical predictions. Aggregating the temporal network
rapidly deteriorates the predictions, except for slow diseases once the heterogeneity of the links
is preserved. Weight-topology correlations are found to be the critical factor to be preserved to
improve accuracy in the prediction.
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1 Introduction

The concept of epidemic threshold is fundamental in infectious disease modeling [1, 2].
When a pathogen is seeded in a population, a critical transmissibility exists below which
the spread rapidly ceases. Such a threshold is a combined property of the disease natural
history and of the network of interactions along which transmission can occur. In the
physics literature such interplay has been typically studied for the family of susceptible-
infected-susceptible and susceptible-infected-recoeverd models on networks [3–11]. Sev-
eral analytical approaches based, for instance, on the heterogenous mean field approxima-
tion [3], on percolation theory [6,7] and on Markov processes [4, 5] have been developed
to study the transition from early extinction to epidemic.

Extensive work has been done under the assumption of spreading time scales either
much slower or much faster than the one characteristic of the underlying network – the
two regimes called annealed and quenched, respectively [3,5]. In recent years, the massive
amount of empirical information on networks has showed that such assumption does not
hold in many cases [12–19] and that the network dynamics presents features (e.g. mem-
ory, bursty activation, heterogeneities in node activity) affecting the resulting spreading
processes [13, 14, 18, 20–28].

The majority of studies addressing so far the impact of network dynamics on the epi-
demic spread through the analytical calculation of the epidemic threshold are all based on
synthetic models of the network evolution, valid under context-specific assumptions [21,
24–29]. To fill this gap, we have introduced in [30] a method to compute the epidemic
threshold for a susceptible-infectious-susceptible (SIS) process on a generic discrete-time
temporal network, assuming the knowledge of its sequence of adjacency matrices. The
approach is rooted in a multi-layer representation [31, 32] of the temporal network that
preserves the network causality. It employs a tensor formulation that integrates both
spreading and network dynamics and allows for the analytical solution of the linearized
Markov chain description of the spreading process. Such framework extends in this way
the quenched approach to the time-varying case, through a multilayer transformation.

The lack of assumption on the network substrate makes such a tool a candidate for
assessing the vulnerability to epidemic invasion of real systems for which time-varying
contact data relevant for epidemic transmissions are collected [13–19, 33–36]. At the
same time, it allows a systematic exploration of the structural and temporal factors char-
acterizing the time-evolving network that are responsible for sustained spreading. To
allow the use of this framework to a variety of different settings and epidemic condi-
tions, we assess here the applicability of the approach in describing realistic diseases and
its robustness with respect to network properties induced by data collection procedures
and availability. By considering empirical and synthetic model contact data, we discuss
how a varying force of infection along a given link and its direction impact the compu-
tation of the threshold for a SIS dynamics. Then, we formulate the approach for more
realistic disease natural histories, considering susceptible-infectious-recovered (SIR) and
susceptible-infectious-recovered-susceptible (SIRS) compartmental models. This allows
us to account for an additional ingredient – immunity following infection, either perma-
nent or temporary – representing an important key feature of many diseases. Finally,
we address the problem of limited temporal resolution in the knowledge or availability
of the network dynamics, for which contacts occurring within a given time interval are
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aggregated [37]. By focusing on an empirical network of time-varying contacts among
individuals at school, we quantify the accuracy and reliability of the estimation of the epi-
demic threshold testing increasing aggregations, to provide quantitative and qualitative
information on the specific temporal structures responsible for observed biases.

2 Infection propagator approach for a weighted directed

temporal network

We consider a SIS model [1, 2] where hosts, represented by nodes in the network, can
be either in the susceptible or the infectious state. We assume the process to unfold in
discrete time on a weighted directed temporal network, comprising a finite number T
of snapshots, each one with a weighted adjacency matrix Wt. The entry Wt,ij encodes
the weight of the directed link from i to j at time step t. At each time step, infectious
nodes spontaneously recover with probability µ, returning to the susceptible state. While
infectious, nodes can transmit the infection to susceptible neighbors with a probability that
depends both on the weight of the link and on the intrinsic transmissibility of the pathogen
�, representing the probability of transmission when link weight is equal to 1. We model
this by introducing a transmission matrix ⇤t, function of both � and Wt, that encodes
transmission probabilities. When the network is unweighted (Wt,ij = At,ij = 0, 1), the
entries of the matrix ⇤t are simply given by ⇤t,ij = �At,ij . If the network is weighted,
several choices are possible to model transmission along the weighted link. Here we
consider a binomial process for the infection, so that:

⇤t,ij = 1� (1� �)Wt,ij
, (1)

as it is typically assumed, for example, in the spread of livestock infections between
premises where the weight represent the number of animals moved between farms [38].

We start from the microscopic Markov chain approach, or quenched mean field ap-
proach, developed for static networks [4, 5]. According to this, the equations describing
the SIS propagation on a generic static network with N nodes and adjacency matrix W
are

pt,i = 1� [1� (1� µ) pt�1,i]
Y

j

(1� ⇤jipt�1,j) , (2)

where pt,i is the probability that node i is in the infectious state at time t, and⇤ is the static
transmission matrix. We remark that Eq. (2) relies on the assumption that no dynamical
correlations exist among infection probabilities of neighbouring nodes [39].

The microscopicMarkov chain model of Eq. (2) is widely adopted in different fields [8,
40]. For both directed and undirected networks [41, 42] the study of its asymptotic state
yields the derivation of the epidemic threshold in terms of the spectral radius of the trans-
mission matrix ⇢[⇤], namely the modulus of the largest eigenvalue of ⇤. The threshold
is the value of � for which the following holds: ⇢[⇤] = µ. In the unweighted case, this is
equivalent to the well-known relation (�/µ) = 1/⇢[A], where ⇢[A] is the spectral radius
of the adjacency matrix [4, 5]. This is known to represent a lower bound of the real epi-
demic threshold, yet generally accurate [39] as any correction to it is suppressed by the
inverse of the size of the network [43].
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In order to extend this approach to temporal networks we need to take into account
the time dependence of ⇤. The Markov chain equations of the process read in this case:

pt,i = 1� [1� (1� µ) pt�1,i]
Y

j

(1� ⇤t�1,jipt�1,j) . (3)

We enforce the existence of the asymptotic solution of the infection process in a generic
temporal network by imposing periodic boundary conditions for network dynamics, i.e.
WT+1 ⌘ W1. Given that T is arbitrary, this causes no loss in generality. We also tested
that it would affect the epidemic threshold estimation only for rather small values of T ,
also when complex temporal dynamics are considered [30]. Contrary to the static case,
now the asymptotic solutions of Eq. (3) are periodic of period T .

We develop the formalism introduced in [30], and compute the epidemic threshold
for a generic weighted directed temporal network. We define a new representation of
the SIS dynamics on a temporal network by employing a multi-layer representation [31,
32, 44]. We map the temporal network to the tensor space RN ⌦ RT , where each node
is identified by the pair of indices (i, t), corresponding to the node label i and the time
frame t respectively. The specific multi-layer representation of the temporal network is
built according to the following rules [30]:

(i) each node, at time t, is connected to its future self-image at t+ 1;

(ii) if i is connected to j at time t with weight w, then we connect i at time t to j at time
t+ 1, and j at time t to i at time t+ 1, both with weight w.

The rules above define a tensor representation of a weighted multilayer network [32, 45].
We stress that no links connect nodes on the same layer, since layers cease to corre-
spond to the adjacency matrices of the temporal snapshots. The resulting network is
thus multipartite, since only pairs of nodes belonging to different layers are linked to-
gether. The adjacency representation of the resulting multilayer network has as entries
Ŵtt0,ij = �t,t0+1 [�ij +Wt,ij]. The proposed mapping from the network temporal sequence
to a multilayer object provides an ad hoc representation of the temporal network that pre-
serves the causality of the temporal network and that it lends itself to the integration of
the infection and recovery processes. The transformation for the links (rule (ii)) is similar
to the one introduced in [46], and is here introduced to model the infection process along
a time-stamped link. In addition, we also need to consider the connection between each
node and its future self (rule (i)) to model the recovery process of each infected node. We
can therefore define the transmission tensor M, whose entries are defined as:

Mtt0,ij = �t,t0+1 [(1� µ) �ij + ⇤t,ij] . (4)

M contains the transmission terms⇤t and the recovery term. M also introduces a simpli-
fied expression for Eq. (3). Using the supra-adjacency matrix formalism [31, 47, 48], we
can flatten out the multilayer representation using the following mapping: (i, t) ! ↵ =
Nt+ i, with ↵ running in {1, ..., NT}, allowing us to writeM in matrix form

M =

0

B@

0 1�µ+⇤1 0 ··· 0
0 0 1�µ+⇤2 ··· 0
...

...
...

...
...

0 0 0 ··· 1�µ+⇤T�1

1�µ+⇤T 0 0 ··· 0

1

CA .
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M provides a representation of the topological and temporal dimensions underlying the
dynamics of Eq. (3), in terms of a NT ⇥ NT transmission matrix that encodes both
pathogen transmission and recovery. The Markov process is now represented in RNT by
the state vector p̂↵(⌧), i.e. the probability of each node to be infectious at each time step
t included in a 1-period long interval, [⌧T, (⌧ + 1)T ]. Consistently, Eq. (3) becomes

p̂↵(⌧) = 1�
Y

�

[1�M�↵p̂�( ⌧ � 1)]. (5)

Given that vector p̂ encodes a 1-period configuration, the T -periodic asymptotic state of
the SIS process is now mapped into the steady state p̂↵(⌧) = p̂↵(⌧ � 1). The latter can be
recovered as solution of the equilibrium equation:

p̂↵ = 1�
Y

�

(1�M�↵p̂�) , (6)

that is formally the same as the stationary condition imposed on Eq. (2) for the static
network case and is similar to Markov chain approaches used to solve contagion processes
in multiplex and interconnected networks [47–49]. Given that Eq. (6) formally describes a
diffusion process on a static network ofNT nodes, we can then follow [4,5] and linearize
Eq. (6) recovering the necessary and sufficient condition for the asymptotically stable
disease-free solution, ⇢ [M] < 1 [50]. This yields the threshold condition

⇢[M] = 1 (7)

for the critical value of � above which the transmission becomes epidemic [4, 5, 47–49].
Given the block structure of the matrix, it is possible to simplify the computation of the
spectral radius of M [51]:

⇢ [M] = ⇢ [P]1/T (8)

where

P =
TY

t=1

(1� µ+⇤t) . (9)

In the case of unweighted undirected network, P becomesP =
QT

t=1 (1� µ+ �At) [30].
This matrix has an important physical interpretation. Let us consider a time-respecting
path from i to j, lasting T time steps and containing a jumps and T � a waiting times.
We associate to this path the weight �a(1 � µ)T�a, representing the probability that the
infection propagates along that path, from i infectious at time t = 1 to j infectious at
time t = T . The entry Pij is then the sum of all the time-respecting paths going from
(i, t = 1) to (j, t = T ), each weighted as described. Therefore, it represents the total
probability of j being infectious at time t = T , given that the infection originated in i

infectious at time t = 1. This is valid in the limit of small probabilities and non-interaction
among paths. P thus describes the infection propagation around the disease free state
(i.e. p ' 0) and within the quenched mean field framework where interactions among
paths are disregarded. In light of this interpretation, we call P infection propagator. The
accessibility matrix, defined in [52], is a particular case of infection propagator, when
� = µ = 1, i.e., when the spreading process is a deterministic exploration of the temporal
network. The generalization to weighted network is straightforward once the force of
transmission on each link of Eq. (1) is taken into account.
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3 Infection propagator approach for SIRS and SIR dy-

namics

Many pathogens leave recovered individuals immune to reinfection. Such immunity may
last indefinitely, or for a limited amount of time and is modeled through the introduction
of an additional compartment, the recovered (R) state [1, 2]. Infectious nodes enter the
recovered state with probability µ, becoming immune to re-infection. We also consider
that they leave this state with probability !, returning to the susceptible state. Any value
of ! > 0 describes a SIRS model, characterized by an average immunity period 1/!.
! = 0 corresponds instead to the SIRmodel, where immunity is assumed to be permanent.
Markov chain equations for the SIRS model are as follows:

8
>><

>>:

pt,i = (1� µ) pt�1,i+

+ (1� pt�1,i � qt�1,i)
h
1�

Q
j (1� ⇤t�1,jipt�1,j)

i
;

qt,i = µpt�1,i + (1� !)qt�1,i.

(10)

In addition to pt,i, we define qi,t as the probability of being in the recovered state at time
t. The computation of the threshold is equivalent to the study of the stability of the
disease-free state pt,i = 0 [4, 5]. Equations are therefore linearized around that point,
making all quadratic terms disappear. In the case of the SIRS model, the disease-free
state is pt,i = qt,i = 0. Once we linearize Eq. (10) in both pt,i and qt,i we obtain
pt,i =

P
j (⇤t�1,ji + (1� µ)�ij) pt�1,j . The equation for pt therefore decouples from qt,

suggesting that the recovered compartment does not impact the epidemic threshold. As a
result, the same infection propagator describing the SIS dynamics (Eq. 9) can be written
to compute the epidemic threshold of a SIRS compartmental model on a time-varying
network.

The SIR model can be considered as a limiting case of the SIRS dynamics (! !
0). The infection propagator for the SIRS model does not depend on the probability of
waning of immunity !, as it only contains expressions in terms of � and µ. The threshold
computed with the infection propagator approach for the SIRS therefore holds for any
arbitrarily small !. As a result, we can safely perform the following limit:

�

SIR
critical = lim

!!0
�

SIRS
critical = �

SIRS
critical = �

SIS
critical. (11)

Both SIRS and SIR models thus have the same threshold as the SIS compartmental model,
not being affected by the recovery compartment and the duration of the immunity period.

4 Application to empirical and synthetic model data

We test the validity and accuracy of our predictions by comparing them with the results of
explicit microscopic numerical simulations of the SIR and SIRS processes. We consider
two temporal network models and one empirical time-varying network. In the following
subsections we describe the data and methods considered and the corresponding results.
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4.1 Empirical and synthetic model data

We test our approach on two network models: the ACTIVITY and BURSTY models. AC-
TIVITY is built from the activity-driven model proposed by Perra et al. in [25]. Each node
is given an activity potential, drawn from a heterogeneous distribution. At each time step,
nodes become active with a probability equal to their potentials. Active nodes establishm
(herem = 2) connections with other nodes picked at random, and all links are renewed at
every snapshot. We generate networks withN = 1000 nodes and T = 20 time snapshots,
as in [30]. Activity potentials are assigned through the relation a = 1 � e

�⌘x, (⌘ = 10)
and x ⇠ x

�� and x 2 [✏, 1] (� = 2.8 and ✏ = 3 · 10�2). The obtained networks are char-
acterized by a temporally uncorrelated sequence of snapshots displaying a heterogeneous
topology.

BURSTY is obtained from the model introduced by Rocha et al. in [20]. Here, the
probability of a node becoming active at time step t is sampled from the distribution
(t� t

0)�↵1
e

�↵2(t�t0), where t0 is the time that node was last active. We consider networks
of size N = 500 and described by T = 50 time snapshots, generated with ↵1 = 2 and
↵2 = 5 · 10�4 as in [30]. The obtained networks account for a heterogeneous activation
pattern describing a sequence of homogeneous networks where the inter-contact time is
power-law distributed

In addition to the synthetic models above, we consider an empirical time-evolving net-
work constructed from records of face-to-face proximity interactions between individuals
in a high school during one day, collected by Salathé et al. [53] (SCHOOL). This network
comprises N = 787 nodes and we consider here T = 42 time snapshots, each one of 10
minutes.

4.2 Numerical simulations

We numerically simulate the disease diffusion of a SIR and of a SIRS infection dynamics
on the above described networks. Simulations assume all individuals to be susceptible at
the initial time, and are seeded with an infected node chosen at random on the network.
At each time step, infectious nodes can transmit the disease with probability � to their
susceptible neighbors and recover with probability µ. Here we consider unweighted net-
works, for the sake of simplicity. Weighted networks will be addressed in the next section
in the study of time aggregation of the evolving network. In the SIRS model, recovered
nodes turn susceptible with probability !. Results of the simulations are obtained after
randomizing the initial seed and the time step of the T sequence chosen as the initial
time step, and they are obtained under the assumption of periodic boundary conditions
for network evolution.

For the SIRS dynamics, following [54] we numerically identify the epidemic threshold
as the value of the transmissibility � for which the relative variation of the prevalence
at equilibrium is maximal, as such variation would go to infinity in the thermodynamic
limit (N ! 1), indicating a second order phase transition. We therefore measure the

variablity� =
q
hi2T i � hiT i2/ hiT i [54–56], where iT = 1

T

PT
t=1 ieq(t) is the prevalence

at equilibrium averaged over a period T . The endemic prevalence is computed using the
quasistationary method [54,57]. We force the system to be in an active state; whenever it
reaches the absorbing state with no infectious nodes, we sample one random configuration
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among the ones the system had visited while it was in the same snapshot, and restart the
simulation from that configuration. After discarding an initial transient (3 ·103 iterations),
we compute iT for every period (for 5 · 105 iterations), and with those values we compute
hiT i and hi2T i. We then compare the value of � corresponding to the peak of the variability
� with the prediction for the epidemic threshold obtained from the infection propagator
approach. The same method is used for the SIR dynamics, where the endemic prevalence
is replaced by the final attack rate r, i.e. the fraction of nodes hit by the epidemic

4.3 Results

We consider a SIR dynamics on the three networks under study and explore two values
of the infectious period, corresponding to µ = 0.2, 0.5. For each µ, Figure 1 shows the
behavior of the variability� normalized to its peak value�max as a function of the trans-
missibility �. In all cases we find a very good agreement between our prediction (vertical
dashed line) and the simulated epidemic threshold obtained from the peak value of �.
The agreement is found for both network models ACTIVITY and BURSTY, despite them
being characterized by different topological and temporal heterogeneities, and for the em-
pirical dataset SCHOOL. This last network features a more complex dynamics capturing
the daily activities and interactions, with non-trivial temporal correlations and modular
structures evolving in time [53]. Despite the approximations used to compute the epi-
demic threshold with the infection propagator approach, the results of Figure 1 indicate
that the method is able to provide reliable and accurate predictions for the threshold be-
havior of systems characterized by different properties. We also note that the agreement
is obtained independently of the values of the epidemic threshold: the threshold of the
SCHOOL network is indeed approximately one order of magnitude smaller than the ones
obtained in the two network models for the same SIR dynamics.

Similar results are also obtained when considering a SIRS dynamics, characterized
by the same values of the infectious period considered above and by three values of the
probability of immunity waning (! = 0.25, 0.5, 0.75). For each temporal network, we
numerically identify the value of the epidemic threshold as that corresponding to the peak
of the normalized variability �/�max, and recover a good agreement with our analytical
predictions (Figure 2). The addition of the transition from an immune state to a suscep-
tible state does not alter the accuracy of the computed predictions. Moreover, different
immunity periods (i.e. different values of !) lead to the same epidemic threshold on the
temporal networks, as predicted by the infection propagator approach. The difference
observed in the curves for different values of ! for � well above the threshold is induced
by the variation in the average endemic prevalence. Epidemics circulating on these sys-
tems and characterized by longer immunity periods (! = 0.25, light blue and light red
in the plots of Figure 2) display a larger variability due to the smaller average prevalence
reached at equilibrium, as shown by Figure 3. Shorter immunity periods (! = 0.75) reach
a larger endemic prevalence for a given value of the transmissibility above the epidemic
threshold and therefore display a smaller variability �/�max.
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Figure 1: SIR model. Comparison between the epidemic threshold and vari-

ability. The variability � of final attack rate r, normalized to its peak
value (�/�max), is plotted against the transmissibility �. We explore
two different values of µ. Dashed vertical lines represent the threshold
value for � predicted by the infection propagator approach. (a) shows
the results for the ACTIVITY network, (b) for the BURSTY network, and
(c) for the SCHOOL network.

