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des noyaux thermoacoustiques avec application à la
conception de moteurs thermoacoustiques

Methods for the transfer matrix evaluation of thermoacoustic
cores with application to the design of thermoacoustic engines

Résumé

La conception d’un moteur thermoacoustique dépend de
façon critique de la fiabilité des outils de prédiction
théorique de ses performances. Une tentative pour
réussir cette prédiction consiste à exploiter les
coefficients de la matrice de transfert du noyau
thermoacoustique (NTA) dans les modèles analytiques
du moteur considéré. La matrice de transfert peut être
obtenue soit par modélisation analytique, soit par des
mesures acoustiques. Ce dernier cas, cependant, se
présente comme une option intéressante pour éviter
d’avoir à considérer la complexité des éléments
constitutifs du NTA. La méthode analytique est tout
d’abord présentée ; elle ne vise que les cas de matériaux
à géométrie simple. En ce qui concerne l’approche
expérimentale, une méthode classique à deux charges
est appliquée dans deux configurations différentes et, en
outre, une méthode alternative basée sur des mesures
d’impédance est développée ici et appliquée également.
Une comparaison entre ces deux approches est évaluée
au moyen d’une analyse de sensibilité. Différents
matériaux sont testés, chacun jouant le rôle de l’élément
poreux à l’intérieur d’un NTA soumis à plusieurs
gradients de température. Seulement la méthode
alternative s’avère performante pour tous les matériaux.
Les matrices de transfert mesurées sont utilisées dans
des modèles dédiés à prédire la fréquence de
fonctionnement et le gain d’amplification
thermoacoustique intrinsèque d’une machine équipée du
NTA caractérisé au préalable. Une analyse comparative
montre dans quelles conditions le seuil de
déclenchement thermoacoustique est prévu ou non pour
chaque matériau ; elle révèle aussi les limites
dimensionnelles de l’appareil expérimental pour mieux
répondre aux estimations de performances.

Abstract

The design of a thermoacoustic (TA) engine is improved
towards the reliability of its performance prediction. An
attempt to succeed in this prediction comes from the
knowledge of the TA core (TAC) transfer matrix, which
can be exploited in analytical models for the given
engine. The transfer (T) matrix itself may be obtained
either by analytical modeling or acoustic measurements.
The latter consist in an interesting option to avoid
thermo-physical or geometrical considerations of
complex structures, as the TAC is treated as a black box.
However, before proceeding with the experimental
approach, an analytical solution is presented for
comparison purposes, but it contemplates only cases of
materials of simple geometry. Concerning the
experimental approach, a classical two-load method is
applied in two different configurations and an alternative
method based on impedance measurements is here
developed and applied. A comparison between these
approaches is evaluated by means of a sensitivity
analysis. Different materials are tested, each one playing
the porous element allotted inside the TAC, which is in
its turn submitted to several different regimes of steady
state temperature gradient. The alternative method is
the only one successful for all materials. In this manner,
the measured transfer matrices are applied into a proper
modeling devoted to predict both the operating frequency
and the intrinsic TA amplification gain. A comparative
analysis shows in what conditions the TA threshold is
expected or not for each material ; it also reveals the
limitations of the experimental apparatus in what
concerns the appropriate dimensions to better fit the
performance investigations.

Mots clés

Thermoacoustique, acoustique, impédance acous-
tique, matériaux poreux, résonance

Key Words

Thermoacoustics, acoustics, acoustic impedance,
porous materials, resonance
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Os dias que estes homens passam nas montanhas são os dias em que
realmente vivem. Quando a mente se limpa das teias de aranha e o sangue
corre com força pelas veias. Quando os cinco sentidos recobram a vitalidade
e o homem completo se torna mais sensível, e então já pode ouvir as vozes da
natureza, e ver as belezas que só estão ao alcance dos mais ousados.

Reinhold Messner

Les jours que ces hommes passent dans les montagnes sont des jours durant
lesquels ils vivent réellement. Quand l’esprit se lave des toiles d’araignées et
que le sang coule avec force dans les veines. Quand les cinq sens retrouvent
leur vitalité et que l’homme entier devient plus sensible, il peut alors écouter
les voix de la nature et voir les beautés à portée des plus audacieux.

Reinhold Messner

The days that these men are in the mountains are the days when they actually
live. When the mind is clean of cobwebs and blood runs strongly through the
veins. When the five senses regain vitality and the complete man becomes
more sensitive, so he can listen to the voices of nature, and see the beauties
that are only within the reach of the boldest.

Reinhold Messner
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1 INTRODUCTION

Thermoacoustic machines belong to the family of cyclic thermodynamic machines that
exchange heat and work with their environment. Like any thermodynamic machine, they have
two operating modes depending on the direction of energy exchange: the engine mode for which
the system uses the heat transfer from a hot source to a cold source to produce acoustic work
and the heat-pump mode for which the system uses the acoustic energy produced by an external
source to extract heat from a cold reservoir. The thermoacoustic effect on which the operation
of these engines is based comes from the interaction between acoustic oscillations in a fluid and
a temperature gradient imposed along the walls of a porous material (usually called "stack" or
"regenerator", depending on whether the heat contact is quasi-adiabatic or quasi-isothermal).

The development of efficient thermoacoustic engines is largely due to the work carried out
at Los Alamos National Laboratory (USA), including the development of the software Delta-E
(Ward, 1994) (then Delta-EC (Ward et al., 2008)). Delta-EC is a robust tool dedicated to the
design of thermoacoustic systems and remains the most widely used tool to date. However, al-
though it is suitable for calculating the performance of thermoacoustic machines, Delta-EC has
some shortcomings implicitly related to the theory on which it is based. First, Delta-EC is based
on a one-dimensional approach of the thermoacoustic effects and therefore does not take into
account any variation in transverse fields, which can play a significant role in the amplification
process of the wave. Moreover the modeling of thermoacoustic instability is described in steady
state and ignores the transient regime which may contain important information about the non-
linear processes responsible for saturation (Swift, 1992; Yu et al., 2003; Penelet et al., 2002).
Finally, Delta-EC is based on the linear theory of thermoacoustics (Rott, 1980; Swift, 1988)
and the only saturating processes taken into account are the acoustically induced heat flux and
singular head losses at the edges of the stack. These limitations require the development of tools
to describe what Delta-EC can not predict and lead to the following questions: what theoretical
approach can be adopted for the description of the thermoacoustic amplification from the onset
until the saturation amplitude? What methods can be used to avoid uni-dimensional consider-
ations and simplifying assumptions regarding the distribution of temperature, the presence of
heat exchangers or the thermophysical properties of regenerators?

In response to the last question, the Laboratoire d’Acoustique de l’Université du Maine
(LAUM) has recently launched work on the theoretical description and the design of thermoa-
coustic engines, using the formalism of transfer matrices. In this context, the thermoacoustic
core (TAC) is considered as a black box and its transfer matrix is obtained experimentally (Gue-
dra et al., 2011). The TAC is the element of a thermoacoustic engine in which the temperature
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field is heterogeneous. It is divided into an “active” and a “passive” part (Fig 1.1). The “active”
part consists of an open cell porous material (stack or regenerator) equipped with a hot (HHX)
and an ambient (AHX) heat exchangers at its ends. These heat exchangers are used to main-
tain a steep temperature gradient, which is responsible for the onset of large amplitude acoustic
waves oscillating at the frequency of the most unstable acoustic mode of the complete device.
The “passive” part is the so-called thermal buffer tube (TBT), which refers to the waveguide
region between the HHX and a secondary AHX. The TAC is generally surrounded by an acous-
tical network to compose a resonant device in which a mechanical (acoustic) power is produced
by thermoacoustic energy conversion. This acoustic power can then be supplied to an acoustic
load, e.g. an electrodynamic alternator, as illustrated in Fig. 1.1.

Even below the threshold of thermoacoustic instability, the theoretical description of
acoustic propagation and heat transfer through the thermoacoustic core (TAC) is anything but
simple. This is essentially due to the fact that thermoacoustic engines make use of geometri-
cally complicated materials (piles of stainless meshes, metallic foams) whose thermophysical
parameters are unknown. Moreover, the accuracy of the description of acoustic propagation
through the TAC also depends critically on the shape of the temperature field within the TAC,
the latter being very difficult to describe theoretically. Therefore, alternative methods allow-
ing the description of the TAC shall be developed. In a previous study carried out in LAUM,
a stack-based TAC has been characterized experimentally. Guedra et al. (2011) performed the
measurement of the transfer matrices of a heated TAC by means of a classical "two load - four
microphone" method (Boden, 1986). These transfer matrices were then introduced into an ana-
lytical model which predicts the onset of self-sustained oscillations in a thermoacoustic device.
Experimental data obtained from a stack made up of a 600 cells per square inch (cpsi) ceramic
catalyst have been introduced in the model and theoretical predictions of the onset conditions
were consistent with those actually observed in different engines equipped with this TAC. How-
ever, in the frame of this previous work, the method developed by Guedra et al. has not been
tested to describe the behaviour of a heated regenerator-based TAC.

Therefore, the aim of this thesis is twofold. First, in the continuation of the works by
Guedra et al., it is to investigate alternative methods for the experimental characterization of
a TAC, allowing accurate description of both stack-based and regenerator-based TAC made
of different materials besides the Ceramic Catalyst 600 cpsi, such as a Reticulated Vitreous
Carbon Foam, a Nichrome Foam, and a Pile of Stainless Steel Grids. Second, it is to introduce
the experimental data obtained from these alternative methods into an analytical modeling for
the optimal design of different kinds of thermoacoustic engines, and the estimation of the onset
of self-sustained oscillations.
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After a brief history of thermoacoustics given in Chapter 1, the theoretical basis of ther-
moacoustics are recalled in Chapter 2. In particular, characteristic equations of thermoacoustic
devices are derived using the formalism of the transfer matrices. The solution of such equa-
tion allows the description of the onset of self-sustained oscillations in a thermoacoustic engine
(in terms of working frequency and amplification rate (Guedra et al., 2011)). This theoretical
method requires the knowledge of the transfer matrix of the TAC. Different experimental pro-
cedures to measure the coefficients of the transfer matrix (including the procedure developed
by Guedra et al.) are presented and evaluated in Chapter 3. Finally, using the knowledge of
the transfer matrices of different TAC tested in Chapter 3, the design of several thermoacoustic
systems is discussed in Chapter 4.
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Figure 1.1: Schematic view of a thermoacoustic engine. In this example, the acoustic load is a
linear alternator.

1.1 Literature review and historical context

Thermoacoustic wave generators (or engines) are made of acoustic resonators in which
the interaction between acoustic and thermal oscillations in the vicinity of solid walls subjected
to a high temperature gradient produces a conversion of thermal energy into acoustic energy.
This thermoacoustic process aroused the interest of the scientific community of the late XVIIIth

century when Byron Higgins succeeded in creating acoustic oscillations in a tube with a flame
judiciously placed on the wall of a resonator (Higgins, 1802). Other types of this kind of devices
have been realized in the late XIXth century since the Sondhauss tube (Sondhauss, 1850) or the
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Rijke’s tube (Rijke, 1859). A first theory of thermoacoustic interaction (between acoustic and
thermal fields) was given in 1868 by Kirschhoff, who introduced the conduction of heat in
the theory of sound propagation. Based on this work, a first qualitative interpretation of the
Sondhauss tube was given by Lord Rayleigh in 1896 (Strutt, 1945). In this work, Rayleigh
specially emphasizes that the acoustical temperature oscillations of a fluid particle located near
a wall subjected to a high temperature gradient must necessarily be phase-shifted with respect
to the particle displacement, so that the thermoacoustic amplification process occurs. In his
original words:

"In almost all cases where heat is communicated to a body expansion ensues, and this

expansion may be made to do mechanical work. If the phases of the forces thus operative be

favorable, a vibration may be maintained ... . For the sake of simplicity, a tube, hot at the closed

end and getting gradually cooler towards the open end, may be considered. At a quarter of

period before the phase of greatest condensation ... the air is moving inwards, i.e. towards the

closed end, and therefore is passing from colder to hotter parts of the tube; ... but in fact the

adjustment of temperature takes time, and thus the temperature of the air deviates from that of

the neighboring parts of the tube, inclining towards the temperature of that part of the tube from

which the air has just come. From this it follows that at the phase of greatest condensation heat

is received by the air, and at the phase of greatest rarefaction heat is given up from it, and thus

there is a tendency to maintain the vibrations."

In the 1960s, an important step was taken by Carter et al. (1962), who devised an "op-
timized" Sondhauss tube by adding a stack of plates (stacks) in the resonator, thereby signifi-
cantly increasing the machine efficacy and efficiency. This device, schematically represented in
Fig. 1.2, belongs to the class of standing-wave thermoacoustic engine. In this system, when the
temperature gradient along the stack of plates reaches the instability threshold, self-sustained
acoustic oscillations of high amplitude (about 1 to 10 percent of the static pressure) take place
in the resonator at the frequency of the most unstable mode, which usually is, in a first approx-
imation, the longitudinal half-wave mode.

Based on Carter’s work, many studies have been carried out ever since, and several pro-
totypes of thermoacoustic engines have been realized. From 1970 to 1990, Rott (1969, 1973,
1980) established the theoretical foundations of thermoacoustics and provided an analytical
model of the instability caused by the thermoacoustic interaction in the tubes of Taconis and
Sondhauss. The experimental work of Yazaki et al. (1980a,b) qualitatively confirmed the valid-
ity of the theory of Rott. Since the early 1980s, research in thermoacoustic intensifies, notably
through the work carried out at the Los Alamos National Laboratory (e.g. Swift (1988)). If the
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Figure 1.2: Scheme of a standing-wave thermoacoustic engine with closed extremities and a
representative example of a non-uniform temperature profile along its longitudinal axis.

thermoacoustic processes could have been considered at first as a simple scientific curiosity, its
use as a converter of thermal energy into mechanical energy constitutes a real challenge itself.
Indeed, there are many potential applications of this kind of machines combining simplicity,
robustness and reasonable efficiency (Garrett, 2004). Since then, efforts have been made to
improve the performance of either thermoacoustic devices. That led, for example, to the devel-
opment of a cascade thermocoustic engine (Gardner, 2003), where the overall engine efficiency
is enhanced by means of combining several elementary engines, to better use the available en-
ergy. In this sense, de Blok (2010) developed a power generator where only a low temperature
difference is required to make it work; such a system has a strong environmental impact since it
allows the harvesting of waste heat. Simultaneously, important efforts have been made towards
the thermoacoustic efficiency by improving the comprehension of the nonlinear processes in-
volved when the acoustic wave saturation occurs in thermoacoustic engines (Penelet, 2004;
Penelet et al., 2002), and also by developing models for the temperature distribution along their
heated sections (Penelet et al., 2005b,a).

1.2 Thermoacoustic principle

The process of interaction between a fluid and a solid wall resulting in the conversion of
thermal energy into acoustic energy involves complex processes and requires accurate modeling
(Bailliet, 1998; Job, 2001; Rott, 1980). However, a simplified approach allows to understanding
the main mechanisms involved in the apparatus of Fig. 1.2. For that, it is considered a fluid
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particle in the vicinity of a solid wall of the stack, along which a strong temperature gradient
∇T is set (Fig. 1.3 (a)). The temperature of the particle at rest, under a given static pressure
P0, is imposed by the presence of the wall (whose thermal inertia is assumed to be very large
compared with that of the fluid). Supposing that the thermodynamic state of the particle fluctu-
ates under the influence of a sinusoidal stationary sound field, thus this particle oscillates in a
consequent sinusoidal motion, to which are associated small oscillations of sound pressure p(t)
(p << P0) in phase with the acoustic particle displacement ξ(t) (or in phase quadrature with
the acoustic velocity). The acoustic pressure oscillations are associated with temperature oscil-
lations; the latter which are assumed, in a first approximation, in phase with the first ones (Fig.
1.4 (a), solid line). This is a valid hypothesis when the particle motion is under quasi-adiabatic
conditions, which means temperature oscillations small enough (and fast enough either) to ren-
der negligible the heat transport between adjacent particles. As an illustrative example of the
orders of magnitude involved, a particle of air submitted to a sinusoidal free field at a frequency
of 1kHz, whose pressure level reaches the pain threshold of the human ear (Pmax = 20Pa), has
its amplitude of temperature oscillations reaching only Tmax ≈ 10−2K, and its displacement
amplitude ξmax is of the order of 10−5m. That stated, each thermodynamical process follows a
harmonic cycle. However, an additional simplification helps to understanding of fundamental
physical phenomena involved. That would be the particle motion being represented no longer
by a sinusoidal temporal profile, but actually by a square profile instead (Fig. 1.4 (a), dashed
line). Four phases are then clearly distinguished in one cycle: adiabatic compression, isobaric
expansion, adiabatic expansion, and isobaric compression. The adiabatic condition is approx-
imated whether these processes are considered sufficiently fast, while the heat transfer occurs
during the isobaric processes between the fluid particle and the wall solid surface. The cycle fol-
lowed by the particle has its shape shown in Fig. 1.3 (b)-(e), when the temperature gradient∇T
applied to the wall is such that ξmax∇T > τmax. Thus, the particle receives a quantity of heat
Q during its compression phase and returns a quantity of heat Q′ during its expansion phase.
This same cycle in four phases can be represented schematically following a Clapeyron diagram
(Fig. 1.4 (b) and (c)). It then becomes clear that during the motion of the particle, a quantity of
heat Q−Q′ has been converted into mechanical work (i.e. acoustic energy), represented by the
shaded area.

In reality, the heat exchange mechanism between fluid and wall is of course far more
complex than suggested by the previous remarks. In fact, to fully understand the real thermoa-
coustic amplification process, special attention must be paid to the phase relations between
oscillations of pressure, particle velocity and acoustic temperature. As indicated above, the
temperature variations of a fluid particle are related to its compression-relaxation and the
local wall temperature. The distance between fluid particle and wall is therefore an important
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Figure 1.3: Engine cycle followed by a fluid particle under the influence of an acoustic standing
wave in the vicinity of a solid wall which is subjected to a temperature gradient∇ T. (a) Particle
initially at rest. (b) Adiabatic compression. (c) Isobaric expansion. (d) Adiabatic expansion. (e)
Isobaric contraction.

parameter regarding the nature of heat exchange process: "far" from the wall, the process is
adiabatic and the temperature oscillates over time and phase with the acoustic pressure; "close"
by the wall, the process is isothermal and the fluid particle has its temperature imposed at each
instant by the local temperature of the wall. But for a particle of fluid located at a distance of
the order of a boundary layer thickness δκ of the wall, the thermal contact between particle
and wall is "good enough" for the heat exchange to take place, but "bad enough" for this
heat exchange to not result in an instantaneous change of temperature in the fluid particle;
actually, at this intermediary region there is a delay in the heat exchange, or, more precisely, a
phase shift between particle motion and heat transfer (δκ =

√
2κ/ω, where δκ is the thermal

penetration depth, κ is the thermal diffusivity of the fluid, and ω is the angular frequency).
This is indeed the phase shift between oscillations of temperature and acoustic pressure that
is responsible for the energy conversion, and the cycle followed by the particle is analogous
to the diagram in Fig. 1.4 (c). In summary , only fluid particles located at a distance of the
order of a thermal boundary layer thickness effectively contribute to the thermoacoustic energy
conversion. Therefore, a stack whose pores (i.e. inter-wall distance) are properly sized for the
distance δκ is optimized for the thermoacoustic conversion, since the amount of "effective"
fluid is maximized.
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Figure 1.4: (a) Sinusoidal and "articulated" time evolution, respectively represented by solid
lines and dotted lines, of the acoustic variables of pressure (p), temperature (τ ) and displacement
(ξ) for an acoustic standing wave. Points O, A, B, C and D correspond to the states (a), (b), (c),
(d) and (e) of Fig. 1.3. (b) Clapeyron diagram of an "articulated" acoustic cycle. (c) "Real"
Clapeyron diagram.

To resume, this cycle approaches to an ideal Brayton cycle, as illustrated in Fig. 1.5, and
therefore it operates in an intrinsically irreversible cycle due to the finite temperature difference
in the heat transfer processes. This cycle results in a positive acoustic work production, like
a thermal engine. However, as well known from the laws of thermodynamics, an inversion in
its processes leads the system to operate as a "heat pump". Indeed, it clearly appears on the
schematic cycle of Fig. 1.3 that if the temperature gradient applied along the wall is such that
ξmax∇T < τmax, the orientation of thermoacoustic heat transfer from one end of the stack to
another is inverted (here, from left to right), so that a temperature gradient is established and
maintained along the stack.

Figure 1.5: The ideal Brayton cycle with the corresponding states of Fig. 1.4.

In the case of traveling-wave systems, the thermoacoustic principle operates differently.
The main difference relies in the fact that the acoustic pressure and the volume velocity are in
phase (and the displacement is π/2 rad out of phase with the acoustic pressure, consequently),
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what leads to approximate to an isothermal heat transfer between the fluid particle and the solid
wall. This feature leads the cycle to approach to a Stirling cycle, which is ideally reversible. To
enhance this approximation, the fluid particle must oscillate in very close thermal contact with
the solid surfaces of the porous material, whose pores therefore result much thinner than in the
case of standing-wave systems. Besides, the porous material shall possess a higher thermal con-
ductivity, so as to allow an adequate oscillating heat transfer in such a condition; that promotes a
regenerative cycle. As a consequence, the traveling-wave thermoacoustic systems tend to be, in
principle, more efficient than the standing-wave ones. However, there are some disadvantages
that may risk this preponderance and should be managed, such as the higher susceptibility to
acoustic streaming and viscous losses due to the smaller pores, among others.

Analogously to Figs. 1.3, 1.4, and 1.5, the traveling-wave thermoacoustic cycle is dis-
played in Fig. 1.6. Figure 1.6 (a) shows the following six ideal processes: A-B: reversible adi-
abatic compression; B-C: isothermal and reversible heat transfer; C-D: reversible adiabatic ex-
pansion; D-E: reversible adiabatic expansion; E-F: isothermal and reversible heat transfer; F-A:
reversible adiabatic compression. All these processes are in accordance with Figs. 1.6 (b) and
1.6 (c).
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Figure 1.6: (a) Engine cycle followed by a fluid particle under the influence of an acoustic
traveling wave in the vicinity of a solid wall which is subjected to a temperature gradient ∇
T. (b) Sinusoidal and "articulated" time evolution, respectively represented by solid lines and
dotted lines, of the acoustic variables of pressure (p), temperature (τ ) and displacement (ξ) for
an acoustic standing wave. (c) The ideal Stirling cycle with the corresponding states.
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2 THERMOACOUSTIC PROCESSES: THE FUNDAMENTAL MOD-
ELING

This chapter deals with the analytical description of the thermoacoustic processes. Fun-
damental equations governing thermoacoustics are presented in Section 2.1. Then, analytical
expressions are given for the transfer matrices of several acoustic two-ports submitted (Section
2.3) or not submitted (Section 2.2) to a temperature distribution. Lastly, Section 2.4 is devoted
to the characteristic equation of a thermoacoustic device.

