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01229377>

HAL Id: tel-01229377

https://tel.archives-ouvertes.fr/tel-01229377

Submitted on 26 Nov 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Reason with its use of language has set up a satisfactory architecture, like the delightful,

rhythmical composition in Renaissance painting.
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Le résultat principal de cette thèse est l’étude de l’ampleur dans des expansion des struc-

tures géométriques et de SU-rang omega par un prédicat dense/codense indépendant. De

plus, nous étudions le rapport entre l’ampleur et l’équationalité, donnant une preuve dir-

ecte de l’équationalité de certaines théories CM-triviales. Enfin, nous considérons la

topologie indiscernable et son lien avec l’équationalité et calculons la complexité indis-

cernable du pseudoplan libre.

The main result of this thesis is the study of how ampleness grows in geometric and

SU -rank omega structures when adding a new independent dense/codense subset. In

another direction, we explore relations of ampleness with equational theories; there, we

give a direct proof of the equationality of certain CM-trivial theories. Finally, we study

indiscernible closed sets—which are closely related with equations—and measure their

complexity in the free pseudoplane.
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Introduction en français

La théorie des modèles a ses origines dans l’étude des structures mathématiques de point

de vu de la logique du premier ordre, c’est à dire, dans un langage finitaire tel que l’on

quantifie sur des éléments mais pas sur des sous-parties arbitraires de la structure (Ces

restrictions, qui étaient imposées originalement pour des considérations fondationnelles

et ensemble-théoriques, ont des conséquences rélévantes). Une question primordiale était

si une structure donnée M pouvait être décrite complètement en premier ordre. Ceci

s’avère faux lorsque M est infinie : en effet, deux résultats fondamentaux de la logique

de premier ordre, la compacité et le théorème de Löwenheim-Skolem entraînent que, si

M est infinie, alors pour tout cardinal λ infini, il existe une structure Mλ qui satisfait

exactement tous les énoncés de premier ordre valables pour M . La structure Mλ est

élémentairement équivalente à M . Elles ont la même théorie.

En revanche, certaines structures sont complètement caractérisées par leurs théories,

à isomorphisme près. Par exemple, la structure (Q, <) est le seul ordre linéaire dense

sans extrémes, à isomorphisme près. De même, le corps (C,+, ·, 0, 1) est le seul corps

algébriquement clos en caractéristique 0 de cardinalité continue, à isomorphisme près.

Une théorie est λ-catégorique si elle a un seul modèle, à isomorphisme près, de cardinalité

λ.

Morley fut un des premiers à constater la rélévance de ces théories avec son célébre

résultat suivant :

Théorème (Théorème de catégoricité de Morley). Toute théorie dénombrable qui est

catégorique pour un cardinal non-dénombrable est alors catégorique pour tout cardinal

non-dénombrable.

Les techniques développées pour sa démonstration sont à la base de la théorie des modèles

géométrique et ouvrent deux lignes fondamentales de recherche : l’une est le travail de

classification, entamé par Shelah, qui cherche à décrire les théories complètes de premier

ordre à partir de certains configurations de nature combinatoire, quoique les travaux

de Shelah comprennent aussi le comptage de nombre des modèles d’une théorie. Le

1



Introduction en français 2

programme de Shelah a influencé de façon décisive la théorie de modèles, et certaine

classes sortantes de sa classification, comme les théories stables, simples, NIP ou NTP2,

englobent beaucoup d’exemples de structures rélévantes en mathématiques.

L’autre direction de recherche, entamée par Cherlin, Harrington, Lachlan et Zilber,

consiste à étudier des théories catégoriques. Une structure est catégorique en cardina-

lité non-dénombrable si sa théorie l’est. Une telle structure est construite à partir de

certaines sous-parties définissables unidimensionelles irréductibles, dites fortement mini-

males. La clôture algébrique sur un ensemble fortement minimal induit une prégéométrie,

c’est à dire, un matroïde infini. Étant donnée une structure catégorique en cardinalité

non-dénombrable, les prégéométries de ses ensembles fortement minimaux sont toutes lo-

calement isomorphes. Deux structures catégoriques en cardinalité non-dénombrable sont

géométriquement équivalentes si leurs prégéométries associés sont localement isomorphes.

Zilber [47] conjectura que toute structure catégorique en cardinalité non-dénombrable

est géométriquement équivalente à un de types suivants :

Type 1 : Trivial, c’est à dire, le treilli des ensembles algébriquement clos (dans Ceq) est

distributif.

Type 2 : Localement modulaire, si le treilli des ensembles algébriquement clos (dans Ceq)

est modulaire.

Type 3 : La structure interprète un corps algébriquement clos.

La conjecture, qui est vraie pour des structures complètement catégoriques, est motivée

par la citation suivante [48] :

L’espoir originel de l’auteur dans [...] que toute structure catégorique en cardi-

nalité non-dénombrable peut être récupérée à partir d’une structure classique

(nommé le principe de la trichotomie), a ses motivations dans la croyance glo-

bale que les structures logiquement parfaites sont à la base du développement

mathématique, ce qui induit à croire en une forte prédétermination logique

dans les structures mathématiques primordiales.

Le principe de la trichotomie s’avère valable pour une large classe de structures, no-

tamment celle des Géométries de Zariski, des structures munies d’un comportement

topologique sur les ensembles définissables qui ressemble la topologique de Zariski dans

un corps algébriquement clos. Les géométries de Zariski sont fondamentales pour la dé-

monstration de Hrushovski de Mordell-Lang fonctionnel. Remarquons que les théories

o-minimales satisfont aussi le principe de la trichotomie.
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À la fin des années 80, Hrushovski montra que le principe de la trichotomie est faux en

général [21]. Il construit, grâce à la méthode d’amalgamation de Fraïssé avec un contrôle

précis de la dimension, une nouvelle classe d’ensembles fortement minimaux. Il propose

aussi des nouvelles propriétés qui pourrait donner une analyse plus fine de la classification

des structures catégoriques en cardinalité non-dénombrable. Nous allons principalement

étudier une de ces propriétés suggérées, une généralisation de la modularité locale qu’il

nome CM-trivialité. Nous ne donnerons pas l’explication du nom choisi (car nous ignorons

la raison derrière).

Une réformulation de la modularité locale pour les ensembles fortement minimaux, qui

permet de le généraliser à toute théorie stable, est la monobasitude :

Définition. Une théorie stable T est monobasée si pour tout uple réel c et tout modèle

M de T , la base canonique cb(c/M) est algébrique sur c.

La base canonique cb(c/M) est le plus petit ensemble définisablement clos D ⊂M eq tel

que le type tp(c/M) est définissable sur D. L’explication du nom monobasitude est que

la base canonique d’un type stationnaire est algébrique sur une (toute) réalisation du

type.

Une théorie stable est monobasée si et seulement si pour tout uple réel c et toutes sous-

parties algébriquement closes A ⊂ B dans T eq, la base canonique cb(c/A) est algébrique

sur cb(c/B). Cette caractérisation nous permet de voir que la CM-trivialité généralise la

monobasitude :

Définition. Une théorie stable est CM-triviale si pour tout uple c et toutes sous-parties

algébriquement closes A ⊂ B dans T eq avec acleq(Ac)∩B = A, la base canonique cb(c/A)

est algébrique sur cb(c/B).

Une théorie stable est monobasée si elle n’admet pas de pseudoplan type-définissable,

c’est à dire, une configuration type-définissable d’incidence entre points et droites données

par un type complet tp(a, b) avec :

• a /∈ acl(b) et b /∈ acl(a),

• Si a �= a′ et ab ≡ a′b, alors b ∈ acl(aa′). De même, si b �= b′ et ab ≡ ab′, alors

a ∈ acl(bb′).

L’intuition est que les théories CM-triviales correspondent à ces théories stables qui in-

terdissent une certaine configuration type-définissable d’incidence entre points, droites

et plans. Ceci reste encore à démontrer, quoique la thèse de Nübling [27] exhibe un ré-

sultat partiel dans cette direction. Il définit un pseudoespace 3-dimensionnel indépendant

type-définissable comme la donnée d’un type complet tp(a, b, c) tel que :
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• tp(a, b) et tp(b, c) sont des pseudoplans type-définissables.

• a est indépendant de c sur b.

Nübling montre qu’aucun pseudoespace 3-dimensionnel indépendant type-définissable

peut être défini dans une théorie supersimple CM -triviale de rang fini.

Dans le chapitre 2, des caractérisations équivalentes de la monobasitude et de la CM-

trivialité seront exhibées, en termes du comportement de la relation d’indépendance,

sans mention explicite des bases canoniques.

L’étude de la CM-trivialité apparait déjà dans [34] et [36]. Pillay montre qu’aucun groupe

mauvais1 peut être interprété dans une théorie CM-triviale. De plus, il montre que tout

groupe CM-triviale de rang de Morley fini est nilpotent–par-fini.

Pillay [36] étend les notions de monobasitude et CM-trivialité, en introduisant la hié-

rarchie ample, selon laquelle ces deux notions correspondent aux premier et deuxième

niveaux de la hiérarchie. L’amplitude est un effort de mieux classifier les ensembles forte-

ment minimaux. Aucun ensemble fortement minimal n’interprétant pas de corps infinis

n’est connu au delà de deux premiers niveaux.

Une de caractéristiques fondamentales des ensembles fortement minimaux est l’existence

d’une notion de dimension, car la clôture algébrique satisfait le principe d’échange de

Steinitz. Une théorie est géométrique si elle élimine le quanteurs ∃∞ et la clôture al-

gébrique satisfait le principe de Steinitz. En particulier, il existe une borné uniforme

aux instances algébriques d’une formule donnée, donc la dimension est définissable. Be-

renstein et Vassiliev [8, 10] ont étudié des expansions de théories géométriques par un

prédicat dense et codense, que l’on interprète par un ensemble indépendant d’éléments.

Ils démontrent que certaines notions, comme la stabilité ou la simplicité, sont préservées

en ajoutant ce prédicat indépendant. Motivés par ces résultats, Berenstein et Kim [12]

montrent que la NTP2 est aussi préservée.

Cependant, la monobasitude ne l’est pas :

Exemple. Soit T = Th(V,+, {λq}q∈Q) la théorie d’un espace vectoriel sur Q, où V a di-

mension infinie. SoitB une base de V . Alors T est monobasée mais T ind = Th(V,+, {λq}q∈Q, B)

ne l’est pas.
1Un groupe mauvais est un groupe connexe infini de rang de Morley non-résoluble tel que tous ses sous-

groupes définissables connexes sont nilpotents. L’existence d’un tel groupe contredirait la conjecture de
l’algébricité, qui affirme que tout groupe simple de rang de Morley fini interprète un corps algébriquement
corps, tel que le groupe a une structure de groupe algébrique là-dessus.
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Berenstein et Vassiliev posent comme question si la théorie T ind de l’exemple précédent

était CM-triviale. De plus, ils démandent si l’on pouvait obtenir des théories non CM-

triviales à partir d’une théorie CM-triviale en ajoutant un prédicat indépendant. Nous

[15] donnons des réponses complètes à ces deux questions : the theorem counter

Théorème 1. (cf. Théorème 3.2.7) Soit T ind l’expansion d’une théorie T de rang SU

1 (par exemple, une théorie fortement minimale), par un prédicat indépendant dense.

Pour n ≥ 2, la théorie T est n-ample si et seulement si T ind l’est.

Dans le chapitre 3, nous donnerons une preuve de ce résultat, ainsi que des conditions

necéssaires et suffisantes pour que T ind soit monobasée.

Une structure de rang de Lascar ω, quoique pas géométrique, est munie d’une prégéo-

métrie naturelle par rapport à l’opérateur de clôture du type régulier de rang infini :

l’élément est dans la clôture de l’ensemble A si SU(a/A) < ω. Dans le cas de corps dif-

férentiels, ce correspond à que l’élément a soit différentiellement algébrique sur le corps

différentiel engendré par A. En collaboration avec Berenstein et Vassiliev [11], nous étu-

dions d’expansion de théories de rang ω par un prédicat dense indépendant, inspirés du

cas geométrique. Cependant, nous ne pouvons pas démontrer le théorème A en toute

généralité :

Théorème 2. (cf. Theorem 4.2.7) Si T a rang de Lascar ω, alors T est CM-triviale si

et seulement si T ind l’est.

Rappelons qu’une prégéométrie (M, cl) est triviale si cl(A) =
⋃

a∈A cl(a) pour tout sous-

partie A ⊂M .

Théorème 3. (cf. Théorème 4.2.10) Soit T une théorie de rang de Lascar ω avec pré-

géométrie sous-jacente triviale. Alors T est n-ample si et seulement si T ind l’est.

Ce théorème est démontré dans le chapitre 4, où nous considérons des structures de

rang de Lascar ω et leurs expansions par un prédicat dense indépendant. De plus, nous

donnons de conditions suffisantes pour que T ind soit monobasée.

Comme mentionné auparavant, le principe de la trichotomie est valable pour les géo-

métries de Zariski. Une géométrie de Zariski consiste en une structure M muni d’une

collection compatible de topologies sur chaque produit cartesian qui engendrent tous les

ensembles définissables. Une des propriétés fondamentales des géométries de Zariski est

qu’ils ont une sous-classe distinguée d’ensembles définissables, dits clos, avec une noe-

therianité globale. Ce nous a motivé à considérer des théories équationnelles, introduites

par Srour [40], pour adapter cette noetherianité localement. Une formule ϕ(x̄, ȳ) est une
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équation si, pour tout ensemble des paramètres {b̄i}i∈I , il existe un sous-ensemble fini

I0 ⊂ I tel que
⋂

i∈I ϕ(C, b̄i) =
⋂

i∈I0 ϕ(C, b̄i). Une théorie est équationnelle si toute for-

mule est combinaison booléenne d’instances d’équations. Notons que la plus part des

exemples de nature algébrique sont équationnels : les espaces vectoriels, les corps algé-

briquement clos et différentiellement clos, ainsi que les corps separablement clos de degré

d’imperfection fini.

Toute théorie monobasée est équationnelle. Hrushovski même montre que son nouveau

ensemble fortement minimal est équationnel, quoiqu’il n’a pas une structure de géométrie

de Zariski.

Liée fortement à la notion d’équationalité est celle d’ensemble indiscernablement clos.

Si X est un ensemble type-définissable, sa clôture indiscernable consiste en ces uples

ā du modèle ambient tels qu’il existe une suite indiscernable I = (ā0, ā1, ā2...) sur ∅
qui commence par ā telle que āi appartient à X pour tout i ≥ 1. Un ensemble type-

définissable X est indiscernablement clos si X = icl(X).

Junker et Lascar [26] traitent systématiquement l’équationalité. Ils montrent que la to-

pologie équationnelle, où les ensembles fermés sont ceux définis par des équations, est

fortement liée à la topologie indiscernable. Cette connexion leur permet de donner des

conditions suffisantes pour qu’une théorie CM-triviale soit équationnelle. En outre, ils

proposent une fonction iT à valeurs ordinales qui mesure la complexité de la clôture

indiscernable. Ils montrent que iT ≤ 2 si T est monobasée.

Dans le chapitre 5, nous étudierons les rapports possibles entre la CM-trivialité et l’équa-

tionalité, sous certaines conditions, et suggérons des généralisations possibles au cas

ample. Nous calculons explicitement la valeur iT pour la théorie du pseudoplan libre,

qui est CM-triviale. Quoique nous soupçonnons que iT est toujours borné par ω si T est

CM -triviale, nous n’avons pas pu le démontrer en toute généralité.



Introduction

Model Theory has its origins in the study of mathematical structures under the light

of first order languages, that is, finitary languages that can quantify over elements but

not over subsets of the structure (these restrictions, originally imposed for the sake of

set theory and foundations of mathematics, have strong consequences). An initial and

natural question was whether a certain structure M could be completely described using

a first order language. This turns out to be false whenever M is infinite: using two

strong features of first order logic, Compactness and Löwenheim-Skolem theorem, it can

be proved that for every infinite cardinal λ, there is a structure Mλ such that Mλ and

M satisfy exactly the same properties expressible in first order. In this case we say that

M is elementary equivalent to Mλ or that they have the same theory T .

However, there are some structures which are completely characterized in their own

cardinality up to isomorphism. For example, the structure (Q, <) is the only countable

“dense linear order without endpoints” and (C,+, ·, 0, 1) is the only “algebraically closed

field of characteristic 0” of size 2ℵ0 .

A theory with exactly one model (up to isomorphism) of size λ is called λ-categorical.

Morley drew his attention to these theories proving the following theorem:

Theorem (Morley’s categoricity theorem). Let T be a theory in a countable vocabulary.

If T is λ-categorical for some uncountable cardinal λ, then T is κ-categorical for every

uncountable cardinal κ.

The techniques developed for the proof of this theorem are the cornerstone of what has

been called geometric model theory. After this theorem, one can distinguish two main

lines of investigation. One of them is the impressive work of Shelah in classification model

theory. Shelah’s program can be seen, very roughly, as the classification of complete

first-order theories by means of “encoding” certain combinatorial configurations (though

the problem of counting models in each cardinal appears deeply at the core of Shelah’s

program). This program has permeated model theory everywhere, and several classes of

7
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theories which arose from this program: stable, simple, NIP, NTP2, have been widely

studied and cover many examples of mathematical interest.

The other line, initiated by Cherlin, Harrington, Lachlan and Zilber, is the study of

categorical theories: by a ℵ1-categorical structure we mean a structure whose theory is

ℵ1-categorical. Every ℵ1-categorical structure has some irreducible one-dimensional sets

called strongly minimal; over these, algebraic closed subsets form a pregeometry (or an

finitary matroid). For a fixed ℵ1-categorical structure, all its pregeometries associated to

strongly minimal sets are “alike”, in the sense that they are isomorphic by localization

in some finite set. Two ℵ1-categorical structures are geometrically equivalent if their

corresponding pregeometries are locally isomorphic.

Zilber conjectured that there were only three types of ℵ1-categorical structures modulo

geometric-equivalence (see [47]). These three types are characterized as follows:

Type 1: Trivial, meaning that the lattice of algebraically closed subsets (in Ceq) is dis-

tributive.

Type 2: Locally modular, meaning the lattice of algebraically closed subsets (in Ceq) is

modular.

Type 3: The structure interprets an infinite field.