5 Impact of time aggregation of the temporal network

In many cases, information on network dynamics can be coarse, with data reporting
on the temporal evolution at a lower resolution scale than the one of the process itself.
This means that all events occurring within the time interval of the considered resolu-
tion will be aggregated in a static single snapshot. An aggregated representation of a
temporal network does not account for causal structures and temporal correlations that
occur at time scales that are smaller than aggregation interval [58]. Since these struc-
tures can impact disease dynamics, it is crucial to assess how such coarser representation
influences the description of epidemic processes [37, 58, 59]. Here, we study the in-
fluence of the aggregation schemes described in [59] on the epidemic threshold. HET
scheme is a weighted aggregation of the snapshots, obtained by summing link weights:
Wt,Wt+1 7�! Wt+Wt+1. By contrast, HOM is topologically equivalent to HET, having
the exact same set of links. However, each link is given an equal weight corresponding to
the average weight of the HET network over the same period. As a result, both schemes
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Figure 2: SIRS model. Comparison between the epidemic threshold and

variability. The variability � of the endemic prevalence iT , normalized
to its peak value (�/�max), is plotted against the transmissibility �. We
explore different values of µ and !. Dashed vertical lines represent the
threshold value for � predicted by the infection propagator approach. (a)
shows the results for the ACTIVITY network, (b) for the BURSTY network,
and (c) for the SCHOOL network.

share the same average weight at every aggregation interval, but HET accounts for weight
heterogeneity. We use the intrinsic transmissibility � for comparison across different
aggregation schemes and intervals, as it does not depend on weight. We consider the
empirical dataset of the SCHOOL network as it provides a richer temporal and topological
set of features with respect to synthetic models. Also, the study on aggregation aims at
providing useful practical information for data collection purposes.

We consider the highest resolution network obtained from the SCHOOL data corre-
sponding to�t1 = 20s. Starting from this resolution, we aggregate snapshots recursively
two by two, doubling the aggregation interval at each aggregation test. We consider the
recovery rate m as an intrinsic property of the disease, thus not changing with aggrega-
tion. The probability of recovery after a time �t is me

�m�t. Aggregation interval at
the k-th aggregation is �tk = k�t1. Hence, we compute the recovery probability at
the k-th aggregation µ[�tk] as the probability of recovering within an interval �tk, i.e.,
µ[�tk] = 1� e

�m�t1 k. We explore four different recovery rates: m = 1.8, 9, 18, 90 h�1.
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iT
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ω

SCHOOLBURSTYACTIVITY

Figure 3: SIRS model. Comparing the average prevalence above threshold,

for different values of !. For each network we choose a value of �
above threshold, so that variability is around 1/3 of its peak, �/�max ⇡
1/3. For ACT this corresponds to � = 0.14 for µ = 0.2, and � = 0.35 for
µ = 0.5; for BURSTY � = 0.36 and � = 0.86, and for SCHOOL � = 0.01
and � = 0.03. We plot the average prevalence at equilibrium iT for all
three network, and for all the explored values of µ and !.

5.1 Results

We compare the epidemic threshold ��t computed after aggregating the network with a
given aggregation time window �t, to the one computed at the highest resolution �t1

(�1), using the ratio ��t/�1 (Figure 4). Four values of the recovery rate are considered,
and for each value the results from two time aggregation schemes are shown.

Focusing on the HET aggregation scheme, the results of Figure 4(a) show that the
prediction made on the aggregated SCHOOL network deteriorates with the increase of the
time aggregation window�t. As expected, the aggregation induces a loss of the temporal
information making the aggregated network to perform poorly with respect to reproduc-
ing the behavior obtained in the original network. This is known for a series of indicators
regarding the importance of individual nodes in the spread of an epidemic in the sys-
tem [58], and we find that it also results in a biased estimation of the threshold condition
for the epidemic propagation. The effect is more rapid and stronger for fast epidemic
processes (e.g. m = 90 hours�1), in that a fast disease circulating on the network would
have the possibility to experience the entire landscape of dynamical changes the network
undergoes through, thus differentiating between the pattern obtained at the highest reso-
lution and the aggregated one. On the other hand, if the disease spreads slowly on the
network (e.g. m = 1.8 h�1), we expect the epidemic process to be less sensitive to the
network changes. The epidemic threshold computed on the aggregated network provides
indeed a good estimate of the one corresponding to the highest resolution network up to
a certain level of aggregation (e.g., �t ' 3min20s for the m = 1.8 hours�1 case), after
which the accuracy is progressively lost. This is consistent with the numerical results of
an SEIR dynamics spreading on the network of contact of conference attendees, show-
ing that the spreading dynamics is well described by a static aggregated network if the
heterogeneity of the contact durations is taken into account as edge weights [59].

The underlying mechanism leading to the deterioration of the epidemic threshold esti-
mate with increasing aggregation time window is the creation of novel transmission paths
that would otherwise not exist, with the effect of destroying the causality of the sequence
of interactions within�t and of increasing the density of the links in the network [60,61].
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All these effects tend to facilitate the spread of a disease, so that the resulting epidemic
threshold is lower than the one computed on the original temporal network corresponding
to �t = 1, as shown in Figure 4(a).

If we focus on the HOM aggregation scheme, we observe that the epidemic threshold
predicted for a given�t is systematically higher than the one obtained in the HET scheme
for the same �t value (same color, dashed lines vs. continuous lines in Figure 4(a)).
The reason lies in the way weights are distributed over the links of the aggregated net-
works. While the HET scheme preserves the heterogeneity of the duration of the contacts,
cumulating the duration of the interaction established by each pair of individuals, this
information is lost in the HOM scheme as the total contact duration is homogeneously
distributed among all contacts. Heterogeneity of the weights has a strong effect on the
evolution of epidemics [45, 62–70], favoring the spread of diseases [21, 71–73]. This re-
sults in a lower epidemic threshold than its homogeneous counterpart, for a given �t.
The faster the disease is, the smaller is the difference observed in the epidemic threshold
obtained from the two aggregation schemes.

To better explore the various facets of the SCHOOL temporal network having an impact
on the threshold condition, we also consider three reference models that systematically
destroy some of the network properties. RESHUFFLE consists of a random reshuffling
of snapshot time ordering. It preserves the aggregated network, and the static topologi-
cal features of the snapshots. It breaks the temporal activity of the network, defined as
the number of contacts in time. It breaks all temporal correlations among link activa-
tions, too. RECONFIGURE consists of a random reassignment of contact timestamps. Two
contacts (i, j, t), (k, l, s) are randomly selected, and their timestamp switched: (i, j, s),
(k, l, t). RECONFIGURE preserves the activity timeline and the aggregated network. It
breaks snapshot topology and temporal correlations between link activations. Finally,
ANONYMIZE reshuffles the identity of the nodes of each time snapshot, thus preserving
activity timeline and static topology of each snapshot. It breaks all dynamic community
structures and cliques (namely school classes).

Results for these reference models are shown in Figure 4(b)-(d). The behaviors ob-
tained for RESHUFFLE and RECONFIGURE models are very similar. The difference be-
tween HET and HOM schemes is reduced for all recovery rates with respect to the results
obtained on the original network, and it becomes negligible for faster diseases. The curves
of panels (b) and (c) show that the obtained result is independent of the activity timeline of
the network (preserved by the RECONFIGURE reference model, but not by the RESHUFFLE
one), and it is more likely related to specific time-evolving topological structures present
in the SCHOOL network that are otherwise destroyed by both reference models. To test
this hypothesis, we consider the ANONYMIZE reference model (Figure 4(d)), where we
destroy all two-points correlations and their time correlations, while preserving the over-
all temporal activity and the topology of each snapshot. As expected, the two schemes
cannot be anymore distinguished following such reshuffling.

Results of Figure 4 show that in all reference models aggregation leads to an un-
derestimation of the epidemic threshold, for both aggregation schemes considered. In the
SCHOOL network, on the other hand, HOM aggregation is found to provide larger epidemic
thresholds than the one obtained at the highest resolution, within a given aggregation in-
terval and for slow diseases. To better understand this behavior observed solely on the
empirical data that disappears with the three types of reshuffling considered in the refer-
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Figure 4: Impact of aggregation on the epidemic threshold for the SCHOOL
network and three reference models. The ratio between the thresh-
old ��t computed on the aggregated network and the threshold �1 of
the highest resolution temporal network is plotted as a function of the
aggregation time interval �t. Four different values of the recovery rates
are explored, along with two aggregation schemes, HOM and HET. (a)
shows the results for SCHOOL, (b) for reference model RESHUFFLE, (c)
for RECONFIGURE, and (d) for ANONYMIZE.

ence models, we explore the role of time correlations and memory effects in the SCHOOL
network. We consider the social strategy introduced in [74]. More in detail, we fix a
time window of � = 20 snapshots (6min40s), and define kHET

t,i (kHOM
t,i ) as the degree of

node i in the network aggregated over the interval [t��, t], using aggregation scheme HET
(HOM). We compute the social strategy of node i at time step t as �t,i = k

HOM
t,i /k

HET
t,i (the

same definition as in [74], except for a normalizing factor �). Social strategy discriminates
between memory-driven behavior (� ! 0), where a node tends to make contacts always
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with the same nodes, and memoryless behavior (� ! 1), where a node shows a more
socially exploratory behavior. Figure 5(a) shows how social strategy evolves in time. We
observe that its median behavior is quite stable in time, except for several localized spikes.
Most of these spikes roughly correspond to abrupt variations in the temporal activity of
the network. These spikes result then from a reduction of the memory of the system, due
to a varying number of overall contacts. Remarkably, however, the median social strategy
returns to the value it had before the spike quickly after each of these events, indicating
that the interaction dynamics does not qualitatively change, but the sets of interacting in-
dividuals do change over time. The only exception occurs between around 13 : 30 and
14 : 30, when social strategy is significantly higher than average, but still lower than its
delimiting peaks. These spikes naturally induce a temporal slicing of the network, in a
way that likely corresponds to the rhythm of school activities. We call �-slice each time
interval between two consecutive spikes.

This aspect of the degree of memory contained in the system, and measured through
the tendency of each node to keep establishing contacts with the same individuals over
time, is destroyed in all reference models under study, even those that preserve the activity
timeline of Figure 5(a). To understand whether if and to what extent stages in the evolu-
tion of the social strategy in time are responsible for the behavior observed in the SCHOOL
network, we design a fourth reference model, RESHUFFLE-SOCIAL, where we randomize
the snapshot order, as in RESHUFFLE, but we allow reshuffling only within each �-slice.
Figure 5(b) shows that RESHUFFLE-SOCIAL displays the same behavior as the SCHOOL
network, unlike RESHUFFLE, with an overestimation of the value of the epidemic thresh-
old by the HOM scheme for small enough aggregation intervals and slow diseases. The
aggregation of snapshots where individuals show a rather large memory in the way they
establish links (i.e. small �) leads to marked weight-topology correlations, likely being
part of robust temporal communities of highly interacting nodes emerging from school
daily activities. Such correlations were already found to play an important role in the
slowing down of epidemics once large-scale propagation occurs in the system [18]. In
our case, we find that preserving the heterogeneity of weights of such correlations (as in
the HET scheme) can provide a good approximation of the epidemic threshold for small
interval aggregation and for slow diseases. In addition, such approximation is better than
the one provided by homogenizing weights across all links in the system (as in the HOM
scheme), given that the latter destroys weight-topology correlations leading to a network
that is more resilient to the epidemic spread [21]. This effect vanishes for increasing
time aggregating windows and it completely disappears for all aggregating intervals once
these correlations are destroyed by the reshuffling of nodes (see the ANONYMIZE refer-
ence model in Figure 4).

6 Conclusions

We have considered the infection propagator approach to compute the epidemic thresh-
old for an arbitrary time-varying network. Starting from a SIS dynamics on a weighted
directed temporal network, we have considered more complicated compartmental models
and addressed timescale issues relevant for the study of temporal networks. The over-
all aim was to introduce the infection propagator approach for more realistic infection
dynamics and to study the effect of time aggregation of the network of contacts on the
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Figure 5: Interplay between SCHOOL dynamics and aggregation. In (a) we
show the temporal activity of SCHOOL, as the normalized number of
contacts (black line) in each snapshot of the fully temporal network. On
the x axis we indicate the time of the day, in hours. Red solid line rep-
resents the median value of network’s social strategy, computed with
a sliding window of 20 snapshots (equivalent to 400s). Social strategy
plotted at time t is computed over the interval (t�20, t]. Red areas show
50% (darker) and 95% (lighter) confidence interval for social strategy. In
(b) we plot, for reference model RESHUFFLE-SOCIAL, the ratio between
the threshold computed on the aggregated network ��t, and the thresh-
old of the full temporal network �1, as a function of the aggregation time
interval �t. Four different values of the recovery rates are explored,
along with the two aggregation schemes HOM and HET.

computation of its threshold. Our findings indicate that the approach provides reliable
and accurate predictions of the epidemic threshold also in presence of immunity stages
and loss of immunity transitions in the disease natural history. In addition, for slow dis-
eases, the time aggregation scheme preserving the cumulative heterogeneous duration of
contacts between two nodes is shown to provide a quite accurate estimation of the epi-
demic threshold of the corresponding high-resolution network up to a certain aggregation
level. For faster diseases, time aggregation strongly alters the accuracy of the estima-
tion. The presence of weight-topology correlations is the main feature of the SCHOOL
network leading to biased estimations. These findings provide important information to
study the vulnerability of systems in real settings and to assess possible biases induced by
the consideration of time-aggregated contact data.

This work is partly sponsored by the EC-Health contract no. 278433 (PREDEMICS)
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J. Saramäki. Small but slow world: How network topology and burstiness slow
down spreading. Phys. Rev. E, 83:025102, Feb 2011.

[19] Petter Holme and Jari Saramäki. Temporal networks. Physics Reports, 2012.

[20] Luis E. C. Rocha and Vincent D. Blondel. Bursts of vertex activation and epidemics
in evolving networks. PLoS Comput Biol, 9(3):e1002974, 03 2013.

[21] Luca Ferreri, Paolo Bajardi, Mario Giacobini, Silvia Perazzo, and Ezio Venturino.
Interplay of network dynamics and heterogeneity of ties on spreading dynamics.
Phys. Rev. E, 90:012812, Jul 2014.
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[64] J.-P. Onnela, J. Saramäki, J. Hyvönen, G. Szabó, D. Lazer, K. Kaski, J. Kertész,
and A.-L. Barabási. Structure and tie strengths in mobile communication networks.
Proceedings of the National Academy of Sciences, 104(18):7332–7336, 2007.

[65] R. Lambiotte, J.-C. Delvenne, and M. Barahona. Laplacian Dynamics and Multi-
scale Modular Structure in Networks. arXiv.org, 2009.
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Computing the vulnerability of time-evolving networks to infections

3.4. Continuous time

The methodology we have introduced so far intrinsically consider time as a discrete

entity, as this allows the multilayer mapping. As we have explained in Section 2.1, this

is often a reasonable assumption. There are contexts, however, where one still needs to

assume continuous time evolution [87,90]. Hence, in this section we address the problem

of computing the threshold on continuous-time varying temporal networks.

We have seen that the infection propagator (Equation 3.2) contains all the information

we need. We now develop a calculation to directly compute its continuous limit, in order

to obtain the infection propagator in continuous time. Once we have that, we compute

the threshold in terms of its spectral radius, as before.

We treat the continuous-time temporal network as an adjacency matrix A(t) which is

a continuous function of time t 2 [0, T
c

]. We sample this network at regular intervals,

with a sampling interval �t. We thus get a discrete temporal network {A1, A2, · · · , AT

}
which is a sample of the original one, with A

h

= A(h�t) and T = T
c

/�t. Through

Equation 3.2 we can write the infection propagator for the sampled network. We now

wish to recover the propagator of the continuous time network by making �t go to zero.

As we cannot straightforwardly perform such limit on Equation 3.2, we define a partial

propagator P (h) as

P (h) =
h

Y

k=1

[1� µ+ �A
k

] . (3.3)

This is a truncated version of the infection propagator, reaching the full propagator when

h = T : P (T ) = P . One can easily see that this object obeys the recursion relation

P (h+ 1) = P (h) [1� µ+ �A
h+1] . (3.4)

We exploit the fact that A
h

matrices are instantaneous pictures of the continuous process,

and rewrite Equation 3.4 as a function of continuous time:

P (t+�t)� P (t) = P (t) [µ(�t) + �(�t)A(t+�t)] . (3.5)

In order to perform the limit �t ! 0, we introduce the time-independent transmission

and recovery rates l,m. They are intrinsic features of the diseases, and encode the

probability of transmission and recovery within a small time interval:
8

<

:

�(�t) = l�t+O(�t2);

µ(�t) = m�t+O(�t2).
(3.6)
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We rewrite Equation 3.5 translating probabilities into rates, and divide both sides by

�t:
P (t+�t)� P (t)

�t
= P (t) [�m+ lA(t+�t)] +O(�t). (3.7)

Equation 3.5 is clearly well behaved when �t becomes very small, and we can finally

compute the limit �t ! 0. The left hand side becomes, by definition, the derivative of

P .
d

dt
P (t) = P (t) [�m+ lA(t)] . (3.8)

If we assume A(t) is a continuous function of time, everything is well behaved. If not,

we can perform derivatives in the sense of the distributions [197, 198]. The solution of

Equation 3.8 in t = T
c

, for initial condition P (0) = 1, leads to the infection propagator

P = P (T
c

) in case of continuous time. Equation 3.8, however, cannot be solved explicitly

in most cases, since it is a non-autonomous system of coupled di↵erential equations of N2

unknowns (all entries P
ij

). It must therefore be solved numerically, but such computation

becomes cumbersome, even for moderately large networks. Hence, whenever possible,

the discrete approach should be preferred, as it is much more numerically e�cient.

There is, however, a particular case for which we can explicitly solve Equation 3.8.