2.1 Fundamental equations of thermoacoustics

2.1.1 Primary equations of dissipative fluids

The movement of a fluid particle is described by the following set of equations:

- the conservation of mass equation,

∂ρ

∂t
+
−→
5 · (ρ~v) = 0, (2.1)

where ρ is the density of the fluid and ~v is the particle velocity,

- the Navier-Stokes vectorial equations expressing the conservation of momentum

ρ
d~v

dt
= −
−→
5p+ µ

−→
52~v +

(
µv +

µ

3

)−→
5(
−→
5 · ~v), (2.2)

where p is the acoustic pressure and where µ and µv are the dynamic shear and volume
viscosities, respectively,
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- and the equation of energy conservation

ρT
dS

dt
=
−→
5 · (λ

−→
5T ) + σ · 5(~v) (2.3)

where T is the temperature of the fluid, S is the entropy, λ represents the thermal
conductivity of the fluid and σ is the stress tensor.

These conservation equations (Eqs. (2.1) to (2.3)) are complemented by the following
state relations considering the fluid as a perfect gas:

dρ = − ρ
T
dT +

γ

c2
0

dp, (2.4)

dS =
Cp
T
dT − 1

ρT
dp, (2.5)

where γ = Cp
Cv

is the polytropic coefficient of the fluid, where c0 =
√

γRgT

Mmol
is the adiabatic

speed of sound (Mmol being the molar mass of the fluid and Rg = 8.314J.mol−1.K−1 red the
perfect gas constant) and where Cp and Cv are the isobaric and the isochoric heat capacity of
the fluid, respectively.

2.1.2 Simplifying hypotheses

It is considered that the acoustic propagation occurs in a cylindrical tube (corresponding,
for example, to a stack pore). The diagram given in Fig. 2.1 shows the geometry of the problem
considered. The coordinate x represents the direction of acoustic propagation in a volume of
fluid located within a cylinder of radius R; y is the transversal coordinate, and r is the radial
coordinate. In the following, the dimensionless transverse coordinate η is hereby introduced:

η =
r

R
(0 ≤ η ≤ +1). (2.6)
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Figure 2.1: Coordinate system used for the problem modeling.

In order to obtain analytical expressions for the acoustic variables, a number of assump-
tions shall be formulated. In the framework of linear or weakly non-linear acoustics, the ther-
modynamic variables are expressed using a method of successive approximations in the form:

ξ = ξ0 + εξ1 + ε2ξ2 +O(ε3), (2.7)

where ξ represents either the pressure p, the density ρ, the temperature T , the entropy S or the
three components of the particle velocity ~v, and where ε is a small parameter (ε� 1) reflecting
the magnitude of each term.

In Eq. (2.7), the zero-order terms are the static components of the thermodynamic vari-
ables. Among them, the static pressure p0 is assumed to be constant and uniform, and the tem-
perature T0(x) is assumed to be inhomogeneous in the x direction of wave propagation. The
spatial temperature distribution also implies taking into account spatial variations of density
ρ0(x) and entropy S0(x). Finally, the fluid is assumed initially at rest in the absence of acoustic
disturbances so that ~v0 = ~0.

The first-order terms in Eq. (2.7) correspond to acoustic fluctuations, which are very low
in comparison to the static components. Under the assumption of a harmonic plane wave propa-
gating in the x direction and using the time convention −iωt, it is possible to write the acoustic
variables as

p1(x, t) = <
{
p̃1(x)e−iωt

}
, (2.8)

for the acoustic pressure, and
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ξ1(x, η, t) = <
{
ξ̃1(x, η)e−iωt

}
, (2.9)

where < is "the real part of ", and ξ1 represents the acoustic part of either the density
ρ1, the temperature τ1, the entropy s1 or the three components of the particle velocity ~v1. In
Eqs. (2.8) and (2.9), ω is the acoustic pulsation, and the symbol ∼ denotes for the complex
amplitudes of the acoustic variables.

The second-order terms are not taken into account here, but must be considered to de-
scribe higher order effects, such as acoustic streaming (Bailliet et al., 2001; Guedra, 2012b), for
example.

At last, under the boundary layer approximation, the transverse component of the particle
velocity is assumed to be very small compared to the longitudinal component (|v1,η| � |v1,x|),
and longitudinal variations of variables ξ1(x, η) are assumed to be small compared to the
transverse variations (∂x � ∂r).

2.1.3 Propagation equation governing the acoustic pressure

According to the asumptions mentioned above, the Navier-Stokes equation, Eq. (2.2),
applied to the x component of the particle velocity, ṽ1,x, reduces to

− iωρ0ṽ1,x = −∂p̃1

∂x
+
µ

η

∂

∂η

(
η
∂ṽ1,x

∂η

)
. (2.10)

Integrating Eq. (2.10) across the transverse variable, and taking into account a non-slip
condition on the walls (ṽ1,x(η = 1) = 0), the solution of Eq. (2.10) for the longitudinal compo-
nent of the acoustic velocity can be written as

ṽ1,x(x, η) =
1

iωρ0

∂p̃1

∂x
(1− Fν(η)) . (2.11)
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The function Fν in Eq. (2.11) depends on the geometry under consideration and accounts
for the viscous effects (Rott, 1980; Swift, 1988; Arnott et al., 1991). In the particular case of a
cylindrical guide of radius R, the function Fν takes the form:

Fν(η) =
J0

(
(1 + i)ηR

δν

)
J0

(
(1 + i) R

δν

) pour 0 ≤ η ≤ 1, (2.12)

where J0 is the zero-order Bessel function of the first kind. Equivalent expressions for Fν
can be obtained for guides with other section geometries, like rectangular, triangular, or, spe-
cially, for stacked plates (Arnott et al., 1991). Equation (2.12) introduces the critical parameter
in thermoacoustics, namely the ratio between the hydraulic radius and the viscous penetration
depth (the thermal penetration depth is analogous); in this case of the cylindrical pore, the hy-
draulic radius is taken into account by the transversal dimension R of the channel, and the
viscous penetration depth δν =

√
2ν
ω

depends on the frequency and on the kinematic viscosity
of the fluid ν = µ

ρ0
.

The linearization of the equation of heat transfer, Eq. (2.3), and of the state equations,
Eqs. (2.4) and (2.5), lead to expressions of the acoustic variables τ̃1, ρ̃1 and s̃1 as functions of
the acoustic pressure and its spatial derivatives, as following:

τ̃1(x, η) =
p̃1

ρ0Cp
[1− Fκ(η)]− 1

ω2ρ0

∂p̃1

∂x

∂T0

∂x

[
1− σFν(η)− Fκ(η)

σ − 1

]
, (2.13)

ρ̃1(x, η) =
p̃1

c2
0

[1 + (γ − 1)Fκ(η)] +
1

ω2

∂p̃1

∂x
T−1

0

∂T0

∂x

[
1− σFν(η)− Fκ(η)

σ − 1

]
, (2.14)

s̃1(x, η) = − p̃1

ρ0T0

Fκ(η)− Cp
ω2ρ0

∂p̃1

∂x
T−1

0

∂T0

∂x

[
1− σFν(η)− Fκ(η)

σ − 1

]
, (2.15)

where σ = ν
κ

is the Prandtl number and where the function Fκ accounts for thermal
effects. This function is defined analogously to Fν [cf. Eq. (2.12) for a cylindrical guide],
δν being replaced by the thermal penetration depth δκ =

√
2κ
ω

, where κ is the fluid thermal
diffusivity.
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At last, from Eqs. (2.11), (2.13), (2.14) and (2.15), and introducing thermo-viscous func-
tions averaged over the guide transverse coordinate,

fν,κ = 2

∫ 1

0

Fν,κηdη, (2.16)

the averaged acoustic variables are obtained in the following forms:

〈ṽ1,x〉(x) =
1

iωρ0

∂p̃1

∂x
(1− fν) , (2.17)

〈τ̃1〉(x) =
p̃1

ρ0Cp
[1− fκ]−

1

ω2ρ0

∂p̃1

∂x

∂T0

∂x

[
1− σfν − fκ

σ − 1

]
, (2.18)

〈ρ̃1〉(x) =
p̃1

c2
0

[1 + (γ − 1)fκ] +
1

ω2

∂p̃1

∂x
T−1

0

∂T0

∂x

[
1− σfν − fκ

σ − 1

]
, (2.19)

〈s̃1〉(x) = − p̃1

ρ0T0

fκ −
Cp
ω2ρ0

∂p̃1

∂x
T−1

0

∂T0

∂x

[
1− σfν − fκ

σ − 1

]
. (2.20)

In the case of a cylindrical guide, substituting Fν (respectively Fκ) by its expression of
Eq. (2.12) into Eq. (2.16) leads to the analytical expression for the thermo-viscous function fν
(respectively fκ):

fν,κ =
2δν,κ

(1 + i)R

J1

(
(1 + i) R

δν,κ

)
J0

(
(1 + i) R

δν,κ

) , (2.21)

where J1 is the first-order Bessel function of first kind.

The substitution of Eqs. (2.17) and (2.19) into the equation of mass conservation of Eq.
(2.1) linearized and averaged over the coordinate η leads to the propagation equation for sound
pressure in a dissipative medium in the presence of a temperature gradient:

∂2p̃1

∂x2
+

[
∂xT0

T0

(
1 +

fκ − fν
(σ − 1)(1− fν)

)
− ∂xfν

1− fν

]
∂p̃1

∂x
+k2

0

(
1 + (γ − 1)fκ

1− fν

)
p̃1 = 0, (2.22)
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where k0 = ω
c0

represents the lossless wavenumber. This differential equation is equivalent
to that given by Rott (1969) and Swift (1988, 2002) for an ideal gas and assuming that the
fluid thermal effusivity is negligible compared with that of the solid. When the temperature
distribution T0(x) is known, the solution of this differential equation can be obtained either
numerically (Ward, 1994; Ward et al., 2008) or analytically in an implicit form by transforming
the equation (2.22) in a Volterra integral equation of the second kind (Gusev et al., 2000; Job,
2001).

2.2 Analytical expressions for the transfer matrix of acoustic two-port

A thermoacoustic system can be seen as an assembly of several elements designated as
acoustic two-ports. In its simplest arrangement, an engine is a combination of a thermoacoustic
core (TAC) and a set of waveguides with various geometries (either cylindrical, rectangular, or
another one). Each of these acoustic two-ports may be (or not) submitted to an inhomogeneous
temperature distribution.

To describe the propagation of an acoustic wave in a thermoacoustic engine, each acoustic
two-port may be characterized by its transfer matrix (Guedra, 2012a; Ueda, 2008; Tu et al.,
2003). In this section, the analytical expression of the transfer matrix is derived in the case
of a straight duct, a porous material, and a tapered waveguide, as these are the classical two-
ports generally used for the design of a themoacoustic engine. The temperature distribution
along these elements is first considered homogeneous. The case of a non-uniform temperature
distribution is treated in Sec. 2.3.

Surely, powerful thermoacoustic engines do not consist of only such basic elements. They
also include parts of more complex geometries (Backhaus, 1999, 2000; Backhaus et al., 2004),
allowing either a diminution of nonlinear losses by means of semi-empirical design (jet pumps,
tapered tubes) or the improvement of the efficiency the system. The experimental determination
of the transfer matrix of such complex elements with a non-uniform temperature distribution is
the subject of the next chapter.

2.2.1 Conventions

In the following, the longitudinal dimension of the two-port is denoted by d and the co-
ordinate system is defined so that the entrance of the two-port is placed at the origin x = 0 and
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its output at x = d, with the plane wave propagation following the ~Ox axis. As illustrated in
Fig. 2.2, the volume velocity ũ1,x(0) at the entrance of the quadrupole is counted positive, while
ũ1,x(d) is positive as well, but located at the exit (anti-symmetric orientation).

u1

p1 p2

u2

Figure 2.2: Adopted pressure-volume velocity convention for the quadripole description; anti-
symmetric orientation.

The transfer matrix of the two-port corresponding to Fig. 2.2 is thus defined as following:

(
p̃1(d)

ũ1,x(d)

)
=

(
a b

c d

)
×

(
p̃1(0)

ũ1,x(0)

)
= T×

(
p̃1(0)

ũ1,x(0)

)
. (2.23)

2.2.2 Case of a straight waveguide

The Equation (2.22) defined in Section 2.1 describes the propagation of a plane wave
along the waveguide in the presence of a longitudinal temperature distribution. When the tem-
perature profile is assumed to be constant and equal to the ambient temperature Tc (∂xT0 = 0

and ∂xfν = 0 because the dynamic viscosity µ and the fluid density ρ0 do not depend on x) this
equation becomes

∂2p̃1

∂x2
+ k2p̃1 = 0, (2.24)

where the complex wavenumber

k = k0

√
1 + (γ − 1)fκ

1− fν
(2.25)
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takes into account the viscous-thermal coupling between the fluid and the waveguide walls
by means of the fν and fκ functions. The general solution of Eq. (2.24) is writing

p̃1 = Ãe+ikx + B̃e−ikx. (2.26)

Substituting this solution into Eq. (2.17) allows writing the axial component of the particle
velocity averaged over the guide section in the form

〈ṽ1,x〉 =

√
1+(γ−1)fκ

1−fν

ρ0c0

(1− fν)
(
Ãe+ikx − B̃e−ikx

)
. (2.27)

Introducing the guide cross section S and knowing that ũ1,x = S〈ṽ1,x〉, the volume veloc-
ity is then given below

ũ1,x =
1

Zc

(
Ãe+ikx − B̃e−ikx

)
. (2.28)

where Zc is the characteristic complex impedance of the waveguide defined by

Zc =
ρ0c0

S
√

(1− fν)(1 + (γ − 1)fκ)
. (2.29)

Finally, Eqs. (2.26) and (2.28) expressed for x = 0 lead to the determination of the com-
plex amplitudes Ã and B̃ :

Ã =
p̃1(0) + Zcũ1,x(0)

2
, (2.30)

B̃ =
p̃1(0)− Zcũ1,x(0)

2
. (2.31)
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Using these relations into Eqs. (2.26) and (2.28) expressed for x = d allows to derive the
analytical expression of the transfer matrix T of the guide below:

T ≡

(
cos(kwd) iZc sin(kwd)

iZ−1
c sin(kwd) cos(kwd)

)
. (2.32)

2.2.3 Case of a porous element

To ensure a temperature gradient along the stack/regenerator, thermoacoustic engines of-
ten incorporate heat exchangers constituted of porous material which includes a heating or cool-
ing system. Unlike the stack or the regenerator, the thermal gradient along the heat exchangers
may be neglected in first approximation without implicating major errors in this modeling. Ex-
changers are generally modeled as porous elements at a constant hot or ambient temperature,
which are respectively TH or TC .

The transfer matrix of such an element is deduced from the matrix of Eq. (2.32):

T ≡

(
cos(keqd) iZeq sin(keqd)

iZ−1
eq sin(keqd) cos(keqd)

)
. (2.33)

Using the equivalent wavenumber

keq = k0

√
1 + (γ − 1)f

(r0)
κ

1− f (r0)
ν

(2.34)

and the equivalent characteristic impedance

Zeq =
ρ0c0

φS

√
(1− f (r0)

ν )(1 + (γ − 1)f
(r0)
κ )

, (2.35)

where φ is the porosity and where the functions f (r0)
ν and f

(r0)
κ take into account the

viscous-thermal coupling between the fluid and the pore walls of a characteristic transverse
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dimension r0. For example, in the case of a network of cylindrical pores, the analytical
expressions of these functions are given by Eq. (2.21) replacing R by r0.

2.2.4 Case of a tapered waveguide

Most studied thermoacoustic engines incorporate adaptive conical parts connecting
waveguide sections (Chen, 1999; Backhaus, 2000; Biwa et al., 2001; Yu et al., 2003; Hao et al.,
2011). These conical parts affect the distribution of acoustic fields.

In accordance with the notations used so far, the cone is defined as a waveguide of radiusR
that varies linearly betweenR0 = R(0) andRd = R(d) (see Fig. 2.2). The analytical expression
of the transfer matrix of a conical two-port can be found in the reference (Mechel, 2008) for
different writing conventions than those adopted in this manuscript. For clarity, this analytical
expression is rewritten from (Mechel, 2008) as:

(
a b

c d

)
≡


z1
z2

cos(kwd) +
sin(kwd)

kwz2

iZc
z2
z1

sin(kwd)

iZ−1
c

[
z1
z2

(
1 + 1

k2wz1z2

)
sin(kwd)−

(
1− z1

z2

) cos(kwd)

kwz2

]
z2
z1

cos(kwd)− sin(kwd)

kwz1

 ,

(2.36)

with z1 = R0

R0−Rd
d, z2 = z1 + d and where the wave number k and the characteristic

impedance Zc are respectively given by equations Eq. (2.25) and Eq. (2.29) [with S = πR2
d

in Eq. (2.29)]. However, it should be noted that Eq. (2.36), outcome from Mechel (2008) ,
is initially derived from the equation of Webster without loss. Taking into account the losses
(which depend strictly on R) would imply to solve a wave equation similar to that of linear
thermoacoustics [Eq. (2.22)], whose solution is more demanding than in Eq. (2.36). That means,
in other words, that the analytical expression (2.36) is an approximation of acoustic propagation
in a cone with parietal losses, with functions fν et fκ performing in expressions (2.25) and (2.29)
evaluated for R = (R0 +Rd)/2.
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2.3 Analytical expression for the transfer matrix of an acoustic two-port sub-
mitted to a non-uniform temperature distribution

To describe the propagation of harmonic plane waves in an acoustic two-port subject to an
inhomogeneous distribution of temperature T0(x), the differential equation of second order, Eq.
(2.22), with non-constant coefficients has to be solved. Gusev et al. proposed an exact analytical
solution of this equation in the form of an infinite series of integral operators (Gusev et al., 2000;
Job, 2001; Penelet et al., 2005b; Penelet, 2004). Them, Eq. (2.22) is rewritten as

∂2p̃1

∂x2
+
dΦ1

dx

∂p̃1

∂x
+

(
ω

c0

)2

Φ0p̃1 = 0, (2.37)

where c0 = c0(Tc) is the adiabatic speed of sound at room temperature, and where the
functions

dΦ1

dx
=
dxT0

T0

(
1 +

fκ − fν
(σ − 1)(1− fν)

)
− dxfν

1− fν
, (2.38)

Φ0 =
Tc
T0

(
1 + (γ − 1)fκ

1− fν

)
, (2.39)

depend on x through the temperature T0 (and thermophysical properties of the fluid).

Introducing the spatial variable ζ defined by

dζ

dx
= ζx = e(Φ1(0)−Φ1(x)), (2.40)

and the function

F (ζ) = Φ0(x(ζ))ζ−2
x , (2.41)
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the propagation Equation (2.37) becomes

d2p̃1

dζ2
+ k2

0F (ζ)p̃1 = 0, (2.42)

with k0 = ω/c0(Tc). By successive integrations of the coordinate ζ , Eq. (2.42) is rewritten
in the form of a system of integral equations

p̃1(ζ) = p̃1(0) +

∫ ζ

0

dp̃1

dζ ′
dζ ′, (2.43)

dp̃1

dζ
=
dp̃1

dζ

∣∣∣∣
0

− k2
0

∫ ζ

0

F (ζ ′)p̃1(ζ ′)dζ ′. (2.44)

In this system of equations the two integral operators can be noted

Ω1(y) ≡ ik0

∫ ζ

0

F (ζ ′)y(ζ ′)dζ ′, (2.45)

Ω2(y) ≡ ik0

∫ ζ

0

y(ζ ′)dζ ′. (2.46)

Finally, using successive approximations to calculate the terms on the left of Eqs. (2.43)
and (2.44), the exact solution of this system can be written in matrix form showing infinite series
of operators Ω1 and Ω2 (Penelet et al., 2005b; Penelet, 2004):

(
p̃1(ζ)
dp̃1
dζ

(ζ)

)
=

( ∑∞
n=0 (Ω2Ω1)n Ω2

ik0

∑∞
n=0 (Ω1Ω2)n

ik0Ω1

∑∞
n=0 (Ω2Ω1)n

∑∞
n=0 (Ω1Ω2)n

)
×

(
p̃1(0)
dp̃1
dζ

(0)

)
, (2.47)

where the terms of the infinite series are defined in the following way 1:

1It is important to note that, with a gradient of non-zero temperature, the integral operators Ω1 and Ω2 are
not commutative and the diagonal elements of the matrix defined by (2.47) are not equal. However, this equality
appears when dxT0 = 0, particular case where Ω1 and Ω2 are set to a multiplicative constant.
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(Ω2Ω1)n y = Ω2

(
Ω1

(
. . .Ω2

(
Ω1︸ ︷︷ ︸

n times

(y)
)))

. (2.48)

By using the relation of Eq. (2.17) from Chapter 1 for the average particle velocity and
Eq. (2.40) equation, it results:

dp̃1

dζ
= ik0

ρ0c0

S (1− fν)
ζ−1
x ũ1,x, (2.49)

what allows to rewrite Eq. (2.47) in terms of acoustic pressure and volume velocity, and
thus obtain the exact two-port analytical expression in the form

(
a b

c d

)
≡

( ∑∞
n=0 (Ω2Ω1)n Z(0)Ω2

∑∞
n=0 (Ω1Ω2)n

Ω1ζx
Z(x)

∑∞
n=0 (Ω2Ω1)n Z(0)ζx

Z(x)

∑∞
n=0 (Ω1Ω2)n

)
, (2.50)

wherein the amount Z(x) is defined by

Z(x) =
ρ0(x)c0

S (1− fν)
. (2.51)

The Eq. (2.50) is valid either for a stack or the passive part of the core, simply evaluating
the thermo-viscous functions for a narrow channel of radius r1 or a wide channel of radius R,
respectively (with S 7→ φS for a porous element). It should be noted that the Eq. (2.50) for a
wide guide or a stack tends to asymptotically approach the expressions (2.32) and (2.33) when
the temperature is constant along the two-port.

2.4 Characteristic equation of a thermoacoustic device

2.4.1 Case of a standing-wave thermoacoustic engine

Standing-wave thermoacoustic systems generally consist of a straight waveguide wherein
the resonance of a fluid column occurs, and also of heat exchangers, as represented in the fol-

24



lowing (Fig. 2.3). These systems are simple and reliable, but not efficient. Although they are of
little interest for industrial applications because of their low yield, the study of those systems is
essential from an academic point of view, to better understand the complex phenomena involved
in the thermoacoustic operating machines.

Figure 2.3: (a) Sketch of a standing-wave thermoacoustic engine. (b) Open end. (c) Closed end.
(d) Coupling with a electrodynamic alternator.

The low performance of standing-wave engines is implicitly associated to the stationary
nature of the fluid particle oscillation in the vicinity of the solid wall. Indeed, such acoustic cycle
consists of thermodynamic processes similar to those of a Brayton cycle (adiabatic compression
- isobaric expansion - adiabatic expansion/relaxation - isobaric contraction), whose performance
is intrinsically lower than that of Carnot type. Therefore, to approach what would be considered
adiabatic processes, an imperfect thermal contact between the fluid and solid walls is required.
To optimize such imperfection in favor of cycle performance, a trade-off between the particle
speed and its position in the thermal and viscous boundary layers shall be found, as they are
inversely proportional. Employing a stack in these machines requires the pore radius to be
of the order of magnitude of a thermal penetration depth (rs ∼ δκ). This type of engine has
been extensively studied in the literature (Swift, 2002, 1988, 1992; Atchley, 1992; Atchley
et al., 1992; Atchley, 1994b; Chen, 1999; Hao et al., 2011) and, although being potentially less
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attractive than the traveling-wave system, it still remains explorable even if the investigation
involves complex acoustic phenomena of difficult theoretical prediction.