There were two motivations behind the conjecture. The first one is that the conjecture

is true in totally categorical structures, the other one is more philosophical and can be

elucidated from the following cite:

The initial hope of the present author in [...], that any uncountably categor-

ical structure comes from the classical context (the trichotomy conjecture),

was based on the general belief that logically perfect structures could not be

overlooked in the natural progression of mathematics. Allowing some philo-

sophical licence here, this was also a belief in a strong logical predetermination

of basic mathematical structures. (Zilber, [48]).

The trichotomy principle above holds in a variety of important contexts, namely Zar-

iski geometries (topological structures on the definable sets which resemble the Zariski

topology). Zariski geometries are crucial in Hrushovski’s proof of the Mordell-Lang Con-

jecture. Recall that the trichotomy principle also holds in o-minimal structures.

In the late 80’s, Hrushovski showed that the trichotomy principle is false in general (see

[21]). He constructed, using a Fraïssé limit with a precise control of the dimension, a

class of new strongly minimal sets. In that paper he defined some properties, pointing
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out directions for a more precise classification of ℵ1-categorical structures. We will focus

mainly on one of those properties, which he named CM-triviality. We will not attempt

to explain the reason behind the name of CM-triviality (because we do not understand

it); however, CM-triviality can be seen as a generalization of local modularity as we will

later on explain.

The appropriate analogue of local modularity for stable theories is 1-basedness

Definition. A stable theory T is 1-based if for every real tuple c and every model M of

T , we have that cb(c/M) is algebraic over c.

Here, by cb(c/A) we mean the canonical base of c over M , namely, the minimal definable-

closed set D ⊂M eq over which the type tp(c/M) is definable. The name 1-based comes

from the fact that the canonical base of a stationary type is in the algebraic closure of

any of its realizations. A strongly minimal theory is locally modular if and only if it is

1-based.

Equivalently, a stable theory is 1-based if for any real tuple c and A ⊂ B algebraically

closed sets in T eq, we have that cb(c/A) is algebraic over cb(c/B).

Using the previous definition, one may see (formally) that the concept of CM-triviality

is a generalization of 1-basedness:

Definition. A stable theory is CM-trivial if for any c and A ⊂ B algebraically closed

sets in T eq, whenever acleq(cA)∩B = A we have that cb(c/A) is algebraic over cb(c/B).

It has been proved that a stable theory is 1-based if and only if it forbids certain point-line

type-definable configuration named a type-definable pseudoplane:

A type-definable pseudoplane is a complete type tp(a, b) such that

• a /∈ acl(b) and b /∈ acl(a),

• If a �= a′ and ab ≡ a′b then b ∈ acl(aa′). If b �= b′ and ab ≡ ab′ then a ∈ acl(bb′).

The intuition is that CM-trivial theories are exactly those that forbid a point-line-plane

configuration; the latter has not yet been proved. As far as we now, the only work in

this problem has been done by Nübling in his Ph.D thesis [27]:

A type-definable independent 3-pseudospace is a complete type tp(a, b, c) such that:

• tp(a, b) and tp(b, c) are type-definable pseudoplanes.



Introduction 10

• a is independent from c over b.

Nübling proved that simple CM -trivial theories of finite rank cannot have a type-

definable independent 3-pseudospace. It is not known whether the converse is true.

We will see in Chapter 2 that 1-basedness and CM-triviality admit more general charac-

terizations in terms of an independence relation, without mentioning canonical bases.

The notion of CM-triviality has been studied by Pillay in [34] and [36]. He proved that a

bad group2 cannot be interpreted in CM-trivial theory. Moreover, he proved that every

stable CM-trivial group of finite Morley Rank is virtually nilpotent, i.e. it has a nilpotent

subgroup of finite index.

In [36] Pillay defined the ample hierarchy, where 1-basedness corresponds to the first

level and CM-triviality corresponds to the second level of the hierarchy. The definition

of ampleness may be seen as an attempt to classify strongly minimal sets. Until now there

is no known examples of strongly minimal sets in higher levels which do not interpret a

field.

One of the crucial traits of strongly minimal structures is that there is a tame dimension,

since the Steinitz exchange property holds for the algebraic closure. A theory is said to

be geometric if it eliminates ∃∞ and algebraic closure has the Steinitz property (the first

property establishes a uniform bound for the number of realizations of algebraic formulas;

this is important because it allows to define the dimension of a formula in a first-order

way). In [10] and [8] Berenstein and Vassiliev studied expansions of geometric theories

by a dense/codense predicate interpreted by independent elements. In particular, they

proved that properties such as stability and simplicity are preserved when adding a new

predicate. In further work, Berenstein and Kim [12] showed that NTP2 is also preserved.

However, being 1-based is not transferred to the expansion:

Example. Let T = Th(V,+, {λq}q∈Q) be the theory of a vector space over Q, and let

B be a basis of V . Then T is 1-based but T ind = Th(V,+, {λq}q∈Q, B) is not 1-based.

Berenstein and Vassiliev asked if, in the last example, the theory T ind was CM-trivial.

Another question was whether a similar construction on a CM-trivial theory would give

rise to a new non-CM-trivial theory. We managed to answer both questions (see [15]):
2A bad group is a non-solvable connected group of finite Morley rank, all whose proper connected

definable subgroups are nilpotent. The existence of a bad group would contradict the algebraicity
conjecture, which states that every simple group of finite Morley rank is an algebraic group over an
algebraic closed field, which is interpretable in the group structure.
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Theorem A. (cf. Theorem 3.2.7) Let T be a theory of SU-rank 1 (for example, a

strongly minimal theory) with geometric elimination of imaginaries, and let T ind be its

expansion by a dense independent predicate. Then, for n ≥ 2, we have that T is n-ample

if and only if T ind is.

In Chapter 3, we give a proof for this theorem and give a necessary and sufficient condition

for T ind to be 1-based.

Structures of SU -rank ω are not geometric but a natural pregeometry arises with respect

to a different closure: we say that the element a is in the closure of a set A if SU(a/A) < ω

(for example, in differentially closed fields, we have that SU(a/A) < ω holds if and only

if a satisfies a differential equation over A). In joint work with Berenstein and Vassiliev

[11], we study expansions of structures of SU -rank ω by a dense independent subset. A

similar analysis can be done in these structures as in the geometric case. However we

could not adapt Theorem A to its full generality. Nevertheless, we obtained the following

results:

Theorem B. (cf. Theorem 4.2.7) Let T be a theory of SU -rank ω with geometric

elimination of imaginaries. Then T is CM-trivial if and only if T ind is.

Recall that a pregeometry (M, cl) is trivial if, for every A ⊂ M , we have cl(A) =⋃
a∈A cl(a).

Theorem C. (cf. Theorem 4.2.10) Let T be of SU -rank ω and assume its associated

pregeometry is trivial. Then T is n-ample if and only if T ind is.

In Chapter 4. we study expansions of SU -rank ω structures and give the proof of this

theorem. Also we provide conditions under which T ind is 1-based.

As mentioned before, the trichotomy conjecture (even when false in general) is true

in the context of Zariski Geometries. A Zariski geometry in a model M is a class of

tame compatible topological structures on each Mn, which generate all definable sets by

boolean combinations. A crucial feature of Zariski geometries is that they distinguish

certain class of definable sets having a global Noetherian property. We call them closed

sets. In this spirit we considered equational theories. These theories, defined by Srour

in [40], may be thought of as generalization of Zariski geometries but having a local

Noetherian property: a formula ϕ(x̄, ȳ) is said to be an equation if for every set of

parameters {b̄i}i∈I there is a finite set I0 ⊂ I such that
⋂

i∈I ϕ(C, b̄i) =
⋂

i∈I0 ϕ(C, b̄i). A

theory is equational if every formula is a Boolean combination of equations. It is worth

to mention that many of the interesting examples of algebraic theories are equational:
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vector-spaces, algebraic closed fields, differentially closed fields and separably closed fields

of finite degree of imperfection.

Every 1-based stable theory is equational. Also, Hrushovski proved that the new strongly

minimal sets he constructed are equational (however, it is not a Zariski structure).

A related concept to equationality is the one of indiscernible closed set. Given a set X, a

tuple ā is in icl(X) if there exists an indiscernible sequence I = (ā0, ā1, ā2...) over ∅, such

that ā = ā0 and āi ∈ X for i ≥ 1. We say that X is indiscernible closed if X = icl(X).

In [26] Junker and Lascar made a systematic study of equationality. They showed that

the equational topology (this is, the topology whose closed sets are those defined by

equations) and the indiscernible topology (this is, the topology whose closed sets are

indiscernibly closed) are related in a strong way. They used this relation to point out

sufficient conditions for equationality to hold in CM-trivial theories. In the same paper,

they proposed an ordinal function iT to measure the complexity of the indiscernible

closure. They proved that stable one based theories have a good behaviour for this rank

function:

Theorem 0.1 (Junker, Lascar [26]). Let T be a stable 1-based theory, then iT ≤ 2.

In Chapter 5. we study the relation of CM-triviality and equationality under suitable

conditions, pointing out how this relation may be generalized to non-ample theories. Also

we calculate iT for the theory of the free pseudospace (which is a CM-trivial theory).

We prove that iT ≤ 3 in this case. Our guess is that iT ≤ ω for CM -trivial theories and

we prove it in certain cases. However, we did not manage to prove this result in general.



Chapter 1

Preliminaries

1.1 Conventions

• We will always consider complete first order theories, denoted by T . Also, the letter

C stands for κ-saturated and κ-strongly homogeneous model of T for κ sufficiently

big.

• All sets are assumed to have cardinality less than κ.

• Unless otherwise stated, we will reserve the first letters of the alphabet a, b, c... for

single elements in C. Finite tuples will be denoted by ā, b̄, c̄...

In the same manner, by x, y, z... and x̄, ȳ, z̄... we denote single variables and tuples

of variables respectively.

• For practical reasons, we shall always distinguish imaginary elements in Ceq from

elements of the real sort C.

• By Aut(C/A), we mean the class of all the automorphisms of C fixing A pointwise.

• The operators definable closure and algebraic closure are defined as follows:

dcleq(A) = {a ∈ Ceq : f(a) = a for every f ∈ Aut(Ceq/A)},
dcl(A) = dcleq(A) ∩ C,

acleq(A) = {a ∈ Ceq : {f(a) : f ∈ Aut(Ceq/A)} is finite},
acl(A) = acleq(A) ∩ C.

Equivalently, an element c ∈ Ceq is in dcleq(A) (resp. acleq(A)), if there exists an

Leq-formula ϕ(x, ȳ) and a tuple ā ∈ A such that ϕ(c, ā) and c is the unique element

that satisfies ϕ(x, ā) (resp. ϕ(x, ā) has finitely many realizations).

13
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• If A, B and C are sets, then A ≡C B means that there is an automorphism

f ∈ Aut(C/C) such that f maps a certain enumeration of A onto a corresponding

enumeration of B. Also, if A and B are tuples, then f respects the enumeration.

By A ≡ B we mean A ≡∅ B.

Equivalently, we say that A ≡C B if tp(A/C) = tp(B/C), for some enumerations

of A and B.

1.2 Imaginaries

In this section we define briefly what imaginaries are and describe different ways of

“elimininating” them.

One of the purposes of imaginaries is to have canonical representatives of definable sets,

and also to treat definable sets as elements. Let X be a definable set given by some

formula ϕ(x̄, ā). We may define an equivalence relation R such that R(b̄, b̄′) if and only

if ϕ(C, b̄) = ϕ(C, b̄′). Notice that X is fixed setwise by all the automorphisms fixing the

equivalence class of ā and viceversa. Passing to the quotient by the equivalence relation

R, the set of automorphisms fixing X setwise is exactly the set of automorphisms fixing

ā/R. Hence, the class ā/R is a good candidate to encode the definable set X as an

element.

Definition 1.2.1. Let R(x̄, ȳ) be a ∅-definable equivalence relation and consider the

quotient C/R. Every element of this quotient is called an imaginary. By adding to C a

new sort C/R, for every quotient by a ∅-definable equivalence relation R, together with a

projection function πR : C → C/R, one forms a new multi-sorted structure that is called

Ceq. The theory T eq stands for Th(Ceq).

Definition 1.2.2. Let X = ϕ(x̄, ā) be a definable set and let R be the equivalence

relation given by R(b̄, b̄′) if and only if ϕ(C, b̄) = ϕ(C, b̄′). A canonical parameter of X is

the imaginary element e = ā/R.

Canonical parameters are unique up to interdefinability.

Definition 1.2.3. The theory T eliminates imaginaries if for every ∅-definable equival-

ence relation R(x̄, ȳ) and for every ā, there exists a finite tuple b̄ such that an auto-

morphism f ∈ Aut(C) fixes R(C, ā) setwise if and only if f fixes b̄ pointwise.

Clearly, this is equivalent to the following:

Definition 1.2.4. A theory T eliminates imaginaries if for every e ∈ Ceq there exists a

tuple ā such that e ∈ dcleq(ā) and ā ∈ dcl(e).
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The theory T eq eliminates imaginaries, therefore, it is convenient to work in Ceq instead

of C. It is similar to working with the skolemization of a theory in order to assume

quantifier elimination.

Finally, we recall another useful encoding of imaginaries:

Definition 1.2.5. • A theory T has weak elimination of imaginaries if for every

e ∈ Ceq there exists a tuple ā such that e ∈ acleq(ā) and ā ∈ dcl(e).

• We say that T has geometric elimination of imaginaries if for every e ∈ Ceq there

exists a tuple ā such that e ∈ acleq(ā) and ā ∈ acl(e).

The following easy fact will be useful in the present work:

Fact 1.2.6. Assume T has geometric elimination of imaginaries. Then, for every A and

B subsets of C, we have acleq(acl(A) ∩ acl(B)) = acleq(A) ∩ acleq(B).

Proof. Clearly acleq(acl(A) ∩ acl(B)) ⊂ acleq(A) ∩ acleq(B). Assume e ∈ acleq(A) ∩
acleq(B). By hypothesis, there is a tuple ā ∈ C such that e ∈ acleq(ā) and ā ∈ acl(e).

Hence ā ∈ acl(A) ∩ acl(B) and e ∈ acleq(acl(A) ∩ acl(B)).

1.3 Independence on strongly minimal theories

Strongly minimal sets are the “building blocks” of ℵ1-categorical structures. First of

all, every ℵ1-categorical structure is prime over a strongly minimal set. Moreover, the

geometric behaviour of ℵ1-categorical structures is determined by the geometry of its

strongly minimal sets. In this section we will describe the main ideas behind the geo-

metry of strongly minimal sets, in order to motivate further definitions of geometrical

complexity.

Definition 1.3.1. A definable set D of a structure M is strongly minimal if for every

formula ϕ(x, ȳ), where x is a single variable, there exists a natural number k such that,

for every ā ∈Mn, either |ϕ(D, ā)| < k or |¬ϕ(D, ā)| < k.

A structure M is strongly minimal if it is strongly minimal as a set and a theory T is

strongly minimal if it has a strongly minimal model.

If T is strongly minimal then all its models are.

Concerning imaginaries in strongly minimal theories, we have the following result:
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Fact 1.3.2. Let T be a strongly minimal theory. If acl(∅) is infinite, then T has weak

elimination of imaginaries.

Definition 1.3.3. A Pregeometry (or a finitary Matroid) is a pair (M, cl) where M is a

set and cl is a closure operator cl : P (M) → P (M) such that, for every A,B ⊂M :

• A ⊂ cl(A).

• cl(A) = cl(cl(A)).

• cl(A) =
⋃

A0⊂finA cl(A0).

• (Steinitz/Exchange property) If a ∈ cl(bA) \ cl(A) then b ∈ cl(aA).

Algebraic closure always satisfies the first three conditions. Moreover, in strongly min-

imal structure, algebraic closure also satisfies the exchange property, hence it induces a

pregeometry.

We will now describe some general features of pregeometries and illustrate them in the

case of strongly minimal structures.

Definition 1.3.4. Let (M, cl) be a pregeometry and X ⊂ M . We may construct a

new pregeometry (MX , clX) called the localization at X as follows: set MX = M and

clX(A) = cl(A ∪X) for every A ⊂M .

Definition 1.3.5. Let (M, cl) be a pregeometry and A ⊂ M . We say that A is inde-

pendent if a /∈ cl(A \ {a}) for every a ∈ A.

The dimension of a set A ⊂ M over A0 ⊂ A, denoted by dim(A/A0), is the size of a

maximal independent subset B contained in A \ cl(A0). We define dim(A) as dim(A/∅).

It is easy to see that this dimension is well defined due to the exchange property.

The following definition distinguishes certain types of special pregeometries.

Definition 1.3.6. A pregeometry (M, cl) is:

• Trivial if, for every A ⊂M , we have

cl(A) =
⋃
x∈A

cl(x).

• Modular if, for every A,B ⊂M of finite dimension, we have

dim(A ∪B) + dim(A ∩B) = dim(A) + dim(B).
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• Locally modular if (M{x}, cl{x}) is modular for some x ∈M .

Assume that T is a strongly minimal theory and M |= T . We say that T is trivial (resp.

modular, locally modular) if the algebraic closure acl in M is. This notion is well defined

since does not depend on the model of T .

In strongly minimal structures, local modularity can be characterized in terms of an

independence relation, which is useful when no good notion of dimension can be defined,

yet a notion of independence exists.

Definition 1.3.7. Let M be strongly minimal and A,B,C subsets of M eq with C ⊂ B.

We say that A is independent from B over C, written A |�C
B, if for every a ∈ A such

that a ∈ acleq((A \ {a})B) we have that a ∈ acleq((A \ {a})C).

Definition 1.3.8. A strongly minimal theory T is 1-based if for every A,B ⊂ M , we

have

A |�
acleq(A)∩acleq(B)

B.

Fact 1.3.9 (see [35], Proposition 2.5.8). A strongly minimal theory T is locally modular

if and only if it is 1-based.

The following are the paradigmatic examples of strongly minimal structures:

Example 1.3.10. • (Trivial) The theory of infinite sets without structure.

• (Modular) The theory T = Th(V,+, {λk}k∈F ) of a vector space V over a field

F . In this theory, the algebraic closure coincides with the linear span. Therefore,

dimension coincides with linear dimension, so this theory is modular.

• (Locally modular) Let V a vector space over K. We define the affine space

as follows: for every k ∈ K define λk : (u, v) = ku + (1 − k)v. Also define

G(u, v, w) = u−v+w. Then, the theory of the affine space T = Th(V, {λk}k∈F , G)
is strongly minimal and locally modular, but not modular.

By Fact 1.3.9. these three examples are 1-based.

The following example provides a good insight on non-1-based theories.