We must assume that adjacency matrices at di↵erent times commute: [A(t), A(t0)] = 0

8t, t0 2 [0, T
c

]. How stringent is this requirement? Let us consider an arbitrary temporal

graph, which for simplicity we assume undirected and without self-loops. Its adjacency

matrix A(t) then has N(N � 1)/2 degrees of freedom, as we can turn on and o↵ each

link at any time. We can diagonalize A(t) getting a diagonal matrix D(t), and a matrix

of change of basis Q(t), and both will depend on time: A(t) = Q(t)D(t)Q(t)�1. Now,

imposing commutativity [A(t), A(t0)] = 0 is equivalent to fixing Q(t) = Q in time. That

is because commuting matrices are diagonalized by the same matrix, and so there must

exists a single Q that diagonalizes A(t) at any time. Hence, we are down to N degrees

of freedom, corresponding to the diagonal entries of D(t). Conceptually, this means

that network topology has no temporal correlations or memory, as that would induce

non-zero commutator. Let us now solve Equation 3.8 in case of commuting matrices,

using A(t) = QD(t)Q�1:

d

dt
P (t) = P (t)Q [�m+ lD(t)]Q�1. (3.9)

We define Y (t) := P (t)Q, and rewrite

d

dt
Y (t) = Y (t) [�m+ lD(t)] . (3.10)
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This last equation is now a decoupled linear system - recall D(t) is diagonal - and can

easily be solved. Going now back to P (t), and with initial condition P (0) = 1, its

solution is

P (t) = Q exp{�mt+ l

Z

Tc

0
dtD(t)}Q�1 = exp{�mt+ l

Z

Tc

0
dtA(t)}. (3.11)

Hence, the infection propagator reads

P = P (T
c

) = exp {T
c

[�m+ l hAi]} . (3.12)

Matrix hAi is the average of the adjacency matrix over the whole period: hAi =
R

Tc

0 dtA(t)/T
c

. The fact that infection propagator contains only the average adjacency

matrix, which is invariant under time permutations, is due to the fact that no temporal

correlations are present. In order to find the threshold, we must find the transmission

rate value for which ⇢[P (T
c

)] = 1. From Equation 3.12 we immediately see that this

leads to

l
c

=
m

⇢[hAi] . (3.13)

We numerically check the accuracy of this solution for a simple network obeying the

commutativity relation: a continuous version of model er-t (see Section 2.5). We assume

that, for each t, A(t) is an instance of an Erdős-Rényi graph, with average degree k(t),

and average over all the possible instances. In this case, Equation 3.13 reduces to

l
c

=
m

k̄
, (3.14)

where k̄ = 1
Tc

R

Tc

0 dtk(t), i.e., the average over time of the average degree. We choose a

periodic k(t):

k(t) =
k
max

� k
min

2
cos

✓

2⇡

T
r

t

◆

+
k
max

+ k
min

2
, (3.15)

where k
max

, k
min

are the limit values of k(t), and T
r

is the period of k(t). In Figure 3.2

we compare the l
c

with the threshold obtained through discrete sampling (l
d

), at di↵erent

sampling intervals �t. To be precise, the sampled network being discrete, it gives us

a critical transmission probability �
c

. We then translate into a rate l
c

, through the

equivalence �
c

= 1 � e�lc�t [3]. When the sampling interval is comparable with the

timescale of evolution T
r

, large fluctuations of l
d

compared to l
c

, depending on the

starting point of sampling. When instead sampling interval is significantly smaller than

T
r

, the two thresholds coincide, showing the accuracy of Equation 3.12.
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A B

Figure 3.2.: The epidemic threshold of model er-t: discrete v continuous. A shows

the evolution of k(t) for T
r

= 0.2, T
c

= 1, k
min

= 1, k
max

= 6. B has sampling

interval on the x-axis, as a fraction of T
c

, and on y-axis it has the ratio l
d

/l
c

,

i.e., discrete threshold divided by continuous threshold. Four di↵erent values of

recovery rate are explored, and for each of them we show the average across

di↵erent starting points of sampling (solid line), and extreme values (colored

areas). Vertical black lines mark multiples of T
r

.
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3.5. Latency

In this section we study the impact of latency period on the epidemic threshold. Specif-

ically, we derive an analytical formula for computing the threshold of the SEIS model

on a generic temporal network. For a description of the SEIS model, see Figure 1.1.

When the network does not evolve in time, latency plays no role in shaping the epidemic

threshold, and a SEIS model with parameters ✏, µ will have the same threshold as a

SIS model with parameter µ [146]. We investigate what happens for temporal networks.

We have shown how crucial the interplay between network time scale and disease time

scale (represented by 1/µ) is. We now wish to determine if the additional time scale 1/✏

induced by latency has an impact on the threshold and how we can compute it.

Before proceeding, we enumerate here the conceptual steps that will take us to the

solution of the problem:

1. we write down the Markov chain equations of the SEIS model on a static network;

2. we design a new 2-layer static network, and couple it to a specifically designed SIS

spreading dynamics;

3. we show that the two processes – SEIS on static network and SIS on 2-layer – have

the same epidemic threshold;

4. we recover the known result that in the static case latency does not matter;

5. we extend this mapping to the temporal case, using the results of previous sections

(Section 3.2 and [1]), and recover a formula for computing the epidemic threshold

of the SEIS model on a generic temporal network.

We now develop in detail each step of the previous list.

1.

In analogy to what we did for the SIS model in Equation 1.20, we write the Markov chain

equations of the SEIS model. We assume here a static unweighted, undirected network

of N nodes, and of adjacency matrix A. We used to deal with a system of N equations,

one for each node. Now we add q
i

(t), namely the probability node i is exposed, resulting
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in 2N equations:

8

<

:

p
i

(t+ 1) = (1� µ)p
i

(t) + ✏q
i

(t);

q
i

(t+ 1) = (1� ✏)q
i

(t) + [1� p
i

(t)� q
i

(t)]
n

1�Q

j

[1� �A
ij

p
j

(t)]
o

.
(3.16)

A B

Figure 3.3.: Schematic description of the 2-layer structure. A represents the starting

static network, containing here just two nodes and one link. B represents the

2-layer structure we define. Each node is present in both layers, and the copy

in layer 2 points to the copy in layer 1 (black dashed arrows). The link in A is

translated into two directed links from layer 1 to layer 2 (red dashed arrows).

2.

We now define a 2-layer static network, with each layer containing a copy of the N

nodes. We do not allow for intra-layer links, so the resulting structure will be bipartite.

Inter-layer links are defined following these two rules:

• each node in layer 2 is connected to its copy in layer 1 through a directed link

(black dashed arrows in Figure 3.3B);

• if there is a link in the starting network (A
ij

= 1), a directed link will go from i

in layer 1 to j in layer 2, and another from j in layer 1 to i in layer 2 (red dashed

arrows in Figure 3.3B).

These rules can be synthesized in terms of the adjacency tensor Â
↵�ij

of the 2-layer

structure. Â
↵�ij

= 1 means that node i in layer ↵ is connected to node j in layer �,

where i, j = 1, · · · , N (node indices) and ↵,� = 1, 2 (layer indices). The components of
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this tensor are
8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

Â11ij = 0;

Â12ij = A
ij

;

Â21ij = �
ij

;

Â22ij = 0.

(3.17)

Switching to the supra-adjacency matrix formalism (Section 3.1) we write this tensor in

terms of a 2N ⇥ 2N adjacency matrix, divided into four blocks of dimension N ⇥ N ,

with diagonal blocks showing intra-layer connectivity, and o↵-diagonal blocks inter-layer

connectivity:

Â =

 

0 A

1 0

!

(3.18)

We couple this new 2-layer structure to a SIS dynamic process, with heterogeneous

transmission and recovery probabilities. In particular, we let each layer have its own

recovery probability: µ1, µ2. In addition, we assume that transmission from layer 1

to layer 2 (occurring through red links in Figure 3.3B)) has a di↵erent probability

than the opposite (black links): �12,�21. We then write the Markov chain equations

of this process, which are a system of size 2N , as the total number of nodes in Â. We

conveniently call p
i

(t) the probability of node i being infectious in layer 1, and q
i

(t) of

being infectious in layer 2.

8

<

:

p
i

(t+ 1) = (1� µ1)pi(t) + �21 [1� p
i

(t)] q
i

(t);

q
i

(t+ 1) = (1� µ2)qi(t) + [1� q
i

(t)]
n

1�Q

j

[1� �12Aij

p
j

(t)]
o

.
(3.19)

We now compare Equation 3.16 (SEIS dynamic on A) and Equation 3.19 (SIS dynamics

on Â), and set the parameters in the latter as follows: µ1 = µ, µ2 = ✏, �12 = �, �21 = ✏.

We choose these value in order to make the two sets of equations as similar as possible.

The result is
8

<

:

p
i

(t+ 1) = (1� µ)p
i

(t) + ✏ [1� p
i

(t)] q
i

(t);

q
i

(t+ 1) = (1� ✏)q
i

(t) + [1� q
i

(t)]
n

1�Q

j

[1� �A
ij

p
j

(t)]
o

.
(3.20)

3.

Equation 3.16 and Equation 3.20 look similar, but still have dissimilar terms. As a

result, SEIS dynamics on A is not the same process as this SIS dynamics on Â. This
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is not surprising, as the terms that make the equations di↵erent result from the fact

that in the SEIS model a node can be either exposed or infectious; in the SIS model on

2-layer, on the contrary, a node can be infected in both layers at the same time. All

dissimilar terms, however, are quadratic terms in p and q. Hence, when we linearize

the two processes, i.e., Equation 3.16 and Equation 3.20, we find the same equations for

both:
8

<

:

p(t+ 1) = (1� µ)p(t) + ✏q(t);

q(t+ 1) = �Ap(t) + (1� ✏)q(t) +
�O(||p||2) +O(||q||2) +O(||p||||q||) .

(3.21)

The two processes are di↵erent, but their dynamics close to the disease-free state is the

same. As a result, since the threshold is computed exactly around that point, from the

linearized equations, the two processes have the same epidemic threshold. We stress that

this is not an approximate result: they have exactly the same threshold, as threshold is

completely determined by the linearized behavior. The remarkable implication of this is

that we can compute the threshold of the SEIS model by computing the threshold of a

SIS model. We reduce model complexity, at the expense of topologic complexity, which

however we can deal with.

4.

We can rewrite Equation 3.21 in matrix form. It su�ce us to define a vector of dimension

2N , by joining vectors p and q:
 

p(t+ 1)

q(t+ 1)

!

=

 

1� µ ✏

�A 1� ✏

! 

p(t)

q(t)

!

, (3.22)

where the blocks are N ⇥ N . As for the SIS model [155, 156], we get the threshold �
c

when the spectral radius of the matrix in Equation 3.22 is equal to one. This condition

is equivalent to

det

 

�µ ✏

�A �✏

!

= 0. )
✓

�

µ

◆

critical

=
1

⇢[A]
. (3.23)

As expected, this is the same threshold as in Equation 1.23.

5.

To get the threshold on a time-evolving network, we need to extend the mapping from

A to Â to the temporal case, and we achieve this using our previous results (Section 3.2
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and [1]). The key is to be able to derive the new infection propagator P̂ . As usual,

we start from a temporal network with snapshots {A1, A2, · · · , AT

}. We then map each

snapshot onto the 2-layer structure just described: {Â1, Â2, · · · , ÂT

}. At this point,

this is a generic temporal network with 2N nodes, whose infection propagator we know

(Equation 3.2). For the sake of clarity, here we rewrite Equation 3.2 and explicitly mark

adjacency matrices, and their dimension as subscript: I
N

is the N ⇥N identity matrix.

Moreover, we will use 0
N

as the N ⇥N matrix with all zero entries.

P =
T

Y

h=1

[(1� µ)I
N

+ �A
h

] (3.24)

At this point we just need to explicitly account for heterogeneous transmission and

recovery probabilities. Formally, we can do that through a few rules that translate the

terms in the original infection propagator (Equation 3.24):

• N �! 2N ;

• � [scalar] �!
 

�I
N

0
N

0
N

✏I
N

!

[2N ⇥ 2N matrix];

• (1� µ) [scalar] �!
 

(1� µ)I
N

0
N

0
N

(1� ✏)I
N

!

[2N ⇥ 2N matrix];

• A [N ⇥N matrix] �!
 

0
N

A

I
N

0
N

!

[2N ⇥ 2N matrix]

By applying these transformations onto Equation 3.24, we get the new infection propa-

gator

P̂ =
T

Y

t=1

 

1� µ ✏

�A
t

1� ✏

!

(3.25)

Here we omit again identity and zero matrices, as their presence is now clear from the

matrix algebra rules.

Once we know the infection propagator P̂ , we know the threshold of the SEIS model

on temporal networks, using the results in [1], Section 3.2, Section 3.3:

⇢[P̂ (�̂
c

, ✏, µ)] = 1. (3.26)

From now on, we indicate as �
c

the threshold of the SIS model, and as �̂
c

the thresh-

old of the SEIS model, assuming same µ for both models. Through Equation 3.26, one
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can compute the epidemic threshold of the SEIS model on a generic temporal network,

which may generally be di↵erent from the SIS model, as the infection propagators are

di↵erent. We devote the rest of this section to determining when �
c

and �̂
c

are indeed

di↵erent. In order to highlight which are the topologic features that impact this di↵er-

ence, we will focus on network models, or equivalently classes of networks sharing some

common properties, and for which infection propagators are averaged over the di↵erent

realizations. We indicate such average with h·i. We know from Section 3.4 that, when

no temporal correlations are present among edges (h[A
t

, A
s

]i ⌘ 0 8t, s = 1, · · · , T ), we
can compute the threshold using the average adjacency matrix. The same happens with

the SEIS model, but this time the adjacency matrix to consider is Â (Equation 3.18).

Whenever h[Â
t

, Â
s

]i ⌘ 0, then we can compute the threshold from hÂ
t

i. But in this case,

as we saw from Equation 3.23, latency factors out, and �̂ = �. Hence, h[Â
t

, Â
s

]i ⌘ 0

implies �̂ = �. We remark, however, that the condition h[Â
t

, Â
s

]i ⌘ 0 is much more

stringent than the the absence of temporal correlations among edges (h[A
t

, A
s

]i ⌘ 0):

D

[Â
t

, Â
s

]
E

=

 

hA
t

i � hA
s

i 0

0 �(hA
t

i � hA
s

i)

!

. (3.27)

Consequently, h[Â
t

, Â
s

]i ⌘ 0 if and only if hA
t

i = A, i.e., the average adjacency matrix

does not change over time. This means that whenever every snapshot is sampled from

the same ensemble, then �̂
c

= �
c

. This is true only for models that do not exhibit

temporal correlations, and whose parameters do not change over time, like act and

er (see Section 2.5). Any other network may exhibit �̂
c

= �
c

. We can synthesize this

condition as

hA
t

i constant =) �̂
c

= �
c

. (3.28)

The opposite implication is not true, as there may be particular situations in which �̂
c

is numerically the same as �
c

, even in presence of non-constant adjacency matrix.

3.6. Conclusion

In this chapter we have developed an analytic theory for computing the epidemic thresh-

old on a temporal network, accounting for a completely general topology, including di-

rected and weighted links. In addition, we have treated the di↵erent basic features

the disease may exhibit, like the presence or absence of immunity, its duration, and a

latency period. In Chapter 5 we will use this methodology to provide a quantitative
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assessment of network vulnerability in di↵erent real scenarios, in terms of the risk that

the introduction of a new pathogen will cause an epidemic outbreak.
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4. Cattle trade movements

Diseases a↵ecting farmed animals are extremely relevant in a Public Health perspec-

tive. In addition to compromising animal welfare, they represent a major cause of

loss in economic revenue, in terms of loss of productivity, and extremely costly erad-

ication plans [199, 200], due to resources directly allocated and livestock culling. In

addition, they may directly impact human health, as most emerging human diseases

have a zoonotic origin [201].

Due to its geographical position and integrated livestock market system, Europe has

witnessed several emergencies due to outbreaks of livestock diseases. Among them we

mention the notorious Foot-and-Mouth (FMD) outbreak in 2001 in UK [106, 199, 202].

Several other ailments represent a menace to European livestock market. Some threaten

to reach the EU from neighboring regions, while some others are already endemic in cer-

tain EU countries, where they compromise productivity and from where they can spread

further. We mention, among others, Bovine Viral Diarrhea (BVD) [203–205], Bovine

Tuberculosis (BTB) [206–208], Brucellosis [209–211], a↵ecting mostly cattle. Blue-

tongue [212], a↵ecting mostly sheep, but also all ruminants. Classical Swine Fever [213],

African Swine Fever [214], a↵ecting swine. Despite their epidemiology being very diverse

– Bluetongue and African Swine Fever, for instance, are vector-borne – their spread is

driven, or at least facilitated, by livestock displacements among animal holdings, both

within countries and across countries. As a result, studying how animals are displaced

is a key step in devising new targeted prevention and containment strategies.

In every EU country, livestock displacements are now tracked1 on a daily basis and, at

least for cattle, at the animal level. Several studies have focused on specific countries and

species [61–66]. Here we provide a comparative analysis of three EU countries: Hungary,

1European Parliament and European council (2000) 204: 1-10. Regulation (EC) No. 1760/2000 of

17 July 2000 establishing a system for the identification and registration of bovine animals and

regarding labeling of beef and beef products and repealing Council Regulation (EC) No. 820/97

European Council. O↵. J. Eur.Communities L.
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Italy and Sweden. Swedish dataset has been used already in [63], while Hungarian

dataset has never been analyzed before. Italian dataset was analyzed only for periods

of just one year [64, 215–217]. Here we analyze a dataset of several consecutive years,

which is also the basis of our work in Chapter 5 and [2]. This work is a fruit of a

collaboration with the Hungarian National Food Chain Safety O�ce2, the Italian Istituto

Zooprofilattico “G. Caporale”3, and Linköping University4 in Sweden.

holdings movements/year dataset

Italy 1.7 · 105 6.1 · 106 2006-2012

Hungary 4.2 · 104 3.8 · 105 2010-2013

Sweden 2.5 · 104 8.1 · 105 2008

Table 4.1.: Average size of cattle markets.

The interest in these countries lies in the fact that they pertain to di↵erent geographic

regions, and supposedly have di↵erent market dynamics. Moreover, they are extremely

heterogeneous in terms of number of holdings and trading volumes. Table 4.1 shows

that Italy is the largest market, both in terms of number of premises, and displacements.

Both Hungary and Sweden are almost one order of magnitude smaller. However, while

Hungary has more premises than Sweden, its average tra�c volume is smaller, meaning

that Swedish premises are on average more active in exchanging animals than Hungarian

ones.

4.1. Defining the network

Many studies represent cattle displacements as a network [62–66], and indeed such rep-

resentation naturally arises from the data. We consider animal holdings as nodes of our

network. Whenever holding i sends cattle to holding j following a commercial transac-

tion, we represent this as a directed link from i to j, with weight equal to the number

of animals sent. Given that these transactions are recorded on a daily basis, we have

a discrete-time temporal network, whose snapshots represent displacements occurring

2www.nebih.gov.hu/en/
3www.izs.it/IZS/
4www.liu.se
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Figure 4.1.: Yearly aggregated cattle networks. Representation of cattle network aggre-

gated over a year: 2008 for Italy (A,B) and Sweden (E,F), 2010 for Hungary

(C,D). Nodes (animal holdings) are placed according to their geographic posi-

tion. First column shows movements up to 10 animals (A,C,E); second column

over 10 animals (B,D,F).
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daily. Clearly, when we need a coarser view of the network, we can aggregate it in

weekly, monthly and yearly networks. Following [64], we define months as periods of 28

days, so that each year contains 13 months. In addition to its topologic structure and

weights, there are additional metadata that need to be included in some analyses. For

instance, the network is embedded in physical space, as nodes represent real geographic

locations. Figure 4.1 shows a yearly aggregated representation of the networks of the

three countries, placing holdings according to their geographic coordinates.

4.2. Static topologic properties
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Figure 4.2.: Degree distributions. We plot degree distributions at di↵erent aggregation

time scales: day (�t = 1), week (�t = 7), month (�t = 28), year (�t = 365).

In-degree in in red, out-degree is in blue. For each aggregation intervals we

plot in red squares or blue dots the distribution of one of such intervals, and in

transparent red or blue all the others.

Centrality measures like node degree and strength are known to be proxies for infection
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Figure 4.3.: Strength distributions. We plot strength distributions at di↵erent aggregation

time scales: day (�t = 1), week (�t = 7), month (�t = 28), year (�t = 365).

In-strength in in red, out-strength is in blue. For each aggregation intervals we

plot in red squares or blue dots the distribution of one of such intervals, and in

transparent red or blue all the others.
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risk [30,76]. We analyze node degree and strength at di↵erent aggregation intervals: daily

(�t = 1), weekly (�t = 7), monthly (�t = 28) and yearly (�t = 365). In Figure 4.2 we

plot degree distribution, both for k
in

(incoming links) and k
out

(outcoming links). Three

remarkable patterns emerge. Firstly, within the same country and aggregation intervals,

distribution are extremely stable, as was already observed in [64] using one year of Italian

movements. For instance, di↵erent yearly networks have the same degree distribution.