Using the formalism of transfer matrices, it is possible to write the equation relating the
acoustic pressure and flow at x = 0 and x = L in the form:

(
p̃1(L)

ũ1,x(L)

)
= Tr ×TTAC ×Tl ×

(
p̃1(0)

ũ1,x(0)

)
, (2.52)

where Tl and Tr are the transfer matrices of the tube portions at ambient temperature Tc,
respectively at left and right side of the thermoacoustic core, and where TTAC is the transfer
matrix of the thermoacoustic core (i.e. the part of the system subjected to an inhomogeneous
distribution temperature), which is defined as follows:

TTAC ≡

(
Tpp(ω, T0(x)) Tpu(ω, T0(x))

Tup(ω, T0(x)) Tuu(ω, T0(x))

)
. (2.53)

The transfer matrix TTAC depends on the geometric and thermophysical properties of the
thermoacoustic core that are linked to its constitutive elements, namely stack, passive part, and
heat exchangers. Nevertheless, it also depends on other factors such as temperature distribution
T0(x) along both stack (x ∈ [xs, xh]) and passive part (x ∈ [xh, xw]), and on the acoustic
pulsation ω. When the temperature distribution is known, TTAC can be obtained theoretically
(Job, 2001; Penelet et al., 2005b; Penelet, 2004), as it has been presented in the last section.
However, this matrix can also be measured under different heating conditions, as it will be
shown and explored in Chapter 3.

2.4.2 Case of a traveling-wave thermoacoustic engine

The so-called traveling-wave thermoacoustic systems are characterized by the presence
of a feedback loop favoring the amplification of traveling waves. These machines evoke the in-
terest of the thermoacoustician community mostly by reason of their performances, often much
higher than those which could be reached by an equivalent standing-wave system. This poten-
tially high return is a result of the thermodynamic cycle to which the fluid particle is subjected.
Its movement near a solid wall approximately follows the Stirling cycle, whose ideal efficiency
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is that of Carnot’s. Therefore, the thermodynamic processes involved in this cycle (isothermal
compression - isochoric warming - isothermal expansion - isochoric cooling) are of interest
to approximate the reversibility as much as possible. This is the key factor that distinguishes
traveling-wave from standing-wave engines, as the latter relies instead on intrinsic irreversibility
(Subsection 2.4.1). To enhance the heat transfer efficiency, the traveling wave systems require
the porous material to have its average pore radius very small compared to the thermal pene-
tration depth (rs � δκ), so that to approach the heat transfer process to an isothermal contact
between the fluid particle and the pore internal wall. Besides, this porous material shall have an
adequately higher thermal conductivity than that of a stack (applied in standing wave systems),
to allow alternate heat storing and delivering during the acoustic cycle, perfoming hence as a
regenerator.

Many engine configurations promoting the triggering of progressive wave are possible,
and the more conventional one uses a annular resonator (Fig. 2.4-(a,b)). In 1979, P. Ceperley
was the first to propose this idea to demonstrate the possibility of developing thermoacoustic
Stirling engines (Ceperley, 1979); he did not appreciate the second-order flow (Gedeon) that
would render his incarnations inoperable. Since then, this type of engine has been extensively
studied (Ceperley, 1985; Yazaki et al., 1985). In 1999, Backhaus et al. were successful in devel-
oping a prototype of thermoacoustic Stirling engine wherein the feedback loop is coupled to a
straight resonator (Backhaus, 1999, 2000). A few years later, Backhaus et al. (2004) also devel-
oped a thermo-acoustic-electric transducer prototype, wherein the acoustic-electric conversion
is performed by a linear electrodynamic alternator coupled to the annular resonator. Finally, Fig.
2.4-(c) shows a schematic version of a co-axial (Bastyr, 2003) system in which the feedback
loop is formed by placing a core in the thermoacoustic tube of largest section.

Traveling-wave systems are here described analogously to the case of standing-wave, as
previously in Subsection 2.4.1. Neglecting the effects on the wave propagation due the waveg-
uide curvature, the annular thermoacoustic system shown in 2.4-(a) is also described by Eq.
(2.52), except that the positions x = 0 and x = L correspond in reality to the same loca-
tion, as they meet each other in a loop (Fig. 2.4-(a)). Hence, taking into account this continuity
conditions as below

p̃1(0) = p̃1(L), (2.54)

ũ1,x(0) = ũ1,x(L), (2.55)

27



and making the substitution into Eq. (2.52), it results in the following:

(
p̃1(L)

ũ1,x(L)

)
= Tr ×TTAC ×Tl ×

(
p̃1(L)

ũ1,x(L)

)
. (2.56)

Figure 2.4: Schematic representations of traveling-wave thermoacoustic engines. (a) Annular
resonator. (b) Annular resonator coupled to a secondary acoustic load (secondary resonator,
electrodynamic alternator, or any other load). (c) Co-axial resonator.

When a secondary element is coupled to the loop [cf. Fig. 2.4-(b)], the conservation of
acoustic pressures and volume velocity between x = 0 and x = L leads in this case to:

p̃1(0) = p̃1(L), (2.57)

ũ1,x(0) = ũ1,x(L)− Ychp̃1(L), (2.58)

where Ych is the acoustic admittance presented by the secondary load. This admittance
can be that of a closed tube, an electrodynamic alternator, or a combination of any acoustic
element characterized by its reduced admittance. Relations (2.57) and (2.58) introduced in Eq.
(2.56) then lead to:
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(
p̃1(L)

ũ1,x(L)

)
= Tr ×TTAC ×Tl ×

(
1 0

−Ych 1

)
×

(
p̃1(L)

ũ1,x(L)

)
. (2.59)

At last, in the case of a co-axial system [cf. Fig. 2.4-(c)], Eq. (2.52) establishes the relation
between acoustic pressure and volume velocity at the extremities of the tube of small section S.
The continuity relations expressed at x = 0, on the one hand,

p̃1(0) = p̃a(0), (2.60)

ũ1,x(0) = Ygp̃a(0)− ũa,x(0), (2.61)

and at x = L, on the other hand,

p̃1(L) = p̃a(L), (2.62)

ũ1,x(L) = Ydp̃a(L)− ũa,x(L), (2.63)

involve the acoustic pressure p̃a and the volume velocity ũa,x in the peripheral ring of
section SA = π(R′2−R2) and the admittances Yg and Yd of the large section tubes SL = SA+S

and of respective lengths lg and ld:

Yg,l = −iZ(L)
c cot(k(L)lg,d). (2.64)

From Eqs. (2.60) to (2.63) and the transfer matrix of the peripheral ring denoted TA, a
second matrix equation relating the acoustic pressure and speed in x = 0 and x = L is then
obtained as:

(
p̃1(0)

ũ1,x(0)

)
=

(
1 0

Yg −1

)
×TA

−1 ×

(
1 0

Yd −1

)
×

(
p̃1(L)

ũ1,x(L)

)
, (2.65)

29



where the inverse matrix TA is introduced here to meet the x-axis and the conventions
defined in Subsection 2.2.1. It should be noted that the matrix TA, when symmetrical and recip-
rocal, has its inverse well defined. Substituting Eq. (2.65) into Eq. (2.52) leads to the following
equation:

(
p̃1(L)

ũ1,x(L)

)
= Tr ×TTAC ×Tl ×

(
1 0

Yg −1

)
×TA

−1 ×

(
1 0

Yd −1

)
×

(
p̃1(L)

ũ1,x(L)

)
.

(2.66)

To conclude, regardless of the kind of system involved in the equations (2.56), (2.59) or
(2.66), there can be identified an expression of a transfer matrix that embraces TTAC and also
connects the complex amplitudes of acoustic pressure and volume velocity to the same position
x = L by means of using the relation (2.52), thus completing a feedback loop. Equations (2.56),
(2.59) and (2.66) may be written in the following general form:

(
p̃1(L)

ũ1,x(L)

)
=

(
Mpp(ω, T0(x)) Mpu(ω, T0(x))

Mup(ω, T0(x)) Muu(ω, T0(x))

)
×

(
p̃1(L)

ũ1,x(L)

)
, (2.67)

equation admitting a non-trivial (non-zero) solution if and only if the determinant of the
matrix

(
Mpp Mpu

Mup Muu

)
− I2 (2.68)

is zero, where I2 is the identity matrix 2 × 2. That leads to the characteristic equation of
the system:

1 +MppMuu −MpuMup − (Mpp +Muu) = 0. (2.69)

30



3 EXPERIMENTAL CHARACTERIZATION OF THE THERMOA-
COUSTIC CORE

Even below the threshold of thermoacoustic instability, the theoretical description of
acoustic propagation and heat transfer through the thermoacoustic core (TAC) is anything but
simple. This is essentially due to the fact that thermoacoustic engines make use of geometrically
complicated materials (piles of stainless steel meshes, metallic foams) whose thermophysical
parameters are unknown. Moreover, the accuracy of the description of acoustic propagation
through the TAC also depends critically on the shape of the temperature field within the TAC,
the latter being very difficult to describe theoretically. Therefore, alternative methods allowing
the description of the TAC are presented in this chapter. These methods consist of measuring the
transfer matrix of the TAC, and the experimental data being used afterwards for the theoretical
description of thermoacoustic engines. Three different methods are presented in this chapter.
First, the so-called "two-load method" previously used by Guedra et al. (2011) is presented and
it is shown that this method becomes inaccurate when the TAC is a regenerator-based one (Sec-
tion 3.3). Then, two alternative experimental approaches are presented: a two-load method with
TAC inversion (Section 3.4) and a new "impedance" method based on the measurement of the
impedance matrix of the TAC by means of an acoustic impedance sensor (Section 3.6). In par-
ticular it is shown that the impedance method allows accurate descriptions of both stack-based
TAC and regenerator-based TAC. Otherwise, it must be noted that, in essence, all three methods
consist likewise in acoustic impedance measurements and require measurements under two dif-
ferent acoustic conditions. In spite of this, for simplicity of identification, these three methods
are here called as stated above.

3.1 Description of the TAC under study

An approximate scale plan of the thermoacoustic core under study is presented in Fig.
3.1: its total length is 464mm with an inner radius of 16.9mm. The active part is made of
a roughly 70mm long stack/regenerator (sometiles combined with ceramic washers) bounded
by a hot heat exchanger (HHX) and an ambient heat exchanger (AHX), on opposite sides. The
passive part is the waveguide part set between the HHX and a secondary AHX. The geometrical
properties of the sample materials used for the stack/regenerator in this study are reported in
Tab. 3.1. With regards to the transversal dimensions, all are cylindrical and fit quite well the
internal diameter of the stack holder, which is around 33.9mm. The two AHX are made up of
two copper pipes passing through a honeycombed aluminum disk, with flowing water inside the
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pipes at room temperature. The HHX is made up of a sample of ceramic catalyst 900 cpsi (cells
per square inch) in which a Nichrome resistance wire is coiled. The thickness of this sample is
10mm and the heat resistance wire is connected to an electrical DC power supply controlling
the heat power QH dissipated by Joule effect throughout the wire. In order to avoid electric
contact between the Nichrome resistance of the HHX and the stack/regenerator when made up
of a conductive material, ceramic washers are placed between them. These washers are also
sculpted from pieces of ceramic catalyst of 900 cpsi mesh size. Their lengths are adjusted to
better fit all pieces together in the stack holder. In the case of the Stainless Steel Grids, two
washers are necessary, one at each material side, to stabilize the grids assembling.

Figure 3.1: Approximate scale plan of the ThermoAcoustic Core.

Figure 3.2: ThermoAcoustic Core.
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Ceramic Catalyst
Porosity 83 %
Number of cells per square inch 600 cpsi
Length 72.49 mm

Stainless Steel Grids†
Porosity 50 %
Wire mesh diameter 0.08 mm
Number of meshes per inch 93.36
Length 60 mm + 2 ceramic washers (7 and 6mm)

Nichrome Foam‡
Specific surface area 2800 m2/m3

Average pore radius 0.6 mm
Length 63 mm + ceramic washer (4mm)

RVC Foam]

Porosity 96.5 %
Number of pores per inch 100 ppi
Length 68 mm + ceramic washer (3mm)
† http://www.gantois.fr, product ref. 104696
‡ http://www.recemat.nl, product ref. RCM.NCAX.2733
] http://www.goodfellow.com

Table 3.1: Geometrical properties of the sample materials.

In the following, the objective is to measure each coefficient of the transfer matrix of the
thermoacoustic core as a function of both angular frequency ω and heat power supply QH . The
transfer matrix TTAC (ω,QH) is defined as

(
p̃r

ũr

)
=

(
Tpp Tpu
Tup Tuu

)
×

(
p̃l

ũl

)

= TTAC ×

(
p̃l

ũl

)
, (3.1)

where p̃l,r = p̃(xl,r) and ũl,r = ũ(xl,r) are the complex amplitudes of acoustic pressure p
and acoustic volume velocity u at both ends x = xl (left) and x = xr (right) of the TAC (see
Fig. 3.1). The positions xl and xr are considered attached to the TAC no mattering whether it is
inverted or not with respect to its longitudinal axis.
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3.2 Common features

The three approaches considered in this chapter allow the measurement of the TTAC co-
efficients as functions of both angular frequency ω and heat power supply QH : Tpp(ω,QH),
Tpu(ω,QH), Tup(ω,QH) and Tuu(ω,QH). In the following, whatever the method consid-
ered, each set of coefficient measurements covers the whole range of frequencies of interest for
each specific thermal conditionQH , arbitrarily established. In the case ofQH = 0, it is expected
the TAC to be reciprocal, meaning that the determinant of its T-matrix equals 1. Therefore, the
more det(TTAC) approaches the unity, the better the measurements quality is. The reciprocity
can be evaluated for each frequency, leading to the average value rc of reciprocity defined as

rc =

∑
i=1,...,N Tpp (ωi, 0) Tuu (ωi, 0)− Tpu (ωi, 0) Tup (ωi, 0)

N
, (3.2)

where ωi is the ith value of the operating frequency, and N is the number of operating
frequencies in the range of analysis. The standard deviation σrc of rc is also evaluated. These
statistical values are the quality parameters to be accomplished in this experimental investiga-
tion, taking as references their ideal values: 1 for rc, and 0 for σrc. A discrepancy of rc from
1 means a deviation of bias, typically related to an inhomogeneous temperature profile and/or
to the sensitivity to a significant propagation of numerical errors in the course of the data post-
processing. On the other hand, a discrepancy of σrc from 0 is independent of the thermal profile
and it is an indicator of noise, which may be caused by either an external interference or/and a
significant numerical sensitivity, alike the bias case. By experience, an rc within 1 percent of
the ideal unity and a σrc within 0.01 suggest the quality of measurement is acceptable.

However, when additional energy besides acoustical is inserted into the system, for exam-
ple, thermal energy for, there is no longer unitary reciprocity. The more the temperature profile
turns inhomogeneous with an increasing heat power input, the greater the gap between the re-
sulted determinant and unity becomes. Hence, the reciprocity as a parameter of quality can only
be usefully exploited if obtained from measurements with no heat supply, and, as much as pos-
sible, at a well established time-invariant and constant temperature profile along the TAC, so
that the ideal unitary determinant can be pursued.

It is worth noting that the level of acoustic pressure in the TAC must be relatively small so
as not to generate non-linear effects or thermoacoustically induced temperature gradient along
the TAC.
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In the following, it is assumed that the subsequent measurements with heating input can
be performed at the same level of quality for their corresponding TTAC coefficients than the one
achieved without heating, even though there is no longer a clear reference such as reciprocity.
This assumption is grounded in the fact that, with or without heating supply, the whole setup
and measurements are proceeded in the same way and standards for each approach. However,
besides those common procedures, heated measurements also require the establishment of a
steady-state regime along all measurements - at least to a satisfactory level - to maintain the
quality concerns. Thus, the transitory thermal effects due to the imposed variations on QH ,
and also due to the cooling system interaction, are to be considered. They are investigated in
Appendix A, and the resulting guidelines are followed in all measurements henceforth.

Framework solution for the two-port system

The experimental characterization of the TAC is based on the determination of the four
coefficients of the transfer matrix, for given ω and QH , from the measurement of p̃l,r and ũl,r,
according to Eq. (3.1). However, this measurement leads to a set of two equations with four
unknown coefficients, what compels another set of two to fulfill the deterministic system re-
quirements. Such algebraic constraints work either way for the other possible connecting ma-
trices, namely diffusion, admittance and impedance, as stated in the two-port theory. Therefore,
those connecting matrices are different ways to describe the same system, and they are inter-
changeable, thus allowing searches for the transfer matrix from different approaches. Another
theoretical aspect to be illuminated is that the need for two measurements vanishes if the sys-
tem is symmetrical. However, this is not the case for the TAC under investigation, as the porous
material is located in a non-symmetrical position with respect to the TAC axis (see Fig. 3.1);
moreover, the HHX is another element also asymmetrically placed, what enhances this resolu-
tion.

Essentially, one must proceed with two set of measurements to characterize a non-
symmetrical system, no matter what kind of connecting matrix is sought. Such conceptual state-
ments suggest that this need depends on the method or strategy to achieve TTAC. Consequently,
all three experimental approaches treated here end up within this frame.
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3.3 First approach: the Two-Load Method - about its failure

The "Two-Load Method" is the method previously used by Guedra et al. (2011) to evalu-
ate the experimental transfer matrix of a stack-based TAC. It consists of a classical experimental
procedure for the acoustic characterization where a four-microphone method is used to obtain
the four coefficients of the transfer matrix TTAC (ω,QH) on a given frequency range and for
various heating conditions (Boden, 1986; Munjal, 1987). The same experimental apparatus and
most of the setup procedures used by Guedra et al. (2011) are implemented in the frame of the
present work. The aim of this first approach is twofold: First, it is to check the repeatability of
this measurement technique for a stack-based TAC. Second, it is to test the applicability of the
Two-Load Method for a regenerator-based TAC, exhibiting high acoustic reflectivity and low
transmissibility.

3.3.1 Principle of the method

A schematic view of the measurement system is given in Fig. 3.3. Two straight ducts are
connected on either side of the TAC. The left tube is connected to an electrodynamic loud-
speaker. Four microphones are set along the two waveguides at positions xi with i = 1, 2, 3, 4.
The TTAC coefficients are obtained using Eq. (3.1). Thus, the principle of the method consists
of calculating the complex amplitudes of p̃l,r and ũl,r, from the pressure measurements at
positions xi. However, it is clear that the relation of Eq. (3.1) is a system of two equations with
four unknowns. Two measurements are required to get the four transfer coefficients Tpp, Tpu,
Tup and Tuu. A "two-load" method is then performed which consists of two measurements for
two different terminal acoustic loads, corresponding to two linearly independent states of the
system: a first measurement is performed with an open waveguide, then a second measurement
is performed when the waveguide is closed by a rigid plug.

1m

Loudspeaker

x1 x2 x3 x4xl xr

Thermoacoustic Core

Mic 1 Mic 2 Mic 3 Mic 4 Open or closed end

Rigid cover

Figure 3.3: The four-microphone apparatus with the thermoacoustic core.
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Under the assumption of an harmonic plane wave, the acoustic pressure in the waveguide
can be expressed in terms of the linear combination of two counterpropagating plane waves
dependent on the coordinate x,

p̃(x) = p̃+(x) + p̃−(x). (3.3)

The acoustic pressure can be written for two waveguide portions located at the left hand
side of the TAC (x ∈ (0, xl)) and at the right hand side of the TAC (x ∈ (xr, l)),

p̃(x) = p̃+
l e

jkw(x−xl) + p̃−l e
−jkw(x−xl),∀x ∈ [0, xl] (3.4)

and

p̃(x) = p̃+
r e

jkw(x−xr) + p̃−r e
−jkw(x−xr), ∀x ∈ [xr, L], (3.5)

where the complex wavenumber kw takes into account the viscous and thermal losses on
the waveguide internal walls, as explained in Subsection 2.2.2.

The four counterpropagating acoustic pressure components stated in Eqs. (3.4) and (3.5)
can be expressed in terms of the measured acoustic pressures p̃i = p̃(xi) taken at the four
microphone locations:

p̃+
l =

p̃2e
jkw(xl−x1) − p̃1e

jkw(xl−x2)

2jsin[kw(x2 − x1)]
, p̃−l =

p̃1e
−jkw(xl−x2) − p̃2e

−jkw(xl−x1)

2jsin[kw(x2 − x1)]
, (3.6)

p̃+
r =

p̃4e
−jkw(x3−xr) − p̃3e

−jkw(x4−xr)

2jsin[kw(x4 − x3)]
, p̃−r =

p̃3e
jkw(x4−xr) − p̃4e

jkw(x3−xr)

2jsin[kw(x4 − x3)]
, (3.7)
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from which the coefficients of the scattering matrix can be directly obtained when apply-
ing Eq. (3.8):

(
p̃+
r

p̃−l

)
=

(
T+ R−

R+ T−

)
×

(
p̃+
l

p̃−r

)
. (3.8)

However, the scattering matrix itself does not directly achieve the interests of this work,
which rely instead in the transfer matrix TTAC. Besides, even though the desired TTAC coef-
ficients could be obtained from the scattering matrix simply by applying the proper two-port
transforming relations, there is a more straightforward way to solve the problem, which is to
apply Eq. (3.1).

