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Abstract

Given a vertex-weighted undirected graph G = (V,E,w) and a positive integer k, we

consider the k-separator problem: it consists in finding a minimum-weight subset of

vertices whose removal leads to a graph where the size of each connected component

is less than or equal to k. If k = 1 we get the classical vertex cover problem. The

case k = 2 is equivalent to computing the dissociation number of a graph (in the

case of unit weights). We prove that this problem can be solved in polynomial time

for some graph classes including bounded treewidth, mK2-free, (G1, G2, G3, P6)-

free, interval-filament, asteroidal triple-free, weakly chordal, interval and circular-

arc graphs. Different formulations are presented and compared. Polyhedral results

with respect to the convex hull of the incidence vectors of k-separators are reported.

Numerical results are reported and approximation algorithms are also presented.

Keywords: Graph partitioning, Complexity theory, Optimization, Approximation

algorithms, Vertex separators, Polyhedral approach, Polynomial-time algorithms,

Integer programming.



Résumé

Soit G un graphe non orienté dont les sommets sont pondérés. Nous cherchons

à calculer un sous-ensemble de sommets de poids minimal dont la suppression nous

donne un graphe où la taille de chaque composante connexe est inférieure ou égale

à un entier positif donné k. Ce problème est denommé Problème de k-Séparateur

et le sous-ensemble recherché, k-Séparateur. Le problème de k-Séparateur a de

nombreuses applications. Si les poids des sommets sont tous égaux à 1, la taille

d’un k-séparateur peut être utilisée pour évaluer la robustesse d’un graphe ou d’un

réseau. On peut citer d’autres applications du problème de k-Séparateur tel que :

partitionnement de graphe et décompositions de matrice de contraintes etc ...

Si k = 1, nous obtenons le problème classique Vertex Cover. De nombreuses formu-

lations sont proposées pour ce problème dans notre thèse. Les relaxations linéaires

de ces formulations sont comparées. Une étude polyédrale est proposée (inégalités

valides, facettes et algorithmes de séparation). Des cas où le problème peut être ré-

solu en temps polynomial sont présentés. Entre autres, le cas de chemins, de cycles,

d’arbres, et plus généralement les graphes avec largeur arborescente bornée ainsi

que des graphes ne contenant pas certains graphes particuliers comme sous graphes

induits. Des algorithmes d’approximation de rapport (k+1) sont également exposés

et quelques résultats d’inapproximabilité. La plupart des algorithmes sont implé-

mentés et comparés.

Mots Clés:Couverture par des sommets, Méthode de coupe, Problème de sépara-

teur, Approches polyèdrales, Algorithmes d’approximation.
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Chapter 1

Introduction

Contents

1.1 General Context . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Thesis plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 General Context

Given a vertex-weighted undirected graph G = (V,E,w), the minimum vertex cover

problem consists in computing a minimum-weight set of vertices S ⊂ V such that

V \ S is a stable set. A minimum-weight vertex cover can then be exhibited if

one can find a maximum-weight stable set. While the problem can be solved in

polynomial time in some cases (bipartite graphs, perfect graphs, etc.), it is known

to be generally NP-hard (see, e.g., [4, 76]). Many valid inequalities are known for

the vertex cover problem and the stable set problem. A 2-approximation algorithm

for the vertex cover problem is given by a simple greedy algorithm (see, e.g., [4]).

Let k be a positive number, we consider the following natural generalization of

the vertex cover problem. We want to compute a minimum-weight subset of vertices

S whose removal leads to a graph where the size of each connected component is

less than or equal to k. Let us call such as set a k-separator. If k = 1 we get

13



1.1. General Context

the classical vertex cover problem. The case k = 2 is equivalent to compute the

dissociation number of a graph (in the case of unit weights) [91]. This problem is

NP-hard even if the graph is bipartite.

The k-separator problem has many applications. If vertex weights are equal

to 1, the size of a minimum k-separator can be used to assess the robustness of

a graph or a network. Intuitively, a graph for which the size of the minimum k-

separator is large, is more robust. Unlike the classical robustness measure given by

the connectivity, the new one seems to avoid the underestimate of robustness when

there are only some local weaknesses in the graph. Consider for example a graph

containing a complete subgraph and a vertex connected to exactly one vertex of the

subgraph. Then the vertex-connectivity of this graph is 1 while the graph seems

to be robust everywhere except in the neighborhood of one vertex. The size of a

minimum k-separator of this graph is |V | − 1− k.

The minimum k-separator problem has some other network applications. A clas-

sical problem consists in partitioning a graph/network into different subgraphs with

respect to different criteria. For example, in the context of social networks, many

approaches are proposed to detect communities. By solving a minimum k-separator

problem, we get different connected components that may represent communities.

The k-separator vertices represent people making connections between communities.

The k-separator problem can then be seen as a special partitioning/clustering graph

problem.

Computing a k-separator can also be useful to build algorithms based on divide-

and-conquer approaches. In some cases, a problem defined on a graph can be de-

composed into many subproblems on smaller subgraphs obtained by the deletion of

a k-separator (see, .e.g., [77]).

The k-separator problem is closely related to the vertex-separator problem where

we aim to remove a minimum-weight set of vertices such that every connected com-

ponent in the remaining graph has a size less than α|V | (for a fixed α < 1). A

polyhedral study of this problem is proposed in [21] (see also the references therein).

When the vertex-separator problem is considered, the graph is generally partitioned

into 3 subgraphs: the separator, and two subgraphs each of size less than α|V |. The

philosophy is different in the case of the k-separator where the graph is partitioned

into many components each one having a size less than k.

The k-separator problem was considered in one published paper [53] where it was

14



Chapter 1. Introduction

presented as a problem of disconnecting graphs by removing vertices. An extended

formulation is proposed in [53] with some polyhedral results. Some other applica-

tions were also mentioned in [53]. This includes a constraint matrix decomposition

where each row Ai of a matrix A is represented by a vertex vi and two vertices vi

and vj are adjacent if there is at least one column h with nonzero coefficients in

the corresponding two rows (aih 6= 0 and ajh 6= 0). The problem is to assign as

many rows as possible to the so-called blocks such that no more than k rows are

assigned to the same block, and rows assigned to different blocks are not connected

(i.e., there is no any column h such that aihajh 6= 0 if Ai and Aj are in different

blocks) [67]. This matrix decomposition may help the solution process of linear or

integer programs where the constraint matrix is defined by A.

Another application is related to the field of group technology (see [53] for de-

tails).

1.2 Notation

Given an undirected graph G = (V,E) and a vertex subset U ⊂ V , the complement

of U in G, i.e. the vertex set V \ U is denoted U . The set of vertices (resp. edges)

of the graph G may also be denoted by V (G) (resp. E(G)). An edge e ∈ E with

endnodes u and v is denoted by (u, v). For a vertex-weighted undirected graph

G = (V,E,w), wv denotes the weight of the vertex v ∈ V .

Given a vertex subset S ⊂ V , the set of vertices in S that are adjacent to at least

one vertex in S is denoted N(S). NS(k) denotes the set of neighbors of a vertex k

in subset S. Given two subsets of vertices A and B, A and B are adjacent if either

A ∩B 6= ∅ or N(A) ∩B 6= ∅.

Given a subset of vertices S ⊂ V , χ(S) ∈ {0, 1}n denotes the incidence vector

of S, with n = |V |. The convex hull of all the incidence vectors of k-separators in

the graph G is indicated by Sk(G). We also use G(S) to refer to the subgraph of G

that is induced by a subset of vertices S ⊂ V .

The order of a graph indicates its number of vertices. Kn denotes a complete

graph with order n. Given some integer m, mK2 denotes a matching with m edges.

If p and q ≤ p are two positive integer, then
(p
q

)

= p!
q!(p−q)!

If the graph G does not contain an induced subgraph isomorphic to some given

graph H, then we say that G is H-free.

15



1.3. Thesis plan

If G is a simple path with vertex set {v1, . . . , vn} and edge set {(vi, vi+1) : i =

1, . . . , n − 1}, then the notation [vi, vj ] (resp. ]vi, vj [, [vi, vj [, ]vi, vj ]) with i < j,

i, j ∈ {1, . . . , n} stands for the vertex set {vi, vi+1, . . . , vj} (resp. {vi+1, . . . , vj−1},

{vi, vi+1, . . . , vj−1}, {vi+1, . . . , vj}). The set of all the simple paths joining i and j

will be denoted Pij . Given a simple path p joining i and j, x(p) stands for the sum

of the xv values over all vertices belonging to p (including i and j). Let N denote

the set of natural numbers.

1.3 Thesis plan

This thesis is organized as follows:

1. In chapter 2, we present the state of the art, precisely related works and the

used technics.

2. In chapter 3, some cases where the problem can be solved in polynomial time

are shown.

3. In chapter 4, we describe integer programming formulations of the k-separator

problem. The linear relaxations of these formulations are also compared when

this is possible.

4. A polyhedral study of the convex hull of the incidence vectors of k-separators

is proposed in chapter 5.

5. Some numerical experiments follow in chapter 6.

6. In chapter 7, we present some approximation algorithms.

7. The final chapter of this thesis concludes our work. We summarize our contri-

butions and present some perspectives and possible future directions to extend

our work.
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2.1 Introduction

Combinatorial optimization is a well-known field of applied mathematics, combining

techniques from combinatorics, linear programming, and the theory of algorithms, to

solve optimization problems over discrete structures [85]. One of the most studied

problems in combinatorial optimization is the vertex cover problem [15]. For a

decade there has been an increasing interest to generalize this issue to another one

[45]. This chapter provides some state of art techniques used to solve some classical

optimization problems that have a relation with the k-separator problem [83, 84].

It demonstrates also some related works to our thesis main problem, i.e. k-separator

problem. This chapter is organized as follows : In section 2.2 we introduce many

classical combinatorial optimization problems close to the k-separator problem [84].

In section 2.3 we mention the techniques used in this thesis. For the sake of clarity

we present disconnecting graphs and vertex separator problems in section 2.4 after

we have shown the polyhedral method in 2.3.4. Finally, in section 2.5 we conclude

this chapter.

2.2 Related problems to k-separator problem

2.2.1 Vertex Cover problem

Given a graph G, we search a minimum size set of vertices such that, for every edge,

at least one of the endpoints that belongs to this set. In the weighted version of

vertex cover, each vertex has a weight. We are looking for the minimum total weight

set of vertices with the property given earlier [42]. In other words, given G(V,E)

with weights wi ≥ 0 for all vertices i ∈ V , we must select a minimum weight vertex

cover. Observe that a vertex cover is a k-separator for k = 1.
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2.2.2 Stable Set problem

A stable (or independent) set problem deals with a set of vertices where no two of

them are adjacent. In other words, each edge in the graph has at most one endpoint

in this set (or a set of pairwise nonadjacent nodes). If the graph is weighted, we aim

to compute a maximum-weight stable set. Notice that the complementary of such

a maximum stable set is a minimum-weight vertex cover.

2.2.3 Maximal Clique problem

A clique is a complete subgraph, i.e. all nodes are connected to each other. A

maximal clique is a biggest one. The maximal clique problem is aimed at computing

a maximal clique in a given graph. When the graph is weighted, a maximum-weight

clique is obviously a maximum stable set in the complementary graph.

2.2.4 Hitting Set problem

Given a set A = {a1, . . . , an}, a collection B1, B2, . . . , Bm of subsets of A. A hitting

set is defined as a set H ⊂ A, if H ∩ Bi 6= ∅ for 1 ≤ i ≤ m. We can observe that a

vertex cover is a hitting set with each subset reduced to an edge.

As mentioned above, the k-separator problem is a natural generalization of the

vertex cover problem. However, there are other possible extensions of the vertex

cover problem. Two of them are described below.

2.2.5 Set Cover problem

Given a set of elements E = {e1, e2, . . . , en} and a set of m subsets of E, S =

{S1, S2, . . . , Sm}, the set cover problem is to find a minimum size collection C of

sets from S such that C covers all elements in E (i.e., such that
⋃

Si∈C
Si = E).

In the weighted version, a weight wj is associated to each subset Sj and we aim

to compute a minimum weight collection covering E. If E is the set of edges of

a weighted graph, and Sv is the set of edges incident to vertex v, then we get the

classical vertex cover problem.
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2.2.6 Capacitated Vertex Cover problem

Let G = (V,E) be an undirected graph, V = {1, 2, ..., n} be a vertex set and E be

an edge set. Let wv denote the weight of vertex v and kv denote its capacity.

As defined in [72] a capacitated vertex cover is a function x : V → N such that

there exists an orientation of the edges of G in which the number of edges directed

into vertex v ∈ V is at most xvkv. These edges are said to be covered by v. The

weight of cover is
∑

v∈V
xvwv. The minimum capacitated vertex cover problem

wants to compute the minimum capacitated vertex cover. The main idea of [72] is

to use a rounding technique to improve approximation algorithms for this problem.

It can be seen that if kv = |V | − 1 for every v ∈ V , the problem is reduced to

the minimum weight vertex cover. The problem is NP-hard since it generalizes a

NP-hard problem.

In section 2.2.7 we draw a relationship between dissociation set and k-separator

problems.

2.2.7 Dissociation Set problem

When weights are unitary and k = 2, the k-separator problem is equivalent to

compute the dissociation number of the graph [91]. A subset of vertices in a graph

G is called a dissociation set if it induces a subgraph so that each vertex has degree

at most 1, and the dissociation number is the size of a largest dissociation set.

A dissociation set D is maximal if they are not containing in any another dissociation

set in G [90]. An example of maximal dissociation set is shown in figure 2.1 as a

set of encircled vertices. A minimum maximal dissociation number is defined by

diss−(G) = min{|D| : D ∈ DS(G)} [90]

And a maximum dissociation number is given by

diss+(G) = max{|D| : D ∈ DS(G)} [90]

where

DS(G) = {S ⊂ V : S is a maximal dissociation set in G}

A maximum dissociation set is a dissociation set that contains diss+(G) nodes and

the minimum maximal dissociation set is a maximal dissociation set that contains

diss−(G) vertices [90]. In figure 2.1 diss+(P5) = 4 and diss−(P5) = 3. diss+(G)

is a lower bound for the 1-improper chromatic number of a graph G [69]. The

dissociation set problems refer to maximum dissociation set problem and minimum

20



Chapter 2. Related work

Figure 2.1: Maximal dissociation sets of graph P5 [90]

maximal dissociation set problem [90]. The first problem is a maximum dissociation

set problem (MDS), it can be announced as follows : given a graph G and an integer

k, does these exist a dissociation set D in G such that |D| ≥ k (i.e., diss+(G) ≥ k )

[90] ? This problem has been introduced for the first time by Yannakakis in [91].

The second problem is minimum maximal dissociation set with the same input as

MDS, it is resumed to the question : Is there a maximal dissociation set D in G

such that |D| ≤ k (i.e., diss−(G) ≤ k) [90] ? The MDS is close to maximum

independent set (MIS) and maximum induced matching (MIM) problems. The

maximum cardinality of a stable (independent) set of G, let α(G) be this number , is

called the independent number. The maximum cardinality of an induced matching

of G is called the induced matching number, and it is denoted by Σ(G). The decision

maximum independent set problem is defined by : given a graph G and an integer

k, is α ≥ k ?, and the decision problem of maximum induced matching is described

by : given a graph G and an integer k, is Σ(G) ≥ k ?

Graph classes/Problems MDS MIM MIS

Planar graphs NP-c [11] NP-c [16] NP-c [59]
Triangle-free graphs NP-c [91] NP-c [9, 46] NP-c [65]
Bipartite graphs NP-c [66, 91] NP-c [9, 48, 46] P [49]
Claw-free graphs ? NP-c [17] P [75, 18]
Line graphs P [39] NP-c [17] P [75, 18]
Chordal graphs P [39] P [9] P [49]
Weakly chordal graphs P [39] P [40] P [49]
Circular graphs P [39] P [57] P [74]
AT-free graphs P [39] P [10] P [30]

Table 2.1: Complexity of MDS, MIM and MIS [90]
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The following inequalities hold for any graph G: α(G) ≤ diss+(G) and 2Σ(G) ≤

diss+(G) [90]. We have also in the reference [90] for any positive integer r :

diss+(Hr − α(Hr)) = r, diss+(Hr) = 4r and α(Hr) = 3r, where Hr is the graph

formed by identifying one vertex from r copies of cycle C7. For the graph K1,r+2,

we have : diss+(K1,r+2)− 2Σ(K1,r+2) = r, diss+(K1,r+2) = r+2 and Σ(K1,r+2) =

1 [90].

Before presenting these results, let’s us recall some definitions.

2.2.7.1 K1,4-free bipartite graphs

A graph is called K1,4-free bipartite graph if and only if it is a bipartite graph and

does not contain a complete bipartite graph or biclique K1,4 [66], see figure 2.2.

2.2.7.2 C4-free bipartite graphs

A graph G is said to be a C4-free bipartite graph if it does not contain a subgraph

isomorphic to C4 [66] (see figure 2.3 ) and it is a bipartite graph. Note that C4 and

K2,2 are isomorphic graphs.

2.2.7.3 Planar graphs

A graph is planar if it is isomorphic to a plane graph [19]. In other words, If a

graph can be drawn without edges crossing except at endpoints. See figure 2.4 for

an example of planar graph.

Figure 2.2: K1,4 bipartite graph
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Figure 2.3: K2,2 bipartite graph in the left and C4 in the right

Figure 2.4: Example of planar graph

2.2.7.4 Line graphs

The line graph L(G) = (V (L(G)), E(L(G))) of graph G = (V,E) is defined as

another graph that represents the adjacencies between edges of G. V (L(G)) = E

and (u
′

, v
′

) ∈ E(L(G)) if u
′

and v
′

have a common vertex in G. This class of graph

was introduced in [26]. Figure 2.5 shows a construction of a sample line graph.

2.2.7.5 (Pk,K1,n)-free graphs

A graph that does not contain an induced subgraph Pk and K1,n [81]. Figure 2.6

shows some examples.

Figure 2.5: Example of line graph
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Figure 2.6: Some Pk and K1,n graphs

Let’s now go back to the dissociation set problem.

The table 2.1 shows the complexity of MDS, MIM and MIS. Some polynomial

(P) and NP-Complete (NP-c) cases have been identified. Some cases where the

question of complexity still open (?) is presented also. As shown in table 2.1

the MDS problem is NP-complete for line graphs [90]. We have this result by a

polynomial time reduction from a variant of partition into isomorphic subgraphs

problem [17]. A partition into isomorphic subgraphs problem is defined by : given

graphs G and H with |V (G)| = q|V (H)| where q is a positive integer, the problem

can be posed as follow: does there exist a partition
⋃q

i=1
Vi of V (G) such that

G(Vi), ∀i = 1, . . . , q, contains a subgraph isomorphic to H ?

Theorem 2.1 shows the complexity of MDS problem in the case of line graphs

Theorem 2.1 [90] Maximum dissociation set is a NP-complete problem for line

graphs.

The proof of the theorem 2.1 uses the lemma 2.1.

Lemma 2.1 [92] Partition into subgraphs isomorphic to P3 is an NP-complete

problem for planar bipartite graphs of a maximum vertex degree of 4 in which every

vertex of degree 4 is a cut-vertex.

Let αw(G) denote the weight of a maximum weight independent set of G in the

case of maximum weight independent set problem. The idea presented in [81] and

also used in chapter 3 consists in a construction of an extended graph G∗ from the

graph G such that the MDS problem in G becomes equivalent to maximum weight

independent set problem in G∗. The transformation is described as follow : given a

graph G(V,E), let G∗(V ∗, E∗) be a graph defined by :

• V ∗ = V ∪ E

• (u∗, v∗) ∈ E∗, if :
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1. u∗, v∗ ∈ V and (u∗, v∗) ∈ E

2. u∗ ∈ V , v∗ = (x, y) ∈ E and NG(u
∗) ∩ {x, y} 6= ∅

3. u∗ = (x, y) ∈ E, v∗ = (z, t) ∈ E and NG(x) ∩ {z, t} 6= ∅

Lozin et al. [81] have shown that the following lemma 2.2 holds.

Lemma 2.2 [81] An independent set of maximum weight in G∗ corresponds to a

maximum dissociation set in G. In particular, αw(G
∗) = diss+(G).

By the same construction as the one presented above [81] we have this important

theorem 2.2.

Theorem 2.2 [90] The graph G∗ of a graph G is chair-free if and only if G is

(G1, G2, G3)− free (for G1, G2 and G3 graphs see section 3.5)

The following theorem 2.3 proved in the reference [82] by using the method of

modular decomposition [2] is needed to prove theorem 2.4.

Theorem 2.3 [82] The maximum weight independent set problem can be solved in

polynomial time in the class of chair-free graphs.

Lemma 2.1 and theorems 2.2 and 2.3 imply the theorem 2.4

Theorem 2.4 [90] The maximum dissociation set problem can be solved in poly-

nomial time in the class of (G1, G2, G3)-free graphs.

Another result is given by theorem 2.5 for the mK2-free graphs (see section 3.4 for

detail).

Theorem 2.5 [90] Let m ≥ 2 be an integer. The graph G∗ of a graph G is mK2-

free if and only if G is mK2-free.

For some classes of graphs, the complexity of finding the maximum dissociation num-

ber can be specified [90]. The theorem 2.6 concerns the case of graphs containing

a Hamiltonian path.

Theorem 2.6 [90] Let G be a graph with n vertices and containing a Hamiltonian

path. Then

diss+(L(G)) =
⌊

2n

3

⌋

.

Theorem 2.7 is focused on the weakly chordal graphs.
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Theorem 2.7 [90] Minimum maximal dissociation set is NP-complete for weakly

chordal graphs.

In order to give an inapproximability result related to the problem of computing the

dissociation number Orlovich et all. in [90] start with the lemma 2.3.

Lemma 2.3 [90] For each instance (C,X) of 3-SAT with a set C of m clauses

and a set X of n variables and for each integer t, there exists a bipartite graph G

on 3n+2tn(n+m) vertices such that the following property holds for the minimum

maximal dissociation number :

diss−G







≤ 2n, if C is satisfiable

> 2nt, if C is not satisfiable

By using the result of lemma 2.3 we find in [90] the following theorem 2.8 in the

case of bipartite graphs for the minimum maximal dissociation set problem.

Theorem 2.8 [90] Assuming that P 6= NP , minimum maximal dissociation set

for bipartite graphs cannot be approximated in polynomial time within a factor of

p1−ε for any constant ε > 0, where p denotes the number of vertices in the input

graph.

And then [90] gives also an inapproximate result (theorem 2.9) for the maximum

dissociation set problem.

Theorem 2.9 [90] Assuming that P 6= NP , maximum dissociation set cannot be

approximated in polynomial time within a factor of p
1

2−ε for any constant ε > 0,

where p is the number of vertices in the input graph.

Thus, computing the dissociation number is NP-hard if the graph is bipartite [91].

The NP-hardness still holds for K1,4-free bipartite graphs [66], C4-free bipartite

graphs with a maximum vertex degree of 3 [66], planar graphs with a maximum

vertex degree of 4 [11], and line graphs [90]. Several cases where the dissociation

problem can be solved in polynomial time have been shown in the literature: chordal

and weakly chordal graphs, asteroidal triple-free graphs [39], (Pk , K1,n)-free graphs

(for any positive numbers k and n) [81] and (G1, G2, G3)-free graphs [90]. The

graphs mentioned here are defined in the cited references and are also recalled in

chapter 3.
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2.3 Used methods and techniques

This section is organized as follows : In 2.3.1 we introduce the primal-dual method

with application on minimum-weight vertex cover. In 2.3.2 we present the rounding

approach. In 2.3.3 we present that the greedy approach can be beneficial to our

case. Finally, in 2.3.4 we show the polyhedral approach and an application on the

stable set problem.

2.3.1 The primal-dual method

The primal-dual method is one of the oldest techniques used by many researchers,

where a good overview methods can be found in [86]. It was proposed by Dantzig,

Ford and Fulkerson for the first time [27]. D. Williamson gives in [87] a good survey

for some NP-hard problems where he used the primal-dual method. First, we will

define what a primal-dual method is, and then we will apply it to the minimum

weight vertex cover problem. Consider a general linear program (LP) formulation

[27]:

LP 2.1















min cx

Ax ≥ b

x ≥ 0

Its DUAL is

LP 2.2















max yb

yA ≤ c

y ≥ 0

And Complementary Slackness Conditions (CS)







PRIMAL: xi > 0 ⇒
∑

j yjaji = ci

DUAL: yj > 0 ⇒
∑

i aijxi = bj

The idea to solve (LP) is: If x and y are optimal for the primal and the dual respec-

tively, then they satisfy cx = yb and also they satisfy PCS (Primal CS) and DCS

(Dual CS).

We now present how the primal-dual method can be applied to the hitting set prob-

lem in order to give us an approximation algorithm. Given a ground set of elements
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Algorithm 1 Solve LP Problem by primal-dual [27]
y ← 0.
while Does not exist feasible x satisfying CS do

Increase the dual as much as possible and still maintaining dual feasibility.
end while

Return x.

E, nonnegative costs Ce, ∀e ∈ E, and subsets T1, . . . , Tp ⊂ E, we want to find a

minimum-cost subset A ⊂ E so that A has a nonempty intersection with each subset

Ti. Such subset is called a hitting set, A, for subsets Ti for i ∈ {1, . . . , p}. In [87]

we find an algorithm to select a set A, see algorithm 2.