Secondly, in each country, degree distributions appear heterogeneous across the di↵erent

aggregation intervals. Unlike the activity driven model activity, in which aggregated

heterogeneity arises from homogeneous snapshots (see Section 2.5), here heterogeneous

behavior is visible down to the highest temporal resolution, again as it was observed

in [64]. This is particularly visible for in-degree, which is strongly heavier tailed than out-

degree, meaning that hubs in terms of incoming tra�c are more frequent, and larger, than

hubs of outgoing tra�c. Finally, despite system sizes varying greatly across countries,

resulting in noisier distributions for Sweden and Hungary, we see qualitative properties

seem to hold across countries as well. In all three indeed we observe heterogeneous

distributions for in-degree. Out-degree is markedly heavy tailed in Italy, much less in

the other two countries. This is dramatically visible for Sweden, where for �t = 365

in-degree spans four order or magnitudes, while out-degree just two, and seems to peak

around a particular value, with much smaller variance. Strength distributions exhibit

the same properties as degree (see Figure 4.3), and this is confirmed by the behavior of

the average strength at fixed degree (Fig 4.4). Indeed hs(k)
in

i grows linearly with k, as

expected in the case of no correlations between degree and strength, in all countries, at all

aggregation intervals. On the other hand, hs(k)
out

i seems to grow slightly superlinearly

with degree, as a sign of a weak positive correlation: the more outgoing connections a

node has, the more animals it sends along each of these contacts. This e↵ect, however,

is di�cult to disentangle from statistical noise, and even if genuine, is extremely weak.

Finally, we consider link weight distributions (Figure 4.5). In Italy and Hungary they

show a well defined heavy tailed behavior. In Sweden such heterogeneity is less marked.

As degree and strength, they are stable across aggregation intervals.

4.3. Temporal patterns

In Chapter 2 we have described node and edge inter-activation time as an important

property of temporal networks. Here we compute its distribution in the three countries,
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Figure 4.4.: Strength v degree. For each aggregation interval and each country we plot the

average strength of nodes with a given degree. We examine di↵erent aggregation

time scales: day (�t = 1), week (�t = 7), month (�t = 28), year (�t = 365).

In-degree and in-strength are in red, out-degree and out-strength are in blue. For

each aggregation intervals we plot in red squares or blue dots the distribution of

one of such intervals, and in transparent red or blue all the others. Gray dashed

lines indicate the linear relation hs(k)i = k.
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Figure 4.5.: Link weight distributions. We plot weight distributions at di↵erent aggregation

time scales: day (�t = 1), week (�t = 7), month (�t = 28), year (�t = 365).

For each aggregation intervals we plot in red blue dots the distribution of one

of such intervals, and in transparent blue all the others.
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both at daily (Figure 4.6) and weekly (Figure 4.7) aggregation interval. A clear weekly

patterns emerges in both edge and node activation. Spikes in Figure 4.6 occur every

7 days, and indicate that a link (node) is more likely to re-activate after a time that

is a multiple of the week. This is visible in all countries, and more marked for edges

than for nodes. The fact that weekly aggregation does not show any recurrent pattern

(Figure 4.7), but just heterogeneous distributions, shows that no time scale in network

is as strong as the week, as far as inter-activation time is concerned.

1w
2w

1w
2w

I
T
A

H
U
N

S
W
E

Figure 4.6.: Inter-activation time distributions, daily network. Inter-activation time dis-

tribution of edges (first column) and nodes (second column), on the daily ag-

gregated network. Red vertical lines indicate an inter-activation time of one and

two weeks.

We also compute the distribution of activation time, i.e. the time a node or link

stays active without interruption. In Figure 4.8 we plot activity time distributions for

weekly aggregation. They have a clean heavy tailed shape, again showing the deep

heterogeneous behavior of these networks. Unlike inter-activation time, activation time

distribution at daily aggregation (not shown) exhibits no recurrent patterns.
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Figure 4.7.: Inter-activation time distributions, weekly network. Inter-activation time

distribution of edges (first column) and nodes (second column), on the weekly

aggregated network. Red vertical line indicates an inter-activation time of one

month.
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Figure 4.8.: Activation time distributions, weekly network. Activation time distribution

of edges (first column) and nodes (second column), on the weekly aggregated

network, i.e., the number of consecutive weeks a edge (node) stays active. Red

vertical line indicates an inter-activation time of one month.
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As the week emerges as a fundamental time scale of evolution in all three countries,

we wish to examine it more in detail, by looking at the characteristic activity of each

day of the week. Figure 4.9 shows the number of displaced animals by day of the

week. We see that, in all countries, weekdays are more active than weekends, as one

could expect. Such di↵erence is however extremely marked in Italy, where Mondays,

on average, witness 3.5 · 104 displacements, compared to Sundays with less than 5 · 103.
In Sweden, and particularly in Hungary, such di↵erence is less pronounced. In addition

Italy is the only country with a noticeable di↵erence between Saturday and Sunday (the

latter being the least active) and between Monday (the most active day) and the other

weekdays.

I
T

A
H

U
N

S
W

E

number of animals moved

Figure 4.9.: Activity by day of the week. We plot tra�c (i.e., number of displaced animals)

for each day of the week. Boxplots represent median, quartiles and outliers, and

are computed each over one year. In analogy with Hungary, for Italy we show

four years.

We then analyze activity timelines, i.e., the variation of number of cattle displacements

in time. (Figure 4.10). Sweden has a strong seasonal pattern, with peaks of activity
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around May and October. They are both preceded by a trough around March and July.

Italy’s seasonal variation is visible too, albeit less marked. Specifically, year 2008 seems

to behave di↵erently than the others, with a more pronounced seasonal behavior. The

activity peak in fall occurs later than in Sweden. Both Italy and Sweden have a trough

corresponding to Christmas and the beginning of January. Italy has a pronounced trough

for the week of August 15, too. Hungary’s timeline shows no seasonal behavior. We find

our three countries to have diverse behaviors as far as seasonality is concerned, and

their di↵erent climatic conditions probably contribute to that e↵ect. In analogy with

Hungary, for Italy we show just four years.
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Figure 4.10.: Activity timelines. Weekly activity timelines (tra�c per week) in di↵erent

countries and di↵erent years, and their respective average (black line). Highest

peaks represent 60% relative variation to the mean for Italy, 50% for Hungary,

and 65% for Sweden. In analogy with Hungary, for Italy we show four years.

So far we have uncovered the presence of two time scales, the first being the week

(Figure 4.6 and 4.9), the second being the year (Figure 4.10). We now wish to rigor-

ously recover them inside the activity timeline. In order to do that we need to deal
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with the daily timeline, which is however too noisy for a visual analysis like we have

done for the weekly timeline. Hence, we use discrete Fourier transform (DFT) to sis-

tematically uncover all the relevant time scales (see Appendix A.3 for a description of

DFT). In Figure 4.11 we plot the intensity of each time scale (blue crosses). Then we

apply reshuffle null model (see Section 2.6) onto each network several times, and

for each instance we compute the DFT. Purple lines correspond to the 95% confidence

interval of the intensity of that time scale in the null models. Consequently, real values

standing above the upper purple line represent a statistically significant time scale, with

respect to the uncorrelated null models. As expected, all countries show marked peaks

corresponding to the weekly time scale, which is definitely the strongest. Italy has a sta-

tistically significant yearly time scale, while Hungary does not, confirming the absence

of seasonality. We are not able to compute the yearly harmonics for Sweden, since we

have just one year of dataset, but still we find a significant 6 month timescale, which we

were not able to spot by just looking at the activity timeline (Figure 4.10). Finally all

networks have significant peaks at 1/2 of a week and 1/3 of a week (except Hungary),

and these are again higher harmonics of the weekly pattern which we could not pinpoint

without spectral analysis.

Time scales, however, inform us about the overall macroscopic trend of the network,

but do not delve into its microscopic dynamics. For example, if we observe that same

months of di↵erent years have roughly the same number of links, we may wonder if those

links that activate are actually the same from one year to the other, i.e., if the network

retains memory of its structure. To uncover this fact, we compute the microscopic

memory of network snapshots. In [2] we did it for yearly snapshots of the Italian dataset,

and in [64] the same analysis is performed for monthly snapshot inside one year. Here

we expand to monthly snapshots of several years and all three countries. As a measure

of memory we choose overlap, i.e., the fraction of common edges between two snapshots

�, ⌧ :

overlap(�, ⌧) =
|E(�) \ E(⌧)|
|E(�) [ E(⌧)| , (4.1)

where E(�) is the set of links in snapshot �. Clearly, when overlap= 0, the two snapshots

share no links, while overlap= 1 means the two snapshot have exactly the same network

structure. The higher is the overlap, the more ⌧ has memory of what links were active in

� (assuming ⌧ > �). Figure 4.12 shows the value of overlap among monthly snapshots.

We remark that memory is never high: snapshot never share more than a fraction 0.22

82



Computing the vulnerability of time-evolving networks to infections

I
T

A
H

U
N

S
W

E

number of animals moved

Figure 4.11.: Spectral analysis of activity timelines. Harmonic intensities of daily activity

timelines of the full three datasets (blue crosses). Purple lines are the 95th

percentile of the harmonic intensity of the reshuffle null model, as defined

in Section 2.6.
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of their structure. In addition, memory is significantly higher in Italy and Sweden, than

Hungary. Given that for Sweden we have only one year, it is di�cult to pinpoint any

pattern, and we just observes that the first four months tend to be more similar among

themselves then average. Italy and Hungary, for which we can go further than one year,

show remarkably di↵erent behaviors. In Italy we observe two distinct patterns. Firstly,

months of the same year tend to be more similar among themselves than average, forming

clusters of similarity. We can see this in Figure 4.12A as diagonal blocks of purple.

Secondly, and more interestingly, we see that the yearly pattern is visible in memory,

too, in form of purple lines parallel to the diagonal in Figure 4.12A. This means that

monthly snapshot distant exactly one, two or three years are more similar than average.

In Hungary we observe the former pattern, and in particular we see that the first year

(2010) is very di↵erent from all the others. We do not observe the latter. As a result, in

Italy we see a yearly periodicity both in macroscopic activation patterns, and microscopic

similarity. Finally, we see neither in Sweden.

4.4. Geographic patterns

In the last step of our analysis, we make use of the fact that animal holdings have a

specific location in geographic space, and so nodes of our networks are geo-referenced. We

wish to find out wether within the examined countries there are regions that concentrate

most of the activity of cattle market, or wether activity is homogeneously distributed.

The representation of the aggregated network of Figure 4.1 already hints to the fact

that such heterogeneities might be present. We divide the national territories in small

squares, and for each of them we plot the outgoing (Figure 4.13A,C,E) and incoming

(Figure 4.13B,D,F) tra�c. We uncover that while Italy and Hungary have active tra�c

to and from most part of their national territory, in Sweden farming is concentrated in

the Southern and coastal areas. On the other hand, heterogeneities in tra�c volume

among active areas are extremely marked in Italy and Hungary, than Sweden. In Italy

tra�c is concentrated in the Northern part, and particularly in the Pianura Padana

around Cuneo, Lombardy, Emilia-Romagna, and Veneto. Other localized hotspot are

visible, especially as incoming tra�c, around Rome, Naples and Syracuse. In Hungary

Figure 4.13B,D show several localized hotspots on a rather uniform background. In

Sweden the picture is di↵erent, as active areas tend to have uniform tra�c, both incoming

and outgoing.
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Figure 4.12.: Memory. Overlap of monthly snapshots (Equation 4.1) in Italy (A), Sweden

(B), Hungary (C). In analogy with Hungary, for Italy we show four years.
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Figure 4.13.: Spatial patterns of cattle tra�c. Outgoing (blue scale) and incoming (red

scale) tra�c volume across the territory of Italy (A,B), Hungary (C,D), Sweden

(E,F). In order to highlight heterogeneities, tra�c value is normalized over its

highest value in the country.
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4.5. Conclusion

In conclusion, cattle trade networks exhibit an extremely rich and diverse phenomenol-

ogy in terms of aggregated properties, temporal structures, and geographic patterns.

Several further analyses could be performed, including more metadata, like farm pro-

duction type, or animal species. We have shown that at the aggregated level networks in

di↵erent countries qualitatively share the same features, mostly in terms of heavy tailed

distribution of centrality measures. We also have found that week is the dominating time

scale in all three countries, while seasonal and yearly behaviors in both activation and

memory tend to be country-specific. In addition, we have found that spatial patterns

are country-specific, too, as they respond to di↵erences in climate and geography.

In Chapter 5 we will focus on the Italian network, and assess its vulnerability of to

pathogen introduction, using our computation of the epidemic threshold (Chapter 3).

We will also develop a node-centered risk prediction methodology, able to compute the

risk of a specific holding being hit by the disease in the future, by relying only on past

network data (Section 5.3).
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5. Targeted risk prediction

In Chapter 3 we developed a theoretical framework for computing the epidemic thresh-

old on temporal networks, for several disease models. We now wish to apply it to real

case studies, as a practical tool to assess the vulnerability of a system to pathogen intro-

duction. We choose to consider the Italian network of cattle displacements (Chapter 4),

and the network of human sexual interactions (Section 2.4). Both these systems are

extremely relevant from the epidemiological point of view. Cattle network represents

a substrate for the di↵usion of many animal diseases that can potentially harm both

animal health and economy, as we have explained at the beginning of Chapter 4. Sexual

contact network allows us to study spreading dynamics of several sexually transmitted

infections.

Using the epidemic threshold, we study how the vulnerability of the cattle trade

network changes across space and time (Section 5.1). We then apply the theoretical

findings of Section 3.5 to the sexual contact network, and assess the impact of latency

period on the epidemic threshold, exploring several parameter configurations, and in

particular the ones that correspond to syphilis.

Computing epidemic risk through epidemic threshold has however one limitation, due

to the fact that we often have contact data concerning a limited amount of time, and do

not now how representative they are of network future evolution. In the last part of this

chapter, which consists in article [2], we overcome this by putting forward a methodology

to predict epidemic risk that relies only on the knowledge of past contact data. Moreover,

while threshold computation is a global measure of vulnerability, here we compute a

targeted epidemic risk, consisting in the probability a specific node will be hit during a

future outbreak. While the disease model we consider is the very simple SI, we explain

in [2] that it is a reasonable approximation for the initial stage of the outbreak, and test

its validity for di↵erent parameter values (Supporting Material of [2]). The methodology

we present is entirely data-driven, and must be therefore tested case by case. We show,

however, that it is extremely general, and apply it to both cattle trade movements and
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sexual contacts. Finally, we develop a synthetic network model to uncover which are the

relevant structural features behind the performance of our methodology.

5.1. Vulnerability of Italian cattle trade network

In this section we study the global and regional vulnerability of the Italian cattle trade

network, described in Section 4. We adopt the commonly used assumption [63,202,205,

217] of considering animal holdings as epidemiological units, which can transmit the

disease by sending out infected cattle. We assume an average infectious period (1/µ) of

28 days. Thanks to what we found in Section 3.3, the resulting epidemic threshold holds

for SIS, SIR, and SIRS models. Even though these models are a simplification of

realistic disease progressions, they nonetheless cover a large variety of disease types, so

that the resulting vulnerability assessment can be adapted to di↵erent scenarios. The SIS

framework, for instance, has already been adopted for modeling Bovine Viral Diarrhea

(BVD) [205], while the SIR model has been adapted to Foot and Mouth [202].

For every year, from 2006 to 2012, we compute the epidemic threshold of this network,

taken at its highest temporal resolution (1 day). Result is shown in Figure 5.1. In

addition, we consider regional subnetworks and compute their threshold. Given a region,

a regional subnetwork is defined as the network containing all animal holdings (nodes)

present in that region, and all the links among them. In this way, measuring the epidemic

threshold on a region means assessing the local vulnerability, discounting long range

movements. Figure 5.2 shows the epidemic thresholds on the coarser administrative

units in Italy – regioni –, corresponding to a European NUTS2 division1. In Figure 5.3

instead we subdivide Italy according to NUTS1 territorial units, which consist in five

macro-areas with no administrative meaning. We observe a variation of the national

threshold among the seven years considered. Specifically, values are clustered around

three values, as follows: 2006, 2007; 2008, 2010, 2011; 2009; 2012. Regional subnetworks

in the Northern part of the country exhibit temporal fluctuations, too. Additionally,

we observe a clear geographical pattern. Subnetworks in the North are much more

vulnerable (lower threshold) than in the Center and South, where many regions are below

threshold for every possible transmissibility (white). We explain these sharp geographic

di↵erences with the di↵erent structure and nature of livestock market. In the Pianura

1
NUTS – Nomenclature des unités territoriales statistiques, is a EU subdivision standard defined by

Eurostat.
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Padana, a plane crossing Northern Italy fromWest to East, Southern of the Alps, farming

is highly intensive and industrialized, with large active holdings. This feature emerged

clearly in the analysis carried out in Chapter 4, and is visible in Figures 4.1,4.13. In the

Central and Southern parts of Italy, apart some localized spots, farming is of smaller

scale, with small holdings that exchange animals less often and in smaller quantities. This

result indicates that only the Northern part of the country is able to sustain an endemic

outbreak, provided the disease has no other way of spreading but animal movements, as

it is the case, for instance for BVD [203–205]. This does not mean farms in the South are

not at risk of being infected, but that the persistence of the virus in the country is due

to transport activity in the North. In addition, the South may still be very important

for the importation of exotic pathogens, due to its location and favorable environmental

conditions.
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Figure 5.1.: Yearly epidemic thresholds (2006-2012) of the Italian cattle trade net-

work. Average recovery rate is 28 days.

The temporal variations of the epidemic threshold are more di�cult to explain, and

will need further investigation. However, they are likely due to disrupting events that
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Figure 5.2.: Yearly epidemic thresholds (2006-2012) of subnetworks corresponding to

Italian regions. Average recovery rate is 28 days. Regions are color coded

according to their threshold. Thresholds of the full network are marked on the

color bar.
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Figure 5.3.: Yearly epidemic thresholds (2006-2012) of the subnetworks corresponding

to NUTS1 geographic subdivision. Average recovery rate is 28 days. NUTS1

are color coded according to their threshold. Thresholds of the full network are

marked on the color bar.
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qualitative change network topology, like outbreaks, or adoption of new laws. To deter-

mine this, we can discount the influence of trivial variations in the overall activity of

the network. In Figure 5.4 we use average yearly node strength as a proxy for network

activity, and correlate it with the value of the national epidemic threshold. We ob-

serve that relative variations in average strength are small (< 10%), and cannot explain

the observed variability in threshold. This means that network topology qualitatively

changes from one year to another.

Figure 5.4.: Yearly cattle Italian networks: relative variations in average node strength

v relative variations in threshold. The average across years of the average

node strength is computed, and relative variations around it are plotted in the

x-axis. Relative variations around the average yearly threshold are potted in the

y-axis.
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5.2. Sexual contact network: how latency influences

vulnerability

In Section 3.5 we have analytically shown that the interplay between latency period and

network evolution impacts the value of the epidemic threshold. In addition, we provided

a formula for computing the threshold when latency is accounted for. Here we wish

to apply these theoretical findings to the spread of STDs on a sexual contact network

(see [60] and Section 2.4). For the same value of recovery probability µ, we compute the

threshold of the SIS (�
c

) and SEIS (�̂
c

) models. We wish to assess for which parameter

values latency has a significant impact on the epidemic threshold, and whether that

impact makes the network more or less vulnerable to the pathogen, with respect to the

model without latency.

We explore di↵erent average infectious periods (1/µ), and di↵erent average latency

periods 1/✏, and compute the relative di↵erence between the SEIS and SIS thresholds,

in terms of

⌅ =
�̂
c

� �
c

�
c

. (5.1)

⌅ quantifies the impact of latency on the epidemic threshold. ⌅ ⇡ 0 means that its

impact is negligible. Instead, when ⌅ > 0, latency increases the threshold, making the

network less vulnerable to the disease. In the opposite regime (⌅ < 0) latency lowers

the threshold, making the network more vulnerable. Results are shown in Figure 5.5.

Figure 5.5A plots ⌅ as a function of latency period, at fixed values of infectious period.

Figure 5.5B comprehensively explores parameter space, with latency and infectious pe-

riods ranging from few days to almost one year. We observe a rich phenomenology, with

⌅ ranging from around �5% to 40%. Latency in turn represents a risk factor (⌅ < 0,

red in Figure 5.5B), plays no role (⌅ ⇡ 0, white in Figure 5.5B), or is a protection factor

(⌅ > 0, blue in Figure 5.5B), depending on parameter values.