The TTAC coefficients can be obtained from the determination of p̃l,r and ũl,r by substi-
tuting the four counterpropagating components obtained from Eqs. (3.6) and (3.7), respectively,
into the definition of Eq. (3.3) and into the Euler’s equation (Eq. (3.9)) stated below:

ũ(x) =
Sw(1− fν)

jωρ0

∂p̃(x)

∂x
=

1

Zc
[p̃+(x)− p̃−(x)], (3.9)

where Zc is the characteristic complex impedance of the guide, defined by

Zc =
ρ0c0

S
√

(1− fν)(1 + (γ − 1)fκ)
. (3.10)

That finally gives

p̃l,r = p̃+
l,r + p̃−l,r, (3.11)

ũl,r =
1

Zc
[p̃+
l,r − p̃

−
l,r]. (3.12)
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The terms p̃l,r and ũl,r are developed below by substituting the four expressions (3.6) and
(3.7) into the definitions (3.11) and (3.12):

p̃l =
p̃2sin[kw(xl − x1)]− p̃1sin[kw(xl − x2)]

sin[kw(x2 − x1)]
, (3.13)

p̃r =
p̃4sin[kw(xr − x3)]− p̃3sin[kw(xr − x4)]

sin[kw(x4 − x3)]
, (3.14)

ũl =
1

jZc

p̃2cos[kw(xl − x1)]− p̃1cos[kw(xl − x2)]

sin[kw(x2 − x1)]
, (3.15)

ũr =
1

jZc

p̃4cos[kw(x3 − xr)]− p̃3cos[kw(x4 − xr)]
sin[kw(x4 − x3)]

. (3.16)

When writing the transfer function H̃ij between microphones i and j as

H̃ij =
p̃i
p̃j
, (3.17)

Eqs. (3.13), (3.14), (3.15) and (3.16) result in the following expressions:

p̃l = p̃1
H̃21sin[kw(xl − x1)]− sin[kw(xl − x2)]

sin[kw(x2 − x1)]
, (3.18)

p̃r = p̃3
H̃43sin[kw(xr − x3)]− sin[kw(xr − x4)]

sin[kw(x4 − x3)]
, (3.19)

ũl = p̃1
H̃21cos[kw(xl − x1)]− cos[kw(xl − x2)]

jZcsin[kw(x2 − x1)]
, (3.20)

ũr = p̃3
H̃43cos[kw(x3 − xr)]− cos[kw(x4 − xr)]

jZcsin[kw(x4 − x3)]
, (3.21)
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These expressions fulfill the requirements to determine the four unknowns of the defini-
tion of Eq. (3.1) as long as p̃l, p̃r, ũl and ũr are measured twice, under two different acoustic
loads (1st and 2nd), as explained above. That results in a deterministic system of four equations:

p̃1st
r = Tpp.p̃1st

l + Tpu.ũ1st
l , (3.22)

ũ1st
r = Tup.p̃1st

l + Tuu.ũ1st
l , (3.23)

p̃2nd
r = Tpp.p̃2nd

l + Tpu.ũ2nd
l , (3.24)

ũ2nd
r = Tup.p̃2nd

l + Tuu.ũ2nd
l . (3.25)

Solving the system of equations above by substituting expressions from Eq. (3.18) to Eq.
(3.21), the TTAC coefficients are found in terms of the measured transfer functions H̃ij itemized
in Eq. (3.17), which includes all measured acoustic pressures. The remaining terms related to
the wavenumber kw and to the axial positions xi and xj are obtained independently from those
measurements. The resulting equations are shown in the following:

Tpp =
H̃2nd

31 (H̃2nd
43 .s3r − s4r)(H̃

1st
21 .cl1 − cl2)− H̃1st

31 (H̃1st
43 .s3r − s4r)(H̃

2nd
21 .cl1 − cl2)

s43(H̃2nd
21 − H̃1st

21 )
, (3.26)

Tpu = jZc
H̃1st

31 (H̃1st
43 .s3r − s4r)(H̃

2nd
21 .sl1 − sl2)− H̃2nd

31 (H̃2nd
43 .s3r − s4r)(H̃

1st
21 .sl1 − sl2)

s43(H̃2nd
21 − H̃1st

21 )
,

(3.27)

Tup =
1

jZc

H̃1st
31 (H̃1st

43 .c3r − c4r)(H̃
2nd
21 .cl1 − cl2)− H̃2nd

31 (H̃2nd
43 .c3r − c4r)(H̃

1st
21 .cl1 − cl2)

s43(H̃2nd
21 − H̃1st

21 )
,

(3.28)

Tuu =
H̃2nd

31 (H̃2nd
43 .c3r − c4r)(H̃

1st
21 .sl1 − sl2)− H̃1st

31 (H̃1st
43 .c3r − c4r)(H̃

2nd
21 .sl1 − sl2)

s43(H̃2nd
21 − H̃1st

21 )
, (3.29)

where sij = sin[kw(xi − xj)] and cij = cos[kw(xi − xj)].

It is worth noting that the TTAC coefficients are acoustical properties that depend on fre-
quency and temperature, and not on an imposed acoustic load. Hence, that allows such impo-
sitions to be arbitrarily defined to maximize the equations inter-independence, which increases
the precision of the TTAC coefficients determination. The acoustic loads are therefore chosen
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to differ each other as much as possible. Indeed, such independent conditions are evident in the
denominators of all four coefficients, where the inequality H̃2nd

21 6= H̃1st
21 is to be ensured.

The complex notation in the frequency domain for the transfer functions is convenient, as
has been shown in this section so far. However, the original signal input, which are the actual
measurements captured by the four microphones, are necessarily taken in the time domain and
in real values. Hence, a transformation takes place in this sense, in which these original signals
have their amplitude ampi and phase phii of the ith microphone estimated by a numerical ap-
proach applied for each frequency ω, enabling the calculation of the complex transfer functions
in the whole frequency domain. Explicitly, that gives:

H̃21 =
amp2

amp1

e−j(phi2−phi1), H̃31 =
amp3

amp1

e−j(phi3−phi1), H̃43 =
amp4

amp3

e−j(phi4−phi3). (3.30)

Nevertheless, these original acoustic signals are too noisy to be put forward in the sub-
sequent calculations, and thus shall be conditioned for a proper refinement to avoid significant
error propagation. This treatment is made by applying a least square method in a process of
estimating averages ampi and phii, turning those signals closer to harmonic and less noisy.

3.3.2 Experimental setup and procedures

A photograph of the experimental setup is given in Fig. 3.4. The two tubes connected
on either side of the TAC are made of PVC. They are two meters long and their inner radius
R = 16.47mm is slightly different than the TAC’s one (Rw = 16.93mm). The acoustic field is
generated by an electrodynamic loudspeaker attached to left extremity of the left duct, as shown
in Fig. 3.3. It generates a stepped sine corresponding to a frequency range from 50 to 200Hz

with increments of 1Hz. Hence, the measurements are carried out for 151 frequencies. An
optimum acoustic pressure is achieved at its maximum linear behavior, which is at a pressure
level around 0.4Pa, provided by a voltage of approximately 87mV delivered to the loudspeaker.
Four microphones (model B&K 4138) are flush mounted along the pipes. They are placed in
such locations that intrinsic measurement errors are minimized, in conformity with the criteria
established by Boden (1986):

0.1π < k0∆x < 0.8π. (3.31)
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That resulted in the interval ∆x = 60 cm, what led the frequency range to fit within the
proper interval between 50 and 200Hz.

Figure 3.4: Experimental setup - Two-Load Method.

To ensure that no geometric discontinuity affects the sound field, the microphones are
placed in suitable parts, machined so as to match the radius of curvature of the tubes, the junction
between the waveguides and the microphone membrane being made by a capillary tube. The
measurement signals are provided to the computer through the data acquisition card with a
sampling frequency of 10 kHz, and their amplitude and phase are obtained using a least squares
estimator from 500 samples taken for each frequency and at each microphone.

A relative calibration of microphones is done in order to take into account their respec-
tive sensitivities. The microphones are placed face-to-face in a cavity of very small size relative
to the wavelength, so that the pressure field can be considered spatially uniform in the work-
ing frequency range (Fig. B.1). The transfer functions measured by this method are shown in
Fig. B.2. These transfer functions, denoted C̃ij , defined as the ratios of sensitivities S of each
microphone in the assumption of uniformity of pressure field,

C̃ij =
Si
Sj
, (3.32)
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are used as a correction for the transfer function measured in situ. More information con-
cerning the calibration procces is given in Appendix B.

To favor the stabilization of the temperature profile along the TAC axis, natural convection
is minimized. That requires to keep the TAC always in the horizontal position, like in Fig. 3.1.

The cooling system is totally prevented from air bubbles in the cooper pipes and water
hoses with the goal of improving the heat transfer efficiency, and also of avoiding the related
noise - proved to be important. Within the same concern, vibration from the water pump and
reservoir are minimized by means of keeping them apart from the TAC’s workbench.

Close temperature monitoring is recorded for every thermal condition, for all measure-
ments. These data are obtained by means of two thermocouples, one immersed in the water
reservoir and the other attached to hottest external surface of the TAC. Moreover, a domes-
tic thermometer/hygrometer/barometer register the laboratory ambient conditions, which are
recorded as well. The average values are implemented in all post-processing to obtain the TTAC

coefficients.

All setups are prepared the night before. The water circulation is turned on, and it is kept
operating till the end of the experimentation for each material, according to the transient regime

investigation. The TAC orientation is maintained in just one way, just like in Fig. 3.1. The trans-
fer functions H̃21, H̃31 and H̃43 are obtained for each one of the two acoustic loads, before
changing the heating supply; that means to obtain the needed six transfer functions per QH con-
dition. To define the maximal QH , it is taken as reference the operational limit of the electrical
resistance of the HHX here used, which is around 84W . For this power, the temperature inside
the TAC rises over 400ºC - as explored later in Section 3.33 - which covers most of typical val-
ues for the threshold condition for standard thermoacoustic engines. Therefore, such levels for
QH are representative in what concerns real engine circumstances. That said, the increment on
the QH variation is defined constant, and its number is calculated so that all measurements can
be done within one day (non-interrupted 13 hours) for each material. This avoids major effects
of ambient oscillations in temperature, humidity and pressure (less important). The interest is
to have the number of power increments maximized as much as possible, to improve resolution
with respect to performance predictions, to be explored later on in Chapter 4. As a result, there
are 28 different values for QH , ranging from 0W to 81W by a constant increment of 3W .

The measurement procedures follow the logical sequence presented in Subsection 3.3.1. It
begins withQH = 0W , and thenQH progresses by adjusting the power supply untilQH reaches
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81W , always in the increasing direction for both acoustic loads. For each QH the time-delay of
13min is respected.

3.3.3 Results

Two materials are investigated with the Two-Load Method: the Ceramic Catalyst (Fig.
3.5) and the pile of Stainless Steel Grids (Fig. 3.6).

Figure 3.5: Ceramic Catalyst in detail and partially inserted in the open TAC.

Despite of both cases having been done for 28 values of QH as mentioned in paragraph
3.3.2, results are only shown for 3 heating conditions (QH = 0, QH = 36W and Q = 72W )
for the sake of clarity. This allows a visual evaluation of the curve progression with heating,
if the noise level is not excessively high. The choice of these two materials allows testing the
Two-Load Method with both stack-based and regenerator-based TAC.

Case of the Ceramic Catalyst

Figure 3.7 shows the four transfer coefficients (amplitude and phase) for the three
selected heating conditions in the case of the Ceramic Catalyst. All curves are smooth and
coherent with respect to the QH variation.
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Figure 3.6: Stainless Steel Grids, ceramic washers and stack/regenerator holder.

To summarize the quality of this measurement, the Fig. 3.8 reveals the reciprocity behav-
ior with frequency (for QH = 0W ). Its average value is around rc = 1.010 + 0.002i - hence
very close to 1 - which indicates a low bias level. The reciprocity standard deviation, in its turn,
is σrc = 0.002 + 0.002i. This is an indicator of low noise level, as it approaches 0.

Case of the Stainless Steel Grids

Figure 3.9 shows the four transfer coefficients (amplitude and phase) for the three heat-
ing conditions in the case of the Stainless Steel Grids. For this material, contrarily to the Ce-
ramic Catalyst, all curves are very rough and do not allow a clear distinction of the QH pro-
gression. The reciprocity behavior in Fig. 3.8 shows that the problem comes from a very high
noise level, since σrc = 0.134 + 0.123i. Bias, on the other hand, is not an issue in this case:
rc = 0.996+0.005i. Therefore, as the method is the same one applied for the Ceramic Catalyst,
under the same well-controlled experimental procedures, this high level of noise appears to be
inherent in materials with low porosity - which means high reflectivity. The average level of
acoustic pressure is much higher in the duct placed upstream from the sample than in the duct
at the downstream side; that causes the microphones placed downstream to capture signals pro-
portionally much more affected by noise than the ones placed upstream, what ends up affecting
the transfer coefficients as well.
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Figure 3.7: Ceramic Catalyst 1: amplitude (solid line) and phase (dotted line) of the TTAC

coefficients in the frequency domain for QH = 0W (circle), QH = 36W (square) and QH =
72W (diamond) - Two-Load Method.

3.3.4 Comparison with theory and analysis

Making use of the theory presented in Chapter 2, it is possible to derive the theoretical
variation of TTAC coefficients with frequency for QH = 0W . A comparison between theory

and experiment for the Ceramic Catalyst is given in Figs. 3.15 and 3.16. It shows a good
agreement with respect to all TTAC coefficients, despite the fact that the values of parameters
given in Tab.3.1 are not known with extreme accuracy. Those comparative results validate the
experimental results, although restricted to the non-heated condition. In the case of heated
conditions, the Two-Load Method should be valid as well, since the same procedure has been
followed along all measurements, just as for QH = 0.
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Figure 3.8: Amplitude and phase of the TTAC reciprocity in the frequency domain for QH =
0W for the Ceramic Catalyst 600 cpsi (bold lines) and the Stainless Steel Grids (thin lines)-
Two-Load Method.

For the 60mm pile of Stainless Steel Grids, however, there are no geometrical parameters
accurate enough to obtain φ and equivalent cylindrical rs because of its high tortuosity and
complex geometry, and hence there are no theoretical TTAC coefficients available from the
mentioned modeling. In spite of that, φ and rs may estimated from the proper TTAC coefficients
by applying an inverse method developed by Guedra (2012b) - as long as those coefficients are
already obtained by other means, evidently. Then, using the measured TTAC by the Two-Load
Method just presented, although noisy and imprecise (see Fig. 3.9), the estimation of φ and rs
for the Stainless Steel Grids are still convergent, leading to φ = 63.3% and rs ≈ 0.04mm. From
then on, the theoretical modeling can be applied to this material alike in the Ceramic Catalyst
case, but the resulting TTAC coefficients are no longer purely theoretical nor precise since its
origins are unsatisfying experimental results. On the other hand, such experimental limitation
concerns only noise level (σrc), and not so much bias level (rc) - as shown in the previous
subsection; that allows considering those experimental results to be valid for the estimation
of average parameters such as φ and rs, if there is a convergence, as shown just above. This
assumption gives a near reliability on the semi-theoretical TTAC coefficients, at least when
using them as approximative reference for further experimental investigations.
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Figure 3.9: Stainless Steel Grids: amplitude (solid line) and phase (dotted line) of the TTAC

coefficients in the frequency domain for QH = 0W (circle), QH = 36W (square) and QH =
72W (diamond) - Two-Load Method.

3.3.5 Discussion

The Two-Load Method is revalidated for a stack application taking a Ceramic Catalyst as
the tested sample. However, it fails to accurately measure the TTAC coefficients for materials
with low porosity, like a regenerator as the pile of Stainless Steel Grids. In principle, this kind
of problem could be accommodated by increasing the acoustic pressure level and the number
of microphones. But higher levels of acoustic pressure have been tested which did not lead to
significant improvements. Moreover, increasing the acoustic level magnitude leads to weakly
nonlinear propagation, as well as to significant thermoacoustic heat transport by sound along the
material that might increase the complexity of the experimental process. Then, another experi-
mental approach is compelled to be found. The following attempt is a variation of the Two-Load
Method.
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3.4 Second approach: the Two-Load Method with TAC Inversion - about its fail-
ure

The Two-Load Method with TAC Inversion differs from the previous approach in just a
single aspect: the TAC orientation is inverted for one of the acoustic loads. The idea behind
this attempt is to increase the independence between the two systems of two equations, as
an additional contrast is imposed between the two set of measurements besides the difference
on the two acoustic loads. The higher such contrast is, the lower the expected sensitivities to
transfer function variations are.

3.4.1 Principle of the method

In essence, the same method as previous is once again applied, contextualized in the
same black box concept, just like in Section 3.3. That means that two sets of measurements
involving two different acoustic loads are acquired. Nevertheless, the difference is that the TAC
orientation is inverted for the first set of measurements (see Fig. 3.10), while the second set is
kept as described in Subsection 3.3.2, referred to as the direct orientation. Order-of-inversion or
opening/closing the TAC extremity is arbitrary.

Figure 3.10: Sketch of the inverted ThermoAcoustic Core.

This inversion procedure must be accompanied by a proper adjustment in the correspond-
ing analytical expressions. The sole alteration in the equations is the inter-exchange of the po-
sitions xl and xr, since they are fixed to their original positions. Such exchange is therefore no
longer coherent to the in situ meaning of left and right orientation, from the experimentalist
viewpoint.
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For the inverted TAC, the TTAC must be also inverted to maintain the same coefficients
as in the direct orientation:

(
p̃r

ũr

)
=

(
Tpp Tpu
Tup Tuu

)−1

×

(
p̃l

ũl

)
. (3.33)

Arranging the definitions (3.1) and (3.33) for the two set of measurements, it results:

p̃1st
r =

Tuu
TppTuu − TpuTup

.p̃1st
l +

Tpu
TpuTup − TppTuu

.ũ1st
l , (3.34)

ũ1st
r =

Tup
TpuTup − TppTuu

.p̃1st
l +

Tpp
TppTuu − TpuTup

.ũ1st
l , (3.35)

p̃2nd
r = Tpp.p̃2nd

l + Tpu.ũ2nd
l , (3.36)

ũ2nd
r = Tup.p̃2nd

l + Tuu.ũ2nd
l , (3.37)

with p̃l,r and ũl,r being expressed analogously to the previous Eqs. (3.13) to (3.16), shown
in the first approach (Section 3.3). In this set of equations, Eq. (3.34) and (3.35) differ from
Eq. (3.22) and (3.23) due to the TAC inversion of the first measurement. As a consequence, a
proper adjustment concerning such difference results in eight specific equations to be taken into
account:

p̃1st
l =

p̃1st
4 sin[kw(xl − x3)]− p̃1st

3 sin[kw(xl − x4)]

sin[kw(x4 − x3)]
, (3.38)

p̃2nd
l =

p̃2nd
2 sin[kw(xl − x1)]− p̃2nd

1 sin[kw(xl − x2)]

sin[kw(x2 − x1)]
, (3.39)

p̃1st
r =

p̃1st
2 sin[kw(xr − x1)]− p̃1st

1 sin[kw(xr − x2)]

sin[kw(x2 − x1)]
, (3.40)

p̃2nd
r =

p̃2nd
4 sin[kw(xr − x3)]− p̃2nd

3 sin[kw(xr − x4)]

sin[kw(x4 − x3)]
, (3.41)
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ũ1st
l =

1

jZc

p̃1st
4 cos[kw(x3 − xl)]− p̃1st

3 cos[kw(x4 − xl)]
sin[kw(x4 − x3)]

, (3.42)

ũ2nd
l =

1

jZc

p̃2nd
2 cos[kw(xl − x1)]− p̃2nd

1 cos[kw(xl − x2)]

sin[kw(x2 − x1)]
, (3.43)

ũ1st
r =

1

jZc

p̃1st
2 cos[kw(xr − x1)]− p̃1st

1 cos[kw(xr − x2)]

sin[kw(x2 − x1)]
. (3.44)

ũ2nd
r =

1

jZc

p̃2nd
4 cos[kw(x3 − xr)]− p̃2nd

3 cos[kw(x4 − xr)]
sin[kw(x4 − x3)]

. (3.45)

After some development, all acoustic pressure are reported in terms of the transfer func-
tions H̃ij , so that the TTAC coefficients are calculated likewise.

Tpp =
s21

s43

H̃1st
31 (H̃1st

43 .sl3 − sl4)(H̃2nd
21 .cl1 − cl2)− H̃2nd

31 (H̃2nd
43 .sr3 − sr4)(H̃1st

21 .cr1 − cr2)

H̃2nd
21 s2l1r − H̃1st

21 s2r1l

,

(3.46)

Tpu =
s21

s43

H̃2nd
31 (H̃2nd

43 .sr3 − sr4)(H̃1st
21 .sr1 − sr2)− H̃1st

31 (H̃1st
43 .sl3 − sl4)(H̃2nd

21 .sl1 − sl2)

(1/jZc)(H̃2nd
21 s2l1r − H̃1st

21 s2r1l)
,

(3.47)

Tup =
s21

s43

H̃1st
31 (H̃1st

43 .c3l − c4l)(H̃
2nd
21 .cc1 − cl2)− H̃2nd

31 (H̃2nd
43 .c3r − c4r)(H̃

1st
21 .cr1 − cr2)

jZc(H̃2nd
21 s2l1r − H̃1st

21 s2r1l)
,

(3.48)

Tuu =
s21

s43

H̃2nd
31 (H̃2nd

43 .c3r − c4r)(H̃
1st
21 .sr1 − sr2)− H̃1st

31 (H̃1st
43 .c3l − c4l)(H̃

2nd
21 .sl1 − sl2)

H̃2nd
21 s2l1r − H̃1st

21 s2r1l

,

(3.49)

where sij = sin[kw(xi− xj)], cij = cos[kw(xi− xj)], s2l1r = sin[kw(x2 + xl− x1− xr)]
and s2r1l = sin[kw(x2 + xr − x1 − xl)].

3.4.2 Experimental procedures

Experiments are conducted for the Stainless Steel Grids configuration, as the Two-load
Method fails with this material. For these experiments, no heating power is supplied to the
HHX (QH = 0W ). This simple configuration allows the estimation of the reciprocity. It is then
possible to evaluate if this method is suitable using further measurements for various heat power
levels.
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The Two-Load Method with TAC Inversion requires special care relying on the successive
connection and disconnection between the TAC and the waveguides, to proceed with the change
on the TAC orientation before every new set of measurements. All joints are cleaned, re-greased,
and well adjusted to avoid as much as possible length variations caused by clearances.

3.4.3 Results for the Stainless Steel Grids
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Figure 3.11: Stainless Steel Grids: amplitude of the TTAC coefficients in the frequency domain
for QH = 0W - Two-Load Method with TAC Inversion (bold lines), Two-Load Method (thin
lines) and Theory (dashed lines).

The experimental TTAC coefficients of the Stainless Steel Grids are presented in Figs. 3.11
and 3.13, while the reciprocity spectrum is shown in both amplitude and phase in Fig. 3.14. In
all of these figures the corresponding curves of the first approach are included, for comparison.
The results of this second method vastly differ from those obtained with the Two-Load Method.
Both amplitudes and phases are far more biased, but are less noisy - as can be verified in both
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Figure 3.12: Stainless Steel Grids: zoomed amplitude in linear scale of the TTAC coefficients
in the frequency domain for QH = 0W - Two-Load Method with TAC Inversion (bold lines),
Two-Load Method (thin lines) and Theory (dashed lines).

logarithmic and linear scales (Fig. 3.12). Moreover, a particular resonance frequency is clearly
revealed at 134Hz either on the amplitudes or phases, which is not obtained with the previous
method. Concerning the reciprocity statistical parameters, on the other hand, the Two-Load
Method with TAC Inversion leads to an average value rc = 0.243 − 1.727i with a standard
deviation σrc = 3.787 + 4.238i, which indicates very poor performance not only for bias level
but also for noise level, as σrc is so far from 0. This is an apparent contradiction that calls for
further investigation. It is worth noting that this issue is not found in the first approach since its
resulting TTAC coefficients behave accordingly to their corresponding rc = 0.996 + 0.005i and
σrc = 0.134 + 0.123i.

Finally, the high magnitude of such discrepancy between the two methods requires putting
forward a sensitivity analysis, to investigate its origins, as shown in the following.
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Figure 3.13: Stainless Steel Grids: amplitude of the TTAC coefficients in the frequency domain
for QH = 0W - Two-Load Method with TAC Inversion (bold lines), Two-Load Method (thin
lines) and Theory (dashed lines).

3.5 Sensitivity analysis for both Two-Load Methods (with and without TAC in-
version)

The discrepancies observed in results obtained with the different two-load methods re-
quire a sensitivity analysis for a more profound comprehension of such a behavior. Arbitrary
noise and bias are then inserted into the theoretical transfer functions H̃ obtained from the
modeling given in Chapter 2. Two kinds of material are tested: the Ceramic Catalyst and the
Stainless Steel Grids. These materials are described by their respective geometrical parameters
which are the average pore radius rs, the porosity φ and the length ` (see Table 3.1). In the case
of the Stainless Steel Grids, the estimated porosity (φ) and the estimated representative average
cylindrical pore radius (rs) are obtained from the very noisy TTAC coefficients previously mea-
sured with the Two-Load Method without TAC inversion, using a specific method developed by
Guedra (2012b).
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Figure 3.14: Stainless Steel Grids: amplitude and phase of the TTAC reciprocity in the frequency
domain for QH = 0W - Two-Load Method with TAC Inversion (bold lines) and Two-Load
Method (thin lines).