Algorithm 2 is based on idea of reverse deletion (i.e., in the reverse of the order

Algorithm 2 Algorithm to Select a subset A [87]
y ← 0.
A1 ← ∅.
l← 1 (l is a counter).
while Al is not feasible do

Choose a subset Vl of violated sets
Increase yk uniformly for all Tk ∈ Vl until ∃el /∈ Al such that

∑
i:el∈Ti

yi = Cel
.

Al ← Al ∪ {el}.
l ← l+1.
A

′

← Al−1

for j ← l-1 down to 1 do

if A
′

− {ej} is still feasible then

A
′

← A
′

− {ej}
end if

end for

end while

Return A
′

in which the elements of A were added) of not needed elements in a given feasible

solution A. In other words, once a feasible solution A has been obtained, we should

examine the elements of A and delete any that are not needed for a feasible solu-

tion [87]. Let Al be the set of elements in A at the beginning of the lth iteration, let

el be the element added in the lth iteration, and let A
′

be the final set returned by

the algorithm 2 [87]. We start by an empty set A1. Then we loop until we find a

feasible solution. In each iteration l, we choose a subset of violated subset Vl, a set

Tk is violated if Tk ∩ Al = ∅, and then we increase yk for all Tk ∈ Vl until ∃el /∈ Al

such that
∑

i:el∈Ti
yi = Cel . Finally, we start the deletion step by removing from A

′

the not necessary elements and still maintain it feasible.

To illustrate the primal-dual method, we consider the minimum-weight vertex
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cover problem. The following integer program (IP 2.3) describes the problem :

IP 2.3



























min
∑

i∈V wixi

Subject to :

xi + xj ≥ 1 ∀(i, j) ∈ E

xi ∈ {0, 1} ∀i ∈ V

For the linear relaxation "xi ∈ {0, 1}" is replaced by xi ∈ [0, 1].

The dual program is :

LP 2.4



























max
∑

(i,j)∈E y(i,j) (1)

Subject to :
∑

k:(i,k)∈E y(i,k) ≤ wi ∀i ∈ V

y(i,j) ≥ 0 ∀(i, j) ∈ E

The primal-dual algorithm begins with the dual feasible solution in which all

y variables are set to 0, and a primal infeasible solution in which all x variables

are set to 0. If there exists some uncovered edge (i,j) for which xi + xj = 0, we

increase its corresponding dual variable y(i,j) as much as possible and maintaining

dual feasibility, so that the dual constraint (1) becomes tight, i.e.

∑

k:(i,k)∈E y(i,k) = wi ⇒ xi = 1

or

∑

k:(j,k)∈E y(j,k) = wj ⇒ xj = 1

Eventually we achieve a primal feasible solution x such that

∑

i∈V wixi =
∑

i∈V (
∑

k:(i,k)∈E y(i,k))xi.

Define S =
∑

i∈V (
∑

k:(i,k)∈E y(i,k))xi.

Because for each edge (i, j) ∈ E, we have two features y(i,j)xi and y(j,i)xj in the

summation, and since y(i,j) = y(j,i), we obtain : S =
∑

(i,j)∈E(xi + xj)y(i,j)

Hence :

S =
∑

i∈V (
∑

k:(i,k)∈E y(i,k))xi =
∑

(i,j)∈E(xi + xj)y(i,j) ≤ 2
∑

(i,j)∈E y(i,j)

because xi + xj ≤ 2, so we obtain :
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∑

i∈V wixi ≤ 2
∑

(i,j)∈E y(i,j) (2)

Thus, the inequality (2) cited above shows that the algorithm is a 2-approximation

algorithm. In this thesis, we will develop in chapter 7 the basic idea cited above

into a primal-dual algorithm for a generic problem, by using a hitting set concept.

2.3.2 The Rounding Approach

Is easy to formulate many combinatorial optimization problems as integer linear

programs (ILPs). The usual technique consists to solve the linear relaxation of the

ILP and then rounding the solution to an integer one. Below we will present an

application of the rounding approach on a problem related to vertex cover problem.

An IP formulation (IP 2.5) for capacitated vertex cover problem 2.2.6 is as follows

[72] :

IP 2.5



























































Minimize
∑

v wvxv

Subject to :

yeu + yev ≥ 1 e = {u, v} ∈ E

kvxv −
∑

e∈δ(v) yev ≥ 0 v ∈ V

xv ≥ yev v ∈ e ∈ E

yev ∈ {0, 1} v ∈ e ∈ E

xv ∈ N v ∈ V

where : δ(v) is a subset of edges incident to v, d(v) = |δ(v)| is a degree of v, x{i, j}

means that the edge is oriented from i to j and yev = 1 denotes that the edge e ∈ E

is covered by vertex v.

The reference [68] presents the following algorithm 3:

We can easily obtain this theorem 2.10 :

Theorem 2.10 [36] If α = 2

3
then the algorithm 3 is a 3-approximation.

In the bounded version introduced by Chuzhy and Noar [13] where there is a bound

bv on xv, i.e. a vertex v can used at most bv times to cover edges, we can obtain a

2-approximation in which x∗v ≤ 2xv.

The weights on the vertices constitute a generalization of the problem. Denote by

ceu cost of assignment an edge e to vertex u. The change in the IP (IP 2.5) is to

add
∑

e∈E

∑

u∈e ceuyeu to the objective function.
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Algorithm 3 Threshold and Round [68]

Solve the above LP (relaxation of IP 2.5)to obtain a optimal fractional solution.
Pick a value α uniformly at random in the interval [ 1

2
, 1].

for Each edge e = (u, v) do

if yeu ≥ α then

set y∗

eu = 1.
else

if yev ≥ α then

set y∗

ev = 1.
else

if y∗

eu < α and y∗

ev < α then

We will use dependent rounding, let E
′

= {e(u, v) ∈ E : y∗

eu < α and y∗

ev < α}
denote this subset of edges. Create a bipartite graph as follows.Let one side contain a
vertex corresponding to each edge in E

′

. The other side contains a vertex corresponding
to each vertex in V . There is an edge e ∈ E

′

if e is incident to u.
The weight of this edge is yeu. W.l.o.g, yeu+yev = 1. We now use dependent rounding

to round the yeu values to integers y∗

eu. We define x∗

u = ⌈
∑

e∈E(u) y∗

eu

ku
⌉. In other words,

after rounding the yeu values to {0, 1}. We simply define the x∗

u value to be the number
of copies of u that are required to cover all the edges assigned to it.

end if

end if

end if

end for

Suppose that OPTLP = OPT
v

LP
+OPT

e

LP
where :

OPT
v

LP
: denotes the optimum fractional cost of chosen vertices.

and OPT
e

LP
: denotes the optimum assignment cost of edges.

In [36] we found this theorem 2.11 :

Theorem 2.11 [36] Algorithm Threshold and Round finds a solution x
∗, y∗ such

that the expected weight of vertices is at most 2OPT
v

LP
and the expected assignment

cost is at most (4−2
√
2)OPT

e

LP
. Thus this gives a 2-approximation for the problem

with vertex weights and assignment costs (since the total cost is at most 2OPTLP ).

2.3.3 The Greedy Method

To solve an optimization problem we can use greedy method. This approach consists

into a construction of a solution throught different stages. At each stage we make a

decision that is locally optimal according to some greedy criterion. Moreover, once

a decision is made, it is never revoked. The greedy method does not always lead to

an optimal solution but there are a few optimization problems that can be solved

exactly by the greedy method. Algorithm 4 below describes how to make a solution

by a greedy method.
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Algorithm 4 Greedy Algorithm
Require: I Set of elements .
Ensure: S Initialized with ∅.
while S is not complete do

Select the best element x of I.
Put x in S.
Remove x from I.

end while

And now we will detail one application of this approach. A greedy algorithm

consists in selecting of one set at a time that contains most elements among the

uncovered ones. In [37, 47] it was proved that the greedy algorithm is a H(d)-

approximation algorithm for the unweighed set cover problem, with H(d) =
∑d

i=1

1

i

and d is the size of the largest set.

Chvátal [34] extends this algorithm to the weighed set cover problem and proves

that this algorithm is still a H(d)-approximation algorithm.

Algorithm 5 The Greedy Algorithm [CHVÁTAL] [34]
Step 1:

Set CG = ∅; S1

j
= Sj , j ∈ J ; I = {1, ...,m}; k = 0˙

Step 2:

Set k ← k + 1.Select a set Sjλ
, such that

wjλ

|S
λ
jλ

|
= minj∈J

wj

|S
λ
jλ

|
.

Set CG = CG ∪ {jλ} and Sk+1

j
= Sk

j
\Sk

jλ
, j ∈ J, I ← I\Sk

jλ
.

Step 3:

if I = ∅ then

Stop and output cover CG .
else

Go to Step 2.

end if

The basic idea of algorithm 5 is to select a set which covers a maximum number

of elements not already covered by applying a criterion on weights in each itera-

tion. The weight condition is
wj

λ

|Sλ

j
λ

|

= minj∈J
wj

|Sλ

j
|

. The greedy algorithm is thus an

O(log(n))-approximation algorithm. A natural extension of the greedy method to

the k-separator problem is proposed in chapter 7.

2.3.4 Polyhedral Approach

The polyhedral approach had been introduced by Edmonds in 1965 [24]. Combined

with branch-and-bound [55] or branch-and-cut, it is on one of the most powerful

methods to solve NP-hard combinatorial optimization problems. The objective of

this method is to reduce an integer program to a linear program by generating a
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description of the convex hull of feasible solutions, Conv(X), where X is the set of

solutions. For NP-hard problems, it is difficult to obtain a complete description for

Conv(X). If the inequalities define facets of Conv(X), these inequalities are needed

for the description of Conv(X).

In practice, we need to generate efficient methods (exact or heuristic) to separate

these inequalities.

It is important to introduce the notion of cutting plane and separation method.

Given the following integer program :

max {cx : x ∈ X ⊂ Rn}

Let denote it by IP0.

The separation problem associated with IP0 is the problem defined by: given x
′

∈

Rn, is x
′

∈ Conv(X)? If not, find an inequality πx ≤ π0 satisfied by all points in X,

but violated by the point x
′

[88].

Let F be a family of valid inequalities πx ≤ π0, (π, π0) ∈ F for X.

we can use the algorithm below [88] for the cutting-plan and separation for IP0,

that generates "useful" inequalities from F .

Algorithm 6 Cutting Plane Algorithm [88]

Initialization : Set t = 0 and P 0
= P .

Iteration t: Solve the linear program :max {cx : x ∈ P t}
Let xt be an optimal solution.
if xt ∈ Zn

then

Stop and xt is an optimal solution for IP.
else

xt 6∈ Znsolve the separation problem for xt and the family F .
end if

if an inequality (πt, πt

0) ∈ F is found with πtxt > πt

0 then

Set P t+1
= P t ∩ {x : πtx ≤ πt

0}, and augment t.
else

Stop.
end if

If the algorithm finishes without finding a solution for IP, the linear relaxation is

improved by adding a violated valid inequality. In practice, it is better to add many

violated cuts in each step, and not necessary just one at time. In this paragraph

we will analyze some inequalities related to the stable (independent) set polytope.

Remember that the stable set problem is related to the k-separator problem. The

stable set polytope PG is the convex hull of the characteristic vectors of stable sets

of the graph G.
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PG = Conv{x ∈ {0, 1}V : {v ∈ V : xv = 1} is a stable of G }

In [14, 56] we find some well-known valid inequalities for PG:

• xv ≥ 0 for v ∈ V :Trivial Inequalities.

•
∑

v∈C xv ≤ k where C is the vertex set of a cycle of length 2k + 1 : Cycle

Inequalities.

•
∑

v∈S xv ≤ 1 where S induces a clique : Clique Inequalities.

We describe below the approach to solve the separation problem for the class con-

sisting of the cycle inequalities.

Given x∗ ∈ R|V |, we define edge-weights as follows : w∗

e = 1

2
(1 − x∗u − x∗v), ∀e =

(u, v) ∈ E. Suppose C = (v1, v2, . . . , v2k+1) is an odd cycle in G. Then w∗(C) =

k + 1

2
−

∑

2k+1

i=1
x∗i (remember that w∗

e = 1

2
(1 − x∗u − x∗v), for all e = (u, v) ∈ E).

Hence x∗ violates the cycle inequality corresponding to C if and only if W ∗(C) < 1

2
.

Therefore a most-violated cycle inequality corresponds to an odd cycle in G having

minimum weight (with respect to w∗).

A minimum-weight odd cycle can be computed using the algorithm introduced

by Grötschel and Pulleyblank [50] sketched below.

Let G
′

(V
′

1
∪ V

′

2
, E

′

) be a bipartite graph constructed from G, where V
′

1
and V

′

2

are copies of V with (u1, v2) and (u2, v1) in E′ if and only if (u, v) ∈ E; furthermore,

C
′

(u1, v2) = C
′

(u2, v1) = C(u, v). Hence a minimum-weight path (with respect to

C
′

) from v1 to v2 in G
′

corresponds to a minimum -weight odd closed walk (with

respect to C, a walk is a finite non-empty sequence (v0, e1, v1, e2, v2, . . . , el, vl)) con-

taining v in G. So we can find a minimum-weight odd closed cycle. Moreover, such

an odd cycle can be found in O(|V |3) time.

Another family of valid inequalities for PG called antiweb inequalities are in-

troduced by Trotter in [79]. Before presenting this class of inequalities, we give

definition for web and antiweb graphs. Let m and p be integers satisfying p ≥ 2 and

m ≥ 2p + 1. As defined in [79], the web W
p
m = (V (W ), E(W )) is a graph, where

V (W ) = {v1, . . . , vm} is a vertex set and the edge set is E(W ) = {(vi, vj)|vi, vj ∈

V (W ) and p ≤ |i − j| ≤ m − p}. (for a sample see figure 2.7). The antiweb

AW
p
m = (V (W ), E(W )) is the complement of the web W

p
m (an example is shown in
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Figure 2.7: Left : web W
3

10
and right :antiweb AW

3

10

Figure 2.8: 1-wheel graph [12]

figure 2.7). The inequality
∑

m

i=1
xi ≤

⌊

m

p

⌋

is the antiweb inequality described in

[79].

Cheng and Cunningham [12] generalized a set of valid inequalities for PG called

"wheel inequalities". They derived these inequalities in the case of simple 1-wheel

configurations (subdivisions of wheels in which each face-cycle is odd, see figure

2.8) as their support graphs. Cheng and Vries [23] enlarged this class of separable

inequalities to a new large class antiweb-wheel inequalities valid for PG. Before

providing some valid inequalities in the case cited above, we will introduce some

definitions [12].
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problems

Let k be a positive integer, G = (V,E) an undirected graph with V = {v0, v1, ..., v2k+1}

and E = {(v0, vi), (vi, vi+1) : 1 ≤ i ≤ 2k + 1}. We take v2k+1 = v1. We denote

by P0,i a path obtained from v0 to vi and Pi,i+1 a path obtained from vi to vi+1.

A graph is a 1-wheel of size 2k + 2 if each cycle Ci constructed by concatena-

tion of P0,i, Pi,i+1, P0,i+1 is odd for any i. Consider W = W (v0, v1, v2, ..., v2k+1) is

a 1-wheel. v0 is the hub ({a} in figure 2.8). P0,1, P0,2, ..., P0,2k+1 are the spokes.

(v1, v2, . . . , v2k+1) are the spoke-ends ({b, c, d, g, i} in figure 2.8). P1,2, P2,3, ..., P2k+1,1

is the rim. E={vi ∈ V : where P0,i is an even path} ({b, c, i} in figure 2.8).

O={vi ∈ V : where P0,i is an odd path } ({d, g} in figure 2.8). S = S(W ) is

the set of internal vertices of the spokes ({j, k, l} in figure 2.8). R = R(W ) is the

set of internal vertices of the rim-paths ({m, e, f, h} in figure 2.8). Now we mention

some valid inequalities for the polytope PG [12]:

• (2k + 1)x0 + 2
∑

2k+1

i=1
xi + 2

∑

v∈S xv +
∑

v∈R xv ≤ |S|+
1

2
|R|+ 2k + 1 (3).

• (2k+1)x0+2
∑

2k+1

i=1
xi+2

∑

v∈E xv +2
∑

v∈S∪R xv ≤ |S|+ |R|+ |E|+2k+1

(4).

In the case of p-wheel inequalities, we have [12]:

• 2(2k+1)
∑p+1

i=1
x0i +2(p+1)

∑

v∈E xv+2
∑

v∈S xv+
∑

v∈R xv ≤ 2k+1+ |S|+

1

2
|R|+ p|E| (5).

• 2(2k + 1)
∑p+1

i=1
x0i + 2(p+ 1)

∑

v∈E xv + 4
∑

v∈O xv + 2
∑

v∈S∪R xv ≤ 3(2k +

1) + |S|+ |R|+ (p− 1)|E| (6).

In this thesis we generalize these inequalities for the k-separator problem in chapter

5.

2.4 Further connections between the k-separator prob-

lem and other problems

As mentioned in the introduction, the case k = 1 corresponds to the vertex cover

problem (or the stable set problem) that received a lot of attention in literature. In

this section we present two problems close to k-separator problem [83]. It starts in

2.4.1 with the first part by describing the disconnecting graphs problem [53]. The

problem consists in disconnecting a graph by removing a set of vertices of minimum
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size, such that each connected component has a size less than a given positive num-

ber. Finally, the 2.4.2 second and last part is devoted to vertex-separator problem

[21]. It is a subset of vertices C, where the graph without it is divided into two parts

A and B, where there is no edge between A and B, and |C| is minimized subject to

a bound on max {|A|,|B|} [21].

2.4.1 Disconnecting Graphs problem

The only paper where the k-separator problem [84] is considered in its general form

is [53] where the goal is to remove vertices to disconnect graphs. The following

{0,1}-programming formulation is proposed in [53].

Let G(V,E) be an undirected graph, with n = |V | and m =
(

n

2
)

IP 2.6



































































max
∑

i∈V yi

s.t. :

xij + xik − xjk ≤ 1 , ∀i, j, k ∈ V ,i 6= j 6= k (2.6.1)
∑

j∈V \{i}

xij ≥ c− 1, ∀ i ∈ V (2.6.2)

yi + yj − xij ≤ 1, ∀ (i, j) ∈ E (2.6.3)

xij ∈ {0, 1}, ∀i, j ∈ V ,i 6= j (2.6.4)

yi ∈ {0, 1}, ∀i ∈ V (2.6.5)

and an integer c ≥ 1

(denotes capacity of each commponent). The formulation proposed in [53] uses

variables yi ∈ {0, 1} and xij ∈ {0, 1} for all i, j ∈ V , i 6= j where yi = 0 if and only

if i ∈ V is deleted from G and xij = 0 if and only if i, j ∈ V are not in the same

component.

The conditions (2.6.1) are called triangle inequalities and they mean that, for any

i, j, k ∈ V , such that i 6= j 6= k, if vertices i and j and also vertices j and k

are assigned to the same component, then vertices i and k must be assigned to

the same component. The constraints (2.6.2) are named the capacity constraints

and they ensure that each component must have at most c vertices. Moreover, the

inequalities (2.6.3) are called the connectivity constraints, and they imply that for

the two vertices of every edge (i, j) ∈ E, they must be in the same component or

they will be deleted from the graph G. At last, constraints (2.6.4), (2.6.5) are the

integrality constraints.
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problems

In [53] we have the following lemma 2.4.

Lemma 2.4 [53] Let (x, y) ∈ ℜm × ℜn be a feasible solution to the Linear Pro-

gramming relaxation of (IP 2.1) with yi ∈ {0, 1} for all i ∈ V . Then there exists a

feasible solution (x, y) ∈ {0, 1}m+n to (IP 2.1) with yi = yi for all i ∈ V

Therefore, by lemma 2.4 the inequalities xij ∈ {0, 1}, such that i 6= j can be relaxed

to 0 ≤ xij ≤ 1, by this relaxation the number of variables in (IP 2.1) can be

reduced to n [53]. In [53] we have a polyhedral study of the polytope related to the

formulation above, we will show some of this results below. Many applications of

this problem are mentioned in [53]. This includes a process planning (or scheduling)

application. It consists to consider a set of machines M1,M2,. . . ,Mn, and a set of

process P1,P2,. . . ,Pl. Additionally, aij = 1 (where aij ∈ n × l {0,1}-matrix A) if

and only if Pj(j = 1, . . . , l) has to be runned on machine Mi(i = 1, . . . , n) and an

postive integer d ≥ 1. The problem is to assign a maximum process to the so-called

production cells, where each one contains no more than d processes, each process and

each machine take place in at most one cell and processes assigned to different cells

are not connected (i.e., there is not any machine h such that ahiahj 6= 0 if Pi and

Pj are in different cells) [62]. See also [89, 31] for more details. Other applications

are mentioned in [53].Let P (G, c) denote a polytope of the disconnecting graphs

problem (DG). We can observe that P (G, 1) is isomorphic to the independent set

polytope. The polytope P (G, c) with c ≥ 2 is full dimensional [53]. Theorem 2.12

gives some conditions to define a facet for P (G, c).

Theorem 2.12 [53] Let G = (V,E) be a graph, c ≥ 2 an integer, and let (a, b)T (x, y) ≤

a0 be a facet-defining inequality for P (G, c).

1. If, for any d ≥ c, the inequality (a, b)T (x, y) ≤ a0 is valid for P (G, d), then

(a, b)T (x, y) ≤ a0 is facet-defining for P (G, d).

2. If, for any E
′

⊆ E, the inequality (a, b)T (x, y) ≤ a0 is valid for P ((V,E
′

), c),

then (a, b)T (x, y) ≤ a0 is facet-defining for P ((V,E
′

), c)

For subgraph of G we can define also a facet in some conditions, the result is given

in theorem 2.13.
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Theorem 2.13 [53] Let G = (V,E) be a graph, let c ≥ 2 be an integer, let G
′

=

(U,E(U)) be a subgraph of G, and let

∑

i,j∈U, i6=j

aijxij +
∑

i∈U

biyi ≤ a0 (2.1)

be a facet-defining inequality for P (G
′

, c) such that the following conditions hold.

1. Inequality 2.1 is valid for P (G, d) for some integer d ≥ c.

2. There exists an order (e1, . . . , ep) of the elements in ˜E := {(i, j)|i ∈ U, j ∈

V \U} such that for each ek ∈ ˜E there exists (x, y) ∈ P (G, d) satisfying 2.1 at

equality with xek = 1 and xel = 0 for all l = k + 1, . . . , p.

3. For all i ∈ V \U there exists (x, y) ∈ P (G, d) with yi = 1 satisfying 2.1 at

equality. Then 2.1 is facet-defining for P (G, d).

Some trivial facet-defining inequalities are shown in theorem 2.14.

Theorem 2.14 [53] Let G = (V,E) be a graph, let c ≥ 2 be an integer and let

(a, b)T (x, y) ≤ a0 be any facet-defining inequality for P (G, c).

1. The inequalities xij ≥ 0 (i, j ∈ V, i 6= j) define (trivial) facets of P (G, c).

2. The inequalities xij ≤ 1 (i, j ∈ V, i 6= j) do not define facets of P (G, c).

3. The inequalities yi ≥ 0 (i ∈ V ) define (trivial) facets of P (G, c).

4. The inequalities yi ≤ 1 (i ∈ V ) define facets of P (G, c).

5. a0 ≥ 0.

6. For nontrivial facets : bi ≥ 0 for all i ∈ V .

In [53] we found also a relationship between clique partitioning polytope, ca-

pacitated clique partitioning polytope, maximal weighted clique polytope, boolean

quadric polytope and a polytope denoted by P (G,B,C) on the one hand and P (G, c)

polytope on the other hand. Let us first describe these polytopes. Then in a second

stage we show a relationship between these polytopes and P (G, c).

Given a complete graph Kn = (Vn, En) where |Vn| = n and with edge weights
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wij ∈ R for all {i, j} ∈ En, the clique partitioning problem (CLP) [53] is defined by

CLP



























max
∑

{i,j}∈En
wijxij

s.t. :

xij + xik − xjk ≤ 1, ∀i, j, k ∈ V, i 6= j 6= k (2.2)

xij ∈ {0, 1}, ∀i, j ∈ En

Let PCLP
n denote a polytope of (CLP ). This polytope is studied in [51, 54].

If we add a bound on the number of nodes in a clique (called it c), we obtain the

capacitated clique partitioning problem (CCLP ) [53]: add to (CLP ) the inequali-

ties
∑

j∈V \{i}

xij ≤ c− 1 for all i ∈ V (2.3)

The polytope associated with this problem is declared PCCLP
n,c . A depth study can

be found in [80, 28]. If we add the variables yi ∈ {0, 1}, ∀i ∈ V to (CCLP ) and the

appropriate connectivity constraints we get the polytope P (G, c).

When we look for a single maximal weighted clique it’s sufficient to add the con-

straints [53] :

xij + xjk + xkl − xik − xjl ≤ 1, ∀i, j, k, l ∈ V and i 6= j 6= k 6= l (2.4)

The polytope of this problem, called PCLI
n,c is studied by Dijkhuizen and Faigle

[28, 53]. Park and Lee studied in [41] the same problem but they introduced the

following extended formulation :

EXTCLI



























































max
∑

{i,j}∈En
wijxij

s.t. :

yi + yj − xij ≤ 1∀{i, j} ∈ En
∑

i∈Vn
yi ≤ c (2.5)

xij − yi ≤ 0, xij − yj ≤ 1, ∀{i, j} ∈ En

xij ∈ {0, 1}, ∀{i, j} ∈ En

yi ∈ {0, 1}, ∀i ∈ Vn

Let P extcli
n,c denote a polytope of (EXTCLI). This polytope is also investigated in

[25]. When we remove constraint 2.5 from the formulation above we get the boolean
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quadric polytope P
boqd
n , which has been studied by Padberg in [64].