Finally, we focus on a specific sexually transmitted disease, syphilis, and in particular

on its primary stage. This has a latency period ranging from around 7 to 90 days [218]

(black box in Figure 5.5B). Within this interval, we find all three scenarios. For infectious

periods around 15 days, we find latency has no impact on the epidemic threshold. For

shorter periods, latency tends to lower the threshold with respect to the pure SIS model,

especially for short infectious periods. Finally, for latency periods larger than 15 days,

latency causes the threshold to be higher. Natural progression of syphilis is long and
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space of both infectious and latency periods. Color code correspond to ⌅. Red

indicates ⌅ < 0, blue ⌅ > 0. Black square corresponds to the latency period

range for syphilis.

complex, and involves di↵erent stages, beyond the modeling capabilities of a SEIS model.

However, given that treponema pallidum – bacteria responsible for syphilis – is sensitive

to penicillin [218], we interpret the average infectious period as the average time it takes

to being cured, once primary stage is symptomatic.

5.3. Article: Predicting epidemic risk from past temporal

contact data
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Abstract
Understanding how epidemics spread in a system is a crucial step to prevent and control
outbreaks, with broad implications on the system’s functioning, health, and associated
costs. This can be achieved by identifying the elements at higher risk of infection and imple-
menting targeted surveillance and control measures. One important ingredient to consider
is the pattern of disease-transmission contacts among the elements, however lack of data
or delays in providing updated records may hinder its use, especially for time-varying pat-
terns. Here we explore to what extent it is possible to use past temporal data of a system’s
pattern of contacts to predict the risk of infection of its elements during an emerging out-
break, in absence of updated data. We focus on two real-world temporal systems; a live-
stock displacements trade network among animal holdings, and a network of sexual
encounters in high-end prostitution. We define the node’s loyalty as a local measure of its
tendency to maintain contacts with the same elements over time, and uncover important
non-trivial correlations with the node’s epidemic risk. We show that a risk assessment analy-
sis incorporating this knowledge and based on past structural and temporal pattern proper-
ties provides accurate predictions for both systems. Its generalizability is tested by
introducing a theoretical model for generating synthetic temporal networks. High accuracy
of our predictions is recovered across different settings, while the amount of possible predic-
tions is system-specific. The proposed method can provide crucial information for the setup
of targeted intervention strategies.

Author Summary
Following the emergence of a transmissible disease epidemic, interventions and resources
need to be prioritized to efficiently control its spread. While the knowledge of the pattern
of disease-transmission contacts among hosts would be ideal for this task, the continu-
ously changing nature of such pattern makes its use less practical in real public health
emergencies (or otherwise highly resource-demanding when possible). We show that in
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such situations critical knowledge to assess the real-time risk of infection can be extracted
from past temporal contact data. An index expressing the conservation of contacts over
time is proposed as an effective tool to prioritize interventions, and its efficiency is tested
considering real data on livestock movements and on human sexual encounters.

Introduction
Being able to promptly identify who, in a system, is at risk of infection during an outbreak is
key to the efficient control of the epidemic. The explicit pattern of potential disease-transmis-
sion contacts has been extensively used to this purpose in the framework of theoretical studies
of epidemic processes, uncovering the role of the pattern’s properties in the disease propaga-
tion and epidemic outcomes [1, 2, 3, 4, 5, 6, 7, 8]. These studies are generally based on the as-
sumption that the entire pattern of contacts can be mapped out or that its main properties are
known. Although such knowledge would be a critical requirement to conduct risk assessment
analyses in real-time, which need to be based on the updated and accurate description of the
contacts relevant to the outbreak under study [9], it can hardly be obtained in reality. Given the
lack of such data, analyses generally refer to the most recent available knowledge of contact
data, implicitly assuming a non-evolving pattern.

The recent availability of time-resolved data characterizing connectivity patterns in various
contexts [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22] has inevitably weakened the non-
evolving assumption, bringing new challenges to the assessment of nodes’ epidemic risk. Tradi-
tional centrality measures used to identify vulnerable elements or influential spreaders for epi-
demics circulating on static networks [1, 2, 4, 23, 24, 25, 26, 27, 28, 29, 30] are unable to
provide meaningful information for their control, as these quantities strongly fluctuate in time
once computed on the evolving networks [19, 31]. An element of the system may thus act as
superspreader in a past configuration of the contact network, having the ability to potentially
infect a disproportionally larger amount of secondary contacts than other elements [32], and
then assume a more peripheral role in the current pattern of contact or even become isolated
from the rest of the system [19]. If the rules driving the change of these patterns over time are
not known, what information can be extracted from past contact data to infer the risk of infec-
tion for an epidemic unfolding on the current (unknown) pattern?

Few studies have so far tried to answer this question by exploiting temporal information to
control an epidemic through targeted immunization. They are based on the extension to tem-
poral networks [33, 34] of the so-called acquaintance immunization protocol [4] introduced in
the framework of static networks that prescribes to vaccinate a random contact of a randomly
chosen element of the system. In the case of contacts relevant for the spread of sexually trans-
mitted infections, Lee et al. showed that the most efficient protocol consists in sampling ele-
ments at random and vaccinating their latest contacts [33]. The strategy is based on local
information gathered from the observation and analysis of past temporal data, and it outper-
forms static-network protocols. Similar results are obtained for the study of face-to-face con-
tact networks relevant for the transmission of acute respiratory infections in a confined setting,
showing in addition that a finite amount of past network data is in fact needed to devise effi-
cient immunization protocols [34].

The aim of these studies is to provide general protocols of immunization over all possible
epidemiological conditions of the disease (or class of diseases) under study. For this reason,
protocols are tested through numerical simulations and results are averaged over starting seeds
and times to compare their performance. Previous work has however shown that epidemic
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outcomes may strongly depend on the temporal and geographical initial seed of the epidemic
[35], under conditions of large dynamical variability of the network and absence of stable struc-
tural backbones [19]. Our aim is therefore to focus on a specific epidemiological condition rela-
tive to a given emerging outbreak in the population, resembling a realistic situation of public
health emergency. We focus on the outbreak initial phase prior to interventions when facing
the difficulty that some infected elements in the population are not yet observed. The objective
is to assess the risk of infection of nodes to inform targeted surveillance, quarantine and immu-
nization programs, assuming the lack of knowledge of the explicit contact pattern on which the
outbreak is unfolding. Knowledge is instead gathered from the analysis of the full topological
and temporal pattern of past data (similarly to previous works [33, 34]), coupled, in addition,
with epidemic spreading simulations performed on such data under the same epidemiological
conditions of the outbreak under study. More specifically, we propose an egocentric view of the
system and assess whether and to what extent the node’s tendency of repeating already estab-
lished contacts is correlated with its probability of being reached by the infection. Findings ob-
tained on past available contact data are then used to predict the infection risk in the current
unknown epidemic situation. We apply this risk assessment analysis to two large-scale empiri-
cal datasets of temporal contact networks—cattle displacements between premises in Italy [19,
36], and sexual contacts in high-end prostitution [16]—and evaluate its performance through
epidemic spreading simulations. We also introduce a model to generate synthetic time-varying
networks retaining the basic mechanisms observed in the empirical networks considered, in
order to explain the results obtained by the proposed risk assessment strategy within a general
theoretical framework.

Results and Discussion
The cattle trade network is extracted from the complete dataset reporting on time-resolved bo-
vine displacements among animal holdings in Italy [19, 36] for the period 2006–2010, and it
represents the time-varying contact pattern among the 215,264 premises composing the sys-
tem. The sexual contact network represents the connectivity pattern of sexual encounters ex-
tracted from aWeb-based Brazilian community where sex buyers provide time-stamped rating
and comments on their experiences with escorts [16].

The five-years data of the livestock trade network show that stationary properties at the
global level co-exist with an active non-trivial local dynamics. The probability distributions of
several quantities measured on the different yearly networks are considerably stable over time,
as e.g. shown by the in-degree distribution reported in Fig. 1A, where the in-degree of a farm
measures the number of premises selling cattle to that farm. These features, however, result
from highly fluctuating underlying patterns of contacts, never preserving more than 50% of the
links from one yearly configuration to another (Fig. 1C), notwithstanding the seasonal annual
pattern due to repeating cycles of livestock activities [37, 38] (see S1 Text). Similar findings are
also obtained for the sexual contact network (Fig. 1B-D), where the lack of an intrinsic cycle of
activity characterizing the system leads to smaller values of the overlap between different con-
figurations (< 10%). In this case we consider semi-annual configurations, an arbitrary choice
that allows us to extract six network configurations in a timeframe exhibiting an approximately
stationary average temporal profile of the system, after discarding an initial transient time peri-
od from the data [16]. Different time-aggregating windows are also considered (see the Materi-
als and Methods section and S1 Text for additional details).
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Loyalty
The observed values of the overlap of the time-resolved contact networks in terms of the num-
ber of links preserved are a measure of the degree of memory contained in the system. This is
the outcome of the temporal activity of the elements of the system that reshape up to 50% or
90% of the contacts of the network (in the cattle trade case and in the sexual contact case, re-
spectively), through nodes’ appearance and disappearance, and neighborhood restructuring.
By framing the problem in an egocentric perspective, we can explore the behavior of each single
node of the system in terms of its tendency to remain active in the system and re-establish

Fig 1. Structural and temporal properties of the cattle trade network and of the sexual contact network. (A), (B): premises in-degree distributions in
the cattle trade network and sex customers degree distribution in the sexual contact network, respectively. Distributions for different configurations of the
networks are superimposed in both cases. (C), (D): fraction of common edges contained in two configurations of the network, for the cattle trade network and
the sexual contact network, respectively. In (B), (D) s stands for semester, the aggregation interval of each configuration.

doi:10.1371/journal.pcbi.1004152.g001
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connections with the same partners vs. the possibility to change partners or make no contacts.
We quantitatively characterize this tendency by introducing the loyalty θ, a quantity that mea-
sures the fraction of preserved neighbors of a node for a pair of two consecutive network con-
figurations in time, c−1 and c. If we define Vc!1

i as the set of neighbors of node i in
configuration c−1, then yc!1;c

i is given by the Jaccard index between Vc!1
i and Vc

i :

yc!1;c
i ¼

Vc!1
i \ Vc

i

!! !!

Vc!1
i [ Vc

i

!! !! : ð1Þ

Loyalty takes values in the interval [0, 1], with θ = 0 indicating that no neighbors are retained,
and θ = 1 that exactly the same set of neighbors is preserved (Vc!1

i ¼ Vc
i ). It is defined for dis-

crete time windows (c, c+1) and in general it depends on the aggregation interval chosen to
build network configurations.

In case the network is directed, as for example the cattle trade network, θ can be equivalently
computed on the set Vc

in;i of incoming contacts or on the set of neighbors of outgoing connec-
tions, Vc

out;i, depending on the system-specific interpretation of the direction and on the interest
in one phenomenon or the opposite. This measure originally finds its inspiration in the study
of livestock trade networks, where a directed connection from holding A to holding B indicates
that B purchased a livestock batch from A, which was then displaced along the link direction
A! B. If we compute θ on the incoming contacts of the cattle trade network, we thus quantify
the propensity of each farmer to repeat business deals with the same partners when they pur-
chase their cattle. This concept is at the basis of many loyalty or fidelity programs that propose
explicit marketing efforts to incentivize the reinforcement of loyal buying behavior between a
purchasing client and a selling company [39], and corresponds to a principle of exclusivity in
selecting economic and social exchange partners [40, 41]. Analogously, in the case of the sexual
contact network we consider the point of view of sex buyers. Formally, our methodology can
be carried out with the opposite point of view, by considering out-degrees with loyalties being
computed on out-neighbors. Our choice is arbitrary and inspired by the trade mechanism un-
derlying the network evolution.

Other definitions of similarity to measure the loyal behavior of a node are also possible. In
S1 Text we compare and discuss alternative choices. For the sake of clarity all symbols and vari-
ables used in the article are reported in Table 1. Finally, other mechanisms different from fideli-
ty strategies may be at play that result in the observed behavior of a given node. In absence of
additional knowledge on the behavior underlying the network evolution, we focus on the loyal-
ty θ to explore whether it can be used as a possible indicator for infection risk, as illustrated in
the following subsection.

The distributions of loyalty values, though of different shapes across the two datasets, dis-
play no considerable variation moving along consecutive pairs of configurations of each dataset
(Fig. 2A-B and S1 Text), once again indicating the overall global stability of system’s properties
in time and confirming the results observed for the degree. A diverse range of behaviors in es-
tablishing new connections vs. repeating existing ones is observed, similarly to the stable or ex-
ploratory strategies found in human communication [42]. Two pronounced peaks are
observed for θ = 0 and θ = 1, both dominated by low degree nodes for which few loyalty values
are allowed, given the definition of Eq. (1) (see S1 Text for the dependence of θ on nodes’ de-
gree and its analytical understanding). The exact preservation of the neighborhood structure (θ
= 1) is more probable in the cattle trade network than in the sexual contact network (P(θ = 1)
being one order of magnitude larger), in agreement with the findings of a higher system-wide
memory reported in Fig. 1. Moreover, the cattle trade network exhibits the presence of high
loyalty values (in the range θ 2 [0.7, 0.9]), differently from the sexual contact network where P
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(θ) is always equal to zero in that range except for one pair of consecutive configurations giving
a positive probability for θ = 0.8. Farmers in the cattle trade network thus display a more loyal
behavior in purchasing cattle batches from other farmers with respect to how sex buyers estab-
lish their sexual encounters in the analyzed sexual contact dataset.

For the sake of simplification, we divide the set of nodes composing each system into the
subset of loyal nodes having θ greater than a given threshold !, and the subset of disloyal nodes
if instead θ< !. We call hereafter these classes as loyalty statuses L and D, respectively, and we
will later discuss the role of the chosen value for !.

Epidemic simulations and risk of infection
Both networks under study represent substrates offering potential opportunities for a pathogen
to diffuse in the corresponding populations. Sexually transmitted infections spread among the
population of individuals through sexual contacts [43, 44], whereas livestock infectious diseases
(e.g. Foot-and-mouth disease [45], Bluetongue virus [46], or BVD [47]) can be transmitted
from farm to farm mediated by the movements of infected animals (and vectors, where rele-
vant), potentially leading to a rapid propagation of the disease on large geographical scales.

As a model for disease-transmission on the network of contacts we consider a discrete-time
Susceptible-Infectious compartmental approach [48]. No additional details characterizing the
course of infection are considered here (e.g. recovery dynamics), as we focus on a simplified
theoretical picture of the main mechanisms of pathogen diffusion and their interplay with the

Table 1. List of variables and their description.

Notation Description

c index for network configurations

θ or yc!1;c
i

loyalty of node i between configurations c−1, c

Vc
in;i;V

c
out;i set of in(out)-neighbors of i in config c

L, D loyalty classes (loyal, disloyal)

ε loyalty threshold

s epidemic seed

τ duration of the outbreak early stage

I c
s set of infected nodes for outbreak starting from s in config c

pc!1;c
D ðsÞ; pc!1;c

L ðsÞ infection potentials for class D (L) computed for seed s between configs c−1, c

k degree (in-degree for the cattle trade network)

Tc
DDðkÞ, Tc

DLðkÞ, Tc
LDðkÞ,

Tc
LLðkÞ

transition probability from one loyalty class to another

rc
i epidemic risk for node i in config c

I c
s;h; I

c
s;l set of infected nodes with high(low) epidemic risk

Ph, Pl probability of a high(low) risk node to be infected

ν = Ph/Pl risk ratio between Ph, Pl, measure of accuracy

oc!1;c
s predictive power (fraction of infected nodes for which it is possible to compute

the epidemic risk)

b, d node probability of becoming active or inactive

pα node probability of keeping an in-neighbor

α number of kept in-neighbors

βin number of new in-neighbors

βout number of new out-neighbors

γ, δ exponents of the distributions of βin, βout

doi:10.1371/journal.pcbi.1004152.t001
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network topology and time-variation, for the prediction of the risk of infection. The aim is to
provide a general and conceptually simple framework, leaving to future studies the investiga-
tion of more detailed and realistic disease natural histories.

At each time step, an infectious node can transmit the disease along its outgoing links to its
neighboring susceptible nodes that become infected and can then propagate the disease further
in the network. Here, we consider a deterministic process for which the contagion occurs with
probability equal to 1, as long as there exist a link connecting the infectious node to a suscepti-
ble one. Although a crude assumption, this allows us to simplify the computational aspects
while focusing on the risk prediction. The corresponding stochastic cases exploring lower prob-
abilities of transmission per link are reported in S1 Text.

We focus on the early phase of the spreading simulations, defined as the set of nodes in-
fected up to simulation time step τ = 6. This choice allows us to study invasion stage only,
while the epidemic is no more trivially confined to the microscopic level. Additional choices
for τ have been investigated showing that they do not alter our findings (see S1 Text). Network
configurations are kept constant during outbreaks, assuming diseases spread faster than net-
work evolution, at least during their invasion stage. Examples of incidence curves obtained by
the simulations are reported in S1 Text.

Livestock disease spread is often modeled by assuming that premises are the single discrete
units of the spreading processes and neglecting the possible impact of within-farm dynamics
[49]. This is generally considered in the study of highly contagious and rapid infections, and
corresponds to regarding a farm as being infected as soon as it receives the infection from
neighboring farms following the transport of contagious animals. Under this assumption, both
case studies can be analyzed in terms of networks of contacts for disease transmission. In addi-
tion, for sake of simplicity, we do not take into account the natural definition of link weights

Fig 2. Loyalty. (A) Visualization of the neighborhood of two different farms in the cattle trade network (orange node, characterized by low loyalty, and green
node, characterized by high loyalty) and corresponding loyalty values computed on three consecutive configurations (2006, 2007, 2008). (B), (C): Loyalty
distributions in the cattle trade network and in the sexual contact network, respectively. Histograms refer to the first pair of consecutive configurations for
visualization purposes, all other distributions being reported in S1 Text and showing stability across time.

doi:10.1371/journal.pcbi.1004152.g002
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on cattle network, representing the size of the moved batches. In S1 Text we generalize our
methodology to the weighted case, including a weighted definition of loyalty, reaching results
similar to the unweighted case.

We consider an emerging epidemic unfolding on a network configuration c and starting
from a single node (seed s), where the rest of the population of nodes is assumed to be initially
susceptible. The details on the simulations are reported in the Material and Methods section.
We define I c

s the set of nodes infected during the early stage invasion. In order to explore how
the network topology evolution alters the spread of the disease, we consider an outbreak un-
folding on the previous configuration of the system, c−1, and characterized by the same epide-
miological conditions (same epidemic parameters and same initial seed s). By comparing the
set of infected nodes I c!1

s obtained in configuration c−1 to I c
s , we can assess changes in the two

sets and how these depend on the nodes’ loyalty. We define a node’s infection potential
pc!1;c
L ðsÞ (pc!1;c

D ðsÞ) measuring the probability that a node will be infected in configuration c by
an epidemic starting from seed s, given that it was infected in configuration c−1 under the same
epidemiological conditions and provided that its loyalty status is L (D):

pc!1;c
L ðsÞ ¼def Prob i 2 I c

s j i 2 I c!1
s and i 2 fLg

! "
;

pc!1;c
D ðsÞ ¼def Prob i 2 I c

s j i 2 I c!1
s and i 2 fDg

! "
;

where i is a node of the system. πL and πD thus quantify the effect of the temporal stability of
the network at the local level (loyalty of a node) on the stability of a macroscopic process un-
folding on the network (infection). They depend on the seed chosen for the start of the epidem-
ic, on the pair (c−1, c) of network configurations considered along its evolution, and also on
the threshold value ! assumed for the definition of the loyalty status of the nodes.