The noise is theoretically taken into account by adding a random amplitude AnFr and a
random phase PnFr to the amplitude and phase of the theoretical transfer function H̃ , where
An and Pn are arbitrary amplitude and phase of the noise level, respectively, and where Fr is a
random function whose values are uniformly distributed in an interval constrained between −1

and 1.The choice of a uniform distribution is found to be better than a Gaussian one since it
avoids unrealistic values, which may be present whenever the aleatory numerical generation is
not constrained. The noisy transfer function is then calculated as below for each frequency i
individually, with the random function F i

r being required accordingly,

H̃ i
noise = |H̃ i|(1 + AnF

i
r)e

j(ϕ(H̃i)+PnF ir). (3.50)

55



Concerning the bias, the same disturbance is uniformly applied to the whole spectra. The
biased transfer function is then obtained as below,

H̃bias = |H̃|(1 + Ab)e
j(ϕ(H̃)+Pb), (3.51)

where Ab and Pb are the respective amplitude and phase of the bias level. Both Ab and Pb
are either added or subtracted, thus developing four combinations of bias.

The following values are used along the entire sensitivity analysis: An = 0.1, Pn = 0.03π

rad, Ab = 0.1 and Pb = 0.03π rad. They are chosen compromisingly to comparative intents, as
previously.

The four curves corresponding to the four combinations of bias are plotted as solid curves
in all graphs of sensitivity analysis. Concerning the noise presentation, however, five curves are
plotted per graph with the intent of a clear illustration. They differ by their aleatory nature and
are presented as dotted lines. These graphic results are shown in the next eight figures, where
both two-load methods can be compared for the Ceramic Catalyst and for the Stainless Steel
Grids. Figs. 3.15 and 3.16 give the amplitudes and phases of TTAC coefficients when estimated
with classical Two-Load Method, while Figs. 3.17 and 3.18 are the corresponding results for
the Two-Load Method with TAC Inversion. Likewise, Figs. 3.19 to 3.22 treat the Stainless Steel
grids case.

From Figs. 3.15 to 3.18, it is clear that the Two-Load Method overcomes the Two-Load
Method with TAC Inversion when applied to a stack-like material. Either amplitude or phase of
both noise and bias achieve a very symmetrical behavior with respect to the theory, and they also
enclose quite well the experimental curves, which on its turn fits closely along the theoretical
curves.

In the case of the pile of Stainless Steel Grids, as shown in Figs. 3.19 and 3.20, the
experimental results obtained with the two-load method without inversion, despite of being
poor, are closer to the theoretical curves than the bias and the noise ones. That suggests a
quality of measurements good enough to minimize the effects of both sensitivities; however, as
the sensitivity to noise is specially high, the experimental curves still result noisy, even though
much less than the theoretical noise curves. In principle, that could be just a matter of setting up
other values forAn and Pn, but those parameters are chosen the same for all cases, as mentioned
before, to standardize all comparisons.
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Figure 3.15: Ceramic Catalyst: amplitude of the four T coefficients in the frequency domain for
QH = 0W in bold lines for the measurements (solid) and theory (dashed) with the respective
theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). - Two-
Load Method.

Figs. 3.21 and 3.22 reveal a high sensitivity to bias of the Two-Load Method with TAC
Inversion, which is in accordance with the reciprocity results. A highlighted resonance peak
at around 134Hz appears in both experimental and biased curves. However, despite already
having input high levels for Ab and Pb, the experimental peak is still much higher than the
biased one (by a factor of 10). That incites for seeing how coherent the curves are for the
previous approach, i.e. the two-load method without inversion. About the noisy curves, they are
closer to the theoretical reference than the biased ones, as predicted in the reciprocity results.
Furthermore, they reveal a little higher sensitivity in the region between 50Hz to 70Hz, what
is indeed shown in the experimental curves.
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Figure 3.16: Ceramic Catalyst: phase of the four T coefficients in the frequency domain for
QH = 0W in bold lines for the measurements (solid) and theory (dashed) with the respective
theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). - Two-
Load Method.

This scenario implies to distrust the biased experimental curves from the Two-Load
Method with TAC Inversion not only because of their evident low quality, but also because of a
possible error intrinsic to the experimental procedures, since such intense effect does not occur
for the Two-Load Method without inversion. One plausible explanation for that is supported
by a critical experimental contrast between those methods. The second approach is much more
risky than the first one since it requires the actual physical inversion of the TAC, what certainly
adds errors in the measurements by the unavoidable variations on positioning. If this issue is
solved by a more precise coupling in the TAC connections, the Two-Load Method with TAC In-
version could potentially be better than the Two-Load Method, as its sensitivity is much smaller
to noise along the whole spectra of analysis. That may be advantageous enough to overcome
the higher sensitivity to bias, since this one is restricted to a much smaller frequency interval.
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Figure 3.17: Ceramic Catalyst: amplitude of the four T coefficients in the frequency domain
for QH = 0W in bold lines for the theory (dashed) with the respective theoretical bias (four
thin solid lines per graph) and noise (five dotted lines per graph). - Two-Load Method with TAC
Inversion.

In conclusion, the Two-Load Method is indeed much more sensitive to noise than the
Two-Load Method with TAC Inversion for this kind of material, i.e. a regenerator. Regarding
the bias curves, both methods show similar behavior, in the same level of disturbance.

Alternatively, another possibility would be to use a two-source method instead of a
two-load method. The two-source method basically consists of using an anechoic termination
as a load, and proceeding with two measurements with TAC inversion. However, we did not
choose to investigate the method, notably because it might have the same drawbacks as the two
former methods, which are intrinsic to multiple microphones methods.
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Figure 3.18: Ceramic Catalyst: phase of the four T coefficients in the frequency domain for
QH = 0W in bold lines for the theory (dashed) with the respective theoretical bias (four thin
solid lines per graph) and noise (five dotted lines per graph). - Two-Load Method with TAC
Inversion.

At this point, the search for a third approach is justified since the regenerator-based TAC
is not plentifully modeled nor characterized, by far. The Impedance Method is presented in the
following Section 3.6.

3.6 Third approach: the Impedance Method

Aiming to solve the problem of characterizing the TAC filled with a material exhibiting a
low porosity, as the Stainless Steel Grids, an alternative method is here developed.
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Figure 3.19: Stainless Steel Grids: amplitude of the four T coefficients in the frequency domain
for QH = 0W in bold lines for the measurements (solid) and theory (dashed), with the respec-
tive theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). -
Two-Load Method.

The Impedance Method consists of obtaining the TTAC coefficients from the measurement
of the impedance matrix ZTAC (Bannwart et al., 2012, 2013). All measurements are made by
means of a specific device called the Acoustic Impedance Sensor (AIS) (Le Roux, 2012) - shown
in Figs. 3.23 and 3.26 - coupled to the TAC under test (Figs. 3.24 and C.1). This alternative
method is more direct than either previous approaches since there is no need to account for
plane wave propagation in some ducts surrounding the TAC, and there are no limitations in the
frequency range of analysis relative to the distance between microphones (Boden, 1986).
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Figure 3.20: Stainless Steel Grids: phase of the four T coefficients in the frequency domain for
QH = 0W in bold lines for the measurements (solid) and theory (dashed), with the respective
theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). - Two-
Load Method.

3.6.1 Principle of the method

The impedance matrix of the TAC is defined as(
p̃l

p̃r

)
=

(
Z11 Z12

Z21 Z22

)
×

(
ũl

ũr

)

= ZTAC ×

(
ũl

ũr

)
, (3.52)

which is in accordance with Fig. 3.1.
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Figure 3.21: Stainless Steel Grids: amplitude of the four T coefficients in the frequency domain
for QH = 0W in bold lines for the measurements (solid) and theory (dashed), with the respec-
tive theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). -
Two-Load Method with TAC Inversion.

The TTAC coefficients, defined in Eq. (3.1), are calculated from the two-port equations
that relate them to the ZTAC coefficients, as below:

Tpp =
Z22

Z12

, (3.53)

Tpu =
Z12Z21 −Z22Z11

Z12

, (3.54)

Tup =
1

Z12

, (3.55)

Tuu =
−Z11

Z12

. (3.56)
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Figure 3.22: Stainless Steel Grids: phase of the four T coefficients in the frequency domain for
QH = 0W in bold lines for the measurements (solid) and theory (dashed), with the respective
theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). - Two-
Load Method with TAC Inversion.

The ZTAC coefficients are obtained from two sets of measurements, since the TAC is
asymmetrical (see Framework solution for the two-port system, in Section 3.2). That means
that Eq. (3.52) provides two equations and four unknowns, and thus it requires two different
setup arrangements to fulfill the 2× 2 deterministic system, just as in the previous approaches.
Unlike those approaches, however, the Impedance Method does not require two different
acoustic loads; instead, the only difference between the first and the second measurement is the
TAC orientation, which is inverted for the second measurement.

In the first measurement, the AIS is attached to the left side of the TAC, which is referred
to as the position xl aside of the porous material (see Figs. 3.24). In the second measurement,
the AIS is placed at the opposite side, referred to as the right position xr.
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Figure 3.23: Front and back views of the AIS, and the AIS with the Adaptive Part.

For the first measurement one have:

(
p̃1st
l

p̃1st
r

)
=

(
Z11 Z12

Z21 Z22

)
×

(
ũ1st
l

ũ1st
r

)
. (3.57)

However, a rigid wall at xr ensures the approximation ũ1st
r ≈ 0, leading to the determina-

tion of the first column of ZTAC:

Z11 =
p̃1st
l

ũ1st
l

, (3.58)

Z21 =
p̃1st
r

ũ1st
l

. (3.59)

For the second measurement it can be written

(
p̃2nd
l

p̃2nd
r

)
=

(
Z11 Z12

Z21 Z22

)
×

(
ũ2nd
l

ũ2nd
r

)
. (3.60)
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Figure 3.24: Sketch of the AIS attached to the TAC for both measurements.

Figure 3.25: AIS attached to the TAC for both measurements.
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In the case of the second measurement the rigid wall is set at xr, and the approximation
ũ2nd
l ≈ 0 can be made. Doing so allows finding the remaining coefficients of the second column

of ZTAC:

Z12 =
p̃2nd
l

ũ2nd
r

, (3.61)

Z22 =
p̃2nd
r

ũ2nd
r

. (3.62)

Equations (3.58), (3.59), (3.61), and (3.62) demonstrate that ZTAC may be also written as
below:

ZTAC =

(
Z11 Z12

Z21 Z22

)
=

(
Z1st
inp Z2nd

T

Z1st
T Z2nd

inp

)
, (3.63)

where Z1st
inp and Z2nd

inp are the input impedances at the TAC entry for the first and second
measurements, whereas Z1st

T and Z2nd
T are the transfer impedances of the TAC, respective for

to each measurement as well.

The Acoustic Impedance Sensor - AIS

A schematic drawing and photographs of the experimental apparatus used for the deter-
mination of the impedance matrix of a thermoacoustic core are shown in Figs. 3.24 and 3.23.
The AIS itself consists of a piezoelectric buzzer loaded by a small cavity on its rear face and
radiating towards a short duct on its front face, as shown in detail in Fig. 3.26. Two microphones
(labeled Mic.1 and Mic. 2) are flush-mounted along the wall at both sides of the piezoelectric
buzzer. The front cavity of the impedance sensor is coupled to one end of the TAC under test.
The other end of the TAC is closed by a rigid wall. Mic.1 measures the pressure p1(t) inside
the rear cavity, while Mic.2 measures the pressure p2(t) in the front duct. A third microphone
(labeled Mic.3), flush-mounted in the center of the closing rigid wall, measures the pressure
p3(t) at the end of the TAC. At low frequencies, below the first resonance of the rear cavity, the
pressure is uniform in the cavity and p1(t) is proportional to the volume velocity u(t) produced
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by the buzzer. Then, from the measurement of pressures p1(t) and p2(t), and taking into account
the acoustic propagation along the front duct, the first measurement configuration (AIS coupled
to the left side of the TAC) leads to the calculation of pressure p̃l and volume velocity ũl at
the reference plane located at x = xl, while the second configuration (AIS coupled to the right
side of the TAC) leads to the calculation of pressure p̃r and velocity ũr at the reference plane,
this time located at x = xr. Those measurements lead to the estimation of the input acous-
tic impedances Z1st

inp (or Z11) and Z2nd
inp (or Z22), according to Eqs. 3.58 and 3.62 respectively.

The transfer impedances Z1st
T (or Z21) and Z2nd

T (or Z12) are obtained from measurements of
p3(t) = p(xr, t) and p3(t) = p(xl, t) respectively, in accordance Eqs. 3.59 and 3.61.

Figure 3.26: Sketch of the Acoustic Impedance Sensor and the Adaptive Part.

In order to not be restricted to very low frequencies and gain precision, more refined
impedance expressions account for the microphone positions relative to the reference plane, the
microphone sensitivity differences, and all geometrical dimensions concerning the AIS ducts
(see Fig. 3.26). The Z-matrix coefficients Zinp and ZT for both first and second set of mea-
surements are generally expressed as follows, as if there were no need for an Adaptive Part
to connect the TAC (see Fig. 3.24), nor any relevant waveguide discontinuity. These equations
(Macaluso, 2011; Le Roux, 2012) take as reference plane the position just at the exit of the AIS,
with Lap = 0. To distinguish those generalized impedances from the actual impedances with a
real Adaptive Part (Lap > 0), they are here assigned as Z ′

inp (Eq. (3.64)) and Z ′
T (Eq. (3.65)).
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Z ′

inp =
(H̃21/K)− β
1− (δH̃21/K)

, (3.64)

Z ′

T =
H̃31

(
1 + δZ ′

inp

)
δKT

. (3.65)

where the terms

H̃ij =
p̃is̃i
p̃j s̃j

(3.66)

are the transfer functions that relate the sound pressure measurements, and s̃i refers to the
sensitivity of Mic.“i”. The terms β and δ are developed from cylindrical waveguide solutions,
while K and KT are related to the calibration of the device (Macaluso, 2011; Le Roux, 2012).

Their corresponding expressions are given in the below:

β = jZc2 tan(kL”
2), (3.67)

δ = j tan(kL2)/Zc2, (3.68)

K = −j 1

Zc1

s̃2

s̃1

sin(kL1) cos(kL”
2)

cos(kL”
1) cos(kL2)

, (3.69)

KT = −Zc2
Zc1

s̃3

s̃1

sin(kL1)

sin(kL2) cos(kL”
1)
, (3.70)

where the dimensions L1, L2, L”
1 and L”

2 provide the cavities lengths and microphones
positions, according to Fig. 3.26; the characteristic impedances Zc1 =

ρc

S1

and Zc2 =
ρc

S2

cor-

respond to the back and front cavities, with their respective cross sections S1 = πd2
1/4 and
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S2 = πd2
2/4 ; the wavenumber k = 2πf/c does not account for losses in such small environ-

ments, with frequency f in Hz and speed of sound c ≈ 344m/s at 22 ºC; and the sensitivities
s̃1, s̃2 and s̃3 correspond to the three microphones.

The calibration process is, at first, to remove the TAC and close the acoustic impedance
sensor by the rigid plate that supports the microphone 3 (see Fig. mic3). The transfer func-
tions H̃21 and H̃31 are then measured and here labeled with the subscript “cal”. As a conse-
quence of such a configuration, the impedance at the reference plane is the same as the trans-
fer impedance to the microphone 3 due to the fact that the position is coincident. Assuming
1/Z11,cal = 1/Z21,cal ≈ 0 leads to K = δH̃21,cal and KT = H̃31,cal (Macaluso, 2011). There-
fore, as a final result of the calibration, the parameters K and KT are obtained from the mea-
surements of H̃21,cal and H̃31,cal, and both ratios of sensitivity s̃2/s̃1 and s̃3/s̃1 are implicitly
taken into account. The substitution of K and KT into Eqs. (3.64) and (3.65) gives

Z ′

inp =
1

δ

(H̃21/H̃21,cal)− δβ
1− (H̃21/H̃21,cal)

, (3.71)

Z ′

T =
H̃31

(
1 + δZ ′

inp

)
δH̃31,cal

. (3.72)

Consideration of the waveguide discontinuity

The AIS used in this work delivers the acoustic excitation to the TAC under an important
geometrical discontinuity. That comes from the sudden diameter variation between the AIS exit
and the Adaptive Part, which is from 16mm to 33.9mm in an angle of 90 degrees (see Figs.
3.26 and 3.24). The resulting effect is an additional impedance that is here taken into account
to improve the measurements accuracy. This impedance is labeled Zdis, and it is subtracted
from the first hand measured input impedances by the AIS, so that to obtain the corrected ZTAC

coefficients, which, for instance, do not account for the Adaptive Part yet.

Zdis is calculated according to the following algorithm (Kergomard, 1987):

• Rmin is the minimal value between r2/rap and rap/r2, where r2 is the AIS front cavity
radius and rap is the Adaptive Part radius;
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• If Rmin 6 0.55

then kcor = 0.82(1− 1.35Rmin + 0.31R3
min), with kcor being the corrected wavenumber;

◦ else kcor =
4

π
R2
min1[0.5035−0.492log(Rmin1)−0.376R2

min1−0.852R2
min1log(Rmin1)],

where Rmin1 = 1−Rmin;

• If r2 6 rap

then lcor = kcorrap/Rmin, where lcor is the equivalent length;

◦ else lcor = kcorrap;

• Concluding, Zdis results in

Zdis =
jk0lcor
Sapρc

, (3.73)

where k0 is the wavenumber without losses, Sap = πr2
ap, and ρ is the average gas density.

Applying Zdis into Eqs. (3.71) and (3.72),

Z ′

inp,dis =
1

δ

(H̃21/H̃21,cal)− δβ
1− (H̃21/H̃21,cal)

−Zdis, (3.74)

Z ′

T,dis =
H̃31

(
1 + δZ ′

inp,dis

)
δH̃31,cal

. (3.75)

Nevertheless, an Adaptive Part must be provided to connect the AIS to the specific system
under analysis, which is the TAC in this study. The Adaptive Part is specifically designed for
that, and consists in a short waveguide section of 22mm length and same diameter as the TAC
ends. Therefore, its acoustical effects are not negligible, reminding that the TAC length is only
460mm.
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Consideration of the Adaptive Part

In order to take into account the length of the Adaptive Part, which is Lap = 22mm, the
reference plane is established in between this part and the TAC, as shown in Figs. 3.23, 3.24
and 3.26. That requires changing the reference plane from the AIS exit to the TAC input, which
may be at the position xr or xl, depending on whether the TAC is inverted or not, respectively.
The resulting expressions are:

Zinp =
cos(kwLap)Z

′

inp,dis + jZcc sin(kwLap)

j

Zcc
sin(kwLap)Z

′
inp,dis + cos(kwLap)

, (3.76)

ZT =
Z ′

T,dis

j

Zcc
sin(kwLap)Z

′
inp,dis + cos(kwLap)

. (3.77)

Final equations for the ZTAC and the TTAC coefficients

Substituting Eqs. (3.74) and (3.75) into Eqs. (3.76) and (3.77), and also rearranging the
resulting equations to make explicit the first and second measurements, each ZTAC coefficient
is described as follows:

Z11 = Z1st
inp =

p̃1st
l

ũ1st
l

=

cos(kwLap)

[
1

δ

(H̃1st
21 /H̃21,cal)− δβ

1− (H̃1st
21 /H̃21,cal)

−Zdis

]
+ jZcc sin(kwLap)

j

Zcc
sin(kwLap)

[
1

δ

(H̃1st
21 /H̃21,cal)− δβ

1− (H̃1st
21 /H̃21,cal)

−Zdis

]
+ cos(kwLap)

,(3.78)

Z12 = Z2nd
T =

p̃2nd
l

ũ2nd
r

=

H̃2nd
31

δH̃31,cal

(
1 + δ

[
1

δ

(H̃2nd
21 /H̃21,cal)− δβ

1− (H̃2nd
21 /H̃21,cal)

−Zdis

])
j

Zcc
sin(kwLap)

[
1

δ

(H̃2nd
21 /H̃21,cal)− δβ

1− (H̃2nd
21 /H̃21,cal)

−Zdis

]
+ cos(kwLap)

,(3.79)
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Z21 = Z1st
T =

p̃1st
r

ũ1st
l

=

H̃1st
31

δH̃31,cal

(
1 + δ

[
1

δ

(H̃1st
21 /H̃21,cal)− δβ

1− (H̃1st
21 /H̃21,cal)

−Zdis

])
j

Zcc
sin(kwLap)

[
1

δ

(H̃1st
21 /H̃21,cal)− δβ

1− (H̃1st
21 /H̃21,cal)

−Zdis

]
+ cos(kwLap)

,(3.80)

Z22 = Z2nd
inp =

p̃2nd
r

ũ2nd
r

=

cos(kwLap)

[
1

δ

(H̃2nd
21 /H̃21,cal)− δβ

1− (H̃2nd
21 /H̃21,cal)

−Zdis

]
+ jZcc sin(kwLap)

j

Zcc
sin(kwLap)

[
1

δ

(H̃2nd
21 /H̃21,cal)− δβ

1− (H̃2nd
21 /H̃21,cal)

−Zdis

]
+ cos(kwLap)

.(3.81)

Finally, the substitution of the ZTAC coefficients into Eqs. (3.53) to (3.56) leads to the
determination of TTAC.

3.6.2 Sensitivity analysis for the Impedance Method

Before starting with the actual measurements, a sensitivity analysis for the Impedance
Method is put forward. That way, if not promising, this third attempt would be dismissed and
another solution would be researched. Just like the previous approaches, the same procedures
are here applied, except that, instead of adding noise and bias into the theoretical transfer
functions, those disturbances are inserted into the theoretical impedances. Thus, Eqs. (3.50)
and (3.51) turn into the equivalent ones below:

Z inoise = |Z i|(1 + AnF
i
r)e

j(ϕ(Zi)+PnF ir), (3.82)

Zbias = |Z|(1 + Ab)e
j(ϕ(Z)+Pb), (3.83)

with An, Ab, Pn and Pb being setup at the same levels as for the previous two approaches.

73



The results are explored in the next four figures from 3.27 to 3.30, handling the Stainless
Steel Grids and the Ceramic Catalyst as well. The frequency range chosen for this sensitivity
analysis is the same as for the previous approaches, from 50 to 200 Hz, despite of the fact that the
actually measured frequency range is much wider, from 30 to 500 Hz. That way, performance
comparisons can be made under uniform basis.
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Figure 3.27: Stainless Steel Grids: amplitude of the four T coefficients in the frequency domain
for QH = 0W in bold lines for the measurements (solid) and theory (dashed), with the respec-
tive theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). -
Impedance Method.