The last polytope is based on formulation proposed by Borndörfer et al. [67] in

the field of decomposition constraint matrices, and by Kumar et al. [44] in a

cell-formation context. This formulation has a supplementary input parameter, an

integer B ∈ N , where B is an upper bound on the number of components to be

created. The formulation uses variables zib ∈ {0, 1}, ∀i ∈ V and b ∈ {1, . . . , B},

such as

zib =







1 if vertex i ∈ V is assigned to component b,

0 otherwise.

The corresponding integer program is [53]:

MD



















































max
∑

i∈

∑B
b=1

zib

s.t. :
∑B

b=1
zib ≤ 1, ∀i ∈ V

∑

i∈V zib ≤ c, ∀b ∈ {1, . . . , B}(2.6)

zib + z
jb

′ ≤ 1, ∀{i, j} ∈ E, b, b
′

∈ {1, . . . , B}, b 6= b
′

zij ∈ {0, 1}, ∀i ∈ V, b ∈ {1, . . . , B}

Let P (G,B, c) denote a polytope of MD. The block-invariant inequalities have been

defined in [67]. This inequalities can be written as

∑

i∈V

ai

B
∑

b=1

zib ≤ a0 (2.7)

The following lemma 2.5 shows the relationship between the polytopes intro-

duced above.

Lemma 2.5 [53]

1. An inequality valid for PCLP
n is valid for PCCLP

n,c for all n, c ∈ N .

2. An inequality valid for PCCLP
n,c is valid for PCLI

n,c for all n, c ∈ N as well as

valid for P (G, c).

3. An inequality valid for PCLI
n,c is valid for P (G, c) if G is a clique , for all c ∈ N .
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4. A block-invariant inequality valid for P (G,B, c) is valid for P (G, c) when sub-

stituting yi =
∑B

b=1
zib, for i = 1, . . . , n.

5. An inequality valid for P (G, c) is valid for P extcli
n,c for all n, c ∈ N .

A graphical representation of lemmas 2.5 is given in figure 2.9 [53].

Lemma 2.6 [53]

1. An inequality aTx ≤ a0 facet-defining for PCLP
n is also facet-defining for

PCCLP
n,c for all c ≥ kCLP

a .

2. An inequality aTx ≤ a0 facet-defining for PCCLP
n,c is facet-defining for P (G, c)

for all graphs G = (V,E) with |V | = n.

3. An inequality aTx ≤ a0 facet-defining for P extcli
n,c which is valid for P (G, c) is

facet-defining for P (G, c) for all graphs G = (V,E) with |V | = n.

4. An inequality aTx ≤ a0 facet-defining for P
BOQD
n is also facet-defining for

P (G, c) for all graphs c ≥ k
BOQD
a and for all graphs G = (V,E) with |V | = n.

5. A block-invariant inequality

∑

i∈V

bi

B
∑

b=1

zib ≤ b0 (2.8)

facet-defining for P (G,B, c) is facet-defining for P (G, c) when substituting

yi =
∑B

b=1
zib, for i = 1, . . . , n.

A graphical representation of lemmas 2.6 is given in figure 2.10 [53].

The inheritance of facet-defining inequalities is represented in figure 2.10 [53].

Given a facet-defining inequality aTx ≤ a0 of P
CLP
n (PBOQD

n ) there exists a set

Ma of dim(PCLP
n ) (dim(PBOQD

n )) affinely independent solutions satisfying this in-

equality at equality. Let us denote by KCLP
Ma

(KBOQD
Ma

) the size of the largest clique

(in terms of number of vertices) present in a solution in Ma, and let

KCLP
a := min{KCLP

Ma
: Ma affinely independent solutions,

|Ma| = dim(PCLP
n ), aTx = a0 ∀x ∈Ma where aTx ≤ a0 facet−defining for PCLP

n }

and
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Figure 2.9: Inheritance of valid inequalities [53]

Figure 2.10: Inheritance of facets inequalities [53]
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K
BOQD
a := min{KBOQD

Ma
: Ma affinely independent solutions,

|Ma| = dim(PBOQD
n ), aTx = a0 ∀x ∈Ma where aTx ≤ a0 facet−defining for P

BOQD
n }

They are many other valid inequalities for P (G, c) in the reference [53], among these

we found the following constraints used in the branch-and-cut algorithm presented

in the same reference (see [53] for more details).

• The cover inequalities :

Let W ⊂ V such that |W | = c+k, c ≥ 2 and (W,E(W )) is k-vertex connected,

we have the following valid inequality :

∑

i∈W

yi ≤ c (2.9)

Borndörfer gives in [67] the following heuristic (algorithm 7) to separate cover

inequalities with k = 1 and k = 2. Let E({v},W ) denote the set of edges

incident to v and to W .

Algorithm 7 Searching W ⊆ V such that (W,E(W )) is two connected [53]

for each edge {i, j} ∈ E do

Set W := {i, j} and N := N(i) ∩N(j)
while (N 6= ∅) and (|W | < c+ 2) do

Choose l ∈ N
W := W ∪ {l}
N := {v ∈ V \W : |E({v},W )| ≥ 2}

end while

if |W | = c+ 2 then

Check cover inequality

end if

end for

• Clique inequalities :

Let c, p two integers with c ≥ p+ 1 and let U ⊆ V be such that (U,E(U)) is

a clique in G. Then the inequality 2.10 defines a facet iff |U | ≥ p+ 2 [53].

p.

∑

i∈U

yi −
∑

{i,j}∈E(U)

xij ≤

(

p+1

2

)

(2.10)

Separation of this family of inequalities based on recursive algorithm 8 search

a maximal clique in G. The subroutine ’Clique’ is an exact algorithm for

finding all maximal cliques in graph but has an exponential time in the worst

case.
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Algorithm 8 Searching the maximal clique [53]

U = ∅ and N = V
Call the subroutine Clique(U,N)

CLIQUE (U,N)

BEGIN

k := min{l|(vl ∈ N) ∧ (l > max{m|vm ∈ U})}
while (k ≤ n) do

U := U ∪ {vk}

N
′

:= {v ∈ N |{v, vk} ∈ E}

if (N
′

= ∅) then

U is maximal clique

else

CLIQUE(U,N
′

)

end if

U := U\{vk}
k := min{l|(vl ∈ N) ∧ (l > k)}

end while

END

• Star inequalities :

Let c ≥ 2 an integer, and let i ∈ V be such as |N(i)| ≥ c. Then the inequality

below is valid for P (G, c)

(|N(i)| − c+ 1).yi +
∑

j∈N(i)

yi ≤ |N(i)| (2.11)

The number of star inequalities is n, and therefore separation of this class of

inequalities is done by enumeration [53].

• K1,2 inequalities :

Let c ≥ 3 be an integer, and i, j, k ∈ V, i 6= j 6= k such that {i, j}, {i, k} ∈ E

and {i, j} /∈ E. Then K1,2 inequalities

yi + yj + yk − xjk ≤ 2 (2.12)

is valid and facet-defining for P (G, c). The separation algorithm is done by

enumeration and the number of K1,2-inequalities is O(n3).

• Arrow inequalities :

Let c ≥ 3 an integer and U = i, j, k, l ⊆ V such that (U,E(U)) is a clique in

G. Then the inequality

y(i, j, l) + xik − x(E(j, k, l)) ≤ 2 (2.13)
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is valid and facet-defining for P (G, c). The separation is done by an enumer-

ation algorithm in O(n4).

• Four-cycle inequalities :

The four-cycle inequality is

y(C)− xv1,v3 − xv2,v4 ≤ 2 (2.14)

Where c ≥ 3 is an integer and C := v1, v2, v3, v4 is a subset of V that induces

a cycle in G. This inequality is valid and facet-defining for P (G, c). The

separation of these inequalities is done by enumeration.

• Triangle inequalities :

The separation of the following triangle inequalities is done by enumeration

xij + xik − xjk ≤ 1, for all distinct i, j, k ∈ V (2.15)

2.4.2 Vertex Separator problem

The last problem is the vertex separator problem. Given a connected graph G, a

vertex separator in G is a subset of vertices whose removal disconnects G. Balas

in [21] proposes a polyhedral study of a vertex separator problem (V SP ). A V S

can be defined as a subset of vertices, whose removal divides the graph into two

disjoint subgraphs. In [21] we have the following definition of VSP : given G(V,E)

an undirected graph, an integer b ≤ n and Ci a cost for vertex i ∈ V , we want to

split V into three sets A,B and C, where A and B are not empty (called shores),

(i, j) /∈ E, i ∈ A and j ∈ B (condition (i)), max{|A|, |B|} ≤ b (condition (ii))

and
∑

j∈C Cj is minimized subject to the two conditions mentioned before (i.e. ,

condition (i) and condition (ii)).

A mixed integer formulation is proposed in [21].
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max
∑

i∈V Ci(ui1 + ui2)

s.t. :

ui1 + ui2 ≤ 1 , ∀i ∈ V (2.7.1)

ui1 + uj2 ≤ 1 , ∀(i, j) ∈ E (2.7.2)

uj1 + ui2 ≤ 1 , ∀(i, j) ∈ E (2.7.3)

1 ≤ uk(V ) ≤ b , k = 1, 2 (2.7.4)

uik ≥ 0, ∀i ∈ V, k = 1, 2 (2.7.5)

ui1 integer, ∀i ∈ V (2.7.6)

Let

ui1 =







1 if i ∈ A

0 otherwise

ui2 =







1 if i ∈ B

0 otherwise

For S ⊂ V and k = 1, 2, we denote by uk(S) =
∑

i∈S uik and u(S) = u1(S)+u2(S).

Inequality (2.7.1) means that a vertex i cannot be in A and B. Constraints (2.7.2)

and (2.7.3) imply that vertices of every edge (i, j) ∈ E must be both either in A or

in B. Then, condition (2.7.4) prevents that neither A nor B is empty and the size

of each subset (A,B) must be less than b.

Many applications of VSP are mentioned in [20, 61, 70, 60], among them a problem

of minimizing the work involved in solving systems of equations [60].

We detail below the class of symetric facets of P (G, b) [21]. A valid inequality of

P (G, b) is called symmetric if for all i ∈ V , the coefficients uj1 and uj2 are equal.

Let G(V,E) be a simple undirected graph. S ⊆ V such that V ⊆ (S ∪ NS(G)) is

called a dominating set for G or for V . A vertex i ∈ V is universal if it is neighbor to

evry j ∈ V \{i}. The proposition 2.1 shows a relationship between vertex separator

and connected dominators

Proposition 2.1 [21] In a connected graph, any separator and any connected dom-

inator have at least one vertex in common.

Let P (G, b) = conv{u ∈ B2n : u satisfies (2.7.1)− (2.7.6)} be a vertex separator

problem (V SP ) polytope . A vertex i is called regular, if there exists a separator
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C ⊂ V \{i} such that C ∪ {i} is also a separator. Proposition 2.2 gives us the

conditions to have a full dimensional polytope.

Proposition 2.2 [21] If every i ∈ V is regular, then P (G, b) is full dimensional.

Furthermore, the proposition 2.3 is a direct result from proposition 2.1.

Proposition 2.3 [21] Let S be a minimal connected dominator of V . Then

u(S) ≤ |S| − 1 (2.16)

is a valid inequality for P (G, b).

A valid inequality αu ≤ α0 is maximal if there exists no valid inequality α
′

u ≤ α0

with α
′

≥ α and α
′

j > αj for some j ∈ V [21]. In objective to prove in which case

the inequality 2.16 is maximal for P (G, b) let us introduce some definitions [21]. Let

S ⊂ V be a dominator of V . For i ∈ S,

P (i) := {k ∈ V \S : NS(k) = i}

is the set of pendent vertices of i [21].

Let SD := {i ∈ S : P (i) 6= ∅}, SQ := S\SD, if SQ 6= ∅ then every i ∈ SQ is an

articulation point of G(S) [21] (label 2.4.2). A forbidden vertex v ∈ V \S relative

to a minimal connected dominator S of G is a node where G({S ∪ {v}}) has a non

articulation point and v is adjacent to every j ∈
⋃

i∈S P (i) [21]. Now we present

the proposition 2.4.

Proposition 2.4 [21] The inequality 2.16, with |S| ≤ b, is maximal if and only if

G has no forbidden vertices relative to S.

Let F := {u ∈ P (G, b) : u(S) = |S|− 1} be a face of P (G, b). F is a facet of P (G, b)

if and only if for each equation αu = |S| − 1, where u ∈ F and have a coefficients

αj1 and αj2 such that

αj1 = αj2 =







1 if j ∈ S

0 otherwise (i.e., j ∈ V \S)

We need propositions 2.5 - 2.7 to prove proposition 2.9. But before giving this

proposition we will present proposition 2.8 in order to show that if G has a node
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for which none of three conditions cited in propositions 2.5 - 2.7 is satisfied, then

inequality 2.16 is not a facet of P (G, b)

Proposition 2.5 [21] If for some v ∈ V \S, G(S ∪{v}) and G(S) have a common

articulation point, then αv1 = αv2 = 0.

Proposition 2.6 [21] If for some v ∈ V \S there exists l ∈ P (i) for some i ∈ S

such that (v, l) /∈ E, then αv1 = αv2 = 0

Proposition 2.7 [21] If v ∈ P (i) for some i ∈ S such that |P (i)| ≥ 2, then

αv1 = αv2 = 0.

Under consideration of some conditions the inequality 2.16 is not facet-defining

for P (G, b), the proposition 2.8 shows us this result.

Proposition 2.8 [21] Suppose there exists v ∈ V \S with the properties

• G(S ∪ {v}) and G(S) have no common articulation point

• v is adjacent to every j ∈
⋃

k∈S P (k)

• {v} = P (i) for some i ∈ S

Then the inequality 2.16 does not define a facet of P (G, b).

Proposition 2.9 shows in which case (2.16) is a facet of P (G, b). But before

presenting it, we give some definitions and notations taken from [21] where those

definitions are required for the presentation of proposition 2.9.

Let S be a minimal connected dominator, with S = SD ∪ SQ, where SD is defined

above in label 2.4.2 that is the unique minimal dominator contained in S, and

SQ which is defined above in label 2.4.2. A subset S ⊂ V is called orderly, if

either SQ = ∅, or else SD contains no articulation point of G(S), and SQ can be

ordered into sequence i1, . . . , iq, with the property that for r = 1, . . . , q, G(S\{ir})

has exactly two components with vertex sets S
′

, S
′′

, such that {i1, . . . , ir−1} ⊂ S
′

,

{ir+1, . . . , iq} ⊂ S
′′

[21]. Let s = |S|, d = |SD| and q = |SQ| . Let Ci is a separator

in F with shores Ai, Bi, let ai = |Ai∩SD| and bi = |Bi∩SD|. A separator Ci is called

of type 1 if S\{i} is contained in a single shore, and of type 2 if (S\{i}) ⊆ Ai ∪Bi,

with Ai ∩ S 6= ∅ 6= Bi ∩ S [21]. We have ai + bi = d for the separators of type 2,
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with i ∈ SQ [21]. A collection C of type 2 separators is called representative if it

contains exactly one member Ci for each i ∈ SQ [21]. If the members of such a

collection is ordered according to the rule ai ≥ ai+1(bi ≤ bi+1), i = 1, . . . , q− 1, and

a
2k+1

1
= a1 + a3 + . . .+ a2k+1

a
2k
2 = a2 + a4 + . . .+ a2k (2.17)

with b
2k+1

1
and b2k

2
defined in the same way, then an orderly minimal connected

dominator S is called exceptional [21] if

1. s is odd and

2. SQ 6= ∅, and for any representative collection of type 2 separators

a
q−1
1

− a
q
2
= (d−1)

2
, if q is even

a
q
1
− a

q−1
2

= d
2
, if q is odd

Proposition 2.9 [21] Let S be a minimal connected dominator that is orderly,

|S| ≤ b, and assume that every v ∈ V \S satisfies at least one of the conditions

stated in Propositions 2.5, 2.6 and 2.7. Then the inequality 2.16 defines a facet of

P (G, b) if and only if S is not exceptional.

If S is exceptional then we have the following proposition 2.10.

Proposition 2.10 [21] Let S, with SQ = {i}, be exceptional. Then the inequality

pu1(S\{i}) + (p− 1)u2(S\{i}) + (2p− 1)ui2 ≤ p(2p− 1) (2.18)

is valid for P (G, b). Furthermore, 2.18 is a facet defining if and only if every v ∈

V \S satisfies at least one of the conditions of propositions 2.5, 2.6 and 2.7.

In the reference [21] we find more results of V SP polytope among this a class of

asymmetric facets of P (G, b) and some generalized inequalities for P (G, b).

2.5 Conclusion

In this chapter we have exposed some related works to k-separator problem. Among

these we mentioned many combinatorial optimization problems that have a relation-

ship with k-separator problem. From primal-dual method to polyhedral approach,
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we have tried to give an introduction to each of them and applied them to problems

that have a relation with k-separator problem. In the next chapter we will show

many cases where k-separator problem can be solved in polynomial time.
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Polynomial cases
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3.1 Introduction

This chapter is devoted to polynomial cases of the k-separator problem. It starts

with bounded treewidth graph, then paths trees and cycles. Many other graph

classes where k-separator problem is polynomial-time solvable are studied, inter alia

: mK2-free graphs, (G1, G2, G3, P6)-free graphs, interval-filament, asteroidal triple-

free, weakly chordal, interval and circular-arc graphs. Concluding is made in the

last section.
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3.2 Graphs with bounded treewidth

3.2.1 Basics

A tree-decomposition of G is defined by a pair (X , T ) where X = (Xt)t∈V (T ) is a

set of vertex subsets of G indexed by vertices of a tree T satisfying the following:

(i) for each v ∈ V (G), there is some t ∈ V (T ) such that v ∈ Xt;

(ii) for each edge (u, v) ∈ E(G), there is some t ∈ V (T ) such that u ∈ Xt and

v ∈ Xt;

(iii) for each vertex v ∈ V (G), if v ∈ Xt1 and v ∈ Xt2 then v belongs to Xt for

each t ∈ V (T ) on the path between t1 and t2.

Property (iii) implies that the subgraph of T induced by the vertices t such

that Xt contains v is a subtree. The width of the decomposition is given by

maxt∈V (T ) |Xt|−1. The treewidth ofG is the minimum width over all tree-decompositions

of G.

We assume here that G has a treewidth bounded by a constant l. It is well-known

that computing the treewidth of a graph and a corresponding minimum-width tree-

decomposition can be done in linear time (assuming that l is constant) [6]. Many

NP-hard optimization problems can be solved in polynomial time for bounded-

treewidth graphs. The algorithms are generally based on dynamic programing and

a tree-decomposition of the graph (see e.g., [71, 7, 78]).

A relatively general approach is proposed in [78] to solve vertex partitioning

problems in bounded-treewidth graphs. Since the k-separator problem can be seen

as a vertex partitioning where the partition is given by the k-separator and the

remaining connected components, the approach of [78] might be used. However, the

algorithm of [78] has a polynomial complexity only if the number of subsets of the

partition is bounded by the logarithm of the size of the graph (Theorem 5.7 of [78]).

Unfortunately, this does not hold for the k-separator problem. The approach of [71]

also leads to a non-polynomial algorithm. Another extension is proposed in [7] but

it is not clear for us how to express the k-separator problem in a compatible way

with [7].

However, it is not difficult to derive a dynamic programming algorithm for our

problem. It is described below for sake of completeness.
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3.2.2 A dynamic-programming algorithm

Similarly to most dynamic-programming algorithms for bounded-treewidth graphs,

we are going to use the separator property induced by the tree-decomposition: given

an edge (t1, t2) ∈ E(T ), let T1 and T2 be the connected components of T obtained

by deletion of the edge, let Y1 = ∪t∈V (T1)
Xt and Y2 = ∪t∈V (T2)

Xt, then Xt1 ∩Xt2

separates Y1 from Y2. In other words, Y1 ∩ Y2 = Xt1 ∩ Xt2 and each vertex of

Y1 \ Y2 is not adjacent to any vertex of Y2 \ Y1. Let us consider T as a rooted

tree (by choosing an arbitrary root) and let Tt be the subtree rooted at t ∈ V (T ).

Then, we can define Yt as the union of all subsets indexed by the vertices of Tt:

Yt = ∪t′∈V (Tt)
Xt′ . The main idea of this type of algorithms is to consider, for each

t ∈ V (T ), a table of partial solutions of the optimization problem that can be built

by considering the tables of the children vertices of t (in the rooted tree). The

validity of this table construction is based on the separator property induced by the

tree-decomposition. The optimal solution of the problem is obtained at the root of

the tree. This approach is useful in order to derive a polynomial-time algorithm

to solve the problem when the size of the table of each t ∈ V (T ) is polynomially

bounded (for the case when the width of the tree decomposition is bounded by a

constant).

Before describing how these tables are built, let us introduce one more concept.

A nice tree-decomposition is a decomposition where each vertex t ∈ V (T ) falls into

one of the following categories:

• Leaf: t is a leaf of T and |Xt| = 1.

• Join: t has exactly two children, say t′ and t′′, and Xt = Xt′ = Xt′′ .

• Introduce: t has exactly one child, say t′, and there is a vertex v ∈ V (G) such

that Xt = Xt′ ∪ {v}.

• Forget: t has exactly one child, say t′, and there is a vertex v ∈ V (G) such

that Xt = Xt′ \ {v}.

It is easy to show that given a tree-decomposition, one can transform it into

a nice tree decomposition having the same width and a linear number of vertices.

This can be done in polynomial time [43]. We will then assume that a nice tree-

decomposition of minimum-width is known.
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For each t ∈ V (T ), for each partition (S0, S1, ..., Sj) of Xt where j ≤ l and

for each set of numbers l1, ..., lj with |Si| ≤ li ≤ k, let Z∗(t, S0, S1, ..., Sj , l1, ..., lj)

be the weight of a minimum-weight k-separator of G(Yt) where S0 belongs to the

k-separator while all vertices of Si (1 ≤ i ≤ j) belong to the same connected

component of size li. Observe that if Si and Si′ (1 ≤ i < i′) are adjacent then

Z∗(t, S0, S1, ..., Sj , l1, ..., lj) = ∞ since Si and Si′ should be merged into one con-

nected component. We assume that the table of t ∈ V (T ) contains an entry for each

partition (S0, S1, ..., Sj) with the associated numbers l1, ..., lj and the optimal cost

Z∗(t, S0, S1, ..., Sj , l1, ..., lj). A k-separator of G(Yt) achieving this cost (containing

S0) can also be kept in the table of t.

The number of entries of the table for each t ∈ V (T ) is bounded by kl+1(l +

1)l+1 which is polynomial. The optimum solution is obtained at the root vertex by

considering the solution of minimum weight among all partial solutions at the root’s

table.

To complete the algorithm description, we only have to show how to build the

table of a vertex t knowing the tables of the children of t. The case where t is a leaf

is obvious. Let us consider the case of a Join vertex t with two children t′ and t′′. To

obtain Z∗(t, S0, S1, ..., Sj , l1, ..., lj), it is clear that we should consider entries of type

Z∗(t′, S0, S
′

1
, ..., S′

j′ , l
′

1
, ..., l′j′) and Z∗(t′′, S0, S

′′

1
, ..., S′′

j′′ , l
′′

1
, ..., l′′j′′) (with the same set

S0). Consider two such partitions (S0, S
′

1
, ..., S′

j′) and (S0, S
′′

1
, ..., S′′

j′′) of the same set

Xt. By merging S′

a and S′′

b if they are adjacent, we get a new partition (S0, S1, ..., Sj)

of Xt. Let Si = (∪a∈IS
′

i) ∪ (∪b∈JS
′′

b ) be one of the subsets of this new partition

where I ⊂ {1, ..., j′} and J ⊂ {1, ..., j′′} are the set of indexes of the merged subsets

that led to Si. Then the size of the connected component containing Si is given by

li = |Si|+
∑

a∈I(l
′

a − |S
′

a|) +
∑

b∈J(l
′′

b − |S
′′

b |). Observe that l′a − |S
′

a| represents the

number of vertices of G(Yt′) that belong to the same connected components as S′

a

but not to Xt′ = Xt. These vertices do not belong to Yt′′ by the separator property.

If the combination of Z∗(t′, S0, S
′

1
, ..., S′

j′ , l
′

1
, ..., l′j′) and Z∗(t′′, S0, S

′′

1
, ...,

S′′

j′′ , l
′′

1
, ..., l′′j′′) leads to connected components of size less than or equal to k (i.e., all

numbers li are≤ k), then we keep in the table of t the cost Z∗(t′, S0, S
′

1
, ..., S′

j′ , l
′

1
, ..., l′j′)+

Z∗(t′′, S0, S
′′

1
, ..., S′′

j′′ , l
′′

1
, ..., l′′j′′)−

∑

v∈S0
wv obtained with the new partition and the

corresponding numbers li. Observe that the cost
∑

v∈S0
wv is subtracted since it is

counted twice in Z∗(t′, S0, S
′

1
, ..., S′

j′ ,

l′
1
, ..., l′j′) and Z∗(t′′, S0, S

′′

1
, ..., S′′

j′′ , l
′′

1
, ..., l′′j′′). Notice that since the same partition
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(S0, ..., Sj) with the corresponding sizes (l1, ..., lj) might be obtained by different

combinations of Z∗(t′, S0, S
′

1
, ..., S′j′ , l

′

1
, ..., l′j′) and Z∗(t′′, S0, S

′′

1
, ..., S′′j′′ ,

l′′
1
, ..., l′′j′′), we should of course keep the one having the lowest cost.