• (Non-Locally modular)

The theory AFCp of algebraic closed fields in a fixed characteristic p (where p

is a prime number or 0) is not 1-based (hence it is not locally modular): first of

all, notice that algebraic closure in the model theoretic sense coincides with the
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algebraic closure in the field theoretic sense. To see that AFCp is not 1-based,

consider a, b, c trascendental independent elements and take d = ac + b. Due to

quantifier elimination and elimination of imaginaries in AFCp, it is not hard to

show that acleq{a, b} ∩ acleq{c, d} = Fp, where Fp is the algebraic closure of the

prime field Fp. Nevertheless we have a, b � |�Fp
c, d. Therefore, the theory ACFp is

not 1-based.

The point-line configuration we described in ACFp is archetypical of every non-1-based

structures:

Definition 1.3.11. A complete type tp(ā, b̄) (possible in Leq) is a type-definable pseudo-

plane if:

1. ā /∈ acl(b̄) and b̄ /∈ acl(ā).

2. If ā �= ā′ and āb̄ ≡ ā′b̄ then b̄ ∈ acl(āā′). If b̄ �= b̄′ and āb̄ ≡ āb̄′ then ā ∈ acl(b̄b̄′).

We may reformulate the axioms of the pseudoplane as:

• Every line has infinitely many points and every point is infinitely many lines.

• Given two points, there are finitely many lines passing through them. Given two

lines, there are finitely many points contained in them.

Notice that, in the example of ACFp, the type tp(ab, cd) is a type-definable pseudoplane.

1.4 Simple and stable theories

Simple theories where introduced originally by Shelah (see [38]) in an attempt to under-

stand the “function” SP :

SP (T ) = {(λ, κ) : every model of T of size λ has a κ-saturated elementary extension

of cardinality λ}. The class SP (T ) behaves “well” when T is stable and it behaves “bad”

when T is not simple. Hrushovski proved that it is consistent with ZFC that a simple

theory T has bad behavior. (See [20] and [24] for definitions and explanations of “well”

and “bad”).

The original definition of simplicity is the following:

Definition 1.4.1. • A formula ϕ(x̄, ȳ) has the tree property if there exists a natural

number k ≥ 2 and a tree of parameters {ās|s ∈ ω<ω} such that:
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1. For every f ∈ ωω, the set {ϕ(x̄, āf |n)|n < ω} is consistent.

2. For each s ∈ ω<ω, the set {ϕ(x̄, āsi)|i < ω} is k-inconsistent.

• We say that T is simple if no formula has the tree property.

Despite that these combinatorial properties are of great interest, we will take a different

approach to this class of structures, mainly in terms of their independence relation. In

1997, Kim and Pillay proved, among other important results, that simplicity has a good

characterization in terms of an abstract independence relation (Theorem 1.4.3), which is

actually uniquely determined.

Definition 1.4.2. A ternary independence relation R(A,B,C) over sets A,B,C ⊂ Ceq

is called an abstract independence relation, noted as A |�C
B, if it satisfies the following

axioms:

1. (Invariance) If A |�C
B and ABC ≡ A′B′C ′ then A′ |�C′ B

′.

2. (Symmetry) If A |�C
B then B |�C

A.

3. (Transitivity) Assume D ⊂ C ⊂ B. If B |�C
A and C |�D

A, then B |�D
A.

4. (Monotonicity) Assume A |�C
B. If A′ ⊂ A and B′ ⊂ B, then A′ |�C

B′.

5. (Base monotonicity) If D ⊂ C ⊂ B and A |�D
B, then A |�C

B.

6. (Local character) For every A, there exists a cardinal κA such that, for every B

there is a subset C ⊂ B with |C| < κA, where A |�C
B.

7. (Finite character) If A0 |�C
B for all finite A0 ⊂ A, then A |�C

B.

8. (Antireflexivity) If A |�B
A then A ⊂ acleq(B).

9. (Existence) For any A, B and C there is A′ ≡C A such that A′ |�C
B.

This list is not minimal at all; for example, Adler [1] proved that Symmetry can be

deduced from the other axioms. However, we list all the relevant ones for the sake of

completeness.

Theorem 1.4.3 (Kim-Pillay). A complete theory is simple if and only if it has an

independence relation that also satisfies:

1. (Local character) There exists a cardinal κ such that κA = κ for every finite A.



Chapter 1. Preliminaries 20

2. (Independence theorem over models) Assume M is a model. If A′ ≡M B′

with

A′ |�
M

A,A |�
M

B and B |�
M

B′,

then there is some C such that C ≡MA A′, with C ≡MB B′ and C |�M
AB.

As in the case of simple theories, stable theories may be defined in a combinatorial way

as follows:

Definition 1.4.4. • A formula ϕ(x̄; ȳ) has the order property if there exist (āi)i<ω

and (b̄j)j<ω such that C |= ϕ(āi; b̄j) if and only if i < j.

• A theory T is stable if no formula has the order property.

Definition 1.4.5. Assume T is simple. Let A ⊂ B, p ∈ Sn(A) and q ∈ Sn(B) be an

extension of p. We say that q is a free extension of p if for some (every) c |= q, we have

c |�A
B.

Theorem 1.4.6. A complete theory is stable if and only if is simple and the independence

relation satisfies:

• (Boundeness) For every p ∈ Sn(A) there is a cardinal μ such that, for every

A ⊂ B, there are at most μ free extensions of p in S(B).

We remark that every strongly minimal theory is stable and the independence relation

defined in Definition 1.3.7. coincides with the independence relation of stable theories.

Definition 1.4.7. A theory is called supersimple (resp. superstable) if it is simple (resp.

stable) and, for the local character of the independence, we have κA = ω for every finite

A.

Finally, let us recall the meaning of indiscernible and Morley sequences:

Definition 1.4.8. A sequence I = (āi) is an indiscernible sequence over a set A if for

every i1 < ... < ik and j1 < ... < jk we have that āi1 ...āik ≡A āj1 ...ājk .

We say that I is totally indiscernible over A if āi1 ...āik ≡A āj1 ...ājk for every subcollec-

tions i1, ..., ik and j1...jk of pairwise distinct indices.

Fact 1.4.9. A theory T is stable if and only if every indiscernible sequence is totally

indiscernible.

Definition 1.4.10. Let T be a theory with an abstract independent relation. A sequence

I = (āi) is Morley over A if it is indiscernible over A and āi |�A
{aj |j < i} for every i.
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1.5 Forking and canonical bases

In this section we will describe the meaning of the independence relation on simple

theories. For the sake of completeness we also define canonical bases in the more general

frame.

Definition 1.5.1. • The formula ϕ(x̄, ā) divides over A if there exists a natural

number k and a sequence {āi}i<ω such that:

1. For every i < ω, we have āi ≡A ā.

2. The set {ϕ(x̄, āi)}i<ω is k-inconsistent.

• We say that ϕ(x̄, ā) forks over A if there are formulas φ1(x̄, ā1), ..., φn(x̄, ān), such

that:

1. ϕ(x̄, ā) � ∨
i≤n φi(x̄, āi),

2. For every i, the formula φi(x̄, āi) divides over A.

The definition of forking may be extended to types:

Definition 1.5.2. • A partial type p divides (resp. forks) over A if p implies a

formula ϕ(x, a) that divides (resp. forks) over A.

• Assume A ⊂ B, let p ∈ Sn(A) and q ∈ Sn(B) be complete types such that q ⊃ p.

We say that q is a non-forking (non-dividing) extension of p if q does not fork over

A.

• Let c be a realization of a type p ∈ S(B) and A ⊂ B. We say that c is forking-

independent from B over A if p does not fork over A.

Theorem 1.5.3 (Kim-Pillay). Assume T is a simple theory. Then:

• A partial type π(x) divides over A if and only if it forks over A.

• The independence relation of T is unique and coincides with forking-independence.

Now we will describe the concept of canonical bases. Basically, a canonical basis is the

minimal set over which a type does not fork. For the purpose of this work, from now on

all theories we consider will be either supersimple or stable.

Definition 1.5.4. We say that p = tp(B′/A) is an amalgamation base if for every B,

B′, C and C ′ such that B′ ≡A C
′ and

B′ |�
A

B,B |�
A

C and C |�
A

C ′,
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there exists D such that D ≡AC′ C, D ≡AB′ B and D |�A
BC.

Notice that, by the independence property of the independence Relation (Definition 1.4.3),

types over models are amalgamation bases.

It can also be proved that types over algebraic closed sets are amalgamation bases:

Remark 1.5.5 (see [16], Corollary 20.5). Assume that T is supersimple (or stable). Let

a ∈ Ceq and A = acleq(A) ⊂ Ceq. Then tp(a/A) is an amalgamation base.

Definition 1.5.6. Let p ∈ S(B) be an amalgamation base and let A ⊂ B. We say that

A is a canonical basis of p if p|A is an amalgamation base and:

• The type p does not fork over A.

• If p does not fork over A′ ⊂ B then A ⊂ dcl(A′).

Corollary 1.5.7. Let T be a supersimple theory. Then, for every a ∈ Ceq and A ⊂ Ceq

with A = acleq(A), the canonical basis cb(a/A) exists in Ceq. (In fact, it can be proved

that cb(a/A) is a single imaginary).

So, in supersimple theories, the algebraic closure of cb(A/B) may be seen as the minimal

algebraically closed subset of acleq(B) over which A is independent from B. In practice

we will only use the minimality property of canonical bases.

It is clear that if a supersimple/stable theory T has geometric elimination of imaginaries,

then canonical bases are interalgebraic with real tuples (possibly infinite). Moreover, the

converse is also true:

Fact 1.5.8. A supersimple/stable theory T has geometric elimination of imaginaries if

and only if canonical bases of real tuples are interalgebraic with real tuples.

In the realm of stability, canonical bases admit a more useful characterization as we will

see:

Definition 1.5.9. A type p ∈ Sn(A) is stationary if it has a unique non-forking extension

to any B ⊃ A.

Fact 1.5.10 (see [35], Remark 1.2.26). Assume that T is stable. Let a ∈ Ceq, B ⊂ Ceq,

B = acleq(B) and c = cb(a/B). Then:

1. The type p = tp(a/c) is stationary.
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2. For any automorphism f ∈ Aut(C), the automorphism f fixes p if and only if it

fixes c.

From this we have:

Corollary 1.5.11. Assume that T is stable and let c = cb(a/B). If c′ �= c and c′ ≡a c

then a � |�c
c′.

Finally, we describe the Morley Rank, which says how many times a definable set can be

“splitted”, and Lascar Rank, which measures "how many" times a type may fork:

Definition 1.5.12. Let ϕ(x̄, ā) be any formula. We define inductively the Morley rank

as follows:

1. MR(ϕ(x̄, ā)) ≥ 0 if ϕ(x̄, ā) is consistent.

2. MR(ϕ(x̄, ā)) ≥ α+1 if there are formulas {ϕi(x̄, āi)}i<ω of Morley rank ≥ α such

that ϕi(x̄, āi) � ϕ(x̄, ā) and ϕi(x̄, āi) ∧ ϕj(x̄, āj) is inconsistent for i �= j.

3. MR(ϕ(x̄, ā)) ≥ λ for λ a limit ordinal if MR(ϕ(x̄, ā)) ≥ β for every β < λ.

Definition 1.5.13. For a partial type π(x̄) we define

MR(π(x̄)) = inf{MR(ϕ)|ϕ ∈ π(x̄)}.

Notice that Morley-rank is a continuous function MR : Sn(B) → Ord ∪ {∞}.

Definition 1.5.14. Assume that T is a simple theory. We define the Lascar rank,

(usually named SU -rank in the context of simple theories and U -rank in the stable

ones), inductively:

1. SU(p) ≥ 0 for every type p.

2. SU(p) ≥ α+ 1 if there exists a forking extension p′ of p, such that SU(p′) ≥ α.

3. For λ an ordinal limit, we say that SU(p) ≥ λ if SU(p) ≥ β for all β < λ.

4. SU(p) = ∞ if SU(p) ≥ λ for every ordinal λ.

By SU(a/B), we mean SU(tp(a/B)). Notice that a |�B
C if and only if SU(a/B) =

SU(a/BC).

Definition 1.5.15. We say that a type p is minimal if SU(p) = 1.
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Remark 1.5.16. Inside a minimal type p, algebraic closure induces a pregeometry.

Theorem 1.5.17 (Lascar inequality). Let T be a simple theory. Then, for all tuples

a, b and for every set C, we have:

SU(a/bC) + SU(b/C) ≤ SU(ab/C) ≤ SU(a/bC)⊕ SU(b/C).

Here, the symbol “+” denotes the usual sum for ordinals, while “⊕” stands for the sum

of ordinals in their Cantor-normal form, i.e. if α = ωβ1a1 + · · · + ωβkak and β =

ωβ1b1 + · · ·+ ωβkbk, then α⊕ β = ωβ1(a1 + b1) + · · ·+ ωβk(ak + bk).

Fact 1.5.18 (See [16], Proposition 13.13). A theory T is supersimple if and only if every

type p has U -rank <∞.

Definition 1.5.19. Let T be a simple theory. By SU(T ) we mean sup{SU(c)|c ∈ Ceq}.
In particular, a theory T has finite rank if there is a bound n such that SU(c) ≤ n for

every element c ∈ C.

The U -rank is also a function U : Sn(B) → Ord ∪ {∞} not necessarily continuous.

However, in certain cases of interest, we can assure continuity of U -rank due to the fact

that Morley rank is continuous.

Fact 1.5.20. In the following cases, Morley rank coincides with U -rank:

• Strongly minimal theories.

• Groups of finite Morley rank.

In particular, the U-rank is continuous in these theories.

1.6 One-basedness

The concept of 1-basedness coincides with local modularity in strongly minimal theories.

In general, the notion of modularity does not apply to theories without a good theory of

dimension. However, the definition of 1-basedness (Definition 1.3.9) still makes sense in

several classes with a tame notion of independence.

Let us recall the definition.

Definition 1.6.1. A theory with an abstract independent relation is 1-based if

A |�
acleq(A)∩acleq(B)

B
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for every A,B ⊂ Ceq.

Here are some examples of 1-based theories:

• (Strongly minimal) The theory of an infinite vector space V over a field F.

• (ℵ1-categorical) The theory of the group (Z/4Z,+).

• (Superstable) The theory of a set endowed with infinitely many equivalence rela-

tions {Ei}i<ω, such that E0 has 2-classes and Ei+1 refines every class of Ei in two

classes.

• (Stable) The theory of a set endowed with infinitely many equivalence relations

{Ei}i<ω, each one with infinitely many infinite-classes and such that Ei+1 refines

every class of Ei in infinitely many classes.

• (Supersimple) The theory of the Random Graph.

• (O-minimal) The theory of (R,+, <, π()|(−1, 1)). Where π(r) = π · r (the multi-

plication of the number r with the number π). Strictly speaking, this example is

not 1-based, but, “philosophically”, it belongs to this list. (See [9]).

The concept of 1-basedness has been widely studied in the context of stable theories. We

list some of the most important results in order to have an idea on their relevance. This

results and their proofs can be found in [35].

Theorem 1.6.2. Totally categorical theories are 1-based.

(This theorem plays an important role in the proof of the non-finite axiomatizability of

totally categorical theories).

Theorem 1.6.3. Let T be a stable theory of finite U -rank. Then T is 1-based if and

only if all its minimal types are locally modular.

Theorem 1.6.4. Assume T is stable and 1-based. If T does not interpret a group, then

all its minimal types are trivial.

Definition 1.6.5. A group is virtually abelian if it has an abelian subgroup of finite

index.

Theorem 1.6.6. If G is a 1-based stable group, then

1. The group G is virtually abelian.
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2. Every definable set is a Boolean combination of cosets of acleq(∅)-definable sub-

groups.

Definition 1.6.7. A definable set X is weakly normal if, for every infinite family {Xi}i∈I
of different conjugates of X under Aut(Ceq), we have

⋂
i∈I Xi = ∅.

A theory is weakly normal if every definable set X is a Boolean combination of weakly

normal definable sets.

Fact 1.6.8 (see [35], Proposition 4.1.5). A theory T is weakly normal if and only if it is

stable and 1-based.

Recall from Example 1.3.10 that ACFp is not 1-based. As we indicated, this theory is

not 1-based because one may construct a type-definable pseudoplane in it.

Let us summarize several characterizations of 1-basedness in the context of stable theor-

ies.

Theorem 1.6.9 (see [35], Chapter 4). Let T be a stable theory, then each one of the

following statements is equivalent to 1-basedness:

1. There is no type-definable pseudoplane.

2. T is weakly normal.

3. Every indiscernible sequence (ai)i<ω is Morley over a0.

4. For any a and B, where B is the canonical basis of stp(a/B), the type tp(B/a) is

algebraic.



Chapter 2

Ampleness

In this chapter we develop both the notions of CM-triviality, introduced by Hrushovski

in [22], and ampleness, as introduced by Pillay in [36]. From now on, all theories are

supersimple or stable.

2.1 CM-triviality

Definition 2.1.1. A theory T is CM-trivial if for every c ∈ Ceq and A,B ⊂ Ceq such

that acleq(cA) ∩ acleq(B) = acleq(A), we have cb(c/A) ⊂ acleq(cb(c/B)).

Proposition 2.1.2. [Hrushovski [21]] The following definitions are equivalent to CM -

triviality.

(CM1) For every a, b, c ∈ Ceq such that a |�c
b we have that a |�acleq(ab)∩acleq(c) b.

(CM2) For every a, b, c ∈ Ceq, if a |�b
c and acleq(ac) ∩ acleq(ab) = acleq(a), then

a |�acleq(a)∩acleq(b) c.

The following equivalence was stated by Evans:

Proposition 2.1.3 (Evans, [18]). A theory T is CM-trivial if and only if, for every

A,B,C algebraically closed sets (in Ceq), if A |�A∩B B, then A ∩ C |�A∩B∩C B ∩ C.

It can be shown that every one-based theory is CM-trivial. In the context of stable

theories, CM-triviality has been widely studied by Pillay in [34] and [36], where he shows

the following:

Theorem 2.1.4 (Pillay [34]). Assume T stable and CM-trivial. Then T does not inter-

pret an infinite field.

27
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Definition 2.1.5. A bad group is a non-solvable connected group of finite Morley rank,

all whose proper connected definable groups are nilpotent.

The existence of a bad group would contradict Cherlin-Zilber conjecture, which states

that every simple group of finite Morley rank is an algebraic group over an algebraic

closed field, which is interpretable in the group structure.