Figures 3.27 and 3.28 present a smaller sensitivity to noise and bias for the Stainless Steel
Grids in comparison with the previous two-load approaches. That encourages to proceed with
actual measurements, which are beforehand presented in these figures by practical purposes,
as a matter of fact. The experimental curves behave in good agreement to the semi-theoretical
ones, and they are also coherently within the sensitivity constraints. Indeed, the reciprocity
parameters rc = 1.004 + 0.009i and σrc = 0.008 + 0.007i contribute to verify such agreement.
Therefore, at least for a regenerator-like material so far, the Impedance Method is surely proved
to be performing. To continue with this method evaluation, a stack-like material - namely the
Ceramic Catalyst - is investigated in the following.
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Figure 3.28: Stainless Steel Grids: phase of the four T coefficients in the frequency domain for
QH = 0W in bold lines for the measurements (solid) and theory (dashed), with the respec-
tive theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). -
Impedance Method.

Finally, as the conclusive part of the sensitivity analysis, Figs. 3.29 and 3.30 reveal that
the Impedance Method is also promising for stack-like materials. The sensitivity predictions
for noise and bias are even better than for the Two-Load Method, as it may be clearly seen. To
support this, the experimental curves for the Ceramic Catalyst (beforehand presented) behave
in good agreement with the purely theoretical ones. For this material, are recorded the best
reciprocity parameters within the 50 to 200Hz range in this investigation: rc = 1.002− 0.001i

and σrc = 0.001 + 0.002i (see Table 3.2).

To conclude the sensitivity analysis for the Impedance Method and also embracing Sec-
tion 3.5, the Impedance Method is the best method among the three methods tested, as it is the
least sensitive to noise and bias, and as it covers both stack-like and regenerator-like materials.
Relying on these results, the Impedance Method is used for subsequent works. In particular,
other materials can be tested as stack/regenerator, such as NiCr Foam and RVC Foam.
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Figure 3.29: Ceramic Catalyst: amplitude of the four T coefficients in the frequency domain
for QH = 0W in bold lines for the measurements (solid) and theory (dashed), with the respec-
tive theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). -
Impedance Method.

3.6.3 Experimental setup and procedures

The experimental procedure for the measurement of the impedance matrix ZTAC is de-
scribed below. Each sample is heated by means of a heat power supply QH increasing from 0

up to 81W by steps of 9W . The measurements are made for each heat condition for the first
configuration (AIS coupled to the left side of the TAC, see Fig. 3.24, “Measurement 1”). Af-
terwards, the heat power supply is turned off. The TAC is then naturally cooled and it reaches
the ambient temperature homogeneously after a few hours. Subsequently, the impedance sen-
sor is inverted (see Fig. 3.24, “Measurement 2”) and the same sequence of measurements is
applied, following the same rising heat supplies and keeping the same time intervals between
them, in order to obtain a thermal field inside the TAC as similar as possible to the one obtained
in the previous set of measurements. Nevertheless, this procedure may be sensitive to ambient
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Figure 3.30: Ceramic Catalyst: phase of the four T coefficients in the frequency domain for
QH = 0W in bold lines for the measurements (solid) and theory (dashed), with the respec-
tive theoretical bias (four thin solid lines per graph) and noise (five dotted lines per graph). -
Impedance Method.

temperature variations, or even pressure variations, as the total duration of both sequences of
measurements takes several hours. But proceeding this way leads to the best results. As with the
previous approaches, all transient thermal guidelines stated in Appendix A are here respected
as well. As explained before, the acoustic impedance sensor allows measurements in a much
wider frequency range than the Two-Load Method does. Hence, it is chosen to investigate the
problem within the interval between 30 to 500Hz, by steps of 1Hz. This allows investigation
of a wide range of operating frequencies for different engines configurations. Those results are
displayed in the following (Subsection 3.6.4) and in also Appendix D.
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3.6.4 Results

In this section, results are given for TAC made of a pile of Stainless Steel Grids, a
Ceramic Catalyst, a NiCr Foam (Fig. 3.31) and a RVC Foam (Fig. 3.32). Table 3.2 reports rc
and σrc for all four materials in two frequency ranges: from 50 to 200Hz, for comparisons with
results of the previous approaches (also included), and from 30 to 500Hz, which is the range
actually here covered by the Impedance Method. That way, a clear overview of performances
of all three approaches is provided. Columns 1, 2 and 3 correspond to the respective three
approaches and refer to the narrower frequency range; they consist of results already discussed
in the sensitivity analysis (see Section 3.5 and Subsection 3.6.2). The last column, on the
other hand, concerns the Impedance Method for the wider frequency range. The Impedance
Method provides the best results in all cases, no matter the material kind or frequency range.
When comparing third and fourth columns, one can realize a slight decrease in performance
for the wider frequency range - particularly for the σrc values - that indicates some additional
noise effects. Indeed, such effects are predictable since the wider frequency range reaches a
lower limit, 30Hz; this additional interval from 30 to 49Hz is more susceptible to external
influences like the noise from the water pump, for example. However, those σrc values are still
low and the reciprocity is considered verified either way.

Two-Load Two-Load (Inv.) Impedance Imp.(30-500Hz)

Ceramic Catalyst rc 1.010 + 0.002i − 1.002− 0.001i 1.003 + 0.000i

σrc 0.002 + 0.002i − 0.001 + 0.002i 0.003 + 0.003i

Stainless Steel Grids rc 0.996 + 0.005i 0.243− 1.727i 1.004 + 0.009i 1.003 + 0.006i

σrc 0.134 + 0.123i 3.787 + 4.238i 0.008 + 0.007i 0.010 + 0.012i

RVC Foam rc − − 1.000− 0.002i 0.999 + 0.002i

σrc − − 0.002 + 0.002i 0.004 + 0.004i

NiCr Foam rc − − 1.001− 0.000i 1.001− 0.002i

σrc − − 0.002 + 0.001i 0.002 + 0.002i

Table 3.2: Average reciprocities and standard deviations in the frequency range from 50 to
200Hz for all three approaches and also from 30 to 500Hz for the Impedance Method.
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Figure 3.31: Nichrome Foam (six discs), a ceramic washer and the stack/regenerator holder.

Figure 3.32: Reticulated Vitreous Carbon (RVC) Foam and the open TAC.

The resulting TTAC coefficients, deduced from ZTAC measurements, are shown below
following the same sequence of Table 3.2, in the frequency range from 30 to 500Hz. Only
three heating conditions (QH = 0, QH = 36W and Q = 72W ) are shown in this section,
for the sake of clarity, just like for the results of the first approach. However, the RVC Foam
requires lowering the upper limit of heat input, to avoid its spontaneous combustion, as the
whole experimentation is in the presence of atmospheric air. That ended up in lower heating
conditions (QH = 0, QH = 9W and QH = 18W ), according to a specific investigation that
led to this finding: measuring the steady state temperature just aside of the HHX, by means of a
thermocouple (Fig. 3.33), the temperature reached ≈ 230°C for QH = 15W , and ≈ 262°C for
QH = 18W ; hence, a next step of QH = 21W would have been risky since the temperature
limit for the RVC Foam integrity in the presence of oxygen is around 300°C.
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Figure 3.33: Temperature measurements at the right side of the HHX by means of a 35 cm long
thermocouple accessing it from the TAC right side; the RVC Foam is within the TAC.

80



Case of the pile of Stainless Steel Grids
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Figure 3.34: Stainless Steel Grids: amplitude (solid line) and phase (dotted line) of the TTAC

coefficients in the frequency domain for QH = 0W (circle), QH = 36W (square) and QH =

72W (diamond) - Impedance Method.
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Case of the Ceramic Catalyst
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Figure 3.35: Ceramic Catalyst: amplitude (solid line) and phase (dotted line) of the TTAC

coefficients in the frequency domain for QH = 0W (circle), QH = 36W (square) and
QH = 72W (diamond) - Impedance Method.
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Case of the NiCr Foam
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Figure 3.36: Nichrome Foam: amplitude (solid line) and phase (dotted line) of the TTAC

coefficients in the frequency domain for QH = 0W (circle), QH = 36W (square) and
QH = 72W (diamond) - Impedance Method.
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Case of the RVC Foam
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Figure 3.37: RVC Foam: amplitude (solid line) and phase (dotted line) of the TTAC coef-
ficients in the frequency domain for QH = 0W (circle), QH = 9W (square) and QH =

18W (diamond) - Impedance Method.
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3.6.5 Discussion and comparative analysis with the previous approaches

All curves for QH = 0W presented in Figs. 3.34, 3.35, 3.36 and 3.37 behave coherently
with their corresponding reciprocity parameters, which are presented in Table 3.2. The fact that
- for all materials - rc is close to unity and σrc is very low gives consistency to the Impedance
Method. Either bias or noise level is low, hence. Such consistency leads to assume that the
same quality is achieved for the heated measurements as well, since the same experimental
procedures are undertaken, and besides, to consider the thermal effects due to the condition
QH > 0, the transient constraints achieved in Appendix A are here respected as much as for the
first approach.

An interesting aspect to note is that σrc for the Stainless Steel Grids behaves differently
than for the other three materials. In fact, it is much bigger, although still small enough to not
turn those measurements noisy. That means the TTAC coefficients of the Stainless Steel Grids
have a higher noise level than those of the other materials. Indeed, when visually comparing
the curves of Figs. 3.34, 3.35, 3.36 and 3.37, the Stainless Steel Grids case is clearly the most
noisy among all four materials, seeming to follow σrc proportionally. This behavior is also in
agreement with the theoretical curves of sensitivity analysis, shown in Figs. 3.27, 3.28, 3.29 and
3.30, where the sensitivity to noise is revealed higher for the Stainless Steel Grids than for the
Ceramic Catalyst.

Another way to compare those results is to display amplitude and phase of the reciprocity
spectrum for the four materials (Fig. 3.38). They behave accordingly both to the comparison
above and to the Table 3.2, where the Stainless Steel Grids results are more noisy than the ones
for the other materials. However, when comparing those results with the ones obtained by the
Two-Load Method (Fig. 3.39) - also for the Stainless Steel Grids - it gets clear once more how
advantageous the Impedance Method is. Not only in qualitative aspects, but also because of its
easier way to cover a wider frequency range, as is does not depend on fitting waveguide lengths
nor microphones positioning to cover specific frequency ranges of interest.

In the case of the Ceramic Catalyst, amplitude and phase of reciprocity are displayed in
Fig. 3.40 for both Impedance Method and Two-Load Method. Both also behave coherently to
the sensitivity analysis and Table 3.2. Similar low noise levels are achieved, whereas the Two-
Load Method results are a little more biased for both amplitude and phase, besides the fact that
they reach a narrower frequency range.
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Figure 3.38: Amplitude and phase of the TTAC reciprocity in the frequency domain for QH =

0W for the Stainless Steel Grids (relatively noisy lines), Ceramic Catalyst (continuous thin
lines), Nichrome Foam (dotted lines) and RVC Foam (dashed lines) - Impedance Method.
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Figure 3.39: Stainless Steel Grids: amplitude and phase of the TTAC reciprocity in the frequency
domain for QH = 0W for the Impedance Method and for the Two-Load Method (very noisy
lines).
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Figure 3.40: Ceramic Catalyst: amplitude and phase of the TTAC reciprocity in the frequency
domain for QH = 0W for the Impedance Method and for the Two-Load Method (lines of
narrower frequency range).
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3.7 Conclusion

The Two-Load Method, either with or without the inversion of the TAC, is not capable
of characterization of low porosity materials such as the here tested stacked steel grids - at
least for the length of this case-study, which is significantly longer than typical ones used in
thermoacoustic systems.

In both cases, a high level of sensitivity to noise (first case) and to bias (second case)
is verified experimentally and also confirmed by a numerical simulation. Such accordance be-
tween these approaches validates one each other, in fact.

Thus, an alternative method based on the impedance matrix measurement has been de-
veloped, which leads to the T-matrix coefficients of the TAC. This method, called "Impedance
Method", lead to good results for both stack and regenerator. The low average value of reci-
procity and the corresponding standard deviation for QW = 0 is an indicator of the measure-
ment quality.

This method has been used to characterize different materials which can be anticipated to
behave as "stack" or "regenerator" (respective Ceramic Catalyst and Stainless Steel Grids), or
in between "stack" and "regenerator" (NiCr Foam and RVC Foam).

The knowledge of the T-matrix coefficients of the TAC at different heating conditions can
now be used to determine both the operating frequency fop and the intrinsic thermoacoustic
amplification gain G in a thermoacoustic engine. This application of the Impedance Method is
discussed in the next chapter.
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4 APLICATION TO THE DESIGN OF THERMOACOUSTIC ENGINES

4.1 Introduction

An experimental method allowing the measurement of the T-matrix coefficients of a TAC
at different heating conditions has been presented in the previous chapter. The knowledge of
these coefficients can be used to predict both the heat power supply and the operating fre-
quency which correspond to the onset of self-sustained acoustic waves in a thermoacoustic
engine equipped with the TAC characterized beforehand, as done by Guedra et al. (2011). It is
however worth mentioning that such a task requires having made the T-matrix measurements
for numerous values of heat power supply QH , since the accuracy of the predictions of onset is
directly related to the step of heat supply ∆Q between two set of measurements. An alternative
but similar approach consists in developing an adequate modeling which would predict both the
operating frequency fop. and the intrinsic thermoacoustic amplification gain G associated both
to a given heat power QH supplied to the TAC and to the respective geometry of each element
surrounding this TAC. This chapter presents a general modeling method (Bannwart et al., 2013)
based on this alternative approach, which allows calculation of both the operating frequency fop.
and the thermoacoustic gain G in a thermoacoustic engine from the measured T-matrix com-
ponents of a given TAC under a given heat power supply QH ; this approach also leads hence
to the determination of the onset of self-sustained oscillations, whose accuracy depends on the
step of heat supply ∆Q as well. An optimization of the geometric parameters of each element
surrounding the TAC can be then performed by searching the geometrical configuration leading
to a maximum value of the gain G. Thereby, this modeling method allows comparison of the
potential performances of the different sample materials characterized in Section 3.6, taking G
as the main comparative parameter. This method is applied in the following to the optimization
of the performances of a simple standing-wave and a simple closed-loop engine (see Fig. 4.1),
but it is also easily applicable to a more complicated engine such as the one of Fig. 1.1. Aiming
to achieve the best results possible in this work, all experimental data used in this chapter are
the ones obtained from the Impedance Method.

4.2 Theory

Two simple thermoacoustic engines are here considered, and they are depicted in Fig. 4.1.
The first one is a standing-wave engine which basically consists of the TAC surrounded by two
straight ducts closed by rigid ends. The second one is made of a closed-loop, containing the
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Figure 4.1: Basic configurations for standing-wave and closed-loop engines.

TAC, connected to a straight duct. It is worth noting that in the configuration of the closed-loop
engine, it is assumed that the curvature of the waveguide, and especially that of the TAC, has
no impact on the propagation of acoustic waves.

4.2.1 Standing-wave engine

First, the standing wave engine of Fig. 4.1 is taken into consideration. Two straight ducts
of lengths L1 and L2 are connected to the TAC. These ducts have the same inner diameter
than the TAC. Assuming the propagation of plane acoustic waves at angular frequency ω, it is
possible to relate the acoustic pressure p̃L and volume velocity ũL at position x = L to the
pressure p̃0 and volume velocity ũ0 at position x = 0 as follows:

(
p̃L

ũL

)
= T2 ×TTAC ×T1 ×

(
p̃0

ũ0

)
= Ttot ×

(
p̃0

ũ0

)
, (4.1)

92



where the T-matrices

Tj(j=1,2)
=

(
cos(kLj) iZc sin(kLj)
i
Zc

sin(kLj) cos(kLj)

)
(4.2)

characterize the lossy propagation of acoustic waves in the ducts of respective lengths L1 and
L2 and where

k =
ω

c0

(
1 +

fν + (γ − 1)fκ
1− fν

)1/2

(4.3)

and
Zc =

ρ0c0

S [(1− fν)(1 + (γ − 1)fκ)]
1/2

(4.4)

are the complex wavenumber and the characteristic impedance of the ducts, respectively.
In Eqs. (4.3) and (4.4), ρ0 is the fluid density at room temperature, c0 is the adiabatic sound
speed, γ is the specific heat ratio of the fluid, S is the duct cross-sectional area, and the functions
fκ and fν characterize the thermal and viscous coupling between the oscillating fluid and the
duct walls (Swift, 2002; Arnott et al., 1991). Then, taking into account that ũL = 0 (rigid
termination), one gets(

p̃0

ũ0

)
= T−1

tot ×

(
p̃L

0

)
=

(
App Apu

Aup Auu

)
×

(
p̃L

0

)
, (4.5)

from which one can write the reflected acoustic impedance at position x = 0:

Z0 =
p̃0

ũ0

=
App
Aup

. (4.6)

The knowledge of this reflected acoustic impedance Z0 = Z0(L1, L2, QH , ω) can be
used to determine the resonance frequencies of the complete device. In particular, if the left
side of the engine is also terminated by a rigid plug (infinite impedance), then the principle
of impedance matching tells that the resonance frequencies correspond to the maxima of
|Z0| (these maxima should tend towards infinity if losses were neglected). As an illustrative
example, the modulus of Z0 and its real part are presented for three levels of heat supply in Fig.
4.2 as a function of the frequency in the particular case when L1 and L2 are fixed to 160 cm and
10 cm, respectively. The reflected impedance Z0 is calculated using the experimental transfer
matrix TTAC of the ceramic stack previously determined under different levels of heat power
supply.
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Figure 4.2: Ceramic Catalyst: modulus and real part of the reflected acoustic impedance for
QH = 9W (dash-dotted line), QH = 18W (dashed line), and QH = 27W (solid line).

From the analysis of |Z0|, it appears that the first resonance frequency fop. of the system
is around 80Hz, and that it tends to increase with heating. Moreover, the quality factor of
the resonance (which is inversely proportional to the width of the resonance peak) increases
as QH increases from 9 to 18W . This is consistent with our expectations since the quality
factor should tend towards infinity as the system approaches the threshold of thermoacoustic
instability (Atchley et al., 1992). However, the width of the resonance peak increases as QH

increases from 18 to 27W , which seems surprising at first sight. Actually, this means that
the system is above threshold for QH = 27W so that the width of the resonance peak is no
longer related to the quality factor of the resonance: this quality factor should become negative
through onset (Atchley, 1994a), for which the net attenuation of sound becomes negative.
Additional insight arises from the analysis of < (Z0) at resonant frequency fop., leading to the
same conclusions: if QH ≤ 18W , the real part of Z0(fop.) is positive which means that work is
absorbed by the device, but for QH = 27W the real part of Z0 becomes negative which means
that work is produced by the system (Hatori et al., 2012). In other words, if QH = 27W the
system is above threshold, and self-sustained acoustic waves should oscillate at frequency fop.

94



(in as much as it is considered that the generation of large amplitude acoustic oscillations does
not induce variations of the temperature field inside the TAC with subsequent variations of its
transfer matrix).

Gain G Operating freq. fop.
QH = 9W −0.14 79.7 Hz
QH = 18W 0.91 81.1 Hz
QH = 27W 1.50 82.1 Hz
QH = 36W 1.82 83.2 Hz

Table 4.1: Performances for a standing-wave engine equipped with a stack (Ceramic Catalyst)
(L1 = 160 cm and L2 = 10 cm).

Once the reflected impedance Z0 is determined, the resonance frequencies of the device
are known. It is then possible to choose a particular working frequency and to calculate a ther-
moacoustic amplification gain associated to the acoustic mode under consideration. Let’s as-
sume that the operating angular frequency ωop. is fixed to that of the first acoustic mode (which
is generally the most unstable mode). Assuming as well that the acoustic pressure p̃0 at position
x = 0 is fixed to some arbitrary value P0, from which one easily gets the corresponding volume
velocity ũ0 = P0/Z0, together with the acoustic pressures and volume velocities at positions xl,
xr and L (which are deduced from ũ0, p̃0 and the T-matrices T1, TTAC, and T2). Therefore, it
is possible to calculate the acoustic power

Wloss =

[
1

2
< (p̃lũ

∗
l )−

1

2
< (p̃0ũ

∗
0)

]
+

[
1

2
< (p̃Lũ

∗
L)− 1

2
< (p̃rũ

∗
r)

]
(4.7)

dissipated by viscous and thermal losses into the ducts, where ∗ denotes the conjugate of a
complex number, and to calculate the acoustic power

WTAC =

[
1

2
< (p̃rũ

∗
r)−

1

2
< (p̃lũ

∗
l )

]
(4.8)

produced within the TAC. The powers Wloss and WTAC depend on the unknown parameter P0,
but their ratio does not. Then, a thermoacoustic amplification gain G can be defined as follows:

G =
WTAC

|Wloss|
. (4.9)
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This parameter G has the meaning of an energy balance in the system: if G > 1, then
the acoustic work produced by thermoacoustic effect in the TAC is higher than the losses in the
remaining of the device, so that the extra work can be provided to an acoustic load.

The results obtained for the frequency of operation fop. and the corresponding thermoa-
coustic amplification gain G are reported in Tab. 4.1: the engine under consideration is a stand-
ing wave engine equipped with a ceramic catalyst stack, while L1 and L2 are fixed to 160 cm

and 10 cm, respectively. The calculations of G are consistent with the conclusion mentioned
above that the heat supply corresponding to onset threshold (G = 1) is between 18 and 27W .

4.2.2 Closed-loop engine

The same kind of analysis as the one presented above can be used in the case of a closed-
loop engine (see Fig. 4.1) which is the basic geometrical configuration encountered in thermoa-
coustic Stirling engines that use a regenerator instead of a stack. As in Subsection 4.2.1, the first
step consists in determining the reflected impedance Z0 from the T-matrices T1,2 and TTAC.
After a few calculations, one gets

Z0 =
BppZ2 + Bpu
BupZ2 + Buu

, (4.10)

with

(
Bpp Bpu
Bup Buu

)
= T−1

2 , (4.11)

Z2 =
p̃2

ũ2

=
Cpu

(1− Cuu)(1− Cpp)− CpuCup
, (4.12)

and

(
Cpp Cpu
Cup Cuu

)
= TTC × T1. (4.13)
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Therefore, assuming that p̃0 = P0 at position x = 0, one gets ũ0 = P0/Z0, and

(
p̃2

ũ2

)
= T2 ×

(
p̃0

ũ0

)
, (4.14)

(
p̃1

ũ1

)
=

(
1 0

0 1−Cpp
Cpu

)
×

(
p̃2

ũ2

)
, (4.15)

(
p̃l

ũl

)
= T1 ×

(
p̃1

ũ1

)
, (4.16)

(
p̃r

ũr

)
= TTAC ×

(
p̃l

ũl

)
. (4.17)

From these relations, one obtain the acoustic work produced within the TAC (Eq. (4.8))
and the acoustic work

Wloss =

[
1

2
< (p̃2ũ

∗
2)− 1

2
< (p̃0ũ

∗
0)

]
+

[
1

2
< (p̃lũ

∗
l )−

1

2
< (p̃1ũ

∗
1)

]
(4.18)

consumed in the remaining of the device, which fulfills the expression for the thermoa-
coustic amplification gain G = WTAC/|Wloss|, as described in Eq. 4.9.