As a conclusion, the table of each Join vertex t can be built in polynomial time

using the tables of its children t′ and t′′.

Let us now assume that t is an Introduce vertex whose unique child is t′ and

let v ∈ V (G) be the vertex such that Xt = Xt′ ∪ {v}. Let us consider the entry

Z∗(t, S0, ..., Sj , l1, ..., lj) where v ∈ S0. Then, Z
∗(t, S0, ..., Sj , l1, ..., lj) = Z∗(t′, S0 \

{v}, S1, ..., Sj , l1, ..., lj) + wv. The case where v /∈ S0 is slightly more complicated.

Assume that v ∈ Si0 for some i0 6= 0. Since v /∈ Yt′ (by property (iii) of tree-

decompositions), the deletion of v can split the component containing Si0 into several

components and the set Si0 \ {v} will be partitionned into several subsets A1, ..., Ap

where the vertices of Ai belong to the same connected component of size l
′

i. Observe

that since v is not adjacent to any vertex in Yt′ \Xt, we should have li0 − 1 =
∑

i l
′

i.

This clearly implies that

Z∗(t, S0, ..., Sj , l1, ..., lj) =

min
A1,...,Ap;l

′

1
,...,l

′
p
:

S
i0
\{v}=A1∪...∪Ap;

∑
i
l
′

i
=l

i0
−1;|A

i
|≤l
′

i
≤k

Z∗(t′, S0, ..., Si0−1, A1, ..., Ap, Si0+1, ..., Sj , l1, ..., li0−1, l
′

1
, ...., l′p, li0+1, ..., lj).

The equation above shows again that the table of t can be computed in polyno-

mial time using the table of its child. The case where v is a Forget vertex can be

handled in a similar way.

Proposition 3.1 The k-separator problem can be solved in polynomial time for

graph with bounded treewidth. This holds even if k is part of the input.

3.3 Paths, trees and cycles

A more specialized algorithm is described for paths, trees and cycles.

Let us start with the case where G = (V,E) is a tree denoted T . Without loss

of generality, we assume that the edges of T are oriented such that T can be seen as

a tree rooted at an arbitrary vertex r. Let N+
v denote the set of children of a vertex

v. The number of children of v is denoted by d+v = |N+
v |. The children of v can be

assumed to be arbitrarily ordered from the first to the last. Then vi corresponds to
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the ith child of v. Let Tv be the subtree rooted at v. We also use T
p
v to denote the

subtree containing v and the p subtrees rooted at the first p children of v. Observe

that Tv = T d
+
v

v .

We will describe a dynamic programming approach to compute a minimum-

weight k-separator. Let Cv be the weight of an optimal k-separator of the subtree

Tv. The global optimum is of course obtained when v = r.

Let us also use Cin
v to denote the cost of an optimal k-separator of Tv under the

conditions that v belongs to this k-separator.

Observe that when v belongs to the k-separator, the subtrees rooted at the

children of v become non connected together. In other words, one can write the

following:

C
in
v = wv +

∑

y∈N
+
v

Cy. (3.1)

For each number i such that 1 ≤ i ≤ k and each vertex v ∈ V , let Cout
v (i) be

the weight of an optimal k-separator under the condition that v does not belong to

this separator and there is a connected component of Tv of size exactly equal to i

containing v and not belonging to the separator. In other words, we require here

that after the deletion of the k-separator of Tv, v remains in the graph and belongs

to a component of size i.

Observe that Cv is just given by:

Cv = min

{

C
in
v , min

i=1...k
C

out
v (i)

}

. (3.2)

We need one more definition. For any vertex v ∈ V , any number 1 ≤ i ≤ k

and any number 1 ≤ p ≤ d+v , let Cout
v (p, i) be the weight of an optimal k-separator

of Tv under the following conditions: v does not belong to the separator; after the

deletion of the k-separator T
p
v contains a connected component of size i including

v. Observe that:

C
out
v (i) = C

out
v (d+v , i). (3.3)

It is now easy to see that Cout
v (p, i) can be expressed as follows:

C
out
v (p, i) = min

{

C
out
v (p− 1, i) + C

in
vp
, min
j=1...i−1

C
out
v (p− 1, i− j) + C

out
vp

(j)

}

.

(3.4)
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In Equation (3.4), Cout
v (p − 1, i) + Cin

vp
represents the situation where vp (the

pth child of v) belongs to the k-separator of Tv while T
p−1
v contains a connected

component of size i including v after the removal of the k-separator. The second

term min
j=1...i−1

Cout
v (p − 1, i − j) + Cout

vp
(j) clearly corresponds to the case where vp

does not belong to the k-separator.

Equation (3.4) can be used in combination with equations (3.1), (3.2), (3.3) to

compute all optimal weights. For a vertex v, quantities Cout
v (p, i) can be computed

only when the children of v were already addressed. We should of course start by

p = 1 and increase it until reaching d+v .

Similarly to many dynamic programming algorithms related to trees, we start

by the leaves of the tree, and we go up until we reach the root r.

To finish the description of the algorithm we should only observe that when v is a

leaf, then Cin
v = wv, C

out
v (1) = 0 and Cv = min {wv, 0} while all other quantities

are not defined (assumed to be infinite).

The number of quantities to be computed (Cout
v (p, i), Cin

v , Cout
v (i) and Cv) is

about O(nk) (using the fact that
∑

v∈V d+v = |V | − 1 = n− 1). The complexity of

the algorithm is also easy to estimate. Observe that assuming that all children of

a vertex v are already addressed, the additional time required to compute all terms

related to v is O(d+v k
2). A simple induction implies that the dynamic programming

algorithm has a complexity of O(nk2).

Since paths are also trees, the algorithm described for trees can also be used.

The problem for cycles can also be solved using dynamic programming. If there

are vertices with negative weights then they belong to the k-separator. By deleting

these vertices we get a set of subpaths. Then we can use dynamic programming to

solve the problem on each subpath. If all vertices have strictly positive weights and

the size of the cycle is less than or equal to k, then the optimal separator is the

empty set. Finally, if weights are positive and the size of the cycle is strictly greater

than k, then we select a connected subset of k + 1 vertices and we solve k + 1 path

problems by deleting from the cycle one vertex belonging to this subset.

Proposition 3.2 The k-separator problem can be solved in polynomial time for trees

and cycles. This holds even if k is not constant.
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3.4 mK2-free graphs

Before presenting mK2-free graphs, let us introduce a construction G⋆ from G al-

lowing to transform the k-separator problem into a maximum weight stable set

problem.

Given a vertex-weighted graph G, we build a vertex-weighted extended graph

G⋆ = (V ⋆, E⋆) as follows. Each subset of vertices S ⊂ V such that 1 ≤ |S| ≤

k and G(S) is connected, is represented by a vertex in G⋆. In others words,

V ⋆ = {S ⊂ V, |S| ≤ k,G(S) is connected}. The set of edges is defined as fol-

lows: E⋆ = {(S, T ), S ∈ V ⋆, T ∈ V ⋆, S 6= T, such that either S ∩ T 6= ∅, or (u, v) ∈

E for some u ∈ S and v ∈ T}. Said another way, S ∈ V ⋆ and T ∈ V ⋆ are connected

by an edge if the subsets of vertices of G they are representing either have a common

vertex or contain two adjacent vertices. The weight of a vertex S ∈ V ⋆ is defined

by wS =
∑

v∈S wv.

Let R be a maximum-weight stable set of G⋆. If two vertices S ∈ V ⋆ and T ∈ V ⋆

belong to this stable set R, then S ∩ T = ∅ and there are no edges in G with one

endvertex in S and another endvertex in T . In other words, if we consider ∪S∈RS,

we get a set of vertices in V inducing a subgraph where each connected component

has a size less than or equal to k. The complementary set of ∪S∈RS in V is a k-

separator for the graph G. This graph construction can be seen as a generalization

of a construction proposed by [81] for the dissociation problem (k = 2).

Let us now assume that G does not contain an induced matching of size m where

m is a constant. This is equivalent to say that G is mK2-free.

It is shown in [90] that the dissociation problem is easy to solve in this case.

Remember that the last is equivalent to the k-separator problem with k = 2. We

generalize this result for any constant k.

Proposition 3.3 The k-separator problem can be solved in polynomial time for

mK2-free graphs if we assume that m and k are constants.

Proof: we consider again the extended graph G⋆. Since k is a constant, G⋆ has

a polynomial size. We know from [22] that the stable set problem can be solved

in polynomial time if the graph is mK2-free. It is then enough to prove that G⋆ is

mK2-free if G is mK2-free.

Suppose that G⋆ contains an induced matching of size m. Consider an edge (u,w)
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3.5. (G1, G2, G3, P6)-free graphs

Figure 3.1: The graphs G1, G2, G3 and P6

of E⋆. Remember that u (resp. w) represents a subset Vu (resp. Vw) of vertices of V

of size less than k such that G(Vu) (resp. G(Vw)) is connected. Suppose that either

|Vu| > 1 or |Vw| > 1, then by connectivity of G(Vu) and G(Vw), there is an edge

in G connecting two vertices belonging to Vu ∪ Vw. If |Vu| = 1 and |Vw| = 1, then

the unique vertex in Vu is clearly adjacent to the unique vertex in Vw since u and

w are adjacent in G⋆. In other words, there is always at least one edge connecting

two vertices of Vu ∪ Vw.

Moreover, given two edges of the induced matching (u1, w1) and (u2, w2), then

each vertex in Vu1
∪ Vw1

is not adjacent to any vertex in Vu2
∪ Vw2

(otherwise, the

matching is not an induced one). Consequently, the graph G contains an induced

matching of size m. This concludes the proof. �

3.5 (G1, G2, G3, P6)-free graphs

Let G1 be the chair graph (or fork) obtained from the claw by a single subdivision

of one if its edges. G1 is represented on the left of Figure 3.1. It is proved in [82]

that the maximum weight stable set problem can be solved in polynomial time if the

graph is G1-free. Their result is an improvement of the classical result of [75, 58]

related to claw-free graphs since the class of G1-free graphs includes the class of

claw-free graphs.

When k = 2, it is proved in [90] that the graph G⋆ is G1-free if and only if G is

(G1, G2, G3)-free where G2 and G3 are shown on Figure 3.1. We are going to extend

this result when k ≥ 3. More precisely, we will prove that G⋆ is G1-free if and only

if G is (G1, G2, G3, P6)-free graph where P6 is the simple path containing 6 vertices

(shown on the right part of Figure 3.1).

Proposition 3.4 Assuming that k ≥ 3, the extended graph G⋆ is G1-free if and
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only if the original graph G is (G1, G2, G3, P6)-free.

Proof: It is easy to check that if G contains one of the graphs G1, G2, G3 and P6

as an induced graph, then G⋆ contains G1. Let us do it for P6. Assume that the

vertices of P6 are {1, 2, ..., 6} and let V0 = {2, 3, 4}, V1 = {1}, V2 = {3}, V3 = {5}

and V4 = {6}. Each subset Vi (i = 0, .., 4) induces a connected graph of G with at

most k vertices. Considering Vi (i = 0, .., 4) as vertices of G⋆, the graph induced

by {V0, V1, V2, V3, V4} is clearly a chair. The same kind of constructions can be

exhibited for G1, G2 and G3.

Let us now assume that G⋆ contains G1. We should prove that G necessarily

contains one of the graphs G1, G2, G3 and P6 as an induced graph. Among all

chairs included in G⋆, consider a chair induced by {V0, V1, V2, V3, V4} such that

|V0|+ |V1|+ |V2|+ |V3|+ |V4| is minimum. We assume that V0 is the central vertex

of the chair while V4 is adjacent to V3 and not adjacent to V0.

Since V1 only has to be connected to V0 in G⋆, there is no need for V1 to contain

more than one vertex. This holds also for V2. Moreover, V4 must be adjacent to V 3

and not adjacent to the rest of vertices. It is cleat that |V4| = 1 by the minimality

assumption of
∑i=4

i=0
|Vi|. Let then V1 = {v1}, V2 = {v2} and V4 = {v4} where v1,

v2 and v4 are vertices of G.

Suppose that |V3| ≥ 2. If all vertices of V3 are adjacent to V0, then consider a

vertex a ∈ V3 that is also adjacent to v4. Observe that we could choose V3 = {a} to

still obtain an induced chair in G⋆. This contradicts the minimality of
∑i=4

i=0
|Vi|.

Let us now assume that there are vertices in V3 that are not adjacent to V0. Then,

there are at least two adjacent vertices a and b of V3 such that a is adjacent to V0

while b is not adjacent to V0. By taking V3 = {a} and V4 = {b} without changing

V0, V1 and V2, we clearly obtain a chair in G⋆ violating the minimality condition.

Consequently, we necessarily have |V3| = 1. Similarly to the other subsets, V3 is

denoted by {v3} where v3 ∈ V . The only subset Vi that might have more than one

vertex is V0.

Notice that since |V4| = |V3| = 1 and V4 is not adjacent to V0, we should also

have V3 ∩ V0 = ∅.

We will now study all possible situations depending on V0 and how it is connected

to V1, V2 and V3.

Case 1 . If |V0| = 1, then G(V0 ∪ {v1, v2, v3, v4}) is clearly a chair.
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Case 2 . Assume that G(V0) contains a cycle. Since deleting any vertex of the cycle

does not break the connectivity of G(V0), the only reason that can prevent

us to decrease the size of V0 is that for each vertex v of the cycle, there is a

subset Vi (i ∈ {1, 2, 3}) such that Vi is adjacent to v (and only to v in V0). This

clearly implies that the cycle is in fact a triangle. Moreover, by the minimality

assumption, V0 does not contain vertices outside of the triangle. It is also clear

that we cannot simultaneously have v1 ∈ V0 and v2 ∈ V0 since V1 and V2 are

not adjacent in G⋆. Let us consider the two possible subcases.

Subcase 2.1 . Assume that v1 ∈ V0 and v2 /∈ V0, then the graph G(V0 ∪ {v2, v3, v4})

is isomorphic to G3.

Subcase 2.2 . If neither v1 nor v2 belong to V0, then G(V0 ∪{v2, v3}) is isomorphic to

G2.

Case 3 . Assume that |V0| = 2. Let then V0 = {a, b} where a and b are two adjacent

vertices of G. Notice that we neither have v1 ∈ V0 nor v2 ∈ V0. Indeed, if

v1 = a ∈ V0, then both v2 and v3 are adjacent to b (and not to a). Then, we

could take V0 = {b} without changing the other subsets to obtain a chair in

G⋆. This contradicts the minimality assumption.

Let us now consider all possible subcases. Observe that there is some symme-

try between V1 and V2 which reduces the number of subcases to be studied.

Subcase 3.1 . Assume that v3 is adjacent to both a and b. This clearly implies that

v1 /∈ V0 and v2 /∈ V0.

- Suppose that a is adjacent to both v1 and v2, then by taking V0 = {a}

without changing the other subsets, we still obtain a chair in G⋆.

This contradicts the minimality assumption. Replacing a by b leads

to the same conclusion.

- Let us now assume that a is only adjacent to v1 while b is only

adjacent to v2. Then, G(V0 ∪ {v1, v2, v3, v4}) is isomorphic to G2.

Subcase 3.2 . Suppose that v3 is adjacent to a (and not to b). Remember that v1 /∈ V0

and v2 /∈ V0.

- Assume that both v1 and v2 are adjacent to a. Then, by taking

V0 = {a}, we still obtain a chair in G⋆ contradicting the minimality
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assumption.

- Let us now assume that v1 is only adjacent to b (and not to a).

Then, if v2 is only adjacent to a, G(V0 ∪ {v1, v2, v3}) is isomorphic

to G1. On the contrary, if v2 is adjacent to both a and b, then

G(V0 ∪ {v1, v2, v3, v4}) is isomorphic to G3. Finally, if v2 is only

adjacent to b, then G(V0 ∪ {v1, v2, v3}) is isomorphic to G1.

Case 4 . Let us now assume that 3 ≤ |V0| ≤ k and G(V0) is a tree having at least 3

leaves (vertices of degree 1 in the tree). The minimality assumption require

that for each leaf, there is a subset Vi (i ∈ {1, 2, 3}) such that Vi is only

adjacent to this leaf (otherwise, we could reduce the size of V0 by delete this

leaf). This implies that the number of leaves is exactly equal to 3. Let x1 be

the unique leaf adjacent to v1. By taking V1 = {x1}, V0 = V0 \ {x1} (observe

that V0 is still connected) without changing the other subsets, we obtain a

chair in G⋆ contradicting the minimality assumption.

Case 5 . Suppose that 3 ≤ |V0| ≤ k and G(V0) is a simple path. For each one of the

two leaves, there is at least one subset Vi (i ∈ {1, 2, 3}) such that Vi is only

adjacent to this leaf. For symmetry reasons, we can assume without loss of

generality that v1 is only adjacent to x1 (so x1 is a leaf). Observe that this

implies that v1 /∈ V0. Let x2 (resp.x3) be a vertex of V0 such that v2 (resp. v3)

is adjacent to x2 (resp. x3). We will study all possible situations depending

on the positions of x2 and x3.

Subcase 5.1 . Assume that x2 ∈]x1, x3[. Then x3 is the second leaf of the path. By

the minimality assumption, x3 is not adjacent to V0 \ {x3} (otherwise

|V0| can be reduced by eliminating x3). Suppose that there is a vertex

y ∈ [x1, x3[ such that v2 and y are not adjacent. Then, but taking

V1 = {y}, V0 =]y, x3] without changing the other subsets, we get a chair

in G⋆ contradicting the minimality assumption. Then, v2 is adjacent to

all vertices of [x1, x3[. In a similar way, one can prove that v2 is adjacent

to x3. In other words, v2 is adjacent to all vertices of V0. One can see

now that G({v1, x1, v2, x3, v3, v4}) is isomorphic to P6.

Subcase 5.2 . Assume that x2 = x1. To avoid the previous subcase, we should

also assume that v2 is not adjacent to V0 \ {x2 = x1}. Remember that
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v1 is only adjacent to x1. It is also clear that if v3 is adjacent to any

vertex y of [x1, x3[, then |V0| can be reduced by eliminating x3. Let

us then change the subsets Vi as follows: take V4 = {v3}, V3 = {x3},

V0 = V0 \ {x3} = [x1, x3[ without changing V1 and V2. It is easy to

check that the graph induced by {V0, V1, V2, V3, V4} is a chair of G⋆. This

contradicts the minimality assumption.

Subcase 5.3 . Assume that x3 = x2. To avoid the two previous subcases, we assume

that v2 is not adjacent to V0 \ {x2}. This implies that v2 /∈ V0. Notice

that v3 is not adjacent to any vertex y ∈ [x1, x2[, because, if not, we

could take V1 = {y}, V0 =]y, x2] without changing the other subsets to

get a chair in G⋆ contradicting the minimality assumption. Observe that

the graph G({v4, v3, x1, v1, x2} is a chair.

Subcase 5.4 . Let us now assume that x3 ∈]x1, x2[. By the minimality assumption,

we deduce that v2 is not adjacent to V0 \ {x2}. If v3 is adjacent to x2,

then we get the previous subcase. Let us then assume that v3 is not

adjacent to x2. By taking V2 = {x2}, V0 = V0 \ {x2} without changing

the other subsets, we obtain a chair in G⋆ contradicting the minimality

assumption.

�

Corollary 3.1 Assuming that k is a constant ≥ 3, the k-separator problem can be

solved in polynomial time for (G1, G2, G3, P6)-free graphs.

Proof: If k is a constant, then G⋆ has a polynomial size. Using Proposition 3.4 and

the algorithm of [82] to compute a maximum weight stable set problem, one can

solve the k-separator problem in polynomial time. �

3.6 Interval-filament, asteroidal triple-free and weakly

chordal graphs

The results of this section are a direct consequence of the results of [39]. Given a

graph G and a family H of fixed connected graphs, a H-packing of G is a pairwise

node-disjoint set of subgraphs of G, each isomorphic to a member of H [39]. If

we add the requirement that each two subgraphs of the packing are not joined by
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Figure 3.2: Example of an interval-filament graph

Figure 3.3: Asteroidal triple-free graph

edges, we get independent H-packings. To study this problem, a graph H(G) is

introduced in [39]. Each subgraph of G which is isomorphic to a member of H is

represented by a vertex of H(G), and two vertices are adjacent if the two subgraphs

either intersect or are joined by an edge.

Consider a collection of intervals on a line L. Suppose that for each interval,

we are given a curve above the line, connecting the endpoints of the interval, and

remaining within the limits of the interval. An interval-filament graph (see figure

3.2) is the intersection graph of such a collection of intervals [29]. Computing a

maximum weight stable set in interval-filament graph can be done in polynomial

time [29]. It is proved in [39] that if G is an interval-filament graph, then H(G) is

also an interval-filament graph. In other words, the class of interval-filament graphs

is closed under the operation G → H(G). Notice that the class of interval-filament

graphs includes polygon-circle graphs and cocomparability graphs.

The same was also proved in [39] for the class of weakly chordal graphs [33]

(graphs such that neither the graph nor its complement contain an induced cycle

on 5 or more vertices, see figure 3.4) and the class of asteroidal triple-free graphs

(graphs not containing an asteroidal triple defined as a stable set of 3 vertices such
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Figure 3.4: Chordal and weakly chordal graphs

that between each pair of vertices of this triple, there is path connecting them and

avoiding the neighborhood of the third vertex, see figure 3.3). We know from [30]

that the maximum weight stable set problem can be solved in polynomial time for

asteroidal triple-free graphs. The same holds for weakly chordal graphs (see, e.g.,

[38]).

Let us now go back to our k-separator problem and let us slightly change the

definition of H by allowing it to depend on G. More precisely, let H be the set of

all connected subgraphs of G containing at most k vertices. Then, H(G) is exactly

our graph G⋆. Consequently, the results of [39] can be directly applied here to

deduce that the problem is easy to solve. We only have to ensure that the size of

G⋆ = H(G) is polynomially bounded. This of course occurs if k is a constant.

Proposition 3.5 Assuming that k is a constant, the k-separator problem can be

solved in polynomial time for interval-filament, asteroidal triple-free and weakly

chordal graphs.

3.7 Interval and circular-arc graphs

Interval graphs are graphs where a vertex corresponds to an interval and an edge

(u, v) exists if there is a non-empty intersection between the intervals represented

by u and v, see figure 3.5. We prove below that the k-separator problem is easy to

solve for interval graphs.

Interval graphs are obviously interval-filament and are also chordal. So the

results of Section 3.6 can be applied here to deduce that the k-separator problem

can be solved in polynomial-time for this class of graphs. However, in Section 3.6, k

is required to be constant. This was necessary to get a graph G⋆ with a polynomial

size. We will prove in this section that the problem is easy to solve even if k is part
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Figure 3.5: Example of an interval and circular-arc graphs

of the input.

Given a graph G, one can check in linear time if the graph is an interval graph

and provide a family I of intervals such the graph is the intersection graph of the

family [52]. We can obviously assume that for each pair of intervals [a, b] and [c, d]

of I, the endpoints are different (a 6= b 6= c 6= d). Let [aw, bw] be the interval related

to vertex w ∈ V . Then, I = {[aw, bw] : w ∈ V }.

When G⋆ is built, the number of vertices can be non-polynomial. However, since

each vertex v⋆ of G⋆ corresponds to a connected graph of G, and each vertex w of

G corresponds to an interval, one can associate to v⋆ the union of the intervals

∪w∈v⋆ [aw, bw]. The connectivity of the subgraph related to v⋆ clearly implies that

∪w∈v⋆ [aw, bw] is an interval. Two vertices v
⋆ and u⋆ are adjacent in G⋆ if and only if

the two intervals associated with v⋆ and u⋆ intersect: ∪w∈v⋆ [aw, bw]∩∪w∈u⋆ [aw, bw] 6=

∅.

While the number of vertices of G⋆ can be non polynomial, the number of inter-

vals that can be obtained as a union of intervals of I is polynomial (quadratic). In

other words, for an interval [x, y] where x and y belong to ∪w∈V {aw, bw}, we might

have many vertices v⋆ for which ∪w∈v⋆ [aw, bw] = [x, y]. However, a stable set in G⋆

cannot simultaneously contain v⋆ and u⋆ if ∪w∈v⋆ [aw, bw] = ∪w∈u⋆ [aw, bw] since u⋆

and v⋆ are adjacent in G⋆.

It becomes now clear that instead of building G⋆, we should consider a more

restricted graph G⋆⋆, where all vertices v⋆ having the same ∪w∈v⋆ [aw, bw] = [x, y]

are represented by only one vertex v[x,y]. Two vertices v[x,y] and v[a,b] are adjacent
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if they intersect. The graph G⋆⋆ obviously has a polynomial size.

In order to transform the maximum weight stable set problem in G⋆ into a

maximum weight stable set problem in G⋆⋆, we have to define the weight of a vertex

v[x,y] of G⋆⋆.