Theorem 2.1.6 (Pillay [34]). If G is a bad group, then G is not CM-trivial. Moreover,

every CM-trivial group of finite Morley rank is virtually nilpotent, that is, it has a

definable nilpotent subgroup of finite index.

Nowadays, several examples of CM-trivial structures are known: in finite Morley rank,

Hrushovski’s construction ab-initio [22] and Baudisch group [2], are both CM-trivial but

not 1-based. Also, Baldwin [6] constructed a non-desarguesian projective plane or Morley

rank 2, which is CM-trivial but not 1-based.

Concerning the case of stable theories of infinite rank, the canonical example is the

theory of the free pseudoplane. This is, the theory of an infinitely many branching graph

without cycles. We will explain this theory in detail in Chapter 5.

In the context of simple unstable theories we have the following result by Nübling:

Theorem 2.1.7 (Nübling [27]). If T is a CM-trivial supersimple theory, then T does

not interpret an infinite field.

Every superstable ω-categorical theory is 1-based. In [24], Hrushovski constructed a non

1-based, supersimple and ω-categorical theory. This theory is CM-trivial, which leads to

the following question:

Question 2.1.8. If T is supersimple and ω-categorical, is it then CM-trivial?

(In his Ph.D thesis, Palacín [32] obtained some partial results concerning this question).

Finally we remark that CM-triviality may be defined in theories with an independence

notion, without mentioning canonical bases (CM1). Yoneda [45] studied CM-triviality

in Rosy theories of thorn-rank 1, proving also the non-interpretability of infinite fields.

2.2 Ampleness

The hierarchy of ampleness, defined by Pillay in [36], and calibrated by Nübling in [27]

and Evans in [17], has its origin in the study of CM-triviality. In this hierarchy, the
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notion of 1-basedness corresponds to the first level, while CM-triviality corresponds to

the second level. Moreover, stable theories interpreting a field are n-ample for all n. This

was proved by Pillay in [36], using a definition of ampleness slightly weaker than Evans

definition (which is the one we will be working with), however Pillay’s proof works as

well for Evans definition. The original idea of ampleness is to classify forking complexity

of strongly minimal structures. At the moment of writing, it is not known if there

are strongly minimal structures in higher levels of ampleness which do not interpret an

infinite field.

Definition 2.2.1. A theory T is n-ample if there exist a0, ..., an ∈ Ceq such that:

1. acleq(a0, ..., ai) ∩ acleq(a0, ..., ai−1ai+1) = acleq(a0, ..., ai−1) for all 0 < i < n.

2. ai+1 |�ai
a0...ai−1 for all i < n.

3. an � |�acleq(a0)∩acleq(a1) a0.

A tuple a0, ..., an is n-ample if it satisfies the above conditions.

The original definition, given by Pillay in [36] is the following:

Definition 2.2.2 (Pillay). A theory T is n-ample if, possibly after naming parameters,

there exist a0, ..., an ∈ Ceq such that:

1. acleq(a0, ..., ai) ∩ acleq(a0, ..., ai−1ai+1) = acleq(a0, ..., ai−1) for all 0 < i < n.

2. acleq(a0) ∩ acleq(a1) = acleq(∅).

3. an |�ai
a0...ai−1 for all i < n.

4. an � |� a0.

However, as it was remarked by Nübling in [27] Section 1.11, this definition has the

following problem:

If a0, ..., an is ample in the sense of Pillay, then, taking bi = a0...ai−2ai, the tuple b0 = a0,

b1 = a1, b2,..., bn−1, bn = an would be also ample (in Pillay’s sense). But, for all

i < j − 1 < j < n, we have that bi ∈ acleq(bj). Which does not seem to agree with the

notion of “ampleness”.

On the other hand, the definition given by Nübling in [27] and Evans in [17], which

replaces the third condition by the following one:
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ai+1 |�
ai

a0...ai−1

does not have that problem, (note that ampleness in the sense of Evans implies ampleness

in the sense of Pillay).

Finally, we remark that our definition agrees with the last one:

If T is n-ample in our sense, then, by naming the parameters acleq(a0) ∩ acleq(a1), we

get that T is n-ample in the sense of Evans.

On the other hand, if T is n-ample in the sense of Evans, meaning that there exists

a0, ..., an and a set of parameters A satisfying the definition. Then the tuple a′0, ..., a′n,

where a′i = aiA, satisfies our definition of ampleness.

Remark 2.2.3. If a0, ..., an satisfy condition (2) from Definition 2.2.1, then, by transit-

ivity, we have an, ...ai |�ai
ai, ..., a0.

The definition of ampleness may be extended to simple theories in general, or even to

more general closure operators. The reader is referred to [31] for a detailed exposition of

ampleness in these more general contexts.

Until now, the only known examples of ω-stable theories, in levels of the ample hierarchy

above the second one (that do not interpret a field), are:

• The n-dimensional free pseudospaces (FPn), constructed by Baudisch, Martin-

Pizarro and Ziegler [4], and independently by Tent [44].

• The right angled buildings, studied by Baudisch, Martin-Pizarro and Ziegler in [5].

We will not explain the theory of the n-dimensional free pseudospace, but it is worth to

state a few facts about the proof of the “hierarchy fitting” in [2]. Let us state the theorem

first:

In order to prove that FPn is not n+1-ample, Baudisch, Martin-Pizarro, and Ziegler [4]

used the following result:

Proposition 2.2.4 (Baudisch, Martin-Pizarro, Ziegler). Let T be a n-ample theory.

Then there exist a0, ..., an, such that

1. an |�ai+1
ai

2. acleq(anai) ∩ acleq(ai+1ai) = acleq(ai) for every i < n− 1.
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3. an � |�acleq(ai)∩acleq(ai+1)
aiai+1 for every i < n.

Their strategy to prove that FPn is not n + 1-ample consisted in proving that there

were no a0, ..., an+1 in the n-dimensional free pseudospace satisfying the conditions from

the previous proposition. Hence, the full strength of ampleness was not necessary. This

motivated us to look for weaker notions of ampleness.

2.3 Weak ampleness

In this section we develop “weaker” notions of ampleness. Besides the aforementioned

reason, our motivation is the following:

Assume a0...an is an arbitrary tuple such that

a0...ai−1 |�
ai

ai+1 for all i < n.

According to the definition, if this tuple is not n-ample, it may be due to the behaviour

of their algebraic closures (condition (2) of Definition 2.2.1). However, for n ≤ 2 we may

define ampleness of the tuple in a different way:

If n = 1 we say that a0a1 is 1-ample if

a0 � |�
acleq(a0)∩acleq(a1)

a1.

(This clearly coincides with the usual definition).

If n = 2 we say that a0a1a2 is 2-ample if

a0 � |�
acleq(a0a2)∩acleq(a1)

a2.

(If we define a′0 such that acleq(a′0) = acleq(a0a1)∩ acleq(a0a2), then this is equivalent to

say that a′0a1a2 is ample according to Definition 2.2.1).

However, for n ≥ 3 it is unclear how to define n-ampleness of a tuple a0, ..., an without

knowing the interaction of their algebraic closures (condition (2) of Definition 2.2.1).

Beyond the intuition about what ampleness should mean, the usual definition presents

some technical difficulties that can be avoided by weakening the notion of ampleness.

Moreover, we show in this section that all the examples known fit also in the weak ample

hierarchy.
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We introduce two new ample notions and prove that they agree for n = 1, 2. Moreover,

they are equivalent for all n assuming SU -rank 1 and geometric elimination of imaginar-

ies, which is a strong condition, though one should recall that the ample hierarchy was

first introduced in an attempt to classify strongly minimal theories.

Definition 2.3.1. A theory T is almost n-ample if there exists a collectionA = {a0, ..., an} ⊂
Ceq such that, possibly working over parameters, the following conditions hold:

1. acleq(S) ∩ acleq(A \ S) = acleq(∅) for every S ⊂ A.

2. ai+1 |�ai
a0...ai−1 for all i < n.

3. an � |� a0.

Definition 2.3.2. A theory T is weakly n-ample if there exist a0, ..., an ∈ Ceq such that:

1. acleq(aiai+1) ∩ acleq(aiai+2) = acleq(ai) for all i < n− 1.

2. ai+1 |�ai
a0...ai−1 for all i < n.

3. an � |�acleq(a0)∩acleq(a1) a0.

Proposition 2.3.3. If T is n-ample then it is almost n-ample. Moreover, if a tuple is

n-ample then it is almost n-ample, by naming the parameters acleq(a0) ∩ acleq(a1).

Proof. Let A = {a0, ..., an} be an n-ample tuple and work over acleq(a1) ∩ acleq(a0) =

acleq(∅) as parameters. In order to prove that A is an almost n-ample tuple, we need to

show that acleq(S) ∩ acleq(A \ S) ⊂ acleq(a1) ∩ acleq(a0), for every S ⊂ A.

Let S be any non-empty subset of A. Without loss of generality, we may assume that

an ∈ S. Let ak ∈ A\S be the last element in A\S, i.e. such that ai ∈ S for every i > k.

Then we have

acleq(S) ∩ acleq(A \ S) ⊆ acleq(an...ak+1ak−1, ..., a0) ∩ acleq(ak, ..., a0).

On the other hand, by Remark 2.2.3, we have

an, .., ak+1 |�
ak+1

ak...a0,

hence

acleq(an...ak+1ak−1, ..., a0) ∩ acleq(ak, ..., a0) ⊂ acleq(ak+1ak−1, ..., a0) ∩ acleq(ak, ..., a0)

= acleq(ak−1, ..., a0).
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Now, notice that for every X ⊂ A such that ak−1 /∈ X, we have

Xak−2...a0 |�
akak−2...a0

ak−1...a0.

Thus, if ak−1 /∈ S, then

acleq(S) ∩ acleq(A \ S) ⊂ acleq(Sak−2...a0) ∩ acleq(ak−1, ..., a0)

⊂ acleq(akak−2...a0) ∩ acleq(ak−1, ..., a0)

= acleq(ak−2, ..., a0).

If not, take ak−1 ∈ A \ S and we get the same conclusion changing S for A \ S.

Proceeding in the same way we get

acleq(S) ∩ acleq(A \ S) ⊂ acleq(a0).

Finally, if a0 /∈ S then S |�a1
a0 (if not, then A \ S |�a1

a0). Either way, we conclude

that

acleq(S) ∩ acleq(A \ S) = acleq(S) ∩ acleq(A \ S) ∩ acleq(a0)

⊂ acleq(a1) ∩ acleq(a0)

= acleq(∅)

Proposition 2.3.4. If T is almost n-ample, then it is weakly n-ample.

Proof. Let A = {a0, ..., an} ⊂ Ceq such that, possibly working over parameters:

1. acleq(S) ∩ acleq(A \ S) = acleq(∅) for every S ⊂ A.

2. ai+1 |�ai
a0...ai−1 for all i < n.

3. an � |� a0.

We will define a new tuple a′0, ..., a′n satisfying the conditions of weakly n-ampleness:
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• a′n = an

• a′n−1 = an−1

• For i < n− 1 define a′i as an element such that

acleq(a′i) = acleq(aia
′
i+1) ∩ acleq(aia

′
i+2).

Let us check conditions 1, 2 and 3 for weakly n-ampleness:

Condition 1: We need to prove that acleq(a′i) = acleq(a′ia
′
i+1) ∩ acleq(a′ia

′
i+2). As

a′i ⊂ acleq(aia
′
i+1) then acleq(a′ia

′
i+1) ⊂ acleq(aia

′
i+1). In the same way acleq(a′ia

′
i+2) ⊂

acleq(aia
′
i+2). Hence,

acleq(a′ia
′
i+1) ∩ acleq(a′ia

′
i+2) ⊂ acleq(aia

′
i+1) ∩ acleq(aia

′
i+2) = acleq(a′i).

The other inclusion is clear.

Condition 2: First, we will prove that a′k |�ak−1
a0...ak−2 by induction on k:

If k = n there is nothing to prove. Assume that the independence is valid for k ≥ i+ 1.

Let us check for k = i. From

a′i+1 |�
ai

a0...ai−1 and ai |�
ai−1

a0...ai−2,

we get

a′i+1ai |�
ai−1

a0...ai−2,

by transitivity.

On the other hand, the inclusion a′i ⊂ acleq(aia
′
i+1) implies a′i |�ai−1

a0...ai−2.

Finally, from a′i+1 |�ai
a0...ai−1 it is easy to see that a′0...a′i−1 |�a′i

a′i+1 because a′j ⊂
acleq(aja

′
j+1) for every j < n.

Condition 3. Notice that, for every i, we have a′i ⊂ acleq(ak : k = i+ 2l). In particular

a′0 ⊂ acleq(ak : k even) and a′1 ⊂ acleq(ak : k odd). Using these inclusions and condition

1. of almost n-ampleness, it follows that acleq(a′1)∩ acleq(a′0) = acleq(∅). Moreover, from

condition 3. of almost n-ampleness we know that a0 � |� an. Therefore a′0 � |� a′n.

We do not know whether ampleness, almost ampleness and weak ampleness are different

or not. However, on the first steps of the hierarchy, namely 1-basedness and CM-triviality,

they coincide.
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Lemma 2.3.5. (a) T is 1-based if and only if it is not weakly 1-ample.

(b) T is CM-trivial if and only if it is not weakly 2-ample.

Proof. (a) The definition of 1-ampleness and weakly 1-ampleness are exactly the same.

(b) The definition of weakly 2-ampleness coincide with the characterization (CM1) of

CM-triviality (Proposition 2.1.2).

Question 2.3.6. Do the notions of ampleness, almost-ampleness and weak-ampleness

coincide?

Pillay proved that a stable theory interpreting a field is n-ample for all n [36]. This was

generalized by Nübling to supersimple theories [27] and by Yoneda to Rosy theories of

monomial thorn rank [45]. In [29], Ould Houcine and Tent proved that the theory of non

abelian free groups is n-ample for all n. Clearly, all these examples are weakly n-ample

for all n.

We will show that the n-dimensional free pseudospace is not weakly (n + 1)-ample; for

this, we just prove that the condition they isolated (Proposition 2.2.4) are also satisfied

in weakly ample theories.

Proposition 2.3.7. Let T be a weakly n-ample theory. Then there exist a0, ..., an, such

that

1. an |�ai+1
ai

2. acleq(aian) ∩ acleq(aiai+1) = acl(ai) for every i < n− 1.

3. an � |�acleq(ai)∩acleq(ai+1)
aiai+1 for every i < n.

Proof. Let a0...an be a weakly n-ample tuple. We will prove that this tuple satisfies the

three conditions.

Condition 1. Follows by transitivity.

Condition 2. Notice that an |�ai+2
ai+1ai, therefore anai |�ai+2ai

ai+1ai and

acleq(aian) ∩ acleq(aiai+1) ⊂ acleq(aiai+2) ∩ acleq(aiai+1).

On the other hand, by condition (1) of weakly n-ampleness, we have

acleq(aiai+2) ∩ acleq(aiai+1) = acleq(ai),
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hence

acleq(aian) ∩ acleq(aiai+1) ⊂ acleq(ai).

The other inclusion is obvious.

Condition 3. Assume the tuple does not satisfy the condition. Then, by transitivity

an |�
acleq(ai)∩acleq(ai+1)

a0.

To get a contradiction it is enough to check that

acleq(ai) ∩ acleq(ai+1) ⊂ acleq(a0) ∩ acleq(a1).

On one hand we know

acleq(ai) ∩ acleq(ai+1) ⊂ acleq(ai−1ai) ∩ acleq(ai−1ai+1).

On the other hand, condition 1. in the definition of n-ample gives

acleq(ai−1ai) ∩ acleq(ai−1ai+1) = acleq(ai−1).

Hence

acleq(ai) ∩ acleq(ai+1) ⊂ acleq(ai−1) ∩ acleq(ai).

Continuing with the same procedure we get

acleq(ai) ∩ acleq(ai+1) ⊂ acleq(a0) ∩ acleq(a1),

which is the desired contradiction.

To end this section, we point out an easy generalization of a result by Yoneda ([45])

concerning geometric elimination of imaginaries.

Definition 2.3.8. T is n-ample in the real sort if in Definition 2.2.1, algebraic closure

is taken in the real sort.

In [45] Yoneda proved that, if T is CM -trivial in the real sort (with respect to an abstract

independence relation) then it has geometric elimination of imaginaries by using that a

property called Independence Intersection Property is true for CM-trivial theories. We

generalize this result to non n-ampleness directly. However, we do not know if non-n-

ample theories have IIP.
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Proposition 2.3.9. If T is not n-ample in the real sort, then T has geometric elimination

of imaginaries.

Proof. Let e ∈ Ceq and let a be a real tuple such that a/E = e, where E is a -definable

equivalence relation. Let A = {a0, ..., an} be a set of realizations of tp(a/e) independent

over e. Note that for every i we have e ∈ dcleq(ai), hence

a0...ai−1 |�
ai

ai+1.

Similarly ai+1 |�a0...ai
ai+2, therefore

acl(aiai+1) ∩ acl(aiai+2) = acl(ai).

As T is not n-ample in the real sort, we have

an |�
acl(a1)∩acl(a0)

a0

Hence, as a1 |�e
a0, we have

acl(a1) ∩ acl(a0) ⊂ acl(e).

Furthemore, as e ∈ dcleq(an) ∩ dcleq(a0), the independence an |�acl(a1)∩acl(a0) a0 gives

that

e ∈ acleq(acl(a1) ∩ acl(a0))
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Geometric structures with a dense

independent subset

This chapter consists on two sections. In the first one we describe the work of Berenstein

and Vassiliev [10] on expansions of geometric theories by a dense/codense predicate

of independent elements, listing only the results which are relevant for our study of

expansions of simple theories of SU -rank 1, and algebraic closure and canonical bases in

such expansions. In the second section, we give a detailed exposition of our results in [15],

in which we give a complete characterization of the forking geometry of the expansion,

when the underlying theory is simple of SU-rank 1.

In this chapter, all theories are supersimple.

3.1 Independent predicates in geometric theories

Definition 3.1.1. A complete theory T is geometric if it eliminates ∃∞ and algebraic

closure satisfies the exchange property in every model of T .

The exchange property gives rise to a tame notion of dimension (hence a tame notion

of independence) with generic elements, i.e. in each type-definable set X, that is, an

element x of the same dimension of X. Elimination of ∃∞ ensures that the dimension

is definable. That is, for every formula ϕ(x1, ..., xn, ȳ) there exists a formula ψ(ȳ) such

that |= ψ(ā) if and only if the formula ϕ(x1, ..., xn, ā) has dimension n.