By exploring all seeds and computing the infection potentials for different couples of years,
we obtain sharply peaked probability distributions of πL and πD around values that are well
separated along the π axis. Results are qualitatively similar in both cases under study, with
peaks reached for πL/πD ’ 2.5 in the cattle trade network and πL/πD ’ 3 in the sexual trade net-
work (Fig. 3A-B). An observed infection in c−1, based on the knowledge of the epidemiological
conditions and no information on the network evolution, is an indicator of an infection risk for
the same epidemic in cmore than twice larger for loyal farms with respect to disloyal farms.
Analogously, loyal sex buyers have a threefold increase in their infection potential with respect
to individuals having a larger turnover of partners. Remarkably, small values of loyalty thresh-
old ! are able to correctly characterize the loyal behavior of nodes with status L. Results shown
in Fig. 3A-B are obtained for ! = 0.1. Findings are however robust against changes in the choice
of the threshold value, as this is induced by the peculiar bimodal shape of the probability distri-
bution curves for the loyalty (see S1 Text). This means that intermediate values of the local sta-
bility of the nodes (i.e. θ> !) imply that a possible risk of being infected is strongly stable,
regardless of the dynamics of the network evolution. Valid for all possible seeds and epidemio-
logical conditions, this result indicates that the loyalty of a node can be used as an indicator for
the node’s risk of infection, which has important implication for the spreading predictability in
case an outbreak emerges.

These results are obtained for temporally evolving networks where no further change in-
duced by the epidemic is assumed to occur. Focusing on the initial stage of the outbreak, we
disregard the effect of interventions (e.g. social distancing, quarantine of infectious nodes,
movements bans) or of adaptive behavior following awareness [37, 50, 51, 52, 53, 54]. Such as-
sumption relies on the study’s focus on the initial stage of the epidemic that may be character-
ized by a silent spreading phase with propagation occurring before the alert or outbreak
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detection takes place; or, following an alert, by a contingent delay in the implementation of
intervention measures.

Risk assessment analysis
The observed relationship between loyalty and infection potential can be used to define a strat-
egy for the risk assessment analysis of an epidemic unfolding on an unknown networked sys-
tem at present time, for which we have however information on its past configurations. This

Fig 3. Infection potentials and loyalty transitions. (A), (B): Probability distributions of the infections potentials for loyal (πL, green) and disloyal nodes (πD,
orange), for the cattle trade network and the sexual contact network, respectively. Loyalty is set with a threshold ε = 0.1. Dashed lines show the fit with a
Landau+exponential model (see Material and Methods). (C), (D): Loyalty transition probabilities between loyal statuses (TLL(k), green) and disloyal statuses
(TDD(k), orange) as functions of the degree k of the node, for the cattle trade network and the sexual contact network, respectively. Dashed lines represent the
logarithmic models: TDD(k) = 0.78−0.11log k, and TLL(k) = 0.63+0.06log k for the cattle trade network; TDD(k) = 0.94−0.10log k, and TLL(k) = 0.25+0.17log k for
the sexual contact network. Transition probabilities are computed as frequencies in the datasets under study. The error bars here represent one binomial
standard deviation from these frequencies. In (C) the error bars are smaller than the size of the points. A single pair of configurations is considered here as
example; the behavior observed is the same for all the pair of configurations.

doi:10.1371/journal.pcbi.1004152.g003
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may become very useful in practice even in the case of complete datasets, as for example with
emerging outbreaks of livestock infectious diseases. Data on livestock movements are routinely
collected following European regulations [55], however they may not be readily available in a
real-time fashion upon an emergency, and a certain delay may thus be expected. Following an
alert for an emerging livestock disease epidemic, knowledge of past network configurations
may instead be promptly used in order to characterize the loyalty of farmers, simulate the
spread of the disease on past configurations and thus provide the expected risk of infection for
the farms under the ongoing outbreak. The general scheme of the strategy for the risk assess-
ment analysis is composed of the following steps, assuming that the past network configura-
tions {c−n, . . ., c−1, c} are known and that the epidemic unfolds on the unknown configuration
c+1:

1. identify the seed s of the ongoing epidemic;

2. characterize the loyalty of the nodes from past configurations by computing yc!1;c
i from

Eq. (1);

3. predict the loyalty of the nodes for the following unknown configuration c+1: yc;cþ1
i ;

4. simulate the spread of the epidemic on the past configuration c under the same epidemio-
logical conditions of the ongoing outbreak and identify the infected nodes I c

s ;

5. compute the node epidemic risk for nodes in statuses L and D.

This strategy enables the assessment of the present infection risk (i.e. on configuration c+1)
for all nodes hit by the simulated epidemic spreading on past configuration c (I c

s), not knowing
their present pattern of contacts. It is based on configurations from c−n to c as they are all used
to build the probability distributions needed to train our approach. In the cases under study
such distributions are quite stable over time so that a small set of configurations ({c−2, c−1, c})
was shown to be enough.

To make the above strategy operational, we still need to determine how we can exploit past
data to predict the evolution of the loyalty of a node in future configurations (step 3) and use
this information to compute nodes epidemic risk (point 5). As with all other variables charac-
terizing the system, indeed, also θmay fluctuate from a pair of configurations (c−1, c) to anoth-
er, as nodes may alter their loyal behavior over time, increasing or decreasing the memory of
the system across time. Without any additional knowledge or prior assumption on the dynam-
ics driving the system, we measure from available past data the probabilities of (dis)loyal nodes
staying (dis)loyal across consecutive configurations, or conversely, of changing their loyalty
status. This property can be quantified in terms of probabilities of transition across loyalty sta-
tuses. We thus define Tc

LLðkÞ as the probability that a node with degree k being loyal between
configurations c−1 and c will stay loyal one step after (c, c+1). It is important to note the explicit
dependence on the degree k of the node (here defined at time c), which may increase or de-
crease following neighborhood reshaping (it may also assume the value k = 0 if the node be-
comes inactive in configuration c). Analogously, Tc

DDðkÞ is the probability of remaining
disloyal. The other two possible transition probabilities are easily obtained as TLD = 1−TLL and
TDL = 1−TDD.

Fig. 3C-D show the transition probabilities of maintaining the same loyalty status calculated
on the two empirical networks for ! = 0.1. Stability in time and non-trivial dependences on the
degree of the node are found for both networks. In the cattle trade network, loyal farmers tend
to remain loyal with a rather high probability (TLL > 0.6 for all kin values). In addition, this
probability markedly increases with the degree, reaching TLL’ 1 for the largest values of kin.

Predicting Epidemic Risk

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004152 March 12, 2015 10 / 19



Interestingly, the probability that a disloyal farmer stays disloyal the following year dramatical-
ly decreases with the degree, reaching 0 in the limit of large degree. Among the farmers who
purchase cattle batches from a large number of different premises, loyal ones have an increased
chance to establish business deals with the same partners the following year, whereas previous-
ly disloyal ones will more likely turn to being loyal.

A similar qualitative dependence on the degree is also found in the sexual contact network,
however in this case the probability of remaining disloyal is always very high (TDD > 0.7) even
for high degrees. TLL shows a relatively more pronounced dependence on k, ranging from 0.3
(low degree nodes) to 0.6 (high degree nodes). Differently from the farmers behavior, sex buy-
ers display a large tendency to keep a high rate of partners turnover across time. Moreover, the
largest probability of preserving sexual partners is obtained when the number of partners is
rather large.

Remarkably, in both networks, transition probabilities are found to be stable across time
and are well described by logarithmic functions (with parameters depending on the system and
on !) that can be used to predict the loyalty of nodes in configuration c+1 from past data
(Fig. 3C-D). With this information, it is then possible to compute the epidemic risk of a node i
in configuration c+1, having degree k ¼ kci in configuration c and known loyalty status {L, D}
between configurations c−1 and c as follows:

if loyalty class ¼ D : rcþ1
i ¼ pc;cþ1

D ðsÞTDDðkÞ þ pc;cþ1
L ðsÞTDLðkÞ ;

if loyalty class ¼ L : rcþ1
i ¼ pc;cþ1

D ðsÞTLDðkÞ þ pc;cþ1
L ðsÞTLLðkÞ :

8
<

: ð2Þ

It is important to note that in our framework the epidemic risk is a node property, and not a
global characteristic of a specific disease.

Validation
To validate our strategy of risk assessment, we test our predictions based on past data for the
risk of being infected in configuration c+1 on the results of an epidemic simulation explicitly
performed on the supposedly unknown configuration c+1. We consider the set of nodes I c

s for
which we are able to provide risk predictions and divide it into two subsets, according to their
predicted risk of infection rcþ1

i . We indicate with I c
s;h the top 25% highest ranking nodes, and

with I c
s;l all the remaining others. We then compute the fraction Ph of nodes in the subset I c

s;h,

i.e. predicted at high risk, that belong to the set of infected nodes I cþ1
s in the simulated epidemic

aimed at validation. Analogously, Pl measures the fraction of nodes in I c
s;l that are reached by

the infection in the simulation on c+1. In other words, Ph (Pl) represents the probability for a
node having a high (low) risk of infection to indeed get infected. The accuracy of the risk as-
sessment analysis can thus be measured in terms of the relative risk ratio ν = Ph/Pl, where val-
ues ν% 1 indicate negative or no correlation between our risk predictions and the observed
infections, whereas values ν> 1 indicate that the prediction is informative. For both networks
we find a significant correlation, signaled by the distributions of the relative risk ratio ν peaking
around values ν> 1 (Fig. 4A-B). The peak positions (ν’ 1.4 and ν’ 1.7 for cattle and sex, re-
spectively) are remarkably close to the benchmark values represented by the distributions com-
puted on the training sets (red lines in Fig. 4A-B). In addition, the comparison with the
distributions from a null model obtained by reshuffling the infection statuses of nodes (dotted
curves peaking around ν = 1 in Fig. 4A-B) further confirms the accuracy of the approach. Find-
ings are robust against changes of the value used to define I c

s;h or against alternative definitions
of this quantity (see S1 Text).
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One other important aspect to characterize is the predictive power of our risk assessment
analysis. Our predictions indeed are limited to the set I c

s of nodes that are reached in the simu-
lation performed on past data, proxy for the future outbreak. If a node is not infected by the
simulation unfolding on configuration c or it is not active at that given time, our strategy is un-
able to provide a risk assessment for that node in the future. We can then quantify the predic-
tive power ω as the fraction of infected nodes for which we could provide the epidemic risk, i.e.
oc;cþ1

s ¼j I cþ1
s \ I c

s j = j I cþ1
s j. High values of ω indicate that few infections are missed by the

risk assessment analysis. Fig. 4C-D display the distributions P(ω) obtained for the two case
studies, showing that a higher predictive power is obtained in the cattle trade network (peak at
ω’ 60%) with respect to the sexual contact network (peak at ω’ 40%). Our methodology can

Fig 4. Validation of the risk assessment analysis. (A), (B): Probability distributions of the risk ratio ν for the cattle trade network and the sexual contact
network, respectively. Red lines are computed on training sets (2007–08 for cattle and s2-s3 for sexual contacts). The dashed lines peaking around 1
represent a null model based on reshuffling the infection statuses, i.e. randomly permuting the attribute “actually being infected” among the nodes for which
risk assessment is performed. (C), (D): Probability distributions of the predictive powerω for the cattle trade network and the sexual contact
network, respectively.

doi:10.1371/journal.pcbi.1004152.g004
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potentially be applied to a wide range of networks, other than the ones presented here, as
shown with the example of human face-to-face proximity networks relevant for the spread of
respiratory diseases reported in S1 Text.

We also tested whether our risk measure represents a significant improvement in prediction
accuracy with respect to simpler and more immediate centrality measures (namely, the degree).
Through a multivariate logistic regression, in S1 Text we show that our definition of node risk
is predictor of infection even after adjusting for node degree.

Memory driven dynamical model
The results of the risk assessment analysis obtained from the application of our strategy to the
two empirical networks show qualitatively similar results, indicating that the approach is gen-
eral enough to provide valuable information on the risk of infection in different settings. The
observed differences in the predictive power of the approach are expected to be induced by the
different temporal behavior of the two systems, resulting in a different amount of memory in
preserving links (Fig. 1) and different loyalty of nodes and their time-variations (Fig. 2 and
3C-D).

In order to systematically explore the role of these temporal features on the accuracy and
predictive power of our approach, we introduce a generic model for the generation of synthetic
temporal networks. The model is based on a set of parameters that can be tuned to reproduce
the empirically observed features of the two networks, i.e.: (i) the topological heterogeneity of
each configuration of the network described by a stable probability distribution (Fig. 1A-B); (ii)
a vital dynamics to allow for the appearance and disappearance of nodes; (iii) a tunable amount
of memory characterizing the time evolution of the network contacts (Fig. 1C-D). These specif-
ic properties differentiate our approach from the previously introduced models that display in-
stantaneous homogeneous properties for network configurations [56, 57, 58, 59], reproduce
bursty inter-event time distributions but without the explicit introduction of memory [33, 60,
61] or of its control [58].

Based on an iterative network generation approach (see Materials and Methods), we can
build an arbitrarily large number of configurations of networks with 104 nodes. They are char-
acterized by stable in-degree and out-degree heterogeneous distribution across time (Fig. 5A
where high memory and low memory regimes are displayed) and by profiles for the probability
distribution of the loyalty as in the empirical networks (Fig. 5B). The number of nodes with
zero loyalty can be computed analytically (see Materials and Methods) and it is confirmed by
numerical findings (see S1 Text). A high memory regime corresponds to having nodes in the
system that display a highly loyal behavior (e.g., θ> 0.7), whereas values in the range θ 2 [0.7,
1) are almost absent in a low memory regime, in agreement with the findings of Fig. 2.

Applying the introduced risk assessment analysis to the synthetically generated temporal
network, we recover a significant accuracy for both memory regimes (Fig. 5C). Different de-
grees of memory are however responsible for the fraction of the system for which a risk assess-
ment can be made. In networks characterized by higher memory, the distribution of the
predictive power ω has a well defined peak, whereas for lower memory it is roughly uniform in
the range ω 2 [0, 0.4] (Fig. 5D). Such a regime implies that not enough structure is maintained
in the system to control more than 40% of the future infections. Our risk assessment analysis
allows therefore accurate predictions across varying memory regimes characterizing the tem-
poral networks, but the degree of memory impacts the amount of predictions that can be
made. The model also shows that the analysis is not affected by the choice of the aggregating
time window used to define the network configurations [61, 62, 63], as long as the heteroge-
neous topological features at the system level and the heterogeneous memory at the node level
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are kept across aggregation, as observed for the empirical networks under study (see [19] and
S1 Text).

Conclusions
We introduce a simple measure to characterize the amount of memory in the time evolution of
a networked system. The measure is local and it is empirically motivated from two case studies
relevant for disease transmission. By focusing on the degree of loyalty that each node has in es-
tablishing connections with the same partners as time evolves, we are able to connect an ego-
centric view of the system (the node’s strategy in establishing its neighborhood over time) to

Fig 5. Memory driven dynamical model: model properties and validation of the risk assessment analysis. (A): Probability distributions of the node in-
degree, in the low (pα = 0.3) and high memory (pα = 0.7) regimes. The slope of the distributions does not depend on pα, and it is forced by the exponent γ of
the βin distribution (dashed line). (B): Probability distributions of the loyalty, in the low and high memory regimes. Distributions are color-coded as in panel (a).
(C): Probability distributions of the risk ratio ν, in the low and high memory regimes. Lines represent the median values obtained from 50 realizations of the
model; darker and lighter shaded areas represent the 50% and 95% confidence intervals. (D): Probability distributions of the predictive powerω, in the low
and high memory regimes. Medians and confidence intervals are presented as in panel (C). Distributions are color-coded as in panel (A).

doi:10.1371/journal.pcbi.1004152.g005
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the system’s larger-scale properties characterizing the early propagation of an
emerging epidemic.

We uncover a non-trivial correlation between the loyalty of a node and its risk of being in-
fected if an epidemic occurs, given fixed epidemiological conditions, and use this to inform a
risk assessment analysis applicable to different settings with no information on the network
evolution dynamics. A theoretical model generating synthetic time-varying networks allows us
to frame the analysis in a more general perspective and disentangle the role of different fea-
tures. The accuracy of the proposed risk assessment analysis is stable across variations of the
temporal correlations of the system, whereas its predictive power depends on the degree of
memory kept in the time evolution. The introduced strategy can be used to inform preventive
actions in preparation to an epidemic and for targeted control responses during an outbreak
emergency, only relying on past network data.

Methods
Datasets
The cattle trade network is obtained from the database of the Italian national bovine registry
recording all cattle displacements due to trade transactions. We consider animal movements
during a 5 years time period, from 2006 to 2010, involving 215,264 premises and 2,973,710 di-
rected links. Nodes may be active or inactive depending whether farms sell/buy cattle in a
given timeframe. The cattle network is available as S1 Dataset. From the dataset we have re-
moved slaughterhouses (* 1% of the nodes) as they are not relevant for transmission.

The sexual contact network is extracted from an online Brazilian forum where male sex buy-
ers rate and comment on their sexual encounters with female sex sellers [16]. Time-stamped
posts are used as proxies for sexual intercourse and multiple entries are considered separately,
following previous works [16, 31]. A total of 13,855 individuals establishing 34,509 distinct sex-
ual contacts are considered in the study, after discarding the initial transient of the community
growth [16]. Nodes may be active or inactive depending whether individuals use or not the
service, and join or quit the community. Six-months aggregating snapshots are chosen. A
different aggregating time window of three months has been tested, obtaining similar results
(see S1 Text).

Risk of infection
The distributions of the risk potentials πL and πD reported in Fig. 3 are modeled with a sum of
Landau distribution and an exponential suppression. This family of functions depending on
four parameters (see S1 Text for the specific functional form) was chosen as it well reproduces
the distribution profiles of the risk potentials, and it was used to compute the nodes’ epidemic
risk. A goodness of fit was not performed, as this choice was automatically validated in the vali-
dation analysis performed on the whole prediction approach.

Memory driven model
The basic iterative network generation approach allows to build configuration c+1 from config-
uration c through the following steps:

• vital dynamics: nodes that are inactive in configuration c become active in c+1 with probabil-
ity b, while active nodes become inactive with probability d;

• memory: active nodes maintain same in-neighbors each with probability pα; then they form
βin new in-stubs, where βin is extracted from a power-law distribution: PðbinÞ # b$g

in ;
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• out-degree heterogeneity: each node is assigned βout out-stubs, where βout is drawn from an-

other power-law distribution: PðboutÞ # b$d
out . Then each of the in-stubs is randomly matched

to an out-stub.

The total set of nodes is considered to be fixed in time, and nodes may be active (i.e. estab-
lishing connections) or inactive (i.e. isolated) in a given configuration. All five parameters b, d,
γ, pα, δ are assumed constant in time and throughout the network. The amount of memory in
the system is tuned by the interplay of the two parameters pα and d. Starting from an arbitrarily
chosen initial configuration c = 0, simulations show that the system rapidly evolves towards a
dynamical equilibrium, and successive configurations can be obtained after discarding an ini-
tial transient of time. The parameters values used in the paper are: N = 104; b = 0.7; d = 0.2; γ =
2.25; δ = 2.75; pα = 0.3, 0.7. The influence of such parameters on the network properties is ex-
amined in S1 Text.

If we denote with α the number of neighbors that a given node keeps across two consecutive
configurations (c−1, c), we can express the loyalty simply as:

yc$1;c
i ¼ ac$1;c

kci þ bc
in

! " ð3Þ

where the superscript c for α, βin indicate the values used to build configuration c. The number
of nodes with θ = 0 as a function of the degree can be computed analytically: Pðyc;cþ1 ¼ 0Þ ¼
d þ ð1$ dÞ 1$ pað Þkc . Similarly, it is possible to compute the probability fc, c+1 that a link
present in configuration c is also present in configuration c+1. In the S1 Text we show that
fc, c+1 ’ (1−d)pα and confirm this result by numerical simulations.