Observe that v[x,y] exists if the interval [x, y] is the exact union of at most k

intervals of I. Since a weight wv is associated with each interval [av, bv] ∈ I, the

weight of v[x,y] is given by the maximum weight of at most k intervals of I whose

union is equal to [x, y]. More precisely, for each interval [x, y] where x and y belong

to ∪w∈V {aw, bw}, we should solve the problem

max
A⊂V :|A|≤k,

[x,y]=
⋃

v∈A

[av,bv ]

∑

v∈A

wv. (3.5)

If (3.5) does not have a solution, then [x, y] is not represented by a vertex in

G⋆⋆. Otherwise, the weight of v[x,y] is equal to the maximum objective value of

(3.5). We show below that (3.5) can be solved in polynomial time. For an interval

[a, b] ∈ I, we will use w[a,b] to denote the weight wv of the vertex v ∈ V representing

this interval.

Lemma 3.1 Problem (3.5) can be solved in polynomial time by dynamic program-

ming.

Proof: First, observe that all intervals [av, bv] ∈ I that are not included in [x, y]

can be eliminated when we are solving (3.5). Let S = {c1 = x, c2, ..., cr = y} be the

set of endpoints of the intervals included in [x, y]: S =
⋃

v∈V :

[av,bv ]⊂[x,y]

{av, bv}. The

sequence (ci)1≤i≤r is an increasing one. Notice that we can assume that c1 = x and

cr = y, since otherwise problem (3.5) does not have a solution.

The cardinality of S denoted by r is of course less than 2|V |. Let O ⊂ {1, ..., r}

be the subset of indexes j such that there exists v ∈ V satisfying [av, bv] ⊂ [x, y]

and av = cj . In this case, let j+ δ(j) be the index such bv = cj+δ(j). Thus, if j ∈ O,

then 1 ≤ δ(j) ≤ r − j.

Figure 3.6 illustrates the definitions where we have r = 16, O = {1, 2, 3, 6, 7, 8, 11, 14},

δ(1) = 4, δ(2) = 8, δ(3) = 1, δ(6) = 3, etc. Assume that k = 6 and suppose that the

optimal solution of problem (3.5) is given by the intervals represented by thick ar-

rows in Figure 3.6. The intervals belonging to the optimal solution can be numbered
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Figure 3.6: On the dynamic programming approach to solve problem (3.5)

according to the order of their starting points. In Figure 3.6, they are numbered

from 1 to 6. Let us, for example, consider the 3 first intervals belonging to the op-

timal solution. According to Figure 3.6, these 3 intervals cover the interval [c1, c10].

To reach y = c16, it is clear that we should at least cover the interval [c10, c16] using

intervals starting after c4 (because the third interval starts at c3). Since we already

used 3 intervals to reach c10, we should use at most k − 3 = 3 intervals to reach

y = c16. Intervals numbered from 4 to 6 necessarily constitute an optimal solution of

the problem that consists in covering [c10, c16] by no more than 3 intervals starting

after c4.

The simple observation made above directly leads to a dynamic programming

approach. To make things more precise, let us introduce further notation. Let i0

and i1be two integer numbers such that 1 ≤ i0 ≤ i1 ≤ r. For any integer number

1 ≤ l ≤ k, let f(i0, i1, l) be the maximum weight that we can have to cover the

interval [ci1 , y] using at most l intervals among {[aw, bw] : w ∈ V, ci0 ≤ aw, bw ≤ y}.

If i1 < r, it is clear that to cover [ci1 , y], we need at least one interval belonging

to {[aw, bw] : w ∈ V, ci0 ≤ aw, bw ≤ y}. This clearly leeds to the following induction

formula:

f (i0, i1 < r, l) = max
j∈O:i0≤j≤i1

w[cj ,cj+δ(j))]
+ f (j + 1,max (j + δ(j), i1) , l − 1) . (3.6)

If O ∩ {i0, i0 + 1, ..., i1 < r} = ∅, then f (i0, i1 < r, l) = −∞. If l = 0, we also

have f (i0, i1 < r, 0) = −∞.

If i1 = r, then y = cr is already reached. The induction formula is then given

by:

f (i0, r, l) = max

(

0, max
j∈O:i0≤j≤r

w[cj ,cj+δ(j))]
+ f (j + 1, r, l − 1)

)

. (3.7)
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Problem (3.5) is solved by computing f(1, 1, k). The complexity of the dynamic

programming algorithm is obviously given by O(kn3). �

Proposition 3.6 The k-separator problem can be solved in polynomial time for

interval graphs. This holds even if k is not constant.

Proof: We already observed that the size of the graph G⋆⋆ is polynomially bounded.

Since problem (3.5) can be solved in polynomial time, the weight of each vertex of

G⋆⋆ is easy to compute. Then, we only have to solve the maximum weight stable

set problem in G⋆⋆. Using the fact that this problem is easy to solve for interval

graphs, concludes the proof. �

Circular-arc graphs are a simple generalization of interval graphs. They are

defined by the intersection graphs of a set of arcs on the circle. The previous propo-

sition and the algorithm described in the proof of Lemma 3.1 can be generalized in

an obvious way.

Proposition 3.7 The k-separator problem can be solved in polynomial time for arc-

circular graphs. This holds even if k is not constant.

3.8 Conclusion

Many cases where the k-separator problem can be solved in polynomial time are

shown in this chapter. In the next chapter many integer formulations of the k-

separator problem will be investigated.
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4.1 Introduction

This chapter is organized as follows. In the section 4.2, we present a basic for-

mulation in the space of original variables indexed on the vertices of graph G. We

study, in the section 4.3, a stable set formulation based on a graph transformation.

The section 4.4 focuses on a metric formulation containing among these, triangle

inequalities. A projected metric formulation is presented in section 4.5. The sec-

tion 4.6 presents partitioning formulations containing variables associated with a

partition of the vertex set. We conclude in the last section.
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4.2 Basic formulation

Let S be a subset of vertices such that |S| = k + 1 and G(S) is connected. Then,

the following inequality is obviously valid for Sk(G).

∑

v∈S

xv ≥ 1. (4.1)

The k-separator problem can be formulated as the following integer program:

IP1















min
∑

v∈V wvxv
∑

v∈S xv ≥ 1, ∀S ⊂ V, |S| = k + 1, G(S)connected

xv ∈ {0, 1}, ∀v ∈ V

Let LP1 denote the linear relaxation of IP1. We will see in Section 6.2 that

inequalities (4.1) are generally difficult to separate when k is part of the input.

4.3 Stable set formulations

These formulations are based on the G⋆ construction of Section 3.4. Remember

that V ⋆ = {S ⊂ V : |S| ≤ k,G(S) is connected} and E⋆ = {(S, T ) : S ∈ V ⋆, T ∈

V ⋆, S 6= T, such that either S ∩ T 6= ∅, or (u, v) ∈ E for some u ∈ S and v ∈ T}.

The connection with the stable set problem made in Section 3.4 directly leads to

the following formulation.

IP2































min
∑

v∈V wvxv

xv = 1−
∑

S∈V ⋆:v∈S

yS, ∀v ∈ V

yS ∈ {0, 1}, ∀S ∈ V ⋆

yS + yT ≤ 1, ∀S ∈ V ⋆, T ∈ V ⋆, (S, T ) ∈ E⋆

Let Qv = {S ∈ V ⋆ : v ∈ S}. One can add to IP2 the obvious valid inequalities
∑

S∈Qv∪Qw

yS ≤ 1, ∀ (v, w) ∈ E. The number of these inequalities is (|E|). This leads
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to formulation IP3.

IP3



































min
∑

v∈V wvxv

xv = 1−
∑

S∈Qv

yS, ∀v ∈ V

∑

S∈Qv∪Qw

yS ≤ 1, ∀ (v, w) ∈ E

yS ∈ {0, 1}, ∀S ∈ V ⋆

Let LP3 denote the linear relaxation of IP3. Let F1 (resp. F3) be the set of

feasible solutions of LP1 (resp. LP3) with respect to variables (xv)v∈V .

Proposition 4.1 The following inclusion holds: F3 ⊆ F1.

Proof: Let (x, y) stand for a feasible solution of LP3. Let C denote a connected

component of size k + 1 in the original graph G = (V,E). So we have:
∑

v∈C xv =

k + 1 −
∑

v∈C

∑

S∈Qv
yS . Notice that in the last expression each variable yS such

that S has a nonempty intersection with C occurs exactly |S ∩ C| times.

Let T denote a spanning tree of C (in the original graph) and consider the following

quantity:
∑

(v,w)∈T

∑

S∈Qv∪Qw
yS . Notice that in the last expression, the number

of times a variable yS occurs is equal to the number of edges of T that intersect

with S, and thus is larger than or equal to |S ∩ C|. From this we deduce that
∑

v∈C

∑

S∈Qv
yS ≤

∑

(v,w)∈T

∑

S∈Qv∪Qw
yS . Moreover, using the feasibility of (x, y),

we can write that
∑

(v,w)∈T

∑

S∈Qv∪Qw
yS ≤ k.

Combining the two previous inequalities leads to
∑

v∈C

∑

S∈Qv
yS ≤ k. Conse-

quently, inequality
∑

v∈C xv ≥ 1 holds. In other words, x is a feasible solution of

LP1. �

4.4 Metric formulations

A metric formulation is proposed in [53]. In addition to variables (xi)i∈V , we

consider a variable xij for each pair of vertices {i, j} to indicate whether i and j

belong to the same component. More precisely, xij is equal to 0 if they are in the

same component. Then triangle inequalities are clearly valid. Moreover, to express

the fact that a connected component does not contain more than k vertices, we can

add the constraints
∑

j∈V \{i}

xij ≥ n − k, ∀ i ∈ V . Finally, we must add constraints

to impose that if two adjacent vertices are not in the k-separator, then they belong

73



4.4. Metric formulations

to the same component: xi + xj − xij ≥ 0, ∀ (i, j) ∈ E. The formulation is given

below.

IP4























































min
∑

v∈V wvxv

xij ≤ xik + xjk , ∀i, j, k ∈ V

∑

j∈V \{i}

xij ≥ n− k, ∀ i ∈ V

xi + xj − xij ≥ 0, ∀ (i, j) ∈ E

0 ≤ xij ≤ 1, ∀i, j ∈ V

xi ∈ {0, 1}, ∀i ∈ V

Observe that the xij variables are not required to be integer. In fact, as noticed

in [53], relaxing the integrity constraint of xij variables does not modify the solution

of IP4. The polytope related to formulation IP4 is studied in [53] and many valid

inequalities and facets are presented there. Since some of these inequalities are also

valid for Sk(G), they will be presented in Section 5.4.

Let us present a new way to strengthen the linear relaxation of IP4. First,

constraint
∑

j∈V \{i}

xij ≥ n − k can obviously be strengthened into
∑

j∈V \{i}

xij ≥

n− k + (k − 1)xi.

Let p be any simple path joining i and j. Remember that x(p) denotes the

sum of xv values for all vertices belonging to p (including i and j). It is clear that

x(p) ≥ xij is a valid inequality: if x(p) = 0, then all vertices of p do not belong to

the k-separator, so they will be in the same component implying that xij = 0. Let

IP5 be the obtained integer formulation and let LP5 be its linear relaxation.

LP5











































min
∑

v∈V wvxv
∑

j∈V \{i}

xij ≥ n− k + (k − 1)xi, ∀ i ∈ V

x(p)− xij ≥ 0, ∀ i, j ∈ V , p ∈ Pij

0 ≤ xij ≤ 1, ∀i, j ∈ V

0 ≤ xi ≤ 1, ∀i ∈ V

Observe that we do not consider triangle inequalities in LP5. In fact, it is clear

that there is nothing against taking xij = min

(

1, min
p∈Pij

x(p)

)

. Triangle inequalities

are then naturally satisfied. In other words, adding triangle inequalities does not

improve the relaxation.

Notice that constraints x(p) − xij ≥ 0 can be separated by computing shortest
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paths. We will show in Section 4.5 that formulation LP5 can be easily projected on

the space of xi variables.

Constraints x(p)−xij ≥ 0 can also be induced by adding for each pair of vertices

a variable yij representing the length of the shortest path between i and j in sense

of xv values. Then, we should write that yij = xi + xj if i and j are adjacent, and

yij ≤ xi + ykj if (i, k) ∈ E. For more clearness, we give below the new compact

linear formulation.

LP6



































































min
∑

v∈V wvxv
∑

j∈V \{i}

xij ≥ n− k + (k − 1)xi, ∀ i ∈ V

yij = xi + xj, ∀ (i, j) ∈ E

yij ≤ xi + ykj, ∀ i, j ∈ V, (i, k) ∈ E

yij − xij ≥ 0, ∀ i, j ∈ V

0 ≤ xij ≤ 1, 0 ≤ yij, ∀i, j ∈ V

0 ≤ xi ≤ 1, ∀i ∈ V

LP5 and LP6 are obviously equivalent.

4.5 Projected metric formulation

Let S be a set of vertices with |S| ≥ k and let i ∈ S. For each j ∈ S, let pij ∈ Pij

be a path joining i and j. Notice that pij \ {i} is a path joining j and the neighbor

of i in pij . Consider the following inequality

(|S|+ 1− k)(1− xi) ≤
∑

j∈S

x(pij \ {i}). (4.2)

Lemma 4.1 Inequalities (4.2) are valid for Sk(G).

Proof: if xi = 1, then inequality (4.2) obviously holds. Let us now assume that

xi = 0. This is equivalent to say that i does not belong to the k-separator. Let

j ∈ S. If there is a path pij such that x(pij \ {i}) = 0, then j and i belong to the

same connected component after the removal of the k-separator. The number of

such vertices is less than or equal to k − 1 since i is already in the component. In

other words, we necessarily have (|S|+ 1− k) ≤
∑

j∈S

x(pij \ {i}). �
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We will show in Section 6.2 that inequalities (4.2) can be separated in polynomial

time.

Let us now consider a formulation based on inequalities (4.2).

IP7



















min
∑

v∈V wvxv

(|S|+ 1− k)(1− xi) ≤
∑

j∈S

x(pij \ {i}), ∀i ∈ V, S ⊂ V \ {i}, |S| ≥ k; pij ∈ Pij , ∀j ∈ S

xv ∈ {0, 1}, ∀v ∈ V

Lemma 4.2 Formulation IP7 is exact.

Proof: The solution of IP7 is integer. Since we already proved the validity of

inequalities (4.2), we do not eliminate the incidence vector of any k-separator. To

prove the exactness of IP7, it is enough to prove that
∑

v∈S′ xv ≥ 1 for any subset

S′ ⊂ V with |S′| = k + 1 and G(S′) connected. Let us consider such a subset S′

and let i be any vertex of S′. For each j ∈ S = S′ \ {i}, let pij be a path joining i

and j and contained in G(S′) (this is possible by the connectivity of G(S′)).

If xi = 1, then
∑

v∈S′ xv ≥ 1 is clearly satisfied. Let us now assume that xi = 0.

Inequality (4.2) in addition to the integrity constraint imply that x(pij \{i}) ≥ 1 for

some j ∈ S. Since all vertices of pij \ {i} are inside S′, this leads to
∑

v∈S′ xv ≥ 1.

�

Let LP7 be the linear relaxation of IP7.

Proposition 4.2 Formulation LP7 is equivalent to formulations LP5 and LP6. It

is then stronger than formulation LP4.

Proof: We know that LP5 and LP6 are equivalent. They both dominate LP4. Let

us then prove that LP7 is equivalent to LP5.

Let x⋆ be an optimal solution of LP7. Let x⋆ij = min

(

1, min
p∈Pij

x⋆(p)

)

for i ∈ V ,

j ∈ V \ {i}. Then, inequalities x(p) − xij ≥ 0 are naturally satisfied for any path

p ∈ Pij .

Let i be any vertex and let S be the subset of vertices such that x⋆ij < 1. Thus, if

j ∈ S, there exists a path pij ∈ Pij such that x⋆(pij) = x⋆ij . Using the fact that x⋆

is a solution of LP7, one can write that (|S|+ 1− k)(1− x⋆i ) ≤
∑

j∈S

x⋆(pij \ {i}) =
∑

j∈S

(x⋆ij − x⋆i ). Consequently, we have
∑

j∈S

x⋆ij ≥ (|S|+ 1− k) + (k− 1)x⋆i . Moreover,

we know by the definition of S that x⋆ij = 1 if j ∈ S. Then, the last inequality is
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equivalent to
∑

j∈V \{i}

x⋆ij ≥ (n− k)+ (k− 1)x⋆i . Consequently, all constraints of LP5

are satisfied.

Let us now prove the opposite sense by considering an optimal solution of LP5

defined by (x⋆i )i∈V and (x⋆ij)i,j∈V . Let i be an arbitrary vertex, S be a subset of

vertices of V \{i} of cardinality at least k, and pij ∈ Pij be an arbitrary path joining

i and j for each j ∈ S. We aim to prove that inequality (4.2) is satisfied. Since

we are considering a solution of LP5, we can write that
∑

j∈S

x⋆(pij) ≥
∑

j∈S

x⋆ij =
∑

j∈V \{i}

x⋆ij −
∑

j∈V \{i}∪S

x⋆ij . Using the fact that
∑

j∈V \{i}

x⋆ij ≥ (n − k) + (k − 1)x⋆i ,

and
∑

j∈V \{i}∪S

x⋆ij ≤ n − 1 − |S|, the previous inequality becomes
∑

j∈S

x⋆(pij) ≥

(k − 1)x⋆i + (|S|+ 1− k) which is exactly inequality (4.2). �

Notice that it is not difficult to show that there is not any general domination

result relating LP7 and LP1 (no formulation is dominating the other one in general).

This can also be deduced from the results of Chapter 6 where we see that inequalities

(4.2) and inequalities (4.1) induce facets under some conditions.

4.6 Partitioning formulations

Another natural formulation for the k-separator problem can be inspired from par-

titioning or clustering problems [44, 53]. Let B be an upper bound of the number

of connected components that will be obtained after the removal of the k-separator.

B can be, for example, equal to n. Components are then numbered from 1 to B.

A variable zib is considered for each vertex i and each component b ∈ {1, ..., B}. zib

will be equal to 1 if i belongs to component b. The formulation follows.

IP8















































min
∑

i∈V wixi

xi +
B
∑

b=1

zib = 1, ∀i ∈ V

∑

i∈V

zib ≤ k, ∀b ∈ {1, ..., B}

zib + zjb′ ≤ 1, ∀(i, j) ∈ E, b, b′ ∈ {1, ..., B}, b 6= b′

xi ∈ {0, 1}, zib ∈ {0, 1}, ∀i ∈ V, b ∈ {1, ..., B}

The first set of constraints expresses the fact that a vertex i either belongs

to the k-separator (xi = 1) or to one of the remaining components. The second

set of constraints allows to bound the size of each component, while constraints
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zib+zjb′ ≤ 1 guarantee that adjacent vertices do not belong to different components.

In fact, constraints zib + zjb′ ≤ 1 are dominated by constraints zib− zjb ≤ xj for

any (i, j) ∈ E and b ∈ {1, ..., B}. Another compact exact formulation can then be

obtained.

IP9















































min
∑

i∈V wixi

xi +
B
∑

b=1

zib = 1, ∀i ∈ V

∑

i∈V

zib ≤ k, ∀b ∈ {1, ..., B}

zib − zjb ≤ xj , ∀(i, j) ∈ E, b ∈ {1, ..., B}

xi ∈ {0, 1}, zib ∈ {0, 1}, ∀i ∈ V, b ∈ {1, ..., B}

A further improvement is obtained by considering a subset U ⊂ {1, ..., B}, its

complement U and two adjacent vertices i and j:

∑

b∈U

zib +
∑

b∈U

zjb ≤ 1, ∀(i, j) ∈ E. (4.3)

We will see in Section 6.2 that inequalities (4.3) can be separated in polynomial

time.

Let us now go back to the definition of B. Remember that B is an upper bound

of the number of remaining components after the removal of the k-separator. It

is clear that we should take B as small as possible to improve the quality of the

relaxations. The maximum number of connected components that can be obtained

after the deletion of a k-separator is in fact exactly equal to the maximum size of a

stable set in G⋆ (defined in Section 3.4). We show below that this number is in fact

exactly equal to the maximum size of a stable set in G.

Proposition 4.3 The lowest upper bound B that can be considered in formulations

IP8 and IP9 is equal to the maximum size of a stable set in G

Proof: Since G is included in G⋆, the maximum size of a stable set in G⋆ is larger

than or equal to the maximum size of a stable set in G. Consider a stable set of G⋆.

Each vertex S ∈ V ⋆ belonging to the stable set corresponds to a subset of vertices

of G. Let us pick an arbitrary vertex vS from each S. Consider any pair of vertices

S and S′ of the stable set. vS and vS′ are necessarily not adjacent in G since S and

S′ are not adjacent in G⋆. This clearly implies that G contains a stable set whose

size is equal to the size of the stable set of G⋆. �
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4.7 Conclusion

Metric and partition with others formulations are studied in this chapter. A poly-

hedral study of the convex hull of the feasible region of such integer formulations

are reported in the next chapter with several families of facet-defining inequalities.
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5.1 Introduction

This chapter is dedicated to a polyhedral study of Sk(G). We will first present some

properties of this polytope. Then we will focus on the path and cycle cases. Finally,

several valid inequalities will be presented and studied.
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5.2 Some general properties

Proposition 5.1 The k-separator polytope Sk(G) is full-dimensional.

Proof: The incidence vectors of the following k-separators are affinely indepen-

dent: V and V \ {w}, ∀w ∈ V . �

Proposition 5.2 If k ≥ 2, the trivial inequalities xv ≤ 1 and xv ≥ 0, for all v ∈ V

are facet defining for Sk(G).

Proof: Given v ∈ V , the incidence vectors of the following k-separators are affinely

independent and all saturate the inequality xv ≥ 0: V \ {v} and V \ {v, w}, ∀w ∈

V \ {v}.

Given v ∈ V , the incidence vectors of the following k-separators are affinely inde-

pendent and all saturate the inequality xv ≤ 1: V and V \ {w}, ∀w ∈ V \ {v}.

�

Proposition 5.3 If atx ≥ α denotes a facet defining inequality for Sk(G) different

from the trivial inequalities (i.e. 0 ≤ xv ≤ 1, for all v ∈ V ) then necessarily

av ≥ 0, ∀v ∈ V and α > 0.

Proof:

[Necessity of the condition av ≥ 0, ∀v ∈ V ]. Assume there exists some node

w ∈ V with aw < 0. As the inequality atx ≥ α is facet defining and different

from −xw ≥ −1, there exists a k-separator Z ⊆ V \ {w} whose incidence vector

saturates the constraint. But adding the node w to Z we still get a k-separator but

its incidence vector violates the inequality, hence a contradiction with the validity

of the constraint.

[Necessity of the condition α > 0]. From the former we have av ≥ 0, ∀v ∈ V .

Since all the vectors in the k-separator polytope satisfy xv ≥ 0 and atx ≥ α is facet

defining, different from xv ≥ 0, it follows that necessarily α > 0. �

Proposition 5.4 The support of any facet of Sk(G) necessarily corresponds to a

connected component of G having at least k + 1 nodes.

Proof: Let atx ≥ α denote a facet-defining inequality for Sk(G). From Proposition

5.3 α > 0. This implies that the subgraph Ga of G which is induced by the set
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of nodes Va corresponding to the support of the vector a contains a connected

component with size at least k + 1. (For, if Ga would not contain a component

with size at least k + 1, considering the set of nodes V \ Va: it corresponds to a

k-separator, thus a contradiction with the validity of the inequality).

Assume that the subgraph Ga contains a component C with size at most k.

Then any k-separator S whose incidence vector saturates the constraint atx ≥ α

should verify vw = 0, ∀w ∈ C. So the face defined by the inequality atx ≥ α would

be contained in faces defined by trivial inequalities: a contradiction.

Finally assume that Ga contains two components C1, C2 with size at least k+1.

Let S and S′ denote two k-separators whose incidence vectors saturate the inequality

atx ≥ α, with
∑

v∈S∩C1
av = k1 and

∑

v∈S′
∩C1

av = k′
1
. Assuming k1 > k′

1
(the case

k1 < k′
1
can be treated similarly) we have

∑

v∈S\C1
av <

∑

v∈S′
\C1

av. Now consider

the node set W = (S \ C1) ∪ (S′ ∩ C1) ∪ (V \ Va). W is a k-separator satisfying
∑

v∈W
av <

∑

v∈S
av, thus contradicting the validity of the inequality atx ≥ α.

It follows that the inequality atx ≥ α is redundant with respect to inequalities as-

sociated with each connected component of Ga (which are of the form
∑

v∈C
avxv ≥

kc, where kc denotes the value
∑

v∈S∩C
av, with S as defined above). �

The following proposition characterizes when a facet defining inequality for

Sk(G) is also facet defining for Sk(G
′), where G′ is obtained from G by adding

a vertex (and a set of edges between this additional vertex and vertices in G).

Proposition 5.5 Let atx ≥ b define a facet of the k-separator polytope Sk(G) with

G = (V,E). Let G′ = (V ′ = V ∪ {v}, E′) denote a graph obtained from G by adding

a node v and some edges of the form vw, w ∈ V . Then the inequality atx ≥ b defines

a facet of Sk(G
′) iff there exists a k-separator S ⊆ V in G′ whose incidence vector

χ(S) ∈ R
|V | satisfies atχ(S) = b.

Proof: Notice firstly that if atx ≥ b defines a facet of the k-separator polytope

Sk(G) then it is valid for Sk(G
′). (For, if S ⊆ V ′ is a k-separator in G′ then S ∩ V

is a k-separator in G).