All simple theories of SU -rank 1 are geometric, in particular all strongly minimal theories

are geometric. Also, all Rosy theories of thorn-rank 1 are geometric, so all o-minimal

structures are geometric.

38
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Geometric theories are ubiquitous. In [23] Hrushovski and Pillay defined geometric the-

ories and use their properties to study definable groups in local and pseudofinite fields.

Let T be a complete geometric theory in a language L and let LH = L ∪ {H} where H

is a new unary predicate. The theory T ind is the LH -theory extending T together with

the axioms:

1. The set H is L-algebraically independent.

2. (Density property) For all L-formulas ϕ(x, ȳ),

∀ȳ(ϕ(x, ȳ)non-algebraic → ∃x ∈ Hϕ(x, ȳ))

3. (Extension property) for all L-formulas ϕ(x, ȳ), for all n ∈ ω and for all ψ(x, ȳ, z̄),

∀ȳz̄∃≤nxψ(x, ȳ, z̄) →

∀ȳ(ϕ(x, ȳ)non-algebraic → ∃x(ϕ(x, ȳ) ∧ ∀z̄ ∈ H¬ψ(x, ȳ, z̄)))

In these axioms, algebraic independence and non-algebraicity are elementary way due to

the elimination of ∃∞.

From now on, by acl() and |� we mean algebraic closure and algebraic independence in

the sense of T . Also, given a model M |= T , we will usually denote H(M) just by H.

Definition 3.1.2. An H-structure is a model (M,H) of T ind such that:

1. (Generalized density/coheir property) If A ⊂ M is finite dimensional and

q ∈ Sn(A) has dimension n, then there is ā ∈ Hn such that ā |= q .

2. (Generalized extension property) If A ⊂M is finite dimensional and q ∈ Sn(A)

then there is ā |= q such that ā |�
A

H .

Fact 3.1.3. If (M1, H1) and (M2, H2) are H-structures, then (M1, H1) ≡ (M2, H2) and

T ind is the common complete theory. Moreover, any |T |+-saturated model of T ind is an

H-structure.

If T is a simple theory of SU -rank 1, then T ind is supersimple, so canonical bases exists

as imaginaries. We will now briefly explain how canonical bases in T ind can be described

in terms of canonical bases in T , whenever T has SU -rank 1.
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Definition 3.1.4. • Let (M,H) be an H-structure and c̄ a tuple in M . We denote

by HB(c̄), the H-basis of c̄, the smallest tuple h̄ ⊂ H such that c̄ |�
h̄

H. (We will

prove that H-bases always exist).

Also, for A ⊂ M , the H-basis of c̄ relative to A, denoted by HB(c̄/A), stands for

the smallest tuple h̄A ∈ H such that c̄ |�
h̄AA

H. (We will prove that such bases exist

whenever A = acl(A) and HB(A) ⊂ A).

We now prove of the existence of H-bases and relative H-bases, the proofs presented here

are more detailed that the ones in [10].

Existence of H-bases. Let c̄ be any tuple. We will prove that HB(c̄) exists. Let h̄ and h̄′

be tuples of H such that c̄ |�
h̄

H and c̄ |�
h̄′
H. It suffices to prove that, if h̄′′ = h̄ ∩ h̄′, then

c̄ |�
h̄′′
H.

We can write c̄ as c̄1c̄2 where c̄1 is independent over H and c̄2 ⊆ acl(c̄1H). By definition

of h̄ and h̄′ we know that c̄2 ⊆ acl(c̄1h̄) and c̄2 ⊆ acl(c̄1h̄
′). If c2 � acl(c1h̄

′′) then, by

exchange property, there is an element g in h̄ \ h̄′ (or in h̄′ \ h̄), such that g ∈ acl(c̄1h̄
′).

On the other hand, the tuple c̄1 was chosen to be independent from H so g ∈ acl(h̄′),

which yields a contradiction, as H is an independent subset.

Existence of relative H-bases. Let c̄ be any tuple and let A be an algebraic closed set

such that HB(A) ⊂ A. We are going to prove that HB(c̄/A) exists. Again, let h̄ and h̄′

be minimal such that c̄ |�
h̄A

H and c̄ |�
h̄′A
H. In particular we have that h̄h̄′ ∩A = ∅.

Write c̄ as c̄1c̄2 where c̄1 is independent over AH and c̄2 ⊆ acl(c̄1AH). Then c̄2 ⊆
acl(c̄1Ah̄) and c̄2 ⊆ acl(c̄1Ah̄

′). Let h̄′′ = h̄ ∩ h̄′. If c̄2 � acl(c̄1Ah̄
′′), then, by the ex-

change property, there is an element g ∈ h̄ \ h̄′ (or viceversa) such that g ∈ acl(c̄1Ah̄
′).

Claim: we have that g /∈ acl(Ah̄′).

Proof of the claim. If not, as g /∈ h̄′, then by exchange there is an element a′ and a subset

A′ of A such that a′ /∈ acl(A′) and a′ ∈ acl(A′gh̄′), then some (non empty) subset of gh̄′

must be contained in HB(A), HB(A) ⊂ A and h̄′g ∩A ⊂ h̄′h̄ ∩A = ∅. Contradiction.
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Therefore, as g ∈ acl(c̄1Ah̄
′) \ acl(Ah̄′), the tuple c̄1 is not independent over AH.

Fact 3.1.5. If (M,H) is an H-structure and A is a subset of M , then

acl(A,HB(A)) = aclH(A),

(where aclH(A) stands for the algebraic closure of A in the sense of T ind).

Notice that Fact 3.1.5 and Existence of relative H-bases imply that H-bases always exist

over H-algebraically closed sets. From now on, by HB(A/B) we mean HB(A/ aclH(B)).

The next fact gives a characterization of canonical bases in T ind in terms of H-bases.

Theorem 3.1.6. Assume that T is a simple theory of SU -rank 1, let (M,H) be an

H-structure (sufficiently saturated) and let ā be a tuple of M and B ⊂ M aclH-

closed. Then the canonical base cbH(ā/B) is interalgebraic (in the sense of LH) with

cb(āHB(a/B)/B).

In particular, if A ⊂ B are aclH-closed and h̄ = HB(c̄/B), then

c
H

|�
A

B if and only if c̄h̄ |�
A

B.

Example 3.1.7. Let V a vector space over Q such that |V | > ℵ0 and let H = {h0, h1, ...}
be a countable independent subset of V . Then it is easy to check that (V,H) is an H-

structure. Moreover, if t is a vector independent of H and t0 = t+ h0 then cbH(t/t0) is

interalgebraic with cb(th0/t0) = t0. So we have that t � |�H t0, but aclH(t) ∩ aclH(t0) = ∅
hence Th(V,H) is not 1-based.

Frank Wagner noticed this theory is not 1-based since (V,H) is a stable group and H is a

definable set, which is not a boolean combination of cosets of acl(∅)-definable subgroups

(see Theorem 1.6.6). However, the above proof illustrates the failure of 1-basedness. In

fact, we will see in the next section that, if T is a simple theory of SU -rank 1, then T ind

is 1-based if and only if T is trivial (the main ideas of the proof are a generalization of

the above example).

3.2 Ampleness

From now on we will assume that T is a simple theory of SU-rank 1 with geometric

elimination of imaginaries. By Theorem 3.1.6, canonical bases are interalgebraic with a
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tuple of elements of the home sort, hence T ind has geometric elimination of imaginaries

(Fact 1.5.8).

Proposition 3.2.1. The H-bases are transitive, in the sense that:

HB(c/B) ∪HB(B) = HB(cB).

Proof. From cB |�HB(cB)
H we have that c |�BHB(cB)

H and B |�HB(cB)
H. Therefore

HB(c/B) ⊂ HB(cB) and HB(B) ⊂ HB(cB). Hence

HB(c/B) ∪HB(B) ⊂ HB(cB).

On the other hand, by definition, we have B |�
HB(B)

H, which implies that

BHB(c/B) |�
HB(c/B)HB(B)

H, (3.1)

because HB(c/B) ⊂ H.

Also, by definition

c |�
BHB(c/B)

H. (3.2)

Finally, by transitivity, conditions (3.1) and (3.2) imply

cB |�
HB(c/B)HB(B)

H,

which proves the inclusion HB(cB) ⊂ HB(c/B) ∪HB(B).

We will characterize ampleness of T ind in terms of the geometry of T . We have seen

that non 1-ampleness (1-basedness) is not preserved in T ind (Example 3.1.7). Now, we

exhibit a necessary and sufficient condition under which 1-basedness is preserved.

Definition 3.2.2. A geometric theory T is trivial if acl(A) =
⋃

a∈A acl(a) for every

A ⊂ C.

Clearly, if T is trivial of SU-rank 1, then it is 1-based.

Lemma 3.2.3. If T is trivial, then acl(A) = aclH(A) for every A.

Proof. By Theorem 3.1.5, we need only prove that HB(A) ⊂ acl(A).
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Consider h̄ = acl(A) ∩H, it suffices to show that HB(A) ⊂ h̄. Recall that

A |�
acl(A)∩acl(H)

H

by the previous remark. If x ∈ (acl(A) ∩ acl(H)) \ acl(∅), then by triviality x ∈ acl(h′)

for some h′ ∈ H ∩ acl(A) = h̄. Hence acl(A)∩ acl(H) ⊂ acl(h̄) and A |� h̄
H. This shows

that HB(A) ⊂ h̄.

Lemma 3.2.4. Assume T is trivial of SU -rank 1. Then, for any sets A and B = acl(B),

we have

HB(A/B) ⊂ acl(A).

Proof. By the previous lemma and Proposition 3.2.1, we have

HB(A/B) ⊂ aclH(AB) \B = acl(AB) \B ⊂ acl(A).

Proposition 3.2.5. A simple theory T of SU -rank 1 is trivial if and only if T ind is

1-based.

Proof. Assume T is trivial. Consider ā and B with B = aclH(B). We need to show that

cbH(ā/B) ⊂ aclH(ā). First, let us note that

h̄ = HB(ā/B) ⊂ acl(ā),

hence

aclH(cbH(ā/B)) = aclH(cb(āh̄/B)) (By Fact 3.1.6)

⊂ aclH(acl(āh̄)) (By 1-basedness of T )

= aclH(ā) (Because h̄ ⊂ acl(ā)).

Suppose now that T ind is 1-based and assume that T is not trivial, then there are a tuple

ā and elements b and h such that b ∈ acl(āh) and b /∈ acl(ā) ∪ acl(h). Take ā a tuple

which is minimal with this property, so the elements in ā are algebraically independent.

By the generalized extension property, we may assume ā |�H. Moreover, as tp(h/ā) is

not algebraic, we may assume that h belongs to H, by the generalized density property.
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It is clear that h = HB(b/ā) (since b |�hā
H, we have that b � |� ā

H and h is a single

element), hence, by Theorem 3.1.6, we have that cbH(b/ā) is interalgebraic (in T ind) with

cb(bh/ā). Now, the theory T ind is 1-based, hence aclH(cbH(b/ā)) = aclH(b) ∩ aclH(ā).

As ā |�H we have HB(ā) = ∅. Hence aclH(ā) = acl(ā).

Moreover ā |�H implies ā |�
h

H. As b ∈ acl(āh) we have that b |�
h

H; but b /∈ acl(h), hence

b |� h (recall that b is a single element) and by transitivity b |�H. Therefore HB(b) = ∅
and aclH(b) = acl(b).

However, minimality of ā yields acl(cb(bh/ā)) = acl(ā), hence acl(ā) ⊂ acl(b) and h ∈
acl(āb) ⊂ acl(b). This is a contradiction.

We have characterized non 1-ampleness of T ind in terms of the underlying geometry of

T . We will now characterize non-n-ampleness for n ≥ 2. First we need the following

lemma.

Lemma 3.2.6. If A ⊂ B and aclH(cA) ∩ aclH(B) = aclH(A) then

HB(c/A) ⊂ HB(c/B).

Proof. It is clear that HB(cA) ⊆ HB(cB). By Proposition 3.2.1, this implies

HB(c/A) ∪HB(A) ⊆ HB(c/B) ∪HB(B).

In particular

HB(c/A) ⊂ HB(c/B) ∪HB(B).

It remains to show that HB(c/A) ∩H(B) = ∅. This follows from:

HB(c/A) ∩HB(B) ⊂ aclH(cA) ∩ aclH(B)

= aclH(A)

and HB(c/A) ∩ aclH(A) = ∅.

Theorem 3.2.7. For every n ≥ 2. A simple theory T of SU -rank 1 is n-ample if and

only if T ind is n-ample.

Proof. (⇒) Assume T is n-ample, then there are tuples a0, ..., an such that:
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1. acleq(a0...ai) ∩ acleq(a0...ai−1ai+1) = acleq(a0...ai−1) for all i < n.

2. ai+1 |�ai
a0...ai−1 for all i < n.

3. an � |�acleq(a0)∩acleq(a1) a0.

By the generalized extension property we may assume that a0...an |�H.

As the H-bases of any subset of {a0, ..., an} are empty, the algebraic closure in T ind of

any of these sets is the same as in T . So condition (2) holds in T ind.

Since all the corresponding H-bases are empty, by the characterization of algebraic clos-

ure in T ind and geometric elimination of imaginaries [Theorem 3.1.6] condition (1) of

ampleness also holds also in T ind.

Note also that, in particular, acl(a1) = aclH(a1) and acl(a0) = aclH(a0). Therefore, if

an |H�
aclH(a1)∩aclH(a0)

a0,

then

an |�
acl(a1)∩acl(a0)

a0,

which is a contradiction.

(⇐)Assume T is not n-ample, and let a0...an be such that for all 1 ≤ i ≤ n− 1,

1. ai+1 |H�
ai

a0...ai−1,

2. aclH(a0...ai−1ai+1) ∩ aclH(a0...ai−1ai) = aclH(a0...ai−1).

We may assume that acl(ai) = aclH(ai) for every i ≤ n.

Claim 1. In these conditions we have the following chain:

HB(an/a0) ⊂ HB(an/a0a1) ⊂ ... ⊂ HB(an/a0...an−1).

Proof of Claim 1. By (1) and transitivity, we have

an |H�
ai+1

ai...a0,

and thus

an |H�
a0...ai−1ai+1

ai...a0,
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therefore

aclH(a0...ai−1an) ∩ aclH(a0...ai) ⊂ aclH(a0...ai−1ai+1),

hence, by (2),

aclH(a0...ai−1an) ∩ aclH(a0...ai−1ai) = aclH(a0...ai−1).

The conclusion follows from Lemma 3.2.6 by making A = a0...ai−1, B = ai...a0 and

c = ai+1. Note that this makes sense only if n ≥ 2.

In order to conclude a0 |H�
acl(a0)∩acl(a1)

an, we cannot use that T is non n-ample because

intersections may not satisfy condition (2) (more precisely, the set acl(a0...ai−1ai+1) ∩
acl(ai...a0) is probably larger than acl(a0...ai−1)), thus we need first to enlarge the tuples

in order to fullfill the condition of intersections while preserving condition 2. of the

independences.

Set h = HB(an/a0) and h′ = HB(an/a0...an−1). Hence h ⊂ h′ by the previous claim. As

the canonical base cbH(an/ aclH(a0...an−1)) is interalgebraic (in T ind) with cb(anh
′/ aclH(a0...an−1)),

we have

anh |�
an−1

aclH(an−1an−2...a0).

Define recursively tuples a′i, bi for 0 ≤ i ≤ n− 1 in the following way:

For the case i = 0 let a′0 = ∅ and b0 = a0.

For i > 0 let a′i ⊂ aclH(ai, bi−1...b0) be a maximal tuple independent of acl(aibi−1...b0)

(in the sense of T ), and bi = acl(aia
′
i).

Claim 2 We have that acl(b0...bk) = aclH(a0...ak).

Proof of Claim 2. By induction on k:

It is clear for k = 0.

Assume that the equality holds for k = i, i.e.

acl(b0...bi) = aclH(a0...ai).

Now, by definition we have

bi+1 ⊂ aclH(ai+1, bi, ...b0) = aclH(ai+1...a0).
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So acl(bi+1...b0) ⊂ aclH(ai+1...a0). On the other hand, the tuple a′i+1 is maximal inde-

pendent of acl(aibi−1...b0), so, if c ∈ aclH(ai+1...a0) then c ∈ acl(a′i+1 acl(ai+1bi...b0)) =

acl(bi+1...b0).

Finally, we define bn as anh.

Claim 3. For i ≤ n− 1 we have bi |�
bi−1

b0...bi−2.

Proof of Claim 3. By definition a′i |� b0...bi−1ai, hence

a′i |�
ai

b0...bi−1.

On the other hand, by non n-ampleness of the tuple (ai)i≤n in T ind, we have

ai |H�
ai−1

a0...ai−1,

therefore, as acl(b0...bi−1) = aclH(a0...ai−1), and

ai−1 ⊂ bi−1 ⊂ aclH(a0...ai−1),

we have

ai |H�
bi−1

b0...bi−1.

The last independence also holds in T and recall that bi = acl(aia
′
i). Hence, by transit-

ivity,

bi |�
bi−1

bi−2...b0 for i ≤ n− 1.

Note also that

bn |�
bn−1

b0...bn−2

by definition of h′ and the characterization of canonical bases in T ind.

Claim 4. For i ≤ n− 1 we have

acl(b0...bi−1bi+1) ∩ acl(b0...bi−1bi) = acl(b0...bi−1).
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Proof of Claim 4. For every i ≤ n,

acl(b0...bi) = aclH(a0...ai),

then by 2. in the definition of a0...an, we have

acl(b0...bi−1ai+1) ∩ acl(b0...bi−1bi) = acl(b0...bi−1).

On the other hand, by definition of a′i we have

b0...bi |�
ai+1

a′i+1,

then

b0...bi |�
b0...bi−1ai+1

a′i+1,

and

b0...bi |�
b0...bi−1ai+1

bi+1,

since bi+1 ⊂ acl(ai+1a
′
i+1). This implies that

acl(b0...bi−1ai+1) ∩ acl(b0...bi) = acl(b0...bi−1bi+1) ∩ acl(b0...bi−1bi).