Supporting Information
S1 Dataset. Cattle trade network dataset.We provide the cattle trade network as yearly edge
lists, from 2006 to 2010. The dataset consists in five CSV files (one for each year) compressed
in a ZIP archive.
(ZIP)

S1 Text. Additional analyses.We provide a description of the seasonal pattern of cattle net-
work (Section 1), a more in-depth characterization of loyalty (Section 2), a comparison be-
tween loyalty and other similarity measures (Section 3), the specific modeling function for the
infection potential (Section 4), the robustness of the risk assessment procedure to variations in
parameters and assumptions (Section 5), further analyses of the memory driven model in
terms of analytical results (Section 6) and additional properties (Section 7), an extension of our
methodology to take into account transmissibility lower than 1 (Section 8), and links weights
(Section 9).
(PDF)
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1 Seasonal pattern in cattle trade network

Fig. S1 shows the number of active links per month in the cattle trade network. A
seasonal pattern is clearly visible: the activity drops during summer months, and
peaks during fall. The activity pattern is quite similar from one year to the other.
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Figure S1: Number of active links per month in cattle trade network. Di↵erent colors
pertain to di↵erent years, in range (2006� 2010).
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2 Loyalty’s properties

2.1 Allowed values

In the following we provide an analytical reasoning on the allowed values for the
loyalty. ✓ between configurations c and c+ 1 can be rewritten as

✓ =
↵

A� ↵

, (1)

where ↵ 2 N is the number of neighbors retained from c to c+1, and A = k

c

+k

c+1 2
N is the sum of the node’s degrees. Clearly, every pair of ↵0

, A

0 for which 9q 2 N
such that ↵0 = q↵ and A

0 = qA, will give the same ✓. Therefore, in order to compute
all the possible values of ✓, we must restrict ourselves to ↵, A coprimes: (↵, A) = 1.
Moreover, since ✓ cannot be higher than 1, we have to impose one further constraint:
↵ < A/2. All divisions are to be intended as integer divisions.
For zero loyalty, we have ✓ = 0 , ↵ = 0, for every positive A. If ✓ > 0, we need

to count the number of possible values ↵, given the constraints discussed above,
and given a value for A which is fixed by the node’s degrees. For A � 3, there are
'(A)/2 coprimes of A and smaller than or equal to A/2, as it can be inferred by
basic properties of the Euler’s totient function '.

n(A) =

8
<

:

0 if A = 1
1 if A = 2
'(A)/2 if A � 3

, (2)

where n(A) counts the number of nonzero allowed values for ✓, given a fixed A. In
order to compute the total number of allowed ✓ values in an entire network, we now
let A run from 1 to a certain A

max

, which is of the order of twice the highest degree:

N (A
max

) = 1 +
A

maxX

A=1

n(A) = 2 +
1

2

A

maxX

A=3

'(A). (3)

The unity added to the sum takes into account the value ✓ = 0. In order to better
understand the behavior of N (A

max

) we can use Walfisz approximation for large
A

max

, and assume A

max

⇡ 2k
max

to get

N (k
max

) = 1 +
6

⇡

2
k

2
max

+O
h
k

max

(log k
max

)2/3 (log log k
max

)4/3
i
. (4)

This means that the sexual contact network has ⇠ 104 allowed values, and the cattle
trade network has ⇠ 108 allowed values. Such large number of allowed values in the
interval [0, 1] justifies our approximation of treating ✓ as a continuous variable.

2.2 Temporal stability of the loyalty distribution in cattle and

sexual contact networks

Fig. S2 shows the loyalty distributions in all configuration pairs included in the two
datasets under study (top, cattle trade network; bottom, sexual contact network).
In both networks, distributions are stable in time.
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Figure S2: Loyalty distributions for di↵erent configurations. (A): distributions for cat-
tle network, over the considered time period. (B): distributions for sexual
contacts network.

2.3 Correlation between loyalty and degree

Degree and loyalty, while not being independent variables, are nonetheless not triv-
ially correlated. Fig. S3 shows the scatter plots between the degree of a node in
configuration c and its loyalty for the pair of configurations c, c + 1, for both net-
works. For each value of k, ✓ is found to range over a wide interval. This is clearly
visible up to k ⇡ 102 for the cattle trade network, and k ⇡ 10 for the sexual con-
tact network. Higher degree nodes are much less frequent, so the statistics becomes
poorer and the heterogeneity in ✓ decreases as k increases. Pearson correlation coef-
ficients are found to be low for both networks (0.04 for the cattle trade network and
0.15 for the sexual contact network), consistently with the observed large variations.
They are however significantly larger than the coe�cients of the null model: 95%
confidence interval of (�0.002, 0.002) and (�0.006, 0.007), for the cattle trade net-
work and the sexual contact network, respectively. This points to a positive, albeit
weak, correlation between degree and loyalty. The confidence intervals for the null
model are obtained by randomly shu✏ing several times the sequence of ✓’s, in order
to highlight any spurious correlation with the degree sequence.

3 Loyalty and other similarity measures

We analyze here the relationship between loyalty and other possible measures of
similarity of the neighbor structure of a node across time. Firstly we consider a
measure introduced as social strategy in [1]. In our context, if we call k̃

1,c
i

the
(in-)degree of node i in the network resulting from the aggregation of snapshots
1 to c, then i

0
s social strategy in those configurations will be computed as �

1,c
i

=
k̃

1,c
i

/

�P
c

0 k
c

0
i

�
. kc

0
i

is as usual the (in-)degree of i in configuration c

0. This definition
is the same as in [1], except for a normalizing factor c. We make this choice in order to
make the comparison with ✓ more straightforward. The most important qualitative

3
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A B

Figure S3: Scatter plots showing degree at configuration c vs loyalty between configura-
tions c, c+1. Each point represents a node. (A): cattle network. (B): sexual
contacts.

di↵erence between loyalty and social strategy is that the former is always computed
between a pair consecutive snapshots, while the latter typically describes an average
behavior computed on several configurations (from 1 to c in our notation). Indeed
only in the trivial case of � computed on just two snapshots, loyalty and strategy are
univocally related: �

1,2
i

= 1
1+✓

i

1,2
. In general, �1,c

i

will be a non trivial combination

of all the consecutive loyalties ✓

1,2
i

, ✓

2,3
i

· · · ✓c�1,c
i

and degrees. Fig. S4A shows the
correlation between social strategy in cattle network, computed from 2006 to 2010,
and loyalty between 2009, 2010.
We now consider a measure of neighbor similarity derived from Pearson correlation

coe�cient. This measure is analogous to what is called adjacency correlation in [2].
For each node we build two vectors, vc

i

, v

c+1
i

, of dimension |Vc

i

[ Vc+1
i

|, i.e. these
vectors will contain an entry for each vector that is neighbor of i in at least one
of the two configurations. v

c

i

has entries equal to 1 for nodes that are in Vc

i

, and
zero otherwise, and the same for v

c+1
i

. We than consider the Pearson correlation
coe�cient between the two vectors, ⇠c,c+1. This can be directly related to the loyalty
✓

c,c+1
i

and the degrees of the node in the two configuration k

c

i

and k

c+1
i

through the
formula

⇠

c,c+1 = �k

c + k

c+1

p
k

c

k

c+1

1

1 + ✓

c,c+1

s

(1 + ✓

c,c+1)2
k

c

k

c+1

(kc + k

c+1)2
� ✓

c,c+1 (5)

In the above equation we have omitted the subscript i: ⇠c,c+1 = ⇢

c,c+1
i

, kc = k

c

i

and
✓

c,c+1 = ✓

c,c+1
i

. Fig. S4B shows the scatter plot ⇠

c,c+1 versus ✓

c,c+1. We see that,
due to the definition of vectors v

c, ⇠ 2 [�1, 0]. This formula can be simplified if
we need just an average behavior: assuming k

c = k

c+1 = k, where k is the average
connectivity, the formula reduces to h⇠c,c+1i = �(1� ✓

c,c+1)/(1 + ✓

c,c+1). From this
we get that ✓ = 0 (no memory) corresponds to ⇠ = �1, while ✓ = 1 (perfect memory)
corresponds to ⇠ = 0.
Finally, we analyze an application of cosine similarity. For each node vectors

v

c

i

, v

c+1
i

are built as before. Then cosine similarity between those vectors is defined
as ⇣ = v

c

i

· vc+1
i

/

�|vc
i

||vc+1
i

|�. It can be shown that, like ⇠, ⇣ can be written in terms
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of degree and loyalty:

⇣

c,c+1 =
✓

1 + ✓

k

c + k

c+1

p
k

c

k

c+1
(6)

The average behavior this time is h⇣c,c+1i = 2✓c,c+1
/(1 + ✓

c,c+1) (see scatter plot in
Fig. S4C).

In conclusion, social strategy, being computed on a sequence of more than two
configurations, represents a qualitatively di↵erent measure with respect to loyalty,
albeit the two measures being correlated (see Fig. S4A). On the other hand, both
Pearson ⇠ and cosine similarity ⇣ can be completely determined in terms of degree
and loyalty. Moreover, the mean trend is well modeled by the averaged version of
these measure, which discounts degree (see Fig. S4).

Figure S4: Cattle network: correlation between loyalty and other neighbor similarity mea-
sures. (A): scatter plot showing social strategy (�) computed from 2006 to
2010 vs loyalty between 2009, 2010. Each point represents a node. The red
line represents �1,2

i

= 1
1+✓

i

1,2
; Pearson correlation is �0.59. (B): Pearson (⇠)

vs loyalty. The red line represents h⇠c,c+1i. (C): cosine similarity ⇣ vs loyalty.
The red line represents h⇣c,c+1i.

4 Modeling infection potentials

Infection potentials ⇡
D

and ⇡

L

are modeled with a sum of an exponential distribu-
tion, to account for the behavior at ⇡ ' 0, and a Landau distribution, to mimic the
particular asymmetry around the peak. The exact formulation is the following:

f (x;µ, �, r, q) / exp (�qx) + r

Z 1

0

dt sin(2t) exp


�t

x� µ

�

� 2

⇡

t log t

�
. (7)

There are four free parameters: one for the exponential distribution, two for the
Landau distribution, and one driving the relative importance of one function with
respect to the other. An overall scaling coe�cient is fixed by normalization.
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5 Robustness of the risk assessment procedure in

varying parameters and assumptions

5.1 Threshold ✏

In the following we examine the behavior of the infection potentials ⇡

D

and ⇡

L

in
varying the value of the threshold. Fig. S5 shows that in the cattle trade network
the peak position of ⇡

D

increases with ✏, from 0.3 to 0.6. Such behavior is present in
the sexual contact network too, albeit less evident (from 0.3 to 0.5). Unlike ⇡

D

, ⇡
L

distributions remain stable as ✏ varies. As a result, the probability of a loyal node
being infected (⇡

L

) does not depend on the choice of ✏. The choice of threshold
✏ = 0.1 thus allows to maximize the distance between ⇡

D

and ⇡

L

distribution while
preserving enough statistics for the loyal nodes.
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Figure S5: Behavior of infection potentials ⇡
D

and ⇡

L

as ✏ varies. (A),(C): ⇡
D

curves.
(B),(D): ⇡

L

curves. (A),(B): cattle network. (C),(D): sexual contacts.

It is important to note that the value of ✏ also a↵ects the transition probabilities
T

DD

, T

LL

in their functional dependence on the degree (Figure 3C,D of the main
text). For each threshold value, such dependence needs therefore to be assessed
through a fitting, to be used for the prediction of the loyalty values in the unknown
network configuration.
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Figure S6: Risk ratio (⌫) distribution for cattle network. (A): Ic

s,h

as set of top 50%
highest ranking nodes. (B): Ic

s,h

as set of nodes with ⇢ > 0.6.

5.2 Definitions for the risk ratio ⌫

In the main paper the risk ratio ⌫ is computed considering the set Ic

s,h

of the top 25%
highest ranking nodes. Here we explore two di↵erent ways of defining this quantity:

• Ic

s,h

as the set of the top 50% highest ranking nodes (Fig. S6A);

• Ic

s,h

as the set of nodes with epidemic risk ⇢ > 0.6 (Fig. S6B).

Results are reported in Fig. S6 showing the invariance of the observed ⌫ results on
this arbitrary choice.

5.3 Definition of the early stage of an epidemic

In the main paper we consider an initial stage of the epidemic up to ⌧ = 6. This
choice being arbitrary, it is informed by the simulated time behavior of the incidence
curves (see Fig. S7) and the aim to focus on the initial stage of the epidemic.
We also tested a longer initial stage (⌧ = 10) for the sexual contacts network, to

assess the impact of this variation on the obtained results. We obtain distributions of
the infection potential, of the relative risk ratio, and of the predictive power showing
sharper peaks, however with unchanged peak positions (Fig. S8 for the sexual contact
network). Peaks are expected to be sharper, because with ⌧ = 10 a larger fraction of
the network is reached by the outbreak. The fact that peak positions do not change,
however, reveals that we are able to provide accurate epidemic risks already at the
earlier phase of the epidemic (⌧ = 6), when such information is mostly needed.

5.4 Aggregation time window

The choice of yearly aggregation time in the case of the cattle trade network is
informed by its annual seasonal dynamics; the six-months aggregating window for
the sexual contact network is instead arbitrary. Here we explore other aggregating
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A B

Figure S7: Simulated incidence curves obtained by changing seeding node and network
configuration for the cattle trade network (A), and the sexual contacts net-
work (B). Black line indicates ⌧ = 6.
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Figure S8: Invasion stage of the outbreak up to ⌧ = 10 for sexual contacts network: dis-
tribution of the infection potentials (A), the risk ratio ⌫ (B)and the predictive
power ! (C).

windows for both networks to explore the impact they may have on the obtained
results.

We consider configurations for the sexual contact network consisting of 3-months
aggregation. When calculating the risk ratio and the predictive power (Fig. S9B,D),
we find distributions similar to the ones reported in the main text, with unchanged
peak positions. The distributions however appear to be noisier, especially as far as
! is concerned, likely induced by the increased sparseness of the network configura-
tions.

We also try a di↵erent aggregation time for cattle network: 4-month windows.
Risk ratio and predictive power distributions are presented in Fig. S9A,C. We ob-
serve that ! is on average quite low: this is likely due to the fact that aggregation
windows shorter than one year fail to take into account the seasonal patterns, thus
decreasing system memory.
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6 Memory driven model: analytical understandings

6.1 Amount of memory

In the following we analytically quantify the amount of memory in the memory
driven model as the probability f

c,c+1 that a link present in configuration c is also
present in configuration c+ 1. This can be expressed as:

f

c,c+1 = (1� d)


p

↵

+
1

N

b(1� d)

b+ d

⇣(� � 1)

⇣(�)

�
, (8)

where the first term, (1 � d)p
↵

, is the probability of remaining active and at the
same time keeping a particular neighbor. The second term is the probability of not
keeping a neighbor but recovering it with one of the new stubs. ⇣ is the Riemann
⇣-function. f

c,c+1 can indeed be interpreted as the system memory, as it is a good
estimator of the fraction of links that survive from one configuration to the following.
The second term in Eq. 8 is suppressed by 1/N and can be disregarded in our

case given the large size of the networks (N = 104). f

c,c+1 ⇡ (1 � d)p
↵

therefore
provides a first order approximation that correctly matches the numerical results
(see Fig. S10A for the comparison).
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6.2 Probability associated to zero loyalty

The probability of a node with in-degree h

c

having zero loyalty (✓
c,c+1 = 0) can be

computed analytically as

P (✓
c,c+1 = 0|k

c

) = d+ (1� d) (1� p

↵

)kc . (9)
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Figure S10: Characterization of the memory driven dynamical model. (A): the memory
of the system, in terms of the fraction of edges retained from one config-
uration to the following. Boxplots represent median and quartile positions.
The distributions are computed over 50 realizations of the model. Dashed
lines represent the theoretical prediction. p

↵

= 0.3, 0.7 for low and high
memory, respectively. (B): probability for a node with a given in-degree k

to be completely disloyal (✓ = 0) between two following snapshots. Points
represent numerical simulations, while lines show the theoretical estimates.

In Fig. S10B we check this result against numerical simulations.

7 Memory driven model: additional properties

In the main paper the transitions probabilities between loyalty statuses are shown
only for the real networks (main paper Fig. 3C and 3D). Here we present them for
the memory driven model. Fig. S11 reports these probabilities in case of low and
high memory, along with the modeling functions.
In addition, we explore di↵erent values of the model parameters and discuss the

changes in the network properties. In particular, we explore di↵erent values for the
probability of becoming active (b) or inactive (d), other than the choice used in main
paper (b = 0.7, d = 0.2). Fig. S12A, S12B, S12C are the equivalent of main paper
Fig. 5A, and show the in-degree distribution for di↵erent values of b, d in the set
{0.2, 0.7}. P (k

in

) is very robust when changing these parameters, and in all cases
follows the slope of the �

in

distribution. Fig. S12D, S12E, S12F are the equivalent
of main paper Fig. 5B, and show the loyalty distributions. We observe that the
overall shape is insensitive to parameters change. There is however, a tendency to
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kin kin
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TDD
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Figure S11: Memory driven model: loyalty transition probabilities between loyal statuses
(T

LL

(k), green) and disloyal statuses (T
DD

(k), orange) as functions of the
degree k

in

of the node. (A): low memory model (p
↵

= 0.3), (B): high
memory model (p

↵

= 0.7). Dashed lines represent the logarithmic models:
T

DD

(k) = 1.01�0.25 log k, and T
LL

(k) = 0.20+0.18 log k for the low mem-
ory; T

DD

(k) = 0.96 � 0.17 log k, and T

LL

(k) = 0.53 + 0.15 log k for high

memory. Error bars represent the deviation ±{T (k) [1� T (k)] /N
k

}1/2,
where N

k

is the number of nodes with degree k used to compute T (k).
Last value for k: k = 10 includes all nodes with degree equal or higher.

have higher ✓ values for low b, d. This is to be expected, since higher probabilities
of going from active to inactive and vice versa mean larger turnover, which leads to
lower memory and therefore lower overall loyalty.

8 Validation in the stochastic case

We repeat the analysis reported in the main text by considering a stochastic Susceptible-
Infectious approach. Given the same initial conditions, we perform r di↵erent
stochastic runs, each leading to potentially di↵erent outcomes. For each node i,
we compute the fraction f

i

(s) of runs that node i is infected from epidemics starting
from seed s within time step ⌧ . For validation, we need to compare the list {⇢

i

} (s)
of the node epidemic risks computed with our methodology with the list {f

i

} (s) of
the probabilities of actually getting infected. If our estimated risks are reliable, then
the two lists need to be correlated, as a higher risk should correspond to a higher
probability to get infected. In order to evaluate this, we compute the Pearson cor-
relation coe�cients between {⇢

i

} (s) and {f
i

} (s), for each possible seed s. The list
of these coe�cients can then be summarized in a distribution. Fig. S13B and S13D
show such distributions for the sexual contact network for two di↵erent values of the
infection transmissibility (0.75 and 0.85, respectively). In order to check that the
correlation coe�cients are significantly di↵erent from zero, we compute the same
distributions after reshu✏ing the epidemic risks (dashed lines in plots). Fig. S13A

11
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Figure S12: Memory driven model: degree and loyalty distribution when changing
the probabilities of becoming active or inactive. (A),(B),(C): in-degree
distributions when (b, d) = (0.2, 0.2), (0.2, 0.7), (0.7, 0.7), respectively.
(C),(D),(E): loyalty distributions for the same parameter configurations.

and S13C are the equivalent of Fig. 3B in main paper and show that the peak po-
sition of the infection potential does not change from the deterministic case. Noise
and peak width, however, increase considerably, as well as the probability of having
⇡

D

= 0, and this e↵ect is more pronounced for lower infection transmissibilities.