[⇒] By contradiction. Assuming such a k-separator S ⊆ V does not exist, then the

face of Sk(G
′) that is defined by atx ≥ b is contained in the one defined by xv ≤ 1

and hence it cannot define a facet of Sk(G
′).

[⇐] Given a set of |V | k-separators S1, . . . , S|V |
in G whose incidence vectors (in

R
|V |) are affinely independent the sets (S′

i
)
|V |

i=1
with S′

i
= Si ∪ {v}, ∀i ∈ {1, . . . , |V |}
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are k-separators in G′. And adding to this latter set of vectors the incidence vector

χ(Sq) ∈ R
|V ′
|, for some arbitrarily chosen index q ∈ {1, . . . , |V |}, we get a set of |V ′|

incidence vectors of k-separators in G′ that are affinely independent. �

Proposition 5.6 Let atx ≥ b, x ∈ R
|V | define a facet F for Sk(G). Given x ∈ R

|V |,

let x′ ∈ R
|V ′
| denote the restriction of x to the entries corresponding to nodes in the

node subset V ′ = V \ {v}, for some node v ∈ V such that av = 0. Then the set

F ′ = {x′ ∈ Sk(G
′) : x ∈ F} contains |V ′| affinely independent incidence vectors of

k-separators in G′: the subgraph of G that is induced by the node set V ′.

Proof: Let A ∈ {0, 1}m×|V | be a matrix whose rows correspond to all the incidence

vectors of k-separators in G that are in F = {x ∈ Sk(G) : atx = b}. Since F is facet

defining for Sk(G) and Sk(G) is full-dimensional, A contains |V | affinely independent

rows. Let A′ be obtained from A by dropping the column corresponding to node v

and assume A′ contains at most |V |−2 affinely independent rows. This implies that

F ′ = {x ∈ Sk(G
′) : atx = b} is not a facet of Sk(G

′). Thus, there exists an inequality

ctx ≥ d that is valid for Sk(G
′) and such that F ′ ⊆ F ′′ = {x ∈ Sk(G

′) : ctx = d}

with (c, d) that is not a scalar multiple of (a, b) (i.e. there does not exist α > 0 with

(c, d) = α(a, b)). Notice that since ctx ≥ d is valid for Sk(G), F ′ ⊆ F ′′, we have

F ⊆ {x ∈ Sk(G) : ctx = d}. This namely implies ctx ≥ d is facet defining for Sk(G),

so that we must have (c, d) = α(a, b) for some scalar α > 0, a contradiction. �

Corollary 5.1 Let the inequality atx ≥ b be facet inducing for Sk(G), G = (V,E).

Then it is also facet defining for Sk(G
′) where G′ = (V ′, E′) denotes the subgraph

of G that is induced by the node set V ′ ⊆ V and such that av = 0, ∀v ∈ V \ V ′.

Proof: Iterative application of Proposition 5.6, removing nodes of G that are not

in V ′. �

5.3 The path and cycle cases

Let us assume that G = (V,E) is a path where V = {v1, v2, ..., vn} and E =

{(v1, v2), ..., (vn−1, vn)}. The connected components of size k+1 considered in LP1

are denoted by S1, ..., Si, ...Sn−k, where Si = {vi, vi+1, ..., vi+k}. The constraints

of LP1 related to large connected components can be written in the matrix form

Ax ≥ 1, where the ith row of A corresponds to the incidence vector of Si.
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Proposition 5.7 If G is a path, then formulation LP1 is exact (the extreme solu-

tions of LP1 are optimal k-separators).

Proof: We can write LP1 as {minwx : Ax ≥ 1, 0 ≤ xv ≤ 1, v ∈ V }. Consider-

ing the matrix B where the first n−k rows correspond to matrix A, the next n rows

correspond to the identity matrix of dimension n and the last n rows correspond to

the opposite of the identity matrix. It is clear that all constraints of LP1 can be

summarized in the form Bx ≥ b where b is an integer vector. Using the fact that in-

terval matrices are totally unimodular, we deduce that B is also totally unimodular

[4, 76]. This terminates the proof. �

Knowing that the problem can be solved in polynomial-time for trees, one may

look for a polyhedral description in this case. In fact, inequalities (4.1) considered

in (IP1) can be separated in polynomial time using the algorithm proposed in [63]

to find a maximum-weight connected subgraph of a given size when the graph is a

tree. However, these inequalities are generally not sufficient to describe the convex

hull of the incidence vectors of k-separators. A complete description of Sk(G) in the

tree case is still an open question.

Let us now assume that G = (V,E) is a cycle where V = {v1, v2, ..., vn} and

E = {(v1, v2), ..., (vi, vi+1), ..., (vn−1, vn),(vn, v1)}.

It is clear that if we know that xvi = 1 for some vertex vi (i.e., vi belongs to the

k-separator), then any k-separator of the cycle should contain a k-separator of the

path V \ vi. Using Proposition 5.7, we deduce that a minimum-weight k-separator

containing vertex vi can be computed by solving the following linear program LPi.

LPi







































min
∑

v∈V
wvxv

s.t. :
∑

v∈S
xv ≥ 1 ∀ |S| = k + 1, G(S) connected and vi0 /∈ S

0 ≤ xv ≤ 1 ∀v ∈ V

xvi = 1

Let Pi be the polytope corresponding to the feasible region of the formulation

LPi. Then, Pi = conv{χ(S) ∈ {0, 1}n, S is a k-separator containing vi}. Let T be

an arbitrary subset of vertices such that |T | = k + 1 and G(T ) is connected. Since

at least one vertex of T belongs to the k-separator, we can write that Sk(G) =

conv{
⋃

vi∈T

Pi}.
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Using the projection result of Balas [5], we get the following equivalent formu-

lation for the k-vertex separator problem when the graph is a cycle:



















































min
∑

v∈V wvxv

s.t. :

x =
∑

i∈T zi

0 ≤ zij ≤ zii ∀vi ∈ T, vj ∈ V

∑

vj∈S
zij ≥ zii ∀ |S| = k + 1, G(S) connected, and vi ∈ T \ S

∑

vi∈T
zii = 1

In the formulation above, zi is a vector of dimension n whose components are given

by zij for vj ∈ V .

Let us now focus on some special cases. Let Ck denote a cycle with length k.

Proposition 5.8 Sk(Ck+1) = {x ∈ [0, 1]k+1 :
∑

i xi ≥ 1}

Proof: Constraint matrix is TU. �

The formulations for Sk(Ck+1) and Sk(Pk+1) are the same (where Pk+1 stands

for an elementary path obtained from Ck+1 by removing an edge).

Proposition 5.9 Sk(Ck+2) = {x ∈ [0, 1]k+2 :
∑

i xi ≥ 2}

Proof: Constraint matrix is TU. �

Note that differently from the case of Ck+1, the formulations of Sk(Ck+2) and

Sk(Pk+2) do not coincide (since the constraint
∑

i xi ≥ 2 is not valid for Sk(Pk+2)).

For the particular case of C5 and k = 2 the following proposition shows that

the addition of the constraints on all paths with length k + 1 provides an exact

formulation.

Proposition 5.10 S2(C5) = {x ∈ [0, 1]k+1 :
∑

i xi ≥ 2,
∑

i∈p xi ≥ 1, ∀p ∈ P3},

where P3 stands for the set of all the paths on C5 with length 3.

Proof: Let atx ≥ α denote a facet defining inequality for S2(C5) which is different

from the trivial inequalities. From Proposition 5.3, we have av ≥ 0, ∀v ∈ V and

α > 0. We consider two cases.

case 1 : there exists a node w ∈ V with aw = 0. From Corollary 5.1 the inequality

atx ≥ α must be facet defining for S2(P4) where P4 stands for the graph
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obtained from C5 by removing the node w: hence a path with 4 nodes. From

Proposition 5.7 it follows that atx ≥ α is an inequality of the form
∑

v∈P
xv ≥

1 where P stands for a path with 3 nodes that is contained in C5.

case 2 : av > 0, ∀v ∈ V . Let S ⊆ V denote a k-separator whose incidence vector

saturates the inequality. Then necessarily S is a minimal (w.r.t. inclusion)

k-separator and it follows that S must consist of 2 nonadjacent nodes of C5.

There exists exactly 5 such sets for C5 and writing the saturation of the in-

equality for all these sets we derive that av = aw, ∀v, w ∈ V . Hence atx ≥ α

must correspond to the inequality
∑

i∈V
xi ≥ 2 up to multiplication by a

positive scalar.

�

5.4 Valid inequalities for Sk(G)

5.4.1 Hitting set inequalities

Hitting set inequalities are the basic inequalities (4.1).

Proposition 5.11 Let S be a subset of vertices such that G(S) is connected and

|S| = k+1. Then the inequality
∑

v∈S
xv ≥ 1 defines a facet of Sk(G) if each vertex

w ∈ V \ S is adjacent to at most 1 vertex in S.

Proof: Let us build n affinely independent vectors related to k-separators and

saturating inequality (4.1). For each vertex w ∈ S, we consider a k-separator

incidence vector where xw = 0, xv = 1 for each v ∈ S (v 6= w), and xv = 0 for each

v ∈ S except for one vertex v that is a neighbor of w (if w does not have neighbors,

the vertex v such that xv = 1 is chosen arbitrarily in S). In this way, we obtain

n− |S| vectors saturating (4.1). The remaining |S| vectors are built as follows. For

each vertex v ∈ S, we consider the vector where xv = 1, xw = 0 for w ∈ S \ {v},

and xw = 1 for any w ∈ S.

It is now easy to see that the n vectors correspond to k-separators and are affinely

independent. First, for each v ∈ S, there is only one vector such that xv = 0.

Second, among the last |S| vectors, for each v ∈ S there is only one vector such that

xv = 1. These two observations immediately lead to the affine independence of the

n vectors. �
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If G is a tree and S is a subtree of G, then each vertex v ∈ S has at most one

neighbor in G. This leads to the following obvious corollary.

Corollary 5.2 If G is a tree, then each inequality (4.1) induces a facet of Sk(G).

5.4.2 Connectivity inequalities

Proposition 5.12 Let S ⊂ V be a subset of vertices such that |S| ≥ k + q, q ≥ 1

and G(S) is q-node-connected. Then the following inequality is valid for Sk(G):

∑

v∈S

xv ≥ q (5.1)

Proof: It is clear that by removing less than k vertices from S, the remaining

subgraph is still connected and it contains at least k+1 vertices. This immediately

implies that
∑

v∈S
xv ≥ q is valid. �

Notice that inequalities (5.1) were also considered in [53] but in a more restricted

form (it is required in [53] that |S| = k + q).

Let us focus on the special case where |S| = k + q. The next result can be seen

as a generalization of Proposition 5.11 where q was equal to 1.

Proposition 5.13 Let S ⊂ V be a subset of vertices such that |S| = k + q, q ≥ 1

and G(S) is q-node-connected. Then inequality (5.1) induces a facet of Sk(G) if

each vertex w ∈ V \ S is adjacent to at most q vertices in S.

Proof: The proof is very similar to the proof of Proposition 5.11. We build n affinely

independent vectors related to k-separators and saturating inequality (5.1). For each

vertex w ∈ S, we consider a k-separator incidence vector defined as follows. We have

xw = 0 and xv = 1 for each v ∈ S (v 6= w). We select a subset of vertices Sw ⊂ S of

size q containing all neighbors of w in S. Then xv = 1 for any v ∈ Sw and xv = 0 for

v ∈ S\Sw. In this way, we obtain n−|S| vectors saturating (5.1). The remaining |S|

vectors are built as follows. Observe that
∑

v∈S
xv ≥ q induces a facet of Sk(G(S)).

This is easy to check: assume that all k-separators saturating inequality (5.1) satisfy

the equality
∑

v∈S
αvxv = β, then by considering two k-separators containing the

same subset of vertices of size q − 1 and differing in only one vertex, we show that

αv = αv′ for any vertices v, v
′ of S. This implies that inequality (5.1) induces a facet

of Sk(G(S)). Then, it is possible to find |S| k-separators (of G(S)) whose incidence
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vectors are affinely independent and contained in the face induced by (5.1). These

k-separators of G(S) can be extended to k-separators of G by taking xw = 1 for any

w ∈ S.

It is now easy to see that the n vectors correspond to k-separators and are affinely

independent. �

If we consider the more restrictive assumption: G(S) is q + 1-node-connected,

then the condition related to the number of neighbors in S becomes necessary and

sufficient to obtain a facet.

Proposition 5.14 Let S ⊂ V be a subset of vertices such that |S| = k + q, q ≥ 1

and G(S) is q+1-node-connected. Then inequality (5.1) induces a facet of Sk(G) if

and only if each vertex w ∈ V \ S is adjacent to at most q vertices in S.

Proof: If each vertex w ∈ V \ S is adjacent to at most q vertices in S, we know

from the previous proposition that (5.1) induces a facet of Sk(G). Let us now prove

that this condition is necessary. Suppose that there is a vertex w ∈ V \ S adjacent

to at least q + 1 vertices in S. By removing any subset of nodes of size q from

S, we still obtain a connected component of size k (by q + 1-node-connectivity of

G(S)). The vertex w has necessarily at least one neighbor in the remaining part

of S. This implies that whenever
∑

v∈S
xv = q, we should have xw = 1. In other

words, inequality (5.1) does not induce a facet of Sk(G). �

Notice that the case where G(S) is a clique was considered in [53]. Then the

previous proposition can be seen as a generalization of the clique case.

5.4.3 Cycle inequalities

Proposition 5.15 Let S be a subset of vertices such that |S| ≥ k + 1 and G(S) is

an elementary cycle, then the following inequality is valid for Sk(G):

∑

v∈S

xv ≥ ⌈
|S|

k + 1
⌉. (5.2)

Proof: By writing inequality (4.1) for each subset S′ ⊂ S for which G(S′) is

connected and adding up all of them, we obtain the inequality (k+1)
∑

v∈S
xv ≥ |S|.

Inequality (5.2) follows by simple rounding. �

Notice that when |S| = k + 1, Proposition 5.14 can be applied with q = 1 to

know under which conditions inequality (5.2) induces a facet. Let us then focus on
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the case where |S| > k + 1. It is clear that if |S| ≡ 0[k + 1], then (5.2) is just the

sum of inequalities of type (4.1).

Proposition 5.16 Let S be a subset of vertices such that |S| > k + 1, |S| is not a

multiple of k + 1, and G(S) is an elementary cycle, then inequality (5.2) induces a

facet of Sk(G) if and only if for each vertex w ∈ S, there is a k-separator of size

⌈ |S|

k+1
⌉ in G(S ∪ {w}).

Proof: The existence of a k-separator of size ⌈ |S|

k+1
⌉ in G(S∪{w}) is equivalent to say

that there are k-separators saturating (5.2) and not containing w. If there is a ver-

tex w ∈ S for which there are no such k-separators, then equality
∑

v∈S
xv = ⌈ |S|

k+1
⌉

implies that xw = 1. We deduce that the existence of such k-separators is a neces-

sary condition to get a facet.

Let us now assume that the condition is satisfied and let us build n affinely inde-

pendent vectors related to k-separators and saturating inequality (5.2).

For each vertex w ∈ S, we consider a k-separator incidence vector defined as follows.

We have xw = 0 and xv = 1 for each v ∈ S (v 6= w). We select a subset of vertices

Sw ⊂ S of size ⌈ |S|

k+1
⌉ corresponding with a k-separator of G(S ∪{w}). Then xv = 1

for any v ∈ Sw and xv = 0 for v ∈ S \ Sw. In this way, we obtain n − |S| vectors

saturating (5.2).

To build the remaining |S| vectors, we should first prove that
∑

v∈S
xv ≥ ⌈

|S|

k+1
⌉ in-

duces a facet of Sk(G(S)). Assume that all k-separators saturating inequality (5.2)

satisfy the equality
∑

v∈S
αvxv = β. Given any k-separator of G(S) of size ⌈ |S|

k+1
⌉,

there is at least one vertex v belonging to the k-separator such that the next vertex

v′ belonging to the k-separator (when we go through the cycle in the clockwise di-

rection) is situated at a distance less than or equal to k − 1. In other words, there

is a subset S′ ⊂ S of size less than or equal to k, containing v and v′ where both v

and v′ belong to the k-separator. This is true because |S| is not a multiple of k+1.

It is now clear that if we replace v by the vertex v′′ preceding v in the cycle (in

clockwise direction), we still obtain a k-separator of G(S) of size ⌈ |S|

k+1
⌉. By writing

that both the initial and the modified k-separators satisfy equality
∑

v∈S
αvxv = β,

we get that αv = αv′′ where v and v′′ are adjacent on the cycle. This obviously

implies that all coefficients αv are equal. This is enough to say that inequality (5.2)

induces a facet of Sk(G(S)).

We are now ready to build the remaining |S| k-separators. First, we consider |S|
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k-separators (of G(S)) whose incidence vectors are affinely independent and con-

tained in the face induced by (5.2). These k-separators of G(S) can be extended to

k-separators of G by taking xw = 1 for any w ∈ S.

It is now easy to see that the n vectors are affinely independent. �

The existence of a k-separator of size ⌈ |S|
k+1

⌉ in G(S∪{w}) mentioned in Proposi-

tion 5.16 does not appear to be very explicit. While it is possible to find an explicit

equivalent condition related to how the neighbors of a w ∈ G \ S are located in S,

we will only give a sufficient condition (to keep the size of the paper under control).

Let vw
1
, ..., vwr be the neighbors of w in S. We assume that they are encountered

in the order vw
1
, ..., vwr when one goes through the cycle in the clockwise sense. Let

h(vwi , v
w
i+1

) be the number of vertices located between vwi and vwi+1
(when going from

vwi to vwi+1
in the same sense and not counting vwi and vwi+1

). We will consider that

vwr+1
= vw

1
.

Proposition 5.17 Let S be a subset of vertices such that |S| > k + 1, |S| is not a

multiple of k + 1, and G(S) is an elementary cycle, then inequality (5.2) induces a

facet of Sk(G) if for each vertex w ∈ S having r adjacent vertices vw
1
, ..., vwr in S,

the following equality holds:

r +

r
∑

i=1

⌊
h(vwi , v

w
i+1

)

k + 1
⌋ = ⌈

|S|

k + 1
⌉.

Proof: Observe that if w does not have neighbors in S, then the existence of a

k-separator of size ⌈ |S|
k+1

⌉ in G(S ∪ {w}) is obviously guaranteed. Assume that w

has r neighbors in S. Then r +
r
∑

i=1

⌊
h(vw

i
,vw

i+1
)

k+1
⌋ represents the size of a k-separator

including the r neighbors in addition to a minimum number of vertices that must

be removed to disconnect the connected components of size k + 1 located between

vwi and vwi+1
(1 ≤ i ≤ r). If r +

r
∑

i=1

⌊
h(vw

i
,vw

i+1
)

k+1
⌋ = ⌈ |S|

k+1
⌉, then this k-separator has a

minimum size. �

5.4.4 Wheel inequalities

Let W denote a wheel (contained in G) having for rim the cycle C = (VC , EC) and

hub v0 (i.e., W is the subgraph of G whose node set is VC ∪ {v0} and edge set is
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EC ∪ (v0, r), ∀r ∈ VC). The wheel inequality is defined below.

∑

v∈VC

xv + (|VC | − ⌈
|VC |

k + 1
⌉ − k + 1)xv0 ≥ |VC | − k + 1. (5.3)

Proposition 5.18 Inequality (5.3) is valid for Sk(G). Whenever the cycle inequal-

ity (5.2) obtained with S = VC defines a facet of Sk(G \ {v0}), inequality (5.3)

induces a facet of Sk(G).

Proof: Inequality (5.3) can be obtained by maximum lifting of (5.2). �

The results of Section 5.4.3 can be directly used to get conditions under which

inequality (5.3) induces a facet of Sk(G).

5.4.5 Antiweb inequalities

Let AW (r, q) with r, q ∈ N, denote a graph (also called antiweb) consisting of a

cycle C with length r: C = (v1, v2, . . . , vr) and all edges of the form (vi, vj) if the

distance between vi and vj on C is at most q.

Proposition 5.19 If AW (r, q) with r ≥ k+q is a subgraph of G, then the following

inequality is valid for Sk(G)

∑

v∈AW (r,q)

xv ≥
rq

k + q
. (5.4)

Proof: Let U denote the set of vertices in a k-separator of G. Let T denote the

nodes of AW (r, q) that are not contained in U .

Consider first the case when the subgraph G′ of G that is induced by V \U has

p distinct connected components B1, . . . , Bp intersecting AW (r, q), with p ≥ 2.

Considering one component Bi, for some i ∈ {1, . . . , p}, it is a simple observation

(considering the nodes of Bi in C sequentially, for some arbitrarily fixed order on

C) that at least one node, denoted vi ∈ Bi ∩ C satisfies the following:

• the first node which follows vi in C (for the chosen order on C) belongs to U ,

and

• the first node which follows vi in C (for the chosen order on C) and does not

belong to U belongs to a different connected component Bj , j ∈ {1, . . . , p}, j 6=

i.
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So the first q nodes following vi on C (for the chosen order) necessarily belong to

U . And as this holds for each connected component Bi, i ∈ {1, . . . , p}, we have

|U ∩ C| ≥ qp.

And since each connected component has at most k nodes, the number of nodes

r satisfies r ≤ kp+ |U ∩ C|.

Combining the last two inequalities and rounding leads to |U ∩ C| ≥ rq
k+q

.

Finally, for the case p ≤ 1, using the inequalities |U ∩ C| ≥ q, r ≤ k + |U ∩ C|

and then rounding, leads to the proposition. �

Proposition 5.20 Let G = AW (n, q) with n = r(k+ q)− z, 1 ≤ z ≤ k
q
, q ≥ 2, and

n, q relatively prime integers. Then the inequality (5.4) is facet-defining for Sk(G).

Proof: Let
∑

v∈AW (n,q) αvxv ≥ β be an inequality defining a facet F of Sk(G)

and such that F contains all the incidence vectors of the k-separators saturating

inequality (5.4). We show that αv = αw for all v, w ∈ V , thus implying that the

inequality (5.4) is facet-defining for Sk(G).

Let U denote the node set of a k-separator saturating inequality (5.4). From the

assumptions on n and z we deduce |U | = rq.

Let Bi denote a connected component of the graph G(V \ U) with cardinality

at least 2. Then Bi can be described by a sequence of nodes in C: (vi
1
, . . . , vip)

such that two consecutive nodes in the sequence are at distance at most q on C

from each other. This namely implies that all the nodes in the cycle C from vi
1

to vip must belong to either U or Bi (i.e. they cannot belong to another connected

component of G(V \U)). From this observation it follows that if G(V \U) consists of

l connected components then the k-separator |U | must contain at least lq nodes. We

mentioned above that for a separator saturating inequality (5.4) we have |U | = rq,

thus implying that G(V \ U) has at most r connected components.

And from the assumption on n, it follows that G(V \U) must consist of (at least

, and so) exactly r connected components. This shows that G(U) consists of r paths

contained in C, each having length q (and consequently each connected component

of the graph G(V \U) consists of a path contained in C and having length at most

k − 1). Since the graph G(V \ U) has rk − z nodes and r connected components,

there exists at least one connected component with cardinality at most k − 1 and

there is at most one connected component consisting of a single node.
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Let B0, . . . , Br−1 denote the connected components of G(V \ U) that appear

sequentially on C (for some arbitrarily set order) and let Bl, l ∈ {0, . . . , r − 1}

denote one such component with minimum cardinality. Consider now the nodes

w1: the last node of Bl−1 (taking indices modulo r) and w2: the node of U that is

located after w1 on C (for the chosen order) and is a neighbor of the first node of

Bl. (So the q nodes which follow w1 on C belong to U and w2 is the last one of

these nodes in U). Then the node set U ′ := U \ {w2} ∪ {w1} is a k-separator with

the same cardinality as U , and we can deduce αw1
= αw2

.

We may then proceed in this manner until the component Bi of G(V \ U) to

which we added a node attains a cardinality of value k. We may then consider the

component Bi−1 in place of Bi... and so on, leading to the equations αvi = αvi+q
,

with C = (v0, . . . , vn−1), taking indices modulo n. Since n and q are relatively prime

integers we deduce the equations αv = αw, ∀v, w ∈ V . �

5.4.6 Generalized projected metric inequalities

Remember that the projected metric inequalities (4.2) are given by (|S|+1−k)(1−

xi) ≤
∑

j∈S

x(pij \ {i}) where i ∈ V . They can be generalized as follows. Vertex i is

replaced by a subset of vertices A ⊂ V such that G(A) is connected and |A| ≤ k.

Let S be a subset of vertices A ⊂ V such that S ∩ A = ∅ and |S| + |A| ≥ k + 1.

For each vertex j ∈ S, let pAj be a path connecting j to one vertex from A. The

internal vertices of pAj can be assumed to be in A. Similarly to Section 4.5, pAj \A

denotes the path connecting j to the last vertex of pAj not belonging to A. It is

then easy to see that the following inequalities are valid:

(|S|+ |A| − k)(1− x(A)) ≤
∑

j∈S

x(pAj \A). (5.5)

Inequalities (5.5) can be written in a different way by making two observations.