Finally, for i = n− 1, notice that bn = anh ⊂ aclH(ana0). Therefore

acl(b0...bn−1) ∩ acl(b0...bn−2bn) ⊂ aclH(a0...an−1) ∩ aclH(a0...an−2an)

= aclH(a0...an−2)

= acl(b0...bn−2)

Recall that a0a1 |� a′1, then a0 |�a1
a′1 and a0 |�a1

b1. In particular acl(a0) ∩ acl(b1) ⊂
acl(a1). Since acl(a0) = acl(b0) and acl(a1) ⊂ acl(b1) we have the following equality:

acl(b0) ∩ acl(b1) = acl(a0) ∩ acl(a1).
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Claims 3 and 4 together with non n-ampleness of T imply that

b0 |�
acl(b0)∩acl(b1)

bn,

thus

anh |�
acl(a0)∩acl(a1)

a0

.

Hence, again by definition of h and characterization of canonical bases we conclude that

a0 |H�
acl(a0)∩acl(a1)

an,

which is the desired conclusion.

Question 3.2.8. Is non-ampleness preserved without assuming geometric elimination

of imaginaries?



Chapter 4

Structure of SU-rank ω with a dense

independent subset of generics

This chapter contains joint work with Berenstein and Vassiliev [11] on structures of SU-

rank ω with a new dense independent predicate. In the first section, we exhibit the

basic properties of these constructions. In the second section, we study ampleness in the

expansion.

A word on attributions: the results from the first section were developed by Berenstein

and Vassiliev, so we will refer to them without proofs, while the second section is the

author’s contribution to [11], which consists of a characterization of 1-basedness and the

preservation of CM-triviality.

Finally, the last results when the closure is trivial, as well as preservation of weak-

ampleness, were developed independently by the author and do not appear in [11].

4.1 Structure of SU-rank ω with a dense independent subset

of generics

We aim to find anallogues of extensions of geometric theories to theories of SU -rank ω,

in order to understand dense/codense expansions by an independent subset. For this,

one needs a natural pregeometry as well as an analogue of elimination of ∃∞.

From now on, the theory T will denote a simple theory of SU -rank ω.

First of all, consider the closure operator cl where cl(A) = {a ∈ C : SU(a/A) < ω}. We

need to check that cl induces a pregeometry. The only non-trivial part is to see that cl

50
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is transitive, i.e. cl(cl(A)) = cl(A) for every A: assume S(a/b̄) < ω where SU(bi/A) < ω

for every bi ∈ b̄. We need to check that SU(a/A) < ω.

If not, we have SU(a/A) = ω, hence, by Lascar’s inequalities we have

ω ≤ SU(b̄/aA) + SU(a/A) ≤ SU(ab̄/A) ≤ SU(a/b̄A)⊕ SU(b̄/A) < ω.

This is a contradiction.

We say that T eliminates ∃large if dimension is definable. This means, for every formula

ϕ(x1...xn; ȳ)

there is a formula ψ(ȳ) such that there is a type of SU -rank ωn containing the formula

ϕ(x1...xn; ā) if and only if ψ(ā) holds. This is a clear analogue for elimination of ∃∞.

Let us remark that one can do the same analogy to theories of monomial SU -rank and

all results will work in this general context. Moreover, one can also study pregeometries

associated to other regular types. However, for the exposition, we will focus on the case

of SU -rank ω.

Let H be a new unary predicate and LH = L ∪ {H}. Let T ′ be the LH -theory of all

structures (M,H), where M |= T and H is an independent subset of generic elements of

M .

Notation 1. Let (M,H) |= T ′ and let A ⊂M . We write H(A) for H ∩A.

Notation 2. As in the previous section, independence means independence in the sense

of T and we use the symbol |�. We write tp(ā) for the L-type of a and dcl, acl for

the definable closure and the algebraic closure in the language L. Similarly we write

dclH , aclH , tpH for the definable closure, the algebraic closure and the type in the lan-

guage LH .

Definition 4.1.1. We say that (M,H) is an H-structure if

1. (M,H) |= T ′.

2. (Generalized density/coheir property) If A ⊂ M is finite dimensional and

q ∈ Sn(A) has SU -rank ωn, then there is ā ∈ Hn such that ā |= q.

3. (Generalized extension property) If A ⊂ M is finite dimensional and q ∈
Sn(A), then there is ā ∈Mn realizing q such that tp(ā/A ∪H) does not fork over

A.
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Definition 4.1.2. Let A be a subset of an H-structure (M,H). We say that A is

H-independent if A is independent from H over H(A).

Fact 4.1.3. All H-structures are elementarily equivalent. We write T ind for their com-

mon complete theory.

Definition 4.1.4. We say that T ind is axiomatizable or first order if the |T |+-saturated

models of T ind are again H-structures.

With elimination of ∃large, we can axiomatize properties 1. and 2. of H-structures. For

condition 3. we need, in addition, another technical condition.

Definition 4.1.5. Given ψ(ȳ, z̄) and ϕ(x̄, ȳ) be L-formulas, the predicate Qϕ,ψ holds for

a tuple c̄ (in M) if for all b̄ satisfying ψ(ȳ, c̄), the formula ϕ(x̄, b̄) does not divide over c̄.

Proposition 4.1.6 ([11]). Let T be a theory of SU -rank ω which eliminates ∃large,
then T ind is axiomatizable if and only if the predicates Qϕ,ψ are L-type-definable for all

L-formulas ϕ(x̄, ȳ) and ψ(ȳ, z̄).

Example 4.1.7. Now we give a list of examples of simple theories T of SU -rank ω such

that T ind is first order. (see [11] for detailed explanations of these examples).

1. Differentially closed fields of characteristic 0.

2. Vector spaces with a generic automorphism.

3. Theories of Morley rank omega with definable Morley rank.

4. H-structures: Let T be a supersimple theory of SU -rank 1. If its pregeometry

is not trivial, then T ind (in the sense of the previous section) has SU -rank ω and

(T ind)ind is first order (see [10]).

We will use the following example in the next section, so it requires a little explanation.

5. Free pseudoplane or infinite branching tree: Let T be the theory of the

free pseudoplane, that is, a graph without cycles such that every vertex has in-

finitely many edges. The theory of the free pseudoplane is stable of U -rank

ω. For every A we have acl(A) = dcl(A) = A ∪ {x| there are points a, b ∈
A and a path connecting them passing through x}. For A an algebraically closed

subset and a a single element, we have that U(a/A) = d(a,A) where d(a,A) is the

minimum length of a path from a to an element of A or ω if there is no path; in

this last case we say that a is at infinite distance to A or that a is not connected

to A.
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Note that there is a unique generic type over A, namely the type of an element

which is not connected to A. The generic type is definable over ∅ and thus, by

definability of types, we have that T eliminates ∃large.
An H-structure (M,H) associated to T is an infinite forest with an infinite collec-

tion H of selected points lying at infinite distance one from the other, with infinite

many trees not connected to them. If (N,H) |= Th(M,H), then N has infinitely

many selected points H(N) at infinite distance one from the other.

If (N,H) is ℵ0-saturated, then, by saturation, it has infinitely many trees which are

not connected to the pointsH(N). In this case, the model (N,H) is anH-structure.

The density property is clear. Let A ⊂ N be finite and assume that A = dcl(A)

and let c ∈ N . If U(c/A) = 0, there is nothing to prove. If U(c/A) = n > 0, let a

be the nearest point from A to c. Since there is at most one point of H connected

to a and the trees are infinitely branching, we can choose a point b with d(b, a) = n

and such that d(b, A ∪ H) = n. If U(c/A) = ω, choose a point b in a tree not

connected to A∪H, then tp(c/A) = tp(b/A) and b |�A
H; then tp(c/A) = tp(b/A)

and b |�A
H. This proves that (N,H) is an H-structure, so T ind is first order.

As in the expansions of geometric theories, we have existence of H-bases and a good

characterization of canonical bases in T ind in terms of canonical bases of the original

theory T .

Definition 4.1.8. Let (M,H) be an H-structure and c̄ a tuple in M . We denote by

HB(c̄), the H-base of c̄, the smallest tuple h̄ ⊂ H such that c̄ |�
h̄

H.

Also, for A ⊂ M such that A |�A∩H H, the H-basis of c̄ relative to A, denoted by

HB(c̄/A), stands for the smallest tuple hA ∈ H such that c̄ |�
hAA

H.

Fact 4.1.9. Let (M,H) anH-structure, then for every c̄, the basis HB(c̄) exists. Moreover,

if A is a subset of M such that A = acl(A) and HB(A) ⊂ A, then HB(c̄/A) exists.

Fact 4.1.10. If (M,H) is an H-structure and A is a subset of M then acl(A,HB(A)) =

aclH(A) (where aclH(A) stands for the algebraic closure of A in the sense of T ind).

The two previous facts imply that H-bases always exist over H-algebraically closed sets.

From now on, by HB(A/B) we mean HB(A/ aclH(B)).

As in the case of geometric theories, there is a characterization of canonical bases.

Fact 4.1.11. Let T be a simple theory of SU -rank ω, and let (M,H) a sufficiently

saturated H-structure. Given a a tuple of M and B ⊂ M aclH-closed, the canonical

base cbH(a/B) is interalgebraic (in the sense of LH) with cb(aHB(a/B)/B).
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4.2 Ampleness

In this section we examine the relation between the ampleness of T and T ind. Using the

ideas of Chapter 3 we show that CM-triviality is preserved and that non-n-ampleness

is also preserved for n > 2 assuming cl is trivial. Finally, we prove that non-weak-n-

ampleness is always preserved for every n ≥ 2.

Remark 4.2.1. If T has geometric elimination of imaginaries, by Fact 4.1.11, canonical

bases in T ind are interalgebraic with real tuples. Thus T ind has geometric elimination of

imaginaries.

From now on, we assume that T has geometric elimination of imaginaries.

Example 4.1. Let G be an 1-based stable group of U -rank ω and T = Th(G). Notice

that T ind is again a stable theory, so (M,H) is a stable group. However, the set H is

not a Boolean combination of cosets of subgroups, therefore T ind is not 1-based.

Notice that if G is a group of SU -rank ω, then cl is not trivial (take a |� b both of rank

ω and c = a+ b, then c ∈ cl(a, b) \ cl(a) ∪ cl(b)).

Remark 4.2.2. In the theory of the free pseudoplane (see item 5 of Example 4.1.7.)

the pregeometry generated by cl is trivial: if A is algebraically closed and b is a single

element, then U(b/A) = d(b, A), where d(b, A) is the minimum length of a path from b

to an element of A (or ω if there is no path). If b ∈ cl(A) then that there is a path to

some element a ∈ A, hence cl(A) =
⋃

a∈A cl(a).

We will now prove that 1-basedness is only preserved in T ind when the pregeometry cl

is trivial. It is worth noticing that, unlike the U -rank 1 case, the triviality of cl does not

imply that T is 1-based, as the free pseudoplane shows.

Lemma 4.2.3. If cl is trivial in T , then for every ā and for every B = aclH(B), we have

HB(ā/B) ⊂ HB(ā).

Proof. Let h = HB(ā/B) = {hi|i ∈ I}. By minimality of H-bases, for every i ∈ I, we

have that ā � |�Bh\hi
hi, then hi ∈ cl(āBh \ hi).

As B is H-independent and hi /∈ B, we have that hi |�Bh \ hi, hence hi /∈ cl(Bh \ hi).

On the other hand, triviality implies that hi ∈ cl(ai) for some ai ∈ ā. By the exchange

property we have ai ∈ cl(hi). This implies that ai � |� hi and ai |�hi
H (because H is
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orthogonal to all the types of rank strictly less than ω). Therefore, we conclude that

hi = HB(ai) and

HB(ā/B) = {hi|i ∈ I} =
⋃
i∈I

HB(ai) ⊂ HB(ā).

Proposition 4.2.4. If T is 1-based, then T ind is 1-based if and only if cl is trivial in T .

Proof. (⇐) Assume cl is trivial. Let ā be a tuple and B an algebraic closed set in

(M,H). Take h̄ = HB(ā/B). By the characterization of canonical bases, we have

aclH(cbH(ā/B)) = aclH(cb(āh̄/B)). As T is 1-based, we have that cb(āh̄/B) ⊂ acl(āh̄).

By the previous lemma we have h̄ ⊂ HB(ā), then cbH(ā/B) ⊂ aclH(āHB(ā)) = aclH(ā),

i.e. the theory T ind is 1-based.

(⇒) Assume T ind is 1-based and cl is not trivial, then there are elements b and h and

a tuple ā, such that b ∈ cl(āh) but b /∈ cl(ā) ∪ cl(h). We can take ā cl-independent

and minimal with this property. By the Generalized Extension Property, we may assume

that ā |�H. Moreover, as h /∈ cl(ā), we may also assume that h belongs to H by the

Generalized Density Property.

As b ∈ cl(āh) and āh is H-independent, we have that tp(b/āh) is orthogonal to H, then

b |�hā
H. Now, recall that b � |� ā

h and h is a single element, then h = HB(b/ā).

By hypothesis, the theory T ind is 1-based, then aclH(cbH(b/ā)) = aclH(b) ∩ aclH(ā).

Also, we have aclH(ā) = acl(ā), because ā |�H. On the other hand, from ā |�H we get

ā |�h
H and, from b |�hā

H we conclude that b |�
h

H.

By hypothesis b /∈ cl(h), so b |� h (recall that b is a single element). Transitivity

yields that b |�H. Thus, the H-basis HB(b) = ∅ and aclH(b) = acl(b). This means

aclH(cbH(b/ā)) = acl(b) ∩ acl(ā).

Recall that aclH(cbH(b/ā)) = aclH(cb(bh/ā)). Hence, a maximal cl-independent subset

d̄ of cb(bh/ā) satisfies that b ∈ cl(d̄h) and b /∈ cl(d̄) ∪ cl(h).

The minimality of the length of ā yields cl(cb(bh/ā)) = cl(ā), therefore

cl(ā) = cl(acl(a) ∩ acl(b)) ⊂ cl(ā) ∩ cl(b),

thus ā ∈ cl(b) and h ∈ cl(āb) ⊂ cl(b), which is a contradiction.
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Following the ideas in Chapter 3, we prove that CM-triviality is preserved in T ind. First

we need the following lemmas.

Lemma 4.2.5. The H-bases are transitive:

HB(c/B) ∪HB(B) = HB(cB).

Lemma 4.2.6. If A ⊂ B and aclH(cA) ∩ aclH(B) = aclH(A), then

HB(c/A) ⊂ HB(c/B).

The proofs of these two lemmas are exactly the same as in Proposition 3.2.1 and Lemma

3.2.6, respectively.

Theorem 4.2.7. The theory T is CM-trivial if and only if T ind is.

Proof. Assume T is 2-ample. Let a0, a1, a2 be tuples such that:

1. a2 |�
a1

a0,

2. acl(a0a2) ∩ acl(a0a1) = acl(a0),

3. a2 � |�
acl(a0)∩acl(a1)

a0.

By the generalized extension property, we may assume that a0a1a2 |�H.

As the H-bases of any subset of {a0a1a2} are empty, the algebraic closure in T ind of any

of these sets is the same as in T . So condition (2) holds in T ind.

By the characterization of canonical bases, since H-bases are empty, condition (1) holds

also in T ind. If

a2
H

|�
aclH(a1)∩aclH(a0)

a0,

then

a2 |�
acl(a1)∩acl(a0)

a0,

which is a contradiction.

Assume now that T is CM -trivial. Let us see that T ind is CM -trivial.

Let c be a tuple and A ⊂ B be algebraically closed sets (in T ind) such that

aclH(cA) ∩ B = A. Define h = HB(c/A), h′ = HB(c/B) and c′ = ch. By Proposition
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4.1.11, we have that aclH(cbH(c/A)) = aclH(cb(ch/A)). On the other hand, by Lemma

4.2.6, we have that h ⊂ h′.

Note that acl(c′A) ∩ acl(B) = acl(A), because acl(c′A) ⊂ aclH(cA), A = acl(A) and

B = acl(B). Thus, by CM-triviality of T , we have that cb(c′/A) ⊂ acl(cb(c′/B)).

Recall that c′ = ch, hence,

aclH(cbH(c/A)) = aclH(cb(ch/A))

⊂ aclH(cb(ch/B))

⊂ aclH(cb(ch
′/B))

= aclH(cbH(c/B)).

Therefore, the theory T ind is CM-trivial.

We can now modify the previous proof in order to show that, if T ind is n-ample, then T

is n-ample for every n ≥ 2. The converse holds if cl is trivial.

Lemma 4.2.8. Assume cl is trivial. Let A and B = aclH(B) subsets of M , then

HB(AB) = HB(A) ∪HB(B).

Proof. By Proposition 4.2.5, we know that HB(AB) = HB(A/B)∪HB(B). On the other

hand, as cl is trivial, Lemma 4.2.3 implies that HB(A/B) ⊂ HB(A). Therefore, we have

HB(AB) ⊂ HB(A) ∪HB(B). The other inclusion is evident.

Corollary 4.2.9. Assume cl is trivial. If A = aclH(A) and B = aclH(B), then acl(AB) =

aclH(AB).

Theorem 4.2.10. Assume cl is trivial. Then T is n-ample if and only if T ind is.

Proof. For n = 1, this is Proposition 4.2.4. Also, as we just mentioned, for n ≥ 2 we

can adapt the proof of Theorem 4.2.7 in order to show that, if T is n-ample, then T ind is

n-ample. Hence, it remains to show that, if T is not n-ample, then T ind is not n-ample.

Let a0, ..., an be tuples in (C, H) such that:

1. ai+1 |�
ai

Hai−1...a0,
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2. aclH(a0...ai−1ai+1) ∩ aclH(a0...ai−1ai) = aclH(a0...ai−1).

We may assume that acl(ai) = aclH(ai) for every i ≤ n. In order to show that T ind

is not n-ample, we need to show that an |�H
aclH(a1)∩aclH(a0)

a0. By Fact 4.1.11, this is

equivalent to proving that anh |�acl(a1)∩acl(a0) a0, where h = HB(an/a0). Moreover, by

Lemma 4.2.3 we have that h ⊂ HB(an) ⊂ acl(an), so we only need to prove that

an |�
acl(a1)∩acl(a0)

a0.

If the tuples a0, ..., an satisfy

1. ai+1 |�
ai

ai−1...a0,

2. acl(a0...ai−1ai+1) ∩ acl(a0...ai−1ai) = acl(a0...ai−1),

then, as T ind is not n-ample, we may conclude that an |�acl(a1)∩acl(a0) a0, which gaves

the desired result.

Condition ai+1 |�
ai

ai−1...a0 follows directly from ai+1 |�
ai

Hai−1...a0.