4.3 Calculation of G and fop. from experimental data

As soon as the experimental transfer matrix of a given thermoacoustic core is measured
for various heating conditions, an optimization of the thermoacoustic amplification gain can
be done thanks to the theory given in the previous section. This optimization is achieved for a
given heat power supply by searching the geometry of the thermoacoustic device which leads to
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a maximum value for G. In our case study, this amounts to determining the optimal lengths L1

and L2 within their respective arbitrary ranges, which are for instance bounded by the frequency
limits, i.e. from 30 to 500 Hz in our measurements. However, for illustration purposes, it is
chosen to show G and fop. for a narrower interval, from 30 to 250 Hz, as the optimal G is still
embraced in all cases. This optimization is done for each one of the four thermoacoustic cores
made of different materials. Nevertheless, before presenting these results, a comparison is put
forward regarding a theoretical transfer matrix in Subsection 4.3.1. In this comparison, it is also
shown the advantage of post-treating the experimental data with least squares regression to a
polynomial.

4.3.1 Comparison between results from theoretical and experimental data

The validity of the measured TTAC by the Impedance Method for both stack-like and
regenerator-like porous material has been already proved in Chapter 3. However, in order to
illustrate and reverify the accuracy of those experimental data and, reciprocally, the accuracy
of the theoretical model for stack-like materials, a comparison between results beyond just the
TTAC coefficients is here put forward. G and fop. are calculated from data of both origins and
compared. The Ceramic Catalyst is the chosen material for that since its geometrical simplicity
allows to have a reliable theoretical modeling for its non-heated TTAC, as discussed in Chapter
2. Therefore, the experimental data are for non-heated TTAC as well. As the Ceramic Catalyst is
a stack, the most appropriate engine for this study is the standing-wave kind, which is shown in
Fig. 4.1.

Figure 4.3 shows the theoretical fop. for the first resonance mode as function of the vari-
able lengths 0.6m ≤ L1 ≤ 4m and 0m ≤ L2 ≤ 0.4m. These intervals are chosen according
to the need for a good graphical resolution for the experimental results, which are displayed in
the following of these theoretical ones. The number of points per interval are, respectively, 60

and 40, what gives a total of 2400 combinations of engines per analysis. The corresponding G
is shown in Fig. 4.4. As these surfaces are calculated from theoretical data, they are smooth.
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Figure 4.3: Theoretical fop. for standing-wave engines at QH = 0W for the Ceramic Catalyst.

The corresponding fop. and G from experimental data are very close - but evidently not
identical - to previous, as one would expected. For the sake of simplicity, however, only the
G surface is here presented (Fig. 4.5). When comparing Figs. 4.4 and 4.5, it is visible some
small level of noise in the measured G, which is intrinsic to experimental data and coherent
to the results of the sensitivity analysis of Subsection 3.6.2, and to the reciprocity parameters
of Tables 3.2 and 4.2. One interesting aspect to note, however, is the non-negligible difference
in the optimal G between both the cases. As expected by theory, the maximal G for QH =

0W results negative (−0.383), as there is no thermoacoustic production when the temperature
gradient along the TAC is zero. That is why this maximal G can reach values close to zero,
but still negative. On the other hand, the maximal G from experimental data results positive
(0.166). This is due to irregularities in the G surface. Nevertheless, such roughness can be
minimized by applying a least squares regression to a polynomial into the measured transfer
functions from which the TTAC coefficients are calculated. The polynomial regression with the
best results in this investigation is of fifth degree, which leads to better and smoother surfaces
such as of Fig. 4.6. This polynomial regression (or curve fitting), when applied to the theoretical
case does not lead to significant changes, what is interesting with respect to the data quality
preservation. Hence, that contributes to the reliability of the already significant improvement in
the experimental case (see Table 4.2). Therefore, the polynomial regression of fifth degree is
adopted as regular procedure to all following calculations of optimal G or fop..
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Figure 4.4: Theoretical Gain for standing-
wave engines at QH = 0W for the Ceramic
Catalyst.
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Figure 4.5: Gain for standing-wave engines
at QH = 0W from measured TTAC of the
Ceramic Catalyst by the Impedance Method.
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Figure 4.6:Gain for standing-wave engines atQH = 0W from measured TTAC of the Ceramic
Catalyst using polynomial regression of fifth degree - Impedance Method.
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Theory Fitted Theory Experiment Fitted Experiment

G −0.386 −0.383 0.166 0.001

fop.(Hz) 38 37.7 42 38.2

L1(m) 4 4 3.60 4

L2(m) 0 0 0 0

rc 1.000 + 0.000i 1.000 + 0.000i 1.003 + 0.000i 1.002− 0.001i

σrc 0.000 + 0.000i 0.000 + 0.000i 0.003 + 0.003i 0.000 + 0.001i

Table 4.2: Maximal performances and respective configurations for standing-wave engines at
QH = 0W calculated from theoretical and experimental data, fitted or not with polynomial
regression of fifth degree, with their corresponding average reciprocities and average standard
deviations in the frequency range from 30 to 500Hz.

4.3.2 Standing-wave engines for QH > 0

For the standing-wave configuration, optimization results are given in Figs. 4.7 and 4.8 for
the case of the Ceramic Catalyst with the maximum value of heat supply QH = 81W . Figure
4.7 shows the evolution of the operating frequency fop., and Fig. 4.8 shows the corresponding
thermoacoustic amplification gain G as a function of the variable lengths 0.6m ≤ L1 ≤ 4m

and 0m ≤ L2 ≤ 0.4m. For each configuration (in terms of L1 and L2), the operating frequency
fop. is searched around the first resonance mode (although higher order modes might become
more unstable for some values of the lengths L1 and L2). To ensure this search, an approximate
prediction of the resonant frequency is estimated taking into account the sound speed evolution
with the increase in the heating supply QH , so that the range of frequency around the resonance
can be better adjusted; this procedure is repeated for of each thermal condition. In the case
of QH = 81W , a peak value of G = 3.31 is reached with L1 = 1.06m and L2 = 0m, at
fop. = 121 Hz. It is worth mentioning that the obtained value for the “optimum” length L2

equals 0, which is equivalent to closing the right side of the TAC by a rigid plug: this result
suggests that the length of the Thermal Buffer Tube of the TAC under test is too long (in the
sense that if a shorter TBT had been used, a non-zero optimal length L2 might have been
expected).
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Figure 4.7: fop. for standing-wave engines at QH = 81W from measured TTAC of the Ceramic
Catalyst using polynomial regression of fifth degree - Impedance Method.

The same analysis is done for the other three materials, and the results are summarized in
Table 4.3. None of them reaches the thermoacoustic outbreak, as their optimal gain are below
the unity. In the case of the Nichrome Foam, the maximum G is not so smaller than 1, which
is consistent with this material geometrical properties (see Tab. 3.1), closer to the ones of the
Ceramic Catalyst; one may expect to reach the onset when slightly increasing QH . In the case
of the RVC Foam, the results are less promising than the Ceramic Catalyst’s case. However,
it is worth noting that the maximum heat supply for the RVC Foam is only 18W due to its
temperature limitation in the presence of oxygen (combustion hazard): such a material should
be possibly employed as a stack if an inert gas were chosen as the working fluid. At last, as what
would be expected, the pile of stainless steel grids is the worst material of all for the standing-
wave engine; it has the lowest porosity and smaller average pore radius, which are undesirable
aspects for a standing-wave system. These four materials have best performance with L2 = 0.
For both RVC Foam and Stainless Steel Grids the fop. results not much higher than 30 Hz, with
L1 at the upper limit of the established constraints, what leads to a less well defined G peak for
these general conditions and frequency range.
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Figure 4.8: Gain for standing-wave engines at QH = 81W from measured TTAC of the Ce-
ramic Catalyst using polynomial regression of fifth degree - Impedance Method.

G fop.(Hz) L1(m) L2(m)

Ceramic Catalyst 3.31 121 1.06 0

Stainless Steel Grids −0.42 30.2 5.50 0

RVC Foam (QH = 18W ) −0.14 33.7 4.75 0

NiCr Foam 0.84 81.8 1.85 0

Table 4.3: Maximal performances and respective configurations for standing-wave engines at
QH = 81W .

4.3.3 Closed-loop engines for QH > 0

The same kind of comparative analysis is conducted for the closed-loop configuration.
The results are summarized in Table 4.4. For this configuration, the pile of Stainless Steel Grids
is expected to have the best result. Nevertheless, despite of its favorable properties mentioned
before, such material appears in the last performance position. However, when noting the typical
lengths of alike materials usually employed as regenerators, which are around few centimeters,
it becomes suggestive to consider our 6 cm pile as too long. Indeed, this conclusion would be
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in agreement with the strong decay of acoustic pressure level along its axis, as verified during
the measurements of its TTAC. Hence, besides low porosity and small average pore radius, this
pile also exhibits a length too large, which contributes proportionally to the viscous losses.

Actually, the best performing material here tested is the Nichrome Foam, whose maxi-
mum gain reaches 6.88 at 35.2 Hz, with L1 = 0.90m and L2 = 3.80m, as illustrated in Figs.
4.9 and 4.10 (note that a contour plot is preferred to a surface area in Fig. 4.11, which shows
more clearly the optimum values of L1 and L2). From the knowledge of the operating frequency,
fop. = 35.2 Hz, it is quite direct to estimate the associated thermal boundary layer thickness at
room temperature δκ ≈ 450µm, which is almost as high as the average pore radius (600µm,
see Tab. 3.1) of the sample.
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Figure 4.9: fop. for closed-loop engines at QH = 81W from measured TTAC of the Nichrome
Foam using polynomial regression of fifth degree - Impedance Method.

The Ceramic Catalyst is the second material that performs aboveG = 1 for this engine, as
shown in Tab. 4.4, Fig. 4.12, and Fig. 4.13, the latter being the contour plot of the thermoacoustic
gainG as a function of L1 and L2. The maximum gainG is 1.47 with a corresponding frequency
fop. = 156 Hz. In that specific case, the process of optimization leads to an engine which is
different from the one obtained with the NiCr Foam. The estimate of the thermal boundary layer
thickness at 158 Hz indeed leads to δκ ≈ 200µm which is lower than the average pore radius
(530µm, calculated from data in Tab. 3.1): the obtained engine is thus much more a closed-loop
but stack-based engine rather than a regenerator-based thermoacoustic Stirling engine.
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Figure 4.10: Gain for closed-loop engines at QH = 81W from measured TTAC of the
Nichrome Foam using polynomial regression of fifth degree - Impedance Method.
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Nichrome Foam using polynomial regression of fifth degree - Impedance Method.
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Figure 4.12: Gain for closed-loop engines at QH = 81W from measured TTAC of the Ceramic
Catalyst using polynomial regression of fifth degree - Impedance Method.
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Figure 4.13: Gain for closed-loop engines at QH = 81W from measured TTAC of the Ceramic
Catalyst using polynomial regression of fifth degree - Impedance Method.
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G fop.(Hz) L1(m) L2(m)

Ceramic Catalyst 1.47 156 0 0.77

Stainless Steel Grids 0.46 55.1 0 2.68

RVC Foam (QH = 18W ) 0.87 42.1 0.49 3.24

NiCr Foam 6.88 35.2 0.90 3.80

Table 4.4: Maximal performances and respective configurations for closed-loop engines at
QH = 81W .

The RVC Foam does not reach the thermoacoustic outbreak in this engine, but its maxi-
mum heat supply (18W ) is 4.5 times smaller than others maximums (81W ). Considering that
even though with a small QH the optimal G reaches 0.87, one may guess that its gain would
easily overcome the unity before (81W ). An experiment in the absence of oxygen could verify
the validity of this statement.
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5 GENERAL CONCLUSIONS

It has been presented in this work three methods for the transfer matrix measurement of
a thermoacoustic core: two of them consisting in applications of a classical two-load acoustic
method, and an alternative method here developed based on impedance measurements. Their
performances have been evaluated either by sensitivity analysis or by actual measurements in-
volving different porous materials inside this thermoacoustic core. Close agreement has been
found between both perspectives, and these three approaches have been extensively analyzed
and compared. The third approach, here called Impedance Method, has been proved to be ac-
curate due to its intrinsic low sensitivity to noise and bias, and such accuracy could be verified
because of the precision of the acoustic impedance sensor, to the care taken in its calibration,
and to the close monitoring over the variation of the temperature distribution. It has been shown
that this method, contrarily to the Two-Load Method or the Two-Load Method with TAC Inver-
sion, is accomplishing independently on the material under test, even if dealing with one that
resembles a lengthy regenerator.

The T-matrix components of the TAC have been measured for different kinds of materials
under different heating conditions, and these data have been used to calculate the associated op-
erating frequency and thermoacoustic amplification gain in both a simple standing-wave engine
and a simple closed-loop engine. An optimization process of the engine’s operation has been
proposed, which consists of maximizing the thermoacoustic amplification gain, and the results
obtained also give the opportunity to compare the performances of different materials. The op-
timization method presented in Sec. 4.3 could be applied to more complicated engines as the
one depicted in Fig. 1.1, with many more parameters to adjust (notably the electromechanical
parameters of the linear alternator). However, in what concerns the engine performance evalu-
ation, the works presented in this thesis also reveal important features to be improved later on,
in future experiments, aiming at more reliable results.

The low predicted performance for the closed-loop engine with the Stainless Steel Grids
indicates that this sample may be too long (at least if it shall be used as a regenerator) so that
it is difficult to apply a steep temperature gradient along it in order to reach a substantial ther-
moacoustic amplification, as it would be expected for such material; besides, the proportional
viscous dissipation also contributes in this sense. These results are in accordance with the dif-
ficulties encountered during the transfer matrix measurements by the Two-Load method due to
the strong acoustic pressure decay. These difficulties, for instance, have led to the development
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of the alternative method to overcome them. The alternative method has been proved to be ca-
pable to evaluate a regenerator for a wide range of lengths (till at least 60mm) with enough
accuracy to allow an engine performance prediction. The performance prediction also allows
the evaluation of the outreach limits of the TBT length. In the case of the Ceramic Catalyst for
the standing-wave engine, for example, the TBT length seems too high, as it is suggested that
one would find a better performance for a shorter TBT and a non-zero optimal length L2.

For practical reasons, air at atmospheric pressure was chosen as the working fluid, despite
being inappropriate from the performance concerns (most engines make use of pressurized
helium). Therefore, due to this, the predicted onset of thermoacoustic instability (G > 1) was
not reached for all kind of materials, and therefore no formal comparative analysis could be
achieved.

The results obtained in Section 4.3 have not been confirmed by experiments, notably for
the reasons mentioned above but also for practical aspects relative to the difficulty in building
the complete engine (for instance, the closed-loop engine equipped with a ceramic catalyst stack
is impossible to be built unless bending the TAC). This kind of experimental confirmation has
already been carried on by Guedra et al. (2011), and it is anticipated that it should also succeed
here (at least for the prediction of threshold) since the modeling of Sec. 4.3 is nothing else than
the propagation of plane acoustic waves in lossy ducts.

It is worth mentioning that the works presented here are intrinsically limited to the acous-
tic pressure amplitudes for which the linear approximation can be retained. The measurement
method of Section 3.6 could be, in principle, extended to large amplitudes but some nonlinear
processes like the generation of acoustic streaming could not be adequately characterized by
this way. Actually, the thermoacoustic amplification gain G should be considered cautiously as
soon as G > 1. The physical meaning of a gain significantly larger than unity (e.g. G = 6.88 in
Tab. 4.4) is that the heated TAC under consideration has a very high potential of thermoacoustic
amplification, but it is clear that as soon as self-sustained oscillations are generated, the asso-
ciated heat transport by sound (with subsequent variations of the T-matrix components) should
be considered.

Now that the so-called Impedance Method has been validated and proved succesful, the
present works appeal for several other perspectives. First of all, the existing test-bench could
be modified (fitting pieces) to allow the measurements of the T-matrices of the TAC used in
other experimental devices at LAUM, and notably two prototypes of thermo-acousto-electric
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generators. A first prototype working with air at 5 bars is already available, while a second
one (working with Helium at 25 bars) is currently under construction. The obtained data should
allow verification that the existing engines are well designed (or not), but it could also be helpful
in the theoretical description of the engine (see the following paragraph).

Another issue concerning the use of the experimental transfer matrices of the TAC deals
with the development of an adequate modeling of both acoustic propagation and heat transport
through the TAC, involving the solving of an inverse problem. More precisely, the objective is to
determine unknown parameters using an inverse method so that the theoretical transfer matrix
fits the experimental one. The first step is to state the direct problem (notably concerning the
simplified description of heat transfer through the TAC). The experimental data obtained under
various heating conditions could be used to determine, from the optimization algorithm, some
unknown parameters (e.g. axial and transverse thermal diffusivities of the regenerator) involved
in the theoretical description of heat transfer within the TAC.

Finally, it would be also interesting to perform the measurements of the T-matrix of the
TAC mentioned above as a function of the acoustic power provided by the impedance sensor
to the TAC. In particular, measurements could be performed at large amplitude, for which the
linear description of thermoacoustic amplification is expected to fail. It is anticipated that both
the thermoacoustic heat flux and the viscothermal losses could no longer follow a quadratic
dependance with acoustic pressure at large amplitudes. Note that the achievement of this task
involves purchasing a new impedance sensor which is able to generate high amplitude sound
notably in the low frequency range (under 100 Hz) and this kind of device has been recently
developed at the Center of Technological Transfer of the Maine university (CTTM).

111





REFERENCES

ADEFF, J.A.; HOFLER, T.J.; ATCHLEY, A.A. e MOSS, W.C. Measurements with reticu-
lated vitreous carbon stacks in thermoacoustic prime movers and refrigerators. J. Acoust.
Soc. Am. 104(1), 32-38, 1998.

ARNOTT, W.P.; BASS, H.E. e RASPET, R. General formulation of thermoacoustics for
stacks having arbitrary shaped pore cross sections. J. Acoust. Soc. Am. 90(6), 3228-3237,
1991.

ATCHLEY, A.A. Standing wave analysis of a thermoacoustic prime mover below onset of
self-oscillation. J. Acoust. Soc. Am. 92(5), 2907-2914, 1992.

ATCHLEY, A.A. Analysis of the initial buildup of oscillations in a thermoacoustic prime-
mover. J. Acoust. Soc. Am. 95(3), 1661-1664, 1994a.

ATCHLEY, A.A.; BASS, H.E.; HOFLER, T.J. e LIN, H. Study of a thermoacoustic prime-
mover below onset of self-oscillations. J. Acoust. Soc. Am. 91(2), 734-743, 1992.

ATCHLEY, A. A.; KUO, F. Stability curves for a thermoacoustic prime mover. J. Acoust.
Soc. Am. 95(3), 1401-1404, 1994b.

BACKHAUS, S.; SWIFT, G.W. A thermoacoustic Stirling heat engine. Nature 399, 335-338,
1999.

BACKHAUS, S.; SWIFT, G.W. A thermoacoustic Stirling heat engine: Detailed Study. J.
Acoust. Soc. Am. 107(6), 3148-3166, 2000.

BACKHAUS, S.; TWARD, E. e PETACH, M. Traveling-wave thermoacoustic electric gen-
erator. Appl. Phys. Lett. 85(6), 1085-1087, 2004.

113



BAILLIET, H. Machines thermoacoustiques: études analytiques et expérimentales de cou-
plages et d’effets non linéaires acoustiques. PhD Thesis, Université du Maine, Le Mans,
FRANCE, Octobre, 1998.

BAILLIET, H.; GUSEV, V.; RASPET, R. e HILLER, R.A. Acoustic streaming in closed
thermoacoustic devices. J. Acoust. Soc. Am. 110(4), 1808-1821, 2001.

BANNWART, F.C.; PENELET, G.; LOTTON, P. e DALMONT, J.P. Methods for transfer ma-
trix evaluation applied to thermoacoustics. Proceedings of the ACOUSTICS 2012, Nantes,
France, April 2012.

BANNWART, F.C.; PENELET, G.; LOTTON, P. e DALMONT, J.P. Measurements of the
impedance matrix of a thermoacoustic core: applications to the design of thermoacoustic
engines. J. Acoust. Soc. Am. 133(5), 2650-2660, 2013.

BANNWART, F. C.; ARRUDA, J.R.F. Construction of a demonstrative apparatus for the
thermoacoustic refrigeration effect. Proceedings of the XIII Int. Symposium on Dynamic
Problems of Mechanics (DINAME 2009), Angra dos Reis, RJ, Brazil, March 2009.

BAO, R.; CHEN, G.; TANG, K.; CAO, W. e JIN, T. Thermoacoustically driven pulse tube
refrigeration below 80K by introducing an acoustic pressure amplifier. Applied Physics
Letters 89, 211915, 2006.

BASTYR, K. J. ; KEOLIAN, R.M. High-frequency thermoacoustic-Stirling heat engine
demonstration device. ARLO, 4(2), 37-40, 2003.

BESNOIN, E.; KNIO, O.M. Numerical study of thermoacoustic heat exchangers. ACTA
Acustica united with Acustica, Vol. 90, 2004.

BIWA, T.; UEDA, Y.; YAZAKI, T. e ETAY, J. Work flow measurements in a thermoacoustic
engine. Cryogenics 41(5-6), 305-310, 2001.

BODEN, H.; ABÖM, M. Influence of errors on the two-microphone method for measuring
acoustic properties in ducts. J. Acoust. Soc. Am. 79(2), 541-549, 1986.

114



CARTER, R.L.; WHITE, M. e STEELE, A.M. internal document of the Atomics Interna-
tional Division of North America Aviation Inc., 1962.

CEPERLEY, P. A pistonless Stirling engine - The traveling wave heat engine. J. Acoust.
Soc. Am. 66(5), 1508-1513, 1979.

CEPERLEY, P.H. Gain and efficiency of a short traveling wave heat engine. J. Acoust. Soc.
Am. 77(3), 1239-1244, 1985.

CHEN, G. B.; JIN, T. Experimental investigation on the onset and damping behavior of the
oscillation in a thermoacoustic prime mover. Cryogenics 39(10), 843-846, 1999.

DALMONT, J.P. Acoustic impedance measurement, Part I: A review. J. Sound. Vib. 243(3),
427-439, 2001a.

DALMONT, J.P. Acoustic impedance measurement, Part II: A new calibration method. J.
Sound. Vib. 243(3), 441-459, 2001b.

DE BLOK, K. Novel 4-stage traveling wave thermoacoustic power generator. Proceedings
of ASME 2010 3rd Joint US-European FEDSM2010-ICNMM2010, Montreal, Canada, August
2010.

GARDNER, D.L. A cascade thermoacoustic engine. J. Acoust. Soc. Am. 114, 1905-1919,
2003.

GARRETT, S.L. Resource Letter: TA1: thermoacoustic engines and refrigerators. Am. J.
Phys. 72, 11, 2004.

GUEDRA, M.; PENELET, G. On the use of complex frequency for the description of ther-
moacoustic engines. Acust. Acta Acust. 98(2), 232-241, 2012a.

GUEDRA, M. Etudes semi-analytiques des conditions de déclenchement et de saturation
des auto-oscillations dans de moteurs thermoacoustiques de géometries diverses. PhD
Thesis, Université du Maine, Le Mans, FRANCE, Novembre, 2012b.

115



GUEDRA, M.; PENELET, G.; LOTTON, P. e DALMONT, J.P. Theoretical prediction of the
onset of thermoacoustic instability from the experimental transfer matrix of a thermoa-
coustic core. J. Acoust. Soc. Am., 130(1), 145-152, 2011.