First, the paths pAj for j ∈ S should be shortest paths from j to A (with respect to

vertex weights (xv)v∈V ). Second, we can assume that each path pAj\A is included in

S since otherwise inequality (5.5) can be strengthened by deleting j from S, adding

to S a vertex l from pAj \ A and replacing pAj by the subpath of pAj connecting l

to A . These two observations imply that we can assume that
⋃

j∈S

pAj is in fact the

disjoint union of some trees rooted at vertices in A. All vertices of each rooted tree
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Figure 5.1: Illustration of inequality (5.6)

(except the root) belong to S. Figure 5.1 illustrates the situation.

Observe that in the sum
∑

j∈S

x(pAj \ A), the variable xv related to vertex v ∈ S

appears as many times as the number of vertices in the subtree rooted at v. Let us

use d′v to denote this number. Then inequality (5.5) can be written as follows:

(|S|+ |A| − k)(1− x(A)) ≤
∑

v∈S

d
′

vxv (5.6)

where A ⊂ V and S ⊂ A such that: G(A) is connected, |A| ≤ k, and |S|+|A| ≥ k+1.

In the situation depicted by Figure 5.1, inequality (5.6) can be written as follows:

(|S|+ |A| − k)(1− xa − xb − xc) ≤ (xf + xg + xh + xj + xk) + 2xd + 3(xe + xi).

If we consider the special case where S ⊂ N(A), then inequality (5.6) becomes

(|S|+ |A| − k)(1− x(A)) ≤ x(S). (5.7)

Since the exhibition of all cases where inequality (5.6) induces a facet requires

some tedious proofs, we will only focus on a special case of inequality (5.7).

Proposition 5.21 Let A = {i} and S ⊂ N(A) be such that |S| ≥ k + 1, and

G(S ∪ {j}) does not contain a connected component of size greater than or equal to

k + 1 for any j ∈ S ∪A. Then inequality (5.7) induces a facet of Sk(G).

Proof: Assume that all k-separators saturating inequality (5.7) satisfy the equality
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∑

v∈V αvxv = β. Among these k-separator, we can select the separator defined by

S. Since we assumed that G(S ∪ {j}) does not contain a connected component of

size greater than or equal to k + 1 for any j ∈ S ∪A, we still obtain a k-separator

if we eliminate from S a vertex j ∈ S ∪A. This clearly implies that αj = 0 for any

j ∈ S ∪A.

By considering the union of any subset of S of size |S|+ |A| − k with S ∪A we

still get a k-separator whose incidence vector satisfies (5.7) with equality. Since the

choice of the subset of S of size |S|+ |A| − k is arbitrary, we deduce that αv = αw

for any v and w belonging to S. In other words, equality
∑

v∈V αvxv = β can be

written as αSx(S) + x(A) = β (remember that we assumed that |A| = 1).

Considering again the k-separator S leads to β = 1. Also by considering a

k-separator given by the union of a subset of S of size |S| + |A| − k with S ∪A,

we deduce that β = αS(|S| + |A| − k). Consequently, equality
∑

v∈V αvxv = β is

proportional to (|S|+ |A| − k)(1− x(A)) = x(S). �

5.5 Conclusion

Several classes of valid inequalities have been investigated, along with conditions

under which some of them are facet defining for the k-separator polytope. The next

chapter is dedicated to computational results of some formulations studied in this

chapter and the previous one.
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6.1 Introduction

In this chapter many cutting-plane algorithms based on branch-and-cut and branch-

and-bound are implemented. The first algorithm is related to the stable set formu-

lation IP2 by using a branch-and-bound method. The second algorithm is based

on the partitioning formulation IP9 using a branch-and-cut approach. The last im-

plemented algorithm is related to formulations IP1 and IP7 using a branch-and-cut

concept. A depth analysis of the results is also included in this chapter.
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6.2 Cutting-plane algorithms

Three cutting-plane algorithms will be compared. The first one is related to the

stable set formulation IP2. The second one is related to the partitioning formulation

IP9. The third cutting plane algorithm is related to both basic and projected metric

formulations (IP1 and IP7). Thanks to Proposition 4.2, we do not need to consider

formulations IP4, IP5 and IP6. Moreover, many valid inequalities including (4.1)

and those of Section 5.4 can be used to strengthen the linear relaxation LP7.

6.2.1 A cutting-plane algorithm related to the stable set formula-

tion IP2

The linear relaxation LP2 can naturally be strengthened using some of the valid

inequalities of the stable set polytope including odd-cycle inequalities, clique in-

equalities, etc. (see, e.g., [76]). Gerards and Schrijver [3] gave a polynomial-time

separation algorithm for odd-cycle inequalities. In our implementation, only odd-

cycle inequalities and clique inequalities are considered. Clique inequalities are

separated using a basic greedy algorithm.

More valid inequalities could be considered. However, the size of formulation IP2

becomes huge when k increases. Then we can not expect a cutting-plane algorithm

related to IP2 to be competitive with the two next cutting-plane algorithms.

6.2.2 A cutting-plane algorithm related to the partitioning formu-

lation IP9

We consider the linear relaxation LP9. Only inequalities (4.3) are iteratively added

to improve the relaxation LP9. The separation of these inequalities can obviously be

done in polynomial time. For each edge (i, j), we should take U = {b ∈ {1, ..., B} :

zib ≥ zjb}. Then we only have to check if the inequality is violated.

Proposition 6.1 Inequalities (4.3) can be separated in polynomial time.

We have used a heuristic method to compute B. We solve LP2 and then we

round the max stable set (obj) value to the ceiling one(⌈obj⌉).
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6.2.3 A cutting-plane algorithm related to formulations IP1 and

IP7

We implemented a cutting-plane algorithm based on inequalities (4.1) and (4.2) in

addition to some of the valid inequalities presented in chapter 5 (see section 5.4).

Separation of the hitting-set inequalities (4.1) is NP-hard even if all vertex-

weights belong to {0, 1} when k is part of the input [63]. If k is constant, the

separation is obviously easy. It is also known that a maximum-weight connected

subgraph of size k + 1 can be computed easily if the graph is a tree [63]. In the

general case, we use a simple algorithm to separate inequalities (4.1) by building a

connected component of size k in a greedy way: add to the component the neighbor

having the largest x-value until the size of the component reaches k. If the weight

of the component is less than 1, we add the corresponding inequality.

Inequalities (4.2) can be separated in polynomial time as shown below.

Proposition 6.2 There exists a polynomial-time algorithm to separate inequalities

(4.2)

Proof: We give here the algorithm. The subset S is initially empty. For each

vertex i ∈ V , we first compute the shortest path pij for each j 6= i. Then, we

put in S the k closest vertices to i. We also add to S all vertices j ∋ S for which

x(pij \ {i}) < (1 − xi). If (|S| + 1 − k)(1 − xi) >
∑

j∈S

x(pij \ {i}), then we add the

violated inequalities. The procedure is repeated for each vertex i. The complexity

of the algorithm is obviously polynomial. �

Observe that inequalities (5.6) (equivalent to (5.5)) can also be separated in

polynomial-time if the size of A is bounded by a constant. This happens for example

if k is bounded by a constant. The separation algorithm is similar to the one

presented above to separate inequalities (4.2). We only need to enumerate all subsets

A of size at most k for which G(A) is connected.

Corollary 6.1 Inequalities (5.6) can be separated in polynomial-time if k is upper-

bounded by a constant.
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6.3 Experimental results

We present numerical experiments obtained using many integer programs and in-

stances. First integer program used is IP2. Remember that (IP2) is based on a

stable set formulation in an extended graph. Then all valid inequalities for the sta-

ble set problem can be used to strengthen the linear relaxation of (IP2). However,

in our implementation we only focused on odd-cycle inequalities and clique inequal-

ities. Odd-cycle inequalities are separated in polynomial time using the algorithm

by [3] (see also 2.3.4), while clique inequalities are generated using a basic greedy

heuristic. After a cutting-plane phase based on these two families of valid inequal-

ities, a branch-and-bound follows using the default parameters of the Cplex solver.

Results are reported in the Table 6.1. Graphs are generated randomly with differ-

No. |V | |E| k T ime Iter Cuts O.LP O.IP Gap

RanG1 10 12 2 00:03 3 7 106 107 1

RanG2 10 6 2 00:03 2 2 74 74 0

RanG3 20 39 2 00:07 4 32 273 349 22

RanG4 20 20 2 00:03 3 8 203 203 0

RanG5 30 23 2 00:02 3 13 200,33 230 13

RanG6 40 40 2 00:07 5 44 303,1 429 29

RanG7 50 62 2 00:16 4 72 408,07 492 17

RanG8 60 90 2 00:43 5 90 618,04 743 17

RanG9 80 159 2 03:40 5 139 822,95 1239 34

RanG10 100 249 2 13:15 13 296 1043,42 2150 51

RanG11 10 15 3 00:03 4 12 35 63 44

RanG12 20 39 3 00:51 2 11 93,65 274 66

RanG13 30 23 3 00:05 3 23 63,06 143 56

RanG14 40 79 3 00:19 3 54 486,2 734 34

RanG15 50 62 3 03:50 4 63 186,1 420 56

RanG16 100 249 3 60:00 67 827 432,24 1724 75

RanG17 10 10 4 00:04 3 7 29,8 44 32

RanG18 20 20 4 00:40 5 10 46 90 49

RanG19 40 40 5 04:10 4 34 9,14 165 94

Table 6.1: Compact Formulation (IP2) applied to random graphs

ent densities, orders (number of vertices) and costs are also uniformly distributed

in the interval ]0, 100[ for the tables, Table 6.1 and Table 6.2. For each instance in

table 6.1 and table 6.2, we provide the following information: Name is the name

of instance, the number of vertices is |V |, the number of edges denoted by |E|,
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the maximum size of each component is k, T ime is the total time in minutes and

seconds spent in the cutting-plane and the branch-and-bound or branch-and-cut

phases, the O.IP is the best solution found before one hour. In table 6.1 : the

gap defined by 0 if the optimum value (O.IP ) found before one hour, otherwise

Gap = (O.IP −O.LP )/O.IP ∗ 100 , the cost O.LP at the end of the cutting-plane

phase, the number of generated odd cycle inequalities denoted by Cuts and the

number of iterations in the cutting-plane phase is Iter. Let IP1&IP7 denotes the

formulations IP1 and IP7. In table 6.2 we have five different columns from Table

6.1 for the IP1&IP7. The first is HitSet corresponding to Hitting Set inequalities

4.1. The second is ProjMetric for the Projected metric inequalities (4.2). The third,

B&C denotes the cuts added by Cplex solver. N#.Iter is the number of iterations

one iteration consists of one round of adding violated inequalities then reoptimizing

the IP1&IP7 or IP9 and Nodes is the number of nodes in the branch-and-cut tree.

We implemented two branch-and-cut algorithms for k-separator problem applied to

IP1&IP7 (resp. IP9). In the cutting-phase we add in the first step the Cplex

solver cuts in the IP1&IP7 (resp. IP9), then we add the violated constraints for

each class of the valid inequalities. Precisely, we add in second step the HitSet to

IP1&IP7 (resp. Compl to IP9, where Compl is the constraints (4.3)). In the last

step we add the ProjMetric to IP1&IP7 and reoptimize IP1&IP7 (resp. IP9)

in each iteration. The separation of these inequalities are mentioned before in 6.2.3

(resp. 6.2.2). The branching phase of our two branch-and-cuts algorithms is done

as follows : we branch on variable xi (i ∈ V ) for which {xi, 1 − xi} is maximal. If

xi < 0.5 we first examine the branch corresponding to xi = 0, if xi ≥ 0.5 we start

with the case xi = 1.

The program was written in C++. All experiments were conducted on a com-

puter with a processor "Intel Core 2 Quad CPU Q6600" of frequency 2,4 Ghz, and

a RAM size of 3,25 Gbytes running on Windows operating system.

While the problem is solved very quickly by using IP2, one can observe that the

gap between the linear-programming bound at the end of the cutting-plane phase

and the optimum can be very large even for problems of medium size. This suggests

the necessity of adding other valid inequalities. Moreover, when k increases, the

size of the extended graph and thus the formulation LP2 increases very quickly. In

other words, to solve problems with larger values of k and |V |, it seems that we

should try to strengthen formulation LP1 rather than LP2. We can observe that
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Name |V | |E| k T ime N#.Iter Nodes HitSet ProjMetric B&C O.IP

RanG1 10 12 2 00:00 3 1 24 87 211 107

RanG2 10 6 2 00:00 2 2 71 73 320 74

RanG3 20 39 2 00:01 3 3 61 167 337 349

RanG4 20 20 2 00:00 4 9 53 89 271 203

RanG5 30 23 2 00:00 7 17 38 128 187 230

RanG6 40 40 2 00:01 9 11 86 180 253 429

RanG7 50 62 2 00:02 12 15 67 201 462 492

RanG8 60 90 2 00:04 15 7 89 345 545 743

RanG9 80 159 2 00:15 23 9 112 492 844 1239

RanG10 100 249 2 03:18 32 92 417 920 3467 2150

RanG11 10 15 3 00:00 5 4 26 89 163 63

RanG12 20 39 3 00:01 6 5 43 180 420 274

RanG13 30 23 3 00:01 8 8 52 122 289 143

RanG14 40 79 3 00:01 9 10 86 183 537 734

RanG15 50 62 3 00:10 8 18 43 241 372 420

RanG16 100 249 3 03:51 45 112 693 1378 8472 1829

RanG17 10 10 4 00:00 5 4 21 150 358 44

RanG18 20 20 4 00:02 4 3 39 120 339 90

RanG19 40 40 5 00:23 3 13 59 298 632 165

Table 6.2: IP1 and IP7 formulations applied to random graphs

when we strengthen IP1 the difference between both formulations is considerable.

Now we look at the results of another instances. Precisely MIPLIB and NETLIB

libraries instances (available at this reference [1]). For these instances we use the

same parameter values as [53]. In tables 6.4 and 6.6 we have Compl, B and T.B.

Compl corresponding to the inequalities (4.3). B denotes the number of partitions

and T.B is a time spent for computing B.

The performances of our two branch-and-cut algorithms on these instances are

given in the tables, Table 6.3, Table 6.4, Table 6.5 and Table 6.6 . The results

of these tables show that the branch-and-cut approach based upon IP1&IP7 and

IP9 is a robust method to solve instances for the MIPLIB and NETLIB libraries.

We can see that all instances, 28 MIPLIB instances and 18 NETLIB instances, are

solved exactly in less than one hour i.e. with gap equal to zero, whereas 23 MIPLIB

instances and 15 NETLIB instances are solved in the case of [53]. For example,

we solved some instances like share2b or stein15 whereas in [53] we don’t have the

optimum value.
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Name |V | |E| k T ime N#.Iter Nodes HitSet ProjMetric B&C O.IP

afiro 20 20 5 00:00 53 40 26 85 126 2
fit1d 24 228 6 00:01 61 62 103 198 320 16
fit2d 25 279 7 00:01 73 98 54 73 143 18
sc50b 28 110 7 00:03 645 660 362 679 3562 11
sc50a 29 95 8 00:01 523 689 89 216 753 8
kb2 39 330 10 00:01 78 178 95 139 432 14

vtpbase 51 354 13 00:11 524 836 317 528 3585 14
bore3d 52 615 13 00:08 531 639 429 832 2754 23
scsd1 77 202 20 00:07 574 498 520 708 3302 8

share2b 93 619 24 00:40 442 643 743 920 4720 8
seba 2 0 1 00:00 1 1 0 0 0 0

adlittle 53 239 14 00:32 1289 1784 611 1293 8390 10
blend 54 548 14 00:21 456 559 532 840 3924 20
recipe 55 129 14 00:01 40 19 21 49 67 0
scagr7 58 661 15 00:37 671 847 828 891 5274 21
sc105 59 356 15 00:23 889 1083 782 945 6007 16

stocfor1 62 272 16 00:14 241 187 159 362 930 10
beaconfd 90 1199 23 03:15 3261 3782 924 2749 15649 26

Table 6.3: IP1 and IP7 formulations applied to NETLIB instances

Name |V | |E| k B T.B Time N#.Iter Nodes Compl B&C O.IP

afiro 20 20 5 11 00:02 00:00 44 43 21 43 2
fit1d 24 228 6 4 00:01 00:01 48 70 62 138 16
fit2d 25 279 7 3 00:00 00:01 62 103 43 60 18
sc50b 28 110 7 4 00:01 00:04 518 664 509 1548 11
sc50a 29 95 8 3 00:02 00:02 415 663 225 413 8
kb2 39 330 10 4 00:01 00:02 76 134 73 148 14

vtpbase 51 354 13 4 00:04 00:13 534 903 604 1596 14
bore3d 52 615 13 3 00:01 00:11 427 748 224 1275 23
scsd1 77 202 20 5 00:07 00:11 493 523 655 1473 8

share2b 93 619 24 5 00:10 00:42 398 514 1757 1188 8
seba 2 0 1 2 00:00 00:00 1 1 0 0 0

adlittle 53 239 14 6 00:05 00:49 1170 1161 2657 3504 10
blend 54 548 14 5 00:03 00:29 432 538 1000 1290 20
recipe 55 129 14 5 00:03 00:01 11 7 2 10 0
scagr7 58 661 15 4 00:03 00:39 584 789 1399 1746 21
sc105 59 356 15 6 00:05 00:37 776 1029 1659 1548 16

stocfor1 62 272 16 13 00:08 00:25 187 212 575 185 10
beaconfd 90 1199 23 3 00:09 02:36 2596 4624 889 10374 26

Table 6.4: IP9 formulation applied to NETLIB instances

102



Chapter 6. Computational Results

Name |V | |E| k T ime N#.Iter Nodes HitSet ProjMetric B&C O.IP

mod008 6 15 4 00:00 9 2 2 7 9 2
p0040 13 30 7 00:00 31 1 12 21 35 3
flugpl 16 28 9 00:00 5 1 1 4 6 1
p0033 15 40 8 00:00 15 7 3 9 17 3
gt1 15 46 8 00:00 11 4 1 6 8 5

stein9 13 66 7 00:00 19 13 5 7 19 6
rgn 24 75 13 00:00 28 21 7 11 27 5

sample2 45 97 24 00:00 9 3 1 6 11 4
enigma 21 118 12 00:00 10 9 1 3 6 9
mod014 74 127 39 00:00 12 16 2 8 13 2
mod013 62 144 33 00:00 8 7 1 9 16 6

lseu 28 136 15 00:00 26 23 3 11 23 7
stein15 36 350 19 00:02 834 1437 28 174 810 17
misc01 54 929 29 00:05 401 720 11 84 382 23

lp4l 85 1644 45 09:00 27456 50167 537 3528 27465 35
l152lav 97 1866 51 01:25 2671 4567 156 209 2649 35

khb05250 100 1323 53 00:01 9 5 1 4 9 24
misc03 96 2894 51 24:34 38756 72901 378 6389 37830 43
bm23 20 190 11 00:00 19 21 2 3 13 9
air01 23 137 13 00:00 23 5 1 6 10 2
pipex 25 153 14 00:01 9 9 1 4 7 9
gt2 28 173 15 00:00 25 35 4 13 25 11

sentoy 30 435 16 00:01 37 58 3 18 33 14
air02 50 1126 27 00:01 65 102 7 27 59 21
bell5 87 226 46 00:01 32 27 5 19 42 4
p0291 92 521 49 00:00 30 32 4 28 49 7
harp2 100 1225 53 00:01 52 41 8 36 62 17
misc02 43 454 23 00:01 123 199 9 63 126 14

Table 6.5: IP1 and IP7 formulations applied to MIPLIB instances
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Name |V | |E| k B T.B Time N#.Iter Nodes Compl B&C O.IP

mod008 6 15 4 2 00:00 00:00 8 3 2 4 2
p0040 13 30 7 2 00:01 00:00 26 1 6 18 3
flugpl 16 28 9 2 00:00 00:00 3 1 0 1 1
p0033 15 40 8 3 00:00 00:00 13 9 3 8 3
gt1 15 46 8 2 00:00 00:00 7 5 0 5 5

stein9 13 66 7 2 00:01 00:00 17 13 5 10 6
rgn 24 75 13 2 00:01 00:00 23 27 8 13 5

sample2 45 97 24 3 00:02 00:00 7 4 1 5 4
enigma 21 118 12 2 00:01 00:00 7 8 0 5 9
mod014 74 127 39 2 00:02 00:00 11 8 3 6 2
mod013 62 144 33 2 00:02 00:00 7 4 1 4 6

lseu 28 136 15 2 00:02 00:01 20 19 6 12 7
stein15 36 350 19 2 00:03 00:04 711 1365 120 589 17
misc01 54 929 29 2 00:05 00:08 364 701 87 276 23

lp4l 85 1644 45 2 00:11 12:00 26343 49767 5343 20998 35
l152lav 97 1866 51 2 00:09 01:39 2535 4656 410 2123 35

khb05250 100 1323 53 2 00:06 00:01 4 3 0 3 24
misc03 96 2894 51 2 00:14 30:56 37525 73725 2212 35312 43
bm23 20 190 11 2 00:01 00:00 13 19 4 7 9
air01 23 137 13 2 00:02 00:00 17 3 6 9 2
pipex 25 153 14 2 00:00 00:01 8 8 2 4 9
gt2 28 173 15 2 00:02 00:01 20 33 6 13 11

sentoy 30 435 16 2 00:03 00:01 29 50 5 22 14
air02 50 1126 27 2 00:12 00:03 57 94 12 43 21
bell5 87 226 46 2 00:04 00:01 21 23 8 11 4
p0291 92 521 49 3 00:05 00:00 21 31 7 12 7
harp2 100 1225 53 2 00:12 00:02 42 30 12 16 17
misc02 43 454 23 2 00:08 00:01 108 188 27 80 14

Table 6.6: IP9 formulation applied to MIPLIB instances
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6.4 Conclusion

In this chapter some formulations are evaluated and some branch and cut algorithms

are also presented. We study before concluding this thesis some approximation

algorithms.
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Approximations
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7.1 Introduction

This chapter is devoted to approximability. The first algorithm is based on linear

programming. The second algorithm uses a greedy method. Inapproximability is

also studied in this chapter.

7.2 Approximation algorithms

7.2.1 LP-Based approximation algorithms

The first approximation algorithm we give relies on the linear relaxation (LP1) of

the integer program (IP1) introduced in Section 4.2. Notice that the separation of
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inequalities “
∑

v∈S xv ≥ 1, ∀S ⊂ V, |S| = k + 1, G(S)connected ” in (IP1) is NP-

hard even if all vertex-weights belong to {0, 1} when k is part of the input [63]. If k is

constant, the separation is obviously easy. It is also known that a maximum-weight

connected subgraph of size k + 1 can be computed easily if the graph is a tree [63].

An LP-based approximation algorithm 9 is obtained by generalizing the basic

approximation algorithm for the vertex cover problem.

A connected subgraph G(S) is said to be large if |S| ≥ k + 1.

Algorithm 9 LP-based Approximation Algorithm
1: Input: A vertex-weighted undirected graph G = (V,E,w) and an integer k.

2: Output: A k-separator S.

3: Solve (LP1) and let x be an optimal solution of (LP1).

4: Set S := ∅.
5: while G(V \ S) contains large connected components do

6: Select R ⊂ V \ S such that |R| = k + 1 and G(R) connected.

7: Select v ∈ R such that xv is maximum and set S := S ∪ {v}.

8: end while

Proposition 7.1 The LP-based approximation algorithm (Algorithm 9) is a (k+1)-

approximation algorithm.

Proof: Since
∑

y∈R xy ≥ 1 for each subset R ⊂ V \S where |R| = k+1 and G(R)

is connected, the vertex v (maximizing xv inside R) necessarily satisfies xv ≥ 1

k+1
.

Adding v to S is equivalent to rounding xv to 1. The final solution is clearly a

k-separator. The weight of this k-separator is not more than k+1 times the weight

of the fractional solution x (since in the rounding procedure, xv is multiplied by at

most k + 1). Since the weight of the fractional solution x is a lower bound of the

optimal weight, we deduce that we have a (k + 1)-approximation. �

7.2.2 Primal Dual approach

Observe that the algorithm described above is a polynomial-time algorithm if we

assume that k is bounded by a constant. This is necessary to guarantee that the

size of (LP1) is polynomial. The primal-dual approach (see, .e.g., [86]) leads also

to a (k+1)-approximation. In fact, the k-separator problem is a special-case of the

hitting set problem where we want to hit large connected components.
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7.2.3 Greedy approximation algorithm

If all vertex weights are equal to 1, then there is another simple (k+1)-approximation

algorithm (Algorithm 10).

Algorithm 10 Greedy Approximation Algorithm
1: Input: A graph G = (V,E) and an integer k.

2: Output: A k-separator S.

3: Set S := ∅.
4: while G(V \ S) contains large connected components do

5: Select R ⊂ V \ S such that |R| = k + 1 and G(R) is connected.

6: S := S ∪R.

7: end while

Proposition 7.2 For the case when all vertex weights are equal to 1, the greedy

algorithm (Algorithm 10) is a (k + 1)-approximation algorithm for the k-separator

problem.

Proof: Since the algorithm stops only when there are no large connected compo-

nents, the final set S is a k-separator. Each subset R selected in any iteration is a

large connected component. Then, we know that any optimal k-separator should

contain at least one vertex from this subset R. Since we put all vertices of R in S

and |R| = k+1, the size of S cannot be more than k+1 times the size of an optimal

k-separator. �

The greedy algorithm obviously has a polynomial time complexity even if k is

part of the input.

7.3 Inapproximability

Notice that we should not expect much better approximation algorithms since it is

shown that the vertex cover (corresponding with k = 1) cannot be approximated

within a factor of 1.3606 [35] unless P = NP . It is even hard to approximate it

within a factor less than 2 if the unique games conjecture is true [73].