Now, from aclH(ai) = acl(ai) and Corollary 4.2.9, we can deduce that, for any ai1 ...aik ,

where ik ≤ n, we have

acl(ai1 ...aik) = aclH(ai1 ...aik).

In particular,

acl(a0...ai−1ai+1) ∩ acl(a0...ai−1ai) = aclH(a0...ai−1ai+1) ∩ aclH(a0...ai−1ai)

= aclH(a0...ai−1)

= acl(a0...ai−1),

which finishes the proof.

Finally, we prove that weak n-ampleness is preserved in this context:

Theorem 4.2.11. For n ≥ 2, the theory T is weakly n-ample if and only if T ind is.

Proof. Assume that T is weakly n-ample. Let a0, ..., an such that

1. acl(aiai+1) ∩ acl(aiai+2) = acl(ai) for all i < n,
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2. ai+1 |�ai
a0...ai−1 for all i < n,

3. an � |�acl(a1)∩acl(a0) a0.

By the extension property, we may assume that a0...an |�H, hence HB(X) = ∅ for every

X ⊂ {a0, ..., an}, which implies that acl(X) = aclH(X) for X ⊂ {a0, ..., an}. Therefore

aclH(aiai+1) ∩ aclH(aiai+2) = acl(aiai+1) ∩ acl(aiai+2)

= acl(ai)

= aclH(ai).

On the other hand, we have

ai+1 |H�
ai

a0...ai−1,

because

ai+1 |�
ai

a0...ai−1

and HB(ai+1/a0...ai) = ∅.

Finally, since an � |�acl(a1)∩acl(a0) a0, we have that an � |H� acl(a1)∩acl(a0) a0. Thus, the tuple

a0, ...an is weakly n-ample in the sense of T ind.

Assume now that T is not weakly n-ample, let a0, ..., an ∈ C be tuples such that:

1. aclH(aiai+1) ∩ aclH(aiai+2) = aclH(ai) for all i < n.

2. ai+1 |�H
ai
a0...ai−1 for all i < n.

We may assume also that aclH(ai) = acl(ai) for every i.

Consider hi = HB(an/ai). We claim that h0 ⊂ h1 ⊂ · · · ⊂ hn−1.

Proof of the claim. Since an |�H
ai+2

aiai+1, we have that anai |�H
aiai+2

aiai+1. Hence

aclH(anai) ∩ aclH(aiai+1) ⊂ aclH(aiai+2) ∩ aclH(aiai+1)

⊂ aclH(ai)
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Using Lemma 4.2.6 (by making A = ai, B = aiai+1 and c = an) we conclude that

hi ⊂ hi+1 for every i.

In particular h0 ⊂ hn−1.

Notice that

h0 ⊂ hn−2 ⊂ aclH(an−2an),

and that

anhn−1 |�
an−1

a0...an−1,

then, setting a′n = anh0 and a′i = ai for i < n, we have that:

1. acl(a′ia
′
i+1) ∩ acl(a′ia

′
i+2) = acl(a′i) for all i < n.

2. a′i+1 |�a′i
a′0...a′i−1 for all i < n.

Since T is not weakly n-ample, it follows that

a′n |�
acl(a′0)∩acl(a′1)

a′0

i.e.

anh0 |�
acl(a0)∩acl(a1)

a0.

By the characterization of canonical bases, this is equivalent to

an
H

|�
aclH(a0)∩aclH(a1)

a0.

Thus, T ind is not weakly n-ample.

Question 4.2.12. Let n ≥ 3. If T ind almost n-ample, then is T?



Chapter 5

Equationality

In this chapter we introduce equational theories together with their main properties and

describe the relation between CM -triviality and equationality. (For a more detailed

exposition to equational theories, we refer the reader to [28]).

Equational theories, which form a subclass of stable theories, were defined by Srour in

[40] in an attempt to capture the algebraic behaviour of certain categories of structures,

such as algebraic closed fields or differential closed fields. For example, in ACF0, given

tuples ā, b̄ and c̄, it happens that ā � |� c̄
b̄ when there is some ai ∈ ā, such that ai satisfies

a polynomial equation over (ā \ ai)b̄c̄, but it does not satisfies any polynomial equation

over (ā\ai)c̄. Since polynomial equations satisfy a Noetherianity principle, then, forking

in ACF0 is witnessed by Noetherian formulas.

In [22], Hrushovski proved that the new strongly minimal set is equational using CM-

triviality. However, the proof of this fact uses an auxiliary result from an unpublished

work [23]. Junker and Lascar [26] reproved Hrushosvki’s result by studying the relation

between equational sets and indiscernible-closed sets.

Our interest in the notion of equationality was motivated by its relation with CM-

triviality, our goal was to show that, in the context of strongly minimal theories, non-

n-ampleness implies equationality. Although we were not able to prove it, we managed

to merge the results from Lascar and Junker together with the result from Hrushovski,

to exhibit a direct proof of the equationality of CM-trivial theories of finite, continuous

SU-rank. We hope that, at least, this points possible connections between ampleness

and equationality.

61
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5.1 Equational theories and equations

Definition 5.1.1. Fix an L-theory T . An L-formula ϕ(x̄; ȳ) is an equation in x̄, if, for

every sequence {b̄i}i<I of tuples in C, of the same length of ȳ, there is a finite subset

I0 ⊂ I such that
⋂

i∈I ϕ(C, b̄i) =
⋂

i∈I0 ϕ(C, b̄i).

Remark 5.1.2. 1. Equations are closed under positive Boolean combinations.

2. If ϕ(x̄; ȳ) is an equation on x̄, then it is an equation on ȳ.

3. Equations do not have the order property.

Proof. 1. It is easy to check that equations are closed under intersections. Let us see

that they are closed under unions: let ϕ1(x̄1, ȳ1) and ϕ2(x̄2, ȳ2) be equations on x.

If ϕ1 ∨ ϕ2 is not an equation, then there are tuples b̄i1 and b̄i2 such that the sets

Xi
1 = ϕ1(C, b̄

i
1) and Xi

2 = ϕ2(C, b̄
i
2) satisfy the following:

X1
1 ∪X1

2 �
⋃

j,k∈{1,2}
(X1

j ∩X2
k) �

⋃

j,k,l∈{1,2}
(X1

j ∩X2
k ∩X3

l ) � ...

Then, using König’s lemma, we obtain a chain of the form:

X1
j � X1

j ∩X2
k � X1

j ∩X2
k ∩X3

l � ...

Moreover, as j, k, l, etc. have values over the set {1, 2}, there must be a chain of

the form:

Xi1
m � Xi1

m ∩Xi2
m � Xi1

m ∩Xi2
m ∩Xi3

m � ...

for some m ∈ {1, 2}, contradicting the equationality of ϕm.

2. Assume ϕ(x̄, ȳ) is not an equation on ȳ. Then there exists (āi)i<ω and (b̄i)i<ω such

that ϕ(āi, b̄j) if i ≤ j but ¬ϕ(āi+1, b̄i). Therefore, for every j, we have the following

descending chain of length j + 1

ϕ(C, b̄j) � ϕ(C, b̄j) ∩ ϕ(C, b̄j−1) � ... � ϕ(C, b̄j) ∩ ϕ(C, b̄j−1) ∩ ... ∩ ϕ(C, b̄0).

By compactness, there is an infinite descending chain of the form

ϕ(C, c̄0) � ϕ(C, c̄0) ∩ ϕ(C, c̄1) � ... � ϕ(C, c̄0) ∩ ϕ(C, c̄1) ∩ ... ∩ ϕ(C, c̄n) � ....

Hence, the formula ϕ(x̄, ȳ) is not an equation in x̄.
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3. If ϕ(x̄, ȳ) has the order property, then there exist tuples āi and b̄j such that

|= ϕ(āi, b̄j) if and only if i ≤ j. Thus, we have the following chain

ϕ(ā1,C) � ϕ(ā1,C) ∩ ϕ(ā2,C) � ϕ(ā1,C) ∩ ϕ(ā2,C) ∩ ϕ(ā3,C)...

Therefore, the formula ϕ(x̄, ȳ) is not an equation on ȳ and, by the previous item,

is not an equation on x.

Definition 5.1.3. A definable set X is Srour-closed if for every family {Xi}i∈I of con-

jugates of X under Aut(C), there is I0 ⊂fin I such that
⋂

i∈I Xi =
⋂

i∈I0 Xi.

Clearly, every set definable by an equation is Srour-closed. Moreover, every Srour-closed

set X, definable over A, is of the form ϕ(C, ā), where ϕ(x̄, ȳ) is an equation and ā is a

tuple of A: assume X = ψ(C, ā) and let p(ȳ) = tp(ā). As X is Srour-closed, there exists

n ∈ N such that there are no chains of the form

ψ(C, ā1) � ψ(C, ā1) ∩ ψ(C, ā2) � ... � ψ(C, ā1) ∩ ψ(C, ā2) ∩ ... ∩ ψ(C, ān),

where āi |= p. Therefore the type p(ȳ1) ∪ ... ∪ p(ȳn) ∪ {∧j<n(¬∀x̄(
∧

i≤j(ψ(x̄, ȳi)) →∧
i≤j+1 ψ(x̄, ȳi))} is inconsistent. By compactness there is a formula φ(ȳ) ∈ p such that

φ(ȳ1) ∧ ... ∧ φ(ȳn) →
∨
j<n

∀x̄(
∧
i≤j

(ψ(x̄, ȳi)) →
∧

i≤j+1

(ψ(x̄, ȳi)))

This implies that ψ(x̄, ȳ)∧φ(ȳ) is an equation. Since X = ψ(x̄, ā)∧φ(ā), the conclusion

follows.

Definition 5.1.4. A complete theory T is equational if every formula ψ(x̄, ȳ) is equivalent

in T to a Boolean combination of equations.

Remark 5.1.5. Equational theories are stable.

This last remark comes from Remark 5.1.2, and Definition 1.4.4, since formulas without

the order property are closed under Boolean combinations.

Junker proved the following “uniformity” result.

Fact 5.1.6 (Junker [25]). A theory T is equational if and only if every definable set is a

Boolean combination of Srour-closed sets.

Definition 5.1.7. A definable set X is weakly normal if, for every infinite family {Xi}i∈I
of different conjugates of X under Aut(Ceq), we have

⋂
i∈I Xi = ∅.
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Notice that, by compactness, we have
⋂

i∈I0 Xi = ∅ for some I0 ⊂fin I. Thus, every

weakly normal definable set is Srour-closed.

Definition 5.1.8. A theory is weakly normal if every definable set X is a Boolean

combination of weakly normal definable sets.

Theorem 5.1.9 (see [35], Proposition 4.1.5). A theory T is weakly normal if and only

if T is stable and 1-based.

In particular, we have the following result:

Corollary 5.1.10. Every stable 1-based theory is equational.

Therefore, in the context of stable theories, equationality is a generalization of 1-basedness.

Most of the natural examples in stability theory are equational. Namely:

• One-based stable theories.

• Algebraic closed fields. This is Hilbert’s basis theorem.

• Modules. Let M be an R-module and T = Th(M). Every formula is equivalent

in T to a Boolean combination of positive primitive formulas, these are, formulas

φ(z̄) of the form ∃w̄(∧j≤nψj(w̄, z̄)); where ψj(w̄, z̄) are atomic formulas. Ziegler

[46] proved that, for every partition of the variable z̄ = x̄; ȳ, we have that φ(C; ā)

is either empty or a coset of the subgroup φ(C, 0̄). Hence, the formula φ(x̄; ȳ) is an

equation and T is equational.

• Differentiable closed fields. The theory of differentially closed fields in char-

acteristic 0 is equational for the same reason as ACF0. Moreover, the set of all

differential equations is an equational set: any intersection of solution-sets of dif-

ferential equations is the intersection of a finite subfamily of solutions-sets (see

[40]).

• Separably closed fields of finite degree of imperfection (see [41]).

• The n-dimensional free pseudospace (see [4]).

There are, until now, very few examples of stable non-equational theories:

• The colored free pseudospace. An unpublished construction due to Hrushovski

[23], whose proof can be found in [13].

• Free groups and torsion-free hyperbolic groups (see [37]).
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The terminology “equations” and “equational” reflects the behaviour of polynomial equa-

tions. Since equational theories in universal algebra have another precise meaning, which

differs from the model theoretic one, we suggest locally Noetherian theory or weakly No-

etherian theory.

5.2 CM-triviality and equationality

In [22] Hrushovski proved that every strongly minimal CM-trivial theory is equational.

His proof, which uses a detour through a notion he calls strongly equational, does not

work for a general stable theory of finite U -rank, since the U -rank need not be continuous.

We will exhibit a direct proof of this result.

Definition 5.2.1. Let A ⊂ Cn be any set (not necessary definable). Define icl(A) as the

set of tuples ā such that there is an ∅-indiscernible sequence {āi}i<ω with ā = ā0 and

āi ∈ A for i ≥ 1.

We say that A is indiscernible-closed if A = icl(A).

Notice that for every A and B we have icl(A ∪B) = icl(A) ∪ icl(B).

Fact 5.2.2. (Junker, Lascar [26]) Let X be a definable set. Then X is indiscernible-

closed if and only if it is Srour-closed.

Lemma 5.2.3 (Junker, Lascar [26]). Assume T is a CM-trivial superstable theory of

finite U -rank. Let X be a definable set over c̄ and ā ⊂ icl(X) \X. Then, there is b̄ ∈ X

such that U(ā/c̄) < U(b̄/c̄).

Proof. Let I = {āi}i<ω be an ∅-indiscernible sequence such that ā = ā0 and āi ∈ X for

i > 0. As T is stable, the set I is ∅-indiscernible as a set. By superstability there exists

n ∈ N such that I ′ = I \ I0 is Morley over I0 for every I0 ⊂ I of size n. In particular we

can take I0 not containing ā0. We rename the elements of I ′ as ā0, ā′1, ā′2... and so on.

By superstability, there exists ā′k ∈ I ′ such that ā′k |�I0
c̄.

Let D = acleq(I0) ∩ acleq(ā′k c̄). By CM-triviality of T , we have ā′k |�D
c̄. Hence

U(ā′k c̄) = U(ā′k c̄/D) + U(D)

= U(ā′k/D) + U(c̄/D) + U(D)

= U(ā0/D) + U(c̄/D) + U(D)

≥ U(ā0c̄/D) + U(D)

≥ U(ā0c̄).
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If equality holds, then ā0 |�D
c̄. Since the type tp(āk/D) = tp(ā0/D) is stationary, we

would have āk ≡c̄D a0, which is a contradiction. Therefore ā0 � |�D
c̄. Set b̄ = a′k to get

the desired result.

We previously defined U -rank for a complete type p. If X is an A-type-definable set, we

define the U -rank of X as sup{U(tp(b/A)) | b ∈ X}.

Notice that if X is an A-definable set, then icl(X) is A-type-definable. Therefore

U(icl(X) \X) is defined.

We now prove the main result:

Theorem 5.2.4 (Hrushovski [21], Junker [25]). A CM -trivial stable theory of finite and

continuous U -rank is equational.

Proof. Let X be a c̄-definable set of U -rank n. By the previous lemma we have that

U(icl(X) \X) < n. Now, using the continuity of U -rank, there exists a c̄-definable set

X1 ⊃ icl(X) \ X with U(X1) = U(icl(X) \ X). Proceeding in the same way, using Xi

instead of X and repeating the argument several times, we obtain a descending chain

which must become stationary after at most n-steps:

U(X) > U(X1) > ... > U(Xk) = U(Xk+1) = ...

Hence Xk = ∅ and Xk−1 is Srour-Closed.

Moreover, notice that X∗ = X ∪X1 ∪ · · · ∪Xk−1 must be Srour-closed as well, because

icl(X ∪X1 ∪ · · · ∪Xk−1) \ (X ∪X1 ∪ · · · ∪Xk−1) ⊂ icl(Xk−1) \Xk−1

⊂ Xk

= ∅

Finally, using the inequality U(X∗ \ X) < U(X), we get that X = X∗ \ (X∗ \ X) is

a Boolean combination of Srour-closed sets of lower rank. Proceeding by induction, we

conclude that every definable set is a Boolean combination of Srour-closed sets. Thus,

the theory T is equational.

Question 5.2.5. If T is any stable CM-trivial theory, then is it equational?
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5.3 The indiscernible closure

In the proof of Theorem 5.2.4, applying repeatedly the operator icl over a definable set

X eventually gets stationary after a finite number of steps (the number of iterations is

bounded by the U -rank of X). This phenomenon was considered in general in [25] and

applied to 1-based theories and algebraic closed fields. For general CM-trivial theories,

this study seems to be out of reach with the methods we have, though we obtained a

positive result for the free-pseudoplane.

Recall that if X be a C-type-definable set, then icl(X) is C-type-definable. In particular,

if X is type-definable, then icln(X) = icl ◦ . . . ◦ icl︸ ︷︷ ︸
n−times

(X), is type-definable. However, it is

not known whether iclω(X) =
⋃

n<ω icln(X) is still type-definable. This suggests the

following definition.

Definition 5.3.1. Let X be a type definable set. We define icl
λ as follows:

1. If λ = α+ 1, then icl
λ
(X) = icl(icl

α
)(X)

2. If λ is a limit ordinal, then icl
λ is the smallest type-definable set containing⋃

α<λ(icl
α
(X)).

By icl
∞ we mean

⋃
λ∈Ord icl

λ
(X). This is the smallest indiscernible-closed, type-definable

set containing X.

Observe that icln and icl
n coincide for n ∈ N.

Definition 5.3.2. Let T be any complete theory. Define the ordinal iT as

iT = sup{α+ 1 | icl∞(X) �= icl α(X) for X type-definable}

The ordinal iT measures how far type-definable sets are from being indiscernible-closed.

Notice that if T has infinite models, then iT > 1.

Let Iα the class of theories T with iT ≤ α.

Question 5.3.3. Is the class Iα closed under bi-interpretability?

In order to measure iT , it suffices to study canonical types, that is types over their

canonical base:

Theorem 5.3.4 (Junker, Lascar [26]). Let T be a stable theory.
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1. If X is type-definable over A, then

icl α(X) =
⋃

{icl α(p) | p ∈ S(Ceq), p ⊂ X and p does not fork over A}.

2. For a stationary type p ∈ S(A), the following condition holds:

p ⊂ p|cb(p) ⊂ icl(p).

Definition 5.3.5. A type p is a canonical type if p = p|cb(p).

Corollary 5.3.6. If there exists a natural number n such that icln(p) = icln+1(p) for

every canonical type p, then T is In+1.