9 Cattle network: taking into account links weights

Links in cattle network can be assigned a weight attribute in terms of the number of
moved animals. These additional data can be included in the modeling of diseases
spread, assuming that larger batches have a greater probability of carrying the
disease from the source holding, to the destination. This feature is included in the
disease model, by assuming a per-animal transmissibility �. Then, given a movement
of w animals, the transmission probability along that link will be [1� (1� �)w]
(same approach as in SI of [3]). Loyalty needs to be generalized to the case of
weighted network, too. The most straightforward generalization is obtained by
considering the quantities in Eq. (2) of main paper Vc�1

i

,Vc

i

as multisets (see, for
instance, [4]), where each neighbor appears as many times as the weight of the
corresponding link. Then the weighted loyalty on the weighted network is defined,
as before, by Eq. (2) of main paper, using the definitions of multiset union and
intersection: Vc�1

i

[ Vc

i

=
P

j

max
�
w

c�1
ji

, w

c

ji

�
and Vc�1

i

\ Vc

i

=
P

j

min
�
w

c�1
ji

, w

c

ji

�
,

where w

c

ji

is the weight of the link j � i in configuration c (assuming w = 0 if
no such link is present). Other choices of similarity between sets of neighbors are
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Figure S13: Applying the methodology to sexual contact networks using a stochastic
epidemic model. (A),(C): infection potentials for infectivity 0.75 and 0.85,
respectively. (B),(D): distribution of the Pearson correlation coe�cient be-
tween the computed epidemic risks and the probability of actually being
infected, for infectivity 0.75 and 0.85, respectively. Dashed lines show dis-
tributions from the null model.

possible, however this one is the most natural generalization, since it has a very
similar distribution to the unweighted loyalty (Fig. S14A), and correlates well with
it (Fig. S14B). We now compute the infection potentials and then the epidemic
risks, using this new loyalty. We validate the computed risks analogously to what
we did in Sec. 8. Results are presented in Fig. S15, showing the generalizability of
our approach to the weighted case too.

10 Assessing the robustness of risk based prediction

with respect to simple predictors

We have shown that ⇢ e↵ectively represents the risk of being infected, as shown in
the Validation section of main paper. We now show that ⇢ is a significant improve-
ment in prediction accuracy, with respect to simpler measures, like the degree of a
node. From configurations c � 1, c of cattle network we compute the risk of being
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A B

Figure S14: Weighted cattle network: extending the definition of loyalty. A shows the
cumulative distributions for the unweigthed loyalty (green) and multiset loy-
alty (red). Di↵erent tones of colors refer to di↵erent network configurations.
B Scatter plot correlating the unweighted loyalty and the multiset loyalty.
Pearson correlation coe�cient is 0.92.

infected at c+1: ⇢
i

= ⇢

c+1
i

(s), as in Eq. (3) of main paper. For each node i for which
we can compute ⇢

i

we then have the binary variable outcome indicating if node i is
eventually hit by the epidemic in configuration c + 1. We perform a multivariable
logistic regression to check that ⇢ is actually a predictor for outcome, adjusting the
in-degree in configuration c: kc

i

. In particular, due to the high heterogeneity of k, we
adjust for the log of the degree. Tab. S1 shows the results of the performed regres-
sions. As the crude odds ratios show, both ⇢ and k

c, on their own, are meaningful
predictor of infection in configuration c+ 1. We are however interested in assessing
wether our risk is still a predictor, once the e↵ect of knowing the degree is discounted
for. The odds ratio for ⇢ adjusted for degree is still significantly greater than one,
meaning that even within nodes of the same degree, nodes at high risk are likelier
to get infected. In other words, computing the risk (for which the knowledge of the
degree of the node is needed) gives more predicting power than the sole knowledge
of degree.

crude OR adjusted OR

log(degree) 2.88 [2.87, 2.89] 2.08 [2.07, 2.10]
risk 4.82 [4.78, 4.86] 2.50 [2.49, 2.51]

Table S1: Odds ratios of being infected in configuration c + 1, given degrees in c and
computed risks. Crude odds ratios refer to two separate univariate regressions;
adjusted odds ratios are obtained through a single multivariate regression. 95%
confidence intervals are reported.
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Figure S15: Weighted cattle network: risk prediction computation and validation.
(A),(C): infection potentials for single-animal infectivity 0.75 and 0.85, re-
spectively. (B),(D): distribution of the Pearson correlation coe�cient be-
tween the computed epidemic risks and the probability of actually being
infected, for infectivity 0.75 and 0.85, respectively. Dashed lines show dis-
tributions from the null model.

11 Application to human proximity networks

The main di�culty in applying our methodology to physical proximity networks in
human is that generally those networks are much smaller than the ones we have ex-
amined, that making it di�cult to reach enough statistics to fit the form of infection
potentials and transitions probability, and then perform the validation. We show
here how we can overcome these impairments and apply successfully our strategy
to a network of face-to-face proximity at a scientific conference, collected by the
Sociopatterns group [5]. This network records the interactions of 113 nodes during
a period of 2.5 days. We split such networks in 30 configurations (corresponding to
hourly time steps), and use the first 29 configurations to train our methodology, in
order to give predictions on the 30th. We use this large number of configurations in
order to be able to build reliable empirical distributions for the infection potentials
and the transition probabilities between loyalty statuses. Once risks are computed
as usual, it is not possible, however, to perform the validation as we did for cat-
tle, sexual contacts and memory driven models. This impossibility arises from the
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fact that the computed risk ratios are too few to build their distribution. In order
to validate our methodology we therefore use the same technique implemented in
Sec/ 10: for every node, we compute the odds ratio of being infected in the last
configuration, given the knowledge of degree and the computed risk. Results are
reported in Tab. S2. Computer risks are strong predictors for infection, even after
adjusting for degree. Moreover, unlike cattle network (see Tab. S1), degree alone is
not a predictor. Predictive power ! is on average high: median 0.87, with quartiles
Q1 : 0.69, Q2 : 0.97.

crude OR adjusted OR

log(degree) 1.16 [1.13, 1.20] 0.95 [0.89, 1.02]
risk 11.97 [7.79, 18.4] 22.34 [7.90, 63.3]

Table S2: Odds ratios of being infected in last configuration last, degree and computed
risk. Crude odds ratios refer to two separate univariate regressions; adjusted
odds ratios are obtained through a single multivariate regression. 95% confi-
dence intervals are reported.
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Conclusions and perspectives

Time evolution of contacts within a population has a notable impact on the conditions

that drive the spread of a disease. In this thesis we have developed new tools to deal with

the interplay between contact and disease dynamics, in order to provide vulnerability

assessment strategies that can be applied to real settings and realistic disease models.

Using a multilayer approach, we have introduced an analytical methodology to com-

pute the epidemic threshold on a generic temporal network, that turns into a tool for

predicting the outcome of pathogen introduction in a wide variety of contexts. We have

developed this computation in order to include di↵erent disease features, like latency

and immunity, and di↵erent representations of temporal networks, both in discrete and

continuous time. In addition, we have gauged the impact that two important features

of empirical temporal networks – time resolution and data collection interval – have on

the estimation of the threshold.

We have introduced several datasets that track contacts in various contexts, all epi-

demiologically relevant. These range from face-to-face human interactions, useful to

study the spread of airborne diseases, to sexual contacts, along which sexually transmit-

ted infections can naturally spread. In addition, we have presented an analysis of the

network of cattle trade movements in three European countries – Hungary, Italy and

Sweden –, which is characterized by several temporal and spatial patterns, all relevant

for the spread of diseases.

Finally, we have concentrated our analysis on specific real settings and classes of

diseases. We have used the computation of the threshold to gauge the vulnerability of

the Italian cattle trade network, in both space and time. We have then turned to human

infectious diseases spread via sexual contacts, and assessed under which circumstances

latency period has a positive (or negative) impact on the vulnerability of the network,

with a particular focus on syphilis.

We then remarked that epidemic threshold provides a measure of global vulnerability

of the network, while it cannot provide targeted risk predictions for specific hosts. In

97



Eugenio Valdano

order to overcome that, we have developed a data-driven methodology for predicting

individual infection risk in a temporal network. In addition, given that in many real

settings we have only data describing past contact configurations, we have devised new

techniques that allow us to compute such risk for future potential outbreaks, by relying

only on past network data. We have assessed the performing power and generality of this

methodology, by testing it on both sexual contacts and cattle network. We have then

devised a generative network model to test which dynamic features our methodology is

sensitive to.

From the theoretical point of view, the framework we have developed is general enough

to deal with generic networks and various disease characteristics. In the future, however,

it should be further extended to include other features found in the progression patterns

of many diseases, like heterogeneous infectious periods among di↵erent hosts. In addi-

tion, in order to get even more accurate numerical estimates of the threshold, it will

be necessary to go beyond the mean field assumptions that underlie the computation of

the threshold both in the static and the temporal case. Finally, the epidemic threshold

provides the condition that discriminates between epidemic outbreak and disease ex-

tinction, but it provides no information on other important measures like outbreak size,

attack rate, and endemic prevalence. Further research is needed to extract the value

of these quantities from the equations describing the epidemic process. This is however

impaired by the highly non-linear nature of those equations, and the development of

new modeling and mathematical tools will be needed.

The issue of predicting targeted epidemic risk from past data is extremely relevant in

many contexts. In our work we have provided a new technique to achieve that in various

contexts. We however assume simple disease models, that will have to be made more

realistic, in order to be applied to specific epidemics. In addition, while our methodology

is very general, it could be made more accurate in some context if it were able to include

further data which are indeed context-specific, like geographic meta-data in cattle trade

networks.
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A. Appendix

A.1. Networks - essential glossary

graph

A graph is an entity composed of a set of elements called nodes (or vertices), and a set

of pairwise relationships among nodes, called links (or edges). Links can be symmetric

relations (undirected graph), or directed (directed graph).

adjacency matrix

Let us assume a graph of N nodes: i = 1 ·N . We define a matrix A such that A
ij

= 1

if a link exists from i to j. We can map each node i of the graph onto e
i

, the canonical

basis vector of RN . Then A naturally behaves as a linear map RN ,RN ! R. If the

graph is undirected, then A is symmetric. If A takes non-zero values other then 1, then

the corresponding graph is weighted, and link i � �j has weight A
ij

. Usually weights

are indicated with letter w. A weighted adjacency matrix is sometimes called W .

degree and strength

Let us take a graph with N nodes. Degree (usually called k) of node i is the number of

neighbors of node i, i.e., the number of links with one tip in i. If the network is weighted,

in addition to degree we define strength (s) as the sum of the weights of these links. If

the graph is directed, we define kin as the number of incoming connections, and kout

as the number of outgoing connections. The same goes for strength. As generally as

possible (directed, weighted) in terms of adjacency matrix, sin
i

=
P

j

A
ji

; sout
i

=
P

j

A
ij

.

For an unweighted, undirected graph, we just have k =
P

j

A
ij

.
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distributions

Given a graph of N nodes, we have a degree list {k
i

}. Out of that, we can build a

histogram of a certain degree occurring, i.e., a degree distribution. Conversely, given

a fixed distribution, we can build an ensemble of graphs whose degree sequences are

samples of that distribution, through the configuration model [219]. The same holds for

strengths, and directed graphs.

paths and reachability

A path of length l in a graph is an ordered subset of l edges such that each edge ends in

the node where the following edge starts from. The shortest path between two nodes is

the shortest among the paths that start from one node and end in the other. A node i

is reachable from j if there exists at least one path going from j to i.

connected components

A connected component of a graph is a subset of nodes that are all reachable one from the

other. If this is true in a directed network, then this said is called a strongly connected

component (SCC). A weakly connected component of a directed graph is instead a subset

that is a connected component after the graph is symmetryzed, i.e., all edges are made

undirected.

clique

A clique is a fully connected subgraph, i.e., a subset of nodes in which every one is

connected to every one else. Commonly, when we talk about cliques as well as connected

components, we assume they are maximal, namely adding a further node to the set would

break its property.

A.2. Tensor representation of temporal networks

The tensor formulation of multilayer networks has been put forward in [102]. Here we

restrict it to temporal networks. Let us assume a network of N nodes. We start by

assuming it doesn’t evolve in time. Let V be the vector space spanned by the basis

{e1, e2, · · · , eN} which is in one-to-one correspondence with the nodes in the network

(see Appendix A.1). In particular, V ' RN . We consider the dual space V ⇤ as the
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vector space spanned by the linear maps {e⇤1, e⇤2, · · · , e⇤
N

}. They are defined as follows:

V ! R and e⇤
i

(e
j

) = �
ij

. This is a traditional definition of dual space of a vector

space. Then, we can define the adjacency matrix A as a multilinear map (i.e., a tensor)

A : V ⇤ ⌦ V ! R, defined as A =
P

i

P

j

A
ij

e⇤
i

⌦ e
j

, with component A
ij

= A(e
i

, e⇤
j

)

encoding the value of link i � j. A thus becomes a rank 2, 1-covariant, 1-contravariant

tensor. The generalization to the temporal case is now straightforward. Let us assume

we have T snapshots. We then consider the space W ' RT spanned by the basis

{f1, f2, · · · , fT } which is in one-to-one correspondence with the snapshots. Then we

define the adjacency tensor as a rank 4 tensor A =
P

t

P

s

P

i

P

j

A
ts,ij

f⇤
t

⌦ f
s

⌦ e⇤
i

⌦ e
j

,

with component A
ts,ij

= A(f
t

, f⇤
s

, e⇤
i

, e
j

) encoding the value of link from node i at time

t, to node j at time s. This allows for both intra-layer (same time) and inter-layer

(di↵erent times) links, as shown in Fig. 2.2.

A.3. Discrete Fourier Transform

We start by considering Fourier transform of a function f 2 L2(R), where L2(R) is the
set of R-valued functions for which

R1
�1 dx |f(x)|2 < 1:

F (k) =
1p
2⇡

Z 1

�1
dxf(x)e�i2⇡kx. (A.1)

F (k) is the component of f along the basis vector ei2⇡kx of L2(R), i.e., it tells us what
is the contribution to f of the harmonic k. When we have an activity timeline, instead

of having a continuous function f , we have a list of values x
j

, with j = 0, · · · , n � 1.

Hence, now harmonics are discrete and finite: k = 0, · · · , n � 1. They can be compute

through the Discrete Fourier Transform:

F
k

=
1

n

n�1
X

j=0

x
j

e�i2⇡jk. (A.2)

In our case we always have a real-valued series: x
j

2 R, and this induces a further

constraint, as only n/2 (n even) or n/2+1 (n odd) are now independent, with the further

constraint of F
n/2 2 R if n is odd. Coe�cients F

k

can be computed e�ciently using Fast

Fourier Transform (FFT) algorithms,and give the component of our series with respect

to the kth harmonic. Since we’re not interested in the relative phase di↵erences between

harmonics, we usually consider the intensities |F
k

|2. In Fig. 4.11 we precisely plot |F |2
as a function of period, which is the inverse of the harmonic k (i.e., the wavelength).

101



Eugenio Valdano

A.4. R0 from di↵erential equations

We start from Eq. 1.4. Since we wish to find the threshold, we linearize them around

the critical point x
i

= x̄
i

, y
↵

= 0, which is the disease-free state (dfs). By definition

of critical point, f
i

(x̄, 0) = g
↵

(x̄, 0) = 0. The linearized system around the dfs has the

following Jacobian matrix Ĵ :

Ĵ =

0

@

@fi
@xj

dfs

@fi
@y�

dfs

@g↵
@xj

dfs

@g↵
@y�

dfs

1

A (A.3)

We can use some features of disease models to put some constraint on Ĵ . @g↵
@xj

�

�

�

dfs

= 0

always, as all terms in g
↵

must contain at least one infectious compartment, which is

zero when evaluated on the dfs. Hence, Ĵ is block triangular, so we can evaluate the

stability condition separately for the two diagonal blocks. Since we’re interested only

in the dynamics of the infectious compartments, we concentrate on the sub-Jacobian in

the lower right block: J
↵�

= @g↵
@y�

�

�

�

dfs

.

As in Sec. 1.5.1, we split g
↵

(x, y) into a recovery part g
(1)
↵

(y), and an infection part

g
(2)
↵

(x, y), due to some reasonable constraints on the equations for the infectious com-

partments:

• They contain diagonal and linear terms with strictly negative coupling constants.

This represents sick people recovering. Positive (or zero) coupling constants, or

non-diagonal terms would refer to unrealistic conditions, and would place the sys-

tem always above threshold.

• They can contain quadratic terms. In each quadratic term at least one compart-

ment must be infectious. This represent transmissions.

• There are no term of higher order than quadratic. Again this would refer to

unrealistic interaction scenarios among individuals.

Now we can decompose the Jacobian in its linear part (diagonal), and quadratic part:

J = J (1) + J (2), with
8

>

>

<

>

>

:

J
(1)
↵�

= @g

(1)
↵

@y�

�

�

�

�

dfs

,

J
(2)
↵�

= @g

(2)
↵

@y�

�

�

�

�

dfs

.
(A.4)
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The threshold condition is given by the value of the transmissibilities for which det J = 0.

Given that J̃ (1) is invertible as coupling constant are strictly negative, we define

R0 = �⇢[J (2)(J (1))�1], (A.5)

and see that det(J) = 0 is equivalent to R0 = 1.
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individual human mobility patterns. Nature, 453(7196):779–782, June 2008.

[47] Chaoming Song, Zehui Qu, Nicholas Blumm, and Albert-László Barabási. Limits
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[58] Ingo Scholtes, Nicolas Wider, René Pfitzner, Antonios Garas, Claudio J Tessone,

and Frank Schweitzer. Causality-driven slow-down and speed-up of di↵usion in

non-Markovian temporal networks. Nat Commun, 5, September 2014.

[59] Ken T D Eames and Matt J. Keeling. Monogamous networks and the spread

of sexually transmitted diseases. Mathematical biosciences, 189(2):115–30, June

2004.

113



Eugenio Valdano

[60] Luis E C Rocha, Fredrik Liljeros, and Petter Holme. Information dynamics shape

the sexual networks of Internet-mediated prostitution. Proceedings of the National

Academy of Sciences of the United States of America, 107(13):5706–5711, 2010.

[61] R R Kao, Leon Danon, D M Green, and Istvan Z Kiss. Demographic structure

and pathogen dynamics on the network of livestock movements in Great Britain.

Proceedings of the Royal Society of London B: Biological Sciences, 273(1597):1999–

2007, August 2006.

[62] Matthew C. Vernon and Matt J. Keeling. Representing the UK’s cattle herd

as static and dynamic networks. Proceedings of the Royal Society of London B:

Biological Sciences, 276(1656):469–476, February 2009.

[63] Tom Lindström, Scott A Sisson, Susanna Stenberg Lewerin, and Uno Wennergren.

Estimating animal movement contacts between holdings of di↵erent production

types. Preventive veterinary medicine, 95(1-2):23–31, June 2010.

[64] Paolo Bajardi, Alain Barrat, Fabrizio Natale, Lara Savini, and Vittoria Colizza.

Dynamical Patterns of Cattle Trade Movements. PLoS ONE, 6(5):e19869, 2011.

[65] Mario Konschake, Hartmut H K Lentz, Franz J Conraths, Philipp Hövel, and
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2n Marro. Nonequilibrium phase transitions in lattice models. Cambridge

University Press, Cambridge New York, 2005.

[155] Yang Wang, D Chakrabarti, Chenxi Wang, and C Faloutsos. Epidemic spreading

in real networks: an eigenvalue viewpoint. In Reliable Distributed Systems, 2003.

Proceedings. 22nd International Symposium on, pages 25–34, 2003.

[156] Sergio Gómez, Alexandre Arenas, J Borge-Holthoefer, Sandro Meloni, and Yamir

Moreno. Discrete time Markov chain approach to contact-based disease spreading

in complex networks. Europhysics Letters, 89(3):38009, 2010.

122



Computing the vulnerability of time-evolving networks to infections
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ette Stehlé, Alberto Eugenio Tozzi, and Wouter Van den Broeck. Empirical tem-

poral networks of face-to-face human interactions. The European Physical Journal

Special Topics, 222(6):1295–1309, 2013.

[190] Christian L Vestergaard, Mathieu Génois, and Alain Barrat. How memory gen-
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