Finally, since computing a minimum-weight k-separator is equivalent to maxi-

mizing the weight of the vertices that are not in the k-separator, one can also study

the approximability of the maximization problem. Let us call this problem the max-

imum k-coseparator problem. For k = 2, it is shown in [90] that this problem cannot
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be approximated within a factor of |V |1/2−ε for any constant ε > 0. We extend their

results for any k using the same reduction technique.

Proposition 7.3 Assuming that P 6= NP , the maximum k-coseparator problem

cannot be approximated in polynomial time within a factor of ( |V |
k
)1−ε for any con-

stant ε > 0.

Proof: Let us focus on instances of the k-coseparator problem with unit weights

and let cosepk(G) denote the maximum size of the complement of a k-separator of a

graph G. Consider an instance of the maximum stable set problem given by a graph

G = (V,E). Build a new graph G′ = (V ′, E′) by k duplications of each vertex v ∈ V

(each vertex v ∈ V is replaced by k vertices v1, ..., vk), and adding edges (ui, vj) for

1 ≤ i ≤ j ≤ k when (u, v) ∈ E. It is easy to see that cosepk(G
′) = kα(G) where

α(G) is the size of a maximum stable set of G. Indeed, a stable set of size α(G)

directly leads to a k-coseparator of size kα(G) by replacing each vertex of the stable

set by its k duplicate vertices. Moreover, given a maximum size k-coseparator of

G′, if two adjacent vertices ui and vj belong to the same connected component,

then there is at least an index l (1 ≤ l 6= i ≤ k) such that ul does not belong to the

k-coseparator (otherwise the size of the connected component will be strictly greater

than k). By deleting vj and adding ul, we get a new k-coseparator of maximum size.

By repeating this process, we should obtain a k-coseparator where each connected

component contains exactly the k duplicate vertices v1, ..., vk of some vertex v ∈ V .

By considering the vertices v whose duplicate vertices are inside the k-coseparator,

we get a stable set of G whose size is 1/k times the size of the k-coseparator of G′.

Consequently, cosepk(G
′) = kα(G). Using the fact that the maximum stable set

of G cannot be approximated within |V |1−ε [32, 93], we deduce that the maximum

k-coseparator of G′ cannot be approximated within ( |V
′
|

k
)1−ε in polynomial time

unless P = NP . �

7.4 Conclusion

Approximation algorithms are presented above. Inapproximability is also studied.

For big instances, a heuristic approach must be considered.
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Conclusion

In this thesis we presented and studied the k-separator problem which consists, given

some vertex-weighted graph G = (V,E), in determining a minimum-weight set of

vertices S ⊆ V such that no component in the subgraph induced by V \ S has size

strictly larger than k. Connections with other classical combinatorial optimization

problems have been established and cases when the problem is easy to solve (i.e.

polynomial time solvable) have been identified and methods for such cases, proposed.

A polyhedral study has then been undertaken, leading to many valid inequalities that

may be used to strengthen formulations of the problem. Part of these inequalities

have been integrated in different cutting-plane algorithms that have been applied

on a wide range of instances. These evaluations illustrate the potential advantages

and limits for some of the different formulations presented throughout this work.

Then different formulations of the problem and relaxations have also been studied

and compared. Particularly, with respect to linear relaxations. Some approximation

results and algorithms have been demonstrated.

A matter for future research work is the exhibition of some new classes of prob-

lems for which better approximation algorithms can be provided. Completing the

polyhedral description when the problem can be solved in polynomial-time (such as

for trees) deserves further research.

A heuristic algorithm is required in the case of big instances for the future works.

The graphs related to social network are known to be huge. Applying the results

obtained in this thesis for these graphs can be useful to detect communities.
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A.1 Introduction

Nous assistons depuis des années dans le contexte de réseaux sociaux au développe-

ment des approches décentralisées de la gestion avec une volonté d’assurer une cer-

taine capacité à s’auto-configurer et à résister aux pannes et aux variations de la

topologie du réseau. L’approche la plus répandue consiste à former des clusters avec

éventuellement plusieurs niveaux et à essayer d’organiser les communications d’une

manière hiérarchique et dynamique.

Nous pouvons signaler le fait que les réseaux sociaux se modélisent généralement par
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un graphe (orienté ou non selon le cas) où les liens modélisent des échanges ou des

points communs entre les membres du réseau (ou groupe). La détection des commu-

nautés à l’intérieur d’un réseau social est un sujet qui a fait couler beaucoup d’encre

[8]. L’idée de base consiste à voir les communautés comme des sous-graphes denses.

Plusieurs algorithmes ont été développés pour y parvenir incluant le très classique

algorithme des k-moyennes et différents algorithmes de partitionnement de graphes.

Les points communs entre les réseaux de télécommunications et les réseaux sociaux

sont très nombreux. Le point qui nous intéresse le plus ici est le fait que dans les

deux cas, on essaye de voir (ou de construire) le réseau comme des clusters (des

sous-graphes denses). Dans la section suivante A.2 on présente le thème principal

de la thèse. La section A.3 décrit les approches développées. Enfin nous essayons

de tirer les conclusions qui s’imposent et nous proposons quelques perspectives dans

la section A.4.

A.2 Problématique

L’objectif de cette thèse est la généralisation d’un problème connu de la théorie

de graphes et son étude en caractérisant les cas où le problème est polynomial ou

approximable avec un bon rapport. Le problème à étudier consiste plus précisément

en la construction d’algorithmes afin de déterminer le nombre minimum de nœuds

qu’il faut enlever à un réseau (ou graphe) pour que toutes les composantes con-

nexes restantes contiennent chacune au plus k-sommets. Ce problème on l’appelle

Problème de k-Séparateur et on désigne par k-séparateur le sous-ensemble recher-

ché. Il est une généralisation du Vertex Cover qui correspond au cas k = 1 (nombre

minimum de sommets intersectant toutes les arêtes du graphe).

A.3 Propositions

Nous travaillons sur deux volets à savoir les méthodes exactes basées sur les ap-

proches polyédrales et les algorithmes d’approximation avec garantie de perfor-

mance. Avant de présenter les approches adoptées, nous introduisons quelques no-

tations. Notons par G = (V,E,w) un graphe non orienté dont les sommets sont

pondérés. Etant donné un sous-ensemble S ⊂ V , χ(S) ∈ {0, 1}n désigne le vecteur

d’incidence de S. Pk est l’enveloppe convexe pour touts les k-séparateurs. On note
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par G(S) le sous-graphe induit par S ⊂ V .

A.3.1 Approches Polyédrales

Elles consistent à déterminer un système d’inégalités linéaires décrivant l’enveloppe

convexe de tous les k-séparateurs.

A.3.1.1 Cas polynomiaux

A.3.1.1.a Graphes avec largeur arborescente bornée

Une décomposition arborescente de G est définie par un couple (X , T ) où X =

(Xt)t∈V (T ) est une famille de sous-ensembles de sommets de V étiquetés par les

sommets d’un arbre T , tels que:

(i) pour chaque v ∈ V (G), il existe t ∈ V (T ) tel que v ∈ Xt;

(ii) pour chaque arête (u, v)(G), il existe t ∈ V (T ) tel que u ∈ Xt et v ∈ Xt;

(iii) pour chaque sommet v ∈ V (G), si v ∈ Xt1 et v ∈ Xt2 alors v appartient à Xt

pour chaque t ∈ V (T ) sur le chemin entre t1 et t2.

Propriété (iii) implique que le sous-graphe de T induit par les sommets t tel

que Xt contient v est un sous-arbre. La largeur de la décomposition est donnée par

maxt∈V (T ) |Xt|−1. La largeur arborescente (treewidth) de G est la largeur minimale

sur toutes les décompositions arborescentes de G.

Nous supposons ici que G a une largeur arborescente bornée par une constante l.

Le calcul de la largeur arborescente de G peut être fait en temps polynomial (en sup-

posant que l est constante) [6]. Beaucoup de problèmes d’optimisation NP-complets

peuvent être résolus en temps polynomial pour les graphes de largeur arborescente

bornée. Les algorithmes utilisés sont généralement basés sur la programmation

dynamique et une décomposition arborescente du graphe (plus de détails dans les

références [71, 7, 78]). Une approche générale est proposée dans [78] pour résoudre les

problèmes de partitionnement dans les graphes de largeur arborescente bornée. Vu

que notre problème, c.à.d. le problème de k-séparateur peut être considéré comme

un problème de partitionnement où les partitions sont données par le k-séparateur et

les composantes connexes restantes, l’approche de [78] peut être utilisée dans notre

cas.
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Proposition A.1 Le problème du k-séparateur peut être résolu en temps polynomial

dans le cas de chemins, de cycles et plus géneralement des graphes avec largeur

arborescente bornée même si k est paramètre de l’entrée.

A.3.1.1.b Graphes sans couplage mK2 induit

Avant de présenter les graphes sans couplage mK2 induit, nous introduisons une

construction d’un graphe étendu H à partir du graphe G permettant de transformer

le problème du k-séparateur à un problème de stable de poids maximal. L’idée

consiste à créer un graphe étendu H = (V (H), E(H)) à partir du graphe G. Chaque

sous-ensmble de sommets S ⊂ V tel que 1 ≤ |S| ≤ k et G(S) est connexe est

representé par un sommet dans H. V (H) = {S ⊂ V, |S| ≤ k,G(S) est connexe}.

Les arêtes sont définies comme suit : E(H) = {(S, T ), S ∈ V (H), T ∈ V (H), S 6=

T, tel que S ∩ T 6= ∅, ou (u, v) ∈ E avec u ∈ S et v ∈ T}. Autrement dit, S ∈

V (H) et T ∈ V (H) sont reliés par une arête si les sous ensembles de sommets de G

qui correspondent à S et T , comportent un sommet commun ou contiennent deux

sommets adjacents. Le poids du sommet S ∈ V (H) est égal à wS =
∑

v∈S
wv.

Notons par R le stable de poids maximum de H. Si deux sommets S ∈ V (H) et

T ∈ V (H) appartiennent à ce stable R, alors S ∩ T = ∅ ne contient pas une arête

dans G avec une extremité dans S et l’autre extremité dans T . Autrement dit, si

on considère ∪S∈RS, on obtient un ensemble de sommets dont chaque composante

connexe est de taille inférieure ou est égale à k. Le complémentaire de ∪S∈RS est

un k-séparateur.

Cette construction du graphe étendu peut être considérée comme une général-

isation de la construction proposée dans [81] pour le problème de la dissociation

(k = 2).

Supposons maintenant que G ne contient pas un couplage m induit où m est

une constante. Cela est équivalent à dire que G est sans couplage mK2. Dans ce

cas le problème de dissociation est facile à résoudre comme il est prouvé dans [90].

Et comme le problème de dissociation est un cas particuliers du problème de k-

séparateur (k = 2), nous généralisons ce résultat pour toute constante k.

Proposition A.2 Le problème de k-séparateur peut être résolu en temps polynomial

pour les graphes sans les couplages mK2 induit dans le cas où m et k sont des

constantes.
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A.3.1.1.c Graphes sans (G1, G2, G3, P6) induits

Soit G1 le graphe de chaise (ou fourchette) représenté sur la gauche de la figure 3.1.

Dans [82] il est démontré que le problème de stable de poids maximal est résolu

en temps polynomial si le graphe est ne contient pas G1. Lorsque k = 2, il est

prouvé dans [90] que le graphe étendu H ne contient pas G1 si et seulement si G ne

contient pas les graphes (G1, G2, G3) où G2 et G3 sont présentés sur la figure 3.1.

Nous allons étendre ce résultat lorsque k ≥ 3. Plus précisément, nous montrons que

H ne contient pas G1 si et seulement si G ne contient pas (G1, G2, G3, P6) où P6 est

un chemin contenant 6 sommets (figurant sur la partie droite de la figure 3.1).

Proposition A.3 Soit k ≥ 3, le graphe étendu H ne contient pas le graphe G1 si

et seulement si le graphe G ne contient pas les graphes (G1, G2, G3, P6).

Corollary A.1 En supposant que k est une constante ≥ 3, le problème du k-

séparateur peut être résolu en temps polynomial si le graphe G ne contient pas les

graphes (G1, G2, G3, P6).

A.3.1.1.d Graphes de type Interval-filaments, Graphes sans asteroidal

triple et Graphes de type weakly chordal

Les résultats de cette section sont une conséquence directe des résultats de [39].

Considérons une collection L d’intervalles sur une ligne. Supposons que, pour

chaque intervalle, on donne une courbe au-dessus de la ligne reliant les extrémités

de l’intervalle, et en restant dans les limites de l’intervalle. Un graphe est de type

interval-filament s’il est défini par l’intersection d’une telle collection d’intervalles [29]

(voir la figure 3.2). Le problème de stable max dans le cas de graphes de type "inter-

val filament" se résout en temps polynomial [29]. Le même résultat a été également

prouvé dans [39] pour la classe de graphes de type weakly chordal [33] (graphe tel

que ni le graphe en soi-même ni son complémentaire contiennent un cycle induit

de taille 5 ou plus) et la classe de graphes sans asteroidal-triple (graphes qui ne

contenant pas de stable de taille 3 de telle sorte que, entre chaque paire de sommets

de ce triplet, il existe un chemin qui les relie, et en évitant le voisinage du troisième

sommet).

Proposition A.4 Soit k une constante, le problème de k-séparateur peut être ré-

solu en temps polynomial pour les graphes de type Interval-filament, graphes sans
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asteroidal-triple et les graphes de type weakly-chordal.

A.3.1.1.e Graphes à intervalles et arc-circulaire

Les graphes à intervalles sont des graphes où chaque sommet correspond à un inter-

valle et une arête (u, v) existe s’il y a une intersection non vide entre les intervalles

représentés par u et v (voir figure 3.5.a). Nous avons montré dans cette thèse que

le problème du k-séparateur est facile à résoudre pour les graphes d’intervalles.

Proposition A.5 Le problème du k-séparateur peut être résolu en temps polynomial

pour les graphes d’intervalles même si k n’est pas une constante.

Les graphes arc circulaires sont une généralisation simple de graphes d’intervalles.

Par définition il s’agit des graphes d’intersection d’un ensemble d’arcs sur un cercle

(voir figure 3.5.b).

Proposition A.6 Le problème de k-séparateur peut être résolu en temps polynomial

pour les graphes arc circulaires même si k n’est pas une constante.

A.3.1.2 Formulations

A.3.1.2.a Formulation de base

Soit S un sous-ensemble de sommets tels que |S| = k + 1 et G(S) est connexe.

L’inégalité suivante est évidemment valable pour Sk(G).

∑

v∈S

xv ≥ 1. (A.1)

Le problème du k-séparateur peut être formulé comme le programme entier

suivant:

IP1















min
∑

v∈V
wvxv

∑

v∈S
xv ≥ 1, ∀S ⊂ V, |S| = k + 1, G(S)est connexe

xv ∈ {0, 1}, ∀v ∈ V

Notons par LP1 la relaxation linéaire de IP1.

116



Appendix A. Résumé du manuscrit de thèse en français

A.3.1.2.b Formulation de Stable de poids maximal

Cette formulation est basée sur le graphe étendu H = (V (H), E(H)) de la construc-

tion de la section A.3.1.1.b. Comme V (H) = {S ⊂ V, |S| ≤ k,G(S) est connexe}

et E(H) = {(S, T ), S ∈ V (H), T ∈ V (H), S 6= T, tel que S ∩ T 6= ∅, ou (u, v) ∈

E avec u ∈ S et v ∈ T}. Le lien entre le problème de k-séparateur et le stable de

poids maximal est déjà fait dans la section A.3.1.1.b, ce qui nous donne la formula-

tion suivante.











































min
∑

v∈V wvxv

s.t. :

xv = 1−
∑

S∈V (H),v∈S

yS ∀v ∈ V

yS ∈ {0, 1} ∀S ∈ V (H)

yS + yT ≤ 1 ∀S ∈ V (H), T ∈ V (H), (S, T ) ∈ E(H)

Cette formulation peut être renforcée par des inégalités de cycles impaires, cliques,

etc.[76].

Soit Qv = {S ∈ V (H) : v ∈ S}. On peut ajouter à de IP2 les inégalités valides

suivantes :
∑

S∈Qv∪Qw

yS ≤ 1, ∀ (v, w) ∈ E. Le nombre de ces inégalités est polynomial

(|E|). Cela nous donne la formulation IP3.

IP3



































min
∑

v∈V wvxv

xv = 1−
∑

S∈Qv

yS, ∀v ∈ V

∑

S∈Qv∪Qw

yS ≤ 1, ∀ (v, w) ∈ E

yS ∈ {0, 1}, ∀S ∈ V ⋆

Notons par LP3 la relaxation linéaire de IP3. Soit F1 (resp. F3) l’ensemble des

solutions possibles de LP1 (resp. LP3) par rapport aux variables (xv)v∈V .

Proposition A.1 L’inclusion suivante est vérifiée : F3 ⊆ F1.

A.3.1.2.c Formulation métrique

Une formulation métrique est proposée dans [53]. En plus des variables (xi)i∈V .

Considérons la variable xij qui indique pour chaque paire de sommets {i, j} si i et

j appartiennent à la même composante ou non. Plus précisément, xij est égal à
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0 si elles sont dans la même composante connexe. On peux voir que les inégalités

triangulaires sont valides. Pour exprimer le fait qu’une composante connexe ne

contient pas plus de k sommets, nous pouvons ajouter les contraintes
∑

j∈V \{i}

xij ≥

n−k, ∀ i ∈ V . Enfin, il faut ajouter les contraintes qui imposent que si deux sommets

sont adjacents et qu’ils ne sont pas dans le k-séparateur alors, ils appartiennent à

la même composante : xi + xj − xij ≥ 0, ∀ (i, j) ∈ E. La formulation est donnée

ci-dessous.

IP4























































min
∑

v∈V wvxv

xij ≤ xik + xjk , ∀i, j, k ∈ V

∑

j∈V \{i}

xij ≥ n− k, ∀ i ∈ V

xi + xj − xij ≥ 0, ∀ (i, j) ∈ E

0 ≤ xij ≤ 1, ∀i, j ∈ V

xi ∈ {0, 1}, ∀i ∈ V

Nous présentons ci-dessous une nouvelle formulation qui renforce la relaxation linéaire

de IP4.

LP5











































min
∑

v∈V wvxv
∑

j∈V \{i}

xij ≥ n− k + (k − 1)xi, ∀ i ∈ V

x(p)− xij ≥ 0, ∀ i, j ∈ V , p ∈ Pij

0 ≤ xij ≤ 1, ∀i, j ∈ V

0 ≤ xi ≤ 1, ∀i ∈ V

Une autre formulation compacte est présentée ci-dessous.

LP6



































































min
∑

v∈V wvxv
∑

j∈V \{i}

xij ≥ n− k + (k − 1)xi, ∀ i ∈ V

yij = xi + xj, ∀ (i, j) ∈ E

yij ≤ xi + ykj, ∀ i, j ∈ V, (i, k) ∈ E

yij − xij ≥ 0, ∀ i, j ∈ V

0 ≤ xij ≤ 1, 0 ≤ yij, ∀i, j ∈ V

0 ≤ xi ≤ 1, ∀i ∈ V

LP5 et LP6 sont équivalentes.
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A.3.1.2.d Formulation métrique projetée

Soit S un ensemble de sommets avec |S| ≥ k et soit i ∈ S. Pour chaque j ∈ S,

notons par pij ∈ Pij un chemin joignant i et j. Considérons l’inégalité suivante

(|S|+ 1− k)(1− xi) ≤
∑

j∈S

x(pij \ {i}). (A.2)

.

Lemma A.1 Les inégalités (A.2) sont valides pour Sk(G).

Considérons maintenant la formulation basée sur les inégalités (A.2).

IP7



















min
∑

v∈V wvxv

(|S|+ 1− k)(1− xi) ≤
∑

j∈S

x(pij \ {i}), ∀i ∈ V, S ⊂ V \ {i}, |S| ≥ k; pij ∈ Pij , ∀j ∈ S

xv ∈ {0, 1}, ∀v ∈ V

Lemma A.2 La Formulation IP7 est exacte.

Notons par LP7 la relaxation linéaire de IP7.

Proposition A.2 La formulation LP7 est équivalente aux formulations LP5 et

LP6. Elle est même plus forte que la formulation LP4.

Il n’est pas difficile de montrer qu’il n’y a pas de domination relative entre LP7 et

LP1 (aucune formulation ne domine l’autre en général).

A.3.1.2.e Formulation de partitionnement

Une autre formulation pour le problème de k-séparateur peut être inspirée du prob-

lème de partitionnement ou regroupement [44, 53]. Soit B une borne supérieure

du nombre de composantes connexes qui seront obtenues après la suppression du

k-séparateur. B peut être, par exemple, égal à n. Les composantes sont alors

numérotées de 1 à B. Une variable zib est définie pour chaque sommet i et chaque

composante b ∈ {1, ..., B}. zib sera égal à 1 si i appartient à la composante b. La
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A.3. Propositions

formulation ci-dessous peut être présentée pour le problème de k-séparateur.

IP8















































min
∑

i∈V wixi

xi +
B
∑

b=1

zib = 1, ∀i ∈ V

∑

i∈V

zib ≤ k, ∀b ∈ {1, ..., B}

zib + zjb′ ≤ 1, ∀(i, j) ∈ E, b, b′ ∈ {1, ..., B}, b 6= b′

xi ∈ {0, 1}, zib ∈ {0, 1}, ∀i ∈ V, b ∈ {1, ..., B}

La première famille de contraintes exprime le fait qu’un sommet i est soit dans le

k-séparateur (xi = 1) ou dans l’une des composantes connexes. La seconde famille

d’inégalités permet de limiter la taille de chaque composante connexe à k, tandis

que les contraintes zib + zjb′ ≤ 1 assurent que les sommets adjacents appartiennent

aux même composantes.

En fait, les contraintes zib+zjb′ ≤ 1 sont dominées par les inégalités zib−zjb ≤ xj ,

∀(i, j) ∈ E et b ∈ {1, ..., B}. Une autre formulation exacte et compacte peut alors

être obtenue.

IP9















































min
∑

i∈V wixi

xi +
B
∑

b=1

zib = 1, ∀i ∈ V

∑

i∈V

zib ≤ k, ∀b ∈ {1, ..., B}

zib − zjb ≤ xj , ∀(i, j) ∈ E, b ∈ {1, ..., B}

xi ∈ {0, 1}, zib ∈ {0, 1}, ∀i ∈ V, b ∈ {1, ..., B}

Une amélioration est obtenue en considérant un sous-ensemble U ⊂ {1, ..., B}, son

complémentaire U et deux sommets adjacents i et j:

∑

b∈U

zib +
∑

b∈U

zjb ≤ 1, ∀(i, j) ∈ E. (A.3)

Proposition A.3 La borne supérieure minimale B qui peut être considérée dans

les formulations IP8 et IP9 est égale à la taille maximale du stable dans G.
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A.3.2 Algorithmes d’approximation

Le premier algorithme est une généralisation d’un autre algorithme d’approximation

du vertex cover.

Algorithm 11 Algorithme d’approximation basé sur la programmation linéaire

1: Entrée: un graphe G = (V,E,w) dont les sommets sont pondérés et un entier k.

2: Sortie: un k-séparateur S.

3: résoudre (LP1) et soit x la solution optimale de LP1.

4: S = ∅.
5: TANTQUE G(V \ S) contient une composante large FAIRE

6: Choisir R ⊂ V \ S telque: |R| = k + 1 et G(R) connexe.

7: Choisir v ∈ R telque: xv est maximum et on pose S = S ∪ {v}.

8: FINTANTQUE

En utilisant la méthode primale-duale [86] nous avons un autre algorithme

d’approximation.

Algorithm 12 Algorithme glouton

1: Entrée: un graphe G = (V,E,w) dont les sommets sont pondérés et un entier k.

2: Sortie: un k-séparateur S.

3: S = ∅.
4: TANTQUE G(V \ S) contient une composante large FAIRE

5: Choisir R ⊂ V \ S tel que: |R| = k + 1 et G(R) connexe.

6: S = S ∪R.

7: FINTANTQUE

Notons que les deux algorithmes sont (k + 1)-approchés.

A.4 Conclusion & Perspective

Dans cette thèse nous avons présenté le problème de k-Séparateur. Il consiste à

trouver le sous-ensemble de sommets de poids minimal à supprimer dans un graphe

non orienté dont les sommets sont pondérés afin d’obtenir des sous-ensembles con-

nexes de taille inférieure ou égale à un entier positif k donné. Une étude polyédrale

a été faite, conduisant à de nombreuses inégalités valides qui peuvent être utilisées

pour renforcer les différentes formulations linéaires du problème. Une partie de

ces inégalités a été implémentée dans des algorithmes de type branch-and-cut et

ces algorithmes ont été appliqués sur une large variété d’instances. Les différentes

formulations du problème et relaxations ont également été étudiées et comparées.
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A.4. Conclusion & Perspective

Des cas où le problème peut être résolu en temps polynomial sont présentés. Des

algorithmes d’approximation avec garantie de performance ont été exposés.

Enfin, appliquer les résultats obtenus dans cette thèse pour le problème de k-

séparateur à des cas réels tel que, les réseaux sociaux par exemple nous semble

bénéfique si on prend le problème de détection des communautés dans ceux-ci.
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