Proof. If icln+1(p|cb(p)) = icln(p|cb(p)), then, using p ⊂ p|cb(p) ⊂ icl(p), we get that

icln+2(p) = icln+1(p).

Let X be a type definable set, then:

icl n+2(X) =
⋃

{icl n+2(p) | p ∈ S(Ceq), p ⊂ X and p does not fork over A}
=

⋃
{icl n+1(p) | p ∈ S(Ceq), p ⊂ X and p does not fork over A}

= icl n+1(X).

Corollary 5.3.7. (Junker, Lascar [26]) Every 1-based stable theory is in I2.

Proof. It suffices to show that icl(p) = p for every canonical type p. Take p a canonical

type and ā ∈ icl(p). Then there exists an indiscernible sequence I = (ā = ā0, ā1, ā2...)

such that āi |= p for i ≥ 1. Since T is 1-based, then cb(p) ∈ acl(āi) for every i ≥ 1, in

particular cb(p) ∈ acl(ā2).

As I is indiscernible, we have ā0 ≡acl(ā2) ā1 (indiscernible sequences are also indiscernible

over algebraic closures). Hence ā0 ≡cb(p) ā1 and ā |= p.
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5.4 The free pseudoplane

Recall that the free pseudoplane is an infinite graph without cycles, such that every

vertex has infinite valency. These two schemes of axioms form a complete theory, which

we will call FP1 because it is bi-interpretable with the 1-dimensional free pseudospace.

As we mentioned before in Example 4.1.7, the definable closure and the algebraic closure

coincide: for every A, we have that

dcl(A) = acl(A) = {c | there is a path between two elements of A passing through c}.

In particular, the algebraic closure of any finite set is finite.

Definition 5.4.1. Let a and b two different vertices, if there is a path between a and b,

it is unique (because there are no cycles), therefore, we may define the distance between

two vertices a and b, noted by d(a, b), as the length of the path connecting them.

If a = b then d(a, b) = 0 and if a �= b and there is no path between a and b, we say that

d(a, b) = ∞.

For sets B and C we define d(B,C) as the minimum of {d(b, c) | b ∈ B, c ∈ C}.

Definition 5.4.2. • We say that A linked to B if d(A,B) <∞.

• A set A is connected if d(a, a′) is finite for every a and a′ in A, and the path linking

a and a′ is contained in A. In particular, every connected set is definably closed.

Lemma 5.4.3. If c is a vertex linked to some set A = dcl(A), then there exists a unique

element a ∈ A such that d(c, a) < d(c, a′) for all a′ ∈ A, with a′ �= a.

We call the element a the projection of c over A, denoted as proj(c/A).

Proof. Let d be the minimal distance between c and A witnessed by a. Assume there is a

different element a′ such that d(c, a) = d(c, a′) = d. Then, the paths γ1(c, a) and γ2(c, a′)

must be different. Take c′ the last element where the paths γ(c, a) and γ2(c, a′) coincide,

then there is a path between a and a′ passing through c′, so c′ ∈ A and d(c, c′) < d,

which is a contradiction.

The theory FP1 is stable of U -rank ω and has geometric elimination of imaginaries.

Also, it has quantifier elimination by adding predicates dn(x, y) that say: “the distance

between x and y is n”.
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Remark 5.4.4. Since FP1 has quantifier elimination after adding predicates for the

distances, we have that the type tp(a0...an) is totally determined by (d(ai, aj) | i, j ≤ n).

Forking-independence is characterized as follows:

Fact 5.4.5. For every A, B and C, we have that A |�C
B if and only if every path from

A to B passes through C. In particular, if c̄ is a tuple and A = acl(A), then

cb(c̄/A) = {a ∈ A | a is the first vertex in A of a path γ from c to A}.

From this we may conclude the following fact:

Fact 5.4.6. Forking is trivial, this is, if ā, b̄ and c̄ ∈ C are pairwise independent over a

set D, then ā |�D
b̄c̄.

The following facts about the free-pseudoplane are well known and have been gener-

alized to the n-dimensional free pseudospaces. We include the proofs for the sake of

completeness.

Proposition 5.4.7. The theory FP1 is CM-trivial and not 1-based.

Proof. To check that FP1 is not 1-based, take a1 and a2 two points linked by a path.

By the characterization of independence we have a1 � |�∅ a2. On the other hand, notice

that acl({a}) = {a} for every point a, in particular acl(a1) ∩ acl(a2) = {a1} ∩ {a2} = ∅.
Therefore a1 � |�acl(a1)∩acl(a2) a2 and FP1 is not 1-based.

On the other hand, take c̄ a tuple and A ⊂ B such that acl(c̄A)∩acl(B) = acl(A). If ai is

any element in cb(c̄/A), then there is a path γi from c̄ to A, where ai is the first element

of γi in A. If bi is the first element of γi in B, then bi ∈ acl(c̄A) ∩ acl(B) = acl(A) and

bi = ai. Hence ai ∈ cb(c̄/B) and cb(c̄/A) ⊂ cb(c̄/B). Thus FP1 is CM-trivial.

Definition 5.4.8. A stable theory is 2-based if for every type p = tp(b̄/A) and for all b̄1
and b̄2 realizations of p independent over A, we have that cb(b̄/A) ⊂ acl(b̄1b̄2).

Proposition 5.4.9. The theory FP1 is 2-based.

Proof. Consider p = tp(b̄/A) such that C = cb(b̄/A) and let b̄1 and b̄2 be realizations

of p independent over A. If A = ∅ then there is nothing to prove. If not, take any

element c ∈ C. Since C = cb(b̄i/A) for i = 1, 2 there exists a point bi ∈ b̄i such that

c = proj(bi/ acl(A)). On the other hand b1 and b2 are linked because both are linked to

c, hence the path connecting them must pass through C, then, it must pass through c
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because c is the projection of b1 and b2 over C. Therefore c ∈ acl(b1b2) ⊂ acl(b̄1b̄2). This

implies that C ⊂ acl(b̄1b̄2).

Proposition 5.4.10. The theory FP1 is equational.

Proof. The theory FP1 has quantifier elimination by adding the predicates dn(x, y) for

naming the distances. Consider the predicates d≤n(x, y) saying that the distance between

x and y is less or equal than n. Clearly the predicates d≤n(x, y) are Boolean combina-

tion of the predicates dn(x, y) and viceversa. Then every formula ϕ(x̄, ȳ) is a Boolean

combination of formulas of the form d≤n(xi, yi) where xi ∈ x̄ and yi ∈ ȳ. Therefore, to

see that FP1 is equational it suffices to prove that d≤n(x, y) is an equation. Moreover,

using Fact 5.2.2, it suffices to check that d≤n(C, b) is indiscernible-closed for any point b.

Take (ai)i≤ω an ∅-indiscernible sequence such that d≤n(ai, b) for every i ≥ 1. Since the

elements ai are linked between each other for i ≥ 1 (because they are all linked to b) and

the distance d(ai, aj) is a constant (by indiscernibility), then they are linked through the

same point b′, which is between ai and b for every i ≥ 1.

Notice that b′ ∈ dcl(b1b2), then by indiscernibility we have that d(a0, b′) = d(ai, b
′) for

every i ≥ 1. Using this we conclude that

d(a0, b) ≤ d(a0, b
′) + d(b′, b)

= d(a1, b
′) + d(b′, b)

= d(a1, b) (Since b′ is between a1 and b)

= n

Thus, the element a0 is in d≤n(C, b) and d≤n(C, b) is indiscernible-closed.

We are going to show that FP1 is in I3, for this we need to understand ∅-indiscernible

sequences. The behaviour of those sequences motivates the following definition.

Definition 5.4.11. Assume that A and C are finite sets. A star of A over C is an

infinite set S of realizations of tp(A/C) such that, for every Ai and Aj different elements

in S, and γi, γj are paths from Ai to C and from Aj to C respectively, we have that

γi ∩ γj ⊂ C.



Chapter 5. Equationality 72

Remark 5.4.12. Assume S is a star over C and take Ai and Aj in S. If Ai is linked

to C then so is Aj , as the have the same type over C. Hence Ai and Aj are linked.

Moreover, any path from Ai to Aj must go through C. Then Ai |�C
Aj . By triviality of

forking, we have that S is an independent subset over C.

Our next goal is to characterize indiscernible sequences over ∅. Let us study first se-

quences of the form I = {āi}i<ω, where āi is connected for some (all) i < ω.

Lemma 5.4.13. Assume that ā0 is connected. A infinite sequence I = (āi)i<ω is indis-

cernible over ∅ if and only if āi ≡ ā0 for every i, and it has one of following mutually

exclusive forms:

1. For every i �= j, we have that āi is not linked with āj . In this case, the sequence I

is a star of ā0 over c, where c is any element which is not linked to any āi.

2. For every i �= j, we have that āi is linked with āj and āi ∩ āj = ∅. In this case I is

a star of ā0 over c, where c is a point in dcl(ā0ā1) such that d(c, āi) = n for a fixed

natural number n.

3. For every i �= j, we have that āi is linked with āj and āi ∩ āj = C �= ∅. In this

case, the sequence I is a star of ā0 over C.

Proof. (⇒) Let I be an ∅-indiscernible sequence.

Case 1. Assume āi is not linked to āj . Take any c which is not linked to any āi, then

āi1 ...āinc ≡ āj1 ...ājnc, for any i1, ..., in and j1, ..., jn pairwise distinct. Thus I is a star

over c.

Case 2. Assume that āi is linked with āj and āi ∩ āj = ∅ for every i �= j. Then there is

a unique minimal path γi,j connecting āi and āj . Moreover the length of the paths γi,j
is a constant n > 0. Now, take āi, āj and āk three different tuples of I and consider the

paths γi,j , γj,k and γi,k. As there are no cycles, the paths γi,j and γi,k must intersect the

path γj,k in the same point ci,j,k ,i.e. γi,j ∩ γi,k ∩ γj,k = {ci,j,k}. By indiscernibility of I,

we have that ci,j,k = ci′,j′,k′ = c for every i′, j′, k′. Moreover, again by indiscernibility,

the distance d(c, āi) is constant for every i. This implies that I is a star of ā0 over c.

Case 3. Assume that āi is linked with āj and āi ∩ āj = C �= ∅ for every i �= j. By

indiscernibility, we have that I is a set of realizations of ā0 over C. Moreover, any

path from āi to C is contained in āi, hence, if γi and γj go from āi to C and āj to C

respectively, then γi ∩ γj ⊂ āi ∩ āj = C. Thus, the sequence I is a star of ā0 over C.

(⇐) Assume that I has one of these forms, then, by, Remark 5.4.4 it is ∅-indiscernible.
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Lemma 5.4.14. Assume ā is a connected tuple and let c be a single element connected

to ā. Let us consider the sets:

D = {(ā′, c′) | ā′ |= tp(ā/c) and c′ is in the path between c and proj(c/ā)}.

E = {S |S is a star of ā′ over c′, where (ā′, c′) ∈ D}

Then we have that icl(tp(ā/c)) =
⋃

S∈E S.

Proof. Take p = tp(ā/c). Notice that, for every S ∈ E , the set S ∩ p is infinite: take

S ∈ E a star of ā′ over c′, where (ā′, c′) ∈ D. Since ā |�c′ c and tp(ā/c′) is stationary,

then, for every ā′′ ∈ S such that ā′′ |�c′ c, we have that ā ≡cc′ ā
′′. In particular ā′′ |= p,

whenever ā′′ ∈ S with ā′′ |�c′ c. Notice also that there are infinitely many such ā′′ in

S, therefore, if b̄ ∈ S for some S ∈ E , then, by Lemma 5.4.13, we have that b̄ is in an

indiscernible sequence, which has infinitely many elements in p. Thus b̄ is in icl(p) and

icl(p) ⊃ ⋃
S∈E S.

To check the other inclusion, let I = (āi)i<ω be an indiscernible sequence such that

āi ∈ p for every i ≥ 1. Then, according to the Lemma 5.4.13, we have that I is a star

of ā0 over some set K. Note that proj(c/K) must be between ā1 and c. Let us call this

element k and construct a new star S′ of a0 over k, such that the elements of S′ \ {ā0}
do not intersect dcl(S ∪ c), outside {k}. Take any element ā′ ∈ S′ \ {ā0}, since ā0 ≡K ā1

and ā0 ≡k ā
′, we conclude that ā1 ≡k ā

′. Moreover c |�k
ā′. Therefore, by stationarity

ā′ ≡ck ā1. In particular ā′ is in p, this implies that S′ is the star of ā′ over k, where

(ā′, k) ∈ D. Therefore icl(p) ⊂ ⋃
S∈E S.

This description of icl(tp(ā/c)) is useful as it helps to visualize why icl is idempotent:

since icl covers all the possible stars with infinitely many elements in p, then, by applying

icl twice, we do not get new stars. However, to make this intuition more precise, we need

to describe icl(p) in another way:

Definition 5.4.15. Let p = tp(ā/c) and f be the function on q = tp(ā/∅) defined as

follows:

If b̄ ∈ p, then f(b̄) = proj(c/b̄).

If b̄ /∈ p, then f(b̄) is the element that satisfies b̄f(b̄) ≡ āf(ā). (i.e. the position of f(b̄)

in b̄ is the same of f(ā) in ā).
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Lemma 5.4.16. Let n be the distance d(ā, c) and consider the set

J = {ā′ ≡ ā | d(f(ā′), c) = n− 2k, for some natural k}.

Then we have that icl(p) = J .

Proof. Using the previous lemma it suffices to show that

⋃
S∈E

S = J

Let b̄ ∈ ⋃
S∈E S, then b̄ is in the star of some element ā′ ∈ p over some element c′ such

that c′ is between c and ā′. Hence, either d(f(b̄), c) = n (and b̄ ∈ J) , or f(b̄) is in the

path between c and c′. Therefore

d(f(b̄), c) = d(c′, c)− d(f(b̄), c′)

= n− d(f(b̄), c′)− d(f(b̄), c′).

Naming k = d(f(b̄), c′) we get that b̄ ∈ J . Thus, we have
⋃

S∈E S ⊂ J .

Assume now that b̄ ≡ ā and d(f(b̄), c) = n − 2k. Let γ(f(b̄), c′) be a path of length k

from f(b̄) to a new vertex c′ and such that γ ∩ dcl(b̄, c) = f(b̄). Now consider a star S

of b̄ over c′. For all āi ∈ S with āi �= b̄ we have that d(f(āi), c) = d(f(b̄, c)) + 2k = n.

Hence āi is in p and the element c′ is between āi and c. Therefore we conclude that

b̄ ∈ ⋃
S∈E S. Hence

⋃
S∈E S ⊃ J .

With the last characterization we are now ready to prove the following:

Proposition 5.4.17. Let ā be connected and C = dcl(cb(ā/C)). Then we have icl2(tp(ā/C)) =

icl(tp(ā/C)) .

Proof. Let p = tp(ā/C). We want to show that icl2(p) = icl(p).

Case 1: Assume C = ∅, then, if ā ∈ icl(p), then there exists a sequence (āi)i≥1 of

realizations of p such that (āi)0≤i is ∅-indiscernible. In particular tp(ā0/C) = tp(ā0) =

tp(ā1) = tp(ā1/C). Therefore ā0 |= p and icl(p) = p.

Case 2: Assume C has more than one element. Take any two elements c and c′ of C.

Then there are a and a′ in ā such that c = proj(a/C), and c′ = proj(a′/C). As ā is
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connected and C is definable closed, then that the path from a to a′ passes through c

and c, in which case c and c′ are both in ā. Since this is true for every c and c′ in C,

we conclude that C ⊂ ā. On the other hand, any indiscernible sequence I with infinitely

many elements in p must be indiscernible over C. Therefore icl(p) = p.

Case 3: Assume that C = {c}.

By Lemma 5.4.16 we know that

icl(tp(ā/c)) =
⋃

ā′∈J
tp(ā′/c)

Therefore

icl 2(tp(ā/c)) =
⋃

ā′∈J
icl(tp(ā′/c)).

It remains to check that, if ā′ ≡ ā and d(f(ā′), c) = n− 2k, then

icl(tp(ā′/c)) ⊂ icl(tp(ā/c)).

If b̄ ∈ icl(tp(ā′/c)), then there exist a tuple ā′′ ∈ tp(ā′/c) and an element c′′ between ā′′

and c such that b̄ is in a star of ā′′ over c′′. Hence

d(f(b̄), c)) = d(c′′, c)− d(f(b̄), c′′)

= d(ā′′, c)− d(f(b̄), c′′)− d(f(b̄), c′′)

= d(ā′′, c)− 2d(f(b̄), c′′)

Since ā′′ ∈ icl(p), we have d(ā′′, c) = n − 2k for some k. Naming l = d(f(b̄, c′′)), we get

d(f(b̄), c)) = n− 2(k + l). Therefore b̄ ∈ icl(tp(ā/c)) and the conclusion follows.

Finally, we need to consider canonical types tp(ā/C) where ā is not connected.

Proposition 5.4.18. Let I = (āib̄i)i<ω be an indiscernible sequence where ā0 is not

linked with b̄0. Then no āi is linked to b̄j with i �= j.

Proof. Recall that FP1 is stable, hence I is an indiscernible set. Assume there exists

i �= j such that āi is linked with b̄j . Then, by indiscernibility, the tuple āi is linked with

b̄j for every i �= j. In particular, we have the following path: ā0 − b̄1 − ā2 − b̄0, which is

a contradiction.
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Proposition 5.4.19. Let p = tp(ā/C) be a canonical type, then icl(p) = icl2(p).

Proof. We may assume that ā = dcl(ā), let ā1...ān be its connected components. We

may also assume that C = C1 ∪ ... ∪ Cn where Ci = cb(āi/C). Set pi = tp(āi/Ci).

We have that p = {b̄1...b̄n | b̄i |= pi and b̄i is not linked to b̄j for i �= j}. By the previous

proposition, it follows that

icl 2(p) = {b̄1...b̄n | b̄i ∈ icl 2(pi) and b̄i is not linked to b̄j for i �= j}.

Finally, as pi is the canonical type of a connected component we have icl(pi) = icl2(pi).

Hence icl(p) = icl2(p), which is the desired conclusion.

From the previous lemma we may conclude the main result.

Corollary 5.4.20. The theory FP1 is in I3.

Question 5.4.21. Let FPn be the theory of the n-dimensional free pseudospace. Is FPn

in In+2?

Question 5.4.22. If T is CM-trivial, then is it in I3?
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