GUSEV, V.; BAILLET, H.; LOTTON, P. e BRUNEAU, M. Asymptotic theory of nonlinear
acoustic waves in a thermoacoustic prime mover. Acust. Acta Acust. 86, 25-38, 2000.

HAMILTON, M.F.; ILINSKII, Y.A. e ZABOLOTSKAYA, E.A. Nonlinear two-dimensional
model for thermoacoustic engines. J. Acoust. Soc. Am. 111(5), 2076-2086, 2002.

HAO, H.G.; JU, Y.L.; BEHERA, U. e KASTHURIRENGAN, S. Influence of working fluid
on the performance of a standing-wave thermoacoustic prime mover. Cryogenics 51(9),
559-561, 2011.

HATORI, H.; BIWA, T. e YAZAKI, T. How to build a loaded thermoacoustic engine. J.
Appl. Phys. 111, 074905, 2012.

HIGGINS, B. Nicholson’s. J1, 130, 1802.

JOB, S. Etudes théoriques et expérimentales d’un générateur thermoacoustic annulaire à
ondes progressives. PhD Thesis, Université du Maine, Le Mans, FRANCE, Octobre, 2001.

KARPOV, S.; PROSPERETTI, A. A nonlinear model of thermoacoustic devices. J. Acoust.
Soc. Am. 112(4), 1431-1444, 2002.

KERGOMARD, J.; GARCIA, A. Simple discontinuities in acoustic waveguides at low fre-
quencies: critical analysis and formulae. J. Sound. Vib. 114(3), 465-479, 1987.

LE ROUX, J. C.; DALMONT, J.P. A new impedance sensor for industrial applications.
Acoustics 2012, Nantes, France (April 23-27, 2012), 2012.

MACALUSO, C. A.; DALMONT, J.P. Trumpet with near-perfect harmonicity: Design and
acoustic results. J. Acoust. Soc. Am. 129(1), 404-414, 2011.

116



MECHEL, F.P. Formulas of Acoustics. Springer, 2008.

MERKLI, P.; THOMANN, H. Thermoacoustic effects in a resonance tube. J. Fluid. Mech.,
70, 1975.

MUNJAL, M. L.; DOIGE, A.G. Theory of a two source-location method for direct exper-
imental evaluation of the four-pole parameters of an aeroacoustic element. J. Sound Vib.
141(2), 323-333, 1990.

MUNJAL, M.L. Acoustics of ducts and mufflers with application to exhaust and ventilation
system design. Wiley-interscience, New York, 352 pages, 1987.

PENELET, G. Etude expérimentale et théorique des processus non linéaires de satura-
tion dans un réfrigérateur d’ondes thermoacoustique annulaire. PhD Thesis, Université du
Maine, Le Mans, FRANCE, Novembre, 2004.

PENELET, G.; GAVIOT, E.; GUSEV, V.; LOTTON, P. e BRUNEAU, M. Experimental inves-
tigation of transient non linear phenomena in an annular thermoacoustic prime-mover:
observation of doublethreshold effect. Cryogenics, 42, 527-532, 2002.

PENELET, G.; GUSEV, V.; LOTTON, P. e BRUNEAU, M. Experimental and theoretical
study of processes leading to steady-state sound in annular thermoacoustic engines. Phys.
Rev. E 72(1), 016625, 2005a.

PENELET, G.; JOB, S.; GUSEV, V.; LOTTON, P. e BRUNEAU, M. Dependence of sound
amplification on temperature distribution in annular thermoacoustic engines. Acust. Acta
Acust. 91(3), 567-577, 2005b.

PETCULESCU, A.; WILEN, L.A. Lumped-element technique for the measurement of com-
plex density. J. Acoust. Soc. Am. 110(4), 1950-1957, 2001.

PETCULESCU, G.; WILEN, L.A. Thermoacoustics in a single pore with an applied tem-
perature gradient. J. Acoust. Soc. Am. 106(2), 688-694, 1999.

117



RIJKE, P.L. Notiz über eine neue Art, die in einer beiden Enden offenen Röhre enthaltene
Luft in Schwingungen zu veretzen. Ann. Phys. (Leipzig) 107, 339, 1859.

ROH, H.; RASPET, R. e BASS, H.E. Parallel capilary-tube-based extension of thermoa-
coustic theory for random porous media. J. Acoust. Soc. Am. 121(3), 1413-1422, 2007.

ROH, H.S. Measurement and calculation of acoustic propagation constants in arrays of
small air-filled rectangular tubes. J. Acoust. Soc. Am. 89(6), 2617-2624, 1991.

ROTT, N. Damped and thermally driven acoustic oscillations in wide and narrow tubes.
Zeitschrift für Angewandte Mathematik und Physik 20, 230-243, 1969.

ROTT, N. Damped and thermally driven acoustic oscillations. Part II: stability limit for
Helium. Zeitschrift für Angewandte Mathematik und Physik 24, 54-72, 1973.

ROTT, N. Thermoacoustics. Adv. Appl. Mech. 20, 135-175, 1980.

SONDHAUSS, C. Über die schallswingungen der luft in erhitzen glasrohren und gedeck-
ten pfeifen von ungleicher weite. Ann. Phys. 79, 1-34, 1850.

STRUTT, J.W. The theory of sound (Lord Rayleigh). Dover, Melville, 2nd edition, 1945.

SWIFT, G.W. Thermoacoustic engines. J. Acoust. Soc. Am. 84 (4), 1145-1179, 1988.

SWIFT, G.W. Analysis and performance of a large thermoacoustic engine. J. Acoust. Soc.
Am. 92(3), 1551-1563, 1992.

SWIFT, G.W. Thermoacoustic engines and refrigerators. Physics Today, American Institute
of Physics, July 1995.

SWIFT, G.W. Thermoacoustics - A unifying perspective for some engines and refrigerators.
Acoust. Soc. Am., Melville, NY, 300 pp, 2002.

118



SWIFT, G. W.; KEOLIAN, R.M. Thermoacoustics in pin-array stacks. J. Acoust. Soc. Am.
94(2), 941-943, 1993.

SWIFT, G. W.; KEOLIAN, R.M. Dynamic measurements of the thermal dissipation func-
tion of reticulated vitreous carbon. J. Acoust. Soc. Am. 109(1), 179-184, 2001.

TIJANI, M.E.H. Loudspeaker-driven thermo-acoustic refrigeration. PhD Thesis, Technis-
che Universiteit Eindhoven, 2001.

TU, Q.; LI, Q.; WU, F. e GUO, F.Z. Network model approach for calculating oscillating
frequency of thermoacoustic prime mover. Cryogenics 43(6), 351-357, 2003.

UEDA, Y.; KATO, C. Stability analysis of thermally induced spontaneous gas oscillations
in straight and looped tubes. J. Acoust. Soc. Am. 124(2), 851-858, 2008.

WARD, W. C.; SWIFT, G.W. Design environment for low-amplitude thermoacoustic en-
gines. J. Acoust. Soc. Am. 95(6), 3671-3672, 1994.

WARD, W.C.; SWIFT, G.W. e CLARK, J.P. Interactive analysis, design, and teaching for
thermoacoustics using Delta EC. J. Acoust. Soc. Am. 123(5), 3546-3546, 2008.

WHEATLEY, J.; HOFLER, T.; SWIFT, G.W. e MIGLIORI, A. Understanding some simple
phenomena in thermoacoustics with applications to acoustical heat engines. Am. J. Phys.
53 (2), February 1985.

WILEN, L.A. Measurements of thermoacoustics functions for single pores. J. Acoust. Soc.
Am. 103(3), 1406-1412, 1998.

WOLLAN, J.J.; SWIFT, G.W.; BACKHAUS, S. e GARDNER, D.L. Development of a ther-
moacoustic natural gas liquifier. AIChE New Orleans Meeting, New Orleans, 2002.

YAZAKI, T.; IWATA, A.; MAEKAWA, T. e TOMINAGA, A. Traveling wave thermoacoustic
engine in a looped tube. Phys. Rev. Lett., 81(15), 3128-3131, 1985.

119



YAZAKI, T.; TOMINAGA, A. e NARAHARA, Y. Experiments on thermally driven acoustic
oscillations of gaseous Helium. Journal of low temperature physics 41(1), 45-60, 1980a.

YAZAKI, T.; TOMINAGA, A. e NARAHARA, Y. Thermally driven acoustic oscillations:
second harmonic. Physics Letters 79(5,6), 407-409, 1980b.

YU, Z.B.; LI, Q.; CHEN, X.; GUO, F.Z.; XIE, X.J. e WU, J.H. Investigation on the oscillation
modes in a thermoacoustic Stirling prime mover: mode stability and mode transition.
Cryogenics 43(12), 687-691, 2003.

YUAN, H.; KARPOV, S. e PROSPERETTI, A. A simplified model for linear and nonlinear
processes in thermoacoustic prime movers. Part 2: Nonlinear oscillations. J. Acoust. Soc.
Am. 102(6), 3497-3506, 1997.

120



APÊNDICE A Transient regime investigation

Before proceeding with the TTAC measurements, it is necessary to ensure that the steady
state regime is satisfactorily approached once new thermal conditions are imposed. That means
knowing the characteristic time (τ ) for reaching a sufficiently near constant temperature profile
along the TAC interior, so that the TTAC coefficients are minimally affected by residual thermal
transitions. An easy and reliable way to investigate τ is by taking advantage of the experimental
setup for the two-load method and to measure the time evolution of the transfer functions H̃ij

stated in Eqs. 3.17 (or 3.30); by doing so, whenever those thermal conditions are put up with a
significant change, the actual acoustical effects can be readily verified not needing to beforehand
determine the TTAC coefficients.

An arbitrary criterion has to be therefore established to define a tolerable level for the H̃ij

transitory variations, since the complete thermal stability is never reached due unavoidable influ-
ences from the temperature fluctuations of the surrounding ambient, and also due to the external
acoustic noise generated by the setup equipments. Hence, the proportions H̃ij(after)/H̃ij(before)

are evaluated till its variations along the frequency domain are within the criterion limits.

It is first assumed by common sense stipulation a tolerance deviation of 2 percent in
Amplitude Proportions and of 0.025 rad in the phase differences for the complete frequency
spectrum:

0.98 6
|H̃ij(after)|
|H̃ij(before)|

6 1.02, (A.1)

− 0.025rad 6 arg(H̃ij(after))− arg(H̃ij(before)) 6 0.025rad. (A.2)

The transitory thermal influences derive either from an imposed variation on QH , or
from the thermal interaction with the circulating water inside the AHX - whose temperature is
affected by the natural evaporation at the open surface of its reservoir. That justifies a specific
and separated investigation regarding the water influence prior to beginning the analysis of the
QH variation effects.

121



The preliminary investigation starts with the measurement of H̃ij(before) without water cir-
culation. The Ceramic Catalyst 1 (600 CPSI) is placed inside the TAC. However, special cares
are taken to ensure as much as possible a uniformity on the temperature distribution throughout
the TAC, like having it passed through a long period without any heating at all, to avoid resid-
ual warmth from whichever previous experimentation; for this reason, one overnight period is
chosen sufficient. Additionally, to prevent from body warmth, even hand-touching on the TAC
surfaces is avoided. It is assumed at this point that the ambient air is in a thermal equilibrium
with the whole TAC device, homogeneously. In the following, the H̃ij(before) measurement is
made. Once finished, the water circulation is turned on for 12.5min (guessed time period), and,
subsequently, the second measurement H̃ij(after) is made while the water is kept circulating.
Finally, the proportions reported in the statements A.1 and A.2 are put forward, which results
in the Figure A.1.
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Figure A.1: Amplitude proportions and phase differences between the transfer functions mea-
sured before and 12.5 min after turning in the ambient water cooling system for H̃21 (solid line),
H̃31 (dashed line), and H̃43 (dotted line).

One may clearly see that the referred inequality is not satisfied, and it indicates a non-
negligible warmth effect, peculiarly for |H̃21| and |H̃31| at around 140Hz. Such differences are
consistent with the fact that, due to the constant presence of the evaporation phenomenon, the
water contained in the reservoir is always colder that the ambient air - if there are no longer
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thermal remains from any previous heating. Indeed, when actually measuring the temperature
in the reservoir and in the ambient air, for this experiment situation, a fluctuating difference
between 0.7ºC and 1.8°C is verified, depending on the air humidity. Those facts suggest a con-
siderable significance of the evaporation effect, which must be minimized to then continue the
transitory analysis taking into account the QH variation effect. In order to do so, before start-
ing with any heating supply, the TAC temperature distribution is stabilized in time with respect
to both ambient air and circulating water by means of a robust procedure, which is to turn on
the water circulation since the day before. Moreover, to keep this evaporative effect also min-
imized for the succeeding measurements with heating supply, this procedure is taken as part
of the intrinsic preparations from this point forward, independently on the method for the TAC
characterization.

To continue with the transitory regime investigation, the case of the effects due to an
imposedQH variation is put forward. As previously noted, the inequalities A.1 and A.2 are used
as the quality parameters. Once the evaporation effects are stabilized, different arbitrary values
for QH are set, for which the transfer function proportions H̃ij(after)/H̃ij(before) are measured
a predefined time interval of 5min. The QH values are chosen to be representative for the
heating situations to be imposed during the TTAC measurements, namely 29.3W , 32.3W and
35.3W . After 12 measurements atQH = 29.3W , the inequalities A.1 and A.2 are well satisfied;
indeed, a nearly steady-state regime is achieved since the third measurement, i.e., after 15min.
Therefore, as it could have been predicted, at the 12th measurement the system shows an almost
complete thermal stabilization. For this last measurement is attributed H̃ij(before). Then, the
heating input is changed to QH = 32.3W ; after 5min, it is obtained H̃ij(after). The calculation
of the corresponding proportions gives the results shown in Figure A.2. In this case, there are
deviation peaks over 10 percent, what puts in evidence a very important effect, even though it
having had 5min already passed.

The same procedures are repeated for the following measurements, trying to best capture
the H̃ij time evolution. From 10min forward the time increment is diminished from 5min to
1min, what allowed a more refined evaluation for several time interval combinations. That
led to the results presented in Figure A.3, which shows the H̃ij(after)/H̃ij(before) behavior
within an interval between 13 and 18min, counted since the QH transition. For both amplitude
proportions and phase differences the deviation peaks are within the stipulated limit established
in the inequalities A.1 and A.2. That also reveals what may be called a characteristic time ”τ”,
which is therefore approximately 13min.
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Figure A.2: Amplitude proportions and phase differences between the transfer functions mea-
sured just before and 5min after the transition of heating input from QH = 29.3W to
QH = 32.3W for H̃21 (solid line), H̃31 (dashed line), and H̃43 (dotted line).

In conclusion, this transitory regime investigation assures that the evaporation effects are
suppressed if the water circulation is turned on at the overnight before the experiments, and
it also indicates that a time delay of 13min is sufficient to minimize the transient effects of
the QH variation. However, the latter is supported on the constraints A.1 and A.2, which are
stipulated by a common sense guessing to start an iterative process, hopefully a well-done trial.
Indeed, when obtaining the TTAC coefficients later on, the transitory investigation is validated
and, consequently, those constraints are proved to be well guessed. Although these results are
obtained only for the Ceramic Catalyst 1 circumstance by means of the Two-Load method setup,
it is assumed that they can be equally considered for the other materials as well, for all TAC
characterization approaches treated here.
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Figure A.3: Amplitude proportions and phase differences between the transfer functions mea-
sured 13 and 18min both after the transition of heating input from QH = 29.3W to QH =

32.3W for H̃21 (solid line), H̃31 (dashed line), and H̃43 (dotted line).
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APÊNDICE B Calibration for the Two-Load Method

It is a necessary precaution to carry out all standard procedures so as to pursuing the
lesser significant error propagation. This case-study is not an exception. On the contrary: in
this method the indirectness of the TTAC measurement is very important, what may compel the
errors impact to devalue or even invalidate the whole experimentation. Thereby, the calibration
is put into practice with close attention to employing well suited and clean equipment, and
avoiding, as much as possible, sound leakage by means of vacuum grease spreading in all joints
and connections.

The four microphones are subjected to both absolute and relative calibration. In the first
instance, it is proved that there are important differences between manufacturer’s values and the
actual measured ones just before the experimentation.

As a matter of fact, the absolute calibration is a priori unnecessary since the measured
acoustic pressures are considered at once in the transfer functions reported in Eq. 3.17 (or Eq.
3.30), in which the proportions intrinsically dismiss the need for knowing the microphone sen-
sitivities. That said, a solely relative calibration would be sufficient to go on then with the actual
transfer function measurements, not requiring so the absolute one. Notwithstanding, in order to
prevent eventual major measurement distortions, and also because it is simple to be effectuated,
an absolute calibration is justified in this work.

Subsequently, the relative calibration is proceeded. The microphones are flush mounted
one pair at a time at both sides of a chamber device, small enough to ensure their exposure
to the same acoustic pressure for the frequency range of interest. Three pairs of microphone
combinations are chosen, in accordance with the transfer function arranges stated in Equations
3.17, namely micros 1-2, 1-3, and 3-4. The schematic of the calibration device is shown in Fig.
B.1.

These measurements are associated in the expressions in the following, which are actually
transfer functions.

C̃21 =
p̃2cal

p̃1cal

, C̃31 =
p̃3cal

p̃1cal

, C̃43 =
p̃4cal

p̃3cal

. (B.1)
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Clearance

Cavity

Mic 1 Mic 2

Compression chamber

Figure B.1: Detail of the calibration device showing the two micros and the small cavity as the
coupling volume submitted to uniform acoustic pressures provided by the compression cham-
ber.

Knowing that the actual acoustic pressure is the same for each pair of microphones, one
can conclude that any deviation from the unity in the relations of Eq. B.1 is due to the differ-
ences of sensitivity. If these ratios divide the corresponding transfer functions 3.17, then those
differences have their effects canceled. The resulting transfer functions become calibrated, as
following.

H̃21cal =
H̃21

C̃21

, H̃31cal =
H̃31

C̃31

, H̃43cal =
H̃43

C̃43

. (B.2)

The frequency range and its incremental step must be the same as the ones employed for
the actual TTAC measurement, to keep the exact vectorial matching and hence to achieve the
calibrating correction for each specific frequency. That means an acoustic field also ranging
from 50 to 200Hz and paced with a constant increment of 1Hz. A signal generator is directly
connected to a loudspeaker, which in this small chamber case works as a compressor, to produce
that acoustic field. Also because of the chamber small size, the use of a signal amplifier is
dismissed, as the required acoustic power input is proportionally small.

The results in Figure B.2 illustrates how important the calibration is. Although not im-
pressive, in the order of 1 percent, the deviations may be clearly seen in the amplitude ratios
and in the phase differences as well; they also indicate that their behaviors are not abnormal and
there are no malfunctions in the whole instrumentation. All transfer functions considered in this
approach are calibrated as in B.2.
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It is very important to note that, in order to simplify the notation for the transfer functions,
the H̃ijcal terms have no longer the subscript cal from this point on. Thus, the sole description
H̃ij is presumed to indicate a previous calibration, implicitly, when substituting them into Eqs.
3.26 to 3.29, to finally obtain the TTAC coefficients.
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Figure B.2: Calibrating corrections expressed as the spectra of amplitude ratio and phase differ-
ence between acoustic pressures as stated in equations B.1.
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APÊNDICE C Calibration for the Impedance Method

The calibration is conducted simply by placing the third microphone at the entrance of the
AIS (Fig. C.1), and taking impedance measurements just as explained in Chapter 3. That way,
the calibrating transfer functions are obtained, to be later on applied into the Z-matrix equations.

Figure C.1: Detail of the third microphone head and its attachment to the AIS for calibration.
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APÊNDICE D Results for all heating conditions

This appendix shows the best results for all heating conditions for all measured materials,
according to each method, obtained in this work. Heated measurements were done only for the
first and third approaches.
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Figure D.1: Ceramic Catalyst 600 CPSI: amplitude of the four T coefficients in the frequency
domain for QH ranging from 0W to 81W , by a constant increment of 3W . The bold graph line
corresponds to QH = 0W . - Two-Load Method.
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Figure D.2: Ceramic Catalyst 600 CPSI: phase of the four T coefficients in the frequency do-
main for QH ranging from 0W to 81W , by a constant increment of 3W . The bold graph line
corresponds to QH = 0W . - Two-Load Method.
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Figure D.3: Stainless Steel Grids: amplitude of the four T coefficients in the frequency domain
for QH ranging from 0W to 81W , by a constant increment of 3W . - Two-Load Method.
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Figure D.4: Stainless Steel Grids: phase of the four T coefficients in the frequency domain for
QH ranging from 0W to 81W , by a constant increment of 3W . - Two-Load Method.
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Figure D.5: Stainless Steel Grids: amplitude of the four T coefficients in the frequency do-
main for QH ranging from 0W to 81W , by a constant increment of 9W . The bold graph line
corresponds to QH = 0W . - Impedance Method.
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Figure D.6: Stainless Steel Grids: phase of the four T coefficients in the frequency domain for
QH ranging from 0W to 81W , by a constant increment of 9W . The bold graph line corresponds
to QH = 0W . - Impedance Method.
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Figure D.7: Ceramic Catalyst 600 CPSI: amplitude of the four T coefficients in the frequency
domain for QH ranging from 0W to 81W , by a constant increment of 9W . The bold graph line
corresponds to QH = 0W . - Impedance Method.
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Figure D.8: Ceramic Catalyst 600 CPSI: phase of the four T coefficients in the frequency do-
main for QH ranging from 0W to 81W , by a constant increment of 9W . The bold graph line
corresponds to QH = 0W . - Impedance Method.
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Figure D.9: NiCr Foam: amplitude of the four T coefficients in the frequency domain for QH

ranging from 0W to 81W , by a constant increment of 9W . The bold graph line corresponds to
QH = 0W . - Impedance Method.
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Figure D.10: NiCr Foam: phase of the four T coefficients in the frequency domain for QH

ranging from 0W to 81W , by a constant increment of 9W . The bold graph line corresponds to
QH = 0W . - Impedance Method.
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Figure D.11: RVC Foam: amplitude of the four T coefficients in the frequency domain for QH

ranging from 0W to 18W , by a constant increment of 3W . The bold graph line corresponds to
QH = 0W . - Impedance Method.
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Figure D.12: RVC Foam: phase of the four T coefficients in the frequency domain for QH

ranging from 0W to 18W , by a constant increment of 3W . The bold graph line corresponds to
QH = 0W . - Impedance Method.
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APÊNDICE E Thermal effects on reciprocity

An interesting thermal effect has been noticed during the investigation of the NiCr Foam.
When measuring this material, in the case by the Impedance Method, not respecting the neces-
sary time delay for a proper thermal stabilization, a strong bias was achieved, as shown in Fig.
E.1. The reciprocity parameters resulted in σrc = 0.9361−0.0270i and σrc = 0.0324+0.0335i.
Such measurement was done, although non-recommended, aiming to test how important possi-
ble residual thermal effects could have been. For comparison, in the same figure are also shown
the best reciprocity results obtained for the NiCr Foam, whose parameters are presented in Table
3.2.
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Figure E.1: NiCr Foam: amplitude and phase of the TTAC reciprocity in the frequency domain
for QH = 0W for the Impedance Method before (biased and noisy line) and after a better
thermal stabilization.
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